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Per als que encara hi són, i als que ja no.
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aquests anys és gràcies a ells. En molts moments ha sigut dur, però sovint cal patir per
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pas del camı́ en incomptables ocasions. Un esment especial per al David, per trobar les
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Abstract
This thesis studies the capabilities of Bayesian estimators in high-dimen-sional gener-
alised linear models, with a particular focus on treatment effect estimation. The first
of four chapters provides the necessary background, advances and challenges for this
thesis. In Chapter 2, I present methodological and computational contributions to tackle
high-dimen-sional treatment effect estimation through confounder importance learn-
ing, a model averaging formulation based on a flexible model prior designed to miti-
gate problems related to over- and under-selection of controls, whose hyper-parameters
are learnt by empirical Bayes through efficient gradient-based optimisation. Chapter 3
presents empirical evidence in favour of this approach, whose main application is the
analysis of salary discrimination in the U.S. due to factors such as gender or race, reveal-
ing the existence of wage gaps that have not significantly improved over the last decade.
Chapter 4 contributes with new theoretical properties that reinforce the use of non-local
priors, showing satisfactory asymptotic results compared to other specifications.

Resum
Aquesta tesi estudia les capacitats d’estimadors bayesians en models lineals generalit-
zats d’alta dimensió, amb un enfocament a l’estimació dels efectes de tractament. El
primer capı́tol proporciona context, avenços i reptes per a la tesi. Al Capı́tol 2, presen-
to contribucions metodològiques i computacionals per abordar l’estimació d’efectes de
tractament d’alta dimensió, a través de confounder importance learning, una formulació
de mitjana de models basada en un prior per als model dissenyat per mitigar problemes
relacionats amb la sobre- o sub-selecció de controls, i els hı́per-paràmetres de la qual
s’aprenen a través de Bayes empı́ric, mitjançant optimització eficient basada en gradi-
ents. El Capı́tol 3 presenta evidència empı́rica a favor d’aquest mètode, la principal
aplicació del qual és l’anàlisi de la discriminació salarial als EUA atribuı̈da a factors
com el gènere o la raça, posant de manifest l’existència de diferències salarials que no
han millorat de manera significativa en la darrera dècada. El Capı́tol 4 aporta noves pro-
pietats teòriques que reforcen l’ús dels priors no locals, mostrant resultats asimptòtics
satisfactoris en relació a d’altres especificacions.
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Executive Summary

In this work, I analyse the problem of model selection in the presence of a high-
dimensional set of input features, with a particular focus on treatment effect estimation
amidst a large set of potential confounding variables. The task of interest in this type
of models is double: first, to discern in a large parameter space those parameters that
are truly non-zero from those that are actually irrelevant, and, second, to derive valid
inference on the former set. These tasks are hard because in these setups the number
of parameters to be estimated can be (much) larger than the amount of observations.
In its particular application to treatment effect estimation, one is only truly interested
in evaluating a narrow subset of parameters which are of particular (practical) interest,
leaving the rest as “control” parameters. Typically, this has been framed as the problem
of identifying the effect of one single intervention, commonly known as a “treatment
variable”, on a response target. The added difficulty is that this intervention may be in-
trinsically linked to other factors that are already measured within the pool of potential
variables for the model, so one must contemplate that there might exist a certain de-
gree of confoundedness with an unknown subset of a high-dimensional set of variables,
which must be adequately calibrated.

In this setup, the main issue of concern for many of the methodological approaches is
the under-selection of controls, that is, if one omits the inclusion of any control variable
that is relevant to explain the outcome that also correlates to the treatment, which leads
to the well-known omitted variable bias problem, hindering inference on the parameter
of interest. As a result, most proposals tend to be conservative in terms of discarding
variables. This practice, however, might lead to a problem in the opposite direction,
which despite being deemed as a less pressing concern by a fraction of the literature, I
illustrate in Chapter 3 that its magnitude can be as detrimental to inference as the omis-
sion of relevant variables that one is trying to prevent in the first place. “Over-selection”
of controls, especially of those correlating to the variables of interest, is a major driver
of variance inflation for the estimate of the treatment effect, and can additionally lead
to another source of bias: that related to incorporating truly irrelevant controls to the
parameter estimation stage that are non-randomly chosen.

One of the main focuses of this work is on finding methodology that can prevent
these two undesired effects, i.e. that can balance power and sparsity. I construct a
Bayesian model averaging (BMA) estimate that provides solid foundations to avoid
model over-parameterisation thanks to taking full advantage of the strong shrinking na-
ture of parameter non-local priors, which I review later in Chapter 4. It is well-known,
however, that in this scenario a regular BMA estimate built on canonical model priors
can lead to low power through deterring the inclusion of variables that, despite having
a non-zero effect on the response, are too correlated among themselves, as might be
a treatment and a potential active confounder. To that end, I introduce a novel model
prior, named confounder importance learning (CIL) prior, which can accommodate for
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any number of treatments, and that can flexibly detect a priori what variables should be
encouraged to be included or excluded from the model depending on their relationship
with the treatments of interest. In essence, this is a separable prior that is parametrised
such that correlating to a treatment does not necessarily equate to a higher prior prob-
ability of inclusion into the model: if one detects that these variables are irrelevant to
the outcome, it may imply the opposite, or even no particular prior action at all. One
of the main functions of this prior is to improve power in the detection of truly active
parameters with respect to classical forms of BMA by tilting individual prior inclusion
probabilities accordingly.

The critical parameterisation of this prior can be conducted using an empirical Bayes
approach. However, since this approach can be computationally expensive, requiring
the evaluation of a potentially expensive marginal likelihood in large hyper-parameter
spaces, an variational algorithm based on expectation propagation is developed to achieve
reliable approximations at a fraction of the computational cost, requiring the simple
evaluation of marginal posterior probabilities under basic uniform priors. This drasti-
cally reduces computing time especially in the presence of a large number of treatments.
These methodological contributions, including their computational implementation and
corresponding software, are presented in Chapter 2.

In Chapter 3 I illustrate the performance of CIL in several scenarios. First, I contem-
plate a set of simulation studies where I stress its capabilities compared to other popular
methods in the present literature. I find that performance of CIL is able to match the
performance of every method in their best scenario, and outperform all of them in the
rest, for a wide range of constructions that vary several key indicators, such as treatment
effect size, model dimension, number of active controls and treatments, among others.
Importantly, I show that CIL is indeed capable of attaining higher detection power with
respect to conventional BMA, while deterring the inclusion of spurious parameters as
well as BMA does. I also analyse potential wage discrimination in the U.S. in the 2010–
2019 decade as a function of factors such as gender, race, ethnicity or place of birth. I
illustrate that levels of discrimination attributed to these factors still exist, with little
improvement (if any) across the decade. While CIL and BMA show similar results on
the main effects, I show that CIL is capable of detecting several interaction terms that
regular BMA struggles to detect, in the form of state-level deviations from the main ef-
fects, allowing for better assessment of treatment effect heterogeneity across states. As
a further application, I also analyse the effect of the exposure to certain volatile organic
compounds to different levels of cholesterol in the blood, with similar results in terms
of performance.

Finally, in Chapter 4 I study properties of non-local priors in more detail. In par-
ticular, the interest is on finding that the so-called product moment (pMOM) non-local
prior is able to attain satisfactory asymptotic properties in terms of marginal posterior
inclusion probabilities, in addition to high-dimensional parameter estimation. These

x
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posterior quantities are of capital importance in the CIL machinery, as they drive the
hyper-parameter calibration algorithm that critically sets prior inclusion probabilities
for each potential confounder. Here I depict their asymptotic behaviour in the sequence
model, a simple but rich generalisation of the orthogonal regression setup that allows
us to obtain fundamental posterior quantities in closed form. I investigate rates of con-
vergence in high-dimensional models for marginal posterior inclusion probabilities, as
well as parameter estimation. I show that for certain parameter regions and under a set
of mild technical conditions, the pMOM prior can achieve stronger shrinkage to discard
truly inactive parameters compared to standard Gaussian priors. Similarly good results
are obtained in establishing probability bounds for the total absolute error of the BMA
parameter estimates, with faster rates of convergence for truly inactive parameters rel-
ative to the Gaussian prior. Additionally, I find that for a large class of local priors in
these parameter regions their concentration rates do not meaningfully improve those of
the Gaussian prior as the pMOM does.

In summary, the main contributions of this thesis include a new method that can do
inference on multiple simultaneous treatment effects, balancing detection power with
model sparsity. This model averaging approach is based on the conjunction of a novel
model prior, and a strong non-local parameter prior that introduces shrinkage. The
model prior learns from data if and to what extent control inclusion or exclusion should
be encouraged to inference, and comes with a computationally efficient algorithm that
can render this approach practical. As for the non-local prior, it is shown that outside
extreme parameter regions (i.e. too large or too close to zero) by incorporating a non-
local element one is able to improve the asymptotic convergence rates of a wide set
of local priors, both for marginal posterior inclusion probabilities and for parameter
estimation. These results help to reinforce the validity of the prior employed by the CIL
methodology.
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Chapter 1

HIGH-DIMENSIONAL INFERENCE
AND COMPUTATION

In the presence of a large set of potential predictors for a given outcome, the identifica-
tion of the true subset of them that actually affect the latter, and the correct calibration
of their effect, are challenging statistical problems. The main reason why they are hard
is that the size of the set of covariates —or input features— may be systematically
larger than the number of observations itself, and hence their analysis requires specific
solutions that address issues not addressed by classical theory. These are the so-called
high-dimensional settings, in which one wishes to extract a subset of features that truly
affect some response of interest, among a large pool of potential candidates, with which
one can then build a statistical model. The problem extends in fact beyond the selection
of the right features: in many problems, posterior to selection, it is necessary to estimate
what is the actual effect of the chosen features, as well as to quantify the level of un-
certainty of both their estimates and the selection itself. One may think, for example, of
the problem of policy design: not only it requires to state if a given policy has an effect
on a targeted outcome (i.e. whether the predictor is actually selected) and with what
certainty, but also to estimate the size of such effect, jointly with some range within
which our estimation is reliable for some confidence level.

Therefore, the objective is to build a statistical model that contains only those pre-
dictors truly affecting the outcome, while simultaneously achieving valid statistical in-
ference on the magnitude of their influence on it. This requires some method to correctly
select features among the available predictors in the data. By feature selection we refer
to a binary decision concerned with deciding if sampled evidence is strong enough to
favour the inclusion of any given variable in the model, which effectively reduces to
the problem of assessing correctly whether the effect of any given feature (or any set of
them) is zero, or else. Selection by itself is a hard problem, and so tackling inference
in such contexts is subsequently complex as well — it evolves the problem from a bi-
nary decision to a broader quantification of uncertainty. Then, estimation is not only

1
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about point estimation or output prediction, but about being able to formally quantify
confidence around these estimates.

Uncertainty quantification (UQ) in high dimensions is intrinsically linked to ade-
quate feature selection, for achieving good selection is helpful in addressing the issue
of uncertainty, especially if the inclusion or exclusion of any given feature can provide
information about its UQ. As we will formalise later on, one may face some form of
trade-off between proper selection and valid UQ. To gain intuition, notice for example
that a parameter estimate is not a well-defined event, since the estimate is undefined
whenever the selection of its corresponding feature does not occur. Thus, it loses math-
ematical meaning to attempt inference around an undefined estimate. At the same time,
although including such feature would set grounds to quantify the uncertainty of its
estimate, it would disregard selection altogether, were it applied uniformly to all un-
selected features. What is worse, any inclusion of an irrelevant feature comes with the
associated costs to inadequate selection, with consequences on parameter estimation
and subsequent outcome prediction, i.e. an overall increase in the mean squared error of
both the model’s parameters and its predictions. Building a model on a superset of the
true subset of active features can inflate the variance of the sample distribution of any
parameter estimate in the model, as well as induce some bias on its estimates if such
over-selection is sample-driven, i.e. not random. Later we will illustrate that correct
selection of covariates decisively determines the quality of the uncertainty estimates of
interest. Several modern proposals to achieve adequate selection and UQ in both the
frequentist and Bayesian literature will be reviewed, noting that no fully satisfactory
uniformly valid method exists yet. Frequentist methods are generally aimed at either
selection and predictive performance or at correct parameter inference and UQ, and
hence can attain good results for one of these tasks separately. For example, under ap-
propriate conditions, the LASSO (Tibshirani, 1996) can achieve good prediction albeit
disregarding UQ, while the debiased LASSO (van de Geer et al., 2014; Javanmard and
Montanari, 2014) derives valid inference while doing no discrete selection. To attempt
simultaneous estimation and inference, in this work we will put especial emphasis on
Bayesian methods. The Bayesian variable selection (BVS) approach incorporates pa-
rameter inclusion uncertainty into the selection stage, and model averaging into the
estimation process, and hence with some careful modelling it looks as an option to
potentially tackle both tasks simultaneously, although it still has theoretical room for
development and faces stringent computational bottlenecks.

Computation is, in fact, a key aspect to be addressed. In practice, the existence of
a reliable theoretical method is no guarantee to its feasibility. Therefore, it is worth
exploring the computational complexity of relevant methods, as well as investigating
efficient algorithms to put any proposed solutions into practice. This is especially rele-
vant for high-dimensional problems, where combinatorial computations become insur-
mountable quickly. Modern model search and screening variable techniques, that will

2
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be reviewed in the next section, look promising to achieve fast computation and model
evaluation, although they can require strong conditions to guarantee satisfactory results.
The exploration of sound algorithms that can fully exploit the advantages of powerful
Bayesian constructions is another important driver of this work.

What remains of this chapter is laid out as follows. In Section 1.1, I introduce a
general setup for variable selection, and present some of the most popular approaches in
the literature in relation to the aspects of the respective aforementioned research areas,
reviewed in Sections 1.1.1 and 1.1.2. In Section 1.2, I will enter into the particular
problem of treatment effect estimation in high-dimensions within the model selection
framework, which will be the main focus of the research presented in Chapter 2. I
will introduce what are the issues faced in that context, and review what are the current
proposals to address them present in the modern literature.

1.1 A General Framework for Variable Selection
Consider the classic linear model

y = Xβ
∗+ ε, (1.1)

where y = (y1, . . . ,yn)
ᵀ is the output or response vector, X ∈ Rn×p is the design matrix,

and β ∗ ∈ Rp and ε ∈ Rn are the unobserved parameter and error vectors, respectively.
In reality, we are considering the broader family of generalised linear models (GLM),
but here we are focusing on the linear model for simplicity. For now, we will assume
that β ∗ is fixed, and that the error term is homoscedastic and normally distributed ε

i.i.d.∼
N(0,φ In), with known variance φ ∈ R+, unless stated otherwise. We are particularly
interested in the case where p� n, where p may depend on n — i.e. a high-dimensional
setup.

It is well known that in the classical setup the MLE

β̂ := (XᵀX)−1Xᵀy (1.2)

is the best linear unbiased estimator for the parameters in (1.1), whose sampling distri-
bution is

β̂ | y,φ ∼ N(β ∗,φ(XᵀX)−1).

The problem is that for the MLE to be unique one requires n≤ p, in order for the Gram
matrix XᵀX not to be rank deficient, i.e. to be invertible. Additionally, because the
parameter vector β ∗ in (1.1) may in fact be sparse (that is, it may contain a large frac-
tion of zeroes) the true dimension of the model p∗ = ∑

p
j=1 I(β ∗j 6= 0) may actually be

p∗ < n� p. If the set of active predictors S∗ := { j : β ∗j 6= 0} were known and of size

3
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smaller than n, then the MLE would be computable simply screening out the unnec-
essary covariates. In turn, the set of variables present in the estimated model is also
essential to quantify the uncertainty of the estimator. Hence, in this context the problem
is two-fold. First, we desire to achieve good feature selection, as doing so would lead to
accurate parameter estimation. Second, we wish to assess its uncertainty with reliable
precision, since this will correctly measure the confidence of our estimation, even un-
der imperfect selection. I will illustrate in Section 1.1.1 why achieving both objectives
simultaneously is already hard from a theoretical perspective. An extra degree of dif-
ficulty is added to furthermore seek for an adequate method with good computational
performance, which we examine in Section 1.1.2.

1.1.1 Selection and Uncertainty Quantification
The frequentist literature has tackled the problem of selection in high dimensions mostly
using penalised likelihood (PL) methods, by looking for estimators in the form of

β̂
PL := argmax

β∈Rp
{p(y | β ,φ)+h(β )}, (1.3)

where p(y | β ,φ) is the likelihood function, and h(·) is some pre-determined function
penalising parameter size1. The most well-studied of these estimators is the LASSO
(Tibshirani, 1996), which uses an L1-type penalty hL(β ) on (1.3) as

hL(β ) := λ‖β‖1 = λ

p

∑
j=1
|β j|,

whose strength is controlled by a regularisation parameter λ ∈ R+. Along these lines,
similar estimators conjugate various regularisation schemes: the classic ridge estimator,
which uses an L2-type penalty, the adaptive LASSO (Zou, 2006), which sets different
weights for different parameters to the L1 penalty, or the SCAD (Fan and Li, 2001) and
MCP (Zhang, 2010) log-concave-type penalties, conceived to tackle bias problems for
large parameters. These estimators can sort out the aforementioned non-invertibility
problem and are for the most part efficiently solved algorithmically thanks to its convex
formulation, e.g. the LASSO via the LARS algorithm (Efron et al., 2004). The aim
of these type of methods, however, has to do mostly with prediction through consistent
selection. The LASSO, for example, can correctly recover the true model support, and
achieve parameter consistency under some technical conditions. These conditions (see
e.g. Hastie et al., 2016) have to do with (i) a �well-conditioned� design matrix, (ii)
moderately low correlation between active and inactive features, (iii) some degree of
sparsity of β̂ , (iv) lower bounds on the magnitude of |β ∗j | to be detected, and (v) a

1Trivially, if h(β ) = c, for any c ∈ R, then β̂ PL ≡ β̂ .
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certain order for λ not to shrink too much or too little. Despite great progress in point
estimation and predictive accuracy, however, UQ under PL schemes has been harder to
tackle so far.

The issue of discrete selection in frequentist schemes is crucial in this aspect, be-
cause it complicates the options of building sound confidence regions for its estimates.
By discrete we mean that, conditioning on the sample, any individual covariate is de-
terministically either included in or excluded from the model. Because the choice of
variables to be included in the model is sample-dependent, the target of inference actu-
ally changes depending on the selected model (Berk et al., 2013), i.e. the coefficients
are different according to what features are included, so even if the parameters are not
random, the choice of which subset of them to include is. Thus, if one applies any se-
lection scheme, then building a confidence interval (CI) with positive length on, say, the
jth feature, requires the probabilistic event of picking the jth feature to occur (Lee et al.,
2016). Only when selection is perfect can classical inference be applied safely, and such
event is itself probabilistic — in fact, not necessarily one with high probability. As the
sample grows, this problem is not relieved, as the asymptotic distribution of its esti-
mates will include a point mass at zero for those cases in which selection does not occur
(Knight and Fu, 2000), and so its resulting non-continuity in turn suggests caution on
the use of any bootstrapping or subsampling schemes for UQ purposes (Dezeure et al.,
2015). Furthermore, building a CI around PL point estimates even under correct selec-
tion is not straightforward either, since the introduction of some regularisation form of
bias becomes an extra hurdle for such task.

A stochastic selection process also implies that classical inference after selection is
arguably not a valid solution. At first blush, if some PL method were to deliver consis-
tent selection, one could think of conducting decoupled inference on such selection, say
using the MLE after consistent PL selection. However, any spurious effects observed
in the data would damage both processes endogenously (Berk et al., 2013), effectively
overfitting the sample. Sample splitting (Meinshausen et al., 2009) is not a uniform solu-
tion to this due to the cost of wrong selection, since subsequent inference is fairly more
uncertain on a smaller sample, and in any case only valid conditional on the selected
model (Fithian et al., 2017).

To address these issues, there are two main avenues of literature. The first approach
involves the �debiasing� of β̂ PL, with the idea that if such estimate is biased, debi-
asing it will allow to construct CIs with valid p-values around the resulting estimator
for any individual predictors and so, by extension, to effectively test {H0, j : β ∗ = 0}
unconditional to selection. The second approach deals with correct inference on a sub-
model, i.e. restricting to valid inference after the selection event, which would avoid
dealing with point-mass mixtures, the so-called post-selection inference. This approach
is focused on valid inference only on the included features, but it is conceived to be
immune to selection mistakes. The idea of debiasing the LASSO (Zhang and Zhang,
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2014; Javanmard and Montanari, 2014) deals with working on the LASSO’s Karush-
Kuhn-Tucker (KKT) conditions to find some estimator that can correct the bias of the
original LASSO estimate. This debiased estimator (van de Geer et al., 2014) writes

β̂
D := β̂

L +
1
n

ΘXᵀ(y−X β̂
L), (1.4)

where in this case β̂ L ∈ Rp denotes the LASSO point estimate, and Θ ∈ Rp×p is such
that ΘXᵀX ≈ Ip (to be determined). This estimator achieves

√
n(β̂ D−β

∗) = w+δ ,

where w | X ,φ ∼ N(0,φΘ(XᵀX)Θᵀ), and ‖δ‖∞ = oP(1), under a set of technical con-
ditions. Its sampling distribution allows room for single-parameter CI evaluation. Such
estimator relies, however, in finding an adequate way to set Θ. Two main proposals have
been laid out (van de Geer et al., 2014; Javanmard and Montanari, 2014), which aim for
minimising and bounding the column-wise distance ‖(XᵀX)Θᵀj − e j‖∞, where e j ∈ Rp

is the jth position standard unit vector. The proposal by van de Geer et al. (2014), based
on a reconstruction of the covariance matrix using separate LASSO models for each
feature, makes some strong sparsity assumptions on β ∗. Instead, the proposal by Ja-
vanmard and Montanari (2014) tries to optimise the columnwise squared distance to
the Gram matrix, subject to upper bounding the quantity ‖(XᵀX)Θᵀj − e j‖∞. It makes
no sparsity assumptions, but it requires some extra non-trivial parametrisation on the
optimisation stage that requires further theoretical support.

The main issue with a debiased LASSO, however, is that it is in fact doing no selec-
tion, as the second term of the sum in (1.4) will not vanish. While individually one can
test each predictor, it is not choosing features discretely, or stating anything about the
full model. This is harmful for the parameter’s MSE of the model, and for its predic-
tive ability as an extension. This factor is especially sensitive taking into account that
sparsity of β ∗ is relevant to its performance.

In the direction of unconditional testing, an additional proposal is related to a decor-
related score (Ning and Liu, 2017). This is a high-dimensional extension of Rao’s score
test (Rao, 1948), or LM test in econometrics. It is decorrelated because the score func-
tion for the parameter of interest is built to be uncorrelated with the score function of
the rest of parameters, allowing for comfortable treatment of a high-dimensional set of
them. This method aims at valid inference for oracle parameters, is applicable to small
signals and does not require selection consistency. Additionally, it is extensible to joint
statements. Its good behaviour, however, requires similar conditions to the debiased
LASSO (most importantly, sparsity on both β ∗ and on the covariance between the pa-
rameter(s) of interest and nuisance parameters), and similarly is exclusively focused on
inference, without presenting a formal way to attempt selection uniformly.
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The second frequentist approach deals with post-selection inference. The first com-
plete proposal on it is the PoSI method (Berk et al., 2013). Its assumption is that one
has applied some prior selection procedure and that any unselected feature will not be
considered, arguing that coefficients of excluded predictors �do not exist�. The idea is
to fit the model with the set M of all selected features, and adjust the CIs taking into
account all possible models that could have been delivered by the selection scheme.
The resulting least-squares estimate β̂M actually aims for β ∗M ∈ RM, instead of β ∗ with
p parameters, and so they try to build

CI({β̂M} j) = {β̂M} j +K
√

φ(XᵀMXM)
−1
j, j ,

which obviously requires |M|< n. The PoSI method’s objective is to find a K ∈ R such
that

Pr({β ∗M} j ∈ CI({β̂M} j))≥ 1−a,

where a ∈ (0,1) is the size of the test. In fact, K := K(X ,M,a) is conceived to be the
usual t-statistic, enlarged to provide protection to wrong model specification. This pro-
cedure is robust at the cost of being quite conservative, producing very wide confidence
intervals (see Hastie et al., 2016, Ch. 6.5), additionally to being computable only for
models of very moderate size.

A second subsequent proposal deals with exact post-selection inference (Lee et al.,
2016; Tibshirani et al., 2016). Again, because {β ∗ ∈ CI(β̂ PL

j )} is not a well-defined
event, one conditions the estimate β̂ PL

j on the selection event {γ̂ = 1}, where γ̂ j ∈ {0,1}
is the estimated model inclusion indicator for feature j. The objective is to build condi-
tional coverage intervals of the form

Pr(β ∗ ∈ CI(CI({β̂M} j) | γ̂ j = 1)≥ 1−a,

for some size a ∈ (0,1). Lee et al. (2016) show that the event {γ̂ j = 1 | y} is a union of
polyhedra shaped by the KKT conditions of the LASSO problem, expressed as

{A(γ̂, ŝ)y≤ b(γ̂, ŝ)},

where {A,b} represent the KKT conditions, and depend only on the selected model’s
inclusion γ̂ ∈ {0,1}p and sign ŝ := sign(β̂ PL) vectors. Thus it suffices to study β̂ PS

j |
{Ay ≤ b}, where β̂ PS

j := eᵀj X
+
γ̂

y, and X+
γ̂

is the pseudo-inverse of Xγ̂ , making β̂ PS
j a

pseudo-MLE type of estimator. The article shows that this conditional distribution is
essentially a truncated Gaussian, independent of β̂ PS

j , and so a statistic F(β̂ PS
j ) exists

whose conditional distribution is uniform between 0 and 1. This makes room for exact
inference for a given estimate on the each separate predictor, even if selection is not per-
fect, as long as they are included in the model. This, however, does not solve the issue
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of adequate selection, because any flaw in this arena will remain in the final model. In
other words, it tolerates mistakes when tackling UQ, but relies heavily on the selected
features for any other purpose, including the model’s parameters MSE, and so its pre-
dictive ability is not regarded so as to outperform the LASSO. Additionally, it restricts
to individual testing, falling short of making any joint statements.

The Bayesian literature, on the other hand, intends to use prior distributions to pro-
vide additional flexibility to the selection setup. Generally, the Bayesian Model Averag-
ing (BMA) approach consists of taking into account model uncertainty to do parameter
estimation, as

β̃ := E(β | y) =
2p

∑
k=1

E(β | γk,y)p(γk | y), (1.5)

a sum with 2p terms due to combinatorial setups for the inclusion parameter vector γ ∈
{0,1}p, for which γk denotes the k-th combination, with pk := ‖γk‖0 active parameters.
Let θ := {β ,φ}, then we express posterior model probabilities by

p(γk | y) ∝ p(γk)
∫

Θ

p(y | θ ,γk)p(θ | γk)dθ , (1.6)

where here Θ denotes the parameter space. In the particular case where φ is known,
then one can replace p(θ | γk) by p(β | φ ,γk), and write

p(γk | y,φ) ∝ p(γk)
∫

B
p(y | β ,φ ,γk)p(β | φ ,γk)dβ .

Therefore, in terms of the parameters, one needs to ellicit a critical prior distribution on
β , which I will discuss at length later on, and, in the case for unknown φ , an additional
prior for the error variance2. Furthermore, note that in (1.6) it is necessary to also specify
a prior for the model space. This prior can be furtherly decomposed as

p(γk) = p(γk | ‖γ‖0 = pk)p(‖γ‖0 = pk),

where ‖γ‖0 := ∑
p
j=1 γ j. This prior controls the size of the model.

