
Aquesta tesi va ser llegida el dia .................................................................................
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Chapter 1

Introduction

Computational Failure Mechanics has attracted increasing interest over the past
years. However, there are still many aspects of this science that remain as open
tasks. The study of the postcritical behavior of solids is by no means trivial and
involves problems that range from finding an appropriate physical conception of
the phenomenon to formulating correct and efficient mathematical and numerical
models to describe it.

From the Continuum Mechanics point of view, failure is tightly related to strain
localization, which can be defined as a material instability characterized by the
presence of modes of intense deformation restricted to narrow regions in a solid.
This general definition includes phenomena such as slip-lines in metals, shear bands
in soils, and cracking in quasibrittle materials.

Perhaps, the most remarkable characteristic of localization is that it can occur
without the presence of special boundary conditions (it can occur even in homoge-
neous fields). In light of this feature, strain localization, as a material phenomenon,
is related to constitutive models with strain softening or with non-associative flow
rules. From the mathematical point of view, when dealing with inviscid materi-
als, the governing equations change of type when localization appears, rendering
the Initial Boundary Value Problem (IBVP) ill-posed. The absence of an internal
length scale leaves the width of the localization band undefined, which makes the
mathematical description of the problem become meaningless. As a consequence,
the corresponding numerical model may undergo pathological behavior if no precau-
tion is taken. For instance, when a standard Finite Element formulation is used,
a spurious strong dependence on the mesh size is observed. This manifold nature
of strain localization has resulted in the appearance of a variety of approaches to
study it.

The remaining of this chapter is organized as follows. Some approaches to Failure
Mechanics are briefly reviewed in Section 1.1. In Section 1.2, the approach adopted
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2 CHAPTER 1. INTRODUCTION

in this thesis is laid out. The objectives of this doctoral thesis are stated in Section
1.3. Section 1.4 gives an outline of the structure of this work.

1.1 Review of some approaches to failure mechan-

ics

As said above, many ways of approaching the study of failure and strain localization
have been proposed. A precise and exhaustive account of all of them goes beyond
the scope of this thesis. However, here we try to classify them into general groups.
The boundaries between these groups are not completely clear and they are likely
to overlap each other.

1.1.1 Discrete Approaches.

These approaches are also known as cohesive crack models. For a deeper review
of this type of models, the reader is referred to [Elices et al., 2002]. They were
introduced in the early sixties by [Dugdale, 1960] and [Barenblatt, 1962]. The ex-
tension to the study of failure in concrete can be found in [Hillerborg et al., 1976].
The basic idea is to introduce a discontinuity interface governed by a traction-
separation law within the solid when certain failure criterion is fulfilled. Discrete
crack models have been related to the use of interface elements that allow the in-
troduction of the discontinuity interface in Finite Element simulations (see, e.g.,
[Steinmann, 1999]). This entails that the placement of the discontinuity has to be
known in advance or the necessity of using remeshing techniques in order to follow
the discontinuity path, which can represent a major drawback from the compu-
tational cost point of view. However, the appearance of the so-called embedded
elements ([Dvorkin et al., 1990],[Klisinski et al., 1991]), which introduce the discon-
tinuity within the domain of an element, has been a crucial ingredient for the in-
creasing popularity of cohesive crack models. More recently the use of enrichment
based on the partition of unity concept (the resulting method has some times been
termed Extended Finite Elements, X-Fem, [Belytschko et al., 2001]) has also been
used in the context of discrete approaches ([Wells and Sluys, 2001]).

1.1.2 Approaches based on Classical Continuum

Classical Continuum Approaches to failure are based on the introduction of strain
softening via the so-called smeared crack models ( [Rashid, 1968]). In classical con-
tinuum, this leads to the above mentioned ill-posedness of the governing equations
and the subsequent lack of objectivity of the corresponding spatial discretization.
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To overcome these difficulties several strategies have been proposed. Among them,
one can find approaches like the crack band models ([Bazant, 1983]). The idea here
is to spread the energy release along the width of the localization band, so that it be
objective. One way to do this is by using the Fracture Energy concept. The width
of the band is computed in such a way that the dissipated energy is the correct one.
This introduces a length parameter ([Oliver, 1989]) that depends on the size of the
elements of the mesh used.

1.1.3 Enriched Continua

Enriched continua are based on introducing modifications to the classical continuum
or on making use of more general continua in order to regularize the underlying
governing equations. Usually they introduce a length scale, which determines the
width of the localization band.

One example of a generalized continuum is the Cosserat continuum. It is part
of the more general micro-polar theory and consists in augmenting the translational
degrees of freedom by rotational degrees of freedom. It makes this approach spe-
cially suitable for the study of granular materials ( [Vardoulakis, 1989]). However,
the inclusion of additional degrees of freedom and the necessity of remeshing to
improve the resolution of the localization band are important drawbacks that have
diminished its use.

A way of enriching the continuum is by adding higher order spatial derivatives
in quantities involved in the constitutive models ([de Borst and Mulhaus, 1992]).
These strategies have some common features with the so-called non-local models
([Pjaudier-Cabot and Bazant, 1997]). For them, the stress at a given material point
depends not only on the strain (and internal variables) at that point but also on the
strain (and internal variables) in the neighborhood of that point or on some type
of average strain (or average of some internal variable) of the neighborhood. This
kind of approaches have a smoothing effect in the high displacement gradients that
appear in the localization band. One of its drawbacks is the need of refinement to
capture the behavior in the localization band properly.

Although the use of viscous regularization cannot be considered, in strict sense, as
an enrichment of the Classical Continuum, we include it in this group of approaches
due to some of its characteristics. An internal length scale is introduced and the
governing equations remain well posed when localization appears. Besides, it can be
interpreted as adding higher order time derivatives as pointed out in [Sluys, 1992].
Again remeshing is needed in the localization band.
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1.1.4 Fundamental approaches

The microstructure (in the case of materials such as metals) or the mesostructure
(in materials such as concrete) of the material is modelled in order to account for the
micro(meso)mechanical changes that trigger the appearance of failure in solids. A
very interesting approach is the one based on the so-called quasi-continuum method
which bridges the continuum and the atomistic realms ([Knap and Ortiz, 2001]).
This type of approaches are certainly appealing; however they are still in a devel-
oping phase that make them unaffordable in most of the cases.

1.2 Approach Adopted

The approach adopted in this thesis is the so-called continuum strong discontinuity
approach (CSDA). The CSDA remains within the general framework of classical
continuum mechanics. It is based on the inclusion of jumps in the displacement
field. Thus, the localization zone is modelled as having null width, i.e., as a surface
in three dimensions or as a curve in two dimensions. This approach was first
proposed in the pioneering work by [Simo et al., 1993]. Whereas classically strain
localization had been treated as a weak discontinuity, i.e., as a discontinuity in the
strain field, the use of strong discontinuities was justified by the results obtained
in the context of functional analysis indicating that the proper space for classical
inviscid plasticity was the so-called space of bounded deformations (BD(Ω)) (see
[Temam, 1983]). This space admits discontinuous solutions whose corresponding
strains are bounded measures, which include Dirac delta (generalized) functions.
Though, as mentioned above, this approach remains within the realm of the clas-

sical continuum, its relationship with discrete approaches (or cohesive models) has
been pointed out by [Oliver, 2000]. Cohesive traction-separation laws can be seen
as “projections” of the original continuum stress-strain laws into the discontinuity
interface.
Although the continuum strong discontinuity approach is, in principle, indepen-

dent of the numerical model used, it has been tightly related to the use of Finite
Elements with embedded discontinuities. In this thesis this kind of finite elements
are adopted for the numerical simulation of strong discontinuities in solids.

1.3 Objectives

Based on the continuum strong discontinuity approach proposed in [Simo et al., 1993]
and more deeply explained and developed in [Oliver, 1996a] and [Oliver, 1996b], this
thesis has the following as its objectives:
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• To review the state of the art of the continuum strong discontinuity approach,
aiming at contributing to its development for the simulation of complex prob-
lems.

• To compare and analyze the existing families of finite elements with embedded
discontinuities within a general framework.

• To explore the possibility of devising a finite element with embedded dis-
continuities that captures the appearance of strong discontinuities in solids
properly.

• To propose a strategy that allows to manage the propagation of several dis-
continuity interfaces in a solid.

• To improve the robustness of the algorithms currently used to simulate strong
discontinuities in solids, so that complex problems, specially those involving
multiple discontinuities, can be tackled.

These objectives are oriented to getting an efficient and robust computational
tool that allows the simulation of complex problems in which strain localization
appears. All this relying on a mathematical model consistent from the classical
continuum mechanics point of view.

1.4 Outline

The remaining of this thesis will be organized as follows. In Chapter 2, a review of
some fundamental concepts about the mathematical conditions for the appearance
of strain localization is made. The relationship between strain localization and
constitutive models with strain softening is explained. A representative isotropic
continuum damage model is studied within the context of classical discontinuous
bifurcation analysis. The methodology to obtain the conditions for the inception of
a localization band in a solid and the propagation direction of the discontinuity are
explained and applied to the above mentioned continuum damage model. Chapter
3 will be devoted to the theoretical aspects of the continuum strong discontinuity
approach. The strong discontinuity kinematics will be introduced. The regular-
ized version of that kinematics is presented in such a format that it can represent
both weak and strong discontinuities. The so-called strong discontinuity analysis is
explained and then applied to a representative isotropic continuum damage model.
The formulation of finite elements with embedded discontinuities will be addressed
in Chapter 4. A general framework based on the multi-field statement of the gov-
erning equations is presented. From that general framework, the formulation of
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various finite elements with embedded discontinuities is tackled. The peculiarities
of those formulations are analyzed. The locking effect observed in the so-called stat-
ically optimal symmetric element is studied and some remedies to this pathological
behavior are proposed. The limitations of this type of elements are pointed out.
Chapter 5 is devoted to studying some strategies to manage the simulation of the
propagation of discontinuities when finite elements with embedded discontinuities
are used. The concepts of “local” and “global” tracking algorithms are explained.
Then a global tracking algorithm based on solving a heat-conduction-like boundary
value problem is proposed. Its advantages in managing the propagation of mul-
tiple discontinuity paths are pointed out. Motivated by the complexity that the
appearance of several discontinuity paths entails, Chapter 6 deals with some issues
related with stability and uniqueness that can lead to the lack of robustness of the
numerical model. An strategy based on adding an artificial regularizing damping is
proposed. In Chapter 7, the concepts developed throughout this thesis are applied
to the resolution of some numerical examples specially chosen due to its complexity.
Finally, Chapter 8 presents the conclusions of this work and proposes some possible
lines of future research.



Chapter 2

Strain localization

Failure in solids is related to the appearance of regions in which high gradients of
the displacement field are observed. When these intense modes of deformation are
concentrated in narrow bands, the solid is said to undergo strain localization. As
mentioned in Chapter 1, it is a material instability related with constitutive models
either equipped with strain softening or having non-associative flow rules. The
material character of this type of instability becomes clear when one considers that,
even in the presence of homogeneous stress states, the use of constitutive models
including strain softening can lead to the appearance of strain localization. An
illustrative one-dimensional example of this can be found in [Oliver et al., 1998].

The modelling of failure in solids requires information about the time at which
a material point becomes part of a localization band and the direction in which
that band evolves. In a context fully consistent with classical continuum mechan-
ics, this information comes from the so called discontinuous bifurcation analysis
([Runesson et al., 1991]).

In this chapter, the mathematical conditions for the appearance of strain lo-
calization are studied within the framework of the discontinuous bifurcation anal-
ysis. The analysis is limited to infinitesimal strain and to rate independent ma-
terials and follows the guidelines of classical studies about strain localization for
quasistatic problems such as the ones presented in [Rice and Rudnicki, 1980] and
[Ottosen and Runesson, 1991].

In Section 2.1 the fundamentals of the discontinuous bifurcation analysis are
laid out. Section 2.2 presents a representative continuum damage model. The
discontinuous bifurcation analysis is applied to this model in section 2.3.

7
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Figure 2.1: Continuum with a localization band.

2.1 Discontinuous bifurcation analysis

The problem of finding the conditions for the appearance of strain localization can
be stated as follows:
Consider a homogeneous domain Ω undergoing uniform strains at a given time.

Then, find the conditions under which the strain rate, ε̇, may become nonuniform,
varying in a planar band Ωh ⊂ Ω bounded by two parallel planes (as shown in Fig.
(2.1)), and remaining uniform outside that band.
To establish these conditions precisely, consider an orthonormal basis {n, t,p} ,

where n is the normal to the middle plane of the band Ωh, and t and p are two
vectors lying on that plane. The directional derivatives of the velocity (displacement
rate) field u̇ in the direction of p and t are assumed to be uniform, so we have that

[[∂pu̇]]=[[(u̇⊗∇) · p]]=[[u̇⊗∇]]·p = 0 (2.1)

[[∂tu̇]]=[[(u̇⊗∇) · t]]=[[u̇⊗∇]]·t = 0 (2.2)

where [[•]] denotes the difference between the values of (•) in Ωh and Ω\Ωh, ∂p(•) and
∂t(•) are the directional derivatives of (•) in the direction of p and t, respectively.
From (2.1) and (2.2) (see them as orthogonality conditions), it follows that

[[u̇⊗∇]]= β ⊗ n
where β is an arbitrary vector.
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As a consequence the strain rate has to fulfill the following condition:

[[ε̇]]=[[∇su̇]]=(β ⊗ n)s (2.3)

where (•)s stands for the symmetric part of (•). Equation (2.3) is the so-called
Maxwell’s kinematical compatibility condition.
Besides this kinematical condition, equilibrium of the traction vector rate be-

tween Ωh and Ω\Ωh must hold1:

[[Ṫ ]]=[[σ̇ · n]]=[[σ̇]]·n = 0 (2.4)

Suppose that we are dealing with an incrementally linear material (which is the
case of classical inviscid materials), then we can write the following incremental
constitutive relation:

σ̇ = Ci : ε̇ (2.5)

where Ci is the fourth order tangent constitutive tensor (also called incremental or
tangent constitutive operator). Then two bifurcation scenarios, depending on the
material behavior outside and inside the band, can be considered.
In the first scenario the tangent operator is the same inside the band as outside

the band. From (2.5) and (2.3), we have that

[[σ̇]]= Ci:[[ε̇]]=Ci : (β ⊗ n)s (2.6)

Substituting (2.6) into (2.4) and considering the symmetry of σ̇, we obtain

[[σ̇]]·n = (n ·Ci·n) · β = 0
Knowing that Q(n) = n ·Ci·n, which is the so called Localization Tensor, we have
that

Q(n) · β = 0 (2.7)

The trivial solution of (2.7), β = 0, will entail [[ε̇]] = 0. As a consequence, strain
localization will take place only if Q is singular. Then, a necessary condition for
strain localization to take place is that for some n

1This condition will be studied more deeply in Chapters 3 and 4.
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det[Q(n)] =0 (2.8)

An alternative scenario is the one in which the tangent operator inside the band
is different from the tangent operator outside the band. Let ˙̄ε be the strain rate in
Ω\Ωh, then we have that

[[σ̇]] = CiΩh : (
˙̄ε+ [[ε̇]])−CiΩ\Ωh : ˙̄ε

= CiΩh : [
˙̄ε+ (β ⊗ n)s]−CiΩ\Ωh : ˙̄ε (2.9)

where CiΩh and C
i
Ω\Ωh are the tangent operator inside and outside the band, respec-

tively. Replacing (2.9) in (2.4), we obtain

(n ·CiΩh ·n) · β + n·[[Ci]]: ˙̄ε = 0

Defining QΩh := (n ·CiΩh·n), we obtain

QΩh ·β = −n·[[Ci]]: ˙̄ε

Remark 1 With regard to the two bifurcation scenarios studied, it is
important to mention that in [Rice and Rudnicki, 1980] and
[Ottosen and Runesson, 1991], it was pointed out that the case in which the tan-
gent operator is the same inside and outside the band is a limit case (the most
unfavorable) of the scenario with different tangent operators. So, according to this
result, condition (2.7) is the critical one and bifurcation will be ruled by it.

Remark 2 As mentioned above, the results presented in this section are derived
within the context of quasistatic problems. For the dynamical case, the appearance
of strain localization has been analyzed in classical works such as [Hill, 1962]. There,
the study of acceleration waves is used and localization corresponds to “stationary
waves”. The resulting condition for the appearance of strain localization is the
singularity of the so called Acoustic Tensor, whose expression is the same as the
one of the Localization Tensor. Moreover, this same condition coincides with the
loss of strong ellipticity (see [Ogden, 1984] for a discussion on the concept of strong
ellipticity) of the incremental constitutive relation.
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2.2 A representative continuum damage model

Continuum damage models are intended to describe the degradation of the me-
chanical properties of a solid prior to the formation of macrocracks2. Extensive
information about Continuum Damage Mechanics can be found in [Lemaitre, 1996].
Here we will present an isotropic continuum damage model based on the ideas pre-
sented in [Oliver et al., 1990].

2.2.1 Ingredients of the model

The expression of the Helmholtz free energy density of the model is the following:

ψ(ε,r) = [1− d(r)]ψ0 (2.10)

where d ∈ [0, 1] is the so-called damage variable (this variable determines the amount
of loss of stiffness of the material point considered), r is a strain-like internal variable
and ψ0 is the elastic free energy, whose definition is

ψ0(ε) =
1

2
(ε : C : ε) (2.11)

where C is the elastic fourth order constitutive tensor, defined by C =λ̂1⊗ 1+2µI,
with 1 and I being the second and fourth order unit tensors, respectively, and λ̂ and
µ the Lamé parameters.
From the definition of the free energy made in (2.10), the following constitutive

equation is derived:

σ =∂εψ(ε,r) = (1− d)C : ε (2.12)

The damage variable, d, is defined in terms of r:

d = 1− q(r)
r

(2.13)

where q is a stress-like internal variable.
The internal variable r has the following evolution law:

2Later on in this thesis, we will see how a continuum constitutive model plus the inclusion of
the so-called Strong Discontinuity Kinematics can be used for modelling macrocracks
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ṙ = λ (2.14)

with r ∈ [r0,∞) and r0 ≡ r|t=0 = σu/
√
E (σu is the peak stress and E is the Young

modulus).
The damage function (in stress space) used is

f(σ,q) := τσ − q (2.15)

where τσ = kσkC−1 =
√
σ : C−1 : σ. The symbol k•kC−1 denotes the norm of (•)

in the Riemannian metric defined by C−1. This metric is such that the damage
surface

∂Eσ := {σ | f(σ,q) := τσ − q = 0} (2.16)

is an ellipsoid in the principal stress space.
To these ingredients one must add the loading/unloading conditions:

f ≤ 0; λ ≥ 0; λf = 0 (2.17)

and the consistency condition:

λḟ = 0 (2.18)

Schematically the behavior of this model regarding loading and unloading is the
following:



f < 0 =⇒ λ = 0 =⇒ ṙ = 0 (damage does not evolve)

f = 0


ḟ < 0 =⇒ λ = 0 =⇒ ṙ = 0 (unloading)

ḟ = 0 =⇒
½

λ = 0 =⇒ ṙ = 0 (neutral loading)
λ > 0 =⇒ ṙ > 0 (loading)

(2.19)

Only the definition of q remains to be made. It will depend on the type of
hardening/softening rule used. Here we write the incremental expression of it:

q̇ = H(r)ṙ (2.20)

whereH is the hardening/softening incremental parameter. In addition q0 ≡ q|t=0 =
r0.
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Figure 2.2: Integration of the damage internal variable in time.

2.2.2 Time integration of the evolution law

One of the most interesting features of this model is that (2.14) can be integrated
in (pseudo)time in closed form. Here we find the resulting expression.
Let us define

τε = kεkC =
√
ε : C : ε (2.21)

It can be easily proven that

τσ = (1− d)τε (2.22)

Then, it follows that

f(σ,q) := τσ − q = 0⇔ fr(ε,r) := τ ε − r = 0 (2.23)

Thus the damage criterion can be posed in strain space [Simo and Ju, 1987], ob-
taining, as in the stress space formulation, a damage surface with the form of an
ellipsoid in the principal strain space.
Consider the case of inelastic loading, then λ = ṙ > 0. Therefore, in light

of (2.17), f = 0 and r = τε. Now, notice that, from (2.17) and (2.18), r grows
in loading and does not change in unloading, but never decreases. Thus, the
expression, in closed form, for r at a given (pseudo)time is

r(t) ≡ rt = max
s∈[0,t]

{r0, τε(s)} (2.24)
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Since the hardening/softening law is supposed to be given, then the whole constitu-
tive model can be solved in closed form. A schematic picture of the evolution of r
along time can be seen in Fig. 2.2.

2.2.3 Incremental constitutive relation

For the discontinuous bifurcation analysis that will be performed in the next section,
it is important to have the expression of the incremental constitutive law. In the
elastic regime this relation is

σ̇ = C : ε̇

C being the elastic fourth order constitutive tensor; whereas in damage regime

σ̇ = Cd : ε̇ (2.25)

where

Cd = (1− d)C−q −Hr
q2r

σ ⊗ σ (2.26)

is the damage tangent operator.

2.3 Discontinuous bifurcation in continuum dam-

age

In this section, the discontinuous bifurcation analysis is applied to the above contin-
uum damage model. First, the general three-dimensional problem is tackled. Then
the analysis is restricted to plane strain and plane stress.

2.3.1 The general 3-D problem

As stated in (2.7), a necessary condition for the appearance of localization is the
singularity of the Localization tensor, regarded as a function of the unit normal to
the surface of localization, n, and of the hardening/softening parameter, H. That
is to say,

det[Q(H,n)] =0 (2.27)
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After defining the so-called effective stress σ̄ = C : ε, and using (2.12) and (2.13),
we can rewrite (2.26):

Cd =
q

r
C−q −Hr

r3
σ̄ ⊗ σ̄ (2.28)

Hence,

Qd=
q

r
(n ·C · n)−q −Hr

r3
(n · σ̄ ⊗ σ̄ · n) (2.29)

where Qd is the Localization Tensor for damage. Let us now define the elas-
tic acoustic-like tensor as Qe = n ·C · n and the “effective” traction vector as
T̄ (n)= σ̄ · n. So we have that

Qd=
q

r
Qe−q −Hr

r3
(T̄ ⊗T̄ ) (2.30)

Then, considering the symmetry of Qe, we arrive to the following expression of the
localization tensor:

Qd =
q

r
Qe·

½
1− q −Hr

qr2
£T̄ · (Qe

)−1
¤⊗T̄ ¾

Hence,

det(Qd) =
q

r
det(Qe) det

½
1− q −Hr

qr2
£T̄ · (Qe

)−1
¤⊗T̄ ¾ (2.31)

Since we know that r, q, and det(Qe) are always positive, the condition (2.27)
reduces to

det

½
1− q −Hr

qr2
£T̄ · (Qe

)−1
¤⊗T̄ ¾ = 0 (2.32)

Which yields3

3The following identities are to be used:
1) det(A ·B) = det(A) det(B); A and B being two arbitrary second order tensors.
2) det(1− a⊗ b) = 1− a · b; a and b being two arbitrary vectors.
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1− q −Hr
qr2

T̄ · (Qe
)−1·T̄| {z }

τ2T̄

 = 0 (2.33)

where τ T̄ :=
°°T̄ °°

(Qe)−1 =
q
T̄ · (Qe

)−1·T̄ .
Based on (2.33), we arrive to an expression for the values of the softening pa-

rameter, H, for which the bifurcation condition (2.27) would be satisfied for a given
stress state in terms of arbitrary values of the unit normal, n̂:

Ȟ(n̂) = q

r

·
1− r2

τ2T̄ (n̂)

¸
(2.34)

2.3.2 Determination of the critical values of H and n

Now, let us define G as the set of values Ȟ(n̂) obtained from (2.34) for all the
possible n̂ at a given time and at a given material point of a solid. Formally,

G :=
½
Ȟ(n̂) ∈ R | ∃n̂ ∈Rndim, kn̂k = 1,Ȟ =

q

r

·
1− r2

[τ T̄ (n̂)]
2

¸¾
(2.35)

where ndim is the number of dimensions of the problem and k•k is the Euclidean
norm of (•).
Therefore, the problem of finding the critical value of the softening parameter

H at a given time and at a given material point can be stated as a maximization
problem:

Hcrit = max
Ȟ(n̂)∈G

Ȟ(n̂) (2.36)

The corresponding critical value of n has the following definition

ncrit := n̂ such that Ȟ(n̂) =Hcrit (2.37)

Hence, the bifurcation time, tb, for a material point, x, can be defined as the time
at which the hardening/softening parameter H equals Hcrit, i.e.,

tb := t ∈ R+ such that H(t) = Hcrit (2.38)
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Remark 3 The determination of Hcrit and ncrit is crucial for the inception and
propagation of a localization band. In Chapter 5 the importance of this information
in the context of tracking algorithms for managing crack propagation is remarked.

2.3.3 Two-dimensional settings

Explicit expressions for Hcrit and ncrit in the context of plane stress and plane stress
are derived here.

Plane Strain

For the analysis the vectors and tensors involved are expressed in the orthonormal
basis {n,t,p}, where n is the unit normal to the localization line, t is the tangent
to that localization line, and p is the normal to the plane in which the localization
line lies. Then we have that

[n] =

 1
0
0

 ; [ε] =
 εnn εnt 0

εnt εtt 0
0 0 0

 ;

[σ̄] =

 σ̄nn σ̄nt 0
σ̄nt σ̄tt 0
0 0 σ̄pp


(2.39)

Thus, the expression of Qe = (λ̂+ µ)n⊗ n+µ1 in this basis is

[Qe] =

 λ̂+ 2µ 0 0
0 µ 0
0 0 µ

 (2.40)

Hence,

[(Qe)−1] =

 1/(λ̂+ 2µ) 0 0
0 1/µ 0
0 0 1/µ

 (2.41)

and the expression of the effective traction vector is

[T̄ ]=
 σ̄nn

σ̄nt
0

 (2.42)
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Hence,

τ2T̄ = T̄ · (Qe
)−1·T̄ = 1

λ̂+ 2µ
σ̄2nn +

1

µ
σ̄2nt (2.43)

Considering the definition of effective stress, σ̄ = C : ε, the definition of the
norm τε (2.21), and that, in loading, r = τ ε, we can write

r2 = σ̄ : C−1 : σ̄ (2.44)

with

C−1 = − λ̂

2µ(3λ̂+ 2µ)
1⊗ 1+ 1

2µ
I (2.45)

Hence,

r2 = − λ̂

2µ(3λ̂+ 2µ)
Tr2(σ̄)+

1

2µ
kσ̄k2 (2.46)

where Tr(•) denotes the trace of (•).
Equations (2.43) and (2.46) can be rephrased using, as the elastic material pa-

rameters, the Young modulus and the Poisson’s ratio as follows:

τ2T̄ = −
(1 + ν)(1− 2ν)
(1− ν)E

σ̄2nn +
2(1 + ν)

E
σ̄2nt (2.47)

r2 = − ν

E
(σ̄nn + σ̄tt + σ̄pp)

2+
(1 + ν)

E
(σ̄2nn + σ̄2tt + σ̄2pp + 2σ̄

2
nt) (2.48)

Then it can be proven that the following identity holds:

r2 − τ 2T̄ =
E

1− ν2
ε2tt (2.49)

Let us now consider the orthonormal basis {ê1, ê2,p}, coinciding with the princi-
pal strains directions. Vector ê1 corresponds to the direction of the maximum princi-
pal strain. Let θ be the angle of n with respect to ê1, such that n = cosθê1+sin θê2.
Then εtt can be expressed as follows:
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εtt(θ) = (ε1 − ε2) sin
2 θ + ε2 (2.50)

where ε1 and ε2 are the principal strains, with ε1 ≥ ε2
Considering the fact that for two-dimensional cases the normal n is defined by

θ, problem (2.36) can be stated as follows:

Hcrit = max
θ∈[−π,π]

Ȟ(θ) (2.51)

with

Ȟ(θ)=q
r

"
1− r2

r2 − E
1−ν2 ε

2
tt(θ)

#
(2.52)

where identity (2.49) and (2.34) have been used.
In light of (2.52), it follows that (2.51) reduces to minimizing ε2tt for θ ∈ [−π, π].
The condition for an optimal point is

∂(ε2tt)

∂(sin2 θ)
= 2[(ε1 − ε2) sin

2 θ + ε2](ε1 − ε2) = 0 (2.53)

which yields

sin2 θ = − ε2
(ε1 − ε2)

(2.54)

Considering that

∂2(ε2tt)

∂(sin2 θ)2
= 2(ε1 − ε2)

2 ≥ 0 (2.55)

then, condition (2.53) gives us a minimum. Since, sin2 θ ∈ [0, 1], we have

sin2 θcrit =


− ε2
(ε1−ε2) if 0 ≤ − ε2

(ε1−ε2) ≤ 1
1 if − ε2

(ε1−ε2) > 1
0 if − ε2

(ε1−ε2) < 0
(2.56)

By replacing θcrit, obtained by (2.56), in (2.50) and then in (2.52), we obtain Hcrit.
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Plane stress

For the plane stress analysis, the components of the vectors and tensors correspond-
ing to the direction outside the plane are not involved. Thus, we can make use of
basis {n,t}, where n is the unit normal to the localization line and t is the tangent
to that localization line. Then we have

[n] =

½
1
0

¾
; [σ̄] =

·
σ̄nn σ̄nt
σ̄nt σ̄tt

¸
(2.57)

Considering that, for plane stress, the expression of the elastic tensor is

C =
E

1− ν2
[ν1⊗ 1+(1− ν)I] (2.58)

we obtain

Qe =
E

1− ν2

·
(1 + ν)

2
n⊗ n+(1− ν)

2
1

¸
(2.59)

Hence,

[(Qe)−1] =
1− ν2

E

·
1 0
0 2

(1−ν)

¸
(2.60)

The expression of the effective traction vector is

[T̄ ]=
½

σ̄nn
σ̄nt

¾
(2.61)

Thus,

τ2T̄ =
1− ν2

E
σ̄2nn +

2(1 + ν)

E
σ̄2nt (2.62)

From (2.46), we have

r2 = − ν

E
(σ̄nn + σ̄tt)

2+
(1 + ν)

E
(σ̄2nn + σ̄2tt + 2σ̄

2
nt) (2.63)
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By using (2.62) and (2.63), after some algebra, we obtain the following identity:

r2 − τ2T̄ = Eε
2
tt (2.64)

Analogously to the plain strain case, let us consider the orthonormal basis
{ê1, ê2} with ê1 and ê2 corresponding to the principal strains directions. Vec-
tor ê1 corresponds to the direction of the maximum principal strain. Let θ be the
angle of n with respect to ê1, such that n = cosθê1 + sin θê2. Then we can write:

εtt(θ) = (ε1 − ε2) sin
2 θ + ε2 (2.65)

where ε1 and ε2 are the principal strains, with ε1 ≥ ε2
Considering again that for two-dimensional cases the normal n is defined by θ,

problem (2.36) can be stated as written in (2.51), with

Ȟ(θ)=q
r

·
1− r2

r2 − Eε2tt(θ)
¸

(2.66)

where identity (2.64) and (2.34) have been used.
Problem (2.51) reduces, as in the plain strain case, to minimizing ε2tt for θ ∈

[−π, π]. Hence, the value of θcrit can be computed using the same expressions as in
plane strain.

