
“Thesis” — 2022/5/20 — 18:18 — page i — #1

Essay in Macroeconomics and Firm
Dynamics

Andrea Chiavari

TESI DOCTORAL UPF / year 2022

THESIS SUPERVISOR
Isaac Baley i Edouard Schaal
Department Departament d’Economia i Empresa



“Thesis” — 2022/5/20 — 18:18 — page ii — #2



“Thesis” — 2022/5/20 — 18:18 — page iii — #3

To my family

iii



“Thesis” — 2022/5/20 — 18:18 — page iv — #4



“Thesis” — 2022/5/20 — 18:18 — page v — #5

Acknowledgements

I would like to thank my advisors Isaac Baley and Edouard Schaal for
their guidance, encouragement, and patience throughout the PhD; without
them, this thesis would have not been possible. It has been a privilege to
learn from such kind, engaging, and open-minded scholars. I hope to pass
on the favor in the future.

I would also thank Andrea Caggese and Jan Eeckhout that without
having any formal obligation toward me spent endless time discussing
and improving my works.

I was fortunate to learn from the many seminars and meetings with
CREi and UPF faculty. I am particularly grateful to Vladimir Asriyan,
Davide Debortoli, Julian di Giovanni, Luca Fornaro, Jordi Galı́, Manu-
el Garcia Santana, Priit Jeenas, David Nagy, Giacomo Ponzetto, Victo-
ria Vanasco, Jaume Ventura, and all the participants of the CREi Ma-
cro Lunch for their helpful comments and suggestions. Special thanks to
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Abstract
This thesis documents novel firm-level facts and shows their implication
for aggregate phenomena.

The first chapter documents an increase in returns to scale in produc-
tion. It proposes a novel quantitative firm dynamics model with search
frictions in the product market, where firms compete to build their de-
mand, which shows that this transformation in firm-level production pro-
cesses has sizeable implications for the aggregate economy.

The second chapter shows that firm production processes are becom-
ing more intangible intensive and that this capital is costly to accumulate.
Using a quantitative firm dynamics model shows that this shift toward in-
tangible capital can explain an important part of the decline in labor share
and allocative efficiency.

The third chapter shows that conditional to a rise in interest rates dom-
inant firms have more countercyclical markups. Using a heterogeneous
firms New Keynesian model we show that incomplete pass-through can
rationalize this fact and it produces amplification.
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Resum
Aquesta tesi documenta fets nous a nivell d’empresa i mostra la seva im-
plicació per als fenòmens agregats.

El primer capı́tol documenta un augment dels rendiments a escala en
la producció. Proposa un nou model de dinàmica quantitativa de l’em-
presa amb friccions de cerca al mercat de productes, on les empreses
competeixen per construir la seva demanda, la qual cosa demostra que
aquesta transformació en els processos de producció a nivell d’empresa té
implicacions importants per a l’economia agregada.

El segon capı́tol mostra que els processos de producció de l’empresa
són cada cop més intensius intangibles i que aquest capital és costós d’a-
cumular. L’ús d’un model quantitatiu de dinàmica de l’empresa mostra
que aquest canvi cap al capital intangible pot explicar una part important
de la disminució de la quota de treball i de l’eficiència de l’assignació.

El tercer capı́tol mostra que, condicionada a un augment dels tipus
d’interès, les empreses dominants tenen més marges contracı́clics. Utilit-
zant un model neokeynesià d’empreses heterogènies, demostrem que la
transmissió incompleta pot racionalitzar aquest fet i produeix una ampli-
ficació.
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Preface

This dissertation consists of three essays that investigate the role played
by changes in firm-level heterogeneity to aggregate transformations. I
employ micro-level datasets in conjunction with cutting-edge econome-
tric techniques to document stylized facts and examine underlying mec-
hanisms using quantitative models of producer heterogeneity and firm dy-
namics.

This first chapter studies the macroeconomic implications of the rise
in firm-level scale economies. My empirical finding is that the average
firm-level returns to scale increased within all US sectors, going from 1
to 1.05 between 1980 and 2014. Simultaneously, business dynamism de-
clined, markups rose, and firms devoted increasing resources to customer
acquisition, suggesting their active involvement in building and exploiting
scales. To jointly account for these facts, I propose a novel theory of firm
dynamics grounded in directed search in the product market. Search fric-
tions microfound the customer accumulation process and the presence of
heterogeneous markups. The rise in returns to scale explains 62-70% of
the decline in business dynamism; 29% of the increase in markups; and
14-45% of the growth in expenditures devoted to customer acquisition.
Additionally, the model rationalizes further facts: the aging of US firms,
the reallocation of sales toward high markup firms, and firms’ declining
responsiveness to productivity shocks.

This second chapter, co-authored with Sampreet Goraya, studies the
macroeconomic implications of the rise of intangible capital in firm-level
production processes. Intangible capital has risen dramatically in the last
decades, accounting for more than 30% of aggregate investment by 2015.
However, we still know little about its importance in the production pro-
cess and its associated properties. We estimate the firm-level production
function, finding that intangible capital is an important factor for produc-
tion: its share increased from 0.03 to 0.12 at the expense of labor between
1980 and 2015. We label this phenomenon intangible capital biased tech-
nological change (IBTC). Further, we provide novel empirical evidence
showing that the investment process of intangible capital is associated
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with higher sunk costs, meaning that it entails higher investment adjust-
ment costs relative to tangible capital. Finally, using a model of firms and
investment dynamics, we show that IBTC can explain many of the trends
witnessed in the US economy since the 1980s. Specifically, it quanti-
tatively explains the rise in the average firm size and concentration, the
changes in aggregate factor shares, the increase in the profit rate, the de-
cline in the tangible capital investment rate, and the decrease in allocative
efficiency. Our findings suggest that a significant fraction of these trans-
formations can be an outcome of the efficient response of the economy to
changes in firm-level production technology.

The third chapter, co-authored with Marta Morazzoni and Danila Smir-
nov, studies the cyclicality of firm-level markups and their aggregate im-
plications for the business cycle. Firms’ markup cyclicality is at the heart
of monetary policy transmission in the New Keynesian model. Using
US Compustat data and employing local projection techniques, we un-
cover a novel empirical fact: dominant firms have a more countercycli-
cal markup response after an unexpected contractionary monetary policy
shock. Using a heterogeneous firms New Keynesian model with demand
accumulation and endogenous markups that evolve over the life-cycle of
producers, we show that this is due to the different demand elasticities
faced by the firms. Dominant firms face a more inelastic demand, which
implies a lower pass-through rate from costs to prices. Therefore, after
a contractionary monetary policy shock, dominant firms pass less the re-
duction in marginal costs to prices compared to competitors, and increase
their markups by more, as documented empirically. After calibrating the
model to US micro-level data, we find that considering firms’ heteroge-
neous demand elasticities has important implications for monetary policy
amplification.

x
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Capı́tol 1

THE MACROECONOMICS OF
RISING RETURNS TO
SCALE: CUSTOMERS
ACQUISITION, MARKUPS,
AND DYNAMISM

1.1 Introduction

Over the last decades, firm-level production processes have undergone
spectacular transformations. The introduction of new technologies, such
as information and communication technologies (ICT), and extensive da-
ta availability have changed the way firms organize their production. The
potential of these technological advancements to expand firms’ econo-
mies of scale—the cost advantages that firms obtain due to their scale
of operation—has captured the attention of academic researchers.1 Me-
anwhile, US policymakers’ concerns about the effect of these changes on

1Bloom et al. (2014) show the link between better information technologies and a
wider firm-level span of control.
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firms’ pricing strategies and competition for customers have gained mo-
mentum.2 This is because, rising scale economies, manifesting through
lower costs for the largest firms, may have enabled these same firms to
become highly effective in pricing, attracting customers, and exerting
market power. Simultaneously, firms have devoted increasing resources
to customers acquisition throughout activities such as advertisement and
trademarks, suggesting their active involvement in building and exploi-
ting scales.3

These technological transformations in firm-level production proces-
ses may explain why the US economy has experienced noteworthy trends
over the same period of time. In particular, business dynamism—the entry
rate of new firms and the reallocation rate of labor across firms—has de-
clined steadily while markups have risen.4 This has led some observers
to speculate that the engine of US productivity may have slowed down,
and that its economy may have moved from a competitive to a rent-based
one.5

However, to date, few studies have systematically analyzed the evo-
lution of firm-level scale economies. What are the consequences of this
technological transformation for the above US trends? This project aims
to provide an explanation that links these phenomena and makes two con-
tributions. First, I use firm-level data from Compustat to investigate the
evolution of firm-level returns to scale in production in the US between
1980 and 2014. Second, I propose a novel theoretical framework to study

2Khan (2016), now chair of the Federal Trade Commission, argued extensively about
her worries regarding the pricing strategies adopted by Amazon and how this might be
the outcome of the firm’s scale economies.

3Kost et al. (2019) document the rise in trademark activities in the US and how
this is associated with market power, whereas De Loecker et al. (2020) show that firms
spending more on selling general and administrative are associated with higher markups.

4Decker et al. (2014) document the decline in business dynamism, that is, the slow-
down in the entry rate of new firms and the reallocation rate of labor across firms. De Lo-
ecker et al. (2020) show the rise in markups.

5Decker et al. (2016) explain how declining business dynamism may impair the rea-
llocation process across firms, and hence, lower US productivity. Philippon (2019) and
Eeckhout (2021) discuss some of the potential reasons why the US economy has become
less competitive.

2
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the implications of changes in returns to scale through their impact on
customer accumulation.

To study the evolution of returns to scale in the US economy, I estima-
te the firm-level production function. Here, I follow two state-of-the-art
techniques. The first is the control function approach, as in Ackerberg
et al. (2015), widely used by the empirical Industrial Organization litera-
ture. Second, I use the cost shares approach adopted by Syverson (2004)
and Foster et al. (2008). Estimating production technologies in two-digit
sectors and over time, as in De Loecker et al. (2020), I find a 5% increa-
se in the average returns to scale, going from 1 in 1980 to 1.05 in 2014.
Additionally, this rise shows an acceleration around 1990, consistent with
the ICT acceleration ongoing in the same period.6 Estimating production
technologies at the sector level makes it possible to go beyond the analy-
sis to the evolution of the average returns to scale—which could neglect
distributional changes across sectors—and to study alternative reasons for
this rise, exploiting cross-sectional variation. In particular, there are two
potential reasons why the average returns to scale may have risen. First,
returns to scale may have increased within all sectors. Second, there could
have been a reallocation of economic activity between sectors toward sec-
tors with ex-ante higher returns to scale. To study these two possibilities,
I exploit a statistical decomposition at the sector level, which shows that
the rise in the average returns to scale is a within-sector phenomenon.

Although other works have noticed the rise in returns to scale, this
paper is the first to highlight the within-sector nature of this phenomenon.
This novel fact is consistent with the view that US firms have undergone a
technological transformation that has enabled them to increase their scale
of operations.7 I interpret the estimated increase in returns to scale as an

6For instance, the World Wide Web entered everyday life in the first period of the
1990s.

7Haskel and Westlake (2018) argue in their book that the rise of intangible capital—
which is highly related to the digital revolution—has increased the ability of firms to
scale their production. Newman (2014), Agrawal et al. (2018), Begenau et al. (2018),
Goldfarb and Trefler (2018), Carriere-Swallow and Haksar (2019), and Jones and Tonetti
(2020) all emphasize the potential role of data, particularly gathering information from
the customer base, for the rise of returns to scale and the presence of increasing returns.
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exogenous technological change, seeking to understand its consequences
for the US economy and the recent trends mentioned above.

To understand the consequences of this technological change, I pro-
pose a novel model of customer accumulation. The framework builds on
Gourio and Rudanko (2014) and Roldan-Blanco and Gilbukh (2020) and
brings additional tools from the labor-search literature to model custo-
mer switching across firms, which in the data is between 10-25% a year.8

Accounting for customer switching imposes discipline on market power
dynamics, as firms internalize the effect of their pricing decisions on their
customer base endogenous attrition. To do so, I introduce directed search
in the product market, which implies that firms use prices and markups
to compete for customers. Further, search frictions imply that firms de-
vote resources to contact new customers. In the model, the presence of
fixed operating costs introduces the endogenous entry and exit of firms
as standard in most firm dynamics frameworks à la Hopenhayn (1992).
Therefore, while remaining tractable for computational analysis, the fra-
mework can manage a rich set of firm-level facts and aggregate trends.

The model is grounded in search frictions in the product market. Se-
arch frictions microfound firm-level investments in the customer base and
firms’ strategic use of prices and markups to attract and retain customers,
which are an established feature of the firms’ activities.9 Perhaps most
importantly, they align the model with the literature pioneered by Foster
et al. (2008), which shows that firms mostly grow by accumulating de-
mand. In this vein, recent empirical works by Afrouzi et al. (2020) and
Einav et al. (2020) show that customer accumulation accounts for 70% of
firms’ overall life-cycle growth.

Lashkari et al. (2021) document, using French data, that the adoption of ICT inputs
has allowed firms to improve their organization, helping them to improve their scale
economies and giving rise to higher returns to scale.

8See, for example, the value surveyed by Gourio and Rudanko (2014) from industry
estimates.

9Dubé et al. (2010) and Bronnenberg et al. (2012) document the prevalence of long-
term customer relations. Ruhl and Willis (2008) and Eaton et al. (2009) show that the
buildup of market shares is a slow process. Paciello et al. (2019) show that customers
are sensitive to prices and that firms consider this while setting them.
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I calibrate the model to the 1980s period using identifying moments
of the firms’ life-cycle, business dynamism statistics from that period, and
moments related to firm-level markups. First, as a validation exercise, I
show that the model is consistent with a range of cross-sectional and firm-
level facts. Second, I demonstrate that the introduction of customer ac-
cumulation through search frictions improves the general fit of the model
on a series of important but often neglected firms’ life-cycle facts. In par-
ticular, the model captures the upward sloping life-cycle path of markups
and the downward sloping life-cycle path of selling-expenditures, relative
to production costs, as observed in the microdata.

In the model, a rise in returns to scale reduces the marginal cost of pro-
duction and, due to the properties of increasing returns to scale in produc-
tion, reduces it by more for the biggest firms. This implies that the biggest
firms in the economy become very effective in pricing, attracting custo-
mers, and charging markups. Therefore, although all firms are subject to
the same change, its outcome is highly unequal, as it favors the biggest
firms in the economy. This decline in marginal costs has three direct im-
plications: (i) it increases the willingness of firms to scale up, and hence,
their expenditures devoted to customer acquisition; (ii) it raises the firm-
level markups due to the presence of incomplete pass-through; and (iii) it
weakens the selection process in the model, implying a lower entry and
reallocation rate. It is noteworthy that the first prediction—that is, the en-
dogenous rise in selling-related expenditures relative to production costs
after a rise in returns to scale—is a unique feature of this model, where
firms invest in their demand through selling-related expenditures.10 I test
and confirm all the predictions in the cross-section of sectors of the Com-
pustat data: I find that higher returns to scale in a sector are positively as-
sociated with higher average markups and higher average selling-related
expenditures, relative to production costs, and negatively associated with

10Models in which market power comes from horizontal differentiation (Dixit and
Stiglitz (1977), Kimball (1995), and Atkeson and Burstein (2008)) or search fricti-
ons, with only strategic pricing (Paciello et al. (2019) and Roldan-Blanco and Gilbukh
(2020)), would not be able to produce the aforementioned facts as, normally, the only
non-production costs they feature are fixed costs.
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entry and reallocation rates.
I use the calibrated model to study the macroeconomic consequences

of the observed rise in returns to scale. This technological change ex-
plains 62-70% of the decline in business dynamism; 29% of the increase
in markups; and 14-45% of the growth in expenditures devoted to cus-
tomer acquisition. Additionally, I show that this technological change is
consistent with the phenomenon of the aging of firms, as documented in
the data by Hopenhayn et al. (2018). It reproduces the reallocation of
economic activity toward high markup firms, which gives rise to the fat-
tening of the right tail of the markup distribution, as documented by Autor
et al. (2020), De Loecker et al. (2020), and Kehrig and Vincent (2021). It
explains the decline in firm-level responsiveness to productivity shocks,
which Decker et al. (2020) document as a central component of the decli-
ne in business dynamism. Although the rise in returns to scale does not
fully account for the markup increase, my investigation suggests that they
are an important factor.

Literature Review. This paper contributes to several strands of the
literature. It first relates to the search and matching literature on both the
labor and the product market. Labor market papers that first introduced
some of the techniques used in this paper are Moen (1997), Menzio and
Shi (2010), and Menzio and Shi (2011). I build on the methodology de-
veloped by Schaal (2017), which, however, focuses on the labor market.
Closer to my focus are Gourio and Rudanko (2014), Paciello et al. (2019),
and Roldan-Blanco and Gilbukh (2020), which all develop heterogene-
ous firms models with search frictions in the product market.11 Relative
to Gourio and Rudanko (2014) and Roldan-Blanco and Gilbukh (2020),
I allow incumbent customers to search, which is a feature of reality and
an important factor for firms’ pricing decisions. Moreover, compared to

11Burdett and Coles (1997) study the role of firm size for pricing when firms use the
price to attract new customers. Dinlersoz and Yorukoglu (2012) provide a theoretical
model of industry dynamics in the presence of information frictions. Burdett and Judd
(1983), Menzio and Trachter (2015), Burdett and Menzio (2018), and Menzio and Trach-
ter (2018) study equilibrium price dispersion without relying on firm heterogeneity.
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Gourio and Rudanko (2014), I allow for commitment on the firm side,
which enables firms to charge different prices, even to their incumbent
customers. In the absence of commitment, all firms would ask the sa-
me price to the incumbent customers, equal to their marginal evaluation,
which would make the model quantitatively unsuited to study dispersion
in markups coming from different pricing strategies. Differently from Pa-
ciello et al. (2019) and Roldan-Blanco and Gilbukh (2020), I allow for
increasing returns production technology and firm-level expenditures for
customer accumulation, which are all fundamental features for the objec-
tive of this paper.

This paper also contributes to the empirical literature that has analy-
zed technological changes in the firm-level production process. Chiavari
and Goraya (2021) show that firms’ production technology has become
more intangible intensive, at the expense of labor, and that this has had
significant implications for the changes in the US factor shares. More
closely related to this paper is the work by Lashkari et al. (2021), using
French data to show that firms employed ICT investment to increase their
firm-level returns to scale; however, they do not analyze its implicati-
ons for markups. Relative to them, I focus on the US, documenting the
within-sector increase in firm-level returns to scale, showing that this has
had sizeable consequences for the rise in markups. Despite the focus on
the evolution of markups, De Loecker et al. (2020) also document a rise
in returns to scale. Yet, they do not focus on sector-level patterns, which
I claim are essential in understanding the source of this increase.

Furthermore, this paper complements the growing literature that stu-
dies the potential explanations behind the rise in markups and the decline
in business dynamism. A strand of this literature emphasizes demograp-
hic changes as a relevant factor behind these trends. Papers of this kind
are Karahan et al. (2019), Hopenhayn et al. (2018), Peters and Walsh
(2019), and Bornstein (2018). Alternatively, Liu et al. (2020) hypothesize
that lower interest rates can explain certain recent trends. Relative to this
strand of the literature, this project emphasizes technological factors as a
potential force driving these trends.

Another strand of the literature, closer to this project, emphasizes the
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technological factors behind the rise in markups and the decline in busi-
ness dynamism. Papers in this vein are Akcigit and Ates (2021), De Rid-
der (2019), Weiss (2019), and De Loecker et al. (2021).12 Akcigit and
Ates (2021) argue that a decline in productivity spillovers from leaders to
laggards is a driver of some recent trends. De Ridder (2019) emphasizes
that the rise of firms that are better at using intangibles (as intangibles
make other factors more productive) is important for the rise in markups,
the decline in business dynamism, and productivity growth. Weiss (2019)
shows how intangibles can explain the rise in markups and concentrati-
on. De Loecker et al. (2021) document that the rise in fixed costs and the
decline in the number of potential entrants can jointly explain the rise in
markups and the decline in business dynamism. I contribute to this lite-
rature by studying a different technological change—the rise of returns
to scale in production—grounded outside the model in a detailed micro-
level analysis. Leveraging Industrial Organization techniques to estimate
the firm-level production function allows me to infer the strength of the
technological change occurring in the US, bringing extra discipline out-
side the model to the quantitative analysis. The analysis of an alternative
technological transformation also provides a new perspective to the on-
going debate regarding the causes of these US trends. Moreover, using
a novel quantitative framework, I study additional implications compa-
red to the previous literature. In particular, the model explains the rise in
firm-level expenditures devoted to customer accumulation as firms desire
to increase their scale of operation to take full advantage of the rise in
scale economies.

Outline. Section 1.2 presents the empirical methodology and empi-
rical findings of the paper. Section 1.3 introduces the theoretical model.

12Korinek et al. (2018) and Martinez (2018) relate automation to the rise in concentra-
tion and to the labor share decline. Crouzet and Eberly (2019) and Zhang (2019b) relate
the rise in intangibles with the rise in concentration. Hsieh and Rossi-Hansberg (2019)
suggest that the shift toward more productive technologies with higher fixed costs can
explain the divergence behind local and aggregate concentration. Aghion et al. (2019)
and Olmstead-Rumsey (2019) link the rise in concentration to the decline in productivity
growth.
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Section 1.4 calibrates the model and evaluates the performance of the
model using firm-level and cross-sectional facts. Section 1.5 analyzes
and discusses the impact of rising returns to scale before quantifying im-
plications for the aggregate trends objective of this paper. Section 1.6
concludes.

1.2 Empirical Evidence

In this section, I present the empirical analysis of this project: (i) I introdu-
ce the main dataset used throughout the analysis; (ii) then, I introduce the
main empirical methodology used to estimate firm-level returns to scale;
(iii) finally, I document a rise in returns to scale in production within the
last three decades.

1.2.1 Data

In this paper, I use two main data sources: Compustat and BDS data. The
former is used to obtain information on US firms, while the latter is used
to obtain representative measures for the US economy.

Compustat. The main data source is Compustat, a firm-level database
with all US publicly traded firms between 1977 to 2014.13 In this section,
I discuss the strengths and limitations of this dataset. I provide more
details on the data-cleaning process in Appendix 1.7.1.

The choice of data is driven solely by the ability of these data to cover
the period of interest and the largest number of sectors. These charac-
teristics make these data an excellent source of firm-level information to
study technological changes in production undertaken by US firms.

Even though publicly traded firms are few relative to the total number
of firms (as they tend to be the largest firms in the economy) they ac-
count for roughly 30% of US employment (see, Davis et al. (2006)). The

13This is also the frame for which the BDS data are available.
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Compustat data contain information on firm-level financial statements, in-
cluding measures of sales, input expenditures, capital stock information,
and a detailed industry activity classification.

However, despite its many virtues, these data present two main limi-
tations: (i) the fact that it is impossible to distinguish quantity and prices,
which makes measurement of the production function elasticities signi-
ficantly more challenging as extensively explained in the next section;14

and (ii) the possible selection issues arising from using only publicly tra-
ded firms. To address the first concern, I follow the methodologies explai-
ned in Section 2.9.2. Moreover, whenever possible, I compare my results
with additional data sources to isolate the potential bias of using only pu-
blicly traded firms.

BDS data. To obtain representative aggregate US measures of the firms’
size distribution and business dynamism, I use the publicly available data-
set from the Business Dynamics Statistics (BDS) program of the Census
Bureau.

1.2.2 Production Function Estimation

To estimate firm-level returns to scale, I follow De Loecker et al. (2020)
and use two main approaches: (i) the control function approach and (ii) an
”augmentedçost shares approach. Both of these approaches are popular
methods used to estimate firm-level production functions. I review here
the two methodologies, emphasizing their virtues and their limitations.

Control Function Approach

The control function approach was pioneered by Olley and Pakes (1996),
and developed further by Levinsohn and Petrin (2003) and Ackerberg
et al. (2015). The main insight from this literature is that firm-level unob-
servable productivity can be proxied by some variable expenditure.

14This challenge is present in most of the production data.
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To overcome some of the criticism emphasized in Gandhi et al. (2020),
I work with a structural value-added specification, as in Ackerberg et al.
(2015) and De Loecker and Scott (2016), given by:

Qit = min
{
Kβk

it L
β`

it exp(ωit + εit), β
mMit

}
, (1.1)

whereQit is output, Kit is capital, Lit is labor, ωit is log-productivity,
εit is the error term, and Mit is the materials. This structural value-added
production function yields the following first-order condition:

Qit = Kβk

it L
β`

it exp(ωit + εit), (1.2)

justifying the regression of Qit on capital and labor while ignoring
materials. One caveat is that, in theory, equation 2.22 may not be satisfied
in certain situations. If capital and labor are quasi-fixed, and the materials
are a flexible input, then when output prices are sufficiently low relative
to the price of materials, it will be better to setMit = 0 and not produce at
all. However, given that my data only include actively producing firms, I
assume that equation 2.22 always holds.15 Therefore, under the specifica-
tion in equation 2.21, the estimation of the firm-level production function
reduces to:

qit = βkkit + β``it + ωit + εit, (1.3)

where qit = log(Qit), kit = log(Kit), and `it = log(Lit). As usual,
the main identification challenge to the production function estimation is
the simultaneity bias induced by the unobserved time-varying firm-level
productivity, ωit. I follow the control function literature, and in particular
Ackerberg et al. (2015) and De Loecker et al. (2020), to estimate the
production function in 2.23 using a two-step approach based on the use of
a control function for the productivity process. The identification relies on
the observation that the firm’s labor demand is given by a policy function
of the form `it = `(kit, ωit). Then, providing that the policy function is

15For a more detailed discussion on this issue, see Ackerberg et al. (2015).
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invertible, the productivity process can be proxied by a control function
given by ωit = ω(kit, `it), where ω(·) = `−1(·).16

Therefore, in the first stage of this estimation procedure, I clean the
firm-level output value from the measurement errors and unanticipated
productivity shocks, regressing output on a polinomial of capital, labor,
and potential demand shifters, given by:

qit = P(kit, `it,dit) + εit. (1.4)

Then, in the second stage, using the estimate P̂ from the previous
stage, I can construct a measure of productivity that does not depend on
the measurement error εit, given by:

ωit(β
k, β`) = P̂(kit, `it,dit)− βkkit − β``it. (1.5)

Finally, taking advantage of the assumption that productivity follows
an AR(1) process, it is possible to construct a measure of productivity
innovations given by:

ξ(βk, β`, ρ) = ωit(β
k, β`)− ρωit−1(βk, β`). (1.6)

Therefore, using the productivity innovations, I construct a set of mo-
ment conditions to estimated the parameters of the production function,
given by:

E(ξ(βk, β`, ρ)× zit) = 0Z×1, (1.7)

where Z ≥ 3 and, under the assumption that firms react to unanti-
cipated productivity shocks contemporaneously and that capital is prede-
termined, the set of admissible instruments is zit ∈ {kit, `it−1, kit−1, . . . }.
Once the output elasticities are obtained, it is straightforward to recover
the returns to scale as:

16The assumptions needed to ensure the invertibility of the policy functions asso-
ciated with a wide class of production functions have been discussed extensively by
Pakes (1994), Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg
et al. (2015).

12



“Thesis” — 2022/5/20 — 18:18 — page 13 — #31

α = βk + β`. (1.8)

Units. It is well known that most of the time, standard production da-
ta, such as Compustat, record revenues and expenditures rather than the
physical production and input used. In the presence of product differen-
tiation (be it through physical attributes or location), an additional source
of endogeneity presents itself through unobserved output and input pri-
ces.17 This implies that, when bringing the model to the data, the structu-
ral value-added production function takes the following form:

qit + pit = βk(kit + pkt ) + β`(`it + p`it) + ωit + εit, (1.9)

where pit is the output price, pkt is the common user cost of capital, and p`it
is the price of labor. This empirical specification produces the following
structural error term:

ωit + pit − βkpkt − β`p`it. (1.10)

I follow De Loecker et al. (2016) and let the wedge between the out-
put and input price (scaled by the output elasticity) be a function of the
demand shifters and productivity difference.18 Including demand shifters
dit in the control function, constructed using the measures of market sha-
res, as in De Loecker et al. (2020), should therefore capture the relevant
output and input market forces that generate differences in the output and
input price.19 As discussed in De Loecker et al. (2016), this is an exact
control when output prices, conditional on productivity, reflect input price
variation, and when the demand is of the (nested) logit form.

17See De Loecker et al. (2016) for a recent treatment of these issues.
18De Loecker et al. (2020) note that not observing output prices perhaps has the unex-

pected benefit that output price variation absorbs input price variation, thus eliminating
part of the variation in the error term.

19I also use industry dummies to capture persistent variation in the demand across
sectors.
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This is clearly a second-best solution to address the above challenge in
estimating the production function; however, it is impossible to go beyond
this second-best solution to the problem without more detailed data on the
output quantities.

Cost Shares

The cost shares approach has been prominently adopted in Foster et al.
(2008), and it exploits the first-order conditions of the firm. To make
fruitful use of the firm’s first-order conditions, two assumptions are nee-
ded: (i) there are constant returns to scale in production and (ii) all inputs
are variable. With these assumptions, we can calculate output elasticities
from the cost shares. The cost shares of both inputs are defined as:

θ` = median

{
wit`it

wit`it + rtkit

}
and θk = 1− θ`, (1.11)

where wit`it is the wage bill, and rtkit is the rental cost of capital. There-
fore, an extra requirement in this method involves the possibility of cal-
culating the return on the physical capital, rt.

The assumptions required to apply this methodology seem to be in-
compatible with the objective of this project, that is, the estimation of
returns to scale in production. However, I explain how these assumptions
have been relaxed by the literature, rendering this methodology flexible
for a wide scope of applications.

First, following Foster et al. (2008), one can use moving averages of
the cost shares to accommodate for slow adjustments of the inputs due,
for example, to adjustment costs. Second, following Syverson (2004),
returns to scale can be calculated, even when using a cost shares approach.
In particular, he assumes the following functional form for the technology
based on cost shares but without constant returns:

qit = α
[
θkkit + θ``it

]
+X ′itδ + ωit (1.12)
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with all variables in logs, θk and θ` are given by 2.30, andXit is a vector of
potential controls. Therefore, while each cost share determines the output
elasticity, the technology does not need to be constant returns, and the
curvature is captured by α, which can be estimated with a simple OLS.

1.2.3 The Rise in Returns to Scale
Here, I document the rise in returns to scale under both specifications.
Then, I look into the sectoral distribution of returns to scale, finding that
this rise is due to an increase across all sectors.

Average Returns to Scale in Production

To estimate the returns to scale for the US economy over a period span-
ning three decades, I need to assume the particular level at which the
production technology is shared across firms. I begin by estimating the
returns to scale under the assumption that all firms in the economy share
the same production technology. I relax this seemingly unrealistic as-
sumption later on in the analysis. Moreover, to allow for time variation in
the elasticities, I estimate equation 2.23 using a ten-year rolling window
around the year of interest.20 Finally, for the choice of variable input in
the production, I refer the interested reader to Appendix 1.7.1.

Figure 1.1 shows the evolution of returns to scale for both the control
function approach and cost shares approach. The dashed dark blue lines
show the point estimates of the returns to scale, whereas the solid light
blue lines show the 90% confidence interval. Despite some qualitative
differences between the two approaches, the overall quantitative message
is similar. In 1980, returns to scale were 1, that is, there were constant
returns to scale that rose approximately by 5% by 2014. Therefore, both
estimation techniques suggest that, in recent years, US firms’ production
technology exhibits increasing returns to scale.

20Because of data scarcity, I choose a relatively long rolling window. However, the
results do not depend on this assumption and are robust to different rolling window
schemes.
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Figura 1.1: Returns to Scale with Common Technology
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Note. The figure on the top shows the evolution of the returns to scale computed with the
control function approach. The figure on the bottom shows the evolution of the returns
to scale computed with the cost shares approach. The dashed dark blue line shows the
point estimates, whereas the solid light blue line shows the 90% confidence interval.
Output elasticities are time-varying and calculated from 1980 to 2014.

Now I relax the previous assumption of common technology across
sectors. To do so, I re-estimate the production technology from equation
2.23 for each two-digit NAICS industry, again using a ten-year rolling
window around the year in which I estimate the technology.21 Therefore,
as I estimate a different production technology for each two-digit NAICS
industry and year, I define the average returns to scale in the US economy
as:

21The assumption that firms within a two-digit NAICS industry share the same tech-
nology makes the results comparable with those in De Loecker et al. (2020).

16



“Thesis” — 2022/5/20 — 18:18 — page 17 — #35

αt =
∑
s

mst · αst, (1.13)

where mst is the weight of each sector, and αst is the sectoral returns to
scale. In the main specification, I use sales shares as weights.

Figura 1.2: Returns to Scale with Sector-Level Technology
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Note. The figure on the top shows the evolution of the returns to scale computed with the
control function approach. The figure on the bottom shows the evolution of the returns
to scale computed with the cost shares approach. Output elasticities are time varying
and sector specific (two-digit). The average is sales-weighted. The figure illustrates the
evolution of the average returns to scale in production from 1980 to 2014.

The graph on the top in Figure 1.2 reports the evolution of the base-
line measure—obtained with the control function approach—of average
returns to scale across the economy over time. At the beginning of the
sample, returns to scale are equal to 1 and remain constant until the end
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of the 1980s; then, they start to rise steeply and by the end of the sam-
ple, are around 1.05.22 In 2014, the average returns to scale is 5% higher
compared to the one in 1980.

To validate the robustness of the result from the benchmark measure,
the graph on the bottom in Figure 1.2 shows the evolution of the avera-
ge returns to scale calculated with the cost shares approach. The salient
characteristics of this measure closely resemble the patterns of the bench-
mark measure. From the beginning of the sample to the end of the 1980s,
returns to scale are flat and close to 1; then from the 1990s onward, they
start to rise, reaching approximately 1.04 in 2014. Therefore, under the
cost shares approach, the average returns to scale is roughly 4% higher
relative to 1980.

Overall, the rise in returns to scale does not seem to be driven by the
specific methodology applied and follows very close patterns across the
different specifications. Appendix 1.7.2 reports further robustness exer-
cises using an additional form of capital (such as intangible capital) and
an alternative specification of the functional form of the production func-
tion (for example, the translog production function). The bottom line is
that the finding for the benchmark measure of average returns to scale is
robust.

Sectoral Analysis of Rising Returns to Scale

Although the average returns to scale is a useful statistics, it does not fully
capture the underlying distributional changes in returns to scale. The ad-
vantage of estimating sector-specific production functions is that I obtain
a distribution of returns to scale. This allows me to study whether the
documented rise in returns to scale is due to a reallocation of economic
activity across sectors or whether it is due to a rise in all sectors.

To do so, I decompose the rise in the average returns to scale into
the component that is attributable to the rise in returns to scale at the

22My estimates are consistent with those reported by Gao and Kehrig (2017) using
census data; they find that production technology in the US between 1982 and 1987 had
constant returns to scale.
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sector level and the component that is attributable to the reallocation of
economic activity toward high-returns to scale sectors. Formally, the rise
in the average returns to scale can be decomposed as:

∆αt =
∑
s

mst−1∆αst +
∑
s

∆mstαst−1 +
∑
s

∆mst∆αst. (1.14)

Therefore, the change in average returns to scale can be exactly de-
composed into three components: (i) a within component, which captures
the portion of the change in the average returns to scale at the industry
level; (ii) a between component, which captures the portion of the change
in the average returns to scale due to the reallocation of economic activity
toward high-returns to scale industries; and (iii) finally, a cross-term com-
ponent, which captures the portion of the change in the average returns to
scale due to the joint change in returns to scale and in reallocation.

I perform this decomposition across sectors in the entire economy. To
best present this decomposition, Figure 1.3 plots the average returns to
scale, calculated with both methodologies, as well as two counterfactual
experiments, the within and between experiments, based on the decom-
position starting in 1980. I do not plot the cross-term experiment, as it
is of little economic interest and substantially zero across the entire peri-
od. Finally, I set the initial level to 1980 and then cumulatively add the
changes of each component from equation 1.14.

The first experiment (dashed dark blue line with squares) shows the
counterfactual evolution of the average returns to scale as if there we-
re only the ∆within component, and all the other components were ze-
ro. This experiment shows that the within component tightly follows the
average returns to scale in the case of the control function approach and
exceeds the average returns to scale in the cost shares approach.23 The
second experiment (dotted light blue line with circles) shows the path
of the counterfactual returns to scale if the only change had been due to

23With the cost shares approach, the within component exceeds the average returns to
scale. Thus, in the absence of reallocation of economic activity across sectors, the rise
in returns to scale with this methodology would have been even higher.
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∆reallocation. This shows a flat profile over the period for the control
function approach and a decreasing profile for the cost shares approach.
From these two experiments, it is apparent that the rise in the average re-
turns to scale is indeed a within-sector phenomenon and, if anything, the
cross-sectoral reallocation of economic activity has slightly dampened its
rise.

Figura 1.3: Decomposition of Returns to Scale Growth at Sector Level
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Note. The figure plots the counterfactual evolution implied by the decomposition from
equation 1.14 for the control function approach (upper figure) and the cost shares ap-
proach (lower figure). The solid blue line with triangles shows the (benchmark) average
returns to scale. The dashed dark blue line with squares shows the evolution of the ave-
rage returns to scale only if the ∆within component is at play. The dotted light blue line
with circles shows the evolution of the average returns to scale only if the ∆between
component is at play.

Taking stock, returns to scale have risen substantially in the US eco-
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nomy, and this rise is occurring across all sectors. This transformation in
the firms’ production technology could stem from many things. For ins-
tance, since the 1980s, and with an acceleration from the beginning of the
1990s, a digital revolution took place in the US. New technologies such
as the internet, mobile phones, computers, and software were developed.
These new technologies brought forth an incredible transformation in the
way production and business models could be organized. All of a sudden,
firms could share internal information at a higher pace and could reach
customers at a speed and on a scale previously not possible. The ability
of these new technologies to increase the scale at which firms can opera-
te has been the object of interest among researchers since the beginning
of the aforementioned digital revolution.24 I acknowledge that drawing a
clear causal link between the digital revolution in information technology
and the rise of returns scale requires better data than what I have. Howe-
ver, in this project, I will nonetheless interpret the rise of returns to scale
as a pervasive technological transformation that US firms are experien-
cing across all sectors.

1.3 Model

To study the implications of the technological change outlined above
for firms’ investment in their customer base, business dynamism, and
markups, I build a firm dynamics model with search frictions in the pro-
duct market. Search frictions are a natural choice to microfound (i) the
presence of heterogeneous endogenous markups in equilibrium; (ii) firms’
expenditures to attract new customers; and (iii) the empirical observation
that firms grow over their life span mostly by accumulating new custo-

24A particularly relevant paper is Lashkari et al. (2021), which documents, via rich
firm-level data from France that investment in ICT allowed French firms to increase their
returns to scale in production in recent years. Newman (2014), Agrawal et al. (2018), Be-
genau et al. (2018), Goldfarb and Trefler (2018), Carriere-Swallow and Haksar (2019),
and Jones and Tonetti (2020) emphasize the potential role of data, particularly gathering
information from the customer base, as a source of increasing returns to scale.
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mers.25 I refer the interested reader to Appendix 1.8.1 for a discussion of
the technical features of the model.

1.3.1 Population and Technology

Time is discrete. The economy is populated by a representative house-
hold, comprising a continuum of measure one of potential buyers and by
a large number of workers, and by an endogenous measure of firms with
free entry.26 The representative household discounts the future at a rate β.
The instantaneous utility of the household is:

uC − v(L), (1.15)

where uC is the utility from the consumption of the frictional good, and
v(L) is the disutility of labor.27 The representative household aggregates
consumption C is a bundle of the consumption of each active buyer via
the following CES aggregator:

C =

∫
i∈I

cidi, (1.17)

where ci is buyers’ consumption of the frictional good, and I ⊆ 1 is the
set of active buyers. Equation 1.17 assumes that the goods of the different
firms are perfect substitutes, so we can interpret the continuum of firms
as effectively selling the same product. Moreover, I assume that buyers
wish to buy exactly one unit of the firm’s good, and hence, their shopping

25Afrouzi et al. (2020) and Einav et al. (2020) show that 70% of firm growth comes
from accumulating new customers over their life cycle.

