
Succinct Arguments: Efficiency, Assumptions and
Trade-offs

Alexandros Zacharakis

July 21, 2022

TESI DOCTORAL UPF / 2022
Supervisors: Vanesa Daza and Carla Ráfols
Department of Information and Communication Technologies

ii

Thanks

I would like to thankmy supervisors, Vanesa Daza and Carla Ráfols. I am grateful to both
formany reasons but I would start with what I consider themost important one: you have
created and maintained a healthy work environment where people are more important
than results and science. As a PhD candidate, one tends to listen to a lot of “scary” stories
and experiences; I am grateful I do not have such stories to share and in big part this is
because of you.

Vanesa, thank you very much for the unlimited support you showed me all these years.
Probably it is not evident to you, but you helped me numerous time escape my comfort
zone and deal with my weaknesses. You taught me not to take the easy route, but pur-
sue the paths that I find interesting and fascinating instead. You motivated and guided
me and were always there for whatever I needed, I could not have expected more! Also
working with you was inspiring in many aspects, but I want to distinguish one in partic-
ular: your passion for teaching. I wish I grow to become half as motivated, creative and
didactic as you have been!

Carla, your support and motivation has been also tremendous! You have also made me
prioritize the topics I find interesting and experience research as a fulfilling and fun pro-
cess; you always reminded me of this when I was overwhelmed and was neglecting to
have fun. I enjoyed very much our –sometimes heated– debates and I would like to thank
you for perceivingme as equal in these, despite yourmuchmore experience and solid un-
derstanding. Your intuition is unique and extremely helpful, there were many moments
it took a simple sentence from you to shed light to things I was struggling with for days
or weeks. Finally, you always motivated me to take risky and fascinating research paths;
I apologize I sometimes failed to do so.

Next, Iwould like to thankMatteoCampanelli, AbidaHaque, AncaNitulescu andAlessan-
dra Scafuro for the collaborations we did.

A special thanks to Alonso González. Our collaboration has been quite a didactic experi-
ence for me. I cannot count howmany times, under a lot of pressure, you chose to take the
time to teach me things –from quite important to tiny details– instead of moving things
faster.

I would like to thankmy family for their support andmy friends, who happen to be living
in many different countries in this earth. Out of dire fear of forgetting somebody I would
not mention you by name. I hope that we have built relations strong enough that my
appreciation can be taken for granted. I hope these relations stay just as strong despite
being spread around.

Anna, it would be impossible to find away to expressmy gratitude in fewwords (ormany
for that matter). Instead, let me just say this: I cannot focus writing this section –the last

iii

thing I am doing for the thesis– because I am constantly thinking my imminent moving
to Berlin in exactly three days from the very moment I am typing these words! See you
soon!

Special thanks to my colleagues and more importantly friends from the infamous 55.210,
Abhi, Bruno, Conor, Federico, Federico, Javier, Masoud, Mohamed, Pablo, Marta, Rasoul,
Sergi, Simona, Xavi and Zaira. I apologize if at times I seemed distant. As (I hope) you
have understood during these years, this is far from real.

A special, well deserved thanks goes to Arantxa. I keep referring to you you as my aca-
demic sister but I would like to stop doing that now. As much as I enjoyed our collab-
orations, working and sharing of PhD experiences (sorry for my nagging!), it does not
describe well enough our relationship. You have become one of my dearest friends and
this means much more to me. I could not have been luckier in having a better companion
in this journey!

For the end, let me express my appreciation to all the administrative staff (Lydia, apart
from your tremendous help in so many aspects, I enjoyed very much our encounters and
short discussions!) and the rest of the UPF employees, who every day put an uneven
amount of effort and are -as is always the case- the untold heroes of the story.

Funding

The project that gave rise to these results received the support of a fellowship from ”la
Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/DI18/11660053. This
project has received funding from the European Union´s Horizon 2020 research and in-
novation programme under the Marie Skłodowska-Curie grant agreement No. 713673.

I received support from Protocol Labs Research Grant PL-RGP1-2021-048.

iv

Abstract

Succinct non-interactive arguments (snarks) are cryptographic constructions that allow
a prover to convince a verifier about the validity of a statement regarding some compu-
tation. We consider these objects from the perspectives of efficiency and assumptions.
We modify the folding technique of Bootle et al. (Eurocrypt 16) to exponentially reduce
the verifier’s complexity at the expense of an updatable setup instead of a transparent
one. Next, we construct a delegation scheme –which is a snark for efficiently decidable
languages– using simple and well understood cryptographic assumptions. On the verifi-
cation side, the construction competes in efficiency constructions that use “non-standard”
assumptions. Furthermore, we consider other cryptographic constructions that are rele-
vant to snarks. First, we explore vector commitments and consider combinatorial tech-
niques to construct them. One of our constructions allows flexible time/memory trade-
offs. Second, we introduce folding schemes with selective verification which allows a
prover to amortize the cost of producing multiple proofs addressed to different verifiers.

Resumen

Los argumentos sucintos no interactivos (snarks por sus siglas en Inglés) son construc-
ciones criptográficas quepermiten a unprobador convencer unverificador sobre la validez
de una declaración con respecto a algún cálculo. Consideramos estos objetos desde el
punto de vista de la eficiencia y los problemas que se asumen intractables. Modificamos la
técnica de plegado de Bootle et al. (Eurocrypt 16) para reducir exponencialmente la com-
plejidad del verificador a expensas de la seguridad en generación de parámetros públicos:
en lugar de ser transparentes, serán actualizables. A continuación, construimos un es-
quema de delegación –que es un snark para lenguajes eficientemente decidibles– usando
suposiciones criptográficas simples y bien entendidas. Por el lado de la verificación, la
eficiencia de nuestra construcción compite con la de aquellas que usan asunciones “no es-
tándares”. Además, consideramos otras construcciones criptográficas que son relevantes
para los snarks. Primero, exploramos compromisos a vectores y consideramos técnicas
combinatorias para construirlos. Una de nuestras construcciones permite concesiones
flexibles entre tiempo y memoria. En segundo lugar, introducimos esquemas de plegado
con verificación selectiva que le permite a un probador amortizar el costo de producir
múltiples pruebas dirigidas a diferentes verificadores.

v

vi

vii

viii

Contents

1 Introduction 1

1.1 Revolutionizing the Notion of a Mathematical Proof 2

1.2 Succinct Non-Interactive Proofs . 4

1.3 Efficiency Requirements . 8

1.4 Computational and Trust Assumptions . 10

1.4.1 Classifying Complexity Assumptions 11

1.4.2 Trust Assumptions . 13

1.5 Our Results . 14

2 Preliminaries 17

2.1 Notation . 17

2.2 Polynomials and the Lagrange Basis . 19

2.3 Cryptographic Assumptions . 20

2.4 Commitment Schemes . 25

2.5 Non-Interactive (Zero Knowledge) Arguments of Knowledge. 26

2.6 Interactive (Zero Knowledge) Arguments of Knowledge. 27

2.7 Polynomial Commitment Schemes . 29

ix

2.8 Delegation of Computation . 30

3 Updateable IPA with Logarithmic Verifier 33

3.1 Distribution Parameterized Pedersen Commitment Scheme 38

3.1.1 Updateable Commitment Schemes 38

3.1.2 Construction . 39

3.2 Improved Inner Product Argument . 42

3.3 Polynomial Commitment Scheme . 48

3.3.1 Non-Hiding Polynomial Relation Argument 49

3.3.2 Polynomial Commitment Construction 52

4 Delegation from Constant-Size Assumptions 57

4.1 Technical Overview . 61

4.1.1 No-Signaling Somewhere Statistically Binding Commitments . . . 61

4.1.2 Pairing-based Quasi-Arguments . 66

4.1.3 From our Quasi-Arguments to Delegation. 74

4.1.4 NIZK, SNARKs and Compact NIZK 79

4.2 Knowledge Transfer Arguments . 80

4.3 No-Signaling Somewhere Statistically Binding Commitment Schemes . . . 82

4.3.1 Algebraic SSB Commitments. 85

4.3.2 Somewhere Statistically BindingCommitmentswithOblivious Trap-
door Generation . 86

4.4 Quasi-Arguments with Pre-processing . 94

4.4.1 Arguments with No-signaling extraction and Oblivious SRS Gener-
ation . 96

x

4.4.2 Succinct Pairing Based Quasi-Arguments 99

4.5 Delegation Construction . 111

4.6 Applications . 117

4.6.1 NIZK arguments for NP. 117

4.7 Deferred Proofs . 119

4.7.1 Security Analysis of QABLin . 119

4.7.2 Security Analysis of QASum . 124

4.7.3 Security Analysis of QAHad . 129

5 Tree Based Vector Commitments 133

5.1 Vector Commitment Definitions . 136

5.1.1 Algebraic Vector Commitments . 139

5.2 Vector Commitments in the Discrete Logarithm Setting 140

5.2.1 Proof of Knowledge of Opening from the Folding Technique. . . . 140

5.2.2 Generic Construciton of Vector Commitments from PoK of Opening 142

5.3 Memory-Time Tradeoffs for Vector Commitments 149

5.3.1 PST Polynomial Commitment . 151

5.3.2 High Level Overview of the Construction 153

6 Folding Schemes with Selective Verification 161

6.1 Folding Schemes . 164

6.2 Folding Schemes with Selective Verification 165

6.2.1 Construction of a Folding Scheme with Selective Verification 167

6.3 Folding Schemes from Interactive Public Coin Protocols 174

xi

6.3.1 Folding Scheme for Inner Product Relation of Committed Values . 174

6.3.2 Folding Scheme for Vector Commitment Openings 177

6.3.3 Folding Scheme for Polynomial Commitment Openings 179

6.3.4 Folding Scheme for Committed Relaxed R1CS 181

6.4 Applications . 182

xii

Chapter 1

Introduction

Modern cryptography has revolutionized our lives in the last half century. While it is easy
to appreciate the access to information and communication means, we often omit consid-
ering howmuch is happening “under the hood” tomake this possible. And cryptography
is nothing but essential. You would not want your credit card details to be owned by the
place that served you your morning coffee, a personal message you send being accessible
to those having the transmission means or someone tampering with the data you receive
when you search your favorite recipe on the internet. The good news is you do not need
to become paranoid; cryptography to the rescue!

The common perception of “cryptography” is a way to modify messages to make them
inaccessible to those who should not access them. While this is true, it is a minuscule part
of a much larger and fascinating story! Webster dictionary defines cryptography as ...no,
no don’t leave yet, I am kidding! Cryptography is the science –or art depending on your
view of the world– of creating trust among those who do not trust each other.

Let us see the communication example through this lens to make it more clear. You prob-
ably should not trust the communication channels you use to send a message. In the end,
the message is transmitted as electromagnetic waves through wires or the air and any-
one close enough to the channel can simply ...read it. Encrypting the message creates
trust: it transforms it to gibberish that reveals no information about the message. For an
eavesdropper, it is some useless gibberish. Similarly, when you receive information from
your favorite recipe website, you cannot trust the channel. Someone can simply change
the message and ruin your dinner! Again, cryptography guarantees that no one can do
this. On your part, you just need to look for this green lock icon on your favorite browser.
While you do not trust the channel (or the people that manage it) you created a trusted
way of using it.

But trust is needed in many more circumstances and considering that there is almost al-

1

CHAPTER 1. INTRODUCTION

ways incentive to act maliciously, cryptography has become useful in a much broader
sense. Before looking into more complex scenarios related to this thesis, let us discuss a
fascinating story that lead us to where we are now: how the notion of a proof was revolu-
tionized.

1.1 Revolutionizing the Notion of a Mathematical Proof

Let us start by considering the following simple question: what is a proof? Well, it de-
pends. The intuitive meaning of a proof is some (most of the times) irrefutable evidence
that asserts a claim. But there are a lot of things to consider, especially in the context of
mathematics.

First, we need to discuss what a claim is. A claim is simply a statement of a theorem¹
in a well defined mathematical framework. Until very recently, a proof of a theorem has
been considered to be a static object. A specific application of some rules in some order that
leads from some axiomatic truth to the claim in question. One simply needs towrite down
the rules and the recipient of the proof –the verifier– has simply to read them and accept
it or reject by essentially verifying the rules are correctly applied. In the case that the
two parties agree on the axiomatic statements of the system, a proof is indeed irrefutable
evidence of the validity of the claim.

In hindsight, however, one can argue that this is a very limiting setting. Our end goal
is in fact to assert validity of a claim and maybe there are easier ways to do this. Let us
motivate ourselves by recalling a quote of Shimon Even. In his personal website, Oded
Goldreich shares the following story: “In 1978, as an undergraduate, I attended Shimon’s
course Graph Algorithms. At some point, one student was annoyed at Shimon’s ”untraditional”
way of analyzing algorithms, and asked whether Shimon’s demonstrations constituted a proof and
if so what is a proof. Shimon answer was immediate, short, and clear: A proof is whatever convinces
me” [Gol11].

Defining a proof this way, it is enough to consider ways that we use to convince ourselves
about the validity of statements. One strategy to avoid “writing down” a proof we use in
our everyday lives’ is interaction. Simply ask questions towhomevermakes a claim and see
if they can give convincing answers! Interaction is a natural way of extracting truth. And
it has to have some benefits over statically produced proofs; in the end, it is considered
universally harder to understand a manuscript than discussing with a “teacher”.

The second ingredient to redefine “proofs” is less intuitive: randomness. The person we
“interrogate” might be clever enough to predict our questions and prepare to give ap-

¹This is equivalent to considering the output of a computer program. The “theorem”, for example, could
be “The shortest path from Paris to Madrid is no more than 1300km”. This notion is more meaningful in
practice, but we prefer the example of traditional proofs of theorems for this discussion.

2

CHAPTER 1. INTRODUCTION

propriate answers that will convince us about false claims. We need to add some unpre-
dictability to the equation, and to do that, we simply use a coin. We flip the coin, and our
questions depend on the coin flips. Hopefully, it is harder to be fooled this way!

Indeed, these two ingredients –interaction and randomness– have changed our percep-
tion of what a proof is. And if we are willing to accept some minuscule error, meaning
that we might be convinced about a false statement but only with extremely low proba-
bility –for example 2−100– we can indeed do much cooler things than simply considering
static proofs. The introduction of such proofs, from now on interactive proofs, was done
by Goldwasser, Micali and Rackoff [GMR85] and independently by Babai [Bab85]. It has
been one of the most important and influential results of Theoretical Computer Science.
These works did not only challenged the classical notion of amathematical proof, but also
inspired and continue to inspire generations of researchers.

Shortly after these works were published, one of themost important and counter intuitive
properties was introduced: Zero Knowledge Proofs [GMR85]. As the name suggests, these
proofs convey no knowledge from the prover to the verifier, or to be more accurate, no
knowledge except the validity of the statement. This means that somebody can make a
statement and convince us that it is true without revealing anything else about it. It simply
conveys a single bit of information: truth or false! If this sounds like magic it is probably
because it (almost) is!

Consider the implications of such a discovery. The privacy of a prover is preservedwhile it
still manages to convince the verifier. And this is how trust is born. Twoparties that do not
trust each other, interact and flip coins, and at some point the verifier is convinced about
some statement and the prover is guaranteed to not have leaked any sensitive information
during the process. While these were mainly objects of theoretical interest, recently they
have been deployed in many real world applications and tremendous efforts have taken
place to understand and improve them.

In a parallel line of work, people considered a different but related question regarding the
verification cost of a (classical) proof. The question is simple to conceptualize: should we
read the proof as a whole to convince ourselves about the validity of a claim? While the
natural answer seems to be positive (if not need to read thewhole proof, why even include
the unnecessary parts?) things change when we allow randomness. We ask the prover to
modify the proof by adding some redundant parts (this makes the proof longer but not
by much in an asymptotic sense) and we do a few spot-checks. Intuitively, the malicious
prover does not know which part of the proofs we will check a priori.

This idea led to the introduction of Probabilistically Checkable Proofs where the verifier has
a static proof, chooses some random locations, reads them and is ready to decide whether
to accept or reject. The celebrated PCP Theorem [AS92] states that for all NP statement
(and thus all the proofs we can hope to produce) it is enough to flip logarithmic coins in the
size of the statement and just see a constant number of proof elements!

3

CHAPTER 1. INTRODUCTION

Not long after that, the idea of succinctness came into consideration. The goalwas to return
to our initial point: proofs as static objects. But as the name suggests, these proofs have
an important property: they are very small is size, asymptotically smaller than a proof
in the traditionally sense. The reader at this point might be wondering how is this even
possible. A proof cannot be “compressed”, thiswould just constitute amore laconic proof.
The answer is indeed that we can not do that unconditionally. But we can circumvent this!

The fact we exploit is that we live in a worldwere resources are limited. A cheating prover
trying to convince us about a false statement can only perform efficient computation. There-
fore, it does not matter if there are convincing proofs as long as it is infeasible to compute one
of them!

And this is the point where everything connects. We take the heavymachinery of IPs and
PCPs and use some computational assumptions to achieve succinctness. We assume that
some problems are computationally hard² and we create protocols that are secure if our
assumptions hold. In the context of proof systems it is guaranteed that there exist proofs
of false statements, but it is computationally hard to find them. The notion of soundness
of mathematical logic now becomes computational soundness.

Succinct proof systems are related, directly or indirectly, to all the chapter of this thesis.
We give a high-level overview of such objects in the next section.

1.2 Succinct Non-Interactive Proofs

This section aims to explain what succinct non-interactive proof systems are. We inten-
tionally keep the discussion informal; the goal is to give motivation and intuition about
these objects and discuss the different perspectives to look at them.

First let us explain what is the problem we are trying to solve. As we mentioned, we have
a prover that wants to convince a verifier about a statement. Lets formalize it a bit. We
consider a set ℒ defined by a predicate ℛ as follows:

ℒ = {x | ∃w s.t ℛ(x,w) = 1}

We callℒ the language. This is simply a set that consists of all statements x for which there
exists a witness w that makes the relation ℛ corresponding to ℒ true. We also require that
predicate ℛ is efficiently computable, that is, there exists a polynomial (in the size of x)
algorithm that computes it. For example,ℒ could be the language ofHamiltonian graphs:
x is the encoding of a graph, w the Hamiltonian cycle and ℛ the predicate that checks if
w is indeed a Hamiltonian cycle of the graph. Note that the predicate is indeed efficiently

²We can only assume because we do not know how to actually prove this fact or if it is even truth for that
matter. We are far from understanding computation and its properties in a mathematical sense.

4

CHAPTER 1. INTRODUCTION

computable: simply assert that all nodes of the graph are included in the claimed cycle
and that there is an edge between each consecutive pair in the claimed cycle.

Let us now consider the prover and the verifier and our first (trivial) protocol. The prover
claims that x ∈ ℒ. There is a simple way to convince the verifier about this statement.
Simply send w. The verifier will then check if ℛ(x,w) is accepting or not. We can easily
argue about its properties:

1. The protocol is complete. As long as the prover knows x it will always convince the
verifier by definition of ℒ.

2. The protocol is sound. If x ∉ ℒ, no matter what the prover sends, the verifier will
always reject, again by definition of ℒ.

For those familiar with complexity theory, this is, in fact, one of the formulations of the
complexity class NP consisting of languages decidable in non-deterministic polynomial
time. This language captures all the computation that can be verified efficiently.

The “trivial” protocolworks, but there are two thingswewould like to improve: (1) reduce
communication, that is sending something smaller than w, and (2) protect the privacy of
the prover: thewitnesswmight be valuable and the prover unwilling to share it despite the
fact that it wants to convince the verifier about x ∈ ℒ. For example, when the statement
is “ciphertext 𝑐 decrypts to 𝑚” you would not want to send your secret key that could
decrypt a bunch of other messages!

The former notion is called succinctness and the latter zero knowledge. Succinctness is al-
most universally desired when considering application while zero knowledge is optional,
depending on the application. In our setting, it is the former that complicates things. Usu-
ally, a succinct proof system can be “easily” augmented with zero knowledge.

Let us now be a bit more concrete and define these notions. To do that, we will make
some relaxations. First, we allow the parties to have access to some parameters we call
the structure reference string. We assume that some trusted party magically gives this to
our parties, although a lot of discussion can be done on the matter. The reason we con-
sider such parameters is simple: it is unavoidable³. Second, we will relax the soundness
property. We will restrict the (possibly malicious) prover to be a probabilistic polynomial
algorithm. This means that it is allowed to flip coins and it is restricted to perform an
(a priori fixed) polynomial number of steps in the size of its input. This is universally
considered to capture the notion of efficient computation.

Let us now introduce the notion of a succinct non-interactive argument. Such an argument
consists of two efficient algorithms Prove and Verify that work as follows:

³We can however circumvent the restriction we posed about the honest generation of them.

5

CHAPTER 1. INTRODUCTION

Prove: takes as input the structure reference string srs, the statement x and a witness
w and produces a proof 𝜋.

Verify: takes as input the structure reference string srs, the statement x and a proof
𝜋 and outputs true or false, representing if the proof is correct or not

Let us now see the basic properties we would expect, keeping in mind the relaxation we
did about the prover:

1. Completeness: for all (x,w) ∈ ℛ, algorithm Prove will produce an accepting proof.

2. Computational Soundness: for all (x,w) ∉ ℛ, no efficient algorithm can produce a proof
𝜋∗ that will make Verify(srs, x,𝜋∗) output true.

3. Succinctness: the size of the proof 𝜋 is sublinear in the size of w, namely |𝜋| = 𝑜(|w|).

Now let us give a stronger definition of computational soundness. We want to capture
the following notion: not only there exists a witness, but the prover knows one. Let us
motivate this with an example. Consider the following language:

ℒ =
{
G, 𝑔, ℎ | ∃𝑥 s.t. G encodes a cyclic group of order 𝑞 generated by 𝑔 and ℎ = 𝑔𝑥

}
Finding a witness 𝑥 is known as the discrete logarithm problem. For many groups (or more
precisely group families of increasing size) the problem is assumed to be computationally
hard: there is no polynomial algorithm that can solve it. However, deciding membership
in G is efficient. Therefore, the language is in fact efficiently decidable. Simply check that
ℎ ∈ G, and by the fact that the group is cyclic, such awitnessmust exist. Someone claiming
it knows such a witness for 𝑥 makes a stronger claim.

We formulate this by considering a knowledge extractor. We emphasize that this notion
is non-trivial since algorithms do not “know” things. So how do we model this? Well, an
algorithm “knows” the stuff that it can compute using its state. For example, if an algo-
rithm𝒜 with input 𝑥 computes ℎ = 𝑔𝑥 , we can simply “modify” this algorithm to a new
algorithm𝒜′ that outputs 𝑔𝑥42 . So in some sense,𝒜 “knows” 𝑔𝑥42 . A bit more abstractly,
an algorithm𝒜 knows something, if there exists another algorithm ℰ that knows how𝒜
works and can output this value.

We are now ready to express the stronger property:

4. Computational Knowledge Soundness: for all efficient 𝒜 that output (x,𝜋) that passes
the verification, there exists an efficient algorithmℰ –called the knowledge extractor–
that outputs w such that ℛ(x,w) holds.

Note that the order of quantifiers (∀𝒜 ∃ℰ) means our extractor can depend on 𝒜 and
therefore can know how it works:⁴ simply consider the extractor that has𝒜 hardcoded in

⁴There are various meaningful extraction definitions and in fact, properly defining it is more complicated

6

CHAPTER 1. INTRODUCTION

its description. Also, note that this property implies the normal computational soundness:
if ℰ can output a valid witness, such a witness must exist in the first place.

A construction satisfying these properties is known as a Succinct Non-Interactive Argu-
ment (SNARG) if it simply satisfies computational soundness or Succinct Non-Interactive
Argument of Knowledge (SNARK) if it is satisfies computational knowledge soundness.
The first such construction was due to the seminal work of Micali [Mic94] who built on
the work of Kilian [Kil92].

The discussion so far tries to protect the verifier from a malicious prover. But what hap-
pens if the verifier is malicious? First, let us give some context for the discussion. A ver-
ifier is supposed to only learn a single bit of information: whether x ∈ ℒ or not. Ideally,
it should learn nothing more because it simply “happens” to engage with the prover to
a protocol. As motivation, consider the discrete logarithm example we discussed before.
The fact that the prover knows a value 𝑥 such that ℎ = 𝑔𝑥 can be used to identify him.
Since the problem is hard, the prover must have computed ℎ by sampling 𝑥 and doing
the exponentiation. So 𝑥 can be considered the secret key and ℎ the public key he shared
with the world. No one can learn the secret from ℎ since computing discrete logarithms is
(assumed to be) hard! In this scenario, when identifying the prover, you would not want
the verifier to learn information about the secret key.

This property is called zero knowledge and it captures precisely the fact that the verifier
learned nothing but the validity of the statement. In the author’s personal view, the con-
ception and formalization of this notion is one of the greatest intellectual achievements of
humanity.

What we require informally is that we can efficiently produce a tuple (srs, x,𝜋) that looks
the same as getting an srs and executing𝜋← Prove(srs, x,w) for a valid statement/witness
pair. At this point, onemight wonder how this does not contradict soundness; the answer
lies in the fact that in the former case we are allowed to sample srs ourselves. The fact that
we can produce a tuple (srs, x,𝜋) that looks identical with one that comes from honestly
proving a statement without the witness, means that we learn no new information about
the witness. Indeed, if we learned something during the interaction with the prover, we
could avoid interacting with the prover in the first place and simply produce the tuple
that was supposed to produce new knowledge ourselves! Thus, after seeing the proof, we
know exactly what we knew before! Note that the argument (kind of) describes extracting
knowledge from the malicious verifier.

Things are more complicated in practice. For example, we can actually do something we
could not do before: produce a proof about the statement x. We simply hand the fancy
proof we received! Still, on a philosophical level, we did not learn something about the
witness w, but rather we learned something about the specific srs: how an accepting proof
for x looks with respect to it.

than what is presented in this section.

7

CHAPTER 1. INTRODUCTION

Let us now formulate the notion.

5. Zero Knowledge: Let 𝒟 be the distribution from which srs is sampled and (x,w) any
statement/witness pair that satisfies the relation ℛ. A SNARG (resp. SNARK) is
zero knowledge if there exists an efficient algorithm 𝒮 –the simulator– that outputs
(srs, x,𝜋) that are identically distributed⁵ to first sampling srs← 𝒟 and then running
𝜋← Prove(srs, x,w).

We emphasize that the most difficult thing to achieve is computational soundness as-
suming succinct proofs. Usually, in this setting, zero knowledge comes (almost) for free.
There is an intuitive interpretation for this fact: a succinct proof is so small that it cannot
contain a lot of information about the witness. But compressing to that extent the infor-
mation contained in the witness in a way that it remains convincing is really hard. This
is precisely the reason for achieving only computational soundness. We inherently need
to assume that certain computations are infeasible. In fact, we need to make quite strong
assumptions, probably stronger than what our confidence in understanding computation
should allow. This is usually justified, however, by impossibility results.

1.3 Efficiency Requirements

It should be clear by now that one (perhaps the most important) goal is to have construc-
tions that are efficient. In the end, succinctness aims to having proofs that are as small
as possible. Understanding efficiency in the setting of succinct arguments is first of all a
matter of theoretical interest: what is the smallest proof we can send that still convinces a
verifier? But since these constructions are actually now deployed and used in real world
applications, efficiency becomes also of practical importance.

After conceptualizing the notion of a succinct argument, a natural question to ask is “how
succinct can a succinct proof actually be?”. And –as usual– there is no single satisfying an-
swer. You could probably make a snark with smaller proof size but youmight need to use
stronger assumptions and/or make efficiency worse in some other aspect. In this section
we discuss these various aspects. In the next one, we will consider the assumption aspect
of snarks.

Before discussing these aspects, we emphasize that there exists a soundness error: we
accept that a verifierwill be convinced about a false statementwith small probability. This
notion is captured by the security parameter: this is a number 𝜅 ∈ N that defineswhat this
error will be and we can make it arbitrarily small by considering the appropriate security
parameter. All efficiency measures depend on the size of 𝜅: higher security parameter
translates to smaller error and less efficiency. For simplicity, we omit this in the discussion
that follows but we emphasize that we always pay some price related to 𝜅.

⁵As with the case of knowledge soundness, there are various other flavors one could consider.

8

CHAPTER 1. INTRODUCTION

Let us start from the obvious efficiency aspects. First, the verification time should be
minimized. In the end, the final goal is to be able to assert claims efficiently and succinct
proofs is simply a necessity for that: you need to read the proof so the running time of
the verifier is lower bounded by it (recall we are in the setting of static proofs, we do not
consider probabilistic checking)⁶. Ideally, you want the verifier time to be linear to the
proof size. Conceptually, the verifier should not do much more work than reading the
proof!

Second, the prover should be fast. Of course, creating a proof involves reading and pro-
cessing the witness so there is always some overhead. The goal is to minimize this over-
head. The measure to compare here is the time to assert the statement in the classical sense,
that is, the number of computational steps to compute ℛ(x,w). Note that this actually de-
fines the practicality of the construction: having a slow verifier might be undesirable but
a slow (for example quadratic) prover would make the computation infeasible in practice
for averaged size computations.

Finally, we mentioned that the prover and verifier share a common reference string. Until
now, we assumed that this just magically appeared, but this also should be computed.
Therefore, we require that (1) its size is small and (2) it is efficiently computable. There is
also another matter of efficiency regarding this. Since this string involves trust in many
snark constructions, a simple computation is usually not enough. Parties need to engage
in complex multi-party computation protocols to come up with it which can be really
difficult to realize in the real world. As we will see in the next section, effort is given to
mitigate this as much as possible.

While these can be considered universally applicable measures, one could also consider
amortized costs. In general, snarks are instantiated and are intended to be used to prove
various statements in a long lifetime. Amortization considers the efficiency of proving or
verifying 𝑘 statements. Having for example two statement/proof pairs (x1 ,𝜋1), (x2 ,𝜋2) it
would be useful to be able to combine the two proofs to a single proof 𝜋∗ that is convinc-
ing for both statements. To be non-trivial, proving/verifying 𝑘 statements with a single
proof should be smaller than doing the same process 𝑘 times independently. Amortiza-
tion techniques are mainly used to compensate for a slow verifier. Such a verifier might
not be an issue if it does the “heavy work” once for many proofs. Similarly, since con-
structing a proof has an overhead, a way of proving many statement while paying this
overhead once can be beneficial in practice.

⁶We note however that even succinct constructions without succinct verification exist and can be useful in
practice since they reduce communication which is the bottleneck in various applications.

9

CHAPTER 1. INTRODUCTION

1.4 Computational and Trust Assumptions

As we mentioned when introducing snarks, we need to settle for computational sound-
ness: convincing proofs for false statements exist but it should be infeasible to construct
one. This inherently requires that some problems are computationally hard⁷. Unfortu-
nately, we do not know of any (suitable) problem whose hardness can be proven and it is
actually debatable whether we are even close to such a discovery.

Nevertheless, there is an astonishing large number of problems we are unable to solve
despite of the fact that we have put tremendous efforts to this goal. Perhaps the most notorious
example is factoring big numbers⁸. The problem is so elegant andnatural. Given a number
𝑛 that is the product of two large primes, i.e. 𝑛 = 𝑝 · 𝑞 with 𝑝, 𝑞 having 𝜅 digits, find 𝑝 and
𝑞. Mathematicians have tried for literally hundreds of years to solve the problem with no
success.

Our inability to solve some problems combined with our inability to prove their hardness
leads to the expected result: make a conjecture that the problem is hard. These conjec-
tures are called computational assumptions and are extensively used in cryptography.
Usually, a statement about the security of a cryptographic construction becomes of the
form “if problem 𝑋 is hard then construction Π is secure”. To prove such a statement,
you do something quite elegant: you show that if you can indeed break construction Π,
you come up with an algorithm that solves problem 𝑋. Now, if the latter is indeed hard,
then obviously your construction is secure! We can even characterize the situation as a
win-win: either we have fancy cryptographic tools or we have efficient algorithms for
problems we did not even dream to exist.

There is an obvious consequence though. The trust we created using a cryptographic
solution is in its core trust in the assumption we use. If you believe that factoring is easy,
you should not use the RSA cryptosystem that bases its security on it. But the next natural
question is “what assumptions should we should use” and “what do we do when we
cannot construct some specific primitive under the assumptions we normally use”?

The case of snarks. As we mentioned earlier, snarks are a very powerful tool. Succinct-
ness is too strong of a requirement and therefore constructing snarks is inherently com-
plex. The core of the problem is that we need to “compress” a witness to the extreme.
Complex in this context can be interpreted as “technically involved”, but it also has an-
other meaning: we need very strong tools (i.e. assumptions) to construct them. A result
due toGentry andWichs [GW11] ties our hands: snarks do not exist under the assumptions
we normally use to build, for example, encryption or signature schemes. We are left with
two options: abandon our goal or use stronger, “non-standard” assumptions. The temp-
tation is high, so –as you may have guessed– we go for option two. Apart from compu-
tational assumptions, though, snarks might require some trust assumptions. Specifically,

⁷Note that the definition of computational soundness itself for a fixed construction is such a problem.
⁸This is actually an easy (in a complexity sense) problem when one considers quantum computers.

10

CHAPTER 1. INTRODUCTION

it might be the case that the structured reference string is sampled in a way that requires
some trust and we need to mitigate this issue as much as possible. Next, we consider the
complexity and trust assumptions used in snarks.

1.4.1 Classifying Complexity Assumptions

Complexity assumptions are statements about the computational hardness of problems.
As we said, a standard way to assess the validity of an assumption is to try to attack it:
find an algorithm to solve the problem in question. The more we fail, the stronger we
should believe the assumption is true.

But we have also other ways to argue about the hardness of assumptions: relate the dif-
ficulty of solving a problem 𝑋 to that of solving another problem 𝑌. If we show that
solving 𝑋 implies that we can also solve 𝑌, then we can trust hardness of 𝑋 as long as we
trust hardness of 𝑌! The assumption “𝑋 is hard” is stronger than the assumption “𝑌 is
hard”. This approach is inspired by the study of NP completeness (and computational
complexity as a whole) and has been proven very useful in assessing the relative difficulty
of computational problems.

This has led to assumption families of increasing difficulty. Let us consider an example of
such a family. We already discussed the discrete logarithm problem: given 𝑔, ℎ ∈ G find
𝑥 such that ℎ = 𝑔𝑥 . We can now consider a family of increasingly stronger assumptions
as follows:

“Given ℎ0 = 𝑔𝑥
0
, ℎ1 = 𝑔𝑥

1
, . . . , ℎ𝑞 = 𝑔𝑥

𝑞 find 𝑥”

For each 𝑞 ∈ N we have a different assumption. Furthermore, setting 𝑞 = 1 we get the
discrete logarithm assumption. We next make a simple observation: the larger the 𝑞, the
stronger the assumption becomes. Indeed, consider two assumptions for 𝑞1 < 𝑞2 and as-
sume you can break the assumption for 𝑞1. Then obviously you can solve the assumption
for 𝑞2: simply ignore the elements ℎ𝑖 for 𝑖 > 𝑞1. We have also evidence that for larger 𝑞,
the assumption becomes strictly stronger [BFL20].

Obviously, we should try to make constructions with 𝑞 as small as possible. But it is
also important to separate the cryptographic construction from the assumption used. For
example consider a snark construction that is secure under a 𝑞-type assumption, as long
as 𝑞 is at least as large as the description of the computation we want to prove. It could be
the case that for some languages the snark is secure and others not. In general, we want
to use assumptions that are simple and independent of the construction we are proving
secure. This also connects with the notion of falsifiability which we discuss next.

Assumptions have been classified as falsifiable and non-falsifiable. This classification was
introduced by Naor [Nao03], but a reformulation due to Gentry and Wichs [GW11] is
currently most widely used. The notion we try to capture with falsifiability is the win-
win situation we described earlier: either the assumption holds or we solve a previously

11

CHAPTER 1. INTRODUCTION

unsolved problem.

The notion is captured as follows: an assumption is falsifiable if we can interact with a
challenger and at the end of the interaction we can efficiently decide if the challenger
breaks the assumption or not. The discrete logarithm is such a case: sample ℎ randomly,
send it to the challenger, receive 𝑥 and check if ℎ = 𝑔𝑥 or not. The latter test is efficient, so
we know if the challenger succeeds or not.

Let us contrast this with a non-falsifiable assumption to make the distinction clearer. We
will consider the “knowledge of exponent” assumption introduced in [Dam92]: “any ef-
ficient algorithm𝒜 that on input 𝑔, ℎ ∈ G outputs 𝑔𝑧 , ℎ𝑧 must have first computed 𝑧 and
use that to produce the result”. In this case, we cannot know if a challenger broke the
assumption by simply interacting with him.

A crucial difference between the two assumptions is that the former considers what an ef-
ficient algorithm can do while the latter how it does it. This is in tension with the very rea-
sons that gave rise to modern cryptography. Before not too long ago, we would construct
an encryption scheme using some “clever” way and if we could not break it ourselves, we
would consider it secure. This implicitly makes a strong and unjustifiable assumption:
the only viable strategies (and hence the ones an adversary would use) are the one we
tried. Modern cryptography revolutionized such constructions by considering what an
adversary does instead of how it does it: no matter what strategy an eavesdropper uses,
it cannot break the scheme as long as a computational problem is hard.

Another approach to constructing cryptographic tools in general and snark in particular,
is restrict our attention to some idealized scenarios. We observe something in the real
world, abstract it and only consider adversaries that “live” in this abstractions. The most
notable examples are the random oracle model [FS87] and idealized models regarding
groups [BL96; Sho97; FKL18].

The random oracle model assumes that an adversary is using a hash function as a black
box, i.e.without access to how itworks. Obviously, this is not the case in the realworld. We
rely on the fact that we cannot exploit the inner workings of hash functions to break some
cryptographic primitive. The idealized group models make assumptions related on how
the adversary uses group elements on constructions that rely on groups. The common
denominator in these models is, in some sense, that the adversary can only produce new
group elements using the group operations.

While results in suchmodels have advanced the field, they should probably not be consid-
ered the end goal, but rather steps towards better understanding that will eventually lead
to better and more secure constructions. In fact, in the case of the random oracle model,
we know that it is not secure theoretically [CGH04; GK03], but there are no known at-
tacks on practical constructions. The insecurity is proven by considering specially crafted
constructions designed to make the model fail.

12

CHAPTER 1. INTRODUCTION

In the case of snarks, where we know that we cannot base security on falsifiable assump-
tions, things aremore complex. We are inherently limited to using non-falsifiable assump-
tions, but it is probably a good idea to not rest at ease. We should still try to minimize
the use of such assumptions and only use them when they are unavoidable. In the end,
these strong assumptions are objects we do not fully understand and we have evidence to
doubt their security.

A relevant reference for the reader interested to look into the quality of assumptions in
more depth is [GK16].

1.4.2 Trust Assumptions

As mentioned before, a snark construction needs a structured reference string (srs). This
is some string that is produced once in an offline phase, that can be then used to prove
arbitrarily many statements. And as we mentioned, in some cases we need to assume
that this string is honestly generated. Failing to satisfy this requirement can translate to
the ability of producing proofs of false statements, making the construction effectively
useless.

Assume a snark construction needs a trusted srs. This essentially means that if we know
the randomness used to sample it, construction of false proofs is feasible. We have two
options. First, we can try to find a party that is universally trusted and assign it with
producing it (and deleting any information that could compromise the system, the so
called “toxic waste”). This would work perfectly but of course such parties are not easy
to find... We do the next best thing, trying to mitigate the issue.

The second option is to find many parties and assign them the collective creation of the
srs. This is done through complex cryptographic protocols that give the following guar-
antee: if even one of the parties behaves honestly, we are guaranteed that the parameters
are trusted. Thus, we reduced the trust problem to trust one out of many parties instead
of trusting a single one, which is of course better. However, this process is extremely com-
plex and difficult to execute correctly to get the last guarantee. Perhaps the most famous
example of executing such process is the generation of the srs for the ZCash cryptocur-
rency that utilizes snarks [ZCa21], which was extremely involved.

To make things even worse, for many snark constructions the setup parameters supports
a specific language ℒ. Thus, if you want to change the language (e.g. consider an update
of a deployed application) you need to execute this process from scratch. And even if
everything is done correctly, you still have to trust that the participants did not collude.

A line of work focused on improving the situation. Groth et. al. [GKM+18] introduced the
notion of universal and updatable snarks. Universal means that the parameters can be used

13

CHAPTER 1. INTRODUCTION

for instantiating any computation⁹ without the efficiency overheads incurred by consid-
ering universal computations. This already solves the latter issue: the ceremonies for the
srs need to be performed once. The updatable part of the notion refers to a specific type
of multiparty computation needed to construct the parameters: an unbounded number
of participants can participate in a non-interactive way. Essentially, we start with some
parameters srs0, a participant updates them to srs1, another participant to srs2 and so on.
At any point you can use the parameters. Thus, a very larger amount of people can par-
ticipate in the creation of the srs and the trust assumption is much weaker. In fact, each
user of the system can choose to participate and she can trust the parameters if she trusts
herself!

There is also a third solution that is the optimal. The parameters are produced by sam-
pling some uniform element from some set. Snarks that use such parameters are called
transparent. Assume we have a way to sample a uniformly distributed seed 𝜌 for the pa-
rameters. Then, each user can simply compute srs from a deterministic procedure that
takes as input 𝜌. The trust assumption is now much easier to enforce: it is enough to
know that 𝜌 was indeed sampled uniformly. This is an easy problem: we rely on the un-
predictability of the natural world. The drawback of transparent constructions is that they
are in general less efficient. The reason for that is that the srs is uniform and thus carries
no information. In contrast, in the previous cases we have an srs that is highly structured
and we exploit this very structure in our constructions.

1.5 Our Results

In this section, we take a brief look at the results that will be presented in this thesis.

Improved Inner Product Argument

Our first result, presented in Chapter 3, is a modification of the widely used protocol of
Bootle et. al. [BCC+16]. The protocol is known as the “folding technique” and has various
applications. In its core, it allows to convince a verifier that the openings of two (short)
commitments/hashes are vectors whose inner product is 𝑧. The protocol has wide appli-
cability. The inner product relation is powerful enough to imply various cryptographic
tools, including snarks. It also has very appealing properties: the proof size is logarithmic
in the size of the vectors and it does not require a trusted setup. On the downside, the
verification cost is linear in the size of the vectors.

We reduce the verification cost exponentially, making the verifier logarithmic in the size
of the statement. The key idea to achieve this is considering generalizations of the clas-
sical Pedersen commitment scheme. Specifically, instead of considering a uniformly dis-

⁹To be accurate, any computation whose size is bounded by some parameter used to generate the srs.

14

CHAPTER 1. INTRODUCTION

tributed key, we sample it pseudorandomly. This allows us to have a succinct representa-
tion of it (the seed used for sampling). Working in the pairing group setting, we manage
to exploit this succinct representation to reduce the work of the verifier. In doing so, how-
ever, we no longer have a transparent setup. Nevertheless, basing the commitment key to
monomial-based distributions, the trusted setup is the weakest possible: it is updatable.
This means essentially that there exists a non-interactive protocol to construct parameters
that allows participation to an unbounded number of parties.

Delegation of Computation

A delegation scheme is essentially a snark for efficiently computable languages. This
means that we can decide if 𝑥 ∈ ℒ ourselves, but we ask another party to convince us
about the fact because we are not willing to perform this computation. Consider for ex-
ample asking a cloud server to perform a heavy computation on your behalf. While snarks
for languages that are not efficiently decidable require non-falsifiable assumptions or ide-
alized models, this is not the case in delegation schemes. In fact there exist constructions
that achieve this goal under falsifiable assumptions.

In Chapter 4 we contribute in this direction. We construct a delegation scheme under
standard, constant size assumptions. In fact, the assumptions we use are quite simple
and “standard” in the sense that they are already extensively considered in the literature.
Furthermore, wemanage to achieve constant proof size and verification overhead. As far as
verification is concerned, the construction competes with snarks that use strong knowl-
edge assumptions or the algebraic group model. The prover, however, is quadratic which
makes the construction impractical.

This result is evidence that in the case of delegation of computation, we could potentially
avoid using any non-standard assumption and simply rely on the same assumptions we
use to build encryption and signature schemes. Furthermore, the techniques we use com-
bine very interesting techniques from the perspective of cryptography and computational
complexity which –to the best of our knowledge– were not combined before.

Tree Based Vector Commitments

Next, in Chapter 5 we explore combinatorial techniques for a cryptographic primitive
called vector commitments. This primitive allows to commit to a vector of values and then
decommitting to any position. They have practical applications per se and they are a core
ingredient in a family of snark constructions. The most widely known example of such
constructions are Merkle trees.

First, we consider the problem of constructing such a primitive in the discrete logarithm
setting. We first construct generic constructions using only combinatorial and algebraic

15

CHAPTER 1. INTRODUCTION

properties. We then instantiate the construction using the folding technique to get our
commitment scheme. The construction inherits the properties of the folding technique;
notably it has a transparent setup. Furthermore, the combinatorial and algebraic structure
gives additional properties, notably homomorphicity and efficient proof pre-computation.

The second construction is a maintainable vector commitment construction in the pairing
group setting that supports various trade-offs. Maintainability essentially captures that
the amortized cost of proving statements about the vector is small in applications where
the vector regularly changes over time. Our contribution in this direction is to improve
the state of the art construction by reducing the proof size by a constant factor. Further-
more, we introduce new trade-offs that are important in practice: we allow a prover to
trade memory resources for computation resources in an arbitrary way. This results in
the following trade-off: more memory resources means less computation time per open-
ing and larger proof size. Depending on the application and the available resources, one
can choose what memory and time requirements it should settle for.

Folding Schemes with Selective Verification

Finally, in Chapter 6 we present a novel construction that allows a prover to convince
multiple verifiers about multiple independent statements. Specifically, the prover can
compute a single proof for a “batch” of statements and later convince a verifier about the
validity of one of the statements. Importantly, the size of the proof is sublinear in the total
number of proven statements.

Since, in general, aggregating statements is efficient while proving them needs a lot of
work, such a construction can be beneficial in cases where a single prover needs to con-
vince multiple verifiers: instead of producing one proof for each, it can aggregate the
statements and do the work once. The verifiers’ overhead is minimal and, furthermore,
they do not need to know what were the other statements considered. In particular, it
requires no communication among the verifiers. Finally, this is a novel concept which
seems interesting per se. We believe it has the potential of further practical uses.

16

Chapter 2

Preliminaries

2.1 Notation

We denote the set of natural numbers by N and let 𝜅 ∈ N be the computational security
parameter. We denote with [𝑛] = {1, . . . , 𝑛} the set containing all natural numbers not
greater than 𝑛.

When𝒟 is a distribution, we denote with 𝑥 ←𝒟 a value 𝑥 sampled according to𝒟. For a
set 𝑆, we write 𝑥 ← 𝑆 to denote uniformly sampling from 𝑆 and assigning to 𝑥. Similarly,
when 𝐴 is an algorithm we denote with 𝑦 ← 𝐴(𝑥) the assignment of the output of 𝐴with
input 𝑥 to 𝑦, where we uniformly sample randomness from 𝐴 if it is probabilistic. We
write 𝐴(𝑥; 𝑟) to explicitly refer to the randomness of 𝐴when needed. We notate with 𝒪(·)
asymptotic complexity that hides linear factors that depend on the security parameter 𝜅.
Unless otherwise stated, all the algorithms defined throughout this work are assumed to
be probabilistic Turing machines that run in polynomial time (abbreviated as PPT). We
say that a function is negligible (in 𝜅), and we denote it by negl, if negl = Ω(𝜅−𝑐) for any
fixed constant 𝑐 > 1.

Vectors and Matrices. Let 𝑛 ∈ N and F = Z𝑝 for a prime number 𝑝. We denote with
e𝑛𝑖 ∈ F𝑛 the 𝑖-th element of the canonical basis of F𝑛 , that is e𝑛𝑖 is 1 in the 𝑖-th coordinate
and 0 everywhere else. We omit the superscript 𝑛 when it is clear from the context.

For vectors a = (𝑎𝑖)𝑖∈[𝑛] , b = (𝑏𝑖)𝑖∈[𝑛] ∈ F𝑛 , we denote

• a⊤b =
∑𝑛
𝑖=1 𝑎𝑖 · 𝑏𝑖 their inner product.

• a◦b = (𝑎𝑖𝑏𝑖)𝑖∈[𝑛] the vector in F𝑛 of their pairwise product, also called theHadamard
product of the two vectors.

17

CHAPTER 2. PRELIMINARIES

For A ∈ F𝑛1𝑛2 ,B ∈ F𝑛3𝑛4 , we denote A ⊗ B ∈ F𝑛1𝑛3×𝑛2𝑛4 the Kronecker product of the two
matrices. That is, if A = (𝑎𝑖 , 𝑗)𝑖∈[𝑛1], 𝑗∈[𝑛2] then

A ⊗ B =
©«
𝑎1,1B · · · 𝑎1,𝑛2B
...

. . .
...

𝑎𝑛1 ,1B · · · 𝑎𝑛1 ,𝑛2B

ª®®¬
We recall the mixed product of the Kronecker product stating that

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)
whenever A,B,C,D have appropriate dimensions.

Sub-vectors and Sub-matrices. Let 𝑆 = {𝑠1 , . . . , 𝑠𝑡} ⊆ [𝑛], 𝑆 = {𝑠1 , . . . , 𝑠𝑛−𝑡} the set [𝑛] \
𝑆¹. When x = (𝑥1 , . . . , 𝑥𝑛) (resp. G =

(
g1 · · · g𝑛

)
), we denote x𝑆 = (𝑥𝑠)𝑠∈𝑆 (resp. G𝑆 =(

g𝑠
)
𝑠∈𝑆). We also use an algebraic notation for the sub-vector x𝑆 = (𝑥𝑠) and sub-matrix G𝑆.

Let P𝑆 ∈ {0, 1}𝑛×𝑛 be the permutation matrix defining the ordering 𝑠1 , . . . , 𝑠𝑡 , 𝑠1 , . . . , 𝑠𝑛−𝑡 .
That is, P𝑆e𝑠𝑖 = e𝑖 and P𝑆e𝑠 𝑖 = e𝑖+𝑡 , where e𝑖 is the 𝑖-th unitary vector of size 𝑛. We may
simply write P when 𝑛, 𝑆 are clear from the context. For fixed 𝑛, 𝑡 ∈ N, we also define
the matrix Σ𝑆 =

(
I𝑡 0𝑡×𝑛−𝑡

)
. Again, we may omit the subscript when the values are clear

from the context. The reason to use these matrices is because x𝑆 = Σ𝑆P𝑆x (similarly for
matrices). Finally, for 𝑆′ ⊆ 𝑆, we write x𝑆 |𝑆′ to denote (x𝑆)′𝑆, that is, the restriction of x𝑆 to
𝑆′. Note that x𝑆′ = x𝑆 |𝑆′. We define similarly G𝑆 |𝑆′ and P𝑆 |𝑆′, Σ𝑆 |𝑆′.

We next state a fact about subvectors and submatrices.

Fact 1. For any x ∈ F𝑛 and any 𝑆′ ⊆ 𝑆 ⊆ [𝑛] it holds that:

1. P𝑆x =
(
x𝑆
x𝑆

)
and GP⊤𝑆 =

(
G𝑆 G𝑆

)
2. x𝑆 = Σ𝑆P𝑆x and G𝑆 = GP⊤𝑆Σ⊤𝑆 .

3. Gx = G𝑆x𝑆 +G𝑆x𝑆.

4. x𝑆 |𝑆′ = x𝑆′ and G𝑆 |𝑆′ = G𝑆′.

We extend this notation for the case where we index 𝑛1𝑛2-dimensional vectors using the
set pair [𝑛1], [𝑛2]. Let 𝑆1 ⊆ [𝑛1], 𝑆2 ⊆ [𝑛2]. For x ∈ F𝑛1𝑛2 define x𝑆1 ,𝑆2 ∈ F|𝑆1 |·|𝑆2 | as x𝑆1 ,𝑆2 =
(x(𝑖−1)𝑛2+𝑗)(𝑖 , 𝑗)∈(𝑆1×𝑆2). For matrices we define G𝑆1 ,𝑆2 = (gℓ ,(𝑖−1)𝑛2+𝑗)(𝑖, 𝑗)∈(𝑆1×𝑆2) ∈ F𝑘×|𝑆1 |·|𝑆2 |,
where 𝑘 is the number of rows of G. Similarly as before, the following holds.

Fact 2. For any x ∈ F𝑛1𝑛2 and any 𝑆′1 ⊆ 𝑆1 ⊆ [𝑛1], 𝑆′2 ⊆ 𝑆2 ⊆ [𝑛2] it holds that:

¹We identify vector coordinates with elements of the set [𝑛]. However, we can use any 𝑛-sized set with a
fixed ordering. The notation we introduced extends naturally in this case.

18

CHAPTER 2. PRELIMINARIES

1. For some permutation matrixΠΠΠ ∈ F𝑛1𝑛2×𝑛1𝑛2 ,

(P𝑆1 ⊗ P𝑆2)x = ΠΠΠ
©«
x𝑆1 ,𝑆2

x𝑆1 ,𝑆2
x𝑆1 ,𝑆2
x𝑆1 ,𝑆2

ª®®®¬ , G(P⊤𝑆1
⊗ P⊤𝑆2

) =
(
G𝑆1 ,𝑆2 G𝑆1 ,𝑆2

G𝑆1 ,𝑆2
G𝑆1 ,𝑆2

)
ΠΠΠ⊤

2. x𝑆1 ,𝑆2 = (Σ𝑆1 ⊗ Σ𝑆2)(P𝑆1 ⊗ P𝑆2)x and G𝑆1 ,𝑆2 = G(P⊤𝑆1
⊗ P⊤𝑆2

)(Σ⊤𝑆1
⊗ Σ⊤𝑆2

).
3. Gx = G𝑆1 ,𝑆2x𝑆1 ,𝑆2 +G𝑆1 ,𝑆2

x𝑆1 ,𝑆2
+G𝑆1 ,𝑆2

x𝑆1 ,𝑆2
+G𝑆1 ,𝑆2

x𝑆1 ,𝑆2
.

4. x𝑆1 ,𝑆2 |𝑆′1 ,𝑆′2 = x𝑆′1 ,𝑆′2 and G𝑆1 ,𝑆2 |𝑆′1 ,𝑆′2 = G𝑆′1 ,𝑆
′
2

Finally, we state a simple fact stating that we can derive M⊗N from N⊗M bymultiplying
on the left and right with appropriate permutation matrices.

Fact 3. For every𝑚1 , 𝑚2 , 𝑛1 , 𝑛2 ∈ N there exist permutationmatricesΠΠΠ1 ∈ {0, 1}𝑚1𝑚2×𝑚1𝑚2 ,
ΠΠΠ2 ∈ {0, 1}𝑛1𝑛2×𝑛1𝑛2 such that for any pair of matrices M ∈ F𝑚1×𝑛1 ,N ∈ F𝑚2×𝑛2 it holds
that M ⊗ N = ΠΠΠ1(N ⊗M)ΠΠΠ2. MatricesΠΠΠ1 andΠΠΠ2 depend only on the size of M and N.

In cases where we iteratively halve a vector x, we denote with xb the subvector of x with
indices prefixed with b. With this notation, if x ∈ F𝑛 , then x0 corresponds to the first 𝑛/2
elements of x, x1 to the second half, x00 to the first 𝑛/4 and so on.

Groups. We use implicit group notation. Let gk = (𝑝,G,𝒫) ← 𝒢(1𝜅) be the description
of a group of size 𝑝 = 𝒪(2𝜅) with generator 𝒫. Let F = Z𝑝 . We denote [𝑟] = 𝑟𝒫. We
extend this notation for matrices and vectors. For a vector 𝑎 = (𝑎1 , . . . , 𝑎𝑛) and matrix A
with columns a1 , . . . , a𝑘 , we denote

[a] = ([𝑎1], . . . , [𝑎𝑛]), [A] = ([a1] · · · [a𝑘])
We also consider bilinear groups, that is groups equippedwith a bilinear map and extend
the above notation to these. Let gk = (𝑝,G1 ,G2 ,G𝑇 , 𝑒 ,𝒫1 ,𝒫2) ← 𝒢(1𝜅) be the description
of an asymmetric bilinear group of size 𝑝 = 𝒪(2𝜅) equipped with an efficiently com-
putable bilinear map 𝑒 : G1 × G2 → G𝑇 , where 𝒫𝜇 is a generator of G𝜇 for 𝜇 ∈ {1, 2}.
For 𝑟 ∈ F we denote [𝑟]𝜇 = 𝑟𝒫𝜇 for 𝜇 ∈ {1, 2, 𝑇} and 𝒫𝑇 = 𝑒 (𝒫1 ,𝒫2). In this notation we
𝑒 ([𝑟]1 , [𝑠]2) = [𝑟𝑠]𝑇 .

2.2 Polynomials and the Lagrange Basis

Lagrange basis. Let H = {h1 , . . . , h𝑚} be a multiplicative group of size 𝑚 in F². We
consider the set of Lagrange interpolation polynomials

{
𝜆H𝑗 (𝑋)

}𝑚
𝑗=1

associated with H,

²Working in multiplicative subgroups of F is not necessary, but is often needed for improved efficiency

19

CHAPTER 2. PRELIMINARIES

namely,

𝜆H𝑗 (𝑋) =
∏
𝑖≠𝑗

𝑋 − h𝑖
h𝑗 − h𝑖

Recall that
∑𝑚
𝑗=1 𝜆

H
𝑗 (𝑋) = 1. Moreover, we define 𝑡(𝑋) = ∏𝑚

𝑗=1(𝑋 − h𝑗) the vanishing
polynomial in H.

For the multivariate case, recall that 𝜆H𝝈 (𝑋𝜈 , . . . , 𝑋1) = ∏𝜈
𝑗=1 𝜆 𝑗(𝑋𝑗) where 𝝈 ∈ {[𝑚]𝑛}.

Using this, we canwrite the vector ofmultivariate Lagrange polynomials as theKronecker
product𝝀H(𝑋𝜈)⊗· · ·⊗𝝀H(𝑋1), where𝝀H(𝑋) is the univariate Lagrange basis. When |H| = 2,
we refer to the Lagrange polynomials as the multilinear Lagrange basis, while for |H| > 2,
we refer to them as the low degree Lagrange basis.

2.3 Cryptographic Assumptions

We next introduce the cryptographic assumptions we will use throughout this thesis.

Assumption 1. Let 𝒰𝑛,𝑚,𝑟 be the distribution that outputs uniform rank 𝑟 matrices of
dimension 𝑛 ×𝑚 over F. The (𝑛, 𝑚)-Rank Assumption [Vil12] holds inG if for all 1 ≤ 𝑟1 <
𝑟2 ≤ min(𝑛, 𝑚) and for all non-uniform PPT adversaries 𝒜 and relative to gk ← 𝒢(1𝜅)
and the coin tosses of adversary𝒜,

Pr [𝒜(gk, [U1]) = 1 | U1 ←𝒰𝑛,𝑚,𝑟1] − Pr [𝒜(gk, [U2]) = 1 | U1 ←𝒰𝑛,𝑚,𝑟2] ≤ negl(𝜅)

As shown in [Vil12], the Rank assumption reduces to DDH (we define it next in terms of
matrix distributions).

We next recall two 𝑞-type assumption, the generalized Discrete Logarithm assumption
((𝑞1 , 𝑞2)-DLOG) and the Bilinear StrongDiffieHellman assumption ((𝑞1 , 𝑞2)-BSDH) [BB11].
When 𝑞1 = 𝑞2, we simply call them 𝑞-DLOG and 𝑞-BSDH respectively. We present them
next.

Definition 1. The (𝑞1 , 𝑞2)-DLOG assumption holds relative to 𝒢(1𝜆) if for all PPT adver-
saries𝒜, the following probability is negligible in 𝜆.

Pr
[
𝜏←←𝒜(gk,

{[𝜏𝑖]1}𝑞1
𝑖=0 ,

{[𝜏𝑖]2}𝑞2
𝑖=0) gk← 𝒢(1𝜅); 𝜏← F] .

Definition 2. The (𝑞1 , 𝑞2)-BSDH assumption holds relative to 𝒢(1𝜆) if for all PPT adver-
saries𝒜, the following probability is negligible in 𝜆.

Pr
[
(𝑐, 1
(𝜏−𝑐) 𝑒 ([1]1 , [1]2) ← 𝒜(gk,

{[𝜏𝑖]1}𝑞1
𝑖=0 ,

{[𝜏𝑖]2}𝑞2
𝑖=0) gk← 𝒢(1𝜅); 𝜏← F

]
.

We next recall the definition of a matrix distribution [EHK+13] and present related as-
sumptions.

20

CHAPTER 2. PRELIMINARIES

Definition 3. Let 𝑘, ℓ ∈ N. We call 𝒟ℓ ,𝑘 (resp. 𝒟𝑘) a matrix distribution if it outputs in
PPT time with overwhelming probability matrices in Fℓ×𝑘 (resp. in F(𝑘+1)×𝑘). For a ma-
trix distribution 𝒟𝑘 , we denote as 𝒟𝑘 the distribution of the first 𝑘 rows of the matrices
sampled according to𝒟𝑘 .

We next present assumptions about matrix distributions.

Assumption 2. Let𝒟ℓ ,𝑘 be a matrix distribution and 𝛾 ∈ {1, 2}. For all non-uniform PPT
adversaries𝒜 and relative to gk← G(1𝜅), A← 𝒟ℓ ,𝑘 and the coin tosses of adversary𝒜,
the Find-Rep Assumption [EHK+13] in G𝛾 (𝒟ℓ ,𝑘-FindRep𝛾) holds if

Pr
[

r ←𝒜(gk, [A]𝛾) = 1 : r ≠ 0 ∧ r⊤A = 0
] ≤ negl(𝜅)

Assumption 3. Let𝒟ℓ ,𝑘 be a matrix distribution. For all non-uniform PPT adversaries𝒜
and relative to gk← 𝒢(1𝜅), A←𝒟ℓ ,𝑘 and the coin tosses of adversary𝒜,

1. the Kernel Matrix Diffie-Hellman Assumption [MRV16] (𝒟ℓ ,𝑘-SKerMDH𝛾) holds in
G𝛾 if

Pr
[[r]3−𝛾 ←𝒜(gk, [A]𝛾) : r ≠ 0 ∧ r⊤A = 0

] ≤ negl(𝜅)
2. the Split KernelMatrixDiffie-HellmanAssumption [GHR15] (𝒟ℓ ,𝑘-SKerMDH) holds

if
Pr

[[r]1 , [s]2 ←𝒜(gk, [A]1 , [A]2) : r ≠ s ∧ r⊤A = s⊤A
] ≤ negl(𝜅)

Assumption 4. Let 𝒟ℓ ,𝑘 be a matrix distribution and gk ← G(1𝜅). For all non-uniform
PPT adversaries 𝒜 and relative to gk ← G(1𝜅), A ← 𝒟ℓ ,𝑘 ,w ← F𝑘 , [z]𝛾 ← Gℓ𝛾 and the
coin tosses of adversary𝒜, the Matrix Decisional Diffie-Hellman Assumption [EHK+13]
in G𝛾 (𝒟ℓ ,𝑘-MDDH𝛾) holds if��Pr[𝒜(gk, [A]𝛾 , [Aw]𝛾) = 1] − Pr[𝒜(𝑔𝑘, [A]𝛾 , [z]𝛾) = 1]�� ≤ negl(𝜅)

A lot of assumptions can be abstracted in the Matrix assumption framework. We next
consider some distributions and discuss the hardness assumption associated with them:

• We denote with 𝒰ℓ ,𝑘 the distribution that outputs uniformly distributed matrices
over Fℓ×𝑘 . The discrete logarithm, computational and decisional diffie hellman as-
sumptions (or more accurately slighly stronger variation of these) in G𝜇 can be re-
stated as the𝒰1×2-FindRep,𝒰1×3-MDDH assumptions respecitvely.

• We denote with ℒ𝑘 the distribution that outputs 𝑘 + 1 × 𝑘 matrices where the first
𝑘 rows are e1 , . . . , e𝑘 and the last row is uniformly distributed. The ℒ2-MDDH is
known as the DLin assumptionknown as the DLin assumption.

• Let m(𝑋) = (1, 𝑋, . . . , 𝑋𝑛−1) ∈ F[𝑋]𝑛 . We denote with 𝒳ℓ ,𝑚 the matrix distribution
that samples 𝜏1 , . . . , 𝜏ℓ ← F and outputs the ℓ ×𝑛 matrix with rows m(𝑠𝑖). The𝒳ℓ ,𝑚-
MDDH assumption reduces to the 𝑞-DLog assumption. The corresponding kernel
andmatrix assumption do not hold for ℓ < 2. For ℓ ≥ 2 they hold generically [GR19].

21

CHAPTER 2. PRELIMINARIES

• Similarly, let 𝝀(𝑋) = (𝜆1(𝑋), . . . ,𝜆𝑚(𝑋)) ∈ F[𝑋]𝑚 be the vector of lagrange polyno-
mials over as set H of size 𝑚. We denote with ℒ𝒢Hℓ ,𝑚 the matrix distribution that
samples 𝜏1 , . . . , 𝜏ℓ ← F and outputs the ℓ × 𝑛 matrix with rows 𝝀(𝑠𝑖). Note that this
distribution is linearly related to 𝒳ℓ ,𝑚 , so they are equivalent from a cryptographic
point of view.

• We extend the two previous assumptions to the multivariate case. We denote them
𝒳𝜈,ℓ ,𝑚 , ℒ𝒢H𝜈,ℓ ,𝑚 respectively, where the first index denotes the nubmer of variables,
the second the secret points on which we evaluate and the third the individual de-
gree.

We recall here that the𝒳𝜈,1,1 assumption (the evaluation of 𝜈-variate Lagrange polynomial
in a secret point) reduces to the 1-DLOG assumption.

We also introduce a new assumption called the Kronecker MDDH assumption.

Assumption 5. Let𝒰ℓ ,𝑘 ,𝒱ℓ ,𝑘 bematrix distributions and gk← G(1𝜅). The (𝒰⊗𝒱)-MDDH
assumption holds if

1. For all non-uniform PPT adversaries𝒜 and relative to gk← G(1𝜅), U←𝒰ℓ ,𝑘 ,V←
𝒱ℓ ,𝑘 ,R← Fℓ2×𝑘2

, k← F𝑘2
, r← Fℓ2

, s, t ∈← Fℓ2 and the coin tosses of adversary𝒜,��Pr[𝒜(gk, [U]1 , [V]2 , [U ⊗ V −R]1 , [R]2 , [(U ⊗ V)k − r]1 , [r]2) = 1]−
Pr[𝒜(gk, [U]1 , [V]2 , [U ⊗ V −R]1 , [R]2 , [s]1 , [t]2) = 1]�� ≤ negl(𝜅)

2. For all non-uniform PPT adversaries𝒜 and relative to gk← G(1𝜅), U←𝒰ℓ ,𝑘 ,V←
𝒱ℓ ,𝑘 ,R← Fℓ2×𝑘2

, k← Fℓ , l← Fℓ , s, t ∈← F𝑘 and the coin tosses of adversary𝒜,��Pr[𝒜(gk, [U]1 , [V]2 , [U ⊗ V −R]1 , [R]2 , [Uk]1 , [Vl]2) = 1]−
Pr[𝒜(gk, [U]1 , [V]2 , [U ⊗ V −R]1 , [R]2 , [s]1 , [t]2) = 1]�� ≤ negl(𝜅)

The former condition states that a random vector in the image U ⊗ V split in G1 ,G2 is
pseudorandom, even if the adversaries knows [U]1 , [V]2. The latter that𝒰-MDDH1 and
𝒱-MDDH2 hold even when we give to the adversary the split of U⊗V in the two groups.
We next show that the assumption reduces to𝒰-MDDH1,𝒱-MDDH2 and DDH in bothG1
and G2.

Theorem 1. The (𝒰 ⊗𝒱)-MDDH assumption holds if𝒰-MDDH1 and𝒱-MDDH2 assumptions
hold, and DDH assumption holds in both G1 and G2.

Proof. The second conditions is immediate by a hybrid argument. It is enough to note that
we can compute the splitting of U ⊗ V in the two groups if we know the discrete log of
either U or V, that is, we can compute [U]1 ⊗ V and U ⊗ [V]2.

22

CHAPTER 2. PRELIMINARIES

For the first part, we need to show that the distributions

[U]1 , [V]2 , [U ⊗ V −R]1 , [R]2 , [(U ⊗ V)⊤k − r]1 , [r]2 : k← F𝑘2 ; r← Fℓ2

[U]1 , [V]2 , [U ⊗ V −R]1 , [R]2 , [s]1 , [t]2 : s, t← Fℓ2

are computationally indistuinguishable.

We show the indistinguishability of these distributions by showing indistinguishability of
a sequence of hybrid distributions. In what follows denote 𝛼 = ([U]1 , [V]2 , [U ⊗ V −R]1 ,
[R]2).

We have

0. 𝛼, [(U ⊗ V)k − r]1 , [r]2 : r← Fℓ2
, k← F𝑘2

1. 𝛼, [(U ⊗ V)(k1 ⊗ k2) − r]1 , [r]2 : r← Fℓ2
, k1 , k2 ← F𝑘

2. 𝛼, [(Uk1) ⊗ (Vk2) − r]1 , [r]2 : r← Fℓ2
, k1 , k2 ← F𝑘

3. 𝛼, [u ⊗ (Vk2) − r]1 , [r]2 : u← Fℓ , r← Fℓ2
, k2 ← F𝑘

4. 𝛼, [r]1 , [u ⊗ (Vk2) − r]2 : u← Fℓ , r← Fℓ2
, k2 ← F𝑘

5. 𝛼, [r]1 , [u ⊗ v − r]2 : u, v← Fℓ , r← Fℓ2

6. 𝛼, [s]1 , [t]2 : s, t← Fℓ

We next show that for all 1 ≤ 𝑖 ≤ 5 the distributions 𝑖 − 1, 𝑖 are computationally indistin-
guishable.

• Case 𝑖 = 1. We show that distinguishing these two distributions reduces to the
(𝑛, 𝑛)-Rank assumption in G1. Assume there exists a distinguisher 𝒜 for distribu-
tions 0 and 1. We construct a distinguisher ℬ against the Rank assumption. The
distinguisher works as follows: on input [A]1 ∈ F𝑘×𝑘 , it samples U ← 𝒰 ,V ←
𝒱 ,R← Fℓ2×𝑘2

, r← Fℓ2 . It computes [M]1 = U[A]1V⊤ and vectorizes it; denote the
vectorization as [m]1. it then executes

𝒜([U]1 , [V]2 , [U ⊗ V −R]1 , [R]2 , [m]1 − [r]1 , [r]2)
and outputs whatever𝒜 outputs. Now, note the vectorization [m]1 corresponds to
the value [(U ⊗ V)m]1. If [A] is of rank 1, then we can write A = k1k⊤2 and we have
M = Uk1k2V⊤ = (Uk1) ⊗ (Vk2) and the vectorization corresponds to (Uk1) ⊗ (Vk2),
namely the case 𝑖 = 0. Otherwise, [A] is of rank 𝑛, andwe canwrite its vectorization
as k. Then, m correspond to (U ⊗ V)k, namely the case 𝑖 = 1.

23

CHAPTER 2. PRELIMINARIES

• Case 𝑖 = 2. Distributions 1, 2 are perfectly indistinguishability since the only differ-
ence is that the latter is computed as [(Uk1) ⊗ (Vk2) − r]1, which equals to

[(U ⊗ V)(k1 ⊗ k2) − r]1
which is the corresponding value of distribution 1.

• Case 𝑖 = 3. This case reduces to the 𝒰-MDDH1 assumption. The only difference is
that in the forth distribution, we replace Uk1 with a uniform element u. It is enough
to show thatwe can compute the rest of the values given [U]1 , [u]1 where [u] is either
Uk1 or uniform. We can compute the values as

[U]1 , [V]2 , [U]1 ⊗ V − [R]1 , [R]2 , [u]1 ⊗ (Vk2) − [r]1 , [r]2
where we sample V←𝒱𝑆, R← Fℓ2×𝑘2 , r← Fℓ2 , k2 ← Fℓ .

