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Abstract
Recommender Systems represent a key instrument to convey consump-
tion of contents available on the Web. They enhance the engagement
among the users and the online platforms through algorithmic personal-
ization. Injecting non-natural interactions consequently cannot have only
beneficial effects. Indeed, amplifying and exaggerating human behaviors
leads to either the spread of extreme point of views (e.g. polarized or
controversial opinions) or the discrimination or mistreatment of a specific
group of individuals. In this thesis, we pose the attention on the impor-
tance of auditing and mitigating the “algorithmic bias” generated by a
recommendation system, emphasizing its role on the networked interac-
tions of users and contents. Through empirical evidences we highlight
how the social graph, presenting biased network topology, when used as
input, can impact the algorithmic recommendations. This analysis allows
to add a perspective on the long-term impact of algorithmic suggestions,
leading to design a simulation model able to explain the “feedback-loop”
generated on social networks. Auditing the algorithmic bias facilitates the
design of strategies able to mitigate algorithmic risks in recommendation,
such as radicalization and unfairness. The results found in this thesis raise
critical observations about the impact of recommendation algorithms, and
hints of the need to design systems able to mitigate biases embedded in
data and algorithms, considering both short and long-term perspectives.
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Resumen
Los sistemas de recomendación representan un instrumento clave para
vehicular el consumo de contenidos disponibles en la Web. Mejoran el
vı́nculo entre los usuarios y las plataformas en lı́ne a través de la perso-
nalización algorı́tmica. En consecuencia, la inyección de interacciones no
naturales no tiene sólo efectos positivos. La amplificación y exageración
de los comportamientos humanos conduce a la difusión de puntos de vis-
ta extremos (por ejemplo, opiniones polarizadas o controvertidas) y a la
discriminación o el maltrato de un grupo especı́fico de individuos. En esta
tesis, se pone la atención en la importancia de auditar y mitigar el ”sesgo
algorı́tmico” generado por un sistema de recomendación, enfatizando su
función en las interacciones en redes de usuarios y de contenidos. A través
de evidencias empı́ricas evidenciamos cómo el grafo social, que presenta
una topologı́a de red sesgada, puede impactar en las recomendaciones al-
gorı́tmicas, cuando se utiliza como input. Este análisis permite añadir una
perspectiva sobre el impacto a largo plazo de las sugerencias algorı́tmi-
cas, llevando a diseñar un modelo de simulación que permite de explicar
el “feedback-loop” por las mismas en las redes sociales. La comprobación
del sesgo algorı́tmico facilita el diseño de estrategias capaces de mitigar
los riesgos algorı́tmicos en la recomendación, como la radicalización y la
injusticia. Los resultados obtenidos plantean observaciones crı́ticas sobre
el impacto de los algoritmos de recomendación, e insinúan la necesidad
de diseñar sistemas capaces de mitigar los sesgos incorporados a los datos
y a los algoritmos, teniendo en cuenta tanto las perspectivas a corto como
a largo plazo.
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Resum
Els sistemes de recomanació representen un instrument clau per vehicu-
lar el consum de continguts disponibles a la web. Milloren el compromı́s
entre els usuaris i les plataformes en lı́nia mitjançant la personalització
algorı́tmica. Per tant, la injecció d’interaccions no naturals no només té
efectes positius. L’amplificació i l’exageració dels comportaments hu-
mans condueix a la difusió de punts de vista extrems (per exemple, opi-
nions polaritzades o controvertides) o a la discriminació o el maltracta-
ment d’un grup especı́fic d’individus. En aquesta tesi, es posa l’atenció
en la importància d’auditar i mitigar el ”biaix algorı́tmic” generat per un
sistema de recomanació, emfatitzant-ne la funció en les interaccions en
xarxes d’usuaris i continguts. A través d’evidències empı́riques eviden-
ciem com el graf social, que presenta una topologia de xarxa esbiaixada,
pot impactar en les recomanacions algorı́tmiques quan s’utilitza com a
input. Aquesta anàlisi permet afegir una perspectiva sobre l’impacte a
llarg termini dels suggeriments algorı́smics, portant a dissenyar un model
de simulació que permet explicar el ”feedback-loop” generat per aquestes
a les xarxes socials. Aquesta anàlisi va facilitar el disseny d’estratègies
capaces de mitigar els riscos algorı́tmics en la recomanació, com ara la
radicalització i la injustı́cia. Els nostres resultats plantegen observacions
crı́tiques sobre l’impacte dels algorismes de recomanació, i insinuen la
necessitat de dissenyar sistemes capaços de mitigar els biaixos incorpo-
rats a les dades i als algoritmes, considerant tant les perspectives a curt
com a llarg termini.
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Sommario
I sistemi di raccomandazione rappresentano uno strumento fondamentale
per veicolare il consumo dei contenuti disponibili sul Web. Questi si-
stemi migliorano il coinvolgimento degli utenti e delle piattaforme online
attraverso la personalizzazione tramite algoritmi di intelligenza artificiale.
Iniettare interazioni non naturali, tuttavia, non ha solo effetti benefici. In-
fatti, amplificare ed esagerare i comportamenti umani porta alla diffusione
di punti di vista estremi (ad esempio, opinioni polarizzate o controverse)
e alla discriminazione o al maltrattamento di un gruppo specifico di indi-
vidui. In questa tesi, poniamo l’attenzione sull’importanza di verificare e
mitigare il “bias algoritmico” generato da un sistema di raccomandazione,
enfatizzando il suo ruolo nelle interazioni in reti di utenti e di contenuti.
Attraverso evidenze empiriche si evidenzia come la rete sociale distorta,
se usata come input, possa avere un impatto sulle raccomandazioni. Que-
sta analisi permette di aggiungere una prospettiva sull’impatto a lungo
termine dei suggerimenti automatici, portando a progettare un modello
di simulazione in grado di spiegare il “feedback-loop” generato sulle reti
sociali. Inoltre, la valutazione dei bias algoritmici facilita la progettazio-
ne di strategie in grado di mitigare effetti dannosi nelle raccomandazioni,
come la radicalizzazione e le disparità. I risultati di questa tesi sollevano
osservazioni critiche sull’impatto dei sistemi di raccomandazione e ac-
cennano alla necessità di progettare soluzioni in grado di mitigare i bias
incorporati nei dati e negli algoritmi, considerando prospettive sia a breve
che a lungo termine.
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1
Introduction

1.1 Context

Information Technologies have a crucial influence on the way people get
access to online content. Spotify can count 460M of monthly active users,
while Twitter 216M, TikTok reaches even 1B. In these scenarios, it be-
comes challenging for customers to find the right product to consume or
video to watch due to the growing volume, variety, and growth speed of
items online. Artificial Intelligence (AI) algorithms became a pivotal in-
strument to solve these kind of tasks, by understanding user’s needs, and
supporting her for the next decision to take (e.g. what to consume or what
to buy) while browsing through Online Social Platforms (OSPs). The in-
troduction of these intelligent systems into the OSPs’ personalisation rep-
resents indeed a key factor to guarantee increases in user engagement and
long-term retention [RRS11, AMA+20, QCJ18, ZHW+19]. Specifically,
Information Retrieval (IR) and Recommender Systems (RS) algorithms
are the engines of these features.

IR and RS models can infer user behavior, grasping similarities with
other individuals using the same OSPs, to eventually filter out and se-
lect items that a user might like. Based on the personalization task, the
following categorization of OSPs can be proposed: the platform can be
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a “content sharing website” like Spotify or YouTube, in which the cru-
cial task is recommending the next song, video (e.g. “What To Watch
Next”) or playlist (e.g. “Weekly Discovery”) to keep the users interact-
ing with the online service. It can also be a ”social networking website”,
like Facebook (e.g.“People you may know”) or Twitter (e.g. “Who To
Follow”) which, suggestions of new friend to connect with or to follow,
are a great boost for the growth of the user network, expanding the list
of user friends and increasing the chances of connecting with different
individuals. In both scenarios, a recommendation algorithm is defined
as successful if able to personalize the most the user experience, eval-
uated in terms of metrics such as accuracy or click-through rate (CTR)
[WWY15, KJJ18]. This point of view results to be narrow, and loses the
perspective on issues that also affect sociotechnical aspects involved in
the personalization. Only recently, it has been possible to detect how RS,
while optimizing for accuracy, can embed and exaggerate human-biases
included in either the algorithm design or training data. It becomes crucial
then, for both practitioners and scholars, to consider the sociotechnical
implications due to the injection of different types of stereotypes or be-
liefs into the life cycle of a AI solution based, like recommender systems
[SG21, MSWVW20].

Several are the examples of harmful actions triggered by an algorith-
mic recommendation or ranking. For example, Amazon has been de-
veloping a recruiting engine to filter applicants resumes with the aim of
automating the search for top talent. It was only just before deploying
that the company realized its automated system was not rating candidates
in a gender-neutral way. Indeed, women were discriminated because the
data used to training the model was a collection of the last 10 years of
received resumes, which were coming mostly from male candidates, re-
flecting a male dominance across the tech industry [Das18]. The selection
algorithm was under-exposing women, which represents a minority in the
tech industry, reinforcing the stereotype already existing in society.

Unfairness against minorities is not the only harm experienced through
recommendation algorithms. Indeed, if not moderated, the algorithm out-
come can represent a medium for controversial or even toxic content
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[AG05, SPGK19]. For example, YouTube recommendation algorithm
has shown to be affected by the radicalized interactions happening on
the platform. In particular, it has been observed how communities pre-
senting huge volumes of interactions upon controversial topics may lead
the recommendation algorithm to be biased, driving the neutral or non-
polarized users into the ”rabbit hole” of controversial content [LZ20].
Among many, these examples highlight how “algorithmic bias” repre-
sents an emergency that needs to be addressed. There is an urgency to
characterize, but also design, new solutions able to detect and mitigate
harmful and discriminative actions stimulated by the interactions between
the user and the recommendation output. However, introducing new bias-
aware algorithms remains a challenging task because they have to be built
up on existing user-centric methods, thought to optimize quite different
metrics, like accuracy or relevance [Kle18, WWB+21, KMR17a]. More-
over, aspects related to time and space are transversal in these settings and
cannot be underestimated into the design of large-scale RS. Static view of
the problem formulation is not sufficient, since it lacks of perspective on
the recurrent user-item interactions. Indeed, OSPs are characterized by
continuous interactions between user and items, which open to new algo-
rithmic challenges, faced when trying to either study inequalities incor-
porated in the output, but also when trying to reduce any harmful effect
on the long term. It becomes crucial then to target long-term goals coping
with fairness, transparency and accountability, and designing a system
that dynamically addresses sociotechnical issues in which data may be
received sequentially (e.g. streaming data).

1.2 Research Goals

The scope of this thesis lies at the intersection of Recommender Systems
and Computational Social Science. The main goal of this manuscript is to
characterize and mitigate the impact of the human biases involved into the
design and training of recommendation algorithms. Specifically, we ana-
lyze the impact of human beliefs and stereotypes embedded into the RS,
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characterizing the phenomena impacting the algorithmic output and then
proposing strategies to incorporate bias-aware metrics into either during
(in-processing) or after (post-processing) the training. To do so, we follow
a multiple stakeholders’ perspective for the analysis of RS [AAB+19], in
which both consumers (e.g. users) and providers (e.g. whom producing
content) are considered. To leverage this dual perspective, we use net-
work data structures, which allow to smoothly perform analysis between
users and recommendation algorithms. Through the manuscript the net-
work representation is indeed the recurrent element binding our different
contributions.

In the case of “social networking website”, users can be represented
as social graph, in which two nodes (u, v) are connected because of their
online friendship, and receive suggestions through recommendation algo-
rithms.

Also, “content sharing website”, in which sequential interactions hap-
pen between users and suggested content, allows to build a network of
content, displaying the dependencies between recommended items. In
this case, the algorithm output can be designed as a video-to-video net-
work presenting connections where an edge (u, v) exists if it is possible
to jump from content u to content v through a recommendation.

(a) Network of Content (b) Network of Users

Figure 1.1: Network Representation of User and Video interactions
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In this manuscript network representations are key components to
characterize and mitigate the different type of harmful algorithmic biases
stimulated by the RS. For the “social networking website”, we monitor
homophily into the social graph, showing how it plays a key role im-
pacting the level of inequality generated by the output exposure. Thanks
to the insights extracted by studying the network of users, we shed the
light on the direct impact of human bias over the algorithm, expressed
in terms of disparate exposure among the users. To extend this analysis
and study the indirect impact of the algorithmic effect over the network of
users, we introduce a new simulation model, able to give insights on the
long-term scenario, in which multiple interactions between user and algo-
rithm are generated. We investigate the “feedback-loop” generated by the
RS, through a simulation model, capturing the interplay between network
of users, recommendation algorithm, and user feedback. Characterizing
the sequential interactions between user and algorithms through a simula-
tion framework allows us to design new strategies able to mitigate similar
kinds of structural bias in “content sharing website”. Indeed, we devise
new algorithms to reduce structural bias in “what-to-watch-next” recom-
mender systems, modifying the sequential interactions between user and
content. Specifically, we study how a radicalized group of users, included
in the training of the RS, can eventually have an impact on the sequential
browsing of the output, generating a “rabbit-hole” of radicalized content
in which a user may be stuck in. Mitigating the algorithmic bias in an
online fashion opens to design methods able to deal with data coming
in batches and streaming. For this reason, we investigate strategies to
maintain bias-aware constraints over the output, able to deal with input
streaming data. Specifically, the challenge in this work is to design al-
gorithms that include bias-aware constraints able to deal with the “price
of fairness”, which represents the impossibility to generate an outcome
that maximizes fairness and accuracy at the same time. This constraint
encouraged us to design new techniques able to minimize the bias with
a relatively small loss in relevance. The proposed solutions are tested
in settings fitting both “social networking website” and “content sharing
website” scenarios.

5



i
i

“main” — 2022/7/21 — 17:21 — page 6 — #26 i
i

i
i

i
i

1.3 Thesis Contribution
In this thesis we study and characterize Algorithmic Bias in Recommender
Systems, introducing metrics to quantify the biases included in the recom-
mendation output and proposing strategies to mitigate those biases. The
research outcome is divided in two parts: (1) the first part focuses on pre-
senting the background and the recent state of the art; (2) the second part
focuses on characterizing algorithmic bias in PRS; (3) the third part fo-
cuses on proposing strategies to mitigate algorithmic biases in W2W and
in presence of streaming data.

Part 1: Background and State of the Art
The chapters of this part are needed to present the current state of the art
connected to our work and introduce related definitions.

Chapter 2. In this chapter we present the background on recommender
systems, algorithmic polarization and algorithmic fairness.

Chapter 3. In this chapter we review the state of the art related to char-
acterisation and mitigation of harmful algorithmic biases in OSPs, such
as algorithmic polarization and discrimination.

Part 2: Bias in People Recommender Systems
In the 2nd Part we first analyze the impact of user homophily in PRS, after
one round of recommendations. Then, we propose a simulation model to
capture long-term effects of homophily over the same type of algorithms.

Chapter 4. We investigate the exposure of minorities in people rec-
ommender systems in social networks. Specifically, we consider a bi-
populated social network, i.e., a graph where the nodes belong to two
different groups (majority and minority) and, by applying state-of-the-art
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Figure 1.2: Thesis Structure
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people recommenders, we analyze how disparate exposure can be ampli-
fied or mitigated by different levels of homophily within each subgroup.
We start our analysis on real-world social graphs, where the two sub-
groups are defined by sensitive demographic attributes such as gender or
age. Our findings suggest that the way and the extent to which people rec-
ommenders can produce disparate exposure on the two subgroups, might
depend in large part on the level of homophily within the subgroups. To
verify these findings, we move our analysis to synthetic datasets, where
we can control characteristics of the input social graph, such as the size
of the minority and the level of homophily. Our results show that ho-
mophily plays a key role in promoting or reducing exposure for different
subgroups under various combinations of dataset characteristics and rec-
ommendation algorithms. The work described in this chapter has been
published in:

[FBBC20] Fabbri, F., Bonchi, F., Boratto, L., & Castillo, C. (2020, May).
The effect of homophily on disparate visibility of minorities in people rec-
ommender systems. In Proceedings of the International AAAI Conference
on Web and Social Media (Vol. 14, pp. 165-175).

Chapter 5. In this chapter we investigate PRS effects, introducing a
model to simulate the feedback loop created by multiple rounds of inter-
actions between users and a link recommender in a social network. This
allows us to study the long-term consequences of those particular recom-
mendation algorithms. Our model is equipped with several parameters
to control (i) the level of homophily in the network, (ii) the relative size
of the groups, (iii) the choice among several state-of-the-art link recom-
menders, and (iv) the choice among three different user behavior models,
that decide which recommendations are accepted or rejected. Our ex-
tensive experimentation with the proposed model shows that a minority
group, if homophilic enough, can get a disproportionate advantage in ex-
posure from all link recommenders. Instead, when it is heterophilic, it
gets under-exposed. Moreover, while the homophily level of the minor-
ity affects the speed of the growth of the disparate exposure, the relative
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size of the minority affects the magnitude of the effect. Finally, link rec-
ommenders strengthen exposure inequalities at the individual level, exac-
erbating the ”rich-get-richer” effect: this happens for both the minority
and the majority class and independently of their level of homophily. The
model and the results described in this chapter are presented in:

[FCBC21] Fabbri, F., Croci, M. L., Bonchi, F., & Castillo, C. (2021).
Exposure Inequality in People Recommender Systems: The Long-Term
Effects. In Proceedings of the International AAAI Conference on Web
and Social Media (ICWSM ’22).

Part 3: Mitigating Bias in Recommender Systems
In the 3rd part of the manuscript we propose strategies to mitigate radi-
calisation pathways generated through the W2W and solutions to reduce
unfairness in scenarios dealing with streaming data.

Chapter 6. Recommender systems typically suggest to users content
similar to what they consumed in the past. If a user happens to be ex-
posed to strongly polarized content, she might subsequently receive rec-
ommendations which may steer her towards more and more radicalized
content, eventually being trapped in what we call a “radicalization path-
way”. In this chapter, we study the problem of mitigating radicaliza-
tion pathways using a graph-based approach. Specifically, we model the
set of recommendations of a “what-to-watch-next” recommender as a d-
regular directed graph where nodes correspond to content items, links to
recommendations, and paths to possible user sessions. We measure the
“segregation” score of a node representing radicalized content as the ex-
pected length of a random walk from that node to any node representing
non-radicalized content. High segregation scores are associated to larger
chances to get users trapped in radicalization pathways. Hence, we define
the problem of reducing the prevalence of radicalization pathways by se-
lecting a small number of edges to “rewire”, so to minimize the maximum
of segregation scores among all radicalized nodes, while maintaining the
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relevance of the recommendations. We prove that the problem of finding
the optimal set of recommendations to rewire is NP-hard and NP-hard to
approximate within any factor. Therefore, we turn our attention to heuris-
tics, and propose an efficient yet effective greedy algorithm based on the
absorbing random walk theory. Our experiments on real-world datasets in
the context of video and news recommendations confirm the effectiveness
of our proposal. The algorithms and results presented in this chapter have
been published in:

[FWB+22] Fabbri, F., Wang, Y., Bonchi, F., Castillo, C., & Mathioudakis,
M. (2022, April). Rewiring What-to-Watch-Next Recommendations to Re-
duce Radicalization Pathways. In Proceedings of the ACM Web Confer-
ence 2022 (pp. 2719-2728).

Chapter 7. We study the problem of extracting a small subset of repre-
sentative items from a large data stream. In many data mining and ma-
chine learning applications, such as social network analysis and recom-
mender systems, this problem is formulated as maximizing a monotone
submodular function subject to a cardinality constraint k. In this work, we
consider a setting where data items in the stream belong to one of several
disjoint groups and investigate the optimization problem with an addi-
tional fairness constraint that limits selection to a given number of items
from each group. We propose efficient algorithms for this fairness-aware
variant of the streaming submodular maximization problem. In particular,
we first give a (1

2
− ε)-approximation algorithm that requires O(1

ε
· log k

ε
)

passes over the stream for any constant ε > 0. In addition, we provide a
single-pass streaming algorithm that has the same (1

2
− ε) approximation

ratio when an unlimited buffer size and post-processing time are permit-
ted, and discuss how to adapt it to practical settings with bounded buffer
sizes. Finally, we demonstrate the efficiency and effectiveness of our pro-
posed algorithms on two real-world applications, namely maximum cov-
erage on large graphs and personalized recommendation. The results and
the algorithmic solutions presented in this chapter have been published in:

[WFM21] Wang, Y., Fabbri, F., & Mathioudakis, M. (2021, April). Fair
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and representative subset selection from data streams. In Proceedings of
the Web Conference 2021 (pp. 1340-1350).

1.4 Additional Output
During my studies I had the opportunity to contribute also to scientific
articles, which are not part of this manuscript.

Session-Based RS. Session-based recommender systems consider the
evolution of user preferences in browsing sessions. Existing studies sug-
gest as next item the one that keeps the user engaged as long as possible.
This point of view does not account for the providers’ perspective. In this
work, we highlight side effects over the providers caused by state-of-the-
art models. We focus on the music domain and study how artists exposure
in the recommendation lists is affected by the input data structure, where
different session lengths are explored. We consider four session-based
systems on three types of datasets, with long, short, and mixed playlist
length. We provide measures to characterize disparate treatment between
the artists, through a systematic analysis by comparing (i) the exposure
received by an artist in the recommendations and (ii) their input repre-
sentation in the data. Results show that artists for which we can observe
a lot of interactions, but offering less items, are mistreated in terms of
exposure. Moreover, we show how input data structure may impact the
algorithms’ effectiveness, possibly due to preference-shift phenomena.

[AFBS21] Ariza, A., Fabbri, F., Boratto, L., & Salamo, M. (2021, March).
From the Beatles to Billie Eilish: Connecting Provider Representative-
ness and Exposure in Session-Based Recommender Systems. In European
Conference on Information Retrieval (pp. 201-208). Springer, Cham.

Algorithmic Bias in double-sided markets. Machine Learning (ML)
techniques have been increasingly adopted by the real estate market in
the last few years. Applications include, among many others, predicting
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the market value of a property or an area, advanced systems for manag-
ing marketing and ads campaigns, and recommendation systems based on
user preferences. While these techniques can provide important benefits
to the business owners and the users of the platforms, algorithmic biases
can result in inequalities and loss of opportunities for groups of people
who are already disadvantaged in their access to housing. In this work,
we present a comprehensive and independent algorithmic evaluation of a
recommender system for the real estate market, designed specifically for
finding shared apartments in metropolitan areas. We were granted full ac-
cess to the internals of the platform, including details on algorithms and
usage data during a period of 2 years. We analyze the performance of
the various algorithms which are deployed for the recommender system
and asses their effect across different population groups. Our analysis
reveals that introducing a recommender system algorithm facilitates find-
ing an appropriate tenant or a desirable room to rent, but at the same time,
it strengthen performance inequalities between groups, further reducing
opportunities of finding a rental for certain minorities.

[SFC+21] Solans, D., Fabbri, F., Calsamiglia, C., Castillo, C., & Bonchi,
F. (2021, July). Comparing Equity and Effectiveness of Different Algo-
rithms in an Application for the Room Rental Market. In Proceedings of
the 2021 AAAI/ACM Conference on AI, Ethics, and Society (pp. 978-988).

RS preserving users’ privacy. Rigorous data protection regulations su-
ch as EU/UK General Data Protection Regulation (GDPR) has made the
demand for technology that protects sensitive user data ever more impor-
tant. Federated Learning (FL) has become a pivotal formulation for dis-
tributing the computation of machine learning models to improve online
services personalisation and at the same time preserving the privacy of
the users. In contrast to traditional centralised learning approaches where
private user data is transmitted to a central server, in an FL setting compu-
tations are distributed among multiple devices which first train the model
locally and then share their local updates with a global server, coordinat-
ing the decentralized computation between the devices.
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In this decentralised setting, ensuring that models can be trained fast
and accurately is a pivotal task. This is especially true for recommen-
dation algorithms, which, if slow to train, may provide poor quality rec-
ommendations and result in a loss of user engagement. In this work, we
propose FedFNN, a novel algorithm which speeds up the training of mod-
els in decentralised environments.

In the FL setting, only a subset of users are sampled for training at
each epoch. FedFNN uses supervised learning to predict weight updates
of unsampled clients, training the model on the local updates of the sam-
pled clients. We show the effectiveness of our approach on both real and
synthetic data. In particular, we show that: (i) FedFNN is on average
5x faster than the current state-of-the-art and can provide a better level
of accuracy with the same number of iterations; (ii) through syntheti-
cally generated data we observe that the number of client clusters does
not affect the performance of FedFNN; (iii) FedFNN is more robust to
the problem of poor client availability and in such scenarios converges
faster than the current state-of-the-art.

Fabbri F., Lui X. McKenzie1 J., Twardowski B. &Kurniawan Wijaya T.,
FedFNN: Faster Training Convergence Through Update Predictions in
Federated Recommender Systems, 2022, under review
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2
Background

2.1 Recommender Systems

Recommender systems are a core functionality in online social platform,
which the task is to personalize user experience, trying to predict next
user responses or interactions to alternatives mostly based on people’s be-
haviour, taste or feedback. A crucial distinction of RS can be done by
type of interactions. Indeed, the interactions can either be: (i) item-to-
user, which are between users and contents, like in the case of stream-
ing content services (e.g. Netflix, Spotify, YouTube); (ii) user-to-user,
in which the users interact between themselves in a social network (e.g.
Twitter, LinkedIn, Facebook). The first one can be while the second one
in “social networking website”. In the case of user-to-user interactions
on “content sharing website”, “People Recommender Systems” (PRS)
[GP16, LFS17b] are one of the most popular algorithms, in which the
recommendations are based on the network topology of the social net-
work. In the case of item-to-user, “What To Watch next” (W2W) rec-
ommenders are one of the popular solutions, included in systems where
the suggested item is usually consumed immediately after the current one
[ZHW+19, SJC+20]. Fig. 2.1 shows an example of W2W recommenda-
tions, popular in the case of video streaming platforms.
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Figure 2.1: What-To-Watch-Next Recommender System in an online
video streaming platform.