Remark 4 Notice that, in both (2.52) and (2.66), Ȟ(θ) can only take negative
values, which implies that bifurcation cannot take place in hardening.
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Chapter 3

The continuum strong
discontinuity approach

In Chapter 2, the study of strain localization was tackled. It was based on deter-
mining the necessary conditions for the appearance of a band in which the strain
field becomes discontinuous. These discontinuities in the strain field are termed
weak discontinuities. Their use has been classical in modelling strain localization.
However, due to the absence of an internal length scale, the width of the localiza-
tion band remains undetermined in the classical continuum context. In light of this,
the limiting case in which the band of localization collapses into a surface of zero
thickness emerges as a natural option. Then, the displacement field is discontinu-
ous across this surface. This new type of discontinuities are referred to as strong
discontinuities.

In the pioneering work by [Simo et al., 1993], the issue of modelling strain local-
ization by means of strong discontinuities was dealt with. The space of bounded
deformations BD(Ω) (see [Temam, 1983]), developed in the context of classical per-
fect plasticity, was adopted as the appropriate functional framework. Thus, the
displacement field may be discontinuous and the corresponding strains are bounded
measures, which include the Dirac delta. However, the stresses were assumed to
be regular, which led to the necessity of reinterpreting the softening parameter in a
distributional sense. A very interesting consequence of this interpretation is that
dissipation can occur in a region of (Lebesgue) measure zero. The dissipation tak-
ing place in the discontinuity surface can then be related to the concept of fracture
energy (which is energy per unit area) in a straightforward manner. Thus the spu-
rious dependence of the energy released with respect to the width of the localization
band is overcome (see [Oliver et al., 1998]).

The regularized version of the strong discontinuity kinematics was taken advan-
tage of in [Oliver et al., 1997] to propose a transition between the weak and strong

23
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discontinuity regimes. The issue of the conditions that must be fulfilled to allow the
inclusion of strong discontinuities was analyzed. Later, in [Oliver, 2000], the same
framework was used in order to show how the discrete (cohesive) constitutive models
can be regarded as “projections” onto the discontinuity surface of continuum consti-
tutive models when the strong discontinuity kinematics is adopted. The extension
of the so-called Strong Discontinuity Analysis to large deformation settings has been
tackled in [Oliver et al., 2002b]. Important contributions to the modelling of strong
discontinuities in finite strain settings can be found in [Armero and Garikipati, 1996]
and [Larsson et al., 1999], among others.
Throughout this chapter, the use of strong discontinuities and its implications

are explored within the context of continuous constitutive modelling. However,
modelling strong discontinuities in solids can be tackled from other standpoints. In
[Oliver et al., 2002b] a classification of the possible ways of undertaking this task
was presented and three main groups were identified:

Discrete approaches (e.g. [Alfaiate et al., 2002]): the adoption and introduction of
the discrete constitutive model at the interface is done without resorting to the
continuum one. Their connection with the strong discontinuity kinematics
is limited to numerical aspects, mainly to the use of some kind of enriched
elements to capture discontinuities.

Discrete-continuum approaches (e.g. [Steinmann, 1999]): the discrete model is de-
rived from a continuum one and then introduced in the discontinuity interface
regardless the fulfillment of the necessary conditions for the inception of a
strong discontinuity1.

Continuum approaches: the discrete constitutive model is fully consistent with the
continuum one. In fact, the former does not need to be explicitly introduced,
but it is induced from the adoption of the latter.

The last approach is the one adopted in this thesis and will be called, from now
on, Continuum Strong Discontinuity Approach (CSDA).
The governing equations of the boundary value problem are stated in Section

3.1. Section 3.2 is devoted to presenting the kinematics of discontinuous media.
First the strong discontinuity kinematics is presented. Later the weak discontinuity
kinematics is laid out. Then the regularized version of the strong discontinuity
kinematics is presented as a limit case of the weak discontinuity kinematics when
the width of the discontinuity band tends to zero. In Section 3.3 the implications of
the adoption of the strong discontinuity kinematics in continuum constitutive models
are studied. Finally, in Section 3.4 a relationship between the strong discontinuity
approach and the concept of fracture energy is established.

1These are the so-called strong discontinuity conditions (see [Oliver et al., 1997])
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Figure 3.1: Solid with an internal boundary.

3.1 The Boundary Value Problem

Consider the open domain Ω, with elements x (called material points), whose bound-
ary is Γ (see Fig. 3.1). The boundary is composed of the open sets Γu and Γσ such
that Γu ∩ Γσ = ∅ and Γu ∪ Γσ = Γ. The prescribed rate of displacements, u̇, is
imposed on Γu, whereas the prescribed rate of tractions is imposed on Γσ. Consider,
also, the internal boundary S2, which partitions Ω into Ω+ and Ω− (see Fig. 3.1).
Then, the equilibrium equations3 and boundary conditions in rates format are

∇ · σ̇ + ḃ = 0
σ̇S·n = σ̇Ω\S ·n

in Ω\S
on S

(equilibrium equation)
(inner traction continuity)½

u̇ = u̇∗

σ̇ · ν = ṫ∗
on Γu
on Γσ

(boundary conditions)

(3.1)

where σ̇ is the Cauchy stress tensor rate, ḃ is the body force density rate, n is the
unit normal to S pointing to Ω+, and ν is the unit outward normal to Γ (see Fig.
3.1).
The hypothesis of small strains is adopted throughout this thesis, then the kine-

matics equation is

ε̇ =∇su̇ in Ω (kinematics equation) (3.2)

The relationship between the stress, σ, and the strain, ε, fields is given by some
constitutive model, for instance, the one presented in Section 2.2.

2Using Continuum Mechanics terminology, S is a material surface.
3The inner traction continuity is characteristic of problems involving discontinuous kinematics.
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3.2 Strong and weak discontinuity kinematics

The kinematics of a continuum undergoing discontinuities is analyzed in this section.
As a result the link between weak and strong discontinuities is established.

3.2.1 Strong discontinuity kinematics

Consider now that Ω is split by S (called discontinuity interface4) into Ω+(pointed
by the unit normal n) and Ω− (see Fig. 3.2-a), then the following structure for the
rate of displacement field, u̇ : Ω×R+ → Rndim (ndim is the number of the dimensions
of the problem), is proposed:

u̇(x, t) = ˙̄u(x, t) + HS [[u̇]](x, t) (3.3)

where HS is the Heaviside function acting on S (HS = 1 ∀x ∈Ω+ and HS = 0
∀x ∈Ω−) and [[u̇]] : Ω × R+ → Rndim is the rate of displacement jump function.
Functions ˙̄u and [[u̇]] are considered to be smooth5. From (3.3) and (3.2), we obtain
the following expression for the strain rate field:

ε̇ (x, t) =∇su̇ = ∇s ˙̄u + HS ∇s[[u̇]]| {z }
˙̄ε (regular)

+ δS ([[u̇]]⊗ n)s| {z }
[[ε̇]] (singular)

(3.4)

where δS is the Dirac delta function acting on S.

Remark 5 The structure of the strain tensor can be expressed as the sum of a term
including only regular distributions and a term which includes a singular distribution
(the term containing the Dirac delta)6.

Remark 6 Notice that the restriction of function [[u̇]] to the discontinuity interface
S (i.e., [[u̇]]S) defines the “jump” in the rate of displacement field, u̇, across S, and
hence the symbol used to denote it.

4Discontinuity surface in 3-D and discontinuity line in 2-D.
5The issue of the smoothness of the fields involved in the strong discontinuity kinematis is

tackled in chapter 4. For the moment, a smooth function can be understood as a function whose
first derivatives are not singular distributions.

6A regular distribution is a distribution that can be generated by a (Lebesgue) locally integrable
function (see [Reddy, 1998]), whereas a singular distribution cannot. Roughly speaking, regular
distributions correspond to “normal” functions, while singular distributions correspond to “special”
functions like the Dirac delta.
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3.2.2 Weak discontinuity kinematics

The definition of the weak discontinuity kinematics [Oliver et al., 1997] is made only
for the two-dimensional case. Extension to three dimensions is straightforward.
Let {ξ, η} be a curvilinear coordinate system such that S coincides with the

coordinate line η (see Fig. 3.2-b), i.e.,

S = {x(ξ, η) | ξ = 0}
Then, let {êξ,êη) be the orthonormal basis associated with the above coordinate

system and let rξ(ξ, η) and rη(ξ, η) be the corresponding scale factors, such that
dsξ = rξdξ and dsη = rηdη, where dsξ and dsη are, respectively, the differential arc
length along the coordinate lines ξ and η. Consider now the lines S+ and S− which
coincide with the coordinate lines ξ = ξ+ and ξ = ξ−, respectively, and define the
limits of the discontinuity band Ωh :=

©
x(ξ, η) | ξ ∈ £ξ−, ξ+¤ª, whose representative

width h(η), from now on called bandwidth, is defined as h(η) := rξ(0, η)(ξ
+ − ξ−).

Consider, then, the following description of the rate of displacement field in Ω:

u̇(x, t) = ˙̄u(x, t) + HΩh(ξ, t) [[u̇]](η, t) (3.5)

where HΩh(ξ, t) denotes the ramp function, defined by

HΩh =


0 x ∈ Ω−\Ωh (ξ ≤ ξ−)
1 x ∈ Ω+\Ωh (ξ ≥ ξ+)

ξ−ξ−
ξ+−ξ− x ∈ Ωh (ξ− < ξ < ξ+)

(3.6)

It is easy to see that HΩh exhibits a unit jump, i.e., the difference of its values
at S+ and S− for the same coordinate line ξ is equal to one ([[HΩh]] = HΩh(ξ

+, t) −
HΩh(ξ

−, t) = 1 ∀η). Hence, the corresponding gradient is

∇HΩh =
1

rξ

∂HΩh

∂ξ
ê ξ +

1

rη

∂HΩh

∂η
ê η = µΩh

1

hξ
ê ξ

hξ(ξ, η) = rξ(ξ, η) (ξ
+ − ξ−)

hξ(0, η) = rξ(0, η) (ξ
+ − ξ−) = h(η)

(3.7)

where µΩh is a collocation function placed on Ωh (µΩh = 1 if x ∈Ωh and µΩh = 0 if
x /∈Ωh). From (3.2), (3.5), and (3.7), we obtain

ε̇ (x, t) =∇su̇ =∇s ˙̄u + HΩh ∇s[[u̇]]| {z }
˙̄ε (continuous)

+ µΩh
1

hξ
([[u̇]]⊗ êξ)s| {z }

[[ε̇]] (discontinuous)

(3.8)
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Remark 7 The strain tensor corresponding to the weak discontinuity kinematics is
expressed as the sum of a continuous term, ˙̄ε, plus a discontinuous one, [[ε̇]]. No
singular term is present.

3.2.3 Regularized strong discontinuity kinematics

Now, we define the regularized version of the strong discontinuity kinematics as the
limit case of the weak discontinuity kinematics when h(η) tends to zero (see Fig.
3.2-c). Thus, the expression of the displacement rate is the following:

u̇(x, t) = ˙̄u(x, t) + HS [[u̇]](x, t) (3.9)

On the basis of (3.8), the corresponding strains rate is assumed to be

ε̇ (x, t) =∇s ˙̄u + HS ∇s[[u̇]]| {z }
˙̄ε (bounded)

+ µS
1

h(η)
([[u̇]]⊗ n)s| {z }

[[ε̇]](unbounded when h(η)→0)

(3.10)

where µS is a collocation function placed on S (µS = 1 if x ∈S and µS = 0 if x /∈S)

Remark 8 When the bandwidth, h(η), tends to zero,
³
µS

1
h(η)

´
→ δS. Thus, the

kinematics defined by (3.9) and (3.10) becomes equivalent to that defined by (3.3)
and (3.4).

Remark 9 Notice that h(η)=hξ(0, η) and that n =êξ at S. This means that (3.5)
and (3.8) tend to be equivalent to (3.9) and (3.10), respectively, as the discontinuity
band collapses into surface S.

Remark 10 From remarks (8) and (9), one can conclude that the kinematics de-
scribed by (3.9) and (3.10) are representative of both the weak discontinuity kinemat-
ics and the strong discontinuity kinematics for h(η) relatively small in comparison
with the dimensions of the solid.

Remark 11 The rate of strain field (3.10) is not kinematically compatible with the
rate of displacement field (3.9) in the sense that ε̇ 6=∇su̇, since
∇H=δS n 6=µS[1/h(η)]n. Compatibility is only attained when h(η)→ 0.
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3.2.4 A variable bandwidth model

In [Oliver et al., 1997], the fact that discontinuous bifurcation was a necessary but
not sufficient condition for the inception of a strong discontinuity was pointed out.
Then specific conditions for the appearance of strong discontinuities were derived
(the so-called Strong Discontinuity Conditions7). In order to reach the necessary
conditions for the appearance of strong discontinuities, a transition from weak to
strong discontinuities was devised. Thus, the formation of a strong discontinuity at
a material point x can be modelled as a weak discontinuity at a certain time of the
deformation process. At the bifurcation time, tb, the stress and strain fields bifurcate
according to the kinematics presented in (3.10), with [[u̇]] 6= 0, and with hb = h(η)
of finite width if the strong discontinuity conditions are not met. In such a case,
for the subsequent states, the bandwidth decreases ruled by a certain bandwidth
evolution law (which is regarded as a material property) until h(η) ≡ k → 0 at time
t = tSD

8.
In light of this, time integration of (3.10) for t ≥ tSD yields

ε (x, t)|t≥tSD =

Z t

0

˙̄εdt+ µS

Z tSD

0

1

h
([[u̇]]⊗ n)sdt| {z }

ε̄

+ µS

Z t

tSD

1

h
([[u̇]]⊗ n)sdt

= ε̄|{z}
(bounded for h≡k→0)

+ µS
1

h
(∆[[u]]⊗ n)s| {z }

(unbounded for h≡k→0)

(3.11)

where ∆[[u]] := [[u]](x, t)− [[u]](x, tSD) is the incremental jump.

Remark 12 The material character of S (which implies ṅ = 0) has been taken into
account in the above derivation.

Remark 13 In (3.11) and in all the derivations related with the strong discontinuity
analysis, the general case in which the strong discontinuity regime is preceded by a
weak discontinuity regime is considered.

3.3 Strong discontinuity analysis

A crucial issue that arises when the strong discontinuity approach is adopted is
that of the compatibility of the strong discontinuity kinematics with continuum

7These conditions will be discussed later on in this thesis.
8In its computational implementation k is as small as allowed by the machine precision.
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constitutive modelling. The strong discontinuity analysis [Oliver, 2000] aims at
identifying the conditions that make that compatibility possible. The point of
departure of the analysis is the inner traction continuity stated in (3.1). From this,
the mathematical conditions that make a continuum constitutive model consistent
with the inclusion of discontinuities in the displacement field are derived.
Let us state the inner traction continuity and the inner traction rate continuity9:

T (x, t) = σS(x, t)·n(x) = σΩ\S(x, t)·n(x)
Ṫ (x, t) = σ̇S(x, t)·n(x) = σ̇Ω\S(x, t)·n(x)

)
∀x ∈S, ∀t ∈ R+ (3.12)

where T denotes the traction vector, σS is the stress tensor of the material point
P ∈ S, and σΩ\S is the stress tensor of a material point in Ω\S belonging to the
neighborhood of P.
Hence, the following consequences can be inferred:
Since the strain tensor is bounded in Ω\S (ε = ε̄), the stresses σΩ\S are also

bounded. Therefore, T (x, t) = σΩ\S ·n is bounded. We also have that T (x, t) =
σS ·n. Let us now express T (x, t) in the basis formed by the principal directions of
σS :

T1 = σ1n1 (bounded)
T2 = σ2n2 (bounded)
T3 = σ3n3 (bounded)

(3.13)

where σ1, σ2, σ3 are the eigenvalues of σS. Since n1, n2, n3 are bounded by
definition (knk = 1), then σ1, σ2, σ3 are also bounded

10, and so is the stress tensor
σS . Analogous arguments can be used to prove the boundedness of σ̇S .

Remark 14 The boundedness of the stress tensor σS, despite the unboundedness of
εS , is a key result of the strong discontinuity analysis.

3.3.1 A representative continuum damage model

Before proceeding with the strong discontinuity analysis, we present a summary of
the isotropic continuum damage model laid out in Section 2.2.

9Although the inner traction continuity is treated as an assumption here, it can be derived,
in a variational context, from the moment balance plus the adoption of the strong discontinuity
kinematics, as done in [Simo and Oliver, 1994].
10This argument is not general, since ni for some i ∈ {1, 2, 3} could be zero . However, even in

this case, the boundedness of σS can be proven using alternative reasonings.
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Free Energy ψ(ε,r) = [1− d(r)]ψ0; ψ0(ε) =
1

2
(ε : C : ε) (3.14)

Constitutive Eq. σ =∂εψ(ε,r) = (1− d)C : ε (3.15)

Damage variable d = 1− q(r)/r d ∈ [0, 1] (3.16)

Evolution law ṙ = λ; r ∈ [r0,∞) r0 = σu/
√
E (3.17)

Damage Criterion f(σ,q) := τσ − q; τσ =
p
σ : C−1 : σ (3.18)

L/U conditions f ≤ 0; λ ≥ 0; λf = 0; λḟ = 0| {z }
consistency

(3.19)

Softening Rule q̇ = H(r)ṙ; q ∈ [0, r0]; q|t=0 = r0 (3.20)

In the remaining of this section the strong discontinuity analysis is applied to
the above constitutive model.

3.3.2 Discrete constitutive equation

Now we can resume the strong discontinuity analysis, applying it to the consti-
tutive model sketched in Subsection 3.3.1. We have that, from the boundedness
of σS , the boundedness of τσ =

√
σ : C−1 : σ follows immediately. Moreover,

τ̇σ = [(1/τσ)(σ : C
−1 : σ̇)] is also bounded. In light of (3.20) and (3.19), q̇ 6= 0 only

in loading (ṙ = λ > 0). We also have that, from the consistency condition, ḟ = 0.
Then, q̇ = τ̇σ. Hence, q̇ is bounded.

Let us now consider, for a given material point belonging to S, the expression of
the stresses given by (3.15) and use the structure of the strains stated in (3.11):

σS = (1− d)C : εS = q

r
C :

·
ε̄+
1

h
(∆[[u]]S ⊗ n)s

¸

Suppose that for that material point t > tSD (which implies h→ 0), then
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T = σS ·n =lim
h→0

qS
rS
n ·C :

·
ε̄+
1

h
(∆[[u̇]]S ⊗ n)s

¸
= lim

h→0
1

hrS
qSn ·C : [hε̄+(∆[[u̇]]S ⊗ n)s]

= lim
h→0

1

hrS
qSn ·C :(∆[[u̇]]S ⊗ n)s

= lim
h→0

1

hrS
qS(n ·C · n| {z }

Qe

)·∆[[u̇]]S

= lim
h→0

µ
1

hrS

¶
qSQe·∆[[u̇]]S (3.21)

Since Qe is positive definite and, therefore, non-singular, Qe·∆[[u̇]]S 6= 0 unless
∆[[u̇]]S = 0, but that would contradict the assumption of t > tSD. Hence qSQe·∆[[u̇]]S
is bounded and different from zero. Thus the following must hold:

lim
h→0
hrS 6= 0 if ∆[[u̇]]S 6= 0 (3.22)

Let us consider the following structure for ṙS :

ṙS =
1

h
˙̄α ∀t ≥ tWD (3.23)

with ᾱ|t=tWD
= 0, tWD being the time of the inception of the weak discontinu-

ity regime and ᾱ the discrete internal variable. The rate of the discrete internal
variable, ˙̄α, is imposed to be bounded and different from zero for t > tSD.
Now (3.23) can be integrated for t ≥ tSD, yielding

rS =

Z t

o

ṙSdt

= rWD +

Z tSD

tWD

1

h(τ )
˙̄α(τ)dτ| {z }

:=rSD

+

Z t

tSD

1

h(τ)|{z}
h≡k

˙̄α(τ)dτ

= rSD +
1

k

Z t

tSD

˙̄α(τ)dτ = rSD +
1

k
∆ᾱ (3.24)

where ∆ᾱt:= ᾱt − ᾱSD and rWD = rS|t=tWD
. Thus, we have that, for t ≥ tSD,
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lim
h→0
hrSD = lim

k→0
krSD

= lim
k→0

·
krWD +

Z tSD

tWD

k

h(τ )
˙̄α(τ )dτ

¸
= 0 (3.25)

Then, replacing (3.25) in (3.24) and then in (3.22), it yields

lim
h→0
hrS = lim

h→0
(hrSD +∆ᾱ) (3.26)

= ∆ᾱ

By the definition of ᾱ, ∆ᾱ 6= 0 ∀t > tSD. Therefore, (3.23) is compatible with
condition (3.22) and ensures the consistency of (3.21) for ∆[[u̇]]S 6= 0.
Substituting (3.26) in (3.21), we obtain

T = qS
∆ᾱ

Qe·∆[[u]]S ∀t > tSD (3.27)

which is a constitutive equation of the discrete type relating the traction vector, T ,
with the differential jump, ∆[[u̇]]S .
Replacing (3.23) in the softening rule (3.20), it yields

q̇ = H(r)ṙ = H(r) 1
h
˙̄α (3.28)

Since q̇ and ˙̄α are bounded, lim
h→0
(H/h) must also be bounded. In order to fulfill

this requirement the following structure for the softening parameter is proposed:

H =h(t)H̄ ∀t > tWD (3.29)

where H̄ < 0 is defined to be bounded and will be named discrete or intrinsic
softening parameter.

Remark 15 When h → 0, H =hH̄ is equivalent to the distributional structure of
the softening parameter proposed by [Simo et al., 1993]. The fact that in (3.29)
this structure is stated in a regularized way allows for its extension to the weak
discontinuity regime.
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Now, by substituting (3.29) in (3.28), the following relationship emerges

q̇ = H̄ ˙̄α; q ∈ [0, r0] ∀t ≥ tSD (3.30)

which is the discrete counterpart of the softening law stated in (3.20). It can be
integrated in time as follows:

qS = qSD +
Z t

tSD

H̄ ˙̄α(τ)dτ (3.31)

where qSD = qS|t=tSD .
Consider for instance the case of a constant H̄, then (3.31) reduces to

qS = qSD + H̄∆ᾱ (3.32)

Equation (3.32) illustrates the dependence of qS on ∆ᾱ for a linear softening law,
but this can be generalized to laws of nonlinear type.
Let us now define

ω(∆ᾱ) = 1− q(∆ᾱ)

∆ᾱ
(3.33)

with ω(∆ᾱ) ∈ (−∞, 1] and ∆ᾱ ∈ [0,∞). The variable ω(∆ᾱ) can be regarded as
the discrete damage variable (whose continuum counterpart is d). Now the discrete
constitutive equation (3.27) can be rewritten in a more convenient format:

T =(1− ω)Qe·∆[[u]]S (3.34)

Thus, the analogy between the expressions of the continuum damage constitu-
tive equation (3.15) and the discrete damage constitutive equation (3.34) is clear.
Furthermore, the correspondence between the variables involved in (3.15) and (3.34)
is evident:

Continuum
Discrete

σ ε C d r q(r)
T ∆[[u]]S Qe ω ∆ᾱ ω

(3.35)

Remark 16 The discrete constitutive equation can be regarded as a ‘projection’ of
the continuum constitutive equation on the discontinuity interface.
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Consider now the basis {n, t,p}, where n is the unit normal to the discontinuity
interface S at a given material point and t and p are two vectors lying on the
tangential plane to S at that material point. The matrix expression of the elastic
acoustic tensor is

[Qe] =

 λ̂+ 2µ 0 0
0 µ 0
0 0 µ


Then, the expression of discrete constitutive equation (3.34) in components reads

Tn = (1− ω)(λ̂+ 2µ)∆[[u]]1
Tt = (1− ω)µ∆[[u]]2
Tp = (1− ω)µ∆[[u]]3

(3.36)

3.3.3 Discrete free energy

Within the context of thermodynamically consistent constitutive modelling, the def-
inition of continuum free energy density functions (as the one in (3.14) is a key task.
For isothermal processes and under the assumption of small strains a free energy
density function ψ is formulated in terms of the strains, ε, (acting as the free vari-
able) and a set of internal variables, Ξ. Based on thermodynamical arguments, the
stresses can be obtained from ψ(ε,Ξ):

σ =∂εψ(ε,Ξ) (3.37)

Thus the continuum free energy density can be regarded as a potential for the stress
field σ.
Consider the discontinuity interface S and assume that a free energy function

per unit area of that surface exists, which will be called discrete free energy function
and will be denoted by ψ̄ from now on, then, in the context of the regularized strong
discontinuity analysis, it can intuitively be seen as

ψ̄ =

µ
free energy

unit surface

¶
=

µ
free energy

unit volume

¶
| {z }

ψ

µ
unit volume

unit surface

¶
| {z }

h

= lim
h→0
hψS (3.38)

where ψS ≡ ψ|S . Thus, considering the regularized strong discontinuity kinematics
presented in (3.11), we can define



3.3. STRONG DISCONTINUITY ANALYSIS 37

ψ̄(ε̄,∆[[u]]S,Ξ) :=limh→0
hψS(ε(ε̄,∆[[u]]),Ξ) (3.39)

Hence,

∂∆[[u]]S ψ̄ = lim
h→0
h∂εψS(ε,Ξ)| {z }

σS

:∂∆[[u]]ε| {z }
1
h
(n⊗1)s

= σS ·n = T (3.40)

where [(n⊗ 1)s]ijk = 1
2
(δiknj + δjkni).

