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Abstract

This thesis consists of three chapters which relate to problems of statistical inference in

(potentially) non-regular semiparametric models. Chapter 1 considers hypothesis testing

problems in semiparametric models which may be non-regular for certain values of a

potentially infinite dimensional nuisance parameter. I establish that, under mild regularity

conditions, tests based on the efficient score function provide locally uniform size control

and enjoy minimax optimality properties. Two examples are studied in some detail. Chapter

2 applies the methodology of Chapter 1 to the case of (static) linear simultaneous equations

models. Existing inference methods that exploit non-Gaussianity to identify structural

parameters in such models suffer from size distortions when the structural shocks are

close to Gaussian. The approach proposed herein yields valid inference for the structural

parameters of interest regardless of the distance to Gaussianity. An application to production

function estimation is presented. Chapter 3 develops a semi-parametric approach to conduct

inference in non-Gaussian SVAR models robust to “weak” non-Gaussianity based on the

ideas in Chapter 1. The method exploits non-Gaussianity when it is present, while yielding

correct coverage regardless of the distribution of the structural errors. Two empirical

applications are presented.

Resumen

Esta tesis consta de tres capı́tulos que se relacionan con problemas de inferencia

estadı́stica en modelos semi-paramétricos potencialmente irregulares. El capı́tulo 1

considera problemas con hipótesis en modelos semi-paramétricos que podrı́an ser

irregulares para ciertos valores de un parámetro de molestia de dimensional infinita.

Establezco que, en condiciones de regularidad leve, pruebas basadas en la función de

puntuación eficiente proporcionan un control de tamaño localmente uniforme y son óptimas

en un sentido minimax. Dos ejemplos se estudian en detalle. El capı́tulo 2 aplica la

metodologı́a del Capı́tulo 1 al caso de modelos de ecuaciones lineales simultáneas estáticas.

Los métodos de inferencia existentes que explotan la no Gaussianidad para identificar

parámetros estructurales en tales modelos sufren distorsiones de tamaño cuando los choques

estructurales están cerca de Gaussian. El enfoque propuesto en este capı́tulo produce una

inferencia válida para los parámetros estructurales de interés, independientemente de su

distancia a la Gaussianidad. Se presenta una aplicación para la estimación de funciones de

producción. El capı́tulo 3 desarrolla un enfoque semi-paramétrico para realizar inferencias

en modelos SVAR no Gaussianos robustos a la no Gaussianidad “débil” basada en las

ideas del Capı́tulo 1. El método explota la no Gaussianidad cuando está presente y a su

vez que brinda una cobertura correcta independientemente de la distribución de errores

estructurales. Se presentan dos aplicaciones empı́ricas.
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Preface

This thesis consists of three interdependent chapters.

The first chapter, titled “Robust and efficient inference for non-regular semiparametric

models”, considers hypothesis testing problems in semiparametric models which may be

non-regular for certain values of a potentially infinite dimensional nuisance parameter.

I establish that, under mild regularity conditions, tests based on the efficient score

function provide locally uniform size control and enjoy minimax optimality properties. This

approach is applicable to situations with (i) identification failures, (ii) boundary problems

and (iii) distortions induced by the use of regularised estimators. Full details are worked out

for two examples: a single index model where the link function may be relatively flat and a

linear simultaneous equations model that is (weakly) identified by non-Gaussian errors. In

practice the tests are easy to implement and rely on χ2 critical values.

The second chapter, titled “Robust inference for non-Gaussian linear simultaneous

equations models”, expands on the potential weak identification problem in non-Gaussian

(static) simultaneous equations models. In particular, all parameters in linear simultaneous

equations models can be identified (up to permutation and scale) if the underlying structural

shocks are independent and if at most one of them is Gaussian. Unfortunately, existing

inference methods that exploit such identifying assumptions suffer from size distortions

when the true distributions of the shocks are close to Gaussian. To address this weak

non-Gaussianity problem, the chapter develops a robust semi-parametric inference method

(based on the methodology outlined in Chapter 1) that yields valid confidence intervals for

the structural parameters of interest regardless of the distance to Gaussianity. The densities

of the structural shocks are treated non-parametrically and construct identification robust

tests based on the efficient score function. The finite sample properties of the methodology

are illustrated in a large simulation study and an empirical study for production function

estimation.

The third chapter, titled “Robust inference in structural VAR models identified by non-

Gaussianity” considers a dynamic version of the model considered in Chapter 2. As
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in the static case, standard methods that exploit non-Gaussian distributions to identify

structural functions in SVAR models are not robust when deviations from Gaussianity

are small, leading to confidence bands with incorrect coverage. A robust semi-parametric

approach to conduct hypothesis tests and compute confidence bands in the SVAR model

is proposed. The method exploits non-Gaussianity when it is present, but yields correct

coverage regardless of the distance to the Gaussian distribution. The performance of the

method is evaluated in a simulation study and two empirical studies are revisited.
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Chapter 1
Robust and efficient inference for
non-regular semiparametric models

1.1. Introduction

In many econometric models, the behaviour of commonly used inference procedures can

depend crucially on the value of nuisance parameters. There are many cases where

the asymptotic distributions of test statistics derived using standard (fixed parameter)

arguments provide poor approximations to the finite sample distribution for certain values of

nuisance parameters. When this occurs, the corresponding tests justified by such asymptotic

arguments may have (finite sample) size far in excess of the nominal level.

In this paper I develop a general framework for conducting inference on a finite dimensional

parameter in a semiparametric model, robust to (sequences of) values of a possibly infinite

dimensional nuisance parameter which may invalidate standard inference methods. In

particular, the main contribution of this paper is to show that semiparametric score tests

based on the efficient score function (e.g. Bickel et al., 1998; van der Vaart, 2002) are

robust under mild assumptions which allow for, among others, (i) identification failure, (ii)

nuisance parameters on the boundary and (iii) the use of regularised estimates of nuisance

parameters.

Importantly – and unlike other general approaches put forward in the robust inference

literature (e.g. Andrews and Guggenberger, 2009, McCloskey, 2017 and Elliott et al.,

2015) – this approach permits the nuisance parameter which causes standard inferential

approaches to break down to be infinite dimensional.

A key benefit of this approach is that this efficient score test does not sacrifice power in order

to obtain this robustness: when classical regularity conditions hold, the test enjoys classical

optimality properties. Additionally, I demonstrate that the test is minimax optimal in some
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cases which fall in-between classical regularity conditions and the weaker conditions under

which the robustness results of this paper are obtained. Such results apply, for example,

when the parameter of interest is underidentified. Moreover these tests are often easy to

compute and require only χ2 critical values.

The semiparametric models I consider are parametrised by a pair γ = (θ, η) where θ is

the parameter of interest and η collects all nuisance parameters (and is therefore typically

infinite dimensional). γ fully parametrises the distribution of the observed data and I write

the corresponding probability law as Pγ . This setup permits a large range of models

regularly used in practice and includes both traditional parametric models and models

defined by moment conditions as special cases.

The theoretical results of this paper are derived under a few high level conditions, for

which some more primitive conditions are given subsequently. The main condition is local

asymptotic normality (LAN) of the model, which implicitly defines score functions for θ

and η. LAN specifies that the logarithms of certain likelihood ratios posses a local quadratic

approximation and – in the i.i.d. case considered in this paper – can be demonstrated to

hold under an L2-differentiability condition known as “differentiability in quadratic mean”

(DQM).1 Such conditions are common in the semiparametric statistical theory as expounded

by e.g. Bickel et al. (1998) or van der Vaart (2002).2 This literature usually complements

LAN (or DQM) with additional regularity conditions, such as (a) the non-singularity of

information matrices and (b) all parameters lying in the interior of the parameter space.3

These conditions rule out a number of cases of interest in econometrics. For example, (a)

the non-singularity of the information matrix is often violated when the parameter of interest

is under- or un-identified; (b) many model specifications permit nuisance parameters to lie

on the boundary. Fortunately, as I show in this paper, valid inference can be conducted

without these additional conditions.4

With the LAN condition in hand, the efficient score function (for the parameter of interest)

can be defined as the orthogonal projection (in L2) of the score function for θ on the

orthocomplement of the set of score functions for η. This efficient score function is the

basis of the robust inferential theory put forward in this paper. The main test statistic I

consider, the efficient score statistic, is the quadratic form of an estimate of the efficient

score function, weighted by a (pseudo-)inverse of its (estimated) variance matrix.5 The
1See e.g. Le Cam and Yang (2000, Chapters 6 and 7).
2Similar quadratic expansions of an objective function have also been previously used to analyse nonstandard
models in econometrics. See, for instance, Andrews (2001); Andrews and Cheng (2012).

3Cf. e.g. Definitions 2.1.1, 2.1.2 and 3.1.1 of Bickel et al. (1998).
4Cf. section 6.9 of Le Cam and Yang (2000) where the authors explicitly discuss a number of simplifying
assumptions which are often made but are not essential. Their point (v), that “the points ... are interior points
of Θ ∈ Rk” is clearly directly relevant to the case (b) with parameters potentially on the boundary. For (a),
where un- or under-identification of the parameter of interest may cause singularity of the information matrix,
cf. Le Cam and Yang, 2000, example (a), pp. 56 - 57.

5When the variance matrix is non-singular, the corresponding efficient score test is the same as the “effective
score test” of Choi et al. (1996). Additionally, the efficient score statistic can be viewed as the semiparametric
analogue of Neyman’s C(α) statistic (Neyman, 1959, 1979).
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key insight I exploit is that – under the null – the limiting distribution of the efficient

score function is the same regardless of the (local) nuisance parameter sequence along

which the limit is taken. This directly leads to robustness of the efficient score test against

such sequences and consequently that such tests control size in a (locally) uniform manner

over certain compact subsets. In contrast, there are many models in which this property

fails to hold for commonly used test statistics: different sequences of nuisance parameters

consistent with the null hypothesis result in different limiting distributions.

Moving from size to power, the efficient score test has attractive optimality properties if

the possible local nuisance parameter values are indexed by a linear space.6 Firstly, if the

covariance matrix of the efficient score function is non-singular then the efficient score test

is asymptotically uniformly most powerful within the class of asymptotically invariant tests

as defined and demonstrated by Choi et al. (1996).7 Moreover, if the covariance matrix

of the efficient score function has positive rank, I establish that the test enjoys a local

asymptotic minimax optimality property. In addition to the standard full rank case, this

situation may arise when the parameter of interest is underidentified.

I work out the details of the application of the general theory to two econometric models:

a single index model where the link function may be relatively flat compared to sampling

variation and a linear simultaneous equations model where identification may be weak when

an identifying assumption of non-Gaussianity is close to failing. In each case, the models

have nonstandard features which can invalidate some standard approaches to inference. For

each model I give primitive conditions that allow (i) derivation of the efficient score function

and (ii) a demonstration that the high level conditions required for the application of the

previously developed theory are satisfied. Crucially, the assumptions imposed do not carve

out parts of the parameter space which cause problems for other testing approaches.

Firstly, I consider a single index model (SIM). The SIM is a popular model in econometrics

as it retains a large amount of flexibility whilst successfully combating the curse of

dimensionality. Identification of parameters in the index function requires a number of

assumptions, including the non-constancy of the link function. As is usual with points of

identification failure, if the link function is sufficiently close to constancy relative to the

sample size, a weak identification problem obtains. Importantly, the identification status of

the parameter of interest in this model depends on the link function, an infinite dimensional

nuisance parameter. Additionally regularised estimation is required to perform inference in

this model. I demonstrate that the efficient score test provides (locally uniformly) valid size

control in spite of these issues.

Secondly, I examine a semiparametric linear simultaneous equations model (LSEM). The

LSEM is a foundational model in econometrics, used to analyse equilibrium relationships.
6This is often – but not always – the case. It fails, for example, at boundary points of the parameter space. See
Rieder (2014) for a discussion and some optimality results in such cases.

7For scalar parameters the asymptotic invariance can be replaced by asymptotic unbiasedness for two-sided
tests; for one-sided tests the asymptotic optimality holds over all tests of correct asymptotic level.
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As is well known, the simultaneity problem precludes the identification of all structural

parameters from observed data without further restrictions, leading researchers to adopt

alternative methods (e.g. analysing only one equation with the help of instrumental variable

techniques); see Dhrymes (1994) for an in-depth review.

In fact, the identification status of the structural parameters of interest depends on the

true error distribution (an infinite dimensional nuisance parameter). In particular, if no

more than one of the (mutually independent) error components is Gaussian the structural

parameters are identified as a consequence of the Darmois-Skitovich Theorem (Comon,

1994).8 If multiple components are Gaussian the structural parameters may be under- or

un-identified and standard inferential approaches may fail to control size. As is typical

in models with points of identification failure, such behaviour is also observed if the true

error distributions are sufficiently to close to Gaussianity, relative to sampling variation.

In addition to these potential identification problems, regularised estimation is required to

handle the non-parametric part of the model, leading to regularisation bias. I demonstrate

that despite the presence of these non-standard features, the efficient score test provides

(locally uniformly) valid and efficient inference in the LSEM model, providing researchers

with a direct approach to conduct inference on structural parameters in linear simultaneous

systems without needing to employ, for example, instrumental variables approaches.

I conduct a large scale simulation study based on each example. The results verify that the

asymptotic size results obtained provide a good guide to finite sample size, with the efficient

score test always being correctly sized, including in cases where alternative procedures fail

to correctly control size. The simulation studies also highlight the power of this testing

approach and suggest that the asymptotic approximations provide a good guide to finite

sample power, with finite sample power curves and surfaces matching the predictions of the

asymptotic theory.

1.1.1. Relation to the literature

This paper is primarily a contribution to the literature on general approaches to robust

inference methods for statistical and econometric models with non-standard asymptotic

behaviour in part of the parameter space.

A number of papers analyse size-correction methods to provide inference valid uniformly

over nuisance parameter values. For instance, Andrews and Guggenberger (2009, 2010a,b)

analyse the use of resampling methods and data-dependent critical values to provide

uniformly correct size control over the parameter space; McCloskey (2017) provides

alternative size correction approaches based on Bonferroni bounds, which can improve

the power of such size corrected tests. The approaches proposed in the cited papers are
8Strictly speaking the identification result is up to column permutations and sign changes of the matrix which
transforms the structural shocks into reduced form shocks.
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designed for models in which a statistic has a limiting distribution which is discontinuous

in a finite-dimensional nuisance parameter.9 This setup is very general but differs from

the one considered in the present paper on a number of key points: (i) in this paper, the

parameter which may cause standard inferential approaches to suffer from size distortions

can be infinite dimensional; (ii) rather than size-correcting tests based on a specific test

statistics which have parameter discontinuous asymptotic distributions, I suggest the use

of the the efficient score statistic which always has a χ2 distribution and hence the tests

always use χ2 critical values. There is not complete overlap between the class of models

considered in this paper and those to which the methods in these papers are applicable:

the efficient score test remains valid in cases where the asymptotic distribution of (other)

test statistics may depend on the particular local sequence of infinite dimensional nuisance

parameters. Conversely, the example of an autoregressive model with a root which may be

local to unity studied in Andrews and Guggenberger (2009) does not satisfy the high-level

conditions I impose as such models are locally asymptotically quadratic (LAQ) but not LAN

(Jeganathan, 1995; Jansson, 2008).

Romano and Shaikh (2012) provide high level conditions under which bootstrap and

subsampling procedures yield tests and confidence sets with (uniformly) correct size and

coverage probabilities in a very general class of models. Their approach differs substantially

from the approach in this paper, using resampling schemes to provide appropriate quantiles

to conduct tests and construct confidence sets for the values of general parameters of

interest defined on the model. As a result, their approach can deal with more general

parameters of interest than are considered in this paper. On the other hand, there are cases

in which the procedure outlined in this paper correctly controls size, but subsampling and

bootstrapping approaches fail to do so, for example, subsampling TSLS t-type statistics

in IV regression models with weak instruments (Andrews and Guggenberger, 2010a) and

subsampling Wald-type statistics in models with nuisance parameters near the boundary

(Andrews and Guggenberger, 2010b).

Elliott et al. (2015) provide nearly optimal tests for models which have a Gaussian shift limit

experiment (locally to the true parameter) with part of the shift vector being a nuisance

parameter. Their tests correctly control size and (approximately) maximise weighted

average power given a weighting function (over the nonstandard region of the parameter

space). Their approach requires the nuisance parameter to be finite dimensional and is quite

different from the one proposed in this paper, though it shares some common threads, being

based on a least favourable approach in a Gaussian shift limit experiment.10

For numerous classes of nonstandard inference problems a large literature exists analysing
9In related work, Andrews et al. (2020) provide some general results to establish the (uniform) size of tests and
(uniform) coverage probabilities of confidence sets based on (pointwise) asymptotic distributions which are
discontinuous in some function of a parameter.

10I do not consider least favourable distributions explicitly, however the efficient score function can be
considered to correspond to an approximately least favourable submodel; see §25.11 in van der Vaart (1998).
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the problem at hand and providing particular solutions. There are too many such examples

to provide a full account here; instead I provide a selective summary of the literature

pertaining to those non-standard features relevant to the examples I consider in detail in this

paper, comprising (a) identification robust inference, (b) inference in models with boundary

constraints and (c) inference post a model selection or regularisation step.

Inference robust to identification problems has been considered in various settings by, inter

alia, Stock and Wright (2000); Kleibergen (2005); Andrews and Cheng (2012, 2013);

Andrews and Mikusheva (2015, 2016a,b, 2022); Han and McCloskey (2019); Andrews

and Guggenberger (2019).11 Dufour (1997) provides some impossibility results. Chen

et al. (2018) consider semiparametric models in which parameters may be only partially

identified and suggest inferential procedures based on a Monte Carlo simulation approach.

Kaji (2021) puts forward a general theory of weak identification in semiparametric models

and focusses on efficient estimation rather than robust inference.

A long considered problem is inference in models with boundary constraints, which has

been studied by, amongst others, Chernoff (1954); Geyer (1994); Andrews (2000, 2001);

Andrews and Guggenberger (2010a,b); Chen et al. (2017); Ketz (2018); Cavaliere et al.

(2020). An antecedent to the approach of this paper in the case of nuisance parameters

potentially on (or close to) the boundary can be found in Andrews (2001, p. 698) where

the nuisance parameters are split into those which satisfy a block diagonality condition with

respect to the other parameters and those which do not. The author of that paper then notes

that those which satisfy the block diagonality condition “may or may not lie on the boundary

of the parameter space”. I exploit a similar idea, as the efficient score function is orthogonal

to all nuisance scores by construction.

Inference post model selection or regularisation is also problem with a long history, which

has become increasingly important in recent years due to the increasing availability of

“big data”. Leeb and Pötscher (2005) analyse in detail some of the difficulties associated

with inference post model selection; additional demonstrations along with applications of

some of the size correction approaches previously mentioned can be found in Andrews and

Guggenberger (2010a); McCloskey (2020). Chernozhukov et al. (2015) outline an approach

to post model selection / post regularisation inference which uses an approach similar to the

one proposed in this paper with their class of “Neyman orthogonalised” statistics also being

a generalisation of the C(α) approach of Neyman (1959, 1979).12 The development in

their paper is framed somewhat differently and focusses on post-regularisation inference in

problems defined by a finite vector of known moment conditions with a larger class of test

statistics, whereas I consider a more general class of inference problems with potentially
11There is also a large literature on robust inference in models defined by moment inequalities (and partially

identified models more generally). Additionally a further sub-literature exists on subvector inference for
weakly identified parameters. I do not consider subvector inference in this sense in this paper, though I note
here that Chaudhuri and Zivot (2011) used the efficient score corresponding to a GMM model as a way to
improve power in projection-based subvector inference with weak identification.

12See also Belloni et al., 2017 and Chernozhukov et al., 2018.
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non-standard features but only one test statistic.13

The general approach to inference outlined in this paper is based on the efficient score

function which, along with its variance matrix (the “efficient information matrix”), is a

key quantity in the literature on semiparametric efficiency. Textbook treatments of this

framework can be found in Bickel et al. (1998); van der Vaart (2002) and van der Vaart

(1998, Chapter 25). The efficient score test was shown to be optimal (in certain classes of

tests) by Choi et al. (1996). These ideas have been widely used in statistics and econometrics

since their introduction, particularly to determine efficiency bounds in semiparametric

models and construct estimators which attain them.

I now briefly turn to the specific examples I consider. The first – inference in the

single index model with potential identification failure – is related to the (previously

summarised) literatures on inference with potential identification problems and inference

post-regularisation as well as the literature on single index models and extensions thereof.

Such models have been widely studied by, amongst others, Ichimura (1993); Newey and

Stoker (1993); Ma and Zhu (2013).

The second example I consider, the LSEM, is related to the (previously summarised)

literatures on inference with potential identification problems and inference post-

regularisation as well as the statistical literature on independent components analysis (ICA)

modelling. The ICA model has long been used in a number of fields as an approach

to the analysis of data forming systems of simultaneous equations; see Hyvärinen et al.

(2001) for many examples.14 By adding covariates to the ICA model a class of linear

simultaneous equations models is obtained. Such systems of equations have a long history

in econometrics; see the introduction of Lee and Mesters (2022a) for a summary.15 A

semiparametric approach to the ICA model was considered in Amari and Cardoso (1997);

Chen and Bickel (2006). Lee and Mesters (2022a) consider a semiparametric approach

to the LSEM which uses the approach discussed in this paper to conduct tests robust

to potential identification failure. Concretely, they consider testing when the (fixed)

distribution of the error terms may be arbitrarily close to Gaussianity but this distribution

is not permitted to change with the sample size. They provide simulation evidence of a

weak identification problem when the error distribution is sufficiently close to Gaussianity

(relative to the sample size), but their theoretical work assumes a fixed error distribution

and consequently does not cover weak identification. In contrast, in this paper, I explicitly

model weak identification and obtain size results which are valid locally uniformly over
13In many models, the test statistic considered in this paper would belong to the general class they consider.
14The ICA model relates observables Y and errors ε according to Y = A−1ε, Eε = 0, Vε = I where ε has

independent components.
15More recently such models have also been adopted in econometrics as an approach to SVAR modelling, with

an assumption of non-Gaussianity imposed to identify the matrix required to obtain the structural shocks from
the reduced form shocks. A recent summary of this approach is given by Montiel Olea et al. (2022). Also
see, inter alia, Gouriéroux et al. (2017, 2019); Lanne and Lütkepohl (2010); Lanne et al. (2017); Lanne and
Luoto (2021); Bekaert et al. (2019, 2020); Fiorentini and Sentana (2022, 2021); Davis and Ng (2021). Velasco
(2020) considers the more general SVARMA case. In this paper I do not consider dynamics for simplicity.
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subsets of the parameter space.

1.1.2. Outline

The remainder of this paper is organised as follows. Section 1.2 describes the setting of

the paper, explains the intuition underlying the testing approach and introduces a number

of examples. Section 1.3 formalises the heuristic definitions given previously, develops the

theoretical contributions of this paper under high level conditions and provides some lower-

level conditions and constructions sufficient for their validity. Two examples are worked

out in detail in sections 1.4 and 1.5; these sections also discuss the results from several

simulation studies. Section 1.6 concludes and discusses possible extensions.

1.2. Heuristic explanation and examples

I now provide a heuristic discussion of the efficient score test, focussing on the underlying

intuition, and provide a number of examples to demonstrate the breadth of applicability of

my framework. I purposely omit all formal definitions and assumptions, which are provided

in section 1.3 below.

The parameter of interest is θ ∈ Θ ⊂ Rdθ and the goal is to construct (asymptotically)

correctly sized tests for the hypothesis H0 : θ = θ0 or confidence sets for θ which have

correct (asymptotic) coverage probability over a range of data generating processes (DGPs)

consistent with the null hypothesis.

I suppose that the researcher observes a random sample (Wi)
n
i=1. The considered

probability model for the distribution of each such observation Wi is given by

P = {Pγ : γ ∈ Γ}, Γ = Θ×H, (1.1)

where γ = (θ, η) with η collecting all the remaining parameters required to fully describe

the distribution of the data (given θ). In the classical parametric setting η is finite

dimensional; in the semiparametric models which are the focus of this paper it may be

infinite dimensional.

Analogously to the parametric case, it is possible to define score functions for all of the

parameters in semiparametric models (see section 1.3 for the details). Let ˙̀
γ be the (vector

of) score functions for θ and Hγ = {Bγh : h ∈ H} a collection of score functions for η.16

All score functions are mean zero and have finite variance. The efficient score function

16The score functions are indexed by elements h in a set H . In the parametric case this set could be taken as
the integers from 1 to the (finite) number of elements in η. In the case where η is infinite dimensional, the
indexing set H will typically also be infinite dimensional.
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is defined as the orthogonal projection (in L2) of the scores for θ onto the orthogonal

complement of the scores for η:

˜̀
γ = ˙̀

γ −Π
(

˙̀
γ

∣∣∣lin Hγ

)
, (1.2)

where lin Hγ denotes the closed linear span of the set Hγ .17 This operation removes from
˙̀
γ that part which can explained by score functions in Hγ . The corresponding variance

matrix, the efficient information matrix is

Ĩγ =

∫
˜̀
γ

˜̀′
γ dPγ .

Analytical derivation of the efficient score function for specific models can be complex,

however due to the central role of the efficient score function in the literature on semi

parametrically efficient estimation the efficient score function has already been derived for

a large number of popular models.18

As a direct consequence of the definition in (1.2),
∫

˜̀
γ dPγ = 0 and hence the efficient

score function provides a dθ-dimensional vector of moment condition on which one can

base inference about θ. In general, constructing estimators and tests based on the efficient

score function is attractive as these have well established optimality properties (e.g. Bickel

et al., 1998; van der Vaart, 2002; Choi et al., 1996). In some of the examples considered in

this paper, the conditions which are required to obtain such results may fail. For instance,

if θ is unidentified, no consistent estimator of θ can exist, let alone asymptotically efficient

estimators. Nevertheless, I will show that in such situations tests based on the efficient score

function can be used to conduct valid inference provided some mild conditions are satisfied.

To introduce the test statistic, let ˆ̀
n,θ and În,θ denote estimates of ˜̀

γ and Ĩγ respectively.

The efficient score statistic (for a given θ) is given by

Ŝn,θ =

(
1√
n

n∑
i=1

ˆ̀
n,θ(Wi)

)′
Î†n,θ

(
1√
n

n∑
i=1

ˆ̀
n,θ(Wi)

)
,

where “†” denotes the Moore-Penrose pseudo-inverse. Supposing that mild assumptions

hold, I show that, under H0 : θ = θ0, Ŝn,θ0 converges in distribution to a χ2
r random

variable where r = rank(Ĩγ). Importantly (i) this convergence holds under any local

sequence of nuisance parameters and (ii) the assumptions imposed do not require θ to be

identified, allow η to be on the boundary of the parameter space and allow for the estimates

to depend on regularised estimators of η. Based on this convergence, the efficient score

test is performed by comparison of Ŝn,θ0 to the appropriate quantile of the χ2
rn distribution

where rn = rank(În,θ0) and confidence sets for θ can be constructed by inverting the test.

17The projection in the preceding display should be understood componentwise.
18Additionally guidance and a large number of examples can be found in Newey (1990), Bickel et al. (1998)

and van der Vaart (1998, Chapter 25).
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Intuitively there are two features of the efficient score statistic which are responsible for

this result. The first is that the null value θ0 is imposed in the construction of the statistic

which precludes the need for θ to be identifiable or consistently estimable. This is key in

models with potential identification failures, where such requirements can fail. Second, the

orthogonal projection in the definition of the efficient score function ensures that∫
˜̀
γ BγhdPγ = 0 for all Bγh ∈Hγ , (1.3)

i.e. the efficient score function is uncorrelated with the scores Bγh for the nuisance

parameters (in each direction h). Similar properties have been shown to alleviate

size distortions in a number of settings, including those caused by identification issues

(Kleibergen, 2005), boundary effects (Andrews, 2001) and regularised estimation of

nuisance parameters (Chernozhukov et al., 2015, 2018). Property (1.3) has a fundamentally

important role more generally in models with nuisance parameters in order to obtain the

same limiting distribution regardless of the local sequence of nuisance parameters under

which the limit is taken (cf. Hall and Mathiason, 1990; Choi et al., 1996).19

In addition to the robustness properties that (1.3) gives the efficient score test, (1.3) is also

important for its power optimality properties – reflecting the original development of the

C(α) test by Neyman (1959). If the efficient information matrix has full rank – as is usually

the case in well identified models – and local perturbations to the nuisance parameters are

indexed by a linear space, the efficient score test belongs to the class of asymptotically

uniformly most powerful invariant tests (AUMPI) as described and demonstrated in Choi

et al. (1996). Moreover, if the efficient information matrix has positive rank, there are

directions against which non-trivial local power can be attained. I demonstrate that the

efficient score test is minimax optimal in this scenario, in that there is no alternative test

which provides higher power in a minimax sense.

To illustrate the broad applicability of these results, I now present two different examples

to show (i) how commonly used econometric models can be placed into the framework

required by (1.1) and (ii) how certain (local) sequences of nuisance parameters η can cause

problems for commonly used inferential procedures. Following this I briefly discuss a

number of other important examples in econometrics for which the inferential approach

in this paper could be useful.

Example 1 (Single-index model). Consider the single-index regression model (e.g

Ichimura, 1993; Horowitz, 2009)

Y = f(X1 +X2θ) + ε, E(ε|X) = 0,

where f : R → R belongs to some function class F , X1 and X2 are continuously

19See also the discussions comparing Rao’s score test and Neyman’s C(α) test on page 133 of Andrews and
Mikusheva (2015) and page 492 of Kocherlakota and Kocherlakota (1991).
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distributed random variables and ε is an unobserved error term. (ε,X) ∼ ζ for some

Lebesgue density function ζ which ensures that the conditional mean restriction indicated

above is satisfied. Such single-index models are popular as they relax the commonly

imposed linear structure of linear regression models but avoid the curse of dimensionality

by ensuring the argument of f is a scalar. The density of an observation W = (Y,X) ∈ R3

is

pγ(W ) = ζ(Y − f(X1 +X2θ), X),

and the corresponding model is given by P = {Pγ : γ ∈ Θ × H} for some open Θ ⊂ R
andH = (f, ζ) ∈ F ×Z , where the latter set restricts the possible distribution of (ε,X).

As discussed in Horowitz (2009), θ is unidentified when f is a constant function. Weak

identification can therefore occur when f is sufficiently close to constancy (relative to the

sample size). The potential identification failure here is due to an infinite dimensional

nuisance parameter and therefore robust approaches to inference designed for cases where

identification failure is caused by a finite dimensional nuisance parameter do not apply.

Derivations of the efficient score function for the model above (and various extensions)

can been found in the literature, see e.g. Newey and Stoker (1993); Ma and Zhu (2013);

Kuchibhotla and Patra (2020). The efficient score test permits inference on θ to be

performed which is robust to potential identification failure; full details are given in section

1.4. 4

Example 2 (Simple linear simultaneous equations model). Suppose that the K × 1 vector

W satisfies

W = A(θ)−1ε,

whereA(θ) is a rotation matrix parametrised by θ ∈ Θ and ε aK×1 vector of independent

structural shocks each with mean zero and unit variance. Let η = (η1, . . . , ηK) ∈ H denote

the densities of the components of ε. This yields the model

P = {Pγ : γ = (θ, η) ∈ Γ = Θ×H},

where Pγ has Lebesgue density pγ(W ) =
∏K
k=1 ηk (Ak(θ)W ).20

If all εk are Gaussian, A(θ) is not identified and hence the same is true of θ. In contrast, if

(at least) K − 1 of the components of ε have non-Gaussian distributions, A(θ) is identified

up to sign changes and column permutations (Comon, 1994). Appropriate restrictions on

the signs and labelling of the elements then result in identification of θ. However, if the non-

Gaussian distributions of the εk are sufficiently close to Gaussian, θ is only weakly identified

and inference methods which assume non-Gaussianity can suffer from size distortions.

The efficient score test avoids these size distortions by fixing θ = θ0 under the null and

orthogonalising with respect to (the scores for) η. In section 1.5, I show that the conclusions

20Ak(θ) is the k-th row of A(θ).
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of these heuristic arguments hold formally in a considerably richer class of LSEMs. I also

show that inference based on the efficient score test is minimax optimal in these models,

including in cases where θ is underidentified.

The identification problem in this example is caused by an infinite dimensional nuisance

parameter and therefore robust approaches to inference designed for cases where

identification failure is caused by a finite dimensional nuisance parameter do not apply. 4

Other examples

In addition to the preceding examples, robust inference on a large variety of other models

of interest in econometrics can be conducted using the approach in this paper, pending

verification of the high-level conditions in the next section. I briefly discuss four such cases

here.

Firstly, consider inference on the slope parameters θ associated with the endogenous

variables in an instrumental variables regression model. As is well known, many standard

tests are unreliable in instrumental variable regression models if the instruments are weak

(Andrews et al., 2019). In contrast, the efficient score test could be used to provide

valid inference in this model. In this model – unlike examples 1 or 2 – the lack of

identification is caused by a finite dimensional parameter. Nevertheless, due to potential

heteroskedasticity, the efficient score in this model depends on an infinite dimensional

object, the heteroskedastic function. The resulting test does not coincide with any of the

“standard” weak-IV robust tests, such as the AR, LM and CLR statistics (e.g. Anderson and

Rubin, 1949; Staiger and Stock, 1997; Moreira, 2003; Kleibergen, 2002, 2007).

Secondly, consider the classical linear errors-in-variables model (as in, for example,

equation (1.1) of Bickel and Ritov, 1987 or equation (1) of Ben-Moshe, 2020). As

discussed by numerous authors (e.g. Reiersøl, 1950; Willassen, 1979; Bickel and Ritov,

1987; Ben-Moshe, 2020), identification of the regression coefficients may depend on (joint)

distributional properties of the covariates, structural errors and measurement errors. These

can include, for example, independence restrictions and non-Gaussianity assumptions

on the latent covariates (Reiersøl, 1950; Willassen, 1979). Similarly to example 2, on

verification of the high-level conditions in the next section, the inferential framework in

this paper could be used to perform inference which will remain valid if, for instance, the

distribution of the latent covariates is sufficiently close to Gaussianity that the regression

coefficients become weakly identified. As in examples 1 and 2, this is a case of non-

regularity caused by an infinite dimensional parameter.

As a third example, consider the mixed proportional hazard model, a common model

used in duration analysis which allows for unobserved heterogeneity (see van den Berg,

2001, for a review). As was demonstrated by Hahn (1994), in the case where the baseline
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hazard function is Weibull, the efficient information matrix (for the Euclidean parameters)

is singular, and no regular estimator sequence for these parameters can exist.21 Pending

verification of the high-level conditions in the next section, the inferential framework

outlined in this paper could be used to perform inference which will remain valid if the

baseline hazard function is (close to) Weibull. As in examples 1 and 2, this is a case of

non-regularity caused by an infinite dimensional parameter.

Finally, as is well known, models with nuisance parameters on or close to the boundary can

cause standard testing approaches to be unreliable (Andrews, 2001; Elliott et al., 2015; Ketz,

2018). Similar problems may arise in models where nuisance functions are estimated with

shape restrictions imposed (cf. Chetverikov et al., 2018, section 3). Due to the orthogonality

between the scores for the parameter of interest and the nuisance scores, these restrictions

do not affect the limiting distribution of the efficient score statistic and hence inferential

approach in this paper will remain valid in these models – pending the verification of

the high-level conditions in the next section. Depending on the model and the restriction

under consideration, this case of non-regularity may be caused by either a finite-dimensional

parameter or an infinite-dimensional parameter.

The next section describes the high level theory and provides a set of mild assumptions

under which the efficient score test provides robust inference and has power optimality

properties. Thereafter I revisit and generalise examples 1, 2 and work out the details for

implementation.

1.3. Theory

In this section I formalise inference based on the efficient score statistic. First I set out the

high-level assumptions which will be required throughout and formally define the efficient

score test and associated confidence sets. Second, I perform an asymptotic analysis of the

size properties of this test and the coverage of the associated confidence sets. Third, I

demonstrate that this test has power optimality properties in a number of scenarios. Finally

I provide a number of conditions and constructions which are sufficient for the high-level

assumptions and often simpler to verify. In what follows I will often use operator notation

for integrals, e.g. for a function f and a probability measure P , Pf :=
∫
f dP . Pn denotes

the empirical measure of the sample (Wi)
n
i=1, so Pnf = 1

n

∑n
i=1 f(Wi).22

1.3.1. Model setup and maintained assumptions

The first assumption that I impose merely formalises the model of interest as discussed in

section 1.2 and stipulates that the observed data form a random sample.
21Hahn (1994) also derives the efficient score function for this model.
22See appendix section A for additional details and notational conventions.
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Assumption M (Model and sampling). Let (Wi)
n
i=1 be independent copies of aW-valued

random element W , withW a Polish space, all defined on an underlying probability space

(Ω,F ,P).23 The considered model for the law of W on (W,B(W)) is

P := {Pγ : γ ∈ Γ} ,

where Γ has the product form Γ = Θ × H for Θ an open subset of Rdθ and H a metric

space. A typical value γ ∈ Γ will be written as γ = (θ, η) where θ ∈ Θ and η ∈ H. Each

Pγ ∈ P is dominated by a common σ-finite measure ν. �

The next assumption is the key requirement. It imposes that the model satisfies a LAN

condition (e.g. van der Vaart, 1998, Chapter 7; Le Cam and Yang, 2000, Chapter 6), where

the parameter γ = γn can change with the sample size n. In order to state this assumption,

some notation is required. For any Pγ ∈ P I write pγ for its density with respect to ν and

for any two points γ1, γ2 ∈ Γ, Λn(γ1, γ2) denotes the log-likelihood ratio:

Λn(γ1, γ2) := log
n∏
i=1

pγ1
pγ2

. (1.4)

The LAN requirement is imposed as follows.

Assumption LAN (Local asymptotic normality). Let (γn)n∈N be a sequence in Γ which

converges to a point γ ∈ Γ and Hη a subset of a Banach space, H , which includes 0.

For any sequence τn → τ with each τn, τ ∈ Rdθ , any sequence hn → h with hn, h ∈ Hη,

a convergent sequence of dθ × dθ matrices δn and sequences ηn(hn) → η with each

ηn(hn) ∈ H, define

γn(τn, hn) := (θn + δnτn, ηn(hn)),

and suppose that

1. the sequence (Pγn(τn,hn))n≥1 is (eventually) in P ,

2. the associated log-likelihood ratio satisfies

Λn(γn(τn, hn), γn) =
1√
n

n∑
i=1

[
τ ′ ˙̀γn +Bγnh

]
− 1

2
Pγn

[
τ ′ ˙̀γn +Bγnh

]2
+oPγn (1),

(1.5)

for a sequence of functions ( ˙̀
γn)n∈N with each ˙̀

γn ∈ L0
2(Pγn) and a sequence of

linear maps (Bγn)n∈N with each Bγn : Hη → L0
2(Pγn) such that τ ′ ˙̀γn + Bγnh is

uniformly square Pγn-integrable. �

In what follows I use the notation Pγn,τn,hn for Pγn(τn,hn). The functions τ ′ ˙̀γn +Bγnh will

23A Polish space is a separable completely metrisable topological space. Let d be a metric such that (W, d) is
a complete (separable) metric space. B(W) is the Borel σ-algebra on (W, d).
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(collectively) be called “score functions”, as will the vector ˙̀
γn (the “score functions for

θ”) and the functions Bγnh (the “score functions for η”). Such functions play the same role

as score functions in classical parametric models in which – under regularity conditions – a

similar LAN condition holds (e.g. van der Vaart, 1998, Theorem 7.2).

Assumption LAN stipulates that the likelihood ratios Λn(γn(τn, hn), γn) admit a local

quadratic approximation with a particular form. It is important to clarify the roles of the

different sequences of parameters present in these likelihood ratios. I refer to (γn)n∈N as

the “base sequence” and the components δnτn and ηn(hn)− ηn as “local perturbations” to

the elements of this base sequence respectively:

γn(τn, hn) = γn + (δnτn, ηn(hn)− ηn)

=
(
θn + δnτn︸︷︷︸

local perturbation of θn

, ηn + ηn(hn)− ηn︸ ︷︷ ︸
local perturbation of ηn

)
.

That γn is permitted to vary with n has two important implications. Firstly, replacing a

fixed θ with a convergent sequence θn → θ permits the demonstration that confidence sets

constructed by inverting the efficient score test are uniformly valid over compact subsets of

Θ. Secondly, this permits local power analysis in situations where the rate of information

accumulation is non-standard.24

The separation of the local perturbation of θn into a “rate” term δn and a “direction” term

τn is not strictly necessary but clarifies the role each plays in the subsequent power results.

Due to the (possible) infinite dimensionality of the nuisance parameters ηn, the form of the

local perturbation may be complex and generally will be model dependent, but the role of

hn is analogous to that of τn, i.e. it is the “direction” term in the perturbation.

Assumption LAN requires that for any permitted sequence of local perturbations, the

measures Pγn,τn,hn eventually belong to the model and (1.5) holds. That these hold over all

such local sequences is key for the size results below which demonstrate that the efficient

score test controls size locally uniformly, i.e. over any compact set of local perturbation

directions consistent with the null. I emphasise that in the size and power results below

LAN is only assumed to hold along certain specified base sequences (γn)n∈N which are

defined in the relevant results.

It is also important to note that assumption LAN concerns only the model P and

perturbation spacesHη, both of which are chosen by the researcher. This includes the choice

24For instance, one key feature of weak or semi-strong identification (in the terminology of Andrews and Cheng,
2012) is that the information that can be learned about the parameter of interest accrues at a rate slower than
the “usual”

√
n; robust tests can then often be built on top of “rescaling” arguments: some part of γn changes

with the sample size, causing a slower rate of information acquisition, which can be compensated for by a
“slower” rate sequence δn — i.e. the local alternatives are “closer” than in the “usual”

√
n case (Cf. Antoine

and Renault, 2009, 2011; Andrews and Mikusheva, 2015). The prototypical “weak identification” case is
usually the limiting case of this argument, where δn 6→ 0 and the “local” alternatives are, in a sense, “fixed”
alternatives.
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of the metric on H, which – particularly in the infinite dimensional case – has implications

for the uniformity results obtained below, which hold over compact sets. Specifically,

choosing a stronger metric on H will often simplify the demonstration that assumption

LAN holds, but leads to “fewer” compact sets and therefore weaker uniformity results.25

Finally, rather than establishing LAN directly, one may establish that the relevant submodels

are differentiable in quadratic mean (see assumption DQM below), which then implies

assumption LAN (under assumption M; see proposition 1.3.10). A detailed analysis of

the relationship between conditions of these types is given by Le Cam (1986, Chapter 17,

section 3); see also Strasser (1985, Theorem 75.9).

I now introduce the next assumption, which concerns the limits of the scores.

Assumption CM(i) (Convergence of moments (i)). In the setting of assumption LAN

suppose that there exists a vector of functions ˙̀
γ ∈ L0

2(Pγ) and a bounded linear map

Bγ : Hη → L0
2(Pγ) such that for each (τ, h) ∈ Rdθ ×Hη

lim
n→∞

Pγn

[
τ ′ ˙̀γn +Bγnh

]2
= Pγ

[
τ ′ ˙̀γ +Bγh

]2
.

�

The uniform integrability required by assumption LAN may directly imply that assumption

CM(i) holds; see subsection 1.3.4 for some sufficient conditions.

With the quantities introduced in the preceding assumptions, the efficient score function can

be formally defined. First define the tangent sets for η as

Hγ := {Bγh : h ∈ Hη} , for γ ∈ {γ} ∪ {γn : n ∈ N}.

The efficient score functions are defined as the orthogonal projections of the score functions

for θ, i.e. the ˙̀
γn and ˙̀

γ onto the orthocomplement of Hγn and Hγ respectively. The

corresponding efficient information matrices are the expectations of the outer products of

these (vectors of) functions:

˜̀
γ := ˙̀

γ −Πγ

(
˙̀
γ | lin Hγ

)
, Ĩγ := Pγ

[
˜̀
γ

˜̀′
γ

]
, for γ ∈ {γ} ∪ {γn : n ∈ N},

where Πγ(·|S) is the orthogonal projection on S ⊂ L2(Pγ).

I assume the same uniform integrability moment convergence conditions on the efficient

scores that have been imposed on the scores for θ and η.

Assumption CM(ii) (Convergence of moments (ii)). Suppose that assumption CM(i) holds

and moreover that ‖˜̀γn‖22 is uniformly Pγn-integrable and limn→∞ Ĩγn = Ĩγ . �
25More formally, if d1 and d2 are metrics on H with d1 stronger than d2 (i.e. every open subset of H with

respect to d2 is also open with respect to d1), then if a set H ′ ⊂ H is compact with respect to d1, then it is
compact with respect to d2.
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The definition of the efficient score function ensures that Pγ ˜̀
γ = 0, since both ˙̀

γ and the

elements of lin Hγ are mean zero by assumption LAN. In other words, the efficient score

function provides dθ moment conditions on which inference about θ can be based.

In many cases, the efficient score function will not be formed only of observed or known

quantities, but will need to be estimated. The following two conditions impose what is

required of these estimates and complete the collection of high-level assumptions.

Assumption E (Estimation). Let (γn)n∈N be as in assumption LAN and suppose that for

an estimator ˆ̀
n,θn √

nPn
[
ˆ̀
n,θn − ˜̀

γn

]
= oPγn (1), (1.6)

and for an estimator În,θn ∥∥∥În,θn − Ĩγ∥∥∥
2

= oPγn (1). (1.7)

�

Assumption R (Rank convergence). Let (γn)n∈N be as in assumption LAN and suppose

that the estimator În,θn of assumption E satisfies

Pγn

(
rank(În,θn) = rank(Ĩγ)

)
→ 1. (1.8)

�

That the first condition of assumption E, equation (1.6), can hold is often related to the

specific structure of the efficient score function, particularly the fact that it is orthogonalised

with respect to the nuisance scores. The second condition (1.7) requires consistency of

an estimator of the efficient information matrix Ĩγ . If the latter is non-singular and (1.7)

holds, then (1.8) holds automatically.26 If Ĩγ is rank deficient, (1.8) must be established

separately. A construction which can ensure this holds, given an initial estimator with

known convergence rate is given in subsection 1.3.4.

The fact that assumption R is required is due to the fact that the Moore-Penrose pseudo-

inverse (which I denote by M † for an arbitrary matrix M ) is not continuous. However, if

En → 0 such that M + En has the same rank as M , then (M + En)† →M †.27

Verification of equations (1.6) and (1.7) is model specific and typically requires the

application of various stochastic limit theorems. Incorporating estimates of Euclidean parts

of the nuisance parameter can typically be achieved relatively simply via discretisation

arguments if a
√
n-consistent estimator is available; see the example in section 1.5 below.

For nonparametric parts, sample splitting can often be used to provide estimators for which

the verification of the required conditions is relatively straightforward.
26See Lemma C.7.
27See e.g. Ben-Israel and Greville (2003, Section 6.6) and Cf. Andrews (1987).
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1.3.2. The efficient score test

In this section, I define the efficient score test, which forms the basis of the inferential

approach suggested in this paper. Two different definitions are required: one for a (scalar)

one-sided hypothesis and one for a two-sided hypothesis.

For the purposes of testing a two-sided hypothesis at level α ∈ (0, 1), the efficient score

statistic at θ is defined as

Ŝn,θ :=
(√

nPn ˆ̀
n,θ

)′
Î†n,θ

(√
nPn ˆ̀

n,θ

)
. (1.9)

The efficient score test can then be defined as

φn,θ := 1
{
Ŝn,θ > cn

}
, (1.10)

where cn is the 1−α quantile of the χ2
rn distribution, with rn := rank(În,θ). The confidence

set corresponding to the efficient score test is denoted by Ĉn and defined as

Ĉn := {θ ∈ Θ : φn,θ = 0} =
{
θ ∈ Θ : Ŝn,θ ≤ cn

}
. (1.11)

For the purposes of testing a one-sided hypothesis for a scalar parameter, i.e. when dθ = 1

and α ∈ (0, 1/2], I instead define the efficient score statistic at θ as

Ŝn,θ :=
(√

nPn ˆ̀
n,θ

)√
Î†n,θ, (1.12)

and define the corresponding test as

φn,θ := 1
{
Ŝn,θ > zα

}
, (1.13)

where zα is the 1 − α quantile of the N (0, 1) distribution. A confidence set can again be

constructed by test inversion as

Ĉn := {θ ∈ Θ : φn,θ = 0} =
{
θ ∈ Θ : Ŝn,θ ≤ zα

}
. (1.14)

The use of the same notation for these different objects should not cause any confusion as

only one of the two is applicable to any given testing problem and hence which is meant

will be clear from context.

1.3.3. Asymptotic properties

I now derive the asymptotic properties of the efficient score test and test inversion

confidence sets. I first state a weak convergence result along local alternatives, which
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follows directly from standard stochastic limit theorems and Le Cam’s third lemma.

Following this size results are given in section 1.3.3 and power results in section 1.3.3.28

Proposition 1.3.1. Suppose that assumptions M, LAN and CM(i) hold. Then, the sequences

of product measures
(
Pnγn
)
n∈N and

(
Pnγn,τn,hn

)
n∈N

are mutually contiguous. If also

assumption CM(ii) holds, then under Pγn,τn,hn

√
nPn ˜̀

γn  N (Ĩγτ, Ĩγ).

If, additionally, (1.6) of assumption E holds, then also under Pγn,τn,hn

√
nPn ˆ̀

n,θn  N (Ĩγτ, Ĩγ).

The key takeaway from the preceding proposition is that the limiting distributions depend

on τ but not on h (or (hn)n∈N): by its construction the efficient score function has an

invariance property with regard to the local nuisance perturbations.

Size results

The invariance property discussed in the preceding paragraph is precisely what ensures

that the size of the efficient score test does not depend on the particular local nuisance

perturbation along which the limit is taken.29

Proposition 1.3.2. Suppose that assumptions M, LAN, CM(ii), E and R hold for a sequence

(γn)n∈N ⊂ Γ with limit γ ∈ Γ and where θn = θ0 for all n ∈ N. Then, for any compact

subset H ′η of Hη,

lim
n→∞

sup
h∈H′η

Pnγn,0,hφn,θ0 ≤ α.

The preceding proposition demonstrates that the efficient score test is correctly sized

uniformly over local perturbations consistent with the null. Note that this result specifies

that the high-level conditions need hold only along the specified base sequence with

γn = (θ0, ηn)→ (θ0, η) = γ. This result immediately implies that the efficient score test is

correctly sized along any sequence of local perturbations of γn = (θ0, ηn) with τn = 0 and

hn → h in Hη.30

An analogous result holds for confidence sets constructed by test inversion, provided the
28Readers primarily interested in the robustness results may safely skip section 1.3.3.
29In fact this property can be shown to hold rather more generally, for ˘̀

γn in place of ˜̀
γn as long as

Pγn [˘̀γnBγnh] = 0 for all h ∈ Hη . If ˘̀
γn 6= ˜̀

γn this would typically result in a less powerful test and
hence I do not explicitly consider this case in the theoretical results. Nevertheless this observation can be
particularly useful in cases when the efficient score function is hard to estimate. See e.g. the treatment of
heteroskedasticity in section 1.4 below.

30In a metric space the union of a convergent sequence and its limit is compact.
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high level conditions hold along sequences of the form γn = (θn, ηn) → (θ, η) = γ, for

any convergent sequence θn → θ (in a compact subset of Θ) and a specified ηn → η.

Proposition 1.3.3. Let Θ′ be a compact subset of Θ. Fix a convergent sequence (ηn)n∈N

and denote its limit by η. Suppose that assumptions M, LAN, CM(ii), E and R hold for any

sequence (γn)n∈N where each γn := (θn, ηn)n∈N ⊂ Θ′ ×H with θn → θ ∈ Θ′. Then, for

any compact subset H ′η of Hη,

lim inf
n→∞

inf
θ∈Θ′

inf
h∈H′η

Pn(θ,ηn),0,h(θ ∈ Ĉn) ≥ 1− α.

Power results

In the scalar case I consider both one-sided tests of the form H0 : θ > θ0 against

H1 : θ ≤ θ0 and two-sided tests, i.e. H0 : θ = θ0 against H1 : θ 6= θ0. These results are

essentially standard (Cf. Choi et al., 1996), with the key difference being that here they are

stated with γn potentially changing with n. Whilst this is a potentially useful strengthening,

it simply reflects the corresponding change in the assumptions – i.e. assumption LAN is

assumed to hold along such sequences – with the arguments following in the usual way.31

The first result concerns the power of one-sided tests.

Proposition 1.3.4. Suppose that assumptions M, LAN, and CM(i) hold. Additionally

suppose that Hη is a linear subspace of H and Ĩγ > 0. Then, for any α ∈ (0, 1), any

sequence of asymptotically level-α tests (ψn)n∈N for H0 : τ ≤ 0 against H1 : τ > 0, i.e.

any sequence of tests ψn :Wn → [0, 1] such that

lim sup
n→∞

Pnγn,τ,hψn ≤ α for all τ ≤ 0, h ∈ Hη

is subject to the power bound

lim sup
n→∞

Pnγn,τn,hnψn ≤ 1− Φ
(
zα − Ĩ1/2

γ τ
)
, (1.15)

for all τn → τ > 0 and hn → h ∈ Hη where zα is the 1 − α quantile of the standard

normal distribution and Φ is the standard normal CDF.

Any sequence of tests ψn : Wn → [0, 1] of asymptotic level α which attains the power

bound (1.15) is called “asymptotically locally uniformly most powerful of level-α”. The

efficient score test attains this bound under the assumptions of section 1.3.1, provided that

Hη is a linear subspace and Ĩγ > 0.

Corollary 1.3.5. Suppose that assumptions M, LAN, CM(ii), E hold, with γn = (θ0, ηn)→
(θ0, η) = γ. Additionally suppose thatHη is a linear subspace ofH , Ĩγ > 0 and α ∈ (0, 1).

31In particular the proofs are based on convergence of a particular sequence of experiments to a Gaussian shift
limit experiment. The construction of the relevant sequence of experiments is given in section B.
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Then the sequence of tests (φn,θ0)n∈N is asymptotically locally uniformly most powerful of

level-α for the hypothesisH0 : θ ≤ θ0 againstH1 : θ > θ0, i.e. it is asymptotically level−α
and achieves the power bound in (1.15) for any τn → τ > 0 and any hn → h ∈ Hη.

A similar result holds for two-sided tests, with the claim of optimality holding in the class

of tests which are (asymptotically) unbiased and of level-α.

Proposition 1.3.6. Suppose that assumptions M, LAN, CM(i) hold. Additionally suppose

that Hη is a linear subspace of H and Ĩγ > 0. Then, for any α ∈ (0, 1), any sequence of

asymptotically unbiased, level-α tests (ψn)n∈N for H0 : τ = 0 against H1 : τ 6= 0, i.e. any

sequence of tests ψn :Wn → [0, 1] such that

lim sup
n→∞

Pnγn,0,hψn ≤ α for all h ∈ Hγ ,

and

lim inf
n→∞

Pnγn,τ,hψn ≥ α for all τ 6= 0, h ∈ Hη

is subject to the power bound

lim sup
n→∞

Pnγn,τn,hnψn ≤ 1− Φ
(
zα/2 − Ĩ1/2

γ τ
)

+ 1− Φ
(
zα/2 + Ĩ1/2

γ τ
)

(1.16)

for all τn → τ 6= 0 and hn → h ∈ Hη, where zα is the 1 − α quantile of the standard

normal distribution and Φ is the standard normal CDF.

Any asymptotically unbiased sequence of tests ψn : Wn → [0, 1] of asymptotic level

α which attains the power bound (1.15) is called “asymptotically locally uniformly most

powerful unbiased of level-α”. The efficient score test attains this bound under the same

assumptions as for the one-sided case.

Corollary 1.3.7. Suppose that assumptions M, LAN, CM(ii) and E hold, with γn =

(θ0, ηn) → (θ0, η) = γ. Additionally suppose that Hη is a linear subspace of H , Ĩγ > 0

and α ∈ (0, 1). Then the sequence of tests (φn,θ0)n∈N is asymptotically locally uniformly

most powerful unbiased of level-α for the hypothesis H0 : θ = θ0 against H1 : θ 6= θ0, i.e.

it is asymptotically unbiased and of level-α and achieves the power bound in (1.16) for any

τn → τ 6= 0 and any hn → h ∈ Hη.

For multivariate hypotheses I consider maximin optimality.32 The difference between the

power bound given here and what might be called the “usual” case (Cf. Theorem 13.5.4 of

Lehmann and Romano (2005) for the parametric case) is that I do not require the efficient

information matrix to be positive definite. Rather I consider a restricted class of directions

along which θ may be approached. Specifically, letting N(Ĩγ) denote the nullspace of Ĩγ ,

the permitted directions are τ ∈ N(Ĩγ)⊥ rather than τ ∈ Rdθ . Note that these coincide

32For an alternative approach which restricts the class of tests to those satisfying a rotation invariance condition
see Choi et al. (1996).
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if (and only if) Ĩγ � 0 and hence the “usual” case is a special case of this result. The

generalisation given here is useful for models in which the parameter of interest may be

underidentified.33

Proposition 1.3.8. Suppose that assumptions M, LAN and CM(i) hold. Additionally

suppose thatHη is a linear subspace ofH and r := rank(Ĩγ) > 0. Then, for any α ∈ (0, 1),

any sequence of asymptotically level-α tests (ψn)n∈N for H0 : τ = 0 against H1 : τ 6= 0,

i.e. any sequence of tests ψn :Wn → [0, 1] such that

lim sup
n→∞

Pnγn,0,hψn ≤ α for all h ∈ Hη

is subject to the power bound

lim sup
n→∞

inf
(τ,h)∈Ma

Pnγn,τ,hψn ≤ 1− P
(
χ2
r(a) ≤ cr,α

)
, (1.17)

for all a > 0, where Ma := {(τ, h) ∈ N(Ĩγ)⊥ × Hη : τ ′Ĩγτ ≥ a}, cr,α is the 1 − α

quantile of the χ2
r distribution and χ2

r(a) denotes a non-central χ2 random variable with r

degrees of freedom and non-centrality a.

Any sequence of tests ψn : Wn → [0, 1] of asymptotic level α which attains the power

bound (1.15) over all compact subsets of Ma is called “asymptotically maximin of level-

α”.34 The efficient score test is asymptotically maximin of level-α under the assumptions

in section 1.3.1, provided that Hη is a linear subspace and rank(Ĩγ) > 0.

Corollary 1.3.9. Suppose that assumptions M, LAN, CM(ii), E and R hold, with γn =

(θ0, ηn) → (θ0, η) = γ. Additionally suppose that Hη is a linear subspace of H ,

r := rank(Ĩγ) > 0 and α ∈ (0, 1). Then the sequence of tests (φn,θ0)n∈N is asymptotically

maximin of level-α for the hypothesis H0 : θ = θ0 against H1 : θ 6= θ0 over all compacts,

in the sense that for any compact Ka ⊂Ma

lim
n→∞

inf
(τ,h)∈Ka

Pnγn,τ,hφn,θ0 = 1− P
(
χ2
r(a) ≤ cr,α

)
. (1.18)

There are two key takeaways from this result. Firstly, when the efficient information matrix

is rank deficient, the efficient score test continues to enjoy non-trivial power in certain

directions.35 Secondly the power it achieves is – in a certain sense – optimal.36

33For details of the construction of the sequence of experiments used to establish this result see appendix section
B.

34Cf. Section 13.5.3 of Lehmann and Romano (2005) for the terminology
35This is demonstrated in a specific example in section 1.5.5.
36Nevertheless, if one has a particular direction against which one wishes to direct power, or – more generally

– a weighting function over alternatives, a criterion based on weighted average power would seem more
appropriate. Cf. e.g. Elliott et al. (2015); Montiel Olea (2020).
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1.3.4. Sufficient conditions for the assumptions

In the i.i.d. setting it is well known that differentiability in quadratic mean (e.g. van der

Vaart, 2002, Definition 1.6) is a sufficient condition for a LAN expansion like that in

equation (1.5) with a fixed γ ∈ Γ (e.g. Bickel et al., 1998; Le Cam and Yang, 2000; van der

Vaart, 2002). In the setting of interest here, a suitably adapted version of this condition also

suffices for assumption LAN.37

Assumption DQM (Differentiability in quadratic mean). Let (γn)n∈N be a sequence in Γ

which converges to a point γ ∈ Γ and Hη a subset of a Banach space, H , which includes 0.

For any sequence τn → τ with each τn, τ ∈ Rdθ , any sequence hn → h with hn, h ∈ Hη,

a convergent sequence of dθ × dθ matrices δn and sequences ηn(hn) → η with each

ηn(hn) ∈ H, define γn(τn, hn) as in assumption LAN and suppose that

1. the sequence (Pγn(τn,hn))n≥1 is (eventually) in P ,

2. for some sequence of measurable functions (gn)n∈N such that (g2
n)n∈N are uniformly

Pγn-integrable and Pγngn = o(n−1/2),

∫ [√
n(
√
pγn(τn,hn) −

√
pγn)− 1

2
gn
√
pγn

]2

dν → 0. (1.19)

�

Proposition 1.3.10. Suppose assumptions M and DQM hold. Moreover suppose that for a

sequence of functions ( ˙̀
γn)n∈N with each ˙̀

γn ∈ L0
2(Pγn) and a sequence of linear maps

(Bγn)n∈N with each Bγn : Hη → L0
2(Pγn),

Pγn

[
τ ′ ˙̀γn +Bγnh− gn

]2
→ 0.

Then assumption LAN holds.

The addtional condition in the display in proposition 1.3.10 allows DQM to be shown with

any sequence gn such that the L2 distance between gn and the scores τ ′ ˙̀γn +Bγnh vanishes

as n→∞.

I next record two conditions useful for checking the integral convergence required in CM(ii),

once the uniform square Pγn-integrability has been established. The first can be obtained

as an immediate corollary of a (stronger) result of Feinberg et al. (2016), who establish a

uniform (over Borel sets) version of the integral convergence. The second is effectively

the standard result that weak convergence and uniform integrability imply convergence of
37Results of this nature are known to hold see e.g. Strasser (1985, Chapter 74) or van der Vaart (1988b, A.2). I

provide this formulation to facilitate the demonstration of the version of LAN assumed in this paper.
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moments, where the condition of continuous convergence is imposed to ensure the weak

convergence of the appropriate laws.

Lemma 1.3.11. Suppose that (Pn)n∈N is a sequence of probability measures which

converges in total variation to P .38 If (fn)n∈N is a sequence of functions in L1(Pn) such

that (a) fn
P−→ f ∈ L1(P ) and (b) (fn)n∈N is uniformly Pn-integrable, then Pnfn → Pf .

Lemma 1.3.12. Let S be a metric space and suppose that (Pn)n∈N is a sequence of

measures on (S,B(S)) which converge weakly to P . Suppose that (fn)n∈N is a sequence

of real-valued functions with each fn ∈ L1(Pn) which (a) converge continuously to

f ∈ L1(P ) and (b) are uniformly Pn-integrable.39 Then Pnfn → Pf .

Assumption R requires the estimate of the efficient information matrix, În,θn , to have the

same rank as Ĩγ with Pγn-probability approaching one. The following construction is

sufficient to guarantee this; it requires knowledge of the rate of convergence to zero of

the difference (in the spectral norm) of an estimator Ǐn,θn and a matrix In where In → Ĩγ
and rank(In) = rank(Ĩγ) for all sufficiently large n. As there is nothing special about the

limit being the efficient information matrix here, the construction is given more generally.40

In particular, suppose that the sequence of (random) positive semi-definite (symmetric)

matrices (M̌n)n∈N (of fixed dimension L× L) satisfy

Pn
(
‖M̌n −Mn‖2 < νn

)
→ 1, (1.20)

for a sequence (Pn)n∈N of probability measures, a known non-negative sequence νn → 0

and a sequence of deterministic matrices Mn → M with rank(Mn) = rank(M) for all

sufficiently large n.41 Let M̌n = ǓnΛ̌nǓ
′
n be the corresponding eigendecompositions and

define

M̂n := ǓnΛn(νn)Ǔ ′n , (1.21)

where Λn(νn) is a diagonal matrix with the νn-truncated eigenvalues of M̌n on the main

diagonal and Ǔn is the matrix of corresponding orthonormal eigenvectors. That is, if

(λ̌n,i)
L
i=1 denote the non-increasing eigenvalues of M̌n, then the (i, i)-th element of Λn(νn)

is λ̌n,i1(λ̌n,i ≥ νn).

Proposition 1.3.13. If (1.20) holds, Mn → M and for all n greater than some N ∈ N
38Each Pn and P are defined on a common measurable space (S,B(S)).
39Continuous convergence requires fn(sn) → f(s) for all (sn)n∈N ⊂ S with sn → s ∈ S. Here this is

equivalent to compact convergence of the fn to a continuous limit f (cf. Remmert, 1991, Chapter 3, §1,
Section 5).

40A similar construction appears as part of Theorem 2 in Lee and Mesters (2022a). If the (non-zero) eigenvalues
of Ĩγ can be computed, a simpler truncation approach can be utilised, cf. Proposition 2 in Lütkepohl and
Burda (1997).

41(1.20) is implied by ‖M̌n − Mn‖ = oPγn (νn) for any matrix norm. Moreover, the existence of such a
sequence (νn)n∈N is guaranteed if ‖M̌n −Mn‖2 → 0 in Pn-probability, however its explicit knowledge is
necessary to perform the subsequent construction.

24



rank(Mn) = rank(M), then M̂n
Pn−−→M and

Pn

(
rank(M̂n) = rank(M)

)
→ 1, (1.22)

where M̂n is defined as in (1.21).

Assumption T. Let (γn)n∈N be a sequence in Γ with a limit γ ∈ Γ, (Ĩn)n∈N a deterministic

sequence of matrices with Ĩn → Ĩγ and rank(Ĩn) = rank(Ĩγ) for all n exceeding some

N ∈ N and suppose that the sequence (Ǐn,θn)n∈N satisfies

Pγn

(
‖Ǐn,θn − Ĩn‖2 < νn

)
→ 1. (1.23)

�

Corollary 1.3.14. If assumption T holds, the estimate În,θn formed by truncating the

eigendecompositions of Ǐn,θn at νn, as in (1.21), satisfies equation (1.7) and assumption

R.

In practice equation (1.23) is likely to be established by demonstrating that ‖Ǐn,θn − Ĩn‖ =

oPγn (νn).42 As this condition concerns only asymptotic behaviour, there is wide scope for

different possible sequences which have the same asymptotic behaviour but rather different

behaviour in finite samples. Simulation experiments designed to replicate various possible

DGPs for the case under consideration may provide some guidance.

1.4. Single index model

In this section I provide details of the application of the theory of section 1.3 to a more

general version of the single index model in example 1.

Consider the single index (regression) model (SIM), where W = (Y,X) with

Y = f(X1 +X ′2θ) + ε, E[ε|X] = 0, (1.24)

for X = (X1, X2) ∈ RK a vector of covariates such that (ε,X) ∼ ζ for some Lebesgue

density ζ and some unknown link function f .43 As recorded in Theorem 2.1 of Horowitz

(2009), f and θ are identified in this model if f is differentiable, not constant on the support

of X1 + X ′2θ and the support of X is not contained in a proper linear subspace of RK .

By utilising the inferential approach developed in section 1.3, this section provides an
42For any matrix norm ‖ · ‖.
43This particular specification of the single index model is relatively simple. More complex versions of this

model (e.g. with a more general index specification or a linear component Z′ξ) could be analysed using
similar techniques. The form used here is deliberately chosen to retain only the key aspect of the model
relevant to this paper: that θ may be unidentified or weakly identified for certain values of f , an infinite
dimensional nuisance parameter.
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inferential approach for θ in model (1.24) which is robust to failure of these assumptions,

and – perhaps more importantly – robust in a setting where f is relatively flat when

compared with sampling variation, leading to weak identification of θ.

The first step of the analysis is to formally specify the model under consideration and

establish some primitive assumptions under which the results will be obtained. The basic

model setup is given by the following assumption.

Assumption SIM. Suppose that W = (Y,X) ∈ R1+K satisfies (1.24) and

1. Θ ⊂ Rdθ is open,

2. (ε,X) ∼ ζ where ζ ∈ Z ,

3. f ∈ F ,

where Z and F are defined as follows. Let X ⊂ RK be closed, φ(ε,X) :=
∂ log ζ(e,X)

∂e (ε,X) the log-density score in the first argument of ζ and ρ > 0. Then Z is

the collection:

Z :=

{
ζ ∈ L1(R1+K) : ζ ≥ 0,

∫
R×X

ζ dλ = 1, if (e, Z) ∼ ζ then (1.26), ζ satisfies (1.25)
}
,

where L1(R1+K) is the space of Lebesgue integrable functions on R1+K and

e 7→
√
ζ(e,X) is continuously differentiable λ− a.e., (1.25)

E[ε|X] = 0, E[(φ(ε,X)2+ρ + 1)‖X‖2+ρ
2 ] <∞, E[XX ′] � 0. (1.26)

F := C1
b (D) is the class of functions which are bounded and continuously differentiable

with bounded derivative λ-a.e. on D := {X1 +X ′2θ : θ ∈ Θ, x ∈X }.

The model is given by P = {Pγ : γ ∈ Γ} for Γ = Θ × H with H = F × Z

where each Pγ is the probability measure on R1+K corresponding to the Lebesgue density

pγ(W ) = ζ(Y − f(X1 +X ′2θ), X). �

Part 2 of the preceding assumption restricts the class of density functions which govern the

distribution of the error term and covariates in (1.24). The key restrictions it imposes are (a)

the required conditional mean restriction E[ε|X] = 0, (b) the existence of some moments

of specific functions of the data, and (c) a smoothness condition on the density function.

Part 3 restricts the link function f to belong to a specified class of functions; the restrictions

imposed on f by this assumption are relatively weak and common in the literature on single

index models.44 Note that these restrictions do not rule out f being constant on D : if

f(v) = c for all v ∈ D and some c ∈ R, f ∈ F .

44Cf. Assumption 4.1 in Newey and Stoker (1993); Assumptions A0 – A2 in Kuchibhotla and Patra (2020).
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1.4.1. Verification of the modelling assumptions

Given a random sample (Wi)
n
i=1 satisfying assumption SIM, assumption M holds. To

establish assumptions LAN and CM(ii) I first need to specify the local perturbations to

the nuisance parameter η for which the quadratic approximation will hold.

The considered local perturbations to the nuisance parameters take the form

ηn(h) := (f + tnh1, ζ(1 + tnh2)) , tn = n−1/2, (1.27)

with h1 ∈ Ḟ := C1
b (D), the set of real valued functions on R which are continuously

differentiable and bounded λ-a.e. on D , and h2 ∈ Żη where

Żη :=
{
h2 ∈ C1|1

b (R1+K) : E[h2(ε, Z)] = 0, E[εh2(ε,X)|X] = 0 if (ε,X) ∼ ζ
}
,

for C1|1
b (R1+K) is the space of functions h2 : R1+K → R which are bounded λ-a.e.

and such that e 7→ h2(e,X) is continuously differentiable with bounded derivative λ-

a.e.. The perturbation directions for η are Hη := Ḟ × Żη which is a linear subspace

of L∞(λ) × L∞(G) =: H , for λ the Lebesgue measure on R. Equip H with the norm

‖h‖ = ‖h1‖λ,∞ + ‖h2‖G,∞.

I now establish that the model is differentiable in quadratic mean and hence (by Proposition

1.3.10) locally asymptotically normal.

Proposition 1.4.1. Suppose that assumption SIM holds, θn → θ ∈ Θ and η ∈ H and

consider the sequence defined by γn = (θn, η) ∈ Γ. Let δn = I/
√
n, τn → τ , hn ∈ Hη

with hn → h ∈ Hη and define ηn : Hη → H as in (1.27). Then assumption DQM holds

with score functions gn = τ ˙̀
γn +Bγnh where for Vθn := X1 +X ′2θn, en := Y − f(Vθn),

˙̀
γn(W ) := −φ(en, X)f ′(Vθn)X2

[Bγnh](W ) := −φ(en, X)h1(Vθn) + h2(en, X).

The efficient score function for this model was derived by Newey and Stoker (1993) and is

given in the following Proposition.

Proposition 1.4.2. Consider the sequence (γn)n∈N of Proposition 1.4.1, suppose that

assumption SIM holds and

E[εφ(ε,X)|X] = −1, E[φ(ε,X)2|X] < C <∞, 0 < c < E[ε2|X] < C <∞.
(1.28)

Additionally suppose there exists a function m̃ : R→ R which is bounded and continuously

differentiable with bounded derivative such that E[εm̃(ε)|X] is bounded away from zero

uniformly in X . Then assumption CM(ii) holds and for ω(X) := E[ε2|X]−1 the efficient
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score function is

˜̀
γn := ω(X)(Y − f(Vθn))f ′(Vθn)

[
X2 −

E [ω(X)X2|Vθn ]

E [ω(X)|Vθn ]

]
.

The (conditional) moment conditions in (1.28) are standard. The first is a particular case

of the (conditional) generalised information equality; it will hold provided differentiation

and integration can be interchanged appropriately. The second and third provide uniform

bounds on some conditional expectation functions. Existence of the function m̃ is a weak

condition; see Assumption 4.2 and the subsequent discussion in Newey and Stoker (1993,

p. 1210).

1.4.2. Implementation of the efficient score test

I now consider estimation of the efficient score function just described in order to satisfy

assumptions E and R. Estimation in the (conditionally) heteroskedastic case introduces

technical difficulties which are essentially unrelated to the problem studied in this paper

and therefore I initially focus on the (conditionally) homoskedastic case and subsequently

note that this belongs to a more general class of statistics which remain robust under

heteroskedasticity though are typically not power optimal.45

Suppose that σ2 := E[ε2|X] = E[ε2] > 0. Under this simplification, the efficient score

function is:
˜̀
γn := σ−2(Y − f(Vθn)f ′(Vθn) [X2 − Z(Vθn)] ,

where Z(Vθn) := E [X2|Vθn ].

To estimate the nonparametric parts of the efficient score function I will use split-sample

estimators. Let N (1) = {1, . . . , bn/2c} and N (2) = [n] \N (1). For i ∈ [n] let N−i denote

whichever of N (1) or N (2) that does not contain i. The class of estimators considered have

the following form:

f̂n,i := f̂n(Vθn,i) := f̌n(Vθn,i, ξ̂1,n,i) ξ̂1,n,i := ξ1,n((Wj)j∈N−i),

f̂ ′n,i := f̂ ′n(Vθn,i) := qf ′n(Vθn,i, ξ̂2,n,i) ξ̂2,n,i := ξ2,n((Wj)j∈N−i),

Ẑn,i := Ẑn(Vθn,i) := Žn(Vθn,i, ξ̂3,n,i) ξ̂3,n,i := ξ3,n((Wj)j∈N−i),

(1.29)

where each ξ̂j,n,i is a (random) vector whose dimension may increase with the sample size.

This class of estimators includes, for example, series estimators (of conditional moment

functions and their derivatives) as considered by e.g. Newey (1997); Belloni et al. (2015);
45The class contains a member which achieves the power bound under appropriate conditions but is not feasible

as it requires knowledge of the optimal weighting function ω(X). Cf. the approach taken for estimation in
Ichimura (1993).
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Chen and Christensen (2015); Cattaneo et al. (2020).46 In this case, e.g. f(Vθn) is the

conditional expectation of Y given Vθn and estimates of f(Vθn,i) and f̂ ′(Vθn,i) can be given

as

f̂n(Vθn,i) = f̌n(v, ξ̂1,n,i) = qn(Vθn,i)
′ξ̂1,n,i, f̂ ′n(Vθn,i) = qf ′n(Vθn,i, ξ̂2,n,i) =

[
q′n(Vθn,i)

]′
ξ̂2,n,i,

where qn is a Kn-vector of basis functions from R→ R, q′n their derivatives and

ξ̂1,n,i = ξ̂2,n,i =

 ∑
j∈N−i

qn(Vθn,j)qn(Vθn,j)
′

−1 ∑
j∈N−i

qn(Vθn,j)Yj

 .

Similar estimators can be constructed for Z(Vθn) which is the conditional expectation of

X2 given Vθn .

Given such estimators I form an estimate of σ2 as

σ̂2
n :=

1

n

n∑
i=1

(Yi − f̂n,i)2,

and the estimates

ˆ̀
n,θn(Wi) := σ̂−2

n

(
Yi − f̂n,i

)
f̂ ′n,i

[
X2,i − Ẑn,i

]
, Ǐn,θn :=

1

n

n∑
i=1

ˆ̀
n,θn(Wi)ˆ̀

n,θn(Wi)
′.

(1.30)

Let În,θn be the eigendecomposition-truncated version of Ǐn,θn at νn (analogously to

(1.21)), where (νn)n∈N is a non-negative sequence converging to zero. With these

estimators assumptions E and R can be shown to hold under conditions on the sequence

(νn)n∈N and the following high-level condition which assumes certain (probabilistic) rates

of convergence hold for

R1,n,i :=

(∫ [
f̌n(v, ξ̂1,n,i)− f(v)

]2
dVn(v)

)1/2

,

R2,n,i :=

(∫ [
qf ′n(v, ξ̂2,n,i)− f ′(v)

]2
dVn(v)

)1/2

,

R3,n,i :=

(∫ ∥∥∥Žn(v, ξ̂3,n,i)− Z(v))
∥∥∥2

2
dVn(v)

)1/2

,

where Vn is the distribution of Vθn .

Assumption SIM-NP(i). Suppose that X is a compact set, equation (1.28) holds, σ2 :=

E[ε2|X] = E[ε2], E[ε4] < ∞ and with Pγn-probability approaching one for l ∈ [3] and

each i ∈ [n],Rl,n,i ≤ rn = o(n−1/4). �

The rates in assumption SIM-NP(i) are attainable under reasonable regularity conditions.
46This class of estimators also includes, for example, kernel estimators.
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For example, series (linear sieve) estimators of f , f ′ and Z can attain these rates given

sufficient smoothness of the target function and other regularity conditions. See, inter alia,

Belloni et al. (2015); Chen and Christensen (2015); Cattaneo et al. (2020); Huang and Su

(2021). This assumption is sufficient for the estimator of σ−2 to be
√
n-consistent.

Lemma 1.4.3. Suppose that assumption SIM holds and σ2 := E[ε2|X] = E[ε2] ∈ (0,∞)

and let (γn)n∈N be as in Proposition 1.4.1. If E[ε4] < ∞ and with Pγn-probability

approaching one,R1,n,i ≤ rn = o(n−1/4), then
√
n(σ̂−2

n − σ−2) = OPγn (1).

In the general, heteroskedastic, case I consider a related estimator, where – as in Ichimura

(1993) – a known weighting function ω̆(X) is utilised in place of the unknown ω(X). In

particular, I estimate the function

˘̀
γn(W ) := ω̆(X)(Y − f(Vθn))f ′(Vθn)

[
X2 −

E [ω̆(X)X2|Vθn ]

E [ω̆(X)|Vθn ]

]
.

Clearly if ω̆ = ω, ˘̀
γn coincides with the efficient score function and hence power

optimality results are available if the conditions outlined in section 1.3 hold. In the case

where ω̆ 6= ω the resulting statistic will not be power optimal, but will retain the locally

uniform size control properties of the efficient score statistic.

In the heteroskedastic case, I replace the function Z(Vθn) := E[X2|Vθn ] with

Z1(Vθn)/Z2(Vθn) where Z1(Vθn) := E[ω̆(X)X2|Vθn ] and Z2(Vθn) := E[ω̆(X)|Vθn ]. Let

f̂n,i and f̂ ′n,i be as in (1.29) and similarly define

Ẑ1,n,i := Ẑ1,n(Vθn,i) := Ž1,n(Vθn,i, ξ̂3,n,i) ξ̌3,n,i := ξ3,n((Wj)j∈N−i)

Ẑ2,n,i := Ẑ2,n(Vθn,i) := Ž2,n(Vθn,i, ξ̂4,n,i) ξ̌4,n,i := ξ4,n((Wj)j∈N−i).
(1.31)

With these estimates I can form an estimate of ˘̀
γn and Υγn := Pγn

˘̀
γn

˘̀′
γn according to

ˇ̀
n,θn(Wi) := ω̆(Xi)

(
Yi − f̂n,i

)
f̂ ′n,i

[
X2,i −

Ẑ1,n,i

Ẑ2,n,i

]
, Υ̂n,θn :=

1

n

n∑
i=1

ˇ̀
n,θn(Wi)ˇ̀

n,θn(Wi)
′.

(1.32)

Let Υ̌n,θn be the eigendecomposition-truncated version of Υ̂n,θn at νn (analogously to

(1.21)). The test statistic that will be used in this case (for testing a two-sided hypothesis) is

Šn,θ :=
(√
nPn ˇ̀

n,θ

)′
Υ̌†n,θ

(√
nPn ˇ̀

n,θ

)
, (1.33)

with the test and confidence then being defined analogously to (1.10) and (1.11) with Šn,θ
in place of Ŝn,θ. Denote these respectively by φ̌n,θ0 and Čn. This test will be called the
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“pseudo efficient score test” in what follows. Let R̆l,n,i := Rl,n,i for l = 1, 2 and define

R̆3,n,i :=

(∫ ∥∥∥Ž1,n(v, ξ̂3,n,i)− Z1(v))
∥∥∥2

2
dVn(v)

)1/2

R̆4,n,i :=

(∫ (
Ž2,n(v, ξ̂4,n,i)− Z2(v))

)2
dVn(v)

)1/2

.

In the heteroskedastic case, assumption SIM-NP(i) is replaced by the following assumption:

Assumption SIM-NP(ii). Suppose that X is a compact set, equation (1.28) holds, E[ε4] <

∞, ω̆ : RK → (ω,ω) is a known function and with Pγn-probability approaching one for

l ∈ [4] and each i ∈ [n], R̆l,n,i ≤ rn = o(n−1/4). �

The rates required by this assumption are attainable under reasonable regularity conditions;

cf. the discussion following assumption SIM-NP(i).

1.4.3. Asymptotic properties

I start by detailing the asymptotic properties of the efficient score statistic in the

homoskedastic case.

Proposition 1.4.4. Suppose that assumptions SIM, SIM-NP(i) hold and there exists a

function m̃ as in Proposition 1.4.2. Consider the sequence (γn)n∈N of proposition 1.4.1,

suppose the observations form an i.i.d. sample and ˆ̀
n,θn and În,θn are as in (1.30), with

0 ≤ νn → 0 such that rn + n−1/2 log(n)1/2+κ = o(νn) for some κ > 0. Then assumptions

M, LAN, CM(ii), E and R hold.

With the estimators ˆ̀
n,θn and În,θn the efficient score statistic, test and confidence set can

be defined as in section 1.3.2. The following results demonstrate that the efficient score test

is optimal under strong-identification asymptotics and provides robust size control and the

corresponding confidence sets robust coverage, including under asymptotics in which the

function f is local to a constant (function) at rate
√
n, corresponding to a setting where θ is

weakly identified.

Corollary 1.4.5. In the setting of Proposition 1.4.4, let H ′η be a compact subset of Hη.

Then, the efficient score test satisfies

lim sup
n→∞

sup
h∈H′η

Pnγn,0,hφn,θ0 ≤ α,

and, for any compact Θ′ ⊂ Θ, the corresponding test inversion confidence sets satisfy

lim inf
n→∞

inf
θ∈Θ

inf
h∈H′η

Pnγn,0,h(θ ∈ Ĉn) ≥ 1− α.
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Corollary 1.4.6. In the setting of Proposition 1.4.4, suppose additionally that rank(Ĩγ) >

0. If dθ = 1, then the efficient score test is locally asymptotically uniformly most powerful

unbiased. If dθ > 1, then the efficient score test is locally asymptotically maximin.

I now establish a similar uniform size control result for the heteroskedastic case, with the

psuedo efficient score test defined immediately following (1.33).

Proposition 1.4.7. Suppose that that assumptions SIM, SIM-NP(ii) hold and there exists a

function m̃ as in Proposition 1.4.2. Consider the sequence (γn)n∈N of proposition 1.4.1,

suppose the observations form an i.i.d. sample and ˇ̀
n,θn and Υ̌n,θn are as in (1.32), with

0 ≤ νn → 0 such that rn + n−1/2 log(n)1/2+κ = o(νn) for some κ > 0. Let H ′η be a

compact subset of Hη. Then, the psuedo efficient score test satisfies

lim sup
n→∞

sup
h∈H′η

Pnγn,0,hφ̌n,θ0 ≤ α,

and, for any compact Θ′ ⊂ Θ, the corresponding test inversion confidence sets satisfy

lim inf
n→∞

inf
θ∈Θ

inf
h∈H′η

Pnγn,0,h(θ ∈ Čn) ≥ 1− α.

I remark here that if ω̆ = ω then each ˘̀
γn = ˜̀

γn . In this situation, if the rank of Υγ = Ĩγ is

positive, then in the setting of Proposition 1.4.7 the (pseudo) efficient score test is is locally

asymptotically uniformly most powerful unbiased if dθ = 1 and locally asymptotically

maximin if dθ > 1. However, as this is infeasible in the heteroskedastic case, I do not state

a formal power result.

1.4.4. Simulation study

I conduct a simulation study to examine the finite sample properties of the efficient score

test. I draw n ∈ {200, 400, 600, 800} samples from model (1.24) for a number of different

functions f and distributions ζ. I set K = 1 throughout and examine finite sample size

using 5000 Monte Carlo replications, at a nominal level of 5%. In each case I test the null

H0 : θ = 1.

Overall the simulation experiments suggest the asymptotic results of section 1.4.3 provide

a good guide to the performance of the efficient score test (and psuedo efficient score test)

in finite samples.

Homoskedastic case

Initially I consider the homoskedastic case. The error term is taken as either (1) ε ∼ N (0, 1)

or (2) ε|ξ ∼
√

5(−1)ξ Beta(2, 3), ξ ∼ Bernoulli(1/2). In both cases Eε = 0 and Vε = 1.
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The covariates are drawn as either (a)Xk = Zk or (b)X = (Z1, 0.2Z1+0.4Z2+0.8) where

Zk ∼ U(−1, 1) for k = 1, 2. The link functions considered take the form f(v) = δf?(v)

for f? ∈ {v 7→ c1(1 + exp(−v))−1, v 7→ c2 exp(−v2), v 7→ c3v
2}, δ ∈ (0, 1).47 Each of

these functions has a different shape; the scalars ci (i = 1, 2, 3) vary across the functions

f? and distributions for X and are chosen so that the variance of f?(Vθ) equals 4 under H0:

θ = 1, whilst δ is taken the same for all functions and used to scale this variance.48

To examine the finite sample size of the proposed test, the efficient score function and

efficient information matrix are estimated as in (1.30), with split-sample (penalised)

smoothing cubic B-splines used to estimate each of f̂ , f̂ ′ and Ẑ.49 I truncate the efficient

information matrix at machine precision. Additionally I consider a Wald statistic estimated

using an Ichimura (1993) style estimator, which uses the same estimates of f̂ , f̂ ′ and Ẑ as

the efficient score statistic.50 The finite sample empirical rejection frequencies are reported

in tables D.1 - D.4. In all specifications considered the efficient score provides good size

control, whereas the Wald statistic based on the Ichimura (1993) type estimator described

above displays substantial over-rejection, particularly for small δ.

To analyse the finite sample power of the efficient score test I consider the finite sample

rejection frequency of the efficient score test of θ = 1 for a grid of values around

θ. Specifically, I take 21 equally spaced values between 0.875 and 1.125 and all other

parameters are the same as for the simulations used to investigate finite sample size. Figures

D.5 - D.8 plot the finite sample power function of the efficient score test, which demonstrate

that – as expected – higher δ leads to higher power for the same distance from the null.

Heteroskedastic case

I now consider the heteroskedastic case. I consider two specifications for the error term:

(1) ε ∼ N (0, s1 log(2 + (X1 + X2θ)
2)) and (2) ε ∼ N (0, s2(1 + 5 sin(X2)2)) where the

constants si (i = 1, 2) are chosen such that in each case V(ε) = 1 (unconditionally) under

H0 : θ = 1.51 The distributions for the covariates and the link functions used are the same

as in the homoskedastic case.

To examine the finite sample size of the proposed test, the pseudo-efficient score function

and its variance matrix are estimated as in (1.32) with split-sample (penalised) smoothing

cubic B-splines used to estimate each of f̂ , f̂ ′, Ẑ1 and Ẑ2.52 As in the homoskedastic case
47The first of these is the standard Logistic CDF.
48The scaling constants c are calculated in closed form for the case (a) with X = (Z1, Z2). In the correlated

case (b), evaluation of the integrals becomes substantially more complex and so simulated values are used,
based on 10,000,000 draws.