Both types of interactions, and consequently both recommendation
frameworks PRS and W2W, are strongly dependent on the type of features
included in the input data, which will affect the choice of the model de-
sign. Indeed, depending on the features, we can distinguish between: (i)
collaborative filtering models, which (CF) try to predict future user be-
havior using interactions between user and recommended contents; (ii)
content-based models (CB), which predict the user behavior, based on
similarities between content. In the Figure 2.2 we present an example to
better explain these differences. In the left figure, following the CF ap-
proach, a new content is recommended to user B, because of similar tastes
with user A (e.g. user A and B have interacted with same videos). While
in the right side, based on CB, a new content is recommended to user B
only because of similarities between content.

Collaborative Filtering. In CF the attention is on the interactions’ ma-
trix M, which has on the rows the set of N users U = {u1, ..., uN} and
on the columns the set of M contents I = {i1, ..., iM}. From all the
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(a) Collaborative Filtering (b) Content Based

Figure 2.2: Collaborative Filtering (CF) and Content Based (CB) Ap-
proaches for Recommender Systems.

possible interactions M, it is possible to extract the subset of the ones
observed Mobs ⊆ M where mui 6= 0 if the user u has interacted with
the item i. The final task is to predict for each user, the missing inter-
actions M̂ = M r Mobs. Also, interactions of the users can be either
binary, also called implicit feedback or categorical (e.g. ratings from 1
to 5), also called explicit feedback. Here we focus on implicit feedback.
Generally, CF algorithms can be applied to both W2W and PRS, and the
most popular one is based on matrix factorization, which the final goal
is predict the missing user-item interactions, through the generation of
low-dimensional embeddings to represent both users and items.
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We show first the of W2W (user-ot-item), indicating with vu and vi
respectively the user and content embeddings, the objective is to find a set
of low-dimensional vectors able to minize the following objective func-
tion:

min
mui∈M

∑
u,i

(mui − vTuvi)
2

The inner product between the user and item embeddings represents the
estimated relevance of the item i for the user u. Starting from the formula
above is possible to derive different approaches, which differs based on
the applications and the data characteristics. Among many, Alternating
Least Squares (ALS) that works with implicit feedback, represents the
standard in CF [HKV08], which the objective is represented by:

min
mui∈M

∑
u,i

(mui − vTuvi)
2 + λ(||vu||2 + ||vi||2)

Adapting this algorithm to PRS can be done just through the definition
of the input matrix. Indeed, the matrix of interactions is given by the
adjacency matrix A of a social graph G = (V,E), where V represents
the set of users in the graph and E the set of edges, where aui = 1 if an
edge between user u and user i exists [SC18]. The task in this case is to
predict the next link in the graph and the CF algorithm can still be used to
generate low dimensional vectors of users, which are now on both rows
and columns. For the item-to-user models the similarity between users
is captured in order to find out similar history in contents’ consumption,
while in the user-to-user models the similarity is captured in order to find
similar patterns in friendships in the social graph.

2.2 Algorithmic Harms in Recommender Sys-
tems

In the literature, RS have be usually designed and thought to be “user-
centric”, with the objective to maximize user personalization. However,
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this strategy has been proven to fall short in evaluating the influence of
the RS output upon other stakeholders involved in the platforms, like
content providers and platforms’ owner, which are actively involved in
the recommendation process. In a recent survey, it has been introduced
the multi-stakeholder framework in recommender systems, which opens
to design recommenders able to include not only the consumers, but also
the providers perspective into the design of the algorithms [AAB+19]. As
stated in the survey:

Definition 1. (Stakeholder). A recommendation stakeholder is any group
or individual that can affect, or is affected by, the delivery of recommen-
dations to users.

In this thesis we find evidences of issues affecting different stake-
holders included in the pipeline by different user-centric approaches. We
also propose strategies to mitigate those. Through this perspective it is
possible to highlight socio-technical issues affecting one or many stake-
holders. Indeed, having this user-centric approach which solely focuses
on optimizing accuracy, different forms of human-bias can be included
and spread through a personalization algorithm [EBD19].

In this manuscript we embrace the multistakeholder perspective, ana-
lyzing how different forms of bias are distributed and perpetuated within
the algorithm output. The definition of bias proposed by Baeza-Yates is
the one fitting the most our setting [BY18]:

Definition 2. (Bias). From a statistical point of view, bias is a systemic
deviation caused by an inaccurate estimation or sampling process. As a
result, the distribution of a variable could be biased with respect to the
original, possibly unknown, distribution.

In agreement with this definition of bias, a recent survey refined the
categorization of different potential sources and forms of biases included
in a system implementing Machine Learning solutions [MMS+21]. In
particular, a categorization of three different groups of bias is proposed:

(i) from Data to Algorithm, in which the biased distribution of input
data leads to a biased outcome;
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(ii) from Algorithm to User, in which the system design is biased by
human beliefs and affect the output;

(iii) from User to Data, which is present when a biased user behavior
affects the data collection.

In this thesis we cope with biases at the intersection of the first two cate-
gories, also called “Algorithmic Bias”. This phenomenon is generated by
a combination of effects of training data and algorithmic design.

2.2.1 Algorithmic Polarization
Online Social Platforms (OSPs) are well-known to be characterized by
power-law distributions [BA99] which naturally lead to differences in
nodes’ degree distribution. Those inequalities in networks derives from
social structures that can create groups and patterns of inequality medi-
ated by information access (e.g. links distribution) [BLM14].

A well-known phenomenon that quantifies those inequalities is called
“rich-get-richer” effect, which shows how nodes degree grows sub-linearly,
i.e. nodes with higher degree grows faster than smaller ones. This growth
benefits only a subset of nodes that will get most of the connections, leav-
ing the vast majority with few numbers of connections [EK10].

Node degree represents also a social capital which, if allocated dis-
proportionally, can lead to discrimination in recommendation [VSFC21,
Bur00].

Indeed, ML algorithms play a crucial role in the distribution of this
social capital, since they can modify and augment the original network
topology, potentially stimulating the differences in attention among nodes,
affecting the level of information access among users. Effects character-
izing segregated network are reconnected to Social Network Polarization,
in which users tend to reinforce their own beliefs and point of views,
distributing their connections and interactions far from different opinions
[GW17]. Several evidences show how algorithmic curation results not
only in boosting Online Polarization, but the creation of “filter bubbles”
[Par11]:
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Definition 3. (Filter Bubble). Filter Bubble results in a type of tunnel
vision, effectively isolating people into their own cultural or ideological
bubbles.

2.2.2 Algorithmic Fairness

Algorithmic Fairness research focuses on characterizing and mitigating
possible human biases that algorithms may exaggerate either inherited
from the data or derived by its design [BS14, Cho17]. A universal fair-
ness definition cannot be delineated , since even if rigorous statistically
defined, it happens to be unfeasible to apply in all the possible contexts
[Nar18]. Preferring one among the others is highly dependent by the con-
text and recent work also proves the impossibility of meeting at the same
time more than one definition of Algorithmic Fairness in a supervised
learning setting [KMR17b].

According with the extensive literature produced recently in Fairness
in Machine Learning, especially in supervised learning, we can distin-
guish three statistical non-discrimination criteria [BHN19, CR18]:

Definition 4. (Independence). This Criterion requires the sensitive char-
acteristic to be statistically independent of the score. This definition im-
plicitly assumes there are no intrinsic differences between different pro-
tected group features, which represents a big limitation, since it never
holds in reality.

Definition 5. (Separation). This criterion overcomes the first one, de-
manding independence within each stratum of the population defined by
target variable, not only globally without taking into account the outcome
of the target. This criterion is defined through conditional probably over
the requirement fairness over the target.

Definition 6. (Sufficiency). This criterion assumes the condition for which
the score incorporates the sensitive characteristic useful to predict the
target, and conditions the output to be independent from that.
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Those criteria are partially limited by the possibility to observe the
relationship existing between sensitive outcome, target and output vari-
ables. As an alternative of these criteria, the definition of individual fair-
ness has been introduced, which aims for the following: “similar individ-
uals should be treated similarly” [DHP+12]. The challenge in this case,
is to define the right distance metrics in order to define similarity between
users (highly dependent on the context).

The seminal work developed addressing Algorithmic Discrimination
in Machine Learning have stimulated the growth of this new research di-
rections also in the area of IR and RS [EBD19]. Taking into account
multiple stakeholders into the design of a recommender system, while
considering the central role of personalization, make the problem setting
quite different from the one seen in ML. For this reason, different defini-
tions of fairness have been introduced, allowing to have different points
of view on the unfairness concerning one or many stakeholders. We can
categorise two distinct groups of definitions: consumers oriented fair-
ness (C-Fairness) and providers oriented fairness (P-Fairness) [Bur17].
The former (C-Fairness) poses the focus on disparities in recommenda-
tion quality towards the user, while the latter (P-Fairness) emphasizes the
disparity in attention of items’ providers.

The target, in the case of C-Fairness, is to generate recommendation
scores independent from the sensitive attribute of the user [KAAS18].
Assuming s(vu,vi) is the recommendation score for the interaction of
user u with item i, we can express the objective of a fair strategy for the
consumers as:

s(vu,vi) ⊥ au

Where au is the sensitive attribute of the user u and vu and vi the user
and item embeddings.
In the case of P-Fairness, the focus in posed on the attention received by
the items, grouped by different providers. In this direction, few seminal
works in Information Retrieval have fostered the introduction of new met-
rics, introducing the notion of exposure (i.e. attention normalised by the
position bias), with the objective of minimizing disparities among groups.
The well-established definition of disparate exposure is the following:
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Definition 7. (Disparate Exposure). The notion of “disparity in expo-
sure” quantifies the amount of attention allocated to protected subgroups
in a ranking [SJ18]. Taking into account the position bias and relevance
score generated through the query, the exposure is defined as:

Exposure(Gk|P(q)) =
1

|Gk|
∑
i∈Gk

Exposure(ik|pq,i)

Which is the average attention received by items belonging to group
Gk, dependent from the position P(q) of the items given the query q.

This definition is included in ML frameworks as input constraint of
the algorithm, in order to avoid any correlation of the sensitive attribute
with the final attention distributed among items.
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3
State of the Art

3.1 Characterizing Harmful Algorithmic Cu-
ration

Multiple studies have proven how discussions on OSPs happen to be
polarized and communities presenting different opinions tend to rein-
force their own beliefs instead of getting connected to individuals pre-
senting different point of views. Polarized interactions, occurring much
frequently in presence of controversial topics, have an impact not only on
the natural growth of the social networks, but it also affects the algorith-
mic output of all the ML solutions based on user activities. This effect
can eventually benefit the proliferation of harmful social phenomena like
echo-chambers or filter bubbles [AG05, CRF+11, BY20, LMF+07]. Dif-
ferent studies attempted to characterize the algorithmic effect and distin-
guish it from the natural interactions, and given the rapid flourishing of
new OSPs and along with them new algorithmic solutions, the research
area is vividly growing.

Among many, one popular approach is to audit the OSPs through fake
agents or socket puppets [BAFL21, TPS+21, PZB+22]. In this direction,
we mention three recent contributions, focusing on YouTube and Twitter.
The first one is a computational framework, auditing the impact of algo-
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rithmic curation on Twitter, showing how the tendency to show new and
popular content may increase inequality in exposure of followed users
[BAFL21]. In this direction, a recent work shows the filter bubbles gener-
ated by YouTube and how those can be bursted through debunking agents
[TPS+21]. This study bring evidences also upon the strong presence of
content sharing misinformation on the popular video sharing platform .
Similar findings have been highlighted on the same platform, confirming
how showing timely pseudoscientific content may redirect those on the
search results page and not on the personalized sections [PZB+22].

Another relevant line of research introduces algorithmic models which,
with assumptions coherent to real-world scenarios, try to explain the ef-
fect of algorithmic curation [SPGK19, CSE18, CM20a]. Particularly rel-
evant for this manuscript a recent work [SPGK19], that proposes a mod-
ified version of the opinion dynamics model of bounded confidence, to
explain how Algorithmic Bias can boost polarization among user. In a
recent paper, the ”filter bubble” hypothesis is included in a mathemati-
cal framework showing the impact and responsibilities OSPs have upon
users, since slightly tweaking the algorithmic filtering can drammatically
increase user polarization [CM20a]. A simulation study modeling the al-
gorithmic effect [CSE18] goes in the same direction, highlighting how
a recommendation algorithm can homogenize user behavior without in-
creasing utility when generating multiple rounds of training. The authors
also define the effect of algorithmic confounding, expressed as the plat-
form attempts to model user behavior without accounting for recommen-
dations.

3.2 Mitigating Algorithmic Polarization

A significant effort has been devoted also for mitigating negative effects
produced by the interaction between polarized communities and algorith-
mic recommendations. The proposed algorithms are based on the trade-
off between the relevance of the outcome and the metric, to optimize to
reduce the harmful effect of the algorithm. Approaches modifying the al-
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gorithmic effect either suggest non-harmful contents to the users or pro-
poses to augment the underlying network topology.

We introduce here few recent promising methods for the first class
of algorithms, while for a discussion on methods modifying directly the
network topology, we direct the user to Section 6.2.

Recently a bandit algorithm has been proposed to reduce polarization
in personalized recommendations, by allowing the user to constrain the
distribution from which content is selected [CKSV19]. Also, another ap-
proach proposes to reduce polarization through antidote data included in
the input, to improve the social desirability of recommender system out-
puts [RGC19]. Finally, the work by [TRG21] introduces FRediECH, an
echo chamber-aware friend recommendation approach that learns users
and echo chamber representations from the shared content and past users’
and communities’ interactions.

3.3 Studying Algorithmic Discrimination in OSPs
Evidences of discrimination through ranking and recommendation meth-
ods raised society awareness on the responsibility OSPs have on the users
involved in an ML lifecycle. Ranking systems are technologies with a
direct impact on the searcher (final user) and the searched (final output)
1. The algorithmic harmful effects are studied either through a black-box
approach, i.e. auditing the online platforms without having access to the
underlying algorithms, or through a white-box approach, which the target
is to reproduce from scratch the solution implemented within OSPs.

A seminal contribution in this area comes from [MAD+17], showing
evidences the role of user demographics over differential satisfaction in
search engines queries. The study finds significant differences in usage
patterns and evaluation metrics for different users’ groups based on age
and gender.

After that contribution, two macro-areas of research have flourished
around two applications: automated hiring systems (AHSs) and the role

1”gender bias” evidences from https://www.bbc.com/news/newsbeat-32332603
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of their vendors [WGJ+21, SMDE20, RBKL20]; online housing markets
and the role of different stakeholders [AES+20, SFC+21].

In the case of AHSs, we can identify Pymetrics as one of the main
vendors, established as one of the firsts to include ML fair algorithms into
the pipeline to recommend job candidates to companies. The first work
by [WGJ+21] audits the platform to then proposes recommendations for
the vendors, including transparency, introduction of new legal standards
shaping statistical tests and more inclusive de-biasing techniques. The
practices of Pymetrics and similar platforms have been challenged also
by [SMDE20], which emphasize how AHSs frameworks, in the current
state, are unfeasible and far from the socio-legal context of the UK, and
more generally not oriented towards EU regulations. Another work, in a
similar spirit, investigates both technical and legal perspectives of AHSs.
The focus in this contribution is posed on the risks and trade-offs faced
by the vendors, emphasizing also in this case how algorithmic de-biasing
techniques need to cope with anti-discrimination laws [RBKL20].

Online housing markets are closely related to intimate platforms, in
which listers (who is renting/selling) and seekers (who is renting/buying)
try to find a mutual match, which can be highly driven by demographics
or other sensitive information [HTBL18].

Among the first ones, the work by [AES+20] analyzes seekers’ per-
ception upon online advertising and search-result ranking in different hous-
ing portals in the U.S. Their results show evidences of discrimination
against gender and geographic location reflected in the ranking of prop-
erties. In the same direction, our recent work shows how the recommen-
dation algorithm differs in performances across groups, further reducing
opportunities of finding opportunities for some minorities in both sides,
either as a seeker or a lister. Among the aforementioned, this study is the
only one not belonging to the black-box cases, since we have access to
the underlying algorithms running within the online platform.

In the case of white-box approaches, many are the domains in which
the bias propagating through a recommender system has been analysed,
such as, MOOCs recommendation [BFM19], books suggestions [ETA+18]
and next song prediction [AFBS21]. This line of work involves the em-
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pirical evaluation of biases involving both consumers and providers, in
relationship to other phenomena like popularity bias and catalogue size
[ETA+18, AFBS21, ESM19]. One influential work by [ETA+18] anal-
yses the effect of age and gender on the utility of the recommendations
produced through publicly available datasets in the case of collaborative
filtering methods. The paper shows also how there is no evidence about
the influence of the relative sizes of users’ group on the recommenda-
tions. In our recent work we find evidences in contrast with the previous
findings, at least for the relative sizes of groups of providers [AFBS21].
We show how, in the case of session-based RS, a music artist presenting
a popular but small catalog may receive a reduced amount of exposure if
compared to artists presenting a popular but big catalog.

3.4 Mitigating Discrimination in RS

In this section we present the most relevant methods mitigating algo-
rithmic discrimination while adopting ranking-based ML solutions, with
a particular emphasis on RS. Methods proposed in the literature of IR
to fight algorithmic discrimination pose the focus on the attention re-
ceived by the searched elements [ZYS21]. We can distinguish between
approaches reducing the observed unfairness (e.g. disparate exposure)
and the ones questioning the probabilistic law which generated the rank-
ings.

In the first line of research, we can find similar contributions aiming at
re-allocating attention among searched items including a fairness defini-
tion coherent with the context (e.g. dataset and application) [ZC20, SJ18].
While, when proposing probabilistic solutions, those can be distinguished
based on the assumptions on data characteristics, such as the probability
law or the input level of bias [CMV20, GSB21]. For an extensive lit-
erature review on Algorithmic Fairness and IR methods, we point the
reader towards a survey by [ZYS21] and a critical review of fair rankings
[PPM+22].

Harmful biases in RS can be mitigated at three different stages of the
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recommendation pipeline: (i) sanitizing the input data (pre-processing);
(ii) modifying the model generating the final output (in-processing); mod-
ifying the final output generated through the original recommender (post-
processing).

One of the first lines of work connects with the criteria of statisti-
cal independence, described in the previous chapter, popular in settings
of supervised classification. The work by [KAAS18] is the first one
introducing the concept of recommendation independence, proposing a
in-processing algorithm which generates embeddings independent of the
sensitive attribute associated to the user. Another seminal work [ZHC18],
with the aim of reducing unfairness for the consumers, introduced a tensor-
based recommendation algorithm. This new formulation, with the as-
sumption that the latent features are tainted by the bias of demographics,
allows to isolate and extract those sensitive features through adding regu-
larizer in the loss function, sanitizing the “sensitive dimensions”.

A similar approach has been proposed also for settings unexplored be-
fore, such as graph embeddings and reputation-based RS [BH19, RB20].
In the former, the network embeddings are generated independent of the
intersection of multiple sensitive attributes associated to the node [BH19].
The independence is reached through an adversarial loss which the objec-
tive is to build embeddings orthogonal to sensitive features of the node.
While in the latter the recommendation independence is treated as a con-
straint in the input data, introducing the measure of disparate reputation
[RB20].

Another popular line of research connects with the criteria of calibra-
tion of predictions in ML. In particular, the objective of the mitigation
strategies in this area try to redistribute the outcome of the output, in a
fair manner with respect to some data characteristics. A seminal work is
the one by [Ste18], which the objective is to optimize the KL-divergence
between distribution of movies genres in recommendation and input data
for each user. In a similar spirit, a paper by [YH17] attempts to equalize
bias in preferences among the group of users before and after the recom-
mendations. They propose new fairness metrics optimized in-processing,
based on two forms of underrepresentation: population imbalance and
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observation bias.
Calibration of recommendation equalizing fairness among stakehold-

ers is also performed through post-processing techniques. For exam-
ple, a seminal paper by [LB18] considers P-fairness in the Kiva.org plat-
form, which grants loans to low-income entrepreneurs. They propose a
re-ranking function (based on xQuad), which balances recommendation
accuracy and fairness, by dynamically adding a personalized bonus to
the items of the uncovered providers [CNPS11]. Finally, a recent work
[MMB+18] connects the fairness of the providers with the level of pop-
ularity. More specifically, the work shows through re-ranking, how it is
possible to define, in a two-sided marketplace, personalized fairness defi-
nitions considering the user tolerance towards more fair contents. Artists
are divided in ten bins based on their popularity, and a fairness metric that
rewards recommendation lists that are diverse in terms of popularity bins
is defined. Several policies are defined to study the trade-offs between
user-relevance and fairness, adapting the level of fairness depending on
user tolerance.
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Part II

Bias in People Recommender
Systems
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4
The Effect of Homophily on Exposure in

People Recommender Systems

4.1 Introduction

People recommender systems, also known as contact recommenders or
who-to-follow link recommenders [GP16, SCC18], suggest to users pos-
sibly relevant new connections. These algorithms are a core functionality
of every social media platform, as they contribute to stimulate new in-
teractions, ultimately affecting the growth of the network [SSG16]. As
such, they can play a key role in building the “social capital” of individu-
als (e.g., their number of followers). Besides general-purpose social net-
working platforms, people recommenders are also widely used to suggest
connections between users in other environments, such as employment
services [HKW+14, LOR+16b, LOR+16a, HVR+16, DMP+16], educa-
tional services [VMG16, ZML+16], co-workers suggesting [GRW09] or
expert finding [HLT16, SD13, GAC+13].

It is thus of great importance to study potential algorithmic bias that
might lead to disparate exposure of individuals. For instance, [SSG16]
analyzed the abrupt changes in Twitter’s network structure after the intro-
duction of the “Who to Follow” feature, and found that users across the
popularity spectrum benefitted from the recommendations; however, the
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most popular users profited substantially more than average. Similar find-
ings were reported by [DGM10], who conducted a large-scale user study
on IBM’s Social-Blue social network site. While these two works focus
on the inequalities at the level of individual users, some authors have anal-
ysed a glass ceiling1 effect for women in social networks [NGL+16]. For
instance, a recent work by [SRC18] investigates the role of gender in or-
ganic and artificial growth of social networks, using a large social graph
from Instagram, where women are the majority class. Their theoretical
model predicts a glass ceiling at the expense of a minority, but their em-
pirical observations show glass ceiling against the female majority. They
explain this apparent contradiction by the different level of homophily of
the two groups.

In this chapter, we provide a systematic analysis of the effect of ho-
mophily on disparate exposure of minorities in people recommender sys-
tems.

Homophily, the tendency of people to connect with others who are
similar to them, is one of the main driving forces behind the organic
growth of a social network, thus strongly influencing the main input of
people recommender systems, i.e., the structure of the network. The next
toy example shows the potential effect of homophily on the recommenda-
tions provided by an algorithm.
Example. Figure 4.1 reports two cases. In both cases, the starting so-
cial graph is composed of ten nodes: 7 in the majority group (blue), and
3 in the minority group (red). However, in the bottom case the minor-
ity exhibits a stronger level of homophily: users belonging to the minor-
ity (red) group tend to connect among themselves more than the ones in
the network on the top case (a more formal definition of homophily will
be given in Section 4.3). We assume a “preferential attachment” recom-
mender, which suggests to a generic node u as node to follow, the one
with the highest number of followers from the set of nodes at distance 2,
i.e., nodes followed by her neighbors. The networks in the center column
contain the recommendations produced, where the color of an edge is the

1This is a metaphor referring to a sort of invisible barrier that prevents a group of
people from rising in a hierarchy.
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Figure 4.1: Example depicting the role of homophily in a recommender
system. The social graphs on the left are composed of ten nodes: 7 in the
majority group (blue), and 3 in the minority group (red). The graphs are
directed: a link (u, v) indicates the fact that u follows v. The graphs in the
center reports the links recommended using the color of the node which
is recommended to be followed.
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same as that of the node who gets recommended to the source user. It
is evident that homophily allows minorities to get much more exposure
with respect to a less homopilic scenario (i.e., in the bottom network of
the mid column, the number of red edges has increased with respect to
the one above it, while that of the blue nodes has decreased).
Chapter contributions and roadmap. In this chapter, we characterize
the exposure given by different recommendation algorithms to different
groups of users, as a function of their relative sizes and the homophily
of each group. We perform experiments with both real-world social net-
works, with groups defined by sensitive features such as gender or age,
and synthetic graphs where we can explore different combinations of ma-
jority/minority sizes and homophily. This study sheds light into phenom-
ena that suggest we must measure and mitigate negative effects of recom-
mender systems, including user discrimination and unfairness [EBD19]
and a network’s possible lack of resilience [GMS13]. Specifically, our
work makes the following contributions:

• We provide a systematic study of the disparate exposure produced
by contact recommendation algorithms, on real social networks and
on synthetic datasets;

• We show that homophily plays a key role in the exposure given to
different groups; when the minority is homophilic, there is a dis-
parate exposure in favor of the minority class; when the minority is
not homophilic, the disparate exposure is in favor of the majority
class;

• Consistently with the literature, our analysis shows that recom-
menders amplify the rich-get-richer phenomena, thus introducing
inequality of exposure. Such observed inequality, however, is strong-
er within the minority class compared to the majority class, espe-
cially when the minority is homophilic. This is explained by the
fact that the minority class is over-represented in the sub-population
of most recommended nodes when the minority is homophilic, and
under-represented when the minority is not homophilic;
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• We show that, when taking into account the initial in-degree, nodes
in the minority class are disadvantaged in terms of exposure, re-
gardless of the homophily of the minority class. In other words,
among nodes with similar in- degree, the ones that belong to the
majority class are likely to be recommended more;

• Finally, we show that the relative size of the minority does not im-
pact exposure as much as homophily does.

The rest of the chapter is structured as follows. Section 4.2 discusses
related work. Section 4.3 introduces the metrics and algorithms we con-
sidered. Section 4.4 presents the experiments performed on real graphs
and Section 4.5 those on synthetic graphs. Finally, Section 4.6 presents
our conclusions.

4.2 Related Work
In of the first work, a large-scale proprietary dataset is analyzed, con-
taining a complete snapshot of Twitter and its “Who-To-Follow” recom-
mender [SSG16]. Specifically, they study user behavior before and after
the introduction of the recommender system in this social platform. They
found a faster in-link growth for popular nodes, with a sub-linear pop-
ularity effect. In contrast with our work, user demographics were not
taken into account and consequently, the role of homophily was not con-
sidered. We also consider more than one algorithm and measure the ef-
fect of the recommender at both the individual and the group level. Our
study suggests that node popularity (in our case, represented by the in-
degree) is not the only crucial factor needed to characterize the rich-the-
richer phenomenon, since popular nodes are treated differently according
to the group they belong to (i.e., majority or minority) and the level of
homophily in a group.