26In the text, I refer to buyers and customers interchangeably.
27As a consequence, the labor supply of the household will be given by:

λBCw = v′(L), (1.16)

where λBC is the Lagrange multiplier associated with the household budget constraint,
w is the wage, and v′(L) is the marginal disutility of labor. For convenience, I normalize
λBC to 1 without loss of generality.
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value will be equal to the marginal utility of the household’s consumption,
u ≥ 0.28

Firms differ in their idiosyncratic productivity z, independent across
firms, that lies in the finite set Z and follows a Markov process π(z′|z). A
firm with a measure ` of workers operates with the production technology:

y = ezF (`), (1.18)

where F is a strictly increasing production function with F (0) = 0. Upon
entry, firms must pay a sunk entry cost κ. Following Hopenhayn (1992),
I assume that firms must pay a fixed operating cost f ≥ 0 every period
to use the production technology. This operating cost is crucial in gene-
rating endogenous exit in the model. Finally, I also assume that firms exit
exogenously with probability δ ∈ (0, 1).

1.3.2 Frictional Product Market
The product market is frictional, and the search is directed on buyers’
and firms’ sides. Firms announce contracts to attract buyers. Because
utility is transferable between buyers and firms, a sufficient statistic for
each contract is the utility x that it delivers to the buyer upon matching.
Firms offering identical contracts compete in the same market segment;
therefore, I describe the product market as a continuum of submarkets
indexed by the utility x ∈ [x, x] that firms promise to buyers. Firms
must pay a cost c for each ad they post.29 Moreover, firms that change
their customer base are subject to a convex cost K(ni;n), where ni is the
number of new customers that the firm wants to acquire.30 Buyers can

28The fact that buyers wish to purchase exactly one unit implies that only the extensive
margin of demand matters in the model, that is, to how many buyers I should sell. This
assumption implies that ci = 1, ∀i ∈ I.

29The term ad in the model is a stand-in for a broader notion of marketing and selling
effort, and will be interpreted as such later on.

30The convex cost slows down the adjustment of firms’ customer base and is pivotal
in generating a realistic endogenous firm life cycle. Moreover, this convex cost is the
key friction, together with the exogenous exit shock, preventing the model from settling
on a degenerate distribution of firms.
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direct their search and choose in which submarket to look.
A standard matching function with constant returns to scale governs

match creation in each market segment. I denote by θ(x) the ads-buyers
ratio or tightness of submarket x. In a submarket with tightness θ, buyers
find a firm with probability m(θ), while firms find potential customers
with probability q(θ) = m(θ)/θ. As standard in the search literature, I
assume that m is increasing, while q is decreasing, and that m(0) = 0,
q(0) = 1. Buyers and firms must solve a trade-off between the level
of utility of a given contract and the corresponding probability of being
matched. The search process takes time, and I assume that firms and
buyers can only visit one submarket at a time.

Buyers are allowed to search while already being attached to a firm.
The equilibrium market tightness can be written as θ(x) = a/µ, where
a stands for the number of ads posted in submarket x, and µ stands for
the corresponding efficiency-weighted number of searching buyers.31 The
number of ads a that a firm posts is not required to be discrete and should
be interpreted as a mass. As a result, the law of large numbers applies,
and firms do not face uncertainty about the number of buyers they recruit.
In particular, a firm that posts a ads exactly meets a measure aq(θ) = ni
of buyers.

1.3.3 Contractual Environment and Timing
Contracts specify various elements relevant to the firm and its customers.
I assume that contracts are state-contingent, and that there is full commit-
ment from the firm side. A contract specifies {pt+j, τt+j, dt+j}∞j=0, where
p is the price, τ is a separation probability, and d is an exit dummy. Each
element at time t + j is contingent on the entire history of shocks (zt+j).
A more detailed exposition of the contractual environment and its impli-
cations for the model is in Appendix 1.8.1.

The contracts offered by firms are large objects but can be written
in their recursive form. Contracts are rewritten every period after matc-

31In particular, µ = µu +µa, where µu is the number of unattached buyers and, µa is
the corresponding number of attached customers searching on the market.
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hing occurs and when production takes place. At this stage, the firm
starts with some utility C, promised in the past to its incumbent custo-
mers or new ones. A recursive contract ω = {p, τ, d, C ′} for the cur-
rent period specifies the current price p and the next period’s quantities
{τ(z′;w), d(z′;w), C ′(z′;w)}, contingent on the next period’s state, whe-
re C ′(z′;w) is some future promised utility. Because of commitment on
the firm side, contract ω is required to deliver at least the promised utility
C to the customers.

The timing of the model is the following. At the beginning of period
t, firms decide whether to enter or not. Immediately afterward, incumbent
and entering firms learn their idiosyncratic productivity z and their exo-
genous exit shock δ. Then, conditional on surviving, they decide whether
to exit (d = 1) or stay. In the following stage, separation occurs with pro-
bability τ . Search and matching follow with new and incumbent firms on
one side and unattached/attached customers on the other side. Production
takes place in the final stage of the period, and the markets clear.

1.3.4 Customer’s Problem

As conventional in the search literature, the value functions below are
expressed at stage B of the period when production takes place. I write
the value of an unattached buyer as follows:

U = max
xu

β[m(θ(xu))xu + (1−m(θ(xu)))U ′]. (1.19)

If a buyer is not attached to a firm, she does not enjoy any utility
in that period. In the following period, she chooses a market segment,
xu, where to search. In doing so, she must solve a trade-off between the
offered utility, xu, and the likelihood of getting a job, m(θ(xu)). When
successful, she enjoys the promised utility xu, but she remains unattached
otherwise.

In the case of a customer attached to a firm with productivity z under
the contingent contract ω = {p, τ(z′;w), d(z′;w), C ′(z′;w)}, the value
can be written as:
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Figura 1.4: Timing of the Model
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C(z, ω;w) = u− p+ βE{(δ + (1− δ)d+ (1− δ)(1− d)τ)U ′

+ (1− δ)(1− d)(1− τ) max
x′

[m(θ(x′))x′ + (1−m(θ(x′)))C ′(z′;w)]}.
(1.20)

An attached customer buys one unit of the firm’s output at a price
p and values it at the marginal utility of the representative household,
u ≥ 0. The following period may then lead to three different outcomes,
which correspond to the three terms in brackets: (i) in the case of exit,
that is, exogenously with δ ∈ (0, 1) or endogenously if d = 1, or in
the case of destructing the relation, τ ∈ (0, 1), the customer goes back
to the potential buyers’ pool with value U ′; (ii) she moves to a different
firm under a contract with value x′ with probability m(θ(x′)); or (iii) she
stays in the current firm and receives a promised utility C ′(z′;w) in the
following period. Notice that customers entering the pool of potential
buyers in the given period cannot search in the same period.

1.3.5 Firm’s Problem

Consider the problem of a firm at the production stage with a measure n
of customers. Customers within the same firm may differ in their level of
promised utility. Each customer is identified by an index j ∈ [0, n] and a
corresponding level of promised utility C(j).

The problem of a firm consists of choosing a list of contracts for its
customers:

ω(j) = {p(j), τ(z′;w, j), d(z′;w), C ′(z′;w, j)}, ∀j ∈ [0, n]. (1.21)

In addition, the firm must decide on a submarket xi(z′;w) in which
to search for new potential customers, and it must choose the number of
new customers that it wants to acquire ni(z′;w). I describe the problem
faced by firms as follows:
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V(z, n,{C(j)}j∈[0,n];w)

= max
n′i(z

′;w),x′i(z
′;w),{ω(j)}j∈[0,n]

∫ n

0

p(j)dj − w`− wf

+ (1− δ)βE
{
− n′i

wc

q(θ(x′i))

− wK(n′i;n) + V(z′, n′, {Ĉ(z′;w, j′)}j′∈[0,n′];w)

}+

,

(1.22)

subject to:

n′(z′;w) =

∫ n

0

(1− τ(z′;w, j))(1−m(θ(x′(z′;w, j))))dj + n′i(z
′;w),

(1.23)

Ĉ(z′;w, j′) =

{
C(z′;w, j) for j′ ∈ [0, n′(z′;w)− n′i(z′;w)] and j′ = Φ(z′;w, j),
xi(z

′;w) for j′ ∈ [n′(z′;w)− n′i(z′;w), n′(z′;w)],

(1.24)

y = ezF (`), (1.25)
y = n, (1.26)

where Φ(z′;w, j) =
∫ j

0
(1− τ(z′;w, k))(1−m(θ(x′(z′;w, k))))dk.

In the current period, the firm earns revenue,
∫ n

0
p(j)dj, minus the cost

of labor, w`, and minus the fixed operating cost, wf . In the following pe-
riod, the firm survives with probability (1−δ) and then it chooses whether
to exit or not. The {.}+ notation, standing for max(., 0), captures this de-
cision, which I summarize in the dummy d(z′;w) ∈ {0, 1} (d = 1 for
exit). Following this decision, the firm then chooses a number of new
customers to acquire n′i(z

′;w) and the submarket x′i(z
′;w) in which to

direct its selling effort. Because each ad has a probability q(θ(x′i)) of
being successful, the total selling cost incurred for these new customers is
n′iwc/q(θ(x

′
i)). Additionally, to slow down the adjustment pace of firms’

customer base, I introduce a convex cost, that is, wK(n′i;n), which each
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firm must pay to change its customer base. This is one of the two fun-
damental assumptions that allows the model to produce a realistic life
cycle.32 Moreover, the constraint that this convex cost imposes on the
firm’s ability to expand its customer base is the key friction, together with
the exogenous exit shock, that prevents the economy from settling on a
degenerate distribution of firms.

Constraint (1.23) is the law of motion of total customers. Customers
n′ in the next period are the sum of the new customers n′i(z

′;w) with
the remaining customers after the departure of those separated with pro-
bability τ(z′;w, j) and of those moving to other jobs with probability
m(θ(x′(z′;w, j))). Constraint (1.24) keeps track of the promised utilities
across customers. Because the measure of customers evolves over time, I
use the mapping Φ to re-index the customers that stay and make sure that
a customer with an original index j ∈ [0, n′(z′;w) − n′i(z′;w)] is assig-
ned a new index Φ(z′;w, j) ∈ [0, n′(z′;w)−n′i(z′;w)] in the next period.
Newly recruited customers with promised utility, x′i(z

′;w), are assigned
an index in [n′(z′;w)− n′i(z′;w), n′(z′;w)]. Constraint (1.25) defines the
technology with which the firm operates; therefore, this determines the
amount of labor ` that a firm will hire in each period. Finally, constraint
(1.26) states that the output must be equal to the number of available cus-
tomers n in the given period.

In addition to these constraints, and due to commitment on the firm
side, the firm is subject to the following promise-keeping constraint:

∀j ∈ [0, n], C(j) ≤ C(z, ω(j);w). (1.27)

Constraint (1.27) ensures that the contract ω(j), assigned to customer
j, delivers at least the promised lifetime utility C(j). Note that there is no
non-negativity constraint on the firm’s profits, implying that firms have
deep pockets and no limited liability.

32The second fundamental assumption, as explained later, is related to the fact that
each firm enters with a predetermined measure of initial customers. In the quantitative
section of the paper, I will calibrate this to be lower than the average mass of customers
attached to incumbent firms.
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1.3.6 Firm’s Pricing
Until now, I have allowed firms to charge different prices to their cus-
tomers, conditional on their past histories. In this section, I present the
optimal prices charged by the firms to their different customers.

Because firms have commitment but customers do not, when a firm
designs a contract, it must take into consideration two constraints. First,
the contract must take into account a participation constraint, given by:

m(θ(x′))x′ + (1−m(θ(x′)))C(z′) ≥ U , (1.28)

which states that the continuation value for a customer, conditional on
remaining matched, given by equation (1.20), must be higher than the
value of being unmatched, given by equation (1.19). This ensures that the
customer does not prefer to be unmatched. Second, the contract must take
into account the following incentive constraint:

x′ = argmax
x̃

m(θ(x̃))x̃+ (1−m(θ(x̃)))C ′(z′;w), (1.29)

which states that the submarket in which the customer will search is
the one that maximizes the continuation value, conditional on remai-
ning matched, given by equation 1.20. This verifies that the submarket
in which the customers search is the optimal submarket in which they
would like to search. A contract satisfying constraints (1.28) and (1.29) is
said to be an incentive-compatible contract. It is now easy to derive prices
from the promise-keeping constraint (1.27). The price for a customer j is
given by:

p(j) = C(z, {p = 0, τ, d, C ′};w)− k(j), (1.30)

where k(j) ∈ {C(j), x(j), xu}, depending on the customer’s past history.
Notice that the price charged to each customer for the good is the

difference between the present value of being attached to a firm evaluated
at today’s price equal to zero, that is, C(z, {p = 0, τ, d, C ′};w), minus the
history-dependent promised utility k(j). Therefore, the higher the value
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customers get from the match, the higher the price charged by the firm.
Conversely, the higher the utility a firm promises, the lower the prices
charged to its customers.

Equation (1.30) captures one of the main trade-offs for the firms in the
model. In particular, firms are always subject to two opposite tensions. On
the one hand, firms that want to grow need to attract customers; to do so,
they must give a high promised utility, meaning low prices. On the other
hand, firms want to extract value from their matches, meaning that they
want to charge high prices to their customers. Therefore, the evolution
of prices, and hence of markups, strictly follow the life cycle of firms:
young firms, being small, must invest in their customer base, and hence,
charge low prices and markups. On the contrary, old firms—which are on
average bigger—want to harvest their customer base, and hence, charge
high prices and markups.

1.3.7 Free Entry and Equilibrium Definition
To close the model, I am left to specify the process of entry. Every period,
before the idiosyncratic shock z is realized, the potential entrants decide
whether or not to enter. Upon entry, firms must pay an entry cost κ, after
which they draw their idiosyncratic productivity from a distribution gz.
Depending on the outcome, firms may decide to exit or stay, in which
case they can start searching for customers and producing as any normal
firm.

I define the problem faced by an entering firm of type z as follows:

Ve(z;w) = (1−δ) max
xe

{
−ne

wc

q(θ(xe))
+V(z, ne, {C(j)}j∈[0,ne];w)

}+

.

(1.31)
Having drawn the idiosyncratic productivity z and surviving the exit

shock δ ∈ (0, 1), the potential entrant first decides whether or not to exit,
a decision captured by the notation {.}+ and summarized in the dummy
de(z;w). If it stays, the firm searches ne ∈ R+ new customers, and cho-
oses a submarket, xe, to maximize its expected value of operating, minus
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the total ad cost newc/q(θ(xe)). I do not allow the entering firms to cho-
ose ne optimally. This is the second necessary ingredient, together with
the convex adjustment cost that firms must pay to change their customer
base, to obtain a well-defined notion of life cycle within the model.33

Due to the presence of free entry, firms enter as long as expected pro-
fits exceed the entry cost κ, driving these expected profits down to κ.
Therefore, the expected surplus from entering must be equal to κ in equi-
librium:

wκ =

∫
Ve(z;w)gz(dz). (1.32)

1.3.8 Firm Distribution Dynamics and Recursive Equi-
librium

Using the optimal decision of firms, we may now describe the evolution
of customers over time. Let g(z, n;w) be the distribution of customers
across firms in stage B of the current period when production takes pla-
ce. The dynamics of the distribution of customers across firms can be
described by:

g(z′, n′;w) =
∑
z,n

1{n′(z′;w, n) = n′}(1− d(z′;w, n))(1− δ)π(z′|z)g(z, n;w)

+me1{ne(z′;w) = n′}(1− de(z′;w))(1− δ)gz(z′),
(1.33)

where 1{·} denotes an indicator function. Equation (1.33) defines the
mass of firms with an individual state (z′, n′) in the next period as the
sum of surviving incumbent and entering firms that end up in this state.
The term me is the endogenous measure of new entrants, defined as the
number of entering firms required to reach the equilibrium market tight-
ness on every market segment.

33I let entering firms enter with an ne lower than the average size. Together with the
convex adjustment cost described earlier, this implies that new firms start small and grow
slowly to reach the average size in the economy.
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Finally, I define the stationary recursive equilibrium in this economy.
A stationary recursive competitive equilibrium consists of value functions
{U ,C,V ,Ve}, policy functions {xu, x, p, τ, d, C ′, ni, xi, de, xe}, a wage
{w}, an invariant measure of incumbents g, and a measure of entrant
firms me, such that: (i) U and xu solve the unattached buyers’ problem
(1.19); (ii) C and x solve the attached buyers’ problem (1.20); (iii) V ,
τ , d, ni, and xi solve the incumbent firms’ problem (1.22); (iv) Ve, de,
and xe solve the entrant firms’ problem (1.31); (v) p and C ′ solve (1.29)
and (1.30); (vi) the labor market clears; and (vii) the invariant measure of
incumbents g and the measure of entrants firms me satisfy the dynamics
of the distribution of customers across firms, given by (1.33) and the free-
entry condition (1.32).

1.4 Model Parametrization and Validation
In this section, I bring the model presented in Section 1.3 to the data.
Particularly, the model is estimated to replicate certain salient moments
from the cross-section of firms around 1980. First, I present the functi-
onal forms and the stochastic processes used in the quantitative analysis.
Second, the aforementioned salient moments are used to discipline some
deep parameters that are not directly observable to the researcher. Third
and finally, I validate the model on non-targeted moments of both the
cross-section and the life cycle of firms.

1.4.1 Functional Forms and Stochastic Processes
The household disutility of labor is given by:

v(L) = ϑ
L1+ 1

ψ

1 + 1
ψ

, (1.34)

where ϑ is a parameter governing the cost of supplying labor for the hou-
sehold, and ψ is the Frisch elasticity.

The firm-level production function is given by:
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F (`) = `α, (1.35)

where α governs the firm-level returns to scale of production. Given that
time is discrete, I choose a functional form for the probability that a cus-
tomer finds a firm bounded between 0 and 1, which rules out the Cobb-
Douglas matching functions. In particular, I pick the following functional
forms:

m(θ) = θ/(1 + θ)−1, and q(θ) = (1 + θ)−1. (1.36)

The convex cost of relaxing the customer base is given by:

K(ni;n) = χ1

(
ni
n

)2

nχ2 , (1.37)

with χ1, χ2 ≥ 0.The idiosyncratic productivity shock follows an AR(1)
process, given by:

zt = ρzt−1 + σεt, εt ∼ N (0, 1), (1.38)

where zt is the time-varying idiosyncratic productivity, ρ ∈ (0, 1) is the
parameter governing the persistence of the process, and σ is the standard
deviation of the innovation to the process.

1.4.2 Parametrization
The model is parametrized in two steps. First, I fix a set of parameters to
match the standard targets in the steady state. Second, given the values of
those parameters, I choose the remaining parameters to match identifying
moments from the data. A model period is one year, and the calibration
targets moments from the 1980s.

I set the discount rate β equal to 0.97 so that the annual interest rate
is about 3%, a value standard in the literature. The degree of firm-level
returns to scale α is set equal to 1. This implies constant returns to scale,
a value consistent with the empirical estimates presented in Section 1.2.3.
I set the persistence of the productivity shock ρ equal to 0.8, the value
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found by Foster et al. (2008).34 The standard deviation of the innovations
to the productivity process σ is set to 0.2, a value close to Foster et al.
(2008) and common in the firm dynamics literature. The marginal utility
from consumption u is set equal to 1, implying a unitary evaluation of
each extra unit of consumption. Finally, the Frisch elasticity ψ is set equal
to 2.84, corresponding to the average aggregate Frisch elasticity of hours
reported by Chetty et al. (2011).

The parameters left to be internally calibrated are {c, χ1, χ2, ne, f, κ, δ, ϑ}.
All these parameters are disciplined through cross-sectional and life-cycle
moments. The linear cost c, paid by firms to search for an extra customer,
is disciplined by the average markup in 1980. This is identified because
this is a sunk cost that firms must recover—in the long run. Hence the hig-
her this cost is, the higher the markup that a firm must charge to operate.
The convex cost of increasing the customer base χ1 is deeply tight with
respect to the life cycle of the firms. Particularly, it influences the speed at
which firms increase their size. Hence, I use the average size of firms that
are five years old in 1980 to identify this value. The initial mass of cus-
tomers that each entering firm has, ne, together with the aforementioned
convex cost, completely informs the endogenous life cycle in the model.
Specifically, given χ1, the mass of customers upon entry informs us about
the size of the entrant firms, which is indeed used as the identifying mo-
ment for this parameter. The operating cost f is used to match the average
firm size in the period. This is so because if this cost increases, only re-
latively more productive firms can operate, meaning that the average firm
in the market becomes bigger. The entry cost κ is identified with the entry
rate in 1980, as it is standard in the literature. The exit shock probability
δ is identified with the aggregate excess reallocation rate, as the higher
the exit probability is, the higher the reallocation of labor in the model.
The convex cost parameter χ2 is disciplined with the share of firms that
are greater or equal to eleven years. This is because the higher χ2 is, the

34Foster et al. (2008) is an important reference, as they disentangle from firm-level
sales the contribution of prices from the contribution of true productivity. This is parti-
cularly important in our setting, given that the model differentiates firm-level prices and
firm-level productivity.
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more costly it is to grow for larger firms. Hence, the more likely they will
exit at a younger ages. Finally, the labor supply shifter ϑ is set such that
the equilibrium wage in 1980 is equal to one.

The parameters are estimated using the following routine. For arbi-
trary values of the vector of parameters, P = (c, χ1, χ2, ne, f, κ, δ, ϑ), the
dynamic programming problem is solved, and the policy functions are
generated. Using these policy functions, the decision rules are simula-
ted until the distribution of firms over {n, z} is converged. I draw from
this stationary distribution, simulating the economy for many periods, and
construct a panel of firms. I compute the aforementioned moments of in-
terest, which I denote asM(P), whereas the empirical moments are de-
noted as M̂. I estimate the fitted parameters P̂ using a minimum distance
criterion, given by:

L(P) = min
P

(
M̂ −M(P)

)′
W
(
M̂ −M(P)

)
. (1.39)

Following Asker et al. (2014), I set the weighting matrix W = I
and use a grid search algorithm to find the vector P̂ that minimizes the
objective function (1.39).

Table 1.1 summarizes the parameter values resulting from the calibra-
tion, along with the fit of the model. The fit is, overall, quite satisfactory.
In the calibration, I focus on the average cost-weighted markup. However,
the model-implied average sales-weights markup is 1.28, very close to the
1.25 value from the data. Finally, the model implies a slope of selling-
related activities on sales of 0.15, close to the value of 0.49 documented
by Afrouzi et al. (2020).35 The next section validates the calibration in
deeper detail.

35To obtain the slope of selling-related activities on sales, I follow the recent paper by
Afrouzi et al. (2020), and I run the following regression specification:

sj = β1

∫ nj

0

pκdκ+ β2w`j + εj ,

where, in the model, s, the selling-related expenditure, is computed as wcni/q(θ) +
wχ1(ni/n)2nχ2 + wf , total sales are

∫ n
0
pκdκ, and w` is the labor cost. Hence, the

coefficient of interest is given by β1.
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Taula 1.1: Estimated Parameters and Moments

Fixed Value Description
β 0.97 Annual interest rate
α 1 Returns to scale
ρ 0.8 Autocorrelation idiosyncratic productivity
σ 0.2 Standard deviation idiosyncratic productivity
u 1 Marginal utility
ψ 2.84 Frisch elasticity
Fitted Value Description Moments Model Data
c 0.45·1e-3 Linear cost of searching Avg. markup 1.20 1.17
χ1 0.46 Convex cost of searching 1 Avg. size age 5 12.32 10.16
χ2 1.91 Convex cost of searching 2 Share of old firms 0.32 0.32
ne 6.79 Customers’ entrant firms Avg. entrant size 5.98 5.97
f 0.78 Fixed operating cost Avg. firm size 20.24 20.25
κ 6.92 Entry cost Entry rate 0.14 0.13
δ 0.98 Exit shock probability Reallocation rate 0.29 0.31
ϑ 0.985 Labor supply shifter Wage 1 −

Note. The table reports the values of the parameters and model-implied moments. All
the moments have been calculated from 1977 to 1985. I do this because BDS reports data
only from 1977; by 1980, not all moments of interest can be computed accurately. Firms
size is measured by the total labor ` employed in a given period—which is consistent
with the measure reported by BDS. The average markup is calculated with cost weights,
as in the data.

1.4.3 Validation

To validate the model, I test the overall calibration against two different
dimensions of interest. First, I document the model’s performance on the
cross-section and the life cycle of firms. Second, I test the cross-sectional
and life-cycle implications produced by the model for the markups and
for the selling ratio—the ratio of non-production to production costs. The
reader interested only in the main results can go directly to Section 1.5.
Additional steady-state implications of the model are presented in Appen-
dix 1.8.3.
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Cross-Sectional and Life-Cycle Implications

The model is designed to capture some relevant aspects of the cross-
sectional differences in the micro-data. Part of this cross-sectional hetero-
geneity is inherently linked with the life cycle of firms. In particular, firms
enter small and, conditional on surviving, slowly expand their size when
accumulating new customers. This implies that firms of different cohorts
have different sizes, with younger firms exhibiting fewer employees—our
measure of size, consistent with the BDS data. Moreover, only a few firms
survive and keep operating, making the mass of firms belonging to the old
cohorts a decreasing share of the total.

Figure 1.5 presents the aforementioned facts, both for the model and
data. The figure on the left shows the size of each cohort, measured as
the average number of employees within each firm of a given age, in the
model and the data. It can be seen that the model and data track each
other well; this is not surprising, given that average employment for firms
of age 0 and age 5 used as a target in the calibration. Nonetheless, the
model slightly understates the size of the oldest (11+) firms. Instead, the
figure on the right documents the distribution of firms across cohorts in
the data and the model. The model manages to track satisfactory data.

Empirical works on firm-level data have established many regulari-
ties about the life cycle of firms. Since the seminal work by Dunne
et al. (1989), we know that in the US manufacturing sector, establishment
growth is unconditionally negatively correlated with age.36 Moreover,
Cabral and Mata (2003), using a comprehensive data set of Portuguese
manufacturing firms, show that the employment distribution shifts to the
right and becomes less right-skewed as cohorts age. Figure 1.6 shows the
aforementioned life-cycle facts in the model.

The model aptly captures the life-cycle facts. In the model, firms
enter small, with few customers, and grow only slowly, accumulating new
customers. Moreover, the accumulation of customers is less costly for
young firms; hence, they experience higher growth relative to older firms.

36This finding was confirmed for a variety of sectors and countries. See Coad (2009)
for a recent survey of the literature.
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Figura 1.5: Model Cross-Section
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Note. The figure on the left shows the size of each cohort, measured as the number of
employees within firms. The figure on the right shows the distribution of firms across
cohorts. The light blue bars represent BDS data; the light grey bars show the model
predictions.Data reported are between 1977-1985.

Figura 1.6: Model Life Cycle
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Note. The figure on the left shows the employment growth rate by age, that is, g`it ≡
(`it − `it−1)/ 1

2 (`it + `it−1). The figure on the right shows the employment distribution
across cohorts. Both y-axes are in percentage points.
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The same mechanism explains the results presented in the right figure. In
particular, while firms age, they expand their size, pushing the distribution
of their cohort to the right. Overall, the model fits well with many non-
targeted moments of the cross-section and the life cycle of firms.

Implications for Markups and Selling-Related Activities

The model produces clear predictions about the evolution of markups and
selling-related activities over the life cycle of the firms. In particular,
young firms charge lower markups and spend more on selling-related ac-
tivities (relative to production costs) to grow faster. Therefore, in the data,
we should expect to observe a growing profile for markups and a decli-
ning profile for selling-related activities over production costs as firms
age.

To map the model’s expenditures to an empirically meaningful empi-
rical counterpart, I define the selling ratio in the model as:

% =
f + nic/q(θ) + χ1(ni/n)2nχ2

`
, (1.40)

where the numerator is composed of the total non-production costs (which,
through the lens of the model, I interpret as selling-related activities),
whereas the denominator is composed of the total production costs.37

Moreover, to test the aforementioned predictions of the model in the
data, I exploit the following regression specification, given by:

log yit = α +
10∑
a=1

γa1{ageit = a}+ φst + εit, (1.41)

where yit ∈ {µit, %it}, the firm-level markup µit is defined in Appendix
1.7.1, the selling-ratio %it is the ratio of selling-related expenditure to the
cost of goods sold, where selling-related expenditure is defined in Ap-
pendix 1.7.1, ageit is the firm’s age, and φst are sector-year fixed effects.

37Notice that both the numerator and the denominator should be multiplied by w, the
wage, which however is not reported, as it is canceled out.
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The coefficients γa are the parameters of interest that measure the average
log yit for each age group using within sector-year variation.

Figura 1.7: Life Cycle of Markups and Selling Ratio—Model and Data
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Note. The figure on the left shows the average markup across firms of different ages,
both in the model (light grey line with squares) and in the data (light blue line with
triangles); the figure on the right shows the average selling ratio across firms of different
ages, both in the model (light grey line with squares) and in the data (light blue line
with triangles). The light blue areas are the 90% confidence interval. All variables are
reported relative to the initial year, which is normalized to zero.

Figure 1.7 shows the evolution of the average markup and average
selling ratio for firms of different ages.38 The model-implied markups
over the life cycle satisfactorily follow the one in the data; if anything, the
model-implied one has a slightly flatter profile over the life cycle.39 The
model-implied selling ratio declines over the life cycle of the firm, as we
also see in the data. However, in this case, the model performs quanti-

38I plot the results for the initial part of firms’ life cycle; however, the patterns remain
similar when the age is more than ten. The selling ratio is plotted only when the age
is greater than zero because in the model, entrant firms face a cost composition that is
different, as they do not pay the convex cost.

39Similar empirical findings have also been documented by Alati (2021) in Compustat
and by Peters (2020) in Indonesian data. They both find that markups increase over the
firms’ life cycle.
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tatively less well than in the markups case. In the data, the selling ratio
declines less compared to the model.

Figura 1.8: Distributions of Markups and Selling Ratio—Model and Data
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Note. The figure on the left shows the markup distribution in the data (light blue) and
in the model (light grey). The figure on the right shows the selling ratio distribution
in the data (light blue) and in the model (light grey). The distributions in the data are
calculated within the period 1977-1985. The distributions of markups are showed within
the [0.5, 2.5] range, whereas, the distributions of the selling ratio are shown within the
[0, 1] range.

As a final validation exercise, I compare the model-implied distribu-
tion of the markups and the selling ratio with their empirical counter-
parts. Figure 1.8 shows the comparison. The figure on the right shows
the model-implied distribution of markups (light grey) and its empirical
counterpart (light blue); the figure on the left shows the model-implied
distribution of the selling ratio (light grey) and its empirical counterpart
(light blue). Overall, the qualitative fit is satisfactory.

The distribution of markups implied by the model is very close to the
empirical counterpart. This is a successful outcome of the model, as the
only targeted moment of that distribution is its cost-weighted average.
Moreover, the model aptly captures the right skewness of the empirical
distribution of the selling ratio. However, as none of the moments of this
distribution has been used to calibrate the model, there are some quanti-
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tative differences: (i) the data show a higher mass near zero; and (ii) the
empirical distribution of the selling ratio is less dispersed compared to the
one implied by the model. Without further data, is impossible to say whe-
re these differences come from; however, in Appendix 1.8.3, I show that
by using an alternative measure of selling-related expenditure, the overall
qualitative features of the empirical distribution of the selling ratio remain
unchanged.

1.5 Rising Returns to Scale and the Macroeco-
nomics

Having calibrated and validated the model, in this section, I move forward
to study the macroeconomic implications of a rise in the returns to scale,
as documented in Section 1.2.3. To this end, I will analyze, within the
model, the effect of rising returns to scale from 1 to 1.05, keeping all
the other parameters fixed. First, to shed light on the main mechanism, I
discuss the qualitative implications of such a rise in returns to scale in the
model. Second, I present suggestive evidence for the mechanism inbuilt
in the model. Third, I use the model to study the quantitative implications
of this 5% rise in returns to scale, as documented in section 1.2.3.

1.5.1 Inspecting the Mechanism
In this section, I explore the qualitative implications of a rise in returns to
scale from 1 to 1.05, keeping all the other parameters fixed to the 1980
calibration. First, I link the effect that rising returns to scale have on the
marginal costs of production at the firm level. Second, I explain how
changes in the marginal cost of production affect markups and business
dynamism.40

Given the production structure of the model, as specified in Section
1.3, the firm-level marginal cost of production is given by:

40Appendix 1.8.2 extends the intuitions provided in this section to a more general case
in which firms produce also using capital.
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MC(z, n;w) ≡ 1

α

(
n

ez

) 1−α
α w

ez
, (1.42)

where α is the firm-level returns to scale, n is the mass of customers, that
is, the firm-level size, ez is the idiosyncratic productivity, and w is the
wage. Notice that, when α = 1—in the presence of constant returns to
scale—the marginal cost of production reduces to the more familiarw/ez;
hence, it is just the ratio of the wage to the idiosyncratic productivity.

However, when α > 1, the marginal cost of production not only
depends on the firm’s size, but also decreases in it—this is under the
quantitative-relevant scenario in which n/ez ≥ 1.41 Therefore, this mo-
del, once calibrated to the empirical findings presented in Section 1.2.3,
implies that the bigger a firm is, the better it becomes to produce, and
hence, the lower its marginal cost of production is. This link can be in-
terpreted as the model microfoundation of a technological change biased
toward larger firms. In particular, the negative dependence of firm-level
marginal costs of production with size stems from the notions that bigger
firms (with bigger economic activities) manage to gather more informati-
on about their production processes (and potentially about their customers
as well) and use it, owing to new information and communication techno-
logies (ICT), to improve production. This mechanism creates a virtuous
circle where bigger firms are better at producing; hence, become even
bigger and better at producing, and so on.42

41In the model, I do not restrict this ratio to be greater than one, but when I calibrate
it to match the firm size distribution, as explained in Section 1.4.2, I indeed find that this
is the case. In this sense, this should not be seen as an assumption but as a quantitative
result.

42Lashkari et al. (2021) document (using rich firm-level data from France) that invest-
ment in ICT has allowed French firms to increase their returns to scale in production in
recent years.

Newman (2014), Agrawal et al. (2018), Begenau et al. (2018), Goldfarb and Trefler
(2018), and Carriere-Swallow and Haksar (2019) provide additional microfoundations
for the same concept. All of them emphasize the potential role of data, particularly
gathering information from the customer base, which can give rise to increasing returns
to scale.
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Figure 1.9 on the left shows, for firms with a different number of cus-
tomers n, that is, for firms of different size, how the firm-level marginal
cost of production changes as the returns to scale change—the analysis is
performed under the already stated quantitative-relevant scenario in which
n/ez is big enough, that is, is weakly greater than 1.

In the model, the firm-level marginal cost of production declines mo-
notonically from the 1980 steady state to 2014 steady state, meaning that
an increase in the returns to scale lowers the marginal cost of production
for all firms in the latter economy. Moreover, as shown by the graph, the
marginal cost of production, after an increase in the returns to scale abo-
ve one (the green area), declines much more for bigger firms. This is a
well-known feature of increasing returns to scale in the production func-
tion (which, as shown in Section 1.2.3, is the empirically relevant case),
where an increase in the input allows firms to produce more than pro-
portionally, effectively lowering the quantity of input needed to achieve
a given level of outputs. Therefore, the increase in returns to scale has a
differential effect across firms, favoring bigger firms in the economy.

The decline in the marginal cost of production has three direct impli-
cations: (i) it increases the willingness of firms to scale up, and hence,
their expenditures devoted to customers acquisition; (ii) it raises the firm-
level markups; and (iii) it weakens the selection process in the model.

First, with lower marginal costs of production, firms want to achieve
a bigger size; as a consequence, they devote more resources to activities
related to accumulating new customers. This implies that, in the 2014 ste-
ady state, firms will devote relatively more resources to non-production
costs compared to production costs. As a consequence, there will be a
shift away from production costs toward non-production costs, as obser-
ved in the Compustat data by De Loecker et al. (2020).

Second, the decline in the marginal cost of production increases the
surplus generated by the customer-firm relation, as firms are effectively
better at producing. However, because there is an incomplete pass-through
of costs in the model, only a fraction of this increase in the surplus will
be passed on customers in the form of lower prices. Firms will retain
the remaining fraction in the form of higher markups. Therefore, due to
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Figura 1.9: Returns to Scale, Marginal Costs, and Selection
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Note. The figure on the left shows the relation between the firm-level marginal cost of
production and the returns to scale, α, for different levels of customers, that is, size. The
dark blue line represents the marginal cost of a Big firm (high customer firm), whereas
the light blue line represents the marginal cost for a Small firm (low customer firm).
The figure on the right shows the exit threshold in the 1980 and 2014 steady state over
the firms’ state space. The 2014 steady state has the same calibration as the 1980 one
but with higher returns to scale, that is, α = 1.05, The dark light grey line is the 1980
threshold, whereas, the dark grey line is the 2014 threshold.

the decline in the marginal cost of production, firms will experience an
increase in markups in the 2014 steady state.

Third, the decline in the marginal cost of production weakens, on ave-
rage, the firms’ selection process. This can be seen in Figure 1.9 on the
right. The figure plots the exit threshold over the firms’ state space in
the 1980 and 2014 steady state. It can be seen that, in the latter steady
state, the exit threshold moves, on average, to the left, implying that less
productive firms will be able to operate in the economy. This is because,
in the 2014 economy, firms are better at producing, which increases their
resilience to adverse productivity shocks.

This decline in selection has two direct implications: (i) it lowers the
entry rate of firms in the economy; and (ii) it decreases the churning of
firms, which has as a consequence a decline in the reallocation of labor.

46



“Thesis” — 2022/5/20 — 18:18 — page 47 — #65

First, when the selection declines, the exit rate declines as well. In a sta-
tionary equilibrium, where the exit rate must equal the entry rate, this
translates into a one-to-one decline in the entry rate. Second, the decli-
ne in the entry and exit rate translates into a firms’ lower attrition rate.
This implies that the reallocation of labor between entrant and exciters
declines, and hence, the overall labor reallocation declines. Thus, the afo-
rementioned decline in the selection translates into a decline in business
dynamism.

As a final remark, I emphasize that, although selection weakens on
average, it increases for the smallest firms in the economy, that is, firms
with few customers. This is because small firms have to attract new cus-
tomers. However, this is more costly in the 2014 steady state because
these small firms must compete with the biggest firms that can now ex-
ploit their scale economies to compete for customers through very low
prices.43 Therefore, only marginally more productive small firms can do
so, and consequently, this increases the selection process for small firms.
Moreover, given that small firms are mostly new entrant firms, this acts as
an entry barrier, which ulteriorly exacerbates the decline in the entry rate
in the new economy.

1.5.2 Mechanism Validation
In this section, I test in the data the main qualitative predictions outlined
above. The model predicts that a rise in firm-level returns to scale should
increase markups and selling-related expenditures and decrease business
dynamism. To this extent, I first show in the data that there has been a rise
over time in the firm-level selling-related expenditures relative to produc-
tion costs.44 Then, exploiting only cross-sectoral variation in the data, I

43This kind of behavior has recently received a great deal of attention in the antitrust
debate; see Khan (2016). The model rationalizes this behavior as the outcome of the rise
of scale economies that big firms, such as Amazon, can take advantage of to set prices
lower those of their smaller competitors.

44I focus my attention only on the rise over time in firm-level selling-related expendi-
tures relative to production costs because it is relatively less known. The rise in markups
and the decline in business dynamism have been extensively documented; see De Lo-
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document that, in sectors where returns to scale are higher, selling expen-
ditures and markups are higher, whereas business dynamism is lower.

The Rise in Selling-Related Expenditures

The model predicts that a rise in returns to scale increases firm-level ex-
penditure in selling-related activities at the expense of production costs.
Therefore, it is natural to look at the evolution of this ratio over time as a
first test of the implications outlined above. To this extent, I look at the
evolution over time of the average selling ratio, as defined in Appendix
1.7.1.45

Figure 1.10 shows the evolution of the average selling ratio. At the
beginning of the sample, the average selling ratio was approximately 0.4,
then rose almost up to 0.7 around 2000, and then went back roughly to
0.65 by the end of the period. Hence, the measure has experienced an
increase slightly above 62% over the period of analysis. Therefore, I con-
clude that, with higher returns to scale over time, we should expect to
observe higher firm-level expenditures in selling-related activities, rela-
tive to production costs, from the data. In Appendix 1.7.3, I show that
using an alternative measure of selling-related activities produces similar
results.