49In particular I use the smooth.spline function in R with its default knot choice and penalty settings.
50This approach estimates θ by minimising the criterion θ 7→ 1

n

∑n
i=1(Yi− f̂n,i(Vθ))2; the estimates of f̂ ′ and

Ẑ are necessary to construct the asymptotic variance.
51These are determined by simulation with 10,000,000 draws.
52See footnote 49.
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I truncate the variance matrix at machine precision. Additionally I consider a Wald statistic

estimated using an Ichimura (1993) style estimator, which uses the same nonparametric

estimates as the psuedo-efficient score statistic.53

The finite sample rejection frequencies with ω̆(X) is taken as the infeasible truth ω(X)

are reported in tables D.5 - D.8, whilst tables D.9 - D.12 report the finite sample size

where ω̆(X) = 1. The results demonstrate qualitatively the same conclusions as the

homoskedastic case, with the pseudo efficient score statistic always providing good size

control, unlike the Wald statistic, which displays large over-rejection, particularly for small

δ.

As in the homoskedastic case, to analyse the finite sample power of the pseudo efficient

score test I consider the finite sample rejection frequency of the efficient score test of θ = 1

for a grid of values around θ. As in the homoskedastic case, I consider 21 equally spaced

values between 0.875 and 1.125 with all other parameters the same as for the simulations

used to investigate finite sample size. Figures D.9 - D.12 plot the finite sample power

curves. Similar observations apply as in the homoskedastic case, with higher δ leading

to higher power for a given distance from the null. Moreover, as expected, the optimal

(but infeasible) weighting scheme delivers higher power, though the difference seems to be

relatively small for the designs considered.

1.5. Linear simultaneous equations models

In this section, I work out the details of the application of the theory developed in section 1.3

to a class of linear simultaneous equations models (LSEMs) where identification is based on

an assumption of mutually independent and non-Gaussian errors. Under this assumption,

no external information (e.g. instrumental variables) is required in order to identify the

parameter of interest.

Consider the following linear simultaneous equations model (LSEM)

Y = RX + V, V = A(θ, σ)−1ε, Eε = 0,Vε = I, (1.34)

where the K components of ε are mutually independent, X = (1, X̃ ′)′ is a vector of

covariates independent of ε. R is a K ×L matrix of regression coefficients and A(θ, σ) is a

K×K invertible matrix. For later convenience I collect the Euclidean nuisance parameters

R and σ into one vector: β := (β′1, β
′
2)′ := (σ′, vec(R)′)′.

As is well known, in simultaneous equations models of this form the elements of the mixing

matrix,A(θ, σ), are not identified without further restrictions. However, if no more than one

53This approach estimates θ by minimising the criterion θ 7→ 1
n

∑n
i=1 ω̆(Xi)(Yi − f̂n,i(Vθ))2; the estimates

of f̂ ′, Ẑ1, Ẑ2 are necessary to construct the asymptotic variance.
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component of ε is Gaussian, the elements of the matrix A(θ, σ) are identified up to column

permutation and sign changes (Comon, 1994). Imposition of sign restrictions and labelling

of the shocks can then yield identification of the elements of A(θ, σ) which – assuming an

identifiable parametrisation – yields that of θ.

Nevetheless, the identifying assumption that no more than one component of ε is Gaussian

is not innocuous. In particular, depending on the parametrisation of the model, if this

assumption fails, θ may be underidentified or completely unidentified. Moreover, as

is typical in models with points of identification failure, the impact of the potential

identification problem here is not binary. “Weak non-Gaussianity”, where the error

distribution is sufficiently close to Gaussianity relative to sampling uncertainty, can cause

problems for inference methods which assume non-Gaussianity to obtain identification.54

In this section I extend the analysis of Lee and Mesters (2022a) to demonstrate that

inference based on the efficient score test is (i) robust to weak identification (in addition to

underidentification and complete unidentification) and (ii) minimax optimal if θ is identified

or underidentified.55

The first step of the analysis is to formally set up the model under consideration. Let η0

denote the (Lebesgue) density of X̃ and for each k = 1, . . . ,K let ηk be the (Lebesgue)

density of εk and define φk as the log-density scores, i.e. φk(e) := d log ηk(s)
ds (e). I will

require a number of moments of (functions of) ε and X̃ to satisfy certain conditions.56 In

particular, for each k ∈ [K] and some δ > 0

Eεk = 0, Eε2k = 1, E|εk|4+δ <∞, E|φk(εk)|4+δ <∞, Eε4k − 1 > (Eε3k)2, (1.35)

and

EX̃X̃ ′ � 0, E‖X̃‖4+δ
2 <∞. (1.36)

These moment restrictions are used to characterise the DGPs permitted by the model.

Specifically, the density functions ηk and η0 are assumed to belong (respectively) to the

sets G and Z which are defined as follows:

G :=

{
g ∈ L1(R) : g ≥ 0,

∫
g dλ = 1,

√
g ∈ C1(R), if εk ∼ g then (1.35)

}
, (1.37)

Z :=

{
g ∈ L1(RL−1) : g ≥ 0,

∫
g dλL−1 = 1, if X̃ ∼ g then (1.36)

}
, (1.38)

where L1(Rd) denotes the space of integrable functions on Rd with respect to the Lebesgue

measure (which is denoted by λd or λ if the dimension is clear from context) and C1(R)

54See Lee and Mesters (2022a) for simulation evidence of this phenomenon.
55Lee and Mesters (2022a) provide simulation evidence of a weak identification problem in this class of

models, but their theoretical work only considers robustness against fixed distributions under which θ may be
identified, underidentified or unidentified and does not cover weak identification.

56These conditions are the same as imposed in Lee and Mesters (2022a). Additionally I note that such fourth-
moment conditions are common for conducting inference on variance parameters (e.g. White, 1980).
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denotes the space of functions R→ R which are continuously differentiable λ-a.e.. Finally

the parameter β = (σ′, vec(R)′)′ is assumed to belong to B ⊂ Rdβ . I will consider

two restrictions on B. Firstly it will be permitted to be an (otherwise unrestricted) open

set. Alternatively – to explicitly handle the case of sign restrictions (or non-negativity

restrictions on variances) – it will be permitted to have the form

B = B1 ×B2, B1 =

dσ∏
l=1

B1,l, (1.39)

where B2 ⊂ RKL is open and each B1,l ⊂ R is either open or one of (−∞, 0] or [0,∞).

The assumptions imposed on the LSEM model (1.34) are summarised as follows:

Assumption LSEM. W = (Y, X̃) satisfies (1.34) where the K components of ε have

marginal densities ηk (k ∈ [K]). Let the density of X̃ be η0.57

1. Θ ⊂ Rdθ is an open set and B ⊂ Rdβ is either open or has the form B1×B2 where

these factors are as described following (1.39).

2. The components of ε are mutually independent and ε is independent of X .

3. ηk ∈ G for each k ∈ [K] and η0 ∈ Z , for G and Z defined in (1.37) and (1.38)

respectively.

4. The function (θ, σ) 7→ A(θ, σ) is continuously differentiable with l-th partial

derivative D1,l(θ, σ) and the functions (θ, σ) 7→ D1,l(θ, σ)A(θ, σ)−1 are Lipschitz

continuous.

The model is given by P = {Pγ : γ ∈ Γ = Θ × H} with H := B × Z ×∏K
k=1 G and

where each Pγ has (Lebesgue) density

pγ(W ) = |det(A(θ, σ))|
K∏
k=1

ηk(Ak[Y −RX])× η0(X̃). (1.40)

�

The moment and smoothness conditions imposed by part 3 of assumption LSEM are

reasonably weak, as are the smoothness conditions in 4. The independence in 2 is, however,

restrictive. Mutual independence of the components of ε is a testable assumption in

applications (Matteson and Tsay, 2017; Amengual et al., 2021). The independence of X̃

and ε could be replaced by a conditional moment restriction, for which the general approach

outlined in this paper would continue to hold, but the analysis below would need to be

redone under this alternative assumption, with the efficient score function taking a different

form.
57Each ηk is a density with respect to Lebesgue measure on the appropriate Euclidean space.
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1.5.1. Verification of the modelling assumptions

Assumption LSEM coupled with the assumption that the observed data comprises an i.i.d.

sample (Wi)
n
i=1 ensures that assumption M holds. I next show that assumption DQM holds,

which is sufficient to imply assumption LAN by proposition 1.3.10.

For any l ∈ [dθ + dσ] and any (k, j) ∈ [K]2, let ζl,k,j := [D1,l(θ, σ)]k[A
−1]′j . Additionally

writeD2,l for the derivative ofRwith respect to the l-th component of β2 = vec (R). C1
b (R)

denotes the space of functions R → R which are bounded, continuously differentiable and

have bounded derivatives λ-a.e. and Cb(RL) denotes the space of functions RL → R which

are bounded and continuous λL-a.e.. Define the sets Ġη,k and Żη as:

Ġη,k :=

{
hk ∈ C1

b (R) :

∫
hk dGk =

∫
hkιdGk =

∫
hkκdGk = 0

}
, (1.41)

Żη :=

{
h0 ∈ Cb(RL−1) :

∫
h0 dG0 = 0

}
(1.42)

where Gk is the measure on R corresponding to ηk (k ∈ [K]), G0 the measure on RL−1

corresponding to η0, ι denotes the identity function and κ(e) := e2 − 1. Let

Hη :=

dσ∏
l=1

Vl × RKL × Żη ×
K∏
k=1

Ġη,k ⊂ H := Rdβ × L∞(λL−1)×
K∏
k=1

L∞(λ), (1.43)

where each Vl = R if β is an interior point of B and otherwise (i) Vl = [0,∞) if B1,l =

[0,∞) and σl = 0 or (ii) Vl = (−∞, 0] if B1,l = (−∞, 0] and σl = 0. H is equipped with

the norm ‖h‖ := ‖b‖2 + ‖h0‖λL−1,∞ +
∑K

k=1 ‖hk‖λ,∞, for h = (b, h0, . . . , hK) ∈ H .58

Hη is a linear subspace of H whenever β is an interior point of B.

The sequences of base parameters considered are γn = (θn, η), with local perturbations of

the form θn + τn/
√
n→ θ with τn → τ and

ηn(hn) := (β1 + tnb1,n, β2 + tnb2,n, η0(1 + tnhn,0), η1(1 + tnhn,1), . . . , ηK(1 + tnhn,K))

(1.44)

with hn → h (all in Hη); note that ηn(hn)→ η.

The following proposition establishes the quadratic mean differentiability of the model and

hence LAN in view of Proposition 1.3.10.

Proposition 1.5.1. Suppose that assumption LSEM holds, θn → θ ∈ Θ and η ∈ H and

consider the sequence defined by γn = (θn, η) ∈ Γ. Let δn = I/
√
n, tn := n−1/2,

τn → τ , hn := (bn, hn,0, hn,1, . . . , hn,K) (with bn = (b′1,n, b
′
2,n)′), with hn → h, and define

ηn : Hη → H as in (1.44). Then assumption DQM holds, with gn := τ ′ ˙̀γn + Bγnh where

58Each of the factors defining H is a Banach space (with the corresponding norm as just indicated) and hence
the same is true of H when equipped with the indicated norm.
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for l = 1, . . . , dθ,

˙̀
γn,l(W ) :=

K∑
k=1

ζl,k,k,n(φk(An,kV )An,kV + 1) +
K∑

j=1,j 6=k
ζl,k,j,nφk(An,kV )An,jV

 ,
[Bγnh](W ) :=

dθ+db1∑
m=dθ+1

b1,m

K∑
k=1

ζm,k,k,n(φk(An,kV )An,kV + 1) +
K∑

j=1,j 6=k
ζm,k,j,nφk(An,kV )An,jV


+

K∑
k=1

φk(An,kV )

−An,k dβ∑
l=1

b2,lD2,lX

+ h0(X̃) +
K∑
k=1

hk(An,kV ),

with An := A(θn, σ), V := Y −RX .

In order to simplify the expression of the the efficient score function, I suppose the following

moment conditions on φk hold.

Eφk(εk) = 0, Eφk(εk)εk = −1, Eφk(εk)ε2k = 0, Eφk(εk)ε3k = −3. (1.45)

These moment conditions are weak; if (1.35) holds then a sufficient condition for (1.45) to

hold is that the tails of the densities satisfy ηk(x) = o(x−3).59

Proposition 1.5.2. Suppose that assumption LSEM and equation (1.45) hold and consider

the sequence (γn)n∈N of Proposition 1.5.1. Then assumption CM(ii) holds and (provided

the inverse in the subsequent display exists) the efficient score function, ˜̀
γn , is given by

˜̀
γn = ˜̀

γn,1 −
[
Pγn

˜̀
γn,1

˜̀′
γn,2

] [
Pγn

˜̀
γn,2

˜̀′
γn,2

]−1
˜̀
γn,2, (1.46)

where for l = 1, . . . , dθ, m = 1, . . . , db1 , s = 1, . . . , db2 , v := V −RX and µ := EX ,

˜̀
γn,1,l(W ) =

K∑
k=1

ζl,k,k,n (τk,1An,kV + τk,2κ(An,kV )) +
K∑

j=1,j 6=k
ζl,k,j,nφk(An,kV )An,jV


˜̀
γn,2,m(W ) =

K∑
k=1

ζm,k,k,n (τk,1An,kV + τk,2κ(An,kV )) +

K∑
j=1,j 6=k

ζm,k,j,nφk(An,kV )An,jV


˜̀
γn,2,db1+s(w) =

K∑
k=1

[−An,kD2,s] [(x− µ)φk(An,kV )− µ (ςk,1An,kV + ςk,2κ(An,kV ))] ,

and

τk := M−1
k

(
0

−2

)
, ςk := M−1

k

(
1

0

)
, with Mk :=

(
1 Pγn(An,kV )3

Pγn(An,kV )3 Pγn(An,kV )4 − 1

)
.

59See Lemma S8 in Lee and Mesters (2022b). Alternatively, these conditions will hold provided differentiation
and integration can be appropriately interchanged.
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The preceding proposition requires the inverse of the variance matrix of ˜̀
γn,2 to exist. This

is only necessary for the projection to be expressed in this precise form; if the matrix in

question is singular, one can drop linearly dependent (in L2(Pγn)) elements from ˜̀
γn,2 until

it is nonsingular. Additionally note that Mk is not indexed by n; under Pγn , An,kV ∼ ηk

and so the moments making up Mk are constant in n.

1.5.2. Implementation of the efficient score test

Next I impose conditions which are sufficient for the construction of estimates of the

efficient score function and efficient information matrix which satisfy assumptions E and R.

First, I suppose that there is an appropriate estimator of each log density score φk available.

Assumption DSE. Suppose that (βn)n∈N ⊂ B is a deterministic sequence with
√
n(βn −

β) = O(1). Let γ′n := (θn, βn, η), An := A(θn, β1,n) and Vn,i := Yi −RnXi. The array of

estimates (φ̂n,k(An,kVn,i))n∈N,i≤n satisfies

1

n

n∑
i=1

[
φ̂k,n(An,kVn,i)− φk(An,kVn,i)

]
Un,i = oPγ′n

(n−1/2)

1

n

n∑
i=1

([
φ̂n,k(An,kVn,i)− φk(An,kVn,i)

]
Un,i

)2
= oPγ′n

(ν2
n),

(1.47)

for any (Un,i)n∈N,i≤n such that for each n ∈ N, under Pγ′n , the Un,i ∈ L0
2(Pγ′n), are

i.i.d. with marginal distribution Gu and are independent of each An,kVn,j , and where

0 ≤ νn → 0 satisfies νn = o(νn) with

νn :=

n−1/2 log(n)1/2+ρ if δ ≥ 4

n(1−p)/(p) otherwise
, (1.48)

for p := min{1 + δ/4, 2} and some ρ > 0. �

Lee and Mesters (2022a, Appendix B) propose an appropriate estimator of φk using

cubic B-splines – based on the density score estimator of Chen and Bickel (2006) – and

demonstrate that it satisfies assumption DSE under assumption LSEM and some mild

additional restrictions on η.

Given such an estimator, φ̂n,k, of each φk and a ξn := (θn, βn), the efficient score functions

in Proposition 1.5.2 can be estimated by replacing each φk(Akv) with φ̂n,k(An,kVn,k) and
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replacing each τk, ςk and µ by their sample counterparts:

ˆ̀
ξn,1,l(Wi) :=

K∑
k=1

ζl,k,k,n (τ̂n,k,1en,k,i + τ̂n,k,2κ(en,k,i)) +

K∑
j=1,j 6=k

ζl,k,j,nφ̂n,k(en,k,i)en,j,i


ˆ̀
ξn,2,m(Wi) :=

K∑
k=1

ζm,k,k,n (τ̂n,k,1en,k,i + τ̂n,k,2κ(en,k,i)) +

K∑
j=1,j 6=k

ζm,k,j,nφ̂n,k(en,k,i)en,j,i


ˆ̀
ξn,2,db1+s(Wi) :=

K∑
k=1

[−An,kD2,s]
[
(Xi − X̄n)φ̂n,k(en,k,i)− X̄n (ς̂n,k,1en,k,i + ς̂n,k,2κ(en,k,i))

]
,

(1.49)

where en,k,i := An,kVn,i, X̄n := 1
n

∑n
i=1Xi and

τ̂n,k := M̂−1
n,k

(
0

−2

)
, ς̂n,k := M̂−1

n,k

(
1

0

)
, with M̂n,k :=

(
1 1

n

∑n
i=1 e

3
n,k,i

1
n

∑n
i=1 e

3
n,k,i

1
n

∑n
i=1 e

4
n,k,i − 1

)
.

In practice, β is unknown but estimates can be formed using a discretised version of an

estimator for β which is
√
n-consistent under Pγn . In model (1.34), β2 = vec (R) can be

estimated by OLS. Appropriate estimators of σ = β1 depend on the parametrisation of the

matrix A(θ, σ) but can usually be constructed from the sample analogue of the equality

E(V V ′) = A(θ, σ)−1(A(θ, σ)−1)′ for a given θ and estimate of R.60

Suppose β̂n is a
√
n-consistent estimate of β and let β̄n be the estimate which replaces β̂n

by the closest value in n−1/2CZdβ ∩B.61 Let ξ̄n := (θn, β̄n) and define the estimates

ˆ̀
n,θn := ˆ̀̄

ξn,1 −
[
Pn ˆ̀̄

ξn,1
ˆ̀′
ξ̄n,2

] [
Pn ˆ̀̄

ξn,2
ˆ̀′
ξ̄n,2

]−1
ˆ̀̄
ξn,2

Ǐn,θn := Pn ˆ̀̄
ξn,1

ˆ̀′
ξ̄n,1
−
[
Pn ˆ̀̄

ξn,1
ˆ̀′
ξ̄n,2

] [
Pn ˆ̀̄

ξn,2
ˆ̀′
ξ̄n,2

]−1 [
Pn ˆ̀̄

ξn,2
ˆ̀′
ξ̄n,1

]
,

(1.50)

and let În,θn be the eigendecomposition-truncated version of Ǐn,θn at νn analogously to

(1.21) (with νn as in assumption DSE).

1.5.3. Asymptotic properties

The following proposition demonstrates that the estimation procedure outlined in the

previous subsection satisfies the conditions required for the theory in section 1.3 to apply.

Proposition 1.5.3. Suppose that assumptions LSEM, DSE and equation (1.45) hold and

that the observations form an i.i.d. sample. Consider the sequence (γn)n∈N of Proposition

1.5.1. Suppose the inverse in (1.46) exists, θ 7→ rank(Ĩγ) is locally constant at γ, β̂n is a
√
n-consistent estimate for β under Pγn and ˆ̀

n,θn , În,θn are as in equation (1.50). Then

60Such initial estimators can often be refined by one step updates, see e.g. §25.8 in van der Vaart (1998).
61For an abritrary constant C > 0.
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assumptions M, LAN, CM(ii), E and R hold.62

The preceding proposition requires the rank of Ĩγ to be locally constant in θ at γ. This

reflects the situation under study in which the identification status of θ is determined by

η. Note that since the rank function is lower semi-continuous and non-negative integer

valued, there is always a small enough neighbourhood on which the rank is bounded below

by rank(Ĩγ). Therefore the force of the restriction is only that on some neighbourhood the

rank cannot strictly exceed rank(Ĩγ), which is evidently the case for full rank Ĩγ . For rank

deficient Ĩγ , the assumption has force.63

Given the definition of the efficient score and efficient information matrix estimators in

(1.50) and supposing the hypothesis of interest is two-sided, the efficient score statistic and

test can be defined as in equations (1.9) and (1.10). Since the required conditions have been

established above, the results on size and power of the efficient score test – as established

in section 1.3 – apply directly.

Corollary 1.5.4. In the setting of proposition 1.5.3, letH ′η be a compact subset ofHη. Then

the efficient score test satisfies

lim sup
n→∞

sup
h∈H′η

Pnγn,0,hφn,θ0 ≤ α,

and, for any compact Θ′ ⊂ Θ, the corresponding test inversion confidence sets satisfy

lim inf
n→∞

inf
θ∈Θ′

inf
h∈H′η

Pn(θ,η),0,h(θ ∈ Ĉn) ≥ 1− α.

Corollary 1.5.4 is the key results as regards robust inference in the presence of possible

weak under- or un-identification of θ, as may occur when the components of η are

sufficiently close to Gaussianity relative to the sample size. The results demonstrate that

the efficient score has correct asymptotic size uniformly over local perturbations of the

nuisance parameters and the corresponding (test inversion) confidence sets are uniformly

valid over compact subsets of Θ and local perturbations of the nuisance parameters.

As the perturbation sets Hη are linear spaces whenever β ∈ int B, if this condition holds

the efficient score test has optimality properties in the fully- and under- identified cases

Corollary 1.5.5. In the setting of proposition 1.5.3 suppose additionally that β is an

interior point of B and rank(Ĩγ) > 0. If dθ = 1, then the efficient score test is locally

asymptotically uniformly most powerful unbiased. If dθ > 1, then the efficient score test is

locally asymptotically maximin.

I next examine the finite sample performance of the efficient score test in two explicit
62Where the scores and paths in assumption LAN are as in proposition 1.5.1.
63From this discussion it is evident that an alternative way of stating this restriction would be that θ 7→ rank(Ĩγ)

is upper semi-continuous (or continuous) at γ.
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versions of the LSEM via two simulation studies. In the first study I consider a scalar

parameter and focus on potential weak identification as may occur under error distributions

close to Gaussianity. In the second I consider a two dimensional parameter which is

underidentified under Gaussianity.

1.5.4. Simulation study (i)

Consider model (1.34), with K = 2, L = 2 and let the mixing matrix A(θ, σ) be

A(θ, σ) =

[
σ−1

2 0

0 σ−1
3

][
1 −θ
−σ1 1

]
.

The null hypothesis under consideration is that H0 : θ = 0. When both ε1 and ε2 are close

to Gaussianity, θ in this model will be only weakly identified.

To shed light on the finite sample performance of the efficient score test, I draw 5000

samples from this model for a range of different sample sizes and distributions for the error

components ε1 and ε2. The X̃ variables are drawn as independent standard normals and

β1 = σ = (0.7, 1.0, 3.0), β2 = vec(R) = (1, 2,−1,−3/2)′ . Table D.13 tabulates the

considered error distributions for ε1 and ε2. 3 different distributions are considered for ε1
and 10 for ε2.64 In particular, I consider a fixed distribution for ε1 and examine the finite

sample behaviour of the efficient score test as the distribution of ε2 approaches Gaussianity,

starting from 3 non-Gaussian distributions, each with a different shape.

To implement the efficient score test, I estimate each φk using the B-spline based estimator

described in Appendix B of Lee and Mesters (2022a), which is adapted from a similar

estimator proposed by Chen and Bickel (2006).65 The remaining (Euclidean) nuisance

parameters are estimated in two ways: (i) β2 = vec(R) is estimated by OLS, with an

estimate of β1 recovered from the empirical variance matrix of the residuals Yi − R̂Xi. (ii)

These OLS-based estimates are used to estimate the efficient score function for β, and then

a one-step update is made based on this preliminary efficient score.66

With all the required nuisance parameters estimated, the efficient score function is

constructed as in equation (1.50), the efficient score statistic is conducted as in equation

(1.9) and the test performed as in equation (1.10) at a nominal level of 5%.67

The empirical rejection frequencies for the efficient score test conducted with (i) OLS-based

estimates of the Euclidean nuisance parameters and (ii) one-step updates of these estimates
64The density functions of these distributions are plotted in figures D.1 - D.3.
65In each simulation design, I use 6 cubic B-splines and set the upper and lower knots to be the 95th and

5th percentile of the samples, respectively adjusted up and down by log(logn), truncated at the maximum
(respectively minimum) sample value.

66I note that in the construction of the test θ is fixed throughout and so considered known.
67The information matrix eigenvalues are truncated at machine precision.
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are recorded in tables D.14 - D.16; each table corresponds to a different distribution for

ε1. The table of primary interest is table D.14, with ε1 ∼ N (0, 1) as this corresponds to

a potentially weakly identified setting. As this table demonstrates, the efficient score test

appears to demonstrate valid size control for all sample sizes and choices of η2 considered.

The version of the efficient score test with one-step updates provides reasonable size control,

though demonstrates slight over-rejection in a number of cases. This finding holds also in

each tables D.15 - D.16.

Tables D.14 – D.16 also contain size results for a number of alternative testing approaches.

Two are Wald and LM tests based on a pseudo-maximum likelihood approach, inspired

by the approach in Gouriéroux et al. (2017).68 Here, a density is chosen for each of the

error components and standard psuedo-maximum likelihood tests are performed. Following

Gouriéroux et al. (2017) I choose a (normalised) t(5) distribution for both ε1 and ε2 in this

simulation experiment. As might be expected, the Wald statistic does not control size at the

nominal level, displaying varying degrees of over-rejection (depending on η2) in table D.14.

Its performance in the settings recorded in tables D.15 and D.16 is mixed, demonstrating an

ability to control size when at least one psuedo-density is sufficiently close to the truth, and

substantial over-rejection otherwise. In contrast, the LM statistic (which imposes the null

value of θ) does correctly control size for each choice of η2 in tables D.14 – D.16.

The final two tests are Wald and LM tests based on a GMM framework in which higher

moments of the error terms are used to provide identifying information. The moments used

were drawn from Lanne and Luoto (2021).69 Specifically, the (nine) moment conditions

utilised are:

E[ε1X̃] = E[ε2X̃] = E[κ(ε1)] = E[κ(ε2)] = E[ε1ε2] = E[ε31ε2] = E[ε21ε
2
2 − 1] = 0.

Neither of these GMM based tests (based on these moments) achieve finite sample size close

to nominal in the simulation experiments, as can be seen in tables D.14 – D.16. In the latter

two tables, where weak identification is not present, the finite sample sizes of these tests

appear to be reducing towards the nominal level as n increases, but remain substantially

above the nominal level in each simulation design considered.

I perform a further simulation experiment based on this model to document the failure of

size control of the score test based on the score functions for the Euclidean parameters
68Gouriéroux et al. (2017) consider a similar problem but in a SVAR setting.
69Like Gouriéroux et al. (2017), Lanne and Luoto (2021) consider a SVAR setting.
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(θ′, β′1, β
′
2)′. The relevant scores take the form

˙̀
γ,l(W ) :=

K∑
k=1

ζl,k,k(φk(AkV )Ak + 1) +

K∑
j=1,j 6=k

ζl,k,jφk(AkV )AjV


˙̀
γ,m(W ) :=

K∑
k=1

[−AkDb,lX]φk(AkV ),

for l = 1, . . . , dθ, dθ + 1, . . . , dθ + dβ1 and m = dθ + dβ1 + 1, . . . , dθ + dβ1 + dβ2 .70

Let ˙̀1
γ denote the first dθ elements, and ˙̀2

γ the remainder. Let Ṡn,θ be the statistic formed

analogously to (1.9) but based on an estimated version of ˙̀1
γ− İ12İ

−1
22

˙̀2
γ , with İγ = Pγ ˙̀

γ
˙̀′
γ ,

rather than ˜̀
γ .

Since score functions have finite second moments,

√
nPn

[
˙̀1
γ − İ12İ

−1
22

˙̀2
γ

]
 N (0, İγ,11 − İγ,12İ

−1
γ,22İγ,21),

and hence if ˙̀
γ and İγ could be replaced by estimates with conditions analogous to those

in assumption E and R holding, the test based on Ṡn,θ would correctly control size.

Table D.17 demonstrates that this is not the case, with the efficient score based tests

controlling size, whilst the analogous tests based on ˙̀
γ (with the same estimator of φk)

do not.71 The key problem here is the bias caused by the regularised estimation of φk which

is present in the estimate of ˙̀
γ . This bias is removed by the orthogonal projection onto the

nuisance score space in the definition of ˜̀
γ .

Following the size results, I compared the power of the two efficient score tests to

that of the psuedo-ML based LM test which also was able to correctly control size in

all designs considered. Figures D.13 - D.15 plot the results, corresponding to ε1 ∼
{N (0, 1), t′(5), SN ′(0, 1, 4)} respectively where t′ and SN ′ denote the standardised

version of the indicated distribution.

These finite sample power curves show that the power provided by any of the tests

considered declines as the density η2 approaches Gaussianity, particularly in the potentially

weakly identified case where ε1 ∼ N (0, 1) (figure D.13) in which available power appears

low. In constrast, in figures D.14 and D.15 where there is no (weak) identification issue,

the efficient score tests apear to provide good finite sample power, with the version based

on one-step updated estimates providing slightly higher power. The pseudo-maximum

likelhood LM test also provides good power in cases where the chosen pseudo-densities

are close to the truth. In particular, it slightly exceeds the power of the efficient score tests

when ε2 has a (standardised) t distribution in figures D.13 and D.14. Nevertheless, the
70Cf. proposition 1.5.1.
71In this simulation design, ε1 and ε2 have the same distribution, and are at a fixed distance from Gaussianity

to focus on the problem of plugging in an estimate of a non-parametric parameter, rather than potential
identification problems.
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efficient score test is competitive and provides close to identical power in the first row of

figure D.14, despite the pseudo density matching the truth in the first panel. Moreover, in

cases where the psuedo-density is far from the truth, the power of the efficient score test

is substantially higher than that provided by the pseudo-ML LM test (see, in particular, the

third row of figure D.14 and each row of figure D.15).

1.5.5. Simulation study (ii)

In this second simulation study I consider the power available in a LSEM where the

structural parameter of interest is underidentified. Specifically suppose that the data satisfies

(1.34) where for θ = (a, b) with a 6= b and β1 = (σ1, σ2) ∈ (0,∞)2,

A(θ, β1) =

[
σ−1

1 0

0 σ−1
2

][
1 −a
1 −b

]
,

and there is one, zero-mean, unit variance X variable with coefficients R = 0. By explicit

calculation, the efficient information matrix in this model takes the form

Ĩγ =
1

(a− b)2

[
E[φ1(ε1)2]c −1

−1 E[φ2(ε2)2]c−1

]
, c := (σ2/σ1)

2 . (1.51)

I consider three distributions from which to draw each εk: (i) N (0, 1), (ii) t′(5) - a

(standardised) t distribution with 5 degrees of freedom and (iii) st′(5, 2) a (standardised)

skew t distribution constructed as in Fernandez and Steel (1998) with 5 degrees of freedom

and skewness parameter 2.72 These correspond to (i) E[φk(εk)
2] = 1, (ii) E[φk(εk)

2] =

1.25 and (iii) E[φk(εk)
2] ≈ 2.54 respectively.

In the standard normal case (i), Ĩγ has eigenvalues λ1 = (c+ c−1)/(a− b)2, λ2 = 0 and a

one-dimensional hyperplane as its nullspace: N(Ĩγ) = {x ∈ R2 : cx1 = x2}. In cases (ii)

and (iii), the matrix is positive definite and so N(Ĩγ) = {0}.

Consider testing θ = θ0 = (a, b) = (1/2, 1/4), where σ1 = σ2 = 1 and hence

the nullspace is the line x1 = x2. I take n ∈ {600, 1000, 1400} and draw simulation

samples according to (1.34) with θ = θ0 + τ/
√
n and X ∼ N (0, 1). β2 is estimated

by OLS and β1 by GMM using the three moment conditions implied by the relationship

E[V V ′] = A(θ, β1)−1(A(θ, β1)−1)′. These estimates are used to construct estimates of

the efficient score function and information matrix as in (1.50). In each case I truncate at

machine precision.

The finite sample and asymptotic power surfaces are plotted in figures D.16 - D.18. Figure

D.16 demonstrates the expected trivial power along the hyperplane N(Ĩγ) in the Gaussian

72The density functions of these distributions are plotted in figure D.4.

45



case, with power otherwise increasing in ‖τ‖. In contrast, figures D.17 and D.18 depict

the full rank case, in which trivial power is found only at the point τ = 0.73 In all three

figures, comparison of the finite sample power surface to the asymptotic power surface in

the bottom right suggests that the asymptotic power results provide a good approximation

to finite sample power.

1.6. Discussion

In this paper I demonstrated that score-type statistics based on the efficient score function

can be used to perform uniformly valid inference in a wide class of models. A high level

framework was provided in order to develop the theoretical results, based on the local

asymptotic normality (LAN) framework of Le Cam.

The version of this framework considered permits many models and scenarios in which

standard testing procedures fail to correctly control size, as demonstrated via specific

examples. This class includes models which may suffer from identification problems,

models where nuisance parameters may lie on the boundary of the parameter space and

models which need a regularisation step for their estimation. I demonstrated that the

efficient score test enjoys locally uniformly valid size control. Moreover, I showed that a

number of standard testing optimality results continue to hold in this setup and demonstrated

a minimax optimality result which applies in cases where, for example, the parameter of

interest is underidentified.

A number of examples were studied in detail to demonstrate the applicability of the

suggested framework and how the conditions it requires may be shown to hold. Simulation

studies based on these examples suggest that the asymptotic results obtained provide a

useful guide to finite sample performance. The simulations also show that – in the cases

considered – the procedures based on the efficient score statistic perform better than

alternative procedures.

The treatment in the current paper is restricted to cases where the observed data forms

a random sample. This restriction was made to remove inessential complications in the

derivation of the results. With these now established in the baseline i.i.d. case, an interesting

potential extension would be to extend these results to other sampling schemes. An

additional drawback of the current treatment is that the parameter of interest θ is required

to be a bona fide parameter of the model as opposed to a function of the model parameters.

Such extensions are left for future work.
73Which, of course, is exactly the nullspace of Ĩγ in this case.
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Philipp Tiozzo as well as participants at the 2021 Barcelona GSE PhD Jamboree, the

2021 Symposium of the Spanish Economics Association, the 2021 SNDE Workshop

for Young Researchers, the 2022 Spring Meeting of Young Economists, the “Advances

in Econometrics” workshop of the 2022 BSE summer forum and seminar participants

at UPF (Statistics), University of Surrey, BI Norwegian Business School (Data Science

& Analytics), Toulouse School of Economics, Duke University, Erasmus University

Rotterdam (Econometric Institute), University of Liverpool and Western University.

47



Appendices

A. Notation & conventions

A := B means that A is defined to be B. A ⊂ B indicates that A is a subset of B. All

vector spaces are over the real field R. Given a positive integer K, [K] := {1, . . . ,K}.
For any Euclidean parameter, say α, dα denotes the dimension of the space in which it

lives. Similarly for a vector of functions κ, dκ is the number of component functions.

For a sequence (xn)n∈N, (xn)n∈N ⊂ X denotes that each xn ∈ X . For any matrix M ,

‖M‖2 is its spectral norm and M † is its Moore-Penrose pseudo-inverse. “�” is used to

denote the Loewner partial order; that is, given two Hermitian matrices A,B, A � B

iff A − B is positive semi-definite and A � B iff A − B is positive definite. If A is

a linear operator, N(A) is its nullspace. Given a topological space S, B(S) is its Borel

σ-algebra. Weak convergence is denoted by “ ”. Operator notation is often used for

integrals: Pf :=
∫
f dP . Pn denotes the empirical measure of a given sample and Gn the

empirical process. Throughout this paper & unless otherwise noted the sample considered

is denoted by (Wi)
n
i=1 ∈ Wn, hence Pnf =

∫
f dPn = 1

n

∑n
i=1 f(Wi). For a sequence of

functions (fn)n∈N with each fn having domainWn and a sequence of probability measures

(Pn)n∈N on W , convergence statements will often be written as fn  f under Pn. This

is shorthand for weak convergence under the product measures Pnn . If X has distribution

G, I write X ∼ G. If g is the density of G (with respect to some σ-finite measure), I also

write X ∼ g. X ' Y indicates that X and Y have the same distribution. Lp(P ) denotes

the space of functions f such that P |f |p < ∞. In the case where f = (f1, . . . , fK) is a

vector of functions f ∈ Lp(P ) denotes that each fi ∈ Lp(P ) for i = 1, . . . ,K. L0
p(P )

is the subspace of Lp(P ) whose members f satisfy Pf = 0. Given a (closed) subspace S

of a Hilbert space H , the orthogonal projection of a function f ∈ H onto S is denoted by

Π(f |S).

B. Additional details and proofs of results in the main text

B.1. Details and proofs for section 1.3

Construction of the sequence of experiments

In order to discuss power I use the limits of experiments framework of Le Cam (see e.g.

chapter 9 of van der Vaart (1998) for an introduction). Under the additional assumption

that Hγ is a linear space, I will obtain a Gaussian shift limit experiment on a particular
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inner-product space.74

To state the proposition, I need to define the inner-product space that will be used to

parametrise the experiments. Let N(A) denote the null space of a linear transformation A;

in particular N(Ĩγ) denotes the null space of the matrix Ĩγ . For the nuisance perturbations,

h, it is more convenient to parametrise directly by the scores g = Bγh. For each

g = Bγh ∈ Hγ let hg,η := {h ∈ Hη : Bγh = g}. Suppose that Hγ is a linear subspace

of L2(Pγ) and note that it is therefore a dense subspace of a its completion (which is a

Hilbert space). It therefore has an orthonormal basis, (gk)k∈N.75 For each element gk in

this basis select (arbitrarily) an element hk = hgk from each hgk,η. For any other element

g ∈ Hγ choose hg =
∑

k∈N akhk where g =
∑

k∈N akgk. Denote the collection of such

hg as Hγ := {hg : g ∈ Hγ} ⊂ Hη.76 I will consider sequences of experiments, where

each consists of measures of the form Pγn,τ,g = Pγn,τ,h for τ ∈ N(Ĩγ)⊥ and g ∈ Hγ ,

h = hg ∈ Hγ (with γ = limn→∞ γn); that is to say, these experiments are parametrised

by the (inner-product) space Hγ := N(Ĩγ)⊥ ×Hγ equipped with the inner-product given

below in (52).

The choice of a particular “representative” h = hg for each score g = Bγh ∈ Hγ as in the

preceding construction is a technical point which will not impede statements being made

about the behaviour of tests along sequences with hn → h ∈ Hη \ Hγ due to the following

lemma.

Lemma B.1. Suppose that assumptions M, LAN, CM(i) hold and that (ψn)n∈N is a

sequence of tests onWn (i.e. each ψn :Wn → [0, 1]).

1. If (τn)n∈N ⊂ Rdθ and (hn)n∈N ⊂ Hη are convergent sequences with limits τ ∈ Rdθ

and h ∈ Hη respectively, then

lim sup
n→∞

[
Pnγn,τn,hnψn − Pnγn,τ,hψn

]
= 0.

2. If h1, h2 ∈ Hη are such that Bγh1 = Bγh2 and h1 − h2 ∈ Hη, then for any

convergent sequences (τn)n∈N ⊂ Rdθ , (h1,n)n∈N ⊂ Hη, (h2,n)n∈N ⊂ Hη with limits

τ ∈ Rdθ and h1, h2 ∈ Hη respectively,

Λn(γn(τn, h1,n), γn)− Λn(γn(τn, h2,n), γn) = oPγn (1),

74That is, the limit experiment is the restriction of a Gaussian shift experiment on a specific Hilbert space to the
inner-product space of interest. See e.g. Le Cam (1986, Chapter 9, section 3) or Strasser (1985, Chapter 11)
for an introduction to Gaussian shift experiments on Hilbert spaces.

75See footnote 85.
76I will suppose that the hg = h0 chosen to correspond to g = 0 is hg = h0 = 0. Note that if Bγ is injective

there is only one such hg for each g ∈Hγ .
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and

lim sup
n→∞

[
Pnγn,τn,h1,nψn − Pnγn,τn,h2,nψn

]
= 0.

With the setup previously described the following result concerning convergence of

experiments can be stated. This result is straightforward given the assumptions made, and

is quite standard, aside from potentially one key aspect: the definition of the indexing set

of the sequence of experiments — that τ ∈ N(Ĩγ)⊥. This ensures that the inner-product in

equation (52) is an inner-product. If N(Ĩγ)⊥ was replaced by Rdθ and rank(Ĩγ) < dθ, the

map in (52) would only be a positive-semidefinite Hermitian form.77

Proposition B.2. Suppose that assumptions M, LAN and CM(i) hold and that Hγ is a linear

subspace of L2(Pγ). Suppose that rank(Ĩγ) > 0 and let Hγ := N(Ĩγ)⊥ ×Hγ . If the map

〈·, ·〉Hγ : Hγ ×Hγ → R is defined by

〈(τ1, g1), (τ2, g2)〉 := 〈τ ′1 ˙̀
γ + g1, τ

′
2

˙̀
γ + g2〉Pγ , (52)

then (Hγ , 〈·, ·〉) is an inner-product space. In addition, the sequence of experiments

(En)n∈N, where each

En :=
(
Wn,B(Wn),

{
Pnγn,τ,g : (τ, g) ∈ Hγ

})
, (53)

converges weakly to a Gaussian shift on (Hγ , 〈·, ·〉).

Proofs

Proof of proposition 1.3.1. To simplify the notation, let gn := τ ′ ˙̀γn + Bγnh and g :=

τ ′ ˙̀γ + Bγh. Let {Wn,k : k ≤ n, n ∈ N} be a triangular array, where each row

Wn,1, . . . ,Wn,n (n ∈ N) is independently and identically distributed, with each random

vector Wn,k having law Pγn . Let {Zn,k : k ≤ n, n ∈ N} be the array defined by

Zn,k :=
(

˜̀
γn(Wn,k)

′, gn(Wn,k)
)′

. The rows of this array are i.i.d. with EZn,k = 0 and

VZn,k =
[
Ĩγn Ĩγnτ
τ ′Ĩγn Pγng

2
n

]
(for each k, n). 78 By assumption CM(ii)

1

n

n∑
k=1

VZn,k = VZn,1 →
[
Ĩγ Ĩγτ
τ ′Ĩγ σ2

τ,h

]
, (54)

77That is, 〈(τ, g), (τ, g)〉 = 0 whilst (τ, g) 6= 0 would be possible. In particular, 〈(τ, 0), (τ, 0)〉 = 0 would
hold for all τ ∈ N(Ĩγ), which has positive dimension whenever rank(Ĩγ) < dθ .

78We have that Pγn ˜̀
γn

˙̀′
γn = Ĩγn (e.g. Rudin, 1991, Theorem 12.14). Pγn ˜̀

γn [Bγnh] = 0 by the construction
of the efficient score function.
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where

σ2
τ,h := Pγg

2 = Pγ [τ ′ ˙̀γ +Bγh]2 = lim
n→∞

Pγn

[
τ ′ ˙̀γn +Bγnh

]2
= lim

n→∞
Pγng

2
n, (55)

and hence (97) is satisfied. Moreover assumptions LAN and CM(ii) together yield that

(‖Zn,1‖22)n∈N is uniformly integrable and hence as the rows are identically distributed, (98)

holds. It then follows by lemma C.1 that under Pγn we have

√
nPn

(
˜̀′
γn , τ

′ ˙̀
γn +Bγnh

)′
 N

((
0

0

)
,

(
Ĩγ Ĩγτ
τ ′Ĩγ σ2

τ,h

))
. (56)

Combining equations (1.5), (54), (55) and (56) we have

(√
nPn ˜̀′

γn , Λn(γn(τn, hn), γn)
)′
 N

((
0

−1
2σ

2
τ,h

)
,

(
Ĩγ Ĩγτ
τ ′Ĩγ σ2

τ,h

))
. (57)

The marginal convergence of the likelihood ratio yields that (Pnγn)n∈N and (Pnγn,τn,hn)n∈N

are mutually contiguous (e.g. van der Vaart and Wellner, 1996, Example 3.10.6). We

remark here that a completely analogous argument to the foregoing applied to the array

{gn(Wn,k) : k ≤ n, n ∈ N} yields this same marginal convergence under assumption

CM(i) rather than assumption CM(ii) and hence the mutual contiguity of these sequences

of measures continues to hold under this weaker condition, as claimed in the statement of

the proposition.

By Le Cam’s third lemma (e.g. van der Vaart and Wellner, 1996, Example 3.10.8) it follows

from (57) that under Pγn,τn,hn

√
nPn ˜̀

γn  N (Ĩγτ, Ĩγ).

Equation (1.6), the mutual contiguity and Le Cam’s first lemma (e.g. van der Vaart, 1998,

Lemma 6.4) allow us to conclude that

√
nPn

[
ˆ̀
n,θn − ˜̀

γn

]
= oPγn,τn,hn (1)

It follows that under Pγn,τn,hn

√
nPn ˆ̀

n,θn =
√
nPn ˜̀

γn +
√
nPn

[
ˆ̀
n,θn − ˜̀

γn

]
 N (Ĩγτ, Ĩγ).

Proof of lemma B.1. For 1, use (1.5) to obtain that under Pγn

Λn(γn(τn, hn), γn(τ, h)) = Λn(γn(τn, hn), γn)− Λn(γn(τ, h), γn) = oPγn (1),
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and so by the continuous mapping theorem, the mutual contiguity of
(
Pnγn
)
n∈N and(

Pnγn,τ,h

)
n∈N

(Proposition 1.3.1) and Le Cam’s first lemma (e.g. van der Vaart, 1998,

Lemma 6.4)

exp(Λn(γn(τn, hn), γn(τ, h))) 1, under Pγn,τ,h.

Since ψn is bounded between 0 and 1, it is tight under Pγn,τ,h and hence by Prohorov’s

theorem (e.g. Billingsley, 1999, Theorem 5.1) for any subsequence (nj)j∈N of (n)n∈N there

is a further subsequence (nk)k∈N such that ψnk  ψ for some ψ ∈ [0, 1] under Pγn,τ,h. In

conjunction with the preceding display, Slutsky’s lemma yields

(ψn, exp(Λn(γn(τn, hn), γn(τ, h)))) (ψ, 1) under Pγn,τ,h.

By Le Cam’s third lemma (e.g. van der Vaart, 1998, Theorem 6.6) we have that under

Pγn,τn,hn , the law of ψnk converges weakly to the law of ψ in the preceding display. Since

each ψn ∈ [0, 1] it is both uniformly Pγn,τ,h-integrable and uniformly Pγn,τn,hn-integrable.

These observations imply that

lim
k→∞

[
Pnkγnk ,τnk ,gnk

ψn − Pnkγnk ,τ,hψnk
]

= 0.

Since the original subsequence (nj)j∈N was arbitrary, this holds also for the original

sequence.

For 2, from (1.5), assumption CM(i) and the hypothesis that Bγh1 = Bγh2

Λn(γn(τn, h1,n), γn(τn, h2,n)) = Λn(γn(τn, h1,n), γn)− Λn(γn(τn, h2,n), γn)

=
1√
n

n∑
i=1

Bγn(h1 − h2) + oPγn (1).

h := h1−h2 ∈ Hη by assumption. Let hn := h for each n ∈ N and form gn as in the proof

of proposition 1.3.1 with τ = 0. Argue analogously to the the proof of proposition 1.3.1

(noting that for this purpose assumption CM(i) rather than CM(ii) is sufficient) to obtain

1√
n

n∑
i=1

Bγn(h1 − h2) =
1√
n

n∑
i=1

Bγnh N (0, σ2
0,h), under Pγn ,

with σ2
0,h = Pγ [Bγh]2 = Pγ02 = 0. It follows from the two preceding displays that

Λn(γn(τn, h1,n), γn(τn, h2,n)) = Λn(γn(τn, h1,n), γn)− Λn(γn(τn, h2,n), γn) = oPγn (1).

With this in hand, the second part of 2 can be established by an argument analogous to that

used to establish 1.

Proof of proposition B.2. That Hγ is a linear space is clear. Moreover, linearity, coordinate

symmetry, and positive semi-definiteness of the map in (52) are clear from its definition.
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It remains to prove that it is positive definite. Let Π denote the projection onto cl Hγ ⊂
L2(Pγ). Then, we can re-write

〈(τ, g), (τ, g)〉 = τ ′Ĩγτ + 〈τ ′Π ˙̀
γ + g, τ ′Π ˙̀

γ + g〉Pγ . (58)

This is strictly positive whenever τ ∈ N(Ĩγ)⊥ \ {0}.79 If instead τ = 0 but g 6= 0 it is

positive since 〈·, ·〉Pγ is an inner product. Thus 〈·, ·〉Hγ is an inner product and (Hγ , 〈·, ·〉)
is an inner-product space. Denote the completion of this space with respect to the norm

induced by 〈·, ·〉 as (Hγ , 〈·, ·〉).

A Gaussian shift on (Hγ , 〈·, ·〉) is the restriction to Hγ of the standard Gaussian shift

experiment of the Hilbert space (Hγ , 〈·, ·〉). Define

Ln(τ, g) := Λ(γn(τ, hg), γn) +
1

2
‖(τ, g)‖2, (59)

and note that equation (55) and the marginal convergence of the log-likelihood (cf. equation

(56)): √
nPnτ ′ ˙̀γn +Bγnhg  N

(
0, σ2

τ,g

)
under Pγn , (60)

remain valid in this setting, where we write σ2
τ,g for σ2

τ,hg
.80 By equation (55)

‖(τ, g)‖2 = σ2
τ,g = Pγ

[
τ ′ ˙̀γ + g

]2
= lim

n→∞
Pγn

[
τ ′ ˙̀γn +Bγnhg

]2
. (61)

Equations (1.5), (59) and (61) allow us to write

Ln(τ, g) =
√
nPn

[
τ ′ ˙̀γn +Bγnhg

]
+ oPγn (1),

and hence by (60),

Ln(τ, g) N
(
0, ‖(τ, g)‖2

)
under Pγn , for any (τ, g) ∈ Hγ . (62)

Moreover, for any (τ1, g1), (τ2, g2) ∈ Hγ and any a1, a2 ∈ R we have, where Rn,i =

79Suppose τ ∈ N(Ĩγ)⊥ and τ ′Ĩγτ = 0. The latter implies that Ĩ1/2γ τ = 0, and hence Ĩγτ = Ĩ1/2γ Ĩ1/2γ τ = 0;
i.e. τ ∈ N(Ĩγ). Since τ is also in N(Ĩγ)⊥ we must have τ ′τ = 0, i.e. τ = 0.

80Proposition 1.3.1 requires assumption CM(ii) rather than the weaker CM(i). It is easy to see that an analogous
argument as to that given in the proof of proposition 1.3.1 concerned only with marginal weak convergence
of the log-likelihood in equation (56) holds under the weaker condition.
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oPγn (1) for i = 1, 2, 3,

a1Ln(τ1, g1) + a2Ln(τ2, g2)− Ln(a1τ1 + a2τ2, a1g1 + a2g2)

= a1

√
nPn

[
τ ′1

˙̀
γn +Bγnhg1

]
+ a1Rn,1 − a2

√
nPn

[
τ ′2

˙̀
γn +Bγnhg2

]
+ a2Rn,2

−√nPn
[
(a1τ1 + a2τ2)′ ˙̀γn +Bγn [a1hg1 + a2hg2 ]

]
+Rn,3

= a1Rn,1 + a2Rn,2 +Rn,3

= oPγn (1).

That is,

a1Ln(τ1, g1) + a2Ln(τ2, g2)− Ln(a1τ1 + a2τ2, a1g1 + a2g2) = oPγn (1),

whenever a1, a2 ∈ R, (τ1, g1), (τ2, g2) ∈ Hγ .
(63)

By imitating the proof of Theorem 69.4 in Strasser (1985), one obtains that the experiment

E = (Ω,F , {Gτ,g : (τ, g) ∈ Hγ}) (64)

is the restriction to Hγ of a Gaussian shift experiment on (Hγ , 〈·, ·〉) if and only if the

stochastic process (L(τ, g))(τ,g)∈Hγ , defined by

L(τ, g) = Λ((τ, hg), (0, 0)) +
1

2
‖(τ, g)‖2, (65)

with Λ((τ, hg), (0, 0)) the log-likelihood ratio of Gτ,g and G(0,0), is the restriction to Hγ of

a standard Gaussian process defined on Hγ under G(0,0).81 Combining equations (62) and

(63) we have that for any K ∈ N, a ∈ RK and (τk, gk) ∈ Hγ (for k = 1, . . . ,K) we have

that under Pγn

K∑
k=1

akLn(τk, gk) 
K∑
k=1

akL
∗(τk, gk) = L∗

(
K∑
k=1

ak(τk, gk)

)
, (66)

for a square integrable stochastic process L∗ defined on Hγ . Thus we have convergence of

the finite dimensional marginal distributions of Ln to those of L∗ by the Cramér-Wold

theorem. Imitating the proof of Theorem 68.4 in Strasser (1985) yields that a square

integrable stochastic process L defined on Hγ is the restriction to Hγ of a standard Gaussian

process defined on Hγ if and only if L is linear and has a N
(
0, ‖(τ, g)‖2

)
marginal

distribution for each (τ, g) ∈ Hγ . Since our process L∗ satisfies these conditions, it follows

that it is such a restriction of a standard Gaussian process. Therefore we have convergence

of the finite dimensional distributions of (Ln(τ, g))(τ,g)∈Hγ to those of (the restriction to

Hγ of) a standard Gaussian process (on (Hγ , 〈·, ·〉)). By (59) and (65) this implies the

81Such a standard Gaussian process is a square integrable stochastic process such that all its finite dimensional
distributions are Gaussian with EL(τ1, g1) = 0 and E[L(τ1, g1)L(τ2, g2)] = 〈(τ1, g1), (τ2, g2)〉 for all
(τ1, g1), (τ2, g2) ∈ Hγ .
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convergence of the finite dimensional distributions of (Λn(γn(τ, hg), γn))(τ,g)∈Hγ to those

of (Λ((τ, hg), (0, 0)))(τ,g)∈Hγ . With this in hand, the proof is completed by an appeal

to Theorem 61.6 of Strasser (1985), upon noting that that the sequence of experiments

(En)n∈N is contiguous (see e.g. Strasser, 1985, Definition 61.1) by an analogous argument

as used to prove the contiguity claimed in proposition 1.3.1 and the transitivity of (mutual)

contiguity.

Lemma B.3. Suppose that assumptions M, LAN, CM(ii), E and R hold for a sequence

(γn)n∈N ⊂ Γ with limit γ ∈ Γ. Then, for any hn → h with each hn, h ∈ Hη

lim
n→∞

Pnγn,0,hnφn,θn =

α if rank(Ĩγ) > 0

0 if rank(Ĩγ) = 0
.

Proof of Lemma B.3. By proposition 1.3.1 we have that under Pγn,0,hn

√
nPn ˆ̀

n,θn  N (0, Ĩγ).

Equations (1.7), (1.8) and Lemma C.6 imply that ‖Î†n,θn − Ĩ
†
γ‖2 = oPγn (1). The mutual

contiguity established in proposition 1.3.1 along with Le Cam’s first lemma (e.g. van der

Vaart, 1998, Lemma 6.4) ensures that this result and equation (1.6) also hold under Pγn,0,hn :

√
nPn

[
ˆ̀
n,θn − ˜̀

γn

]
= oPγn,0,hn (1) and ‖Î†n,θn − Ĩ

†
γ‖2 = oPγn,0,hn (1).

Write Ẑn :=
√
nPn ˆ̀

n,θn . We have

Ẑn =
√
nPn ˜̀

γn +
√
nPn

[
ˆ̀
n,θn − ˜̀

γn

]
 Z ∼ N (0, Ĩγ)

under Pγn,0,hn . We now cover the case of one-sided and two-sided tests separately. In the

case of a two-sided test, the continuous mapping theorem implies that

Ŝn,θn = Ẑ ′nÎ†n,θnẐn  Z ′Ĩ†γZ =: S ∼ χ2
r ,

under Pγn,0,hn where r = rank(Ĩγ).82

Let cn be the 1 − α quantile of the χ2
rn distribution and c the 1 − α quantile of the χ2

r

distribution. We have Pγn{cn = c} = Pγn{rn = r} → 1 by assumption. This implies

that cn − c → 0 in Pγn-probability and hence by the mutual contiguity and Le Cam’s first

lemma, also under Pγn,0,hn . By continuous mapping once more we have Ŝn,θn−cn  S−c
under Pγn,0,hn .

Now, consider first the case where r > 0. In this case, since the χ2
r distribution is continuous

82The distributional result is given by, for example, Theorem 9.2.2 in Rao and Mitra (1971).
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the portmanteau theorem gives

Pγn,0,hnφn,θn = Pγn,0,hn

(
Ŝn,θn − cn > 0

)
→ L (S − c > 0) = α,

where L is the law of S. In the case where instead r = 0 we note that on the sets

{rn = r} = {rn = 0} we have that Î†n,θn = 0 and cn = 0 and hence do not reject

since Ŝn,θn = 0 ≤ cn = 0. It follows that Pγn,0,hnφn,θn ≤ 1− Pγn,0,hn{rn = r} → 0.

Finally consider a one-sided test with dθ = 1 and 1 − α ∈ [1/2, 1). By the continuous

mapping theorem,

Ŝn,θn = Ẑn

√
Î†n,θn  Z

√
Ĩ†γ .

If r = rank(Ĩγ) = 1, then Z
√
Ĩ†γ = Z/

√
Ĩγ ∼ N (0, 1) and since this distribution is

continuous, the portmanteau theorem yields

Pγn,0,hnφn,θn → 1− Φ(zα) = α,

where Φ is the CDF of the standard normal distribution. If, instead r = 0, then again on the

sets where rn = rank(În,θn) = 0 we have that În,θn = Î†n,θn = 0 and so Ŝn,θn = 0 ≤ zα

and hence we do not reject. It follows that Pγn,0,hnφn,θn ≤ 1−Pγn,0,hn{rn = r} → 0.

Lemma B.4. Suppose that assumptions M, LAN, CM(ii), E and R hold for a convergent

sequence (γn)n∈N ⊂ Γ with limit γ ∈ Γ. Suppose we are given a convergent sequences

hnk → h ∈ Hη with (hnk)k∈N ⊂ Hη. If the limit

S := lim
k→∞

Pnkγnk ,0,hnk
φnk,θnk (67)

exists, then S = α× 1{rank(Ĩγ) > 0}.

Proof. The idea is to construct a new sequence to which proposition B.3 can be applied.83

For all m with m ∈ [nk, nk+1)∩N for some k ∈ N put h∗m = hnk . For m = 1, . . . , n1, put

h∗m = hn1 . For each m let γ∗m = γm. By construction h∗m → h, and by our hypotheses and

proposition B.3 we may conclude that

lim
m→∞

Pmγ∗m,0,h∗mφm,θ∗m = sγ :=

α if rank(Ĩγ) > 0

0 if rank(Ĩγ) = 0
.

Fix an arbitrary ε > 0. There is a M ∈ N such that for all m ≥ M ,∣∣∣Pmγ∗m,0,h∗mφm,θ∗m − sγ∣∣∣ < ε/2. By (67) there is a K ∈ N such that if k ≥ K,∣∣∣S − Pnkγnk ,0,hnkφnk,θnk ∣∣∣ < ε/2. Hence for any k sufficiently large that m = nk ≥ M

83This construction is based on that used in the proofs of e.g. Lemma 6 in Andrews and Guggenberger (2010b),
Lemma 2.1 in Andrews and Cheng (2012).
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and k ≥ K we have

|S − sγ | ≤
∣∣∣S − Pmγ∗m,0,h∗mφm,θ∗m∣∣∣+

∣∣∣Pmγ∗m,0,h∗mφm,θ∗m − sγ∣∣∣ < ∣∣∣S − Pnkγnk ,0,hnkφnk,θnk ∣∣∣+
ε

2
< ε.

Since ε > 0 was arbitrary, the inequality |S − sγ | < ε can be obtained for any ε > 0 and

hence taking the limit as ε ↓ 0 completes the proof.

Proof of proposition 1.3.2. There is a sequence (hn)n∈N ⊂ H ′η and a subsequence (nj)j∈N

of (n)n∈N such that

S := lim sup
n→∞

sup
h∈H′η

Pnγn,0,hφn,θn = lim sup
n→∞

Pnγn,0,hnφn,θn = lim
j→∞

P
nj
γnj ,0,hnj

φnj ,θnj

There is a further subsequence (nk)k∈N such that hnk → h and S =

limk→∞ P
nk
γnk ,0,hnk

φnk,θnk . Applying lemma B.4 yields that S = α × 1{rank(Ĩγ) > 0}.
Since an analogous argument can be made to obtain the same conclusion but with “”lim inf”

replacing “”lim sup” in the definition of S , we obtain the desired result.

Lemma B.5. Fix a convergent sequence (ηn)n∈N and denote its limit by η. Suppose

that assumptions M, LAN, CM(ii), E and R hold for any sequence (γn)n∈N where each

γn := (θn, ηn)n∈N ⊂ Θ′ × H =: Γ′ with θn → θ ∈ Θ′ ⊂ Θ. Suppose we are given

convergent sequences γnk → γ with (γnk)k∈N ⊂ Γ′ and hnk → h with (hnk)k∈N ⊂ Hη. If

the limit

S := lim
k→∞

Pnkγnk ,0,hnk
φnk,θnk (68)

exists, then S ≤ α.

Proof. The idea is to construct a new sequence to which proposition B.3 can be applied.84

For all m with m ∈ [nk, nk+1) ∩ N for some k ∈ N put θ∗m = θnk and h∗m = hnk . For

m = 1, . . . , n1, put θ∗m = θn1 and h∗m = hn1 . For each m let γ∗m = (θ∗m, ηm). By

construction γ∗m → γ through Γ′ and h∗m → h, and by our hypotheses and proposition B.3

we may conclude that

lim
m→∞

Pmγ∗m,0,h∗mφm,θ∗m ≤ α.

Fix an arbitrary ε > 0. There is a M ∈ N such that for all m ≥ M , Pmγ∗m,0,h∗mφm,θ∗m ≤
α + ε/2. By (68) there is a K ∈ N such that if k ≥ K,

∣∣∣S − Pnkγnk ,0,hnkφnk,θnk ∣∣∣ < ε/2.

Hence for any k sufficiently large that m = nk ≥M and k ≥ K we have

S ≤
∣∣∣S − Pmγ∗m,0,h∗mφm,θ∗m∣∣∣+ Pmγ∗m,0,h∗mφm,θ∗m <

∣∣∣S − Pnkγnk ,0,hnkφnk,θnk ∣∣∣α+
ε

2
≤ α+ ε.

Since ε > 0 was arbitrary, we can obtain the inequality S ≤ α+ ε for any ε > 0 and hence

taking the limit as ε ↓ 0 completes the proof.
84See footnote 83.
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Proof of proposition 1.3.3. There are sequences (θn)n∈N ⊂ Θ′ and (hn)n∈N ⊂ H ′η and a

subsequence (nj)j∈N of (n)n∈N such that

S := lim inf
n→∞

inf
θ∈Θ′

inf
h∈H′η

Pn(θ,ηn),0,h(θ ∈ Ĉn) = lim
j→∞

P
nj
(θnj ,ηnj ),0,hnj

(θnj ∈ Ĉnj ).

There is a further subsequence (nk)k∈N of (nj)j∈N such that θnj → θ ∈ Θ′ and

hnj → h ∈ H ′η. We also clearly have

S = lim
k→∞

Pnk(θnk ,ηnk ),0,hnk
(θnk ∈ Ĉnk) = 1− lim

k→∞
Pnk(θnk ,ηnk ),0,hnk

φnk,θnk . (69)

Apply lemma B.5 to conclude that 1−S ≤ α, and rearrange to obtain the desired result.

Proof of proposition 1.3.4. By (both parts of) lemma B.1, it suffices to show that

lim sup
n→∞

Pnγn,τ,hψn ≤ 1− Φ
(
zα − Ĩ1/2

γ τ
)

for all τ > 0, h ∈ Hγ . (70)

Since dθ = 1 and Ĩγ > 0, N(Ĩγ)⊥ = R. Let g̃ = (gk)k∈N ⊂ Hγ be an orthonormal

basis of cl Hγ .85 Consider the subspace Gm := Span{g1, . . . , gm}, and let Πm denote

the orthogonal projection onto Gm. Fix b = (τ, gb) ∈ (0,∞) × Hγ =: K1 and any

ε > 0.86 By lemma C.2 we can take m ∈ N large enough that
∥∥∥(Πm −Π) ˙̀

γ

∥∥∥
Pγ ,2

< ε.

Now consider the restriction of E to R × Gm for any m ∈ N.87 Choose a = (0, ga) with

ga = Πm
(
τΠ ˙̀

γ + gb

)
= τ

(
ΠmΠ ˙̀

γ

)
+ gb and note that by Lemma 28.1 of Strasser

(1985) any test ψ of level−α of H0 against H1 satisfies

Gbψ ≤ 1− Φ (zα − ‖b− a‖)

Expand the square of the norm using the Pythagorean theorem to obtain

‖b− a‖2 = τ2Ĩγ + τ2
∥∥∥(Πm −Π) ˙̀

γ

∥∥∥2

Pγ ,2
= τ2Ĩγ + τ2ε2.

Hence we have

Gbψ ≤ 1− Φ

(
zα −

√
τ2Ĩγ + τ2ε2

)
.

Since ε > 0 was arbitrary, we can take the limit as ε ↓ 0 to obtain

Gbψ ≤ 1− Φ
(
zα − Ĩ1/2

γ τ
)
, (71)

85Such a basis always exists: by assumption M,W is Polish. Take a metric d such that (W, d) is a complete
(separable) metric space. By Theorem 1.3 in Billingsley (1999), Pγ is tight. By Proposition 7.14.12 in
Bogachev (2007) this is a sufficient condition for separability of Pγ which is equivalent to separability of
the Lp(Pγ) spaces for p ∈ (0,∞) (e.g. Bogachev, 2007, Exercise 4.7.63). cl Hγ is therefore separable as a
subset of L2(Pγ). Choose a countable dense subset in Hγ and apply Gram-Schmidt to obtain an orthonormal
basis which satisfies the the desired property.

86We can always change the choice of the orthonormal basis such that gb lies in (each) Gm.
87See equations (64), (65) and the surrounding text for the definitions of E and Gτ,g .
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which holds for all b ∈ K1, since the choice of b ∈ K1 was arbitrary. Moreover, since the

test ψ was an arbitrary test of level-α, this power bound holds for all level-α tests in E .

By proposition B.2 the the sequence of experiments (En)n∈N defined in (53) converge to the

dominated experiment E . (70) then follows on combining the power bound given by (71)

with Theorem 7.2 in van der Vaart (1991).

Proof of corollary 1.3.5. Since Ĩγ > 0 and dθ = 1, assumption R is automatically satisfied

given assumption E. By proposition 1.3.1 we have that

√
nPn ˆ̀

n,θ0/Î
1/2
n,θ0
 N (Ĩ1/2

γ τ, 1), under Pγn,τn,hn .

Hence by the portmanteau theorem

lim
n→∞

Pnγn,τn,hnφn = lim
n→∞

Pnγn,τn,hn(
√
nPn ˆ̀

n,θ0/Î
1/2
n,θ0

> zα) = 1− Φ(zα − Ĩ1/2
γ τ).

For τ ≤ 0, 1− Φ(zα − Ĩ1/2
γ τ) ≤ α; hence this test is level-α as claimed. For any τ > 0, it

attains the power bound in equation (1.15).

Proof of proposition 1.3.6. The proof is is very similar to that of proposition 1.3.4. By

lemma B.1 it suffices to show that for all τ 6= 0 and h ∈ Hγ

lim sup
n→∞

Pnγn,τ,hψn ≤ 1− Φ
(
zα/2 − Ĩ1/2

γ τ
)

+ 1− Φ
(
zα/2 + Ĩ1/2

γ τ
)
. (72)

Since dθ = 1 and Ĩγ > 0, N(Ĩγ)⊥ = R. Let g̃, Gm and Πm be defined as in the proof

of proposition 1.3.4 and consider the restriction of E to Lm := R × Gm for some m ∈ N
which contains (τ, g) ∈ K1 = {(τ, g) : τ 6= 0, h ∈ Hγ}.88 This is a finite dimensional

(hence closed) subspace of Hγ (the completion of Hγ) and so is a Hilbert space. Hence

this restriction is a finite dimensional (standard) Gaussian shift. Take f : R × Gm → R
as f(τ, g) = τ and let Σm := Pγ

(
[I −Πm] ˙̀

γ

)2
, which can be ensured positive by taking

m ∈ N sufficiently large.89 Then, letting g ∈ Gm be such that g = −Πm ˙̀
γ ∈ Gm,

e = (1, g) /
√

Σm is a unit vector in R×Gm ⊂ Hγ , orthogonal toN(f) = {(0, g) : g ∈ Gm}
and has f(e) = 1/

√
Σm > 0. Thus, by Theorem 28.8 of Strasser (1985), any unbiased test

ψ of level-α has power bounded by

Gτ,gψ ≤ 1− Φ(zα/2 − (Σm)1/2τ) + 1− Φ(zα/2 + (Σm)1/2τ).

Since Σm → Ĩγ as m→∞, by continuity we obtain that

Gτ,gψ ≤ 1− Φ(zα/2 − Ĩ1/2
γ τ) + 1− Φ(zα/2 + Ĩ1/2

γ τ). (73)

88See footnote 86.
89By lemma C.2 we have that Σm → Ĩγ > 0 as m→∞.
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Since the point (τ, g) ∈ K1 was arbitrary, this bound holds for all K1.

By proposition B.2 the sequence of experiments (En)n∈N converges to the dominated

experiment E . Let πn(τ, g) := Pnγn,τ,gψn ∈ [0, 1]. Fix a (τ, g) ∈ K1 and let (nj)j∈N be a

subsequence of (n)n∈N along which lim supn→∞ P
n
γn,τ,gψn = limj→∞ P

nj
γnj ,τ,g

ψnj . Since

[0, 1]Hγ is compact in the product topology there is a subnet (nj(α))α∈A of the subsequence

(nj)j∈N and a function π : Hγ → [0, 1] such that limα∈A πnj(α)
(τ, g) = π(τ, g) for every

(τ, g) ∈ Hγ . By Theorem 7.1 in van der Vaart (1991) there is a test ψ in E with power

function π. By our hypotheses and the pointwise convergence we have that for any τ 6= 0

and any g1, g2 ∈Hγ

π(0, g1) = lim
α∈A

πnj(α)
(0, g1) ≤ α ≤ lim

α∈A
πnj(α)

(τ, g2) = π(τ, g2).

It follows that ψ is unbiased and hence combining

lim sup
n→∞

Pnγn,τ,gψn = lim sup
n→∞

πn(τ, g) = lim
j→∞

πnj (τ, g) = lim
α∈A

πnj(α)
(τ, g) = π(τ, g)

with the power bound given by (73) we obtain (72).90

Proof of corollary 1.3.7. Since Ĩγ > 0 and dθ = 1, assumption R is automatically satisfied

given assumption E. By proposition 1.3.1 we have that

√
nPn ˆ̀

n,θ0/Î
1/2
n,θ0
 N (Ĩ1/2

γ τ, 1), under Pγn,τn,hn .

Let the 1− α quantile of the χ2
1 distribution be denoted by cα. By assumption R holds and

the contiguity noted in proposition 1.3.1 we have that Pγn,τn,hn(r̂n = 1) → 1 and hence

cn → cα in Pγn,τn,hn-probability. Hence by the portmanteau theorem

lim
n→∞

Pnγn,τn,hnφn,θ0 = 1− Φ(zα/2 − Ĩ1/2
γ τ) + 1− Φ(zα/2 + Ĩ1/2

γ τ),

which is exactly the power bound given by equation (1.16). For τ = 0, 1− Φ(zα/2) + 1−
Φ(zα/2) = α; hence this test is level-α as claimed. It is unbiased since the last right hand

side expression in the preceding display exceeds α for any τ 6= 0.

Lemma B.6. If (Hγ , 〈·, ·〉) is the completion of (Hγ , 〈·, ·〉), then

1. we can take Hγ to be N(Ĩγ)⊥ × cl Hγ;

2. (τn, gn)n∈N ⊂ Hγ converges to (τ, g) ∈ Hγ if and only if τn → τ ∈ N(Ĩγ)⊥ and

gn → g ∈ cl Hγ .

Proof. We first note that (x, y) 7→ x′Ĩγy defines an inner-product on N(Ĩγ)⊥. Linearity

and symmetry are obvious. Positive definiteness was established in footnote 79. On
90Where g = Bγh for the h ∈ Hγ in the latter.
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Rdθ it defines a positive-semidefinite Hermitian form and thus induces a semi-norm by

‖x‖ :=
√
x′Ĩγx.

By the Pythagorean theorem we can decompose the square of the Hγ norm as follows

‖(τn, gn)− (τ, g)‖2 = (τn − τ)′Ĩγ(τn − τ) + ‖(τn − τ)′Π ˙̀
γ + gn − g‖2Pγ ,2. (74)

We start with the first claim. Suppose that (τn, gn)n∈N ⊂ Hγ is a Cauchy sequence. By

(74) we must have that (τn − τm)′Ĩγ(τn − τ)m → 0 as n,m → ∞. Let UDU ′ be an

eigendecomposition of Ĩ1/2
γ with eigenvalues λ1, . . . , λdθ in decreasing order. Then the

eigenvectors uj for j > r are in the null space of Ĩ1/2
γ and so that of Ĩγ . Letting U1 be the

dθ × r matrix of the first r columns of U and U2 the remaining columns, we then have that

‖τn− τm‖2 = ‖U ′(τn− τm)‖2 = ‖U ′1(τn− τm)‖2. Let τ̃n,m := U ′1(τn− τm) and note that

by hypothesis

(τn − τm)′Ĩγ(τn − τm) =
r∑
i=1

λiτ̃
2
n,m,i → 0.

Since the λi are all positive this implies that ‖τ̃n,m‖2 → 0, i.e. τn − τm → 0. Since this

is a Cauchy sequence in N(Ĩγ)⊥, which is a closed subspace of Rdθ , it follows that τn has

a limit, say τ∗ ∈ N(Ĩγ)⊥. From this and that
∥∥∥(τn − τm)′Π ˙̀

γ + gn − gm
∥∥∥
Pγ ,2
→ 0 (as

m,n→∞) we can also conclude that (gn)n∈N is Cauchy in L2(Pγ) and hence has a limit,

say g∗ ∈ cl Hγ .91 Hence all such Cauchy sequences have limits in N(Ĩγ)⊥× cl Hγ and so

this is complete under the relevant norm.

To complete the proof we will now show that (τn, gn)n∈N ⊂ Hγ converges to (τ, g) ∈
N(Ĩγ)⊥ × cl Hγ if and only if τn → τ ∈ N(Ĩγ)⊥ and gn → g ∈ cl Hγ . Since this

ensures that N(Ĩγ)⊥ × cl Hγ = clHγ , this is the smallest closed set containing Hγ , which

completes the proof of the first part, and hence the second.

Suppose first that (τn, gn)n∈N ⊂ Hγ converges to (τ, g) ∈ N(Ĩγ)⊥ × cl Hγ . Then since

each τn − τ ∈ N(Ĩγ)⊥ we can argue as above via the same eigendecomposition (replacing

τm with τ ) to obtain that τn−τ → 0. An argument analogous to that in footnote 91 (replace

gm with g) can be used to show the convergence gn → g in the L2(Pγ) norm.

For the converse, suppose that τn → τ and gn → g. It follows immediately that

(τn − τ)′Ĩγ(τn − τ)→ 0 and ‖(τn − τ)′Π ˙̀
γ‖Pγ ,2 → 0. Using (74) we have

‖(τn, gn)− (τ, g)‖2 . (τn − τ)′Ĩγ(τn − τ) + ‖(τn − τ)′Π ˙̀
γ‖2Pγ ,2 + ‖gn − g‖2Pγ ,2 = o(1).

91By the reverse triangle inequality we have

lim
n,m→∞

‖gn − gm‖Pγ ,2 ≤ lim
n,m→∞

∥∥∥(τn − τm)′Π ˙̀
γ + gn − gm

∥∥∥
Pγ ,2

= 0.
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Proof of proposition 1.3.8. Let M̃a := {(τ, h) ∈Ma : h ∈ Hγ}. We clearly have that

lim sup
n→∞

inf
(τ,h)∈Ma

Pnγn,τ,hψn ≤ lim sup
n→∞

inf
(τ,h)∈M̃a

Pnγn,τ,hψn,

so it will suffice to demonstrate the upper bound in

lim sup
n→∞

inf
(τ,h)∈M̌a

Pnγn,τ,gψn = lim sup
n→∞

inf
(τ,h)∈M̃a

Pnγn,τ,hψn ≤ 1− P
(
χ2
r(a) ≤ cr,α

)
, (75)

where M̌a := {(τ, g) ∈ Hγ : τ ′Ĩγτ ≥ a}. We first observe that if (τ, g) ∈ Hγ then

τ ∈ N(Ĩγ)⊥. Define f : Hγ → Rdθ by f(τ, g) := τ and let L0 := N(f). Let Π0 denote

the orthogonal projection onto L0 in Hγ and Π the orthogonal projection onto cl Hγ in

L2(Pγ). The (finite dimensional) subspace L⊥0 ⊂ Hγ consists of vectors

L⊥0 =
{

(τ,−τ ′Π ˙̀
γ) ∈ Hγ

}
.

It follows from lemma B.6 that this has dimension r, since we can take Hγ = N(Ĩγ)⊥ ×
cl Hγ .

Consider the orthogonal projection onto L0: we must have 〈(τ, g)−Π0(τ, g), (0, g′)〉 = 0

for all (0, g′) ∈ L0. This implies that Π0(τ, g) = (0, g̃) must satisfy g̃ = τ ′Π ˙̀
γ + g. It

follows that ‖(τ, g)−Π0(τ, g)‖2 = τ ′Ĩγτ . Define

Ma =
{

(τ, h) ∈ Hγ : τ ′Ĩγτ ≥ a
}
,

and let M ′a be the set defined analogously to Ma where “=” replaces “≥”. We note here

that Ma = cl M̌a. For this, note firstly that any convergent (tn, gn)n∈N ⊂ Ma converges

in Ma and hence this is a closed set.92 It follows that cl M̌a ⊂ Ma. Suppose that this

inclusion were strict. Then there must be a point (τ, g) ∈ Ma which is not the limit

of a sequence (τn, gn)n∈N ⊂ M̌a. There must exist a sequence (τn, gn)n∈N ⊂ Hγ with

(τn, gn) → (τ, g). By the argument in footnote 92 we have that τ ′nĨγτn → τ Ĩγτ . If the

difference en := τ Ĩγτ − τ ′nĨγτn → 0 is always negative there is nothing to do. Else take a

sequence (τ ′n, 0)n∈N ⊂ Hγ which converges to (0, 0) and satisfies τ ′nĨγτn ≥ max{en, 0}.93

Then (τn + τ ′n, gn)n∈N ⊂ M̌a and converges to (τ, g). Hence no such point can exist and

the two sets are equal.

Consider the testing problem of K ′0 = {0} against K ′1 = L⊥0 \{0} in the standard Gaussian

92That (τ, g) ∈ Hγ is clear since the latter is complete and hence closed. It remains to show that if τnĨγτn ≥ a
for each n ∈ N then also τ Ĩγτ ≥ a. For this, we note that if (τn, gn) → (τ, g) then by lemma B.6 we have
that τn → τ . (x, y) 7→ x′Ĩγy defines a positive-semidefinite Hermitian form over Rdθ and thus induces a

semi-norm ‖x‖ :=
√
x′Ĩγx. Hence by the reverse triangle inequality

|‖τn‖ − ‖τ‖| ≤ ‖τn − τ‖ → 0.

That is ‖τn‖ → ‖τ‖ and hence by the continuity of x 7→ x2 we have τnĨγτn = ‖τn‖2 → ‖τ‖2 = τ ′Ĩγτ .
93An explicit construction of such a sequence can be given based on the eigendecomposition of Ĩγ .
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shift experiment on L⊥0 . For any a′ ≥ a and any level−α test ψ we have by Theorem 30.2

of Strasser (1985) that (Cf. Strasser, 1985, Theorem 71.10)

inf
t∈M ′a′

Gtψ ≤ inf
t∈M ′a′∩L⊥0

Gtψ ≤ P
(
χ2
r(a
′) > cr,α

)
.

Since Ma = cl M̌a and t 7→ Gtψ is continuous, taking the infimum over a′ ≥ a yields94

inf
t∈M̌a

Gtψ = inf
t∈Ma

Gtψ ≤ P
(
χ2
r(a) > cr,α

)
=: R. (76)

By proposition B.2 (En)n∈N converges to E . Suppose that (1.17) does not hold for all

sequences of asymptotically level-α tests for H0 : τ = 0 against H1 : τ ∈ N(Ĩγ)⊥ \ {0}
in En. Then there is such a sequence of tests (ψn)n∈N and a subsequence (nj)j∈N such that

for some ε > 0

lim
j→∞

inf{πnj (τ, h) : (τ, h) ∈ N(Ĩγ)⊥ ×Hη, τ
′Ĩγτ ≥ a} ≥ R+ ε,

where πn(τ, h) := Pnγn,τ,hψn. Since [0, 1]N(Ĩγ)⊥×Hη is compact in the product topology

there is a subnet (nj(α))α∈A of the subsequence (nj)j∈N and a function π : N(Ĩγ)⊥×Hη →
[0, 1] such that limα∈A πnj(α)

(τ, h) = π(τ, h) for every (τ, h) ∈ N(Ĩγ)⊥ ×Hη. Combine

this with the preceding display to conclude that for any (τ, h) ∈ N(Ĩγ)⊥ × Hη with

τ ′Ĩγτ ≥ a we have

π(τ, h) = lim
α∈A

πnj(α)
(τ, h) ≥ lim

α∈A
inf{πnj(α)

(τ, h) : (τ, h) ∈ N(Ĩγ)⊥×Hη, τ
′Ĩγτ ≥ a} ≥ R+ε.

However, by Theorem 7.1 in van der Vaart (1991) there is a test ψ in E with power function

π and it follows from our hypothesis that this test is of level-α, since for any g ∈ Hγ there

is a h ∈ Hγ with Bγh = g and so

G0,gψ = π(0, h) = lim
α∈A

πnj(α)
(τ, h) ≤ lim sup

n
πn(τ, h) ≤ α.

Then by the preceding two displays we have G0,gψ ≤ α for any (0, g) ∈ Hγ and for any

(τ, g) ∈ M̌a

Gτ,gψ = π(τ, hg) ≥ R+ ε,

which contradicts (76).

Proof of corollary 1.3.9. By proposition 1.3.1 we have that for τn → τ and hn → h,

√
nPn ˆ̀

n,θ0  N (Ĩγτ, Ĩγ), under Pγn,τn,hn .

94The continuity of the indicated map follows directly from the fact that a Gaussian shift experiment is
continuous in the total variation norm.
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As in the proof of proposition B.3, equations (1.7), (1.8) and Lemma C.6 imply that

‖Î†n,θn − Ĩ
†
γ‖2 = oPγn (1). The mutual contiguity established in proposition 1.3.1 along

with Le Cam’s first lemma (e.g. van der Vaart, 1998, Lemma 6.4) ensures that this result

and equation (1.6) also hold under Pγn,τn,hn :

√
nPn

[
ˆ̀
n,θ0 − ˜̀

γn

]
= oPγn,τn,hn (1) and ‖Î†n,θ0 − Ĩ

†
γ‖2 = oPγn,τn,hn (1).

Write Ẑn :=
√
nPn ˆ̀

n,θ0 . We have

Ẑn =
√
nPn ˜̀

γn +
√
nPn

[
ˆ̀
n,θ0 − ˜̀

γn

]
 Z ∼ N (Ĩγτ, Ĩγ)

under Pγn,τn,hn . The continuous mapping theorem and Theorem 9.2.3 of Rao and Mitra

(1971) imply that

Ŝn,θ0 = Ẑ ′nÎ†n,θ0Ẑn  Z ′Ĩ†γZ =: S ∼ χ2
r(τ
′Ĩγτ),

under Pγn,τn,hn where r = rank(Ĩγ).

Let cn be the 1 − α quantile of the χ2
rn distribution and c the 1 − α quantile of the χ2

r

distribution. We have Pγn{cn = c} = Pγn{rn = r} → 1 by assumption. This implies that

cn−c→ 0 in Pγn-probability and hence by the mutual contiguity and Le Cam’s first lemma,

also under Pγn,τn,hn . By continuous mapping once more we have Ŝn,θ0−cn  S−c under

Pγn,τn,hn . Hence by the portmanteau theorem

lim
n→∞

Pnγn,τn,hnφn,θ0 = 1− P
(
χ2
r

(
τ Ĩγτ

)
≤ c
)
. (77)

For τ = 0, 1− P
(
χ2
r (0) ≤ c

)
= α; hence this test is level-α as claimed.

LetKa ⊂Ma be compact and suppose (τn, hn)n∈N ⊂ Ka is such that τn → τ and hn → h.

Then, by equation (77) we have that

lim
n→∞

Pnγn,τn,hnφn,θ0 = P(χ2
r

(
τ ′Ĩγτ

)
> c) ≥ P(χ2

r (a) > c) =: R. (78)

Taking a constant sequence in Ka with τ ′Ĩγτ = a we obtain from the preceding display

that lim supn→∞ inf(τ,h)∈Ka P
n
γn,τ,h

φn,θ0 ≤ limn→∞ P
n
γn,τ,h

φn,θ0 = R. It follows that if

equation (1.18) does not hold then there is a sequence (τn, hn)n∈N ⊂ Ka and a subsequence

(nj)j∈N of (n)n∈N such that

S = lim
j→∞

P
nj
γnj ,τnj ,hnj

φnj ,θ0 < R. (79)

Take a further subsequence (nk)k∈N along which τn → τ and hn → h with (τ, h) ∈ Ka.

Construct new sequences (h∗m)m∈N and (τ∗m)m∈N as follows. For all m ∈ [nk, nk+1) ∩ N
for some k ∈ N put τ∗m = τnk and h∗m = hnk . For m = 1, . . . , n1 put τ∗m = τn1 and
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h∗m = hn1 . By construction we have that τ∗m → τ and h∗m → h. By (78) we have that

lim
m→∞

Pmγm,τ∗m,h∗mφm,θ0 ≥ R.

Fix an arbitrary ε > 0. There is an M ∈ N such that for all m ≥ M we have

Pmγm,τ∗m,h∗mφm,θ0 ≥ R − ε/2. Hence for any k sufficiently large that m = nk ≥ M we

have

S = S − Pnkγnk ,τnk ,hnkφnk,θ0 + Pmγm,τ∗m,h∗mφm,θ0 ≥ S − P
nk
γnk ,τnk ,hnk

φnk,θ0 +R− ε/2.

This holds for all large enough k and so taking the limit first as k → ∞ and then as ε ↓ 0

yields that S ≥ R. But this contradicts equation (79).

Proof of proposition 1.3.10. By proposition A.8 in van der Vaart (1988b) and our

assumptions

Λn(γn(τn, hn), γn) =
1√
n

n∑
i=1

gn −
1

2
Pγng

2
n + oPγn (1)

=
1√
n

n∑
i=1

[
τ ′ ˙̀γn +Bγnh

]
− 1

2
Pγn

[
τ ′ ˙̀γn +Bγnh

]2
+ oPγn (1).

since 1
2Pγn

[
τ ′ ˙̀γn +Bγnh

]2
− 1

2Pγng
2
n = 1

2Pγn
(
f2
n − g2

n

)
→ 0, where fn := τ ′ ˙̀γn +

Bγnh, as

∣∣Pγn (f2
n − g2

n

)∣∣ =
∣∣∣‖fn‖2Pγn ,2 − ‖gn‖2Pγn ,2∣∣∣ ≤ ‖fn−gn‖2Pγn ,2+2‖fn−gn‖Pγn ,2‖g‖Pγn ,2 → 0,

as (gn)n∈N is uniformly square Pγn-integrable and hence Pγng
2
n ≤ M for some M ∈

(0,∞).