• Case 𝑖 = 4. The distributions 4 and 5 are perfectly indistinguishable. It is enough
to note that in both, the last two elements are uniformly distributed conditioned on
their sum of discrete logarithms being equal to u ⊗ (Vk2).

• Case 𝑖 = 5. This is the same as the case 𝑖 = 3 for the value [v]2. This case reduces
to the𝒱-MDDH2 assumption. The only difference is that in the last distribution, we
replace Vk2 with a uniform element v. It is enough to show that we can compute the
rest of the values given [V]2 , [v]2 where v is either Vk2 or uniform. We can compute
the values as

[U]1 , [V]2 , [R]1 ,U ⊗ [V]2 − [R]2 , [r]1 , u ⊗ [v]2 − [r]2
where we sample U←𝒰𝑆, R← Fℓ2×𝑘2 , r← Fℓ2 , u← Fℓ .

• Case 𝑖 = 6. This again reduces to the Rank assumption in G2. The only difference
in the two distributions is that in distribution 5 the sum of the last two elements,
namely u ⊗ v is a vectorized matrix of rank 1, namely uv, while in distribution 6 is
a uniformly distributed matrix of rank 𝑛 (except w.n.p). Given [A]2 ∈ G𝑛×𝑛2 either
uniformof rank 1 or uniformof rank 𝑛we can compute all the other values efficiently
as follows. Let a be the vectorization of T. We compute

[U]1 , [V]2 , [U ⊗ V −R]1 , [R]2 , [r]1 , [a]2 − [r]2
where U←𝒰𝑆 ,V←𝒱𝑆 ,R← Fℓ2×𝑘2

, r← F𝑘2 .

□

Algebraic Group Model (AGM). The algebraic group model [FKL18] lies between the
standardmodel and the stronger generic groupmodel [Sho97]. In AGM,we consider only
so-called algebraic adversaries. Such adversaries have direct access to group elements
and, in particular, can use their bit representation, like in the standard model. However,

24

CHAPTER 2. PRELIMINARIES

these adversaries are assumed to output new group elements only by applying the group
operation to received group elements, similarly to the generic groupmodel. This require-
ment is formalized as follows: Suppose an adversary 𝒜 is given some group elements
[𝑥1]1 . . . [𝑥𝑚]1 ∈ G1. Then, for every new group element [𝑧]1 ∈ G1 that the adversary
outputs, it must also output 𝑧1 . . . 𝑧𝑚 ∈ F such that [𝑧]1 =

∑𝑚
𝑖=1 𝑧𝑖[𝑥𝑖]1.

2.4 Commitment Schemes

In this section we define commitment schemes. This is a very useful cryptographic prim-
itive that -as the name suggests- allows a prover to first commit to a value m and later
reveal it. The prover should not be able to change its mind between committing and re-
vealing. This property is called binding. Optionally, the commitment is hiding, meaning
that it does not leak information about the committed message.

Definition 4 (Commitment Scheme). A commitment scheme CS is a tuple of PPT algo-
rithms

(
KeyGen,Com,Open,

)
that work as follows:

ck← CS.KeyGen(1𝜅): On input the security parameter 𝜅, it outputs a commitment key ck.
The commitment key defines a messagespaceℳ and commitment space 𝒞.

(c,𝜋) ← CS.Com(ck,m; 𝜌): On input ck and a message m ∈ ℳ, it outputs a commitment
c ∈ 𝒞 and opening information aux.

0/1← CS.Open(ck, c,m,𝜋): On input ck, c, m and 𝜋, it outputs a bit indicating if c is a
valid commitment to m or not.

that satisfies the following properties:

1. Correctness. For all 𝜅 ∈ N and m ∈ ℳ :

Pr
[
CS.Open(ck, c,m,𝜋) = 1 ck← CS.KeyGen(1𝜅)

(c,𝜋) ← CS.Com(ck,m)
]
= 1

2. Binding. Acommitment scheme is binding if, for all PPT adversaries𝒜, and all𝜅 ∈ N:

Pr

CS.Open(ck, c,m,𝜋) = 1
CS.Open(ck, c,m′,𝜋′) = 1

m ≠ m′
ck← CS.KeyGen(1𝜅)

(c, (m,𝜋), (m′,𝜋′)) ← 𝒜(ck)
 ≤ negl(𝜅)

A commitment can also satisfy a privacy property called “hiding”. We define it next.

25

CHAPTER 2. PRELIMINARIES

Definition 5 (Hiding Commitment Scheme). A commitment scheme CS is statistically
hiding if for all m0 ,m0 ∈ ℳ and all (even computationally unbounded) adversaries𝒟

Pr
𝒟(ck, c𝑏)

ck← CS.KeyGen(1𝜅)
𝑏 ← {0, 1}

(c,𝜋) ← CS.Com(ck,m𝑏)

 ≤ 1
2
+ negl(𝜅)

In most cases, the proof is simply the randomness used to construct the commitment. In
this case, the verifier simply reconstructs the commitment and asserts that it is the same
as the claimed one. In this case, we say that the commitment has canonical openings and
we omit the presentation of the Open algorithm.

2.5 Non-Interactive (Zero Knowledge) Arguments of Knowledge.

We next define non-interactive zero knowledge arguments. One can consider many vari-
ations for the definition, for example whether it is for a single language or for many lan-
guages, if the setup is trusted/transparent/updateable and so on. Here, we consider a
simple definition for a fixed language. We first define a non-interactive argument system
(NARK) and then define succinctness and zero knowledge properties for it.

Definition 6 (Non-Interactive Arguement of Knowledge). Let ℒ be an NP language and
ℛ the corresponding NP relation. A non-interactive argument of knowledge (NARK) for
ℒ is a tuple of PPT algorithms

(
KeyGen,Prove,Verify

)
that work as follows:

srs← NARK.KeyGen(1𝜅): On input the security parameter 𝜅, it outputs a structured ref-
erence string srs.

𝜋← NARK.Prove(srs, x,w): On input srs and a statement witness pair (x,w) ∈ ℛ, it out-
puts a proof 𝜋.

0/1← NARK.Verify(srs, x,𝜋): On input srs, a statement x and a proof 𝜋, it outputs a bit
indicating acceptance or rejection of the claim.

that satisfies the following properties:

1. Completeness. For all 𝜅 ∈ N, and all (x,w) ∈ ℛ:

Pr
[
NARK.Verify(srs, x,𝜋) = 1 srs← NARK.KeyGen(1𝜅)

𝜋← NARK.Prove(srs, x,𝜋)
]
= 1

2. Knowledge Soundness. For all 𝜅 ∈ N, and all PPT adversaries 𝒜, there exists a PPT
extractor ℰ such that:

26

CHAPTER 2. PRELIMINARIES

Pr

NARK.Verify(srs, x,𝜋) = 1

⇒
(x,w) ∈ ℛ

srs← NARK.KeyGen(1𝜅)
(x,𝜋) ← 𝒜(srs)
w← ℰ𝒜(srs)

 ≥ 1 − negl(𝜅)

Next we define a family of NARKs that are succinct, namely, the proof size is sublinear in
the size of the NP witness.

Definition 7 (Succinct Non-Interactive Arguement of Knowledge). Let ℒ be an NP lan-
guage and ℛ the corresponding NP relation. A succinct non-interactive argument of
knowledge (SNARK) is a NARK for ℒ that also satisfies that the size of the proof 𝜋 is
sublinear in the size of the NP witness w.

Finally, we define the zero knowledge property.

Definition 8 (Zero Knowledge NARK or SNARK). Let ℒ be an NP language and ℛ the
corresponding NP relation. A NARK (or SNARK) is zero knowledge if there exists a pair
of PPT algorithms (𝒮1 ,𝒮2) such that for all (x,w) ∈ ℛ the distributions{

srs, x,𝜋 srs← NARK.KeyGen(1𝜅)
𝜋← NARK.Prove(srs, x,w)

}
,

{
srs𝒮 , x,𝜋𝒮

srs𝒮 ← 𝒮1(1𝜅; 𝜌)
𝜋𝒮 ← 𝒮2(srs𝒮 , x, 𝜌)

}
are statistically indistinguishable.

2.6 Interactive (Zero Knowledge) Arguments of Knowledge.

We present the definitions and the relevant results we need for (Zero Knowledge) Argu-
ments of Knowledge (ZKAoK). We follow the presentation of [BCC+16].

Let ℒ ∈ NP be a language and ℛ the corresponding relation for ℒ. A ZKAoK allows
a prover to convince a verifier of knowledge of a witness w certifying membership of a
public x in ℒ that is (x,w) ∈ ℛ. The zero knowledge property guarantees that the veri-
fier learns nothing about the witness w apart from the fact that the prover knows such a
witness.

Denote with ⟨𝒫(x,w),𝒱(x)⟩ the transcript of an execution of 𝒫 and 𝒱 with respective
inputs x,w and x. Let view𝒱 ⟨𝒫(x,w),𝒱(x)⟩ (view𝒫 ⟨𝒫(x,w),𝒱(x)⟩) be the views of𝒱 (𝒫)
in a protocol execution (i.e. the input, randomness and all incomingmessages), and finally
let out𝒱 ⟨𝒫(x,w),𝒱(x)⟩ be the final verdict of the verifier (accept or reject).

Definition 9. The pair ⟨𝒫 ,𝒱⟩ is a Zero Knowledge Argument of Knowledge if it is pub-
lic coin, it has perfect completeness, statistical witness extended emulation and perfect
honest verifier zero knowledge as defined next.

27

CHAPTER 2. PRELIMINARIES

Definition 10. The pair ⟨𝒫 ,𝒱⟩ has Perfect Completeness if for all (x,w) ∈ ℛ it holds that
Pr [out𝒱 ⟨𝒫(x,w),𝒱(x)⟩ = 1] = 1.

Definition 11. The pair ⟨𝒫 ,𝒱⟩ has StatisticalWitness Extended Emulation if for all deter-
ministic polynomial 𝒫∗, there exists an expected polynomial time extractor ℰ, such that
for all (unbounded) adversaries𝒜������Pr

[
1←𝒜(𝑡𝑟) (x, 𝑠) ← 𝒜(1𝜅)

𝑡𝑟 ← ⟨𝒫∗(x, 𝑠),𝒱(x)⟩
]
−

Pr

(x, 𝑠) ← 𝒜(1𝜅)
1←𝒜(𝑡𝑟) (𝑡𝑟,w) ← ℰ ⟨𝒫∗(x,𝑠),𝒱(x)⟩(𝑢)

if 𝑡𝑟 is accepting then (x,w) ∈ ℛ

������ ≤ negl(𝜅).

Definition 12. An (𝑛1 , . . . , 𝑛𝜇)-tree of accepting transcripts for the pair ⟨𝒫 ,𝒱⟩with 2𝜇+1
rounds is a tree where:

• Each node of the tree in level 𝑖 is labeled with the transcript of the protocol used up
to𝒱’s 𝑖-th message.

• Each node in the same level 𝑖 is labeled with a transcript that uses fresh (uniformly
distributed and independent) randomness for the verifier’s 𝑖-th challenges.

• Level 𝑖 has 𝑛𝑖 descendants.

• The leafs are labeled with transcripts that are accepted by the verifier.

Definition 13. The pair ⟨𝒫 ,𝒱⟩ has (𝑛1 , . . . , 𝑛𝜇)-generalized special soundness if there
exists a PPT extractor ℰ such that given an (𝑛1 , . . . , 𝑛𝜇)-tree of accepting transcripts for
the pair ⟨𝒫 ,𝒱⟩, the extractor ℰ outputs a valid witness for the statement.

Definition 14. An interactive proof system ⟨𝒫 ,𝒱⟩ is public coin if all messages from𝒱
to 𝒫 are independent and uniformly distributed, and are uniquely defined by the ran-
domness of the verifier alone.

Definition 15. A public coin interactive proof system ⟨𝒫 ,𝒱⟩ is perfect Honest Verifier
Zero Knowledge (HVZK) if there exists a PPT simulator 𝒮, such that for all PPT 𝒜, it
holds that

Pr
[

1←𝒜(𝑡𝑟) (x,w, 𝑟) ← 𝒜(1𝜅) ∧ 𝑡𝑟 ← ⟨𝒫∗(x,w),𝒱(x; 𝑟)⟩ ∧ (x,w) ∈ ℛℒ
]
=

Pr
[

1←𝒜(𝑡𝑟) (x,w, 𝑟) ← 𝒜(1𝜅) ∧ 𝑡𝑟 ← 𝒮(x, 𝑟) ∧ (x,w) ∈ ℛℒ
]
.

Theorem 2. Let ⟨𝒫 ,𝒱⟩ be a 2𝜇+1 round, public coin, interactive proof systemwith (𝑛1 , . . . , 𝑛𝜇)-
generalized special soundness and

∏𝜇
𝑖=1 𝑛𝑖 = 𝒪(𝜅𝑐) for a constant 𝑐. Then ⟨𝒫 ,𝒱⟩ has witness

extended emulation.

The proof of the theorem is given in [BCC+16]. Public coin interactive zero knowledge
arguments can be transformed to non-interactive arguments in the random oracle model
by means of the Fiat-Shamir transform.

28

CHAPTER 2. PRELIMINARIES

2.7 Polynomial Commitment Schemes

In this section we define polynomial commitment schemes. Polynomial commitments
were first introduced in [KZG10]. It is a cryptographic primitive that allows to a prover to
give a short digest of a polynomial 𝑝(𝑋) and later convince a verifier that the evaluation
of the polynomial committed polynomial 𝑝(𝑋) at a point 𝑧 is 𝑣. The construction should
be binding, meaning that after committing to 𝑝(𝑋), a prover cannot convince the verifier
about two inconsistent evaluations, namely showing 𝑝(𝑣) = 𝑧 and 𝑝(𝑣) = 𝑧′ for 𝑧 ≠ 𝑧′.

We can also consider additional properties: a polynomial commitment scheme is extractable
if we can “extract” a valid polynomial 𝑝 from a prover that convinces a verifier with no-
ticeable probability. Finally, regarding prover’s privacy, we might require that the com-
mitment is hiding if no information about the polynomial is leaked apart from the claimed
evaluations.

We next give a formal definition of a polynomial commitment and the corresponding
properties.

Definition 16 (Polynomial Commitment Scheme). A polynomial commitment scheme
PC is a tuple of PPT algorithms

(
KeyGen,Com,Prove,Verify

)
that work as follows:

ck← PC.KeyGen(1𝜅 , 𝐷): On input the security parameter 𝜅 and an upper bound on the
degree 𝐷, it outputs a commitment key ck. The commitment key encodes a field F
over which the polynomial is defined and a commitment space 𝒞.

(c, aux) ← PC.Com(ck, 𝑝): On input ck and a polynomial 𝑝 ∈ F[𝑋], it outputs a commit-
ment c ∈ 𝒞 and opening information aux.

𝜋← PC.Prove(ck, c, 𝑝, aux, 𝑑, 𝑧, 𝑣): On input ck, a commitment c, a polynomial 𝑝 andopen-
ing information aux, a degree bound 𝑑 < 𝐷 and a pair of values 𝑧, 𝑣 ∈ F, it outputs
a proof 𝜋 asserting that c is a commitment to a polynomial 𝑝 of degree less than 𝑑
and 𝑝(𝑧) = 𝑣.

0/1← PC.Verify(ck, c, 𝑑, 𝑧, 𝑣,𝜋): On input ck, a commitment c, a degree bound 𝑑, a pair
of values 𝑧, 𝑣 ∈ F and a proof 𝜋, it outputs a bit indicating acceptance or rejection of
the claim.

that satisfies the following properties:

1. Correctness. For all 𝜅, 𝐷 ∈ N, 𝑝 ∈ F[𝑋] of degree less than 𝑑 ≤ 𝐷 and 𝑣, 𝑧 ∈ F:

Pr
PC.Verify(ck, c, 𝑑, 𝑧, 𝑣,𝜋) = 1

ck← PC.KeyGen(1𝜅 , 𝐷)
(c, aux) ← PC.Com(ck, 𝑝)

𝜋← PC.Prove(ck, c, 𝑝, aux, 𝑑, 𝑧, 𝑣)

 = 1

29

CHAPTER 2. PRELIMINARIES

2. Binding. A polynomial commitment scheme is binding if, for all PPT adversaries𝒜,
and all 𝜅, 𝐷 ∈ N:

Pr

PC.Verify(ck, c, 𝑑, 𝑧, 𝑣,𝜋) = 1
PC.Verify(ck, c, 𝑑, 𝑧, 𝑣′,𝜋′) = 1

𝑑 < 𝐷, 𝑣 ≠ 𝑣′
ck← PC.KeyGen(1𝜅 , 𝐷)

(c, 𝑑, 𝑧, 𝑣, 𝑣′,𝜋,𝜋′) ← 𝒜(ck, 𝐷)
 ≤ negl(𝜅)

3. Succinctness. A polynomial commitment succinct if the size of c and 𝜋 are sublinear
in the degree bound 𝐷.

We next define the extractability property of a polynomial commitment scheme.

Definition 17 (Extractable Polynomial Commitment Scheme). A polynomial commit-
ment scheme PC is extractable if for all 𝜅, 𝐷 ∈ N and all PPT adversaries 𝒜, there exists
an efficient PPT algorithm ℰ such that

Pr

PC.Verify(ck, c, 𝑑, 𝑧, 𝑣,𝜋) = 1

⇒
PC.Verify(ck, c, 𝑑, 𝑧′, 𝑣′,𝜋′) = 0

∨
(𝑝(𝑧′) = 𝑣′ ∧ deg𝑝 ≤ 𝑑)

ck← PC.KeyGen(1𝜅 , 𝐷)
(c, 𝑑, 𝑧, 𝑣,𝜋) ← 𝒜(ck, 𝐷)

𝑝 ← ℰ𝒜(ck, 𝐷)
(𝑧′, 𝑣′,𝜋′) ← 𝒜(ck, 𝐷, 𝑝)

≥ 1 − negl(𝜅)

The hiding notion is somewhat technical to describe. For a formal general definition, we
refer the reader to [CHM+20]. For our needs, we will consider a simpler definition stating
that (1) the commitment itself should be uniformlydistributed over the commitment space
𝒞 and (2) the open/verify algorithms are a zero knowledge argument for the language
capturing valid commitment/opening pairs.

Definition 18 (Hiding Polynomial Commitment Scheme). A polynomial commitment
scheme PC is hiding if for all 𝜅, 𝐷 and ck← PC.KeyGen(1𝜅 , 𝐷):

1. For all 𝑝 ∈ F[𝑋]with degree less than𝐷, the commitment 𝑐 is uniformly distributed
over 𝒞 where (c, aux) ← PC.Com(ck, 𝑝)

2. The tuple (PC.KeyGen,PC.Prove,PC.Verify) is a non-interactive zero knowledge ar-
gument for the language

ℒ =
{
c, 𝑑, 𝑧, 𝑣 | ∃𝑝, aux s.t. (c, aux) ← PC.Com(ck, 𝑝), deg𝑝 < 𝑑, 𝑝(𝑧) = 𝑣}

2.8 Delegation of Computation

Definition 19 (Delegation scheme in the preprocessing model). A delegation scheme is a
tuple of PPT algorithms Del = (Setup,Prove,Verify) such that

30

CHAPTER 2. PRELIMINARIES

srs← Setup(1𝜅 , 𝒞) : takes as input the security parameter 𝜅 and the description of an
arithmetic circuit 𝒞 : F𝑛0 → F𝑛𝑑 and outputs an reference string srs.

𝜋← Prove(srs, x, y) : takes as input the reference string srs, an input x and an output y,
and outputs a proof 𝜋.

0/1← Verify(srs, x, y,𝜋) : takes as input the reference string srs, an input x, an output y
and a proof 𝜋, and outputs a bit indicating whether the proof is accepting or not.

that satisfies the following properties:

Completeness: For all 𝑛0 , 𝑛𝑑, all 𝒞 : F𝑛0 → F𝑛𝑑 and all x, y such that y = 𝒞(x) it holds that
Pr

[
Verify(srs, x, y,𝜋) = 1 srs← Setup(1𝜅 , 𝒞),𝜋← Prove(srs, x, y)] ≥ 1 − negl(𝜅)

Soundness: For all 𝑛0 , 𝑛𝑑 ∈ N, all 𝒞 : F𝑛0 → F𝑛𝑑 and all PPT algorithms𝒜 it holds that

Pr
[

Verify(srs, x, y,𝜋) = 1 srs← Setup(1𝜅 , 𝒞)
y ≠ 𝒞(x) (x, y,𝜋) ← 𝒜(srs)

]
≤ negl(𝜅)

Efficiency: The Setup and Prove algorithms run in time poly(|𝐶 | , 𝜅). The size of the proof
is |𝜋| = 𝒪(𝜅) and Verify algorithm runs in time (𝑛0 + 𝑛𝑑)poly(𝜅).

31

Chapter 3

Updateable Inner Product Argument
with Logarithmic Verifier

This chapter is based on the paper “Updateable Inner Product Argument with Logarithmic
Verifier and Applications” that was presented in PKC 2020, which is joint work with Vanesa
Daza and Carla Ráfols.

Zero-Knowledge proofs have been an important primitive in the theory of cryptography
since their introduction three decades ago. The classical applications of zero-knowledge
proofs are numerous, including for example identification schemes, electronic voting, ver-
ifiable outsourced computation, or CCA secure public-key encryption. The common de-
nominator of all of these is that zk-proofs are used to prove simple statements, like “this
ciphertext is well-formed” or “I know a valid signature key”. Although it was known that
every NP statement could be proved in zero-knowledge [GMW87], the cost of such gen-
eral proofs was prohibitive and more sophisticated applications of zk-proofs were com-
pletely impractical.

This situation has changed radically in the last decade with the introduction of pairing-
based zk-SNARKs [Gro10]. The key element of these arguments is that they are succinct,
i.e. sublinear in the size of the witness -in fact, they are independent of it- and thus very
fast to verify. This is extremely powerful: in particular, a prover can show that it has
executed correctly some large computation (expressed as a huge circuit) and a verifier
will be convinced after doing only very few checks (e.g. computing 3 pairings in [Gro16]).
Besides their scientific interest, SNARKs have opened the door to new real-world privacy-
preserving applications. Cryptocurrencies like Zcash [BCG+14a] or Ethereum are two of
the most popular examples so far.

33

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

However, even the most efficient instantiations of pairing-based SNARKs [Gro16; GM17]
have a few drawbacks. On the efficiency side, the main ones are long common reference
string and costly prover computation. On the security side, they are based on very strong
hardness assumptions, and the setup is assumed to be trusted.

Recently, there are significant research efforts to propose alternatives which overcome
some of these drawbacks following several dimensions. For instance, numerous works
study how to reduce the trust in the common reference string, exploring weaker mod-
els such as subversion resistant SNARKs [BFS16; ABLZ17; Fuc18], updateable common
reference strings [GKM+18] or transparent setup [BBHR19].

Moreover, there has been significant efforts in abstracting and modularizing the construc-
tion of SNARKs. A SNARK construction can be typically be described by three compo-
nents: (1) an arithmetization technique that allows giving an algebraic essence in problems
of combinatorial structure capturing the process of computation, such as Circuit Satisfia-
bility, (2) a construction of a proof system in an information theoretic idealized model and
(3) a cryptographic compiler that uses cryptographic tools to transform the idealized proof
system in an actualal proof system that can be implemented in the real world.

This modular approach has numerous advantages. First, it makes SNARK constructions,
which are usually complex and counterintuitive, easier to understand by breaking them
down into simpler, independent components. Second, thanks to generic results, one can
interchange components without the need to re-analyze the construction from scratch.
Thus, a more efficient cryptographcic compilation for example can directly improve effi-
ciency of all constructions that are constructed to work with this type of compiler.

By far the most common arithmetization technique is the rank one constraint satisfaction
problem (R1CS) which generalizes the arithmetization used in [GGPR13] and essentially
encodes an arithmetic circuit as a set of quadratic equations. An alternative arithme-
tization, which is used to encode unifrom (i.e. Turing machine based) computations is
called algebraic intermediate representation [BBHR19]. The most commonly used ideal-
ized models are the interactive oracle proof model [BCS16] (IOP) and the algebraic holo-
graphic proof model [CHM+20] (AHP). In the former, the prover replies to verifier’s chal-
lenges using long messages, which the verifier does not read in full; rather it queries a
few randomly chosen positions of them to determine if the prover is honest or not. In
the later, again the prover and verifier interact, but know the the messages of the prover
are polynomials over a field; the verifier is allowed to query these polynomials at random
points and learn their evaluations. A proof system in the IOP model is compiled to an ac-
tual proof system using a primitive called vector commitment scheme [CF13] and the latter
using polynomial commitments [KZG10].

One of the most celebrated alternatives to pairing based SNARKs are the arguments of
knowledge forArithmetic Circuit Satisfiability of Bootle et al. [BCC+16] (and Bulletproofs,
the improvement thereof by Bünz et al. [BBB+18]). The construction can be analyzed as a

34

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

Algebraic Holographic Proof compiled to a proof system using a novel polynomial com-
mitment which is based on the folding technique. In fact, the primitive used is stronger in
the sense that it implies a polynomial commitment scheme. The construction as a whole
depends on weaker assumptions (the DLOG assumption and the Random Oracle if one
wants to remove interaction via Fiat-Shamir). Furthermore, it lacks the need for a trusted
setup and it features small proofs, logarithmic in the size of the witness. Unfortunately,
verification time scales linearly, even when batching techniques are used. The motivation
of this chapter is to demonstrate how to improve the cost of the verifier in the aforemen-
tioned works, while keeping most of its advantages.

Related Work

In [BCC+16], Bootle et al. proposed an interactive zero-knowledge argument at the heart
of which lies a recursive argument for an inner product relation of committed values. The
argument has very interesting properties, most notably it is transparent. The communi-
cation complexity is 𝒪𝜅(log 𝑛) and the verification cost is 𝒪𝜅(𝑛) where 𝑛 is the size of the
vectors. Prover complexity is asymptotically optimal (𝒪𝜅(𝑛)) but it heavily uses expensive
public-key operations. Bünz et al. [BBB+18] improved the communication complexity of
the aforementioned protocol by a constant factor.

The inner product argument implies a polynomial commitment and as such, it has been
employed in various SNARKs. The Muggle-proofs based [ZGK+17b; ZGK+17a; WTs+18;
XZZ+19] proof systems that build on the delegation scheme of Goldwasser, Kalai, and
Rothblum [GKR08], utilize it as such.

To mitigate the linear verification complexity of the construction a line of work has at-
tempted to amortize the verification cost amongst various executions of the protocol. The
crucial observation is that the linearity of the verifier depends on the system parameters
and not on the specific instance proven. Starting fromHalo [BGH19] andwith various fol-
low ups [BCMS20; BDFG21; KST21], not only the problem of amortizing verification cost
of the inner product is achieved, but also other cryptographic primitives (PCD [BCCT13]
and IVC [Val08]) are constructed based on the inner product argument.

An independent and concurrent work with the original publication this chapter is based
on [BMM+21], generalizes the inner product argument in the pairing group setting. This
is beneficial in two ways: first, the linearity of the verifier is mitigated by means of struc-
tured (instead of uniform) commitment keys and second, it allows to aggregate pairing
product equations (instead of only equations on the field) which in turn allows useful ag-
gregation techniques (see for example [GMN21; SCP+22]). The techniques we introduce
in this chapter are similar to the former contribution of [BMM+21].

To achieve a middle ground between efficiency and trust, Groth et al. [GKM+18] defined
the updateable model. In this model, everyone can non-interactively update the setup

35

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

parameters. As long as one update is honest, soundness is guaranteed. The authors also
presented a schemewhich is updateable, but it has a universal common reference string of
size quadratic in themaximal size of all supported circuits (although from the global setup
a linear, circuit-specific string can be derived). Maller et al. presented Sonic [MBKM19],
which improved this to a linear srs by improving the reduction of [BCC+16]. Several
works [GWC19; CHM+20; RZ21] have construct SNARKs in the universal and update-
able models. However, all of these, including Sonic, are secure either in the Algebraic
Group Model, or under knowledge type assumptions (apart from the Random Oracle
Model). Finally, [BFS20] uses the techniques of the aforementioned results to construct a
SNARK sound in groups of unknown order. When instantiated in class groups it achieves
a transparent setup and asymptotically improves over STARKS [BBHR19] by a logarithmic
factor.

Our Contribution

We construct an argument of knowledge for inner product relations on committed values
in the updateable model. The construction is based on the folding technique of Bootle et
al [BCC+16]. Its communication and verification complexity is logarithmic in the size of the
statement. In contrast with the construction of Bootle et al, our inner product argument is
not transparent. However, the complications of the srs generation aremitigated by the fact
that the srs is updateable, as defined in [GKM+18]. Furthermore, existing structured ref-
erence strings from other applications can be used in the case of one of our instantiations,
that is, the setup is reusable.

The inner product construction directly implies a polynomial commitment scheme, and
hence, a universal succinct argument in the random oracle model [CHM+20]. As far
as we know, all recently proposed efficient and fully succinct pairing based construc-
tions [MBKM19; GWC19; CHM+20; RZ21] rely on the Algebraic GroupModel [FKL18] or
other knowledge type assumptions apart from the random oracle. This is because pair-
ing based extractable polynomial commitments rely on such assumptions. In our case the
random oracle model and a standard assumption is enough for an extractable polynomial
commitment. The price we pay to remove such assumptions is settling for a logarithmic
instead of constant proof/verification overhead. Compared to [BCC+16], we exponentially
improve the verifier but we lose the transparent setup and we settle for the pairing group
setting which is concretely more inefficient.

Our Techniques

Distribution Parameterized Vector Commitments. We revisit the use of vector commit-
ment schemes in zero-knowledge proof systems when working in groups: instead of us-
ing the classical Pedersen commitment key which is uniformly sampled, we add some
limited structure which simultaneously allows more efficient representation of the key

36

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

and efficient updateability. When combined with the properties of bilinear groups, only
a compressed version of it is enough to allow a verifier to perform verification tasks ex-
ponentially faster.

In particular we propose two instantiations:

• The commitment key consisting of group encodings of all monomials of a secret 𝑥,
i.e., [1], [𝑥], [𝑥2], . . . , [𝑥𝑛−1].

• The commitment key consisting of group encodings of all multilinear monomials
monomials of a secret 𝑥1 , . . . , 𝑥𝜈 i.e. [1], [𝑥1], [𝑥2], [𝑥1𝑥2], . . . , [𝑥1𝑥2 · · · 𝑥𝜈].

The structure of both commitment keys allows to non-interactively update the parameters
and thus nullifying the trapdoors 𝑥 or 𝑥1 , . . . , 𝑥𝑛 . We take advantage of this structure in
bilinear groups to create compressed versions of these keys of size only log 𝑛. For various
languages, this allows the verifier to verify statements with the help of the prover with-
out reading the whole commitment key. This leads to exponentially faster verification of
proofs with minimal overhead for the prover, at the price of moving to bilinear instead
of plain DLOG groups. The former distribution requires a larger (𝒪(𝑛) size) assumption
but one can find such srss “on the wild” since they are already used. The latter reduces to
a constant size assumption but -to the best of our knowledge- their use in not that much
spread as far as real world applications are concerned.

Inner Program Argument with Logarithmic Verifier. Using these techniques, wemodify
the inner product protocol of Bootle et al. [BCC+16] for proving that for given commit-
ments 𝑐1 = Com(a), 𝑐2 = Com(b) and 𝑧 ∈ F, it holds that a⊤b = 𝑧. More specifically,
we note that the overhead of the verifier in [BCC+16] is computing a new commitment
key in each of the log 𝑛 rounds of the protocol, where 𝑛 is the vector dimension. This
key depends on the previous key and the verifiers’ challenges. Instead of doing that, we
only give the verifier the compressed key (which is logarithmic in 𝑛) and have the prover
convince the verifier that the reduced statement is w.r.t. a new key which is the correct
one.

Polynomial Commitment Scheme. Finally, we construct a polynomial commitment sche-
me based on the aforementioned argument. We do this without requiring any additional
assumptions, we only need to add some more rounds of interaction between the prover
and the verifier. While a polynomial commitment is almost immediately derived from
an inner product argument (the polynomial evaluation relation can in fact be written as
an inner product relation) we need to consider some technicalities, specifically including
a low degree test on the polynomials and augment them with privacy properties (note
that the inner product argument is not in fact zero knowledge, although it can be aug-
mented to a zero knowledge one with relatively minor modifications). The polynomial
commitment scheme implies universal zero knowledge SNARKs in the random oracle
model without additional assumptions, by means of generic transformations, see for ex-
ample [CHM+20].

37

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

3.1 Distribution Parameterized Pedersen Commitment Scheme

In this sectionwefirst define anupdateability property of a commitment scheme, similarly
to the way it is defined for SNARKs in [GKM+18]. Essentially, this property states that we
can resample the commitment key without (1) skewing its distribution and (2) invalidating
the already included randomness. This is usefull since it allows performing a cheaper
trusted setup. Each party updates the commitment key in a non-interactive fashion and it
is enough to believe a single party is honest to trust the parameters. The latter conditions
holds since we know that the randomness of the honest party is not invalidated, hence,
binding property should hold.

Next we introduce a generalization of Pedersen commitment which is updateable and
can be succinctly represented. This is the core ingredient in reducing the verification
time of the folding technique. Essentially, we do not sample uniformly distributed keys
as is the case in Pedersen commitment, but we sample from any matrix distribution that
satisfies the FindRep assumption. Depending on the intended use, we can simply use the
apporpriate distribution.

3.1.1 Updateable Commitment Schemes

Wedefine commitment schemeswhich have an updateability property aswell. We do this
to simplify proofs in the following sections. An updateable commitment will be enough
to guarantee updateability of all the protocols in this work, since all the arguments pre-
sented hold regardless of parameters unless there is a breach in the binding property of
the commitment scheme.

Definition 20. AnUpdateable Commitment Scheme is a tuple of algorithms CS = (Setup,
VerSetup,Update,VerUpdate,Com,Open) such that

• ck← Setup(1𝜅): takes as input the security parameter 𝜅 and outputs a commitment
key ck.

• (ck′,𝜋ck′) ← Update(ck): takes as input a commitment key ck and produces a new
commitment key ck′ and a proof of correct update 𝜋ck′.

• 0/1 ← VerSetup(ck, 1𝜅 , 𝑛): takes as input a commitment key ck and the security
parameter 𝜅, and outputs a bit indicating the correctness of the structure of the key.

• 0/1 ← VerUpdate(ck′, ck,𝜋ck′): takes as input a new key ck′, an old key ck and a
proof 𝜋ck′, and outputs a bit indicating update correctness.

• (c,𝜋) ← Com(ck,m): takes as input the commitment key and a message m ∈ ℳ,
and outputs a commitment c ∈ 𝒞 and an opening proof 𝜋.

• 0/1← Open(ck, c,m,𝜋): takes as input the commitment key ck, the commitment c,

38

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

the message m, and the opening proof 𝜋 and outputs a bit indicating the validity of
the opening.

which is correct, updateable binding and (optionally) hiding as defined next.

Definition 21. An Updateable Commitment Scheme is correct if

1. for all 𝜅
Pr

[
VerSetup(ck, 1𝜅) = 1 ck← Setup(1𝜅)]

= 1,

2. for all 𝜅, ck

Pr
[

VerSetup(ck′, 1𝜅) = 1 ∧ VerSetup(ck, 1𝜅) = 1 ∧
VerUpdate(ck, ck′,𝜋ck′) = 1 (ck′,𝜋ck′) ← Update(ck)

]
= 1

3. and for all 𝜅, ck,m

Pr
[

Open(ck, c,m,𝜋) = 1 VerSetup(ck, 1𝜅 , 𝑛) = 1 ∧
(c,𝜋) ← Com(ck,m)

]
= 1.

Definition 22. An Updateable Commitment Scheme has the Updateable Computational
Binding property if for all stateful PPT𝒜 = (𝒜1 ,𝒜2 ,𝒜3), and for all 𝜅,

Pr

VerSetup(ck1 , 1𝜅) = 1 (ck1 , st1) ← 𝒜1(1𝜅)VerUpdate(ck3 , ck2 ,𝜋ck3) = 1 (ck2 ,𝜋ck2) ← Update(ck1)Open(ck3 , c,m,𝜋1) = 1 (ck3 ,𝜋ck3 , st2) ← 𝒜2(st1 , ck2 ,𝜋ck2) ∧Open(ck3 , c,m,𝜋2) = 1 (c,m1 ,𝜋1 ,m2 ,𝜋2) ← 𝒜3(st2)m1 ≠ m2

≤ negl(𝜅).

Definition 23. AnUpdateable Commitment Scheme is perfectly hiding if, for all 𝜅,m, and
all ck s.t. VerSetup(ck, 1𝜅 , 𝑛) = 1, and all c1

Pr
[

c = c1 (c,𝜋) ← Com(ck,m)]
= Pr

[
c = c1 c← 𝒞]

.

3.1.2 Construction

In this section we show how to construct commitment schemes under any distribution
𝒟1,𝑛 that satisfies the 𝒟1,𝑛-FindRep assumption. We specifically consider the univariate
and multilinear distributions 𝒳1,1,𝑛 , 𝒳𝜈,1,1, distributions which also have the updateabil-
ity property (note that for the uniform distribution, i.e. the Pedersen Vector Commitment,
updateability trivially holds since the Setup is transparent). For the remainder of the sec-
tion we refer to them as 𝒳𝑛 and 𝒳𝜈,1 respectively.

We first present the generic construction in Fig 3.1 and then discuss the updateability
properties of the two specific distributions. The commitment scheme is canonical so we
only present the Setup and Com algorithms.

39

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

Figure 3.1 Distribution Parameterized Pedersen Commitment Scheme. The scheme is pa-
rameterized by a matrix distribution𝒟1,𝑛 .
Setup(1𝜅):

gk← 𝒢(1𝜅)
[r] ← 𝒟1,𝑛 , [𝜌] ← G1

Output [r], [𝜌]
Com ([r],m):

𝜌← F.
Output [c]1 = ([r]⊤ [𝜌])

(
m
𝜌

)
, 𝜋 = 𝜌

Theorem 3. The commitment scheme of Fig. 3.1 is a commitment scheme that is binding under
the𝒟1,𝑛-FindRep assumption and unconditionally hiding.

Proof. Correctness follows by inspection and hiding follows since commitments are uni-
formly distributed group elements…We next show it is binding.

Consider an adversary𝒜 outputting a commitment c and two valid openings m1 , 𝜌1 and
m2 , 𝜌2 with m ≠ m′. Then, it should be the case that

([r]⊤ [𝜌])
(
m1
𝜌1

)
= [c]1 = ([r]⊤ [𝜌])

(
m2
𝜌2

)
⇔ ([r]⊤ [𝜌])

(
m1 −m2
𝜌1 − 𝜌2

)
= [0]

which is a non-trivial solution to the𝒟′1,𝑛-FindRep, where𝒟′ is the same as𝒟 but also out-
puts an extra uniformly distributed element. We finally show that solving 𝒟′1,𝑛-FindRep
implies sovling𝒟′1,𝑛-FindRep.

Let r be a challenge sampled according to 𝒟1,𝑛 . We then set [𝜌]1 = [𝑟1]1𝜏 for a uniform
𝜏 ← F. Let 𝒜 be an adversary against 𝒟′1,𝑛 . Assume it successfully outputs w ≠ 0 such
that (r⊤ 𝜌)w = 0. Writing w = (w′, 𝑧) we get r⊤w′ + 𝑟1𝜏𝑧 = 0 and w′ + 𝜏𝑧e1 is an element
in the kernel of r. Either this element is non-zero, in which case we are done, or it is
the zero vector. In the latter case, we have 𝑤1 = 𝜏𝑧, which means that 𝜏 = 𝑤1𝑧−1. The
latter is a solution to a DLOG instance for the elements [𝑟1] and [𝜌] which is a weaker
assumption. □

We next present the multilinear case (𝒳𝜈,1) case in detail and discuss which modifications
are needed for the monomial case 𝒳𝑛 . We introduce some notation first.

Notation. Let x = (𝑥1 , . . . , 𝑥𝜈) ∈ F𝑛 . We denote with x the vector of multilinear polyno-
mials evaluated at x. We define it recursively, namely, x𝜈 = (x𝜈−1 , 𝑥𝜈x𝜈−1) where x0 = (1).
We also denote xn = (1, 𝑥, . . . , 𝑥𝑛−1).

40

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

Figure 3.2 Updateable instantiation of distribution parameterized Pedersen commitment
scheme using the𝒳𝜈,1 distribution. We assume NIZK is a non-interactive argument for the
discrete logarithm language
VerSetup ([r]1(= [x]1), [x]2): :

Verify [𝑟1]1 = [1]1
For 1 ≤ 𝑖 ≤ 𝜈 and 1 ≤ 𝑗 ≤ 2𝑖−1, verify 𝑒

(
[𝑟2𝑖−1+𝑗]1 , [1]2

)
= 𝑒

([𝑟 𝑗]1 , [𝑥𝑖]2)
Update ([r]1(= [x]1), [x]2):

y← F𝜈.
Compute [r′]1 ← y ◦ [r]1, [x′]2 ← y ◦ [x]2
For 1 ≤ 𝑖 ≤ 𝜈: 𝜋𝑖 ← NIZK.Prove(srs, x = ([𝑥𝑖]2 , [𝑥′𝑖]2),w = 𝑦𝑖)

VerUpdate ([x]2 , [x′]2 , [r′]1 ,𝜋1 , . . . ,𝜋𝜈):
For 1 ≤ 𝑖 ≤ 𝜈: 𝑏𝑖 ← NIZK.Verify(srs, x = ([𝑥𝑖]2 , [𝑥′𝑖]2),𝜋𝑖)
𝑏 ← VerSetup (par, [r]1 , [x]2)
Output 𝑏 ∧ 𝑏1 ∧ 𝑏𝜈

For our application it is sufficient to give in G2 only the elements that define the commit-
ment key, and not the whole key vector, 0 i.e. [x]2 such that r = r. Looking ahead, in the
inner product argument [x]2 will be the compressed key the verifier has.

The update mechanism is fairly simple. To check a commitment key’s structure, simply
assert the various DDH relations that are implied by the 𝒳𝜈,1 distribution, and to update,
sample a vector from the same distribution and multiply it pairwise with the current key.
NIZKPoKare used to assert that the previous randomness is taken into account in the new
key and to ensure that any party updating knows its contribution to the final commitment
key. We omit the Setup and Com algorithms from the description since they are the same
as the generic construction. We present the construction in Fig. 3.2.

Theorem 4. Let NIZK be a NIZK for the relation ℛ = {(([𝑥], [𝑥′]), 𝑦) : [𝑥′] = 𝑦[𝑥]}. Then, the
Pedersen commitment scheme parameterized by the𝒳𝜈,1 distribution is Updateably Computation-
ally Binding under the 𝒳𝜈,1-FindRep assumption.

Proof. We work as follows: given an adversary𝒜 in the scenario that breaks the binding
property, we construct an adversary𝒜′ that breaks the𝒳𝜈,1-FindRep assumption. 𝒜′ acts
as follows:

• 𝒜′ creates parameters for the NIZK.

• On input [x]1,2 it invokes 𝒜, gets parameters [s]1 , [y]2 and uses VerSetup to verify
them.

41

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

• It performs an update that supposedly results in the parameters it received. It uses
the nizk simulator to construct convincing proofs. Specifically, it computes simu-
lated proofs

𝜋𝑖 ← NIZK.Prove(srs, x = [𝑦𝑖]2 , [𝑥𝑖]2)
and gives [x]1 , [x]2 ,𝜋1 , . . . ,𝜋𝜈 to𝒜.

• 𝒜 respondswith its own update, namely parameters [t]1 , [z]2 and proofs 𝜋′1 , . . . ,𝜋
′
𝜈

that assert the relations [𝑧𝑖]2 = 𝑥′𝑖[𝑥𝑖]2. It also gives a a commitment [c]1 and two
valid openings a1 ≠ a2 for these parameters.

• 𝒜′ runs the knowledge extractor to get 𝑥′1 , . . . , 𝑥
′
𝜈.

• It outputs [c]1 , a1 ◦ x′, a2 ◦ x′.

First note that the NIZK simulator implies that the view of 𝒜 is identical (assuming the
NIZK AoK to have perfect zero knowledge) to that in a real experiment. Assuming the
adversary is successful we have that for a1 ≠ a2,

a⊤1 t = a⊤2 t⇔ a⊤1 (x′ ◦ x) = a⊤2 (x′ ◦ x) ⇔ (a1 ◦ x′)⊤x = (a2 ◦ x′)⊤x,

which consists a binding attack with commitment key x. We then break the 𝒳𝜈,1-FindRep
assumption as in proof of Thm. 3. □

We can use a transparent scheme such as [BBB+18] to prove that an update is correctly
performed, which will yield 𝒪(log log 𝑛) proof size.

A similar construction works for the𝒳𝑛 distribution. In this case, we simply need the ele-
ment 𝑥 encoded in G2 since this is enough to check that the key is drawn from the correct
distribution. That is, for each 𝑖, it is enough to check that 𝑒 ([𝑟]1 , [1]2) = 𝑒 ([𝑟𝑖−1]1 , [𝑥]2).
The Update and VerUpdate work in the same way but now a NIZK AoK is only needed for the
element [𝑥]2.

As for concrete efficiency, the cost is dominated by the group exponentiations and the pairing
operations for the verifier (the NIZK AoK statements are logarithmic in 𝑛). Setup and Update
are dominated by 𝑛 exponentiations in G1, VerSetup and VerUpdate by 𝑛 pairing operations,
and Com and Open by one multi-exponentiation of size 𝑛 in G1 which, if performed trivially
needs 𝑛 exponentiations. Proof size amounts to log 𝑛 proofs of the NIZK AoK in the 𝒳𝜈,1
case and 1 in the 𝒳𝑛 case.

3.2 Improved Inner Product Argument

In this section, we will first provide a high-level description of the inner product argument
of [BCC+16], which has linear verification cost. Next, we briefly discuss how to reduce the

42

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

verification complexity to logarithmic in the designated verifier setting in the srs model by
changing the distribution of the commitment keys. Finally, we “compile” the designated
verifier construction in a public verifiable one in the pairing group setting.

We first briefly present the Inner Product Argument of [BCC+16]. The argument is a Proof
of Knowledge of the openings of two (non-hiding) Vector Pedersen Commitments that satisfy
an inner product relation. In [BCC+16], keys are sampled from 𝒰1,𝑛. Formally, it is a proof
of knowledge for the following language ℒIP:

([r],[s] ∈ G2𝜈 , [𝛼], [𝛽] ∈ G, 𝑧 ∈ F) ∈ ℒIP ⇐⇒
∃a, b ∈ F2𝜈 s.t. [𝛼] = [r⊤a] ∧ [𝛽] = [s⊤b] ∧ a⊤b = 𝑧.

The idea of the protocol is to reduce this statement to an equivalent one of roughly half the
size.

To do that, we create new commitment keys which have size half of the original one by splitting
them in half and then combining them to a new key based on a challenge issued by the verifier.
That is, the new commitment key will be [r′] = 𝑐−1[r0] + 𝑐−2[r1], where 𝑐 is the verifier’s
challenge.

In order to prevent the prover from taking advantage of the split, we first ask her to give partial
commitments [𝛼−1] = [r⊤1 a0], [𝛼1] = [r⊤0 a1],

The new witness will be a′ = 𝑐a0 + 𝑐2a1. Note that both prover and verifier can compute the
commitment to this new value, for every challenge 𝑐, from the partial commitments as follows:

[𝛼′] = [r′⊤a′] = [(𝑐−1r0 + 𝑐−2r1)(𝑐a0 + 𝑐2a1)]
= [r⊤0 a0] + [r⊤1 a1] + [𝑐−1r1a0] + [𝑐r0a1]
= [𝛼] + 𝑐−1[𝛼−1] + 𝑐[𝛼1]

The same procedure is done for the second commitment [𝛽] = [s⊤b] with the inverse challenge
𝑐−1.

Finally, the prover sends before seeing the challenge 𝑐 the cross term values 𝑧−1 = a⊤1 b0 and
𝑧1 = a⊤0 b1, and based on these, the new inner product is computed as 𝑧′ = 𝑧−1𝑐 + 𝑧 + 𝑧1𝑐−1.
The new statement becomes ([r′], [s′], [𝛼′], [𝛽′], 𝑧′) ∈ ℒIP.

Straightforward calculations assert that the new witness is indeed a witness for the new state-
ment. The prover can now simply send the new witness a′, b′ with cost half of what it would
take to send a, b.

43

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

Figure 3.3Recursive step of the inner product argument of [BCC+16]. When the statement
size is small (constant), the prover simply sends the witness to the verifier.

x = ([r], [s], [𝛼], [𝛽], 𝑧), w = (a, b),
claim: x ∈ ℒIP

𝒫 : x,w 𝒱 : x
[𝛼−1] = [r1]⊤a0 , [𝛼1] = [r0]⊤a1

[𝛽−1] = [s1]⊤b0 , [𝛽1] = [s0]⊤b1

𝑧−1 = a⊤1 b0 , 𝑧1 = a⊤0 b1 , [𝛼−1], [𝛼1], [𝛽−1], [𝛽1], 𝑧−1 , 𝑧1

𝑐 𝑐 ← F
a′ = 𝑐a0 + 𝑐2𝜒a1 [r′] = 𝑐−1[r0] + 𝑐−2[r1]
b′ = 𝑐−1b0 + 𝑐−2𝜒b1 [s′] = 𝑐[s0] + 𝑐2[s1]

[𝛼′] = 𝑐−1[𝛼−1] + [𝛼] + 𝑐[𝛼1]
[𝛽′] = 𝑐[𝛽−1] + [𝛽] + 𝑐−1[𝛽1]
𝑧′ = 𝑧−1𝑐 + 𝑧 + 𝑧1𝑐−1

w′ = (a′, b′) x′ = ([r′], [s′], [𝛼′], [𝛽′], 𝑧′)

Designated Verifiability with Logarithmic Complexity. We next discuss how to modify
the above protocol with a 𝒟-variant of the commitment scheme to achieve a logarithmic
verifier. Full details are only given for the public verifiable scheme, which is very similar.

The linear overhead in the verifier’s computation is computing the new keys r′, s′. Having a
structured commitment key allows to make this computation implicit for the verifier. Consider
the first key r. If r← 𝒳𝜈,1, then r = (r0 , r1) = (r0 , 𝑥𝜈r0). So, in the first round, the key for
the next round is

[r′] = 𝑐−1[r0] + 𝑐−2[r1] = (𝑐−1 + 𝑥𝜈𝑐−2)[r0]
The new key is now determined by [𝑥1], . . . , [𝑥𝜈−1] and the new generator is (𝑐−1 + 𝑥𝜈𝑐−2)[1].
Further, this transformation respects the structure of the key, which can again be written as
r′ = (r′0 , 𝑥𝜈−1r′0), so the same argument can be applied again.

In the designated verifier case, we let the verifier know 𝑥1 , . . . , 𝑥𝜈. It does not compute or
read [r′] in each round but just checks in the last round if:

[𝑟′] =
𝜈∏
𝑖=1
(𝑐−1
𝑖 + 𝑥𝜈−𝑖+1𝑐−2

𝑖)[1]

where 𝑐𝑖 is the challenge at round 𝑖, and [𝑟′] is the key in the last round (consisting of 1
element). The same holds for the second key [𝑠′]. Therefore, verification requires a logarithmic
number of operations.

44

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

When r ← 𝒳2𝜈 , the verification can also be reduced to logarithmic, as the structure of the
key is very similar, namely, r = (r1 , r1) = (r0 , 𝑥2𝜈−1r0). The 𝒳2𝜈 distribution is in fact a special
case of the 𝒳𝜈,1 distribution where 𝑥𝑖 = 𝑥2𝑖−1 , so the same technique applies.

Public Verifiability with Logarithmic Complexity. To allow public verifiability, we work in
the pairing group setting. The verifier can no longer compute

𝜈∏
𝑖=1
(𝑐−1
𝑖 + 𝑥𝜈−𝑖+1𝑐−2

𝑖)[1]

but it is easy to observe that it actually does not need to do so. It simply needs to verify this
relation which it can do with the help of the prover and by using the pairing operation as a
DDH oracle.

We next present the argument formally for the 𝒳𝜈,1 distribution (the univariate distribution is
a special case). First, we define the language of well structured commitments. We include the
generator since it will be modified in each round.

([𝑟]1 ,[r]1 , [x]2) ∈ ℒ𝒳𝜈,1Com ⇐⇒
[𝑟1]1 = [𝑟] ∧ ∀𝑖 ∈ {1, . . . , 𝜈} ∀𝑗 ∈ {

1, . . . , 2𝑖−1} [𝑟2𝑖−1+𝑗]1 = 𝑥𝑖[𝑟 𝑗]1
We next modify to language ℒIP to capture the extra requirements regarding the distribution
of the commitment keys. We describe the new protocol in Fig. 3.4.

([𝑟]1 ,[𝑠]1 , [x]2 , [y]2 , [𝛼]1 , [𝛽]1 , 𝑧) ∈ ℒIP ⇐⇒
∃ [r]1 , [s]1 ∈ G2𝜈

1 , a, b ∈ F2𝜈 s.t.
([𝑟]1 , [r]1 , [x]2) ∈ ℒ𝒳𝜈,1Com ∧ ([𝑠]1 , [s]1 , [y]2) ∈ ℒ𝒳𝜈,1Com∧
[𝛼]1 = [a⊤r]1 ∧ [𝛽]1 = [b⊤s]1 ∧ a⊤b = 𝑧.

Theorem 5. Protocol of Fig. 3.4 is a public coin, argument of knowledge for the relationℒIP with 𝜈
round complexity, 𝒪(2𝜈) prover complexity, and 𝒪(𝜈) communication and verification complexity
under either the𝒳𝜈,1-FindRep assumption (or the𝒳2𝜈 -FindRep assumption). The argument yields
an updateable non-interactive argument of knowledge in the random oracle model. In the former
case the proof size of an update is 𝒪(𝜈) and in the latter 𝒪(1).

Proof.
Completeness: We show that each reduction round leads to a valid reduced statement. It
is enough to show that the prover and verifier compute the same key. Then, we can argue
as in the case with uniform keys.

First, note that [r′]1 = 𝑐−1[r0]1 + 𝑐−2[r1]1, which means that we “combine” all pair of
elements that have distance 2𝜈−1. That is, for all 𝑗 ≤ 2𝜈−1,

[𝑟′𝑗]1 = 𝑐−1[𝑟 𝑗]1 + 𝑐−2[𝑟2𝜈−1+𝑗]1

45

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

Figure 3.4 Recursive step of the improved inner product argument. When the statement
size is small (constant), the prover simply sends the witness to the verifier.

x = ([𝑟]1 , [𝑠]1 , [x]2 , [y]2 , [𝛼]1 , [𝛽]1 , 𝑧), w = ([r]1 , [s]1 , a, b),
claim: x ∈ ℒIP

𝒫 : x,w 𝒱 : x
[𝛼−1]1 = [r1]⊤1 a0

[𝛼1]1 = [r0]⊤1 a1

[𝛽−1]1 = [s1]⊤1 b0

[𝛽1]1 = [s0]⊤1 b1

𝑧−1 = a⊤1 b0 , 𝑧1 = a⊤0 b1 , [𝛼−1]1 , [𝛼1]1 , [𝛽−1]1 , [𝛽1]1 , 𝑧−1 , 𝑧1

𝑐 𝑐 ← F
[r′]1 = 𝑐−1[r0]1 + 𝑐−2[r1]1
[s′]1 = 𝑐[s0]1 + 𝑐2[s1]1

[𝑟′]1 = [𝑟′1]1 , [𝑠′]1 = [𝑠′1]1

a′ = 𝑐a0 + 𝑐2𝜒a1 [x′]2 = ([𝑥1]2 , . . . , [𝑥𝜈−1]2)
b′ = 𝑐−1b0 + 𝑐−2𝜒b1 [y′]2 = ([𝑦1]2 , . . . , [𝑦𝜈−1]2)

[𝛼′]1 = 𝑐−1[𝛼−1]1 + [𝛼]1 + 𝑐[𝛼1]1
[𝛽′]1 = 𝑐[𝛽−1]1 + [𝛽]1 + 𝑐−1[𝛽1]1
𝑧′ = 𝑧−1𝑐 + 𝑧 + 𝑧1𝑐−1

𝑒
([𝑟′]1 − 𝑐−1[𝑟]1 , [1]2) ?

=

𝑒
(
𝑐−2[𝑟]1 , [𝑥𝜈]2)

𝑒 ([𝑠′]1 − 𝑐[𝑠]1 , [1]2) ?=
𝑒
(
𝑐2[𝑠]1 , [𝑦𝜈]2)

w′ = ([r′]1 , [s′]1 , a′, b′) x′ = ([𝑟′]1 , [𝑠′]1 , [x′]2 , [y′]2 ,
[𝛼′]1 , [𝛽′]1 , 𝑧′)

46

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

Also, note that by construction of the commitment keys, for all 𝑖 ∈ {1, . . . , 𝜈} and 𝑗 ∈{
1, . . . , 2𝑖−1}, it holds that [𝑟2𝑖−1+𝑗]1 = 𝑥𝑖[𝑟 𝑗]1, which means that [𝑟′]1 = [𝑟′1]1 = 𝑐−1[𝑟1]1 +
𝑐−2[𝑟2𝜈−1+1]1 = 𝑐−1[𝑟]1 + 𝑐−2𝑥𝜈[𝑟]1 and the verifier always accepts the pairing test.

It remains to show that (par, [𝑟′]1 , [r′]1 , [x′]2) ∈ ℒCom. It is evident that [𝑟′1]1 = [𝑟′]1. We
show that the various Diffie-Hellman Relations hold for the reduced statement.

Let 𝑖 ∈ {1, . . . , 𝜈 − 1} and 𝑗 ∈ {
1, . . . , 2𝑖−1}. It holds that [𝑟′2𝑖−1+𝑗]1 = 𝑥𝑖[𝑟′𝑗]1. Indeed,

[𝑟′2𝑖−1+𝑗]1 = 𝑐−1[𝑟2𝑖−1+𝑗]1 + 𝑐−2[𝑟2𝜈−1+2𝑖−1+𝑗]1 = 𝑐−1𝑥𝑖[𝑟 𝑗]1 + 𝑥𝜈𝑥𝑖𝑐−2[𝑟 𝑗]1
= 𝑥𝑖(𝑐−1[𝑟 𝑗]1 + 𝑥𝜈𝑐−2[𝑟 𝑗]1) = 𝑥𝑖[𝑟′𝑗]1.

Similar calculations show the part related to s′. We can now argue completeness exactly
as in the𝒰2𝜈 case.

Witness extended emulation: Forwitness extended emulationwe need to prove that, for each
round, we can extract thewitness, i.e. the commitment key and the commitment openings
w.r.t. it. We show next how to extract the commitment keys. After having these, we can
argue as in [BCC+16] except that we use the corresponding 𝒳𝜈,1-FindRep assumption.

Assume we get two accepting transcripts for different challenges 𝑐 from the prover. We
show that given a witness for the reduced statement, we can extract the unique valid
commitment keys [r]1 , [s]1.

Let [r′𝑏]1 = 𝑐−1
𝑏 [r0]1 + 𝑐−2

𝑏 [r1]1 be the new commitment keys for two different challenges
𝑐0 , 𝑐1. The matrix with rows (𝑐−1

𝑏 , 𝑐−2
𝑏) for 𝑏 ∈ {0, 1} is invertible, so we can take appro-

priate linear combination and extract [r0]1, [r1]1. We show that this is the commitment
key. First note that since the transcript is accepting, we have that for both reduced keys
[𝑟′2𝑖−1+𝑗]1 = 𝑥𝑖[𝑟′𝑗]1 which means that [𝑟2𝑖−1+𝑗]1 = 𝑥𝑖[𝑟 𝑗]1 and [𝑟2𝜈−1+2𝑖−1+𝑗]1 = 𝑥𝑖[𝑟2𝜈−1+𝑗]1
for all 𝑖 ≤ 𝜈 − 1, 𝑗 ≤ 2𝑖 . In other words [r0]1 and [r1]1 are valid commitment keys w.r.t.
the same [𝑥1]2 , . . . , [𝑥𝜈−1]2. By the pairing test, we have that [𝑟′𝑏]1 = 𝑐−1

𝑏 [𝑟]1 + 𝑐−2
𝑏 𝑥𝜈[𝑟]1 =

𝑐−1
𝑏 [𝑟0,1]1 + 𝑐−2

𝑏 [𝑟1,1]1. This equation holds for both challenges 𝑐𝑏 , so it should be the case
that [𝑟0,1]1 = [𝑟] and [𝑟1,1]1 = 𝑥𝜈[𝑟], thus the extracted key should be the unique key de-
termined by [𝑥1]1 , . . . , [𝑥𝜈]1. We argue for [s]1 in the same way. After extracting the keys
the extractor works exactly as in [BCC+16] to extract a, b.

Updatability: The updatability property follows by noting that the reference string contains
no values apart from the commitment key which is updatable as shown in Thm. 4.

Complexity: It is evident that the protocol needs 𝜈 rounds. In each round the size of the
witness is decreased in half, and we perform a constant number of communication, so we

47

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

have 𝒪(𝜈) communication complexity. The prover in round 𝑖 performs 𝒪(2𝜈+𝑖−1) compu-
tations, so the prover complexity is 𝒪 (∑𝜈

𝑖=1 2𝜈−𝑖+1) = 𝒪(2𝜈), while the verifier does 𝒪(1)
operations and therefore its complexity is 𝒪(𝜈). □

3.3 Polynomial Commitment Scheme

The inner product argument presented in the previous section is a very powerfull primitive.
Indeed, many relations of practical use can be expressed as an inner product relation; for
example, one can derive vector and polynomial commitment schemes by simply expressing them
as inner products. The efficiency and security properties of such construction are essentially
the same as the inner product argument itself.

Directly using the inner product argument can also yield a universal non-interactive argu-
ment of knowledge for NP without the need of any additional assumption (such construcitons
only require the security of the random oracle which is either way considered to hold for
the inner product argument itself). For example, one could use the techniques introduced in
Sonic [MBKM19] which build on the information theoretic part of the argument of [BCC+16].
Importantly, this transformation does not require any privacy property from the inner product
arguments such as zero knowledge, hence we can directly derive such a construction using the
protocol of Fig. 3.4.

The resulting protocol is a universal non-interactive argument for NP that relies only in the se-
curity of the random oracle and the FindRep assumption used to instantiate the inner product
argument parameters. Specifically, it does not need any additional “non-falsifiable” assump-
tions such as knowledge-type assumptions or the algebraic group model.

While this is our ultimate goal, in this section we achieve it in a different way that fits better to
the current abstractions of universal non-interactive arguments. We show how to instantiate
a (hiding) polynomial commitment scheme using the inner product argument. Having such a
primitive, we can rely on generic transformations to derive the argument for NP [CHM+20].

The biggest obstacle in doing so is that the construction of Fig. 3.4 is not zero knowledge; apart
from the last round where we actually reveal the witness -which holds information about the
initial witness- we also reveal information about the cross terms in each round. Nevertheless,
there are known techniques to randomize the leaked infromation and derive hiding polynomial
commitments (see for example [BGH19; BCMS20]). The goal of this section is to adapt
these techniques to work with the improved inner product arguement, thus, yielding a hiding
polynomial commitment scheme secure in random oracle model under one of the considered
FindRep assumptions. This results to a univeral and updateable non-interactive zero knowledge
argument for NP under the same assuptions.

48

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

3.3.1 Non-Hiding Polynomial Relation Argument

In this section we show how to modify the construction of Fig. 3.4 to function as a argument
for the relation of polynomial commitment opening. Until the end of this section, we consider
the isomorphism 𝑝 ∈ F<2𝜈 [𝑋] ⇔ p ∈ F2𝜈 . We denote with boldface font the coefficients of the
polynomial 𝑝. We commit to a polynomial 𝑝 by simply committing to the vector p consisting
of its coefficients, that is, we compute [𝛼]1 = [r]⊤1 p.

Now, suppose we want to convince a verifier that 𝑝(𝑣) = 𝑧 for some public values 𝑧. We
follow the template of the folding technique. The prover gives “cross term” commitments to
encoding the low and high degree terms of the polynomial 𝑝 (denoted 𝑝0 , 𝑝1) and the values
𝑣0 = 𝑝0(𝑧) and 𝑣1 = 𝑝1(𝑧). The latter are the evaluations of two polynomials with degree half
of that of 𝑝 on the point 𝑧. Then the prover and the verifier combine the commitments based
on a challenge from the verifier and reduce the statement to one of smaller size.

Polynomial relation construction. We next describe the argument. We start by defining the
language of the argument. We sample the commitment key from the multilinear distribution
𝒳𝜈,1, but as we have discussed, one can use the univariate equivalent which is a special case.
The language is defined as follows:

([𝑟]1 ,[x]2 , [𝛼]1 , 𝑧, 𝑣) ∈ ℒPC ⇐⇒
∃ [r]1 ∈ G2𝜈

1 , p ∈ F2𝜈 s.t.
([𝑟]1 , [r]1 , [x]2) ∈ ℒ𝒳𝜈,1Com∧
[𝛼]1 = [r⊤p]1 ∧ 𝑝(𝑣) = 𝑧.

We present the recursive step of the protocol in Fig. 3.5. As in the previous case, when the
statement is small the prover simply reveals the witness.

We next show that the above protocol is indeed an argument for the language ℒPC.

Theorem 6. Protocol of Fig. 3.5 is a public coin, argument of knowledge for the relationℒPC with 𝜈
round complexity, 𝒪(2𝜈) prover complexity, and 𝒪(𝜈) communication and verification complexity
under either the𝒳𝜈,1-FindRep assumption (or the𝒳2𝜈 -FindRep assumption). The argument yields
an updateable non-interactive argument of knowledge in the random oracle model. In the former
case the proof size of an update is 𝒪(𝜈) and in the latter 𝒪(1).

Proof.
Completeness: We show that each reduction round leads to a valid reduced statement. The
part of the statement regarding the key is dealt in the exact sameway as the inner product
argument case so we omit it here. We next show that the resulting statement-witness pair
is a valid one for ℒPC.

49

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

Figure 3.5 Recursive step of the polynomial relation argument. When the statement size
is small (constant), the prover sends the witness to the verifier.

x = ([𝑟]1 , [x]2 , [𝑔]1 , [𝛼]1 , 𝑣, 𝑧), w = ([r]1 , p),
claim: x ∈ ℒPC

𝒫 : x,w 𝒱 : x
𝑣0 = 𝑝0(𝑧)
[𝛼−1]1 = [r1]⊤1 p0

[𝛼1]1 = [r0]⊤1 p1

[𝛼−1]1 , [𝛼1]1 , 𝑣0

𝑐 𝑐 ← F
[r′]1 = [r0]1 + 𝑐−1[r1]1

[𝑟′]1 = [𝑟′1]1

p′ = p0 + 𝑐p1 [x′]2 = ([𝑥1]2 , . . . , [𝑥𝜈−1]2)
[𝛼′]1 = 𝑐−1[𝛼−1]1 + [𝛼]1 + 𝑐[𝛼1]1
𝑣1 = (𝑣 − 𝑣0)𝑧1−𝜈

𝑣′ = 𝑣0 + 𝑐𝑣1

𝑒
([𝑟′]1 − 𝑐−1[𝑟]1 , [1]2) =

𝑒
(
𝑐−2[𝑟]1 , [𝑥𝜈]2)

w′ = (r′, p′) x′ = ([𝑟′]1 , [x′]2 , [𝛼′]1 , 𝑧, 𝑣′

First, we show that p′ = p0 + p1 is an opening of [𝛼′]1. We have

[𝛼′]1 = 𝑐−1[𝛼−1]1 + [𝛼]1 + 𝑐[𝛼1]1
= 𝑐−1[r1]⊤1 p0 + [r0]⊤1 p0 + [r1]⊤1 p1[𝛼]1 + 𝑐[r0]⊤1 p1

= [r0]⊤1 (p0 + 𝑐p1) + [r1]⊤1 (𝑐−1p0 + p1)
= [r0]⊤1 (p0 + 𝑐p1) + 𝑐−1[r1]⊤1 (p0 + 𝑐p1)
= ([r0]1 + 𝑐−1[r1]1)⊤(p0 + 𝑐p1) = [r′]⊤1 p′

It remains to show that the polynomial 𝑝′ is evaluated to 𝑣′ at 𝑧. Note that this corresponds
to the evaluation 𝑝0(𝑧) + 𝑐𝑝1(𝑧), so it is enough to show that this is the value of 𝑣′. Since
𝑣′ = 𝑣0 + 𝑐𝑣1 and 𝑣0 = 𝑝0(𝑧), it is enough to assert that 𝑣1 = 𝑝1(𝑧). In what follows, note
that we can write the evaluation of 𝑝 at 𝑧 as 𝑣0 + 𝑧𝑛/2𝑣1 = 𝑣0 + 𝑧𝜈−1𝑣1. We have

𝑣1 = (𝑣 − 𝑣0)𝑧1−𝜈 ⇔ 𝑣1𝑧𝜈−1 = 𝑣 − 𝑣0 ⇔ 𝑣0 + 𝑣1𝑧𝜈−1 = 𝑣

50

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

and the evaluation of 𝑝′ at 𝑧 is indeed 𝑣′.

Witness extended emulation: For witness extended emulation we need to prove that, for
each round, we can extract the witness, i.e. the commitment key and the commitment
openings w.r.t. it. The part of the statement regarding the key is dealt in the exact same
way as the inner product argument case so we omit it here. We next show how to extract
a polynomial 𝑝 such that 𝑝(𝑧) = 𝑣, given three statement/witness pair of the next round
x′,w′.

Consider three such statement/witness pairs

x𝑖 = ([𝑟′𝑖]1 , [x′𝑖]2 , [𝛼′𝑖]1 , 𝑧, 𝑣𝑖), w𝑖 = (r′𝑖 , p′𝑖)
for 𝑖 ∈ {1, 2, 3} and let r′𝑖 be a valid commitment key for each. Consider the relations that
are satisfied for each in the field:

©«
𝛼′1
𝛼′2
𝛼′3

ª®¬ = ©«
r′1
⊤p′1

r′2
⊤p′2

r′3
⊤p′3

ª®¬ = ©«
(r0 r1)(p′1 𝑐−1p′1)(r0 r1)(p′2 𝑐−1p′1)(r0 r1)(p′3 𝑐−1p′1)

ª®¬ = ©«
r(p′1 𝑐−1

1 p′1)
r(p′2 𝑐−1

2 p′1)
r(p′3 𝑐−1

3 p′1)
ª®¬ = ©«

𝑐−1
1 1 𝑐1
𝑐−1

2 1 𝑐2
𝑐−1

3 1 𝑐3

ª®¬ ©«
𝛼−1
𝛼
𝛼1

ª®¬
and note that the matrix with the challenges 𝑐1 , 𝑐2 , 𝑐3 is a shifted Vandemonde matrix,
and hence invertible. Thus, there exists an efficiently computable vector d = (𝑑1 , 𝑑2 , 𝑑3)
such that

𝛼 = d⊤ ©«
r(p′1 𝑐−1

1 p′1)
r(p′2 𝑐−1

2 p′1)
r(p′3 𝑐−1

3 p′1)
ª®¬ = d⊤ ©«

rp̃1
rp̃2
rp̃2

ª®¬
and we can extract p by setting p = 𝑑1p̃1+ 𝑑2p̃2+ 𝑑3p̃3. Finally, we show that the extracted
polynomial evaluated at 𝑧 yeilds 𝑣. Note that in the same way we can extract valid open-
ings for the commitments 𝛼−1 and 𝛼1. We claim that these commitments are w.r.t. keys
r1 , r0 respectively. Indeed, assume this is not the case and consider an honest execution
with the extracted commitment p resulting in �̃�−1 , �̃�1 cross term commitments. Then,
viewing the challenge as a formal variable 𝑋

𝑋−1[𝛼−1]1 + [𝛼]1 + 𝑋[𝛼1]1 = 𝑋−1[�̃�−1]1 + [𝛼]1 + 𝑋[�̃�1]1
we have that w.o.p. over the choice of the challenge 𝑐 the honest and claimed cross term
commitments are equal. Having two different openings implies we we break the FindRep
assumption for the key r.

