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Recerca of the Generalitat de Catalunya (Catalan Government) and the European Social

Fund through a doctoral grant is acknowledged.

Finally, I would like to thank my friends for these shared years here in Barcelona,



specially Ana, el chute, Mateo, Mano, Pablo, Dolo and Maria. My old friends, those I

made when I was a kid, Alequis, Chapa, Diego, Facu, Flor, Salva and Xime, make me a

lucky guy. I cannot finish without specially thank the support given by my family, my

mother and my brother. And I couldn’t have done it without my love, Laura.



Abstract

A general description of a fluid flow is given by the compressible Navier-Stokes equations,

a very complex problem whose mathematical structure is not well understood. Therefore,

simplified models are derived by asymptotic analysis, under some assumptions made

in terms of dimensionless parameters that measure the relative importance of different

physical processes. Low speed flows can be described by the incompressible Navier Stokes

equations whose mathematical structure is much better understood. However, many

important flows cannot be considered as incompressible, even at low speed, due to the

presence of thermal effects. In these cases another class of simplified equations can be

derived: the Boussinesq equations and the Low Mach number equations.

The complexity of these problems makes their numerical solution very difficult as

the standard finite element method is unstable. In the incompressible Navier Stokes

equations, two well known sources of numerical instabilities are the incompressibility

constraint and the presence of the convective term. Many stabilization techniques used

nowadays are based on scale separation, splitting the unknown into a coarse part induced

by the discretization of the domain and a fine subgrid part. The modelling of the subgrid

scale and its influence leads to a modified coarse scale problem providing stability.

Although stabilization techniques are nowadays widely used, important problems

remain open. Contributing to their understanding, several aspects of the subgrid scale

modelling are analyzed in this work. For second order scalar problems, the dependence

of the subgrid scale on the mesh size, in the general anisotropic case, is clarified. These

ideas are extended to systems of equations to consider the Oseen problem. The modelling

of the subgrid scales in transient problems is also analyzed, leading to an improved time

discretization scheme for the coarse scale problem. To consider low speed flow models, the

extension of these techniques to nonlinear and coupled problems is presented, something

that is intimately related to the problem of turbulence modelling, which a entire subject

on its own right.

Thermally coupled flow problems are important from an engineering point of view.

An accurate solution of a flow problem is needed to define thermal loads on structures

which, in many cases have a strong response, making the problem coupled. This kind of

problems, that motivated this work, include the problem of a structural response in the

case of fires.
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Chapter 1

Introduction

The general description of a fluid flow involves the solution of the compressible Navier

Stokes equations. It is widely accepted that these equations provide an accurate

description of any problem in fluid mechanics. This set of equations, the mathematical

formulation of the physical principles of mass, momentum and energy conservation coupled

with a state equation, is very complex and very little is known about its mathematical

structure. Results on the boundary conditions that make the problem well posed, on

the existence of a solution and on uniqueness can be found in [104]. The mathematical

complexity of the problem is the manifestation of the also complex physical behavior of

these flows. Many different non linear physical mechanisms are coupled in fluid mechanics

problems. For these reasons, depending on the physics of the problem under consideration,

different models can be derived from the compressible Navier Stokes equations [104, 148].

The derivation of these reduced sets of equations is based on some assumptions on the

problem, usually made in terms of some dimensionless parameters that measure the

relative importance of different physical processes, like the Mach or Reynolds numbers.

The most important of these models is described by the incompressible Navier Stokes

equations. This set of equations is smaller than the compressible one and its mathematical

structure is much better understood. Furthermore, two physical effects that are difficult to

predict, shock waves and sound waves, are not found in incompressible problems. However

many important flows cannot be considered as incompressible due to the presence of

thermal effects. In such kind of problems another class of simplified equations can be

derived: the Boussinesq equations and the Low Mach number equations.

The complexity of the mathematical problems found in fluid mechanics makes their

numerical solution very difficult. Special techniques are needed because when the

standard Galerkin method is used, numerical instabilities appear. The nature of these

instabilities depends on the problem under consideration but the manifestation is usually

a solution that presents node to node oscillations of numerical (non physical) nature.

In the incompressible case, two well known sources of numerical instabilities are the

incompressibility constraint and the presence of the convective terms. The convective
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instability is also present in the convection diffusion reaction problem (CDR) and was

early understood as a lack of diffusion of the discrete problem. The first attempts to

remedy the situation consisted in the addition of an extra stabilizing term of diffusive

type and were called artificial viscosity methods. These methods are not consistent, i.e.

the exact solution of the continuous problem does not satisfy the perturbed equation,

what results in a loss of accuracy. The first consistent method, the streamline upwind

Petrov Galerkin method (SUPG), was developed in the late seventies [76, 93, 18]. This

method and many of its successors consist then in the addition of a stabilizing term to

the original Galerkin formulation which is proportional to the residual and we refer to

[24] for a comparison of different methods of this type.

The incompressibility constraint gives rise to a instability of the pressure and can

be also found in the Stokes problem. The standard Galerkin method applied to solve

this problem is stable provided the Ladyzhenskaya-Babuska-Brezzi (LBB) condition is

satisfied, which requires a compatibility of the spaces where the velocity and pressure

belong. It is satisfied in the case of the continuous problem but it may not hold in the

discrete case depending on the interpolation used. In particular, equal order interpolations

do not satisfy this condition. It is important to mention that the compressible Navier

Stokes equations, as well as the simplified equations derived from them , can be written

as a system of second order convection diffusion reaction (CDR) equations and that

the pressure gradient and incompressibility appear in the first order convective term.

This observation was exploited in [79] to apply a technique similar to SUPG to obtain a

stabilized formulation allowing the use of equal order interpolations.

The way of understanding these methods has changed since the introduction of the

variational multiscale method (VMM) in [75, 78]. This method is based on the split

of the unknown into a coarse scale resolvable part and a fine scale subgrid part. This

split corresponds to a decomposition of the space in which the solution of the problem

is sought as a direct sum of a coarse scale space and a fine scale one. The coarse scale

space is the one induced by the discretization of the domain and the fine scale space is

any complement to yield the continuous space. In this way, the problem is decomposed

into a resolvable coarse scale problem induced by the discretization and a small scale

problem that cannot be exactly solved because it is as complex as the original continuous

problem. The subgrid scale problem is approximately solved and the influence of the

subgrid scale on the coarse scale problem is approximately taken into account. The final

result is a modified discrete problem that now can be shown to be stable. This technique

has been extended to incompressible Navier Stokes equations (see for example [28]) and

has been used to solve many different kind of problems. Its extension to general CDR

systems has been analyzed in [25] where it is shown that the natural extension cannot be

performed in general. In particular a general expression for the stabilization parameters

is still unknown. This fact implies that a stabilized finite element formulation needs to
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be developed for each set of equations separately.

Although stabilization techniques are nowadays widely used, there are important

questions that have not been answered. In the first place we have the definition of

the stabilization parameters. We know how these parameters depend on the equation

coefficients but they also depend on some measure of the mesh size, whose precise

definition is open, and on some constants, whose values are known from numerical

experiments only. Then, we have the question of how these parameters depend on the

size of the time discretization what, in fact, gives rise to the question of how to extend

the stabilization techniques to consider transient problems. When this formulation is

applied to the incompressible Navier Stokes equations, apart from the definition of the

stabilization parameters for this system we also face the problem of extending stabilization

techniques to nonlinear problems. The answer to these questions is implicit in the subgrid

scale model finally used. In particular, the subgrid scale modelling in the case of nonlinear

problems is intimately related to the problem of turbulence modelling which is an entire

subject on its own right.

After a discrete formulation of the problem considered has been defined, a discrete

algebraic problem needs to be solved. Apart from the potential numerical instabilities,

another manifestation of the complexity of the problems considered is the highly nonlinear

nature of the associated discrete system. Therefore the numerical solution also requires

a proper linearization strategy which can be written, in general, as a fixed point scheme.

Several possibilities can be considered, from fully coupled Newton type to segregated

Picard type linearization schemes.

Thermally coupled flow problems, despite the intrinsic interest they deserve, are

important from an engineering point of view. Many structural problems, for example,

involve the solution of a flow problem to define the loads. It is also common to have a

strong response from the structure, what makes the problem coupled. This is the kind of

problems we have in mind for the application of the developed model. We are specially

concerned with the problem of a thermal load on a structure due to a fire which is an

example of strongly thermally coupled flow that will be described in the following section.

1.1 An application problem: fire in tunnels

The results of these work will be applied to the problem of a fire in a tunnel. This problem

is of great interest, particularly in the European Union, due to the recent fires occurred

in European tunnels in the last years [131]. As fires cause loss of human beings and have

a strong impact in economy due to the high reparation costs, big efforts are carried out

to understand this problem.

The problem is geometrically and physically very complex and its numerical solution

challenging. An important aspect that needs to be determined is the structural response
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of the tunnel construction. As mentioned in [131], structural damage can be attributed to

two main factors: spalling of concrete and excessive temperatures attained in the concrete

and steel components. In turn the temperature field inside the concrete depends on the

temperature on the walls of the tunnel which is a result of a fluid mechanics problem.

Actually both problems are coupled trough the boundary conditions on the walls. A

complete model to predict the concrete behavior of the structure is presented in [131].

In order to model the flow problem, several physical phenomena should be taken

into account. The problem of simulating flow dynamics due to a fire can be stated

as the dynamics of several fluids into a domain Ω with a chemical interaction between

them. That chemical reaction, which transforms elements, defines the type of fire. In the

case of fire in tunnels, the detailed mechanism is unknown except in some experiments

specially designed. Therefore, the model should include the appropriate balances of mass,

momentum and energy and a combustion model that define the species to be considered

and the relation between them. It is to be noted that the mass balance should be

performed for all the species, what is usually done through the inclusion of transport

equations for the species concentration. Due to the high temperatures attained, the

model for the heat flux on the flow should contain a radiative mechanism apart from the

usual convective one. The radiation properties of the medium may depend, of course, on

the species concentration. Different approaches to fire modelling can be found in [108]

and the references therein.

The simplest combustion model that can be considered is the volumetric heat source

(VHS) model where it is considered that the combustion is a source of heat that does not

depend on any species concentration. However, the concentration of the smoke, which is

a product of the combustion, needs to be determined as it greatly affects the radiation

problem. In [144] a comparison of different combustion models, including the VHS, is

presented as well as their performance on the simulation of a room fire, a shopping mall

fire and a tunnel fire.

This application problem is a motivation for the objectives posed in this work.

The problem of a fire is that of a fluid with strong thermal coupling and the usual

Boussinesq approximation cannot be used as the temperature variation can be higher

than the mean temperature. The low Mach number model discussed in chapter 2 is much

more appropriate. To accurately solve this problem we need to define a robust discrete

approximation in order to avoid numerical instabilities. Finally, a good strategy for the

solution of the whole thermally coupled fluid-solid problems is needed.

1.2 Objectives and organization

Let us close this introduction describing the organization of the work according to the

objectives defined.
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The first objective of this work is to understand the derivation of the simplified models

that describe low speed flows as well as the relation between them. This will be done in

chapter 2, where a unified asymptotic approach is proposed and all these models, whose

justification was separately known, are recovered. This approach enables us to go further

and, in particular, to predict the range of applicability of each model in terms of the

dimensionless parameters already mentioned.

The second and most important objective of this work is to develop a subgrid scale

stabilized finite element formulation for the kind of problems we are considering. To

achieve this goal we follow a natural way, starting from the scalar convection diffusion

equation in chapter 3, where a new definition of the stabilization parameters is presented.

Then we extend these results to the incompressible Navier Stokes problem. This extension

involves two main aspects, the definition of the stabilization parameters, which is treated

in chapter 4, and the extension of the stabilization techniques to transient nonlinear

problems, which is teated in chapter 5. Finally we extend these results to thermally

coupled flows in chapter 6, where the final discrete formulation is presented.

The third objective is to develop a finite element code to solve this problems. Apart

from the discrete formulation of the problems, the final ingredient that we need is an

algorithm for the solution of the discrete problem. In chapter 7 different linearization

strategies are compared and the final algorithm is presented.

The fourth and last objective of this work is to apply the developed code to the

problem of thermal coupling of fluids and solids. To achieve this goal, a coupling strategy

based on a domain decomposition approach has been developed. This strategy implies

the development of a small code to manage the coupling between the solid and the fluid.

This development was applied to the problem of a fire in a tunnel described above. Both,

the strategy and the application are described in chapter 8.

We close the work with chapter 9, where conclusions and further possible research

lines are summarized. Let us finally mention that chapters are quite self contained even

if this implies the need of repeating some information. This is due to the fact that each

chapter is based on the following publications:

• Chapter2: ”On the low Mach number and the Boussinesq approximations for low

speed flows”, J. Principe and R. Codina, Submitted.

• Chapter3: ”The modelling of subgrid scales in the finite element approximation of

convection diffusion reaction problems on anisotropic meshes”, J. Principe and R.

Codina, In preparation.

• Chapter 4:”The modelling of subgrid scales in the finite element approximation of

incompressible flows”, J. Principe and R. Codina, In preparation.

• Chapter 5: ”Time dependent subscales in the stabilized finite element approximation
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of incompressible flow problems”, R. Codina, J. Principe, O. Guasch and S. Badia,

Computer Methods in Applied Mechanics and Engineering, 196 (2007), 2413-2430.

• Chapter 6: ”Dynamic subscales in the finite element approximation of thermally

coupled incompressible flows”, R. Codina and J. Principe, International Journal for

Numerical Methods in Fluids, 54 (2007), 707-730.

• Chapter 7: ”A stabilized finite element approximation of low speed thermally

coupled flows”, J. Principe and R. Codina, International Journal of Numerical

Methods for Heat & Fluid Flow, Accepted.

• Chapter 8: ”A numerical approximation of the thermal coupling of fluids and solids”,

J. Principe and R. Codina, Submitted.



Chapter 2

Physical problems

In this chapter we present an asymptotic analysis of the compressible Navier Stokes

equations at low speeds. Compressible flows at low speeds behave as incompressible

in a sense that we make precise. In the absence of heat exchange (the isentropic regime)

this limit is well understood and rigorous results are available. When heat exchange is

considered, different simplified models can be obtained. These models have been used

during the years for different applications (usually on different academic environments)

the most famous being the Boussinesq approximation. Here a unified formal justification

of these models, based on an asymptotic analysis, is presented. Special attention is paid

to the relation between the low Mach number and the Boussinesq approximations.

2.1 Introduction

Many flows of interest can be considered as incompressible. This assumption is useful as

it makes the problem much simpler than if a full compressible flow is considered. The

compressible flow equations have different structure depending on the Mach number. If

the Mach number is of the order of or greater than one, shock waves may be present.

A number of issues have to be considered when numerically solving compressible flows,

such as the set of variables to be used and the prediction of such shock waves. In the

incompressible case, the system of equations is smaller and shocks as well as sound waves

are absent. Furthermore, the mathematical structure of incompressible equations is much

better understood than the general one. For ideal fluids, in the absence of heat sources

(the isentropic case), solutions of the incompressible Navier Stokes equations can be found

as the limit of solutions of the compressible ones as the Mach number tends to zero under

certain assumptions on the initial data. Rigorous mathematical results were established

in [96] (see also [105]).

When heat exchange is taken into account, the limit is quite different, since the energy

equation is not uncoupled and one needs to keep the state equation to close the system.
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The zero Mach number limit gives rise to a splitting of the pressure into a constant-in-

space thermodynamic pressure pth and a mechanical pressure p that has to be used in the

momentum equation. This leads to a removal of the acoustic modes and the flow behaves

as incompressible, in the sense that the mechanical pressure is determined by the mass

conservation equation and not by the state equation. However, large variations of density

due to temperature variations are allowed. This limit has been studied first in [126] in the

inviscid case, and generalized to the viscous case in [119]. A rigorous derivation including

combustion was presented in [106]. This zero Mach number model has also been presented

in [47] and [145]. The numerical implications of this limit have been studied in [97] and

[113], for example.

However the most widely used model in the context of thermally coupled flows is

the so called Boussinesq approximation. In 1903, based on his observations on the

behavior of thermal flows, J. Boussinesq [14] proposed to ignore the variations of density

except where they multiply the gravity acceleration (historical issues can be found in

[149]). Since that moment, many authors have looked for a formal justification of the

Boussinesq approximation. In [135] the Boussinesq approximation is found expressing

the thermodynamic variables as a constant and an static part plus a fluctuating part

resulting from the motion. It is showed that for a thin layer of fluid (compared to the scale

of variation of the static fields), the Boussinesq approximation follows. However density

variations are retained in the momentum equation even when they are of higher order

based on physical arguments and not on a limiting process. The first attempt to present

a rigorous derivation of the Boussinesq approximation was performed in [110],where an

expansion in two parameters, ε1 and ε2, of the full compressible equations is proposed.

The Boussinesq approximation is found to the lowest order in both ε1 and ε2. Several

problems of this approach are described in [120]. On the one hand, the two parameters

introduced in [110] are of order ε1 ∼ 10−4 and ε2 ∼ 10−11 for typical fluids in a standard

Rayleigh Bénard experiment, indicating a second order approximation for ε1 to have

the same order as a first order approximation for ε2. On the other hand, the starting

point of Mihaljan’s approach is the compressible equations but using an equation of

state that relates temperature to density only. According to [120] this assumption and

the selection of the parameters “destroyed the self-consistency of the scheme” making

second order approximations meaningless. It is interesting to note some thermodynamic

consequences of an state equation of the form ρ = ρ (ϑ) , where ρ is the density and

ϑ is the temperature. Although they result from classical thermodynamics, they were

only noted in two articles. In [12] it is mentioned that the constant volume specific heat

diverges whereas in [7] it is shown that convexity inequalities are violated. The Mihaljan’s

approach was improved first by Malkus (in an unpublished work mentioned in [120]) and

in [120]. The new ingredient was the selection of an appropriate reference state. In [63] a

derivation of the Boussinesq equations was presented taking a reference state into account
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and allowing temperature and pressure dependent properties. We note that all these works

are concerned with natural convection as the velocity is made dimensionless using another

variable as scale (viscosity or gravity, for example). An asymptotic justification of the

Boussinesq approximation was developed in the works of Zeytounian [146, 148, 149] and

Bois [12, 13]. These developments dealt first with polytropic gases (in [146] and [12]) and

the main conclusion was that the Mach number is a small parameter in the Boussinesq

approximation. An asymptotic derivation of the Boussinesq approximation for liquids was

then presented in [147]. Finally a unified approach for liquids and gases was presented in

[13]. Another widely used model, the anelastic approximation, was proposed in [5] and

[115] and has been used for a long time in the context of atmospheric flows (see also [44]

and [61]). This approximation removes the height limitation present in the Boussinesq’s

one.

The formal justification of these models has been developed but the connection

between them has not been fully analyzed. Although the Boussinesq approximation was

considered in [126] and [119] it was not found following the same asymptotic procedure

used to derive the low Mach number model. In this work we present the zero Mach

number model, the anelastic and the Boussinesq approximations, the density dependent

incompressible Navier Stokes equations and the usual incompressible equations in a unified

asymptotic setting. As a consequence we show that the Boussinesq and the anelastic

approximations are found in the limit of small Mach and small Froude numbers with some

restrictions. Particular attention is paid to way in which the asymptotic justification of

the Boussinesq approximation is related to that of the other models.

2.2 Equations of motion

The flow of a compressible fluid in a domain Ω is described in terms of the velocity

(u), pressure (p), density (ρ), and temperature (ϑ) fields (bold characters are used to

denote vectors and tensors). These fields are solutions of the equations that describe the

dynamics of the system and that are statements of conservation of mass, momentum and

energy and a state equation relating the thermodynamic variables. They can be found,

for example, in [6] and [104] and can be written as

Dρ

Dt
+ ρ∇ · u = 0

ρ
Du

Dt
+ ∇p = ∇ · (2µε′(u)) + ρg (2.1)

ρcp
Dϑ

Dt
− βϑ

Dp

Dt
= ∇ · (k∇ϑ) + Φ +Q

ρ = F (p, ϑ)
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where D
Dt

= ∂
∂t

+ u · ∇ is the material derivative, g the external source of momentum,

Q the external source of energy, ε′(u) = ε − 1
3
(∇ · u)I the deviatoric part of the

rate of deformation tensor (ε is the symmetric part of the velocity gradient, ε(u) =
1
2

(
∇u + ∇ut

)
), µ the viscosity, cp the constant pressure specific heat, k the thermal

conductivity, β the thermal expansion coefficient and Φ (the Rayleigh dissipation function)

is a non-negative contribution due to mechanical dissipation of energy in sheared motion

defined as

Φ = 2µε′(u) : ε′(u)

When an isentropic flow is considered a state equation of the form ρ = F (p) can be

assumed (where F could depend on the initial distribution of entropy) and the equations

to be solved simplify to

Dρ

Dt
+ ρ∇ · u = 0

ρ
Du

Dt
+ ∇p = ∇ · (2µε′(u)) + ρg

These equations of motion can be written in dimensionless form in different ways.

The process depends on the choice of reference values in a way stated by the π theorem

proved in [19]. Having in the system r different units and taking n reference values for the

adimensionalization process, the system will have n − r dimensionless numbers defining

classes of similar solutions. The system to be solved in a compressible flow is given by

(2.1). In this system we have r = 4 different units (length, time, mass and temperature).

Different choices for reference values have been found in the literature and different non-

dimensional numbers result. Our approach is based on taking different scales for each field

and for dependent properties. To this end, we introduce the Strouhal, Mach, Reynolds,

Péclet, Froude and a heat release rate number, defined as

S =
l0
u0t0

, M =
u0√
p0/ρ0

, R =
ρ0u0l0
µ0

P =
ρ0cp0u0l0

k0

, F =
u0√
g0l0

, H =
t0Q0

ρ0cp0ϑ0

, ε =
∆ϑ

ϑ0

where l0, t0, ρ0, p0, ϑ0, u0, µ0, k0, cp0 , g0, Q0 and ∆ϑ are the scales of length, time,

density, pressure, temperature, velocity, viscosity, conductivity, specific heat, external

acceleration and external heat and temperature variation respectively. The choice of

viscosity and conductivity reference values is needed to allow variable physical properties

(temperature dependent, for example) whereas the choice of a temperature variation scale

is needed to define dimensionless boundary conditions. The dimensionless numbers are

defined in terms of 12 parameters but, thanks to the state equation ρ0 = F (p0, ϑ0), we

have 11 reference values, giving rise to the seven dimensionless numbers already defined.

We would like to stress that we do not assume the existence of 11 reference scales because,
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as it will be shown in the particular cases considered, if a reference scale is not available, its

value can be defined eliminating a dimensionless number. For example, if an independent

time scale is not available for a particular problem, we can define it from the velocity

scale taking S = 1.

The dimensionless variables we take (denoted by˜) are

x = l0x̃, t = t0t̃, ρ = ρ0ρ̃, p = p0p̃, ϑ = ϑ0ϑ̃

u = u0ũ, g = g0g̃, Q = Q0Q̃, µ = µ0µ̃, k = k0k̃, cp = cp0 c̃p

and the thermal expansion coefficient can be written in dimensionless form using its

definition

β = −1

ρ

∂ρ

∂ϑ

∣∣∣∣
p

= − 1

ρ0ρ̃

∂ρ0ρ̃

∂ϑ0ϑ̃

∣∣∣∣
p̃

= − 1

ϑ0

1

ρ̃

∂ρ̃

∂ϑ̃

∣∣∣∣
p̃

=
1

ϑ0

β̃

The dimensionless equations are (omitting˜)
S
∂ρ

∂t
+ ∇ · (ρu) = 0 (2.2)

ρ

(
S
∂u

∂t
+ u · ∇u

)
+

1

M2
∇p =

1

R
∇ · (2µε′(u)) +

1

F2
ρg (2.3)

ρcp

(
S
∂ϑ

∂t
+ u · ∇ϑ

)
− Stβϑ

(
S
∂p

∂t
+ u · ∇p

)
=

M2

R
Φ +

1

P
∇ · (k∇ϑ) + HSQ (2.4)

The state equation is made dimensionless using that ρ0 = F (p0, ϑ0). In the case of

an ideal gas it reads

p = ρϑ

The parameter St depends on the state equation and is defined by

St =
p0

ρ0cp0ϑ0

=
p0

F (p0, ϑ0) cp0ϑ0

which for an ideal gas becomes

St =
γ − 1

γ

Finally, for each particular problem, the boundary conditions have to be written in

dimensionless form. For example, the boundary conditions for the momentum equations

are of the form

u = uD on Γu
D

(−pI + 2µε′(u)) · n = t on Γu
N

where Γu
D (Γu

N ) is the part of the domain boundary where Dirichlet (Neumann) boundary

conditions for the velocity are given, Γ = ∂Ω = Γu
D ∪ Γu

N is the boundary of the domain
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and n its exterior normal. We can introduce the dimensionless form of the data as

uD = u0ũD

t = p0t̃

and the dimensionless form of the boundary conditions is

ũ = ũD on Γu
D (2.5)(

− 1

M2
p̃I +

1

R
2µ̃ε′(ũ)

)
· n =

1

M2
t̃ on Γu

N (2.6)

In the same way the boundary conditions for the energy equation are of the form

ϑ̃ = 1 + εϑ̃D on Γϑ
D (2.7)

k̃n · ∇ϑ̃ = q̃ on Γϑ
N (2.8)

where Γϑ
D (Γϑ

N) is the part of the domain boundary where Dirichlet (Neumann) boundary

conditions for the temperature are given, and Γ = ∂Ω = Γϑ
D ∪ Γϑ

N . The parameter ε

appears when the given function ϑD is rescaled to satisfy 0 ≤ ϑ̃D ≤ 1. In order to close

the definition of the problem, initial conditions need also to be specified.

Having defined the equations of the motion and rather general boundary conditions,

let us consider some particular problems we are interested in that will also help us

to illustrate the application of the asymptotic scheme. We are interested in natural

convection problems and we consider two examples. The first one is the differentially

heated cavity studied in [23] and [102] that consists of a rectangular cavity whose left

(hot) wall has a fixed temperature ϑh and whose right (cold) wall has a fixed temperature

ϑc. Upper and lower walls are adiabatic and initially the gas is at rest with a temperature

ϑ0 and density ρ0. The second one is the well known Rayleigh-Bénard problem (see [99])

which consists in a layer of fluid between two infinite horizontal walls. On the lower wall

a higher temperature (ϑh) is imposed whereas on the upper one a lower temperature is

imposed (ϑc) and again, initially the gas is at rest with temperature ϑ0 and density ρ0

depending linearly on the vertical coordinate.

However, we want also to consider the case in which a velocity field is prescribed on

the boundary and therefore the Poiseuille-Rayleigh-Bénard (PRB) problem (see [114]) is

also taken into account. Although several boundary conditions can be applied, we assume

a prescribed Poiseuille velocity profile on the inlet and prescribed temperatures on the

upper (ϑc) and lower walls (ϑh). We assume initially a Poiseuille velocity distribution in

the whole channel and, as in the Rayleigh Bénard problem, an initial temperature ϑ0 and

density ρ0 depending linearly on the vertical coordinate.
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2.3 The small Mach number limit

The limit when the Mach number tends to zero can be found using standard procedures

of asymptotic analysis described for example in [95]. The first step is to expand all flow

variables in power series of the small parameter considered

ξ (x, t,M) = ξ(0) (x, t) + M2ξ(2) (x, t) +O(M4) (2.9)

for ξ = u, ξ = p, ξ = ρ, ξ = ϑ. The second step is to substitute this expansion into

equations 2.2 to 2.4 and to require that all terms in the expanded equations that are

multiplied by the same power of M2 vanish to obtain a hierarchy of equations. The limit

is carried out considering that the remaining parameters that appear in the equations are

fixed.

This asymptotic setting cannot be used in any situation and in particular we have to

mention the problem of the behavior near the initial time. In this case it is necessary to

introduce a fast time scale τ = t/M and assume an expansion of the form

ξ (x, t,M) = ξ(0) (x, t, τ) + Mξ(1) (x, t, τ) +O(M2)

This is done in [148] and [113], for example. We also have to mention the problem of the

behavior of the flow in the far field when unbounded domains are considered. In this case

it is necessary to introduce a long space variable η = Mx that ”looks” to the infinity and

to assume an expansion of the form

ξ (x, t,M) = ξ(0) (x,η, t) + Mξ(1) (x,η, t) +O(M2)

This is done in [97] and [109], for example. The objective of these variables is to separate

scales and to perform a multiple scale analysis of the problem. The multiple scale analysis

of the compressible Navier Stokes equations is of crucial importance to analyze acoustic

phenomena. Since we are not interested in the acoustic problem we restrict ourselves to a

single scale analysis assuming an asymptotic expansion of the form 2.9. The selection of

M2 as the expansion parameter is due to the fact that this is the parameter that appears

in the system of equations, as well as in the boundary conditions (a single scale expansion

in terms of M gives the same result).

Any physical property χ (where χ can be µ, k, cp, or β) can be considered to depend

on the temperature and pressure. Using the expansion for the temperature and pressure

defined above it follows that

χ = χ (ϑ, p) = χ
(
ϑ(0), p(0)

)
+
∂χ

∂ϑ

∣∣∣∣
(ϑ(0),p(0))

(
ϑ− ϑ(0)

)
+
∂χ

∂p

∣∣∣∣
(ϑ(0),p(0))

(
p− p(0)

)
+O

((
ϑ− ϑ(0)

)2
,
(
p− p(0)

)2)
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Considering that the derivatives of the physical properties are bounded we have

χ (ϑ, p) = χ
(
ϑ(0), p(0)

)
+O(M2)

The following notation will be used

χ(0) ≡ χ
(
ϑ(0), p(0)

)
To order zero in M2, the mass conservation equation gives

S
∂ρ(0)

∂t
+ ∇ ·

(
ρ(0)u(0)

)
= 0

The momentum conservation equation gives

O
(
M−2

)
: ∇p(0) = 0

O (1) : ρ(0)

(
S
∂u(0)

∂t
+ u ·∇u(0)

)
+ ∇p(2) =

1

R
∇ ·

(
2µε′(u(0))

)
+

1

F2
ρ(0)g

The first equation implies p(0) = p(0)(t). This is a very important result: the pressure

splits into p(0), a reference thermodynamic pressure and p(2) a mechanical pressure. The

first one, constant over the whole domain, changes its value only by global heating or mass

adding, as will be shown below. The mechanical pressure component p(2) is determined

from a velocity constraint playing the same role as in incompressible equations.

The zero order energy equation is

ρ(0)c(0)
p

(
S
∂ϑ(0)

∂t
+ u(0) ·∇ϑ(0)

)
− Stβ

(0)ϑ(0)S
dp(0)

dt
=

1

P
∇ ·

(
k(0)∇ϑ(0)

)
+ HSQ

In the zero Mach number limit a system of equations for ρ(0), ϑ(0), p(2) and u(0) has to be

solved. The reference pressure p(0), also called thermodynamic pressure, depends on the

boundary conditions of the problem. If Γu
N 6= ∅ the thermodynamic pressure is determined

by the boundary condition. This can be seen introducing the asymptotic expansion 2.9

in the dimensionless boundary condition 2.6, from where

O
(
M−2

)
: p(0) = t(0) · n

O (1) :

(
−p(2)I +

1

R
2µε′(u(0))

)
· n = t(2)

This justifies what was noted in [126]: if the domain is “open” to the atmosphere, the

reference pressure is determined by the external pressure. In a “closed” domain (Γu
N = ∅)

the thermodynamic pressure is determined by a global balance. Using the zero order

mass and energy conservation equations and the state equation an equation relating the

velocity divergence and the thermodynamic pressure can be found. In the case of an ideal

gas, this constraint is

p(0)∇ · u(0) = −1

γ
S
dp(0)

dt
+

1

P
∇ ·

(
k(0)∇ϑ(0)

)
+ HSQ (2.10)
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This equation, integrated over the domain, gives an ordinary differential equation for the

reference pressure. In the case of an ideal gas this equation is explicit and given by

p(0)

∫
∂Ω

u(0) · n = −VΩ

γ
S
dp(0)

dt
+

1

P

∫
∂Ω

q(0) · n + HS

∫
Ω

Q (2.11)

where VΩ = meas (Ω) is the volume of the domain and q(0) is the zero order term of the

heat flux on the boundary (either prescribed as boundary condition or computed from

the temperature). In general this equation will be an implicit equation for the reference

pressure. In the case of an ideal gas, a physical interpretation is possible. The constant-

in-space thermodynamic pressure changes in time due to the addition or subtraction of

mass (left hand side term) or to heat addition or subtraction either by the boundary

(second right hand side term) or by volumetric sources (last right hand side term).

2.3.1 The incompressible Navier Stokes equations

Let us consider a non-conducting fluid in absence of heat sources. In the case of open

flows the thermodynamic pressure is constant. In the case of closed flows, if there is no

addition of mass, we have ∫
∂Ω

u(0) · n = 0

For closed flows this depends on the boundary conditions of the problem. In this case

equation 2.11 gives

dp(0)

dt
= 0

Therefore, for open flows or closed flows without addition of mass, in absence of heating

effects, we have a constant thermodynamic pressure. In such a case equation 2.10 gives

∇ · u(0) = 0

and the system to be solved, called the non-homogeneous Navier Stokes equations in [104],

is given by

∇ · u(0) = 0

S
∂ρ(0)

∂t
+ u(0) ·∇ρ(0) = 0

ρ(0)

(
S
∂u(0)

∂t
+ u(0) ·∇u(0)

)
+ ∇p(2) =

1

R
∇ ·

(
2µ(0)ε(u(0))

)
+

1

F2
ρ(0)g

The temperature is recovered from the state equation

ρ = F
(
p(0), ϑ

)
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If the temperature (or density) distribution is initially constant, it remains constant for

all times and we have the homogeneous incompressible Navier Stokes equations, given by

∇ · u(0) = 0

ρ(0)

(
S
∂u(0)

∂t
+ u(0) ·∇u(0)

)
+ ∇p(2) =

1

R
∇ ·

(
2µ(0)ε(u(0))

)
+

1

F2
ρ(0)g

2.3.2 The zero Mach number equations

The system to be solved in this case is given by

S
∂ρ(0)

∂t
+ ∇ ·

(
ρ(0)u(0)

)
= 0

ρ(0)

(
S
∂u(0)

∂t
+ u(0) ·∇u(0)

)
+ ∇p(2) =

1

R
∇ ·

(
2µ(0)ε′(u(0))

)
+

1

F2
ρ(0)g

ρ(0)c(0)
p

(
S
∂ϑ(0)

∂t
+ u(0) ·∇ϑ(0)

)
− Stβϑ

(0)S
dp(0)

dt
=

1

P
∇ ·

(
k(0)∇ϑ(0)

)
+ HSQ

which has to be completed with a state equation of the form

ρ = F
(
p(0), ϑ

)
where the thermodynamic pressure p(0) is either given by 2.11 or determined by the

boundary conditions.

This system of equations does not present acoustic phenomena that are present in a

compressible flow as shown in [126], [119] and [113]. Acoustic phenomena are pressure

and density waves of small amplitude and fast propagation velocity (the sound speed c)

that satisfy the system of equations. It is easy to see that a wave equation for the pressure

can be deduced from the full compressible equations 2.2 to 2.4. When the Mach number

is small the hyperbolic wave equation for the pressure becomes an elliptic equation for

the first order pressure p(2), thus showing the implicit (“incompressible” or “mechanical”)

character of this pressure component. It is not an evolving variable but can be understood

as an implicit Lagrange multiplier determined by the mass conservation.

2.4 The small Mach number and small Froude

number limit

The low Mach number approximation developed in the previous section was carried out

considering the rest of the dimensionless numbers fixed. In this section the possibility of a

low Froude number is taken into account and the Boussinesq and anelastic approximations

are presented. As previously mentioned, successive improvements of the derivation of

the Boussinesq approximation have been made in [120] and [63] introducing a reference
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state about which a perturbative scheme is developed. An asymptotic derivation of the

Boussinesq approximation was considered in [12, 13] and [146, 148, 149]. In order to study

this limit it is useful to introduce the Boussinesq number, defined as

B =
ρ0gl0
p0

=
M2

F2

This number was defined first in [146] but its importance in vertically stratified flows was

already noted in [5]. When M → 0 and F → 0, the Boussinesq number can be finite, tend

to zero or tend to infinity depending on the relation between F and M. The external force

will be considered due to gravity and supposed in the (−ẑ) direction where ẑ = (0, 0, 1)t.

Depending on the Boussinesq number, the external force will be different in the hierarchy

of equations obtained after the introduction of the low Mach number expansion. Two

different cases can be considered.

1. If B → 0 as B = O (M) when M → 0, we have

M

F2
= O (1)

and (under some conditions to be given below) the Boussinesq approximation is

found.

2. If B 6→ 0, B = O (1) when M → 0, we have

M

F
= O (1)

and the anelastic or the quasistatic approximations are found.

Let us mention that the condition of small Boussinesq number is a restriction on

the height of the flow analyzed, as the quantity ρ0g0/p0 is the height scale of the

thermodynamic field. This is the reason why it is usually mentioned that the anelastic

approximation removes the height limitation of the Boussinesq one (see [115], [44] and

[61].

2.4.1 The Boussinesq approximation

In the case of M ' F2 (here and below the symbol ' denotes “of the same order”) we

have that when M → 0, M = gF2 where g is a constant (when dimensions are restored it

will be the gravity modulus) and the equations of motion become

S
∂ρ

∂t
+ ∇·(ρu) = 0

ρ

(
S
∂u

∂t
+ u ·∇u

)
+

1

M2
∇p =

1

R
∇ · (2µε′(u))− 1

M
ρgẑ

ρcp

(
S
∂ϑ

∂t
+ u ·∇ϑ

)
− Stβϑ

(
S
∂p

∂t
+ u ·∇p

)
=

M2

R
Φ +

1

P
∇ · (k∇ϑ) + HSQ
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The analysis is carried out assuming an asymptotic expansion of the form

ξ (x, t,M) = ξ(0) (x, t) + Mξ(1) (x, t) + M2ξ(2) (x, t) +O(M4) (2.12)

for ξ = u, ξ = p, ξ = ρ and ξ = ϑ. The choice of M as the parameter expansion is due

to the fact that it is the parameter that appears in the system of equations. We also

consider that the heat sources are small that is H ' M when M → 0 or, more precisely,

H = cM

where c is a constant that is absorbed redefining Q. Introducing the expansion into the

equations and considering M→ 0 the following hierarchy of equations is obtained:

O(M0) : S
∂ρ(0)

∂t
+ ∇ ·

(
ρ(0)u(0)

)
= 0 (2.13)

O(M−2) : ∇p(0) = 0 (2.14)

O(M−1) : ∇p(1) = −ρ(0)gẑ (2.15)

O(M0) : ρ(0)

(
S
∂u(0)

∂t
+ u(0) ·∇u(0)

)
+ ∇p(2) =

1

R
∇ ·

(
2µε′(u(0))

)
− ρ(1)gẑ (2.16)

O(M0) : ρ(0)c(0)
p

(
S
∂ϑ(0)

∂t
+ u(0) ·∇ϑ(0)

)
− Stβ

(0)ϑ(0)

(
S
∂p(0)

∂t
+ u(0) ·∇p(0)

)
=

1

P
∇ ·

(
k∇ϑ(0)

)
(2.17)

O(M1) : ρ(0)c(0)
p

(
S
∂ϑ(1)

∂t
+ u(0) ·∇ϑ(1)

)
− Stβ

(0)ϑ(0)

(
S
∂p(1)

∂t
+ u(0) ·∇p(1)

)
+
(
ρ(1)c(0)

p + ρ(0)c(1)p

)(
S
∂ϑ(0)

∂t
+ u(0) ·∇ϑ(0)

)
−St

(
β(0)ϑ(1) + β(1)ϑ(0)

)(
S
∂p(0)

∂t
+ u(0) ·∇p(0)

)
+ρ(0)c(0)

p u(1) ·∇ϑ(0) − Stβ
(0)ϑ(0)u(1) ·∇p(0)

=
1

P
∇ ·

(
k(0)∇ϑ(1) + k(1)∇ϑ(0)

)
+ SQ (2.18)

Under the assumptions considered, the pressure evolution equation 2.10 is written as

p(0)∇ · u(0) = −1

γ
S
dp(0)

dt
+

1

P
∇ ·

(
k(0)∇ϑ(0)

)
(2.19)

From equation 2.14 it follows that p(0) = p(0)(t) and from equation 2.15 that

p(1) = p(1)(z, t) and ρ(0) = ρ(0)(z, t). Then, from the state equation we have that

ϑ(0) = ϑ(0)(z, t). The form of the zero order thermodynamic variables depends on the
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(boundary conditions of the) particular problem under consideration. Introducing the

asymptotic expansion 2.12 in the boundary condition 2.7 and 2.8 we obtain

O
(
M0
)

: ϑ(0) = 1 (2.20)

O
(
M1
)

: ϑ(1) = ϑ
(0)
D (2.21)

and

O
(
M0
)

:
1

P
kn · ∇ϑ(0) = 0 (2.22)

O
(
M1
)

:
1

P
kn · ∇ϑ(1) = Sq(0) (2.23)

The solution ϑ(0) = 1 satisfies 2.17 and its boundary conditions 2.20 and 2.22. Therefore

if the initial temperature perturbations are small (meaning order ε or higher), ϑ(0) = 1.