It remains to show that (fn)n∈N is uniformly square Pγn-integrable. The preceding display

yields that Pγnf
2
n = Pγng

2
n − Pγn(g2

n − f2
n) = Pγng

2
n + o(1). Hence there is an N ∈ N

such that n > N has Pγnf
2
n ≤ M + 1. It follows that Pγnf

2
n ≤ K < ∞ with

K := max{M + 1, Pγ1f
2
1 , . . . , PγN f

2
N}. Let ε > 0 be given and note that there is a

δ > 0 such that if Pγn(A) < δ we have Pγn(g2
n1A) < ε/4.95 Hence

Pγn
(
f2
n1A

)
≤ 2Pγn

(
(fn − gn)21A

)
+ 2Pγn

(
g2
n1A

)
= o(1) +

ε

2
.

Hence there is an N ′ ∈ N such that for all n ≥ N ′ we have Pγn(f2
n1A) < ε if Pγn(A) < δ.

By Markov’s inequality we have that for K ′ > K/δ, Pγn(f2
n > K ′) ≤ Pγnf

2
n/K

′ ≤ δ and

95Given ε > 0, take M <∞ large enough that Pn(g2n1{g2n > M}) < ε/8 for all n ∈ N and let δ < ε/(8M).
Then if Pγn(A) < δ we have

Pγ(g2n1A) ≤ Pγn(g2n1A1{g2n ≤M})+Pγn(g2n1A1{g2n > M}) ≤MPγn(A)+Pn(g2n1{g2n > M}) < ε/4.
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hence for all n ≥ N ′, Pγn(f2
n1{f2

n > K ′}) < ε. That is, (fn)n∈N is asymptotically

uniformly square Pγn-integrable, which implies that (fn)n∈N is uniformly square Pγn-

integrable.96

Proof of lemma 1.3.11. This is implied by Corollary 2.9 of Feinberg et al. (2016).

Proof of lemma 1.3.12. Define Qn, Q respectively as the pushforward measures of Pn
under fn and P under f . By the extended continuous mapping theorem of van der Vaart

and Wellner (1996, Theorem 1.11.1), Qn  Q and by hypothesis,

lim
M→∞

sup
n∈N

∫
|x|>M

|x|dQn(x) = lim
M→∞

sup
n∈N

∫
|fn(s)|>M

|f(s)| dPn(s) = 0.

The result now follows from the equivalence of (ii) and (iii) in Proposition A.6.1 of Bickel

et al. (1998).

Proof of proposition 1.3.13. Throughout let r̂n := rank(M̂n), r := rank(M), Rn :=

{r̂n = r} and λl, λn,l, λ̌n,l and λ̂n,l respectively the l-th largest eigenvalue of M , Mn,

M̌n and M̂n.

Start with the case r = 0. By Weyl’s perturbation theorem and the fact that Mn = 0 for all

n larger than some N ∈ N,

Pn(Rn) = Pn

(
max
l=1,...,L

|λ̌n,l| < νn

)
≥ Pn(‖M̌n −Mn‖2 < νn)→ 1.

On the sets Rn we have that M̂n = 0 = M and so M̂n
Pn−−→M as P (Rn)→ 1.

Now suppose that r > 0. let ν := λr/2 > 0 and note that (1.20) implies that

‖M̌n − Mn‖2 = oPn(1) and so, by Weyl’s perturbation theorem (e.g. Bhatia, 1997,

Corollary III.2.6), maxl=1,...,L |λ̌n,l − λn,l| ≤ ‖M̌n −Mn‖2 = oPn(1). Hence, defining

En := {λ̌n,r ≥ νn}, for n large enough such that νn < ν and ‖Mn −M‖2 < ν/2 we have

Pn(En) = Pn
(
λ̌n,r ≥ νn

)
≥ Pn

(
λ̌n,r ≥ ν

)
≥ Pn

(
|λ̌n,r − λn,r| < ν/2

)
→ 1.

If r = L we have that Rn ⊃ En and therefore Pn(Rn) → 1. Additionally, if λ̌n,L ≥ νn

then λ̂n,l = λ̌n,l for each l ∈ [L] and hence M̂n = M̌n, implying ‖M̂n − M‖2 ≤
‖M̌n −Mn‖2 + ‖Mn −M‖2 = oPn(1).

Now suppose instead that r < L and define Fn := {λ̌n,r+1 < νn}. It follows by Weyl’s

perturbation theorem and the fact that λn,l = 0 for l > r and n ≥ N that as n→∞

Pn(Fn) = Pn(λ̌n,r+1 < νn) ≥ Pn(‖M̌n −Mn‖2 < νn)→ 1.

96Increase K′ to K′′ as necessary to ensure that also Pγn(f2
n1{f2

n > K′′}) < ε for all 1 ≤ n < N ′.
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Since Rn ⊃ En∩Fn, this implies that Pn(Rn)→ 1 as n→∞. Additionally, if λ̌n,r ≥ νn,

λ̌n,r+1 < νn and ‖M̌n −M‖2 ≤ υ, we have that λ̂n,k = λ̌n,k for k ≤ r and λ̂n,l = 0 = λl

for l > r and so

‖Λn(νn)−Λ‖2 = max
l=1,...,r

|λ̂n,l−λl| = max
l=1,...,r

|λ̌n,l−λl| ≤ ‖Λ̌n−Λ‖2 ≤ ‖M̌n−M‖2 ≤ υ,

and hence {‖M̌n−M‖2 ≤ υ} ∩En ∩Fn ⊂ {‖Λn(νn)−Λ‖2 ≤ υ}, from which it follows

that Λn(νn)
Pn−−→ Λ as ‖M̌n − M‖2 ≤ ‖M̌n − Mn‖2 + ‖Mn − M‖2 Pn−−→ 0. Suppose

that (λ1, . . . , λr) consists of s distinct eigenvalues with values λ1 > λ2 > · · · > λs and

multiplicities m1, . . . ,ms (each at least one).97 λs+1 = 0 is an eigenvalue with multiplicity

ms+1 = L − r. Let lki for k = 1, . . . , s + 1 and i = 1, . . . ,mk denote the column indices

of the eigenvectors in U corresponding to each λk. For each λk, the total eigenprojection is

Πk :=
∑mk

i=1 ulki
u′
lki

.98 Total eigenprojections are continuous.99 Therefore, if we construct

Πn,k in in an analogous fashion to Πk but replace columns of U with columns of Ǔn, we

have Πn,k
Pn−−→ Πk for each k ∈ [s + 1] since M̌n

Pn−−→ M . Spectrally decompose M as

M =
∑s

k=1 λ
kΠk, where the sum runs to s rather than s+ 1 since λs+1 = 0. Then,

M̂n =
s+1∑
k=1

mk∑
i=1

λ̂n,lki
un,lki

u′
n,lki

=
s+1∑
k=1

mk∑
i=1

(λ̂n,lki
− λk)un,lki u

′
n,lki

+
s∑

k=1

λkΠn,k,

whence

‖M̂n −M‖2 ≤
s+1∑
k=1

mk∑
i=1

|λ̂n,lki − λ
k|‖un,lki u

′
n,lki
‖2 +

s∑
k=1

|λk|‖Πn,k −Πk‖2 Pn−−→ 0,

by Π̂n,k
Pn−−→ Πk, Λ̂n(νn)

Pn−−→ Λ and since we have ‖un,lki u
′
n,lki
‖2 = 1 for any i, k, n.

Proof of corollary 1.3.14. Apply proposition 1.3.13 with Ǐn,θn = M̌n, În,θn = M̂n,

Ĩn = Mn, Ĩγ = M and Pγn = Pn.

B.2. Additional miscellaneous results

Lemma B.7. Suppose that assumption M holds and assumptions LAN and CM(i) hold

along a convergent sequence (γn)n∈N with γn := (θn, η) → γ ∈ Γ,that η = (η1, η2)

with η1 ∈ H1 ⊂ Rdη1 and that the efficient score function takes the form

˜̀
γn = ˘̀

γn,1 − Ĭγn,12Ĭ
−1
γn,22

˘̀
γn,2, Ĭγn := Pγn

˘̀
γn

˘̀′
γn ,

97The superscripts on the λs are indices, not exponents.
98See e.g Chapter 8.8 of Magnus and Neudecker (2019).
99E.g. Theorem 8.7 of Magnus and Neudecker (2019).
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for a L-dimensional vector of functions ˘̀
γn :=

(
˘̀′
γn,1,

˘̀′
γn,2

)′
. Suppose that Ĩγn → Ĩγ and

rank(Ĩγn) = rank(Ĩγ) for all sufficiently large n ∈ N. Moreover, suppose that along any

sequence (γ′n)n∈N with γ′n := (θn, (ηn,1, η2))→ γ where
√
n‖ηn,1 − η1‖ = O(1),

1. Pγ′n
˘̀
γ′n = o(n−1/2),

2. (‖˘̀γn‖22)n∈N is uniformly Pγ′n-integrable,

3.
√
nPn

[
ˆ̀
n,ξn − ˘̀

γ′n

]
= oPγ′n

(1),

4. ν−1
n ‖În,ξn − Ĭγn‖2 = oPγ′n

(1),

5.
∫ [

˘̀
γ′n,l
√
pγ′n − ˘̀

γn,l
√
pγn

]2
dν → 0 for each l ∈ [L],

with ξn := (θn, ηn,1). Finally suppose that η̂n,1 satisfies
√
n‖η̂n,1 − η1‖ = OPγn (1). Then

if ξ̄n := (θn, η̄n,1) where η̄n,1 is the version of η̂n,1 discretised on n−1/2CZdη1 ∩H1,

ˆ̀
n,θn := ˆ̀

n,ξ̄n,1− În,ξ̄n,12Î
−1
n,ξ̄n,22

ˆ̀
n,ξ̄n,2, Ǐn,θn := În,ξ̄n,11− În,ξ̄n,12Î

−1
n,ξ̄n,22

În,ξ̄n,21, (80)

and În,θn is the eigendecomposition-truncated version of Ǐn,θn at νn analogously to (1.21),

then assumptions E and R hold.

Proof. Define bn :=
√
n(ηn,1 − η1). Take an arbitrary subsequence (nm)m∈N of (n)n∈N

and a further subsequence (nk)k∈N along which bnk → b ∈ Rdη1 . Construct a “full”

sequence (b?n)n∈N according to b?nk := bnk for all k ∈ N and for all m ∈ N such that

m /∈ {nk : k ∈ N} set b?m := b?m−1 (arbitrarily put b0 = 0). Constructed in this manner

b?n → b as n → ∞ and hence β?n,1 := η +
√
nb?n is a deterministic sequence satisfying

√
n(η?n,1 − η) = O(1). Note that we can write γ?n := (θn, (η

?
n,1, η2)) as γ?n = γn(0, h?n)

for h?n := (b?n, 0). Since conditions 1 - 5 are valid along (γ′n)n∈N formed with an arbitrary

deterministic
√
n-consistent sequence (ηn,1)n∈N, they apply along (γ?n)n∈N in particular.

Since LAN holds, these observations, in conjunction with Proposition A.10 in van der Vaart

(1988b) yield that

√
nPn

[
˘̀
γ?n − ˘̀

γn

]
+ Ĭγn(0′, (b?n)′)′ = oPγn (1).

This clearly implies also that

√
nkPnk

[
˘̀
γ′nk
− ˘̀

γnk

]
+Ĭγnk (0′, b′nk)′ =

√
nkPnk

[
˘̀
γ?nk
− ˘̀

γnk

]
+Ĭγnk (0′, (b?nk)′)′ = oPγnk

(1),

and therefore, as the original subsequence (nm)m∈N was arbitrary,

√
nPn

[
˘̀
γ′n − ˘̀

γn

]
+
√
nĬγn(0′, (ηn,1 − η)′)′ = oPγn (1). (81)

Moreover we have by Proposition 1.3.1 that (Pnγn)n∈N and (Pnγ?n)n∈N are mutually
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contiguous. Hence the same is true of (Pnkγnk
)k∈N and (Pnkγ?nk

)k∈N = (Pnkγ′nk
)k∈N. This

observation in conjunction with 3, 4 and the fact that our initial subsequence (nm)m∈N was

arbitrary yields the conclusion that

√
nPn

[
ˆ̀
n,ξn − ˘̀

γ′n

]
= oPγn (1), and

∥∥∥În,ξn − Ĭγn∥∥∥
2

= oPγn (νn). (82)

Now, for η]1 ∈ H1 let

R1,n(η]1) :=
√
nPn

[
ˆ̀
n,ξ]n
− ˘̀

γn

]
+
√
nĬγn(0′, (η]1−η)′), R2,n(η]1) := ν−1

n

[
Î
n,ξ]n
− Ĭγn

]
where ξ]n := (θn, η

]
1), η] := (η]1, η2) and γ]n := (θn, η

]). Let As β̄n is discretised on

n−1/2CZdη1 ∩ H1 from η̂1,n it remains
√
n-consistent under Pγn and hence for any ε > 0

there is anM ∈ (0,∞) andN such that for all n ≥ N , Pγn (
√
n‖η̄n,1 − η1‖2 > M) < ε. If

√
n‖η̄n,1−η1‖2 ≤M then η̄n,1 ∈ Sn := {η[1 ∈ n−1/2CZdη1∩H1 : ‖η[1−η1‖2 ≤M/

√
n}.

For any fixed M , Sn has a finite number of elements bounded independently of n, call this

number S. For Rn ∈ {R1,n, R2,n}, any υ > 0 and n ≥ N

Pγn (‖Rn(η̄n,1)‖ > υ) ≤ ε+
∑

ηn,1∈Sn

Pγn ({‖Rn(ηn,1)‖ > υ} ∩ {η̄n,1 = ηn,1})

≤ ε+ SPγn
(
‖Rn(η∗n,1)‖ > υ

)
,

where η∗n,1 ∈ Sn maximises η1 7→ Pγn (‖Rn(η1)‖ > υ). Since (η∗n,1)n∈N is deterministic

and
√
n-consistent for η1, Pγn

(
‖Rn(η∗n,1)‖ > υ

)
→ 0 by equations (81) & (82). It follows

that ‖Ri,n(η̄n,1)‖ = oPγn (1) for i ∈ {1, 2}. It follows that ‖K̂ξ̄n − K̃γn‖2
Pγn−−→ 0 where

K̃γn :=
[
I − Ĭγn,12Ĭ

−1
γn,22

]
, K̂ξ̄n :=

[
I − În,ξ̄n,12Î

−1
n,ξ̄n,22

]
,

with the partitions of the matrices Îξ̄n , Ĭγn corresponds to the partition of the vectors
ˆ̀
n,ξ̄n = (ˆ̀′

n,ξ̄n,1
, ˆ̀′
n,ξ̄n,2

)′, ˘̀
γn = (˜̀′

γn,1,
˜̀′
γn,2)′, ξ̄n := (θn, η̄n,1) and Ĭ−1

γn,22 exists by

assumption. Using these results, (80) and the uniform Pγn-integrability of ‖˘̀γn‖22,

√
nPn

[
ˆ̀
n,θn − ˜̀

γn

]
=
(
K̂ξ̄n − K̃γn

)√
nPn

[
ˆ̀
n,ξ̄n − ˘̀

γn

]
+ K̃γn

√
nPn

[
ˆ̀
n,ξ̄n − ˘̀

γn

]
+
(
K̂ξ̄n − K̃γn

)√
nPn ˘̀

γn

= −
[
I − Ĭγn,12Ĭ

−1
γn,22

] [Ĭγn,11 Ĭγn,12

Ĭγn,21 Ĭγn,22

][
0

√
n(η̄n,1 − η1)

]
+ oPγn (1)

= oPγn (1),

which gives (1.6). To show that equation (1.7) and assumption R hold, Corollary 1.3.14

indicates that it suffices to show that the requirements of assumption T are satisifed. For

this note that by assumption Ĩγn → Ĩγ with rank(Ĩγn) = rank(Ĩγ) for all sufficiently large

n ∈ N and (1.23) follows from ‖R2,n(η̄n,1)‖ = oPγn (1).
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B.3. Proofs for section 1.4

Throughout this section I use the notation ι(θ,X) := X1 +X ′2θ.

Proof of Proposition 1.4.1. Fix arbitrary τn → τ ∈ Rdθ and hn → h ∈ Hη. The perturbed

law is Pγn,τn,hn with density

pγn,τn,hn(W ) := ζ(en, X)(1 + hn,2(en, X)/
√
n),

where en := Y − f(ι(θn + n−1/2τn, X)) − n−1/2hn,1(ι(θn + n−1/2τn, X)). Since Θ is

are open and θn → θ, θn + n−1/2τn ∈ Θ for all large enough n ∈ N. The restrictions

on Ḟ ensure that f + n−1/2hn,1 ∈ F . The restrictions on Żη along with the norm

on H suffice to ensure that ζ(1 + hn,2/
√
n) ∈ Z . Specifically, for all large enough n,

ζ(1+hn,2/
√
n) ≥ 0 (λ-a.e.) since hn,2 is bounded (λ-a.e.) and the conditions on Ż ensure

that
∫
ζ(1 + hn,2/

√
n) dλ =

∫
ζ dλ + 1√

n

∫
hn,2ζ dλ = 1. Continuous differentiability

(λ-a.e.) of e 7→
√
ζ(1 + hn,2/

√
n)(e,X) follows from the same requirement on

√
ζ and

hn,2, the boundedness of hn,2 (which ensures that eventually 1+hn,2/
√
n is bounded away

from zero λ-a.e.) and the chain rule. Finally it remains to check the conditions in (1.26).

For any A ∈ σ(Z), letting G denote the measure corresponding to ζ∫
A
εζ(ε,X)(1 + hn,2(ε,X)/

√
n) dλ =

∫
A
εdG+

1√
n

∫
A
εhn,2(ε,X) dG

=

∫
A
E[ε|X] dG+

1√
n

∫
A
E[εhn,2(ε,X)|X] dG

= 0,

and hence E[ε|X] = 0 (a.s. under ζ(1 + hn,2/
√
n)). For the rest, firstly let m(ε,X) be

non-negative and integrable under G. By the (λ-a.e.) boundedness of hn,2 (by h̄2, say)∫
m(ε,X)ζ(ε,X)(1 + hn,2(ε,X)/

√
n) dλ ≤

(
1 +

h̄2√
n

)∫
m(ε,X) dG <∞.

Secondly, note that by Jensen’s inequality∥∥∥∥∫ XX ′ζ(1 + hn,2/
√
n) dλ−

∫
XX ′ dG

∥∥∥∥
2

≤ h̄2√
n

∥∥∥∥∫ XX ′ dG

∥∥∥∥ ≤ h̄2√
n

∫
‖X‖22 dG→ 0,

which implies that for all large enough n,
∫
XX ′ζ(1 + hn,2/

√
n) dλ � 0.

To establish (1.19), first let γ ∈ Γ, u = (τ, h) ∈ Rdθ × Hη, t ∈ (0,∞) and ϕ :=

ϕ(u) := (τ, h1, ζh2) and let ∆γ(ϕ) := 1
2 [τ ˙̀

γ + Bγh]
√
pγ . By arguing analogously to

the preceding paragraph it is seen that for all t in a sufficiently small neighbourhood U

of 0 in [0,∞), pγ+tϕ is a probability density. t 7→ √pγ+tϕ is continuously differentiable

λ-a.e. by the corresponding conditions imposed on e 7→
√
ζ(e,X) and e 7→ h3(e,X). For

t ∈ U , define e(t) = Y − f(ι(θ(t), X)) − th1(ι(θ(t), X)) with θ(t) := θ + tτ . Define
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g(t) := ∂
∂s |s=t log pγ+sϕ and note

g(t) = −φ(e(t), X)
[
f ′(ι(θ(t), X))X ′2τ + h1(ι(θ(t), X)) + th′1(ι(θ(t), X))X ′2τ

]
+
h2(e(t), X) + th′2(e(t), X) [f ′(ι(θ(t), X))X ′2τ + h1(ι(θ(t), X)) + th′1(ι(θ(t), X))X ′2τ ]

1 + th2(e(t), X)
.

By taking U smaller if necessary suppose that 1+th2 > c > 0, and |f ′|, |h1|, |h′1|, |h2| and

|h′2| are bounded by C ∈ (0,∞) λ-a.e.. Let tn → t through U and note that g(tn)→ g(t)

λ-a.e. by the continuity and continuous differentiability assumptions. For any t ∈ U∫
|g(t)|2+ρ dPγ+tϕ .

∫
(φ(ε,X)2+ρ + 1)‖X‖2+ρ

2 ζ(ε,X) dλ <∞,

which can be used in conjunction with Markov’s inequality to obtain the uniform Pγ+tnϕ-

integrability of (g(tn)2)n∈N. Since also pγ+tnϕ → pγ+tϕ λ-a.e. as is easily verified by

inspection, Lemma 1.3.11 implies that
∫
g(tn)2 dPγ+tnϕ →

∫
g(t)2 dPγ+tϕ. By Lemma

1.8 in van der Vaart (2002)

lim
t↓0

∥∥∥∥√pγ+tϕ −√pγ
t

−∆γ(ϕ)

∥∥∥∥
λ,2

= 0. (83)

Next let (δn)n∈N ⊂ [0, 1] be an arbitrary sequence, tn ↓ 0 and define γn := γn + δntnϕn

for ϕn := ϕ(un) with un → u ∈ Rdθ × Hη. Define ẽn := Y − f(ι(θ̃n, X)) −
δntnhn,1(ι(θ̃n, X)) with θ̃n := θn + δntnτn,

φn := φ(ẽn, X) +
δntnh

′
n,2(ẽn, X)

1 + δntnhn,2(ẽn, X)
.

Then, ∆γn(ϕn) := 1
2 [τ ′n

˙̀
γn +Bγnhn]

√
pγn , with

pγn(W ) = ζ(ẽn, X)(1 + δntnhn,2(ẽn, X))

˙̀
γn(W ) = −φnf ′(ι(θ̃n, X))X2

[Bγnh](W ) = −φnhn,1(ι(θ̃n, X)) + hn,2(ẽn, X).

It may be verified by inspection that ∆γn(ϕn) → ∆γ(ϕ) λ-a.e. under our assumptions.

Argue analogously to the demonstration that
∫
g(tn)2 dPγ+tnϕ →

∫
g(t)2 dPγ+tϕ above

to conclude ‖∆γn(ϕn)‖2λ,2 → ‖∆γ(ϕ)‖2λ,2 and hence by Proposition 2.29 in van der Vaart

(1998),

‖∆γn(ϕn)−∆γ(ϕ)‖λ,2 → 0. (84)

Now we establish (1.19). First suppose that θn = θ for all n ∈ N, let un → u be arbitrary,

put ϕn := ϕ(un), ϕ := ϕ(u) and tn ↓ 0. For all large enough n, γ+ tnϕn ∈ Γ and so using

(83) and the mean-value theorem (e.g. Drabek and Milota, 2007, Theorem 3.2.7), for such
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n∥∥∥∥√pγ+tnϕn −
√
pγ

tn
−∆γ(ϕ)

∥∥∥∥
λ,2

≤
∥∥∥∥√pγ+tnϕn −

√
pγ+tnϕ

tn

∥∥∥∥
λ,2

+

∥∥∥∥√pγ+tnϕ −
√
pγ

tn
−∆γ(ϕ)

∥∥∥∥
λ,2

≤ sup
δ∈[0,1]

∥∥∆γ+δtn(ϕn−ϕ)(ϕn−ϕ)

∥∥
λ,2

+ o(1)

= o(1),
(85)

where the last step uses that for any sequence (δn)n∈N ⊂ [0, 1], ‖∆γ+δntn(ϕn−ϕ)(ϕn−ϕ)−
∆γ(0)‖λ,2 → 0 by (84) and ∆γ(0) = 0. Now consider an arbitrary sequence θn → θ and

γn = (θn, η). Using (85) and applying the mean-value theorem at each n ∈ N gives∥∥∥∥√pγn+tnϕn −
√
pγn

tn
−∆γn(ϕ)

∥∥∥∥
λ,2

≤ |t−1
n | sup

δ∈[0,1]
‖∆γn+δntnϕn(tnϕn)− tn∆γn(ϕ)‖λ,2

= sup
δ∈[0,1]

‖∆γn+δntnϕn(ϕn)−∆γn(ϕ)‖λ,2.

By (84), for some sequence (δn)n∈N ⊂ [0, 1]100

lim sup
n→∞

sup
δ∈[0,1]

‖∆γn+δtnϕn(ϕn)−∆γn(ϕ)‖λ,2

≤ lim sup
n→∞

‖∆γn+δntnϕn(ϕn)−∆γ(ϕ)‖λ,2 + lim sup
n→∞

‖∆γn(ϕ)−∆γ(ϕ)‖λ,2

= o(1).

Combine the two preceding displays and take tn = n−1/2 to yield (1.19):∥∥∥∥√n (√pγn,τn,hn −√pγn)− 1

2
gn
√
pγn

∥∥∥∥
λ,2

=

∥∥∥∥√pγn+tnϕn −
√
pγ

tn
−∆γn(ϕ)

∥∥∥∥
λ,2

= o(1).

To conclude we note that Lemma 1.8 in van der Vaart (2002) along with (83) applied for

each γn separately yields that Pγngn = 0. The uniform square Pγn-integrability of gn
follows by Lemma C.8 on noting that by (84) (applied with δn = tn = 0 and un = 0)

Pγng
2
n → Pγg

2 (where g := τ ˙̀
γ + Bγh), and pγn → pγ λ-a.e.. Linearity of each Bγn is

clear.

Lemma B.8. In the setting of Proposition 1.4.2, let G be the measure

on R1+K corresponding to ζ and U = (ε,X) ∼ ζ. Let N :={
−φ(ε,X)h1(ι(θ,X)) + h2(ε,X) : h1 ∈ Ḟ , h2 ∈ Żη

}
. The closed linear span of N

in L2(G) is

lin N = {q ∈ L2(G) : E[q(U)] = 0, E[εq(U)|X] = E[εq(U)|ι(θ,X)]} .
100On the right hand side take ϕn = ϕ and δn = 0.
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Proof. 101 Let h1 ∈ Ḟ and h2 ∈ Żη. The definition of the sets Ḟ , Żη and (1.26) ensure

that N ⊂ L2(G). Taking h1 = 0 and h2 = 0, we have that E[−φ(ε,X)h1(ι(θ,X))] = 0

by Proposition 1.4.1. E[h2(ε,X)] = 0 by definition. Additionally, we have by (1.28)

E[−εφ(U)h1(ι(θ,X)) + εh2(U)|X] = h1(ι(θ,X)),

and since σ(ι(θ,X)) ⊂ σ(X), by (1.28) and the law of iterated expectations

E[−εφ(U)h1(ι(θ,X)) + εh2(U)|ι(θ,X)] = h1(ι(θ,X)).

Hence N ⊂ {q ∈ L2(G) : E[q(U)] = 0, E[εq(U)|X] = E[εq(U)|ι(θ,X)]}. Both sets are

clearly linear spaces, hence it suffices to show that the latter is the closure of the former.

Suppose that q ∈ {q ∈ L2(G) : E[q(U)] = 0, E[εq(U)|X] = E[εq(U)|ι(θ,X)]}.

It follows from the defintion of m̃ that m̄(U) := m̃(ε) − E[m̃(ε)|X] is bounded and

e 7→ m̄((e,X)) is continuously differentiable with bounded derivative. For any bounded

function U 7→ q̃(U) such that e 7→ q̃((e,X)) is continuously differentiable with bounded

deriviatives, define q̄(U) := q̃(U)− E[q̃(U)|X] and put for a bounded function a : R→ R
where a is continuously differentiable with bounded derivative,

q(U) := q̄(U)− m̄(ε) [E[m̄(ε)ε|X]]−1 [E[q̄(U)ε|X]− a(ι(θ,X))] .

By construction, q is bounded, e 7→ q((e,X)) is continuously differentiable with bounded

derivative, E [q(U)|X] = 0 and E [εq(U)|X] = 0. Hence q ∈ Żη. For any ε > 0,

by Lemma C.7 of Newey (1991), there are q̃, a and ψ such that q̃ and a satisfy the

conditions required for the construction of q above and ‖q − q̃‖2G,2 < ε, ‖E[εq|ι(θ,X)] −
a(ι(θ,X))‖2G,2 < ε and ‖E[q|X] − ψ(X)‖2G,2 < ε.102 The proof is completed by arguing

as in display (A.11) of Newey and Stoker (1993, p. 1220).

Proof of Proposition 1.4.2. Lemma B.8 establishes the closed linear span of the nuisance

tangent set. The orthogonal projection (in L2(G)) of a function onto the orthocomplement

of this set is given by Lemma A.2 in Newey and Stoker (1993). In particular, for

U = (ε,X) ∼ G and Vn := ι(θn, X), the projection Π
(
−φ(U)f ′(Vn)X2)

∣∣N ⊥) has

the form

ω(X)ε

[
E[−εφ(U)f ′(Vn)X2)|X]− E [−ω(X)εφ(U)f ′(Vn)X2)|Vn]

E [ω(X)|Vn]

]
= ω(X)εf ′(Vn)

[
E [X2E [−εφ(U)|X] |Vn]− E [ω(X)X2E [−εφ(U)|X] |Vn]

E [ω(X)|Vn]

]
= ω(X)εf ′(Vn)

[
E [X2|Vn]− E [ω(X)X2|Vn]

E [ω(X)|Vn]

]
,

101Cf. the proof of Lemma A.1 in Newey and Stoker (1993, pp. 1219 – 1220).
102I.e. a is bounded, continuously differentiable with bounded derivative and q̃ is bounded and e 7→ q̃((e,X))

is continuously differentiable with bounded deriviatives.
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where the last equality is by (1.28). As (Y − f(Vn), X) ∼ G under Pγn , the claimed form

of the efficient score function follows.

Proof of Lemma 1.4.3. We first show that
√
n(σ̂2

n − σ2) = OPγn (1). For ε̃2i := ε2i − σ2 we

have

√
n|σ̂2

n − σ2| . 1√
n

n∑
i=1

ε̃2i +
1√
n

n∑
i=1

(
f(Vn,i)− f̂n,i

)2

=
1√
n

n∑
i=1

ε̃2i +
1√
n

 ∑
i∈N(1)

(
f(Vn,i)− f̂n,i

)2
+
∑
i∈N(2)

(
f(Vn,i)− f̂n,i

)2

 ,
The first right hand side term is OPγn (1) by the CLT. Next define f̃n,i := (f(Vn,i) − f̂n,i)
and Cn := (Wj)j∈N−i . On a set En with Pγn(En) → 1 we have E[f̃2

n,i|Cn] ≤ R1,n,i ≤
r2
n = o(n−1/2) and hence by Markov’s inequality, the second and third terms are oPγn (1).

Finally note that
√
n|σ̂−2

n − σ−2| =
√
n|σ̂2 − σ2|
|σ̂2
nσ

2| = oPγn (1),

by
√
n|σ̂2

n − σ2| = OPγn (1) and since for some c > 0, σ2 > c and with Pγn-probability

approaching 1, σ̂2
n > c and so 1/|σ̂2

nσ
2| = OPγn (1).

Proof of Proposition 1.4.4. That assumptions M, LAN and CM(ii) hold follows from

Propositions 1.3.10, 1.4.1 and 1.4.2. We next show (1.6) holds. Let Cn be some collection

of random vectors. Let δn → 0, δ′n → 0. For a triangular array of random vectors

(Rn,i)n∈N,i≤n if with Pγn-probability approaching one either (a) E[‖Rn,i‖2|Cn] ≤ δnn−1/2

or (b) for each element Rn,i,s of Rn,i and each j ≤ n′, E[Rn,i,sRn,j,s|Cn] = 0 (Pγn-a.s.)

and E[R2
n,i,s|Cn] ≤ δ′n then by Markov’s inequality, 1√

n

∑n′

i=1Rn,i = oPγn (1) for n′ ≤ n.

We establish that (a) or (b) holds for terms which sum to ˆ̀
n,θn(Wi)− ˜̀

γn(Wi). Abbreviate

Zn,i := Z(Vn,i) and let

R1,n,i := (f̂n,i − f(Vn,i))f
′(Vn,i)(X2,i − Zn,i)

R2,n,i := (Yi − f(Vn,i))
(
f ′(Vn,i)− f̂ ′n,i

)
(X2,i − Zn,i)

R3,n,i := (Yi − f(Vn,i))f̂ ′n,i

(
Ẑn,i − Zn,i

)
R4,n,i := (f̂n,i − f(Vn,i))

(
f ′(Vn,i)− f̂ ′n,i

)
(X2,i − Zn,i)

R5,n,i := (f̂n,i − f(Vn,i))f̂ ′n,i

(
Ẑn,i − Zn,i

)
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For some aj ∈ {−1, 1}, we have that

1√
n

n∑
i=1

ˆ̀
n,θn(Wi)− ˜̀

γn(Wi) =
√
n(σ̂−2

n − σ−2)σ2 1

n

n∑
i=1

˜̀
γn(Wi)

+ σ̂−2
n

5∑
j=1

aj
1√
n

 ∑
i∈N(1)

Rj,n,i +
∑
i∈N(2)

Rj,n,i

 .
The first term on the right hand side is oPγn (1) by Lemma 1.4.3 and Proposition 1.3.1.

For the second right hand side term first note that Lemma 1.4.3 also implies that σ̂−2
n =

OPγn (1). LetEn be sets on which conditions (i) and (ii) in assumption SIM-NP(i) hold with

Pγn(En) → 1. For j ∈ [3] we will show that (b) holds on En (for i ∈ N (1) or i ∈ N (2)).

That these terms are conditionally mean zero follows from the construction of the estimates.

Specifically, using the fact that each f̂n,i, f̂ ′n,i, Ẑn,i is σ(Vn,i, {Wj}j∈N−i) measurable,

independence, the LIE, Lemma C.5, E[εi|Xi] = 0 and E[(X2,i −Zn,i)|Vn,i] = 0, it follows

that each E[Rj,n,i,sRj,n,k,s|Cn] = 0 for j ∈ [3] and k /∈ N−i with Cn = (Wj)j∈N(1) for

i ∈ N (2) and Cn = (Wj)j∈N(2) for i ∈ N (1). Similar arguments along with the (Pγn-

a.s.) boundedness of X2 and assumption SIM-NP(i) show that on En each component

E[R2
j,n,i,s|Cn] ≤ r2

n. For j ∈ {4, 5} (a) holds on En as by SIM-NP(i), on En, each

E[‖Rj,n,i‖2|Cn] . Rl,n,iRk,n,i ≤ r2
n = o(n−1/2) for l, k ∈ [3].

For the second part we will verify assumption T, which suffices to establish (1.7) and

assumption R by Corollary 1.3.14. Note first that by (1.28) and assumption SIM-NP(i)

the elements of ˜̀
γn satisfy E[˜̀4

γn,l
] = E[(εif

′(Vn,i)ω(Xi)(X2,i − Zn,i))4] . E[ε4i ] < ∞
and so by Cauchy-Schwarz and e.g. Theorem 2.5.11 in Durrett (2019), 1

n

∑n
i=1

˜̀
γn,l

˜̀
γn,k−

E˜̀
γn,l

˜̀
γn,k = OPγn (n−1/2 log(n)1/2+κ) for any κ > 0. The distributional observation that

under Pγn , (Y − f(Vn), X) ∼ G and the form of ˜̀
γn then implies that Ĩγn = Ĩγ and hence∥∥∥∥∥ 1

n

n∑
i=1

˜̀
γn

˜̀′
γn − Ĩγ

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

n

n∑
i=1

˜̀
γn

˜̀′
γn − Ĩγ

∥∥∥∥∥
F

= OPγn (n−1/2 log(n)1/2+κ). (86)

Secondly, write

1

n

n∑
i=1

(
ˆ̀
n,θn,l − ˜̀

γn,l

)2
. σ̂−4

n

5∑
j=1

1

n

 ∑
i∈N(1)

R2
j,n,i,l +

∑
i∈N(2)

R2
j,n,i,l

+(σ̂−2
n −σ2)2σ4Pn ˜̀2

γn,l.

By Lemma 1.4.3, σ̂−4
n = OPγn (1). Under assumptions SIM and SIM-NP(i), on En, each

E[R2
j,n,i,l|Cn] . r2

n as noted above. Since rn = o(νn), Markov’s inequality then implies

that 1
n

∑
i∈N(s) R2

j,n,i,l = oPγn (ν2
n) for s = 1, 2. By Lemma 1.4.3 and equation (54), the

second RHS term is OPγn (n−1). Adding and subtracting and using Cauchy-Schwarz yields∥∥∥∥∥ 1

n

n∑
i=1

ˆ̀
n,θn

ˆ̀′
n,θn − ˜̀

γn
˜̀′
γn

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

n

n∑
i=1

ˆ̀
n,θn

ˆ̀′
n,θn − ˜̀

γn
˜̀′
γn

∥∥∥∥∥
F

= oPγn (νn). (87)
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Combine (86) and (87) to see that assumption T is satisfied with any sequence (νn)n∈N as

in the statement of the proposition.

Proof of Proposition 1.4.7. Let Vn := ι(θn, X). We first note that (i) ˘̀
γn ∈ L0

2(Pγn) and

(ii) Pγn
[
˘̀
γnBγnh

]
= 0 for all h ∈ Hη. For (i) use the LIE to obtain that if W ∼ Pγn

E˘̀
γn(W ) = E

[
E[ε|X]f ′(Vn)ω̆(X)

(
X2 −

E [ω̆(X)X2|Vn]

E [ω̆(X)|Vn]

)]
= 0,

and note that by boundedness of ω̆ (above and below), f ′, compactness of X we have

E˘̀
γn,k(W )4 <∞ for each k = 1, . . . ,K−1 which implies (i) and moreover that ‖˘̀γn‖22 is

uniformly Pγn-integrable. For (ii), if W ∼ Pγn then by the LIE, definition of Żη and (1.28)

E
[
˘̀
γn(W )[Bγnh](W )

]
= E

[
E[εh2(ε,X)|X]f ′(Vn)ω̆(X)

(
X2 −

E [ω̆(X)X2|Vn]

E [ω̆(X)|Vn]

)]
+ E

[
−E[εφ(ε,X)|X]f ′(Vn)ω̆(X)

(
X2 −

E [ω̆(X)X2|Vn]

E [ω̆(X)|Vn]

)]
= E

[
f ′(Vn)E

[
ω̆(X)X2 −

ω̆(X)E [ω̆(X)X2|Vn]

E [ω̆(X)|Vn]

∣∣∣∣Vn]]
= 0.

The distributional observation that under Pγn , (Y −f(Vn), X) ∼ G and the form of ˘̀
γn then

implies that Υγn = Υγ . Using this, along with (a) and (b) above, we can argue analogously

to as in the proof of Proposition 1.3.1 (with ˜̀
γn replaced by ˘̀

γn and Ĩγn replaced by Υγn)

to conclude that under Pγn,τn,hn ,
√
nPn ˘̀

γn  N (Υγτ,Υγ). Arguing as in the proofs of

Propositions 1.3.2, 1.3.3 and Lemmas B.3, B.4, B.5 reveals that this suffices for the result

provided we show that equations (1.6), (1.7) and (1.8) hold with ˇ̀
n,θn replacing ˆ̀

n,θn , ˘̀
γn

replacing ˜̀
γn , Υ̌n,θn replacing În,θn and Υγ replacing Ĩγ .

To this end we argue as in the proof of Proposition 1.4.4. Let Cn be some collection

of random vectors, δn → 0 and δ′n → 0. For any triangular array of random vectors

(Rn,i)n∈N,i≤n if with Pγn-probability approaching one either (a) E[‖Rn,i‖2|Cn] ≤ δnn−1/2

or (b) for each element Rn,i,s of Rn,i and any j ≤ n′, E[Rn,i,sRn,j,s|Cn] = 0 (Pγn-a.s.)

and E[R2
n,i,s|Cn] ≤ δ′n then by Markov’s inequality, 1√

n

∑n′

i=1Rn,i = oPγn (1) for n′ ≤ n.

We establish that (a) or (b) holds for terms which sum to ˇ̀
n,θn(Wi)− ˘̀

γn(Wi). Abbreviate
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Zl,n,i := Zl(Vn,i) for l ∈ [2] and let

R1,n,i := (f̂n,i − f(Vn,i))f
′(Vn,i)ω̆(Xi)(X2,i − Zn,i)

R2,n,i := (Yi − f(Vn,i))
(
f ′(Vn,i)− f̂ ′n,i

)
ω̆(Xi)(X2,i − Zn,i)

R3,n,i := (Yi − f(Vn,i))f̂ ′n,iω̆(Xi)
(
Ẑn,i − Zn,i

)
R4,n,i := (f̂n,i − f(Vn,i))

(
f ′(Vn,i)− f̂ ′n,i

)
ω̆(Xi)(X2,i − Zn,i)

R5,n,i := (f̂n,i − f(Vn,i))f̂ ′n,iω̆(Xi)
(
Ẑn,i − Zn,i

)
,

with Zn,i := Z1,n,i/Z2,n,i and Ẑn,i := Ẑ1,n,i/Ẑ2,n,i. For some aj ∈ {−1, 1}, we have that

1√
n

n∑
i=1

ˇ̀
n,θn(Wi)− ˘̀

γn(Wi) =

5∑
j=1

aj
1√
n

 ∑
i∈N(1)

Rj,n,i +
∑
i∈N(2)

Rj,n,i

 .
Note also that

Ẑn,i − Zn,i =
(Ẑ1,n,i − Z1,n,i)Z2,n,i + (Z2,n,i − Ẑ2,n,i)Z1,n,i

Ẑ2,n,iZ2,n,i

,

and by assumption SIM-NP(ii) there is a sequence of sets En with Pγn(En)→ 1 such that

each R̆l,n,i ≤ rn and each f̂n,i, f̂ ′n,i, Ẑ1,n,i,k are bounded uniformly in i and for all large

enough n ∈ N and Ẑ2,n,i is bounded below and above, uniformly in i and for all large

enough n ∈ N. From this it follows that E
[
‖Ẑn,i − Zn,i‖22|Cn

]
. r2

n = o(n−1/2) on En
where Cn = (Wj)j∈N(1) for i ∈ N (2) and Cn = (Wj)j∈N(2) for i ∈ N (1). Combining

these observations we obtain that for j ∈ {4, 5}, on En, E[‖Rj,n,i‖2|Cn] . r2
n = o(n−1/2),

which establishes (a). For j ∈ [3] we establish (b). Specifically, using the fact that each

f̂n,i, f̂ ′n,i, Ẑn,i is σ(Vn,i, {Wj}j∈N−i) measurable, independence, the LIE, Lemma C.5,

E[εi|Xi] = 0 and E[ω̆(Xi)(X2,i−Zn,i)|Vn,i] = 0, it follows that E[Rj,n,i,sRj,n,k,s|Cn] = 0

for j ∈ [3] and k /∈ N−i with Cn as above. Similar arguments along with the (Pγn-

a.s.) boundedness of X2 and the probabilistic rate and boundedness observations above

show that on En each component E[R2
j,n,i,s|Cn] . r2

n. For the second part we will

verify assumption T, which suffices to establish the required modifications of (1.7) and

(1.8) by Corollary 1.3.14. Note first that as noted above the components of ˘̀
γn satisfy

E[˘̀4
γn,l

] < ∞ and so by Cauchy-Schwarz and e.g. Theorem 2.5.11 in Durrett (2019),
1
n

∑n
i=1

˘̀
γn,l

˘̀
γn,k − E˘̀

γn,l
˘̀
γn,k = OPγn (n−1/2 log(n)1/2+κ) for any κ > 0. As noted

above Υγn = Υγ and hence∥∥∥∥∥ 1

n

n∑
i=1

˘̀
γn

˘̀′
γn −Υγ

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

n

n∑
i=1

˘̀
γn

˘̀′
γn −Υγ

∥∥∥∥∥
F

= OPγn (n−1/2 log(n)1/2+κ). (88)

77



Secondly, write

1

n

n∑
i=1

(
ˇ̀
n,θn,l − ˘̀

γn,l

)2
.

5∑
j=1

1

n

 ∑
i∈N(1)

R2
j,n,i,l +

∑
i∈N(2)

R2
j,n,i,l

 .

As noted above, on En, each E[R2
j,n,i,l|Cn] . r2

n. Since rn = o(νn), Markov’s inequality

then implies that 1
n

∑
i∈N(s) R2

j,n,i,l = oPγn (ν2
n) for s = 1, 2. Adding and subtracting and

using Cauchy-Schwarz yields∥∥∥∥∥ 1

n

n∑
i=1

ˇ̀
n,θn

ˇ̀′
n,θn − ˘̀

γn
˘̀′
γn

∥∥∥∥∥
2

≤
∥∥∥∥∥ 1

n

n∑
i=1

ˇ̀
n,θn

ˇ̀′
n,θn − ˘̀

γn
˘̀′
γn

∥∥∥∥∥
F

= oPγn (νn). (89)

Combine (88) and (89) to see that assumption T is satisfied with any sequence (νn)n∈N as

in the statement of the proposition.

B.4. Proofs for section 1.5

Proof of proposition 1.5.1. Fix arbitrary τn → τ ∈ Rdθ and hn → h ∈ Hη. Since Θ is open

and θn+τn/
√
n→ θ ∈ Θ for sufficiently large n, θn+τn/

√
n ∈ Θ. The construction ofHη

ensures that also β+bn/
√
n ∈ B for large enough n. The restrictions on Żη and Ġη,k along

with the norm onH suffice to ensure that η0(1+tnhn,0) ∈ Z and each ηk(1+tnhn,k) ∈ G .

Specifically, for k = 0, 1, . . . ,K, the convergence in ensures the exists of an M ∈ (0,∞)

such that, for all large enough n, |hn,k| ≤ M and M/
√
n < 1, λ-a.e.. This ensures that

each (1 + tnhn,k) > 0 and hence ηk(1 + tnhn,k) ≥ 0 (λ-a.e.). Moreover, the positivity

of 1 + tnhn,k in combination with the continuous differentiability of e 7→
√
ηk(e) and the

fact that the square-root function is continuously differentiable away from 0, yields (via

the chain rule) that
√
ηk(1 + tnhn,k) is continuously differentiable λ-a.e. (for k ∈ [K]).

Moreover, for k ∈ [K] ∪ {0},∫
ηk(1 + tnhn,k) dλ =

∫
ηk dλ+ tn

∫
hn,kηk dλ = 1 + tn

∫
hk dGk = 1.

Additionally by Jensen’s inequality∥∥∥∥∫ X̃X̃ ′ζ(1 + hn,0/
√
n) dλ−

∫
X̃X̃ ′ dG

∥∥∥∥
2

≤ M√
n

∥∥∥∥∫ X̃X̃ ′ dG

∥∥∥∥ ≤ M√
n

∫
‖X̃‖22 dG→ 0,

which implies that for all large enough n,
∫
X̃X̃ ′ζ(1 + hn,1/

√
n) dλ � 0. By the

boundedness of each hn,k for large enough n, for such n and any non-negative function

f with Gkf <∞, ∫
ηk(1 + tnhn,k)f dλ ≤ (1 + tnM)Gkf <∞.
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Applying this with k = 0 and f(x̃) = ‖x̃‖4+δ
2 completes the demonstration that

η0(1 + tnhn,0) ∈ Z for all large enough n. Similarly applying it with k ∈ [K] and

f(e) = |e|4+δ & f(e) = |φk(e)|4+δ ensures that the finite moment requirements in (1.35)

are satisfied under ηk(1 + tnhn,k) for large enough n. By the definitions of G and Ġη,k,∫
ι ηk(1 + tnhn,k) dλ =

∫
κ ηk(1 + tnhn,k) dλ = 0,

verifying that the first two conditions of (1.35) hold under ηk(1 + tnhn,k). Lastly, since

Gk|εk|4+δ <∞, the boundedness of |hn,k| ensures that

∫
e4tnhn,k(e) dGk(e)→ 0,

[∫
e3tnhn,k(e) dGk(e)

]2

→ 0

which, combined with Eε4k − 1 > (Eε3k)2 implies that for large enough n,

∫
e4(1 + tnhn,k(e)) dGk(e)− 1 >

[∫
e3(1 + tnhn,k(e)) dGk(e)

]2

,

completing the verification that ηk(1 + tnhn,k) ∈ G for all large enough n.

The next step is to establish (1.19). Firstly, for any given u := (τ, h) ∈ Rdθ ×Hη let ϕ :=

ϕ(u) := (τ, b1, b2, η0h0, . . . , ηKhK). Then, for any γ ∈ Γ, t ∈ [0,∞) and u ∈ Rdθ ×Hη,

define qγ,t,u := pγ+tϕ and qγ := qγ,0,0 = pγ . Finally, let ∆γ(ϕ) := 1
2 [τ ′ ˙̀γ +Bγh]

√
pγ . For

any γ ∈ Γ and any u ∈ Rdθ ×Hη, by Lemma S4 in Lee and Mesters (2022b),

lim
t↓0

∥∥∥∥√pγ+tϕ −√pγ
t

−∆γ(ϕ)

∥∥∥∥
λ,2

= lim
t↓0

∥∥∥∥√qγ,t,u −√qγt
− 1

2
[τ ′ ˙̀γ +Bγh]

√
qγ

∥∥∥∥
λ,2

= 0.

(90)

In order to strengthen this directional differentiability into the result required by (1.19), we

first establish an intermediate result. Let (δn)n∈N ⊂ [0, 1] be an arbitrary sequence, tn ↓ 0

and define γn := γn + δntnϕn for ϕn := ϕ(un) with un → u ∈ Rdθ × Hη. Define

also An := A(θn + δntnτn, β1 + δntnbn,1), D1,l,n := D1,l(θn + δntnτn, β1 + δtnbn,1),

ζl,k,j,n := [D1,l,n]k[A
−1
n ]′j , Rn is such that vec(Rn) = β2 + δntnbn,2, Vn := Y −RnX and

finally

φk,n := φk +
δntnh

′
n,k

1 + δntnhn,k
.

We will show that ‖∆γn(ϕn) − ∆γ(ϕ)‖λ,2 → 0 (∗). By Proposition 2.29 in

van der Vaart (1998) it suffices to show that (i) ∆γn(ϕn) → ∆γ(ϕ) λ-a.e. and (ii)

lim supn→∞ ‖∆γn(ϕn)‖2λ,2 ≤ ‖∆γ(ϕ)‖2λ,2 < ∞. We have that ∆γn(ϕn) := 1
2 [τ ′n

˙̀
γn +
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Bγnhn]
√
pγn , with

pγn(W ) = |det(An)|
K∏
k=1

[ηk(1 + δntnhn,k)] (An,kVn)× [η0(1 + δntnhn,0)](X̃)

˙̀
γn,l(W ) =

K∑
k=1

ζl,k,k,n [φk,n (An,kVn)An,kVn + 1] +

K∑
k=1

K∑
j=1, j 6=k

ζl,k,j,nφk,n (An,kVn)An,jVn

[Bγnhn] (W ) = hn,0(X̃) +
K∑
k=1

hn,k(An,kVn)−
dβ2∑
l=1

bn,2,l

K∑
k=1

φk,n (An,kVn)An,kD2,lX

+

dθ+dβ1∑
m=dθ+1

bn,1,m

[
K∑
k=1

ζm,k,k,n [φk,n (An,kVn)An,kVn + 1]

]

+

dθ+dβ1∑
m=dθ+1

bn,1,m

 K∑
k=1

K∑
j=1, j 6=k

ζm,k,j,nφk,n (An,kVn)An,jVn

 .
Note first that there is aN ∈ N such that for n ≥ N each |hn,k| and |h′n,k| is bounded above

λ-a.e. by some h̄ ∈ (0,∞). This implies that φk,n → φk λ-a.e. The assumed continuity of

D1,l and A imply that An → A and each ζl,j,k,n → ζl,j,k and it is clear from its definition

that Vn → V := Y −RX . Inspection of the preceding display in light of these observations

reveals that (i) holds. For (ii), the finiteness of ‖∆γ(ϕ)‖2λ,2 = 1/4Pγ [τ ′ ˙̀γ + Bγh]2 follows

from Lemma 1.7 of van der Vaart (2002) and (90). For the remaining inequality it suffices to

show that Pγn
[
τn ˙̀

γn +Bγnhn

]2
→ Pγ

[
τ ˙̀
γ +Bγh

]2
. This will follow by Lemma 1.3.11

if we show that (a) Pγn converges to Pγ in total variation, (b) g′n := τn ˙̀
γn + Bγnhn ∈

L2(Pγn) and g := τ ˙̀
γ + Bγh ∈ L2(Pγ), (c) g′n → g in Pγ-probability and (d) (g′n)n∈N is

uniformly square Pγn-integrable.103 For (a), note that inspection of the preceding display

reveals that pγn → pγ λ-a.e.. Hence, Pγn → Pγ in total variation by Scheffé’s theorem.

(b) follows from the fact that (90) holds for each γ ∈ Γ, τ ∈ Rdθ , h ∈ Hη and Lemma

1.7 in van der Vaart (2002). For (c) note that inspection of the preceding display once more

gives that g′n → g λ-a.e. and hence Pγ-a.s. as Pγ � λ. Finally, for (d), let ρ = 2 + δ/2

where δ > 0 is as in (1.35) & (1.36). Let N be large enough that for n ≥ N , tn ∈ [0, 1),

each |hn,k|, |h′n,k| ≤ h̄ ∈ (0,∞), each |τn,l| ≤ 2|τl|, |ςn,l| ≤ 2|ςl| ‖An‖2 ≤ 2‖A‖2,

each |ζl,k,j,n| ≤ 2|ζl,k,j |, |φn,k| ≤ |φk| + h̄ and Pγn ∈ P .104 It suffices to show that

supn≥N Pγn |g′n|ρ < ∞. In particular, by Hölder’s inequality (and given the bounds just

discussed holding for n ≥ N ), it is enough to show that each of Pγn |φn,k(An,kVn)An,jVn|ρ
for all (k, j) ∈ [K]2 and Pγn |φn,k(An,kVn)An,kD2,lX|ρ for all k ∈ [K] and l ∈ [dβ2 ] are

bounded independently of n (for n ≥ N ). Note that under Pγn ,An,kVn ∼ ηk(1+δntnhn,k)

103Since we are interested only in the limiting behaviour, we can replace any Pγn which are not probability
measures with Pγn′ where n′ indicates the first index for which all subsequent elements of the sequence
are probability measures. That each Pγn is a probability measure for n sufficiently large can be established
analogously to the same for Pγn,τn,hn , which was established at the start of this proof, upon replacing the
tn used in the argument there with δntn.

104See footnote 103.
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and X̃ ∼ η0(1 + δntnhn,0). By Cauchy-Schwarz we have

Pγn [|φn,k(An,kVn)|ρ|An,jVn|ρ] ≤ Pγn |φn,k(An,kVn)|4+δPγn |An,jVn|4+δ,

Pγn [|φn,k(An,kVn)|ρ|An,kD2,lX|ρ] ≤ Pγn |φn,k(An,kVn)|4+δPγn |An,kD2,lX|4+δ.

For n ≥ N , ηk(1 + δntnhn,k) ≤ ηk(1 + h̄) and so by (1.35) & (1.36), for a constant C

which does not depend on n,

Pγn |An,jVn|4+δ ≤ (1 + h̄)

∫
e4+δηj(e) dλ <∞,

Pγn |φn,k(An,kVn)|4+δ ≤ C(1 + h̄)

∫ [
|φk(e)|4+δ + h̄d+δ

]
ηk(e) dλ <∞,

Pγn |An,jD2,lX|4+δ ≤ (1 + h̄)[2‖A‖2‖D2,l‖2]4+δ

∫
‖(1, x̃′)‖4+δ

2 η0(x̃) dλ <∞.

As each right hand side term in the preceding display does not depend on n, this completes

the demonstration of (d) and hence of (∗).

We now establish (1.19). Suppose first that θn = θ and let un → u be arbitrary and put

ϕn := ϕ(un), ϕ := ϕ(u) and tn ↓ 0. Also let gγ := τ ′ ˙̀γ + Bγh. For large enough n,

γ + ϕn ∈ Γ and so applying (90) and the mean value theorem (e.g. Drabek and Milota,

2007, Theorem 3.2.7) for all such n,∥∥∥∥t−1
n

(√
qγ,tn,un −

√
qγ
)
− 1

2
gγ
√
qγ

∥∥∥∥
λ,2

≤
∥∥t−1
n

(√
qγ,tn,un −

√
qγ,tn,u

)∥∥
λ,2

+

∥∥∥∥t−1
n

(√
qγ,tn,u −

√
qγ
)
− 1

2
gγ
√
qγ

∥∥∥∥
λ,2

≤ sup
δ∈[0,1]

∥∥∆γ+δtn(ϕn−ϕ)(ϕn − ϕ)
∥∥
λ,2

+ o(1).

(91)

For any sequence (δn)n∈N ⊂ [0, 1] we have that ‖∆γ+δntn(ϕn−ϕ)(ϕn −
ϕ) − ∆γ(0)‖λ,2 → 0 by (∗) and ‖∆γ(0)‖λ,2 = 0.105 It follows that

lim supn→∞ supδ∈[0,1]

∥∥∆γ+δtn(ϕn−ϕ)(ϕn − ϕ)
∥∥
λ,2

= 0 and hence

∥∥∥∥√pγ+tnϕn −
√
pγ

tn
−∆γ(ϕ)

∥∥∥∥
λ,2

=

∥∥∥∥√qγ,tn,un −√qγtn
− 1

2
gγ
√
qγ

∥∥∥∥
λ,2

= o(1), (92)

which we note holds for any γ ∈ Γ, since such γ was arbitrary. Now, consider an arbitrary

sequence θn → θ and γn = (θn, η). Using (92) and applying the mean value theorem at

105The latter observation follows directly from the definition of ∆γ
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each n ∈ N gives (e.g. Drabek and Milota, 2007, Theorem 3.2.7)∥∥∥∥t−1
n

(√
qγn,tn,un −

√
qγn
)
− 1

2
gγn
√
qγn

∥∥∥∥
λ,2

≤ |t−1
n | sup

δ∈[0,1]
‖∆γn+δtnϕn(tnϕn)− tn∆γn(ϕ)‖λ,2

= sup
δ∈[0,1]

‖∆γn+δtnϕn(ϕn)−∆γn(ϕ)‖λ,2 .

(93)

By (∗) we have for some sequence (δn)n∈N ⊂ [0, 1],106

lim sup
n→∞

sup
δ∈[0,1]

‖∆γn+δtnϕn(ϕn)−∆γn(ϕ)‖λ,2

≤ lim sup
n→∞

‖∆γn+δntnϕn(ϕn)−∆γ(ϕ)‖λ,2 + lim sup
n→∞

‖∆γn(ϕ)−∆γ(ϕ)‖λ,2

= o(1).

Combining this with (93) and taking tn = n−1/2 yields∥∥∥∥√n (√pγn,τn,hn −√pγn)− 1

2
gγn
√
pγn

∥∥∥∥
λ,2

=

∥∥∥∥t−1
n

(√
qγn,tn,un −

√
qγn
)
− 1

2
gγn
√
qγn

∥∥∥∥
λ,2

= o(1),

which implies (1.19).

Finally we demonstrate that Pγngn = 0 and the uniform square Pγn-integrability of the

score functions gn. That Pγngn = 0 and gn ∈ L2(Pγn) follows from (90) applied separately

for each n ∈ N (with γ = γn) and Lemma 1.7 in van der Vaart (2002). The uniform square

Pγn-integrability of (gn)n∈N follows from the uniform square Pγn-integrability of (g′n)n∈N

established in (d) above applied with δn = 0, any tn ↓ 0 and un = 0.

Proof of proposition 1.5.2. The claim regarding the form of the efficient score function

follows from proposition 1.5.1, Lemma 3 of Lee and Mesters (2022a) and Lemma C.4.

For assumption CM(ii), fix τ ∈ Rdθ and h ∈ Hη and let gn = τ ′ ˙̀γn + Bγnh and

g := τ ′ ˙̀γ + Bγh where ˙̀
γ and Bγ are defined analogously to in Proposition 1.5.1 but

with A = A(θ, β1) in place of An = A(θn, β1). During the demonstration of (∗) in the

proof of Proposition 1.5.1 it was shown that limn→∞ Pγn(g′n)2 = Pγg
2. Applying this

result with δn = 0, any tn ↓ 0 and un = 0 yields limn→∞ Pγng
2
n = Pγg

2.

A similar argument can be used for the efficient score function. Let ˘̀
γ := (˜̀′

γ,1,
˜̀′
γ,2)′.

Applied with δn = 0, any tn ↓ 0 and un = 0, (a) in the proof of Proposition 1.5.1

yields that Pγn → Pγ in total variation. Since the components of ˘̀
γ and ˘̀

γ are defined

as orthogonal projections onto subspaces of L2(Pγn) and ∈ L2(Pγ) respectively, they lie in

these spaces. Inspection of the form of each element of ˘̀
γn and ˘̀

γ reveals that ˘̀
γn → ˘̀

γ

λ-a.e. and hence Pγ-a.s. as Pγ � λ. Let ρ = 2 + δ/2 where δ is as in (1.35) & (1.36). Let

N ∈ N be large enough that for n ≥ N , each |τn,l| ≤ 2|τl|, |ςn,l| ≤ 2|ςl|, ‖An‖2 ≤ 2‖A‖2,

106On the right hand side take the trivial sequences ϕn = ϕ and δn = 0.
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each |ζl,k,j,n| ≤ 2|ζl,k,j | and Pγn ∈ P . To show that ˘̀2
γn,l

is uniformly Pγn-integrable for

each l ∈ [dθ + dβ] it suffices to show that supn≥N Pγn |˘̀γn,l|ρ < ∞ for each such l. In

particular, by Hölder’s inequality (and given the bounds just discussed holding for n ≥ N )

it is sufficient to show that each of (for all (k, j) ∈ [K]2 with k 6= j and s ∈ [dβ2 ])

Pγn |An,kVn|ρ, Pγn |κ(An,kVn)|ρ, Pγn |φk(An,kVn)Aj,nVn|ρ, Pγn |An,kD2,s(X−µ)φk(Ak,nVn)|ρ,

are bounded independently of n (for n ≥ N ). Under Pγn An,kVn ∼ ηk and X ∼ η0.

Using independence, Hölder’s inequality and (1.35) & (1.36) for constants C1, C2 ∈ (0,∞)

independent of n

Pγn |An,kVn|ρ =

∫
eρ dGk(e) <∞

Pγn |κ(An,kVn)|ρ ≤ C1

∫
(e4+δ + 1) dGk(e) <∞

Pγn |φk(An,kVn)Aj,nVn|ρ =

∫
|φk(ek)|ρ dGk(ek)

∫
|ej |ρ dGj(ej) <∞

Pγn |An,kD2,s(X − µ)φk(Ak,nVn)|ρ ≤ C2

∫
(‖(1, x̃)‖ρ2 + ‖µ‖ρ2) dG0(x̃)

∫
|φk(ek)|ρ dGk(ek) <∞.

Since each right hand side term in the preceding display does not depend on n, this

establishes the uniform Pγn-integrability of each ˘̀2
γn,l

. By Cauchy-Schwarz, the continuous

mapping theorem and Lemma 1.3.11 it then follows that Pγn
[
˘̀
γn

˘̀′
γn

]
→ Pγ

[
˘̀
γ

˘̀′
γ

]
. To

complete the argument, note that the convergence just established along with the uniform

Pγn-integrability of each ˘̀2
γn,l

implies that also each component ˜̀2
γn,l

(for l ∈ [dθ]) is

uniformly Pγn-integrable and so the same holds for ‖˜̀γn‖22. Again by definition each

component ˜̀
γn,l ∈ L2(Pγn) and ˜̀

γ,l ∈ L2(Pγ) and so using the uniform Pγn-integrability

just established, (1.46), Pγn
[
˘̀
γn

˘̀′
γn

]
→ Pγ

[
˘̀
γ

˘̀′
γ

]
, Cauchy-Schwarz, the continuous

mapping theorem and Lemma 1.3.11 once more we may conclude that limn→∞ Ĩγn = Ĩγ .

It remains to check the boundedness of Bγ , which follows directly as

‖Bγh‖Pγ ,2 . ‖b1‖2 + ‖b2‖2 +
K∑
k=1

‖hk‖Gk,2 . ‖b‖2 +
K∑
k=1

‖hk‖ = ‖h‖.

Proof of proposition 1.5.3. That assumption M holds is a consequence of the model setup in

assumption LSEM & the sampling assumption. Assumption CM(ii) follows by proposition

1.5.2. Assumption DQM holds by proposition 1.5.1, the proof of which also shows that

the scores ˙̀
γn ∈ L0

2(Pγn) & Bγn : Hη → L0
2(Pγn). Then proposition 1.3.10 applied with

gn = τ ′ ˙̀γn +Bγnh yields that assumption LAN holds.
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It remains to show that assumptions E and R hold.107 Suppose that (βn)n∈N ⊂ B is a

deterministic
√
n-consistent sequence for β (as in assumption DSE) and let ˆ̀

ξn,1 & ˆ̀
ξn,2

be formed as in equation (1.49). Let γ′n := (θn, ηn) with ηn := (βn, η0, . . . , ηK). Let
˘̀
γ := (˜̀′

γ,1,
˜̀′
γ,2)′ and ˇ̀

ξn := (ˆ̀′
ξn,1

, ˆ̀′
ξn,2

)′. Components of ˇ̀
ξn have one of two forms:

ˆ̀
ξn,m,l(Wi) =

K∑
k=1

ζl,k,k,n (τ̂n,k,1en,k,i + τ̂n,k,2κ(en,k,i)) +
K∑

j=1,j 6=k
ζl,k,j,nφ̂n,k(en,k,i)en,j,i

 ,
ˆ̀
ξn,2,db1+s(Wi) =

K∑
k=1

[−An,kD2,s]
[
(Xi − X̄n)φ̂n,k(en,k,i)− X̄n (ς̂n,k,1en,k,i + ς̂n,k,2κ(en,k,i))

]
(with m = 1 and l ∈ [dθ] or m = 2 and l ∈ [dβ1 ] and s ∈
[dβ2 ]). Under Pγ′n , en,k,i ' εk and en,j,i ' εk. Therefore, by

assumptions LSEM and DSE, 1
n

∑n
i=1

[
φ̂n,k(en,k,i)− φk(en,k,i)

]
en,j,i = oPγ′n

(n−1/2)

and 1
n

∑n
i=1

[
φ̂n,k(en,k,i)− φk(en,k,i)

]
(Xi − µ) = oPγ′n

(n−1/2). Additionally, since

(en,k,i)
n
i=1 and (κ(en,k,i))

n
i=1 and (φk(en,k,i))n∈N are i.i.d. samples from mean zero

distributions with finite variance under Pγ′n given assumption LSEM and equation (1.45),

it follows that 1√
n

∑n
i=1 an,k,i = OPγ′n

(1), for an,k,i ∈ {en,k,i, κ(en,k,i), φk(en,k,i)}. The

argument of Lemma 7 in Lee and Mesters (2022a) implies that ‖κ̂n,k−κk‖2 = oPγ′n
(νn) =

oP ′γn (1) for κ ∈ {τ, ς} where νn is defined as in assumption DSE.108 Since X̃ ∼ η0 under

Pγ′n , 1
n

∑n
i=1Xi − µ = oPγ′n

(1) by the LLN. The continuity of A and D1,l yields that each

ζl,k,j,n → ζl,k,j and hence are bounded. Combining these observations yields that

√
nPn

[
ˇ̀
ξn − ˘̀

γ′n

]
= oPγ′n

(1). (94)

Let Îξn := Pn ˇ̀
ξn

ˇ̀′
ξn

, Ǐγ′n := Pn ˘̀
γ′n

˘̀′
γ′n

and Ĭγn := Pγn
˘̀
γn

˘̀′
γn . Firstly, let m, r ∈ {1, 2}

and l, s be indices such that ˆ̀
ξn,m,l and ˆ̀

ξn,r,s are components of ˇ̀
ξn . Let Ûn,i,m,l :=

ˆ̀
ξn,m,l(Wi), Ũn,i,m,l := ˜̀

ξn,m,l(Wi) and Dn,i,m,l := Ûn,i,m,l − Ũn,i,m,l. By Cauchy-

Schwarz, assumptions LSEM, DSE, (1.45) and arguing analogously to Lemma 8 of Lee

and Mesters (2022a)∣∣∣∣∣ 1n
n∑
i=1

Dn,i,l,mŨn,i,r,s

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Ũ2
n,i,r,s

)1/2(
1

n

n∑
i=1

D2
n,i,l,m

)1/2

= oP ′γn (νn)

∣∣∣∣∣ 1n
n∑
i=1

Ũn,i,l,mDn,i,r,s

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Û2
n,i,l,m

)1/2(
1

n

n∑
i=1

D2
n,i,r,r

)1/2

= oP ′γn (νn),

107The argument in this section proceeds similarly to the relevant parts of the proofs of Theorem 2 & Proposition
2 of Lee and Mesters (2022a).

108The Lemma as stated does not apply directly since it is for the case where θn = θ. Regardless, since
en,k,i ∼ ηk and X̃ ∼ η0 under Pγ′n the argument also holds in our case.
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and hence R1,n := ‖Îξn − Ǐξn‖2 ≤ ‖Îξn − Ǐξn‖F = oPγ′n
(νn).109 Next let

Qn,i,l,m,r,s := ˜̀
γ′n,l,m(Wi)˜̀

γ′n,r,s(Wi)− ˜̀
γn,l,m(Wi)˜̀

γn,r,s(Wi),

and let Q̆n,i,l,m,r,s be defined analogously except with each en,k,i replaced by εi,k. Note that

the distribution of Qn,i,l,m,r,s under Pγ′n is the same as that of Q̆n,i,l,m,r,s under the product

measure G =
∏K
k=0Gk. Therefore, arguing analogously to the corresponding part of the

proof of proposition 2 in Lee and Mesters (2022a), using their Lemma 6 and Theorems

2.5.11 & 2.5.12 in Durrett (2019) gives that R2,n := ‖Ǐξn − Ĭγn‖2 = oP ′γn (νn). Combining

this with the result for R1,n we have that

‖Îξn − Ĭγn‖2 = oPγ′n
(νn). (95)

Next we demonstrate that for each pair m, l indexing and element of ˘̀
γn we have∫

[˜̀γ′n,m,l
√
pγ′n − ˜̀

γn,m,l
√
pγn ]2 dλ→ 0. (96)

Note that λ-a.e. each ˜̀
γ′n,m,l

√
pγ′n → ˜̀

γ,m,l
√
pγ and ˜̀

γn,m,l
√
pγn → ˜̀

γ,m,l
√
pγ by

the assumed continuity of A, each D1,l, each ηk and each φk and the form of these

functions. Hence by Proposition 2.29 in van der Vaart (1998) it suffices to show that∫
˜̀2
γ′n,m,l

dPγ′n →
∫

˜̀2
γ,m,l dPγ and

∫
˜̀2
γn,m,l

dPγn →
∫

˜̀2
γ,m,l dPγ , since ˜̀

γ,m,l ∈ L2(Pγ)

by its definition. Define Qn,i,l,m := ˜̀2
γn,m,l

, Q′n,l,m := ˜̀2
γ′n,m,l

and Q̆n,l,m, Q̆′n,l,m which

are defined analogously except with each en,k,i replaced by εi,k. Under Pγn , Qn,l,m
has the same distribution as Q̆n,l,m has under G; similarly under Pγ′n , Q′n,l,m has the

same distribution as Q̆′n,l,m has under G. Hence,
∫

˜̀2
γ′n,m,l

dPγ′n =
∫
Q′n,m,l dG and∫

˜̀2
γn,m,l

dPγn =
∫
Qn,m,l dG. This observation and the the continuity of A and each

D1,l is sufficient for the required integral convergence to hold.110 We note that the same

argument which yielded the uniform Pγn-integrability of ‖˜̀γn‖22 in the proof of Proposition

1.5.2 can be used to show that that ‖˜̀γ′n‖22 is uniform Pγ′n-integrable. Since θ 7→ rank(Ĩγ) is

locally constant, for all sufficiently large n ∈ N we have rank(Ĩγn) = rank(Ĩγ). Ĩγn → Ĩγ
(which holds as we have shown that assumption CM(ii) does). The proof is completed by

applying Lemma B.7.

Proof of corollary 1.5.4. This follows from propositions 1.5.3, 1.3.2 and 1.3.3.

Proof of corollary 1.5.5. This follows from proposition 1.5.3 and corollaries 1.3.7 & 1.3.9,

on noting that Hη – as defined in equation (1.43) – is a linear subspace of H whenever

β ∈ int B.
109Similarly to footnote 108, whilst Lemma 8 in Lee and Mesters (2022a) cannot be directly applied since it

assumes θn = θ, the underlying argument continues to apply here as it is based on the fact that under the
relevant measure (here Pγ′n ) en,k,i ∼ ηk and X̃ ∼ η0. Moreover their assumptions 5 & 6 hold under
assumptions LSEM, DSE and (1.45).

110See the corresponding part of the proof of proposition 2 in Lee and Mesters (2022a) for additional details.
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C. Supporting results

Lemma C.1. Let {Zn,k : k ≤ n, n ∈ N} be a triangular array of L−dimensional random

vectors, such that each row is independent with E[Zn,k] = 0 and Σn,k := E
[
Zn,kZ

′
n,k

]
exists. Suppose that

1

n

n∑
k=1

Σn,k → Σ?, (97)

with Σ? positive semi-definite (and finite) and that for each ε > 0

1

n

n∑
k=1

E
[
‖Zn,k‖21{‖Zn,k‖ ≥ ε

√
n}
]
→ 0. (98)

Then
1√
n

n∑
k=1

Zn,k  N (0,Σ?).

Proof. Put ξn,k := Zn,k/
√
n for k ≤ n and ξn,k := 0 otherwise. Fix a ∈ RL. For

each n ∈ N, let Fn,k = σ(ξn,t : t ≤ k) for k ≤ n and Fn,k = Fn,n otherwise.

The adapted sequence (a′ξn,k,Fn,k)k∈N is clearly a martingale difference sequence by

the independence, mean zero and (square) integrability of each Zn,k. Moreover, the

sums
∑∞

k=1 a
′ξn,k =

∑n
k=1 a

′ξn,k and
∑∞

k=1 E[(a′ξn,k)
2] =

∑n
k=1 E[(a′ξn,k)

2] trivially

converge with probability 1 for each n ∈ N. By linearity and continuity we have that

∞∑
k=1

E[(a′ξn,k)
2] =

n∑
k=1

E[(a′ξn,k)
2] = a′

[
1

n

n∑
k=1

Σn,k

]
a→ a′Σ?a ≥ 0.

Next, suppose that a 6= 0 and let ε > 0. We have that {|a′Zn,k| ≥ ε
√
n} ⊂ {‖Zn,k‖ ≥

ε
√
n/‖a‖} and therefore

∞∑
k=1

E
[
(a′ξn,k)

21{|a′ξn,k| ≥ ε}
]
≤ ‖a‖2 1

n

n∑
k=1

E
[
‖Zn,k‖21{‖Zn,k‖ ≥ ε

√
n/‖a‖}

]
→ 0,

by assumption.111 Noting the assumed independence, the conditions of Theorem 18.1 of

Billingsley (1999) are satisfied and hence

1√
n

n∑
k=1

a′Zn,k =
∞∑
k=1

a′ξn,k  N (0, a′Σ?a).

The claimed result then follows by an application of the Cramér-Wold theorem.

Remark C.1. Lemma C.1 is, of course, completely standard. I record it here because I have

been unable to find a reference for a multivariate CLT for triangular arrays which permits a
111In the case that a = 0 this limit trivially holds.
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positive semi-definite limiting variance matrix.

Lemma C.2. Let G be a closed subspace of L2(P ) where the latter is separable and let

(gm)m∈N denote an orthonormal basis in G. Let for m ∈ N, let Πm denote the orthogonal

projection on Gm := lin{g1, . . . , gm} and let Π denote the orthogonal projection on G.

Then, for any X ∈ L2(P ) we have that ΠmX → ΠX in L2(P ) as m→∞.

Proof. We first note that the formulation in the lemma is well-defined: every subspace of a

separable metric space is itself separable (see e.g. Proposition 26, section 9.6 of Royden and

Fitzpatrick, 2010, p. 204-205). Since a closed subspace of a Hilbert space is also a Hilbert

space (with the same inner product), it follows that G is separable and therefore possesses

an orthonormal basis (e.g. Theorem 11, Section 16.3 of Royden and Fitzpatrick, 2010, p.

317-318). Since any finite dimensional subset of a Hilbert space is closed, the orthogonal

projection operators Πm are well defined. Throughout 〈·, ·〉 and ‖ · ‖ will denote the inner

product in L2(P ).

By proposition I.4.7 in Conway (1985, p. 15) we have that

ΠmX =

m∑
k=1

〈X, gk〉gk.

ΠX is the unique vector in G such that 〈X −ΠX, g〉 = 0 for all g ∈ G (see e.g. I.2.6 -

I.2.8 in Conway, 1985, p. 9-10). Now, let Y =
∑∞

k=1〈X, gk〉gk which converges by e.g.

lemma I.4.12 in Conway (1985, p. 16). By continuity and linearity of the inner product we

then have that for any gj

〈X − Y , gj〉 = 〈X, gj〉 −
∞∑
k=1

〈X, gk〉〈gk, gj〉 = 〈X, gj〉 − 〈X, gj〉 = 0.

Using linearity and continuity of the inner product once more permits the conclusion that

〈X − Y , g〉 = 0 for any g ∈ G. Hence Y = ΠX . Then, we have ΠX − ΠmX =∑∞
k=m+1〈X, gk〉gk = Y − ∑m

k=1〈X, gk〉gk which converges to 0 in L2(P ) by the

convergence of
∑m

k=1〈X, gk〉gk to Y .

Lemma C.3. Let X be an integrable random variable and Z a random element in a metric

space Z , both defined on a probability space (Ω,F ,P). Then E[X|Z] = 0 (P-almost

surely) if and only if E[Xf(Z)] = 0 for all square integrable functions f : Z → R such

that Xf(Z) is integrable.

Proof. Suppose that E[X|Z] = 0. We have

E[Xf(Z)] = E[E[Xf(Z)|Z]] = E[E[X|Z]f(Z)] = 0.

87



Conversely suppose that E[Xf(Z)] = 0 for all square-integrable functions f : Z → R with

Xf(Z) integrable. Let Y be any of the conditional expectations E[X|Z] and let A ∈ σ(Z).

There is a set B ∈ B(R) such that A = Z−1(B). Put f as the indicator f(z) := 1{z ∈ B}.
Clearly Ef(Z)2 ≤ 1 and Xf(Z) is integrable. Then, by definition,∫

A
Y dP =

∫
A
X dP =

∫
Xf(Z) dP = E[Xf(Z)] = 0.

Now, suppose {Y 6= 0} has positive measure. Then one of {Y > 0} or {Y < 0} must.

Say the first, the argument for the latter is analogous. This is {Y > 0} = E = ∪n≥1En for

En := {Y > 1/n}. So one Ek at least has positive measure. So
∫
E Y dP ≥

∫
Ek
Y dP ≥∫

Ek
1/k dP = P(Ek)/k > 0. But this is a contradiction since E ∈ σ(Z).

Lemma C.4. Let ˙̀ and κ̇ be L- and K- dimensional vectors of functions in L2(P )

respectively. Define B := lin{κ̇1, . . . , κ̇K} and suppose that G is a subspace of L2(P ).

For any closed subspace S ⊂ L2(P ), denote the orthogonal projection of X ∈ L2(P ) on

S by Π (X | S). Then if X̆ := Π
(
X | G⊥

)
we have

˜̀ := Π
(

˙̀ | [B + G ]⊥
)

= ˘̀−Π
(

˘̀ | lin{κ̆1, . . . , κ̆K}
)
. (99)

Moreover, if Ĩ := P
[
˜̀̀̃ ′
]

and J̆ := P

[(
˘̀′, κ̆′

)′ (
˘̀′, κ̆′

)]
and J̆22 is positive-definite then

˜̀= ˘̀− J̆12J̆
−1
22 κ̆, and Ĩ = J̆11 − J̆12J̆

−1
22 J̆21. (100)

Proof. The proof of the first claim is as discussed on p. 74 of Bickel et al. (1998). As there,

noting that G ⊂ lin B + G and using their equation (A.2.11) (p. 428) we obtain

˜̀= ˙̀−Π
(

˙̀ | G
)
−Π

(
˙̀ | (B + G ) ∩ G⊥

)
= ˙̀−Π

(
˙̀ | G

)
−Π

(
˙̀−Π

(
˙̀ | G

)
| (B + G ) ∩ G⊥

)
= ˘̀−Π

(
˘̀ | (B + G ) ∩ G⊥

)
.

Now, suppose that f ∈ lin{κ̆1, . . . , κ̆K}. Then we have

f =
K∑
k=1

akκ̆k =
K∑
k=1

akκ̇k −
K∑
k=1

akΠ(κ̇k | G ) ∈ lin B + G ,

and moreover, since each κ̆k ∈ G⊥, linearity of the inner product implies the same

holds for f . Hence f ∈ (B + G ) ∩ G⊥. For the reverse containment, suppose that

f ∈ (B + G ) ∩ G⊥. Then, we have for some g ∈ G that

f =

K∑
k=1

akκ̇k + g.
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Now, suppose that g 6= −∑K
k=1 akΠ (κ̇k | G ), and hence g = −∑K

k=1 akΠ (κ̇k | G )+h 6=
0 for some h ∈ G with h 6= 0. Then

〈f, h〉 =

K∑
k=1

ak〈κ̇k, h〉−
K∑
k=1

ak〈Π(κ̇k | G ), h〉+〈h, h〉 =

K∑
k=1

ak〈κ̆k, h〉+〈h, h〉 = 〈h, h〉 > 0,

which is a contradiction to f ∈ G⊥. Hence we must have g = −∑K
k=1 akΠ (κ̇k | G )

and therefore f =
∑K

k=1 akκ̆k ∈ lin{κ̆1, . . . , κ̆K}. It follows that (B + G ) ∩ G⊥ =

lin{κ̆1, . . . , κ̆K} which, in conjunction with the first display of the proof, yields (99).

Next, if J̆22 is positive definite, then the formulae in in (100) are well-defined. For the left

hand side note that we have

P
[(

˘̀− J̆12J̆
−1
22 κ̆

)
κ̆′
]

= J̆12 − J̆12J̆
−1
22 J̆22 = J̆12 − J̆12 = 0,

implying that ˘̀− J̆12J̆
−1
22 κ̆ is the orthogonal projection of ˘̀ onto the orthocomplement

of lin{κ̆1, . . . , κ̆K} (e.g. Conway, 1985, Theorem I.2.6) and hence satisfies the condition

given in (99). The formula on the right hand side of (100) then follows by elementary

calculations.

Lemma C.5. Suppose that X is an integrable random variable on (Ω,F , P ), G,H ⊂ F
and σ(σ(X) ∪H) is independent of G. Then, almost surely E[X|σ(G ∪ H)] = E[X|H].

Proof. (i) E(X|H) is σ(G ∪ H) measurable since E(X|H) is H-measurable by definition.

(ii) E(X|H) is integrable by definition of conditional expectation. (iii) We demonstrate that

for each A ∈ σ(G ∪ H), ∫
A
E(X|H) dP =

∫
A
X dP.

Let M = {B ∩ C : B ∈ G, C ∈ H}. This is closed under intersections and contains

Ω. Additionally, we have that G ∪ H ⊂ M ⊂ σ(G ∪ H) and therefore, σ(M) =

σ(G ∪ H). Hence, by Theorem 34.1 in Billingsley (1995) it is sufficient to demonstrate∫
B∩C E(X|H) dP =

∫
B∩C X dP for B ∈ G and C ∈ H. To this end, suppose that X ≥ 0

(without loss of generality, since the following argument can be applied to the two positive

parts X = X+ +X− separately and linearity used to conclude otherwise). Then, we have

that ∫
B∩C

X dP = E(1B1CX) = E(1B)E(1CX),
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since G is independent of σ(σ(X) ∪H). Additionally,∫
B∩C

E[X|H] dP = E (1B1CE[X|H])

= E(1B)E [1CE[X|H]]

= E(1B)E [E[1CX|H]]

= E(1B)E(1CX),

using the independence between G andH, 10.10 in Davidson (1994) and the LIE.

Lemma C.6 (Cf. Theorem 2 in Andrews, 1987). Suppose that equations (1.7) and (1.8)

hold. Then,

‖Î†n,θn − Ĩ
†
γ‖2 = oPγn (1).

Proof. Let r := rank(Ĩγ) and letM denote the set of dθ × dθ matrices with rank r. Fix

ε > 0 and let δ > 0 be small enough that whenever M ∈ M is such that ‖Ĩγ −M‖2 < δ

we have ‖Ĩ†γ −M †‖2 < ε.112 It follows that for each n ∈ N,{
‖Î†n,θn − Ĩ

†
γ‖2 ≥ ε

}
⊂
{
‖În,θn − Ĩγ‖2 ≥ δ

}
∪
{

rank(În,θn) 6= r
}
,

and so

Pγn

(
‖Î†n,θn − Ĩ

†
γ‖2 ≥ ε

)
≤ Pγn

(
‖În,θn − Ĩγ‖2 ≥ δ

)
+ Pγn

(
rank(În,θn) 6= r

)
→ 0.

Lemma C.7. Suppose that equation (1.7) holds and Ĩγ � 0. Then assumption R holds.

Proof. The function M 7→ rank(M) is lower-semicontinuous on the set of matrices of

any (fixed) dimension. There is a δ > 0 such that on the set {‖În,θn − Ĩγ‖2 < δ},
dθ ≥ rank(În,θn) ≥ rank(Ĩγ) − 1/2 > dθ − 1, implying rank(Ĩγ) = dθ = rank(În,θn).

Hence, by (1.7)

Pγn

(
rank(În,θn) = rank(Ĩγ)

)
≤ Pγn({‖În,θn − Ĩγ‖2 < δ})→ 1.

Lemma C.8. Suppose that S is a Polish space and (Pn)n∈N is a sequence of probability

measures which converges in total variation to P , with each Pn and P defined on (S,B(S)).

If (fn)n∈N is a sequence of non-negative functions in L1(Pn) such that (a) fn
P−→ f ∈

L1(P ) and (b) Pnfn → Pf then (fn)n∈N is uniformly Pn-integrable.

112See e.g. section 6.6 in Ben-Israel and Greville (2003).
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Proof. Condition (a) and Pn
TV−−→ P together imply that Qn  Q where Qn is the

pushforward measure of Pn under fn and Q the same of P under f . Let h ∈ Cb(S).

By change of variables (e.g. Bogachev, 2007, Theorem 3.6.1)
∫
hdQn =

∫
h(fn) dPn

and
∫
g dQ =

∫
h(f) dP . By (a) and the bounded convergence theorem,

∫
h(fn) dP →∫

h(f) dP . By Pn
TV−−→ P∣∣∣∣∫ h(fn) dPn −

∫
h(fn) dP

∣∣∣∣ ≤ 2h̄ sup

{∣∣∣∣∫ g dPn −
∫
g dP

∣∣∣∣}→ 0,

where |h| ≤ h̄ ∈ (0,∞) and the supremum is taken over all measurable g with 0 ≤ g ≤ 1.

Hence Qn  Q as claimed. This, in conjunction with (b), Theorem 3.6 of Billingsley

(1999) and translating terms yields the result.