Therefore, the discrete free energy is a potential from which the traction vector
field on S is derived, i.e.,

T =∂∆[[u]]S ψ̄ (3.41)

Consider now the expression of the free energy density in (3.14), then, from
(3.39),

ψ̄ = lim
h→0
hψ = lim

h→0
hq

rS

·
1

2
(εS : C : εS)

¸
(3.42)

Replacing (3.11) and (3.24) in (3.42) and after some algebra, we obtain

½
ψ̄(∆[[u]]S ,ω) = (1− ω)ψ̄0(∆[[u]]S)
ψ̄0(∆[[u]]S) =

1
2
∆[[u]]S·Qe·∆[[u]]S

(3.43)

Remark 17 The discrete free energy density in (3.43) and the free energy den-
sity of the continuum parent model (3.14) have analogous formats in terms of the
corresponding variables in (3.35).

3.3.4 Strong discontinuity conditions

The issue of the necessary conditions for the appearance of strong discontinuities is
tackled here. The existence of this conditions justifies the necessity of the variable
bandwidth model explained in Section 3.2.4, since bifurcation might not coincide
with the inception of the strong discontinuity regime, as said before.
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Let us consider the stress field σS in the discontinuity interface given by (3.15)
in combination with the expression of the strain field presented in (3.11), then we
can write:

σS =
q

rS
C : εS

= lim
h→0

q

rSD +
1
h
∆ᾱ

C :

·
ε̄+
1

h
(∆[[u]]S ⊗ n)s

¸
= lim

h→0
q

hrSD +∆ᾱ
C : [hε̄+(∆[[u]]S ⊗ n)s]

=
q

∆ᾱ
C :(∆[[u]]S ⊗ n)s (3.44)

where the expressions (3.16) and (3.24) have been used. Hence,

(∆[[u]]S ⊗ n)s = ∆ᾱ

q
C−1 : σS =

∆ᾱ

q
εeS (3.45)

where εeffS := C−1 : σS = (1− d)ε is the so called effective strain field. Due to the
boundedness of σS , ε

eff
S is also bounded.

Equation (3.45) is the so called strong discontinuity equation [Oliver, 2000]. Let
us now write its matrix expression in the orthonormal basis {n, t,p} :

 ∆[[u]]n
1
2
∆[[u]]t

1
2
∆[[u]]p

1
2
∆[[u]]t 0 0
1
2
∆[[u]]p 0 0

 = ∆ᾱ

q

 εeffnn εeffnt εeffnp
εeffnt εefftt εefftp
εeffnp εefftp εeffpp

 (3.46)

Equality (3.46) represents a system of six equations with six unknowns. It can
be proven that three of them furnish the expressions for the components of the
displacement jump and are equivalent to (3.36), whereas the remaining three are
conditions that must be satisfied in the strong discontinuity regime. These are the
so-called strong discontinuity conditions and read

εefftt = εefftp = εeffpp = 0 (3.47)

Remark 18 The strong discontinuity conditions are restrictions on the stress state
for a strong discontinuity to develop. This means that the bifurcation time not
necessarily coincides with the time of inception of the strong discontinuity regime.
Therefore, a transition from weak to strong discontinuities, as the one proposed in
[Oliver et al., 1997] and [Oliver et al., 1999], becomes necessary.
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Two-dimensional settings

Remember the definition of the effective strain, εeffS = (1− d)ε, then

εefftt = (1− d)εtt
εefftp = (1− d)εtp
εeffpp = (1− d)εpp

Consider now the orthonormal basis {n, t,p} , where n and t are vectors coplanar
with the discontinuity line S, the former being the normal to S at a given material
point and the latter being tangent to S at that same material point. Vector p is a
vector normal to the plane in which the discontinuity line lies. In the case of plane
strain εpp = 0 and εtp = 0. Hence, the strong discontinuity conditions (3.47) reduce,
for the case of plane strain, to

εtt = 0 (3.48)

It is easy to see that the same condition holds for plane stress.

Remark 19 For the isotropic continuum damage model described in (3.14) to (3.20),
the strong discontinuity condition (3.48) is the same for plane strain as for plane
stress.

3.3.5 Discrete Damage Criteria

The elastic limit of damage models such as the one that we have been analyzing
throughout this section is determined by damage functions based on the definition
of energy norms [Simo and Ju, 1987]. One of such energy norms is the one used in
(3.18). Here we examine the effects of the strong discontinuity kinematics on those
norms and on the damage criteria through the representative damage model stated
in (3.14) to (3.20).
From (3.44) and (3.45), we obtain

τσS =
p
σS : C−1 : σS

=

·³ q

∆ᾱ

´2
(∆[[u]]S ⊗ n)s : C :(∆[[u]]S ⊗ n)s

¸1/2
=

q

∆ᾱ
(∆[[u]]S ·[n ·C · n]| {z }

Qe

·∆[[u]]S)1/2

=
q

∆ᾱ

p
∆[[u]]S·Qe·∆[[u]]S (3.49)
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Now, replacing the discrete constitutive equation (3.27) in (3.49), it yields

τσS = τT := kT k(Qe)−1 =
q
T · (Qe)−1·T (3.50)

Thus, a discrete energy norm is naturally induced at the discontinuity interface S.

Remark 20 Observe that the correspondence between the variables involved in the
continuum model and the discrete one stated in (3.35) also holds for the continuum
and the discrete norms.

Let us now define the following norm in S:

τ∆[[u]] := k∆[[u]]SkQe =
p
∆[[u]]S ·Qe·∆[[u]]S (3.51)

From (3.51), (3.50), and (3.34), the following relationship between the discrete
norm of the displacement jump and the discrete norm of the traction vector is
obtained:

τT = (1− ω)τ∆[[u]] (3.52)

which is analogous to the relationship between the continuum norms of the stress
and the strain, respectively. Thus, the damage function can be rephrased as follows:

f(σS ,q) := τσS − q ≡ z(T ,q) := τT − q (3.53)

Finally, let us furnish the continuum damage multiplier λ with the following
structure based on (3.23):

λS :=
1

h
λ̄ = ṙ =

1

h
˙̄α (3.54)

Now we can state the loading/unloading conditions in discrete format:

z ≤ 0; λ̄ ≥ 0; λ̄z = 0; λ̄ż = 0| {z }
consistency

(3.55)
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3.3.6 The discrete damage constitutive model

By applying the strong discontinuity analysis to the isotropic continuum damage
model sketched in (3.14) to (3.20) a set of definitions, relationships and equations
that constitute a discrete damage model have been derived. Now a summary of the
ingredients that define this model is presented.

Free energy

ψ̄(∆[[u]]S ,ω) = (1− ω)ψ̄0(∆[[u]]S) (3.56)

ψ̄0(∆[[u]]S) =
1

2
∆[[u]]S·Qe·∆[[u]]S

Constitutive equation

T = ∂∆[[u]]S ψ̄

T = (1− ω)Qe·∆[[u]]S (3.57)

Damage Variable

ω = 1− q(∆ᾱ)

∆ᾱ
(3.58)

with ω ∈ (−∞, 1]

Evolution law

∂t(∆ᾱ) = ˙̄α =λ̄ (3.59)

with ∆ᾱ ∈ [0,∞)

Damage Criterion

z(T ,q) : = τT − q (3.60)

τT : = kT k(Qe)−1 =
q
T · (Qe)−1·T
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Loading/unloading conditions

z ≤ 0; λ̄ ≥ 0; λ̄z = 0
λ̄ż = 0| {z }
consistency

(3.61)

Softening rule

q̇ = H̄ ˙̄α
H̄ =

1

h
H (3.62)

for q ∈ [0, qSD] and qSD := q|t=tSD

Remark 21 The discrete damage model presented here is characterized by the dis-
crete damage variable ω and by the discrete secant constitutive modulus Qs =
(1 − ω)Qe. Due to the initial value of ω = −∞, the initial secant constitutive
modulus is Qs = +∞Qe; therefore the model can be classified as a discrete rigid-
damage model as pointed out by [Oliver, 2000].

3.4 Expended power in SD. Fracture energy

In the previous section, the strong discontinuity analysis was applied to an isotropic
continuum damage model. The main result obtained was a discrete constitutive
model induced in the discontinuity interface. The dissipative process related with
this model is, therefore, concentrated on a surface11, which entails energy release
per unit area. Thus, the existence of a relationship between the energy released
in the strong discontinuity regime at a discontinuity interface and the concept of
fracture energy seems natural [Oliver, 1996a]. This relationship is established in
this section. One of the most interesting results of this derivation is an expression
which relates the intrinsic softening parameter to the fracture energy.

According to the Theorem of Power Expended [Gurtin, 1981] for quasistatic
problems, in which the kinetic energy can be neglected, the power expended in a
solid Ω by the surface and body forces (t∗ and b, respectively) is equal to the stress
power, i.e.,

11More generally in a manifold of dimension n − 1, where n is the dimension of the ambient
space.
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Z
Ω

b · u̇dΩ+
Z
Γ

t∗·u̇dΓ =
Z
Ω

σ : ε̇dΩ (3.63)

Let us focus on the strong discontinuity regime and use the expression of the
strain field given by (3.4) for the right hand side of (3.63):

Z
Ω

σ : ε̇dΩ =

Z
Ω

σ :
£
˙̄ε+δS ([[u̇]]⊗ n)s

¤
dΩZ

Ω

σ : ε̇dΩ =

Z
Ω\S

σ : ˙̄εdΩ+

Z
S
σS : ([[u̇]]S ⊗ n)sdS| {z }

PS

(3.64)

where PS is the power expended in the development of the displacement jump in S.
Then, the total energy expended in the development of the strong discontinuity is
given by

WS =
Z t∞

tSD

PSdt (3.65)

where t∞ stands for the time at which the displacement jump is fully developed
Moreover, from (3.64), we have that

PS =

Z
S
σS : ([[u̇]]S ⊗ n)sdS

=

Z
S
T ·[[u̇]]SdS (3.66)

Then, replacing (3.66) in (3.65) yields

WS =

Z t∞

tSD

Z
S
T ·[[u̇]]SdSdt

=

Z
S

Z t∞

tSD

T ·[[u̇]]Sdt| {z }
GSD

dS (3.67)

where GSD is the energy released on S per unit area in the strong discontinuity
regime. If we assume that the energy released during the transition between the
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bifurcation time and the inception of the strong discontinuity regime is small with
respect to GSD, we can readily identify GSD with the fracture energy Gf .
Let us now find a more convenient expression of the kernel of (3.66) for the

discrete damage model described in (3.56) to (3.62).
From (3.51) and considering that t > tSD,

τ̇∆[[u]] =
∂

∂t

³p
∆[[u]]S ·Qe·∆[[u]]S

´
=

∆[[u]]S ·Qe·[[u̇]]S
τ∆[[u]]

(3.68)

Hence,

∆[[u]]S ·Qe·[[u̇]]S = τ̇∆[[u]]τ∆[[u]]

Thus, in light of the discrete constitutive equation (3.57), the following equality
holds:

T ·[[u̇]]S =
³ q

∆ᾱ
∆[[u]]S ·Qe

´
| {z }

T

·[[u̇]]S = q

∆ᾱ
(τ̇∆[[u]]τ∆[[u]]) (3.69)

By using the relation (3.52) and (3.58), we can prove that, for inelastic loading,

z(T ,q) := τT − q = 0⇐⇒ z∆[[u]](∆[[u]],∆ᾱ) := τ∆[[u]] −∆ᾱ = 0 (3.70)

and that

ż∆[[u]](∆[[u]]S ,∆ᾱ) = τ̇∆[[u]] − ˙̄α (3.71)

From (3.61) we have that for loading z(T ,q) = ż(T ,q) = 0. Then from (3.70)
and (3.71), equation (3.69) can be rewritten as

T ·[[u̇]]S = q ˙̄α (3.72)

By replacing (3.72) in the expression of GSD in (3.67), we obtain
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GSD =

Z t∞

tSD

q ˙̄αdt =

Z t∞

tSD

q
q̇

H̄dt

=

Z q∞

qSD

q
1

H̄dq (3.73)

where the discrete softening law (3.62) has been used. Now, noticing that q∞ = 0
and considering the case of H̄ constant, equation (3.73) yields

GSD = −q
2
SD

2H̄ (3.74)

For the case of GSD ≈ Gf , qSD ≈ q0 = r0. Since r0 = σu/
√
E, then the following

equality can be obtained from (3.74):

H̄ = − σ2u
2EGf

(3.75)

Remark 22 Expression (3.75) reveals that the intrinsic softening modulus is en-
dowed with the character of a material property.
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Chapter 4

Finite elements with embedded
discontinuities: elemental
enrichment

The numerical modelling of strong discontinuities in solids requires the use of non-
standard formulations to enable the sharp resolution of jumps in the displacement
field. Here, we study some of them within the context of the finite element method.
However, it is important to mention that the strong discontinuity approach described
in the preceding chapter was developed without any reference to some specific nu-
merical method and can, therefore, be used as the underlying mathematical model
to develop, in principle, numerical models based on any numerical method. In
general, some type of enrichment of the standard finite element approximation is
necessary to include discontinuities within an element domain. Multiple frame-
works have been employed for attaining this goal. In [Simo and Oliver, 1994], the
assumed enhanced strain method [Simo and Rifai, 1990] was used in order to model
strong discontinuities. The variational multiscale method [Hughes, 1995] has
also been used in [Garikipati and Hughes, 2000] to include discontinuities within
an element domain. Lately, the partition of unit concept has been exploited
for the inclusion of strong discontinuities, first in the context of Linear Fracture
Mechanics [Belytschko et al., 2001], and then in the context of cohesive models
[Wells and Sluys, 2001]. Applications of multifield variational principles1 to embed
discontinuities inside an element can be found in [Oliver et al., 2003] and
[Spencer, 2002].
Although, as mentioned above, the strong discontinuity approach is indepen-

dent of the numerical method used, it has classically been related to the use of

1As a matter of fact, the assumed enhanced strain method itself is based on a multifield varia-
tional principle.

47
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the so-called finite elements with embedded discontinuities2. One of such elements
was proposed for the first time in [Ortiz et al., 1987] to capture weak discontinu-
ities. The inclusion of strong discontinuities was tackled in [Dvorkin et al., 1990]
for quadrilaterals and in [Klisinski et al., 1991] for linear triangles. A general frame-
work for the development of finite elements with embedded strong discontinuities
regardless of the parent element was sketched in [Simo et al., 1993] and extensively
explained in [Oliver, 1996b].
In [Jirasek, 2000a] a fairly comprehensive study of this type of elements can be

found. There, they were classified into three groups:

• Statically optimal symmetric elements : the traction vector continuity is explic-
itly enforced at element level. Nevertheless, the symmetry of the formulation
entails that the discontinuous kinematics does not guarantee free rigid motions
of the two parts in which the element is split up by the discontinuity.

• Kinematically optimal symmetric elements: the kinematics allows to capture
the free rigid motions of the two parts of an element crossed by a discontinuity
line. However, because of the symmetric character of these elements, the
traction vector continuity is not enforced at element level.

• Kinematically and statically optimal non-symmetric elements: both the kine-
matics that allows for rigid body relative motions and the enforcement of the
traction continuity are introduced at element level. As a consequence, the
resulting formulation is non-symmetric.

Based on this classification and using the multifield variational statement of the
boundary value problem, [Oliver et al., 2003] studied the first and the third families
of elements. The statically optimal symmetric formulation was shown to exhibit
stress locking behavior. Then, the possibility of devising a statically optimal sym-
metric element not suffering from this pathological behavior was explored. This
was motivated by the fact that, even though the kinematically and statically optimal
non-symmetric formulation has shown the best performance, its optimal implemen-
tation entails the use of an algorithm for tracking the discontinuity3. These algo-
rithms can become very cumbersome when the inception and propagation of multi-
ple discontinuities has to be managed. Statically optimal symmetric elements seem
not to need a tracking algorithm and would have, in principle, a self-propagating
behavior, which could be exploited for simulating multiple discontinuities.

2The term finite elements with embedded discontinuities is reserved in the literature for for-
mulations based on the elemental enrichment of the standard finite element approximation. In
this chapter, we follow this convention. However, the term also seems adequate to refer to nodal
(partition of unity based) enrichment (see Appendix B).

3Chapter 5 is devoted to studying such algorithms.



4.1. THE BOUNDARY VALUE PROBLEM. MULTIFIELD FORMAT 49

This chapter presents a study on finite elements with embedded discontinuities.
In Section 4.1 the boundary value problem (BVP) is stated in a very general mul-
tifield format. Then the non-symmetric formulation is studied in Section 4.2. Its
continuous and discrete4 versions are stated. Section 4.3 presents a symmetric for-
mulation consistent with the strong discontinuity kinematics (the kinematically op-
timal symmetric element), again in both its continuous and discrete version. Some-
thing similar is done in Section 4.4 for a symmetric element based on the assumed
enhanced strain method (the statically optimal symmetric element). The question
of the possibility of a self-propagating element is posed in Section 4.5. While ex-
ploring whether the statically optimal symmetric element is one of such elements,
the problem of the stress locking effect arises and is illustrated through a represen-
tative numerical test. In Section 4.6. a mixed approach is proposed as a remedy for
this stress locking, whereas in Section 4.7 an assumed re-enhanced strain strategy is
presented with the same goal. The assessment of the performance of these elements
is done in Section 4.8

4.1 The boundary value problem. Multifield for-

mat

Here, we reformulate the boundary value problem presented in chapter 3 as a mul-
tifield problem.
Consider the open domain Ω, with elements x (called material points), whose

boundary is Γ. The boundary is composed of the open sets Γu and Γσ such that
Γu ∩ Γσ = ∅ and Γu ∪ Γσ = Γ. Prescribed displacement rates, u̇, are imposed on
Γu, and prescribed traction rates are imposed on Γσ. The material line S crosses
Ω splitting it up into Ω+ and Ω− (as shown in Fig. 4.1).
In Chapter 3, the structure of the displacement field for the strong discontinuity

kinematics has been presented:

u̇(x, t) = ˙̄u(x, t) + HS [[u̇]](x, t) (4.1)

Consider, now, the following vector-valued function ˙̂u : Ω×R+ → Rndim (ndim is
the number of dimensions of the problem), defined as

˙̂u(x, t) := ˙̄u(x, t) + [[u̇]](x, t)ϕ(x) (4.2)

4In this chapter the term discrete refers, hereafter, to the finite element (discretized) version of
a boundary value problem and not to a discrete (cohesive) constitutive model as in the preceding
chapter.
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Figure 4.1: Solid with a strong discontinuity interface.

where ϕ is some smooth function fulfilling the following conditions:

ϕ(x) =

½
1 ∀x ∈Ω+\Ωϕ

0 ∀x ∈Ω−\Ωh (4.3)

with Ωϕ denoting a compact domain such that Ωϕ ⊂ Ω and S ⊂ Ωϕ in such way
that Ωϕ is partitioned by S.
Now 4.1 can be rewritten as

u̇(x, t) = ˙̂u(x, t) +MS(x) [[u̇]](x, t) (4.4)

whereMS(x) :=HS − ϕ(x).

Remark 23 FunctionMS has Ωϕ as its support, i.e.,MS(x) = 0 ∀x ∈Ω\Ωϕ. This
entails that, for a convenient choice of Ωϕ, the Dirichlet boundary conditions need
to be prescribed only for ˙̂u and not for [[u̇]] and that u̇(x, t) = ˙̂u(x, t) ∀x ∈Ω\Ωϕ.

Let us define S as the space of second order symmetric tensors. Consider, for a
given time t ∈ R+, the following, in principle, independent fields: the displacement
rate field u̇(•, t):Ω → Rndim, the stress rate field, σ̇(•, t):Ω → S, and the strain
rate field, ε̇(•, t):Ω → S. Then, the following incremental three field quasistatic
boundary value problem can be stated in strong form:
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FIND :

 u̇
ε̇
σ̇

satisfying

∇ · σ̇ + ḃ = 0 in Ω\S (internal equilibrium) (a)
ε̇−∇Su̇ = 0 in Ω (kinematical compatibility) (b)

σ̇ − Σ̇(ε) = 0 in Ω (constitutive compatibility) (c)
σ̇ · ν = ṫ∗ on Γσ (external equilibrim) (d)
σ̇Ω+ · n− σ̇Ω− · n| {z }
=: [[σ̇]]Ω\S · n

= 0 on S (outer traction continuity (e)

σ̇Ω+ · n− σ̇S · n| {z }
=: [[σ̇]]S · n

= 0 on S (inner traction continuity) (f)

(4.5)

where ḃ is the body force density rate, ṫ∗ is the traction rate prescribed on Γσ, n
is the unit normal to S pointing to Ω+, ν is the unit outward normal to Γ, and
Σ̇ stands for the time derivative of the constitutive function Σ, which returns the
stresses, Σ(ε), for some given strains5, ε.

Remark 24 The function spaces for u̇, ε̇, and σ̇ are assumed to be defined in such
a way that the Dirichlet type boundary conditions are automatically fulfilled.

Remark 25 The above very general statement of a quasistatic boundary value prob-
lem furnishes a framework that allows to consider other possible statements as par-
ticular cases of 4.5.

Remark 26 The inner traction continuity stated in (4.5-f) is non-standard in Solid
Mechanics problems and is tightly related to the strong discontinuity kinematics.

One of the possible simplifications of the above BVP statement is assuming that
(4.5-c) is imposed explicitly. Then the following two field, u̇− ε̇, problem can be
stated:

5For instance, Σ could be the stresses obtained by means of the continuum damage constitutive
model described in section 2.2.
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FIND :

½
u̇
ε̇

satisfying

∇ · Σ̇+ ḃ = 0 in Ω\S (internal equilibrium) (a)
ε̇−∇Su̇ = 0 in Ω (kinematical compatibility) (b)

Σ̇ · ν = ṫ∗ on Γσ (external equilibrim) (c)

Σ̇Ω+ · n− Σ̇Ω− · n| {z }
=: [[Σ̇]]Ω\S · n

= 0 on S (outer traction continuity (d)

Σ̇Ω+ · n− Σ̇S · n| {z }
=: [[Σ̇]]S · n

= 0 on S (inner traction continuity) (e)

(4.6)

4.2 Non-symmetric formulation

Based on (4.6), a convenient weak form is devised in this section. First of all, let
us work with the displacement field stated in (4.4). In light of that kinematics, let
us define the space of the displacement rate as follows:

Vu := Vû ⊕ Vu0 (4.7)

with

Vû :=
©
η̂ ∈ [H1(Ω)]ndim ; η̂|Γu = u̇∗

ª
(4.8)

where u̇∗ stands for the essential boundary conditions prescribed on Γu and H
1(Ω)

is the space of square integrable functions defined in Ω whose first derivatives are
also square integrable6, and

Vu0 := {η0 =MS α ;αS ≡ α|S ∈ Vα} (4.9)

where

Vα := [L2(S)]ndim (4.10)

L2(S) stands for the space of square integrable functions defined on S.
6In one dimension the functions in H1(Ω) are continuous.
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Remark 27 Expression (4.7) can be understood within the framework of the vari-
ational multiscale method [Hughes, 1995] as the additive decomposition of the dis-
placement field into a coarse scale and a fine scale, the latter resolves the jumps in
the displacement field.

Let us, now, define the space of admissible displacement rate variations, Vη̄ , as

Vη̄ :=
©
η̄ ∈ [H1(Ω)]ndim ; η̄|Γu = 0

ª
(4.11)

4.2.1 Continuum Problem

Assuming the kinematical compatibility (4.6-b) as explicitly imposed, then, with
the above definitions in hand, let us state the following problem:
FIND

u̇ ∈Vu ⇔
½

˙̂u∈Vû
u0∈Vu0

SUCH THAT

Z
Ω\S

Σ̇(∇Su) : ∇Sη̄ dΩ−Gext(η̄) = 0 ∀η̄ ∈ Vη̄ (a)Z
S
αS · [[Σ̇]]S · n dS = 0 ∀αS ∈ Vα (b)

(4.12)

where Gext(η̄) :=
R
Ω\S ḃ · η̄ dΩ+

R
Γσ
ṫ∗ · η̄ dΓ

By using standard arguments, one can prove that the strong form of (4.12-a) is

∇ · Σ̇(∇Su) + ḃ = 0 in Ω\S
Σ̇ · ν = ṫ∗ on Γσ

[[Σ̇]]Ω\S · n = 0 on S
whereas the strong form of (4.12-b) is

[[Σ̇]]S · n = 0 on S
Remark 28 The choice of the spaces Vu and Vη̄ and the particular way of impos-
ing the inner traction continuity in (4.12-b) are determinant for the nonsymmetric
character of this formulation.
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Remark 29 For the expression (4.12-b) to make sense, [[Σ̇S ]] ∈ L2(S; S) must hold.
This smoothness of [[Σ̇S ]] can be guaranteed on the basis of the results obtained,
by means of the strong discontinuity analysis, in the preceding chapter stating the
bounded character of the stresses, despite the unbounded character of the strains in
S.

4.2.2 Finite element discretization

With regard to the discretized versions of the problems presented in this chapter,
only the two-dimensional case is treated. Thus, consider a two-dimensional domain
Ω discretized into a finite element mesh with nelem four-noded elements

7 and nnode
nodes and crossed by the interface S. Then, assume that some tracking algorithm
determines the set J of elements crossed by the discontinuity interface at a given
time t, i.e.,

J := {e | Ωe ∩ S 6= ∅} (4.13)

Let us also define

I := {1, ..., nelem} (4.14)

The above mentioned tracking algorithm also provides the position of the elemental
discontinuity Se of length le within an element domain, Ωe, which defines the domains
Ω+e := Ω+ ∩ Ωe and Ω−e := Ω− ∩ Ωe and the nodes i

+ ∈ Ω
+
and i− ∈ Ω

−
. With

this in hand, the finite element approximation for the displacement rate field, u̇,
proposed in [Oliver, 1996b], is adopted:

u̇h
(e)

(x, t) = Σi=4i=1 N
(e)
i (x)ḋi(t)| {z }
˙̂u
h(e)

+M(e)
S (x) [[u̇]]e(t)| {z }
u̇0,h

(e)

(4.15)

where ˙̂u
h(e)

is the standard C0 elemental approximation of the rate of displacement
field, interpolated by the bilinear element shape functions, N

(e)
1 , N

(e)
2 , N

(e)
3 , N

(e)
4 ,

and parametrized by the nodal values of the displacement rate ḋi(t), for i ∈ {1, .., 4}.
The term u̇0,h

(e)

resolves the jumps in the rate of displacement field in terms of the

7Only four-noded quadrilaterals are considered as parent elements in this chapter. However, the
application of the ideas presented here to formulations having linear triangles as parent elements
is straightforward.
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elemental displacement rate jump [[u̇]]e, which is element-wise constant, withM(e)
S

defined as follows:

M(e)
S (x) =


0 ∀ e 6∈ J

H
(e)
S (x)− ϕ(e)

(ϕ(e) = Σn
+
e

i+=1Ni+)

)
∀ e ∈ J (4.16)

n+e stands for the number of nodes of element e that belong to Ω
+
, and H (e)

S is the
step function acting on Se.
From (4.6-b), (4.15), and (4.16) the discrete strain rate field at element level

reads

[ε̇h](e) = Σi=4i=1 (∇N (e)
i ⊗ ḋi)S − (∇ϕ(e) ⊗ [[u̇]]e)S + µ(e)S

1

k
([[u̇]]e ⊗ n)S (4.17)

where for numerical purposes, the regularized version of the Dirac delta, δS , has
been adopted:

δ
(e)
S ≈ µ(e)S

1

k
(4.18)

with µ
(e)
S being a collocation function whose support is a band Ske of thickness k

having Se as its middle line. This collocation function is defined as

µ
(e)
S (x) = 1 ∀ x ∈ Ske
µ
(e)
S (x) = 0 ∀ x /∈ Ske

(4.19)

Remark 30 The regularization parameter k does not depend on the dimensions of
the element and can be as small as allowed by the machine precision.