To assert that the opening of the extracted polynomial is indeed 𝑣′ in each case, it is enough
to assert that the openings of the cross-term polynomials are 𝑣0 and 𝑣1. We claim that
w.o.p. the extracted openings p0 and p1 of the commitments 𝛼−1 , 𝛼1 correspond to poly-
nomials that evaluate at 𝑣0 and 𝑣1 respectively at 𝑧. It is enough to note that the values
𝑣0 , 𝑣1 are claimed before the challenge 𝑐 is set. If they are not valid openings for 𝑝0 , 𝑝1,
then, except with negligible probability, the polynomial 𝑝′ = 𝑝0+ 𝑐𝑝1 will not have a valid
opening 𝑣′ = 𝑣0 + 𝑐𝑣1 at 𝑧, contradicting the success of the adversary.

51

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

Updateability and complexity are the same as in the proof of Thm. 5. □

Augmenting with low degree test. The polynomial commitment presented does not guar-
antee that the degree of the polynomial considered is of bounded degree 𝑑. It only guarantees
that its degree is less than 𝑛 where 𝑛 is the size of the commitment key. We next discuss
how to overcome this limitation. The techniques is quite simple. The prover claims that 𝑝
is a polynomial of degree less than 𝑑 < 𝑛. To convince the verifier for this fact, it simply
commits to the polynomial 𝑝′(𝑋) = 𝑋𝑛−𝑑𝑝(𝑋) and shows consistency of the two polynoimals
as follows:

• The verifier sends a random challenge 𝑧.

• The prover gives the values 𝑣′ = 𝑝′(𝑧) and 𝑣 = 𝑝(𝑧).
• The verifier asserts that 𝑣′ = 𝑧𝑛−𝑑𝑣.

• The prover and verifier execute in parallel two protocols for the two claims as described
in Fig. 3.5.

This is enough since either the polynomial relation 𝑝′(𝑋) = 𝑋𝑛−𝑑𝑝(𝑋) holds, or the prover
will be caught lying with overwhelming probability due to the Schwartz–Zippel lemma. Note
that the prover and verifier can reduce the two claims to a single claim by considering the
polynomial 𝑝′(𝑋) + 𝛼𝑝(𝑋) based on a challenge of the verifier.

Supporting hiding commitments. The final addition we need is the support for hiding
commitments. This is crucial in the case of zero knowledge since normally the polynomial
encodes the statement witness we want to hide. The modifications we need are (1) give an
extra element [𝜌]1 for the commitment key, which will be used as a blinding factor and (2)
before giving a proof of an evaluation, we blind the polynomial.

A bit more concretely, the prover commits to 𝑝(𝑋) by giving to the verifier the value [𝛼]1 =
[r]⊤1 p + [𝜌]1𝜏 where 𝜏 is sampled uniformly from the field. Note that this makes the element
[𝛼]1 uniformly distributed over G1 and thus reveals no information about 𝑝(𝑋). Finally,
when the prover claims that 𝑝(𝑣) = 𝑧, it also gives a commitment to a uniformly distributed
polynomial 𝑝′(𝑋) conditioned on 𝑝′(𝑋) = 0. The verifier responds with a challenge 𝑐 and the
prover and verifier proceed in interacting for proving the (non-hiding) claim (𝑝 + 𝑐𝑝′)(𝑣) = 𝑧.
Note that the polynomial 𝑝 is now blinded and therefore no information is leaked about it.

The above procedure can be adapted easily for also checking a degree bound on 𝑑.

3.3.2 Polynomial Commitment Construction

In this section, we describe the whole polynomial commitment construction. We describe the
opening algorithm as an interactive public coin protocol between the prover and the verifier.

52

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

Essentially, the construction is the interactive protocol we presented, where we adapt it to
support degree checking and hiding. The construction is presented in Fig. 3.6. As we did for
the previous constructions, we only consider the case of the 𝒳𝜈,1 distribution.
Theorem 7. The polynomial commitment derived by applying the Fiat-Shamir transform in Pro-
tocol of Fig. 3.6 is a hiding polynomial commitment that is extractable under the 𝒳𝜈,1-FindRep
assumption assuming the security of the Fiat-Shamir transform.

Proof. Correctness follows by inspection of the protocol and completeness of the inter-
active protocol of Fig. 3.5. We next show extractability. By knowledge soundness of the
protocol of Fig. 3.5, we can extract valid witnesses for each of the three claims. That is, we
can extract polynomials 𝑞(𝑋), 𝑞′(𝑋) that are valid commitments to [𝛽]1 , [𝛽′]1 respectively
and satisfy:

𝑞(𝑧) = 𝑣, 𝑞(𝜔) = 𝑣𝑞 , 𝑞′(𝜔) = 𝑣𝑞′
First, we claim that the polynomial 𝑞 is of degree less than 𝑑 with overwhelming proba-
bility. Indeed, note that both polynomials 𝑞, 𝑞′ are of degree at most 𝐷 and that 𝑞′(𝜔) =
𝜔𝐷−𝑑𝑞(𝜔) holds for a random point that is fixed after the polynomials are set. Thus, with
overwhelming probability, this relation holds as a polynomial identity, in which case the
degree of 𝜔 is bounded by 𝐷.

Next, we show that we can extract valid witnesses for the commitments [𝛼]1 , [𝛼′]1. As-
sume we have two valid executions with for two different challenges 𝑐1 , 𝑐2. Then we have
for 𝑖 ∈ {1, 2}:

[𝛽𝑖]1 + [𝜌]1𝜏′′𝑖 = [𝛼]1 + 𝑐𝑖[𝛼′]1
and sincewe have openings for 𝛼, 𝛼′, we can get openings for the commitments [𝛼]1 , [𝛼′]1.
Furthermore, these openings corresponds to polynomials of degree less than 𝑑 unless we
break the binding of the commitment scheme: the coefficients corresponding to higher
degree terms will be zero for the commitments [𝛽𝑖]1, so if this is not the case, we get two
different openings for the same commitments. Note that this also implies that 𝑞(𝑋) =
𝑝(𝑋) + 𝑐𝑝′(𝑋), otherwise we break the binding property of the Pedersen commitment
scheme.

Finally, we need to show that the evaluation of the extracted commitment p corresponding
to [𝛼]1 is indeed 𝑣 at 𝑧. Now, with overwhelming probability over the choice of 𝑐, we
have that 𝑞(𝑧) = 𝑝(𝑧) + 𝑐𝑝′(𝑧). For this relaiton to hold for all 𝑐, it must be the case that
𝑞(𝑧) = 𝑝(𝑧) = 𝑣 and 𝑝′(𝑧) = 0 which concludes the claim.

Finally, we show that the opening protocol is honest verifier zero knowledge. Note that
this is enough for proving hiding since both the commitment itself reveals no information
for 𝑝(𝑋) due to the blinding factor 𝜏 and the evaluation itselfs leaks nothing apart from
the claim 𝑝(𝑧) = 𝑣. We show how to simulate the execution transcript.

First, we sample 𝜔 ← F and uniform polynomials 𝑞′ and 𝑞 conditioned on deg𝑞 < 𝑑,
𝑞(𝜔) = 𝑣𝑞 , 𝑞′(𝜔) = 𝑣𝑞′ and 𝑞(𝑧) = 𝑣. We compute honestly (non-hiding) commitments

53

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

Figure 3.6 A polynomial commitment based on the folding technique. We describe the
opening/verification algorithms as a public coin interactive protocol between a prover
and a verifier. A pair of algorithms can be derived from the protocol using the FS trans-
form.
KeyGen(1𝜆 , 𝐷 = 2𝜈):

gk← 𝒢(1𝜅)
r←𝒳1,𝜈, 𝜌← F
Let r = x for x = (𝑥𝜈 , . . . , 𝑥1)
Output ck = ([r]1 , [𝜌]1 , [x]2)

Com(ck, 𝑝(𝑋)):
Let p ∈ F2𝜈 be the coefficients of 𝑝(𝑋)
Sample 𝜏← F
Output [𝛼]1 = [r]⊤1 p + [𝜌]1𝜏 and aux = 𝜏.

Opening protocol:

x = (ck, 𝛼, 𝑑, 𝑧, 𝑣), w = (p, 𝜏)
Claim: [𝛼]1 = [r]⊤1 p + [𝜌]1𝜏, deg𝑝 < 𝑑 and 𝑝(𝑧) = 𝑣
– 𝒫:

Sample 𝑝′(𝑋) ∈ F[𝑋] uniformly conditioned on deg𝑝′ < 𝑑 and 𝑝′(𝑧) = 0
Sample 𝜏′← F.
Send [𝛼′]1 = [r]⊤1 p′ + [𝜌]1𝜏′ to𝒱

– 𝒱: Sample 𝑐 ← F and send it to 𝒫
– 𝒫:

Set 𝑞(𝑋) = 𝑝(𝑋) + 𝑐𝑝′(𝑋)
Set 𝜏′′ = 𝜏 + 𝑐𝜏′
Set 𝑞′(𝑋) = 𝑋𝐷−𝑑𝑞(𝑋) and [𝛽′]1 = [r]⊤1 q′

Send 𝜏′′, [𝛽′]1 to𝒱
– 𝒱: Sample 𝜔← F and send it to 𝒫
– 𝒫 sends 𝑣𝑞 = 𝑞(𝜔), 𝑣𝑞′ = 𝑞′(𝜔)
– 𝒱 rejects if 𝑣𝑞′ ≠ 𝜔𝐷−𝑑𝑣𝑞 .
– 𝒫 and𝒱 compute commitment [𝛽]1 = [𝛼]1 + 𝑐[𝛼′]1 − [𝜌]1𝜏′′.
– 𝒫 and𝒱 proceed as in Fig. 3.5 in proofs of the claims:

1. [𝑟]1 , [x]2 , [𝛽]1 , 𝑧, 𝑣) ∈ ℒPC
2. [𝑟]1 , [x]2 , [𝛽]1 , 𝜔, 𝑣𝑞) ∈ ℒPC
3. [𝑟]1 , [x]2 , [𝛽′]1 , 𝜔, 𝑣𝑞′) ∈ ℒPC

54

CHAPTER 3. UPDATEABLE IPA WITH LOGARITHMIC VERIFIER

[𝛽]1 , [𝛽′]1 for these values and proceed to an honest execution of the three instances of the
protocol of Fig. 3.5. We then sample 𝑐, 𝜏′′← F and set [𝛼′]1 = 𝑐−1([𝛽]1−[𝛼]1+[𝜌]1𝜏′′). It is
easy to assert that the produced transcript is identically distributed to an honest one: the
values [𝛼′]1 , 𝑐, 𝜏′′′ are uniformly distributed conditioned on [𝛽]1 = [𝛼]1 + 𝑐[𝛼′]1 − [𝜌]1𝜏′′
and the rest of the values are computed honestly. □

55

Chapter 4

Fully-succinct, Publicly Verifiable
Delegation from Constant-Size
Assumptions

This chapter is based on the paper “Fully-succinct, Publicly Verifiable Delegation from
Constant-Size Assumptions” that was presented in TCC 2021, which is joint work with
Alonso González.

In a delegation scheme, a verifier with limited computational resources (a mobile device for
example) wishes to delegate a heavy but still polynomial computation to an untrusted prover.
The prover, with more computational power but still of polynomial time, computes a proof
which the verifier accepts or rejects. Given the limitations of the verifier, the proof should
be as short as possible and the verification process should consume as few computational
resources as possible. Additionally, the construction of the proof should not be much costlier
than performing the computation itself.

A delegation scheme can be easily constructed from a Succinct Non-Interactive Argument of
Knowledge (SNARK) for NP. Schemes like [GGPR13; Gro16] are very appealing in practice
because a proof consists of only a constant number of group elements and verification requires
the evaluation of a constant number of pairings. The downside is that these SNARKs are
based on strong and controversial assumptions such as the knowledge of exponent assumption
or on idealized models such as the random oracle [BR93], the algebraic group model [FKL18]
or the generic group model [Sho97].

Such assumptions are called non-falsifiable because there is no way of efficiently deciding
whether an adversary breaks the assumption or not. In such assumptions, the adversary is

57

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

treated in a non black box way and the assumption argues about how an adversary performs a
computation instead of what computation it cannot perform. Since SNARKs can handle even
NP computations, soundness becomes an essentially non-falsifiable property where one needs
to decide whether an adversary produces a true or false statement without any witness but
only with a very short proof. Gentry and Wichs [GW11] proved that SNARKs for NP are (in
a broad sense) impossible to construct without resorting to non-falsifiable assumptions.

While this impossibility result justifies the use of such assumptions for non-deterministic com-
putation, this is not the case for delegation of computation which only considers deterministic
computation. Indeed, in this case, soundness becomes an efficiently falsifiable statement: de-
termining whether the adversary breaks soundness simply requires to evaluate the delegated
polynomial computation on some input x and check whether it is accepting or rejecting. Actu-
ally, getting delegation from falsifiable assumptions is easy in general: let Π be a SNARK for
NP. For a binary relation ℛ, the assumption “Π is sound for ℛ” is in general non-falsifiable
since checking membership in the corresponding language is hard (assuming P ≠ NP) and the
SNARK proof does not help as shown by [GW11]. On the contrary, for a relation ℛ in P,
the assumption becomes falsifiable since one can efficiently compute ℛ(x). Nevertheless, the
important issue is to consider the quality of the assumption in place since the assumption “the
proof system is sound” is tautological. Ideally, we should rely on simple and well understood
assumptions without sacrificing other desirable properties.

Almost all known constructions that base their soundness on falsifiable assumptions (or even
no assumptions at all) come with some compromises: they (1) are not expressive enough to
capture all polynomial time computation [KPY18; GR19; CCH+19; JKKZ20] (2) are interac-
tive [GKR08; RRR16], (3) are designated verifier [KRR13; KRR14; KP16; BHK17; BKK+18]
or (4) rely on strong (yet falsifiable) assumptions related to obfuscation [CHJV15; KLW15;
BGL+15; ACC+16; CCC+16] or multi-linear maps [PR17].

An exception to this is a construction of Kalai et al. [KPY19] of a delegation scheme for any
poly-time computation based on a newly introduced 𝑞-size assumption in bilinear groups. The
size of the assumption is 𝑞 = log𝑇 and 𝑇 is the time needed to perform the computation.
As for efficiency, the size of the proof is polylog(𝑇) group elements which becomes poly(𝜅) if
𝑇 ≤ 2𝜅.

However, in spite of the recent progress, there’s still a gap in the proof size and verification
with respect to the most efficient known constructions, namely those based on paring based
SNARKs.

Results

In this chapter we consider the question “what are the simplest assumptions that imply publicly
verifiable, non-interactive delegation of computation”? Here “simple” should be interpreted
as falsifiable and well understood. Having practicality in mind as well, we would also want a

58

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

delegation scheme that competes in efficiency with the most efficient constructions to date,
namely those that are based on non-falsifiable assumptions.

The main goal of this chapter is the presentation of a fully-succinct, non-interactive, publicly
verifiable delegation scheme from any 𝑘-Matrix Diffie-Hellman (𝑘-MDDH) assumption for
𝑘 ≥ 2, as for example the decisional linear assumption (DLin) [BBS04]. In the more efficient
setting of asymmetric groups, soundness can be based on the natural translation of DLin where
the challenge is encoded in both groups (the SDLin assumption of [GHR15]). Here, by fully-
succinct we mean that the proof size is linear in the security parameter and verification requires
a linear number of operations (whose complexity depends only on the security parameter) in
the size of the input of the computation. We achieve these goals but with the drawback that
the prover computation and the size of the srs are quadratic in the size of the circuit. We
summarize the main result in the next (informal) theorem.

Theorem 8. (Informal). There exists a non-interactive, publicly verifiable delegation scheme for
any polynomial size circuit 𝒞 with 𝑛-size input that is adaptively sound under any 𝑘-MDDH
assumption for 𝑘 ≥ 2 with the following efficiency properties: the srs size is poly(𝜅) |𝒞|2, prover
complexity is poly(𝜅) |𝒞|2, proof size is poly(𝜅) and verification complexity is poly(𝜅)𝑛.

Our construction is also concretely efficient as far as proof size and verification complexity are
concerned. The proof comprises of 10+8 group elements of an asymmetric bilinear group and
verification requires 𝑛 exponentiations plus 36 evaluations of the pairing function, where 𝑛
is the size of the input. The attractive concrete efficiency is achieved due to the structure-
preserving nature [AFG+16] of our construction. This notion captures that all algorithms
solely perform group operations, namely they are algebraic, and there is no need to encode
cryptographic primitives such as hash functions or pairings as arithmetic circuits, a process
that is very inefficient in practice.

This result demonstrates two things. First, delegation of computation can be based on very
simple, standard assumptions. Second, its structure preserving nature hints to the plausibility
of practically efficient delegation schemes comparable in efficiency with the ones based on
SNARKs, but under simple, standard assumptions. In Table 4.1 we present a comparison of
our delegation of computation construction with other pairing based schemes.

No-Signaling SSB Commitments and Succinct Pairing-based Quasi-Arguments. We
follow and extend the ideas of Paneth and Rothblum [PR17] and Kalai et al. [KPY19] for
constructing delegation schemes for poly-time computations from what they called quasi-
arguments of knowledge with no-signaling extractors. First, we formalize a similar notion for
commitment schemes and show that the somewhere statistically binding (SSB) commitments
of [GHR15; FLPS20] are no-signaling when they also have what we call an “oblivious trapdoor
generator”. Second, we use the no-signaling SSB commitments to construct more efficient
constant-sized quasi-arguments of knowledge for linear and quadratic relations. We achieve
this by combining SSB commitments with the very efficient quasi-adaptive non-interactive zero-
knowledge arguments for linear [JR13; LPJY13; JR14; KW15] and quadratic relations [GHR15;

59

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Language Verification Proof size srs size Assumption
[GGPR13; Gro16] AC 𝑛e + 𝒪(1)p 𝒪(𝜅) 𝒪(|𝒞| 𝜅) Non Falsifiable

[KPY19] (base case) RM 𝑛e + poly(log 𝑑)p 𝒪(𝜅 log 𝑑) 𝑂((𝑛 + 𝑑)𝜅) log 𝑑-Assumption
[GR19] AC 𝑛e + 𝒪(𝑑)p 𝒪(𝑑𝜅) 𝒪(|𝒞|𝜅) 𝑠-Assumption

This work AC 𝑛e + 𝒪(1)p 𝒪(𝜅) 𝑂(|𝒞|2 𝜅) DLin/SDLin

Table 4.1: Comparison between different pairing based delegation schemes and our results. Ver-
ification is given in number exponentiations (e) and pairings (p). 𝑑 is the circuit depth/number
of steps of a computation, 𝑛 the number of inputs, 𝑠 the circuit width/computation space and |𝒞|
the circuit size. AC stands for “Arithmetic Circuit” and RM for “RAM Machine”. For [KPY19] we
only consider the “base case” and not the “bootstrapped” constructions, because bootstrapping
adds a considerable overhead and is thus incomparable in terms of group operations. We stress
out, however, that the srs size of the bootstrapped construction is sublinear in the time of the com-
putation.

Language Verification Proof size CRS size Assumption
[GOS06] AC 𝒪(|𝒞|)p 𝒪(|𝒞| 𝜅) 𝒪(𝜅) SXDH

[GGPR13; Gro16] AC 𝒪(1)p 𝒪(𝜅) 𝒪(|𝒞| 𝜅) Non Falsifiable
[GR19] BC 𝒪(𝑛 + 𝑑)p 𝒪((𝑛 + 𝑑)𝜅) 𝒪(|𝒞| 𝜅) 𝑠-Assumption

[KNYY20] NC¹ 𝒪(|𝒞|)poly(𝜅) 𝑛poly(𝜅) poly(|𝒞| , 𝜅, 2𝑑) DLin
This work BC 𝒪(𝑛)p 𝑛𝑂(𝜅) 𝒪(|𝒞|2 𝜅) DLin/SDLin

Table 4.2: Comparison between different pairing based NIZK schemes and our results. Verifica-
tion is given in number of pairings p. 𝑑 is the circuit depth, 𝑛 the number of (public and secret)
inputs, 𝑠 the circuit width and |𝒞| the circuit size. AC stands for “Arithmetic Circuit”, BC for
“Boolean Circuit” and NC¹ for constant depth boolean circuits.

DGP+19]. To this aim, we also show that the QA-NIZK arguments can be easily modified to
have no-signaling extractors under standard assumptions.

Applications to NIZK. Our construction can be turned into a NIZK argument for NP of size
𝑛 + 𝒪(1) group elements -namely 𝒪(𝑛𝜅) proof size- under the same assumptions where 𝑛 is
the number of public and secret inputs of the circuit. In table 4.2 we provide a comparison
of our NIZK construction and the literature. Using standard techniques, the argument implies
compact NIZK for NP with proof size 𝒪(𝑛) + poly(𝜅). That is, the size of the proof is
proportional to the size of the input and the security parameter only gives an additive overhead.
In comparison, the state of the art is 𝑂(|𝒞|) + poly(𝜅) for poly-sized boolean circuits and
𝒪(𝑛) + poly(𝜅) for log-depth boolean circuits [KNYY19; KNYY20]. We note that a similar
result can be obtained by [KPY19], albeit with a stronger assumption.

Our argument can be also used to construct zk-SNARKs from quantitatively weaker assump-
tions than the state of the art. Indeed, the strongest assumption used in zk-SNARKs such
as [GGPR13; Gro16] is a knowledge assumption which states that an adversary computing
some elements of a bilinear group, satisfying a particular relation, must know their discrete
logarithms.¹ Such assumption is used to extract an assignment to each of the circuit wires.

¹Actually, the adversary must know a representation of these values as a linear combination of a set of

60

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

The “size” of such assumption is proportional to the number of extracted values, which in this
case is the size of the circuit. Since our argument only requires the reduction to know the
input of the circuit, we can rely on a knowledge assumption only for extracting the input. As
a consequence the size of the assumption is drastically shortened. Since these assumptions are
stronger as the size of the assumption increases and given that we lack good understanding of
them, it is always safer to rely on shorter assumptions. Also, weaker assumptions translates
to better concrete efficiency by using smaller security parameters.²

4.1 Technical Overview

To construct the delegation scheme we follow a commit-and-prove approach, which means
that we first commit to the witness (the satisfying assignment of wires in a circuit) and then
show that this witness satisfies some relation. We use somewhere statistically binding (SSB)
commitments as those used in [GHR15; GR16; FLPS20] and show that they satisfy a no-
signaling extraction property. Then, we do the same for the so called quasi-adaptive NIZK
arguments for linear spaces [JR13; LPJY13; JR14; KW15] and for quadratic relations [GHR15;
DGP+19]. From these primitives we can construct delegation for bounded-space computa-
tions/bounded width circuits with proof-size independent of the depth of the computation by
following the techniques of [PR17; KPY19]. To get a succinct proof-size, in addition to the
“depth compression”, we must also perform a “width compression”. To this end, we use ideas
from the delegation scheme for bounded depth computations of González and Ráfols [GR19]
and remove the necessity of a 𝑞-assumption to rely solely on constant size assumptions. To
combine both “compressions” efficiently we exploit the fact that [GR19] is structure preserving
and the verifier is a bounded width circuit. In the next sections we present these techniques.

4.1.1 No-Signaling Somewhere Statistically Binding Commitments

Somewhere statistically binding (SSB) hashing/commitments³ were introduced by Hubacek
and Wichs [HW15] and then improved by [OPWW15], and have been used for constructing
efficient NIZK proofs [GHR15; GR16] as well as ring signatures [BDH+19].

An SSB commitment scheme is a generalization of dual mode commitments [GS08] where the
commitment key can be sampled from many computationally indistinguishable distributions,
each of which is making the commitments statistically binding for a number of 𝐾 coordinates
of the committed value. That is, when committing to a vector m = (m1 , . . . ,m𝑛) with a

group elements that she receives as input.
²We note, however, that in the case of non-falsifiable assumptions it not clear how an appropriate security

parameter should be chosen.
³Through this paper we will refer to “commitments” while technically they are “hashes”. We do so be-

cause in the context of NIZK proofs, it is traditional to commit to the witness and then prove that the com-
mitted value satisfy some relation. However, since we are less interested in zero-knowledge, the randomness
of such commitments is 0 (or fixed/inexistent) and we end up with hashes.

61

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

commitment key ck𝑆 associated with a set 𝑆 ⊆ [𝑛] of size at most 𝐾, no (even computationally
unbounded) adversary can compute a commitment c and two valid openings m,m′ such that
for some 𝑖 ∈ 𝑆 it holds that m𝑖 ≠ m′𝑖, except with negligible probability. Importantly, the size
of the commitment c should be independent of 𝑛 but may depend on the value 𝐾.

Known SSB commitments constructions are also extractable⁴, that is, there exists an efficient
algorithm that has some trapdoor information associated with ck𝑆 and can efficiently extract
from a commitment c a valid opening (m𝑖)𝑖∈𝑆. Note that the notion of a “valid opening” is
well-defined due to the statistical binding property on the set 𝑆.

We argue that the SSB extractor has many similarities with the no-signaling extractors of [PR17;
KPY19]. First, we briefly recall what a no-signaling extractor is in the context of quasi argu-
ments of knowledge. A quasi argument is a proof system for a relation that defines some local
constraints on the statement/witness pair. The requirement is that there exists a no signaling
extractor that allows extracting a part of the witness from a verifying proof that is locally
correct. Furthermore, each part of the extracted local witness can be in a sense extracted
independently. This is formalized by requiring that extracting local witness w𝑆 for a set 𝑆 and
restricting it to the variables 𝑆′ ⊆ 𝑆 is computationally indistinguishable from extracting w𝑆′
for the set 𝑆′. As we shall see shortly, this property is extremely useful when constructing
delegation schemes.

In the case of SSB commitments, extractability of the local opening is just a local soundness
guarantee. Additionally, indistinguishability of the commitment keys is a weaker form of the
no-signaling property. Indeed, a no-signaling extractor must produce commitment keys which
are indistinguishable for the various possible extractable sets. Otherwise a distinguisher for
sets 𝑆, 𝑆′ can be used for wining in the no-signaling game even without the extracted value.
Nevertheless, this alone does not satisfy the no-signaling property: some information about the
positions where the srs is programmed to extract might be revealed by (parts of) the extracted
local openings.

We strengthen the indistinguishability property of the distributions of the commitment keys
of SSB commitments to give them a no-signaling flavor. Roughly speaking, we require that
the distributions of the commitment keys are computationally indistinguishable even if the
adversary has access to local openings associated with a set 𝑆′ of committed values. These
local openings trivially reveal information about the set 𝑆′ but we require that they do not
leak information about the values outside of 𝑆′. That is, for any sets 𝑆′ ⊆ 𝑆 of size at most
𝐾, the commitment keys ck𝑆 , ck𝑆′ are computationally indistinguishable even if we allow the
distinguisher access to local openings of 𝑆′.

Remark (Connection with PIR). Somewhere statistically binding commitments/hashing
is closely relatedwith single server Private Information Retrieval Schemes (PIR) when the

⁴In the context of bilinear groups, we can consider 𝑓 -extraction where one only extracts 𝑓 applied to the
witness. In particular, it is usual to consider 𝑓 the (one-way) function that maps elements in F to one of the
base groups G1 or G2. This is the notion of extractability we use in this work and is enough to obtain our
results.

62

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

SSB commitment is also extractable. Indeed, we can think of the commitment key for an
index 𝑖 of the SSB as a PIR query and the commitment/hash as the PIR answer. Then, one
can decode the PIR query using the trapdoor associated with the commitment key. The
SSB commitments we use are different from PIRs in three ways: (1) we do not extract the
PIR answers, but we 𝑓 -extract, specifically we extract encodings of messages in a group
but not their discrete logarithms, (2) we directly use SSBs with locality greater than one
instead of making parallel PIR queries to improve concrete efficiency and (3) the size of
the commitment key is proportional to the size of the committed values, while in PIRs the
query should be small compared to the database size. Furthermore, we exploit in a non-
black box way the properties as well as the algebraic structure of the SSB commitments to
compose them with other protocols, such as group based quasi-adaptive non-interactive
zero knowledge arguments.

4.1.1.1 SSB Commitments with Oblivious Trapdoor Generation.

We define a stronger notion for SSB commitment schemes, oblivious trapdoor generation,
which implies the no-signaling property. This notion is easier to work with in our particular
constructions.

Intuitively, this notion captures that there exists a different, oblivious key generation algorithm
that can generate the commitment key for 𝑆 and a trapdoor for a subset 𝑆′ ⊆ 𝑆 obliviously
of 𝑆 \ 𝑆′ for any subset 𝑆′ of the larger set 𝑆 of binding coordinates. More concretely, the
oblivious key generation algorithm takes as input a commitment key ck𝑆 binding at 𝑆 and
the description of a subset 𝑆′ ⊆ 𝑆 and outputs an identically distributed key together with a
trapdoor for extracting values in the small set 𝑆′. We emphasize that this algorithm does not
take as input neither the description of 𝑆 nor the trapdoor associated with it. Intuitively, the
key generation algorithm is oblivious of 𝑆 \ 𝑆′ (it might even be that 𝑆 \ 𝑆′ = ∅) due to the
indistinguishability of commitment keys associated with different sets, in this case 𝑆 and 𝑆′.

This property implies no-signaling commitments. Indeed, this follows easily since (1) by the
index set hiding property the commitment key itself does not reveal any information about
𝑆 \ 𝑆′ and (2) we can use the oblivious key generation algorithm to create a trapdoor for
extracting the smaller set without skewing the distribution of the commitment key. The latter
property means essentially that we are given an oracle to extract the smaller set (by computing
the trapdoor for an identically distributed key) which is exactly what the no-signaling property
captures.

4.1.1.2 Constructing Oblivious SSB Commitments.

We next describe how to construct efficient SSB commitments with oblivious trapdoor gener-
ator. A natural way to construct oblivious SSB commitment with locality parameter 𝐾 is to
concatenate 𝐾 SSB commitments with locality parameter 1. Consider a set 𝑆 = {𝑠1 , . . . , 𝑠𝑡}
for some 𝑡 ≤ 𝐾. We can construct a commitment key associated with 𝑆 by computing 𝑡
commitment keys/trapdoor pairs (ck1 , 𝜏1), . . . , (ck𝑡 , 𝜏𝑡) for sets {𝑠1}, . . . , {𝑠𝑡}, complement-

63

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

ing with 𝐾 − 𝑡 keys for ∅ if necessary. To commit to some m ∈ ℳ𝑛, whereℳ is the message
space of the commitment, one simply computes c1 = Comck1(m), . . . , c𝐾 = Comck𝐾 (m). Ex-
traction of each m𝑠𝑖 is done using c𝑠𝑖 and the trapdoor 𝜏𝑠𝑖 , independently of the others. The
oblivious extractor on input the commitment keys for some unknown 𝑆 and the description of
𝑆′ ⊆ 𝑆 just re-samples the commitment keys for 𝑆′.⁵ Since it doesn’t matter if the trapdoors
for positions 𝑖 ∉ 𝑆′ are not known, this trivial extractor can obliviously generate the trapdoor
{𝜏𝑖 : 𝑖 ∈ 𝑆′}.

While this generic construction is enough, we can construct more efficient ones if we con-
sider specific instantiations. More specifically, as we present next, we can have more efficient
instantiations (roughly half commitment size compared to the generic one) in the case of
commitments derived from the Pedersen commitment scheme.

Efficient SSB Commitments. We next present an oblivious SSB construction based on the
Pedersen commitment scheme. This construction was implicit in [GHR15] and later generalized
in [FLPS20]. Later we will see that it also satisfies the stronger notion of oblivious trapdoor
generation.

Let G be a group of size 𝑝 and F = Z𝑝. For message space F𝑑, locality parameter 𝐾 ∈ N and
a subset 𝑆 ⊆ [𝑑] of size 𝑡 ≤ 𝐾, the commitment key is defined as G = (G𝑆 |G𝑆)P where

G𝑆 ← F(𝐾+1)×𝑡 , G0 ← F(𝐾+1)×(𝐾+1−𝑡) , ⁶ Γ← F(𝐾+1−𝑡)×(𝑑−𝑡) , G𝑆 = G0Γ.

Matrix P ∈ {0, 1}𝑑×𝑑 is a permutation matrix associated to 𝑆 such that Pe𝑠𝑖 = e𝑖, for 𝑖 ≤ 𝑡
and e𝑖 the 𝑖-th vector of the canonical basis. A commitment to x ∈ F𝑑 is computed as

[c] = [G]x = [G𝑆 |G𝑆]Px = [G𝑆]x𝑆 + [G𝑆]x𝑆 .
Note that the columns of G𝑆 are linearly independent from the columns of G𝑆 with over-
whelming probability, since Im(G𝑆) ⊆ Im(G0) and (G𝑆 |G0) is a basis of F𝐾+1 w.o.p. since this
corresponds to a uniform matrix of dimensions 𝐾 + 1 × 𝐾 + 1.

This distribution of commitment keys implies that the parts of the input indexed by 𝑆 go to
the space spanned by G𝑆 of dimension 𝑡, while the rest is mapped to the space spanned by G0
of dimension 𝐾 + 1− 𝑡. Since Rank(G𝑆) = 𝑡 with overwhelming probability, all the information
of x𝑆 ∈ F𝑡𝑝 can be retrieved from c. Even more, there exists an efficiently computable trapdoor
T𝑆 ∈ F(𝐾+1)×𝑡 such that

T⊤𝑆G𝑆 = I𝑡×𝑡 , T⊤𝑆G𝑆 = 0𝑡×(𝑑−𝑡) ,

⁵Actually, the oblivious key generation needs to know which of the commitments keys ck1 , . . . , ck𝐾 are
perfectly binding for 𝑠′ ∈ 𝑆′. Nevertheless, it should be still oblivious of whether the rest of commitment
keys are binding or not. See Section 4.3.2 for more details.

⁶It is not always the case that thismatrix is uniform. The actual property needed is that thismatrix satisfies
some hardness assumption. Specifically, the index set hiding property reduces to the 𝒟-MDDH assumption
where 𝒟 is the distributions from which we sample G0. When working with symmetric groups, we instan-
tiate using the DLin assumption. For the sake of simplicity we consider the uniform case in the technical
overview.

64

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

and hence
T⊤𝑆 [c] = T⊤𝑆 [Gx] = T⊤𝑆 [G𝑆x𝑆 +G𝑆x𝑆] = [x𝑆].

To compute T𝑆, it is enough to solve the linear system T⊤𝑆 (G𝑆 | G0) = (I𝑆 | 0) which admits
a solution since (G𝑆 | G0) is a basis of F𝐾+1 with overwhelming probability.

Note that this shows also that the commitment is statistically binding in 𝑆. The indistin-
guishability of commitment keys can be shown with a tight reduction to the DDH assumption
as in [FLPS20].

Oblivious Trapdoor Generation. One of the main technical contributions of this work is
an oblivious trapdoor generator for this commitment scheme, which in turns implies that it is
no-signaling. Recall that the property requires that there exists an efficient algorithm, called
the oblivious key generation algorithm, that receives as input the description of a set 𝑆′ of size
𝑡′ ≤ 𝐾 and a commitment key [G] sampled for being binding at some unknown 𝑆 ⊇ 𝑆′. The
algorithm computes a new commitment key [H] with the following guarantees:

1. it is statistically close to [G] and

2. we also obtain a trapdoor T𝑆′ that allows us to extract local openings for the small set
𝑆′.

Since we know that columns in 𝑆′ are uniformly distributed, we could attempt to sample a
uniform matrix H𝑆′ ← F(𝐾+1)×𝑡′ and solve the equation T⊤𝑆′H𝑆′ = I𝑡′×𝑡′ for some T𝑆′. However,
since we don’t know the distribution of [G𝑆′], the only hope seems to be to define [H𝑆′] = [G𝑆′]
and try to find some T𝑆′ such that T⊤𝑆′G𝑆′ = 0𝑡′×(𝑑−𝑡′). Unfortunately, this amounts to finding
elements in the kernel of [G𝑆′]⊤ which is in general a computationally hard problem [MRV16].

Instead we make the following observation. Regardless of the distribution of the columns in
𝑆 \ 𝑆′, the 𝑡′ lower rows of G𝑆 can be always written as a random linear combination of the
first 𝐾 + 1 − 𝑡′ rows. That is

G𝑆′ =
(

A
RA

)
, where A ∈ F𝐾+1−𝑡′×𝑑−𝑡′ and R← F𝑡′×𝐾+1−𝑡′ .

In this case, if we know the matrix R in the field, it is possible to compute elements in the
kernel of G𝑆′ by setting

T𝑆′ =
(−R⊤C

C

)
, for any C ∈ F𝑡′×𝑡′ .

If additionally, we choose some C that satisfies T⊤𝑆′H𝑆′ = I𝑡′×𝑡′ we have computed a trapdoor
for 𝑆′. This yields a way to compute the rest of the columns: discard the lower 𝑡′ rows
of G𝑆, sample a uniform matrix R as above and complete the last rows with the elements
R[A]. Then, using R, H𝑆′ (which are known in the field) find some C that satisfies the linear
equations and use it to define the trapdoor T′𝑆.

65

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Let’s see in more detail why the previous observation holds. Consider the matrix G0 ∈
F(𝐾+1)×(𝐾+1−𝑡) and note that the upper part G0 is a uniformly distributed matrix with more rows
than columns; hence RG0, for R ← F𝑡′×(𝐾+1−𝑡′), is uniformly distributed. This is also valid
for all non-binding coordinates since G𝑆 = G0Γ and then the lower rows follow distribution
RG𝑆. Next, consider the columns corresponding to the (unknown) binding coordinates 𝑆 \ 𝑆′.
The same argument holds: for some uniform R′G𝑆\𝑆′ is uniform when R′ ← F𝑡′×(𝐾+1−𝑡′). It
remains to show that using the same randomness for both column sets, i.e. setting R = R′,
does not alter the distribution of the commitment key. Indeed, with overwhelming probability,
the columns of G0 ∈ F(𝐾+1−𝑡′)×(𝐾+1−𝑡) and of G𝑆\𝑆′ ∈ F(𝐾+1−𝑡′)×(𝑡−𝑡′) form a basis of F𝐾+1−𝑡′,
which means that the matrix R⊤ can be decomposed into two independent components: a
random element in Im(G⊥𝑆\𝑆′) and another in Im(G⊥0). This shows that

RG0 = R2(G⊥𝑆\𝑆′)⊤G0 , RG𝑆\𝑆′ = R1(G⊥0)⊤G𝑆\𝑆′

are independent and therefore
(

G𝑆\𝑆′ G0Γ
RG𝑆\𝑆′ RG0Γ

)
is correctly distributed.

4.1.2 Pairing-based Quasi-Arguments

Paneth and Rothblum [PR17] and then Kalai et al. [KPY19] used a weakened version of
an argument of knowledge called quasi-argument, as an intermediate step for obtaining a
delegation scheme. Quasi arguments are defined for languages that can be expressed as a
set of local constraints. Roughly speaking, this means that a witness w for membership of
a statement x in a language can be decomposed in parts, namely w = (w1 , . . . ,w𝑛), and for
each subset 𝑆 ⊆ [𝑛], the partial witness w𝑆 satisfies some local relations, that is, a predicate
ℛ(x,w𝑆) holds. For example, in the case of a CNF formula of 𝑛 variables, the witness is an
accepting assignment of the formula and a local constraint with respect to some set 𝑆 captures
that every clause that only has variables w𝑖 ,w𝑗 ,w𝑘 for 𝑖 , 𝑗 , 𝑘 ∈ 𝑆 is satisfied. Note that it can
be the case that even unsatisfiable formulas can satisfy all local constraints for families of sets
of small size (yet, no global satisfying assignment exists).

Unlike an argument of knowledge, a quasi-argument has only local extraction, meaning that
only a small part of the witness of size at most 𝐾, the locality parameter, is extracted. This is
formalized by means of an extractor which on input a set 𝑆 ⊆ [𝑛] of size at most 𝐾, where 𝑛
is the size of the witness, programs an srs so that it can later extract positions of the witness
defined by 𝑆. Central to quasi-arguments is the notion of no-signaling local extraction which
is aimed to capture a strong local soundness guarantee.

Local soundness requires that the extracted local witness is consistent with the relation and
doesn’t lead to a local contradiction, that is, it satisfies the local constraints associated to
some set 𝑆. The no-signaling requirement is defined for any two sets 𝑆, 𝑆′ where 𝑆′ ⊆ 𝑆 and
of size at most 𝐾. It states that the result of programming extraction for 𝑆 and then output
only the extracted value for 𝑆′, should be indistinguishable from the result of programming

66

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

extraction for 𝑆′ and output the extracted value for 𝑆′. Intuitively, this strengthens locality by
requiring that the small parts of the local witness are extracted independently.

We next outline the construction of pairing-based quasi-arguments for two specific languages
of interest, satisfiability of linear and quadratic relations on committed values. For ease of
presentation we do so for symmetric bilinear groups but we stress out that we also translate
these to the more efficient setting of asymmetric bilinear groups. We will later rely on these
quasi arguments to construct a delegation scheme for polynomial sized arithmetic circuits but
we emphasize that these constructions are of independent interest; they capture a form of
“succinct” aggregation of relations and -importantly- they do so under standard falsifiable
assumptions. While full knowledge soundness is not achieved, the weakened notion of no-
signaling extraction might be enough for some applications. Thus, we choose to present them
in full generality.

Before presenting the quasi arguments, we briefly recall a few constructions on which we build
on: the QA-NIZK construction for membership in linear spaces of [KW15] and the knowledge
transfer arguments introduced in [GR19] which allow to construct QA-NIZK under falsifiable
assumptions in some more restricted setting.

Quasi-Adaptive NIZK for membership in linear spaces. Quasi-Adaptive NIZK (QA-NIZK)⁷
arguments are NIZK arguments where the srs is allowed to depend on the specific language
for which proofs have to be generated [JR13]. We are interested in the specific language of
membership in linear spaces. Specifically, given a matrix M and a description of a group gk,
we consider the language of vectors of group elements that lie in the image of M, that is,

ℒgk,M = {[x] | ∃w s.t. x = Mw}

In the quasi-adaptive model, we allow the reference string to depend on gk and M, but an
adversary can choose the statement [x] adaptively.

There are very efficient constructions in this setting. We briefly describe the construction of
Kiltz and Wee [KW15]. First we consider the designated verifier case. Let M be an ℓ × 𝑛
matrix. The construction is essentially a hash proof system [CS02]. The srs contains the
projection [B] = [M⊤K] for a random secret key K ∈ Fℓ×𝑘 . To prove a statement [x] = [M]w,
the prover sends [𝜋𝜋𝜋] = w⊤[B] and the verifier asserts that [𝜋𝜋𝜋] = [x]⊤K. Now it is easy to see
that this simple protocol is complete. Indeed

𝜋𝜋𝜋 = w⊤[B] = w⊤M⊤K = x⊤K

For soundness, roughly speaking, the value x⊤K is random for x that does not belong to the
image of M conditioned on B. Thus, a cheating (even unbounded) prover has only negligible
probability of producing a verifying proof for elements not in the image of M.

⁷In this work we do not need the zero knowledge property so we omit it from the discussion.

67

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

To make the scheme publicly verifiable, groups equipped with a bilinear map are employed. To
enable the verifier to perform the verification test without knowing the secret K, we also add
to the srs the value [C] = [KA], where A is a matrix that satisfies some hardness condition.
Now, the verifier can test

𝑒 ([𝜋𝜋𝜋], [A]) = 𝑒
([x⊤], [C]) .

Note that this corresponds to multiplying the verification equation of the designated verifier
case from the right with A. Now, if

(1) the designated verifier relation does not hold, namely, 𝜋𝜋𝜋 ≠ x⊤K and

(2) the proof verifies, namely 𝜋𝜋𝜋A = x⊤KA,

then [𝜋𝜋𝜋] − [x⊤]K is a non-trivial element in the co-kernel of [A]. Thus, the publicly verifiable
scheme is sound if we additionally assume that A is sampled by a distribution 𝒟 such that
the 𝒟-Kernel Diffie-Hellman assumption holds.

Note that if M spans the entire linear space, then the language is trivial. In this case, only
knowledge soundness is a meaningful property. However, we do not know whether knowledge
soundness of this construction can be proven under falsifiable assumptions or not.

Knowledge Transfer Arguments. To achieve succinct arguments, in principle, one needs
to use shrinking commitments. When trying to use such commitments with QA-NIZK such
as [KW15], the aforementioned “triviality” problem arises and it seems like one has to resort
to non-falsifiable assumptions or the generic group model. Motivated by the problem of
constructing delegation schemes under falsifiable assumptions and in order to overcome the
above issue, [GR19] relax the knowledge soundness property.

When considering delegation using the natural approach of (deterministically) committing
to the wires of the circuit, one can observe that full knowledge soundness seems to be an
unnecessarily strong requirement. Indeed, given the input x of the circuit, one can compute
(or verify) these commitments efficiently by evaluating the circuit. This means intuitively, that
we already know how a “correct” opening of the commitments looks like in the soundness
security reduction. [GR19] exploits this fact and manages to relax the knowledge soundness
requirement by considering statements of the form “if commitment [c] opens to w, then
commitment [d] opens to 𝑓 (w)” for a publicly known function 𝑓 . As we shall see later, they
show that this notion of soundness is enough to construct delegation for low-depth circuits.
They also construct two knowledge transfer arguments for linear and quadratic relations under
falsifiable assumptions. More concretely, they consider statements of the form

• “if [c] opens to Mw, then [d] opens to Nw for some publicly known M,N, and

• “if [c1] opens to w1 and [c2] opens to w2, then [d] opens to w1 ◦ w2.

In the soundness definition, the adversary is required to output the valid opening along with
the statement/proof pair. We emphasize that this is only part of the soundness definition

68

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

and in the protocol execution the prover does not have to output the valid opening. Consider
for example the first case for linear relations. An adversary wins if it manages to output a
statement [c], [d] with an accepting proof and w such that [c] = [M]w but [d] ≠ [N]w. Such
statements essentially give the guarantee that some a priori knowledge about a commitment
is “correctly” transferred to another commitment.

For the former construction, namely linear relations, they use the [KW15] construction where
they define M as a two block matrix where the upper part corresponds to [c] and the lower to
[d]. Now, using [KW15], the prover simply needs to convince the verifier that[

c
d

]
=

[
M
N

]
w.

They show that this construction is knowledge transfer sound if the upper matrix M is sampled
from a distribution 𝒟 for which the 𝒟-MDDH assumption holds.

For proving the quadratic relations, they do a different analysis of standard techniques used
for the construction of pairing-based succinct arguments that exploit the properties of the
Lagrange basis.

They also modify these constructions to be compatible with the more efficient setting of
asymmetric bilinear groups, under the natural modifications of the required assumption for
asymmetric setting.

4.1.2.1 Oblivious Trapdoor Generation for Quasi-Arguments

Similar to the case of no-signaling SSB commitments we define a stronger and easier to work
with (in our context) notion that implies the no-signaling property of quasi arguments, oblivious
trapdoor generation.

We require that there exists an oblivious key generation algorithm that takes as input (1)
an srs𝑆 that allows extraction for a set 𝑆, and (2) the description of a subset 𝑆′ ⊆ 𝑆, and
generates a srs𝑆′ for some set 𝑆′ and a trapdoor⁸ for extracting local witnesses associated to
the set 𝑆′ obliviously of 𝑆 \𝑆′. We emphasize that the oblivious trapdoor generation algorithm
knows neither the description of 𝑆 nor any information about the trapdoor associated with it.
We require that the new srs is statistically close to the srs𝑆 given as input. The fact that this
property implies no-signaling commitments is identical to the case of SSB commitments.

4.1.2.2 Quasi-Arguments of Membership in a Linear Space

We define a quasi-argument of knowledge of some vector [x] ∈ Gℓ belonging to the image of a
matrix [U] ∈ Gℓ×𝑛, where x is committed using an SSB commitment. Consider a commitment

⁸We modify the quasi-argument definition of [KPY19] to admit a fixed extractor algorithm that takes as
input the statement-proof pair of the adversary, and additionally some secret state produced during the srs
generation, -the trapdoor- and extracts the local witness.

69

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

[c] that is statistically binding on the set 𝑆. We show that there exists a local and no-signaling
extractor which, given some 𝑆 ⊆ [𝑛] of size 𝑡 ≤ 𝐾, extracts [x𝑆] ∈ Im([U𝑆]), where x𝑆 ∈ F𝑡
is the vector whose entries are 𝑥𝑖 and U𝑆 ∈ F𝑡×𝑛 is the matrix whose rows are the rows of U
indexed by 𝑖, where 𝑖 ranges over 𝑆 in some fixed order. A local constraint [x𝑆] associated
with the set 𝑆 can be interpreted as satisfying two properties:

1. [x𝑆] is consistent with the commitment [c], namely the (unique) 𝑆-opening of [c] is x𝑆,
and

2. [x𝑆] is in the image of [U𝑆].

We use the Kiltz and Wee argument of membership in linear spaces [KW15] to construct a
quasi argument for linear relations. Details follow.

The argument. Our construction is Kiltz and Wee linear membership argument [KW15] for the
matrix [GU], where G is an SSB commitment key with locality parameter 𝐾. For completeness,
we describe the protocol for this specific matrix. We note that we present the scheme with
proof size 𝑘 + 1 of [KW15], where 𝑘 is a parameter of the scheme defined by the underlying
assumption, but our construction is also sound for the more efficient instantiation of size 𝑘.
In any case, we emphasize that the parameter is a small constant (𝑘 = 2).

Let’s recall the construction for the matrix M = GU. The srs contains [B] = [U⊤G⊤K] and
[C] = [KA] for some random hash key K and A drawn from some distribution satisfying a
kernel assumption. A proof is computed as [𝜋𝜋𝜋] = w⊤[B], and verification is done by checking
if 𝑒 ([𝜋], [A]) = 𝑒 ([c⊤], [C]).

Local and No-Signaling extraction. Our strategy to prove local soundness is to show that,
apart from extracting [x𝑆] from [c], we are also able to produce a verifying proof [𝜋𝜋𝜋†] that
[x𝑆] ∈ Im(U𝑆). More concretely, on input srs𝑆 = ([A†], [B†], [C†]) for membership in the linear
space of U𝑆, we can construct another srs that is statistically close to the quasi argument srs
for U and, more importantly, we can extract a local opening [x𝑆] and a proof [𝜋𝜋𝜋]† satisfying
the verification equation for srs𝑆.

We embed the public parameters [A†], [B†], [C†] of the local linear space argument for U𝑆 in
the quasi argument parameters. Although the secret hash key K† of the local linear argument
is statistically hidden, we can still pick a random hash key for all the coordinates by picking
another secret key and implicitly define the full secret key as some composition of the two
keys. Concretely, given the trapdoor T𝑆 for locally opening SSB commitments we implicitly
define K = T𝑆K† +R, where R is the additional key, so that the proofs for

c = GP
(
x𝑆
x𝑆

)
= G𝑆x𝑆 +G𝑆x𝑆

are of the form

𝜋𝜋𝜋 = c⊤K = (G𝑆x𝑆 +G𝑆x𝑆)⊤(T𝑆K† +R) = x⊤𝑆K† + c⊤R.

70

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

In this way, a proof for the local argument can be retrieved as [𝜋𝜋𝜋]† = [𝜋𝜋𝜋] − [c⊤]R. This
equivalent way of sampling K allows to compute the srs of the larger linear argument using
only [A†], [B†], [C†] and T𝑆 ,R. Indeed, we can define [A] = [A†], [B] = [B†] + [U⊤G⊤]R
and [C] = T𝑆[C†] +R[A†].

We also show that the srs is indistinguishable for different sets and that there is an oblivious
trapdoor generation strategy, and hence we also have a no-signaling extraction strategy. The
indistinguishability of the srs follows directly from the indistinguishability of SSB commitment
keys; it is enough to note that only the commitment key depends on 𝑆 and all other values can
be efficiently computed given only the commitment key⁹. For oblivious trapdoor generation,
we use the fact that we can sample an identically distributed commitment key along with a
trapdoor -this follows by the oblivious key generation of the commitment scheme- and then
we argue in the same way as before: given the commitment key we can sample the rest of srs
honestly.

Extension to Knowledge Transfer, Bilateral Spaces and Sum Arguments. We also con-
struct variations of the above protocol, specifically a knowledge transfer version based on [GR19]
and two construction suitable for asymmetric bilinear groups.

First we consider the knowledge transfer construction. We first describe the local constraints.
Consider two matrices [M], [N], and two commitment keys [G], [H] statistically binding at
𝑆. The statement consists of two commitments [c], [d]. For the local extraction guarantee
w.r.t. set 𝑆 we require that, given an accepting proof 𝜋 and an opening w, we can extract
values [x𝑆], [y𝑆] such that

• [x𝑆], [y𝑆] are the unique 𝑆-openings of [c], [d] w.r.t. commitment keys G,H respectively,
and

• if [x𝑆] = [M𝑆]w, then [y𝑆] = [N𝑆]w.

The construction and the analysis are identical to the previous case. We use the [KW15]
construction for the matrix with upper part GM and lower part HN. The only difference in
the analysis is on the local extraction case. We argue that we can extract an accepting proof
for an srs for the language of linear knowledge transfer for the matrices M𝑆 ,N𝑆 and, thus, we
also require that theℳ⊤𝑆 -MDDH assumption holds for every 𝑆, whereℳ𝑆 is the distribution
from which we sample M𝑆.

Finally, we also consider constructions in asymmetric bilinear groups. A variant of the linear
subspace QA-NIZK argument given in [GHR15], and extended to knowledge transfer arguments
in [GR19], considers the statement as well as the matrix split between the two groups. We
call this argument a linear argument for bilateral spaces. We also consider a particular type of
argument for bilateral linear spaces defined in [GHR15] and called “sum in subspace argument”.

⁹Here, we assume the distribution 𝒰 that outputs the matrix [U] is witness samplable, meaning that
during sampling, we can also sample the discrete logarithms of [U] which is usually the case. In this work,
we only consider such distributions.

71

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

In this case, the statement is [x]1 , [y]2 and soundness captures that x+ y ∈ Im(M+N) given
[M]1 , [N]2 in the two different source groups. We construct quasi arguments for all these
variants with knowledge transfer soundness. Luckily, the constructions as well as the security
proofs are minor modifications of the original argument.

4.1.2.3 Quasi-Argument of Hadamard Products

The next quasi argument construction shows that some vector c is the Hadamard product
of two vectors a, b, namely c = a ◦ b. We can naturally define the local constraints here as
c𝑆 = a𝑆 ◦ b𝑆 for every set 𝑆 ⊆ [𝑛], where 𝑛 is the dimension of the vectors. As in the linear
case, we care about committed values, that is, the vectors a, b, c are committed and we claim
that the openings satisfy the claimed relation.

Our starting point is the “bit-string” argument of [GHR15]. We observe that it is implicitly
a quasi-argument with locality parameter 𝐾 = 1 for the set of equations 𝑏𝑖(𝑏𝑖 − 1) = 0 for
all 𝑖 ∈ [𝑛]. Next we describe this construction and then we show it indeed satisfies the no-
signaling local soundness property. It will be convenient to directly work with equations of the
form 𝑥𝑖𝑦𝑖 = 𝑧𝑖 instead of the bit-string argument equations.

The common reference string in [GHR15] contains what we interpret as three SSB commitment
keys [G], [H], [F] with locality parameter 𝐾 = 1. It additionally includes the product [G⊗H].
The prover gives three commitments [a], [b], [c] w.r.t. G,H,F and claims that the openings
satisfy the Hadamard relation. We first note that it is easy to construct an argument for
a related language. Consider the elements G ⊗ H as a commitment key. The prover can
give a commitment to the Kronecker product z = a ⊗ b by computing [t] = [G ⊗ H]z. The
verifier can then use the pairing to verify the Kronecker product relation, namely it tests that
𝑒 ([c], [d]) = 𝑒 ([t], [1]) where [c] = [G]a, [d] = [H]b are commitment to some vectors and
are part of the statement. Some simple calculations show that

cd = c ⊗ d = Ga ⊗ Hb = (G ⊗ H)(a ⊗ b) = t

The Kronecker product commitment t is included as part of the proof. Now, from this simple
Kronecker product argument, it is easy to prove the Hadamard product. It is enough to note
that the Hadamard product is a linear function of the Kronecker product, thus, the prover and
verifier can use the protocol for linear relations of the previous section.

Local and No-Signaling Extraction. The crucial observation to prove local extraction is
that if G,H are extractable in one position, say 𝑖 , 𝑗 respectively, then G ⊗ H is extractable at
position 𝑛(𝑖−1)+ 𝑗. More concretely, letting TG, TH be the trapdoors for G,H respectively, the
trapdoor for the commitment key G⊗H is simply TG⊗TH. Some straightforward calculations
reveal that applying this trapdoor to a commitment with the key G ⊗ H indeed yields the
𝑛(𝑖 − 1) + 𝑗-th coordinate of the committed value, which is uniquely defined. In fact, we
generalize this for larger locality parameters and we also show that, for some distributions of
commitment keys, the no-signaling/oblivious trapdoor generation properties hold if they hold
for G, H.

72

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Consider the simple case of 𝐾 = 1 and let all three commitments G,H,F be extractable at the
same position 𝑖. We show that we can extract local openings [𝑥𝑖] = TG[a], [𝑦𝑖] = TH[b], [𝑧𝑖] =
TF[c] as well as [𝑤𝑖] = TG⊗H[t] such that 𝑧𝑖 = 𝑥𝑖𝑦𝑖. Assume for the sake of a contradiction
that 𝑧𝑖 ≠ 𝑧′𝑖 = 𝑎𝑖𝑏𝑖. Since the columns g𝑖 , h𝑖 , f𝑖 are linearly independent from the other columns
in G,H,F, respectively, if the commitments [c], [d], [t] satisfy [c] ⊗ [d] = 𝑒 ([t], [1]), then the
unique openings at coordinate 𝑖 satisfy 𝑧𝑖 = 𝑥𝑖𝑦𝑖. Now, if 𝑧𝑖 ≠ 𝑧′𝑖, the linear relation does not
hold and we can break the underlying QA-NIZK for membership in linear spaces.

For oblivious trapdoor generation, it is enough to note that if the commitment key satisfies
this property, so does the above constructions. Indeed, note that using the commitment key,
it is enough to produce an srs for membership in subspace language to create the full srs of
the protocol.

Extension to Knowledge Transfer Arguments. We extend the quasi-argument local so-
undness to offer a “knowledge transfer” guarantee. In this case, we essentially commit to
commitments. That is, we use an SSB commitment key to commit to multiple commitments
and the local openings are commitments themselves. Namely we extract values [𝑥𝑖], [𝑦𝑖], [𝑧𝑖]
which are interpreted as commitments w.r.t. some (not necessarily SSB) commitments keys
U,V,W. We require that no PPT adversary can produce openings a, b such that 𝑥𝑖 =
U𝑖a, 𝑦𝑖 = V𝑖b but 𝑧𝑖 ≠ W𝑖a ◦ b. The constraint language for a set 𝑆 is parameterized by SSB
commitments G,H,F binding at 𝑆 as well as some matrices U,V,W. We require that given
an accepting proof 𝜋 for a statement [c], [d], [f] and openings a, b, we can extract values
[x𝑆], [y𝑆], [z𝑆] such that

1. [x𝑆], [y𝑆], [z𝑆] are the unique 𝑆-openings of [c], [d], [f] w.r.t. commitment keys G,H,F
respectively, and

2. if [x𝑆] = [U𝑆]a and [y𝑆] = [V𝑆]b, then [z𝑆] = [W𝑆]a ◦ b.

One might wonder at this point how we commit to commitments which naturally requires
multiplication of group elements which is assumed computationally hard. To achieve that,
we simply include in the srs the products [GU], [HV], [FW]. Now, we can commit to the 𝑛
commitments U𝑖a as [GU]a and similarly for the other keys.

The knowledge transfer version is essentially the same as in the previous case. The only
difference is that we also need to include some additional elements in the srs to allow to the
prover to compute the Kronecker product, namely the values [Q] = [(G⊗H)(U⊗V)]. As in the
previous case, we can then exploit the linear relation between the Hadamard product and the
Kronecker product. From a correct commitment [Q](a ⊗ b), we can use the linear knowledge
transfer to get a commitment to the Hadamard products w.r.t. the third commitment key,
namely [FW](a ◦ b). To show this, we first show that the 𝒢 ⊗ℋ -MDDH assumption holds if
𝒢-MDDH and ℋ -MDDH hold, where 𝒢 ,ℋ are the distributions of G,H respectively.

We are also able to extend these techniques to work in asymmetric bilinear groups as well.
The construction is somewhat technical, but the core idea is to construct SSB commitments

73

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

suitable for asymmetric groups, where we “split” the commitments between the two groups,
and use the bilateral variants of the linear quasi-arguments discussed in the previous sections.

4.1.3 From our Quasi-Arguments to Delegation.

Using the ideas of [PR17; KPY19], we can derive delegation of computation from quasi argu-
ments for languages encoding the computation. The local constraints capture that each step
of the computation was done correctly. First, we present the high level idea for the delegation
construction from quasi-arguments. We first show how to delegate low-space TMs/low-width
circuits and then we show how to overcome the dependence on space/width.

4.1.3.1 Delegating bounded space TM/bounded width circuits

We first recall the high-level ideas to construct a delegation scheme from quasi arguments
of [PR17; KPY19] in the simpler case of bounded space computation. Consider some polyno-
mial time sequential computation which on input x outputs y, for example a Turing Machine
or an arithmetic circuit. The computation goes through a sequence of states st0 , st1 , . . . , st𝑑
such that st0 is consistent with the input, state st𝑑 contains the output y, and there’s a
functional relation between states st𝑖 , st𝑖+1 where st𝑖+1 = 𝑓 (st𝑖) and 𝑓 is determined by the
description of the computation. We first consider the case of bound space computation and
discuss later how to remove this constraint. Consider a quasi argument of locality 𝐾 = 2 |st|
where local constraints require that st𝑖 , st𝑖+1 are consistent w.r.t. 𝑓 . The goal is to show
that an adversary that makes the quasi-argument verifier accept must (w.o.p) sample x, y such
that y is the result of the computation on input x.

We can first “program” the local extractor extractor to extract st0 , st1, i.e. use locality
parameter 𝐾 = 2 |st|, where |st| is a bound on the size of the states (i.e. space of the
TM or width of the circuit). Local soundness asserts that state st0 is consistent with x.
Local soundness also implies that st1 is consistent with st0 and hence with x (note that the
statement st1 = 𝑓 (st0) depends only on local variables). Now, to show that st2 is also
consistent, we jump to another game where first the extractor computes only st1, and in the
next game the extractor computes st1 , st2. The crucial observation is that st1 should be
still consistent with x in both games. Otherwise, we can distinguish between the common
output of extractors for st0 , st1 and st1 or between st1 and st1 , st2, which contradicts the
no-signaling property. Importantly, we can efficiently compute the “correct” state st1 since
the computation is deterministic, and thus the no-signaling distinguisher described is indeed
efficient. Similarly, consistency of st1 and local soundness imply that st2 is also consistent.
Now, we can inductively continue until we reach the last state, st𝑑, which corresponds to the
output of the computation.

Small width circuit delegation from DLIN. Let 𝒞 be an arithmetic circuit with width 𝑤
and depth 𝑑. We consider the input to correspond to level 0. Without loss of generality,
assume that the circuit has 𝑤 input and 𝑤 output wires. In this section we consider the width

74

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

𝑤 to be small, or alternatively, efficiency will depend on 𝑤.

We follow the circuit arithmetization of [GR19]. The multiplication gates are partitioned in
𝑑 levels. Each level groups the gates at the same distance from the inputs, without counting
linear gates. In this way, the inputs of level 𝑖 + 1 are linear combinations of outputs of the 𝑖
previous levels. We can then express this as constraints describing the computation as

a𝑖 ◦ b𝑖 = c𝑖 for 𝑖 = 1 to 𝑑, (4.1)(
a𝑖+1
b𝑖+1

)
=

∑
0≤ 𝑗≤𝑖

(
D𝑖 , 𝑗

E𝑖 , 𝑗

)
c𝑗 =

(
D𝑖 0
E𝑖 0

)
c for 𝑖 = 0 to 𝑑 − 1, (4.2)

c0 = x ∈ F𝑤 and c𝑑 = y ∈ F𝑤 . (4.3)
Vectors a𝑖 , b𝑖 , c𝑖 denote respectively the left, right and output wires of multiplication gates in
level 𝑖. Matrices D𝑖, 𝑗 ,E𝑖, 𝑗 can be naturally derived from the circuit’s linear gates. Equation 4.1
states the relation between output wires and the input wires of a level of multiplication gates.

Now consider a symmetric bilinear group described by gk and consider three SSB commitments
G,H,F with locality 𝐾 = |𝑤 | for committing to 𝑤𝑑-dimensional vectors. We publish in the
srs the commitment keys and we we also compute two quasi argument srs:

1. for membership in linear space for the matrix [M1] =

F
GD
HE

 . Here, D, E are the matrices

for the linear relations as a whole (note per level). That is, for left and output wires it
should hold a = Dc, and similarly for right wires.

2. for Hadamard relation for G,H,F. Note that, essentially, this corresponds to yet another
quasi argument for membership in linear spaces for [M2] =

[(G ⊗ H)
F∆

]
where ∆ captures

the linear relation between the Kronecker and Hadamard product, that is (a ◦ b) =
∆(a ⊗ b).

The prover gives the commitments to the left, right, output wires, namely [L] = [G]a, [R] =
[H]b, [O] = [F]c. Note that these commitments are of size 𝒪(poly(𝜅)𝑤) but independent of
𝑑. Next, it proves that [O], [L], [R]

• lie in the image of [M1] using the witness c,

• satisfy the Hadamard relations: it computes a commitment [Z] = [(G ⊗ H)](a ⊗ b) and

shows using the linear argument that the vector
[
Z
O

]
lies in the image of M2 using the

witness a ⊗ b.

The verifier checks that (1) the linear proofs verify and (2) that 𝑒 ([L], [R]) = 𝑒 ([Z], [1]). It
also does some additional input/output consistency check which we omit for now and describe
next.

75

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Now, let’s see the core of the extraction argument. The inductive claim goes as follows: If
we set [F] extractable for the 𝑖-th level, namely we the set 𝑆𝑖 = {𝑖𝑤 + 1, . . . , (𝑖 + 1)𝑤}, then
-conditioned on an accepting proof- extracting the level 𝑖-th level wires corresponds to the
correct values [c𝑖] w.r.t. the input c0. We will handle the base case later when we discuss
input/output consistency. For the inductive step, assume the statement is true for 𝑖. We show
that it is true for 𝑖 + 1. We proceed as follows:

1. We first set G,H extractable at set 𝑆𝑖+1 corresponding to the 𝑖 + 1-th level in addition
to the F extractable at 𝑆𝑖. By the no-signaling guarantees the value [c𝑖] extracted by
[O] is still correct.

2. By the local soundness of the linear quasi argument, the extracted values [c𝑖], [a𝑖+1],
[b𝑖+1] must lie in the image of the submatrix of M1 corresponding to these values. This
matrix contains the blocks I,D𝑖+1 ,E𝑖+1. Hence the values extracted correspond to the
correct values [a𝑖+1], [b𝑖+1] w.r.t. the input c0.

3. We only set G,H extractable at set 𝑆𝑖+1 and leave F extractable at the empty set. By
the no-signaling guarantees the extracted wires for left and right values [a𝑖+1], [b𝑖+1] are
still correct.

4. In addition to G,H extractable at set 𝑆𝑖+1, we set F extractable at 𝑆𝑖+1. Now we argue
about local constraint of the Hadamard product. We proceed in two steps:

• By the pairing test 𝑒 ([L], [R]) = 𝑒 ([Z], [1]) and the assumption that [a𝑖+1], [b𝑖+1]
are correct we get that

TGL ⊗ THR = (TG ⊗ TH)(L ⊗ R) = (TG ⊗ TH)Z = TG⊗HZ

which implies that z𝑖+1 = a𝑖+1 ⊗ b𝑖+1. This means that the extracted value of the
Kronecker commitment corresponds to the Kronecker product a𝑖+1 ⊗ b𝑖+1 of left
and right wires in level 𝑖 + 1.

• Working similarly to the step (2), we get that the extracted values Z𝑖+1 ,O𝑖+1 live
in the image of M2. It should then be the case that we extract [c𝑖+1] which is
the Hadamard product a𝑖+1 ◦ b𝑖+1. This correspond to the correct assignment of
output wires in level 𝑖 + 1.

5. Finally, we only set F extractable at set 𝑆𝑖+1 and leave G,H extractable at the empty
set. By the no-signaling guarantees the extracted value [c𝑖+1] is still correct.

We note that proving this is technically more involved. We need to show that the quasi
arguments can be composed well, and they still satisfy the no-signaling properties despite the
fact that they share commitment keys. Equivalently one could define and analyze a unified
quasi argument to directly work with the circuit “transition funciton”. In any case, we omit
these details from these technical overview.

Input/Output Consistency. We modify the commitment F by making it trivially extractable
at the input/output levels 0, 𝑑 always, regardless of the extraction set. That is, we “use”

76

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

the identity matrix I𝑤 for committing to the output wires at the first and last level. This
corresponds to augmenting F with some identity rows. Thus, the verifier can always trivially
check the consistency with input/output. Note that the final commitment size grows by 2|𝑤 |,
the size of input and output, but these values are part of the statement and don’t need to be
included in the proof. We stress out the “trivial” identity commitment satisfies the properties
needed to be used in our quasi-arguments.

Assumptions. We next discuss the assumptions we use. For the specific matrices used in the
reduction, one can prove soundness of the QA-NIZK argument under falsifiable assumptions
since the 𝑆-submatrices M1 ,M2 produce a non-trivial subspace. This means that we rely on
the kernel assumption we use for instantiating the QA-NIZK. Noting that MDDH assumptions
implies the corresponding kernel assumptions, we can instantiate the quasi argument using
the DLIN assumption. Furthermore, the no-signaling property of the commitment keys (the
only computational property we use) reduces to an MDDH which we chose on instantiation.
Noting that DDH does not hold in symmetric groups we resort to the DLIN assumption which
makes the commitments larger by 1 group element. Thus, soundness of the above delegation
scheme reduces to the DLIN assumption.

4.1.3.2 Overcoming the dependence on space/width.

The issue with the above construction is that setting 𝐾 = 𝒪(|st|) yields a proof whose size
is linear in the space of the computation. To achieve succinctness in the general case, we
need to also perform some “compressing” of the state/width. Kalai et. al. overcome this
by considering delegation of RAM computation [KP16] using collision-resistant hash function
to compress the width. They use a notion similar to the knowledge transfer notion, namely
that no PPT adversary can produce digests h, h′ and state st such that h = Hash(st) but
h′ ≠ Hash(𝑓 (st)). Now, a quasi argument for the local constraints h𝑖 = Hash(𝑓 (st𝑖)) and
h𝑖+1 = Hash(𝑓 (st𝑖)) is enough for delegation in the general case.

While previous works achieve this by essentially encoding the computation of generic hash
functions in the computation, we use hash functions that are based on Pedersen commitments
and have nice algebraic structure and properties. This allows to avoid the concrete cost of
encoding arbitrary hash functions in the arithmetic circuit. To this end, we use techniques
from [GR19] to derive a structure preserving construction. We present next the basic ideas of
their (low depth) delegation construction.

Structure Preserving Delegation for Low-Depth Circuits. González and Ráfols [GR19]
constructed a delegation scheme with proof-size 𝒪(𝑑𝜅) and verification requiring 𝑛 plus 𝒪(𝑑)
cryptographic operations, where 𝑛 is the size of the input, 𝑑 the depth of the circuit and 𝜅 a
security parameter. Interestingly, the verification procedure of [GR19] can be described com-
pletely as a set of pairing product equations. As shown by Abe et. al. [AFG+16], cryptographic
primitives whose correctness can be stated as equations over bilinear groups are more suited for
practically efficient arguments without resorting to generic reductions to a circuit or a 3CNF
formula.