I finish emphasizing that this is an aspect peculiar to the theory outli-
ned in this paper. Only a model in which the market power is a long-term
investment would produce such an empirical pattern in selling-related ac-
tivities relative to production costs. Models in which the market power
is derived from the love for variety (see, for example, Dixit and Stiglitz

ecker et al. (2020) and Decker et al. (2014).
45The rise in non-production costs over time relative to total costs has already been

documented by De Loecker et al. (2020). However, I focus on a different measure, that
is, the ratio of selling-related costs (these are similar to the non-production costs analy-
zed in De Loecker et al. (2020); see Appendix 1.7.1 for a more detailed explanation)
to production costs. This has two advantages: (i) it avoids the challenges of computing
the costs of holding capital, which requires additional assumptions; and (ii) it focuses
directly on the shifts in those particular costs emphasized by the theory in this paper.
However, regarding the results, both measures show a clear rise over time.
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Figura 1.10: Average Selling Ratio
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Note. The figure plots the evolution of the average selling ratio between 1980 and 2014.
The measure is constructed using a simple average.

(1977), Kimball (1995), and Atkeson and Burstein (2008)) or from search
frictions with only pricing strategies and no expenses devoted to the ac-
quisition of new customers (see, for example, Paciello et al. (2019) and
Roldan-Blanco and Gilbukh (2020)), would not be able to produce an en-
dogenous increase in selling-related activities relative to production costs,
as in the one documented above.

The Cross-Sectoral Implications of Higher Returns to Scale

Here, I test in the cross-section of sectors the qualitative predictions of
the model outlined above. The model would predict that, in sectors where
returns to scale are higher, we should expect to observe lower business
dynamism (lower entry and reallocation rates), higher markups, and hig-
her selling-expenditures relative to production costs (selling ratio). To do
so, I regress all these variables against sector-level returns to scale, as es-
timated in Sections 1.2.3. The sector-level entry and reallocation rates are
from the BDS data; the sector-level cost-weighted markups are computed
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with the method proposed by Hall (1988) and De Loecker and Warzynski
(2012); and the sector-level selling ratio is computed, as described in Ap-
pendix 1.7.1.

Taula 1.2: Returns to Scale and Cross-Sectoral Correlations

Business Dynamism
(1) (2) (3) (4)

Entry rate Reallocation rate Markups (log) Selling ratio

Returns to scale −0.047*** −0.145*** 0.354* 0.839***
(0.010) (0.020) (0.213) (0.113)

Observations 518 518 722 722
R-squared 0.602 0.764 0.144 0.687
Sector-Time FE v v v v

Notes. Fixed effects are at the sector-time level, where the sector is at the 1-digit level.
Robust standard errors are in parenthesis. *** p-value ¡ 0.01, ** p-value ¡ 0.05, * p-value
¡ 0.1.

Table 1.2 shows the results.46 The coefficients are estimated using
only within sector-time variation; this is important because most of these
variables have time trends, which could give rise to spurious correlations.
The regressions clearly show that in sectors where firms produce with
higher returns to scale, business dynamism is lower; that is, entry and
reallocation rates are lower.47 All coefficients are significant. In Appendix
1.7.3, I show that using alternative measures of selling-related activities
produces similar results.

46It is worth noticing that the coefficient related to business dynamism is estimated
over a smaller sample. This is because the BDS data merge some sectors; for example,
manufacturing, which normally is classified by NAICS codes 31-32-33, in BDS is a
unique sector.

47In related work, Gao and Kehrig (2017) use Census data to show that, where firms
produce with higher returns to scale, the average firm size and concentration are higher.
This reinforces the correlations documented above, as it confirms in a different dataset
similar patterns compared to the analysis emphasized in this section.
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Although these correlations seem to propose a rise in returns to scale
as an underlying factor behind some recent firm-level trends, I should cau-
tion the reader from any causal interpretation of these relations. However,
the presence of these correlations indeed supports the economic forces
outlined by the model.

1.5.3 Quantitative Implications

This section explores the main quantitative implications of the rise in re-
turns to scale. First, it analyzes the effect that rising returns to scale have
on business dynamism, markups, and other aggregate trends. Second, it
studies the implication of this technological change on the distribution of
markups. Third, it examines the consequences of the rise in returns to
scale for firm-level responsiveness of employment growth to productivity
shocks. Appendix 1.8.4 shows additional quantitative results.

Rising Returns to Scale and Aggregate Trends

Here, I study the quantitative implication of a 5% rise in returns to scale
(from 1 to 1.05, as documented in Section 1.2.3) for the decline in bu-
siness dynamism, the rise in markups, and the evolution of other trends,
such as the rise in concentration and the rise in firm-level selling-related
activities. To this end, I compare two steady states, the 1980 one, cali-
brated as documented in Section 1.4.2, and the 2014 one, where I only let
the returns to scale α rise from 1 to 1.05, keeping all the other parameters
fixed.

Table 1.3 shows the quantitative implications of the rise in returns to
scale for the aggregate trends. The model can explain an important share
of the decline in business dynamism, as it explains 62% of the decline in
the entry rate and 70% of the decline in the reallocation rate. Moreover,
because the rise in returns to scale inherently favors the bigger and oldest
firms in the economy, the model can explain 90% of the rise in the share
of the old firms (firms with 11+ years) and 96% of the decline in the
employment share of young firms (firms with less than 5 years).

51



“Thesis” — 2022/5/20 — 18:18 — page 52 — #70

Taula 1.3: Effect of Rising Returns to Scale

Change
1980 S.S. 2014 S.S. Model BDS Compustat Model/Data

Business Dynamism
Entry rate 0.139 0.104 −25% −40% − 62%
Reallocation rate 0.294 0.237 −19% −27% − 70%
Share of old firms 0.322 0.467 +45% +50% − 90%
Employment

share of young firms 0.204 0.094 −69% −56% − 96%

Markups
Avg. markup (cost-weighted) 1.202 1.229 +2% − +7% 29%

Others
Avg. selling ratio 0.4 0.65 +9% − +62% 14%
Concentration (HHI) 7.003e-06 7.440e-06 +6% − +33% 18%

Notes. All variables are calculated coherently with their definitions, as used in the data.
The average markup is calculated using cost weights, whereas the average selling ratio is
calculated using a simple average across firms. Concentration is calculated as described
in Grullon et al. (2019). The data sources are BDS and Compustat. To calculate the
empirical moments from the 1980s I use the time window 1977-1985, whereas for the
empirical moments from the 2014, I use simple the values in that year. The last column
shows the fraction of the overall empirical variation explained by the model.

Moreover, the model is able to explain 29% of the rise in the average
cost-weighted markup.48 I focus on the evolution of the cost-weighted
measure, which is the welfare-relevant aggregate measure, as documented
by Grassi (2017) and Edmond et al. (2018). However, in the next session,
I look at the evolution over time of the markup distribution to analyze
the features of the rise in the sales-weighted measures that are related
to the reallocation of economic activity toward bigger firms. Although
the model explains a non-negligible fraction of the rise in the aggregate

48I document a 7% increase in the cost-weighted markup; De Loecker et al. (2020)
report a rise of approximately 10%. This difference is mainly due to the way I clean
Compustat. In particular, I drop all firms that are not incorporated in the US and all utili-
ties and financial firms. Notice that these choices do not change the qualitative behavior
of markups compared to the paper above. However, they lower their rise. Therefore,
readers should keep this caveat in mind when interpreting the numbers.
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markups, it cannot explain most of it. This shows that the rise in returns
to scale does not seem to be the only force behind the rise in the data,
suggesting that there may be additional mechanisms at work in the US
economy that can account for the unexplained rise.

Finally, the model is also consistent with the rise in selling-related ex-
penditures and product market concentrations, as observed in the data. In
particular, the model can explain 14% of the rise in the benchmark mea-
sure of selling-related expenditures and 45% of the increase in the alter-
native advertisement-based measure, as documented in Appendix 1.7.3.
Although the model explains only a fraction of this rise, we can still defi-
ne this as a success, given that this endogenous rise is a distinctive feature
of this model, where firms actively invest in their market power (see Sec-
tion 1.5.2 for a more detailed explanation of this point). The model also
explains 18% of the rise in concentration, which shows that the model
captures the reallocation of economic activity toward bigger firms that
have been documented empirically by Kehrig and Vincent (2021), Autor
et al. (2020), and De Loecker et al. (2020).

Evolution of the Markup Distribution

Analyzing the rise in markups, De Loecker et al. (2020) show that there
has been a substantial change in their distribution overall. In particular,
they notice that much of the rise in the average markup is due to realloca-
tion of the economic activity toward the right tail of the distribution—in
their words, there has been a fattening of the right tail of the markup dis-
tribution.

In this section, I look at this prediction in the model. Hence, I com-
pare the model-implied distribution of markups in both steady states, that
is, in the 1980s and 2014, with the one in the data as documented by
De Loecker et al. (2020).

Figure 1.11 presents the results. The figure on the left shows the em-
pirical distribution of markups in the 1980s, light blue, and in 2014, light
grey. The figure on the right shows the model-implied distribution of
markups in the 1980s (light blue) and in 2014 (light grey). It can be seen
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Figura 1.11: Distributions of Markups—Model and Data
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Note. The figure on the left shows the empirical markup distribution in 1977-1985 (light
blue) and in 2005-2014 (light grey). The figure on the right shows the model-implied
markup distribution in the 1980 calibration (light blue) and in the 2014 calibration (light
grey). Both distributions are shown within the [0.5, 2.5] range.

that the model qualitatively captures the overall change in the distribution
of markups. Specifically, in the 2014 steady state, the model exhibits a
considerable fattening of the right tail, compared to the 1980s steady sta-
te, as the one portrayed in the data and emphasized in De Loecker et al.
(2020).

This, in the model, happens because the rise in returns to scale reallo-
cates the economic activity toward bigger firms, which are also the ones
the higher markups. This reallocation toward bigger firms translates into
a fatter right tail of the markup distribution. Therefore, the model produ-
ces the rise in the average markup jointly with the distributional changes
emphasized by the empirical works of Kehrig and Vincent (2021), Autor
et al. (2020), and De Loecker et al. (2020).49

49Edmond et al. (2018) demonstrated with an exact decomposition that this rise in the
variance of the markups distribution is the main reason why the sales-weighted average
markup rose by more compared to the cost-weighted one. The model captures this qua-
litatively, as it produces a rise in sales-weighted markup of 3%, which is approximately
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Declining Responsiveness

In this section, I look into additional facts highlighted by the empirical
literature related to the decline in business in the US. In particular, Decker
et al. (2020) show that an important component of the decline in business
dynamism is the fact that firms in recent decades have responded less
to productivity shocks, that is, conditional to a productivity shock, they
expand (or contract) less.

To analyze this feature in the model and in the Compustat data, I pro-
ceed in two steps: (i) I replicate the spirit of their empirical investigation,
both in the model and in the data; and (ii) I propose an exact decomposi-
tion to shed light on the forces behind this decline in responsiveness.

Therefore, in the data, I implement the following regression:

g`it+1 = α + β ait ⊗F(t) +X ′itγ + φst + εit, (1.43)

where g`it+1 ≡ 2 × (`it − `it−1)/(`it + `it−1) is the growth rate of em-
ployment, ait is the empirical measure of total factor productivity revenue
(TFPR), that is, the residual from the production function in Section 1.2.3,
F(t) is a flexible function of time,X it is a vector of controls, and φst are
sector-time fixed effects. The symbol ⊗ represents the full interaction
between the two variables. Therefore, the coefficient of interest will be
the β associated with the interaction between ait andF(t), which captures
the evolution over time of the marginal effect of changes in productivity.50

Results are presented in Table 1.4. The first three columns show the

17% of what I observe in my calculations, compared to a 2% rise in the cost-weighted
markup.

50In the model, as I only have a simulated panel for the two distinct steady states, I
have to run a different regression. In particular, I run the following regression in both
steady states:

g`it+1 = α+ β ait +X ′itγ + φst + εit, (1.44)

where I do not allow for time-dependent functions. However, the regression follows the
same spirit and allows for a very similar interpretation. Therefore, to analyze the decline
in responsiveness, within the model, I look at the difference of the estimated coefficients
in the two steady states, that is, β2014 − β1980.
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Taula 1.4: Declining Firm-Level Responsiveness

(1) (2) (3) (4)
Compustat Compustat Compustat Model

β̂2014 − β̂1980 −0.027

ait × Y ear −0.001∗∗∗

(0.000)
ait × It≥2000 −0.006∗∗

(0.002)
ait × It∈[1990,2000) −0.007∗∗

(0.003)
ait × It∈[2000,2010) −0.009∗∗∗

(0.003)
ait × It∈[2010,2015) −0.011∗∗∗

(0.004)
Controls v v v v
Sector-Time FE v v v
Observations 143, 771 143, 771 143, 771
R-squared 0.037 0.038 0.038

Note. The table reports the change in firm-level responsiveness to productivity shocks.
The controls are size, the interaction of employment with the time function, and past
productivity. In column (1), I allow for a simple linear trend. In columns (2) and (3), I
instead allow for a more flexible set of dummies, where It∈T equals 1 when t ∈ T .

decline in firm-level responsiveness in the data with three different speci-
fications: (i) a linear trend; (ii) a dummy capturing responsiveness after
2000; and (iii) a set of dummies that captures the responsiveness in each
decade having as a benchmark the first decade. Both the first (parametric)
and last two (semi-parametric) regressions show a statistically significant
decline in firm-level responsiveness over time. In particular, the first spe-
cification shows a decline in responsiveness, between 1980 and 2014, of
0.035, whereas the last specification shows a decline of 0.011.

The last column shows the evolution of responsiveness in the model.
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In the model, firm-level responsiveness also declines between the two
steady states. In particular, we can see that this decline of 0.027 lies in
the empirical range reported above.

Finally, to understand which forces lie behind the above decline in the
model, I define firm-level responsiveness as:

∆ log `it
∆zit

=
1

α
×

[
∆ log yit

∆zit
− 1

]
, (1.45)

where α is the returns to scale, and ∆ log yit/∆zit is the output growth
associated with productivity growth.51 Equation (1.45) shows that the
rise in returns to scale translates directly into a decline in firm-level res-
ponsiveness.52 Moreover, the rise in returns to scale can also affect res-
ponsiveness indirectly through its effect on the output growth associated
with productivity growth. Taking stocks, in the model, the direct effect of
rising returns to scale dominates, and hence, firm-level responsiveness de-
clines after the aforementioned technological change, making the model
consistent with the findings documented by Decker et al. (2020).

1.6 Conclusion
In this paper, I documented empirically that US firms have undergone a
technological change biased toward higher returns to scale. In particu-
lar, leveraging the Compustat data and state-of-the-art production func-
tion estimators, I document that firm-level returns to scale experienced
a 5% increase, going from 1 in 1980 to 1.05 in 2014. Moreover, I find

51This definition of firm-level responsiveness is slightly different from the one implied
by the regressions above. However, notice that controlling in the regressions for past
productivity allows for a similar interpretation of firm-level responsiveness: the growth
in employment associated with productivity growth. In light of this and consistent with
Decker et al. (2020), I stick with the above regression analysis as the benchmark measure
of firm-level responsiveness. However, equation (1.45) is still useful in understanding
which mechanism is behind the decline in the model.

52The difference in the brackets is always positive. In particular, it can be shown that
∆ log yit/∆zit = 1 + α∆ log `it/∆zit, where ∆ log `it/∆zit > 0.
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that this rise is happening within all sectors—suggesting a technologi-
cal interpretation—and is not the outcome of a reallocation of economic
activity toward high returns to scale sectors.

To understand the implications of this technological change for some
of the main trends in the US economy, I propose a novel heterogeneous
firms model grounded in search frictions in the product market. Search
frictions make the model consistent with several features of the microdata:
(i) they microfound endogenous heterogeneous markups; (ii) entail firms’
active expenditures to attract customers, and (iii) imply that firms grow
through the accumulation of new customers, which empirically accounts
for 70% of their life-cycle growth. In the model, because of the central
role of prices for attracting and retaining customers, changes in returns to
scale, affecting firm-level marginal costs, influence the firm-level ability
to price, grow, and charge markups.

I calibrate the model with firm-level data and use it to quantify the
effect of the 5% rise in returns to scale. In the model, such a technological
change can explain between 62-70% of the decline in business dynamism,
29% of the increase in the average cost-weighted markup, and between
14-45% of the rise in expenditures devoted to customer acquisition. The
model captures all these, while being consistent with additional micro-
facts, such as the aging of US firms, the reallocation of economic activity
toward high-markup firms, and the decline in firm-level responsiveness to
productivity shocks.

Several potential directions are left unexplored. It would be interes-
ting to study the implications of the increase in returns to scale for the
increase in merger and acquisition activities, as witnessed in recent deca-
des. Moreover, it would be valuable to introduce in the model horizontal
product differentiation as an additional source of market power. I leave
these questions to future research.
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1.7 Empirical Analysis Appendix

1.7.1 Data
This section presents the construction of the main sample and main vari-
ables, providing summary statistics for the final sample. Then, it shows
how to construct the user cost of capital and explains which variable is
used in the production function estimation as labor (variable) input. Fi-
nally, it shows the construction of the measures of selling-related activities
and markups.

Main Sample, Variables, and Summary Statistics

I use Compustat from 1977 to 2014. I drop all firms whose Foreign Incor-
poration Code (FIC) is not equal to USA. Then, I linearly interpolate when
there is one missing between two available data points SALE, COGS, XSGA,
EMP, PPEGT, PPENT, XRD, XLR, XPR, XRENT, RECD, DP for data quality. I ex-
clude utilities (SIC codes between 4900-4999) because they are heavily
price regulated, and I also exclude financial firms (SIC codes between
6000-6999) because their balance sheets are dramatically different from
other firms.

To construct the firm-level total stock of capital, I use the perpetual
inventory method (PIM). In particular, with PIM, capital is defined as:

kit = (1− δ)kit−1 + xit, (1.46)

where xit − δkit−1 = PPENTi,t − PPENTit−1 is the net investment, and
the initial capital stock, ki0, is initialized using the first available entry of
PPEGT.53

For data quality, I interpret as mistakes zero or negative in SALE, k,
EMP, or XSGA, and I drop those observations; moreover, if SALE, k, EMP
are missing, I drop these observations too; however, if XSGA is missing, I
set it to zero. Finally, if XRD, XLR, XPR, XRENT, RECD, or DP are negative

53Given that a measure of real capital is needed for the analysis, I deflate the measure
of net investment with the appropriate deflator.
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or missing, I treat them as zeros. To obtain a real measure of the main
variables, I deflate them with the GDP deflator; I deflate investment and
capital stock by the investment good deflator.54 The table below presents
a few basic summary statistics for a few leading variables used in the
analysis.

Taula 1.5: Summary Statistics (1977-2014)

Sales Cost of Employment Capital Stock Capital Stock Age
Goods Sold (Book Value) (PIM)

Mean 1,873,553 1,296,868 7,056 1,005,617 728,260 13
25th Percentile 22,553 13,896 115 5,756 3,552 5

Median 139,060 84,909 638 36,079 24,323 11
75th Percentile 751,619 483,007 3,500 241,352 169,204 19

No. Obs. 168,496 168,496 168,496 167,884 168,496 168,496

Note. Summary statistics of cleaned Compustat dataset between 1977 and 2014. All
variables but Age are in thousands US$. Sales and Costs of Goods Sold are deflated
with the GDP deflator using the base year 2012, whereas both capital stocks are deflated
using the investment deflator with the base year 2012.

User Cost of Capital

As mentioned in the main body of the paper, one of the challenges of
using the cost shares approach is that it requires a measure of the user
cost of capital. To this end, I define the user cost of capital as:

rt = it − Etπt+1 + δ, (1.47)

where it is equal to the nominal interest rate, Etπt+1 is expected inflation
at time t, and δ is the depreciation rate of capital. I take the annual Mo-
ody’s Seasoned Aaa Corporate Bond Yield as an empirical proxy for the
nominal interest rate, the annual growth rate of the Investment Nonresi-

54Deflators are taken from the NIPA tables.
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dencial Price Deflator to calculate the expected inflation, and the depreci-
ation rate is calibrated to δ = 0.1, as in the rest of the paper.55,56,57

Variable Input in Production

Recent work based on Compustat, particularly since De Loecker et al.
(2020), has used the item Cost of Goods Sold (COGS) as the preferred me-
asure of variable input in production. This choice was motivated by the
need for a bundle of variable input expenditures to calculate firm-level
markups. However, despite being an unavoidable choice, using it as a
measure of variable input imposes an additional assumption in the esti-
mation, as it assumes that labor and materials are perfectly substitutable.

However, as the primary goal of this paper is to estimate the returns to
scale, and hence output elasticities, and not the markups, I favor a direct
measure of the firm-level variable input. In particular, I use as a bench-
mark measure the variable EMP, which represents the number of employe-
es in a given firm, and show robustness exercises using COGS. Therefore,
to be consistent with this approach, when I calculate cost shares, I need
to construct a measure of labor cost, wit`it. To do so, I use the labor cost
expenditure (XLR) reported by a subsample of firms. For the firms that
report it, I calculate the labor cost per worker defined as wit ≡ XLR/EMP,
and then I calculate its within-sector median and use it to impute the labor
cost for the firms that do not report it as wit`it = ŵst · EMPit.

Selling-Related Expenditure

In this section, I present the two main approaches used to compute firm-
level selling-related activities. Unfortunately, in Compustat, there is no

55Moody’s Seasoned Aaa Corporate Bond Yield:
https://fred.stlouisfed.org/series/AAA

56Investment Price Deflator: https://fred.stlouisfed.org/series/A008RD3Q086SBEA
57I estimate an AR(1) process on the annual growth rate of the Investment Nonresi-

dential Price deflator and define the contemporaneous expected inflation as Etπt+1 =
µ+ ρπt.
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perfect way to compute firm-level selling-related activities; therefore, whi-
le presenting the two approaches, I will emphasize their virtues and their
weaknesses.

Benchmark measure. To measure firm-level selling-related expen-
ditures, I use Selling General and Administrative (XSGA). This item in
Compustat has been the focus of many recent studies such as: Gourio and
Rudanko (2014), Ptok et al. (2018), Afrouzi et al. (2020), and Morlacco
and Zeke (2021).58 However, despite the acknowledged ability of Selling
General and Administrative to capture firm-level selling-related expendi-
ture, it is well known that this item reports many expenditures that are
not directly related to selling efforts, such as bad debt expenses, expen-
diture in pensions and retirement, rents, and expenditure in research and
development.59 Therefore, to partially overcome the aforementioned li-
mitations, my adjusted measure of selling-related expenditure is defined
as:

Sit = XSGAit − XRENTit − XPRit − RECDit − XRDit, (1.48)

where XSGA is an expenditure in Selling General and Administrative, XRENT
is an expenditure in Rents, XPR is an expenditure in Pensions and Retire-
ment, RECD is an expenditure due to Bad Debts, and XRD is an expenditure
in Research and Development.

Alternative measure. As an alternative measure to the above measu-
re, I use the Compustat variable XAD, which reports the firm-level expen-
diture in advertisements. This is the only available item in Compustat that

58In particular, Ptok et al. (2018) document that Selling General and Administrative
is particularly good at capturing firm-level sales force spending.

59For a more exhaustive discussion on how research and development are accounted
for in Compustat, see Peters and Taylor (2017). For an extensive list of items reported
in Selling General and Administrative, see Afrouzi et al. (2020). In my list, I reported to
the best of my knowledge only the items reported in Compustat that are accounted for
in Selling General and Administrative.
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measures only (and somehow cleanly) selling-related costs; however, this
measure suffers from two main drawbacks: (i) it reports the cost of adver-
tising media (radio, television, newspapers, periodicals) and promotional
expenses but excludes selling and marketing expenses, and (ii) half of the
observations are missing.

Firm-Level Markups

Throughout the paper, markups are constructed following Hall (1988) and
De Loecker and Warzynski (2012); hence, the firm-level markup is given
by:

µit = β̂cogsst ·
SALEit

COGSit
, (1.49)

where the β̂cogsst is the output elasticity to COGS. To ease the comparability
between this paper and the seminal work by De Loecker et al. (2020),
I use their measure of this elasticity. However, the results are robust to
using the alternative measure of β̂cogsst presented in Appendix 1.7.2.

1.7.2 Additional Robustness Production Function
Here, I document the robustness of the results in Section 1.2.3. To this
end, first, I present the alternative specification that I will use. Second, I
present the results from these specifications, both for the average returns
to scale and for the within-between sectors decomposition.

Alternative Control Function: Investment. Here, I document the
robustness of the rise in returns to scale to alternative control functions
such as investment. This particular control function has been pioneered
by Olley and Pakes (1996) and discussed extensively by Ackerberg et al.
(2015).60 To apply the methodology presented in Section 2.9.2 to the case

60A known drawback of using this alternative measure as a control function for the es-
timation is the presence of many zeros in investment (see, Levinsohn and Petrin (2003)).
However, in Compustat, this is a minor issue, as the number of observations that are zero
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in which investment is used as a control function, equation (2.24) has to
be modified as:

qit = P(kit, `it, xit,dit) + εit, (1.50)

where xit is now the firm’s investment. Given this new augmented equa-
tion, the rest of the procedure is the same as the one outlined in Section
2.9.2.

Alternative Variable Input: Cost of Goods Sold. Here, I adopt an alter-
native specification of the production function, as used in the recent paper
by De Loecker et al. (2020). To this end, I use COGS instead of EMP as the
variable input. This is a necessary shortcut to estimate firm-level markups
in Compustat. However, it imposes an alternative set of assumptions as
the true estimated production function is:

qit = βkkit + βcogs(`it +mit) + ωit + εit, (1.51)

where mit is the firm’s materials. Equation (1.51) implicitly entails two
additional assumptions: (i) first, now the production function is defined as
the gross output, and hence, is partially subject to the identification criti-
cisms laid out in Gandhi et al. (2020); and (ii) second and last, given that
COGS is the sum of all production costs (particularly labor and materials),
its adoption as an input in production implicitly assumes that labor and
material are perfect substitutes within the production process.

Additional Dynamic Input: Intangible Capital. Recently, there has
been a particular emphasis on the role played by the rise of intangible
capital at the firm level.61 Therefore, this could generate some concerns
as that the rise in returns to scale could potentially be partially driven
by the rise in unmeasured intangible capital as input in production. To

is particularly small relative to most of the dataset—this is due to the fact that Compustat
is a firm-level dataset containing mostly big firms.

61In particular, Chiavari and Goraya (2021) show that intangible capital is rising dra-
matically as an input in production.
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address this concern, I estimate a new production function, augmented by
intangible capital, given by:

qit = βkkit + βııit + β``it + ωit + εit, (1.52)

where ıit is the intangible capital in production. This new specification
entails an additional challenge: namely, the firm-level measurement of
intangible capital. To this end, I take advantage of the balance sheet in-
tangible capital and capitalize firm-level knowledge capital, as done in
Chiavari and Goraya (2021). The balance sheet intangible capital is given
by:

ıbalance sheetit = INTANit + AMit − GDWLit, (1.53)

where INTAN is the net balance sheet intangible capital, AM is the am-
mortization of the balance sheet intangible capital, and GDWL is goodwill.
Knowledge capital is given by:

ıknowledgeit = (1− 0.30)ıknowledgeit−1 + XRDit, (1.54)

where the depreciation rate is set to 30%, close to the empirical estimates
by Ewens et al. (2019), XRD is the firm-level expenditure in research and
development, and ıknowledgei0 is set equal to zero. Finally, the total firm-
level intangible capital is given by:

ıit = ıbalance sheetit + ıknowledgeit . (1.55)

Alternative Production Function: Translog. Finally, I explore the ro-
bustness of the rise in returns to scale to an alternative production function
specification. In particular, in this section, I adopt the following translog
specification given by:

qit = θk1kit + θ`1`it + θk2k
2
it + θ`2`

2
it + θk`3 kit`it + ωit + εit. (1.56)
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To estimate the translog production function, I follow the methodo-
logy outlined in Section 2.9.2. However, the output elasticities are now
given by:

βk = median
{
θk1 + 2θk2kit + θk`3 `it

}
, (1.57)

β` = median
{
θ`1 + 2θ`2`it + θk`3 kit

}
. (1.58)

Therefore, the returns to scale implied by the production technology
from equation (1.56) is given by α = βk + β`.

Results from Alternative Specifications. The results from the above
specifications are presented in Figures 1.12 and 1.13. Figure 1.12 shows
the evolution of the sales-weighted average returns to scale in produc-
tion from 1980 to 2014 for the different alternative specifications. The
first graph shows the robustness exercise when we use investment as a
proxy variable. The second graph shows the robustness exercise when
we augment the production function with intangible capital as an additi-
onal dynamic input. The third graph shows the robustness exercise when
we use the cost of goods sold (COGS) as the variable input. Finally, the
fourth graph shows the robustness exercise when we adopt a translog spe-
cification for the production function.

Figure 1.13 plots the counterfactual evolution of the within and betwe-
en components implied by the decomposition from equation (1.14); that
is, it shows the evolution of the average returns to scale only if the ∆within
component is at play and the evolution of the average returns to scale only
if the ∆between component is at play. The first graph shows the robust-
ness exercise when we use investment as a proxy variable. The second
graph shows the robustness exercise when we augment the production
function with intangible capital as an additional dynamic input. The third
graph shows the robustness exercise when we use the cost of goods sold
(COGS) as the variable input. The fourth graph shows the robustness
exercise when we adopt a translog specification for the production func-
tion.
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Figura 1.12: Alternative Specifications − Robustness 1
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Note. The figures above show the evolutions of the average returns to scale for all four
robustness specifications. The first figure shows the evolution of the average returns
to scale when we use investment as a proxy variable. The second figure shows the
evolution of the average returns to scale when we augment the production function with
intangible capital as an additional dynamic input. The third figure shows the evolution
of the average returns when we use the cost of goods sold (COGS) as the variable input.
The fourth figure shows the evolution of the average returns to scale when we adopt a
translog specification for the production function.

Overall, these robustness exercises show qualitative patterns that are
similar to the benchmark specification presented in Section 1.2.3. In the
1980s, the average returns to scale are very close to 1 in all specifications,
and by 2014, reaches a value between 1.02-1.06. This implies a rise in
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Figura 1.13: Alternative Specifications − Robustness 2
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Note. The figures above show the results of the decomposition (1.14) for all four robust-
ness specifications. The first figure shows the evolution of the average returns to scale,
the within component, and the between component when we use investment as a proxy
variable. The second figure shows the evolution of the average returns to scale, the wit-
hin component, and the between component when we augment the production function
with intangible capital as an additional dynamic input. The third figure shows the evo-
lution of the average returns, the within component, and the between component when
we use the cost of goods sold (COGS) as the variable input. The fourth figure shows
the evolution of the average returns to scale, the within component, and the between
component when we adopt a translog specification for the production function.

line with the benchmark specification. Therefore, regardless of the pre-
ferred specification, returns to scale in recent years exhibit an increasing
trend. Moreover, when we look at the outcome of the decomposition for
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all the alternative specifications, we can see that, in all cases, the total in-
crease in the average returns to scale is due to the within component. This
reinforces the view that returns to scale are increasing within all sectors
of the US economy, regardless of the specification at hand. Taking stocks,
we can see from these additional exercises that the main results are a so-
lid feature of the data, suggesting a technological change that is shaping
firms’ production processes in all sectors of the US economy.

1.7.3 Selling-Related Activity Robustness

In this section, I explore the extent of the robustness of the results con-
cerning the selling-related expenditure measure. In particular, I check
whether using an alternative measure based on the firm-level advertise-
ment expenditure, as reported in Appendix 1.7.1, has any effect on the
results and the conclusions from the main text. To do so, first, I look
at the evolution of this alternative measure over time. Second, I look at
the cross-sectoral correlation between this measure and the sector-level
measure of returns to scale.

Trend

One main prediction of the theory is that the rise in returns to scale implies
that the firms spend more on selling-related activities relative to producti-
on costs. Therefore, even using the alternative measure of selling-related
expenditure, we should observe a rise over time— although we should
expect to observe different levels, as explained in Appendix 1.7.1. With
this alternative specification, the selling ratio becomes:

%i,t =
XADi,t

COGSi,t
. (1.59)

Figure 1.14 shows the evolution of the selling ratio, as defined in equa-
tion (1.59), between 1980 and 2014. This alternative measure of the se-
lling ratio shows a qualitative pattern that is reasonably similar to the
benchmark specification. In particular, it increases since 2000 and then
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declines slightly until the end of the sample, but, overall, it shows an in-
crease over time, as predicted by the theory.

Figura 1.14: Average Selling Ratio
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Note. The figure shows the evolution of the unweighted average selling ratio, as defined
in equation (1.59), between 1980 and 2014.

However, the quantitative behavior is very different compared to the
benchmark measure. This is not surprising, as this alternative measure
(as explained in Appendix 1.7.1) reports only the costs related to adver-
tising media (radio, television, newspapers, periodicals) and promotional
expenses, but it excludes selling and marketing expenses. Therefore, des-
pite being highly related to the firm’s selling activities, it underrepresents
the true costs incurred by the firm to attract and retain customers. Ove-
rall, the main takeaway, regardless of the preferred measure to calculate
the selling ratio, is that in the US, over the last thirty years, there has been
a sizeable increase in selling-related activities relative to production costs.

Cross-Sectoral Correlation

Here, I show that using this alternative measure of firm-level selling-
related expenditure yields a similar sign in the correlation between returns
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to scale and the measure itself.

Taula 1.6: Effect of Rising Returns to Scale

Selling ratio − alternative

Returns to scale 0.086***
(0.025)

Observations 722
R-squared 0.361
Sector-Time FE v

Notes. Fixed effects are at the sector-time level, where the sector is at the 1-digit level.
Robust standard errors are in parenthesis. *** p-value < 0.01, ** p-value < 0.05, *
p-value < 0.1.

Table 1.6 shows the cross-sectional correlation between sector-level
returns to scale and the selling ratio. The presence of sector-time-level
fixed effects is necessary to ensure that the variation that informs the co-
efficient estimate does not come from common time trends. The table
shows a clear positive correlation between the two variables. Therefore,
I can conclude that, regardless of the preferred measure to calculate the
selling ratio, the sectors in which firms operate with higher returns to sca-
le are correlated with a higher average selling ratio, as predicted by the
theory.

1.8 Model Appendix

1.8.1 Model Details
In this section, I go through additional details of the model, emphasizing
important concepts related to its solution method. Most of the discussi-
on follows the logic developed in Schaal (2017). First, I present a less
general contractual environment relative to the one presented in Section
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1.3.3. In this environment, I can solve the model without taking care
of the distribution of promised utilities—which is an infinite-dimensional
object. This allows the characterization of the real allocation in the eco-
nomy with standard recursive methods. Second, I comment on how the
prices from Section 1.3.6 implement the same allocation as the one cha-
racterized under the less realistic contractual environment.

Alternative Contractual Environment

Here, I assume that contracts are complete, state-contingent, and that the-
re is full commitment on both the customer and firm side. Relative to
Section 1.3.3, the contracts are complete, and customers also have com-
mitment; this is a very convenient formulation of the contractual environ-
ment, despite its lack of realism.

Therefore, in this case, the contract specifies {pt+j, τt+j, xt+j, dt+j}∞j=0,
where p is the price, x is the submarket where the customer searches whi-
le being matched, τ is a separation probability, and d is an exit dummy.
Each element at time t + j is contingent on the entire history of shocks
(zt+j). The fact that the contract specifies x (the submarket in which a
firm’s customer must search) is a feature of completeness.

Joint Surplus

The additional assumptions embedded in the alternative contractual envi-
ronment allow the simplification of the problem of the firm. The comple-
teness of contracts, the commitment assumption, and the transferability
of utility guarantee that the optimal policies always maximize the joint
surplus of a firm and its customers. The model can thus be solved in two
stages: a first stage in which I maximize the surplus, and a second stage in
which I design the contracts that implement the allocation. The following
Bellman equation gives the joint surplus maximization problem for a firm
and its current customers:
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S(z, n) = max
`,d,n′i,x

′
i,τ,x

′
nu− w`− wf

+ βE
{

(δ + (1− δ)d)nU ′ + (1− δ)(1− d)

[
τnU ′

+ (1− τ)m(θ(x′))nx′ −
(

wc

q(θ(x′i))
+ x′i

)
n′i − wK(n′i;n) + S(z′, n′)

]}
,

(1.60)
subject to:

n′ = (1− τ)(1−m(θ(x′)))n+ n′i, (1.61)
y = ezF (`), (1.62)
y = n. (1.63)

The surplus maximization problem characterizes the optimal allocati-
on of physical resources within a firm: the optimal amount of separations,
firm-to-firm transitions, the number of new customers, and the decision of
whether to exit or not. Because the utility is transferable, transfers betwe-
en the firms and their customers leave the surplus unchanged. Elements
of the contracts describing the way profits are split, such as prices and
continuation utilities, disappear in the surplus maximization problem. In
particular, the distribution of promised utilities, {C(j)}j∈[0,n], is not part
of the state space, and only the size of the customer base at the production
stage n matters.

The first element in the surplus maximization problem is the total uti-
lity of the customers followed by the wages and operating cost wf paid
by the firm. In the next period, conditional on surviving the exit shock
δ, the firm chooses whether to exit or not, a decision captured by the exit
dummy d. If a firm chooses to exit, all the customers become unmatched
while the firm’s value is set to zero, yielding a total utility of nU ′. If it
chooses not to exit, the firm may then proceed with its separations. The
total mass of separations is τn, which provides a total expected utility of
τnU ′ to the customer-firm group. After searching, some customers move
to other firms with value x′ and contribute the amount (1−τ)m(θ(x′))nx′
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to the total surplus. Simultaneously, the firm proceeds with its customer
acquisitions. For each new customer acquisition in the product market
segment x′i, the firm incurs a cost of wc/q(θ(x′i)) and must offer on ave-
rage a lifetime utility-price x′i to its new customer, which appears as a cost
to the current customer-firm group, and pays, to adjust its customer base,
the convex cost wK(n′i;n).

Free Entry

Under this different contractual environment, the free entry condition sta-
ted in (1.31) can be restated in terms of joint surplus maximization. I
redefine the problem faced by an entering firm of type z as follows:

Ve(z) = (1− δ) max
xe

[
S(z, ne)− ne

(
xe +

wc

q(θ(xe))

)]+

. (1.64)

Having drawn the idiosyncratic productivity z, the potential entrant
first decides whether to exit, a decision captured by the notation {·}+ and
summarized in the dummy de. If it stays, the firms acquire a measure of
customers, ne ∈ R+, and choose a market xe in which to search, to maxi-
mize the joint surplus minus the total advertisement cost newc/q(θ(xe))
and the total utility nexe that the firm must deliver to its new customers.

An important feature of this economy is that the submarket in which
customers are acquired, xe, solely appears through the termwc/q(θ(xe))+
xe, which is an acquisition cost per customer common to both entering
and incumbent firms. The first term, wc/q(θ(xe)), captures the total ad-
vertisement cost of acquiring exactly one customer. The second term, xe,
is the utility price that firms offer to their new customers. Firms choose
submarkets that minimize the advertisement cost per customer. Define
the minimal advertisement cost as:

cost = min
x

[
x+

wc

q(θ(x))

]
. (1.65)

The optimal entry further requires that only the submarkets that mini-
mize this advertisement cost be open in equilibrium, which I summarize
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in the following complementarity slackness condition:

∀x, θ(x)

[
x+

wc

q(θ(x))
− cost

]
= 0. (1.66)

This condition means that submarkets wether minimize the advertise-
ment cost, cost = x + c/q(θ(x)), or remain unvisited, θ(x) = 0. In equi-
librium, active submarkets will have the same hiring cost, and firms will
be indifferent between them. Therefore, the equilibrium market tightness
on every active market is:

θ(x) = q−1

(
wc

cost− x

)
. (1.67)

Notice that because q is a decreasing function, the equilibrium market
tightness decreases with the level of utility promised to the customers,
as these offers succeed in attracting more customers, while firms refrain
from posting such expensive contracts. The probability of finding a firm
for customers thus declines with the attractiveness of the offer.

Prices and the Main Model

Once the real allocation of the economy is solved under the contractual
environment specified in Section 1.8.1, building on the results in Schaal
(2017), one can solve equations (1.29) and (??) to construct the prices
(equation (1.30)) that implement the exact same allocation from (1.60).