D. Tables & figures

D.1. Empirical rejection frequencies (ERF)

SIM
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Table D.1: Homoskedastic SIM ERF (%), specification 1

ε ∼ N (0, 1), Xk ∼ U(−1, 1)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 5.24 6.58 6.14 15.94 14.38 18.92
400

√
1 5.38 5.20 5.40 10.28 10.14 13.82

600
√

1 5.50 5.70 5.14 8.06 7.88 11.22
800

√
1 4.74 4.76 5.36 6.94 7.78 10.28

200
√

2 5.46 5.36 5.38 17.62 15.18 19.90
400

√
2 5.58 5.68 5.58 12.72 10.26 14.58

600
√

2 4.60 5.48 5.42 10.66 9.14 13.20
800

√
2 5.20 5.34 5.74 9.20 8.98 10.60

200
√

4 5.22 5.50 5.62 20.86 19.10 24.62
400

√
4 4.98 5.86 5.60 14.68 12.62 17.04

600
√

4 4.92 5.20 5.52 12.80 9.82 15.10
800

√
4 5.48 4.96 6.02 10.48 9.32 13.08

200
√

8 5.12 5.34 5.60 16.28 22.52 26.20
400

√
8 5.98 5.50 5.12 19.48 16.12 19.98

600
√

8 5.62 5.00 6.48 15.24 14.18 16.94
800

√
8 4.98 5.54 5.40 13.02 11.76 14.42

200
√

16 4.82 5.64 5.22 12.28 20.08 21.76
400

√
16 5.28 5.30 6.02 15.66 18.66 23.66

600
√

16 4.58 5.46 5.62 19.30 15.68 19.64
800

√
16 5.30 5.56 5.32 17.02 14.68 17.62

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score test. W is a
Wald test based on an Ichimura (1993) type estimator as described in section 1.4.4.
f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v

2, where the
constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
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Table D.2: Homoskedastic SIM ERF (%), specification 2

ε|ξ ∼
√

5(−1)ξ Beta(2, 3), ξ ∼ Bernoulli(1/2), Xk ∼ U(−1, 1)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 4.82 5.56 5.94 14.72 12.88 16.98
400

√
1 5.74 4.96 5.50 10.28 10.68 12.42

600
√

1 4.78 4.98 5.08 7.98 8.52 10.56
800

√
1 5.14 4.88 5.34 7.06 7.78 9.58

200
√

2 4.82 5.84 5.94 17.06 15.38 19.58
400

√
2 5.14 5.86 5.52 11.86 10.02 14.20

600
√

2 5.18 5.26 5.46 9.72 9.22 12.84
800

√
2 5.04 5.12 5.40 8.72 8.60 11.90

200
√

4 5.26 5.48 5.78 19.84 18.44 22.34
400

√
4 5.64 5.38 5.62 15.18 12.20 16.02

600
√

4 6.18 5.66 5.64 10.92 10.18 15.18
800

√
4 4.88 5.26 4.84 10.12 9.52 13.24

200
√

8 5.10 5.38 5.08 15.36 20.18 25.64
400

√
8 4.66 5.58 4.96 19.08 16.20 20.44

600
√

8 5.22 4.92 5.52 15.14 13.08 16.36
800

√
8 5.10 4.98 5.66 12.64 11.00 14.78

200
√

16 5.28 4.76 5.60 12.58 18.62 21.90
400

√
16 5.54 5.56 5.34 15.38 19.14 23.40

600
√

16 5.24 5.20 5.32 18.08 14.98 20.26
800

√
16 4.92 5.30 5.02 17.54 13.60 18.08

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score test. W is a
Wald test based on an Ichimura (1993) type estimator as described in section 1.4.4.
f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v

2, where the
constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
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Table D.3: Homoskedastic SIM ERF (%), specification 3

ε ∼ N (0, 1), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼ U(−1, 1)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 5.28 5.56 6.52 14.74 15.76 14.42
400

√
1 6.20 5.94 5.96 10.62 10.88 10.68

600
√

1 5.64 5.62 5.70 9.28 9.00 9.06
800

√
1 5.10 5.80 5.00 7.28 8.78 8.18

200
√

2 6.14 5.62 5.80 17.74 20.14 16.92
400

√
2 5.62 5.96 6.52 12.08 14.02 11.02

600
√

2 5.70 5.26 5.66 9.72 11.16 9.94
800

√
2 5.38 5.08 5.78 9.68 10.34 9.02

200
√

4 6.20 5.44 5.32 20.84 25.02 20.26
400

√
4 5.64 5.62 5.90 15.70 16.82 14.22

600
√

4 5.24 5.54 5.88 12.20 13.08 11.32
800

√
4 5.68 5.74 5.38 11.18 13.14 10.62

200
√

8 5.42 5.88 5.54 15.70 25.26 16.86
400

√
8 5.82 5.42 5.32 17.24 21.64 17.42

600
√

8 5.80 5.84 5.94 15.82 16.56 15.24
800

√
8 5.44 5.68 5.60 13.14 15.14 13.14

200
√

16 5.52 5.94 5.86 12.32 20.14 12.94
400

√
16 6.18 5.68 5.58 16.06 24.22 15.98

600
√

16 5.76 5.72 5.66 17.90 22.20 16.80
800

√
16 5.24 5.28 5.02 17.40 19.54 15.38

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score test. W is a
Wald test based on an Ichimura (1993) type estimator as described in section 1.4.4.
f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v

2, where the
constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
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Table D.4: Homoskedastic SIM ERF (%), specification 4

ε|ξ ∼
√

5(−1)ξ Beta(2, 3), ξ ∼ Bernoulli(1/2), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼ U(−1, 1)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 5.26 5.92 6.18 14.78 15.28 13.60
400

√
1 5.50 5.84 5.54 10.44 10.90 9.50

600
√

1 5.22 5.70 5.36 8.62 9.14 8.28
800

√
1 5.26 5.32 5.90 8.26 9.72 8.40

200
√

2 5.96 6.00 6.02 17.62 19.86 15.54
400

√
2 5.18 5.16 5.96 12.32 14.40 11.10

600
√

2 5.22 6.02 5.34 10.86 10.58 9.14
800

√
2 5.38 4.96 6.02 8.94 10.44 8.36

200
√

4 5.96 6.26 5.58 20.32 24.04 20.48
400

√
4 5.78 6.40 6.00 15.26 16.46 13.52

600
√

4 5.30 5.26 5.60 13.16 13.72 11.06
800

√
4 5.18 5.62 5.04 10.12 12.38 9.56

200
√

8 5.72 5.78 5.72 15.14 25.52 16.50
400

√
8 5.24 5.54 6.14 18.22 21.88 17.82

600
√

8 5.76 4.96 5.10 15.18 17.34 14.70
800

√
8 5.46 5.48 5.82 14.26 15.30 13.28

200
√

16 5.66 5.16 5.96 11.42 20.78 12.82
400

√
16 5.66 5.84 6.00 15.58 24.86 16.28

600
√

16 5.00 4.78 5.98 17.44 22.06 16.72
800

√
16 5.60 5.64 5.36 16.78 19.94 15.90

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score test. W is a
Wald test based on an Ichimura (1993) type estimator as described in section 1.4.4.
f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v

2, where the
constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
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Table D.5: Heteroskedastic SIM ERF (%), specification 1, optimal weighting

ε ∼ N (0, s1 log(2 + (X1 +X2θ)
2)), Xk ∼ U(−1, 1), ω̆(X) = ω(X)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 6.38 6.64 6.20 18.72 16.76 23.46
400

√
1 6.24 5.84 6.50 12.34 11.70 17.26

600
√

1 5.78 5.12 5.72 10.38 10.96 14.70
800

√
1 5.88 5.58 5.92 8.50 9.94 12.76

200
√

2 5.76 5.76 6.12 22.62 19.30 25.86
400

√
2 5.96 6.22 6.26 16.30 13.72 20.08

600
√

2 5.52 5.46 6.26 14.46 11.70 15.70
800

√
2 5.34 5.94 5.68 11.26 10.14 14.78

200
√

4 5.32 5.72 5.44 27.12 24.36 30.40
400

√
4 5.42 5.96 6.12 21.06 16.28 22.48

600
√

4 5.24 5.52 5.74 15.50 13.38 19.58
800

√
4 5.74 5.72 5.76 13.74 11.16 17.78

200
√

8 5.40 5.64 5.46 19.66 25.36 30.08
400

√
8 6.60 6.22 6.32 25.42 21.10 28.72

600
√

8 5.50 5.80 6.60 21.34 17.78 23.80
800

√
8 5.42 5.84 6.06 17.86 15.58 21.08

200
√

16 5.86 6.26 5.74 14.06 23.96 25.06
400

√
16 5.52 6.50 6.46 20.32 23.98 29.78

600
√

16 5.50 5.74 5.08 25.04 22.00 29.20
800

√
16 5.28 4.82 5.24 22.90 19.90 25.40

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo efficient score test.
W is a Wald test based on an Ichimura (1993) type estimator as described in section
1.4.4. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v

2, where
the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
Similarly the constants si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table D.6: Heteroskedastic SIM ERF (%), specification 2, optimal weighting

ε ∼ N (0, s2(1 + 5 sin(X1)2)), Xk ∼ U(−1, 1), ω̆(X) = ω(X)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 5.40 5.94 6.46 19.10 16.34 18.46
400

√
1 6.68 6.34 7.42 13.36 11.24 13.72

600
√

1 5.94 6.14 6.00 10.28 8.74 10.88
800

√
1 5.86 5.70 5.78 8.86 7.68 9.76

200
√

2 5.12 5.32 5.70 23.74 19.96 22.58
400

√
2 5.42 6.28 6.62 15.70 12.92 15.72

600
√

2 5.92 6.00 5.92 12.66 10.44 12.86
800

√
2 5.68 5.76 5.78 10.38 9.58 11.90

200
√

4 5.64 6.50 5.94 23.30 22.86 25.92
400

√
4 5.48 5.82 6.84 19.76 16.60 18.44

600
√

4 5.82 5.74 6.24 15.70 13.08 14.30
800

√
4 5.80 5.82 6.18 13.86 12.16 12.54

200
√

8 5.98 5.70 5.50 14.74 23.00 28.56
400

√
8 5.48 6.50 5.78 22.32 20.00 23.70

600
√

8 5.46 5.76 6.24 20.56 16.76 19.02
800

√
8 5.36 6.00 6.18 17.94 13.74 16.50

200
√

16 4.96 6.20 5.42 12.96 18.18 26.24
400

√
16 5.42 6.50 6.70 12.78 21.82 25.66

600
√

16 5.20 5.86 5.58 18.30 21.24 23.82
800

√
16 5.06 5.66 5.92 21.44 18.76 20.98

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo efficient score test.
W is a Wald test based on an Ichimura (1993) type estimator as described in section
1.4.4. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v

2, where
the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
Similarly the constants si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table D.7: Heteroskedastic SIM ERF (%), specification 3, optimal weighting

ε ∼ N (0, s1 log(2 + (X1 + X2θ)
2)), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼ U(−1, 1),

ω̆(X) = ω(X)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 5.08 5.98 6.10 15.22 16.62 16.40
400

√
1 5.06 5.74 5.54 9.62 11.76 12.00

600
√

1 5.56 5.94 5.84 8.18 11.02 10.86
800

√
1 5.02 5.58 5.44 8.00 9.02 9.50

200
√

2 5.70 5.62 5.50 17.94 19.58 19.94
400

√
2 5.92 5.80 6.06 12.90 13.24 14.08

600
√

2 6.20 6.02 5.38 9.52 11.22 11.54
800

√
2 5.60 5.70 5.48 8.78 10.76 9.78

200
√

4 5.66 6.02 5.50 20.92 24.00 22.28
400

√
4 5.90 5.68 5.86 16.50 16.98 17.84

600
√

4 5.08 5.40 5.92 12.20 14.42 14.44
800

√
4 5.32 4.88 5.72 10.74 11.96 12.54

200
√

8 5.62 5.36 5.56 18.02 26.58 17.74
400

√
8 5.90 5.76 5.44 19.70 21.66 20.64

600
√

8 5.70 5.86 5.76 16.72 17.70 18.04
800

√
8 5.42 5.18 5.26 13.30 14.92 14.82

200
√

16 5.20 5.18 5.30 12.16 21.54 15.70
400

√
16 5.58 5.26 5.80 17.04 25.38 18.52

600
√

16 5.68 5.42 5.88 18.78 22.58 20.06
800

√
16 5.08 5.26 5.46 17.80 19.20 18.82

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo efficient score test.
W is a Wald test based on an Ichimura (1993) type estimator as described in section
1.4.4. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v

2, where
the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
Similarly the constants si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table D.8: Heteroskedastic SIM ERF (%), specification 4, optimal weighting

ε ∼ N (0, s2(1 + 5 sin(X1)2)), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼ U(−1, 1), ω̆(X) = ω(X)

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 4.74 5.34 5.66 14.86 14.12 17.52
400

√
1 5.60 6.28 6.12 9.34 10.24 10.12

600
√

1 5.66 6.00 5.48 6.82 7.76 7.62
800

√
1 5.82 6.42 5.64 6.70 7.54 6.62

200
√

2 5.16 5.56 5.84 19.24 17.10 20.10
400

√
2 6.38 6.14 6.38 11.50 11.92 12.28

600
√

2 5.62 5.08 6.02 8.34 9.38 9.98
800

√
2 5.50 6.10 5.50 8.14 8.94 7.42

200
√

4 5.88 5.58 5.48 24.48 22.80 23.50
400

√
4 6.10 6.04 6.10 15.04 15.08 15.72

600
√

4 5.98 6.32 5.84 11.54 11.70 11.30
800

√
4 5.68 5.82 5.62 9.24 10.88 9.78

200
√

8 5.48 4.96 5.26 24.04 27.46 24.94
400

√
8 5.42 5.42 5.94 20.26 19.66 20.38

600
√

8 5.74 5.58 5.76 16.10 15.44 15.22
800

√
8 5.40 5.08 5.60 12.26 12.80 13.88

200
√

16 5.50 4.60 5.10 17.84 22.32 22.20
400

√
16 5.38 5.80 5.66 20.82 23.02 22.36

600
√

16 5.54 5.86 5.56 19.78 19.58 21.86
800

√
16 5.70 5.80 5.60 17.88 17.00 17.14

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo efficient score test.
W is a Wald test based on an Ichimura (1993) type estimator as described in section
1.4.4. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v

2, where
the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
Similarly the constants si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table D.9: Heteroskedastic SIM ERF (%), specification 1, feasible weighting

ε ∼ N (0, s1 log(2 + (X1 +X2θ)
2)), Xk ∼ U(−1, 1), ω̆(X) = 1

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 4.86 5.74 5.62 22.22 19.88 23.22
400

√
1 5.64 5.20 6.04 15.80 13.76 18.40

600
√

1 5.10 5.72 5.50 12.08 12.14 14.68
800

√
1 5.32 4.88 5.32 10.82 11.06 13.50

200
√

2 4.68 5.90 5.98 26.22 23.80 27.42
400

√
2 5.18 5.72 6.44 19.14 15.68 20.74

600
√

2 5.26 5.72 5.24 15.98 13.20 17.00
800

√
2 5.28 5.28 6.16 14.00 12.24 16.22

200
√

4 5.78 5.18 5.54 29.72 27.44 32.58
400

√
4 5.88 5.46 6.14 24.32 19.24 24.88

600
√

4 5.34 5.14 6.18 20.10 15.92 19.62
800

√
4 5.14 5.28 5.10 17.86 14.08 18.12

200
√

8 6.02 5.74 6.18 23.12 29.98 32.70
400

√
8 5.44 5.34 5.94 29.00 26.08 29.76

600
√

8 5.52 5.72 5.04 25.26 20.50 24.70
800

√
8 5.16 5.70 6.18 21.74 17.42 22.78

200
√

16 5.48 5.16 5.40 15.62 25.38 28.04
400

√
16 5.78 5.50 5.86 23.62 28.28 33.34

600
√

16 5.02 4.74 6.10 28.38 25.90 30.54
800

√
16 5.00 5.14 5.28 27.00 21.72 26.24

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo efficient score test.
W is a Wald test based on an Ichimura (1993) type estimator as described in section
1.4.4. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v

2, where
the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
Similarly the constants si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table D.10: Heteroskedastic SIM ERF (%), specification 2, feasible weighting

ε ∼ N (0, s2(1 + 5 sin(X1)2)), Xk ∼ U(−1, 1), ω̆(X) = 1

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 5.10 5.34 6.56 18.52 18.06 22.40
400

√
1 5.90 5.52 5.26 13.12 12.60 15.68

600
√

1 5.28 5.10 5.36 9.94 10.36 13.10
800

√
1 5.08 5.18 5.06 9.10 9.58 12.78

200
√

2 5.48 5.86 5.86 21.18 19.64 23.92
400

√
2 5.64 5.14 5.64 15.58 13.28 18.48

600
√

2 4.70 5.86 5.52 11.58 11.48 14.84
800

√
2 5.36 5.34 5.20 11.18 10.54 13.80

200
√

4 4.84 5.22 5.78 21.96 23.54 27.20
400

√
4 5.52 6.26 6.32 19.00 16.60 20.88

600
√

4 5.18 5.76 5.14 15.90 13.58 18.66
800

√
4 5.34 4.88 5.56 13.58 11.90 16.62

200
√

8 4.86 5.92 5.30 15.86 23.46 27.62
400

√
8 4.96 5.36 5.78 22.28 20.46 25.90

600
√

8 5.22 5.66 5.44 19.80 16.18 21.58
800

√
8 5.10 5.24 5.28 17.08 15.36 19.78

200
√

16 5.10 5.42 5.68 12.16 17.86 20.54
400

√
16 5.50 5.70 5.60 13.54 23.14 27.24

600
√

16 5.54 5.36 5.98 18.22 20.12 25.44
800

√
16 4.40 5.38 5.00 20.90 18.50 23.26

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo efficient score test.
W is a Wald test based on an Ichimura (1993) type estimator as described in section
1.4.4. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v

2, where
the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
Similarly the constants si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table D.11: Heteroskedastic SIM ERF (%), specification 3, feasible weighting

ε ∼ N (0, s1 log(2 + (X1 +X2θ)
2)), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼ U(−1, 1), ω̆(X) = 1

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 6.14 5.46 6.16 17.80 18.88 17.66
400

√
1 6.24 6.10 5.98 12.54 13.54 12.90

600
√

1 6.02 5.58 6.44 10.78 11.70 9.96
800

√
1 5.66 5.42 5.26 10.44 10.90 9.48

200
√

2 6.08 5.62 5.42 22.22 22.46 20.82
400

√
2 5.58 5.12 6.00 16.24 16.44 13.68

600
√

2 5.64 5.66 6.02 12.46 13.22 11.64
800

√
2 6.08 5.88 5.42 11.96 12.94 10.28

200
√

4 6.04 5.98 6.12 26.00 28.62 21.70
400

√
4 5.94 5.60 5.48 19.68 20.80 17.68

600
√

4 6.10 5.44 5.54 16.54 16.96 14.42
800

√
4 5.34 5.32 5.74 13.46 15.26 12.44

200
√

8 5.36 5.72 5.44 19.90 28.44 17.34
400

√
8 6.36 5.74 5.72 22.72 26.44 20.62

600
√

8 5.82 5.68 4.98 19.84 20.78 17.80
800

√
8 4.98 5.36 5.80 17.74 18.96 15.46

200
√

16 4.90 5.42 5.28 15.04 23.14 15.82
400

√
16 5.66 5.40 6.06 20.76 28.06 17.40

600
√

16 5.64 5.26 5.72 22.92 26.58 19.36
800

√
16 4.84 5.20 5.00 20.84 23.30 18.86

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo efficient score test.
W is a Wald test based on an Ichimura (1993) type estimator as described in section
1.4.4. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v

2, where
the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
Similarly the constants si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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Table D.12: Heteroskedastic SIM ERF (%), specification 4, feasible weighting

ε ∼ N (0, s2(1 + 5 sin(X1)2)), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼ U(−1, 1), ω̆(X) = 1

Ŝ W

n δ−1 f = δf1 f = δf2 f = δf3 f = δf1 f = δf2 f = δf3

200
√

1 6.20 6.34 5.80 18.88 21.20 19.30
400

√
1 6.36 5.90 5.40 15.04 16.58 13.84

600
√

1 5.40 5.74 5.24 12.34 14.32 12.60
800

√
1 5.54 5.66 5.22 10.64 12.30 10.66

200
√

2 5.72 5.98 6.70 23.24 25.90 23.48
400

√
2 5.64 6.10 5.82 16.66 19.28 16.56

600
√

2 5.28 5.22 5.64 14.12 16.08 13.76
800

√
2 5.92 5.66 6.02 12.94 14.52 11.92

200
√

4 5.94 6.46 6.12 29.54 29.14 27.76
400

√
4 6.08 6.16 5.78 21.66 24.08 20.16

600
√

4 5.10 5.80 5.56 17.50 18.74 14.90
800

√
4 5.24 5.76 5.32 16.62 18.08 14.58

200
√

8 6.30 5.96 5.82 26.38 34.50 25.68
400

√
8 5.64 5.30 5.84 25.76 28.60 24.70

600
√

8 5.52 5.84 5.72 22.16 23.56 20.06
800

√
8 5.20 5.74 5.12 18.92 21.02 17.36

200
√

16 5.44 5.06 6.18 15.94 28.06 18.10
400

√
16 5.36 5.80 6.50 26.70 33.90 26.38

600
√

16 5.04 6.00 5.46 26.72 29.04 24.70
800

√
16 5.46 5.84 5.46 23.14 26.78 22.62

Notes: Based on 5000 Monte carlo replications. Ŝ is the psuedo efficient score test.
W is a Wald test based on an Ichimura (1993) type estimator as described in section
1.4.4. f1(v) = c1(1 + exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v

2, where
the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
Similarly the constants si (i = 1, 2) are chosen to ensure that Vε = 1 under the null.
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LSEM

Table D.13: True error distributions

η1 η2

a N (0, 1) 0 – 1 N (0, 1)

b t′(5) 1 – 1 t′(5)

c SN ′(0, 1, 4) 1 – 2 t′(10)

– – 1 – 3 t′(15)

– – 2 – 1 SN ′(0, 1, 4)

– – 2 – 2 SN ′(0, 1, 3)

– – 2 – 3 SN ′(0, 1, 2)

– – 3 – 1 3/4N (0, 1) + 1/4N (3/2, 1/9)

– – 3 – 2 17/20N (0, 1) + 3/20N (3/2, 1/9)

– – 3 – 3 19/20N (0, 1) + 1/20N (3/2, 1/9)

Notes: SN (µ, σ, α) denotes the skew normal distribution with location µ, scale σ and shape α. t′ and SN ′

indicate that the corresponding t and skew normal distributions have been normalised to have zero mean and

unit variance. The mixutre density in the right hand column is based on the “Skewed bimodal” density in

Marron and Wand (1992).
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Figure D.1: Density function of t′(ν)
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Densities 1 – j for j = 1, 2, 3 in table D.13.

Figure D.2: Density function of SN ′(0, 1, α)
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Densities 2 – j for j = 1, 2, 3 in table D.13.
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Figure D.3: Density function of αN (0, 1) + (1− α)N (3/2, 1/9)
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Densities 3 – j for j = 1, 2, 3 in table D.13.

Figure D.4: Density functions for distributions used in LSEM simulation study (ii).
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Table D.14: Empirical rejection frequencies (%) for LSEM, ε1 ∼ N (0, 1)

n 0 – 1 1 – 1 1 – 2 1 – 3 2 – 1 2 – 2 2 – 3 3 – 1 3 – 2 3 – 3

Ŝ

200 4.74 5.62 5.90 5.50 3.20 3.86 4.48 2.92 3.58 4.62
400 4.78 5.52 4.44 5.16 2.82 3.68 4.66 1.92 3.58 4.24
600 4.60 4.84 4.20 4.74 2.50 3.42 3.76 2.18 3.34 4.56
800 4.56 4.28 4.48 4.12 2.62 2.94 3.56 2.52 3.86 4.16

Ŝ∗

200 6.94 6.58 6.76 7.26 6.74 6.78 6.46 7.10 7.00 6.88
400 6.82 6.66 6.44 6.76 8.02 7.36 7.74 5.94 7.12 6.46
600 7.04 7.32 5.86 6.58 8.60 7.80 6.68 6.50 6.74 6.82
800 6.68 6.38 6.48 6.04 8.68 7.50 5.84 5.74 7.20 6.82

Ŵ

200 33.00 16.76 23.26 25.30 28.84 29.86 30.02 61.02 54.36 40.56
400 32.98 11.74 17.18 21.78 26.40 26.16 27.02 74.60 64.60 44.28
600 33.32 10.02 14.28 18.82 23.92 25.42 26.62 82.70 71.10 44.68
800 33.32 8.98 13.64 16.62 23.78 22.60 24.82 88.16 77.50 47.32

ˆLM

200 4.96 4.86 4.90 5.32 5.08 5.32 4.78 5.28 5.44 4.74
400 5.42 4.88 5.08 5.30 4.50 5.88 5.14 5.38 4.86 5.10
600 5.14 5.54 5.34 5.28 5.18 5.36 5.32 4.84 5.08 5.22
800 5.14 4.80 4.60 4.82 4.44 4.84 4.78 4.68 5.36 5.42

W̃

200 27.38 32.18 30.20 29.80 28.28 29.48 28.76 23.10 24.40 25.50
400 25.26 30.24 28.76 27.92 27.60 27.88 26.58 21.94 22.70 22.60
600 23.82 28.14 27.54 28.14 26.02 26.12 26.74 18.76 20.78 21.68
800 23.14 26.86 26.94 25.86 26.62 26.54 25.64 16.88 20.26 20.86

˜LM

200 30.52 35.66 32.88 31.76 31.16 32.52 31.28 22.90 24.66 28.04
400 21.64 27.26 23.34 23.56 22.84 22.74 22.38 14.66 15.86 17.74
600 16.64 22.86 18.76 19.58 18.30 18.46 20.16 9.10 11.02 14.36
800 14.72 19.68 15.72 15.88 16.60 16.70 16.50 6.84 8.52 11.52

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score test computed using
OLS estimates of β; Ŝ∗ is the efficient score test computed using 1-step updates from the
OLS estimates. Ŵ, L̂M denote the Wald and LM tests based on a psuedo-maximum likelihood
estimator inspired by Gouriéroux et al. (2017). W̃ and L̃M denote the Wald and LM tests based
on a GMM estimator inspired by Lanne and Luoto (2021). Columns 2 – 14 denote the choice of
density for ε2, as in Table D.13.
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Table D.15: Empirical rejection frequencies (%) for LSEM, ε1 ∼ t′(5)

n 0 – 1 1 – 1 1 – 2 1 – 3 2 – 1 2 – 2 2 – 3 3 – 1 3 – 2 3 – 3

Ŝ

200 6.16 7.58 6.10 6.00 3.96 4.92 5.40 3.20 4.32 5.74
400 5.40 6.76 5.72 5.86 3.54 4.50 5.06 4.06 3.90 5.34
600 4.96 5.58 5.32 6.06 3.52 4.18 4.82 3.26 4.10 5.50
800 5.04 5.48 5.32 5.58 3.70 4.34 4.78 3.20 4.14 4.80

Ŝ∗

200 7.24 7.20 6.52 6.88 7.70 7.56 6.92 6.92 7.00 7.20
400 6.38 7.22 6.18 6.52 7.74 6.96 6.70 6.74 6.24 6.52
600 5.64 6.04 5.96 6.72 7.08 6.68 6.28 5.30 5.60 6.42
800 6.12 6.50 6.10 6.32 6.74 7.18 6.40 5.58 5.44 5.68

Ŵ

200 13.28 10.88 11.38 11.98 13.16 13.62 12.52 21.20 18.76 15.16
400 10.32 8.24 8.42 8.66 9.24 9.36 9.40 16.90 13.94 10.42
600 7.84 7.52 7.38 7.90 7.96 8.22 7.96 15.80 12.20 9.26
800 7.34 6.80 6.42 7.00 7.62 7.44 8.38 13.54 11.72 8.48

ˆLM

200 5.20 4.72 4.70 5.00 5.24 5.24 5.46 5.46 5.60 5.42
400 5.40 5.10 5.04 4.80 5.34 4.98 5.30 5.84 5.62 5.14
600 4.78 4.64 4.44 5.18 4.94 5.02 5.22 5.48 5.40 5.12
800 4.82 5.04 5.50 5.40 5.28 4.84 4.38 5.72 5.66 4.48

W̃

200 24.94 32.26 27.54 26.12 26.34 26.00 25.92 19.88 22.06 22.20
400 20.18 27.78 22.60 21.02 21.04 21.20 20.68 17.38 16.50 19.62
600 17.98 24.62 20.32 19.84 19.52 19.02 17.94 14.96 14.64 16.90
800 16.16 22.20 18.88 18.16 17.66 17.70 16.70 13.42 13.82 15.66

˜LM

200 37.10 44.10 39.78 39.18 39.44 39.34 37.88 30.94 33.26 34.90
400 29.16 36.58 30.58 29.46 30.74 29.78 29.38 25.06 24.26 27.80
600 23.56 31.82 27.36 26.44 26.52 25.60 24.58 21.06 21.64 23.62
800 21.62 28.30 23.90 23.16 23.22 23.64 21.80 19.20 20.46 21.22

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score test computed using
OLS estimates of β; Ŝ∗ is the efficient score test computed using 1-step updates from the
OLS estimates. Ŵ, L̂M denote the Wald and LM tests based on a psuedo-maximum likelihood
estimator inspired by Gouriéroux et al. (2017). W̃ and L̃M denote the Wald and LM tests based
on a GMM estimator inspired by Lanne and Luoto (2021). Columns 2 – 14 denote the choice of
density for ε2, as in Table D.13.
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Table D.16: Empirical rejection frequencies (%) for LSEM, ε1 ∼ SN ′(0, 1, 4)

n 0 – 1 1 – 1 1 – 2 1 – 3 2 – 1 2 – 2 2 – 3 3 – 1 3 – 2 3 – 3

Ŝ

200 4.90 5.84 5.56 5.48 3.88 4.62 5.16 3.58 4.16 5.08
400 5.22 5.70 5.14 5.00 3.38 4.52 4.92 3.88 4.18 4.54
600 5.18 5.72 4.98 5.52 3.46 4.22 4.78 3.00 4.10 5.08
800 5.10 5.02 5.12 5.22 3.76 3.78 5.08 4.02 3.84 5.02

Ŝ∗

200 6.02 6.68 6.26 6.40 7.44 6.56 6.74 6.42 6.32 6.18
400 6.34 6.42 6.12 5.84 6.96 6.82 6.46 7.16 6.88 6.32
600 6.34 6.44 5.94 6.40 6.64 6.74 6.26 5.88 6.18 6.16
800 5.58 6.12 6.12 5.86 7.66 5.82 6.42 6.08 5.54 6.40

Ŵ

200 28.96 15.94 20.38 22.70 26.36 25.26 26.94 53.34 47.80 35.26
400 27.76 11.36 15.36 18.42 22.64 22.46 23.50 62.94 51.70 35.58
600 25.48 9.02 13.54 16.44 20.22 20.10 20.34 68.34 56.94 34.72
800 24.38 9.04 11.48 13.62 18.52 18.68 19.58 73.12 59.92 35.18

ˆLM

200 4.84 4.74 5.46 4.36 4.80 5.34 5.46 5.42 5.26 5.16
400 5.44 4.94 5.10 4.26 5.50 5.12 4.26 4.82 5.66 5.42
600 5.02 4.80 5.40 5.30 5.18 4.66 4.88 5.14 5.04 5.02
800 4.98 5.20 4.90 5.58 5.66 4.80 5.70 4.84 5.04 4.90

W̃

200 27.76 34.48 31.56 29.22 31.88 30.72 30.84 23.16 23.90 26.04
400 24.48 32.28 29.04 28.04 27.94 27.70 27.48 17.80 18.94 23.36
600 20.88 29.54 26.58 24.60 25.72 24.32 23.58 14.38 15.06 18.48
800 20.42 27.94 26.74 23.54 25.42 24.08 23.52 12.50 13.26 16.72

˜LM

200 35.10 39.54 37.00 36.14 38.18 37.32 38.24 28.98 29.82 33.76
400 27.72 29.62 27.98 28.28 27.94 27.52 27.54 18.90 21.02 25.62
600 21.22 24.22 23.04 21.74 22.74 22.24 22.80 15.42 16.26 19.70
800 20.18 22.34 20.74 18.36 20.48 20.52 21.18 12.18 13.64 17.50

Notes: Based on 5000 Monte carlo replications. Ŝ is the efficient score test computed using
OLS estimates of β; Ŝ∗ is the efficient score test computed using 1-step updates from the
OLS estimates. Ŵ, L̂M denote the Wald and LM tests based on a psuedo-maximum likelihood
estimator inspired by Gouriéroux et al. (2017). W̃ and L̃M denote the Wald and LM tests based
on a GMM estimator inspired by Lanne and Luoto (2021). Columns 2 – 14 denote the choice of
density for ε2, as in Table D.13.

109



Table D.17: Empirical rejection frequencies (%) for LSEM

η1, η2 n Ŝ Ŝ∗ Ṡ Ṡ∗

1 200 5.20 7.52 7.24 11.84
1 400 4.80 7.24 7.92 12.66
1 600 4.32 6.86 7.58 11.94
1 800 4.32 6.30 7.38 10.76

2 200 7.42 7.68 6.14 9.92
2 400 6.46 6.92 5.48 8.60
2 600 5.56 6.42 5.48 7.98
2 800 5.32 6.24 4.96 7.86

3 200 4.26 7.18 9.10 13.20
3 400 4.06 7.28 8.42 12.68
3 600 3.52 6.90 7.84 12.04
3 800 4.06 7.36 7.56 11.98

Notes: Based on 5000 Monte carlo replications.
Ŝ is the efficient score test computed using
OLS estimates of β; Ŝ∗ is the efficient score
test computed using 1-step updates from the
OLS estimates. Ṡ and Ṡ∗ are score tests
based on the score function for the Euclidean
parameters using OLS estimates and 1-step
updates respectively. The first column denotes
the choice of density for both ε1 and ε2 as in the
left colum of Table D.13.
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D.2. Power curves

SIM

Figure D.5: Homoskedastic SIM power curve, specification 1

ε ∼ N (0, 1), Xk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(−v))−1, f2(v) =
c2 exp(−v2), f3(v) = c3v2, where the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
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Figure D.6: Homoskedastic SIM power curve, specification 2

ε|ξ ∼
√

5(−1)ξ Beta(2, 3), ξ ∼ Bernoulli(1/2), Xk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(−v))−1, f2(v) =
c2 exp(−v2), f3(v) = c3v2, where the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.

Figure D.7: Homoskedastic SIM power curve, specification 3

ε ∼ N (0, 1), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(−v))−1, f2(v) =
c2 exp(−v2), f3(v) = c3v2, where the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.
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Figure D.8: Homoskedastic SIM power curve, specification 4

ε|ξ ∼
√

5(−1)ξ Beta(2, 3), ξ ∼ Bernoulli(1/2) X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications with a sample size of n = 800. f1(v) = c1(1 + exp(−v))−1, f2(v) =
c2 exp(−v2), f3(v) = c3v2, where the constants ci (i = 1, 2, 3) are chosen to ensure V(fi(Vθ)) = 4 under the null.

Figure D.9: Heteroskedastic SIM power curve, specification 1

ε ∼ N (0, s1 log(2 + (X1 +X2θ)
2)), Xk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications; n = 800. f1(v) = c1(1+exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v2;
ci (i = 1, 2, 3) chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants si (i = 1, 2) are chosen to ensure
that Vε = 1 under the null. Uniform weighting: ω̆(X) = 1; Optimal weighting: ω̆(X) = ω(X).
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Figure D.10: Heteroskedastic SIM power curve, specification 2

ε ∼ N (0, s2(1 + 5 sin(X1)2)), Xk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications; n = 800. f1(v) = c1(1+exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v2;
ci (i = 1, 2, 3) chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants si (i = 1, 2) are chosen to ensure
that Vε = 1 under the null. Uniform weighting: ω̆(X) = 1; Optimal weighting: ω̆(X) = ω(X).

Figure D.11: Heteroskedastic SIM power curve, specification 3

ε ∼ N (0, s1 log(2 + (X1 +X2θ)
2)), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼ U(−1, 1)

Optimal weighting Uniform weighting

f=
δf1

f=
δf2

f=
δf3

0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

θ

 δ−1 16 8 4 2 1

Based on 5000 Monte carlo replications; n = 800. f1(v) = c1(1+exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v2;
ci (i = 1, 2, 3) chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants si (i = 1, 2) are chosen to ensure
that Vε = 1 under the null. Uniform weighting: ω̆(X) = 1; Optimal weighting: ω̆(X) = ω(X).
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Figure D.12: Heteroskedastic SIM power curve, specification 4

ε ∼ N (0, s2(1 + 5 sin(X1)2)), X = (Z1, 0.2Z1 + 0.4Z2 + 0.8), Zk ∼ U(−1, 1)
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Based on 5000 Monte carlo replications; n = 800. f1(v) = c1(1+exp(−v))−1, f2(v) = c2 exp(−v2), f3(v) = c3v2;
ci (i = 1, 2, 3) chosen to ensure V(fi(Vθ)) = 4 under the null. Similarly the constants si (i = 1, 2) are chosen to ensure
that Vε = 1 under the null. Uniform weighting: ω̆(X) = 1; Optimal weighting: ω̆(X) = ω(X).
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Figure D.13: Power curves for LSEM (i), ε1 ∼ N (0, 1)
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Based on 5000 Monte carlo replications. Ŝ is the efficient score test computed using OLS estimates of β; Ŝ∗ is the efficient
score test computed using 1-step updates from the OLS estimates. L̂M denotes the LM test based on a psuedo-maximum
likelihood estimator inspired by Gouriéroux et al. (2017). The distribution for ε2 in the (i, j) − th panel has distribution i
– j in table D.13.

Figure D.14: Power curves for LSEM (i), ε1 ∼ t′(5)
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Based on 5000 Monte carlo replications. Ŝ is the efficient score test computed using OLS estimates of β; Ŝ∗ is the efficient
score test computed using 1-step updates from the OLS estimates. L̂M denotes the LM test based on a psuedo-maximum
likelihood estimator inspired by Gouriéroux et al. (2017). The distribution for ε2 in the (i, j) − th panel has distribution i
– j in table D.13.
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Figure D.15: Power curves for LSEM (i), ε1 ∼ SN ′(0, 1, 4)
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Based on 5000 Monte carlo replications. Ŝ is the efficient score test computed using OLS estimates of β; Ŝ∗ is the efficient
score test computed using 1-step updates from the OLS estimates. L̂M denotes the LM test based on a psuedo-maximum
likelihood estimator inspired by Gouriéroux et al. (2017). The distribution for ε2 in the (i, j) − th panel has distribution i
– j in table D.13.

Figure D.16: Power surfaces for LSEM (ii), η1 ∼ N (0, 1), η2 ∼ N (0, 1)
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Asymptotic

The bottom right panel depicts the asymptotic power surface based on (1.18) and (1.51) with θ = (a, b) = (1/2, 1/4) and
σ1 = σ2 = 1. The top-left, top-right and bottom-left panels are Monte Carlo version based on 5000 replications of the
efficient score test as described in section 1.5.5, with n = 600, 1000, 1400 respectively.
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Figure D.17: Power surfaces for LSEM (ii), η1 ∼ t′(5), η2 ∼ t′(5)
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Asymptotic

The bottom right panel depicts the asymptotic power surface based on (1.18) and (1.51) with θ = (a, b) = (1/2, 1/4) and
σ1 = σ2 = 1. The top-left, top-right and bottom-left panels are Monte Carlo version based on 5000 replications of the
efficient score test as described in section 1.5.5, with n = 600, 1000, 1400 respectively. ηk ∼ t′(5) indicates that each εk
is drawn from a (standardised) t distribution with 5 degrees of freedom.

118



Figure D.18: Power surfaces for LSEM (ii), η1 ∼ st′(5, 2), η2 ∼ st′(5, 2)
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Asymptotic

The bottom right panel depicts the asymptotic power surface based on (1.18) and (1.51) with θ = (a, b) = (1/2, 1/4)
and σ1 = σ2 = 1. The top-left, top-right and bottom-left panels are Monte Carlo version based on 5000 replications of
the efficient score test as described in section 1.5.5, with n = 600, 1000, 1400 respectively. ηk ∼ st′(5, 2) indicates that
each εk is drawn from a (standardised) skew t distribution, as in Fernandez and Steel (1998) with 5 degrees of freedom and
skewness parameter 2.
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Chapter 2
Robust inference for non-Gaussian
linear simultaneous equations models

This chapter was co-authored with Geert Mesters.

2.1. Introduction

The linear simultaneous equations model (LSEM) is a benchmark model used to analyze

general equilibrium relationships in economics. It was formalized in its modern form by

Haavelmo (1943, 1944), building on Frisch (1933) and Tinbergen (1939) among others. As

is well known, without further restrictions, not all parameters of the LSEM can be uniquely

identified from the first and second moments of the observed data series, see Dhrymes

(1994) for an in-depth discussion.

Interestingly, this identification problem vanishes (up to permutation and scale) when the

underlying structural shocks are independent and at most one of them follows a Gaussian

distribution (e.g. Comon, 1994). This identification approach has a long history in the

statistics and signal processing literatures where it is often referred to as independent

components analysis, see Hyvärinen et al. (2001) for a textbook treatment. More recently,

the econometrics literature has started investigating this approach and developing the

corresponding methodology for conducting inference on the parameters of various LSEMs

based on non-Gaussian identification.1

1See for instance: Lanne and Lütkepohl (2010), Moneta et al. (2013), Lanne et al. (2017), Maxand (2018),
Lanne and Luoto (2021), Gouriéroux et al. (2017, 2019), Tank et al. (2019), Herwartz (2019), Herwartz et al.
(2019), Bekaert et al. (2019, 2020), Fiorentini and Sentana (2022), Velasco (2020), Guay (2020), Moneta and
Pallante (2020), Drautzburg and Wright (2021), Sims (2021) and Davis and Ng (2022).
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Unfortunately, if in the true data generating process multiple structural shocks follow

a Gaussian distribution some structural parameters may be under- or un-identified and

standard inference methods that aim to exploit non-Gaussian distributions may fail to

control size. Moreover, as is typical in models with points of identification failure, such

behavior is also observed if the true distributions of the shocks are sufficiently to close

to Gaussianity, relative to the sampling variation. Intuitively, in such weakly non-Gaussian

settings local identification deteriorates leading to coverage distortions when using standard

inference methods, such as maximum likelihood and moment methods.

Similar (weak) identification problems occur in many other econometric models, e.g.

instrumental variable models, nonlinear regression models and many others, see Andrews

and Cheng (2012, 2013) for numerous examples. The key difference between this existing

literature and the non-Gaussian LSEM is that, in the latter, the parameters responsible for

the possible identification failure are density functions, i.e. infinite dimensional parameters.

Therefore, whilst conceptually the identification problem is the same, providing robust

inferential methods requires a new approach which is capable of handling identification

failure caused by infinite dimensional nuisance parameters.

To this extent, this paper develops a robust approach for conducting inference in LSEMs

that is inspired by the identification robust methods developed in econometrics (e.g. Stock

and Wright, 2000; Kleibergen, 2005; Andrews and Mikusheva, 2015) and the general

semiparametric statistical theory that is discussed in Bickel et al. (1998) and van der Vaart

(2002). In brief, we treat the LSEM as a semiparametric model, where the densities

of the independent structural shocks are treated non-parametrically, and we construct

confidence bands for the possibly unidentified structural parameters of interest by inverting

semiparametric score tests. The approach efficiently exploits non-Gaussianity when it is

present in the data and yields correct coverage regardless of the true distribution of the

shocks.

Intuitively, the efficient score test that we propose is the semi-parametric analog of

Neyman’s C(α) test (e.g. Neyman, 1979; Hall and Mathiason, 1990). In the conventional

C(α) test the scores of the parameter of interest are orthogonalized with respect to the

scores of the finite dimensional nuisance parameters. In our setting the nuisance parameter

includes the densities of the shocks, i.e. an infinite dimensional parameter. While such

nuisance functions result in the orthogonal projection being more technically demanding to

derive, the main idea of Neyman (1979) continues to apply.

We evaluate the finite sample performance of the semiparametric score test in a large

simulation study. This shows that regardless of how close the errors are to the Gaussian

distribution our test is correctly sized. In contrast, tests that are based on the sampling

variation of (pseudo)-maximum likelihood or GMM estimators have large size distortions

in weakly non-Gaussian settings. Further, for moderate sample sizes the power of the

semiparametric test is comparable to the parametric score test that relies on knowing the
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functional form of the density. When the parametric density of the (pseudo)-maximum

likelihood score test is misspecified the semi-parametric test is always found to be

preferable.

To showcase the empirical value of our methodology we consider the estimation of the

coefficients in a production function (e.g. Marschak and Andrews, 1944; Hoch, 1958;

Olley and Pakes, 1996; Leeb and Pötscher, 2003; Ackerberg et al., 2015). In contrast to

the more recent literature, we explicitly model the correlation between the error term and

the production function inputs; capital and labor (e.g. Hoch, 1958), and we exploit non-

Gaussianity to identify the product function coefficients. We adopt this strategy for a large

sample of manufacturing firms.

Overall, we find that this approach is able to accurately pin down the production function

coefficients. We estimate the coefficient for labor between 0.4 and 0.8 and the coefficient

for capital is between 0.2 and 0.5. These estimates are (i) robust across a variety of model

specifications and (ii) vastly different from standard OLS estimates, potentially indicating a

strongly endogenous relationship.

Throughout this paper we retain the assumption that the structural shocks are independent

which may not be the case in practice, see the discussions in Matteson and Tsay (2017),

Davis and Ng (2022) and Montiel Olea et al. (2022). Therefore, in our empirical study

we test the independence of the structural shocks following the approach of Matteson and

Tsay (2017) and find that for our empirical application we cannot reject the independence

assumption.

The remainder of this paper is organized as follows. In the next section we provide a simple

example that illustrates the identification problem and intuitively discusses our solution.

Section 2.3 presents the main LSEM model and provides the implementation details for the

efficient score test. Section 2.4 discusses the main theoretical results including the required

assumptions. Sections 2.5 and 2.6 summarize the results from the simulation and empirical

studies. Section 2.7 concludes. Unless otherwise mentioned all proofs are provided in the

Appendix.

2.2. Illustrative example

In this section we use a simple example to illustrate: (i) the identification problem in

LSEMs, (ii) why conventional inference methods suffer from size distortions when the

structural shocks have densities close to Gaussian and (iii) how our proposed approach

circumvents such distortions.
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THE IDENTIFICATION PROBLEM Consider the simple bi-variate model

Yi = R′εi , i = 1, . . . , n , (2.1)

where Yi is a vector of observable variables, R is rotation matrix (i.e. R′R = I2) and εi
is a vector with independent structural shocks εi,k, for k = 1, 2, that have mean zero, unit

variance and common density η. For concreteness, we will parameterize the rotation matrix

as follows

R =

[
cos(α) − sin(α)

sin(α) cos(α)

]
, (2.2)

where α ∈ [0, 2π] and we let α0 denote the true parameter.2

Model (2.1) has two parameters: the parameter of interest α and the infinite dimensional

nuisance parameter η. Suppose for now that η is known and let the log likelihood function

for Yi be denoted by `α(·). α is locally identified if the expected score of `α(Yi) with respect

to α is non-zero for all α 6= α0 in a neighborhood of α0.

Whether local identification occurs turns out to depend crucially on η. To illustrate, consider

the case where η is equal to the Gaussian density. Since εi is normalized we have

E`α(Yi) ∝ −
1

2
E(RYi)

′(RYi) = −1

and hence the expected loglikelihood takes the same value irrespective of α. This is plotted

in the top left panel of Figure 2.1, where we show the expected likelihood E`α(Yi) as a

function of α with α0 = π as the true parameter (an arbitrary choice). This illustrates the

standard identification problem in linear simultaneous equations models: without additional

identifying restrictions, the impact effects of the structural shocks are not identifiable when

the structural shocks follow a Gaussian distribution.

The other plots in Figure 2.1 show that this is no longer the case when we move away from

the Gaussian distribution. In each case the expected gradient becomes non-zero at values

α 6= α0 in the vicinity of α0, i.e. local identification occurs. While for the Student’s t

distribution with five degrees of freedom (i.e. t(5)) the change in the value of the expected

likelihood is substantial it is easy to see that for more modest deviations from Gaussianity

(e.g. t(15)) the difference is less pronounced. Further, note that non-Gaussian densities do

not imply that α is globally identified, instead identification is only up to permutation and

sign of the shocks.

FINITE SAMPLE SIZE DISTORTIONS In population α is always locally identified when all

but one component of η is non-Gaussian (Comon, 1994), but this is not sufficient for good

2Note that in general a researcher may consider Yi = Σ1/2R′εi, where Σ1/2 is lower triangular. However,
the elements of Σ1/2 can be identified from the variance of Yi and pose no difficulty. Therefore we set the
variance of Yi to unity and exclude Σ1/2 for simplicity.
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Figure 2.1: (Weak) Non-Gaussian Identification
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Notes: In the figure we show the expected log likelihood (red line) as a function of α (the true value is

α0 = π/4).
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performance of standard testing procedures in finite samples. In particular, if the structural

errors are too close to Gaussian, the available identifying information may be small relative

to the sampling variability. Standard asymptotic approximations are not reliable in this

setting and, as a result, testing procedures based on these approximations may fail to provide

reliable inference.

To illustrate how the density η affects standard inference methods in finite sample consider

figure 2.2 which depicts the finite sample distribution of the t-statistic for the hypothesis

H0 : α = α0, based on the maximum likelihood estimator under the assumption that η

is known. The blue dashed lines show the N (0, 1) density. As can clearly be seen in this

figure, the quality of the approximation provided by the standard Normal depends crucially

on the underlying density, η. For a given sample size, the approximation deteriorates

substantially the closer η is to a standard Gaussian density.

This deterioration results in poor size control of standard tests. Table 2.1 shows the

empirical rejection frequencies for three standard tests in the same setting: Wald (W),

likelihood ratio (LR) and Lagrange multiplier (LM) (or score) tests, all computed under the

assumption that η is known. Specifically we drew 5000 samples {Yi}ni=1 from model (2.1)

for different η’s using different sample sizes n = 250, 500, 750. The empirical rejection

frequencies correspond to the test for H0 : α = α0 with nominal size a = 0.05, where the

critical values are based on the standard χ2(1) asymptotic approximation.

We find that the Wald test is severely size distorted for η close to Gaussian; in view of the

poor quality of asymptotic approximation depicted in Figure 2.2 this is not surprising. As η

gets closer to Gaussianity, the likelihood ratio test starts to under-reject as when α is poorly

identified the likelihood values are very similar. Both of these tests are based on estimates

of α and, in weakly identified settings, such estimates will be inaccurate. In contrast, the

score test (LM) shows correct size as it fixes α = α0 under the null and α does not need to

be (well) identified for this test to be correctly sized.

Table 2.1: Empirical rejection frequencies for ML tests close to Gaussianity

t(15) t(10) t(5)

n W LM LR W LM LR W LM LR

250 25.26 4.42 3.74 20.56 4.24 4.04 8.88 4.84 4.08

500 21.76 4.54 4.52 13.10 4.38 3.60 6.38 4.42 4.92

750 17.12 4.96 3.94 9.90 4.88 3.42 6.12 5.28 5.64

Notes: The table shows the empirical rejection frequencies for the three maximum likelihood tests, under the

assumption that η is known and based on 5000 Monte Carlo replications for the baseline model Yi = R′εi. The

test has nominal size a = 0.05.
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Figure 2.2: Poor asymptotic approximation close to Gaussianity
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Notes: In the figure we show the finite sample distribution of the t-statistic based on the maximum likelihood

estimator of α (the true value is α0 = π/4) for different sample sizes (n) and different degrees of freedom (ν)

in the (standardised) t distribution, all based on 5000 replications.
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TOWARDS A SEMI-PARAMETRIC SCORE TEST Now in practice, η will be unknown and

needs to be estimated. To build up to our semi-parametric approach, consider first the

case where η is known up to a finite dimensional parameter vector, say β (for example β

may include the degrees of freedom of the Student’s t distribution). For this case Neyman

(1979) proposed a convenient extension of the standard score test, that amounts to first

orthogonalizing the scores for α with respect to the scores for β and then computing a

quadratic form of the score statistic. To illustrate let ˙̀(Yi) = ( ˙̀
α(Yi), ˙̀

β(Yi))
′, ˙̀

α(Yi) =

∇α`(Yi), ˙̀
β(Yi) = ∇β`(Yi) and Î = 1

n

∑n
i=1

˙̀(Yi) ˙̀(Yi)
′, denote the score and information

matrix for α and β. Neyman’s C(α) test statistic is given by

C(α) =

(
1√
n

n∑
i=1

κ̂(Yi)

)′
Î−1

(
1√
n

n∑
i=1

κ̂(Yi)

)
,

with

κ̂(Yi) = ˙̀
α − Îαβ Î−1

ββ
˙̀
β and Î = Îαα − Îαβ Î−1

ββ Îβα ,

where Î·· denote the corresponding blocks of Î .3 The (estimated) orthogonalized scores

κ̂(·) are often referred to as the (estimates of the) efficient scores and Î is the corresponding

(estimate of the) efficient information matrix. When evaluating C(α) at α = α0 and β̂,

some
√
n consistent estimate for β, this statistic will converge to a standard χ2 limit under

the null provided that Î is invertible.4 Tests based on C(α) retain correct size regardless

whether α is well identified as α is fixed under H0, making them attractive for settings

where identification failure due to finite dimensional nuisance parameters is a concern (e.g.

Andrews and Mikusheva, 2015).

In the present paper, we will not impose that the parametric form of η is known up to finite

dimensional parameters but instead treat η non-parametrically. Despite this change, our

approach is similar to that sketched above. We will first orthogonalize the score for α with

respect to the scores for η and obtain a semi-parametric analog of the conventional Neyman

C(α) test. This requires technical adjustments as the scores with respect to η need to be

defined differently and the projection with respect to η scores requires more care. For this

we follow the semi-parametric literature as outlined in the textbooks of Bickel et al. (1998)

and van der Vaart (2002).
3This is numerically equivalent to the “usual” score test provided the nuisance parameter β is estimated by
(restricted) maximum likelihood under the null hypothesis (Kocherlakota and Kocherlakota, 1991).

4In our general framework below we explicitly allow Î to be singular and rely on an eigenvalue truncated
generalized inverse, see also Andrews (1987), Lütkepohl and Burda (1997) and Andrews and Guggenberger
(2019).
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2.3. Robust inference for LSEMs

In this section we discuss the implementation of the semi-parametric score test for a general

class of linear simultaneous equations models.

2.3.1. General model and objectives

We consider the linear simultaneous equations model for a random sample of the K × 1

endogenous variables Yi, the d × 1 exogenous variables Xi = (1, X̃ ′i)
′ and the K × 1

structural shocks εi. Specifically,

Yi = BXi +A−1εi , i = 1, . . . , n , (2.3)

where the matricesB andA−1 map the explanatory variables and the structural shocks to the

endogenous variables. The density functions of the components of εi = (εi1, . . . , εiK)′ are

denoted by (η1, . . . , ηK) and the density of X̃i is given by η0. We set η = (η0, η1, . . . , ηK).

As illustrated in the previous section, depending on the shapes of η1, . . . , ηK we may

not be able to identify all parameters in A. To model this we let A = A(α, σ), where

A(α, σ) is a function of the possibly unidentified parameters α and parameters σ which

can be always identified from the variance of Yi − BXi. We let α ∈ A ⊂ RLα and set

β = (σ, b) ∈ B ⊂ RLσ × RLb = RLβ , with b = vec(B). The following two examples

illustrate possible parametrizations for A(α, σ) that are of practical interest.

Example 1 (Rotation matrix). Let A(α, σ)−1 = Σ1/2R′, where Σ1/2 is lower triangular

and R is a rotation matrix. In this setting we can take σ = vech(Σ1/2) and α parametrizes

R using the trigonometric transformation (as in Section 2.2) or the Cayley or exponential

transformation of a skew-symmetric matrix (e.g. Gouriéroux et al., 2017; Magnus et al.,

2020).

Example 2 (Supply and demand). For K = 2 let Yi1 denote the quantity of some good and

Yi2 its price. A simple model (omitting covariates for convenience) is given by

Y d
i1 = aYi2 + σ1εi1 (demand)

Y s
i1 = bYi2 + σ2εi2 (supply)

where εi1 and εi2 are independent demand and supply shocks, and in equilibrium we have

Y d
i1 = Y s

i2. We can accommodate this set up by letting α = (a, b), β = (σ1, σ2) and defining

the mapping A(α, σ) according to

A(α, σ) =

[
σ−1

1 0

0 σ−1
2

][
1 −a
1 −b

]
.
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In the remainder we leave the precise mappingA(α, σ) unspecified, but we will require that

it satisfies certain smoothness conditions.

The general LSEM (2.3) depends on the triplet of parameters θ = (α, β, η), which

includes the possibly unidentified parameters α, the finite dimensional nuisance parameters

β = (σ, b) and the infinite dimensional nuisance parameters η. We will refer to β as

nuisance parameters as our main interest is in conducting inference on α, but clearly β

could also be an object of interest. To conduct inference on α without making a priori

assumptions on the identification strength of α, i.e. without assuming that sufficiently many

ηk’s are non-Gaussian, we consider hypothesis tests of the form

H0 : α = α0 against H1 : α 6= α0 . (2.4)

Such test statistics can then be inverted to yield confidence intervals for α with correct

coverage.

The problem formulation reflects that we aim for a procedure that is valid for all densities

ηk, for k = 1, . . . ,K, Gaussian or not. A related set-up is found in Risk et al. (2019) and Jin

et al. (2019) who assume that the structural shocks can be separated into exactly Gaussian

and non-Gaussian shocks. We do not impose such structure, but we note that if indeed

shocks can be separated in this way our approach will remain valid, but likely less efficient

when compared to Risk et al. (2019).

2.3.2. Efficient score test for LSEMs

Next, we provide a step by step implementation guide for the semi-parametric score test,

with the theoretical justification postponed to the next section.

EFFICIENT SCORE AND INFORMATION MATRIX ESTIMATES As a first step, let ˆ̀
γ(Vi)

denote the estimates for efficient scores of the finite dimensional parameters γ = (α, β) of

the LSEM (2.3) evaluated at Vi = Yi − BXi and γ. Intuitively, these are the estimates for

the scores of the parameters γ that are obtained after projecting out the infinite dimensional

nuisance parameter η. As we show in the appendix, consistent estimates for the components

of ˆ̀
γ(Vi) are given by

ˆ̀
γ(Vi) =

[
ˆ̀
γ,α(Vi)

ˆ̀
γ,β(Vi)

]
=

[
{ˆ̀γ,αl(Vi)}Lαl=1

{ˆ̀γ,βl(Vi)}
Lβ
l=1

]
with ˆ̀

γ,β(Vi) =

[
ˆ̀
γ,σ(Vi)

ˆ̀
γ,b(Vi)

]
=

[
{ˆ̀γ,σl(Vi)}Lσl=1

{ˆ̀γ,bl(Vi)}Lbl=1

]
,
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and

ˆ̀
γ,αl(Vi) =

K∑
j,k=1,j 6=k

ζαl,k,jφ̂k(Ak•Vi)Aj•Vi +

K∑
k=1

ζαl,k,k [τ̂k,1Ak•Vi + τ̂k,2κ(Ak•Vi)]

ˆ̀
γ,σl(Vi) =

K∑
j,k=1,j 6=k

ζσl,k,jφ̂k(Ak•Vi)Aj•Vi +
K∑
k=1

ζσl,k,k [τ̂k,1Ak•Vi + τ̂k,2κ(Ak•Vi)]

ˆ̀
γ,bl(Vi) =

K∑
k=1

[−Ak•Db,l][(Xi − X̄n)φ̂k(Ak•Vi)− X̄n(ς̂k,1Ak•Vi + ς̂k,2κ(Ak•Vi))]

(2.5)

where Ak• denotes the kth row of A, κ(z) = 1 − z2, ζαl,k,j := [Dα,l]k•A
−1
•j , ζσl,k,j :=

[Dσ,l]k•A
−1
•j , Dα,l = ∂A(α, σ)/∂αl, Dσ,l = ∂A(α, σ)/∂σl, Dbl = ∂B/∂bl and X̄n =

n−1
∑n

i=1Xi. The coefficients τ̂k = (τ̂k,1, τ̂k,2)′ and ς̂k = (ς̂k,1, ς̂k,2)′ are given, for

k = 1, . . . ,K, by

τ̂k = M̂−1
k

(
0

−2

)
, ς̂k = M̂−1

k

(
1

0

)
, M̂k =

(
1 1

n

∑n
i=1(Ak•Vi)

3

1
n

∑n
i=1(Ak•Vi)

3 1
n

∑n
i=1(Ak•Vi)

4 − 1

)
.

(2.6)

Finally, the efficient score estimates (2.5) depend on φ̂k(·): the estimate for the log density

score φk(x) = ∂ηk(x)/∂x. Such estimates can be obtained in different ways and our

preferred approach is based on using B-splines as in Jin (1992) and Chen and Bickel (2006).

We can define such estimates as

φ̂k(x) = γ̂′kbk(x) with γ̂k = −
[

n∑
i=1

bk(Ak•Vk,i)bk(Ak•Vk,i)
′

]−1 n∑
i=1

ck(Ak•Vk,i) ,

(2.7)

where bk(x) = (bk,1(x), . . . , bk,Bk(x))′ is a collection of Bk cubic B-splines and ck(x) =

(ck,1(x), . . . , ck,Bk(x))′ are their derivatives: ck,i(x) =
dbk,i(x)

dx for each i = 1, . . . , Bk,

see de Boor (2001) for more details on B-splines. In practice we rely on equally spaced

knots with upper and lower end points taken to be the 95th and 5th percentile of the samples

{Ak•Vi,k}ni=1 adjusted by log(log(n)). We use Bk = 6 splines in our main simulations

below and investigate the sensitivity of this choice.

Given the estimates of the efficient scores we estimate the efficient information matrix,

which is the variance matrix of the efficient score function, as

Îγ =
1

n

n∑
i=1

ˆ̀
γ(Vi)ˆ̀

γ(Vi)
′ with partitioning Îγ =

[
Îγ,αα Îγ,αβ

Îγ,βα Îγ,ββ

]
. (2.8)

EFFICIENT SCORE STATISTIC To compute the efficient semi-parametric score statistic for

testing H0 : α = α0 we first orthogonalize the efficient scores for α with respect to those

for β = (σ, b). Since, β is finite dimensional the estimates of the resulting orthogonalized

131



scores and information for α are given by

κ̂γ(Vi) = ˆ̀
γ,α(Vi)− Îγ,αβ Î−1

γ,ββ
ˆ̀
γ,β(Vi) and Îγ = Îγ,αα− Îγ,αβ Î−1

γ,ββ Îγ,βα . (2.9)

These are estimates of the population efficient score and efficient information matrix.

Importantly, the latter may not be positive definite in our setting. For instance, when the

densities ηk correspond to the Gaussian density, Iγ is singular, see Lemma D.1 in the

supplementary material.

With κ̂γ(Vi) and Îγ we can define the efficient score statistic for the LSEM model as

function of γ = (α, β) and Vi = Yi −BXi by

Ŝγ =

(
1√
n

n∑
i=1

κ̂γ(Vi)

)′
Ît,†γ

(
1√
n

n∑
i=1

κ̂γ(Vi)

)
, (2.10)

where Ît,†γ denotes the generalized inverse of the eigenvalue truncated efficient information

matrix Îγ (e.g. Lütkepohl and Burda, 1997). Formally,

Îtγ = ÛnΛ̂n(νn)Û ′n , (2.11)

where Λ̂n(νn) is a diagonal matrix with the νn-truncated eigenvalues of Îθ on the main

diagonal and Ûn is the matrix of corresponding orthonormal eigenvectors. To be specific, let

{λ̂n,i}Li=1 denote the non-increasing eigenvalues of Îθ, then the (i, i)th element of Λ̂n(νn)

is given by λ̂n,i1(λ̂n,i ≥ νn).

Equations (2.5)-(2.11) define the semi-parametric score statistic for the LSEM model (2.3)

for a given parameter vector γ = (α, β). To test the null hypothesis (2.4) we will evaluate

this test statistic at α = α0, i.e. fixing the possibly unidentified parameters under the

null, and at β̂, which can be any
√
n consistent estimate for β. In our simulations, we

use ordinary least squares estimates for σ and b = vec(B), or one-step efficient estimates

following van der Vaart (2002, Section 7.2). Let γ̂ = (α0, β̂), in our theoretical section

below we show that under suitable assumptions the score statistic will converge to a χ2

limit. Specifically, we prove that under H0 for any a ∈ (0, 1) we have

lim
n→∞

P (Ŝγ̂ > cn) ≤ a , (2.12)

where cn is the 1 − a quantile of the χ2
rn distribution with rn = rank(Îtγ̂). Importantly, as

we show in section 2.4 this result does not rely on any assumptions regarding the shape of

the densities η, i.e. we do not need to assume that η is non-Gaussian. Only conventional

moment assumptions and some regularity conditions on the densities are required. The

following algorithm summarizes the complete implementation.
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Algorithm: Efficient score test for LSEM

1 Obtain
√
n-consistent estimates β̂ = (σ̂, b̂) and residuals V̂i = Yi − B̂Xi;

2 For k = 1, . . . ,K, compute φ̂k(Âk•V̂i) from (2.7) with Â = A(α0, σ̂);

3 Compute the efficient scores ˆ̀̂
γ(V̂i) from (2.5) and the information matrix

Îγ̂ from (2.8) using γ̂ = (α0, β̂);

4 Compute κ̂γ̂(V̂i) and Îγ̂ from (2.9).

5 Compute the score statistic Ŝγ̂ from (2.10) and reject H0 : α = α0 if

Ŝγ̂ > cn, where cn is the 1 − a quantile of the χ2
rn distribution with

rn = rank(Îtγ̂).

The algorithm highlights that the computational cost for evaluating the semi-parametric

score statistic Ŝγ̂ is modest; effectively one only needs to compute K B-spline regressions

to obtain the log density scores. Importantly, this implies that the algorithm can be

implemented without relying on numerical optimization routines. Confidence sets for α

can be constructed by inverting the score statistic over a range of values for α0.

2.4. Asymptotic theory

In this section we present our main theoretical results and discuss the required underlying

assumptions.

2.4.1. Assumptions

We assume that we observe a random sample {(Yi, X̃i)}ni=1 from model (2.3) where the

underlying components satisfy the following.

Assumption 2.4.1. For εi = (εi,1, . . . , εi,K)′ in model (2.3), each component εi,k has a

continuously differentiable root density (with respect to Lebesgue measure on R). We write

the density as ηk with log density score φk(x) = ∂ log ηk(x)/∂x. We assume that for all

k = 1, . . . ,K and some δ > 0

1. Eεi,k = 0, Eε2i,k = 1, Eε4+δ
i,k <∞, E(ε4i,k)− 1 > E(ε3i,k)

2, and Eφ4+δ
k (εi,k) <∞;

2. Eφk(εi,k) = 0, Eφk(εi,k)εi,k = −1, Eφk(εi,k)ε2i,k = 0 and Eφk(εi,k)ε3i,k = −3;

3. εi,k is independent of εi,l for all k 6= l;
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4. η0 ∈ Z is a density function (with respect to Lebesgue measure on Rd−1) such

that if X̃i ∼ η0, then EX̃iX̃
′
i is positive definite and E[|X̃i,l|4+δ] < ∞ for all

l = 1, . . . , d− 1;

5. εi and X̃i are independent.

The first part normalizes the errors to have mean zero, variance one and finite four+δ

moments,5 hence ruling out heavy tailed errors.6 Additionally, we require the log density

scores φk(x) = ∂ log ηk(x)/∂x evaluated at the errors to have finite four+δ moments. The

second part simplifies the construction of the efficient score functions. Whilst this may at

first glance appear a strong condition, Lemma D.2 in the supplementary material shows that

if the first part holds, then a simple sufficient condition is that the tails of the densities ηk
converge to zero at a polynomial rate.7 The third part imposes that the components of εi are

independent. Part four imposes some structure on X̃i that allows us to identify B; notably

positive definite second moments and four+δ finite moments are required. Part five requires

the explanatory variables and errors to be independent. This can be relaxed by requiring the

moment assumptions in 2.4.1 to hold conditional on X̃i. In this setup, our general theory

as outlined in this section would continue to be valid though the resulting efficient score

function would take a different form.

Most important is what is not in Assumption 2.4.1: there is no condition that imposes that

a certain number of components of εi have a (sufficiently) non-Gaussian distribution.

The second assumption that we impose is only required for the estimation of the log density

scores φ(x) = ∂η(x)/∂x using B-spline regressions and can be appropriately replaced

when a different density score estimator is used. For notation purposes, let ΞLk,n and ΞUk,n
denote the lower and upper endpoints of the cubic B-splines for φk(x) for k = 1, . . . ,K.8

Assumption 2.4.2. Define νn according to ν2
n,p = o(νn) with p := min{1 + δ/4, 2}

and νn,p = n(1−p)/p if p ∈ (1, 2) or νn,p = n−1/2 log(n)1/2+ρ, for some ρ > 0, if

p = 2. Let φk,n := φk1[ΞLk,n,Ξ
U
k,n] and ∆k,n := ΞUk,n − ΞLk,n and suppose that for ,

[ΞLk,n,Ξ
U
k,n] ↑ Ξ̃ ⊃ supp(ηk) and δk,n ↓ 0 such that

(I) P (εi,k /∈ [ΞLk,n,Ξ
U
k,n]) = o(ν2

n);

(II) For some ι > 0, n−1∆2+2ι
k,n δ

−(8+2ι)
k,n = o(νn);

(III) ηk is bounded (‖ηk‖∞ <∞) and differentiable, with a bounded derivative: ‖η′k‖∞ <

5E(ε4i,k) − 1 ≥ E(ε3i,k)2 always holds; this is known as Pearson’s inequality. See e.g. result 1 in Sen (2012).
Assuming that E(ε4i,k) − 1 > E(ε3i,k)2 rules out (only) cases where 1, εi,k and ε2i,k are linearly dependent
when considered as elements of L2. See e.g. Theorem 7.2.10 in Horn and Johnson (2013).

6Heavy tailed errors in ICA and SVAR models have recently been considered in Davis and Ng (2022) and Davis
and Fernandes (2022), but an inferential theory remains to be developed.

7See Example 3 in the supplementary material for an explicit example of a density which satisfies the first part
of the assumption but not the second.

8In practice, we select these points as the lower 5th and upper 95th percentiles of the samples {Vi,k}ni=1 adjusted
by log logn, see the implementation section 2.3.
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∞;

(IV) For each n, φk,n is three-times continuously differentiable on [ΞLk,n,Ξ
U
k,n] and

‖φ(3)
k,n‖2∞δ6

k,n = o(νn);9

(V) There are c > 0 and N ∈ N such that for n ≥ N we have inft∈[ΞLk,n,Ξ
U
k,n] |ηk(t)| ≥

cδk,n.

First, the assumption makes explicit the truncation rate νn that is needed for the truncation

of the eigenvalues in (2.11). This rate is split into two parts. The “slow” rate n(1−p)/p (for

p ∈ (1, 2)) is always sufficient given assumption 2.4.1, but if εk has finite eighth moments

the faster rate applies.

Part (i) imposes that the tails of εi,k decay to zero sufficiently fast.10 Part (ii) ensures that

the number of knots does not grow to fast relative to the sample size (and the truncation

rate). Part (iii) requires the density and its derivative to be bounded. Part (iv) requires

the existence of the third derivatives of φk and that the rate of increase of the third

derivative is not too great. Part (v) ensures that the density is bounded away from zero

on [ΞLk,n,Ξ
U
k,n]. Overall, these assumptions are similar as in Chen and Bickel (2006), with

two key differences.11 Firstly, Chen and Bickel (2006) require the conditions to hold for the

functions v 7→ φk(Ak•v) (rather than φk), uniformly over shrinking balls (at rate n−1/2)

around A. In our setting we are only interested in testing as consistent estimation is ruled

out by the possible lack of identification, hence we only require the conditions to hold for

the functions φk. Secondly, unlike Chen and Bickel (2006), we require convergence at a

rate νn which satisfies certain decay conditions. This is due to the fact that we may have

a singular efficient information matrix and in order to obtain a consistent estimate of the

Moore – Penrose inverse of this matrix, we require knowledge of the rate of convergence of

our estimate.

2.4.2. Main result

In this section we formally state our main result for the efficient score test Ŝγ̂ . To do so,

instead of evaluating the efficient score test at the
√
n-consistent estimates γ̂ = (α0, β̂)

we will evaluate the score test at its discretized version γ̄ = (α0, β̄n). Formally, let

Bn = n−1/2CZLβ for some C > 0 and define β̄n as a new version of β̂ that replaces its

value with the closest point inBn. Note that this changes each coordinate of β̂ by a quantity

which is at most O(n−1/2), hence the
√
n-consistency is retained by discretization. Since

the constant C can be chosen arbitrarily large this change has no practical relevance for the

implementation of the test.
9The differentiability and continuity requirements at the end-points are one-sided.
10The required speed of decay is linked to the truncation rate.
11Cf. their conditions C3, C5 – C7, p. 2834.
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The advantage of relying on discretized estimates is that it simplifies the proof of the main

result. Specifically, it removes the need to show uniform convergence between the efficient

scores evaluated at β̂ and β. The discretization trick is due to Le Cam (1960) and is widely

used in statistics, see the detailed discussion in Le Cam and Yang (2000, Section 6.3), or

van der Vaart (1998, page 72). It has also been adopted in econometrics, see Cattaneo et al.

(2012) for instance.

With this modification we have the following result.

Theorem 2.4.1. Suppose that Assumptions 2.4.1 and 2.4.2 hold, that (α, σ) 7→ A(α, σ) is

continuously differentiable and the maps (α, σ) 7→ ζαl,k,j and (α, σ) 7→ ζσl,k,j are Lipschitz

continuous. Let rn = rank(Îtγ̄) and denote by cn the 1− a quantile of the χ2
rn distribution,

for any a ∈ (0, 1). Then, under H0

lim
n→∞

Pθ0(Ŝγ̄ > cn) ≤ a,

with inequality only if rank(Ĩγ0) = 0 where γ0 = (α0, β).

The proposition shows that semi-parametric score test Ŝγ̄ has correct asymptotic size for all

densities η that satisfy the requirements in Assumptions 2.4.1 and 2.4.2. The requirements

that (α, σ) 7→ A(α, σ) is continuously differentiable and (α, σ)→ ζαl,k,j , (α, σ)→ ζσl,k,j are

Lipschitz continuous are easily verified for Examples 1 and 2. The choice for the estimator

β̂ is left open to the researcher. Possible choices include using OLS estimates or one-step

efficient estimators (e.g. van der Vaart, 2002, Section 7.2). Our simulation study explores

the finite sample differences between these two estimators.

It follows from Choi et al. (1996) that for non-singular information matrices tests based on

Ŝγ̄ are asymptotically uniformly most powerful within the class of rotation invariant tests.

This implies that asymptotically when testing the hypothesis H0 : α = α0, the power of

the test is the greatest possible in the class of rotationally invariant tests. This makes tests

based on Ŝγ̄ attractive for scenarios where there is no explicit direction in which one want

to maximize power. When such directions are given alternative test statistics, also based on

the efficient score function, can be considered (e.g. Bickel et al., 2006). Uniformity results

and minimax optimality results which permit singular information matrices can be found in

Lee (2022) for efficient score tests in general semi-parametric models.

2.5. Simulation results

In this section we study the finite sample properties of the singularity and identification

robust score test Ŝγ̂ . We study the size and power of the test under different data generating

processes and compare its performance to several alternatives that have been proposed in

the literature. We first study the simple model of section (2.2) after which we consider the
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general linear simultaneous equations model (2.3). The supplementary material provides

additional results.

2.5.1. Baseline model

We start by drawing independent samples from model (2.1), which we restate for

convenience

Yi = R′εi , i = 1, . . . , n .

We take Yi to be K × 1 and consider K = 2, 3 and K = 5. The sample size is taken

as n = 200, 500 or n = 1000. We fix εi,1 to have a standard Gaussian density and

consider different densities for εi,k, with k = 2, . . . ,K. The non-Gaussian densities are

either Student’s t or mixtures of normals taken from Marron and Wand (1992). Figure E.3

provides an overview.

The matrix of interest R = R(α) is orthogonal and parametrized by the Cayley

transformation of a skew-symmetric matrix (e.g. Gouriéroux et al., 2017):

R(α) = (I − Ω(α))(I + Ω(α))−1 ,

where Ω(α) is a skew-symmetric matrix (i.e. Ω(α)′ = −Ω(α)) parameterized by α which

we sample at random from α ∼ N(0, ILα).

In this setting there are no additional nuisance parameters which allows us to concentrate on

the consequences of weak non-Gaussianity on the efficient score test and some alternative

tests that have been proposed in the literature. In the simulation designs below we include

additional finite dimensional nuisance parameters (i.e. β = (σ, b)) and investigate whether

their inclusion alters the size and power of the test.

For each specification we simulate S = 5, 000 datasets and for each we compute the

efficient score statistic Ŝγ̂ as defined in equation (2.10) following the Algorithm given in

Section 2.3.12 We implement the log density score estimator (2.7) using B = 4, 6 or 8

cubic splines.

In Table E.2 we show the empirical rejection frequencies corresponding to the Sγ̂ test with

nominal size 0.05. The columns correspond to the different choices for the densities εk for

k ≥ 2.

The first column corresponds to the case where all densities are Gaussian and the expected

likelihood takes the same value for all α ∈ RLα , i.e. α is unidentified. Nonetheless, we find

that the empirical rejection frequency of the score test is always close to the nominal size.
12To be specific, since the model does not contain any finite dimensional nuisance parameters step 1 in the

algorithm can be skipped and the score statistic is simply evaluated at α0.
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This holds regardless of the sample size n, the dimension of the model K and the number

of cubic splines B.

Second, when the densities for k ≥ 2 are non-Gaussian the size remains correct.

Specifically, columns 2-4 show the results for the case where εi,k follows a Student’s t

distribution with decreasing degrees of freedom (ν = 15, 10, 5). No matter how close we

get to the Gaussian density the size remains correct. Columns 5-10 show similarly correct

size for a variety of mixture distributions. Even for complicated skewed bi-modal densities

(e.g. columns 8-10) the Sγ̂ test has size close to nominal regardless of the sample size.

Third, overall the number of cubic splines used has little influence on the results. A

close inspection reveals that when the number of cubic splines is equal to four the test

becomes mildly conservative for some densities, therefore we use B = 6 cubic splines in

the remaining exercises.

Overall, the asymptotic approximation in Theorem 2.4.1 seems to provide a good

approximation for the finite sample behavior of the semiparametric score test, at least for

the distributions shown in Figure E.3.

2.5.2. Comparison to alternative approaches

Next, we compare our semiparametric testing approach to different parametric approaches

based on (psuedo) maximum likelihood and the generalized method of moments. We

concentrate on evaluating different tests based on size and power in the vicinity of

Gaussianity.13

ALTERNATIVE TESTS Conceptually, there are two types of alternative tests that we

consider: (i) tests that rely on estimates for α and (ii) tests that fix α = α0 under the

null. Clearly, from our intuitive discussion in Section 2.2 it follows that we expect tests that

fix α under the null to perform relatively well.

In category (i) we consider the standard maximum likelihood Wald (Wmle) and likelihood

ratio (LRmle) tests based on the Student’s t density for εk. For densities 2-4 in Figure E.3

these tests correspond to exact maximum likelihood tests, with the caveat that when the

degrees of freedom increases the parameters α become weakly identified, or not-identified.

For all other densities these tests are mis-specified.

In addition, we consider the psuedo-maximum likelihood Wald test (Wpmle) from

Gouriéroux et al. (2017). This test is asymptotically valid for a broader range of true

distribution functions and amount to fixing the functional form of the densities η1, . . . , ηK .

We follow the implementation of Gouriéroux et al. (2017) and choose the Students t density
13The recent simulation studies of Herwartz et al. (2019) and Moneta and Pallante (2020) provide further

simulation evidence for existing methods, also focusing on estimation accuracy.
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with five degrees of freedom as the pseudo-likelihood and compute the Wald statistic based

on this density.

Finally, we consider the recently developed GMM method of Lanne and Luoto (2021),

which relies on higher order moments to identify the parameters α. We use Eε2i,kεi,j = 0,

Eε3i,kεi,j = 0 and Eε2i,kε2i,j = 1 as moment conditions for all j 6= k and j, k = 1, . . . ,K.

The GMM likelihood ratio test is then computed as the rescaled difference between the

unrestricted and restricted J-statistics, based on the 2-step GMM estimator (LRgmm), see

Lanne and Luoto (2021) for details.14

In category (ii) we consider tests which fix α = α0 under the null. Specifically, we include

the standard LM test (LMmle) based on the Student’s t density where the degrees of freedom

parameter is estimated from the data. Second, we consider the pseudo-maximum likelihood

version of the LM test (LMpmle) based on Gouriéroux et al. (2017), which fixes the degrees

of freedom at five. Finally, we consider the GMM-based identification robust S-statistic

(Sgmm) of Stock and Wright (2000), which was recently considered in Drautzburg and

Wright (2021) in the context of structural VAR models with non-Gaussian errors. We use

the same moment conditions as considered in Drautzburg and Wright (2021) for the LMgmm

test.

SIZE COMPARISON We compare the size of the different tests for the simulation designs

described in Section 2.5.1. The empirical rejection frequencies are shown in Table E.3 for

the case where K = 2 and n = 200, 500, 1000. Overall we find, perhaps not surprisingly,

that all tests in category (i) do not have correct size when the true density is close to Gaussian

nor when the corresponding method is based on a mis-specified model. This shows that

tests based on estimates for α are generally unreliable. Second, tests in category (ii) overall

control the size of the test well.

More specifically, we find that the Wald tests (Wmle and Wpmle) tend to over-reject quite

severely whilst the standard likelihood ratio test (LRmle) tends to be undersized for most

densities, especially in the vicinity of the Gaussian density, as ought to be expected given

the earlier evidence in shown in Figure 2.1. Finally, the GMM likelihood ratio test (LRgmm)

is also over-sized, which confirms findings in Lanne and Luoto (2021) where the LRgmm

also over-rejects when the densities of the structural shocks are close to Gaussian.

In the second category the semi-parametric score test Ŝγ̂ (as proposed in this paper) and the

pseudo maximum likelihood LM test (LMpmle), inspired by Gouriéroux et al. (2017), both

have near perfect size across all densities. The standard LM test (LMmle) also performs

reasonably well, but when the functional form of the true densities is very different from

the Student’s t density (e.g. separate bi-modal, column 9) the test tends to under-reject.15

14Note that lower order moments are not required as the baseline model Yi = R′εi implies that the observations
have mean zero and unit variance.

15Recall here that this test is based on a misspecified density.
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Finally, the GMM based robust S test (Sgmm) tends to be over-sized for small samples, but

for large samples it generally shows correct size except for densities with moderately heavy

tails such as the t(5) density (column 4). In these cases the Sgmm is over-sized which can

be understood when realizing that the GMM approach requires eight finite moments for

inference when based on fourth-order moment restrictions. The t(5) density does not have

eight finite moments.

In sum, we recommend avoiding statistics that are based on estimates for α as these are

overall unreliable when the shock distributions are close to Gaussian. All tests that fix α

under the null perform at least reasonably well. In the next section we compare these tests

based on their finite sample power.

POWER COMPARISON We compare the power of all tests that fix α under the null, that is

Ŝγ , LMmle, LMpmle and Sgmm.

We consider the case where K = 2 and n = 1000.16 In this setting α is a scalar parameter

and we fixed the true value at 0 (an arbitrary choice). Figure E.4 shows the empirical

rejection frequencies when we vary α around α = 0. Each point on the curve is based on

S = 5, 000 simulations.

Two main findings stand out. First, for the Student’s t densities t(15), t(10) and t(5) (panels

2-4) the standard LM test (LMmle) shows the highest power. This is not surprising as

for these data generating processes the LMmle test is correctly specified and hence takes

advantage of fitting the true densities using only a scalar parameter. That said, the semi-

parametric score test (Ŝγ̂) and the pseudo maximum likelihood LM test (LMpmle) come

reasonably close in terms of power.

Second, for all other densities, i.e. different mixtures of normals in panels 5 – 10, the semi-

parametric score test (Ŝγ̂) shows the highest power. Sometimes the difference with the other

tests is not very large, but for instance for bi-modal densities (panels 8-10) the differences

are substantial. Overall, the good power of the Ŝγ̂ test corresponds to the theoretical

finding that for non-singular information matrices the test is asymptotically uniformly most

powerful in the class of unbiased tests.17

Besides the Ŝγ̂ test, we note that the pseudo maximum likelihood LM test and the GMM

based S test shows quite promising power for most of the densities considered. None of

these dominates the other. The caveat for the GMM test is that it is size-distorted for

moderately heavy tails (panel 4).
16Power comparisons for different n can be found in the supplementary material.
17Cf. Choi et al. (1996).
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2.5.3. Linear simultaneous equations model

Next, we discuss the simulation results for the general linear simultaneous equations model

(2.3). The dimensions of the design are similar as above with the addition that we consider

d = 2, 3 for the number of covariates. We now parametrize A(α, σ)−1 = Σ1/2(β1)R(α)

as in example 1, where Σ1/2 is lower triangular and the rotation matrix R remains to be

specified by the Cayley transform. The explanatory variables are drawn from the standard

normal distribution.

The vector of finite dimensional nuisance parameters β now includes σ = vech(Σ1/2) and

b = vec(B). Our main theoretical result in Theorem 2.4.1 shows that β can be approximated

by any
√
n-consistent estimate. Obviously, ordinary least squares estimates are attractive

for their simplicity, but given the non-normality of the structural shocks these estimates may

be improved. Therefore we also consider estimating β by one-step-efficient estimates (e.g.

van der Vaart, 2002, Section 7.2), which are easy to compute here since the efficient score

of β is computed anyway to construct the score test.

Similar, as before the first error εi,1 follows a Gaussian distribution and the different

densities from Figure E.3 are assigned to the other error terms. For each specification we

simulate S = 5, 000 datasets and for each sample we compute the semi-parametric score

statistic using the Algorithm in Section 2.3.

SIZE RESULTS The empirical rejection frequencies are shown in Tables E.4 and E.5 for the

OLS and one-step efficient estimates for β, respectively.

We find that for all the rejection frequencies of the Ŝγ̂ test are generally close to the nominal

size. That said, there is more variation in the empirical rejection frequencies compared to

Table E.2, indicating that the estimation of the finite dimensional nuisance parameters does

have consequences.

Starting with Table E.4 where β̂ is estimated by OLS. We find that the size of Ŝγ̂ is the

same regardless of how close the densities of εi,k are to the Gaussian density. Specifically,

moving from columns 1-4 (i.e. from Gaussian to t(5)) we see virtually no changes in the

rejection frequencies. This holds for all specifications considered and highlights the main

point of this paper: the semi-parametric score test yields reliable inference even when α is

not, or poorly, identified.

Depending on the dimension of β we do find size distortions for small sample sizes, most

notably when K = 5 and n = 200. In this setting β is of dimension 20 or 25 depending

on d = 2, 3, and we see that the test is often over-sized. This does not hold for all densities

considered, but for Gaussian, Student’s t and kurtotic unimodal densities the test over-

rejects. When n increases the over-rejection vanishes and the test appears correctly sized.
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For the one-step efficient estimator for β the results are shown in Table E.5. We find that on

average the empirical rejection frequencies are larger when compared to the OLS estimator.

Notably, when n is small over-rejection becomes more severe. Again, we find that this holds

uniformly across densities, i.e. distortions do no depend on being close to Gaussian, and

the sizes improve when n increases.

POWER RESULTS Next, we investigate the power of the Ŝγ̂ test for the LSEM model. We

again consider the case where K = 2, d = 2 and n = 1000, which allows us to compare

the results with those for the baseline model. The power curves are shown in Figure E.5 for

both OLS and one-step estimates for β.

First, when comparing Figure E.5 to the case without nuisance parameters (i.e. Figure

E.4) we find that the power of the test is reduced when we include nuisance parameters.

Second, the power of the test using the one-step efficient estimates (dotted blue line) is

higher when compared to the same test evaluated at OLS estimates. This holds for all

densities considered.

Based on these results we recommend using OLS estimates for β when the sample size is

small (e.g. n = 200, 500), but for larger sample sizes the one-step efficient estimates are

preferable.

2.6. Testing production function coefficients

In this section we explore whether non-Gaussian distributions can help to identify the

coefficients in the production function of a firm. Fittingly, the very first contributions in this

literature highlighted the identification problem in this setting using simultaneous equations

(e.g. Marschak and Andrews, 1944; Hoch, 1958). This generated a large number of works

that aim to address the simultaneity problem in different ways. Prominent examples include

using panel data methods (e.g. Arellano and Bond, 1991; Blundell and Bond, 1998) or proxy

variable methods (e.g. Olley and Pakes, 1996; Leeb and Pötscher, 2003; Ackerberg et al.,

2015).

To study how non-Gaussian distributions may assist in the quest for identification we

consider the baseline Cobb-Douglas production function

Oi = ec1Lα1
i K

α2
i eεi,1 ,

whereOi, Li,Ki denote output, labor and capital, respectively, and εi,1 captures unobserved

factors that determine output. Our interest is in the coefficients α1 and α2 that determine the

contributions of labor and capital to output. The, well known, difficulty for learning about

α1 and α2 is that the inputs Li, Ki are typically choice variables of the firm. Allocations
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are made to maximize profits and hence will generally depend on unobservables εi,1.

