
Chapter 4
General Structure

In this chapter first the objectives and also the users considered in the design of Kratos are described
then the methodology to design the structure is given.

4.1 Kratos’ Requirements

Kratos is designed as a framework for building multi-disciplinary finite element programs [31].
Generality in design and implementation is the first requirement. Kratos has to provide the
general tools necessary for finite element solution. It also has to remove many restrictions that
exist in other codes in order to achieve enough flexibility to handle a wider variety of algorithms
than before. For example, restrictions like using certain degrees of freedom (dof).

Kratos must provide a flexible structure in order to handle a wide variety of methods and
algorithms. This flexibility has to be provided not only in its global layout and basic assumptions
but also in its implementation details. Minimization of restrictive assumptions is necessary in order
to let developers configure this library as they want at different levels.

Kratos as a library must provide a good level of reusability in its provided tools. The key
point here is to help users develop easier and faster their own finite element code using generic
components provided by Kratos, or even other applications.

Kratos has to be extendible, at different levels of implementation. It must be extendible to
new formulations, algorithms, and concepts. Supporting a wide variety of problems that can be
coupled in a multi-disciplinary problem requires very different formulations and algorithms to be
implemented. These formulations and algorithms may also use new concepts and variables. So
Kratos must provide an extendible design for all of its components in order to support new methods.

Another important requirements are good performance and memory efficiency. This features
are necessary for enabling applications implemented using Kratos, to deal with industrial multi-
disciplinary problems. These requirements are very important and are the reason for most of the
restrictions in Kratos.

Finally it has to provide different levels of developers’ contributions to the Kratos system,
and match their requirements and difficulties in the way they extend it. Developers may want to
just make a plug-in extension, create an application over it, or using IO scripts to make Kratos
perform a certain algorithm. Kratos has to provide not only all these capabilities but also hide the
unnecessary difficulties from each group of developers.

63



64 CHAPTER 4. GENERAL STRUCTURE

4.2 Users

One of the important factors in design is to determine who will work with the program, what are
their needs and how the program can help them. In essence Kratos is defined to be used by three
groups of users at different levels:

Finite Element Developers Kratos is defined to be used by finite element developers to imple-
ment a multi-disciplinary formulation easily. These developers, or users from Kratos point of
view, are considered to be more expert in FEM, from the physical and mathematical points
of view, than C++ programming. For this reason, Kratos has to provide their requirements
without involving them in advanced programming concepts.

Application Developers Kratos can be used as a finite element engine for other applications.
This ability favors another teams of developers to work with Kratos. These users are less
interested in finite element programming and their programming knowledge may vary from
very expert to higher than basic. They may use not only Kratos itself but also any other ap-
plications provided by finite element developers, or other application developers. Developers
of optimization programs or design tools are the typical users of this kind.

Package Users Engineers and designers are other users of Kratos. They use the complete package
of Kratos and its applications to model and solve their problem without getting involved in
internal programming of this package. For these users Kratos has to provide a flexible external
interface to enable them use different features of Kratos without changing its implementation.

Kratos has to provide a framework such that a team of developers with completely different
fields of expertise as mentioned before, work on it in order to create multi-disciplinary finite element
applications.

4.3 Object Oriented Design

History of object-oriented design for finite element programs turns back to early 90’s, and even
more. Before that, many large finite element programs were developed in modular ways. Industry
demands for solving more complex problems from one side, and the problem of maintaining and
extending the previous programs from the other side, has lead developers to target their design
strategy towards an object-oriented one [44, 43, 64, 80, 82].

The main goal of an object-oriented structure is to split the whole problem into several objects
and to define their interfaces. There are many possible ways to do this for each kind of problem
we want to program and the functionality of the resultant structure depends largely on it. In
the case of finite element problems there are also many approaches such as constructing objects
based on partial differential equations solving methods [22] or in the finite element method itself
[44, 106, 35, 34].

In Kratos we have chosen the second approach and have constructed our objects based on a
finite element general methodology. This approach was selected because our goal was to create a
finite element environment for multidisciplinary problems. Also our colleagues were, in general,
more familiar with this methodology than with physical properties. In addition, this approach has
given us the necessary generality mentioned above in the objectives of Kratos. Within this scope
main objects are taken from various parts of the FEM structure. Then, some abstract objects are
defined for implementation purposes. Finally their relation are defined and their responsibilities
are balanced. Figure 4.1 shows the main classes in Kratos.



4.3. OBJECT ORIENTED DESIGN 65

Figure 4.1: Main classes defined in Kratos.