Otherwise, the evolution problem of the zero order fields must be solved. In the first case,

thanks to the state equation ρ(0) = ρ(0) (t) and in the case of open flows or closed flows

without addition of mass, the thermodynamic pressure equation 2.19 implies that p(0) and

therefore ρ(0) are constants. Finally, equation 2.15 implies p(1) = p(1) (z) and the system

to be solved (given by 2.13,2.16 and 2.18) reads

∇ · u(0) = 0

ρ(0)

(
S
∂u(0)

∂t
+ u(0) ·∇u(0)

)
+ ∇p(2) =

1

R
∇ ·

(
2µε′(u(0))

)
− ρ(1)gẑ

ρ(0)c(0)
p

(
∂ϑ(1)

∂t
+ u(0) ·∇ϑ(1)

)
+ Stβ

(0)ϑ(0)w(0)dp
(1)

dz
=

1

P
∇ ·

(
k(0)∇ϑ(1)

)
+ SQ

where w is the component of u in the ẑ direction.

This system has to be completed with a state equation. For an ideal gas we have that

O(1) : p(0) = ρ(0)ϑ(0)

O(M) : p(1) = ρ(0)ϑ(1) + ϑ(0)ρ(1)

and the first order pressure is determined from 2.15 as

p(1) = −ρ(0)gz

to obtain

ρ(1) = −ρ
(0)

ϑ(0)
z − ρ(0)

ϑ(0)
ϑ(1)

The first term can be absorbed by the pressure gradient through a redefinition of the

second order pressure and the Boussinesq equations are obtained.

Let us mention that the derivation of the Boussinesq approximation given in [12, 13]

and [146, 148, 149] is somewhat different. First a fixed Boussinesq number is considered
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and the expansion on powers of the Mach number is performed, to obtain, to the first

order in the momentum equation

∇p(0) = −Bρ(0)ẑ (2.24)

from where it follows that

p(0) = p(0) (z, t)

ρ(0) = ρ(0) (z, t)

and using a state equation

ϑ(0) = ϑ(0) (z, t)

The first hypothesis made in [12, 13] and [146, 148, 149] is that this reference state is

independent of time. The second hypothesis, motivated by equation 2.24, is that the zero

order thermodynamic fields depend on z only trough the variable ζ = Bz . Under these

assumptions

p(0) = p(0) (z) = p(0) (ζ)

ρ(0) = ρ(0) (z) = ρ(0) (ζ)

from where
dp(0)

dz
=
dζ

dz

dp(0)

dζ
= B

dp(0)

dζ

and equation 2.24 becomes
dp(0)

dζ
= −ρ(0).

Next the limit of small Boussinesq number is considered taking B → 0 as B ' M and

the Boussinesq approximation is recovered. For example, as ρ(0) = ρ(0) (ζ) the continuity

equation 2.13 will give

0 = u(0) ·∇ρ(0) + ρ(0)∇ ·u(0) = u(0) · ẑ dρ
(0)

dz
+ ρ(0)∇ ·u(0) = u(0) · ẑ B

dρ(0)

dζ
+ ρ(0)∇ ·u(0)

that gives

∇ · u(0) = 0

when B → 0.

In this way, taking the limits consecutively, a reference state that depends weakly

on z is obtained instead of a constant one. Let us stress that, through this reasoning,

the gravity term, that naturally should appear modifying the first order pressure (as it

was presented above), appears modifying the zero order pressure and this is what makes

possible to deal with the dependence of the reference state on z. What is actually shown

in [12, 13] and [146, 148, 149] is that the Boussinesq approximation is found in the limit
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of small Mach number and small Boussinesq number assuming an asymptotic expansion

of the form

ξ (x, t,M) = ξ(0) (ζ) + Mξ(1) (x, t) + M2ξ(2) (x, t) +O(M3)

that is to say, assuming that the reference state depends weakly on z through ζ. Note

that as B → 0 this variable represents a very small scale compared to the scale given by

z. As it has been mentioned in the previous section, this type of variable is introduced to

separate scales when a multiple scale analysis is performed, something that only makes

sense when an unbounded domain is considered.

Finally, let us also stress that in any case some hypothesis on the zero order

thermodynamic fields are needed. Although the derivation given by [12, 13] and

[146, 148, 149] can explain the dependence of the reference state with respect to z, it

is still necessary to assume that they do not depend on time.

2.4.2 The anelastic and quasistatic approximations

In the case of M ' F the equations of motion are

S
∂ρ

∂t
+ ∇·(ρu) = 0

ρ

(
S
∂u

∂t
+ u ·∇u

)
+

1

M2
∇p =

1

R
∇ · (2µε′(u))− B

M2
ρẑ

ρcp

(
S
∂ϑ

∂t
+ u ·∇ϑ

)
− Stβϑ

(
S
∂p

∂t
+ u ·∇p

)
=

M2

R
Φ +

1

P
∇ · (k∇ϑ) + HSQ

and the analysis is carried out assuming an asymptotic expansion of the form

ξ (x, t,M) = ξ(0) (x, t) + M2ξ(2) (x, t) +O(M4) (2.25)

for ξ = u, ξ = p, ξ = ρ, ξ = ϑ. The hierarchy of equations obtained is similar to the one

obtained for the case M ' F2 in the previous section except for the momentum equation,

and reads:

O(M0) : S
∂ρ(0)

∂t
+ ∇ ·

(
ρ(0)u(0)

)
= 0 (2.26)

O(M−2) : ∇p(0) = −Bρ(0)ẑ (2.27)

O(1) : Sρ(0)∂u
(0)

∂t
+ ρ(0)u(0) ·∇u(0) + ∇p(2) =

1

R
∇ ·

(
2µε′(u(0))

)
− Bρ(2)ẑ (2.28)
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O(M0) : ρ(0)c(0)
p

(
S
∂ϑ(0)

∂t
+ u(0) ·∇ϑ(0)

)
− Stβ

(0)ϑ(0)

(
S
∂p(0)

∂t
+ u(0) ·∇p(0)

)
=

1

P
∇ ·

(
k(0)∇ϑ(0)

)
+ SQ (2.29)

O(M2) : ρ(0)c(0)
p

(
∂ϑ(2)

∂t
+ u(0) ·∇ϑ(2)

)
− Stβ

(0)ϑ(0)

(
∂p(2)

∂t
+ u(0) ·∇p(2)

)
+
(
ρ(2)c(0)

p + ρ(0)c(2)p

)(∂ϑ(0)

∂t
+ u(0) ·∇ϑ(0)

)
− St

(
β(0)ϑ(2) + β(2)ϑ(0)

)(∂p(0)

∂t
+ u(0) ·∇p(0)

)
+ ρ(0)c(0)

p u(2) ·∇ϑ(0) − Stβ
(0)ϑ(0)u(2) ·∇p(0)

=
1

P
∇ ·

(
k(0)∇ϑ(2) + k(2)∇ϑ(0)

)
+

1

R
Φ(0) (2.30)

From equation 2.27 it follows that p(0) = p(0)(z, t) and that ρ(0) = ρ(0)(z, t). Then,

from the state equation ϑ(0) = ϑ(0)(z, t). Now If ρ(0), ϑ(0) and p(0) are independent of

time we have that 2.29 gives

w(0)

[
ρ(0)c(0)

p

dϑ(0)

dz
− Stβ

(0)ϑ(0)dp
(0)

dz

]
=

1

P

d

dz

(
k(0)dϑ

(0)

dz

)
+ SQ (2.31)

Two different cases are found:

• If the reference state is such that

ρ(0)c(0)
p

dϑ(0)

dz
− Stβ

(0)ϑ(0)dp
(0)

dz
6= 0 (2.32)

then

w(0) =
1
P
∇ ·

(
k(0)∇ϑ(0)

)
+ SQ

ρ(0) dϑ(0)

dz
− Stβ(0)ϑ(0) dp(0)

dz

or, for an ideal fluid in absence of external heating

w(0) = 0

This case is called in [12, 13] and [146, 148, 149] the quasi-static approximation.

The vertical velocity is constrained by an hydrostatic equilibrium in the vertical

direction and only plane motions can occur. Further details can be found in the

references already mentioned.

• If the reference state is such that

ρ(0)c(0)
p

dϑ(0)

dz
− Stβ

(0)ϑ(0)dp
(0)

dz
≈ 0 (2.33)
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the anelastic approximation follows. This condition, together with the zero order

momentum and energy equations define the reference (zero order) state

ρ(0)c(0)p

dϑ(0)

dz
− Stβ

(0)ϑ(0)dp
(0)

dz
= 0 (2.34)

1

P

d

dz

(
k(0)dϑ

(0)

dz

)
+ SQ = 0 (2.35)

dp(0)

dz
= Bρ(0) (2.36)

where also the zero order state equation needs to be considered. For an ideal gas

p(0) = ρ(0)ϑ(0). The final set of equations to be solved, using this reference state, is

given by

∇ ·
(
ρ(0)u(0)

)
= 0

Sρ(0)∂u
(0)

∂t
+ ρ(0)u(0) ·∇u(0) + ∇p(2) =

1

R
∇ ·

(
2µε′(u(0))

)
− Bρ(2)ẑ

ρ(0)c(0)
p

(
S
∂ϑ(2)

∂t
+ u(0) ·∇ϑ(2)

)
+
(
ρ(2)c(0)

p + ρ(0)c(2)
p

)
w(0)dϑ

(0)

dz
− St

(
β(2)ϑ(0) + β(0)ϑ(2)

) dp(0)

dz

−Stβ
(0)ϑ(0)

(
S
∂p(2)

∂t
+ u(0) ·∇p(2)

)
=

1

P

d

dz

(
k(0)dϑ

(2)

dz
+ k(2)dϑ

(0)

dz

)
+

1

R
Φ(0)

which also need to be closed by the state equation that in the case of an ideal gas is

p(2) = ρ(0)ϑ(2) + ϑ(0)ρ(2)

This set of equations was presented in [119], where it is mentioned that they were

written in this form in [100] and that they are a generalization of those obtained

in [44] and [61]. As noted in [119], in the case of an ideal gas with constant cp

equations 2.34-2.35-2.36 can be solved and the reference state can be written as

ϑ(0) =

(
1− γ − 1

γ
Bz

)
ρ(0) =

(
1− γ − 1

γ
Bz

) 1
γ−1

p(0) =

(
1− γ − 1

γ
Bz

) γ
γ−1

If now the limit of B → 0 is taken, the Boussinesq approximation is recovered

following the same steps as [12, 13] and [146, 148, 149] that is, taking the limits

consecutively. In a bounded domain this also gives a constant reference state. The

reference state defined by equations 2.34, 2.35 and 2.36 is the one introduced in

[120] to improve the derivation of the Boussinesq approximation proposed in [110].
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Let us close this section noting that condition 2.33 can be written as

ρ(0)c(0)
p

dϑ(0)

dz
− Stβ

(0)ϑ(0)dp
(0)

dz
= ρ(0)c(0)p

ds(0)

dz
≈ 0

As shown in [101] the condition for the thermomechanical equilibrium of a fluid is

ds

dz
> 0

A medium having ds
dz

= 0 is neutrally stratified and a medium having ds
dz
< 0 is unstably

stratified. Then, the two cases to be considered when the Boussinesq number is not small,

defined in 2.32 and 2.33, correspond to a neutral reference state or a stratified one (stable

or unstable). If the reference state is stratified, the vertical velocity is constrained by the

hydrostatic equilibrium. If the reference state is neutral, the anelastic approximation can

be used. This is the first condition required in [115] to derive the anelastic approximation.

2.4.3 Applications

In this subsection we apply the developed framework to the problems defined at the end of

section 2.2. Let us start considering the case of natural convection problems. We consider

S = 1, that is to say that we take l0/u0 as a reference time and we have the scales l0, ρ0, ϑ0,

µ0, k0, cp0 , g0 and ∆ϑ. Therefore these problems are described in terms of five parameters:

M, F, R, P and ε. In the natural convection context, the Rayleigh-Bénard problem and

the differentially heated cavity, it is common to consider the Rayleigh number Ra and the

Prandtl number Pr, defined as

Ra =
gl30
ν0α0

∆ϑ

ϑ0

, Pr =
ν0

α0

where ν0 is the kinematic viscosity (ν0 = µ′0/ρ0), which satisfy

Ra =
ε

F2
R2Pr, R = PPr

and to describe the problems in terms of M, F, Ra, Pr, and ε. A definition of the velocity

scale eliminates one of these numbers. The problem of the differentially heated cavity

has been analyzed by [23] and the Rayleigh Bénard problem has been analyzed in [110]

in both cases defining the velocity scale of the problem as the diffusive speed, given by

u0 =
k0

ρ0cp0l0
=
α0

l0

where α0 is the thermal diffusivity scale (α0 = k0/ρ0cp0l0), what corresponds to make

P = 1. The differentially heated cavity problem has also been analyzed by [136] assuming

that the velocity scale problem is the viscous speed, given by u0 = ν0/l0, what corresponds
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to make R = 1. However, in our view, the most appropriate scaling for the velocity is the

one used by [120] in the context of the Rayleigh Bénard problem and by [63], given by

u0 = (β0∆ϑgl0)
1/2

that we may call ”¨buoyancy speed”, that is obtained from

F2 = ε

The low Mach number approximation is valid when the Mach number is small, what

physically means the velocity scale of the problem smaller than the sound speed. With

our choice of the velocity scale we have M2 = Bε and this happens for thin layers or small

temperature differences. The Boussinesq approximation requires also F and ε small with

the restrictions F2 = O(M) and ε = O(M). The first one is equivalent to B = O(M)

and, with our choice of the velocity scale, the second condition is automatically satisfied.

Therefore, it will be valid for thin layers and small temperature difference.

Another important aspect of the proposed approach is the possibility of analyzing

mixed convection problems. In the case of the Poiseuille-Rayleigh-Bénard problem we have

a velocity u0 defined by the boundary condition. The low Mach number approximation

is valid when the velocity u0 is small compared to the sound speed. The Boussinesq

approximation also requires F2 = O(M), what is equivalent to B = O(M), and implies a

restriction on the height, and ε = O(F2), what implies a velocity u0 of the order of the

buoyancy speed or, equivalently, small temperature differences (i.e. ε = O(M)). However,

if the velocity prescribed on the boundary is much smaller than the buoyancy speed, the

problem will be similar to the Rayleigh-Bénard problem and the fluid motion will be

driven by temperature differences. Therefore, when F2 � ε we redefine the velocity

scale by F2 = ε and the case of natural convection is recovered. If F2 � ε we keep the

velocity scale given by the boundary conditions and the validity of the low Mach number

approximation will depend directly on the Mach number. The Boussinesq approximation

will be valid if the Froude number is also small, as the asymptotic analysis shows. Note

that, in this case, the temperature difference is small because F2 � ε.

2.5 Summary and conclusions

The zero Mach number limit of the compressible flow equations yields different sets of

equations depending on the type of flow analyzed. If an isentropic flow is considered, the

incompressible Navier Stokes equations are recovered. When heat exchange is taken into

account, different sets of equations are found. This limit was obtained using an expansion

of the unknowns in series of the Mach number, which according to [134] is valid (i.e. yields

a convergent solution) in the near field (see also [141]). When the Froude number is also

small several situations can be found. On the one hand, the anelastic and the quasistatic
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approximations are found when M,F → 0 and M ' F, if a reference state depending on

z is assumed. On the other hand, the Boussinesq approximation is found when M,F → 0

and M ' F2, H ' F2 and ε ' F2 assuming appropriate initial and boundary conditions.

This approximation is also valid in an unbounded domain if the reference state depends

weakly on z through ζ = Bz as shown by [12, 13] and [146, 148, 149]. All these limits have

been obtained under the same asymptotic setting proposed here. The physical meaning

of the similarity rules introduced in the asymptotic analysis has been made precise in the

case of bounded domains for both natural and mixed convection problems.

The three approximations considered when heat exchange is taken into account (the

zero Mach number model, the anelastic approximation and the Boussinesq approximation)

describe the basic mechanism of thermal coupling which is due to the dependence of the

density on the temperature. When a fluid element is heated, it expands and moves up.

None of the three approximations describe acoustic phenomena, what is certainly desirable

from a numerical point of view. The main difference between them is how they take

into account the compressibility of the medium. While in the Boussinesq approximation

the flow is incompressible, in the zero Mach number model the density distribution is

predicted and the velocity field is affected by expansions or contractions due to heating.

Between them, the anelastic approximation (mainly used in atmospheric sciences) takes

into account the density of the medium in the mass balance.



Chapter 3

The convection diffusion reaction

problem

In this chapter we revisit the definition of the stabilization parameters for the convection

diffusion reaction equation. We restrict ourselves to scalar problems and we focus our

attention on the extension of the well known one dimensional case to the multidimensional

one, considering also an anisotropic diffusion coefficient. The new definition of the

parameter also takes into account anisotropy of the mesh used, what is possible thanks to

a precise definition of the element size. The proposal is based on an approximation of the

subgrid scale equation in the context of the variational multiscale method. The constants

involved in the definition of the parameters arise naturally from the approximations

performed. Some numerical experiments illustrating the contributions are also presented.

3.1 Introduction

The convection diffusion reaction (CDR) equation is a simple equation that describes

several physical phenomena like, for example, heat transfer. In the development of

numerical methods this simplicity is important because the problems found when solving

more complex transport equations can be reproduced using this simplified model.

When attempting the numerical solution of the CDR equation, the first problem

identified is the lack of stability of the Galerkin formulation when the convective term

is important which manifest itself as numerical oscillations that pollute the solution in

the whole domain and specially near boundary layers. After understanding this problem

as a lack of diffusion in the discrete problem, the first solution was to add numerical

dissipation developing upwind techniques in the context of the finite difference method.

The inconsistent extra terms implied a loss of accuracy and the situation was fixed with

the introduction of the SUPG method in [76, 93, 18], which was analyzed in [91]. This

method depends on a parameter called the stabilization parameter and denoted usually by
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τ . This parameter is also present in the Galerkin least squares method (GLS), introduced

in [80] and analyzed in [50] as well as the Douglas-Wang method introduced in [43] in

the context of the Stokes problem. These methods were related to the introduction of

bubble functions in [15, 4, 17, 49], where it was shown that a choice of the bubble implies

a choice of the stabilization parameter. The optimal bubble is given by the solution of

a local subproblem driven by the residual [54], and is therefore named residual free. A

general approach to the development of stabilized formulations is the variational multiscale

method (VMM) introduced in [75, 78], based on a decomposition of the space into a coarse

scale resolvable part and a fine scale subgrid part that, after some approximations, is

found as the solution a local problems driven by the residual through the Green function

approach. The equivalence between the residual free bubble and the variational multiscale

method was established in [16]. Other methods introduced to solve this problem are the

Characteristic Galerkin method [42] and the Taylor Galerkin method [41]. A comparison

of all these methods was performed in [24]. A recent review of stabilization techniques

for the CDR equation can be found in [51].

Another problem identified is the lack of stability when the reaction term is important

which manifest itself as numerical oscillations localized near boundary layers. The

methods mentioned lead to a stable discrete formulation but some of them (VMM) are

much more accurate than others (GLS). The expression of the stabilization parameter

needs to be modified to take reaction into account. An expression based on the satisfaction

of the discrete maximum principle was proposed in [24]. If we denote the diffusion

coefficient by ε the norm of the advective velocity by a and the reaction by s, this

expression reads

τ =

(
c1ε

h2
+
c2a

h
+

1

s

)−1

(3.1)

where h is a characteristic element length and c1 and c2 are constants whose values,

determined by numerical experiments, are 4 and 2 respectively. The expression proposed

in [50] for the convection diffusion case, based on the error analysis, was extended to the

reactive case in [55], obtaining an expression that behaves asymptotically as 3.1, what

means that the limits of the expression with respect to any of the coefficients and with

respect to mesh size are the same.

The dependence of the stabilization parameters with respect to the equation

coefficients and the mesh size is determined by the error analysis. However, as pointed

out in [67], convergence proofs are performed using functional analysis inequalities which

depend on unknown constants what is sufficient as the error bounds are obtained up

to a constant. Therefore constants appearing in 3.1 cannot be determined by error

analysis except in particular problems. At the same time, the analysis is performed under

strong assumptions on the mesh such as regularity of the elements or quasi-uniformity and

general definitions of the mesh size parameter h are used (like the maximum or minimum
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element length for example). On the other hand, precise definitions of the constants and

the mesh parameter h are implemented in finite element codes, which are then used to

solve application problems in meshes that are far from satisfying these constrains. The

performance of the stabilized method presented in [140] (which is similar to the variational

multiscale method in the context of the Navier Stokes equations) when high aspect ratio

elements are used was analyzed in [111] and the need of incorporating the stretching of

the grid in the definition of the stabilization parameter was emphasized.

An important effort in this direction is reported in [48] and the references therein,

where anisotropic error estimates are developed for the convection diffusion equation using

linear elements. Still some assumptions on the mesh are needed and the final error bound

depends on a stretching factor that diverges when only one side of the element is reduced.

In particular, the definition of the stabilization parameter using the minimum element

length, as the analysis of [48] suggest, is not the most convenient as will be shown here.

Another way in which the element length has been incorporated into the definition of the

stabilization parameter is through the Jacobian of the isoparametric transformation, as

in [81, 133]. A completely different approach, based on the calculation of norm of the

element matrices and vectors, is presented in [139]. We can finally mention the finite

calculus (FIC) method, based on expressing the equation of balance of fluxes in a domain

of finite size, originally proposed in [117, 116] and modified in [118] by the introduction

of a nonlinear stabilization parameter.

Although stabilization techniques have been extended to consider many different kinds

of problems, a general definition of the stabilization parameters is still an open problem.

In this work the definition of the stabilization parameters for scalar convection diffusion

equations is revisited. The purpose of this chapter is to present a new definition of the

stabilization parameters that can be directly implemented in a finite element code and

that contains a precise definition of the element length and the values of the constants.

The chapter is organized as follows. In section 3.2 we state the problem to be solved

including the discrete formulation which is based on the variational multiscale method

of [75, 78]. In section 3.3, the method to find an approximate solution of the fine scale

problem is presented and the functional form of the stabilization parameter is defined.

In section 3.4 the choice of the constants and the definition of the element length is

discussed to arrive to the proposed definition of the stabilization parameters. In section

3.5 we will present a quite standard error analysis of the method valid in the anisotropic

case in which we obtain an error estimate that depends on the interpolation error without

considering anisotropic interpolation estimates. The analysis will pose a condition on the

stabilization parameters due to the use of the inverse estimate. Numerical experiments

illustrating the benefits of the method are presented in section 3.6 and final conclusions

are drawn in section 3.7.
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3.2 Problem statement

3.2.1 Continuous problem

We consider a convection diffusion reaction problem consisting of finding u such that

Lu := −∂i (εij∂ju) + ai∂iu+ su = f in Ω

u = 0 on ∂Ω

Here Ω ⊂ Rd is an open domain in (d = 2, 3 is the number of space dimensions) and

∂Ω its boundary, εij is the constant (positive definite) diffusion tensor, ai the solenoidal

advection velocity, s ≥ 0 the constant reaction coefficient and f a given internal force (the

index summation convention is used here and in what follows). We restrict ourselves to

the case of positive reaction, which corresponds to the exponential regime, and we refer

to [71, 68] for the case of negative reaction, which corresponds to the propagation regime.

As usual, the space of functions whose p power (1 ≤ p <∞) is integrable in a domain

ω, denoted by Lp(ω) and when p = 2 the inner product is denoted by (·, ·)ω. The space

of functions whose distributional derivatives of order up to m ≥ 0 (integer) belong to

L2(ω) is denoted by Hm(ω). The space H1
0 (ω) consists of functions in H1(ω) vanishing

on ∂ω. The topological dual of H1
0 (ω) is denoted by H−1(ω) and 〈·, ·〉ω is used to denote

the duality pairing between them.

The problem can be written in a weak form as follows: given f ∈ H−1 (Ω) and

a ∈ L∞ (Ω) ,find u ∈ V := H1
0 (Ω) such that

B (u, v) = L (v) ∀v ∈ V

where

B (u, v) = (∂iv, εij∂ju)Ω + (v, ai∂iu)Ω + (v, su)Ω

L (v) = 〈v, f〉Ω

The discretization of the problem is based on a finite element partition of the domain,

Ph = {K}, of size h > 0, which is a set of nel elements K such that they cover the domain

and their are either disjoint or share a complete edge (face). Based on this partition, the

space V is approximated by a finite dimensional space Vh defined as

Vh =
{
w ∈ V : w ◦ F−1

∣∣
K
∈ Pp

(
K̂
)
, 1 ≤ p ≤ ∞

}
where Pp

(
K̂
)

denotes the set of polynomials of degree at most p (on each space variable

if tetrahedral/hexahedral elements are used) and F the affine mapping from the reference

element K̂ to the physical element K. Then, the Galerkin discrete problem consists in

finding uh ∈ Vh such that

B (uh, vh) = L (vh) ∀vh ∈ V0,h (3.2)
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This formulation is not stable if diffusive terms are small compared either to convective

or reactive ones.

3.2.2 Multiscale decomposition

Different stabilization techniques are used depending on the instability of the problem

under consideration. A rather general method (that can be used in many cases) is the

variational multiscale method. It is based on a decomposition of the unknown u into

a resolvable part uh and a subgrid scale part ũ which cannot be captured by the finite

element mesh, what corresponds to a decomposition of the space V as

V = Vh ⊕ Ṽ .

The above decomposition, applied to the weak form of the problem, leads to

B (uh, vh) +B (ũ, vh) = L (vh) ∀vh ∈ Vh (3.3)

B (uh, ṽ) +B (ũ, ṽ) = L (ṽ) ∀ṽ ∈ Ṽ (3.4)

The first equation is the equation for the resolvable scale uh and has two terms: the first

one is the Galerkin contribution and the second one takes into account the influence of

the subgrid scale on uh. The second one is an equation for the subgrid scale contribution.

Let us introduce the following notation

Ωh = ∪
K∈Ph

K and Γh = ∪
K∈Ph

∂K

and

(·, ·)h =
∑

K∈Ph

(·, ·)K , (·, ·)∂h =
∑

K∈Ph

(·, ·)∂K and ‖·‖2
h =

∑
K∈Ph

‖·‖2
K

Integrating by parts within each element, equations 3.3 and 3.4 can be written as

B (uh, vh) + (L∗vh, ũ)h + (niεij∂jvh, ũ)∂h = L (vh) ∀vh ∈ Vh

(ṽ,Lũ)h + (ṽ, niεij∂jũ)∂h = (ṽ, (f − Luh))h − (ṽ, niεij∂juh)∂h ∀ṽ ∈ Ṽ

where L∗ is the adjoint of the operator L (with Dirichlet boundary conditions) given by

−L∗ (v) = ∂i (εij∂ju) + ∂i (aiu)− su

As the normal fluxes of the exact solution are continuous across any surface, it follows

that

(ṽ, niεij∂ju)h = (ṽ, niεij∂jũ)h + (ṽ, niεij∂juh)h = 0

Then, the second equation is equivalent to: find ũ ∈ Ṽ such that

Lũ = f − Luh + ṽ⊥ in Ωh (3.5)

ũ = uske on Γh
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where uske is a function defined on the element boundaries and ṽ⊥ is any function in

Ṽ ⊥ (the orthogonal complement of Ṽ in the L2
(
Ωh
)

sense). The function uske must be

such that the normal fluxes of u are continuous across element boundaries. In turn, the

function ṽ⊥ is responsible for guaranteeing that ũ ∈ Ṽ . A modelling step is necessary to

solve the system what means a choice of uske, ṽ
⊥ and an approximate solution of 3.5.

Note that 3.5 is posed in Ωh which consists of the union of the elements of the mesh.

Therefore, any choice of uske leads to nel uncoupled problems posed on each element K. As

a discrete approximation that gives exact nodal values would be optimal, one may ask the

subscales to vanish at the nodes. In one dimensional problems, this gives homogeneous

boundary conditions for problems 3.5 which are now decoupled and can be solved on each

element. This has been done for the convection diffusion and Helmholtz equations (see

[78] and the references therein). In more than one space dimension the choice uske = 0 is

an approximation.

The approximated solution that will be constructed in the following section can be

written as

ũ|K = L−1
[
(f − Luh) + ṽ⊥

]∣∣
K
' τK

[
(f − Luh) + ṽ⊥

]
This equation emphasizes that τK is an approximation to the (formal) inverse of the

differential operator on each element K, a fact that will be used to construct an expression

for it.

Finally we have to impose ũ ∈ Ṽ which is equivalent to

0 =
(
ũ, w̃⊥

)
∀w̃⊥ ∈ Ṽ ⊥

To this end let us consider the inner product

(·, ·)τ =
∑

K∈Ph

(τK ·, ·)K

and let us consider the projection P̃⊥
τ onto Ṽ ⊥ associated to the product (·, ·)τ . We have

0 =
(
ũ, w̃⊥

)
=
(
f − Luh, w̃

⊥)
τ

+
(
ṽ⊥, w̃⊥

)
τ

∀w̃⊥ ∈ Ṽ ⊥

what implies

ṽ⊥ = −P̃⊥
τ (f − Luh)

The projection P̃⊥
τ differs from the L2

(
Ωh
)

projection P̃⊥ in the element-by-element

weights τK . If the stabilization parameter is the same for all elements we have P̃⊥
τ = P̃⊥.

In this simple case ũ ∈ Ṽ if

0 = P̃⊥ũ = P̃⊥ [(f − Luh) + ṽ⊥
]

from where ṽ⊥ = −P̃⊥ (f − Luh). The final approximation is

ũ = τ P̃τ (f − Luh)
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where P̃τ = I− P̃⊥
τ is the projection onto the subscale space Ṽ (I is the identity in V ). A

typical choice of the subscales space is given by P̃τ = I which is called in [29] the Algebraic

Subgrid-Scale formulation (ASGS) and consists simply in taking ṽ⊥ = 0 to obtain

ũ|K = τK (f − Luh)

In that reference the choice P̃τ = I − Ph := P⊥
h is advocated, Ph being the L2

(
Ωh
)

projection onto the finite element space. The resulting formulation is called Orthogonal

Subscales Stabilization (OSS) because when τ is the same for all elements this choice

corresponds to take Ṽ as the orthogonal complement of Vh. If the element-by-element

variation of the stabilization parameter is to be considered, in order to have Ṽ = V ⊥
h we

need to take P̃τ = I−Phτ where Phτ is the projection onto the finite element space in the

sense of (·, ·)τ . However, as the L2
(
Ωh
)

projection is very convenient from a computational

point of view, the first choice is always considered and in this case we have

ũ|K = τKP
⊥
h (f − Luh)

Neglecting boundary terms, the final stabilized discrete problem is: find uh ∈ Vh such

that

Bτ (uh, vh) = Lτ (vh) ∀vh ∈ Vh (3.6)

where the stabilized forms are

Bτ (uh, vh) = B (uh, vh)− (L∗vh, τLuh)h

Lτ (vh) = L (vh)− (L∗vh, τf)h

3.3 Approximate solution of the subscale equation

In this section an approximate solution of equation 3.5 is presented. This equation for

the subscale can be thought as an equation for the error and it is the equation used for

the derivation of a posteriori error estimators[1], a fact already noted in [78]. In fact, it

is used as error estimator in [45, 69, 70]. Two approaches are typical in a posteriori error

estimation: an explicit expression for the error based on the residuals (derived from this

equation) or the numerical solution of this equation (the so called implicit methods) [1].

In this case the first approach is followed because the problem is actually solved a priori

and this relation between the subscale (the error) and the residual is used to stabilize the

finite element problem.

The approximate solution is based on two properties that will be presented in the

following subsections. The first is how the subgrid scale depends on the element size and

will be determined by transforming the fine scale equation to the reference domain. The

isoparametric transformation to the reference domain as a tool to define the stabilization
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parameters was used first in [81, 133] but only for implementation purposes and it has

not been related to the fine scale equation in the variational multiscale context that was

developed later on in [78]. The second property is how the subgrid scale depends on

the coefficients of the equation and will be determined by a heuristic argument already

presented in [29] that will be revisited and extended. In this section we consider ṽ⊥ = 0

as it does not affect the discussion.

3.3.1 Transformation to the reference domain

Instead of directly solving

Lũ = f − Luh := r in K

ũ = 0 on ∂K

on each element K, we will transform this equation to the reference domain. The

isoparametric transformation is defined by a mapping x =F (ξ), relating the element

K (with coordinates x) to the reference element K̂ (with coordinates ξ) whose Jacobian

(J) verifies

Jkl =
∂xl

∂ξk
, J−t

kl =
∂ξk
∂xl

.

Therefore, we can write the fine scale problem as

− ∂

∂ξi

(
εr

ij

∂ũ

∂ξj

)
+ ar

i

∂ũ

∂ξi
+ sũ = r in K̂ (3.7)

where the modified velocity and diffusion coefficients are defined by

εr
kl = J−t

ki J
−t
lj εij

ar
k =

(
∂J−t

li

∂ξl
εij + aj

)
J−t

kj

Note that the term in ar
k that depends on the spatial derivatives of the Jacobian would not

be present if the weak form of the problem is considered. Therefore another possibility

that could be considered is to take

εr
kl = J−t

li εijJ
−t
kj (3.8)

ar
k = ajJ

−t
kj (3.9)

3.3.2 A Fourier analysis of the subscale problem

As in [29], let us consider the Fourier transform of a function v defined in K̂ as

v̂ (k) =

∫
K̂

e−ik ·ξ v (ξ) dξ



The convection diffusion reaction problem 47

where i =
√
−1 and k is the vector wave number. If n denotes the normal to the element

K̂ we have that

∂̂v

∂ξj
(k) = ikj v̂ (k) +

∫
∂K̂

nje
−ik ·ξ vdξ

When this transform is applied to functions that vanish on the element boundary, the

second term on the right hand side vanishes and we have

∂̂v

∂ξj
(k) = ikj v̂ (k)

Transforming equation 3.7 we arrive to

T −1 (k) ̂̃u = r̂

where

T −1 (k) :=
(
kikjε

r
ij + s+ ikja

r
j

)
Using the inverse Fourier transform the subgrid scale can be written as

ũ (η) =

∫
Rd

eik ·η T (k) r̂ (k) dk

It is to be noted that the exact solution to the problem will depend on the element domain

and the integration on the wave number space will be replaced by a sum over the values of

k that make boundary conditions to be satisfied. In the above expression we can identify

the Fourier representation of the Green function of the subscale problem [75] given by

ũ (η) =

∫
K̂

G (ξ, η) r (ξ) dξ

where

G (ξ, η) =

∫
Rd

(
kikjε

r
ij + s+ ikja

r
j

)−1
e−ik ·(ξ −η )dk (3.10)

Up to this point no approximation has been performed except for the use of Fourier

transforms in a bounded domain (and the assumption of ũ = 0 on the element boundary).

This expression, with the appropriate replacement of the integral on the wave number

space by a sum, can be used to exactly calculate the subscale. However, this sum

contains an infinite number of terms and must be truncated at some point. Doing this

is equivalent to solving the fine scale problem with a discrete formulation, what has

already been done in [53, 52] using a finite element or finite difference formulation instead

of a spectral one. Apart from efficiency considerations such approach has a conceptual

problem: the fine scale problem will suffer the same numerical instability as the problem

defined in Vh. Although in this problem the mentioned instability will not manifest when

the submesh is fine enough, this is not the case when other problems (i.e. Stokes) are
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solved and the extension of the method will be difficult. Our main concern here is to find

an approximation of 3.10.

It is well known [24, 75] that the use of a stabilization parameter τ corresponds to

the approximation

G (ξ, η) = τδ (ξ − η)

where δ denotes the Dirac distribution. From expression 3.10 it is quite clear that this

corresponds to the approximation

G (ξ, η) ≈
∣∣∣(kikjε

r
ij + s+ ikja

r
j

)−1
∣∣∣ ∫

Rd

e−ik ·(ξ −η )dk

=
((
k0

i k
0
j ε

r
ij + s

)2
+
(
k0

ja
r
j

)2)−1/2

δ (ξ − η)

for some k0 to be defined, and then

τ =
((
k0

i k
0
j ε

r
ij + s

)2
+
(
k0

ja
r
j

)2)−1/2

(3.11)

A justification for this approximation was presented in [29] and is briefly recalled here.

Thanks to Plancharel’s formula, the subgrid scale norm is given by

‖ũ‖2
L2(K̂) =

1

(2π)2d

∥∥∥̂̃u∥∥∥2

L2(Rd)
=

1

(2π)2d
‖T (k) r̂‖2

L2(Rd)

=
1

(2π)2d

∫
Rd

|T (k) r̂|2 dk =
1

(2π)2d

∫
Rd

|T (k)|2 |r̂|2 dk

and thanks to the mean value theorem, there exists k0 for which∫
Rd

|T (k)|2 |r̂|2 dk =
∣∣T (k0

)∣∣2 ∫
Rd

|r̂|2 dk =
∣∣T (k0

)∣∣2 ‖r̂‖2
L2(Rd)

Therefore, using again the Plancharel’s formula

1

(2π)2d
‖r̂‖2

L2(Rd) = ‖r‖2
L2(K̂)

from where

‖ũ‖2
L2(K̂) =

∣∣T (k0
)∣∣2 ‖r‖2

L2(K̂)

It follows that if we approximate the subscale as

ũap = τR

and τ is defined as

τ =
∣∣T (k0

)∣∣
then

‖ũ‖2
L2(K̂) = ‖ũap‖2

L2(K̂)
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3.4 Definition of the stabilization parameter

Having established the functional form of the stabilization parameters let us finally

consider the definition of k0, whose superscript will be omitted in this section. It will be

shown that its magnitude is related to the constant factors involved in the definition of

the parameter whereas its direction is related to the definition of the element length, thus

answering the question posed in [67]: what are c and h?