1.8.2 Capital, Marginal Costs, and Labor Share

Here, I discuss a potentially useful extension that allows the meaningful
disjoint analysis of both the labor share and markups in the model. To do
so, I augment the model with physical capital. For the sake of exposition,
I assume that firms do not own their own capital but borrow it in every
period. The firm’s problem would then be:
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V(z, n,{C(j)}j∈[0,n];w)

= max
n′i(z

′;w),x′i(z
′;w),{ω(j)}j∈[0,n]

∫ n

0

p(j)dj − w`− (r + δk)k − wf

+ (1− δ)βE
{
− n′i

c

q(θ(x′i))
− wK(n′i;n)

+ V(z′, n′, {Ĉ(z′;w, j)}j∈[0,n′];w)

}+

,

(1.68)
subject to:

n′(z′;w) =

∫ n

0

(1− τ(z′;w, j))(1−m(θ(x′(z′;w, j))))dj + n′i(z
′;w),

(1.69)

Ĉ(z′;w, j) =

{
C(z′;w, j) for j′ ∈ [0, n′(z′;w)− n′i(z′;w)] and j′ = Φ(z′;w, j),
xi(z

′, w) for j′ ∈ [n′(z′;w)− n′i(z′;w), n′(z′;w)],

(1.70)

y = ezkαω`(1−α)ω, (1.71)
y = n, (1.72)

where Φ(z′;w, j) =
∫ j

0
(1− τ)(1−m(θ(x′(z′;w, k))))dk.

The firm now borrows the capital at a rental rate given by r + δk,
where r is the interest rate, and δk is the depreciation of physical capital.
Therefore, the production function (1.71) takes both capital and labor as
inputs. Moreover, now the production functions directly distinguish the
output elasticity to labor from the returns to scale, which are given by ω.
Therefore, the marginal product in this augmented economy is given by:

MC =

(
1

ω

)(
1

α

)α(
1

ez

) 1
ω

n
1−ω
ω (r + δk)αw1−α. (1.73)

As can be seen from the equation, the marginal cost is still decrea-
sing in the returns to scale; that is, it declines in ω. Therefore, the main
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mechanism described in the main text is preserved in this case as well.
Moreover, because the output elasticity to labor is now governed by a
different parameter relative to the one that governs the returns to scale,
one can accommodate both an increase in returns to scale and a decline
in the labor share. This is indeed consistent with the empirical evidence
presented in Section 1.2.3 and in Chiavari and Goraya (2021). Taking
stocks, this model extension should be able to obtain both an increase in
markups—as in the main text—and a quantitative-relevant decline in the
labor share.

1.8.3 Additional Validation Exercises
Customer Base Policy at the Firm-Level

Firms, in the model, can use various margins—acquisitions, separations,
or exit—to adjust employment. I examine here how the decision of firms
to use these margins varies as a function of their individual characteristics
(z, n) at the beginning of a period.

Figure 1.15 displays the optimal policy of firms as it appears in the
baseline calibration. As expected, customer acquisitions take place in
small productive firms, whose marginal value of adding customers is high,
while separations occur in unproductive firms. Interestingly, because se-
arch frictions show up in the surplus (1.60) as a linear advertisement cost,
cost = wc/q(θ(xi)) + xi, a wedge appears in the adjustment cost faced
by firms at n′ = n. More specifically, separating from a customer earns
a value of U to the customer-firm group, while acquiring new customers
incurs the above cost, strictly greater than the value of being an unattac-
hed customer in equilibrium. Arising from this kink in adjustment costs,
a band of inaction emerges between two thresholds: an expansion thres-
hold, and a separation threshold. Whenever a firm falls in the expansion
region, its optimal strategy consists of acquiring new customers until it
slowly reaches the expansion threshold—a point at which the marginal
value of adding a customer equals the overall cost of acquiring extra cus-
tomers. Similarly, whenever a firm finds itself in the separation region, its
optimal decision is to separate from its customers until it slowly reaches
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Figura 1.15: Firms’ Action Threshold in the Space (n, z)
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Note. The optimal policies depicted in this figure correspond to the baseline calibration.
The areas corresponding to the different margins of adjustment are distinct and do not
overlap. Notice that customer acquisitions and separations never occur at the same time
because it is more costly for firms to acquire new customers than to retain the current
ones.

the separation threshold. There, the marginal value of a customer equals
the marginal value of separation. The presence of an inaction region im-
plies the existence of a nonnegligible mass of firms that do not adjust their
customer base within a period. Exit takes place in unproductive firms. In-
deed, due to the presence of a fixed operating cost wf , the decision to exit
mostly affects low productivity and low customer firms, as their current
production and expected future surplus fall short of the total operating
costs.
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Additional Life Cycle and Cross-Section Implications

Another implication of the model is that firms with higher productivity
and customers are less likely to exit the market; therefore, older firms are
also less likely to exit. This feature of the model can be seen from Figure
1.15, which shows the exit threshold implied by the baseline calibration.
Clearly, the exit region, conditional on having low productivity, is wider
when firms have fewer customers than when they have many.

Figura 1.16: Exit Rate by Age
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Note. The figure shows the exit rate by age group.

Figure 1.16 shows the exit rate for different age groups. As expected,
the model produces a negative correlation between the exit rate and age,
meaning that, on average, older firms are less likely to exit the market than
younger ones. In the model, this happens because the bigger a firm is, the
higher the demand it faces, and hence, the higher its ability to pay its
fixed costs. This is an important prediction of the model, as this negative
correlation is an empirical finding documented in many empirical papers,
such as Haltiwanger et al. (2013).
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Robustness on Selling Ratio Implications

In this section, I test the robustness of the patterns documented in Section
1.4.3 regarding the selling ratio. This is particularly important, as already
explained in Appendix 1.7.1, because Compustat does not offer any ideal
measure of selling-related expenditure at the firm level. Therefore, I revi-
ew the life cycle and distributional patterns of the selling ratio using the
alternative measure of selling expenditure defined in Section 1.7.1.

Figura 1.17: Selling Ratio Robustness

0 2 4 6 8 10
Age

-20

-15

-10

-5

0

5

D
ev

ia
ti
on

#10-3 Life-Cycle

0 0.2 0.4 0.6 0.8 1
Selling Ratio

20

40

60

%

Distribution

Note. The figure on the left shows the estimated age profile of the selling ratio from
equation (1.41) together with the 90% confidence interval. The figure on the right shows
the distribution of the selling ratio. The time frame is 1977-1985.

Figure 1.17 shows the results of this robustness exercise. Overall,
the main patterns highlighted with the benchmark measure are robust to
alternative definitions of selling expenditures. The life-cycle profile of the
selling ratio is very similar, aside from the obvious level difference, to the
one obtained with the benchmark measure. In the data, firms have a high
selling ratio when they are young, which declines with their age.

Moreover, the selling ratio distribution with the alternative measure is
very similar to the one obtained with the benchmark measure. In particu-
lar, both distributions are right-skewed with a long right tail. Both graphs
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show that the model predictions regarding firm-level selling expenditu-
res (relative to production costs) are a robust feature of the microdata,
regardless of the measure adopted in the data for this ratio.

Prices and Customers Implications

Prices are one of the main tools that firms have to attract, or retain, cus-
tomers. In the model, firms that want to grow will charge lower prices to
attract and retain customers, and vice versa, firms that are already big will
charge higher prices to extract value from their existing customers. Mo-
reover, in the model, firms can discriminate across different customers, as
explained in Section 1.3.6. Therefore, the model has two main sources of
price dispersion: first, different firms charge different average prices, and
second, within the same firm, customers are also charged different pri-
ces. Finally, it is worth emphasizing that the model has clear predictions
on the customer side as well. Customers, as previously emphasized, will
move from firms charging higher prices to firms charging lower prices.
Therefore, the model produces an endogenous turnover over customers in
equilibrium.

To look at the price dispersion generated by the model, I compare
the standard deviation of the price distribution in the model with the one
reported by Kaplan and Menzio (2015). This is particularly sensible, as
they look at customer-level prices within a very narrow geography and
product category, which maps very close to the model setup where output
is identical and homogeneous. The model produces a standard deviation
of 2.1e-4, which explains approximately 6% of what is observed in the
data by Kaplan and Menzio (2015). This is, of course, only a partial
success, but should not come as a surprise because it is well known from
the work of Hornstein et al. (2011) that this class of models struggles in
generating the empirically observed dispersion in prices.

Finally, the model produces an endogenous average customer turnover
rate of around 11% a year. This is in the range of the estimates from
the previous literature. In particular, Gourio and Rudanko (2014) find a
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customer depreciation rate of 0.15.62 Hence, the model is within the range
found by the literature.

Size and Markups

In the data, firms that have bigger sales within a sector tend to have al-
so higher markups; for instance, this has been documented in India by
De Loecker et al. (2016). Here, I look at this prediction in the Compustat
data and the model. To do so, I run the following regression specification:

log µit = α + β1 log sit + β2 log s2
it + φst + εit, (1.74)

where log µit is the log-markup, log sit is the log-sale, and φst is the
sector-time fixed effect. I allow for a quadratic specification to permit
a nonlinear relation between the two variables.

The regression estimates a positive relation, both in the model and
in the data between the log-sale and log-markups. In particular, in the
model, the regression estimates a β1 = 0.43 and a β2 = −0.06, whereas,
in the data, the regression estimates a β1 = 0.30 and a β2 = −0.01. All
coefficients are statistically significant, and the time frame is 1977-1985.

The model’s estimates are close to the ones from the data. This is
an important result as, in the model, these elasticities have not been a
target in the calibration strategy. The model is hence able to replicate
moments from the joint distribution of firms’ size and markups. This is
the case because, in the model, the biggest firms are the most productive,
and hence, the ones that face a lower marginal cost of production. In
turn, this implies that they are the ones that charge the lowest prices, and
hence, are the ones that face a more inelastic demand, which allows them
to charge the highest markups.

62Significant customer inertia has also been documented empirically by Dubé et al.
(2010) and Bronnenberg et al. (2012).
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1.8.4 Additional Quantitative Exercises
Evolution of the Firms’ Distribution

The explored rise in returns to scale has direct implications for the dis-
tribution of firms across customers and productivity levels, as explained
in Section 1.5.1. In particular, a rise in returns to scale (i) gives rise to
some big firms that, exploiting their scale economies, can attract many
customers and to a lot of small firms with instead few customers facing
the competition of these big firms; (ii) lower the selection process in the
economy, implying that more firms with lower productivity are indeed
able to operate in the new equilibrium.

Figura 1.18: Firms’ Distribution Across Customers and Productivities
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Note. The figure on the left shows the distribution of firms across customers, n. The
figure on the right shows the distribution of firms across the productivity levels.

Figure 1.18 shows the distribution of firms across customers and pro-
ductivity levels in the 1980 and 2014 steady states. The figure on the right
shows the distribution of firms across customers; it shows an increase in
its right-skewness and a fattening of the right tail. This is the outcome
of the presence—in equilibrium—of big firms that can exploit their scale
economies to attract new customers. The fact that the distribution is mo-
re right-skewed speaks directly to the literature emphasizing the rise of
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superstar firms (see, for example, Autor et al. (2020)).
The figure on the left shows the distribution of firms across producti-

vity levels; it shows lower selection. In particular, in the new steady state,
there is a fattening of the left tail, which is the outcome of the presence
of new firms that, exploiting their scale economies, can operate even after
adverse productivity shocks.

Aggregate Output and Welfare

In this final section of the Appendix, I look at the implications of the rise
in returns to scale for aggregate output and welfare. To study the effect
of this technological change in aggregate output and to highlight which
factors are behind its changes, I present the following decomposition of
its rise over time:

∆ log Yt = ∆ logZt + ∆ logLt/mt + ∆ logmt, (1.75)

where Y =
∫
i
yidi is the aggregate output, Z =

∫
i
(yi/`i)(`i/L)di is the

aggregate productivity, L is the total labor, and m is the mass of firms.
This decomposition helps us understand when the aggregate output chan-
ges because of a change in (i) the aggregate productivity, or (ii) the ave-
rage firm size, or (iii) the mass of firms in the economy.

Taula 1.7: Evolution of Aggregate Output

Productivity Avg. Firm Size Mass of Firms Output
logZ logL/m logm log Y

100×∆2014−1980 −28.61 45.63 −15.23 1.79

Note. This table shows the percentage change in the aggregate output and its compo-
nents, as highlighted in equation (1.75) between the 1980 and 2014 steady states. The
first column reports the percentage change in the aggregate productivity, the second co-
lumn reports the percentage change in the average firm size, the third column reports
the change in the mass of firms, and the fourth column reports the percentage change in
the aggregate output. Notice that columns one to three must sum up to column four by
construction.
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Table 1.7 reports the results from the decomposition highlighted in
equation (1.75). In the model, after a 5% rise in returns to scale, the out-
put increases by almost to 2% relative to the trend.63 However, this mo-
derate rise in the aggregate output masks sizeable changes in its different
components: in particular, I observe a decline in aggregate productivity
of approximately 28%, a rise in the average firm size of approximately
45%, and a decline in the mass of firms of approximately 15%.

The decline in labor productivity is the outcome of a rich set of for-
ces. On the one hand, a rise in returns to scale, all else being equal,
increases the firm-level average product of labor, yi/`i; on the other hand,
it weakens the selection process in the economy, allowing less productive
firms to operate. Quantitatively this second force dominates and produces
the decline in the aggregate productivity documented above.64 The we-
akening of the selection process also produces the decline in the mass of
firms, as shown in Table 1.7. As explained in Section 1.5.1, with lower
selection, entry rates and reallocation rated decline, leading to a steady
state with fewer firms.

The rise in the average firm size follows from similar forces as the
one outlined above: the returns to scale rise increases the firm size and
lowers the selection—that is, it allows smaller and less productive firms
to operate. However, in this case, the first effect dominates. Overall, the
rise in the average firm size dominates the other two factors, translating
into an aggregate output rise.

63It is noteworthy to acknowledge that we cannot compare the two steady states, as
we should view the model as a detrended version of an underlying framework with
balanced growth. Therefore, this 2% output rise is an increase relative to a counterfactual
experiment in which the output would have only increased due to balance growth, at a
3% rate, for example.

64Interpreting the model outlined in this paper as a detrended version of a model
featuring balanced growth, we can think of the decline in the aggregate productivity
as the model counterpart to the facts highlighted by Fernald (2015). This proves that
the technological change documented in the paper can be consistent with the recent US
productivity decline. Of course, one should exercise caution with such an interpretation.
The model has not been designed to capture the growth phenomena fully, and thus does
not allow for a straightforward mapping with the data in this aspect.
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I now turn my attention to the evolution of aggregate welfare. In this
economy, aggregate welfare is the representative household utility. The-
refore, the change in welfare measured in consumption-equivalent terms
is given by:

U(C1980(1 + λ), L1980) = U(C2014, L2014), (1.76)

where λ measures how much more (or less) the consumption in percen-
tage terms makes the representative household indifferent between the
1980 and 2014 steady states. Given the specific functional form of the
representative household preferences, λ is given by:

λ =
C2014 − ϑ

(
1 + 1/ψ

)−1(
L

1+1/ψ
2014 − L1+1/ψ

1980

)
C1980

− 1. (1.77)

I find that welfare is approximately 37% below the trend. This decline
is due to (i) the lower selection and (ii) higher firm-level selling-related
expenditure. Lower selection translates into lower average productivity,
which, together with the fact that the average firm becomes bigger, impli-
es that the representative household must supply additional labor to sus-
tain production. Higher firm-level selling-related expenditure, devoted to
firm size expansion, is a deadweight loss that must be financed by the re-
presentative household with additional labor. These two forces together
increase labor, and hence, labor disutility, which being convex, dominates
the moderate linear increase in utility from consumption due to the rise in
output.

I conclude with a few remarks related to the results on aggregate wel-
fare. First, this does not imply that welfare is lower relative to the 1980s,
but only that it is below the trend due to this technological change. To
see this, we can compute the level of welfare in 2014, assuming that the
economy has grown by 3% a year. In this case, welfare in 2014 would be
about 27% higher than in 1980.65 Second, in the model, consumer welfa-
re, as measured by aggregate consumption and aggregate welfare, moves

65To see this, consider that absent any change, assuming a 3% growth, the aggregate
welfare increased by 2014, which is given by log(C1980(1.03)34) − log(C1980). Hen-
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in the opposite direction. This fact illustrates the tension associated with
the common practice of antitrust authorities of using aggregate consumer
welfare as a shortcut for the overall welfare.66

ce, the counterfactual level of welfare after the rise in returns to scale is (1 − 0.37) ×
(log(C1980(1.03)34)− log(C1980)).

66The inability of the consumer welfare paradigm to fully capture stakeholders’ in-
terests has recently been a highly debated topic among antitrust scholars (Hovenkamp
(2019, 2020a,b) and Marinescu and Hovenkamp (2019)).
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Capı́tol 2

THE RISE OF INTANGIBLE
CAPITAL AND THE
MACROECONOMIC
IMPLICATIONS

Joint with Sampreet Goraya

2.1 Introduction

In the last decades, technological improvements have reshaped the pro-
duction process of US firms. Nowadays, investments in research and de-
velopment, intellectual property products, and computerized information—
commonly known as intangible capital—account for more than 30% of
aggregate investment. This novel capital shows different characteristics
compared to tangible capital, such as equipment and structures. Specifi-
cally, it is usually immaterial, specific to the firm that uses it, and often
internally produced rather than acquired. The rise of intangible capital,
with its unique characteristics, has ramifications for competition, for anti-
trust policy, for allocative efficiency, and hence for economic well-being
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more broadly.
Despite the increasing importance of intangible capital, we know litt-

le about its properties and the implied consequences of its rise. In this
paper, our goal is to document the properties of intangible capital and to
shed light on the macroeconomic implications of its rise as an input in
production for US firms. First, exploiting firm-level data, we document
the changing nature of production technology. We show that the input
share of intangible capital has seen a sizeable increase since the 1980s,
going from approximately 0.03 to 0.12. This rise has come at the expense
of the labor share in production. We label this phenomenon intangible
capital biased technological change (IBTC).

Then, we provide novel empirical evidence on the behavior of invest-
ment in intangible capital. In the data, we see that the firm-level intan-
gible capital investment process is lumpier compared to tangible capital
investment, as it is characterized by long periods of inaction and by a
high serial correlation. To rationalize these empirical findings, we use
a general equilibrium model of firms and investment dynamics extended
with intangible capital. We also allow for a flexible specification of ad-
justment costs associated with the investment process of both types of
capital. The model attributes higher adjustment costs—particularly fixed
adjustment costs—to intangible capital investment relative to tangible ca-
pital investment. These findings confirm the view that intangible capital
investment is inherently different from tangible capital investment. For
example, the presence of inherent indivisibilities in implementing the just-
in-time (JIT) production process by the US manufacturing sector meant
that large investment beforehand were required, and the necessity of re-
training workers and restructuring production procedures translated into
long setup times.1

1The JIT production process, pioneered by Japanese manufacturers, gained momen-
tum among US firms in the 1980s. Nakamura et al. (1998) documented that the transfer
of JIT requires a substantial effort on the part of U.S. manufacturers because so many
different aspects of plant operation are involved, and Fullerton et al. (2003) argued that
investment returns from JIT adoption are not immediately observable, due to the long-
run nature of its implementation process.”
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Finally, we use the calibrated model to quantify the effects of IBTC on
changes that the US economy experienced in average firm size, industry
concentration, and allocative efficiency. A shift in production techno-
logy toward intangible capital—which entails high investment adjustment
costs—makes it difficult for small firms to survive and operate. This cre-
ates a reallocation of economic activity toward larger firms, which even-
tually increases the size of average firms and industry concentration. Mo-
reover, intangible capital tends to be more misallocated as its marginal
product is more dispersed across firms relative to other inputs. Therefore,
as intangible capital becomes more important as an input of production
relative to physical capital and labor, the overall allocative efficiency (as
measured by the dispersion in total factor productivity revenue, TFPR) in
the economy increases as well. Finally, these findings suggest that a signi-
ficant fraction of these transformations can be an outcome of the efficient
response of the economy to changes in firm-level production technology.

In this paper, we first estimate an augmented firm-level production
function with three inputs: tangible capital, intangible capital, and labor.
Here, we follow two approaches. The first is the control function appro-
ach, as in Ackerberg et al. (2015) and as recently used in De Loecker et al.
(2020). Second, we use the cost shares approach adopted by Foster et al.
(2008). To do so, however, we need a firm-level measure of intangible ca-
pital, which is notoriously difficult to construct with commonly available
firm-level datasets as the US Generally Accepted Accounting Principles
(US GAAP hereafter) fails to fully account for intangible capital on firms’
balance sheets.2 To this end, we leverage the Compustat dataset, which
encompasses all US publicly traded firms. Our baseline measure of intan-
gible capital, between 1980 and 2015, is made up of two components: (i)
internally generated intangible capital, through research and development
expenditure; and (ii) identifiable intangible capital booked on the balance
sheet. Finally, to validate this measure, we compare it with the one pro-

2See Lev and Gu (2016), and Ewens et al. (2019) for more discussion about measu-
rement problems while using firm-level data. Corrado et al. (2009), Corrado and Hulten
(2010), McGrattan and Prescott (2010b), McGrattan and Prescott (2014), and Koh et al.
(2020) highlight the measurement issues while using aggregate data.

91



“Thesis” — 2022/5/20 — 18:18 — page 92 — #110

vided by Koh et al. (2020) and find similar trends and magnitudes among
the two measures.

Using this measure, our production function estimations find that in-
tangible capital is an important factor in production: its input share in-
creased from 0.03 in 1980 to 0.12 in 2015. Moreover, most of this rise
happened at the expense of the labor input in production. This finding is
robust to different estimation techniques, production function specificati-
ons, and levels of disaggregation. We interpret this finding as a techno-
logical transformation that US firms are experiencing, where intangible
capital is becoming a more prominent input in the production process at
the cost of labor. We have labeled this phenomenon IBTC.

After assessing the role of intangible capital in production, we study
the properties of the investment process of intangible capital. We focus on
the technological frictions associated with the investment process, which
has been emphasized in Haskel and Westlake (2018). To do so, we build
a model of firms and investment dynamics in the spirit of Hopenhayn
(1992) and Clementi and Palazzo (2016b). In the model, firms behave
competitively and produce a single good using a Cobb-Douglas producti-
on function with tangible capital, intangible capital, and labor as inputs.
Moreover, the model features entry and exit of firms and a flexible struc-
ture of investment adjustment costs for both types of capital. In particular,
the adjustment costs associated with both types of capital have two com-
ponents: (i) convex cost disciplining the intensive margin of investment,
and (ii) a fixed cost disciplining the extensive margin of investment.

The predictions of the model related to the investment process of both
tangible and intangible capital depend on the precise identification of the
two sets of parameters that discipline the convex and fixed costs asso-
ciated with the investment processes. Following the seminal papers of
Cooper and Haltiwanger (2006) and Asker et al. (2014), we use inaction
rates, defined as investment between ±1%, to identify the fixed costs of
adjusting each type of capital. This moment is informative because higher
fixed costs of adjustment increase the inaction rate, as firms prefer not to
invest instead of paying these costs. Then, we use the autocorrelation of
the investment rate process to discipline the convex costs associated with
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both types of capital. High convex costs make the investment process
serially correlated, forcing firms to accumulate capital slowly.3

The calibrated model finds substantial differences in the investment
processes of these two types of capital, with intangible capital having
higher adjustment costs compared to tangible capital. In the model, the
high adjustment costs associated with intangible capital make this input
slower to adjust relative to tangible capital when productivity shocks oc-
cur. To validate this prediction, we estimate the elasticity of the average
revenue product of both types of capital to productivity shocks. We find
that this elasticity is higher for intangible capital, making the average re-
venue product of intangible capital, ARPKI , more responsive relative to
the average revenue product of tangible capital, ARPKT . Moreover, we
also document in the data that, consistent with the model predictions, the
ARPKI is more volatile at the firm level and more dispersed in the cross
section relative to the ARPKT in most of the sectors.

As a final validation exercise, we exploit cross-sector variation in in-
tangible intensity to provide reduced-form support for the model mec-
hanism. In particular, we look at the intangible investment share, the
tangible investment share, the labor share, the profit rate, industry con-
centration, and allocative efficiency, which are the main focus of analysis
when we study the consequences of IBTC. Overall, we find that the mo-
del captures the qualitative features of the data implying the direction of
cross-sectoral correlations in line with the ones found in the data.

Finally, we use the calibrated model to quantify the macroeconomic
effects of IBTC. In particular, we ask what are the effects of increasing
the intangible capital share and decreasing the labor share in the firm-
level production technology while keeping fixed the returns to scale? The
changes in the returns to scale in production are of interest on their own,
as studied by Lashkari et al. (2021) and Chiavari (2021); however, much
less is known about the role of the changing composition of inputs in

3It is important to notice that these parameters are jointly calibrated. Moreover, the
presence of counterbalancing forces—that is, high fixed costs decrease the autocorrela-
tion of the investment rates, whereas, high convex costs increase it—makes it crucial for
the correct identification of these two costs.

93



“Thesis” — 2022/5/20 — 18:18 — page 94 — #112

production, and this motivates our focus. Furthermore, many other tech-
nological changes have emerged over this period, and we abstract from
them in the benchmark analysis. However, in our robustness analysis, we
allow for some of these changes in our model, such as the decline in the
relative price of intangible investments, and we disentangle the effects of
IBTC.

The IBTC can quantitatively explain most of the increase in average
firms’ size and industry concentration, as measured by the Herfindahl-
Hirschman Index and by the employment share of firms with more than
250 employees, as observed in the data. This happens because, while in-
tangible capital becomes more important in production, firms rely more
on an input that entails higher adjustment costs, and as a result, the value
of entry decreases, pushing up the threshold productivity of the marginal
entrant. This implies that a relatively small ? but more productive ? mass
of firms operate in the economy. Thus, the average incumbent size incre-
ases. Furthermore, IBTC makes the growth of small firms costly, as they
have to incur very high adjustment costs to build their stock of intangible
capital, and it makes it easier for large firms to shrink, as the high de-
preciation rate of intangible capital favors its depletion. This mechanism,
together with the above increase in selection, tilts a reallocation of sale
shares toward the larger firms, leading to the rise in average firm size and
industry concentration.

Further, through the lens of the model, we see that IBTC also accounts
for most of the changes in the aggregate factor shares that have been emp-
hasized in the literature. It generates the increase in the intangible capital
share and the decline in both tangible capital and labor shares. This hap-
pens because micro-level technological change also affects the aggregate
demand for each of the three inputs, favoring intangible capital in parti-
cular. Moreover, consistent with the findings in Koh et al. (2020), we find
that the labor share would decline much less if intangibles were expen-
sed instead of capitalized.4 Finally, as the selection process increases and

4Barro (2019) and Atkeson (2020) also show that part of the decline in the corporate
non-financial labor share is a result of the accounting procedures used by the Bureau of
Economic Analysis of the US Department of Commerce.
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only the more productive firms operate in the market, we see an increase
in the firm-level profit rate of a magnitude consistent with that has been
emphasized in De Loecker et al. (2020) and Barkai (2016).

Moreover, we find that IBTC can explain half of the decline in the
tangible capital investment rate, as documented by Hall (2015), Gutiérrez
and Philippon (2016), and Crouzet and Eberly (2019). This occurs be-
cause firms with this new intangible-intensive technology tilt a greater
share of their expenditure toward intangible capital. As a consequence,
investment in tangible capital declines in the new steady state. Hence, the
model interprets half of the slack in the investment rate in tangible capital
as the by-product of a technological change that makes tangible capital a
less relevant input in production.

Finally, the quantitative model shows that IBTC can explain betwe-
en 32% and 80% of the overall decline in the allocative efficiency of the
US economy, as documented by Bils et al. (2020). This is driven by the
fact that TFPR in our framework is a weighted geometric mean of the
average revenue product of inputs, where the weights are proportional to
their output elasticities. The presence of adjustment costs means that dis-
persion in TFPR is driven by dispersion in the average products of both
types of capital. When the output elasticity of intangible capital increa-
ses, the dispersion in ARPKI becomes the primary driver of the disper-
sion in TFPR.5 Therefore, dispersion in TFPR, which is our measure
of allocative efficiency (where higher dispersion in TFPR means lower
allocative efficiency), increases. However, in our framework dispersion in
TFPR—as already noted by Asker et al. (2014)—cannot be interpreted
as misallocation, as in Hsieh and Klenow (2009), because the allocation
still coincides with the planner’s one.

Related Literature. This paper is related to the rising literature that
measures intangible capital at the aggregate level, as in Atkeson and Ke-
hoe (2005), Corrado et al. (2009), Corrado and Hulten (2010), McGrattan

5Adjustment costs associated with the investment process of an input do not allow its
marginal product to equalize across firms, and hence generate dispersion in the average
revenue product.
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and Prescott (2010a), McGrattan and Prescott (2010b), McGrattan and
Prescott (2014), Koh et al. (2020), and Atkeson (2020), and at the firm-
level, as in Peters and Taylor (2017) and Ewens et al. (2019).6 Relative
to them, we structurally estimate a Cobb-Douglas firm-level production
function augmented with intangible capital. We document that intangible
capital is an important input in production and is rising over time at the
expense of labor.

Furthermore, our paper is related to the extensive literature that exami-
nes lumpy investment dynamics, as pioneered by Abel and Eberly (1994),
Abel and Eberly (1996), Doms and Dunne (1998), and Cooper and Hal-
tiwanger (2006), highlighting the role of non-convex adjustment costs in
the firm-level investment process. To the best of our knowledge, we are
the first to highlight the presence of higher adjustment costs associated
with the investment process of intangible capital relative to tangible capi-
tal.

This work is related to some recent papers by Brynjolfsson et al.
(2021), De Loecker et al. (2021), and Kaplan and Zoch (2020). Our analy-
sis on the rising importance of intangible capital and its associated measu-
rement challenges is close to the view of Brynjolfsson et al. (2021). The
rising importance of adjustment costs associated with intangible capital is
in line with the rise in overhead costs, as documented in De Loecker et al.
(2021). In line with our findings, Kaplan and Zoch (2020) highlights the
rising expenditure in intangible investment.

Finally, the paper relates to Lashkari et al. (2021), Aghion et al. (2019),
Hsieh and Rossi-Hansberg (2019), and Chiavari (2021) which present dif-
ferent mechanisms, all associated with technological factors, behind so-
me of the macroeconomic trends emphasized in this paper. Moreover,
De Ridder (2019), Zhang (2019a), and Caggese and Perez-Orive (2020)
emphasize the role of intangible capital as a driving factor behind some
recent trends. Relative to them, we use firm-level data to inform our mo-

6Moreover, our paper is also related to the literature on innovation and firm dynamics
that documents the behavior of firms’ R&D investment and related measurement issues
(see, Cohen and Klepper (1992), Grilliches (1995), Klette and Johansen (2000), Klette
and Kortum (2004), and Cohen (2010)).
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del about the production process and the properties associated with this
new capital. We find that intangible capital is a dynamic input in produc-
tion whose importance is rising and that its investment process is highly
distorted by technological frictions such as adjustment costs. Combining
these novel insights with a quantitative model, we are the first, to the
best of our knowledge, to jointly explain the rise in average firm size and
concentration, the changes in aggregate factor shares, the decline in the
tangible investment rate, and the decline in allocative efficiency in the US
economy between 1980 and 2015.
Outline. Section 2.2 briefly discusses the data and shows the construction
of our main variables. Section 2.3 documents the stylized facts. Section
2.4 presents our quantitative framework. Section 2.5 contains the calibra-
tion of the model and its external validation, and Section 2.6 oresents a
discussion of the main mechanisms behind our results, Section 2.7 pre-
sents the main results and discusses the implications of IBTC for the US
economy. Section 2.8 concludes.

2.2 Data and Measurement

In this section, we present the main dataset used throughout the analysis.
We explain (i) the construction of the variables, unrelated to intangible
capital, used for the empirical analysis and (ii) the measurement of firm-
level intangible capital, emphasizing the main challenges, its virtues, and
its drawbacks.

2.2.1 Main Measures

The main data source is Compustat, a firm-level database with all the US
publicly traded firms between 1980 and 2015. In this section, we briefly
discuss the strengths and limitations of this dataset. We provide more
details on the data cleaning process and the construction of the sample of
analysis in Appendix 2.9.1.

The choice of the data source is driven solely by its ability to cover the
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period of interest and the largest number of sectors. These characteristics
make these data an excellent source of firm-level information to study
technological changes in production undertaken by US firms.

Although publicly traded firms are few relative to the total number of
firms, as they tend to be the largest firms in the economy, they account for
roughly 30% of US employment (see Davis et al. (2006)). The Compus-
tat data contain information on firm-level financial statements including
measures of sales, input expenditures, and capital stock information, as
well as a detailed industry activity classification.

Despite the many virtues of these data, however, they present two
main limitations: (i) the fact that it is impossible to distinguish quan-
tity and prices, which makes the measurement of the production function
elasticities significantly more challenging, as extensively explained in the
next section;7 (ii) the possible selection issues arising from using only
publicly traded firms. To address the first concern, we follow the metho-
dologies explained in Appendix 2.9.2. Moreover, whenever possible, we
compare our results with additional data sources to isolate the potential
bias of using only publicly traded firms.

As a measure of firm-level production, we use firms’ sales (SALE); as
a measure of variable inputs used in production, we use cost of goods
sold (COGS); as a measure of firm-level employees, we use (EMP); and as
a measure of tangible capital, we use gross capital (PPEGT). Summary
statistics related to these variables are reported in Appendix 2.9.1.

2.2.2 Intangible Capital Measurement
The firm-level measurement of intangible capital is a challenging task as a
substantial portion of it is internally generated rather than being externally
acquired, and US GAAP does not allow its capitalization on the balance
sheet (see Lev and Gu (2016), and Ewens et al. (2019)). As a consequen-
ce, following the accounting standards in force, nearly all of the internally
generated intangible capital is recorded differently from tangible capital
in the accounting books. In particular, all tangible investment is recorded

7This challenge is present in most of the production data.
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on the balance sheet at its purchased price and then depreciated over its
useful life; however, internally produced intangible investment, such as
R&D, advertisement, or employee training, is fully expensed in the cur-
rent period and hence appears in the firms’ income statement but not on
the balance sheet. Only externally acquired intangible capital is directly
booked on the balance sheet. For a more in-depth discussion about ac-
counting standards and related challenges to firm-level intangible capital
measurement, see Appendix 2.9.1.

In light of these considerations, our main measure in the paper is for-
med by two different components: (i) internally generated intangible ca-
pital and (ii) externally acquired intangible capital. Internally genera-
ted intangible capital in our case is obtained through the capitalization of
R&D expenditure (XRD). We do not include organizational capital in our
benchmark measure as this is normally constructed through the capitali-
zation of a sector-dependent share of selling, general, and administrative
expenses (XSGA).8 This item includes many expenditures that are not in-
herently related to intangible capital, such as CEO wages, rents for buil-
dings, and capital adjustment costs, among others.9 Capitalizing such a
big expenditure item would heavily downward bias our estimates of the
inaction rate as this expenditure item is never zero, and even in periods
of no investment in intangible capital, we would be capturing some un-
related overhead cost. Moreover, using organizational capital, we would
be capitalizing a part of incurred adjustment costs, and hence we would
artificially inflate our measure of intangible capital, creating conceptual
issues in the estimation of the production function. Finally, the imputati-
on of a constant fraction across firms of SG&A as intangible investments
would substantially increase the concerns related to potential firm-level
measurement error.

Therefore, we use the perpetual inventory method on R&D expendi-

8The organizational capital is used in Eisfeldt and Papanikolaou (2013), Peters and
Taylor (2017), and Ewens et al. (2019).

9While working with Compustat data, it is often assumed that the capital adjustment
costs are expensed in XSGA).
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ture to recover a firm-level measure of knowledge capital given by

kR&D,ft = (1− δs)kR&D,ft−1 + XRDft, (2.1)

where XRD is gross investment in knowledge capital deflated by the IPP
price deflator, the sector-level depreciation rate δs is taken from Ewens
et al. (2019), and the initial stock is assumed to be zero.10

The second component of intangible capital is the externally acquired
intangible capital, which is capitalized on the balance sheet at fair value
under the variable INTAN in Compustat, according to the US GAAP un-
der the guidelines provided in ASC 350. However, INTAN is net intangible
capital, and to get the gross measure, to be consistent with the measure-
ment of both tangible capital and internally produce intangible capital, we
use INTAN + AM, where AM is the amortization of balance sheet intangible
capital. Finally, because of measurement issues explained extensively in
Appendix 2.9.1, we drop goodwill from our measure of gross balance she-
et intangible capital. Hence, our final measure of balance sheet intangible
capital is

kBS,ft = INTANft + AMft − GDWLft, (2.2)

where all variables have been appropriately deflated with the IPP deflator.
Our final measure of firm-level intangible capital is given by the sum

of internally produced and externally purchased intangible capital:

kI,ft = kR&D,ft + kBS,ft. (2.3)

Figure 2.1 compares our total intangible capital investment share with the
one reported by the Bureau of Economic Analysis (BEA) corporate non-
financial sector, and as documented by Koh et al. (2020).11 We focus on

10For all our analysis, unless differently stated, we exclude all observations in the first
five years to avoid a strong dependence of our results from our assumption on the initial
condition for knowledge capital. Results are not sensitive to this exclusion. Moreover,
results are similar if we use a different level of initial capital—for instance, investment
in the first period divided by its depreciation rate.

11Intangible capital investment is the sum of internal investment in knowledge capital
and investment in balance sheet capital. To calculate the gross balance sheet capital
investment, we assume a depreciation rate of 0.20, as is mostly done in the literature, as
there are no reliable estimates for this depreciation.
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Figura 2.1: Aggregate Intangible Investment Share: Compustat vs BEA
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Note. The figure reports the evolution of the intangible investment share. Intangible investment share in
Compustat (dashed orange line with triangles) is computed as the sum of total investment in intangible capital
to the sum of total sales in a given year. Intangible investment share from the BEA corporate non-financial
sector (solid light blue line with circles) is computed as the investment in intangible capital to GDP net of
propriety income, taxes, and subsidies as computed by Koh et al. (2020). The data are de-trended with an HP
filter with λ = 6.25.

the corporate non-financial sector as it is the most closely comparable to
our Compustat dataset, given that we exclude financial firms, as explained
in Appendix 2.9.1. Overall, both data sources show a similar qualitative
increase over the sample period. In Appendix 2.9.1, we show additio-
nal comparisons between our firm-level measure and aggregate measures
from the national accounting measured at different levels of disaggrega-
tion. In sum, we find that our firm-level measure performs reasonably
well compared to national accounting data despite the data pitfalls and
accounting limitations.

2.3 Empirical Analysis

This section presents the main empirical results of the paper. First, we
show that the intangible capital share in production experienced a sizea-
ble increase over the last decades and that this increase happened mostly
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at the expense of the labor input share. Second, we document that the
investment rate distribution of intangible capital is qualitatively different
from the investment rate distribution of tangible capital, suggesting a dif-
ferent underlying investment process.

2.3.1 Fact 1: Fourfold Increase in Intangible Capital Sha-
re since 1980

In this section, we investigate the importance of intangible capital as a
new factor of production; to do so, we estimate a production function with
three inputs: tangible capital, intangible capital, and labor. Our estimates
show that intangible capital is an important factor of production and that
its importance has had a fourfold increase since 1980.

Production Function Estimation

We estimate the log of a firm-level Cobb-Douglas production function
given by

qft = αkT,ft + νkI,ft + (1− α− ν)`ft + ωft + εft, (2.4)

where qft is the log of output, kT,ft is the log of tangible capital, kI,ft
is the log of intangible capital, `ft is the log of labor, ωft is the log of
productivity, and εft is the error term.12 Given that the objective of our
analysis is to estimate the variation in input shares over time, we constrain
the firm-level returns to scale to 1, and assume that all the firms share a
common technology. In the next section, we show that these assumptions
are inconsequential for our results. Estimating firm-level production func-
tions is notoriously difficult as firm-level productivity ωft is unobservable
to the econometrician but is known to the firm at the moment of choosing
its inputs. To address this endogeneity problem, we rely on two different
estimation procedures proposed by the empirical industrial organization

12Practically, as output we use the firm’s sales, as tangible capital we use gross pro-
perty, plant, and equipment; as intangible capital we use the measure constructed in
Section 2.2.2; and as labor we use the total firm-level number of employees.
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literature. In particular, we use the cost shares approach (CS), as in Fos-
ter et al. (2008), and the Ackerberg-Caves-Frazer (ACF) approach from
Ackerberg et al. (2015). We provide details regarding both methodologies
in Appendix 2.9.2.