A recent work by [DGM10] investigated how recommendations can
affect the global and local structure of a network. They focused on dif-
ferences in topological features such as degree distribution skewness and
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node betweenness. In contrast, in our study we consider more proper-
ties of the nodes (such as the group they belong to and the exposure they
obtain), in addition to characteristics such as node degree that have been
previously studied. Another contribution was able to prove a glass ceil-
ing effect in social networks [NGL+16]. They investigated how perceived
gender and online exposure can be linked, showing that users perceived
as female experience a “glass ceiling” effect, similar to the one that makes
it harder for women to reach higher positions in companies. This study
was a seminal work around discrimination in social media interactions,
which exaggerates stereotypes present in society. Our work tries to go
in-depth into this phenomenon, trying to understand how network inter-
actions along with recommendation algorithms might lead to disparate
exposure of minority groups (e.g., how homophily affects the generated
recommendations).

Through a study using synthetic data, [LKJ+17] analyzed the charac-
teristics of minorities of different sizes in a bi-populated graph, introduc-
ing homophily in a network growth process. We extend the model they
proposed to perform analysis of recommendation algorithms on synthetic
data.

Recently, a work by [KGW+18] studied disparate effects introduced
by homophily, such as disparities in ranking distribution over subgroups,
but without investigating its consequences on recommendations. This
work strongly motivates ours, showing the research gap related to rec-
ommender systems effects.

A recent work by [SRC18] investigate the role of gender in organic
and artificial growth of social networks, using a large social graph from
Instagram, where female are the majority class. Their theoretical model
predicts a glass ceiling at the expense of a minority, but their empirical
observations show glass ceiling against the female majority. They rec-
onciliate this apparent contradiction by extending their theoretical model
in order to keep in consideration the different level of homophily of the
two groups: in particular, a homophilic minority can flip the glass ceiling
effect to come at the expense of the majority. Our systematic analysis
confirms this intuition.
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Related to our findings is also the few-get-richer effect phenomenon,
which explains how the minority class tends to be top-ranked by popularity-
based systems. This phenomenon has been analytically proven by a re-
cent work by [GGM19] and, although not embedded in the algorithms we
considered, it finds empirical evidence in our experiments.

4.3 Preliminaries

We consider a bi-populated and directed social network, represented as
a graph G = (V,E, c) where V is the set of nodes, E ⊆ V × V is the
set of directed edges, such that an edge (u, v) ∈ E indicates the fact that
u follows v, and c : V → {V1, V2} is a function assigning each node to
one of two classes V1, V2 which partition V . We denote by s1 the fraction
of nodes belonging to the first class (i.e., s1 = |V1|/|V |) and by s2 the
fraction of nodes belonging to the second class (i.e., s2 = 1− s1).

We also consider a people recommender system represented by a func-
tion ` : (V ×V ) \E → [0, 1], which associates to each non-existing edge
(u, v) a score `(u, v) ∈ [0, 1]. From a probabilistic standpoint, `(u, v) can
be interpreted as the probability for such recommendation to create a new
connection that is accepted by u. In each round of recommendation, the
system recommends to each node u ∈ V a set R(u) of other nodes to
follow, where |R(u)| = k, for a given parameter k ∈ N+. Typically, R(u)
will contain top-k nodes v w.r.t. `(u, v).

Exposure. In this work, we consider one single round of recommenda-
tion and focus on how many times each node v appears in the recommen-
dation sets of all the other nodes. We call this quantity exposure of v and
denote it

ψ(v) = |{u ∈ V |v ∈ R(u)}|.

In particular, we are interested in the fraction of recommendations that
each of the two classes of nodes, V1 and V2, receives. The exposure of a
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specific subgroup i can be expressed as:

Vi =
1

k|V |
∑
v∈Vi

ψ(v) (4.1)

Disparate Exposure. Considering the size of the two groups inside the
graph, we can also refer to them as minority m and majority M , which
respectively present relative size sm and sM . Then, the simplest way for
defining differences in exposure between those two groups of users, used
in ranking systems [SJ18], is overall exposure normalized by group size,
namely:

∆(V) =
Vm

sm
− VM

sM
(4.2)

We call this measure disparate exposure: this measure ranges in
[− 1

sM
, 1
sm

] and it is zero when the exposure (fraction of recommenda-
tions) received by the minority is equal to the relative size of the minor-
ity. Therefore, a disparate exposure close to zero represents a situation
in which no group is favored, large negative values indicate the minor-
ity class is given a disproportionately large exposure, and large positive
values indicate the majority class is given a disproportionately large ex-
posure.

Homophily. Homophily is a well-known phenomenon in network sci-
ence and can be expressed as the tendency of people to connect to similar
people, or in our case, of people in a group to connect to people in the
same group. We measure homophily with respect to a random configu-
ration, inspired by work analyzing dyadicity in signed networks [PB07]:

hi =
|Eii|
|Ei.|

− si (4.3)

where Eii = {(u, v) ∈ E|u ∈ Vi ∧ v ∈ Vi} and Ei. = {(u, v) ∈ E|u ∈
Vi}. This measure expresses the difference between the number of ob-
served intra-group edges and the expected number if edges were created
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at random. It ranges in the interval (−si, 1 − si]. A group is called ho-
mophilic if the tendency to connect to nodes of the same group is stronger
than expected (hi > 0), heterophilic when this tendency is weaker than
expected (hi < 0), and neutral if the number of edges towards each group
is consistent with the proportion of nodes in each group (hi = 0).

Recommendation algorithms. We consider four different methods for
link recommendation and investigate the node exposure generated by those.
One is a baseline random recommender, and the other three are state-
of-the-art algorithms, representative of three distinct families of meth-
ods (based on topology, random walks, and collaborative filtering), that
we have chosen because of their popularity and performance [LFS17b,
SC18].

ADA: Network Topology Based. Among the different heuristics which
aim to define similarity between nodes looking at the graph topol-
ogy, we select the Adamic-Adar coefficient (for short “ADA” in the
rest of the chapter), method that penalizes connections with high
degree nodes.

SLS: Random Walks Based. As representative of random-walks based
approaches, we use SALSA (Stochastic Approach for Link-Structure
Analysis) (“SLS” in the rest of the chapter), which is at the basis of
the who-to-follow recommender at Twitter [SSG16]. Recommen-
dation of a generic link is defined as the probability of the source
node to jump to the target one, rather than to any other node in the
graph.

ALS: Collaborative Filtering Based. Connections among nodes can
be considered as implicit feedback in a collaborative filtering ap-
proach. An Alternating Least Squares algorithm (“ALS” in the rest
of the chapter) is selected to perform recommendations [HKV08].
New links are suggested based on latent features extracted from the
adjacency matrix.
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RND: Random baseline. As baseline, we consider a random recom-
mender (“RND” in the rest of the chapter), which picks recommen-
dations uniformly at random from the candidate nodes at distance
2.

Aligned with the common practice among social network providers,
such as Facebook2 and Twitter3, which suggest users with mutual con-
nections, recommendations in our experiments are chosen from the set of
missing links at distance two (friends of friends).

4.4 Observations on Real-World Graphs
In this section, we analyze data from two social networking sites, ex-
ploring how the role of homophily on groups of nodes can play a role in
the generation of recommendations. We remark that this experimentation
is made difficult because there are very few social networking datasets
where nodes can be partitioned into classes based on demographic at-
tributes.

4.4.1 Datasets

TUENTI. Known as the “Spanish Facebook,” Tuenti has been a popular
social networking site in Spain. The data we use includes some demo-
graphic information about users [LVKK16].

Nodes are users and edges are defined by wall-post interactions, i.e., a
user posting on another user’s “wall.” Specifically, a directed edge (u, v)
exists if user u posted at least t times on the wall of a user v. To remove
sporadic interactions, we consider t = 3 as a threshold. This network has
8,983,560 nodes (users) and 17,830,103 edges.

In order to have a fair comparison of the performance with different
datasets, we decided to create samples of equal size. Finally, the sample

2https://www.facebook.com/help/163810437015615
3https://help.twitter.com/en/using-twitter/account-suggestions
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size was set to 500,000 nodes, for computational reasons and due to the
large amount of experiments we performed. To sample, we follow the
work by [WSK+17] and use a random walk based algorithm, which has
been shown to preserve characteristics that are of interest in our analysis,
such as the relative sizes of minority and majority classes, as well as their
level of homophily. The resulting network contains 500,000 nodes and
2,813,744 edges.

Next, we create different bi-populated networks using different parti-
tions by gender and age, whose basic characteristics are reported in Table
4.1 and Figure 4.2 (in the table and figure, datasets are ordered by de-
creasing homophily of the minority):

• TUENTI-G is the network partitioned by gender. It is character-
ized by an absence of homophily in both groups and, among the
three partitions of the original dataset, it is the one with the largest
minority class (females, sm = 0.39).

• TUENTI-A16 is the network partitioned by age with 16 as cut-
off. This dataset presents two groups which are both homophilic,
with a smaller minority than the previous case (younger than 16,
sm = 0.30).

• TUENTI-A30 is also based on a partition by age with 30 as cut-off.
It presents a very small minority (older than 30, sm = 0.04) and it
lacks homophily in both groups.

POKEC. This is a popular social networking site in Slovakia. The data is
publicly available4, anonymized, and includes some demographic infor-
mation.

In total, the network contains 1,632,640 nodes (users) and 22,301,602
edges, where each edge represents a “follow” relationship, which can be

4https://snap.stanford.edu/data/soc-Pokec.html

47



i
i

“main” — 2022/7/21 — 17:21 — page 48 — #68 i
i

i
i

i
i

Name Attribute |V | |E| sm hm hM

TUENTI-A16 age 500000 2813744 0.30 0.42 0.14
POKEC-A21 age 500000 8635662 0.46 0.34 0.19
TUENTI-A30 age 500000 2813744 0.04 0.08 0.02
TUENTI-G gender 500000 2813744 0.39 0.02 0.07

Table 4.1: Characteristics of real-world social networks analyzed: dataset
name, attribute used for partitioning, number of nodes, number of edges,
proportion of the minority size, homophily of the minority, and ho-
mophily of the majority.

non-symmetrical. We adopt the same sampling approach used for Tuenti
and produce a network containing 500,000 nodes and 8,635,662 edges.

We create the two classes of nodes by partitioning by age with a cut-
off of 21. The resulting dataset, dubbed POKEC-A21, presents quite
well-balanced groups (minority is younger than 21, sm = 0.46), with the
minority more homophilic than the majority.

Figure 4.2 reports the in-degree (number of followers) distribution of
the minority and majority classes in each social network. We can ob-
serve that in the datasets with a homophilic minoritiy (TUENTI-A16 and
POKEC-A21), the minority class exhibits an advantage in terms of high
in-degree nodes.

4.4.2 Disparate Exposure
We next apply the four link recommendation methods to all our networks,
recommending to each node k = 5 other nodes; then we measure expo-
sure, i.e., how many times each node appears in the recommendations to
other nodes. Table 4.2 reports disparate exposure ∆(V) between the mi-
nority and majority class, defined as in Eq. 4.2: a value of ∆(V) > 0
indicates that the minority class is favored in terms of exposure, while
∆(V) < 0 indicates that the majority class is favored. A first observation
we can draw is the following:
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Network Method ∆(V) ∆(V<q90) ∆(V<q80) ∆(V>q90) ∆(V>q80)

TUENTI-A16
ALS 0.517 0.184 0.086 0.681 0.630

sm = 0.3
SLS 0.264 0.069 0.014 0.464 0.396

hm = 0.42
ADA 0.134 0.071 0.048 0.249 0.209
RND 0.149 0.155 0.154 0.119 0.123

POKEC-A21
ALS 0.900 0.645 0.401 0.985 0.944

sm = 0.46
SLS 0.571 0.312 0.196 0.731 0.653

hm = 0.34
ADA 0.328 0.259 0.208 0.434 0.386
RND 0.310 0.322 0.309 0.285 0.282

TUENTI-A30
ALS -0.276 -0.397 -0.433 -0.224 -0.306

sm = 0.04
SLS -0.350 -0.446 -0.504 -0.251 -0.328

hm = 0.08
ADA -0.359 -0.436 -0.501 -0.200 -0.273
RND -0.333 -0.423 -0.503 -0.105 -0.197

TUENTI-G
ALS -0.264 -0.323 -0.292 -0.267 -0.178

sm = 0.39
SLS -0.291 -0.348 -0.324 -0.261 -0.200

hm = 0.02
ADA -0.212 -0.252 -0.235 -0.157 -0.122
RND -0.149 -0.186 -0.168 -0.086 -0.062

Table 4.2: Disparate exposure (∆(V) introduced by different recom-
menders: ∆(V<q90) and ∆(V<q80) refers to the same measure when re-
moving the top-10% and top-20% of in-degree nodes, respectively, from
each class; while ∆(V>q80) and ∆(V>q90) refers to the measure computed
on the top-20% and top-10% in-degree nodes of each class.
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Figure 4.2: In-degree (number of followers) distribution of the minority
and majority classes in each social network. We can observe that in the
datasets with a homophilic minoritiy (TUENTI-A16 and POKEC-A21),
the minority class exhibits an advantage in terms of high in-degree nodes.

Observation 1. In graphs with a homophilic minority, there is
a disparate exposure in favor of the minority class. When the
minority is not homophilic, the disparate exposure is in favor of
the majority class. This holds for all the link recommendation
methods we tested.

Although the observation above holds true regardless of the recom-
mender we tested, we observe that the effect is more evident with the two
more sophisticated methods, ALS and SLS. For instance, in the POKEC-
A21 dataset, with a minority almost as large as the majority (sm = 0.46),
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a homophilic minority (hm = 0.34) and a slightly homophilic majority
(hM = 0.19), the ALS recommender gives high exposure to the minority
(∆(V) = 0.9).

We conjecture that this result might depend on the fact that, when
in presence of a homophilic minority, the minority class presents more
nodes with high in-degree than the majority. Thus Table 4.2 also reports
what happens when we exclude the top-20% (column ∆(V<q80)) and the
top-10% (column ∆(V<q90)) high in-degree nodes from each of the two
classes.

As expected, when we remove hubs from the analysis, the disparate
exposure in favor of the minority class in the datasets with homophilic mi-
nority (TUENTI-A16 and POKEC-A21) gets reduced substantially. This
is confirmed by the columns ∆(V>q80) and ∆(V>q90) which focus only on
the top-20% and the top-10% high-degree nodes, for which the disparate
exposure in favor of the minority is very high. Of course this does not hold
for the RND recommender, which depends much less on the in-degree of
the nodes than the other recommenders.

When considering the TUENTI-G network partitioned by gender, the
size of the minority is much smaller than that of the majority (sm =
0.39), and both groups are characterized by neutral homophily (neither
homophily nor heterophily). Under this setting, the distribution of ex-
posure harms the minority. For nodes with highest degree, the effect is
mitigated, but still indicating that minority nodes are receiving slightly
less exposure than what should correspond to them given their degree.
Consequently, excluding nodes with highest degree, the difference in ex-
posure is even stronger, showing that minority long-tail nodes are at a
disadvantage when compared to their peers in the other group.

TUENTI-A30 is characterized by the smallest minority (sm = 0.04),
and absence of homophily in both majority and minority groups. Under
this setting, similarly to what happened in the TUENTI-G network, the
minority receives less exposure (even more than in the TUENTI-G net-
work). Also in this case, the effect is slightly mitigated when looking at
the nodes in the top of the in-degree distributions and exaggerated for the
rest of the graph.
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Observation 2. The hubs existing in the minority group receive
large exposure. In contexts in which the minority is homophilic,
this exaggerates the disparate exposure in favor of the minority.
In contexts in which the minority is not homophilic, this helps
slightly mitigate the disparate exposure against the minority.

This last consideration motivates further investigation of the interplay
between in-degree, exposure, and the belonging to the minority or the
majority class.

4.4.3 Rich-get-richer Effect

We next study inequality of exposure of nodes within each of the two
classes. Figure 4.3 reports Lorenz Curves5 of exposure of nodes (ψ) and
in-degree (denoted as din) inside the two subgroups. Lorenz Curves are
a popular graphical tool to show the cumulative distribution of a variable
inside a population, emphasizing the differences with respect to a hypo-
thetical random distribution. They are widely used to evidence inequality
in wealth distribution among countries or more generally, comparing the
wealth distribution of subpopulations [Cha12].

These plots present on the x-axis the percentile of the population and
on the y-axis the fraction of cumulative distribution of the wealth. For
instance a point (0.8, 0.2) indicates that 80% of the population has 20% of
the wealth. In case of absolute inequality, all the wealth is assigned to only
one person and the line correspond to the x-axis. In the case of perfect
equality, the wealth is distributed equally along the sample, corresponding
to the x = y diagonal. In Figure 4.3, the “wealth” corresponds to the in-
degree (denoted as din) of nodes and to their exposure (ψ) with respect
to the recommendations produced by the ALS and SLS methods inside
the two classes. We report only two methods for sake of space, the other
methods produce similar results.

5https://en.wikipedia.org/wiki/Lorenz curve
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Figure 4.3: (Best seen in color.) Lorenz Curves depicting inequality.
Dashed lines represent recommendations, solid lines represent in-degree.
The minority is in red, the majority in blue. Recommendations intro-
duce more inequality than the degree distribution, and this inequality is
stronger in the minority class.
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The first (well-known) observation on Figure 4.3 is that link recom-
menders amplify the intrinsic “inequality” of the in-degree distribution, as
shown by the difference existing between the solid lines and the dashed
lines. This rich-get-richer effect is innate in the link recommendation
task, thus not surprising.

Instead, more surprising is the fact that such effect is stronger within
the minority than within the majority class (difference between the dashed
blue line and the dashed red line) and this is consistent among all datasets
and all recommenders, although being more evident in datasets with a
homophilic minority. This confirms what we observed in Table 4.2, i.e.,
the fact that there are a few hubs that receive most of the exposure in the
minority class.

Observation 3. Recommenders amplify the rich-get-richer phe-
nomena observed for in-degree, thus introducing more inequality
of exposure. Such observed inequality is stronger within the mi-
nority class compared to the majority class, especially when the
minority is homophilic.

4.4.4 Most Visible Nodes
We investigate further these observations by showing the fraction of nodes
of the minority class that belong to the most visible nodes. Figure 4.4 re-
ports the fraction of nodes belonging to the minority class that are among
the most visible ones on each dataset and for each recommender. For
instance, in the left-most point of Figure 4.4(b) we can see that in the
POKEC-A21 dataset, while the minority class represents 46% of the pop-
ulation, it rises to 58-65% (depending on the recommender) when check-
ing only the 10% of most visible nodes. A similar observation holds for
the other graph with homophilic minority (TUENTI-A16).

However, on graphs in which the minority is not homophilic, the trend
is completely overturned. For instance, in the TUENTI-G dataset (Fig-
ure 4.4(d)) while the minority class represents 39% of the overall popula-
tion, when focusing only on the sub-population of the 10% most visible
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nodes, the minority class is under-represented: i.e., 32-37% (depending
on the recommender).

Observation 4. The minority class is over-represented in the sub-
population of most recommended nodes when the minority is ho-
mophilic, and under-represented when the minority is not ho-
mophilic.
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(c) TUENTI-A30
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(d) TUENTI-G

Figure 4.4: Portion of the minority class in the top nodes, sorted by ψ.

Most of these observations seen so far are rooted in the fact that in the
datasets with a homophilic minority (TUENTI-A16 and POKEC-A21),
in-degree influences differences in exposure distribution. However, it is
interesting to ask whether two nodes with similar in-degree, one from the
minority and one from the majority class, have similar exposure.
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4.4.5 Individual Fairness
We now adopt an individual fairness standpoint, i.e., the principle ac-
cording to which similar individuals should receive a similar treatment
[DHP+12]. In our setting, being similar means having similar in-degree
(e.g., a similar number of “followers” in a social networking site). There-
fore, we sort nodes by ψ/din, i.e., the number of times a node is recom-
mended divided by its in-degree.
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(c) TUENTI-A30
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Figure 4.5: Portion of the minority class in the top nodes, sorted by ψ/din.

Figure 4.5 shows that, contrarily to what is seen in Figure 4.4, if
we normalize by in-degree then nodes in the minority group are under-
represented among top nodes, regardless of the level of homophily of the
minority. For instance, in all graphs and all recommenders, if we take the
top-40% nodes by ψ/din, then the fraction of nodes belonging to the mi-
nority class is always below the dotted line, which represents the relative

56



i
i

“main” — 2022/7/21 — 17:21 — page 57 — #77 i
i

i
i

i
i

size of the minority in the network.

Observation 5. When taking into account in-degree, nodes in the
minority class are disadvantaged in terms of exposure, regardless
of the homophily of the minority class. In other words, among
nodes with similar in-degree, the ones that belong to the majority
class are likely to be recommended more.

4.5 Observations on Synthetic Graphs
Synthetic networks allow us to test the extent to which the observations on
real-world graphs hold for a wider range of configurations: in particular,
they allow us to control the level of homophily in the two groups and the
relative size of the minority (which would be impossible to do on real-
world graphs).

We next discuss how we generate syntectic networks.

4.5.1 Data Generation Process
Our goal is to generate bi-populated directed networks where we can con-
trol the homophily of each of the two groups and their relative size. This
is a non-trivial task. Our solution is inspired by the Biased Preferential-
Attachment model introduced for undirected graphs [LKJ+17], and that
we extend to produce directed graphs.

Under our model, the tendency to connect to other nodes is regulated
by in-degree distribution and in-process homophily. The latter, which
represents for each group the tendency to connect to same peers along the
process, is indicated by ρ, which is a non-negative coefficient bounded in
the interval (0, 1]. Nodes are partitioned into a minority m and a majority
M , where a generic node v is associated to the minority m with prob-
ability pm and to the majority M with probability pM = (1 − pm). In
the long run, these two probabilities correspond to the fraction of nodes
belonging to the two partitions. The value of ρ depends on the class of

57



i
i

“main” — 2022/7/21 — 17:21 — page 58 — #78 i
i

i
i

i
i

the source node, i.e., assuming u as new node to add with c(u) = m, ρuv
corresponds to hm if c(u) = c(v), otherwise ρuv = (1 − hm). Consid-
ering the in-process homophily values for the minority and the majority
group, respectively expressed as ρm and ρM , these two parameters are di-
rectly proportional to the observed homophily indicated as hm and hM .
In general, fixing ρ = 0.5 for one class generates a neutral group (h = 0),
ρ > 0.5 generates a homophilic group (h > 0) and, finally, ρ < 0.5 gen-
erates a heterophilic group (h < 0). The process designed to generate a
bi-populated graph G = (V,E, c) is the following:

1. Initialization. |V | = N is the network size and dout the number
of outgoing out-links from each new node (i.e., |E| = N × dout).
Then dout nodes are initialized, forming a fully-connected graph.
To reduce randomness, in the initialization phase there is no real
majority class, since the two groups are equally distributed.

2. Add node. A new node v is added to the graph, belonging to the
minority with probability pm.

3. Add edges. For the new node v, we generate dout out-links, each
one with the following probability that incorporates both in-process
homophily and rich-get-richer effect:

pu =
ρvu
(
din(u) + A

)∑
w∈V

ρvw
(
din(w) + A

)
The A constant, introduced in the original Biased Preferential At-
tachment model to avoid penalizing new nodes, is fixed to 1.

The process terminates when the graph reaches |V | = N .

4.5.2 Impact of Homophily
In this first set of experiments, we aim at investigating homophilic and
heterophilic situations for both groups. We keep the same minority/majority
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partition (sm = 0.3) with networks having 10,000 nodes each and, to
show more robust results, each configuration expressed in terms of (ρm, ρM),
is tested 10 times. Consequently, metrics computed over networks with
the same configuration are evaluated through their average. We generate
three distinct groups of configurations:

• S1. We create a neutral majority with ρM = 0.5, and vary the level
of homophily of the minority ρm ∈ [0.2, 0.9].

• S2. We create a neutral minority with ρm = 0.5, and vary the level
of homophily of the majority ρM ∈ [0.2, 0.9].

• S3. We create a homophilic majority and a homophilic minority,
testing 4 possible configurations of (ρM , ρm) in the set {0.7, 0.9}.

Figure 4.6 presents the overall exposure, ∆(V), given by the different rec-
ommenders, comparing the two settings in which a group is homophilic
but the other is not (S1 and S2). Looking at the ∆(V) obtained in con-
figuration S1 (left side in Figure 4.6), the minority indeeds obtains more
exposure when it is homophilic. In particular, the more the minority is
homophilic, the more exposure it gets. In contrast, if the minority is het-
erophilic, it is the majority that benefits in terms of exposure. Although
all the recommenders behave similarly, these effects are more evident in
ALS and SLS. In S2, the homophilic majority leads to an analogous ef-
fect; indeed when homophilic, it receives more exposure, while when
heterophilic, it facilitates the neutral minority to get more than their rep-
resentation (right side of Figure 4.6).

The analysis of the overall exposure in the case in which both groups
are homophilic (S3) is presented in the heatmap in Figure 4.7. The x-axis
represents ρM , while the y-axis reports the ρm values; each cell of the
matrix contains the values of ∆(V) under that setting. In case of neu-
tral homophily for both groups (ρ = 0.5), no disparate exposure is given
by any of the algorithms (except for ADA, who gives a slight advantage
to the minority). For the scenario in which both groups are highly ho-
mophilic (ρ = 0.9 and ρ = 0.7), the majority is slightly advantaged. The
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Figure 4.6: (Best seen in color.) Distribution of ∆(V) observed in S1
and S2. The minority comprises 30% of the nodes (sm = 0.3). In the
left plot, the majority is neutral and the heterophily/homophily of the
minority varies. In the right plot, the minority is neutral and the het-
erophily/homophily of the majority varies.

worst scenarios can be observed in cases of one extremely homophilic
class and neutral the other (top left and bottom right cells of each ma-
trix), which present the values of ∆(V) with strongest intensity in abso-
lute value (again, this phenomenon is especially emphasized by ALS and
SLS). These extremes cases capture a trend in each heatmap in the fig-
ure, which indicates that as soon as a group increases its homophily, it
increases its exposure.