3.4.1 The one dimensional problem

Let us first consider the problem in one space dimension without reaction. In this case

the stabilization parameter presented above (see 3.11) is given by

τ =

[(
h2

natk
2ε

h2

)2

+

(
hnatka

h

)2
]−1/2

where hnat is the size of the reference domain and using the Péclet number defined as

P =
ah

2ε

it can be written in dimensionless form as

α =
2aτ

h
=

((
h2

natk
2

4P 2

)2

+

(
hnatk

2

)2
)−1/2

The advective limit of this expression is

lim
p→∞

α = 2h−1
natk

−1

The analytic solution to the problem can be used to obtain the function αopt that

guarantees exact nodal values [24] which is given by

αopt = coth (P)− 1

P

The advective limit is of αopt is 1 and therefore we conclude that

k = 2h−1
nat

must be taken. Both expressions are compared in figure 3.1 for this choice of k.

Note that the final expression for the stabilization parameter does not depend on the

reference domain, as expected. Just to simplify the notation, we consider hnat = 2 in

what follows.
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Figure 3.1: Upwind funtions

3.4.2 Extension to several dimensions: an isotropic

approximation

The definition of the stabilization parameter given in 3.11 depends on the constant vector

k. It is therefore invariant under transformations of the reference system. In order

to preserve this invariance, an invariant approximation needs to be performed. This is

possible if it is assumed that the products kja
r
j and kikjε

r
ij depend on the invariants of

ar and εr. In the first case the only invariant available is ‖ar‖ whereas in the second

we have three possible invariants. Considering the first invariant we can perform the

approximations

kja
r
j ' ‖k‖ ‖ar‖ (3.12)

and

kikjε
r
ij ' ‖k‖2 εr

ii (3.13)

From the previous subsection we know that to obtain exact results in a one dimensional

problem we need ‖k‖ = 1 and therefore we arrive to the expression

τ =
(
(εr

ii + s)2 + ‖ar‖2)−1/2
(3.14)

When s = 0 and the diffusion coefficient εij is isotropic (given by εij = εδij) we have

εr
ii = εJ−t

ij J
−t
ij = ε

∂ξi
∂xj

∂ξi
∂xj

and

‖ar‖2 = aiJ
−t
ki ajJ

−t
kj = ai

∂ξk
∂xi

∂ξk
∂xj

aj

and we arrive to

τ =
(
ε2gijgij + aigijaj

)−1/2
(3.15)
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where

gij =
∂ξk
∂xi

∂ξk
∂xj

is the metric tensor related to the isoparametric mapping.

The stabilization parameter defined by 3.15 was proposed first in [133] in the context

of compressible flow equations and has been used in several applications [137, 143, 21].

It is clear that the approximations 3.12 and 3.13 do not take into account the angle

between the equation coefficients and the vector k. It is due to these approximations,

based on invariant quantities only, that the information on the anisotropy of the mesh is

lost. Another possibility is analyzed in the next subsection.

3.4.3 Extension to several dimensions: an anisotropic

approximation.

In order to extend the one dimensional definition to several space dimensions an intrinsic

definition of the vector k is needed.

General considerations

Let us first consider a pure convection diffusion problem (s = 0). If we move from one

to several space dimensions, the same argument that was used to pass from the artificial

diffusion method to the streamline diffusion method [76, 93] can be used here. If a

constant velocity is considered and the problem is written in a reference system such that

one direction coincides with the streamlines, we actually obtain a one dimensional problem

in this direction and a pure diffusion problem in the orthogonal ones. This implies that

the diffusion that needs to be considered to define the Péclet number is the diffusion along

the streamlines, what immediately suggest to take k = ar

‖ar‖ , arriving to

τ =

[(
1

‖ar‖2a
r
ia

r
jε

r
ij

)2

+ ‖ar‖2

]−1/2

(3.16)

Remark 1 The subgrid problem solved in the reference domain in many cases

will present an anisotropic diffusion. As an example we may consider a two

dimensional convection diffusion problem defined on the unit square with an isotropic

diffusion ε and a velocity of the form a = (a, 0)t. If the discretization is performed using

rectangular elements of sizes h1 = 1/n1 and h2 = 1/n2, n1 and n2 being the number of

elements along each side of the domain, we have that

εr =

[
2
h1

0

0 2
h2

][
ε 0

0 ε

][
2
h1

0

0 2
h2

]
=

[
4
h2
1
ε 0

0 4
h2
2
ε

]
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and

ar =

[
2
h1

0

0 2
h2

]
a =

(
2a

h1

, 0

)t

Then 3.16 gives

τ =

[(
4ε

h2
1

)2

+

(
2a

h1

)2
]−1/2

This simple example shows that expression 3.16 takes into account the fact that refining

the mesh in the direction orthogonal to a will not have any effect on the solution and

only refining along the direction of a makes sense. We could say, roughly speaking, that

refining the mesh is like adding diffusion (what is clearly seen in the factor 4ε/h2
1) and as

this example shows that if the mesh is refined only in one direction the added diffusion is

anisotropic.

Remark 2 The selection of the vector k implies a definition of the element

length used in the definition of the stabilization parameter. As an example we

may consider the problem of the previous remark but with a general velocity a = (a1, a2)
t.

In the case

ar =

[
2
h1

0

0 2
h2

]
a =

(
2a1

h1

,
2a2

h2

)t

from where

‖ar‖2 = 4

[
a2

1

h2
1

+
a2

2

h2
2

]
and expression 3.16 gives

τ =

[(
1

‖ar‖2 (ar
1a

r
1ε

r
11 + ar

2a
r
2ε

r
22)

)2

+ ‖ar‖2

]−1/2

=

[(
16ε

‖ar‖2

(
a2

1

h4
1

+
a2

2

h4
2

))2

+ ‖ar‖2

]−1/2

This expression can be written as

τ =

[(
4ε

h2
ε

)2

+

(
2 ‖a‖
ha

)2
]−1/2

(3.17)

where

h2
ε =

1

4
‖ar‖2

(
a2

1

h4
1

+
a2

2

h4
2

)−1

=

[
a2

1

h2
1

+
a2

2

h2
2

](
a2

1

h4
1

+
a2

2

h4
2

)−1

(3.18)

and

ha = 2
‖a‖
‖ar‖

(3.19)

are length scales that depend on the velocity direction. As mentioned before, natural

candidates for the definition of the element length are the maximum element length (hmax),
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the minimum element length (hmin) and the streamline element length (ha). The definition

of the element length in the direction of the flow 3.19 was considered in [34] and in [111].

Let us emphasize that neither the minimum nor the maximum element length can be used.

If the minimum element length is used refining the mesh in the direction orthogonal to

the velocity would make h → 0 and τ → 0 without eliminating the instability. If the

maximum element length is used and the mesh in the direction orthogonal to the velocity

is too coarse would give a non zero value of τ even if the instability has been eliminated.

In any case, the convergence analysis presented below imposes a condition on the choice

of the element length that needs to be satisfied (see 3.23).

Expression 3.16 presents an important conceptual problem: the definition of the

stabilization parameter will depend on the velocity direction even when ‖a‖ → 0, a

fact that is seen in the definition of the element length 3.18. This problem is not shared

by the isotropic expression 3.14 of the previous section, which can also be written in the

form 3.17 using the streamline length for ha but taking

h2
ε =

(
1

h2
1

+
1

h2
2

)−1

which is similar to hmin.

In any case, neither definition 3.16 nor definition 3.14 can be used when reaction

is present and the mesh anisotropic. Consider a convection diffusion reaction problem

defined on the unit square with an isotropic diffusion ε and a velocity of the form

a = (a, 0)t solved using a mesh of rectangular elements whose sizes are such that

ah1

2ε
� 1,

sh2
1

4ε
� 1 and

sh2
2

2ε
� 1 (3.20)

that is, a mesh that is fine in direction 1 and coarse in direction 2. In this case the

stabilization parameter using either 3.16 or 3.14 would be

τ−2 '
(

4ε

h2
1

+ s

)2

+

(
2a

h1

)2

=
16ε2

h4
1

[(
1 +

sh2
1

4ε

)2

+

(
ah1

2ε

)2
]

giving in the limit

lim
h1→0

τ = lim
h1→0

h2
1

4ε
= 0

and will not take into account the reactive instability of the problem.

The choice of the direction

In order to get an insight of how the vector k should be taken let us consider two directions

k1 = (1, 0) and k2 = (0, 1), and compare the stabilization parameter obtained using each

of them in the following two examples.
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Example 1 Let us consider a convection diffusion problem defined on the unit square

with an isotropic diffusion ε and a velocity of the form a = (a, 0)t. We have

τ (k1) =

[(
4ε

h2
1

)2

+

(
2a

h1

)2
]−1/2

, τ (k2) =

(
4ε

h2
2

)−1

Let us consider a convection dominated problem in a uniform mesh of size h1 = h2 = h.

We have that
ah

2ε
� 1

and

τ (k1) ∼
h

2a
, τ (k2) =

h2

4ε
In this case

τ (k1) � τ (k2)

and the stabilization parameter should be given by τ (k1), what suggest to take the

minimum of τ (k1) and τ (k2). As shown before, this is equivalent to take k in the direction

of the velocity.�

Example 2 Let us consider a diffusion reaction problem (a = 0) defined on the unit

square with an isotropic diffusion ε. We have

τ (k1) =

(
4ε

h2
1

+ s

)−1

, τ (k2) =

(
4ε

h2
2

+ s

)−1

Let us consider a reaction dominated problem (small diffusion) and the two cases of

anisotropic refinement. First if the mesh in direction 1 is very fine but is coarse in

direction 2 then
sh2

1

4ε
� 1 and

sh2
2

2ε
� 1

and we have that

τ (k1) ∼
h2

1

4ε
τ (k2) ∼

1

s
what implies

τ (k1) � τ (k2)

In this case the stabilization parameter should be given by τ (k2). Second, if the mesh in

the direction 1 is fine enough but coarse in the direction 2 then

sh2
1

4ε
� 1 and

sh2
2

2ε
� 1

and we have that

τ (k1) ∼
1

s
, τ (k2) ∼

h2
2

4ε
what implies

τ (k2) � τ (k1)
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In this case the stabilization parameter should be given by τ (k1). Therefore, in the case

of a pure reactive problem we could consider the maximum of τ (k1) and τ (k2) or simply

their sum. This is equivalent to consider the direction k of maximum element length or,

in other words, the direction of minimum diffusivity, i.e. direction k that makes kikjε
r
ij

minimum.�

The situation is similar in the two examples in a sense that gives rise to an important

conclusion: k depends on the direction in which the instability of the problem appears. It

is clear that in these examples the way to determine which is the correct definition of the

stabilization parameter was by determining the direction in which the instability appears

and this was done by comparing the dimensionless numbers defined on each direction.

These numbers are
ah1

2ε
,

ah2

2ε
,

sh2
1

4ε
,

sh2
2

2ε

and the one that is dominant defines the direction that needs to be considered.

In a general case, these numbers naturally appear if we consider the dimensionless

parameter

kikjε
r
ijτ (k) =

[(
1 +

s

kikjεr
ij

)2

+

(
kla

r
l

kikjεr
ij

)2
]−1/2

which immediately suggests the definitions

Pk =

∣∣kja
r
j

∣∣
kikjεr

ij

Dk =
s

kikjεr
ij

Then, the direction of maximum instability, that of the maximum Pk and Dk , will be given

by the minimum of kikjε
r
ijτ (k). Equivalently, we can define the direction of maximum

instability (kI) as

kI = arg max‖k ‖=1
τ−1(k)
kikjεr

ij
(3.21)

and the stabilization parameter we propose is given by τ
(
kI
)
, that is,

τ = τ
(
kI
)

=
((
kI

ik
I
jε

r
ij + s

)2
+
(
kI

ja
r
j

)2)−1/2

(3.22)

The computation of the direction

Definition 3.21 implies the maximization of the function

H (k) =
τ−1 (k)

kikjεr
ij

=

[(
1 +

s

kikjεr
ij

)2

+

(
kja

r
j

kikjεr
ij

)2
]1/2

but, as the square root is a monotone function, we may solve the equivalent problem

of maximizing H2 (k). This optimization problem will be approximately solved. After
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multiplying its gradient by
(
kikjε

r
ij

)3
we arrive to the equation

−
[(
kja

r
j

)2
+
(
kikjε

r
ij + s

)
s
]
∇
(
kikjε

r
ij

)
+
(
kikjε

r
ij

) (
kja

r
j

)
∇
(
kja

r
j

)
= 0

As the minimization is performed under the restriction ‖k‖ = 1, in 2D we can take

k = (cos θ, sin θ) and after a change of variables of the form x = tan θ we arrive to a

fourth order polynomial equation whose solution can be explicitly found. Let us consider

some particular cases in two dimensions

• When s = 0 the problem simplifies to

−
(
kja

r
j

)
∇
(
kikjε

r
ij

)
+
(
kikjε

r
ij

)
∇
(
kja

r
j

)
= 0

and after taking k = (cos θ, sin θ) we arrive to a third order polynomial equation

− ar
1 (εr

12 + εr
21) + ar

2ε
r
11 + [ar

1ε
r
11 − 2ar

1ε
r
22 − 2ar

2 (εr
12 + εr

21)]x

+ [2ar
2ε

r
11 − ar

2ε
r
22]x

2 + [ar
2 (εr

12 + εr
21)− ar

1ε
r
22]x

3 = 0

where x = tan θ. If we further assume the situation of remark 1 this equation

simplifies to

[εr
11 − 2εr

22]x− εr
22x

3 = 0

and we have two possible solutions that can be found as illustrated in figure 3.2

Figure 3.2: The definitiion of the instability direction in cases a (left) and b (right)

a When the mesh is such that

εr
11 < 2εr

22 ⇔
4ε

h2
1

< 2
4ε

h2
2

⇔ h2
2 < 2h2

1

or, equivalently

A :=
h2

h1

<
√

2

we have the solution θ = 0.
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b When the mesh is such that

εr
11 > 2εr

22 ⇔
4ε

h2
1

> 2
4ε

h2
2

⇔ h2
2 > 2h2

1

or, equivalently

A =
h2

h1

>
√

2

we also have the solution

tan2 θ =
εr
11 − 2εr

22

εr
22

= a2 − 2

and the stabilization parameter is given by

τ =

((
4ε

h2
1

cos θ +
4ε

h2
2

sin2 θ

)2

+

(
2a1

h1

cos θ

)2
)−1/2

• When a = 0 the problem simplifies to

∇
(
kikjε

r
ij

)
= 0

that corresponds to find the direction of minimum diffusion. We can follow the same

procedure used before to show that when εr is diagonal the solutions are θ = 0 or

θ = π/2 and if it is not we have

tan θ = −(εr
11 − εr

22)

(εr
12 + εr

21)
±

(
(εr

11 − εr
22)

2

(εr
12 + εr

21)
2 + 1

)1/2

As these particular cases illustrate the maximum of H (k) will occur somewhere

between the direction of minimum diffusion and the direction of ar. Therefore, in practice,

we find this maximum simply evaluating the function on a given number of points between

these two directions.

3.5 Error analysis

In this section we present the error analysis of the method in the case of εij = εδij,

following a standard approach. We start by proving stability in a discrete norm to be

defined and then we obtain a bound in terms of the interpolation error. A key ingredient

is the anisotropic inverse estimate [2] which can be derived from a scaling argument∥∥∇2uh

∥∥2

K
≤ C2

inv

h2
min

‖∇uh‖2
K ∀uh ∈ Vh (3.23)

The important result of this section is that, due to the need of using the inverse estimate

3.23, the stabilization parameter must satisfy the following condition

τ−1 > 4
εC2

inv

h2
min

+ s (3.24)



58 The convection diffusion reaction problem

In the case of linear elements Cinv = 0 and the condition is automatically satisfied by

3.22 and 3.1. If higher order elements are used, only taking hmin in 3.1 will satisfy it. In

this case, the direction of instability used in 3.22 should take this condition into account.

An estimation of the constant Cinv can be found in [67]. Defining s̃ = s (1− τs) and the

discrete norm

‖uh‖2
τ = ε ‖∇uh‖2

h +
∥∥s̃1/2uh

∥∥2

h
+
∥∥τ 1/2a · ∇uh

∥∥2

h

we have the following

Lemma 1 (stability) Assume that the stabilization parameter satisfies condition 3.24.

Then, there exists a constant C > 0 such that

Bτ (uh, uh) ≥ C ‖uh‖2
τ

Proof. Taking vh = uh in 3.6 and taking into account the skewsymmetry of the

convective term we have

Bτ (uh, uh) ≥ ε ‖∇uh‖2
Ω + s ‖uh‖2

Ω +
∥∥τ 1/2a · ∇uh

∥∥2

h
−
∥∥τ 1/2

(
−ε∇2uh + suh

)∥∥2

h

As ∥∥−ε∇2uh + suh

∥∥2

K
≤
∥∥ε∇2uh

∥∥2

K
+ ‖suh‖2

K + 2
∥∥ε∇2uh

∥∥
K
‖suh‖K

using the inverse estimate 3.23 and that for any α > 0 we have −2xy ≥ − 1
α
x2 − αy2, we

arrive to

Bτ (uh, uh) ≥ ε

∥∥∥∥∥
(

1− τ
εC2

inv

h2
min

− τs
1

α

)1/2

∇uh

∥∥∥∥∥
2

h

+s

∥∥∥∥∥
(

1− τs− ατ
εC2

inv

h2
min

)1/2

uh

∥∥∥∥∥
2

h

+
∥∥τ 1/2a · ∇uh

∥∥2

K

Note that

1− τ
εC2

inv

h2
min

− τs
1

α
≥ C1

iff

(1− C1) τ
−1 ≥ εC2

inv

h2
min

+
1

α
s

what is implied by 3.24 when C1 = 1− 1/α and α = 2. In the same way

1− τs− ατ
εC2

inv

h2
min

≥ C2 (1− τs)

iff

(1− C2)
(
τ−1 − s

)
≥ α

εC2
inv

h2
min

what is again implied by 3.24 when C2 < 1/2. Therefore, the result holds for C =

min (C1, C2, 1).
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Let us now consider ûh an interpolant of the solution of the continuous problem u

and define the interpolation error η = u− ûh. We will present now a bound of Bτ (η, vh)

in terms of a function of the interpolation error E (η) defined by

E (η) = ε1/2 ‖∇η‖h + 2
∥∥τ 1/2a · ∇η

∥∥
h

+ 2
∥∥s̃1/2η

∥∥
h

+2ε
∥∥τ 1/2∇2η

∥∥
h

+
∥∥∥(τ−1 − s

)1/2
η
∥∥∥

h
+
∥∥∥ τs
s̃1/2

a ·∇η
∥∥∥

h

In turn, this function can be bounded relying on some result from interpolation theory,

although we will not consider this type of bound here.

Lemma 2 Assume that the stabilization parameter satisfies condition 3.24. Then

‖η‖τ ≤ E (η)

and

Bτ (η, vh) ≤ E (η) ‖vh‖τ

Proof. The first inequality is evident. To prove the second one we start from the

definition

Bτ (η, vh) = (ε∇η,∇vh)h (3.25)

+ (a · ∇η, vh)h (3.26)

+ (sη, vh)h (3.27)

+
(
−ε∇2η, τε∇2vh

)
h

(3.28)

+
(
−ε∇2η, τa · ∇vh

)
h

(3.29)

−
(
−ε∇2η, τsvh

)
h

(3.30)

+
(
a · ∇η, τε∇2vh

)
h

(3.31)

+ (a · ∇η, τa · ∇vh)h (3.32)

− (a · ∇η, τsvh)h (3.33)

+
(
sη, τε∇2vh

)
h

(3.34)

+ (sη, τa · ∇vh)h (3.35)

− (sη, τsvh)h (3.36)

In order to bound these 12 terms we will use that

τ 1/2ε1/2Cinv

hmin

< 1 (3.37)

and that

τ 1/2s1/2 ε
1/2Cinv

hmin

≤ s1/2 (1− τs)1/2 (3.38)
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which are implied by 3.24. Also as 0 < 1− τs < 1 we have

1− τs ≤ (1− τs)1/2 = τ 1/2
(
τ−1 − s

)1/2
(3.39)

Term 3.25 can be bounded as

(ε∇η,∇vh)h ≤ ε ‖∇η‖h ‖∇vh‖h ≤ ε1/2 ‖∇η‖h ‖vh‖τ

Term 3.32 can be bounded as

(a · ∇η, τa · ∇vh)h ≤
∥∥τ 1/2a · ∇η

∥∥
h

∥∥τ 1/2a · ∇vh

∥∥
h
≤
∥∥τ 1/2a · ∇η

∥∥
h
‖vh‖τ

Terms 3.27 and 3.36 can be bounded as

(sη, vh)h − τ (sη, svh)h = (η, s̃vh)h ≤
∥∥s̃1/2η

∥∥
h

∥∥s̃1/2vh

∥∥
h
≤
∥∥s̃1/2η

∥∥
h
‖vh‖τ

Term 3.28 can be bounded using 3.37 as(
−ε∇2η, τε∇2vh

)
h
≤

∥∥τ 1/2ε∇2η
∥∥

h

∥∥τ 1/2ε∇2vh

∥∥
h

≤
∥∥τ 1/2ε∇2η

∥∥
h

∥∥∥∥τ 1/2εCinv

h
∇vh

∥∥∥∥
h

≤
∥∥τ 1/2ε∇2η

∥∥
h

∥∥ε1/2∇vh

∥∥
h
≤
∥∥τ 1/2ε∇2η

∥∥
h
‖vh‖τ

Term 3.29 can be bounded as(
−ε∇2η, τa · ∇vh

)
h
≤
∥∥τ 1/2ε∇2η

∥∥
h

∥∥τ 1/2a · ∇vh

∥∥
h
≤
∥∥τ 1/2ε∇2η

∥∥
h
‖vh‖τ

Term 3.31 can be bounded using 3.37 as(
a ·∇η, τε∇2vh

)
h
≤

∥∥τ 1/2a ·∇η
∥∥

h

∥∥τ 1/2ε∇2vh

∥∥
h
≤
∥∥τ 1/2a ·∇η

∥∥
K

∥∥∥∥τ 1/2εCinv

h
∇vh

∥∥∥∥
K

≤
∥∥τ 1/2a ·∇η

∥∥
h

∥∥ε1/2∇vh

∥∥
h
≤
∥∥τ 1/2a · ∇η

∥∥
h
‖vh‖τ

Term 3.34 can be bounded using 3.38 as(
sη, τε∇2vh

)
h
≤

∑
K∈Ph

τsε ‖η‖K

∥∥∇2vh

∥∥
K

≤
∑

K∈Ph

(τs)1/2 (τs)1/2 ε1/2Cinv

h
‖η‖K

∥∥ε1/2∇vh

∥∥
K

≤
∑

K∈Ph

s1/2 (1− τs)1/2 ‖η‖K

∥∥ε1/2∇vh

∥∥
K
≤
∥∥s̃1/2η

∥∥
h
‖vh‖τ

Terms 3.26 and 3.35 are bounded integrating by parts the convective term 3.26 and

using 3.39 as

(a · ∇η, vh)Ω + (sη, τa · ∇vh)h = − (η,a · ∇vh)Ω + (sη, τa · ∇vh)h

= −
(
τ−1/2 (1− τs) η, τ 1/2a · ∇vh

)
h

≤
∥∥τ−1/2 (1− τs) η

∥∥
h

∥∥τ 1/2a · ∇vh

∥∥
h

≤
∥∥∥(τ−1 − s

)1/2
η
∥∥∥

h

∥∥τ 1/2a · ∇vh

∥∥
h

≤
∥∥∥(τ−1 − s

)1/2
η
∥∥∥

h
‖vh‖τ
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Term 3.33 can be bounded as

− (a · ∇η, τsvh)h = −
( τs
s̃1/2

a · ∇η, s̃1/2vh

)
h
≤
∥∥∥ τs
s̃1/2

a · ∇η
∥∥∥

h

∥∥s̃1/2vh

∥∥
h

≤
∥∥∥ τs
s̃1/2

a · ∇η
∥∥∥

h
‖vh‖τ

The result is obtained grouping terms.

Using these results we can prove convergence using Céa’s lemma. The result is the

following

Theorem 1 Assume that the stabilization parameter satisfies condition 3.24. Then

‖u− uh‖τ ≤ E (η) = E (u− ûh)

where E is the function defined above.

Let us close this section with the following

Remark 3 The only condition needed to prove convergence in the anisotropic case is

3.24. After satisfying this condition, there is still some freedom for the selection of the

stabilization parameter (and in the case of linear elements this condition is satisfied for

any definition). Therefore, the difference between the definition 3.1 or 3.22 is the norm

in which this convergence is proved and the form of the function E (η) (which depends

on τ). In the isotropic case this estimate is optimal (see the discussion of [28] about the

norm ‖·‖τ). In the anisotropic case we would need appropriate interpolation estimates to

decide about this optimality. However, numerical experiments will show the convenience

of choosing 3.22.

3.6 Numerical examples

In this section we present numerical examples illustrating the behavior of the method

proposed. The first two of them illustrate the behavior of the method on anisotropic

meshes, the third one shows the importance of satisfying the restriction imposed by the

error analysis when elements of order higher than one are used and the last one how the

method behaves on isotropic but unstructured meshes.

3.6.1 Convection diffusion under anisotropic refinement

In this subsection we consider a convection diffusion problem (s = 0) on the domain

Ω = [0, 1] × [0, 1] with zero Dirichlet boundary conditions on ∂Ω and a force f = 1. We

consider a diffusion coefficient εij = εδij where ε = 10−4 and three different velocities

1. a = (1, 0)
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2. a = (0, 1)

3. a =
(√

2/2,
√

2/2
)

A reference solution of this problem was found using a mesh of 100 × 100 elements

refined according to the velocity. In case 1 it was refined in the direction x near the right

wall and was uniform in the direction y; in the second case it was uniform in the direction

x and refined in the direction y near the upper wall and in the third case it was refined

in both directions near the right and upper walls. The smallest element size is about

2.5 × 10−5. The results for the three cases are shown in figure 3.3. Note the presence of

a strong boundary layer on the right wall in the case 1, on the upper wall in the case 2

and on both the upper and right walls in the case 3.

Figure 3.3: Reference solutions

For each case, the problem was also solved using a uniform mesh of 10× 10 elements

using the definition of the stabilization parameter given by 3.1 taking h as hmin (the

minimum element length), as hmax (the maximum element length) and as ha (the

streamline element length) and also using expression 3.22 which is what we propose here.

When the elements of the mesh are squares the definition given by 3.1 yields the same

result taking h as hmin or hmax or ha (when h1 = h2 = h expressions 3.18 and 3.19 give

hε = ha = h). In these cases also expression 3.22 gives a similar result. These results are

shown in figure 3.4
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Figure 3.4: Solutions obtained using a mesh of 10× 10 elements

Then the behavior of the method with respect to the mesh aspect ratio was analyzed.

To this end, the problem was solved using meshes of 10× 10 and also 100× 10, 1000× 10,

10000× 10 giving aspect ratios A = 100, 101, 102, 103. To analyze the results we plot the

unknown along the line y = 0.5 in the case 1, along the line x = 0.5 in the case 2 and

along the lines x = 0.9 and y = 0.9 in the case 3. The results using the stabilization

parameter defined by 3.1 taking h as hmin are shown in figure 3.5, those obtained taking

h as hmax are shown in figure 3.6, those obtained using ha are shown in figure 3.7 and

those obtained using the stabilization parameter defined by 3.22 are shown in figure 3.8.

The minimum requirement we should pose to evaluate the behavior of a method is

that the solution obtained using any anisotropic grid cannot be worse than the solution

obtained using the 10×10 grid, or in other words, we should require that the solution can

not get worse when the dimension of the finite element space is increased in a nested way.

This is what happens if we use the stabilization parameter defined by 3.1 taking h as hmin

or as ha. In the first case, the solution obtained in case 1 is improved but in cases 2 and 3

numerical oscillations appear when the stretching factor increases. In the second case the

solution obtained in cases 1 and 2 is improved but in case 3 numerical oscillations appear

when the mesh is anisotropically refined. On the other hand, the solution obtained using

the stabilization parameter defined by 3.1 taking h as hmax or the solution obtained using

the expression 3.22 satisfy this requirement. Both methods give similar results in cases
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Figure 3.5: Solutions obtained using 3.1 with hmin in the case 1 (top left), in the case 2 (top
right) and in the case 3 (bottom).
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Figure 3.6: Solutions obtained using 3.1 with hmax in the case 1 (top left), in the case 2 (top
right) and in the case 3 (bottom).
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Figure 3.7: Solutions obtained using 3.1 with ha in the case 1 (top left), in the case 2 (top right)
and in the case 3 (bottom).
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Figure 3.8: Solutions obtained using 3.22 in the case 1 (top left), in the case 2 (top right) and
in the case 3 (bottom).
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2 and 3 but only when the stabilization parameter proposed here is used the solution in

case 1 is improved when the grid is refined. The method defined by 3.1 with h as hmax

does take advantage of the new points added in the direction x even if the solution has

a boundary layer on the right wall. Let us finally remark that in some cases the solution

obtained using 3.1 taking h as hmin or as ha can give a better solution than the method

proposed here, as occurs in case 1, even if they present numerical oscillations in other

cases.

3.6.2 Diffusion reaction under anisotropic refinement

In this subsection we consider a diffusion reaction problem on the domain Ω = [0, 1]×[0, 1]

with zero Dirichlet boundary conditions on ∂Ω and a force f = 40. We consider again

εij = εδij where ε = 10−4 and a reaction s = 40. The problem is solved using meshes of

10× 10 elements and also 100× 10, 1000× 10, 10000× 10 elements, giving aspect ratios

A = 100, 101, 102, 103. To analyze the results, we plot the unknown along the line y = 0.5

and along the line x = 0.5. In this case, the results obtained using the stabilization

parameter defined by 3.1 taking h as hmax and those obtained using 3.22 are the same.

Therefore, we compare the results obtained using 3.1 taking h as hmin shown in figure 3.9

to those obtained taking h as hmax shown in figure 3.10.
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Figure 3.9: Solution obtained using 3.1 with hmin along the lines y = 0.5 and x = 0.5.
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Figure 3.10: Solution obtained using 3.1 with hmax along the lines x = 0.5 and y = 0.5.
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As in the convection diffusion problem shown in the previous subsection, the result

obtained using 3.1 taking h as hmin shows numerical oscillations when the mesh is

anisotropically refined whereas the results obtained using 3.1 taking h as hmax do not

change. Both results are compared in figure 3.11 where the solutions obtained using the

mesh of 100× 10 elements are shown.
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Figure 3.11: Solution obtained using 3.1 with hmin (left) and using 3.1 with hmax (right)

3.6.3 The Poisson problem using quadratic elements

In this subsection we consider a pure diffusive Poisson problem which corresponds to the

CDR problem in the limit of vanishing convection and reaction. The domain considered

is Ω = [0, 1]× [0, 1] and zero Dirichlet boundary conditions on ∂Ω are prescribed. In order

to activate instabilities we introduce a forcing term that gives a solution of the form

u (x, y) =
(
1 + e−α − e−αx − eα(x−1)

) (
1 + e−α − e−αy − eα(y−1)

)
which presents boundary layers on the domain boundary whose width can be controlled

using the parameter α. We solve the problem using a uniform mesh of 10×10 biquadratic

elements and expression 3.1 for different values of c1. The results are shown in figure 3.12.

For biquadratic elements Cinv = 24 [67] and it can be observed that when condition

3.24 is not satisfied numerical oscillations appear. Note that the Galerkin method is

recovered when c1 →∞

3.6.4 A convection diffusion reaction problem on isotropic

meshes.

In this subsection we consider a convection diffusion problem on the domain Ω =

[0, 1] × [0, 1] with zero Dirichlet boundary conditions on ∂Ω and a force f = 20. The

equation coefficients are εij = εδij where ε = 10−2, s = 20 and a = (3, 2). We solve the

problem on different meshes:

• Case 2 structured triangular elements of size 0.1 titled to the right /
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Figure 3.12: Solution to the Poisson problem obtained using 3.1 with c1 = 16 (top left), with
c1 = 24 (top right), with c1 = 48 (bottom left) and with c1 = 96 (bottom right).

• Case 3: structured triangular elements of size 0.1 titled to the left \

• Case 4: unstructured triangular elements of size 0.1

• Case 5 structured 10× 10 square elements

• Case 6: unstructured square elements of size 0.1

In any of these cases the mesh size is around 0.1 but it varies slightly according to

the mesh design. In the case of triangular elements the element lengths are calculated as

h1 = J−t
1k J

−t
1k and h2 = J−t

2k J
−t
2k . The dimensionless numbers of the problem are given by

D =
sh2

4ε
= 5

P =
ah

2ε
∼ 18

A reference solution (case 1) was computed on a 200×200 mesh for which these numbers

are

D = 0.0125

P = 0.9



The convection diffusion reaction problem 69

Figure 3.13: Reference solution

The result is shown in figure 3.13. The maximum value obtained is umax = 0.99807.

For each of these cases we compare the results obtained using the multiscale

formulation using four possible definitions of the stabilization parameter. The first three

are given by 3.1 taking the length h as the minimum, the maximum and the length in

the velocity direction. The fourth is the definition given by 3.22. Table 3.1 shows the

maximum values obtained for each case and method.

Case 2 (ST /) Case 3 (ST \) Case 4 (UT) Case 5 (SQ) Case 6 (UQ)

3.1 using hmin 1.3841 1.2712 1.2052 1.2973 1.3543

3.1 using hmax 1.1915 1.1486 1.1318 1.2973 1.2332

3.1 using ha 1.0281 1.3154 1.2437 1.2973 1.4191

3.22 0.9639 0.9762 0.9773 1.0828 1.0248

Table 3.1: Maximum values obtained

Figures 3.14 to 3.18 show contours for each case and method, all given in the same

scale as figure 3.13.

3.7 Conclusions

The definition of the stabilization parameters in the case of the scalar convection diffusion

reaction problem has been revisited. The variational multiscale method provides a

natural framework to understand the problem. Starting from this point and introducing

a transformation of the fine scale problem to the reference domain the dependence of

the stabilization parameters on the equation coefficients and element length (through

the Jacobian of such transformation) has been identified. A deeper inspection of the

Fourier argument presented in [29] permitted to obtain an exact representation of the



70 The convection diffusion reaction problem

Figure 3.14: Results obtained in case 2 using 3.1 with hmax (top left), with hmin (top right),
with ha (bottom left) and using 3.22 (bottom right).

Figure 3.15: Results obtained in case 3 using 3.1 with hmax (top left), with hmin (top right),
with ha (bottom left) and using 3.22 (bottom right).
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Figure 3.16: Results obtained in case 4 using 3.1 with hmax (top left), with hmin (top right),
with ha (bottom left) and using 3.22 (bottom right).

Figure 3.17: Results obtained in case 5 using 3.1 with hmax (top left), with hmin (top right),
with ha (bottom left) and using 3.22 (bottom right).
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Figure 3.18: Results obtained in case 6 using 3.1 with hmax (top left), with hmin (top right),
with ha (bottom left) and using 3.22 (bottom right).

Green function 3.10 and a first approximation to it. The well known exact solution to

the one dimensional problem has been used to find the constants of the parameter in a

very natural way. Finally, the direction of the wave vector k has been identified as the

direction of the maximum instability of the problem as the one of maximum

The expression proposed gives excellent results as numerical experiments have shown.

In the case of linear elements, these experiments have also shown that when the usual

expression 3.1 with h = hmax is used numerical oscillations do not appear. This conclusion

is important for more complex problems where the direction of the instability could be

difficult to find. When higher order elements are used condition 3.24 must be satisfied for

the error analysis to be valid. This is confirmed by the results obtained in the case of the

Poisson problem that present numerical oscillations if the condition is not satisfied. This

also implies that it is not possible to stabilize reaction when higher order elements are

used, at least in the anisotropic case. Although desirable, this stability is not essential as

the oscillations are local thanks to the L2 stability provided by the reactive term.



Chapter 4

The Oseen problem

In this chapter we present a new subgrid scale model for the Oseen equations in the context

of the variational multiscale method. We extend the method of the previous chapter to

systems of second order equations and two possible approximations of the solution of the

fine scale problem are presented. Following the line of the previous chapter we evaluate

the proposed model when anisotropic meshes are used. The stability of the linearized

problem is proved and numerical examples illustrating the behavior of the method are

provided.

4.1 Introduction

Although the incompressible Navier Stokes equations have been extensively studied,

several points remain unclear. At the continuous level these problems involve uniqueness

of weak solutions or global existence of strong solutions and are summarized in the Clay

Institute Prize Problem. At the discrete level many different approximations have been

proposed and several results have been established. All of them involve, in a way or

another, the solution of the linearized problem. It is well known that these equations

present different types of numerical instabilities.

In the first place we have the instability due to the dominance of the convective term

over the viscous one in the high Reynolds number regime. This instability is also present

in the scalar convection diffusion problem and it is well understood. A stable and accurate

approximation to this problem has been presented in the previous chapter, where a new

definition of the stabilization parameters has proven to give excellent results.

As a second problem, we have the pressure instability that may appear if the

compatibility of the velocity and pressure spaces posed by the inf-sup condition is not

satisfied. This instability is also present in the Stokes problem and is also well understood.

It is not related to the dominance of a term in the equations but rather to the vectorial

structure of the problem. When the Navier Stokes equations are written as a system
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of second order equations, the pressure appears in the first order term and the diffusion

matrix is not positive definite, but only semidefinite.

In this work we present a stabilized finite element formulation based on the subgrid-

scale approach introduced in [75, 78] for the scalar convection–diffusion equation. The

idea is to split the solution of the continuous problem ϕ into a finite element component ϕh

and the difference ϕ̃ = ϕ− ϕh, called subscale, which cannot be reproduced by the finite

element mesh. This splitting corresponds to a decomposition of the continuous space V

as a direct sum of the finite element space Vh and a subgrid space Ṽ to be defined. The

approximation of the problem projected onto Ṽ , which is driven by the strong residual

of the finite element problem, will give an approximated subscale ϕ̃ap whose effect on the

discrete problem for ϕh will be taken into account. Hopefully, this approximation will

enhance the stability properties of the discrete problem projected on Vh, allowing the use

of equal order velocity-pressure interpolations and the solution of convection dominated

problems. This approach is a general framework in which it is possible to design different

stabilized formulations depending on the approximation performed for solving the fine

scale problem and on the selection of the space of subscales. After stating the problem in

section 4.2, the approximation of the fine scale problem in presented in section 4.3. The

whole process can be divided in three steps.

The first one consists in approximating the boundary conditions of the small scale

problem on the edges of the finite element mesh in order to obtain uncoupled local

problems posed on each element. It is common to assume that the subscales vanish

on the element boundaries, but other possibilities could be considered and are currently

under investigation.