For the model space, mostly non-informative priors have been typically used, in-
ducing sparsity if the dimensionality is very high. Popular choices include the uniform
prior for moderate p, which assigns equal probability to any model, or the binomial
prior, which gives equal prior selection probability ρ ∈ (0,1) to each variable, thus en-
couraging models of size centered around ρ p. In order to encourage models of smaller
size, there is the beta-binomial prior extension, which assigns a uniform distribution on

2Some proposals exist to estimate the residual variance itself, both frequentist (e.g. Reid et al., 2013,
for the LASSO) and Bayesian (see e.g. Moran et al., 2018, for a review), left outside of scope for now.
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the model size, and then assigns equal probabilities to each model of a given size. For
instance, the Beta-Binomial(1,1) prior gives posterior probabilities of the form

p(γk) = p(‖γ‖0 = pk)p(γk | ‖γ‖0 = pk) =
1
p

(
p
pk

)−1

.

This prior specification is the product of combining ρ ∼ Unif(0,1) with ‖γ‖0 | δ ∼
Bin(p,ρ), which does not favour mid-sized models, instead all sizes are now equally
likely a prior.

The main driver for parameter estimation and UQ, however, comes in through the
prior in p(θ | γk). Canonical choices include conjugate priors, which aim for closed
form computation of (1.6). In our setup (under unknown φ ) this would be the Normal-
Gamma model, where

p(β ,φ | γk) = p(β | φ ,γk)p(φ | γk)

with β | φ ,γk ∼N (0p,φS) and φ | γk ∼ IGam(aφ/2,bφ/2). This setup, however, entails
setting some further hyper-parameters: canonical choices include small aφ ,bφ > 0 (e.g.
aφ = bφ = 10−3), and S := τ(XᵀX)−1, for some τ > 0, commonly known as Zellner’s
prior (Zellner, 1986). Setting τ is a problem itself, but a common choice is to set g = n
(Unit Information prior). See Kass and Wasserman (1996) for a detailed discussion on
classical prior choice.

If conjugacy does not apply, in the lack of a closed expression then one will typically
need to resort to numerical computation of the integrated likelihood in (1.6). A similar
strategy applies to the computation of (1.5), as full model enumeration is only available
for relatively small p. Gibbs sampling is simple but effective in many settings to explore
the model space (see e.g. Madigan et al., 1995, for its application to model selection).
This issue will be further discussed in the next subsection.

In terms of prior elicitation in the particular context of selection, some specific alter-
natives exist that attain good theoretical results. Intuitively, to achieve variable selection
consistency it is necessary that p(β | γk) is able to discard zero-elements in β ∗ effi-
ciently, combined with a prior p(γk) that will not encourage models to be too large with
respect to the true size of the model. Then, to achieve good estimation rates, one also
needs p(β | γk) to have �thick� tails, so that truly non-zero elements in β ∗ have a sig-
nificant prior probability mass. A modern specification that achieves excellent rates of
convergence in terms of posterior concentration are the so-called complexity-Laplace
priors (Castillo and van der Vaart, 2012; Castillo et al., 2015), which even though fo-
cused on recovering β ∗, they are also conceived to quantify uncertainty. Their name is
due to a combination of a complexity prior on model size of the type

p(‖γ‖0) ∝ c−‖γ‖0 p−a‖γ‖0,

9
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for a,c > 0; with a separable product of Laplace priors p(βγ | γ), which is both com-
putationally convenient and permissive on the tails. Heavy-tailed distributions are less
strict on selection but allow for better parameter estimation, as they �shrink� less if
γ j = 1. The rest of features have a point-mass density at zero. Under compatibility
conditions, this specification achieves optimal minimax posterior contraction rates for
parameter estimates and prediction, while keeping model size relatively low, avoiding
overshooting or charging strict supersets of the true model. On the other hand, it can
run into problems to detect weak signals (those with a relatively small signal-to-noise
ratio): their focus here is on asymptotically optimal rates but when n is finite signals
that are not strong enough are dismissed with high probability.

A specification along similar lines lines is the horseshoe prior (van der Pas et al.,
2017), a shrinkage prior which uses a mixture on Gaussians on the parameters as

β j | λ j,τ ∼ N(0,λ 2
j τ

2),

with a half-Cauchy on the variance λ j ∼ C+(0,1). Hyper-parameter τ ∈R is set to help
the posterior contract around its true value. The authors show that with this specifica-
tion UQ is �honest�, but only for large |β ∗|, and for β ∗ = 0. In terms of selection,
the proportion of false positives is bounded above with probability tending to 1, and
the proportion of true positives tends to one for strong signals. Under stronger condi-
tions, even honest frequentist coverage can be achieved. This specification still suffers
from the same problems, and shows that many signals are missed unless they are strong
enough (see Figure 1 in van der Pas et al., 2017, for clear illustration). This is due to
strong shrinkage combined with permissivity on tails, which greatly affects the ability
to pick up weak (but potentially relevant) signals.

Finally, an appealing alternative that I will employ repeatedly in this work is the
use of the so-called non-local priors, whose underlying principle is to add stronger
data-induced parsimony compared to classical prior specifications, without necessar-
ily inducing model sparsity a priori. This is achieved with a prior density that ap-
proaches zero as β j goes to zero, whenever the parameter is considered active, i.e. that
limβ j→0 p(β j | γ j = 1) = 0, as opposed to typical local priors, for which the opposite is
true. I will discuss this class of priors at length in Chapter 2, and specially in Chapter 3.

Still, a common issue with all Bayesian methods is that they are computationally
demanding, and in any case some quantities may require expensive MCMC exploration,
both in the model space search for the BMA, as well as in the computation of exact
posterior probabilities. In the lack of a closed form expression for a high-dimensional
integrated likelihood and a computationally feasible normalising constant

p(y) =
2p

∑
l=1

p(y | γl)p(γl)
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that would complete (1.6), some form of numerical computation will be required to
successfully exploit flexible Bayesian constructions. These are obstacles to be overcome
for their implementation, as I review next.

1.1.2 Computational Challenges of Model Selection
Variable selection in high-dimensions is a hard problem to tackle mainly because the
set of possible models given p available features is of size 2p. Several lines of research
exist in the context of large model space search.

The first strategy deals with exact computation beyond exhaustive search. A foun-
dational idea in this direction is the leaps-and-bounds type of algorithms (LBA, first
proposed by Furnival and Wilson, 1974), whose objective is to find the best subset of
columns of X that are related to the response without considering the entire set of sub-
sets. This works by building a regression tree with a total of 2p nodes, one for each
model, by sequentially adding or dropping single variables. As one moves down the
nodes, it is possible to prune large branches by bounding key quantities, and then leap-
ing to other branches yet to evaluate. Ideally, this requires a fast way to evaluate any
given subsetted model, combined with an algorithm to keep the set of models worth
visiting to the minimum. A modern approach to LBA is called branch-and-bound algo-
rithm (BBA, Gatu and Kontoghiorghes, 2006), and it suggests to use quick computations
to the residual sum of squares (RSS) for the first task, combined with a pruning method
for the regression tree. This strategy also allows to recover the best model for any given
model size, cutting computational cost polynomially on p, which is reasonable for man-
ageable p, but whose total cost remains exponential and so becomes intractable soon.
More recent advances include a flexible mixed integer programming algorithm (Bertsi-
mas et al., 2016), which minimises the squared loss function subject to ‖β ∗‖0 ≤ k, for a
given k ∈Z+. Modern optimisation methods boost its ability to deal with higher dimen-
sions while guaranteeing some fair rate of suboptimality, even under early termination.
Despite its effort, however, it still falls short to address truly high-dimensional setups.

Because exact search is hard, an alternative is to attempt stochastic search. A
widespread approach, especially in the Bayesian context, is to use MCMC exploration.
As mentioned before, a popular option is to use a Gibbs sampling algorithm based on
sampling combinations of γ . This stepwise algorithm, named MC3 (MCMC Model
Composition, as in Madigan et al., 1995), starts from an arbitrary specification of γ , and
begins to update sequentially each indicator in it, conditional on the rest of them, with
probability

p(γ j = 1 | γ− j,y) =
(

1+
p(y | γ j = 0,γ− j)

p(y | γ j = 1,γ− j)

p(γ j = 0,γ− j)

p(γ j = 1,γ− j)

)−1

,

where γ− j = (γ1, . . . ,γ j−1,γ j+1, . . . ,γp) ∈ {0,1}p−1. Critically, this updating only re-
quires the comparison of two models —one with and one without feature j—, and so
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this entails the computation of the integrated likelihood, whether exact or numerical.
In each iteration, the sampler adds or drops one variable at a time, and after a large
enough number of iterations one is sampling effectively from p(γ | y), by encountering
those models with highest posterior probability more often. However, even if asymptot-
ically reliable, theoretically it is not clear how long should the chain be run, or at what
point does it reach stationarity. These demands become harsher as model dimensional-
ity grows. In the line of MCMC, there are additional proposed schemes in the Bayesian
literature. Bayesian Adaptive Sampling (BAS, in Clyde et al., 2011) explores model
sampling without replacement from the space of models, and gives conditions for it to
sample “near” the Median Probability Model, i.e. the one including any predictor j such
that Pr(γ j = 1 | y)≥ 1/2 (Barbieri and Berger, 2004). This approach is thus strongly fo-
cused on prediction. An appealing hybrid solution that crosses the Bayesian framework
with regularisation methods is an extension of the EM algorithm (EMVS, Roc̆ková and
George, 2014), a Bayesian deterministic algorithm variant of parameter-expanded EM
for posterior mode detection. This algorithm aims for fast, sparse solutions that are ro-
bust to poor initialisations. Still, these type of proposals, although faster, are focused on
finding high probability models and not so much on characterising the full model space.
More recently Roc̆ková and van der Pas (2020) have explored Bayesian regression trees
aimed at effective dimensionality reduction while avoiding overfitting. Under suitable
priors, this method is shown to achieve near minimax rates of optimality in terms of
convergence to the true posterior model probabilities.

Another popular strategy alternative to exhaustive search is variable screening. This
a model space restriction heuristic that allows for substantial scalability. The idea is to
screen out a fair share of uninteresting features prior to doing feature selection. These
algorithms are designed to reduce dimensionality while preserving the true model fea-
tures with high probability. Sure independence screening (SIS, Fan and Lv, 2008) was
one of the first proposals in this direction, which required rather strong correlations
between relevant predictors and the outcome, as in essence it was a determined by
marginal correlations, to be thresholded by some given criterion. To overcome this,
along with similar decorrelation ideas (e.g. DECO, Wang, 2016), high-dimensional or-
dinary least-squares projection was proposed (HOLP, Wang and Leng, 2016), by which
a Moore-Penrose type of pseudo-inverse is used to build a pseudo-MLE estimator, of
the form

β̂
HOLP := Xᵀ(XXᵀ)−1y. (1.7)

Computationally somewhat more costly than SIS, which essentially uses β̂ SIS := Xᵀy,
it can achieve better separation of relevant and irrelevant features than marginal cor-
relations under standard high-dimensional inference assumptions. It is also backed up
by the ridge estimator in terms of theory, as it is the asymptotic solution of the ridge
problem as its penalty parameter r→ 0. With this estimator the �relevant� variables
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are separable from the rest with high probability by correctly thresholding the coeffi-
cients in (1.7) when p� n. Again, this method would simply ensure that the true model
is within the screened in features with high probability, even though in fact it says lit-
tle about the true model size or about its specific final components. Plus, posterior to
screening it is unclear how to estimate uncertainty correctly, since inference with the
chosen k ∈ {1, . . . , p} features in fact reports

p(γ | y,γk+1 = 0, . . . ,γp = 0) 6= p(γ | y).

This can be a relevant issue especially if k is too small and/or if β ∗ is not sparse enough.
Finally, another commonly invoked approach in practice is direct dimensionality

reduction through orthogonalisation, e.g. using PC regression on the eigenvectors ob-
tained in the eigendecomposition of the Gram or design matrices. This is fast, highly
scalable, and potentially useful for prediction purposes, but the resulting features are a
linear combination of all the original features, so one cannot identify the effects of any
of them individually. Thus, I will not consider them in this work as we examine a wider
objective scope.

1.2 Treatment Effect Estimation

1.2.1 The Endogeneity Problem
In Section 1.1, we established that the MLE is the best linear unbiased estimator for
the linear model in (1.1), however recall that this is only the case under some general
assumptions that need to be satisfied, namely

1. Linearity of the true model

2. Strict exogeneity, i.e. E(ε | X) = 0

3. Lack of multicollinearity, since XᵀX needs to be non-singular in order to compute
the MLE in (1.2)

4. Homoscedasticity of the residuals, i.e. E(ε2
i | X) = φ > 0, ∀i

Linearity concerns are usually addressed by supplementing X with any necessary non-
linear combinations of the original features. Multicollinearity issues can be a problem,
especially as p grows: for example, when p > n the MLE cannot be computed. This
issue can be addressed by performing dimensionality reduction, e.g. via shrinkage op-
erators, which I will cover later on. Homoscedasticity is also hard to fully achieve in
practice, but importantly it does not affect the unbiasedness of β̂ , it only influences its
variance. A canonical robust technique to efficiently address heteroscedasticity is the
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classical Generalised Least Squares (GLS) method. Thus, generally the most delicate
assumption is exogeneity. This assumption tells us that the regressors in X and the error
term ε need to be marginally uncorrelated. In other words, that if the model specification
omits some regressors that correlate with some of the columns in X , thereby relegating
them to the error term of the regression, then the coefficient estimates become biased.
To see why, note that in (1.2) one can easily show that under assumptions 1 to 4

β̂ = (XᵀX)−1 Xᵀy = β
∗+(XᵀX)−1 Xᵀε P→ β

∗,

as E(ε | X) = 0 implies that E(Xᵀε) = 0 by the Law of Iterated Expectations, critically
providing E(β̂ )= β ∗. Thus, failing to satisfy this assumption leads to the so-called omit-
ted variable bias (OVB). In order to address this problem, broader GMM approaches
have classically been invoked. I briefly introduce these next.

1.2.2 GMM and The Instrumental Variable Approach
Endogenous regressors can be controlled for using the generalised method of moments
(GMM). The approach is to find a matrix Z ∈Rn×k of k additional covariates that serves
as a set of instruments to consistently estimate an endogenous variable X j, where j ∈
{1, . . . , p} is the column index. Both the columns of Z and X j can potentially share
predictors. The key assumption here is that these instruments be uncorrelated with the
error term of the initial regression, namely

E(Zᵀε) = E(Zᵀ(y−Xᵀβ ∗)) = 0k. (1.8)

These instruments are therefore pre-determined, given that they are orthogonal to the
residuals. At the same time, however, in order to be valid they need to have explana-
tory power over the endogenous regressors in X , which are correlated with ε . This
requires to additionally assume that Σzx := E(ZᵀX) ∈ Rk×p is of full column rank, i.e.
rank(Σzx) = p, in order to achieve full identification of the model. If the rank condi-
tion is satisfied and k = p, then the model is exactly identified. This is known as the
instrumental variable problem (IV), the idea being that each regressor in X has a cor-
responding intrument in Z. If instead k > p, then the model is over-identified, but the
GMM estimator can still be computed. Beyond the scope of this study, a few other
technical assumptions are required to use the GMM estimator, for which I will refer to
Hayashi (2000) (Chapter 3). The GMM estimator is then obtained from minimising the
sample analogue of the moment conditions in (1.8), that is

β̂
GMM := arg min

β∈Rp
gn(β ) := arg min

β∈Rp

1
n

n

∑
i=1

Zi(yi−Xᵀi β ), (1.9)

where the subscript i refers to the rows, and which in its simplest version is solved by

β̂
GMM = (XᵀZ(ZᵀZ)−1ZᵀX)−1XᵀZ(ZᵀZ)−1Zᵀy.
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This method can be applied to both exactly identified and over-identified models —
hence the term �generalised�3. In the exactly identified case, this estimator collapses to
the IV estimator, where the function gn(β ) in (1.9) can be equated to zero, in line with
the traditional method of moments, and still find a unique solution, since there are the
as many equations as there are unknowns, given k = p. Then it can be solved directly as

gn(β ) = 0⇔ β̂
IV := (ZᵀX)−1Zᵀy.

The core underlying idea of the IV estimator is that because Z has explanatory power
over X , but contrarily to X it is not correlated to ε , the instrument can be used as a pre-
dictor of X . As a result, the estimated values X̂ , obtained using Z, have no endogeneity
problems and are no longer correlated with ε . Hence, despite having to pay a non-
negligible price in terms of variance, the regression coefficients will now be unbiased,
since

E[β̂ IV] = E[(ZᵀX)−1Zᵀy] = β
∗+E[(ZᵀX)−1Zᵀε] = β

∗,

given that (1.8) would hold, on top of the rest of necessary assumptions previously
discussed. The IV estimator is classically computed via this two-stage least squares
method (2SLS), whereby in the first stage one estimates the values of the endogenous
covariates in X using Z, and in the second stage one uses these estimated values to model
y, obtaining unbiased estimates for the regression coefficients.

1.2.3 Treatment Effect Estimation: IV in High-dimensional Regres-
sion

In numerous applications the research question is to understand the effect on the re-
sponse of a certain fraction of covariates of interest (often times, a single one), and in
particular to determine whether their contribution is significantly different from zero,
conditional on a set of control variables that may be related to them. A variable belong-
ing this set of inferential interest is commonly referred to as a treatment variable, as it
encodes the effect of inducing some specific treatment on the observation, while being
potentially endogenous with the rest of controls in the model. These controls that are
related to both the response and the treatments are typically referred to as confounders.
Hence, one wishes to estimate the isolated effect of the treatment variables in a model
of the following type

y = Dα
∗+Xβ

∗+ ε, (1.10)

3Note that the MLE is a special case of this setup where Z = X . Then the canonical normal equations
that correspond to (1.1) are recovered.
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where E(ε | D,X) = 0, and for which D ∈ Rn×T is the matrix T of treatment variables
distributed columnwise, and where α∗ ∈ RT is the vector of interest containing the
true treatment effects. The treatment variables are exogenous conditional on the con-
trol variables X , but in practice it is rarely the case that all confounding effects can be
controlled for. The omission of any relevant controls in the model that are related to
the treatment variables would lead to OVB, since such omission would relegate said
controls to the error term, and consequently bias the MLE, as reviewed in Section 1.2.2.
There I discussed that endogeneity problems like this can be addressed by looking for
valid instruments for the treatmend featured in D, and consequently the model could be
consitentnly estimated using the 2SLS procedure.

However, a fundamental concern appears when the dimensionality of the model be-
comes excessively large, since in that case the omission of relevant controls becomes in-
creasingly likely as the number of potential controls grows. For example, when p→ n,
the problem becomes unstable with high probability, damaging the inferential perfor-
mance of classical methodology. When p > n, or directly p� n, the large feature space
impedes the computation of the MLE for the parameters of interest in (1.10). This sit-
uation requires a reduction in dimensionality on the set controls, at the risk of making
relevant variable selection mistakes which, again, can quickly lead to OVB problems.
In other words, if the set of instruments is too large, then the MLE is no longer a valid
approach and the problem needs to be regularised. Such form of regularisation needs to
achieve good selection properties, to avoid missing any relevant instruments and hinder
the quality of estimation and inference of the treatment effects.

The Problem of Non-random Control Over-selection

In this work, I will mainly focus in the high-dimensional model where potentially p� n.
To understand why this scenario needs specific methodology beyond generic variable
selection methods, let us first review why naı̈ve strategies provide unsatisfactory re-
sults. The use of single-equation regularisation, that is regularising the model in (1.10)
directly by treating controls and treatments exchangeably, fails to achieve adequate se-
lection, as that may induce to relevant false negatives with high probability (both on
treatments and relevant controls) leading to OVB, whenever there are controls that are
related to both the response and any of the treatments, and therefore present stronger
correlation structures between the three sets that negatively affect the performance of
generic methods. Similarly, regularising the single-equation full model while forcing
the inclusion of the treatments will not suffice either, since then it is likely that at least
some features correlated to the treatment variables will be dropped, causing OVB again
if these features have a non-zero effect on the response, but are pushed to the residual
term (see e.g. Belloni et al., 2014a, for a detailed discussion). As we review next, many
proposals around the problem of treatment effect estimation in high-dimensions revolve
around ensuring that no relevant variables are left out of the model, since OVB is a priori
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the greatest concern. This typically implies encouraging inclusion of a control variable
into the model if there is some evidence that connects it to either the treatments or the re-
sponse. This, however, may come at a high cost related to the opposite effect: problems
derived from non-random over-selection of controls. Since we only want to include
those variables affecting the response and any confounders linked to the columns in D,
the inclusion of any variable that either only affects the response through D or that is
spuriously correlated to it will inflate the variance of the parameter estimates associated
to the treatments. This problem becomes more acute as the dimensionality of the model
grows, i.e. as the pool of potential confounders also grows. Additionally, it can also
trigger a biasing effect on the estimates, since the over-selection is data-dependent. To
see this effect, suppose we estimate the parameters using the MLE on a data-dependent
selection of features, whose support we denote by ŝ(y) of size less than p. Then, for a
fixed design matrix X the estimates

E(α̂) = E((Xᵀŝ Xŝ)
−1Xᵀŝ y) = α

∗+E((Xᵀŝ Xŝ)
−1Xᵀŝ ε). (1.11)

Note that if ŝ were a fixed superset of the truly active variables, then (under the rest of
standard assumptions) Xŝ could be extracted from the expectation and the MLE would
be unbiased by the fact that E(ε) = 0n (even if ŝ itself is random, independent of y, a
similar argument can be made using the Law of Iterated Expectations). The problem
here is that since the selection step is non-random (i.e. it depends on the observed y),
the strict exogeneity assumption is violated: we have only assumed that E(ε | X) = 0n,
but not that E(ε | Xŝ) = 0n. Indeed, if ŝ(y) is influenced by ε , then E(ε | Xŝ) 6= 0n, and
so the right term in the sum in (1.11) would not vanish. Hence, in that case the MLE
would yield E(α̂) 6= α∗. These two effects will be illustrated extensively in Chapters 2
and 3.

Existing Methodological Approaches

To fix ideas, let us assume for now that D has just one column, i.e. we are in the particu-
lar case with a single treatment variable in the model, also known as the single treatment
model. Literature on single treatment effect estimation has grown considerably over the
last decade, with the main objective of adressing pitfalls in parameter estimation that
arise under general variable selection methods. Frequentist approaches particular to the
single treatment problem concentrate around varied forms of penalised likelihood (PL),
which make them computationally very appealing and suitable for high-dimensional
settings. One of the most popular is the Double Machine Learning (DML) approach,
presented in Belloni et al. (2014a,b), a two-step procedure that resonates with the two-
stage philosophy in the IV problem, by which one analises separately an output equation
and an exposure equation (an analogous linear model of the treatment on the controls)
with the objective of identifying which controls affect either output, to then fit a model
ex-post using OLS on the model of the response on the union set of selected controls.
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Its main concern is to avoid estimation bias through fully adjusting for confounding,
that is, including into the model at least any control relevant to the treatment or the
response. Farrell (2015) builds upon similar ideas with a doubly-robust estimator at-
tempting to safeguard from model selection mistakes after the double selection step, in
the context of multi-valued treatments, resonating also with Antonelli et al. (2018), who
use matching on propensity and prognostic scores on a similar direction. Shortreed and
Ertefaie (2017) employ a two-step approach as well, in this case using adaptive Lasso
on the exposure equation, showing improvement on confounder-selection results. See
also Ghosh et al. (2015) with shared and difference Lasso for similar multi-step con-
tributions. Ertefaie et al. (2018) use joint likelihood L1 penalisation of both equations
instead, in order to accommodate for the information shared between the two equa-
tions. Ma et al. (2019) combine regularisation with sufficient dimension reduction into
an estimator that achieves good asymptotic properties without requiring model selec-
tion consistency. Yet, even if some of these proposals do allow for inference, most of
them are essentially designed with sufficient control selection in mind and tackle point
estimation only after selection has been conducted, generally without a focus on quan-
tification of uncertainty. Chernozhukov et al. (2018) ellaborate on the DML technique
with a more explicit attempt at inference seeking dependence reduction on the selec-
tion step, introducing an additional debiasing operation combining Neyman-orthogonal
scores on the first equation, with cross-fitting to address overfitting concerns. Other pro-
posals exist focused on inference for PL-related methods in this particular context, see
Athey et al. (2018) in the context of binary treatments, see also Dukes and Vansteelandt
(2019). Generally, PL-based proposals are heavily focused on asymptotic results regard-
ing estimation efficiency and their distributional properties, which follow from attaining
guarantees of sufficient control selection, i.e. avoiding detection errors of relevant con-
trols connected to either outcome or treatment. In contrast, they are not too concerned
with excess inclusion of any other spurious variable. This can be problematic based
on the aforementioned reasons, which in turn often limit their oracle performance to a
super-model of the true outcome model, inflated in size with unnecessary controls that
may relate to the treatment only. It is also worth mentioning that a number of these pro-
posals are not designed for continuous or even multi-valued treatments, or sometimes
outcomes.

From a Bayesian perspective, a number of different proposals also exist. A widely
referenced method is Bayesian Adjustment for Confounding (BAC) as presented in
Wang et al. (2012), a joint-modelling approach which essentially employs a Bayesian
Model Averaging (BMA) approach under a specifically designed model space prior.
This prior is separable across controls, and is governed by a hyperparameter ω ∈ [1,∞)
that represents the odds of including a control in the outcome model conditional on that
same control being included in the exposure model. This is quite helpful since for any
finite ω control inclusion on the outcome model is only encouraged and not forced,
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allowing for some model flexibility that combines with the accounting of model uncer-
tainty in the averaged point estimate. This entanglement across equations poses a series
of questions, however, mainly related as to how one should set such a sensitive hyperpa-
rameter, combined with the fact that resulting marginal prior inclusion probabilities are
generally high, hence encouraging model size inflation. This can hinder performance
notably in high-dimensional settings as over-selection problems may enter into play.
Additionally, computational demands arising from joint equation modelling can quickly
become insurmountable. Further contributions to BAC include Lefebvre et al. (2014)
and Wang et al. (2015), which provide some theoretical support as well as further pro-
posals on how to set ω . Other articles build on the approach based on control selection
with model averaging: Talbot et al. (2015) introduce Bayesian causal effect estimation,
a similar method to BAC that incorporates informative priors aimed at deterring excess
control inclusion; Antonelli et al. (2017) contribute with guided BAC as a generalised
framework on BAC adressing treatment effect heterogeneity, as well as additional tech-
nical questions. Similar methods have also been explored in propensity score analysis,
as in Cefalu et al. (2017), but more generally around model uncertainty as well, see e.g.
Zigler and Dominici (2014). See also Jacobi et al. (2016) for methodological adapta-
tions to dynamic effects in panel data. More recently, Hahn et al. (2018) preserve the
joint modelling approach but move away from model averaging, by addressing BAC
using hierarchical priors, in an attempt to give some prior flexibility and ease computa-
tional difficulties via posterior sampling. This is a reparametrisation technique designed
to achieve debiased point-estimates using regularisation priors. Hahn et al. (2020) also
extend this notion to non-parametric setups with Bayesian Causal Forests. Antonelli
et al. (2019) propose a spike-and-slab prior formulation with a prior distribution that
places low shrinkage to controls associated with the treatment, combined with an Em-
pirical Bayes algorithm for hyperparameter setting. Addressing computational concerns
in high-dimensional setups, Wilson and Reich (2014) propose Penalised Credible Re-
gions (PCR), stemming from Bondell and Reich (2012). This is a decision theoretic
approach that can be formulated as a PL method. It essentially uses the posterior cred-
ible region of the outcome regression parameters to form a set of possible models to
choose from, and then apply L1-type penalisation with lighter penalties to those co-
variates that are associated to the treatment, as a function of their strength. This relies
strongly on a the quality of the posterior mean, and the fact that the treatment is al-
ways included casts some difficulty on its single parameter estimation ability as it might
sacrifice precision on one parameter to favour models that aggregately perform better
predictively. PCR tends to be conservative as well as to dropping variables, depending
on the penalty parameter, whose setting is an open end itself. It also introduces the no-
tion of strength of relation between controls and treatment as a determinant of relevance
on the outcome equation. Additionally, it naturally allows for the inclusion of multiple
simultaneous treatments, which is absent in previously reviewed methods. On the other
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hand, its PL nature disallows PCR as a method of uncertainty quantification. This pro-
posal has strong ties to the Adaptive Lasso (Zou, 2006), as well as relation to Bayesian
Lasso strategies employing shrinkage priors (Park and Casella, 2008; Hans, 2010). All
in all, it is worh noting that most current Bayesian proposals are also heavily concerned
with omission of relevant controls, and despite extra flexibility they can run into similar
problems related to over-selection, as those described under the frequentist paradigm.