To address this simultaneity problem we consider a simultaneous equations approach that

allows for correlation among Li,Ki, ε1, and exploits possible non-Gaussianity in the errors

to identify the parameters α1 and α2.

To be specific, the models that we consider are defined for Yi = (logOi, logLi, logKi)
′,

and are of the form

S(α, σ)Yi = BXi +D(σ)εi , (2.13)

where Xi includes a constant and any other additional exogenous variables such as the age

of the firm. We adopt the following specification for the matrices S and D.

S(α, σ) =

 1 −α1 −α2

−σ1 1 −α3

−σ2 −σ3 1

 and D(σ) =

 σ4 0 0

0 σ5 0

0 0 σ6

 .

We note that parameters in σ can be recovered from the variance of Yi − BXi and we will

simultaneously test α = α0, where α = (α1, α2, α3)′, for different choices of α0 to obtain

the confidence sets. The positioning of α3 is arbitrary in our setting as it is not a parameter

of interest, but it can also not be identified from the variance alone. The confidence sets for

α1 and α2 that we report are obtained by taking the minimum and maximum values for α1

and α2 that are not rejected by the score test.18 Finally, to pin down the desired rotation

we impose that α1 and α2 are positive and the correlations between Li,Ki and εi,1 are non-

negative. In other words, positive shocks to output do not decrease labor and capital, a mild

sign restriction that corresponds with most economic models (e.g. Hoch, 1958).

We use a sample of 115, 000 manufacturing firms that are observed from 2000 until 2017.19

We perform two exercises. First, to illustrate our methodology we consider the cross section

of firms that exist in 2017 and investigate in detail the output of the methodology. Second,

we repeat the exercise for different years and assess the changes in α1 and α2 over time.

RESULTS We first illustrate the methodology using the manufacturing firms that existed in

2017. We have n = 1247 firms with observations for output, labor and capital. We consider

model (2.13) with a constant and possibly the age of the firm as a control variable (e.g.

Olley and Pakes, 1996).

The 95% confidence bounds for the production function coefficients α1 (labor) and α2

(capital) are shown in Table E.6. We find that these coefficients are generally well identified

empirically. In particular, with 95% confidence, α1 lies between 0.41 and 0.68, while α2

lies between 0.27 and 0.50, for all choices of the control variables. The joint confidence
18We note that this projection approach is conservative and refinements along the lines of Kaido et al. (2019)

may improve the current findings.
19The data are obtained from CompuStat.
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region for (α1, α2) is shown in the top left panel of Figure E.6. It shows that we cannot

reject that α1 + α2 = 1 as the confidence region exactly lies on this line.

To understand where the identification in the LSEM is coming from, the other panels in

Figure E.6 show the empirical densities of the residuals ε̂i = Â(Zi − B̂Xi), where Â

corresponds to the choice for α that minimizes the score statistic. We find that the empirical

densities are indeed different from the normal density, notably for the first density. Overall,

we can reject the null hypothesis that the errors are normally distributed for the first and

second errors using a Jarque-Bera test. For the third error we cannot reject normality.

Given our simulation results such mild deviations from Gaussianity may cause problems for

standard inference methods. This is true for the alternative methods that which were found

not robust to weak deviations from Gaussianity; they tend to give much smaller confidence

bands. This suggests that whilst non-Gaussianity may be a useful tool for identification,

robust methods need to be adopted for the approach to be used reliably. We emphasize

that besides the sign restrictions that ensure that the correlations between L,K and ε1 are

non-negative no further structural assumptions or instruments are needed.

Table E.6 also reports the baseline OLS estimates as obtained by regressing log output on

the controls and log labor and log capital. We find that these estimates are very different

and the confidence intervals do not overlap with those of the LSEM. This highlights that

there may indeed be endogeneity in the form of correlation between labor, capital and the

error term εi,1.

To verify whether this conclusion is justified we need to test whether the underlying

assumption regarding the independence of the underlying structural shocks is indeed true

(e.g. Montiel Olea et al., 2022). To do so, we adopt the permutation test for independent

components as proposed in Matteson and Tsay (2017). We implement their test on the

sample {ε̂i} as defined above.20 The results are shown in the bottom row of Table E.6.

Depending on whether age is included as a control variable, the p-values are 0.12 and 0.16

indicating that there is not substantial evidence against independence.

Next, to highlight that the year 2017 was in no way exceptional we repeat the previous

exercise for the years 2000-2017. The results for the model that includes age as a control

variable are shown in Figure E.7. Overall, the findings are very stable. We do notice a

modest decline in the labor input coefficient and an increase of the coefficient on capital

towards the end of the sample.
20The test was implemented using the R package steadyICA using the function permTest.
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2.7. Conclusion

In this paper we highlighted a weak identification problem that arises when non-Gaussianity

is used to identify coefficients in LSEMs. The consequence of this problem is that several

existing inference methods suffer from size distortions when the true distributions are close

to Gaussian.

To remedy this problem we proposed an identification robust semi-parametric score statistic

for testing hypotheses in LSEMs. Under mild regularity conditions we showed that the score

test retains correct asymptotic size regardless of the shape of the true density functions. A

simulation study shows that our asymptotic theory provides an accurate approximation to

the finite sample performance of our test.

While we have restricted our treatment to models where the observations were

independently distributed across entities, we note that a similar approach may be considered

for dynamic models, but this will require extending our results to allow for non-i.i.d. data.

Similarly, dynamic panel data models could be considered pending a novel strategy for

handling the initial conditions. These extensions are left for future work.
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Appendices

In this appendix we provide the proof for Theorem 2.4.1. The proof is structured as follows.

We first provide a general approach for conducting identification and singularity robust

hypothesis tests in semiparametric models. This general theory is subsequently applied to

prove Theorem 2.4.1.

Throughout the appendix we often use the empirical process notation: Pf = Ef(Xi),

Pnf = 1
n

∑n
i=1 f(Yi) and Gnf =

√
n(Pn − P )f . Further, Gk denotes the law on R

corresponding to ηk and εk is distributed according to Gk. Similarly G0 denotes the law on

Rd−1 corresponding to η0 and X̃ is distributed according to G0.

A. General theory

We expound a general approach for conducting identification robust hypothesis tests in

semi-parametric models. The LSEM model of Section 2.3 constitutes as a special case of

the model considered in this section.

Let Y ∈ Y ⊂ RK by a random vector defined on some underlying probability space

(Ω,F ,P) with its distribution on Y specified by the law Pθ0 that depends on parameters

θ0 ∈ Θ. The parameter space Θ has the form Θ = A×B ×H, where A ⊂ RLα , B ⊂ RLβ

and H a metric space. We write a typical element of Θ as θ = (α, β, η), where it is

understood that α ∈ A, β ∈ B and η ∈ H.

The model that the researcher considers is the collection

PΘ = {Pθ : θ ∈ Θ} , (14)

where each Pθ � µ for some σ-finite measure µ on Y . We define γ = (α, β) and

Γ = A× B, which implies that Γ ⊂ RL with L = Lα + Lβ , and Pθ = P(γ,η).

In general, we assume that the nuisance parameters β and η do not suffer from identification

problems, but α may. In particular, for different points β ∈ B and η ∈ H the vector α may

be strongly identified, weakly identified or completely unidentified. To conduct inference

on α without making a priori assumptions on the identification of α we consider hypothesis

tests of the form

H0 : α = α0 , β ∈ B , η ∈ H against H1 : α 6= α0 , β ∈ B , η ∈ H . (15)

To derive our tests, we first define the scores of model (14) following the definition in

van der Vaart (2002).
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Definition A.1 (Cf. Definition 1.6 in van der Vaart, 2002). A differentiable path is a map

t 7→ Pt from a neighborhood of 0 ∈ [0,∞) to PΘ such that for some measurable function

s : Y → R, ∫ [√
pt −√p
t

− 1

2
s
√
p

]2

dµ→ 0 , (16)

where pt and p respectively denote the densities of Pt and P relative to µ. The map t→ √pt
is the root density path and s is the score function of the submodel {Pt : t ≥ 0} at t = 0.

In words we say that a differentiable path is a parametric submodel {Pt : 0 ≤ t < ε} that

is differentiable in quadratic mean at t = 0 with score function s. If we let t 7→ Pt range

over a collection of submodels, indexed by V , we will obtain a collection of score functions,

say si for i ∈ V . This collection, {si : i ∈ V}, will be denoted by TP,V and as we only

consider models with linear spaces we refer to it as a tangent space. For the semiparametric

model (14) we define tangent spaces along restricted paths concerning the two parts of the

parameter θ = (γ, η) separately.

Assumption A.1. The map t 7→ Pγ+tg,ηt(γ,η,h) is a differentiable path for each (g, h) ∈
RL ×H =: J . The tangent space TPθ,J has the form

TPθ,J = T γ|η
Pθ,RL

+ T η|γPθ,H
, (17)

where T γ|η
Pθ,RL

= {g′ ˙̀θ : g ∈ RL}, for ˙̀
θ a L-vector of measurable functions from Y → R,

is the tangent space for γ and T η|γPθ,H
is the tangent space for η.

The assumption defines the tangent spaces for the semiparametric model (14) and imposes

that the tangent space of the complete model is the sum of the tangent spaces of the

parametric and non-parametric parts of the model. The assumption is mild and can

typically be satisfied by imposing that the square root of the density function is continuously

differentiable almost everywhere with respect to the parameters θ.21

For the parametric part of the model we note that ˙̀
θ is simply the L × 1 vector of scores

of γ evaluated at θ = (γ, η), and the tangent space of γ is simply the span of ˙̀
θ, i.e.

T γ|η
Pθ,RL

= {g′ ˙̀θ : g ∈ RL}. The tangent space of the non-parametric part, i.e. T η|γPθ,H
, is

formed by scores corresponding to paths of the form t 7→ P(γ,ηt(γ,η,h)) for h ∈ H , where

the choice for ηt(γ, η, h) depends on η such that ηt(γ, η, h)|t=0 = η.

Having defined the tangent spaces of γ and η, let Πθ be the orthogonal projection from

L2(Pθ) onto the closure of T η|αPθ,H
, i.e. cl T η|αPθ,H

. The efficient score function for γ is defined

as (e.g. Definition 2.15 in van der Vaart, 2002)

˜̀
θ := ˙̀

θ −Πθ
˙̀
θ , (18)

21See e.g. Lemma 7.6 in van der Vaart (1998), Lemma 1.8 in van der Vaart (2002) or Proposition 2.1.1 in Bickel
et al. (1998).
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where the projection is understood to apply componentwise. The accompanying efficient

information matrix for γ is given by

Ĩθ := Eθ ˜̀
θ
˜̀′
θ . (19)

When η is finite dimensional the efficient score is equivalent to the population residual of

the regression of ˙̀
θ on the scores of η and the efficient information matrix is the variance of

this residual (e.g. Neyman, 1979; Choi et al., 1996).

To obtain the efficient score function for α which is the part of γ = (α, β) that is of interest,

note that the previous two displays imply the partitioning

˜̀
θ =

(
˜̀′
θ,α,

˜̀′
θ,β

)′
and Ĩθ =

[
Ĩθ,αα Ĩθ,αβ

Ĩθ,βα Ĩθ,ββ

]
. (20)

If Ĩθ,ββ is nonsingular,22 we can (orthogonally) project once more to obtain the efficient

score function for α:

κ̃θ := ˜̀
θ,α − Ĩθ,αβ Ĩ−1

θ,ββ
˜̀
θ,β , (21)

which has corresponding efficient information matrix

Ĩθ := Ĩθ,αα − Ĩθ,αβ Ĩ−1
θ,ββ Ĩθ,βα . (22)

Building tests or estimators based on the efficient score function κ̃θ is attractive as efficiency

results are well established, see Choi et al. (1996), Bickel et al. (1998) and van der Vaart

(2002).

It follows from (18) and Lemma 1.7 in van der Vaart (2002) that at θ0 = (α0, β, η), where

β ∈ B and η ∈ H, we have

Eθ0 κ̃θ0 = 0 . (23)

To construct test statistics we assume that we observe n independent and identically

distributed copies of the vector Y that are denoted by {Yi}ni=1. These observations satisfy

the following high level assumption.

Assumption A.2. Let γ0 = (α0, β) and θ0 = (α0, β, η) for any (β, η) ∈ B × H.

Additionally, let γn = {(α0, βn)}n∈N be a deterministic sequence such that
√
n(γn−γ0) =

O(1) and define θn = (γn, η) for each n ∈ N. Suppose that

1. 1√
n

∑n
i=1

˜̀
θ0(Yi) Z ∼ N (0, Ĩθ0) under Pθ0 where Ĩθ0,ββ is nonsingular

22If Ĩθ,ββ is singular, we may drop components from ˜̀
θ,β until the remaining components form a linearly

independent collection which span the same subspace of L2(Pθ) as ˜̀
θ,β . The corresponding variance matrix

of this smaller vector will be non-singular and ˜̀
θ,β can be replaced throughout by this smaller vector.
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2. We have an array of estimates {ˆ̀γn(Yi)}n≥1,i≤n such that:

1

n

n∑
i=1

(
ˆ̀
γn(Yi)− ˜̀

θn(Yi)
)

= oPθn (n−1/2)

3. For some sequence of estimates {Îγn}n≥1 and some sequence {νn}n≥1 with 0 ≤
νn → 0

‖Îγn − Ĩθ0‖2 = oPθn (νn)

4. We have that ∫ ∥∥∥˜̀
θnp

1/2
θn
− ˜̀

θ0p
1/2
θ0

∥∥∥2
dµ→ 0.

We note that the estimates for the efficient scores ˆ̀
γn(Yi) and information matrix Îγn no

longer depend on η, hence they are only indexed by γn. Based on Assumption A.2-parts 2

and 3 we define the following estimators for the efficient score and information matrix for

α:

κ̂γ := ˆ̀
γ,α − Îγ,αβ Î−1

γ,ββ
ˆ̀
γ,β , and Îγ := Îγ,αα − Îγ,αβ Î−1

γ,ββ Îγ,βα . (24)

Given νn from Assumption A.2-part 3, we define a truncated eigenvalue version of the

information matrix estimate as

Îtγ = ÛnΛ̂n(νn)Û ′n , (25)

where Λ̂n(νn) is a diagonal matrix with the νn-truncated eigenvalues of Îγ on the main

diagonal and Ûn is the matrix of corresponding orthonormal eigenvectors. To be specific, let

{λ̂n,i}Li=1 denote the non-increasing eigenvalues of Îγ , then the (i, i)th element of Λ̂n(νn)

is given by λ̂n,i1(λ̂n,i ≥ νn).

Based on this we define the singularity and identification robust score statistic as a function

of γ = (α, β) as follows.

Ŝγ :=

(
1√
n

n∑
i=1

κ̂γ(Yi)

)′
Ît,†γ

(
1√
n

n∑
i=1

κ̂γ(Yi)

)
. (26)

where Ît,†γ is the Moore-Penrose psuedo-inverse of Îtγ . The limiting distribution of Ŝγ is

characterized in the following theorem, which implies that we can use the estimated rank of

Îtγ to compute the critical value for Ŝγ .

Theorem A.1. Let γ0 = (α0, β) for any β ∈ B. Suppose that β̂n is a
√
n-consistent

estimator of β under Pθ0 . LetBn = n−1/2CZLβ for someC > 0 and let β̄n be a discretised

version of β̂n which replaces its value with the closest point in Bn. Suppose assumptions

A.1 and A.2 hold and let γ̄n = (α0, β̄n). Let rn = rank(Îtγ̄n) and denote by cn the 1 − a
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quantile of the χ2
rn distribution for any a ∈ (0, 1).23 Then

lim
n→∞

Pθ0

(
Ŝγ̄n > cn

)
≤ a,

with inequality only if rank(Ĩγ0) = 0.

The proof for Theorem A.1 is given below. This theorem provides the main building block

for the proof of Theorem 2.4.1 for the LSEM model.

B. Proof of Theorem 2.4.1

We note that the LSEM model (2.3) can be viewed as a semi-parametric model defined by

PΘ := {Pθ : θ ∈ Θ} (27)

where Θ = A × B ×H, with A ⊂ RLα , B ⊂ RLβ and H = Z ×∏K
k=1 H , where Z is

the space of density functions η0 with X̃i ∼ η0 and H is the space of density functions ηk,

i.e.

H :=

{
g ∈ L1(λ) ∩ C1(λ) : g(z) ≥ 0,

∫
g(z) dz = 1,

∫
zg(z)dz = 0,

∫
κ(z)g(z) dz = 0,∫

|z|4+δg(z) dz <∞,
∫ ∣∣(g′(z)/g(z)

)∣∣4+δ
g(z) dz <∞,∫

z4g(z) dz > 1 +

[∫
z3g(z) dz

]2
}
,

where λ denotes Lebesgue measure on R, C1(λ) is the class of real functions on R which

are continuously differentiable λ-a.e. and κ(z) = z2 − 1. We denote by H0 ⊂ H the

set with elements η = (η0, . . . , ηK) such that each ηk satisfies the requirements imposed by

assumption 2.4.1. Finally, Pθ is the law on Y×X , with Yi ∈ Y ⊂ RK and X̃i ∈ X ⊂ Rd−1,

defined by the density

pθ(y, x̃) := |detA|
K∏
k=1

ηk(Ak•y)× η0(x̃) , (28)

where Ak• denotes the kth row of A = A(α, σ).

With these formalities established we give three useful lemmas whose proofs are deferred to

the web-appendix. The first lemma defines the tangent spaces for the LSEM and effectively

ensures that the LSEM model satisfies the high-level assumption A.1 in the general theory.

Lemma B.1. Given Assumption 2.4.1, if (α, σ) 7→ A(α, σ) is continuously differentiable,

23If rn = 0 we take cn = 0.
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we have that for any θ ∈ Θ there is a δ > 0 small enough such that the path

t 7→ Pθt(θ,g,h) from [0, δ) to (a subset of) PΘ is a differentiable path with score function

y 7→ g′ ˙̀θ(y, x̃) + h0(x̃) +
∑K

k=1 hk(Ak•v), where v = y −Bx. In particular,

TPθ,J =

{
y 7→ g′ ˙̀θ(y, x̃) + h0(x̃) +

K∑
k=1

hk(Ak•v) : g ∈ RL, h ∈ H
}

= T γ|η
Pθ,RL

+T η|γPθ,H
,

and TPθ,J is a tangent space to the model at Pθ.

The next lemma presents the efficient score functions (18) for the LSEM model.

Lemma B.2. Given Assumption 2.4.1, if (α, σ) 7→ A(α, σ) is continuously differentiable,

the components of the efficient score function ˜̀
θ for the semiparametric linear simultaneous

equations model PΘ in (27) at any θ = (γ, η) with γ = (α, β), α ∈ A, β = (σ, b) ∈ B and

η ∈ H0 are given by

˜̀
θ,αl(y, x̃) =

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφk(Ak•v)Aj•v +
K∑
k=1

ζαl,k,k [τk,1Ak•v + τk,2κ(Ak•v)]

˜̀
θ,σl(y, x̃) =

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,jφk(Ak•v)Aj•v +
K∑
k=1

ζσl,k,k [τk,1Ak•v + τk,2κ(Ak•v)]

˜̀
θ,bl(y, x̃) =

K∑
k=1

[−Ak•Db,l] [(x− Ex)φk(Ak•v)− Ex (ςk,1Ak•v + ςk,2κ(Ak•v))]

with v = y − Bx, x = (1, x̃′)′, ζαl,k,j := [Dα,l]k•A
−1
•j , ζσl,k,j := [Dσ,l]k•A

−1
•j , Dα,l =

∂A(α, σ)/∂αl, Dσ,l = ∂A(α, σ)/∂σl and Db,l = ∂B/∂bl. Further,

τk := M−1
k

(
0

−2

)
, ςk := M−1

k

(
1

0

)
, where Mk :=

(
1 Eθ(Ak•v)3

Eθ(Ak•v)3 Eθ(Ak•v)4 − 1

)
.

The proof of this lemma follows from Amari and Cardoso (1997) for ˜̀
θ,αl(y, x̃) and

˜̀
θ,σl(y, x̃), and for ˜̀

θ,bl(y, x̃) the derivations are similar to those found in, for example,

Bickel et al. (1998) or Newey (1990).

The final lemma summarizes which conditions a log density score estimator should satisfy.

We will apply this lemma for different choices of Wi,n to verify our main result.

Lemma B.3. Given assumptions 2.4.1 and 2.4.2, let {βn}n≥1 be any deterministic sequence

in B with
√
n(βn − β) = O(1) and let θn = (α0, βn, η) for some η ∈ H0. The log density

score estimates φ̂k defined in (2.7) satisfy

1

n

n∑
i=1

[
φ̂k(An,k•(Yi −BnXi))− φk(An,k•(Yi −BnXi))

]
Wi,n = oPθn (n−1/2), (29)
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and

1

n

n∑
i=1

([
φ̂k(An,k•(Yi −BnXi))− φk(An,k•(Yi −BnXi))

]
Wi,n

)2
= oPθn (νn). (30)

where {Wi,n}n≥1,i≤n is such that for each n ∈ N, under Pθn , the Wi,n are i.i.d. with

marginal distribution given byGw, with zero-mean, finite second moments and independent

of each An,kYj .

Proof of Theorem 2.4.1. We verify assumptions A.1 and A.2 for the LSEM under

Assumptions 2.4.1 and 2.4.2.

First, the technical assumption A.1 is verified in Lemma B.1, as given above. Next, we

verify each part of Assumption A.2 separately. First, we note that assumption A.2-part 1

follows by the CLT since our data is iid and the efficient score ˜̀
θ0 as derived in Lemma B.2

lies in L2(P0) by construction. Next, let θn = (α0, βn, η) and note that under Pθn , each

An,k(Yi − BnXi) ' εi,k ∼ ηk where An = A(α0, σn) and An,k denotes the kth row of

An. Hence we can compute certain properties of the efficient score using the equality in

distribution:

˜̀
θn,αl(Yi, X̃i) '

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j,nφk(εi,k)εi,j +

K∑
k=1

ζαl,k,k,n [τk,1εi,k + τk,2κ(εi,k)] (31)

˜̀
θn,σl(Yi, X̃i) '

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,j,nφk(εi,k)εi,j +
K∑
k=1

ζσl,k,k,n [τk,1εi,k + τk,2κ(εi,k)] (32)

˜̀
θn,bl(Yi, X̃i) '

K∑
k=1

[−An,k•Dbl ] [(Xi − EXi)φk(εi,k)− EXi (ςk,1εi,k + ςk,2κ(εi,k))]

(33)

where we note that the same observation implies that τk,n = τk and ςk,n = ςk for each

n.24 By our assumptions on the map (α, σ) 7→ A(α, σ), we have ζαl,k,j,n → ζαl,k,j,∞ :=

[Dα,l(γ0)]k•A(γ0)−1
•j and ζσl,k,j,n → ζαl,k,j,∞ := [Dσ,l(γ0)]k•A(γ0)−1

•j for γ = (α0, β). Note

that the entries of Db,l are all zero except for entry l (corresponding to bl) which is equal to

one.

We verify assumption A.2-part 2 for each component of the efficient score (31)-(33), but

we note that (31) and (32) are identical hence we concentrate on (31). For (31) and

vn = y −Bnx, we define

ϕ1,n(vn) :=
K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j,nφk(An,k•vn)An,j•vn ,

24In the preceding display we have written ζαl,k,j,n and ζσl,k,j,n rather than ζαl,k,j and ζσl,k,j to indicate their
dependence on βn. ζαl,k,j,∞ and ζσl,k,j,∞ corresponds to evaluation at the point (α0, β).
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and

ϕ̂1,n(vn) :=

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j,nφ̂k(An,k•vn)An,j•vn ,

Let ζ
α
n := maxl∈[L],j∈[K],k∈[K] |ζαl,j,k,n|which converges to ζ

α
:= maxl∈[L],j∈[K],k∈[K] |ζαl,j,k,∞| <

∞. We have that

√
nPn(ϕ̂1,n − ϕ1,n) ≤ √n

K∑
k=1

K∑
j=1,j 6=k

ζ
α
n

∣∣∣∣∣ 1n
n∑
i=1

φ̂k(Vi,k,n)Vi,j,n − φk(Vi,k,n)Vi,j,n

∣∣∣∣∣ ,
with Vi,j,n = An,j•(Zi−BnXi). Since each

∣∣∣ 1
n

∑n
i=1 φ̂k,n(Vi,k,n)Vi,j,n − φk(Vi,k,n)Vi,j,n

∣∣∣ =

oPθn (n−1/2) by applying Lemma B.3-part (29) with Wi,n = Vi,j,n (noting that under Pθn ,

Vi,k,n ' εk,i and Vi,j,n ' εj,i are independent with EθnV 2
i,j,n = 1 by Assumption 2.4.1) and

the outside summations are finite, it follows that

√
nPn(ϕ̂1,n − ϕ1,n) = oPθn (1). (34)

Next, we note that τ̂k,n − τk → 0 and ς̂k,n − ςk → 0 in Pθn-probability by Lemma B.7

where τ̂k,n and ς̂k,n are defined in (2.6).

Now, consider ϕ2,τ,n(vn) defined by

ϕ2,τ,n(vn) :=

K∑
k=1

ζαl,k,k,n [τk,1An,k•vn + τk,2κ(An,k•vn)] .

Since sum is finite and each |ζαl,k,k,n| → |ζαl,k,k,∞| < ∞ it is sufficient to consider the

convergence of the summands. In particular we have that

1√
n

n∑
i=1

[τ̂k,n,1 − τk,1]Vi,k,n = [τ̂k,n,1 − τk,1]
1√
n

n∑
i=1

Vi,k,n = oPθn (1)×OPθn (1) = oPθn (1),

1√
n

n∑
i=1

[τ̂k,n,2 − τk,2]κ(Vi,k,n) = [τ̂k,n,2 − τk,2]
1√
n

n∑
i=1

κ(Vi,k,n) = oPθn (1)×OPθn (1) = oPθn (1).

since Vi,k,n ' εk,i ∼ ηk under Pθn and (εi,k)i≥1 and (κ(εi,k))i≥1 are i.i.d. mean-zero

sequences with finite second moments such that the CLT holds. Together these yield that

√
nPn(ϕ2,τ̂n,n − ϕ2,τ,n) = oPθn (1). (35)

Putting (34) and (35) together yields the required convergence for components of the type

(31) , since ˜̀
θn,αl = ϕ1,n + ϕ2,τ,n and ˆ̀

γn,αl = ϕ̂1,n + ϕ2,τ̂n,n. The same holds for (32);

the only difference is that we replace ζαl,k,k,n by ζσl,k,k,n
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Next, we consider components (33). Let an,k,l := −An,k•Db,l and write

√
nPn

[
ˆ̀
γn,b,l − ˜̀

θn,b,l

]
=

K∑
k=1

an,k,l
√
nPn

[
(Xi − EXi)[φ̂k(Vi,k,n)− φk(Vi,k,n)] + (EXi − X̄n)φk(Vi,k,n)

]

+
K∑
k=1

an,k,l
√
nPn

[
(EXi − X̄n)[ς̂k,n,1Vi,k,n + ς̂k,n,2κ(Vi,k,n)]

]

−
K∑
k=1

an,k,l
√
nPn

[
EXi[(ς̂k,n,1 − ςk,1)Vi,k,n + (ς̂k,n,2 − ςk,2)κ(Vi,k,n)]

]

Taking the right hand side terms (inside the outer summation) in order, we have that
√
nPn(Xi − EXi)[φ̂k(Vi,k,n) − φk(Vi,k,n)] = oPθn (1) by Lemma B.3-part (29) applied

with Wi,n = Xi − EXi. For the second,
√
nPn(EXi − X̄n)φk(Vi,k,n) = (EXi −

X̄n)
√
nPnφk(Vi,k,n) = oPθn (1)×OPθn (1) = oPθn (1) by the WLLN & CLT, noting for the

latter that Vi,k,n ' εi,k. We know from Lemma B.7 that ςk,n
Pθn−−→ ςk and hence adding &

subtracting and using the WLLN & CLT again yields that
√
nPn(EXi− X̄n)[ς̂k,n,1Vi,k,n +

ς̂k,n,2κ(Vi,k,n)] = oPθn (1). The CLT & ςk,n
Pθn−−→ ςk ensure that

√
nPn[(ς̂k,n,1−ςk,1)Vi,k,n+

(ς̂k,n,2− ςk,2)κ(Vi,k,n)] = oPθn (1). Together these observations and that an,k,l → a∞,n,l :=

Ak•Db,l imply that the required condition,
√
nPn

[
ˆ̀
γn,b,l − ˜̀

θn,b,l

]
= oPθn (1), is satisfied.

To verify part 3 we will show that∥∥∥Îγn − Ĩθ0∥∥∥
2
≤
∥∥∥Îγn − Ĩθn∥∥∥

2
+
∥∥∥Ĩθn − Ĩθ0∥∥∥

2
= oPθn (ν1/2

n ). (36)

where Ĩθn := 1
n

∑n
i=1

˜̀
θn(Yi)˜̀

θn(Yi)
′. To obtain the rates we start with ‖Ĩθn − Ĩθ0‖2,

for which we show that each component satisfies the required rate. To set this up, let

Qr,sl,m,i,n = ˜̀
θn,rl(Yi)

˜̀
θn,sm(Yi) − ˜̀

θ0,rl(Yi)
˜̀
θ0,sm(Yi), where r, s ∈ {α, σ, b} and l,m

denote the indices of the components of the efficient scores. Let Q̆r,sl,m,i,n be defined

analogously with Vi,k,n replaced by εi,k. Under Pθn we have that Qr,sl,m,i,n ' Q̆r,sl,m,i,n.

Therefore to show [Ĩθn − Ĩθ0 ]l,m = oPθn (ν
1/2
n ) it suffices to show that for any r, s and l,m

1

n

n∑
i=1

Q̆r,sl,m,i,n −GQ̆
r,s
l,m,i,n +

1

n

n∑
i=1

G[Q̆r,sl,m,i,n − Q̆
r,s
l,m,i,∞] = oG(ν1/2

n ),

where G is the product measure
∏K
k=0Gk and each Q̆r,sl,m,i,n is shown to satisfy

‖Q̆r,sl,m,i,n‖G,p <∞ in Lemma B.6 given below. The convergence of the second term follows

from the assumed Lipschitz continuity of the map defining the ζ’s and the
√
n-consistency

of βn for β, since n−1/2 = o(ν
1/2
n ).25 For the first term, if p = 2 in lemma B.6, by Theorem

25Note that for large enough n ∈ N βn is in a ball of radius, say, δ > 0 around β. The (continuous)
differentiability of (α, β1) 7→ A(α, β1) and the fact that Db,l is a constant matrix implies that the map
(α, β1) 7→ [−A(α, β1)k•Db,l] is Lipschitz on this set.
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2.5.11 in Durrett (2019), we have that for all ι > 0

1

n

n∑
i=1

Q̆r,sl,m,i,n −GQ̆
r,s
l,m,i,n = oG

(
n−1/2 log(n)1/2+ι

)
.

It follows that

‖Ĩθn − Ĩθ0‖2 ≤ ‖Ĩθn − Ĩθ0‖F = oPθn

(
n−1/2 log(n)1/2+ι

)
.

If, instead, p = 1 + ν/4 < 2 in Lemma B.6, then by the Marcinkiewicz & Zygmund SLLN

(e.g. Theorem 2.5.12 in Durrett, 2019)

1

n

n∑
i=1

Q̆r,sl,m,i,n −GQ̆
r,s
l,m,i,n = oG

(
n

1−p
p

)
,

and similarly

‖Ĩθn − Ĩθ0‖2 ≤ ‖Ĩθn,n − Ĩθ0‖F = oPθn

(
n

1−p
p

)
.

That is, for any p ∈ (1, 2] we have ‖Ĩθn − Ĩθ0‖2 = oPθn (νn,p) = oPθn (ν
1/2
n ).

For the other component of the sum, let r ∈ {α, σ, b} and let l denote an index, we write

Ûn,i,rl := ˆ̀
γn,rl(Yi), Ũi,rl := ˜̀

θn,rl(Yi) and Dn,i,rl := ˆ̀
γn,rl(Yi)− ˜̀

θn,rl(Yi).

Since it is the absolute value of the (r, l)− (s,m) component of Îγn,n− Ĩθ0,n, it is sufficient

to show that
∣∣∣ 1
n

∑n
i=1 Ûn,i,r,lDn,i,s,m + 1

n

∑n
i=1Dn,i,r,lŨi,s,m

∣∣∣ = oPθn (ν
1/2
n ) as n → ∞

for any r, s ∈ {(α, σ), b} and l,m. By Cauchy-Schwarz and lemma B.8∣∣∣∣∣ 1n
n∑
i=1

Dn,i,r,lŨi,s,m

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Ũ2
i,s,m

)1/2(
1

n

n∑
i=1

D2
n,i,r,l

)1/2

= OPθn (1)×oPθn (ν1/2
n ) = oPθn (ν1/2

n ),

∣∣∣∣∣ 1n
n∑
i=1

Ûn,i,r,lDn,i,s,m

∣∣∣∣∣ ≤
(

1

n

n∑
i=1

Û2
n,i,r,l

)1/2(
1

n

n∑
i=1

D2
n,i,s,m

)1/2

= OPθn (1)×oPθn (ν1/2
n ) = oPθn (ν1/2

n ),

for any (r, l)− (s,m). It follows that[
1

n

n∑
i=1

Ûn,i,r,lDn,i,s,m +Dn,i,r,lŨi,s,m

]2

≤ 2

[
1

n

n∑
i=1

Ûn,i,r,lDn,i,s,m

]2

+2

[
1

n

n∑
i=1

Dn,i,r,lŨi,s,m

]2

= oPθn (νn)

and hence ‖Îγn,n− Ĩθ0,n‖2 ≤ ‖Îγn,n− Ĩθ0,n‖F = oPθn (ν
1/2
n ). We can combine these results

to obtain:

‖Îγn,n−Ĩθ0‖2 ≤ ‖Îγn,n−Ĩθn,n‖2+‖Ĩθn,n−Ĩθ0‖2 = oPθn (ν1/2
n )+oPθn (ν1/2

n ) = oPθn (ν1/2
n ).

It remains to show that part 4 of Assumption A.2 holds. Recall that the dominating measure
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here is λ and re-write the integral in question as

∫ ∥∥∥˜̀
θnp

1/2
θn
− ˜̀

θ0p
1/2
θ0

∥∥∥2
dλ =

L∑
l=1

∫ [
˜̀
θn,lp

1/2
θn
− ˜̀

θ0,lp
1/2
θ0

]2
dλ. (37)

It is evidently sufficient to show that each of the integrals in the sum on the rhs converges to

zero. To this end, let fr,n := ˜̀
θn,r,lp

1/2
θn

and fr := ˜̀
θ0,rlp

1/2
θ0

for r ∈ {α, σ, b} corresponding

to (31)-(33) for some arbitrary l. By the expressions for ˜̀
θn and pθn given in lemma B.2

and equation (28) respectively along with the continuity of A, Dl and each ηk and φk (each

of which follows from our assumptions), we have that fr,n → fr λ-a.e. for all r. Moreover,

using the representation in (31) we have

∫
f2
α,n dλ =

∫  K∑
k=1

ζαl,k,k,n [τk,1εk,i + τk,2κ(εk,i)] +
K∑

j=1,j 6=k
ζαl,k,j,nφk(εk,i)εj,i

2

dG

=
K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

K∑
m=1,m 6=b

ζαl,k,j,nζ
α
l,b,m,n

∫
φk(εk,i)εj,iφb(εb,i)εm,i dG

+ 2
K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

ζαl,k,j,nζ
α
l,b,b,n

∫
φk(εk,i)εj,i [τb,1εb,i + τb,2κ(εb,i)] dG

+

K∑
k=1

K∑
b=1

ζαl,k,k,nζ
α
l,b,b,n

∫
[τb,1εb,i + τb,2κ(εb,i)] [τk,1εk,i + τk,2κ(εk,i)] dG

where G is the law of ε and each of the integrals are finite by assumption 14. By the

continuity of A and Dl, this converges to

∫
f2
α dλ =

∫  K∑
k=1

ζαl,k,k,∞ [τk,1εk,i + τk,2κ(εk,i)] +
K∑

j=1,j 6=k
ζαl,k,j,∞φk(εk,i)εj,i

2

dG

=
K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

K∑
m=1,m 6=b

ζαl,k,j,∞ζ
α
l,b,m,∞

∫
φk(εk,i)εj,iφb(εb,i)εm,i dG

+ 2
K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

ζαl,k,j,∞ζ
α
l,b,b,∞

∫
φk(εk,i)εj,i [τb,1εb,i + τb,2κ(εb,i)] dG

+
K∑
k=1

K∑
b=1

ζαl,k,k,∞ζ
α
l,b,b,∞

∫
[τb,1εb,i + τb,2κ(εb,i)] [τk,1εk,i + τk,2κ(εk,i)] dG,

which is finite by assumption 2.4.1. By Proposition 2.29 in van der Vaart (1998) we

conclude that
∫

(fα,n − fα)2 dλ → 0. Analogous arguments hold for r = σ, b; we omit

the details. The convergence of each
∫

(fr,n − fr)2 dλ → 0 in conjunction with equation

(37) is sufficient for part 4.
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B.1. Supporting Lemmas

Lemma B.4. Suppose that assumption 2.4.1 holds and let k, j, s, b ∈ [K] with j 6= k and

s 6= b. Then, for G the law of ε and any p ∈ [1, 2] we have that

(I) ‖φk(εk)εjφs(εs)εb‖G,p <∞,

(II) ‖φk(εk)εjεs‖G,p <∞,

(III) ‖εkεs‖G,p <∞.

Proof. By Cauchy-Schwarz, independence and our moment conditions we have

‖φk(εk)εjφs(εs)εb‖G,p ≤
[
G[φk(εk)]

2pG[εj ]
2pG[φs(εs)]

2pG[εb]
2p
] 1
2p <∞,

‖φk(εk)εjεs‖G,p ≤
[
G[φk(εk)]

2pG[εj ]
2pG[εs]

2p
]1/(2p)

<∞,
‖εkεs‖G,p = ‖(εk)p(εs)p‖1/pG,1 ≤ ‖(εk)p‖

1/p
G,2‖(εs)p‖

1/p
G,2 <∞.

Lemma B.5. Suppose that assumption 2.4.1 holds and let k, j, s ∈ [K] with j 6= k. Then,

for G the law of ε and 1 ≤ p ≤ min(1 + δ/4, 2), we have

(I) ‖φk(εk)εjκ(εs)‖G,p <∞,

(II) ‖εkκ(εs)‖G,p <∞,

(III) ‖κ(εk)κ(εs)‖G,p <∞.

Proof. By Cauchy-Schwarz, independence and our assumed moment conditions we have

‖φk(εk)εjκ(εs)‖G,p ≤
[[
G[φk(εk)]

2pG[εs]
4p
]1/(2p)

+ ‖φk(εk)‖G,p
]
‖εj‖G,p <∞,

‖εkκ(εs)‖G,p ≤ ‖(εk)p‖1/pG,2‖(εs)2p‖1/pG,2 + ‖εk‖G,p <∞,
‖κ(εk)κ(εs)‖G,p ≤ ‖(εk)2p‖1/pG,2‖(εs)2p‖1/pG,2 + 2‖(εk)2‖G,p + 2‖(εs)2‖G,p + 1 <∞.

158



Lemma B.6. Define

qαl,i,n :=
K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j,nφk(εk,i)εj,i +
K∑
k=1

ζαl,k,k,n [τk,1εk,i + τk,2κ(εk,i)]

qσl,i,n :=
K∑
k=1

K∑
j=1,j 6=k

ζσl,k,j,nφk(εk,i)εj,i +
K∑
k=1

ζσl,k,k,n [τk,1εk,i + τk,2κ(εk,i)]

qbl,i,n := −
K∑
k=1

[An,k•Db,l] [(Xi − EXi)φk(εk,i)− EXi(ςk,1εk,i + ςk,2κ(εk,i))]

where the dependence of e.g. ζαl,k,j,n on n is as in the proof of Theorem 2.4.1.26 Let

Q̆r,sl,m,i,n := qrl,i,nq
s
m,i,n. Suppose that assumption 2.4.1 holds. Then, for 1 ≤ p ≤

min(1 + δ/4, 2) we have ‖Q̆r,sl,m,i,n‖G,p <∞ for G the law of (X̃, ε).

Proof. By definition we have

Q̆α,αl,m,i,n =

K∑
k=1

K∑
j=1,j 6=k

K∑
s=1

K∑
b=1,b 6=s

ζαl,k,j,nζ
α
m,s,b,nφk(εk,i)εj,iφs(εs,i)εb,i

+ 2
K∑
k=1

K∑
j=1,j 6=k

K∑
s=1

ζαl,k,j,nζ
α
m,s,s,nφk(εk,i)εj,i[τs,1εs,i + τs,2κ(εs,i)]

+
K∑
k=1

K∑
s=1

ζαl,k,k,nζ
α
m,s,s,n[τk,1εk,i + τk,2κ(εk,i)][τs,1εs,i + τs,2κ(εs,i)].

Q̆α,bl,m,i,n = −
K∑
s=1

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j,nφk(εk,i)εj,i[An,s•Db,l](Xi − EXi)φs(εs,i)

+
K∑
s=1

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,j,nφk(εk,i)εj,i[An,s•Db,l]EXi(ςs,1εs,i + ςs,2κ(εs,i))

−
K∑
s=1

K∑
k=1

ζαl,k,k,n[τk,1εk,i + τk,2κ(εk,i)][An,s•Db,l](Xi − EXi)φs(εs,i)

+

K∑
s=1

K∑
k=1

ζαl,k,k,n[τk,1εk,i + τk,2κ(εk,i)][An,s•Db,l]EXi(ςs,1εs,i + ςs,2κ(εs,i))

Q̆b,bl,m,i,n =
K∑
s=1

K∑
k=1

[An,s•Db,l](Xi − EXi)φs(εs,i)[An,k•Db,l](Xi − EXi)φk(εk,i)

+ 2

K∑
s=1

K∑
k=1

[An,s•Db,l]EXi(ςs,1εs,i + ςs,2κ(εs,i))[An,k•Db,l](Xi − EXi)φk(εk,i)

+

K∑
s=1

K∑
k=1

[An,s•Db,l]EXi(ςs,1εs,i + ςs,2κ(εs,i))[An,k•Db,l]EXi(ςk,1εk,i + ςk,2κ(εk,i))

26See footnote 24.
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Hence, by Minkowski’s inequality, the independence of ε from X̃ (with finite second

moments) and lemmas B.4 & B.5, ‖Q̆r,sl,m,i,n‖G,p < ∞, noting that for σ instead of α we

have the same expressions.

Lemma B.7. Suppose assumption 2.4.1 holds and νn,p and νn are as in assumption 2.4.2.

Then ‖κ̂k,n − κk,n‖2 = oPθn (νn,p) = oPθn (ν
1/2
n ) for κ ∈ {τ, ς}.

Proof. Under Pθn , An,k•(Zi −BnXi) ' εk,i ∼ ηk, hence the claim will follow if we show

that κ̌k,n − κ̆k = oGk(ν
1/2
n ), where

κ̌k,n := M̌−1
k,nw, where M̌k,n :=

(
1 1

n

∑n
i=1(εk,i)

3

1
n

∑n
i=1(εk,i)

3 1
n

∑n
i=1(εk,i)

4 − 1

)
,

κ̆k,n := M̆−1
k,nw, where M̆k,n :=

(
1 Gk(εk,i)

3

Gk(εk,i)
3 Gk(εk,i)

4 − 1

)
,

and w ∈ R2. By the preceding definitions and the fact that the map M 7→M−1 is Lipschitz

at a positive definite matrix M0 we have that for a positive constant C then for large enough

n, with probability approaching one

‖κ̌k,n−κ̆k,n‖2 = ‖(M̌−1
k,n−M̆−1

k )w‖2 ≤ ‖w‖2‖M̌−1
k,n−M̆−1

k ‖2 . C‖M̌k,n−M̆k‖2. (38)

If υ := δ/4 ≥ 1, we have that by Theorem 2.5.11 in Durrett (2019)

1

n

n∑
i=1

[(εk,i)
3 −Gk(εk,i)3] = oGk

(
n−1/2 log(n)1/2+ι

)
1

n

n∑
i=1

[(εk,i)
4 −Gk(εk,i)4] = oGk

(
n−1/2 log(n)1/2+ι

)
for ι > 0, which implies that

‖M̌k,n − M̆k‖2 ≤ ‖M̌k,n − M̆k‖F = oGk

(
n−1/2 log(n)1/2+ι

)
.

If 0 < υ < 1, we have by Theorems 2.5.11 & 2.5.12 in Durrett (2019) that for ι > 0,

1

n

n∑
i=1

[(εk,i)
3 −Gk(εk,i)3] =

oGk
(
n−1/2 log(n)1/2+ι

)
if υ ∈ [1/2, 1)

oGk

(
n

1−p
p

)
if υ ∈ (0, 1/2)

,

1

n

n∑
i=1

[(εk,i)
4 −Gk(εk,i)4] = oGk

(
n

1−p
p

)
.

which together imply that

‖M̌k,n − M̆k‖2 ≤ ‖M̌k,n − M̆k‖F = oGk

(
n

1−p
p

)
.
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Combining these convergence rates with equation (38) yields the result in light of the

observations made at the beginning of the proof.

Lemma B.8. Suppose assumptions 2.4.1 and 2.4.2 hold and θn = (α0, βn, η) where
√
n(βn − β) = O(1) is a deterministic sequence. Then for each r ∈ {α, σ, b} and l

1

n

n∑
i=1

(
ˆ̀
γn,rl(Yi)− ˜̀

θn,rl(Yi)
)2

= oPθn (νn).

Proof. In this proof we letMk := Mk• for any matrixM . We start by considering elements

in 1
n

∑n
i=1

(
ˆ̀
γn,αl(Yi)− ˜̀

θn,αl(Yi)
)2

(noting that the result for σ will be the same). We

define τ̃k,n,q := τ̂k,n,q− τk,q and Vi,n = Zi−BnXi. Since each |ζαl,k,j,n| <∞ and the sums

over k, j are finite, it is sufficient to demonstrate that for every k, j,m, s ∈ [K], with k 6= j

and s 6= m,

1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

] [
φ̂s,n(An,sVi,n)− φs(An,sVi,n)

]
An,jVi,nAn,mVi,n = oPθn (νn),

(39)
1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

]
An,jVi,n [τ̃s,n,1An,sVi,n + τ̃s,n,2κ(An,sVi,n)] = oPθn (νn),

(40)
1

n

n∑
i=1

[τ̃s,n,1An,sVi,n + τ̃s,n,2κ(An,sVi,n)] [τ̃k,n,1An,kVi,n + τ̃k,n,2κ(An,kVi,n)] = oPθn (νn).

(41)

For (41), let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 4 parts, each of

which has the following form for some q, w ∈ {1, 2}

1

n

n∑
i=1

τ̃s,n,q τ̃k,n,wξq(An,sVi,n)ξw(An,kVi,n) = τ̃s,n,q τ̃k,n,w
1

n

n∑
i=1

ξq(An,sVi,n)ξw(An,kVi,n) = oPθn (νn),

since we have that each τ̃s,n,q τ̃k,n,w = oPθn (νn) by lemma B.7.27 For (40) we can argue

similarly. Again let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 2 parts,

each of which has the following form for some q ∈ {1, 2}

1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

]
An,jVi,nτ̃s,n,qξq(An,sVi,n)

≤ τ̃s,n,q
(

1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

]2
(An,jVi,n)2

)1/2(
1

n

n∑
i=1

ξq(An,sVi,n)2

)1/2

= oPθn (νn).

27The fact that 1
n

∑n
i=1 ξq(An,sVi,n)ξw(An,kVi,n) = OPθn (1) can be seem to hold using the moment and

i.i.d. assumptions from assumption 2.4.1 and Markov’s inequality, noting once more that An,kVi,n ' εk,i
under Pθn .
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by Lemma B.3 applied with Wi,n = An,jVi,n and τ̃s,n,q = oPθn (ν
1/2
n ).28 For (39) use

Cauchy-Schwarz with lemma B.3:

1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

] [
φ̂s,n(An,sVi,n)− φs(An,sVi,n)

]
An,jVi,nAn,mVi,n

≤
(

1

n

n∑
i=1

[
φ̂k,n(An,kVi,n)− φk(An,kVi,n)

]2
(An,jVi,n)2

)1/2

×
(

1

n

n∑
i=1

[
φ̂s,n(An,sVi,n)− φs(An,sVi,n)

]2
(An,mVi,n)2

)1/2

= oPθn (νn).

Finally, we consider the elements in 1
n

∑n
i=1

(
ˆ̀
γn,bl(Yi)− ˜̀

θn,bl(Yi)
)2

, where we let

an,k,l := −An,kDb,l and note that

ˆ̀
γn,bl(Yi)− ˜̀

θn,bl(Yi)

=
K∑
k=1

an,k,l

[
(Xi − EXi)[φ̂k(Vi,k,n)− φk(Vi,k,n)] + (EXi − X̄n)φk(Vi,k,n)

]

+
K∑
k=1

an,k,l

[
(EXi − X̄n)[ς̂k,n,1Vi,k,n + ς̂k,n,2κ(Vi,k,n)]

]

−
K∑
k=1

an,k,l

[
EXi[(ς̂k,n,1 − ςk,1)Vi,k,n + (ς̂k,n,2 − ςk,2)κ(Vi,k,n)]

]

We have

1

n

n∑
i=1

(
ˆ̀
γn,bl(Yi)− ˜̀

θn,bl(Yi)
)2

.
K∑
k=1

1

n

n∑
i=1

[an,k,l(Xi − EXi)]
2[φ̂k(Vi,k,n)− φk(Vi,k,n)]2 + [an,k,l(EXi − X̄n)]2φk(Vi,k,n)2

+
K∑
k=1

1

n

n∑
i=1

[an,k,l(EXi − X̄n)]2[ς̂k,n,1Vi,k,n + ς̂k,n,2κ(Vi,k,n)]2

+

K∑
k=1

1

n

n∑
i=1

[an,k,lEXi]
2[(ς̂k,n,1 − ςk,1)Vi,k,n + (ς̂k,n,2 − ςk,2)κ(Vi,k,n)]2

The first term is oPθn (νn) by Cauchy-Schwarz and applying lemma B.3, the second and

third terms follows from (an,k,l(X̄n − EXi))
2 = OPθn (n−1) = oPθn (νn) and the fourth

term follows from Lemma B.7.
28See footnote 27.
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B.2. Proof of Theorem A.1

Proof of Theorem A.1. Let P0 := Pθ0 , where θ0 is defined in Assumption A.2. The first

step is to show that assumption A.2 implies that

√
nPn

[
ˆ̀
γn − ˜̀

θn

]
P0−→ 0,

√
nPn

[
˜̀
θn − ˜̀

θ0

]
+
√
nĨθ0(0, (βn − β)′)′

P0−→ 0 (42)

and

ν−1
n

∥∥∥Îγn − Ĩθ0∥∥∥ = oP0(1). (43)

To do so, define bn :=
√
n(βn−β) and let (nm)m≥1 be an arbitrary subsequence of (n)n≥1.

It is sufficient for (42)-(43) that we can demonstrate that there is a further subsequence

(nm(k))k≥1 along which the claimed convergence holds. There exists a sub-subsequence

such that bnm(k)
→ b for some b ∈ RLβ .29 Taking such a subsequence will suffice as

we will now demonstrate that the claimed convergence holds for an arbitrary convergent

sequence bn → b.

Let Qnn denote the law of (Yi)
n
i=1 corresponding to θn and Pn0 that corresponding to θ0. Let

Λn(Qn, P0) = nPn log qn − log p0 be the corresponding log-likelihood ratio. In view of

the differentiability in quadratic mean of the model (e.g. Definition 1) we have by van der

Vaart and Wellner, 1996, lemma 3.10.11:

Λn(Qn, P ) =
√
nPnb′ ˙̀θ0,β −

1

2
b′İθ0,ββb+Rn,

where Rn → 0 in probability under both Pn0 and Qnn and İθ0 = V( ˙̀
θ0). Noting that ˙̀

θ0 is

a score by assumption A.1 and hence in L2(P0) (e.g. van der Vaart, 2002, Lemma 1.7) it

follows by the CLT that

Λn(Qn, P ) N
(
−1

2
b′İθ0,ββb, b

′İθ0,ββb

)
,

under P0, from which we can conclude that Pn0 / . Qnn (e.g. van der Vaart and Wellner,

1996, example 3.10.6). This mutual contiguity and Le Cam’s first lemma (e.g. van der

Vaart, 1998, Lemma 6.4) ensure that left claim in (42) and (43) hold given parts 2 & 3 of

assumption A.2. Noting that P0[˜̀θ0
˙̀′
θ0,β

]b = Ĩθ0(0, b′)′, the right claim of equation (42)

follows by proposition A.10 in van der Vaart (1988b), which requires Assumption A.2-part

4.30

Next we show that (42) and (43) continue to hold if γn (and θn = (γn, η)) is replaced

by γ̄n (and θ̄n = (γ̄n, η)) as defined in the theorem.31 Since β̄n remains
√
n-consistent

there is an M > 0 such that P0

(√
n‖β̄n − β‖ > M

)
< ε. If

√
n‖β̄n − β‖ ≤ M then

29Such a subsequence and b exist by the Bolzano-Weierstrass theorem.
30Cf. lemma 7.3 in van der Vaart (2002); the proof of theorem 25.57 in van der Vaart (1998).
31The proof is adapted from the proof of Theorem 5.48 in van der Vaart (1998).
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the discretized estimator β̄n is equal to one of the values in the finite set Bn = {β′ ∈
n−1/2CZLβ : ‖β′ − β‖ ≤ n−1/2M}. For each M this set has finite number of elements

bounded independently of n, call this upper bound B. Let

R′n(β′) :=
√
nPn

[
ˆ̀
γ′ − ˜̀

θ′

]
, R′′n(β′) :=

√
nPn

[
˜̀
θ′ − ˜̀

θ0

]
+
√
nĨθ0(0, (β′−β)′)′, R′′′n (β′) := ν−1

n [Îγ′−Ĩθ0 ],

where γ′ = (α0, β
′) and θ′ = (γ′, η). Letting Rn denote either R′n, R′′n or R′′′n we have that

for any υ > 0

P0

(
‖Rn(β̄n)‖ > υ

)
≤ ε+

∑
βn∈Bn

P0

(
{‖Rn(βn)‖ > υ} ∩ {β̄n = βn}

)
≤ ε+

∑
βn∈Bn

P0 (‖Rn(βn)‖ > υ)

≤ ε+BP0(‖Rn(β∗n)‖ > υ),

where β∗n ∈ Bn maximises β 7→ P0 (‖Rn(βn)‖ > υ). As (β∗n)n∈N is a deterministic
√
n-

consistent sequence for β we have that P0(‖Rn(β∗n)‖ > υ) → 0 by equations (42) and

(43).

By the version of (42) with γn, θn replaced by γ̄n, θ̄n we have

√
nPn

[
ˆ̀̄
γn − ˜̀

θ0

]
=
√
nPn

[
ˆ̀̄
γn − ˜̀̄

θn

]
+
√
nPn

[
˜̀̄
θn − ˜̀

θ0

]
= −Ĩθ0(0,

√
n(β̄n−β)′)′+oP0(1).

and by the version of (43) with γn, θn replaced by γ̄n, θ̄n, Îγ̄n
P0−→ Ĩθ0 and so K̂γ̄n

P0−→ K̃θ0
for

K̃θ :=
[
I −Ĩθ,αβ Ĩ−1

θ,ββ

]
, K̂γ :=

[
I −Îγ,αβ Î−1

γ,ββ

]
.

We combine these to obtain

√
nPn [κ̂γ̄n − κ̃θ0 ]

=
(
K̂γ̄n − K̃θ0

)√
nPn

[
ˆ̀̄
γn − ˜̀

θ0

]
+ K̃θ0

√
nPn

[
ˆ̀̄
γn − ˜̀

θ0

]
+
(
K̂γ̄n − K̃θ0

)√
nPn ˜̀

θ0

= −K̃θ0 Ĩθ0(0,
√
n(β̄n − β)′)′ + oP0(1)

= −
[
I −Ĩθ0,αβ Ĩ−1

θ0,ββ

] [Ĩθ0,αα Ĩθ0,αβ

Ĩθ0,βα Ĩθ0,ββ

][
0

√
n(β̄n − β)

]
+ oP0(1)

= oP0(1).

Then, by assumption A.2-part 1, under P0,

Zn :=
√
nPnκ̂γ̄n =

√
nPn [κ̂γ̄n − κ̃θ0 ] +

√
nPnκ̃θ0  Z ∼ N (0, Ĩθ0).
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For the next step, observe that∥∥∥Îγ̄n − Ĩθ0∥∥∥
2
≤
∥∥∥Îγ̄n,αα − Ĩθ0,αα∥∥∥

2
+
∥∥∥Îγ̄n,αβ Î−1

γ̄n,ββ
Îγ̄n,βα − Ĩθ0,αβ Ĩ−1

θ0,ββ
Ĩθ0,βα

∥∥∥
2
.

By repeated addition and subtraction along with the observations that any submatrix has

a smaller operator norm than the original matrix and the matrix inverse is Lipschitz

continuous at a non-singular matrix we obtain∥∥∥Îγ̄n − Ĩθ0∥∥∥
2
.
∥∥∥Îγ̄n − Ĩθ0∥∥∥

2
.

Hence by equation (43) with γ̄n replacing γn we have P0

(∥∥∥Îγ̄n − Ĩθ0∥∥∥
2
< νn

)
→ 1.

The remainder of the proof is split into two cases. First consider the case where rank(Ĩθ0) =

r > 0. We first show that Îtγ̄n
P0−→ Ĩθ0 and the rank estimate rn = rank(Îtγ̄n) satisfies

P0({rn = r})→ 1.

Let λl denote the lth largest eigenvalue of Ĩθ0 , similarly define λ̂l,n for Îγ̄n and λ̂tl,n for Îtγ̄n .

Define the set Rn := {rn = r}, let ν := λr/2 > 0 and note that ‖Îγ̄n − Ĩθ0‖2 = oP0(νn)

implies that ‖Îγ̄n − Ĩθ0‖2 = oP0(1).

By Weyl’s perturbation theorem32 we have maxl=1,...,Lα |λ̂l,n − λl| ≤ ‖Îγ̄n − Ĩθ0‖2 =

oP0(1). Hence, if we define En := {λ̂r,n ≥ νn}, for n large enough such that νn < ν, we

have

P0(En) = P0

(
λ̂r,n ≥ νn

)
≥ P0

(
λ̂r,n ≥ ν

)
≥ P0

(
|λ̂r,n − λr| < ν

)
→ 1.

If r = Lα we have that Rn ⊃ En and therefore P0(Rn) → 1. Additionally, if λ̂Lα,n ≥ νn

then λ̂tl,n = λ̂l,n for each l ∈ [Lα] and hence Îtγ̄n = Îγ̄n . Thus, En ∩ {‖Îγ̄n − Ĩθ0‖ ≤ υ} ⊂
{‖Îtγ̄n − Ĩθ0‖ ≤ υ}, from which it follows that Îtγ̄n

P0−→ Ĩθ0 .

Now suppose instead that r < Lα and define Fn := {λ̂r+1,n < νn}. It follows by Weyl’s

perturbation theorem and the fact that λl = 0 for l > r that as n→∞

P (Fn) = P (λ̂r+1,n < νn) ≥ P (‖Îγ̄n − Ĩθ0‖2 < νn)→ 1.

Since Rn ⊃ En ∩ Fn, this implies that P (Rn)→ 1 as n→∞. Additionally, if λ̂r,n ≥ νn,

λ̂r+1,n < νn and ‖Îγ̄n − Ĩθ0‖2 ≤ υ, we have that λ̂tk,n = λ̂k,n for k ≤ r and λ̂tl,n = 0 = λl

for l > r and so

‖Λ̂n(νn)−Λ‖2 = max
l=1,...,r

|λ̂tl,n−λl| = max
l=1,...,r

|λ̂l,n−λl| ≤ ‖Λ̂n−Λ‖2 ≤ ‖Îγ̄n−Ĩθ0‖2 ≤ υ,

and hence {‖Îγ̄n −Ĩθ0‖2 ≤ υ}∩En∩Fn ⊂ {‖Λ̂n(νn)−Λ‖2 ≤ υ}, from which it follows

32E.g. Corollary III.2.6 in Bhatia (1997).
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that Λ̂n(νn)
P0−→ Λ.

To complete this part of the proof, suppose that (λ1, . . . , λr) consists of s distinct

eigenvalues with values λ1 > λ2 > · · · > λs and multiplicities m1, . . . ,ms (each at

least one), where the superscripts on the λs are indices, not exponents. λs+1 = 0 is an

eigenvalue with multiplicity ms+1 = Lα− r. Let lki for k = 1, . . . , s+ 1 and i = 1, . . . ,mk

denote the column indices of the eigenvectors in U corresponding to each λk. For each λk,

the total eigenprojection is Πk :=
∑mk

i=1 ulki
u′
lki

.33 Total eigenprojections are continuous.34

Therefore, if we construct Π̂k,n in in an analogous fashion to Πk but replace columns of

U with columns of Ûn, we have Π̂k,n
P0−→ Πk for each k ∈ [s + 1] since Îγ̄n

P0−→ Ĩθ0 .

Spectrally decompose Ĩθ0 as Ĩθ0 =
∑s

k=1 λ
kΠk, where the sum runs to s rather than s+ 1

since λs+1 = 0. Then,

Îtγ̄n =
s+1∑
k=1

mk∑
i=1

λ̂t
lki ,n

ûlki ,n
û′
lki ,n

=
s+1∑
k=1

mk∑
i=1

(λ̂t
lki ,n
− λk)ûlki ,nû

′
lki ,n

+
s∑

k=1

λkΠ̂k,n,

and so

‖Îtγ̄n − Ĩθ0‖2 ≤
s+1∑
k=1

mk∑
i=1

|λ̂t
lki ,n
− λk|‖ûlki ,nû

′
lki ,n
‖2 +

s∑
k=1

|λk|‖Π̂k,n −Πk‖2 P0−→ 0,

by Π̂k,n
P−→ Πk, Λ̂n(νn)

P0−→ Λ and since we have ‖ulki ,nu
′
lki ,n
‖2 = 1 for any i, k, n.

Hence, we have that Îtγ̄n
P0→ Ĩθ0 and P0({rn = r}) → 1. This implies that Ît,†γ̄n

P0→ Ĩ†θ0
where Ĩ†θ0 is the Moore-Penrose inverse of Ĩθ0 .35

Now consider the score statistic Ŝγ̄n , by Slutsky’s lemma and the continuous mapping

theorem we have that

Ŝγ̄n = Z ′nÎt,†γ̄nZn  Z ′Ĩ†θ0Z ∼ χ
2
r

where the distributional result X := Z ′Ĩ†θ0Z ∼ χ
2
r , follows from e.g. Theorem 9.2.2 in Rao

and Mitra (1971).

Finally, recall that Rn = {rn = r}. On these sets cn is the 1 − a quantile of the χ2
r

distribution, which we will call c. Hence, we have cn
P0−→ c as P0(Rn) → 1. As a result,

we obtain Ŝγ̄n − cn  X − c where X ∼ χ2
r . Since the χ2

r distribution is continuous, we

have by the Portmanteau theorem

P0

(
Ŝγ̄n > cn

)
= 1−P0

(
Ŝγ̄n − cn ≤ 0

)
→ 1−P0 (X − c ≤ 0) = 1−P0 (X ≤ c) = a ,

which completes the proof in the case that r > 0.
33See e.g Chapter 8.8 of Magnus and Neudecker (2019).
34E.g. Theorem 8.7 of Magnus and Neudecker (2019).
35See e.g. Theorem 2 of Andrews (1987).
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It remains to handle the case with r = 0. We first note that Zn  Z ∼ N (0, Ĩθ0) continues

to hold by our assumptions, though in this case Ĩθ0 is the zero matrix and hence the limiting

distribution is degenerate: Z = 0 a.s.. Let En = {rn = 0}. Part 3 of assumption A.2 and

Weyl’s perturbation theorem imply that

P0(En) = P0 (rn = 0) = P0

(
max

l=1,...,Lα
|λ̂n,l| < νn

)
≥ P0

(
‖Îγ̄n − Ĩθ0‖2 < νn

)
→ 1.

On the sets En we have that Îtγ̄n is the zero matrix, whose Moore-Penrose inverse is also

the zero matrix. Hence on the sets En we have Ŝγ̄n = 0 and cn = 0 and therefore do not

reject, implying

P0(Ŝγ̄n > cn) ≤ 1− P0(En)→ 0.

It follows that P0(Ŝγ̄n > cn)→ 0.

C. Proofs for Lemmas 1-3

In this section we provide the proofs for lemmas B.1-B.3. The proofs of these lemmas

depend on a number of supporting results which can be found in section C.1. Many of these

results are standard but are nevertheless included for convenience.

Proof of Lemma B.1. The log density for the semiparametric LSEM is given by

`θ(y, x̃) := log pθ(y, x̃) = log |A|+
K∑
k=1

log ηk(Ak•(y −Bx)) + log η0(x̃) .

For convenience let v = vθ := y −Bx with x = (1, x̃). We define ˙̀
θ(y, x̃) := ∇γ`θ(y, x̃),

where we recall that γ partitions as γ = (α, β), with β = (σ, b), and some derivations show

that the components of ˙̀
θ(y, x̃) can be written as

˙̀
θ,αl(y, x̃) = tr(A−1Dα,l(α, σ)) +

K∑
k=1

φk(Ak•v)× [Dα,l(α, σ)]k•v

= tr(Dα,l(α, σ)A−1) +

K∑
k=1

K∑
j=1

φk(Ak•v)×
(

[Dα,l(α, σ)]k•A
−1
•j

)
Aj•v

=
K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφk(Ak•v)Aj•v +
K∑
k=1

ζαl,k,k (φk(Ak•v)Ak•v + 1) ,

˙̀
θ,σl(y, x̃) =

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,jφk(Ak•v)Aj•v +
K∑
k=1

ζσl,k,k (φk(Ak•v)Ak•v + 1) ,

˙̀
θ,bl(y, x̃) =

K∑
k=1

φk(Ak•v)× [−Ak•Db,lx] ,

(44)
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where ζαl,k,j := [Dα,l]k•A
−1
•j , ζσl,k,j := [Dσ,l]k•A

−1
•j , Dα,l = ∂A(α, σ)/∂αl, Dσ,l =

∂A(α, σ)/∂σl and Db,l = ∂B/∂bl. Paths of the form t → Pγ+tg,η have an associated

tangent space given by

T γ|η
Pθ,RL

= {g′ ˙̀θ(y, x̃) : g ∈ RL} . (45)

To constructing the tangent space of the non-parametric part we consider submodels of the

following form. Let

ηhkk,t(·) = ηk(·)(1 + thk(·)) k = 0, . . . ,K ,

which for t = 0 recover ηk. For k = 1, . . . ,K, hk is some function such that hk ∈ Hk with

Hk :=
{
hk ∈ C1

b (λ) : Ehk(εk) = 0,Eεkhk(εk) = 0,Eκ(εk)hk(εk) = 0
}
, (46)

where C1
b (λ) denotes the space of functions from R → R which are bounded and

continuously differentiable with bounded derivatives λ-a.e.. Letting Gk be the law on R
corresponding to ηk for k = 1, . . . ,K, it is clear that Hk is a linear subspace of L2(Gk).

The additional restrictions on hk ensure that for t small enough ηk,t ∈ H . For k = 0,

define

H0 :=
{
h0 ∈ Cb(λ,Rd−1) : Eh0(X̃) = 0

}
, (47)

where Cb(λ,Rd−1) denotes the space of bounded λ-a.e. continuous functions from Rd−1 →
R.36 Letting G0 be the law on Rd−1 corresponding to η0, it is clear that H0 is a linear

subspace of L2(G0). The additional restrictions on h0 ensure that for t small enough

η0,t ∈ Z . Now let H :=
∏K
k=0Hk. For any h = (h0, h1, . . . , hK) ∈ H and any θ ∈ Θ

we can define a path ηt(θ, h) := (ηh00,t, η
h1
1,t, . . . , η

hK
K,t). Given the preceding discussion, for

each h ∈ H there is a δ > 0 small enough such that ηh00,t ∈ Z and ηhkk,t ∈ H for each

k = 1, . . . ,K when t ∈ (−δ, δ). Now, we use this to define a path θt(θ, h) := (γ, ηt(θ, h)).

Then, pθt(γ,h) defines a path towards pθ according to:

pθt(θ,h)(y, x̃) = | detA| ×
K∏
k=1

ηhkk,t(Ak•v)× ηh00,t(x̃) . (48)

Given the discussion above, for t ∈ (−δ, δ), the submodel {Pθt(θ,h) : t ∈ (−δ, δ)} ⊂ PΘ.

Let s : RK → R be given by

s(y, x̃) :=
∂ log pθt(θ,h)(y, x̃)

∂t

∣∣∣∣
t=0

=
h0(x̃)

1 + th0(x̃)

∣∣∣∣
t=0

+

K∑
k=1

hk(Ak•v)

1 + thk(Ak•v)

∣∣∣∣
t=0

= h0(x̃) +
K∑
k=1

hk(Ak•v) .

(49)

36We make no notational distinction between the Lebesgue measure on R and that on Rd−1; which is meant
can be inferred from context.
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s is a score function associated to the differentiable path t 7→ Pθt(θ,h) from [0, δ) → PΘ

and the associated tangent space for η is given by

T η|γPθ,H
:=

{
y 7→ h0(x̃) +

K∑
k=1

hk(Ak•v) : h = (h0, h1, . . . , hK) ∈ H
}
. (50)

These calculations establish the form of the score functions for the parameteric part and

non-parametric part of the model separately. To verify assumption A.1 we rather need to

consider the (joint) paths given by θt(θ, g, h) = (γ + tg, ηt(θ, h)).

By the definitions of T γ|η
Pθ,RL

and T η|γPθ,H
given in (45) and (50) respectively and the fact

that both RL and H are linear spaces, it follows that T γ|η
Pθ,RL

and T η|γPθ,H
are linear spaces,

implying that the same is true of their sum. Therefore, provided we show that TPθ,J is a

tangent set to the model at Pθ and that it is the sum of T γ|η
Pθ,RL

and T η|γPθ,H
, we immediately

obtain that it is a tangent space. That the second equality in the display in the statement of

the lemma holds is clear by the definition of a sum of linear subspaces and the form of the

elements on the right hand side given in equations (45) and (50). So it remains to prove the

first equality. That is, for any g ∈ RL and h ∈ H there is a small enough δ > 0 such that

the path t 7→ Pθt(θ,g,h) from [0, δ) to (a subset of) PΘ is a differentiable path with score

function y 7→ g′ ˙̀θ(y) + h0(x̃) +
∑K

k=1 hk(Ak•v). Fix g ∈ RL, h ∈ H and θ ∈ Θ and

let θt abbreviate θt(θ, g, h). Recall that γ partitions as γ = ((α, σ), b) and let g = (g1, g2)

be the conforming partition for any g ∈ RL. Further, let G2 be such that g2 = vec(G2).

Additionally throughout the proof we will let Mk = Mk• for any matrix M and to save on

notation, we define Ã(t) := A((α′, σ′)′ + tg1), B̃(t) = B + G2t, ṽ(t) := y − B̃(t)x and

D̃k(t) := d[Ã(a)]k ṽ(a)
da (t).

We will now compute the (pointwise) derivative of t 7→ `θt(y, x̃) := log pθt(y, x̃) on

(−δ, δ). We have that

`θt(y, x̃) = log | det Ã(t)|+ log η0(x̃) +

K∑
k=1

log ηk

(
[Ã(t)]kṽ(t)

)
+ log (1 + th0(x̃)) +

K∑
k=1

log
(

1 + thk

(
[Ã(t)]kṽ(t)

))
.

For sufficiently small t (i.e. there is some neighbourhood (−δ, δ) on which) the arguments

of the logarithms on the second line are positive. We proceed by repeatedly applying the

chain rule to conclude that

´̀
θt(y, x̃) :=

∂`θt(y, x̃)

∂t
= tr

([
Ã(t)

]−1 dÃ(t)

dt

)
+

h0(x̃)

1 + th0(x̃)
+

K∑
k=1

[
φk

(
[Ã(t)]kṽ(t)

)
× D̃k(t)

]
+

K∑
k=1

hk([Ã(t)]kṽ(t)) + th′k([Ã(t)]kṽ(t))× D̃k(t)

1 + thk([Ã(t)]kṽ(t))
,
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for all y, x̃ such that pθt(y, x̃) > 0 and define it as 0 elsewhere. Use (44) to evaluate

the preceding display at t = 0 and obtain (for y such that pθt(y, x̃) > 0 and set it to 0

otherwise):

s(y, x̃) :=
∂`θt(y, x̃)

∂t |t=0
= tr

([
Ã(t)

]−1 dÃ(t)

dt |t=0

)
+ h0(x̃) +

K∑
k=1

[
φk (Akv)× D̃k(0)v

]
+ hk (Akv)

= g′ ˙̀θ + h0(x̃) +

K∑
k=1

hk (Akv) .

We will demonstrate that the conditions in Lemma 7.6 of van der Vaart (1998) (alternatively

Lemma 1.8 of van der Vaart (2002)) are satisfied for the map t 7→ Pθt from (−δ, δ) to PΘ,

from which we will be able to conclude that this is a differentiable path with score function

as in the preceding display.37

Firstly, by the imposed continuous differentiability conditions we have that t 7→ √pθt is

continuously differentiable λ-a.e..

It remains to show that
∫ ( ṗθt

pθt

)2
dPθt is finite and continuous in t. For this, note that when

it exists we have ´̀
θt =

ṗθt
pθt

. Therefore, we can bound our integral by

∫ (
´̀
θt(y, x̃)

)2
dPθt . tr

([
Ã(t)

]−1 dÃ(t)

dt

)2

+

∫ (
h0(x̃)

1 + th0(x̃)

)2

dPθt

+

K∑
k=1

∫ [
φk

(
[Ã(t)]kṽ(t)

)
× D̃k(t)

]2
dPθt

+
K∑
k=1

∫ (
hk([Ã(t)]kṽ(t)) + th′k([Ã(t)]kṽ(t))× D̃k(t)

1 + thk([Ã(t)]kṽ(t))

)2

dPθt .

The first rhs term can be ensured finite by choosing δ small enough since [Ã(t)]−1 dÃ(t)
dt is

continuous in t.38 The same is true of the second term, since h0 is bounded λ-a.s., hence

G0-a.s., and∫ (
h0(x̃)

1 + th0(x̃)

)2

dPθt =

∫ (
h0(x̃)

1 + th0(x̃)

)2

η0(x̃)(1+th0(x̃)) dλ =

∫
h0(x̃)2

1 + th0(x̃)
dG0(x̃).

For the third term it suffices to consider the integral for an arbitrary k ∈ [K], which by

37Strictly speaking, applying lemma 7.6 as stated in van der Vaart (1998) would require continuous
differentiability for every y. Nevertheless, with appropriate modifications, the same proof demonstrates the
claim remains valid with continuous differentiability holding “only” λ-a.e.. See also proposition 2.1.1 of
Bickel et al. (1998).

38By our assumptions that (α, β1) 7→ A(α, β1) is continuously differentiable and A(α, β1) is invertible.
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Cauchy-Schwarz is bounded by∫ [
φk

(
[Ã(t)]kṽ(t)

)
× D̃k(t)

]2
dPθt ≤

∥∥∥∥φk ([Ã(t)]kṽ(t)
)2
∥∥∥∥
Pθt ,2

∥∥∥∥[D̃k(t)
]2
∥∥∥∥
Pθt ,2

<∞

For the first term observe that if Y, X̃ has law Pθt , then [Ã(t)]kṽ(t) is distributed according

to the density ηk(1 + thk) ∈ H (for small enough δ), and thus the integral is finite by the

definition of H , i.e. assumption 2.4.1-part 1. For the second term write

D̃k(t) =
d[Ã(a)]k

da
(t)
(
z − B̃(t)x

)
− [Ã(t)]k

(
dB̃(a)

da
(t)x

)
,

and note that for small enough δ, Pθt ∈ PΘ and so for some small enough ν > 0, each

Pθt |Yk|4+ν <∞ and Pθt |Xl|4+ν <∞ (by assumption 2.4.1), hence∥∥∥∥[D̃k(t)
]2
∥∥∥∥
Pθt ,2

=
√∫

[D̃k(t)]4 dPθt <∞ since
∫
‖D̃k(t)‖4+ν

2 dPθt <∞.

For the final term on the rhs, it is again sufficient to consider the integral for any arbitrary

k ∈ [K]. Here, let c > 0 be a bound away from zero for 1 + thk on (−δ, δ) and let

M > 0 bound both hk and h′k on the same interval, which we know to be possible by their

definition. Then this integral can be bounded by

∫ (
hk([Ã(t)]kṽ(t)) + th′k([Ã(t)]kṽ(t))× D̃k(t)

1 + thk([Ã(t)]kṽ(t))

)2

dPθt ≤
∫ (

M + tMD̃k(t)

c

)2

dPθt ,

where the right hand side can be seen to be finite by the fact that
∫

[D̃k(t)]
2 dPθt < ∞ as

implied by the corresponding finite 4th moment obtained above.

To show continuity, let tn → t be an arbitrary convergent sequence in [0, δ) with δ chosen

such that if 0 ≤ t ≤ δ then each hk, h
′
k, h0 ≤ M and 1 + thk, 1 + th0 ≥ c > 0.

Suppose that Zn = (Yn, X̃n) and Z = (Y, X̃) have laws Pθtn and Pθt respectively and

let ṽ(t, Z) := Y − B̃(t)X . We have

bn := tr

([
Ã(tn)

]−1 dÃ(t)

dt
(tn)

)
→ b := tr

([
Ã(t)

]−1 dÃ(t)

dt
(t)

)
,
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which converges by the continuity of all its constituent functions. Define for k = 1, . . . ,K

Uk,n := φk

(
[Ã(tn)]kṽ(tn, Zn)

)
Wk,n := D̃k(tn)

Vk,n :=
hk([Ã(tn)]kṽ(tn, Zn))

1 + tnhk([Ã(tn)]kṽ(tn, Zn))

Qk,n :=
tnh
′
k([Ã(tn)]kṽ(tn, Zn))

1 + tnhk([Ã(tn)]kṽ(tn, Zn))

En :=
h0(X̃n)

1 + tnh0(X̃n)
,

and analogously Uk, Vk,Wk, Qk, E where the tn are replaced by t and the Zn by Z

respectively. Since pθtn → pθt we have that Z̃n  Z̃ by Scheffé’s theorem. Hence, by

the continuous mapping theorem

(U1,n, V1,n,W1,n, Q1,n, . . . , UK,n, VK,n,WK,n, QK,n, En)

 (U1, V1,W1, Q1, . . . , UK , VK ,WK , QK , E).

Moreover, Vk,n, Qk,n and En are bounded above. We have that (U4
k,n)n≥1 and (W 4

k,n)n≥1

are uniformly integrable for each k ∈ [K]. For the former, note that each [Ã(tn)]kṽ(tn, Zn)

is distributed according to the density ηk(1 + tnhk). Hence we have for small enough but

positive ν

sup
n∈N

E|Uk,n|4+ν = sup
n∈N

∫
|φk(z)|4+νηk(z)(1+tnhk(z)) dz .

∫
|φk(z)|4+νηk(z) dz <∞.

Similarly, using Cauchy-Schwarz, for small enough but positive ν

sup
n∈N

E|Wk,n|4+ν = sup
n∈N

∫
|D̃k(tn)|4+ν dPθtn

. sup
n∈N

∫
‖εn‖4+ν

2 dPθtn + sup
n∈N

∫
‖Xn‖4+ν

2 dPθtn

. sup
n∈N

K∑
k=1

∫
|ek|4+νηk(ek)(1 + tnhk(ek)) dek

+ sup
n∈N

∫
‖(1, x̃′)′‖4+v

2 η0(x̃)(1 + tn(h0(x̃))) dx̃

.
K∑
k=1

∫
|εk|4+ν dGk +

∫
‖(1, X̃ ′)′‖4+v

2 dG0

<∞.

With this in hand, using continuous mapping theorem and noting that each of the relevant
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sequences is Pθtn -UI given the preceding discussion we have, as n→∞

Pθtn

[
bn + En +

K∑
k=1

Uk,nWk,n +

K∑
k=1

Vk,n +Qk,n

]2

→ Pθt

[
b+ E +

K∑
k=1

UkWk +

K∑
k=1

Vk +Qk

]2

,

yielding the required continuity.

Proof of Lemma B.2. To construct the efficient score function for γ, we need to project the

elements of ˙̀
θ(y), as given in (44), onto the orthogonal complement of T η|γPθ,H

(equation

(50)), that is: ˘̀
θ,l = Π

(
˙̀
θ,l|
[
T η|γPθ,H

]⊥)
.39 The efficient score then follows as ˜̀

θ,l :=

˙̀
θ,l −Πθ

˙̀
θ,l = ˙̀

θ,l −Π

(
˙̀
θ,l|
[
T η|γPθ,H

]⊥)
.

We first provide some results that simplify the exposition. Lemma C.2 proves that the

closure of Hk is given by

clHk = {hk ∈ L2(Gk) : Ehk(εk) = 0,Eεkhk = 0,Eκ(εk)hk(εk) = 0},

and similarly

clH0 = {h0 ∈ L2(G0) : Eh0(X̃) = 0}.

Now, let H̃γ
k := {y 7→ hk(Ak•v) : hk ∈ Hk} for k = 1, . . . ,K, H̃γ

0 := {y 7→ h0(x̃) : h0 ∈
H0} and note that T η|γPθ,H

can be written as

T η|γPθ,H
= H̃γ

0 + H̃γ
1 + · · ·+ H̃γ

K . (51)

It follows that for k = 1, . . . ,K

cl H̃γ
0 = {y 7→ h0(x̃) : h0 ∈ clH0}, cl H̃γ

k = {y 7→ hk(Ak•v) : hk ∈ clHk}, (52)

which are (closed) subspaces of L2(Pθ).40

39See e.g. Section 2.2 of van der Vaart (2002).
40To see this let y 7→ hk(Akv) ∈ {y 7→ hk(Akv) : hk ∈ clHk}. There are hn,k ∈ Hk such that
hn,k → hk in L2(Gk). Hence, recalling that Akv is distributed according to ηk under Pθ , it follows
immediately that

∫
[hn,k(Akv)− hk(Akv)]2 dPθ → 0 as n → ∞. Hence y 7→ hk(Akv) ∈ cl H̃γ

k .
For the reverse inclusion, let y 7→ hk(Akv) ∈ cl H̃γ

k . So there are y 7→ hn,k(Akv) in H̃γ
k such that∫

[hn,k(Akv)− hk(Akv)]2 dPθ → 0 as n → ∞. Again noting that Akv is distributed according to ηk
under Pθ , this immediately implies that hn,k → hk in L2(Gk). That cl H̃γ

k is a subspace of L2(Pθ) follows
directly from the fact that clHk is a subspace of L2(Gk) once more noting Akv is distributed according to
ηk under Pθ . The argument for H̃γ

0 is analogous.
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Define T := cl H̃γ
1 + · · ·+ cl H̃γ

K and the following finite dimensional subset of L2(Pθ)

L0 := L1∪L2 := {y 7→ Ak•v, y 7→ κ(Ak•v) : k ∈ [K]}∪{y 7→ φk(Ak•v)Aj•v : j, k ∈ [K], j 6= k},
(53)

where κ(w) := w2 − 1 and L := lin L0. Lemma C.4 proves that L ⊂ T ⊥.

Since orthogonal projections are linear we have that for κ = α, σ

Π
(

˙̀
θ,κl |T ⊥

)
=

K∑
k=1

K∑
j=1,j 6=k

ζκl,k,jΠ
(
φk(Ak•v)Aj•v|T ⊥

)

+

K∑
k=1

ζκl,k,kΠ
(
φk(Ak•v)Ak•v + 1|T ⊥

)
=

K∑
k=1

K∑
j=1,j 6=k

ζκl,k,jφk(Ak•v)Aj•v +
K∑
k=1

ζκl,k,kΠ
(
φk(Ak•v)Ak•v + 1|T ⊥

)

where the second equality follows from y 7→ φk(Ak•v)Aj•v ∈ L ⊂ T ⊥, for j 6= k.

What remains is Π
(
φk(Ak•v)Ak•v + 1|T ⊥

)
. For this we specialise to the case for

θ = (γ, η) such that η ∈ H0, for which we can establish an explicit expression.

In particular, we will show that for each k ∈ [K], there are τi for i = 1, 2 such

that y 7→ w(Akv) ∈ cl H̃γ
k where w(Akv) := φk(Akv)Akv + 1 − r(Akv) and

r(Akv) := τ1Akv + τ2κ(Akv). This would imply that we can write φk(Akv)Akv + 1 =

w(Akv) + r(Akv) where the first summand on the right hand side is in T and the latter is

in L ⊂ T ⊥.41 Since orthogonal decompositions are unique this would further imply that

Π
(
φk(Akv)Akv + 1|T ⊥

)
= Π (φk(Akv)Akv + 1|L ) = r(Akv).42

To show that y 7→ w(Akv) ∈ cl H̃γ
k let hk(z) := φk(z)z + 1 − τk,1z − τk,2κ(z). We

first note that hk ∈ L2(Gk), which can be easily seen by the triangle inequality along with

the fact that all of εk, κ(εk), 1 and φk(εk)εk are in L2(Gk). Next,
∫
φk(z)z dGk + 1 −

τk,1
∫
z dGk − τk,2

∫
κ(z) dGk = 1 +

∫
φk(z)z dGk, and so as η ∈ H0,∫

hk(z) dGk = 1− 1 = 0.

Next, we will demonstrate that τk,1 and τk,2 can be chosen such that
∫
hk(z)z dGk =

41Take hk = w and hj = 0 for all j 6= k to see that y 7→ w(Akv) ∈ cl H̃γ
k implies y 7→ w(Akv) ∈ T .

42See e.g. Theorem 4.11 in Rudin (1987).
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∫
hk(z)κ(z) dGk = 0. As η ∈ H0 we have that∫

hk(z)z dGk =

∫
φk(z)z

2 dGk +

∫
z dGk − τk,1

∫
z2 dGk − τk,2

∫
κ(z)z dGk

= −τk,1
∫
z2 dGk − τk,2

∫
z3 dGk + τk,2

∫
z dGk

= −τk,1Eε2k − τk,2Eε3k
= −τk,11− τk,2Eε3k,

where we note that Eε2k = 1. Similarly,∫
hk(z)κ(z) dGk =

∫
φk(z)(z

3 − z) dGk +

∫
κ(z) dGk − τk,1

∫
z(z2 − 1) dGk − τk,2

∫
(z2 − 1)2 dGk

= −2− τk,1
[∫

z3 dGk −
∫
z dGk

]
− τk,2

[∫
z4 dGk − 2

∫
z2 dGk + 1

]
= −2− τk,1

∫
z3 dGk − τk,2

[∫
z4 dGk − 2

∫
z2 dGk + 1

]
= −2− τk,1Eε3k − τk,2[Eε4k − 1].

Hence we need to choose τk,1 and τk,2 such that:[
1 Eε3k

Eε3k Eε4k − 1

][
τk,1

τk,2

]
=

[
0

−2

]
.