Figura 2.2: Trends in Input Shares
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Note. The figure panels present the output elasticities estimated with the cost shares (CS) approach (dashed
light blue lines with circles) and with the Ackerberg-Caves-Frazer (ACF) approach (solid orange lines with
triangles). The elasticities are estimating using 10-year rolling windows over time. Bands around the point
estimates report the 99% confidence intervals.

To document the changes in the output elasticities of labor, intangi-
ble capital, and tangible capital in the production function, we estimate
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equation (2.4) with both methodologies between 1980 and 2015 using
10-year rolling windows. Figure 2.2 presents the results. Solid orange
lines with triangles report the estimates from ACF with associated 99%
confidence intervals, and dashed light blue lines with circles report the
estimates from CS with associated 99% confidence intervals. Regardless
of the methodology chosen, all the action in the inputs share comes from
intangible capital and labor, as tangible capital does not show any obvious
trend over the period.

In particular, the intangible capital share with the CS approach go-
es from 0.016 in 1980 to 0.092 in 2015, whereas with the ACF appro-
ach it goes from 0.027 to 0.115. With the ACF approach—our preferred
methodology—the intangible capital input share in 2015 is approximately
four times as much as it was in 1980. The CS approach, however, estima-
tes approximately a five-fold increase in the intangible capital input share
over the same period. It is evident from these results that the Compustat
firms, which represent a sizeable part of the US economy, have undergone
a significant transformation in their production technology. We label this
finding IBTC.

Moreover, the labor share with the CS approach goes from 0.759 to
0.639, whereas with the ACF approach it goes from 0.686 to 0.521. The-
refore, we highlight that our estimates suggest a certain level of substitu-
tion between intangible capital and labor over time: while the intangible
capital share has increased, the labor share has declined in the last de-
cades. This finding is in line with the results from the literature—for
instance Elsby et al. (2013), Karabarbounis and Neiman (2013), and Koh
et al. (2020), among others.

Given the results documented in this section, in the subsequent part of
the paper, we interpret the rise in intangible capital as an exogenous tech-
nological change in the production technology biased toward intangible
capital at the expense of the labor input.
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Robustness

Here we document the extent of the robustness of our results relaxing
most of the assumptions imposed on the benchmark specification. In par-
ticular, we look at the following specifications: (i) we re-estimate the pro-
duction function in equation (2.4) leaving returns to scale unconstrained;
(ii) we estimate equation (2.4) at two digit sector-level (NAICS 2), effec-
tively allowing for sector-specific technology; (iii) we estimate a translog
production function with constant returns to scale.

Figure 2.3 shows the results from the alternative specifications. Ap-
pendix 2.9.3 explains the various specifications in detail. Overall, IBTC
does not seem to be driven by the specific methodology applied and fo-
llows close patterns across the different specifications. The bottom line is
that the findings from the benchmark specification are robust.

2.3.2 Fact 2: Intangible Capital More Lumpy than Tan-
gible Capital

Bearing in mind that intangible capital is an important factor in production
and that its importance is growing over time, in this section, we document
the salient differences in the investment behavior of firms between tan-
gible capital and intangible capital. The investment rate of each type of
capital is defined as

xj,ft
kj,ft−1

≡ kj,ft − kj,ft−1

kj,ft−1

+ δj, j ∈ {T, I}, (2.5)

where δj is the depreciation rate, xj,ft is investment, and kj,ft is capi-
tal.13 Following Cooper and Haltiwanger (2006) and Clementi and Palaz-
zo (2019), we construct a balanced panel of firms from 1980 to 1990 to
study the properties of investment rates.14 Following common practice,
we also drop observations where the total value of acquisitions relative to

13The depreciation rate of tangible capital is 7%, whereas, the depreciation rate of
intangible capital is firm dependent, as explained in Section 2.2.2.

14This is done to control for selection dynamics arising from entry and exit in the data.

105



“Thesis” — 2022/5/20 — 18:18 — page 106 — #124

Figura 2.3: Trends in Input Shares: Robustness
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Note. The figure panels present the output elasticities estimated with the cost shares (CS) approach (dashed
light blue lines with circles), with the Ackerberg-Caves-Frazer (ACF) approach (solid orange lines with trian-
gles), with the ACF approach and unconstrained returns to scale (dashed-dotted light gray lines with squares),
with the sector-level ACF approach (black plus signs), and with the Translog ACF approach (dotted red lines
with crosses). The elasticities are estimating using a ten-year rolling windows over time.

total assets exceeds 5%.15 Finally, we drop those firms that have never in-
vested in intangible capital, to prevent the overestimation of the inaction
rate of intangible capital investment.

15This is done to avoid biases from acquisitions; that is, given the accounting stan-
dards, an acquisition would show up as a big investment for one firm but would not
show up at all as a big disinvestment for the other. However, we notice that in our
balanced panel, these observations represent a small share of all entries.
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Figura 2.4: Investment Rate Distributions
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Note. The figure panels report the investment rate distributions of intangible and tangible capital for a balan-
ced panel of firms between the years 1980 and 1990. Figure 2.4a shows the investment rate distribution for
intangible capital. Figure 2.4b shows the investment rate distribution for tangible capital. The histograms are
constructed dropping from the balanced panel all the firms that never invest in intangible capital and all the
observations with investment rates above 2 or below -0.5. Results are robust to other winsorization schemes.

Figure 2.4a and Figure 2.4b plot the investment rate distribution for in-
tangible and tangible capital, respectively. These distributions present two
stark differences: first, the investment rate distribution for intangible capi-
tal presents a clear bimodality, with a lot of mass at the mean and around
zero. Meanwhile, the investment rate distribution for tangible capital is
almost symmetric around the mean and closely mimics the findings of
Clementi and Palazzo (2019). Second, the investment rate distribution for
intangible capital shows a small amount of negative investments.16

We summarize the main moments of the investment rate distributions
in Table 2.1. First, we notice that the average investment rate is much
higher for intangible capital compared to tangible capital. This partly re-
flects a high depreciation rate for intangible capital that pushes the level
of optimal investment above that of tangible capital. Second, as anticipa-
ted above, intangible capital has a much higher inaction rate, defined as

16Notice that this is not by construction; that is, it is not entirely due to the capitaliza-
tion of an expenditure voice such as R&D, since our measure of intangible capital indeed
contains balance sheet intangibles, which, given the depreciation, allows for negatives.
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the fraction of investment below 1% in absolute value; particularly, the
intangible capital inaction rate is 8% compared to 3% for tangible capi-
tal. This high inactivity in intangible capital suggests some underlying
non-convexity in the investment process. Third, intangible capital seems
to be more serially correlated over time. The autocorrelation in intangi-
ble investment is 0.31, much higher than the 0.11 exhibited by tangible
capital. This suggests that, conditional on investing in intangible capi-
tal, the investment activity goes on for longer, hinting toward some slow
adjustment process in the background.

In Appendix 2.9.4, we show that the investment rate distribution ex-
hibits the same properties across sectors, suggesting that the results are
not driven by sectoral heterogeneity. Moreover, we also show that the in-
vestment rate distribution does not change over time, ruling out concerns
related to potential time trends as underlying factors of the documented
bimodality. Overall, we can say that the intangible capital investment pro-
cess is robustly lumpy; that is, it entails long periods of inaction followed
by booms of investment activity.

These findings are particularly informative on how intangible capital
should be modeled as this capital appears to be neither a fixed cost nor
a flexible input. Therefore, from here onward, we will think about in-
tangible capital as a dynamic input in production that could in principle
be subject to some adjustment frictions, which will be quantified in the
quantitative section of the paper.

2.4 Theoretical Model

To connect the stylized facts from the previous sections, we introduce
a quantitative general equilibrium model of investment dynamics with
tangible and intangible capital, a rich and flexible structure of investment
adjustment costs, and endogenous firm entry and exit.
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Taula 2.1: Lumpiness

Investment rates Intangible Tangible

Average 0.35 0.13
Positive fraction, i > 1 0.89 0.87
Negative fraction, i < −1 0.03 0.10

Inaction rate 0.08 0.03

Spike rate, |i| > 20 0.75 0.25
Positive spikes, i > 20 0.73 0.22
Negative spikes, i < −20 0.02 0.03

Standard deviation 0.30 0.22
Serial correlation, Corr(it, it−1) 0.31 0.11

Note. This table shows the moments of the investment rate distribution of intangible and tangible capital. The
statistics are computed for a balanced panel of 5,687 firm-year observations between 1980 and 1990.
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2.4.1 Environment
The model follows the spirit of Clementi and Palazzo (2016b). Time is
discrete and indexed by t = 1, 2, . . . . At time t, a positive mass of price-
taking firms produce a homogeneous good by means of the production
function y = ez

(
kαTk

ν
I `

(1−α−ν)
)ω, with α, ω, ν in (0, 1), where kT denotes

tangible capital, kI is intangible capital, ` is labor, and z is idiosyncratic
random productivity. Idiosyncratic productivity z is driven by the stoc-
hastic process

z′ = ρzz + σzε
′,

where ε ∼ N (0, 1). The conditional distribution of z will be denoted by
Γ(z′|z).

Firms discount future profits by means of the time-invariant discount
factor 1

R
, R > 1. Tangible capital depreciates at a rate δT ∈ (0, 1), where-

as intangible capital depreciates at a rate δI ∈ (0, 1). Adjusting tangible
capital stock by xT and intangible capital stock by xI bears the cost

C(xT , xI ; kT , kI) =
γT
2

(
xT
kT

)2

kT+
γI
2

(
xI
kI

)2

kI+1{xT 6= 0}fTkT+1{xI 6= 0}fIkI ,

where γT , γI , fT , fI ∈ R+. We allow for two different kinds of adjust-
ment costs: convex and fixed. We do not allow for irreversibilities in
investment in the baseline version of the model. Generally, these non-
convex costs of adjustment are intended to capture indivisibilities in ca-
pital, increasing returns in the installation of new capital, and increasing
returns to retraining workers and restructuring production activity. More-
over, this formulation of non-convex adjustment costs can be interpreted
as a mild form of irreversibility, as disinvestment bears a cost in terms
of output, which stems form the potential specific nature of capital. Spe-
cifically, if capital is tailored to some particular needs of a firm, it can
in principle be difficult to resell it.17 The convex costs capture overtime

17The idea that intangible capital is specific to the needs of the firm that uses it has
been suggested by Haskel and Westlake (2018) and Edmond et al. (2018). However, we
here move a step forward compared to those papers and test this hypothesis concretely,
specifying a flexible model to be tested in the data. In principle, our model could reject
this, estimating fI to be close to zero.
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costs, inventory costs, and machine setup costs. Furthermore, we assume
that the capital adjustment costs are proportional to their respective capi-
tal stock; this is a common specification that is used to take care of the
size effect. Finally, we assume that adjustment costs are paid in terms of
final output.

We assume that the demand for a firm’s output and the supply of both
types of capital are infinitely elastic, and we normalize their prices to 1.18

The supply of labor is given by L(W ) = Wψ, where ψ > 0 and W ∈ R+

is the real wage.19

Each period, operating firms incur a fixed cost cf > 0; this cost is usu-
ally interpreted as a per-period expense that firms must incur to operate—
for instance, to hire one unit of managerial activity. Firms that quit pro-
duction cannot reenter the market at a later stage and recoup the undepre-
ciated part of their capital stocks, net of the adjustment cost.

Every period there is a constant exogenous massm > 0 of prospective
entrants, each of which receives an initial productivity s, with s ∼ Λ(s),
a Pareto distribution with scale parameter η. Conditional on entry, the
distribution of the idiosyncratic shock in the first period of operation is
Γ(z′|s), strictly increasing in s. Entrepreneurs that decide to enter must
pay an entry cost ce ≥ 0.

Finally, in each period, the stationary distribution of operating firms
over the three dimensions of heterogeneity is denoted by Ω(z, kT , kI ;W ).
A comprehensive picture of timing in the model is presented in Figure
2.5.

18This is a standard assumption in the literature; see, for example, Khan and Thomas
(2008) and Clementi and Palazzo (2016b).

19Following Clementi and Palazzo (2016b) and Carvalho and Grassi (2019), we are
assuming that the utility function of the representative household is given by

u(C,L) = C − L1+1/ψ

1 + 1/ψ
.

This is a convenient formulation that simplifies the numerical analysis while providing
an elastic labor supply. However, none of our results hinge on this particular specificati-
on.
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Figura 2.5: Timing in the Model
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2.4.2 Problem of Incumbents

Given idiosyncratic productivity z, tangible capital kT , and intangible ca-
pital kI , the profits of an incumbent are given by

π(z, kT , kI ;W ) = max
`

ez
(
kαTk

ν
I `

(1−α−ν)
)ω −W`. (2.6)

Upon exit, a firm obtains a value equal to the undepreciated portion of
its tangible capital kT and intangible capital kI , net of the adjustment cost
it incurs to dismantle them:

Vx(kT , kI) = (1−δT )kT+(1−δI)kI−C(−(1−δT )kT ,−(1−δI)kI ; kT , kI).
(2.7)

Then, the start-of-period value of an incumbent firm is dictated by the
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function V(z, kT , kI ;W ), which solves the following functional equation:

V(z, kT , kI ;W ) = π(z, kT , kI ;W )

+ max{Vx(kT , kI), Ṽ1(z, kT , kI ;W )− cf ,
Ṽ2(z, kT , kI ;W )− cf , Ṽ3(z, kT , kI ;W )− cf ,

Ṽ4(z, kT , kI ;W )− cf},
(2.8)

where the value of investing in both types of capital is given by

Ṽ1(z, kT , kI ;W ) = max
k′T ,k

′
I

−xT − xI − C(xT , xI ; kT , kI) +
1

R
EzV(z′, k′T , k

′
I ;W ),

s.t. k′T = (1− δT )kT + xT ,

k′I = (1− δI)kI + xI ;
(2.9)

the value of investing in only tangible capital is given by

Ṽ2(z, kT , kI ;W ) = max
k′T

−xT − C(xT , 0; kT , kI) +
1

R
EzV(z′, k′T , (1− δI)kI ;W ),

s.t. k′p = (1− δT )kT + xT ;
(2.10)

the value of investing in only intangible capital is given by

Ṽ3(z, kT , kI ;W ) = max
k′I

−xI − C(0, xI ; kT , kI) +
1

R
EzV(z′, (1− δT )kT , k

′
I ;W ),

s.t. k′i = (1− δI)kI + xI ;
(2.11)

and finally, the value of waiting is given by

Ṽ4(z, kT , kI ;W ) =
1

R
EzV(z′, (1− δT )kT , (1− δI)kI ;W ). (2.12)
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2.4.3 Problem of Entrants
The value of a potential entrant that draws an initial productivity s, where
s ∼ Λ(s), is given by

Ve(s;W ) = max
k′T ,k

′
I

−k′T − k′I +
1

R

∫
V(z′, k′T , k

′
I ;W )Γ(dz′|s). (2.13)

Thus, the potential entrant will invest and start operating if and only if
Ve(s;W ) ≥ ce.

2.4.4 Recursive Competitive Equilibrium
The recursive competitive equilibrium (RCE) consists of (i) value functi-
ons V(z, kT , kI ;W ), Ṽ1(z, kT , kI ;W ), Ṽ2(z, kT , kI ;W ), Ṽ3(z, kT , kI ;W ),
Ṽ4(z, kT , kI ;W ), and Ve(s;W ); (ii) policy functions `(z, kT , kI ;W ), xT (z, kT , kI ;W ),
xI(z, kT , kI ;W ), k′T (s;W ), and k′I(s;W ); and (iii) an incumbent’s mea-
sure Ω(z, kT , kI ;W ) and an entrant’s measure E(z, kT , kI ;W ) such that:

1. V(z, kT , kI ;W ), Ṽ1(z, kT , kI ;W ), Ṽ2(z, kT , kI ;W ), Ṽ3(z, kT , kI ;W ),
Ṽ4(z, kT , kI ;W ), `(z, kT , kI ;W ), xT (z, kT , kI ;W ) and xI(z, kT , kI ;W )
solve (2.6), (2.8), (2.9), (2.10), (2.11), and (2.12);

2. Ve(s;W ), k′T (s;W ) and k′I(s;W ) solve (2.13);

3. The labor market clears:
∫
`(z, kT , kI ;W )dΩ(z, kT , kI ;W ) = L(W );

4. For all Borel sets Z ×KT ×KI ⊂ R+ ×R+ ×R+,

E(Z ×KT ×KI ;W ) = m

∫
Z

∫
Be(KT ,KI ;W )

Λ(ds)Γ(dz′|s),

where Be(KT ,KI ;W ) =
{
z s.t. k′T (s;W ) ∈ KT , k′I(s;W ) ∈

KI and Ve(s;W ) ≥ ce
}

;

5. For all Borel sets Z ×KT ×KI ⊂ R+ ×R+ ×R+ and ∀t ≥ 0,

Ω(Z ×KT ×KI ;W ) =

∫
Z

∫
B(KT ,KI ;W )

Ω(dz, dkT , dkI ;W )Γ(dz′|z)

+ E(Z ×KT ×KI ;W ),
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whereB(KT ,KI ;W ) =
{

(z, kT , kI)s.t. max{Ṽ1(z, kT , kI ;W ), Ṽ2(z, kT , kI ;W ),

Ṽ3(z, kT , kI ;W ), Ṽ4(z, kT , kI ;W )}−cf ≥ Vx(kT , kI), (1−δT )kT+
xT (z, kT , kI ;W ) ∈ KT and (1− δI)kI + xI(z, kT , kI ;W ) ∈ KI

}
.

2.4.5 Output Elasticities, Adjustment Costs, and Alloca-
tive Efficiency

One of the main objects of interest for our analysis is the evolution of
allocative efficiency resulting from IBTC. To define a model-consistent
measure of allocative efficiency, we leverage the work of Hsieh and Kle-
now (2009) and define TFPR in the model as

TFPRft =
yft

kαT,ftk
ν
I,ft`

(1−α−ν)
ft

∝
(
ARPKT,ft

)α(
ARPKI,ft

)ν(
ARPLft

)(1−α−ν)

,

(2.14)

where ARPKT,ft = yft/kT,ft is the average product of tangible capital,
ARPKI,ft = yft/kI,ft is the average product of intangible capital, and
ARPLft = yft/`ft is the average product of labor.20 Therefore, our
measure of allocative efficiency in the economy is defined by

V ar(TFPRft) = α2V ar (ARPKT,ft) + ν2V ar (ARPKI,ft)

+ 2ανCov(ARPKT,ft, ARPKI,ft)
(2.15)

where V ar(·) represents variance and Cov(·) is the covariance. This de-
finition of allocative efficiency is the same as the one extensively used
by the misallocation literature (Hsieh and Klenow (2009) and Hopenhayn
(2014)). Notice that the allocative efficiency of this economy is inde-
pendent of ARPL as it is equalized across firms. This is driven by the
assumption that labor input do not exhibit any adjustment costs in the

20Hopenhayn (2014) offers an extensive explanation of how to define TFPR in mo-
dels of perfect competition.
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model.21 Therefore, only the ARPKT and ARPKI are relevant to un-
derstand the evolution of allocative efficiency in our framework.

In the absence of adjustment costs to both types of capital, their ave-
rage product would equalize across firms, and hence allocative efficiency
as measured by the dispersion in TFPR would be zero, which is by de-
finition the highest level of allocative efficiency achievable in the model.
Conversely, in the presence of adjustment costs to both types of capital,
their average product no longer equalizes as the reallocation of both types
of capital is slowed down by the adjustment costs themself. Therefore, the
effect of the adjustment costs is to make V ar (ARPKT,ft) , V ar (ARPKI,ft) >
0, and consequently V ar(TFPRft) > 0.

Therefore, equation (2.15) clarifies the relation between IBTC and
allocative efficiency in the model. An increase in the intangible capital
share, ν, relative to the labor share, 1−α−ν, increases the importance of
V ar (ARPKI,ft), and hence, all else equal, it increases overall dispersion
in TFPR and thereby lowers allocative efficiency in the model. This is
just a by-product of the fact that IBTC lowers the reliance of firms on
an undistorted input such as labor while increasing firms’ reliance on a
(potentially) highly distorted input such as intangible capital.

2.5 Quantitative Analysis

In this section, we use the structural framework presented in Section 2.4 to
estimate the adjustment costs associated with tangible and intangible ca-
pital. Then, we use the following to validate our model: (i) non-targeted
moments from the cross-sectional and age distribution and (ii) the empiri-
cal dispersion and responsiveness of the average revenue product of both
types of capital.

21Adjustment costs associated with labor input may exist but remain small in com-
parison to intangible capital. Therefore, we focus on adjustment costs related to the
both types of capital. This also helps us to reduce the number of state variables and the
computational complexity.
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2.5.1 Calibration
The baseline calibration jointly matches the investment behavior of tan-
gible and intangible capital at the micro level and business dynamism in
the overall US economy for the sample period 1980-1990. The parame-
terization proceeds in two steps. First, we fix a set of parameters that are
estimated outside of the model—for instance, the parameters governing
the production technology and the TFP process. Second, given the values
of these fixed parameters, we choose the remaining parameters to match
informative moments regarding firms’ investment distribution and firms’
life cycle.

Fixed parameters. A model period is one year, so we set the in-
terest rate R = 1.05. The annual depreciation rate for tangible capital is
δT = 0.07, which equals the value used to perform the empirical analysis
above. We set the depreciation rate for intangible capital at δI = 0.29,
which is the average firm-level depreciation rate from our data. The pro-
duction function parameters comes from the estimates reported in Secti-
on 2.3.1. The returns to scale ω is set to 0.90 close to the values used
in the literature.22 Finally, the persistence of the idiosyncratic process is
ρz = 0.90, and the standard deviation is σz = 0.20. These values are
close to the empirical estimates reported in Foster et al. (2008) and in Lee
and Mukoyama (2015).

Fitted parameters. We choose the remaining parameters to match
some moments from Table 2.1 and some moments on business dynamism
from Business Dynamics Statistics (BDS). Specifically, we use inaction
rates, that is, investment rates that are within ±1%, to discipline the pa-
rameters governing the fixed costs of investing in both tangible and in-
tangible capital, fT and fI . This approach is particularly appealing since
the model predicts that the fixed costs of adjusting directly influence the
extensive margin of investment, that is, the amount of action and inaction
in the investment of a given capital. We use the serial correlation of both

22Similar values have been used by Hopenhayn and Rogerson (1993) and Khan and
Thomas (2008). In a perfectly competitive environment, decreasing returns to scale are
necessary to ensure a well-defined firm distribution. Equivalently, one can leave returns
to scale unconstrained and assume a downward-sloping demand.
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investment rates to identify the convex costs of adjusting for both types of
capital, γT and γI . With high convex costs, firms adjust their capital stock
more slowly over time, which in turn increases the autocorrelation of in-
vestment at the firm level.23 To identify the entry cost ce, the operating
cost cf , and the parameter that governs the Pareto distribution of the pro-
ductivity of potential entrants, η, we match the entry rate, the average size
of incumbents, and the average size of entrants, respectively. Finally, we
set the measure of potential entrants to m to target an equilibrium wage
of 1.

The parameters are estimated using the following routine. For arbi-
trary values of the vector of parameters, P = (γT , γI , fT , fI , ce, cf , η,m),
the model is solved and the policy functions for investment in both ty-
pes of capital, for entry, and for exit are generated. Using these policy
functions, the decision rules are simulated until the distribution of firms
over {z, kT , kI} is converged. We simulate the economy and construct a
balanced panel of firms in the same spirit of the empirical analysis pre-
sented above. We compute the entry rate, the average size of entrants,
and the average size of the incumbents from the stationary distribution.
We compute the moments of the investment rates from the simulated ba-
lanced panel. We denote the vector of simulated moments asM(P). We
estimate the fitted parameters P̂ using a minimum distance criterion given
by

L(P) = min
P

(
M̂ −M(P)

)′
W
(
M̂ −M(P)

)
. (2.16)

Following Asker et al. (2014), we set the weighting matrix W = I and
use grid search to find the vector P̂ that minimizes the objective function.

The fitted parameters from the grid search algorithm and the implied
moments of the model are presented in Table 2.2. The model identifi-
es different adjustment costs for tangible and intangible capital. Similar
to Clementi and Palazzo (2019), our model imputes almost negligible fi-

23David and Venkateswaran (2019) explain that using the autocorrelation in invest-
ment as an identifying moment downward bias the calibration of convex adjustment
costs in the presence of financial frictions. Therefore, we interpret our results as a lower
bounds on the convex adjustment costs.
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Taula 2.2: Parameters and Moments

Fixed Value Description
R 1.05 Annual interest rate
δT 0.07 Annual depreciation rate tangible capital
δI 0.29 Annual depreciation rate intangible capital
α 0.28 Tangible capital share
ν 0.03 Intangible capital share
ω 0.90 Returns to scale
ρz 0.90 Autocorrelation idiosyncratic productivity
σz 0.20 Standard deviation idiosyncratic productivity

Fitted Value Description Moments Model Data
γT 0.006 Convex adj. cost kT corr(xT,ft, xT,ft−1) 0.13 0.12
γI 0.135 Convex adj. cost kI corr(xI,ft, xI,ft−1) 0.30 0.31
fT 2.5·e-3 Fixed adj. cost kT Inaction rate: xT 0.03 0.03
fI 0.021 Fixed adj. cost kI Inaction rate: xI 0.08 0.08
ce 3·e-4 Entry cost Entry rate 0.13 0.13
cf 2.540 Operating cost Avg. firm size 23.52 20.49
η 2.025 Scale parameter Avg. entrant size 4.80 6.07
m 6.2·e-3 Measure of potential entrants Wage 1 −

xed costs and low convex costs of investing in tangible capital, the re-
ason being that the Compustat dataset contains disproportionately large
firms.24 Moreover, our model implies that intangible capital entails much
higher adjustment costs relative to tangible capital. Therefore, the ca-
librated model shows that investment in intangible capital is subject to
higher technological frictions and hence will be more distorted relative to
a frictionless benchmark.

24However, contrary to our results, Cooper and Haltiwanger (2006) use a more hete-
rogeneous sample of plants from the confidential Census database and find larger adjust-
ment costs for tangible capital. Another point of distinction is that our analysis is at the
firm level. Therefore, we want to emphasize that our estimates can be interpreted as a
lower bound to these costs for both types of capital.
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Finally, to validate the plausibility of our parameterization, we report
that, in the model, the mean of the intangible capital investment rate and
the tangible capital investment rate are, respectively, 0.32 and 0.07, close
to the empirical counterparts of 0.35 and 0.14. This result is quite satis-
factory as these moments are all untargeted. Moreover, we find that in the
model, the standard deviation of tangible capital to sales and intangible
capital to sales are respectively, 2.51 and 0.23, close to the empirical va-
lues of 2.47 and 0.36. This moment is particularly relevant as it partially
identifies the persistence of the production process, as explained by Cle-
menti and Palazzo (2016a). We also notice that the model produces an
employment share for firms with 250+ employees of 0.49 compared to
0.51 in the data.

2.5.2 Validation

In this subsection, we use the following to validate our model: (i) non-
targeted moments from the cross-sectional and age distributions (ii) the
empirical dispersion and responsiveness of the average revenue product of
both types of capital, and (iii) the cross-sectoral implications. Additional
validation exercises are shown in Appendix 2.10.1.

Model Cross Section and Life Cycle

Here, we discuss the cross-sectional and life-cycle implications of the
model. Figure 2.6 compares the distributions produced by the model with
a representative empirical distribution constructed using the BDS dataset.
Similar to what is documented in the previous literature on firm dynamics,
the model exhibits size and age distributions that are right skewed.

Figure 2.6a shows that the model does a reasonably good job in matc-
hing the firm size distribution that is present in the data. This finding is
not totally surprising as the average incumbent size and the average en-
trant size have been targeted in the calibration. Figure 2.6b shows that
in the model, the majority of firms are small, whereas a large portion of
employment is concentrated among the large firms, a feature well esta-
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Figura 2.6: Size and Age Distribution
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Note. The figure panels show the size (employment) and age distribution of the firms, in both the model and
the data. Orange bars show the empirical distributions; light blue bars show the distributions from the model.
The top left panel shows the employment share across different employment categories. The top right panel
shows the share of firms across different employment categories. The bottom left panel shows the employ-
ment share across different age bins. The bottom right panel shows the share of firms across different age bins.
Empirical distributions are from the BDS data.

blished in the data and visible in Figure 2.6a. Finally, the model predicts
that around 70% of the firms are operating for more than 11 years and that
they account for around 80% of the employment share, which is slightly
above what we observe in the data (see Figure 2.6c for cohort-wise em-
ployment shares and Figure 2.6d for the age distribution). Overall, the
model does a satisfactory job in matching the empirical distributions of
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size and age even though most of these distributions were not a particular
target in the calibration.

Quasi-Fixed Inputs and Marginal Products

Here, we discuss the consequences of adjustment costs when firms are
hit by productivity shocks. In particular, we focus on two main things:
(i) the dispersion in the average revenue product of both types of capital
and (ii) the responsiveness of the average revenue product of both types
of capital to productivity shocks. The fact that capital, in the presence of
adjustment costs and time to build, is a quasi-fixed input leads to an envi-
ronment where the average revenue product of each type of capital is not
equalized across firms. This happens because when a productivity shock
hits, the firm cannot immediately adjust the capital stock to the desired
frictionless level; therefore, the average revenue product of capital differs
from the marginal cost, that is, the opportunity cost of holding the capital.
Given that the calibration pointed out that intangible capital is more fixed
compared to tangible capital as it subject to higher adjustment costs, the
model predicts that the average revenue product of intangible capital is
more dispersed as well. Moreover, this also implies that conditional on
a productivity shock, intangible capital adjusts less than tangible capital,
and, as a consequence, its average revenue product reacts by more.

To test the aforementioned predictions of the model in the data, we
need to compute the average product of both types of capital. Under the
assumption that all firms share the same Cobb-Douglas production tech-
nology within a sector, we can compute in the data the log of the average
revenue product of both types of capital, for firm f at time t as

ARPKj,ft = log(yft)− log(kj,ft), j ∈ {T, I}, (2.17)

where yft is firm-level output and kj,ft is firm-level capital.
We compute the dispersion in the average revenue product of capital

at the SIC2 and SIC3 level. Results are presented in Figure 2.7, where
we scatter plot the sector-level standard deviation of ARPKI against the
sector-level standard deviation of ARPKT . Both figures show that in
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Figura 2.7: Sector-Level Dispersion in ARPKI and ARPKT
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Note. The figures show the standard deviation of ARPKI (x-axis) and the standard deviation of ARPKT
(y-axis). Standard deviations are calculated within sectors and averaged across the years. Average products are
constructed as described in the text. The dashed black line shows the 45-degree line. Figure 2.7a is constructed
calculating standard deviations at the SIC2 level; each circle represents a SIC2 sector, where the size of the
circle is proportional to its size (sale weighted) in Compustat. Figure 2.7b is constructed calculating standard
deviations at SIC3 level; each circle represents a SIC3 sector, where the size of the circle is proportional to its
size (sale weighted) in Compustat.

the vast majority of sectors, if we consider both SIC2 and SIC3 levels of
disaggregation, the average revenue product of intangible capital is more
dispersed than that of tangible capital, as predicted by the theory.

Furthermore, we test the second prediction of the model, namely, the
higher responsiveness of the average revenue product of intangible capi-
tal relative to the average revenue product of tangible capital to revenue
productivity shocks. To do so, we perform the following regression:

ARPKj,ft = γ1εft+γ2kj,ft+γ1TFPRft−1+γs+γt+νft, j ∈ {T, I},
(2.18)

where εft is the innovation to log total factor productivity revenue.25 The

25To compute εft we run the following regression:

TFPRft = ρTFPRft + γs + γt + νft.

Then, the firm-level innovation to revenue productivity is calculated as εft =
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regression coefficient of interest is γ1. In the absence of any adjustment
cost, or of time to build, the average revenue product of capital should
equalize across firms and be constant; hence, the regression coefficient,
γ1, should be zero. Conversely, the more distorted an input is the higher
its average revenue product response to a revenue productivity shock, and
hence the higher the coefficient γ1.

Taula 2.3: Heterogeneous Response of Average Products to TFPR
Shocks

(1) (2) (3) (4)
Dependent Variable ARPKT,ft ARPKI,ft ARPKT,ft ARPKI,ft

εft 1.192*** 1.592*** 1.095*** 1.239***
(0.011) (0.026) (0.008) (0.019))

kT,ft -0.111***
(0.001)

kI,ft -0.399***
(.001)

TFPRft−1 0.839*** 0.940***
(0.003) (0.008)

Time dummies v v v v
Sector dummies v v v v
Observations 0.447 0.396 0.714 0.692
R-squared 89,967 89,967 89,967 89,967

Notes. We report the coefficients from the regressions of ARPKT,ft and ARPKI,ft on revenue produc-
tivity shock εft. The controls include lagged revenue productivity, TFPRft−1, tangible capital, kT,ft, and
intangible capital, ki,ft. Standard errors are in parentheses. *** p-value¡0.01, ** p-value¡0.05, * p-value¡0.1.

Results are presented in Table 2.3. As predicted by the theory, we
find that the average product of both tangible and intangible capital reacts
positively to revenue productivity shocks, as γ1 is significantly greater
than zero in all specifications. Moreover, the average revenue product of

TFPRft − ρ̂ · TFPRft.
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intangible capital is more reactive to revenue productivity shocks relative
to the average revenue product of tangible capital. This result is in line
with the prediction of the model that firms do not adjust their intangible
capital as frequently as their tangible capital because of the presence of
high adjustment costs.

2.6 Intangible Capital Biased Technological Chan-
ge at Work

In this section, we discuss the main mechanisms that drive our results.
We describe the working of the model in detail and disentangle the par-
tial and general equilibrium forces. Finally, we cross-validate the main
mechanism in the data by exploiting cross-sector variation in the data.

2.6.1 Main Mechanism

Here, we analyze the underlying forces behind the main implications of
IBTC. In the model, a rise in the output elasticity of intangible capital,
at the cost of the labor elasticity, affects (i) the aggregate factor shares;
(ii) the average firm size, profit rate, and concentration; and (iii) the allo-
cative efficiency as measured by the dispersion in TFPR. This happens
because when a distorted input such as intangible capital rises, it influen-
ces the demand of each input and many other equilibrium outcomes, such
as equilibrium wages, firms’ selection, firms’ growth, and the allocation
of capital across firms. Hence, the objective of this section is to uncover
these forces and link them with the IBTC.

The two fundamental forces that drive the aggregate changes are: (i)
change in the demand of the inputs due to the firm-level technological
change and (ii) the endogenous change in the selection process of the
firms due to the rise of a distorted input (intangible capital). First, IBTC
makes production more intangible intensive at the expense of labor; this
in turn increases the demand for intangible capital while depressing the
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demand for labor. Therefore, this mechanically increases the intangible
investment share while decreasing the labor share.

Second, this technological change commands the firm to invest more
in a distorted input, subject to high adjustment costs, such as intangible
capital. Only sufficiently productive firms can do this—that is, firms that
are productive enough to face a positive value of operating in the new
intangible-intensive economy. Therefore, this affects selection for both
entrant firms and incumbent firms, as shown by Figure 2.8. Figure 2.8a
shows the entry decision for potential entrants in 1980 (before IBTC) and
in 2015 (after IBTC). Figure 2.8b shows the exit probability of incumbent
firms in both economies.

IBTC lowers the value of entry, as shown in Figure 2.8a (Ve1980 >
Ve2015). This triggers a rightward shift of the entry threshold, implying that
by 2015, only more productive firms can enter. This happens because only
more productive firms can pay the entry cost ce. Moreover, as shown by
Figure 2.8b, incumbent firms are subject to a similar increase in selection.
In the new economy, marginally more productive firms face a positive exit
probability, as shown by the orange line. Overall, this means that IBTC
increases both ex ante and ex post selection in the economy.

The rise in the aggregate intangible investment share is lower than the
counterfactual increase implied by the firm-level rise in its input share in
a frictionless model (without adjustment costs), as can be seen quantitati-
vely in Section 2.7.26 This is because despite IBTC mechanically incre-
asing demand for intangible capital, it triggers a rise in the selection that
favors more productive firms, dampening the rise of aggregate intangible
capital share. In the model, high-productivity firms have a lower invest-
ment share as they expect to contract on average in the future because of
the mean reversion in the productivity process. Therefore, a redistributi-
on toward high-productivity firms translates into a redistribution toward
low-investment-share firms. This composition effect dampens the rise of
the aggregate intangible investment share. This same mechanism explains
why the aggregate tangible investment share declines because of IBTC. In

26In a frictionless model, changes in the firm-level input shares uniquely pin down the
change in aggregate input shares.
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Figura 2.8: IBTC and Firms’ Selection
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(b) Exit Probability
Note. Figure 2.8a shows graphically the entry problem of potential entrants both in the 1980 and 2015 calibra-
tions. The 2015 calibration is shown in Section 2.7. The beige line in the background shows the productivity
distribution of potential entrants, Λ(z). The light blue and the orange curves show the value function of po-
tential entrants for both calibrations, Ve1980 and Ve2015. The value of entry is lower in 2015 compared to 1980
because in order to grow in the intangible-intensive economy, firms have to spend more resources on high
adjustment costs. The black line shows the entry cost, ce. The two vertical dashed black lines show the exit
threshold in both 1980 and 2015, that is, the productivity level that satisfies ce = Vet (z), t ∈ {1980, 2015}.
The shaded light beige area in the background shows the ex post productivity distribution of entrants in 1980,
and the shaded dark beige area in the background shows the ex post productivity distribution of entrants in
2015.
Figure 2.8b the exit probability of incumbent firms both for the 1980 and for the 2015 calibration. The light
blue line shows the exit probability for incumbent firms in 1980. The orange line shows the exit probability
in 2015. Firms with higher productivity in 2015 face a positive probability of exit because in the intangible-
intensive economy, it is more difficult to operate as they have to spend more on adjustment costs in order to
respond to productivity shocks.

this case, because the firm-level input share of tangible capital does not
change over time, the composition effect drives this decline. Finally, the
labor share declines only because of the change in the firm-level input
share, as the composition effect has no impact on labor share, so that it is
equalized across firms.

Moreover, IBTC raises the average firm size, profit rate, and concen-
tration for two reasons: (i) it increases selection as explained above, and
(ii) it favors the larger firms in the economy. IBTC makes the growth
of small firms costly, as they have to incur very high adjustment costs to
build their stock of intangible capital, whereas it makes it easier for large
firms to shrink, as the high depreciation rate of intangible capital favors its
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depletion. This mechanism, together with the above increase in selection,
triggers a reallocation of sale shares toward the larger firms, reinforcing
the rise in average firm size, profit rate, and industry concentration.

Finally, the model predicts that the allocative efficiency in the model
declines as the intangible capital share increases. This is driven by the fact
that TFPR in our framework is a weighted geometric mean of the avera-
ge revenue product of inputs, where the weights are proportional to their
output elasticities. The presence of adjustment costs means that disper-
sion in TFPR is driven by dispersion in average products of both types
of capital. This can be seen from equation (2.15). When the output elas-
ticity of intangible capital increases, the dispersion in ARPKI becomes
the primary driver of the dispersion in TFPR.27 Therefore, dispersion
in TFPR, which is our measure of allocative efficiency (where higher
dispersion in TFPR means lower allocative efficiency), increases.

2.6.2 General Equilibrium versus Partial Equilibrium
Here, we highlight the consequences of IBTC on the economy and disen-
tangle the partial and general equilibrium effects. To do so, we solve the
model with the intangible-intensive production technology as estimated
in 2015 while holding the wage constant; therefore, we only capture the
partial equilibrium effects of IBTC. As discussed above, IBTC lowers the
value of entry as it makes it more difficult for firms to operate. As shown
in Figure 2.9a, the partial equilibrium value of entry Ve2015,PE is signifi-
cantly lower than Ve1980, thus pushing up the productivity of the marginal
entrant. A similar rise in selection is also observed for exiting firms. As a
result, the distribution of incumbent firms is shifted to the right, as shown
in Figure 2.9b.