Now recover the complete model (1.10), with any number of treatments T > 1. This
is commonly referred to as the multiple treatments problem, where there are simulta-
neous interventions potentially affecting the outcome, all of which can be endogenous
with the control covariates. Although this problem is recently gaining attention with
the scalability of recorded data in many scientific fields, to the best of my knowledge
the list of available methodology in the literature tailoired to this specific problem is
short. Beyond PCR introduced before, perhaps the most notable recent contribution
is ACPME by Wilson et al. (2018), a method with strong ties to BAC. This is also a
BMA-based algorithm with a specific model prior that incorporates, for each feature, a
measure of correlation strength between each control and the set of treatments, this time
without imposing sudden jumps in prior probabilities. Similarly to BAC, the philosophy
of ACPME is to tilt prior probabilities towards models fully adjusting for confounding.
Again, this can put a good fraction of prior mass on super-models of the true outcome
model, as feature inclusion can only be encouraged and, hence, is not designed to over-
come over-selection problems. More so taking into account that marginal prior inclu-
sion probabilities are capped below at 1/2 by construction. It is also unclear whether
it can perform well in high dimensions or with a large number of treatments. Finally,
in the context of treatment heterogeneity, a mention to recent work on the Debiased
Orthogonal Lasso by Semenova et al. (2020) that can potentially extend the frequentist
DML scheme to the multiple treatments, although it might not be the focus of its current
formulation.
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Chapter 2

MULTIPLE TREATMENT EFFECT
INFERENCE VIA CONFOUNDER
IMPORTANCE LEARNING

2.1 Motivation

This chapter addresses a problem of fundamental importance in applied research, that
of evaluating the joint effect, if any, of multiple treatments on a response variable. A
motivating application is the quantification of salary variation (response) due to discrim-
inating factors (the treatments), such as gender, race and country of birth, and how this
has evolved over time, using the well-known Current Population Survey data (see Chap-
ter 3 for details). Another example (Orben and Przybylski, 2019) is to infer the effects of
multiple technologies such as social media, internet and video games on teenager men-
tal well-being while accounting for, among many others, gender, social and financial
difficulties. The data used to inform public policy are often collected from observa-
tional studies hence any analysis for treatment effects is subject to selection biases and
unmeasured confounding. Such biases are even stronger in “big data” that are currently
routinely collected and analysed (Dunson, 2018). Thus, it is necessary to control for
a large number of covariates, many of which might be correlated with the treatments.
For example, gender, race and country of birth are strongly associated with access to
education, occupational sector and other controls that are key determinants of salary.
We refer to the covariates as controls, and when correlated to both the response and the
treatments we call them confounders. Our analysis of salary variation involves more
than 200 treatments and hundreds of controls.

Predicting a variable from hundreds or thousands of others, even with small training
sample, can be done with good performance and even theoretical guarantees using a
shrinkage and selection estimation framework such as the LASSO and Bayesian model
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averaging (BMA). These approaches assume a sparsity structure according to which
only few of the covariates are active, i.e., have non-zero regression coefficients. BMA
also allows for model-averaged inference and this can be preferable when sparsity is
an unwarranted assumption (Giannone et al., 2021). In the statistical nomenclature the
selection aspect of these procedures is often compared to searching for needles in a
haystack (Johnstone and Silverman, 2004; Castillo and van der Vaart, 2012). In our set-
ting the “needles” correspond to the confounders. As we explain below, these predictive
approaches (even BMA) are inappropriate for treatment effect inference, mainly when
treatments and controls are correlated, which is typically the case. Recently, methods
have been developed and already gained popularity for treatment effect inference with
many controls, such as the LASSO-based Double Machine Learning (DML, Belloni
et al., 2014a) and the Bayesian Adjustment for Confounding (BAC, Wang et al., 2012)
that we reviewed in the previous chapter. The philosophy of these approaches is to en-
courage the selection of controls when they are correlated with the treatments, hence
treat those as confounders.

In this chapter we highlight an overlooked problem for treatment effect inference
due to the over-selection of controls, which is exacerbated as the number of controls
correlated to treatments but not to the response decreases, as the number of treatments
increases and as the treatment effects become smaller. This has serious implications for
policy making, since these methods have reduced power to detect effects; for example
they fail to find evidence of differences across states in salary discrimination due to e.g.
black race in 2019 although a number of alternative analyses suggest the existence of
moderate deviations from the main effects in some states (see Section 3.2.2). We ad-
dress these issues with a new, simple methodology that is based on BMA but where the
selection propensity (expressed in terms of prior inclusion probabilities) differs for each
control and it is directly informed by the treatment and control data — in other words,
we learn to tell the straws apart in the haystack. The formulation also allows relaxing
the sparsity assumption discussed above, by setting high overall inclusion probabilities,
when this is warranted by the data.

In more detail, we model the dependence of the response yi ∼ p(yi;ηi,φ) on t =
1, . . . ,T treatments di,t and j = 1, . . . ,J controls xi, j, via

ηi =
T

∑
t=1

αtdi,t +
J

∑
j=1

β jxi, j, i = 1, . . . ,n, (2.1)

where p(yi;ηi,φ) defines a generalised linear model with linear predictor ηi and dis-
persion parameter φ . Note that the controls, but also the treatments, might also include
interaction terms and other transformations, such as polynomial or spline terms, to ac-
curately capture the effect of treatments and controls. Whereas from an interpretational
and policy making point of view the distinction between treatments and controls is clear,
statistically the difference is one of priorities: we are primarily interested in inference
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for the former, i.e the set of αt’s in (2.1), including uncertainty quantification such as
high probability intervals for αt , whereas the latter are included in the model to avoid
omitted variable biases.

Popular frameworks for learning (2.1) such as the LASSO and BMA are useful for
prediction purposes but less so for inference for the αt’s. Intuitively, when treatments
and controls are correlated, the predictive model might use a subset of those really ac-
tive to predict the response, resulting in significant under-selection biases when trying to
infer treatment effects. Additionally, optimization-based methods such as the LASSO
require subsequent analysis of their output, known as post-selection inference, which
can result in significant loss of power to detect weaker effects. For example, in lin-
ear regression with uncorrelated controls the debiased LASSO of van de Geer et al.
(2014) recovers the ordinary least-squares (OLS) inference, which is undesirable in
high-dimensional settings. The more promising approach of Lee et al. (2016) is not
even applicable if the treatment variables are not selected by the LASSO.

As we reviewed in Chapter 1, recent approaches have tried to address the aforemen-
tioned bias by encouraging the selection of controls that are correlated to the treatments.
Among those, for reasons explained in this chapter, we concentrate on DML and BAC
mentioned above. DML regresses separately the response and the treatments on the
controls via penalised likelihood, typically LASSO, and in a second step fits a model
like (2.1) by OLS with the controls selected in the first stage. In a similar spirit, BAC
models jointly the response and treatments and uses a prior distribution that encour-
ages controls to be simultaneously selected in the two regression models. Such methods
encourage adding controls to the regression model for yi that are correlated to the treat-
ments, but are not conditionally related to the response, which has two effects that we
highlighted in the previous chapter. The first one is a fairly obvious over-selection vari-
ance. This refers to an inflation of the standard errors of the treatment effects in the
regression model for yi, due to the larger co-linearity between variables in the model,
which leads to a reduced power to detect weaker effects. The second one is more subtle,
since the inclusion of controls in (2.1) which were screened out to be correlated with the
treatments leads to biased inference for the treatment effects, a property we refer to as
control over-selection bias. For example, suppose that a control truly has no effect on
the outcome (β j = 0) and that a data analysis method includes it into (2.1) when it has
a strong observed correlation with a treatment. If the latter truly has an effect (αt 6= 0)
then β j is likely to be over-estimated and, since this estimate is correlated to that of
αt , the latter can become biased. Said over-selection bias and variance worsen as the
number of treatments increases and as the level of confounding decreases, and it is more
hurtful as treatment effects become smaller.

In Figure 2.1 we consider a single treatment simulated according to linear regression
on 6 active controls (β j 6= 0 in (2.1)), and we vary the number of controls associated to
the treatment from 0 (no confounding) to 6 (full confounding, i.e., the same controls are
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used for generating the response and the treatment). While LASSO and BMA perform
worse the stronger the confounding due to control under-selection, DML and BAC per-
form well in the presence of strong confounding but poorly in the lack of it. In Figure
3.1 (described later we show that these effects can be exacerbated in the presence of
an increasing number of treatments. Our proposed approach, Confounder Importance
Learning (CIL), can deal successfully with both over- and under-selection, in both high
and low confounding situations, and in the presence of multiple treatments. A first illus-
tration of the merits of CIL is given in Figure 2.1, where it achieves good performance
across the spectrum.
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Figure 2.1: Parameter RMSE relative to an oracle OLS, for a single treatment ef-
fect (T = 1) averaged over 250 simulated datasets, considering strong (α = 1), weak
(α = 1/3) and no effect (α = 0). In all panels, n = 100, J = 49 and the response and
treatment are simulated from a linear regression model based on 6 active controls each.
The overlap between the two sets of active controls varies from 0 (no confounding) to 6
(full confounding). DML is double machine learning, BMA is Bayesian model averag-
ing, BAC is Bayesian Adjustment for Confounding and CIL is confounder importance
learning introduced in this paper.

CIL is based on a Bayesian shrinkage and selection framework for learning (2.1),
one where the prior probability of including a control in the response model, π j =
P(β j 6= 0), varies with j in a manner that is learned from data. We build a model

π j(θ) = ρ +(1−2ρ)

(
1+ exp

{
−θ0−

T

∑
t=1

θt f j,t

})−1

(2.2)

which uses a variation of the logistic link function to express these probabilities in terms
of features f j,t ≥ 0 extracted from the treatment and control data, and hyper-parameters
ρ ∈ (0,1/2) and θ = (θ0,θ1, . . . ,θT ). The role of ρ is to bound the probabilities away
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from 0 and 1 and, as we discuss in Section 2.2, we propose the default choice ρ =
1/(1 + J2). Our method relies on a good choice of the features f j,t and the hyper-
parameters θ .

Section 2.2 describes machine learning approaches to obtain the features, and the
main idea is to obtain rough estimates of the relative impact of each control to predict
each treatment. Regarding the choice of the hyper-parameters, note that with θt = 0
for t = 1, . . . ,T the inclusion probabilities are the same for all controls and the size
of θ0 determines whether they are all low or high (corresponding to making or not
making a sparsity assumption). When θt > 0, controls found to predict treatment t
are encouraged to be included in the response model, and discouraged when θt < 0.
This is in contrast to methods such as DML and BAC that encourage the inclusion
of any control associated with any treatment, i.e. with large f j,t . We use the data to
learn the θt’s, specifically in Section 2.3.2 we adopt an empirical Bayes choice based
on optimizing the marginal likelihood and we design a suitable computational strategy
to this effect. We also propose in Section 2.3.3 a much faster alternative based on an
expectation-propagation variational approximation. This approximation can be used
either in isolation (our experiments suggest that it is often indistinguishable from the
empirical Bayes estimator, but they also suggest when to expect differences) or as a
way to initialize the optimization of the marginal likelihood.

In Chapter 3, we show some further advantages of our formulation. When con-
sidering the salary discrimination application, we illustrate how considering multiple
treatments allows to portray, via posterior predictive inference, a measure of joint salary
variation due to potentially discriminatory factors; this is visually depicted in Figure 3.9
both aggregated across the U.S.A. and disaggregated according to states. Our results
suggest that in 2019 said variation decreased nation-wide (from 5.4% in 2010 to 1.5%
in 2019) and state-wide, with lesser disparities across states compared to 2010.

All additional empirical results are extensively analysed in Chapter 3, while techni-
cal results are available in Section 2.4.

2.2 Modelling Framework

2.2.1 Sparse Treatment and Control Selection

We model the dependence of the response yi on treatments di = (di,1, . . . ,di,T ) and con-
trols xi = (xi,1, . . . ,xi,J), according to (2.1), where φ > 0 is a dispersion parameter. We
are primarily interested in inference for α = (α1, . . . ,αT ), i.e. the treatment effects.
We call single treatment to the special case T = 1, while for T > 1 we have multiple
treatments.

We adopt a Bayesian framework where we use variable inclusion indicators γ j =
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I(β j 6= 0) and δt = I(αt 6= 0), and define a model prior

p(α,β ,δ ,γ,φ | θ) = p(α,β | δ ,γ,φ)p(γ | θ)p(δ )p(φ), (2.3)

where θ are the hyper-parameters in (2.2), and p(φ) is dropped for models with known
dispersion parameter (e.g. logistic or Poisson regression). For the regression coeffi-
cients, we assume prior independence,

p(α,β | δ ,γ,φ) :=
T

∏
t=1

p(αt | δt ,φ)
J

∏
j=1

p(β j | γ j,φ),

and adopt the so-called product moment (pMOM) non-local prior of Johnson and Rossell
(2012), according to which αt = 0 if δt = 0, and

p(αt | δt = 1,φ) =
α2

t
τφ

N(αt ;0,τφ),

with the analogous setting for every β j. Figure 2.2 illustrates the density of the prod-
uct MOM non-local prior. This prior involves a hyper-parameter τ > 0, that we set
to τ = 0.348, following Johnson and Rossell (2010), so that the prior signal-to-noise
ratio |αt |/

√
φ is greater than 0.2 with probability 0.99. Non-local priors consistently

learn which αt’s and β j’s are non-zero as the sample size n→ ∞ on a range of high-
dimensional linear and generalised linear regression models and play an important role
in helping discard spurious predictors (Johnson and Rossell, 2012; Wu, 2016; Shin et al.,
2018; Rossell, 2021). We dedicate Chapter 4 to provide some further asymptotic prop-
erties attained by the pMOM prior, compared to those available for a wide class of
classical local priors. For models with a dispersion parameter, such as linear regression,
we place a standard φ ∼ IGam(aφ = 0.01,bφ = 0.01) prior, see e.g. Gelman (2006).

For the inclusion indicators, we also assume prior independence, and set

p(δ ) =
T

∏
t=1

Bern(δt ;1/2), (2.4)

p(γ | θ) =
J

∏
j=1

Bern(γ j;π j(θ)). (2.5)

All treatments get a fixed marginal prior inclusion probability P(δt = 1) = 1/2, as we
do not want to favour their exclusion a priori, considering that there is at least some sus-
picion that any given treatment has an effect. This choice is a practical default when the
number of treatments T is not too large, else one may set P(δt = 1)< 1/2 to avoid false
positive inflation due to multiple hypothesis testing (Scott and Berger, 2010; Rossell,
2021). Our software allows the user to set any desired P(δt = 1).
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Figure 2.2: Prior density p(αt | δt = 1,φ = 1) of the MOM non-local prior, with τ =
0.348.

The main modelling novelty in the work in this chapter is the choice of π j(θ), which
we set according to (2.2). A key part of the construction is the choice of features f j,t .
Our generic approach is to take f j,t = |w j,t |, where wt = (w1,t , . . . ,wJ,t) are regression
coefficients obtained via a high-dimensional regression of dt on the controls. We high-
light two possibilities. First, a LASSO regression,

wt := argmin
(vt,1,...,vt,J)

{
n

∑
i=1

log p

(
di,t ;

J

∑
j=1

xi, jvt, j

)
+λ

J

∑
j=1
|vt, j|

}
, (2.6)

where λ > 0 is a regularization parameter, which we set by minimizing the BIC (we ob-
tained similar results when using cross-validation). The choice in (2.6) balances speed
with reasonable point estimate precision, and is the option that we used in all our exam-
ples. A second option, available when dealing with continuous treatments, is to use the
minimum norm ridge regression,

wt = (XᵀX)+ dt , (2.7)

where (XᵀX)+ is the Moore-Penrose pseudo-inverse, and X the n×J design matrix. For
J < n this is the familiar OLS estimator, but (2.7) is also well-defined when J > n, and
it has been recently investigated in terms of the so-called benign over-fitting property in
Bartlett et al. (2020).

The scalar ρ in (2.2) ensures that prior probabilities are bounded away from 0 and 1.
In particular, we set it to ρ = 1/(J2+1). This sets a lower-bound P(β j 6= 0)≥ 1/(J2+1)
that is of the same order as J grows as the Complexity priors in (Castillo and van der
Vaart, 2012), which are sufficiently sparse to discard irrelevant predictors and attain
minimax estimation rates (Castillo et al., 2015; Rossell, 2021).
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The final element in (2.2) are the hyper-parameters θt , which can encourage the
inclusion or exclusion of controls associated to the treatment t. Figure 2.3 illustrates
π j(θ) for three different values of θ1. Setting θ is critical for the performance of our
inferential paradigm, and in Section 2.3 we introduce data-driven criteria and algorithm
for its choice.
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Figure 2.3: Prior inclusion probability in (2.2) as a function of f j,1, a feature measuring
correlation between control j and treatment t = 1, for θ0 = −1, ρ = (J2 + 1)−1, and
J = 99 controls. Top and bottom dotted lines show the upper and lower bounds, 1−ρ

and ρ , respectively. The dotted line in the middle corresponds to θ1 = 0.

2.2.2 Connections to The Literature
As reviewed in Section 1.2.3, the main idea in both frequentist and Bayesian literatures
is to encourage the inclusion of confounders in (2.1) to mitigate under-selection bias.
Farrell (2015) adapted the DML framework of Belloni et al. (2014a) by using a robust
estimator to safeguard from mistakes in the double selection step, Shortreed and Ertefaie
(2017) employed a two-step adaptive LASSO approach, Antonelli et al. (2018) used
propensity matching, and Chernozhukov et al. (2018) extended DML by introducing a
de-biasing step, and cross-fitting to ameliorate false positive inclusion of controls. An
an alternative to these two-step approaches, Ertefaie et al. (2018) used a joint likelihood
L1 penalization on the outcome and treatment regressions.

Within a Bayesian framework, a natural approach is to build a joint model

p(yi,di | xi) = p(yi | di,xi)p(di | xi), (2.8)

where p(yi | di,xi) is as in (2.1) and p(di | xi) adds T ×J inclusion indicators ξt j describ-
ing the dependence between each treatment t and control j. BAC (Wang et al., 2012)
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considers this approach only for T = 1, setting a prior for γ j where each control has two
potential prior inclusion probabilities. If a control j is associated to the single treatment
t = 1 (ξt j = 1), the prior inclusion probability P(γ j = 1) increases by a factor deter-
mined by a hyper-parameter ω that is set by the user. Lefebvre et al. (2014) and Wang
and Leng (2016) provided some theoretical support and proposals to set ω , and Wil-
son et al. (2018) proposed a multiple treatment extension of BAC. Talbot et al. (2015)
introduced Bayesian causal effect estimation, which incorporates informative priors to
deter excess control inclusion, and Antonelli et al. (2017) generalised BAC to address
treatment effect heterogeneity. From a practical point of view, (2.8) multiplies the size
of the model space by a factor of 2JT , rendering the framework impractical even for
moderate values of T .

In a different thread, Hahn et al. (2018) proposed a shrinkage prior framework based
on re-parameterizing a joint outcome and treatment regression, designed to improve
estimation biases, and Hahn et al. (2020) considered non-parametric Bayesian causal
forests. Antonelli et al. (2019) proposed a spike-and-slab Laplace prior on the controls
that shrinks less those controls that are associated to the treatment, and an empirical
Bayes algorithm for hyper-parameter setting.

Our main contributions are of an applied, but relevant, nature: replacing the joint
model (2.8) by extracting features derived from p(di | xi) to render computations prac-
tical, and learning from data whether confounder inclusion should be encouraged, dis-
couraged, or neither, to avoid over-selection issues. In Figure 2.4 we illustrate how
this approach compared to other popular available methods discussed before. Another
contribution is considering the multiple treatments problem (T > 1), which has been
considerably less studied.

2.3 Computational Methodology

2.3.1 Bayesian Model Averaging
All expressions in this section are conditional on the observed (xi,di), we drop them
from the notation for simplicity. Inference for our approach relies on posterior model
probabilities

p(γ,δ | y,θ) ∝ p(y | γ,δ )p(γ | θ)p(δ )

where

p(y | γ,δ ) =
∫

p(y | α,β ,φ ,δ ,γ)p(α,β | δ ,γ,φ)p(φ)dαdβdφ (2.9)

is the marginal likelihood of model (γ,δ ). We set the hyper-parameter θ to a point
estimate θ̂ described in the next section. Conditional on θ , our model prior p(γ | θ) is
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Figure 2.4: Artificial illustration to compare (prior) inclusion probabilities (y-axis) as set
by different depicted methods for control x j on the single treatment model. The x-axis
shows the coefficient measuring the strength of the relationship between the treatment
and control x j, in the case of CIL obtained via vi, j in expression (2.6). If this coefficient
is zero (no relationship), the value set by DML depends on the Lasso penalty parameter
(λ ≥ 0) via the corresponding function g(·), that of BMA on the Binomial parameter
(ρ), and that of BAC on the hyper-parameter ω ≥ 1. For CIL, here we have set its
paramter ρ = 0 in expression (2.2) just for illustration purposes.
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a product of independent Bernouilli’s with asymmetric success probabilities defined by
(2.2). As a simple variation of standard BMA, one can exploit existing computational
algorithms, which we outline next.

Outside particular cases such as Gaussian regression under Gaussian priors, (2.9)
does not have a closed-form expression. To estimate (2.9) under our pMOM prior we
adopt the approximate Laplace approximations of Rossell et al. (2021), see Section
2.3.4.

We obtain point estimates using BMA,

α̃ := ∑
γ,δ

E(α | y,γ,δ )p(γ,δ | y,θ), (2.10)

and similarly employ the BMA posterior density p(α | y,θ) to provide posterior credible
intervals. To this end we use posterior samples from this density using a latent truncation
representation described by Rossell and Telesca (2017). Expression (2.10) is a sum
across 2T+J models, which is unfeasible to obtain when T + J is large, then we use
Markov Chain Monte Carlo methods, see e.g. Clyde and Ghosh (2012) for a review.

We used all the algorithms described above as implemented by the modelSelection
function in the R package mombf (Rossell et al., 2022), for which a new module has
been added to accomodate for the cil function. This function can be used to implement
the methodology just introduced to any requiring treatment effects problem.

2.3.2 Confounder importance learning via Marginal Likelihood

Our main computational contribution is a strategy to learn the hyper-parameter θ , which
plays a critical role by determining prior inclusion probabilities. We devised an empiri-
cal Bayes approach maximizing the marginal likelihood, with

θ
EB := argmax

θ∈RT+1
p(y | θ) = argmax

θ∈RT+1
∑
(δ ,γ)

pu(δ ,γ | y)p(δ ,γ | θ) (2.11)

where the right-hand side follows easily, denoting by pu(δ ,γ | y) the posterior prob-
abilities under a uniform model prior pu(δ ,γ) ∝ 1. The use of empirical Bayes for
hyper-parameter learning in variable selection has been well-studied, see George and
Foster (2000); Scott and Berger (2010); Petrone et al. (2014).

A major challenge is that one must evaluate the costly sum in (2.11) for each value
of θ considered by an optimization algorithm. Note that pu(y | γ,δ ) does not depend on
θ , and hence can be re-used to evaluate (2.11) for any number of θ values. In fact, by
Proposition 2.1 below, this provides grounds to use stochastic gradient methodology to
maximize (2.11).
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Proposition 2.1. If p(y | γ,δ ,θ) = p(y | γ,δ ), then

∇θ log p(y | θ) = ∑
(δ ,γ)

p(γ,δ | y,θ)∇θ log p(γ,δ | θ).

If, additionally, the model prior is separable such that

p(γ,δ | θ) =
T

∏
t=1

p(δt)
J

∏
j=1

p(γ j | θ),

then

∇θ log p(y | θ) =
J

∑
j=1

E
[
∇θ log p(γ j | θ) | y

]
, (2.12)

where the expectation is with respect to γ j.

Corollary 2.2. Under the model prior in (2.4) and (2.5), and with π j(θ) as defined by
(2.2),

∇θ log p(y | θ) = (1−2ρ)
J

∑
j=1

f j
[
P(γ j = 1 | y,θ)−π j(θ)

]
, (2.13)

where f j = (1, f j,1, . . . , f j,T )
ᵀ.

Expressions (2.12) and (2.13) evaluate the gradient with a sum of J terms, relative
to the 2J+T terms in (2.11). Further, (2.13) only depends on y via marginal inclusion
probabilities P(γ j = 1 | y,θ), which can typically be estimated more accurately than the
joint model probabilities in (2.11). However, two problems remain unaddressed. First,
one must compute P(γ j = 1 | y,θ) for every considered θ , which is cumbersome. Sec-
ond, log p(y | θ) can have multiple optima. Hence, standard algorithms may converge
to low-quality local optima if θ is poorly initialised. Figure 2.5 (left) shows an example
of a multi-modal p(y | θ). We next describe an Expectation Propagation approximation
which, as illustrated in Figure 2.5, typically provides a good approximation to the global
mode.

2.3.3 Confounder importance learning by Expectation-Propagagation
The use of Expectation Propagation (Minka, 2001a,b) is common in Bayesian machine
learning, including in variable selection (Seeger et al., 2007; Hernández-Lobato et al.,
2013; Xu et al., 2014). We propose a computationally tractable approximation to (2.11),
which can also serve as an initialization point for an algorithm to solve (2.11) exactly,
if so desired.
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Figure 2.5: Empirical Bayes (left) and Expectation-Propagation (right) objective func-
tions (2.11) and (2.15) in the single treatment case (T = 1). Here, θ̂ EB = (−2.43,3.19)
and θ̂ EP =(−2.34,3.09), for n= 100 and J = 49, for the first data realization for the sim-
ulation design displayed in the centre-left panel of Figure 2.1 with three confounders.
See Section 3.1 for further details on the simulation setup.

We consider a mean-field approximation to the posterior probabilities in (2.11),

p̂u(δ ,γ | y) =
T

∏
t=1

Bern(δt ;st)
J

∏
j=1

Bern(γ j;q j). (2.14)

where s = (s1, . . . ,sT ) and q = (q1, . . . ,qJ) are given in Proposition 2.3 to optimally
approximate p(δ ,γ | y). By Proposition 2.3 below, (2.14) leads to replacing (2.11) by a
new objective function (2.15) that only requires an inexpensive product across J terms.
These only depend on y via posterior inclusion probabilities q j = P(γ j = 1 | y,θ = 0T+1)
that can be pre-computed prior to conducting the optimization exercise.