The matrix Mk :=
[

1 Eε3k
Eε3k Eε4k−1

]
=
[
Eε2k Eε3k
Eε3k Eε4k−1

]
is nonsingular by assumption 2.4.1; see

footnote 5. Hence we can take (τk,1, τk,2)′ = M−1
k (0,−2)′, which is non zero by the

nonsingularity of M−1
k . We conclude that

Π
(

˙̀
θ,αl |T ⊥

)
=

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφk(Ak•v)Aj•v +

K∑
k=1

ζαl,k,k [τk,1Ak•v + τk,2κ(Ak•v)] ,

Π
(

˙̀
θ,σl |T ⊥

)
=

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,jφk(Ak•v)Aj•v +
K∑
k=1

ζσl,k,k [τk,1Ak•v + τk,2κ(Ak•v)] ,

Moreover, by independence, for any h0 ∈ cl H̃γ
0

Pθ

[
Π
(

˙̀
θ,αl |T ⊥

)
h0

]
= Pθ

[
Π
(

˙̀
θ,αl |T ⊥

)]
Pθh0 = 0,

Pθ

[
Π
(

˙̀
θ,σl |T ⊥

)
h0

]
= Pθ

[
Π
(

˙̀
θ,σl |T ⊥

)]
Pθh0 = 0,

and so by lemma C.3 we can conclude that (see e.g. Bickel et al., 1998, Proposition A.2.3.B)

Π
(

˙̀
θ,αl |T ⊥

)
= Π

(
˙̀
θ,αl |

[
T η|γPθ,H

]⊥)
and Π

(
˙̀
θ,σl |T ⊥

)
= Π

(
˙̀
θ,σl |

[
T η|γPθ,H

]⊥)
.
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For the remaining part corresponding to b, let ςk := M−1
k (1, 0)′ and define q(y, x̃) :=

φk(Ak•v) + ςk,1Ak•v + ςk,2κ(Ak•v). Then we have that for any a ∈ Rd

y 7→ q(y, X̃)× a′EX ∈ cl H̃γ
k ⊂ cl T η|γPθ,H

,

since letting ã := a′EX we have Pθ(ãq(Y, X̃))2 < ∞ by the triangle inequality &

Pθãq(Y, X̃) = 0,

Pθãq(Y, X̃)Ak•v = ã

[∫
φk(εk)εk dGk + ςk,1

∫
ε2k dGk + ςk,2

∫
ε3k − εk dGk

]
= ã

[
−1 + ςk,1 + ςk,2Eε3k

]
= 0

and

Pθãq(Y, X̃)κ(Ak•v) = ã

[∫
φk(εk)(ε

2
k − 1) dGk + ςk,1

∫
ε3k − εk dGk + ςk,2

∫
ε4k − 2ε2k + 1 dGk

]
= ã

[
ςk,1Eε3k + ςk,2(Eε4k − 1)

]
= 0

by the choice of ςk. Moreover, since for any h ∈ T η|γPθ,H
we have

Pθ

([
a′Xφk(Ak•v)− a′EX (φk(Ak•v) + ςk,1Ak•v + ςk,2κ(Ak•v))

]
h(Y, X̃)

)
= Pθ

[a′(X − EX)φk(Ak•v)− a′EX (ςk,1Ak•v + ςk,2κ(Ak•v))
] h0(X̃) +

K∑
j=1

hj(Aj•v)


= 0,

it follows that

Π

(
˙̀
θ,b,l|

[
T η|γPθ,H

]⊥)
=

K∑
k=1

[−Ak•Db,l] [(x− Ex)φk(Ak•v)− Ex (ςk,1Ak•v + ςk,2κ(Ak•v))] .

Proof of Lemma B.3. We start by showing that φ̂k satisfies equation (29). Under Pθn ,

we have that An,k•(Yi − BnXi) ' εi,k ∼ ηk, where An,k• denotes the kth row of
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An ≡ A(α0, σn). Additionally, we can write∣∣∣∣∣ 1n
n∑
i=1

φ̂k(εi,k)Wi,n − φk(εi,k)Wi,n

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

[
φ̂k(εi,k)− φ̃k(εi,k)

]
Wi,n

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

[
φ̃k(εi,k)− φk,n(εi,k)

]
Wi,n

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

[φk,n(εi,k)− φk(εi,k)]Wi,n

∣∣∣∣∣ ,
(54)

where φ̂k(z) = γ̂′kbk(z) as defined in equation (2.7), φ̃k(z) := γ′kbk(z), where

γk = −Gk[bkb′k]−1Gkck ,

withGk being the law corresponding to ηk. Finally, φk,n := φk1[ΞLk,n,Ξ
U
k,n] as in Assumption

(2.4.2) and φk is the true log density score. We will show that each of these three terms on

the right hand side are oG(n−1/2), where G is the product of Gk and Gw, which implies

that ∣∣∣∣∣ 1√
n

n∑
i=1

φ̂k,n(An,kYi)Wi,n − φk(An,kYi)Wi,n

∣∣∣∣∣ Pθn−−→ 0.

For the last term in (54), by assumption Gk{εi,k /∈ [ΞLk,n,Ξ
U
k,n]} ↓ 0 and hence by

independence and Cauchy-Schwarz

G
(
[φk,n(εi,k)− φk(εi,k)]2W 2

i,n

)
= Gk

[
φk(εi,k)

21{εi,k /∈ [ΞLk,n,Ξ
U
k,n]}

]
GwW

2
i,n

≤
[
Gkφk(εi,k)

4
]1/2 [

Gk1{εi,k /∈ [ΞLk,n,Ξ
U
k,n]}

]1/2
GwW

2
i,n

→ 0.
(55)

By Markov’s inequality it follows that for any υ > 0,

G

(∣∣∣∣∣ 1√
n

n∑
i=1

[φk,n(εi,k)− φk(εi,k)]Wi,n

∣∣∣∣∣ > υ

)
≤
nG
(

[φk,n(εi,k)− φk(εi,k)]2W 2
i,n

)
nυ

→ 0.

For the second term, we note that by our hypotheses and lemma C.6 we have

G
(

[φ̃k(εi,k)− φk,n(εi,k)]
2W 2

i,n

)
= Gk

(
[φ̃k(εi,k)− φk,n(εi,k)]

2
)
GwW

2
i,n

≤ C2δ6
k,n‖φ

(3)
k ‖2∞GwW 2

i,n → 0
, (56)

as n→∞, and hence again by Markov’s inequality for any υ > 0,

G

(∣∣∣∣∣ 1√
n

n∑
i=1

[φ̃k(εi,k)− φk,n(εi,k)]Wi,n

∣∣∣∣∣ > υ

)
≤
nG
(

[φ̃k(εi,k)− φk,n(εi,k)]
2W 2

i,n

)
nυ

→ 0.
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For the first term, by Cauchy-Schwarz∣∣∣∣∣ 1n
n∑
i=1

[
φ̂k(εi,k)− φ̃k(εi,k)

]
Wi,n

∣∣∣∣∣ ≤ ‖γ̂k − γk‖2
∥∥∥∥∥ 1

n

n∑
i=1

bk(εi,k)Wi,n

∥∥∥∥∥
2

= oG(n−1/2),

by lemmas C.7 and C.8.

Next, we show that φ̂k satisfies equation (30). We write:

1

n

n∑
i=1

([
φ̂k(εi,k)− φk(εi,k)

]
Wi,n

)2
≤ 4

n

n∑
i=1

[
φ̂k(εi,k)− φ̃k(εi,k)

]2
W 2
i,n

+
4

n

n∑
i=1

[
φ̃k(εi,k)− φk,n(εi,k)

]2
W 2
i,n

+
4

n

n∑
i=1

[φk,n(εi,k)− φk(εi,k)]2W 2
i,n.

(57)

We will show that (1/4 of) each of the right hand side terms is oG(νn) under our

assumptions, which is sufficient for equation (30) since Ak,n(Yi − BnXi) ' εi,k ∼ ηk

under Pθn . For the last term, for any υ > 0, by Markov’s inequality, independence and

Cauchy-Schwarz we have

G

(∣∣∣∣∣ 1n
n∑
i=1

[φk,n(εi,k)− φk(εi,k)]2W 2
i,n

∣∣∣∣∣ > υνn

)
.
Gk1{εi,k /∈ [ΞLk,n,Ξ

U
k,n]}GwW 2

i,n

υνn
= o(1).

For the second term, for any υ > 0, by Markov’s inequality, independence and lemma C.6:

G

(∣∣∣∣∣ 1n
n∑
i=1

[
φ̃k(εi,k)− φk,n(εi,k)

]2
W 2
i,n

∣∣∣∣∣ > υνn

)
≤
Gk

(
[φ̃k(εi,k)− φk,n(εi,k)]

2
)
GwW

2
i,n

υνn

≤
Cδ6

k,n‖φ
(3)
k ‖2∞GwW 2

i,n

υνn

= o(1).

Finally, for the first term in the decomposition, by lemma C.8 and Assumption 2.4.2-part

(ii) we have

1

n

n∑
i=1

[
φ̂k(εi,k)− φ̃k(εi,k)

]2
W 2
i,n ≤ ‖γ̂k − γk‖22

[
1

n

n∑
i=1

‖bk(εi,k)‖22W 2
i,n

]
= oG(νn).
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C.1. Supporting results

Definition C.1. Let Ck denote the space of real functions which have a continuous

derivative of order k. Let C∞ :=
⋂
k≥1 Ck. Let C∞c be the subset of C∞ consisting of

functions f ∈ C∞ such that supp(f) is compact.43

Lemma C.1. Let µ be a probability measure on R. Then, C∞c is dense in L2(µ).

Proof. Let Cc denote the set of compactly supported real functions on R. By theorem 1.1 of

Billingsley (1999) and proposition 7.9 of Folland (1999), we have that Cc is dense in L2(µ)

and hence it suffices to show that C∞c is dense in Cc with respect to the L2(µ) norm.44 Now,

let g ∈ Cc and choose R > 0 such that supp(g) ⊂ (−R,R) ⊂ R. By the C∞ Urysohn

lemma (8.18 in Folland, 1999), there is a h ∈ C∞c such that h ∈ [0, 1], h = 1 on supp(g)

and supp(h) ⊂ (−R,R). By the Weierstrass approximation theorem (see e.g. p. 247 of

Royden and Fitzpatrick, 2010) there is a sequence of polynomials (pn)n≥1 such that pn → g

uniformly in [−R,R]. Note that the product pnh ∈ C∞c . We have that pnh → gh = g

uniformly on supp(h). It follows that ‖pnh− g‖µ,2 → 0.45

Lemma C.2. Let Hk be defined as in (46). We have that

clHk = {hk ∈ L2(Gk) : Ehk(εk) = 0,Eεkhk = 0,Eκ(εk)hk(εk) = 0},

where Gk is the law on R corresponding to ηk and εk is distributed according to Gk.

Let H0 be defined as in (47). We have that

clH0 = {h0 ∈ L2(G0) : Eh0(X̃) = 0},

where G0 is the law on Rd−1 corresponding to η0 and X̃ is distributed according to G0.

Proof. Let hk ∈ clHk. Then, there are hn,k ∈ Hk ⊂ L2(Gk) with ‖hn,k − hk‖Gk,2 → 0.

Hence, hk ∈ L2(Gk). Since the inner product is continuous we have

Ehk(εk)ξ(εk) = 〈hk(εk), ξ(εk)〉Gk = lim
n→∞

〈hn,k(εk), ξ(εk)〉Gk = lim
n→∞

0 = 0,

for each ξ ∈ {ξ0, ξ1, κ}, where ξ0(x) := 1, ξ1(x) := x. Hence, hk ∈ {hk ∈
L2(Gk) : Ehk(εk) = 0,Eεkhk = 0,Eκ(εk)hk(εk) = 0} and thus we have that

43The support of f is supp(f) := cl{x : f(x) 6= 0}.
44Suppose we have shown this. Then since for each g ∈ Cc we have g ∈ cl C∞c and hence Cc ⊂ cl C∞c . Noting

that Cc is dense in L2(µ) we obtain the chain of inclusions L2(µ) ⊂ cl Cc ⊂ cl cl C∞c = cl C∞c ⊂ L2(µ)
where the last inclusion is evident from the fact that any function in C∞c is bounded and hence in L2(µ),
which is itself closed.

45Fix ε > 0. Take N large enough that for all n ≥ N we have |pnh − g| < ε on supp(h). Then,∫
(pnh − g)2 dµ =

∫
supp(h)

(pnh − g)2 dµ +
∫
R\supp(h)(pnh − g)2 =

∫
supp(h)

(pnh − g)2 dµ < ε2

since pnh− g = 0 outside of supp(h).
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clHk ⊂ {hk ∈ L2(Gk) : Ehk(εk) = 0,Eεkhk = 0,Eκ(εk)hk(εk) = 0}.

For the other inclusion, hk be in L2(Gk) and orthogonal to each ξ ∈ {ξ0, ξ1, κ}. We want

to approximate (in the L2(Gk) norm) hk by functions in Hk. First ignore the orthogonality

constraints: the space C∞c (see definition C.1) (of which C1
b (λ) ⊂ L2(Gk) is a superset) is

dense in L2(Gk) by lemma C.1. Hence there is a sequence (hn,k)n≥1 in C1
b (λ) such that

‖hn,k − hk‖Gk,2 → 0. Introduce the function

h̃n,k(z) := hn,k(z) + υn + νnv(z) + ωnw(z),

where each of υn, νn and ωn are in R and v, w ∈ C1
b (λ) are such that

Ev(εk) = Ew(εk) = 0, Eεkw(εk) = Eκ(εk)v(εk) = 0, Eεkv(εk) = Eκ(εk)w(εk) = 1,

and the existence of such functions is guaranteed by lemma C.5. It is clear from its definition

that h̃n,k ∈ C1
b (λ). Now, put

υn := −Ehn,k(εk), νn := −E[hn,k(εk)εk], ωn := −E[hn,kκ(εk)].

Then, we clearly have that

〈h̃n,k, ξ0〉Gk = E [hn,k(εk) + υn] = Ehn,k(εk)− Ehn,k(εk) = 0,

〈h̃n,k, ξ1〉Gk = E [hn,k(εk)εk + νnE[v(εk)εk]] = E [hn,k(εk)εk]− E[hn,k(εk)εk] = 0

〈h̃n,k, κ〉Gk = E [hn,kκ(εk) + ωnE[w(εk)κ(εk)]] = E[hn,kκ(εk)]− E[hn,kκ(εk)] = 0.

Moreover, since hn,k
L2(Gk)−−−−→ hk we have that (υn, νn, ωn)→ 0 as n→∞. Therefore,

‖h̃n,k − hk‖Gk,2 ≤ ‖hn,k − hk‖Gk,2 + ‖υn + νnv + ωnw‖Gk,2
≤ ‖hn,k − hk‖Gk,2 + |υn|+ |νn|‖v‖Gk,2 + |ωn|‖w‖Gk,2
→ 0,

as n → ∞ where we note that ‖v‖Gk,2 < ∞ and ‖w‖Gk,2 < ∞ since the functions

are bounded λ-a.e. (and hence Gk-a.s.). Thus (h̃n,k)n≥1 is a sequence in Hk such that

‖h̃n,k − hk‖Gk,2 → 0 and we conclude that {hk ∈ L2(Gk) : Ehk(εk) = 0,Eεkhk =

0,Eκ(εk)hk(εk) = 0} ⊂ clHk.

For H0 let h0 ∈ clH0. There are (hn,0 ∈ H0 ⊂ L2(G0) with ‖hn,0 − h0‖G0,2 → 0. Hence

h0 ∈ L2(G0) and
∫
h0 dG0 = limn→∞

∫
hn,0 dG0 = 0. Conversely, suppose that h0 ∈

L0
2(G0). Since Cb(λ,Rd−1) ⊂ L2(G0) is a superset of the compactly supported continuous

functions on Rd−1 (when considered as elements of L2(G0)) it is dense in L2(G0) by e.g.

Theorem 3.14 in Rudin (1987). Hence there exists a sequence (hn,0)n≥1 ⊂ Cb(λ,Rd−1)
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with ‖hn,0 − h0‖G0,2 → 0. This implies that 0 =
∫
h0 dG0 = limn→∞

∫
hn,0 dG0 and so

also ‖h̃n,0− h0‖G0,2 → 0‖G0,2 → 0 where h̃n,0 := hn,0−
∫
hn,0 dG0 ∈ H0, implying that

h0 ∈ clH0.

Lemma C.3. Let H̃γ
k be defined as in the proof of Lemma B.2. We have that

T = cl
(
H̃γ

1 + · · ·+ H̃γ
K

)
,

and

cl T η|γPθ,H
= cl H̃γ

0 + cl H̃γ
1 + · · ·+ cl H̃γ

K = cl H̃γ
0 + T .

Proof. For the first display, the sets in the sum on the right hand side are pairwise

orthogonal. Note that we have for any k, j ∈ [K] and any (hj , hk) ∈ Hj ×Hk,

〈hj(Ajv), hk(Akv)〉Pθ = Pθhj(Ajv)hk(Akv) = Ehj(εj)hk(εk) = Ehj(εj)Ehk(εk) = 0,

due to the independence of the elements of ε. So y 7→ hj(Ajv) ∈ [H̃γ
k ]⊥ = [cl H̃γ

k ]⊥.46

Recalling that the sum of closed pairwise orthogonal subspaces is closed,47 we conclude

that cl
(
H̃γ

1 + · · ·+ H̃γ
K

)
⊂ cl H̃γ

1 + · · · + cl H̃γ
K = T since the closure of a set is the

smallest closed set containing that set. For the opposite inclusion, let g =
∑K

k=1 gk ∈ T

and note there are gi,n(y) = hi,n(Aiv) ∈ H̃γ
i such that each gi,n → gi in L2(Pθ).

Let gn =
∑K

k=1 gk,n. Clearly this is in H̃γ
1 + · · · + H̃γ

K and hence its limit g is in

cl
(
H̃γ

1 + · · ·+ H̃γ
K

)
. Thus T ⊂ cl

(
H̃γ

1 + · · ·+ H̃γ
K

)
. The second display is analogous,

noting the independence between X̃ and ε.

Lemma C.4. We have

L ⊂ T ⊥,

where both are as defined in the proof of Lemma B.2.

Proof. Suppose that y 7→ f(y) is in L0 and let y 7→∑K
k=1 hk(Akv) ∈ H̃γ

1 + · · ·+ H̃γ
K .48

We have 〈
f(Y ),

K∑
k=1

hk(AkV )

〉
Pθ

=

K∑
k=1

〈f(Y ), hk(AkV )〉Pθ ,

where V = Z − BX so it suffices to show that 〈f(Y ), hk(AkV )〉Pθ = 0 for any k ∈ [K]

and any hk ∈ Hk. First suppose that f(Y ) ∈ {AkV, κ(AkV )}. Then, by the definition of

Hk we have

〈f(Y ), hk(AkV )〉Pθ =

∫
f(y)hk(Akv) dPθ = Pθ[f(Y )hk(AkV )] = 0.

46Note that for any Hilbert space V and a linear subspace U of V , U⊥ = [clU ]⊥.
47See e.g. II.3.4 in Conway (1985).
48See Lemma C.3.
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Second suppose that f(Y ) ∈ {AlV, κ(AlV )} for some l 6= k. Then we have that

〈f(Y ), hk(AkV )〉Pθ =

∫
f(y)hk(Akv) dPθ = Pθ[f(Y )hk(AkV )] = Pθf(Y )Pθhk(AkV ) = 0,

by the independence of AkV = εk and AlV = εl and the fact that by the definition

of Hk we have Pθ[hk(AkV )] = 0. Now, let i 6= j with both in [K] and suppose that

f(Y ) = φi(AiV )AjV . If k = i 6= j we have

〈f(Y ), hk(AkV )〉Pθ = Pθ[φi(AiV )AjV hk(AkV )] = Pθ[φk(AkV )hk(AkV )]Pθ[AjV ] = 0,

by independence of AkV and AjV and that Pθ[AjV ] = 0. If k = j 6= i,

〈f(Y ), hk(AkV )〉Pθ = Pθ[φi(AiV )AjV hk(AkV )] = Pθ[hk(AkV )AkV ]Pθ[φi(AiV )] = 0,

by independence of AkV and AiV and the definition of hk. Lastly, if k 6= j 6= i then

〈f(Y ), hk(AkV )〉Pθ = Pθ[φi(AiV )AjV hk(AkV )] = Pθ[hk(AkV )]Pθ[AjV ]Pθ[φi(AiV )] = 0,

by independence of AkV,AjV,AiV and Pθ[AjV ] = 0.

Lemma C.5. Let κ(x) := x2 − 1 and let L2(Gk) denote the space of functions from

R → R square-integrable with respect to the probability measure Gk, which is absolutely

continuous with respect to Lebesgue measure, λ. Let C1
b (λ) ⊂ L2(Gk) denote the subspace

of functions which are bounded and continuously differentiable with bounded derivatives

λ-a.e. Suppose that κ ∈ L2(Gk),
∫
z dGk =

∫
κ(z) dGk = 0 and

∫
κ(z)2 dGk > 0. Then,

there are functions v, w ∈ C1
b (λ) such that∫

v(z) dGk =

∫
w(z) dGk = 0,

∫
zw(z) dGk =

∫
κ(z)v(z) dGk = 0

and ∫
zv(z) =

∫
κ(z)w(z) dGk = 1.

Proof. We first note that the requirement that v, w be mean zero is easily met, once

we have ṽ, w̃ satisfying the other required properties. Suppose that is the case, then

put v := ṽ −
∫
ṽ(z) dGk and likewise for w. Clearly these are zero mean. More-

over, they are bounded and continuously differentiable with bounded derivative λ-a.e.

and the inner product conditions also continue to hold in view of the assumption that∫
z dGk =

∫
κ(z) dGk = 0. Therefore, we now construct ṽ, w̃ ignoring the zero-mean

requirement.
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We start with ṽ. Let a < b < c and define

M :=

( ∫ b
a z dGk

∫ c
b z dGk∫ b

a (z2 − 1) dGk
∫ c
b (z2 − 1) dGk

)
.

Provided M−1 exists there must exist a v∗ = (v∗1, v
∗
2)′ such that Mv∗ = (1, 0)′. Then, we

can define

ṽ(z) :=


v∗1 if z ∈ [a, b)

v∗2 if z ∈ [b, c)

0 otherwise

,

to yield( ∫
zṽ(z) dGk∫

(z2 − 1)ṽ(z) dGk

)
=

(
v∗1
∫ b
a z dGk + v∗2

∫ c
b z dGk

v∗1
∫ b
a (z2 − 1) dGk + v∗2

∫ c
b (z2 − 1) dGk

)
= Mv∗ =

(
1

0

)
,

as required. It remains to demonstrate that there are a, b, c such thatM−1 exists. To see that

this is always possible, note first that since
∫
z dGk = 0 and

∫
z2 dGk = 1, Gk must place

mass both on the negative and positive parts of the real line. Since also
∫

(z2 − 1) dGk = 0

and
∫

(z2 − 1)2 dGk > 0 at least one of Gk([−1, 0)) > 0 or Gk([0, 1)) > 0 must hold.

Without loss of generality assume the latter.49 Take a < 0 such that Gk((a, 0)) > 0. Take

b = 0 and c < 1 such that Gk([0, c)) > 0 and Gk([c, 1)) > 0. Note that this ensures that∫ b
a z dGk < 0 and

∫ c
b (z2 − 1) dGk < 0, so neither of the rows are 0. Now, either M is

non-singular and we are done or there is a τ 6= 0 such that
∫ b
a z dGk = τ

∫ b
a (z2 − 1) dGk

and
∫ c
b z dGk = τ

∫ c
b (z2 − 1) dGk. If τ > 0, adjust c upwards to c∗ ∈ (c, 1) such that

Gk([c, c
∗)) > 0. We have∫ c∗

b
z dGk >

∫ c

b
z dGk = τ

∫ c

b
(z2 − 1) dGk > τ

∫ c∗

b
(z2 − 1) dGk.

If τ < 0, adjust c downwards to c′ > 0 with c′ < c such that Gk([c′, c)) > 0. We have∫ c′

b
z dGk <

∫ c

b
z dGk = τ

∫ c

b
(z2 − 1) dGk < τ

∫ c′

b
(z2 − 1) dGk.

Since
∫ b
a z dGk = τ

∫ b
a (z2 − 1) dGk continues to hold, the two rows are now linearly

independent and hence M is invertible.

We have constructed a ṽ ∈ C1
b (λ) satisfying the required conditions. The construction for

w̃ can be perfomed analogously, taking w∗ := M−1(0, 1)′.

Lemma C.6 (Cf. Lemma A.5, Chen and Bickel, 2006). Let φ̃k(z) = γ′kbk, with γk =

49If instead Gk([0, 1)) = 0, an analogous argument can be made, interchanging the roles of a and c.
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−Gk[bkb′k]−1Gkck and φk,n is defined as in Assumption 2.4.2. If part (iv) of Assumption

2.4.2 holds, we have

Gk

(
φ̃k(εi,k)− φk,n(εi,k)

)2
≤ C2δ6

k,n‖φ
(3)
k,n‖2∞.

Proof. By the definition of φ̃k and lemma C.10 we have

Gk

(
φ̃k(εi,k)− φk,n(εi,k)

)2
= inf

g∈Gk(ξk,n)
Gk (g(εi,k)− φk,n(εi,k))

2 ≤ C2δ6
k,n‖φ

(3)
k,n‖2∞.

The first inequality comes from the fact that we can equivalently see γk =

−Gk[bkb′k]−1Gkck as the solution to minimizing∫
(φk(z)− γ′kbk(z))2ηk(z) dz =

∫
φ2
k dGk +

∫
(γ′kbk)

2 dGk + 2

∫
γ′kck(z)ηk(z) dz

= Gkφ
2
k + γ′kGk[bkb

′
k]γk + 2γ′kGkck.

(58)

where we only integrate over the support of φk,n since this is also the support of bk and

ck.

Lemma C.7 (Cf. Lemma A.3, Chen and Bickel, 2006). Under assumptions 2.4.1 and 2.4.2,

and that Wi,n is independent of εi,k we have∥∥∥∥∥ 1

n

n∑
i=1

bk(εi,k)Wi,n

∥∥∥∥∥
2

= OG(n−1/2).

Proof. By the fact that
∑Bk

m=1 bm,k(x)2 ≤ 1 (see e.g. (36) on p. 96 of de Boor, 2001) and

the given assumptions we have that

G

∥∥∥∥∥ 1

n

n∑
i=1

bk(εi,k)Wi,n

∥∥∥∥∥
2

2

 =
1

n
Gk

(
Bk∑
m=1

bm,k(εi,k)
2

)
GwW

2
i,n ≤

GwW
2
i,n

n

Fix ε > 0 and take M > 0 large enough such that GwW 2
i,n/M

2 < ε. Markov’s inequality

yields

G

(
√
n

∥∥∥∥∥ 1

n

n∑
i=1

bk(εi,k)Wi,n

∥∥∥∥∥
2

> M

)
≤
G
(
n
∥∥ 1
n

∑n
i=1 bk(εi,k)Wi,n

∥∥2

2

)
M2

≤
GwW

2
i,n

M2
< ε.

Lemma C.8 (Cf. Lemma A.2, Chen and Bickel, 2006). Let γ̂k be as defined in equation

(2.7) and γk = −Gk[bkb′k]−1Gkck. Suppose that Assumptions 2.4.1 and 2.4.2 hold. Then,
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if we define

Γ̂k,n :=
1

n

n∑
i=1

bk(εi,k)bk(εi,k)
′, Γk,n := Gkbkb

′
k,

and

Ĉk,n :=
1

n

n∑
i=1

ck,n(εi,k), Ck,n := Gkck,

we have that

(I) ‖Ck,n‖2 = O(δk,nB
1/2
k ),

(II) ‖Ĉk,n − Ck,n‖2 = OG

(√
Bk logBk
nδ2k,n

)
,

(III) ‖Γ̂k,n − Γk,n‖2 = OG

(√
Bk logBk

n

)
,

(IV) ‖Γk,n‖2 = O(δn,k)

(V) ‖Γ−1
k,n‖2 = O(δ−2

k,n).

In particular, ‖γ̂k − γk‖2 = OG(n−1/2∆k,nδ
−4
k,n(∆k,nδ

−1
k,n)ι) = oG(1) and ‖Γ̂k,n‖2 =

oG(1).

Proof. The proof follows the relevant parts of the proof of lemma A.2 in Chen and Bickel

(2006). Firstly, from the representation of the derivative of the cubic spline (e.g. de Boor,

2001) we can write ck,i =
(
b
(3)
k,i − b

(3)
k,i+1

)
/δk,n. We have, for large enough n ∈ N,

|Ck,n,i| = |Gkck,i| = δ−1
k,n

∣∣∣∣∫ b
(3)
k,i (t)ηk(t) dt−

∫
b
(3)
k,i+1(t)ηk(t) dt

∣∣∣∣
= δ−1

k,n

∣∣∣∣∫ b
(3)
k,i (t)ηk(t) dt−

∫
b
(3)
k,i (t)ηk(t+ δk,n) dt

∣∣∣∣
≤
∣∣∣∣∫ b

(3)
k,i (t)

ηk(t+ δk,n)− ηk(t)
δk,n

dt

∣∣∣∣
≤ 2‖η′k‖∞

∫
b
(3)
k,i (t) dt

≤ 6‖η′k‖∞δk,n,

where the last inequality is due to (20) on p. 91 in de Boor (2001) and the fact that splines

(of any order) take values in [0, 1].50 It follows immediately that for large enough n ∈ N,

Bk∑
i=1

C2
k,n,i ≤

Bk∑
i=1

62‖η′k‖2∞δ2
k,n = Bk6

2‖η′k‖2∞δ2
k,n,

from which (I) follows.
50This is evident from their definition. See also property (36) (p. 96) of de Boor (2001).
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We have that ck,i =
(
b
(3)
k,i − b

(3)
k,i+1

)
/δk,n and since splines (of any order) take values in

[0, 1] (both as noted above), we have that ck,i ∈ [−δ−1
k,n, δ

−1
k,n]. Hence, by Hoeffdings’s

inequality for t ≥ 0 we have

G

(∣∣∣∣∣ 1n
n∑
i=1

ck,m(εi,k)−Gkck,m
∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−n2t2

2nδ−2
k,n

)
= 2 exp(−nt2δ2

k,n/2).

Therefore,

G
(
‖Ĉk,n − Ck,n‖2 ≥ t

)
≤

Bk∑
m=1

G

(∣∣∣∣∣ 1n
n∑
i=1

ck,m(εi,k)−Gkck,m
∣∣∣∣∣ ≥ t√

Bk

)
≤ 2Bk exp(−nt2B−1

k δ2
k,n/2),

and so for any fixed ε > 0 we can take t =

√
4Bk logBk
nδ2k,n

to obtain

G
(
‖Ĉk,n − Ck,n‖2 ≥ t

)
≤ 2B−1

k → 0,

yielding (II).

Since for any m, s ∈ [Bk] we have bk,mbk,s ∈ [0, 1] by Hoeffding’s inequality it follows

that for any t ≥ 0

G

(∣∣∣∣∣ 1n
n∑
i=1

bk,m(εi,k)bk,s(εi,k)−Gkbk,mbk,s
∣∣∣∣∣ ≥ t

)
≤ 2 exp

(−2n2t2

n

)
= 2 exp(−2nt2).

Therefore, since ‖Γ̂k,n − Γk,n‖2 ≤ ‖Γ̂k,n − Γk,n‖F and both Γ̂k,n and Γk,n are zero for all

(m, s) entries where |m− s| > 3 (de Boor, 2001, (20), p. 91) we have that

G
(
‖Γ̂k,n − Γk,n‖2 ≥ t

)
≤ G

(
‖Γ̂k,n − Γk,n‖F ≥ t

)
≤

Bk∑
m=1

min(Bk,m+3)∑
s=max(m−3,1)

G

(∣∣∣∣∣ 1n
n∑
i=1

bk,m(εi,k)bk,s(εi,k)−Gkbk,mbk,s
∣∣∣∣∣ ≥ t√

7Bk,n

)

≤ 14Bk exp

(−2nt2

7Bk

)
.

Putting t =
√

7Bk logBk
n we obtain

G
(
‖Γ̂k,n − Γk,n‖2 ≥ t

)
≤ 14B−1

k → 0,

yielding (III).
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Since Γk,n is symmetric and positive (semi-)definite we have that ‖Γk,n‖2 ≤ ‖Γk,n‖∞ =

maxm=1,...,Bk

∑Bk
s=1Gkbk,mbk,s.

51 Then, since for any z ∈ R, each row of bk(z)bk(z)′ has

at most 7 non-zero entries,52 all of which are bounded above by 1 we have

‖Γk,n‖2 ≤ max
m=1,...,Bk

Bk∑
s=1

Gkbk,mbk,s

= max
m=1,...,Bk

Bk∑
s=1

∫ ξk,n,m+4

ξk,n,m

bk,m(z)bk,s(z)ηk(z) dz

≤ max
m=1,...,Bk,n

7‖ηk‖∞4δk,n

= 28‖ηk‖∞δk,n,

which yields (IV) in conjunction with requirement (iii) of Assumption 2.4.2.

By Assumption 2.4.2 part (v), on [ΞLk,n,Ξ
U
k,n] we have η(x) ≥ cδk,n. Hence η(x)− cδk,n ≥

0 and so
∫
bkb
′
k(η−cδk,n)λ =

∫
(bk
√
η − cδk,n)(bk

√
η − cδk,n)′λ. Note that the functions

bk,i
√
η − cδk,n satisfy

∫
(bk,i

√
η − cδk,n)2 dλ <∞ and hence belong to L2(λ). It follows

that the matrix
∫
bkb
′
k(η − cδk)λ is a Gram matrix and hence positive semi-definite. This

implies that Γk,n � cδk,nΓ̃k,n where Γ̃k,n is defined as in lemma C.9. Hence, by the

Rayleigh quotient theorem (see e.g. Theorem 4.2.2 in Horn and Johnson, 2013) and lemma

C.9

λmin(Γk,n) ≥ λmin(cδk,nΓ̃k,n) = cδk,nλmin(Γ̃k,n) ≥ cυδ2
k,n,

for a υ > 0, from which we may conclude that

‖Γ−1
k,n‖2 =

1

λmin(Γk,n)
≤ (cυ)−1δ−2

k,n,

which yields (V).

To demonstrate the last claim, note that with the results just derived, under our assumptions

we have,

‖Ĉk,n‖2 ≤ ‖Ĉk,n−Ck,n‖2+‖Ck,n‖2 = OG

(√
Bk logBk
nδ2

k,n

)
+O

(
δk,n

√
Bk

)
= OG

(
δk,n

√
Bk

)
,

51See e.g. Theorem 5.6.9 in Horn and Johnson (2013).
52bk,m(z) = 0 outside [ξk,n,m, ξk,n,m+4). See (20) on p. 91 in de Boor (2001).
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and, using inequality (5.8.2) from Horn and Johnson (2013),

‖Γ̂−1
k,n‖2 ≤ ‖Γ−1

k,n(I + [Γ̂k,n − Γk,n]Γ−1
k,n)−1‖2

≤ ‖Γ−1
k,n‖2‖(I + [Γ̂k,n − Γk,n]Γ−1

k,n)−1‖2

≤ ‖Γ−1
k,n‖2

(
1− ‖[Γ̂k,n − Γk,n]Γ−1

k,n‖2
)−1

≤ ‖Γ−1
k,n‖2

(
1− ‖Γ̂k,n − Γk,n‖2‖Γ−1

k,n‖2
)−1

= OG(δ−2
k,n).

(59)

Using these intermediate results along with (II) - (V) and our hypotheses we obtain that

‖γ̂k − γk‖2 = ‖Γ̂−1
k,nĈk,n − Γ−1

k,nCk,n‖2
≤ ‖(Γ̂−1

k,n − Γ−1
k,n)Ĉk,n‖2 + ‖Γ−1

k,n(Ĉk,n − Ck,n)‖2
≤ ‖Γ−1

k,n‖2‖Γk,n − Γ̂k,n‖2‖Γ̂−1
k,n‖2‖Ĉk,n‖2 + ‖Γ−1

k,n‖2‖Ĉk,n − Ck,n‖2

= OG

(√
B2
k logBk

δ6
k,nn

)
+OG

(√
Bk logBk
δ6
k,nn

)
= oG(1),

by Assumption 2.4.2 part (ii), since we have Bk ≤ ∆k,nδ
−1
k,n and hence the dominant term

above vanishes since for all large enough n,√
B2
k logBk

δ6
k,nn

≤ n−1/2∆k,nδ
−4
k,n log(∆k,nδ

−1
k,n) ≤ n−1/2∆k,nδ

−4
k,n(∆k,nδ

−1
k,n)ι = o(1).

Finally, by (III) and (IV) and Assumption 2.4.2 part (ii) we have

‖Γ̂k,n‖2 ≤ ‖Γ̂k,n − Γk,n‖2 + ‖Γk,n‖2 = OG

(√
Bk,n logBk

n

)
+O(δk,n) = oG(1),

since δk,n → 0 and for large enough n,√
Bk logBk

n
≤ n−1/2∆k,nδ

−1
k,n log(∆k,nδ

−1
k,n) ≤ δ3

k,nn
−1/2∆k,nδ

−4
k,n(∆k,nδ

−1
k,n)ι = o(1).

Lemma C.9. The smallest eigenvalue of the Bk × Bk Gram matrix Γ̃k,n :=
∫
bkb
′
k dλ

satisfies

λmin(Γ̃k,n) ≥ υδk,n > 0,

for a υ > 0.

Proof. Since bk,m(x)bk,s(x) is non-zero only for |m − s| ≤ 3 and each bk,m is non-zero
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only on [ξk,n,m, ξk,n,m+4)] (e.g. (20) p. 91 of de Boor, 2001), Γ̃k,n is a symmetric banded

Toeplitz matrix.53 Its entries can be computed by direct integration:

[Γ̃k,n]m,s = δk,n ×



151
315 if m = s

397
1680 if |m− s| = 1

1
42 if |m− s| = 2

1
5040 if |m− s| = 3

0 if |m− s| > 3

.

For simplicity of notation let f0 := 151
315 , f1 := f−1 := 397

1680 , f2 := f−2 := 1
42 and

f3 := f−3 := 1
5040 and let fs := 0 for |s| > 3. Now, let f(θ) :=

∑3
s=−3 fse

i(sθ).

Then, Γ̃k,n/δk,n is then the matrix generated by f in the sense that Γ̃k,n/δk,n = Tn(f) :=∑min(Bk−1,3)
s=−min(Bk−1,3) fkJ

s
n where each Jsn is the Bk × Bk matrix which is zero everywhere

except for the (i, j)-th entries where i − j = s, where it has a value of 1.54 Since

f ∈ L1([−π, π]) and is real on [−π, π] by Theorem 6.1 in Garoni and Serra-Capizzano

(2017) we have that λmin(Γ̃k,n) = δk,nλmin(Γ̃k,n/δk,n) ≥ δk,n infθ∈[−π,π] f(θ) = δk,nυ,

where υ := infθ∈[−π,π] f(θ) > 0.

Lemma C.10. Suppose ξ ∈ RN+1 such that a = ξ0 < ξ1 < · · · < ξN = b,

h := maxi∈[N ] ξi − ξi−1, and let Gk(ξ) be the linear space formed by degree k splines

with knots ξ. Then, if f ∈ Ck−1[a, b] we have that

inf
g∈Gk(ξ)

‖g − f‖∞ ≤
(k + 1)!

2k
hk−1‖f (k−1)‖∞ = ckh

k−1‖f (k−1)‖∞,

where ck depends only on k.

Proof. This follows as a special case of Theorem 20.3 in Powell (1981).

D. Additional auxillary results

We present a few additional results that explicitly prove some claims made in the main text.

First, we show that if two errors εi,k and εi,j are Gaussian the efficient information matrix

becomes singular. Second, we provide an explicit example of a density which satisfies the

first part of the Assumption 2.4.1 but not the second. Third we prove that if Assumption

2.4.1 part 1 holds then a sufficient condition for part 2 is that ηk has tails that decay to zero

at a polynomial rate.
53As can be easily verified, unlike in the case of linear (κ = 2) or quadratic splines (κ = 3), this matrix is not

diagonally dominant. In the case of κ ∈ {2, 3} this argument could be completed in a simpler fashion by
using the Gershgorin circle theorem.

54See section 6.1 in Garoni and Serra-Capizzano (2017), noting that it is clear that f ∈ L1([−π, π]).
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Lemma D.1. Consider the LSEM model (2.3) with B = 0 (for ease of exposition only)

and Assumption 2.4.1 parts 1-3 hold. Define the vector-valued function Q : RK → RK2

according to

Q(y) = (Q1(y)′, . . . , QK(y)′)′,

where each Qk : RK → RK and the j-th element of Qk for j ∈ [K] is given by

Qk,j(y) =

φk(Aky)Ajy if k 6= j

τk,1Aky + τk,2κ(Aky) if k = j
.

Next define theK2×Lmatrix ζ according to ζ = (vec [D1(α)A−1]′, . . . , vec [DL(α)A−1]′),

where in the definition of bothQ and ζ we haveA = A(γ). Equipped with these definitions,

we can write the efficient score function as defined in lemma B.2 as

˜̀
θ(y) = ζ ′Q(y). (60)

Then,

(I) EθQQ′ is non-singular if and only if for each pair (k, j) with k 6= j and each

k, j ∈ [K] we have that [Eθφ2
k(AkY )][Eθφ2

j (AjY )] 6= 1.

(II) Ĩθ is non-singular if rank(ζ) = L and EθQQ′ is non-singular.

(III) If rank(ζ) < L then Ĩθ is singular.

(IV) If L = K2 and EθQQ′ is singular then Ĩθ is singular.

(V) If EθQQ′ is singular, Ĩθ may be singular when rank(ζ) = L < K2.

In particular, if both εk and εj (k 6= j) have a Gaussian distribution and L = K2, Ĩθ is

singular.

Proof. For (I), let j, k,m, i all be in [K]. We will consider the entries of the matrix EθQQ′,
which are of the form 〈Qk,j , Qm,i〉Pθ . In particular, the s, t-th element of the matrix is

given by the form 〈Qk,j , Qm,i〉Pθ where (k − 1)K + j = s and (m − 1)K + i =

t. If k = j = m = i we have s = t and 〈Qk,j , Qm,i〉Pθ = Eθ[τk,1AkY +

τk,2κ(AkY )]2. The other diagonal entries occur when k = m 6= j = i, and have

the form 〈Qk,j , Qm,i〉Pθ = Eθ[φ2
k(AkY )]. Inspection of the other possible cases reveals

that the only other case with non-zero entries is k = i 6= m = j which has value

〈Qk,j , Qm,i〉Pθ = Eθ[φk(AkY )AkY ]Eθ[φk(AmY )AmY ] = 1 by assumption 2.4.1.

Therefore for any k, j ∈ [K], column (k−1)K+j has non-zero entries in row (k−1)K+j

only if k = j and otherwise in rows (k−1)K+j and (j−1)K+k, with values Eθφ2
k(AkY )

and 1 respectively. There are therefore no columns that can be linearly related to column

(k − 1)K + j if k = j. If k 6= j, then column (k − 1)K + j has zeros everywhere except
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row (k − 1)K + j where it has Eθφ2
k(AkY ) and row (j − 1) + k where it has 1. Column

(j − 1)K + k has zeros everywhere except row (j − 1)K + k where it has Eθφ2
j (AjY )

and row (k − 1)K + j where it has 1. Since no other columns have entries in these rows,

it follows that column (k − 1)K + j is linearly independent of all the other columns if

and only if it is linearly independent of column (j − 1)K + k, which occurs if and only if

[Eθφ2
k(AkY )][Eθφ2

j (AjY )] 6= 1.

For (II), suppose that rank(ζ) = L and EθQQ′ is non-singular. Then there is a (unique)

positive definite [EθQQ′]1/2 and we have Ĩθ =
(
[EθQQ′]1/2ζ

)′ (
[EθQQ′]1/2ζ

)
which has

full rank, since
(
[EθQQ′]1/2ζ

)
has full column rank.

For the remaining parts note first that

Ĩθ = Eθ ˜̀
θ
˜̀′
θ = ζ ′

[
EθQQ′

]
ζ,

and so rank(Ĩθ) ≤ min{rank(ζ ′EθQQ′), rank(ζ)}. Hence if rank(ζ) < L, rank(Ĩθ) < L

implying (III).

For (IV), suppose that rank(EθQQ′) < K2 = L. Then, there is a non-zero x ∈ RL

such that EθQQ′x = 0 and hence ζ ′EθQQ′x = 0. Hence dim(N(ζ ′EθQQ′)) ≥
1. It follows that rank(ζ ′EθQQ′) ≤ L − 1 < L and hence rank(Ĩθ) ≤
min{rank(ζ ′EθQQ′), rank(ζ)} < L.

For (V) suppose that K = 2, ε1 and ε2 are both Gaussian and A(γ) =
[

cos(γ) − sin(γ)
sin(γ) cos(γ)

]
. We

have for l ∈ {1, 2}, φl(z) = −z, hence φ2
l (z) = z2 and so Eθφ2

l (εl) = Eθφ2
l (AlY ) = 1.

D1(γ) =
[
− sin(γ) − cos(γ)
cos(γ) − sin(γ)

]
and hence

D1(γ)A(γ)−1 = D1(γ)A(γ)′ =

[
0 −1

1 0

]
,

which implies ζ = (0,−1, 1, 0)′ and hence rank(ζ) = 1 = L < K2 = 4. Explicit

calculation reveals that

EθQQ
′ =


8/9 0 0 0

0 1 1 0

0 1 1 0

0 0 0 8/9

 ,
which is clearly singular with rank 3. We have

Ĩθ = ζ ′
[
EθQQ′

]
ζ = ζ ′


8/9 0 0 0

0 1 1 0

0 1 1 0

0 0 0 8/9




0

−1

1

0

 = ζ ′


0

0

0

0

 = 0.
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For the last part, suppose that k 6= j and εk and εj are both Gaussian. Since both have

zero mean and unit variance, we have for l ∈ {k, j}, φl(z) = −z, hence φ2
l (z) = z2 and so

Eθφ2
l (εl) = Eθφ2

l (AlY ) = 1. EθQQ′ is singular by (I) and hence by (IV) Ĩθ is singular.

Example 3 (Necessity of part 2 of assumption 2.4.1). Suppose that ε̃k ∼ χ2
2 and let εk =

(ε̃k−2)/2. Then εk has mean zero, variance one and density function ηk(z) = exp(−z−1)

on its support [−1,∞) on which we also have that φk(z) = −1. Explicit calculation reveals

that part 1 of assumption 2.4.1 is satisfied. However, Eφk(z) = −1 6= 0 as would be

required by part 2 of assumption 2.4.1.

Note also that this example does not satisfy the requirements of lemma D.2: we have

ak = −1, bk =∞ and

lim
z↓ak

ηk(x) = lim
z↓−1

exp(−z − 1) = 1 6= 0,

and hence the required condition is violated for r = 0.

Lemma D.2. Let ak = inf{x ∈ R ∪ {−∞} : ηk(x) > 0} and bk = sup{x ∈ R ∪ {∞} :

ηk(x) > 0}. Suppose that, for r = 0, 1, 2, 3: (i) if ak = −∞ then ηk(x) = o(x−3) as

x→ −∞, else ark limx↓ak ηk(x) = 0, and (ii) if bk =∞ then ηk(x) = o(x−3) as x→∞,

else brk limx↑bk ηk(x) = 0. Then, if part 1 of assumption 2.4.1 holds, part 2 is also satisfied.

Proof. Let r ∈ {0, 1, 2, 3}, bk = sup{x ∈ R : ηk(x) > 0} and ak = inf{x ∈ R : ηk(x) >

0}. We have, by integration by parts, with Gk denoting the measure on R corresponding to

ηk,∫
φk(z)z

r dGk =

∫
η′k(z)

ηk(z)
ηk(z)z

r dz =

∫
η′k(z)z

r dz = ηk(z)z
r

∣∣∣∣bk
ak

−
∫
ηk(z)

dzr

dz
dz.

Our hypothesis ensures that zrηk(z)
∣∣bk
ak

= 0. Therefore we have Gkφk(z)zr = −Gk d
dz z

r.

For r = 0 this equals zero as d
dz z

0 = d
dz1 = 0. For r ∈ {1, 2, 3} we have dzr

dz = rzr−1

and hence Gkφk(z)zr = −rGkzr−1. Since Gk1 = 1, Gkz = 0, and Gkz2 = 1, the result

follows.

E. Figures and tables

192



Figure E.3: Structural Shock Densities
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Notes: The plots show the different densities considered for simulating the structural shocks. Densities 2-4 are

t-distributions normalised to have unit variance. Densities 5 - 10 (and their names) are mixtures of normals

taken from Marron and Wand (1992); see their table 1 for the definitions. Density 1 is the standard Gaussian

and omitted from the figure.
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Figure E.4: Power Comparison Baseline model
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Notes: Empirical power curves for the baseline model with k = 2 and n = 1000. Each plot corresponds to the

choice for densities εi,k, for k ≥ 2, where the numbers correspond to the different densities shown in Figure

E.3. The solid red line corresponds to Sγ̂ , the dashed blue line to LMmle, the dotted pink line to LMpmle and

the dot-dashed green line to Sgmm.
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Figure E.5: Power LSEM
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Notes: Empirical power curves for the LSEM model with k = 2, d = 2 and n = 1000. Each plot corresponds

to the choice for densities εi,k, for k ≥ 2, where the numbers correspond to the different densities shown in

Figure E.3. The solid red line corresponds to the empirical rejection frequency of the Ŝγ̂ test where

γ̂ = (α0, β̂), with β̂ the OLS estimator. The dashed blue line corresponds to the empirical rejection frequency

of the Ŝγ̂ test where γ̂ = (α0, β̂), with β̂ the one-step efficient MLE estimator.
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Figure E.6: LSEM Production Function Output 2017

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

-5 0 5

0

0.2

0.4

0.6

-5 0 5

0

0.2

0.4

0.6

-5 0 5

0

0.2

0.4

0.6

Notes: The top left panel shows the confidence region for the labor α1 and capital α2. The other three panels

show the empirical densities of the residuals together with the standard normal distribution.
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Figure E.7: Confidence intervals labor and capital 2000-2017
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Notes: The vertical lines describe the confidence bands for labor and capital for each year between 2000 and

2017. Each pair of bands is based on firms observed in the corresponding year and estimated using the LSEM .
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F. Additional simulation results

In this section we provide a number of additional simulation results.

F.1. Additional power results for the baseline model

Figure E.4 in the main text compared the power of different tests for the baseline model

Yi = R′εi for the case where n = 1000. Here we show the results for n = 200 and

n = 500. Specifically, Figures F.8 and F.9 show the results.

Overall, the patterns that we find are similar as in the main text. One thing that stands

out is that the Sgmm test is not correctly sized for these smaller sample sizes, essentially

confirming the results in Table E.3. It is possible that a more careful selection of the relevant

higher order moments will improve this finding.

Besides this our two main findings from the main text hold. First, the standard LM test is

the preferred approach whenever the true density is known, but the semi-parametric score

test comes close in terms of power. Second, for all other densities the semi-parametric score

test shows the highest power.

F.2. Additional power results for the LSEM

Figure E.5 compared the power of different tests for the LSEM model for the case where

n = 1000. Here we show the results for n = 200 and n = 500. Specifically, Figures F.10

and F.11 show the results.

We find that for n = 200 the power of tests is generally quite low, indicating that for

small sample sizes little can be learned by exploiting deviations from the Gaussian density.

This holds most notably for the Student’s t densities, the skewed unimodal density and the

bimodal density. Intuitively, given a small sample these densities are hard to distinguish

from the normal density and little can be learned about the parameter α. A reassuring

finding is that the size of the test remains well controlled. These findings persist, to a lesser

extent, when we increase to n = 500.

Overall, the implementing the test with one-step efficient estimates leads to higher power,

but the size of the test is controlled less well. Therefore we recommend using OLS estimates

for β when the sample size is small.



Table E.2: Rejection Frequencies Ŝγ̂ test for Baseline model

n K B 1 2 3 4 5 6 7 8 9 10

200 2 4 0.049 0.049 0.048 0.040 0.047 0.049 0.034 0.049 0.048 0.048

200 2 6 0.048 0.045 0.049 0.044 0.048 0.053 0.047 0.045 0.058 0.051

200 2 8 0.050 0.049 0.047 0.044 0.048 0.048 0.053 0.050 0.051 0.047

200 3 4 0.043 0.039 0.039 0.039 0.044 0.048 0.026 0.049 0.052 0.050

200 3 6 0.045 0.038 0.040 0.044 0.041 0.048 0.044 0.047 0.052 0.043

200 3 8 0.047 0.046 0.040 0.040 0.044 0.048 0.042 0.049 0.044 0.051

200 5 4 0.032 0.034 0.033 0.034 0.035 0.039 0.015 0.041 0.045 0.043

200 5 6 0.037 0.033 0.036 0.032 0.032 0.040 0.043 0.045 0.043 0.044

200 5 8 0.039 0.038 0.038 0.030 0.035 0.043 0.045 0.040 0.041 0.038

500 2 4 0.053 0.046 0.053 0.045 0.047 0.052 0.031 0.049 0.045 0.046

500 2 6 0.048 0.049 0.048 0.048 0.049 0.052 0.057 0.047 0.047 0.049

500 2 8 0.048 0.048 0.045 0.049 0.047 0.045 0.051 0.052 0.048 0.045

500 3 4 0.042 0.039 0.040 0.046 0.048 0.048 0.021 0.042 0.046 0.047

500 3 6 0.043 0.045 0.042 0.042 0.045 0.047 0.047 0.051 0.044 0.045

500 3 8 0.046 0.045 0.040 0.035 0.042 0.047 0.044 0.045 0.050 0.047

500 5 4 0.040 0.036 0.039 0.036 0.041 0.046 0.016 0.048 0.047 0.046

500 5 6 0.041 0.039 0.039 0.039 0.040 0.049 0.046 0.045 0.044 0.044

500 5 8 0.039 0.040 0.036 0.041 0.043 0.050 0.050 0.044 0.046 0.047

1000 2 4 0.042 0.052 0.040 0.055 0.047 0.052 0.046 0.052 0.046 0.048

1000 2 6 0.054 0.052 0.045 0.050 0.045 0.049 0.049 0.054 0.045 0.057

1000 2 8 0.047 0.048 0.048 0.047 0.048 0.052 0.050 0.048 0.055 0.052

1000 3 4 0.049 0.041 0.043 0.045 0.048 0.050 0.054 0.051 0.051 0.047

1000 3 6 0.048 0.044 0.038 0.040 0.050 0.047 0.046 0.049 0.051 0.045

1000 3 8 0.046 0.047 0.047 0.042 0.049 0.045 0.050 0.052 0.043 0.047

1000 5 4 0.038 0.035 0.038 0.047 0.041 0.044 0.050 0.046 0.047 0.048

1000 5 6 0.041 0.043 0.039 0.042 0.043 0.049 0.044 0.048 0.048 0.049

1000 5 8 0.042 0.042 0.038 0.039 0.048 0.050 0.049 0.047 0.045 0.049
Notes: The table shows the empirical rejection frequencies for the Sγ̂ test based on S = 5, 000 Monte Carlo

replications for the baseline model Yi = R′εi. The test has nominal size a = 0.05. The columns denote the

sample size n, the dimension of the model K, the number of B-splines B and the choice for densities εi,k, for

k ≥ 2, where the numbers correspond to the different densities shown in Figure E.3.
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Table E.3: Rejection Frequencies Alternative Tests for Baseline model

Cat (i) n 1 2 3 4 5 6 7 8 9 10

Wmle 200 0.179 0.149 0.139 0.127 0.113 0.059 0.097 0.152 0.125 0.171

500 0.180 0.133 0.114 0.115 0.095 0.167 0.073 0.114 0.097 0.150

1000 0.188 0.101 0.079 0.074 0.061 0.405 0.058 0.124 0.103 0.170

LRmle 200 0.028 0.054 0.060 0.046 0.054 0.026 0.048 0.017 0.018 0.024

500 0.043 0.056 0.068 0.054 0.065 0.023 0.053 0.016 0.017 0.024

1000 0.049 0.065 0.063 0.061 0.053 0.031 0.051 0.022 0.018 0.025

Wpmle 200 0.375 0.211 0.198 0.086 0.141 0.058 0.105 0.495 0.998 0.467

500 0.485 0.264 0.204 0.073 0.163 0.030 0.079 0.973 0.999 0.870

1000 0.570 0.230 0.180 0.051 0.131 0.023 0.068 0.428 1.000 0.947

LRpmle 200 0.255 0.163 0.133 0.055 0.103 0.035 0.064 0.745 0.997 0.542

500 0.411 0.229 0.168 0.059 0.136 0.024 0.066 0.982 0.999 0.865

1000 0.522 0.254 0.170 0.049 0.119 0.022 0.060 0.999 1.000 0.971

LRgmm 200 0.413 0.411 0.425 0.441 0.290 0.379 0.120 0.216 0.086 0.232

500 0.292 0.246 0.246 0.286 0.141 0.171 0.025 0.109 0.066 0.106

1000 0.232 0.181 0.155 0.176 0.074 0.115 0.014 0.068 0.059 0.049

Cat (ii) n 1 2 3 4 5 6 7 8 9 10

Ŝγ̂ 200 0.051 0.047 0.048 0.040 0.049 0.049 0.047 0.048 0.050 0.044

500 0.047 0.047 0.054 0.047 0.044 0.043 0.047 0.048 0.051 0.054

1000 0.047 0.043 0.046 0.049 0.048 0.047 0.050 0.044 0.049 0.043

LMmle 200 0.052 0.058 0.054 0.043 0.040 0.043 0.023 0.018 0.002 0.059

500 0.056 0.052 0.052 0.042 0.046 0.047 0.028 0.017 0.001 0.062

1000 0.062 0.052 0.050 0.049 0.039 0.040 0.029 0.016 0.002 0.052

LMplme 200 0.049 0.045 0.049 0.035 0.038 0.046 0.030 0.041 0.042 0.042

500 0.049 0.047 0.050 0.039 0.047 0.046 0.034 0.046 0.044 0.051

1000 0.046 0.048 0.053 0.044 0.041 0.046 0.034 0.042 0.052 0.047

Sgmm 200 0.188 0.209 0.248 0.326 0.236 0.264 0.195 0.108 0.059 0.130

500 0.094 0.105 0.123 0.223 0.116 0.133 0.103 0.057 0.028 0.064

1000 0.061 0.070 0.081 0.162 0.069 0.078 0.054 0.031 0.019 0.035
Notes: The table shows the empirical rejection frequencies based on S = 5, 000 Monte Carlo replications for

the baseline model Yi = R′εi, with n = 500 and K = 2. All tests have nominal size a = 0.05. The first

column indicates the test. The remaining columns denote the choice for densities εi,k, for k ≥ 2, where the

numbers correspond to the different densities shown in Figure E.3.
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Table E.4: Rejection Frequencies Ŝγ̂ test for LSEM - OLS β̂

n K d 1 2 3 4 5 6 7 8 9 10

200 2 2 0.050 0.054 0.049 0.049 0.038 0.030 0.038 0.043 0.057 0.046

200 2 3 0.049 0.054 0.054 0.048 0.046 0.059 0.042 0.035 0.029 0.052

200 3 2 0.056 0.058 0.050 0.062 0.059 0.031 0.018 0.038 0.047 0.050

200 3 3 0.063 0.054 0.057 0.065 0.060 0.025 0.023 0.051 0.058 0.049

200 5 2 0.098 0.104 0.109 0.142 0.094 0.051 0.064 0.054 0.023 0.057

200 5 3 0.116 0.116 0.131 0.155 0.103 0.039 0.029 0.061 0.026 0.072

500 2 2 0.049 0.050 0.039 0.042 0.041 0.027 0.029 0.036 0.026 0.029

500 2 3 0.048 0.041 0.047 0.047 0.037 0.029 0.024 0.034 0.050 0.051

500 3 2 0.051 0.051 0.048 0.040 0.037 0.028 0.029 0.038 0.022 0.039

500 3 3 0.048 0.050 0.047 0.051 0.053 0.028 0.048 0.041 0.037 0.036

500 5 2 0.071 0.078 0.068 0.081 0.049 0.023 0.060 0.042 0.039 0.038

500 5 3 0.067 0.068 0.080 0.085 0.063 0.022 0.045 0.049 0.027 0.051

1000 2 2 0.040 0.051 0.049 0.029 0.043 0.032 0.033 0.045 0.049 0.041

1000 2 3 0.048 0.044 0.040 0.040 0.040 0.030 0.038 0.046 0.030 0.044

1000 3 2 0.045 0.038 0.043 0.034 0.033 0.032 0.034 0.040 0.039 0.042

1000 3 3 0.044 0.045 0.043 0.036 0.030 0.032 0.035 0.040 0.024 0.034

1000 5 2 0.059 0.051 0.057 0.051 0.039 0.024 0.063 0.030 0.028 0.036

1000 5 3 0.057 0.058 0.056 0.050 0.035 0.018 0.046 0.036 0.029 0.040
Notes: The table shows the empirical rejection frequencies for the Sγ̂ test based on S = 5, 000 Monte Carlo

replications for the linear simultaneous equations model. The test has nominal size a = 0.05. The columns

denote the sample size n, the dimension of the modelK, the number of covariates d and the choice for densities

εi,k, for k ≥ 2, where the numbers correspond to the different densities shown in Figure E.3. The Sγ̂ test was

implemented using B = 6 B-splines.
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Table E.5: Rejection Frequencies Ŝγ̂ test for LSEM - One-step β̂

n K d 1 2 3 4 5 6 7 8 9 10

200 2 2 0.067 0.080 0.068 0.081 0.070 0.031 0.054 0.056 0.061 0.051

200 2 3 0.068 0.074 0.076 0.072 0.066 0.071 0.057 0.047 0.026 0.061

200 3 2 0.095 0.106 0.104 0.120 0.090 0.041 0.026 0.059 0.036 0.061

200 3 3 0.099 0.103 0.105 0.114 0.098 0.037 0.028 0.071 0.035 0.064

200 5 2 0.187 0.226 0.247 0.264 0.178 0.063 0.040 0.072 0.020 0.068

200 5 3 0.212 0.238 0.262 0.289 0.193 0.064 0.049 0.089 0.036 0.088

500 2 2 0.062 0.062 0.068 0.067 0.057 0.034 0.049 0.041 0.021 0.037

500 2 3 0.059 0.064 0.071 0.069 0.056 0.031 0.019 0.046 0.031 0.051

500 3 2 0.078 0.078 0.081 0.079 0.066 0.026 0.024 0.047 0.021 0.045

500 3 3 0.076 0.081 0.091 0.088 0.068 0.025 0.029 0.050 0.042 0.042

500 5 2 0.112 0.149 0.158 0.181 0.097 0.036 0.035 0.060 0.030 0.044

500 5 3 0.129 0.151 0.168 0.180 0.101 0.033 0.023 0.069 0.031 0.058

1000 2 2 0.059 0.059 0.065 0.048 0.049 0.025 0.021 0.055 0.050 0.038

1000 2 3 0.060 0.060 0.060 0.068 0.057 0.038 0.052 0.050 0.027 0.051

1000 3 2 0.061 0.067 0.068 0.065 0.053 0.023 0.048 0.047 0.023 0.045

1000 3 3 0.064 0.066 0.072 0.070 0.054 0.040 0.016 0.047 0.022 0.041

1000 5 2 0.091 0.105 0.108 0.111 0.069 0.032 0.026 0.042 0.029 0.043

1000 5 3 0.085 0.102 0.120 0.103 0.065 0.026 0.020 0.047 0.026 0.050
Notes: The table shows the empirical rejection frequencies for the Ŝγ̂ test based on S = 5, 000 Monte Carlo

replications for the linear simultaneous equations model (2.3). The test has nominal size a = 0.05. The

columns denote the sample size n, the dimension of the observations K, the number of covariates d and the

choice for densities εi,k, for k ≥ 2, where the numbers correspond to the different densities shown in Figure

E.3. The Sγ̂ test was implemented using B = 6 B-splines and using OLS estimates for β.

Table E.6: Production function estimates 2017

LSEM OLS

Labor [0.41, 0.64] [0.44,0.68] [0.89, 0.99]

Capital [0.27, 0.50] [0.32,0.50] [0.18, 0.26]

Age X X

n 1247 1247 1247

pind 0.12 0.16
Notes: We report the 95% confidence bands for the production function coefficients for labor and capital.

The first three columns consider the bounds obtained by considering the three-variable LSEM (i.e. Yi =

(logOi, logLi, logKi)
′) with different explanatory variables as indicated in the rows. The right-most column

displays the baseline OLS estimates for comparison. The bottom row shows the p-value for the independence

test proposed by Matteson and Tsay (2017) as performed on {Â(Yi− B̂Xi)}ni=1, where Â = D(σ̂)−1S(α̂, σ̂),

with α̂ denoting the minimizer of Ŝγ̂ and σ̂ and B̂ the OLS estimates for σ and B.
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Figure F.8: Power Comparison Baseline model n = 200
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Notes: Empirical power curves for the baseline model with k = 2 and n = 200. Each plot corresponds to

the choice for densities εk, for k ≥ 2, where the numbers correspond to the different densities in Figure E.3.

The solid red line corresponds to Sγ̂ , the dashed blue line to LMmle, the dotted pink line to LMpmle and the

dot-dashed green line to Sgmm.
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Figure F.9: Power Comparison Baseline model n = 500
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Notes: Empirical power curves for the baseline model with k = 2 and n = 500. Each plot corresponds to

the choice for densities εk, for k ≥ 2, where the numbers correspond to the different densities in Figure E.3.

The solid red line corresponds to Sγ̂ , the dashed blue line to LMmle, the dotted pink line to LMpmle and the

dot-dashed green line to Sgmm.
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Figure F.10: Power LSEM n = 200
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Notes: Empirical power curves for the LSEM model with k = 2, d = 2 and n = 200. Each plot corresponds to

the choice for densities εi,k, for k ≥ 2, where the numbers correspond to the different densities shown in Figure

E.3. The solid red line corresponds to the empirical rejection frequency of the Ŝγ̂ test where γ̂ = (α0, β̂), with

β̂ the OLS estimator. The dashed blue line corresponds to the empirical rejection frequency of the Ŝγ̂ test where

γ̂ = (α0, β̂), with β̂ the one-step efficient MLE estimator.
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Figure F.11: Power LSEM n = 500
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Notes: Empirical power curves for the LSEM model with k = 2, d = 2 and n = 500. Each plot corresponds to

the choice for densities εi,k, for k ≥ 2, where the numbers correspond to the different densities shown in Figure

E.3. The solid red line corresponds to the empirical rejection frequency of the Ŝγ̂ test where γ̂ = (α0, β̂), with

β̂ the OLS estimator. The dashed blue line corresponds to the empirical rejection frequency of the Ŝγ̂ test where

γ̂ = (α0, β̂), with β̂ the one-step efficient MLE estimator.
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Chapter 3
Robust Inference in Structural VAR
Models Identified by Non-Gaussianity

This chapter was co-authored with Lukas Hoesch and Geert Mesters.

3.1. Introduction

In this paper we develop robust inference methods for non-Gaussian structural vector

autoregressive (SVAR) models. To outline our contribution, consider the K-dimensional

SVAR model

Yt = c+B1Yt−1 + · · ·+BpYt−p +A−1εt , (3.1)

where Yt is a K × 1 vector of variables, c is an intercept, B1, . . . , Bp are the (K × K)

autoregressive matrices, A is the (K ×K) invertible contemporaneous effect matrix and εt
is the K × 1 vector of independent structural shocks with mean zero and unit variance.

It is well known that, without further restrictions, the first and second moments of the

process {Yt} are insufficient to identify all parameters in A (e.g. Kilian and Lütkepohl,

2017). Interestingly, non-Gaussian distributions for the structural shocks can be exploited

to (locally) identify A. The most well known result follows from the Darmois–Skitovich

theorem and is central to the literature on independent components analysis (ICA): if the

components of εt are independent and at least K − 1 have a non-Gaussian distribution, A

can be recovered up to sign and permutation of its columns (e.g. Comon, 1994). Based

on this result several recent works have exploited non-Gaussianity to improve identification

and conduct inference in the SVAR model (e.g. Lanne and Lütkepohl, 2010; Moneta et al.,

2013; Lanne et al., 2017; Kilian and Lütkepohl, 2017; Maxand, 2018; Lanne and Luoto,

2021; Gouriéroux et al., 2017, 2019; Tank et al., 2019; Herwartz, 2019; Bekaert et al.,
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2019, 2020; Fiorentini and Sentana, 2022; Braun, 2021; Sims, 2021; Brunnermeier et al.,

2021; Drautzburg and Wright, 2021; Davis and Ng, 2022).1

Unfortunately, as we show in this paper, standard inference methods for non-Gaussian

SVARs are not robust in situations where the densities of the structural errors that generated

the data are too “close” to the Gaussian density. Intuitively, what matters for correctly

sized inference is not non-Gaussianity per se, but a sufficient distance from the Gaussian

distribution. When the true distributions of the structural errors are close to the Gaussian

distribution, local identification deteriorates and coverage distortions occur in confidence

sets for structural functions (prominent examples include the coverage of structural impulse

response functions and forecast error variance decompositions).2 The problem is somewhat

analogous to the weak instruments problem where it is well known that non-zero correlation

between the instruments and the endogenous variables is not sufficient to conduct standard

inference, but that the correlation must be sufficiently large in order for conventional IV

asymptotic theory to be used.3 Similarly, in our setting, non-Gaussianity alone is not

sufficient for standard (pseudo) maximum likelihood or generalised method of moments

approaches to yield correct inference when the distance to the Gaussian distribution is not

sufficiently large. As such we term this phenomenon “weak non-Gaussianity”.

In this paper, we propose a solution to this problem by combining insights from the

econometric literature on weak identification robust hypothesis testing as well as the

statistical literature on semiparametric modelling. Specifically, we treat the SVAR model

with independent structural shocks as a semiparametric model where the densities of the

structural errors form the non-parametric part.

For this set-up we provide two main results. First, we use a semi-parametric generalisation

of Neyman’s C(α) statistic in order to test the possibly weakly identified (or under /

unidentified) parameters of the SVAR. More precisely, the semi-parametric score statistic

that we employ is based on a quadratic form of the efficient score function, which projects

out all scores for the nuisance parameters, including the scores of the density functions, from

the conventional score function. This projection, along with the fact that our potentially

weakly/non- identified parameter is fixed under the null when conducting the test (as

is standard in score-type testing procedures), enables us to circumvent the identification

problem and we show that the semi-parametric score test has a χ2 limit under the null

hypothesis. The testing procedure has some semi-parametric efficiency properties when

the efficient information matrix is nonsingular (Choi et al., 1996), and for reduced rank

information matrices the test remains minimax optimal (Lee, 2022).
1See Montiel Olea et al. (2022) for a recent review of this approach.
2Simulation studies in, among others, Gouriéroux et al. (2017, 2019) and Lanne and Luoto (2021) have
previously highlighted such coverage distortions for parameter estimates in the case of “weakly” non-Gaussian
distributions, see also Lee (2022); Lee and Mesters (2022a) for more discussion of the same issue in static ICA
models.

3See e.g. the recent review by Andrews et al. (2019).
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Second, we propose a method for constructing confidence sets for smooth structural

functions. Examples include structural impulse responses and forecast error variance

decompositions. Specifically, we utilise our proposed test for the weakly identified

parameters in a Bonferroni-based procedure (cf. Granziera et al., 2018; Drautzburg and

Wright, 2021) which is guaranteed to provide correct coverage level asymptotically,

regardless of the level of non-Gaussianity in the errors.

Overall, our method is computationally simple as the implementation of the semiparametric

score test only requires estimating regression coefficients, a covariance matrix and the

log density scores of the structural errors. For the latter, we use B-spline regressions as

developed in Jin (1992) and also considered in Chen and Bickel (2006) for independent

component analysis. This approach is computationally convenient and allows our

methodology to work under a wide variety of possible distributions for the structural errors.4

We assess the finite-sample performance of our method in a large simulation study and find

that the empirical rejection frequencies of the semi-parametric score test are always close

to the nominal size. This is in contrast to existing methods that are not robust to weak

non-Gaussianity, which show substantial size distortions for some of the non-Gaussian

distributions considered. We also analyze power of the proposed procedure and find that

the power of the semi-parametric score test generally exceeds that of competitor methods

which have been proposed in the literature.

Finally, in our empirical studies we revisit two canonical SVAR models and ask whether

non-Gaussian distributions can help to identify the structural impulse responses of interest.

Specifically, we revisit (i) the labour supply-demand model of Baumeister and Hamilton

(2015) and (ii) the oil price model of Kilian and Murphy (2012).5

Our findings are mixed. In both applications we find that whilst non-Gaussianity does

provide some identifying information, it is unable to pin down all parameter values and/or

impulse responses precisely. In the first application, this is in contrast to the findings of

Lanne and Luoto (2021) who utilise a GMM approach based on high-order moments to

estimate the structural parameters and generally obtain much tighter confidence sets than the

weak – identification robust confidence sets we obtain using the methodology of this paper.

This is suggestive of the importance of using such robust confidence sets when assessing

uncertainty around parameter estimates obtained using non-Gaussianity as an identifying

assumption.

This paper relates to several strands of literature. First and foremost, the paper contributes

to the literature that exploits non-Gaussianity of the structural shocks for identification (see
4The general approach is applicable with other choices of density score estimators provided they satisfy a
particular high-level condition. Cf. Lemma A.1.

5The assumption of independence among the structural shocks is maintained throughout this paper. Therefore
in each application we test for the existence of independent components following Matteson and Tsay (2017),
see also Montiel Olea et al. (2022).
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the references above). There are two papers that are specifically related to the current paper.

First, Drautzburg and Wright (2021) similarly observe that modest deviations from the

Gaussian distribution may invalidate standard inference methods based on an assumption

of non-Gaussianity. To circumvent distortions they exploit higher order moments moment

restrictions in combination with the identification robust S-statistic of Stock and Wright

(2000) for conducting inference. The benefit of their approach is that it is not necessary

to assume full independence of the structural shocks. Instead, typically only the third

and fourth order higher cross moments are set to zero, leaving all higher order moments

unrestricted. A potential downside of such a robust moment approach is that it requires

many finite moments. For instance, when using fourth order restrictions the convergence

of the S-statistic requires the existence of at least eight moments. We provide a detailed

comparison between the approaches in our simulation study.

Second, this paper builds on Lee and Mesters (2022a) and Lee (2022) who consider a

similar score testing approach. The crucial differences are that (a) those papers require that

the observations are independent and identically distributed across time and (b) they focus

on testing a hypothesis on / constructing a confidence set for a potentially weakly- or un-

idenified parameter. Relaxing the independence assumption is non-trivial in this context;

we show a new (uniform) local asymptotic normality result for semi-parametric SVARs.

Further, in the SVAR setting the objects of economic interest, such as IRFs, are typically

functions of both well-identified parameters and those which may suffer from identification

problems. This paper provides a robust inference procedure for such objects.

Besides the non-Gaussian SVAR literature, we note that our approach is inspired by the

identification robust inference literature in econometrics (e.g. Stock and Wright, 2000;

Kleibergen, 2005; Andrews and Cheng, 2012). The crucial difference in our setting is that

the nuisance parameters which determine identification status are infinite dimensional, i.e.

the densities of the structural shocks. Despite this difference, conceptually our approach is

similar to the score testing approach developed for weakly identified parametric models in

Chamberlain (1986). To handle infinite dimensional nuisance parameters we build on the

general statistical theory discussed in Bickel et al. (1998) and van der Vaart (2002). While

the majority of the statistical literature focuses on efficient estimation in semi-parametric

models, a few papers have contributed to testing in well identified models (e.g. Choi et al.,

1996; Bickel et al., 2006). The major difference with our paper is that in our setting, a

subset of the parameters of interest are possibly weakly- or un- / under- identified, which

violates a key regularity condition assumed in this literature.

The remainder of this paper is organized as follows. In Section 3.2, we briefly illustrate how

non-Gaussian distributions can help with identification and how the weak identification

problem arises. Section 3.3 casts the SVAR model as a semi-parametric model and

Section 3.4 establishes a number of preliminary results. The semi-parametric score testing

approach is presented in Section 3.5 and inference for smooth structural functions is
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covered in Section 3.6. Section 3.7 evaluates the finite-sample performance of the proposed

methodology and Section 3.8 discusses the results from the empirical studies. Section 3.9

concludes. All proofs are in the appendix.

3.2. Illustration of non-Gaussianity identification

In this section, we illustrate briefly how non-Gaussian distributed structural shocks can

help to identify the parameters of the SVAR model. Furthermore, we provide an intuitive

explanation for the weak identification problem that arises when the errors are close to

Gaussian.

As an example, consider a bivariate SVAR model as defined in equation (3.1), but assume

for simplicity that (i) the number of lags is zero (p = 0) and (ii) that the contemporaneous

effect matrix A is orthonormal.6 Under these assumptions, the (2 × 2) matrix A can be

parameterized by a scalar parameter α and the model can be written as follows:

Yt = A−1εt where A−1 =

[
cosα − sinα

sinα cosα

]
.

In this model, the parameter of interest is the scalar α that determines the angle of the

rotation matrix A. If for example α = 0, A equals the identity matrix and each of

the structural shocks only impacts its respective component in Yt. For 0 < α < π, or

integer multiples thereof, the off-diagonal elements are non-zero so that the shocks affect

all variables, with signs depending on the value of α.

To illustrate how non-Gaussian distributions for εt may help to identify α, we study

the expected log-likelihood E`α(Yt) in the model above for different distributions of the

structural shocks εk,t. For instance, if εk,t ∼ N(0, 1) for all k we have

E`α(Yt) ∝ −
1

2
E(A−1εt)

′A−1εt = −1 ,

and the log likelihood takes the same value for all α. This reflects the standard identification

problem: without additional identifying restrictions, the impact effects of the structural

shocks are not identifiable when the errors are Gaussian.

Figure 3.1 visually illustrates this result and shows how it changes when we move away

from the Gaussian distribution. The left panels shows the expected log likelihood as a

function of α, whereas the right panels show the contour plots of the log-likelihood together

with a red and a blue line indicating the vector Yt (i.e. a linear combination of the structural

errors εt), corresponding to two different choices for α.
6Note, that the assumption of an orthonormal A matrix can be asymptotically justified if the data Yt is jointly
re-scaled to have mean zero and identity variance matrix (pre-whitening). For details, see Gouriéroux et al.
(2017).

211



We find that as we move away from the Gaussian distribution local identification for α

occurs, i.e. the expected gradient of `α(Yt) with respect to α becomes non-zero in the

vicinity of the true parameter (here set as α = π). Equivalently, in the contour plots the red

and blue lines reach different level curves. This means that different choices of α lead to

different values of the log-likelihood and hence, α is identifiable. Further we immediately

see that only local identification occurs as the same level curves are reached in each quadrant

of the contour plot, with each quadrant corresponding to a permutation and/or sign change

of the columns. These examples illustrate how non-Gaussianity of the structural errors can

help to identify parameters up to permutation and sign changes of the columns.

The problem of weak non-Gaussianity arises when the distance from the Gaussian

distribution is not very large. In such scenarios, changes in α only imply minor changes

in the level of the likelihood, so that the likelihood ends up being rather flat around the

true parameter α. Compare for instance, the panels corresponding to the t(5) density and

the t(15) density. In the case of the t(5) density, the red and blue vectors end on clearly

distinguishable contour lines of the log-likelihood and the value of the log likelihood varies

substantially around α = π. In contrast, for the t(15) density, the differences are small

and the red and blue vectors almost reach the same contour line. In the extreme case of

no identification (i.e. the Gaussian case in the upper panels of figure 3.1) we find that α is

completely unidentified.

Whilst in population we will always be able to locally identify α when the densities of

the structural shocks differ from Gaussian, in the finite sample setting, if the densities of the

structural errors are close to Gaussianity, the available identifying information may be small

relative to sampling variability. This creates a problem when standard test statistics are used

as, in such a setting, standard asymptotics provide a poor approximation to the finite sample

behaviour of test statistics.

To remedy this problem we will develop a robust semi-parametric score test for constructing

confidence bands for α, based on a test statistic which retains an accurate asymptotic

approximation when the structural errors are close to Gaussianity.

3.3. Semi-parametric SVAR model

In this section, we cast the SVAR model as a semi-parametric model and impose some low-

level assumptions which will be maintained throughout. For convenience, we adopt the

following notation

Yt = BXt +A−1(α, σ)εt , t ∈ Z , (3.2)

whereXt := (ι′K , Y
′
t−1, . . . , Y

′
t−p)

′,B := (c,B1, . . . , Bp) andA(α, σ) is aK×K invertible

matrix that is parametrized by the vectors α and σ.
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Figure 3.1: Identification with Non-Gaussian Distributions
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Notes: The figure shows the log-likelihood contours of Yt in the SVAR(0) model with scalar parameter α for different
distributions of the structural shocks, εk,t. The red and blue lines in each plot denote the vector Yt corresponding to two
different choices for α.

We will leave the choice for the specific parametrization of A(α, σ) largely open to the

researcher. The key restriction is that σ should be recoverable from the variance of Yt−BXt,

whereas α may be unidentified depending on the distribution of the structural shocks. A

canonical choice in this context sets A−1(α, σ) = Σ1/2(σ)R(α), where Σ1/2(σ) is a lower

triangular matrix with positive diagonal elements defined by the vector σ and R(α) is a
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rotation matrix that is parametrized by the vector α. That said, different parametrizations

are often used in practice (cf the empirical section 3.8) and our general formulation allows

for such alternatives.

We let η = (η1, . . . , ηK) correspond to the density functions of εt = (ε1,t, . . . , εK,t)
′ and

summarize the parameters in

θ = (γ, η) , γ = (α, β) , β = (σ, b) , (3.3)

where b = vec(B). It is clear that the model is semi-parametric with γ the parametric part

and η the non-parametric part.

Let Y n = (Y1, . . . , Yn)′ and let Pnθ denote the distribution of Y n conditional on the initial

values (Y1−p, . . . , Y0). Throughout we work with these conditional distributions; see Hallin

and Werker (1999) for a similar setup. For a sample of size n, our semi-parametric SVAR

model is the collection

PnΘ = {Pnθ : θ ∈ Θ} Θ = A× B︸ ︷︷ ︸
Γ

×H , (3.4)

where Γ ⊂ RL, with L = Lα + Lσ + Lb corresponding to the dimensions of (α, σ, b), and

H ⊂∏K
k=1 H with

H :=

{
g ∈ L1(λ) ∩ C1(λ) : g(z) ≥ 0,

∫
g(z) dz = 1,

∫
zg(z)dz = 0,

∫
κ(z)g(z) dz = 0

}
,

where λ denotes Lebesgue measure on R, C1(λ) is the class of real functions on R which

are continuously differentiable λ-a.e. and κ(z) = z2 − 1. The parameter space for the

densities ηk is restricted such that εk,t has mean zero and variance one. Further restrictions

will be placed on the parameter spaces in the next subsection.

Assumptions

Having defined the semi-parametric SVAR model, we now proceed to formulate the

required assumptions that will be maintained throughout the paper. Broadly speaking, we

have two types of assumptions: (i) the main assumptions that allow us to establish the

properties of the semi-parametric score test and (ii) an additional assumption that defines a

set of regularity conditions under which the log density scores of the structural shocks can

be consistently estimated. The latter assumption can be appropriately replaced whenever a

different density score estimator is used.

Our main assumption is stated as follows.

Assumption 3.3.1. For model (3.2), we assume that
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1. For all β ∈ B, |IK −
∑p

j=1Bjz
j | 6= 0 for all |z| ≤ 1 with z ∈ C

2. Conditional on the initial values (Y ′−p+1, . . . , Y
′

0)′, εt = (ε1,t, . . . , εK,t)
′ is

independently and identically distributed across t, with independent components εk,t.

Each η = (η1, . . . , ηK) ∈ H is such that each ηk is nowhere vanishing, dominated by

Lebesgue measure on R, continuously differentiable with log density scores denoted

by φk(z) := ∂ log ηk(z)/∂z, and for all k = 1, . . . ,K

a) Eεk,t = 0, Eε2k,t = 1, Eε4+δ
k,t < ∞, E(ε4k,t) − 1 > E(ε3k,t)

2, and Eφ4+δ
k (εk,t) <

∞ (for some δ > 0);

b) Eφk(εk,t) = 0, Eφ2
k(εk,t) > 0, Eφk(εk,t)εk,t = −1, Eφk(εk,t)ε2k,t = 0 and

Eφk(εk,t)ε3k,t = −3;

3. For all (α, β) ∈ Γ we have that

a) A(α, σ) is positive definite

b) (α, σ)→ A(α, σ) is continuously differentiable

c) (α, σ) → [Dαl(α, σ)]k•A(α, σ)−1
•j and (α, σ) → [Dσm(α, σ)]k•A(α, σ)−1

•j are

Lipschitz continuous for all l = 1, . . . , Lα,m = 1, . . . , Lσ and j, k = 1, . . . ,K,

where the notation B•j or Bj• denotes the jth column or row of a matrix B.

Part (i) imposes that (3.2) admits a stationary and causal solution. Part (ii) imposes that

the densities of the errors are continuously differentiable and certain moment conditions

hold. Specifically, part (a) normalises the errors to have mean zero, variance one and finite

four+δ moments.7 Additionally, we require the log density scores φk(x) = ∂ log ηk(x)/∂x

evaluated at the errors to have finite 4 + δ moments. Part (b) simplifies the construction

of the efficient score functions. Whilst this may at first glance appear a strong condition,

lemma S12 in Lee and Mesters (2022a) shows that if the first part holds, then a simple

sufficient condition is that the tails of the densities ηk converge to zero at a polynomial

rate.8 The final part (iii) of the assumption imposes that A(α, σ) is invertible and

that the parametrisation chosen by the researcher is sufficiently smooth. For instance,

for A−1(α, σ) = Σ1/2(σ)R(α) when we model R(α) by the Cayley or trigonometric

transformation parts (b) and (c) can easily be verified to hold. Verifying these conditions is

generally straightforward.

Assumption 3.3.1 ensures that (1) a (uniform) local asymptotic normality [(U)LAN] result

holds and (2) the efficient score function can be derived analytically.9

7E(ε4k,t) − 1 ≥ E(ε3k,t)
2 always holds; this is known as Pearson’s inequality. See e.g. result 1 in Sen (2012).

Assuming that E(ε4k,t) − 1 > E(ε3k,t)
2 rules out (only) cases where 1, εk,t and ε2k,t are linearly dependent

when considered as elements of L2. See e.g. Theorem 7.2.10 in Horn and Johnson (2013).
8Alternatively, these moment conditions hold if one can interchange integration and differentiation
appropriately.

9See e.g. Le Cam and Yang (2000); van der Vaart (1998); Bickel et al. (1998) for general discussions on uniform
local asymptotic normality.
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Next, we impose a number of smoothness conditions on the densities ηk. These assumptions

facilitate the estimation of the log density scores φk(z) = ∇z log ηk(z), which are an

important ingredient for the efficient score test.

Assumption 3.3.2. Let φk,n := φk1[ΞLk,n,Ξ
U
k,n], ∆k,n := ΞUk,n − ΞLk,n and νn = ν2

n,p with

1 < p ≤ 1+δ/4 and n−1/2(1−1/p) = o(νn,p). Suppose that for [ΞLk,n,Ξ
U
k,n] ↑ Ξ̃ ⊃ supp(ηk)

and δk,n ↓ 0 it holds that

(I) P (εk /∈ [ΞLk,n,Ξ
U
k,n]) = o(ν2

n);

(II) For some ι > 0, n−1∆2+2ι
k,n δ

−(8+2ι)
k,n = o(νn);

(III) ηk is bounded (‖ηk‖∞ <∞) and differentiable, with a bounded derivative: ‖η′k‖∞ <

∞;

(IV) For each n, φk,n is three-times continuously differentiable on [ΞLk,n,Ξ
U
k,n] and

‖φ(3)
k,n‖2∞δ6

k,n = o(νn);10

(V) There are c > 0 and N ∈ N such that for n ≥ N we have inft∈[ΞLk,n,Ξ
U
k,n] |ηk(t)| ≥

cδk,n.

These assumptions are similar to those considered in Chen and Bickel (2006) and Lee and

Mesters (2022a). They ensure that the log density scores can be estimated sufficiently

accurately using B-spline regressions (for details see section 3.5).11 Formally, we require

that the support of the density ηk is contained with high probability in the interval

[ΞLk,n,Ξ
U
k,n]. These lower and upper points will correspond to the smallest and largest knots

of the B-splines. Second, condition (ii) ensures that the number of knots does not increase

too fast, relative to the sample size n. Conditions (iii) and (iv) impose that the density is

sufficiently smooth, such that it can be well-fitted by B-splines. The final condition restricts

the tails of the density.

3.4. Preliminary results for semi-parametric SVARs

In this section we present two preliminary results for semi-parametric SVAR models that we

believe are more broadly useful. First, we provide a (uniform) local asymptotic normality

result for the semi-parametric SVAR model.12 The primary difference with existing results

is that we explicitly perturb the non-parametric part of the model, i.e. the densities ηk,

whereas existing (U)LAN results for VARs hold this fixed (e.g. Hallin and Saidi, 2007).
10The differentiability and continuity requirements at the end-points are one-sided.
11These assumptions are tailored to the specific density score estimator we propose in this paper. Nevertheless,

in principle, other density score estimators may be used. Inspection of the proofs reveals that any such
estimator which satisfies the conclusions of Lemma A.1 can be adopted.