However, once we allow wages to adjust endogenously, the GE value
of entry Ve2015,GE increases and ends up being much higher relative to the
Ve2015,PE level because of a decline in wages that arises from an endo-

27Adjustment costs associated with the investment process of input do not allow its
marginal product to equalize across firms and hence generate dispersion in the average
revenue product.
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Figura 2.9: General versus Partial Equilibrium effects
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Note. Figure 2.9a shows the value of entry in 1980 and 2015 for both the general equilibrium version of the
model and the partial equilibrium one. The light blue line shows the value of entry in 1980, the orange line
shows the value of entry in 2015-GE, and the light grey line shows the value of entry in 2015-PE. The value
of entry declines between 1980 and 2015 because in order to grow in the intangible-intensive economy, firms
have to spend more resources on high adjustment costs. The value of entry declines more in PE relative to GE
because in general equilibrium, the wage declines and acts like a dampening force on the effect of IBTC.
Figure 2.9b shows the endogenous distribution of firms in the economy in 1980 and 2015 for both the general
equilibrium version of the model and the partial equilibrium one. The light blue line shows the distribution
in 1980, the orange line shows the distribution in 2015-GE, and the light grey line shows the distribution in
2015-PE. The distribution shifts to the right because of the increase in selection mentioned above. Again, the
decline in wages dampens the PE effect, resulting in a milder shift of the GE distribution toward the right.

genous decline in firms’ overall labor demand. This is an artifact of the
reduced firm entry, reduction in the output elasticity of labor at the firm
level, and the increase in the overall adjustment cost of investment faced
by firms. This wage decline, which is a counterbalancing force to the
selection effect from IBTC, increases the value of entry and profit rates
relative to the partial equilibrium level.

This exercise highlights the importance of general equilibrium effects
in pinning down the overall macroeconomic implications of IBTC, wit-
hout which one would have significantly overestimated the role of IBTC
in explaining the recent trends that are the main focus of this paper.
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2.6.3 Cross-Sectoral Validation

Figura 2.10: Sector-Level Correlations: Model versus Data
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(f) TFPR Dispersion
Note. The figure shows the cross-sectoral correlations between intangible intensity, kI/w`, and various
measures of interest. Light blue bubbles show the sector-year observations net of sector and time fixed effects.
Sectors are defined at SIC2-level. The light blue dashed lines show the empirical fit. The solid orange lines
with circles show the model-implied slope.
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This section contains a validation of the mechanism described in the pre-
vious sections. Here, we test the model predictions about how different
intangible capital intensities in production, defined as the ratio of the in-
tangible capital share to the labor share, shape sector-level factor shares,
concentration, and allocative efficiency. However, as pure technological
intangible capital intensity in production is difficult to measure at the sec-
tor level, we use a robust model prediction and proxy it by the ratio of
intangible capital to labor costs share.

Figure 2.10 shows the results. Dashed light blue lines show the da-
ta linear fit, and orange lines with circles show the model predictions.28

We focus on six main observables of interest: (i) intangible investment
share, (ii) tangible investment share, (iii) labor share, (iv) profit rate, (v)
concentration, and (vi) TFPR dispersion.

In the model, a rise in intangible capital intensity translates into a
higher investment share of intangible capital relative to the other inputs
whose shares instead decline. Therefore, the economy moves from labor,
which is a highly flexible input, to intangible capital, which is highly dis-
torted because of the presence of technological frictions. This translates
into a decrease in the allocative efficiency of the economy as measured
by the dispersion in TFPR. Finally, as investing in intangible capital is a
costly activity because of the associated high adjustment costs, selection
then increases, which in turn increases both the market concentration, as
measured by the HHI index, and the overall profit rate. Overall, Figure
2.10 shows that all of the qualitative predictions of the model are in line
with the data from the cross section of sectors.

28Because of the high-level non-linearities and the different disperion in intangible
intensity between the model and data, to obtain the model predictions, we perturb the
model around the steady state and then inferred the associated slope. We then used the
inferred slopes to extrapolate the overall tendency.

131



“Thesis” — 2022/5/20 — 18:18 — page 132 — #150

2.7 Intangible Capital Biased Technological Chan-
ge and Its Macroeconomics Implications

In this section, we study the quantitative implications of IBTC as docu-
mented in Section 2.3.1. First, we document the firm-level and macro-
economic implications of IBTC. Second, we document that our results
are robust to alternative quantification exercises. Third, we discuss the
relation between IBTC and market power and its policy implications.

2.7.1 Quantitative Implications

Here, we study the quantitative implications of IBTC documented in Sec-
tion 2.3.1. In particular, we show the quantitative implications of a rise in
the intangible capital share in firm-level production from 0.03 to 0.12 and
of an associated decline in the labor share from 0.69 to 0.60, as estimated
in the data for the period 1980-2015.29

Table 2.4 shows the results.30 Looking at the firm-level moments, we
can see that the IBTC explains the majority of the observed rise in the
average firm size and of the rise in concentration, both as measured by
the HHI and as measured by the employment share of firms with 250+
employees. These results are driven by the exogenous technological chan-
ge in the production process and the endogenous rise of selection in the
model, as discussed in the previous section.

Then, we compare the quantitative implications of IBTC with the
changes in factor shares documented by Koh et al. (2020). The model
captures well the change in most of the factor shares in the non-financial
corporate sector.31 To study the implications of the rise of intangible ca-
pital on the decline in the labor share, we follow Koh et al. (2020) and

29We leave the tangible capital share unchanged as it does not show any particular
trend over the period of interest.

30In Appendix 2.10.2, we document the evolution of the distribution of the firm-level
intangible intensity and TFPR in both the model and the data.

31We focus on the non-financial corporate sector as it has the best mapping with the
Compustat data we used in the empirical analysis.
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Taula 2.4: Quantitative Implications of IBTC

Change

1980 S.S. 2015 S.S. Model Data

Firm Distribution

Avg. firm size 23.523 26.121 +11% +15%

Concentration 7.14e-04 9.88e-04 +38% +33%

Employment share

firms with 250+ employees 0.489 0.551 +6p.p. +6p.p.

Aggregate Factor Shares

Intangible

investment share 0.014 0.055 +4p.p. +4p.p.

Tangible

investment share 0.078 0.070 −1p.p. −2p.p.

Labor share 0.666 0.580 −9p.p. −8p.p.

Labor share

pre-revision 0.676 0.614 −6p.p. −5p.p.

Profit rate (Compustat) 0.242 0.294 +5p.p. +3p.p.

Profit rate (BEA) 0.242 0.294 +5p.p. +5p.p.

Aggregate Investment Rate

Tangible

investment rate 0.052 0.041 −1p.p. −2p.p.

Allocative Efficiency

sd(TFPR) 0.202 0.227 +12% +38%

Adjusted sd(TFPR) 0.202 0.227 +12% +15%

Notes. All of the variables are calculated coherently to their definitions as used in the
data. The data sources are BDS, NIPA tables, and Compustat. To calculate the empirical
moments from the 1980s, we use the time window 1980-1990, whereas for the empirical
moments from 2015, we simply use the values in that year. The evolution of each trend
is presented in Appendix 2.9.5.
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compute two different labor shares in the model, given by

LS ≡ WL

Y
and LS pre-revision ≡ WL

Y −XI

, (2.19)

where W is the wage, L is aggregate labor, Y is aggregate output net
of adjustment costs and fixed costs, and XI is the aggregate intangible
investment. The labor share pre-revision is the counterfactual labor sha-
re that would emerge if intangible capital was not counted in the overall
GDP calculation. Similar to the empirical evidence in Koh et al. (2020),
we find that the pre-revision labor share declines much less than the true
labor share. This finding confirms the interpretation of the authors that
rising intangible capital investment is quantitatively and important factor
in the decline of the labor share observed in the data. Moreover, the mo-
del can satisfactorily explain the rise in the intangible capital investment
share, the decline in the tangible investment share, and the rise in the pro-
fit rate. We find a lower increase in the profit rate in the data compared
to De Loecker et al. (2020) because we also account for balance sheet
intangible investment, as documented in Appendix 2.9.5.

Finally, when looking at the overall allocative efficiency of the eco-
nomy, we see that the IBTC can explain a substantial share of its downward
trend: notice that an increase in the standard deviation of TFPR transla-
tes into a decline in allocative efficiency. In the model, when firms rely
more on an input that is highly distorted as intangible capital relative to a
flexible input such as labor, inputs become slower in reallocating toward
more productive firms, and hence the overall allocation of resources wor-
sens, as measured by an increase in the standard deviation of TFPR.
However, we emphasize that this cannot be considered as misallocation
as the economy is fully efficient and the allocation of resources coincides
with the one of the social planner. Concluding, the model does a good job
in matching the quantitative decline in allocative efficiency, particularly
in the case of the adjusted one.32

32Adjusted allocative efficiency is measured as allocative efficiency net of a potential
60% measurement error as documented by Bils et al. (2020).
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2.7.2 Robustness Checks
In this section, we perform two additional exercises to test the validity of
our results from Table 1.3. In particular, we check (i) how the decline in
the intangible capital investment price relative to the tangible capital in-
vestment price affects our baseline findings and (ii) how our results would
change if we were to reestimate the adjustment costs with moments from
the investment rate distribution computed with the final part of the sam-
ple.33

We estimate the relative price of intangible capital as the ratio of the
intangible capital deflator to the tangible capital deflator. We find that
between 1980 and 2015, this relative price experienced a decline of ap-
proximately 20%, suggesting that intangible capital is becoming cheaper
relative to tangible capital. To introduce this decline into the model, we
substitute into the value functions 2.9, 2.10, 2.11, 2.12, and 2.13 the rela-
tive price of intangible capital investment p such that the final intangible
capital investment bill is pxI .34

To perform the second exercise, we just reestimate the capital adjust-
ment costs to match moments from the investment rate distribution of
both capital in the period 2000-2015. Table 2.7 in Appendix 2.9.4 shows
the evolution of the investment rate distribution over time, and Table ?? in
Appendix 2.10.3 shows the new calibrated parameters and the associated
targeted moments.

Table 2.5 shows the results. The first column shows the benchmark
results as also reported in Table 1.3. The second and third columns show
the results obtained by reestimating the adjustment costs and the results
obtained by accommodating the decline in the relative price of intangi-
ble capital investment. The final column reports the values from the data.
Both robustness exercises show the same qualitative patterns as in the
benchmark case, and results overall seem to be robust to these departures

33All of these additional robustness exercises are conducted in conjunction with
IBTC; that is, we always re-estimate the model with IBTC together with one of the
aforementioned changes.

34Therefore, in our quantitative experiment, we allow the price p to go from 1 in 1980
to 0.8 in 2015.
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Taula 2.5: Quantitative Implications of IBTC

Change

Benchmark Alternative Decline Data

Adj. Costs Rel. Price kI

Firm Distribution

Avg. firm size +11% +13% +5% +15%

Concentration (HHI) +38% +36% +26% +33%

Employment share

firms with 250+ employees +6p.p. +7p.p. +6p.p. +6p.p.

Aggregate Factor Shares

Intangible

investment share +4p.p. +4p.p. +4p.p. +4p.p.

Tangible

investment share −1p.p. −1p.p. −0p.p. −2p.p.

Labor share −9p.p. −9p.p. −9p.p. −8p.p.

Labor share

pre-revision −6p.p. −6p.p. −5p.p. −5p.p.

Profit rate (Compustat) +5p.p. +5p.p. +4p.p. +3p.p.

Profit rate (BEA) +5p.p. +5p.p. +4p.p. +5p.p.

Aggregate Investment Rate

Tangible −1p.p. −1p.p. −1p.p. −2p.p.

investment rate

Allocative Efficiency

sd(TFPR) +12% +12% +11% +38%

Adjusted sd(TFPR) +12% +12% +11% +15%

Notes. All of the variables are calculated coherently to their definitions as used in the
data. The data sources are BDS, NIPA tables, and Compustat. To calculate the empirical
moments from the 1980s, we use the time window 1980-1990, whereas for the empirical
moments from 2015, we simply use the values in that year.

from the benchmark case. Moreover, we notice that even quantitatively
results do not seem to deviate significantly from these alternative specifi-
cations. Effectively, what really matters for our results is that technology
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is just shifting toward an input whose sunk cost of adjusting it (or of
using it) is relatively higher compared to the other inputs. Therefore, we
conclude that our results are robust and that they just hinge on the main
properties of estimated technology (both the production technology and
the adjustment costs technology).

2.7.3 IBTC, Market Power, and Policy Implications

In our framework, as production technology becomes more intangible in-
tensive, firms invest more in an input that entails higher adjustment costs.
Although this technological change raises market concentration, firm size,
and the aggregate profit rate, resources are still allocated efficiently across
firms. The observed decline in allocative efficiency in the model is due
to technological constraints, and therefore, the decentralized equilibrium
allocation still coincides with the one provided by the social planner. Our
paper suggests that a sizeable part of the macroeconomic changes that ha-
ve been witnessed in the US economy are the by-product of an efficient
technological change.

However, this conclusion does not exclude that other forces above
and beyond the mechanism documented here are at play in the economy.
For instance, consider a slightly different version of our baseline model.
Instead of assuming that firms produce the same good, we could have
allowed firms to produce differentiated goods aggregated à la Kimball, as
in Edmond et al. (2018). In such a framework, markups would be posi-
tively correlated with firm size. Therefore, a technological change that
favors larger firms would shift market shares toward high-markup firms
and away from low-markup firms. The measured decline in allocative ef-
ficiency in the model would be magnified by the rise in the dispersion of
markups on top of the one already generated by IBTC. Moreover, even
though in this alternative framework, the decentralized allocation would
not coincide with the one provided by the social planner, the implementa-
tion of the social planner allocation, through any potential optimal policy,
would coincide with the allocation in our baseline framework. As a con-
sequence, while extended frameworks could give rise to desirable policy
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interventions, our work suggests that at least a significant part of many of
the macroeconomic trends that we observe in the US economy could be
the by-product of efficient responses to changes in the firm-level produc-
tion technology.

2.8 Conclusion

In the last four decades, firm-level investment in intangible capital, such
as research and development, intellectual property products, and compu-
terized information, has dramatically increased in the US. However, little
is still known about its intrinsic properties and its implications for the eco-
nomy overall. In this paper, we take a step forward in the understanding
of this new type of capital.

We estimate the firm-level production function, finding that intangible
capital is an important input in production and that its input share has go-
ne from 0.03 in the 1980s to 0.12 in 2015. Moreover, we document that
most of this rise has happened at the expense of the labor share in pro-
duction. We interpret these findings as a paradigm shift in the production
process of US firms; for instance, consider the importance that software
and other intellectual property products have increasingly gained in the
economy. We refer to transformation in the firm-level production process
as intangible capital biased technological change.

We then document some novel properties of intangible capital, parti-
cularly, the fact that this new capital entails higher adjustment costs com-
pared to tangible capital. This is consistent with the view that investments
in intangible capital are plagued by inherent indivisibilities and are often
sunk.

Finally, using a structural model of firm-level investment dynamics,
we document the quantitative implications of IBTC. We find that this
technological change can jointly explain a sizeable fraction of the incre-
ase in average firm size, the increase in concentration, the change in the
aggregate factor shares, the decline in the tangible capital investment ra-
te, and the decline in allocative efficiency. Our findings bring intangible
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capital, its properties, and its trends to the center of the macroeconomic
transformations that have been witnessed in the US economy. Therefore,
we hope this paper will spur new, exciting research on this topic.
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2.9 Empirical Appendix

2.9.1 Data

Main Sample, Variables, and Summary Statistics

We use the Compustat dataset from 1980 to 2015. We linearly interpolate
SALE, COGS, XSGA, EMP, PPEGT, PPENT, XRD, INTAN, GDWL, AM. We exclu-
de utilities (SIC codes between 4900 and 4999) because they are heavily
regulated on prices. We also exclude financial firms (SIC codes betwe-
en 6000 and 6999) because their balance sheets are dramatically different
from other firms.

For data quality, we interpret as mistakes if SALE, PPEGT, PPENT,
COGS, EMP, or XSGA are zero, negative, or missing, and we drop those
observations. Moreover, if XSGA is missing or negative, we drop it as
well. Finally, if XRD, INTAN, AM, or GDWL are negative or missing, we treat
them as zeros. To obtain a real measure of the main variables, we deflate
them with the GDP deflator, and we deflate investment in tangible and
intangible capital by the appropriate deflators.35 Table 2.6 presents a few
basic summary statistics for a few leading variables used in our analysis.

User Cost of Tangible and Intangible Capital

One of the challenges of using the cost shares approach to estimate the
firm-level production function is that it requires a measure of the user
cost of capital. To this end, we define the user cost of capital as

rj,t = it − Etπt+1 + δj, j ∈ {T, I}, (2.20)

where it equals the nominal interest rate, Etπt+1 is expected inflation at
time t, and δj is the capital-specific depreciation rate. We take the annual
Moody’s Seasoned Aaa Corporate Bond Yield as an empirical proxy of
the nominal interest rate and use the annual growth rate of the Investment

35Deflators are taken from the NIPA tables.
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Taula 2.6: Summary Statistics (1980-2015)

Sales Cost of Employment Tangible Intangible
Goods Sold Capital Stock Capital Stock

Mean 2,310,810 1,572,800 7,966 1,572,164 284,519
25th Percentile 27,495 14,880 131 8,004 2

Median 153,005 89,241 686 51,066 3,098
75th Percentile 809,728 510,199 3,625 349,551 34,060

No. Obs. 188,151 188,151 188,151 188,151 188,151

Note. Summary statistics of cleaned Compustat dataset between 1980 and 2015. All
variables are in thousands of US$. Sales and Cost of Goods Sold are deflated with the
GDP deflator with base year 2012, and both types of capital stock are deflated using the
appropriate investment deflator with base year 2012.

Nonresidential Price Deflator to calculate expected inflation. The depre-
ciation rate of tangible capital is calibrated to δ = 0.07, and the firm-
level depreciation rate of intangible capital is computed as a weighted
average of the depreciation rates used to construct the intangible capital
stock.36,37,38,39

Intangible Capital Measurement and Accounting Standards

Measuring intangible capital is a difficult task as the accounting standards
(US GAAP) are insufficient to satisfactorily book the intangible assets on

36Moody’s Seasoned Aaa Corporate Bond Yield:
https://fred.stlouisfed.org/series/AAA

37Investment Price Deflator: https://fred.stlouisfed.org/series/A008RD3Q086SBEA
38We estimate an AR(1) process on the annual growth rate of the Investment Nonre-

sidential Price deflator and define the contemporaneous expected inflation as Etπt+1 =
µ+ ρπt.

39The firm-level depreciation rate of intangible capital is computed as

δI,ft =
kR&D
ft

kR&D
ft + kBSft

δR&D
s +

kR&D
ft

kR&D
ft + kBSft

0.20.
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the balance sheets. It is well established in the corporate finance litera-
ture that intangible assets are not fully captured on firms’ balance sheets
because of the anachronism of the US GAAP. 40 In this section of the
appendix, we explain in detail which assumptions are needed to compute
intangible capital at the firm level using the balance sheet for stocks and
the income statements for flows.

To introduce our main measure, we have to clarify that intangible ca-
pital is intrinsically different from tangible capital as a significant part of
it is internally generated by the firms. For nearly all internally generated
intangible assets, such as knowledge and organizational capital, accoun-
ting standards differ significantly from tangible assets. All purchases of
tangible assets are recorded on the balance sheet at their purchased price
and depreciated over their useful life. Conversly, internal intangible capi-
tal investments, such as firms’ R&D expense, advertising, or training of
employees, are fully expensed in the period they are incurred.41

For instance, the Coca-Cola Company spends several billion dollars
each year to maintain and promote its products and brands, such as Coca-
Cola and Dasani. These are the assets of the firm that will generate future
benefits in the form of higher margins and increased sales volume. Howe-

40Lev and Gu (2016) write, Revolutionary changes, shifting economies and business
enterprises from the industrial to the information age, started to profoundly affect the bu-
siness models, operations, and values of companies in the 1980s, yet, amazingly, trigge-
red no change in accounting. Entire industries, which are largely intangible (conceptual
industries, as Alan Greenspan called them), including software, biotech, and internet
services, came into being during the 1980s and 1990s. And for all other businesses, the
major value drivers shifted from property, plant, machinery, and inventories, to patents,
brands, information technology, and human resources. The latter set, all missing from
companies? balance sheets because accountants treat intangible investments like regu-
lar expenses (wages, or interest), thereby distorts both the balance sheet and income
statement. The constant rise in the importance of intangibles in companies? performan-
ce and value creation, yet suppressed by accounting and reporting practices, renders
financial information increasingly irrelevant.

41However, there are some exceptions. For example, US GAAP treats the develop-
ment of computer software differently from other R&D costs. Following the ASC 985
(formerly FAS 2), once a software developer has reached technological feasibility, the
developer must capitalize and amortize all development costs until the product becomes
available for general release to consumers.
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Figura 2.11: Advertising Expenses of Coca Cola

ver, the Coca-Cola Company is not allowed to recognize these assets on
its balance sheet. Figure 2.11 shows that Coca-Cola spent around $4 bi-
llion in advertising in 2016. We also provide the example of Google Inc.,
which spent around $16 billion in research and development and $12 bi-
llion in sales and marketing in 2017 (see Figure 2.12a and Figure 2.12b).

Overall, these figures prove that a lot of intangible capital investment
that is simply expensed by firms, in accordance with the US GAAP, does
not show up as capital on the balance sheet. To overcome this limitation in
the accounting standards, we capitalize knowledge capital, as explained
in Section 2.2.2.

Externally acquired intangible capital can be capitalized on firms’ ba-
lance sheets at the fair value according to the US GAAP under guidelines
provided from ASC 350 (formerly FAS 142) and shows up in Compustat
in the variable INTAN. According to Ewens et al. (2019), firms and ac-
countants follow the guidelines provided in ASC 820 (formerly FAS 157)
to mark externally acquired intangible capital on the balance sheet at its
fair value at the time of the acquisition. Firms can choose among diffe-
rent methods to compute the fair value according to the US GAAP, and
firms’ choices must be disclosed in the appraisal notes for intangibles in
the buyer’s financial statements. Firms have three options to appraise the
value of intangible assets: (i) estimating the replacement cost of the asset,
(ii) comparing the asset to a similar asset whose price trades on the open
market, or (iii) using the Discounted Cash Flow model, where earnings or
cash flows are discounted by an appropriate discount rate. In particular,
acquired intangible assets can be individually capitalized with the metho-
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Figura 2.12: Intangible Investments by Google

(a) Research and Development Expenses

(b) Marketing Expenses

dologies reported above if and only if they are identifiable, as documented
in the ASC 805 notes. An intangible asset is identifiable if it meets eit-
her (i) the separability criterion, meaning it can be separated from the
entity and sold, or (ii) the contractual-legal criterion, meaning that the
control of the future economic benefits arising from the intangible asset
is warranted by contractual or legal rights. In other words, IIA prices re-
flect fair or public value rather than value specific to the post-acquisition
firm. Some examples of these identifiable intangible assets include brand
names, customer lists, trademarks, Internet domain names, royalty agree-
ments, patented technologies, and trade secrets. Other intangibles with a
non-zero value, such as corporate culture, advertising effectiveness, and
management quality, that fail to meet these criteria for identification are
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captured as goodwill on the buyer’s balance sheet (GDWL in Compustat).

Figura 2.13: Coca-Cola’s Externally Purchased Intangibles

We give an example of Coca-Cola’s externally purchased intangibles
in Figure 2.13. Coca-Cola writes in their yearly report: We classify in-
tangible assets into three categories: (1) Intangible assets with definite
lives subject to amortization, (2) intangible assets with indefinite lives not
subject to amortization and (3) goodwill. The goodwill and intangible
assets with indefinite lives are subject to an impairment test every period,
and their values are increased or decreased accordingly. As one can see,
the balance sheet intangibles are the sum of heterogeneous assets, such as
trademarks, franchise rights, and customer relationships, among others.

Internally generated intangible capital: Potential issues. The fact
that a sizeable fraction of intangible capital is internally produced and
cannot be capitalized on firms’ balance sheets potentially implies that so-
me possible concerns related to the double-counting of some intangible
assets. For example, when firm 1 produces its own intangible capital, it
will expense it in its income statement at production cost x. If this in-
tangible capital is then sold to firm 2, this sale will not show up in the
income statement of firm 1 as a negative cost (or a negative investment).
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Firm 2 will, however, show this new intangible capital on its balance she-
et at fair value y because it has been externally acquired. In this example,
even though the overall ammount of intangible capital has not changed in
the economy—just a transaction has taken place—we would potentially
observe an increase in the overall stock of intangible cpaital from x to
x+ y.

Although this is a concern in theory, as a practical matter, we are con-
fident that this situation is rare and hence of little quantitative relevance.
First, we know that intangible capital is often acquired through the acqui-
sition of an entire firm.42 Hence, as the target firm is acquired, it exits the
sample, and its intangible assets leave the sample as well, whereas now
the acquiring firm will show an increase in its intangible capital on the
balance sheet. Second, we also know that a lot of intangible capital is
acquired as final goods from other firms (consider, for instance, softwa-
re producers and advertisement/marketing companies), and in this case
as well, there is no double-counting as this is final production and not
internal production for firms’ own use. Third, as showed in the previ-
ous section, internally produced intangible capital is a declining feature
of our empirical measure, suggesting that this concern should be minor
and declining over time. Therefore, we conclude that this issue is not
quantitatively appealing.

Externally acquired intangible capital: Potential issues. Exter-
nally purchased intangible capital is almost often acquired through acqui-
sitions of entire firms, and this greatly influences the way it is capitalized
on the firms’ balance sheets. For example, imagine firm x buys firm y at
cost py. At the moment of the acquisition, firm x has to place the acquired
assets on its balance sheet. Normally, the procedure is: (i) tangible assets
are identified and capitalized at the fair value pT , (ii) identifiable intangi-
ble assets are capitalized at the fair value pI , and (iii) the residual value
is attributed to unidentifiable intangible assets (synergies, organizational
culture, etc.) and capitalized into goodwill. Therefore, in the data, we
have GDWL = py − pT − pI .

If a researcher thinks that firms acquire other firms to exercise futu-

42Peters and Taylor (2017) and Ewens et al. (2019).
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re market power (and so firms are willing to pay high prices for them),
the concern can arise that these unidentifiable intangible assets are just
the discounted expected sum of the value of future market power, and
therefore the value of balance sheet intangibles goes up by more than its
quantity. One way to address this concern is to use proper deflators, that
is, to deflate intangible capital with the IPP deflator.43 However, this only
takes care of aggregate common trends and cannot account for the hetero-
geneity in firm-level input prices, and unfortunately more disaggregated
investment deflators do not exist. We wish to emphasize that the inability
to obtain firm-level investment deflators equally affects the measurement
of tangible and intangible capital. Additionally, as a more appealing way
to address these concerns, we remove goodwill from total balance sheet
intangible capital as almost all of the potential rise in prices related to uni-
dentifiable assets will be captured exactly by a rise in goodwill. However,
we want to acknowledge that Ewens et al. (2019)—using more detailed
data than we have—have shown that at least 38% of firms’ goodwill is in-
deed true intangible capital. Therefore, we see this solution as a necessary
but imperfect solution.

Accounting standards for software: A special case. The accounting
standards for expenditures in internal software development or external
purchases are different from those of other intangible assets. In particular,
the FASB ASC subtopic 350-40 provides guidelines for the accounting of
the costs for computer software developed or obtained for internal use
and of the hosting arrangement obtained for internal use. The standards
state that costs incurred during the development stage may be capitalized.
Capitalization of the costs should cease in the post-implementation stage.
The FASB ASC subtopic 985-20 provides guidelines for the accounting
of the costs incurred for software meant to be sold, leased or marketed.
The standards state that costs incurred subsequent to the establishment of
technological feasibility may be capitalized. Capitalization of the costs
should cease when the software is available for general release to custo-
mers.

To illustrate this, we provide an example of Athena Health Inc. softwa-

43This is standard practice in empirical work based on firm-level data.
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Figura 2.14: Software Capitalization of Athena Health

re investments (see Figure 2.14). The company has capitalized software
development costs of $113.9 million in 2017 and reports, external softwa-
re acquisitions of $53 million in 2015.

Software used in research and development is subject to the subtopic
730-10. In general, software that is purchased from others and used for
research and development activities and that has alternative futures/uses
should be capitalized and amortized as an intangible asset. However, the
cost for software purchased from others for a particular research and deve-
lopment project and that has no alternative uses and therefore no separate
economic value is considered a research and development cost and has to
be expensed at the time it is incurred.

In any case, we would capture most of the intangible capital related
to software in our measure through balance sheet intangible capital or
through capitalized knowledge capital.
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Additional Validations Firm-Level Intangible Capital

Here we compare some additional trends related to intangible capital in-
vestment, between aggregate data from the BEA and our measure from
Compustat. Figure 2.15 compares the share of tangible capital invest-
ment into total investment and the share of intangible capital investment
into total investment in both the BEA data and the Compustat data betwe-
en 1980 and 2015. We can see that both data sources tell a similar story:
in 1980, most of the investment was in tangible capital, whereas by 2015,
tangible investment is roughly 70% of total investment in the BEA and
50% in Compustat. The two data sources tell similar stories, but they also
show some discrepancies. In Compustat, the decline in the share of tangi-
ble capital investment of total investment is more pronounced; this could
be due to, for instance, (i) undercapitalization of true IPP capital in BEA
or (ii) selection of intangible-intensive firms in Compustat.

Figura 2.15: Investment Components Share
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(b) Compustat
Note. The figure panels show the evolution of the share of tangible capital investment and of intangible
capital investment over total investment in both BEA data and Compustat data for the period 1980-2015. The
data are detrended with an HP filter with λ = 6.25.

Figure 2.16 shows the evolution of the different components of intan-
gible capital investment in both the BEA and Compustat for the period
1980-2015. Again the two data sources show a similar tendency: in 1980,
most of intangible capital investment was investment in research and de-
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Figura 2.16: Intangible Capital Components Share
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Note. The figure panels show the evolution of the share of knowledge capital investment (R&D) and other
intangible capital investment (intangible capital investment different from R&D) over total intangible capital
investment in both BEA data and in Compustat data for the period 1980-2015. The data are detrended with an
HP filter with λ = 6.25.

velopment, whereas by 2015, investment in research and development
accounts for less than 50% of total intangible capital investment.
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Figura 2.17: Intangible Capital Components Share
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Note. The figure panels show the evolution of the intangible capital investment share across different sectors
of the US economy for both BEA-KLEMS data and Compustat data between 1998 and 2015. The data are
detrended with an HP filter with λ = 6.25.
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Finally, in Figure 2.17 we compare the evolution of the intangible
capital investment share across different sectors for both BEA data and
Compustat data for the period 1998-2015. The sector-level intangible ca-
pital investment shares emerging from the Compustat data show trends
similar to the one computed with the BEA data. However, we see so-
me difference in the level within some sectors. It is difficult to know
what the sources of these discrepancies are; overall, we conclude that our
firm-level measure of intangibly capital does a reasonable good job in
capturing the tendencies that are present in the aggregate data.

2.9.2 Production Function Estimation

To estimate the firm-level production function, we follow De Loecker
et al. (2020) and use two main approaches: (i) the control function ap-
proach and (ii) the cost shares approach. Both of these approaches are
popular methods used to estimate firm-level production functions. Here
we review the two methodologies, emphasizing their virtues and limitati-
ons.

Ackerberg-Caves-Frazer

The control function approach has been pioneered by Olley and Pakes
(1996) and developed further by Levinsohn and Petrin (2003) and Acker-
berg et al. (2015). The main insight from this literature is that firm-level
unobservable productivity can be proxied by some variable expenditure.

To overcome some of the criticism emphasized in Gandhi et al. (2020),
we work with a structural value-added specification, as in Ackerberg et al.
(2015) and De Loecker and Scott (2016), given by

Qft = min
{
Kα
T,ftK

ν
I,ftL

1−α−ν
ft exp(ωft + εft), βMft

}
, (2.21)

where Qft is output, KT,ft is tangible capital, KI,ft is intangible capital,
Lft is labor, ωft is log productivity, εft is the error term, and Mft is mate-
rial. This structural value-added production function yields the following

152



“Thesis” — 2022/5/20 — 18:18 — page 153 — #171

first-order condition:

Qft = Kα
T,ftK

ν
I,ftL

1−α−ν
ft exp(ωft + εft), (2.22)

justifying the regression ofQft on tangible capital, intangible capital, and
labor while ignoring materials. A caveat is that, in theory, equation (2.22)
may not be satisfied in certain situations. If both types of capital and labor
are quasi-fixed and materials are a flexible input, then when output prices
are sufficiently low relative to the price of materials, it will be better to set
Mft = 0 and not produce at all. However, given that our data only include
actively producing firms, we assume that equation (2.22) always holds.44

Therefore, under the specification in equation (2.21) the estimation of the
firm-level production function reduces to

qft = αkT,ft + νkI,ft + (1− α− ν)`ft + ωft + εft, (2.23)

where qft = log(Qft), kT,ft = log(KT,ft), kI,ft = log(KI,ft), and
`ft = log(Lft). As usual, the main identification challenge to the pro-
duction function estimation is the simultaneity bias induced by the unob-
served time-varying firm-level productivity, ωft. We follow the control
function literature, and in particular, Ackerberg et al. (2015) and De Lo-
ecker et al. (2020), to estimate the production function in (2.23) using a
two-step approach based on the use of a control function for the produc-
tivity process. The identification relies on the observation that a firm’s
tangible capital investment demand is given by a policy function of the
form xT,ft = xT (kT,ft, kI,ft, ωft). Then, provided that the policy function
is invertible, the productivity process can be proxied by a control function
given by ωft = ω(kT,ft, kI,ft, ωft) where ω(·) = x−1

T (·).45

Therefore, in the first stage of this estimation procedure, we can clean
the firm-level output value from measurement errors and unanticipated

44For a more detailed discussion on this issue, see Ackerberg et al. (2015).
45The assumptions needed to ensure the invertibility of the policy functions asso-

ciated with a wide class of production functions have been discussed extensively by
Pakes (1994), Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg
et al. (2015).
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productivity shocks, regressing output on a polynomial of tangible capital,
intangible capital, labor, and potential demand shifters, given by

qft = Pt(kT,ft, kI,ft, `ft,dft) + εft. (2.24)

Then, in the second stage, using the estimate P̂t from the previous
stage, we can construct a measure of productivity that does not depend on
the measurement error εft, given by

ωft(α, ν) = P̂t(kT,ft, kI,ft, `ft,dft)− αkT,ft − νkI,ft − (1− α− ν)`ft.
(2.25)

Finally, taking advantage of the assumption that productivity follows
an AR(1) process, it is possible to construct a measure of productivity
innovations, given by

ξ(α, ν, ρ) = ωft(α, ν)− ρωft−1(α, ν). (2.26)

Therefore, using the productivity innovations, we can construct a set
of moment conditions to estimated the parameters of the production func-
tion, given by

E(ξ(α, ν, ρ)× zft) = 0Z×1, (2.27)

where Z ≥ 3 and, under the assumption that firms react to unanticipated
productivity shocks contemporaneously and that capital is predetermined,
the set of admissible instruments is zft ∈ {`ft, kT,ft, kI,ft, `it−1, kT,ft−1, kI,ft−1, . . . }.

Units. It is well known that most of the time, standard production data,
such as Compustat, record revenues and expenditures rather than physical
production and input used. In the presence of product differentiation (be
it through physical attributes or location), an additional source of endoge-
neity presents itself through unobserved output and input prices.46 This
implies that, when bringing the model to the data, the structural value-
added production function takes the following form:

qft+pft = α(kT,ft+p
T
t )+ν(kI,ft+p

I
t )+(1−α−ν)(`ft+p

`
ft)+ωft+εft,

(2.28)
46See De Loecker et al. (2016) for a recent treatment of these issues.
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where pft is the output price, pTt is the common user cost of tangible capi-
tal, pIt is the common user cost of intangible capital, and p`ft is the price of
labor. This empirical specification produces the following structural error
term:

ωft + pft − αpTt − νpIt − (1− α− ν)p`ft. (2.29)

We follow De Loecker et al. (2016) and let the wedge between the
output and the input price (scaled by the output elasticity) be a function
of the demand shifters and the productivity difference.47 The inclusion in
the control function of demand shifters dft, constructed using measures
of market shares as in De Loecker et al. (2020), should therefore capture
the relevant output and input market forces that generate differences in
the output and input price. As discussed in De Loecker et al. (2016), this
is an exact control when output prices, conditional on productivity, reflect
input price variation and when demand is of the (nested) logit form.

This is a second-best solution to address the aforementioned challenge
in the estimation of the production function. Without more detailed data
on output quantities, however, it is not possible to go beyond this second-
best solution to the problem.

Cost Shares

The cost shares approach has been prominently adopted in Foster et al.
(2008) and exploits the first-order conditions of the firm. To make fruitful
use of the first-order conditions of the firm, two assumptions are needed,
namely: (i) constant returns to scale in production and (ii) that all inputs
are variable. Under these assumptions, the output elasticities can be cal-
culated from cost shares. The cost shares of both inputs are defined as

α = med

{
rTt kT,ft

wft`ft + rTt kT,ft + rIt kI,ft

}
and ν = med

{
rIt kI,ft

wft`ft + rTt kT,ft + rIt kI,ft

}
,

(2.30)
47De Loecker et al. (2020) note that not observing output prices has the perhaps unex-

pected benefit that output price variation absorbs input price variation, thus eliminating
part of the variation in the error term.

155



“Thesis” — 2022/5/20 — 18:18 — page 156 — #174

where wft`ft is the wage bill, rTt kT,ft is the rental cost of tangible capital,
and rIt kI,ft is the rental cost of intangible capital. Therefore, an extra re-
quirement to apply this method is the possibility of calculating the return
on both types of capital, rTt and rIt .

2.9.3 Robustness Production Function Estimation
In this subsection of the appendix we explain the alternative specifications
that we use to test the robustness of IBTC. Results are presented in Figure
2.3 in the main text.

Unconstrained Returns to Scale

To test the robustness of our results to a more flexible specification of
returns to scale we estimate with the ACF approach the following pro-
duction function:

qft = αkT,ft + νkI,ft + β`ft + ωft + εft, (2.31)

where the only difference with equation 2.23 is that now returns to scale
are unconstrained. Therefore, with this alternative specification, the set of
moment conditions becomes

E(ξ(α, ν, β, ρ)× zft) = 0Z×1, (2.32)

where Z ≥ 4.

Sector-Level Production Technology

One restrictive assumption of our benchmark specification is that the pro-
duction technology is the same across all sectors. We relax this assump-
tion by allowing the production technology to be sector specific. Effecti-
vely, this means that we estimate the following production function:

qft = αskT,ft + νskI,ft + (1− αs − νs)`ft + ωft + εft, (2.33)

which is identical to the benchmark one except that now output elasti-
city is sector specific. Finally, with this specification, the average output
elasticities will be computed using a sales-weighted average.
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Translog Production Function

We also test the robustness of our results to a more flexible production
function: the translog production. This production function approximates
a CES production function up to a second-order. We choose a specificati-
on with constant returns to scale, given by

qft = αkT,ft + νkI,ft + (1− α− ν)`ft

− βkT,ftkI,ft − βkT,ft`ft − βkI,ft`ft + βk2
T,ft + βk2

I,ft + β`2
ft + ωft + εft.
(2.34)

Therefore, with this alternative specification, the set of moment conditi-
ons becomes:

E(ξ(α, ν, β, ρ)× zft) = 0Z×1, (2.35)

where Z ≥ 4. Finally, the endogenous output elasticities will be given by

θT = med
(
α− βkI,ft − β`ft + 2βkT,ft

)
, (2.36)

θI = med
(
ν − βkT,ft − β`ft + 2βkI,ft

)
, (2.37)

θ` = med
(
1− α− ν − βkT,ft − βkT,ft + 2β`ft

)
. (2.38)

2.9.4 Robustness Lumpiness
In this section of the appendix, we present some robustness analyses re-
garding the patterns of the investment rate distribution of intangible capi-
tal. In particular, we look at two additional dimensions that we neglected
in the main analysis: the time dimension and the sector-level dimension.