Moreover, the element is furnished with an additional sampling point, named SSP
(singular sampling point) and placed at the centroid of the element, that represents
the material points in Ske and whose associated area is

meas(Ske ) = kle (4.20)

A sampling point representing the stress state of the material points in Ω\Ske ,
named RSP (regular sampling point) and placed at the centroid of the element as
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well, is also added. The discontinuous bifurcation analysis studied in Chapter 2 is
performed in RSP. This entails the normal, n, being element-wise constant.
Now, based on the finite element approximation of the displacement rate field

presented in (4.15), we can define the following function spaces:

Vhu = Vhû ⊕ Vhu0 (4.21)

where

Vhα :=
©
αh; αh(x) = αe ∀e ∈ J ; αh(x) = 0 ∀e /∈ J ª

Vhû :=
©
η̂h; η̂h(x) = Σi=nnodei=1 Ni(x) η̂i; η̂i|Γu = u̇∗

ª
Vhu0 :=

n
η0,h; η0,h(x) = Σe∈J M(e)

S (x)αe
o (4.22)

with αe,ηi ∈ R2, and

Vhη̄ :=
©
η̄h; η̄h(x) = Σi=nnodei=1 Ni(x) η̄i ; η̄i|Γu = 0

ª
(4.23)

where η̄i ∈ R2.

4.2.3 Discrete non-symmetric problem

Now the following discrete problem can be stated:
FIND:

u̇h∈Vhu ⇔
(

˙̂u
h∈Vhû

[[u̇]]h∈Vhα
(4.24)

SUCH THAT:Pe=nelem
e=1

Z
Ωe

∇Sη̄h : Σ̇(εh)dΩ −Gext(η̄h) = 0 ∀η̄h ∈ Vhη̄
Σe∈J

Z
Se
αh · [[Σ̇]]S · ndS = 0 ∀αh ∈ Vhα

(4.25)

4.2.4 Matrix representation

Using the standard B-format [Hughes, 1987], the matrix representation of the dis-
crete strain rate field (4.17) reads
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{ε̇}(e) = B(e)ḋ(e)+
µ
µ
(e)
S
1

k
[n](e) − £∇ϕ(e)¤¶ [[u̇]]e (4.26)

where

ḋ(e) =
£
ḋT1 , ḋ

T
2 , ḋ

T
3 , ḋ

T
4

¤T
(4.27)

with (•)T denoting the transpose of (•),

B(e) =
h
B
(e)
1 , B

(e)
2 , B

(e)
3 , B

(e)
4

i
B
(e)
i =

 ∂xN
(e)
i 0

0 ∂yN
(e)
i

∂yN
(e)
i ∂xN

(e)
i

 (4.28)

and

[∇ϕ](e) =

 ∂xϕ
(e) 0

0 ∂yϕ
(e)

∂yϕ
(e) ∂xϕ

(e)

 ; [n](e) =

 nx 0
0 ny
ny nx

 (4.29)

We also have that, in matrix form,

{∇Sη̄} = B(e){η̄}(e) (4.30)

with

{η̄}(e) = £ η̄T1 , η̄T2 , η̄T3 , η̄T4
¤T

(4.31)

Now, we can write the expression of the element level incremental residual forces
corresponding to (4.25):

Ṙ(e) :=

Z
Ωe

B(e)
T {Σ̇}(e) dΩ− Ḟ(e)ext (a)

ṙ(e) :=

Z
Se
[n](e)

T
h
{Σ̇Se}(e) − {Σ̇Ω+}(e)

i
dS (b)

(4.32)
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where Ḟ
(e)
ext is the vector of incremental external forces at element level.

Assume that the constitutive function rate (which in this formulation coincides
with the stress rate field), Σ̇, can be expressed in matrix form as

{Σ̇}(e) = D{ε̇}(e) (4.33)

with D being the matrix representation of the constitutive tangent operator, as-
sumed to be symmetric.
Now, let us approximate the stresses in Ω+e belonging to the neighborhood of Se

by

1

le

Z
Se

{Σ̇Ω+}(e)dS ≈ 1

Ωe

Z
Ωe

{Σ̇Ω+}(e)dΩ (4.34)

where Ωe :=
R
Ωe
dΩ and le =

R
Se dS. Hence, the second term of (4.32-b) can be

rewritten:

Z
Se

[n](e)
T {Σ̇Ω+}(e)dS =

le
Ωe

Z
Ωe

[n](e)T {Σ̇Ω+}(e)dΩ

=

Z
Ωe

le
Ωe
[n](e)T {Σ̇Ω+}(e)dΩ (4.35)

where the fact of [n](e) being element-wise constant has been considered.

Remark 31 In case of element-wise constant {Σ̇Ω+}(e), (4.34) is not an approxi-
mation but an identity.

Notice that the first term of (4.32-b) can be expressed as follows:

Z
Se

[n](e)
T {Σ̇Se}(e)dS =

Z
Ske

1

k
[n](e)

T {Σ̇Se}(e)dSk (4.36)

where dSk = kdS (k is the regularization parameter).

Remark 32 Expression (4.36) is convenient for numerical purposes and is compat-
ible with the character of the singular sampling point, SSP, whose associated area
was defined in (4.20).
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Let us define the following matrices:

G∗(e) := (µ(e)S
1

k
− le

Ωe
) [n](e)

T

(4.37)

and

G(e) := µ
(e)
S
1

k
[n](e) − £∇ϕ(e)

¤
(4.38)

Then, in light of (4.26), (4.33), (4.35), and (4.36), and considering definitions
(4.37) and (4.38), the elemental residual forces (4.32) can be rephrased as

"
K
(e)
dd K

(e)
dα

K
(e)
αd K

(e)
αα

#½
ḋ(e)

[[u̇]]e

¾
−
½
Ḟ(e)ext
0

¾
=

½
Ṙ(e)

ṙ(e)

¾
(4.39)

with

K
(e)
dd =

Z
Ωe

B(e)
T
D B(e)dΩ

K
(e)
dα =

Z
Ωe

B(e)
T
D G(e)dΩ

K
(e)
αd =

Z
Ωe

G∗(e) D B(e)dΩ

K
(e)
αα =

Z
Ωe

G∗(e) D G(e)dΩ

(4.40)

Remark 33 The fact of G(e)T 6= G∗(e) entails that the resulting tangent stiffness
matrix of this formulation is non-symmetrical.

Remark 34 Due to their elemental support, the modes corresponding to the dis-
placement jumps, [[u̇]]e, can be condensed at element level.

Remark 35 It is easy to prove that
R
Ωe
G∗(e)dΩ = 0, which ensures the satisfaction

of the patch test (see [Simo and Rifai, 1990]).

In order to express (4.39) in a more compact way, let us define

B̄(e) =
h
B
(e)
1 , B

(e)
2 , B

(e)
3 , B

(e)
4 , G

(e)
i

B̄(e)∗ =
h
B
(e)
1 , B

(e)
2 , B

(e)
3 , B

(e)
4 , G

∗(e)
i (4.41)
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and

˙̄R
(e)
=
£
(Ṙ(e))T , ṙ(e)

T
¤T

˙̄F
(e)

ext =
h
(Ḟ

(e)
ext)

T , 0T
iT

˙̄d
(e)
=
£
(ḋ(e))T [[u̇]]Te

¤T (4.42)

Then (4.39), can be stated in B-bar format [Simo and Hughes, 1998] as

Z
Ωe

B̄(e)
T

∗ D B̄(e) ˙̄d
(e)
dΩ− ˙̄F

(e)

ext =
˙̄R
(e)

(4.43)

Finally, the global system of equations corresponding to (4.25) is given by

nelem
A
e=1

·Z
Ωe

B̄(e)
T

∗ D B̄(e) ˙̄d
(e)
dΩ− ˙̄F

(e)

ext = 0

¸
(4.44)

where A is the standard assembly operator [Hughes, 1987].

4.3 Symmetric kinematically consistent formula-

tion

For the symmetric kinematically consistent formulation8, the function space cor-
responding to the displacement rate field is the same as the one defined for the
non-symmetric formulation presented in Section 4.2:

Vu := Vû ⊕ Vu0 (4.45)

with

Vû :=
©
η̂ ∈ [H1(Ω)]ndim ; η̂|Γu = u̇∗

ª
(4.46)

where u̇∗ stands for the essential boundary conditions prescribed on Γu, and

8Here we use the term consistent (as in [Oliver et al., 2003]) instead of optimal (as in
[Jirasek, 1998]), because the former seems more appropriate in the context of the functional frame-
work that we use throughout this chapter.
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Vu0 := {η0 =MS α ;αS ≡ α|S ∈ Vα} (4.47)

with Vα:=[L2(S)]ndim
Nevertheless, this time the function space for the admissible variations of the

displacement rate field is

Vη := Vη̄ ⊕ Vu0 (4.48)

with

Vη̄ :=
©
η̄ ∈ [H1(Ω)]ndim ; η̄|Γu = 0

ª
(4.49)

Remark 36 The spaces Vu and Vη̄ only differ in the Dirichlet boundary conditions,
which are homogenous for the latter. From this fact, one can foresee the symmetric
character of the resulting formulation.

4.3.1 Continuum Problem

Then the following boundary value problem can be stated:
FIND

u̇ ∈Vu ⇔
½

˙̂u∈Vû
u̇0∈Vu0 (4.50)

SUCH THAT

Z
Ω\S

Σ̇(∇Su) : ∇Sη̄ dΩ−Gext(η̄) = 0 ∀η̄ ∈ Vη̄ (a)Z
Ω

Σ̇(∇Su) : ∇Sη0 dΩ−Gext(η0) = 0 ∀η0 ∈ Vu0 (b)
(4.51)

where Gext(•) :=
R
Ω
ḃ · (•) dΩ+ R

Γσ
ṫ∗ · (•) dΓ.

On the basis of standard arguments, one can prove that the strong form of
(4.51-a) is

∇ · Σ̇(∇Su) + ḃ = 0 in Ω\S (a)

Σ̇ · ν = ṫ∗ on Γσ (b)

[[Σ̇]]Ω\S · n = 0 on S (c)

(4.52)

With regard to (4.51-b), the following proposition can be stated:
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Figure 4.2: Solid with a strong discontinuity interface and surrounded by the domain
Ωϕ.

Proposition 1 Equations (4.12-b) and (4.51-b) are equivalent.

Proof: This proof is based on the one presented in [Simo and Oliver, 1994].
By definition,

η0 =MS α (4.53)

where, from Section 4.1,

MS(x) :=HS − ϕ(x) (4.54)

with ϕ(x) defined in (4.3).
Then, the left hand side of (4.51-b) can be rephrased as

Z
Ωϕ

Σ̇ : ∇Sη0 dΩ−Gext(η0) =
Z
Ωϕ

Σ̇ : ∇Sη0 dΩ−
Z
Ωϕ

MS ḃ ·α dΩ (4.55)

where the fact that supp[MS ] = Ωϕ ⊂ Ω and the assumption that Γ∩ Ω̄ϕ is traction
free have been used.
From (4.53) and (4.54), we have that

∇Sη0 = ∇SMS ⊗α+MS∇Sα
= (δSn⊗α)S − (∇ϕ⊗α)S+MS∇Sα (4.56)
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Replacing (4.56) into the first term of the right hand side of (4.55) yields

Z
Ωϕ

Σ̇ : ∇Sη0 dΩ =Z
Ωϕ

Σ̇ :
h
(δSn⊗α)S − (∇ϕ⊗α)S+MS∇Sα

i
dΩ = (4.57)Z

Ωϕ

h
Σ̇ : (δSn⊗α)S − Σ̇ : (∇ϕ⊗α)S+Σ̇ :MS∇Sα

i
dΩ

Let us work with the second term of (4.57). From (4.52-a) and considering the
symmetry of Σ̇, we have

Z
Ωϕ

Σ̇ : (∇ϕ⊗α) dΩ =Z
Ωϕ

∇ · (ϕΣ̇ ·α)dΩ−
Z
Ωϕ

ϕ
h
(∇ · Σ̇) ·α+ Σ̇ :∇α

i
dΩ =Z

∂Ωϕ

ϕ
h
(Σ̇ ·α) · νϕ

i
dΓ+

Z
Ωϕ

ϕ
h
ḃ ·α− Σ̇ :∇α

i
dΩ (4.58)

where ∂Ωϕ denotes the boundary of Ωϕ, with outward normal νϕ. It is composed
of the open sets Γ+ϕ and Γ−ϕ such that ∂Ωϕ = Γ+ϕ ∪ Γ−ϕ , Γ+ϕ ∩ Γ−ϕ = ∅, Γ+ϕ ⊂ Ω+,
and Γ−ϕ ⊂ Ω−. Moreover, Ωϕ, as said in Section 4.1, is partitioned by S into
Ω+ϕ = Ωϕ ∩Ω+ and Ω−ϕ = Ωϕ ∩Ω−. Thus, considering that, by definition, ϕ|Γ+ϕ = 1
and ϕ|Γ−ϕ = 0, (4.58) can be rewritten asZ

Ωϕ

Σ̇ : (∇ϕ⊗α) dΩ =Z
Γ+ϕ

h
(Σ̇ ·α) · νϕ

i
dΓ+

Z
Ωϕ

ϕ
h
ḃ ·α− Σ̇ :∇α

i
dΩ (4.59)

From (4.54) and considering the definition of the Heaviside function, we can
write

Z
Ωϕ

ϕ
h
ḃ ·α− Σ̇ :∇α

i
dΩ =Z

Ω+ϕ

h
ḃ ·α− Σ̇ :∇α

i
dΩ−

Z
Ωϕ

MS
h
ḃ ·α− Σ̇ :∇α

i
dΩ (4.60)
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Let us consider the first term of (4.57):

Z
Ωϕ

Σ̇ : (δSn⊗α)dΩ =
Z
S
(Σ̇S · n) ·αSdΩ (4.61)

where the symmetry of Σ̇ has been considered.
Now, let us substitute, first, (4.60) into (4.59); second, the resulting expression

and (4.61) into (4.57), and, finally, into (4.55). This yields

Z
Ωϕ

Σ̇ : ∇Sη0 dΩ−
Z
Ωϕ

MS ḃ ·α dΩ =Z
S
(Σ̇S · n) ·α dΩ−

Z
Γ+ϕ

(Σ̇ ·α) · νϕ dΓ

−
Z
Ω+ϕ

h
ḃ ·α− Σ̇ :∇α

i
dΩ (4.62)

Also, we have that

Z
Ω+ϕ

Σ̇ :∇α =
Z
Ω+ϕ

∇ · (Σ̇ ·α)−
Z
Ω+ϕ

(∇ · Σ̇) ·α

=

Z
Γ+ϕ

(Σ̇ ·α) · νϕ −
Z
S
(Σ̇Ω+ ·αS) · n+

Z
Ω+ϕ

ḃ ·α (4.63)

Finally, substituting (4.63) into the right hand side of (4.62), and considering
(4.51-b), we can write

Z
S
αS ·

h
Σ̇S · n− Σ̇Ω+ · n

i
= 0 ∀αS ∈ Vα (4.64)

Then proposition (1) follows.

Corollary 2 The system of variational equations (4.12) and (4.51) are equivalent.

4.3.2 Finite element discretization

The same finite element approximation for the displacement rate field, u̇, presented
in Section 4.2 is adopted here:
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u̇h
(e)

= Σi=4i=1 N
(e)
i (x)ḋi(t)| {z }
˙̂u
h(e)

+M(e)
S (x) [[u̇]]

h
e(t)| {z }

u̇0,h
(e)

(4.65)

where ˙̂u
h(e)

is, again, the standard C0 elemental approximation of the rate of dis-
placement field, interpolated by the bilinear element shape functions, N

(e)
1 , N

(e)
2 ,

N
(e)
3 , N

(e)
4 , and parametrized by the nodal values of the displacement rate ḋi(t), for

i ∈ {1, .., 4}. The term u̇0,h
(e)

resolves, as in the preceding formulation, the jumps
in the rate of displacement field in terms of the element-wise constant displacement
rate jump [[u̇]]e, withM(e)

S defined in (4.16).
Then, the discrete strain rate field at element level reads

[ε̇h](e) = Σi=4i=1 (∇N (e)
i ⊗ ḋi)S − (∇ϕ(e) ⊗ [[u̇]]e)S + µ(e)S

1

k
([[u̇]]e ⊗ n)S (4.66)

Thus, from the finite element approximation of the displacement rate field pre-
sented in (4.65), the definition of the following function spaces can be made:

Vhu = Vhû ⊕ Vhu0 (4.67)

where

Vhα :=
©
αh; αh(x) = αe ∀e ∈ J ; αh(x) = 0 ∀e /∈ J ª

Vhû :=
©
η̂h; η̂h(x) = Σi=nnodei=1 Ni(x) η̂i; η̂i|Γu = u̇∗

ª
Vhu0 :=

n
η0,h; η0,h(x) = Σe∈J M(e)

S (x)αe
o (4.68)

with αe,ηi ∈ R2, and

Vhη := Vhη̄ ⊕ Vhu0 (4.69)

with

Vhη̄ :=
©
η̄h; η̄h(x) = Σi=nnodei=1 Ni(x) η̄i ; η̄i|Γu = 0

ª
(4.70)

where η̄i ∈ R2.
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4.3.3 Discrete symmetric kinematically consistent problem

Now the following discrete problem can be stated:
FIND:

u̇h ∈ Vhu ⇔
(

˙̂u
h∈Vhû

u̇0,h∈Vhu0
(4.71)

SUCH THAT:Pe=nelem
e=1

Z
Ωe

∇Sη̄h : Σ̇(εh)dΩ −Gext(η̄h) = 0 ∀η̄h ∈ Vhη̄
Σe∈J

Z
Ωe

∇Sη0,h : Σ̇ dΩ = 0 ∀η0,h ∈ Vhu0
(4.72)

where Gext(η
0,h) ≈ 0 has been assumed.

4.3.4 Matrix representation

The discrete strain field in matrix form is the same as in the non symmetric problem:

{ε̇}(e) = B(e)ḋ(e)+
µ
µ
(e)
S
1

k
[n](e) − £∇ϕ(e)

¤¶
| {z }

=:G(e)

[[u̇]]e (4.73)

In this case, the gradient of the displacement rate variations reads

{∇Sη} = B(e){η̄}(e) +G(e)αe (4.74)

Hence, the expression of the incremental residual forces at element level correspond-
ing to (4.72) reads

Ṙ(e) :=

Z
Ωe

B(e)
T {Σ̇}(e) dΩ− Ḟ(e)ext (a)

ṙ(e) :=

Z
Ωe

G(e)T {Σ̇}(e) dΩ (b)
(4.75)

where Ḟ(e)ext is the vector of incremental external forces at element level.
Assuming an incrementally linear relation between the strains and the stresses

as the one expressed in (4.33), the residual forces (4.75) can be rewritten as
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"
K
(e)
dd K

(e)
dα

K
(e)
αd K

(e)
αα

#½
ḋ(e)

[[u̇]]e

¾
−
½
Ḟ
(e)
ext

0

¾
=

½
Ṙ(e)

ṙ(e)

¾
(4.76)

with

K(e)
dd =

Z
Ωe

B(e)
T
D B(e)dΩ

K
(e)
dα =

Z
Ωe

B(e)
T
D G(e)dΩ

K
(e)
αd =

Z
Ωe

G(e)T D B(e)dΩ

K
(e)
αα =

Z
Ωe

G(e)T D G(e)dΩ

(4.77)

Remark 37 The resulting tangent stiffness matrix is symmetrical.

Remark 38 As in the non-symmetric formulation, due to their elemental support,
the modes corresponding to the displacement jumps, [[u̇]]e, can be condensed at ele-
ment level.

Remark 39 In this formulation
R
Ωe
G(e)T dΩ = 0 does not always hold. This

diminishes the reproducing possibilities of this element: not satisfying the patch test
implies that constant stresses cannot always be reproduced, which is the cause of the
lack of static optimality suffered by this element.

Now, let us define

B̄(e) =
h
B
(e)
1 , B

(e)
2 , B

(e)
3 , B

(e)
4 , G

(e)
i

(4.78)

and

˙̄R
(e)
=
£
(Ṙ(e))T , ṙ(e)

T ¤T
˙̄F
(e)

ext =
h
(Ḟ

(e)
ext)

T , 0T
iT

˙̄d
(e)
=
£
(ḋ(e))T [[u̇]]Te

¤T (4.79)

Then , the B-bar format of (4.76) is
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Z
Ωe

B̄(e)
T

D B̄(e) ˙̄d
(e)
dΩ− ˙̄F

(e)

ext =
˙̄R
(e)

(4.80)

Finally, the global system of equations corresponding to (4.72) is given by

nelem
A
e=1

·Z
Ωe

B̄(e)
T

D B̄(e) ˙̄d
(e)
dΩ− ˙̄F

(e)

ext = 0

¸
(4.81)

4.4 Symmetric assumed enhanced strain approach

This formulation is derived in the context of the assumed enhanced strain method
presented in [Simo and Rifai, 1990]. It is based on a three-field variational prin-
ciple. Let us then assume that, for a given time t ∈ R+, the displacement rate
field u̇(•, t):Ω → Rndim, the admissible variations of the displacement rate field,
η̄(•, t):Ω → Rndim, the stress rate field, σ̇(•, t):Ω → S, and the assumed enhanced
strain rate field, ˙̃ε(•, t):Ω→ S lie on the following function spaces:

Vu :=
©
η ∈ [H1(Ω)]ndim ; η|Γu = u̇∗

ª
(4.82)

Vη̄ :=
©
η̄ ∈ [H1(Ω)]ndim ; η̄|Γu = 0

ª
(4.83)

Vσ := {τ ; τ ∈L2(Ω; S); [[τ ]]S ·n = 0} (4.84)

where S denotes, as said before, the space of second order symmetric tensors

Vε̃ :=
n
ξ̃; ξ̃ = ξ̄ + δS(α ⊗ n)S; ξ̄ ∈V ε̄ ; αS ∈ Vα

o
(4.85)

with Vε̄ := L2(Ω; S) and Vα:=[L2(S)]ndim.
Finally, the strain rate field, ε̇:Ω×R+ → Rndim, is assumed to have the following

structure:

ε̇(x, t) = ∇u̇(x, t) + ˙̃ε(x, t) (4.86)

Remark 40 Notice that the singular term, δS(α ⊗ n)S, of the enhanced strain has
the same structure as the singular term of the strain field corresponding to the strong
discontinuity kinematics presented in Section 3.2.1.

Remark 41 The resulting strain field is not kinematically consistent with the dis-
placement field in the sense that ε̇(x, t) 6= ∇Su̇(x, t).
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4.4.1 Continuum problem

Now the following problem can be stated9:
FIND

u̇ ∈ Vu
˙̃ε ∈ Vε̃
σ̇ ∈ Vσ

(4.87)

SUCH THATZ
Ω\S

Σ̇(ε) : ∇Sη̄ dΩ−Gext = 0 ∀η̄ ∈ Vη̄ (a)Z
Ω

˙̃ε : τ dΩ = 0 ∀τ ∈ Vσ (b)Z
Ω

³
σ̇ − Σ̇

´
: ξ̃ dΩ = 0 ∀ξ̃ ∈ Vε̃ (c)

(4.88)

By using standard arguments, we can prove that the strong form of (4.88-a) is

∇ · Σ̇(ε) + ḃ = 0 in Ω\S
Σ̇ · ν = ṫ∗ on Γu
[[Σ̇]]Ω\S · n = 0 on S

(4.89)

Special care has to be taken with respect to (4.88-b) and (4.88-c) due to the
singular term appearing in the expression of the enhanced strain and the enhanced
strain variation. For the expressions (4.88-b) and (4.88-c) to make sense, the fact
that [[τ ]]S ·n =[[σ̇]]S ·n = 0 is crucial, because it ensures that both τ S ·n and σ̇S ·n
exist and are bounded. With these concepts in hand we arrive to the strong form
of (4.88-b):

˙̃ε = 0 in Ω (4.90)

and the strong form of (4.88-c):

σ̇ − Σ̇ = 0 in Ω (4.91)

9In [Simo and Rifai, 1990], this variational problem was derived from the Hu-Washizu 3-field
variational principle. Here we state it as the weak form of the system of diferential equations 4.6.
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4.4.2 Finite element discretization

Consider a finite element discretization of the domain Ω into four-noded finite el-
ements, then the following discrete version of the function spaces 4.82 to 4.85 is
proposed:

Vhu :=
©
ηh; ηh(x) = Σi=nnodei=1 Ni(x)ηi ; ηi|Γu = u̇∗

ª
Vhη̄ :=

©
η̄h; η̄h(x) = Σi=nnodei=1 Ni(x) η̄i ; η̄i|Γu = 0

ª
Vhε̃ :=

n
ξ̃
h
; ξ̃

h
(x) = Σe=neleme=1 (µ(e)S

1
k
− le

Ωe
)χe(x)(αe ⊗ n)S

o
Vhσ :=

©
τ h; τ h(x) = Σe=neleme=1 χe(x) τ e

ª (4.92)

where χe stands for the characteristic function of Ωe, i.e.,

χe(x) =

½
1 for x ∈ Ωe
0 otherwise

and ηi, η̄i,αe ∈ R2; τ e ∈ S.
Let us now assume that the following orthogonality condition between Vhε̃ and

Vhσ holds10:

Z
Ωe

ξ̃
h
: τ h dΩ = 0

 ∀ξ̃
h ∈ Vhε̃

∀τ h ∈ Vhσ
∀e ∈ I

(4.93)

Remark 42 Due to the singular term in the enhanced strain rate, we cannot talk
about L2−orthogonality, as in [Simo and Rifai, 1990], since the integral in the left
hand side of (4.93) does not define the L2 inner product, but a duality pairing.

Then the discrete version of (4.88-b) becomes an identity. Moreover, (4.88-c)
can be worked out as follows:

Z
Ω

h
σ̇h − Σ̇(εh)

i
: ξ̃ dΩ =

Z
Ω

.
σ
h
: ξ̃

h
dΩ| {z }

=0

−
Z
Ω

Σ̇(εh) : ξ̃
h
dΩ = 0 (4.94)

which yields

10This condition is motivated by the satisfaction of the patch test (see [Simo and Rifai, 1990])
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Z
Ω

Σ̇(ε
h
) : ξ̃

h
dΩ = 0 (4.95)

It is easy to check that Vhε̃ fulfills condition (4.93):

R
Ω
ξ̃
h
: τ hdΩ = Σe=neleme=1

R
Ωe
(µ
(e)
S

1
k
− le

Ωe
) (αe ⊗ n)S : τ edΩ =

Σe=neleme=1

Z
Ωe

(µ
(e)
S
1

k
− le

Ωe
) dΩ| {z }

(le−le)=0

(αe ⊗ n)S : τ e = 0 (4.96)

4.4.3 Discrete Problem

With the above results and definitions in hand, the discrete problem corresponding
to (4.98) reduces to
FIND:

u̇h ∈ Vhu
˙̃ε ∈ Vhε̃

(4.97)

SUCH THAT:Pe=nelem
e=1

Z
Ωe

∇Sη̄h : Σ̇(εh)dΩ −Gext(η̄h) = 0 ∀η̄h ∈ Vhη̄Pe=nelem
e=1

Z
Ωe

Σ̇(ε
h
) : ξ̃

h
dΩ = 0 ∀ξ̃h ∈ Vhε̃

(4.98)

4.4.4 Matrix representation

The discrete strain field in its matrix representation reads

{ε̇}(e) = B(e)ḋ(e)+

µ
µ
(e)
S
1

k
− le

Ωe

¶
[n](e)| {z }

=:G(e)

βe

= B(e)ḋ(e)+G(e)
e βe (4.99)

where βe ∈ R2.
On the other hand, the matrix form of the strain variations is
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{ξ}(e) = B(e){η̄}(e) + {ξ̃}
= B(e){η̄}(e) +G(e)αe (4.100)

Thus, the following is the expression of the incremental residual forces at element
level corresponding to (4.98):

Ṙ(e) :=

Z
Ωe

B(e)
T {Σ̇}(e) dΩ− Ḟ(e)ext (a)

ṙ(e) :=

Z
Ωe

G(e)T {Σ̇}(e) dΩ (b)
(4.101)

where Ḟ
(e)
ext is the vector of incremental external forces at element level.