To further confirm the role of homophily when considering expo-
sure received at individual level, as previously investigated for real data,
we focus on the ranking generated either by exposure ψ or by degree-
normalized exposure ψ/din. We look at the fraction of nodes belonging
to the homophilic class in the top-10% and top-20% of the most recom-
mended nodes. Since we are capturing the “rich-get-richer” and “individ-
ual fairness” phenomena we previously captured for the minority group,
in Figure 4.8 we report the results for S1. The first row of the figure shows
that a stronger homophilic tendency leads to present the homophilic class
in the highest positions of the recommendations, for all the algorithms.
While, looking at the second row, where nodes are ordered by exposure
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Figure 4.7: (Best seen in color.) Exposure ∆(V) computed over networks
characterized by different homophily of the minority ρm (y-axis) and ho-
mophily of the majority ρM (x-axis).

normalised by the in-degree, the effect is mitigated. In particular, for
ADA, the configuration with small homophily presents a minority still
underrepresented.

4.5.3 Impact of Minority Size

Synthetic networks also enable us to investigate how exposure varies with
the relative size of the minority in the graph. To do so, we generate
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a fourth group of configurations, S4. Keeping the minority homophilic
(ρm = 0.8) and the majority neutral (ρm = 0.5), we range the minority
size sm from 5% to 45%.
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Figure 4.8: Fraction of minority class in S1 in the top positions of rank-
ings ordered by exposure ψ (first row) and by degree-normalized exposure
ψ/din (second row).

Each configuration in S4, characterized by a different sm, corresponds
to a graph with 10,000 nodes and is generated 10 times (again, the results
we present are an average of those obtained for the 10 networks depicting
the same configuration). The observed homophily (hm) presents µ = 0.4
and σ2 = 0.01, showing that the data generation process is stable with
respect to the different hm.

In Figure 4.9, we report the ∆(V) obtained for each configuration.
We observe that being a small minority (sm = 0.05) can mitigate the ho-
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Figure 4.9: Distribution of ∆(V) for different minority sizes sm and a
homophilic minority (ρm = 0.8). The size of the minority does not have
an effect on exposure as dramatic as the effect of homophily.

mophily effect, while keeping the minority with a size much lower than
half of the graph (sm ∈ 0.1, 0.2, 0.25) can positively impact the final gain
in exposure. Despite these considerations, the size does not impact expo-
sure as much as homophily, since ∆(V), for each recommender, ranges in
a small interval.

Observation 6. The relative size of the minority does not impact
exposure as much as homophily does.
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4.6 Summary
In this Chapter we analyze through an empirical study the exposure of
minorities generated by the People Recommender Systems and how they
are impacted by the level of homophily in the social graph. The fact
that homophily plays a key role in the exposure that is given to a group,
sometimes regardless to the fact that a group may be a minority in the
network, is the main take-home message of this work. Also, the rich-get-
richer phenomenon stimulated by the algorithmic suggestions, appears to
be stronger within the minority class compared to the majority class, espe-
cially when the minority is homophilic. Normalizing our findings through
the in-degree, considered as measure of initial social capital, we show that
nodes in the minority class are constantly disadvantaged in terms of expo-
sure. Finally, we confirm our findings in real-world networks proposing a
new synthetic graph generator, which allows us to extend the analysis to
a wide range of configurations.

64



i
i

“main” — 2022/7/21 — 17:21 — page 65 — #85 i
i

i
i

i
i

5
Exposure Inequality in People
Recommender Systems: The

Long-Term Effects

5.1 Introduction

In the previous chapter we highlighted the harmful consequences of link
recommenders after one round of recommendations [FBBC20]. Such a
static picture can be limited as it does not study the consequential ef-
fects of the user behaviour which, by accepting or rejecting the recom-
mendations, can determine the future structure of the social network and
thus the exposure distribution. Specifically, multiple interactions between
users and recommendation algorithms tend to nourish a feedback loop:
i.e., the output generated by the recommendation algorithm is then fed as
future input for the next training of the recommender. In our setting, the
recommended new links which are accepted, modify the structure of the
network, thus constituting the input for the next cycle of link suggestions.
In the context of items recommendation, recent simulation-based studies
interested in the side-effects of collaborative filtering algorithms, show
how a similar feedback loop [MAP+20] impacts over user preferences,
stimulating the popularity bias [YHT+21]. Those works underline the
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Figure 5.1: Bird’s eye view of the simulation framework.

importance of providing models able to simulate the potential scenarios
which may be otherwise difficult to investigate.

Following a similar approach, but focusing on people recommenda-
tions, in this chapter we tackle the following research question: “which
impact can link recommendation algorithms have over the network struc-
ture and user exposure along multiple rounds of recommendations?”

Our contribution towards answering this question is a model able to
simulate the long-term consequences of the injection of new recommended
links into the network, reproducing the feedback loop triggered by the
multiple interactions between users and the link recommender. Figure 5.1
provides a bird’s eye view of our proposed simulation model.

Starting with a social network where the nodes are partitioned in sub-
groups, e.g., by means of protected attributes such as gender or race
(§5.3.1), a set of different link recommenders are applied to the network to
provide, at each iteration, k link recommendations to each user (§5.3.2).
The user at this stage may then decide to accept or reject the recommen-
dation. This decision is governed by three different stochastic user be-
havior models (§5.3.3). The rejected links are then discarded, while the
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new ones are included in the social graph. The new augmented graph will
then be the input to the next round of training of the recommender. De-
spite our models does not consider the organic growth of the social graph,
the simulations show that the injection of new links proposed by the rec-
ommendation algorithms can move the social graph far from the initial
configuration.
Contributions and findings. In this chapter we propose a simulation
model able to utilize several network configurations, user behaviors, and
recommendation models in order to study the long-term effects of people-
recommender systems in social networks. We quantify the long-term
disparate exposure generated by different initial network topologies, mi-
nority size and homophily level, and using different state-of-the-art link
recommenders, and different stochastic user behavior models. Our work
confirms and extends the preliminary theoretical insights provided by
[SRC18] and the empirical results of our previous chapter [FBBC20],
which was limited to one single round of recommendations.

Our findings are summarised as follows:

• Confirming the theoretical findings of a recent work by [SRC18],
our experiments show that, if the minority class is homophilic enough,
it can get an advantage in exposure from all link recommenders. If
the minority is heterophilic instead, it gets underexposed.

• While the previous observation is robust to all the recommenders,
the speed and magnitude of the disparate exposure along time differ
across recommenders.

• While the homophily of the minority affects the speed of the growth
of disparate exposure, the size of the minority affects its magnitude.

• The user behavior model (how recommendations are accepted or
declined) does not impact significantly the evolution of exposure as
much as the initial network configuration and the algorithm do.

• Some recommenders can strengthen exposure inequalities at the in-
dividual level: after a few iterations, most of the links are recom-
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mended towards a small subset of “super-star” nodes. This happens
for both the minority and the majority class and independently of
their level of homophily. Hence, in the long-term, the “rich-get-
richer” effect is exacerbated .

In the rest of this chapter, we first review the literature relevant to
our work in Section 5.2. Then, we introduce the simulation model in
Section 5.3. Our results are presented in Section 5.4. Finally, we conclude
this chapter in Section 5.5.

5.2 Related Work
In this section we discuss the literature most related to our work. We
divide the presentation into two topics: work dealing with inequalities in
social networks, and simulation-based studies in recommender systems.
Inequalities in social networks. In the previous chapter we observed, in
a “static” single round of recommendations, that homophily is a driving
force in shifting visibility distribution. In particular, we introduced the
concept of disparate visibility in a bi-populated network, showing how
effects such bias in rankings and rich-get-richer can get amplified by ho-
mophilic networks [FBBC20]. The main limitation of our previous study
is that it looks at one single round of recommendations, missing the long-
term effects.

A recent work by [LKW+19] shows that the perceptions about the
size of minority groups in social networks can be biased, often exhibiting
systematic over- or underestimation. Moreover, these biases can be ex-
plained by the level of homophily and by the size of the minority class.
Our work, is inspired by their insights, extending the analysis of the in-
equalities while the network is injected with new links driven by the rec-
ommendation output. We confirm their observations, showing how the
recommender algorithms can introduce even more inequality along the
time.

A pivotal contibution proposes methods for fairness-aware link analy-
sis, introducing techniques able to mitigate unfairness generated by Pager-
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ank [TPT+20]. Later, in §5.4, we will show that another popular random-
walk based recommender (i.e., SALSA) can increase the unfairness in
visibility in the long run, thus confirming the need to devise methods able
to mitigate these effects.

Simulation-based studies in recommender systems. In a first work,
[CMMB21] combine link recommendation and opinion-dynamics mod-
els in a simulation-based framework, to assess the effect of people rec-
ommenders on the evolution of opinions in a social network. They show
that, if the initial network exhibits high level of homophily, people rec-
ommenders can help creating echo chambers and polarization.

In the context of collaborative-filtering-based methods, it has been
shown that popularity bias can be stimulated by feedback loop, where
popular items tend to obtain more and more interactions if generated
through recommendations [MAP+20]. In the same direction, a theoretical
framework has been proposed to model the effects of “filter bubble”, i.e.,
the tendency of the recommendation algorithm to drive the preferences
of the user towards a limited amount of items. [JCL+19]. Similarly, a
work by [YHT+21] proposes a simulation model for measuring the im-
pact of recommender systems over time, analyzing the changes in the user
experience with an application designed for food recommender system.

Our work is motivated by the importance of studying algorithmic bias
in recommendations and rankings in the long term, i.e., beyond the single
round of algorithmic intervention. In this regard, [GLG+21] have recently
introduced the problem of long-term fairness, designing also solutions
able to account for algorithmic unfairness in the long-term in movies rec-
ommendations. Moreover, [SSL+17] propose a simulation model able
to include multiple recommender systems combined with different users
choice models, proving that the rich-get-richer effect tends to increase
over time, stimulated by the algorithm. In our study we analyze the evo-
lution of rich-get-richer effect in social networks, fueled by the edges
created thanks to the recommendation algorithms.

The feedback-loop effect has been audited by [NHH+14], showing
how in the case of MovieLens data, recommendations generated through
a collaborative filtering approach have not strengthen the filter bubble
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effect. In our work we go in the opposite direction, showing how ho-
mophily may generate biased recommendations, towards a smaller set of
recommendations, reducing the diversity of those. In the same direction,
a recent work proposes a mitigation strategy to reduce popularity bias
in recommendations through different methods based on active-learning
[SKNS19]. The methods proposed are aimed at reducing popularity bias,
which in our setting can be related to rich-get-richer effect. Although this
work may be used to propose mitigation strategies to reduce inequality in
exposure, the main weakness of their work regards the lack of analysis
of different input data distribution. This kind of analysis may help to un-
derstand which kind of distribution of user-item interactions may benefit
more from their method.

5.3 Model

We consider a social graph whose nodes are partitioned by demograph-
ics (e.g. gender, age or other characteristics). More formally, let G =
(V,E, `) be the social graph, where V is the set of nodes, E ⊆ V × V
is the set of directed edges, such that an edge (u, v) ∈ E indicates the
fact that u follows v. Finally ` : V → {Vm, VM} is a labeling function
assigning each node to either the minority (Vm) or the majority (VM ) class
(with |Vm| < |VM |). We denote by sm = |Vm|/|V | the fraction of nodes
belonging to the class less represented in the network, i.e., the minority,
and by sM the fraction of nodes belonging to the majority

Homophily. As for the previous chapter, to capture the bias in the dis-
tribution of the edges towards each group, we introduce a measure of
homophily, expressed as the tendency of people in a a group to connect
to individuals in the same group. We model the homophily as the por-
tion of edges distributed within the same group discounted by the fraction
observed in a random configuration [FBBC20]. More formally:

hi =
|Eii|
|Ei.|

− si (5.1)
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where Eii = {(u, v) ∈ E|u ∈ Vi ∧ v ∈ Vi} and Ei. = {(u, v) ∈ E|u ∈
Vi}. This measure ranges in the interval (−si, 1−si]. A group is called ho-
mophilic if the tendency to connect to nodes of the same group is stronger
than expected (hi > 0), heterophilic when this tendency is weaker than
expected (hi < 0), and neutral if the number of edges within the group is
comparable to the relative size of the group (hi = 0).

Step-by-step. In our simulations we reproduce the multiple interactions
between the users and the recommendation algorithm, where at each round,
a set of new links is recommended to a portion of users randomly sam-
pled from the graph. This sampling represents the fact that only a set of
users are online at a certain time, helping reproducing a more realistic
scenario. Then the users accepts or rejects the recommendations accord-
ing to a given stochastic user behavior model. This process is iterated
for a given number of iterations.The graph grows accordingly to the new
accepted recommendations: neither organic growth, nor edge removal are
considered. Table 5.1 summarizes the simulation process step-by step.

For all the results that we report in §5.4 we use T = 20, α = 20% and
k = 3.

We next present in more details the various key components of our
model.

5.3.1 Initial Network Configuration
In order to control the level of homophily and the size of the minority
class, while keeping a realistic network structure, we propose a novel
data generation process which, starting with a real-world bi-populated
network, performs just the minimum amount of node class-swappings and
link rewirings to match the requested levels of homophily and size of
the minority class. In this regard, our networks are semi-synthetic. The
process is explained in details next.

Our starting real-world network comes from Tuenti, a social network
popular few years ago in Spain, which was known as “the Spanish Face-
book”. The dataset includes demographic information about users as gen-
der and age [LVKK16]. The network has 8,983,560 nodes (users) and
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Table 5.1: Simulation steps.

1. Input. We start with an initial network configuration with speci-
fied levels of homophily and size of the minority class (how this
initial configuration is generated by modifying a real-world so-
cial graph is presented in §5.3.1). We also set parameters such as
the number of recommendations k that a user receives in a round,
the number of iterations T , the fraction α of users to sample, the
link-recommendation algorithm A (presented in §5.3.2), and the
stochastic user behavior model B (discussed in §5.3.3).

2. Recommendation round. A link recommender model is trained
over the current social graph by the algorithm A. A portion α of
users is sampled from the network. Those sampled users receive
their top-k recommendations each. The recommendations are
links never recommended before and are generated from the set
of missing edges at distance two (e.g. “friends of friends”).

3. Graph update. Each user decide to accept or reject each of the k
recommended links, according to the model B. The social graph
is thus updated by adding the newly accepted links. Each link
rejected at this stage is discarded and never recommended again.

4. Repeat. Steps 2 and 3 are repeated T times.

17,830,103 edges, where a generic edge (u, v) indicates a user posting
on another users’ wall. Along the chapter, we use a sample of the orig-
inal network used in our previous work [FBBC20]. This sample, which
is also the one from which we derive the other configurations, is given
by partitioning the users by age (16 as cut-off). We call it G0: it contains
500,000 nodes and 2,813,744 edges, with a relevant minority (sm = 0.30)
and both groups (majority and minority) appearing to have some level of
homophily. Starting from this network, we generate 4 different semi-
synthetic networks, ranging different values of h and s. More in details,
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let Vm and VM be respectively the set of minority’s and majority’s node
in the input network and Nm = |Vm|, NM = |VM |. Let also hm, hM in-
dicate the actual homophily of each class, and finally sm and sM are the
relative size of both classes. The generation process takes as input the de-
sired level of homophily for both classes, denoted h∗m, h

∗
M and the desired

proportion for the minority class s∗m, and works as follows:

1. Change minority-majority size. Let N∗m = (Nm + NM)s∗m. If
N∗m < Nm, then Nm − N∗m nodes are sampled at random from the
minority class Vm and their label is flipped to the majority. Other-
wise, we sample ofN∗m−Nm nodes are extracted from the majority
VM and their label flipped to the minority.

2. Change homophily. For each group i ∈ {m,M} we first compute
the difference between the initial and the final homophily |h∗i −
hi| = Bi. Then depending on the sign of the difference h∗i − hi we
define which edges need to be rewired. Rewiring an edge (u, v)
means substituting (u, v) with an edge (u,w) such that `(v) 6=
`(w). If h∗i − hi > 0 a sample of edges beloning to Eij = {(u, v) ∈
E|u ∈ Vi ∧ v ∈ Vj} is selected and rewired towards nodes in Vi. In
this way we increase the set of nodes in Eii, reaching the requested
level of homophily. Viceversa, if h∗i − hi > 0 the operation is the
opposite: old edges belonging to the subset Eii are rewired towards
nodes in Vj . In both cases, the final amount of edges rewired is
Ei. ×Bi.

Since some recent literature has shown that small subpopulations within
a social network can impact the whole graph [SRC18, FBBC20, KGW+18],
we generate networks with biased distributions for the minorities. Only
for one case, to have a comprehensive analysis, we modify the homophily
level in both minority and majority groups.

More in details, these are the configurations we focus on:

• G1. To analyze the effect of a small homophilic minority we gen-
erate a graph with sm = 0.1 and hm = 0.4, with a neutral majority.
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Table 5.2: Table summarizing information about the generated graphs.
For each one we have: i) name, ii) scenario characterizing the network

Graph Scenario sm hm

G0 original 0.3 0.42
G1 different sizes + homophilic minority 0.1 0.4
G2 same sizes + homophilic minority 0.45 0.5
G3 different sizes + heterophilic minority 0.3 -0.25
G4 different sizes + homophilic groups 0.3 0.6

• G2. To emphasize the role of homophily we also generate a graph
with comparable sizes between the two groups (sm = 0.45) with
the minority strongly homophilic (hm = 0.5) and a majority still
neutral.

• G3. This configuration is the unique with a small heterophilic
minority (hm = −0.25) and a neutral majority.

• G4. The the final configuration has both groups homophilic. In
particular, we keep a small minority (sm = 0.3) and both groups
with high level of homophily (hm = 0.6 and hM = 0.2).

G1 and G2 are a useful comparison against G0, since they present
comparable level of homophily but different sizes of the minority, while
G3 is useful to explore the heterophilic case and G4 resembles a scenario
quite common in contexts where phenomena such as polarization and fil-
ter bubbles drive the network formation [GMGM18]. Table 5.2 summa-
rizes the five networks used in our analysis, while Figure 5.2 depicts a
sample of each network.

5.3.2 Link Recommenders
Link recommendation algorithms are selected accordingly to state-of-
the-art performance and popularity in the literature [LFS17a, FBBC20,
SRC18]. Specifically, we select the same subset of algorithms used in the
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(a) G0
(original)

(b) G1
(homophilic

minority)

(c) G2
(one

homophilic
group)

(c) G3
(heterophilic

minority)

(d) G4
(two

homophilic
groups)

Figure 5.2: Representation of a sample of each generated network, where
the minority is indicated in red, while the majority in blue. Each sample
considers 5,000 nodes and those are the ones with highest degree in each
group. Specifically for each group, a total of si× 5,000 (i ∈ {m,M})
nodes are sampled.

previous chapter: (i) Adamic-Adar (ADA), (ii) Stochastic Approach for
Link-Structure Analysis SLS, (iii) Alternating Least Squares ALS and
(iv) a random baseline RND.

5.3.3 User Behavior Models

In order to simulate the user feedback on the received recommendation,
we consider three stochastic user behavior models. The first two are
adapted from a recent work simulating user-item interactions [YHT+21],
while the third one defines acceptance probability biased by the position
in the ranked list of recommendations. Through these stochastic choice
models the users add in expectation one edge per recommended list.

• B-LZY - Lazy. The user accepts directly the first recommendation:

P (u selects v at position i) =

{
1 if i = 1
0 otherwise
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• B-RND - Random. The user picks in the top-k, one recommenda-
tion uniformly at random:

P (u selects v at position i) =
1

k

• B-PSB - Position Biased. This policy refers to the idea of having
user choices biased by the position bias of rankings, where the user
may accept or reject the recommendation with probability based on
its position [CZTR08]. Hence, higher ranked suggestions are more
likely to be chosen:

P (u selects v at position i) =
1/ log (i+ 1)∑k
j=1 1/ log (j + 1)

.

• B-MIX - Mixed. In order to evaluate how heterogenous user behav-
iors may affect the exposure distribution, we also include B-MIX,
which is a combination of the previous policies. Specifically, at
each iteration, each user first picks, uniformly at random, one of
the three strategies above, then follows it.

B-PSB model resembles the classical position bias, observed as key factor
for predicting clickthrough rates in search engines [CZTR08, Joa02]. The
other two user behavior resembles two extreme situations: i) B-RND is
the one less dependent by the order of the recommendation list; while B-
LZY represents the case in which the user relies completely on the order
imposed by the recommendation algorithm.

5.4 Results
In this section we present the results of our experiments, focusing on the
key measure that we call exposure of the minority, which is simply de-
fined as the portion of total number of recommendations which suggest
a node of the minority, and denoted Em. Note that the total number of
recommendations is constant and corresponds to k|V α|.
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5.4.1 Exposure in the Long-run
Figure 5.3 shows the trend of the exposure of the minority for each of
the four networks (G0 is omitted for space limitation as it presents results
almost indistinguishable from G4). For each experiment, we track the
exposure and the percentage of new edges added at each iteration with
respect the original network. The dashed line represents in each plot the
relative size of the minority and the user choice model is fixed to B-PSB.
In cases when the minority is homophilic (G1, G2 and G4), generating
recommendations through ALS and SALSA leads to a positive trend of
growth for the exposure of the minority. For the other two recommenders
(ADA and RND) the effects described above are still present but less vis-
ible.

For the case in which the minority is heterophilic (G3) the exposure
decreases weakly, slightly benefitting the majority. This is the only case
when the exposure distributed to the minority is less than its relative size.
It is also evident how the collaborative filtering approach (ALS) and the
random walk based model (SLS) contribute more to reduce the exposure
allocated to the minority with respect the other two models (ADA and
RND). For all the networks characterized by an homophilic minority (G1,
G2 and G4), the growth in the case of the collaborative filtering approach
(ALS) is faster in the first steps and then stabilizes to a steady-state to the
rest of iterations. While, for the random walk solution (SLS), the trend
starts at similar values of exposure, but then grows constantly.

Observation 7. The disparate exposure grows after each itera-
tion in favour of the minority, when it is homophilic. On the other
hand, an heterophilic behavior of the minority does not impact
abruptly its exposure. When both groups are homophilic, the rec-
ommender still increases the exposure of the minority. The sever-
ity of all those effects is stronger when using ALS and SLS and
weaker for ADA and RND.

To further investigate the differences in growth of exposure, we track
Et/E1 for t ∈ {2, ..., T}, which is relative quantity of exposure mea-
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Figure 5.3: Exposure of the minority (Em) along time, for different rec-
ommenders and one fixed user behavior (B-PSB).

sured with the respect to the first iteration. In order to analyze the transi-
tion phases previously mentioned, we focus respectively on the iterations
t ∈ {2, 10, 20}. In Figure 5.5 we plot those values on the y-axis and the
iterations on the x-axis. As suggested by the previous plots, with the ALS
recommender, when the minority is homophilic its exposure tends to in-
crease faster in the first iterations to then stabilize. On the other hand, SLS
presents a continuous increase, without slowing down the process after 20
iterations. The stronger growth comes from cases where the differences
in sizes between minority and majority is relevant (sm = 0.3) and the
minorities are homophilic (G0, G1 and G4). This means that, even when
also the majority is homophilic, the effect is still present, showing again
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Figure 5.4: Heatmaps describing the evolution of Et/E1 in T = 20 itera-
tions, computed over 9 configurations which are small variants of G1, G2
and G3: emm ∈ {0.05, 0.5, 0.95} (x-axis) and sm ∈ {0.1, 0.3, 0.45} (y-
axis), all having neutral majority hM = 0. ALS recommender (left-hand
side), SLS recommender (right-hand side).

that having both groups homophilic does not imply a benefit for the ma-
jority. As already seen in Figure 5.3 and as expected, ADA and RND
do not produce much exposure disparity, even a slight advantage for the
minority class can be observed for the cases in which the minority is ho-
mophilic.

Observation 8. Different recommenders exhibit different influ-
ence on exposure along time. ALS increases exposure inequality
in the first iterations, then stabilizing in a steady state. SLS in-
stead keeps increasing disparate exposure constantly.

We further extend this analysis, exploring a wider range of initial
configurations, with the aim of disentangling the effects of size and ho-
mophily along time. For this purpose, as the size of the minority sm is part
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Figure 5.5: Evolution of exposure relative to the one observed at first
iteration Et/E1, after 1, 10 and 20 iterations.

of the definition of the homophily hm (Eq. 1), we use directly the fraction
of edges which, starting from the minority, remain in the minority: i.e.,

emm =
|Emm|
|Em.|

In particular, we produce 9 configurations which are small variants of
G1, G2 and G3: emm ∈ {0.05, 0.5, 0.95} and sm ∈ {0.1, 0.3, 0.45} (all
having neutral majority hM = 0).

Each box of the heatmaps in Figure 5.4 represents, for one configura-
tion, the evolution of Et/E1 along T = 20 iterations.

Analyizing the two heatmaps, comparing the boxes by columns and
posing the attention on a single row, we observe that both effects already
observed in the previous experiments, i.e. the steady-state generated by
ALS and the constant growth caused by SLS, change in terms of severity
but not in timing. This means that the variation of Et/E1 can be less or
more severe, depending on the distribution of emm, but the pace to which
process evolves is the same. Analyzing the heatmaps by rows, and posing
the attention on a single column, is evident how the size of the minority
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(represented here by smm) can influence the pace of the effects but not the
range of values (color intensity) of Et/E1.

Observation 9. The homophily of minority can impact the speed
at which the growth of exposure disparity occurs. On the other
hand, the severity of this effect is mostly determined by the size of
the minority.

5.4.2 Effect of User Behavior Models
In all the experiments presented so far we were adopting the B-PSB (po-
sition bias) user behaviour model. We next analize the effect of different
user behaviour models. Figure 5.6 reports the exposure of the minority
tracked under three different policies on G0. Each plot represents a rec-
ommender and each line in the plots represents the trend of Em for one
user behavior. For all the plots there is not such a significant difference
in trends between models. This means that in circumstances where user
behavior is either homogenous (B-LZY, B-PSB and B-RND) or heteroge-
neous (B-MIX), and the organic growth of the network is not considered,
the effect of the recommenders are consistent.

Observation 10. The different user behaviour models do not im-
pact the exposure in our simulations as much as the type of rec-
ommender system and the initial configuration of the network do.

5.4.3 Rich-get-richer Effect
After having analyzed the inequality in exposure at the group level, we
now focus on the in-degree distribution at the individual level, focusing
on the relationship with the popularity of the nodes (number of followers
or in-degree).

As already observed in the literature, new links injected in the network
can alter the inequality in the distribution of in-degree [SSG16]. For this
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Figure 5.6: Exposure of minority when using different acceptance poli-
cies, running on G0.

reason, we study here the evolution of the rich-get-richer effect within
the two groups, focusing the attention on how the in-degree of nodes is
altered by the recommended output in the long-term. We compute the
Gini coefficient to analyze the level of concentration of in-degree within
the two group of nodes, after each iteration. Although it was introduced
in economics to measure the income or wealth inequality, Gini coefficient
is widely used to measure inequalities in general [HL10]. It is defined as
follows:

G =
1

N

(
N + 1− 2

∑N
i=1(N + 1− i)yi∑N

i=1 yi

)
.