Proposition 2.3. Let st , q j and p̂u(δ ,γ | y) be as defined in (2.14). Then, sEP
t = P(δt =

1 | y,θ = 0T+1) and qEP
j = P(γ j = 1 | y,θ = 0T+1) minimize Kullback-Leibler divergence

from pu(δ ,γ | y) to p̂u(δ ,γ | y). Further

θ
EP
u := argmax

θ∈RT+1
∑
δ ,γ

p̂u(δ ,γ | y)p(δ ,γ | θ)

= argmax
θ∈RT+1

J

∑
j=1

log
(
qEP

j π j(θ)+(1−qEP
j )(1−π j(θ))

)
. (2.15)

The gradient of the objective function (2.15) is in Section 2.3.4. Since this function
may have multiple maxima, we conduct an initial grid search and subsequently use a
quasi-Newton BFGS algorithm. See Section 2.3.4 and Algorithm 1 therein for a full
description of our algorithm to obtain θ EB and θ EP. In most our examples θ EB and
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θ EP provided virtually indistinguishable inference, the latter incurring a significantly
lower computational cost, but the exact θ EB did provide slight advantages in some high-
dimensional settings (see Section 3.1).

2.3.4 Computational methods
Numerical computation of the marginal likelihood for non-local priors

Briefly, denote by pN(αt | δt = 1,φ) = N(αt ;0,τφ) independent Gaussian priors for
t = 1, ..,T , and similarly pN(β j | γ j = 1,φ) = N(β j;0,τφ) for j = 1, . . . ,J. Proposition
1 in Rossell and Telesca (2017) shows that the following identity holds exactly

p(y | γ,δ ) = pN(y | γ,δ )EN

[
T

∏
t=1

α2
t

τφ

J

∏
j=1

β 2
j

τφ
| y,γ,δ

]

where pN(y | γ,δ ) is the integrated likelihood under pN(α,β ), and EN[·] denotes the
posterior expectation under pN(α,β | y,γ,δ ). To estimate pN(y | γ,δ ) for non-Gaussian
outcomes we use a Laplace approximation. Regarding the second term, we approx-
imate it by a product of expectations, which Rossell et al. (2021) showed leads to the
same asymptotic properties and typically enjoys better finite-n properties than a Laplace
approximation.

Numerical optimization in search of θ̂ EB and θ̂ EP

Algorithm 2.1 describes our method to estimate θ̂ EP and θ̂ EB. We employ the quasi-
Newton BFGS algorithm to optimize the objective function. For θ̂ EB, we use the gradi-
ents from Corollary 2.2, while the Hessian is evaluated numerically using line search,
with the R function nlminb. Note, however, that obtaining θ̂ EB requires sampling
models from their posterior distribution for each θ , which is impractical, to then obtain
posterior inclusion probabilities required by (2.13). Instead, we restrict attention to the
models M sampled for either θ = 0T+1 or θ = θ̂ EP in order to avoid successive MCMC
runs at every step, relying on the relative regional proximity between the starting point
θ̂ EP and θ̂ EB. This proximity would ensure that M contains the large majority of mod-
els with non-negligible posterior probability under θ̂ EB. For θ̂ EP, we use employ the
same BFGS strategy using gradient computed in 2.3.4, with numerical evaluation of the
Hessian. This computation requires only one MCMC run at θ = 0T+1, which allows
us to use grid search to avoid local optima. As for the size of the grid, we let the user
specify what points are evaluated. For K points in the grid one must evaluate the log
objective function KT+1 times, so we recommend to reduce the grid density as T grows.
By default, we evaluate every integer in the grid assuming T is not large, but preferably
we avoid coordinates greater than 10 in absolute value, as in our experiments it is very
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unlikely that any global posterior mode far from zero is isolated, i.e. not reachable by
BFGS by starting to its closest point in the grid. Additionally, even if that were the
case, numerically it makes no practical difference, considering that marginal inclusion
probabilities are bounded away from zero and one regardless.

Algorithm 2.1 Obtaining θ EP and θ EB

Output: θ̂ EP and θ̂ EB

1: Obtain B posterior samples (γ,δ )(b) ∼ p(γ,δ | y,θ = 0T+1) for b = 1, . . . ,B. Denote
by M(0) the corresponding set of unique models.
2: Compute st = P(δt = 1 | y,θ = 0T+1) and q j = P(γ j = 1 | y,θ = 0T+1).
3: Conduct a grid search for θ̂ EP around θ = 0T+1. Optimize (2.15) with the BFGS
algorithm initialised at the grid’s optimum.
4: Obtain B posterior samples (γ,δ )(b) ∼ p(γ,δ | y,θ = θ̂ EP). Denote by M(1) the cor-
responding set of unique models. Set M = M(0)∪M(1).
5: Initialize search for θ̂ EB at θ̂ EP. Use the BFGS algorithm to optimize (2.11), restrict-
ing the sum to (δ ,γ) ∈M.

Gradient of the function optimised in (2.15) in Proposition 2.3

From (2.15), for a given set of q j we have

θ
EP = argmax

θ∈RT+1

J

∑
j=1

log
(
qEP

j π j(θ)+(1−qEP
j )(1−π j(θ))

)
. (2.16)

We are interested in computing the gradient of the function being optimised in (2.16).
Denote h j(θ) := q jπ j(θ)+(1−q j)(1−π j(θ)) for short. Simple algebra provides

∇θ h j(θ) = (2q j−1)∇θ π j(θ).

From (2.20) we recover the remaining gradient in the last expression and derive

∇θ logh j(θ) =
∇θ h j(θ)

h j(θ)
=

2q j−1
h j(θ)

[
(1−2ρ) f jπ j(θ)(1−π j(θ))

]
,

where f j = (1, f j,1, . . . , f j,T )
ᵀ, and so the gradient for the expression in (2.16) is simply

∇θ

J

∑
j=1

logh j(θ) = (1−2ρ)
J

∑
j=1

f j
π j(θ)(1−π j(θ))

h j(θ)
.

�
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2.4 Technical Appendix

2.4.1 Proof of Proposition 2.1
Let p(y | γ,δ ,θ) = p(y | γ,δ ), then

∇θ log p(y | θ) = ∇θ p(y | θ)
p(y | θ)

=
∇θ ∑(γ,δ ) p(y | γ,δ ,θ)p(γ,δ | θ)

p(y | θ)

=
∑(γ,δ ) p(y | γ,δ )∇θ p(γ,δ | θ)

p(y | θ)

= ∑
(γ,δ )

p(y | γ,δ ,θ)
p(y | θ)

p(γ,δ | θ)
p(γ,δ | θ)

∇θ p(γ,δ | θ)

= ∑
(γ,δ )

∇θ p(γ,δ | θ)
p(γ,δ | θ)

p(γ,δ | y,θ)

= ∑
(γ,δ )

p(γ,δ | y,θ)∇θ log p(γ,δ | θ). (2.17)

If, further, the model prior satisfies p(γ,δ | θ) = ∏
T
t=1 p(δt)∏

J
j=1 p(γ j | θ), then

∇θ log p(γ,δ | θ) =
J

∑
j=1

∇θ log p(γ j | θ),

and so

∇θ log p(y | θ) =
J

∑
j=1

∑
(γ,δ )

∇θ log p(γ j | θ)p(γ,δ | y,θ)

=
J

∑
j=1

E
[
∇θ log p(γ j | θ) | y,θ

]
.

�

2.4.2 Proof of Corollary 2.2
The empirical Bayes estimate defined by (2.11) writes

θ
EB = argmax

θ∈RT+1
log p(y | θ) = argmax

θ∈RT+1
log ∑

(γ,δ )

p(y | γ,δ )p(γ,δ | θ).
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For short, denote H(θ)= p(y | θ) and h j(θ)= p j(γ j | θ), where generically ∇θ logH(θ)=
∇θ H(θ)/H(θ). Under the assumptions of Corollary 2.2

∇θ H(θ) = ∑
(γ,δ )

p(y | γ,δ )p(δ )∇θ

J

∏
j=1

h j(θ)

= ∑
(γ,δ )

p(y | γ,δ )p(δ )
J

∑
j=1

(
∇θ h j(θ)∏

j 6=l
hl(θ)

)
. (2.18)

Denoting f j = (1, f j,1, . . . , f j,T )
ᵀ, direct algebra gives

∇θ h j(θ) = ∇θ

{
π j(θ)

γ j(1−π j(θ))
1−γ j

}
= (1−2ρ) f j(γ j−π j(θ))h j(θ), (2.19)

since

∇θ π j(θ) = (1−2ρ) f jπ j(θ)(1−π j(θ)). (2.20)

Then, replacing (2.19) into (2.18)

∇θ H(θ) = ∑
(γ,δ )

p(y | γ,δ )p(δ )
J

∑
j=1

(1−2ρ) f j(γ j−π j(θ))
J

∏
j=1

f j(θ)

=
J

∑
j=1

(1−2ρ) f j ∑
(γ,δ )

(γ j−π j(θ))p(y | γ,δ )p(δ ,γ | θ)

=
J

∑
j=1

(1−2ρ) f j

(1−π j(θ)) ∑
(γ,δ ):γ j=1

p(y,δ ,γ | θ)−π j(θ) ∑
(γ,δ ):γ j=0

p(y,δ ,γ | θ)

 .
Finally

∇θ logH(θ) =
∇θ H(θ)

H(θ)

=
J

∑
j=1

(1−2ρ) f j

[
(1−π j(θ))

∑(γ,δ ):γ j=1 p(y,δ ,γ | θ)
∑(γ,δ ) p(y,δ ,γ | θ)

−π j(θ)
∑(γ,δ ):γ j=0 p(y,δ ,γ | θ)

∑(γ,δ ) p(y,δ ,γ | θ)

]

=
J

∑
j=1

(1−2ρ) f j
[
(1−π j(θ))P(γ j = 1 | y,θ)−π j(θ)(1−P(γ j = 1 | y,θ))

]
= (1−2ρ)

J

∑
j=1

f j
[
P(γ j = 1 | y,θ)−π j(θ)

]
.

�
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2.4.3 Proof of Proposition 2.3
Consider the right-hand side in (2.11),

argmax
θ∈RT+1

∑
(δ ,γ)

pu(δ ,γ | y)p(δ ,γ | θ) (2.21)

where pu(δ ,γ | y) are the posterior probabilities under a uniform prior pu(δ ,γ) ∝ 1.
We seek to set the parameters st and q j in the approximation

p̂u(δ ,γ | y) =
T

∏
t=1

Bern(δt ;st)
J

∏
j=1

Bern(γ j;q j)

using Expectation Propagation. That is, setting and q = (q1, . . . ,qJ) such that

qEP = argmax
q∈[0,1]J

∑
(γ,δ )

pu(δ ,γ | y) log

(
T

∏
t=1

sδt
t (1− st)

1−δt
J

∏
j=1

qγ j
j (1−q j)

1−γ j

)
.

and analogously for s = (s1, . . . ,sT ). Proceeding elementwise, we derive

qEP
j := argmax

q j∈[0,1]
∑
(γ,δ )

pu(δ ,γ | y)×

×

(
J

∑
j=1

[γ j logq j +(1− γ j) log(1−q j)]+
T

∑
t=1

[δt logs j +(1−δt) log(1− st)]

)

= argmax
q j∈[0,1]

∑
(γ,δ )

pu(δ ,γ | y)

(
J

∑
j=1

[γ j logq j +(1− γ j) log(1−q j)]

)

= arg max
q j∈[0,1]

J

∑
j=1

∑
(γ,δ )

pu(δ ,γ | y)
[
γ j logq j +(1− γ j) log(1−q j)

]
.

Optimizing this expression yields

∂

∂q j
= 0⇔ ∑

(γ,δ )

pu(δ ,γ | y)

(
γ j

qEP
j
−

1− γ j

1−qEP
j

)
= 0

⇔ 1
qEP

j
∑

(γ,δ ):γ j=1
pu(δ ,γ | y)−

1
1−qEP

j
∑

(γ,δ ):γ j=0
pu(δ ,γ | y) = 0

⇔
Pu(γ j = 1 | y)

qEP
j

−
Pu(γ j = 0 | y)

1−qEP
j

= 0

⇔ qEP
j = Pu(γ j = 1 | y) = P(γ j = 1 | y,θ = 0T+1). (2.22)
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With the same exact procedure one analogously obtains sEP
t = Pu(δt = 1 | y). Let

h(δ ) :=
T

∏
T=1

Bern(δt ;sEP
t )

J

∏
j=1

Bern(δt ;πt)

=
T

∏
t=1

[
sEP
t πt

]δt
[
(1− sEP

t )(1−πt)
]1−δt ,

which is independent of θ , and where πt is the marginal prior inclusion probability
within our framework. Then, implementing the approximation (2.22) into (2.21) gives

θ
EP := argmax

θ∈RT+1
∑
(γ,δ )

h(δ )
J

∏
j=1

Bern(γ j;qEP
j )

J

∏
j=1

Bern(γ j;π j(θ))

= argmax
θ∈RT+1

∑
(γ,δ )

h(δ )
J

∏
j=1

[
qEP

j π j(θ)
]γ j
[
(1−qEP

j )(1−π j(θ))
]1−γ j . (2.23)

Note that the product in the RHS of (2.23) defines a probability distribution on (δ1, . . . ,δT ,γ1, . . . ,γJ)
with independent components, hence the sum is the normalizing constant of such dis-
tribution. Thus, this constant is just the product of the univariate normalizing constants.
The univariate normalizing constant of each Bernouilli is then

qEP
j π j(θ)+(1−qEP

j )(1−π j(θ))

for every q j, and similarly sEP
t πt +(1− sEP

t )(1−πt) for every st . Hence, replacing into
(2.23) we obtain

θ
EP := argmax

θ∈RT+1

J

∏
j=1

{
qEP

j π j(θ)+(1−qEP
j )(1−π j(θ))

} T

∏
t=1

{
sEP
t πt +(1− sEP

t )(1−πt)
}
.

= argmax
θ∈RT+1

J

∑
j=1

log
(
qEP

j π j(θ)+(1−qEP
j )(1−π j(θ))

)
.

�
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Chapter 3

APPLICATIONS TO CONFOUNDER
IMPORTANCE LEARNING

In this chapter we review a number of synthetic and real applications that highlight
similarities and differences between Confounder Importance Learning (CIL) introduced
in Chapter 2 and other relevant and popular methodology frequently employed in the
literature. In particular, we compare our CIL approach (under the EP approximation) to
three methods: OLS under the full model, DML based on the LASSO (Belloni et al.,
2014a), and standard BMA with a Beta-Binomial(1,1) model prior and the pMOM prior
in Section 2.2.1.

In Section 3.1 using simulated data we also compare to BAC (Wang et al., 2012),
which was computationally unfeasible to apply to the salary data. We set its hyper-
parameter to ω = +∞, which encourages the inclusion of confounders relative to stan-
dard BMA. For completeness, we also considered a standard LASSO regression on the
outcome equation (2.1), setting the penalization parameter via cross-validation. We
compared these methods to the oracle OLS, i.e. based on the subset of controls truly
featuring in (2.1). These methods are implemented in R packages glmnet (Friedman
et al., 2010) for LASSO, mombf for BMA and CIL, hdm (Chernozhukov et al., 2016)
for DML and BACprior (Talbot et al., 2014) for BAC.

3.1 Simulation Studies

3.1.1 Main numerical results

To illustrate issues associated to under- and over-selection of controls, a key factor we
focus on is the level of confounding. Our scenarios range from no confounding (no
controls affect both y and d) to complete confounding (any control affecting y also
affects d, and vice versa). We also considered the effect of dimensionality, treatment
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effect sizes α , and true level of sparsity (number of active controls).
We considered a Gaussian outcome and a single treatment (T = 1), and an error vari-

ance φ = 1. The controls were obtained as independent Gaussian draws xi ∼ N(0J, I),
and any active control had a coefficient β j = 1. The treatment d was also Gaussian with
its mean depending linearly on the controls, unit error variance, and any control having
an effect on d had unit regression coefficient. Throughout, the number of controls that
truly had an effect on d was set equal to the number of controls that affect the outcome
y. We measured the root mean squared error (RMSE) of the estimated α̂ .

Figures 2.1, 3.3, 3.2 and 3.1 summarize the results. Figure 2.1 shows that the RMSE
of BMA and LASSO worsens as confounding increases, this was due to a lower power
to select all relevant confounders (see Figure 3.2 for model selection diagnostics), i.e.
an omitted variable bias. These effects have been well studied. Methods such as DML
and BAC were designed to prevent omitted variables, but as shown in Figure 2.1 they
can run into over-selection when there truly are few confounders. In contrast, our CIL
performed well at all levels of confounding. The Empirical Bayes and the Expectation
Propagation versions of CIL provide nearly indistinguishable results (not shown). It is
worth noting that, when the treatment truly had no effect (α = 0), CIL provided a strong
shrinkage that delivered a significantly lower RMSE than other methods.

Figure 3.3 extends the analysis to consider a growing number of covariates, under
a strong treatment effect (α = 1). As dimensionality grew, standard LASSO and BMA
incurred a significantly higher RMSE under strong confounding. Our CIL generally
provided marked improvements over BMA, except for the larger J + T = 200. Here
we observed the only perceptible differences between the EB and EP approximations,
with the former attaining better results, pointing to advantages of the EB approach in
higher dimensions. Figure 3.4 further extends the analysis to less sparse settings, with
‖γ‖0 = 6, 12 and 18 active parameters. Overall, the results were similar to Figures 2.1
and 3.3.

A focus in this paper is to understand over-selection issues in multiple treatment in-
ference. To this end, we added a multiple treatments design with an increasing number
of treatments, with a maximum of T = 5. There, every present treatment was active,
setting αt = 1 on all treatments. For all levels of T , we set β j = 1 for j = 1, . . . ,20,
denoting the set of active controls by x1:20, and β j = 0 for the rest of controls x21:J .
Regarding the association between treatments and controls, x1:20 were divided into five
disjoint subsets with four variables each, and each of these subsets was linearly asso-
ciated to a different treatment. Additionally, each treatment also depended on a further
subset of controls in the set x21:J . In this case, the size of such subset was increasing
by four with each added treatment: treatment 1 was associated to x21:24, treatment 2
was associated to x21:28, etc., up to treatment 5, which correlated to x21:40. All controls
affecting a treatment had a unit linear coefficient. The rest of the design is akin to that
in Figure 2.1. We also replaced BAC with the ACPME method of (Wilson et al., 2018),
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an extension of BAC for multiple treatments.

2
4

6
8

10
12

Number of Treatments

2 3 4 5

LASSO
DML
ACPME

BMA
CIL

Figure 3.1: Treatment parameter RMSE (relative to oracle least-squares) based on R =
250 simulated datasets at every value of T , for n = 100, J = 95, and T ∈ {2,3,4,5}. For
every T (x-axis), we show the average RMSE across Treatments 1, . . . ,T .

Figure 3.1 shows the estimation results on α for the different values of T , akin to
Figure 2.1. We observe similar trends as before. DML included too many controls,
particularly for larger T . On the other hand, under-selection (here suffered by BMA)
was also problematic, as for larger T the model became highly confounded, as a subset
of the controls accounted for a larger proportion of the variance in the outcome, as well
as for that of the treatment(s). This led to BMA discarding with high probability active
but highly correlated variables between treatments and confounders. We also observed
a stable performance of ACPME that improved slightly as T grew, but even for T = 5
its RMSE more than doubled that of oracle OLS. On the other end, our CIL proposal
was able to achieve oracle-type performance for every examined value of T .

3.1.2 Supplementary numerical results
Figure 3.2 summarises model selection results for the simulations described in Figure
2.1.

Figure 3.3 studies the effect of growing number of covariates on inference, specifi-
cally for J+T = 25, 100 and 200.

Figure 3.4 shows the effect of having various amounts of active confounders. The
results look consistent to the effects reported in Figures 2.1 and 3.3, which were magni-
fied for large amounts of active confounders. These are really challenging situations to
tackle since the tested methods aim at model sparsity, while the true model size is rel-
atively large. Although our method still performed at oracle rates in low-confounding
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Figure 3.2: To be read vertically in relation to Fig. 2.1. The top panels show the average
outcome model size across levels of confounding, divided by the true model size (i.e. 1
indicates that it matches the true model size). The bottom panels show the probability of
selecting the treatment using a 0.05 P-value cut-off for DML, and for Bayesian methods
the treatment is included when marginal posterior inclusion probability is >1/2. LASSO
does not appear in these panels as its not designed for inference.

scenarios, its relative performance was compromised for the highest levels of confound-
ing. This occurred in part because accurate point estimation in (2.6) became increas-
ingly harder as the correlation between covariates strengthened, which in turn influenced
the ability of the algorithm to calibrate θ reliably. Even in these hard cases, however,
its performance was not excessively far to the best competing method, while it clearly
outperformed BMA on all of them.

3.2 Wage Discrimination on The Current Population Sur-
vey

We studied the association between belonging to certain social groups and the hourly
salary, and its evolution over the last decade (prior to the COVID-19 pandemic), to as-
sess progress in wage discrimination. We analysed the U.S.A. Current Population Sur-
vey (CPS) microdata (Flood et al., 2020), which records many social, economic and
job-related factors. The outcome is the individual log-hourly wage, re-scaled by the
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Figure 3.3: Single treatment parameter RMSE (relative to Oracle OLS) based on R =
250 simulated datasets for each level of confounding. In all panels, α = 1 and ‖γ‖0 = 6.
We show the empirical Bayes version CIL only in the right panel, for the other panels
results are indistinguishable relative to EP.

consumer price index of 1999, and we considered four treatments: gender, black race,
Hispanic ethnicity and Latin America as place of birth. These treatments are highly
correlated to sociodemographic and job characteristics that can impact salary, i.e. there
are many potential confounders.

Section 3.2.1 describes the data and Section 3.2.2 contains results on the treatment
effects, both individually and in terms of a composite score measuring their joint associ-
ation with salary. These results support that methods designed for treatment effect infer-
ence may run into over-selection, whereas naive methods may run into under-selection.
To provide further insight, Section 3.1 shows simulation studies, with particular atten-
tion on how the presence/absence of confounders affects each method.

3.2.1 Data
We downloaded data from 2010 and 2019 and analysed each year separately. We se-
lected individuals aged over 18, with a yearly income over $1,000 and working 20 to 60
hours per week, giving n = 64,380 and n = 58,885 in 2010 and 2019, respectively. The
controls included characteristics of the place of residence, education, labor force status,
migration status, household composition, housing type, health status, financial and tax
records, reception of subsidies, and sources of income (beyond wage). Overall, there
were J = 229 controls, after adding 50 binary indicators for state.

Since every state has its own regulatory, sociodemographic and political framework,
we captured state effects by adding interactions for each pair of treatment and state. On
these interactions, we applied a sum to zero constraint, so that the coefficients associated
to the four treatments remain interpretable as average effects across the USA, and the
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Figure 3.4: Single treatment parameter RMSE (relative to Oracle OLS) based on R =
250 simulated datasets for each level of confounding reported, as described in Figure
2.1. In all panels, n = 100, J +T = 100 and α = 1. Sudden general improvement at
the right end of centre and right panels is due to a sharper deterioration of oracle OLS
RMSE at complete confounding relative to other methods.

interactions as deviation from the average. Hence, overall, we have T = 4+4×50= 204
treatments, our main interest being in the first four. In our CIL prior we assumed a
common θt shared between each main treatment and all its interactions with state, so
that dim(θ) = 5.

To study issues related to under- and over-selection, we analysed the original data
and two augmented datasets where we added artificial controls correlated with the treat-
ments but not the outcome. The augmented data incorporated 100 artificial controls in
the first scenario, and 200 in the second one, which were split into four subsets of size
25 and 50, respectively. Each of these subsets was designed to correlate to one of the
four main treatments. The simulation procedure worked as follows. For both amounts
K1 = 100 and K2 = 200 of artificial predictors, the simulation protocol was the same.
Every artificial control zk ∈ Rn, for k = 1, . . . ,100 or k = 1, . . . ,200 respectively, was
simulated to correlate to one individual treatment, according to which subset said con-
trol was assigned to, correlating only indirectly to the rest of treatments. In particular,
we drew elements of zk from zi,k | di,t = 1 ∼ N(1.5,1), and zi,k | di,t = 0 ∼ N(−1.5,1),
where dt denotes the corresponding column in the treatment matrix associated to the
given zk. The resulting average correlation between gender and its associated artificial
variables was of 0.83, and analogously of 0.69, 0.76 and 0.67 for black race, ethnicity
and place of birth with their corresponding correlated variables, respectively.
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3.2.2 Salary survey results

In Figure 3.5 we focus on the gender and black race indicators. All considered methods
show that the average log-salary is reduced for women, and that this gap is similarly
pronounced in 2019 relative to 2010. However, the methods differ in their conclusions
for the black race. To understand better what drives these differences, we added 100
and 200 simulated controls that are dependent on the treatments but conditionally inde-
pendent of the response. The figure shows a marked robustness of Bayesian methods
to the addition of said controls, whereas other methods lose their ability to detect the
weaker effects (e.g. race in both 2010 and 2019). We see this as empirical evidence
that previous methods fail to detect the effect for black race due to existence of many
controls correlated to the treatments, an inability that it is only exacerbated when adding
the simulated controls.
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Figure 3.5: Inference for treatments “female” (left) and “black” (right) in 2010 and
2019; see Section 3.2. We analyze Current Population Survey data with J = 229 controls
(left black point and bar in each panel) but also adding 100 (middle) and 200 (right)
artificial controls correlated with the treatments and conditionally independent of the
response. Names of methods as in the caption of Figure 2.1.

The treatment effect for gender is picked up by all methods in both years with similar
point estimates. No method finds any remarkable decrease of this effect in 2019, only
OLS detects a very moderate significant reduction in this gap. When adding the artificial
controls, the confidence intervals for OLS and DML became notably wider, which can
potentially lead to a loss of statistical significance. This points towards a relevant loss
in power due to over-selecting irrelevant controls, with the associated variance inflation.
The BMA and CIL results were particularly robust to the artificial controls.

As for race, we obtained a similar pattern of results results. In 2010, All methods
found a significant negative association between black race and salary. In 2019, OLS
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and DML found a somewhat smaller association, while both Bayesian methods found a
negative relation similar to that established in 2010, with a mildly more negative point
estimate. Once we introduced the artificial controls, we observed that OLS and DML
suffered a large variance inflation. On the other end, BMA and CIL experience no
perceptible change to adding the artificial controls. These results seem to suggest that
they have sufficient power to detect the difference that other methods can underestimate
in the original data in 2019.

As argued earlier, the differences in results between methods are due to a different
incorporation of controls into (2.1). For example, on the original data OLS found that
in the full model 165 and 176 predictors had an associated p-value smaller than 0.05 in
2010 and 2019, respectively, while DML selected 138 and 135 variables, i.e. showing
almost no model size reduction across years compared to OLS. BMA had a posterior
model size of 85 in both years, comparably deterring the inclusion of a large number of
covariates in the model, similarly to CIL that included 85 and 86 predictors on average.
Model sizes are altered in the augmented datasets: with the 200 artificial predictors, in
2010 OLS grows the model up to 172 variables, and DML grows up to 146 variables.
Differences between BMA and CIL are not more pronounced in the augmented datasets
for 2010, staying in a range between 84 to 87 variables for either method, year, and
augmented dataset.