Table 2.7 shows the moments of the investment rate distribution of
intangible capital for different time frames: the period 1980-1999 and the
period 2000-2015. The investment rate distribution of intangible capital
does not show any qualitative difference over time. Overall, it seems that
the most salient features of the distribution are stable over time, and hence
they are not an artifact of the fact that intangible capital is rising over time
and could be subject to an initial adoption phase.

Table 2.8 shows the moments of the investment rate distribution of
intangible capital for different sectors. Here the analysis is complicated
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Taula 2.7: Lumpiness by Period

Investment rates 1980-1999 2000-2015

Average 0.36 0.34
Positive fraction, i > 1 0.87 0.90
Negative fraction, i < −1 0.02 0.03

Inaction rate 0.11 0.07

Spike rate, |i| > 20 0.76 0.75
Positive spikes, i > 20 0.75 0.74
Negative spikes, i < −20 0.01 0.01

Standard deviation 0.29 0.30
Serial correlation, Corr(it, it−1) 0.38 0.26

Note. This table shows the moments of the investment rate distribution of intangible and tangible capital. The
statistics are computed for a balanced panel of 3,860 firm-year observations between 1980 and 1999 and for a
balanced panel of 2,992 firm-year observations between 2000 and 2015.
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Taula 2.8: Lumpiness by Sector

Investment rates MIN CON MAN TCU WHO RET SRV

Average 0.22 0.15 0.38 0.35 0.14 0.16 0.30
Positive fraction, i > 1 0.65 0.79 0.91 0.93 0.69 0.81 0.87
Negative fraction, i < −1 0.06 0.14 0.02 0.04 0.14 0.09 0.06

Inaction rate 0.29 0.07 0.07 0.03 0.17 0.10 0.07

Spike rate, |i| > 20 0.49 0.50 0.81 0.67 0.43 0.40 0.67
Positive spikes, i > 20 0.48 0.38 0.80 0.64 0.38 0.35 0.64
Negative spikes, i < −20 0.01 0.12 0.01 0.03 0.05 0.05 0.03

Standard Deviation 0.30 0.30 0.29 0.33 0.29 0.29 0.32
Serial correlation, Corr(it, it−1) 0.41 0.14 0.32 0.21 0.18 0.14 0.29

Note. This table shows the moments of the investment rate distribution of intangible capital across different
sectors. The statistics are computed for a balanced panel between 1980 and 1990. MIN is the mining sector
and has 209 firm-year observations. CON is the construction sector and has 99 firm-year observations. MAN
is the manufacturing sector and has 4,455 firm-year observations. TCU is the transportation and public utilities
sector and has 88 firm-year observations. WHO is the wholesale sector and has 176 firm-year observations.
RET is the retail sector and has 176 firm-year observations. SRV is services sector and has 352 firm-year
observations.
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by the fact that at the sector level, the construction of a balanced panel
sacrifices a lot of observation, leaving us with relatively small samples.
Nonetheless, most of the salient characteristics of the investment rate dis-
tribution of intangible capital still seem to emerge from this analysis. This
suggests that the investment rate distribution of intangible capital exhibits
a fractal behavior overall.

Concluding, the high level of the lumpiness of the investment rate
distribution of intangible capital documented in the main analysis seems
robust to different time frameworks and different sectors. This suggests
that this lumpiness has to come from intrinsic properties of the investment
process in intangible capital.

2.9.5 Aggregate Trends

In this section, we present the evolution between 1980 and 2015 of the
main trends of interest for the quantitative analysis. For the trends cons-
tructed with the Compustat data, we explain the measurement procedure;
for the others, we just refer to main papers that document them. In par-
ticular, we look at: (i) the rise in concentration, (ii) the decline in the
labor share, (iii) the rise in the intangible capital investment share, (iv)
the decline in the tangible capital investment share, (v) the decline in the
tangible capital investment rate, (vi) the rise in the profit rate, (vii) the rise
in the average firm size, and (viii) the decline in the allocative efficiency
of the economy, that is, the rise in the standard deviation of TFPR.
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Figura 2.18: Aggregate Trends
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Note. Figure 2.18a replicates the evolution of the HHI index in Compustat, as documented by Grullon et al.
(2019). Figure 2.18b shows the evolution of the labor share, pre- end post-revision, in the corporate non-
financial sector, as reported in Koh et al. (2020). Figure 2.18c shows the evolution of the intangible capital
investment share in the corporate non-financial sector, as reported in Koh et al. (2020). Figure 2.18d shows
the evolution of the tangible capital investment share in the corporate non-financial sector, as reported in Koh
et al. (2020). Figure 2.18e shows the evolution of the tangible capital investment rate, as reported by Crouzet
and Eberly (2019). Figure 2.18f shows the evolution of the profit rate, as reported in De Loecker et al. (2020)
and the profit rate adjusted for intangible capital. Figure 2.18g shows the evolution of the average firm size
measured in number of employees from BDS data. Figure 2.18h shows the evolution of the standard deviation
of TFPR in Compustat.
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We measure concentration using the HHI index, as in Grullon et al.
(2019). In Compustat, the HHI index of a sector s is constructed as

HHIst =
∑
f

(
SALEft∑
f SALEft

)
. (2.39)

Then, the aggregate concentration is simply the sales-weighted avera-
ge of the sector-level concentrations.48

The firm-level profit rate, adjusted for intangible capital, is defined as

πft =
SALEft − COGSft − (XSGAft − XRDft)− rT,tkT,ft − rI,tkI,ft

SALEft
.

(2.40)
The construction of the user cost of both types of capital is described

in Appendix 2.9.1. We drop XRD from XSGA to avoid double-counting
research and development costs as they are both part of our measured
intangible capital costs and our selling general and administrative costs.
The standard unadjusted profit rate is instead defined as

πft =
SALEft − COGSft − XSGAft − rT,tkT,ft

SALEft
. (2.41)

To obtain the aggregate profit rate, we use a sales-weighted average
of both measures of the firm-level profit rate.

Finally, to measure the allocative efficiency of the US economy we
measure the standard deviation of TFPR. We compute TFPR as

TFPRft = log SALEft−αkT,ft−νkI,ft− (1−α−ν) log EMPft, (2.42)

where α and ν are the estimates from Section 2.3.1. Then, our measure
of allocative efficiency is just the dispersion in TFPR over the different
years. Figure 2.18h shows the evolution of these trends between 1980 and
2015.

48We follow Grullon et al. (2019) and use the 2-digit NAICS level as the definition of
sector-level.
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2.10 Quantitative Appendix

2.10.1 Additional Comparisons between Model and Da-
ta in 1980

Here, we compare the distribution of the average product of tangible ca-
pital, ARPKT , and the distribution of the average product of intangible
capital, ARPKI , from the model with the ones from the data for the
1980s.

Figura 2.19: Average Product of Tangible and Intangible Capital
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(b) Data
Note. Figure 2.19a shows the distribution of ARPKT (light blue solid line) and ARPKI (dashed oran-
ge line) from the model. Figure 2.19b shows the same distributions from the data. All distributions are
demeaned.

Figure 2.19 shows the distributions. The distributions implied from
the model capture well the main features of the distributions in the data.
In particular, the model is able to capture the excess dispersion in the
distribution of ARPKI relative to the distribution of ARPKT . This is
because intangible capital faces higher distortions from the presence of
higher adjustment costs.
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2.10.2 Additional Comparisons between Model and Da-
ta over Time

In this section, we document two additional implications of the model
over time and compare them with the data. In particular, we look at the
distribution of intangible intensity, defined as the ratio of intangible capi-
tal to the labor bill, and at the distribution of TFPR.

Figura 2.20: Log Intangible Intensity
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Note. Figure 2.20a shows the distribution of log intangible intensity both in the 1980 (light blue solid li-
ne) and in 2015 (dashed orange line) from the model. Figure 2.20b shows the same distributions form the
data.

Figure 2.20 shows the evolution over time of the distribution of in-
tangible intensity in both the model and the data. Overall, despite some
qualitative differences, both the model and the data show a shift toward
the right in the distribution of intangible intensities, highlighting the fact
that firms on average are using more intangible capital relative to labor.

Figure 2.21a shows the evolution, in both the model and the data, of
the distribution of TFPR. In both the model and the data the distribution
of TFPR is more dispersed in 2015, highlighting a decline in allocative
efficiency. This, as emphasized in the main text, is a result of firms relying
more on an input that is highly dispersed because of technological cons-
traints, which hinders a fast reallocation of inputs toward high marginal
product firms.
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Figura 2.21: Total Factor Productivity Revenue
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Note. Figure 2.21a shows the distribution of TFPR in 1980 (light blue solid line) and 2015 (dashed orange
line) from the model. Figure 2.21b shows the same distributions from the data. All distributions are demeaned.

2.10.3 Additional Robustness
Table 2.9 shows the parameters from the robustness exercise in which we
reestimate the adjustment costs as presented in Section 2.7.2. Two things
have changed relative to the calibration for the 1980 steady state. First,
the intangible capital share has increased to 0.12 as we are estimating
the economy in 2015. Second, all the adjustment costs associated with
the investment process of both types of capital have now been changed
to match the moments from the later part of our sample. The remaining
parameters not associated with the production technology or with the ad-
justment costs are left the same as in the 1980 steady state to facilitate
a comparison across the steady state and to pin down the fundamental
forces underlying the results.
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Taula 2.9: Parameters and Moments

Fixed Value Description
R 1.05 Annual interest rate
δT 0.07 Annual depreciation rate tangible capital
δI 0.29 Annual depreciation rate intangible capital
α 0.28 Tangible capital share
ν 0.12 Intangible capital share
ω 0.90 Returns to scale
ρz 0.90 Autocorrelation idiosyncratic productivity
σz 0.20 Standard deviation idiosyncratic productivity

ce 3·e-4 Fixed to 1980 SS
cf 2.540 Fixed to 1980 SS
η 2.025 Fixed to 1980 SS
m 6.2·e-3 Fixed to 1980 SS

Fitted Value Description Moments Model Data
γT 0.012 Convex adj. cost kT corr(xT,ft, xT,ft−1) 0.16 0.16
γI 0.060 Convex adj. cost kI corr(xI,ft, xI,ft−1) 0.26 0.27
fp 2.3·e-3 Fixed adj. cost kT Inaction rate: xT 0.03 0.03
fi 0.017 Fixed adj. cost kI Inaction rate: xI 0.07 0.07
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Capı́tol 3

HETEROGENEOUS
MARKUPS CYCLICALITY
AND MONETARY POLICY

Joint with Marta Morazzoni and Danila Smirnov

3.1 Introduction
Far for being a closed topic of investigation, the discussion around the
cyclicality of the aggregate markup and its response to monetary policy
shocks still fosters a significant volume of macroeconomic research. Pa-
rallel to that, recent contributions have brought attention on companies’
heterogeneous market power, as the availability of firm-level datasets has
made it easier to estimate markups from balance sheet data. However,
the empirical evidence of the heterogeneity in the behavior of firm-level
markups after interest rate movements is scarce, and any related quantita-
tive analysis has not yet been provided. This project is a first step towards
filling this gap. In particular, we document crucial differences in the res-
ponse of markups to monetary policy shocks by firm age, and assess their
macroeconomic relevance into a novel New Keynesian framework en-
riched with firms’ heterogeneity, demand accumulation and endogenous
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markups that evolve along firms’ life-cycle.

We begin by estimating the behavior of markups at the company level
conditional on interest rate movements, and document a significant degree
of heterogeneity across old and young firms. Combining together quar-
terly data from Compustat with two different and exogenously identified
series of monetary policy (hereafter MP) shocks for the US, we employ
state-of-the-art local projection techniques to establish that the markups
of firms above the median age respond more countercyclically to negative
MP shocks, while for young firms the response is either mildly procycli-
cal or insignificant. Controlling for commonly-used measures of aggrega-
te economic activity and horse-racing our regression specifications with
other firm-level characteristics, we are able to confirm that corporate age
in particular influences the differential trajectory of markups upon a ne-
gative change in the interest rate. Moreover, we provide evidence that this
result could indeed be related to a latent process of demand (or customer
base) accumulation, for which dominant firms that are more established
in their markets may have to change by less their prices in response to
MP shocks, thereby leading to the stronger countercyclical response in
old firms’ markups documented in the data.

Next, we embed our findings into a New Keynesian (NK) framework
that we enrich with firm heterogeneity, demand accumulation and endoge-
nous markups. The model features imperfect competition among hetero-
geneous intermediate firms that produce using labor and choose prices to
maximize profits subject to price adjustment costs à la Rotemberg. New
firms can entry every period, while the exit of incumbent firms is exo-
genous. Our framework presents therefore two main characteristics: on
the one hand, intermediate firms face a process of demand accumulation,
characterized by some persistence and idiosyncratic shocks, along with a
long-run mean that allows for the demand faced by companies to increase
along their life-cycle. On the other hand, we assume that the final good
producer combines together the intermediate inputs by means of a Kim-
ball aggregator. As in Klenow and Willis (2016) for example, this specific
choice introduces in a tractable way endogenous markups in the model,
as the elasticity of substitution across intermediate goods become decrea-
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sing in their relative quantity. Dominant firms will face lower elasticities
of demand and, since demand is accumulated with age, older businesses
will hence be able to charge higher markups.

The model is then calibrated on the US economy, following standard
strategies in the literature and making use of the richness of Compustat
data. In particular, the validation analysis shows that our quantitative fra-
mework is able to replicate several untargeted features of the data, such
as the increasing profile of markups along the life-cycle of the firms, the
fat right tail in the distribution of markups, and the growth rates of sa-
les and employment. Moreover, the model can get realistic steady state
distributions of businesses and employment shares by firm age, and re-
plicate the elasticity of wages to firms’ sales shares that we estimate in
the data. This latter moment is tightly linked to the fact that dominant
(and hence old) companies can increase their profits by cutting quantities
and raising prices, thereby suppressing labor demand and hence wages in
equilibrium.

Importantly, our NK framework enriched with firm heterogeneity, de-
mand accumulation and endogenous markups can deliver the differential
response of markups by firm age that we document in Compustat. As pre-
viously mentioned, old firms in our model economy face a lower passth-
rough from costs to prices due to the presence of the Kimball aggregator.
When hit by a contractionary MP shock that decreases wages and puts a
downward pressure on prices, dominant firms can cut prices by relatively
less compared to young ones. Since markups depend on the ratio between
firm prices and marginal costs, this mechanism is in turn responsible for
the stronger countercyclical response in old firms’ markups. In particular,
we can match up to 20% of the empirically estimated relative difference
in old and young firms’ markups responses to a negative MP shock. In
our analysis, we also show that the differential response of old firms in
the model can be quantitatively decomposed to highlight the contribution
of changes in aggregate variables to the overall general equilibrium im-
pact on markups. In particular, the movements in real wages generated
by a negative shock to the interest rate are found to be key in shaping the
differential behavior of dominant firms’ markups.
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Finally, we conclude our quantitative analysis with an investigation of
the shock amplification mechanisms at play in our framework, comparing
our set up to a standard one-firm NK model with price rigidities. Both
the presence of the Kimball aggregator and the heterogeneity of firms are
shown to affect the way and extent to which MP shocks transmit in the
economy, with output decreasing on average by roughly 20 percentage
points (p.p.) more after a negative movement in the interest rate. Fo-
cusing on the role of the Kimball aggregator, since intermediate firms –
especially old ones – temper their price drops after a negative MP shock
due to the increase in their desired markup, the shock itself propagates
more through quantities than through prices in our set up as opposed to
the standard constant elasticity NK framework. At the same time, the
Kimball aggregator alone is not sufficient to generate the observed am-
plification of MP shocks, as its effects on the elasticity of demand faced
by firms kick in when firms are indeed heterogeneous and hence have a
different passthrough from costs to prices. Firm heterogeneity is therefo-
re key in affecting and amplifying the movements in the macroeconomic
aggregates in the economy following a negative MP shock.

We see the contribution of this paper as twofold: on the one hand and
to the best of our knowledge, we bring novel evidence on the remarka-
ble heterogeneity in the response of firm markups to MP shocks based
on corporate age. Specifically, while several empirical macroeconomic
studies have focused on the different response of investment conditional
on movements in the interest rates, we take a different perspective and
explore the heterogeneous behavior of markups, the most direct measure
of firms’ market power. On the other hand, enriching a NK model with
firm heterogeneity, demand accumulation and endogenous markups, we
attempt to quantitatively study the role of firms’ life-cycle in shaping the
differential response of markups to changes in the interest rates, and then
analyse how aggregate shocks propagate (and get amplified) in our model
economy.

Related Literature. Our work builds on several macroeconomic con-
tributions to the study of markups cyclicality. With respect to papers that
have analysed the aggregate markup (see Gali et al. (2007), Hall (1988),
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Bils et al. (2018) and Nekarda and Ramey (2020)), we focus on the hete-
rogeneous response of firm-level markups to changes in the interest rate,
both from an empirical and quantitative point of view. Second, in compa-
rison to recent research on firm-level markups by Hong (2017), Burstein
et al. (2020), Meier and Reinelt (2020) and Alati (2020), we do no inves-
tigate markups response to business cycle movements, but rather markups
behavior conditional on monetary policy.

On the other hand, we attempt to contribute to the theoretical and
quantitative macroeconomic literature that has started incorporating micro-
level heterogeneity into NK frameworks and understand its implications
for the transmission of monetary policy. Recent studies in this field have
focused on how household-level heterogeneity affects the consumption
channel of monetary policy (see, for example, McKay et al. (2016), Ka-
plan et al. (2018), Auclert (2019), or Wong (2019)). More in line with the
spirit of Ottonello and Winberry (2020)’s investigation of firm investment,
we explore the role of firm-level heterogeneity in determining differences
in the response of markups to monetary policy shocks. In so doing, we
also relate our work to several analyses of supply-side heterogeneities in
NK set ups, such as studies on price-setting behavior (see Golosov and
Lucas (2007)), market power (see Klenow and Willis (2016) and Mongey
(2017)), and product life-cycle (see Bilbiie et al. (2007) and Bilbiie et al.
(2012)). With respect to these papers, we present a model of firm life-
cycle behavior in order to examine the endogenous response of markups
to monetary policy by firm age.

Our work is also related to Gilchrist et al. (2017), who study how
financial distortions can create an incentive for firms to raise prices in
response to adverse financial or demand shocks. While in Gilchrist et al.
(2017) the rise in markups reflects firms’ decisions to preserve internal
liquidity and avoid accessing external finance, the endogenous response
to markups in our set up is related to the differential demand elasticiti-
es faced by firms in their life-cycle. In this sense, we see our work as
closely related to Baqaee et al. (2021) from a theoretical perspective: the
authors explore the first-order effect on aggregate TFP caused by the rea-
llocation of resources triggered by a demand shock across firms with non-
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uniform markups. While we answer a different research question, also in
our model dominant firms tend to have both higher markups and lower
pass-through from marginal costs to prices. When faced with an increa-
se (decrease) in nominal marginal costs, high-markup firms raise (lower)
their prices by less than low-markup firms in order to remain competitive.

Finally, our work is related to the macroeconomic literature pioneered
by Gertler and Gilchrist (1994) that empirically documents how the ef-
fect of monetary policy can vary across firms of different characteristics.
To the best of our knowledge, existing studies in this area have focused
on firm-level investment, and assess how firm default risk (Ottonello and
Winberry (2020)), liquidity (Jeenas (2019)) or age (Cloyne et al. (2018))
may shape the response of investment to monetary policy shocks. In a si-
milar spirit, Fabiani et al. (2020) examine how monetary policy can influ-
ence the maturity structure of corporate debt. We also use state-of-the-art
local projection techniques in our empirical analysis and explore the hete-
rogeneous response of firms’ markups to monetary policy shocks. In fact,
our core contribution is to document that old firms’ markups react more
countercyclically to contractionary interest rate shocks than young ones,
and then embed our finding into a heterogeneous firms NK framework
augmented with endogenous markups formation.

The paper is organized as follows: in Section 3.2, we report and dis-
cuss the empirical evidence on the heterogeneous cyclicality of firms’
markups after monetary policy shocks. Section 3.3 lays down our theo-
retical framework, characterized by heterogeneous firms in a NK setting
with endogenous markups. Then, in Section 3.4, we illustrate the cali-
bration and fit of the model, while in Section 3.5 we present steady state
results and firm-level impulse responses to monetary policy shocks, and
also discuss amplification mechanisms. In Section 3.6 we finally conclu-
de and present the way ahead.
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3.2 Empirical Analysis

In what follows, we study the heterogeneous cyclicality of firms’ markups
in response to monetary policy shocks. We begin by describing the sam-
ple of US firms and the monetary policy shock series on which we draw
our evidence, and then illustrate how we estimate markups at the firm-
level. Secondly, we document that old firms show a more countercyclical
markups response after a monetary policy tightening. Finally, we briefly
analyse the behavior of markups over firms’ life-cycle and motivate why
firm age could be a source of heterogeneity in markups responses to de-
mand shocks.

3.2.1 Sample Construction

As previously mentioned, we make use of firm-level data from Com-
pustat, which contains quarterly balance sheet information for North-
American listed companies between 1975 and 2016. Compustat cons-
titutes a panel of US corporations that is sufficiently high-frequency to be
used to study monetary policy, and long enough to exploit within-firm va-
riation. However, it comes at the expenses of representing the universe of
publicly-listed incorporated firms only, even though these companies are
estimated to make up for 30% of private sector employment. In terms of
coverage, Compustat reports details on firm performance indicators and
outcomes, including sales, liquid assets, financing sources, total assets,
and production costs. It also reports the industry sector (SIC codes) whe-
re the business operates and firm age, which is the crucial dimension of
heterogeneity in our analysis. Importantly, the age variable contained in
the original dataset counts the years since incorporation, but we provide a
robustness considering the establishment year for each firm in our sample.

Following standard practices in the literature, we restrict our attenti-
on to firms that are incorporated in the US and our final sample excludes
utilities companies (SIC codes 4900-4999), financial entities (SIC codes
6000-6999), as well as corporations for which the industry code, or the
information on sales, assets and production costs is missing. Whenever
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Taula 3.1: Summary Statistics

Sales Cogs Assets Leverage Liquidity Age

mean 447.69 303.17 4919.69 0.45 0.17 9.46

p25 6.06 3.31 37.83 0.04 0.02 4

p50 31.01 17.18 229.50 0.18 0.07 8

p75 164.58 100.60 1118.33 0.39 0.22 14

N 715,874 715,874 685,784 641,316 683,696 715,874

Notes: the first three columns are measured in millions of real 2012 $, while column (4) and (5) are ratios and
column (6) is measured in years. Cogs is the cost of good sold, which includes production expenditures.

applicable, we deflate variables using a GDP-deflator from the NIPA ta-
bles. 3.1 reports summary statistics for the variables of interest.

Our final sample of firms is then merged with two different interest
rates datasets: first, we take the quarterly monetary policy shock series
from Gürkaynak et al. (2005), who build a measure of interest rate surpri-
ses based on the % change in the FED Funds Futures rate in 30-minute
windows around the policy announcement. Secondly, we also and pri-
marily make use of the quarterly monetary policy shocks from Jarociński
and Karadi (2020), a pure interest rate surprises series that removes from
the estimation any component attributed to the provision of private FED
information on the state of the economy to private agents through policy
announcements. The common identifying assumption on the exogeneity
in the variation of the policy rate is that nothing else occurs within this
30-minutes time window that could drive both private sector behavior
and monetary policy decisions. Both series are available for the years
and quarters between 1990Q1 and 2016Q4.

Before describing the estimation of markups at the firm level, we bri-
efly recap on other important variables that we further employ as controls
in our regressions. First, using balance sheet data, we compute the levera-
ge and the holdings of liquid assets for the companies in our sample. With
respect to the former, we take the ratio of corporate total debt divided by
total assets in each period, both measured at book values and where debt
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is the sum of short term and long term debt. Parallel to that and to provide
a measure of corporate liquidity, we compute the ratio of cash and short-
term investments to total assets. Our main regression specifications also
include firm size as a control, which is measured as the log of total assets
(at book value).1 Finally, we complement our firm-level data with general
indicators of economic activity at quarterly level. In particular, we inclu-
de the GDP growth rate, the Consumer Price Index (CPI) growth rate, the
Excess Bond Premium (EBP), and the 1-Year Treasury rate change, all
taken from the Federal Reserve of St.Louis (FRED) series.2

3.2.2 Markups Estimation
Firm-level markups are a common measure of whether companies are
able to set their prices above marginal costs. To estimate them, we fo-
llow recent works by De Loecker and Warzynski (2012) and De Loecker
et al. (2020), which are based on the production function approach pio-
neered by Hall (1988) on industry-level data. Their estimation strategy is
grounded on firm’s optimizing behavior with respect to production costs-
minimization, and delivers an estimate of markups at the firm-level wit-
hout specifying an explicit demand system. In fact, consider a firm i that
employs a production technology given by:

Qi,t = Fi,t(X i,t, Ki,t, ωi,t)

where X is a vector of variable inputs, K is the predetermined input and
ω is firm-specific productivity. The cost minimization problem for each
producer can be hence expressed as follows:

min
{Xi,t,Ki,t}

{P ′i,tX i,t +RtKi,t + λi,t(Qi,t −Q(·)}

where P i,t is the vector of prices for variable inputs, Rt is the price of
the predetermined input, and λi,t is the Lagrangian multiplier associated

1To eliminate seasonality, variables can be measured as the rolling means in the pre-
vious 4 quarters as in Jeenas (2019).

2Even if the identified monetary policy shock series are exogenous, macro controls
are typically included for robustness.
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to the firm’s cost minimization problem. One can then compute the first
order condition (FOC) for a generic variable input Xν ∈ X , which is
given by:

∂L(·)
∂Xν

i,t

= P ν
i,t − λi,t

∂Q(·)
∂Xν

i,t

= 0 (3.1)

Notice that the Lagrangian multiplier λi,t can be also interpreted as the
marginal cost of producing at a given level of output. 3.1 can be further
rearranged as:

∂Q(·)
∂Xν

i,t

Xν
i,t

Qi,t

=
1

λi,t

P ν
i,tX

ν
i,t

Qi,t

Defining the markup as price over marginal costs, µi,t ≡ Pi,t
λi,t

, it is possible
to rearrange the FOC for a generic variable input Xν ∈ X such that it
yields:

µi,t = θνs,t
Pi,tQi,t

P ν
i,tX

ν
i,t

(3.2)

where θνs,t is the elasticity of output with respect to the variable input
Xν . The computation of markups can hence be implemented using firms’
financial statements only. To estimate this theoretical expression in Com-
pustat, we make use of both sales and cost of good sold data for each firm
and in each quarter, which map to the denominator and numerator of 3.2
according to:

µ̂i,t = θ̂νs,t
Salesi,t

Cogsi,t

where we use the estimates of the sectoral output-input elasticity θ̂νs,t from
De Loecker et al. (2020).

3.2.3 Heterogeneous Markups Cyclicality
We then proceed to use Compustat quarterly balance-sheet data to inves-
tigate cross-sectional differences in the response of markups to interest
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rate policies. The main goal of our analysis is to estimate how firm i’s
markup µi,t+h, at horizon h ≥ 0, behaves in response to a monetary po-
licy shock at time t, conditional on firm i’s age just before the shock. To
this end, we borrow the empirical strategies of Jeenas (2019) and Otto-
nello and Winberry (2020), and use a panel version of the Jordà (2005)’s
local projections (hereafter: LP) to regress the cumulative difference in
firm markups at different horizons on the interaction term between firm
age at time t− 1 and the monetary policy shock at time t, alongside a set
of control variables. This flexible specification enables us to estimate im-
pulse response functions on our firm-level panel data using the identified
monetary shocks as instruments for changes in the policy interest rate. In
particular, we estimate by OLS the following set of equations:

∆h log µi,t+h =
∑
x∈X

(
αx,h + βx,h∆Yt−1 +

h∑
k=−κ

γkx,hε
m
t+k

)
× 1i∈Ix

+
L∑
`=1

δ′hXi,t−` + ϕi,h + ϕs,t,h + ϑht+ ui,t+h

(3.3)

with horizons h = 0, 1, . . . , H and H = 20 quarters. The dependent
variable is the cumulative change in markups for any firm i at horizon h,
given by:

∆h log µi,t+h ≡ log µi,t+h − log µi,t−1

Focusing on our regressors, 1i∈Ix is an indicator that takes a value of 1 if
i ∈ Ix, namely if the firm i is above the median in one or more dimen-
sions of the vector X = {age, leverage, liquidity, assets}. The main
coefficient of interest is γage,h, which captures the relative response of old
companies (compared to young ones)3 to a variation in the FED short-
term policy rate.4 Note that we horse-race our main regressor – corporate

3We note that the median corporate age – since incorporation – in our Compustat
sample is 8 years old.

4In our preferred specification, we therefore adopt a non-parametric estimation ap-
proach by using dummies instead of linear interactions. We show robustness checks
following instead a parametric approach at the end of the section.
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age – against other layers of firm heterogeneity typically studied by the
literature, such as size, leverage and liquidity (see Jeenas (2019)). We al-
so interact the vector of firm-level regressors x with ∆Yt−1, which is the
previous quarter’s GDP growth, to control for the differential sensitivity
of firm markups to the business cycle, following Ottonello and Winberry
(2020).

Furthermore, εmt ≡
∑h

k=−4 ε
m
t+k is the series of monetary policy

shocks from Jarociński and Karadi (2020), while Xi,t is a vector of con-
trols that includes firm-level variables such as sales growth and overhead
costs to sales, and macro-level controls like GDP and CPI growth, 1-year
treasury rate change, EBP, and fiscal quarter dummies to account for sea-
sonality. Following standard practices in the literature, we include control
variable lags (up to 4) and measure the controls and the variables in vector
x at the end of the quarter before the arrival of the monetary policy shock
to ensure exogeneity with respect to it. We then allow for firm (ϕi,h), and
sector-time (ϕs,t,h) fixed effects (FE) to control for the unobserved time-
invariant heterogeneity at the level of the firm and to absorb time-varying
shocks that are common to all firms in a given industry. We also include
a linear and quadratic trend (ϑht). Saturating the regression in 3.3 with
these FE implies that, first, our coefficients of interest are identified by
within-firm variation over time, namely by changes in the markups res-
ponse of an otherwise identical firm when it is old compared to when it
was young. Secondly, our estimation fully exploits the cross-sectional va-
riation across firms in a given industry. Finally, we cluster the standard
errors at the firm and quarter level to account for correlation in the error
term.5

As mentioned in the previous paragraph, our main coefficient of in-
terest is given by γage,h, which captures the differential h-quarter growth

5Clustering at the firm level allows for a fully flexible dependence in the error terms
across time within each company. Clustering by time is necessary whenever firm-level
shocks are correlated within a quarter and if this effect may go potentially above the
co-movement caused by industry-level shocks already captured by the sector-quarter
dummies. We note that the confidence intervals on estimates would be significantly
lower without clustering at the quarter-level.
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Figura 3.1: Markups Response to a Monetary Policy Tightening
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Notes: Within each quarter, firms’ markups are winsorized at the 1% and 99% cutoff, to avoid any outlier to
drive our results. Confidence intervals at 90% and 68%, which approximates one standard deviation.

of markups for firms above the median age after a 25 basis point hike in
the interest rate (which corresponds to a rise of a quarter of a percent).
Since we are including quarter FE and hence controlling for the time va-
riation of the shock, the coefficient γage,h can precisely identify the excess
cyclicality of older firms’ markups. In particular, 3.1 reports the impul-
se response function obtained from the OLS-estimation of γage,h in 3.3,
along with standard confidence intervals around the point estimates. The
magnitude of the γage,h coefficient suggests that being above the median
age before a contractionary monetary policy shock hits can imply up to a
+3% statistically significant difference in the subsequent response of firm
markups.

Interestingly, older firms’ markups respond more countercyclically to
a monetary policy tightening, with the cumulative effect lasting for at le-
ast 16 quarters after the shock. It is important to stress that we control
for firm’s FE and for other crucial determinants of between-firms hetero-
geneity studied by the literature, namely size, leverage and liquidity. Yet,
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none of the interactions between these three firm-level variables and the
monetary policy shock are statistically significant predictors of markups
heterogeneous response to interest rate changes, as further reported in the
Appendix. Moreover, as in Cloyne et al. (2018), we note that firm age is
pre-determined and cannot vary as a result of changes in monetary policy.
In contrast, size, leverage and liquidity endogenously respond to shocks
and vary over the business cycle, which can in turn affect the ranking of
firms in the distribution of these variables. In this sense, even if there
was any, it would be hard to interpret markups (ex-post) heterogeneity as
being driven by ex-ante differences in these specific firm characteristics.
Contrary to that, we establish that firm age can significantly determine
the differential response of producers’ markups to MP shocks, above and
beyond other relevant firm characteristics.

The relative response of markups of old companies estimated through
3.3 does not allow to understand the separate response of markups of firms
in different age categories to monetary policy shocks. In particular, the
regression specification in 3.3 is saturated with industry and time FE that
span out completely the time-series variation common across all firms.
Hence, we proceed to estimate the following regression specification for
firms above and below the median age:

∆h log µi,t+h = ϕi,h + ϑht+
L∑
`=1

δ′hXi,t−` +
h∑

k=−κ

γkhε
m
t+k + ui,t+h

(3.4)

with horizons h = 0, 1, . . . , H and H = 20 quarters. Note that the de-
pendent variable is the cumulative change in markups for any firm i at
horizon h, which is defined as:

∆h log µi,t+h ≡ log µi,t+h − log µi,t−1

Hence, in this second specification, we simply exploit the time-variation
and look at the absolute change in markups after a change in the interest
rate set by the FED for firms of different age categories, while the coeffi-
cient of interest γh is estimated for each age group separately. Note that
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εmt ≡
∑h

k=−4 ε
m
t+k is again the series of monetary policy shocks from

Jarociński and Karadi (2020). Moreover, Xi,t is a vector of controls that
include firm-level variables such as sales growth and overhead costs to
sales, leverage, liquidity and assets, as well as macro-level controls like
GDP growth, CPI growth, 1-year treasury rate change, EBP, and fiscal
quarter dummies. Importantly, we also include control variable lags (up
to 4). We allow for firm’s FE (ϕi,h) to account for time-invariant firm-
heterogeneity, and also add a linear and quadratic trend (ϑht). Finally,
we cluster our robust standard errors at the firm and quarter level to ac-
count for correlation in the error term.

The results of our estimation are shown in 3.2: more specifically, the
left panel documents the cumulative response of markups for firms below
the median age to a negative movement in the FED interest rate, while
the right panel focuses on the markups response of companies above the
median age. This second estimation strategy further strengthens the in-
sight from 3.1, by documenting that older firms present a pronounced and
statistically significant countercyclical response in their markups after a
monetary policy tightening, while young firms’ markups move procycli-
cally, albeit the statistical significance of the estimated coefficient is much
lower. Importantly, note that this second specification estimates a dyna-
mic regression without the sector-time fixed effects and still shows that
the above-median age firms’ response in markups is nonetheless persis-
tent, peaking 8 to 10 quarters after the shock. Taken together, these fin-
dings seem to suggest that dominant companies do adjust upwards their
markups, whereas young firms’ markups are generally less sensitive to
monetary policy or tend to be adjusted downwards following a negative
change in the FED interest rates. Finally, we check that our results hold
more generally when we focus on a different partitioning of the age dis-
tribution, by for example considering as ”old”those firms that are above
the third quartile and as ”young”firms all the others. Moreover, to have
a further understanding of the possible interaction between corporate age
and other firm-level characteristics, we also split old and young compa-
nies according to their position in the distribution of leverage, liquidity
and size, which are other dimensions of firm’s heterogeneity typically
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Figura 3.2: Firms’ Markups Response to a Monetary Policy Shock by
Age Category
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Notes: Within each quarter, firms’ markups are winsorized at the 1% and 99% cutoff, to avoid any outlier to
drive our results.

investigated in the literature that we have always controlled for in our re-
gression analysis. Corporate age is the crucial dimension determining the
heterogeneous response of markups to monetary policy shocks, while ot-
her firm’s characteristics – such as leverage, liquidity or size – are less
powerful or even insignificant predictors of the differential behavior of
markups at the company-level.

3.2.4 Discussion of Results

In what follows, we discuss the main robustness checks to further con-
firm the evidence on the role of age in shaping markups response to MP
shocks at the firm-level. First, we run alternative regression specificati-
ons that present minor differences with respect to our baseline case. In
particular, relative to the way we define the regressor of interest – namely
corporate age – our main result is robust to consider age groups by in-
dustry and quarter, and also to interact the interest rate shock series with
firm’s age in a linear fashion, thereby adopting a parametric estimation
strategy (similarly, we also linearly interact the MP shock series with the
leverage, size and liquidity of the firms). The results of these alternative
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specifications are reported in 3.12 in the Appendix and both confirm that
older firms present a stronger countercyclical response of markups to a
monetary policy tightening.

Secondly, we check that our insights are not driven by the specific
time span considered, in particular, by running again our estimation pro-
cedure on a sub-sample of the dataset that extends until the 2009 crisis.
This is due to the fact that the Great Recession was indeed a period of ex-
ceptional financial conditions and, at the same time, the post-2009 era was
characterized by a lower variation in the interest rate policy, with the fede-
ral funds rate often hitting the zero lower bound. However, as reported in
the right panel of 3.3, our results acquire a stronger statistical significance
when the post-2009 era is excluded, and are hence not driven by specific
period conditions only. Moreover, we also replicate our estimation using

Figura 3.3: Using GSS Shocks (left) and Focusing on pre-2009 period
(right)
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Notes: Within each quarter, firms’ markups are winsorized at the 1% and 99% cutoff, to avoid any outlier to
drive our results.

the monetary policy shock series from Gürkaynak et al. (2005) (hereafter
GSS), which does not remove the informational component when mea-
suring the interest rate surprises based on the 30-minute windows around
FED policy announcements. As it is possible to check from the left panel
of 3.3, the coefficient on the interaction between the MP shock and firm’s
age – γage,h – is economically relevant and significant, confirming that
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firms above the median age present an excess counter-cyclicality in their
markups response to a monetary policy tightening, and that this differen-
tial effect lasts for an average horizon of 16 quarters after the shock.

Finally, our findings are robust to excluding future shocks from the
estimation, as well as sector-quarter fixed effects, as reported in 3.13. In
particular, future shocks were included among the regressors to control for
the presence of auto-correlation and to increase the estimation precision,
despite of the fact that the monetary policy shock series we have used
should already be clear from confounding factors of this sort. Taking our
results together, we argue that corporate age is a robust driver of firm’s
heterogeneity in the cyclicality of markups response to a monetary policy
shock, and we hence proceed to briefly analyse the behavior of markups
over firms’ life-cycle.

3.2.5 Markups and Firm’s Life-Cycle

After having estimated the heterogeneous response of firms’ markups to
MP shocks, we provide a further discussion on why old and young com-
panies may possibly show such stark differences in cyclical behavior of
their respective markups. As mentioned before, corporate age has been
investigated to be an important element of firm’s employment and leve-
rage dynamics over the business cycle by the works of Haltiwanger et al.
(2013), Dinlersoz et al. (2018), and Pugsley et al. (2019). Interestingly,
Cloyne et al. (2018) have studied how corporate age can determine in-
vestment heterogeneity across firms, especially in response to interest
rate changes. Specifically, by documenting that the investment and the
borrowing of younger firms paying no-dividends exhibit a large and sig-
nificant decline in response to a tightening of the monetary policy, the
authors argue that such companies are more likely to face financial fricti-
ons. In their view, this can also rationalize why the borrowing of young
and non-dividend paying firms is far more sensitive to fluctuations in co-
llateral values compared to other businesses, for which their results turn
less significant.