In our context N is the number of nodes and yi is the in-degree of the
i-th node, which has been indexed in ascending order by yi ≤ yi+1. The
index ranges from zero to one, where if all nodes receive the same amount

82



i
i

“main” — 2022/7/21 — 17:21 — page 83 — #103 i
i

i
i

i
i

of quantity (in-degree) then it is 0, and 1 if only one node receive the total
amount. Thus, the higher the coefficient is, the higher the inequality dis-
tribution is as well. Figure 5.7 reports the Gini index in the long-run. Each
row indicate the network, each column of plots refers to a group (minority
or majority) and each line shows the Gini index after each iteration, when
using all the four recommenders and one user behavior (B − PSB).

For all the networks we can observe a rich-get-richer effect in both the
minority and the majority class: inequality of in-degree, as expressed by
the Gini index, keeps growing, meaning that the high-degree nodes keep
receiving more and more recommendations. Among the recommenders,
ALS and SLS present a faster growth of the in-degree inequality, while
ADA and RND are by far slower. When the two groups have compara-
ble size and only one of them is homophilic (G2), the non-homophilic
group gets a less severe effect. It is also evident that when the minor-
ity is heterophilic, the more impacted group is the majority, which even
if not presenting biased preferences (either homophilic or heterophilic),
experiences a stronger positive trend for the growth of Gini index.

The homophily level of one group impacts, not only the inequality in
in-degree distribution inside the group, but indirectly it affects also the
inequality in the rest of the graph.

After having observed an exacerbation of the rich-get-richer effect in
the long-run, we next monitor the distribution of exposure between nodes
in the two groups. We study how subset of nodes, grouped by different in-
degree, can be exposed differently in the long-run. In Figure 5.8 we show
the cumulative distribution of exposure accumulated by nodes ordered by
their in-degree. In particular, each bar is divided by colors, where starting
from the bottom, it represents the subset of nodes having at most the cor-
respondent in-degree. This means that, for example, the first three colors
(from the bottom) represents the first 5% of the nodes having the highest
in-degree. On the y-axis we track the fraction of visibility accumulated
by the nodes.
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Figure 5.7: Gini coefficient computed on the in-degree of both minority
and majority, for all the recommenders and networks, with B-PSB.
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In Figure 5.8 we focus only on two recommenders, but results are
consistent also with the other two models. In particular, we have simi-
lar findings for ALS and SLS, while ADA results really close to RND.
Figure 5.8 shows that, with graphs presenting either a homophilic or a
heterophilic minority (G1, G3), only a subset of nodes receives most of
the exposure produced. What is also evident is that after each iteration,
the number of nodes getting most of the exposure become smaller, con-
firming some recent analytical results that point out how rankings can be
biased towards few individuals getting most of the exposure [GGLM19].
Specifically, this effect, in the long-term, results faster for two specific
groups: the homophilic minority in G1 and the non-homophilic majority
in G3. In the first case, after only 5 iterations the nodes belonging to the
top-1% acquires more than 75% of exposure. While in G3, despite the
majority group not being biased, after 15 iterations, only the top-3% of
nodes is recommended. Moreover, in both graphs, ADA does not present
the same increase in disparity in the long-term, but still, only a small frac-
tion of users (20%) receives consistently the 75% of the exposure in both
groups.

Observation 11. When the minority presents non-neutral prefer-
ences (either homophilic or heterophilic), ALS and SLS can in-
crease disparity in both exposure and in-degree: a small subset
nodes benefits in terms of exposure by the injection of new links,
and those are also the ones with highest degree. The cardinality
of this subset of nodes becomes smaller after each iteration.

5.4.4 Model Evaluation
In the experiments seen so far, we used the same configuration of k and
α. To analyze how those input parameters may affect the simulation out-
come, we next produce configurations presenting more sparse interactions
(smaller α) and longer lists of recommendations (larger k). In Fig. 5.9 we
present the exposure of the minority for G1, simulating the user behavior
using B-PSB. In the first figure (Fig. 5.9a) we tune different values of α,
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Figure 5.8: Distribution of Exposure among nodes, where each color de-
limitates the % of nodes with highest degree (best seen in color).
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which the smaller, the less the number of users sampled to submit new
recommendations. The plot shows how the exposure tends to growth, as
expected, but with a slower pace. This parameter can be tuned looking
at interactions generated by the social media platform over time. Here
the length of recommendations is fixed to k = 3. In the case of longer
lists of recommendations, the length of recommendation output impacts
even less on the final output (Fig. 5.9b). The effect observed with the
smaller recommendation list (k = 3) presents a trend close to all the other
configurations. In this case, α is fixed to the usual value of 0.2.
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Figure 5.9: Testing different values of α and k on G1, with B-PSB.
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5.5 Summary
The main goal of this work is to improve our comprehension of the long-
term consequences on the disparate exposure of a minority in the rec-
ommendations provided by people recommender systems in a social net-
work. In this endeavour we need to take care of the interplay between
the recommender algorithm, user behaviour in accepting the recommen-
dations, and pre-existing conditions in the network (e.g., the existence of
an homophilic minority). Our analysis shows how the initial level of ho-
mophily within a subpopulation in the graph can drive exposure inequal-
ities that grow over time: this is obtained without considering organic
growth of the network (i.e., new links are created only if recommended
by the algorithm) and assuming a homogenous user behavior for accept-
ing or rejecting the link recommendations. Our work analyzes the impact
of human biases, such as homophilic behavior, and link recommender al-
gorithms on the disparate exposure of a minority at the level of the whole
network.
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Part III

Mitigating Bias in
Recommender Systems
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6
Rewiring What-to-Watch-Next
Recommendations to Reduce

Radicalization Pathways

6.1 Introduction

“What-to-watch-next” (W2W) recommenders are key features of video
sharing platforms [ZHW+19], as they sustain user engagement, thus in-
creasing content views and driving advertisement and monetization. How-
ever, recent studies have raised serious concerns about the potential role
played by W2W recommenders, specifically in driving users towards un-
desired or polarizing content [LZ20]. Specifically, radicalized communi-
ties1 on social networks and content sharing platforms have been recog-
nized as keys in the consumption of news and in building opinions around
politics and related subjects [Lew18, Roo19, WW18]. Recent work high-
lights the role of recommender systems, which may steer users towards
radicalized content, eventually building “radicalization pathways” [Lew18,

1From [MM08]: “Functionally, political radicalization is increased preparation for
and commitment to intergroup conflict. Descriptively, radicalization means change in
beliefs, feelings, and behaviors in directions that increasingly justify intergroup violence
and demand sacrifice in defense of the ingroup.”
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ROW+20] (i.e., a user might be further driven towards radicalized content
even when this was not her initial intent). In this chapter, we study the
problem of reducing the prevalence of radicalization pathways in W2W
recommenders while maintaining the relevance of recommendations.

Formally, we model a W2W recommender system as a directed la-
beled graph where nodes correspond to videos (or other types of content)
and directed edges represent recommendation links from one node to an-
other2. In this scenario, each video is accompanied by the same number d
of recommendation links, and thus every node in the graph has the same
out-degree d. Moreover, each node has a binary label such as “harm-
ful” (e.g., radicalized) or “neutral” (e.g., non-radicalized). The browsing
activity of a user through the W2W recommendations is modeled as a
random walk on the graph: after visiting a node (e.g., watching a video),
the user moves to one of the d recommended videos with a probability
that depends on its visibility or ranking in the recommendation list. In
this setting, for each harmful node v, we measure the expected number
of consecutive harmful nodes visited in a random walk before reaching
any neutral node. We call this measure the “segregation” score of node
v: intuitively, it quantifies how easy it is to get “stuck” in radicalization
pathways starting from a given node. Our goal is to reduce the segrega-
tion of the graph while guaranteeing that the quality of recommendations
is maintained, where the quality is measured by the normalized discount
cumulative gain [BGW18, JK02] (nDCG) of each node. An important
challenge is that the underlying recommendation graph has intrinsically
some level of homophily because, given that the W2W seeks to recom-
mend relevant videos, it is likely to link harmful nodes to other harmful
nodes.

We formulate the problem of reducing the segregation of the graph as
selecting k rewiring operations on edges (corresponding to modifications
in the lists of recommended videos for some nodes) so as to minimize the
maximum of segregation scores among all harmful nodes, while maintain-

2For ease of presentation, we focus on video sharing platforms. We note that the
same type of recommendations occurs in many other contexts such as, for instance,
news feeding platforms as shown in our experiments (see Section 7.5).
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ing recommendation quality measured by nDCG above a given threshold
for all nodes. We prove that our k-REWIRING problem is NP-hard and
NP-hard to approximate within any factor. We therefore turn our atten-
tion to design efficient and effective heuristics. Our proposed algorithm is
based on the absorbing random walk theory [MMG15], thanks to which
we can efficiently compute the segregation score of each node and update
it after every rewiring operation. Specifically, our method finds a set of
k rewiring operations by greedily choosing the optimal rewiring for the
special case of k = 1 – i.e., the 1-REWIRING problem, then updates the
segregation score of each node. We further design a sorting and pruning
strategy to avoid unnecessary attempts and thus improve the efficiency for
searching the optimal rewiring. Though the worst-case time complexity
of our algorithm is quadratic with respect to the number of nodes n, it
exhibits much better performance (nearly linear w.r.t. n) in practice.

Finally, we present experiments on two real-world datasets: one in
the context of video sharing and the other in the context of news feeds.
We compare our proposed algorithm against several baselines, including
an algorithm for suggesting new edges to reduce radicalization in Web
graphs. The results show that our algorithm outperforms existing solu-
tions in mitigating radicalization pathways in recommendation graphs.

In the rest of this chapter, we first review the literature relevant to our
work in Section 6.2. Then, we introduce the background and formally de-
fine our problem in Section 6.3. Our proposed algorithms are presented in
Section 6.4. The experimental setup and results are shown in Section 6.5.
Finally, we conclude this chapter and discuss possible future directions in
Section 6.6.

6.2 Related Work

A great deal of research has been recently published about the poten-
tial created by unprecedented opportunities to access information on the
Web and social media. These risks include the spread of misinforma-
tion [AG17, SSW+17], the presence of bots [FVD+16], the abundance of
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offensive hate speech [MZ17, MSB17], the availability of inappropriate
videos targeting children [PPZ+20], the increase in controversy [GMGM16]
and polarization [GJCK13], and the creation of radicalization pathways
[ROW+20]. Consequently, a substantial research effort has been devoted
to model, detect, quantify, reduce, and/or block such negative phenom-
ena. We discuss here the existing studies that are the most relevant to
our work here – in particular, algorithmic approaches to optimizing graph
structures for achieving the aforementioned goals.

A line of research deals with limiting the spread of undesirable content
in a social network via edge manipulation [KSM08, TPE+12, KTS+13,
KDS14, SAPV15, LET15, YLW+19]. In these studies, the graph being
manipulated is a network of users where the edges represent connections
such as friendship or interactions among users. In contrast, we consider a
graph of content items (e.g., videos or news), where the edges represent
recommendation links. Moreover, these algorithmic methods are primar-
ily based on information propagation models, while our work is based on
random walks.

Another line of work aims at reducing controversy, disagreement, and
polarization by edge manipulation in a social network, exposing users to
others with different views [GMGM17, CLB18, MMT18, CM20b, HMRU21,
IMR21]. A seminal work [GMGM17] introduces the controversy score of
a graph based on random walks and propose an efficient algorithm to min-
imize it by edge addition. Similarly, a work by [MMT18] introduce the
Polarization-Disagreement index of a graph based on Friedkin-Johnsen
dynamics and propose a network-design approach to find a set of “best”
edges that minimize this index. Another contribution defines the worst-
case conflict risk and average-case conflict risk of a graph, also based
on Friedkin-Johnsen dynamics, and propose algorithms to locally edit
the graphs for reducing both measures [CLB18]. In the same direction,
the work by [CM20b] analyzes the impact of “filter bubbles” in social
network polarization and how to mitigate them by graph modification.
Also, [IMR21] define a polarization reduction problem by adding edges
between users from different groups and propose integer programming-
based methods to solve it. Another related line of work proposes to
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model and mitigate the disparate exposure generated by people recom-
menders (e.g. who-to-follow link predictions) in presence of effects like
homophily and polarization [FCBC21, FBBC20, CMMB21, PKS20]. These
studies also deal with networks of users, while in our case we consider a
network of items.

The work probably most related to ours is the one by [HMRU21],
which considers a graph of items (e.g., Web pages with hyperlinks) and
defines the structural bias of a node as the difficulty/effort needed to reach
nodes of a different opinion. They, then propose an efficient approxima-
tion algorithm to reduce the structural bias by edge insertions. There are
three main differences between this and our work. First, two-directional
edge manipulations (from class A to B and also from B to A) are consid-
ered by them [HMRU21], but one-directional edge manipulations (from
harmful to neutral nodes only) are considered in our work. Second, they
consider inserting new links on a node, which better fits the case of Web
pages, but we consider rewiring existing edges, which better fits the case
of W2W recommenders. Third, they define the structural bias of the graph
as the sum of the bubble radii of all nodes, while we define the segregation
of the graph as the worst-case segregation score among all harmful nodes.
We compare our proposed algorithm with theirs in our experiments.

A recent line of work introduces the notion of reachability in recom-
mender systems [DRR20, CDR21]. Instead of rewiring the links, they
focus on making allowable modifications in the user’s rating history to
avoid unintended consequences such as filter bubbles and radicalization.
However, as the problem formulation is different from ours, their pro-
posed methods are not applicable to our problem.

Finally, there are many studies on modifying various graph character-
istics, such as shortest paths [PBG11, PPT15], centrality [PPT16, CDSV16,
MSS+18, BCD+18, DOS19, WWRM20], opinion dynamics [AS19, CFG20],
and so on [CAT14, Pap15, LY15, ZCWL18], by edge manipulation.
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6.3 Preliminaries

Let us consider a set V of n items and a matrix S ∈ Rn×n, where each en-
try suv ∈ [0, 1] at position (u, v) denotes the relevance score of an item v
given that a user has browsed an item u. This expresses the likelihood that
a user who has just watched u would be interested in watching v. Typi-
cally, a recommender system selects the dmost relevant items to compose
the recommendation list Γ+(u) of u, where the number of recommenda-
tions d is a design constraint (e.g., given by the size of the app window).
We assume that the system selects the top-d items v w.r.t. suv and that
their relevance score uniquely determines the ranking of the d items in
Γ+(u). For each v ∈ Γ+(u), we use iu(v) to denote its ranking in Γ+(u).
After a user has seen u, she/he will find the next item to see from Γ+(u),
and the probability puv of selecting v ∈ Γ+(u) depends on the ranking
iu(v) of v in Γ+(u). More formally, puv = f(iu(v)), where f is a non-
increasing function that maps from iu(v) to puv with

∑
v∈Γ+(u) puv = 1.

This setting can be modeled as a directed probabilistic d-regular graph
G = (V,E,M), where the node set V corresponds to the set of all n
items, the edge set E comprises n · d edges where each node u ∈ V has d
out-edges connected to the nodes in Γ+(u), and M is an n× n transition
matrix with a value of puv for each (u, v) ∈ E and 0 otherwise. A user’s
browsing session is thus modeled as a random walk on G starting from an
arbitrary node in V with transition probability puv for each (u, v) ∈ E.

We further consider that the items in V are divided into two disjoint
subsets Vn and Vh (i.e., Vn ∩ Vh = ∅ and Vn ∪ Vh = V ) corresponding to
“neutral” (e.g., not-radicalized) and “harmful” (e.g., radicalized) nodes,
respectively.

The risk we want to mitigate is having users stuck in a long sequence
of harmful nodes while performing a random walk. In order to quantify
this phenomenon we define the measure of segregation. Given a set S ⊂
V of nodes and a node u ∈ V \ S, we use a random variable Tu(S) to
indicate the first instant when a random walk starting from u reaches (or
“hits”) any node in S. We define EG[Tu(S)] as the hitting length of u
w.r.t. S, where the expectation is over the space of all possible random

96



i
i

“main” — 2022/7/21 — 17:21 — page 97 — #117 i
i

i
i

i
i

walks on G starting from u. In our case, we define the segregation score
zu of node u ∈ Vh by its expected hitting length EG[Tu(Vn)] w.r.t. Vn. The
segregation Z(G) of graph G is defined by the maximum of segregation
scores among all nodes in Vh – i.e., Z(G) = maxu∈Vh zu. In the following,
we omit the argument G from Z(G) when it is clear from the context.

Our main problem in this chapter is to mitigate the effect of segrega-
tion by modifying the structure of G. Specifically, we aim to find a set
O of rewiring operations on G, each of which removes an existing edge
(u, v) ∈ E and inserts a new one (u,w) /∈ E instead, such that Z(GO)
is minimized, where GO is the new graph after performing O on G. For
simplicity, we require that u, v ∈ Vh, w ∈ Vn, and puv = puw. In other
words, each rewiring operation changes the recommendation list Γ+(u) of
u by replacing one (harmful) item v ∈ Γ+(u) with another (neutral) item
w /∈ Γ+(u) and keeping the ranking iu(w) of w the same as the ranking
iu(v) of v in Γ+(u).

Another goal, which is often conflicting, is to preserve the relevance
of recommendations after performing the rewiring operations. Besides
requiring only a predefined number k of rewirings, we also consider an
additional constraint on the loss in the quality of the recommendations.
For this purpose we adopt the well-known normalized discounted cumu-
lative gain (nDCG) [JK02, BGW18] to evaluate the loss in the quality.
Formally, the discounted cumulative gain (DCG) of a recommendation
list Γ+(u) is defined as:

DCG(Γ+(u)) =
∑

v∈Γ+(u)

suv
1 + log2(1 + iu(v))

Then, we define the quality loss of Γ+(u) after rewiring operations by
nDCG as follows:

L(Γ+(u)) = nDCG(Γ+(u)) =
DCG(Γ+(u))

DCG(Γ+
0 (u))

(6.1)

where Γ+
0 (u) is the original (ideal) recommendation list where all the top-

d items that are the most relevant to u are included.
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Let o = (u, v, w) be a rewiring operation that deletes (u, v) while
adding (u,w) and O be a set of rewiring operations. For ease of presenta-
tion, we define a function ∆(O) , Z(G)−Z(GO) to denote the decrease
in the segregation after performing the rewiring operations in O and up-
dating G to GO. We are now ready to formally define the main problem
studied in this chapter.

Problem 1 (k-REWIRING). Given a directed probabilistic graph G =
(V,E,M), a positive integer k ∈ Z+, and a threshold τ ∈ (0, 1), find a
setO of k rewiring operations that maximizes ∆(O), under the constraint
that L(Γ+(u)) ≥ τ for each node u ∈ V .

The hardness of the k-REWIRING problem is analyzed in the follow-
ing theorem.

Theorem 1. The k-REWIRING problem is NP-hard and NP-hard to ap-
proximate within any factor.

We show the NP-hardness of the k-REWIRING problem by reducing
from the VERTEXCOVER problem. Furthermore, we show that finding
an α-approximate solution of the k-REWIRING problem for any factor
α > 0 is at least as hard as finding the minimum vertex cover of a graph.
Therefore, the k-REWIRING problem is NP-hard to approximate within
any factor.

6.3.1 Proof of Theorem 1
Proof. We prove the NP-hardness of the k-REWIRING problem by a re-
duction from the VERTEXCOVER problem [GJ79].

A VERTEXCOVER instance is specified by an undirected graph G =
(V,E), where |V | = n and |E| = m, and an integer k. It asks whether
G has a vertex cover of size at most k, i.e., whether there exists a subset
C ⊆ V with |C| ≤ k such that {vi, vj} ∩ C 6= ∅ for every edge e =
(vi, vj) ∈ E. We construct an instance of the k-REWIRING problem onG∗

from a VERTEXCOVER instance on G as illustrated in Figure 6.1a. Given
a graph G = (V,E), the graph G∗ = (V ∗, E∗) is constructed as follows:
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One vertex in G∗ is created for each e ∈ E and v ∈ V . Furthermore, four
vertices h1, h2, n1, n2 are added to G∗. Let V ∗h = E ∪V ∪{h1, h2} be the
set of (m + n + 2) “harmful” vertices (in red) and V ∗n = {n1, n2} be the
set of two “neutral” vertices (in blue). Then, for each e = (vi, vj) ∈ E,
two directed edges (e, vi) and (e, vj) are added to G∗. For each v ∈
V , two directed edges (v, h1) and (v, h2) are added to G∗. Finally, four
directed edges (h1, n1), (h1, n2), (h2, n1), and (h2, n2) are added to G∗.
The out-degree d of each red node in G∗ is 2. Accordingly, the transition
probability of every edge in G∗ is set to 0.5.

We first show that there will be a setO of at most k rewiring operations
such that ∆(O) > 0 after the rewiring operations in O are performed
on G∗ if G has a vertex cover of size at most k. For the original G∗,
we have z(h1) = z(h2) = 1, z(v) = 2 for each vertex v ∈ V , and
z(e) = 3 for each edge e ∈ E. Thus, we have Z = z(e) = 3. So,
we will have ∆(O) > 0 as long as z′(e) < 3 for each edge e ∈ E.
Let C = {v1, . . . , vk} be a size-k vertex cover of G. We construct a set
O = {o1, . . . , ok} of k rewiring operations onG∗, where oi = (vi, h1, n1),
corresponding to C, as illustrated in Figure 6.1b. After performing the
set O of rewiring operations on G∗, we have two cases for z′(e) of each
e = (vi, vj):

z′(e) =

{
0.5× 3 + 0.5× 2 = 2.5, if |{vi, vj} ∩ C| = 2

0.5× 3 + 0.5× 2.5 = 2.75, if |{vi, vj} ∩ C| = 1

Since C is a vertex cover, there is no edge e = (vi, vj) such that {vi, vj}∩
C = ∅. Therefore, after performing the set O of rewiring operations on
G∗, it must hold that z′(e) < 3 for every e ∈ E and thus ∆(O) > 0.

We then show that there will be a set O of at most k rewiring opera-
tions such that ∆(O) > 0 after the rewiring operations inO are performed
on G∗ only if G has a vertex cover of size at most k. Or equivalently, if
G does not have a vertex cover of size k, then any set O of k rewiring
operations performed on G∗ cannot make ∆(O) > 0. Since G does not
have a vertex cover of size k, there must exist some edge e = (vi, vj)
with {vi, vj} ∩ C = ∅ for any size-k vertex set C ⊆ V . Therefore, af-
ter performing the set O of k rewiring operations corresponding to C, we
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have z′(e) = 3 for an uncovered edge e. So, we can say that any set of
k rewiring operations from V cannot make ∆(O) > 0. Furthermore, we
consider the case of k rewiring operations from E, i.e., to find a set of k
edges {e1, . . . , ek} and rewire one out-edge from each of them to n1 or n2.
In this case, we can always find some unselected edge e with z′(e) = 3 as
long as m > k, which obviously holds as G does not have a vertex cover
of size k. Finally, we consider the case of a “hybrid” set of k rewiring
operations from both E and V . W.l.o.g., we assume that there are (k−k′)
operations from V and k′ operations from E for some 0 < k′ < k. Since
G does not have a vertex cover of size k, we can say that any vertex set C
of size (k−k′) can cover at most (m−k′−1) edges. Otherwise, we would
find a vertex cover of size k by adding k′ vertices to cover the remaining
k′ edges and thus lead to contradiction. Therefore, after performing only
k′ rewiring operations from E, there always exists at least one edge e that
are covered by neither the vertex set nor the edge set, and thus z′(e) = 3
and ∆(O) = 0. Considering all the three cases, we prove that any set of
k rewiring operations performed on G∗ cannot make ∆(O) > 0 if G does
not have a vertex cover of size k.

Given that both the “if ” and “only-if ” directions are proven and G∗

can be constructed fromG inO(m+n) time, we reduce from the VERTEX-
COVER problem to the k-REWIRING problem in polynomial time and
thus prove that the k-REWIRING problem is NP-hard.

To show the hardness of approximation, we suppose that there is a
polynomial-time algorithm A that approximates the k-REWIRING prob-
lem within a factor of α > 0. Or equivalently, for any k-REWIRING

instance, if O∗ is the set of k optimal rewiring operations, then the set O′

of k rewiring operations returned by A will always satisfy that ∆(O′) ≥
α·∆(O∗). Let us consider a k-REWIRING instance on the above graphG∗

constructed from G and k be the size of the minimum vertex cover of G.
For this instance, the optimal solutionO∗ of the k-REWIRING problem ex-
actly corresponds to the minimum vertex cover C∗ of G with ∆(O∗) > 0;
any other solution O′ will lead to ∆(O′) = 0, as we have shown in
this proof. If A could find a solution for the k-REWIRING problem with
any approximation factor α > 0 in polynomial time, then A would have
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(a) Construct G∗ from G

e1 e2 em… … …

v1 v2 vn… … …

h1
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e3

v3 v4

n2

h2

(b) k-REWIRING on G∗

Figure 6.1: Illustration of the reduction from the VERTEXCOVER prob-
lem to the k-REWIRING problem.

solved the VERTEXCOVER problem in polynomial time, which has been
known to be impossible unless P=NP. Therefore, the k-REWIRING prob-
lem is NP-hard to approximate with any factor.

6.3.2 Absorbing Random Walk

We now provide notions from the absorbing random walk theory [MMG15]
on which our algorithms are built.

The k-REWIRING problem asks to minimize segregation, which is
defined as the maximum hitting length from any harmful node to neutral
nodes. Specifically, in the context of k-REWIRING for the given proba-
bilistic directed graph G = (V,E,M), we equivalently consider a modi-
fied transition matrix M as follows:

M =

[
Mhh Mhn

0 I

]
In the matrix M above, each neutral node has been set to be absorbing,
i.e., its transition probability to itself is set to pii = 1 and 0 to other nodes
(see the bottom row of M). Intuitively, no random walk passing through
an absorbing node can move away from it [MMG15]. For each harmful
node, its transition probabilities remain unmodified (see the top row of
M) and thus the node remains transient (i.e., non-absorbing).
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The fundamental matrix F can be computed from the sub-matrix Mhh

as follows [MMG15]:
F = (I−Mhh)

−1

where the entry fuv represents the expected total number of times that the
random walk visits node v having started from node u. Then, the expected
length of a random walk that starts from any node and stops when it gets
absorbed is given by vector z:

z =

[
(I−Mhh)

−1

0

]
1 (6.2)

where 1 is an n-dimensional vector of all 1’s. Here, the i-th entry zi
of vector z represents the expected number of random walk steps before
being absorbed by any absorbing node, assuming that the random walk
starts from the i-th node.