Figure 3.6 follows Figure 3.5 by showing the results for the other two treatments:
Hispanic ethnicity, and birthplace in Latin America. In the case of ethnicity, OLS and
DML pick up a small but negative effect on log-salary, which is barely significant in
2010, and only maintained by DML in 2019. Neither of the Bayesian methods detect
any effect in these years. The augmented datasets pose the same problems as in the
previous figure in relation to variance inflation and point estimate instability of OLS
and DML. We also observe minor sensibility of Bayesian methods to this intervention:
interval lengths widen for BMA in 2010 and, more moderately, for CIL in 2019. In
both cases, however, negative associations remain insignificant for them. As for place
of birth, no method detects any association to salary in 2010, but this changes notably
in 2019, with the appearence of a negative effect of being born in Latin America on
log-hourly wage according to all methods. There is a significant difference in point
estimation between frequentist and Bayesian methods tested, close to double the effect
for the latter group, although intervals are considerably wider, once more. In any case,
the negative effects in 2019 are significant to all. Additionally, on this treatment CIL
seems to attain narrower intervals compared to BMA, as in this aspect BMA also looks
moderately more sensitive to the noise of augmented datasets in both years, altering the
significance of the point estimates in 2010.

Contrary to the simulations of Section 3.1, not too many differences between BMA
and CIL appear in the main effects of the CPS application. We briefly depict their re-
spective performance next. In Figure 3.7 we appreciate that on the original dataset the
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Figure 3.6: Inference for treatment variables “hispanic” (top) and “born in Latin Amer-
ica” (bottom) in 2010 and 2019; see Section 3.2. Read caption to Figure 3.5 to read this
figure.
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estimated values for the elements of θ̂ are quite close to zero, especially in 2010, which
leads to marginal prior inclusion probabilities close to 1/2. Since the marginal prior
inclusion probabilities under the BetaBin(1,1) model prior are precisely 1/2, it seems
consistent that no meaningful differences between the two methods are spotted in the
original data. This points to this being a “low-confounding” scenario as defined in the
simulations of Section 3.1, situations where both methods were reported to perform sim-
ilarly well on average. This is not so much the case for the augmented datasets, where
we the estimated θ̂ elements of θ̂ are incrementally smaller and further away from zero,
leading to smaller marginal prior inclusion probabilities for CIL on average, influenced
by the large amount of spurious regressors intentionally introduced in the augmented
datasets. However, we do observe some differences if we consider treatment effect het-
erogeneity, i.e. if we analyse the set of interactions between the main treatments and the
state-level binary variables. In Figure 3.8 we illustrate the treatment “black” in 2019.
As observed in Figure 3.5, the main effect is persistent in magnitude for both BMA and
CIL in 2019, however, some improvement in power is attained by CIL with respect to
BMA when trying to capture state-level heterogeneity. CIL is able to detect that a fair
number of states deviate from the national average, including for example Hawai’i and
Wyoming, which actually show no significant discrimination to “black” (zero is within
the posterior interval), arising from signal undetected by BMA. Similarly, some states
show a negative deviation from an already negative average, effects only captured by
CIL.
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Figure 3.7: Evolution of the elements of θ̂ as estimated by CIL (EP version) on the CPS
data for 2010 and 2019. In the x-axis we represent the amount of artificial predictors
included in the model, where “0” reports the values for the original dataset.

The full scope of our proposed approach is materialised when considering more
complex functions of the parameters. We study a measure of overall contribution of the
four treatments to deviations from the average salary. For a new observation n+1, with
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Figure 3.8: State level deviations from main effects for treatment “black” in 2019 for
the CPS data. The left panel shows the results for BMA, while the right panel does so
for CIL. In both panels, the x-axis shows the magnitude of the coefficients, and the y-
axis (two-sided) depicts every state intercalated, by order of appearence in the data. The
vertical dashed line represents the main effect point estimate as established by BMA
(left) and CIL (right). White dots indicate point estimates, while solid bars represent the
corresponding 95% posterior intervals. California, as the reference category, shows no
data.
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observed treatments dn+1 and controls xn+1, let

hn+1(dn+1,α,xn+1) =

|E(yn+1 | dn+1,xn+1,α,β )−E(yn+1 | xn+1,α,β )|=
|[dn+1−E(dn+1 | xn+1)]

ᵀ
α| (3.1)

be its expected salary minus the expected salary averaged over possible dn+1, given
equal control values xn+1. Since yn+1 is a log-salary, we examine the posterior predictive
distribution of exp{hn+1(dn+1,α,xn+1)} as a measure of salary variation associated to
the treatments. A value of 1 indicates no deviation from the average salary, relative to
another individual with the same controls xn+1.
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Figure 3.9: The left panel shows the posterior predictive distribution of deviations from
average salary as given by exp{hn+1(dn+1,α,xn+1)} in (3.1), for 2010 and 2019. The
gray boxes represent 50% posterior intervals and the black lines are 90% intervals. The
black dot is the posterior median. The right panel shows the posterior median of these
deviations for every U.S. state in 2010 and 2019 on the horizontal axis, ordered by their
value in 2019, with the corresponding 50% posterior intervals for both years.

To evaluate the posterior predictive distribution of (3.1) given y, the observed d and
the set of controls, we obtained posterior samples from the model averaged posterior
p(α | y) associated to CIL (Section 2.3.1). Given that we do not have an explicit model
for (dn+1,xn+1), we sampled pairs (dn+1,xn+1) from their empirical distribution, and
estimated E(dn+1 | xn+1) from a logistic regression of d on the set of controls. Figure
3.9 shows the results. In 2010, joint variation in the treatments was associated to an
average 5.8% salary variation (90% predictive interval [0.1%, 18.5%]). The posterior

52



“ExempleUsPlantillaA4˙English” — 2022/6/29 — 19:46 — page 53 — #69

mean in 2019 was almost identical, with the same average at 5.8% and a 90% predictive
interval at [0.1%, 18.0%]. This reinforces the notion that the treatments played a very
similar role in the 2019 average relative to 2010, with almost identical levels in terms of
inequality, e.g. individuals whose salary was furthest from the average.

It is also of interest to study differences between states. This is possible in our model,
which features 200 interaction terms for the 4 treatments and 50 states. Figure 3.9
(right) shows the results. The most salient feature is a larger heterogeneity across states
in 2019 relative to 2010. The three states whose median improved the most were Texas
(reducing it by 1.3%), Utah (0.6%) and North Dakota (0.4%), while those with a largest
increase in the gap were Mississipi (3.0%), New Jersey (1.4%) and Florida (1.1%),
ranked with the highest meadian gaps in 2019. This points against any gradual catch-up
effect across U.S. states, although the intervals still show some variability within states.

3.3 Factors Involved in Explaining Cholesterol Levels in
The Blood

We analyse the data produced by the National Health and Nutrition Examination Survey
(NHANES), published by the Centers for Disease Control and Prevention in the U.S.,
which features a series of measurements on individuals that result from body examina-
tion (e.g. body measurements, physical activity), laboratory results (bloodwork, expo-
sure to certain chemicals, etc.), and health behaviour questionnaires (nutrition, smoking
activity, etc.). In particular, the dataset used in this section was the same analysed by
Wilson et al. (2018) in the context of multiple treatment effects, and was first developed
in Patel et al. (2016). The main objective of this exercise is to determine the treatment
effect of the exposure to certain volatile organic compounds (VCs) on the observed lev-
els of cholesterol in the blood, while accounting for a large number of controls that can
affect both cholesterol results and the levels of exposure themselves.

The composition of the dataset is as follows. We have n = 172 individual obser-
vations, on which we observe three different measurements of cholesterol in the blood
(i.e. three different response variables): levels of LDL (Low-density lipoprotein), HDL
(High-density lipoprotein) and trygliceride. In terms of VCs, the exposure to ten distinct
compounds are contemplated, we refer to Patel et al. (2016) for technical details on this
selection, as well as a complete list of measured chemical compounds. Similarly, there
are a total of 82 potential control variables that are analysed, all of which could be af-
fecting at least one of the outcomes or treatments. Thus, we build three different models,
one for each outcome, featuring T = 10 simultaneous treatment variables, and p = 82
controls. Since in this situation n > p, we are able to compare our CIL to full OLS, to
which we add DML and regular BMA for benchmark. Results for the treatment effect
estimates on the three models can be found in Figures 3.10 (LDL), 3.11 (HDL) and 3.12
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(triglyceride), respectively. In all figures, we portray point estimates for all methods,
as well as 95% (posterior) confidence intervals, with the corresponding p-values (OLS,
DML) and marginal posterior inclusion probabilities (BMA, CIL) at the bottom of the
figures.
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Figure 3.10: Treatment effects of exposure to selected VCs on LDL levels in the blood.

Results in Figure 3.10 point to no significant treatment effect of any of the VCs on
LDL levels, as per every method tested, with the exception of VC 9, that we adress
next. As expected, we observe shorter intervals for DML with respect to full OLS,
whereas both Bayesian methods have zero interval length, as they are able to discard
these with overwhelming posterior probability. As mentioned, the only exception is VC
9 (o-Xylene, measured in ng/mL), which only DML picks up as significant at the 95%
level, with a negative effect on LDL, and a similar point estimate as to that of OLS.
Bayesian methods give non-negligible posterior probability to this VC (0.24 for regular
BMA, and 0.18 for CIL), but not enough to grant a sizeable point estimate. BMA
and CIL perform almost identically on this outcome for all VCs, although upon visual
inspection CIL seems to be somewhat more conservative on the inclusion of controls,
with moderately lower marginal posterior inclusion probabilities in general.

As for effects on HDL, in Figure 3.11 we observe similar activity to that of LDL. In
this case, the effect of VC 9 is positive and, even though p-values and MPIPs are not
overwhelming, it is picked up by all methods tested. Regular BMA is more confident
than CIL with a marginal posterior probability of inclusion above 0.99, compared to a
more conservative 0.7 obtained by CIL. However, both methods provide clearly positive
point estimates, with a narrower interval length for BMA. Thus, our method shows to
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Figure 3.11: Treatment effects of exposure to selected VCs on HDL levels in the blood.

be a bit more conservative in the inclusion of controls also for the LDL model. The rest
of VCs show no significant effect on LDL levels.

Finally, in Figure 3.12 we present the results obtained in the model for triglyceride
levels. In this model DML detects a couple more signals, those for VC 1 (Tetra-
chloroethene ng/mL) and VC 4 (Benzene ng/mL), which do not stand out according
to the rest of methods. DML results in the three models actually look similar those of
BAC analysed in Chapter 9 of Tadesse and Vannucci (2021), where the same data is
used, which is coherent with the philosophy of the two methods to strongly emphasise
avoiding under-selection. As for the rest of methods, in this model we observe no sig-
nal for any VC on any of the other methods tested, with similarly low MPIPs for both
Bayesian methods displayed.
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Figure 3.12: Treatment effects of exposure to selected VCs on triglyceride levels in the
blood.
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Chapter 4

ASYMPTOTIC THEORY FOR
NON-LOCAL PRIORS ON THE
SEQUENCE MODEL

In previous chapters we developed a Bayesian model selection and averaging frame-
work for treatment effect inference along with efficient computational methods, with
an emphasis on high-dimensional settings. The approach used a combination of prod-
uct MOM (pMOM) priors on the parameters and prior inclusion probabilities that were
estimated via empirical Bayes. In this chapter we study the theoretical properties of
the pMOM prior under a simplified setting, the so-called sequence model, and compare
them to those of a wide family of alternative prior distributions. We provide results on
both model selection recovery and parameter estimation accuracy. In particular, the for-
mer describe the behaviour of marginal posterior inclusion probabilities for individual
parameters, which were an important building block for the Expectation-Propagation
algorithm in Chapter 2.

Our main finding is that pMOM priors require less stringent conditions to attain
model selection consistency in terms of how the number of non-zero parameters and the
total number of parameters are related to the sample size, and that consistency occurs
at a faster rate. These results extend those in Johnson and Rossell (2012) and Rossell
(2021), who focused on model selection in regression settings, and those in Rossell and
Telesca (2017), who considered estimation in orthogonal regression.

4.1 Scope and Contributions
There are several lines of literature highlighting theoretical properties attained by non-
local priors in different contexts. Pioneering work of Johnson and Rossell (2010, 2012)
focused on model selection properties, showing that asymptotic rates of convergence
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of posterior model probabilities improved the imbalance attributed to most Bayesian
tests through the study of Bayes factors, including the analysis of the particular case
of the linear model also analysed in this work, showing consistency of these posterior
quantities. They additionally provide diverse numerical evidence to support that non-
local priors can outperform popular penalised likelihood methods as a method to do
model selection. Most results, however, are presented for the case were n ≥ p. In
subsequent work, Rossell and Telesca (2017) derive high-dimensional model selection
consistency results, and extend their analysis on parameter estimation for finitely many
parameters. They show that selection priors can be a valid choice to make estimation
in high-dimensions, using NLPs to compute BMA estimates for the linear model, and
showing spurious parameter shrinkage at fast polynomial or quasi-exponential rates,
depending on the prior density employed, without negatively impacting the estimation
truly active parameters.

More abundant general results also exist for BMS and BMA, for example theo-
retical work by Castillo and van der Vaart (2012); Castillo et al. (2015) shows that a
set local priors exist that attain optimal minimax rates of posterior concentration for
parameter estimation, introducing the so-called complexity priors, which form a partic-
ularly set of strong shrinkage priors. In terms of model selection, see Rossell (2021)
for a detailed exposition of results currently available on model selection consistency
in high-dimensional regression, in which a variety of critical factors are weighed in,
namely sample size, signal-to-noise ratio, model dimension and true parameter sparsity.
There he exposes that even though there are asymptotically optimal specifications, in
many setting less sparsity may still achieve consistency while improving significantly
finite-sample performance.

Marginal posterior inclusion probabilities under non-local priors, however, have
been less studied. In this work, we try to contribute in understanding how these quan-
tities behave using NLPs, in line with understanding the underlying properties of CIL
presented in Chapter 2, which critically makes use of these quantities to assess whether
each individual treatment has a non-zero effect on the outcome of interest. Our contri-
bution is two-fold. First, we complement model selection consistency results for NLPs
with convergence rates of marginal posterior inclusion probabilities. Second, we anal-
yse estimation properties of BMA estimates under non-local priors in high-dimensions.
This has yet not been well studied in this type of regimes, as previous work has mostly
focused on finite dimensions. We show that even though Normal tails are suboptimal
in the minimax sense (as pointed out by the aforementioned cited work), in certain pa-
rameter regions they do not differ decisively to those of popular choices like the double
exponential, and that the non-local element of NLPs can contribute to improve on a large
class of local priors in this regions. We portray that this occurs for any parameter values
that are not too extreme (i.e. too large, or to small but different than zero). Results
are presented in Section 4.5, which hold under the corresponding modelling conditions
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introduced in Section 4.4.

4.2 Inference For The Sequence Model
The sequence model as parameterised by Wainwright (2019) (Section 7.1.2) assumes
that

yi =
√

nβ
∗
i + εi, with εi ∼ N(0,φi), (4.1)

with independence across i = 1, . . . ,n, where yi ∈ R is the observed scalar outcome, β ∗i
the unknown parameter of interest, and φi ∈R+ is the known error variance. We denote
by β ∗ = (β ∗1 , . . . ,β

∗
p) and by p∗ the number of non-zero entries in β ∗. The maximum

likelihood estimator (MLE) of this model is simply

β̂i = yi/
√

n∼ N(β ∗i ,φi/n).

Model (4.1) is commonly used to study high-dimensional estimation and model selec-
tion problems in a simplified setting where there is independence across parameters. For
example, in their pioneering work, Donoho et al. (1992) showed that the optimal mini-
max estimation rate for β ∗ under the L2 loss is

√
p∗ log(ep/p∗). Johnstone and Silver-

man (2004) studied the sequence model in a Bayesian setting, exploring estimation rates
under a spike-and-slab type of prior with a heavy-tailed slab component, and where the
mixing weight was set by empirical Bayes. They showed that using the posterior me-
dian as the parameter estimator can achieve optimal estimation rates. Later, Castillo and
van der Vaart (2012) found that to attain minimax optimal rates one needs to set priors
with thicker than Gaussian tails, and that certain conditions on prior sparsity guarantee
a control of false positives. See also Comminges et al. (2021) who provided estimation
rates when the error variance is unknown, and also when errors are non-Gaussian.

Model (4.1) can be thought of as a generalization of the Gaussian linear regression
model where the covariates are orthogonal, and yi is a

√
n-scaled version of the least-

squares coefficient. Specifically, denote the true linear regression mean by Xβ ∗ and the
true error variance by φ , and consider a design matrix such that XᵀX = nIp (e.g. X has
zero column means and unit sample variance). Then the sampling distribution of the
least-squares estimator is β̂ ∼ N(β ∗,φ/nIp). Defining yi =

√
nβ̂i, we obtain

yi =
√

nβ̂i ∼ N(
√

nβ
∗
i ,φ)

as in (4.1), for the homoskedastic case where φi = φ for all i = 1, . . . , p. Without loss of
generality one may set φi = 1 by dividing both sides of (4.1) by

√
φi, effectively defining

a new outcome yi/
√

φi ∼ N(
√

n/φiβ
∗
i ,1). Here we keep the general φi so that the role

of the noise variance in our results can be more easily appreciated.
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For concreteness, consider first a standard setting where the β ∗i ’s are fixed, i.e. they
do not change with n or p. Then (4.1) implies that the expectation of yi grows at a

√
n

rate. Interestingly, the framework also allows one to consider small signals where β ∗i
decreases with n, so that the expectation of yi grows at a rate slower than

√
n.

Our primary interest in this chapter is two-fold. First, we examine the Bayesian
model selection (BMS) recovery rates to identify the p∗ non-zero elements in β ∗ under
two prior distributions that belong to the local and non-local prior families (Johnson
and Rossell, 2010, 2012). We introduce these below. Second, we study the estimation
accuracy of the corresponding Bayesian model averaging (BMA) estimators of β ∗.

BMS and BMA allow to tackle both selection and estimation. Let γi := I(βi 6= 0),
for i = 1, . . . , p, be parameter inclusion indicators and π(β ) a given prior density, which
for simplicity we assume to factor across i. The prior density on βi is defined in the
Radon-Nikodym sense with respect to the sum of the Lebesgue measures plus a point
mass at zero, so that the prior probability Pπ(βi 6= 0) = Pπ(γi = 1) > 0. We denote the
corresponding posterior inclusion probability by

Pπ(γi = 1 | yi) =

(
1+

pπ(yi | γi = 0)
pπ(yi | γi = 1)

P(γi = 0)
P(γi = 1)

)−1

=

(
1+Bπ

i,01
P(γi = 0)
P(γi = 1)

)−1

, (4.2)

where the equality follows from Bayes theorem and denoting by

Bπ
i,01 =

pπ(yi | γi = 0)
pπ(yi | γi = 1)

the so-called Bayes Factor. BMS is typically based on evaluating Pπ(γi = 1 | yi), for
which large values of Bπ

i,01 favour setting βi to 0, and vice versa.
As we have seen in previous chapters, BMA uses the point estimate

β̃i := Eπ(βi | yi) = Eπ(βi | γi = 1,yi)Pπ(γi = 1 | yi),

where the right-hand side follows from the law of total expectation. The BMA estimate
involves evaluating two terms: the posterior inclusion probability of the parameter and
its expected value conditional on inclusion

Eπ(βi | yi,γi = 1) =
∫

βi pπ(βi | yi,γi = 1)dβi. (4.3)

Computing these posterior quantities requires specifying two priors. First, a model prior
p(γ) determining prior (marginal) inclusion probabilities, which for simplicity we take
to be independent and identicaly distributed across γ1, . . . ,γp. Specifically, we denote
by

ρ := P(γi = 1)
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the common prior inclusion probability across i = 1, . . . , p. And second, a prior distri-
bution on the included parameters

pπ(β | γ) = ∏
i:γi=1

pπ(βi | γi = 1) (4.4)

with the convention to set β j = 0 with probability 1 for excluded parameters (i.e. with
associated γi = 0).

We consider two classes of parameter priors: local and non-local priors. The main
principle behind non-local priors (NLP, Johnson and Rossell, 2010, 2012) is model sep-
aration. For example, if one contemplates two models that are nested, it can be hard
to discern them as to which one of them (if any) represents the data-generating truth.
Even though posterior model probabilities will eventually favour the true model, we
have no guarantee that the degree of parsimony they provide is favourable enough, es-
pecially in high dimensions. NLPs are designed to address this issue by inducing a
probabilistic separation between the two models, leading to a stronger data-dependent
parsimony compared to more conventional prior specifications, without inducing sparse
model probabilities. For that, NLPs esentially entail that the prior density vanishes for
any active parameter as it approaches to zero, i.e. that limβi→0 pπ(βi | γi = 1) = 0, as
opposed to tradititional local priors, for which the opposite is true. To illustrate the
behaviour of local priors, here we will use the Gaussian prior, in particular

βi | φi,τ ∼ N(0,τφi), (4.5)

where τ > 0 is a user-defined prior dispersion parameter. Many default choices for τ set
it to a constant value not depending on n or p, e.g. τ = 1 gives the Unit Information prior
(Schwarz, 1978), which is connected to the Bayesian information criterion. However,
it is also possible to let τ depend on n, for instance τ growing with n has been shown
to favour sparser models. For example, τ = max{1, p2/n} was advocated by Foster and
George (1994), whereas the shrinking and diffusing priors of Narisetty and He (2014)
advocated a certain τ > max{1, p2/n}.

As for the set of non-local priors, we focus on the product moment MOM prior
(pMoM, Johnson and Rossell, 2010). The pMOM represents a choice that only en-
courages sparsity mildly, other choices exist that embed a stronger sparsity enforcement
at the potential cost of reduced power to find strong signals (see Rossell and Telesca,
2017). The pMOM prior is given by

βi | φi,τ,γi = 1∼ β 2
i

τφi
N(0,τφi). (4.6)

The rest of the chapter is structured as follows. Section 4.3 provides expressions for
Bayes factors and posterior distributions under the Gaussian and pMOM priors. Section
4.4 discusses technical conditions required by our main results. Section 4.5 describes
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the theoretical properties of these two priors for model selection and estimation, and
generalize these properties for a much broader class of local priors beyond the Gaus-
sian. Sections 4.6.1 and 4.6.2 contain auxiliary results and the proofs of all theorems,
respectively.

For the remaining sections, we also establish the following notation. For two pos-
itive sequences an and bn, we denote an � bn if for two constants 0 < c1 ≤ c2 < +∞

it holds that limn→+∞ an/bn ∈ [c1,c2]. Further, we denote an � bn if for some con-
stant c > 0 it holds that limn→+∞ an/bn ≤ c. If instead limn→+∞ an/bn = 0, we will
write an � bn. Bayesian densities are expressed with p(·), while frequentist densi-
ties are represented with pθ∗(·), under the corresponding data-generating value θ ∗, and
analogously for Bayesian and frequentist probabilities, expressed with P(·) and Pθ∗(·),
respectively. Similarly, the stochastic order operators OP and oP refer to asymptotic
probability statements under Pθ∗ .

4.3 BMS and BMA expressions under the Gaussian and
pMOM priors

For the Gaussian prior in (4.5), standard algebra shows that the Bayes Factor writes

BN
i,01 = (τn+1)1/2 exp

{
−1

2
τn

τn+1
n
φi

β̂
2
i

}
, (4.7)

and consequently

PN(γi = 1 | yi) =

(
1+

1−ρ

ρ
(τn+1)1/2 exp

{
−1

2
τn

τn+1
n
φi

β̂
2
i

})−1

. (4.8)

Intuitively, large values of β̂ 2
i , i.e. if the MLE is far away from zero, provide large inclu-

sion probabilities, and vice versa. Further, the posterior distribution of each parameter
βi is given by

βi | yi,φi,γi = 1∼ N
(

τn
τn+1

β̂i,
τ

τn+1
φi

)
(4.9)

independently across i = 1, . . . , p. Hence, the corresponding BMA estimate is

β̃
N
i = β̂i

τn
τn+1

(
1+

1−ρ

ρ
(τn+1)1/2 exp

{
−1

2
τn

τn+1
n
φi

β̂
2
i

})−1

. (4.10)

That is, the BMA estimate is equal to the MLE times two factors. The first is a linear
shrinkage factor determined by τn, and which converges to 1 as n→ ∞ for all default
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τ considered in the literature. The second is a non-linear shrinkage factor such that, as
the MLE β̂ j approaches 0, the BMA estimate converges to 0 at an exponential rate.

We remark that, although (4.7) provides Bayes factors under the Gaussian prior, Re-
sult 4.11 in Section 4.6.1 provides a general representation of the Bayes Factor under
any parameter prior where (4.7) is the leading term, under certain conditions. In partic-
ular, for the pMOM prior from (4.6) the Bayes factor can be obtained applying Result
4.11, giving

BM
i,01 = (τn+1)

[
1+

τn
τn+1

n
φi

β̂
2
i

]−1

BN
i,01. (4.11)

Consequently, the posterior inclusion probability is

PM(γi = 1 | yi) =

(
1+

1−ρ

ρ
(τn+1)

[
1+

τn
τn+1

n
φi

β̂
2
i

]−1

BN
i,01

)−1

. (4.12)

The posterior distribution of βi for this non-local prior is expressed by

βi | yi,φi,τ ∼

[
β 2

i

β̂ 2
i +φi/n

]
N
(

βi; β̂i,φi/n
)
. (4.13)

Using these expressions, simple derivations give that the BMA estimate under the pMOM
prior is

β̃
M
i = β̂i

[ n
φi

β̂ 2
i +3

n
φi

β̂ 2
i +1

](
1+

1−ρ

ρ
(τn+1)

[
1+

τn
τn+1

n
φi

β̂
2
i

]−1

BN
i,01

)−1

. (4.14)

4.4 Technical conditions
We state and discuss a set of conditions required by the results presented in Section 4.5.

(C1) Lower limit on prior dispersion: τn→+∞ as n→+∞.

(C2) The marginal prior inclusion probability ρ is non-increasing in n.

(C3) Prior odds for exclusion (Gaussian)

1−ρ

ρ
� (τn)−1/2 exp

{
1
2

n
logn

min
i:β ∗i 6=0

β ∗i
2

φi

}
.
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(C4) Prior odds for exclusion (pMOM):

1−ρ

ρ
� (τn)−3/2 exp

{
1
2

n
logn

min
i:β ∗i 6=0

β ∗i
2

φi

}(
1+

n
logn

min
i:β ∗i 6=0

β ∗i
2

φi

)
.

(C5) Upper limit on the growth of the proportion of truly active features: p∗/p �
1−1/p, or re-arraging, that 1/p� 1− p∗/p.

(C6) The true model size p∗ satisfies

p∗� exp

{
n
2

(
1− 1√

logn

)2

min
i:β ∗i 6=0

β ∗i
2

φi
− 1

4
loglogn

}
.

(C7) Beta-min condition (strong): mini:β ∗i 6=0
|β ∗i |√

φi
� 1√

n

(
1− 1√

logn

)
.

(C8) Beta-min condition (weak): mini:β ∗i 6=0 |β ∗i | �
logn

n .

(C9) Number of spurious parameters (Gaussian)

(p− p∗) log(p− p∗)�
(

1−ρ

ρ

)
(τn)1/2.

(C10) No. of spurious parameters (pMOM):

(p− p∗) log(p− p∗) [log(p− p∗)+ log log(p− p∗)]�
(

1−ρ

ρ

)
(τn)3/2.