12The uniformity here is over the finite dimensional parameters, γ. For our results in the present paper we only
require uniformity over α, but the additional uniformity over β follows at essentially no additional cost.
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This extension is necessary for deriving the form of the score test proposed in this paper

and can be used in other applications. Second, we analytically derive the efficient score

function for the semi-parametric SVAR model. This derivation is more standard as similar

efficient score functions are derived for ICA models in Amari and Cardoso (1997); Chen

and Bickel (2006) and for linear simultaneous equations models in Lee and Mesters (2022a).

Readers who are mainly interested in the practical implementation of the methodology for

the semi-parametric SVAR model can safely skip this section.

3.4.1. Uniform Local Asymptotic Normality

Let (γn)n∈N ⊂ Γ be such that γn → γ ∈ Γ, fix η ∈ H and put θ := (γ, η). Let Gk denote

the law on R corresponding to ηk (k = 1, . . . ,K) and define

˙Hk :=

{
hk ∈ C1

b (λ) :

∫
hk dGk =

∫
hkι dGk =

∫
hkκdGk = 0

}
, ˙H :=

K∏
k=1

˙Hk,

(3.5)

where ι is the identity funcion, κ(z) = z2−1 (as defined above) andC1
b (λ) denotes the class

of real functions on R which are bounded, continuously differentiable and have bounded

derivatives λ-a.e.. Note that RLα+Lβ × ˙H is a linear subspace of RLα+Lβ × L∞(λ)K .

We make this into a normed space by equiping it with the norm ‖(c, h)‖ := ‖c‖2 +∑K
k=1 ‖hk‖λ,∞ where ‖ · ‖2 denotes the Euclidean norm.

For an arbitrary sequence (cn)n∈N ⊂ RLα+Lβ such that cn := (a′n, d
′
n)′ → (a′, d′)′ =: c

let γ̃n := γn + cn/
√
n and for an arbitrary (hn)n∈N ⊂ ˙H with hn → h ∈ ˙H let

η̃n := η(1 + hn/
√
n). Collect these parameters into θn := (γn, η) and θ̃n := (γ̃n, ηn)

respectively. Denote by pnθ the density of Pnθ with respect to λn and Λn
θ̃n/θn

the (conditional)

log-likelihood ratio

Λn
θ̃n/θn

:= log

(
pn
θ̃n

pnθn

)
=

n∑
t=1

`θ̃n(Yt, Xt)− `θn(Yt, Xt) , (3.6)

where `θ(Yt, Xt) denotes the tth contribution to the conditional log likelihood for the SVAR

model evaluated at θ. We note that this can be explicitly written as

`θ(Yt, Xt) = log |det(A(α, σ))|+
K∑
k=1

ηk(Ak•(α, σ)(Yt −BXt)) .

With this notation established we first derive the scores for the finite dimensional parameters
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γ = (α, σ, b). The score functions with respect to the components αl, σl and bl are given by

˙̀
θ,αl(Yt, Xt) =

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφk(Ak•Vθ,t)Aj•Vθ,t +

K∑
k=1

ζl,k,k (φk(Ak•Vθ,t)Ak•Vθ,t + 1) ,

(3.7)

˙̀
θ,σl(Yt, Xt) =

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφk(Ak•Vθ,t)Aj•Vθ,t +
K∑
k=1

ζl,k,k (φk(Ak•Vθ,t)Ak•Vθ,t + 1) ,

(3.8)

˙̀
θ,bl(Yt, Xt) =

K∑
k=1

φk(Ak•Vθ,t)× [−Ak•DblXt] , (3.9)

where Vθ,t := Yt − BXt, A := A(α, σ), Dαl(α, σ) := ∇αlA(α, σ), Dσl(α, σ) :=

∇σlA(α, σ), Dbl = ∇blB, ζαl,k,j := [Dαl(α, σ)]k•A
−1
•j , ζσl,k,j := [Dσl(α, σ)]k•A

−1
•j and

φk(z) := ∇z log ηk(z).

We collect these scores in the vector

˙̀
θ(Yt, Xt) :=

((
˙̀
θ,αl(Yt, Xt)

)Lα
l=1

,
(

˙̀
θ,σl(Yt, Xt)

)Lσ
l=1

,
(

˙̀
θ,bl(Yt, Xt)

)Lb
l=1

,

)′
.

Under assumption 3.3.1, we have the following ULAN result.13

Proposition 3.4.1 (ULAN). Suppose that assumption 3.3.1 holds. Then as n→∞,

Λn
θ̃n/θn

(Y n) = gn(Y n)− 1

2
E
[
gn(Y n)2

]
+ oPnθn

(1), (3.10)

where the expectation is taken under Pnθn and

gn(Y n) :=
1√
n

n∑
t=1

[
c′ ˙̀θn(Yt, Xt) +

K∑
k=1

hk(Ak•Vθn,t)

]
.

Moreover, under Pnθn ,

gn(Y n) N (0,Ψθ(c, h)), Ψθ(c, h) := lim
n→∞

E
[
gn(Y n)2

]
.

The following corollary follows from Le Cam’s first Lemma (e.g. van der Vaart, 1998,

Example 6.5).

Corollary 3.4.2. If assumption 3.3.1 holds, then the sequences (Pnθn)n∈N and (Pn
θ̃n

)n∈N are

mutually contiguous.

13The proof is based on verifying the conditions of Theorem 2.1.2 in Taniguchi and Kakizawa (2000), which is
due to Swensen (1985, Lemma 1).
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The importance of this result is that the semi-parametric SVAR model can be locally

asymptotically approximated by a Gaussian shift experiment, uniformly in γ. This local

approximation can be exploited to derive the form of the score test below as well as

its limiting distribution under local alternatives, but can be more broadly used for other

inference problems. One example is a setting where α is well identified, say by assuming

non-Gaussian structural shocks, then the (U)LAN result may be used to obtain semi-

parametrically efficient parameter estimates similarly to as was done in Chen and Bickel

(2006) for the ICA model.

3.4.2. Efficient score function

One of the key ingredients in our framework is the efficient score function for the parameter

of interest, α. Loosely speaking this is defined as the projection of the score function for α

on the orthogonal complement of the space spanned by the score functions for the nuisance

parameters (β, η) (e.g. Bickel et al., 1998; van der Vaart, 2002; Newey, 1990; Choi et al.,

1996).

In the case of interest here, where the nuisance parameter contains both finite (β) and

infinite-dimensional (η) components, this can be calculated in two steps: (1) compute the

projection of the score for γ = (α, β) on the orthocomplement of the space spanned by the

score functions for η. (2) Partition the resulting object into the components corresponding

to α and β and project the former onto the orthocomplement of the latter.

We will proceed according to this two-step procedure and now establish the form of the first

projection.

Lemma 3.4.3. Given Assumption 3.3.1 the efficient score function for γ in the semi-

parametric SVAR model PnΘ at any θ = (γ, η) with γ = (α, β), α ∈ A, β = (σ, b) ∈ B and

η ∈ H is given by ˜̀
n,θ(y

n) =
∑n

t=1
˜̀
θ(yt, xt), where

˜̀
θ(yt, xt) =

((
˜̀
θ,αl(yt, xt)

)Lα
l=1

,
(

˜̀
θ,σl(yt, xt)

)Lσ
l=1

,
(

˜̀
θ,bl(yt, xt)

)Lb
l=1

)′
with components

˜̀
θ,αl(yt, xt) =

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφk(Ak•vt)Aj•vt +

K∑
k=1

ζαl,k,k [τk,1Ak•vt + τk,2κ(Ak•vt)]

˜̀
θ,σl(yt, xt) =

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,jφk(Ak•vt)Aj•vt +
K∑
k=1

ζσl,k,k [τk,1Ak•vt + τk,2κ(Ak•vt)]

˜̀
θ,bl(yt, xt) =

K∑
k=1

−Ak•Dbl [(xt − µ)φk(Ak•vt)− µ(ςk,1Ak•vt + ςk,2κ(Ak•vt))]
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where vt = yt − Bxt, ζαl,k,j := [Dαl(α, σ)]k•A
−1
•j with Dαl(α, σ) := ∂A(α, σ)/∂αl,

ζσl,k,j := [Dσl(α, σ)]k•A
−1
•j with Dσl(α, σ) := ∂A(α, σ)/∂σl, Dbl := ∂B/∂bl, µ :=

vec(ιK , (ιp ⊗ (IK −B1 − . . .−Bp)−1c)), and τk := (τ1,k, τ2,k)
′ and ςk := (ς1,k, ς2,k)

′ are

defined as

τk := M−1
k

(
0

−2

)
, ςk := M−1

k

(
1

0

)
where Mk :=

(
1 Eθ(Ak•vt)3

Eθ(Ak•vt)3 Eθ(Ak•vt)4 − 1

)
.

The derivation of the efficient scores ˜̀
θ(yt, xt) follows along the same lines as in Amari

and Cardoso (1997); Chen and Bickel (2006). The dependence on η comes through the log

density scores φk(z) = ∇z log ηk(z), for k = 1, . . . ,K. All other components are simple

functions of the parameters and the moments of of the structural shocks as defined by Mk.

For future reference, we partition

˜̀
θ(yt, xt) =

(
˜̀
θ,α(yt, xt)

˜̀
θ,β(yt, xt)

)
,

where ˜̀
θ,α(yt, xt) = (˜̀

θ,αl(yt, xt))
Lα
l=1 and ˜̀

θ,β(yt, xt) =
(

(˜̀
θ,σl(yt, xt))

Lσ
l=1, (

˜̀
θ,bl(yt, xt))

Lb
l=1

)′
.

Based on the efficient scores, we define the efficient information matrix for γ by

Ĩn,θ :=
1

n

n∑
t=1

E˜̀
θ(Yt, Xt)˜̀′

θ(Yt, Xt) with partitioning Ĩn,θ =

(
Ĩn,θ,αα Ĩn,θ,αβ

Ĩn,θ,βα Ĩn,θ,ββ

)
.

(3.11)

With Lemma 3.4.3 and the efficient information matrix in place, we can define the efficient

score function for α with respect to β and η. In particular this score can be computed by the

second projection (e.g. Bickel et al., 1998, p. 74)

κ̃n,θ(yt, xt) := ˜̀
θ,α(yt, xt)− Ĩn,θ,αβ Ĩ−1

n,θ,ββ
˜̀
θ,β(yt, xt) , (3.12)

which exists as long as Ĩθ,ββ is positive definite. The corresponding efficient information

matrix is given by

Ĩn,θ := Ĩn,θ,αα − Ĩn,θ,αβ Ĩ−1
n,θ,ββ Ĩn,θ,βα . (3.13)

We note that the efficient score function κ̃θ(yt, xt) and the efficient information matrix Ĩn,θ
can be evaluated at any parameters θ = (α, β, η) and variables (yt, xt).

Building tests or estimators based on the efficient score function is attractive as efficiency

results are well established, see Choi et al. (1996), Bickel et al. (1998) and van der Vaart

(2002). A crucial difference in our setting is that the efficient information matrix might

be singular. For instance, if more than one component of εt follows an exact Gaussian

distribution, Ĩn,θ is singular, see Lemma S11 in Lee and Mesters (2022a). The singularity
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plays an important role in the construction of the semi-parametric score statistic below.

3.5. Inference for potentially non-identified parameters

In this section we consider conducting inference on α without assuming that α is identified,

i.e. without assuming that at most one component of εt has a Gaussian distribution. To do

so, we consider testing hypotheses of the following form.

H0 : α = α0 , β ∈ B , η ∈ H against H1 : α 6= α0 , β ∈ B , η ∈ H . (3.14)

The main idea is to consider test statistics whose computation does not require evaluation

under the alternative H1, thus avoiding the need to estimate α. Clearly, based on the

trinity of classical tests, the score test is the only viable candidate and we will proceed by

constructing score tests in the spirit of Neyman-Rao, but adapted for the semi-parametric

setting (e.g. Choi et al., 1996). Such test statistics can then be inverted to yield a confidence

region for α with correct coverage. This confidence region then form the basis for

constructing confidence intervals for the structural impulse responses as we show in the

next section.

In our setting, we rely on the efficient score functions for the SVAR model to construct test

statistics. The functional form of the efficient scores ˜̀
θ(yt, xt) was analytically derived in

Lemma 3.4.3. These scores can be estimated by replacing the population quantities by their

sample equivalents. We have

ˆ̀
γ(Yt, Xt) =

((
ˆ̀
γ,αl(Yt, Xt)

)Lα
l=1

,
(

ˆ̀
γ,σl(Yt, Xt)

)Lσ
l=1

,
(

ˆ̀
γ,bl(Yt, Xt)

)Lb
l=1

)′
(3.15)

with components

ˆ̀
γ,αl(Yt, Xt) =

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφ̂k,n(Ak•Vt)Aj•Vt +

K∑
k=1

ζαl,k,k [τ̂k,1Ak•Vt + τ̂k,2κ(Ak•Vt)]

ˆ̀
γ,σl(Yt, Xt) =

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,jφ̂k,n(Ak•Vt)Aj•Vt +
K∑
k=1

ζσl,k,k [τ̂k,1Ak•Vt + τ̂k,2κ(Ak•Vt)]

ˆ̀
γ,bl(Yt, Xt) =

K∑
k=1

−Ak•Dbl

[
(Xt − X̄n)φ̂k,n(Ak•Vt)− X̄n(ζ̂k,1Ak•Vt + ζ̂k,2κ(Ak•Vt))

]
where Vt = Yt − BXt and X̄n = 1

n

∑n
t=1Xt. The estimates for the τk’s and ζk’s are

obtained by replacing the population moments defined in Lemma 3.4.3 by their sample

counterparts: τ̂k = M̂k(0,−2)′ and ζ̂k = M̂k(1, 0)′, where

M̂k :=

(
1 1

n

∑n
t=1(Ak•Vt)

3

1
n

∑n
t=1(Ak•Vt)

3 1
n

∑n
t=1(Ak•Vt)

4 − 1

)
. (3.16)
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Finally, the estimates of ˆ̀
γ(Yt, Xt) depend on φ̂k,n(·) which is the estimate for the log

density scores φk(z) = ∇zηk(z). In practice, we estimate these density scores using

B-splines following the methodology of Jin (1992) and Chen and Bickel (2006). To set

this up, let bk,n = (bk,n,1, . . . , bk,n,Bk,n)′ be a collection of Bk,n cubic B-splines and let

ck,n = (ck,n,1, . . . , ck,n,Bk,n)′ be their derivatives: ck,n,i(x) :=
dbk,n,i(x)

dx for each i ∈ [Bk,n].

The knots of the splines, ξk,n = (ξk,n,i)
Kk,n
i=1 are taken as equally spaced in [ΞLk,n,Ξ

U
k,n].14

Our estimate for the log density score φk is given by

φ̂k,n(z) := γ̂′k,nbk,n(z) , (3.17)

where

γ̂k,n := −
[

1

n

n∑
t=1

bk,n(Ak•Vt)bk,n(Ak•Vt)
′

]−1
1

n

n∑
t=1

ck,n(Ak•Vt) . (3.18)

It shows that computing the log density score estimate (3.17) only requires computing the

B-spline regression coefficients γ̂k,n in (3.18).

Having defined all the components of the efficient score estimates we may estimate the

efficient information matrix for γ by

În,γ =
1

n

n∑
t=1

ˆ̀
γ(Yt, Xt)ˆ̀

γ(Yt, Xt)
′ . (3.19)

With the estimates for the efficient scores and information for γ, we can estimate the

efficient score and information for α. This amounts to replacing the population score

κ̃n,θ(yt, xt) and information Ĩn,θ in (3.12) and (3.13) by their sample counterparts. We

have that

κ̂n,γ(Yt, Xt) = ˆ̀
γ,α(Yt, Xt)− În,γ,αβ Î−1

n,γ,ββ
ˆ̀
γ,β(Yt, Xt) (3.20)

and

În,γ = În,γ,αα − În,γ,αβ Î−1
n,γ,ββ În,γ,βα . (3.21)

Since the information matrix may be singular, we need to make an adjustment. Specifically,

given the truncation rate νn defined in Assumption 3.3.2, we define a truncated eigenvalue

version of the information matrix estimate as

Îtn,γ = ÛnΛ̂n(νn)Û ′n , (3.22)

where Λ̂n(νn) is a diagonal matrix with the νn-truncated eigenvalues of În,γ on the main

diagonal and Ûn is the matrix of corresponding orthonormal eigenvectors. To be specific, let

{λ̂n,i}Li=1 denote the non-increasing eigenvalues of În,γ , then the (i, i)th element of Λ̂n(νn)

14In practice we take these points as the 95th and 5th percentile of the samples {Ak•Vt}ni=1 adjusted by
log(log(n)), where A = A(α, σ) and Vt = Yt −BXt for a given parameter choice γ = (α, β).
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is given by λ̂n,i1(λ̂n,i ≥ νn).

Based on this, we define the semi-parametric score statistic for the SVAR model as follows.

Ŝn,γ :=

(
1√
n

n∑
t=1

κ̂n,γ(Yt, Xt)

)′
Ît,†n,γ

(
1√
n

n∑
t=1

κ̂n,γ(Yt, Xt)

)
, (3.23)

where Ît,†n,γ is the Moore-Penrose pseudo-inverse of Îtn,γ . We note that the test statistic can

be evaluated at any γ = (α, β). To evaluate the null hypothesis (3.14) we will use α = α0,

i.e. fixing the unidentified parameters under the null, and β̂, some
√
n-consistent estimate

for the finite dimensional nuisance parameters.

For such parameter choices, the limiting distribution of Ŝn,γ is derived in the following

theorem.

Theorem 3.5.1. Let γn = (αn, β) → γ with each γn, γ in Γ and let θn := (γn, η) →
(γ, η) = θ for some η ∈ H. Suppose that under Pnθn , β̂n is a

√
n−consistent estimator

of β. Define Sn = n−1/2CZL2 for some C > 0 and let β̄n be a discretized version of

β̂n which replaces its value with the closest point in Sn. Define γ̄n = (αn, β̄n), suppose

that assumptions 3.3.1 and 3.3.2 hold. Let rn = rank(Îtn,γ̄n) and denote by cn the 1 − a
quantile of the χ2

rn distribution, for any a ∈ (0, 1). Then if θ̃n := (αn, β̃n, η̃n) where
√
n‖β̃n − β‖ = O(1) and η̃n = η(1 + hn/

√
n) with hn in some compact ˙H? ⊂ ˙H ,

lim
n→∞

Pn
θ̃n

(Ŝn,γ̄n > cn) ≤ a,

with inequality only if rank(Ĩθ0) = 0.

Several comments on this theorem are in order.

We do not impose which estimator β̂n should be adopted as the theorem holds for any
√
n-

consistent estimator. However, given that the efficient scores of γ need to be computed

anyway, it is attractive to rely on one-step efficient estimates for β as discussed in van der

Vaart (1998), as this typically improves the (finite sample) power of the test.15 That said

conventional OLS estimates for the regression coefficients B and the variance parameters σ

can also be used.

Second, the score statistic is evaluated at the discretised estimator β̄n. This is a technical

device due to Le Cam (1960) that allows the proof to go through under weak conditions, see

Le Cam and Yang (2000, p. 125) or van der Vaart (1998, pp. 72 – 73) for further discussion.

Since the discretisation can be arbitrarily fine, this has no practical implications.16

Third, the eigenvalue truncation rate appears to have little effect on the finite sample

results. In our simulation studies and empirical applications, we always truncate at machine
15See the simulation results of section 3.7.
16Indeed, in practice, we always discretise at machine precision.
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precision which implies that Ît,†n,γ is similar to Î†n,γ , the Moore-Penrose inverse of În,γ .

Experimenting with different, but small, truncation rates appears to matter little in practice.

Fourth, the theorem is proven to hold along sequences of parameter values θ̃n. By standard

methods one can translate such limit statements along sequences to limit statements that

hold uniformly over certain sets. In the present case a uniform statement would hold over,

for example, sets of the form Pn := {Pn
α,β+d/

√
n,η(1+h/

√
n)

: α ∈ A?, ‖d‖ ≤M,h ∈ ˙H?}
where A? ⊂ A, ˙H? ⊂ ˙H are compact and M ∈ (0,∞).

Finally, if Ĩθ has full rank, the singularity adjusted score statistic is asymptotically

equivalent to its non-singular version that is computed with Î−1
n,γ̄n instead of Ît,†n,γ̄n .

Given this equivalence, it follows from Choi et al. (1996) that tests based on Ŝn,γ̄n are

asymptotically uniformly most powerful within the class of rotation invariant tests (when

L = 1, the rotational invariance can be dropped for one-sided tests and replaced with

unbiasedness for two-sided tests). This implies that asymptotically when testing the

hypothesis (3.14), the power of the test is the greatest possible in the class of rotationally

invariant tests. Lee (2022) shows that in the case where Ĩθ has positive rank, the singularity

adjusted score statistic is (locally asymptotically) minimax optimal.17 These results make

tests based on Ŝn,γ̄n attractive for scenarios where there is no explicit direction in which one

wants to maximize power. When such directions are given, alternative test statistics, also

based on the efficient score function, can be considered (e.g. Bickel et al., 2006).

A confidence set for the parameters α can be constructed by inverting the efficient score test

Ŝn,γ over a grid of values for α. Formally, for any a ∈ (0, 1) we define the 1−a confidence

set estimate for α as

Ĉn,1−a := {α ∈ A : Sn,(α,β̄n) ≤ cn,α} ,

where cn,α the 1 − a quantile of the χ2
rn,α distribution and rn,α = rank(Ît

n,(α,β̄n)
). The

following corollary establishes that the confidence set Ĉn,1−a has asymptotically correct

coverage.

Corollary 3.5.2. Let γn, θn, θ̃n, β̂n, β̄n and γ̄n be as in Theorem 3.5.1 and suppose that

assumptions 3.3.1 and 3.3.2 hold. Then,

lim
n→∞

Pn
θ̃n

(
αn ∈ Ĉn,1−a

)
≥ 1− a. (3.24)

The confidence set Ĉn,1−a is the main building block for constructing confidence bands

for the structural functions in the next section. In addition, this set can be of interest in its

own right as the coefficients α can have a direct structural interpretation, see for instance

the labour supply-demand model of Baumeister and Hamilton (2015) that is considered in

Section 3.8.
17This result is particularly relevant in the setting considered in this paper, since if α is multidimensional, under

Gaussianity Ĩθ has positive (but deficient) rank.
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We finish this section by briefly summarising the practical implementation for the efficient

score test and the construction of the confidence set.

Algorithm 1: Confidence set for α

1. Choose a set A;

2. For each α ∈ A:

1 Obtain estimates β̂n = (σ̂n, b̂n), with bn = vec(Bn), and set V̂t = Yt − B̂nXt;

2 For k = 1, . . . ,K, compute the log density scores φ̂k(A(α0, σ̂n)k•V̂t) from

(3.17);

3 Compute the efficient scores ˆ̀̂
γn(Yt, Xt) from (3.15) and the information matrix

În,γ̂n from (3.19) using γ̂n = (α0, β̂n);

4 Compute κ̂n,γ̂n(Yt, Xt) and În,γ̂n from (3.20) and (3.21).

5 Compute the score statistic Ŝn,γ̂n from (3.23) and accept H0 : α = α0 if

Ŝn,γ̂n ≤ cn, where cn is the 1 − a quantile of the χ2
rn distribution with

rn = rank(Îtn,γ̂n).

3. Collect the accepted values for α to form Ĉn,1−a.

The algorithm highlights that the computation costs for computing the confidence set are

modest. In fact, the costs are similar to those for constructing standard weak instrument

robust confidence sets, such as those based on the Anderson-Rubin statistic (e.g. Andrews

et al., 2019) for instance. The only difference is that we require K regression estimates (to

estimate the log density scores) as opposed to one. Further, note that for the implementation

we do not need to concern ourselves with explicitly discretising the estimator β̂n.

3.6. Robust inference for smooth functions

In this section we discuss the methodology for conducting robust inference on smooth

functions of the finite dimensional parameters γ = (α, β). The main functions of

interest are the structural impulse response functions (sIRF), but also forecast error variance

decompositions and forecast scenarios can be considered (e.g. Kilian and Lütkepohl, 2017).

The difference with the preceding section is that we are now explicitly interested in

conducting inference on functions of both α and β.

The general function of interest is defined as

g(α, β) : Dg → Rdg with Dg ⊃ A× B , (3.25)
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where Dg is the domain of g and dg is some integer. The following assumption restricts the

class of functions that we consider.

Assumption 3.6.1. g : Dg → Rdg is continuously differentiable with respect to β and the

Jacobian matrix Jγ := ∇β′g(α, β) has full column rank on Dg.

For concreteness the next example provides the details for a vector of structural impulse

response functions.

Example 3. Consider the vector that collects all sIRF at horizon l

IRF(l) = g(α, β) := vec
(
DB(b)lD′A(α, σ)−1

)
,

where

D :=
[
IK 0K×K(p−1)

]
, and B(b) :=



B1 B2 · · · Bp−1 Bp

IK 0 · · · 0 0

0 IK · · · 0 0
...

...
. . .

...
...

0 0 · · · IK 0


.

In our general notation we have dg = K2 and we note that, given Assumption 3.3.1, this

function is continuously differentiable with respect to β. The Jacobian Jγ ∈ RK2×Lβ has

the form Jγ = [Jγ,1, Jγ,2] where

Jγ,1 :=
[
(A(α, σ)−1)′ ⊗ IK

] { h−1∑
j=0

[
D(B(b)′)h−1−j ⊗ (DB(b)jD′)

]}
Jγ,2 :=

[
IK ⊗DB(b)hD′

]
∇σ vec(A(α, σ)−1).

4

Our objective is to construct valid 1− q confidence sets for g(α, β). Intuitively, we proceed

in two steps: first we construct a valid confidence set for α using the methodology of the

previous section, and second, for each included αwe construct a confidence set for g(α, β̂n).

The union over the latter sets provides the final set. Overall, this two-step Bonferroni

approach is similar to the approach utilised by Granziera et al. (2018) and Drautzburg and

Wright (2021).

Formally, let q1, q2 ∈ (0, 1) such that q1 + q2 = q ∈ (0, 1). In the first step we construct a

1− q1 confidence set Ĉn,1−q1 for α using Algorithm 1. The asymptotic validity of this set

is proven in Corollary 3.5.2. Second, for each α ∈ Ĉn,1−q1 we compute ν̂α,n := g(α, β̂n).

The confidence set for ν̂α,n is given by

Ĉn,g,α,1−q2 :=
{
ν : n(ν̂α,n − ν)′V̂ −1

n,α(ν̂α,n − ν) ≤ cq2
}
, (3.26)
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where ν := g(α, β) and V̂n,α = Jγ̂Σ̂nJ
′
γ̂ , with γ̂ = (α, β̂n) and Σ̂n a consistent estimate

for the asymptotic variance of β̂n. The critical value cq2 corresponds to the 1− q2 quantile

of a χ2
1−q2 random variable. The following proposition establishes the conditions on the

estimates β̂n that ensure that the confidence set (3.26) is valid.

Proposition 3.6.1. Suppose that assumption 3.6.1 holds and let γn, θn, θ̃n be as in Theorem

3.5.1. Suppose β̂n is a sequence of estimates such that

√
n(β̂n − β̃n)

Pn
θ̃n N (0,Σ) , with Σ � 0

and Σ̂n is a sequence of estimates such that Σ̂n

Pn
θ̃n−−→ Σ, then the confidence set Ĉn,g,α in

(3.26) satisfies

lim
n→∞

Pn
θ̃n

(
g(αn, β̃n) ∈ Ĉn,g,αn,1−q2

)
= 1− q2. (3.27)

The proof of this Proposition is a straightforward application of the (uniform) delta

method.18 Under Assumption 3.3.1 both OLS / moment – based and one-step efficient

estimates for the parameters β satisfy the required conditions on β̂n. Moreover,

conventional variance estimators for Σ can be adopted to satisfy the consistency of Σ̂n.

The final confidence set, Ĉn,g is formed by taking the union of the sets Ĉn,g,α,1−q2 over

α ∈ Ĉn,1−q1 :

Ĉn,g :=
⋃

α∈Ĉn,1−q1

Ĉn,g,α,1−q2 (3.28)

The confidence set Ĉn,g is a valid 1 − q confidence set as we formally establish in the

following proposition.

Proposition 3.6.2. Let θ̃n be as in Theorem 3.5.1, Ĉn,1−q1 satisfies Corollary 3.5.2 and

Ĉn,g,αn,1−q2 satisfies proposition 3.6.1, then

lim inf
n→∞

Pn
θ̃n

(
g(αn, β̃n) ∈ Ĉn,g

)
≥ 1− q.

For convenience we summarise the practical implementation in the following algorithm.

Algorithm 2: Robust confidence sets for smooth functions

1. Obtain the confidence set Ĉn,1−q1 for α using Algorithm 1;

2. For each α ∈ Ĉn,1−q1

a) Estimate β̂n and Σ̂n;

b) Compute V̂n,α = Jγ̂Σ̂J ′γ̂ with Jγ̂ and γ̂ = (α, β̂n)

18See Theorem A.19 for the statement.
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Table 3.1: Distributions for Structural Shocks

Abbreviation Name Definition

N (0, 1) Gaussian 1√
2π

exp
(
−1

2x
2
)

t(ν), ν = 15, 10, 5 Student’s t
Γ( ν+1

2 )
√
νπΓ( ν2 )

(
1 + x2

ν

)(− ν+1
2 )

SKU Skewed Unimodal 1
5N
(
0, 1
)

+ 1
5N
(

1
2 , (

2
3)2
)

+ 3
5N
(

13
12 , (

5
9)2
)

KU Kurtotic Unimodal 2
3N
(
0, 1
)

+ 1
3N
(
0, ( 1

10)2
)

BM Bimodal 1
2N
(
− 1, (2

3)2
)

+ 1
2N
(
1, (2

3)2
)

SPB Separated Bimodal 1
2N
(
− 3

2 , (
1
2)2
)

+ 1
2N
(

3
2 , (

1
2)2
)

SKB Skewed Bimodal 3
4N
(
0, 1
)

+ 1
4N
(

3
2 , (

1
3)2
)

TRI Trimodal 9
20N

(
− 6

5 , (
3
5)2
)

+ 9
20N

(
6
5 , (

3
5)2
)

+ 1
10N

(
0, (1

4)2
)

Note: The table reports the distributions that are used in the simulation studies in section 3.7 to draw the
structural errors. The mixture distributions are taken from Marron and Wand (1992), see their table 1.

c) Construct the confidence set Ĉn,g,α,1−q2 as in (3.26);

3. Construct Ĉn,g from (3.28).

As is demonstrated in the subsequent section, for structural impulse responses this approach

often provides confidence sets with shorter average length when compared to alternative

robust confidence set constructions proposed in the literature.

3.7. Finite sample performance

This section presents the results from a collection of simulation studies that are designed

to evaluate the size and power of the proposed hypothesis testing procedure for different

densities of the structural shocks. We also compare the performance of the test to existing

approaches available in the literature. Finally, we evaluate the coverage and length of the

confidence intervals for the structural impulse responses.

3.7.1. Size of semi-parametric score test

We start by evaluating the finite sample size of the score test Ŝn,γ̂n in the semi-parametric

SVAR model. We consider SVAR(p) specifications with p = 1, 2, 4, 8, 12 lags, K = 2, 3

variables and T = 200, 500, 1000. We simulate the SVAR(p) model for ten different choices

for the distributions of the structural errors εk,t with k = 1, . . . ,K. The density functions

that we consider and their abbreviated names are reported in Table 3.1. We standardised the

draws to have mean zero and unit variance.
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We parameterize the contemporaneous effect matrix by A(α, σ)−1 = Σ1/2(σ)R(α) where

Σ1/2(σ) is lower triangular and the rotation matrix R(α) is parameterized using the

trigonometric transformation as in section 3.2. In the bivariate case, Lα = 1 and we

choose α0 = π/5 for the data-generating process. In the trivariate SVAR, Lα = 3 and

we use α0 = (3π/5, 2π/5,−π/5)′. Furthermore, we choose Σ1/2 such that the diagonal

elements are equal to one, σii = 1 for i = 1, . . . ,K, and we set the off-diagonal elements to

σij = 0.2 for i > j. The SVAR coefficient matrices, A1, . . . , Ap are generated as diagonal

matrices with diagonal elements drawn from a N (0, 1) distribution.19 Importantly, even

though the data-generating process assumes diagonal coefficient matrices, the test is carried

out treating the coefficient matrices as full K ×K matrices. We use 250 burn-in periods to

simulate the SVAR(p) model and use M = 5, 000 Monte Carlo replications to compute the

finite-sample rejection rates of the test procedure.

Tables 3.2-3.3 report the empirical rejection frequencies of the semi-parametric score test

defined in Section 3.5 for testing the hypothesis H0 : α = α0 vs. H1 : α 6= α0. The

test is implemented following steps 1-5 in Algorithm 1 for α = α0 and using B = 6

cubic B-splines for the estimation of the log density scores. Table 3.2 reports the results

when estimating the nuisance parameters β using OLS while table 3.3 reports the results

from using the one-step efficient estimates for β which update the OLS estimates using one

Gauss-Newton iteration. All tests are conducted at 5% nominal size.

Table 3.2 shows the empirical rejection frequencies of the proposed test procedure when

using OLS estimates for the nuisance parameters. The results for T = 200 are reported

in the first panel of the table. For the SVAR(p) with K = 2 variables, the size of the

test is generally very close to the nominal size of 5%. Importantly, this holds even for

densities where we may expect identification failures – even when the shocks are normally

distributed and hence α is not identified, the test is correctly sized. The size remains correct

for all densities that are close to Gaussian, such as the t(15) and the skewed-unimodal

density. For densities that are far from Gaussian such as the seperate bi-modal density,

some under-rejection is observed.

As the number of parameters in the SVAR increases with the lag size p or the number of

variables K, the rejection rates increase and the test starts to over-reject in small samples.

For an increase in the number of lags, rejection rates only increase slightly, but when the

number of variables increases, the number of parameters grows quadratically and hence

rejection rates show a more substantial increase. Importantly, this holds regardless of the

true underlying density considered and is caused by the rather imprecise OLS estimates that

are plugged into the score test statistic.

When we increase the sample size (T = 500, T = 1, 000) these size distortions quickly

disappear and the rejection frequencies converge to the nominal size of the test. Thus, even
19To ensure stationarity of the SVAR(p) model, the coefficient matrices are sampled until inspection of the roots

of the corresponding SVAR(1) companion matrix indicates that the SVAR passes the stationarity condition.
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in the case of an SVAR with a larger lag length, the testing procedure gives correct inference,

as long as the sample size is not too small. We note that we continue to see under-rejection

for some of the densities far from Gaussianity.

Table 3.3 reports the empirical rejection frequencies for the same simulations when one-step

efficient estimates are used for the nuisance parameters. The one-step efficient estimates of

β are obtained by updating the OLS estimates of the nuisance parameters β towards the

efficient estimates by one Gauss-Newton iteration. Comparing the rejection rates in table

3.3 with those reported in the case of OLS estimates of the nuisance parameters in table

3.2, shows that using the one-step estimates yields substantial improvements in the size of

the test in small samples, especially when the number of lags is large. For example, for

the case of an SVAR with three variables and 12 lags, the size of the rejection rates are

very close to the nominal size of 5%. As the sample size grows, the difference between the

two approaches is less pronounced and the procedures yield comparable rejection rates. For

medium and large samples, either of the procedure can result in rejection rates closer to the

nominal size, depending on the number of lags, the number of variables and the distribution

of the structural errors that generated the data.

We note here that using one-step efficient updates of β also remedies the under-rejection

observed for some of the Gaussian mixture distributions in Table 3.2.

Overall, we may conclude that the empirical size of the test is close to the nominal size

regardless of the choice for the true densities, i.e. Gaussian, close to Gaussian, or far from

Gaussian. Finite sample size distortions can be largely overcome by using one-step efficient

estimates.

3.7.2. Comparison to alternative approaches

Next, we compare the performance of the semiparametric score test to a variety of

alternative methods that have been proposed in the literature based on size and power. We

distinguish between two types of tests: (i) tests that do not fix α under the null (e.g. Wald

and Likelihood ratio type tests) and (ii) tests that fix under the null (e.g. score type tests).

Clearly, from the discussion in Section 3.2 it follows that we expect the tests in the first

category to perform poorly as they are vulnerable to identification failures.20

In the first category, we consider three tests: the psuedo maximum likelihood Wald test

(WPML) of Gouriéroux et al. (2017), which we implement using one (standardised) t(7)

density and a (standardised) t(12) density for the second shock, as in Gouriéroux et al.

(2017). We additionally consider two tests based on the work of Lanne and Luoto (2021):

these are the GMM Wald (WLL) and distance metric (DMLL) tests based on higher (third

& fourth) order moment conditions.
20Simulation evidence in Lee and Mesters (2022a) has shown that tests that do not fix α under the null often

show severe over-rejection in ICA models when the errors are close to Gaussian.
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Table 3.2: Empirical rejection frequencies using OLS Estimates

K p N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

T = 200

2 1 4.56 5.18 4.90 4.74 4.00 4.54 1.64 2.22 4.02 1.98
2 2 4.84 4.86 4.90 5.00 3.94 4.74 2.48 2.50 3.46 1.88
2 4 5.68 5.50 5.16 5.56 4.34 4.58 2.66 3.32 4.64 1.60
2 8 6.24 6.94 6.68 5.82 5.54 5.58 3.42 3.38 5.52 2.20
2 12 7.78 7.42 7.32 7.40 5.64 6.04 4.04 4.18 6.84 3.52

3 1 5.10 5.38 6.32 7.12 5.36 5.98 5.44 4.80 5.46 5.30
3 2 6.36 6.68 7.14 6.96 6.04 4.88 5.72 3.98 5.92 4.36
3 4 8.00 8.44 8.90 9.20 7.18 5.34 5.90 4.10 6.66 4.42
3 8 11.30 12.28 11.72 12.52 8.74 7.32 7.30 4.76 9.88 6.46
3 12 16.32 16.90 17.26 15.28 10.92 11.32 11.06 7.36 13.84 8.28

T = 500

2 1 5.08 4.78 5.30 4.60 3.92 4.42 1.78 1.48 3.08 1.76
2 2 4.86 5.16 4.24 4.02 4.04 4.92 1.96 1.64 3.62 1.66
2 4 5.16 5.02 5.24 4.68 4.24 5.34 2.28 2.04 3.64 1.46
2 8 5.40 5.38 5.02 4.80 5.12 5.70 2.42 3.14 4.16 1.54
2 12 6.50 5.94 5.72 5.34 5.18 7.12 3.04 4.22 4.34 1.82

3 1 4.84 5.84 5.56 6.40 5.12 6.08 4.64 5.18 4.96 5.56
3 2 5.56 5.80 6.40 5.70 6.16 5.02 4.28 5.28 4.80 4.94
3 4 6.14 6.66 6.58 6.72 5.82 4.38 4.66 4.44 4.76 4.40
3 8 7.74 8.06 8.22 8.50 7.68 5.72 5.66 4.32 6.42 4.36
3 12 9.86 9.84 10.04 9.74 8.82 5.86 5.70 4.46 7.66 4.50

T = 1, 000

2 1 5.24 4.52 3.90 4.20 3.86 4.36 1.82 1.14 3.00 1.18
2 2 4.38 4.84 4.58 4.18 3.82 4.84 1.48 1.84 2.82 1.68
2 4 5.00 4.92 4.42 4.28 4.08 4.94 2.04 1.88 2.92 1.52
2 8 5.18 4.88 4.84 4.08 4.92 6.58 2.32 2.44 2.78 1.56
2 12 5.68 5.34 5.42 4.46 5.28 7.68 2.76 3.60 3.82 1.74

3 1 4.68 4.88 5.38 5.08 4.94 5.58 5.22 5.04 5.00 5.14
3 2 4.62 4.72 5.76 5.12 5.64 5.76 4.46 5.08 4.26 4.60
3 4 4.92 4.84 5.06 5.72 6.24 5.02 4.66 4.60 4.30 5.08
3 8 7.10 5.92 5.84 6.16 6.54 5.64 5.08 4.66 5.08 4.14
3 12 7.70 7.28 7.62 7.18 7.04 5.36 4.86 4.44 5.42 4.44

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
H0 : α = α0 vs. H1 : α 6= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance
parameters β are estimated by OLS. The columns correspond to different choices for the distributions of the
structural shocks, εk,t for k = 1, . . . ,K. The distributions are reported in Appendix XX. Rejection rates are
computed based on M = 5, 000 Monte Carlo replications.
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Table 3.3: Empirical rejection frequencies using One-step Estimates

K p N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

T = 200

2 1 5.94 6.26 6.48 5.34 5.46 4.94 4.12 5.28 4.48 4.26
2 2 5.94 5.18 5.68 5.26 5.16 4.20 5.16 5.56 4.12 4.98
2 4 4.86 5.12 4.20 4.34 4.82 3.98 4.48 5.36 4.54 5.36
2 8 4.24 4.30 4.76 4.32 4.46 3.70 5.08 6.42 4.04 5.54
2 12 3.92 3.72 3.52 4.18 4.06 3.58 5.26 6.58 3.94 5.88

3 1 7.36 7.26 7.60 7.50 7.12 6.36 6.60 6.44 5.72 6.78
3 2 7.42 7.50 7.70 7.98 7.44 7.40 6.46 6.38 6.64 6.30
3 4 6.56 8.12 7.70 8.20 6.98 6.20 6.46 6.76 5.86 6.04
3 8 4.26 4.78 4.74 5.60 4.36 4.16 3.34 4.06 3.70 3.92
3 12 2.20 2.40 2.48 2.58 2.80 3.00 2.40 2.58 2.04 2.86

T = 500

2 1 6.64 6.60 6.92 6.26 5.42 4.60 5.58 6.16 4.54 5.62
2 2 6.20 6.72 5.64 5.34 5.54 4.76 6.20 6.18 4.90 5.38
2 4 6.20 6.74 6.26 5.72 5.40 4.40 6.22 6.12 4.94 6.34
2 8 5.58 5.92 5.68 5.76 5.08 4.46 6.10 6.82 4.96 6.34
2 12 6.04 5.48 5.12 5.00 4.70 5.88 6.60 7.70 4.24 7.72

3 1 8.04 8.66 7.68 7.68 5.80 6.30 5.40 6.08 5.64 5.70
3 2 7.74 7.66 8.38 6.94 6.18 6.72 5.56 6.20 5.92 5.90
3 4 7.74 8.24 7.62 7.54 6.60 6.72 6.24 6.78 5.62 6.38
3 8 7.86 7.98 8.96 7.68 6.22 7.12 6.86 8.24 6.56 6.82
3 12 7.86 8.22 7.60 7.36 6.40 6.36 6.86 8.34 6.92 5.98

T = 1, 000

2 1 6.94 5.82 5.60 5.96 5.16 4.58 5.76 5.58 4.74 5.12
2 2 5.92 6.12 6.28 6.22 4.94 4.88 5.50 5.44 4.30 5.58
2 4 6.36 6.12 5.80 6.16 4.88 4.56 6.14 6.12 4.06 5.32
2 8 6.08 5.94 6.36 5.70 5.60 5.10 6.24 6.56 4.22 6.14
2 12 6.38 5.72 6.54 5.48 5.92 5.00 6.06 7.58 5.06 7.26

3 1 7.64 7.12 7.38 6.62 5.06 6.02 5.70 5.56 5.94 5.32
3 2 7.80 7.10 7.72 6.54 5.84 5.40 5.64 5.82 5.16 4.64
3 4 7.36 7.20 7.02 7.00 6.14 5.94 6.22 6.24 5.40 5.44
3 8 8.86 8.08 7.10 7.48 5.50 7.06 6.88 6.26 5.98 6.86
3 12 8.34 8.38 8.74 7.58 6.28 7.44 7.76 7.38 6.42 8.34

Note: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis
H0 : α = α0 vs. H1 : α 6= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance
parameters β are estimated by the one-step efficient procedure. The columns correspond to different choices
for the distributions of the structural shocks, εk,t for k = 1, . . . ,K. The distributions are reported in Appendix
XX. Rejection rates are computed based on M = 5, 000 Monte Carlo replications.
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In the second category we consider four tests. Firstly we have the pseudo maximum

likelihood Lagrange Multiplier test (LMPML) that is based on work of Gouriéroux et al.

(2017). This test is based on the score of the pseudo log likelihood which we take, following

Gouriéroux et al. (2017), to be the Student’s t with degrees of freedom fixed at ν = 7 and

ν = 12 for the first and second shocks respectively.21 Secondly, we consider the LM

test corresponding to the GMM setup of Lanne and Luoto (2021) (LMLL). Lastly, we

compare to the recently proposed robust GMM methods of Drautzburg and Wright (2021).

We include both tests that they propose. The first is based on the S-statistic of Stock

and Wright (2000) which sets the cross third and fourth order moments to zero (SDW).

Second, we include their non-parametric test which is based on Hoeffding (1948) and Blum

et al. (1961) and sets all higher order cross moments to zero (BKRDW). The SDW has

the benefit that it does not require a full independence assumption, whereas the BKRDW

test, similarly to our semi-parametric score test, requires full independence of the structural

shocks. We implement the SDW and BKRDW tests using the bootstrap procedure described

in Drautzburg and Wright (2021).

To evaluate the finite-sample performance, we focus on an SVAR(1) model with K = 2

variables and a sample size of T = 500. We use the same parameterization and parameter

values as described in the previous subsection to generate the data. However, different to

the previous simulation study evaluating the size of the score test, we report results both

for the case where the structural errors ε1,t, ε2,t are identically distributed, but also for the

case where the first error is fixed to have a Gaussian distribution while the distribution of

the second structural error varies. Note that in the latter case, theoretically non-Gaussianity

can still be used to identify the parameters of the SVAR if the second structural error does

not follow a Gaussian distribution. However, we suspect identification to be weaker in this

case.

Size comparison

Table 3.4 reports the results from the simulation study and compares the size of the

alternative testing procedures to the size of the score test. The first panel reports the

case where the two structural errors, ε1,t, ε2,t are drawn from the same (non-Gaussian)

distribution while the second panel reports the results where ε1,t is fixed to have a Gaussian

distribution.

The results reconfirm that the tests based on the efficient score function indeed control the

size of the test well. The same is true of the competitor tests in group (ii) for most (but not

all) of the shock distributions considered. In contrast the tests in group (i) typically perform

poorly, often displaying severe over-rejection.
21Note that this test is not actually used in Gouriéroux et al. (2017), but the simulations in Lee and Mesters

(2022a) show that it has reliable size for i.i.d. linear simultaneous equations models.
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First, note that the rejection rates for the two efficient score tests (Ŝ) in the case of identically

distributed shocks are close to the nominal size of 5%, regardless of the distribution of

the structural shocks (as in table 3.3). Inspecting the second panel of the table, we note

that the performance of the score test does not deteriorate when the first structural error is

Gaussian; the rejection rates continue to be close to the nominal size of 5% regardless of

the distribution of the second error.

Next consider the LM test based on Gouriéroux et al. (2017) (LMPML): in the case with

one Gaussian density, this test is able to control size for all choices of the second density

considered. In the case where both shocks are drawn from the same distribution, this test

is able to control size for most of the distributions, however over-rejects somewhat for the

BM, SPB and TRI distributions.

The LM test based on Lanne and Luoto (2021) (LMLL) displays slightly worse performance,

with over-rejections for about half of the distributions considered. Interestingly many of

these over-rejections occur in the first panel, where we may expect that identification is

somewhat stronger. The tests of Drautzburg and Wright (2021) (GMMDW and BKRDW)

generally perform well, with the former always controlling size correctly and the latter over-

rejecting only in a few cases (e.g. the kurtotic unimodal distribution).

As expected, the tests in group (i) tend to perform very poorly, with the simulation results

demonstrating both substantial over-rejection and extremely conservative performance,

depending on the test and distribution pair.

To summarise, most of the alternative procedures lead to incorrect inference if the

distribution of the structural shocks is not “sufficiently” non-Gaussian. Furthermore, the

identity of the best-performing alternative procedure crucially depends on which non-

Gaussian distribution generated the data. In contrast, the semi-parametric score test

proposed in this paper gives correct inference regardless of the distribution of the structural

errors and whether one or both errors are non-Gaussian.

Power comparison

Next, we compare the power of the tests that control the size well. We again focus on an

SVAR(1) model with K = 2 variables a sample size of T = 500, and two independent

errors drawn from the same distribution.

Figure 3.2 reports the raw (i.e not size-adjusted) power for the semi-parametric score test

using one-step nuisance parameter estimates (red solid line), the semi-parametric score test

using OLS nuisance parameter estimates (black sold line), the psuedo maximum likelihood

LM test (dot - dashed blue line), the Drautzburg and Wright (2021) GMM test (dotted

green line) and the non-parametric Drautzburg and Wright (2021) test (dot - dashed purple

line). For the t distributions in the first row of the figure, the best performing test is the
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Table 3.4: Empirical rejection frequencies for alternative tests

Test N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

ε1,t ∼ ε2,t
Ŝols 4.56 6.24 4.72 4.56 5.16 5.16 4.28 4.40 4.16 4.56
Ŝonestep 5.88 7.28 6.28 4.92 5.28 5.20 4.92 4.48 4.64 5.20
LMPML 4.48 4.84 4.96 4.84 6.36 5.76 20.44 31.68 5.68 32.36
LMLL 6.04 9.88 13.20 25.88 22.36 14.96 5.64 4.72 11.32 5.28
GMMDW 3.40 4.04 3.92 5.24 4.88 4.36 3.04 2.36 3.56 2.96
BKRDW 5.00 4.64 4.00 5.24 6.76 30.56 4.80 4.76 6.44 4.80
WPML 20.44 3.16 1.60 2.40 3.36 3.32 100.00 100.00 3.12 100.00
WLL 74.96 44.08 22.64 1.00 0.44 2.40 0.00 0.00 50.00 0.00
DMLL 11.80 12.56 13.60 14.28 11.96 10.68 5.48 4.92 13.72 4.28

ε1,t ∼ N (0, 1)

Ŝols 5.12 4.52 4.64 4.40 4.16 4.36 1.60 1.12 3.48 1.88
Ŝonestep 6.72 6.32 6.20 5.76 5.08 4.56 5.04 5.00 5.24 6.00
LMPML 5.56 6.28 5.68 6.08 9.04 6.80 5.68 6.68 5.04 5.68
LMLL 7.36 6.12 6.40 6.56 7.12 8.08 12.36 13.60 6.24 12.36
GMMDW 3.00 3.84 4.36 5.56 3.60 3.20 3.04 4.52 3.32 4.08
BKRDW 4.52 5.24 5.28 5.88 9.84 49.72 7.56 9.20 13.44 9.32
WPML 22.20 10.40 7.64 2.04 1.88 1.44 95.08 97.68 11.20 97.92
WLL 74.88 67.40 58.64 24.64 14.80 43.84 56.08 50.88 72.36 54.28
DMLL 12.04 11.96 11.48 9.08 9.24 11.64 6.20 5.04 12.72 5.20

Note: The table reports empirical rejection frequencies for tests of the hypothesis H0 : α = α0 vs. H1 : α 6=
α0 with 5% nominal size for the SVAR(1) model with K = 2 and T = 400, and α0 = π/5. Ŝols denotes
the semi-parametric score test using OLS estimates for β, Ŝonestep uses one-step efficient estimates. LMLL,
WLL and DMLL denote the GMM-based LM, Wald and distance metric tests of Lanne and Luoto (2021).
LMPML and WPML denote the pseudo-maximum likelihood LM and Wald tests of Gouriéroux et al. (2017),
GMMDW denotes the GMM-based test of Drautzburg and Wright (2021), BKRDW denotes the non-parametric
test of Drautzburg and Wright (2021). The columns correspond to different choices for the distributions of the
structural shocks, εk,t for k = 1, . . . ,K. The distributions are reported in Table 3.1. The tests of Drautzburg
and Wright (2021) use 500 bootstrap replications to simulate the null distribution of the test statistics. Rejection
rates are computed based on M = 2, 500 Monte Carlo replications.

psuedo maximum likelihood LM test, which is based on a t – density and therefore has

the correct shape. Nevertheless, the efficient score tests are not far behind, offering almost

comparable power. Moreover, in the other panels, the efficient score tests are typically

the most powerful tests (that also control size), with the one-step update version performing

slightly better. The quality of the other three tests depends to a large extent on the underlying

density. For example, the tests of Drautzburg and Wright (2021) offer very little power in

the t-distribution cases, but for the other distributions considered their non-parametric test

has power curves which are not much below those of the efficient score test.22

22For the kurtotic unimodal distribution the power curve of this test is higher, however this test is substantially
oversized for this density. It should also be noted that the tests of Drautzburg and Wright (2021) are
substantially more computationally demanding than the efficient score based approaches, as they utilise a
bootstrap approach to obtain the critical value.
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Figure 3.2: Power in the SVAR(1) model
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Notes: The figure reports unadjusted empirical power curves for tests of the hypothesis H0 : α = α0 vs. H1 : α 6= α0

with 5% nominal size for the SVAR(1) model with K = 2 and T = 500. The x-axis corresponds to different alternatives
for α around α0 = π/5. Ŝols denotes the semi-parametric score test using OLS estimates for β, Ŝonestep uses one-step
efficient estimates. LMPML denotes the pseudo-maximum likelihood test of Gouriéroux et al. (2017), GMMDW denotes
the GMM-based test of Drautzburg and Wright (2021),BKRDW denotes the non-parametric test of Drautzburg and Wright
(2021). The tests of Drautzburg and Wright (2021) use 500 bootstrap replications to simulate the null distribution of the test
statistics. Rejection frequencies are computed using M = 1, 000 Monte Carlo replications.

Coverage & Average length of confidence sets

Figures 3.3 and 3.4 compare the coverage rate of confidence intervals for the structural

impulse response of the first variable to the first shock constructed based on the procedure

outlined in Section 3.6 and those of Drautzburg and Wright (2021). These results are based

on a SVAR(1) model with K = 2, T = 500, and two independent errors drawn from the

same distribution. In each case, the coverage rate and length are calculated as that of the

convex hull of the confidence set proposed in Section 3.6.

Figure 3.3 demonstrates that, as expected, all of these procedures provide correct coverage

rates, except for the non-parametric approach of Drautzburg and Wright (2021) with the

kurtotic unimodal density. Figure 3.4 demonstrates that whilst the average length of these

confidence sets is generally within the same ballpark, there are some differences between the

methods depending on the underling density. In general the efficient score based approaches

outperform the GMM based approach of Drautzburg and Wright (2021) in all cases except
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Figure 3.3: Coverage rates of Ĉn,g,α,0.9
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Notes: The figure reports empirical coverage rates of confidence intervals at individual horizons for the impulse response of
the first variable to the first shock 90% nominal coverage for the SVAR(1) model with K = 2 and T = 500. Ŝols denotes
the semi-parametric score test using OLS estimates for β, Ŝonestep uses one-step efficient estimates. GMMDW denotes
the GMM-based test of Drautzburg and Wright (2021) and BKRDW denotes the non-parametric test of Drautzburg and
Wright (2021).The tests of Drautzburg and Wright (2021) use 500 bootstrap replications to simulate the null distribution of
the test statistics. The tests of Drautzburg and Wright (2021) use 500 bootstrap replications to simulate the null distribution
of the test statistics. Average length is computed using M = 1, 000 Monte Carlo replications.

for the trimodal density (and the separated bimodal case for the one-step efficient version).

Against the non-parametric approach of Drautzburg and Wright (2021) the comparison is

closer, again with the exception of trimodal and separated bimodal densities.23 For the

t-densities the efficient score approaches attain shorter lengths. There is no substantial

difference in these conclusions across horizons in either figure.

23Recall that for the kurtotic unimodal density the non-parametric approach from Drautzburg and Wright (2021)
does not have correct coverage.
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Figure 3.4: Average length of Ĉn,g,α,0.9
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Notes: � Lukas: TODO: Add description here The figure reports average length of confidence intervals at individual
horizons for the impulse response of the first variable to the first shock 90% nominal coverage for the SVAR(1) model with
K = 2 and T = 500. Ŝols denotes the semi-parametric score test using OLS estimates for β, Ŝonestep uses one-step
efficient estimates. GMMDW denotes the GMM-based test of Drautzburg and Wright (2021) and BKRDW denotes
the non-parametric test of Drautzburg and Wright (2021).The tests of Drautzburg and Wright (2021) use 500 bootstrap
replications to simulate the null distribution of the test statistics. The tests of Drautzburg and Wright (2021) use 500 bootstrap
replications to simulate the null distribution of the test statistics. Average length is computed usingM = 1, 000 Monte Carlo
replications.
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3.8. Applications

3.8.1. Labor supply/demand model of Baumeister and Hamilton (2015)

Recall the bivariate SVAR(p) model of the U.S. labor market of Baumeister and Hamilton

(2015). We have Yt = (∆wt,∆ηt)
′, where ∆wt is the growth rate of real compensation per

hour and ∆ηt is the growth rate of total U.S. employment.

Yt = c+B1Yt−1 + · · ·+BpYt−p +B−1
0 Σ1/2 εt, B0 ≡

[
−αd 1

−αs 1

]
, Σ1/2 ≡

[
σ1 0

0 σ2

]
(3.29)

In the model, αd is the short-run wage elasticity of demand, and αs is the short-run wage

elasticity of supply. The number of lags used in the SVAR is p = 8 and sign restrictions

imposed on the supply and demand elasticities require that αs > 0 and αd < 0. It is further

assumed that σ1, σ2 > 0.

In addition to the sign restrictions discussed above, Baumeister and Hamilton (2015)’s

identification approach includes carefully motivated priors on the short-run labor supply and

demand elasticities, based on estimates from the micro-econometric and macroeconomic

literature, as well as a long-run restriction on the effect of labor-demand shocks on

employment. The latter restriction was recently criticized by Lanne and Luoto (2021) who

revisited the application using a non-Gaussianity identification strategy that is not robust to

weak identification.

To address the identification problem, we consider the robust SVAR approach described in

this paper that exploits potential non-Gaussianity in the structural shocks to simultaneously

test (αd, αs) = (αd0, α
s
0) for different choices of α0 to obtain confidence sets for the

elasticity parameters as well as confidence bands for the impulse responses to labor supply

and labor demand shocks. Specifically, we construct confidence sets for α using Algorithm

1 of Section 3.5 and confidence bands for the impulse responses using Algorithm 2 of

Section 3.6. To this end, we estimate b = (c, vecB1
′, . . . , vecBp

′)′ in (3.29) equation-

by-equation by OLS. Given b̂, as well as a hypothesised α0, we can estimate the variance

parameters σ = (σ1, σ2) in (3.29) by methods of moments, solving the system of equations

vech
(
B0(α0)Σ̂uB0(α0)′

)
= vech

(
Σ1/2Σ1/2′

)
for σ. Confidence bands for the impulse

responses are then constructed using the usual asymptotic Delta method approach with a

Bonferroni correction, as in section 3.6.24

24For each α, the estimates of Σb̂ and Σσ̂ required for the Delta method are constructed using the usual
asymptotic formulas, see Kilian and Lütkepohl (2017). We also considered an alternative version using
standard errors obtained using a standard recursive non-parametric bootstrap with minor differences in results.
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Confidence Sets for (αd, αs)

We start by testing for independent components using the permutation test of Matteson and

Tsay (2017). The test does not reject that εt has independent components (p-value = 0.43),

hence we conclude that our main identifying assumption is likely to hold and proceed with

constructing confidence sets for the elasticity parameters.

Figure 3.5 shows the 95% and 84% joint confidence sets for labor demand (αd) and labor

supply (αs) parameters obtained using Algorithm 1 of Section 3.5. The confidence sets

are constructed based on a grid of 250,000 equally spaced points for (αd, αs) ∈ [−3, 0) ×
(0, 3] which covers the majority of elasticity estimates reported in the microeconometric

literature, as well as findings from theoretical macroeconomic models (see the discussion

in Baumeister and Hamilton (2015)). The figure shows that overall, non-Gaussianity is not

sufficient to pin down a precise region for the elasticities. For sufficiently negative values of

the short-run demand elasticity, the short-run supply elasticity is reasonably well identified

from non-Gaussianity with confidence sets indicating that αs lies in the 0 - 0.3 range for

both 95% and 84% confidence level. In contrast, for values of αd that are less negative

(smaller absolute value), the confidence sets support a wide range of values for the supply

elasticity, spanning almost all values in the inspected grid. Our results match the findings of

Baumeister and Hamilton (2015) who report that the main posterior mass for αs lies in the

0 - 0.5 range while the posterior for αd indicates that demand elasticities between -3 and 0

are well supported by the model.

Note that the estimate of Lanne and Luoto (2021) obtained using non-Gaussianity

identification (αd = 0.765, αs = −0.197) falls within our confidence set at both levels.

However, they find narrow confidence sets for the elasticity parameters (asymptotic standard

errors of 0.196 for αd and 0.057 for αs, respectively) while our weak-identification robust

approach results in much wider confidence sets, similar to the credible sets of Baumeister

and Hamilton (2015).

Confidence Sets for impulse responses

Figure 3.6 shows our identification-robust 90% and 67% confidence sets for the impulse

responses to labor-demand and labor-supply shocks. Comparing the impulse response bands

to the posterior credible sets reported by Baumeister and Hamilton (2015), we note that the

implied impulse responses are, overall, very similar and show long and persistent responses

to the supply and demand shocks. The main differences are that our 90% identification-

robust bands support slightly negative long-run responses of the real wage and employment

to a demand shock as well as a more pronounced negative long-run response of employment

to a supply shock while Baumeister and Hamilton (2015)’s credible sets contain only

(weakly) positive responses. Comparing our results to Lanne and Luoto (2021), we note
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several differences. First, Lanne and Luoto (2021) find a significant negative long-run

response of the real wage to a supply shock while our confidence sets do not rule out that the

long-run response is weakly positive. Second, and most important, they find a strong and

significant dynamic response of both the real wage and employment to the labor demand

shock, inconsistent with the tight prior variance Baumeister and Hamilton (2015) impose

on the long-run response of employment to a demand shock. In contrast to their findings,

our 90% identification-robust confidence bands do not rule out that the long-run response

of either variable to the demand shock is zero. This evidence suggests that the long-run

restriction of Baumeister and Hamilton (2015) cannot be rejected solely on the basis of

non-Gaussianity.

Figure 3.5: Confidence Sets for Labor Demand and Supply Elasticities

Notes: 95% (light blue) and 84% (dark blue) confidence regions for labor demand and supply elasticities obtained using
250,000 equally-spaced grid points for (αd, αs) ∈ [−3, 0)× (0, 3].
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Figure 3.6: IRF confidence bands for labor demand and supply shocks

Notes: 90% (light blue) and 67% (dark blue) identification-robust confidence bands for impulse responses to labor supply
and labor demand shocks, obtained using 250,000 equally-spaced grid points for (αd, αs) ∈ [−3, 0)× (0, 3].
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3.8.2. Oil price model of Kilian and Murphy (2012)

Next, we revisit the tri-variate oil market SVAR(p) model of Kilian and Murphy (2012). We

have Yt = (∆qt, xt, pt)
′ where ∆qt is the percent change in global crude oil production, xt

is an index of real economic activity representing the global business cycle and pt is the log

of the real price of oil.

Yt = c+B1yt−1 + · · ·+BpYt−p +A−1(α, σ) εt, A−1(α, σ) =

σ1 α1 α2

σ2 σ4 α3

σ3 σ5 σ6


(3.30)

where p = 24. In this model, εt consists of a shock to the world production of crude oil

(“oil supply shock”), a shock to the demand for crude oil and other industrial commodities

associated with the global business cycle (“aggregate demand shock”), and a shock to

demand for oil that is specific to the oil market (“oil-market-specific demand shock”).

The baseline model of Kilian and Murphy (2012) makes use of the following sign

restrictions on the impact responses in A−1 to identify impulse responses:

A−1(α, σ) =

− + +

− + −
+ + +

 (3.31)

In addition, Kilian and Murphy (2012) impose a set of upper bounds on the short-run

oil supply elasticities implied by the model to shrink the identified set for the impulse

responses. Specifically, they assume that the short-run (impact) price elasticity of oil supply

(α2/σ6) as well as the short-run (impact) demand elasticity of oil supply (α1/σ5) are smaller

than 0.0258 and that −1.5 < α3 < 0. These restrictions, in particular the elasticity bounds,

have been criticized by Baumeister and Hamilton (2019) as being too restrictive, and there

is an active debate around which values for these bounds are warranted by the data (see

Herrera and Rangaraju (2020) for an overview).

To address the identification problem, we consider the robust SVAR approach described in

this paper that exploits possible non-Gaussianity in the structural shocks to simultaneously

test (α1, α2, α3) = (α0,1, α0,2, α0,3) for different choices of α0 to obtain confidence sets

for α and confidence bands for the impulse responses to the oil supply shock, the aggregate

demand shock and the oil-market-specific demand shock.

Specifically, we construct confidence sets forα = (α1, α2, α3) using Algorithm 1 of Section

3.5 and confidence bands for the impulse responses using Algorithm 2 of Section 3.6. To

this end, we estimate b = (c, vecB1
′, . . . , vecBp

′)′ by equation-by-equation OLS, and

given α0 and b̂, we estimate the variances σ = (σ1, . . . , σ6) by method of moments, solving
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the system of 6 equations implied by vech
(
A−1(α0, σ)A−1(α0, σ)′

)
= vech

(
Σ̂u

)
for σ.25

Confidence bands for the impulse responses are then constructed using the usual asymptotic

Delta method approach with a Bonferroni correction, as in Section 3.6 .26

Confidence sets for oil supply elasticities

We start by testing for independent components using the permutation test of Matteson and

Tsay (2017). The test does not reject that εt has independent components (p-value = 0.77),

hence we conclude that our main identifying assumption is likely to hold and proceed with

constructing confidence sets for the elasticity parameters.

Next, we construct confidence sets for α based on a grid of 8,000 equally spaced points for

for (α1, α2, α3) ∈ (0, 0.5] × (0, 1.5] × [−1.5, 0). The end points of the grid were chosen

based on Kilian and Murphy (2012)’s assumption that −1.5 < α3 < 0 while allowing

for a wider range of implied supply elasticities to address the critique of Baumeister and

Hamilton (2019). In particular, note that based on the reduced-form estimate of Σu and

the estimators σ̂(α0) for each α0 in the grid, the maximum short-run supply elasticities

supported by this grid are (α1/σ5, α2/σ6) = (0.35, 0.27), well in excess of the bounds

imposed by Kilian and Murphy (2012) and nesting a large share of supply elasticity

estimates previously reported in the literature (Herrera and Rangaraju, 2020).

The resulting 84% confidence sets for α imply upper bounds on the elasticities

(α1/σ5, α2/σ6) equal to (0.29, 0.04). We note that non-Gaussianity helps to identify the

impact price elasticity of the oil supply since the upper bound implied by the confidence

set is significantly reduced to about double the original bound considered by Kilian and

Murphy (2012). In contrast, the upper bound on the impact elasticity of oil supply with

respect to economic activity can not be well identified using non-Gaussianity as the upper

bound remains close to the maximum value implied by the grid. Finally, we note that non-

Gaussianity alone is not sufficient to pin down the response of real economic activity to an

oil-specific supply shock, since the 84% confidence set for α3 includes the bound of the

grid (α3 = −1.5). Overall, based on the robust confidence sets, we conclude that relying

on non-Gaussianity and sign restrictions alone is not sufficient to identify supply elasticities

and unable to settle the current debate in the literature.
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Figure 3.7: IRF Confidence Bands in the Oil Market Model

Notes: 90% (light blue) and 67% (dark blue) identification-robust confidence bands for the impulse responses to oil supply,
aggregate demand and oil-specific demand shocks, obtained using 8,000 equally-spaced gird points for (α1, α2, α3) ∈
(0, 0.5]× (0, 1.5]× [−1.5, 0).

Confidence Sets for Impulse Responses

Finally, we turn to inspecting the 90% and 67% confidence bands for impulse responses to

oil supply, aggregate demand and oil-specific supply shocks which are depicted in Figure

3.7. We note that our confidence bands exhibit response patterns that are very close to

the results reported in Kilian and Murphy (2012) based on sign restrictions and the more

restrictive elasticity bounds. In particular, the responses of oil production are identified

precisely while the responses of global real activity and of the real price of oil exhibit more

uncertainty with insignificant and flat responses to the oil supply shock, significant positive

hump-shaped responses to the aggregate demand shock and mixed response patterns to the

oil-specific demand shock. While our impulse response bands agree with the results in

Kilian and Murphy (2012), it is important to keep in mind that our confidence sets for α

implied that the restriction we imposed on α3 is binding. Hence, based on sign restrictions
25This system does not have a closed-form solution and we employ a numeric gradient-based algorithm to

obtain σ̂ with initial values corresponding to the recursive identification solution, α = (0, 0, 0), that recovers
σ as the (sign-corrected) lower triangular Cholesky factor of Σ̂u.

26For each α, the estimates of Σb̂ and Σσ̂ required for the Delta method are constructed using the usual
asymptotic formulas, see Kilian and Lütkepohl (2017). We also considered an alternative version using
standard errors obtained using a standard recursive non-parametric bootstrap with minor differences in results.
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and non-Gaussianity alone it is not possible to confirm the response patterns identified by

Kilian and Murphy (2012) without making additional restrictions on impact responses.
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3.9. Conclusion

This paper develops robust inference methods for structural vector autoregressive (SVAR)

models that are identified via non-Gaussianity in the distributions of the structural errors.

We treat the SVAR model as a semi-parametric model where the densities of the structural

errors form the non-parametric part and conduct inference on the possibly weakly identified

or non identified parameters of the SVAR, using a semi-parametric generalisation of

Neyman’s C(α) statistic. We additionally provide a two-step Bonferroni-based approach to

conduct inference on smooth functions of all the finite-dimension parameters of the model.

We assess the finite-sample performance of our method in a large simulation study and find

that the empirical rejection frequencies of the semi-parametric score test are always close

to the nominal size, regardless of the true distribution of the errors. Moreover, the power of

the test is typically higher than alternative methods that have been proposed in the literature.

Finally, we employ the proposed approach in a number of empirical studies. Overall our

findings are mixed. Whilst non-Gaussianity does provide some identifying information for

the structural parameters of interest, it is unable to pin down all parameter values and/or

impulse responses precisely. These exercises also highlight the importance of using weak

identification robust methods to asses estimation uncertainty when using non-Gaussianity

for identification.
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Appendices

A. Proofs and additional results

A.1. Density score estimation

Lemma A.1. Suppose Assumptions 3.3.1 and 3.3.2 hold. Let θ̃n = (αn, β̃n, η)→ θ where√
n‖β̃n − β‖ = O(1). Then the log density score estimates φ̂k,n defined as in (3.17) satisfy

for j, k = 1, . . . ,K, k 6= j

1

n

n∑
t=1

[
φ̂k,n(An,k•(Yt −BnXt))− φk(An,k•(Yt −BnXt))

]
Wn,t = oPn

θ̃n
(n−1/2), (32)

where An := A(αn, β̃n) and Bn := B(β̃n) and for νn = ν2
n,p with 1 < p ≤ 1 + δ/4 and

n−1/2(1−1/p) = o(νn,p) we have

1

n

n∑
t=1

([
φ̂k,n(An,k•(Yt −BnXt))− φk(An,k•(Yt −BnXt))

]
Wn,t

)2
= oPn

θ′n
(νn). (33)

where Wn,t are any random variables independent from all An,k•(Ys − cn − BnXs) with

s > t and such that supn∈N,1≤t≤n Eθ̃nW
2
n,t <∞ and 1

n

∑n
t=1W

2
n,t − Eθ̃nW

2
n,t

Pn
θ̃n−−→ 0.

Proof of Lemma A.1. The proof follows by an argument analogous used to prove Lemma 3
of Lee and Mesters (2022a); see Lee and Mesters (2022b) for the proof.

A.2. Main proofs

Proof of Proposition 3.4.1. Throughout we work conditional on (Y−p+1, . . . , Y0)′. Define

Wn,t :=
1

2
√
n

[
c′ ˙̀θn(Yt, Xt) +

K∑
k=1

hk(An,k•Vθn,t)

]
,

where An := A(αn, σn), Fn,t := σ(Yt, Xt), Fn := Fn,n and note that
(Wn,t,Fn,t)n∈N, t∈[n] forms an adapted stochastic process. Moreover it is clear that given
assumption 3.3.12,

E [Wn,t|Fn,t−1] =
1

2
√
n

[
c′E
[

˙̀
θ(Yt, Xt)|Fn,t−1

]
+

K∑
k=1

E[hk(An,k•Vθn,t)|Fn,t−1]

]
= 0,

(34)
almost surely, where the expectation is taken under Pnθn .
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Next define Zn,t := (zn,t/zn,t−1)1/2 − 1 where zn,0 = 1 and else

zn,j :=

(
|Ãn|
|An|

)j
×

j∏
t=1

K∏
k=1

ηk(Ãn,k•Ṽn,t)

ηk(An,k•Vn,t)

(
1 + hn,k(Ãn,k•Ṽn,t)/

√
n
)
,

i.e.,

Zn,t :=

[
|Ãn|
|An|

K∏
k=1

ηk(Ãn,k•Ṽn,t)

ηk(An,k•Vn,t)

(
1 + hn,k(Ãn,k•Ṽn,t)/

√
n
)]1/2

− 1.

We now verify conditions (S2) – (S6) of Theorem 2.1.2 in Taniguchi and Kakizawa (2000),
having shown (S1) to hold above. (S2), i.e. that E

∑n
t=1[Wn,t − Zn,t]2 → 0, where the

expectation is taken under Pnθn is shown to hold in Lemma A.5 below. (S3) – (S6) follow
from Lemmas A.9 and A.10. (S3) follows immediately from Lemma A.9; (S5) follows
from Lemma A.10 by Markov’s inequality. For (S4), use the uniform integrability given by
Lemma A.9 and Markov’s inequality to obtain that for any ε > 0, as n→∞

Pnθn

(
max

1≤t≤n
|Wn,t| > ε

)
≤ Pnθn

(
n∑
t=1

W 2
n,t1{|Wn,t| > ε} > ε2

)

≤ ε−2 1

n

n∑
t=1

E
[
nW 2

n,t1{
√
n|Wn,t| > ε

√
n}
]

→ 0.

For (S6), note that the same UI argument as just used yields that

lim
n→∞

n∑
t=1

E
[
W 2
n,t1{|Wn,t| > δ}

]
= 0,

for some δ > 0 and hence as conditional expectations are contractions in L1,

lim
n→∞

E

∣∣∣∣∣
n∑
t=1

E
[
W 2
n,t1{|Wn,t| > δ}|Fn,t−1

]∣∣∣∣∣ = 0,

implying (S6). (L3) of Theorem 2.1.1 in Taniguchi and Kakizawa (2000) holds since the
relevant measures are both absolutely continuous with respect to Lebesgue measure (cf.
Taniguchi and Kakizawa, 2000, p. 34). By Theorem 2.1.2 of Taniguchi and Kakizawa
(2000), under Pnθn :

Λn
θ̃n/θn

(Y n) N (−τ2/2, τ2). (35)

In view of Lemma A.10 and (S1) we have that Ψθ(c, h) := limn→∞ E
[
gn(Y n)2

]
= τ2

(in which the dependence on c, h is notationally supressed on the right hand side). Let
ε ∈ (0, 1) be fixed and define En := {max1≤t≤n |Zn,t| ≤ ε} and note that by Theorem
2.1.2 of Taniguchi and Kakizawa (2000) PnθnEn → 1. By Taylor expansion of log(1 + x),
on En we have

log(1 + Zn,t) = Zn,t −
1

2
Z2
n,t + Z2

n,tR(Zn,t),
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where R(x) ≤M |x| for some M ∈ [0,∞) and so by (S2), on En

Λn
θ̃n/θn

(Y n) = 2

n∑
t=1

log(Zn,t + 1)

=
n∑
t=1

2Zn,t −
1

2

n∑
t=1

2Z2
n,t +

n∑
t=1

Z2
n,tR(Zn,t).

Moreover, by Theorem 2.1.2 of Taniguchi and Kakizawa (2000),

n∑
t=1

Z2
n,tR(Zn,t) ≤M max

1≤t≤n
|Zn,t|

n∑
t=1

W 2
n,t = oPnθn

(1),

and so using also Lemma A.6

Λn
θ̃n/θn

(Y n) =

n∑
t=1

2Wn,t − τ2/4− 1

2

n∑
t=1

2W 2
n,t + oPnθn

(1).

Lemma A.10, comparison of Wn,t and gn(Y n) and the fact that the above display holds
with Pnθn–probability approaching 1 yields the asymptotic expansion (3.10). The weak
convergence of gn(Y n) follows by combining (3.10), (35) and (S5).

Proof of Corollary 3.4.2. Combine (35) with Example 6.5 in van der Vaart (1998).

Proof of Lemma 3.4.3. Define

T η|γPθ,H
:=

{
n∑
t=1

K∑
k=1

hk(Ak•Vθ,t) : h = (h1, . . . , hK) ∈ ˙H

}
, Vθ,t := Yt −BθXt. (36)

It suffices to show that (a) ˜̀
θ(Yt, Xt) ∈

[
T η|γPθ,H

]⊥
⊂ L2(Pnθ ) (componentwise) and (b)

under Pnθ

E

[(
˙̀
θ(Ys, Xs)− ˜̀

θ(Yt, Xt)
) n∑
t=1

K∑
k=1

hk(Ak•Vθ,t)

]
= 0 for all h ∈ ˙H .

For (a), the fact that ˜̀
θ(Ys, Xs) ∈ L2(Pnθ ) follows straightfowardly from its form and the

moment conditions in assumption 3.3.12. Next note that for any h ∈ ˙H , 1 ≤ s ≤ n,

n∑
t=1

K∑
k=1

E
[
˜̀
θ(Ys, Xs)hk(Ak•Vθ,t)

]
= 0

will obtain under Pnθ if we have that for all k, j,m ∈ [K] with m 6= j and all 1 ≤ s ≤ n,
1 ≤ t ≤ n,

E [φl(εm,s)εj,shk(εk,t)] = 0

E [εm,shk(εk,t)] = 0

E [κ(εm,s)hk(εk,t)] = 0

E [(Xs − µ)φm(εm,s)hk(εk,t)] = 0,
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the first three of which follow from the independence between components and across
time of (εt)t≥1. If s ≤ t, then by independence E [(Xs − µ)φm(εm,s)hk(εk,t)] =
E [(Xs − µ)φm(εm,s)]E [hk(εk,t)] = 0. If s > t, then E [(Xs − µ)φm(εm,s)hk(εk,t)] =
E [(Xs − µ)hk(εk,t)E [φm(εm,s)|σ(ε1, . . . , εs−1)]] = 0 again by independence.

For (b), that ˙̀
θ(Ys, Xs) − ˜̀

θ(Ys, Xs) ∈ L2(Pnθ ) follows from ˜̀
θ(Ys, Xs) ∈ L2(Pnθ ) (as

noted above) and Lemma A.9. Note that for any h ∈ ˙H , 1 ≤ s ≤ n,

n∑
t=1

E

[(
˙̀
θ(Ys, Xs)− ˜̀

θ(Ys, Xs)
) K∑
k=1

hk(Ak•Vθ,t)

]
= 0

will obtain under Pnθ if we have that for any m ∈ [K], 1 ≤ t ≤ n, 1 ≤ s ≤ n and

E

[
(φm(εm,s)εm,s + 1− τm,1εm,s − τm,2κ(εm,s))

K∑
k=1

hk(εk,t)

]
= 0

E

[
(φm(εm,s) + ςm,1εm,s + ςm,2κ(εm,s))

K∑
k=1

hk(εk,t)

]
= 0.

If s 6= t, both terms follows by independence (over t) of (εt)t≥1 and the definition of
˙H . If s = t the first term follows from the fact that the projection of φm(εm,t)εk,t + 1

on [T η|γPθ,H
]⊥ is τk,1εk,t + τk,2κ(εk,t) as follows from the analogous result in the proof

of Lemma 2 of Lee and Mesters (2022a).27 For the second term, if s 6= t, then this
follows by independence (over t) of (εt)t≥1 and the definition of ˙H . If s = t, then define
q(e) := φm(e) + ςm,1e+ ςm,2κ(e). q(εm) belongs to cl T η|γPθ,H

as q(εm,t) ∈ L2(Pnθ ) and the
choice of ς ensures that

E[q(εm,t)] = E[q(εm,t)εm,t] = E[q(εm,t)κ(εm,t)] = 0,

as is easily verified.28 Define also r(e) := ςm,1e+ ςm,2κ(e). Then, by definition of ˙H we
have that r(εm,t) ∈ [T η|γPθ,H

]⊥. Hence we can write

φm(εm,t) = q(εm,t)− r(εm,t)

where the first right hand side term belongs to cl T η|γPθ,H
and the second to

its orthogonal complement. Therefore, by theorem 4.11 of Rudin (1987),
−r(ε)m,t is the orthogonal projection of φm(εm,t) onto [T η|γPθ,H

]⊥ which implies that

E
[
(φm(εm,t)− (−r(εm,t)))

∑K
k=1 hk(εk,t)

]
= 0.

Proof of Theorem 3.5.1. Define

Rn,1(β?) :=
∥∥∥√nPn [ˆ̀γ? − ˜̀

θ?

]∥∥∥
Rn,2(β?) :=

∥∥∥√nPn [˜̀θ? − ˜̀
θn

]
+
√
nĨn,θn(γ? − γn)′

∥∥∥
Rn,3(β?) :=

∥∥∥În,γ? − Ĩθ∥∥∥ ,
27See Lee and Mesters (2022b) for the proof.
28That cl T η|γPθ,H

is the set of L2 random variables satisfying these equations can be shown by an argument
analogous to that in footnote S5 of Lee and Mesters (2022b).

252



where γ? := (αn, β?) and θ? := (γ?, η). We show that we have

Rn,i(θ̃n)
Pn
θ̃n−−→ 0 for i = 1, 2, 3. (37)

Define bn :=
√
n(β′n − β). We may assume without loss of generality that bn → b and

hn → h.29

Let Qn denote the law of (Yt)
n
t=1 corresponding to θ̃n := (αn, β+ bn/

√
n, η(1 + hn/

√
n))

and Pn that corresponding to θ̌n := (αn, β + bn/
√
n, η) (both conditional on the initial

observations). By Corollary 3.4.2 Qn /.Pn and hence (37) follows by Lemma A.12 and Le
Cam’s first Lemma (e.g. van der Vaart, 1998, Lemma 6.4).

Next we show that (37) continues to hold if the argument of the remainders Rn,i is replaced
by β̄n as defined in the theorem. Since β̄n remains

√
n-consistent there is an M > 0 such

that Pn
θ̃n

(√
n‖β̄n − β‖ > M

)
< ε. If

√
n‖β̄n − β‖ ≤ M then β̄n is equal to one of the

values in the finite set S c
n = {β′ ∈ n−1/2CZL2 : ‖β′ − β‖ ≤ n−1/2M}. For each M

this set has finite number of elements bounded independently of n, call this upper bound B.
Letting Rn denote any of Rn,1, Rn,2 or Rn,3 we have that for any υ > 0

Pn
θ̃n

(
‖Rn(β̄n)‖ > υ

)
≤ ε+

∑
βn∈S c

n

Pn
θ̃n

(
{‖Rn(βn)‖ > υ} ∩ {β̄n = βn}

)
≤ ε+

∑
βn∈S c

n

Pn
θ̃n

(‖Rn(βn)‖ > υ)

≤ ε+BPn
θ̃n

(‖Rn(β∗n)‖ > υ),

where β∗n ∈ Bn maximises β 7→ Pn
θ̃n

(‖Rn(β)‖ > υ). As (β∗n)n∈N is a deterministic
√
n-

consistent sequence for β we have that Pn
θ̃n

(‖Rn(β∗n)‖ > υ)→ 0 by (37).

It follows that
√
nPn

[
ˆ̀̄
γn − ˜̀

θn

]
=
√
nPn

[
ˆ̀̄
γn − ˜̀̄

θn

]
+
√
nPn

[
˜̀̄
θn − ˜̀

θn

]
= −Ĩn,θn(0,

√
n(β̄n−β)′)′+oPn

θ̃n
(1),

and În,θ̄n
Pn
θ̃n−−→ Ĩθ and so K̂n,θ̄n

Pn
θ̃n−−→ K̃θ for

K̃θ :=
[
I −Ĩθ,αβ Ĩ−1

θ,ββ

]
, K̂n,θ :=

[
I −În,θ,αβ Î−1

n,θ,ββ

]
.

We combine these to obtain
√
nPn [κ̂n,γ̄n − κ̃n,θn ]

=
(
K̂n,γ̄n − K̃θn

)√
nPn

[
ˆ̀̄
γn − ˜̀

θn

]
+ K̃θn

√
nPn

[
ˆ̀̄
γn − ˜̀

θn

]
+
(
K̂n,γ̄n − K̃θn

)√
nPn ˜̀

θn

= −K̃θn Ĩθn(0,
√
n(β̄n − β)′)′ + oPn

θ̃n
(1)

= −
[
I −Ĩθn,αβ Ĩ−1

θn,ββ

] [Ĩθn,αα Ĩθn,αβ
Ĩθn,βα Ĩθn,ββ

] [
0√

n(β̄n − β)

]
+ oPn

θ̃n
(1)

= oPn
θ̃n

(1).

29Otherwise the same argument can proceed along appropriately chosen subsequences.
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Next, let Zn := 1√
n

∑n
t=1 κ̂n,γ̄n(Yt, Xt) and re-write it as

Zn =
1√
n

n∑
t=1

κ̃n,θn(Yt, Xt)+
1√
n

n∑
t=1

(κ̂n,γ̄n(Yt, Xt)−κ̃n,θn(Yt, Xt)) =
1√
n

n∑
t=1

κ̃n,θn(Yt, Xt)+oPn
θ̃n

(1).

By (i) of Lemma A.12 and Le Cam’s third lemma (e.g. van der Vaart, 1998, Example 6.7)

1√
n

n∑
t=1

˜̀
θn(Yt, Xt) N

(
Ĩθ(0

′, b′)′, Ĩθ

)
under Pθ̃n ,

and hence under Pθ̃n

Zn =
1√
n

n∑
t=1

˜̀
θn,α(Yt, Xt)− Ĩn,θn,αβ Ĩ−1

n,θn,ββ
˜̀
θn,β(Yt, Xt) + oPn

θ̃n
(1) Z ∼ N (0, Ĩθ).

We additionally have∥∥∥În,γ̄n − Ĩθ∥∥∥
2
≤
∥∥∥În,γ̄n,αα − Ĩθ,αα∥∥∥

2
+
∥∥∥În,γ̄n,αβ Î−1

n,γ̄n,ββ
În,γ̄n,βα − Ĩθ,αβ Ĩ−1

θ,ββ Ĩθ,βα

∥∥∥
2
.

By repeated addition and subtraction along with the observations that any submatrix has a
smaller operator norm than the original matrix we obtain and the matrix inverse is Lipschitz
continuous at a non-singular matrix we obtain∥∥∥În,γ̄n − Ĩθ∥∥∥

2
.
∥∥∥În,γ̄n − Ĩθ∥∥∥

2
.

Hence by equation (37) with γ̄n replacing γn we have Pθ̃n

(∥∥∥În,γ̄n − Ĩθ∥∥∥
2
< ν̌n

)
→ 1

where ν̌n = Cνn for some positive constant C ≥ 1. By Proposition 3.13 and Lemma C.6
of Lee (2022)

Ît,†n,γ̄n
Pn
θ̃n−−→ Ĩ†θ and Pn

θ̃n
Rn → 1,

where Rn := {rank(Ĩtn,γ̄n) = rank(Ĩθ)}.

Suppose first that r := rank(Ĩθ) > 0. By Slutsky’s lemma and the continuous mapping
theorem we have that

ŜSRn,γ̄n = Z ′nÎt,†n,γ̄nZn  Z ′Ĩ†θZ ∼ χ2
r

where the distributional result X := Z ′Ĩ†θZ ∼ χ2
r , follows from e.g. Theorem 9.2.2 in Rao

and Mitra (1971). On Rn cn is the 1− a quantile of the χ2
r distribution, which we will call

c. Hence, we have cn
Pn
θ̃n−−→ c and as a result,ŜSRn,γ̄n − cn  X − c where X ∼ χ2

r . Since the
χ2
r distribution is continuous, we have by the Portmanteau theorem

Pn
θ̃n

(
ŜSRn,γ̄n > cn

)
= 1−Pn

θ̃n

(
ŜSRn,γ̄n − cn ≤ 0

)
→ 1−P (X − c ≤ 0) = 1−P (X ≤ c) = 1−(1−a) = a ,

which completes the proof in the case that r > 0.