77

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

In the heart of the delegation scheme of [GR19] lie the two knowledge transfer arguments for
linear and quadratic relations described before. To delegate the computation of an arithmetic
circuit, the multiplication gates are partitioned in 𝑑 levels. Each level groups the gates at the
same distance from the inputs, without counting linear gates. In this way, the inputs of level
𝑖 + 1 are linear combinations of outputs of the 𝑖 previous levels. A prover commits to the
left, right, and output wires of each level as 𝐿𝑖, 𝑅𝑖, 𝑂𝑖. In the first 𝑑 arguments 𝑓 is a linear
function and the argument handles the linear relations between the input wires (the openings
of 𝐿𝑖 , 𝑅𝑖) of level 𝑖 and the output wires of all previous levels (the openings of 𝑂1 , . . . , 𝑂𝑖−1).
In the next 𝑑 arguments 𝑓 is the Hadamard product so that the opening of 𝑂𝑖 is the Hadamard
product of the openings of 𝐿𝑖 and 𝑅𝑖. The fact that the verifier can check the commitment
to the first level using the public input and a simple inductive argument over the levels shows
that the output must be correct.

More concretely, starting from a correct commitment 𝑂0 (directly checked for consistency with
input 𝑥 from the verifier) we conclude that 𝐿1 , 𝑅1 by the knowledge transfer guarantee of the
linear argument. Since 𝐿1 , 𝑅1 are correct w.r.t. 𝑥, 𝑂1 is also correct w.r.t. 𝑥 by the knowledge
transfer guarantee of the quadratic argument. We continue this way and we conclude that 𝑂𝑑

is a correct commitment to the output of the computation. Now, we simply need to check
that the claimed output 𝑦 is a correct opening for that latter commitment.

As for soundness, the quadratic knowledge transfer argument requires a specific (not uniform)
distribution for the commitment keys where each row of the matrix of the commitment key is
the result of evaluating Lagrange polynomials at a different random point. Thus, soundness re-
lies on a width-size assumption, namely “ℛ-Rational Strong Diffie Hellman” assumption [GR19]
which is proven secure in the Generic Group Model. We stress out that we modify the construc-
tion of [GR19] to overcome the need for a 𝑞-size assumption and rely only on a constant-size
one, albeit at the cost of having a quadratic srs and prover computation.

Succinct Publicly Verifiable Delegation for polynomial size circuits. We use the tech-
nique of [GR19] to overcome the width dependency in the above construction. The problem
with this construction is that we need to rely on simple soundness of the underlying Kiltz and
Wee QA-NIZK. However if we try to “shrink” the per-level information to eliminate the width
dependence, the subspaces used become trivial and knowledge soundness seems to be needed.

We overcome this by relying on the knowledge transfer analysis of Kiltz and Wee used in [GR19].
To exploit this to construct delegation, we proceed as follows: we keep the same skeleton of
the small-width circuit protocol, but instead of directly committing to the left, right and output
wires, we commit to commitments of them. That is, for each level we compute three shrinking
commitments -with size independent of the width- corresponding to left, right and output wires
for that level, and we commit to these commitments (by including appropriate group elements
in the srs). Furthermore, we use the knowledge transfer variants of the quasi arguments.

Now, our no-signaling extractor works as in the small-width case, but instead of the wires for
some level, it outputs the commitments for the wires in this level. By the knowledge transfer

78

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

guarantees, we establish that the extracted values for each level satisfy:

1. if 𝑂𝑖 is a commitment to c𝑖 then 𝐿𝑖+1 and 𝑅𝑖+1 are commitments to a𝑖+1 , b𝑖+1,

2. if 𝐿𝑖+1 and 𝑅𝑖+1 are commitments to a𝑖+1 and b𝑖+1 respectively, then 𝑂𝑖+1 is a com-
mitment to c𝑖+1

Extracting these values in a no-signaling way, as in the bounded space case, yields soundness
for the delegation scheme. The analysis is almost the same and the only difference is that the
knowledge transfer guarantee implies some hardness assumption (MDDH) on the distribution
of matrices used as parameters, in this case, the width commitment keys. To satisfy this
using constant size assumptions, we use a simple variation of Pedersen commitments where
the commitment keys satisfy the DLIN assumption.

Remark (Uniform vs Non-Uniform Computation). Our construction can be used for any
non-uniform computation, namely polynomial size arithmetic circuits, while previous
works such as [PR17; KPY19] focus on delegating uniform computations: Turing or RAM
machines. While this is a stronger result, we achieve it using a long (quadratic in the
size/time of computation) srs, while the work of [KPY19] achieves a short (i.e. sublinear)
srs. One motivation for working directly with poly-size circuits is for practical efficiency:
we utilize the rich SNARK toolbox without the need to encode expensive cryptographic
operations as arithmetic circuits, namely, we focus on structure preserving constructions.
While we have an inefficient (quadratic) prover, in all other aspects we achieve optimal
efficiency comparable with SNARKs from non-falsifiable assumptions. We believe that
this is a promising direction and an interesting open problem is to improve the prover to
quasi-linear using these techniques. This would yield a delegation scheme for poly-size
circuits that directly competes with the aforementioned non-falsifiable based construc-
tions in all aspects, effectively eliminating the need of using non-falsifiable assumptions
in the context of deterministic computation. We also leave as future work exploring to
what extend our techniques can be applied for delegating uniform computations and if
this would give some improvement over existing constructions.

Remark (On bootstrapping and proof composition). To improve efficiency (reduce srs
size), [KPY19] use the bootstrapping technique which involves proof composition. Our
techniques seem to be incompatible with the bootstrapping technique. This is because
the srs of our construction depends on the circuit and we cannot directly reuse an srs for
different computations. We leave as future work to examine if we can modify our tech-
niques to be able to apply the bootstrapping technique. We also stress out that this might
prove to be an interesting direction for improvements in practical efficiency as well due
to some recent results in proof-composition techniques [BCMS20; BCL+21].

4.1.4 NIZK, SNARKs and Compact NIZK

We can use standard techniques to turn our delegation scheme into a NIZK argument. Es-
sentially, the prover needs to prove knowledge of (additional) secret input wires w and proof

79

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

that 𝒞(x,w) = y for some secret input w. Given the “structure preserving” properties of our
delegation scheme, we can directly apply the Groth Sahai proof system [GS08]¹⁰ on the set of
verification equations. In general, all we need to achieve knowledge soundness is an extractable
(and hiding) commitment for extracting the witness w. Depending on the properties of the
extractable commitment scheme we get different NIZK flavors.

If the commitments to the inputs are succinct, the construction yields a SNARK for NP.
Such commitments are widely employed in SNARKs, but their security relies on non-standard
assumptions: either knowledge type assumptions such as 𝑞-Knowledge of Exponents assump-
tion [GGPR13] or the generic group model [Gro16]. If we take for example the zk-SNARK
from [DFGK14], the size of 𝑞 is the number of field elements extracted from a valid proof.
Indeed, the proof of soundness requires the extraction of all the circuit wires, which are later
used to break some falsifiable 𝑞-assumption. Consequently, the knowledge assumption is of
size 𝑞 = 𝒪(|𝒞|). By reducing the number of extracted values from 𝒪(|𝒞|) to |w|, we reduce
the size of the underlying knowledge assumption to 𝑞 = |w| < |𝒞|.

If we use the “bit-string” argument of [GHR15] to show knowledge of b ∈ {0, 1}𝑛, we get
extractable commitments of size 𝑛 + 𝒪(1) group elements based on a constant-size falsifiable
assumption. Combining this extractable commitment with our delegation scheme yields a NIZK
argument for circuit satisfiability with proof size 𝑛 + 𝒪(1) groups elements, or equivalently of
size 𝒪(𝑛𝜅).

Finally, we can then use the techniques of Katsumata et. al. [KNYY19; KNYY20] to construct
a compact NIZK. The construction of Katsumata et al. is based on a non-compact NIZK
argument for NC1 plus a symmetric key encryption scheme (KeyGen, Enc,Dec) where the size
of Enc𝐾(m) is |m| + poly(𝜅). Instead of committing to the input x of a circuit 𝒞, we need to
compute 𝐾 ← KeyGen(1𝜅) to obtain ct← Enc(𝐾, x) and give a NIZK argument of knowledge
of some 𝐾 ∈ {0, 1}poly(𝜅) such that 𝐶(Dec(𝐾, ct)) = 1. We note that we can straightforward
use this idea to construct compact NIZK for any circuit by simply plugging our NIZK argument
based on the commitments of [GHR15]. The final proof is of size |ct| + |𝐾 | poly(𝜅) + |𝜋| =
𝑛 + poly(𝜅) and is sound for any polynomial size circuit.

4.2 Knowledge Transfer Arguments

In this section we recall arguments of knowledge transfer for membership in linear spaces as
defined in [GR19] which in turn is an instantiation of [KW15] with a different security analysis.
We also slightly modify the construction to turn it into an argument of knowledge transfer for
the sum language, which we will use in later constructions.

Let gk be a bilinear group of order 𝑝 and 𝒩 ,𝒩 ,𝒫 ,𝒬 be matrix distributions outputting

¹⁰This can be also achieved in a more efficient way (concretely) by directly using hiding commitments for
the delegation scheme.

80

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Figure 4.1 Construction KTLin for Lin-ℒyes , Lin-ℒno. For ℓ1 = ℓ2, construction KTSum for
Sum-ℒyes , Sum-ℒno is identical with the only difference that K2 = K1.
K(gk, [M]1 , [N]2 , [P]1 , [Q]2):

K1 ← Fℓ1×𝑘 ; K2 ← Fℓ2×𝑘 ; K3 ← Fℓ3×𝑘 ; K4 ← Fℓ4×𝑘
Sample A←𝒟𝑘 ; Γ← F𝑛×𝑘
[B]1 = [M⊤K1 +N⊤K2 + Γ]1; [D]2 = [P⊤K3 +Q⊤K4 − Γ]2
C1 = K1A; C2 = K2A; C3 = K3A; C4 = K4A
Output srs = (𝑔𝑘, [A]1,2 , [B]1 , [D]2 , [C1]2 , [C2]1 , [C3]2 , [C4]1)

Prove(srs, ([c1]1 , [c2]2 , [d1]1 , [d2]2),w):
Sample 𝜌← F𝑘 ; [𝜋]1 = w⊤[B]1 + [𝜌]1; [𝜃]2 = w⊤[D]2 − [𝜌]2
Output ([𝜋]1 , [𝜃]2)

Verify(srs, ([c1]1 , [c2]2 , [d1]1 , [d2]2), ([𝜋]1 , [𝜃]2)):
Output 1 iff

𝑒 ([𝜋]1 , [A]2) + 𝑒 ([𝜃]2 , [A]1) =
𝑒
([c⊤1]1 , [C1]2) − 𝑒 ([c⊤2]2 , [C2]1) − 𝑒 ([d⊤1]1 , [C3]2) − 𝑒 ([d⊤2]2 , [C4]1)

matrices [M]1 ∈ Gℓ1×𝑛1 , [N]2 ∈ Gℓ2×𝑛2 [P]1 ∈ Gℓ3×𝑛1 [Q]2 ∈ Gℓ4×𝑛2 respectively. In Fig. 4.1, we
present two arguments of knowledge transfer for (1) the linear membership language

Lin-ℒyes =
{
([c1]1 , [c2]2 , [d1]1 , [d2]2) | ∃w s.t

(
c1
c2

)
=

(
M
N

)
w and

(
d1
d2

)
=

(
P
Q

)
w
}

Lin-ℒno =
{
([c1]1 , [c2]2 , [d1]1 , [d2]2 ,w) |

(
c1
c2

)
=

(
M
N

)
w and

(
d1
d2

)
≠

(
P
Q

)
w
}

and (2) the sum knowledge transfer language

Sum-ℒyes =
{
([c1]1 , [c2]2 , [d1]1 , [d2]2) | ∃w s.t c1 + c2 = (M +N)w and

(
d1
d2

)
=

(
P
Q

)
w
}

Sum-ℒno =
{
([c1]1 , [c2]2 , [d1]1 , [d2]2 ,w) | c1 + c2 = (M +N)w and

(
d1
d2

)
≠

(
P
Q

)
w
}

A knowledge transfer argument is just an argument for the promise problem defined by ℒyes

and ℒno. Completeness means that an honest proof is accepting for any statement in ℒyes.
Soundness that any proof for a statement in ℒno, which comes with an “advice” w, is accepting
only with negligible probability.

We use this construction with (1) N = 0 for the case of linear knowledge transfer and (2)
Q = 0 for the case of sum knowledge transfer so we consider proofs for these two cases. We
stress out that the proofs are easily extended to accommodate for the more general cases.

81

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

For the case of KTLin, when setting N = 0, the security is shown in [GR19]. Essentially,
they show that the construction is sound if the image of the matrices outputted by ℳ is
pseudorandom. Since this condition holds under theℳ-MDDH, the construction is sound for
these parameters. Noting that this condition also holds for the case of distributions that satisfy
the KMDDH assumption (Thm. 1), these distributions can also be used to select language
parameters. The extension for Sum-ℒ is a direct adaptation of the techniques of [GR19].

We summarize the results in the following theorem.

Theorem 9. Let𝒟𝑘 be a matrix distribution that satisfies the𝒟𝑘-SKerMDH assumption. Then

1. Ifℳ⊤-MDDH holds, then construction KTLin is sound w.r.t. language Lin-ℒno.

2. If (𝒰 ⊗ 𝒱)⊤-KMDDH holds and 𝛼 = ([M]1 , [N]2 , [U]1 , [V]2) where 𝛼← (𝒰 ⊗𝒱), then
construction KTSum is sound w.r.t. language Sum-ℒno against adversaries that know 𝛼.

Remark 1. If the construction is sound for language parametersℳ ,𝒩 ,𝒫 ,𝒬, then it is
also sound when the language is defined by distributionsℳ ,𝒩 ,𝒫 ,𝒬 augmented with
additional zero columns. This is proven in [GR19, Lemma 15]. Essentially one can reduce
to the knowledge transfer argument where we delete the zero columns of the matrix and
rely on the linearity properties of the proofs of the construction.

4.3 No-Signaling Somewhere Statistically Binding Commitment
Schemes

In this section we recall Somewhere Statistically Binding (SSB) commitments and then de-
fine two additional notions for them: no-signaling extraction and oblivious key generation.
The former is a natural adaptation of the definitions of no-signaling extractors from previous
works [PR17; KPY19]. We show that the latter implies the former, and we give an efficient
instantiation based on any 𝒟𝑘-MDDH assumption. Finally, we consider the Kronecker product
of two of these commitments.

An SSB commitment scheme, as the name suggests, is statistically binding only w.r.t. some
variables which are determined during key generation. The commitment key computationally
hides any information about this set, meaning that for all “modes” the commitment keys are
computationally indistinguishable. Furthermore, the KeyGen algorithm outputs a trapdoor
which allows to extract (a function of) the values in this set.

The definition that follows only considers extracting a subset 𝑆 ⊆ [𝑛] of the coordinates
with the only restriction that its size is bounded by the locality parameter 𝐾. We emphasize,
however, that one can generalize and consider extracting any set from a subset family 𝒮 ⊆ 2[𝑛].
We will in fact consider this in one of our construction but for the sake of simplicity we choose
to present

82

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Definition 24. Let [·] :ℳ → 𝐺 be a function, whereℳ is the message space and 𝐺 some
set. Syntactically, a Somewhere Statistically Binding Commitment Scheme CS is a tuple
of algorithms CS = (KeyGen,Com, Extract)where

• (ck, sk) ← KeyGen(gk, n, 𝐾, 𝑆): KeyGen takes as input the parameters gk, 𝑛 ∈ N,
locality parameter 𝐾 ∈ [𝑛] and the set 𝑆 ⊆ [𝑛], |𝑆 | ≤ 𝐾. It outputs a commitment
key ck, which may also contain some auxiliary information aux, and a secret key sk,
containing a trapdoor 𝜏 and possibly the random coins used by KeyGen.

• c ← Com(ck, x): Com takes as input the commitment key ck and a vector x ∈ ℳ𝑛

and outputs a commitment c,

• y ← Extract(𝜏, c): Extract takes as input the trapdoor 𝜏 and a commitment c, and
outputs the value y ∈ 𝐺 allegedly equaling [x𝑆], where x is a valid opening for c.

For all 𝜅 ∈ N, 𝑛 ∈ N, 𝐾 ∈ [𝑛], 𝑆0 , 𝑆1 ⊆ [𝑛]with |𝑆0 | , |𝑆1 | ≤ K, CSmust satisfy the following
properties:

• Index Set Hiding: for all PPT𝒟

Pr
gk←𝒢(1𝜅)

[
𝒟(ck) = 𝑏 𝑏 ← {0, 1}

(ck, sk) ← KeyGen(gk, 𝑛, 𝐾, 𝑆𝑏)
]
≤ 1

2
+ negl(𝜅)

• Somewhere Statistically Binding: for all all, even unbounded𝒜,

Pr
gk←𝒢(1𝜅)

[
Com(ck, x) = Com(ck, x′)

and x𝑆 ≠ x′𝑆
(ck, sk) ← KeyGen(gk, 𝑛, 𝐾, 𝑆)

(x, x′) ← 𝒜(ck)
]
≤ negl(𝜅)

• 𝐺-Extractability: for all, even unbounded𝒜

Pr
gk←𝒢(1𝜅)

 ∃x s.t. c = Com(ck, x) (ck, sk = (𝜏, 𝑟)) ← KeyGen(gk, 𝑛, 𝐾, 𝑆)
and y ≠ [x𝑆] c←𝒜(pk)

y← Extract(𝜏, c)

 ≤ negl(𝜅)

Note that an SSB commitment is also “everywhere” computationally binding. This is the case
since a breach in binding, namely the ability to produce c that opens to both x ≠ x′, implies
the ability to distinguish where the commitment is not statistically binding contradicting the
index set hiding property.

We next present an extra property for an SSB commitment scheme which we call no-signaling
extraction and is a natural adaptation of the definitions of [PR17; KPY19].

Definition 25. We say the extractor of an SSB commitment scheme CS = (KeyGen,Com,
Extract) with commitment space 𝒞¹¹ no-signaling if for any 𝑆′ ⊆ 𝑆 ⊆ [𝑛], where |𝑆 | ≤ 𝐾,

¹¹We assume that membership in 𝒞 is efficiently decidable

83

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

and any PPT adversary𝒟 = (𝒟1 ,𝒟2),�������� Pr
gk←𝒢(1𝜅)

 𝒟2(ck𝑆′), c, y′) = 1

(ck𝑆′ , sk𝑆′) ← KeyGen(gk, 𝑛, 𝐾, 𝑆′)
c←𝒟1(ck𝑆′)

if c ∉ 𝒞: c← ⊥
y′← Extract(𝜏, c), where sk𝑆′ = (𝜏, 𝑟)

 −
Pr

gk←𝒢(1𝜅)

 𝒟2(ck𝑆 , c, y𝑆′) = 1

(ck𝑆 , sk𝑆) ← KeyGen(gk, 𝑛, 𝐾, 𝑆)
c←𝒟1(ck𝑆)

if c ∉ 𝒞: c← ⊥
y← Extract(𝜏, c), where sk𝑆 = (𝜏, 𝑟)

�������� ≤ negl(𝜅)

We define also oblivious trapdoor generation. This property states that there exists an oblivious
key generation algorithm, that takes a commitment key ck that allows extraction in 𝑆 and a
set 𝑆′ ⊆ 𝑆, and can produce a fresh commitment key ck′ and a trapdoor to extract 𝑆′. The
distribution of the new key ck′ is statistically close to that of ck and -importantly- the oblivious
key generation algorithm does not get as input the original extraction set 𝑆. In other words,
given a commitment key ck that we know allows extraction for some superset of 𝑆′, we can
create a new key with a trapdoor for 𝑆′ without skewing the distribution of ck.
Definition 26. An SSB commitment scheme has oblivious trapdoor generation if there
exists a PPT algorithm OblKeyGen such that for all 𝜅 ∈ N, 𝑛 ∈ N, 𝐾 ∈ [𝑛], 𝑆 ⊆ [𝑛], with
|𝑆 | ≤ 𝐾, 𝑆′ ⊆ 𝑆, and for all, even unbounded𝒟 = (𝒟1 ,𝒟2),�������� Pr

gk←𝒢(1𝜅)

 𝒟2(ck′, c, y′) = 1

(ck, sk) ← KeyGen(gk, 𝑛, 𝐾, 𝑆)
(ck′, 𝜏′) ← OblKeyGen(gk, 𝑛, 𝐾, 𝑆′, ck)

c←𝒟1(ck′)
y′← Extract(𝜏′, 𝑐), where sk = (𝜏, 𝑟)

 −
Pr

gk←𝒢(1𝜅)

 𝒟2(ck, c, yS′) = 1
(ck, sk) ← KeyGen(gk, 𝑛, 𝐾, 𝑆)

𝑐 ←𝒟1(ck)
y← Extract(𝜏, c), where sk = (𝜏, 𝑟)

�������� ≤ negl(𝜅)

Next, we show that an SSB commitment scheme with oblivious trapdoor generation is also
no-signaling.
Theorem 10. Let CS = (KeyGen,OblKeyGen,Com, Extract) be an SSB commitment scheme
with oblivious trapdoor generation and ISH. Then, CS is also no-signaling.

Proof. Fix any 𝑆′ ⊆ 𝑆 ⊆ [𝑛] with |𝑆 | ≤ 𝐾, and let 𝒟 = (𝒟1 ,𝒟2) be a distinguisher against
no signaling extraction for these values. We show by a sequence of games that its success
probability is negligible.

Game𝒟0 (1𝜅): In this game, we execute (ck, sk) ← KeyGen(gk, 𝑛, 𝐾, 𝑆). We then get
c ← 𝒟1(ck), change it to ⊥ if c ∉ 𝒞, and compute y ← Extract(𝜏, c) for sk = (𝜏, 𝑟).
The output is𝒟2(ck, c, y𝑆′).

84

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Game𝒟1 (1𝜅): In this game, we execute (ck, sk) ← KeyGen(gk, 𝑛, 𝐾, 𝑆) and (ckobl , 𝜏obl)
← OblKeyGen(gk, 𝑛, 𝐾, 𝑆′, ck). We then get c ← 𝒟1(ckobl), change it to ⊥ if c ∉ 𝒞,
and compute y′← Extract(𝜏obl , c). The output is𝒟2(ckobl , c, y′).
Game𝒟2 (1𝜅): In this game, we execute (ck, sk) ← KeyGen(gk, 𝑛, 𝐾, 𝑆′) and (ckobl , 𝜏obl)
← OblKeyGen(gk, 𝑛, 𝐾, 𝑆′, ck). We then get c ← 𝒟1(ckobl), change it to ⊥ if c ∉ 𝒞,
and compute y′← Extract(𝜏obl , c). The output is𝒟2(ckobl , c, y′).
Game𝒟3 (1𝜅): In this game, we execute (ck′, sk′) ← KeyGen(gk, 𝑛, 𝐾, 𝑆′). We then get
𝑐 ← 𝒟1(ck′), change it to ⊥ if c ∉ 𝒞, and compute y ← Extract(𝜏′, c) for sk = (𝜏, 𝑟).
The output is𝒟2(ck, c, y′).

Now we show the output of games 𝑖 and 𝑖 + 1 is indistinguishable for 𝑖 = 0 to 2.

• Cases 𝑖 = 0, 𝑖 = 2. For 𝑖 = 0, the two games are distributed identically to the two
cases of the oblivious trapdoor generation definition for 𝑆′ ⊆ 𝑆. Thus, the outputs of
the games are statistically close. For 𝑖 = 2, the same argument holds for 𝑆 = 𝑆′. Note
that in both cases, the oblivious trapdoor generation distinguisher is unbounded so
it can compute skobl.

• Case 𝑖 = 1. The difference in the two games is howwe sample the (ck, sk) pair, either
programmed to extract 𝑆 or 𝑆′. By the index set hiding property the outputs of the
two games are computationally indistinguishable.

Finally, noting that Game𝒟0 , Game𝒟3 correspond to the two cases of no signaling extraction,
the result follows. □

4.3.1 Algebraic SSB Commitments.

In this section, we define algebraic SSB commitments following the definition of algebraic
commitment schemes of [RS20] and extend them to what we call split algebraic SSB commit-
ments.

Informally, an algebraic SSB commitment scheme is a commitment scheme where the com-
mitment key is a matrix [G] of group elements such that (1) committing to a vector x is done
by multiplying on the left with [G], that is [c] = [G]x and (2) the trapdoor is a matrix of
field elements T and local extraction is done by multiplying the commitment on the left with
T⊤, that is [x𝑆] = T⊤[c]. We also allow the commitment key to output some public auxiliary
information which is not used in committing nor extraction.

Definition 27. An SSB commitment scheme CS = (KeyGen,Com, Extract) is algebraic if,
given gk← 𝒢(1𝜅),

• KeyGen(gk, 𝑛, 𝐾, 𝑆) outputs pk = [G] ∈ G𝐾×𝑛 and sk = (T ∈ F𝐾×|𝑆 | ,G)where 𝐾 ≥ 𝐾,

85

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

• Com([G], x) = [G]x,
• T⊤G = ΣSPS.

We also define a subtype of algebraic commitments which are specific to asymmetric groups,
where the commitment key is “split” between the two groups.

Definition 28. An SSB commitment scheme CS = (KeyGen,Com, Extract) is split algebraic
if

• KeyGen(gk, 𝑛, 𝐾, 𝑆) outputs ck = ([G]1 ∈ G𝐾×𝑛1 , [H]2 ∈ G𝐾×𝑛2) and sk = (T ∈ F𝐾×|𝑆 | ,
(G,H)), for 𝐾 ≥ 𝐾,

• Com([G]1 , [H]2 , x) = ([G]1x, [H]2x),
• T⊤G + T⊤H = Σ𝑆PS.

All SSB commitment schemes in this work are algebraic or split-algebraic. Note that all (split-
)SSB commitments only differ on the key generation algorithm. For that reason we sometimes
refer to a commitment key distribution as the commitment scheme itself.

In the case of non-split algebraic SSB commitments, we can G-extract by computing

T⊤[c] = T⊤[Gx] = [Σ𝑆P𝑆x] = [x𝑆]
while in the case of split-algebraic commitments, we can only G𝑇 extract. That is, we can
compute values [u𝑆]1 , [v𝑆]2 such that 𝑒 ([u𝑆]1 , [1]2) + 𝑒 ([1]1 , [v𝑆]2) = [x𝑆]𝑇 .

Indeed, if [c]1 = [G]1x and [d]2 = [H]2x then we can compute [u𝑆]1 = T[c]1 and [v𝑆]2 =
T[d]2 and it holds that

u𝑆 + v𝑆 = T⊤c + T⊤d = T⊤Gx + T⊤Hx = (T⊤G + T⊤H)x = ΣP𝑆x = x𝑆

Note that by definition, if the commitment key generation does not fail, the commitments are
perfectly binding/extractable at 𝑆. This will be the case for commitment schemes with perfect
completeness. We will utilize this fact in our constructions to simplify some of the arguments.

4.3.2 Somewhere Statistically Binding Commitments with Oblivious Trap-
door Generation

We present in Fig. 4.2 a simple construction of an SSB with Oblivious Key Generation from
plain SSB commitments with locality parameter 1. The setup algorithm instantiates 𝐾 different
commitment keys and, given a set 𝑆, each of the first |𝑆 | commitment keys is extractable in
a different position 𝑠 ∈ 𝑆. The last 𝐾 − |𝑆 | are binding for the empty set. To commit to a

86

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Figure 4.2 Oblivious SSB commitment scheme from 𝐾 instantiations of SSB commitments
with locality parameter 1.
CS′.KeyGen(gk, 𝑛, 𝐾, 𝑆):

For 𝑠𝑖 ∈ 𝑆 set (ck𝑖 , 𝜏𝑖) ← CS.KeyGen(gk, 𝑛, 1, {𝑠𝑖})
For |𝑆 | + 1 ≤ 𝑖 ≤ 𝐾 set (ck𝑖 , 𝜏𝑖) ← CS.KeyGen(gk, 𝑛, 1, ∅)
Set ck = (ck1 , . . . , ck𝐾), 𝜏 = ((𝜏1 , 𝑠1), . . . , (𝜏|𝑆 | , 𝑠 |𝑆 |)) and output (ck, 𝜏)

CS′.Com(ck = (ck1 , . . . , ck𝐾), x):
For 1 ≤ 𝑖 ≤ 𝐾 compute c𝑖 ← CS.Com(ck𝑖 , x)
Set c = (c1 , . . . , c𝐾) and output c

CS′.Extract(𝜏 = ((𝜏1 , 𝑠1), . . . , (𝜏|𝑆 | , 𝑠 |𝑆 |)), c = (c1 , . . . , c𝐾)):
For all 𝑠𝑖 ∈ 𝑆 compute 𝑦𝑠𝑖 ← CS.Extract(𝜏𝑖 , c𝑖)
Set y = (𝑦1 , . . . , 𝑦|𝑆 |) and output y

CS′.OblKeyGen(gk, 𝑛, 𝐾, 𝑆′, 𝑎, ck = (ck1 , . . . , ck𝐾)):
Parse 𝑎 as 𝑖1 , . . . , 𝑖 |𝑆′ | , the indices of the commitment keys binding at 𝑠𝑖 𝑗 ∈ 𝑆′
For 1 ≤ 𝑗 ≤ |𝑆′ | set (ck𝑖 𝑗 , 𝜏𝑖 𝑗) ← CS.KeyGen(gk, 𝑛, 1, {𝑠′𝑗}).
Set ck = (ck1 , . . . , ck𝐾), 𝜏 = ((𝜏𝑖1 , 𝑠𝑖1), . . . , (𝜏𝑖 |𝑆′ | , 𝑠𝑖 |𝑆′ |)) and output (ck, 𝜏)

value x, one gives 𝐾 commitments to this value with each of the commitment keys. To verify
an opening, one verifies each individual opening and that all the openings are the same.

Note that the ordering of the elements in 𝑆 is arbitrary and, in some sense, there’s no unique
key generation algorithm for a set 𝑆. Indeed, it is only necessary that the commitment key
contains 𝐾 commitment keys for locality 1 such that ck𝑖1 , . . . , ck𝑖 |𝑆 | are binding at 𝑠1 , . . . , 𝑠 |𝑆 |
respectively. Note that there are

(𝐾
|𝑆 |

)
different choices of 𝑖1 , . . . , 𝑖𝑛. For this reason, if the

input of the oblivious generator is just 𝑆′, it is impossible to know which commitment keys are
the ones corresponding to 𝑆′. To alleviate this, the oblivious key generator receives as advice
the indices where 𝑆′ “appears” in 𝑆 that is, 𝑖1 , . . . , 𝑖 |𝑆′ | such that 𝑠𝑖1 = 𝑠′1.

In this case we need to change a little the proof that oblivious trapdoor generation implies
no-signaling. We add a game Game𝒟1/2(1𝜅), between games 0 and 1, which is identical to
Game𝒟0 (1𝜅) but ℰ1 samples ck𝑖 binding at {𝑠𝑖} if 𝑠𝑖 ∈ 𝑆′ and at ∅ if not. By the index-set
hiding property of ck1 , . . . , ck𝐾 the output of both games is indistinguishable. Game𝒟1 (1𝜅) is
as before but the oblivious key generator receives also the advise. The rest of the proof is
exactly as before

Theorem 11. Let CS be an SSB commitment with locality parameter 𝐾 = 1. Then construction
CS′ of Fig. 4.2 is an SSB commitment with Oblivious Trapdoor Generation.

87

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Figure 4.3 MPed SSB commitment scheme with oblivious trapdoor generation
parametrized by the matrix distribution𝒟𝑘 .
KeyGen(gk, 𝑛, 𝐾, 𝑆):

Let A←𝒟𝑘 , B← F𝐾+𝑘×𝐾−|𝑆 | , W← F𝐾−1×𝑘+1 and define G0 =
(
B A

WA

)
Let G𝑆 ← F𝐾+𝑘×|𝑆 | and Γ← F𝐾+𝑘−|𝑆 |×𝑛−|𝑆 |
Let T𝑆 ∈ F𝐾+𝑘×|𝑆 | s.t. T⊤𝑆G𝑆 = I|𝑆 | and T⊤𝑆G0 = 0|𝑆 | |×𝐾+𝑘−|𝑆 | . Abort if such a matrix does not
exist
Let G = (G𝑆 |G0Γ)P𝑆. Output (ck, sk) = ([G], (T𝑆 ,G))

OblKeyGen(gk, 𝑛, 𝐾, 𝑆′, ck = [G]𝜇): //𝑆′ ⊆ 𝑆:

Sample G1 ← F𝐾+𝑘−|𝑆′ |×|𝑆′ | , G2 ← F|𝑆′ |×|𝑆′ | , R← F|𝑆′ |×𝐾+𝑘−|𝑆′ |
Compute a matrix T ∈ F|𝑆′ |×|𝑆′ | such that (G⊤1 R⊤−G⊤2)T = I|𝑆′ | . Abort if such a matrix does
not exist
Denote by G𝑆′ the matrix containing the first 𝐾 + 𝑘 − |𝑆′ | rows of [G𝑆′]

Output ckobl = [G∗] =
([G1] [G𝑆′]
[G2] R[G𝑆′]

)
P𝑆′ and 𝜏obl = T∗ =

(
R⊤T
−T

)
Com(ck, x): Parse ck = [G] and output [c] = [G]x
Extract(𝜏, [c]𝜇): Output [x𝑆] = T⊤𝑆 [c]

Proof. First, we show that CS′ is an SSB commitment. For index-hiding we can use a stan-
dard hybrid argument to show that the concatenation of 𝐾 commitment keys are indeed
indistinguishable. Somewhere Statistical Binding and 𝐺-extractability of CS′ follow from
the respective properties of CS. Indeed, for the former, note that each individual commit-
ment is statistically binding in one coordinate, and for a commitment-opening to verify,
all commitments are checked w.r.t. to the same opening; thus, effectively the commitment
is statistically binding in the set S. For the latter, we use the same argument and the fact
that the extractor of CS can 𝐺-extract each value independently.

For oblivious trapdoor generation, note that the srs output by OblKeyGen follow exactly
the same distribution as the one output by KeyGen as well as a valid trapdoor for 𝑆′. □

Next, we present MPed a more efficient SSB commitment scheme family with oblivious trap-
door generation. The construction is presented in Fig. 4.3. The scheme is parameterized by
a group description gk, the message space is F𝑛 and we extract [x𝑆]. The construction is
essentially the one given in [FLPS20], which in turn is a generalization of the so called Multi-
Pedersen commitments from [GHR15], with a minor change in the key generation algorithm.

For simplicity, we describe the oblivious key generation algorithm in terms of the permutation

88

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

P𝑆 while it is not really needed. Indeed, it only needs to randomly sample itself the columns
corresponding to 𝑆′ and sample the lower rows as a random combination of upper rows or
columns in 𝑆′.

In [FLPS20] it is shown that the Index Set Hiding property can be reduced to DDH with a
security lost of 2 log𝐾 when G0 is uniform using the results of [Vil12]. In our case G0 it is not
completely uniform as some part depends on 𝒟𝑘 . While it seems still possible to use [Vil12],
we use for simplicity a naive hybrid argument at the cost of a less tight reduction. Although
the security lost is 2𝐾 instead of 2 log𝐾, in general 𝐾 is small (constant in our instantiations)
and hence it doesn’t make much difference.

Theorem 12. Construction MPed of Fig. 4.3 is an SSB commitment scheme. It is somewhere
statistically binding and G-extractable with knowledge error 𝐾

𝑝 and Index Set Hiding with dis-
tinguishing advantage at most 2𝐾 · 𝒜MDDH-𝒟𝑘 (𝒟), where 𝒟 is a PPT adversary against the
𝒟𝑘-MDDH assumption.

Proof. We first show that KeyGen aborts only with probability 𝐾
𝑝 . Let G⊥0 be a matrix

whose columns are a basis of the kernel of G⊤0 . Since G0 is uniformly distributed, by
the Schwartz-Zippel lemma, G0 has rank 𝐾 + 𝑘 − |𝑆 | with probability at least 1 − 𝐾+𝑘−|𝑆 |

𝑝 .
Now, consider the matrix G⊤𝑆G⊥0 . Again, by the Schwartz-Zippel lemma and the fact that
G𝑆 is uniformly distributed, this matrix has rank |𝑆 | with probability at least 1 − |𝑆 |𝑝 ,
and thus, it is invertible. Let T be its inverse. This matrix exists except with probabil-
ity 𝐾+𝑘−|𝑆 |+|𝑆 |

𝑝 = 𝐾+𝑘
𝑝 . Now, set T𝑆 = G⊥0 T. We have that G⊤𝑆T𝑆 = G⊤𝑆G⊥0 T′ = I|𝑆 | and

G⊤0 T𝑆 = G⊤0 G⊥0 T′ = 0𝐾+𝑘−|𝑆 |×𝑆, which concludes the proof.

Index Set Hiding. Consider the following sequence of hybrid games.

• Game𝒟0 : In this gamewe sample (ck, sk) ← KeyGen(1𝜅 , gk, 𝑛, 𝐾, 𝑆0) andoutput𝒟(ck).
• Game𝒟1 : In this gamewe sample (ck, sk) ← KeyGen(1𝜅 , gk, 𝑛, 𝐾, ∅) and output𝒟(ck).
• Game𝒟2 : In this gamewe sample (ck, sk) ← KeyGen(1𝜅 , gk, 𝑛, 𝐾, 𝑆1) andoutput𝒟(ck).

Noting that in Game0 and in Game1, the difference in the distributions of ck is that in the
former G𝑆0 is uniform, while in the later G𝑆0 = G0Γ𝑆0 , where Γ𝑆0 ∈ F𝐾+𝑘−|𝑆 |×|𝑆0 |. Using a
standard hybrid argument, we can bound the advantage of distinguishing these games by
|𝑆0 | ≤ 𝐾 times the advantage of breaking the 𝒢0-MDDH assumption. It is not hard to see
that the 𝒢0-MDDH can be reduced (without security lost) to the 𝒟𝑘-MDDH assumption.
We conclude that the advantage of distinguishing Game0 and Game1 can be bounded by
𝐾 · 𝒜𝒟𝑘-MDDH. The same argument applies to Game1 and in Game2.

Somewhere Statistically Binding. Finally we show the somewhere statistically binding
and extractability property. Let (ck, sk) ← KeyGen(gk, 𝑛, 𝐾, 𝑆) be the sampled key and

89

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

G𝑆 ,G0 , Γ the values defining it. Conditioned on KeyGen not failing, which only happens
with probability at most 1 − 𝐾

𝑝 , the matrix T𝑆 ∈ F𝐾+𝑘×|𝑆 | satisfies T⊤𝑆G = Σ𝑆P𝑆.

Now let x, x′ ∈ F𝑛 . For extractability, note that

T⊤Com([G], x) = T⊤[G]x = [Σ𝑆P𝑆]x = [x𝑆]
Additionally, if c([G], x) = c([G], x′) and we multiply by T⊤ on both sides, we get that
x𝑆 = x′𝑆. □

In the next Theorem we assume 𝒟𝑘 outputs full rank matrices with overwhelming probability.
Note that this is true for most matrix distributions such as the uniform and the linear family.

Theorem 13. Construction MPed of Fig. 4.3 satisfies Oblivious Trapdoor Generation. Further-
more, for all even unbounded𝒟 = (𝒟1 ,𝒟2), against oblivious trapdoor generation,𝒜MPed

obl (𝒟) ≤
𝐾
𝑝 .

Proof. Let 𝐾 ≤ 𝑛 and 𝑆′ ⊆ 𝑆 ⊆ [𝑛]. We first show that the oblivious key follows exactly the
same distribution as the original key. Let ck := [G] be the output of KeyGen(gk, 𝑛, 𝐾, 𝑆)
and ckobl = [G∗]𝜇 be the output of OblKeyGen(gk, 𝑛, 𝐾, 𝑆′, [G]). We can write ck as G =((G𝑆′ | G𝑆′ |𝑆)P𝑆′ |𝑆 G0Γ

)
P𝑆.

Let G𝑆′ |𝑆 ∈ F𝐾+𝑘−|𝑆
′ |×𝐾−|𝑆′ |

𝑝 , G𝑆′ |𝑆 ∈ F|𝑆
′ |×𝐾−|𝑆′ |, G0 ∈ F𝐾+𝑘−|𝑆′ |×𝑘 , G0 ∈ F|𝑆

′ |×𝑘
𝑝 , such that

G𝑆′ |𝑆 =
(
G𝑆′ |𝑆
G𝑆′ |𝑆

)
,G0 =

(
G0
G0

)
. We claim that there exists a matrix R ∈ F|𝑆′ |×𝐾+𝑘−|𝑆′ |, uni-

formly distributed, such that
(
G𝑆′ |𝑆 |G0

)
= R

(
G𝑆′ |𝑆 |G0

)
as in the output of OblKeyGen. If

this is the case, the distributions of ck output by KeyGen and ckobl output by OblKeyGen
are identical, since we can write

G =
(
G𝑆′

((
G𝑆′ |𝑆 G0
G𝑆′ |𝑆 G0

) (
I 0
0 Γ

))
P𝑆′ |𝑆

)
P𝑆

=

(
G𝑆′

((
G𝑆′ |𝑆 G0

R
(
G𝑆′ |𝑆 G0

)) (
I 0
0 Γ

))
P𝑆′ |𝑆

)
P𝑆

=
(
G𝑆′

G𝑆
RG𝑆

)
P𝑆

First we show that the matrix (G𝑆′ |𝑆 |G0) is full rank with overwhelming probability. In-

deed, G0 =
(

A
WA

)
, where A ← 𝒟𝑘 ,W ← F𝐾−1−|𝑆′ |×𝑘+1, and it has rank 𝑘. By the fact

that G𝑆′ |𝑆 is uniform, using the Schwartz-Zippel lemma we get that (G𝑆′ |𝑆 |G0) has rank

90

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Figure 4.4 KMPed SSB commitment schemes parametrized by thematrix distributions𝒟𝑘 .
We denote gk𝜇 the description of G𝜇.
KeyGen(gk, 𝑛, 𝐾, 𝑆):

Let G,TG ← MPed.KeyGen(gk1 , 𝑛, 𝐾, 𝑆)
Let H,TH ← MPed.KeyGen(gk2 , 𝑛, 𝐾, 𝑆)
Z← F(𝐾 + 𝑘)2 × 𝑛2

Define the three keys

ck1 = [G]1 , 𝜏1 = TG , aux1 = ([H]2 , [G ⊗ H − Z]1 , [Z]2)
ck2 = [H]2 , 𝜏2 = TH , aux2 = ([G]1 , [G ⊗ H − Z]1 , [Z]2)

ck𝑠 = ([G ⊗ H − Z]1 , [Z]2) 𝜏𝑠 = TH ⊗ TH , aux𝑠 = ([G]1 , [H]2)

𝐾 + 𝑘 − |𝑆′ | except with probability 𝐾−|𝑆′ |
𝑝 . This means that the matrix is invertible and we

can set R = (G𝑆′ |𝑆 |G0)(G𝑆′ |𝑆 |G0)−1. Furthermore, both G𝑆′ |𝑆 and G0 = WA are uniform,
the latter since W ∈ F|𝑆′ |×𝑘+1 is uniformly distributed and A is full rank, and the former
by construction.

To conclude the proof, we to show that the trapdoor output by OblKeyGen(gk, 𝑛, 𝐾, 𝑆′, [G])
is correct w.r.t ckobl, that is T∗⊤G∗ = Σ𝑆′. By a simple calculation,

T∗⊤G∗ =
(
T⊤R −T

) (
G1 G𝑆′
G2 RG𝑆′

)
=

(
T⊤(RG1 −G2) T⊤RG𝑆′ − T⊤RG𝑆′

)
=

(
I|𝑆′ | 0

)
= Σ𝑆′

where T⊤(RG1 −G2) = I𝑆′ by construction. □

In the next sections we assume that KeyGen and OblKeyGen do not abort. This is w.l.o.g. si-
nce we can always re-sample values when an abort happens. Note that in this case, the keys
of both KeyGen and OblKeyGen are “somewhere perfectly binding”.

Finally, we present in Fig 4.4 a construction that is based on Kronecker product distributions.
Consider the values [G]1 , [H]2 , [G ⊗ H − Z]1 , [Z]2, where [G]1 , [H]2 are computed according
to MPed and Z is uniformly distributed. From this distribution, we can derive three different
commitment keys: [G]1 for committing to G1, [H]2 for committing to G2 and a split key
[G ⊗ H − Z]1, [Z]2. We refer to the first two keys as the source keys and to the latter as the
target key. We only describe the key generation algorithm since Com and Extract are derived
by the algebraic structure of the scheme. For simplicity, we only consider the case we will be
using later: “combining” commitments with the same parameters 𝑛, 𝐾 and extractable at the
same set 𝑆. The construction, however, generalizes to arbitrary parameters and sets.

The source commitments are identical to MPed construction for G1 and G2 respectively. The
only difference is that the adversary also knows the “split” part of the key [G ⊗ H − Z]1,
[Z]2 and we need to show that the properties are preserved. We next show that all three

91

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

derived constructions are SSB commitment schemes even with the auxiliary information the
adversary is given for each. The source schemes are extractable at 𝑆 and the target scheme
at 𝑆2 = {(𝑠1 − 1)𝑛 + 𝑠2}𝑠1 ,𝑠2∈𝑆.

Theorem 14. If we instantiate KMPed using MPed under any distribution𝒟𝑘 that satisfies𝒟𝑘-
MDDH assumption in both groups then the source constructions are algebraic SSB commitment
scheme and the target construction is a split algebraic commitment key. Furthermore, all derived
schemes have oblivious trapdoor generator.

Proof.

Somewhere Statistically Binding and 𝐺-Extractability. The source constructions are lo-
cally extractable by the local extractability of MPed. We show that the target construction
is also extractable at 𝑆2. Let Q1 = G ⊗ H − Z and Q2 = Z and assume that z, z′ ∈ F𝑛2

satisfy KMPed𝑡 .Com(ck, z) = KMPed𝑡Com(ck, z′). This means that (G ⊗ H)z = (G ⊗ H)z′.
Therefore,

0 = (TG ⊗ TH)(G ⊗ H)(z − z′)
= (TGG) ⊗ (THH)(z − z′)
= (Σ𝑆P𝑆) ⊗ (Σ𝑆P𝑆)(z − z′)
= (Σ𝑆 ⊗ Σ𝑆)(P𝑆 ⊗ P𝑆)(z − z′)
= z𝑆,𝑆 − z′𝑆,𝑆
= z𝑆2 − z′𝑆2

Note that this also shows that the trapdoors correctly extracts a correct splitting of z𝑆 from
KMPed𝑡 .Com(ck, z).

Index Set Hiding. For index set hiding, it is enough to show that the collective key

[G]1 , [H]2 , [G ⊗ H + Z]1 , [Z]2
is indistinguishable for different values (𝑆1 , 𝑆2) ≠ (𝑆′1 , 𝑆′2). The result follows from the
indistinguishability of the following distributions (this is essentially part of the proof
in [GHR15, Theorem 6]).

1. [G]1 , [H]2 , [G ⊗ H + Z]1 , [−Z]2, G,H binding at 𝑆1 , 𝑆2

2. [G]1 , [H]2 , [G]1 ⊗ H + [Z]1 , [−Z]2 G,H binding at 𝑆1 , 𝑆2

3. [G]1 , [H]2 , [G]1 ⊗ H + [Z]1 , [−Z]2 G,H binding at 𝑆′1 , 𝑆2

4. [G]1 , [H]2 , [Z]1 ,G ⊗ [H]2 − [Z]2 G,H binding at 𝑆′1 , 𝑆2

5. [G]1 , [H]2 , [Z]1 ,G ⊗ [H]2 − [Z]2 G,H binding at 𝑆′1 , 𝑆
′
2

6. [G]1 , [H]2 , [G ⊗ H + Z]1 , [−Z]2 G,H binding at 𝑆′1 , 𝑆
′
2

92

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Perfect indistinguishability between distributions 1-2, 3-4 and 5-6 follows from the fact
that always both distributions are uniformly distributed conditioned on their sum being
equal to G ⊗ H. Computational indistinguishability of distributions 2-3 and 4-5 follows
from the ISH of MPed1 and MPed2 respectively.

Oblivious Trapdoor Generation. Wewill show how to simultaneously sample oblivious
keys for all constructions. We construct an oblivious key generation algorithm as follows.

KMPed.OblKeyGen(gk, 𝑛, 𝐾, 𝑆, ([Q1]1 , [Q2]2 , [G]1 , [H]2)):
1. Get oblivious keys and trapdoors for G,H using MPed𝜇.OblKeyGen.

([G∗]1 ,T1) ← MPed1.OblKeyGen(gk, 𝑛, 𝐾, 𝑆, [G]1)
([H∗]2 ,T2) ← MPed2.OblKeyGen(gk, 𝑛, 𝐾, 𝑆, [H]2)

and use the random coins of OblKeyGen to retrieve G∗𝑆1
,R1 and H∗𝑆1

,R2 such that

[G∗]1 =
(
[G∗𝑆]1

[G𝑆]1
R1[G𝑆]1

)
P𝑆 and H∗ =

(
[H∗𝑆]2

[H𝑆]2
R[H𝑆]2

)
P𝑆 ,

as defined in Fig. 4.3.
2. Let [A1]1 , [A2]2 be the matrices containing the first (𝐾 + 𝑘 − |𝑆 |)(𝐾 + 𝑘) rows of the

matrices [(Q1)𝑆2]1 and [(Q2)𝑆2]2.
3. LetΠΠΠ1 andΠΠΠ2 the permutation matrices of Fact 3 for matrices with (𝐾+ 𝑘− |𝑆 |)2 rows,

and (𝑛 − |𝑆 |)2 columns.
4. Define [B1]1 and [B2]2 as the matrices of the first (𝐾+ 𝑘− |𝑆 |)2 columns ofΠΠΠ⊤1 [A1]1ΠΠΠ⊤2

andΠΠΠ⊤1 [A2]2ΠΠΠ⊤2 , respectively.
5. Redefine A1 ,A2 as

[A∗1]1 = ΠΠΠ1

([B1]1
(R2 ⊗ I𝐾+𝑘−|𝑆 |)[B1]1

)
ΠΠΠ2 and [A∗2]2 = ΠΠΠ1

([B2]2
(R2 ⊗ I𝐾+𝑘−|𝑆 |)[B2]2

)
ΠΠΠ2

6. Pick uniform matrices

Z1 ← F(𝐾+𝑘)×𝑛 |𝑆 | , Z2 ← F(𝐾+𝑘)×(𝑛−|𝑆 |)|𝑆 | , Z3 ← F(𝐾+𝑘)×(𝑛−|𝑆 |)(𝑛−|𝑆 |

7. Define split key

[Q∗1]1 =
(
Z1 [G∗

𝑆
]1 ⊗ H∗𝑆 + [Z2]1

([A∗1]1(R1 ⊗ I𝐾+𝑘)[A∗1]1
)
+ [Z3]1

)
(P𝑆 ⊗ P𝑆)

[Q∗2]2 =
(
G∗𝑆 ⊗ [H∗]2 − [Z1]2 − [Z2]2

([A∗2]2(R1 ⊗ I𝐾+𝑘)[A∗2]2
)
− [Z3]2

)
(P𝑆 ⊗ P𝑆)

8. Return ([G∗]1 , [H∗]2 , [Q∗1]1 , [Q∗2]2 , 𝜏 = T1 ⊗ T2).

Next we show that the key is correctly distributed. Since MPed1 and MPed2 are both
oblivious SSB commitments, it holds that [G∗]1 , [H∗]2 have the correct distribution. It

93

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

remains to show that Q∗ = Q∗1 + Q∗2 = G∗ ⊗ H∗. This is enough since if this holds, the
commitment key [Q∗1]1 , [Q∗2]2 consists of two uniform matrices, conditioned on their sum
equaling G∗ ⊗ H∗, and this is the distribution of the honest key as well.

First, observe that omitting the permutations, the shape of the matrix G∗ ⊗ H∗ will be

G∗ ⊗ H∗ =
(
G∗𝑆 G∗

𝑆

)
⊗

(
H∗𝑆 H∗

𝑆

)
=

(
G∗𝑆 ⊗ H∗ G∗

𝑆
⊗ H∗𝑆 G∗

𝑆
⊗ H∗

𝑆

)
By construction, the first two parts of the matrix Q∗ we construct are consistent with G∗𝑆 ⊗
H∗ and G∗

𝑆
⊗ H∗𝑆 respectively.

It remains to show that the same hold for the third part of Q∗1 ,Q
∗
2. Noting that these

columns correspond to the indices not in 𝑆2, we denote them Q∗
1,𝑆2

,Q∗
2,𝑆2

. First, note that

for the initial matrices Q1 ,Q2 it holds that Q1,𝑆2 + Q2,𝑆2 =
(
G𝑆 ⊗ H𝑆
G𝑆 ⊗ H𝑆

)
Furthermore, A =

A1 +A2 = G𝑆 ⊗ H𝑆. It follows that

ΠΠΠ⊤1 AΠΠΠ⊤2 = ΠΠΠ⊤1ΠΠΠ1H𝑆2
⊗ G𝑆1

ΠΠΠ2ΠΠΠ⊤2 =

(
H𝑆2
⊗ G𝑆1

H𝑆2
⊗ G𝑆1

)
and hence B = B1 + B2 = H𝑆 ⊗ G𝑆. Finally we have that

Q∗
𝑆,𝑆

=
(

A∗1 +A∗2(R1 ⊗ I𝐾+𝑘)(A∗1 +A∗2)
)
= ©«ΠΠΠ1

(
B1 + B2

(R2 ⊗ I𝐾+𝑘−|𝑆 |)(B1 + B2)
)
ΠΠΠ2

(R1 ⊗ I𝐾+𝑘)(A∗1 +A∗2)
ª®¬

= ©«ΠΠΠ1

(
H𝑆 ⊗ G𝑆

(R2 ⊗ I𝐾+𝑘−|𝑆1 |)(H𝑆 ⊗ G𝑆)
)
ΠΠΠ2

(R1 ⊗ I𝐾+𝑘)(A∗1 +A∗2)
ª®¬ = ©« ΠΠΠ1

(
H𝑆

R2H𝑆

)
⊗ G𝑆ΠΠΠ2

(R1 ⊗ I𝐾+𝑘)(A∗1 +A∗2)
ª®¬

=

(
ΠΠΠ1H∗

𝑆
⊗ G𝑆ΠΠΠ2

(R1 ⊗ I𝐾+𝑘)(A∗1 +A∗2)

)
=

(
G𝑆1
⊗ H∗

𝑆2

(R1 ⊗ I𝐾2+𝑘)(G𝑆1
⊗ H∗

𝑆2
)

)
= G∗

𝑆
⊗ H∗

𝑆
.

□

4.4 Quasi-Arguments with Pre-processing

In this section we introduce an extension of Quasi Arguments as defined in [KPY19] which
adds support for language dependent srs or pre-processing such as the so called QA-NIZK ar-
guments [JR13]. Additionally we use different languages for completeness and local soundness,
i.e. promise problems, to incorporate the “knowledge transfer” soundness of [GR19].

94

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Following [JR13], languages are parametrized by 𝜌 ∈ ℒpar and 𝜌 sampled from some distribu-
tion 𝒟par. We say sf that 𝒟par is witness samplable if 𝜌 can be efficiently sampled together
with a witness 𝜃 for 𝜌 ∈ ℒpar. We simply write (𝜃, 𝜌) ← 𝒟par. Each 𝜌 ∈ ℒpar defines a
language ℒ𝜌 with the corresponding relations ℛyes

𝜌 , that is ℒ𝜌 = {x | ∃w s.t. (x,w) ∈ ℛyes
𝜌 }.

After the language is fixed there is a (language dependent) prepossessing stage where a com-
mon reference string is generated. Going a step forward, we would like our statements to be
commitments and that ℛyes

𝜌 puts some restriction on the commitment opening. Since we will
be using SSB commitments, the language parameter must contain the SSB commitment key.
Therefore, we assume distribution 𝒟par receives as input 𝑑 ∈ N (the size of the opening), a
locality parameter 𝐾 ≤ 𝑑 and a set 𝑆 ⊆ [𝑑]. It will be useful to define ℒyes

𝜌 = ℒ𝜌 and ℒno
𝜌 the

complement of ℒyes
𝜌 , and similarly define ℛyes

𝜌 and ℛno
𝜌 . Traditional arguments of knowledge

require that from any accepting statement and proof pair one can extract a witness w such
that (x,w) ∈ ℛno

𝜌 only with negligible probability. In a quasi-argument of knowledge only a
small part of the witness w𝑆 is extracted and (x,w𝑆) ∈ ℛyes

𝜌,𝑆 with overwhelming probability,
where ℛyes

𝜌,𝑆 is a “local version” of ℛyes
𝜌 .¹²

Our final addition is support for arguments of knowledge transfer (AoKT) [GR19]. In a nutshell,
an AoKT enables to “succinctly reuse” an AoK of the opening of some commitment 𝐶 for
constructing another AoK for commitment 𝐷. That is, given an opening w for 𝐶, it enables
to give a succinct proof that 𝐷 opens to 𝑔(w). Importantly, AoKTs can be based on falsifiable
assumptions. Following [GR19], 𝜌 ∈ ℒpar defines languages ℒyes

𝜌 and ℒno
𝜌 , with ℒno

𝜌 not
necessarily the complement of ℒyes

𝜌 (i.e. a promise problem), with their corresponding relations
ℛyes

𝜌 and ℛno
𝜌 . For no instances, the adversary provides a promise w∗ for x. In [GR19] x =

(𝐶, 𝐷) and (𝐶, 𝐷,w∗) ∈ ℒno
𝜌 if w∗ is an opening for 𝐶 but 𝑔(w∗) is not an opening for 𝐷.

In our instantiations x will be two SSB commitments to 𝐶1 , . . . , 𝐶𝑑 and 𝐷1 , . . . , 𝐷𝑑 such
that 𝐶𝑖 opens to w and 𝐷𝑖 to 𝑔𝑖(w). From the two SSB commitments we can extract 𝐶𝑆
and 𝐷𝑆. Furthermore, 𝐶𝑖 and 𝐷𝑖 might not be extractable (actually, they will be Pedersen
commitments) an hence the extractor can only compute 𝑓 (w, 𝑆) = {Com(ck𝑖 ,w) : 𝑖 ∈ 𝑆}.

We define the yes and no languages as

ℒyes
𝜌 =

{
x | ∃w s.t. (x,w) ∈ ℛyes

𝜌

}
, ℒno

𝜌,𝑆 =
{
(x,w∗) | ∃y s.t. (x, y,w∗) ∈ ℛno

𝜌,𝑆

}
where w∗ is the promise of the adversary and y is the local 𝑓 -witness that we can extract from
the adversary. Intuitively, the two witnesses of the languages are different kind of objects.
Witness y is the value we extract from the adversary, which can’t be equal to 𝑓 (w, 𝑆) for
successful adversaries, but should lie the image of 𝑓 anyway. On the other hand w is a
“proper” witness from which an y can be computed and hence belongs to the pre-image of
𝑓 .¹³

¹²In the case x is a 3-CNF formula, in [KPY19] the authors define ℛyes
𝜌,𝑆 as the pairs (x,w) where w is a

“locally satisfying assignment”. This means that every clause 𝐶 in x with all variables in 𝑆, is satisfied by w.
¹³The original definition from [GR19] is syntactically different as x is part of the statement in the yes lan-

guage. However, as the authors said, the verifier can’t read w as it will render the verification process not
succinct. Since y becomes irrelevant, we prefer to eliminate it from the yes language.

95

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

4.4.1 Arguments with No-signaling extraction and Oblivious SRS Generation

Similarly to the way we treated commitment schemes, we don’t directly prove the existence of
no-signaling extractors but first show the existence of an Oblivious srs Generation algorithm.
We then show the latter notion implies the former. For convenience, we start defining a quasi
argument without no-signaling extraction but only local knowledge soundness.

Note that in contrast with the strong soundness notion of [JR13], we do not allow the adversary
to access the witness of the language parameters 𝜃, since in some cases (knowledge transfer)
soundness makes computational assumption about the values in it. As in the commitment
space, we consider in the definitions subsets of [𝑛] of size bounded by 𝐾, but it straightforward
to modify the definitions for more general subset families 𝒮 ⊆ 2[𝑛].

Definition 29. An locally extractable proof system Π for the parameter language ℒpar and
relations ℛyes

𝜌 ,ℛno
𝜌,𝑆 is a tuple of PPT algorithms Π = (K,Prove,Verify, Extract)where

• (𝜌, 𝜃) ← 𝒟par(gk, 𝑑, 𝐾, 𝑆): Parameter generation 𝒟par takes as input a group key
gk, the locality parameter 𝐾 and a set 𝑆 ⊆ ([𝑑], . . . , [𝑑]) with |𝑆 | ≤ 𝐾; it outputs an
instance witness pair (𝜌, 𝜃) of ℒpar.

• (srs, 𝜏) ← K(𝜌, 𝜃): K takes as input an instance-witness pair (𝜌, 𝜃) of ℒpar; it outputs
a common reference string srs and an extraction trapdoor 𝜏.

• 𝜋 ← Prove(srs, x,w): Prove takes as input srs and a statement-witness pair (x,w) of
ℒyes

𝜌 ; it outputs a proof 𝜋.

• 𝑏 ← Verify(srs, x,𝜋): Verify takes as input srs, a statement x and a proof 𝜋; it outputs
a bit 𝑏 indicating if the proof 𝜋 is a valid proof.

• 𝑦 ← Extract(𝜏, x,𝜋): Extract takes as input the extraction trapdoor 𝜏, a statement x
and a proof 𝜋, and outputs a local witness y for the set 𝑆.

such that for all 𝜅 ∈ N, 𝐾 ≤ 𝑑 ∈ N, 𝑆 ⊆ [𝑑], with |𝑆 | ≤ 𝐾, Π satisfies the following
properties:

• Completeness: For all (𝜌, 𝜃) ∈ ℒpar and x,w ∈ {0, 1}∗

Pr
gk←𝒢(1𝜅)

[
Verify(srs, x,𝜋) = 1 (srs, 𝜏) ← K(𝜌, 𝜃)
∨ (x,w) ∉ ℛyes

𝜌,𝑆 𝜋← Prove(srs, x,w)
]
≥ 1 − negl(𝜅)

• Local Knowledge Soundness: For all PPT𝒜

Pr
𝑔𝑘←𝒢(1𝜅)

(𝜌, 𝜃) ← 𝒟par(gk, 𝑑, 𝐾, 𝑆);

Verify(srs, x,𝜋) = 0 (srs, 𝜏) ← K(𝜌, 𝜃);
∨ (x, y,w∗) ∉ ℛno

𝜌,𝑆 (x,w∗ ,𝜋) ← 𝒜(𝜌, srs);
𝑦 ← Extract(𝜏, x,𝜋)

 ≥ 1 − negl(𝜅)

96

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Next, we define the no-signaling property of quasi-arguments.

Definition 30. An locally extractable proof systemΠ for the parameter languageℒpar and
relations ℛyes

𝜌,𝑆 ,ℛno
𝜌,𝑆 is a quasi argument if it satisfies no-signaling extraction. That is, for all

𝜅 ∈ N, 𝐾 ≤ 𝑑, 𝑆′ ⊆ 𝑆 ⊆ [𝑑]with |𝑆 | ≤ 𝐾, and all PPT𝒜 and PPT𝒟

���������� Pr
gk←𝒢(1𝜅)

(𝜌, 𝜃) ← 𝒟par(gk, 𝑑, 𝐾, 𝑆)

(srs, 𝜏) ← K(𝜌, 𝜃)
𝒟(srs, x,𝜋, y𝑆′) = 1 (𝑥,𝜋) ← 𝒜(𝜌, srs)

if Verify(srs, x,𝜋) = 0: set x = ⊥
𝑦 ← Extract(𝜏, x,𝜋)

−

Pr
𝑔𝑘←𝒢(1𝜅)

𝒟(srs, x,𝜋, y′) = 1

(𝜌, 𝜃) ← 𝒟par(gk, 𝑑, 𝐾, 𝑆′)
(srs, 𝜏) ← K(𝜌, 𝜃);
(𝑥,𝜋) ← 𝒜(𝜌, srs)

if Verify(srs, x,𝜋) = 0: set x = ⊥;
y′← Extract(𝜏, x,𝜋)

���������� ≤ negl(𝜅)

Finally, we define the notion of oblivious locally extractable proof systems. The requirements
are that (1) the srs alone does not help PPT adversaries gain information about the extraction
set used to sample the parameters 𝜌; (2) there exists a PPT algorithm OblSetup that on input
a set 𝑆′ ⊆ 𝑆 and (𝜌, srs), sampled for extraction on the superset of 𝑆, outputs new values
(𝜌′, srs′) that are statistically close to (𝜌, srs) and additionally, it outputs a trapdoor 𝜏′ for 𝑆′
that outputs indistinguishable witnesses to the ones output for 𝑆 and restricted to 𝑆′.

Definition 31. A locally extractable proof system Π for the parameter language ℒpar and
relations ℛyes

𝜌 ,ℛno
𝜌,𝑆 is Oblivious if there exist a PPT algorithm OblSetup such that, for all

𝜅 ∈ N, 𝐾 ≤ 𝑑 ∈ N, 𝑆′, 𝑆 ⊆ [𝑑]with |𝑆′ | , |𝑆 | ≤ 𝐾,

1. Index Set Hiding: for all PPT𝒟

���� Pr
gk←𝒢(1𝜅)

[
𝒟(𝜌, srs) (𝜌, 𝜃) ← 𝒟par(gk, 𝑑, 𝐾, 𝑆)

(srs, 𝜏) ← K(𝜌, 𝜃)
]
−

Pr
gk←𝒢(1𝜅)

[
𝒟(𝜌, srs) (𝜌, 𝜃) ← 𝒟par(gk, 𝑑, 𝐾, 𝑆′)

(srs, 𝜏) ← K(𝜌, 𝜃)
] ���� ≤ negl(𝜅)

2. Oblivious Trapdoor Generation: if 𝑆′ ⊆ 𝑆 then for all, (even unbounded) adversaries

97

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

𝒜 and distinguishers𝒟������������
Pr

gk←𝒢(1𝜅)

(𝜌, 𝜃) ← 𝒟par(gk, 𝑑, 𝐾, 𝑆)
(srs, 𝜏) ← K(𝜌, 𝜃)

𝒟(𝜌′, srs′, y′) = 1 (𝜌′, srs′, 𝜏′) ← OblSetup(𝜌, srs, S′)
(x,𝜋) ← 𝒜(𝜌′, srs′)

if Verify(srs′, x,𝜋) = 0: x = ⊥
y′← Extract(𝜏′, x,𝜋)

−

Pr
gk←𝒢(1𝜅)

(𝜌, 𝜃) ← 𝒟par(gk, 𝑑, 𝐾, 𝑆)

(srs, 𝜏) ← K(𝜌, 𝜃)
𝒟(𝜌, srs, yS′) = 1) = 1 (x,𝜋) ← 𝒜(𝜌, srs)

if Verify(srs, x,𝜋) = 0: x = ⊥
𝑦 ← Extract(𝜏, x,𝜋)

��������������
≤ negl(𝜅)

Note that (2) holds against unbounded adversaries which can compute 𝜃 by themselves.

Next, we present a proof that if a locally extractable proof system satisfies oblivious srs gen-
eration, then it is no-signaling. The proof is similar to the proof of Thm. 10.

Theorem 15. LetΠ = (K,Prove,Verify, Extract,OblSetup) be an Oblivious Locally Extractable
Proof System for the parameter language ℒpar and relations ℛyes

𝜌 ,ℛno
𝜌,S. Then,Π has no signaling

extraction.

Proof. Fix any 𝑆′ ⊆ 𝑆 ⊆ [𝑑] with |𝑆 | ≤ 𝐾, and let 𝒟 be a PPT distinguisher against no
signaling extraction for these values, on instance-proof pairs output by a PPT 𝒜. We
show by a sequence of games that its success probability is negligible.

Game𝒟 ,𝒜0 (1𝜅): We execute (𝜌, 𝜃) ← 𝒟par(gk, 𝑑, 𝐾, 𝑆); (srs, 𝜏) ← K(𝜌, 𝜃); we then
get (x,𝜋) ← 𝒜(𝜌, srs) and change x to ⊥ if Verify(srs, x,𝜋) = 0; we compute y ←
Extract(𝜏, x,𝜋). The output is𝒟(srs, x,𝜋, y𝑆′).
Game𝒟 ,𝒜1 (1𝜅): We execute (𝜌, 𝜃) ← 𝒟par(gk, 𝑑, 𝐾, 𝑆); (srs, 𝜏) ← K(𝜌, 𝜃); we use the
oblivious extractor to get (𝜌′, srs′, 𝜏′) ← OblSetup(𝜌, srs, S′); we then get (x,𝜋) ←
𝒜(𝜌′, srs′) and change x to ⊥ if Verify(srs, x,𝜋) = 0; we compute 𝑦′ ← Extract(𝜏′,
x,𝜋). The output is𝒟(srs′, x,𝜋, y′).
Game𝒟 ,𝒜2 (1𝜅): This is the same as Game𝒟 ,𝒜1 but in the first step we sample parame-
ters for 𝑆′, that is we execute (𝜌, 𝜃) ← 𝒟par(gk, 𝑑, 𝐾, 𝑆′).
Game𝒟 ,𝒜3 (1𝜅): We execute (𝜌, 𝜃) ← 𝒟par(gk, 𝑑, 𝐾, 𝑆′); (srs, 𝜏) ← K(𝜌, 𝜃); we then
get (x,𝜋) ← 𝒜(𝜌, srs) and change x to ⊥ if Verify(srs, x,𝜋) = 0; we compute y′ ←
Extract(𝜏, x,𝜋). The output is𝒟(srs, x,𝜋, y′).

98

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

We next show that for all 1 ≤ 𝑖 ≤ 3,���Pr
[
Game𝒟 ,𝒜𝑖 (1𝜅) = 1

]
− Pr

[
Game𝒟 ,𝒜𝑖−1 (1𝜅) = 1

] ��� ≤ negl(𝜅) (4.4)

• Case 𝑖 = 1, 𝑖 = 3. Note that for 𝑖 = 1, the difference in the two games is exactly
as in the two cases of the oblivious trapdoor generation property for 𝑆′ ⊆ 𝑆, so the
outputs of games are statistically close. For case 3, we use the same argument for
𝑆′ ⊆ 𝑆′.

• Case 𝑖 = 2 The only difference in the games is how we setup the initial srs, either
by sampling for 𝑆′ or for 𝑆. The output of the two games are computationally in-
distinguishable by the index set hiding property, even when the adversary is given
ℎns(𝜃).

By a standard argument we get that, for all PPT𝒟 ,𝒜,���Pr
[
Game𝒟 ,𝒜0 (1𝜅) = 1

]
− Pr

[
Game𝒟 ,𝒜5 (1𝜅) = 1

] ��� ≤ negl(𝜅)

Finally, noting that Game𝒟 ,𝒜0 , Game𝒟 ,𝒜3 correspond to the two cases of no signaling ex-
traction, we conclude the proof. □

4.4.2 Succinct Pairing Based Quasi-Arguments

In this section we present quasi arguments for various languages using SSB commitments with
oblivious trapdoor generation. We first present the simpler case, membership in linear spaces,
and then we present some extensions of it, specifically a knowledge transfer version, and a
knowledge transfer version for statements split in the two groups. Finally, we use the latter to
build a quasi argument of knowledge transfer for Hadamard products.

In this section, we only present a detailed security analysis for the former construction; the
rest are deferred to Sec. 4.7. This is because the analysis of the latter constructions essentially
consist of slightly “tweaking” the linear space membership construction. Thus, in this section,
we only present the statements of the properties they satisfy in the context on which we will
use them in the delegation construction.