Conditions (C1)–(C4) can be primarily viewed as conditions on the prior. (C1) is
a minimal condition that the prior dispersion τ � 1/n is not too small. Recall from
Section 4.2 that default choices like τ = 1 or τ = min{1, p2/n} satisfy (C1). (C2) is
also a mild condition that the prior on the model does not become less sparse as n
grows, again this is satisfied by all default prior choices in the literature. (C3) and (C4)
are the counterpart (for Gaussian and pMOM priors, respectively) that the prior cannot
become too sparse as n grows. Again, both are very mild, e.g. for fixed β ∗ the prior
odds for exclusion can grow almost exponentially in n.

Conditions (C5)–(C10) involve to a larger extent the data-generating truth. (C5) is a
minimal condition to ensure that the proportion of truly active parameters is not growing
excessively as the dimension of the model increases, in other words, that p− p∗� 1,
so that p− p∗→∞ as n→∞. This relates to (C6), which states that the number of truly
active parameters cannot be too large. Up to lower-order terms, the condition requires

p∗� exp

{
n
2

min
i:β ∗i 6=0

β ∗i
2

φi

}
,
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which is again a mild condition. Condition (C7) is a really minimal beta-min condi-
tion on the size of truly active parameters. In fact, Wainwright (2009) showed that a
necessary condition for any method to consistently recover the true model is that

min
j

|β ∗j |√
φ j

>

√
log(p/p∗)

n

which is more stringent than (C7) when p/p∗ grows with n. (C8) is a potentially even
milder condition that suffices for some of the results below.

Finally, (C9) and (C10) provide upper bounds for the amount of spurious parame-
ters under each prior, and reflect the advantage of adopting a pMOM over the Gaussian.
Clearly, (C10) required by the pMOM prior is milder than (C9) required by the Gaus-
sian, the main difference being in the right-hand side of the respective expressions.
For example, if one were to set both constant prior dispersion τ and prior inclusion
probability ρ , then (C9) implies that the total number of parameters must be p�

√
n,

whereas (C10) implies p � n3/2, paying a multiplicative log cost. More generally,
in high-dimensional settings it is common to either set τ to grow with n (Foster and
George, 1994; Fernandez et al., 2001; Narisetty and He, 2014) or ρ to decrease with n
(Castillo and van der Vaart, 2012). For example, taking τ = max{1, p2/n} as in Foster
and George (1994) and constant ρ gives that (C10) is satisfied but (C9) is not.

4.5 Results
Before stating the results we outline the main findings. Our first main result is Theorem
4.1, which portrays model selection properties under the Gaussian and pMOM priors.
Parts (i) and (ii) bound the marginal posterior inclusion probabilities for truly inactive
parameters. For the Gaussian prior, up to lower-order terms these are at most

OP

(
ρ

1−ρ

p log p√
τn

)
.

In contrast, for the pMOM prior we obtain the faster rate

OP

(
log p
τn

ρ

1−ρ

p log p√
τn

)
.

That is, the pMOM attains better rates to discard truly zero parameters. Parts (iii) and
(iv) bound the posterior inclusion probabilities for truly inactive parameters. In this
case, the Gaussian prior roughly attains that they are at most

OP

(
1−ρ

ρ
(τn)1/2 exp

{
−λmin

2
n

logn

})
,
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for λmin := mini:β ∗i 6=0 β ∗i
2/φi, whereas the pMOM prior achieves at most

OP

(
τ logn
λmin

1−ρ

ρ
(τn)1/2 exp

{
−λmin

2
n

logn

})
.

These rates to pick up the hardest active parameters are quite similar given the exponen-
tial term, and moderately better for the non-local prior only if it holds that τ logn� λmin,
i.e. if the smallest of the truly active parameters grows at least logarithmically with n,
conditional on the specified τ .

Our second result is Theorem 4.2, which gives results for the total absolute error
associated to the estimated β̃ under the two prior specifications. We essentially examine
the probability bounds for the L∞-norm of the BMA estimate’s error |β̃ −β ∗|, for the
set of truly active and inactive parameters. Our main finding here is that, for the truly
inactive parameters, the BMA estimate corresponding to the pMOM prior can achieve
a faster rate of convergence to zero relative to that of the Gaussian prior. This extra
shrinking factor is roughly of order log(p− p∗)/τn. With respect to those parameters
that are truly active, both estimators converge at similar speeds to the rates of the MLE.
In this case, the Gaussian prior converges to the MLE at a rate of (τn)−1, and the pMOM
at a rate of logn/n, up to a lower order factor.

Our third main result is embodied in Theorem 4.3, which essentially states that for a
wide class of local priors, Bayes Factors can be bounded by the regular Gaussian prior
Bayes Factor in 4.7 times a prior-dependent constant, plus a vanishing term of order
oP(1).

Corollary 4.4 follows Theorem 4.3, so as to extend the results Theorem 4.1 for the
Gaussian prior to a wider class of local priors. The result includes priors with tails
both lighter or heavier than those of the Gaussian prior, and shows that the rates for
such prior do not differ significantly from those for the Gaussian prior, up to lower-
order terms, and under certain mild conditions described in Theorem 4.3. This implies
that, for model selection purposes, the pMOM prior holds the advantages shown with
respect to the Gaussian prior, but now for a wider class of local priors. Finally, Corollary
4.5 also stems from Theorem 4.3, and similarly extends the results of Theorem 4.2 to
local priors beyond the Gaussian prior, again preserving the advantages displayed by
the pMOM prior.

Theorem 4.1 (Marginal Posterior Inclusion Probabilities). Consider the Gaussian and
pMOM priors introduced in (4.5) and (4.6), respectively. Assume that (C1) and (C2)
hold. Then

i. for the set of truly inactive coefficients, under (C5) and (C9), the Gaussian prior
achieves

max
i:β ∗i =0

PN(γi = 1 | yi) = OP

(
ρ

1−ρ

(p− p∗)
(τn)1/2 log(p− p∗)

)
,
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ii. while under (C5) and (C10), the pMOM prior achieves

max
i:β ∗i =0

PM(γi = 1 | yi) = OP

(
log(p− p∗)

τn
ρ

1−ρ

(p− p∗)
(τn)1/2 log(p− p∗)

)
.

Further, if conditions (C7) and (C6) hold,

iii. for the set of non-zero coefficients, under (C3), the Gaussian prior attains

max
i:β ∗i 6=0

PN(γi = 0 | yi) =

OP

(
1−ρ

ρ
(τn)1/2 exp

{
−1

2
n

log(n+1)
min

i:β ∗i 6=0

β ∗i
2

φi

})
,

iv. while under (C4), the pMOM prior attains

max
i:β ∗i 6=0

PM(γi = 0 | yi) =

OP

 τ logn

mini:β ∗i 6=0
β ∗i

2

φi

1−ρ

ρ
(τn)1/2 exp

{
−1

2
n

log(n+1)
min

i:β ∗i 6=0

β ∗i
2

φi

} .

In Theorem 4.2 we focus on the BMA estimation error under the two examined
priors. We provide probability bounds for the L1-norm of these estimates with respect
to the truth. These bounds correspond to the Mean Absolute Error in the simplest model
with one parameter, and in high dimensions they are essentially the bounds to the L∞-
norm of the absolute error between β̃ and β ∗. In parts (i) and (ii) we give these rates for
those parameters that are truly inactive. We find that the pMOM prior is able to discard
spurious variables at a faster rate of convergence than the Gaussian prior by a factor of
order roughly log(p− p∗)/τn. In parts (iii) and (iv) we provide the rates for the truly
active variables. We show that for both priors the rates converge to those of the MLE,
and that said speed towards the MLE is of order 1/n, for a given pre-specified τ , and
where the pMOM pays an extra logarithmic price, that also depends on the size of the
smallest parameters.

Theorem 4.2 (L1 Estimation Error). Consider the same set of priors as in Theorem 4.2.
Assume that (C1) and (C2) hold. Then

i. for the Gaussian prior, with corresponding estimate β̃ N, and if conditions (C5)
and (C9) hold,

∑
i:γ∗i =0

|β̃ N
i −β

∗
i |= OP

(
ρ

1−ρ

(p− p∗)2

(τn)1/2

√
[log(p− p∗)]3

n
max
i:γ∗i =0

φ
1/2
i

)
,
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ii. whereas for the pMOM prior, with estimate β̃ M, and if conditions (C5) and (C9)
hold,

∑
i:γ∗i =0

|β̃ M
i −β

∗
i |= OP

(
kn

τn
ρ

1−ρ

(p− p∗)2

(τn)1/2

√
[log(p− p∗)]3

n
max
i:γ∗i =0

φ
1/2
i

)
,

where kn = log(p− p∗)+ log log(p− p∗).

In turn, if conditons (C7) and (C6) hold, then

iii. for the Gaussian prior, under (C3),

∑
i:γ∗i =1

|β̃ N
i −β

∗
i |=

OP

(
p∗
[(

1+
1

nτ

)√
log p∗

τn
max
i:γ∗i 6=0

φ
1/2
i +

1
nτ

max
i:γ∗i 6=0

|β ∗i |

])
;

iv. while for the pMOM prior, under (C4) and (C8),

∑
i:γ∗i =1

|β̃ M
i −β

∗
i |=

OP

p∗

1+
logn

n
1

mini:γ∗i 6=0
β ∗i

2

φi

√ log p∗

n
max
i:γ∗i 6=0

φ
1/2
i +

logn
n

maxi:γ∗i 6=0 |β ∗i |

mini:γ∗i 6=0
β ∗i

2

φi

 .

In Theorem 4.3 we show that, for a wide class of local priors, the Bayes Factor
Bπ

i,01 corresponding to the truly active (inactive) parameters is bounded below (above)
by that of the Gaussian prior in (4.7) weighted by a constant that depends on the elicited
prior, plus a vanishing term of order oP(1). This result holds for priors that are light- or
heavy-tailed, within some mild constraints. This result provides a foundation to extend
the results in Theorem 4.1 and Theorem 4.2 from the Gaussian prior to this augmented
local prior class, which is addressed in two subsequent corollaries.

Theorem 4.3 (Convergence of Bayes Factors for Other Local Priors). Let π be a local
prior that is bounded, and centreed and symmetric around zero. If the tails of π are
lighter than those of the Gaussian prior in (4.5), assume that the density of π is at most

π(βi) ∝ exp
{
−1

2
β 2k

i
τφi

}
, for any fixed integer k > 1. If the opposite holds, then assume

that the density of π is at most Cauchy, with scale parameter ν ∝
√

τπi. Then, under
the corresponding conditions in Theorem 4.1 for the Gaussian prior

i. for β ∗i = 0, the Bayes Factor Bπ
i,01 satisfies

Bπ
i,01 ≤ cπBN

i,01 +oP(1),
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ii. while for β ∗i 6= 0, it holds that

Bπ
i,01 ≥ c̃πBN

i,01 +oP(1),

for some fixed pair of prior-dependent constants 0 < cπ , c̃π < ∞.

The result in Theorem 4.3 implies that, for any prior in this class, the Bayes Factor
essentially does not improve the probability bounds of the Gaussian prior, and thus
by extension neither will it improve the posterior inclusion probabilities featured in
Theorem 4.1, in parts (i) and (iii). This is shown in Corollary 4.4. A direct consequence
of this is that the advantages shown by the pMOM prior in terms of convergence rates
for the inclusion probabilities, for active and inactive parameters, are maintained with
respect to the entire class of local priors featured in Theorem 4.3.

Corollary 4.4. For any prior π satisfying the requirements in Theorem 4.3, and under
the appropriate conditions established by Theorem 4.1 relative to the Gaussian prior, it
holds that the probability bounds for maxi:β ∗i =0 Pπ(γi = 1 | yi) and for maxi:β ∗i 6=0 Pπ(γi =

0 | yi) do not improve those for maxi:β ∗i =0 PN(γi = 1 | yi) and maxi:β ∗i 6=0 PN(γi = 0 | yi),
respectively, presented in Theorem 4.1.

Similarly, in Corollary 4.5 we extend the results from Theorem 4.2 beyond the Gaus-
sian prior. The basic result is that if the corresponding BMA estimate β̃ π

i has a shrinking
factor that converges to 1, then the Gaussian rates of convergence of the L1-error apply
to β̃ π

i , with a minor adjustment that will only depend on the rate of convergence of said
shrinkage factor.

Corollary 4.5. For any prior π satisfying the requirements in Theorem 4.3, with an
associated shrinking factor fπ → 1 such that for every individual parameter βi

| fπ −1|= OP(sn),

for some well-defined positive sequence sn→ 0, and under the appropriate conditions
established by Theorem 4.2 relative to the Gaussian prior, it holds that the probability
bound for ∑i:γ∗i =0 |β̃ π

i −β ∗i | does not improve the corresponding bound for ∑i:γ∗i =0 |β̃ N
i −

β ∗i |, introduced in Theorem 4.2. Similarly, for the set of truly active parameters proba-
bility bounds under prior π cannot improve

∑
i:γ∗i =1

|β̃ π
i −β

∗
i |= OP

(
p∗
[
(1+ sn)

√
log p∗

τn
max
i:γ∗i 6=0

φ
1/2
i + sn max

i:γ∗i 6=0
|β ∗i |

])
.

Therefore, corollaries 4.4 and 4.5 show that in essence any local prior within the
set established in Theorem 4.3 will converge to the standard Gaussian prior as n grows
in terms of convergence rates, up to lower-order terms. Consequently, the advantages
shown by the pMOM non-local prior in terms of rates for posterior inclusion probabili-
ties and L1-error are preserved with relation to this prior set.
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4.6 Technical Appendix

4.6.1 Auxiliary Results
Result 4.6. Let Z ≥ 0 be a random variable such that E(Z) ≤ an, for some sequence
an > 0. Then Z = OP(an). Further, for any fn � an, Z = OP( fn).

Proof. To prove the first statement, note that since E(Z)≤ an, for any fixed ε > 0

P(Z > an/ε)≤ an

an/ε
= ε,

by Markov’s inequality. Hence, for every ε > 0, some δ > 0 and n0 exist such that
P(Z/an > δ )≤ ε for every n≥ n0, in particular δ = 1/ε and n0 = 1. Thus, Z = OP(an).
For the second statement, fn � an implies that some λ > 0 exists such that fn ≤ λan for
sufficiently large n. Hence, again using Markov’s inequality, for every ε > 0

P(Z > fn/ε)≤ fn

an/ε

n→∞

≤ λan

an/ε
= ελ ,

and so, for every ε > 0, some δ > 0 and some sufficiently large n exist such that
P(Z/ fn > δ )≤ ελ , in particular δ = 1/ε . Hence Z = OP( fn).

Result 4.7. Let X1, . . . ,Xp be a set of i.i.d. random variables where Xi∼N(mi,vi). Then,

max
i∈{1,...,p}

|Xi|= OP

(
max

i
|mi|+

√
log(p) max

i∈{1,...,n}
vi

)
.

Proof. The proof strategy is to first show that

max
i

Xi = OP

(√
log(p)max

i
vi

)
,

which by symmetry also implies that −mini Xi = OP

(√
log(p)maxi vi

)
, and finally

show that these two results imply that

max
i
|Xi|= OP

(√
log(p)max

i
vi

)
.

To prove that maxi Xi =OP

(√
log(p)maxi vi

)
we show that E[maxi Xi]≤

√
2log(p)maxi vi.

and apply Markov’s inequality. Consider an arbitrary s > 0. Using Jensen’s inequality

exp
{

sE
[

max
i

Xi

]}
≤ E

[
exp
{

smax
i

Xi

}]
= E

[
max

i
esXi

]
=
∫

∞

0
P
(

max
i

esXi > t
)

dt ≤
∫

∞

0
∑

i
P
(
esXi > t

)
dt

= ∑
i

E
[
esXi
]
.
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Applying logs on both sides and re-arranging, we have that for any s > 0

E
[

max
i

Xi

]
≤ 1

s
log

(
∑

i
E
[
esXi
])

. (4.15)

Since Xi∼N(0,vi), the corresponding MGF is given by E
[
esXi
]
= esmi+vis2/2, and (4.15)

becomes

E
[

max
i

Xi

]
≤ 1

s
log
(

pesmaxi mi+maxi vis2/2
)
= max

i
mi +

1
s

log p+
s
2

max
i

vi.

Minimizing this RHS over s > 0 provides the optimum at s =
√

2log p/maxi vi and

E[max
i

Xi]≤max
i

mi +
√

2log(p)max
i

vi. (4.16)

This immediately implies that maxi Xi = OP(maxi mi +
√

log(p)maxi vi). To see why,
by Markov’s inequality, for any fixed ε > 0 we have

p
(

max
i

Xi >
1
ε

[
max

i
mi +

√
2log(p)max

i
vi

])
≤ ε,

which by definition gives that maxi Xi = OP(maxi |mi|+
√

log(p)maxi vi).
By symmetry of the N(0,v j) distribution, (4.16) also gives

E
(

min
i

Xi

)
=−E

(
max

i
Xi

)
≥−

[
max

i
mi +

√
2log pmax

i
vi

]
,

and so

−min
i

Xi = OP

(
max

i
mi +

√
2log pmax

i
vi

)
.

Lastly, let ap = maxi mi +
√

2log(p)maxi vi, then

P
(

max
i
|Xi|>

ap

ε/2

)
= P

({
min

i
Xi <−

ap

ε/2

}⋃{
max

i
Xi >

ap

ε/2

})
≤ P

(
min

i
Xi <−

ap

ε/2

)
+P

(
max

i
Xi >

ap

ε/2

)
≤ ε,

for any ε > 0, proving that maxi |Xi|= OP

(
maxi mi +

√
2log pmaxi vi

)
.

Result 4.8. Let β̂ = (β̂1, . . . , β̂p)
ᵀ denote the MLE of β ∗. Then

max
i:β ∗i =0

|β̂i|= OP

(√
log(p− p∗)

n
max

i:β ∗i =0
φ

1/2
i

)
.
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Proof. Note that β̂i = yi/
√

n, and so that for β ∗i = 0, β̂i ∼N(0,φi/n). Then apply Result
4.7 to the set {i : β ∗i = 0}, containing (p− p∗) elements.

Result 4.9. Let X1, . . . ,Xp be a set of i.i.d. random variables such that Xi ∼ χ2
1 (λi),

∀i ∈ {1, . . . , p}, where λi ≥ 0 denotes the non-centrality parameter, and let λmin :=
mini∈{1,...,p}λi. Assume that λmin→+∞ as p→+∞. Then, for any sequence 0 < ap�
λmin,

p
(

max
i∈{1,...,p}

1
Xi

> a−1
p

)
≤ 1− exp

−pe
− λmin

2

[
1−
(

ap
λmin

)1/2
]2(

ap

λmin

)1/4
 . (4.17)

Further, if p� exp
{

λmin
2

(
1− [log(1+λmin)]

−1/2
)2
}
+[log(1+λmin)]

1/4 then

max
i∈{1,...,p}

1
Xi

= oP

(
log(1+λmin)

λmin

)
. (4.18)

Proof. To prove (4.17), one needs to find an upper bound to p(maxi 1/Xi > a−1
p ) =

p(1/mini Xi > a−1
p ) = p(mini Xi < ap). Assuming independence we have that for any

sequence ap > 0

p(min
i

Xi < ap) = 1− p(min
i

Xi > ap) = 1−
p

∏
i=1

p(Xi > ap)≤ 1− p(Xk > ap)
p,

where k := argmini λi. It then suffices to find a lower bound to p(Xk > ap)
p. In the next

inequality we apply Lemma S2 from Rossell (2021), and write that for any ap < λk we
have that

p(Xk > ap)
p = [1− p(Xk < ap)]

p ≥

[
1− exp

{
−λk

2

(
1−
√

ap

λk

)2
}(

ap

λk

)1/4
]p

.

Now consider such ap� λk, for which

p(min
i

Xi < ap) ≤ 1−

[
1− e

− λk
2

(
1−
√ ap

λk

)2(ap

λk

)1/4
]p

= 1− exp

{
p log

(
1− e

− λk
2

(
1−
√ ap

λk

)2(ap

λk

)1/4
)}

≤ 1− exp

p

[
1− e

λk
2

(
1−
√ ap

λk

)2(
λk

ap

)1/4
]−1
 ,
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where in the last inequality we used that for x ∈ (0,1), log(1− x)≥ (1−1/x)−1. Note
that as λk→+∞ we have that[

1− e
λk
2

(
1−
√ ap

λk

)2(
λk

ap

)1/4
]−1

λk→+∞→ −exp

{
−λk

2

(
1−
√

ap

λk

)2
}(

ap

λk

)1/4

,

and so for sufficiently large dimension we have that

p(max
i

1/Xi > a−1
p ) = p(min

i
Xi < ap)≤ 1− exp

{
−pe

− λk
2

(
1−
√ ap

λk

)2(ap

λk

)1/4
}
,

which proves (4.17). To prove (4.18), choose ap = λk/ log(1+λk), and so the previous
bound becomes

p(max
i

1/Xi > a−1
p )≤ 1− exp

{
−pe

− λk
2

(
1−
√

1
log(1+λk)

)2(
1

log(1+λk)

)1/4
}
,

Note that the RHS of this bound can be made arbitrarily small as p→+∞ as long as

λk

2

(
1−

√
1

log(1+λk)

)2

+
1
4

loglog(1+λk)− log p→+∞,

for which (assuming λk→+∞) it suffices that p < e
λk
2

(
1−
√

1
log(1+λk)

)2

+[log(1+λk)]
1/4.

Thus, if such condition holds then a sufficiently large p exists such that

p
(

max
i

1
Xi

> δa−1
p

)
≤ 1− ε,

for every fixed ε > 0 and δ > 0, where a−1
p = log(1+ λk)/λk. Hence, maxi 1/Xi =

oP (log(1+λk)/λk), proving (4.18).

Result 4.10. Let X > 0 be a random variable such that X−1 = oP( fn), for some well-
defined sequence fn > 0. Then

1
X +1

= OP

(
1

f−1
n +1

)
.

Proof. Since X−1 = oP( fn), we know for every ε,δ > 0 and n > n0, P(X−1 > δ fn)< ε

for some sufficiently large n0. Note then that

Pθ∗(X−1 > δ fn) = Pθ∗(X < (δ fn)
−1) = Pθ∗

(
1

X +1
<

1
(δ fn)−1 +1

)
= Pθ∗

(
1

X +1
< δ

1
f−1
n +δ

)
< ε.
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Since this holds for every δ > 0, the following is also true

Pθ∗

(
1

X +1
< δ

1
f−1
n +1

)
≤ ε,

for any ε > 0 and large enough n0, and so by definition 1
X+1 = OP

(
1

f−1
n +1

)
.

Result 4.11. Let the Bayes Factor under the Gaussian prior BN
i,01 be defined as in (4.7).

Then, for any parameter prior π

Bπ
i,01 = BN

i,01×
[∫

π(βi)

N(βi;0,τφi)
pN(βi | yi)dβi

]−1

.

Proof. Note that

pπ(yi | βi 6= 0) =
∫

βi 6=0
p(yi | βi)π(βi)dβi

= pN(yi | βi 6= 0)
∫ p(yi | βi)N(βi;0,τφi)

pN(yi | βi 6= 0)
π(βi)

N(βi;0,τφi)
dβi

= pN(yi | βi 6= 0)
∫

π(βi)

N(βi;0,τφi)
pN(βi | yi)dβi

Then, replacing this expression into the Bayes Factor, we obtain

Bπ
i,01 =

p(yi | βi = 0)
pπ(yi | βi 6= 0)

=
p(yi | βi = 0)

pN(yi | βi 6= 0)

[∫
π(βi)

N(βi;0,τφi)
pN(βi | yi)dβi

]−1

= BN
i,01

[∫
π(βi)

N(βi;0,τφi)
pN(βi | yi)dβi

]−1

.

Result 4.12. Let kn,gn > 0 be sequences such that kn → 0 and kngn → 0 as n→ ∞.
Then, for any event An such that

Pθ∗(An)≤ 1− (1− kn)
gn,

it holds that

Pθ∗(An)≤ kngn(1+ωn),

for some ωn→ 0.
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Proof. Start by re-expressing

Pθ∗(An)≤ 1− (1− kn)
gn = 1−

[(
1− 1

k−1
n

)k−1
n
]kngn

.

Given that kn→ 0 (i.e. k−1
n → ∞), we know that limn→∞(1− 1/k−1

n )k−1
n = e−1, and so

we have

1−

[(
1− 1

k−1
n

)k−1
n
]kngn

= 1−



(

1− 1
k−1

n

)k−1
n

e−1

e−1


kngn

→ 1− e−kngn .

This last convergence comes from the fact that

lim
n→∞


(

1− 1
k−1

n

)k−1
n

e−1


kngn

= lim
n→∞

exp

kngn log


(

1− 1
k−1

n

)k−1
n

e−1


= 1,

which in turn comes from

lim
n→∞

kngn log


[
1− 1

k−1
n

]k−1
n

e−1

= lim
n→∞

kngn

[
log

([
1− 1

k−1
n

]k−1
n
)
+1

]
= 0,

using the fact that limn→∞ log
([

1− 1
k−1

n

]k−1
n
)
=−1 and that we assumed limn→∞ kngn =

0. Note then that using limx→0
eax−1

bx = a/b for a,b ∈ R we have that

lim
x→0

1− e−x

x
=− lim

x→0

e−x−1
x

=−(−1)
1

= 1,

and hence

1− e−kngn → kngn.

Therefore, we have that under the above conditions

Pθ∗(An)≤ kngn(1+ωn),

where ωn→ 0.
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4.6.2 Proofs
Proof of Theorem 4.1

Proof. Theorem 4.1; Part (i). The proof strategy for parts (i) and (ii) is to notice that
the posterior inclusion probabilities PN(γ j = 1 | yi) and PM(γ j = 1 | yi) are monotone
functions of a random variable that is χ2

1 -distributed for every β ∗i = 0. Hence, to bound
the maximum posterior inclusion probability it suffices to bound in probability the max-
imum of χ2

1 -distributed variables.
For the Gaussian and pMOM prior, P(γi = 1 | yi) is a monotonically increasing func-

tion of Wi := nβ̂ 2
i /φi, denoted by h1(Wi). Thus,

max
i:β ∗i =0

PN(γi = 1 | yi) = h1(Z),

where Z := maxi:β ∗i =0Wi for short, and Wi ∼ χ2
1 (0) independently for every i : β ∗i = 0.

In particular, from (4.8) we have that h1(Z) = (1+ cne−bnZ)−1, where for brevity we
will denote by bn =

1
2

τn
τn+1 ≥ 0 and by cn =

1−ρ

ρ
(τn+1)1/2 ≥ 0.

Our goal is to show that a sequence fn > 0 exists, such that ∀ε > 0, ∃δ > 0 and
n0 ∈ Z+ for which Pβ ∗(h1(Z) > δ fn) ≤ ε , for every n ≥ n0. By definition, this would
imply that h1(Z) = OP( fn).

We start by re-expressing

Pβ ∗ (h1(Z)> δ fn) = Pβ ∗
(
Z > h−1

1 (δ fn)
)
= Pβ ∗

(
max

i
Wi > h−1

1 (δ fn)

)
= 1−Pβ ∗

(
max

i
Wi ≤ h−1

1 (δ fn)

)
= 1−Pβ ∗

(
∩i
{

Wi ≤ h−1
1 (δ fn)

})
= 1−

[
Pβ ∗
(
Wi ≤ h−1

1 (δ fn)
)]p−p∗

= 1−
[
1−Pβ ∗

(
Wi > h−1

1 (δ fn)
)]p−p∗

. (4.19)

where the third line follows from the Wi’s being i.i.d. In the first equality we used
the monotonicity of h1 to preserve the direction of the inequality. Thus, to bound
Pβ ∗ (h1(Z)> δ fn), it suffices to upper bound the central χ2

1 right-tail probability Pβ ∗
(
Wi > h−1

1 (δ fn)
)
.