Assuming, again, an incrementally linear constitutive relation as the one ex-
pressed in (4.33), the system of equations (4.101), can be rewritten as

"
K
(e)
dd K

(e)
dα

K
(e)
αd K

(e)
αα

#½
ḋ(e)

βe

¾
−
½
Ḟ
(e)
ext

0

¾
=

½
Ṙ(e)

ṙ(e)

¾
(4.102)

with

K
(e)
dd =

Z
Ωe

B(e)
T
D B(e)dΩ

K
(e)
dα =

Z
Ωe

B(e)
T
D G(e)dΩ

K(e)
αd =

Z
Ωe

G(e)T D B(e)dΩ

K
(e)
αα =

Z
Ωe

G(e)T D G(e)dΩ

(4.103)

Remark 43 The resulting tangent stiffness matrix is symmetrical.

Remark 44 As in the previous formulations, due to their elemental support, the
modes corresponding to the displacement jumps, βe, can be condensed at element
level.

Remark 45 In this formulation
R
Ωe
G(e)dΩ = 0, which is derived directly from the

orthogonality condition (4.93) and guarantees the satisfaction of the patch test.
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Remark 46 The matrix form of the three formulations presented so far (i.e., (4.39),

(4.76), and (4.102)) coincide when le
Ωe
[n](e) =

£∇ϕ(e)
¤

Now, let us define

B̄(e) =
h
B
(e)
1 , B

(e)
2 , B

(e)
3 , B

(e)
4 , G

(e)
i

(4.104)

and

˙̄R
(e)
=
£
(Ṙ(e))T , ṙ(e)

T
¤T

˙̄F
(e)

ext =
h
(Ḟ

(e)
ext)

T , 0T
iT

˙̄d
(e)
=
£
(ḋ(e))T βTe

¤T (4.105)

Then, the B-bar format of (4.102) is

Z
Ωe

B̄(e)
T

D B̄(e) ˙̄d
(e)
dΩ− ˙̄F

(e)

ext =
˙̄R
(e)

(4.106)

Finally, the global system of equations corresponding to (4.98), is given by

nelem
A
e=1

·Z
Ωe

B̄(e)
T

D B̄(e) ˙̄d
(e)
dΩ− ˙̄F

(e)

ext = 0

¸
(4.107)

4.5 The possibility of a self propagating element

So far in this chapter, the formulations of the best known families of elements with
embedded discontinuities have been derived from convenient weak statements of the
boundary value problem (4.5). In general, the discrete formulations inherit the
character of the corresponding continuum formulations. This gives to each of them
different characteristics regarding its performance in simulating discontinuities in
solids. For instance, the kinematical optimality of the non-symmetric formulation,
presented in Section 4.2, and of the symmetric kinematically consistent formulation,
presented in Section 4.3, has to do with the consistent way in which the strain field
of those formulations is derived from the displacement field. Nevertheless, in the
finite element implementation of these formulations, it is necessary to know, for a
given element e crossed by the discontinuity line, which nodes lie on Ω+ and which
in Ω− in order to determine the function ϕ(e), defined in (4.16). This information
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Figure 4.3: Simple traction test: a) geometry, mesh, boudary conditions, and material
properties; b) Comparison between the U4n element and the S4n element.

is provided, as mentioned above, by a tracking algorithm, which entails several
limitations especially for managing multiple discontinuities. The natural option to
get rid of this tracking algorithm seems to be the symmetric assumed enhanced strain
based element. Then, the inception and propagation of discontinuities would be
determined only by the stress state of the solid through the discontinuous bifurcation
analysis studied in Chapter 2. However, the performance of this element is very
poor in many cases, due to the appearance of stress locking behavior. We illustrate
this through a numerical example.

4.5.1 Stress locking behavior

In order to assess the performance of the symmetric assumed enhanced strain based
element described in Section 4.4, a representative numerical simulation is presented
here. The non-symmetric element is used as the reference element, due to its
statically and kinematically optimal behavior (see [Jirasek, 2000a]).
Based on [Oliver et al., 2003], the following nomenclature is adopted:

• U4n for the non-symmetric element
• S4n for the symmetric assumed enhanced strain based element

Let us, then, consider the rectangular plate whose dimensions and material prop-
erties are shown in Fig. 4.3-a. It is discretized into a non-structured finite element
mesh consisting of four noded bilinear elements. The plate is fixed on the left
side and uniformly stretched from the right side. The isotropic continuum damage
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model presented in Section 2.2. equipped with a linear softening law is employed
for modelling its material behavior. It can be shown that the theoretical (exact)
discontinuity path describes a straight vertical line crossing the plate from top to
bottom. The displacement jump is uniform and only its normal component is dif-
ferent from zero (mode I). Since the stress state is also uniform, the position of the
discontinuity line has to be imposed.
The stress vs. displacement curves of both the U4n and S4n element are plotted

in Fig. 4.3-b. That figure shows that the U4n element is able to reproduce the
theoretical (exact) solution consisting, beyond the peak stress, of a linear softening
branch until the total relaxation of the stress is reached. On the other hand, the
curve corresponding to the S4n element undergoes a spurious hardening after the
theoretical peak stress, causing the stress to reach unphysical levels.
In order to understand this numerical phenomenon, it is important to mention

that, based on theoretical reasons, an incrementally linear behavior is algorithmically
imposed to Ω\S after bifurcation. The stress should, then, unload elastically.
However, due to the kinematically inconsistent character of S4n, the stress in Ω\S
grows elastically, which causes the stress locking behavior observed in Fig.4.3-b.
The poor performance of element S4n makes it unsuitable for the numerical

modelling of relatively complex problems. Thus, some alternative formulation have
to be devised in such a way that the stress locking behavior of S4n is overcome,
while keeping its self propagating potentiality.
In the following sections remedies to the stress locking suffered by S4n are pre-

sented. In order to motivate them, we first present some comments on the causes
of this phenomenon for a parent four noded bilinear element:

• Assuming that Ω\S behaves elastically after bifurcation, the following rela-
tionship between the strain rate in Ω\S and the stress rate holds:

ε̇Ω\S =
.
ε̄ = C−1 : σ̇| {z }

elastic strain

(4.108)

C is the standard isotropic elastic tensor.

• In the S4n element formulation, the strain rate in Ω\S has the following
structure:

ε̇
(e)
Ω\S = ∇Su̇(e)| {z }

linear

− le
Ωe
(βe ⊗ n)S| {z }

(enhancement) constant

(4.109)
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• Total relaxation of the stress (σ̇ = 0) entails the strain rate being zero (ε̇Ω\S =
0) from (4.108). However, the cancellation of the two terms appearing in the
right hand side of (4.109) only can occur in the particular case in which ∇Su̇(e)
is constant. Therefore, due to its kinematics, this formulation is unable to
reproduce this stress state.

The stress locking is, at least partially, explained by the above reasoning. It
also suggests two possible remedies:
1) To decrease the polynomial degree of the conforming term.
2) To increase the polynomial degree of the enhancement.
Both possibilities will be explored: the first one by means of the mixed ap-

proach proposed in Section 4.6, and the second by means of an assumed strain
re-enhancement, proposed in Section 4.7.

4.6 Mixed Approach

Assume that, for a given time t ∈ R+, the displacement rate field u̇(•, t):Ω→ Rndim,
the admissible variations of the displacement rate field, η̄(•, t):Ω→ Rndim, the stress
rate field, σ̇(•, t):Ω→ S, and the strain rate field, ε̇(•, t):Ω→ S lie on the following
function spaces:

Vu :=
©
η ∈ [H1(Ω)]ndim ; η|Γu = u̇∗

ª
(a)

Vη̄ :=
©
η̄ ∈ [H1(Ω)]ndim ; η̄|Γu = 0

ª
(b)

Vε := {ξ; ξ = ξ̄ + δS(α⊗ n)S ; ξ̄ ∈ L2(Ω; S) ; α ∈ [L2(S)]ndim} (c)

Vσ :=
n
τ ; τ ∈ L2(Ω; S) ; [[τ ]]Ω\S · n = [[τ ]]S · n = 0

o
(d)

(4.110)

4.6.1 Continuum problem

Now the following three-field variational principle can be stated:
FIND:

u̇ ∈ Vu
.
ε ∈ Vε
σ̇ ∈ Vσ

(4.111)

SUCH THATZ
Ω\S

σ̇ : ∇Sη dΩ−G ext = 0 ∀η̄ ∈ Vη̄ (a)Z
Ω

¡
ε̇−∇Su̇¢ : τ dΩ = 0 ∀τ ∈ Vσ (b)Z

Ω

³
σ̇ − Σ̇

´
: ξ dΩ = 0 ∀ξ ∈ Vε (c)

(4.112)
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The strong form corresponding to (4.112-a) is

∇ · σ̇ + ḃ = 0 in Ω\S
σ̇ · ν = ṫ on Γu
[[σ̇]]Ω\S · n = 0 on S

(4.113)

and the strong forms of (4.112-b) and (4.112-c) are

ε̇ = ∇Su̇ in Ω (4.114)

σ̇ = Σ̇ in Ω (4.115)

Thus, equations (4.5-a) to (4.5-e) follow from the variational problem (4.112),
whereas (4.5-e) is automatically imposed by the definition of Vσ .

4.6.2 Finite element discretization

Considering again a discretization of Ω into four-noded bilinear finite elements, the
following function spaces are proposed as the discrete version of 4.110:

Vhu :=
©
ηh; ηh(x) = Σi=nnodei=1 Ni(x)ηi ; ηi|Γu = u̇∗

ª
(a)

Vhη̄ :=
©
η̄h; η̄h(x) = Σi=nnodei=1 Ni(x) η̄i ; η̄i|Γu = 0

ª
(b)

Vhε :=
n
ξh; ξh(x) =Σe=neleme=1 χe(x)

h
ξ̄e + µ

(e)
S

1
k
(αe ⊗ n)S

io
(c)

Vhσ := {τ h; τ h(x) =Σe=neleme=1 χe(x) τ e} (d)

(4.116)

where

χe(x) :=

½
1 for x ∈Ωe
0 otherwise

and ηi, η̄i,αe ∈ R2; τ e, ξ̄e ∈ S.

4.6.3 Discrete problem

Now the following discrete problem can be stated:
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FIND:

u̇h∈Vhu (a)
ε̇h∈Vhε (b)
σ̇h∈Vhσ (c)

(4.117)

SUCH THAT:Pe=nelem
e=1

Z
Ωe

σ̇h : ∇Sη̄h dΩ−G ext(η̄
h) = 0 ∀η̄h∈Vhη̄ (a)Pe=nelem

e=1

Z
Ωe

¡
ε̇h −∇Su̇h¢ : τ h dΩ = 0 ∀τ h∈Vhσ (b)Pe=nelem

e=1

Z
Ωe

³
σ̇h−Σ̇h

´
: ξh dΩ = 0 ∀ξh∈Vhε (c)

(4.118)

From equation (4.118-b), it follows that

Z
Ωe

h³
˙̄εe + µ

(e)
S

1
k
(βe ⊗ n)S

´
−∇Su̇h

i
: τ e dΩ = 0

∀τ e∈S ; ∀e ∈ I
(4.119)

where ε̇h|Ωe = ˙̄εe + µ
(e)
S

1
k
(βe ⊗ n)S (with ˙̄εe ∈ S and βe ∈ R2) has been considered.

Hence,

Ωe ˙̄εe + le(βe ⊗ n)S −
Z

Ωe

∇Su̇hdΩ = 0 ∀e ∈ I (4.120)

solving (4.120) for ˙̄εe yields

˙̄εe =
1

Ωe

Z
Ωe

∇Su̇hdΩ| {z }
∇Su̇h(e)

− le
Ωe
(βe ⊗ n)S ∀e ∈ I

(4.121)

where ∇Su̇h(e) := 1
Ωe

R
Ωe
∇Su̇hdΩ is the mean value of ∇Su̇h in Ωe. Hence,

ε̇h|Ωe = ∇Su̇h
(e)
+
³
µ
(e)
S

1
k
− le

Ωe

´
(βe ⊗ n)S ∀e ∈ I (4.122)

At element level, we have
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Z
Ωe

³
σ̇e − Σ̇

´
: ξh dΩ =Z

Ωe

³
σ̇e − Σ̇

´
:

·
ξ̄e + µ

(e)
S
1

k
(αe ⊗ n)S

¸
dΩ =µ

Ωeσ̇e −
Z

Ωe

Σ̇ dΩ

¶
: ξ̄e +

·
le (σ̇e · n)−

Z
Se
Σ̇ · ndS

¸
·αe (4.123)

From (4.118-c), (4.123) must be null ∀ξ̄e ∈ S and ∀αe ∈ R2. Thus,

Ωeσ̇e −
Z

Ωe

Σ̇ dΩ = 0

le (σ̇e · n)−
Z
Se
Σ̇ · ndS = 0

(4.124)

Defining Σ̇Ωe :=
1
Ωe

R
Ωe

Σ̇ dΩ and Σ̇S := 1
le

R
Se Σ̇dS, we have

σ̇e = Σ̇Ωe

σ̇e · n = Σ̇S · n
(4.125)

which means that (4.118-c) implies

Σ̇Ωe · n = Σ̇S · n ∀e ∈ J (4.126)

this is the traction continuity stated in terms of the mean values of Σ̇.
We can rephrase (4.126) in a more convenient format:

1
le

Z
Se
Σ̇dS · n− 1

Ωe

Z
Ωe

Σ̇dΩ · n = 0 ∀e ∈ J (4.127)

and, hence,

Z
Ωe

³
µ
(e)
S

1
k
− le

Ωe

´
Σ̇ · n dΩ = 0 ∀e ∈ J (4.128)

On the other hand, from (4.125), we have
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Z
Ωe

σ̇e : ∇Sη̄h dΩ−G ext = Σ̇Ωe :

Z
Ωe

∇Sη̄h dΩ−G ext (4.129)

Let us define ∇Sη̄h(e) := 1
Ωe

R
Ωe
∇Sη̄hdΩ. Then,

Z
Ωe

σ̇e : ∇Sη̄h dΩ−G ext = ΩeΣ̇Ωe : ∇Sη̄h
(e) −G ext (4.130)

Finally, considering (4.118-a), the definition of Σ̇Ωe , and (4.130), we can state

Pe=nelem
e=1

Z
Ωe

Σ̇ :∇Sη̄h(e)dΩ−G ext = 0 ∀η̄h∈Vhη̄ (4.131)

In summary, the system of equations (4.118) is equivalent to

Pe=nelem
e=1

Z
Ωe

Σ̇ :∇Sη̄h(e)dΩ−G ext = 0 ∀η̄h∈Vhη̄ (a)Z
Ωe

³
µ
(e)
S

1
k
− le

Ωe

´
Σ̇ · n dΩ = 0 ∀e ∈ J (b)

(4.132)

with the elemental strain rate having the structure stated in (4.122)

ε̇e ≡ ε̇h|Ωe = ∇Su̇h
(e)
+

µ
µ
(e)
S
1

k
− le

Ωe

¶
(βe ⊗ n)S (4.133)

Remark 47 By comparing the expression of the strain rate for this approach ,stated
in (4.133), with the strain rate for the assumed enhanced strain based approach,

stated in (4.109), we can observe that the enhancement term,
³
µ
(e)
S

1
k
− le

Ωe

´
(βe⊗n)S,

is the same for both of them. However, in the present approach the term ∇Su̇h(e) is
element-wise constant, which makes the cancellation of the strain rate possible.

Remark 48 The term ∇Su̇h(e) can be approximated by the value of ∇Su̇h at the
sampling point RSP11, placed at the centroid of the element. Then, the classical link
between mixed elements and reduced integration is recovered in this formulation.

11For non-distorted elements this is not an approximation but an identity
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4.6.4 Matrix representation

The discrete strain rate field in its matrix form reads

{ε̇}(e) = B
(e)
RSP ḋ

(e)+

µ
µ
(e)
S
1

k
− le

Ωe

¶
[n](e)| {z }

=:G(e)

βe

= B
(e)
RSP ḋ

(e)+G(e)
e βe (4.134)

where βe ∈ R2 and B(e)RSP is the value of matrix B(e) at the sampling point RSP.
The matrix representation of the strain rate variations is

{ξ}(e) = B(e)RSP{η̄}(e) +G(e)αe (4.135)

Then, the incremental residual forces at element level corresponding to (4.132)
are

Ṙ(e) :=

Z
Ωe

B
(e)T

RSP {Σ̇}(e) dΩ− Ḟ(e)ext (a)

ṙ(e) :=

Z
Ωe

G(e)T {Σ̇}(e) dΩ (b)
(4.136)

where Ḟ
(e)
ext is the vector of incremental external forces at element level.

Considering the incrementally linear constitutive relation expressed in (4.33), the
incremental residual forces (4.136) can be rewritten as

"
K
(e)
dd K

(e)
dα

K
(e)
αd K

(e)
αα

#½
ḋ(e)

βe

¾
−
½
Ḟ
(e)
ext

0

¾
=

½
Ṙ(e)

ṙ(e)

¾
(4.137)

with

K
(e)
dd =

Z
Ωe

B
(e)T

RSP D B
(e)
RSPdΩ

K
(e)
dα =

Z
Ωe

B
(e)T

RSP D G(e)dΩ

K
(e)
αd =

Z
Ωe

G(e)T D B
(e)
RSPdΩ

K
(e)
αα =

Z
Ωe

G(e)T D G(e)dΩ

(4.138)
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Remark 49 The tangent stiffness matrix of this formulation is, as expected, also
symmetric.

Let us, now, define

B̄(e) =
h
B
(e)
RSP ,G

(e)
i

(4.139)

and

˙̄R
(e)
=
£
(Ṙ(e))T , ṙ(e)

T
¤

˙̄F
(e)

ext =
h
(Ḟ

(e)
ext)

T , 0T
iT

˙̄d
(e)
=
£
(ḋ(e))T βTe

¤T (4.140)

With this in hand, the B-bar format of (4.137) is

Z
Ωe

B̄(e)
T

D B̄(e) ˙̄d
(e)
dΩ− ˙̄F

(e)

ext =
˙̄R
(e)

(4.141)

Finally, the global system of equations corresponding to (4.132), is given by

nelem
A
e=1

·Z
Ωe

B̄(e)
T

D B̄(e) ˙̄d
(e)
dΩ− ˙̄F

(e)

ext = 0

¸
(4.142)

4.6.5 A note on some implementation aspects

It is well known that the use of reduced integration in four-noded bilinear elements
can lead to the appearance of the so-called hour-glass modes. However, the mixed
formulation presented in this section is implemented in such a way that the mod-
ifications on the basic element S4n are effective only for the band of elements that
captures the discontinuity and only after the time at which this discontinuity appears.
Thus, the elements outside this band behave as the original S4n. Therefore, the
elements affected by the reduced integration are restricted to a single band of one
element width. This reduces substantially the possible presence of instabilities.
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4.7 Assumed strain re-enhancement

To develop this approach, we work on the basis of the formulation of the S4n element
described in Section 4.4. We require the present formulation to fulfill the following
conditions:

• The orthogonality condition (4.93) :

Z
Ωe

˙̃ε
h
: τ hdΩ=0 ∀ ˙̃εh∈Vhε̃ ∀τ h∈Vhσ (4.143)

• To include linear polynomial terms that contribute to alleviate the stress lock-
ing phenomenon.

Having these conditions in mind, the following strain enhancement is proposed:

˙̃ε
h|Ωe ≡ ˙̃εe = (µ(e)S

1

k
− le

Ωe
)(βe⊗n)S| {z }

˙̃ε
(e)

1

+
1

J
yYe +

1

J
zZe| {z }

˙̃ε
(e)

2

(4.144)

where y and z stand for the isoparametric coordinates of the standard four-noded
bilinear element, J is the Jacobian of the isoparametric transformation relating
differential areas in the regular and isoparametric spaces through

dΩ = J dy dz (4.145)

while Ye and Ze are two second order element-wise constant tensors whose 2-D ma-
trix (Voigt) representations {Ye} =

£
Y1 Y2 Y3

¤T
and {Ze} =

£
Z1 Z2 Z3

¤T
are two vectors containing six additional degrees of freedom per element.

Let us analyze expression (4.144): ˙̃ε
(e)

2 contains terms of degree one that are
included in the structure of the total enhancement, ˙̃εe, as a re-enhancement of
˙̃ε
(e)

1 , which is the basic enhancement already used in element S4n. Thus, the first
condition required for this formulation is fulfilled. Let us, now, verify if condition
two is satisfied:

Z
Ωe

.

ε̃
(e)

1 : τ e dΩ =

Z
Ωe

µ
µ
(e)
S
1

k
− le

Ωe

¶
(βe⊗n)S : τ e dΩ =Z

Ωe

(µ
(e)
S
1

k
− le

Ωe
)dΩ| {z }

le−le=0

(βe⊗n)S : τ e = 0 (4.146)
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Z
Ωe

.

ε̃
(e)

2 : τ edΩ =

Z
Ωe

1

J
(yYe + zZe) : τ edΩ =Z +1

−1

Z +1

−1
y dydz| {z }

=0

Ye : τ e +

Z +1

−1

Z +1

−1
z dydz| {z }

=0

Ze : τ e = 0 (4.147)

4.7.1 Matrix representation

Expression (4.144), can be stated in matrix form as

{ε̇}(e) = B(e)ḋ(e)+G(e)b(e) (4.148)

where

G(e) =

 γnx 0
0 γny
γny γnx

y 0 0
0 y 0
0 0 y

z 0 0
0 z 0
0 0 z


with γ =

³
µ
(e)
S

1
k
− le

Ωe

´
, and

b(e) =
£
βTe , {Ye}T , {Ze}T

¤T
The matrix representation of the strain rate variations is

{ξ}(e) = B(e){η̄}(e) +G(e)a(e) (4.149)

where

a(e) =
£
αTe , {δYe}T , {δZe}T

¤T
with δYe and δZe being the variations of Ye and Ze, respectively.
The expression of the incremental residual forces at element level is

Ṙ(e) :=

Z
Ωe

B(e)
T {Σ̇}(e) dΩ− Ḟ(e)ext (a)

ṙ(e) :=

Z
Ωe

G(e)T {Σ̇}(e) dΩ (b)
(4.150)
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where Ḟ
(e)
ext is the vector of incremental external forces at element level.

Considering the incrementally linear constitutive relation expressed in (4.33), the
expression of the residual forces (4.150) can be rephrased as

"
K
(e)
dd K

(e)
dα

K
(e)
αd K

(e)
αα

#½
ḋ(e)

b(e)

¾
−
½
Ḟ
(e)
ext

0

¾
=

½
Ṙ(e)

ṙ(e)

¾
(4.151)

with

K
(e)
dd =

Z
Ωe

B(e)
T
D B(e)dΩ

K
(e)
dα =

Z
Ωe

B(e)
T
D G(e)dΩ

K
(e)
αd =

Z
Ωe

G(e)T D B(e)dΩ

K
(e)
αα =

Z
Ωe

G(e)T D G(e)dΩ

(4.152)

Remark 50 Again the resulting tangent stiffness matrix is symmetrical.

We define now

B̄(e) =
£
B(e),G(e)

¤
(4.153)

and

˙̄R
(e)
=
£
(Ṙ(e))T , ṙ(e)

T
¤

˙̄F
(e)

ext =
h
(Ḟ

(e)
ext)

T , 0T
iT

˙̄d
(e)
=
£
(ḋ(e))T b(e)

T
¤T (4.154)

The B-bar format of (4.151) is, then,

Z
Ωe

B̄(e)
T

D B̄(e) ˙̄d
(e)
dΩ− ˙̄F

(e)

ext =
˙̄R
(e)

(4.155)

The global system of equations is given by

nelem
A
e=1

·Z
Ωe

B̄(e)
T

D B̄(e) ˙̄d
(e)
dΩ− ˙̄F

(e)

ext = 0

¸
(4.156)
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Figure 4.4: Simple traction test: comparison of several elements with embedded discon-
tinuities.

4.7.2 A note on some implementation aspects

The re-enhancement proposed in this section does not fullfil the so-called stability
condition[Simo and Rifai, 1990]: Vhε̃∩∇sVhu= {0}. Nevertheless, as in the mixed
formulation presented in Section 4.6, the implementation of this element was per-
formed in such a way that the re-enhancement is activated only for the band of
elements that captures the discontinuity and only after the discontinuous bifurcation
time. Again the modified elements are restricted to a band of one element width
and the possibilities for the appearance of instabilities are negligible.

4.8 Performance Assessment

Based, again, on [Oliver et al., 2003], the following nomenclature is adopted:

• M4n for the mixed element presented in Section 4.6.
• E4n for the re-enhanced element presented in Section 4.7.

The test of Section 4.5.1 and Fig. 4.3 is now repeated using the modified elements
M4n and E4n. The results, again in terms of σxx − δ curves, are presented in Fig.
4.4 as well as the ones obtained with the original element S4n and the exact result
(U4n).
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The reduction in the stress-locking effect obtained with the new elements is
dramatic (additional numerical results with comparative analyses of the elements
treated here can be found in [Oliver et al., 2003]). However, the performance of
element U4n is still better. Further development of the strategies presented in Sec-
tions 4.6 and 4.7 is perhaps necessary. Nevertheless, the possibility of modifications
in the spirit of M4n seems limited, whereas further enhancement in the spirit of E4n
can lead to very cumbersome formulations.
One of the main motivations for exploring the possibility of a self-propagating

element is that it would permit to dispense with the tracking algorithm, which con-
stitutes the major drawback of element U4n. However, the use of this element still
seems highly desirable, due to its excellent performance. Then, the idea of trying
to devise an efficient tracking algorithm that allows to simulate complex problems
(multiple discontinuity paths, for instance) emerges as an especially interesting re-
search line. In order to attain this goal, the next chapter is devoted to studying
these tracking strategies.
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Chapter 5

Tracking strategies

In the previous chapters some of the ingredients needed for the numerical simula-
tion of strong discontinuities in solids have been laid out. Chapter 2 dealt with
the necessary conditions for the appearance of localization bands. The kinemat-
ics of strong discontinuities and the implications of its adoption in the context of
continuum constitutive modelling were studied in Chapter 3. Then, in Chapter 4,
a group of finite element formulations that allow for capturing strong discontinu-
ities within an element domain were analyzed. However, the very important issue
of the inception and propagation of such discontinuities has not been tackled yet.
In an ideal scenario all the information necessary for managing the initiation and
propagation of a discontinuity path should come from the discontinuous bifurcation
analysis. Nevertheless, in numerical simulations and, particularly, in the case of
the non-symmetric formulation studied in Section 4.2, the use of a tracking algo-
rithm [Oliver, 1996b] is also necessary. These algorithms are devised to predict
and capture the geometrical position of a discontinuity path inside a body or, more
specifically, inside every element crossed by that discontinuity.

The strategies to track discontinuity paths in solids are studied in this chapter.
In Section 5.1 a motivation for the necessity of tracking algorithms is made. Section
5.2 describes the general characteristics of a tracking strategy and describes the
groups in which such strategies can be classified. A heat-conduction-like problem is
proposed as a way to compute implicitly all the possible discontinuity lines in a solid
for a given time in Section 5.3. In Section 5.4, the performance of this methodology
is assessed through some representative numerical simulations. Finally, the concept
of an exclusion zone is motivated and explained in Section 5.5.

89
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Ω+

Ω−

Figure 5.1: Tracing a discontinuity path in a patch of elements.