4.4.2.1 Quasi Arguments of Membership in Linear Spaces

Let 𝒰 be a witness samplable distributions sampling ([U]1 ,U), where U ∈ F𝑑×𝑛. We assume

that for any 𝑆 ⊆ [𝑑], given only [U]1 such that U = P⊤𝑆

(
U𝑆
U𝑆

)
there exists an efficient way of

sampling [U𝑆].¹⁴ Also, let CS be an algebraic SSB commitment key. The parameter language

¹⁴We will instantiate the argument with U a block lower triangular matrix where each row is of the form
(U1 ,U2 , . . . ,U𝑖 , 0, . . . , 0) where {U𝑖}𝑖 are independent random variables. Then is clear that from [U𝑆]1 we
know [U𝑖]1 up to 𝑖 = max 𝑆, and the rest

{
U𝑗 : 𝑗 ∉ 𝑆

}
can be sampled independently.

99

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Figure 4.5 Construction QALin for membership in linear spaces. Note that this is just the
argument of [KW15] for matrix [GU]1.
𝒟par(gk, 𝑑, 𝐾, 𝑆):

([U]1 ,U) ← 𝒰
([G]1 ,T,G) ← CS.KeyGen(gk, 𝑑, 𝐾, 𝑆)
Output (𝜌, 𝜃)where 𝜌 = (gk, [G]1 , [U]1), 𝜃 = (G,U,T)

K(𝜌, 𝜃):
Sample K← F𝐾+𝑘×𝑘 , A←𝒟𝑘 , and redefine A as its first 𝑘 columns
Compute [B]1 = [U⊤]1G⊤K, C = KA
Output (srs, 𝜏)where srs = ([A]2 , [B]1 , [C]2), 𝜏 = T

Prove(srs, [c]1 ,w):
Output [𝜋𝜋𝜋]1 ← w⊤[B]1

Verify (srs, [c]1 , [𝜋𝜋𝜋]1):
Output 1 iff 𝑒 ([𝜋𝜋𝜋]1 , [A]2) = 𝑒 ([c]1 , [C]2) and 0

Extract (𝜏, [c]1 , [𝜋𝜋𝜋]1):
Output [y]1 ← T⊤[c𝑆]1, otherwise output ⊥

is
ℒpar = {[U]1 , [G]1 | ∃U,G s.t. ([U]1 ,U) ∈ Sup(𝒰) and

([G]1 ,G,T) ∈ Sup(CS.KeyGen(gk, 𝑑, 𝐾, 𝑆))}

We assume that the corresponding relation is efficiently verifiable¹⁵. The parameters 𝜌 =
([U]1 , [G]1) ← (𝒰 ,CS.KeyGen(gk, 𝑑, 𝐾, 𝑆)) define the following relations:

Lin-ℛyes
𝜌 = {([c]1 ,w) : c = GUw} ,

Lin-ℛno
𝜌,𝑆 = {([c]1 , [y]1) : y is a valid 𝑆-opening of c and y ∉ Im(U𝑆)}

The advice is the empty string while the extractor should retrieve 𝑓 (w, 𝑆) = [U𝐴]1w from
any accepting statement and proof pair. We present the construction QALin in Fig. 4.5.
The construction is essentially the quasi adaptive construction of membership in linear space
of [KW15] for the matrix [GU]1.

Remark (Knowledge transfer variant). Following the analysis of [GR19], one can also
consider a variant of the construction that satisfies knowledge transfer, assuming some

¹⁵This isw.l.o.g. since one can extend thewitness to include the randomness used to sample the parameters.

100

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

hardness assumption (MDDH) for the distribution𝒰 . We omit presenting it since we will
present a more general variant, knowledge transfer for the bilateral case.

We next show that the construction is a quasi argument of knowledge. We first consider the
local extractability properties of the construction and then the oblivious trapdoor generation,
which implies the no-signaling property.

First, we prove local soundness. Our strategy is to reduce the local knowledge soundness to the
soundness of the membership in linear spaces construction of [KW15] for the sum-matrix of U
defined by 𝑆. Recall that the soundness of the latter construction holds under the 𝒟𝑘-KerMDH
assumption.

Theorem 16. Let𝒰 be a witness samplable distribution, 𝒟𝑘 be a matrix distribution for which
𝒟𝑘KerMDH holds, and CS an algebraic SSB commitment. Then, construction QALin of Fig. 4.5
satisfies local knowledge soundness for (Lin-ℛyes

𝜌 , Lin-ℛno
𝜌,𝑆).

Proof. For completeness, we have that if c = GUw, then

c⊤C = (GUw)⊤C = w⊤U⊤G⊤C = w⊤U⊤G⊤KA = w⊤BA = 𝜋𝜋𝜋A.

Local knowledge soundness is guaranteed by the local extractability of the SSB commit-
ment scheme and soundness of Kiltz and Wee proof system. Note that the extractor al-
ways outputs a valid partial opening of [c]1 given an accepting proof [𝜋𝜋𝜋]1, by the local
extractability property of the SSB commitments. We claim that this opening must lie in
Im([U𝑆]1). Assume otherwise, and let 𝒜 be a PPT adversary that makes the extraction
fail. We construct a PPT adversary ℬ𝑆 that breaks strong soundness of Kiltz and Wee for
the matrix U𝑆, conditioned on𝒜 giving a valid proof. ℬ𝑆 works as follows: it takes input
srs𝑆 containing [U𝑆]1 ∈ G|𝑆 |×𝑑, [A]2 ∈ G𝑘×𝑘2 , [B†]1 ∈ G𝑑×𝑘 , [C†]2 ∈ G|𝑆 |×𝑘2 and the discrete
logarithms of matrix U𝑆 and does the following:

• It samples ([U𝑆]1 ,U𝑆) s.t. U = P⊤𝑆

(
U𝑆

U𝑆

)
.

• It samples ([G]1 ,G,T) ← CS.KeyGen(gk, 𝑛, 𝑑, 𝐾, 𝑆) and a randommatrixR← F𝐾+𝑘×𝑘 .
• It computes [B]1 = [B†]1 + [U]⊤1 G⊤R, [C]2 = T[C†]2 +R[A]2.
• It sets 𝜌 := (gk, [G]1 , [U]1) and srs := ([A]2 , [B]1 , [C]2).

It then executes 𝒜(𝜌, srs) until it outputs [c]1 , [𝜋𝜋𝜋]1. If this is an accepting proof pair, ℬ𝑆
sets [x†]1 := T[c]1 and [𝜋𝜋𝜋†]1 := [𝜋𝜋𝜋]1 − [c]⊤1 R.

First, we claim that the values 𝜌, srs given as input to 𝒜 are identically distributed to
honestly created ones and thus do not skew the probability that𝒜 outputs a valid proof.
This is immediate for 𝜌 since it is sampled honestly. We show that this is true for srs aswell.

101

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Let K† ∈ F|𝑆 |×𝑘 be the implicit matrix in srs𝑆, that is, it satisfies B† = U⊤𝑆K† and C† = K†A.
Consider the matrix K = TK†+R, and note that this matrix is uniformly distributed since
R is uniformly distributed. Thus K is distributed identically to an honestly generated
K′ for generating a srs. We claim that the srs output by ℬ𝑆 is identically distributed to
sampling this matrix and computing the other values honestly. Indeed we have that

C = TC† +RA
= TK†A +RA
= (TK† +R)A
= KA

and B = B† +U⊤G⊤R
= U⊤𝑆K† +U⊤G⊤R
= U⊤G⊤TK† +U⊤G⊤R
= U⊤G⊤(TK† +R)
= (GU)⊤K

where the second equality for B follows since by the properties of algebraic SSB commit-
ments we have T⊤G =

(
I|𝑆 | 0

)
P𝑆 which gives

U⊤G⊤T = U⊤P⊤𝑆

(
I|𝑆 |
0

)
= U𝑆

So, the outputted srs srs′ is indeed identically distributed with an honest one.

Finally, we show that if 𝒜 outputs a valid proof [𝜋𝜋𝜋]1, then ℬ𝑆 outputs a valid statement-
proof pair w.r.t. to srs𝑆. Indeed, by the local extractability property of the commitment
scheme, ℬ𝑆 always outputs some [x†]1 consistent with [c]1, and also the proof verifies,
since we have

𝜋𝜋𝜋A = c⊤C = c⊤KA = c⊤(TK† +R)A = (x†)⊤K†A + c⊤RA

which gives 𝜋𝜋𝜋†A = 𝜋𝜋𝜋A − c⊤RA = (x†)⊤K†A = (x†)C†. We conclude that [𝜋𝜋𝜋†]1 is a valid
proof for [x†]1 ∉ Im([U𝑆]1) and ℬ𝑆 breaks soundness of Kiltz and Wee construction. □

We next show that the QALin construction is no-signaling. The property relies on the oblivious
trapdoor generation and index set hiding of SSB commitments. We note that the property
holds even if the adversary knows the discrete logarithms of elements in U as well as any
information about the commitment key that does not break the index set hiding property.

Our proof strategy is the following: first, we show that there is an alternative way to sample
the srs and then we use this alternative key generation algorithm in proving that QALin is
oblivious. Then, the no-signaling property follows by Thm. 15.

Lemma 1. There exists a modified srs generation algorithm K′ that on input (𝜌,U) outputs an srs
such that (𝜌, srs) are identically distributed to the output of the honest algorithm K(𝜌, 𝜃).

The lemma follows directly by noting that [B]1 = [U⊤]1GK = U⊤[G]1K. Given that this
result holds, we slightly abuse notation and refer to K′ as K, that is we use the same name for
the honest and the simulated algorithm.

102

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Theorem 17. Let 𝒰 be a witness samplable distribution, and CS be an algebraic SSB commit-
ment scheme with perfect completeness, index set hiding and oblivious trapdoor generation. Then
Construction QALin of Fig. 4.5 is oblivious.

Proof. For index set hiding, it is enough to notice that in both cases, the srs of QALin can
be efficiently computed given only ck = [G]1. Indeed, by sampling [U]1 ,U ← 𝒰 , all
values of srs are efficiently computable, as noted in the Lemma 1. Thus, a distinguishing
advantage in index set hiding of QALin immediately implies equal advantage on the index
set hiding property of CS.

For oblivious trapdoor generation we first describe the OblSetup algorithm. Let 𝑆′ ⊆ 𝑆.

OblSetup(𝜌 = ([G]1 , [U]1), srs):
([G′]1 ,T′) ← CS.OblSetup(gk, d,K, S, ck = [G]1)
([U]1 ,U) ← 𝒰
(srs, 𝜏) ← QALin.K(([G′]1 , [U]1),U)

Note that the only difference in sampling with 𝑆 and with 𝑆′ is how we sample the com-
mitment key G. The srs part srs is identically distributed to an honest one by Lemma 1.
Finally, by the statistically binding property of the commitment key the extracted witness
for 𝑆 and 𝑆′ are unique and thus do not help the (unbounded) distinguisher, who can
compute them on its own. □

We summarize the properties of the construction in the next theorem.

Theorem 18. Let𝒟𝑘 be a matrix distribution for which𝒟𝑘-KerMDH assumption holds, and CS
be an algebraic SSB commitment scheme with index set hiding and oblivious extractability. Then
construction QALin is a quasi argument.

Proof. The local extractability property follows from Thm 16 and the no-signaling prop-
erty follows by Thm. 15 and the oblivious trapdoor generation property of QALin, which
in turn follows from Thm 17. □

We next consider extensions of QALin:

1. a knowledge transfer variant for bilateral linear spaces [GHR15], where the statement as
well as the generating matrix have components in both groups.

2. a knowledge transfer “sum” argument [GHR15] which is akin to a bilateral language but
one shows that the sum of the discrete logs of two vectors in G1 and G2 belong to the
image of the sum of two matrices in G1 ,G2.

103

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

The security analysis of both extensions is almost verbatim to the analysis of QALin. One
difference is that in these cases, we rely on soundness of the knowledge transfer variant of
[KW15] which is sound under standard assumptions [GR19], so we manage to achieve these
properties under falsifiable and standard assumptions. The security analysis is almost identical
to that of QALin, so we simply state the properties and we defer it to Sec. 4.7.1.

Quasi Argument for Bilateral Linear Knowledge Transfer. Consider three 𝑑 × 𝑛 matrices
[M]1, [N1]1, [N2]2, a vector w ∈ F𝑛 and vectors [x]1, [y1]1, [y2]1. Now, if 𝑆1 , 𝑆2 ⊆ [𝑑], we
want to consider local constraints of the form:

“if [x]1 = [M𝑆1]1w then [y1]1 = [N1,𝑆2]1w and [y2]1 = [N2,𝑆2]1w”.

For efficiency reasons, we want to avoid sending the whole vectors

[x]1 = [M]1w, [y1]1 = [N1]1w, [y2]2 = [N2]2w

Instead, we commit to these elements using three different (algebraic) SSB commitments
[G]1 , [H]1 , [F]1, which we set extractable at 𝑆1 , 𝑆2 , 𝑆2 respectively. Our ultimate goal is to
receive (succinct) commitments

[c]1 = [GM]1w, [d1]1 = [HN1]1w, [d2]2 = [FN2]2w

extract them at 𝑆1 , 𝑆2 , 𝑆2 respectively, and make sure the above knowledge transfer notion is
satisfied for the extracted values and a claim w. Note that in this case, we do not consider
simple constraint subsets as in the construction QALin. Rather, our constraints can be de-
scribed as the pair of sets 𝑆1 , 𝑆2 ⊆ [𝑑] each of size at most 𝐾1 , 𝐾2 respectively. We extract
the first commitment in the position defined by 𝑆1, and the other two by the positions defined
by 𝑆2. We next formalize the above discussion and present the construction.

Let ℳ ,𝒩1 ,𝒩2 be three witness samplable distribution over matrices in G𝑑×𝑛, G𝑑×𝑛 and
G𝑑×𝑛 respectively, for 𝑛, 𝑑 ∈ N. Let K = (𝐾1 , 𝐾2) with 𝐾𝑖 ≤ 𝑑 and S = (𝑆1 , 𝑆2) with
|𝑆𝑖 | ⊆ [𝑑]. Also, let CS be an algebraic SSB commitment schemes with commitment space
G𝐾 for 𝐾 ≥ max(𝐾1 , 𝐾2), where G is defined by the group key gk. The parameter language is

ℒpar =
{[M]1 ,[N1]1 , [N2]2 , [G]1 , [H]1 , [F]2 | ∃M,N1 ,N2 ,G,H,F s.t.

([M]1 ,M), ([N1]1 ,N2), ([N2]2 ,N2) ∈ Sup(ℳ ,𝒩1 ,𝒩2),
([G]1 ,G,TG) ∈ Sup(CS.KeyGen(gk, 𝑑, 𝐾1 , 𝑆1)),
([H]1 ,H,TH) ∈ Sup(CS.KeyGen(gk, 𝑑, 𝐾2 , 𝑆2)),
([F]2 ,F,TF) ∈ Sup(CS.KeyGen(gk, 𝑑, 𝐾2 , 𝑆2))

}
We assume w.l.o.g. that the corresponding relation is efficiently verifiable. The parameters
𝜌 = ([M]1 , [N1]1 , [N2]2 , [G]1 , [H]1 , [F]2) define the following relations:

104

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Figure 4.6 Quasi argument QABLin for knowledge transfer of membership in bilateral
linear spaces.
𝒟par(gk, 𝑑,K = (𝐾1 , 𝐾2), S = (𝑆1 , 𝑆2)):

([M]1 ,M) ← ℳ ([N1]1 ,N1) ← 𝒩1 ([N2]2 ,N2) ← 𝒩2

([G]1 ,G,TG) ← CS.KeyGen(gk1 , 𝑛, 𝑑, 𝐾1 , 𝑆1)
([H]1 ,H,TH) ← CS.KeyGen(gk1 , 𝑛, 𝑑, 𝐾2 , 𝑆2)
([F]2 ,F,TF) ← CS.KeyGen(gk2 , 𝑛, 𝑑, 𝐾2 , 𝑆2)
Output (𝜌, 𝜃)where

𝜌 = (gk, [G]1 , [H]1 , [F]2 , [M]1 , [N1]1 , [N2]2), 𝜃 = (G,H,F,TG ,TH ,TF ,M,N1 ,N2)

K(𝜌, 𝜃):
Sample K0 ← F𝐾1×𝑘 K1 ← F𝐾2×𝑘 K2 ← F𝐾2×𝑘 A←𝒟𝑘 and redefine A as its first 𝑘 columns
Compute [B]1 = [M⊤]1G⊤K0 + [N⊤1]1H⊤K1 and [D]2 = [N⊤2]2F⊤K2

C1 =
(
K0
K1

)
A and C2 = K2A

Output (srs, 𝜏)where srs = ([B]1 , [D]2 , [A]1,2 , [C1]2 , [C2]1) and 𝜏 = (TG ,TH ,TF)
Prove(srs, [c]1 , [d1]1 , [d2]2 ,w):

Output ([𝜋𝜋𝜋]1 , [𝜃𝜃𝜃]2) ← (w⊤[B]1 ,w⊤[D]2)
Verify (srs, ([c]1 , [d1]1 , [d2]2) , ([𝜋𝜋𝜋]1 , [𝜃𝜃𝜃]2)):

Output 1 iff 𝑒 ([𝜋𝜋𝜋]1 , [A]2) + 𝑒 ([𝜃𝜃𝜃]2 , [A]1) = 𝑒
([c⊤ | d⊤1]1 , [C1]2) + 𝑒 ([d⊤2]2 , [C2]1)

Extract (𝜏, [c]1 , [d1]1 , [d2]2 , [𝜋𝜋𝜋]1 , [𝜃𝜃𝜃]2):
Output [x]1 = T⊤G[c]1 , [y1]1 = T⊤H[d1]1 , [y2]2 = T⊤F [d2]2

KTBLin-ℛyes
𝜌 =

 [c]1 , [d1]1 , [d2]2 ,w ©«
c
d1
d2

ª®¬ = ©«
GM
HN1
FN2

ª®¬w
 ,

KTBLin-ℛno
𝜌,S =

([c]1 , [d1]1 , [d2]2) x, y1 , y2 are valid 𝑆1 , 𝑆2 , 𝑆2 openings of
([x]1 , [y1]1 , [y2]2) c, d1, d2 w.r.t. G,H,F respectively and

w x1 = M𝑆1w but y1 ≠ N1,𝑆2w or y2 ≠ N2,𝑆2w

That is, the partial witness for S is some valid local openings [x]1 , [y1]1 , [y2]2 w.r.t. to G,H,F
respectively that satisfy the following: if x𝑆2 = M𝑆1w then it should be the case that both
y1 = N1,𝑆2w and y2 = N2,𝑆2w where w is the promise of the adversary. Note that if 𝑆1 is the
empty set the latter relations trivially hold. We present the protocol in Fig. 4.6.

We present a detailed security analysis of QABLin in Sec. 4.7.1. We next summarize the

105

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

properties of a specific instantiation of QABLin we will use in our delegation construction.

Theorem 19. Construction QABLin instantiated with

(1) MPed of Fig 4.3 for the first instance of CS

(2) source keys of KMPed of Fig 4.4 for the second and third instance of CS

(3) ℳ that satisfies theℳ⊤-MDDH assumption

(4) 𝒟𝑘 that satisfies the𝒟𝑘-SKerMDH assumption

is a quasi argument. Furthermore,

• Local knowledge soundness holds even against adversaries that know the discrete logarithms
of G,H,F,N1 ,N2.

• No-signaling holds even against adversaries that know the discrete logarithms of M,N1 ,N2.

Quasi Argument for Sum Knowledge Transfer. Next we consider the second variant, that
Sum Knowledge Transfer construction. This will be used as a component of the Hadamard
construction we will present next.

Consider three 𝑑 × 𝑛 matrices [M1]1, [N1]2, [N2]2, a vector w ∈ F𝑛 and vectors [x1]1, [x2]2,
[y]1. Now, if 𝑆0 , 𝑆1 ⊆ [𝑑], we want to consider local constraints of the form [x1]1 , [x2]2 , [y]1
satisfy:

“if x1 + x2 = (M1,𝑆0 +M2,𝑆0)w then y = N𝑆1w”.

As in the bilateral case, we want to avoid sending the whole vectors

[x1]1 = [M1]1w, [x2]2 = [M2]2w, [y]1 = [N]1w

This time, we will use a split SSB commitment scheme for the first two and a simple SSB for
the last one. Let ([Q1]1 , [Q2]2) be a key for the former extractable at 𝑆0 and [F]1 a key for
the latter extractable at 𝑆1. Our ultimate goal is to receive (succinct) commitments

[c1]1 = [Q1(M1 +M2)]1w, [c2]2 = [Q2(M1 +M2)]2w, [d2]1 = [FN]1w

extract them at 𝑆0 , 𝑆1 , 𝑆1 respectively, and make sure the above knowledge transfer notion
is satisfied for the extracted values and a claim w. Similarly to the QASum case, we do not
consider simple constraint subsets as in the construction QALin. Rather, our constraints can
be described as the pair of sets 𝑆0 , 𝑆1 ⊆ [𝑑] each of size at most 𝐾0 , 𝐾1 respectively. We
extract the first commitment in the position defined by 𝑆1, and the other two by the positions
defined by 𝑆2. We next formalize the above discussion and present the construction.

106

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Figure 4.7 Quasi argument QASum for knowledge transfer of sum membership in linear
space.
𝒟par(gk, 𝑑,K = (𝐾0 , 𝐾1), S = (𝑆0 , 𝑆1)):

([M1]1 , [M2]2 ,M1 ,M2) ← (ℳ1 ,ℳ2), ([N]1 ,N) ← 𝒩 ,
([Q1]1 , [Q2]2 ,Q1 ,Q2 ,TQ) ← CS′.KeyGen(gk, 𝑛, 𝑑, 𝐾0 , 𝑆0)
([F]1 ,F,TF) ← CS.KeyGen(gk1 , 𝑛, 𝑑, 𝐾1 , 𝑆1)
Output (𝜌, 𝜃)where

𝜌 = (gk, [Q1]2 , [Q2]1 , [F]2 , [M1]1 , [M2]2 , [N]1), 𝜃 = (Q1 ,Q2 ,F,TQ ,TF ,M1 ,M2 ,N)

K(𝜌, 𝜃):
Set Q = Q1 +Q2 and sample K0 ← F𝐾0×𝑘 , K1 ← F𝐾1×𝑘 , Z← F𝑛×𝑘 , A←𝒟𝑘 and redefine A
as its first 𝑘 columns
Compute [B]1 = [M⊤1]1Q⊤K0 + [N⊤]1F⊤K1 + [Z]1 and [D]2 = [M⊤2]2Q⊤K0 − [Z]2
C1 =

(
K0
K1

)
A and C2 = K0A

Output (srs, 𝜏)where srs = ([B]1 , [D]2 , [A]1,2 , [C1]2 , [C2]1) and 𝜏 = (TQ ,TF)
Prove(srs, [c1]1 , [c2]2 , [d]1 ,w):

Sample z← F𝑘 and output ([𝜋𝜋𝜋]1 , [𝜃𝜃𝜃]2) ← (w⊤[B]1 − [z⊤]1 ,w⊤[D]2 + [z⊤]2)
Verify (srs, [c1]1 , [c2]2 , [d]1 , [𝜋𝜋𝜋]1 , [𝜃𝜃𝜃]2):

Output 1 iff 𝑒 ([𝜋𝜋𝜋]1 , [A]2) + 𝑒([𝜃𝜃𝜃]2 , [A]1) = 𝑒
([c⊤1 | d⊤]1 , [C1]2) + 𝑒 ([c⊤2]2 , [C2]1)

Extract (𝜏, [c1]1 , [c2]2 , [d]1 , [𝜋𝜋𝜋]1 , [𝜃𝜃𝜃]2):
Parse 𝜏 as (TQ ,TF) and output [x1]1 = T⊤Q[c1]1 , [x2]2 = T⊤Q[c2]1 , [y]1 = T⊤F [d]1

Let (ℳ1 ,ℳ2) be some (possibly correlated) witness samplable distributions outputting ma-
trices in G𝑑×𝑛1 ×G𝑑×𝑛2 and 𝒩 be witness samplable distributions outputting matrices in G𝑑×𝑛1
for 𝑛, 𝑑 ∈ N. Let K = (𝐾0 , 𝐾1) with 𝐾𝑖 ≤ 𝑑 and S = (𝑆0 , 𝑆1) with |𝑆𝑖 | ⊆ [𝑑]. Also, let CS
be an algebraic SSB commitment scheme and CS′ be a split algebraic commitment key with
commitment space G𝐾1

1 , G𝐾0
1 ×G𝐾0

2 respectively. The parameter language is

ℒpar =
{[M1]1 ,[M2]2 , [N]1 , [Q1]1 , [Q2]1 , [F]2 | ∃M1 ,M2 ,N1 ,Q1 ,Q2 ,F s.t.

([M1]1 , [M2]2 ,M1 ,M2) ∈ Sup(𝒩1 ,𝒩2), ([N]1 ,N) ∈ Sup(𝒩),
([Q1]1 , [Q2]2 ,Q1 ,Q2 ,TQ) ∈ Sup(CS′.KeyGen(gk, 𝑛, 𝐾0 , 𝑆1)),
([F]1 ,F,TF) ∈ Sup(CS.KeyGen(gk1 , 𝑛, 𝐾1 , 𝑆2))

}
We assume w.l.o.g. that the corresponding relation is efficiently verifiable. The parameters

107

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

𝜌 = ([M]1 , [N1]1 , [N2]2 , [Q1]1 , [Q2]1 , [F]2) define the following relations

KTSum-ℛyes
𝜌 =

{
[c1]1 , [c2]2 , [d]2 ,w

(
c1 + c2

d

)
=

((Q1 +Q2)(M1 +M2)
FN

)
w

}
,

KTSum-ℛno
𝜌,S =

([c1]1 , [c2]2 , [d]1) x1 + x2 , y are valid 𝑆0 , 𝑆1 openings of
([x1]1 , [x2]2 , [y]1) c1 + c2, d2 w.r.t. Q1 +Q2 ,F respectively and

w x1 + x2 = (M1,𝑆0 +M2,𝑆0)w but y ≠ N𝑆2w

That is, the partial witness for S is some valid local openings [x1]1 , [x2]2 , [y]1 w.r.t. to G,H,F
respectively that satisfy the following: if x1 + x2 = (M1,𝑆1 +M2,𝑆1)w then it should be the
case that y = N𝑆2w where w is the promise of the adversary. Note that if 𝑆1 is the empty set
the latter relations trivially hold. We present the protocol in Fig 4.7.

We present a detailed security analysis of QASum in Sec. 4.7.2. We next summarize the
properties of a specific instantiation of QASum we will use in our delegation construction.

Theorem 20. Construction QASum instantiated with

(1) target keys of KMPed of Fig 4.4 for CS′

(2) MPed of Fig 4.3 for CS

(3) M1 ,M2 sampled from a distribution that satisfies the (𝒰 ⊗ 𝒱)⊤-KMDDH assumption

(4) 𝒟𝑘 that satisfies the𝒟𝑘-SKerMDH assumption

is a quasi argument. Furthermore,

• Local knowledge soundness holds even against adversaries that know the discrete logarithms
of the commitment keys and N.

• No-signaling holds even against adversaries that know the discrete logarithms of M1 ,M2 ,N.

4.4.2.2 Quasi Arguments for Hadamard Products

The main result of [GHR15] was implicitly a quasi-argument for the set of equations 𝑏𝑖(𝑏𝑖−1) =
0, for all 𝑖 ∈ [𝑑]. We extend their results to equations of the form 𝑥𝑖𝑦𝑖 = 𝑧𝑖, that is x ◦ y = z
where ◦ denotes the Hadamard product.

Consider three 𝑑×𝑛 matrices [U]1, [V]2, [W]1, two vectors a, b ∈ F𝑛 and vectors [x1]1, [x2]1,
[y]1. Now, if 𝑆 ⊆ [𝑑], we want to consider local constraints of the form:

“if [x1]1 = [U𝑆]1a and [x2]2 = [V𝑆]2b then [y]1 = [W𝑆]1a ◦ b ”.

108

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Figure 4.8 Quasi argument QAHad for knowledge transfer of Hadammard product. Here
D ∈ F𝑛×𝑛2 is the matrix such that D(a ⊗ b) = a ◦ b
𝒟par(gk, 𝑑, 𝐾, 𝑆):

([U]1 ,U) ← 𝒰 , ([V]2 ,V) ← 𝒱, ([W]1 ,W) ←𝒲
([G]1 ,G,TG) ← CS.KeyGen(gk1 , 𝑛, 𝑑, 𝐾, 𝑆)
([H]2 ,H,TH) ← CS.KeyGen(gk2 , 𝑛, 𝑑, 𝐾, 𝑆)
([F]1 ,F,TF) ← CS.KeyGen(gk1 , 𝑛, 𝑑, 𝐾, 𝑆)
Output (𝜌, 𝜃)where

𝜌 = (gk, [G]1 , [H]2 , [F]1 , [U]1 , [V]2 , [W]1), 𝜃 = (G,H,F,TG ,TH ,TF ,U,V,W)

K(𝜌, 𝜃):
(ck, sk) ← KMPed𝑡 .KeyGen(gk, [G]1 , [H]2 ,G,H) and parse

ck = ([Q1]1 , [Q2]2 , aux), sk = (Q1 ,Q2 ,TQ)

Sample R ∈ F𝑑2×𝑛2 and set M1 = U ⊗ V −R and M2 = R. Set N = WD. Also, set

𝜌Sum = (gk, [Q1]1 , [Q2]1 , [F]2 , [M1]1 , [M2]2 , [N]1)
𝜃Sum = (Q1 ,Q2 ,F,TQ ,TF ,M1 ,M2 ,N)

Set (srsSum , 𝜏Sum) ← QASum(𝜌Sum , 𝜃Sum).
Sample R′← F𝐾2×𝑛2 and set

[E1]1 = [Q1(U ⊗ V) −R′]1 , [E2]2 = [Q2(U ⊗ V) +R′]2
Output srs = ([E1]1 , [E2]2 , srsSum), 𝜏 = (TG ,TH ,TF)

Prove(srs, [x]1 , [y]2 , [w]1 , a, b):
Set [c1]1 = [E1]1(a ⊗ b), [c2]2 = [E2]2(a ⊗ b), [d]1 = [w]1
𝜋Sum = QASum.Prove(srsSum , [c1]1 , [c2]1 , [d]1 , a ⊗ b)
Output 𝜋 := ([c1]1 , [c2]1 ,𝜋Sum)

Verify (srs, [u]1 , [v]2 , [w]1 ,𝜋):
Compute [u ⊗ v]𝑇 using the pairing operation and output 1 iff
1. QASum.Verify (srsSum , [c1]1 , [c2]2 , [w]1) = 1 and
2. [u ⊗ v]𝑇 = 𝑒 ([c1]1 , [1]2) + 𝑒 ([1]1 , [c2]2)

Extract (𝜏, [u]1 , [v]2 , [w]1 ,𝜋):
Parse 𝜏 as (TG ,TH ,TF) and output [x1]1 := T⊤G[u]1 , [x2]2 := T⊤H[v]1 , [y]1 := T⊤F [w]1.

109

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

As in the other quasi arguments, we want to “compress” the claim; that is avoid sending the
whole vectors

[x1]1 = [U]1a, [x2]2 = [V]2b[y]1 = [W]1a ◦ b,

Instead, we commit to these elements using three (algebraic) SSB commitments [G]1 , [H]2 , [F]1,
which we set extractable at the same set 𝑆. Our ultimate goal is to receive (succinct) com-
mitments

[c1]1 = [GM]1a, [c2]1 = [HM]2b, [d]1 = [FM]1a ◦ b

extract them at 𝑆 and make sure the above knowledge transfer notion is satisfied for the
extracted values and a claim a, b. We next formalize this discussion.

Let 𝒰 ,𝒱 ,𝒲 be witness samplable distributions over matrices in G𝑑×𝑛1 ,G𝑑×𝑛2 and G𝑑×𝑛1 ,
respectively, for 𝑛, 𝑑 ∈ N. Let K = (𝐾, 𝐾) with 𝐾 ≤ 𝑑 and S = (𝑆, 𝑆) with 𝑆 ⊆ [𝑑] and
𝑆 ≤ 𝐾. Also let CS be an algebraic SSB commitment scheme with commitment space G𝐾𝜇 .
The parameter language is

ℒpar =
{[U]1 ,[V]2 , [W]1 , [G]1 , [H]1 , [F]2 | ∃U,V,W,G,H,F s.t.

([U]1 ,U) ∈ Sup(𝒰), ([V]1 ,V) ∈ Sup(𝒱), ([W]1 ,W) ∈ Sup(𝒱)
([G]1 , [G]2 ,G,TG) ∈ Sup(CS.KeyGen(gk, 𝑛, 𝐾, 𝑆))
([H]1 , [H]2 ,H,TH) ∈ Sup(CS.KeyGen(gk, 𝑛, 𝐾, 𝑆)),
([F]1 ,F,TF) ∈ Sup(CS.KeyGen(gk, 𝑛, 𝐾, 𝑆))}

We assume w.l.o.g. that the corresponding relation is efficiently verifiable. The parameters
𝜌 = ([U]1 , [V]2 , [W]1 , [G]1 , [H]1 , [F]2) define the following relations

KTHad-ℛyes
𝜌 =

 [u]1 , [v]2 , [w]1 , a, b
u = GUa
v = HVb
w = FW(a ◦ b)

 ,
KTHad-ℛno

𝜌 =
{[U]1 ,[V]2 , [W]1 , [G]1 , [H]2 , [F]1

([v]1 , [u]2 , [w]1) x1 , x2 , y are valid 𝑆 openings of
([x1]1 , [x2]2 , [y]1) c1, c2, d w.r.t. G,H,F respectively and

a, b x1 = U𝑆a, x2 = V𝑆b, but y ≠ W𝑆(a ◦ b)

That is, the partial witness for 𝑆 is some valid local openings [x1]1 , [x2]2 , [y]1 w.r.t. to G,H,F
respectively that satisfy the following: if x1 = U𝑆a and x2 = V𝑆b and then it should be the
case that y = W𝑆c where c = a ◦ b. Here a, b is the promise of the adversary.

We present the protocol in Fig 4.8. Essentially, we first have the prover commit to the
Kronecker product a ⊗ b using a commitment scheme defined by the ⊗ operation of CS to
itself, and then show that if the split opening of this commitment is w = a ⊗ b, then the
opening of d is Dw where D is the linear operation that outputs a ◦ b on input a ⊗ b. The
former “promise”, regarding the Kronecker product, is verified by the pairing operation, while
for the latter, QASum is used.

110

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

We present a detailed security analysis of QAHad in Sec. 4.7.3. We next summarize the
properties of a specific instantiation of QAHad we will use in our delegation construction.

Theorem 21. Construction QAHad instantiated with

(2) MPed of Fig 4.3 for CS

(3) 𝒰 ,𝒱 that satisfy the (𝒰 ⊗ 𝒱)⊤-KMDDH assumption

(4) 𝒟𝑘 that satisfies the𝒟𝑘-SKerMDH assumption

is a quasi argument. Furthermore,

• Local knowledge soundness holds even against adversaries that know the discrete logarithms
of G,H,F,W.

• No-signaling holds even against adversaries that know the discrete logarithms of U,V,W.

4.5 Delegation Construction

We closely follow the blueprint of [GR19]. Consider an arithmetic circuit 𝒞 : F𝑛0 → F𝑛𝑑 .
The circuit can be naturally sliced into 𝑑 + 1 levels, where level 0 contains the input and
level 𝑖 is formed by a set of 𝑛𝑖 multiplication gates, the inputs of which depends on a linear
transformation of outputs of previous levels.¹⁶ Let 𝑁𝑖 =

∑𝑖
𝑗=0 𝑛𝑖 and 𝑁 = 𝑁𝑑. Denote by

a𝑖 , b𝑖 , c𝑖 ∈ F𝑁𝑖 the left, right and output wires of level 1, . . . , 𝑖 respectively. That is

a𝑖 =
(

a𝑖−1
D𝑖c𝑖−1

)
, b𝑖 =

(
b𝑖−1

E𝑖c𝑖−1

)
where D𝑖 ,E𝑖 ∈ F𝑛𝑖×𝑁𝑖−1 are defined by the circuit’s linear gates, a0 , b0 are of size 0 and c0 = x
is the input. Let D ∈ F𝑁−𝑛0×𝑁 (resp. E) be the matrix such that the 𝑖-th row of D is
(D𝑖 |0𝑛𝑖×𝑁−𝑁𝑖−1). Note that matrices D,E are lower triangular. For the multiplication gates,
we have the constraints c𝑖 = a𝑖 ◦ b𝑖.

Finally, denote a = a𝑑, b = b𝑑 and c = c𝑑−1. The evaluation of the circuit is correct if(
a
b

)
=

(
D
E

)
c, c = a ◦ b

Next, consider Pedersen commitment keys U∗𝑖 ← F1×𝑛𝑖 , V∗𝑖 ← F1×𝑛𝑖 and W∗𝑖 ← F1×𝑛𝑖 and
define

U𝑖 = (U∗1 , . . . ,U∗𝑖), V𝑖 = (V∗1 , . . . ,V∗𝑖), for 𝑖 ∈ [𝑑]
¹⁶We consider w.l.o.g. only linear transformations since we can handle affine ones by including awire with

the value 1 in the input.

111

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

W𝑖 = (W∗1 , . . . ,W∗𝑖), for 𝑖 ∈ [𝑑 − 1].
Consider commitments (represented in F) to left, right and output wires as

𝑂𝑖 = W𝑖c𝑖 ,O = Wc, 𝐿𝑖 = U𝑖a𝑖 = Ua, 𝑅𝑖 = V𝑖b𝑖 ,R = Vb

where

U =
©«
U∗1 0
...

. . .
U∗1 · · · U∗𝑑

ª®®¬ , V =
©«
V∗1 0
...

. . .
V∗1 · · · V∗𝑑

ª®®¬ , W =
©«
W∗1 0
...

. . .
W∗1 · · · W∗𝑑−1

ª®®¬ (4.5)

and O = (𝑂1 , . . . , 𝑂𝑑−1)⊤ , L = (𝐿1 , . . . , 𝐿𝑑)⊤ ,R = (𝑅1 , . . . , 𝑅𝑑)⊤.

We additionally pick G,H,F for computing SSB commitments to vectors of size 𝑑 and publish
[GU]1, [HV]2, [FW]2. The prover gives “commitments” of commitments

[L̂]1 = [GU]1a, [R̂]2 = [HV]2b, [Ô]1 = [FW]1c

and gives a quasi-argument of linear knowledge transfer from x, [O]1 , y to [L]1 , [R]2 with the
following structure:

©«
x
O
y
L
R

ª®®®®®¬
=

©«

input︷︸︸︷
I𝑛0

mid-wires︷︸︸︷
0

output︷︸︸︷
0

0 W 0
0 0 I𝑛𝑑

UD 0
VE 0

ª®®®®®¬
©«
x
c
y

ª®¬ . (4.6)

That is, we can extract [𝐿𝑖]1 , [𝑅𝑖]2 , [𝑂𝑖−1]1 and, if we are additionally given c𝑖−1 such that
𝑂𝑖−1 = W𝑖−1c𝑖−1, then 𝐿𝑖 = U𝑖D𝑖c𝑖 , 𝑅𝑖 = V𝑖E𝑖c𝑖. We also use a quasi-argument of knowl-
edge transfer of the Hadamard product from [L]1 , [R]2 to [O]1. In this case we extract
[𝐿𝑖]1 , [𝑅𝑖]2 , [𝑂𝑖]1 and, if we are additionally given a𝑖 , b𝑖 such that 𝐿𝑖 = U𝑖a𝑖 and 𝑅𝑖 = V𝑖b𝑖,
then 𝑂𝑖 = W𝑖(a𝑖 ◦ b𝑖).

We need to make one last change that will allow us to take into account the input x and the
claimed output y. Essentially, we make the first and last commitment key (trivially) perfectly
binding by using as a commitment key the identity matrix. The security properties still hold
in a trivial way (the I𝑛0-MDDH assumption is perfectly secure). We change accordingly the
SSB commitment key, that is we set

F′ = ©«
I𝑛0 0 0
0 F 0
0 0 I𝑛𝑑

ª®¬
Note that the extraction trapdoor remains the same, but the extractor can trivially extract the
values corresponding to x, y regardless of F′ distribution:. In other words, our commitment

112

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Figure 4.9 Delegation scheme for arithmetic circuits.
Setup(1𝜅 , 𝒞):

gk← 𝒢(1𝜅)
From the linear gates of 𝒞 compute matrices D,E.
([F]1 ,F,TF) ← MPed.KeyGen(gk, 𝑑 − 1, 1, ∅),
([G]1 ,G,TG) ← MPed.KeyGen(gk, 𝑑, 1, ∅),
([H]1 ,H,TH) ← MPed.KeyGen(gk, 𝑑, 1, ∅);
Sample U,V,W as in equation 4.5.
Define W′ as the matrix W augmented with (I𝑛0 | 0) and (0 | I𝑛𝑑) as its first and last row.
Let

𝜌𝑙 = (gk, [F′]1 , [G]1 , [H]2 , [W′]1 , [UD]1 , [VE]2)
𝜃𝑙 = (F,G,H,TF ,TG ,TH ,U′,UD,VE)

where F′ contains rows (I𝑛 | 0 | 0), (0 | F | 0), (0 | 0 | I𝑛𝑑).
Let

𝜌ℎ = (gk, [G]1 , [H]2 , [F′′]1 , [U]1 , [V]2 , [U]1)
𝜃ℎ = (G,H,F,TG ,TH ,TF ,U,V,W)

where F′′ contains the rows (F | 0), (0 | I𝑛𝑑).
Sample srs𝑙 ← QABLin.K(𝜌𝑙 , 𝜃𝑙), srsℎ ← QAHad.K(𝜌ℎ , 𝜃ℎ)
Output srs := ([GU]1 , [HV]2 , [FW]1 , srsQALin , srsℎ)

Prove(srs, x, y):
Evaluate 𝒞(x) to obtain values for the wires a, b, c.
Compute [L̂]1 = [GU]1a, [R̂]2 = [HV]2b, [Ô]1 = [FW]1c.

𝜋𝑙 ← QABLin.Prove ©«srs𝑙 , ©«
x
[Ô]1

y

ª®¬ [L̂]1 , [R̂]2 , (x, c, y)ª®¬.
𝜋ℎ ← QAHad.Prove

(
srsℎ , [L̂]1 , [R̂]2 ,

([Ô]1
y

)
, a, b

)
.

Return 𝜋 =
(
[Ô]1 , [L̂]1 , [R̂]2 ,𝜋𝑙 ,𝜋ℎ

)
.

Verify(srs, (x, y),𝜋):

Output 1 iff the following tests succeed

QABLin.Verify(srs𝑙 , ©«
x
[Ô]1

y

ª®¬ , [L̂]1 , [R̂]2 ,𝜋𝑙) = 1

QAHad.Verify(srsℎ , [L̂]1 , [R̂]2 ,
([Ô]1

y

)
,𝜋ℎ) = 1

113

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

key is always perfectly binding in the first 𝑛0 and 𝑛𝑑 coordinates. We denote with W′ the
modified matrix where we change the first and last rows with (I𝑛0 | 0) and (0 | I𝑛𝑑) respectively.
Therefore, if O = W′c, we get that 𝑂0 = x and 𝑂𝑑 = y.

We present the construction in Fig 4.9.

Theorem 22. When instantiating QABLin,QAHad as described in Thm. 19 and Thm. 21 respec-
tively, construction of Fig. 4.9 is a delegation scheme.

Proof. Let Game0 be the soundness game:

Game0: This is the soundness game. The output ofGame0 is 1 iff on input srs← Setup(1𝜅 , 𝒞),
the adversary outputs x, y,𝜋 ← 𝒜(srs) such that 𝒞(x) ≠ y and the proof verifies,
namely Verify(srs, x, y,𝜋) = 1.

In what follows we use the fact that the commitment keys corresponding to [𝑂0]1 and
[𝑂𝑑]1 are the identity matrices; thus they are trivially extractable. Therefore, the bilateral
quasi argument is sound since it satisfies the soundness conditions (MDDH is trivially
hard for the identity matrix). This is used in the same way as [GR19].

For 𝑖 ∈ [𝑑], 𝑗 ∈ [0, 𝑑] and 𝑆1 , 𝑆2 sets of sizes at most 1, consider the following games,
capturing possible bad events:

BadO𝑗 ,𝑆1 ,𝑆2 : As Game0 with the following difference: we sample commitment keys that
make srsℎ extractable at S = (𝑆1 , 𝑆2) and a corresponding trapdoor 𝜏. The output of
the game is iff either 𝑆2 ≠ { 𝑗} or [𝑂 𝑗]1 ≠ [W∗𝑗]1c𝑗 , where:

• c𝑗 is computed by honestly executing 𝒞(x) and
• [𝑂 𝑗]1 is extracted from the adversary’s proof 𝜋ℎ as

[𝑂 𝑗]1 ← QAHad.Extract(𝜏, [L̂]1 , [R̂]2 , [Ô]1 ,𝜋ℎ)
BadLR𝑖 ,𝑆1 ,𝑆2 : As Game0 with the difference: we sample commitment keys that make srs𝑙

extractable at S = (𝑆1 , 𝑆2) and a corresponding trapdoor 𝜏. The output of the game
is 1 iff either 𝑆1 ≠ {𝑖} or [𝐿𝑖]1 ≠ [U∗𝑖]1a𝑖 or [𝑅𝑖]1 ≠ [V∗𝑖]1b𝑖 where:

• a𝑖 , b𝑖 are computed by honestly executing 𝒞(x) and
• [𝐿𝑖]1 , [𝑅𝑖]2 are extracted from the adversary’s proof 𝜋𝑙 as

([𝐿𝑖]1 , [𝑅𝑖]1) ← QABLin.Extract(𝜏, [L̂]1 , [R̂]2 , [Ô]1 ,𝜋𝑙)

Now, let 𝐸 be the event where the output (x, y,𝜋) ← 𝒜(srs) satisfies Verify(srs, x, y,𝜋) = 1.
We define𝑂𝑑 = y and W𝑑 = (0𝑛𝑑×𝑁−𝑛𝑑 |I𝑛𝑑) so that Game0 = BadO𝑑,∅,{𝑑}∧𝐸. We also define
BadO𝑖 = BadO𝑖 ,∅,{𝑖}.

114

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

We next prove the following claim, that states that for each level 𝑗, the probability of ex-
tracting a commitment to the output wires𝑂𝑖 that is different from an honestly computed
one W∗𝑗c𝑗 (BadO𝑖 = 1) is negligible. Note that is enough to conclude the proof since in the
last level, this probability corresponds to the soundness game.

Claim 1. Let 𝒜 be an adversary against soundness of the delegation scheme. Then, for
all 𝑖 ∈ {1, . . . , 𝑑} Pr[BadO𝑖 = 1 | 𝐸] = 𝑝𝑖 . We claim that

Pr [BadO𝑖 = 1 | 𝐸] ≤ negl(𝜅)

Proof. The proof of the claim is by induction over 𝑖. In the inductive case we show that

Pr[BadO𝒜𝑖 = 1 | 𝐸] ≈ Pr[BadO𝒜𝑖,({𝑖+1},{𝑖}) = 1 | 𝐸]
≈ Pr[BadLR𝒜𝑖 ,({𝑖+1},{𝑖}) = 1 | 𝐸]
≈ Pr[BadLR𝒜𝑖 ,({𝑖+1},{𝑖+1}) = 1 | 𝐸]
≈ Pr[BadO𝒜𝑖+1,({𝑖+1},{𝑖+1}) = 1 | 𝐸]
≈ Pr[BadO𝒜𝑖+1 = 1 | 𝐸]

where 𝑝1 ≈ 𝑝2 is defined as |𝑝1 − 𝑝2 | ≤ negl(𝜅). For the base of the induction, note that
Pr [BadO0 = 1 | 𝐸] = 0 since this condition is directly verified and the proof is accepting.
Nowwe show that each ≈ is indeed negligible. Note that 𝜌ℎ can be computed from 𝜌𝑙 and
vice-versa.

BadO𝑖 ,BadO𝑖 ,({𝑖+1},{𝑖}): Consider the sets S1 = (∅, {𝑖}) and S2 = ({𝑖 + 1} , {𝑖}). We show
that the output of the games relative to𝒜 are computationally indistinguishable by
reducing to the no-signaling property of QABLin.
We construct an adversary𝒟 against no-signaling extraction ofQABLin. By Thm. 19,
QABLin is no-signaling even when𝒟 is given U,V,W. Using these,𝒟 can compute
srsℎ of QAHad (cf. Lemma 4). It then runs 𝒜(srs) until it outputs (x, y∗ , [Ô]1 , [L̂]1 ,
[R̂]2 ,𝜋𝑙 ,𝜋ℎ), and then𝒟 outputs

[
x
Ô
y∗
]1 , [L̂]1 , [R̂]2 , 𝜋𝑙 .

It gets the extracted value for the intersection of the two sets namely [𝑂𝑖]1. It outputs
1 if and [𝑂𝑖]1 ≠ W∗𝑖c𝑖) and and otherwise 0. Note that by the induction hypothesis,
in the former game this event happens only with negligible probability. Thus, this
is a winning strategy against the no-signaling challenge. Thus, it should be the case
that

Pr[BadO𝑖 ,({𝑖+1},{𝑖}) = 1 | 𝐸] ≤ negl(𝜅)

115

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

BadO𝑖 ,({𝑖+1},{𝑖}) ,BadLR𝑖+1,({𝑖+1},{𝑖}): We build an adversary ℬ against the local knowledge
soundness of QABLin. By Thm. 19, QABLin has local knowledge soundness even
when ℬ is given G,H,F,U,V. On input srs𝑙 and these values, ℬ can computes srsℎ ,
(cf. Lemma 4). Then, it runs𝒜(srs) until it outputs x, y∗ ,𝜋 and then ℬ outputs

[
x
Ô
y∗
]1 , [L]1 , [R]2 , 𝜋𝑙

Now, conditioned on𝐸, if the events¬BadO𝑖+1,({𝑖+1},{𝑖}) andBadLR𝑖+1,({𝑖},{𝑖}) happen,
it holds that 𝜋𝑙 verifies, [𝑂𝑖]1 = W𝑖c𝑖 and

[𝐿𝑖+1]1 ≠ U𝑖+1a𝑖+1 or [𝑅𝑖+1]1 ≠ V𝑖+1b𝑖+1

which breaks local extractability ofQABLin. This happens onlywith negligible prob-
ability, so

Pr[Pr[BadLR𝑖,({𝑖+1},{𝑖}) = 1 | 𝐸] ≤ negl(𝜅)
BadLR𝑖+1,({𝑖+1},{𝑖}) ,BadLR𝑖+1,({𝑖+1},{𝑖+1}): Similarly as the case BadO𝑖 ,BadO𝑖,({𝑖+1},{𝑖}), but

we need to transition between sets ({𝑖 + 1} , {𝑖}) → ({𝑖 + 1} , ∅) → ({𝑖 + 1} , {𝑖 + 1}).
We use twice the no-signaling property of QAHad and exploit the fact that we can
build srs𝑙 using U,V,W (cf. Lemma 2). Therefore,

Pr[BadLR𝑖 ,({𝑖+1},{𝑖+1}) = 1 | 𝐸] ≤ negl(𝜅)

BadLR𝑖 ,({𝑖+1},{𝑖+1}) ,BadO𝑖+1,({𝑖+1},{𝑖+1}): We build an adversary ℬ against the knowledge
soundness of QAHad. By Thm. 21, local knowledge soundness holds even when ℬ
knows the discrete logarithms G,H,F,W. Using these values, it computes srs𝑙 , as
in (cf. Lemma 2). Then, it runs𝒜(srs) until it outputs x, y∗ ,𝜋 and then ℬ outputs

[L]1 , [R]2 , [Ôy∗ ,]1[𝜋ℎ]1

Now, conditioned on 𝐸, if the events ¬BadLR𝒜𝑖+1,({𝑖+1},{𝑖+1}) and BadO𝒜𝑖+1,({𝑖+1},{𝑖+1})
happen, it holds that 𝜋ℎ verifies and also

[𝐿𝑖+1]1 = U𝑖+1a𝑖+1 and [𝑅𝑖+1]1 = V𝑖+1b𝑖+1 but [𝑂𝑖+1]1 ≠ W𝑖+1c𝑖+1

which breaks local extractability of QAHad. Therefore,

Pr[BadO𝑖+1,({𝑖+1},{𝑖+1}) = 1 | 𝐸] ≤ negl(𝜅)

BadO𝑖+1,({𝑖+1},{𝑖+1}) ,BadO𝑖+1: Identical to the case BadO𝑖 ,BadO𝑖 ,({𝑖+1},{𝑖}). We can thus
bound

Pr[BadO𝑖+1 = 1 | 𝐸] ≤ negl(𝜅)

□

116

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Using the claim, we conclude that

Pr[BadO𝑑 = 1 | 𝐸] = Pr[Game0 = 1] ≤ negl(𝜅)

□

Efficiency. The size of the srs is (6𝑁2 + 6𝑁 + 24)G1 elements and (6𝑁2 + 4𝑁 + 36)G2
elements and computing it is dominated by the same number of group exponentiations in
G1 ,G2 respectively; the prover is dominated by 6𝑁2+6𝑁 exponentiations in G1 and 6𝑁2+2𝑁
exponentiations in G2 and produces a proof of size 12G1+10G2 group elements; verifying a
proof requires 36 pairing operations. The size of the proof can be reduced to 10G1+8G2 if
we combine the linear argument with the second linear argument used by the Hadamard quasi
argument.

4.6 Applications

In this section we show how to use our delegation scheme to (1) get a NIZK argument for NP
in the pre-processing model where the size of the proof is linear in the size of the NP witness
and independent of the computation size, in spite of most NIZK constructions under standard
assumptions; (2) a zk-SNARK with quantitatively weaker assumptions and (3) compact NIZK
for NP with proof size proportional to the witness.

4.6.1 NIZK arguments for NP.

Let CS𝐸 be an algebraic commitment scheme –namely compatible with the Groth-Sahai proof
system [GS08] –which is hiding and extractable. We can express the verification algorithm
Del.Verify as a set of pairing product equation. The idea to construct a NIZK is the following:
let 𝒞 be an arithmetic circuit that takes public input x and secret input w, and let srsDel be a
srs for the delegation of computation of 𝐶. The prover commits to w and the group elements
defining the proof of the delegation using the extractable commitment and gives a Groth-Sahai
proof that the set of verification equations are satisfied w.r.t. the opening of the commitment.
Now, if CS𝐸 is extractable, we can extract the witness w, and if the circuit is not satisfied
w.r.t. x,w we can break adaptive soundness of delegation scheme Del. We present the scheme
in Fig 4.10.

Theorem 23. Let CS𝐸 be an algebraic commitment scheme that is hiding and extractable, GS the
Groth-Sahai proof system of [GS08] andDel the delegation scheme of Fig. 4.9. Then, construction of
Fig. 4.10 is aNIZK argument of knowledge. Furthermore, for every adversary𝒜 against knowledge
soundness there exist adversaries ℬ1 ,ℬ2 against extractability of CS𝐸 and against soundness of
Del respectively such that𝒜(𝒜) ≤ 𝒜CS𝐸

ext (ℬ1) + 𝒜Del
Snd(ℬ2).

117

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Figure 4.10 NIZK argument for NP. CS𝐸 is an algebraic commitment, GS is the Groth-
Sahai proof system of [GS08] and Del the delegation scheme of Fig. 4.9
Setup(gk, 𝒞): Let 𝒞 an arithmetic circuit which on public input x size 𝑛𝑥 and secret input w size

𝑛𝑤 outputs y of size 𝑛𝑑.

ck𝑤 ← CS𝐸(gk, 𝑛𝑤); srsDel ← Del.Setup(gk, 𝒞)
srsGS ← GS.Setup(gk)
Output srs = (ck𝑤 , srsDel , srsGS).

Prove(srs,w, x, y):
Parse srs = (ck𝑤 , srsDel , srsGS)
Compute 𝜋← Del(srsDel , (x,w), y) and c𝑤 = CS𝐸 .Com(w; r)
Denote 𝜙GS the system of pairing product equations that contain
1. The equations defined by Del.Verify(srs, (x,w), y,𝜋) = 1, where the unknowns are w

and 𝜋

2. The equations defined by c𝑤 = CS𝐸 .Com(ck𝑤 ,w; r), where the unknowns are w and r
𝜋GS ← GS.Prove(srsGS , 𝜙GS , (w, r))
Output 𝜋← (c𝑤 ,𝜋GS).

Verify(srs, (x, y),𝜋):
Parse srs = (ck𝑤 , srsDel , srsGS) and 𝜋 = (c𝑤 ,𝜋GS).
Output 1 iff GS.Verify(srsGS , 𝜙GS ,𝜋GS) = 1

Proof. Completeness follows by the correctness ofCS𝐸, and completeness ofGS, Del. Com-
putational zero knowledge follows from the computational zero-knowledge of GS and the
hiding property of CS𝐸. For knowledge soundness, we show how we can extract a valid
witness given an accepting proof. In what follows, let ℰCS be the extractors for CS𝐸. The
NIZK extractor ℰ𝒜(srs, x, y,𝜋 = (𝑐𝑤 ,𝜋GS)) simply outputs (w,𝜋) ← ℰCS(ck𝑤 , 𝑐𝑤). Now,
we claim that this a valid witness except with negligible probability. It is enough to note
that if it is not, there are three possible cases:

1. The extractor ℰCS failed which contradicts extractability of CS𝐸.

2. The extracted solutions w,𝜋, r are not solutions to 𝜙GS, contradicting perfect sound-
ness of GS since the proof verifies.

3. y ≠ 𝒞(x,w). We can extract the solution w,𝜋, r and it must hold that

Del.Verify(srs, (x,w), y,𝜋) = 1

contradicting adaptive soundness of Del.

□

118

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

As for efficiency, and specifically proof size, noting that the Groth-Sahai proof gives only a
constant, multiplicative overhead to the proof –which is of constant size–, its size is domi-
nated by the size of CS𝐸. Depending on the choice of CS𝐸 we can get qualitatively different
constructions. We consider the following cases:

(i) For a NIZK argument of knowledge under falsifiable assumptions, we can extend our re-
sult to apply to boolean circuits instead of arithmetic ones by arithmetizing the different
types of gates e.g. as in [DFGK14]. We can then use commitments for boolean vectors
that are extractable in the field under falsifiable assumptions such as Groth-Sahai com-
mitments or using the techniques of [GHR15]. The proof size in this case is 𝒪(𝜅 |w|)
where w is the secret input. Since fully succinct algebraic extractable commitments
that allow extraction in the field are unknown to exist under falsifiable assumptions, we
cannot achieve a (concretely more efficient) NIZK AoK for arithmetic circuits.

(ii) We can use succinct extractable commitments based on knowledge assumptions, yielding
a SNARK of constant proof size. Additionally, since the committed value is the secret
input and not the full wire assignment we get a quantitatively smaller assumption size.
For example, in case of 𝑞-power knowledge of exponent assumption (𝑞-KoE assumption)
used in [DFGK14], we use only the 𝑛𝑤-KoE while [DFGK14] requires the larger (and
hence stronger) |𝒞|-KEA.

(iii) To construct a compact NIZK where the proof size is 𝒪(|w|) + poly(𝜅) we can fol-
low the ideas of [KNYY19; KNYY20]. We use a symmetric encryption scheme SE =
(KeyGen, Enc,Dec) with additive overhead in the ciphertexts. That is, |SE.Enc(sk,w)| =
𝒪(|w|) + poly(𝜅). We use the NIZK from figure 4.10, instantiated with the commit-
ment scheme from (i), for showing knowledge of some key 𝐾 ∈ Im(SE.KeyGen) such
that 𝒞′(𝐾, 𝐷) = 1, where 𝐾 is the secret input, 𝐷 the public input, and 𝒞′(𝐾, 𝐷) =
𝒞(SE.Dec(𝐾, 𝐷)). To prove that 𝒞(w) = 1 the prover picks 𝐾 ← SE.KeyGen(1𝜅) and
computes 𝐷 ← SE.Enc(𝐾,w) together with a proof 𝜋 that 𝒞′(𝐾, 𝐷) = 1. The verifier
on input srs, 𝐷 and 𝜋 outputs 1 if 𝜋 is a valid proof for 𝐷. In contrast with [KNYY19;
KNYY20], by the nature of the underlying non-compact NIZK scheme we use, we don’t
require SE.Dec to be in NC1.

4.7 Deferred Proofs

4.7.1 Security Analysis of QABLin

Theorem 24. Letℳ ,𝒩1 ,𝒩2 be witness samplable distributions,𝒟𝑘 be a matrix distribution and
CS an algebraic SSB commitment with perfect completeness. Then, QABLin is complete and its
local knowledge soundness reduces to knowledge transfer soundness of KTLin.

119

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Proof. For completeness, we have that

(c⊤ | d⊤1)C1 + d⊤2 C2 = (c⊤ | d⊤1)
(
K0
K1

)
A + d⊤2 K2A

= (c⊤K0 + d⊤1 K1 + d⊤2 K2)A
=

(
w⊤M⊤G⊤K0 + w⊤N⊤1 H⊤K1 + w⊤N⊤2 F⊤K2

)
A

=
(
w⊤(M⊤G⊤K0 +N⊤1 H⊤K1) + w⊤N⊤2 F⊤K2

)
A

= w⊤BA + w⊤DA
= 𝜋𝜋𝜋A + 𝜃𝜃𝜃A

Local knowledge transfer follows using almost an identical argument to Thm. 16 and re-
ducing to knowledge transfer of linear KTA Argument of [GR19] presented in Fig. 4.1.
Given an adversary 𝒜 breaking local knowledge soundness of QABLin we construct an-
other adversaryℬS that breaks soundness of the argument KW-KTLin formatrices [M𝑆1]1,
[N1,𝑆2]1 and [N2,𝑆2]2. ℬS works as follows: it takes input (𝜌† , srs†)where

𝜌† := (gk, [M𝑆1]1 , [N1,𝑆2]1 , [N2,𝑆2]2)

srs† := ([B†]1 , [D†]2 , [A]1,2 , [C†1]2 , [C†2]1)
and does the following:

• ([G]1 ,G,TG) ← CS.KeyGen(𝑔𝑘1 , 𝑑, 𝐾1 , 𝑆1).
• ([H]1 ,H,TH) ← CS.KeyGen(𝑔𝑘1 , 𝑑, 𝐾2 , 𝑆2).
• ([F]2 ,F,TF) ← CS.KeyGen(𝑔𝑘2 , 𝑑, 𝐾2 , 𝑆2).

• It samples M𝑆1
,N1,𝑆2

,N2,𝑆2
, such that M = P𝑆1

(
M𝑆1

M𝑆1

)
, N1 = P𝑆2

(
N1,𝑆2

N1,𝑆2

)
, N2 =

P𝑆2

(
N2,𝑆2

N2,𝑆2

)
.

• R0 ← F𝐾1×𝑘 ; R1 ← F𝐾2×𝑘 ; R2 ← F𝐾2×𝑘 .

• It computes [B]1 := [B†]1+[M]⊤1 G⊤R0+[N1]⊤1 H⊤R1 and [D]2 := [D†]2+[N2]⊤2 F⊤R2

• It computes [C1]2 :=
(
TG 0
0 TH

)
[C†1]2 +

(
R0
R1

)
[A]2 and [C2]1 := TF[C†2]1 +R2[A]1.

• It sets
𝜌 := ([G]1 , [H]1 , [F]2 , [M]1 , [N1]1 , [N2]2),

srs := ([B]1 , [D]2 , [A]1,2 , [C1]2 , [C2]1)

120

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

It then executes 𝒜(𝜌, srs) until it outputs a statement ([c]1 , [d1]1 , [d2]2 ,w) together with
an accepting proof [𝜋𝜋𝜋]1 , [𝜃𝜃𝜃]2. Given an accepting proof ℬS sets [x†]1 = TG[c]1 , [y†1]1 =
TH[d1]1 , [y†2]2 = TF[d2]2, [𝜋𝜋𝜋†]1 = [𝜋𝜋𝜋]1 − [c]⊤1 R0 − [d1]⊤1 R1 and [𝜃𝜃𝜃†]2 = [𝜃𝜃𝜃]1 − [d2]⊤2 R2. It
outputs

(([x†]1 , [y†1]1 , [y†2]2) ,w, ([𝜋𝜋𝜋†]1 , [𝜃𝜃𝜃†]2)) .
Note that the commitment keys are perfectly binding at 𝑆. First, we claim that in this case
the values 𝜌, srs output by ℬS are identically distributed to honestly computed ones and
thus do not skew the probability that𝒜 outputs a valid proof. For 𝜌 this is immediate by
the witness samplability of the distributionsℳ, 𝒩1, 𝒩2. We show that this holds for srs
as well.

Let K†0 ∈ F|𝑆1 |×𝑘 ,K†1 ∈ F|𝑆2 |×𝑘 ,K†2 ∈ F|𝑆2 |×𝑘 be the implicit values used to compute srs†, that
is, they satisfy

B† = M⊤𝑆K†0 +N⊤1,𝑆K†1 , D† = N⊤2,𝑆K†2 , C†1 =
(
K†0
K†1

)
A and C†2 = K†2A.

Now ℬS implicitly defines K0 = TGK†0 +R0, K1 = THK†1 +R1, K2 = TFK†2 +R2. First, note
that these matrices are uniformly distributed since R0 ,R1 ,R2 are uniformly distributed.
Thus K0 ,K1 ,K2 are distributed identically to honestly generated values for generating an
srs. We claim that the srs output by 𝒜 is identically distributed to sampling this matrix
and computing the other values honestly. Indeed we have that

B = B† +M⊤G⊤R0 +N⊤1 H⊤R1

= M⊤𝑆1
K†0 +N⊤1,𝑆2

K†1 +M⊤G⊤R0 +N⊤1 H⊤R1

= M⊤G⊤TGK†0 +N⊤1 H⊤T⊤HK†1 +M⊤G⊤R0 +N⊤1 H⊤R1

= M⊤G⊤(TGK†0 +R0) +N⊤1 H⊤(T⊤HK†1 +R1)
= M⊤G⊤K0 +N⊤1 H⊤K1

where the third equality follows since by the local knowledge soundness of the SSBs we
have that T⊤GGM = M𝑆1 , T⊤HHN1 = N1,𝑆2 . Similarly, we have

D = D† +N⊤2 F⊤R2

= N⊤2,𝑆2
K†2 +N⊤2 F⊤R2

= N⊤2 F⊤TFK†2 +N⊤2 F⊤R2

= N⊤2 F⊤(TFK†2 +R2)
= N⊤2 F⊤K2

Also, we have that

C1 =
(
TG 0
0 TH

)
C†1 +

(
R0
R1

)
A =

(
TG 0
0 TH

) (
K†1
K†2

)
A +

(
R0
R1

)
A =

(
TGK†1 +R0
THK†2 +R1

)
A =

(
K1
K2

)
A

C2 = TFC†2 +R2A = TFK†2A +R2A = (TFK†2 +R2)A = K2A

121

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

so the outputted srs is indeed identically distributed to an honest one.

Then, we show thatℬ outputs a valid statement-proof pair w.r.t. to srs†. Since the commit-
ment keys are extractable and perfectly binding at 𝑆, we have that x†, y†1 and y†2 are valid
openings for the commitments given. Assuming 𝒜 produces a valid statement for ℛno

𝜌,S,
for the extracted values it holds that x† = M𝑆1w and either y†1 ≠ N1,𝑆2w or y†2 ≠ N2,𝑆2w.
Thus, ℬS outputs a valid statement and it suffices to show that [𝜋𝜋𝜋†]1 , [𝜃𝜃𝜃†]2 is a valid proof.
Indeed, we have that

0 = 𝜋𝜋𝜋A + 𝜃𝜃𝜃A − (c⊤ | d⊤1)C1 − d⊤2 C2

= (𝜋𝜋𝜋† + c⊤R0 + d⊤1 R1)A + (𝜃𝜃𝜃† + d⊤2 R2)A
− (c⊤ | d⊤1)

((
TG 0
0 TH

)
C†1 +

(
R0
R1

)
A
)

− d⊤2
(
TFC†2 +R2A

)
= (𝜋𝜋𝜋† + c⊤R0 + d⊤1 R2)A + (𝜃𝜃𝜃† + d⊤2 R2)A
− (c⊤TG | d⊤1 TH)C†1 − (c⊤R0 − d⊤1 R1)A
− d⊤2 TFC†2 − d⊤2 R2A

= 𝜋𝜋𝜋†A + 𝜃𝜃𝜃†A − (c⊤TG | d⊤1 TH)C†1 − d⊤2 TFC†2
= 𝜋𝜋𝜋†A + 𝜃𝜃𝜃†A − (x†⊤ | y†1

⊤)C†1 − y†2
⊤C†2

and the last equation is the verification equation for the knowledge transfer argument for
srs†. □

We next show that when the distributions ℳ ,𝒩1 ,𝒩2 guarantee that the linear knowledge
transfer argument is secure w.r.t. all possible sets S, construction QABLin has local knowledge
soundness.

We also consider some specific distributions we will use later, namely distributions that extend
other distributions with some 0 columns.

Corollary 1. Let 𝒟𝑘 be a matrix distribution for which 𝒟𝑘-SKerMDH and M,N1 ,N2. Then If
𝒟𝑘-SKerMDH assumption holds and for all 𝑆1 ⊆ [𝑑] with 𝑆1 ≤ 𝐾1,ℳ⊤𝑆1

-MDDH holds, QABLin
is a locally extractable proof system. The property is preserved even against adversaries that know
the discrete logs N1 ,N2 and the commitment keys on the field.

Proof. The proof is an immediate consequence of of Thm. 24 and Thm. 9. Note that local
knowledge soundness does not depend on assumptions on N1 ,N2 or the commitments
keys, so the property is preserved even when the adversary knows the corresponding
discrete logarithms. □

122

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

The proof of oblivious trapdoor generation follows from the oblivious trapdoor generation and
index set hiding of SSB commitments. We follow essentially the same proof as in the unilateral
case.

First we show that we construct an indistinguishable srs given only the commitment keys and
the matrices M,N1 ,N2.
Lemma 2. There exists a modified srs generation algorithm K′ that on input (𝜌, 𝜃′), where 𝜃′
contains only either M,N1 ,N2 or G,H,F and outputs an srs such that (𝜌, srs) are identically
distributed to the honest algorithm K.

The lemma follows directly by noting that [B]1 , [D]2 are efficiently computable given the
commitment keys and the discrete logarithms of matrices M,N1 ,N2 (equivalently G,H,F).
As in the unilateral case, we abuse notation and refer to K′(𝜌, 𝜃′) as K(𝜌, 𝜃′).

In the next theorem we consider the three commitment keys issued as a single key. It is easy
to verify that the properties of the commitment keys still hold. Essentially, we want to capture
the condition that the keys preserve oblivious key generation.
Theorem 25. Letℳ, 𝒩1, 𝒩2 be witness samplable distributions, and CS be an algebraic SSB
commitment scheme and letCS′ be the concatenation of three instances ofCS, that is it outputsG∗ =([G0]1 0 0

0 [G1]1 0
0 0 [G2]2

)
with G𝑖 ← CS.KeyGen(gk, 𝑛, 𝑑, 𝐾𝑖 , 𝑆𝑖). If CS′ is oblivious, then construction

QABLin of Fig. 4.6 is also oblivious.

Proof. Since the commitment key is perfectly binding at the extraction set, it is enough to
show that index set hiding holds and that we can sample a tuple (𝜌, srs) indistinguishable
from the one we are given, along with a valid trapdoor.

For index set hiding, it is enough to notice that the srs of QABLin can be efficiently com-
puted given only [G]1 , [H]1 , [F]2. Indeed by sampling M ← ℳ ,N1 ← 𝒩1 ,N2 ← 𝒩2
all values of srs are efficiently computable as noted in Lemma 2. Thus, a distinguishing
advantage in index set hiding of QABLin immediately implies equal advantage on the
respective property of CS.

For oblivious srs generation we first describe the OblSetup algorithm. Let S′ ⊆ S.