Vector, Matrix, and Quadrature are designed by basic numerical concepts. Node, Element,
Condition, and Dof are defined directly from finite element concepts. Model, Mesh, and Properties
are coming from practical methodology used in finite element modeling completed by ModelPart,
and SpatialContainer, for organizing better all data necessary for analysis. IO, LinearSolver,
Process, and Strategy are representing the different steps of finite element program flow. and
finally Kernel and Application are defined for library management and defining its interface.

These main objects are described below:

Vector Represents the algebraic vector and defines usual operators over vectors.

Matrix Encapsulate matrix and its operators. There are different matrix classes are necessary.
The most typical ones are dense matrix and compressed row matrix.

Quadrature Implements the quadrature methods used in finite element method. For example the
gaussian integration with different number of integration points.

Geometry Defines a geometry over a list of points or Nodes and provides from its usual parameter
like area or center point to shape functions and coordinate transformation routines.

Node Node is a point with additional facilities. Stores the nodal data, historical nodal data, and
list of degrees of freedom. It provides also an interface to access all its data.

Element Encapsulates the elemental formulation in one objects and provides an interface for calcu-
lating the local matrices and vectors necessary for assembling the global system of equations.
It holds its geometry that meanwhile is its array of Nodes. Also stores the elemental data
and interface to access it.

Condition Encapsulates data and operations necessary for calculating the local contributions of
Condition in global system of equations. Neumann conditions are example of Conditions
which can be encapsulated by derivatives of this class.

Dof Represents a degree of freedom (dof). It is a lightweight object which holds the its variable,
like TEMPERATURE, its state of freedom, and a reference to its value in data structure. This



66 CHAPTER 4. GENERAL STRUCTURE

class enables the system to work with different set of dofs and also represents the Dirichlet
condition assigned to each dof.

Properties Encapsulates data shared by different Elements or Conditions. It can stores any
type of data and provide a variable base access to them.

Model Stores the whole model to be analyzed. All Nodes, Properties, Elements, Conditions and
solution data. It also provides and access interface to these data.

ModelPart Holds all data related to an arbitrary part of model. It stores all existing components
and data like Nodes, Properties, Elements, Conditions and solution data related to a part
of model and provides interface to access them in different ways.

Mesh Holds Nodes, Properties, Elements, Conditions and represents a part of model but without
additional solution parameters. It provides access interface to its data.

SpatialContainer Containers associated with spacial search algorithms. This algorithms are
useful for finding the nearest Node or Element to some point or other spacial searches.
Quadtree and Octree are example of these containers.

IO Provides different implementation of input output procedures which can be used to read and
write with different formats and characteristics.

LinearSolver Encapsulates the algorithms used for solving a linear system of equations. Different
direct solvers and iterative solvers can be implemented in Kratos as a derivatives of this class.

Strategy Encapsulates the solving algorithm and general flow of a solving process. Strategy
manages the building of equation system and then solve it using a linear solver and finally is
in charge of updating the results in the data structure.

Process Is the extension point for adding new algorithms to Kratos. Mapping algorithms, Opti-
mization procedures and many other type of algorithms can be implemented as a new process
in Kratos.

Kernel Manages the whole Kratos by initializing different part of it and provides necessary inter-
face to communicate with applications.

Application Provide all information necessary for adding an application to Kratos. A derived
class from it is necessary to give kernel its required information like new Variables, Elements,
Conditions, etc.

The main intention here was to hide all difficult but common finite element implementations
like data structure and IO programming from developers.

4.4 Multi-Layers Design

Kratos uses a multi-layer approach in its design. In this approach each object only interfaces with
other objects in its layer or in layers below its layer. There are some other layering approaches
that limited the interface between objects of two layers but in Kratos this limitation is not applied.

Layering reduces the dependency inside the program. It helps in the maintenance of the code
and also helps developers in understanding the code and clarifies their tasks.



4.4. MULTI-LAYERS DESIGN 67

In designing the layers of the structure different users mentioned before are considered. The
layering are done in a way that each user has to work in the less number of layers as possible.
In this way the amount of the code to be known by each user is minimized and the chance of
conflict between users in different categories is reduced. This layering also lets Kratos to tune
the implementation difficulties needed for each layer to the knowledge of users working in it. For
example the finite element layer uses only basic to average features of C++ programming but the
main developer layer use advanced language features in order to provide the desirable performance.

Following the current design mentioned before, Kratos is organized in the following layers:

Basic Tools Layer Holds all basic tools used in Kratos. In this layer using advance techniques in
C++ is essential in order to maximize the performance of these tools. This layer is designed
to be implemented by an expert programmer and with less knowledge of FEM. This layer
may also provides interfaces with other libraries to take benefit of existing work in area.