5.1 Motivation

Consider a body Ω containing a discontinuity line S, which splits Ω into Ω+ and
Ω−, discretized into a finite element mesh consisting of four-noded quadrilaterals.
Consider, also, the open domain Ωe corresponding to an element e crossed by S,
which partitions Ωe into Ω

+
e ⊂ Ω+ and Ω−e ⊂ Ω−. Remember from Section 4.2.2., the

expression, at element level, of the finite element interpolation of the displacement
rate corresponding to the nonsymmetric formulation:

u̇h
(e)

(x, t) = Σi=4i=1 N
(e)
i (x)ḋi(t) +M(e)

S (x) [[u̇]]e(t) (5.1)

Let us focus on the second term of the right hand side of (5.1), which is the term
that captures the displacement jump, and more specifically in

M(e)
S := H (e)

S (x)− ϕ(e) (5.2)

H
(e)
S is the Heaviside function acting on the elemental discontinuity line (Se = Ωe ∩
S), i.e.,

H
(e)
S (x) =

½
1 ∀x ∈Ω+e
0 ∀x ∈Ω−e (5.3)

and

ϕ(e) = Σn
+
e

i+=1Ni+ (5.4)

where n+e stands for the number of nodes of element e lying on Ω
+

e and Ni+ denotes

the shape function corresponding to node i+ ∈ Ω
+

e .
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Figure 5.2: Propagation vector field.

As said in Section 4.2.2., the discontinuous bifurcation analysis corresponding
to an element is performed in a single sampling point placed at the centroid of
that element, which we named RSP. Thus, we know when an element undergoes
localization and the direction of the corresponding localization band, but we do not
know its position within the element. However, in order to determineM(e)

S , we need
to know which nodes lie in Ω

+

e . If we consider one single element, the position of
Se can be fixed arbitrarily; however, when the fact that a discontinuity, in general,
passes through several elements is taken into account, we have to be more careful.
The reason is the following: suppose that a node belongs to two elements crossed
by the discontinuity and suppose that for one of those elements that node lies on

Ω
+

e , then it cannot be in Ω
−
e for the other element and vice versa. In a way, this

means that, somehow, the discontinuity path has to be continuous across elements.
This continuity is understood in the sense that a node has to unambiguously be
either in Ω+ or in Ω−. This fact is illustrated in Fig. 5.1, where a patch of elements
is considered. The continuous line indicates the part of a discontinuity that has
already developed. Some possible options to trace the discontinuity for an element
that has bifurcated for the first time are indicated by parallel dotted lines. The
node which is signaled with a dot could lie in Ω+ and Ω− at the same time if some
continuity of the discontinuity path is not enforced. Hence, the necessity of an
algorithm that guarantees the alignment of the elemental discontinuity interfaces
belonging to the same discontinuity path becomes apparent.

5.2 Tracking strong discontinuities

In order to track the evolution through time of a strong discontinuity S in a solid
Ω, we need to have the following information:

1. A failure criterion. It tell us when a material point becomes part of disconti-
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nuity line. A simple example of such criteria is the initiation of the inelastic
regime [Wells and Sluys, 2000]. The singularity of the acoustic tensor, de-
rived in Chapter 2 in the context of the discontinuous bifurcation analysis, is
an example of a more rigorous, from the Continuum Mechanics standpoint,
failure criterion.

2. A direction of propagation. This direction can be determined from empirical
considerations, for instance, the direction orthogonal to the maximum tensile
stress. Again the discontinuous bifurcation analysis can be used to get this
information as done in Section 2.3. for an isotropic continuum damage model.

We assume here that this information is available for every material point of the
solid at any time of the analysis.

Remark 51 Regarding the direction of propagation, this assumption implies the
existence of a vector field with values T(x,t) (see Fig. 5.2), defined for all x ∈Ω
and for all t belonging to the analysis time interval, signaling the direction in which
the propagation of a discontinuity path having its tip at x would occur if the failure
criterion were met at time t for that material point. In two-dimensional cases this
vector field is defined by an angle; for instance, the critical angle obtained by means
of the discontinuous bifurcation analysis in Section 2.3.

Remark 52 In the discrete BVP, the information for tracking a discontinuity is
taken from representative points discretely distributed. For the finite element dis-
cretization presented in Section 4.2.2, this information is available at each sampling
point RSP, placed at the centroid of every element.

In [Oliver et al., 2002c] a classification of the existing type of tracking strategies
was presented. They were divided into local strategies and global strategies. We
describe them in the following two subsections.

5.2.1 Local tracking

In this type of strategies, the alignment of an elemental discontinuity line is only
enforced explicitly with respect to its neighbor elements.
Consider a two-dimensional body Ω discretized into a finite element mesh and

the set of material lines, hereafter called possible discontinuity lines, {Si} whose
tangent vector, for time t, at every point x ∈Ω is T(x,t). Any discontinuity path
appearing at a given time t of an incremental loading process has to coincide with
one of these lines. Let us now describe schematically how a local algorithm works.
The determination of a possible discontinuity line Si can be performed through

the following geometrical algorithm (see Fig. 5.3) at element level:
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Figure 5.3: Local tracking.

DATA:
Input point of the possible
discontinuity line ISi.
Propagation direction T(e).

ACTIONS:

1)
Trace a line in the direction
of T(e) passing through ISi.

2)
Find the intersected output
point OSi .

3)

Consider the geometrical position
of OSi as the input tracking
point ISi for the neighbour
element e+ 1.

(5.5)

Remark 53 This algorithm requires handling a side-connectivity array indicating
those elements that share sides with a given one.

It is clear that, for some element, called root element (ri), crossed by Si, the
discontinuity input point ISi has to be arbitrarily fixed. In practice, only some of
these possible discontinuity lines Si are traced. When only a single line Si is con-
sidered, the root element is the first bifurcated element. In this case the algorithm
is very simple and robust. However, as the number of possible discontinuity lines
increases, this algorithm can become extremely cumbersome.
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Figure 5.4: Global tracking.

5.2.2 Global tracking

Here, all the possible discontinuity lines Si are implicitly traced. Since, by construc-
tion, at every point x of the possible discontinuity lines Si, its tangent has the same
direction as the propagation vector T(x,t), then Si are the members of the family of
curves enveloping the vector field T. Therefore, the construction of the envelopes
implicitly supplies all the possible discontinuity lines at time t. Assume that these
envelopes can be described by a scalar field with values θ(x) whose level contours
define all the possible discontinuity lines as (see Fig. 5.4)

Si := {x ∈Ω ; θ(x) = θSi} (5.6)

where θSi is a constant that acts as the “label” of the possible discontinuity line Si.
In Section 5.3, a methodology for the construction of the scalar field θ based on

solving a heat-conduction-like BVP is presented. The solution of the corresponding
finite element BVP provides the nodal values of θh (the finite element approximation
of θ).
With this information in hand, the algorithm for tracing, at element level, pos-

sible discontinuity lines at a given time t of an incremental loading process can be
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schematically described by the two following steps:

1. Identify the possible discontinuity line label corresponding to the root elements.
The position of the possible discontinuity line can be arbitrarily fixed in ev-
ery root element ri. A possible choice is to consider that the discontinuity
path passes through its centroid x0 (see Fig. 5.4-a). Consequently, the corre-
sponding temperature level is the average of the nodal values of θ for this root
element:

θSi =
1

n

nP
k=1

θ(k) (5.7)

where n stands for the number of nodes of the element (i.e.: n = 3, for
linear triangles and n = 4 for linear quadrilaterals). Then, as said before, the
constant θSi is the label corresponding to line Si.

2. Determine the position of the possible discontinuity line inside a given element.
Once the nodal values θ(k) and the possible discontinuity line labels θSi are
known, the position of Si inside a given element e can be determined through
the following algorithm (see Fig. 5.4-b):

DATA:

Nodal values of θ at

element e: θ(k).
Label of the possible
discontinuity line: θSi.

ACTIONS:

1)
Determine the sides
involving a change of sign of

(θ(k) − θSi) at their vertices.

2)
For every one of these sides
compute the position of
Si through linear interpolation.

(5.8)

Remark 54 Notice that no information from the neighbor elements is required in
the preceding algorithm. This fact can be exploited for implementation purposes.

To determine the root elements at a given time t, one has to verify for each
possible root element that it is not crossed by the discontinuity line of another root
element. In order to guarantee this, one needs the concept of active discontinuity
line. We say that one of the possible discontinuity lines Si is active when it crosses
at least one bifurcated element. Then, when an element bifurcates, two possibilities
arise:



96 CHAPTER 5. TRACKING STRATEGIES

• If the element is crossed by a line Si that is already active, the algorithm in
(5.8) is applied to that element.

• Otherwise, the element is considered a root element and the possible disconti-
nuity line passing through its centroid becomes active.

5.3 Enveloping of the propagation vector field

In this section, we present a procedure to compute the envelopes of the vector field
T defined on a two-dimensional domain Ω. We assume that T is a unit vector field,
i.e.:

T ·T = kTk2 = 1 in Ω (5.9)

whose sense is considered to be non-relevant. Our aim is to obtain an scalar field
with values θ(x) whose level lines are the envelopes of T. By definition (5.6), each
level line has to fulfill the following condition:

θ(x) = θSi in Si (5.10)

where θSi is a constant. Then, since the set {Si} is the family of envelopes of the
field T, the following equation can be stated:

∂θ
∂T
= T·∇θ = ∇θ ·T = 0 in Ω (5.11)

where ∂θ
∂T
stands for the directional derivative of θ in the direction of T.

5.3.1 Heat-conduction-like problem

Solving equation (5.11) with appropriate boundary conditions would provide field
θ. However, this formulation has some inconveniences. The first one has to do
with the boundary conditions: one needs to prescribe a value θSi , for each line Si.
Notice that we are not interested in having some specific label for a given Si, but in
having any distinguishable θSi for every Si. Then prescribing all the labels would
entail unnecessary complications. Moreover, expressing (5.11) in weak form would
lead to a non-symmetric formulation whose discrete version could be inconvenient
for its implementation in a non-linear finite element code. With these arguments
in mind, we propose here a heat-conduction like problem that allows to solve (5.11).
Considering (5.11), we can write

T ∂θ
∂T
= (T⊗T)·∇θ = K·∇θ

K := T⊗T (5.12)
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Figure 5.5: Heat-conduction-like boundary value problem.

Let us define

q := −K·∇θ (5.13)

With the above definitions in hand, let us state the following boundary value
problem:

FIND : θ
SUCH THAT
∇·q =0 in Ω (a)
q = −K·∇θ= −T ∂θ

∂T
in Ω (b)

q · ν = (ν ·T) ∂θ
∂T
=0 on ∂qΩ (c)

θ = θ∗ on ∂θΩ (d)

(5.14)

where ν is the outward normal to the boundary ∂Ω, which is composed of ∂qΩ and
∂θΩ such that ∂qΩ ∪ ∂θΩ = ∂Ω and ∂qΩ ∩ ∂θΩ = ∅.
It is easy to see that, with appropriate Dirichlet boundary conditions, if (5.11)

holds for some θ, this θ is a solution of (5.14). Then, a solution of (5.14) can provide
us the envelopes of the vector field T.
Problem (5.14) can be regarded as a steady-state heat conduction BVP in Ω

(see Fig. 5.5), for the case of no internal heat sources and null heat flux input
(q · ν =0) on the boundary ∂qΩ (adiabatic boundary). Thus, θ plays the role of
the temperature field, q is the conduction flux vector and K is a anisotropic thermal
conductivity tensor that varies from point to point and whose matrix representation,
for two dimensional cases, is

[K(T(x))]= [T⊗T] =
·
T 2x TxTy
TxTy T 2y

¸
(5.15)
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Remark 55 Notice that K(T) =K(−T)) and, as one would expect, the solution of
problem (5.14) is only affected by the direction of the vector field T and not by its
sense.

Weak form and uniqueness

Let us define the following function spaces

Vθ :=
©
θ ; ∂θ

∂T
∈ L2(Ω), θ|∂θΩ = θ∗

ª
Vδθ :=

n
δθ ; ∂(δθ)

∂T
∈ L2(Ω), δθ|∂θΩ = 0

o (5.16)

Now we can write the following BVP in weak form:

FIND : θ ∈Vθ
SUCH THATR
Ω
∇δθ·K·∇θ dΩ=0 ∀δθ∈Vδθ

(5.17)

By standard calculations, one can prove that this problem is the weak form of (5.14).

Remark 56 Considering the definition of K, the weak equation in (5.17) can be

rephrased as

Z
Ω

∂(δθ)
∂T

∂θ
∂T
dΩ=0. Then it is easy to see that a function θ fulfilling

the condition ∂θ
∂T
= 0 in Ω is a solution of (5.17).

In order to prove uniqueness of the BVP (5.17), K must be an elliptic operator
([Reddy, 1998]), which means that all its eigenvalues must be positive. However,
by definition (see (5.15)), it is a rank-one tensor, having, therefore, for the two-
dimensional case, one null eigenvalue.

Remark 57 The lack of uniqueness of (5.17) can be understood by the fact that the
value of the directional derivative ∂θ

θn
:= ∇θ · n, where n is orthogonal to T, in the

problems (5.14) and (5.17) is not determined; thus, the behavior of the solutions of
those problems in the direction of n is undefined.

With the above arguments on mind, let us propose the following modification of
tensor K:

K² : =T⊗T+²1 (5.18)

where ² is a small positive constant having, in the context of the present heat-
conduction-like problem, the meaning of a fictitious isotropic conductivity. For
practical purposes, it has to be small enough to ensure meaningful solutions of
(5.17).
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Remark 58 Definition (5.18) guarantees the positive definiteness of K².

By substituting K² for K in the BVP (5.17), uniqueness is guaranteed.

Finite element formulation

Consider a discretization of Ω into a finite element mesh, with nelem elements and
nnode nodes. The following finite element approximation of the temperature field is
adopted:

θh(x) = Σi=nnodei=1 Niθi = N
Tθ (5.19)

with

N := [N1, ..., Nnnode]
T

θ := [θ1, ..., θnnode ]
T

Then the following finite element spaces can be defined:

Vhθ :=
©
θh; θh(x) = Σi=nnodei=1 Niθi; θ|∂θΩ = θ∗

ª
Vhδθ :=

©
δθh; δθh(x) = Σi=nnodei=1 Niθi; θ|∂θΩ = 0

ª (5.20)

The discrete counterpart of the continuum problem (5.17) reads

FIND : θh ∈Vhθ
SUCH THATR
Ω
∇δθh·K²·∇θh dΩ=0 ∀δθh∈Vhδθ

(5.21)

Let us set

[∇N] :=
·
[∂xN1, ..., ∂xNnnode]
[∂yN1, ..., ∂yNnnode ]

¸
(5.22)

Thus, from (5.21), the following system of equations can be obtained by means of a
standard procedure:

Z
Ω

[∇N]T [K²] [∇N] θ dΩ=0 (5.23)
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Defining

K :=

Z
Ω

[∇N]T [K²] [∇N] dΩ (5.24)

the system of equations (5.23) can be rephrased as

Kθ = 0 (5.25)

Remark 59 The rank of K is nnode − 1 before the prescription of the Dirichlet
boundary conditions. Consequently, prescribing the temperature for one node of
the boundary would be enough to have a unique solution for the above system of
equations. However, in order to preclude solutions of the type θ =constant in Ω,
the temperature has to be prescribed in at least two nodes.

Remark 60 This methodology can be easily implemented in a non-linear finite el-
ement code equipped with a thermal analysis module.

Extension to three dimensions

The extension of the above formulation to three-dimensional settings is straightfor-
ward. Consider the vector fields S and T defined for every point of the domain Ω
at a given time t, such that S(x,t) and T(x,t) define the tangent plane to a possible
discontinuity surface Si at (x,t). Assume that the family of surfaces {Si} envelop-
ing both vector fields, S and T, at the same time can be described by a scalar
(temperature-like) field with values θ(x) such that the surfaces

Si := {x ∈Ω ; θ(x) = θSi} (5.26)

for all the meaningful values of θSi, are tangent at each point x ∈Ω to the vectors S
and T. Then, the following conditions must hold:

S·∇θ = ∇θ · S = ∂θ
∂S
= 0

T·∇θ = ∇θ ·T = ∂θ
∂T
= 0

 in Ω (5.27)

Remark 61 Let n be the unit vector field, defined at every point of the domain Ω
at a given time t, such that n(x,t) determines the direction normal to the tangent
plane to a tracking surface Si at (x,t). Then, S and T must satisfy

S · n = T · n =0 in Ω (5.28)
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With appropriate boundary conditions, the solution of problem (5.27) is also a
solution of the following heat-conduction-like problem:

FIND : θ
SUCH THAT
∇·q =0 in Ω (a)
q = −K·∇θ = −S ∂θ

∂S
−T ∂θ

∂T
in Ω (b)

q · ν = (ν · S) ∂θ
∂S
+ (ν ·T) ∂θ

∂T
=0 on ∂qΩ (c)

θ = θ∗ on ∂θΩ (d)

(5.29)

where the anisotropic conductivity tensor K is given by

K(S(x),T(x))=S⊗ S+T⊗T (5.30)

and the introduction of an artificial isotropic conductivity ² leads to

K²=S⊗ S+T⊗T+²1 (5.31)

We can arrive to the finite element discretization of (5.29) in a way analogous to
that used for the two dimensional case. Again, the temperature-like variable, θ,
have to be prescribed at, at least, two points to obtain meaningful solutions. Once
the temperature field θh is determined at every node of the finite element mesh,
an element level algorithm, the straightforward extension of the one presented in
Section 5.2.2 to three-dimensional cases, allows to determine the exact position of
the discontinuity path inside every element.

Remark 62 Although in this thesis no numerical simulation in three-dimensional
settings is tackled and the thermal analogy presented in this section is mainly used
to render possible the simulation of multiple discontinuities, it must be said that
the possibilities of this formulation to overcome some of the problems arising in the
propagation of discontinuities in three dimensions seem enormous

5.4 Representative numerical simulations

The performance of the heat-conduction-like model presented in Section 5.3 is as-
sessed through the set of illustrative simulations shown in Fig. 5.6. A square domain
discretized into the unstructured finite element mesh of quadrilaterals shown in Fig.
5.6-a is considered. Fig. 5.6-b to 5.6-d show different vector fields (left) and the
corresponding contours of iso-temperatures (right) obtained with that model. For
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every case, the two nodal points at which temperatures were prescribed are indi-
cated. It is worth noting that, regardless of the character of the vector field, the
envelopes are precisely captured even if their direction changes abruptly (see Fig.
5.6-d).
The simulations presented in Fig. 5.6 were done for ² = 0 and for ² = 10−5

obtaining almost identical results. For the simulations with ² = 0, no ill-conditioning
of the stiffness matrix was observed. This can be explained by the fact that the
use of a non-structured mesh introduces some constraints regarding the continuity
of the possible solutions in the direction orthogonal to the tracking lines Si. In the
case of structured meshes with nodes aligned with the tracking lines, ill-conditioning
of the stiffness matrix may occur, and the use of ² 6= 0 is mandatory. Thus, based
on the fact that small values of ² do not perturb significantly the solution, the use
of ² 6= 0 seems always recommendable.

5.5 Exclusion Zone

The simulation of the evolution of multiple discontinuity lines by means of the
nonsymmetric formulation presented in Section 4.2 becomes feasible when a global
tracking algorithm is available. However, some precautions have to be taken. For
instance, some discontinuity lines can activate spuriously. This happens when
there is a region near a crack tip where the stress state is very similar for all its
material points. Then, due to numerical errors, some elements within this region
can bifurcate spuriously. In order to circumvent this, we propose the creation of an
exclusion zone surrounding a discontinuity line1.
We will call consolidated discontinuity line, Si ⊂ Si, a material line consisting

of all the bifurcated points belonging to a discontinuity line Si. As said before,
when the domain Ω is discretized into a finite element mesh, the bifurcation anal-
ysis is performed at certain sampling points discretely distributed. Assume that
those sampling points are placed at the centroid of every element. Consider that xe
denotes the sampling point corresponding to a non-bifurcated element e, xSi stands
for a sampling point belonging to an element crossed by the consolidated disconti-
nuity line Si, and dSi is a positive constant named exclusion distance of Si, then the
definition of the exclusion zone corresponding to Si is the following:

HSi :=
½
xe ∈ Ω ; min

xSi∈Si
kxe − xSik ≤ dSi and Ωe ∩ Si = ∅

¾
(5.32)

1A concept similar to what we call exclusion zone here can be found in [Alfaiate et al., 2002].
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Figure 5.6: Numerical tests.
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Figure 5.7: Exclusion zone.

Fig. 5.7 shows the exclusion zone of a consolidated discontinuity for a given
finite element mesh. The elements belonging to the exclusion zone are depicted in
white, while the elements crossed by the consolidated discontinuity line are colored
in black. The dotted line indicates the part of the discontinuity line that has not
been consolidated yet.
Now, at a given time t, an element e will be allowed to bifurcate if at least one

of the following conditions is fulfilled:

1. Element e does not belong to the exclusion zone of any consolidated disconti-
nuity line Si.

2. Element e is crossed by a possible discontinuity line Si that is already active
(i.e. Si crosses at least one bifurcated element).



Chapter 6

Stability and uniqueness issues

The numerical simulation of complex problems involving strain localization requires
the use of robust algorithms that allow for the description of their highly non-linear
behavior. Adequate control techniques and sophisticated continuation methods are
necessary to obtain the global equilibrium path throughout a loading process. Even
in the case of using these tools, the eventual appearance of bifurcation points can lead
to no convergence of the overall incremental iterative scheme (a Newton-Raphson
scheme, for instance).
Furthermore, although the nonsymmetric finite element formulation presented

in Section 4.2. has been successfully used for the simulation of strong disconti-
nuities (see, e.g., [Oliver et al., 2002a]), some questions about its robustness have
arised lately. In [Jirasek, 2000b], an element level uniqueness condition was de-
rived. There, it was argued that not satisfying this condition would result in a loss
of robustness of the numerical model used.
In this chapter, the inclusion of an artificial numerical damping as a remedy for

the above mentioned problems is motivated and studied. The approach adopted is
different from the one in [Jirasek, 2000b]. The possible element level instabilities
are regarded as a controllability problem related to the “brittleness” of the element.
Section 6.1 is devoted to studying these instabilities for the nonsymmetric formu-
lation presented in Section 4.2.4. Then, an artificial damping term is added to
the virtual work principle equation as a remedy in Section 6.2. Some of the most
relevant consequences of doing this are analyzed

6.1 Element level instabilities

The study of eventual element level instabilities of a discrete BVP based on the
non-symmetric formulation presented in Section 4.2. is tackled here. From Section
4.2.4, the matrix expression of the incremental residual forces at element level is

105
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"
K
(e)
dd K

(e)
dα

K
(e)
αd K

(e)
αα

#½
ḋ(e)

[[u̇]](e)

¾
−
½
Ḟ
(e)
ext

0

¾
=

½
Ṙ(e)

ṙ(e)

¾
(6.1)

with

K
(e)
dd =

Z
Ωe

B(e)
T
D B(e)dΩ

K
(e)
dα =

Z
Ωe

B(e)
T
D G(e)dΩ

K
(e)
αd =

Z
Ωe

G∗(e) D B(e)dΩ

K
(e)
αα =

Z
Ωe

G∗(e) D G(e)dΩ

(6.2)

Let us focus on the expression of the element level residual forces corresponding
to the displacement jumps stated in (6.1):

ṙ(e) = K
(e)
αd ḋ

(e) +K(e)
αα[[u̇]]

(e) = 0 (6.3)

Equation (6.3) can be regarded as a control problem in which K(e)
αd ḋ

(e) is the
control variable and [[u̇]](e) is the state variable. In such a context, the singularity of

K
(e)
αα will correspond to a critical point. In light of this, let us study the structure

of K
(e)
αα. Remember from Section 4.2.4, the definition of G∗(e) and Ge :

G∗(e) = (µ(e)S
1

k
− le

Ωe
) [n](e)

T

(6.4)

G(e) = µ
(e)
S
1

k
[n](e) − £∇ϕ(e)

¤
(6.5)

From (6.2), 6.5, and 6.4, we obtain

K(e)
αα =

Z
Ωe

"
µ
(e)
S
k
[n](e)

T − le
Ωe
[n](e)

T

#
D

"
µ
(e)
S
k
[n](e) − £∇ϕ(e)

¤#
dΩ (6.6)

Since DS=O(k) and DΩe\Se = Del (the elastic constitutive matrix), expression (6.6)
can be rephrased as
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δ 
l

Figure 6.1: One-dimensional bar subjected to tension.

K(e)
αα =

Z
Se

£
Qd
¤
dS + le

Ωe

Z
Ωe\Se

[n](e)
T

Del

£∇ϕ(e)
¤
dΩ (6.7)

where
£
Qd
¤
is the matrix representation of the acoustic tensor (which can be iden-

tified with the constitutive tangent operator of the induced discrete, or cohesive,
law).
It is worth noting that matrix

£
Qd
¤
is not positive definite, which implies that,

for K
(e)
αα to be positive definite, the second term of (6.7) has to be positive definite.

If
£∇ϕ(e)

¤
and [n](e) are proportional, the positive definiteness of the second term

of (6.7) is guaranteed by the positive definiteness of the elastic matrix Del. In the

case of
£∇ϕ(e)

¤
and [n](e) being orthogonal in the scalar product induced by Del,

the second term of (6.7) is equal to zero and K
(e)
αα =

R
Se
£
Qd
¤
dS.

The importance of the definiteness of K
(e)
αα can be explained by the fact that

passing for a critical point can be related to loosing positive definiteness. This is
illustrated in the next subsection by a one-dimensional example and then related
with the brittleness of the element

6.1.1 One dimensional example

Consider the one-dimensional bar of Fig. 6.1 discretized into one linear finite ele-
ment. Then we have that (6.7) reduces to

K(e)
αα = EH̄ +

Z
Ωe

1

l
E
1

l
dΩ = EH̄ +

E

l
(6.8)

where EH̄ is the value of the discrete tangent modulus acting on point S. We also
have

K
(e)
αd =

Z
Ωe

−1
l
E
£
∂xN1 ∂xN2

¤
dΩ =

Z
Ωe

−1
l
E
£ −1

l
1
l

¤
dΩ (6.9)
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Figure 6.2: Nodal displacement vs. elemental jump in a one dimensional element.

Then we can write (6.3) as follows

µZ
Ωe

−1
l
E
£ −1

l
1
l

¤
dΩ

¶½
ḋ1
ḋ2

¾
+

·
EH̄ +

E

l

¸
[[u̇]](e) = 0 (6.10)

As indicated in Fig. 6.1, ḋ1=0 and ḋ2 = δ̇. Then, solving (6.10) for [[u̇]](e) yields

[[u̇]](e) =
1

EH̄ +
E

l| {z }
K
(e)
αα

µ
1

l
Eδ̇

¶
(6.11)

An schematic picture of the prescribed displacement vs. the displacement jump
(δ − [[u]](e)) curve for this case is shown in Fig. 6.2. Before bifurcation, δ̇ > 0

while [[u̇]](e) = 0, so that one can consider that K
(e)
αα is “infinitely positive”, i.e., rigid.

Consider the case of K
(e)
αα < 0 after bifurcation, a positive rate of the prescribed

displacement entails a negative rate of the element jump (see Figure 6.2). For K
(e)
αα

to change of sign, the existence of a critical point in between is necessary. Thus,
from (6.11) the condition, in this one-dimensional case, to avoid the appearance of
element level critical points is
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l ≤ 1

H̄
(6.12)

Remark 63 The brittleness of the element is related to condition (6.12). For this
one-dimensional case, it depends on the element size and on the intrinsic softening
parameter.

Remark 64 For higher dimensional cases and for other constitutive models, the
positive definiteness of K

(e)
αα can be established as a sufficient condition to ensure the

absence of element level critical points for (6.3). The effects of these element level
critical points in the global problem remain to be studied. Thus, the spirit of the
strategy presented in the next section is to preclude element level critical points in
order to avoid the possibility of numerical instabilities caused by them.

6.2 Artificial damping term

In this section, a strategy to overcome the element level critical points in problems
undergoing strong discontinuities is proposed. It is based on adding a regularizing
damping term to the weak form of the momentum balance equation. Though the
main motivation for this strategy is to solve the stability problems identified in the
preceding section, an important uniqueness result regarding the continuum BVP is
also obtained.
Consider the body Ω with boundary Γ = Γσ ∪ Γu (fulfilling Γσ ∩ Γu = ∅) and

the discontinuity interface S ⊂Ω. Let us adopt the strong discontinuity kinematics
presented in Section 3.21. For any time t, the following variational equation must
hold:

Z
Ω

∇Sη : σdΩ+Gext(η) = 0 ∀η ∈Vη (6.13)

where Gext(η) :=
R
Ω\S b·η dΩ+

R
Γσ
t∗ ·η dΓ.(with b being the body force density and

t∗ the traction prescribed on boundary Γσ) and Vη is the space of (kinematically)
admissible displacement variations. From Section 4.3, we have that the elements of
Vη have the following structure:

η = η̄+MS α

η̄ ∈Vη̄ and α ∈Vα.
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Remark 65 Based on the linearity of both the gradient operator and the integral, it
is easy to prove that the rate form of equation (6.13) is equivalent to the rate form
of the system of variational equations (4.51) and, therefore, to (4.12).