OblSetup(𝜌 := ([G∗]1 , [M]1 , [N1]1 , [N2]2), srs):
([G∗′]1 ,T∗′G) ← CS.OblSetup(gk, d,K0 , (S′1 , S′2), [G∗]1)
Sample ([M′]1 ,M′) ← 𝒩 ; ([N′1]1 ,N′1) ← 𝒩2; ([N′2]2 ,N′2) ← 𝒩2

Set 𝜏′ = (T′G ,T′H ,T′F) and compute srs← QABLin.K(𝜌, 𝜃′ = (M,N1 ,N2))

Note that the only difference in samplingwith S andwith S′ is howwe sample the commit-
ment keysG,H,F; srs is identically distributed to an honest one sincewe sampleM,N1 ,N2

123

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

in the same way that 𝒟par does. Also, by oblivious key generation of CS, the trapdoor 𝜏′
is a valid one w.r.t. G′,H′,F′ and set S′, so it extracts valid witnesses which, by statisti-
cal binding in S′ are unique and do not assist the distinguisher which can compute them
itself. □

Finally, we show that if we use MPed of Fig. 4.3 for the former scheme and KMPed of Fig. 4.4
for the other two, construction QABLin is no-signaling.
Corollary 2. Let CS be the construction of Fig. 4.3 and CS′ be the concatenation of the instances
of it. If ck = ([G]1 , [H]1 , [F]1) is a commitment key from CS′ and Z a uniformly distributed
matrix, then construction QABLin is no-signaling where even when the adversary also knows
values [H ⊗ F − Z]1 , [Z]2 ,M,N1 ,N2.

Proof. Follows directly from Thm. 15, the oblivious property of the QALin which was
shown on Thm. 25 and the properties of the KMPed commitment scheme (Thm. 14). Note
that the no-signaling property does not depend on assumptions on M,N1 ,N2, so the
property is preserved even when the adversary knows the corresponding discrete log-
arithms. □

4.7.2 Security Analysis of QASum

Theorem 26. Letℳ1 ,ℳ2 be (possibly correlated) witness samplable distributions,𝒩 be a wit-
ness samplable distribution,𝒟𝑘 a matrix distribution and CS,CS′ an algebraic and split algebraic
SSB commitment respectively. Then, QASum is complete and its local knowledge soundness re-
duces to knowledge transfer soundness of KTSum.

Proof. For completeness, we have that

(c⊤1 | d⊤)C1 + c⊤2 C2 = (c⊤1 | d⊤)
(
K0
K1

)
A + c⊤2 K0A

= (c⊤1 K0 + d⊤K1 + c⊤2 K0)A
=

((c⊤1 + c⊤2)K0 + d⊤K1
)
A

=
(
w⊤(M⊤1 +M⊤2)(Q⊤1 +Q⊤2)K0 + w⊤N⊤F⊤K1

)
A

= w⊤
((M⊤1 +M⊤2)Q⊤K0 +N⊤F⊤K1

)
A

= w⊤
((M⊤1 Q⊤K0 +N⊤F⊤K1 + Z) + (M⊤2 Q⊤K0 − Z)) A

= w⊤ (B +D)A
= w⊤BA + w⊤DA
= 𝜋𝜋𝜋A + 𝜃𝜃𝜃A

Local knowledge soundness follows using almost an identical argument to Thm. 24 and
reducing to knowledge transfer of KTA Sum Argument KW-KTSum of Fig. 4.1. Given an

124

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

adversary𝒜 breaking Knowledge Transfer of the quasi-argument of Fig. 4.7, we construct
another adversary ℬS that breaks Knowledge Transfer of the argument KW-KTSum for
matrices [M1,𝑆0]1, [M2,𝑆0]2 and [N𝑆1]1. ℬS works as follows: it takes input (𝜌† , srs†)where

𝜌† := (gk, [M1,𝑆0]1 , [M2,𝑆0]2 , [N𝑆1]1),
srs† := ([B†]1 , [D†]2 , [A]1,2 , [C†1]2 , [C†2]1)

and does the following:

• It samples ([Q1]1 , [Q2]2 ,Q1 ,Q2 ,TQ) ← CS′.KeyGen(𝑔𝑘, 𝑑, 𝐾, 𝑆1) and sets Q := Q1 +
Q2.

• It samples ([F]1 ,F,TF) ← CS.KeyGen(𝑔𝑘, 𝑑, 𝐾, 𝑆2).

• It samples M1,𝑆1
,M2,𝑆1

,N𝑆2
, such that M1 = P𝑆1

(
M1,𝑆1

M1,𝑆1

)
, M2 = P𝑆1

(
M2,𝑆1

M2,𝑆1

)
, N =

P𝑆2

(
N𝑆2

N𝑆2

)
.

• It samples R0 ← F𝐾0×𝑘 ; R1 ← F𝐾1×𝑘 .

• It computes
[B]1 := [B†]1 + [M1]⊤1 Q⊤R0 + [N]⊤1 F⊤R1

[D]2 := [D†]2 + [M2]⊤2 Q⊤R0

• It computes [C1]2 :=
(
TQ 0
0 TF

)
[C†1]2 +

(
R0
R1

)
[A]2 and [C2]1 := TQ[C†2]1 +R0[A]1.

• It sets

𝜌 := ([Q1]1 , [Q2]1 , [F]2 , [M1]1 , [M2]2 , [N]1), ℎls(𝜃) := (Q1 ,Q2 ,F,N)
srs := ([B]1 , [D]2 , [A]1,2 , [C1]2 , [C2]1)

It then executes𝒜(𝜌, srs) until it outputs a statement ([c1]1 , [c2]2 , [d]1 ,w) together with an
accepting proof [𝜋𝜋𝜋]1 , [𝜃𝜃𝜃]2. Given an accepting proof ℬ sets

[x†1]1 = TQ[c1]1 , [x†2]2 = TQ[c2]2 , [y†]1 = TF[d]1
[𝜋𝜋𝜋†]1 = [𝜋𝜋𝜋]1 − [c1]⊤1 R1 − [d]⊤1 R2 , [𝜃𝜃𝜃†]2 = [𝜃𝜃𝜃]1 − [c2]⊤2 R1

It outputs
(([x†1]1 , [x†2]2 , [y†]1),w, ([𝜋𝜋𝜋†]1 , [𝜃𝜃𝜃†]2)) .

Note that by perfect completeness of the commitment scheme, the commitment keys are
extractable and perfectly binding at 𝑆.

First, we claim that in this case the values 𝜌, srs output by ℬS are identically distributed
to honestly computed ones and thus do not skew the probability that 𝒜 outputs a valid

125

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

proof. For 𝜌, this is immediate by the witness samplability of the distributionsℳ1,ℳ2,
𝒩 . We show that this holds for srs as well. Let K†0 ∈ F|𝑆1 |×𝑘 ,K†1 ∈ F|𝑆2 |×𝑘 , Z† ∈ F𝑛×𝑘
matrices satisfying:

B† = M⊤1,𝑆1
K†0 +N⊤𝑆K†1 + Z† , D† = M⊤2,𝑆1

K†0 − Z† , C†1 =
(
K†0
K†1

)
A and C†2 = K†0A

Now ℬ𝑆 implicitly defines K0 = TQK†0 + R0, K1 = TFK†1 + R1, and note that these ma-
trices are uniformly distributed since R0 ,R1 are uniformly distributed. Thus K0 ,K1 are
distributed identically to honestly generated values for generating an srs. We claim that
the srs output by 𝒜 is identically distributed to sampling this matrix and computing the
other values honestly. Indeed we have that

B = B† +M⊤1 Q⊤R1 +N⊤1 H⊤R1

= M⊤1,𝑆1
K†0 +N⊤𝑆2

K1 + Z† +M⊤1 Q⊤R0 +N⊤1 H⊤R1

= M⊤1 Q⊤TQK†0 +N⊤F⊤T⊤F K1 + Z† +M⊤1 Q⊤R0 +N⊤1 H⊤R1

= M⊤1 Q⊤(TQK†0 +R0) +N⊤F⊤(T⊤F K1 +R1) + Z†

= M⊤1 Q⊤K0 +N⊤F⊤K1 + Z†

where the third equality follows since by the local extractability of the SSBs (1) T⊤QQM1 =
M1,𝑆 and (2) T⊤F FN = N𝑆. Similarly, we have

D = D† +M⊤2 Q⊤R0

= M⊤2,𝑆1
K†0 − Z† +M⊤2 Q⊤R0

= M⊤2 Q⊤TQK†0 − Z† +M⊤2 Q⊤R0

= M⊤2 Q⊤(TQK†0 +R0) − Z†

= M⊤2 Q⊤K0 − Z†

Also, we have that

C1 =
(
TQ 0
0 TF

)
C†1 +

(
R0
R1

)
A =

(
TQ 0
0 TF

) (
K†0
K†1

)
A +

(
R0
R1

)
A = 𝑖

(
TQK†0 +R0
TFK†1 +R1

)
A =

(
K0
K1

)
A

C2 = TQC†2 +R0A = TQK†0A +R0A = (TQK†0 +R0)A = K0A

so the outputted srs is indeed identically distributed to an honest one.

Then, we show that ℬ outputs a valid statement-proof pair w.r.t. to srs†. Since the com-
mitment keys are extractable and perfectly binding, we have that (x†1 , x†2) and y† are valid
openings for the commitments (c1 , c2) and d respectively. Assuming 𝒜 produces a valid
statement for KTSum-ℛno

𝜌,S, for the extracted values it holds that x†1+x†2 = (M1,𝑆1 +M2,𝑆1)w
and y† ≠ N𝑆2w. Thus, ℬS outputs a valid statement and it suffices to show that (𝜋𝜋𝜋† ,𝜃𝜃𝜃†) is

126

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

a valid proof. Indeed, we have

0 = 𝜋𝜋𝜋A + 𝜃𝜃𝜃A − (c⊤1 | d⊤)C1 − c⊤2 C2

= (𝜋𝜋𝜋† + c⊤1 R0 + d⊤R1)A + (𝜃𝜃𝜃† + c⊤2 R0)A
− (c⊤1 | d⊤)

((
TQ 0
0 TF

)
C†1 +

(
R0
R1

)
A
)

− c⊤2
(
TQC†2 +R0A

)
= (𝜋𝜋𝜋† + c⊤1 R0 + d⊤R1)A + (𝜃𝜃𝜃† + c⊤2 R0)A
− (c⊤1 TQ | d⊤TF)C†1 − (c⊤1 R0 − d⊤R1)A
− c⊤2 TQC†2 − c⊤2 R0A

= 𝜋𝜋𝜋†A + 𝜃𝜃𝜃†A − (c⊤1 TQ | d⊤TF)C†1 − c⊤2 TQC†2
= 𝜋𝜋𝜋†A + 𝜃𝜃𝜃†A − (x†1⊤ | y†⊤)C†1 − x†2

⊤C†2

and the last equation is the verifying equation for the knowledge transfer argument for
srs†. □

By the above theorem, when the distributions (ℳ1 ,ℳ2),𝒩 ,𝒟𝑘 guarantee that the sum
knowledge transfer argument is secure w.r.t. all possible sets defined by a set S, construction
QASum has local knowledge soundness. We focus on a specific case that considers ℳ1 ,ℳ2
derived from a distribution 𝒰 ⊗𝒱 that satisfies the (𝒰 ⊗ 𝒱)⊤-KMDDH assumption.

Corollary 3. Let𝒟𝑘 be a matrix distribution for which𝒟𝑘-SKerMDH and (ℳ1 ,ℳ2) be derived
from the splitting of 𝒰 ⊗ 𝒱. If for all 𝑆0 ⊆ [𝑑] with 𝑆0 ≤ 𝐾0, (𝒰 ⊗ 𝒱)⊤1,𝑆0

-KMDDH holds,
QASum is a locally extractable proof system. The property is preserved even against adversaries
that know the discrete logs N and the commitment keys on the field.

Proof. The proof is an immediate consequence of Thm. 26 and Thm. 9. Local knowl-
edge soundness does not depend on assumptions on N or the commitments keys, so the
property is preserved even when the adversary knows the corresponding discrete loga-
rithms. □

The proof that QASum is oblivious follows from the oblivious trapdoor generation and index
set hiding of the SSB commitments. We essentially follow the same proof as in the QABLin
case.

First we show the corresponding lemma to Lemma 2, that is, we construct an indistinguishable
srs given only the commitment keys and the matrices M1 ,M2 ,N.

Lemma 3. There exists a modified srs generation algorithm K′ that on input (𝜌, 𝜃′), where 𝜃′
contains only either M1 ,M2 ,N or Q1 ,Q2 ,F and outputs an srs such that (𝜌, srs) are identically
distributed to the honest algorithm.

127

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Proof. Given these values we can compute the srs using a simple trick. Instead of comput-
ing

[B]1 = [M⊤1]1Q⊤K0 + [N⊤]1F⊤K1 + [Z]1
[D]2 = [M⊤2]2Q⊤K0 − [Z]2 ,

we compute
[B]1 = (M⊤1 +M⊤2)[Q⊤1]1K0 + [N⊤]1F⊤K1 + [Z]1

[D]2 = (M⊤1 +M⊤2)[Q⊤2]2K0 − [Z]2
Noting that in both cases the elements computed are uniformly distributed conditioned
on B +D = (M⊤1 +M⊤2)(Q⊤1 +Q⊤2)K0 +N⊤F⊤K1 we see that these values are computed as
in the honest setup.

In the case where 𝜃 = (Q1 ,Q2 ,F) we can directly compute the srs by noting that Q =
Q1 +Q2 and the group elements in 𝜌 are enough to compute all values of srs. □

As in the previous cases, we abuse notation and refer to K′(𝜌, 𝜃′) as K(𝜌, 𝜃′).

The proof of oblivious extraction essentially follows from the oblivious key generation and index
set hiding of the SSB commitments and is similar to the proof of Thm. 25.

Theorem 27. Let (ℳ1 ,ℳ2),𝒩 ,𝒟𝑘 be witness samplable distribution, and CS,CS′ be an alge-
braic and a split algebraic SSB commitment scheme. If CS, CS′ are oblivious then QASum is also
oblivious.

Proof. It is enough to show that index set hiding holds and that we can sample a tuple
(𝜌, srs) indistinguishable from the one we are given, along with a valid trapdoor. This is
the case because the commitment keys are perfectly binding in 𝑆′, which means that the
witnesses are unique and do not help the (unbounded) distinguisher who can compute
them on its own.

Index Set Hidning. Assume there exist sets S, S′ of size at most K and an adversary 𝒜
which distinguishes (𝜌, srs) sampled for S from (𝜌, srs) sampled for S′ with some proba-
bility 𝛼. We construct adversaries ℬ0 distinguishing ck0 sampled for 𝑆0 from ck0 sampled
for 𝑆′0 with probability 𝛼0 and an adversary ℬ1 distinguishing ck1 sampled for 𝑆1 from
ck1 sampled for 𝑆′1 with probability 𝛼1 such that 𝛼 ≤ 𝛼0+𝛼1

2 .

ℬ0 takes as input ck0 sampled either for 𝑆0 or 𝑆′0. It then honestly computes the srs by sam-
pling M1 ,M2 ,N and following the K described in Lemma 3 except that ck1 is computed as
follows: it samples 𝑏 ← {0, 1} and if 𝑏 = 0 it sets (ck1 , 𝑠𝑘1) ← CS.KeyGen(gk1 , 𝑑, 𝐾, 𝑆1) oth-
erwise it sets (ck1 , 𝑠𝑘1) ← CS.KeyGen(gk1 , 𝑑, 𝐾, 𝑆

′
1).Note that, with probability 1/2, the srs

computed byℬ follows exactly the original distribution. This is the case sinceB,D are uni-
formmatrices conditioned on their sum being equal to (M⊤1 +M⊤2)(Q⊤1 +Q⊤2)K1+N⊤F⊤K2

128

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

for uniform K1 ,K2, exactly as in the honest srs generation. Finally ℬ0 runs 𝒜(𝜌, srs) and
output whatever it outputs.

Similarly, on input ck1 sampled either for 𝑆1 or 𝑆′1, ℬ1 samples 𝑏 ← {0, 1} and if 𝑏 = 0
it sets (ck0 , 𝑠𝑘0) ← CS.KeyGen(gk, 𝑑, 𝐾, 𝑆0) otherwise it sets (ck0 , 𝑠𝑘0) ← CS.KeyGen(gk,
𝑑, 𝐾, 𝑆′0) and honestly computes the srs as in the previous case. A simple case analysis
shows that 𝛼 ≤ 𝛼+𝛼

2 .

Oblivious trapdoor generation: We show how to obliviously sample a trapdoor given black
box access to CS.OblKeyGen and CS′.OblKeyGen. For oblivious trapdoor generation, given
a pair 𝜌, srs for the quasi argument and set S′ the oblivious setup QASum.OblKeyGen does
the following:

• (ck′0 , 𝜏′0) ← CS.OblKeyGen(ck0 , 𝑆′0) and
(ck′1 , 𝜏′1) ← CS′.OblKeyGen(ck1 , 𝑆′1).

• Sample ([M1]1 , [M2]2 ,M1 ,M2) ← 𝒩 , ([N]1 ,N) ← 𝒩 .

• Compute the rest of the srs by K(ck′0 , ck′1 ,M1 ,M2 ,N).

Arguing as in the index set hiding proof, the only difference in the oblivious and an honest
srs is how the commitment keys are sampled. We can thus use a standard hybrid argument
to reduce the property to the oblivious trapdoor generation of the commitment schemes
CS,CS′. □

Finally, we consider the specific case of using the KMPed key of 4.4 for ck0 and MPed of 4.3
for ck1, construction QASum is no-signaling.
Corollary 4. Let CS be an instance of KMPed and CS′ an instance of MPed. Then QASum
is no-signaling. The property is preserved even against adversaries that know the discrete logs
M1 ,M2 ,M.

Proof. The proof follows directly from Thm 15 and the oblivious property of QASum,
which in turn follows fromapplyingThm. 10 andThm. 14 to Theorem27. The no-signaling
property does not depend on assumptions onM1 ,M2 ,N, so the property is preserved even
when the adversary knows the corresponding discrete logarithms. □

4.7.3 Security Analysis of QAHad

Theorem 28. Let 𝒰 ,𝒱 ,𝒲 be witness samplable distributions, 𝒟𝑘 be a matrix distribution
and CS an algebraic SSB commitment scheme. Then, QAHad is complete and its local knowledge

129

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

soundness reduces to local knowledge soundness of QASum.

Proof. For completeness, we have that

u ⊗ v = GUa ⊗ GUb = (G ⊗ H)(U ⊗ V)(a ⊗ b) =
= (G ⊗ H − Z + Z)(U ⊗ V −R +R)(a ⊗ b) =
= (Q1 +Q2)(M1 +M2)(a ⊗ b)

and also c1 + c2 = (E1 +E2)(a ⊗ b) = (Q1 +Q2)(U ⊗V)(a ⊗ b) = u ⊗ v, so the pairing test is
successful. Finally, noting that w = d = FW(a ◦ b) = FWD(a ⊗ b) = FN(a ⊗ b), we see that
the statement/witness pair ([c1]1 , [c2]2 , [d]1), a ⊗ b is a yes instance of the sum language
for parameters 𝜌Sum and the second condition for verification follows by completeness of
QASum.

For local knowledge soundness, it is enough to note that the Kronecker part of the knowl-
edge transfer holds unconditionally, that is, if for some promise a, b it holds that u = GUa
and v = HVb, then by the verification of the pairing condition, c1 + c2 = (Q1 + Q2)(M1 +
M2)(a⊗ b), so we efficiently construct a promise for the sum language. Now, an accepting
proof for the Hadamard language contains an accepting proof for the sum language and
we use that to break local soundness of QASum. Details follow.

Let 𝒜 be an adversary against local knowledge soundness of QAHad. We construct an
adversary ℬ against local knowledge soundness of QASum. We implicitly use the fact
that the soundness of QASum holds even against adversaries who know the discrete log-
arithms of the commitment keys Q1 ,Q2. ℬ takes as input (𝜌Sum , srsSum) and works as
follows:

• Parse
𝜌Sum =

(
gk, [Q1]1 , [Q2]2 , [F]1 , [M1]1 , [M2]2 , [N]1 ,
auxCS = ([G]1 , [H]1), aux𝒩 = ([U]1 , [V]2),

)
• Set 𝜌 = (gk, [G]1 , [H]2 , [F]2 , [U]1 , [V]2 , [N]1).
• Sample R′← F𝐾×𝑛2 and set [E1]1 = (Q1+Q2)[M1]1+[R′]1 , [E2]2 = (Q1+Q2)[M2]2−
[R′]2.

It then executes 𝒜(𝜌, srs = ([E1]1 , [E2]2 , srsSum)) until it outputs a statement ([u]1 , [v]2 ,
[w]1 , a, b) together with an accepting proof ([c1]1 , [c2]2 ,𝜋Sum). It outputs the tuple con-
taining the following statement, advice and proof:

(([c1]1 , [c2]2 , [w]1), a ⊗ b,𝜋Sum)

The srs is identically distributed to an honestly computed one. Indeed the only thing
computed differently are the values [E1]1 , [E2]2, but note that in the reduction they are

130

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

distributed uniformly conditioned on E1 + E2 = (Q1 +Q2)(M1 +M2) = (Q1 +Q2)(U ⊗ V),
as in the honest srs generation.

Now, assuming an accepting proof, and a correct promise a, b given from 𝒜 means that
the promise of ℬ is also correct. Indeed, we have

c1 + c2 = u ⊗ v = GUa ⊗ HVb = (G ⊗ H)(U ⊗ V)(a ⊗ b) =
= (G ⊗ H − Z + Z)(U ⊗ V −R +R)(a ⊗ b) =
= (Q1 +Q2)(M1 +M2)(a ⊗ b).

Now let x1 = TQc1, x2 = TQc2, y = TFw be the extracted values. We have that

x1 + x2 = TQ(c1 + c2) = TQ(Q1 +Q2)(M1 +M2)(a ⊗ b)
= (M𝑆,1 +M𝑆,2)(a ⊗ b).

so indeed the promise is correct. Also assuming that the statement/advice given from𝒜
is a no-instance for the Hadamard language w.r.t. to the set 𝑆, then the statement/advice
given from ℬ is a no-instance for the sum language w.r.t. the same set 𝑆. Indeed, we have

y ≠ WS(a ◦ b) = WSD(a ⊗ b) = NS(a ⊗ b).
So, conditioned on a successful 𝒜, ℬ outputs an instance/advice such that (1) the ex-
tractor gets values that satisfy ℛno

𝜌Sum ,S for 𝜌Sum and (2) a proof that verifies w.r.t. the in-
stance. □

We next show that when the distributions𝒰 ,𝒱 ,𝒲 guarantee that the sum knowledge transfer
argument is secure w.r.t. all possible sets S, construction QAHad satisfies local knowledge
soundness.

Corollary 5. Let𝒟𝑘 be a matrix distribution for which𝒟𝑘-SKerMDH. Denote 𝒳𝑆 the distribu-
tions that sample matrices from𝒰 (resp. 𝒱,𝒲), and restricts them to rows corresponding to 𝑆.
Then, if for all 𝑆 ⊆ [𝑑] with 𝑆 ≤ 𝐾, (𝒰 ⊗ 𝒱)⊤𝑆 -KMDDH holds, QAHad satisfies local knowledge
soundness. The property is preserved even against adversaries that know the discrete logs W and
the commitment keys on the field.

Proof. The proof is an immediate consequence of Thm. 28, Thm. 15 and Cor 3. □

The proof of oblivious trapdoor generation essentially follows from the oblivious trapdoor
generation and index set hiding of the SSB commitments and is similar to the corresponding
proofs for the other constructions.

First we show the corresponding lemma to Lemma 3, that is, we construct an indistinguishable
srs given only the commitment keys and the matrices U,V,W.

131

CHAPTER 4. DELEGATION FROM CONSTANT-SIZE ASSUMPTIONS

Lemma 4. There exists a modified srs generation algorithm K′ that on input (𝜌, 𝜃′), where either
𝜃′ = (U,V,W, [G⊗H−Z]1 , [Z]2) or 𝜃′ = (G,H,F, [U⊗V−R]1 , [R]2) and outputs a srs such
that (𝜌, srs) are identically distributed to the honest algorithm.

The lemma follows by inspection and by noting that with the given values we can compute
the srs for the sum as explained in Lemma 3. Again, w.l.o.g. we use the same name for the
two algorithms, namely K and differentiate them by their input.

We next show that the construction satisfies oblivious extractability.

Theorem 29. Let 𝒰 ,𝒱 ,𝒲 be witness samplable distributions, and CS be instantiated with
MPed of Fig. 4.3. Then Construction QAHad of Fig. 4.8 is oblivious.

Proof. It is enough to show that index set hiding holds and that we can sample a tuple
(𝜌, srs) indistinguishable from the one we are given, along with a valid trapdoor. This is
the case because the commitment keys are perfectly binding in 𝑆′, which means that the
witnesses are unique and do not help the (unbounded) distinguisher who can compute
them on its own.

Index Set Hidning. The property follows by the index set hiding property of KMPed and
MPed and the fact that we compute the rest of the values in 𝜌, srs as described in Lemma 4.

Oblivious trapdoor generation: Here, we can simply use the oblivious trapdoor generation
of protocol QASum. The conditions of Cor. 4 are satisfied. It is enough to show that we can
compute the srs for the QAHad given a srs for QASum. But this is easy since when given
a pair (𝜌Sum , srsSum) we execute the oblivious srs algorithm QASum.OblKeyGen(𝜌, srs, S =
(𝑆, 𝑆)) as in Lemma 4. □

Corollary 6. If we instantiate CS with MPed of 4.3, then QAHad from Fig. 4.8 is no-signaling.
The property is preserved even against adversaries that know the discrete logs U,V,W.

Proof. The proof follows directly from Thm. 29, and Thm. 15 and Cor. 4. □

132

Chapter 5

Tree Based Vector Commitment
Schemes

Part of this chapter is based on a result form the paper “Linear-map Vector Commitments
and their Practical Applications”, which is joint work with Matteo Campanelli, Anca
Nitulescu, Carla Ráfols, Arantxa Zapico.

Vector commitment schemes, introduced in [LY10; CF13], is a cryptographic primitive that
allows a party to commit to a vector v by producing a digest and later reveal some position
of the vector in a verifiable manner. This property is called position binding. The most basic
security guarantee is that it is infeasible to open a commitment at position 𝑖 to two different
values 𝑣𝑖 ≠ 𝑣′𝑖). As far as efficiency is concerned, both the commitment and each individual
opening proof should be sublinear in the dimension of the committed vector.

There is a plethora of additional requirements for vector commitments. One natural gener-
alization is the subvector opening property [LM19; BBF19]. This states that a prover can
open a “bunch” of position in a single proof, instead of sending individual openings for each.
Crucially, it should be the case that the size of the subvector proof should also be sublinear in
the number of position proven.

Going even further, one can consider opening functions of the committed values, namely, if
one commits to some vector v, he should later be able to verifiable reveal a value 𝑓 (v) for some
public fuction 𝑓 . Such constructions were introduced in [LRY16] and are called Functional
Vector Commitments. Lai and Malavolta [LM19] introduced Linear Map Vector Commitments
which is a special case of functional commitments that allow opening linear maps.

Vector commitments are very useful to scale highly decentralized networks of large size and

133

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

whose content is dynamic [CPZ18; BBF19; CFG+20; GRWZ20] (such dynamic content can
be the state of a blockchain, amount stored on a wallet, the value of a file in a decentralized
storage network, etc.). We discuss some of the most prominent applications of VC to motivate
and justify their practical importance.

Verifiable Databases. One of the applications that can be significantly improved by Vector
Commitments is Verifiable Databases (VDB). In this setting, a client outsources the storage
of a database to a server while keeping the ability to access and change some of its records,
i.e. query functions of the data and update some of the data and ensure the server does not
tamper with the data.

Stateless Cryptocurrency. A recent application that motivated more efficient constructions
of VC schemes is stateless cryptocurrency, i.e. a payment system based on a distributed ledger
where neither validators of transactions nor system users need to store the full ledger state.

Proof of Space. Proof of Space (PoS) is a protocol that allows miners (storage providers) to
convince the network that they are dedicating physical storage over time in an efficient way.
In a nutshell, a miner commits to a file (data) that uses a specified amount of disk space and
then the miner proves that it continues to store the data by answering to recurring audits that
consist of random spot-checks.

“Caching” Optimizations. In some applications, e.g. when performing HTTP queries, clients
use the so-called prefetching¹ and receive from a server not only the values of interest but other
related values that could potentially be queried in the near future (e.g., values in a neighboring
range of the queried values). Vector commitments with efficient proofs for special (“caching”)
subset openings allow to add verifiability to such queries in a way that does not affect the
speed of the server since the proving procedure for a bigger subset is close or the same as for
individual positions.

Improved Succinct Arguments. Construction of succinct arguments has been abstracted
and modularized in the recent years. One particular such way is constructing an proof system
in an idealized model called Interactive Oracle Proofs [BCS16] and then “compile” it to an
actual proof system using Vector Commitments. More efficient VC constructions directly yield
more efficient succinct arguments that are constructed in this way.

Properties of Vector Commitments.

Apart from efficiency -which is always a requirement, especially in practical applications- a
vector commitment is required to satisfy a plethora of other properties. In a nutshell, a vector
commitment scheme should satisfy:

• Expressivity. One would like VC to be as expressive as possible, meaning that it should

¹https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ

134

https://developer.mozilla.org/en-US/docs/Web/HTTP/Link_prefetching_FAQ

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

be possible to open to functions of the vector as general as possible (subvector openings,
linear or arbitrary functions).

• Privacy. The commitment should not reveal information about the committed vector.
Furthermore, the proofs of claims should not reveal more information apart from the
claim itself.

• Proof Aggregation. This property captures the ability to “pack” two or more proofs
together obtaining a new proof for their combined claims. This should be possible
without knowledge of the opening of the vector and aggregation cost should be sublinear
in the vector length. Importantly, the resulting proof size should not significantly grow
each time we perform an aggregation.

• Updatability. This property allows to efficiently update opening proofs: if c is a com-
mitment to v and a position needs to be updated resulting in a new commitment c′, an
updatable VC must provide a method to update a valid claim of c into a valid claim of
c′. The new opening should be computed by only knowing the portion of the vector that
is changed and in time faster than recomputing the opening from scratch.

• Homomorphic. This property captures the ability to combine commitments and claims
about openings. For example, given two commitments c and c′ to v and v′, it should
be possible to construct a commitment to v + v′ without knowing v, v′. Ideally, claims
about openings should be homomorphic; for example, a claim about the 𝑖-th coordinate
of c,c′ should be enough to construct a claim about the 𝑖-th opening of the commitment
of v + v′.

• Maintainability. This property allows amortizing the proving costs in systems where
committed values have a long life span and evolve over time. This is achieved by means
of dedicating memory to reduce the computation time needed to open proofs. Concretely,
the property requires that (1) one can efficiently store some values to reduce the cost of
computing any individual openings (2) after updating a single position of the committed
vector, it should be possible to update all proofs in time sublinear in the size of the
vector (less than computing a single proof from scratch in some cases).

Our Contributions

In this chapter, we consider combinatorial techniques to construct vector commitment sche-
mes. Specifically, we consider techniques similar to the ones used by Merkle trees, i.e. arranging
the committed vector in a tree structure and commit “from leafs to root”. We differentiate
from Merkle trees in that we apply these techniques in the (plain and pairing) group setting
which enjoys an algebraic structure, which is crucial for homomorphic properties. We only
consider simple vector commitments that only satisfy position binding, although in some cases
generalizations for slightly richer settings are possible. Concretely, we present two independent
tree-based constructions with different goals in mind.

135

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

Vector commitment in the discrete logarithm setting. We construct a vector commitment
scheme² in the plain discrete logarithm setting. We do this by first constructing a generic vector
commitment scheme based on algebraic commitments and proofs of membership in linear
space, and then instantiating with the Pedersen commitment and the folding technique. The
construction has a transparent setup and has homomorphic commitments, but the proofs are
not homomorphic, since the construction relies on the Fiat-Shamir transform which breaks the
algebraic properties. Security holds in the Random Oracle model under the Discrete Logarithm
assumption. Furthermore, the construction allows for some interesting trade-offs which are
a direct consequence of the combinatorial structure of the tree: it allows pre-computing all
opening proofs in time quasi linear in the size of the vector (instead of quadratic). Furthermore,
it allows updating all proofs after a change in the committed vector in time equivalent to
computing a single proof from scratch, i.e. linear in the size of the committed vector. We
emphasize, however, that for performing this update, one needs to know the vector opening
in its entirety; simply knowing the changed positions and the previous proofs is not enough.

Maintainable vector commitment with additional memory/time trade-offs. We present
a maintainable vector commitment construction by exploiting the tensor structure of multi-
variate polynomials. This construction allows a stronger, more flexible form of maintainability:
we achieve an arbitrary memory/time trade-off for openings, meaning that one can decide how
much memory it wants to use to reduce the opening time accordingly. The construction is
based on the Papamanthou et. al. polynomial commitment scheme [PST13] and generalizes
Hyperproofs [SCP+22]. It improves on the latter in two different ways. First it utilizes low
degree (instead of multilinear) polynomials which reduces the proof size by a constant factor.
Second, it allows a very flexible memory/time trade-off: for vectors of size 𝑘 · 𝑚, one can
pre-compute and store 𝒪(𝑚) elements and spend only 𝒪(𝑘) time to produce a proof. The
proof size is independent of time parameter 𝑘. The stored parts of the proofs can be efficiently
updated after a change in the committed vector.

5.1 Vector Commitment Definitions

In this section we recall definitions of vector commitments (VC), introduced by Catalano and
Fiore [CF13], and subvector commitments (SVC), as presented in [BBF19; LM19].
Definition 32 (Vector Commitment). A vector commitment for vectors from the message
spaceℳ is a tuple of PPT algorithms

(
KeyGen,Com,Open,Verify

)
that work as follows:

(pk, vk) ← VCS.KeyGen(1𝜅 ,ℳ , 𝑚): On input the security parameter 𝜅, the message space
ℳ for the vectors and the maximum vector length𝑚³, it returns s proving key pk that

²Traditionally, the verification time of an opening is required to be sublinear in the size of the vector.
This construction fails to achieve this property since it is based on the folding technique, which has a linear
verifier. Nevertheless, this can be partially mitigated by amortizing the verification cost across many proofs
using recent proof composition techniques.

³Some schemes are unbounded: they ignore 𝑚 since they can commit to vectors of any length poly.

136

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

includesℳ, and a verification key vk.

(c, aux) ← VCS.Com(pk, vk): On input pk and a vector v = (𝑣1 , 𝑣2 . . . , 𝑣𝑚) ∈ ℳ𝑚 , it returns
a commitment c and auxiliary information aux.

𝜋𝑖 ← VCS.Open(pk, aux, 𝑖 , 𝑣𝑖): On input pk, aux, an index 𝑖 ∈ [𝑚], and a value 𝑣𝑖 , it outputs
a proof 𝜋𝑖 that the value 𝑣𝑖 is at position 𝑖.

0/1← VCS.Verify(vk, c, 𝑖 , 𝑣,𝜋𝑖): On input vk, c, 𝑖 ∈ [𝑚], a value 𝑣 ∈ ℳ and 𝜋𝑖 , it outputs
1 if the proof verifies and 0 otherwise.

that satisfies the following properties:

1. Perfect Correctness. A VC scheme is perfectly correct if, for all 𝜅 ∈ N, any vector length
𝑚 = poly(𝜅), any index 𝑖 ∈ [𝑚], and any v ∈ ℳ𝑚 :

Pr
VCS.Verify(vk, c, 𝑖 , 𝑣𝑖 ,𝜋𝑖) = 1

(pk, vk) ← VCS.KeyGen(1𝜅 ,ℳ , 𝑚)
(c, aux) ← VCS.Com(pk, v)

𝜋𝑖 ← VCS.Open(pk, aux, 𝑖 , 𝑣𝑖)

 = 1

2. Position Binding. A VC scheme satisfies position binding if, for all PPT adversaries𝒜,
for all 𝜅 ∈ N, any vector length 𝑚 = poly(𝜅):

Pr

VCS.Verify(vk, c, 𝑖 , 𝑣,𝜋) = 1
∧ VCS.Verify(vk, c, 𝑖 , 𝑣′,𝜋′) = 1

∧ 𝑣 ≠ 𝑣′
(pk, vk) ← VCS.KeyGen(1𝜅 ,ℳ , 𝑚)
(c, 𝑖 , (𝑣,𝜋), (𝑣′,𝜋′)) ← 𝒜(pk, vk)

 ≤ negl(𝜅).

3. Efficiency. The size of the proof 𝜋 should be sublinear in the size of the vector 𝑚.

One can also consider a weaker variant of position binding, where the adversary is additionally
required to output a valid opening of the commitment c as well.

Next, we consider the definition of vector commitments that also support sub-vector openings.

Definition 33 (Vector Commitment with Subvector Opening). A Vector Commitment
with Sub-Vector Openings scheme is a VC scheme that opens subsets rather than simple
positions. It consists on algorithms

(
VCS.KeyGen,VCS.Com,VCS.Open,VCS.Verify

)
that

work as follows:

(pk, vk) ← VCS.KeyGen(1𝜅 ,ℳ , 𝑚): On input the security parameter 𝜅, the message space
ℳ for the vectors elements and themaximumvector length𝑚 and outputs a proving
key pk and verification key vk.

(c, aux) ← VCS.Com(pk, v): On input pk and a vector v = (𝑣1 , 𝑣2 . . . , 𝑣𝑚) ∈ ℳ𝑚 , it outputs
a commitment c and auxiliary information aux.

137

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

𝜋𝑆 ← VCS.Open(pk, aux, 𝑆, v𝑆) : On input pk, aux, a set of index 𝑆 ⊂ [𝑚] and values v𝑆 =
{𝑣𝑖}𝑖∈𝑆, it outputs a proof 𝜋𝑆 that 𝑣𝑖 is the value in position 𝑖, for all 𝑖 ∈ 𝑆.

0/1← VCS.Verify(vk, c, 𝑆, y,𝜋𝑆) : On input vk, c, a set 𝑆, a vector y = {𝑦𝑖}𝑖∈𝑆 and 𝜋𝐼 , it
outputs 1 for accept or 0 for reject.

that satisfies the following properties:

1. Perfect Correctness. A VC scheme is perfectly correct if, for all 𝜅 ∈ N, any vector length
𝑚 = poly(𝜅), any set 𝑆 ⊆ [𝑚], and any v ∈ ℳ𝑚 :

Pr
VCS.Verify(vk, c, 𝑆, v𝑆 ,𝜋𝑖) = 1

(pk, vk) ← VCS.KeyGen(1𝜅 ,ℳ , 𝑚)
(c, aux) ← VCS.Com(pk, v)

𝜋𝑆 ← VCS.Open(pk, aux, 𝑆, v𝑆)

 = 1

2. Subvector Binding. A VC scheme satisfies position binding if, for all PPT adversaries
𝒜, for all 𝜅 ∈ N, any vector length 𝑚 = poly(𝜅):

Pr

VCS.Verify(vk, c, 𝑆, v,𝜋) = 1
∧ VCS.Verify(vk, c, 𝑆′, v′,𝜋′) = 1
∧ ∃𝑖 ∈ 𝑆 ∩ 𝑆′; s.t. 𝑣𝑖 ≠ 𝑣′𝑖

(pk, vk) ← VCS.KeyGen(1𝜅 ,ℳ , 𝑚)
(c, 𝑆, 𝑆′, (𝑣,𝜋), (𝑣′,𝜋′)) ← 𝒜(pk, vk)

 ≤ negl(𝜅).

3. Efficiency. The size of the proof 𝜋𝑆 should be sublinear in the size of the vector 𝑚 and
the size of the set 𝑆.

We next define some additional properties a vector commitment should satisfy. We consider
these properties only in the case of simple Vector Commitments.

Definition 34 (HomomorphicCommitments andOpenings.). Avector commitment scheme
is homomorphic if it supports an addition operation + on commitments such that for all
𝜅, and (pk, vk) ← VCS.KeyGen(1𝜅 ,ℳ , 𝑚), if

(c1 , aux1) ← VCS.Com(pk, v1), (c2 , aux2) ← VCS.Com(pk, v2)
then c̃ = (𝛼c1 + 𝛽c2) is a valid commitment to ṽ = (𝛼v1 + 𝛽v2) for any 𝛼, 𝛽 ∈ ℳ. Addition-
ally, it has homomorphic openings if it supports an addition operation + on proofs such
that for all 𝜅, 𝑖 ∈ [𝑚], vectors v1 , v2 ∈ ℳ𝑚 if

𝜋1 ← VCS.Open(pk, aux1 , 𝑖 , 𝑦1), 𝜋2 ← VCS.Open(pk, aux2 , 𝑖 , 𝑦2)
then �̃� = (𝛼𝜋1 + 𝛽𝜋2) satisfies

VCS.Verify(vk, c̃ = (𝛼c1 + 𝛽c2), 𝑖 , �̃� = (𝛼𝑦1 + 𝛽𝑦2), �̃�)
= 1

We next consider updatability as an extra property of Vector Commitment schemes.

138

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

Definition 35 (Updatability). A homomorhic vector commitment scheme is updatable if
KeyGen algorithm additionally outputs an update key uk and there exists an algorithm
Update such that

𝜋′← VCS.Update(uk, j, 𝛿, i, yi ,𝜋i): on input uk, 𝑗, 𝛿, a position 𝑖, and a valid opening pair
(𝑦𝑖 ,𝜋𝑖) for position 𝑖, it outputs a valid proof 𝜋′𝑖 for the new commitment c′ defined
as c′ = c + Com(𝛿e𝑗) at position 𝑖.

Concretely, if 𝑦′ is the new value of c′ at position 𝑖 (𝑦′ + 𝛿 if 𝑖 = 𝑗 and 𝑦 otherwise), then

VCS.Verify(vk, c′ = (c + 𝛿e𝑗), 𝑖 , 𝑦′,𝜋′) = 1

Note that updatability is implied by the homomorphic opening properties. Indeed, let c be a
commitment and (𝑦𝑖 ,𝜋𝑖) a valid proof for the 𝑖-th coordinate. Now, consider the vector 𝛿e𝑗,
a commitment to it c∗ and let (𝑦∗𝑖 ,𝜋∗𝑖) be a proof for its 𝑖-th coordinate. Note that 𝑦∗𝑖 = 0
if 𝑖 ≠ 𝑗 and 𝛿 otherwise. Now, by the homomorphic openings property, �̃� = 𝜋𝑖 + 𝜋∗𝑖 is a
valid proof for the 𝑖-th coordinate of the commitment c̃ = c + c∗. This is exactly the property
that Updatability needs to satisfy. Note that we do not need to know the opening of c in its
entirety; it is enough to know its opening and a proof for the 𝑖-th coordinate.

5.1.1 Algebraic Vector Commitments

We consider a specific family of vector commitments which we call algebraic. Essentially, a
commitment scheme is algebraic if the commit algorithm is an inner product of elements of
the commitment key with the committed vector. We consider such commitments in the group
setting.

Definition 36 (Algebraic Vector Commitments). Let gk ← 𝒢(1𝜅) be a description of a
(plain or pairing group). A vector commitment scheme with message space F and com-
mitment space G is algebraic if for committing to vectors of size 𝑚, the commitment key
pk contains a vector [r] ∈ G𝑚 and the commit algorithm is defined as VCS.Com(pk, v2) =
[r]⊤v.

All the constructions in this section are algebraic vector commitment scheme. Note that an
algebraic vector commitment scheme is necessarily homomorphic. Indeed, if c1 and c2 are
commitments to v1 , v2 respectively, we have

𝛼c1 + 𝛽c2 = 𝛼[r]⊤v1 + 𝛽[r]⊤v2 = [r]⊤(𝛼v1 + 𝛽v2)

139

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

5.2 Vector Commitments in the Discrete Logarithm Setting

In this section we present a vector commitment scheme in the discrete logarithm setting.
The construction allows for efficient proof pre-computation. To derive the construction we
work as follows: first we present a generic vector commitment construction with subvector
openings by using proof of knowledge of opening of an algebraic commitment. That is, we
show that we know a representation of a group element w.r.t. a vector of group elements.
While this construction is enough, it lacks efficient pre-computation of openings. We mitigate
this by recursively applying this construction in a tree-like fashion to predefined subsets. The
new tree structure adds redundancy to the proofs and allows to achieve the desirable pre-
processing properties. Finally, we instantiate the PoK of opening using the folding technique,
which yields a transparent vector commitment in the discrete logarithm setting (secure in the
random oracle model).

5.2.1 Proof of Knowledge of Opening from the Folding Technique.

In this section we present proofs of knowledge of opening of a commitment schemes in the
discrete logarithm setting, using the folding technique. Concretely, we define the NP language
ℒgk,r parameterized by a group description gk and a commitment key [r] ∈ F𝑚, where 𝑚 is
the dimension of the committed vectors as

ℒgk,r =
{[c] | ∃x s.t. c = r⊤x

}
and instantiate argument systems for this fixed language.

We do this by adapting the folding technique. We denote with a0 , a1 the first and second half
elements of a commitment a. Intuitively, given an algebraic commitment [c] ∈ G, the prover
convinces the verifier that it knows an opening [c] = [r]⊤x as follows:

• First, the prover gives commitments [c1] = [r0]⊤x1 and [c0] = [r1]⊤x0 and expects a
random challenge 𝜒 ∈ F from the verifier.

• Then it computes a new commitment key [r′] = [r0] + 𝜒−1[r1] and a new witness
x′ = x0 + 𝜒x1 and proceeds recursively in showing that a new commitment [c′] opens to
the new opening x′ w.r.t. the new (halved) commitment key [r′].

• When the witness is small enough -say constant- the prover simply presents the witness
to the verifier.

From the verifier’s perspective, the crucial point is that the new commitment key in each round
is efficiently computable, and the new commitment can be computed from the commitments

140

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

Figure 5.1 Public coin protocol for proving knowledge of an opening of an algebraic com-
mitment. We demonstrate the recursive step. When the witness is small, the prover sim-
ply sends it on the clear to the verifier.

x = ([r], [c]), w = a

𝒫 : q𝑖 = (x𝑖 ,w𝑖) 𝒱 : x𝑖

[c0] = [r1]⊤a0 , [c1] = [r0]⊤a1
[c0], [c1]

𝜒 𝜒← F
a′ = a0 + 𝜒a1

[c′] = [c1] + 𝜒[c2] [𝑐′] = [c1] + 𝜒[c2]
[r′] = [r0] + 𝜒−1[r1] [r′] = [r0] + 𝜒−1[r1]

x′ = ([r′], [c′]) x′ = ()[r′], [c′])
w′ = a′

given to the verifier and the random challenge as follows:

[c1]𝜒 + [c] + [c0]𝜒−1 = [r0]⊤x1𝜒 + [r]⊤x + [r0]⊤x1𝜒
−1

= [r0]⊤x1𝜒 + [r0]⊤x0 + [r1]⊤x1 + [r1]⊤x0𝜒
−1

= [r0]⊤(x0 + x1𝜒) + [r1]⊤(x0𝜒
−1 + x1)

= [r0]⊤(x0 + x1𝜒) + [r1]𝜒−1⊤(x0 + x1𝜒)
= [r0 + r1𝜒

−1]⊤(x0 + x1𝜒)

As for soundness, intuitively, the prover must know openings of both [c0] and [c1] since it
manages to open a random linear combination of them defined after the commitments are
presented. Note that in each round (1) the witness size is halved and (2) a constant number
of elements is communicated. This translates in a protocol with logarithmic rounds and
communication. We present the protocol in Fig. 5.1. Note that this is a simpler variant of
the folding technique used for inner product arguments. The proof of soundness is a direct
adaptation of this case.

Remark (On Verification Efficiency). The verification cost is linear in the dimension 𝑛.
Nevertheless, most of the work done by the verifier is computing the new key r′ which
is fully determined by the initial key and the challenges and not the witness or the proof
itself. This is an important observation that allows amortizing this cost across several
proofs [BBB+18; BGH19; BCMS20].

141

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

5.2.2 Generic Construciton of Vector Commitments from PoK of Opening

In this section, we describe abstract techniques to construct tree-based vector commitments.
Specifically, our construction only employs algebraic and combinatorial properties, making
them very flexible in instantiating.

We start by showing an inherent connection between subvector openings and proofs of member-
ship in linear spaces. Then we show how to utilize this technique and some simple combinatorial
properties to derive tree-based vector commitment constructions with interesting properties.
Finally, we instantiate the construction using the folding technique deriving a maintainable
vector commitment scheme in the DLOG setting.

Non-membership Proofs

Consider an algebraic commitment scheme and a key [r]. Now let [c] be a commitment and
𝑆 ⊆ {1, . . . , 𝑛} a set of position we want to open. Denoting x the opening, we can write

[c] = [c]⊤x = [r𝑆]⊤x𝑆 + [r𝑆]⊤x𝑆 = [c𝑆] + [c𝑆]

where the subscripts 𝑆, 𝑆 denote the vector components that belong and don’t belong to 𝑆
respectively.

A simple strategy for convincing the verifier about the validity of an opening of 𝑆 positions
x𝑆 is to give to the verifier the part of the commitment not belonging to 𝑆, namely [c𝑆] and
a proof of knowledge of an opening for it w.r.t. to the corresponding key r𝑆. The verifier will
then (1) assert the proof of opening and (2) reconstruct the part [c𝑆] = [r𝑆]⊤x𝑆 using the
claimed subvector opening x𝑆 and assert that [c] = [c𝑆] + [c𝑆].

This simple construction indeed works. Intuitively, because the proof of knowledge does not
involve the parts of the key that are in 𝑆, the opening that the prover knows for 𝑆 and the
claimed opening for 𝑆 are independent. Thus, opening the variables in 𝑆 in two different ways
would imply that the prover knows two openings for the commitment [c] itself; this cannot
happen due to the binding property.

Essentially, what we describe can be thought as a non-membership proof: we show that
the commitment opening c𝑆 is not constructed as a linear combination of the 𝑆 part of the
commitment key; in some sense, it does not belong in the linear space generated by [r𝑆] from
the perspective of the prover⁴. We call such proofs non-membership proofs.

How do we show that something does not belong in some space? It is enough to show that it
belongs in a different space! This only works because if we knew two ways of representing [c]
w.r.t. distinct elements, we would break a FindRep assumption.

⁴Of course the commitment trivially lies in the said linear space. The prover shows that it does not know
a way to represent it as such.

142

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

Figure 5.2 Vector commitment construction using non-membership proofs. 𝒟𝑛,1 is a ma-
trix distribution where the FindRep assumption holds and NARK is an argument system
for proving membership in linear spaces.
VCS.KeyGen(1𝜅 , 𝑚):

Sample [r] ← 𝒟𝑚,1

For each 𝑆 ⊆ {1, . . . , 𝑚} compute (srs𝑆 , 𝜏𝑆) ← NARK.Setupℒgk,[r𝑆]
(gk)

Output pk = ([r], {srs𝑆}𝑆) and vk = ([r], {srs𝑆}𝑆)
VCS.Com(ck, x):

Output [c] = [r]⊤x, aux = x

VCS.Open(pk, aux, 𝑆, y):
Set [c𝑆] = [c] − [r𝑆]⊤x𝑆
Output 𝜋 = NARK.Prove(srs𝑆 , [c𝑆], x𝑆)

VCS.Verify(vk, [c], 𝑆, y,𝜋):
Set [c𝑆] = [c] − [r𝑆]⊤y
Output 1 if NARK.Verify(srs𝑆 , [𝑐𝑆],𝜋) and 0 otherwise

So, the construction for opening commitment [c] at x𝑆 is essentially showing that [c𝑆] =[c] − [r𝑆] belongs in the linear subspace generated by [r𝑆]. In other words, proving knowledge
of opening of [c𝑆]. Instantiating with any algebraic commitment and proof of knowledge is
enough.

We present the construction more formally in Fig 5.2. Note that key generation might be
inefficient. Specifically, one would need one membership in linear space srs for each 𝑆 ⊆ [𝑚].
Even if we restrict the subsets to ones that have cardinality 1, this would still be quadratic in
the dimension of the vector. While this can be a big efficiency barrier in general, this is not the
case in the instantiation of the folding technique as we will see next. The reason is that the
different srses share elements, resulting in a single srs of size linear in the vector dimension.
Furthermore, regarding the more general setting, the intention of this construction is to be
used as a black box in a tree based commitment scheme. In this intended use, we do not care
about the ability to open all (exponential in size) sets, but rather we focus in opening some
well chosen ones iteratively, thus countering the aforementioned inefficiency.

We next present a theorem showing that the construction is position binding and the efficiency
properties of it. We explicitly do not mention commitment key size; we consider this only in
a per case base.

Theorem 30. Let {𝒟𝑚,1}𝑚∈N be any family ofmatrix distributionswhere theFindRep assumption
is hard and NARK be a non-interactive argument of knowledge for the membership in linear spaces
family of languages. Then, for any 𝑚 ∈ N construction of Fig. 5.2 is a vector commitment scheme

143

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

with subvector opening that satisfies position binding. Furthermore, if 𝑡𝒫(𝑘),𝜋(𝑘), 𝑡𝒱(𝑘) are the
proving time, proof size and verification time of NARK for instances of size 𝑘, then the time of
opening a subset 𝑆 is 𝑡𝒫(𝑚 − |𝑆 |), proof of opening is of size 𝜋(𝑚 − |𝑆 |) and verification time is
𝑡𝒱(𝑚 − |𝑆 |).

Proof. We only focus on the position binding property since completeness and efficiency
follows from the description of the construction in a straightforward manner.

Let 𝒜 be an adversary that outputs two valid openings for a commitment [c], namely
([c], 𝑆0 , 𝑆1 , y0 , y1 ,𝜋0 ,𝜋1) such that Verify(vk, [c], 𝑆𝑏 , y𝑏 ,𝜋𝑏) = 1 for both 𝑏 ∈ {0, 1}. Denote
by 𝑆 the intersection of 𝑆0 , 𝑆1. By knowledge soundness of NARK, we can extract two
openings

• x′0 for [c] − [r𝑆0]⊤y0 w.r.t. key [r𝑆0
],

• x′1 for [c] − [r𝑆1]⊤y1 w.r.t. key [r𝑆1
].

This means that we can write [𝑐] as
[r𝑆0]⊤y0 + [r𝑆0

]⊤y′0 = [c] = [r𝑆1]⊤y0 + [r𝑆1
]⊤y′1

or equivalently
[r]⊤(y0 , y′0) = [c] = [r]⊤(y1 , y′1)

Assuming that𝒜wins, the claimed openings y0 , y1 should differ in at least one position in
the intersection 𝑆whichmeans that (y0 , y′0) ≠ (y1 , y′1)which happens only with negligible
probability since otherwise we break the𝒟𝑛,1-FindRep assumption. □

Instantiation. We only consider an instantiation using the folding technique. The srs for
opening subset 𝑆 is simply r𝑆; that is, no additional elements are needed apart from the
commitment key as well. In fact, there is no need for a key generation algorithm at all, simply
sampling a commitment key from a matrix distribution is enough! By directly applying the
above theorem, we get a publicly verifiable construction with linear prover and verifier and a
logarithmic proof size. We need to rely on the random oracle and the Fiat-Shamir transform for
position binding. Using the uniform distribution over F𝑚 results in a transparent VC scheme.
The disadvantage of using the folding technique is the verification time. We only consider the
publicly verifiable setting, but if one is willing to settle for either the designated verifier setting
or the pairing group setting and a trusted setup, we can mitigate the linear verification time
using the techniques of Chapter(alex:Fill)

Recursive non-membership proofs

In this section we utilize the non-membership approach combined with some combinatorial
techniques to improve on efficiency and achieve additional properties and trade-offs. Specif-

144

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

r⊤x

r0
⊤x0

r00
⊤x00

...

𝑟1𝑥1 𝑟2𝑥2

...

r⊤01x01

...
...

r⊤1 x1

r⊤10x10

...

𝑟𝑖−1𝑥𝑖−1 𝑟𝑖𝑥𝑖

...

r⊤11x11

...
...

𝑟𝑚−1𝑥𝑚−1 𝑟𝑚𝑥𝑚

+

+ +

+ ++

++

Figure 5.3: Demonstration of the process of opening coordinate 𝑖. Bold edges denote the path
the prover follows and rectangles the commitments and proofs of openings of the siblings the
prover has to serve as a proof. In the middle nodes we denote with r𝑏1 ...𝑏 𝑗 the commitment key
that contains the elements 𝑟ℓ of ℓ whose binary representation is prefixed by (𝑏1 , . . . , 𝑏 𝑗) (resp. for
the openings)

ically, the approach allows us to achieve proof pre-computation, namely the ability to pre-
compute all individual position proofs of a committed vector in non-trivial time. Here, non-
trivial means asymptotically less that computing naively all individual proofs. In our instantia-
tion using the folding technique, the pre-computing time is quasi linear (instead of quadratic).

Our instantiation does not support updates. This is because it does not have homomorphic
proofs due the inherent reliance on the Fiat-Shamir transform which breaks homomorphicity.
Nevertheless, assuming that we know the whole opening (and not just the modified positions),
we can update all proofs in time equivalent to computing from scratch a single proof.

Recursive non-membership proof construction. Consider a prover, wishing to convince a
verifier about the value of an opening of the 𝑖-th coordinate of some committed vector. We
showcase the high level idea of using recursive non-membership proofs next.

Because the commitment is algebraic, we can split the commitment in two independent spaces,
each containing half of the variables. That is, if the commitment key r = (r0 , r1) and the
committed value is x = (x0 , x1), where each of r𝑏, x contain 𝑛/2 elements, then we can write

[c] = [r]⊤x = [r0]⊤x0 + [r1]⊤x1 = [c0] + [c1]
Now, if the coordinate 𝑖 we want to open belongs to -say- the first half variables, namely x0,
it would be enough for the prover to open the commitment [c0] w.r.t. the key [r0]. Obviously,
this is both redundant -since we only care about one variable- and inefficient; nevertheless, we
can overcome both issues by having the prover give a proof of knowledge instead. Now it is
enough to solve a smaller subproblem, namely, opening the 𝑖-th coordinate of [c0] w.r.t. the

145

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

key [r0]. And, of course, the way to do it is recursion!

A bit more concretely, in order to convince the verifier that for some 𝑖 ≤ 𝑚/2 the opening of
[c] in the 𝑖-th coordinate is 𝑥𝑖, the prover proceeds as follows:

1. It writes the commitment as [c] = [c0] + [c1] and sends [c0], [c1]⁵

2. It sends a non-membership proof of [c0] in the space spanned by [r1]

3. It recursively shows that the 𝑖-th opening of [c0] w.r.t. the first half of the key [r0]

From the verifier’s perspective, it is enough to check the proof of non-membership of [c0] as
well as that the “splitting” of the commitment is correct, namely that [c] = [c0]+ [c1]. At the
base of the recursion, we simply have a claim [c𝑖] = [𝑟𝑖]𝑥𝑖 which the verifier can assert on its
own. We present a pictorial figure of the construction in fig. 5.3.

We formally present the construction in Fig. 5.4. We use as a black box a non-interactive
argument NARK = (Setup,Prove,Verify) for membership in linear spaces and an algebraic
commitment scheme. The commitment key is parameterized by a family of matrix distributions
{𝒟𝑚,1}𝑚∈N.

Note that we can modify easily the construction for the case where the prover wants to convince
the verifier that it knows that opening of position 𝑖 instead of communicating it: in this case
the prover simply sends a PoK of opening of the leaf commitment [𝑟𝑖]𝑥𝑖 instead of the opening
itself. In the final step the verifier simply asserts the validity of the proof.

Theorem 31. Let NARK be a non-interactive argument of knowledge. Then construction of
Fig. 5.4 is an algebraic vector commitment scheme that satisfies position binding under the𝒟1,𝑚-
FindRep assumption.

Proof. Completeness follows by inspection. We present position binding next. We only
consider the casewhere the adversary outputs a subset of indices of a vector of cardinality
one.

Assume that an adversary𝒜 outputs a commitment and two openings [c], {𝑖} , 𝑥, 𝑥∗ ,𝜋,𝜋∗
such thatVerify(vk, [c], {𝑖} , 𝑥,𝜋) = Verify(vk, [c], {𝑖} , 𝑥∗ ,𝜋∗) = 1 and 𝑥 ≠ 𝑥∗. First, we focus
on one of the two proofs. Let (𝑏𝜈 , . . . , 𝑏1) be the binary representation of the opening

⁵The prover needs to send one of these since [c1−𝑏] = [c] − [c𝑏]. In what follows, we use the convention
that the prover sends the part of the key not containing 𝑖 as a parallelism to the Merkle construction.

146

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

Figure 5.4 Vector commitment construction using non-membership proofs recursively.
We assume that the dimension of the committed vectors is 𝑚 = 2𝜈.
KeyGen(1𝜅 , 𝑚):

r←𝒟1,𝑚

For all (𝑏𝜈 , . . . , 𝑏ℓ)with 𝑏 𝑗 ∈ {0, 1}, ℓ ∈ {𝜈, . . . , 1} compute an srs-trapdoor pair for proving
knowledge of an opening w.r.t. the commitment key [r𝑏𝜈 ...𝑏ℓ]1.
(srs𝑏𝜈 ...𝑏ℓ) ← NARK.Setup(par, [r𝑏𝜈 ...𝑏ℓ])
pk :=

(
[r], {srs𝑏𝜈 ...𝑏ℓ

}
𝑏 𝑗∈{0,1},ℓ∈{𝜈,...,1}

)
, vk :=

(
[r], {srs𝑏𝜈 ...𝑏ℓ

}
𝑏 𝑗∈{0,1},ℓ∈{𝜈,...,1}

)
Output (ck, vk)

Com([r], x):
Output [c] := [r]⊤x, aux = x

Open(pk, aux, 𝑖 = (𝑏𝜈 , . . . , 𝑏1), 𝑦): If 𝜈 = 1 output nothing, otherwise

[c𝑏𝜈] = [r𝑏𝜈]⊤x𝑏𝜈
𝜋𝑏𝜈 ← NARK.Prove(srs𝑏𝜈 , [c𝑏𝜈], 𝑥𝑏𝜈)
Output [c𝑏𝜈],𝜋𝑏𝜈
Recursively run Open(ck, 𝑖 = (𝑏𝜈−1 , . . . , 𝑏1), [c] − [c𝑏𝜈], x𝑏𝜈)

Verify(vk, [c], 𝑖 = (𝑏𝜈 , . . . , 𝑏2), 𝑦,𝜋):
Parse 𝜋 =

(
[c]𝑏𝜈 ,𝜋𝑏𝜈 , . . . , [c]𝑏𝜈 ...𝑏1

,𝜋𝑏𝜈 ...𝑏1

)
and [c𝑏𝜈] = [c] − [c𝑏𝜈].

For each ℓ ∈ {𝜈, . . . 2}
– If NARK.Verify(srs𝑏𝜈 ...𝑏ℓ , [c𝑏𝜈 ...𝑏ℓ],𝜋𝑏𝜈 ...𝑏ℓ) = 0 output 0.
– Otherwise set [c𝑏𝜈 ...𝑏ℓ−1] = [c𝑏𝜈 ...𝑏ℓ] − [c𝑏𝜈 ...𝑏ℓ−1

]
Finally, output 1 iff [c𝑏𝜈 ,...,𝑏1] = [𝑟𝑏𝜈 ,...,𝑏1]⊤ 𝑥𝑏𝜈 ,...,𝑏1

position 𝑖. Since the verifier accepts we have that

c = c𝑏𝜈 + c𝑏𝜈
c𝑏𝜈 = c𝑏𝜈𝑏𝜈−1 + c𝑏𝜈𝑏𝜈−1

...

c𝑏𝜈 ...𝑏ℓ = c𝑏𝜈 ...𝑏ℓ−1 + c𝑏𝜈 ...𝑏ℓ−1

...

c𝑏𝜈 ...𝑏2 = c𝑏𝜈 ...𝑏1 + c𝑏𝜈 ...𝑏1

c𝑏𝜈 ...𝑏1 = 𝑟𝑏𝜈 ...𝑏1𝑥

147

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

Note that we can extract all the openings of the commitments in the right hand side of the
equations. Indeed, by knowledge soundness of NARK we can extract an opening x𝑏𝜈 ...𝑏ℓ−1
such that c𝑏𝜈 ...𝑏ℓ−1

= r𝑏𝜈 ...𝑏ℓ−1
⊤x𝑏𝜈 ...𝑏ℓ−1

andwe can assume inductively that we can extract an
opening x𝑏𝜈 ...𝑏ℓ−1 such that c𝑏𝜈 ...𝑏ℓ−1 = r𝑏𝜈 ...𝑏ℓ−1

⊤x𝑏𝜈 ...𝑏ℓ−1 . The concatenation of these open-
ings is an opening for c𝑏𝜈 ...𝑏ℓ w.r.t. the key r𝑏𝜈 ...𝑏ℓ . For the base of the induction we use the
fact that the claimed opening 𝑥 satisfies 𝑥 = 𝑥𝑏𝜈 ...𝑏1 and c𝑏𝜈 ...𝑏1 = 𝑟𝑏𝜈 ...𝑏1𝑥𝑏𝜈 ...𝑏1 . An identical
argument holds for the values of the proof 𝜋∗ for the opening 𝑥∗.

Now, from the above equations we see that (1) c𝑏𝜈 ...𝑏1 ≠ c∗𝑏𝜈 ...𝑏1
because 𝑥 ≠ 𝑥∗ and (2)

c = c∗. This means that there should exist a minimal 𝑘 with 2 ≤ 𝑘 ≤ 𝜈 + 1 s.t.

c𝑏𝜈 ...𝑏𝑘 = c∗𝑏𝜈 ...𝑏𝑘 and c𝑏𝜈 ...𝑏𝑘−1 ≠ c∗𝑏𝜈 ...𝑏𝑘−1

where we set c𝑏𝜈 ...𝑏𝜈+1 = c and c∗𝑏𝜈 ...𝑏𝜈+1
= c∗.

We next consider the openings for this minimal 𝑘. Let x𝑘 , x∗𝑘 , x𝑘−1 , x∗𝑘−1 be such openings.
Then the following relations hold:

c𝑏𝜈 ...𝑏𝑘 = r𝑏𝜈 ...𝑏𝑘
⊤x𝑘 = r⊤𝑏𝜈 ...𝑏𝑘x

∗
𝑘 = c∗𝑏𝜈 ...𝑏𝑘

c𝑏𝜈 ...𝑏𝑘−1 = r𝑏𝜈 ...𝑏𝑘−1
⊤x𝑘−1 ≠ r𝑏𝜈 ...𝑏𝑘

⊤x∗𝑘−1 = c∗𝑏𝜈 ...𝑏𝑘−1

c𝑏𝜈 ...𝑏𝑘−1
= r𝑏𝜈 ...𝑏𝑘−1

⊤x𝑘−1

c∗
𝑏𝜈 ...𝑏𝑘−1

= r𝑏𝜈 ...𝑏𝑘−1
⊤x∗

𝑘−1

We consider different cases for the extracted openings.

• If x𝑘 ≠ x∗𝑘 , we break the 𝒟𝑛,1-KerMDH assumption for r since r𝑏𝜈 ...𝑏𝑘⊤x𝑘 = r𝑏𝜈 ...𝑏𝑘⊤x∗𝑘
(we can use 0 for the elements in the positions not in r𝑏𝜈 ...𝑏𝑘).

• If x𝑘 ≠
(
x𝑘−1
x𝑘−1

)
, since c𝑏𝜈 ...𝑏𝑘 = c𝑏𝜈 ...𝑏𝑘−1 + c𝑏𝜈 ...𝑏𝑘−1

we get

r𝑏𝜈 ...𝑏𝑘
⊤x𝑘 = r𝑏𝜈 ...𝑏𝑘+1

⊤x𝑘+1 + r𝑏𝜈 ...𝑏𝑘+1
⊤x𝑘+1 = r𝑏𝜈 ...𝑏𝑘

⊤
(
x𝑘−1
x𝑘−1

)
andwe again break the𝒟𝑛,1-KerMDH assumption using the values x𝑘 ,

(
x𝑘−1
x𝑘−1

)
(again

filled with zeros in the rest of positions).

• A symmetric argument works for the case x∗𝑘 ≠
(
x∗𝑘−1
x∗
𝑘−1

)
Excluding the above cases it must be the case that x𝑘−1 = x∗𝑘−1 which contradicts the min-
imality condition c𝑏𝜈 ...𝑏𝑘−1 ≠ c∗𝑏𝜈 ...𝑏𝑘−1

.

□

148

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

Folding Technique Instantiation. In this section we consider an instantiation derived from
the constructions of Fig. 5.4 using the folding technique NARK from Fig. 5.1. Importantly, the
construction allows to compute the proofs for all possible coordinates in time less than what
is needed to compute each proof individually. This stems from the combinatorial structure of
the tree.

We also emphasize that if one is willing to use groups equipped with bilinear maps, the
construction of chapter (alex:FILL) can be used to improve verification efficiency. This comes,
however, with the need for a structure and therefore trusted setup. We summarize the efficiency
properties of the instantiations next.

Corollary 7. Construction of fig. 5.4 where we instantiate the NARK using the construction of
fig. 5.1 is a vector commitment scheme. It satisfies the following efficiency properties for vectors of
dimension 𝑛 = 2𝜈:

• The size of the srs is |srs| = 𝑛.

• The time to compute a single proof is 𝒪𝜅(𝑛).

• The time to pre-compute all proofs is 𝒪𝜅(𝑛 log 𝑛).

• The proof size is 𝒪𝜅(log2 𝑛).

• The time to verify a proof is 𝒪𝜅(𝑛).

The proof of the corollary is a consequence of Thm. 31 and Thm. 30. Efficiency follows by
simple counting arguments. The construction is not maintainable due to the lack of homomor-
phic properties of the underlying proof system: while one can easily modify the commitment
itself, the previous proofs are completely useless after the update since they inherently rely
on the statement due to the use of the Fiat-Shamir heuristic; thus, one needs to recompute
the proofs from scratch. To do so, it is necessary to know and use the whole opening of the
committed vector itself.

Nevertheless, if all proofs are pre-computed, one simply needs time linear in 𝑛 to update all
proofs after a single update (than recomputing the proofs from scratch). This holds because
only the path from the root of the tree to the changed leaf is affected.

5.3 Memory-Time Tradeoffs for Vector Commitments

One of the key points of vector commitment schemes that allow aggregation of proofs is the
ability to pre-compute and store individual openings and later use them to create subvector
openings without incurring linear amount of computations each time.

149

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

A plethora of vector commitment schemes have constant proof size. While this is a very
attractive and important property in practice, schemes with this property share a common
limitation regarding pre-processing and updating proofs. A proof of opening of one position
involves elements in all other positions of the vector. That is, the polynomials committed to
create the proof have coefficients that involve all the values of the committed vector v ∈ F𝑚.
As a consequence, prover work is linear in the size of v (as it has to evaluate polynomials of
degree 𝑚) and after updating one position of v, all 𝑚 proofs of opening are changed.

This makes pre-computing and maintaining proofs impractical in the case of applications
where commitments evolve over time. Furthermore, no useful memory-time trade-offs can be
considered for this case.

In this section, we present a solution for more efficient openings for individual positions that is
maintainable. The intuition is the following: we divide the vector v in small chunks {v𝑗} ∈ F𝑘 .
We then arrange these chunks in a tree as follows: each chunk corresponds to a leaf of the
tree and each node is a succinct representation of its children. The root of the tree is the
committed value. An opening proof only involves the elements in the path of the root to the
leaf containing the position to be opened. That is, if we want to open value 𝑎 in position 𝑖
of v ∈ F𝑘·𝑚′, we prove that (1) 𝑐 𝑗 is the leaf that contains the commitment to the 𝑗 chunk
containing 𝑖 and (2) 𝑐 𝑗 opens to 𝑎 in the position corresponding to 𝑖. The former part can
be pre-computed and efficiently maintained, occupying storage linear in 𝑚′, while the latter
involves operations that are linear in 𝑘.