In a similar in spirit, we argue instead that firm age matters signifi-
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cantly for the profile of markups and their response to a MP shock. In
particular, it is reasonable to assume that corporate age may capture how
established is a firm in her (unobservable) product market. Older firms,
by means of having competed and produced in their given markets for a
longer period, may be able to charge higher prices to consumers and hence
be less subject to the downward pressure exerted on prices by a monetary
policy tightening. In fact, according to the theoretical expression of firm-
level markups, a negative interest rate shock puts a negative pressure on
both input costs and prices. However, if older firms are able to decrease
their prices by relatively less by taking advantage of their established posi-
tion within a market, this may rationalize a more countercyclical markups
response to a monetary tightening. To provide suggestive evidence of how
corporate age is related to firm’s established position in a given market,
we examine the profile of markups (µi,t) and selling expenditure (sri,t)
over the business life-cycle using Compustat data. In particular, we run
the following regressions:

log µi,t = α +
A∑
a=2

γa1{agei,t=a} + ϕs,t + εi,t

where ϕs,t are sector and quarter fixed effects. Not only old firms are on
average big, but they most importantly tend to have higher markups, as
documented in 3.4. The main takeaway from 3.4 is that firms are able to
charge higher markups (hence higher prices) as they grow older. We in-
terpret this suggestive evidence as an indicator that older companies may
have already secured their customer base enough to be less inclined to
drastically reduce prices in response to a negative monetary policy shock,
resulting in the stronger markups counter-cyclicality documented in the
previous paragraphs. Since we argue that firm age is a proxy for how es-
tablished a production unit is in her given market, we will then rationalize
our findings into a NK model with heterogeneous firms, demand accumu-
lation and endogenous markups that not only will generally differ across
producers but that will be further allowed to grow according to the firm’s
life-cycle.
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Figura 3.4: Markups over Firm’s Life-Cycle
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3.3 The Model

In this section, we outline our theoretical framework and discuss how
each assumption relates to and can deliver qualitative predictions in line
with the evidence from the data. In particular, we enrich a relatively stan-
dard NK to accommodate three main novelties: first, we allow for full
heterogeneity on the supply side of the economy, by including heteroge-
neous intermediate firms that produce a different variety of input used in
the final good sector. Secondly, we introduce a simple form of demand
accumulation that makes the demand for the good of a given firm incre-
ase with the time that the firm survives on the market. Third, we embed
endogenous and variable markups in the economy, which differ across
companies according to the quantities they produce, and that also evol-
ve along with the life-cycle of the firms. We now proceed to present the
model in full details below.

3.3.1 Household’s Side

Time is continuous. The model features a representative household that
optimizes the discounted flow of utility from consumption and labor over
an infinite lifetime horizon, where we indicate the discount factor as ρ ≥
0. We assume that the utility of the agent is strictly increasing and con-
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cave in consumption, and strictly decreasing and convex in the amount of
hours worked respectively. Preferences are time-separable and the infinite
stream of household’s utility is hence given by:∫ ∞

0

e−ρt
(
C1−ν
t

1− ν
− L1+γ

t

1 + γ

)
where ν represents the risk aversion in the CRRA utility function over
consumption, whereas γ is the inverse of the Frisch labor elasticity. Mo-
reover, Lt ∈ [0, 1] are the hours supplied as a fraction of the time en-
dowment (normalized to 1), while Ct denotes the aggregate consumption
good. In each period, the household can borrow in bonds Bt at the real
interest rate rt. Finally, the household owns all the firms in the economy,
while labor supply, aggregate consumption and bond investment paths are
chosen as a result of a value maximization problem subject to a standard
budget constraint:

V = max{
Ct,Lt,Ḃt}

∫ ∞
0

e−ρt
(
C1−ν
t

1− ν
− L1+γ

t

1 + γ

)
dt (3.5)

s.t. Ct + Ḃt = WtLt + rtBt +Dt (3.6)

where we denote by Dt the dividends from the firms and by Wt the wage
earned by the household in real terms. As we will explain below, rt will
be determined by the monetary policy and Fisher equation, while Wt is
determined by the market clearing condition for labor. Solving for the
optimal value of consumption and labor, we get the following standard
Euler and labor supply equations:

r =ρ+ ν
Ċ

C
(3.7)

LγCν =
W

ϕ
(3.8)

3.3.2 Final Good Producer
A competitive representative final-good producer aggregates a continuum
of intermediate inputs indexed by i ∈ [0, 1] according to the following
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expression: ∫ 1

0

K
(
ai,t

yi,t
Yt

)
di = 1 (3.9)

where we assume that intermediate inputs denote by yt are aggregated
using the Kimball aggregator K, with K′(·) > 0, K′′(·) < 0, and K(1) =
1. Notice that the CES aggregator obtains as a special case of the Kimball
aggregator, and namely when K(q) = q

σ−1
σ for an elasticity of substitu-

tion σ > 1. Importantly, ai,t is a stochastic demand process that will be
explained in due details in the next paragraph. For the moment, taking the
prices pi,t of any intermediate input i as given and normalizing the price
of the final good to 1, the final good producer minimizes production costs
subject to 3.9. The optimality condition of this problem gives rise to the
inverse demand function for good i:

pi,t = K′
(
ai,t

yi,t
Yt

)
ai,tDt (3.10)

where:

Dt =

(∫ 1

0

K′
(
ai,t

yi,t
Yt

)
ai,t

yi,t
Yt
di

)−1

(3.11)

is a demand index. In the CES case K(q) = q
σ−1
σ this index is a constant,

so that Dt = σ
σ−1

and 3.10 reduces to the familiar constant elasticity de-

mand curve given by pi,t =
(
ai,t

yi,t
Yt

)−1
σ

. To keep the exposition concise,
further derivations related to 3.10 and 3.11 are contained in the Appen-
dix. Moreover, we use the Klenow and Willis (2016) specification for
K(q) given by:

K(q) = 1 + (σ − 1) exp

(
1

ω

)
ω
σ
ω
−1

[
Γ

(
σ

ω
,

1

ω

)
− Γ

(
σ

ω
,
qω/σ

ω

)]
(3.12)

where σ > 1, ω ≥ 0 and Γ(s, x) is the upper incomplete Gamma function
such that Γ(s, x) :=

∫∞
x
ts−1e−tdt. In particular, ω is the super elasticity,
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which is 0 in the CES aggregator. Finally, we can derive an analytical
expression for the elasticity of demand εdi that is faced by a producer of
any good variety i as a function of the relative quantity of good i in the
economy, which is given by:

εdi = σ

(
ai,t

yi,t
Yt

)−ω
σ

, ω ≥ 0

As already pointed out, the standard CES case is recovered when ω = 0
and hence the elasticity of demand εdi = σ is constant across producers.
In contrast, in the case of Kimball aggregator the elasticity of substitution
is lower for firms with higher relative quantity x = a y

Y
, implying that

larger firms can choose higher markups, in a similar spirit to the different
set up adopted in Atkeson and Burstein (2008) and as further made clear
in 3.5. When ω > 0, the extent to which a firm’s markup increases with
its relative size is determined by the ratio σ/ω, which will also be shown
to quantitatively matter in shaping how markups change with monetary
policy later on in the analysis.

Figura 3.5: Kimball Aggregator
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3.3.3 Intermediate Good Producers
Each intermediate good i is produced by a monopolistically competiti-
ve firm using effective units of labor `i,t in the production process and
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according to the technology given by:

yi,t =`1−α
i,t (3.13)

with α ∈ [0, 1]. In each time t, firms hire labor at wage Wt in a competi-
tive labor market. As already mentioned, intermediate producers are mo-
nopolistic competitors on their respective markets and each one of them
faces a demand function which can be written explicitly from 3.10 as:

yi,t =

(
1− ω log

(
σ

σ − 1

1

ai,t

pi,t
Dt

))σ/ω
Yt
ai,t

(3.14)

Moreover, each intermediate firm i is characterized by a process of de-
mand accumulation given by ai, which shows some persistence ρa and
an idiosyncratic risk component given by ξadW (as we work in continu-
ous time, note that dW is a standard Wiener process). We also include a
drift ā that allows for the demand to grow over time, generating a realistic
life-cycle profile. It is important to stress that we load the heterogeneity
across firms that we see in the data in this specific process, which is meant
to capture in a reduced-form the fact that markups and size increase with
the firm’s life-cycle. Such demand process may actually rationalize some
underlying form of customer accumulation or, alternatively, a latent phe-
nomenon of consumers habit formation. In other words, one can think
about it in the sense that the more consumers experience the good of a
given firm i, the more inelastic their demand for that specific item would
consequently be.

Intermediate firms in this economy, characterized by the demand pro-
cess a, maximize the discounted stream of profits by choosing prices.
Hence, at each instant in time, the state of the economy is given by the
joint distribution λt(da, dp). Finally, intermediate producers discount fu-
ture profits at the rate rt + δ, where δ is the exogenous Poisson intensity
that determines firm’s exit. Exiters are replaced by new firms with an
initial a0 drawn from a log-normal distribution of mean aentry and stan-
dard deviation ξa,entry, which will be further discussed in the calibration
exercise. Moreover, intermediate firms bear Rotemberg adjustment costs
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when changing prices, which we assume to be proportional to their sa-
les and quadratic. We can summarize the problem of a given firm i as
follows:

Ji,0 = max
{ṗi,t,`i,t,yi,t}t≥0

E0

∫ ∞
0

e−
∫∞
t (rt+δ)dt

{
pi,tyi,t −Wt`i,t −

ϑ

2

(
πt +

ṗi,t
pi,t

)2

pi,tyi,t

}
dt

(3.15)

s.t. yi,t =

(
1− ω log

(
σ

σ − 1

1

ai,t

pi,t
Dt

))σ/ω
Yt
ai,t

(3.16)

yi,t = `1−α
i,t (3.17)

ȧi,t = ρa(a− ai,t)dt+ ξadWi,t (3.18)
pi,0 and ai,0 given (3.19)

Importantly, the initial price set by entrant firms p0 is the one that maximi-
zes the expected value Ji,0 for a given initial value of firm’s productivity
ai,0. Note that, in the solution process, the demand process given by ȧi,t is
exponentiated. Intermediate firms take as given equilibrium paths for the
real wage {Wt}t≥0 and the interest rate {rt}t≥0. In steady state, the recur-
sive solution to this problem consists of decision rules for labor `(a, p;S)
and output y(a, p;S), with S := (r,W, Y,D, π). These rules in turn al-
so imply optimal drifts for prices, and together with a stochastic process
for a, induce a stationary joint distribution of firms given by λ(da, dp;S)
and characterized by a standard Kolmogorov forward equation. Out of
the steady state, each of these objects is time-varying and depends on the
time path of prices and policies: {St}t≥0 := {rt,Wt, Yt,Dt, πt}t≥0.

3.3.4 Monetary Authority
Our model economy features a monetary authority that sets the nominal
interest rate according to a standard Taylor rule, penalizing deviations
from the optimal inflation rate π∗ in the following way:

it = φπ(πt − π∗) + ρ+ εmt (3.20)
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where φπ > 1, ρ is the discount factor and εmt is the monetary policy shock
that can be mapped directly to the series from either Jarociński and Karadi
(2020) or Gürkaynak et al. (2005) that we have used in the empirical
analysis of the paper. Note that εmt = 0 in steady state: one of our main
quantitative exercises will be precisely to study the economy’s adjustment
after an unexpected temporary monetary shock, namely after a change in
εmt . Finally, given inflation πt and the nominal interest rate it, the real
return on bonds rt is determined by the Fisher equation rt = it − πt.

3.3.5 Equilibrium Condition
An equilibrium in this economy is defined as a set of paths for individual
household’s {Ct, Lt}t≥0 and firm’s decisions {ṗi,t, `i,t, yi,t}t≥0, input pri-
ces {Wt}t≥0, the return on bonds {rt}t≥0, the inflation rate {πt}t≥0, the
distribution of firms {λt}t≥0, the demand index {Dt}t≥0, and aggregate
quantities such that, at every t: (i) the household and the firms maximize
their objective functions taking as given equilibrium prices and aggregate
quantities; (ii) the sequence of distributions satisfies aggregate consis-
tency conditions; (iii) all markets clear. There are three markets in our
economy: the bond market, the labor market, and the goods market. The
bond market clears when the following holds:

Bt = 0 (3.21)

Moreover, the labor market clears when:

Lt =

∫
`t(a, p)dλt (3.22)

Finally, the goods market clears according to:

Ct = Yt −
∫
ϑ

2

(
πt +

ṗt(a, p)

p

)2

py(a, p)dλt (3.23)

where Ct is the total real expenditure in consumption, Yt is aggregate
output, and the last term is the sum of adjustment costs to prices paid by
intermediate firms.
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3.4 Quantification

In what follows, we proceed to explain the quantification of our model,
including the calibration strategy and the overall fit of both targeted and
untargeted moments computed from available US data. In particular, we
discuss the ability of our theoretical framework to replicate salient fea-
tures of the markups and firms’ distribution, which is a crucial property
needed to provide a link with the empirical analysis of the previous secti-
ons. Once quantified, the model is then used in 3.5 to study and analyti-
cally decompose the impulse response functions of firms’ markups after
a negative monetary policy shock. Moreover, in 3.5, we also compare
the amplification mechanism implied in our framework with respect to a
standard representative firm New Keynesian model.

3.4.1 Calibration

A model period in one quarter. Of the 14 parameters we need to calibrate,
8 are fixed outside of the model, for which we pick common values used
in the literature. In particular, we set the risk aversion ν = 2 and the disu-
tility of labor γ = 2, while the discount factor ρ = 0.012 is specified to
deliver a yearly interest rate of 5% in equilibrium. With respect to the pa-
rameters related to firms’ life-cycle, technology and pricing behavior, we
fix the quarter exit rate δ = 0.024 to imply that 10% of the firms exit each
year, and the returns to scale α = 0.33 such that the labor share is around
0.6 in equilibrium. Moreover, it is important to specify that we normalize
at 1 the mean demand aentry faced by entrant intermediate firms, while
the demand dispersion ξa,entry at entry is set to be equal to the dispersion
of the demand process faced by incumbents.6 Finally, the monetary po-
licy coefficient φπ = 1.5 in the Taylor rule is chosen to replicate a similar
strategy as in Taylor (1999) and Galı́ (2015). The full list of both fixed
and fitted parameter, as well as targeted moments, is presented in 3.2.

6Our results do not depend on this choice, which is just a simplification for the sake
of the estimation procedure.
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Taula 3.2: Estimated Parameters and Targeted Moments

Fixed Value Description
ρ 0.012 Discount factor
ν 1 Risk aversion
γ 2 Inverse Frisch elasticity
α 0.33 Production function curvature
δ 0.024 Exit rate
aentry 1 Mean demand entrants
ξa,entry 0.11 Demand dispersion entrants
φπ 1.5 Taylor rule coefficient
Fitted Value Description Moments Model Data
θ 20 Price adjustment cost Avg. cost change prices over sales 0.11 0.09
σ 4 Elasticity of demand Avg. markup 1.68 1.68
ω 5.1 Superelasticity of demand Elasticity markups to sale shares 0.11 0.10
a 2 Mean demand Median markup 1.37 1.30
ξa 0.11 Demand dispersion Markups standard deviation 1.23 1.22
ρa 0.02 Demand mean reversion Markups growth between age 0-5 0.24 0.22

Note: Empirical estimates for fitted parameters from Compustat Data (1990Q1-
2016Q4). For the fixed parameters, see text.

In addition to that, we need to endogenously assign values to the re-
maining 6 parameters, for which we match as many salient moments from
available US data. To begin with, we set the price adjustment cost factor
θ = 20 such that the average ratio between the cost paid by firms to chan-
ge prices and their sales is the same in the model and in the data.7 As
standard in the literature, we set the elasticity of demand σ = 4 to match
an average markup of 1.68 computed in the sample of Compustat firms:8

this parameter determines the level of substitutability across the output of
different producers in the model, and hence influences the average market
power in the economy. Moreover, the superelasticity of demand ω is fitted

7Estimates for vary between 0.04 for physical costs and 0.09 for customer costs, see
for example Levy et al. (1997) and Zbaracki et al. (2004). As in Golosov and Lucas
(2007) and Baley and Blanco (2019), we choose a value in between those.

8We use Compustat Data between 1990Q1 and 2016Q4. For the empirical definition
of markups, see 3.2.
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such that the elasticity of markups to sale shares in the model is the same
as in the data. In particular, our choice is motivated by the fact that the
parameter ω in the Kimball aggregator is tightly linked to the relationship
between the relative size of the firms and their markups: if ω was to be
0, such relationship would be null because all firms would have the same
markup independently of their size. On the contrary, for ω > 0, the higher
the ω the higher the dependence of markups on sales shares. To this end,
using Compustat firm-level data, we empirically estimate the elasticity of
(log) markups to (log) sales shares according to:

log µi,t = β ∗ log(sales shares)i,t + ϕs,t + εi,t (3.24)

where ϕs,t are sector-time FE and the coefficient β precisely informs by
how much markups are linked to firms’ sales shares. In the model, we use
the theoretical definitions of markups and sales shares.

Finally, turning to the parameters related to the demand accumulati-
on process, the mean demand is set to match the median markup in the
US economy, as a identifies the distance between the average demand fa-
ced by entrants and incumbents, and hence relates to the skewness of the
markup distribution. Furthermore, the dispersion in the demand process
faced by incumbent firms ξa is identified from the standard deviation of
markups, while the mean reversion in the demand process ρa is picked to
match the growth of markups for firms between age 0 to 5. In particular,
a higher mean reversion in the demand process impacts how fast firms
grow, and therefore relates to the trajectory of markups over the firm’s
life-cycle.

3.4.2 Quantitative Fit
In the following paragraphs, we present and discuss our main validati-
on exercises, which provide a overview of the quantitative fit of our fra-
mework with respect to empirical moments and data features that have not
been targeted in the calibration. In particular, we first discuss the cross-
sectional and life-cycle characteristics of firms in our model, and how
they compare to their empirical counterparts from Compustat. Secondly,
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we dig into the properties of the markup distribution and then analyse
markups dynamics over the firm’s life-cycle. Finally, we conclude with a
note on the model and data-implied elasticity of wages to sales and relate
it to the behavior of markups under the Kimball aggregator case and in
imperfect competition, following similar lines as in Edmond et al. (2018).

Implications for Markups in Steady State

One of our main validation exercises is to look at the properties of markups
in the data and compare them with the ones implied by our quantitative
framework. Importantly, in 3.2, we have shown that markups increase
with the age of the firm, and argued that such behavior may in princi-
ple be due to the fact that, as businesses advance along their life-cycle,
they are also able to establish their position in their respective markets
and progressively accumulate demand for their products. This in turn
allows producers to progressively charge higher prices and hence set hig-
her markups. Accordingly, the left panel in 3.6 reports the pattern of
markups over firms’ life-cycle both in the model and in the data. In par-
ticular, we remind the reader that the empirical series has been computed
using Compustat data between 1990Q1 and 2016Q4 and netting out sec-
tor and time FE.

On the one hand, the model slightly underestimates the rapid increase
of markups in the first 5 years of a firm’s life, whereas it tends to modestly
overestimate their subsequent growth in the next years.9 On the other
hand, our calibrated framework can replicate qualitatively the growth of
markups over firm age and match more than half of the quantitative fea-
tures of the relationship between markups and the life-cycle of producers.
Importantly, it needs to be stressed that the ability of the model to imply
life-cycle markups’ properties consistent with the empirical observations
will prove crucial when assessing the differential response of firms to in-
terest rate shocks. In fact, as documented in 3.2, old firms’ markups show

9The fit is very precise during the first years of business operations which is due to
the fact that, in our calibration, we target the mean reversion in the demand process ρa
to match the growth of markups for firms aged 0 to 5.
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a more countercyclical response after a negative MP shock: absent the fit
of the life-cycle profile of markups, our model would then not be able to
replicate the heterogeneous response of markups to a MP shock according
to firms’ relative age.

Figura 3.6: Markups Steady State Properties
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Secondly, as illustrated in the right panel of 3.6, we can reasonably
match the entire distribution of markups estimated from Compustat da-
ta. In particular, while a couple of distributional properties have been
indeed targeted in the calibration, the model itself delivers a fat right tail
in the distribution of markups consistent with our empirical observations
and with the analysis of De Loecker et al. (2020). As reported in 3.3,
our quantitative framework implies that the bottom 25% firms in the dis-
tribution have an average markup of 1.15, against an empirical value of
1.03 computed in the data, while a similar fit holds for the top 75% firms.
Matching the right proportions of high and low-markup firms’ will pro-
ve crucial when comparing the response of firms’ markups to a monetary
policy shock across companies that are below or above the median age.

The Link between Wages and Sales

While the superelasticity parameter ω has been identified by computing
the elasticity of markups to sales shares, our calibrated model has also a
testable prediction on the relationship between the wage bill and the sales
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Taula 3.3: Distributional Properties of Markups

Model Data

Bottom 25% Firms 1.15 1.03

Top 75% Firms 1.79 1.86

of firms, which we can match as an untargeted dimension. In particular,
recall that markups are a measure of whether firms can set prices above
their marginal costs. Similarly to Edmond et al. (2018), in our theoretical
set up the salaries paid by firm i hence depend on its sales and markup
according to a simple expression given by:

wage bill =
sales

markup

Moreover, if the superelasticity ω in the Kimball aggregator was equal
to zero as in the standard NK model, markups would not increase with
firm sales and, in turn, the wage bill shares would increase one-for-one
with sales shares. But when ω is strictly positive, as in our framework,
markups do increase with firms sales, implying that the wage bill incre-
ases less than one-for-one with sales. In this sense, both empirically and
quantitatively, the extent to which the wage bill share of firms increa-
ses with their sales shares can therefore be linked to the extent to which
markups increase with producers’ size. A small caveat to keep in mind is
that Compustat does not report a precise measure for firms’ wage bills but
only a balance sheet item related to the cost of goods sold. This variable
comprises the cost of all variable inputs used in production, included (but
not exclusively) labor. Nevertheless, we exploit the available data to run
the following regression:

log(wage bill shares)i,t = β ∗ log(sales shares)i,t + ϕs,t + εi,t (3.25)

where ϕs,t are sector-time FE and the coefficient β precisely informs by
how much variable input costs are linked to firms’ sales shares. A value
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of the elasticity β < 1 confirms the fact that, absent perfect competition
– as in our model –, firms increase sales by increasing prices, thereby
suppressing produced quantities. In turn, this mechanism implies that
growing firms also demand less employment, which creates a wedge such
that wage bill shares do not move one to one with sales shares. The results
of the empirical estimation and quantitative fit are reported in 3.4.

Taula 3.4: Estimated Relationship between Wages and Sales

Model Data

Elasticity of Wage Bill Shares to Sales Shares 0.87 0.88

Cross-sectional and Life-Cycle Properties

In our last exercise, we analyse the distribution of firms by age and the
life-cycle profile of both employment and sales growth rates for the bu-
sinesses in our model economy. In 3.7, we report the distribution of
firms and employment shares by age, comparing the empirical ones from
Compustat (1990Q1-2016Q4) to the ones obtained in our quantified fra-
mework. Note that none of these distributions was targeted in the cali-
bration of the model, and hence both comparisons are to be considered as
a pure validation exercise. First, focusing on the left panel, one can ob-
serve that our framework succeeds in replicating the distribution of firms
over their age, and only partially underestimates the share of businesses
that are 11+ years old. In this sense, as most of our empirical analysis is
highly focused on markups’ properties over the life-cycle of firms, it is
remarkably important that we are able to capture the correct number of
firms per age bin. In fact, the share of companies in each age bin influen-
ces the heterogeneous response of markups’ to monetary policy shocks,
and hence is relevant to get a correct quantitative fit of the empirically
estimated dynamics of markups by firms’ age.
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Figura 3.7: Distributions of Firms and Employment Shares by Age
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Secondly, in the right panel of 3.7, we plot the distribution of em-
ployment shares over firm age, comparing the empirical ones with their
model-implied counterparts. As it becomes clear from the graph, our
framework is able to match only up to half of the right tail in the em-
ployment share distribution. This is precisely due to the fact that, in the
model economy, big firms (and hence old firms), find optimal to increase
sales by increasing prices, thereby suppressing produced quantities and
employment demand. This mechanism is a key characteristic of our set
up in which companies operate in an environment with imperfect compe-
tition, and it is hence responsible for the fact that 11+ years old firms in
the model generate a lower employment share compared to their empiri-
cal counterpart. Nonetheless, from this particular validation exercise we
are still able to get a satisfactory fit of both firms and employment share
distributions over the age of the businesses.

As a final note, in 3.8 we plot the average employment and sales
growth rates over the life-cycle of firms. Understandably, both measu-
res decrease over time, as companies become old and hence slow down
in their growth processes: this means that growth rates are unconditio-
nally negatively correlated with age, as empirically noted in Dunne et al.
(1989). However, sales grow relatively more than employment, which is
indeed consistent with the early discussion related to the employment sha-
re distribution depicted in the right panel of 3.7. In particular, as argued
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in the previous paragraphs and due to the presence of the Kimball aggre-
gator, markups do increase with firms sales, implying that the wage bill
increases less than one-for-one with sales, depressing the labor demand
by firms and resulting in lower employment growth rates compared to the
growth rate of firm’s sales. In other words, due to market power, com-
panies can increase sales by raising prices and decreasing output, which
lowers their demand of labor and hence employment growth.

Figura 3.8: Employment and Sales Growth Rates
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3.5 Results

In the following section, we begin by discussing the response of firm
markups to interest rate shocks, and compare the relative response of old
and young firms in the model with the ones obtained in the data and repor-
ted in 3.2. Secondly, having assessed how much of the heterogeneity in
response of markups to interest rates by firm age our model is able to re-
plicate, we also illustrate by how much the changes of aggregate variables
such as output and wages after a MP shock contribute to the differential
response of markups of old firms with respect to young ones. Finally,
we conclude by analysing the amplification of shocks at work in our fra-
mework compared to a one-firm NK model.
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3.5.1 Response of Markups to Monetary Policy Shocks

We proceed to illustrate the dynamics of the economy after the arrival of a
negative MP shock and to compare the relative response of old firms and
young firms’ markups to the ones obtained from the data and discussed
in 3.3. As standard in frameworks characterized by nominal rigidities, a
negative MP shock features an increase in the nominal interest rate and
implies a downwards pressure on the labor cost W . Parallel to that, both
employment, consumption and output decrease on impact and slowly re-
cover as the shock fades away, while the downwards pressure on prices
determines a deflationary episode. Moreover, the aggregate markup in-
creases as a result of decreasing labor costs, and hence shows a coun-
tercyclical behavior in response to negative shocks to the nominal interest
rate. The aggregate response of our calibrated economy hence resembles
qualitatively the one of a standard NK textbook model, as in Galı́ (2015).
However, the aggregate pattern of markups masks a noticeable degree of
heterogeneity at the firm-level which we explore in what follows.

To obtain a comparable set up to our empirical analysis, we first cate-
gorize firms in our model economy by their age decile and then classify
all businesses above the median age as ”old”and below the median age
as ”young”. We simulate the hit of a negative MP shock, otherwise de-
fined as an exogenous increase in the nominal interest rate. Similarly to
the empirical analysis in 3.1, we then compute the differential response of
markups to a MP shock for firms above the median age compared to firms
below the median age. 3.9 plots the differential response of markups by
firm age over a horizon of several quarters and in deviation from the mean
response. Clearly, firms above the median age respond more countercy-
clically to a negative MP shock compared to businesses below the median
age, consistent with the empirical evidence documented in Compustat da-
ta.

Moreover, the differential response of old firms markups upon a ne-
gative MP shock in the model peaks at a value of 0.6%, while empirically
it goes up to 3%. Importantly then, our quantitative framework is able to
replicate 20% of the excess counter-cyclicality of old firms’ markups to
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Figura 3.9: Markups IRFs After a Negative MP Shock
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MP shocks that we have estimated in Compustat. In turn, this represent a
satisfactory quantitative validation of our framework, which is hence able
to replicate both qualitatively and quantitatively the heterogeneity in the
response of markups by firm age to MP shocks that has been documented
in the data.

3.5.2 Decomposing the Differential Response of Markups
Analytical Result under Flexible Prices. In what follows, we show that
the combination of the total derivatives of the demand function and the
desired markup respectively gives the opportunity to understand the hete-
rogeneous response of firm prices to changes in aggregate output Y , wage
W and the demand indexD. For the sake of analytical tractability, we first
carry out such decomposition in a version of the model without price ad-
justment costs. As derived in 3.3, the demand function in our theoretical
framework is given by:

y =

(
1− ω log

(
σ

σ − 1

1

a

p

D

))σ/ω
Y

a
(3.26)

while the desired markup can be written as follows:

αp

Wy
1
α
−1

=
σ
(
y
Y
a
)−ω/σ

σ
(
y
Y
a
)−ω/σ − 1

≡ µ(a) (3.27)
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where µ(a) denotes the markup and increases in the demand faced by
the firm. From these two equations, we can derive a set of expressions
linking the change in firm prices (and similarly markups) to changes in
aggregates W,Y and D and model parameters (see the derivations in the
3.8):

∂ log p

∂ log Y
=

1
α
− 1

1 +
(

1
α
− 1
) µ(a)
µ(a)−1

+ ω
σ
µ(a)

(3.28)

∂ log p

∂ logW
=

1

1 +
(

1
α
− 1
)

µ(a)
µ(a)−1

+ ω
σ
µ(a)

(3.29)

∂ log p

∂ logD
=

(
1
α
− 1
) µ(a)
µ(a)−1

+ ω
σ
µ(a)

1 +
(

1
α
− 1
)

µ(a)
µ(a)−1

+ ω
σ
µ(a)

(3.30)

where the standard CES equivalent, in the case of perfect competition,
can be obtained setting the Kimball superelasticity parameter ω = 0. No-
tice that all derivatives are positive, which means that the negative MP
shock negatively affects W,Y and D. Moreover, the first two derivatives
are decreasing in µ(a) and the third one increases in µ(a). The same ob-
servations hold true if we were to write the derivative of firm’s markup
with respect to Y , W and D. At the same time, the second derivatives
with respect to the demand faced by the firm are given by:

∂2 log p

∂ log Y ∂a
< 0,

∂2 log p

∂ logW∂a
< 0,

∂2 log p

∂ logD∂a
> 0 (3.31)

The signs of these second derivatives imply that the prices of firms facing
higher demand decline less after the MP shock due to the effects coming
from the decline in W and Y , whereas prices decline more due to the
decline in D. The aggregate effect prevailing in GE will then depend
on the specific parametrization. It is important to stress that, while these
derivatives have been taken with respect to the demand a face by firms,
there is a strong correlation and direct mapping between the accumulation
of demand and firm age progression. This ensures that we can safely
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interpret the above results as the effects of the changes in Y , W , D after
a MP shock on the prices of relatively older firms.

Benchmark Economy. The same decomposition is then carried out in
practice in the quantitative model with nominal rigidities. In particular,
we first compute numerically the general equilibrium response of the eco-
nomy to a negative MP shock. Then, taking as given the equilibrium paths
for the aggregate variables Y,W,D, r, π we look at the partial responses of
old firms’ markups to each of the shocks separately. Before commenting
on the quantitative results, we follow the same spirit as in Kaplan et al.
(2018) and provide intuition for the channels at play in our fully-fledged
economy with heterogeneous firms and endogenous markups. Let us first
write the difference between the average markups of old firms and the
average markups of young firms as a function of the equilibrium prices,
quantities, and inflation. We collect these terms in the vector {St}t≥0,
with St = {rt,Wt, Yt,Dt, πt}, and define the above-mentioned difference
M̂({St}t≥0) induced by the path of the monetary shock {εt}t≥0 from its
initial hit until it fully reverts to zero as:

M̂({St}t≥0) :=

∫
µt(p, a; {St}t≥0)1{gt(p, a) ≥ a}dλt

−
∫
µt(p, a; {St}t≥0)1{gt(p, a) < a}dλt.

(3.32)

where µt(p, a; {St}t≥0) is the firm markup, gt(p, a) is a mapping between
firm’s states and its age, a is the median firms’ age, and dλt(p, a; {St}t≥0)
is the joint distribution of prices and idiosyncratic demand. Totally dif-
ferentiating 3.32, we decompose the difference in the average markup
response between old and young firms at time t = τ as:

dM̂τ =

∫ ∞
τ

∂M̂τ

∂rt
drtdt︸ ︷︷ ︸

direct effect

+

∫ ∞
τ

(
∂M̂τ

∂Wt

dWt +
∂M̂τ

∂Yt
dYt +

∂M̂τ

∂Dt
dDt +

∂M̂τ

∂πt
dπt

)
dt︸ ︷︷ ︸

indirect effect
(3.33)

where the first term reflects the direct effect of a change in the interest rate,
which enters the Euler equation of the agents, holding the other variables
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of interest constant. The remaining terms in the decomposition reflect
the indirect effects of changes in inflation, the real wage, real output and
the demand index that arise in general equilibrium after the hit of the
MP shock. In practice, we need to compute each of these components
numerically. For example, the formal definition of the first term in 3.33,
which is the direct effect of changes in the real interest rate {rt}t≥0, is:∫ ∞

τ

∂M̂τ

∂rt
drtdt =

∫ ∞
τ

∂M̂({rt,W , Y ,D, π}t≥0)

∂rt
drtdt. (3.34)

This term is the partial-equilibrium response of the difference in the ave-
rage markups between old and young firm that face a time-varying real
interest rate path {rt}t≥0, but holding the paths for the real wage W , the
real output Y , the demand index D, and nominal inflation rate π constant
at their steady-state values. We calculate this term from the model by
feeding these time paths into the firms’ (and household’s) optimization
problem, computing the policy function and their markups for each firms,
and aggregating across firms using the corresponding distribution. The
other terms in the decomposition are computed in a similar fashion.

Figura 3.10: Decomposing the Differential Response of Markups
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The results of the decomposition exercise are depicted in 3.10. All ef-
fects are to be intended as p.p. deviations from the mean response across
all firms in the economy. The outer dark line represents the total GE effect
of a negative MP shock on the differential impulse response of markups
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for old firms compared to young ones. Also, note that the GE effect is
not a direct sum of the partial effects due to non-linearities in aggregati-
on. Most of the resulting effect on the differential response of old firms’
markups is to be attributed to changes in the aggregate W , hence to chan-
ges in the cost of labor after a negative shock to the interest rate. Since our
model features heterogeneous and endogenous markups in the presence of
a Kimball aggregator, big firms (and hence old firms) have a lower passth-
rough from production costs to prices. In this sense, a negative MP shock
in the economy puts a downward pressure on the labor input cost W , but
old firms’ sales react less than proportionally, as dominant companies do
not decrease prices as much. Since markups are the ratio between busi-
ness sales and costs, the resulting effect on markups is positive, leading
to the observed stronger countercyclical response of old firms’ markups
to a negative MP shock.

3.5.3 Amplification Mechanism

In what follows, we conclude our quantitative analysis by studying the
shock amplification mechanism at work in our economy, comparing our
calibrated framework with a standard one-firm NK model. As pointed out
in Mongey (2017), in economies where real rigidities are present, shocks
have a strong propagation through quantities, which we set to verify in
our case. Moreover, we proceed to also explain to which extent both firm
heterogeneity and the Kimball aggregator that characterize our model can
be responsible for greater swings in macro aggregates after a negative MP
shock.

To ensure we are working with two comparable economies, we first
calibrate the one-firm NK economy to have the same size as in our hete-
rogeneous firms framework (hereafter the FDNK) in terms of overall out-
put produced. Moreover, since the standard NK model features perfect
competition, we set the elasticity of substitution σ in its CES aggrega-
tor to match an aggregate markup of 1.68, which is the value targeted in
the FDNK model under the Kimball aggregator. With the two models at
hand, we simulate a negative MP shock and solve for the response of the
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Figura 3.11: Comparing Output and Inflation Responses
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main macroeconomic aggregates in the two economies. In particular, we
analyse the trajectories of inflation π and output Y over an 16-quarters
period, and hence compare the relative percentage deviation from steady
state values of both prices and quantities. The results of this exercise are
depicted in 3.11.

Comparing output and inflation responses across the two models, it is
clear that a negative MP shock produces a bigger drop in output and a mil-
der decline in prices in our FDNK set up compared to a standard one-firm
NK model. The negative change in the interest rate decreases output by
on average 20 p.p. more in the economy characterised by heterogeneous
firms and endogenous markups, with the effect lasting for more than 10
quarters after the shock hits. At the same time, prices and hence inflation
drop by relatively more in the one-firm NK model, which implies that the
presence of the Kimball aggregator and the differential passthrough that
characterize our model economy mitigate the downward pressure exerted
by the negative MP shock on firm prices.

On the one hand, as argued in Klenow and Willis (2016), the presen-
ce of the Kimball aggregator adds a source of real frictions in the NK
model, represented by a higher degree of concavity in the firm’s profit
function with respect to its relative price. Under the Kimball aggregator,
sellers face a price elasticity of demand that is increasing in their good’s
relative price. For instance, when a repricing producer faces lower labor
costs after a negative MP shock, it will temper its price drop because of
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the endogenous increase in its desired markup, and this effect would be
stronger the lower the elasticity of demand faced by the producer. Since
the presence of a real rigidity makes firms more reluctant to change pri-
ces, firms do not pass marginal cost shocks as fully onto their prices as
they would in a standard NK model with a CES aggregator. Hence, in our
FDNK set up, MP shocks propagate more through quantities than prices,
and decrease aggregate output by relatively more.

On the other hand, without heterogeneity on the firm’s side, the pre-
sence of the Kimball aggregator alone does not automatically imply the
amplification of shocks in our setup: in fact, the effects of the real rigidity
introduced by the Kimball aggregator kick in only when businesses are
indeed heterogeneous and hence characterized by different passthroughs
from costs to prices with respect to one another. If all firms were to be
equal (as in the representative-firm NK model), they would also be equal
to the average firm in the economy and have identical sales shares. Spe-
cifically, focusing on 3.10, the elasticity of demand faced by producers
would not vary across firm, and their response to MP shocks would be
identical. On the contrary, in our FDNK set up, since big firms (hence
old firms) respond more countercyclically than small ones and decrease
their prices by less, the propagation of a negative shock gets strengthe-
ned. Hence, the heterogeneity of firms, combined with the real rigidity
introduced by the Kimball aggregator set up, delivers the amplification
mechanism at work in the present model.

3.6 Conclusion

In this paper, we have taken an empirical and theoretical approach to the
study of firm heterogeneity in the response of markups to MP shocks.
In order to carry out our data analysis, we have merged exogenously-
identified monetary policy shocks series with a rich quarterly dataset com-
prising publicly-listed companies based in the US between 1990Q1 and
2016Q4. Next, we have documented that old firms’ markups tend to incre-
ase after a monetary policy tightening, while young firms’ markups show
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a mildly procyclical behavior after a negative interest rate shock. Moreo-
ver, our empirical investigation seems to also suggest that the differential
response of markups by firm’s age could be related to the accumulation
of customers and demand over time, which enables older firms to chan-
ge by relatively less their prices thanks to an established position in their
markets.

In our quantitative analysis, we have embedded our findings into a NK
model, augmented with heterogeneous firms and a process of demand ac-
cumulation, and in which markups arise endogenously and evolve over
the life-cycle of the companies. Our calibrated framework can replicate
the life-cycle profile of firms’ markups and growth rates, and the distribu-
tion of companies and employment shares by corporate age. Moreover,
we were able to explain up to a fifth of the empirically estimated excess
counter-cyclicality in the markups of firms above the median age after a
negative monetary policy shock. Finally, we have shown that both firms’
heterogeneity and endogenous markups generate amplification in the res-
ponse of aggregate quantities to contractionary interest rate movements,
which further distinguishes our set up from standard frameworks with no-
minal rigidities. In the future, we aim to further study optimal monetary
policies in the presence of imperfect competition, demand accumulation,
and heterogeneity in the passthrough from costs to prices.
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3.7 Data Appendix

Figura 3.12: Alternative Specification for Corporate Age
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Figura 3.13: Excluding Future Shocks (left) and Sector-Quarter FE (right)
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3.8 Quantitative Appendix

3.8.1 Decomposition Exercise: Derivations
The demand function in our model is given by:

y =

(
1− ω log

(
σ

σ − 1

1

ξ(a)

p

D

))σ/ω
Y

ξ(a)
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Which has the total derivative:

dlog
y

Y
ξ(a) = − σ(dlogp− dlogD)

1− ω log
(

σ
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1
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p
D

) = −σ
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Y
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)−ω/σ
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The desired markup is instead defined as follows:
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By taking the total derivative it is possible to get:
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Substituting in the above expression dy = Y
ξ(a)

d y
Y
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Y
dY = y(dlog y

Y
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dlogY ) it is possible to obtained the following equation:
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which in turn implies:
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Substituting dlog y
Y
ξ(a) from the total derivative of the demand function

we get:
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Where µ(a) is the markup. The above expression can be rearranged to
get the relative contributions of Y , W and D to the change in prices and
markups, reported in the main text.
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