With these concepts in hand, the following modification to (6.13) is proposed:

Z
S
α · (µ̄1)·[[u̇]]dS +

Z
Ω

∇Sη : σdΩ+Gext(η) = 0 ∀η ∈Vη (6.14)

where µ̄ is damping-like parameter acting in S such that when µ̄ → 0, equation
(6.14) approximates (6.13).
Now the following proposition can be stated:

Proposition 3 Equation (6.14) has a unique solution if µ̄>0.

Proof : Let us assume that, for a given time t, two solutions for (6.14), [[u̇]]1
and [[u̇]]2, exist. Setting ∆[[u̇]] := [[u̇]]2 − [[u̇]]1, then, since at bifurcation time
∆σ := σ2 − σ1 = 0,

Z
S
α · (µ̄1)·∆[[u̇]]dS = 0 ∀α ∈Vα (6.15)

must hold. Since by definition, ∆[[u̇]] ∈ Vα, equation (6.15) must hold for α =∆[[u̇]],
i.e., Z

S

∆[[u̇]]·(µ̄1)·∆[[u̇]]dS = 0 (6.16)

Provided that µ̄ > 0, equation (6.16) implies that ∆[[u̇]] = 0. Which contradicts
the assumption of loss of uniqueness and so proposition 3 follows.

6.2.1 Discrete version of the problem

By standard procedures one can easily arrive to the discrete version of (6.14) at
element level. Due to the fact that the added damping acts exclusively within
the discontinuity interface, only the part of the residual forces corresponding to the
inner traction continuity equation (i.e., the part of the residual forces whose rate is
ṙ(e) in (6.1)) needs to be modified:

r
(e)
µ̄ :=

Z
Se

µ̄ [[u̇]](e) dS +
Z
Ωe

G∗(e) σdΩ = 0 (6.17)
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Consider, now, the discretization of the time interval of interest

[t0, tN ] =
N−1[
n=0

[tn, tn+1] (6.18)

Let us focus on a typical interval [tn, tn+1] ; then the following approximation for
[[u̇]](e) is proposed:

[[u̇]]
(e)
n+1 ≈

[[u]]
(e)
n+1 − [[u]](e)n

∆t
(6.19)

with ∆t := tn+1 − tn. Thus, we can write

r
(e)
n+1:=

Z
Se

µ̄
[[u]]

(e)
n+1 − [[u]](e)n

∆t
dS +

Z
Ωe

G∗(e) σn+1 dΩ = 0 (6.20)

which corresponds to a backward Euler integration of (6.17) in time. Hence, con-

sidering (6.1), a modified K
(e)
αα is obtained:

K̂(e)
αα : =

dr
(e)
n+1

³
[[u]]

(e)
n+1

´
d[[u]]

(e)
n+1

=

Z
Se

µ̄

∆t
1dS +

Z
Ωe

G∗(e)DG(e) dΩ

=

Z
Se

µ̄

∆t
1dS +K(e)

αα (6.21)

Matrix K̂
(e)
αα is then equal to the original K

(e)
αα plus a damping matrix, which

depends on the damping-like parameter µ̄ and on ∆t. Thus, the damping parameter
µ̄ can be chosen in such a way that the positive definiteness of K̂

(e)
αα is guaranteed.

Let ξmax(•), ξmin(•), and ξ(•) denote the maximum, the minimum, and an arbitrary
eigenvalue of a square matrix (•), respectively. Since the following condition holds
(Bromwich bounds):

ξmin

·³
K̂(e)

αα

´S¸
≤ ξ(K̂(e)

αα) ≤ ξmax

·³
K̂(e)

αα

´S¸
then a sufficient condition for K̂

(e)
αα to be positive definite is
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ξmin

h¡
K(e)

αα

¢Si
+
µ̄

∆t
≥ 0 (6.22)

Hence, a critical value for the time increment can be computed:

∆tcrit =
µ̄¯̄̄̄

ξmin

·³
K̂
(e)
αα

´S¸¯̄̄̄ (6.23)

Remark 66 The positive definiteness of K̂
(e)
αα precludes the appearance of the ele-

ment level critical points studied in the preceding section

Remark 67 A significant increase on the robustness of the global incremental -
iterative algorithm is to be expected with the addition of damping, not only because
it precludes element level critical points, but also due to the smoothing effect that it
usually has on tracing the equilibrium path and to the uniqueness1 of the incremental
problem stated in proposition 3.

6.2.2 Implementation aspects

The implementation of the proposed strategies requires changes, only at element
level, on K(e)

αα to obtain K̂
(e)
αα, as indicated in (6.21), and on the residual forces, as

indicated in (6.20).
Furthermore, the result given in (6.23) can be used to compute the time step

size, ∆t, to be used by the overall incremental-iterative scheme as

∆t = min
e∈I


µ̄¯̄̄̄

ξmin

·³
K
(e)
αα

´S¸¯̄̄̄
 (6.24)

where I={1, ..., nelem} .
Remark 68 Since the analyses carried out in this thesis only consider the qua-
sistatic problem with rate independent behavior, when we talk about time, we mean
pseudo-time. For instance, in the case in which an arc-length control is used (see
Appendix A), the pseudo-time can be identified with the arc-length.

1Here, only uniqueness of the continuum problem was proved and bifurcation of the discrete
problem might occur if the time-step size is greater than some critical value. However, the use of
large enough values of µ̄ will make that possibility very improbable
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In order to optimize the performance of an algorithm based on (6.24), it is
convenient to vary conveniently the value of the variable considered as the pseudo-
time (e.g., the arc-length), increasing it when K

(e)
αα is positive definite for every

element, and setting it to the value obtained by (6.24) when K
(e)
αα loses positive-

definiteness for at least some element.
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Chapter 7

Numerical Examples

In this chapter, some numerical examples are presented in order to apply the con-
cepts and techniques developed throughout this thesis to the numerical simulation
of problems in which strong discontinuities appear. To check the possibilities of
those concepts and techniques in the modelling of complex two-dimensional exam-
ples undergoing multiple cracking is the main aim here.
All the simulations presented in this chapter were run in the non-linear multipur-

pose finite element program COMET (COupled Mechanical and Thermal analysis)
developed in CIMNE (International Center for Numerical Methods in Engineering).
The pre and post-processing was carried out in GiD also developed in CIMNE.
Before presenting them, some general characteristics of the numerical simulations

reported in this chapter have to be laid out:

• The nonsymmetric formulation of finite elements with embedded discontinu-
ities presented in Section 4.3, which has proven to be the most efficient, is used
for all the simulations.

• A variant of the isotropic continuum damage model presented in Section 2.2
is employed in all the examples. It is characterized for allowing damage only
for tension in the principal stresses. We will call it, from now on, tension-only
damage model. In order to briefly explain it, let us define the positive part of
the stress tensor as follows:

σ+ :=

ndimX
k=1

hσiipi ⊗ pi (7.1)

where h•i are the Macaulay brackets, σi stands for the principal stresses, and
pi for the principal stress directions. Now, we can define the damage function
of this model:

f(σ+,σ,q) :=
√
σ+ : C−1: σ − q (7.2)

115
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The rest of ingredients of this constitutive model are the same as in the
isotropic damage model from Section 2.2.

• For most of the examples presented here, tracing the equilibrium path is by no
means trivial. Thus, the use of continuation techniques has been unavoidable.
In general, the normal updated strategy has been employed, together with an
algorithm that enlarges and reduces the length of the step according to a
defined-by-the-user ideal number of iterations (see Appendix A).

The remaining of this chapter is organized as follows. One of the classical four
points bending tests with one notch is studied in Section 7.1. First, a comparison
of several meshes to check convergence upon refinement and to assess the perfor-
mance of triangular and quadrilateral meshes is made. Then, the appearance of
several crack lines is allowed for a quadrilateral mesh and the corresponding results
are analyzed and compared with experimental results. Section 7.2 presents the
simulation of a double-notched four points bending test. Two main crack lines are
expected to activate, but other crack lines are allowed to appear. Their evolution
through the loading process is studied and a comparison with experimental results
is presented. In Section 7.3, a rectangular plate with two geometrical imperfections
submitted to tension is modelled. The purpose of those imperfections is to trigger
two (dominant) bands of localization. Then, the evolution of those bands through
the loading process is analyzed. The effect of brittleness and the necessity of good
continuation techniques is remarked, as well as the convergence to the original prob-
lem when the artificial damping tends to zero. The simulation of one of the tests
in [Nooru-Mohamed, 1992] is tackled in Section 7.4. Again, two dominant cracks
appear, but they are not the only ones allowed to activate. Finally, in Section 7.5, a
reinforced specimen is modelled. The reinforcement helps the appearance of several
discontinuities that activate and arrest through the loading process. The effect of
refinement will be also analyzed.

7.1 Four points bending test with one notch

One of the classical four point bending tests reported in
[Arrea and Ingraffea, 1982] is simulated in this section. Some of the features of
the numerical simulation of strain localization by means of the strong discontinuity
approach are studied through this benchmark test. First, a study of the perfor-
mance of various quadrilateral and triangular meshes is made. For this comparison,
only one discontinuity line (the main one) is allowed to appear. Afterwards, the
possibility of the appearance of several discontinuities is considered.
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Figure 7.1: Single notched four points bending test: geometry and boundary conditions.

7.1.1 Comparative analysis of the performance of various
meshes

Here we assess the performance of triangular and quadrilateral meshes and their
convergence upon refinement through the classical four points bending test allowing
the activation of only one discontinuity line (a local tracking strategy was used).
Comparison with experimental data will be delayed until Section 7.1.2 where the
activation of several discontinuities is allowed. The dimensions and boundary con-
ditions applied to the beam can be seen in Fig. 7.1. The tension-only damage
model was used, considering the following material properties: E = 2.4 · 1010 Pa,
σu = 2.8 · 106 Pa, ν =0.18, and Gf = 100 N/m. The plane stress case was adopted
and a thickness t = 0.156 m was considered. The quadrilateral and the triangular
meshes employed are shown in Fig. 7.2 and Fig 7.3 respectively. In the same figures,
the nomenclature employed to refer to each mesh is also presented.

Fig. 7.4 shows a comparison between the general response curves obtained with
both triangular and quadrilateral meshes. The triangular meshes have curves that
tend asymptotically to total relaxation of load P. However, for quadrilaterals, neg-
ative values of P are observed, and it is seen that the global response is more brittle
than the one obtained with triangles. Convergence upon refinement is observed
both in triangles and in quadrilaterals. The structural brittleness in the behavior
of the quadrilateral meshes tend to disappear with refinement. It is also observed
that convergence with regard to the late stages of the postcritical behavior is faster
in triangles than in quadrilaterals. However, convergence regarding the prediction
of the peak load and the early stages of the postcritical behavior is attained fast for
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 a) 

b) 

c) 

Figure 7.2: Quadrilateral meshes: a) 643 nodes (Q643), b) 1123 nodes (Q1123), c) 3881
(Q3881).

both triangles and quadrilaterals.

The resulting discontinuity paths for all the meshes are shown in Fig. 7.5. They
are similar for all the meshes considered.

7.1.2 Simulation of several discontinuities

Despite the structural brittleness exhibited by quadrilateral meshes, they are used in
the remaining simulations presented in this chapter. This choice can be justified by
several reasons. The first of them is that numerical examples with triangular meshes
can be find elsewhere in the literature (see, for instance, [Oliver et al., 2002a]) and
that, therefore, a deeper knowledge about the performance of quadrilaterals is nec-
essary. Moreover, the above mentioned brittle behavior of quadrilaterals occurs
in advanced stages of the loading process, where, in general, experimental data is



7.1. FOUR POINTS BENDING TEST WITH ONE NOTCH 119

 a) 

b) 

c) 

Figure 7.3: Triangular meshes: a) 441 nodes (T441), b) 1042 nodes (T1042), c) 1544
nodes (T1544).

not available. The fact that quadrilaterals have the advantage of better capturing
the stress state of the solid in the elastic regime, which contributes to get a more
accurate tracking of discontinuity paths, has also been considered.

For this simulation, the quadrilateral mesh in Fig. 7.6 was used. A global
tracking strategy was made use of and the appearance of more than one discontinuity
line was allowed. Some algorithmic damping and an exclusion zone of 5 cm were
applied in order to help convergence of the iterative scheme (Newton-Raphson).
The updated normal plane method was the continuation technique employed.

In Fig. 7.7-a the exclusion zone corresponding to that step is shown. The
possible discontinuity lines for an intermediate step in the loading process can be
observed in Fig. 7.7-b.

Fig. 7.8 indicates the loading stages at which the pictures in Fig. 7.9 were taken.
Fig. 7.9-a and Fig. 7.9-b show the elements in inelastic loading for an early and an
intermediate loading step, respectively. The main crack, emanating from the notch,
reported elsewhere (see, for instance, [Arrea and Ingraffea, 1982]) is observed, but
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Figure 7.4: Single notched four points bending test: comparison of the global response
of several meshes.

other cracks do also appear. However, at later stages these cracks arrest and close
(see Fig. 7.9-c) leaving the main crack as the only one which remains open. The
presence of algorithmic damping was observed to help convergence of the iterative
scheme significantly. This can be explained by the fact that new crack lines are
activated, which entails a process of crack opening and closure, until the main crack
dominates. Moreover, as the number of crack lines allowed to open increases, so
does the risk of element level numerical instabilities. Thus, the manifold beneficial
effect of the artificial damping is likely to have played a crucial role.
A comparison between the numerical simulation curve and the experimental en-

velope of the global response in terms of force P and the Crack Mouth Opening
Displacement (CMOD) of the notch is shown in Fig. 7.10. Again a brittle behav-
ior in the postcritical phase of the late stages of the loading process is observed.
However, a good agreement regarding the peak load and the early stages of the
postcritical part of the response curve is obtained.

7.2 Four points bending test with two notches

In this section, one of the four point bending tests reported by ([Bocca et al., 1990])
is modelled. The mesh employed, the dimensions, the applied loads, and constraints



7.2. FOUR POINTS BENDING TEST WITH TWO NOTCHES 121

 

 

a) d) 

b) e) 

c) f) 

Figure 7.5: Single notched four points bending test: crack path at final stages of the
loading process for different meshes: a) Q643 b) Q1123, c) Q3881, d) T441, e) T1042, f)
T1544.
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Figure 7.6: Single notched four points beam: mesh.

 

a) 

b) 

Figure 7.7: Single notched four points bending test a) Exclusion zone (elements in dark
brown), b)Possible discontinuity lines.
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Figure 7.8: Single notched four points bending test: global response curve indicating the
loading levels at which pictures of the cracking state are taken.

are shown in Fig. 7.11. Also a schematic diagram of the experiment is presented
in presented in Fig. 7.12.

The tension-only damage model was used. The material properties are the
following: E = 2.7 · 1010 Pa, σu = 2.0 · 106 Pa, ν =0.18, and Gf = 100 N/m.
The plane stress case was adopted and a thickness t = 0.1 m was considered. A
global tracking strategy was used and an exclusion zone of 5 cm. was applied. The
updated normal plane strategy was employed.
The exclusion zone in an intermediate loading stage is shown in Fig 7.13-a. In

Fig. 7.13-b, the possible discontinuity lines for the same time step can be seen.
In both figures the central symmetry of the solution in this intermediate step can
clearly be seen.

The loading stages at which the pictures in Fig. 7.15 were taken are indicated in
Fig. 7.14. Figure 7.15-a shows the elements in inelastic loading in an early loading
stage. Two main cracks, emanating from the notches, can be observed at this early
loading stage. Other cracks also activate in an intermediate stage (see Fig. 7.15-b)
distributed in a symmetric configuration. However, at certain point of the loading
process, the symmetry is broken, as shown in Fig. 7.15-c, and only one of the main
cracks remains open until the final loading stages, whereas the others arrest. This is
to be expected since the opening of only one crack seems the less dissipative option.
It is important to say that the presence of a certain exclusion zone was crucial

to attain convergence. This can be explained by the fact that there are regions at
which the stress state is very similar for all their material points, which entails that
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a) 

b) 

c) 

Figure 7.9: Single notched four points bending test: zones of inelastic loading for in-
creasing steps of the loading process.
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Figure 7.10: Single notched four points bending test: comparison with experimental
results.

Figure 7.11: Double notched four points bending test: mesh and boundary conditions.
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Figure 7.12: Double notched four points beam: schematical diagram of the applied loads
in the experimental test.

 

 

a) 

b) 

Figure 7.13: Double notched four points bending test: a) exclusion zone (elements in
dark brown); b) Possible discontinuity lines.
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Figure 7.14: Double notched four points bending test: global response curve indicating
the loading levels at which pictures of the cracking state are taken.

some elements can bifurcate spuriously.
A comparison between the experimental envelope and the numerical simulation

curve of the global response expressed in terms of load F (see Fig 7.12) and the
displacement at its point of application is shown in Fig 7.16.

7.3 Rectangular plate with two geometrical im-

perfections

This test is based on one presented in [Diez et al., 2000]. The dimensions of the
specimen, the boundary conditions and the mesh employed are shown in Fig. 7.17.
The two circular imperfections are intended to trigger the appearance of localization.
The tension-only model was used. This example was run considering two materials:
a brittle one and a more ductile one. For both the plane strain case was considered.
The material properties used for the brittle material are E = 3 · 106 Pa, σu = 1 · 103
Pa, ν =0.3, Gf = 0.01 N/m. An exclusion zone of 4 mm was used.
Fig. 7.19-a shows the possible discontinuity lines obtained by the procedure

explained in Chapter 5 for an intermediate step in the loading process. In Fig.
7.19-b the exclusion zone for that same step is also shown.
In Fig. 7.18 the global response curves (stress xx vs. displacement) of the

brittle material with some artificial damping and without it are presented. Both
curves are very similar, which shows convergence of the solution with damping to
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a) 

b) 

c) 

Figure 7.15: Double notched four points bending test: zones in inelastic loading for
increasing stages.
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Figure 7.16: Double notched four points bending test: comparison with experimental
results.

the one without it The updated normal plane method was used as the continuation
technique to follow the equilibrium path and so it was possible to trace the snap
backs observed in the curve. Fig 7.18 also shows the points in the global response
curve at which the pictures of the cracking state in Fig. 7.20 were taken.

In Fig. 7.20 the evolution of the discontinuity lines is shown. Two discontinuity
lines appear at the initial stages. Then, at some point, one of them starts arresting.
At final stages only one of them remains open.

For a new run, the fracture energy was changed to Gf = 0.1 N/m, obtaining a
more ductile material. No exclusion zone was applied, and as a consequence some
artificial damping was needed to help convergence of the iterative scheme.

Fig. 7.21 shows the global response of the specimen, indicating also the points
in the curve corresponding to the pictures of the cracking state presented in Fig.
7.22. No snap backs appear, as can be expected considering the ductility of the
material. The elements in inelastic loading can be seen in Fig. 7.22. Again two
main localization bands appear, but now the appearance of other cracks can be
observed. The ductility or the material favors the appearance of various cracks
(remember, also, that no exclusion zone was applied). However, at final stages one
single crack remains open as seen in Figs. 7.22-g and 7.22-h. It is important to
notice that these last two figures correspond to the points in the descending branch
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Figure 7.17: Plate with two geometrical imperfections: a) geometry, b) mesh and bound-
ary conditions.

of the curve in Fig. 7.21.

7.4 Mixed mode test

One of the double-edge notched concrete specimens tested by
[Nooru-Mohamed, 1992] is simulated in this section. The specimen simulated here
is the one reported in [Nechnech, 2000]. Experimental data will be taken from that
reference. Fig. 7.23 shows the geometry and the applied loads. The steel testing
apparatus bonded to the concrete specimen in the experimental test was simulated
by a region of elastic elements having Young modulus much higher than the one of
concrete and placed along the top and the upper left edges. The mesh employed is
shown in Fig. 7.24.
The horizontal load illustrated in Fig. 7.23 was kept constant during the exper-

imental test with a value Ph = 5 kN. To simulate this, the nodes on the upper
left side of the mesh were subjected to monotonically increasing horizontal forces
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Figure 7.18: Plate with two geometrical imperfections (brittle material): general re-
sponse curve indicating the loading levels at which pictures of the cracking state will be
taken.

 

a) 

b) 

Figure 7.19: Plate with two geometrical imperfections: a) discontinuity lines, b) exclu-
sion zone (elements in dark brown).
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a) b) 

c) d) 

e) f) 

g) h)

Figure 7.20: Plate with two geometrical imperfections (brittle material): elements in
inelastic loading for increasing stages.
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Figure 7.21: Plate with two geometrical imperfections (ductile material): global response
curve indicating the loading levels at which pictures of the cracking state will be taken.

until their sum reached 5 kN. Then, these forces were kept constant during the rest
of the simulation, whereas monotonically increasing displacements were imposed in
the nodes on the top of the mesh.

Again the tension-only model was used to simulate the behavior of concrete,
however the principal stress direction was used as the propagation vector. The
following material properties were considered: E = 3.2 · 1010 Pa, σu = 2.6 · 106 Pa,
ν =0.2, and Gf = 110 N/m. The plane stress case was adopted and a thickness t =
0.05 m was considered. Some algorithmic damping was added to help convergence
of the iterative procedure.

Fig. 7.25-a shows the exclusion zone for an intermediate loading stage, while
Fig 7.25-b shows the discontinuity lines obtained by the global tracking algorithm
employed for the same time step.

In Fig. 7.27, a sequence of the deformation and the evolution of cracking is shown
by means of pictures corresponding to the points in the curve of Fig. 7.26. Notice
how the solutions in the early stages are symmetrical, coinciding with the points in
the ascending branch of curve 7.26. Two main cracks, emanating from the notches,
develop, but at a given time, coinciding with the beginning of the descending branch
of the curve in Fig. 7.26, one of them arrests.

A comparison between the simulation and the experimental ([Nechnech, 2000])
curves of the global response in terms of the normal force Pn and the normal dis-
placement δn is shown in Fig. 7.28.
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a) b) 

c) d) 

e) f) 

g) h) 

Figure 7.22: Plate with two geometrical imperfections (ductile material): elements in
inelastic loading for increasing stages.
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Figure 7.23: Mixed mode test: geometry and boundary conditions.

Figure 7.24: Mixed mode test: mesh.
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 a) 

 

b) 

Figure 7.25: Mixed mode test: a) exclusion zone (elements in dark brown), b)discontiuity
lines.
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Figure 7.26: Mixed mode test: global response curve indicating the loading levels at
which pictures of the cracking state will be taken.

 

  

 

a) b) 

c) 

e) f) 

d) 

Figure 7.27: Mixed mode test: elements in inelastic loading for increasing stages.
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Figure 7.28: Mixed mode test: global response curves of the experimental test and of
the numerical simulation.

7.5 Tension pull reinforced specimen

A tension pull test applied to a reinforced specimen is simulated in this section. This
test was inspired by a similar one presented in ([Rots, 1988]). In the simulation
presented here, the plane strain case is considered, while in the one in Rots the
axisymmetric case was used. The dimensions and loads applied to the specimen
are shown in Fig. 7.29. Two meshes were used and are shown in Fig. 7.30.
The tension-only damage model was used for the concrete matrix, considering the
following material properties: E = 2.5 · 1010 Pa, σu = 3 · 106 Pa, ν =0.18, and
Gf = 25 N/m. The reinforcement was modelled as an elastic material having the
following material properties: E = 2.14 · 1011 Pa, ν =0.3. To model the interface
between concrete and reinforcement, a region of one element width governed by a
J2 perfectly plastic constitutive model was placed, having as material properties
E = 2.14 · 1011 Pa, σu = 3 · 106 Pa, ν =0.3.
Fig. 7.31 shows a comparison between the global response curves of the two

meshes considered. The global response is expressed in terms of the applied force
and the corresponding displacement on node A (see Fig. 7.30-a) for the coarse mesh
and on node B (see Fig. 7.30-b) for the fine mesh. Very sharp snap backs can be
observed. The use of the algorithmic damping is crucial to be able to run these
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Figure 7.29: Tension pull specimen: geometry.

examples, due both to the smoothness that it gives to the tracing of the equilibrium
path and to the fact that it precludes an eventual loss of uniqueness.

The presence of reinforcement favors the appearance of several discontinuity
lines. A picture of the exclusion zone for the coarse mesh at an intermediate
loading stage is shown in Fig 7.32-a, while in Fig. 7.32-b the discontinuity lines at
that stage are shown.

Again considering the coarse mesh, the points on the global response curve cor-
responding to the pictures of the cracking state shown in Fig. 7.34 are illustrated
in Fig. 7.33. The progress of cracking along time (for the coarse mesh) can be
described as follows. First, the interface between concrete and reinforcement un-

 a) 

b) 

A 

B 

Figure 7.30: Tension pull specimen: a) coarse mesh, b) fine mesh.
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Figure 7.31: Tension pull specimen: comparison between coarse and fine mesh.

 

 

a) 

b) 

Figure 7.32: Tension pull specimen (coarse mesh): a) exclusion zone (elements in dark
brown), b) discontinuity lines.
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Figure 7.33: Tension pull specimen (coarse mesh): global response curve indicating the
loading levels at which pictures of the cracking state will be taken.

dergoes progressive plastic yielding (as shown in Figs. 7.34-a and 7.34-b). Then, the
opening of multiple cracks in the concrete matrix is observed (Fig. 7.34-c). Most
of them are secondary cracking. However, Figs. 7.34-d and 7.34-e show how some
primary cracking becomes apparent. The snap-backs in Fig. 7.33 are reflected in
the distribution of cracking shown in Fig. 7.34-f. There, much of the secondary
cracking arrest and close while the main crack remains open. Finally, due to the ef-
fect of the reinforcement, the secondary cracking opens again as seen in Figs. 7.34-g
and 7.34-h.
The exclusion zone and the possible discontinuity lines for an intermediate stage

of the loading process when the fine mesh is employed are shown in Fig. 7.35. A
different exclusion zone from the one used for the coarse mesh is applied.
The propagation and arrest of crack lines can be seen in Fig 7.37 for the fine

mesh. The points of the equilibrium path to which the pictures in that figure
correspond are illustrated in Fig. 7.36. Though the distribution of the secondary
cracking seems to be ruled by the mesh and by the size of the exclusion zone, the
main cracks are very similar to the ones observed in the coarse mesh.
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a) b) 

c) d) 

e) f) 

g) h) 

Figure 7.34: Tension pull specimen (coarse mesh): elements in inelastic loading for
increasing stages.
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a) 

b) 

Figure 7.35: Tension pull specimen (fine mesh): a) exclusion zone (elements in dark
brown), b) discontinuity lines.

Figure 7.36: Tension pull specimen (fine mesh): global response curve indicating the
loading levels at which pictures of the cracking state will be taken.
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a) b) 

c) d) 

e) 

g) 

f) 

h) 

Figure 7.37: Tension pull specimen (fine mesh): elements in inelastic loading for increas-
ing stages of the loading process.



Chapter 8

Conclusions and future
developments

Throughout this thesis, different aspects of the modelling of strain localization in
two-dimensional solids in a strong discontinuity setting have been studied. The
main aim was to contribute to the numerical simulation of the postcritical behavior
of structures by a continuum strong discontinuity approach. To attain this, the
theoretical basis of the approach adopted was analyzed, identifying the following as
its most relevant features:

• It is fully consistent with classical continuum constitutive modelling and no
resorting to any kind of alternative continuum (generalized continua) has been
employed.

• In the spirit of remaining within the context of ContinuumMechanics, the clas-
sical discontinuous bifurcation analysis was adopted as the proper framework
to determine the inception and the propagation direction of a discontinuity
interface.