The second step consists of some approximation of the inverse differential operator

to write the subscales in terms of the residual of the finite element component. In the

case of the scalar convection diffusion problem the inverse of the differential operator L
is replaced by an algebraic operator τ that depends on the equation coefficient and on

the finite element mesh, including its stretching, as shown in the previous chapter. In the

case of the Stokes or Oseen equations the differential operator is of vectorial character

and therefore so is its inverse. Nevertheless a diagonal matrix of stabilization parameters

is commonly employed, although some efforts to understand the vectorial structure of the

equations have been recently made in [121], where a stabilization matrix has been derived

by dimensional analysis and the stability of the final method has been proved. Non

diagonal approximations have also been proposed to consider anisotropic finite element

approximations in [9, 8, 10] but they do not result from the approximation of the fine

scale problem in the variational multiscale context and are rather ad hoc.

In this chapter we present two approximations to the inverse of the Oseen operator

using ideas that can be applied to any second order system of equations. Both are

extensions of the ideas presented in the previous chapter applied in different ways. The
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first one deals with the whole operator and results in a condition for the design of the

stabilization matrix. This permits to define a stabilization matrix taking into account

the simplicity of the final method. Using this approach we recover the standard matrix

diag (τmI,τc) (τm and τc are defined in section 4.3). The second approximation deals with

each equation separately and naturally takes into account the coupling between variables.

The result is not a stabilization matrix but a stabilization operator that consists in the

usual algebraic term diag (τmI,τc) and some extra differential terms that couple equations.

In both cases the anisotropy of the grid is incorporated in the definition of the scalar

parameters as in chapter 3 and not in the coupling between equations as done before in

[9, 8, 10].

The third step consists in imposing that the approximated subscale belongs to the

selected subspace Ṽ , what is done by a projection. The approach followed originally in

[75, 78] and described also in [28], consists in taking the subscales directly proportional

to the residual of the finite element component. In this case the space of subscales is the

space of the residuals LVh (when the force is a finite element function) and no projection

is needed. Another approach, described in [29], is to take only the component of these

residuals L2 orthogonal to the finite element space. This idea was first introduced in [26]

as an extension of a stabilization method originally introduced for the Stokes problem in

[30].

In section 4.4 we also prove stability of the formulation and we will show that the

extra differential terms in the second approximation, which are of high order, do not

provide any extra stability (except for some control of ∇2∇ ·uh) and must be controlled

by the usual diagonal terms. Therefore, they can only be considered if a high order

polynomial approximation is employed. How important these terms are is something that

needs further research and that we leave for a future work. The point we want to evaluate

here is how the anisotropy of the grid has to be taken into account and to do that we

need to clarify how the relation between variables should be.

Finally, numerical experiments are presented in section 4.5 and conclusions are drawn

in section 4.6.

4.2 Problem Statement

Let us start writing the Oseen equations with zero Dirichlet boundary conditions. To this

end, let us consider the space of functions whose p power (1 ≤ p <∞) is integrable in a

domain ω, denoted by Lp(ω), and the space of bounded functions in ω, denoted by L∞(ω).

The space of functions whose distributional derivatives of order up to m ≥ 0 (integer)

belong to L2(ω) is denoted by Hm(ω). The space H1
0 (ω) consists of functions in H1(ω)

vanishing on ∂ω. The topological dual of H1
0 (ω) is denoted by H−1(ω). A bold character

is used to denote the vector counterpart of all these spaces. If f and g are functions (or
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distributions) such that f g is integrable in the domain ω under consideration, we denote

〈f, g〉ω =

∫
ω

f g dω,

so that, in particular, 〈·, ·〉ω is the duality pairing between H−1(ω) and H1
0 (ω). When

f, g ∈ L2(ω), we write the inner product as 〈f, g〉ω ≡ (f, g)ω and the norm (g, g)
1/2
ω is

denoted by ‖g‖ω. Using this notation, the Oseen problem consists in finding the velocity

field u ∈ V := H1
0(Ω), and the pressure field p ∈ Q := L2(Ω)/R such that

− ν∇2u + a ·∇u + ∇p = f in Ω (4.1)

∇ · u = 0 in Ω (4.2)

u = 0 on Γ (4.3)

where Γ = ∂Ω is the boundary of the domain Ω ⊂ Rd, (d = 2, 3), f ∈ H−1 (Ω) is the

external force, ν is the kinematic viscosity and a ∈L∞(Ω) is the given solenoidal advection

velocity. This problem can be written in a weak form as follows: find (u, p) ∈ V × Q

such that

B (u, p; v, q) = L (v, q) ∀ (v, q) ∈ V ×Q (4.4)

where

B (u, p; v, q) = (∇v, ν∇u)Ω + (v,a ·∇u)Ω − (∇ · v, p)Ω + (∇ · u, q)Ω

L (v, q) = 〈v,f〉Ω

Let us consider the multiscale decomposition of the space V and Q

V = V h ⊕ Ṽ , Q = Qh ⊕ Q̃

where h is used to indicate spaces (and functions) constructed using a finite element

partition of the domain Ph = {K} as

V h =
{

vh ∈ V : vh ◦ F−1
∣∣
K
∈ P p

(
K̂
)}

Qh =
{
wh ∈ Q : w ◦ F−1

∣∣
K
∈ Pp

(
K̂
)}

where Pp

(
K̂
)

denotes the set of polynomials of degree at most p (on each space variable if

quadrilateral/hexahedral elements are used) and F the affine mapping from the reference

element K̂ to the physical element K. In the same way˜ is used to indicate subgrid spaces

(and functions) which are any completion of the finite element spaces to the continuous

spaces. Applied to the weak form of the problem, this decomposition leads to

B (uh, ph; vh, qh) +B (ũ, p̃; vh, qh) = L (vh, qh) ∀ (vh, qh) ∈ V h ×Qh (4.5)

B (uh, ph; ṽ, q̃) +B (ũ, p̃; ṽ, q̃) = L (ṽ, q̃) ∀ (ṽ, q̃) ∈ Ṽ × Q̃ (4.6)
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The first equation is the equation for the resolvable scales (the functions of the spaces V h

and Qh) and has two terms: the first one is the Galerkin contribution and the second one

takes into account the influence of the subgrid scale on the finite element components.

Let us introduce the following notation

Ωh = ∪
K∈Ph

K and Γh = ∪
K∈Ph

∂K

and

(·, ·)h =
∑

K∈Ph

(·, ·)K , (·, ·)∂h =
∑

K∈Ph

(·, ·)∂K and ‖·‖2
h =

∑
K∈Ph

‖·‖2
K

Integrating by parts within each element we have

(vh,a ·∇ (uh + ũ))Ω = (vh,a ·∇uh)Ω + (vh,a · nũ)∂h − (a ·∇vh, ũ)h − (vh,∇ · aũ)h

and

(∇vh, ν∇ũ)Ω = (νn · ∇vh, ũ)∂h −
(
ν∇2vh, ũ

)
h

(qh,∇ · ũ)Ω = (qh,n · ũ)∂h − (∇qh, ũ)h

Then, we can write the first equation 4.5 as

(∇vh, ν∇uh)Ω + (vh,a ·∇uh)Ω − (∇ · vh, ph)Ω + (qh,∇ · uh)Ω

+ (L∗vh −∇qh, ũ)h − (∇ · vh, p̃)h− (vh,∇ · aũ)h︸ ︷︷ ︸
1

(4.7)

+ (vh, νn ·∇ũ)∂h︸ ︷︷ ︸
2

+ (vh,n · aũ)∂h︸ ︷︷ ︸
3

+ (qh,n · ũ)∂h︸ ︷︷ ︸
4

= 〈vh, f〉Ω

for any (vh, qh) ∈ V h × Qh, where L∗ is the adjoint of the convection diffusion operator

L, defined as

L = −ν∇2 + a ·∇
L∗ = −ν∇2 − a ·∇

Let us remark that, up to this point, no approximation has been performed. Term 1 in

4.7 vanishes because a is assumed to be solenoidal. Terms 3 and 4 in 4.7 also vanishes

thanks to the continuity of the subscales and test functions across interelement boundaries.

Finally term 2 does not vanish and could be accounted for but will be neglected in this

work.

Integrating again by parts within each element we have

(∇ṽ, ν∇u)Ω = (ṽ, νn · ∇u)∂h +
(
ṽ,−ν∇2u

)
h

(∇ · ṽ, p)Ω = (ṽ, pn)∂h − (ṽ,∇p)h
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Then, we can write the second equation 4.6 as

(ṽ,Lũ + ∇p̃)h + (∇ · ũ, q̃)h + (ṽ,−pn+νn · ∇u)∂h = (ṽ,Rm)h + (q̃, Rc)h

for any (ṽ, q̃) ∈ Ṽ × Q̃ where

Rm = f − Luh −∇ph

Rc = −∇ · uh

are the residuals of the momentum and continuity equations. As the continuous tractions

σ = −pn+νn · ∇u are continuous across any surface, the last term on the left hand side

vanishes and the problem is equivalent to find (ũ, p̃) ∈ Ṽ × Q̃ such that

Lũ + ∇p̃ = Rm + ṽ⊥ in Ωh (4.8)

∇ · ũ = Rc + q̃⊥ in Ωh (4.9)

ũ = uske on Γh (4.10)

where uske is a function defined on the element boundaries and ṽ⊥ and q̃⊥ are any

functions on the orthogonal complement of Ṽ and Q̃ respectively (in the L2
(
Ωh
)

sense).

The function uske must be such that the exact tractions are continuous across element

boundaries. In turn functions ṽ⊥ and q̃⊥ are responsible for guaranteeing that ũ ∈ Ṽ

and p̃ ∈ Q̃. A modelling step is necessary to solve the system, what means a choice of

uske and of ṽ⊥ and q̃⊥ and an approximate solution of 4.8-4.9. Note that 4.8-4.9 is posed

in Ωh, which consists in the union of the elements of the mesh. Therefore, any choice of

uske leads to uncoupled problems posed on each element K. In turn, a choice of ṽ⊥ and

q̃⊥ is a choice of the spaces where the subscales belong.

4.3 Approximate solution of the subscale equation

In this section we present two approximated solutions to the fine scale problem. The

first one is based on an extension of the ideas of chapter 3 to systems of second order

equations. This rather general approach, that permits to motivate the standard use of

a diagonal stabilization matrix, is presented the next subsection. However, in the case

of the Oseen problem, a better argument can be developed based on the same ideas but

treating the coupling exactly as shown in subsection 4.3.2. The choice of ṽ⊥ and q̃⊥ is

discussed in subsection 4.3.3 (we consider the simple case ṽ⊥ = 0 and q̃⊥ = 0 in the

first two subsections) and we finally summarize the possibilities for discrete problem in

subsection 4.3.4.
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4.3.1 Approximating the Oseen equations as a system

Let us consider the generic problem of n equations for n unknowns U ∈ V of the form

LU := −∂i (Kij∂jU ) + Ai∂iU + SU = F in Ω

where Kij,Ai and S (for1 ≤ i, j ≤ d) are square coefficient matrices of n×n components

and F ∈ W = L (V) is the vector of external forces. Several systems can be written in

this form with an appropriate definition of the matrices Kij,Ai and S. In particular,

when d = 2, the Oseen problem is obtained taking

Kij = νδij

 1 0 0

0 1 0

0 0 0

 , Ai =

 ai 0 δi1

0 ai δi2

δi1 δi2 0

 , S = 0

and U = (u1, u2, p)
t. The fine scale 4.8-4.9 problem is now written as

LŨ = F − LUh := R (4.11)

where Ũ = (ũ1, ũ2, p̃)
t and Uh = (uh1, uh2, ph)

t. As in the scalar case of chapter 3, we first

determine the dependence of the solution with respect to the mesh size by transforming

to a unitary reference domain. To this end let us define an isoparametric mapping F

relating the element K (with coordinates x) to a reference element K̂ (with coordinates

ξ)

x = F (ξ)

The Jacobian of the mapping F , J , verifies

Jkl =
∂xl

∂ξk
, J−t

kl =
∂ξk
∂xl

.

and transforming 4.11 we obtain

LŨ := −∂i

(
Kr

ij∂jŨ
)

+ Ar
i∂iŨ + SŨ = R (4.12)

where now ∂i stands for ∂/∂ξi and

Kr
ij = J−t

ip J
−t
jq Kpq

Ar
i = J−t

pi Ap

The next step is to Fourier transform equation 4.12 and to this end we consider [29]

the Fourier transform of a function v defined in K̂ as

v̂ (k) =

∫
K̂

e−ik ·ξ v (ξ) dξ
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where i =
√
−1 and k is the wave number. If n denotes the normal to the element K̂ we

have that

∂̂v

∂ξj
(k) = ikj v̂ (k) +

∫
∂K̂

nje
−ik ·ξ vdΓξ

Applying this transform is applied to functions that vanish on the element boundary, the

second term on the right hand side vanishes and we have the classical Fourier derivation

formula. Transforming 4.12 we obtain

T −1 (k)
̂̃
U = R̂ (4.13)

where

T (k) :=
(
kikjK

r
ij + Sr + ikjA

r
j

)−1

if T −1 (k) is assumed to be invertible. Using the inverse Fourier transform the subgrid

scale can be written as

Ũ (η) =

∫
Rd

eik ·η T (k) R̂ (k) dk

As in the scalar case, in the above expression we can identify the Fourier representation

of the Green function of the subscale problem [75] given by

Ũ (η) =

∫
K̂

G (ξ, η) R (ξ) dξ

where

G (ξ, η) =

∫
Rd

T (k) e−ik ·(ξ −η )dk (4.14)

If we approximate [24, 75]

G (ξ, η) = τ δ (ξ − η) = τ

∫
Rd

e−ik ·(ξ −η )dk

expression 4.14 permits us to identify the stabilization matrix as some norm of T (k0) for

certain k0. In the scalar case it is possible to show that if we consider the approximated

subscale as ũap = τR then

‖ũ‖2
L2(K̂) = ‖ũap‖2

L2(K̂)

provided τ is defined as τ = |T (k0)| and the existence of k0 of is guaranteed by the mean

value theorem [29].

In order to extend this argument to systems of equations, we need to define appropriate

norms of Ũ and R. In general neither U tU nor F tF are dimensionally meaningful. Only

the product U tF , that represents the work done by U against F is defined, because

we assume the duality paring 〈, 〉 : V × W →R to be defined. Therefore, we introduce

a positive definite scaling matrix M such that the product (F 1,F 2)M := F t
1MF 2 is
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pointwise well defined and we define the corresponding norm |·|M and ‖·‖M the L2 (Ω)-

norm of |·|M . We will also write (U 1,U 2)M−1 := U t
1M

−1U 2 and the corresponding norms

|·|M−1 and ‖·‖M−1 . Using these norms we can define the scaling of an operator as∣∣T −1
∣∣
M

= sup
U ∈ V

|T −1U |M
|U |M−1

= sup
U ∈ V

U tT −∗MT −1U

U tM−1U

for any U ∈ V . The choice of the scaling M is equivalent to choose the way the equations

are written in dimensionless form, if this is the option adopted.

Taking the M -norm of 4.13 we have that∥∥∥R̂∥∥∥
M

=

∥∥∥∥T −1 (k)
̂̃
U

∥∥∥∥
M

=

∫
Rd

∣∣∣∣T −1 (k)
̂̃
U

∣∣∣∣
M

≤
∫

Rd

∣∣T −1 (k)
∣∣
M

∣∣∣∣ ̂̃U ∣∣∣∣
M−1

and by the mean value theorem∥∥∥R̂∥∥∥
M
≤
∣∣T −1 (k0)

∣∣
M

∥∥∥∥ ̂̃U∥∥∥∥
M−1

Now if we approximate the subscale as Ũ ap= τR, and we perform the same steps we

arrive to ∥∥∥R̂∥∥∥
M
≤
∣∣τ−1

∣∣
M

∥∥∥∥ ̂̃U∥∥∥∥
M−1

Therefore we impose the condition ∣∣τ−1
∣∣ =

∣∣T −1 (k0)
∣∣ (4.15)

which means that the approximated subscale bounds the residual in the same way the

exact subscale does. In the scalar case this means that the approximated and exact

subscales have the same norm. In practice we impose condition 4.15 by computing the

spectrum with respect to M−1 of τ−1Mτ−1 and of T −∗ (k0) MT −1 (k0) and imposing

the equality of the largest eigenvalues. Actually, the ideal situation is found when both

matrices have the same spectrum so τ−1 is a better approximation of T −1 (k0). We omit

the subscript in k0 in what follows.

In the case of the Oseen problem we have

T (k)−1 = kikjK
r
ij + Sr + ikjA

r
j =

 νκ2 + iκjaj 0 iκ1

0 νκ2 + iκjaj iκ2

iκ1 iκ2 0

 (4.16)

where κi = kjJ
−t
ji . Taking a scaling matrix M = diag (µu, µu, µp) the eigenvalues of

T −∗MT −1 with respect to M−1 are

λ1 = A, λ2 =
1

2
A+B + C, λ3 =

1

2
A+B − C

A := µ2
u

(
ν2κ4 + (κ · a)2)

B := κ2µpµu

C :=
1

2
µu

√(
4κ2µpµu

(
ν2κ4 + (κ · a)2)+ µ2

u

(
ν2κ4 + (κ · a)2)2)
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and assuming τ = diag (τm, τm, τc) those of τ−1Mτ−1 are µ2
u/τ

2
m, µ2

u/τ
2
m, and µ2

p/τ
2
c . It

can be easily shown that taking the scaling µu =
(
ν2κ4 + (κ · a)2)−1

and µp = 2κ−2 the

spectrum of both matrices is identical (a condition stronger than 4.15) and in this case

we have

τm (k) =
(
ν2κ4 + (κ · a)2)−1/2

(4.17)

and

τc (k) =
2κ−2

τm
(4.18)

This argument determines the functional form of the stabilization parameters. Let us

finally consider the definition of k. As discussed in chapter 3, its magnitude is related to

the constant factors involved in the definition of the parameter whereas its direction is

related to the definition of the element length. In order to reproduce the exact solution

of the one dimensional convection diffusion equation we need ‖k‖ = 2h−1
nat. On the other

hand, the optimal choice of the direction is that of the instability presented by the problem,

defined as

kI = arg max
‖k ‖=1

τ−1
m (k)

νκ2
(4.19)

Note that

τ−1
m

νκ2
=

(
1 +

(κ · a
νκ2

)2
)−1/2

∼ |κ · a|
νκ2

= Pk

where Pk is the Péclet number in the direction of k. Therefore, this definition of the

instability direction is meaningless when a = 0. In the case of the scalar CDR equation

this is not a problem because in this case it reduces to the Poisson equation that needs not

to be stabilized and any direction can be taken provided the stability condition implied

by the use of the inverse estimate is satisfied. In particular, for linear elements, any

direction can be considered. In the case of the Stokes problem, however, numerical

experiments presented in the following section show that when the minimum element

length is used numerical instabilities may appear. The direction of the maximum element

length corresponds to the direction of minimum diffusion in the reference domain, what

is an intuitive way to understand the problem. Therefore, when Pk < 1 we consider kI

in the direction of the maximum element length.

An isotropic approximation to the parameters in 4.17 and 4.18, as shown in chapter

3, is given by

τm =

((c1ν
h2

)2

+
(c2a
h

)2
)−1/2

(4.20)

τc = c1τ
−1
m h−2 (4.21)
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4.3.2 Approximating each equation

After transforming the problem to the reference domain and applying the Fourier

transform we arrive to 4.16, which exactly inverted gives

T (k) =


(νκ2 + iκjaj)

−1
P11 (νκ2 + iκjaj)

−1
P12 − iκ1

κ2

(νκ2 + iκjaj)
−1
P21 (νκ2 + iκjaj)

−1
P22 − iκ2

κ2

− iκ1

κ2 − iκ2

κ2

(νκ2+iκjaj)
κ2

 (4.22)

where

Pij (k) = δij −
κiκj

κ2

In 4.22 we identify the Fourier transform of the convection diffusion reaction operator

L̂ (κ) =
(
νκ2 + iκjaj

)
and that of the Laplace operator, κ2. The solution of the fine scale problem in the Fourier

space is given by

̂̃ui = L̂−1 (κ)PijR̂m,j −
iκi

κ2
R̂c (4.23)

̂̃p =
L̂ (κ)

κ2
R̂c −

iκi

κ2
R̂m,i (4.24)

The residual of the momentum equation is multiplied by Pij, the projector onto the

direction orthogonal to κ. This projection implies the satisfaction of the continuity

equation as

iκi

[
δij −

κiκj

κ2

]
d̂j = [iκj − iκj] d̂j = 0 ∀d (4.25)

Therefore, if we multiply 4.23 by iκi and we use 4.25 continuity is exactly recovered.

The main idea presented in this section is to approximate the scalar operators L̂ (κ)

and κ2 and to exactly account for the coupling between equations. To do that we use the

inverse Fourier transform to obtain

ũi (x) =

∫
eik ·x ̂̃ui (k) dk

=

∫
eik ·x L̂−1R̂m,idk −

∫
eik ·x

L̂−1

κ2
κiκjR̂m,jdk −

∫
eik ·x

iκi

κ2
R̂cdk

where the integrals extend over the wave number space. Next we approximate the operator

L̂−1 by τm (defined below) and the Fourier transformed Laplace operator (κ−2) by τp (also

defined below). We have

ũi (x) ' τm

∫
eik ·x R̂m,idk − τmτp

∫
eik ·x κiκjR̂m,jdk − τp

∫
eik ·x iκiR̂cdk

= τmRm,i + τpτm∂i∂jRm,j − τp∂iRc
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In the same way

p̃ (x) =

∫
eik ·x ̂̃p (k) dk

=

∫
eik ·x

L̂ (κ)

κ2
R̂cdk −

∫
eik ·x

iκi

κ2
R̂m,idk

and performing the same approximations

p̃ (x) ' τ−1
m τp

∫
eik ·x R̂cdk − τp

∫
eik ·x iκiR̂m,idk

= τpτ
−1
m Rc − τp∂iRm,i

Finally, the same argument of the previous section applied to the scalar case permits to

define τm and τp as

τm =
((
νκ2

0

)2
+ (κ0 · a)2

)−1/2

and

τp = κ−2
0

Let us conclude this section with a different view of the approximation performed.

Assuming u and p regular enough, taking the divergence of the momentum equation 4.8

and using the continuity equation 4.9 we find a Poisson equation for the pressure subscale

∇2p̃ = ∇ ·Rm − LRc

We can formally solve this equation to obtain

p̃ = ∇−2 (∇ ·Rm)−∇−2LRc

where ∇−2 must satisfy appropriate boundary conditions. Introducing this solution into

the first equation we have

Lũ = Rm −∇∇−2 (∇ ·Rm) + ∇∇−2LRc

We can formally solve this equation as

ũ = L−1Rm − L−1∇∇−2 (∇ ·Rm) + L−1∇∇−2LRc

Finally approximating L−1 by τm and −∇−2 by τp we arrive to

ũ = τmRm + τmτp∇ (∇ ·Rm)− τp∇Rc (4.26)

p̃ = −τp∇ ·Rm + τpτ
−1
m Rc (4.27)

The approximated solution obtained can be written as[
ũ

p̃

]
= τ

[
Rm

Rc

]
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but the usual matrix of stabilization parameters τ defined in the previous section as[
τmI 0

0 τc

]

has to be replaced by a stabilization operator of the form[
τmI+τmτp∇∇· −τp∇

−τp∇· τpτ
−1
m

]

For appropriate definitions of τm and τp this operator is positive and gives rise to a stable

scheme as will be shown in the following section. Neglecting the differential terms we

recover the standard approach.

Remark 4 If we define on each element the spaces of the residuals as

R =
{
v :Ωh → R : v = α (f − Luh −∇qh)|K , uh ∈ V h, qh ∈ Qh, α ∈ R

}
R =

{
q:Ωh → R : q = α ∇ · uh|K , uh ∈ V h, α ∈ R

}
the solution 4.26-4.27 implies

Ṽ = R + ∇ (∇ ·R) + ∇R
Q̃ = ∇ ·R +R

which can be written as

Ṽ = R + ∇Q̃

It is immediately clear that theses spaces satisfy the inf-sup condition

inf
q̃∈Q̃

sup

ṽ∈Ṽ

(q̃,∇ · ṽ)

‖q̃‖ ‖∇ṽ‖
≥ β > 0

because ∀q̃ ∈ Q̃,∇q̃ ∈ Ṽ .

4.3.3 The choice of the space of subscales

Let us finally consider the choice of the space of subscales or, equivalently, the definition

of ṽ⊥ and q̃⊥. The diagonal approximation developed in subsection 4.3.1 can be obtained

neglecting differential terms in 4.26-4.27 and we restrict the discussion to this case.

Considering the general case of ṽ⊥ 6= 0 and q̃⊥ 6= 0 instead of 4.26-4.27 we have

ũ = τm

(
Rm + ṽ⊥

)
+ τmτp∇

(
∇ ·

(
Rm + ṽ⊥

))
− τp∇

(
Rc + q̃⊥

)
(4.28)

p̃ = −τp∇ ·
(
Rm + ṽ⊥

)
+ τpτ

−1
m

(
Rc + q̃⊥

)
(4.29)
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To simplify the discussion that follows let us consider (only in the remaining part

of this subsection) that the stabilization parameters are the same for all elements. This

point is not essential and the reader is referred to the previous chapter for the general

case. If we denote by P the projection onto the orthogonal complement of Q̃ we have

P p̃ = 0 and P q̃⊥ = q̃⊥ and therefore from 4.29 we obtain

q̃⊥ = τmP∇ ·
(
Rm + ṽ⊥

)
− PRc (4.30)

In the same way, if we denote by P the projection onto the orthogonal complement of Ṽ

we have P ũ = 0 and P ṽ⊥ = ṽ⊥ and therefore from 4.28 we obtain

ṽ⊥ = −τmPRm − τmτpP∇
(
∇ ·Rm + ∇ · ṽ⊥

)
+ τpP∇

(
Rc + q̃⊥

)
After some manipulation we arrive to

ṽ⊥ = −PRm − τpP∇ (I − P )
(
∇ ·Rm + ∇ · ṽ⊥

)
+ τ−1

m τpP∇ (I − P )Rc (4.31)

where I is the identity operator in Q. This gives an implicit definition of ṽ⊥ (as a

differential equation) in terms of projections of the residuals. However, we do not need

to explicitly compute ṽ⊥ and q̃⊥ to impose ũ ∈ Ṽ and p̃ ∈ Q̃ but only to write

ũ = P̃ [τmRm + τmτp∇ (∇ ·Rm)− τp∇Rc] (4.32)

p̃ = P̃
[
−τp∇ ·Rm + τpτ

−1
m Rc

]
(4.33)

where P̃ = I − P and P̃ = I −P are the projections onto the spaces of subscales Ṽ and

Q̃. Equating 4.28 with 4.32 and 4.29 with 4.33 we obtain conditions 4.31 and 4.30.

Two possibilities have been considered for the choice of the spaces of subscales. The

easier approach is to take P = 0 and P = 0 which is equivalent to take ṽ⊥ = 0 and q̃⊥ = 0

and is called in [29] the Algebraic Subgrid-Scale formulation (ASGS). In that reference

the choice P = Ph (and P = P h) is advocated, Ph being the L2
(
Ωh
)

projection onto

the finite element space Qh (and V h). The resulting formulation is called Orthogonal

Subscales Stabilization (OSS) because it corresponds to take Q̃ (Ṽ ) as the orthogonal

complement of Qh (V h) (in the L2
(
Ωh
)

sense).

4.3.4 The final discrete problem

Let us summarize the possibilities for the discrete problem. It consists in finding

(uh, ph) ∈ V h ×Qh such that

Bτ (uh, ph; vh, qh) = Lτ (vh, qh) ∀ (vh, qh) ∈ V h ×Qh (4.34)

where the bilinear form Bτ and the linear form Lτ are given by
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• Diagonal approximation:

Bτ (uh, ph; vh, qh) = (∇vh, ν∇uh)Ω + (vh,a ·∇uh)Ω (4.35)

− (∇ · vh, ph) + (qh,∇ · uh)

−
(
L∗vh −∇qh, τmP̃ (Luh + ∇ph)

)
h

+
(
∇ · vh, τpτ

−1
m P̃ (∇ · uh)

)
h

and

Lτ (uh, ph) = 〈vh,f〉Ω −
(
L∗vh −∇qh, τmP̃ f

)
h

(4.36)

• Coupled approximation

Bτ (uh, ph; vh, qh) = (∇vh, ν∇uh)Ω + (vh,a ·∇uh)Ω (4.37)

− (∇ · vh, ph) + (qh,∇ · uh)

−
(
L∗vh −∇qh, τmP̃ (Luh + ∇ph)

)
h

−
(
L∗vh −∇qh, τmτpP̃ [∇ (∇ · (Luh + ∇ph))]

)
h

+
(
L∗vh −∇qh, τpP̃ [∇ (∇ · uh)]

)
h

−
(
∇ · vh, τpP̃ [∇ · (Luh + ∇ph)]

)
h

+
(
∇ · vh, τpτ

−1
m P̃ (∇ · uh)

)
h

and

Lτ (uh, ph) = 〈vh,f〉Ω −
(
L∗vh −∇qh, τmP̃ f

)
h

(4.38)

−
(
L∗vh −∇qh, τpτ

−1
m P̃ [∇ (∇ · f)]

)
h

−
(
∇ · vh, τpP̃ (∇ · f)

)
h

4.4 Stability analysis

In this section we present a stability analysis of the final discrete problem in the case

of P̃ = I and P̃ = I for the coupled approximation to the subscales. The stability of

the diagonal approximation has already been shown in [28]. The stability in the cases of

P̃ = P⊥
h and P̃ = P⊥

h require the bound of the finite element component of a ·∇uh+∇ph

and this should be done using the techniques of [30]. We will make use of the following

anisotropic inverse estimates [2], which can derived from a scaling argument∥∥∇2vh

∥∥2

K
≤ C2

K

h2
min

‖∇vh‖2
K , ‖∇ · vh‖2

K ≤ C2
K

h2
min

‖vh‖2
K (4.39)
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We will also need an inverse trace estimate [142] of the form

‖vh‖2
∂K ≤ CE

hmin

‖vh‖2
K (4.40)

In both cases the constants depend on the order of the polynomial approximation and

estimates of their values are given in [67, 142] and references therein. In this section we

will omit the min subscript and will denote the minimum element length by h unless

otherwise specified and, just to simplify the notation, we will consider the parameters τm

and τp constant on each element and satisfying

τ−1
m ≥ 8ν

h2
max

(
C2

K, C
2
E

)
(4.41)

and

τ−1
p ≥ 8

h2
max

(
C2

K, C
2
E

)
(4.42)

Note that when the isotropic definitions 4.20 and 4.21 are used, these conditions are

satisfied when the constant c1 is such that

c1 ≥ 8 max
(
C2

K, C
2
E

)
We will also make use of the following algebraic inequality

xy ≤ 1

2α
x2 +

α

2
y2

with α > 0. Defining the discrete norm

‖uh‖2
τ : =

∥∥ν1/2∇uh

∥∥2

h
+
∥∥τ 1/2

m (a ·∇uh + ∇ph)
∥∥2

h

+
∥∥ντ 1/2

m τ 1/2
p ∇2∇ · uh

∥∥2

h
+
∥∥τ 1/2

p τ−1/2
m ∇ · uh

∥∥2

h

we have the following

Theorem 2 (stability) Assume that conditions 4.41 and 4.42 are valid. Then, there exists

a constant C > 0 such that

Bτ (uh, ph; uh, ph) ≥ C ‖uh‖2
τ

Proof. Taking vh = uh and qh = ph in 4.37 we have

Bτ (uh, ph; uh, ph) = ν ‖∇uh‖2
Ω + (−L∗uh + ∇ph, τm (Luh + ∇ph))h (4.43)

+ (−L∗uh + ∇ph, τmτp∇ (∇ · (Luh + ∇ph)))h

− (−L∗uh + ∇ph, τp∇ (∇ · uh))h

− (∇ · uh, τp∇ · (Luh + ∇ph))h

+
(
∇ · uh, τpτ

−1
m ∇ · uh

)
h



The Oseen problem 89

As usual, the second term on the left hand side of 4.43 provides stability of the convective

term and the pressure gradient. Integrating by parts the third and fourth terms in 4.43

we have

Bτ (uh, ph; uh, ph) ≥ ν ‖∇uh‖2
Ω (4.44)

+ (−L∗uh + ∇ph, τm (Luh + ∇ph))h (4.45)

− (∇ · (−L∗uh + ∇ph) , τmτp∇ · (Luh + ∇ph))h (4.46)

+ (n · (−L∗uh + ∇ph) , τmτp∇ · (Luh + ∇ph))∂h (4.47)

+ (∇ · (−L∗uh + ∇ph) , τp∇ · uh)h (4.48)

− (n · (−L∗uh + ∇ph) , τp∇ · uh)∂h (4.49)

− (∇ · uh, τp∇ · (Luh + ∇ph))h (4.50)

+
∥∥τ−1/2

m τ 1/2
p ∇ · uh

∥∥2

h
(4.51)

Using the inverse estimate in 4.45 we have

τm (−L∗uh,Luh)K = τm
((
ν∇2 + a ·∇

)
uh,
(
−ν∇2 + a ·∇

)
uh

)
K

= −τm
∥∥ν∇2uh

∥∥2

K
+ τm ‖a ·∇uh‖2

K

≥ −τmν
C2

K

h2
‖∇uh‖2

K + τm ‖a ·∇uh‖2
K

We also have

τm (∇ph, (L − L∗) uh)K = 2τm (∇ph,a ·∇uh)K

and therefore

(−L∗uh + ∇ph,Luh + ∇ph)K ≥ −τmν
C2

K

h2
‖∇uh‖2

K + τm ‖a ·∇uh‖2
K

+2τm (∇ph,a ·∇uh)K + τm ‖∇ph‖2
K

= −τmν
C2

K

h2
‖∇uh‖2

K + τm ‖a ·∇uh + ∇ph‖2
K

In the same way 4.46 is bounded as

−τmτp (∇ · (−L∗uh) ,∇ · Luh)K = −τmτp
(
∇ ·

(
ν∇2 + a ·∇

)
uh,∇ ·

(
−ν∇2 + a ·∇

)
uh

)
K

= τmτp
∥∥ν∇2∇ · uh

∥∥2

K
− τmτp ‖∇ · (a ·∇uh)‖2

K

and

−τmτp
(
∇2ph,∇ · (L − L∗) uh

)
K

= −2τmτp
(
∇2ph,∇ · (a ·∇uh)

)
K

so using the inverse estimate

− (∇ · (−L∗uh + ∇ph) , τmτp∇ · (Luh + ∇ph))K

= τmτp
∥∥ν∇2∇ · uh

∥∥2

K
− τmτp ‖∇ · (a ·∇uh + ∇ph)‖2

K

≥ τmτp
∥∥ν∇2∇ · uh

∥∥2

K
− τmτp

C2
K

h2
‖a ·∇uh + ∇ph‖2

K
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The product of the pressure gradient and velocity divergence in 4.48 cancels with the

same product in 4.50. The remaining parts of 4.48 and 4.50 are bounded as

τp (∇ · (−L∗ − L) uh,∇ · uh)K = τp
(
2ν∇2∇ · uh,∇ · uh

)
K

≥ −τp
∥∥2ν∇2∇ · uh

∥∥
K
‖∇ · uh‖K

≥ −2τp
νC2

K

h2
‖∇ · uh‖2

K

It remains to bound the boundary terms. To this end, if y, z are finite element

functions or derivatives of finite element functions we have

(y, z)∂K ≥ −‖y‖∂K ‖z‖∂K ≥ − 1

2α
‖y‖2

∂K −
α

2
‖z‖2

∂K

and using the inverse estimate 4.40 we arrive to

(y, z)∂K ≥ CE

h

(
− 1

2α
‖y‖2

K −
α

2
‖z‖2

K

)
(4.52)

for any α > 0. For each contribution to 4.47 we have

(n · (−L∗uh + ∇ph) ,∇ · (Luh + ∇ph))∂K

=
(
n ·
(
ν∇2uh + a ·∇uh + ∇ph

)
,∇ ·

(
−ν∇2uh + a ·∇uh + ∇ph

))
∂K

= −
(
n ·
(
ν∇2uh

)
,∇ ·

(
ν∇2uh

))
∂K

(4.53)

+
(
n ·
(
ν∇2uh

)
,∇ · (a ·∇uh + ∇ph)

)
∂K

(4.54)

−
(
n · (a ·∇uh + ∇ph) ,∇ ·

(
ν∇2uh

))
∂K

(4.55)

+ (n · (a ·∇uh + ∇ph) ,∇ · (a ·∇uh + ∇ph))∂K (4.56)

Using 4.52 and the inverse estimate 4.39 we have

−
(
n ·
(
ν∇2uh

)
,∇ ·

(
ν∇2uh

))
∂K

≥ CE

h

(
− 1

2α

∥∥ν∇2uh

∥∥2

K
− α

2

∥∥ν∇2∇ · uh

∥∥2

K

)
≥ CE

h

(
− 1

2α

C2
K

h2
‖ν∇uh‖2

K −
α

2

∥∥ν∇2∇ · uh

∥∥2

K

)
and taking α = h/ (2CE) we have a bound for 4.53

−
(
n ·
(
ν∇2uh

)
,∇ ·

(
ν∇2uh

))
∂K

≥ −C
2
KC

2
E

h4
‖ν∇uh‖2

K −
1

4

∥∥ν∇2∇ · uh

∥∥2

K

In the same way(
n ·
(
ν∇2uh

)
,∇ · (a ·∇uh + ∇ph)

)
∂K

≥ CE

h

(
− 1

2α

∥∥ν∇2uh

∥∥2

K
− α

2
‖∇ · (a ·∇uh + ∇ph)‖2

K

)
≥ CE

h

(
− 1

2α

C2
K

h2
‖ν∇uh‖2

K −
α

2

C2
K

h2
‖a ·∇uh + ∇ph‖2

K

)
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and taking α = h/ (2CE) we have a bound for 4.54

(
n ·
(
ν∇2uh

)
,∇ · (a ·∇uh + ∇ph)

)
∂K

≥ −C
2
EC

2
K

h4
‖ν∇uh‖2

K −
C2

K

4h2
‖a ·∇uh + ∇ph‖2

K

Using again 4.52 and the inverse estimate we have

−
(
n · (a ·∇uh + ∇ph) ,∇ ·

(
ν∇2uh

))
∂K

≥ CE

h

(
− 1

2α
‖a ·∇uh + ∇ph‖2

K −
α

2

∥∥ν∇2∇ · uh

∥∥2

K

)
and taking α = h/ (2CE) we have a bound for 4.55

−
(
n · (a ·∇uh + ∇ph) ,∇ ·

(
ν∇2uh

))
∂K

≥ −C
2
E

h2
‖a ·∇uh + ∇ph‖2

K−
1

4

∥∥ν∇2∇ · uh

∥∥2

K

In the case of 4.56 we have

(n · (a ·∇uh + ∇ph) ,∇ · (a ·∇uh + ∇ph))∂K

≥ CE

h

(
− 1

2α
‖a ·∇uh + ∇ph‖2

K −
α

2
‖∇ · (a ·∇uh + ∇ph)‖2

K

)
≥ CE

h

(
− 1

2α
‖a ·∇uh + ∇ph‖2

K −
α

2

C2
K

h2
‖a ·∇uh + ∇ph‖2

K

)
and taking again α = h/ (2CE) we have a bound for 4.56

(n · (a ·∇uh + ∇ph) ,∇ · (a ·∇uh + ∇ph))∂K

≥ −CE

h2
‖a ·∇uh + ∇ph‖2

K −
C2

K

4h2
‖a ·∇uh + ∇ph‖2

K

Finally for each contribution to 4.49 we have

−
(
n ·
(
ν∇2uh + a ·∇uh + ∇ph

)
,∇ · uh

)
∂K

= −
(
n · ν∇2uh,∇ · uh

)
∂K

− (n · (a ·∇uh + ∇ph) ,∇ · uh)∂K

and we have

−
(
n · ν∇2uh,∇ · uh

)
∂K

≥ CE

h

(
− 1

2α

∥∥ν∇2uh

∥∥2

K
− α

2
‖∇ · uh‖2

K

)
≥ CE

h

(
− 1

2α

C2
K

h2
‖ν∇uh‖2

K −
α

2
‖∇ · uh‖2

K

)
so taking α = νCE/h we have

−
(
n · ν∇2uh,∇ · uh

)
∂K

≥ −νC
2
K

2h2
‖∇uh‖2

K −
νC2

E

2h2
‖∇ · uh‖2

K

Also

− (n · (a ·∇uh + ∇ph) ,∇ · uh)∂K ≥ CE

h

(
− 1

2α
‖a ·∇uh + ∇ph‖2

K −
α

2
‖∇ · uh‖2

K

)
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and taking α = h/ (τmCE) we have

− (n · (a ·∇uh + ∇ph) ,∇ · uh)∂K ≥ −τmC
2
E

2h2
‖a ·∇uh + ∇ph‖2

K −
τ−1
m

2
‖∇ · uh‖2

K

Grouping terms we arrive to

Bτ (uh, ph; uh, ph) ≥
∑

K∈Ph

ν

(
1− τm

νC2
K

h2
− τmτp

2νC2
KC

2
E

h4
− τp

C2
K

2h2

)
‖∇uh‖2

K

+
∑

K∈Ph

τm

(
1− τp

C2
K

h2
− τp

C2
K

2h2
− τp

2C2
E

h2
− τp

C2
E

2h2

)
‖a ·∇uh + ∇ph‖2

K

+
∑

K∈Ph

τpτ
−1
m

(
1− τm

2νC2
K

h2
− τm

νC2
E

2h2
− 1

2

)
‖∇ · uh‖2

K

+
∑

K∈Ph

1

2
τmτp

∥∥ν∇2∇ · uh

∥∥2

K

and using conditions 4.41 and 4.42 we have

Bτ (uh, ph; uh, ph) ≥ 1

2

∥∥ν1/2∇uh

∥∥2

h
+

1

2

∥∥τ 1/2
m (a ·∇uh + ∇ph)

∥∥2

h

+
1

2

∥∥ντ 1/2
m τ 1/2

p ∇2∇ · uh

∥∥2

h
+

3

16

∥∥τ 1/2
p τ−1/2

m ∇ · uh

∥∥2

h

that immediately implies the result.