Base Finite Element Layer This layer holds the objects that are necessary to implement a
finite element formulation. It also defines the structure to be extended for new formulations.
This layer hides the difficult implementations of nodal and data structure and other common
features from the finite element developers.

Finite Element Layer The extension layer for finite element developers. The finite element
layer is restricted to use the basic and average features of language and uses the component
base finite element layer and basic tools to optimize the performance without entering into
optimization details.

Data Structure Layer Contains all objects organizing the data structure. This layer has no re-
striction in implementation. Advanced language features are used to maximize the flexibility
of the data structure.

Base Algorithms Layer Provides the components building the extendible structure for algo-
rithms. Generic algorithms can also be implemented here to help developer in their imple-
mentation by reusing them.

User’s Algorithms Layer Another layer to be used by finite element programmers but at a
higher level. This layer contains all classes implementing the different algorithms in Kratos.
Implementation in this layer requires medium level of programming experience but a higher
knowledge of program structure than the finite element layer.

Applications’ Interface Layer This layer holds all objects that manage Kratos and its rela-
tion with other applications. Components in this layer are implemented using high level
programming techniques in order to provide the required flexibility.

Applications Layer A simple layer which contains the interface of certain applications with
Kratos.

Scripts Layer Holds a set of IO scripts which can be used to implement different algorithms from
outside Kratos. Package users can use modules in this layer or create their own extension
without having knowledge of C++ programming or the internal structure of Kratos. Via
this layer they can activate and deactivate certain functionalities or implement a new global
algorithm without entering into Kratos implementation details.

Figure 4.2 shows the multi-layer nature of Kratos.



68 CHAPTER 4. GENERAL STRUCTURE

Figure 4.2: Dividing the structure into layers reduces the dependency.



4.5. KERNEL AND APPLICATIONS 69

4.5 Kernel and Applications

In the first implementation of Kratos all applications were implemented in Kratos and also were
compiled together. This approach at that time produced several conflicts between applications
and was requiring many unnecessary recompiling of the code for changes in other applications. All
these problems lead to a change in the strategy and to separating each application not only from
others but also from Kratos itself.

In the current structure of Kratos each application is created and compiled separately and just
uses a standard interface to communicate with the kernel of Kratos. In this way the conflicts
are reduced and the compilation time is also minimized. The Application class provides the
interface for introducing an application to the kernel of Kratos. Kernel uses the information
given by Application through this interface to mange its components, configure different part of
Kratos, and synchronize the application with other ones. The Application class is very simple and
consists of registering the new components like: Variables, Elements, Conditions, etc. defined
in application. The following code shows a typical application class definition:

// Variables definition

KRATOS_DEFINE_VARIABLE(int , NEW_INTEGER_VARIABLE )

KRATOS_DEFINE_3D_VARIABLE_WITH_COMPONENTS(NEW_3D_VARIABLE );

KRATOS_DEFINE_VARIABLE(Matrix , NEW_MATRIX_VARIABLE)

class KratosNewApplication : public KratosApplication

{

public:

virtual void Register ();

private:

static const NewElementType msNewElement;

static const NewConditionType msNewCondition;

};

Here Application defines its new components and now its time to implement the Register
method:

// Creating variables

KRATOS_CREATE_VARIABLE(NEW_INTEGER_VARIABLE )

KRATOS_CREATE_3D_VARIABLE_WITH_COMPONENT(NEW_3D_VARIABLE );

KRATOS_CREATE_VARIABLE(NEW_MATRIX_VARIABLE)

void KratosR1StructuralApplication :: Register ()

{

// calling base class register to register Kratos components

KratosApplication :: Register ();

// registering variables in Kratos.

KRATOS_REGISTER_VARIABLE(NEW_INTEGER_VARIABLE)

KRATOS_REGISTER_3D_VARIABLE_WITH_COMPONENTS(NEW_3D_VARIABLE );

KRATOS_REGISTER_VARIABLE(NEW_MATRIX_VARIABLE)

KRATOS_REGISTER_ELEMENT("MyElement", msNewElement );

KRATOS_REGISTER_CONDITION("MyCondition", msNewCondition );



70 CHAPTER 4. GENERAL STRUCTURE

}

This interface enables Kratos to add all these Variables, Elements, and Conditions in the list
of components. Kratos also synchronizes the variables numbering between different applications.
Adding new components to Kratos, enables IO to read and write them and also configures the
data structure to hold these new variables.

In the next chapter the basic tools layer will be declared.