• The mathematical conditions that make it possible to use continuum consti-
tutive models in combination with the strong discontinuity kinematics were
derived in the context of the so-called Strong Discontinuity Analysis. Perhaps,
the most interesting result of this analysis is the fact that the use of continuum
constitutive models plus the strong discontinuity kinematics naturally lead to
projected discrete constitutive models acting in the discontinuity interface.

The numerical counterpart of the mathematical model summarized above, can
be, at least roughly, described by the following characteristics:
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• The numerical implementation has been performed keeping the continuum for-
mat of the strong discontinuity approach. This is mainly reflected in the fact
that no discrete (cohesive) constitutive model has been explicitly implemented.

• The numerical discretization of BVP’s involving strong discontinuities has been
tackled by means of finite elements with embedded discontinuities. A multi-
field approach was adopted to derive different formulations.

• In case of using the nonsymmetric formulation of elements with embedded
discontinuities, some tracking strategy, based on the information obtained from
the discontinuous bifurcation analysis, is necessary. These strategies were
studied in this thesis and two main groups were identified: local and global
(or overall) ones.

• The nonsymmetric formulation may lead to instabilities at element level having
to do with the “brittleness” of that element. This might be a source of
numerical problems.

8.1 Conclusions

Within the context of the analytical and the numerical models summarized above,
the following conclusions can be extracted from this work:

• The modelling of strong discontinuities can consistently be carried out in a
continuum format in an efficient way from the computational point of view.
No discrete traction-separation relationship needs to be implemented explic-
itly.

• Within the context of a multifield BVP, the way in which the variational
problem is stated can naturally lead to different finite element formulations.

• Although the nonsymmetric formulation entails the necessity of a tracking
algorithm, its performance is clearly superior to that of other formulations
of finite elements with embedded discontinuities. Specifically, the statically
consistent formulation, which could (in principle) be the ideal candidate for a
self-propagating element, has a major drawback: it suffers from stress locking.
Even in the case of employing certain techniques to overcome this pathology (as
far as assessed in this thesis), the performance of the nonsymmetric formulation
is overwhelmingly superior.

• If the nonsymmetric element is to be used for the simulation of multiple dis-
continuities, an efficient tracking algorithm becomes necessary. The fact that
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global tracking strategies provide information about all the possible discon-
tinuity lines at every time step makes them specially appealing for handling
several discontinuities. Thus, an efficient algorithm for multi-cracking can
naturally be devised from the overall tracking concept.

• The numerical simulation of strong discontinuities in solids can lead to very
complex problems that require special techniques to stabilize them and to
properly trace the corresponding equilibrium path.

8.2 Main contributions

In this thesis some contributions to the modelling of strong discontinuities in solids
have been made. The most important are the following:

• A systematic review of the theoretical fundamentals of the Strong Discontinu-
ity Approach has been presented.

• A very general framework to derive different formulations of finite elements
with embedded discontinuities based on the multi-field statement of the gov-
erning equations of a BVP with strong discontinuities has been proposed.

• Two variations of the symmetric assumed-enhanced-strain based element have
been proposed to alleviate its stress locking effect. One of them was based on
a mixed approach, whereas the other was based on a re-enhancement of the
basic element.

• An overall tracking strategy based on a heat-conduction-like BVP was devised.
This thermal analogy, besides profiting the structure of standard non-linear
thermo-mechanical finite element codes, provides physical insight that helps
understand some characteristics of this strategy.

• An algorithm to manage several discontinuities based on the overall tracking
strategy mentioned above was developed.

• In order to preclude some possible instabilities, an artificial damping term was
added to the principle of virtual work equation. This added damping also
precludes any eventual loss of uniqueness of the BVP and can help to obtain
a smoother tracing of the equilibrium path.
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8.3 Future work

Based on the work developed in this thesis, the following lines of future research are
proposed:

• The implementation of the heat-conduction-like algorithm for three-dimensional
settings.

• The development of continuation techniques that take into account the possible
numerical instabilities coming from “brittle” elements.

• The study of the influence of this “element brittleness” in the global problem.
• A rigorous study of eventual bifurcation points in the equilibrium path due to
the presence of multiple discontinuity interfaces.

• Further comparative analyses of embedded elements based on linear triangles
and bilinear quadrilaterals as well as on other possible parent elements.

• A detailed comparison, based on theoretical analyses and on numerical results,
between elements with embedded discontinuities (elemental enrichment) and
partition of unity based formulations (nodal enrichment).



Appendix A

Tracing the equilibrium path

When complex problems in nonlinear structural analysis are tackled, tracing the
overall response in terms of load vs. deflection curves can turn out to be an especially
complicated task. In the case of material nonlinearities and, specifically, when
constitutive models with strain softening (which can lead to the appearance of strain
localization) are employed, the need of continuation techniques that allow for a
correct tracing of the equilibrium path becomes apparent. This is even more critical
when phenomena such as the presence of multiple localization bands (which in the
case of the Strong Discontinuity Approach implies multiple discontinuity lines) have
to be modelled.

Here we present a brief review of the best known continuation techniques and
discuss their most relevant features. For a more complete account of this subject
the reader is referred to [Crisfield, 1998].

A.1 Residual forces equation

The equations resulting from a finite element discretization of a boundary value
problem undergoing material nonlinearities can be expressed as a residual forces
equation (see, for instance, [Felippa, 2001]):

r(u,λ) = Fint(u)− λq = 0 (A.1)

where r(u,λ) ∈ Rn is the so-called residual forces vector, Fint(u) ∈ Rn stands for the
internal forces vector and q ∈ Rn denotes the external load vector. In this context,
the nodal displacement vector, u ∈ Rn, is the state variable, while λ is the control
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parameter, which defines the loading level. Consider the following Rn+1 vector:

w :=

½
u
λ

¾
which will be termed, from now on, generalized displacement vector. Then we can
define the equilibrium path as the locus of points w in the generalized displace-
ment space for which r(w) = 0.

Remark 69 The residual forces equation (A.1) constitutes a system of n nonlinear
equations, whose unknowns are, in principle, the displacements u.

Remark 70 Only the case of proportional loading has been considered in (A.1).

A.2 Predictor-corrector algorithms

One way to solve the system of nonlinear equations (A.1) is by means of the so-
called predictor-corrector (or incremental-iterative) algorithms. The first step is to
split the loading process up into increments. At every increment i, a prediction
on the value of the displacement vector, u, for a given increment of the loading
level (characterized by an increment of the control parameter, ∆λ0i ) is computed as
follows:

u0i = ui−1 +∆u0i (A.2)

with

∆u0i = (Ki−1)−1∆λ0iq (A.3)

Matrix K−1
i−1 can be computed as

Ki−1 =
∂r

∂u

¯̄̄̄
ui−1

(A.4)

In general, when the value obtained by (A.2) is substituted into the expression
of the residual forces (A.1), we obtain that

r(u0i ,λ
0
i ) 6= 0 (A.5)

with λ0i = λi−1 +∆λ0i . Then, we say that the residual forces are unbalanced and a
correction phase to balance them becomes necessary. Every correction (iteration)
k to the displacement vector is computed as

uki = ui−1 +∆uki (A.6)
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and is characterized by an iterative displacement, δuk = ∆uki −∆uk−1i , and by an
iterative control parameter, δλk = ∆λki − ∆λk−1i . The value of the displacement
vector obtained by (A.6) is then replaced in the residual forces expression (A.1) until
some convergence criterion is fulfilled.
There are several ways to perform the correction phase. Perhaps the most simple

is to keep the control parameter λi constant during the whole increment i, which
entails that δλki = 0. Then the iterative displacement can be computed as

δuki = (K
k
i )
−1rk−1i (A.7)

where rk−1i := r(uk−1i ,λk−1i ). If, for instance,

Kk
i =

∂r

∂u

¯̄̄̄
uk−1i

(A.8)

where Kk
i is the so-called tangent-stiffness matrix, then we arrive to the classical

Newton-Raphson method. Of course, other alternatives can be chosen, such as
using the same stiffness matrix for the whole increment, and then we arrive at a
modified Newton-Raphson strategy.
The above described strategy in which the control parameter λi remains constant

along the increment is known as load control (see Fig. (A.1-a)). It is a very efficient
technique in many cases. However, it can lead to some instabilities or to the case
where it is impossible to find a point in the equilibrium path for a given loading
level . These problems commonly appear in the modelling of structures undergoing
strain softening. Therefore, alternative strategies have to be used.

Remark 71 Special care has to be taken when bifurcation points exist. In such a
case no continuation technique is enough to ensure a correct tracing of the equilib-
rium path.

A.3 Continuation methods

When load control is not enough to trace the equilibrium path of a loading process,
then more sophisticated techniques are necessary. These techniques are known as
continuation methods. We present some of them in this section.

A.3.1 Arc-length method

As mentioned above, load control fails in some cases in which the imposed loading
level is not feasible. Therefore, to make sure that the loading level can be reached
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a) b) 

c) d) 

Figure A.1: Continuation methods: a) load control, b) arc-length method, c) normal
plane, d) updated normal plane.

by the equilibrium path, it seems logical to consider the control parameter λ as an
additional unknown, which requires the addition of another equation to the nonlinear
system (A.1). One way to get this additional equation is defining a hyper-sphere
with radius ∆l in the general displacement space (see Fig. A.1-b) as follows:

(∆uki )
T∆uki + (α∆λki )

2 = ∆l2 (A.9)

where α is a scaling parameter. Equation (A.9) can be regarded as a constraint
on the values of the generalized displacements. The combination of this constraint
with the predictor-corrector algorithm presented in the preceding section gives rise
to the so-called arc-length method or spherical control.
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A.3.2 Normal and updated normal plane

A simpler option is to define a hyper-plane orthogonal to the prediction (∆u0i ,λ
0
i )

to act as a constraint to the generalized displacement vector (see Fig. (A.1-c)):

(∆u0i )
T δuki + α2∆λ0i δλ

k
i = 0 (A.10)

Equation (A.10) leads to the so-called normal plane strategy.
Better performance than with normal plane can be obtained by updating the

normal hyperplane at each iteration (see Fig. (A.1-d)) as follows:

(∆uk−1i )T δuki + α2∆λk−1i δλki = 0 (A.11)

giving rise to the so-called updated normal plane strategy

Remark 72 The direct addition of any of the equations (A.9), (A.10) or (A.11) to
the nonlinear system (A.6) would lead to an augmented tangent stiffness matrix that
would be neither symmetric nor banded.

Remark 73 In cases in which the dimension of the generalized displacement space
is big enough (i.e., in most of the practical cases), the scaling parameter α can be
set to zero without losing robustness . When this is done for the arc-length method,
we arrive at the so-called ’cylindrical control’ ([Crisfield, 1998]).

A.3.3 Implementation Aspects

The most common way of implementing the continuation methods described above
is not based on directly adding the corresponding constraint equation. In order to
keep the logic and the data structure of a standard nonlinear finite element code, in
which load control is implemented, it is common to split every correction into two:

δuki = δIu
k
i + δλki δIIu

k
i (A.12)

where δIu
k
i is computed as

δIu
k
i = (K

k
i )
−1rk−1i (A.13)

and δIIu
k
i as

δIIu
k
i = (K

k
i )
−1q (A.14)
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Substituting (A.13) and (A.14) into (A.6), then into (A.9), and, finally, solving
for δλki yields

δλki = c1(δλ
k
i )
2 + c2δλ

k
i + c3 (A.15)

where

c1 = (δIIu
k
i )
T δIIu

k
i

c2 = 2(∆uk−1i + δIu
k
i )
T δIIu

k
i

c3 = (∆uk−1i + δIu
k
i )
T (∆uk−1i + δIu

k
i )

With a similar procedure, we can arrive to expressions for δλki in the normal
plane strategy,

δλki = −
(∆u0i )

T δIu
k
i

(∆u0i )
T δIIuki + α2∆λ0i

(A.16)

and for the updated normal plane strategy,

δλki = −
(∆uk−1i )T δIu

k
i

(∆uk−1i )T δIIuki + α2∆λk−1i

(A.17)

Loading level of the prediction

Since, in the continuation methods presented above, the control parameter λ has
been added as a new unknown, it seems logical that its predictive incremental value
∆λ0i also has to be computed, not prescribed. One way to achieve this is to use an
arc-length type constraint for the prediction:

(∆u0i )
T∆u0i + (α∆λ0i )

2 = ∆l2 (A.18)

Let us define

vi:=(Ki−1)−1q (A.19)

Then from (A.3) and (A.18), one obtains

∆λ0i = ±
s

∆l2

(vi)Tvi + α2
(A.20)

The issue of how to choose the most convenient sign in expression (A.20) is by
no means trivial for complex problems. Here, we present a simple criterion that can
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be very efficient. It is based on requiring that the external work release be positive,
i.e.,

∆W = qT∆u0i = ∆λ0iq
Tvi > 0 (A.21)

In order to optimize the performance of any of the continuation techniques re-
viewed here, it seems logical that the length of an increment, ∆l, should vary au-
tomatically, based on some criterion that reduces it in the parts of the equilibrium
path that are highly non-linear. A heuristic way of estimating the degree of non-
linearity of some part of the equilibrium path is by means of the number of iterations
needed to attain convergence of the iterative procedure. Thus, the following ex-
pression for ∆l, intended to maintain the number of iterations almost constant for
every increment i, can be used:

∆li = ∆li−1

s
Id
Ii−1

where ∆li−1 is the length of the last converged increment, Ii−1 is the number of
iterations needed for convergence in increment i− 1, and Id is a defined-by-the-user
ideal number of iterations.



156 APPENDIX A. TRACING THE EQUILIBRIUM PATH



Appendix B

Nodal Enrichment

There are problems in continuum mechanics for which the resolution provided by the
standard finite element method seems not to be satisfactory. In some of these prob-
lems, there are qualitative features of the solution that are known a priori. However,
it happens very often that this information cannot be introduced via standard finite
element shape functions. This is the case of strain localization. If one assumes the
space of bounded deformations BD(Ω) (see [Temam, 1983]) as the proper function
space for problems in which constitutive models with strain softening are involved,
as proposed in [Simo et al., 1993], then jumps in the displacement field need to be
modelled. Many formulations have been devised in order to enrich the standard
finite element approximation to optimally capture these displacement jumps. They
can be classified into two basic groups: elemental enrichment and nodal enrich-
ment. The former has been extensively described in Chapter 4 under the name of
finite elements with embedded discontinuities1; the latter is briefly reviewed in this
appendix.

B.1 Motivation

Consider the problem of a body Ω crossed by a discontinuity S, which partitions Ω
into Ω− and Ω+. The boundary of Ω consists of two disjoint subsets Γσ and Γu, the
former being the part of the boundary on which tractions are prescribed, and the
latter, the part of the boundary in which displacements are prescribed. In Chapter
4, two ways of stating the strong discontinuity kinematics corresponding to such a

1As mentioned before, although the author does not see any reason to restrict this term to
formulations based on elemental enrichment, this is a common practice in the literature that we
have adopted in this thesis.
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problem are presented:

u̇(x, t) = ˙̄u(x, t) + HS [[u̇]](x, t) (B.1)

and

u̇(x, t) = ˙̂u(x, t) +MS(x) [[u̇]](x, t) (B.2)

with

˙̂u(x, t) := ˙̄u(x, t) + [[u̇]](x, t)ϕ(x) (B.3)

ϕ being a smooth function such that, for a certain subdomain Ωϕ ⊂ Ω containing
the discontinuity line S (i.e. Ωϕ ⊃ S),

ϕ(x) =

½
1 ∀x ∈Ω+\Ωϕ

0 ∀x ∈Ω−\Ωϕ
(B.4)

From (B.1), (B.2), and (B.3), we can derive that

MS(x) =HS − ϕ(x) (B.5)

Remark 74 Notice that supp[MS ]=Ωϕ.

One of the motivations to use (B.2) instead of (B.1) in Chapter 4 is the fact
that the former avoids having to prescribe Dirichlet type boundary condition for
[[u̇]]. However, there are other ways to achieve this. For instance, one could require
that [[u̇]] have local support around the discontinuity S, as shown in Fig. B.1.
This can be done by considering an open domain Ω[[u̇]] ⊂ Ω, partitioned by S into
Ω+[[u̇]] = Ω[[u̇]] ∩Ω+ and Ω−[[u̇]] = Ω[[u̇]] ∩Ω−, such that ∂Ω[[u̇]] ∩Γu = ∅ and [[u̇]]|Ω\Ω[[u̇]]= 0.
Based on the above considerations, let us propose the following finite element

discretization of (B.1) into four-noded quadrilaterals for an element crossed by the
discontinuity:

u̇h
(e)

(x, t) = Σi=4i=1 N
(e)
i (x)ḋi(t)| {z }
˙̄u
h(e)

+ HS
³
Σi=4i=1 N

(e)
i (x) ȧi(t)

´
| {z }

[[u̇]]h
(e)

(B.6)

where
n
N
(e)
i

o4
i=1

are the standard shape functions of the bilinear quadrilateral.

From (B.6), it is clear that the support of [[u̇]]h goes beyond the domain of the
elements crossed by the discontinuity, due to the fact that standard finite element
shape functions are involved in its definition. Thus, this kind of enrichment is
associated to the shape functions whose support are intersected by a discontinuity
line; hence its name: nodal enrichment. A rigorous way to state this type of
enrichment, based on the partition of unity concept, is presented in the next section.
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Figure B.1: Solid with a strong discontinuity.

B.2 Partition of unity method

The concept of partition of unity was first applied to enrich the standard finite
element approximation in [Melenk and Babuska, 1996], giving rise to the so-called
Partition of Unity Finite Element Method (PUFEM). In [Moes et al., 1999], this
concept was applied to capturing jumps in the displacement field within the context
of Linear Fracture Mechanics and was given the name of Extended Finite Elements
(X-FEM). Later, [Wells and Sluys, 2001] employed this formulation to model strong
discontinuities in cohesive surfaces.
A very general expression for the partition of unity based enrichment of an scalar

field u reads:

uh(x) =
X
i∈K

φi(x)

Ã
ai +

nenrX
j=1

bjicj(x)

!
(B.7)

where K := {1, ..., nnode}, ai and bji are nodal degrees of freedom, nenr stands for the
number of enrichment functions, cj are the enrichment functions, and φi are some
functions fulfilling the partition of unity property, i.e.,

nnodeX
i=1

φi(x) = 1 ∀x ∈ Ω (B.8)

Remark 75 As it is well known, standard finite element shape functions Ni fulfill
the partition of unity property stated in (B.8).

Remark 76 The enrichment functions cj can, in principle, vary from node to node.
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Now, let us use expression (B.7) to approximate (B.1), by taking φi(x) = Ni(x)
and cj(x) =HS :

u̇h(x, t) =
X
i∈K

Ni(x)ḋi(t)| {z }
˙̄u
h

+ HS
X
i∈N

Ni(x)ȧi(t)| {z }
[[u̇]]h

(B.9)

N is the set of nodes whose support is split up into two by the discontinuity S.

Remark 77 Expression (B.9) is clearly the extension of (B.6) from an element
domain to the whole solid Ω.

Remark 78 The definition of N is consistent with the requirement of Ω[[u̇]] having
local support around S.

B.3 Variational formulation

Here, we state the variational form of the BVP corresponding to a solid Ω crossed
by a discontinuity S in a format convenient for its discretization using (B.9). The
equivalence with the strong form of the BVP will also be shown, emphasizing the
fact that the inner traction continuity equation (characteristic of problems involving
strong discontinuities) can be readily derived from the principle of virtual work if
one adopts the kinematics stated in (B.1).
The principle of virtual work expressed in rates (principle of virtual power) reads:

Z
Ω

σ̇ : ∇Sη dΩ−Gext(η) = 0 ∀η ∈ Vη (B.10)

where Vη is the space of admissible variations of the displacement rate, whose typical
element has the following structure:

η = η̄ + HS α (B.11)

η̄, α being two smooth functions fulfilling η̄|Γu= 0 and α|Ω\Ω[[u̇]]= 0, respectively,
and

Gext(•) :=
Z
Ω

ḃ · (•) dΩ+
Z
Γσ

ṫ∗ · (•) dΓ (B.12)

In light of (B.11), equation (B.10) can be rewritten as
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Z
Ω

σ̇ : ∇Sη̄ dΩ−Gext(η̄) = 0 ∀η̄ ∈ Vη̄ (a)Z
Ω

σ̇ :
£∇S(HS α)¤ dΩ−Gext(HS α) = 0 ∀α ∈ Vα (b)

(B.13)

By using standard arguments, we can show that the strong form of (B.13-a) is

∇ · σ̇ + ḃ = 0 in Ω\S (a)
σ̇ · ν = ṫ∗ on Γσ (b)
(σ̇Ω+ − σ̇Ω−) · n = 0 on S (c)

(B.14)

Let us now work with (B.13-b). We have that

∇S(HS α) = (δSn⊗α)S + (HS ∇α)S (B.15)

Substituting (B.15) into (B.13-b) yieldsZ
Ω

σ̇ : (δSn⊗α)SdΩ+
Z

Ω

σ̇ : (HS ∇α)SdΩ−Gext(HS α) = 0 (B.16)

∀α ∈ Vα.
Since α|Ω\Ω[[u̇]]= 0 by definition, the left hand side of B.16 can be rewritten asZ
S
n · σ̇S ·αdS +

Z
Ω+
[[u̇]]

σ̇ : ∇αdΩ−
Z
Ω+
[[u̇]]

ḃ ·α dΩ−
Z
Γσ∩∂Ω+[[u̇]]

ṫ∗ ·α dΓ (B.17)

where ∂Ω+[[u̇]] stands for the boundary of Ω
+
[[u̇]]. We have thatZ

Ω+
[[u̇]]

σ̇ : ∇αdΩ =
Z

Ω+
[[u̇]]

∇ · (σ̇ ·α) dΩ−
Z

Ω+
[[u̇]]

(∇ · σ̇) ·αdΩ

=

Z
∂Ω+

[[u̇]]

ν [[u̇]] · (σ̇ ·α) dΓ−
Z

Ω+
[[u̇]]

(∇ · σ̇) ·αdΩ (B.18)

ν [[u̇]] being the outward normal to ∂Ω
+
[[u̇]] (see Fig.(B.1)). Substituting (B.18) in B.17
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and considering (B.14-a), we obtainZ
S
n · σ̇S ·αdS +

Z
∂Ω+

[[u̇]]

ν [[u̇]] · (σ̇ ·α) dΓ

−
Z

Ω+
[[u̇]]

(∇ · σ̇) ·αdΩ−
Z
Ω+
[[u̇]]

ḃ ·α dΩ| {z }
=0

−
Z
Γσ∩∂Ω+[[u̇]]

ṫ∗ ·α dΓ

=

Z
S
n · σ̇S ·αdS +

Z
∂Ω+

[[u̇]]

ν [[u̇]] · (σ̇ ·α) dΓ

−
Z
Γσ∩∂Ω+[[u̇]]

ṫ∗ ·α dΓ (B.19)

Notice that ∂Ω+[[u̇]] can be partitioned into (∂Ω[[u̇]] ∩Ω+), (Γσ ∩ ∂Ω+[[u̇]]), and S. Thus,
since α|∂Ω[[u̇]]∩Ω+= 0, thenZ

∂Ω+
[[u̇]]

ν [[u̇]] · (σ̇ ·α) dΓ = −
Z
S
n · σ̇Ω+ ·αdS +

Z
Γσ∩∂Ω+[[u̇]]

(ν · σ̇) ·αdΓ (B.20)

Now, replacing (B.20) into (B.19) and considering (B.14-b), one obtainsZ
S
n · σ̇S ·αdS −

Z
S
n · σ̇Ω+ ·αdS

+

Z
Γσ∩∂Ω+[[u̇]]

(ν · σ̇) ·αdΓ−
Z
Γσ∩∂Ω+[[u̇]]

ṫ∗ ·α dΓ| {z }
0

Finally, we arrive at

Z
S
(n · σ̇S − n · σ̇Ω+) ·αdS = 0 (B.21)

By standard arguments, the so-called inner traction continuity is obtained from
(B.21):

n · σ̇S − n · σ̇Ω+ = 0 (B.22)
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B.4 Finite element discretization

Expression (B.9) can be rewritten in matrix form as

u̇h = NT ḋ+ HSNT
N ȧ (B.23)

with

N =



N1
...
Ni
...

Nnnode


; ḋ =



ḋ1
...

ḋi
...

ḋnnode


; ȧ =



ȧ1
...
ȧi
...

ȧnnode


(B.24)

Ni being, for 2-D,

Ni = Ni1 =Ni

·
1 0
0 1

¸
and

NN=



γ11
...

γi1
...

γnnode1


γi ≡

½
Ni for i ∈ N
0 for i /∈ N (B.25)

The strain can be computed as©
ε̇h
ª
=
©∇Su̇hª = Lu̇h (B.26)

where the operator L has the following expression for two-dimensional cases:

L :=

 ∂x(•) 0
0 ∂y(•)

∂y(•) ∂x(•)

 (B.27)

Let us define

B := LNT and BN := LNT
N (B.28)
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Then (B.26) can be rewritten as©
ε̇h
ª
= Bḋ+HSBN ȧ+δS [n]NT

N ȧ (B.29)

with

[n] =

 nx 0
0 ny
ny nx

 (B.30)

Analogously, we have©∇Sηhª = B δḋ| {z }
{∇S η̄h}

+HSBN δȧ+δS [n]NT
N δȧ| {z }

{∇S(HS α)h}
(B.31)

where δḋ and δȧ are the admissible variations of ḋ and ȧ, respectively. Assume
that the stresses rate can be expressed as©

σ̇h
ª
= D

©
ε̇h
ª

(B.32)

D being the matrix version of the constitutive tangent operator2. Let us define

GN : =HSBN + δS [n]NT
N (B.33)

Substituting (B.32), (B.31), and (B.33) into (B.13) yields:

Z
Ω

δḋTBTD
©
ε̇h
ª
dΩ−Gext(NT δḋ) = 0 (a)

Z
Ω

δȧTGT
ND

©
ε̇h
ª
dΩ−Gext(HSNT

N δȧ) dΩ = 0 (b)

(B.34)

∀δḋ ∈ Rnnode and ∀δȧ ∈ Rnnode. By considering (B.29) and (B.33), the system of
variational equations (B.34) leads to the following system of algebraic equations:

·
Kdd Kda

Kad Kaa

¸½
ḋ
ȧ

¾
=

½
Ḟext
ḟNext

¾
(B.35)

with

2Remember that, from the Strong Discontinuity Analysis presented in Chapter 3, matrix DS =
O(h) with h→ 0.
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Kdd =

Z
Ω

BT D BdΩ

Kda =

Z
Ω

BT D GNdΩ

Kad =

Z
Ω

GT
N D BdΩ

Kaa =

Z
Ω

GT
N D GNdΩ

(B.36)

Remark 79 For the integrals (B.36) to make sense, it is important that the Strong
Discontinuity Analysis presented in Chapter 3 is taken into account for D|S.
Remark 80 The resulting system of equations is symmetric.

Remark 81 The enrichment degrees of freedom cannot be condensed at element
level as in the elemental approach presented in Chapter 4.

Remark 82 From a computational point of view the determination of the set of
elements that have to be enriched, N , can significantly increase the implementation
effort needed for this approach.

Remark 83 The resulting finite element interpolation is conforming. As a conse-
quence, the approximation of a discontinuity interface will be continuous across the
boundaries of the elements.

B.5 Some final comments

At this point a comparison between nodal and elemental enrichment seems un-
avoidable. It is clear that the conforming character of the former gives it some
reproducing advantage over the latter. However, the nodal enrichment formulation
has two major drawbacks: the implementation effort and the mandatory increase
in the number of degrees of freedom that it entails. Moreover, although the con-
forming character of this approximation gives it a better reproducing performance
from the kinematical point of view, it is not clear what happens with respect to the
imposition of the inner traction continuity. Consider, for instance, that in the case
of linear triangles, when the nonsymmetric formulation for elements with embedded
discontinuities is used, the inner traction continuity condition can be imposed in
strong form. Clearly, this is not possible for nodal enrichment, which implies that
some kind of refinement is necessary in order to get a better performance from the
statical point of view.
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Regrettably, no comparison based on numerical experiments between the elemen-
tal and the nodal enrichment is available. For the time being, the author cannot
see any conclusive reason to prefer one approach over the other.
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