It remains to handle the case with r = 0. We first note that Zn  Z ∼ N (0, Ĩθ) continues
to hold by our assumptions, though in this case Ĩθ is the zero matrix and hence the limiting
distribution is degenerate: Z = 0.
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On the sets Rn we have that Îtn,γ̄n is the zero matrix, whose Moore-Penrose inverse is also
the zero matrix. Hence on these sets we have ŜSRn,γ̄n = 0 and cn = 0 and therefore do not
reject, implying

Pn
θ̃n

(ŜSRn,γ̄n > cn) ≤ 1− Pn
θ̃n
Rn → 0.

It follows that Pn
θ̃n

(ŜSRn,γ̄n > cn)→ 0.

Proof of Corollary 3.5.2. Apply Theorem 3.5.1 to conclude:

lim
n→∞

Pn
θ̃n

(αn ∈ Ĉn) ≥ 1− lim
n→∞

Pn
θ̃n

(ŜSRn,γ̄n > cn) ≥ 1− α.

Proof of Proposition 3.6.1. Let G be a convex, compact set with G ⊃ {γn : n ≥ N0} for
some N0 ∈ N. Since g is continuously differentiable and G is compact, {‖g′γ‖ : γ ∈ G}
is bounded and hence {g′γn : n ∈ N} is uniformly equicontinuous (cf. Remark A.2).
By compactness, γ 7→ g′γ is uniformly continuous on G. Combined with the mean-value
theorem (e.g. Drabek and Milota, 2007, Theorem 3.2.7) this implies that g is uniformly
differentiable along (γn)n∈N. By Theorem A.19 and the fact thatN (0,Mn)

TV−−→ N (0,M)
if Mn →M � 0,

√
n
(
g(αn, β̌n)− g(αn, β̃n)

) Pn
θ̃n N

(
0, JγVθJ

′
γ

)
.

This and the fact that V̌n
Pn
θ̃n−−→ JγVθJ

′
γ imply that

ng(αn, β̌n)′V̌ −1
n g(αn, β̌n) χ2

dg under Pn
θ̃n
.

It follows that

lim
n→∞

Pn
θ̃n

(g(αn, β̃n) ∈ Čn,g,αn) = lim
n→∞

Pn
θ̃n

(
ng(αn, β̌n)′V̌ −1

n g(αn, β̌n) ≤ ca
)

= 1− a.

Proof of Proposition 3.6.2. This follows directly from the hypotheses and the fact that

Pn
θ̃n

(
g(αn, β̃n) ∈ Ĉn,g

)
≥ Pn

θ̃n

({
g(αn, β̌n) ∈ Čn,g,αn

}
∩
{
αn ∈ Ĉn

})
≥ Pn

θ̃n

(
g(αn, β̌n) ∈ Čn,g,αn

)
+ Pn

θ̃n

(
αn ∈ Ĉn

)
− 1.

A.3. Auxilliary results

Here we record results relating to the model under study in the main text, which are used in
establishing the main results which are proven above.
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Define Zt := (Y ′t , Y
′
t−1, . . . , Y

′
t−p+1)′, Cθ := (c′θ, 0

′, . . . , 0′)′,

Bθ :=


Bθ,1 Bθ,2 · · · Bθ,p−1 Bθ,p
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

 , Dθ :=


A−1
θ

0
0
...
0


and note that we can write

Zt = Cθ + BθZt−1 + Dθεt. (38)

Proposition A.2. Suppose that assumption 3.3.1 holds. Then (Zt)t≥0 (with initial value
Z0 = z) is a uniformly ergodic Markov chain on RKp. Moreover for any compact set
K ⊂ Rdγ , we have that for any (initial value) z ∈ RKp,

sup
θ=(γ,η): γ∈K

‖Qnθ (z, ·)− πθ(·)‖TV ≤ (M1 + ‖z‖2)γn, for some γ < 1, M1 <∞

and πθ an invariant probability distribution for Φ (under θ) and for M2 <∞

sup
θ=(γ,η): γ∈K

βθ(n) ≤ (4M1 + 3‖z‖2 +M2)γbn/2c,

where βθ(n) are the β-mixing coefficients of Φ.

Proof. That Φ := (Zt)t≥0 is a Markov chain follows from Proposition 11.6 in Kallenberg
(2021). Explicit computation of the rank of the controllability matrix (Meyn and Tweedie,
2009, equation (4.13)) demonstrates that the associated linear control model is controllable.
Moreover under assumption 3.3.1, (LSS4) and (LSS5) of Meyn and Tweedie (2009) hold
and hence by Proposition 6.3.5 in Meyn and Tweedie (2009), Φ is a ψ-irreducible T-chain
and every compact subset is a small set. Aperiodicity of Φ follows from the assumptions on
the densities.

The 1-step transition probability is given by the density on RKp × RKp defined as

qθ(y, x) := |Aθ|
K∏
k=1

ηk(Aθ,kVθ), Vθ := y1 − cθ −
p∑
l=1

Bθ,lxl,

where e.g. y1 denotes the first K elements of y and similarly for x. By assumption
3.3.1, the map (γ, y, x) 7→ q(γ,η)(y, x) is continuous and positive everywhere on Γ ×
RKp × RKp. For any compact B ⊂ RKp put ε :=

∫
inf(γ,x)∈K×B q(γ,η)(y, x) dy and

ρ(y) := inf(γ,x)∈K×B q(γ,η)(y, x)/ε.30 Then for any A ∈ B(RKp) and any x ∈ B,∫
A
qθ(y, x) dy ≥ ε

∫
A
ρ(y) dy.

Under assumption 3.3.1 the eigenvalues of Bθ are bounded above by some ρ < 1 for all
θ ∈ T := {(γ, η) : γ ∈ K}. Using this and the Gelfand formula (e.g. Horn and Johnson,
2013, Corollary 5.6.14) there exists a ρ? < 1 with ‖Bnθ ‖ ≤ ρn? on T. Since we can re-write

30Note that ε > 0 by the positivity and continuity.
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(38) as
Zt −mθ = Bθ(Zt−1 −mθ) + Dθεt, (39)

with mθ :=
(∑∞

i=0 B
i
θ

)
Cθ, we have

Vθ(Zt) = ‖Bθ(Zt−1 −mθ)‖2 + ‖Dθεt‖2 + 2[Bθ(Zt−1 −mθ)]
′Dθεt + 1,

and since εt is independent of Zt−1, and ‖Dθ‖ ≤ D? <∞ on T,

E[Vθ(Zt)|Zt−1] ≤ ρ2
?‖Zt−1 −mθ‖2 +D2

? ≤ ρ2
?Vθ(Zt−1) +D2

?.

This, in conjunction with Proposition 5.5.3 and Lemmas 15.2.8 of Meyn and Tweedie
(2009) establishes that the Markov chain satisfies the drift condition (10) in Roberts and
Rosenthal (2004) with λ = (1 + ρ2

?)/2 < 1, b = D2
? < ∞ and C = Cθ = {z : Vθ(z) ≤

2D2
?/(1 − ρ2

?)}. By Proposition 11 in Roberts and Rosenthal (2004) their bivariate drift
condition (11) is satisfied with h(x, y) = [Vθ(x) +Vθ(y)]/2 and α−1 = λ+ b/(d+ 1) < 1.
Moreover b0,θ := max{1, α(1 − ε) sup(x,y)∈Cθ×Cθ R̄θhθ(x, y)} is bounded above by
(1 − ε)D2

?/(1 − ρ2
?) < ∞, where R̄θhθ(x, y) is defined analogously to R̄h(x, y) on p.

41 of Roberts and Rosenthal (2004). By Theorem 16.0.2 of Meyn and Tweedie (2009) there
exists an invariant πθ with

‖Qnθ (z, ·)− πθ‖ ≤ Rr−n, R <∞, r > 1,

where Qθ(z, ·) is the transition probability. That is, Φ is uniformly ergodic.

For the second claim, by Theorem 12 in Roberts and Rosenthal (2004) we have that for any
(initial) z ∈ RKp and some γ < 1, for all θ ∈ T,

‖Qnθ (z, ·)− πθ‖TV ≤ (M1 + ‖z‖2)γn,

where31

M1 = 1 + sup
θ∈T
‖mθ‖2 + sup

θ∈T

∫
‖z −mθ‖2 dπθ(z) <∞.

The claim regarding the β-mixing coefficients then follows directly from Proposition 3 in
Liebscher (2005), with M2 := supθ∈T

∫
‖z‖2 dπθ(z) <∞.32

Lemma A.3. Suppose that assumption 3.3.1 holds. Define Uθ,t as the (unique, strictly)
stationary solution to (38) (under θ). Then Uθ,t has the representation

Uθ,t = mθ +

∞∑
j=0

BjθDθεt−j , mθ := (I − Bθ)
−1Cθ,

∞∑
j=0

‖Bjθ‖ <∞.

If ρθ is the largest absolute eigenvalue of the companion matrix Bθ and υ > 0 is such that

31That the first supremum is finite is clear since mθ = (I − Bθ)
−1Cθ which is evidently continuous. For

the second supremum note that the integral is taking an expectation with respect to the distribution of the
stationary solution of a VAR model. This is bounded uniformly over θ ∈ T by Lemma A.3, the fact that
‖Dθ‖ is uniformly bounded on T and the observation that since M 7→ ρ(M) is continuous and T is compact,
there is a ρ and υ with ρ+ υ < 1 such that ρ ≥ ρ(Bθ) for all θ ∈ T.

32The uniform boundedness of M2 follows by an analogous argument as given in footnote 31.
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ρθ + υ < 1, the for ‖ · ‖ the spectral norm,

E‖Uθ,t −mθ‖ρ ≤
E‖Dθεt‖ρ

1− (ρθ + υ)ρ
, ρ ∈ [1, 4 + δ].

Proof. Rewriting (38) as (39) and applying Theorem 11.3.1 in Brockwell and Davis (1991)
yields the first part. For the second part, let U∗θJθUθ be a Schur decomposition of Bθ. Then

‖Uθ,t −mθ‖ ≤
∞∑
j=0

‖Bjθ‖‖Dθεt−j‖ ≤
∞∑
j=0

‖Jθ‖j‖Dθεt−j‖ ≤
∞∑
j=0

(ρθ + ν)j‖Dθεt−j‖.

Since E‖Dθεt−j‖ρ = E‖Dθεt‖ρ <∞ for all t ∈ N, all j ≥ 0 and ρ ∈ [1, 4 + δ], it follows
that

E‖Uθ,t −mθ‖ρ ≤
∞∑
j=0

(ρθ + ν)jρE‖Dθεt−j‖ρ =
E‖Dθεt‖ρ

1− (ρθ + ν)ρ
.

Corollary A.4. Suppose that assumption 3.3.1 holds and θn = (γn, η) → (γ, η) = θ.
Define πθ as in Proposition A.2 and let Gθn,n be the measure corresponding to the density
1
n

∑n
t=1 ρθn,t where ρθn,t is the density of the non-deterministic parts of Xt under Pnθn

(1 ≤ t ≤ n). Then Gθn,n  πθ.

Proof. By Proposition A.2, Gθ,n
TV−−→ πθ uniformly on T := {θn : n ∈ N} ∪ {θ}. We also

have that πθn  πθ. To see this, use the representation in Lemma A.3 and the fact that we
can uniformly bound ‖Bjϑ‖ and ‖Dϑ‖ for ϑ ∈ T and j ∈ N to obtain

E ‖Uθn,t − Uθ,t‖ ≤ ‖mθn −mθ‖+ E

∥∥∥∥∥∥
∞∑
j=0

BjθnDθnεt−j − BjθDθεt−j

∥∥∥∥∥∥
= o(1) + E‖εt‖

∞∑
j=0

(
‖Bjθn‖‖Dθn − Dθ‖+ ‖Dθ‖‖Bjθn − Bjθ‖

)
= o(1)

where the second equality uses the fact the εt are identically distributed and the third
equality uses the dominated convergence theorem.33 This implies that Uθn,t  Uθ,t as
n→∞, i.e. πθn  πθ. Combination of these results yields the claim.

Lemma A.5 (UDQM). Suppose that assumption 3.3.1 holds. Then, with Wn,t and Zn,t
defined as in the proof of Proposition 3.4.1,

lim
n→∞

E
n∑
t=1

(Wn,t − Zn,t)2 = 0.

Proof. Write Yn,t and Xn,t for random elements which have the same law as Yt, Xt

33Note that ‖Bjθn − Bjθ‖ → 0 pointwise in j and is dominated by 2ρj? where ρ? < 1 is a uniform upper bound
on ‖Bϑ‖ for ϑ ∈ T and

∑∞
j=0 2ρj? = 2

∑∞
j=0 ρ

j
? <∞.
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(respectively) under Pnθn . Recall Vn,t := Yn,t −BXn,t and define

qθ(Yn,t, Xn,t) := |A|
K∏
k=1

ηk(Ak•Vt), gθ(Yn,t, Xn,t) := c′ ˙̀θ(Yn,t, Xn,t)+
K∑
k=1

hk(Ak•Vn,t).

(40)
Let ϕ(u) = (c, η1h1, . . . , ηKhK) for u = (c, h) with c ∈ RLα+Lβ , h ∈ ˙H . We initially
suppose that θn = θ for all n ∈ N and argue similarly to Lemma 7.6 in van der Vaart (1998).
By Assumption 3.3.1 and standard computations, the derivative of s 7→ √qθ+sϕ(u) at s = s

is 1
2gθ+sϕ(u)

√
qθ+sϕ(u) (everywhere). Inspection reveals that this is continuous in s. Let ρθ,t

be as defined in Corollary A.4. Define

Iθ,t :=

∫
g2
θqθρθ,t dλ.

By the mean-value theorem and Jensen’s inequality we can write∫ (√
qϑ1,n −

√
qθ

1/
√
n

)2

ρθ,t dλ ≤ 1

4

∫ ∫ 1

0
(gϑv,n

√
qϑv,n)2ρθ,t dv dλ =

1

4

∫ 1

0
Iϑv,n,t dv

(41)
where ϑv,n := θ + v√

n
ϕ(u) and the last step follows by Tonelli’s theorem.

It is shown in Lemma A.7 that as n→∞,

1

n

n∑
t=1

∫ 1

0
Iϑv,n,t dv =

∫ 1

0

∫
g2
ϑv,n dGθv,n,n dv →

∫
g2
θ dGθ <∞, (42)

where Gθ,n is as defined in Lemma A.11. Using this, we can re-write

n∑
t=1

∫ (
√
qϑ1,n −

√
qθ −

1

2
√
n
gθ
√
qθ

)2

pθ,t dλ =

∫ (√
n

[√
qϑ1,n√
qθ
− 1

]
− 1

2
gθ

)2

dGθ,n.

(43)
By the assumed differentiability, the integrand in the last integral converges pointwise to
zero. Combining this with (41), (42) and (43) with Proposition A.16 we have

lim
n→∞

∫ (√
n
[√
qϑ1,n −

√
qθ
]
− 1

2
∆θ(u)

√
qθ

)2

ρ̄θ,n dλ = 0, (44)

where ρ̄θ,n := 1
n

∑n
t=1 ρθ,t and ∆θ(u) := gθ, to emphasise the linearity in u of gθ. We next

show that any un → u, un → u (all in U ), and any (vn)n∈N ⊂ [0,∞) with vn ↓ 0,

lim
n→∞

∫ [
∆θn+vnϕ(un)(un)

√
qθn+vnϕ(un) −∆θn(u)

√
qθn

]2
ρ̄θn,n dλ = 0. (45)

We first note that for any (deterministic) convergent sequence xn → x, we have

[∆θn+vnϕ(un)(un)
√
qθn+vnϕ(un)](·, xn)− [∆θ(u)

√
qθ](·, x)→ 0,

pontwise in y. This follows by the continuity of the relevant functions and that, for
ϑ̌n := θn + vnϕ(un), (i)

(y −Bϑ̌nxn)− (y −Bθx) = Bϑ̌n(xn − x) + (Bϑ̌n −Bθ)x→ 0,
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since ϑ 7→ Bϑ is continuous and (ii), since ϑ 7→ Aϑ is continuous,

Aϑ̌n,k•Dblxn −Aθ,k•Dblx = Aϑ̌n,k•Dbl(xn − x) + (Aϑ̌n,k• −Aθ,k•)Dblx→ 0.

The form of ˙̀
ϑ̌n

is the same as that given in (3.7) – (3.9) once each φk is replaced by

φ̃k,n := φk +
vnhk/

√
n

1 + vnhk/
√
n
, (46)

and, moreover, since ϑ̌n → θ, the continuity and continuous differentiability conditions in
assumption 3.3.1 ensure that all non-random terms in the expressions (3.7) – (3.9) converge
and are thus bounded.34 Noting this and directly integrating, it follows that

lim
n→∞

∫ (
[∆θn+vnϕ(un)(un)

√
qθn+vnϕ(un)](y, xn)

)2
dy =

∫
([∆θ(u)

√
qθ](y, x))2 dy <∞,

and hence by Proposition 2.29 in van der Vaart (1998),∫ (
[∆θn+vnϕ(un)(un)

√
qθn+vnϕ(un)](y, xn)−∆θ(u)

√
qθ(y, x)

)2
dy → 0.

Taking vn = 0, un = u and θn = θ in the above yields also∫
([∆θ(un)

√
qθ](y, xn)−∆θ(u)

√
qθ(y, x))2 dy → 0,

and hence we have that

Qn(x) :=

∫ (
[∆θn+vnϕ(un)(un)

√
qθn+vnϕ(un)](y, x)− [∆θ(un)

√
qθ](y, x)

)2
dy

converges continuously to 0. Using the form given in (54) for the (non-deterministic) parts
of Xt and noting (as discussed following (54)) that {ρ(Bϑ) : ϑ ∈ {θn : n ∈ N} ∪ θ}
is bounded, and similarly that {‖A−1

ϑ ‖ : ϑ ∈ {θn : n ∈ N} ∪ {θ}} is bounded, it
is easy to see that supn∈N,1≤t≤n E‖Xt‖ < ∞. Hence by Markov’s inequality for any
ε > 0, there is an M such that supn∈N,1≤t≤n P

n
θn

(‖Xt‖ ≤ M) ≥ 1 − ε and so the
family {Xn,t : n ∈ N, 1 ≤ t ≤ n} is uniformly tight, where each Xn,t is a random
variable (defined on a common probability space) with law L (Xt|Pnθn). Let (tn)n∈N
be an arbitrary sequence of positive integers satisfying tn ≤ n and put X̃n := Xn,tn .
The sequence (X̃n)n∈N is uniformly tight. It follows by Prohorov’s theorem that any
subsequence (X̃kn)n∈N contains a further subsequence (X̃mn)n∈N with Xmn  X for
some random variable X . Since (Qn)n∈N is continuously convergent to the zero function,
it follows by the extended continuous mapping theorem (van der Vaart and Wellner, 1996,
Theorem 1.11.1) that Qmn(X̃mn)  0. Equation (45) will then follow provided we show
that (Qn(X̃n))n∈N is uniformly integrable. For this, dominate the n-th term by

Qn(X̃n) ≤ 2

[∫
[∆ϑ̌n

(un)
√
qϑ̌n ](y, X̃n)2 dy +

∫
[∆θ(u)

√
qθ](y, X̃n)2 dy

]
= 2

[
E
[
∆ϑ̌n

(un)(Ỹn, X̃n)2
∣∣∣X̃n

]
+ E

[
∆θ(u)(Ỹ , X̃n)2

∣∣∣X̃n

]]
,

where Ỹn and Ỹ have laws such that their conditional density given X̃n is qϑ̌n and qθ,

34Cf. footnote 40.
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respectively. Lemma A.9 and (46) ensure that (∆ϑ̌n
(un)(Ỹn, X̃n)2)n∈N is UI. Combining

this with the conditional Jensen inequality and the de la Valée Poussin criterion for
uniform integrability (e.g. Bogachev, 2007, Theorem 4.5.9) yields that the first conditional
expectation in the preceeding display is UI. That the second conditional expectation is also
UI follows similarly.

To complete the proof, first let θ ∈ Θ be arbitrary, sn := n−1/2, un → u, and use (44), the
mean-value theorem (e.g. Drabek and Milota, 2007, Theorem 3.2.7(i)) and (45) to obtain∥∥∥∥(√qθ+snϕ(un) −

√
qθ

sn
− 1

2
∆θ(u)

√
qθ

)√
ρ̄θ,n

∥∥∥∥
λ,2

≤
∥∥∥∥(√qθ+snϕ(un) −√qθ+snϕ(u)

sn

)√
ρ̄θ,n

∥∥∥∥
λ,2

+

∥∥∥∥(√qθ+snϕ(u) −
√
qθ

sn
− 1

2
∆θ(u)

√
qθ

)√
ρ̄θ,n

∥∥∥∥
λ,2

≤ sup
δ∈[0,1]

∥∥∥∥1

2
∆θ+snϕ(u)+snδϕ(un−u)(un − u)

√
qθ+snϕ(u)+snδϕ(un−u)

√
ρ̄θ,n

∥∥∥∥
λ,2

+ o(1)

= o(1).

Now return to our original setting with θn = (γn, η) → θ = (γ, η). By the preceding
display, applying the mean-value theorem (e.g. Drabek and Milota, 2007, Theorem 3.2.7(ii))
at each n gives

n∑
t=1

E
[
(Wn,t − Zn,t)2

]
=

∥∥∥∥(√qθn+snϕ(un) −
√
qθn

sn
− 1

2
∆θn(u)

√
qθn

)√
ρ̄θn,n

∥∥∥∥
λ,2

≤ sup
δ∈[0,1]

∥∥∥∥1

2

(
∆θn+δsnϕ(un)(un)

√
qθn+δsnϕ(un) −∆θn(u)

√
qθn

)√
ρ̄θn,n

∥∥∥∥
λ,2

= o(1),

where the convergence in the last line is due to (45).

Lemma A.6. In the setting of Proposition 3.4.1, it holds that

2
n∑
t=1

Zn,t = 2
n∑
t=1

Wn,t − τ4/2 + oPnθn
(1).

Proof. Throughout expectations are taken under Pnθn . Let mn(Xt) := E[Zn,t|Xt] =

E[Zn,t|Fn,t−1] with Fn,t := σ(εi : i = 1, . . . , t).35 Form Un,t := Zn,t −mn(Xt) −Wn,t

and note that (Un,t,Fn,t)n∈N,1≤t≤n is a martingale difference array (by (34)). Hence

V

[
n∑
t=1

Un,t

]
=

n∑
t=1

E [Zn,t −Wn,t]
2+

n∑
t=1

E[mn(Xt)
2]−2

n∑
t=1

E [(Zn,t −Wn,t)mn(Xt)] .

35See e.g. Theorem 7.3.1 in Chow and Teicher (1997) for the (almost sure) equality of the conditional
expectations.
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Observe that

E [(Zn,t −Wn,t)mn(Xt)] = E [E [(Zn,t −Wn,t)mn(Xt)|Xt]] = E [mn(Xt)E [Zn,t|Xt]] = E
[
mn(Xt)

2
]
,

and so by Lemma A.5

0 ≤ V

[
n∑
t=1

Un,t

]
=

n∑
t=1

E [Zn,t −Wn,t]
2−

n∑
t=1

E[mn(Xt)
2] ≤

n∑
t=1

E [Zn,t −Wn,t]
2 → 0,

which, in combination with (L3) of Theorem 2.1.1 in Taniguchi and Kakizawa (2000)
(which is noted to hold in the proof of Proposition 3.4.1), yields

2
n∑
t=1

Zn,t − 2
n∑
t=1

Wn,t +
n∑
t=1

E[Z2
n,t|Fn,t−1] = oPnθn

(1).

It therefore suffices to show that
∑n

t=1 E[Z2
n,t|Fn,t−1]

Pnθn−−→ τ2/4. For this, first observe
that by Lemma A.10,

1

n

n∑
t=1

(
1

2
∆θn(u)(Yt, Xt)

)2 Pnθn−−→ τ2

4
.

Next, since the
(

1
2∆θn(u)

)2 are UI by Lemma A.9, applying Theorem 2.22 in Hall and
Heyde (1980), Jensen’s inequality for conditional expectations and the de la Vallée Poussin
criterion for uniform integrability (e.g. Bogachev, 2007, Theorem 4.5.9) we have that

1

n

n∑
t=1

(
1

2
∆θn(u)(Yt, Xt)

)2

− E

[(
1

2
∆θn(u)(Yt, Xt)

)2

|Fn,t−1

]
L1−→ 0.

To complete the proof it therefore suffices show that

1

n

n∑
t=1

E([
√
nZn,t]

2|Fn,t−1)− E

[(
1

2
∆θn(u)

)2

|Fn,t−1

]
L1−→ 0. (47)

Since E[Un,t|Fn,t−1] = E[Un,t|Xt] for Un,t ∈
{

[
√
nZn,t]

2,
(

1
2∆θn(u)(Yt, Xt)

)2},36 we

36Cf. footnote 35.
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have

E

∣∣∣∣∣ 1n
n∑
t=1

E([
√
nZn,t]

2|Fn,t−1)− E

[(
1

2
∆θn(u)(Yt, Xt)

)2

|Fn,t−1

]∣∣∣∣∣
≤ 1

n

n∑
t=1

E

∣∣∣∣∣E([
√
nZn,t]

2|Fn,t−1)− E

[(
1

2
∆θn(u)(Yt, Xt)

)2

|Fn,t−1

]∣∣∣∣∣
≤ 1

n

n∑
t=1

∫ ∫ ∣∣∣∣√n(q
1/2

θ̃n
− q1/2

θn
)− 1

2
∆θn(u)q

1/2
θn

∣∣∣∣ ∣∣∣∣√n(q
1/2

θ̃n
− q1/2

θn
) +

1

2
∆θn(u)q

1/2
θn

∣∣∣∣ dyρθn,t dx

=

〈∣∣∣∣√n(q
1/2

θ̃n
− q1/2

θn
)− 1

2
∆θn(u)q

1/2
θn

∣∣∣∣ ρ̄1/2
θn,n

,

∣∣∣∣√n(q
1/2

θ̃n
− q1/2

θn
) +

1

2
∆θn(u)q

1/2
θn

∣∣∣∣ ρ̄1/2
θn,n

〉
λ

≤
∥∥∥∥[√n(q

1/2

θ̃n
− q1/2

θn
)− 1

2
∆θn(u)q

1/2
θn

]
ρ̄

1/2
θn,n

∥∥∥∥
λ,2

∥∥∥∥[√n(q
1/2

θ̃n
− q1/2

θn
) +

1

2
∆θn(u)q

1/2
θn

]
ρ̄

1/2
θn,n

∥∥∥∥
λ,2

,

by Cauchy-Schwarz. The proof of (47) (and hence the Lemma) is completed by applying
Lemmas A.5, A.9 and noting∥∥∥∥[√n(q

1/2

θ̃n
− q1/2

θn
) +

1

2
∆θn(u)q

1/2
θn

]
ρ̄

1/2
θn,n

∥∥∥∥
λ,2

≤
(∥∥∥∥[√n(q

1/2

θ̃n
− q1/2

θn
)− 1

2
∆θn(u)q

1/2
θn

]
ρ̄

1/2
θn,n

∥∥∥∥
λ,2

+
∥∥∥∆θn(u)q

1/2
θn
ρ̄θn,n

∥∥∥
λ,2

)
.

Lemma A.7. Suppose that assumption 3.3.1 holds. Then (42) in the proof of Lemma A.5
holds.

Proof. The finiteness of the integral on the right hand side follows by direct evaluation using
the moment bounds in assumption 3.3.1 along with the fact that under πθ, E‖Xt‖4+δ <∞
which can be seen on combining Lemma A.3 with the fact that πθ is the law of a stationary
solution to the defining VAR equation (see e.g. Kallenberg, 2021, Theorem 11.11).

For the convergence, by Lemma A.11 and Corollary 2.9 in Feinberg et al. (2016) it is enough
to prove the uniform Gϑvn,n,n – integrability of (g2

ϑvn,n
)n∈N for an arbitrary (vn)n∈N ⊂

[0, 1]. As each hk is bounded, it suffices to show supn∈N
∫ ∣∣∣c′ ˙̀ϑvn,n∣∣∣2+δ/2

dGϑvn,n,n <∞
for some δ > 0. The form of ˙̀

ϑvn,n is the same as that given in equations (3.7) – (3.9) once
each φk is replaced by

φ̃k,n := φk +
vnhk/

√
n

1 + vnhk/
√
n
,

where, since each hk is bounded, the second term is bounded for large enough n. Since
ϑvn,n → θ, the continuity and continuous differentiability conditions in assumption 3.3.1
ensure that all non-random terms in the expressions (3.7) – (3.9) converge and are thus
bounded.37 The required bound then follows as, under Gϑvn,n,n we have that Vϑvn,n,t ∼ εt,
with independent components and also independent of Xt, and supn∈N E[|εt|4+δ] < ∞,
supn∈N E[|φk(εt)|4+δ] < ∞ and supn∈N E‖Xt‖4+δ < ∞. The first two moment

37Cf. footnote 40.
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bounds are immediate from assumption 3.3.1. The latter follows since under each ρθ,t,
supn∈N,1≤t≤n E‖Xt‖4+δ <∞ which follows as in the proof of Lemma A.9 and hence

sup
n∈N

∫
‖x‖4+δ 1

n

n∑
t=1

ρθ,t(x) dλ ≤ sup
n∈N,1≤t≤n

∫
‖x‖4+δρθ,t(x) dλ <∞.

Lemma A.8 (Cf. Lemma A.10 in van der Vaart (1988a)). Suppose that Assumption 3.3.1
holds. Then for any θ̃n which takes the form θ̃n = (αn, βn+bn/

√
n, η) with bn → b ∈ RLβ

a convergent sequence,

Rn :=
1√
n

n∑
t=1

[
˜̀̃
θn

(Yt, Xt)− ˜̀
θn(Yt, Xt)

]
+ Ĩn,θn(0′, b′n)′

Pnθn−−→ 0.

Proof. Let qθ be as defined in Lemma A.5 and note that the sequence which is to be shown
to converge to zero (in probability) can be written as the sum of the following two terms

R1,n :=
1√
n

n∑
t=1

[
˜̀̃
θn

(Yt, Xt)

(
1−

qθ̃n(Yt, Xt)
1/2

qθn(Yt, Xt)1/2

)]
+

1

2
Ĩn,θn(0′, b′n)′

R2,n :=
1√
n

n∑
t=1

[
˜̀̃
θn

(Yt, Xt)
qθ̃n(Yt, Xt)

1/2

qθn(Yt, Xt)1/2
− ˜̀

θn(Yt, Xt)

]
+

1

2
Ĩn,θn(0′, b′n)′

To simplify notation, let Zn,t,1 := ˜̀̃
θn

(Yt, Xt)
qθ̃n (Yt,Xt)1/2

qθn (Yt,Xt)1/2
and Zn,t,2 := ˜̀

θn(Yt, Xt).

Define mn(x) :=
∫

˜̀̃
θn

(y, x)qθ̃n(y, x)1/2qθn(y, x)1/2 dy. Evaluated at Xt, this is the
conditional (on Xt) expectation of Zn,t,1. Observe that since E[˜̀θn(Yt, Xt)|Xt] = 0 under
Pn
θ̃n

,

mn(Xt) =

∫
˜̀̃
θn

(y,Xt)qθ̃n(y,Xt)
1/2qθn(y,Xt)

1/2 dy

=

∫
˜̀̃
θn

(y,Xt)qθ̃n(y,Xt)
1/2
[
qθn(y,Xt)

1/2 − qθ̃n(y,Xt)
1/2
]

dy.

Let ρθn,t be the density of (the non-deterministic parts of) Xt under Pnθn , ρ̄θn,n :=
1
n

∑n
t=1 ρθn,t and Gθn,n be the measure corresponding to ρ̄θn,n. By Lemma A.5,

lim
n→∞

∫ [√
n
(
q

1/2
θn
− q1/2

θ̃n

)
ρ̄

1/2
θn,n

+
1

2
b′n

˙̀
θnq

1/2
θn
ρ̄

1/2
θn,n

]2

dλ = 0. (48)

Additionally,

lim
n→∞

∫ ∥∥∥˜̀
θnq

1/2
θn
ρ̄

1/2
θn,n
− ˜̀̃

θn
q

1/2

θ̃n
ρ̄

1/2
θn,n

∥∥∥2
dλ = 0. (49)

To demonstrate this we first note that by inspection of their forms, it is clear that for ϑn
equal to either θ, θn or θ̃n and any xn → x, ˜̀

ϑn(y, xn)qϑn(y, xn)1/2 → ˜̀
θ(y, x)qθ(y, x)1/2

(pointwise in y). Moreover, noting the fact that these integrals are expectations conditional
on X and using the forms given in Lemma 3.4.3 along with the continuity given by
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Assumption 3.3.1 we have that

lim
n→∞

∫ ∥∥∥˜̀
ϑn(y, xn)q

1/2
ϑn

(y, xn)
∥∥∥2

dy =

∫ ∥∥∥˜̀
θ(y, x)q

1/2
θ (y, x)

∥∥∥2
dy <∞. (50)

Hence by Proposition 2.29 in van der Vaart (1998) we have that

lim
n→∞

∫ ∥∥∥˜̀
ϑn(y, xn)q

1/2
ϑn

(y, xn)− ˜̀
θ(y, x)q

1/2
θ (y, x)

∥∥∥2
dy = 0. (51)

Since this also applies with ϑn = θ we may conclude that

Qn(x) :=

∫ ∥∥∥˜̀
ϑn(y, x)q

1/2
ϑn

(y, x)− ˜̀
θ(y, x)q

1/2
θ (y, x)

∥∥∥2
dy (52)

converges continuously to the zero function. By Corollary A.4 and the extended continuous
mapping theorem (van der Vaart and Wellner, 1996, Theorem 1.11.1) it follows that
Qn(X̃n)  0 where X̃n has law Gϑn,n. We next show that Qn(X̃n)n∈N is uniformly
integrable. Dominate the n-th term by

Qn(X̃n) ≤ 2

[∫ ∥∥∥˜̀
ϑn(y, X̃n)

∥∥∥2
qϑn(y, X̃n) dy +

∫ ∥∥∥˜̀
θ(y, X̃n)

∥∥∥2
qθ(y, X̃n) dy

]
≤ 2

[
E
[∥∥∥˜̀

ϑn(Ỹn, X̃n)
∥∥∥2
∣∣∣∣X̃n

]
+ E

[∥∥∥˜̀
θ(Ỹ , X̃n)

∥∥∥2
∣∣∣∣X̃n

]]
,

where Ỹn and Ỹ have laws such that their conditional density given X̃n is qϑn
and qθ respectively. Under Assumption 3.3.12 and using Lemma A.3 and the

forms given in Lemma 3.4.3 it is easily seen that each of
(∥∥∥˜̀

ϑn(Ỹn, X̃n)
∥∥∥2
)
n∈N

and
(∥∥∥˜̀

θ(Ỹ , X̃n)
∥∥∥2
)
n∈N

are uniformly integrable. The uniform integrability of the

corresponding conditional expectations above then follows from Jensen’s inequality for
conditional expectations and the de la Vallée - Poussin criterion for uniform integrability
(e.g. Bogachev, 2007, Theorem 4.5.9). We may now conclude that

lim
n→∞

∫ ∥∥∥˜̀
ϑnq

1/2
ϑn
ρ̄

1/2
ϑn,n
− ˜̀

θq
1/2
θ ρ̄

1/2
ϑn,n

∥∥∥2
dλ = 0, .

Using this result twice (once with ϑn = θn and once with ϑn = θ̃n) we obtain (49).
Combination of (48) and (49) with the continuity of the inner product yields

lim
n→∞

〈
˜̀̃
θn
q

1/2

θ̃n
ρ̄

1/2
θn,n

,
√
n
(
q

1/2
θn
− q1/2

θ̃n

)
ρ̄

1/2
θn,n

〉
λ
−
〈

˜̀
θnq

1/2
θn
ρ̄

1/2
θn,n

, −1

2
b′n

˙̀
θnq

1/2
θn
ρ̄

1/2
θn,n

〉
λ

= 0.

Since ∫ √
nmnρ̄θn,n dλ =

〈
˜̀̃
θn
q

1/2

θ̃n
ρ̄

1/2
θn,n

,
√
n
(
q

1/2
θn
− q1/2

θ̃n

)
ρ̄

1/2
θn,n

〉
λ

and 〈
˜̀
θnq

1/2
θn
ρ̄

1/2
θn,n

, −1

2
b′n

˙̀
θnq

1/2
θn
ρ̄

1/2
θn,n

〉
λ

= −1

2
Ĩn,θn(0′, b′n)′.

Combining these displays allows us to conclude that to establish that R2,n → 0 in Pnθn-
probability it will suffice to show the same for R′2,n := 1√

n

∑n
t=1 Zn,t,1−mn(Xt)−Zn,t,2.
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As is easy to verify, (Zn,t,1−mn(Xt)−Zn,t,2,Fn,t)n∈N,1≤t≤n forms a martingale difference
array with Fn,t := σ(ε1, . . . , εt). It follows that it suffices to show that (under Pnθn)

V

[
1√
n

n∑
t=1

Zn,t,1 −mn(Xt)− Zn,t,2
]

=
1

n

n∑
t=1

V [Zn,t,1 −mn(Xt)− Zn,t,2]→ 0.

In view of (49) for this, it suffices to show that

1

n

n∑
t=1

E[‖mn(Xt)‖2] =

∫
‖mn(x)‖2ρ̄θn,n(x) dx→ 0.

For this, define mn(y, x) := ˜̀̃
θn

(y, x)qθ̃n(y, x)1/2
[
qθn(y, x)1/2 − qθ̃n(y, x)1/2

]
and note

that mn(y, xn) → 0 pointwise for any convergent xn → x. We additionally have by
Cauchy-Schwarz that∥∥∥∥∫ mn(y, xn) dy

∥∥∥∥ ≤ [∫ ‖ ˜̀̃θn‖2qθ̃n(y, xn) dy

]1/2 [∫ (
qθn(y, xn)1/2 − qθ̃n(y, xn)1/2

)2
dy

]1/2

.

As can be easily verified,
∫
‖ ˜̀̃θn‖

2qθ̃n(y, xn) dy is upper bounded by a term of the form
M1 + M2‖xn‖2 (with M1,M2 finite positive constants which do not depend on n).
Additionally (qθn(y, xn)1/2 − qθ̃n(y, xn)1/2)2 → 0 pointwise in y and is upper bounded
by 2qθn(y, xn) + 2qθ̃n(y, xn) which satisisfies

∫
2qθn(y, xn) + 2qθ̃n(y, xn) dy = 4 =∫

4qθ(y, x) dy for each n ∈ N. Therefore, by the generalised Lebesgue dominated
convergence theorem ∫ (

qθn(y, xn)1/2 − qθ̃n(y, xn)1/2
)2

dy → 0.

It follows that ‖mn(xn)‖2 → 0 pointwise for any xn → x. Re-using the bound from above,
we note that

‖mn(Xt)‖2 ≤ 4(M1 +M2‖Xt‖2)

and hence ‖mn(Xt)‖2 is Gθn,n-uniformly integrable by Lemma A.3.38 Moreover, by
corollary A.4, Gθn,n  πθ and hence by Theorem 3.5 in Serfozo (1982)

1

n

n∑
t=1

E[‖mn(Xt)‖2] =

∫
‖mn‖2 dGθn,n →

∫
0 dπθ = 0.

This establishes that R2,n

Pnθn−−→ 0. For R1,n, define fn(y, x) :=
cnqθn(y, x)1/2qθ̃n(y, x)1/2ρ̄θn,n(x), where

c−1
n :=

∫
q

1/2
θn
q

1/2

θ̃n
ρ̄θn,n dλ = 1− 1

2

∫
(q

1/2
θn
− q1/2

θ̃n
)2ρ̄θn,n dλ.

38Lemma A.3 bounds the moments of the (demeaned) stationary solution; it is easy to see that this provides a
uniform (in t, n) upper bound for our process (conditional on the initial values).
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We have

−n
(
q

1/2
θn
− q1/2

θ̃n

)2
=

(√
n
[
q

1/2

θ̃n
− q1/2

θn

]
− 1

2
b′n

˙̀
θnq

1/2
θn

)2

+

(
1

2
b′n

˙̀
θnq

1/2
θn

)2

− b′n ˙̀
θnq

1/2
θn

√
n
(
q

1/2

θ̃n
− q1/2

θn

)
,

and so by Lemma A.5 and the continuity of the inner product∫
(q

1/2
θn
− q1/2

θ̃n
)2ρ̄θn,n dλ =

1

n

∫
b′n

˙̀
θnq

1/2
θn
ρ̄

1/2
θn,n

√
n
(
q

1/2

θ̃n
− q1/2

θn

)
ρ̄

1/2
θn,n

dλ

− 1

n

∫ (
1

2
b′n

˙̀
θnq

1/2
θn

)2

ρ̄θn,n dλ+ o(n−1)

=
1

2
(n−1/2bn)′İθn(n−1/2bn) + o(n−1),

where İθn :=
∫

˙̀
θn

˙̀′
θn
qθn ρ̄θn,n dλ.39 It follows that c−1

n = 1 − an with an → 0 and
nan = 1

4b
′
nİθnbn + o(1). By Taylor’s theorem log(1 − an) = −an + R(1 − an)a2

n with
Rn(1 − x) → 0 as x → 0. Hence log cnn = −n log(1 − an) = nan − nR(1 − an)a2

n =
1
4b
′
nİθnbn + o(1). Pnθn is the measure corresponding to the product density

∏n
t=1 qθnρθn,t.

LetQnn be the measure corresponding to the product density
∏n
t=1 cnq

1/2
θn
q

1/2

θ̃n
ρ̄θn,n. Writing

Λn := Λn(Qnn, P
n
θn

) for their log-likelihood ratio and using notation from the proof of
Proposition 3.4.1, by (35)

Λn = log cnn + 2
n∑
t=1

log(Zn,t + 1)
Pnθn Z,

where Z has a normal distribution. By Example 6.5 in van der Vaart (1998) Pnθn / Q
n
n and

so by Le Cam’s first lemma (e.g. van der Vaart, 1998, Lemma 6.4) it suffices to show that

Rn,1
Qnn−−→ 0. For this we first note that if

1

n

n∑
t=1

˜̀
θn

˙̀′
θn − Ĩn,θn

Qnn−−→ 0, (53)

then we have Rn,1
Qnn−−→ 0 as

1

n

n∑
t=1

∫ ∥∥∥∥∥∥ ˜̀̃
θn

√
n

1−
q

1/2

θ̃n

q
1/2
θn

+
1

2

√
n˜̀

θn
˙̀′
θn(bn/

√
n)

∥∥∥∥∥∥ cnq1/2
θn
q

1/2

θ̃n
ρ̄θn,n dλ

≤ cn
∫ ∥∥∥ ˜̀̃

θn
q

1/2

θ̃n

∥∥∥√n ∣∣∣∣q1/2

θ̃n
− q1/2

θn
− 1

2
√
n
b′n

˙̀
θnq

1/2
θn

∣∣∣∣ ρ̄θn,n dλ

= o(1),

where the convergence follows from Lemma A.5 and the continuity of the inner product. It
39This sequence of matrices is bounded (see e.g. intermediate results used in the proof of Proposition 3.4.1).
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remains to prove (53). For this it suffices to observe that

Qnn

∥∥∥∥∥ 1

n

n∑
t=1

˜̀
θn

˙̀′
θn − Ĩn,θn

∥∥∥∥∥ ≤ |cn − 1|
∫ ∥∥∥˜̀

θn
˙̀′
θn

∥∥∥ q1/2
θn
q

1/2

θ̃n
ρ̄θn,n dλ+

∫ ∥∥∥˜̀
θn

˙̀′
θn

∥∥∥ q1/2
θn
|q1/2

θ̃n
− q1/2

θn
|ρ̄θn,n dλ

= o(1),

by Cauchy-Schwarz and the facts that supn∈N ‖‖˜̀θn ˙̀′
θn
‖q1/2
θn
ρ̄

1/2
θn,n
‖λ,2 < ∞ (under

assumption 3.3.1), ‖q1/2

θ̃n
ρ̄

1/2
θn,n
‖λ,2 = 1, cn → 1 and ‖|q1/2

θn
−q1/2

θ̃n
|ρ̄1/2
θn,n
‖λ,2 → 0 by Lemma

A.5.

Lemma A.9. Suppose assumption 3.3.1 holds and let ∆θ(u) be as defined as in Lemma
A.5. If θn = (γn, η)→ (γ, η) = θ, the sequence (∆θn(u))n∈N has uniformly bounded 4+δ
moments under Pnθn , i.e.

sup
n∈N,1≤t≤n

∫
|∆θn(u)|4+δ dPnθn <∞.

In consequence, it is uniformly square Pnθn-integrable.

Proof. The continuity and continuous differentiability conditions in assumption 3.3.1
ensure that all non-random terms in the expressions (3.7) – (3.9) converge and are thus
bounded.40 Note that under Pnθn ,Ak•Vθn,t ∼ ηk and is independent of bothXt andAj•Vθn,t
for j 6= k. Given this independence and the forms given in (3.7) – (3.9) it suffices to show
that

E[|φk(εk)|4+δ] <∞, E[|εk|4+δ] <∞, sup
n∈N,1≤t≤n

E‖Xt‖4+δ <∞,

where the expectation is taken under Pnθn and we note that ηk does not depend on n. The
first two of these follow immediately from the moment assumptions in part 2 of assumption
3.3.1. For the last term, by recursing backwards we obtain

Zt =
t−1∑
j=0

BjθCθ +
t−1∑
j=0

BjθDθεt−j + BtθZ0. (54)

Assumption 3.3.11 ensures that the matrices Bjθ are absolutely summable and
∑∞

j=0 B
j
θ =

(I − Bθ)
−1 exists (e.g. Lütkepohl, 2005, Section A.9.1). Moreover, T := {θn : n ∈

N} ∪ {θ} is compact, and the spectral radius M 7→ ρ(M) is a continuous function, then
{ρ(Bϑ) : ϑ ∈ T} is compact, which ensures that this set is bounded above by some υ < 1.
Let m1,m2 ∈ N with m2 ≥ m1 and let Bϑ = U∗ϑJϑUϑ be a Schur decomposition of Bϑ
(see e.g. Horn and Johnson, 2013, Theorem 2.3.1). Let ‖ · ‖ be the spectral norm and note
that we have ‖Uϑ‖ = 1 and hence by Lemma 5.6.10 in Horn and Johnson (2013), for any
ε > 0 with υ + ε < 1 we have∥∥∥∥∥∥

m2∑
j=0

Bjϑ −
m1∑
j=0

Bjϑ

∥∥∥∥∥∥ ≤
m2∑
j=m1

‖Bjϑ‖ ≤
m2∑
j=m1

‖Jϑ‖j ≤
m2∑
j=m1

(υ + ε)j .

40These terms are of the form 1, A(αn, σn)Dbl (with l an integer) or [Dxl(αn, σn)]k•[A(αn, σn)−1]•j for
k, j ∈ {1, . . . ,K} and x ∈ {α, σ} (with l an integer).
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Since
∑∞

j=0(υ + ε)j = 1
1−υ−ε < ∞, in view of the preceding display, the convergence∑∞

j=0 B
j
θ = (I −Bθ)

−1 is uniform in θ ∈ T. Since θ 7→ Cθ is continuous, this immediately

implies that supn∈N,1≤t≤n

∥∥∥∑t−1
j=0 B

j
θn
Cθn

∥∥∥4+δ
< ∞. Similarly using the same uniform

bound, that (εt)t≥1 are i.i.d. and since θ 7→ ‖Dθ‖ is continuous we have that

sup
n∈N,1≤t≤n

E

∥∥∥∥∥∥
t−1∑
j=0

BjθnDθnεt−j

∥∥∥∥∥∥
4+δ

≤ sup
n∈N
‖Dθn‖4+δE‖εt‖4+δ sup

n∈N,1≤t≤n

t−1∑
j=0

‖Bj
θn
‖4+δ <∞.

Hence by Minkowski’s inequality we have that supn∈N,1≤t≤n E‖Xt‖4+δ < ∞, where the
expectation is taken under Pnθn .

Lemma A.10. Suppose assumption 3.3.1 holds and let ∆θ(u) be as defined as in Lemma
A.5. If θn = (γn, η)→ (γ, η) = θ and Gθ is defined as in Lemma A.11, then under Pnθn ,

lim
n→∞

E

∣∣∣∣∣ 1n
n∑
t=1

∆θn(u)(Yt, Xt)
2 − τ2

∣∣∣∣∣
2

= 0, with τ2 := Gθ∆θ(u)2 <∞.

Proof. Let ϑn indicate either θn or θ. By inspection of their forms it is clear that for any
xn → x, [∆ϑn(u)(y, xn)]qϑn(y, xn)1/2 → [∆θ(u)(y, x)]qθ(y, x)1/2 pointwise in y. By
inspection of their form, the continuity given by Assumption 3.3.1 we have

lim
n→∞

∫
[∆ϑn(u)(y, xn)]2qϑn(y, xn) dy =

∫
[∆θ(u)(y, x)]2qθ(y, x) dy <∞,

i.e. Qn converges continuously to Q where

Qn(x) :=

∫
[∆ϑn(u)(y, x)]2qϑn(y, x) dy, Q(x) :=

∫
[∆θ(u)(y, x)]2qθ(y, x) dy.

We can bound

Qn(x) ≤ 2
[
E
[
∆θn(u)(Ỹn, X̃n)2

∣∣∣X̃n

]
+ E

[
∆θ(u)(Ỹ , X̃n)2

∣∣∣X̃n

]]
,

where Ỹn and Ỹ have laws such that their conditional density given X̃n is qϑn and qθ
respectively. Under Assumption 3.3.12 and an argument similar to that of Lemma A.9 it is
easily seen that each of

(
∆θn(u)(Ỹn, X̃n)2

)
n∈N

and
(

∆θ(u)(Ỹ , X̃n)2
)
n∈N

are uniformly

integrable. The uniform integrability of the corresponding conditional expectations above
then follows from Jensen’s inequality for conditional expectations and the de la Vallée -
Poussin criterion for uniform integrability (e.g. Bogachev, 2007, Theorem 4.5.9). Corollary
A.4 in conjunction with Theorem 3.5 of Serfozo (1982) then yields thatGθn,θn,n∆θn(u)2 →
Gθ∆θ(u)2 < ∞, where Gϑ,θ,n(A) :=

∫ ∫
1A(y, x)qϑ(y, x) dy dρ̄θ,n(x) and the finiteness

follows from the form of ∆θ(u), assumption 3.3.12 and Lemma A.3.41 The convergence
follows on combining Lemma A.9, Proposition A.2 and Corollary 19.3(ii) of Davidson
(1994).

Lemma A.11. Suppose that assumption 3.3.1 holds. Let ρθ,t be the density of Xt :=
vec(Yt−1, . . . , Yt−p) (i.e. the non-deterministic parts of Xt) under θ. Let Gϑ,n be the

41ρ̄θ,n := 1
n

∑n
t=1 ρθ,t.
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measure defined by Gϑ,n(A) :=
∫
A qϑ

1
n

∑n
t=1 ρθ,t dλ and Gθ the measure defined by

Gθ(A) :=
∫
A qθ(y, x) d(λ(y) ⊗ πθ(x)) for qϑ as defined as in (40). Let (ϑn)n∈N ⊂ Θ

be an sequence with ϑn = (γn, η)→ (γ, η) = θ. Then, Gϑn,n
TV−−→ Gθ.

Proof. By the form of θ 7→ qθ we have that qϑn → qθ (pointwise) as n → ∞. Hence, for
any x, qϑn(·, x) → qθ(·, x) pointwise and since each qϑn(·, x) and qθ(·, x) is a probability
density with respect to Lebesgue measure, by Proposition 2.29 in van der Vaart (1998),

Qn(x) :=

∫
|qϑn(y, x)− qθ(y, x)|dy → 0,

pointwise in x. Let (ψn)n∈N be a sequence of measurable functions on RKp with ψn ∈ [0, 1]
and πθ,n the probability measure corresponding to the density 1

n

∑n
t=1 ρθ,t. Then∣∣∣∣∫ ∫ ψn(qϑn(y, x)− qθ(y, x)) dy dπθ,n(x)

∣∣∣∣ ≤ ∫ Qn(x) dπθ,n(x).

Since Qn(x) ≤
∫
qϑn(y, x) dy+

∫
qθ(y, x) dy and

∫ [∫
qϑn(y, x) dy +

∫
qθ(y, x) dy

]
dπθ,n(x) =

2 =
∫

2
∫
qθ(y, x) dy dπθ(x), the Qn(x) are uniformly πθ,n – integrable.42 Hence by

Proposition A.2 and Corollary 2.9 of Feinberg et al. (2016),
∫

Qn(x) dπθ,n(x)→ 0.

Lemma A.12. Let γn = (αn, β) → (α, β) = γ and θn = (γn, η) → (γ, η) = θ for
γn, γ ∈ Γ. Let γ̃n = (αn, βn) → (α, β) = γ, θ̃n := (γ̃n, η) → (γ, η) = θ with
bn :=

√
n(βn − β)→ b and θ̌n := (γ̃n, η̃n)→ θ with η̃n := η(1 + hn/

√
n) for hn → h in

˙H . Then, under the conditions of Theorem 3.5.1,

1. If Zn,1 := 1√
n

∑n
t=1

˜̀
θn(Yt, Xt) and Zn,2 := Λn

θ̌n\θn
(Y n), then under Pnθn ,

Zn  Z ∼ N
((

0
−1

2σ
2
b,h

)
,

(
Ĩθ Ĩθ(0

′, b′)′

(0′, b′)Ĩθ σ2
b,h

))
.

2. We have that

1

n

n∑
t=1

(
ˆ̀̃
θn

(Yt, Xt)− ˜̀̃
θn

(Yt, Xt)
)

= oPn
θ̃n

(n−1/2)

3. Ĩn,θn → Ĩθ := Gθ ˙̀
θ

˙̀′
θ and Pn

θ̃n

(
‖În,θ̃n − Ĩθ‖2 < νn

)
→ 1 where νn is defined in

Assumption 3.3.2 and Gθ in Lemma A.11.

4. We have that

Rn :=
1√
n

n∑
t=1

[
˜̀̃
θn

(Yt, Xt)− ˜̀
θn(Yt, Xt)

]
+ Ĩn,θn(0′,

√
n(βn − β)′)′

Pnθn−−→ 0.

42The uniform integrability follows since, by the integral equality, Proposition A.2 and Proposition A.16,∫ ∣∣∣∣∫ qϑn(y, x) dy +

∫
qθ(y, x) dy − 2

∫
qθ(y, x) dy

∣∣∣∣ dπθ,n(x)→ 0.
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Proof. For part (i), let zn,t be

zn,t :=

(
˜̀
θn(Yt, Xt)

′, c′ ˙̀θn(Yt, Xt) +
K∑
k=1

hk(Ak•Vθn,t)

)′
,

and Fn,t := σ(ε1, . . . , εt). Under assumption 3.3.12, E‖zn,t‖22 < ∞ and {zn,t,Fn,t : 1 ≤
t ≤ n, n ∈ N} is a martingale difference array (all under Pnθn) such that

1

n

n∑
t=1

E
[
zn,tz

′
n,t

]
=

[
Ĩn,θn Ĩn,θn(0′, b′n)′

(0′, b′n)Ĩn,θn σ2
n,b,h

]
→
[

Ĩθ Ĩθ(0
′, b′)′

(0′, b′)Ĩθ σ2
b,h

]
,

noting Lemma 3.4.3 and Theorem 12.14 of Rudin (1991). That σ2
n,b,h converges to a σ2

b,h

is part of the conclusion of Proposition 3.4.1. That Ĩn,θn → Ĩθ follows from Lemma A.10.
Moreover, the Lindeberg condition in (67) is satisfied since {‖zn,t‖2 : 1 ≤ t ≤ n, n ∈ N}
is uniformly Pnθn-integrable. That this is true for ‖zn,t,2‖2 follows from A.9. That it is
also true for ‖zn,t,1‖2 can be shown by an analogous argument. Part (i) then follows from
Propositions 3.4.1, A.17 and Lemma A.10.

Next, define An := Aθ̃n and Bn := Bθ̃n and note that each An,k(Yt − cn − BnXt) h
εk,t ∼ ηk under Pn

θ̃n
. Hence we can compute certain properties of the efficient score using

the equality in distribution:

˜̀̃
θn,αl

(Yt, Xt) h
K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφk(εk,t)εj,t +

K∑
k=1

ζαn,l,k,k [τk,1εk,t + τk,2κ(εk,t)] (55)

˜̀̃
θn,σl

(Yt, Xt) h
K∑
k=1

K∑
j=1,j 6=k

ζσn,l,k,jφk(εk,t)εj,t +
K∑
k=1

ζσl,k,k [τk,1εk,t + τk,2κ(εk,t)] (56)

˜̀̃
θn,bl

(Yt, Xt) h
K∑
k=1

−An,k•Db,l [φk(εk,t)(Xt − EXt)− EXt (ςk,1εk,t + ςk,2κ(εk,t))]

(57)

where we note that the same observation implies that τk,n = τk and ςk,n = ςk for each
n.43 By our assumptions on the map (α, σ) 7→ A(α, σ), we have ζαn,l,k,j → ζα∞,l,k,j :=

[Dαl(α0, σ)]k•A(α, σ)−1
•j and ζσn,l,k,j → ζσ∞,l,k,j := [Dσl(α, σ)]k•A(α, σ)−1

•j . Note that the
entries of Db,l are all zero except for entry l (corresponding to bl) which is equal to one.

We verify (ii) for each component of the efficient score (55)-(57). Components (55) and
(56) follow similarly and we focus on (55). We define

ϕ1,n,t :=
K∑
k=1

K∑
j=1,j 6=k

ζl,k,j,nφk(An,k•Vn,t)An,j•Vn,t ,

and

ϕ̂1,n,t :=

K∑
k=1

K∑
j=1,j 6=k

ζl,k,j,nφ̂k,n(An,k•Vn,t)An,j•Vn,t ,

43In the preceding display we have written ζαn,l,k,k and ζσn,l,k,k rather than ζαl,k,k and ζσl,k,k to indicate their
dependence on θ̃n.
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with Vn,t = Yt − BnXt, and let ζn := maxl∈[L],j∈[K],k∈[K] |ζαl,j,k,n| which converges to
ζ := maxl∈[L],j∈[K],k∈[K] |ζαl,j,k,∞| <∞. We have that

1√
n

n∑
t=1

(ϕ̂1,n,t−ϕ1,n,t) ≤
√
n

K∑
k=1

K∑
j=1,j 6=k

ζn

∣∣∣∣∣ 1n
n∑
t=1

φ̂k,n(An,k•Vn,t)An,j•Vn,t − φk(An,k•Vn,t)An,j•Vn,t
∣∣∣∣∣ ,

Since each
∣∣∣ 1
n

∑n
t=1 φ̂k,n(An,k•Vn,t)An,j•Vn,t − φk(An,k•Vn,t)An,j•Vn,t

∣∣∣ = oPθn (n−1/2)

by applying the Lemma A.1 with Wn,t = An,j•Vn,t (noting that An,k•Vn,t ' εk,t and
An,j•Vn,t ' εj,t are independent with Eθn(An,j•Vn,t)

2 = 1 by Assumption 3.3.12, hence
the WLLN implies the required convergence) and the outside summations are finite, it
follows that

1√
n

n∑
t=1

(ϕ̂1,n,t − ϕ1,n,t) = oPn
θ̃n

(1) . (58)

That τ̂k,n
Pn
θ̃n−−→ τk follows from Lemma A.14. Now, consider ϕ2,τ,n,t defined by

ϕ2,τ,n,t :=
K∑
k=1

ζαn,l,k,k [τk,1An,k•Vn,t + τk,2κ(An,k•Vn,t)] .

Since sum is finite and each |ζαn,l,k,k| → |ζα∞,l,k,k| < ∞ it is sufficient to consider the
convergence of the summands. In particular we have that

1√
n

n∑
t=1

[τ̂k,n,1 − τk,1]An,k•Vn,t = [τ̂k,n,1 − τk,1]
1√
n

n∑
i=1

An,k•Vn,t → 0,

1√
n

n∑
t=1

[τ̂k,n,2 − τk,2]κ(An,k•Vn,t) = [τ̂k,n,2 − τk,2]
1√
n

n∑
i=1

κ(An,k•Vn,t)→ 0,

in probability, since An,k•Vn,t h εk,t ∼ ηk and (εk,t)t≥1 and (κ(εk,t))t≥1 are i.i.d. mean-
zero sequences with finite second moments such that the CLT holds.

Together these yield that

1√
n

n∑
t=1

(ϕ2,τ̂n,n,t − ϕ2,τ,n,t)→ 0 in Pn
θ̃n

-probability. (59)

Putting (58) and (59) together yields the required convergence for components of the type
(55). We note that the required convergence for components of type (56) follows using
identical steps.
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For components (57) let an,k,l := −An,k•Dbl and note for ς̃k,n,1 := ς̂k,n − ςk,

1√
n

n∑
t=1

(ˆ̀̃
θn,bl

(Yt, Xt)− ˜̀̃
θn,bl

(Yt, Xt))

=

K∑
k=1

an,k,l
1√
n

n∑
t=1

[
(Xt − EXt)

[
φ̂k(An,k•Vn,t)− φk(An,k•Vn,t)

]]
+

K∑
k=1

an,k,l
1√
n

n∑
t=1

[
(EXt − X̄n) (φk(An,k•Vn,t) + ς̂k,n,1An,k•Vn,t + ς̂k,n,2κ(An,k•Vn,t))

]
−

K∑
k=1

an,k,l
1√
n

n∑
t=1

[EXt (ς̃k,n,1An,k•Vn,t + ς̃k,n,2κ(An,k•Vn,t))] .

Noting first that an,k,l → a∞,k,l := Ak•Dbl , each of the terms on the right hand side
converges to zero in probability. For the first term, this follows from Lemma A.1 applied
with Wn,t := an,k,l(Xt−EXt), noting that this is independent of An,k•Vn,t by Assumption
2.44 For the second term, this follows from A.14, the CLT applied to An,k•Vn,t ' εk,t,
κ(An,k•Vn,t) ' κ(εk,t) and φk(An,k•Vn,t) ' φk(εk,t) and the fact that X̄n − 1

n

∑n
t=1 EXt

converges to zero in probability by e.g. Corollary 19.3 in Davidson (1994), Lemma A.3
(which provides a uniform upper bound for the 4 + δ moments of the Xt) and Proposition
A.2. For the third term, this follows from A.14 and the CLT applied to An,k•Vn,t ' εk,t and
κ(An,k•Vn,t) ' κ(εk,t).

The first part of (iii) follows from Lemma A.10. To verify the second part of (iii) we will
show that ∥∥∥În,θ̃n − Ĩθ∥∥∥2

≤
∥∥∥În,θ̃n − Ĭn,θ̃n∥∥∥2

+
∥∥∥Ĭn,θ̃n − Ĩθ∥∥∥2

= oPn
θ̃n

(ν1/2
n ). (60)

where Ĩθ := E[˜̀θ(Yt, Xt)˜̀
θ(Yt, Xt)

′] = 1
n

∑n
t=1 E[˜̀θ(Yt, Xt)˜̀

θ(Yt, Xt)
′] with the

expectation taken under Gθ, În,θ := 1
n

∑n
t=1

ˆ̀
θ(Yt, Xt)ˆ̀

θ(Yt, Xt)
′ and Ĭn,θ :=

1
n

∑n
t=1

˜̀
θ(Yt, Xt)˜̀

θ(Yt, Xt)
′.

To obtain the rates we start with ‖Ĩθn − Ĩθ‖2, for which we show that each component
satisfies the required rate. To set this up, let Qr,sl,m,t,n = ˜̀̃

θn,rl
(Yt, Xt)˜̀̃

θn,sm
(Yt, Xt), where

r, s ∈ {α, σ, b} and l,m denote the indices of the components of the efficient scores. Fix
any r, s and l,m and note that it suffices to show

1

n

n∑
t=1

Qr,sl,m,t,n − Eθ̃nQ
r,s
l,m,t,n +

1

n

n∑
t=1

Eθ̃n [Qr,sl,m,t,n]− Eθ[Qr,sl,m,t,∞] = oPn
θ̃n

(ν1/2
n ).

For the first term, by the fact that ˜̀̃
θn

has uniformly bounded 4 + δ moments,45 Proposition
A.2 and Theorem 1 of Kanaya (2017) we obtain

1

n

n∑
t=1

Qr,sl,m,t,n − Eθ̃nQ
r,s
l,m,t,n = OPn

θ̃n

(
n(1/p−1)/2

)
= oPn

θ̃n
(ν1/2
n ), p ∈ (1, 1 + δ/4].

44The convergence condition follows by combining Proposition A.2, Lemma A.3 (which provides a uniform
upper bound for the 4 + δ moments of the Xt) and Corollary 19.3 of Davidson (1994).

45Argue as in Lemma A.9.
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That the second term is o(ν1/2
n ) follows by the assumed Lipschitz continuity of the map

defining the ζ’s, that of each β 7→ A(α, σ)k• (which holds locally at θ) and Lemma A.13.

For the other component of the sum, let r ∈ {α, σ, b} and let l denote an index, we
write Ûn,t,rl := ˆ̀̃

θn,rl
(Yt, Xt), Ũt,rl := ˜̀̃

θn,rl
(Yt, Xt) and Dn,t,rl := ˆ̀̃

θn,rl
(Yt, Xt) −

˜̀̃
θn,rl

(Yt, Xt).

Since it is the absolute value of the (r, l)− (s,m) component of În,θ̃n− Ĭn,θ̃n , it is sufficient

to show that
∣∣∣ 1
n

∑n
t=1 Ûn,t,rlDn,t,sm + 1

n

∑n
t=1Dn,t,rlŨt,sm

∣∣∣ = oPn
θ̃n

(ν
1/2
n ) as n → ∞ for

any r, s ∈ {α, σ, b} and l,m. By Cauchy-Schwarz and lemma A.15∣∣∣∣∣ 1n
n∑
t=1

Dn,t,rlŨt,sm

∣∣∣∣∣ ≤
(

1

n

n∑
t=1

Ũ2
t,sm

)1/2(
1

n

n∑
t=1

D2
n,t,rl

)1/2

= OPn
θ̃n

(1)×oPn
θ̃n

(ν1/2
n ) = oPn

θ̃n
(ν1/2
n ),

∣∣∣∣∣ 1n
n∑
t=1

Ûn,t,rlDn,t,sm

∣∣∣∣∣ ≤
(

1

n

n∑
t=1

Û2
n,t,rl

)1/2(
1

n

n∑
t=1

D2
n,t,sm

)1/2

= OPn
θ̃n

(1)×oPn
θ̃n

(ν1/2
n ) = oPn

θ̃n
(ν1/2
n ),

for any (r, l)− (s,m). It follows that[
1

n

n∑
t=1

Ûn,t,rlDn,t,sm +Dn,t,rlŨt,sm

]2

≤ 2

[
1

n

n∑
t=1

Ûn,t,rlDn,t,sm

]2

+2

[
1

n

n∑
t=1

Dn,t,rlŨt,sm

]2

= oPn
θ̃n

(νn)

and hence ‖În,θ̃n− Ĭn,θ̃n‖2 ≤ ‖În,θ̃n− Ĭn,θ̃n‖F = oPn
θ̃n

(ν
1/2
n ). We can combine these results

to obtain:

‖În,θ̃n− Ĩθ‖2 ≤ ‖În,θ̃n− Ĭn,θ̃n‖2 +‖Ĭn,θ̃n− Ĩθ‖2 = oPn
θ̃n

(ν1/2
n )+oPn

θ̃n
(ν1/2
n ) = oPn

θ̃n
(ν1/2
n ).

Part (iv) follows directly from Lemma A.8.

Lemma A.13. In the setting of Lemma A.12

1. 1
n

∑n
t=1 Eθ̃nXt − EθXt = o(ν

1/2
n ),

2. 1
n

∑n
t=1[Eθ̃nXt][Eθ̃nXt]

′ − [EθXt][EθXt]
′ = o(ν

1/2
n ).

3. 1
n

∑n
t=1 Eθ̃n [Xt − Eθ̃nXt][Xt − Eθ̃nXt]

′ − Eθ[Xt − EθXt][Xt − EθXt]
′ = o(ν

1/2
n ).

Proof. For (i) we decompose as

Eθ̃nXt − EθXt = [Eθ̃nXt − Eθ̃nX̃t] + [Eθ̃nX̃t − EθX̃t] + [EθX̃t − EθXt]

where X̃t denotes a stationary solution to the VAR equation. Note that for all ϑ ∈ {θ̃n :
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n ∈ N} ∪ {θ} and some ρ? < 1

1

n

n∑
t=1

‖EϑXt − EϑX̃t‖2 =
1

n

n∑
t=1

‖EϑZt−1 − EϑZ̃t−1‖2

≤ ‖Cϑ‖2 ×
1

n

n∑
t=1

 ∞∑
j=t

‖Bjϑ‖

2

≤ ‖Cϑ‖2 ×
1

n

n∑
t=1

 ∞∑
j=t

ρj?

2

=
‖Cϑ‖2

(1− ρ?)2
× 1

n

n∑
t=1

ρ2t
?

=
‖Cϑ‖2

(
1− ρ2(n+1)

?

)
(1− ρ?)2(1− ρ2

?)
× 1

n

= O(n−1),

(61)

and hence by Jensen’s inequality 1
n

∑n
t=1 ‖EϑXt − EϑX̃t‖ = O(n−1/2). The middle term

satisfies

1

n

n∑
t=1

‖Eθ̃nX̃t−EθX̃t‖ = ‖Eθ̃nX̃t−EθX̃t‖ = (I−Bθ̃n)−1Cθ̃n−(I−Bθ)−1Cθ = O(n−1/2),

since β 7→ (I − Bθ)
−1Cθ is locally Lipschitz at θ.

For (ii), note that combination of the preceding displays yields that

1

n

n∑
t=1

‖Eθ̃nXt − EθXt‖2 = O(n−1),

which, in conjunction with the Cauchy-Schwarz inequality and Lemma A.3 yields (ii).

For (iii) let Uϑ,t := Xt−EϑXt and Ũϑ,t := X̃t−EϑX̃t. We note that for all ϑ ∈ {θ̃n : n ∈
N} ∪ {θ}, some ρ? < 1 and some finite, positive M

1

n

n∑
t=1

Eϑ
(
Uϑ,tU

′
ϑ,t

)
− Eϑ

(
Ũϑ,tŨ

′
ϑ,t

)
=

1

n

n∑
t=1

∞∑
j=t

BjϑDϑD
′
ϑ(Bjϑ)′

≤M 1

n

n∑
t=1

∞∑
j=t

ρ2j
?

=
M

1− ρ2
?

1

n

n∑
t=1

ρ2t
?

=
M
(

1− ρ2(n+1)
?

)
(1− ρ2

?)
2

1

n

= O(n−1).

Additionally, we can write vec(EϑŨϑ,tŨ ′ϑ,t) = (I − Bϑ ⊗ Bϑ)−1 vec(DϑD
′
ϑ), which is
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locally Lipschitz in β at θ under our assumptions. This implies that

1

n

n∑
t=1

Eθ̃nŨθ̃n,tŨ
′
θ̃n,t
− EθŨθ,tŨ ′θ,t = O(n−1/2).

By using a similar decomposition as in (i), the previous two displays suffice for (iii).

Lemma A.14. If assumption 3.3.1 holds, then ‖%̂k,n − %k,n‖2 = oPn
θ̃n

(νn,p) = oPn
θ̃n

(ν
1/2
n ),

where θ̃n is as in Lemma A.12 and % ∈ {τ, ς}.

Proof. Under Pn
θ̃n

, An,k•Vn,t h εk,t ∼ ηk, for Vn,t := Yt − cn − BnXt. Let w ∈
{(0,−2)′, (1, 0)′} By the fact that the map M 7→ M−1 is Lipschitz at a positive definite
matrix M0 we have that for a positive constant C then for large enough n, with probability
approaching one

‖%̂k,n − %k,n‖2 = ‖(M̂−1
k,n −M−1

k )w‖2 ≤ 2‖M̂−1
k,n −M−1

k ‖2 ≤ 2C‖M̂k,n −Mk‖2. (62)

By Theorem 2.5.11 in Durrett (2019)

1

n

n∑
t=1

[(An,k•Vn,t)
3 − E(An,k•Vn,t)

3] = oPn
θ̃n

(
n

1−p
p

)
1

n

n∑
t=1

[(An,k•Vn,t)
4 − E(An,k•Vn,t)

4] = oPn
θ̃n

(
n

1−p
p

)
.

These together imply that

‖M̂k,n −Mk‖2 ≤ ‖M̂k,n −Mk‖F = oPn
θ̃n

(
n

1−p
p

)
= oPn

θ̃n
(νn,p).

Combining these convergence rates with equation (62) yields the result.

Lemma A.15. Suppose assumptions 3.3.1 and 3.3.2 hold and θ̃n = (αn, βn, η) where√
n(βn − β) = O(1) is a deterministic sequence. Then for each r ∈ {α, σ, b} and l

1

n

n∑
t=1

(
ˆ̀̃
θn,rl

(Yt, Xt)− ˜̀̃
θn,rl

(Yt, Xt)
)2

= oPn
θ̃n

(νn).

Proof. We start by considering elements in 1
n

∑n
t=1

(
ˆ̀̃
θn,αl

(Yt, Xt)− ˜̀̃
θn,αl

(Yt, Xt)
)2

. We
define τ̃k,n,q := τ̂k,n,q − τk,q and Vn,t = Yt− cn−BnXt. Since each |ζαn,l,k,j | <∞ and the
sums over k, j are finite, it is sufficient to demonstrate that for every k, j,m, s ∈ [K], with
k 6= j and s 6= m,

1

n

n∑
t=1

[
φ̂k,n(An,k•Vn,t)− φk(An,k•Vn,t)

] [
φ̂s,n(An,s•Vn,t)− φs(An,s•Vn,t)

]
An,j•Vt,nAn,m•Vn,t = oPn

θ̃n
(νn),

(63)
1

n

n∑
t=1

[
φ̂k,n(An,k•Vn,t)− φk(An,k•Vn,t)

]
An,j•Vn,t [τ̃s,n,1An,s•Vn,t + τ̃s,n,2κ(An,s•Vn,t)] = oPn

θ̃n
(νn),

(64)
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1

n

n∑
t=1

[τ̃s,n,1An,s•Vn,t + τ̃s,n,2κ(An,s•Vn,t)] [τ̃k,n,1An,k•Vn,t + τ̃k,n,2κ(An,k•Vn,t)] = oPn
θ̃n

(νn).

(65)

For (65), let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 4 parts, each of
which has the following form for some q, w ∈ {1, 2}

1

n

n∑
t=1

τ̃s,n,q τ̃k,n,wξq(An,s•Vn,t)ξw(An,k•Vn,t) = τ̃s,n,q τ̃k,n,w
1

n

n∑
t=1

ξq(An,s•Vn,t)ξw(An,k•Vn,t) = oPn
θ̃n

(νn),

since we have that each τ̃s,n,q τ̃k,n,w = oPn
θ̃n

(νn) by lemma A.14.46 For (64) we can argue
similarly. Again let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 2 parts,
each of which has the following form for some q ∈ {1, 2}

1

n

n∑
t=1

[
φ̂k,n(An,k•Vn,t)− φk(An,k•Vn,t)

]
An,j•Vn,tτ̃s,n,qξq(An,s•Vn,t)

≤ τ̃s,n,q
(

1

n

n∑
t=1

[
φ̂k,n(An,k•Vn,t)− φk(An,k•Vn,t)

]2
(An,j•Vn,t)

2

)1/2(
1

n

n∑
t=1

ξq(An,s•Vn,t)
2

)1/2

= oPn
θ̃n

(νn).

by Lemma A.1 applied with Wn,t = An,j•Vn,t and τ̃s,n,q = oPn
θ̃n

(ν
1/2
n ).47 For (63) use

Cauchy-Schwarz with Lemma A.1

1

n

n∑
t=1

[
φ̂k,n(An,k•Vn,t)− φk(An,k•Vn,t)

] [
φ̂s,n(An,s•Vn,t)− φs(An,s•Vn,t)

]
An,j•Vn,tAn,m•Vn,t

≤
(

1

n

n∑
t=1

[
φ̂k,n(An,k•Vn,t)− φk(An,k•Vn,t)

]2
(An,j•Vn,t)

2

)1/2

×
(

1

n

n∑
t=1

[
φ̂s,n(An,s•Vn,t)− φs(An,s•Vn,t)

]2
(An,m•Vn,t)

2

)1/2

= oPn
θ̃n

(νn).

This completes the proof for the components corresponding to αl. We note that the
components corresponding to σl follow identically.

Finally, we consider the elements in 1
n

∑n
t=1

(
ˆ̀
θn,bl(Yt, Xt)− ˜̀

θn,bl(Yt, Xt)
)2

, where we

46The fact that 1
n

∑n
t=1 ξq(An,s•Vn,t)ξw(An,k•Vn,t) = OPn

θ̃n
(1) can be seem to hold using the moment and

i.i.d. assumptions from assumption 3.3.1 and Markov’s inequality, noting once more that An,k•Vn,t ' εk,t
under Pn

θ̃n
.

47See footnote 46.
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note that with ς̃k,n := ς̂k,n − ςk,

1

n

n∑
t=1

(
ˆ̀
θn,bl(Yt, Xt)− ˜̀

θn,bl(Yt, Xt)
)2

.
K∑
k=1

1

n

n∑
t=1

[
[an,k,l(Xt − EXt)]

2
[
φ̂k(An,k•Vn,t)− φk(An,k•Vn,t)

]2
]

+
K∑
k=1

1

n

n∑
t=1

[
[an,k,l(EXt − X̄n)]2 (φk(An,k•Vn,t) + ς̂k,n,1An,k•Vn,t + ς̂k,n,2κ(An,k•Vn,t))

2
]

+

K∑
k=1

1

n

n∑
t=1

[
[an,k,lEXt]

2 (ς̃k,n,1An,k•Vn,t + ς̃k,n,2κ(An,k•Vn,t))
2
]

That the first right hand side term is oPn
θ̃n

(νn) follows by Lemma A.1.48 and the Cauchy-

Schwarz inequality. The third follows from Lemma A.14 since [an,k,lEXt]
2 is uniformly

(in t) bounded (cf. Lemma A.3).

For the second, let X̃t denote a random vector which has the stationary distribution of Xt

and note that by equation (61) we have

1

n

n∑
t=1

‖Eθ̃nXt − Eθ̃nX̃t‖2 = O(n−1).

Now let

Un,t := (φk(An,k•Vn,t) + ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t))
2

Ũn,t := (ς̃k,n,1An,k•Vn,t + ς̃k,n,2κ(An,k•Vn,t))
2 .

By Theorem 1 in Arnold (1985) and Markov’s inequality, we have that max1≤t≤n Un,t =
OPn

θ̃n
(n1/p). Then

1

n

n∑
t=1

‖Eθ̃nXt − Eθ̃nX̃t‖2Un,t ≤ max
1≤t≤n

Un,t
1

n

n∑
t=1

‖Eθ̃nXt − Eθ̃nX̃t‖2 = OPn
θ̃n

(n−1+1/p) = oPn
θ̃n

(νn).

Additionally, by equation (61), Jensen’s inequality, Lemma A.3 and Theorem 2 of Kanaya
(2017)

‖Eθ̃nX̃t−X̄n‖2 ≤ 2

∥∥∥∥∥ 1

n

n∑
t=1

(Xt − Eθ̃nXt)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
t=1

(Eθ̃nXt − Eθ̃nX̃t)

∥∥∥∥∥
2
 = OPn

θ̃n
(n−1)+O(n−1),

hence

1

n

n∑
t=1

‖Eθ̃nX̃t − X̄n‖2Un,t = ‖Eθ̃nX̃t − X̄n‖2
1

n

n∑
t=1

Un,t = OPn
θ̃n

(n−1) = oPn
θ̃n

(νn).

To complete the proof, it suffices to combine the above results with the observation that by
48Cf. footnote 44.
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Lemma A.14 and Theorem 1 of Arnold (1985)

1

n

n∑
t=1

‖Eθ̃nXt − X̄n‖2Ũn,t

. τ̃2
k,n,1

1

n

n∑
t=1

‖Eθ̃nX̃t − X̄n‖2(An,k•Vn,t)
2 + τ̃2

k,n,1 max
1≤t≤n

(An,k•Vn,t)
2 1

n

n∑
t=1

‖Eθ̃nX̃t − Eθ̃nXt‖2

+ τ̃2
k,n,2

1

n

n∑
t=1

‖Eθ̃nX̃t − X̄n‖2κ(An,k•Vn,t)
2 + τ̃2

k,n,2 max
1≤t≤n

κ(An,k•Vn,t)
2 1

n

n∑
t=1

‖Eθ̃nX̃t − Eθ̃nXt‖2

= oPn
θ̃n

(νn).

A.4. Miscellaneous results

The results in this subsection are general results, which are useful in establishing the main
results of the paper, but are not specific to the model under study.

Proposition A.16 (Cf. Proposition 2.29 in van der Vaart, 1998). Suppose that on a
measureable space (S,S), (µn)n∈N is a sequence of finite measures such that µn

TV−−→ µ
(with µ a finite measure on (S,S). If (fn)n∈N and f are (real-valued) measurable functions
such that fn → f in µ-measure and lim supn→∞

∫
|fn|p dµn ≤

∫
|f |p dµ < ∞ for some

p ≥ 1, then
∫
|fn − f |p dµn → 0.

Proof. (a+ b)p ≤ 2p(ap + bp) for any a, b ≥ 0 and hence, under our hypotheses,

0 ≤ 2p|fn|p + 2p|f |p − |fn − f |p → 2p+1|f |p in µ - measure.

By Corollary 2.3 of Feinberg et al. (2016) and the hypothesis that lim supn→∞
∫
|fn|p dµn ≤∫

|f |p dµ <∞,∫
2p+1|f |p dµ ≤ lim inf

n→∞

∫
2p|fn|p + 2p|f |p − |fn − f |p dµn

≤ 2p+1

∫
|f |p dµ− lim sup

n→∞

∫
|fn − f |p dµn.

Proposition A.17. Let {Zn,k,Fn,k : k ≤ n, n ∈ N} be a martingale difference array of

L−dimensional random vectors, such that Σn,k := E
[
Zn,kZ

′
n,k

]
exists. Suppose that

1

n

n∑
k=1

Σn,k → Σ?, (66)

with Σ? positive semi-definite (and finite) and that for each ε > 0

1

n

n∑
k=1

E
[
‖Zn,k‖21{‖Zn,k‖ ≥ ε

√
n}
]
→ 0. (67)

279



Then
1√
n

n∑
k=1

Zn,k  N (0,Σ?).

Proof. Put ξn,k := Zn,k/
√
n for k ≤ n and ξn,k := 0 otherwise. Fix a ∈ RL. The

adapted sequence (a′ξn,k,Fn,k)k∈N is clearly a martingale difference sequence under our
hypotheses. Moreover, the sums

∑∞
k=1 a

′ξn,k =
∑n

k=1 a
′ξn,k and

∑∞
k=1 E[(a′ξn,k)

2] =∑n
k=1 E[(a′ξn,k)

2] trivially converge with probability 1 for each n ∈ N. By linearity and
continuity we have that

∞∑
k=1

E[(a′ξn,k)
2] =

n∑
k=1

E[(a′ξn,k)
2] = a′

[
1

n

n∑
k=1

Σn,k

]
a→ a′Σ?a ≥ 0.

Next, suppose that a 6= 0 and let ε > 0. We have that {|a′Zn,k| ≥ ε
√
n} ⊂ {‖Zn,k‖ ≥

ε
√
n/‖a‖} and therefore

∞∑
k=1

E
[
(a′ξn,k)

21{|a′ξn,k| ≥ ε}
]
≤ ‖a‖2 1

n

n∑
k=1

E
[
‖Zn,k‖21{‖Zn,k‖ ≥ ε

√
n/‖a‖}

]
→ 0,

by assumption.49 This establishes that the conditions of Theorem 18.1 of Billingsley (1999)
are satisfied and hence

1√
n

n∑
k=1

a′Zn,k =

∞∑
k=1

a′ξn,k  N (0, a′Σ?a).

The claimed result then follows by an application of the Cramér-Wold theorem.

Remark A.1. Proposition A.17 is, of course, completely standard. It is recorded here
because we have been unable to find a reference for a multivariate CLT for martingale
difference arrays which permits a positive semi-definite limiting variance matrix.

Theorem A.18 (Extended uniformly equicontinuous mapping). Let (X, dX) and (Y, dY )
be separable metric spaces and let (fn)n∈N be a sequence of functions from X → Y and
(gn)n∈N a uniformly equicontinuous sequence of functions from X → Y . Suppose that
x 7→ dY (fn(x), gn(x)) converges compactly to 0. If (Pn)n∈N and (Qn)n∈N are sequences
of laws on X such that (i) (Pn)n∈N is uniformly tight and (ii) dBL(Pn, Qn) → 0, then
dBL(P̃n, Q̃n)→ 0 for P̃n := Pn ◦ f−1

n and Q̃n := Qn ◦ g−1
n .

Proof. By Theorem 11.7.1 in Dudley (2002), there exist on some probability space X-
valued random variablesXn and Yn such thatXn ∼ Pn and Yn ∼ Qn and dX(Xn, Yn)→ 0
in probability. By the triangle inequality

dY (fn(Xn), gn(Yn)) ≤ dY (fn(Xn), gn(Xn)) + dY (gn(Xn), gn(Yn)).

By uniform equicontinuity of (gn)n∈N, dY (gn(Xn), gn(Yn)) → 0 in probability. Let
δ, ε > 0 be given and choose a compact K such that (each) PnK > 1 − ε. The compact
convergence ensures that for all sufficiently large n, supx∈K dY (fn(x), gn(x)) < δ. Hence,

49In the case that a = 0 this limit trivially holds.
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for all such n,

P (dY (fn(Xn), gn(Xn)) > δ) ≤ P (Xn /∈ K) = PnK
{ ≤ ε.

It follows that dY (fn(Xn), gn(Yn)) → 0 in probability and the conclusion follows by
applying Theorem 11.7.1 in Dudley (2002) once more.

Theorem A.19 (Uniform Delta-method). Let U and V be normed linear spaces and φ :
Uφ → V (with Uφ ⊂ U ). Let (rn)n∈N be a sequence of constants with rn →∞, (Xn)n∈N a
sequence of Uφ-valued random variables, (θn)n∈N ⊂ Uφ and (Pn)n∈N, (Qn)n∈N sequences
of laws on U with (each) PnU0 = 1 for a separable U0 ⊂ U . Suppose that (i) φ is
Hadamard differentiable tangentially to U0, uniformly along (θn)n∈N, with derivative φ′θ,
(ii) Tn := rn(Xn − θn) ∼ Pn where (Pn)n∈N is uniformly tight, (iii) dBL(Pn, Qn) → 0
and (iv) (φ′θn)n∈N is uniformly equicontinuous. Then,

dBL
(
L (rn (φ(Xn)− φ(θn))) , Qn ◦ [φ′θn ]−1

)
→ 0. (68)

Proof. Define fn(h) := rn
(
φ(θn + r−1

n h)− φ(θn)
)

and gn(h) := φ′θn(h). By our uniform
differentiability assumption, for any compact K ⊂ U0 we have

sup
h∈K

∥∥rn (φ(θn + r−1
n h)− φ(θn)

)
− φ′θn(h)

∥∥→ 0,

and so h 7→ ‖fn(g) − gn(h)‖ converges compactly to 0 on U0.50 This fact and (ii) - (iv)
allows the application of Theorem A.18 to conclude (68).51

Remark A.2. Since Hadamard derivatives are bounded linear maps by definition, a sufficient
condition for the uniform equicontinuity of (φ′θn)n∈N is that supn∈N ‖φ′θn‖ < ∞, i.e.
their operator norms are uniformly bounded. This ensures that each φ′θn is Lipschitz with
Lipschitz constant supn∈N ‖φ′θn‖ and hence the collection is uniformly equicontinuous.

50Cf. e.g. pp. 453 – 455 in Bickel et al. (1998)
51The image of a separable space under a continuous function is separable, cf. Theorem 16.4(a) in Willard

(1970).
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