4.5 Numerical examples

In this section we present two numerical examples both of them using the diagonal

approximation to the subscales, with the objective of studying the influence of the

anisotropic mesh refinement and the influence of the choice of the space of subscales. The

performance of the coupled approximation needs further research. The first example is the

simple problem of a 2D Stokes flow in a channel and the superior performance of the OSS

method will be clearly demonstrated. The second example is an anisotropic refinement

study using an analytic solution. Again, the OSS method gives better results. Numerical

instabilities are found when the classical expression for the stabilization parameter using

the minimum element length is used.

4.5.1 Stokes flow in a channel

In this subsection we consider the Stokes problem on the domain Ω = [0, 10]× [0, 1] with

Dirichlet boundary conditions. The boundary of the domain can divided into an inflow

part at x = 0, an outflow part at x = 10 and two walls at y = 0 and y = 1. On the inflow

and outflow part a Poiseuille (quadratic) velocity profile is imposed and on the walls the
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non slip condition is prescribed. The flow is driven by an external force f = (2, 0) (which

is equivalent to an imposed pressure gradient). The exact solution of the problem is

u = (y (1− y) , 0) , p = 0

The problem was solved using a uniform mesh of 10 × 10 bilinear elements whose

aspect ratio is only 10. The problem was solved using the ASGS and OSS formulations

in which the differential terms of the stabilization operator are neglected (they differ in

the projection of the residual, see section 3). For each formulation the results obtained

defining the stabilization parameter with h = hmin and h = hmax are compared.

In the case of the ASGS formulation, the impact of the choice of the element length

in the definition of the stabilization parameters is very important, as can be seen in figure

4.1, where the velocity field obtained is shown. This difference can also be seen in figure

4.2, where the y component of the velocity, that should vanish, is more than one order of

magnitude bigger when h = hmax than when h = hmin. The same consideration can be

made about the pressure field, shown in figure 4.3, where the maximum pressure difference

of 1.05 in the case of h = hmin and of 15.52 in the case of h = hmax can be seen. Let

us note that when quadratic elements are used the exact solution is found for any mesh

regardless of the stabilization parameter taken because this solution belongs to the finite

element space.

Figure 4.1: Velocity fields obtained using the ASGS formulation with h = hmin (top) and
h = hmax (bottom).

On the contrary, in the case of the OSS formulation the impact of the choice of

the element length is smaller. In fact, the velocity fields, shown in figure 4.4, are

indistinguishable. However, some differences between the solution with h = hmin and

h = hmax can be found, as can be seen in figure 4.5, where the y component of the velocities

are shown, and in figure 4.6, where the pressure fields are shown. When h = hmin is used

the exact result is obtained and when h = hmax is used still a non zero y component

of the velocity and a non zero pressure are obtained. Note, however, that the result

obtained using the OSS formulation using h = hmax is better than the result obtained

using the ASGS formulation and h = hmin. The explanation we give for these results

is that when the projection is included, the stabilizing term added to the Galerkin one
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Figure 4.2: y component of the velocities obtained using the ASGS formulation with h = hmin

(top) and h = hmax (bottom).

Figure 4.3: Pressure fields obtained using the ASGS formulation with h = hmin (top) and
h = hmax (bottom).



The Oseen problem 95

is smaller (because the projection vanishes when h → 0) although it is enough to have

optimal convergence. This term vanishes when h → 0 because it is proportional to the

residual of the finite element component. In the case of linear elements the approximation

of the residual is quite poor (the Laplacians of finite element functions vanish) even if it

is of the correct order. The inclusion of the projection remedies the situation.

Figure 4.4: Velocity fields obtained using the OSS formulation with h = hmin (top) and h = hmax

(bottom).

Figure 4.5: y component of the velocities obtained using the OSS formulation with h = hmin

(top) and h = hmax (bottom).

Two main conclusions can be drawn from this example: the choice h = hmin gives

better results than the choice h = hmax and the OSS formulation gives better results than

the ASGS one, in particular being much less sensitive to the definition of the stabilization

parameter. However, the choice h = hmin can give rise to numerical oscillations as shown

in the next example.
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Figure 4.6: Pressure fields obtained using the ASGS formulation with h = hmin (top) and
h = hmax (bottom).

4.5.2 An anisotropic convergence test

In this subsection we consider the Oseen problem in the domain Ω = [0, 1]×[0, 1] with zero

Dirichlet boundary conditions on ∂Ω. A forcing term is prescribed to have the solution

given by

u = (ux (y) , uy (x)) =
(
1 + e−α − e−αy − eα(y−1), 1 + e−α − e−αx − eα(x−1)

)
and

p = 1 + x+ x2

which presents boundary layers on the domain boundary whose width can be controlled

using the parameter α. We consider α = 100 and the advection velocity is given by

the exact solution for Reynolds numbers of 0 (Stokes) and 102. We solve the problem

using meshes of 10 × 10 and also 100 × 10, 1000 × 10, 10000 × 10 giving aspect ratios

A := h1/h2 = 100, 101, 102, 103. As in the case of the scalar convection diffusion problem,

the impact of the choice of the element length is very important. We plot the pressure

along the line y = 0.9 and the y component of the velocity along the line y = 0.5. The

results of the Stokes problem are shown in figures 4.7, 4.8, 4.9 and 4.10. When h = hmin

is used to define the stabilization parameter numerical oscillations show up, specially in

the pressure but also in the velocity. When h = hmax is used to define the stabilization

parameter the solution is free of such oscillations and in this case the results are much

better when the OSS method is used.

The results of the Oseen problem for Re = 102 are shown in figures 4.11, 4.12, 4.13

and 4.14. Similar conclusions can be obtained in this case. The only important point
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Figure 4.7: y component of the velocities obtained using the ASGS formulation with h = hmin

(left) and h = hmax (right) at Re= 0.
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Figure 4.8: y component of the velocities obtained using the OSS formulation with h = hmin

(left) and h = hmax (right) at Re= 0.
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Figure 4.9: Pressures obtained using the ASGS formulation with h = hmin (left) and h = hmax

(right) at Re= 0.
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Figure 4.10: Pressures obtained using the OSS formulation with h = hmin (left) and h = hmax

(right) at Re= 0.

to mention is that the new definition of the stabilization parameter does not improve

the results with respect to those obtained using h = hmax as it does in the case of the

CDR equation, although more numerical experiments are needed to clarify the point. The

difference in the behavior could be due to the terms present in the coupled approximation

and neglected in the diagonal one. Again, this is a point that needs further research.

4.6 Conclusions

We have presented a procedure to derive stabilized formulations for systems of equations.

In the general case the steps to be performed are

• Fourier transform the system of equation.

• Compute the spectrum of T −∗ (k0) MT −1 (k0) and of τ−1Mτ−1 with respect to

the scaling matrix M and impose (at least) the equality of the largest eigenvalue.

The optimal situation is when the spectrum of both matrices is identical.

In the particular case of the Oseen problem (but hopefully in other systems as well)

the following alternative procedure can be followed

• Fourier transform the system of equation

• Invert the algebraic matrix.

• Apply the inverse Fourier transform approximating the scalar operators but keeping

the differential operators for the coupling.

• Perform a stability analysis to show that the resulting formulation provides stability.
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Figure 4.11: y component of the velocities obtained using the ASGS formulation with h = hmin

(top left), h = hmax (top right) and 4.19 (bottom) at Re= 102.
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Figure 4.12: y component of the velocities obtained using the OSS formulation with h = hmin

(top left), h = hmax (top right) and 4.19 (bottom) at Re= 102.
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Figure 4.13: Pressures obtained using the ASGS formulation with h = hmin (top left), h = hmax

(top right) and 4.19 (bottom) at Re= 102.
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Figure 4.14: Pressures obtained using the OSS formulation with h = hmin (top left), h = hmax

(top right) and 4.19 (bottom) at Re= 102.
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The second procedure highlights the vectorial structure of the Navier Stokes equations

and does not give rise to a matrix of stabilization parameters, but to a stabilization

operator of the form [
τmI+τmτp∇∇· −τp∇

−τp∇· τpτ
−1
m

]
Although the extra terms could be important when anisotropic finite element meshes are

used, the mesh information is taken into account only in the definition of the stabilization

parameters τm and τp. This is an important point since formulations of anisotropic

stabilized approximations of the Navier Stokes equations in which the stabilization

parameters where replaced by matrices that depend on the stretching of the grid have

been used in the past[9, 8, 10]. As shown here, a formulation of this type is rather ad hoc

and does not naturally follow from the multiscale concept.

It has been also proved that under some conditions on the parameters τm and τp the

resulting scheme is stable. In principle the proof of the stability bound is valid for any

mesh (isotropic or anisotropic) provided the conditions on the stabilization parameters

are satisfied. However, in the limit of vanishing advection that would imply the need of

using the minimum element length in the definition of the stabilization parameters. In

the case of the diagonal approximation this choice gives rise to spurious oscillations as

shown in the numerical examples.

The results of the numerical examples presented show that the OSS method performs

much better than the ASGS method as it is much less sensitive to the choice of the

element length. As mentioned, the standard definition taking h = hmin results in an

unstable scheme even for the Stokes problem. The results obtained using the standard

definition taking h = hmax and those obtained using 4.17 and 4.18 are almost identical.

Both deteriorate when the mesh is anisotropically refined. This odd behavior might be

due to the neglect of the differential terms of the stabilization operator but it might be

also due to the definition of the direction of instability. This definition has been made in

the previous chapter for the convection diffusion reaction equation but it might be not

the correct one for the Oseen problem. In fact, for the Stokes problem the arguments of

the previous chapter do not permit to select any direction. Further research is needed to

clarify the situation.
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Chapter 5

The incompressible Navier Stokes

problem

In this chapter we extend the stabilized finite element approximation developed in the

previous chapters for the CDR and Oseen problems to the incompressible Navier-Stokes

equations. Two aspects of the problem make it different from the ones considered in

previous chapters: it is a time dependent problem and it is non linear. We explore

the properties of the discrete formulation that results allowing the subgrid-scales to

depend on time. This apparently “natural” idea avoids several inconsistencies of previous

formulations. Likewise, we consider the complete multiscale decomposition of the

nonlinear term, following the variation of the subscale along the iterative process. This

also ”natural” idea gives rise to a discrete formulation with enhanced properties.

5.1 Introduction

Let us start by writing the incompressible Navier-Stokes equations. Consider a domain

Ω in Rd, where d = 2, 3 is the number of space dimensions, with boundary Γ = ∂Ω, in

which we want to solve an incompressible flow problem in the time interval [0, T ]. If u is

the velocity of the fluid and p the pressure, the incompressible Navier-Stokes equations

are

∂tu− ν∆u + u · ∇u +∇p = f in Ω, t ∈ (0, T ) (5.1)

∇ · u = 0 in Ω, t ∈ (0, T ) (5.2)

where ν is the kinematic viscosity and f is the force vector. These equations must be

supplied with an initial condition of the form u = u0 in Ω, t = 0, and a boundary

condition which, for simplicity, will be taken as u = 0 on Γ, t ∈ (0, T ).

Let us introduce some standard notation. The space of functions whose p power

(1 ≤ p <∞) is integrable in a domain ω is denoted by Lp(ω), L∞(ω) being the space of
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bounded functions in ω. The space of functions whose distributional derivatives of order

up to m ≥ 0 (integer) belong to L2(ω) is denoted by Hm(ω). The space H1
0 (ω) consists

of functions in H1(ω) vanishing on ∂ω. The topological dual of H1
0 (ω) is denoted by

H−1(ω). A bold character is used to denote the vector counterpart of all these spaces. If

f and g are functions (or distributions) such that f g is integrable in the domain ω under

consideration, we denote

〈f, g〉ω =

∫
ω

f g dω

so that, in particular, 〈·, ·〉ω is the duality pairing between H−1(ω) and H1
0 (ω). When

f, g ∈ L2(ω), we write the inner product as 〈f, g〉ω ≡ (f, g)ω. The norm in a Banach

space X is denoted by ‖·‖X , and Lp(0, T ;X) is the space of time dependent functions

such that their X-norm is Lp(0, T ). This notation is simplified in some cases as follows:

(·, ·)Ω ≡ (·, ·), 〈·, ·〉Ω ≡ 〈·, ·〉 and ‖·‖L2(Ω) ≡ ‖·‖.
Using this notation, the velocity and pressure finite element spaces for the continuous

problem are L2(0, T ; V st) and L1(0, T ;Qst), respectively, where V st := H1
0(Ω), Qst :=

L2(Ω)/R. The weak form of the problem consists in finding [u, p] ∈ L2(0, T ; V st) ×
L1(0, T ;Qst) such that

(∂tu,v) + ν(∇u,∇v) + 〈u · ∇u,v〉 − (p,∇ · v) = 〈f ,v〉 (5.3)

(q,∇ · u) = 0 (5.4)

for all [v, q] ∈ V st ×Qst, and satisfying the initial condition in a weak sense.

The Galerkin finite element approximation of problem 5.3-5.4 consists in seeking the

unknowns in finite dimensional spaces V h ⊂ V st and Qh ⊂ Qst and taking the test

functions also in these spaces. Using the method of lines, the problem discretized in space,

but still continuous in time, consists in finding [uh(t), ph(t)] ∈ L2(0, T ; V h)×L1(0, T ;Qh)

such that

(∂tuh,vh) + ν(∇uh,∇vh) + 〈uh · ∇uh,vh〉 − (ph,∇ · vh) = 〈f ,vh〉 (5.5)

(qh,∇ · uh) = 0 (5.6)

for all [vh, qh] ∈ V h ×Qh.

Once discretized in time (using for example a finite difference scheme), it is well

known that problem 5.5-5.6 suffers from different types of numerical instabilities. Two of

them are inherited from the stationary problem, namely, the dominance of the (nonlinear)

convective term over the viscous one when ν is small and the compatibility required for

the velocity and pressure finite element spaces posed by the inf-sup condition. There are

also numerical instabilities encountered when the time step size of the time discretization

is small, particularly in early stages of the time integration.

A vast literature exists dealing with the instabilities due to the dominance of

convection and to the velocity-pressure compatibility condition. In this work we adopt a
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stabilized finite element formulation based on the subgrid-scale concept and, in particular,

in the approach introduced by Hughes in [75, 78] for the scalar convection–diffusion

equation. The basic idea is to approximate the effect of the component of the continuous

solution which can not be resolved by the finite element mesh, which we will call subscale,

on the discrete finite element solution. This approach is a general framework in which

it is possible to design different stabilized formulations. We will restrict our attention to

two approaches, described in [28] and [29]. In the first case, the velocity and pressure

subscales are taken proportional to the residual of the finite element component in the

momentum and in the continuity equations, respectively. The bottom line of the second

approach is to take only the component of these residuals L2 orthogonal to the finite

element space. This idea was first introduced in [28] as an extension of a stabilization

method originally introduced for the Stokes problem in [30] and fully analyzed for the

stationary Navier-Stokes equations in [31].

However, the main interest of this chapter is not how to stabilize convection-dominated

flows or how to be able to use equal velocity-pressure interpolation, thus avoiding the

need to satisfy the inf-sup condition that problem 5.5-5.6 demands. Our objective in

this chapter is to analyze the formulation that stems from considering time dependent

subscales. In fact, the idea we will follow is not new, and was already introduced in [29].

In this sense, the present work can be considered as a continuation of this reference.

The chapter is organized as follows. The numerical formulation is described in

Section 5.2, and its main features are presented in Sections 5.3 where we detail the benefits

of considering the subscales time dependent, and how some of the misbehaviors of classical

stabilized finite element methods are overcome. We also end Section 5.3 with a speculative

subsection considering the tracking of subscales along the nonlinear process as a way to

model turbulence. This idea was also pointed out in [29]. In Section 5.4 we present the

results of three simple numerical examples that show the benefits of our approach and we

conclude with some final remarks in Section 5.5.

5.2 Stabilized finite element problem

Let us consider a finite element partition Ph = {K} of the domain Ω with nel elements. We

will assume that all the finite element spaces constructed are continuous and of the same

order for the velocity and the pressure. The starting idea of the formulation we propose is

the variational multiscale formulation proposed in [75, 78]. Let V st = V h⊕ Ṽ , where V h

is the velocity finite element space and Ṽ any space to complete V h in V st. Similarly, let

Qst = Qh⊕Q̃. The original continuous problem 5.3-5.4 is equivalent to find [uh(t), ph(t)] ∈
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L2(0, T ; V h)×L1(0, T ;Qh), as well as [ũ(t), p̃(t)] ∈ L2(0, T ; Ṽ )×L1(0, T ; Q̃), such that

(∂t(uh + ũ),v) + ν(∇(uh + ũ),∇v)

+〈(uh + ũ) · ∇(uh + ũ),v〉 − (ph + p̃,∇ · v) = 〈f ,v〉 (5.7)

(q,∇ · (uh + ũ)) = 0 (5.8)

for all [v, q] ∈ V st × Qst. These equations can be split into two systems by taking first

[v, q] = [vh, qh] ∈ V h ×Qh and then [v, q] = [ṽ, q̃] ∈ Ṽ × Q̃. Denoting by n the exterior

unit normal to an integration domain, after integrating some terms by parts the first

choice leads to

(∂t(uh + ũ),vh) + ν(∇uh,∇vh)

+ν
∑
K

[−(ũ,∆vh)K + 〈ũ, n · ∇vh〉∂K ]

+〈(uh + ũ) · ∇uh,vh〉 − 〈ũ, (uh + ũ) · ∇vh〉 − (ph + p̃,∇ · vh) = 〈f ,vh〉 (5.9)

(qh,∇ · uh)− (∇qh, ũ) = 0 (5.10)

where we have used the fact that ∇ · (uh + ũ) = 0, that the sum of the integral of

n · (uh + ũ) on the boundaries of two adjacent elements (and thus with opposite normal

n) must be zero and that uh = ũ = 0 on Γ.

The second system is obtained by taking [v, q] = [ṽ, q̃] ∈ Ṽ × Q̃ in 5.7-5.8. Of course,

the resulting system, together with 5.9-5.10, is exactly equivalent to 5.3-5.4. A stabilized

finite element method is obtained if ũ and p̃ are approximated and their expression inserted

into 5.9-5.10. However it is not our purpose in this chapter to emphasize how to obtain

the approximations for ũ and p̃ because this problem has been considered in previous

chapters (and still needs further research). Our purpose here is

• To allow ũ to be time dependent, and therefore to keep its time dependency in 5.9.

• To note that the advection velocity in 5.9 is uh + ũ, and not only uh.

In fact, we will not explore in detail the second item. Some comments about this point

will be made later on. Our main concern will be to study the properties of the numerical

formulation that emanates from considering ũ time dependent. For this purpose, it is

enough to make some simplifying assumptions:

• The term involving integrals over interelement boundaries will be neglected. This

can be understood as considering the velocity subscales as bubble functions,

vanishing on the boundaries of the elements (see, e.g., [4, 16]). Even though its

consideration can bring important stabilization properties, it is not essential for

what follows.
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• The approximation of the subgrid-scales is performed as follows. The system for the

subscales [ũ(t), p̃(t)], obtained taking [v, q] = [ṽ, q̃] ∈ Ṽ × Q̃, can be understood as

∂tũ + (uh + ũ) · ∇ũ− ν∆ũ +∇p̃ = Rm

∇ · ũ = Rc

where Rm and Rc are appropriate residuals of the finite element components uh

and ph adequately projected onto the space of subscales (Ṽ for the first equation and

Q̃ for the second). Using the arguments of chapter 4, the following approximation

to the previous equations can be motivated:

∂tũ +
1

τm
ũ = Rm (5.11)

1

τc
p̃ = Rc + τm∂tRc (5.12)

where

τm =

[
c1
ν

h2
+ c2

|uh + ũ|
h

]−1

(5.13)

τc =
h2

c1τm
(5.14)

Rm = −P [∂tuh + (uh + ũ) · ∇uh − ν∆uh +∇ph − f ] (5.15)

Rc = −P [∇ · uh] (5.16)

This formulation is obtained if the differential terms of the stabilization operator

presented in chapter 4 are neglected and the isotropic approximation to the

stabilization parameters, in which c1 = 4 and c2 = 2, is considered. As in chapter 4,

the projection P can be either the identity for “classical” stabilized finite element

methods (which can be traced back to [18], for example) or the projection orthogonal

to the finite element space (we have used the same symbol for the scalar and

vector counterparts of this operator). As in previous chapters, we will refer to

the choice P = I (identity) as the Algebraic Subgrid Scale formulation (ASGS),

whereas P = Π⊥
h , Πh being the L2 projection onto the appropriate finite element

space (of velocities or of pressures), will lead to the so called Orthogonal Subscales

Stabilization (OSS).

As is shown in [83], the fine-scale component of the solution is related to the residual

of the coarse scales through so-called small-scale Green’s function. It was also shown

in [83] that the small-scale Green’s function is highly localized for the right choice

of the projector, rendering local algebraic approximations 5.11-5.12 a viable model

for the fine scales.

Again, let us stress that the two assumptions described are not essential for our

discussion and could be modified. The important point is that ∂tũ appears in the
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approximate equation for the velocity subscale. In our case, this approximation turns

out to be the differential equation in time 5.11.

Remark 5 Observe that equation 5.11 must hold at each point, and therefore it is in fact

an ordinary differential equation rather than a partial differential equation.

Remark 6 Neglecting the time derivative in 5.11 could be understood as considering that

the subscales adapt automatically to the finite element residual. The subscales obtained

from this assumption were defined in [29] as quasi-static.

Remark 7 Observe that 5.11 is a nonlinear equation, due to the dependence of τm and

Rm on ũ. Obviously, this does not depend on whether the subscales vary in time or not,

and was also noticed in [21] for what we have called quasi-static subscales. In this case, it

is possible to tackle directly the resulting nonlinear algebraic equation and solve for ũ in

terms of Rm accounting for this nonlinearity. However, in our case this is not possible,

and we will have to linearize 5.11 to integrate it in time.

The formulation we want to analyze is now complete. It consists of solving 5.9-5.10

together with 5.11-5.12 for uh, ũ, ph and p̃, neglecting the integrals over interelements

boundaries, as it has been mentioned. Although it does not introduce any particular

complication, as it can be observed from the analysis in [28, 29], we will take p̃ = 0

for the sake of simplicity (in fact, we have used expression 5.12 with τc given by 5.14

in the numerical examples of Section 5) . Therefore, the final problem we have to

solve can be written as a single variational equation as follows: find [uh(t), ph(t)] ∈
L2(0, T ; V h)× L1(0, T ;Qh) such that

(∂tuh,vh) + ν(∇uh,∇vh) + 〈uh · ∇uh,vh〉 − (ph,∇ · vh)

+(qh,∇ · uh)−
∑
K

〈ũ, ν∆vh + uh · ∇vh +∇qh〉K

+ (∂tũ,vh) + 〈ũ · ∇uh,vh〉 − 〈ũ, ũ · ∇vh〉 = 〈vh, f〉 (5.17)

for all [vh, qh] ∈ V h ×Qh, where ũ is solution of the nonlinear differential equation 5.11,

with τm given by 5.13 and Rm by 5.15. In what follows, we will rename τm ≡ τ .

Remark 8 From the point of view of the implementation of the method, it is clear from

5.17 that ũ is needed at the numerical integration points within each element. Therefore,

5.11 has to be integrated in time at each integration point. In this sense, ũ acts as what

would be called internal variable in solid mechanics.

Remark 9 If the subscales are assumed to be orthogonal to the finite element space, the

term (∂tũ,vh) vanishes and, as explained in [29], the term
∑

K〈ũ, ν∆vh+uh·∇vh+∇qh〉K
can be replaced by

∑
K〈ũ,uh ·∇vh+∇qh〉K and still keep the same accuracy of the method.
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Remark 10 Problem 5.9-5.10 and 5.11-5.12 needs to be completed with initial conditions

uh = u0
h and ũ = ũ0 at t = 0, where the functions u0

h and ũ0 depend on the way to choose

the space of subscales. We assume that the projections onto the finite element space and

the space of subscales are L2 continuous (this is obvious if P = Π⊥
h in 5.15), and therefore

‖u0
h‖ ≤ C‖u0‖, ‖ũ0‖ ≤ C‖u0‖ for a certain constant C.

5.3 Main features of the formulation

The left-hand-side of the discrete variational form of the problem given by 5.17 consists

of the following terms:

(∂tuh,vh) + ν(∇uh,∇vh) + 〈uh · ∇uh,vh〉
− (ph,∇ · vh) + (qh,∇ · uh)− 〈vh, f〉 Galerkin terms (5.18)

−
∑
K

〈ũ, ν∆vh + uh · ∇vh +∇qh〉K Stabilization terms (5.19)

(∂tũ,vh) + 〈ũ · ∇uh,vh〉 − 〈ũ, ũ · ∇vh〉 Effect of ũ(t) (5.20)

The stabilization terms appear also in the stationary and linearized problem, and it is now

well known that they allow to overcome the instability problems of the classical Galerkin

formulation, which in this case are the instabilities found in convection dominated flows

and the need to satisfy an inf-sup condition for the velocity and pressure interpolations.

The terms associated to the effect of ũ in the material derivative are precisely those

that come from accepting the decomposition uh + ũ in the expression of

D

Dt
u =

D

Dt
(uh + ũ)

= ∂tuh + ∂tũ + ũ · ∇uh + uh · ∇uh + ũ · ∇ũ + uh · ∇ũ. (5.21)

Only the last of these terms where ũ appears contributes to the stabilization terms. Our

objective is to discuss precisely the effect of the other terms contributed by ũ.

5.3.1 Commutation of space and time discretization

Let us start our discussion on the properties of the method just presented by noting that

we have been able to formulate a stabilized finite element method without any reference to

the time discretization. Usually, the problem of formulating stabilized methods for time

dependent problems has been tackled using two main approaches:

• By using space-time finite element formulations, and considering the temporal

derivative in the same way as the first order spatial derivatives of the convective

term. This is the approach adopted for example in the early papers on this subject

[91, 132].
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• By discretizing first in time, and then using a stabilized finite element method

for the resulting spatially-continuous problem. This is perhaps the most popular

approach in the literature. The design of the time integration scheme is in principle

independent of the stabilization formulation used, but can be adapted to improve

the behavior in time of the solution (see, e.g., [88]).

Space time formulations of order higher than one require predictor-corrector strategies

to avoid an unacceptable increase in the number of unknowns treated at once (see, e.g.

[132]). On the other hand, first order methods, with piecewise constant interpolations in

time, lead to very poor schemes, that need to be modified a posteriori to improve their

accuracy [87]. In particular, it turns out to be essential to include an approximation of the

time derivative in the residual given by 5.15. This comes out naturally if the equations

are first discretized in time using a finite difference scheme.

Nevertheless, in the subgrid scale formulation we are analyzing, the fact of considering

the subscales time dependent allows us either to start from the time discrete problem, as

in [29], or to use a method of lines, discretizing first in space and then in time, which

is the approach we are following here. Both methods will lead exactly to the same fully

discrete scheme, that is to say, space and time discretization commute, even when using

finite difference schemes in time. In general, this property is trivial only for stabilized

methods that do not involve the residual of the equations to be solved, as the method

proposed in [20] or even the stabilization with quasi-static orthogonal subscales [29].

Let us consider now which would be a finite difference time discretization of problem

5.17, with ũ solution of 5.11. To fix ideas, let us apply the generalized trapezoidal

rule. Consider a uniform finite element partition of [0, T ] of size δt, and for a time

dependent function f let fn denote an approximation to it at tn = nδt, δfn := fn+1− fn,

δtf
n := δfn/δt and fn+θ = θfn+1 + (1 − θ)fn, with 1/2 ≤ θ ≤ 1. The generalized

trapezoidal rule applied to 5.17 leads to the following fully discrete variational problem:

given un
h and ũn, find un+1

h , pn+1
h and ũn+1 by solving

(δtu
n
h,vh) + ν(∇un+θ

h ,∇vh) + 〈un+θ
h · ∇un+θ

h ,vh〉 − (pn+1
h ,∇ · vh)

+(qh,∇ · un+θ
h )−

∑
K

〈ũn+θ, ν∆vh + un+θ
h · ∇vh +∇qh〉K

+ (δtũ
n,vh) + 〈ũn+θ · ∇un+θ

h ,vh〉 − 〈ũn+θ, ũn+θ · ∇vh〉 = 〈vh, fn+θ〉 (5.22)

δtũ
n +

1

τn+θ
ũn+θ = Rn+θ

m (5.23)

for all [vh, qh] ∈ V h×Qh (we have assumed f continuous in time, otherwise fn+θ has to

be understood as a time average between tn and tn+1). In 5.23 it is understood that the

time derivative in Rn+θ
m is already discretized. From this equation we can obtain ũn+θ

and insert it into 5.22. Obviously, the result will depend on ũn, and thus the subscales

need to be tracked in time.
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Equation 5.23 can be considered the “natural” choice for the time integration of the

equation for the subscales, in the sense that they are integrated using the same scheme

as the finite element component of the velocity. Likewise, if we had first discretized the

continuous Navier-Stokes equations in time and then applied the splitting un = un
h + ũn

we would have arrived also to 5.22-5.23 (with the adequate modeling of the subscales).

However, there is also the possibility of using a different time integration for uh and ũ.

For example, assuming given a guess for ũn+1 to evaluate τn+1 and Rn+1
m , within the

time interval [tn, tn+1] we could consider the time continuous equation for ũ

∂tũ +
1

τn+α
ũ = Rn+α

m

with 0 ≤ α ≤ 1, which can be integrated to yield

ũn+1 =
(
ũn − τn+α Rn+α

m

)
exp

(
− δt

τn+α

)
+ τn+α Rn+α

m . (5.24)

Remember that both τn+α and Rn+α
m depend on ũn+1, and therefore 5.24 is a nonlinear

algebraic equation for this subscale (except if α = 0, of course), which can be solved for

example using the strategy proposed in [21], or simply linearized and solved iteratively.

Remark 11 Even though we are considering 1
2
≤ θ ≤ 1, 5.23 makes sense also for θ = 0

(explicit integration of the subscales), case in which it yields ũn+1 = (1 − δt/τn)ũn +

δt Rn+α
m . This expression corresponds also to 5.24 with α = 0 and expanding the

exponential to first order in δt/τn.

5.3.2 Why τ must depend on δt (but this is not enough)

Let us consider equation 5.23 and re-write it as

ũn+θ =

(
1

θδt
+

1

τn+θ

)−1(
Rn+θ

m +
1

θδt
ũn

)
(5.25)

From this expression we see that the residual of the momentum equation is multiplied by

τt :=

(
1

θδt
+

1

τn+θ

)−1

(5.26)

This is what can be considered the stabilization parameter for the transient incompressible

Navier-Stokes equations. Expressions with asymptotic behavior similar to 5.26 in terms

of h, ν, |uh| and δt can be often found in the literature (see, e.g. [132, 138]). The way to

motivate it can be explained in a simplified way by saying that the temporal derivative

of the velocity is considered as a reaction-like term (with a zero order derivative) with

factor 1/(θδt), after considering for a given time step the equations discretized in time.

This explanation can be found for example in [58], or in [85], where it motivates a careful

design of the stabilization parameters for reaction dominated problems.
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In reference [11] there is a study of the instability encountered when the ASGS method

is used and 5.25 is replaced by the simplified equation

ũn+θ = τn+θ Rn+θ
m (5.27)

that corresponds to what we have called quasi-static subscales. It is shown in the reference

mentioned that for the Stokes time continuous problem the Schur complement matrix for

the pressure is not uniformly invertible, and this property is inherited as δt→ 0 if h, and

therefore τn+θ, remains fixed (the case θ = 1 is considered in [11]).

It is easily shown that the instability described disappears if

δt ≥ Cτn+θ (5.28)

where C is a positive constant. This is a condition that appears very often and about

which there are several remarks to be made:

• As it has been mentioned, under condition 5.28 the instability problems described

in [11] for the ASGS method do not appear. This condition prevents the possibility

of letting δt→ 0 while keeping h fixed.

• In fact, if 5.28 holds it is irrelevant from the analysis point of view if the residual in

5.25 is multiplied by τt defined in 5.26 or simply by τn+θ, since this parameter and

τt have the same asymptotic behavior in terms of h, ν and |uh|.

• Condition 5.28 was needed in the analysis of the stabilization with orthogonal

subscales for the convection-diffusion equation analyzed in [32], also considering

time dependent subscales.

From this discussion it seems clear that the stabilization parameter and the time step

size must be related in classical stabilized finite element methods. This is clear from the

heuristic arguments presented in the references mentioned above, the instability described

in [11] for the ASGS method and the reasons found to comply with condition 5.28 just

mentioned. However, we have not mentioned yet the fact that in 5.25 we are tracking the

subscales in time. This has two major benefits, which justifies why taking the stabilization

parameter as indicated by 5.26 is not enough:

• If, as it is done in [58, 132, 138], among other references, the stabilization parameter

adopted has an expression similar to 5.26 but the subscales are not considered time

dependent, the steady-state solution depends on the time step size. This is clearly

not an optimal situation. The amount of stabilization will depend on the way the

equations are integrated to the steady-state. This does not happen if expression

5.25 is used. It can be easily checked that, when the steady-state is reached, 5.27

(now without any superscript) is recovered.
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• Stability for all δt and h, without any need to satisfy 5.28 can be obtained for the

linearized Navier Stokes equations[36]. Further, a complete convergence analysis

of the transient approximation to the Stokes problem can be found in [3]. This is

particularly relevant, since it allows us to use arbitrary combinations of h and δt. In

other words, we may use what could be called anisotropic space-time discretizations.

Of course, it is possible to use directly 5.26 without considering time-dependent

subscales, and in that case 5.28 is automatically verified. However, that would lead

to stability estimates that become meaningless in space when δt→ 0.

5.3.3 Tracking of subscales along the nonlinear process

Up to now we have considered the effect of the term (∂tũ,vh) in 5.18 and of ∂tũ

in 5.11. In this subsection we describe the effect of the other two terms in 5.18.

Summarizing, 〈ũ · ∇uh,vh〉 allows us to guarantee global conservation of momentum,

whereas −〈ũ, ũ · ∇vh〉 may be understood as the term coming from the subgrid scale

tensor in a LES approach.

Conservation of momentum

Let us start by analyzing the effect of 〈ũ · ∇uh,vh〉. The purpose of what follows is to

present a version of the results in [84], simplified and adapted to the present setting.

Let V d
h the velocity finite element space without imposing the Dirichlet boundary

conditions, that is, with degrees of freedom also associated to the boundary nodes. Let t

be the stress vector (traction) on the boundary Γ and consider the following augmented

problem instead of 5.17:

(∂tuh,vh) + ν(∇uh,∇vh) + 〈uh · ∇uh,vh〉 − (ph,∇ · vh)

+(qh,∇ · uh)−
∑
K

〈ũ, ν∆vh + uh · ∇vh +∇qh〉K

+ (∂tũ,vh) + 〈ũ · ∇uh,vh〉 − 〈ũ, ũ · ∇vh〉 = 〈vh, f〉+ 〈vh, t〉Γ

where now vh ∈ V d
h (not just V h). Considering d = 3 and taking for example vh = (1, 0, 0)

and qh = 0, this equation yields∫
Ω

∂t(uh,1 + ũ1)dΩ +

∫
Γ

uh,1un · ndΓ−
∫

Ω

uh,1∇ · uhdΩ

+

∫
Ω

ũ · ∇uh,1dΩ =

∫
Ω

f1dΩ +

∫
Γ

t1dΓ

where now the zero Dirichlet condition for the velocity is not explicitly required. This

statement provides global momentum conservation if

−
∫

Ω

uh,1∇ · uhdΩ +

∫
Ω

ũ · ∇uh,1dΩ = 0. (5.29)
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This is implied by the continuity equation obtained by taking vh = 0

(qh,∇ · uh)−
∑
K

〈ũ,∇qh〉K = 0, (5.30)

provided Vh/R ⊆ Qh, that is to say, the velocity component uh,1 belongs to the pressure

space (uh,1 can be considered modulo constants, since they do not affect neither the

first nor the second terms in 5.29). This holds, in particular, for the “natural” choice

Vh/R = Qh, that is to say, equal velocity-pressure interpolations. For the standard

Galerkin method, this condition is impossible to be satisfied, since equal interpolation

does not satisfy the inf-sup condition. As a conclusion, the term 〈ũ · ∇uh,vh〉 provides

global momentum conservation, since without it in the discrete momentum equation, we

would have obtained −
∫

Ω
uh,1∇ ·uhdΩ = 0 instead of 5.29, which is not implied by 5.30.