Given that the absorbing and transient nodes are set to correspond ex-
actly to the neutral and harmful nodes, respectively, the values of z corre-
spond exactly to the expected hitting length as used to define segregation.
Hence, the k-REWIRING problem asks to choose a set of k rewiring oper-
ations to minimize the maximum entry Z = max1≤i≤n zi of vector z.

6.4 Algorithms
Since k-REWIRING is NP-hard to approximate within any factor, we pro-
pose an efficient heuristic. The heuristic is motivated by the following
observation: despite the NP-hardness of k-REWIRING, its special case
when k = 1, which we call 1-REWIRING, is solvable in polynomial time.
Given an optimal 1-REWIRING algorithm, k-REWIRING can be addressed
by running it k times.

We begin our presentation of algorithms by showing a brute-force al-
gorithm for finding the optimal solution of 1-REWIRING (Section 6.4.1),
as well as a way to speed it up via incremental updates (Section 6.4.2).
Subsequently, we propose our optimal 1-REWIRING algorithm that im-
proves the efficiency of the brute-force algorithm by faster rewiring search
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(Section 6.4.3). Finally, we present how our 1-REWIRING algorithm is
used for k-REWIRING (Section 6.4.4).

6.4.1 Brute-Force Algorithm for 1-REWIRING

Given a graph G and a rewiring operation o, we use ∆(o) to denote the
decrease inZ after performing o onG. We present a brute-force algorithm
to find the rewiring operation o∗ that maximizes ∆(o). The algorithm has
three steps: (1) enumerate the set Ω of all feasible rewiring operations for
G and a given threshold τ ; (2) get ∆(o) for each o ∈ Ω by computing
Z using Eq. 6.2 on G before/after performing o; (3) find the operation
o that has the largest ∆(o) as the optimal solution o∗. In the brute-force
algorithm, since the number of existing edges isO(dn) and the number of
possible new edges to rewire is O(n) for each existing edge, the size of Ω
is O(dn2). In addition, the old and new values of Z can be computed by
matrix inversion using Eq. 6.2 in O(n3) time. Therefore, the brute-force
algorithm runs in O(dn5) time. As all feasible operations are examined,
this solution is guaranteed to be optimal.

The brute-force algorithm is impractical if the graph is large, due to
the huge number of feasible operations and the high cost of computing
Z. We introduce two strategies to improve its efficiency. First, we update
the vector z incrementally for a rewiring operation. Second, we devise
efficient strategies to avoid unnecessary computation when searching for
the optimal rewiring operation, leading to our optimal 1-REWIRING algo-
rithm.

6.4.2 Incremental Update of Vector z

We analyze how the fundamental matrix F and vector z change after per-
forming a rewiring operation o = (u, v, w). Two edits will be performed
on G for o: (1) the removal of an existing edge (u, v) ∈ E and (2) the
insertion of a new edge (u,w) /∈ E to E.

The two operations update the transition matrix M to M′ as follows:

M′ = M + eg>
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where e is an n-dimensional column vector that indicates the position of
the source node u:

ej =

{
1 if j = u
0 otherwise

and g> is an n-dimensional row vector that denotes the changes in the
transition probabilities. Specifically, for the removal of (u, v) and inser-
tion of (u,w), the probability puv of (u, v) is reassigned to (u,w). We
denote the probability as po = puv. Formally,

gj =


−po if j = v
+po if j = w
0 otherwise

Thus, operation o = (u, v, w) on the fundamental matrix F yields an
updated fundamental matrix F′:

F′ = ((I−Mhh)− eg>)−1 = (F−1 + (−1)eg>)−1

By applying the Sherman-Morrison formula [PTVF07], we can avoid the
computation of the new inverse and express F′ as:

F′ = F− Feg>F

1 + g>Fe
(6.3)

Accordingly, the new vector z′ is expressed as:

z′ = z− Feg>F

1 + g>Fe
1 (6.4)

The denominator of the second term in Eq. 6.4 can be written as:

1 + g>Fe = 1− po(fwu · 1w∈Vh − fvu)

where 1w∈Vh is an indicator that is equal to 1 if w ∈ Vh and 0 otherwise.
Because, as mentioned in Section 6.3, we restrict ourselves to rewiring
with w 6∈ Vh, the above expression is simplified as:

1 + g>Fe = 1 + pofvu.
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Meanwhile, the numerator of the second term in Eq. 6.4 is written as:

Feg>F1 = −fu(zw · 1w∈Vh − zv)po
where fu is the column vector corresponding to u in F, zw and zv are the
entries of z for u and v, respectively. As previously, because w 6∈ Vh, we
have that Eq. 6.4 is simplified as:

z′ = z− fuzv
1/po + fvu

.

For any harmful node h, we calculate its decrease ∆(h, o) in segregation
score after performing o = (u, v, w) as:

∆(h, o) = zh − z′h =
fhuzv

1/po + fvu
(6.5)

The optimal 1-REWIRING we present next is based on Eq. 6.5.

6.4.3 Optimal 1-REWIRING Algorithm
We now introduce our method to find the optimal solution o∗ of 1-REWIRING,
i.e., the rewiring operation that maximizes ∆(o) among all o ∈ Ω. The
detailed procedure is presented in Algorithm 1, to which the fundamen-
tal matrix F and segregation vector z are given as input. The algorithm
proceeds in two steps: (1) candidate generation, as described in Lines 2–
5, which returns a set Ω of possible rewiring operations that definitely
include the optimal 1-REWIRING, and (2) optimal rewiring search, as de-
scribed in Lines 6–16, which computes the objective value for each candi-
date rewiring to identify the optimal one. Compared with the brute-force
algorithm, this method reduces the cost of computing ∆(o) since it only
probes a few nodes with the largest segregation scores. In addition, it can
still be guaranteed to find the optimal solution, as all rewiring operations
that might be the optimal one have been considered.
Candidate generation. The purpose of this step is to exclude from enu-
meration all rewiring operations that violate the quality constraint. To-
wards this end, we do not consider any rewiring operation that for any
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Algorithm 1: OPTIMAL 1-REWIRING

Input : Graph G = (V,E,M), fundamental matrix F, segregation
vector z, threshold τ

Output : Optimal rewiring operation o∗

1 Initialize Ω← ∅, o∗ ← NULL, ∆∗ ← 0;
2 foreach node u ∈ Vh do
3 Find node w ∈ Vn s.t. (u,w) /∈ E and suw is the maximum;
4 foreach node v ∈ Vh with (u, v) ∈ E do
5 Add o = (u, v, w) to Ω if L(Γ+(u)) ≥ τ after replacing (u, v)

with (u,w);

6 Sort nodes in Vh as 〈h1, . . . , hnh〉 in descending order of zh;
7 foreach o ∈ Ω do
8 Compute ∆(h1, o) using Eq. 6.5;
9 if z′h1 > zh2 then

10 ∆(o)← ∆(h1, o);
11 else
12 Find the largest j > 1 such that z′h1 < zhj ;
13 Compute ∆(hi, o) for each i = 2, . . . , j;
14 ∆(o)← zh1 −maxi∈[1,j] z

′
hi

;

15 if ∆(o) > ∆∗ then
16 o∗ ← o and ∆∗ ← ∆(o);

17 return o∗;

node u will lead to the discount cumulative gain (DCG) of u below the
threshold τ . According to Eq. 6.5, we find that ∆(h, o) of node hw.r.t. o =
(u, v, w) is independent of (u,w). Therefore, for a specific node u, we
can fix w to the neutral (absorbing) node with the highest relevance score
suw and (u,w) /∈ E so that as many rewiring operations as possible are
feasible. Then, we should select the node v where (u, v) ∈ E will be re-
placed. We need to guarantee that L(Γ+(u)) ≥ τ after (u, v) is replaced
by (u,w). For each node v ∈ Γ+(u), we can take suv and suw into Eq. 6.1.
If L(Γ+(u)) ≥ τ , we will list o = (u, v, w) as a candidate. After consid-
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ering each node u ∈ Vh, we generate the set Ω of all candidate rewiring
operations.
Optimal rewiring search. The second step is to search for the optimal
rewiring operation o∗ from Ω. We first sort all harmful nodes in descend-
ing order of their segregation scores as 〈h1, h2, . . . , hnh〉, where hi is the
node with the i-th largest segregation score. Since we are interested in
minimizing the maximum segregation, we can focus on the first few nodes
with the largest segregation scores and ignore the remaining ones. We
need to compute ∆(o) for each o ∈ Ω and always keep the maximum of
∆(o). After evaluating every o ∈ Ω, it is obvious that the one maximiz-
ing ∆(o) is o∗. Furthermore, to compute ∆(o) for some operation o, we
perform the following steps: (1) compute ∆(h1, o) using Eq. 6.5; (2) if
z′h1 > zh2 , then ∆(o) = ∆(h1, o); (3) otherwise, find the largest j such
that z′h1 < zhj , compute ∆(hi, o) for each i = 2, . . . , j; in this case, we
have ∆(o) = zh1 −maxi∈[1,j] z

′
hi

.
Time complexity. Compared with the brute-force algorithm, the size of
Ω is reduced from O(dn2) to O(dn). Then, sorting the nodes in Vh takes
O(n log n) time. Moreover, it takes O(1) time to compute ∆(h, o) for
each h and o. For each o ∈ Ω, ∆(h, o) is computed O(n) times in
the worst case. Therefore, the time complexity is O(dn2) in the worst
case. However, in our experimental evaluation, we find that ∆(h, o)
is computed only a small number of times. Therefore, if computing
∆(o) takes O(1) time in practice, then the anticipated running time is
O
(
n(d+ log n)

)
, as confirmed empirically.

6.4.4 Heuristic k-REWIRING Algorithm
Our k-REWIRING algorithm based on the 1-REWIRING algorithm is pre-
sented in Algorithm 2. Its basic idea is to find the k rewiring operations
by running the 1-REWIRING algorithm k times. The first step is to ini-
tialize the fundamental matrix F and segregation vector z. In our im-
plementation, instead of performing the expensive matrix inversion (in
Eq. 6.2), F and z are approximated through the power iteration method
in [MMG15]. Then, the procedure of candidate generation is the same

107



i
i

“main” — 2022/7/21 — 17:21 — page 108 — #128 i
i

i
i

i
i

Algorithm 2: HEURISTIC k-REWIRING

Input : Graph G = (V,E,M), threshold τ , size constraint k
Output : A set O of k rewiring operations

1 Compute the initial F and z based on M;
2 Acquire Ω using Lines 2–5 of Algorithm 1;
3 Initialize O ← ∅;
4 for i← 1, 2, . . . , k do
5 Run Lines 6–16 of Algorithm 1 to get o∗ = (u∗, v∗, w∗);
6 O ← O ∪ {o∗};
7 Update G, M, F, and z for o∗;
8 Delete the existing rewiring operations of u∗ from Ω and add new

possible operations of u∗ to Ω;
9 if Ω = ∅ then

10 break;

11 return O;

as that in Algorithm 1. Next, it runs k iterations for getting k rewiring
operations. At each iteration, it also searches for the the optimal rewiring
operation o∗ = (u∗, v∗, w∗) among Ω as Algorithm 1. After that, G, M,
F, and z are updated according to o∗ (see Eq. 6.3 and 6.4 for the update
of F and z). Since the existing rewiring operations of u∗ are not feasi-
ble anymore, it will regenerate new possible operations of u∗ based on
the updated Γ+(u∗) and the threshold τ to replace the old ones. Finally,
the algorithm terminates when k rewiring operations have been found or
there is no feasible operation anymore.

Time complexity. The time complexity of computing F and z isO(iter ·dn)
where iter is the number of iterations in the power method. The time to
update F and z for each rewiring operation is O(n). Overall, its time
complexity is O(kdn2) since it is safe to consider that iter � n. In
practice, it takes O(1) time to compute ∆(o) and iter = O(k), and
thus the running time of the k-REWIRING algorithm can be regarded as
O (kn (d+ log n)).
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6.5 Experiments

Our experiments aim to: (1) show the effectiveness of our algorithm
on mitigating radicalization pathways compared to existing algorithms;
(2) test the robustness of our algorithm with respect to different thresh-
olds τ ; and (3) illustrate how much our algorithm can reduce the total
exposure to harmful content.

6.5.1 Experimental Setup

Datasets. We perform experiments within two application domains: video
sharing and news feeding.

For the first application, we use the YouTube dataset [ROW+20],
which contains 330,925 videos and 2,474,044 recommendations. The
dataset includes node labels such as “alt-right”, “alt-lite”, “intellectual
dark web” and “neutral”. We categorize the first three classes as “radi-
calized” or harmful and the last class as “neutral,” following the analysis
done by this dataset’s curators [ROW+20], in which these three classes
are shown to be overlapping in terms of audience and content. When
generating the recommendation graphs, we consider only videos having
a minimum of 10k views. In this way, we filter out all the ones with too
few interactions. We consider the video-to-video recommendations col-
lected via simulations as implicit feedback interactions, where the video-
to-video interactions can be formatted as a square matrix, with position
(u, v) containing the number of times the user jumped from video u to
video v. Using alternating least squares (ALS) [HKV08], we can first
derive the latent dimensions of the matrix, generate the scores (normal-
ized to [0, 1]) and then build the recommendation lists for each video. We
eventually create different d-regular graphs with d ∈ {5, 10, 20}. To eval-
uate the effect of graph size on performance, we also use a smaller subset
of videos with only 100k or more views for graph construction. Finally,
we have 3 smaller (YT-D5-S, YT-D10-S, and YT-D20-S) and 3 larger
(YT-D5-B, YT-D10-B, and YT-D20-B) recommendation graphs.

For the second application, we use the NELA-GT dataset [NHA19],
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which is a collection of 713k news in English. Each news article in-
cludes title, text, and timestamp, as well as credibility labels (reliable or
unreliable). Our task is to reduce the risk of users getting stuck in unreli-
able content via “what-to-read-next” recommendations. To build the rec-
ommendation graphs, we compute the pairwise semantic similarities be-
tween news through the pre-generated weights with RoBERTa [LOG+19].
After normalizing the scores in the range [0, 1], in order to reproduce dif-
ferent instances of news feeding websites, we generate different subsets
of news by month. We perform our experiments on the 4 months with
the largest number of news: August (NEWS-1), September (NEWS-2),
October (NEWS-3) and November (NEWS-4).

Table 6.1: Characteristics of the recommendation graphs used in the ex-
periments, including out-degree d, number of nodes n, number of edges
m, fraction of nodes from Vh (i.e., nh/n), and initial segregation Z0 of
each graph.

YouTube

Name d n m nh/n Z0

YT-D5-S
5

31524 157620 0.48 588.86
YT-D5-B 105143 525715 0.43 598.32

YT-D10-S
10

31524 315240 0.48 718.92
YT-D10-B 105143 1051430 0.43 718.37

YT-D20-S
20

31524 630480 0.48 328.03
YT-D20-B 105143 2102860 0.43 331.09

NELA-GT

Name d n m nh/n Z0

NEWS-1

10

27286 272860 0.61 88.53
NEWS-2 22296 222960 0.62 29.90
NEWS-3 28861 288610 0.61 335.23
NEWS-4 26114 261140 0.65 75.15
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The characteristics of the ten recommendation graphs used in our ex-
periments are reported in Table 6.1.
Algorithms. We compare our proposed heuristic (HEU) algorithm for
k-REWIRING with three baselines and one existing algorithm. The first
baseline (BSL-1) selects the set of k rewiring operations by running Al-
gorithm 1. Instead of picking only one rewiring operation, it picks the
k operations with the largest values of ∆ all at once. The second base-
line (BSL-2) considers the best possible k rewiring operations by looking
at the initial values of the vector z. It firsts select the k nodes with the
largest z values, then among the possible rewiring operations from those
nodes, it returns the k operations with the largest values of ∆. The third
baseline (RND) just picks k random rewiring operations from all the can-
didates. Finally, the existing method we compare with is the RePBubLik
algorithm [HMRU21] (RBL). It reduces the structural bias of the graph
by looking at the bubble radius of the two partitions of nodes, return-
ing a list of k new edges to add. The original algorithm is designed for
the insertion of new links, and not for the rewiring (deletion + insertion).
Consequently, we adapt the RePBubLik algorithm to our objective as fol-
lows: (1) we run it to return a list of potential edges to be added for
reducing the structural bias of the harmful nodes; (2) for each potential
insertion, in order to generate a rewiring operation, we check among the
existing edges to find the one edge that meets the quality constraint τ after
being replaced by the new edge; (3) we finally select a set of k rewiring
operations from the previous step.

The experiments were conducted on a server running Ubuntu 16.04
with an Intel Broadwell 2.40GHz CPU and 29GB of memory. Our algo-
rithm and baselines were implemented in Python 33.

6.5.2 Experimental Results
Effectiveness of our method. In Figure 6.2, we present the results on the
YouTube recommendation graphs. On each graph, we evaluate the perfor-

3Our code and datasets are publicly available at https://github.com/FraFabbri/
rewiring-what-to-watch

111

https://github.com/FraFabbri/rewiring-what-to-watch
https://github.com/FraFabbri/rewiring-what-to-watch


i
i

“main” — 2022/7/21 — 17:21 — page 112 — #132 i
i

i
i

i
i

mance of each algorithm along 50 rewiring operations with the threshold
of quality constraint is fixed to τ = 0.9. We keep track of the relative de-
crease in the segregation ZT/Z0 after each rewiring operation, where Z0

is the initial segregation and ZT is the segregation after T rewiring opera-
tions. On all the graphs, it is clear that our heuristic algorithm (HEU) out-
performs all the competitors. On the graphs with the smallest out-degree
(d = 5), it decreases Z by over 40% within only 10 rewiring operations
(i.e., Z10/Z0 ≤ 0.6). In this case, it stops decreasing Z after 30 rewiring
operations, which implies that only after a few rewiring operations our
heuristic algorithm has found the best possible operations constrained by
the threshold τ . On the graphs with d = 10, our heuristic algorithm is
able to decrease Z by nearly 80%, which is even larger than the case of
d = 5. This result is consistent in both smaller (YT-D10-S) and bigger
(YT-D10-B) graphs. On the graphs with the largest out-degree (d = 20),
the algorithm is still effective but, as expected, achieves a comparable
reduction in Z after 50 operations.

The first baseline (BSL-1) shows almost the same solution quality as
HEU, since most of the operations found by both algorithms are the same.
Although the rewiring operations provided by RePBubLik (RBL) also de-
crease the original Z0 significantly, they are less effective than the ones
given by our algorithm. Also, with a smaller size of recommendation list
(d = 5), it reaches some steady states along the iterations, where the new
rewiring operations do not decrease the Z value at all. For the YouTube
dataset, we present only the results of RBL on the smaller graphs (the
second column of Figure 6.2), since it cannot finish in reasonable time
(24 hours) on larger graphs. The other baseline (BSL-2) and the random
solution (RND) do not produce substantial decreases over the initial Z0.

In Figure 6.3, we present the results on the NELA-GT recommenda-
tion graphs. We also fix τ = 0.9 in these experiments. Given that the
values of Z0 are smaller in the news recommendation graph, we evaluate
the performance of different algorithms with smaller k (i.e., k = 20). As
for the previous case, our heuristic algorithm is the one achieving the best
performance on every graph, which reduces Z by at least 60% after 20
rewiring operations. Furthermore, on the graph with the biggest Z value
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Algorithms
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Figure 6.2: Performance comparison in the YouTube dataset.

(NEWS-3), it decreases the initial segregation by more than 80% only af-
ter 4 rewiring operations. The two baselines (BSL-1 and BSL-2) show
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Algorithms
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Figure 6.3: Performance comparison in the NELA-GT dataset.

comparable performance, but only on NEWS-3 they obtain close drops in
Z0 to HEU after 20 iterations. In the other cases, they are stuck in steady
states far from HEU. The rewiring provided by RePBubLik (RBL) shows
no significant decrease over the initial Z0, which is comparable only to
RND. The difference in performance between YouTube and NELA-GT
can be to some extent attributed to differences in their degree distribu-
tions. We compute the Gini coefficient of the in-degree distribution of
the graphs: for the YouTube graphs the Gini coefficient of in-degree for
the harmful nodes is never below 90%; while for the NELA-GT graphs
this index is never above 50%. These differences imply that RePBubLik
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τ=0.5 τ=0.8 τ=0.9 τ=0.99
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Figure 6.4: Performance of our algorithm (HEU) with varying quality
constraints τ .

might not perform well when the in-degree distribution of the graph is not
highly skewed.

Robustness w.r.t. threshold of recommendation quality. To investigate
the role of the threshold τ of recommendation quality on the output of
our algorithm, we test on the YouTube recommendation graphs with the
same number of rewiring operations (k = 50) but different values of τ in
{0.5, 0.8, 0.9, 0.99}. We present the results in Figure 6.4. As expected,
under a more lenient quality constraint (τ = 0.5), the algorithm achieves
a larger decease in the value of Z. It is also clear that the differences are
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Figure 6.5: Distribution of the segregation scores (z values) of harmful
nodes before (blue) and after (red) performing 50 rewiring operations pro-
vided by HEU and RBL.

less evident on graphs with a larger out-degree (d = 20). Specifically, for
a smaller out-degree (d = 5) all the τ configurations except τ = 0.5 tend
to stabilize after k = 20 rewiring operations. This is because the number
of possible rewiring operations constrained by τ is small. It is also evident
that the graph size, given different values of τ , does not impact the overall
performance of our algorithm.

Total exposure to harmful content. Having tested the effectiveness of
our algorithm in reducing the maximum segregation score, we study its
effect on the distribution of the segregation scores over all harmful nodes.
Figure 6.5 depicts the distribution of the z values before and after the
rewiring operations (with k = 50 and τ = 0.9) provided by HEU and
RBL on the YouTube recommendation graphs. For each graph, the vio-
lin plot in blue (left) denotes the distribution of segregation scores before
the rewiring operations and the one in red (right) the distribution after
the rewiring operations. The range of segregation scores is normalized
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to [0, 1], where the maximum corresponds to the initial segregation. We
observe that reducing the maximum segregation also helps reduce the seg-
regation scores of other harmful nodes. Compared to RBL, HEU gener-
ates a distribution more highly concentrated around smaller values; this
discrepancy between the distributions is most significant when d = 20.

6.6 Summary
In this chapter we studied the problem of reducing the risk of radicaliza-
tion pathways in what-to-watch-next recommenders via edge rewiring on
the recommendation graph. We formally defined the segregation score
of a radicalized node to measure its potential to trap users into radical-
ization pathways, and formulated the k-REWIRING problem to minimize
the maximum segregation score among all radicalized nodes, while main-
taining the quality of the recommendations. We proposed an efficient yet
effective greedy algorithm based on the absorbing random walk theory.
Our experiments, in the context of video and news recommendations, con-
firmed the effectiveness of our proposed algorithm. Finally, we showed
through empirical evidence how our method, designed to reduce maxi-
mum segregation, may actually reduce the total segregation generated by
all harmful nodes in the graph. However, an analytical reasoning behind
this result is missing.
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7
Fair and Representative Subset

Selection from Data Streams

7.1 Introduction

A crucial task in modern data-driven applications, ranging from influence
maximization [KKT03, SHC20] and recommender systems [SQM+17,
NTM+18], to nonparametric learning [GK10, BMKK14] and coverage
problems [SG09, ELVZ17], is to extract concise summaries from large
datasets. In all aforementioned applications, this task is formulated as
selecting a subset of items to maximize a utility function that quantifies
the “representativeness” (or “utility”) of the selected subset. Oftentimes,
the objective function satisfies submodularity, a property of “diminishing
returns” such that adding an item to a smaller set always leads to a larger
increase in utility than adding it to a bigger set. Consequently, maximiz-
ing submodular set functions subject to a cardinality constraint (i.e., the
size of the selected subset is restricted to a given integer k) is general
enough to model many practical problems in data mining and machine
learning. In this work, we adopt the same formulation for representative
item selection.

The classic approach to the cardinality-constrained submodular maxi-
mization problem is the GREEDY algorithm proposed by [NWF78], which
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achieves an approximation factor of 1 − 1
e

that is NP-hard to improve
[Fei98]. In many real-world scenarios, however, the data become too
large to fit in memory or arrive incrementally at a high rate – and in
such cases, the GREEDY algorithm becomes very inefficient because it
requires k repeated sequential scans over the whole dataset. Therefore,
streaming algorithms for submodular maximization problems have re-
ceived much attention recently [AEF+20, GK10, BMKK14, NTM+18,
KMZ+19]. Typically, they require only one or a few passes over the
dataset, store a very small portion of items in memory, and compute a
solution more efficiently than the GREEDY algorithm at the expense of
slightly lower quality.

Despite the extensive studies on streaming submodular maximization,
unfortunately, it seems that none of the existing methods consider the fair-
ness issue of the subsets extracted from data streams. In fact, recent stud-
ies [DSB+19, CR20, KMM15, CKS+18] reveal that the data summaries
automatically generated by algorithms might be biased with respect to
sensitive attributes such as gender, race or ethnicity, and the biases in sum-
maries could be passed to data-driven decision-making processes in edu-
cation, recruitment, banking, and judiciary systems. Thus, it is necessary
to introduce fairness constraints into submodular maximization problems
so that the selected subset can fairly represent each sensitive attribute in
the dataset. Towards this end, we consider that the data stream V com-
prises l disjoint groups V1, V2, . . . , Vl defined by some sensitive attribute.
For example, the groups may correspond to a demographic attribute such
as gender or age. We define the fairness constraint by assigning a cardi-
nality constraint ki to each group Vi with

∑l
i=1 ki = k. Then, our goal

is to maximize the submodular objective function under the constraint
that the selected subset contains ki items from Vi. Note that our fairness
constraint can incorporate different concepts of fairness by assigning dif-
ferent values of k1, k2, . . . , kl. For example, one can extract a subset that
approximately represents the proportion of each group in the dataset by
setting ki = |Vi|

|V | · k. As another example, one can also enforce a balanced
representation of each group by setting ki = k

l
.