This results in a construction with the following memory/time trade-off: for any 𝑘, 𝑚′ ∈ N
with 𝑚 = 𝑘 ·𝑚′, any opening can be computed in time independent of 𝑚′ after pre-computing
and storing 𝑂𝜅(𝑚′) values (independent of 𝑘). Furthermore, a relaxed maintainability notion
is satisfied: all stored values can be pre-computed efficiently (in quasi linear time in 𝑚) and
updated in log𝑚′ time.

Our starting point is the PST polynomial commitment [BMM+21]. We first show how to
directly use its low degree variant (instead of the multilinear one used in [SCP+22]) to reduce
proof size by a constant factor. Second, we modify this construction by composing it with any
other algebraic⁶ vector commitment scheme to achieve maximum flexibility in time/memory
trade-offs.

We next recall the PST polynomial commitment and describe the core techniques to use it as
a maintainable vector commitment.

⁶We call algebraic, any (vector) commitment schemewhere the commit algorithmworks by simply setting
[𝑐]1 = [r]⊤1 v, where [r]1 is the commitment key and v is the message to be committed.

150

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

5.3.1 PST Polynomial Commitment

The PST polynomial commitment allows to commit to 𝜈-variate polynomials of individual
degrees less than ℓ . The core idea of the construction lies in the fact that for every 𝑝(X) ∈
F[𝑋𝜈 , . . . , 𝑋1] and x = (𝑥𝜈 , . . . , 𝑥1) ∈ F𝜈, 𝑝(x) = 𝑦 if and only if there exist polynomials
𝐻𝜈(X), . . . , 𝐻1(X) such that

𝑝(X) − 𝑦 =
𝜈∑
𝑗=1

𝐻𝑗(X) · (𝑋𝑗 − 𝑥 𝑗)

where the proof polynomials 𝐻𝑗(X) are efficiently computable.

Using standard techniques to encode monomials in a cryptographically secure bilinear group
(encode setting X = 𝝉 and publishing all the monomials [𝜏𝑑𝜈𝜈 · · · 𝜏𝑑1

1]1 and [𝝉]2) results in a
polynomial commitment with proof of size roughly 𝜈 group elements

Srinivasan et. al. [SCP+22] observe that computing all polynomial evaluations and proofs for a
committed 𝜈-variate multilinear polynomial in the hypercube {0, 1}𝜈 can be done in quasi-linear
time in the dimension of the vector, instead of the trivial quadratic time. By encoding a vector
as the corresponding interpolating polynomial in {0, 1}𝜈, we get a vector commitment with
quasi-linear time for pre-computing all proofs. Furthermore, the homomorphic properties along
with the tensor structure of multivariate polynomials allow to efficiently (in logarithmic time)
update all proofs after a position update. Thus, the resulting construction is a maintainable
vector commitment scheme.

We extend these techniques to construct a multi-variate vector commitment scheme with the
same properties while reducing proof size. Specifically, we observe that evaluating all openings
in any set of the form Σ𝜈 for Σ with small size (i.e. constant) has lower amortized cost than
computing the evaluations individually. Using Σ with |Σ| > 2 -or equivalently using a low
degree instead of a multilinear encoding- results in smaller proof size. Concretely, the proof
size depends on the dimension of the hypercube. Setting ℓ = 𝑂(1) to avoid a blowup in the
prover’s computation results in proof size roughly logℓ 𝑚 instead of log2 𝑚, reducing the proof
size by a constant factor.

We next describe the high level idea of the construction. First, fix an alphabet Σ ⊆ F of size ℓ
and consider the hypercube Σ𝜈. Assume (w.l.o.g.) Σ = {0, . . . , ℓ − 1} so that we can encode
indices of vectors in ℓ -ary.

Now, we can encode a vector v ∈ Fℓ 𝜈 by considering the (unique) low degree interpolating
polynomial 𝑝(X) of v, that is, the 𝜈-variate polynomial of individual degree less than ℓ such
that for all 𝝈 ∈ Σ𝜈, 𝑝(𝝈) = 𝑣𝝈 . This corresponds to position 𝑖 with ℓ -ary representation (𝝈)ℓ .
Computing all opening proofs corresponds to evaluating and proving evaluations of 𝑝(X) in
the hypercube Σ𝜈. To compute these evaluations in quasi-linear (instead of quadratic) time
we rely on the following lemma which is implicit in the computation of the 𝐻𝑗(X) polynomials
of PST.

151

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

Lemma 5. Let Σ ⊆ F be a subset of F. Also, let 𝑝(𝑋𝜈 , . . . , 𝑋1) ∈ F[𝑋𝜈 , . . . , 𝑋1] be a polynomial
in 𝜈 variables and 𝑝𝜎(𝑋𝜈−1 , . . . , 𝑋1) ∈ F[𝑋𝜈−1 , . . . , 𝑋1] be a polynomial in 𝜈− 1 variables. Then,
for all 𝜎 ∈ Σ, 𝑝(𝜎, 𝑋𝜈−1 . . . , 𝑋1) = 𝑝𝜎(𝑋𝜈−1 . . . , 𝑋1) iff there exist a polynomial 𝐻(𝑋𝜈 , . . . , 𝑋1)
such that

𝑝(𝑋𝜈 , . . . , 𝑋1) − 𝑝𝜎(𝑋𝜈−1 , . . . , 𝑋1) = 𝐻(𝑋𝜈 , . . . , 𝑋1)(𝑋𝜈 − 𝜎) (5.1)

To open the polynomial at 𝝈 = (𝜎𝜈 , . . . , 𝜎1) ∈ Σ𝜈, the prover can compute the polynomials
𝑝(𝜎𝜈 , 𝑋𝜈−1 , . . . , 𝑋1), . . . , 𝑝(𝜎𝜈 , . . . , 𝜎1) and “proof” polynomials 𝐻𝜈(X), . . . , 𝐻1(X). That is,
for 1 ≤ 𝑗 ≤ 𝜈 and denoting 𝝈 = (𝜎𝜈 , . . . , 𝜎𝑗+1, the following equations hold:

𝑝(𝝈| 𝑗+1 , 𝑋𝑗 , . . . , 𝑋1) − 𝑝(𝝈| 𝑗+1 , 𝜎𝑗 , 𝑋𝑗−1 , . . . , 𝑋1) = 𝐻𝑗(X)(𝑋𝑗 − 𝜎𝑗)

Summing all the 𝜈 claims, we derive the PST verification equation. Note that the polynomial
𝐻𝑗(X) is independent of the variables 𝑋𝜈 , . . . , 𝑋𝑗+1. Hence, each iteration is cheaper than the
previous one.

The interesting part is that proofs for different positions share elements. Consider a polynomial
𝐻(X) asserting 𝑝(𝜎, 𝑋𝜈 , . . . , 𝑋1) − 𝑝𝜎(𝑋𝜈−1 , . . . , 𝑋1). This element will be part of the proof
for all elements 𝝈 ∈ Σ𝜈 whose first component is 𝜎𝜈 = 𝜎. We utilize this fact to get a smaller
amortized cost for evaluating all “proof” polynomials in the hypercube.

The tensor structure of the multivariate polynomial allows to express the openings in the
hypercube as a tree. Each node of the tree corresponds to a partial evaluation of 𝑝. A proof
polynomial 𝐻 is associated with each of them. We demonstrate this in Fig. 5.5.

𝑝(𝑋3 , 𝑋2 , 𝑋1)

𝑝(0, 𝑋2 , 𝑋1) 𝑝(1, 𝑋2 , 𝑋1)

𝑝(1, 0, 𝑋1) 𝑝(1, 1, 𝑋1) 𝑝(1, 2, 𝑋1)

𝑝(1, 2, 0) = 𝑣1,2,0 𝑝(1, 2, 1) = 𝑣1,2,1 𝑝(1, 2, 2) = 𝑣1,2,2 𝑝(1, 2, 3) = 𝑣1,2,3

𝑝(1, 3, 𝑋1)

𝑝(2, 𝑋2 , 𝑋1) 𝑝(3, 𝑋2 , 𝑋1)

Figure 5.5: Tree structure for polynomials in 3 variables with individual degree at most 3. The
dimension of the committed vectors with these parameters is 43 = 64. We follow the path until
we reach the leafs prefixed with (1, 2). Note that each polynomial is an encoding of the leafs of the
sub-tree it defines.

Finally, when using the Lagrange basis to encode polynomials, the interpolating polynomial
𝑝(X) corresponding to v becomes 𝜆𝜆𝜆(𝑋𝜈 , . . . , 𝑋1)⊤v. Furthermore, each node of the tree is of

152

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

the form 𝜆𝜆𝜆(𝑋𝑖 , . . . , 𝑋1)⊤v′ where v′ is the subvector of v corresponding to the leaf descendants
of the node.

5.3.2 High Level Overview of the Construction

Tree structure. We can directly exploit the tree structure of the PST commitment scheme
to pre-compute all proofs in quasi-linear time and simply hand them when needed. While this
can be beneficial in some cases, it is an “extreme” approach. One might be willing to store
some values and do some computation during opening of a position.

To achieve the flexible memory/time trade-off, we exploit the same tree-like structure, but
instead of having the vector values in the leaves of the tree, we replace them with vector
commitments using an arbitrary algebraic vector commitment scheme VCS. Concretely, the
leaves contain elements [r]⊤1 v𝑗, where [r]1 ∈ G𝑘1 is the commitment key of VCS. To open a
position of v, we use the PST approach to reach corresponding leaf 𝑗, and then the opening
algorithm of VCS on v𝑗. The tree part can be efficiently pre-computed (memory resources)
while the leaf part is opened on-demand (time resources).

We demonstrate the tree structure of our construction in Fig. 5.6. For simplicity, we consider
Σ = {0, 1} as the interpolating set. Each node can be consider as a succinct representation of
the vectors encoded in the leafs of the sub-tree having the node as a root.

𝑐 = 𝜆𝜆𝜆(𝜏3)⊤(𝑐0
𝑐1)

𝑐0 = 𝜆𝜆𝜆(𝜏2)⊤(𝑐00
𝑐01)

𝑐00 = 𝜆𝜆𝜆(𝜏1)⊤(𝑐000
𝑐001)

r⊤v000 r⊤v001

𝑐01 = 𝜆𝜆𝜆(𝜏1)⊤(𝑐010
𝑐011)

r⊤v010 r⊤v011

𝑐1 = 𝜆𝜆𝜆(𝜏2)⊤(𝑐10
𝑐11)

𝑐10 = 𝜆𝜆𝜆(𝜏1)⊤(𝑐100
𝑐101)

r⊤v100 r⊤v101

𝑐11 = 𝜆𝜆𝜆(𝜏1)⊤(𝑐110
𝑐111)

r⊤v110 r⊤v111

Figure 5.6: Demonstration of the tree structure of a commitment. Leaf nodes are commitments to
𝑘-dimensional vectors for an arbitrary vector commitment scheme. Each node is a commitment to
its children under a Lagrange based key. The message space of the scheme is 𝑘 · 23.

The tree has a similar structure to Verkle trees [Kus18]. Each node can be considered as
a succinct “commitment” to its children and proving involves (in some sense) sending this
“commitments” and evidence they are well formed. The difference with Verkle trees is that
the “commitment” does not satisfy a binding notion; indeed there are efficient ways to express
each node in more than one ways by manipulating group elements.

Note that the root of the tree depends on the elements 𝝉, r. Viewing both 𝝉 = (𝜏𝜈 , . . . , 𝜏1)
and r = (𝑟𝑘 , . . . , 𝑟1) as formal variables X,R, we can treat the root node (the commitment) as
an evaluation of a polynomial. Now, note that this polynomial corresponds to the interpolation

153

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

of the elements of the leaves in Σ𝜈. Thus, the aforementioned polynomial is

𝑝(X,R) = 𝜆𝜆𝜆(X)⊤(R⊤v1 , . . . ,R⊤vℓ 𝜈) = (𝝀(X) ⊗ R)⊤v

The prover can still evaluate one by one the variables 𝑋𝜈 , . . . , 𝑋1 at 𝜎𝜈 , . . . , 𝜎1 -as it would
do in the simple PST case- and end up with a polynomial 𝑞(R) = 𝑝(𝝈 ,R) = R⊤v𝑗. To ensure
that 𝑞 does not contain any 𝑋𝑗 variable, we also include a low degree test in the proof. The
evaluation of the latter polynomial at [r]1 corresponds to the leaf commitment at position 𝝈
and can be opened by employing the Open algorithm of the leaf commitment scheme with key
[r]1.

Construction. First, we introduce some notation. Let Σ ⊆ F denote the interpolating set.
Given 𝝈 = (𝜎𝜈 , . . . , 𝜎1) ∈ Σ𝜈, we denote 𝝈|𝑖 = (𝜎𝜈 , . . . , 𝜎𝑖) ∈ Σ𝜈−𝑖+1. For v = (v𝝈)𝝈∈Σ𝜈 with
v𝝈 ∈ F𝑘 and 𝝈1 ∈ Σ𝑖 we denote with v𝑘,𝝈1 the vector (v𝝈1 ,𝝈2)𝝈2∈Σ𝜈−𝑖 , that is, the concatenation
of vectors v𝑗 whose 𝑚-ary representation of the index 𝑗 is prefixed with 𝝈1. Finally, we denote
with 𝝉𝜈,ℓ the 𝜈-variate monomial basis of individual degree less than 𝜈 evaluated at 𝜏𝜈 , . . . , 𝜏1.
In all cases, we omit the subscript when it is clear from the context.

We present the construction next. We only consider the case of individual openings, but one
can also consider openings of a larger family of linear functions of 𝑘-sized “blocks” associated
with each leaf. The family is determined by the family of functions supported by the “leaf”
commitment scheme.

Our construction is a linear vector commitment MVTree for vectors of dimension 𝑘 ·ℓ 𝜈 that uses
as a black box an algebraic vector commitment scheme VCS′ for vectors of dimension 𝑘. We
index the opening positions as pairs (𝑖, 𝑖′) where 𝑖 indexes the appropriate leaf corresponding
to the position and 𝑖′ the index corresponding to the position of the vector committed to the
leaf. We present the construction in Fig. 5.7

We omit explicitly describing the update algorithm. Instead, we demonstrate in Thm. 33 how
to efficiently update all proofs after modifying a position in the committed vector.

We summarize the properties of the construction in the following theorems.

Theorem 32. Let VCS′ be an algebraic vector commitment scheme that satisfies completeness,
homomorphic openings and position binding. Then, MVTree satisfies (1) completeness, (2) homo-
morphic openings and (3) position binding in the AGM under the (ℓ − 1) · 𝜈-BSDH assumption.

Proof.

Completeness. Consider an honest execution of MVTree.Open. Let 𝑦 = v(𝑖,𝑖′) for some 𝑖 =
(𝝈)ℓ . By inspection of the constructions and completeness of VCS′, the low degree test and
the verification of the leaf opening succeed. It remains to show that the first test outputs
1.

154

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

Figure 5.7 MVTree construction based on the Lagrange multivariate polynomial basis.
MVTree.KeyGen(1𝜅 , 𝑛 = 𝑘 · ℓ 𝜈) → (pk, vk):

(pk′ = [r]1 , vk′) ← VCS′.KeyGen(1𝜅 , 𝑘)
Let 𝜆𝜆𝜆(𝑋) be the vector of Lagrange polynomials associated to Σ

𝜏𝜈 , . . . , 𝜏1 ← F
Output pk = (pk′, [𝜆𝜆𝜆]1 = [𝜆𝜆𝜆(𝜏𝜈) ⊗ · · · ⊗ 𝜆𝜆𝜆(𝜏1) ⊗ r]1 , [𝝉 ⊗ r]1),

vk = (vk′, [𝜏𝜈]2 , . . . , [𝜏1]2 , [𝜏ℓ−1
𝜈 · · · 𝜏ℓ−1

1]2)
uk = ({[𝜆𝜆𝜆(𝜏j) ⊗ · · · ⊗ 𝜆𝜆𝜆(𝜏1) ⊗ r]1}1j=𝜈−1),

MVTree.Com(pk, v) → (c, aux):
For all 𝝈 ∈ Σ𝜈: compute (𝐶𝝈 , aux𝝈) ← VCS′.Com(pk′, v𝝈)
Compute c = [𝑝(𝝉, r)]1 = [𝜆𝜆𝜆]⊤1 v
Output c, aux =

({aux𝝈}𝝈∈Σ𝜈 , v
)

MVTree.Open(pk, aux, (𝑖 , 𝑖′), 𝑦) → 𝜋:

Let 𝑖 = (𝝈)ℓ in ℓ -ary.
Consider 𝝉, r as formal variables X = (𝑋𝜈 , . . . , 𝑋1),R = (𝑅𝑘 , . . . , 𝑅1).
Denote 𝑝𝜈+1(X,R) = 𝑝(X,R) = (𝜆𝜆𝜆(X) ⊗ R)⊤v
For all 𝜈 ≥ 𝑗 ≥ 1:

Compute 𝑝 𝑗(𝑋𝑗−1 , . . . , 𝑋1 ,R) = 𝜆𝜆𝜆(𝑋𝑗−1 , . . . , 𝑋1 ,R)⊤v𝝈| 𝑗
Compute 𝐻𝑗(𝑋𝑗 , . . . , 𝑋1 ,R) as

𝐻𝑗(𝑋𝑗 , . . . , 𝑋1 ,R) =
𝑝 𝑗+1(𝑋𝑗 , . . . , 𝑋1 ,R) − 𝑝 𝑗(𝑋𝑗−1 , . . . , 𝑋1 ,R)

(𝑋𝑗 − 𝜎𝑗)
Compute group element [𝐻𝑗]1 = [𝐻𝑗(𝜏𝑗 , . . . , 𝜏1 , r)]1

Compute ĉ𝝈 = [𝜏ℓ−1
𝜈 · · · 𝜏ℓ−1

1 · r]⊤1 v𝝈

Compute 𝜋′← VCS′.Open(pk′, aux𝝈 , 𝑖′, 𝑦)
Output 𝜋 = ([𝐻𝜈]1 , . . . , [𝐻1]1 , c𝝈 , ĉ𝝈 ,𝜋′)

MVTree.Verify(vk, c, (𝑖 , 𝑖′), 𝑦,𝜋) → 0/1:

Let 𝑖 = (𝝈)ℓ in ℓ -ary.
𝑏Path ← 𝑒 (c − c𝝈 , [1]2) = ∑𝜈

𝑗=1 𝑒([𝐻𝑗]1 , [𝜏𝑗 − 𝜎𝑗]2)
𝑏LD-Test ← 𝑒

(
c𝝈 , [𝜏ℓ−1

𝜈 · · · 𝜏ℓ−1
1]2

)
= 𝑒 (ĉ𝝈 , [1]2)

𝑏Leaf ← VCS′.Verify(vk′, c𝝈 , 𝑖′, 𝑦,𝜋′)
Output 𝑏Path ∧ 𝑏LD-Test ∧ 𝑏Leaf

155

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

Let 𝑝𝜈+1(𝑋𝜈 , . . . , 𝑋1 ,R) = 𝑝(𝑋𝜈 , . . . , 𝑋1 ,R) be the polynomial (𝜆(X)⊗R)⊤v. Next, consider
the polynomial equations that the polynomials 𝐻𝑗 are constructed to satisfy:

𝑝 𝑗+1(𝑋𝑗 , . . . , 𝑋1 ,R) − 𝑝 𝑗(𝑋𝑗−1 , . . . , 𝑋1 ,R) = 𝐻𝑗(𝑋𝑗 , . . . , 𝑋1 ,R)(𝑋𝑗 − ℎ 𝑗)
Summing all these equation for 1 ≤ 𝑗 ≤ 𝜈 gives

𝑝𝜈+1(𝑋𝜈 , . . . , 𝑋1 ,R) − 𝑝1 =
𝜈∑
𝑗=1

𝐻𝑗(𝑋𝑗 , . . . , 𝑋1 ,R)(𝑋𝑗 − ℎ 𝑗)

and note that this corresponds to the verification equation. Thus, the first test passes.
Finally, note that all the monomials involved these polynomials are included in the com-
mitment key 𝝀(𝜏𝜈 , . . . , 𝜏1) ⊗ r, so the prover can encode these in G1.

Function Binding. First, we prove a claim stating that we can extract an opening of a leaf
commitment in the AGM.

Claim 2. Let𝜋 = ([𝐻𝜈]1 , . . . , [𝐻1]1 , c𝝈 , ĉ𝝈 ,𝜋′) be an accepting proof. Then, for all algebraic
adversaries𝒜 outputting accepting proofs, there exists an extractor that outputs opening
of c𝝈 w.r.t. key r in the AGM.

Proof. Since we work in the AGM, we can extract coefficients â, a of polynomials �̂�(X,R),
𝐶(X,R) with degree less that ℓ − 1 in 𝑋𝜈 , . . . , 𝑋1 such that [�̂�(𝝉, r)]1 = ĉ and [𝐶(𝝉, r)]1 =
c. By the low degree test, either �̂�(X,R) = 𝐶(X,R) · 𝑋ℓ−1

𝜈 · · ·𝑋ℓ−1
1 holds or â · (𝝉, r) =

a(𝝉, r) · 𝜏ℓ−1
𝜈 · · · 𝜏ℓ−1

1 . In the latter case, we find a non-trivial discrete logarithm relations
of the elements of the commitment key. Assume the latter event did not happen. For
the polynomial relation to hold with polynomial of degree less that ℓ − 1 in 𝑋𝜈 , . . . , 𝑋1,
only the coefficients involving R are non-zero, in which casewe extract a leaf commitment
opening. □

Now, consider two opening/proof pairs c𝝈 (𝑖, 𝑖′), 𝑦𝑑 ,𝜋𝑑 for 𝑑 ∈ {1, 2} and let 𝑖 = (𝝈)ℓ . We
consider two cases. First, assume that c1,𝝈 = c2,𝝈 = c𝝈 . By the fact that the low-degree test
passes, we can extract an opening v𝝈 for this commitment except with negligible proba-
bility. Then, by the last verification test we have

VCS′.Verify(vk′, c𝝈 , 𝑖′, 𝑦1 ,𝜋′1) = VCS′.Verify(vk′, c𝝈 , 𝑖′, 𝑦2 ,𝜋′2) = 1

and since 𝑦1 ≠ 𝑦2, we conclude that we have solved a position binding challenge for VCS′

Next, consider the casewhere c1,𝝈 ≠ c2,𝝈 . We show that, in this case, anwinning adversary
can be used to break BSDH assumption. The reduction works as follows: on input [1]1,2 ,
[𝜏]1,2 , . . . , [𝜏(ℓ−1)·𝜈]1,2, sample a key for MVTree in the following way:

156

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

• Guess index 𝑖 = (𝝈)ℓ .

• Sample (pk′ = [r]1 , vk′) ← VCS′.KeyGen(1𝜅 , 𝑘) along with the discrete logarithms of
[r]1⁷

• for all 1 ≤ 𝑗 ≤ 𝜈 set [𝜏𝑗]1 = [𝜌 𝑗𝜏 + 𝜎𝑗]1 for random 𝜌 𝑗 .

• Compute the encodings of the multivariate Lagrange and monomial polynomials
[𝝀(𝜏𝜈 , . . . , 𝜏1)]1 , [𝝉]1 and [𝜏𝜈]2 , . . . , [𝜏1]2 , [𝜏ℓ−1

𝜈 · 𝜏ℓ−1
𝜈]2. Note that this step is efficient

since any element 𝜆𝝈(𝜏1 , . . . , 𝜏𝜈) and in 𝝉 is a polynomial of total degree at most
(ℓ − 1) · 𝜈 on variables 𝜏𝑗 = 𝜌 𝑗𝜏 so it can be computed using the 𝜈 powers of 𝜏.

• Compute the proving commitment key by computing r ⊗ [𝝀(𝜏𝜈 , . . . , 𝜏1)]1.

First, we argue that the commitment key is correctly distributed. Indeed, we evaluate the
multivariate Lagrange and monomial polynomials on a random point since 𝜏, 𝜌𝜈 , . . . , 𝜌1
are uniformly distributed, and we compute r honestly.

Next, assume that the guess of index 𝑖 was correct (which happens with 1/ℓ 𝜈 = 𝑚/𝑘
probability) and that the verifying proofs contain c1,𝝈 ≠ c2,𝝈 . By the fact that the low-
degree test passes, we get two valid openings v1,𝝈 , v2,𝝈 for these commitments w.r.t. the
key [r]1. Since we know r in the field, we can compute the discrete logarithms of these
elements: specifically,

(c1,𝝈 , c2,𝝈) = (r⊤v1,𝝈 , r⊤v2,𝝈)

To simplify notation, denote these values 𝑣, 𝑣′ ∈ F respectively and note that 𝑣 ≠ 𝑣′.

By the first verificatioon test, the following equations holds:

𝑒 ([𝐶 − 𝑣]1 , [1]2) =
𝜈∑
𝑗=1

𝑒([𝐻𝑗]1 , [𝜏𝑗 − 𝜎𝑗]2), 𝑒 ([𝐶 − 𝑣′]1 , [1]2) =
𝜈∑
𝑗=1

𝑒([𝐻′𝑗]1 , [𝜏𝑗 − 𝜎𝑗]2)

⁷We implicitly assume here that the distribution of the key generation algorithm is witness samplable.
This is always the case for all distribution of interest.

157

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

Subtracting and setting 𝑧 𝑗 = 𝐻𝑖 − 𝐻′𝑖 gives

𝑒 ([𝑣′ − 𝑣]1 , [1]2) =
𝜈∑
𝑗=1

𝑒([𝑧 𝑗]1 , [𝜏𝑗 − 𝜎𝑗]2) ⇔ 𝑒 ([𝑣′ − 𝑣]1 , [1]2) =
𝜈∑
𝑗=1

𝑒([𝑧 𝑗]1 , 𝜌 𝑗[𝜏]2) ⇔

(𝑣′ − 𝑣) · 𝑒 ([1]1 , [1]2) = 𝜏 · 𝑒 ©«
𝜈∑
𝑗=1

𝜌 𝑗[𝑧 𝑗]1 , [1]2ª®¬⇔
𝜏−1 · 𝑒 ([1]1 , [1]2) = (𝑣′ − 𝑣)−1 · 𝑒 ©«

𝜈∑
𝑗=1

𝜌 𝑗[𝑧 𝑗]1 , [1]2ª®¬⇔
𝑒
([𝜏−1]1 , [1]2) = ·𝑒 ©«(𝑣′ − 𝑣)−1

𝜈∑
𝑗=1

𝜌 𝑗[𝑧 𝑗]1 , [1]2ª®¬
so by the final equation

1
𝜏−1 𝑒([1]1 , [1]1) = (𝑣′ − 𝑣)−1

𝜈∑
𝑗=1

𝜌 𝑗[𝑧 𝑗]1

Therefore,
(
0, (𝑣′ − 𝑣)−1𝑒(∑𝜈

𝑗=1 𝜌 𝑗[𝑧 𝑗]1 , [1]2)
)
is a solution to the BSDH challenge.

Homomorphic Proofs. Let (c1 , (𝑖 , 𝑖′), y1 ,𝜋1), (c2 , (𝑖, 𝑖′), y2 ,𝜋2) be accepting statement-proof
pairs with respect to some key vk. We show that for all 𝛼, 𝛽 ∈ F, the statement-proof pair
(c, (𝑖 , 𝑖′), y,𝜋) = (𝛼c1 + 𝛽c2 , (𝑖, 𝑖′), 𝛼y1 + 𝛽y2 , 𝛼𝜋1 + 𝛽𝜋2) is also accepting. Let

𝜋 = (𝛼[𝐻𝜈,1]1 + 𝛽[𝐻𝜈,2]1 , . . . , 𝛼[𝐻1,1]1 + 𝛽[𝐻1,2]1 ,
𝛼c1,𝝈 + 𝛽c2,𝝈 , 𝛼ĉ1,𝝈 + 𝛽ĉ2,𝝈 , 𝛼𝜋′1 + 𝛽𝜋′2)

be the combined proof. First, note that for 𝑖′ corresponding to the leaf position, the second
verification test VCS′.Verify(vk′, 𝛼c1,𝝈 + 𝛽c2,𝝈 , 𝑖′, 𝛼y1 + 𝛽y2 , 𝛼𝜋′1 + 𝛽𝜋′2) outputs 1 by the
homomorphic openings property of VCS′. For the first test, we have

𝑒 (c − c𝝈 , [1]2) = 𝑒 (𝛼c1 + 𝛽c2 − 𝛼c1,𝝈 − 𝛽c2,𝝈 , [1]2)
= 𝛼 · 𝑒 (c1 − c1,𝝈 , [1]2) + 𝛽 · 𝑒 (c2 − c2,𝝈 , [1]2)

= 𝛼
𝜈∑
𝑗=1

𝑒([𝐻𝑗 ,1]1 , [𝜏𝑗 − 𝜎𝑗]2) + 𝛽
𝜈∑
𝑗=1

𝑒([𝐻𝑗,2]1 , [𝜏𝑗 − 𝜎𝑗]2)

=
𝜈∑
𝑗=1

𝑒
(
𝛼[𝐻𝑗 ,1]1 + 𝛽[𝐻𝑗,2]1 , [𝜏𝑗 − 𝜎𝑗]2) = 𝜈∑

𝑗=1
𝑒
([𝐻𝑗]1 , [𝜏𝑗 − 𝜎𝑗]2)

158

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

Similarly, for the low degree test we have

𝑒 (ĉ𝝈 , [1]2) = 𝑒 (𝛼ĉ1,𝝈 + 𝛽ĉ2,𝝈 , [1]2) = 𝛼 · 𝑒 (ĉ1,𝝈 , [1]2) + 𝛽 · 𝑒 (ĉ2,𝝈 , [1]2)
= 𝛼 · 𝑒

(
c1,𝝈 , [𝜏ℓ−1

𝜈 · · · 𝜏ℓ−1
1]2

)
+ 𝛽 · 𝑒(c2,𝝈 , [𝜏ℓ−1

𝜈 · · · 𝜏ℓ−1
1]2)

= 𝑒
(
𝛼c1,𝝈 + 𝛽c2,𝝈 , [𝜏ℓ−1

𝜈 · · · 𝜏ℓ−1
1]2

)
= 𝑒

(
c𝝈 , [𝜏ℓ−1

𝜈 · · · 𝜏ℓ−1
1]2

)
Thus, the new statement/proof pair passes all verification tests. □

Remark 2. Note that in the function binding proof, we only use the AGM to extract open-
ings for the leaf commitments but not for the tree part of the construction. The latter is
sound under falsifiable assumptions.

Theorem 33. Consider construction MVTree and let 𝜋𝝈 = ([𝐻𝝈
𝜈]1 , . . . , [𝐻𝝈

1]1 , c𝝈 , ĉ𝝈 ,𝜋′𝝈) be
some proof of opening for a leaf commitment in position 𝝈 written in ℓ -ary. Then, computing all
partial proofs

{([𝐻𝝈
𝜈]2 , . . . , [𝐻𝝈

1]1 , c𝝈 , ĉ𝝈)
}
𝝈∈Σ𝜈 can be done in𝑂𝑠 𝑒𝑐𝑝𝑎𝑟(𝑘 ·𝜈 ·ℓ 𝜈) = 𝑂𝑠 𝑒𝑐𝑝𝑎𝑟(𝜈 ·

𝑚) time and storing them needs 𝑂𝑠 𝑒𝑐𝑝𝑎𝑟(ℓ 𝜈) = 𝑂𝑠 𝑒𝑐𝑝𝑎𝑟(𝑚/𝑘) space. Furthermore, if we update
𝐶 by adding 𝛿 in some position 𝑖∗, we can update all partial proofs in time 𝑂𝑠 𝑒𝑐𝑝𝑎𝑟(𝜈).

Proof.

Pre-computing partial proofs. Let 𝑝(𝑋𝜈 , . . . , 𝑋1 ,R) be the polynomial encoding of v w.r.t.
Σ𝜈 and consider the evaluation of polynomials 𝑝𝝈1(X,R) = 𝑝(𝝈1 ,X,R) arranged in a
tree: the root is the polynomial 𝑝(𝑋𝜈 , . . . , 𝑋1 ,R) and the children of a node in level 𝑗 are{
𝑝𝜎𝜈 ,...,𝜎𝑗 (𝜎, 𝑋𝑗−2 , . . . , 𝑋1 ,R)

}
𝜎∈Σ. Computing all proofs corresponds to computing a divi-

sor polynomial for each node that asserts that the node is consistent with its parent node,
plus some constant work for computing each leaf commitment along with its low degree
proof. Assuming ℓ = 𝑂(1), each divisor polynomial proof can be computed in time lin-
ear in the total degree of 𝑝𝜎𝜈 ,...,𝜎𝑗 . A simple counting argument is enough to conclude the
proof. In level 𝑗 of the tree, we need to compute ℓ 𝑗 proofs, each for a polynomial of total
degree 𝑘 · ℓ 𝜈−𝑗 . Thus, for each level of the tree, we need time linear in 𝑘 · ℓ 𝜈 = 𝑚. Having
𝜈 levels, the total time is 𝑂𝜆(𝑚 · 𝜈). For the space requirements, it is enough to note that
the tree is has 𝑂(𝑚) nodes, and we associate one group element to each.

Updating all partial proofs. The updatability property follows directly by the homomorphic
opening property of the construction. We focus on the computation needed for updating
all stored proofs. The strategy is to consider the new commitment as c′ = c+ ĉ where ĉ is a
commitment to the vector 𝛿 · e𝑖∗ , where 𝝈 denotes leaf corresponding to 𝑖∗. We claim that
(1) we can compute all proofs for ĉ in logarithmic time and (2) all but 𝑂(𝜈) proof elements
are 0. By this two facts the claim follows since we can combine all the non-zero proof
elements of ĉ with the corresponding elements of c.

159

CHAPTER 5. TREE BASED VECTOR COMMITMENTS

The commitment ĉ corresponds to a polynomial of the form 𝑝(X,R) = 𝛿 · 𝜆𝝈(X) · 𝑅 𝑗 . All
polynomials labeling nodes in the tree are 0 apart from the ones being in the path from
the root to the leaf containing 𝑖∗. Such a node always has the zero polynomial nodes as
descendants, and the proof corresponding to each is 0 since 0 = 0 · (𝑋𝑗 − 𝜎𝑗). The proof
polynomials for the rest ℓ · 𝜈 nodes can be computed in constant time each and each can
be encoded to the group in constant time since each involves a unique commitment key
element. □

Efficiency. We only consider the case where ℓ = 𝑂(1). First, let’s focus on the time
needed to compute [𝐻𝑗]1. One can simply write the polynomial 𝑝 𝑗 − 𝑝 𝑗−1 as a polynomial in
1, 𝑋𝑗 , . . . , 𝑋ℓ−1

𝑗 with polynomial coefficients in the other variables. Then, we can use standard
(univariate) polynomial division to divide each term with 𝑋𝑗 − 𝜎𝑗 in constant time. To encode
it in the group, it is enough to note that the total degree of each term is 𝑘 · ℓ 𝑗−1, so we need
to perform ℓ multi-exponentiations of this size totaling in 𝑂(𝑘 · ℓ 𝑗) operations.

That said, we demonstrate the efficiency of the construction. The commitment key consists
of linear in 𝑚 group elements. Opening needs 𝑂(𝑘 · ℓ 𝑗) operations for each iteration, totaling
in 𝑂(𝑘 · ℓ 𝜈) time. By inspection of the construction, proofs size is logℓ (𝑚/𝑘) + 2+ |𝜋′ |, where
𝜋′ is the size of an opening of the leaf commitment. Finally, verification consists of (1) a
logℓ (𝑚/𝑘)-size pairing product equation, (2) a low degree test involving constant operations
and (3) a verification of an opening of a leaf commitment.

Remark 3 (On aggregation). The first two verification tests are pairing product equations.
Assuming the leaf commitment verification is also a pairing product equation, one can use
inner pairing products [BMM+21] to aggregate many such equations as done in [SCP+22]
and, thus, achieve one-hop cross commitment aggregation. While the aggregated proof
size decreases exponentially, this comes at the cost of a significant overhead for the prover
due to the need to work in the target group. Reducing the proof size from log2 𝑚 to
roughly logℓ (𝑚/𝑘) (assuming constant size/verification for leaf commitment opening) can
make aggregation significantly cheaper for the prover.

160

Chapter 6

Folding Schemes with Selective
Verification

This chapter is based on an unpublished paper that is joint work with Carla Ráfols.

Succinct non-interactive arguments of knowledge (SNARKs) have been proven an invaluable
tool during the last decade, both in theoretical as well as practical terms. Such constructions
allow a prover to convince a verifier that some NP relation is satisfied in a way such that
communication and (in some cases) verification time are sublinear in the size of the NP
witness. They can also be adapted to satisfy the zero-knowledge property, which guarantees
that no information about the NP witness is leaked through the proof.

While the first real-world application of SNARKs [BCG+14b] aimed at preserving the privacy
of the prover, the potential of this primitive for improving scalability in many applications is
increasingly recognized, see for example roll-up architectures or the Filecoin network. In these
applications, where the size of the computations is really large, the efficiency of the prover is the
main bottleneck. Therefore, improving prover’s efficiency is an active area of research [BCG20;
BCL20; RR21; BCHO22].

These applications are a particular case of the problem of secure delegation of computa-
tion [GKR08], where an untrusted prover performs computations as a service to several “mug-
gles”, or computationally weak verifiers. The prover needs to convince the verifier (ideally with
a non-interactive and publicly verifiable proof) of the correctness of the result, and verification
should be much cheaper than performing the computation. SNARKs are a natural solution to
this problem. However, the current cost of the prover is an obvious limitation in this scenario,
as it directly translates into costs for the server and limits the possibilities of scaling the system.

161

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

Contributions. We aim to mitigate the necessity of large computational resources for the
prover in applications where he provides services to many clients. Instead of trying to improve
the efficiency of SNARK constructions, we take a different approach: we amortize the proving
cost across multiple proofs of independent and unrelated statements. This means that, when
having to make 𝑀 computations of different statements, instead of producing 𝑀 separate
SNARK proofs for each, the prover “collapses” all these statements to a single statement in a
verifiable way and only produces a proof for the latter using a SNARK. This is a novel applica-
tion of folding schemes [KST21], originally introduced to improve recursive proof composition.
We naturally extend this notion with a local property: testing only if a specific statement was
considered during aggregation.

The guarantee we get is that if the proof for the aggregated statement verifies, then all
statements are correct. Additionally, since the ultimate goal is to be able to prove unrelated
statements, possibly coming from different parties, we augment aggregation with a property
we call selective verification. This property captures that a small proof 𝜋𝑖 -which importantly
is sublinear in the number of aggregated statements- is evidence that a statement x𝑖 was
considered in the construction of the final aggregated statement and, thus, a proof for the
latter along with 𝜋𝑖 stands as a proof for the validity of x𝑖. Note that it is not necessary to
even know the statements used in aggregation to assert the validity of x𝑖.

A crucial requirement for efficiency is that aggregation of 𝑀 statements is more efficient
than producing 𝑀 SNARK proofs. We demonstrate this by considering natural aggregation
schemes for various relations through simple public coin protocols and the Fiat-Shamir trans-
form. Specifically, we consider (1) inner product relations of committed values, (2) vector
commitment openings, (3) knowledge of openings of polynomial commitments, and (4) the
relaxed R1CS relation of NOVA [KST21].

All the constructions are extremely efficient for the prover, who during folding does work
comparable to reading the statements/witnesses (modulo a linear number of hash function
computations needed to derive the non-interactive challenge of the Fiat-Shamir transform).
Verification becomes a bit more expensive since now the verifier needs to assert, apart from the
SNARK proof, that a statement in question is indeed “contained” in the aggregated statement.
This is dominated by log𝑀 hash function computations where 𝑀 is the number of aggregated
statements.

Nevertheless, we argue that the construction is beneficial from the verifier’s perspective as well.
First, using a (simple) folding scheme, the verifier can “locally” aggregate many statements
into a single statement x𝑖 which will then be aggregated with other independent queries from
other verifiers. Therefore, the additional cost of each verifier can be amortized when the
verifier makes multiple queries. Second, since all verifiers need to assert the validity of the
same folded statement, one could explore the possibility of distributing this task, incentivizing
a few randomly chosen verifiers to check the aggregated statement. As long as one is honest,
a cheating prover will be identified. If a verifier does not validate the proof himself, it can
still query it in the future to the prover (along with other statements of interest that it locally

162

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

aggregates) instead of simply relying on other parties. Thus, we can fine-tune the verification
cost on large scale systems without compromising security.

Our techniques are quite general. In particular, (1) we show a generic way to augment every
non-interactive folding scheme with selective verification using combinatorial techniques, and
(2) we do not rely on some specific SNARK construction, but can rather rely on any SNARK
depending on the application’s needs. Furthermore, constructing (simple) folding schemes is
natural and easy using standard Σ-protocols, so the techniques can be easily adapted to work
in a plethora of scenarios.

Folding schemes with selective verification can amortize the proving costs in large scale appli-
cation where the prover should not be trusted. We demonstrate this using two examples:

1. delegation of computation as a service: a trustless proving server wants to “lend” its
computational resources in the form of verifiably performing computations on behalf of
clients, and

2. verifiable databases [BGV11]: a trustless database server stores, and manages databases
for clients.

Our approach is very efficient when many verifiers wish to perform the same computation on
different inputs. Performing arbitrary computations still incurs a significant overhead for the
prover. Constructing folding schemes for arbitrary computations or exploring which types of
computations can be aggregated efficiently using such objects in an interesting open question.

Related Work. Our techniques are inspired by a recent line of work on proof composition
techniques, namely [BGH19; BCMS20; BCL+21; BDFG21]. In general, these techniques
consider the notion of proof aggregation, namely, how to derive a single proof 𝜋 that asserts the
validity of two or more proofs. The motivation for this line of work is twofold. First, amortizing
the cost of the (inefficient) verification of folding technique based constructions [BCC+16;
BBB+18] and second, to construct proof carrying data [BCCT13] and incrementally verifiable
computation [Val08].

Our technique differs in that (1) the main goal is to amortize the proving cost and (2) we
consider the notion of aggregating unrelated statements, that is, one should assert the validity
of statement without even knowing the other statements considered during aggregation. NOVA
is closer to our work in that it directly considers aggregating statements instead of proofs, in
an attempt to minimize the proving cost.

Perhaps closest to our work is [YLF+21]. There, they use a tree like structure similar to ours
in order to derive the same Fiat-Shamir challenge across multiple parallel executions of an
inner product argument protocol [BBB+18] with different parties. In particular, the protocol
transcripts are committed in a Merkle tree so that each party can assert that its transcript was
considered in the production of the challenge. We consider statement aggregation instead of
executing multiple proofs in parallel which is conceptually different and more efficient.

163

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

6.1 Folding Schemes

In this section we recall the definition of folding schemes for NP relations introduced in
NOVA [KST21]. On a high level, given an NP language ℒ and the corresponding NP re-
lation ℛ, a folding scheme allows a prover and a verifier to reduce the validity of 2 or more
statements of the form x𝑖 ∈ ℒ to a single statement x ∈ ℒ. The resulting statement is of the
same form, so it can be further aggregated. A prover knowing witnesses w𝑖 s.t. (x𝑖 ,w𝑖) ∈ ℛ
for all the statements also obtains a witness w for the folded statement x.

A folding scheme takes to the extreme recent proof composition techniques used to construct
PCD [BCCT13] and IVC [Val08]. Roughly, the core idea of these techniques is to aggregate
proofs: given two statement/proof pairs, the prover and verifier reduce them to a single,
different statement-proof pair that asserts the validity of both statements. Instead of verifying
two proofs, a verifier needs only to verify (1) the aggregated proof and (2) aggregation was
done correctly.

NOVA takes this approach to the extreme in the following sense: no proofs are considered
anymore, the prover and verifier simply aggregate the statements themselves. Taking into
account that producing proofs is a computationally intense task, this allows much better
proving time with essentially no overhead for verification. Indeed, [KST21] introduces a folding
scheme construction that captures all NP and allows very fast statement aggregation.

The formalization of a folding scheme is quite natural. In this work we only consider non-
interactive folding schemes, since non-interactiveness is essential in the additional properties
we introduce. Given a number of instance/witness pairs (x𝑖 ,w𝑖) that satisfy some NP relation,
there exists a folding algorithm that outputs a new instance/witness pair (x,w) that also
satisfies the NP relation, along with some evidence 𝜋 that the new instance x is indeed an
aggregated statement derived from the statements x𝑖. The properties required are:

1. completeness, stating that if we aggregate instance-witness pairs (x𝑖 ,w𝑖) satisfying the
NP relation, then (1) folding results in an instance-witness pair also satisfying the relation
and (2) the folding proof is accepted;

2. knowledge soundness, stating that if after correct aggregation the proving party knows a
witness for the resulting statement, then it should also know witnesses for all statements
(x𝑖 ,w𝑖) that were considered during aggregation.

Definition 37 (Folding scheme). Let 𝜅 ∈ N be a security parameter and ℒpar be an NP
language parametrized by some parameters par(𝜅) depending on 𝜅 and ℛpar the corre-
sponding relation. Finally, let 𝑀 = poly(𝜅). An 𝑀-folding scheme FS for the language
family ℒ =

{ℒpar
}

par∈{0,1}∗ is a tuple of an algorithms FS = (Fold, FoldVrfy) such that for
all par = par(𝜅) and 𝑚 ≤ 𝑀

• (x,w,𝜋) ← Fold (par, x1 ,w1 , . . . , x𝑚 ,w𝑚): takes as input the parameters par, and
𝑚 instance-witness pairs (x𝑖 ,w𝑖) ∈ ℒpar and outputs a new instance-witness pair

164

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

(x,w) ∈ ℛ and a proof of correct folding 𝜋,

• 0/1← FoldVrfy (par, x1 , . . . , x𝑚 , x,𝜋): takes as input the parameters par, 𝑚 instances
x𝑖 , an aggregated statement x and a proof of correct folding 𝜋 and outputs a bit
indicating whether folding was done correctly or not,

that satisfies the following properties:

1. Completeness: for all 𝑚 ≤ 𝑀, all par = par(𝜅) and all (even computationally un-
bounded) algorithms𝒜,

Pr

(x1 ,w1), . . . , (x𝑚 ,w𝑚) ← 𝒜(par)

{q1 , . . . , q𝑚} ⊆ ℛpar ∧ q1 = (x1 ,w1), . . . , q𝑚 = (x𝑚 ,w𝑚)
((x,w) ∉ ℛpar ∨ 𝑏 = 0) (x,w,𝜋) ← Fold (par, q)

𝑏 ← FoldVrfy (par, x, x,𝜋)

 ≤ negl(𝜅)

2. Knowledge soundness: for all𝑚 ≤ 𝑀 and all par = par(𝜅) there exists a PPT extrac-
tor ℰ such that for all PPT algorithms𝒜

Pr

(x,w) ∈ ℛpar ∧ 𝑏 = 1 (x, x,w,𝜋) ← 𝒜(par)
⇒ w← ℰ𝒜(par)

∃1 ≤ 𝑖 ≤ 𝑚 s.t. (x𝑖 ,w𝑖) ∉ ℛpar 𝑏 ← FoldVrfy (par, x, x,𝜋)

 ≤ negl(𝜅)

In Section 6.3 we present folding schemes for various relations: inner product relations of
committed values, vector and polynomial commitment openings, the relaxed R1CS relation
of [KST21]. We derive the constructions by means of public coin protocols that we compile
to a non-interactive variant through the Fiat-Shamir heuristic.

6.2 Folding Schemes with Selective Verification

The main goal of this work to allow to reduce the resources used in “as a service” scenarios: a
prover needs to serve multiple verifiers in a trustless way. A characteristic example is a prover
that verifiably outsources its computational resources to verifiers who need to perform arbitrary
computations.

Consider the case where a prover wants to serve 𝑚 statements for 𝑚 different parties. Simple
folding is indeed a means to that goal: the prover needs to convince for the validity of a single
statement to convince all verifiers about the validity of all 𝑚 statements. Nevertheless, it is
still inefficient in terms of verification. The inefficiency stems from the fact that in order to
verify correct folding, all the statements need to be considered.

While this is natural in cases where a single verifier is interested in many statements, it can
be prohibitive in scenarios where multiple verifiers are interested in the validity of different

165

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

statements: first, the verifiers need to know each others’ queries to the prover to assert
validity of the aggregated statement, and second, the verification cost scales linearly with the
total number of statements considered.

In this section, we mitigate this issue by considering a stronger notion of folding schemes
that allows to assert that a single statement was considered during aggregation of multiple
statements -and hence knowledge of a witness of the latter implies knowledge of the witness
of the former, without the need to know all the statements involved. Importantly, verification
of inclusion of a single statement to the aggregated statement is sublinear in the total number
of statements involved. We call this stronger notion folding with selective verification.

We first define the stronger notion of a folding scheme that supports selective verification.
Then, we show that any non-interactive folding scheme can be compiled into one with selective
verification.

Definition 38 (Folding schemewith selective verification). Let 𝜅 ∈ N be a security param-
eter andℒpar be anNP language parametrized by some parameters par(𝜅) depending on 𝜅
and ℛpar the corresponding relation. Finally, let 𝑀 = poly(𝜅) and let FS = (Fold, FoldVrfy)
be an 𝑀-folding scheme for ℒ =

{ℒpar
}

par∈{0,1}∗ . FS has selective verification if there exists
a pair of algorithms (SelPrv, SelVrfy) such that for all 𝑚 ≤ 𝑀

• (𝜋1 , . . . ,𝜋𝑚) ← SelPrv(par, x1 , . . . , x𝑚 , x,𝜋): takes as input the parameters par, 𝑚
instances x1 , . . . , x𝑚 , an aggregated instance x and the proof 𝜋 produced by the al-
gorithm Fold and outputs 𝑚 proofs 𝜋1 , . . . ,𝜋𝑚 ,

• 0/1← SelVrfy(par, x, 𝑖 , x𝑖 ,𝜋𝑖): takes as input the parameters par, an aggregated state-
ment x, a position 𝑖 ∈ {1, . . . , 𝑚}, a statement x𝑖 and a proof 𝜋𝑖 and outputs a bit
indicating if x𝑖 was aggregated (among other statements) to x,

that satisfies the following properties:

1. Selective completeness: for all 𝑚 ≤ 𝑀, all par = par(𝜅) and all (even computation-
ally unbounded) algorithms𝒜,

Pr

{q1 , . . . , q𝑚} ⊆ ℛpar ∧

x1 ,w1 , . . . , x𝑚 ,w𝑚 ←𝒜(par)

∃𝑖 ∈ {1, . . . , 𝑚} :
q1 = (x1 ,w1), . . . , q𝑚 = (x𝑚 ,w𝑚)

𝑏𝑖 = 0
(x,w,𝜋) ← Fold (par, q)

(𝜋1 , . . . ,𝜋𝑚) ← SelPrv(par, x, x,𝜋)
𝑏𝑖 ← SelVrfy(par, x, 𝑖 , x𝑖 ,𝜋𝑖)

≤ negl(𝜅)

2. Selective knowledge soundness: for all 𝑚 ≤ 𝑀 = poly(𝜅) and all par = par(𝜅) there
exists a PPT extractor ℰ such that for all PPT algorithms𝒜

Pr
[(x,w) ∈ ℛpar ∧ SelVrfy(par, x, 𝑖 , x𝑖 ,𝜋𝑖) = 1 (𝑖 , x𝑖 ,𝜋𝑖 , x,w) ← 𝒜(par)

⇒ (x𝑖 ,w𝑖) ∉ ℛpar w𝑖 ← ℰ𝒜(par)
]
≤ negl(𝜅)

166

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

3. Efficiency: |𝜋𝑖 | = 𝑜(𝑚 · |x|), namely, the proof size should be asymptotically smaller
than the total size of aggregated statements.

Note that by completeness of the folding scheme, it should be the case the pair (x,w) also
satisfies the relation ℛpar.

The definition captures that if (1) the prover knows a valid witness w for the aggregated
statement x and (2) the 𝑖-th proof verifies, then it should be the case that the prover knows
witness w𝑖 such that (x𝑖 ,w𝑖) ∈ ℛpar. Note that from the perspective of a party asserting the
validity of x𝑖, it is not necessary to know the other statements considered in the construction
of x. Furthermore, the other statements need not be honestly generated; even if the adversary
samples them, knowledge of the witness of the 𝑖-th statement is still guaranteed.

The efficiency condition rules out trivial constructions. Without it, one could set the proof of
statement 𝑖 to be simply the set of all aggregated statements along with a proof of correct
folding. The verifier would then simply need to check that one of the statements corresponds
to the one that is of interest to her. The interesting part of the definition is to achieve the
same goal with sublinear communication.

Finally, note that we do not require the extractor to be able to extract all 𝑚 statements
that would explain the aggregated statement 𝑥; rather, we ask that given a witness for the
aggregated statement and a valid proof, we can extract a witness only for the 𝑖-th statement.
This is exactly what one would want for selective verification since ultimately, this is a local
property: we want to ensure that some statement is correct without caring how we end up with
an aggregated statement; the latter is simply a means to verify correctness of the statement
of interest.

6.2.1 Construction of a Folding Scheme with Selective Verification

In this section we show how to achieve selective verification from any non-interactive folding
scheme. We emphasize that since the folding schemes we present in this work are derived by
applying the Fiat-Shamir heuristic to public coin protocols, we only achieve heuristic security.

The idea to achieve selective verification is quite simple. We leverage two facts: (1) that
folding is incremental, meaning that a folded statement can be further folded and (2) that
folding is non-interactive. These simple facts allow us to fold statements in a tree-like fashion
so that the root node (the final aggregated statement) has small distance from the leafs (the
statements to be folded) while it depends on all of them.

To convince of inclusion of the 𝑖-th statement in the folding process, the prover simply needs
to give a series of incrementally folded statements that lead from the leaf to the root, similar
to how a Merkle tree opening would be performed. To verify the process, the verifier asserts
that each parent node is the folded statement derived from folding the children nodes using

167

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

x(𝑘)

x(𝑘−1)
0

x(𝑘−2)
00

...

x(1)0...00 x(1)0...01

...

x(𝑘−2)
01

...
...

x(𝑘−1)
1

x(𝑘−2)
10

...

x(1)𝑖−1 x(1)𝑖

...

x(𝑘−2)
11

...
...

x(1)1...10 x(1)1...11

Figure 6.1: Demonstration of the process of deriving the folding tree. We assume we fold 2𝑘
statements (the leafs of the tree). We index with the position of the node in the tree in binary
and we use superscript for the level of the node in the tree. A node x(𝑙)b is computed as the (non-
interactive) folding of x(𝑙−1)

b0 and x(𝑙−1)
b1 using the underlying scheme FS. Bold edges denote the

path the verification follows and rectangles the statements the prover presents to the verifier of
statement 𝑖.

the proof of folding of the (non-selective) underlying folding scheme.

An important note is that if we have a statement of the form x1 ∈ ℒ and we are presented with
a different statement x2 ∈ ℒ, after folding these to a third statement x ∈ ℒ, knowledge of a
witness for the latter ensures knowledge for both statements (in particular the first which is of
interest to us) even if the second is selected adversarially. This means that from the perspective
of a verifier interested in a specific statement, it is not important what other statements are
considered or how they are sampled as long as they correctly end up to the claimed aggregated
statement.

We first demonstrate the construction in Fig. 6.1. Next, we formally present the generic
construction in Fig. 6.2. We start from a folding scheme FS and derive a folding scheme SFS
with selective verification where the per-statement proof is logarithmic in size. Specifically, let
FS be an 𝑀-folding scheme and any fixed constant 𝑚 ≤ 𝑀 (our constructions in this work will
always consider folding 𝑚 = 2 statements). Then, for any constant 𝑘, we derive an 𝑚𝑘-folding
scheme with selective verification, where the proof size is |𝜋𝑖 | = 𝒪(|x| · 𝑘). This means we can
aggregate polynomially many statements while each statement can be verified with a proof
that is logarithmic in the number of statements.

An important observation, as far as efficiency is concerned, is that the proofs themselves
are folded statements with their corresponding proofs, and thus yield little overhead to pro-
duce/verify the proofs -assuming the underlying folding scheme is concretely efficient. Essen-

168

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

tially, assuming that the underlying folding scheme is used for folding 𝑚 = 2 statements, the
prover has to perform 𝒪(2𝑘) number of foldings and simply save the intermediate results in the
process to be able to present as evidence later. As we will see in the next section, folding itself
can be extremely efficient for many languages of interest. The overhead induced by folding
for the prover is comparable to the time needed to simply read the statements! This can lead
to significant improvements compared to -for example- producing a SNARK proof for each
statement.

We next show that the construction SFS is a folding scheme (Thm. 34) and that it achieves
selective verification (Thm. 35).

Theorem 34. Let FS be an 𝑀-aggregation scheme for a language family ℒ with corresponding
relations ℛ. Then, for any constant 𝑚 ≤ 𝑀 and any constant 𝑘 ∈ N, construction SFS of Fig. 6.2
is an 𝑚𝑘-aggregation scheme for the same language family.

Proof. Completeness follows directly by straightforward calculations and the complete-
ness of SFS. We next show that SFS satisfies knowledge soundness.

Let 𝑚′ = 𝑚𝑘 , x1 , . . . , x𝑚′ be statements and w a witness for the folded statement x output
by an adversary 𝒜. We construct an extractor ℰ that extracts the witnesses w1 , . . . ,w𝑚′
given a witness for the folded statement w and a valid folding proof 𝜋, that uses as a black
box the extractor ℰ′ for FS guaranteed to exist by knowledge soundness of FS.

Consider the 𝑚-ary tree defined by the honest SFS.FoldVrfy algorithm: the leafs are de-
fined in the first level by the statements, that is, we label each leaf with (x(𝑘)1 ,⊥), (x(𝑘)2 ,⊥),
. . . , (x(𝑘)𝑚′ ,⊥) where x(𝑘)𝑗 = x𝑗 and for each 𝑚-sized tuple of statements aggregated, we de-
fine a parent node connected to each of them labeled by the aggregated statement and the
proof of correct aggregation. Note that verification passes, if

1. for any node labeled (x∗ ,𝜋∗) with child nodes (x1 , ·), . . . , (x𝑚 , ·) verification passes,
namely, FS.FoldVrfy(par, x1 , . . . , x𝑚 , x∗ ,𝜋∗) = 1

2. the root node is labeled with (x, ·)

We next show that for all such adversaries 𝒜, there exists a family of extractors ℰ 𝑖𝑗 for
1 ≤ 𝑖 ≤ 𝑘 − 1, 1 ≤ 𝑗 ≤ 𝑚 𝑖 such that given as input a derived tree for some statements
x1 , . . . , x𝑚′, ℰ(𝑖)𝑗 extracts validwitnesses w(𝑖+1)

𝑗1
, . . . ,w(𝑖+1)

𝑗𝑚
for the statements x(𝑖+1)

𝑗1
, . . . , x(𝑖+1)

𝑗𝑚

that are the children nodes of x(𝑖)𝑗 in the derived tree. The construction is recursive. We
denote ℰ(0) the trivial extractor that given the witness for the root node (output by the
adversary𝒜), it simply outputs it.

Base case: ℰ(1)1 runs ℰ(0) to get the witness w(1)1 for the root. It then queries the derived
tree and constructs the adversary𝒜(1)1 that outputs x(2)1 , . . . , x(2)𝑚 , folded statement-witness

169

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

Figure 6.2Construction of a folding schemewith selective verification fromaplain folding
scheme. Here we assume (w.l.o.g.) that the number of initial statements is 𝑚𝑘 for some
fixed constant 𝑚 and some 𝑘 ∈ N.
SFS.Fold(par, q1 = (x1 ,w1), . . . , q𝑚′ = (x𝑚′ ,w𝑚′)):

Let 𝑚′ = 𝑚𝑘 . If 𝑘 = 0 then output q1 ,𝜋1 = ⊥, otherwise, group the 𝑚𝑘 statements to 𝑚
groups of 𝑚𝑘−1 elements each and denote them q1 , . . . , q𝑚
for each 1 ≤ 𝑗 ≤ 𝑚 recursively compute (q̃𝑗 = (x̃𝑗 , w̃𝑗), �̃� 𝑗) ← SFS.Fold(par, q𝑗)
(q∗ = (x∗ ,w∗),𝜋∗) ← FS.Fold(par, q̃1 , . . . , q̃𝑚)
output q∗ ,𝜋 = (𝜋∗ , x̃1 , �̃�1 , . . . , x̃𝑚 , �̃�𝑚)

SFS.FoldVrfy(par, x1 , . . . , x𝑚′ , x,𝜋):
Let 𝑚′ = 𝑚𝑘 . If 𝑘 = 0 then output 1 iff x = x1, otherwise
1. group the 𝑚𝑘 statements to 𝑚 groups of 𝑚𝑘−1 elements each and denote them

x1 , . . . , x𝑚
2. parse the proof as 𝜋 = (𝜋∗ , x̃1 , �̃�1 , . . . , x̃𝑚 , �̃�𝑚)

for each 1 ≤ 𝑗 ≤ 𝑚 recursively compute 𝑏 𝑗 ← SFS.FoldVrfy(par, x𝑗 , x̃𝑗 ,𝜋 𝑗)
𝑏 ← FS.FoldVrfy(par, x̃1 , . . . , x̃𝑚 , x,𝜋∗)
output 𝑏 ∧ 𝑏1 ∧ . . . ∧ 𝑏𝑚

SFS.SelPrv(par, x1 , . . . , x𝑚′), x,𝜋):
Consider an execution of SFS.FoldVrfy(par, x1 , . . . , x𝑚′ ,𝜋))
Parse the tree defined by the former execution as follows:
– (x𝑖 ,⊥), . . . , (x𝑚′ ,⊥) are the leafs
– If (x∗ ,𝜋∗) corresponds to the verification 𝑏 ← FS.FoldVrfy(par, x̃1 , . . . , x̃𝑚 , x∗ ,𝜋∗)

1. Add node 𝑛 = (x∗ ,𝜋∗)
2. Add edges from 𝑛 to the nodes labeled with (x̃𝑖 , ·)

For 1 ≤ 𝑖 ≤ 𝑚′ set 𝜋𝑖 the concatenation of the lables of the nodes corresponding to the path
from (𝑥, ·) to (𝑥𝑖 ,⊥)with their sibling nodes.
Output 𝜋1 , . . . ,𝜋𝑚′

SFS.SelVrfy(par, x, 𝑖 , x𝑖 ,𝜋𝑖):
Let 𝑖 = (𝑏𝑘−1 , . . . , 𝑏0) in 𝑚-ary notation.

Parse 𝜋𝑖 =
(
(x(𝑘) ,𝜋(𝑘)), (x(𝑘−1) ,𝜋(𝑘−1)), . . . , (x(2) ,𝜋(2)), (x(1) ,⊥)

)
For each 𝑘 − 1 ≤ ℓ ≤ 1

Set x(ℓ) the 𝑏ℓ -th element of x(ℓ)

Output 0 if FS.FoldVrfy(par, x(ℓ) , x(ℓ+1)
𝑏 ,𝜋(ℓ+1)) = 0

Output 1 if x = x(𝑘) and x(1) = x𝑖 .

170

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

pairs x(1)1 ,w(1)1 and proof 𝜋(1) which is part of the label of the root node. Finally, it invokes
ℰ′ with access to𝒜(1)1 to derive witnesses w(2)1 , . . . ,w(2)𝑚 for the statements x(2)1 , . . . , x(2)𝑚 .

Recursive case: Now, let 𝑖 > 1 and consider any 𝑗 with 1 ≤ 𝑗 ≤ 𝑚 𝑖 . We construct an
extractor ℰ(𝑖)𝑗 assuming the existence of an extractor for a level closer to the root node.

Let (x(𝑖−1)
𝑝(𝑗) , ·) denote the label of the parent node of the node labeled with (x(𝑖)𝑗 ,𝜋(𝑖)𝑗) and

let (x𝑗1 , ·), . . . , (x𝑗𝑚 , ·) be the labels of the children of x(𝑖)𝑗 . Now, we construct 𝒜(𝑖)𝑗 that has
hardcoded the 𝑚-ary tree and works as follows:

• It invokes the extractor ℰ(𝑖−1)
𝑝(𝑗) corresponding to statement x(𝑖−1)

𝑝(𝑗) to get a witness w(𝑖)𝑗
for x(𝑖)𝑗 (and all its siblings which it ignores).

• It then constructs an adversary𝒜(𝑖)𝑗 that simply outputs x𝑗1 , . . . , x𝑗𝑚 , the folded statement-

witness pair x(𝑖)𝑗 ,w
(𝑖)
𝑗 and the proof of correct folding 𝜋(𝑖)𝑗 contained in the node label.

• Finally, it invokes the extractor ℰ′ of FS with access to 𝒜(𝑖)𝑗 and gets witnesses w𝑗1 ,
. . . ,w𝑗𝑚 .

• It outputs witnesses w𝑗1 , . . . ,w𝑗𝑚 .

We are now ready to construct the extractor ℰ. ℰ queries𝒜 to get statements x1 , . . . , x𝑚′,
a folded statement-witness pair (x(1)1 ,w(1)1) and a proof of correct folding 𝜋. It then uses
the proof and the statements to construct the tree, queries the extractors ℰ(𝑘−1)

1 , . . . , ℰ(𝑘−1)
𝑚′/𝑚

-each of which outputs 𝑚 witnesses for 𝑚 leaf nodes- and concatenates their outputs.

Let’s now consider the running time and the probability of success of the extractor ℰ.

For the running time, let 𝑡(𝜅, 𝑚) be the running time of ℰ′ and denote 𝑡𝑖(𝜅, 𝑚) the running
time of an extractor on level 𝑖 (note that all these extractors are identical). By construction,
we have that 𝑡𝑖(𝜅, 𝑚) = 𝑡𝑖−1(𝜅, 𝑚) + 𝑡(𝜅, 𝑚) and 𝑡0(𝜅, 𝑚) = |w|, namely the time to output
the folded witness w. This recurrence relation corresponds to 𝑡𝑖(𝜅, 𝑚) = 𝑖 · 𝑡(𝜅, 𝑚) + |w|.
Finally, the running time of the extractor ℰ is

𝑡ℰ(𝜅, 𝑚, 𝑘) = 𝑡SFS(𝜅, 𝑘, 𝑚) + 𝑚𝑘−1𝑡𝑘−1(𝜅, 𝑚) =
= 𝑡SFS(𝜅, 𝑘, 𝑚) + 𝑚𝑘−1(𝑘 − 1) · 𝑡(𝜅, 𝑚) + |w|

where 𝑡SFS(𝑘, 𝑚) is the time of SFS.FoldVrfy algorithm (equivalently the time needed to
construct the statement tree). This corresponds to a quasilinear overhead 𝑚′ log𝑚 𝑚′ for
the time of the extractor ℰ, which is polynomial for any number of polynomial statements.

Wenext show that the advantage ofℰ is polynomially related to that ofℰ′. Wedenotewith
𝑝′ the probability that extractor ℰ′ succeeds in outputting the witnesses in FS conditioned

171

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

on𝒜 outputting a valid witness for the folded statement and a verifying proof, namely,

𝑝′ = Pr

(x1 , . . . , x𝑚 , x,w,𝜋) ← 𝒜(par)

∀ 1 ≤ 𝑖 ≤ 𝑚: (x𝑖 ,w𝑖) ∈ ℛpar
(w1 , . . . ,w𝑚) ← ℰ′𝒜(par)

FoldVrfy (par, x1 . . . , x𝑚 , x,𝜋) = 1
(x,w) ∈ ℛpar

Claim 3. Consider any adversary𝒜 against SFS and the folding tree derived by its output.
Fix 𝑖 , 𝑗 such that 1 ≤ 𝑖 ≤ 𝑘 − 1 and 1 ≤ 𝑗 ≤ 𝑚 𝑖 and consider the tree node (x(𝑖)𝑗 ,𝜋(𝑖)𝑗) and
let x1 , . . . , x𝑚 be its 𝑚 children. Let𝑊𝑖 be the event that the extractor ℰ(𝑖)𝑗 outputs a valid

witness for all the children nodes of x(𝑖)𝑗 , that is

𝑊𝑖 =

{
∀1 ≤ ℓ ≤ 𝑚: (xℓ ,wℓ) ∈ ℛpar

(x1 , . . . , x𝑚′ , x,w,𝜋) ← 𝒜(par)
(w1 , . . . ,w𝑚) ← ℰ(𝑖) 𝒜𝑗 (par)

}
Then Pr[𝑊𝑖] ≥ 𝑝′Pr[𝑊𝑖−1].

Proof. We have Pr[𝑊𝑖] ≥ Pr[𝑊𝑖 | 𝑊𝑖−1]Pr[𝑊𝑖−1]. Now, the probability of𝑊𝑖 conditioned
on𝑊𝑖−1 is the probability that an extractor on the 𝑖-th level succeeds conditioned on the
probability that the extractor on level 𝑖 − 1 succeeds. If the extractor of the parent node
succeeds, then its output contains a valid statement/witness x(𝑖)𝑗 ,w

(𝑖)
𝑗 and therefore, 𝒜 𝑗

𝑖
outputs a valid folded witness by construction. Thus, the probability of this event is ex-
actly 𝑝′. □

Solving the recurrence relation gives that Pr[𝑊𝑘−1] ≥ 𝑝′𝑘−2 Pr[𝑊1]. Now, Pr[𝑊1] is the
probability that the extractor associated with the root node outputs valid witnesses as-
suming that𝒜 outputs a valid witness for the folded node. This means that, conditioned
on𝒜 outputting a valid witness, Pr[𝑊𝑘−1] ≥ 𝑝′𝑘−1.

Finally, consider the probability that ℰ succeeds conditioned on 𝒜 outputting a valid
witness. This events happens if all extractors in level 𝑘 − 1 succeed. So, the probability
that ℰ fails is bounded by 𝑚′

𝑚 (1 − 𝑝′𝑘) = 𝑚𝑘−1(1 − 𝑝′𝑘−1). Noting that

1 − 𝑝′𝑘−1 = (1 − 𝑝′)(𝑝′𝑘−2 + · · · + 1) ≤ (1 − 𝑝′)(𝑘 − 1)
weget for any adversaries𝒜 ,𝒜′ against knowledge soundness of SFS and FS respectively,
Adv𝒜(𝜅, 𝑚, 𝑘) ≤ (𝑘 − 1)𝑚𝑘−1Adv𝒜′(𝜅, 𝑚) □

We next show that the construction satisfies the stronger notion of selective verification. The
proof is essentially identical; the only difference is that we simply focuses on a small part of
the implicit tree which we construct using the elements contained in the proof for a single
statement.

172

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

Theorem 35. Let FS be an 𝑀-aggregation scheme for a language family ℒ with corresponding
relations ℛ Then, for any constant 𝑚 ≤ 𝑀 and any polynomial 𝑓 , construction SFS of Fig. 6.2
satisfies selective verification.

Proof. Assume (w.l.o.g.) that 𝑓 (𝑚) = 𝑚′ = 𝑚𝑘 where 𝑚 is an a priori fixed constant. Selec-
tive completeness follows directly by straightforward calculations and the completeness
of SFS. Efficiency follows by the fact that a proof of inclusion of statement 𝑖 contains
𝒪(log𝑚′) statements of ℒpar and proofs of correct folding, which are polynomially re-
lated to the size of the statement. We next show that SFS satisfies selective knowledge
soundness.

To simplify matters, we define the notion of the derived ℓ -th subtree defined by the proof,
a statement xℓ and the folded statement. Concretely, we consider the subtree defined by
the proof for the ℓ -th statement 𝜋ℓ : it contains the part of the statement tree defined from
the root to the leaf node (xℓ ,⊥) along with all the sibling nodes in the path.

Now let (ℓ , xℓ ,𝜋, x) and the derived subtree defined by these values. As in the previous
proof, we construct recursively a series of extractors, one for each 𝑖 with 1 ≤ 𝑖 ≤ 𝑘 − 1.

Base case: For 𝑖 = 1, ℰ(1)1 runs ℰ(0) to get the witness w(1)1 for the root. It then queries the
derived subtree and constructs the adversary𝒜(1)1 that outputs x(2)1 , . . . , x(2)𝑚 , x(1) ,w(1) ,𝜋(1).
Finally, it invokes ℰ′ with access to𝒜(1)1 to get corresponding witnesses w(2)1 , . . . ,w(2)𝑚 .