From Lemma S1 in Rossell (2021) we use the Chernoff bound as follows. For any
h−1

1 (δ fn)> 1, it holds that

Pβ ∗
(
Wi > h−1

1 (δ fn)
)
≤
(
eh−1

1 (δ fn)
)1/2

exp
{
−1

2
h−1

1 (δ fn)

}

= e1/2

[
− 1

bn
log

( 1
δ fn
−1

cn

)]1/2( 1
δ fn
−1

cn

) 1
2bn

, (4.20)

where in (4.20) we simply replaced h−1
1 (δ fn)=− 1

bn
log
(

1
cn

[
1

δ fn
−1
])

and re-arranged.
Now we look at the condtions that fn needs to satisfy for this bound to converge to zero.
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Note that for (4.20) to vanish as n→ ∞, it suffices that h−1
1 (δ fn)� 1, i.e. that

δ fn� (1+ cne−bn)−1 � (1+ cn)
−1 � c−1

n =
ρ

1−ρ
(τn+1)−1/2, (4.21)

since bn → 1/2, and where cn → ∞ under (C1) and (C2). For brevity, denote the se-
quence in the RHS of (4.20) by sn, and assume that the choice of fn satisfies (4.21), and
thus it holds that sn→ 0 (i.e. s−1

n → ∞) as n→ ∞. Then, if sn(p− p∗)→ 0 with n→ ∞,
we can apply Result 4.12, which gives that

Pβ ∗ (h1(Z)> δ fn)≤ sn(p− p∗)(1+ωn), (4.22)

for some ωn → 0. Since sn depends of the choice of fn, we will need to check later
that in fact sn(p− p∗)→ 0 for our choice of fn. Importantly, this condition would
automatically imply that the bound converges to zero.

Now, choose

δ fn =
(

1+ cne−bnan
)−1

, (4.23)

for some an� 1, which then satisfies (4.21). In particular, set

an = 2 [log(p− p∗)+ log log(p− p∗)] . (4.24)

This implies that the bound in (4.22) can be expressed as

Pβ ∗ (h1(Z)> δ fn)≤ (4.25)

≤ (1+ωn)(p− p∗)
[
− e

bn
(1+ωn)

[
log
(

e−bnan
)](

e−bnan
)1/bn

]1/2

(4.26)

= (1+ωn)(p− p∗) [ean]
1/2 e−an/2

= (1+ωn)(p− p∗) [2e(log(p− p∗)+ log log(p− p∗))]1/2
[

1
(p− p∗) log(p− p∗)

]
= (1+ωn)

√
2e
[

log(p− p∗)
[log(p− p∗)]2

+
log log(p− p∗)
[log(p− p∗)]2

]1/2

= (1+ωn)
√

2e
[

1
log(p− p∗)

+
log log(p− p∗)
[log(p− p∗)]2

]1/2

. (4.27)

Hence, for the respective choices of δ fn and an in (4.23) and (4.24), it suffices that
p− p∗ → ∞ to achieve sn(p− p∗)→ 0, which is displayed in (4.26) and (4.27), and
so in that case Result 4.12 is applicable as in (4.22). Thus, under condition (C5) the
bound in (4.27) can be made arbitrarily small for a sufficiently large p− p∗, i.e. for
sufficiently large n. That is, for every ε > 0, one can find a sufficiently large integer
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n0 and corresponding δ > 0 such that Pβ ∗ (h1(Z)> δ fn)≤ ε , for every n0 > n. Hence,
h1(Z) = OP( fn), for fn defined as in (4.23) and some fixed δ .

Additionally, if cne−bnan → ∞ as n→ ∞, then h1(Z) = OP(o(1)) = oP(1), which
by definition would entail h1(Z)

P→ 0. We now show that cne−bnan → 0 under a set of
conditions, i.e. we need to show that −bnan + logcn → +∞, or since bn → 1/2 and
τn+1→ τn,

− log(p− p∗)− log log(p− p∗)+
1
2

log(τn)+ log
(

1−ρ

ρ

)
→+∞

as n→ ∞. This condition holds assuming (C1), (C2) and (C9). Then, from the expres-
sion in (4.23) we have that limn→∞

fn
c−1

n eanbn
= 1, and so

h1(Z) = OP

(
c−1

n eanbn
)
= OP

(
ρ

1−ρ

(p− p∗)
(τn)1/2 log(p− p∗)

)
,

which completes the proof.

Proof. Theorem 4.1; Part (ii). We adapt and apply the same proof strategy as for Part

(i). Consider the pMoM prior in (4.6), for which h1(Z) =
(

1+ cn
e−

1
2 bnZ

1+bnZ

)−1

following

(4.12), where in this case we denote by bn =
τn

τn+1 ≥ 0 and by cn =
1−ρ

ρ
(τn+1)3/2 ≥ 0.

Then, for some fixed δ > 0

Pβ ∗ (h1(Z)> δ fn) = Pβ ∗

[1+ cn
e−

1
2 bnZ

1+bnZ

]−1

> δ fn


= Pβ ∗

(
e−

1
2 bnZ

1+bnZ
< c−1

n ((δ fn)
−1−1)

)
= Pβ ∗

(
e

1
2 bnZ(1+bnZ)> cn((δ fn)

−1−1)−1
)

≤ Pβ ∗

(
e

1
2 bnZ >

cn((δ fn)
−1−1)−1

qn

)
+Pβ ∗ (1+bnZ > qn) ,

(4.28)

for any qn > 0, where in the last step we used the fact that for two random variables
X ,Y > 0, and a,b > 0, we have that P(XY > a) ≤ P(X > a/b)+P(Y > b). Now we
follow the steps in (4.19) and then apply the Chernoff bound analogously to the proof
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of Part (i). In the first term in the RHS of (4.28) we have

Pβ ∗

(
e

1
2 bnZ >

cn((δ fn)
−1−1)−1

qn

)
=

= Pβ ∗

(
Z >

2
bn

log
(

cn

qn

[
(δ fn)

−1−1
]−1
))

= 1−
[

1−Pβ ∗

(
Wi >

2
bn

log
(

cn

qn

[
(δ fn)

−1−1
]−1
))]p−p∗

,

upon which using the Chernoff bound in Lemma S2 of Rossell (2021) we can establish
that, for 2

bn
log
(

cn
qn

[
(δ fn)

−1−1
]−1
)
> 1,

Pβ ∗

(
Wi >

2
bn

log
(

cn

qn

[
(δ fn)

−1−1
]−1
))

≤
(

2e
bn

log
(

cn

qn

[
(δ fn)

−1−1
]−1
))1/2

exp
{
−1

2
2
bn

log
(

cn

qn

[
(δ fn)

−1−1
]−1
)}

.

(4.29)

For this bound to converge to zero, it suffices that 2
bn

log
(

cn
qn

[
(δ fn)

−1−1
]−1
)
� 1, i.e.

that

δ fn�
(

1+
cn

qn
e−bn/2

)−1

. (4.30)

Similarly, in the second term of (4.28), and following (4.19), we express

Pβ ∗ (1+bnZ > qn) = Pβ ∗

(
Z >

qn−1
bn

)
= 1−

[
1−Pβ ∗

(
Wi >

qn−1
bn

)]p−p∗

,

(4.31)

on which we can use the same Chernoff bound, and write that for qn−1
bn

> 1

Pβ ∗

(
Wi >

qn−1
bn

)
≤
(

e
qn−1

bn

)1/2

exp
{
−1

2
qn−1

bn

}
.

Once more this bound will converge to zero for qn−1
bn
� 1, i.e. for

qn� 1+bn. (4.32)
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Denote for brevity the sequence in the RHS of (4.29) by sn, and that in the RHS of
(4.31) by tn. Note that under (4.30) and (4.32), sn → 0 and tn → 0, and thus we can
apply Result 4.12 to each of the terms of (4.28), and re-write

Pβ ∗ (h1(Z)> δ fn)≤

[
1−
(

1− 1
s−1

n

)p−p∗
]
+

[
1−
(

1− 1
t−1
n

)p−p∗
]

≤ (p− p∗)(sn + tn)(1+ωn),

for some ωn→ 0. The last inequality also requires that sn(p− p∗)→ 0 and that tn(p−
p∗)→ 0, which we will check below.

Now, recover an from (4.24) in Part (i), and set

qn = 1+anbn,

and

δ fn =

(
1+

cn

qn
e−

bnan
2

)−1

=

(
1+ cn

e−
bnan

2

1+anbn

)−1

, (4.33)

which clearly satisfy (4.32) and (4.30), respectively. Replacing these expressions into
the bounds in (4.29) and (4.31) provides that

sn = tn = (ean)
1/2e−an/2.

Therefore, incorporating the algebra derived in (4.26) of Part (i), we have that

Pβ ∗ (h1(Z)> δ fn)≤ 2sn(p− p∗)(1+ωn)

=
√

8e
[

1
log(p− p∗)

+
log log(p− p∗)
[log(p− p∗)]2

]1/2

(1+ωn),

for ωn → 0. This bound converges to zero as long as p− p∗ → ∞, i.e. if (C5) holds,
implying then that sn(p− p∗)→ 0 and that tn(p− p∗)→ 0, and thus that the use of
Result 4.12 was valid. Hence, we have that for any ε > 0 one may find a sufficiently
large integer n0 such that Pβ ∗ (h1(Z)> δ fn) ≤ ε , for some corresponding fixed δ > 0
and every n > n0. Thus, h1(Z) = OP( fn), with fn defined as in (4.33).

Finally, as in Part (i), let us also show that h1(Z)
P→ 0, for which we require that

cn
e−

1
2 anbn

1+anbn
→ +∞. This holds if −1

2anbn + logcn− log(1+ anbn)→ +∞ as n→ ∞, i.e.,
given that bn→ 1, if

− log(p− p∗)− log log(p− p∗)+
3
2

log(τn+1)+

+ log
(

1−ρ

ρ

)
− log(log(p− p∗)+ log log(p− p∗))→+∞
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as n grows. This condition holds assuming that (C1), (C2) and (C10) are satisfied. Then,
using (4.33), we have that limn→∞

fn

c−1
n (1+anbn)e

1
2 bnan

= 1, and so

h1(Z) = OP

(
c−1

n (1+anbn)e
1
2 bnan

)
= OP

(
ρ

1−ρ

(p− p∗) log(p− p∗)
(τn)3/2 (1+2 [log(p− p∗)+ log log(p− p∗)])

)
= OP

(
ρ

1−ρ

(p− p∗)[log(p− p∗)]2

(τn)3/2

)
completes the proof.

Proof. Theorem 4.1; Part (iii). The proof strategy is to find a valid sequence to bound
this maximum in probability using (4.17) from Result 4.9. We etablish the requirements
to satisfy the conditions required therein, leading to a valid sequence. Once we have it,
we look for the conditions that ensure that this bound converges to zero, which allow for
the bound in probability to hold. Finally, we analyze the necessary conditions to make
this maximum converge to zero.

Note that n
φi

β̂ 2
i ∼ χ2

1

(
n
φi

β ∗i
2
)

. Let Z :=mini:β ∗i 6=0
n
φi

β̂i, for which Z−1 =maxi:β ∗i 6=0
1

n
φi

β̂i
.

Further, let λ := mini:β ∗i 6=0
n
φi

β ∗i
2 be the smallest of the non-centrality parameters, where

λ → +∞ as n→ +∞. Recover the expressions for h1, bn and cn from the proof of Part
(i). Then

max
i:β ∗i 6=0

PN(γi = 0 | yi) = 1−h1(Z) = h0(Z),

since both h1 and h0 are monotonic functions. Then for δ > 0 and a sequence fn > 0

Pβ ∗(h0(Z)> δ fn) = Pβ ∗(1−h1(Z)> δ fn) = Pβ ∗(h1(Z)< 1−δ fn)

= Pβ ∗(Z < h−1
1 (1−δ fn)) =

= Pβ ∗(Z
−1 >

[
h−1

1 (1−δ fn)
]−1

).

Our objective is to find some δ fn such that this probability can be bounded by an arbi-
trarily small number. Denote qn := h−1

1 (1−δ fn), and notice that if qn� λ , then we can
use (4.17) from Result 4.9. For this condition to hold, we only need that h−1

1 (1−δ fn)�
λ , i.e. that δ fn� h0(λ ). In particular, pick δ fn = h0(λ/ log(n+1))� h0(λ ), that is

δ fn = 1−
(

1+ cne−bnλ/ log(n+1)
)−1

, (4.34)
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which satisfies said condition thanks to the extra log(n+ 1) fraction in the exponent.
Then, applying (4.17)

pβ ∗
(
Z−1 > q−1

n
)
≤ 1− exp

{
−p∗e−

λ

2

[
1−(qn/λ )1/2

]2

(qn/λ )1/4

}

= 1− exp

−p∗e
− λ

2

[
1−
(

1
log(n+1)

)1/2
]2(

1
log(n+1)

)1/4
 , (4.35)

where in the last expression we replaced δ fn from (4.34). To bound h0(Z) in probability,
we need that the RHS of this last expression vanishes for large enough n, which will
happen if

p∗e
− λ

2

[
1−
(

1
log(n+1)

)1/2
]2(

1
log(n+1)

)1/4

→ 0 (4.36)

as n→+∞. This will occur under two conditions: first, that asymptotically

λ

2

[
1−
(

1
log(n+1)

)1/2
]2

→ ∞⇒
|β ∗k |√

φk
�
√

2√
n

(
1− [log(n+1)]−1/2

)
,

i.e. under (C7), and second that following (4.36)

p∗� e
n
2

β∗k
2

φk
(1−[log(n+1)]−1/2)

2− 1
4 log log(n+1)

,

i.e. under (C6), where k := argmini:β ∗i 6=0 β ∗i
2/φi. Hence, under (C7) and (C6), retaking

(4.35) we can write

pβ ∗(h0(Z)> δ fn)≤ 1− exp

−p∗e
− λ

2

[
1−
(

1
log(n+1)

)1/2
]2(

1
log(n+1)

)1/4
 .

Importantly, then, this bound can be made arbitrarily small by having a sufficiently large
n. So, for any ε > 0, one can find a sufficiently large n0 such that pβ ∗(h0(Z)> δ fn)≤ ε ,
for every n > n0, and some fixed δ > 0. Therefore, h0(Z) = OP( fn) as defined by (4.34),
i.e.

h0(Z) = OP

(
1−
(

1+ cne−bnλ/ log(n+1)
)−1

)
.
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We also want to show that h0(Z)→ 0, which requires that cne−bnλ/ log(n+1)→ 0, i.e. that
provided bn→ 1/2 and τn+1→ τn,

bn
λ

log(n+1)
− logcn→ ∞

⇒ 1
2

n
log(n)

β ∗k
2

φk
− log

(
1−ρ

ρ

)
− 1

2
log(τn)→ ∞.

This condition holds if we assume (C3), and so we have that limn→∞
fn

cne−bnλ/ log(n+1) = 1.
Thus, we have that

h0(Z) = OP

(
cne−bnλ/ log(n+1)

)
= OP

(
1−ρ

ρ
(τn)1/2 exp

{
−1

2
n

log(n+1)
min

i:β ∗i 6=0

β ∗i
2

φi

})
,

which completes the proof.

Proof. Theorem 4.1; Part (iv). We proceed analogously to the proof of Part (iii). In this
case, recover λ from said proof, and then h1, bn and cn from the proof of Part (ii) instead.
As in Part (iii), we have

max
i:β ∗i 6=0

PM(γi = 0 | yi) = 1−h1(Z) = h0(Z).

Now we replicate the steps leading to (4.28) from the proof of Part (ii), where for δ > 0,
some sequence fn > 0 and any qn > 0, we have

Pβ ∗(h0(Z)> δ fn) = Pβ ∗(h1(Z)< 1−δ fn)

= Pβ ∗

(
e

1
2 bnZ(1+bnZ)< cn((1−δ fn)

−1−1)−1
)

≤ Pβ ∗

(
e

1
2 bnZ <

cn((1−δ fn)
−1−1)−1

qn

)
+ pβ ∗ ((1+bnZ)< qn)

(4.37)

= Pβ ∗

(
Z−1 >

[
2
bn

log
(

cn((1−δ fn)
−1−1)−1

qn

)]−1
)
+

+ pβ ∗

(
Z−1 >

[
qn−1

bn

]−1
)
, (4.38)

where in (4.37) we employed the analogous inequality to that of Part (ii). Our objective
is again to find such fn, for which we will employ Result 4.9 again. In order to use it,
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we need that two conditions hold: first, that

qn−1
bn

� λ ⇒ qn� 1+bnλ ,

thus let us pick qn = 1+bnλ/ log(n+1), which satisfies this condition; and second, that

2
bn

log
(

cn((1−δ fn)
−1−1)−1

qn

)
� λ ⇒ δ fn� 1−

(
1+ cn

e−
1
2 bnλ

qn

)−1

,

for which we can set

δ fn = 1−

1+ cn

exp
{
−bn

2
λ

log(n+1)

}
1+bn

λ

log(n+1)

−1

.

Note that this implies that the bound for each of the two terms in (4.38) is that of (4.35),
and so

Pβ ∗(h0(Z)> δ fn)≤ 2

1− exp

−p∗e
− λ

2

[
1−
(

1
log(n+1)

)1/2
]2(

1
log(n+1)

)1/4

 .

As in Part (iii), to make this bound vanish for sufficiently large n, we need that condi-
tions (C7) and (C6) hold, which they do by assumption. In that case, this bound can
be made arbitrarily small for a large enough n, and so for any ε > 0 a sufficiently large
n0 exists such that Pβ ∗(h0(Z) > δ fn) ≤ ε , for every n > n0, and some fixed δ > 0.
Therefore, h0(Z) = OP( fn), i.e.

h0(Z) = OP

1−

1+ cn

exp
{
−bn

2
λ

log(n+1)

}
1+bn

λ

log(n+1)

−1 .

Once more, we want to show that h0(Z)→ 0 as n→ ∞, this would require that

cn

exp
{
−bn

2
λ

log(n+1)

}
1+bn

λ

log(n+1)

=

= exp
{
−bn

2
λ

log(n+1)
+ logcn− log

(
1+bn

λ

log(n+1)

)}
→ 0

as n→ ∞, i.e. that given bn→ 1/2 and τn+1→ τn

1
2

λ

log(n+1)
+ log

(
1+

τn
τn+1

λ

log(n+1)

)
− log

(
1−ρ

ρ

)
− 3

2
log(τn)→+∞.
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This will happen as long as we assume (C4). In such case, limn→∞
fn

cn

exp
{
− bn

2
λ

log(n+1)

}
1+bn λ

log(n+1)

= 1,

and thus we can write

h0(Z) = OP

cn

exp
{
−bn

2
λ

log(n+1)

}
1+bn

λ

log(n+1)



= OP

1−ρ

ρ
(τn)3/2

exp
{
−1

2
n

log(n+1) mini:β ∗i 6=0
β ∗i

2

φi

}
1+ n

log(n+1) mini:β ∗i 6=0
β ∗i

2

φi


= OP

 τn
n

logn mini:β ∗i 6=0
β ∗i

2

φi

1−ρ

ρ
(τn)1/2 exp

{
−1

2
n

log(n+1)
min

i:β ∗i 6=0

β ∗i
2

φi

}
= OP

 τ logn

mini:β ∗i 6=0
β ∗i

2

φi

1−ρ

ρ
(τn)1/2 exp

{
−1

2
n

log(n+1)
min

i:β ∗i 6=0

β ∗i
2

φi

} ,

to complete the proof.

Proof of Theorem 4.2

Proof. Theorem 4.2; Part (i) and Part (ii). The strategy of the proof is to decompose the
sum into its individual terms, and then upper bounding these elements using the maxima
and minima of their respective sets. Then we combine the probability bounds of these
extrema, e.g. re-using those identified in Theorem 4.1, to produce a probability bound
for the entire expression, separately for the Gaussian prior in Part (i) and pMOM prior
in Part (ii).

Denote Zi = nβ̂ 2
i /φi for short, and note that Zi ∼ χ2

1 (nβ̂ ∗i /φi), i.e. with a non-
centrality parameter that grows with n whenever β ∗i 6= 0. Following the notation from
the proof of Theorem 4.1, denote h1(Zi) := P(γi = 1 | yi) and h0(Zi) := P(γi = 0 | yi) for
short. We have that

∑
i:γ∗i =0

|β̃i−β
∗
i |= ∑

i:γ∗i =0
|β̃i|= ∑

i:γ∗i =0

∣∣∣h1(Zi) f (Zi)β̂i

∣∣∣
≤ (p− p∗)h1

(
max

i:β ∗i =0
Zi

)
f
(

min
i:β ∗i =0

Zi

)
max

i:β ∗i =0
|β̂i|, (4.39)

where f (·) > 0 and h1(·) > 0 are monotonically non-increasing and increasing func-
tions, respectively. For the pMOM prior, we define f (Zi) =

Zi+3
Zi+1 following (4.14). For
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the Gaussian prior, f is independent of Zi and is simply f (Zi) =
τn

τn+1 , following (4.10).
For brevity, denote these by fM and fN respectively, and note that in both cases fM → 1
and fN→ 1, and also that fM = OP(1) and fN = O(1).

Additionally, in Part (i) and Part (ii) of Theorem 4.1 we established the probability
bounds of h1

(
maxi:β ∗i =0 Zi

)
for both priors. Thus, to bound (4.39) in probability we are

left to bound maxi:β ∗i =0 |β̂i|. To bound this term, it suffices to use Result 4.7 on the set

of β̂i ∼ N(0,φi/n) estimates (with p− p∗ elements) to obtain

max
i:β ∗i =0

|β̂i|= OP

(√
2log(p− p∗)

n
max

i:β ∗i =0
φ

1/2
i

)
.

Therefore, to prove Part (i), we combine the bound in Part (i) of Theorem 4.1 (under
its corresponding conditions) with this last result, and establish that

∑
i:γ∗i =0

|β̃i−β
∗
i |= OP

(
ρ

1−ρ

(p− p∗)2

(τn)1/2

√
2[log(p− p∗)]3

n
max

i:β ∗i =0
φ

1/2
i

)

= OP

(
ρ

1−ρ

(p− p∗)2

(τn)1/2

√
[log(p− p∗)]3

n
max

i:β ∗i =0
φ

1/2
i

)
.

To prove Part (ii), we analogously use the bound in Part (ii) of Theorem 4.1, and write

∑
i:γ∗i =0

|β̃i−β
∗
i |= OP

(
(1+2kn)

ρ

1−ρ

(p− p∗)2

(τn)3/2

√
2[log(p− p∗)]3

n
max

i:β ∗i =0
φ

1/2
i

)

= OP

(
kn

τn
ρ

1−ρ

(p− p∗)2

(τn)3/2

√
[log(p− p∗)]3

n
max

i:β ∗i =0
φ

1/2
i

)
,

where kn = log(p− p∗)+ log log(p− p∗).

Proof. Theorem 4.2; Part (iii) and Part (iv). We replicate the same proof strategy of Parts
(i) and (ii). Let us recover the same notation as in said proof.

To upper bound the target expression, we use the triangle inequality

∑
i:γ∗i =1

|β̃i−β
∗
i | ≤ ∑

i:γ∗i =1

[
|β̃i− β̂i|+ |β̂i−β

∗
i |
]

≤ p∗
[

max
i:β ∗i 6=0

|β̃i− β̂i|+ max
i:β ∗i 6=0

|β̂i−β
∗
i |

]
. (4.40)
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Note that β̂i−β ∗i ∼N(0,φi/n), and so we can apply Result 4.8 to the RHS of (4.40) and
get

max
i:β ∗i 6=0

|β̂i−β
∗
i |= OP

(√
2log p∗

n
max

i:β ∗i 6=0
φ

1/2
i

)
. (4.41)

As for the first term of the RHS of (4.40), we use the triangle inequality

max
i:β ∗i 6=0

|β̃i− β̂i|= max
i:β ∗i 6=0

∣∣∣h1(Zi) f (Zi)β̂i− β̂i

∣∣∣
= max

i:β ∗i 6=0

∣∣∣(h1(Zi)−1) f (Zi)β̂i +( f (Zi)−1) β̂i

∣∣∣
≤ max

i:β ∗i 6=0

[∣∣∣−h0(Zi) f (Zi)β̂i

∣∣∣+ ∣∣∣( f (Zi)−1) β̂i

∣∣∣]
= max

i:β ∗i 6=0

[
h0(Zi) f (Zi)|β̂i|+ | f (Zi)−1| |β̂i|

]
≤
[

f
(

min
i:β ∗i 6=0

Zi

)
h0

(
min

i:β ∗i 6=0
Zi

)
+

∣∣∣∣ f ( min
i:β ∗i 6=0

Zi

)
−1
∣∣∣∣] max

i:β ∗i 6=0
|β̂i|.

(4.42)

First, notice given that β̂i ∼ N(β ∗i ,φi/n) we can apply Result 4.7, by which

max
i:β ∗i 6=0

|β̂i|= OP

(
max

i:β ∗i 6=0
|β ∗i |+

√
2log p∗

n
max

i:β ∗i =0
φ

1/2
i

)

= OP

(
max

i:β ∗i 6=0
|β ∗i |+

√
log p∗

n
max

i:β ∗i =0
φ

1/2
i

)
.

Our interest in (4.42), beyond the term maxi:β ∗i 6=0 |β̂i|, goes to the second term
∣∣∣ f (mini:β ∗i 6=0 Zi

)
−1
∣∣∣,

since this will be the dominating term of this bound, given that from Theorem 4.1 we
know that h0

(
mini:β ∗i 6=0 Zi

)
will in any case decrease exponentially in n, up to lower

order factors. We analyse this quantity for the two priors.
For the Gaussian prior, this term is simply∣∣∣∣ fN

(
min

i:β ∗i 6=0
Zi

)
−1
∣∣∣∣= 1

τn+1
= O

(
(τn)−1) .

Therefore, recovering (4.42), for said prior we obtain

max
i:β ∗i 6=0

|β̃ N
i − β̂i|= OP

(
1

τn

[√
log p∗

τn
max

i:β ∗i =0
φ

1/2
i + max

i:β ∗i 6=0
|β ∗i |

])
,
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and so combining this with (4.41), and recovering (4.40), we obtain

∑
i:γ∗i =1

|β̃ N
i −β

∗
i |= OP

(
p∗
[(

1+
1

τn

)√
log p∗

τn
max

i:β ∗i =0
φ

1/2
i +

1
τn

max
i:β ∗i 6=0

|β ∗i |

])
. (4.43)

which proves the statement in Part (iii).
Instead, for the pMOM prior∣∣∣∣ fM

(
min

i:β ∗i 6=0
Zi

)
−1
∣∣∣∣= 2

mini:β ∗i 6=0 Zi +1
. (4.44)

Since
(

mini:β ∗i 6=0 Zi

)−1
= maxi:β ∗i 6=0

1
Zi
= oP

(
log(1+λmin)

λmin

)
, for

λmin = n min
i:β ∗i 6=0

(β ∗i
2/φi),

we can apply Result 4.10 to the RHS of (4.44), by which

2
mini:β ∗i 6=0 Zi +1

= OP

 1
λmin

log(1+λmin)
+1


= OP

(1+
nmini:β ∗i 6=0(β

∗
i

2/φi)

log(1+nmini:β ∗i 6=0(β
∗
i

2/φi))

)−1
 .