A door to turbulence

Let us conclude this section with some speculative comments on the contribution of the

term −〈ũ, ũ · ∇vh〉. In the standard large eddy simulation (LES) approach to solve

turbulent flows (see e.g., [122], [130]) an equation is obtained for the large, filtered scales

of the flow, which we will denote with an overbar. This equation includes an extra term

when compared with the incompressible Navier-Stokes equations 5.1-5.2: the divergence

of the so-called residual stress tensor or subgrid scale tensor R := u⊗ u−u⊗u. Tensor

R has to be modeled in terms of u to obtain a self-contained equation, a problem known

as the closure problem, and, once this is done, the resulting LES equation can be solved

numerically.

The residual stress tensor, R, is often decomposed into the so-called Reynolds, Cross

and Leonard stresses to keep the Galilean invariance of the original Navier-Stokes equation

in the LES equation. This invariance is automatically inherited by the formulation

presented in this work and we observe that analogous terms to the various stress types

are recovered in a “natural” way from our pure numerical approach (this was also the

case in [82]). Let us have a look at this point. We first consider the last four terms in

the material derivative 5.21 as they appear in the variational equation 5.17. The term

−〈ũ, ũ · ∇vh〉 can be rewritten as

−〈ũ, ũ · ∇vh〉 = −〈ũ⊗ ũ,∇vh〉

and can be identified with the Reynolds stress. The addition of the other three terms

becomes, after integration by parts,

〈uh ·∇uh,vh〉−〈ũ,uh ·∇vh〉+〈ũ ·∇uh,vh〉 = −〈uh⊗uh,∇vh〉−〈uh⊗ ũ+ ũ⊗uh,∇vh〉

and we can identify the second term on the right hand side with the cross stress. If we

now pay attention to the convective term of the residual in the subscale equation 5.11
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and take, for simplicity, P = I, we observe that

〈(uh + ũ) · ∇uh, ṽ〉 = − (uh ⊗ uh,∇ṽ)− (uh ⊗ ũ,∇ṽ)

and the first term on the right hand side can be identified with the Leonard stress.

Hence, we can effectively conclude that the modifications introduced by the presence of

the divergence of R in the LES equations are somehow automatically included in our

subgrid scale stabilized finite element approach.

How good our formulation will work as a turbulent model will mainly depend on the

validity of the approximation made to derive the evolution equation for the subscales

5.11, being the ASGS or the OSS methods two available possibilities. In order to check

this performance, benchmark problems for turbulent flows should be used. A widely used

benchmark problem is the decay of isotropic turbulence. Our model should be able to

reproduce the Kolmogorov energy cascade in the wavenumber Fourier space that displays

an inertial range, where E(k, t) ∼ CKε
2/3k−5/3 (ε being the energy dissipation rate, k the

wavenumber modulus, CK the Kolmogorov constant in energy space and E the kinetic

energy). The model should be also able to capture the appropriate decay in time of

energy, enstrophy and other related statistical variables. Other more intricate questions

such as if the model allows for backscatter or if the dimension of the global attractor is

properly reproduced could be also addressed. We remind that the heuristic estimate for

this dimension is N ∼ (L/λK)3 ∼ Re
9
4 (where λK is the Kolmogorov length scale) and

that the closest estimate analytically proved is (roughly) (L/λK)4.8 (see [59]). Another

standard test for turbulence is the turbulent channel flow. In this case the model should

be able to approximate the turbulent boundary layer that, according to Prandtl theory,

exhibits a log behavior after the laminar sublayer. Finally, we should mention that in an

attempt to find a more mathematical foundation for the LES approach to turbulence, the

concept of suitable approximations to the Navier-Stokes equations has been introduced in

[65, 66]. It is expected that approximate solutions converge (in a weak sense) to suitable

solutions. This seems to be the case for low order finite elements and the standard Galerkin

method [64]. Hopefully, our enhanced formulations will have this property.

The original idea of using the multiscale formulation with local approximation to the

fine scales to compute turbulent flows was already pointed out in [29] and elaborated in

[77, 21]. Very good results were obtained for fully developed and transitional turbulent

flows. In fact, some promising results of numerical simulation of turbulent flows only with

stabilization can be found in [73, 39](see also [62] for a review).

5.4 Numerical examples

In this section we present three simple numerical examples that illustrate the performance

of the method. The first is a convergence test that shows that for solutions with a smooth
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behavior in time both quasi-static and transient subscales lead to the same optimal

convergence rate. In the second example we demonstrate the improvement obtained

when the subscales are tracked in time in the example introduced in [11]. Finally, the

last example is the classical flow over a cylinder, for which considering transient subscales

leads to better results, both in terms of accuracy (with higher amplitudes and frequencies,

that is, less numerical dissipation) and of stability, eliminating some pressure oscillations

in time encountered when the subscales are considered quasi-static. In all the cases we

have used the ASGS method, that is, P = I (identity) in 5.15-5.16.

5.4.1 A convergence test

In this example, already presented in [27], we consider the time dependent Navier-Stokes

equations in the unit square with homogeneous Dirichlet boundary conditions and taking

the force f and boundary and initial values to have the exact solution defined by

u = 100h(t) (f(x)f ′(y),−f ′(x)f(y)) , p = 100x2,

where

h(t) = cos(πt) e−t, f(x) = x2(1− x)2.

Uniform meshes of 10× 10, 20× 20, 40× 40 and 80× 80 bilinear elements have been used

to discretize the computational domain. The time interval of the analysis is [0, 1] and the

viscosity is 0.1.

The objective of this test is to check the convergence of the time approximation

to the exact solution using the method proposed here. To this end we compare the

results obtained using transient subscales (TRS) to those obtained using quasi-static

subscales (QSS) (see Remark 2). We compute the error as the discrete approximation to

the L2 norm of the difference between the exact and the approximated solution at time

t = 1 and we normalize it using the discrete approximation to the L2 norm of the exact

solution. Numerical experiments have been performed using a first and a second order

temporal discretization (Crank Nicolson scheme) and several time step sizes. In the case

of the second order approximation we have also considered a first and second order time

integration of equation 5.23. The convergence of the velocity approximation is shown

in figure 5.1, from where it is seen that stabilized approximation converges to the exact

solution at the expected rate either using the time dependent or the quasi-static subscales

(see Remark 9). We also note that the integration of the subgrid scale equation 5.23 using

a first or a second order method has little influence on the results.

5.4.2 Stability in the small time step limit

The second example, presented in [11], shows the instability of the approximation to the

Stokes problem when quasi-static subscales are considered (recall that we are using the
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Figure 5.1: Convergence of the time approximation using quasi-static subscales (QSS) and
transient subscales (TRS). First order approximation on the left and second order
approximation on the right. In the second order approximation first order (FO) or
second order (SO) subscales are considered. From top to bottom meshes of sizes
h = 1/20, h = 1/40 and h = 1/80. Note that the convergence curves loose the
optimal slope in time (1 or 2) when the error becomes dominated by the spatial
component.
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ASGS method in all the examples). It consists again of an exact solution problem in which

the time dependent Navier-Stokes equations are solved in the unit square with Dirichlet

boundary conditions taking the force f and boundary and initial values to have the exact

(steady state) solution defined by

u = (sin(πx− 0.7) sin(πy + 0.2) , cos(πx− 0.7) cos(πy + 0.2)) ,

p = sin(πx)cos(πy) + (cos(1)− 1)sin(1).

Numerical examples presented in [11] show that spurious oscillations in the pressure are

found when the time step is small enough and that this effect is more dramatic when the

order of the polynomial approximation is increased. We have solved this problem using

different meshes for time step sizes δtn = 10−n using a first order time approximation.

Figure 5.2 shows the convergence of the approximation using bilinear elements at the

first time step, while figure 5.3 shows the same results corresponding to the second time

step. The instability mentioned can be seen in figure 5.2, as for a given mesh size the error

increases when the time step is decreased. As a first order approximation is being used

and the solution of the problem is steady, the error should decrease linearly with the time

step size. This is not the case in the first step, neither using the quasi-static subscales as

shown in [11], nor using transient subscales. However, as shown in figure 5.3, when the

transient subscales are considered the instability is eliminated at the second time step.

This behavior leads to consider the practical problem of the initial conditions for the

subgrid scale (we have taken them to be zero), which has not been considered here. It has

to be noted that, in any case, the instability observed disappears as time advances and,

obviously, the stationary solution is equally approximated using quasi-static and transient

subscales.

The situation is different when higher order elements are used. Figure 5.4 shows the

convergence of the approximation using biquadratic elements while figure 5.5 shows the

convergence of the approximation using bicubic elements, both at the first time step.

Similar results are found for the second time step. From figures 5.4 and 5.5 it is seen that

when quasi-static subscales are considered the method could not converge as the mesh

is refined for small time steps. This is even more dramatic than the result presented in

[11], where only a fixed mesh of 10× 10 elements was considered. In the case of transient

subscales, although some dependence of the error on the time step size is still observed,

convergence under mesh refinement is always achieved. This effect is seen in figure 5.6,

where pressure contours for different mesh sizes obtained using quasi-static and transient

subscales are compared.

5.4.3 Flow past a cylinder

The last example is the flow past a cylinder at Re = 100, a well known benchmark. The

domain is [0, 16]× [0, 8]\D, where the cylinder D has a diameter 1 and is located at (4, 4).
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Figure 5.2: Convergence of the approximation using bilinear elements at the first time step.
Quasi-static subscales on the left and transient subscales on the right. Velocity
error at the top and pressure error at the bottom.
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Figure 5.3: Convergence of the approximation using bilinear elements at the second time step.
Quasi-static subscales on the left and transient subscales on the right. Velocity error
at the top and pressure error at the bottom.
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Figure 5.4: Convergence of the approximation using biquadratic elements at the first time step.
Quasi-static subscales on the left and transient subscales on the right. Velocity error
at the top and pressure error at the bottom.
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Figure 5.5: Convergence of the approximation using bicubic elements at the first time step.
Quasi-static subscales on the left and transient subscales on the right. Velocity
error at the top and pressure error at the bottom.
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Figure 5.6: Pressure contours for δt = 10−6 and (from top to bottom) h = 1/20, h = 1/40
and h = 1/80 using biquadratic elements. Quasi-static subscales on the left and
transient subscales on the right.



122 The incompressible Navier Stokes problem

A uniform velocity is prescribed at the inlet, zero y component is prescribed at y = 0

and y = 8 and zero traction is prescribed at the outlet. Two meshes have been used to

test the behavior of the method, a coarse one of 1360 nodes and a fine one of 5280. The

results will be compared to those obtained using a reference mesh of 20800 nodes.

The initial condition is u = (1, 0) except at the cylinder surface. From this initial

condition the flow evolves to a symmetric solution that becomes unstable around t = 100

and the characteristic vortex shedding appears. To visualize the problem setting, a

pressure distribution snapshot in the fully developed regime is shown in figure 5.7. A

second order method has been used with time step size δt = 0.2 and 10 Euler time steps

have been performed at the beginning of the calculations for all the meshes. A convergence

tolerance of 10−8 was required at each step, which was achieved typically after 8 to 10

Picard iterations.

Figure 5.7: Pressure distribution at t = 160

Figures 5.8 and 5.9 show the evolution of the x-velocity at point (6.15, 4), figures 5.10

and 5.11 that of the y-velocity and figures 5.12 and 5.13 that of the pressure, always

at the same point and for the two meshes considered, comparing the results obtained

using quasi-static subscales and transient subscales to those obtained using the reference

mesh. It can be seen from figures 5.8 and 5.9 how the use of the transient subscales

gives a better mean value of the x-velocity when the flow is fully developed, specially in

the coarse mesh. From 5.10 and 5.11 it can be observed how the use of the transient

subscales gives a higher amplitude and a higher frequency of the oscillation, that is to say,

less numerical dissipation. Finally, in figure 5.12 some time step-to-time step oscillations

can be observed when the quasi-static subscales are used and how these oscillations do

not appear when transient subscales are considered. These oscillations, already reported

in [29], depend on the length used in the definition of the stabilization parameters. They

appear when there is a variation of the element size from one element to another and they

disappear if a fixed mesh size is used to define the stabilization parameter. From figure

5.13 it is seen that they also disappear in the fine mesh. In this case there is almost no

gain in the pressure using transient subscales (but there is in the velocity, as shown in

figures 5.9 and 5.11).
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Figure 5.8: Horizontal velocity evolution at (6.15, 4.0) using the coarse mesh (left) and its detail
(right).
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Figure 5.9: Horizontal velocity evolution at (6.15, 4.0) using the fine mesh (top) and its detail
(bottom).

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

 0  50  100  150  200  250

v

t

QSS
TRS
REF

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

 150  155  160  165  170  175  180

v

t

QSS
TRS
REF

Figure 5.10: Vertical velocity evolution at (6.15, 4.0) using the coarse mesh (top) and its detail
(bottom).
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Figure 5.11: Vertical velocity evolution at (6.15, 4.0) using the fine mesh (top) and its detail
(bottom).
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Figure 5.12: Pressure evolution at (6.15, 4.0) using the coarse mesh (top) and its detail (bottom).
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Figure 5.13: Pressure evolution at (6.15, 4.0) using the fine mesh (top) and its detail (bottom).
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5.5 Conclusions

The main conclusion of this chapter is simple: we believe it is worth to track the subscales

in time in a variational multiscale approach to the transient incompressible Navier-Stokes

equations and to take into account all their contributions in the convective term.

The first and very simple reason is that it leads to global momentum conservation, a

rare property. A second reason can be the door opened to turbulence modeling, although

we have touched this point only marginally. What has been the main focus of this chapter

is the study of the advantages of tracking the subscales from the point of view of the time

integration scheme. First, we have remarked that the resulting formulation leads in a

natural way to the correct behavior of the stabilization parameters with the time step

while steady-state solutions do not depend on it. Moreover, the conflict about the design

of the stabilization terms for time dependent problems (either at the semi-discrete or

the fully discrete level) disappears, since space and time discretization can be commuted.

The numerical experiments show that the gain with respect to quasi-static subscales is

notorious.
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Chapter 6

Thermally coupled flow problems

In this chapter we propose a variational multiscale finite element approximation of

thermally coupled flows. We consider the thermal coupling in the context of the

Boussinesq approximation but the same formulation is used to solve the low Mach number

equations with minor modifications (we refer the reader to the next chapter, in which some

implementation details are discussed). The main feature of the formulation in contrast to

other stabilized methods is that we consider the subscales as time dependent. They are

solution of a differential equation in time that needs to be integrated. Likewise, we keep

the effect of the subscales both in the nonlinear convective terms of the momentum and

temperature equations and, if required, the coupling between them.

6.1 Introduction

Thermally coupled incompressible flows are of particular interest from the numerical point

of view for different reasons. Apart from their obvious practical interest, very often these

flows exhibit instabilities and even transition to turbulence in situations simpler than for

isothermal flows. The numerical modeling of these instabilities that take place in rather

simple cases is an excellent test for numerical formulations.

In this chapter we propose a finite element formulation for thermally coupled flows

based on the variational multiscale formalism [78]. The basic idea is to split the unknowns,

velocity, pressure and temperature, into their finite element component and a subgrid scale

component, hereafter referred to as subscale. The particular approximation used for these

subscales defines the numerical model. The main feature of the model we propose is that

we consider the subscales time dependent and that we keep their effect in all the terms

of the equations to be solved, both the nonlinear convective terms of the momentum and

the heat equation and in the coupling term due to the Boussinesq model.

The basic formulation for isothermal incompressible flows was described in [36] and

chapter 5. As it is explained there, considering the subscales time dependent and tracking
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them along the iterative process to deal with the nonlinear terms has several benefits, such

as a better performance in time of the final formulation, the conservation of momentum

or the possibility to model turbulence. In this chapter we extend the formulation to

thermally coupled flows using the Boussinesq approximation.

The need to stabilize the standard Galerkin finite element approximation comes from

two main sources, namely, the wish to use equal velocity-pressure interpolations and to

deal with convection dominated flows. As it is now well known, both sources of instability

can be overcome by using stabilized formulations. However, the main interest of this

chapter is not to explain how the stabilized formulation employed here allows to use equal

interpolations or is able to avoid convection instabilities. Our main concern is to explain

how to consider dynamic subscales, how to integrate them in time and how to track them

along the iterative process, accounting in particular for the coupling of the heat and the

momentum equations.

The chapter is organized as follows. In the following section we define the problem

and in section 6.3 we consider the multiscale formulation extended to thermally coupled

flows and we present the time integration scheme in section 6.4, summarizing its main

properties in section 6.5. Two numerical examples are presented in Section 6.6, both

of them two-dimensional. They involve two situations of thermally coupled flows that

display a bifurcation of the solution due to the instability of the basic flow. One of them

is the classical Rayleigh-Bénard instability coupled with a Poiseuille flow, which leads

to a transient flow even if the bifurcation is of stationary type. The second example is

the classical flow in a cavity with differentially heated vertical walls. When the Prandtl

number is small, the flow exhibits a Hopf bifurcation that leads to an oscillating flow

pattern. The chapter concludes in Section 6.7 with some final remarks and comments.

6.2 Physical problem

Let Ω ⊂ Rd, with d = 2, 3, be the computational domain in which the flow takes place

during the time interval [0, T ], and let Γ be its boundary. The initial and boundary

value problem to be considered consists in finding a velocity field u, a pressure p and a
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temperature ϑ such that

∂tu + u · ∇u− ν∆u +∇p+ βgϑ = f + βgϑ0 in Ω, t ∈ (0, T )

∇ · u = 0 in Ω, t ∈ (0, T )

∂tϑ+ u · ∇ϑ− α∆ϑ = Q in Ω, t ∈ (0, T )

u = 0 on Γ, t ∈ (0, T )

u = u0 in Ω, t = 0

ϑ = 0 on Γ, t ∈ (0, T )

ϑ = ϑ0 in Ω, t = 0

In these equations, ν is the kinematic viscosity, α the thermal diffusivity, β the thermal

expansion coefficient, f the external body forces, ϑ0 the reference temperature, g the

gravity acceleration vector, Q the heat source and u0 and ϑ0 the initial conditions for

velocity and temperature, respectively. For simplicity in the exposition, we have assumed

homogeneous Dirichlet boundary conditions for both velocity and temperature.

To define the functional setting, letH1(Ω) be the space of functions such that they and

their first derivatives belong to L2(Ω) (that is, they are square integrable), and let H1
0 (Ω)

be the subspace of functions in H1(Ω) vanishing on the boundary. Let also V st = H1
0 (Ω)d,

Qst = L2(Ω)/R, Ψst = H1
0 (Ω) and define V = L2(0, T ; V st), Q = L1(0, T ;Qst) (for

example) and Ψ = L2(0, T ; Ψst), where Lp(0, T ;X) stands of the space of functions such

that their X norm in the spatial argument is an Lp(0, T ) function in time, that is, its p-th

power is integrable if 1 ≤ p <∞ or bounded if p = ∞.

The weak form of the problem consists in finding (u, p, ϑ) ∈ V ×Q×Ψ such that

(∂tu,v) + (u · ∇u,v) + ν(∇u,∇v)− (p,∇ · v) + β(gϑ,v) = 〈f ,v〉+ β(gϑ0,v) (6.1)

(q,∇ · u) = 0 (6.2)

(∂tϑ, ψ) + (u · ∇ϑ, ψ) + α(∇ϑ,∇ψ) = (Q,ψ) (6.3)

for all (v, q, ψ) ∈ V st × Qst × Ψst, where (·, ·) denotes the L2(Ω) inner product and

(f, g) :=
∫

Ω
fg dΩ whenever functions f and g are such that the integral is well defined.

The dimensionless numbers relevant in this problem are those already defined in chapter

2 and the Grashof number given by

Gr =
β|g|l30∆ϑ

ν2

where l0 is a characteristic length of the problem and ∆ϑ a characteristic temperature

difference. Note the relation Ra = Gr Pr.

6.3 Multiscale approximation

Let us consider a finite element partition Ph = {K} of the computational domain Ω of

nel elements, from which we can construct finite element spaces for the velocity, pressure
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and temperature in the usual manner. We will denote them by V h ⊂ V st, Qh ⊂ Qst and

Ψh ⊂ Ψst, respectively, and, to simplify the exposition, we will assume that they are all

built from continuous piecewise polynomials of the same degree k. The basic idea of the

multiscale approach we will follow [78] is to split the continuous unknowns as

u = uh + ũ (6.4)

p = ph + p̃ (6.5)

ϑ = ϑh + ϑ̃ (6.6)

where the components with subscript h belong to the corresponding finite element spaces.

The components with a tilde belong to any space such that its direct sum with the finite

element space yields the functional space where the unknown is sought. For the moment,

we leave it undefined. These additional components are what we will call subscales.

Each particular variational multiscale method will depend on the way the subscales are

approximated. However, our main focus in this work is not how to choose the space

of subscales (in our case for velocity, pressure and temperature), but to explain the

consequences of considering these subscales time dependent, and therefore requiring to

be integrated in time. Likewise, we will keep the previous decomposition 6.4-6.6 in all

the terms of 6.1-6.3. The only approximation we will make for the moment is to assume

that the subscales vanish on the interelement boundaries, ∂K. This happens for example

if they are approximated using bubble functions [4], or if one assumes that their Fourier

modes correspond to high wave numbers, as it is explained in [29].

Substituting 6.4-6.6 into 6.1-6.3, taking the test functions in the corresponding finite

element spaces and integrating some terms by parts, it is found that

(∂tuh,vh) + (uh · ∇uh,vh) + ν(∇uh,∇vh)− (ph,∇ · vh) + β(gϑh,vh)

− (ũ, ν∆hvh + uh∇ · vh) + (∂tũ,vh) + (ũ · ∇uh,vh)− (ũ, ũ · ∇vh)

− (p̃,∇ · vh) + β(gϑ̃,vh) = 〈f ,vh〉+ β(gϑ0,vh) (6.7)

(qh,∇ · uh)− (ũ,∇qh) = 0 (6.8)

(∂tϑh, ψh) + (uh · ∇ϑh, ψh) + α(∇ϑh,∇ψh)−
(
ϑ̃, α∆hψh + uh · ∇ψh

)
+ (∂tϑ̃, ψh) + (ũ · ∇ϑh, ψh)−

(
ϑ̃, ũ · ∇ψh

)
= (Q,ψh) (6.9)

which must hold for all test functions (vh, qh, ψh) ∈ V h × Qh × Ψh. The subindex h in

the Laplacian denotes that it is evaluated elementwise.

The first row in 6.7 corresponds to the terms arising from the classical Galerkin

approximation of the momentum equation (except for the term due to external forces).

Once the velocity subscale is approximated, the first term of the second row provides

stability of convection as usual in classical methods (see, for example, [28]). The rest of

the terms in the second row and those in the third row are non-standard terms, in the sense
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that they are usually neglected. One of our purposes here is to discuss the implications

of these terms. The last row in 6.7 comes from the contribution of the pressure and

temperature subscale and the contribution from the external forces. It is rather standard

to take the pressure subscale into account, but to study the effect of the temperature

subscale is one of the objectives of one of our numerical experiments.

In the left-hand-side of 6.8 the first term is the classical Galerkin contribution, whereas

the second provides (pressure) stability once the velocity subscale is approximated.

Similar comments to those made for 6.7 apply to 6.9. The first three terms of the

first row correspond to the classical Galerkin approximation (except for the heat source),

the last term of the first row provide stability in convection dominated flows when the

temperature subscale is approximated and, finally, the three terms in the left-hand-side

of the second row are non-standard, and come from the fact that subscales are never

neglected in the previous equations (except for the fact that they are assumed to vanish

on the interelement boundaries, as it has been already mentioned).

Equations 6.7-6.9 can be understood as the projection of the original equations onto

the finite element spaces of velocity, pressure and temperature. The equations for the

subscales are obtained by projecting onto their corresponding spaces. If P̃ denotes this

projection onto any of these spaces, these equations are

P̃
[
∂tũ + (uh + ũ) · ∇ũ− ν∆ũ +∇p̃+ βgϑ̃

]
= P̃Rm (6.10)

P̃ [∇ · ũ] = P̃Rc (6.11)

P̃
[
∂tϑ̃+ (uh + ũ) · ∇ϑ̃− α∆ϑ̃

]
= P̃Re (6.12)

where

Rm = f + βgϑ0 − [∂tuh + (uh + ũ) · ∇uh − ν∆huh +∇ph + βgϑh]

Rc = −∇ · uh

Re = Q− [∂tϑh + (uh + ũ) · ∇ϑh − α∆hϑh],

are the residuals of the finite element unknowns in the momentum, continuity and energy

equation, respectively. Equations 6.10-6.12 need to be solved within each element and, as

we have assumed, considering homogeneous velocity and temperature Dirichlet boundary

conditions.

It is not our purpose here to discuss how to approximate 6.10-6.11 which, in fact, is

the essence of the different stabilized finite element methods that can be found in the

literature. We will adopt a simple approximation that can be found, for example, in [29]

and references therein. Our main concern, as in the reference just mentioned, is to keep

the time dependence of the subscales, as well their nonlinear effects. When their time

derivative is neglected, we will call them quasi-static, whereas otherwise we will call them

dynamic.
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Following the line of chapters 3, 4 and 5 now extended to thermally coupled flows, we

propose to compute the subscales within each element of the finite element partition as

solution to

∂tũ + τ−1
m ũ = P̃Rm (6.13)

τ−1
c p̃ = P̃ (Rc + τm∂tRp) (6.14)

∂tϑ̃+ τ−1
e ϑ̃ = P̃Re (6.15)

where the isotropic stabilization parameters τm, τc and τe are computed as

τm =

(
c1
ν

h2
+ c2

|uh + ũ|
h

)−1

(6.16)

τc =
h2

c1τm
= ν +

c2
c1
h|uh + ũ| (6.17)

τe =

(
c1
α

h2
+ c2

|uh + ũ|
h

)−1

(6.18)

where h is the element size and c1 and c2 are algorithmic constants (we have adopted

c1 = 4 and c2 = 2 in the numerical experiments).

The approximation adopted for the subscales could certainly be improved, for example

by trying to relax the assumption that they vanish on the interelement boundaries or by

trying to model the coupling between the three equations in play (momentum, continuity

and heat) as done in chapter 4 for the Oseen equations. However, our interest here

is only to analyze the effect of considering the subscales time dependent and taking

into account their contribution in the nonlinear terms. In particular, it is important

to remark that 6.13 is nonlinear, both because the velocity subscale contributes to the

advection velocity and because the stabilization parameter τm depends also on the velocity

subscale, as equation 6.15 and the stabilization parameter τe. Likewise, 6.13 depends on

the temperature subscale, and therefore the velocity-temperature coupling is naturally

accounted for.

Even though it is not our purpose to use an “accurate” approximation to the subscales

like the one introduced in chapter 4, in some case we have found convenient to include

the time derivative of Rc in the approximation 6.14 of the pressure subscale. This

term was neglected in the previous chapter and in [29, 36], but in some situations it

is crucial to improve pressure stability. This time derivative arises naturally if the second

approximation to the subscales of chapter 5 is considered.

It is observed that in 6.13-6.15 we have kept the projections P̃ in the right-hand-

side terms. Basically, two different options can be considered. Classical stabilized finite

element methods are recovered by taking P̃ = I (the identity), whereas if P̃ = P⊥
h =

I−Ph, Ph being the L2-projection onto the appropriate finite element space, the subscales

turn out to be orthogonal to this finite element space. The resulting formulation is termed

as orthogonal subscales stabilization (OSS) in [29].



Thermally coupled flow problems 133

The space-discrete formulation is now complete. However, contrary to what happens

with quasi-static subscales and neglecting their nonlinear effects, now it is not possible to

obtain a closed-form expression for these subscales and insert them into 6.7-6.9 in order to

obtain a problem for the finite element components of velocity, pressure and temperature.

Prior to discretizing in time, we cannot go any further than saying that the problem

consists in solving 6.7-6.9 together with 6.13-6.15.

6.4 Temporal discretization

Any finite difference scheme can now be applied to discretize in time both equations 6.7-

6.9 and equations 6.13-6.15. Obviously, space-time finite element discretizations are also

possible. In order to make the exposition concise, we will restrict our attention to the

trapezoidal rule.

Let δt be the time step size of a uniform partition of the time interval [0, T ],

0 = t0 < t1 < ... < tN = T . Functions approximated at time tn will be identified with

the superscript n. For a generic function f , we will use the notation δfn := fn+1 − fn,

δtf
n = δfn/δt, fn+θ = θfn+1 + (1− θ)fn, 0 ≤ θ ≤ 1.

The time discretization of 6.7-6.9 is standard and does not need any further

explanation. Given un
h, ϑn

h, ũn and ϑ̃n, it consists of solving the problem

(δtu
n
h,vh) +

(
un+θ

h · ∇un+θ
h ,vh

)
+ ν(∇un+θ

h ,∇vh)− (pn+1
h ,∇ · vh) + β(gϑn+θ

h ,vh)

−
(
ũn+θ, ν∆hvh + un+θ

h ∇ · vh

)
+ (δtũ

n,vh) +
(
ũn+θ · ∇un+θ

h ,vh

)
−
(
ũn+θ, ũn+θ · ∇vh

)
− (p̃n+1,∇ · vh) + β(gϑ̃n+θ,vh) = 〈f ,vh〉+ β(gϑ0,vh) (6.19)

(qh,∇ · un+θ
h )− (ũn+θ,∇qh) = 0 (6.20)

(δtϑ
n
h, ψh) +

(
un+θ

h · ∇ϑn+θ
h , ψh

)
+ α(∇ϑn+θ

h ,∇ψh)−
(
ϑ̃n+θ, α∆hψh + un+θ

h · ∇ψh

)
+ (δtϑ̃

n, ψh) +
(
ũn+θ · ∇ϑn+θ

h , ψh

)
−
(
ϑ̃n+θ, ũn+θ · ∇ψh

)
= (Q,ψh) , (6.21)

which must hold for all test functions (vh, qh, ψh) ∈ V h×Qh×Ψh. Note that the pressure

is considered approximated at time n+ 1. This avoids the need to deal with the pressure

at a previous time step and does not modify the velocity approximation. As it is well

known, the scheme is expected to be of second order if θ = 1/2 and of first order otherwise.

Equations 6.13-6.15 need also to be integrated in time. The simplest option is to use

the same time discretization as for the finite element equations, which yields

δtũ
n +

1

τn+θ
m

ũn+θ = P̃Rn+θ
m (6.22)

1

τn+1
c

p̃n+1 = P̃
(
Rn+1

c + τn+1
m δtR

n
c

)
(6.23)

δtϑ̃
n +

1

τn+θ
e

ϑ̃n+θ = P̃Rn+θ
e (6.24)
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However, we will consider two additional options. The first is that the time integration

for the subscales could be less accurate than for the finite element equations 6.7-6.9

and still keep the same order of accuracy in time of the finite element solution. The

formal idea to justify this is the following. From the expression of the stabilization

parameters τm and τe in 6.16 and 6.18, respectively, it follows that they behave as the

critical time steps of an explicit integration in time of the momentum and the heat

equation [37]. Therefore, we may assume that they are of order O(δt). From 6.22

it follows that O(1)δũn+1 + ũn+1 = O(δt)P̃ (Rn+θ
m ), and thus we may conclude that

ũn+1 = O(δt)P̃ (Rn+1
m ). If the residual of the finite element component is bounded,

|ũn+1− ũn| = O(δt2), and therefore evaluating the subscale at n+1, for example, in 6.19

instead of at n+θ introduces an error of order O(δt2), which is the optimal error that can

be reached with the trapezoidal rule (for θ = 1/2). The same comments apply to 6.24 for

the temperature subscale.

Considering the subscale equations integrated to first order and the finite element

equations to second (or higher) is not particularly relevant in the case of the trapezoidal

rule. However, if, for example, the second order backward-differencing (BDF) scheme is

used, a first order integration of the equation for the subscales avoids the need to store

them in two previous time steps. This storage is the most important cost of integrating the

subscales in time. Another aspect to take into account is that the subscale approximation

is not smooth, since the residual of the finite element components will be discontinuous

across interelement boundaries. Thus, it seems reasonable to use a scheme as dissipative

as possible to integrate the subscales in time. Further comments about this point are

made in Section 4.

A first order time integration for the subscales is straightforward. Equations 6.22 and

6.24 have to be replaced by their counterparts for θ = 1.

A third and final possibility that can be considered to integrate 6.13-6.15 in time

is a combination of exact integration and approximation of the stabilization parameters

and residuals at tn+θ. If this approximation is done, the equations for the velocity and

temperature subscales are

∂tũ +
1

τn+θ
m

ũ = P̃Rn+θ
m

∂tϑ̃+
1

τn+θ
e

ϑ̃ = P̃Rn+θ
e

which can be integrated exactly, yielding

ũn+1 =
(
ũn − τn+θ

m P̃Rn+θ
m

)
exp

(
− δt

τn+θ
m

)
+ τn+θ

1 P̃Rn+θ
m (6.25)

ϑ̃n+1 =
(
ϑ̃n − τn+θ

e P̃Rn+θ
e

)
exp

(
− δt

τn+θ
e

)
+ τn+θ

3 P̃Rn+θ
e (6.26)
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6.5 Main features of the formulation

The method described so far is an extension of the formulation proposed in chapter 5

to the case of thermally coupled flows using the Boussinesq approximation and therefore

it is not necessary to repeat the same arguments again. Therefore, referring the redear

to chapter 5 for their justification, let us briefly recall the fundamental features of the

formulation and remark the differences that appear in the thermal case.

• The first point is the effect of considering the subscales dynamic, and therefore to

deal with their time variation. Doing that the effect of time integration is now

clear. Suppose for example that we are using 6.22-6.24 to integrate the subscales.

Certainly, the effective stabilization parameters have to be modified (as it is done

for example in [132, 138]), but when the steady-state is reached the subscale ũ that

is obtained satisfies (
1

βδt
+

1

τm

)
ũ =

1

βδt
ũ + Rm,

from where

ũ = τmRm,

so that the usual expression employed for stationary problems is recovered.

Numerical experiments also show that the temporal time integration is significantly

improved eliminating oscillations originated by initial transients and minimizing

numerical dissipation. The use of dynamic subscales also leads to the commutation

of space discretization (understood as scale splitting) and time discretization. That

is time discretization + stabilization (scale splitting) = stabilization (scale splitting)

+ time discretization. In what respects the time integration properties, the situation

is similar for the energy equation.

• The second point is the effect of tracking the subscales along the nonlinear process

and in the case of thermal problems along the coupling. On the one hand the

tracking results in conservation properties. In the case of the incompressible

Navier Stokes equations considered in chapter 5, this leads to global momentum

conservation thanks to the term 〈ũ · ∇uh,vh〉. As shown in chapter 5 global

momentum conservation holds if [84]

−
∫

Ω

uh,1∇ · uhdΩ +

∫
Ω

ũ · ∇uh,1dΩ = 0.

what is implied by the continuity equation provided Vh,1 j Qh. This holds, in

particular, for the “natural” choice Vh,1 = Qh. For the standard Galerkin method,

this condition is impossible to be satisfied, since equal interpolation does not satisfy

the inf-sup condition. In the same way if we consider ψh = 1 in 6.9 and q is the
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normal heat flux on the boundary Γ that results from considering the augmented

problem [84] we have∫
Ω

∂tϑh −
∫

Ω

ϑh∇ · uh +

∫
Ω

∂tϑ̃+

∫
Ω

ũ · ∇ϑh +

∫
Γ

ϑhun · ndΓ =

∫
Ω

Q+

∫
Γ

qdΓ,

As in the case of the momentum equation, global energy conservation is obtained

from the continuity equation provided Ψh j Qh what holds if the temperature is

interpolated in the same way as the pressure. As a conclusion, the term 〈ũ·∇uh,vh〉
provides global momentum conservation and the term 〈ũn+θ ·∇ϑh, ψh〉 provides global

energy conservation.

On the other hand the tracking of subscales along the nonlinear and coupling

processes opens the possibility of modelling turbulence. Some comments about this

possibility have been made in chapter 5 where the reader is referred. Let us only

mention that the formulation we propose would account for thermal turbulence

in a very natural way. The traditional approach is to relate thermal turbulence

to the mechanical one through the introduction of a turbulent Prandtl number

whose physical meaning and adequate value are not well understood. This would

be unnecessary with the approach presented here.

6.6 Numerical examples

In this section we present the results of two numerical tests involving two-dimensional

thermally coupled flows. In both cases we have used P̃ = I in 6.10-6.12, which corresponds

to the most classical stabilized finite element methods.

In both numerical examples, our purpose is to compare the numerical performance of

quasi-static subscales (QSS) and dynamic subscales (DS). To this end, we will proceed as

follows. Two meshes will be considered in both examples, one that we will call “coarse”

and another finer one. On both meshes we will present the results obtained using QSS

and, only in the coarse mesh, the results obtained considering dynamic subscales. The

goal is to show that DS yield better results than QSS on the coarse meshes by comparing

both to the QSS results on the fine mesh, that we will call reference results. We anticipate

that the conclusions of the following numerical experiments are

• The accuracy is higher using DS. This is reflected in particular by less damping of

frequencies and amplitudes in the oscillating response of the flows considered.

• Stability is improved by using DS, particularly when subscales are integrated in time

with a first order scheme. Some oscillations encountered with QSS are removed.

A full description of the iterative scheme developed for solving thermally coupled

flows is presented in chapter 7, including different possibilities for the treatment of the
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nonlinearities. In the examples presented here, the velocity-temperature coupling has

been achieved using a block-iterative strategy, using also a nested iterative loop to solve

the nonlinear Navier-Stokes equations within each coupling iteration. After solving for

the finite element component of the velocity (temperature) the subgrid scale velocity

iterating 6.22 (6.24). When the flow is fully developed, it converges very well, yielding

fully converged subscales (with relative residuals of the order of 10−6) with four or five

iterations. Concerning the time integration schemes, the equations for the finite element

unknowns have been integrated using the second order Crank-Nicolson scheme (θ = 1/2

in 6.19-6.21), whereas the equations for the subscales have been integrated either using

this same scheme or the first order version described in Section 3.1.

6.6.1 Thermoconvective instability of plane Poiseuille flow

The problem consists of a two-dimensional laminar flow in a horizontal channel occupying

the domain [0, 10]×[0, 1] and suddenly heated from below. A parabolic inlet velocity profile

is prescribed at x = 0, whereas the outlet is left free, i.e., the associated natural boundary

condition is zero traction. The temperature is prescribed to ϑ = 1 at the bottom wall

y = 0 and to ϑ = 0 at the top wall y = 1. The inlet and outlet are considered adiabatic.

This problem was solved in [46] as a benchmark for open boundary flows using a finite

difference method and a fine grid. It can be considered as a model for several relevant

engineering problems, such as the fabrication of microelectronic circuits using the chemical

vapor deposition process (cf. [46], see references therein).

Figure 6.1: Streamlines at two different time steps for the plane Poiseuille flow example.

Figure 6.2: Temperature contours at two different time steps for the plane Poiseuille flow
example.
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Figure 6.3: Pressure contours at two different time steps for the plane Poiseuille flow example.