Theoretically, the fairness constraint as defined above is a case of
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partition matroid constraints [AMT13, JLNN20, KAM19], and thus the
optimization problem is reduced to maximizing submodular set func-
tions with matroid constraints. It is not surprising that all existing al-
gorithms for the total cardinality constraint (i.e., the total budget k) can-
not be directly used for this problem anymore, because their solutions
may not satisfy the fairness constraint (i.e., the group-specific cardinal-
ity constraints). Nevertheless, a seminal work by [FNW78] indicates
that the GREEDY algorithm with minor modifications is 1

2
-approximate

for this problem. However, it still suffers from efficiency issues when
processing data streams. In addition, the state-of-the-art streaming al-
gorithms [CGQ15, CK15, FKK18] for matroid-constrained submodular
maximization are only 1

4
-approximate and do not provide solutions of the

same quality as the GREEDY algorithm efficiently in practice.
In this chapter, we investigate the problem of streaming submodular

maximization with fairness constraints. Our main contributions are sum-
marized as follows.

• We first formally define the fair submodular maximization (FSM)
problem and show its NP-hardness. We also describe the 1

2
- ap-

proximation GREEDY algorithm for the FSM problem in the offline
setting and discuss why it cannot work efficiently in data streams.
(Section 7.3)

• We propose a multi-pass streaming algorithm MP-FSM for the FSM
problem. Theoretically, MP-FSM requires O(1

ε
· log k

ε
) passes over

the dataset, storesO(k) items in memory, and has an approximation
ratio of (1

2
− ε) for any constant ε > 0. (Section 7.4.1)

• We further propose a single-pass streaming algorithm SP-FSM for
the FSM problem, which requires only one pass over the data stream
and offers the same approximation ratio as MP-FSM when an un-
bounded buffer size is permitted. We also discuss how to adapt SP-
FSM heuristically to limit the buffer size to O(k). (Sections 7.4.2
& 7.4.3)

• Finally, we evaluate the performance of our proposed algorithms
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against the state-of-the-art baselines in two real-world application
scenarios, namely maximum coverage on large graphs and person-
alized recommendation. The empirical results on several real-world
and synthetic datasets demonstrate the efficiency, effectiveness, and
scalability of MP-FSM and SP-FSM. (Section 7.5)

7.2 Related Work

There has been a large body of work on submodular optimization for its
wide applications in data mining and machine learning, including influ-
ence maximization [KKT03], facility location [LKG+07, LWD16], non-
parametric learning [GK10, BMKK14], and group item recommendation
[SQM+17]. We refer interested readers to [KG14] for a survey.

The line of research that is the most relevant to this work is streaming
algorithms for submodular maximization. The seminal work by [NWF78,
FNW78] showed that the GREEDY algorithm, which iteratively adds an
item that maximally increase the utility with k passes over the dataset,
gives approximation ratios of 1 − 1

e
and 1

2
for maximizing monotone

submodular functions with cardinality and matroid constraints, respec-
tively. Then, a series of recent studies [GK10, BMKK14, KMVV15,
KMZ+19] proposed multi- or single-pass streaming algorithms for maxi-
mizing monotone submodular functions subject to cardinality constraints
with the same approximation ratio of 1

2
− ε. Furthermore, the work of

[NTM+18] showed that any single-pass streaming algorithm must use
Ω(n

k
) memory to achieve an approximation ratio of over 1

2
. They also

proposed streaming algorithms with approximation factors better than
1
2

by assuming that items arrive in random order or running in multiple
passes. Also, [AEF+20] proposed a 0.2779-approximation streaming al-
gorithm for maximizing non-monotone submodular functions with car-
dinality constraints. Moreover, streaming submodular maximization was
also studied in different models, e.g., the sliding-window model [ELVZ17,
WLT19] where only recent items within a time window are available
for selection, the time-decay model [ZSW+19] where the weights of old
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items decrease over time, and the deletion-robust model [MKK17, MBN+17,
KZK18] where existing items might be removed from the stream. How-
ever, all above steaming algorithms are specific for the cardinality con-
straint and cannot be directly used for the fairness constraint (a case of
matroid) in this chapter. We note that the fairness of submodular max-
imization problems was also studied in [KZK18]. However, they con-
sidered removing sensitive items from the dataset for ensuring fairness,
which is different from the problem we consider in this chapter.

A contribution by [CK15] proposed a 1
4p

-approximation single-pass
streaming algorithms for maximizing monotone submodular functions
with the intersections of pmatroid constraints. Similarly, [CGQ15] gener-
alized the algorithm in [CK15] to the case of non-monotone submodular
functions. Both algorithms have a 1

4
-approximation for the FSM problem.

Moreover, in a recent work by [CHJ+17] improved the approximation
ratio for partition matroids to 0.3178 via randomization and relaxation.
Also, [FKK18] introduced a subsampling method to accelerate the algo-
rithm of [CGQ15, CK15] while preserving a 1

4p
-approximation ratio (in

expectation). Very recently, the work by [HTW20] proposed an O(1
ε
)-

pass 1
2+ε

-approximation algorithm for monotone submodular maximiza-
tion with matroid constraints. We implement the aforementioned algo-
rithms from [CGQ15, CK15, FKK18, HTW20] as baselines and compare
with them. We do not implement the algorithm in [CHJ+17] since it is
not scalable to large-scale data.

Another line of research related to this work is fair data summa-
rization. Fair k-center for data summarization was studied in [KAM19,
JLNN20, CKR20]. Seminal work was proposed by [CKS+18] proposed
a determinantal point process (DPP) based sampling method for fair data
summarization. Recently, [DSB+19] considered the fairness issue on
summarizing user-generated textual content. Although these studies adopt
similar fairness constraints to ours, the proposed methods cannot be ap-
plied to the FSM problem since the problems they considered are different
from submodular optimization.
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7.3 Problem Definition
We consider the problem of selecting a subset of representative items from
a dataset V of size n. Our goal is to maximize a non-negative set func-
tion f : 2V → R+, where, for any subset S ⊆ V , f(S) quantifies the
utility of S, i.e., how well S represents V according to some objective.
In many data summarization problems (e.g., [GK10, BMKK14, LWD16,
ELVZ17]), the utility function satisfies an intuitive diminishing returns
property called submodularity. To describe it formally, we define the
marginal gain ∆f (v|S) := f(S ∪ {v}) − f(S) as the increase in util-
ity when an item v is added to a set S. A set function f is submodular iff
∆f (v|A) ≥ ∆f (v|B) for any A ⊆ B ⊆ V and v ∈ V \ B. This means
that adding an item e to a set A leads to at least as much utility gain as
adding v to a superset B of A. Additionally, a submodular function f is
monotone iff ∆f (v|S) ≥ 0 for any S ⊆ V and v ∈ V \ S, i.e., adding
a new item v will not decrease the utility of S. In this work, we assume
that the function f is both monotone and submodular. Moreover, follow-
ing most existing works [GK10, BMKK14, LKG+07, ELVZ17, CGQ15,
FKK18, KMZ+19, NTM+18], we assume that the utility f(S) of any set
S ⊆ V is given by a value oracle – i.e., the value of f(S) is retrieved in
constant time.

Let us consider the following canonical optimization problem: given
a monotone submodular set function f and a dataset V , find a subset of
size k from V that maximizes the function f , i.e.,

max
S⊆V

f(S) s.t. |S| = k (7.1)

The problem in Eq. 7.1 is referred to as the cardinality-constrained sub-
modular maximization (CSM) problem and proven to be NP-hard [Fei98]
for many classes of submodular functions. And the well-known greedy
algorithm of [NWF78] achieves a (1− 1

e
)-approximation for this problem.

Now let us introduce fairness into the CSM problem. Suppose that the
dataset V is partitioned into l (disjoint) groups, each of which corresponds
to a sensitive class, and Vi is the set of items from the i-th group in V with⋃l
i=1 Vi = V . Then, for each group, we demand that the solution S must
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contain ki items from Vi, with
∑l

i=1 ki = k. Formally, we define the fair
submodular maximization (FSM) problem as follows:

S∗ = arg max
S⊆V

f(S) s.t. |S ∩ Vi| = ki,∀i ∈ [l] (7.2)

where S∗ and OPT = f(S∗) denote the optimal solution and its utility.
The values of k1, . . . , kl ∈ Z+ are given as input to the problem (here,
we assume ki > 0 since we can simply ignore all items in Vi if ki = 0)
and determined according to the notion of fairness. For example, one can
use ki = ni

n
· k where ni = |Vi| to obtain a proportional representation.

As another example, an equal representation can be acquired by setting
ki = k

l
for all i ∈ [l].

Algorithm 3: GREEDY

Input : Dataset V , groups V1, . . . , Vl ⊆ V , size constraint
k ∈ Z+, group size constraints k1, . . . , kl ∈ Z+

Output: Solution S for the FSM problem on V
1 Initialize the solution S ← ∅;
2 for j ← 1, . . . , k do
3 for i← 1, . . . , l do
4 if |S ∩ Vi| < ki then
5 Pick an item v∗i ← arg maxv∈Vi∩V ∆f (v|S);
6 else
7 v∗i ← NULL;

8 Select an item v∗ ← arg maxi∈[l] : v∗i 6=NULL ∆f (v
∗
i |S);

9 S ← S ∪ {v∗}, V ← V \ {v∗};
10 return S;

The FSM problem in Eq. 7.2 is still NP-hard because the CSM prob-
lem in Eq. 7.1 is its special case when l = 1. Nevertheless, a generalized
GREEDY algorithm first proposed in [FNW78] provides a 1

2
-approximate

solution for the FSM problem, since the fairness constraint we consider is
a case of the partition matroid constraint. The procedure of GREEDY is
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described in Algorithm 3. Starting from S = ∅, it iteratively adds an item
v∗ with the maximum utility gain ∆f (v

∗|S) to the current solution S. To
guarantee that solution S satisfies the fairness constraint, it excludes from
consideration all items of Vi once there are ki items from Vi in S, i.e.,
|S ∩ Vi| = ki. The solution S after k iterations is returned for the FSM
problem. The running time of GREEDY is O(nk) because it requires k
passes through the dataset and evaluates the value of f at most n times
per pass for identifying v∗i . Therefore, GREEDY becomes very inefficient
when the dataset size is large; even worse, GREEDY cannot work in the
single-pass streaming setting if the dataset does not fit in the memory. In
what follows, we investigate the FSM problem in streaming settings.

7.4 Our Algorithms

In this section, we present our proposed algorithms for the fair submod-
ular maximization (FSM) problem in data streams. Firstly, we propose
a multi-pass streaming algorithm called MP-FSM. For any constant ε ∈
(0, 1), MP-FSM requires O

(
1
ε
· log k

ε

)
passes over the dataset, stores O(k)

items in memory, and provides a 1
2
(1 − ε)-approximate solution for the

FSM problem. Secondly, we propose a single-pass streaming algorithm
called SP-FSM on the top of MP-FSM. SP-FSM has an approximation
ratio of 1

2
− ε and sublinear update time per item. But it might keep

O(n) items in a buffer for post-processing in the worst case, and thus its
space complexity is O(n). Therefore, we further discuss how to bound
the buffer size of SP-FSM when the memory space is limited and how the
approximation ratio of SP-FSM is affected accordingly.

7.4.1 The Multi-Pass Streaming Algorithm

In this subsection, we present our multi-pass streaming algorithm called
MP-FSM for the FSM problem. In general, MP-FSM adopts a threshold-
based approach similar to existing streaming algorithms for the CSM
problem [BMKK14, KMVV15, NTM+18, KMZ+19]. The high-level
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idea of the threshold-based approach is to process items in a data stream
sequentially with a threshold τ : for each item v received from the stream,
it will accept v into a solution S if ∆f (v|S) reaches τ and discard v oth-
erwise. But differently from most thresholding algorithms [BMKK14,
KMVV15, KMZ+19] for the CSM problem, which run in only one pass
and use a fixed threshold for each candidate solution, MP-FSM scans
the dataset in multiple passes using a decreasing threshold to determine
whether to include an item in each pass so that the solution has a constant
approximation ratio while satisfying the fairness constraint.

We present the detailed procedure of MP-FSM in Algorithm 4. In
the first pass, it finds the item vmax with the maximum utility δmax =
f({vmax}) among all items in the dataset V . The purpose of finding vmax
is to determine the range of thresholds to be used in subsequent passes.
Meanwhile, it keeps a random sample Ri of ki items uniformly from Vi
for each i ∈ [l], which will be used for post-processing to guarantee that
the solution satisfies the fairness constraint. Then, it initializes a solution
S containing only vmax and a threshold τ = (1− ε) · δmax for the second
pass. After that, it scans the dataset V sequentially in multiple passes. In
each pass, it decreases the threshold τ by (1− ε) times and adds an item
v ∈ Vi to the current solution S if the marginal gain of v w.r.t. S reaches
τ and there are fewer than ki items in S from Vi. When the solution S has
contained k items or the threshold τ has been decreased to be lower than
ε
k
· δmax, no more passes are needed. Finally, if the solution S does not

satisfy the fairness constraint, it will add items from random samples to
S for ensuring its validity.

Next, we provide some theoretical analysis for the MP-FSM algo-
rithm. First, we provide the approximation ratio of MP-FSM in Theo-
rem 2; and then, the complexity of MP-FSM in Theorem 3.

Theorem 2. For any parameter ε ∈ (0, 1), MP-FSM in Algorithm 4 is a
1
2
(1− ε)-approximation algorithm for the FSM problem.

Proof. Let O be the optimal solution for the FSM problem on dataset V
and Oi = O ∩ Vi be the intersection of O and Vi for each i ∈ [l]. We
consider that MP-FSM runs in p passes and S(j) (1 ≤ j ≤ p) is the
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Algorithm 4: MP-FSM
Input : Dataset V , groups V1, . . . , Vl ⊆ V , size constraint

k ∈ Z+, group size constraints k1, . . . , kl ∈ Z+,
parameter ε ∈ (0, 1)

Output: Solution S for the FSM problem on V
/* Pass 1: Get vmax and reservoir sampling

*/
1 vmax ← arg maxv∈V f({v}) and δmax ← f({vmax});
2 Keep a random sample Ri of ki items uniformly from Vi for each

i ∈ [l] via reservoir sampling [Vit85];
/* Pass 2 to p: Compute solution S */

3 S ← {vmax} and τ ← (1− ε) · δmax;
4 while τ > ε

k
· δmax do

5 foreach item v ∈ V \ S do
6 if v ∈ Vi and |S ∩ Vi| < ki and ∆f (v|S) ≥ τ then
7 S ← S ∪ {v};

8 if |S| = k then
9 break;

10 else
11 τ ← (1− ε) · τ ;

/* Post processing: Ensure fairness */
12 while ∃i ∈ [l] : |S ∩ Vi| < ki do
13 Add items in Ri to S until |S ∩ Vi| = ki;

14 return S;
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partial solution of MP-FSM after j passes. For any subset Oi of O and
the solution S(p) after p passes, we have either (1) |S(p) ∩ Vi| = ki or
(2) |S(p) ∩ Vi| < ki. If |S(p) ∩ Vi| = ki, there are two cases for each
item o ∈ Oi: (1.1) o ∈ S(p) and (1.2) o /∈ S(p). In Case (1.1), we have
∆f (o|S(p)) = 0. In Case (1.2), we compare o with an item s from Vi
added to the solution during the j-th pass. Since both o and s cannot be
added in the (j−1)-th pass and |S(j−1)∩Vi| < ki, it is safe to say that the
marginal gains of o and s w.r.t. S(j−1) do not reach the threshold τ (j−1) of
the (j−1)-th pass. As s is added in the j-th pass, we have ∆f (s|S ′) ≥ τ (j)

where S ′ ⊆ S(j) is the partial solution before s is added. Therefore, we
have the following sequence of inequalities:

∆f (o|S(p)) ≤ ∆f (o|S(j−1)) < τ (j−1) =
τ (j)

1− ε ≤
∆f (s|S ′)

1− ε (7.3)

Then, if |S(p)∩Vi| < ki, there are also two cases for o ∈ Oi: (2.1) o ∈ S(p)

and (2.2) o /∈ S(p). Case (2.1) is exactly the same as Case (1.1). In Case
(2.2), we have:

∆f (o|S(p)) < τ (p) ≤ ε

k(1− ε) · δmax (7.4)

where τ (p) is the threshold of the p-th pass.
Next, we divide O into two disjoint subsets O′ and O′′ as follows:

O′ = ∪i′Oi′ where |S(p) ∩ Vi′| = ki′ , i.e., all items from groups satisfying
Case (1), and O′′ = O \O′, i.e., all items from groups satisfying Case (2).
We define an injection π : O′ → S(p) that maps each item in O′ to an item
in S(p) as follows: If o ∈ S(p), then π(o) = o; otherwise, π(o) will be an
arbitrary item s ∈ S(p) from the same group as o and s /∈ O. Based on
the result of Eq. 7.3, we can get the following inequalities for O′:∑

o∈O′
∆f (o|S(p)) ≤

∑
π(o)∈S(p) ∆f (π(o)|S ′)

1− ε ≤ f(S(p))

1− ε (7.5)

Here, S ′ denotes the partial solution before π(o) is added and the sec-
ond inequality is acquired from the fact that f(S(p)) =

∑
s∈S(p) ∆f (s|S ′).
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Then, based on the result of Eq. 7.4, we have the following inequalities
for O′′: ∑

o∈O′′
∆f (o|S(p)) ≤ ε · |O′′|

k(1− ε) · δmax ≤
ε

1− ε · f(S(p)) (7.6)

because |O′′| < k and δmax ≤ f(S(p)). Finally, we have the following
sequence of inequalities from Eq. 7.5 and 7.6:

f(O ∪ S(p))− f(S(p)) =
∑
o∈O′

∆f (o|S(p)) +
∑
o∈O′′

∆f (o|S(p))

≤ 1

1− ε · f(S(p)) +
ε

1− ε · f(S(p)) =
1 + ε

1− ε · f(S(p))

Since OPT = f(O) ≤ f(O ∪ S(p)), we have OPT ≤ f(S(p)) + 1+ε
1−ε ·

f(S(p)) ≤ 2
1−ε · f(S(p)). Finally, we conclude the proof from the fact that

f(S) ≥ f(S(p)) ≥ 1
2
(1− ε) · OPT.

Theorem 3. MP-FSM in Algorithm 4 requires O
(

1
ε
· log k

ε

)
passes over

the dataset V , stores at most O(k) items, and has O
(
n
ε
· log k

ε

)
time com-

plexity.

Proof. First of all, since the threshold τ is decreased by 1− ε times after
one pass, τ (2) = (1−ε) ·δmax, and τ (p) ≥ ε

k
·δmax, we get (1−ε)p−1 ≥ ε

k
.

Taking the logarithm on both sides of the last inequality and the Taylor
expansion of log(1− ε), we have p ≤ 1 + 1

log(1−ε) · log ε
k
≤ 1 + 1

ε
· log k

ε

and thus the number p of passes in MP-FSM is O
(

1
ε
· log k

ε

)
. Further-

more, MP-FSM only stores items in the solution and random samples for
post-processing, both of which contain at most k items. Hence, MP-FSM
stores at most O(k) items. Finally, because MP-FSM evaluates the value
of function f at most n times per pass, the total number of function eval-
uations is O

(
n
ε
· log k

ε

)
.

7.4.2 The Single-Pass Streaming Algorithm
In this subsection, we present our single-pass streaming algorithm called
SP-FSM for the FSM problem. Generally, SP-FSM is based on a threshold-
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based approach, similar to MP-FSM. However, several adaptations are re-
quired so that SP-FSM can provide an approximate solution in only one
pass over the dataset. First of all, because vmax and δmax are unknown
in advance, SP-FSM should keep track of them from received items, dy-
namically decide a sequence of thresholds based on the observed δmax,
and maintain a candidate solution for each threshold (instead of keep-
ing only one solution over multiple passes in MP-FSM). Furthermore, as
only one pass is permitted, an item will be unrecoverable once it is dis-
carded. To provide a theoretical guarantee for the quality of solutions in
adversarial settings, SP-FSM keeps a buffer to store items that are neither
included into solutions nor safely discarded. Finally, whenever a solu-
tion is requested during the stream, OP-RSM will reconsider the buffered
items for post-processing by attempting to add them greedily to candidate
solutions. We will show that SP-FSM has an approximation ratio of 1

2
− ε

with a judicious choice of parameters when the buffer size is unlimited.

The detailed procedure of SP-FSM is presented in Algorithm 5. Here,
δmax keeps the maximum utility of any single item among all items re-
ceived so far, LB maintains the lower bound of OPT estimated from can-
didate solutions, B stores the buffered items, and Ri is a set of ki items
sampled uniformly from all received items in Vi. In addition, two parame-
ters α and β are used to control the number of candidate solutions and the
number of buffered items, respectively. Generally, larger α means bigger
gaps between neighboring thresholds and thus fewer candidates, while
larger β means more rigorous conditions for adding an item to the buffer
and naturally smaller buffer sizes. The procedure for stream processing
of SP-FSM is given in Line 2–14. For each item v ∈ Vi received from V ,
it first updates the value of δmax and the sample Ri w.r.t. v accordingly.
Then, it maintains a sequence T of thresholds picked from a geometric
progression {(1+α)j|j ∈ Z} and a candidate solution Sτ for each τ ∈ T .
Specifically, the upper bound of the threshold is set to δmax since Sτ = ∅
for any τ > δmax; the lower bound of the threshold is set to max{δmax,LB}

2k

because any candidate with a threshold lower than OPT
2k

is safe to be dis-
carded (as shown in our theoretical analysis later) and max{δmax, LB} is
the lower bound of OPT. After maintaining the thresholds and their corre-
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Algorithm 5: SP-FSM
Input : Data stream V , groups V1, . . . , Vl ⊆ V , size constraint

k ∈ Z+, group size constraints k1, . . . , kl ∈ Z+,
parameters α, β ∈ (0, 1)

Output: Solution S for the FSM problem on V
1 δmax ← 0, LB← 0, B ← ∅, and Ri ← ∅ for each i ∈ [l];
/* Stream processing */

2 foreach item v ∈ Vi received from V do
3 δmax ← max{δmax, f({v})};
4 Update Ri w.r.t. v using reservoir sampling [Vit85];
5 T ← {(1 + α)j|j ∈ Z, max{δmax,LB}

2k
≤ (1 + α)j ≤ δmax};

6 Discard Sτ for all τ /∈ T ;
7 Initialize Sτ ← ∅ for each τ newly added to T ;
8 foreach τ ∈ T do
9 if |Sτ ∩ Vi| < ki then

10 if ∆f (v|Sτ ) ≥ τ then
11 Sτ ← Sτ ∪ {v};
12 else if ∆f (v|Sτ ) ≥ β·LB

k
then

13 B ← B ∪ {v};

14 LB← maxτ∈T f(Sτ );

/* Post processing */
15 Let τ ′ be the smallest τ ∈ T such that |Sτ ∩ Vi| < ki for each i ∈ [l]

or the largest τ ∈ T if there exists some i such that |Sτ ∩ Vi| = ki
for every Sτ ;

16 foreach τ ≤ τ ′ in T do
17 Run GREEDY in Algorithm 3 to add items from buffer B and

samples Ri (i ∈ [l]) to Sτ until |Sτ | = k;

18 return S ← arg maxτ∈T f(Sτ );
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sponding candidates, SP-FSM evaluates the marginal gain ∆f (v|Sτ ) of v
for each candidate Sτ with threshold τ ∈ T : Similar to MP-FSM, it will
add v to Sτ if ∆f (v|Sτ ) reaches τ and |Sτ ∩Vi| < ki; Additionally, it will
add v to the buffer B if ∆f (v|Sτ ) is at least β·LB

k
but less than τ . Finally,

LB is updated to the utility of the best solution found so far. The procedure
for post-processing of SP-FSM is shown in Lines 15–17. It first finds out
the smallest τ ∈ T such that |Sτ ∩Vi| < ki for each i ∈ [l] as τ ′; if such τ
does not exist, i.e., there exists some i such that |Sτ ∩ Vi| = ki for every
Sτ , the largest τ ∈ T is used as τ ′. For each τ ≤ τ ′ in T , it runs GREEDY

in Algorithm 3 to reevaluate the items in B and Ri (i ∈ [l]) and add them
to Sτ until |Sτ | = k. Lastly, the candidate solution with the maximum
utility after post-processing is returned as the final solution.

Next, we will provide the theoretical analysis for the SP-FSM algo-
rithm. First, in Lemma 4, we analyze the special cases when the solution
returned after stream processing (without post-processing) can achieve a
good approximation ratio.

Lemma 4. Assume that OPT
2k
≤ τ ≤ (1+α)·OPT

2k
. If either |Sτ | = k or

|Sτ ∩ Vi| < ki for all i ∈ [l], then f(Sτ ) ≥ 1−α
2
· OPT.

Proof. First of all, when |Sτ | = k, it holds that f(Sτ ) ≥ kτ ≥ k · OPT
2k

=
1
2
· OPT ≥ 1−α

2
· OPT. Then, when |Sτ ∩ Vi| < ki for all i ∈ [l], we have

∆f (v|Sτ ) < τ for any v ∈ V \ Sτ . Let O be the optimal solution for the
FSM problem on V . We can acquire that

f(O ∪ Sτ )− f(Sτ ) ≤
∑

o∈O\Sτ

∆f (o|Sτ ) < kτ

≤ k · (1 + α) · OPT
2k

= (1 + α) · OPT
2

Therefore, we have f(Sτ ) ≥ f(O ∪ Sτ ) − (1 + α) · OPT
2
≥ OPT − (1 +

α) · OPT
2

= 1−α
2
· OPT. Finally, we conclude the proof by considering both

cases collectively.

Lemma 4 is useful because one of the thresholds τ ∈ T of SP-FSM
(Line 5 of Algorithm 5) must satisfy the first condition OPT

2k
≤ τ ≤
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(1+α)·OPT
2k

of the lemma. This is because T is a geometric progression with
a scale factor of (1 + α) and spans the range [max{δmax,LB}

2k
, δmax], with

max{δmax, LB} ≤ OPT ≤ k · δmax.
This implies that, if the remaining conditions of Lemma 4 were satis-

fied as well, the solution of SP-FSM after stream processing would have
the strong approximation guarantee given by Lemma 4. Intuitively, this
would be the case when the utility distribution of items was generally
“balanced” among groups, so that either all or none of the group budgets
would be exhausted by the end of the stream processing procedure. How-
ever, in case that the utilities are highly imbalanced among groups, the
approximation ratio would become significantly lower. On the one hand,
SP-FSM might miss high-utility items in some groups from the stream
because the threshold is too low and the solution has been filled by earlier
items with lower utilities in these groups. On the other hand, SP-FSM
might not include enough items from the other groups because the thresh-
old is too high for them. Note that, for OPT

2k
≤ τ ≤ (1+α)·OPT

2k
, Lemma 4

allows the approximation factor of Sτ to drop to mini∈[l] kiτ

OPT
≥ mini∈[l]

ki
2k
≥

1
2k

when some group budgets are exhausted but the others are not.
Therefore, we further include the buffer and post-processing proce-

dures in SP-FSM so that it still achieves a constant approximation in-
dependent of k for an arbitrary group size constraint. In Lemma 5, we
analyze the approximation ratio of the solution returned by SP-FSM after
post-processing.