As n→ ∞ this probability bound becomes∣∣∣∣ fM

(
min

i:β ∗i 6=0
Zi

)
−1
∣∣∣∣= OP

(
logn

nmini:β ∗i 6=0 β ∗i
2/φi

)
= OP

(
logn

n
1

mini:β ∗i 6=0 β ∗i
2/φi

)
,

since for any xn→∞ it holds limn→∞

log(1+xn)
xn(

1+ xn
log(1+xn)

)−1 = 1. In this case, the bound in (4.42)

becomes

max
i:β ∗i 6=0

|β̃ M
i − β̂i|= OP

(
logn

mini:β ∗i 6=0 β ∗i
2/φi

√
2log p∗

n3 max
i:β ∗i =0

φ
1/2
i

)
.

Again, we combine this with (4.41), and the probability bound for (4.40) writes

∑
i:γ∗i =1

|β̃ M
i −β

∗
i |=

OP

p∗

1+
logn

n
1

mini:β ∗i 6=0
β ∗i

2

φi

√ log p∗

n
max

i:β ∗i =0
φ

1/2
i +

logn
n

maxi:β ∗i 6=0 |β ∗i |

mini:β ∗i 6=0
β ∗i

2

φi

 ,

which completes the proof for Part (iv). If (C8) holds, then→ 0, similarly to the bound
in Part (iii).
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Proof of Theorem 4.3

Proof. Theorem 4.3; Part (i). The strategy for the proof is use the expression of Result
4.11, and then upper bound the integral therein to obtain a bound for Bπ

i,01. To obtain this
bound we partition the integral by different relevant intervals, and find simpler bounds
on each of these parts, which then added up provide the presented result.

To start, let us state two well-known tail bounds for the standard Normal distribution
that will be used throughout, namely if X ∼ N(0,1), then for any t > 0

P(X > t)≤ e−t2/2, (4.45)

which is the Chernoff bound, and

P(X > t)≥ φ(t)
t

(
1− 1

t2

)
, (4.46)

where φ(t) is the PDF of the standard normal evaluated at t > 0.

To ease notation henceforth, denote wπ(βi) := π(βi)
N(βi;0,τφi)

, and m̂i := τn
τn+1 β̂i, with

corresponding m∗i =
τn

τn+1β ∗i , where clearly m̂i→ m∗i . For Part (i), m∗i = 0. Denote also
si =

τ

τn+1φi, which is known. Hence, βi | yi ∼ N(m̂i,si).

Further, define β0 := maxβi

{
argminβi |wπ(βi)−1|

}
. In plain terms, β0 is the largest

value at which the two densities intersect. Let also cA := min|βi|<β0 wπ(βi) and cB :=
min|βi|<m̂i wπ(βi), and finally c1 := min{cA,cB} . These are simply the smallest values
of the density ratio in the central parts of the distribution.

Recover the expression in Result 4.11 for our prior π . Since we are interested in
checking if Bπ

i,01→ ∞ faster than the Gaussian, we are looking for an upper bound on
Bπ

i,01, and thus for a lower bound on the integral of Result 4.11. We partition said integral
as

∫
wπ(βi)PN(βi | yi)dβi =

∫
|βi|<min{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi+ (4.47)

+
∫

min{|m̂i|,β0}<|βi|<max{|m̂i|,β0}
wπ(βi)PN(βi | yi)dβi+

+
∫
|βi|>max{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi.

We now address each of these partitioned integrals separately, and in order of ap-
pearence. For the first two, we do not need to assume anything on π beyond being
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bounded, and centreed and symmetric around zero. Then∫
|βi|<min{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi ≥
∫
|βi|<min{|m̂i|,β0}

c1PN(βi | yi)dβi

= c1P(|βi|< min{|m̂i|,β0} | yi)

= c1 [P(|βi|< |m̂i| | yi, |m̂i|< β0)+oP(1)]

= c1

P(|βi|< |m∗i | | yi, |m̂i|< β0)︸ ︷︷ ︸
=0

+oP(1)

+oP(1)


= c1oP(1), (4.48)

where in the third step we used the fact that here for any event An

P(An) = P(An | |m̂i|< β0)P(|m̂i|< β0)︸ ︷︷ ︸
→1

+P(An | |m̂i|> β0)︸ ︷︷ ︸
≤1

P(|m̂i|> β0)︸ ︷︷ ︸
→0

= P(An | |m̂i|< β0) [1−oP(1)]+oP(1)
= P(An | |m̂i|< β0)+oP(1), (4.49)

given that m∗i < β0 by construction; and in the fourth step we used the fact that m̂i→m∗i .
As for the second integral, let X ∼ N(0,1), and write∫

min{|m̂i|,β0}<|βi|<max{|m̂i|,β0}
wπ(βi)PN(βi | yi)dβi

≥
∫

min{|m̂i|,β0}<|βi|<max{|m̂i|,β0}
c1PN(βi | yi)dβi

= c1 [P(|βi|< max{|m̂i|,β0} | yi)−P(|βi|< min{|m̂i|,β0} | yi)]

= c1 [P(|βi|< β0 | yi, |m̂i|< β0)−P(|βi|< |m̂i| | yi, |m̂i|< β0)+oP(1)]
= c1 [1−P(|βi|> β0 | yi, |m̂i|< β0)−P(|βi|< |m∗i | | yi, |m̂i|< β0)+oP(1)]
= c1 [1−P(βi > β0 | yi, |m̂i|< β0)−P(−βi <−β0 | yi, |m̂i|< β0)+oP(1)]

= c1

[
1−P

(
X >

β0− m̂i√
si

)
−P

(
X >

β0 + m̂i√
si

)
+oP(1)

]

≥ c1

1+oP(1)−OP

(
e−

n
2

β2
0

φi

)
−OP

(
e−

n
2

β2
0

φi

)
︸ ︷︷ ︸

=oP(1)

= c1 +oP(1), (4.50)

where in the second-to-last step we used the Chernoff bound from (4.45) on the two
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terms, as in

P
(

X >
β0− m̂i√

si

)
≤ exp

{
−1

2
(β0− m̂i)

2

si

}
= exp

{
−1

2
(β0−m∗i )

2

si

}
+oP(1)

= exp
{
−1

2
τn+1

τ

β 2
0

φi

}
+oP(1) = OP

(
e−

n
2

β2
0

φi

)
+oP(1), (4.51)

and analogously for the second term. Finally, for the third integral, there are two possi-
bilities: that the tails are thinner, or thicker than those of the Gaussian prior. If the tails

are thinner, we have assumed that they are at most π(βi)∝ exp
{
−1

2
β 2k

i
τφi

}
, for some fixed

integer k > 1. Let c2 be the ratio of normalising constants between π and the Gaussian,
and so

∫
|βi|>max{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi

≥
∫
|βi|>max{|m̂i|,β0}

c2 exp
{
−1

2
β 2k

i
τφi

}
PN(βi | yi)dβi

= c2

∫
|βi|>max{|m̂i|,β0}

(2πsi)
−1/2 exp

−
1

2si

(βi− m̂i)
2−

β 2k
i

τn+1︸ ︷︷ ︸
(βi−m̂i)2+o(1)


dβi

= c2 [P(|βi|> max{|m̂i|,β0} | yi)+o(1)]
= c2 [P(|βi|> β0 | yi, |m̂i|< β0)+oP(1)+o(1)]
= c2 [P(βi > β0 | yi, |m̂i|< β0)+P(−βi <−β0 | yi, |m̂i|< β0)+oP(1)]

= c2

[
P
(

X >
β0− m̂i√

si

)
+P

(
X >

β0 + m̂i√
si

)
+oP(1)

]

≥ c2

OP

(
n−1/2e−

n
2

β2
0

φi (1−1/n)

)
+OP

(
n−1/2e−

n
2

β2
0

φi (1−1/n)

)
︸ ︷︷ ︸

=oP(1)

+oP(1)


= c2oP(1), (4.52)

where in the second to last step we used (4.46) and rearranged in a similar fashion as
in (4.51). If, instead, the tails are thicker than the Gaussian, we have assumed that they
are at most Cauchy, centreed at zero, with a scale parameter ν = c−1/2

3
√

τφi, for some

91



“ExempleUsPlantillaA4˙English” — 2022/6/29 — 19:46 — page 92 — #108

constant parameter c3 > 0. In that case∫
|βi|>max{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi

≥
∫
|βi|>max{|m̂i|,β0}

πCauchy(βi;0,c−1/2
3

√
τφi)PN(βi | yi)dβi

= c−1/2
3

∫
|βi|>max{|m̂i|,β0}

(2πsi)
−1/2×

× exp

−
1

2si

(βi− m̂i)
2 +

2τφi

τn+1
log
(

1+ c3
β 2

i
τφi

)
︸ ︷︷ ︸

(βi−m̂i)2+o(1)


dβi

= c−1/2
3 [P(|βi|> max{|m̂i|,β0} | yi)+o(1)]

≥ c−1/2
3 oP(1), (4.53)

where in the last step we have proceeded identically to the corresponding step of thin
tails case.

In summary, gathering the results in (4.48), (4.50), (4.52) and (4.53), combined with
Result 4.11 and the conditions in Theorem 4.1 for the Gaussian prior, we have that

Bπ
i,01 = BN

i,01

[∫
π(βi)

N(βi;0,τφi)
PN(βi | yi)dβi

]−1

≤ BN
i,01[c1 +oP(1)]−1 = c−1

1 BN
i,01 +oP(1).

By letting cπ = c−1
1 , the statement of Part (i) is proved.

Proof. Theorem 4.3; Part (ii). We proceed analogously to the proof of Part (i). Recover
the notation therein, where now m∗i 6= 0. Assume without loss of generality that m∗i > 0.
Replace cA :=max|βi|<β0 wπ(βi), cB :=max|βi|<m̂i wπ(βi), and finally c4 :=max{cA,cB}.

Since we look for a large posterior inclusion probability, we are now interested in
checking if Bπ

i,01→ 0 faster than the Gaussian, i.e. we are looking for a lower bound on
Bπ

i,01, and so for an upper bound on the integral of Result 4.11. The integral of interest
here can be expressed as∫

wπ(βi)PN(βi | yi)dβi =∫
wπ(βi)PN(βi | yi)dβiI(|m∗i |< β0)+

+
∫

wπ(βi)PN(βi | yi)dβi(1− I(|m∗i |< β0)). (4.54)
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We shall analyse the two cases of this indicator function separately.

Let us begin with the heavier-than-Gaussian tails case. First, notice that the ratio of
densities with a Cauchy density

πC(βi;0,c−1/2
3
√

τφi)

πN(βi;0,τφi
=

(πc1/2
3
√

τφi)
−1
(

1+ β 2
i

c−1
3 τφi

)−1

(2πτφi)−1/2 exp
{
−1

2
β 2

i
τφi

}
= c1/2

3

√
2π

π

exp
{

1
2

β 2
i

τφi

}
1+ β 2

i
c−1

3 τφi

≤ c̃3 exp
{

1
2

β 2
i

τφi

}
,

for c̃3 = c3(2/π)1/2. Now recover the partition introduced in (4.47). We first tackle the
case in which β0 > |m∗i | Next, we bound the partitioned integrals. We start by the tails

∫
|βi|>max{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi

≤ c̃3

∫
|βi|>max{|m̂i|,β0}

exp
{

1
2

β 2
i

τφi

}
PN(βi | yi)dβi

= c̃3

∫
|βi|>max{|m̂i|,β0}

(2πsi)
−1/2 exp

−
1

2si

(βi− m̂i)
2− β 2

i
τn+1︸ ︷︷ ︸

(βi−m̂i)2+o(1)


dβi

= c̃3

[
P
(

X >
β0− m̂i√

si

)
+P

(
X >

β0 + m̂i√
si

)
+oP(1)

]

≤ c̃3

OP

(
e−

n
2
(β0−m∗i )

2

φi

)
+OP

(
e−

n
2
(β0+m∗i )

2

φi

)
︸ ︷︷ ︸

=oP(1)

+oP(1)


= c̃3oP(1), (4.55)

where the missing steps are identical to the derived in (4.52), and in the last step we
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used Chernoff analogously to (4.51). In the central part of the integral

∫
|βi|<min{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi ≤
∫
|βi|<min{|m̂i|,β0}

c4PN(βi | yi)dβi

= c4

P(|βi|< |m̂i| | yi, |m∗i |< β0)︸ ︷︷ ︸
=1/2+oP(1)

+oP(1)


= c4/2+oP(1), (4.56)

where the second step follows follows from the fact that βi | yi is centreed around m̂i,
and so there is half of the probability mass on each side of m̂i, a plus an oP(1) term
bounded by a tail probability as before. Similarly,

∫
min{|m̂i|,β0}<|βi|<max{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi

≤
∫

min{|m̂i|,β0}<|βi|<max{|m̂i|,β0}
c4PN(βi | yi)dβi

= c4 [(P(|βi|< β0 | yi, |m∗i |< β0)+oP(1))− (P(|βi|< |m̂i| | yi, |m∗i |< β0)+oP(1))]

= c4

1−P(|βi|> β0 | yi, |m∗i |< β0)︸ ︷︷ ︸
=2P(βi>β0|yi,|m∗i |<β0)

−P(|βi|< |m̂i| | yi, |m∗i |< β0)︸ ︷︷ ︸
=1/2+oP(1)

+oP(1)


= c4

[
1/2−2OP

(
n−1/2e−

n
2
(β0−m∗)2

φi (1−1/n)

)
+oP(1)

]
= c4/2+oP(1), (4.57)

where in the second-to-last step we again used the tail bound in (4.46) and re-arranged.
Adding up the three partitions, we obtain that for the thick-tails case

∫
wπ(βi)PN(βi | yi)dβiI(|m∗i |< β0) = [c4 +oP(1)] I(|m∗i |< β0).

In the opposite case where β0 < |m̂∗i |, we skip many steps already derived before to
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express

∫
|βi|>max{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi ≤

≤ c̃3

∫
|βi|>max{|m̂i|,β0}

exp
{

1
2

β 2
i

τφi

}
PN(βi | yi)dβi

= c̃3[P(|βi|> max{β0, |m̂i|} | yi)+o(1)]
= c̃3[P(|βi|> |m̂i| | yi, |m̂i|> β0)+oP(1)]
= c̃3 [(1/2+oP(1))+oP(1)]
= c̃3/2+oP(1). (4.58)

The other two partitioned integrals, we merge them back in this scenario

∫
|βi|<max{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi ≤
∫
|βi|<max{|m̂i|,β0}

c4PN(βi | yi)dβi

= c4 [P(|βi|< max{|m̂i|,β0} | yi)+o(1)]

= c4

P(|βi|< |m̂i| | yi,β0 < |m∗i |)︸ ︷︷ ︸
=1/2+oP(1)

+oP(1)


= c4/2+oP(1), (4.59)

These last two results provide

∫
wπ(βi)PN(βi | yi)dβi(1− I(|m∗i |< β0)) =

[
c4 + c̃3

2
+oP(1)

]
(1− I(|m∗i |< β0)).

Hence, letting c−1
π := max{c4, c̃3}, we obtain that for the thick tails case

∫
wπ(βi)PN(βi | yi)dβi ≤ c−1

π +oP(1).

Let us turn now to the thin tails case. Recover the scenario in which β0 > |m̂i|,
and the partition in (4.47). Again, we cover the three parts separately. Given that
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πC(βi)/πN(βi)< 1/πN(βi), we know that

∫
|βi|>max{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi

≤
∫
|βi|>max{|m̂i|,β0}

c2 exp
{

1
2

β 2
i

τφi

}
PN(βi | yi)dβi

= c2

∫
|βi|>max{|m̂i|,β0}

(2πsi)
−1/2 exp

{
− 1

2si

[
(βi− m̂i)

2− β 2
i

τn+1

]}
dβi

= c2 [P(|βi|> max{|m̂i|,β0} | yi)+o(1)]
= c2 [P(|βi|> β0 | yi, |m̂i|< β0)+oP(1)]

= c2

[
P
(

Z >
β0− m̂i√

si
| yi, |m̂i|< β0

)
+P

(
Z >

β0 + m̂i√
si
| yi, |m̂i|< β0

)
+oP(1)

]
≤ c2

[
OP

(
e−

n
2
(β0−m∗i )

2

φi

)
+OP

(
e−

n
2
(β0+m∗i )

2

φi

)
+oP(1)

]
= c2oP(1). (4.60)

Then

∫
|βi|<min{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi ≤
∫
|βi|<min{|m̂i|,β0}

c4PN(βi | yi)dβi

= c4 [P(|βi|< min{|m̂i|,β0} | yi)+o(1)]

= c4

P(|βi|< |m̂i| | yi, |m̂i|< β0)︸ ︷︷ ︸
=P(|βi|<m̂i|yi,0<m̂i<β0)+oP(1)

+oP(1)


= c4 [P(|βi|< m̂i | yi,0 < m̂i < β0)+oP(1)]

= c4

P(βi < m̂i | yi,0 < m̂i < β0)−P(βi <−m̂i | yi,0 < m̂i < β0)︸ ︷︷ ︸
=P(Z>2m∗i /

√
si)+oP(1)

+oP(1)


≤ c4

[
1/2−OP

(
n−1/2e−

n
2
(2m∗i )

2

φi (1−1/n)

)
+oP(1)

]
= c4/2+oP(1), (4.61)

where the fourth step follows from the fact that m̂i→ m∗i > 0, and thus asymptotically
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m̂i > 0. Finally∫
min{|m̂i|,β0}<|βi|<max{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi ≤

≤
∫

min{|m̂i|,β0}<|βi|<max{|m̂i|,β0}
c4PN(βi | yi)dβi

= c4 [P(|βi|< max{|m̂i|,β0} | yi)−P(|βi|< min{|m̂i|,β0} | yi)+o(1)]
= c4 [P(|βi|< β0 | yi, |m̂i|< β0)−P(|βi|< |m̂i| | yi, |m̂i|< β0)+oP(1)]

= c4


P(|βi|< β0 | yi,0 < m̂i < β0)−P(|βi|< m̂i | yi,0 < m̂i < β0)︸ ︷︷ ︸

=1/2+OP

e
− n

2
(2m∗i )

2

φi

+oP(1)

+oP(1)


= c4 [(1−P(|βi|> β0 | yi,0 < m̂i < β0))− (1/2+oP(1))+oP(1)]
= c4 [1/2− (P(βi > β0 | yi,0 < m̂i < β0)−P(βi <−β0 | yi,0 < m̂i < β0))+oP(1)]

≤ c4

[
1/2−OP

(
n−1/2e−

n
2
(β0−m∗i )

2

φi (1−1/n)

)
+OP

(
e−

n
2
(β0+m∗i )

2

φi

)
+oP(1)

]
= c4/2+oP(1). (4.62)

Thus, results (4.60), (4.61) and (4.62) provide that also in the thin-tailed case∫
wπ(βi)PN(βi | yi)dβiI(|m∗i |< β0) = [c4 +oP(1)] I(|m∗i |< β0).

We only have left to look at the scenario where |m∗i |> β0 for thin-tails.

∫
|βi|>max{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi ≤

≤
∫
|βi|>max{|m̂i|,β0}

c2 exp
{

1
2

β 2
i

τφi

}
PN(βi | yi)dβi

= c̃2[P(|βi|> max{β0, |m̂i|} | yi)+o(1)]
= c̃2[P(|βi|> |m̂i| | yi, |m̂i|> β0)+oP(1)]
= c̃2[(P(|βi|> m̂i | yi, |m̂i|> β0, m̂i > 0)+oP(1))+oP(1)]
= c̃2 [1/2oP(1)]
= c̃2/2+oP(1). (4.63)
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We merge the other two integrals analogously to the thick-tailed case.∫
|βi|<max{|m̂i|,β0}

wπ(βi)PN(βi | yi)dβi ≤
∫
|βi|<max{|m̂i|,β0}

c4PN(βi | yi)dβi

= c4 [P(|βi|< max{|m̂i|,β0} | yi)+o(1)]
= c4 [P(|βi|< |m̂i| | yi,β0 < |m∗i |)+oP(1)]
= c4 [P(|βi|< m̂i | yi, m̂i > 0,β0 < |m∗i |)+oP(1)]
= c4 [P(βi < m̂i | yi, m̂i > 0,β0 < |m∗i |)−P(βi <−m̂i | yi, m̂i > 0,β0 < |m∗i |)+oP(1)]

≤ c4

[
1/2−OP

(
n−1/2e−

n
2
(2m∗i )

2

φi (1−1/n)

)
+oP(1)

]
= c4/2+oP(1), (4.64)

These last two results provide∫
wπ(βi)PN(βi | yi)dβi(1− I(|m∗i |< β0)) =

[
c2 + c4

2
+oP(1)

]
(1− I(|m∗i |< β0)).

Hence, letting c−1
π := max{c4,c2}, we obtain that for the thick tails case∫

wπ(βi)PN(βi | yi)dβi ≤ c−1
π +oP(1).

In both cases, the result is the same, namely that under the conditions stablished in
the Part (i) of the proof, we have that

Bπ
i,01 = BN

i,01

[∫
π(βi)

N(βi;0,τφi)
PN(βi | yi)dβi

]−1

≤

≤ BN
i,01[c

−1
π +oP(1)]−1 = cπBN

i,01 +oP(1),

which completes the proof of Part (ii).

Remaining proofs

Proof. Corollary 4.4. For the case where β ∗i = 0, by Theorem 4.3 we have that for every
parameter βi, π satisfies

Pπ(γi = 1 | yi) =

(
1+

1−ρ

ρ
Bπ

i,01

)−1

≥
(

1+
1−ρ

ρ
c̃πBN

i,01 +
1−ρ

ρ
oP(1)

)−1

≥
(

1+
1−ρ

ρ
c̃πBN

i,01

)−1

.
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Thus, since c̃π is a prior-dependent constant, we find that no individual Pπ(γi = 1 | yi)
improves the probability bounds of their Gaussian counterpart, and so maxi:β ∗i =0 Pπ(γi =

1 | yi) cannot improve the rates of maxi:β ∗i =0 PN(γi = 1 | yi) presented in Theorem 4.1,
given that the estimation of each parameter βi is decoupled from each other.

For the case where β ∗i 6= 0, we similarly write

Pπ(γi = 0 | yi) = 1−Pπ(γi = 1 | yi)

≥ 1−
(

1+
1−ρ

ρ
cπBN

i,01 +
1−ρ

ρ
oP(1)

)−1

,

by Theorem 4.3. Note that under assumptions (C1), (C3) and (C7) combined (assumed
by Theorem 4.1) we have that 1−ρ

ρ
= oP(1), and so the last term inside the sum of this

equation is entirely oP(1). Then, by the same argument as for the β ∗i = 0 case, and
given that cπ is a prior-dependent constant, we find that maxi:β ∗i 6=0 Pπ(γi = 0 | yi) cannot
improve the probability bounds of maxi:β ∗i 6=0 PN(γi = 0 | yi) introduced in Theorem 4.1.

Proof. Corollary 4.5. The first statement follows directly combining the probability
bounds established in Corollary 4.4 with the assumption fπ → 1, and then replicating
the Proof for Theorem 4.2, Part (i), simply replacing terms.

For the second statement, note that if π satisfies the conditions in Theorem 4.3, the
OP-rates for the posterior inclusion probabilities are not better than the Gaussian, up
to an oP(1) factor. Re-taking the notation from the proof for Theorem 4.2, Since by
assumption we know that | fπ(mini:β ∗i 6=0 Zi)−1|= OP(sn), we can use expression (4.42)
and replicate the steps of the proof for the Gaussian case. In that case, sn = (τn)−1,
whose OP-rates are expressed in (4.43), and so the result stated in Corollary 4.5 follows
from there.
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Conclusions and Further Work

In this project, I have analysed the problem of high-dimensional inference mainly from
the perspective of treatment effect estimation, to which I have tried to address a number
of problems that commonly appear in this context, in particular those related to under-
and over-selection, multiple treatments, treatment effect heterogeneity, and computa-
tion.

There are two main ingredients in the CIL proposal. First, learning from data
whether and to what extent control inclusion or exclusion should be encouraged to
improve multiple treatment inference, which includes learning the overall degree of
sparsity. Second, a computational strategy to render the approach practical. This is in
contrast to other literature, which either imposes a sparsity assumption that results in
under-selection biases under strong confounding, or encourages the inclusion of certain
controls to avoid under-selection but can run into serious over-selection issues, as it has
been illustrated. The CIL framework learns the relative importance of each potential
confounders, which helps bypass said over- and under-selection issues. By learning the
relative importance of potential confounders, as the CIL framework proposes, one may
bypass this problem.

These issues are practically relevant, e.g. in the salary data one may fail to detect
small but relevant associations between e.g. black race and salary in many particular
states. Further, the proposed Bayesian framework naturally allows for posterior predic-
tive inference on functions that depend on multiple parameters, such as the variation
in salary jointly associated with multiple treatments to measure overall discrimination.
Interestingly, our analyses revealed that association between salary and discriminatory
factors such as gender or race in 2019 relative to 2010 has practically not been reduced,
as well as the heterogeneity across states. These results are conditional on controls that
include education, employment and other characteristics that affect salary. That is, our
results reveal similar salary discrepancies in 2019 between races/genders, provided that
two individuals have the same characteristics (and that they were hired in the first place).
This analysis offers a complementary view to analyses that are unadjusted by controls,
and which may reveal equally interesting information. For example, if females migrated
towards higher-paying occupational sections in 2019 and received a higher salary as a
consequence, this would not be detected by our analysis, but would be revealed by an
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unadjusted analysis.
To keep our exposition simple, I used to the term confounders generally to refer

to potentially confounding variables one controls for, although in many practical ap-
plications one should differentiate between confounders and mediators, both of which
need to be adjusted for. The difference between the two lies in the fact that a mediator
variable may be affected by the treatment in the first place, and then reinforce the ob-
served treatment as a result. For example, if because of a socioeconomic background a
given treatment leads to lower levels of education on average, which then cause lower
salary levels, then the education variable is a mediator. Contrarily, a confounder will
trigger the treatment without necessarily engaging feedback effects. However, this dis-
tinction should have no major impact in the analysis here presented as the goal of the
exercise was to find out if any degree of discrimination remains, even after accounting
for education.

Also for simplicity, I focused the discussion on linear treatment effects, but it is
possible to extend the framework to non-linear effects and interactions between treat-
ments, e.g. via splines or other suitable non-linear bases. Incorporating non-linearities,
complex interactions among treatment and control variables, and treatment effect het-
erogeneity is actually a relevant line of research to adapt the CIL machinery. For exam-
ple, how to include interactions on a general problem, given that the size of the set of
potential interactions is much larger than the number of controls itself. The ones in our
salary example are specified a priori, but this need not be the general case. Additionally,
in the case of interactions the CIL prior has been simplified here by assigning the same
hyper-parameter to every interaction of a main effect, so as to avoid major inflation of
computational costs. In the presence of very large of interaction sets it may be desirable
to look for a more general method. Similarly, the method should be adjusted to account
for non-linearities, i.e. for covariates being associated to several columns in the design
matrix. It could be worth investigating how the design matrix can be re-parameterised
to that end.

A further interesting line of research, in both Chapter 2 and 4, would be to study
further specifications of non-local priors, and investigate whether their properties can
match or improve those of the pMOM prior that I dealt with, when analytically feasible.
This remains an open end for future work.
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