The dimensionless parameters of the problem have been taken as Re = 10, Fr2 = 1/150

and Pe = 40/9 (the average inlet velocity, the height of the channel and the temperature

difference between the top and bottom walls have been chosen as reference values for

velocity, length and temperature, respectively). These parameters are the same as in

[46] except for the Péclet number, which is slightly higher in that work (Pe = 20/3). In

both cases, these values result in a thermoconvective instability of the basic Poiseuille

flow. The linear stability analysis of unstable stratified plane Poiseuille flow in a infinite

horizontal channel can be found in [56]. It is shown there that the form of the instability

could vary from traveling transverse waves to longitudinal rolls, with axes parallel to

the main flow direction and thus leading to a three-dimensional flow pattern. Traveling

transverse waves are found for small values of the Rayleigh number. This is the situation

for the dimensionless parameters used here and therefore a two-dimensional calculation

is possible. It should be remarked, however, that three-dimensional effects are in general

very important for thermally coupled flows [94].

The domain [0, 10]× [0, 1] has been discretized using two uniform meshes of 16× 40

and 50× 100 bilinear elements, respectively. For the length of the channel considered, it

is concluded in [46] that the numerical solution is not affected by the artificial boundary

conditions for 2 ≤ x ≤ 8.

Some results of the calculation on the fine mesh are shown in Figures 6.1, 6.2 and 6.3.

They display the streamlines, temperature contours and pressure contours obtained at

two time steps (roughly) half-a-period apart. The bad influence of the artificial boundary

conditions can be observed, especially in what concerns the outlet wall. It is clear that

the zero traction prescription does not reproduce the effect of an infinitely long channel.

The proper evaluation of boundary conditions necessary for the numerical simulation of

flows in infinite domains is an area that still deserves further of research.

The important point is the comparison of the results obtained using QSS and DS. To

do this, we compare the evolution in time of velocity and pressure at the central point of

the computational domain, (x, y) = (5, 0.5). Results using δt = 0.02 on the fine mesh and

δt = 0.1 on the coarse mesh are shown in Figure 6.4. For the DS case, two options have

been considered, namely, a second order time integration of the subscales, labeled DS2 in
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Figure 6.4: Time evolution at the central point for the plane Poiseuille flow example. Time step
δt = 0.1. Top: horizontal velocity; Middle: Vertical velocity; Bottom: Pressure.
REF: Reference solution; QSS: Solution with quasi-static subscales; DS2: Dynamic
subscales with second order time integration; DS1: Dynamic subscales with first
order time integration.
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Figure 6.4, and a first order time integration, labeled DS1. From Figure 6.4 the following

observations can be made:

• Results using DS1 and DS2 are very similar. This confirms the discussion

of Section 2.3 about the feasibility of using DS1 and keeping the order of

approximation.

• DS2 has spurious high frequency oscillations that are removed using DS1. This

is to be expected, since it is known that the Crank-Nicolson scheme is unable to

remove high frequencies. Our approximation to the subscales is non-smooth (they

are discontinuous from element to element), and those high frequency components

will be probably present.

• DS results are much more accurate than QSS, since they are closer to the reference

results (obtained using QSS on the fine mesh).

• QSS results have some spurious oscillations in velocity that do not appear using

DS. This is an important fact, since QSS are the results obtained with what can be

considered a standard stabilized finite element method.

As a conclusion, results using DS1 seem to be excellent. Nevertheless, it is interesting

to show in this example the effect of the term δRn
p in 6.23. When δt = 0.1, this term is not

important, but when δt = 0.02 its omission leads to a very important pressure oscillation

from time step to time step using DS1. Figure 6.5 shows this oscillation, together with the

results obtained including δRn
p in 6.23, which are completely free of spurious oscillations.
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6.6.2 Transient natural convection of low-Prandtl-number fluids

In this example, the transient convective motion of a fluid enclosed in a unit square cavity

driven by a temperature gradient will be numerically analyzed. The left vertical wall is

suddenly heated and maintained at a constant temperature, while the right vertical wall is

maintained at the initial temperature. Horizontal walls are assumed to be adiabatic, i.e.,

the zero heat flux boundary condition is prescribed. Homogeneous Dirichlet boundary

conditions are prescribed everywhere on the boundary for the velocity.

The only dimensionless parameters involved in the problem are the Prandtl number

Pr and the Rayleigh number Ra or, equivalently, the Grashof number Gr. Numerical

results will be presented for Pr = 0.005 and the value Gr = 5× 106.

Figure 6.6: General streamline pattern (left) and temperature contours (right) for the flow in
cavity at low Prandtl number.

The value Pr = 0.005 is very small and not often encountered in common fluids. For

example, the Prandtl number is 0.71 for air, 7.03 for water and 0.0249 for mercury (at

293 K). Small values of Pr are typical of liquid metals and semiconductors. The problem

to be studied now is relevant to the solidification of ingots and casting, crystal growth

from melts, material processing, nuclear reactor safety and other applications (cf. [112]).

Although the problem just described is a very popular test for thermally coupled flows

when Pr is high, the interest for solving low-Prandtl-number flows is that this problem

is not yet well understood. It is found that the flow exhibits a periodic oscillation when

the Grashof number exceeds a critical value. In particular, for Pr = 0.005 a steady-state

solution is obtained for Gr = 3 × 106 but the solution bifurcates and for Gr = 5 × 106

an oscillatory flow field is found. For further information about this problem the reader

is referred to [112], from where this problem has been taken. Our purpose here is to

demonstrate the efficiency of the numerical method proposed in this work.

Two meshes of bilinear finite elements have been used in the calculations. The

“coarse” one is made of 60× 60 elements, refined near the walls of the cavity. The “fine”

mesh is made of 180×180 elements, and it is also refined near the walls. The time step has

been taken as δt = 0.002 in both cases. A remark is needed concerning the consequence of
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Figure 6.7: Evolution (from left to right and from top to bottom) of the streamlines at the rop
right corner of the cavity for the flow in cavity at low Prandtl number.

Figure 6.8: Velocity norm at two different time steps separated half a period for the flow in
cavity at low Prandtl number.
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Figure 6.9: Comparison of results at point 1: (x, y) = (0.006, 0.5) for the flow in cavity at
low Prandtl number. u: Horizonal velocity; v: Vertical velocity; p: Pressure; T :
Temperature.
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Figure 6.10: Comparison of results at point 2: (x, y) = (0.0438, 0.5) for the flow in cavity at
low Prandtl number. u: Horizonal velocity; v: Vertical velocity; p: Pressure; T :
Temperature.
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Figure 6.11: Comparison of results at point 6: (x, y) = 0.773, 0.773) for the flow in cavity at
low Prandtl number. u: Horizonal velocity; v: Vertical velocity; p: Pressure; T :
Temperature.

this choice for the time integration of the Navier-Stokes and the temperature equations.

The critical time step of the backward Euler scheme, obtained by taking θ = 0 in 6.19-6.21,

is approximately τ1 for 6.19 and τ3 for 6.21 [37]. Due to the low Prandtl number of the flow,

the temperature equation is dominated by thermal diffusivity, whereas convective effects

are important only in the Navier-Stokes equations. It turns out that the ratio δt/τ1 is 4.77

for the coarse mesh and 15.35 for the fine one, indicating that δt is comparable with τ1.

However, the ratio δt/τ3 is 222 for the coarse mesh and 2000 for the fine one. Therefore, the

time step δt = 0.002 is very “large” for the time integration of the temperature equation

and, as a consequence, not much influence is to be expected between quasi-static and

dynamic subscales, particularly when diffusive effects dominate, as in boundary layers.

Numerical results confirm this fact, as we shall show.

Let us discuss now the results of the numerical simulation. The general flow pattern

is shown in Figure 6.6 at a time step when the flow is fully developed. It is observed

that there is a main central vortex and also that vortices appear at each corner of the

cavity. These small vortices move in clockwise sense, being created from flow detachment

at the walls, growing and then collapsing against the walls. This evolution for the top

right vortex can be observed in Figure 6.7. It is seen how the vortex is originated from

the top wall, moves in the clockwise sense while grows, and then decreases until it reaches
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the right wall. Before it completely disappears, a new vortex appears at the top wall.

The contours of the velocity norm are plotted in Figure 6.8. These results correspond to

time steps separated by half a period (approximately). They show that the main vortex

pulsates, increasing and decreasing the flow magnitude periodically. All these results have

been obtained with the fine mesh and QSS.

To compare the performance of QSS and DS we have considered three representative

points. Point 1 is located at (0.006, 0.5), point 2 at (0.0438,0.5) and point 3 at

(0.773,0.773). The first two points lie inside the boundary layer formed at the left wall,

whereas the third one is placed at the top right position of the main vortex. Figures 6.9,

6.10 and 6.11 show the evolution in time of the flow variables (horizontal velocity, vertical

velocity, pressure and temperature) at points 1, 2 and 6, respectively. From these pictures

it is observed that all flow variables are more accurate using DS than QSS at points 1 and

6, whereas the results are inconclusive at point 2, where temperature seems to be slightly

better using QSS (although the differences with DS are very small). The rest of flow

variables are slightly better reproduced using DS. The explanation we give to this fact

relies on the previous discussion about the size of the time step. As mentioned earlier, this

time step is large for the heat equation, and thus QSS and DS should perform similarly,

as it is observed in the numerical experiments. This is particularly so in boundary layers,

since diffusive effects dominate there. At other sampling points of the computational

domain, QSS performs consistently better than DS, in accordance with the results of the

previous example. In this particular example, both the finite element equations and the

equations for the subscales have been integrated in time with second order accuracy.

6.7 Conclusions

The aim of this chapter has been to explain how to deal with dynamic subscales

in the finite element approximation of thermally coupled flows using the Boussinesq

approximation. The space variation of the subscales is approximated in terms of the

residual of the finite element unknowns in the classical way used in stabilized finite element

methods, but now they are integrated in time.

From the conceptual point of view, the formulation presented has several benefits,

inherited from the formulation applied to isothermal flows in chapter 5. In particular,

global momentum conservation and global energy conservation is obtained. Additionally,

in the case of thermally coupled flows the coupling of velocity and temperature subscales is

dealt with in a natural way. The results of the numerical experiments conducted confirm

the conclusions drawn for isothermal flows and that make the formulation particularly

appealing:

• The formulation is more accurate than considering the subscales quasi-static.
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• Some oscillations encountered using quasi-static subscales are removed.

The last item is especially significant when the subscales are integrated in time using

a first order scheme, which avoids high frequency spurious oscillations in the tracking of

the subscales in time.



Chapter 7

Numerical implementation aspects

In this chapter we present the strategy developed for the numerical solution of the

stabilized finite element approximation of thermally coupled flows. The implementation

algorithm is developed considering several possibilities for the solution of the discrete

nonlinear problem. The full Newton linearization strategy gives rise to monolithic

treatment of the coupling of variables whereas some fixed point schemes permit the

segregated treatment of velocity-pressure and temperature. The first one turns out to

be very efficient for steady-state problems and very robust when it is combined with a

line search strategy that has been developed based on the Armijo rule. A segregated

treatment of velocity-pressure and temperature happens to be more appropriate for

transient problems.

7.1 Introduction

The approximated models considered in previous chapters can be written in a unified

manner as a system of nonlinear convection-diffusion-reaction equations of the form

M(U 0)
∂U

∂t
+ L(U ; U ) = F in Ω (7.1)

where

L(U 0; U ) := Ai(U 0)
∂U

∂xi

− ∂

∂xi

(
Kij

∂U

∂xj

)
+ S(U 0)U

and U = (u, p, ϑ) is the vector of unknowns (velocity u, pressure p and temperature

ϑ), F is a known vector of nunk = d + 2 components and M , Ai, Kij and S are

nunk × nunk matrices ( i, j = 1, ..., d). The usual summation convention is implied in

the last expression, with indices running from 1 to the number of space dimensions d and

bold characters are used to denote vectors. When the arguments used to evaluate the

matrices M , Ai and S are clear we will omit them as well as the first argument in L.

We shall refer to the terms of the left-hand-side (LHS) of this equation as the temporal,
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the convective, the diffusive and the reactive terms. The physical models presented in

chapter 1 are written for the two-dimensional case (d = 2) as

• Incompressible Navier Stokes equations:

M =

 ρ 0 0

0 ρ 0

0 0 0

 , Ai (U ) =

 ρui 0 δi1

0 ρui δi2

δi1 δi2 0



Kij =

 µδij + µδi1δj1 + 2µ
3
δi1δj1 µδi2δj1 + 2µ

3
δi1δj2 0

µδi1δj2 + 2µ
3
δi2δj1 µδij + µδi2δj2 + 2µ

3
δi2δj2 0

0 0 0


S (U ) = 0, F = 0

where ρ is the density and µ the viscosity.

• Boussinesq equations:

M =


ρ 0 0 0

0 ρ 0 0

0 0 0 0

0 0 0 ρcp

 , Ai (U ) =


ρui 0 δi1 0

0 ρui δi2 0

δi1 δi2 0 0

0 0 0 ρcpui



Kij =


µδij + µδi1δj1 + 2µ

3
δi1δj1 µδi2δj1 + 2µ

3
δi1δj2 0 0

µδi1δj2 + 2µ
3
δi2δj1 µδij + µδi2δj2 + 2µ

3
δi2δj2 0 0

0 0 0 0

0 0 0 k



S (U ) =


0 0 0 ρβg1

0 0 0 ρβg2

0 0 0 0

0 0 0 0

 , F =


0

0

0

Q


where β is the thermal expansion coefficient, cp is the constant pressure specific heat

and Q is a given external source of heat.

• Low Mach number model: we consider an ideal gas

ρ =
pth

Rϑ

what permits to write the continuity equation (see chapter 1) as

−ρ
ϑ

∂ϑ

∂t
+

ρ

pth

dpth

dt
− ρ

ϑ
u · ∇ϑ+ ρ∇ · u = 0
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This is used to write the matrices that define the problem as

M (U ) =


ρ 0 0 0

0 ρ 0 0

0 0 0 − 1
ϑ

0 0 0 ρcp

 , Ai (U ) =


ρui 0 δi1 0

0 ρui δi2 0

δi1 δi2 0 − 1
ϑ
ui

0 0 0 ρcpui



Kij =


µδij + µδi1δj1 + 2µ

3
δi1δj1 µδi2δj1 + 2µ

3
δi1δj2 0 0

µδi1δj2 + 2µ
3
δi2δj1 µδij + µδi2δj2 + 2µ

3
δi2δj2 0 0

0 0 0 0

0 0 0 k



S (U ) =


0 0 0 ρg1

0 0 0 ρg2

0 0 0 0

0 0 0 0

 , F =


0

0

− 1
pth

dpth

dt
dpth

dt
+Q


Note that it is also possible to use the energy equation to write the continuity

equation as

∇ · u = − 1

γpth

dpth

dt
+
γ − 1

γpth
[∇· (k∇ϑ) +Q] .

and that, as the density is temperature dependent, the temporal term is nonlinear.

The boundary conditions of these problems are

u = ud on Γu
D

ϑ = ϑd on Γϑ
D

σ · n = (−pI + 2µε′(u)) ·n = t on Γu
N

q · n = −kn · ∇θ = qn on Γϑ
N

where Γα
D (Γα

N) is the part of the domain boundary where Dirichlet (Neumann) boundary

conditions are given and Γ = ∂Ω = Γα
N ∪ Γα

D, where α is either the velocity u or the

temperature ϑ. In order to write boundary conditions in a unified manner we split

matrices Ai as Ai = Ac
i + Af

i, where Ac
i is the part of the convection matrices which is

not integrated by parts and Af
i the part that is integrated by parts. This matrix contains

pressure terms and in the case of the incompressible Navier Stokes equations is given by

Af
i =

 0 0 δi1

0 0 δi2

0 0 0

 , Ac
i = Ai −Af

i

This permits to define the vector of fluxes in terms of the matrices Kij and Af
i so in the

simple case in which Γu
N = Γϑ

N := ΓN ⊂ ∂Ω. we can write Neumann conditions as

niKij
∂U

∂xj

− niA
f
iU = T in ΓN



150 Numerical implementation aspects

Initial conditions have to be appended to close the problem.

Let us denote by W the functional space where the solution is to be sought, by

Wm,p (ω) the usual Sobolev spaces and, in particular Hm (ω) := Wm,2 (ω) and by L2 (ω)

the space of square integrable functions in a domain ω. In a steady state case, the velocity

belongs to the space V st =
{
u ∈ [H1 (Ω)]

nsd : u = ud in Γu
N

}
, the pressure to the space

Qst = L2(Ω)/R and the temperature to the space Ψst =
{
ϑ ∈ H1 (Ω) : ϑ = ϑd in Γϑ

N

}
.

When a transient problem defined in the interval [0, T ] is considered, the space of time

dependent functions defined in a space X whose norm is Lp (0, T ) will be denoted by

Lp (0, T ;X). Then the space W is defined as W = L2
(
0, T,V st

)
× L1 (0, T, L2 (Ω)) ×

L2 (0, T,Ψst) and W0, the corresponding space of test functions which is given by

W0 = V 0 × L2(Ω) × Ψ0 where V 0 =
{
u ∈ [H1 (Ω)]

nsd : u = 0 in Γu
D

}
and Ψ0 ={

ϑ ∈ H1 (Ω) : ϑ = 0 in Γϑ
D

}
.Then, the weak form of the problem consists in finding U ∈

W such that

B(U ; U ,V )− L(V ) = 0 ∀V ∈ W0 (7.2)

where the nonlinear form B and the linear form L are defined as

B(U 0; U ,V ) :=

∫
Ω

V tM (U 0)
∂U

∂t
+

∫
Ω

V tAc
i (U 0)

∂U

∂xi

(7.3)

−
∫

Ω

∂

∂xi

(
V tAf

i

)
U +

∫
Ω

∂V t

∂xi

Kij (U 0)
∂U

∂xj

+

∫
Ω

V tS (U 0) U

L(V ) :=

∫
Ω

V tF+

∫
Γ

V tT dΓ (7.4)

Note that the second term in 7.4 could be written as an integral over Γu
N ∪ Γϑ

N because

V t = 0 in the rest of the domain boundary.

7.2 Discrete problem

We consider a finite element partition Ph = {K} of the computational domain Ω of nel

elements, from which we can construct finite element spaces for the velocity, pressure and

temperature. We assume that they are all built from continuous piecewise polynomials

of the same degree k. We denote by Wh ⊂ W the approximating space, by W0h ⊂ W0

the space of test functions and by W̃ the space of subscales. We also consider a uniform

partition of the time interval [0, T ] of time step size δt. Functions approximated at time

tn will be identified with the superscript n. For a generic function f , we will use the

notation δfn := fn+1 − fn, δtf
n = δfn/δt, fn+θ = βfn+1 + (1 − θ)fn, 0 ≤ θ ≤ 1.

Using this notation the fully discrete problem obtained using the variational multiscale

formulation of [75] developed in the previous chapters can be written as follows. Given
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order 1 2 Exact

τt τ

(
1 + 1

∆t
ρτ

)−1

τ

(
1 + 1

θ∆t
ρτ

)−1

τ
(
1− exp

[
− θ∆t

ρτ

])
µ ρ

∆t
ρ

θ∆t
1
τt

(
1− τt

τ

)
Table 7.1: Integration parameters

Un
h and Ũ

n
, find Un+θ

h and Ũ
n+θ

such that∫
Ω

V t
hMδtU

n
h +

∫
Ω

V t
hA

c
i

∂Un+θ
h

∂xi

+

∫
Ω

∂V t
h

∂xi

Kij
∂Un+θ

h

∂xj

+

∫
Ω

V t
hSUn+θ

h

−
∫

Ω

∂

∂xi

(
V t

hA
f
i

)
Un+θ

h +

∫
Ω

V t
hMδtŨ

n
+
∑
K

∫
K

[L∗ (V h)]
t Ũ

n+θ
=

∫
Ω

V tF n+θ (7.5)

for any V h ∈ W0h Here and in what follows it is understood that matrices M , Ai, S

are evaluated using Un+θ
h + Ũ

n+θ
. In 7.5, L∗ is the adjoint of the differential operator L

with homogeneous Dirichlet conditions given by

L∗(U 0; U ) := − ∂

∂xi

[
At

i(U 0)U
]
− ∂

∂xi

(
Kt

ij(U 0)
∂U

∂xj

)
+ St(U 0)U

(evaluated using U 0 = Un+θ
h + Ũ

n+θ
in 7.5). The subscale Ũ

n+θ
is found as the solution

of nonlinear problem

Ũ
n+θ

= τ tR
n+θ + µτ tŨ

n
(7.6)

driven by the residual

Rn+θ := F n+θ −MδtU
n
h − L(Un+θ

h )

The temporal derivative of the subscale is calculated as

δtŨ
n

= µτ tR
n+θ − µτ−1τ tŨ

n

and the parameters µ and τ t depend on the time integration scheme used for the subscales

evolution equations as explained in chapter 6 where three options are considered. They

are defined as

τ t = diag(τt1, τt1, τ2, τt3)

µ = diag(µ1, µ1, 0, µ3)

where τt1 and τt3 as well as µ1 and µ3 are defined in table 7.1

The parameters τ1, τ2 and τ3 are computed as in previous chapters. In the case of an

isotropic mesh they are given by

τ1 =

[
c1
µ

h2
+ c2

ρ |uh + ũ|
h

]−1

, τ2 =
h2

c1τ1
, τ3 =

[
c1
k

h2
+ c2

ρcp |uh + ũ|
h

]−1
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where c1 = 4 and c2 = 2 for linear elements. Using these definitions the final problem to

be solved can be written as follows. Given Un
h and Ũ

n
, find Un+θ

h such that

1

θδt

∫
Ω

V t
hMUn+θ

h +

∫
Ω

V t
hA

c
i

∂Un+θ
h

∂xi

−
∫

Ω

∂

∂xi

(
V t

hA
f
i

)
Un+θ

h

+

∫
Ω

∂V t
h

∂xi

Kij
∂Un+θ

h

∂xj

+

∫
Ω

V t
hSUn+θ

h

+
∑
K

∫
K

[−µMV h − L∗ (V h)]
t τ t

[
1

θδt
MUn+θ

h + L(Un+θ
h )

]
=

∫
Ω

V tF n+θ +
∑
K

∫
K

[−µMV h − L∗ (V h)]
t τ tF

n+θ (7.7)

+
1

θδt

∫
Ω

V t
hMUn

h +
1

θδt

∑
K

∫
K

[−µMV h − L∗ (V h)]
t τ tMUn

h

+
∑
K

∫
K

[
τ−1MV h + L∗ (V h)

]t
µτ tŨ

n

for any V h ∈ W0h and find Ũ
n+θ

such that

Ũ
n+θ

= τ tR
n+θ + µτ tŨ

n

Note that the explicit dependence of the subscales on the residual of the finite element

component has been explicitly taken into account and has been assembled on the left hand

side of the equation. However, the problem still depends on the subscales (and therefore

on the residual of the finite element component) through the matrices M , Ai, S and

the operators L and L∗ and also through the stabilization parameters. The non linear

treatment of this system is described in the following section.

7.2.1 Linearization and line search strategy

The discrete approximation described in the previous section leads to a highly nonlinear

system of algebraic equations for the nodal values of Un+α
h , which are denoted by the

same character (but without the subscript h). This nonlinear problem can be written as

[L + N (U )] U = R

where L is the linear part of the operator and N the nonlinear one and R the force

vector. Therefore we look for the roots of the function

H (U ) = [L + N (U )] U − R

and we consider fixed points linearizations of the form

U k = G
(
U k−1

)
(7.8)
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where

G (U ) = D−1 (DU −H (U ))

for some matrix D to be defined in the following and which may depend on the iteration

step. Then, using a superscript for the iteration counter the iterative scheme reads

D
(
U i+1 −U i

)
+ H

(
U i
)

= 0

or

D
(
U i+1 −U i

)
+ [L + N (U )] U i −R = 0

Different choices of D led to different schemes:

• The classical Picard scheme is obtained by taking

D = [L + N (U )]

from where the problem to be solved is[
L + N

(
U i
)]

U i+1 = R

• The Newton scheme is obtained taking

D = H ′ (U )

where H ′ is the Jacobian of H , from where

H ′ (U i
) (

U i+1 −U i
)

+ H
(
U i
)

= 0

Sometimes a modified Newton scheme is obtained by taking

D = H ′ (U 0
)

• In the case of a steady state problem (just to fix ideas) another option is to take

D =
1

ε
M

to obtain
1

ε
M
(
U i+1 −U i

)
+
[
L + N

(
U i
)]

U i = R

This scheme produces the same iterates that an explicit temporal integration of the

equations, what shows how a temporal evolution can be considered as a fixed point

scheme for the solution of a nonlinear problem.
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• In a similar way, if we take

D =
1

ε
M+

[
L + N

(
U i
)]

we obtain a semi-implicit temporal evolution

1

ε
M
(
U i+1 −U i

)
+
[
L + N

(
U i
)]

U i+1 = R

The convergence rate of the method depends on how contractive the mapping G is.

Precisely [98], if there exists α < 1 such that

‖G (U )−G (V )‖ ≤ α ‖U − V ‖

the mapping G has only one fixed point U ∗ and the iterative scheme

U i+1 = G
(
U i
)

converges at a rate given by the estimator

∥∥U i −U ∗
∥∥ ≤ αi

1− α

∥∥U 0 −U 1
∥∥

In particular, if the Jacobian of G is bounded we can take

α = ‖G′ (U )‖

and using 7.8 we have (for a fixed D)

G′ (U ) = I −D−1H ′ (U )

The Newton method is based on a choice that makes G highly contractive but only in some

neighborhood of the solution, which is the reason why it requires a good initial condition.

If a temporal evolution is used to solve the problem, we have that D−1 = εM−1, which

shows that, when ε → 0, ‖G′ (U )‖ → 1 making the iterative procedure very slow. Note

that if

D =
1

ε
M + H ′ (U )

when ε→ 0 we have that D−1 → εM−1 and if ε→∞ we have D−1 → [H ′ (U )]
−1

as in

the Newton method.

The problem of the sensitivity of the Newton method with the initial condition can

be partially solved using globally convergent methods (methods that converge for almost

any initial guess) which can be developed by adding a line search strategy [123, 40, 92].

As a root of H is a minimum of the function

f (U ) =
1

2
H (U) · H (U) (7.9)



Numerical implementation aspects 155

one may be tempted to apply a minimization algorithm to find the solution, but this is

not a good idea because there could be a local minimum of f that is not a root of H .

However, this function is used to find the optimal parameter of advance. The direction

of advance P is found solving the linear system

DP = −H
(
U i
)

and the next iterate is taken as

U i+1 = U i + sP

where s is the advancing parameter whose calculation is as follows. The step is accepted

if the function f decreases at least a small fraction of the decrease given by a linear

approximation at s = 0. This condition, known as Armijo rule, can be written as

f
(
U k+1

)
≤ f

(
U k
)

+ ξ∇f ·
(
U k+1 −U k

)
where ξ is a parameter of the method taken to be 10−4, and prevents the algorithm to

find a local minimum of f . This criterion is applied when a Newton type linearization of

the problem is used because in this case D = H ′ (U ) and then

∇f ·P = [H (U) ·H ′ (U )] ·P = [H (U) ·H ′ (U )] ·
[
−D−1H (U)

]
= −H (U) ·H (U)

In this case, one first tries s = 1 since if we are close to the solution using a Newton

type linearization we will have a high rate of convergence (quadratic if the exact Jacobian

is used). If the step is not accepted, a new value of s is tested. This value is found using

a cubic model based on the values of f
(
U k

h + sP
)

previously computed [123, 40, 92] but

it can be simply taken as a fraction of the previous one. This method can select a step

that is too small (this happens when a local minimum of f has been found). In such a

case, the method has to be restarted. We do so performing a Picard step, i.e. changing

the searching direction.

When a Picard type scheme is used we accept the step when

f
(
U k+1

)
≤ f

(
U k
)

Again we first try s = 1 and if the step is not accepted some smaller values of s are tested

and the one that gives the minimum value of f is kept.

7.2.2 Linearized equations

In the previous development, matrix D is taken as an approximation to the exact

derivative of the function H . When we apply this to the flow equations we consider,

we always evaluate the stabilization parameters as well as the adjoint operator using the

previous iterate, but a full linearization of the operator L is considered. This linearization
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can be written in terms of the linearized advection and reaction matrices, Alin
i (U 0) and

Slin(U 0), as well as of the resulting forcing vector F lin(U 0). The expression of these

matrices and vector is given below for different flow cases. Here we have explicitly

displayed their dependency with respect to the known iterate U i−1
h of Uh. Having

introduced these terms, the linearized differential operator applied to the finite element

unknown is

Llin(U 0; U ) := Alin
i (U 0)

∂U

∂xi

− ∂

∂xi

(
Kij

∂U

∂xj

)
+ Slin (U 0) U

The fully discrete stabilized problem is given by 7.7 replacing L by Llin, Ai by Alin
i ,S

by Slin and F by F lin. In this system it is understood that the stabilization parameters

in matrix τ and matrices M , Alin
i , Slin and F lin are calculated using U 0 = Un+θ,i−1

h +

Ũ
n+θ,i−1

. After the discrete problem 7.7 is solved the subscale Ũ
n+θ,i

is computed and

stored. Note that the subgrid problem 7.6 is also nonlinear and has to be iterated (at

each point).

It remains to give the expression for Alin
i , Slin and F lin. To this end, let us define a

set of parameters λij that can take the value 0 or 1. For i = 1 we will use them to write

the linearized momentum equation, for i = 2 the continuity equation and for i = 3 the

energy equation. The linearized matrices are given for each flow model as follows:

• Navier Stokes equations

Alin
i (U ) =

 ρui 0 δi1

0 ρui δi2

δi1 δi2 0

 ,

Slin (U ) =

 λ11ρ∂1u1 λ11ρ∂2u1 0

λ11ρ∂1u2 λ11ρ∂2u2 0

0 0 0

 ,

F lin(U ) =

 λ11ρu ·∇u1 + g1

λ11ρu ·∇u2 + g2

0

 .
• Boussinesq equations

Alin
i (U ) =


ρui 0 δi1 0

0 ρui δi2 0

δi1 δi2 0 0

0 0 0 ρui

 ,

Slin(U ) =


λ11ρ∂1u1 λ11ρ∂2u1 0 λ13ρβg1

λ11ρ∂1u2 λ11ρ∂2u2 0 λ13ρβg2

0 0 0 0

λ31ρ∂1ϑ λ31ρ∂2ϑ 0 0

 ,
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F lin(U ) =


λ11ρu ·∇u1 − (1− λ13)ρβg1ϑ+ ρβϑ0g1

λ11ρu ·∇u2 − (1− λ13)ρβg1ϑ+ ρβϑ0g2

0

λ31ρu ·∇ϑ+Q

 .
• Low Mach number equations

Alin
i (U ) =


ρui 0 δi1 0

0 ρui δi2 0

δi1 δi2 0 −λ21

ϑ
ui

0 0 0 ρui

 ,

Slin(U ) =


λ11ρ∂1u1 λ11ρ∂2u1 0 ρ

ϑ
(−λ12u ·∇u1 + λ13g1)

λ11ρ∂1u2 λ11ρ∂2u2 0 ρ
ϑ

(−λ12u ·∇u2 + λ13g2)

−λ22

ϑ
∂1ϑ −λ22

ϑ
∂2ϑ 0 λ23

ϑ2 u ·∇ϑ

λ31ρ∂1ϑ λ31ρ∂2ϑ 0 −ρ
θ
λ32u ·∇ϑ

 ,

F lin(U ) =


(λ11 − λ12)ρu ·∇u1 + (1 + λ13)ρg1

(λ11 − λ12)ρu ·∇u2 + (1 + λ13)ρg2

(1− λ21 − λ22 + λ23)
1
ϑ
u ·∇ϑ

(λ31 − λ32)ρu ·∇ϑ+Q

 .
The parameters λ11 and λ12 correspond to the linearization of the convective term in

the momentum equation (λ11 = λ12 = 1 would be Newton’s method, whereas other options

would be fixed point methods), whereas λ13 is used to decide whether the buoyancy term

is treated in a coupled or in a block iterative way. Likewise, λ2j, j = 1, 2, 3, determine

both the linearization of the term 1
ϑ
u ·∇ϑ (λ2j = 1 would be full Newton’s method) and

the possibility to treat this term in a staggered way (λ2j = 0). Finally, λ3j, j = 1, 2, play

the same role for the energy equation as λ1j, j = 1, 2, for the momentum equation.

7.3 Numerical examples

In this section we present two examples. This first one is the natural convection in a two

dimensional closed cavity and, as it is a well known benchmark for thermally coupled flows,

we use it to test different numerical strategies proposed here. The second one is a two

dimensional time dependent heated channel presented in [107] as a simplified version of

what occurs in a chemical vapor deposition (CVD) reactor. CVD flow problems, reviewed

in [90], present much of the physics of the Poiseuille-Rayleigh-Bénard (PRB) flow problem

reviewed in [114], that consists of a channel with a prescribed Poiseuille velocity profile

on the inlet and prescribed temperatures on the upper and lower walls. This example

is included to illustrate the models considered as well as to point out the importance of

outflow boundary conditions.
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7.3.1 Natural convection in a cavity

The natural convection in a cavity is a standard benchmark for numerical methods on

thermally coupled flows. It was initially devised for Boussinesq flows [38] and later for

low Mach number flows [103]. The problem is sketched in Figure 7.1.

θcθh
q=0

q=0

L

H

g

Figure 7.1: Geometry and boundary conditions of the natural convection in a cavity

First of all, let us mention the conditions for the validity of the approximations in

this example. As this is a natural convection problem, a velocity scale must be chosen.

Taking for example the viscous scale and using the benchmark specifications (see [103])

gives a Mach number of 2.2× 10−5, allowing the use of the zero Mach number equations.

The conditions of applicability of the Boussinesq approximation need some care. In this

case, the zero order temperature and density must be constants. In order to have this

reference state, the (dimensionless) temperature difference between vertical walls must

vanish. Finally, the Boussinesq number must tend to zero as fast as the Mach number

(which is a restriction of the vertical scale of the problem). In the conditions of the

benchmark, the Boussinesq number is 5.7 × 10−5 and is of the same order as the Mach

number. Thus, the dimensionless parameters that define the problem are

ε =
ϑh − ϑc

ϑh + ϑc

, A =
H

L

Pr =
cpµ

k
, Ra = Pr

gL3

ν2
ε

where Pr is the Prandtl number and Ra is the Rayleigh number.

Let us first present results that show the physical behavior of the problem (see [23]

for a full description of the physics of the problem). They have been obtained using a

fine grid of 160× 160 Q1 (bilinear) elements refined towards the walls. The steady state

problem has been directly solved (without time advancing) with a convergence tolerance

for the nonlinear process of 10−8.
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Figure 7.2 shows the streamline and temperature distribution obtained using the

Boussinesq approximation for different Rayleigh numbers. For a Rayleigh number of 103

there is only one vortex that covers the whole domain. When the Rayleigh number is

increased this vortex splits first in two and then the vortex distribution becomes more

complex and the boundary layers on hot and cold walls become thinner.

When the low Mach number approximation is used similar results are obtained, but

some differences are found. For a fixed Rayleigh number of 103, when the temperature

increases, the central vortex moves to the right. This effect can be seen in table 7.2,

where the position of the center of the vortex as a function of temperature difference is

presented. For higher Rayleigh numbers the effect is similar: the flow is qualitatively

similar although some differences appear when quantifying magnitudes.

ε x coord.

0.0 0.50

0.2 0.54

0.4 0.58

0.6 0.63

Table 7.2: Evolution of the x-coordinate of the central vortex for Ra = 103 in terms of ε

An important difference between the Boussinesq and the low Mach number

approximations is that the latter can describe phenomena related to the expansion of the

flow. If a gas in a closed cavity is heated, basic thermodynamics implies that the pressure

level should increase and this cannot be predicted using the Boussinesq approximation. In

the case of the differentially heated cavity at ε = 0.6, the mean thermodynamic pressure

normalized using the initial pressure is 0.856. This case was considered to test the mesh

convergence of the proposed algorithm using graded meshes of 10× 10, 20× 20, 40× 40

and 80×80 Q1 elements. Table 7.3 presents the thermodynamic pressure as a function of

the mesh size. It is seen that the behavior is as expected and the results agree with those

found in the literature. It is to be noted that the results presented in [72] correspond to

a discretization with 855 556 degrees of freedom obtained by an adaptive procedure.

h Ra = 103 Ra = 104 Ra = 105 Ra = 106

0.1000 0.8646791 0.8585644 0.8681438 -

0.0500 0.8603283 0.8497187 0.8567441 0.8670059

0.0250 0.8582884 0.8460002 0.8534048 0.8579742

0.0125 0.8574004 0.8445817 0.8524585 0.8567541

Reference[72] - - - 0.856337

Table 7.3: h convergence of the thermodynamic pressure.
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Figure 7.2: Streamline (left) and temperature (right) distribution obtained using the Boussinesq
approximation at Ra = 103 (top), Ra = 105 (middle) and Ra = 107 (bottom).
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Let us now describe the non linear convergence of the iterative scheme when a direct

steady state calculation is performed. A set of experiments were performed using the

Boussinesq model for the different possible linearizations on a uniform mesh of 10 × 10

Q1 elements. Figure 7.3 shows the convergence of the algorithm for different Rayleigh

numbers.
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Figure 7.3: Non linear convergence for the 10× 10 uniform mesh. From left to right and top to
bottom Ra = 103, 104, 105 and 106. The curves corresponding to the linearization
parameters λ1, λ2 and λ3 are given as follows
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From these experiments we conclude that the Newton scheme (λ1,1 = 1, λ1,3 = 1,

λ3,1 = 1) is fastest, as expected, and the linearization λ1,1 = 0, λ1,3 = 1, λ3,1 = 0 is

the most robust for this example (in the sense that it converges for higher values of the

Rayleigh number). When the buoyancy term is treated in a coupled way (taking λ1,3 = 1)

the convergence becomes monotone for Ra = 103 and Ra = 104 but it is also seen that

what makes a big difference is to combine this treatment with a full Newton linearization

of the convective term in the temperature equation (that is to take also λ3,1 = 1). Let us

stress that although a Picard type linearization could be more robust when incompressible

Navier Stokes are considered (which is also observed here when comparing λ1,1 = 0,

λ1,3 = 1, λ3,1 = 0 and λ1,1 = 1, λ1,3 = 1, λ3,1 = 1), a Newton type linearization of the
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velocity to the temperature coupling (in this case through the convective term in the

temperature equation) is more robust.

Next we performed a set of experiments to test the behavior of the line search process

described in section 7.2. For the full Newton linearization we performed computations for

uniform meshes of 10×10, 20×20, 40×40 and 80×80 Q1 elements without a line search

and using the Armijo rule described in section 7.2 (the experiments using the Armijo rule

were also run on a uniform mesh of 160 × 160 Q1 elements). Tables 7.4 and 7.5 show

the behavior of the iterative scheme by indicating the number of iterations needed when

convergence is achieved.

elem. Ra = 103 Ra = 104 Ra = 105 Ra = 106 Ra = 107 Ra = 108

10 7 10 18 - - -

20 6 9 14 20 - -

40 6 9 14 - - -

80 6 8 13 - - -

Table 7.4: Number of iterations for the linearization λ1 = 1, λ2 = 1, λ3 = 1, without line search.
The dash indicates divergence

elem. Ra = 103 Ra = 104 Ra = 105 Ra = 106 Ra = 107 Ra = 108

10 8 13 17 22 96 64

20 8 12 13 17 34 162

40 8 12 13 14 17 *

80 9 12 13 14 16 24

160 7 13 14 16 17 26

Table 7.5: Number of iterations for the linearization λ1 = 1, λ2 = 1, λ3 = 1, using the Armijo
rule. The star indicates lack of convergence

Very similar results are obtained for the linearization that corresponds to λ1,1 = 0,

λ1,3 = 1, λ3,1 = 1. The conclusion to be drawn is that the use of the line search greatly

improves the robustness of the iterative scheme. It is also to be mentioned that, although

when a line search is not performed the linearization that corresponds to λ1,1 = 0,

λ1,3 = 1, λ3,1 = 1 converges for some cases where the full Newton does not, when using

the Armijo rule both linearizations behave identically. Moreover, the calculations where

the scheme fails to converge are on coarse meshes and convergence is achieved for finer

meshes (especially when refined meshes are used). The linearization scheme for the low

Mach number model has also been tested in detail and the same behavior was observed:

the full Newton scheme together with the Armijo rule converges for almost any case. In

[107] difficulties to obtain convergence when performing calculations using the low Mach
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number model have been reported even for a low Rayleigh number (Ra = 104). In this

reference, an ad hoc linearization of the system was performed to overcome this problem.