Lemma 5. Let τ ′ be chosen according to Line 15 of Algorithm 5. It holds
that f(Sτ ′) ≥ 1−β

2+α
· OPT after post-processing.

Proof. We consider two cases separately: (1) |Sτ ′ ∩ Vi| < ki for each
i ∈ [l] or (2) τ ′ is the maximum in T . In Case (1), we divide the items in
the optimal solutionO into three disjoint subsets: O1 = O∩Sτ ′ , i.e., items
included in Sτ ′ during stream and post processing;O2 = O∩(B\Sτ ′), i.e.,
items stored in the buffer but not added to Sτ ′; O3 = O∩ (V \ (B ∪Sτ ′)),
i.e., items discarded during stream processing. For each o ∈ O2, we
can always find an item s ∈ Sτ ′ from the same group as o such that
∆f (s|S ′) ≥ ∆f (o|S ′) ≥ ∆f (o|Sτ ′)where S ′ ⊆ Sτ ′ is the partial solution
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when s is added. This is because GREEDY always picks the item with the
maximum marginal gain within each group. In addition, for each o ∈ O3,
we have ∆f (o|Sτ ′) ≤ β·LB

k
≤ β·OPT

k
. Therefore, we have

f(O ∪ Sτ ′)− f(Sτ ′) ≤
∑

o∈O\Sτ ′

∆f (o|Sτ ′)

=
∑
o∈O2

∆f (o|Sτ ′) +
∑
o∈O3

∆f (o|Sτ ′)

≤
∑
s∈Sτ ′

∆f (s|S ′) + β · OPT

= f(Sτ ′) + β · OPT

where S ′ is the partial solution when s is added to Sτ ′ . And we conclude
that f(Sτ ′) ≥ 1−β

2
· OPT from the above inequalities. In Case (2), we have

τ ′ is the maximum in T and thus τ ′ ∈ [ δmax
1+α

, δmax]. We divide O into
O1, O2, O3 in the same way as Case (1). It is easy to see that the results
for O1 and O3 are exactly the same as Case (1). The only difference is
that there may exist some items inO2 rejected by Sτ ′ because their groups
have been filled in Sτ ′ . For any o ∈ O2, we have ∆f (o|Sτ ′) ≤ δmax ≤
(1 + α) · τ ′ ≤ (1 + α) · ∆f (s|S ′) where s is from the same group as o
and S ′ is the partial solution when s is added. Accordingly, we can get
OPT − f(Sτ ′) ≤ (1 + α) · f(Sτ ′) + β · OPT and thus f(Sτ ′) ≥ 1−β

2+α
· OPT

in both cases.

Next, we give the approximation ratio and complexity of SP-FSM in
Theorems 6 and 7, respectively.

Theorem 6. Assuming that α, β = O(ε), SP-FSM in Algorithm 5 is a
(1

2
− ε)-approximation algorithm for the FSM problem.

Proof. According to the results of Lemmas 4 and 5, we have f(S) ≥
1−β
2+α
·OPT for the solution S returned by Algorithm 5. By assuming α, β =

O(ε), we conclude the proof.

Theorem 7. Assuming that α, β = O(ε), SP-FSM in Algorithm 5 requires
one pass over the data stream V , stores at mostO

(
k log k
ε

+ |B|
)

items, has
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O
(

log k
ε

)
update time per item for stream processing, and takes O

(
k log k
ε
·

(|B|+ k)
)

time for post-processing.

Proof. The number |T | of thresholds maintained at any time satisfies that
(1 + α)|T | ≤ 2k. Using the Taylor expansion of log(1 + α), we have
|T | ≤ log 2k

log (1+α)
≤ log 2k

α
= O

(
log k
α

)
. Therefore, the number of function

evaluations per item is O
(

log k
ε

)
. Since each candidate solution contains

at most k items, the total number of items stored in SP-FSM is O
(
k log k
ε

+
|B|
)
. For each candidate solution Sτ , the post-processing procedure runs

in (k − |Sτ |) iterations and processes at most (|B| + k) items at each
iteration. Therefore, it takesO

(
k log k
ε
·(|B|+k)

)
time for post-processing.

7.4.3 SP-FSM with Bounded Buffer Size

From the above results, we can see that SP-FSM may store O(n) items in
the buffer and take O

(
nk log k

ε

)
time for post-processing in the worst case.

In practice, a streaming algorithm is often required to process massive
data streams with limited time and memory (sublinear to or independent
of n). And it is not favorable for SP-FSM to store an unlimited num-
ber of items in the buffer B. Therefore, we propose a simple strategy
for SP-FSM to manage the buffered items so that the buffer size is al-
ways bounded at the expense of lower approximation ratios in adversary
settings.

We consider that the maximum buffer size is restricted to k′ = O(k)
and extra items should be dropped from B once its size exceeds k′. The
following rules are considered for buffer management. Firstly, since LB

increases over time, it is safe to drop at any time during stream processing
any item already in the buffer whose marginal gain is lower than β·LB

k

for the current value of LB, without affecting the theoretical guarantee.
Secondly, to avoid duplications, if an item is added to some candidate
solution but needs to be buffered for another, it is not necessary to add this
item to the buffer because the algorithm has already stored this item. In
this case, items in both candidates and the buffer should be used for post-
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processing. Thirdly, as the buffer is used for storing high-utility items for
post-processing, the items with larger marginal gains should have higher
priorities to be stored. If the buffer size still exceeds k′ after (safely)
dropping items using the first two rules, it is required to sort the items in
B in a descending order of marginal gain δ(v) = maxτ∈T ∆f (v, Sτ ) and
drop the item v with the lowest δ(v) until |B| = k′. Fourthly, considering
the fairness constraint, it will not drop any item v from Vi anymore if
|B ∩ Vi| ≤ ki even if δ(v) is among the lowest marginal gains. In this
case, it will drop the item with the lowest δ(v) from Vi with |B ∩Vi| > ki
instead.

The first two rules above have no effect on the theoretical guarantee
on the approximation ratio of SP-FSM. The latter two rules will lower
the approximation ratio of SP-FSM in some cases. Let v′ be the item
with the largest δ(v) among all items dropped due to Rule (3) or (4). The
approximation ratio of SP-FSM will drop to 1−β′

2
where β′ = k·δ(v′)

LB
. Once

β′ ≥ 1 − 1
k
, the approximation ratio will become 1

2k
in the worst case.

Nevertheless, according to our experimental results in Section 7.5, SP-
FSM provides high-quality solutions empirically with very small buffer
sizes (i.e., k′ = 2k).

7.5 Experiments

The aim of our experiments is three-fold. First, we aim to quantify “the
prices of fairness and streaming”, i.e., the loss in solution utility caused by
introducing fairness constraints and restricting data access to the stream-
ing model. Second, we aim to demonstrate the improvements of MP-FSM
upon existing algorithms in the multi-pass streaming setting. Third, we
aim to illustrate that SP-FSM (with unlimited/bounded buffer sizes) out-
performs existing single-pass streaming algorithms.

Towards this end, we perform extensive experiments on two applica-
tions, namely maximum coverage on large graphs and personalized rec-
ommendation, for evaluation. We compare MP-FSM with the following
two multi-pass baselines:
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Figure 7.1: Solution utilities of multi-pass algorithms on POKEC. The
solution utilities of GREEDY without fairness constraints are plotted as
black lines to demonstrate “the price of fairness”.

• GREEDY [FNW78]: a 1
2
-approximation k-pass greedy algorithm.

• MP-STREAMLS [HTW20]: a 1
2+ε

-approximationO(1
ε
)-pass stream-

ing algorithm.

Moreover, we compare SP-FSM with the following two single-pass base-
lines:

• STREAMLS [CK15, CGQ15]: a 1
4
-approximation streaming algo-

rithm.

• STREAMLS+S [FKK18]: an improved version of STREAMLS with
subsampling. The subsampling rate q is set to 0.1.
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Figure 7.2: Solution utilities of single-pass algorithms on POKEC. The
solution utilities of GREEDY are plotted as black lines to show “the price
of streaming”.

All algorithms were implemented in Python 3.6, and the experiments
were conducted on a server running Ubuntu 16.04 with an Intel Broad-
well 2.40GHz CPU and 29GB memory. For each of the experiments we
invoked our algorithms with the following parameter values: MP-FSM
with ε = 0.2; SP-FSM with α, β = 0.5 and buffer size k′ = 2k for those
cases where the buffer size is bounded.

7.5.1 Maximum Coverage on Large Graphs

Maximum coverage is a classic submodular optimization task on graphs
with many real-world applications such as community detection [GGT14],
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Figure 7.3: Running time of multi-pass algorithms on POKEC. In what
follows, we only present the running time for PR because the running
time for ER is similar to that for PR.

influence maximization [KKT03], and web monitoring [SG09]. The goal
of this task is to select a small subset of nodes that covers a large portion
of nodes in a graph. Formally, given a graph G = (V,E) where n = |V |
is the number of nodes and m = |E| is the number of edges, the goal is
to find a subset S ⊆ V that maximizes the nodes in the neighborhood of
S, i.e., f(S) = | ∪v∈S N(v)| where N(v) is the set of nodes connected to
v. It is easy to verify that the above function f is nonnegative, monotone,
and submodular.

We perform the experiments for maximum coverage on two graph
datasets as follows: (1) POKEC is a real dataset on SNAP1. It is a di-
rected graph with 1,632,803 nodes and 30,622,564 edges representing the
follower/followee relationships among users in Pokec. Each node is as-
sociated with a user profile with demographic information. The nodes
are partitioned into l = 2 groups by gender or l = 7 groups by age in
our experiments. (2) SYN is a set of synthetic graphs generated by the
Barabási-Albert model [AB02] with equal number of nodes and edges
n = m. To test the effect of graph size, we generate different graphs with
n (as well as m) ranging from 100k to 1m. The nodes are randomly parti-

1https://snap.stanford.edu/data/soc-Pokec.html
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Figure 7.4: Running time of single-pass algorithms on POKEC.

tioned into l groups and the group sizes follow a Zipf’s distribution with
parameter s = 2. By default, we set the number l of groups to 10. To test
the effect of l, we fix n = 500k and vary l from 10 to 100.

In the first set of experiments, we evaluate the performance of GREEDY,
MP-STREAMLS, and MP-FSM in a multi-pass streaming setting. We
range the total cardinality constraint k =

∑
i ki from 100 to 1, 000 and

use both proportional representation (PR) and equal representation (ER)
to set ki for the different groups as fairness constraints. The solution util-
ities and running time on the POKEC dataset are presented in Figures 7.1
and 7.3, respectively. First of all, “the price of fairness” – i.e., the loss in
utility caused by the fairness constraints, is marginal for PR in both cases
of Gender and Age groups, and ER in the case of Gender groups where
the groups are few and roughly balanced (e.g., 51% female vs. 49% male
on POKEC). However, if the groups are highly imbalanced (e.g., 7 age
groups on POKEC), enforcing equal representation leads to significant
losses in utilities (see Figure ??). Furthermore, MP-FSM outperforms
GREEDY and MP-STREAMLS in running time and solution utility in al-
most all cases. It runs up to 19 and 567 times faster than GREEDY and
MP-STREAMLS, respectively. Meanwhile, its solution utilities are al-
ways nearly equal to (at least 99% of) those of GREEDY and consistently
better (up to 10% higher) than those of MP-STREAMLS.
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Figure 7.5: Solution utilities of multi-pass algorithms with varying dataset
size n and number of groups l.

In the second set of experiments, we evaluate the performance of
STREAMLS, STREAMLS+S, and SP-FSM with unlimited and bounded
(i.e., k′ = 2k) buffer sizes in a single-pass streaming setting. We also vary
k from 100 to 1, 000 and use both PR and ER as fairness constraints. The
experimental results on the POKEC dataset are illustrated in Figures 7.2
and 7.4. Firstly, we observe that the utilities of the solutions provided by
both STREAMLS and SP-FSM are typically around 10% lower than those
of the solutions of GREEDY. This can be seen as “the price of streaming”
– i.e., the loss in utilities for restricting data access only to a single pass
over the stream. Secondly, the solution quality of SP-FSM is consistently
equivalent to or better than that of STREAMLS. Meanwhile, the efficiency
of SP-FSM in terms of running time is also consistently higher than that
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Figure 7.6: Solution utilities of single-pass algorithms with varying
dataset size n and number of groups l.

of STREAMLS, particularly so for larger values of k. Thirdly, when the
buffer size is limited to 2k, the performance of SP-FSM is nearly equiv-
alent to that of SP-FSM with unlimited buffer sizes, which confirms the
effectiveness of the buffer management strategy we propose. Fourthly, the
subsampling technique of STREAMLS+S does not work well in our sce-
nario: although it leads to obvious improvements in efficiency, its solution
quality is significantly inferior to any other algorithm.

In the third set of experiments, we test the scalability of different al-
gorithms with varying the number l of groups and the dataset size n on
synthetic datasets SYN. The solution utilities of multi-pass algorithms are
shown in Figure 7.5. We observe that the utilities of different algorithms
remain stable for PR but decrease for ER when the number l of groups
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Figure 7.7: Running time of multi-pass algorithms with varying dataset
size n and number of groups l.

increases. This is also an evidence of “the price of fairness”, – i.e., en-
forcing the selection of an equal number of items from highly unbalanced
groups (note that the group sizes on SYN follow a Zipf’s distribution)
causes significant utility losses. Nevertheless, the utilities of different al-
gorithms grow with increasing n as expected. At the same time, the solu-
tion utilities of GREEDY, MP-STREAM-LS, and MP-FSM are generally
close to each other with varying l and n. The running time of multi-pass
algorithms are shown in Figure 7.7. The running time generally keeps
steady for different values of l and grows near linearly with increasing n.
Meanwhile, MP-FSM runs nearly 10 and 100 times faster than GREEDY

and MP-STREAM-LS, respectively, for different values of l and n.

The corresponding results for single-pass algorithms on synthetic data-
sets are presented in Figures 7.6 and 7.8, respectively. Since SP-FSM with
unlimited buffer size shows nearly identical performance to SP-FSM with
buffer size 2k, we omit its results here. In general, we observe the same
trends as the multi-pass case with varying l and n. For different val-
ues of l and n, the solution quality of SP-FSM and STREAMLS is close
to each other, but SP-FSM runs much faster than STREAMLS. With the
benefit of subsampling, STREAMLS+S has much higher efficiency than
SP-FSM and STREAMLS. Nevertheless, its solution quality is obviously
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Figure 7.8: Running time of single-pass algorithms with varying dataset
size n and number of groups l.

worse than them at the same time.
In summary for the application of graph coverage, our results demon-

strate that our proposed algorithms MP-FSM and SP-FSM manage to pay
a small ‘price’ for the restrictions of the setting (fairness constraints and
streaming data access) and, compared to existing algorithms, they exhibit
an excellent combination of performance both in terms of running time
and utility.

7.5.2 Personalized Recommendation

The personalized recommendation problem has been used for benchmark-
ing submodular maximization algorithms in [MBN+17, NTM+18]. Its
goal is to select a subset S of k items that is both relevant to a given user
u and well represents all items in the collection V . Formally, each query
user u and each item v in the collection V are denoted by feature vec-
tors in Rd. The relevance between users and items is computed by the
inner product of their feature vectors. The objective function is defined as
follows:

f(S) = λ ·
∑
v′∈V

max
v∈S
〈v′, v〉+ (1− λ) ·

∑
v∈S

〈u, v〉
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Figure 7.9: Results of multi-pass algorithms on MovieLens. The solution
utilities of GREEDY without fairness constraints are plotted as black lines.
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Figure 7.10: Results of single-pass algorithms on MovieLens. The solu-
tion utilities of GREEDY are plotted as black lines.

and, again, it is nonnegative, monotone and submodular. The first term
is used to measure how well a subset S represents the collection V ; the
second term denotes the relevance of S to user u; and the parameter λ
trades off between both terms. We set λ = 0.75 following [MBN+17,
NTM+18] in our experiments.

We perform the experiments for personalized recommendation on the
MovieLens dataset2. It contains 3, 883 items (movies) and 6, 040 users
with 1 million user ratings. We denote each item and user as a 50-

2https://grouplens.org/datasets/movielens/
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dimensional vector by performing Nonnegative Matrix Factorization (NMF)
[WZ13] on the user rating data. The items (movies) are partitioned into
l = 18 groups according to genre.

We evaluate the performance of multi-pass algorithms by ranging k
from 10 to 100 in Figure 7.9. Because the results for ER are similar to
those for PR, we omit the results for ER here. Since the number l of
groups is large compared with k, the utility losses caused by fairness con-
straints ( for both PR and ER) are more significant than those in maximum
coverage. Among the multi-pass algorithms, GREEDY runs the slowest
but achieves the best solution quality. Moreover, MP-FSM has higher ef-
ficiency than GREEDY, especially when k becomes larger. Meanwhile,
it provides solutions of at least 96% utilities of those of GREEDY. Al-
though MP-STREAMLS runs faster than MP-FSM and GREEDY because
of fewer number of solution updates, its solution quality becomes worse
as well. We evaluate the performance of single-pass algorithms by rang-
ing k from 10 to 100 in Figure 7.10. Similar to the case of maximum
coverage, the solution utilities of SP-FSM (with unlimited and bounded
buffer sizes) are around 10% lower than those of GREEDY because only
one pass over the stream is permitted. Meanwhile, SP-FSM provides solu-
tions of higher quality than STREAMLS at the expense of longer running
time. Finally, STREAMLS+S still brings great improvements in efficiency
but leads to obvious losses in solution quality.

7.6 Conclusion

We studied the problem of extracting fair and representative items from
data streams. In this paper, we formulated the problem as maximizing
monotone submodular functions subject to partition matroid constraints.
We first designed a (1

2
−ε)-approximation multi-pass streaming algorithm

called MP-FSM for the problem. Then, we designed a single-pass stream-
ing algorithm called SP-FSM for the problem. SP-FSM had the same
(1

2
− ε)-approximation ratio as MP-FSM when an unlimited buffer size is

permitted, which improved the best-known 1
4
-approximation ratio in the
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literature. We further considered the practical implementation of SP-FSM
with bounded buffer sizes. Finally, extensive experimental results on two
real-world applications confirmed the efficiency, effectiveness, and scala-
bility of our proposed algorithms.
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8
Conclusions

This manuscript advances the state of the art in the direction of studying
and mitigating harmful algorithmic biases in presence of a recommenda-
tion algorithm. In particular, in the first part, we emphasize how network
structures can be leveraged for analyzing phenomena due to the interac-
tions between users and algorithmic recommendations.

In the contest of Online Social Networks we investigated, through a
series of empirical evidences, the impact of network homophily over the
output of a People Recommender System. Our results showed how the
more homophilic is a subgroup, the more unfairness would be generated
by the recommenders, with a tendency to benefit the homophilic users.
Afterwards, this first study led to analyze the same category of algorithms
with a perspective on the long-term effects. For this reason, we designed
a simulation model able to reproduce the “feedback loop” stimulated by
sequential interactions between users and recommendation algorithms. In
this case, we evaluated the impact of the homophily not only on the al-
gorithmic suggestions, but also on the original network, displaying the
interplay between original topology, user behavior and recommendation
algorithms.

Overall, the insights grasped through both the empirical study and the
simulation model, allowed us to design methods able to reduce promi-
nent issues such as radicalization in sequential output and unfairness in
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an online fashion (e.g. streaming data). Indeed, we first designed an
algorithm able to reduce the harmful behavior of “radicalization” on se-
quential recommendations (e.g. “what-to-watch-next’)’. We defined a
new metric of recommendations’ segregation to propose post-processing
strategies of rewiring, which leveraging the network structure, can change
the recommendation graph, maintaining a high level of relevance. Then,
to further explore bias-aware strategies in an online fashion, we designed
techniques able to reduce unfairness of recommendations in the presence
of streaming data.

8.1 Limitations & Future Work

Even if our contributions led to four major scientific contributions pub-
lished in premium venues, they open up to different follow-ups and po-
tential future work.

8.1.1 People Recommender Systems

Bias in PRS. In the 4th Chapter we design a metric of exposure inequal-
ities accounting for the relative size of the two subgroups in the network.
Although the wide range of scenarios that have been covered along this
work, we point out here several limitations. First, our analysis is purely
empirical, leaving space to further investigate analytically how homophily
leads to disparate exposure. We expect our work may initiate more con-
tributions in that direction. Also, designing alternative exposure met-
rics, integrating graph characteristics into the exposure (e.g. in-degree,
node centralities) might be a natural follow-up. In addition, this kind of
study would clarify different kinds of network inequalities. Nevertheless,
through the tools and the analysis we have applied, we do not try to infer
the reason behind the observed phenomena, since our findings are mainly
driven by empirical evidences. We highlight algorithmic biases expressed
in terms of exposure, in a static “single round” of recommendations but
saying nothing about the temporal effect of the algorithms. The intro-

150



i
i

“main” — 2022/7/21 — 17:21 — page 151 — #171 i
i

i
i

i
i

duced exposure metric accounts for distribution of recommended users,
but does not provide any information regarding the ones receiving the
suggestion. In this way, this metric tells nothing about which source a
group benefitted from, in terms of accumulated exposure. Synthetic data
has been designed to reproduce, user homophily and rich-get-richer ef-
fect, and the choice of using the biased preferential attachment is due
to its proven capacity to reproduce quite well social network activities
[BA99]. Analogously, the experiments are designed assuming a sensitive
attribute that allows us to split nodes only in two subgroups. In practice,
user demographics may present more than two attribute values (e.g. age,
education, etc...) and, in those cases, new definitions of disparate expo-
sure and homophily are needed. In our setting, we assume a power-law
distribution leading to the graph generation. Nevertheless, this assump-
tion may sound too tight, and a natural open question to address in the
future would be the comparison of results produced by different data gen-
eration processes. Also, extending this analysis to other models will open
to other use-cases where homophily would raise in other forms, like job
platforms interaction networks or research collaboration graphs. In those
cases, new definitions of homophily are needed, along with different types
of inequality analysis. In particular, the focus would not be on the distri-
bution of exposure but on different kinds of bottleneck for information
access, since recommendations may alter segregation in the social graph
for different subgroups. After having characterized the inequality in net-
work given by recommendation algorithms, there is an urgent need to de-
sign homophily-aware recommendation algorithms, able to deal with the
interplay between utility, unfairness and homophily. In particular, there
is an urgency of introducing techniques able to reduce unfairness in ex-
posure, but at the same time without loosing in relevance and considering
different levels of individual homophily.

Long-Term Analysis. In the 5th Chapter, we present insights in the di-
rection of long-term effects of recommendation systems using simula-
tion models. However, disentangling the consequences of recommenda-
tion algorithms, user behavior and network topology remains challenging.
Hence, we next discuss some limitations of our study, along with some
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natural follow-ups. First, the user behaviour included in our work does
not consider homophily as a potential factor. In our future effort we plan
to investigate how homophily can impact user choices when accepting or
rejecting algorithmic recommendations. A more fine-grain analysis at the
mesoscale level of communities or subgraphs might be useful to better
understand the phenomena at play. Moreover, a natural extension of our
work would be a setting where also the graph evolves dynamically, open-
ing to scenarios where homophily may change over time as well as with
the partition of minority-majority. Including the organic network growth
as part of the simulation would allow the users to have heterogeneous be-
haviours, since in real-world scenarios each user may express homophily
in different ways of interactions. For this reason, verifying our findings
through auditing timely tracked interactions between users and recom-
mendation algorithms is needed. Finally, the results of the present study
highlight the urgency to include link recommendation algorithms among
the key elements when modelling network dynamics. Bias-aware meth-
ods able to mitigate exposure would advance the research in the direction
of long-term unfairness.

8.1.2 Bias Mitigation

What-To-Watch-Next. In the 6th Chapter, we present a network-based
strategy to reduce radicalization in recommendation pathways. The main
limitation of our problem formulation is assuming a binary labelling of
nodes, which limits each content to one of the two groups (harmful or
neutral), which is not always realistic. A natural extension is to not as-
sume binary labels, but relative scores in [0, 1]. This change would require
to re-define segregation accordingly. Moreover, assuming the recommen-
dation graph to be static and part as input represents a limitation, since
this implies that the recommendations are precomputed and static. Also,
in our algorithms we do not include any mechanism replicating the mone-
tization framework applied on video sharing platforms. Additionally, our
setting can be extended to a scenario where recommendations are gen-
erated dynamically in batches and not statically. Our work is also the
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first one proposing post-processing strategies to reduce radicalization. A
natural follow-up may be designing in-process algorithms able to reduce
segregation through radicalization while training the algorithm.
Fairness in Streaming Data. In the 7th Chapter we introduced algo-
rithms to consider group fairness definitions in pipelines involving stream-
ing data. The main limitation of the proposed algorithms regards the prob-
lem formulation, since no definition of individual fairness is considered.
Also, this setting considers only the fairness perspective from the side of
the provider, but not the one of the consumer.

8.2 Ethical Considerations & Implications
The 4th and 5th Chapters sheds light on some ethical key aspects to con-
sider into the design of social networking products, hinting the need to de-
sign Online Social Platforms able to considerate existing biases while in-
troducing new features. Through simulation it is possible to test new rec-
ommendation algorithms, e.g., to prevent eventual harmful consequences
of deploying new features.

In the 6th chapter, we aim at reducing the exposure to radicalized con-
tent generated by W2W recommender systems. Our approach does not
include any form of censorship, and instead limits algorithmic-induced
over-exposure, which is stimulated by biased organic interactions (e.g.,
the spread of radicalized content through user-user interactions). Our
work contributes to raise awareness on the importance of devising poli-
cies aimed at reducing harmful algorithmic side effects. Generally, we do
not foresee any immediate and direct harmful impacts from this chapter.
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