Recursive case: Let x(1) , . . . , x(𝑘) be the statements contained in path from the root of the
derived subtree to the leaf labeled with (x𝑖 ,⊥) and let (x(𝑖+1)

1 , ·), . . ., (x(𝑖+1)
𝑚 , ·) be the labels

of the children of x(𝑖). Now, we construct𝒜(𝑖) that has hardcoded the derived subtree and
works as follows:

• It invokes the extractor ℰ(𝑖−1) corresponding to the parent statement x(𝑖−1) to get a
witness w(𝑖) for statement x(𝑖) (and all its siblings which it ignores).

• It then constructs an adversary 𝒜(𝑖) that outputs x(𝑖+1)
1 , . . . , x(𝑖+1)

𝑚 , x(𝑖) ,w(𝑖) and the
proof 𝜋(𝑖).

• Finally, it invokes the extractor ℰ′ of FS with access to𝒜(𝑖) and gets witnesses w(𝑖+1)
1 ,

. . . ,w(𝑖+1)
𝑚 which it then outputs.

We then construct the extractor ℰ. ℰ queries𝒜 to get ℓ , xℓ , x,𝜋 and awitness for the folded
statement w(1)1 . Then it simply queries ℰ(𝑘−1) and outputs the witness corresponding to xℓ .

Working as in the proof of Thm. 34, we can deduce that the running time of the extractor
is

𝑡ℰ(𝜅, 𝑚, 𝑘) = 𝑡SelVrfy(𝜅, 𝑘, 𝑚) + (𝑘 − 1) · 𝑡(𝜅, 𝑚) + |w|

173

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

where 𝑡SelVrfy(𝑘, 𝑚) is the time of SFS.SelVrfy algorithm and 𝑡(𝜅, 𝑚) is the time of the ex-
tractor ℰ′ of FS.

Finally, for the success probability of the extractor, it is enough to note that the proof ver-
ifies if the final folded statement computed during verification is the same as the claimed
statement by the adversary 𝒜, which means it is accompanied by a valid witness in the
case of successful adversaries. Working as in the proof of Thm. 34 we get that for any ad-
versaries𝒜 ,𝒜′ against selective knowledge soundness of SFS and knowledge soundness
of FS respectively,

Adv𝒜(𝜅, 𝑚, 𝑘) ≤ (𝑘 − 1)Adv𝒜′(𝜅, 𝑚)
□

6.3 Folding Schemes from Interactive Public Coin Protocols

In this section we present folding schemes for various relations. We present four constructions:

1. a folding scheme for the language of inner product relations of committed values under
algebraic commitments,

2. a folding scheme for the language of openings of vector commitments,

3. a folding scheme for the language of openings of extractable polynomial commitments
and

4. a folding scheme for the relaxed R1CS relation of NOVA [KST21].

All the constructions are derived through simple public coin protocols. Thus, they can be
compiled to non-interactive folding schemes through the Fiat-Shamir transform. Selective
verifiability can then be achieved by means of the generic construction of Fig. 6.2. In all
constructions we assume a base folding scheme for folding 𝑚 = 2 statements. We start by
introducing some notation for groups.

6.3.1 Folding Scheme for Inner Product Relation of Committed Values

Consider a language family ℒ containing languages parametrized by a group key gk and two
Pedersen commitment keys [r], [s] ∈ G𝑛, each consisting of 𝑛 uniformly distributed group
elements.

The NP language is defined as

ℒgk,[r],[s] =
{([𝑐], [𝑑], 𝑧) | ∃a, b s.t. [𝑐] = [r]⊤a, [𝑑] = [s]⊤b and 𝑧 = a⊤b

}
174

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

Figure 6.3 Public coin protocol for folding statements for the language of inner product of
openings of committed values. We include a final stepwhere the prover sends thewitness
of the folded statement to the verifier.

for 𝑖 ∈ {1, 2}: x𝑖 = ([𝑐𝑖], [𝑑𝑖], 𝑧𝑖), w𝑖 = (a𝑖 , b𝑖)
𝒫 : q𝑖 = (x𝑖 ,w𝑖) 𝒱 : x𝑖

𝑧1,2 = a1
⊤b2 , 𝑧2,1 = a2

⊤b1
𝑧1,2 , 𝑧2,1

𝜒 𝜒← F
a = a1 + 𝜒a2 [𝑐] = [𝑐1] + 𝜒[𝑐2]
b = b1 + 𝜒2b2

a, b [𝑑] = [𝑑1] + 𝜒2[𝑑2]
𝑧 = 𝑧1 + 𝜒 · 𝑧2,1 + 𝜒2 · 𝑧1,2 + 𝜒3𝑧2

(([𝑐], [𝑑], 𝑧), a, b) ∈? ℛgk,[r],[s]

and let ℛgk,[r],[s] be the corresponding NP relation. We show how to fold two statements of
this form to a single statement. Let

q1 = (([𝑐1], [𝑑1], 𝑧1), (a1 , b1)) , q2 = (([𝑐2], [𝑑2], 𝑧2), (a2 , b2)) ,
such that (supposedly) q1 , q2 ∈ ℛgk,[r],[s]. The strategy to fold the statements is as follows:

• The prover 𝒫 first sends values 𝑧1,2 = a1
⊤b2 and 𝑧2,1 = a2

⊤b1.

• The verifier 𝒱 then sends a random challenge 𝜒 ∈ F
• The prover and verifier construct the new statement ([𝑐], [𝑑], 𝑧) as

[𝑐] = [𝑐1] + 𝜒[𝑐2], [𝑑] = [𝑑1] + 𝜒2[𝑑2], 𝑧 = 𝑧1 + 𝜒𝑧2,1 + 𝜒2𝑧1,2 + 𝜒3𝑧2

and the prover sets the new witness to a = a1 + 𝜒a2 , b = b1 + 𝜒2b2.

It is easy to assert that the new witness pair satisfies the NP relation as long as the two
initials statement do. Intuitively, this satisfies soundness since (1) a prover being able to open
a commitment of the form [𝛼] + 𝜒[𝛽] for a random 𝜒 should in fact know openings for the
combined commitments since they are defined before the challenge 𝜒 and (2) the “mixed”
inner products 𝑧1,2 , 𝑧2,1 are defined before the challenge 𝜒 is known, which means that one
could treat the resulting relation as a polynomial relation on a formal variable 𝑋, that is
a(𝑋)⊤b(𝑋) = 𝑧(𝑋). If this relation holds formally, then it is to assert that both a1

⊤b1 = 𝑧1
and a2

⊤b2 = 𝑧2 hold. The challenge essentially is a randomized test on this relation.

We define the protocol formally in Fig. 6.3. Note that contrary to what happens in the folding
technique, we use u Next, we show that (1) an honest prover always outputs a valid statement-
witness pair, and (2) given an adversary that outputs a valid witness after the execution of

175

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

the protocol for the folded statement, we can extract witnesses for the two statements x1 , x2.
Note, that if this holds, the Fiat-Shamir compiled construction directly yields a non-interactive
folding scheme, where the proof is simply the pair of elements 𝑧1,2 , 𝑧2,1 sent from the prover
to the verifier.
Theorem 36. Consider construction of fig. 6.3. Then the following conditions hold:

1. The resulting statement-witness pair defined after the end of the protocol satisfies the NP
relation ℛgk,[r],[s] and

2. The protocol satisfies special-soundness, namely, given four accepting executions for distinct
verifier challenges, we can extract witnesses w1 ,w2 for the initial statements x1 , x2 except
with negligible probability.

Proof.

1. We simply need to verify the NP relation is satisfied. First, we check that the open-
ings of the commitments are valid. We have

[r]⊤(a1 + 𝜒a2) = [r]⊤a1 + 𝜒[r]⊤a2 = [𝑐1] + 𝜒[𝑐2] = [𝑐]
[s]⊤(b1 + 𝜒2b2) = [s]⊤b1 + 𝜒2[s]⊤b2 = [𝑑1] + 𝜒2[𝑑2] = [𝑑]

Finally, we assert that the inner product is correct. We have

a⊤b = (a1 + 𝜒a2)⊤(b1 + 𝜒2b2)
= a1

⊤b1 + 𝜒2a1
⊤b2 + 𝜒a2

⊤b1 + 𝜒3a2
⊤b2

= 𝑧1 + 𝜒2𝑧1,2 + 𝜒𝑧2,1 + 𝜒3𝑧2 = 𝑧

2. Assume we have four accepting executions of the interactive protocol with different
challenges 𝜒1 , 𝜒2 , 𝜒3 , 𝜒4. First we show that using any two transcripts we can ex-
tract valid openings for the commitments [𝑐1], [𝑑1], [𝑐2], [𝑑2]. We first focus on the
commitments [𝑐1], [𝑐2]. After successful execution with challenges 𝜒𝑖 , 𝜒𝑗 , we have
two openings a(𝑖), a(𝑗) for commitments [𝑐(𝑖)] = [𝑐1] + 𝜒𝑖[𝑐2] and [𝑐(𝑗)] = [𝑐1] + 𝜒𝑗[𝑐2]
respectively. This means that

[𝑐1] + 𝜒𝑖[𝑐2] = [r]⊤a(𝑖) , [𝑐1] + 𝜒𝑗[𝑐2] = [r]⊤a(𝑗)

Denote with X𝑖, 𝑗 the matrix whose first row is (1, 𝜒𝑖) and second row is (1, 𝜒𝑗) and
note that this matrix is invertible for 𝜒𝑖 ≠ 𝜒𝑗 . We can write the above system of
equations as

X𝑖 , 𝑗

[
𝑐1
𝑐2

]
= [r]⊤

(
a(𝑖)
a(𝑗)

)
Denoting X−1

𝑖 , 𝑗 the inverse of X𝑖 , 𝑗 we get[
𝑐1
𝑐2

]
= [r]⊤X−1

𝑖 , 𝑗

(
a(𝑖)
a(𝑗)

)
176

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

so we indeed extract openings for the two commitments. Furthermore, note for any
pair 𝑖 ≠ 𝑗 with 𝑖 , 𝑗 ∈ {1, 2, 3, 4} we extract the same openings a1 , a2 except with
negligible probability, otherwise we break the binding property of the commitment
scheme. Similarly, we extract openings b1 , b2 for the commitments [𝑑1], [𝑑2]. Now,
since we have an accepting witness for each of the four executions the following
equations hold:

a(𝑖)⊤b(𝑖) = 𝑧1 + 𝜒2
𝑖 𝑧1,2 + 𝜒𝑖𝑧2,1 + 𝜒3

𝑖 𝑧2 , 1 ≤ 𝑖 ≤ 4

Assuming that no breaking of the binding property has happened, each opening a(𝑖)
can be written as a(𝑖) = a1 + 𝜒𝑖a2 for the same a1 , a2 and similarly for the [𝑑1], [𝑑2]
commitments. We can now rewrite the above equations as

(a1 + 𝜒𝑖a2)⊤(b1 + 𝜒2
𝑖 b2) = 𝑧1 + 𝜒2

𝑖 𝑧1,2 + 𝜒𝑖𝑧2,1 + 𝜒3
𝑖 𝑧2

or equivalently

a1
⊤b1 + 𝜒𝑖a2

⊤b1 + 𝜒2
𝑖 a1
⊤b2 + 𝜒3

𝑖
⊤a2
⊤b2 = 𝑧1 + 𝜒2

𝑖 𝑧1,2 + 𝜒𝑖𝑧2,1 + 𝜒3
𝑖 𝑧2

Viewing this as a polynomial equation of degree 3 and noting it is satisfied for 4
distinct points, it should hold as a polynomial identity, therefore a1

⊤b1 = 𝑧1 and
a2
⊤b2 = 𝑧2.

□

Efficiency. The work of the prover consists of a linear number of field operations, specifically,
combining the two witness with the random challenge of the verifier 𝜒 and computing the
cross term inner products 𝑧1,2 and 𝑧2,1. The verifier performs a constant number of operations
in the field and group to derive the new statement. In the context of non-interactive folding
with selective verification, folding 𝑀 statements of size 𝑛 consists of 𝒪(𝑀𝑛) field operations
and 𝒪(𝑀) hash computations for the prover and 𝒪(log𝑀) field and group operations and
hash computations for the verifier.

6.3.2 Folding Scheme for Vector Commitment Openings

A vector commitment [CF13] allows a prover to succinctly commit to a vector a ∈ F𝑛 and
later verifiably open a subset 𝑆 ⊆ {1, . . . , 𝑛} of the positions of the committed vector. We
construct a folding scheme for the language of openings of algebraic vector commitments.
Recall that an algebraic commitment is any “Pedersen” type commitment scheme, that is, the
commitment key is sampled as r←𝒟1,𝑛, where 𝒟1,𝑛 is a matrix distribution and committing
to a is done by computing [r]⊤1 a¹. In what follows, we denote with a|𝑆 the subvector of a
defined by the set 𝑆 ⊆ {1, . . . , 𝑛} More concretely, we consider the language

ℒgk,[r] =
{([𝑐], 𝑆, a𝑆) | ∃a s.t. [𝑐] = [r]⊤a and a|𝑆 = a𝑆

}
¹The key does not need necessarily to be a vector. For more involved applications, a matrix R is sampled

and the commitment is computed as R⊤a.

177

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

Our strategy for constructing a folding scheme for this relation is to reduce it to an inner
product. That is, we first show that the language above can be interactively reduced to an
inner product statement, and then we can use the folding scheme of the previous section for
inner product relations.

The reduction is quite simple. We first note that the validity of an 𝑆-subopening can be
expressed as |𝑆 | inner products: for each 𝑠 ∈ 𝑆 we need to assert that a⊤e𝑛,𝑠 = 𝑎𝑠 , where
e𝑛,𝑠 is the 𝑛-dimensional vector which is 0 everywhere except the 𝑠-th condition. These |𝑆 |
statements can be compressed to a single inner product by taking a random linear combination
of the equations. That is, consider a vector b that is uniformly distributed conditioned on 𝑏𝑖 = 0
for all 𝑖 ∈ {1, . . . , 𝑛} \ 𝑆. Then, with overwhelming probability the relation a⊤b = a⊤𝑆 b holds.
To reduce communication, we do not use a uniform b, we use a pseudorandom one: the
monomials of a random element 𝜒 ∈ F. This is a well-known technique that reduces many
inner products to a single “twisted” instance, as in [BCC+16].

We can now express the above as an instance of an inner product relation. Let [𝑐] be some
committed value and a𝑆 a claimed opening at positions 𝑆. The verifier reduces this claim to
an inner product by doing the following:

• It samples 𝜒← F and constructs the vector b = (1, 𝜒, . . . , 𝜒 |𝑆 |−1)
• It commits to the vector b as [𝑑] = [r|𝑆]⊤b. Note that this corresponds to a commitment

w.r.t. [r] which is 0 everywhere outside 𝑆.

• It computes the inner product 𝑧 = a⊤𝑆 b.

• It sends 𝜒 to the prover and asks to prove the IP statement ([𝑐], [𝑑], 𝑧)

A simple application of the Schwartz-Zippel lemma is enough to assert that ([𝑐], [𝑑], 𝑧) is a
valid inner product statement if and only if the 𝑆 opening of [𝑐] is a𝑆 (except with negligible
probability).

We present the interactive reduction of VC opening to inner product in Fig. 6.4. After applying
the reduction we can simply fold the reduced statement with other IP statements.

Theorem 37. Consider construction of Fig. 6.4.

1. The resulting statement-witness pair defined after the end of the protocol satisfies the inner
product NP relation ℛgk,[r],[r], and

2. The protocol satisfies special-soundness, namely, given |𝑆 | valid statement-witness pairs af-
ter distinct verifier challenges, we can extract a valid witness w for the initial statement x
except with negligible probability.

Proof.

178

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

Figure 6.4 Public coin protocol for interactively reducing a VC opening claim to an inner
product claim.

x = ([𝑐], 𝑆, a𝑆), w = a

𝒫 : q = (x,w) 𝒱 : x𝑖

𝜒 𝜒← F

b = (1, 𝜒, . . . , 𝜒 |𝑆 |−1) b = (1, 𝜒, . . . , 𝜒 |𝑆 |−1)
[𝑑] = [r|𝑆]⊤b [𝑑] = [r|𝑆]⊤b
𝑧 = a⊤𝑆 b 𝑧 = a⊤𝑆 b

x′ = ([𝑐], [𝑑], 𝑧), w′ = a, b

1. Let b′ be the vector that agrees with 𝑏 on 𝑆 and is zero everywhere in {1, . . . , 𝑛} \ 𝑆
and note this corresponds to an opening of [𝑑]. We have

𝑧 = a⊤b′ =
𝑛∑
𝑖=1

𝑎𝑖𝑏′𝑖 =
∑
𝑠∈𝑆

𝑎𝑠𝑏′𝑠 =
∑
𝑠∈𝑆

𝑎𝑠𝑏𝑠 = a⊤𝑆 b

2. After each execution, we get a valid opening a for [𝑐]. All these openings should be
the same except with negligible probability, otherwise we break the binding prop-
erty of the vector commitment. We next show that a𝑆 = a|𝑆. Since each inner product
is valid, the following relation is satisfied for each execution a|𝑆b = a𝑆b.
Equivalently, we have (a|𝑆 − a𝑆)⊤b = 0. Next, note that, since each b encodes mono-
mials of degree bounded by |𝑆 | − 1 derived from some field element 𝜒, this corre-
sponds to |𝑆 | polynomial relations of the form 𝑝(𝜒) = 0. Since 𝑝’s degree is bounded
by |𝑆 | − 1 and it has |𝑆 | roots, it should be the case that 𝑝 is identically zero, which
means that (a|𝑆 = a𝑆).

□

The only efficiency overhead for both the prover and the verifier is to compute the values [𝑑], 𝑧
each needing |𝑆 | field and group operations.

6.3.3 Folding Scheme for Polynomial Commitment Openings

A polynomial commitment scheme [KZG10] is a primitive that allows a prover to succinctly
commit to a polynomial and later open it at an arbitrary point. Our next construction allows
to fold statements about openings of polynomial commitments. We assume a linearly ho-
momorphic polynomial commitment, namely if [𝑐], [𝑑] are commitments to 𝑝(𝑋), 𝑞(𝑋), then
𝛼[𝑐] + 𝛽[𝑑] is a commitment to 𝛼𝑝(𝑋) + 𝛽𝑞(𝑋). The language is parametrized by parameters
and a key for a polynomial commitment scheme par, ck. We assume that all polynomials are

179

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

Figure 6.5 Public coin protocol for folding statements for the openings of polynomial com-
mitments. We include a final step where the prover sends the witness of the folded state-
ment to the verifier.

𝑖 ∈ {1, 2}: 𝑥𝑖 = [𝑐𝑖], 𝑤𝑖 = 𝑝𝑖(𝑋)
𝒫 : q = (x,w) 𝒱 : x𝑖

𝜒 𝜒← F

𝑝(𝑋) = 𝑝1(𝑋) + 𝜒𝑝2(𝑋) 𝑝(𝑋) [𝑐] = [𝑐1] + 𝜒[𝑐2]
(x𝑐, 𝑝(𝑋)) ∈? ℛpar,ck

of a fixed degree 𝑑; generalizing this to achieve any degree 𝑑 ≤ 𝐷 for some bound 𝐷 and
hiding commitments is also possible. Formally, the language is defined as

ℒpar,ck =
{[𝑐] | ∃𝑝(𝑋) s.t. 𝑝(𝑋) ∈ F[𝑋] of degree d and [𝑐] = Compar,ck(𝑝(𝑋))

}
.

The construction simply consists of combining the two polynomial commitments with a random
challenge from the verifier. We present the construction in Fig. 6.5. We present a theorem
capturing the properties of the protocol next.

Theorem 38. Consider construction of Fig. 6.5. Then the following conditions hold:

1. The resulting statement-witness pair defined after the end of the protocol satisfies the NP
relation ℛpar,ck, and

2. The protocol satisfies special-soundness, namely, given two accepting executions for distinct
verifier challenges, we can extract witnesses 𝑤1 , 𝑤2 for the initial statements 𝑥1 , 𝑥2 except
with negligible probability.

Proof.

1. This follows directly by the homomorphic properties of the commitment scheme.

2. For special soundness, it is enough to note that given two valid transcripts for dif-
ferent challenges, we can solve a simple system of polynomial equations 𝑝(1)(𝑋) =
𝑝1(𝑋)+𝜒1𝑝2(𝑋), 𝑝(2)(𝑋) = 𝑝1(𝑋)+𝜒2𝑝2(𝑋) to extract polynomials 𝑝1(𝑋), 𝑝2(𝑋) that
are valid openings for [𝑐1], [𝑐2], respectively.

□

Efficiency. In this construction, the proof of correct folding is trivial: the challenge 𝜒 fully
defines the aggregated statement and witness pair. The work of the prover and verifier consists

180

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

of a linear number of field operations and a constant number of group operations, respectively.
In the context of non-interactive folding with selective verification, aggregating 𝑀 statements
of size 𝑛 is dominated by 𝒪(𝑀𝑑) field operations and 𝒪(𝑀) hash computations for the prover
and 𝒪(log𝑀) group operations and hash computations for the verifier.

6.3.4 Folding Scheme for Committed Relaxed R1CS

NOVA [KST21] introduces a novel variant of the R1CS characterization of NP, called relaxed
R1CS which is amenable to folding, that is, there exists an efficient folding scheme for this
language. The protocol they present is a public coin one and can be compiled to a non-
interactive one by using the Fiat-Shamir heuristic.

The limitation of the constructions stems from the fact that the two initial instances have to
describe the same computation. Nevertheless, the resulting folding scheme is very efficient
both for the prover and the verifier. Thus, compiling this to a non-interactive aggregation
scheme with selective verification allows a prover to efficiently convince multiple verifiers about
different statements w.r.t. the same computation.

We describe the language of committed relaxed R1CS. The language is parametrized by

1. parameters for the relaxed R1CS instance (A,B,C, 𝑚, 𝑛, ℓ) where 𝑚, 𝑛, ℓ ∈ F and
A,B,C ∈ F𝑚×𝑚, each having at most 𝑛 non-zero entries,

2. parameters for a Pedersen commitment key² over the same field, namely a description
of a group gk and two commitment keys [r] ∈ G𝑚 [s] ∈ G𝑚−ℓ+1.

We collectively denote with par, [r], [s] this sets of parameters. The language of committed
relaxed R1CS parametrized by these values is

ℒpar,[r],[s] =
{[𝑒],𝑢, [𝑤], x | ∃e,w s.t. (1) [𝑒] = [r]⊤e, [𝑤] = [s]⊤w,
(2) Az ◦ Bz = 𝑢 · Cz + e, (3) z = (w, x, 1)}

Essentially, this corresponds to the usual R1CS relation, but it has additional elements that
allow folding instances.

We state the fact that there exists a non-interactive folding scheme for this language. We
refer the reader to [KST21, Sec. 5] for the underlying details.

Theorem 39. There exists a non-interactive 2-folding scheme for the family of languages of com-
mitted relaxed R1CS. The prover’s computation is dominated by 𝒪(𝑚) field operations and the
verifier’s work is dominated by 𝒪(ℓ) field operations and a constant number of group and field
operations. Both prover and verifier also need to perform a hash function computation.

²We omit the requirement for a hiding key in our description.

181

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

This corresponds to [KST21, Construction 3] and is obtained by applying the Fiat-Shamir
transform to the interactive folding scheme [KST21, Construction 2].

Efficiency. There is a minimal overhead for the prover, who -apart from a linear number of
hash computation- does little more work than reading the witnesses. The verifier performs a
logarithmic number of hash computations and group operations. It additionally needs to do
𝑛 log𝑀 field operations, where 𝑀 is the total number of folded statements. The latter part
can be reduced to log𝑀 group operations if one considers a variation of the language where
the part of the statement x is succinctly committed as well.

6.4 Applications

As we have discussed, selective verification can improve efficiency on applications with a single
server serving multiple clients in a trustless way. It allows to amortize the server’s costs
across multiple queries from the clients, while only incuring a small overhead for the clients.
We demonstrate this by considering the case of delegation of computation as a service and
verifiable database delegation.

Delegation of computation as a service. For delegation of computation in a trustless setting,
one would normally resort to some sort of SNARK, especially in cases where interaction is
prohibitive. As we mentioned in the introduction, though, the proving costs for SNARKs are
generally high. We demonstrate how to use folding schemes to mitigate this issue.

We will consider two cases: (1) each party needs to perform arbitrary computations and (2)
all parties are interested in doing the same computation on different inputs. Especially in the
latter case, we can greatly reduce the costs of the prover by means of folding schemes with
selective verification.

Many SNARKs are constructed by separately considering some information theoretic part
and a cryptographic primitive. Two main approaches are known: using interactive oracle
proofs [BCS16] and vector commitments [CF13] and using algebraic [CHM+20] or polyno-
mial [CFF+20] holographic proofs and polynomial commitments [KZG10]. In the former, the
prover and verifier, after interacting, reduce the validity of the claim to the opening of some
commitments to vectors at some random indices, while in the latter the validity of the state-
ment is reduced to opening some polynomial commitments in random values. The interaction
can be removed by means of the Fiat-Shamir transform.

In either case, we can use the folding constructions of the previous section to amortize the cost
of the latter step: inner product arguments for the former and polynomial commitment for
the latter³. Specifically, with each computational query, the prover performs the information

³In fact, both inner product arguments and polynomial commitment folding can be used for either ap-
proach but the presentation becomes more natural by using one approach for each.

182

CHAPTER 6. FOLDING SCHEMES WITH SELECTIVE VERIFICATION

theoretic part of the SNARK and refrains for the time from opening the vector or polynomial
commitment. After multiple interactions with different verifiers, it folds all the (vector or
polynomial) commitments to a single one, and opens the latter at some random indices or
points respectively. The randomness can be derived by hashing the folded statement. Each
individual verifier can now assert the folding proof as well as some evidence sent by the server
asserting the inclusion of her statement.

If all parties are interested in performing the same computation on different inputs, one could
use the NOVA approach. Specifically, the computation is encoded as a relaxed R1CS statement
and the various instances of this statement are aggregated using the NOVA folding scheme
compiled to support selective verification. As we discussed, a folding of this type of statements
is very efficient. This is in construst to the previous case, since the SNARK information
theoretic part (which needs to be in fact executed for each query to the proving server) is in
fact costly for the prover. Considering the case of a single computation allows us to completely
remove the need for this part and directly fold statements, which is not much costlier than
simply reading the statements.

Verifiable Databases. In a verifiable database, a client outsources the storage of a database
to a server in a trustless way. Specifically, the client only holds a small digest of the database
and can query/modify the database in a verfiable way by means of communication with the
prover. Such a construction can be built using vector commitments. The databases is encoded
as a vector and the client only needs to hold the (constant size) commitment to the database.
A query to the database can be done verifiable by asking the server to open the commitment to
the desired locations. Furthermore, if the underlying commitment scheme is homomorphic (for
example the Pedersen commitment), updating the database is efficient since one just needs to
homomorphically update the digest by removing the old values and adding the new ones.

Consider the case where a server outsources storage to various clients. Naively implementing
this would require that it sends an (expensive to produce) proof of opening for every query of
every client to its database. Using a folding scheme with selective verification (for example
the inner product language construction) can naturally minimize this cost.

In particular, each query to the server is answered without any verifiability guarantee; the
clients simply get their responses and perform their updates acting in good faith. However,
periodically, the server folds all the claims from all the clients using the folding scheme and
publish a single statement and individualized proofs for each client to convince about the
validity of all statements of one period. Due to the efficiency of the folding scheme, the
amortized cost for this is much less than giving an individual proof for each claim.

183

Bibliography

[ABLZ17] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal
Zajac. “A Subversion-Resistant SNARK”. In: ASIACRYPT 2017, Part III.
Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10626. LNCS. Springer,
Heidelberg, Dec. 2017, pp. 3–33. DOI: 10.1007/978-3-319-70700-6_1.

[ACC+16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huĳia Lin, and Wei-
Kai Lin. “Delegating RAM Computations with Adaptive Soundness and
Privacy”. In: TCC 2016-B, Part II. Ed. by Martin Hirt and Adam D. Smith.
Vol. 9986. LNCS. Springer, Heidelberg, Oct. 2016, pp. 3–30. DOI: 10.1007/
978-3-662-53644-5_1.

[AFG+16] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and
Miyako Ohkubo. “Structure-Preserving Signatures and Commitments to
Group Elements”. In: Journal of Cryptology 29.2 (Apr. 2016), pp. 363–421. DOI:
10.1007/s00145-014-9196-7.

[AS92] Sanjeev Arora and Shmuel Safra. “Probabilistic Checking of Proofs; A New
Characterization of NP”. In: 33rd FOCS. IEEE Computer Society Press, Oct.
1992, pp. 2–13. DOI: 10.1109/SFCS.1992.267824.

[Bab85] László Babai. “Trading Group Theory for Randomness”. In: 17th ACM
STOC. ACM Press, May 1985, pp. 421–429. DOI: 10.1145/22145.22192.

[BB11] DanBoneh andXavier Boyen. “Efficient Selective Identity-Based Encryption
Without RandomOracles”. In: Journal of Cryptology 24.4 (Oct. 2011), pp. 659–
693. DOI: 10.1007/s00145-010-9078-6.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. “Bulletproofs: Short Proofs for Confidential
Transactions and More”. In: 2018 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 2018, pp. 315–334. DOI:
10.1109/SP.2018.00020.

[BBF19] Dan Boneh, Benedikt Bünz, and Ben Fisch. “Batching Techniques for
Accumulators with Applications to IOPs and Stateless Blockchains”. In:
CRYPTO 2019, Part I. Ed. by Alexandra Boldyreva and Daniele Micciancio.

185

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-662-53644-5_1
https://doi.org/10.1007/978-3-662-53644-5_1
https://doi.org/10.1007/s00145-014-9196-7
https://doi.org/10.1109/SFCS.1992.267824
https://doi.org/10.1145/22145.22192
https://doi.org/10.1007/s00145-010-9078-6
https://doi.org/10.1109/SP.2018.00020

BIBLIOGRAPHY

Vol. 11692. LNCS. Springer, Heidelberg, Aug. 2019, pp. 561–586. DOI:
10.1007/978-3-030-26948-7_20.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, andMichael Riabzev. “Scalable
Zero Knowledge with No Trusted Setup”. In: CRYPTO 2019, Part III. Ed. by
Alexandra Boldyreva and Daniele Micciancio. Vol. 11694. LNCS. Springer,
Heidelberg, Aug. 2019, pp. 701–732. DOI: 10.1007/978-3-030-26954-8_23.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group Signatures”.
In: CRYPTO 2004. Ed. byMatthew Franklin. Vol. 3152. LNCS. Springer, Hei-
delberg, Aug. 2004, pp. 41–55. DOI: 10.1007/978-3-540-28628-8_3.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. “Efficient Zero-Knowledge Arguments for Arithmetic
Circuits in the Discrete Log Setting”. In: EUROCRYPT 2016, Part II. Ed. by
Marc Fischlin and Jean-Sébastien Coron. Vol. 9666. LNCS. Springer,
Heidelberg, May 2016, pp. 327–357. DOI: 10.1007/978-3-662-49896-5_12.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “Recursive
composition and bootstrapping for SNARKS and proof-carrying data”. In:
45th ACM STOC. Ed. by Dan Boneh, Tim Roughgarden, and Joan Feigen-
baum. ACM Press, June 2013, pp. 111–120. DOI: 10.1145/2488608.2488623.

[BCG+14a] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized Anonymous
Payments from Bitcoin. Cryptology ePrint Archive, Report 2014/349. https:
//eprint.iacr.org/2014/349. 2014.

[BCG+14b] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. “Zerocash: Decentralized Anony-
mous Payments from Bitcoin”. In: 2014 IEEE Symposium on Security and Pri-
vacy. IEEE Computer Society Press, May 2014, pp. 459–474. DOI: 10.1109/
SP.2014.36.

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Argu-
ments with Sublinear Verification from Tensor Codes”. In: TCC 2020, Part II.
Ed. by Rafael Pass and Krzysztof Pietrzak. Vol. 12551. LNCS. Springer, Hei-
delberg, Nov. 2020, pp. 19–46. DOI: 10.1007/978-3-030-64378-2_2.

[BCHO22] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù.
“Gemini: Elastic SNARKs for Diverse Environments”. In: IACR Cryptol.
ePrint Arch. (2022), p. 420. URL: https://eprint.iacr.org/2022/420.

[BCL+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and
Nicholas Spooner. “Proof-Carrying Data Without Succinct Arguments”.
In: CRYPTO 2021, Part I. Ed. by Tal Malkin and Chris Peikert. Vol. 12825.
LNCS. Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 681–710. DOI:
10.1007/978-3-030-84242-0_24.

[BCL20] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. “Zero-Knowledge Suc-
cinct Arguments with a Linear-Time Prover”. In: IACR Cryptol. ePrint Arch.
(2020), p. 1527. URL: https://eprint.iacr.org/2020/1527.

186

https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1145/2488608.2488623
https://eprint.iacr.org/2014/349
https://eprint.iacr.org/2014/349
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-030-64378-2_2
https://eprint.iacr.org/2022/420
https://doi.org/10.1007/978-3-030-84242-0_24
https://eprint.iacr.org/2020/1527

BIBLIOGRAPHY

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas
Spooner. “Recursive Proof Composition from Accumulation Schemes”.
In: TCC 2020, Part II. Ed. by Rafael Pass and Krzysztof Pietrzak.
Vol. 12551. LNCS. Springer, Heidelberg, Nov. 2020, pp. 1–18. DOI:
10.1007/978-3-030-64378-2_1.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Or-
acle Proofs”. In: TCC 2016-B, Part II. Ed. byMartin Hirt and AdamD. Smith.
Vol. 9986. LNCS. Springer, Heidelberg, Oct. 2016, pp. 31–60. DOI: 10.1007/
978-3-662-53644-5_2.

[BDFG21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. “Halo Infinite:
Proof-Carrying Data from Additive Polynomial Commitments”. In:
CRYPTO 2021, Part I. Ed. by Tal Malkin and Chris Peikert. Vol. 12825.
LNCS. Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 649–680. DOI:
10.1007/978-3-030-84242-0_23.

[BDH+19] Michael Backes, Nico Döttling, Lucjan Hanzlik, Kamil Kluczniak, and Jonas
Schneider. “Ring Signatures: Logarithmic-Size, No Setup - from Standard
Assumptions”. In: EUROCRYPT 2019, Part III. Ed. by Yuval Ishai and Vin-
cent Rĳmen. Vol. 11478. LNCS. Springer, Heidelberg, May 2019, pp. 281–
311. DOI: 10.1007/978-3-030-17659-4_10.

[BFL20] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. “A Classification
of Computational Assumptions in the Algebraic Group Model”. In:
CRYPTO 2020, Part II. Ed. by Daniele Micciancio and Thomas Ristenpart.
Vol. 12171. LNCS. Springer, Heidelberg, Aug. 2020, pp. 121–151. DOI:
10.1007/978-3-030-56880-1_5.

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. “NIZKs with
an Untrusted CRS: Security in the Face of Parameter Subversion”. In:
ASIACRYPT 2016, Part II. Ed. by Jung Hee Cheon and Tsuyoshi Takagi.
Vol. 10032. LNCS. Springer, Heidelberg, Dec. 2016, pp. 777–804. DOI:
10.1007/978-3-662-53890-6_26.

[BFS20] Benedikt Bünz, Ben Fisch, andAlan Szepieniec. “Transparent SNARKs from
DARKCompilers”. In: EUROCRYPT 2020, Part I. Ed. by Anne Canteaut and
Yuval Ishai. Vol. 12105. LNCS. Springer, Heidelberg, May 2020, pp. 677–706.
DOI: 10.1007/978-3-030-45721-1_24.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive Proof Composi-
tion without a Trusted Setup. Cryptology ePrint Archive, Report 2019/1021.
https://eprint.iacr.org/2019/1021. 2019.

[BGL+15] Nir Bitansky, Sanjam Garg, Huĳia Lin, Rafael Pass, and Sidharth Telang.
Succinct Randomized Encodings and their Applications. Cryptology ePrint
Archive, Report 2015/356. https://eprint.iacr.org/2015/356. 2015.

187

https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-030-17659-4_10
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-030-45721-1_24
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2015/356

BIBLIOGRAPHY

[BGV11] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. “Verifiable Del-
egation of Computation over Large Datasets”. In: CRYPTO 2011. Ed. by
Phillip Rogaway. Vol. 6841. LNCS. Springer, Heidelberg, Aug. 2011, pp. 111–
131. DOI: 10.1007/978-3-642-22792-9_7.

[BHK17] Zvika Brakerski, JustinHolmgren, and Yael TaumanKalai. “Non-interactive
delegation and batchNP verification from standard computational assump-
tions”. In: 49th ACM STOC. Ed. by Hamed Hatami, Pierre McKenzie, and
Valerie King. ACM Press, June 2017, pp. 474–482. DOI: 10.1145/3055399.
3055497.

[BKK+18] Saikrishna Badrinarayanan, Yael Tauman Kalai, Dakshita Khurana,
Amit Sahai, and Daniel Wichs. “Succinct delegation for low-space non-
deterministic computation”. In: 50th ACM STOC. Ed. by Ilias Diakonikolas,
David Kempe, and Monika Henzinger. ACM Press, June 2018, pp. 709–721.
DOI: 10.1145/3188745.3188924.

[BL96] DanBoneh andRichard J. Lipton. “Algorithms for Black-Box Fields and their
Application to Cryptography (Extended Abstract)”. In: CRYPTO’96. Ed. by
Neal Koblitz. Vol. 1109. LNCS. Springer, Heidelberg, Aug. 1996, pp. 283–
297. DOI: 10.1007/3-540-68697-5_22.

[BMM+21] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and
Psi Vesely. “Proofs for Inner Pairing Products and Applications”. In:
Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference
on the Theory and Application of Cryptology and Information Security,
Singapore, December 6-10, 2021, Proceedings, Part III. Ed. by Mehdi Tibouchi
and Huaxiong Wang. Vol. 13092. Lecture Notes in Computer Science.
Springer, 2021, pp. 65–97. DOI: 10.1007/978- 3- 030- 92078- 4_3. URL:
https://doi.org/10.1007/978-3-030-92078-4%5C_3.

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical:
A Paradigm for Designing Efficient Protocols”. In: ACM CCS 93.
Ed. by Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S.
Sandhu, and Victoria Ashby. ACM Press, Nov. 1993, pp. 62–73. DOI:
10.1145/168588.168596.

[CCC+16] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-
Kai Lin, and Hong-Sheng Zhou. “Cryptography for Parallel RAM from In-
distinguishability Obfuscation”. In: ITCS 2016. Ed. by Madhu Sudan. Jan.
2016, pp. 179–190. DOI: 10.1145/2840728.2840769.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Roth-
blum, Ron D. Rothblum, and Daniel Wichs. “Fiat-Shamir: from practice to
theory”. In: 51st ACMSTOC. Ed. byMoses Charikar and Edith Cohen. ACM
Press, June 2019, pp. 1082–1090. DOI: 10.1145/3313276.3316380.

188

https://doi.org/10.1007/978-3-642-22792-9_7
https://doi.org/10.1145/3055399.3055497
https://doi.org/10.1145/3055399.3055497
https://doi.org/10.1145/3188745.3188924
https://doi.org/10.1007/3-540-68697-5_22
https://doi.org/10.1007/978-3-030-92078-4_3
https://doi.org/10.1007/978-3-030-92078-4%5C_3
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/2840728.2840769
https://doi.org/10.1145/3313276.3316380

BIBLIOGRAPHY

[CF13] Dario Catalano and Dario Fiore. “Vector Commitments and Their
Applications”. In: PKC 2013. Ed. by Kaoru Kurosawa and Goichiro
Hanaoka. Vol. 7778. LNCS. Springer, Heidelberg, Feb. 2013, pp. 55–72. DOI:
10.1007/978-3-642-36362-7_5.

[CFF+20] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and
Hadrián Rodríguez. Lunar: a Toolbox for More Efficient Universal and
Updatable zkSNARKs and Commit-and-Prove Extensions. Cryptology ePrint
Archive, Report 2020/1069. https://eprint.iacr.org/2020/1069. 2020.

[CFG+20] Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and
LucaNizzardo. “IncrementallyAggregatable Vector Commitments andAp-
plications to Verifiable Decentralized Storage”. In:ASIACRYPT 2020, Part II.
Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12492. LNCS. Springer,
Heidelberg, Dec. 2020, pp. 3–35. DOI: 10.1007/978-3-030-64834-3_1.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. “The Random Oracle
Methodology, Revisited”. In: J. ACM 51.4 (July 2004), pp. 557–594.
ISSN: 0004-5411. DOI: 10 . 1145 / 1008731 . 1008734. URL: https :
//doi.org/10.1145/1008731.1008734.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan.
“Succinct Garbling and Indistinguishability Obfuscation for RAM Pro-
grams”. In: 47th ACMSTOC. Ed. by RoccoA. Servedio and Ronitt Rubinfeld.
ACM Press, June 2015, pp. 429–437. DOI: 10.1145/2746539.2746621.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas P. Ward. “Marlin: Preprocessing zkSNARKs with
Universal and Updatable SRS”. In: EUROCRYPT 2020, Part I. Ed. by
Anne Canteaut and Yuval Ishai. Vol. 12105. LNCS. Springer, Heidelberg,
May 2020, pp. 738–768. DOI: 10.1007/978-3-030-45721-1_26.

[CPZ18] Alexander Chepurnoy, Charalampos Papamanthou, and Yupeng Zhang.
Edrax: A Cryptocurrency with Stateless Transaction Validation. Cryptology
ePrint Archive, Report 2018/968. https://eprint.iacr.org/2018/968.
2018.

[CS02] Ronald Cramer and Victor Shoup. “Universal Hash Proofs and a Paradigm
for Adaptive Chosen Ciphertext Secure Public-Key Encryption”. In: EURO-
CRYPT 2002. Ed. by Lars R. Knudsen. Vol. 2332. LNCS. Springer, Heidel-
berg, Apr. 2002, pp. 45–64. DOI: 10.1007/3-540-46035-7_4.

[Dam92] Ivan Damgård. “Towards Practical Public Key Systems Secure Against Cho-
sen Ciphertext Attacks”. In: CRYPTO’91. Ed. by Joan Feigenbaum. Vol. 576.
LNCS. Springer, Heidelberg, Aug. 1992, pp. 445–456. DOI: 10.1007/3-540-
46766-1_36.

189

https://doi.org/10.1007/978-3-642-36362-7_5
https://eprint.iacr.org/2020/1069
https://doi.org/10.1007/978-3-030-64834-3_1
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1145/2746539.2746621
https://doi.org/10.1007/978-3-030-45721-1_26
https://eprint.iacr.org/2018/968
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36

BIBLIOGRAPHY

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss.
“Square Span Programs with Applications to Succinct NIZK Arguments”.
In: ASIACRYPT 2014, Part I. Ed. by Palash Sarkar and Tetsu Iwata.
Vol. 8873. LNCS. Springer, Heidelberg, Dec. 2014, pp. 532–550. DOI:
10.1007/978-3-662-45611-8_28.

[DGP+19] Vanesa Daza, Alonso González, Zaira Pindado, Carla Ràfols, and Javier
Silva. “Shorter Quadratic QA-NIZK Proofs”. In: PKC 2019, Part I. Ed. by
Dongdai Lin and Kazue Sako. Vol. 11442. LNCS. Springer, Heidelberg,
Apr. 2019, pp. 314–343. DOI: 10.1007/978-3-030-17253-4_11.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. “An
Algebraic Framework for Diffie-Hellman Assumptions”. In: CRYPTO 2013,
Part II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043. LNCS. Springer,
Heidelberg, Aug. 2013, pp. 129–147. DOI: 10.1007/978-3-642-40084-1_8.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. “TheAlgebraic GroupModel
and its Applications”. In: CRYPTO 2018, Part II. Ed. by Hovav Shacham and
Alexandra Boldyreva. Vol. 10992. LNCS. Springer, Heidelberg, Aug. 2018,
pp. 33–62. DOI: 10.1007/978-3-319-96881-0_2.

[FLPS20] Prastudy Fauzi, Helger Lipmaa, Zaira Pindado, and Janno Siim. Somewhere
Statistically Binding Commitment Schemes with Applications. Cryptology ePrint
Archive, Report 2020/652. https://eprint.iacr.org/2020/652. 2020.

[FS87] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to
Identification and Signature Problems”. In: CRYPTO’86. Ed. by Andrew M.
Odlyzko. Vol. 263. LNCS. Springer, Heidelberg, Aug. 1987, pp. 186–194. DOI:
10.1007/3-540-47721-7_12.

[Fuc18] Georg Fuchsbauer. “Subversion-Zero-Knowledge SNARKs”. In: PKC 2018,
Part I. Ed. by Michel Abdalla and Ricardo Dahab. Vol. 10769. LNCS.
Springer, Heidelberg, Mar. 2018, pp. 315–347. DOI: 10.1007/978-3-319-
76578-5_11.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
“Quadratic Span Programs and Succinct NIZKs without PCPs”. In:
EUROCRYPT 2013. Ed. by Thomas Johansson and Phong Q. Nguyen.
Vol. 7881. LNCS. Springer, Heidelberg, May 2013, pp. 626–645. DOI:
10.1007/978-3-642-38348-9_37.

[GHR15] Alonso González, Alejandro Hevia, and Carla Ràfols. “QA-NIZK
Arguments in Asymmetric Groups: New Tools and New Constructions”.
In: ASIACRYPT 2015, Part I. Ed. by Tetsu Iwata and Jung Hee Cheon.
Vol. 9452. LNCS. Springer, Heidelberg, Nov. 2015, pp. 605–629. DOI:
10.1007/978-3-662-48797-6_25.

[GK03] Shafi Goldwasser and Yael Tauman Kalai. “On the (In)security of the Fiat-
Shamir Paradigm”. In: 44th FOCS. IEEE Computer Society Press, Oct. 2003,
pp. 102–115. DOI: 10.1109/SFCS.2003.1238185.

190

https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-030-17253-4_11
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2020/652
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-662-48797-6_25
https://doi.org/10.1109/SFCS.2003.1238185

BIBLIOGRAPHY

[GK16] Shafi Goldwasser and Yael Tauman Kalai. “Cryptographic Assumptions:
A Position Paper”. In: TCC 2016-A, Part I. Ed. by Eyal Kushilevitz and Tal
Malkin. Vol. 9562. LNCS. Springer, Heidelberg, Jan. 2016, pp. 505–522. DOI:
10.1007/978-3-662-49096-9_21.

[GKM+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. “Updatable and Universal Common Reference Strings with Applica-
tions to zk-SNARKs”. In:CRYPTO 2018, Part III. Ed. byHovav Shacham and
Alexandra Boldyreva. Vol. 10993. LNCS. Springer, Heidelberg, Aug. 2018,
pp. 698–728. DOI: 10.1007/978-3-319-96878-0_24.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating
computation: interactive proofs for muggles”. In: 40th ACM STOC. Ed. by
Richard E. Ladner and Cynthia Dwork. ACM Press, May 2008, pp. 113–122.
DOI: 10.1145/1374376.1374396.

[GM17] Jens Groth and Mary Maller. “Snarky Signatures: Minimal Signatures
of Knowledge from Simulation-Extractable SNARKs”. In: CRYPTO 2017,
Part II. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10402. LNCS.
Springer, Heidelberg, Aug. 2017, pp. 581–612. DOI: 10.1007/978-3-319-
63715-0_20.

[GMN21] Nicolas Gailly, Mary Maller, and Anca Nitulescu. SnarkPack: Practical
SNARK Aggregation. Cryptology ePrint Archive, Report 2021/529.
https://eprint.iacr.org/2021/529. 2021.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge
Complexity of Interactive Proof-Systems (Extended Abstract)”. In: 17th
ACMSTOC. ACMPress,May 1985, pp. 291–304. DOI: 10.1145/22145.22178.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Prove all NP-
Statements in Zero-Knowledge, and a Methodology of Cryptographic Pro-
tocol Design”. In: CRYPTO’86. Ed. by AndrewM. Odlyzko. Vol. 263. LNCS.
Springer, Heidelberg, Aug. 1987, pp. 171–185. DOI: 10.1007/3-540-47721-
7_11.

[Gol11] O. Goldreich. Stories about Shimon Even (by Oded). www.wisdom.weizmann.
ac.il/~oded/even-stories.html. Accessed: 2021-07-03. 2011.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Perfect Non-interactive
Zero Knowledge for NP”. In: EUROCRYPT 2006. Ed. by Serge Vaudenay.
Vol. 4004. LNCS. Springer, Heidelberg, May 2006, pp. 339–358. DOI:
10.1007/11761679_21.

[GR16] Alonso González and Carla Ràfols. “New Techniques for Non-interactive
Shuffle andRangeArguments”. In:ACNS 16. Ed. byMarkManulis, Ahmad-
Reza Sadeghi, and Steve Schneider. Vol. 9696. LNCS. Springer, Heidelberg,
June 2016, pp. 427–444. DOI: 10.1007/978-3-319-39555-5_23.

191

https://doi.org/10.1007/978-3-662-49096-9_21
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://eprint.iacr.org/2021/529
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/3-540-47721-7_11
www.wisdom.weizmann.ac.il/~oded/even-stories.html
www.wisdom.weizmann.ac.il/~oded/even-stories.html
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-319-39555-5_23

BIBLIOGRAPHY

[GR19] Alonso González and Carla Ràfols. “Shorter Pairing-Based Arguments Un-
der Standard Assumptions”. In: ASIACRYPT 2019, Part III. Ed. by Steven D.
Galbraith and Shiho Moriai. Vol. 11923. LNCS. Springer, Heidelberg, Dec.
2019, pp. 728–757. DOI: 10.1007/978-3-030-34618-8_25.

[Gro10] Jens Groth. “Short Pairing-Based Non-interactive Zero-Knowledge
Arguments”. In: ASIACRYPT 2010. Ed. by Masayuki Abe. Vol. 6477. LNCS.
Springer, Heidelberg, Dec. 2010, pp. 321–340. DOI: 10.1007/978-3-642-
17373-8_19.

[Gro16] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In:
EUROCRYPT 2016, Part II. Ed. by Marc Fischlin and Jean-Sébastien Coron.
Vol. 9666. LNCS. Springer, Heidelberg, May 2016, pp. 305–326. DOI: 10 .
1007/978-3-662-49896-5_11.

[GRWZ20] SergeyGorbunov, Leonid Reyzin, HoeteckWee, and Zhenfei Zhang. “Point-
proofs: Aggregating Proofs for Multiple Vector Commitments”. In: ACM
CCS 2020. Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vi-
gna. ACMPress, Nov. 2020, pp. 2007–2023. DOI: 10.1145/3372297.3417244.

[GS08] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof Systems for Bi-
linear Groups”. In: EUROCRYPT 2008. Ed. by Nigel P. Smart. Vol. 4965.
LNCS. Springer, Heidelberg, Apr. 2008, pp. 415–432. DOI: 10.1007/978-
3-540-78967-3_24.

[GW11] Craig Gentry and Daniel Wichs. “Separating succinct non-interactive argu-
ments from all falsifiable assumptions”. In: 43rd ACM STOC. Ed. by Lance
Fortnow and Salil P. Vadhan. ACM Press, June 2011, pp. 99–108. DOI: 10.
1145/1993636.1993651.

[GWC19] Ariel Gabizon, Zachary J.Williamson, andOana Ciobotaru. PLONK: Permu-
tations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowl-
edge. Cryptology ePrint Archive, Report 2019/953. https://eprint.iacr.
org/2019/953. 2019.

[HW15] Pavel Hubacek and Daniel Wichs. “On the Communication Complexity of
Secure Function Evaluation with Long Output”. In: ITCS 2015. Ed. by Tim
Roughgarden. Jan. 2015, pp. 163–172. DOI: 10.1145/2688073.2688105.

[JKKZ20] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Zhang.
SNARGs for Bounded Depth Computations and PPAD Hardness from
Sub-Exponential LWE. Cryptology ePrint Archive, Report 2020/980.
https://eprint.iacr.org/2020/980. 2020.

[JR13] Charanjit S. Jutla and Arnab Roy. “Shorter Quasi-Adaptive NIZK Proofs
for Linear Subspaces”. In: ASIACRYPT 2013, Part I. Ed. by Kazue Sako and
Palash Sarkar. Vol. 8269. LNCS. Springer, Heidelberg, Dec. 2013, pp. 1–20.
DOI: 10.1007/978-3-642-42033-7_1.

192

https://doi.org/10.1007/978-3-030-34618-8_25
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1145/3372297.3417244
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1145/1993636.1993651
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1145/2688073.2688105
https://eprint.iacr.org/2020/980
https://doi.org/10.1007/978-3-642-42033-7_1

BIBLIOGRAPHY

[JR14] Charanjit S. Jutla and Arnab Roy. “Switching Lemma for Bilinear Tests and
Constant-Size NIZK Proofs for Linear Subspaces”. In:CRYPTO 2014, Part II.
Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8617. LNCS. Springer, Hei-
delberg, Aug. 2014, pp. 295–312. DOI: 10.1007/978-3-662-44381-1_17.

[Kil92] Joe Kilian. “A Note on Efficient Zero-Knowledge Proofs and Arguments
(Extended Abstract)”. In: 24th ACM STOC. ACM Press, May 1992, pp. 723–
732. DOI: 10.1145/129712.129782.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. “Indistin-
guishability Obfuscation for Turing Machines with Unbounded Memory”.
In: 47th ACM STOC. Ed. by Rocco A. Servedio and Ronitt Rubinfeld. ACM
Press, June 2015, pp. 419–428. DOI: 10.1145/2746539.2746614.

[KNYY19] Shuichi Katsumata, RyoNishimaki, Shota Yamada, and Takashi Yamakawa.
“Exploring Constructions of Compact NIZKs from Various Assumptions”.
In: CRYPTO 2019, Part III. Ed. by Alexandra Boldyreva and Daniele Mic-
ciancio. Vol. 11694. LNCS. Springer, Heidelberg, Aug. 2019, pp. 639–669.
DOI: 10.1007/978-3-030-26954-8_21.

[KNYY20] Shuichi Katsumata, RyoNishimaki, Shota Yamada, and Takashi Yamakawa.
“Compact NIZKs from Standard Assumptions on Bilinear Maps”. In: EU-
ROCRYPT 2020, Part III. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12107.
LNCS. Springer, Heidelberg, May 2020, pp. 379–409. DOI: 10.1007/978-3-
030-45727-3_13.

[KP16] Yael Tauman Kalai and Omer Paneth. “Delegating RAM Computations”.
In: TCC 2016-B, Part II. Ed. by Martin Hirt and Adam D. Smith. Vol. 9986.
LNCS. Springer, Heidelberg, Oct. 2016, pp. 91–118. DOI: 10.1007/978-3-
662-53644-5_4.

[KPY18] Yael Kalai, Omer Paneth, and Lisa Yang. On Publicly Verifiable Delegation
From Standard Assumptions. Cryptology ePrint Archive, Report 2018/776.
https://eprint.iacr.org/2018/776. 2018.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. “How to delegate compu-
tations publicly”. In: 51st ACM STOC. Ed. byMoses Charikar and Edith Co-
hen. ACMPress, June 2019, pp. 1115–1124. DOI: 10.1145/3313276.3316411.

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. “Delegation for
bounded space”. In: 45th ACM STOC. Ed. by Dan Boneh, Tim Rough-
garden, and Joan Feigenbaum. ACM Press, June 2013, pp. 565–574. DOI:
10.1145/2488608.2488679.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. “How to delegate
computations: the power of no-signaling proofs”. In: 46th ACM STOC.
Ed. by David B. Shmoys. ACM Press, May 2014, pp. 485–494. DOI:
10.1145/2591796.2591809.

[KST21] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla.Nova: Recursive Zero-
Knowledge Arguments from Folding Schemes. Cryptology ePrint Archive, Re-
port 2021/370. https://eprint.iacr.org/2021/370. 2021.

193

https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/2746539.2746614
https://doi.org/10.1007/978-3-030-26954-8_21
https://doi.org/10.1007/978-3-030-45727-3_13
https://doi.org/10.1007/978-3-030-45727-3_13
https://doi.org/10.1007/978-3-662-53644-5_4
https://doi.org/10.1007/978-3-662-53644-5_4
https://eprint.iacr.org/2018/776
https://doi.org/10.1145/3313276.3316411
https://doi.org/10.1145/2488608.2488679
https://doi.org/10.1145/2591796.2591809
https://eprint.iacr.org/2021/370

BIBLIOGRAPHY

[Kus18] John Kuszmaul. Verkle trees. 2018. URL: https://math.mit.edu/research/
highschool/primes/materials/2018/Kuszmaul.pdf.

[KW15] Eike Kiltz and Hoeteck Wee. “Quasi-Adaptive NIZK for Linear Subspaces
Revisited”. In:EUROCRYPT 2015, Part II. Ed. by ElisabethOswald andMarc
Fischlin. Vol. 9057. LNCS. Springer, Heidelberg, Apr. 2015, pp. 101–128. DOI:
10.1007/978-3-662-46803-6_4.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. “Constant-
Size Commitments to Polynomials and Their Applications”. In:
ASIACRYPT 2010. Ed. by Masayuki Abe. Vol. 6477. LNCS. Springer,
Heidelberg, Dec. 2010, pp. 177–194. DOI: 10.1007/978-3-642-17373-8_11.

[LM19] Russell W. F. Lai and Giulio Malavolta. “Subvector Commitments with Ap-
plication to SuccinctArguments”. In:CRYPTO2019, Part I. Ed. byAlexandra
Boldyreva and Daniele Micciancio. Vol. 11692. LNCS. Springer, Heidelberg,
Aug. 2019, pp. 530–560. DOI: 10.1007/978-3-030-26948-7_19.

[LPJY13] Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. “Linearly
Homomorphic Structure-Preserving Signatures and Their Applications”.
In: CRYPTO 2013, Part II. Ed. by Ran Canetti and Juan A. Garay.
Vol. 8043. LNCS. Springer, Heidelberg, Aug. 2013, pp. 289–307. DOI:
10.1007/978-3-642-40084-1_17.

[LRY16] Benoît Libert, Somindu C. Ramanna, and Moti Yung. “Functional
Commitment Schemes: From Polynomial Commitments to Pairing-Based
Accumulators from Simple Assumptions”. In: ICALP 2016. Ed. by Ioannis
Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi. Vol. 55. LIPIcs. Schloss Dagstuhl, July 2016, 30:1–30:14. DOI:
10.4230/LIPIcs.ICALP.2016.30.

[LY10] Benoît Libert andMoti Yung. “Concise Mercurial Vector Commitments and
Independent Zero-Knowledge Sets with Short Proofs”. In: TCC 2010. Ed.
by Daniele Micciancio. Vol. 5978. LNCS. Springer, Heidelberg, Feb. 2010,
pp. 499–517. DOI: 10.1007/978-3-642-11799-2_30.

[MBKM19] MaryMaller, Sean Bowe,Markulf Kohlweiss, and SarahMeiklejohn. “Sonic:
Zero-Knowledge SNARKs fromLinear-Size Universal andUpdatable Struc-
tured Reference Strings”. In: ACM CCS 2019. Ed. by Lorenzo Cavallaro, Jo-
hannes Kinder, XiaoFeng Wang, and Jonathan Katz. ACM Press, Nov. 2019,
pp. 2111–2128. DOI: 10.1145/3319535.3339817.

[Mic94] Silvio Micali. “CS Proofs (Extended Abstracts)”. In: 35th FOCS. IEEE Com-
puter Society Press, Nov. 1994, pp. 436–453. DOI: 10 . 1109 / SFCS . 1994 .
365746.

[MRV16] Paz Morillo, Carla Ràfols, and Jorge Luis Villar. “The Kernel Matrix Diffie-
Hellman Assumption”. In:ASIACRYPT 2016, Part I. Ed. by Jung Hee Cheon
and Tsuyoshi Takagi. Vol. 10031. LNCS. Springer, Heidelberg, Dec. 2016,
pp. 729–758. DOI: 10.1007/978-3-662-53887-6_27.

194

https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-642-40084-1_17
https://doi.org/10.4230/LIPIcs.ICALP.2016.30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1007/978-3-662-53887-6_27

BIBLIOGRAPHY

[Nao03] Moni Naor. “On Cryptographic Assumptions and Challenges (Invited
Talk)”. In: CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729. LNCS. Springer,
Heidelberg, Aug. 2003, pp. 96–109. DOI: 10.1007/978-3-540-45146-4_6.

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs.
“New Realizations of Somewhere Statistically Binding Hashing and
Positional Accumulators”. In: ASIACRYPT 2015, Part I. Ed. by Tetsu Iwata
and Jung Hee Cheon. Vol. 9452. LNCS. Springer, Heidelberg, Nov. 2015,
pp. 121–145. DOI: 10.1007/978-3-662-48797-6_6.

[PR17] Omer Paneth and Guy N. Rothblum. “On Zero-Testable Homomorphic En-
cryption and Publicly Verifiable Non-interactive Arguments”. In: TCC 2017,
Part II. Ed. by Yael Kalai and Leonid Reyzin. Vol. 10678. LNCS. Springer,
Heidelberg, Nov. 2017, pp. 283–315. DOI: 10.1007/978-3-319-70503-3_9.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. “Signatures
of Correct Computation”. In: TCC 2013. Ed. by Amit Sahai. Vol. 7785. LNCS.
Springer, Heidelberg, Mar. 2013, pp. 222–242. DOI: 10.1007/978-3-642-
36594-2_13.

[RR21] Noga Ron-Zewi and Ron Rothblum. “Proving as Fast as Computing: Suc-
cinct Arguments with Constant Prover Overhead”. In: Electron. Colloquium
Comput. Complex. (2021), p. 180. URL: https://eccc.weizmann.ac.il/
report/2021/180.

[RRR16] Omer Reingold, GuyN. Rothblum, and RonD. Rothblum. “Constant-round
interactive proofs for delegating computation”. In: 48th ACM STOC. Ed. by
Daniel Wichs and Yishay Mansour. ACM Press, June 2016, pp. 49–62. DOI:
10.1145/2897518.2897652.

[RS20] Carla Ràfols and Javier Silva. QA-NIZK Arguments of Same Opening for Bi-
lateral Commitments. Cryptology ePrint Archive, Report 2020/569. https:
//eprint.iacr.org/2020/569. 2020.

[RZ21] Carla Ràfols and Arantxa Zapico. “An Algebraic Framework for Universal
and Updatable SNARKs”. In: CRYPTO 2021, Part I. Ed. by Tal Malkin and
Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer, Heidelberg, Aug.
2021, pp. 774–804. DOI: 10.1007/978-3-030-84242-0_27.

[SCP+22] Shravan Srinivasan, Alexander Chepurnoy, Charalampos Papamanthou,
Alin Tomescu, and Yupeng Zhang. “Hyperproofs: Aggregating and
Maintaining Proofs in Vector Commitments”. In: 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX Association, Aug.
2022. URL: https://www.usenix.org/conference/usenixsecurity22/
presentation/srinivasan.

[Sho97] Victor Shoup. “Lower Bounds for Discrete Logarithms and Related Prob-
lems”. In: EUROCRYPT’97. Ed. by Walter Fumy. Vol. 1233. LNCS. Springer,
Heidelberg, May 1997, pp. 256–266. DOI: 10.1007/3-540-69053-0_18.

195

https://doi.org/10.1007/978-3-540-45146-4_6
https://doi.org/10.1007/978-3-662-48797-6_6
https://doi.org/10.1007/978-3-319-70503-3_9
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-642-36594-2_13
https://eccc.weizmann.ac.il/report/2021/180
https://eccc.weizmann.ac.il/report/2021/180
https://doi.org/10.1145/2897518.2897652
https://eprint.iacr.org/2020/569
https://eprint.iacr.org/2020/569
https://doi.org/10.1007/978-3-030-84242-0_27
https://www.usenix.org/conference/usenixsecurity22/presentation/srinivasan
https://www.usenix.org/conference/usenixsecurity22/presentation/srinivasan
https://doi.org/10.1007/3-540-69053-0_18

BIBLIOGRAPHY

[Val08] Paul Valiant. “Incrementally Verifiable Computation or Proofs of
Knowledge Imply Time/Space Efficiency”. In: TCC 2008. Ed. by Ran
Canetti. Vol. 4948. LNCS. Springer, Heidelberg, Mar. 2008, pp. 1–18. DOI:
10.1007/978-3-540-78524-8_1.

[Vil12] Jorge Luis Villar. “Optimal Reductions of Some Decisional Problems to the
Rank Problem”. In: ASIACRYPT 2012. Ed. by Xiaoyun Wang and Kazue
Sako. Vol. 7658. LNCS. Springer, Heidelberg, Dec. 2012, pp. 80–97. DOI: 10.
1007/978-3-642-34961-4_7.

[WTs+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Wal-
fish. “Doubly-Efficient zkSNARKs Without Trusted Setup”. In: 2018 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May 2018,
pp. 926–943. DOI: 10.1109/SP.2018.00060.

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papaman-
thou, and Dawn Song. “Libra: Succinct Zero-Knowledge Proofs with
Optimal Prover Computation”. In: CRYPTO 2019, Part III. Ed. by Alexandra
Boldyreva and Daniele Micciancio. Vol. 11694. LNCS. Springer, Heidelberg,
Aug. 2019, pp. 733–764. DOI: 10.1007/978-3-030-26954-8_24.

[YLF+21] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew
Miller. hbACSS: How to Robustly Share Many Secrets. Cryptology ePrint
Archive, Report 2021/159. https://eprint.iacr.org/2021/159. 2021.

[ZCa21] ZCash. Parameter Generation for the ZCash cryptocurrency. https://z.cash/
technology/paramgen/. Accessed: 2021-07-9. 2021.

[ZGK+17a] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopou-
los, and Charalampos Papamanthou. A Zero-Knowledge Version
of vSQL. Cryptology ePrint Archive, Report 2017/1146. https :
//eprint.iacr.org/2017/1146. 2017.

[ZGK+17b] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos,
and Charalampos Papamanthou. “vSQL: Verifying Arbitrary SQL Queries
over Dynamic Outsourced Databases”. In: 2017 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 2017, pp. 863–880. DOI:
10.1109/SP.2017.43.

196

https://doi.org/10.1007/978-3-540-78524-8_1
https://doi.org/10.1007/978-3-642-34961-4_7
https://doi.org/10.1007/978-3-642-34961-4_7
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-030-26954-8_24
https://eprint.iacr.org/2021/159
https://z.cash/technology/paramgen/
https://z.cash/technology/paramgen/
https://eprint.iacr.org/2017/1146
https://eprint.iacr.org/2017/1146
https://doi.org/10.1109/SP.2017.43

List of Publications

Conference Proceedings

[DHS+22] Vanesa Daza, Abida Haque, Alessandra Scafuro, Alexandros Zacharakis,
and Arantxa Zapico. “Mutual Accountability Layer: Accountable
Anonymity Within Accountable Trust”. In: Cyber Security, Cryptology, and
Machine Learning - 6th International Symposium, CSCML 2022, Be’er Sheva,
Israel, June 30 - July 1, 2022, Proceedings. Ed. by Shlomi Dolev, Jonathan Katz,
and Amnon Meisels. Vol. 13301. Lecture Notes in Computer Science.
Springer, 2022, pp. 318–336. DOI: 10.1007/978-3-031-07689-3_24. URL:
https://doi.org/10.1007/978-3-031-07689-3%5C_24.

[DRZ20] Vanesa Daza, Carla Ràfols, and Alexandros Zacharakis. “Updateable Inner
Product Argument with Logarithmic Verifier and Applications”. In: Public-
Key Cryptography - PKC 2020 - 23rd IACR International Conference on Practice
and Theory of Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020, Pro-
ceedings, Part I. Ed. by Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas. Vol. 12110. Lecture Notes in Computer Science. Springer,
2020, pp. 527–557. DOI: 10.1007/978-3-030-45374-9_18. URL: https:
//doi.org/10.1007/978-3-030-45374-9%5C_18.

[GZ21] Alonso González and Alexandros Zacharakis. “Fully-Succinct Publicly Ver-
ifiable Delegation from Constant-Size Assumptions”. In: Theory of Cryptog-
raphy - 19th International Conference, TCC 2021, Raleigh, NC, USA, Novem-
ber 8-11, 2021, Proceedings, Part I. Ed. by Kobbi Nissim and Brent Waters.
Vol. 13042. Lecture Notes in Computer Science. Springer, 2021, pp. 529–557.
DOI: 10.1007/978-3-030-90459-3_18. URL: https://doi.org/10.1007/
978-3-030-90459-3%5C_18.

197

https://doi.org/10.1007/978-3-031-07689-3_24
https://doi.org/10.1007/978-3-031-07689-3%5C_24
https://doi.org/10.1007/978-3-030-45374-9_18
https://doi.org/10.1007/978-3-030-45374-9%5C_18
https://doi.org/10.1007/978-3-030-45374-9%5C_18
https://doi.org/10.1007/978-3-030-90459-3_18
https://doi.org/10.1007/978-3-030-90459-3%5C_18
https://doi.org/10.1007/978-3-030-90459-3%5C_18

Pre-prints

[CNR+22] Matteo Campanelli, Anca Nitulescu, Carla Ràfols, Alexandros Zacharakis,
and Arantxa Zapico. “Linear-map Vector Commitments and their Practical
Applications”. In: IACR Cryptol. ePrint Arch. (2022), p. 705. URL: https://
eprint.iacr.org/2022/705.

198

https://eprint.iacr.org/2022/705
https://eprint.iacr.org/2022/705

	Introduction
	Revolutionizing the Notion of a Mathematical Proof
	Succinct Non-Interactive Proofs
	Efficiency Requirements
	Computational and Trust Assumptions
	Classifying Complexity Assumptions
	Trust Assumptions

	Our Results

	Preliminaries
	Notation
	Polynomials and the Lagrange Basis
	Cryptographic Assumptions
	Commitment Schemes
	Non-Interactive (Zero Knowledge) Arguments of Knowledge.
	Interactive (Zero Knowledge) Arguments of Knowledge.
	Polynomial Commitment Schemes
	Delegation of Computation

	Updateable IPA with Logarithmic Verifier
	Distribution Parameterized Pedersen Commitment Scheme
	Updateable Commitment Schemes
	Construction

	Improved Inner Product Argument
	Polynomial Commitment Scheme
	Non-Hiding Polynomial Relation Argument
	Polynomial Commitment Construction

	Delegation from Constant-Size Assumptions
	Technical Overview
	No-Signaling Somewhere Statistically Binding Commitments
	Pairing-based Quasi-Arguments
	From our Quasi-Arguments to Delegation.
	NIZK, SNARKs and Compact NIZK

	Knowledge Transfer Arguments
	No-Signaling Somewhere Statistically Binding Commitment Schemes
	Algebraic SSB Commitments.
	Somewhere Statistically Binding Commitments with Oblivious Trapdoor Generation

	Quasi-Arguments with Pre-processing
	Arguments with No-signaling extraction and Oblivious SRS Generation
	Succinct Pairing Based Quasi-Arguments

	Delegation Construction
	Applications
	NIZK arguments for NP.

	Deferred Proofs
	Security Analysis of QABLin
	Security Analysis of QASum
	Security Analysis of QAHad

	Tree Based Vector Commitments
	Vector Commitment Definitions
	Algebraic Vector Commitments

	Vector Commitments in the Discrete Logarithm Setting
	Proof of Knowledge of Opening from the Folding Technique.
	Generic Construciton of Vector Commitments from PoK of Opening

	Memory-Time Tradeoffs for Vector Commitments
	PST Polynomial Commitment
	High Level Overview of the Construction

	Folding Schemes with Selective Verification
	Folding Schemes
	Folding Schemes with Selective Verification
	Construction of a Folding Scheme with Selective Verification

	Folding Schemes from Interactive Public Coin Protocols
	Folding Scheme for Inner Product Relation of Committed Values
	Folding Scheme for Vector Commitment Openings
	Folding Scheme for Polynomial Commitment Openings
	Folding Scheme for Committed Relaxed R1CS

	Applications