We did not find this problems for low Rayleigh number. In [107] the problem is solved

using a mixed finite element formulation, what could be the reason behind the difference

in the behavior of the iterative algorithms.

We next consider the behavior of the line search process when a time dependent

calculation is performed. A set of experiments were performed using the full Newton

linearization and the Boussinesq model on a uniform mesh of 10 × 10 Q1 elements with

and without line search. The number of iterations needed are shown in tables 7.6 and 7.7.

δt Ra = 103 Ra = 104 Ra = 105 Ra = 106 Ra = 107 Ra = 108

100 7 10 18 35 - -

10−1 6 9 16 22 - -

10−2 5 8 12 20 - -

10−3 5 6 11 23 33 -

10−4 4 5 7 13 53 204

Table 7.6: Number of iterations at the first time step for the linearization λ1 = 1, λ2 = 1, λ3 = 1,
without line search. The dash indicates divergence

δt Ra = 103 Ra = 104 Ra = 105 Ra = 106 Ra = 107 Ra = 108

100 7 13 17 22 118 *

10−1 6 12 16 22 * *

10−2 5 8 13 22 45 *

10−3 5 6 11 23 40 60

10−4 4 5 7 13 53 52

Table 7.7: Number of iterations at the first time step for the linearization λ1 = 1, λ2 = 1, λ3 = 1,
using the Armijo rule. The star indicates lack of convergence

As it could be expected, and these experiments confirm, less nonlinear iterations are

required to achieve convergence when the time step is reduced. These experiments also

show that still the line search algorithm is important when time steps are big and the non

linearity is important. When the time step is reduced convergence is achieved without

the need of relaxation.

We next consider the non linear convergence of the iterative scheme when a time

dependent calculation is performed. A set of experiments were performed using the

linearization that corresponds to (λ1,1 = 0, λ1,3 = 0, λ3,1 = 0) and the Boussinesq model

on a uniform mesh of 10× 10 Q1 elements.
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δt Ra = 103 Ra = 104 Ra = 105 Ra = 106 Ra = 107 Ra = 108

100 23 166 - - - -

10−1 17 85 - - - -

10−2 9 14 39 * 200 -

10−3 6 8 13 32 * *

10−4 5 6 7 13 48 *

Table 7.8: Number of iterations at the first time step for the linearization λ1 = 0, λ2 = 0,
λ3 = 0, without line search. The dash indicates lack of convergence and the star lack
of convergence on the first steps.

The main conclusion of these experiments is that when the time step is small, the

number of iterations required by a Picard type linearization (λ1,1 = 0, λ1,3 = 0, λ3,1 = 0)

or those required by a Newton type one (λ1,1 = 1, λ1,3 = 1, λ3,1 = 1) are similar. In this

cases the Picard type linearization is preferred because it allows a splitting of the algebraic

problem into a mechanical problem and a thermal problem. Note that this is interesting

because it permits to modify an incompressible code to take thermal coupling into account

and because it permits to reduce memory requirements storing smaller matrices (but note

also that the time required to solve the linear system will be the same). This leads to

three types of iterative coupling: the one that corresponds to λ1,1 = 0, λ1,3 = 0, λ3,1 = 0,

that permits the parallel solution of the mechanical and the thermal problem, and those

that correspond to λ1,1 = 0, λ1,3 = 0, λ3,1 = 1 and λ1,1 = 0, λ1,3 = 1, λ3,1 = 0 which

result in a Gauss Seidel type scheme. The difference between the last two of them is

which problem is solved first. It can be observed in figure 7.3 that the linearization that

corresponds to λ1,1 = 0, λ1,3 = 1, λ3,1 = 0, that is the one in which the thermal problem

is solved first, is more robust than the one that corresponds to λ1,1 = 0, λ1,3 = 0, λ3,1 = 1,

that is the one in which the mechanical problem is solved first. Respect to this point let

us also mention that in the case of the low Mach number system, it is quite important to

solve for the temperature first because of the term ∂tρ in the continuity equation. If the

mechanical problem is solved first, in the first iteration of the time step, the approximation

to ∂tρ is zero as the initial guess is the temperature at the previous step and this needs

to be corrected by the iterative coupling. This effect has been observed while solving the

problem presented in the following section.

7.3.2 Time dependent heated channel

The problem studied here, sketched in Figure 7.4, is a channel whose length (L) is 5 times

its height (H).

The inlet boundary conditions are given by a Poiseuille velocity profile and uniform
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δt Ra = 103 Ra = 104 Ra = 105 Ra = 106 Ra = 107 Ra = 108

100 14 132 - - - -

10−1 11 47 - - - -

10−2 8 11 25 - - -

10−3 7 8 12 33 - -

10−4 5 5 7 13 79 *

Table 7.9: Number of iterations at the first time step for the linearization λ1 = 0, λ2 = 0,
λ3 = 1, without line search. The dash indicates lack of convergence and the star lack
of convergence on the first steps.

Figure 7.4: Geometry and boundary conditions of the time dependent heated channel (not to
scale)

temperature. A non slip condition is prescribed on the upper and lower walls. Zero heat

flux is prescribed on the upper wall and on the part of the lower wall where temperature

is not prescribed, as indicated in Figure 7.4. A time dependent temperature is prescribed

on a part of the lower wall of length H/2 located at a distance H/2 from the inlet. The

prescribed (dimensionless) temperature rises from 1 at time t = 0 to 1.5 at time t = 0.01

and remains constant after that. The dimensionless parameters of the problem are

R =
ρUL

µ
= 10, Pr =

cpµ

k
= 1

ε =
∆T

T0

= 0.5, Ra = Pr
gL3

ν2
ε = 5× 104

The initial conditions are a Poiseuille velocity profile and a constant temperature on the

whole domain. When the flow starts to heat (near the zone where the temperature is

imposed) it goes up by buoyancy forces giving rise to two vortices, one before and the

other after the heating zone. This is illustrated in Figure 7.5, where streamlines and

temperature distribution obtained using the Boussinesq approximation are presented for

different (early) times.

After this initial transient, the flow after the heating zone gradually rises its

temperature and the second vortex (the one located after the heating zone) gradually
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Figure 7.5: Streamlines and temperature distribution obtained using the Boussinesq
approximation at times t = 0.2, t = 0.4, t = 0.6, t = 0.8 and t = 1.0

disappears. The final steady state is reached around t = 12. This behavior is also

observed when the low Mach number approximation is used.

The first point we want to illustrate here is the influence of the output boundary

condition. One possibility is to consider simply

t · n = 0 (7.10)

but it seems to be better to consider an ”atmospheric stress condition” as the one

suggested in [107], given by

t · n = tx = −ρ |g| y (7.11)

The final steady state obtained using these conditions is shown in figure 7.6.

7.4 Conclusions

We have implemented the discrete approximation to problems defined in chapter 1 as

systems of second order equations. Different linearizations have been considered for the

solution of the algebraic nonlinear problem. Using the well known example of the flow in a

differentially heated cavity, we have shown that fully coupled schemes, in which a Newton

type linearization is performed, are the best option for the solution of stationary problems

or when the time step is large. In this cases, a line search strategy is very important to

enhance the robustness of the scheme. Its cost is higher to that of forming the system of
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Figure 7.6: Steady state streamlines, temperature and pressure distributions obtained using
boundary conditions 7.10 on the left and using boundary conditions 7.11 on the righ

equations and for this reason it is not convenient when small time steps are considered.

In this case there is also a small difference between the full Newton linearization and the

staggered approach in which the problem is split into a mechanical problem and a thermal

one. It has also been shown that in this case it is better to solve the thermal problem

first. A fractional step scheme, splitting also momentum and continuity equations, could

be considered in this case, but this is a point that needs further research.

The zero Mach number model and the Boussinesq approximation have been considered

to solve low speed thermally coupled flows. Both describe the basic mechanism of thermal

coupling which is due to the dependence of the density on the temperature: when a fluid

element is heated, it expands and moves up. However, they differ in the way they take into

account the compressibility of the medium. While in the Boussinesq approximation the

flow is incompressible, in the zero Mach number model the density distribution is predicted

and the velocity field is affected by expansions or contractions due to heating. They also

have different ranges of applicability: while the low Mach number approximation only

requires a small Mach number, the Boussinesq model requires also a small Froude number

and small heat sources.
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Chapter 8

Thermal coupling of fluids and solids

In this chapter we analyze the problem of the thermal coupling of fluids and solids through

a common interface. We state the global thermal problem in the whole domain, including

the fluid part and the solid part. This global thermal problem presents discontinuous

physical properties that depend on the solution of auxiliary problems on each part of

the domain (a fluid flow problem and a solid state problem). We present a domain

decomposition strategy to iteratively solve problems posed in both subdomains and discuss

some implementation aspects of the algorithm. This domain decomposition framework is

also used to revisit the use of wall function approaches used in this context.

8.1 Introduction

The problem we analyze in this chapter is that of the thermal coupling of fluids and solids.

This problem is found in any engineering design in which a fluid is used to extract heat

from a solid (refrigeration, ventilation, etc.). In fact many experimental correlations are

available [86] in the form of convection coefficients. The objective of the present chapter

is to present a domain decomposition approach that permits the separated treatment

of a problem in the solid domain and of a problem in the fluid one. Let us emphasize

that it is not our intention to use a domain decomposition strategy to perform parallel

computations but to treat problems with different physics separately. Moreover, this

domain decomposition approach will allow us to implement the thermal coupling problem

in a master-slave algorithm (discussed below).

The model presented in section 8.2 is based on the solution of the thermal problem

in the whole domain Ω that includes the solid subdomain ΩS and the fluid subdomain

ΩF. The differential operators that describe the evolution of the temperature (ϑ) are

different as a result of different physics and they depend on other variables that describe

the state of each medium. On each subdomain the thermal problem could be coupled

to other differential problems depending on the physical model used for the fluid and for
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the solid. In the first case we may have a compressible flow or an incompressible one, a

mix of species, chemical reactions, etc. In the second case we may have a purely thermal

problem, a thermomechanical one or even a thermo-hygro-mechanical one as in [57]. Any

model can be used on each subdomain but we will assume that the coupling between

the fluid and solid is only due to heat exchange. This condition, in the case in which

mechanical problems are solved on each subdomain, will be written explicitly indicating

precisely the assumptions needed.

The numerical approximation of the fluid and solid problems is in general different.

One important feature of our approach is that different numerical approximations could

be used to solve each problem. In the case of the fluid we use a stabilized finite element

formulation based on the subgrid scale concept. Each field is decomposed into a resolvable

and a subgrid scale part according to the finite element partition, and the effect of the

subgrid scale on the coarse scale is taken into account by an algebraic approximation. This

approach allows us to deal with convection dominated problems and to use equal order

interpolation of velocity and pressure which would lead to numerical instabilities when a

standard Galerkin formulation is used. The Galerkin approximation is used to solve the

solid problem. We describe the discrete formulation in section 8.3 but we emphasize once

again that any other possibility could be used.

The possibility of using different models and different discrete approximations is not

only theoretical but also practical. The coupling through the common interface between

the solid and the fluid is accomplished by the transmission conditions, which we consider

of Dirichlet/Neumann type. This leads to a non-overlapping domain decomposition

problem that we implement in an iteration-by-subdomain strategy. The solution of each

thermal problem, in the fluid and in the solid regions, and the transmission of boundary

conditions from one domain to the other is done by a relatively small master code. This

code, developed following the MPI 2 standard, is in charge of managing the subdomain

iterative coupling and the time marching loops. In this way, each dedicated code acts as

a slave and can be updated separately as only minor modifications are needed to change

the information with the master code. These implementation aspects are described in

section 8.4. The domain decomposition framework for the thermal coupling described,

together with its implementation aspects and an interpretation of the use of wall function

approaches, is the main contribution of this work.

Finally, the approach is illustrated in a simple one dimensional example and is applied

to the simulation of a fire in a tunnel in section 8.5. Some conclusions are drawn in section

8.6.
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8.2 Continuous problem

We consider a thermal problem in a domain Ω composed of two subdomains ΩS and

ΩF, as illustrated in Figure 8.1 (left and center). We present first the problem in the

whole domain considering discontinuous physical properties, which include the density

(ρ), the specific heat (cp) and the diffusion coefficient (κ = k
ρcp

, where k is the thermal

conductivity), as well as a velocity field (v). This velocity field will be assumed to be

solution of a mechanical problem defined also in the whole domain and having also

discontinuous properties. The constitutive relations in the fluid and in the solid are

different, the former relating the stress tensor (σ) to the velocity gradients and the latter

relating the stress tensor to the deformation gradient.

Once the problem in the whole domain has been written, we will present two different

strategies for a domain decomposition approach to this problem. The first strategy

presented consists of a standard non-overlapping domain decomposition of the problem

into the fluid and solid subdomains. We will assume that the mechanical problem in the

solid does not depend on that in the fluid, in a sense to be made precise later on. We will

refer to this approach as the full resolution strategy.

The second strategy consists of a non-overlapping domain decomposition of the

problem in three subdomains, one in the solid region and two in the fluid region, as

illustrated in Figure 8.1 (right). One of the fluid subdomains will be a thin region of

thickness δ near the solid surface and the other will be the rest of the fluid domain. The

purpose of this second approach is to consider the problem of the strong boundary layers

present in a turbulent flow using the wall function approach. An approximated solution

of the problem in this thin region is written in terms of the wall function and an iteration

strategy between the remaining subdomains is proposed. Therefore this second approach

will also involve two subdomains. We again assume that the mechanical problems are

uncoupled. We will refer to this approach as the wall function strategy.

Figure 8.1: Domain of the problem

8.2.1 Problem definition in the whole domain

Strong form of the problem

The problem to be solved in Ω, an open domain in Rd (d = 2, 3 is the number of space

dimensions) during the time interval (0, tf) is described by the equations of continuous
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media. These equations could also be used as basis for more complex models [57]. These

sets always contain an energy conservation statement that, under suitable assumptions,

reads

ρcp (∂tϑ+ v · ∇ϑ) + ∇ · q = Q in Ω× (0, tf) (8.1)

Here Q is the external source of energy source per unit of mass and q is the internal heat

flux vector. The velocity field v is the solution of a mechanical problem of the form

ρ (∂tv + v · ∇v)−∇ · σ = ρg in Ω× (0, tf)

Here g is the external source of momentum per unit of mass and σ the internal stress

tensor. The parameters present in these equations (ρ and cp) may be discontinuous across

the surface ΓSF (t), which is a moving surface separating the fluid and the solid. The

constitutive equation for the internal heat flux is

q = −k∇ϑ (8.2)

where k may also be discontinuous across ΓSF (t). The constitutive equation for the

internal stress tensor will in general be different in both regions. In the case of the solid it

will be related to the deformation tensor. In the case of an incompressible fluid it will be

related to the velocity gradient and to another variable, the pressure (p), that will involve

the solution of another equation, the conservation of mass.

The problem must be supplemented with appropriate boundary and initial conditions.

Let us split the boundary ∂Ω of Ω into two parts as ∂Ω = Γϑ
D ∪ Γϑ

N, where Γϑ
D and Γϑ

N

represent the part of the boundary where Dirichlet and Neumann boundary conditions

for the temperature are prescribed, respectively (see Figure 8.2).

Figure 8.2: Boundary conditions of the problem

The initial and boundary conditions for the thermal problem can thus be written as

ϑ = ϑ0 in Ω× {0}
ϑ = ϑD on Γϑ

D × (0, tf)

n · q = qN on Γϑ
N × (0, tf)

where n is the normal exterior to the domain Ω. In turn, the initial and boundary

conditions for the mechanical problem depend on the constitutive relation considered. In
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the case of a solid they are usually written in terms of the displacement and in the case

of the fluid in terms of the velocity. The purpose of writing the mechanical problem is to

clearly specify the conditions under which it is uncoupled. Nevertheless, we will consider

the weak form and the numerical approximation of the thermal problem only.

Weak form of the problem

In order to write the weak form of the problem we will not consider the mechanical problem

and we will assume the velocity field to be given. Let us introduce some notation. We

start introducing the functional spaces

H1 (Ω) =

{
v ∈ L2 (Ω) :

∂v

∂xj

∈ L2 (Ω) , j = 1, ..., nsd

}
V ϑ (Ω) =

{
v ∈ H1 (Ω) : v = ϑD in Γϑ

D

}
V 0 (Ω) =

{
v ∈ H1 (Ω) : v = 0 in Γϑ

D

}
The scalar product in L2(Ω) will be denoted by

(u, v)Ω :=

∫
Ω

uv dΩ

and we will use the notation

〈f, g〉ω :=

∫
ω

fg dω

when the functions f and g are not necessarily square integrable and ω is either a

subdomain of Ω or part of the boundary ∂Ω.

A weak formulation of the problem is obtained by integrating by parts the diffusive

term in Equation 8.1 and using the constitutive Equation 8.2. Let us introduce the bilinear

form

a (ϑ, v) := (ρcp∂tϑ, v)Ω + (ρcpv · ∇ϑ, v)Ω + (k∇ϑ,∇v)Ω

(in fact, a is affine in the first argument, but we will omit this precision in the following)

and the linear form

l (v) := 〈Q, v〉Ω + 〈qN, v〉Γϑ
N

The weak form of the problem consists in finding ϑ ∈ L2(0, tf ;V
ϑ)∩L∞(0, tf ;L

2(Ω)) such

that

a (ϑ, v) = l (v) ∀v ∈ V 0 (8.3)

where L2(0, tf ;V
ϑ) is the set of functions whose norm in V ϑ (which is the norm in H1(Ω))

is square integrable in time, and L∞(0, tf ;L
2(Ω)) the set of functions whose norm in L2(Ω)

is bounded in time.
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8.2.2 The full resolution strategy

Let us split the domain Ω into the solid and fluid subdomains, ΩS and ΩF, as illustrated

in Figure 8.1 (center) and let ΓSF (t) be the interface between them. Let us also define

Γϑ
Di = Γϑ

D ∩ ∂Ωi i = S,F

Γϑ
Ni = Γϑ

N ∩ ∂Ωi i = S,F

Strong form of the problem

The strong form of the problem consists in finding temperatures ϑS and ϑF, as well as

velocities vS and vF, such that

ρScpS (∂tϑS + vS·∇ϑS) + ∇ · qS = QS in ΩS × (0, tf)

ρS (∂tvS + vS·∇vS)−∇ · σS = ρg in ΩS × (0, tf)

and

ρFcpF (∂tϑF + vF·∇ϑF) + ∇ · qF = QF in ΩF × (0, tf)

ρF (∂tvF + vF·∇vF)−∇ · σF = ρg in ΩF × (0, tf)

As it has been mentioned, the mechanical problem is written in abstract form, only for

the purpose of presenting the assumptions required to have a coupled problem only for

heat transfer.

The initial conditions of this problem are

ϑS = ϑ0|S in ΩS × {0}
ϑF = ϑ0|F in ΩF × {0}

and its boundary conditions are

ϑS = ϑD|S on Γϑ
DS × (0, tf)

nS · qS = qN|S on Γϑ
NS × (0, tf)

ϑF = ϑD|F on Γϑ
DF × (0, tf)

nF · qF = qN|F on Γϑ
NF × (0, tf)

The conditions to be satisfied at the interface are the continuity of the temperatures

and velocities as well as the normal components of heat fluxes and tractions, that read

vF|ΓSF
= vS|ΓSF

= u̇S|ΓSF

nF · σF|ΓSF
= − nF · σS|ΓSF
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and

ϑF|ΓSF
= ϑS|ΓSF

nS · qF|ΓSF
= − nS · qS|ΓSF

where now nS (nF) is the normal exterior to the domain ΩS (ΩF). At this point we

introduce the following assumptions:

1. The time derivative of the displacements of the solid is expected to be small

compared to the dimensions of the solid itself and the fluid velocities, that is

u̇S ≈ 0

2. The mechanical traction produced by the fluid on the solid is expected to be small,

so that

nF · σF|ΓSF
≈ 0

With these approximations the interface conditions become

vF|ΓSF
= 0

nS · σS|ΓSF
= 0

and

ϑF|ΓSF
= ϑS|ΓSF

nF · qF|ΓSF
= − nS · qS|ΓSF

and therefore the mechanical problems are uncoupled.

Weak form of the problem

Let us introduce the bilinear form aS defined on the solid subdomain ΩS

aS (ϑ, v) := (ρScpS∂tϑS, v)ΩS
+ (kS∇ϑS,∇v)ΩS

We have assumed that the advection term in the heat transport equation is negligible in

the solid phase. Likewise, we define the bilinear form aF defined on the fluid subdomain

ΩF as

aF (ϑ, v) := (ρFcpF∂tϑF, v)ΩF
+ (ρFcpFvF·∇ϑF, v)ΩF

+ (kF∇ϑF,∇v)ΩF

We also introduce the linear forms

lS (v) := 〈Q, v〉ΩS
+ 〈qN, v〉Γϑ

NS
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and

lF (v) := 〈Q, v〉ΩF
+ 〈qN, v〉Γϑ

NF

The weak form of the problem consists in finding

ϑS ∈ L2(0, tf ;V
ϑ
S ) ∩ L∞(0, tf ;L

2(ΩS))

ϑF ∈ L2(0, tf ;V
ϑ
F ) ∩ L∞(0, tf ;L

2(ΩF))

such that

aS (ϑ, v)− 〈kSnS ·∇ϑS, v〉ΓSF
= l (v) ∀v ∈ V 0

S

aF (ϑ, v)− 〈kFnF ·∇ϑF, v〉ΓSF
= l (v) ∀v ∈ V 0

F (8.4)

ϑF = ϑS on ΓSF

kFnF ·∇ϑF|ΓSF
= − kSnS ·∇ϑS|ΓSF

on ΓSF

where the spaces V ϑ
S and V 0

S (resp. V ϑ
F and V 0

F ) are defined in the same way as V ϑ and

V 0 but considering Γϑ
DS (resp. Γϑ

DF) instead of Γϑ
D.

8.2.3 The wall function strategy

Let us split the domain Ω into the solid subdomain ΩS, a boundary layer in the fluid

ΩB and the rest of the fluid subdomain ΩF, as illustrated in Figure 8.1 (right). Let also

ΓSB (t) be the interface between ΩS and ΩB, and ΓBF (t) be the interface between ΩB and

ΩF. Apart from the equations given in the previous subsection for the solid and the fluid

subdomain, we now need to solve the problem on the boundary layer subdomain, which

consists in finding a temperature ϑB and a velocity vB such that

ρcp (∂tϑB + vB·∇ϑB) + ∇ · qB = qB (8.5)

ρ (∂tvB + vB·∇vB)−∇ · σB = ρg (8.6)

Under the same assumptions as in the previous subsection the interface conditions are

vB|ΓSB
= 0

nS · σS|ΓSB
= 0

ϑB|ΓSB
= ϑS|ΓSB

nB · qB|ΓSB
= − nS · qS|ΓSB

and

vF|ΓBF
= vB|ΓBF

nF · σF|ΓBF
= − nB · σB|ΓBF
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ϑF|ΓBF
= ϑB|ΓBF

nF · qF|ΓBF
= − nB · qB|ΓBF

If the boundary layer is of constant width, one may assume that its normal satisfies

nB|ΓSB
= − nB|ΓBF

The problem on the boundary layer subdomain is now approximately solved using the

wall function approach, which is described next.

Wall function revisited

The so called wall function approach is a method for the approximate solution of the fluid

mechanics problems with strong boundary layers. These boundary layers are removed

from the computational domain and universal velocity profiles are used to define the

boundary condition in terms of the boundary conditions on the solid surface, as shown in

Figure 8.3.

Figure 8.3: Wall function approach

This approximated solution is found assuming negligible inertial terms and external

forces. From 8.5 and 8.6 it is seen that this yields

∇ · qB = 0

∇ · σB = 0

which imply constant stresses and heat fluxes across the boundary layer. We denote now

by q the normal component of the heat flux (not to be confused with the heat sources

introduced before)

q = nB · qB|ΓSB

and by t the tangential stress

t = n · σB − (n · σB · n) n|ΓSB
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evaluated at the wall. The mechanical problem is solved selecting a local coordinate

system such that the first local direction is t. If we denote by σ the norm of the

tangential component of the stress (not to be confused with the full stress tensor), by

uB the component of the velocity in this system and by y the coordinate normal to the

solid surface, the constitutive equations are

q =
(
k + kt

) dϑB

dy
(8.7)

σ =
(
µ+ µt

) duB

dy
(8.8)

where µt and kt are the turbulent viscosity and conductivity. Given the turbulent viscosity

and conductivity we can integrate 8.7 and 8.8 to obtain the velocity and temperature

profiles. The definition of the turbulent viscosity and conductivity is the definition of the

model we are using to approximate the problem and is based on experimental correlations

[89]. One of these models is the one that results in the logarithmic profiles for the velocity

and temperature. This model is based on the existence of a zone near the wall, called

laminar sublayer, in which the velocity is small and therefore also the local Reynolds

number is. In the laminar sublayer the turbulent viscosity is neglected and we have

σ

ρ
=
µ

ρ

duB

dy

that is written in dimensionless form introducing the friction velocity u∗ =
√
σ|y=0/ρ. As

the stress is constant across the boundary layer, we have

uB

u∗
=
ρu∗y

µ

On the other hand, in the turbulent region we may approximate µt = ρκyu∗, κ being the

Von Karman constant, and integrating 8.8 we have

uB

u∗
=
u0

u∗
+

1

κ
ln

(
y

y0

)
where y0 is the width of the laminar sublayer and u0 the value of the velocity at this

point. Defining the dimensionless velocity u+
B = uB/u∗ and distance y+ = ρyu∗/µ and

taking y+
0 = 11.6 the final solution reads

u+
B =

{
y+ if y+ < y+

0
1
κ

ln (y+) + 5.5 if y+ ≥ y+
0

In the same way, integrating 8.7 we arrive to

ϑ+
B =

{
Pr y+ if y+ < y+

0

Prt
[

1
κ

ln (y+) + Pθ

]
if y+ ≥ y+

0
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where Pr := κ/ν is the Prandtl number, Prt is the turbulent Prandtl number (which is

part of the constitutive model), Pθ a function that gives the temperature jump across the

laminar sublayer and the dimensionless temperature is defined as

ϑ+
B = −ρcpu∗

q

(
ϑ− ϑB|ΓSB

)
Strong form of the problem

Having an analytical solution to the problem in the boundary layer domain we can rewrite

the complete problem in terms of two subdomains, the fluid (excluding the boundary

layer) and the solid. To this end, let us remark that the solution of the thermal problem

obtained using the wall function method is a constant heat flux and therefore

q = nS · qS|ΓSB
= − nB · qB|ΓSB

= nB · qB|ΓBF
= − nF · qF|ΓBF

This flux is proportional to the temperature jump across the layer

q = α
(
ϑB|ΓBF

− ϑB|ΓSB

)
= α

(
ϑF|ΓBF

− ϑS|ΓSB

)
where

α =
ρcpu∗
ϑ+

and ϑ+ = ϑ+
B (δ+) is defined in terms of δ+, the dimensionless boundary layer thickness.

This parameter depends finally on the particular choice of the turbulent viscosity and

conductivity of the wall function method. In the same way, as the tangential stress is

constant across the boundary layer, we have

t|ΓSB
= t|ΓBF

= β vF|ΓBF

for a certain parameter β, and the normal component of the velocity is set to zero

n · vF|ΓBF
= 0

We can finally state the strong form of the problem as finding ϑS and ϑF, as well as

vS and vF, such that

ρScpS∂tϑS + ∇ · qS = qS in ΩS × (0, tf)

ρS∂tvS −∇ · σS = ρg in ΩS × (0, tf)

and

ρScpS (∂tϑF + vF·∇ϑF) + ∇ · qF = qF in ΩF × (0, tf)

ρS (∂tvF + vF·∇vF)−∇ · σF = ρg in ΩF × (0, tf)
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and now the interface conditions become

t|ΓBF
= β vF|ΓBF

nF · vF|ΓBF
= 0

nS · σS|ΓSB
= 0

and

q = nS · qS|ΓSB
= − nB · qB|ΓSB

= nB · qB|ΓBF
= − nF · qF|ΓBF

= α
(
ϑB|ΓBF

− ϑB|ΓSB

)
= α

(
ϑF|ΓBF

− ϑS|ΓSB

)
Finally, assuming the boundary layer thin we can write the final approximation as

q = nS · qS|ΓSF
= − nF · qF|ΓSF

= α
(
ϑF|ΓSF

− ϑS|ΓSF

)
which is a surface-convection-type boundary condition. As in [33], we have derived an

expression for α based on the physical model being used (with a completely different

meaning with respect to the mentioned reference).

Weak form of the problem

As in the previous subsection, let us introduce the bilinear form aS defined on the solid

subdomain ΩS

aS (ϑ, v) := (ρScpS∂tϑS, v)ΩS
+ (kS∇ϑS,∇v)ΩS

and the bilinear form aF defined on the fluid subdomain ΩF

aF (ϑ, v) := (ρFcpF∂tϑF, v)ΩF
+ (ρFcpFvF·∇ϑF, v)ΩF

+ (kF∇ϑF,∇v)ΩF

as well as the linear forms

lS (v) := 〈q, v〉ΩS
+ 〈qN, v〉Γϑ

NS

lF (v) := 〈q, v〉ΩF
+ 〈qN, v〉Γϑ

NF

The weak form of the problem consists in finding

ϑS ∈ L2(0, tf ;V
ϑ
S ) ∩ L∞(0, tf ;L

2(ΩS))

ϑF ∈ L2(0, tf ;V
ϑ
F ) ∩ L∞(0, tf ;L

2(ΩF))

such that

aS (ϑ, v)− 〈kSnS ·∇ϑS, v〉ΓSF
= l (v) ∀v ∈ V 0

S

aF (ϑ, v)− 〈kFnF ·∇ϑF, v〉ΓSF
= l (v) ∀v ∈ V 0

F

kFnF ·∇ϑF|ΓSF
= α

(
ϑF|ΓSF

− ϑS|ΓSF

)
on ΓSF

kFnF ·∇ϑF|ΓSF
= − kSnS ·∇ϑS|ΓSF

on ΓSF
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Comparing the weak form of this problem to 8.4 the only difference is a jump on the

temperature proportional to the heat flux between domains. Our derivation allows us to

give an interpretation to the surface convection coefficient α in terms of the wall function

model used on the boundary layer subdomain.

8.3 Numerical approximation

Three different continuous problems have been described in section 8.2 but the first one,

that consists of the solution of a global problem in the whole domain, was presented

to define the problem we are facing and has not been actually implemented. The

other two possibilities imply the solution of local thermal problems as well as local

mechanical problems for the fluid and the solid. In this section we present the numerical

approximation to the problem and we will concentrate on the thermal problem only.

In the first subsection we will present the finite element discretization of the problem

considering generically the domain Ω. This approximation could be applied on the whole

domain but will be actually applied on each subdomain. A similar scheme is used to solve

the mechanical problem on the fluid. Details on the finite element approximation to the

Navier Stokes equation can be found in [29, 35, 36]. In the second subsection we describe

an iterative strategy to solve the global thermal problem iteratively solving local problems

on each subdomain.

8.3.1 Finite element approximation

The Galerkin finite element approximation of this problem is standard. Based on a

partition of the domain Ph = {K} in nel elements K, the space V ϑ where the temperature

is sought is approximated by a finite dimensional space V ϑ
h (built using polynomials). If

the space of test functions V 0 is approximated by V 0
h , defined in a similar way, the semi-

discrete problem consists in finding ϑh ∈ L2(0, tf ;V
ϑ
h ) such that

a (ϑh, vh) = l (vh) ∀vh ∈ V 0
h

It is well known that this formulation is unstable when the convection dominates and

therefore we employ a stabilized finite element formulation based on the subgrid scale

method with an algebraic approximation to the subscales [75]. This method is based on a

decomposition of the continuous space of the form (for simplicity consider homogeneous

Dirichlet boundary conditions):

V ϑ = V ϑ
h ⊕ Ṽ ϑ

where Ṽ ϑ can be in principle any space to complete V ϑ
h in V ϑ. To fix ideas we may think

Ṽ ϑ as the orthogonal complement of V ϑ
h with respect to the L2 inner product. Since Ṽ ϑ

represents the component of V ϑ which is not reproduced by the finite element space, we



182 Thermal coupling of fluids and solids

call it the space of subscales or subgrid scales. The continuous Equation 8.3 can now be

written as the system

a (ϑh, vh) + a(ϑ̃, vh) = l (vh) ∀vh ∈ V 0
h (8.9)

a (ϑh, ṽ) + a(ϑ̃, ṽ) = l (ṽ) ∀ṽ ∈ Ṽ 0 (8.10)

After integration by parts within each element domain Equation 8.10 is equivalent to

finding ϑ̃ ∈ Ṽ ϑ such that

ρcp

(
∂tϑ̃+ v · ∇ϑ̃

)
− k∇2ϑ̃ = Rh + ϑh,ort in K, (8.11)

ϑ̃ = ϑ̃ske on ∂K, (8.12)

for any K ∈ Ph, where

Rh := Q− ρcp (∂tϑh + v · ∇ϑh) + k∇2ϑh

is the residual of the finite element component. The function ϑh,ort is obtained from the

condition that ϑ̃ must belong to Ṽ ϑ (and not to the whole space V ϑ) and the function

ϑ̃ske, that we call the skeleton of ϑ̃, is defined on the element boundaries such that the

normal component of the fluxes of ϑ is continuous across these boundaries [29]. Problem

8.9-8.10 is exactly equivalent to 8.9-8.11-8.12. The approximate problem is defined by the

way in which Problem 8.11-8.12 is solved as well as by the way in which the functions

ϑh,ort and ϑ̃ske are taken.

The simplest way to approximately solve Problem 8.11-8.12 is to neglect the time

variation of ϑ̃ and to approximate the spatial differential operator (ρcpv · ∇− k∇2) by a

parameter τ−1 that depends on the coefficients as [29]

τ =

[
c1
k

h2
+ c2

ρcp ‖v‖
h

]−1

,

where c1 and c2 are algorithmic constants that we take c1 = 4 and c2 = 2 for linear

elements. These approximations give

ϑ̃ ≈ τRh (8.13)

Another possibility [35, 36] is to approximate the spatial differential operator but to

allow the subscales to be time dependent. In this case, instead of 8.13 we have, at each

point, an ordinary differential equation for the subscales evolution given by

ρcp∂tϑ̃+ τ−1ϑ̃ = Rh (8.14)

where the same expression for the stabilization parameter τ is used.

The approximation given by 8.13 and that given by 8.14 both have an implicit

assumption on the function ϑ̃ske and the space Ṽ ϑ, and therefore on the function ϑh,ort.
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This is not the only possibility as suggested in a previous work [29] where, in particular,

the subscales are taken orthogonal to the finite element space. After integrating by

parts within each element those terms that involve spatial derivatives of ϑ̃ in 8.9 and

neglecting boundary terms, the final semi-discrete weak form of the problem reads: find

ϑh ∈ C0
(
0, tf ;V

ϑ
h

)
such that

a (ϑh, vh) +
(
ρcp∂tϑ̃, vh

)
Ω
−
∑
K

(
ρcpv · ∇vh + k∇2vh, ϑ̃

)
K

= l (vh) ∀vh ∈ V 0
h

where ϑ̃ is given either by 8.13 or by 8.14 (in the first case ∂tϑ̃ = 0 is assumed).

The time discretization of the problem will be performed using the generalized

trapezoidal rule, that is to say, a finite difference scheme. The fully discrete problem

will be obtained by discretizing in time the semi-discrete problem. Obviously, it is also

possible to start by discretizing first in time and then in space. We will use the first

option but let us point out that if the subscales problem is solved using 8.14 the scheme

is commutative [36]. Let us consider a uniform partition of the time interval (0, tf) of size

δt and let us introduce the following notation

fn+θ = θfn+1 + (1− θ) fn

δtf
n =

(
fn+1 − fn

)
/δt =

(
fn+θ − fn

)
/ (θδt)

where 0 < θ ≤ 1. For θ = 1 we obtain the backward Euler scheme, of first order, and

for θ = 1/2 the Crank-Nicolson scheme, of second order. Both are unconditionally stable.

Let us define

ah
(
ϑn+1

h , vh

)
=
(
ρn+θcn+θ

p δtϑ
n
h, v
)
Ω

+
(
ρn+θcn+θ

p vn+θ·∇ϑn+θ
h , v

)
Ω

+
(
kn+θ∇ϑn+θ

h ,∇vh

)
Ω

+
(
ρn+θcn+θ

p δtϑ̃
n, vh

)
Ω
−
∑
K

(
ρn+θcn+θ

p vn+θ·∇vh + kn+θ∇2vh, ϑ̃
n+θ
)

K

where ϑ̃n+1 is given by

• Quasi-static subscales:

ϑ̃n+θ ≈ τn+θRn+θ
h

• Dynamic subscales:

ρn+θcn+θ
p δtϑ̃

n + τ−1ϑ̃n+θ = Rn+θ
h

The fully discrete problem consists in: for n = 1, 2, ..., find ϑn+1
h ∈ V ϑ

h such that

ah
(
ϑn+1

h , vh

)
=
〈
qn+θ, vh

〉
Ω

+
〈
qn+θ
N , vh

〉
Γϑ

N
∀vh ∈ V 0

h
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8.3.2 Coupling strategy

As mentioned before, we consider a geometric domain decomposition of the problem

by means of a non-overlapping subdomain approach. Therefore, at each time step, we

expect to construct the solution of the problem from the solution of local problems for

the fluid and the structure using the interface conditions already described. This is

carried out by iteratively solving local problems on each domain until convergence on

the interface conditions is satisfied, that is to say, we use an iteration-by-subdomain

strategy [74]. The choice of the boundary conditions of the local problems should be

such that interface conditions presented in section 8.2 are satisfied when convergence

is achieved. It is well known from the theory of domain decomposition methods that

in the case of non-overlapping subdomains we can choose Dirichlet-Neumann(Robin),

Neumann(Robin)-Dirichlet or Robin-Robin. Let us define ah
S and ah

F in the same way as

ah was defined in the previous subsection.

If we use the full resolution strategy and we apply Dirichlet boundary conditions to

the solid and Neumann boundary conditions to the fluid, which according to [60, 127] is

the most stable option, the coupling algorithm can be written as: for each time step n

and each iteration i find ϑn+1,i+1
S,h ∈ V ϑ

S,h and ϑn+1,i+1
F,h ∈ V ϑ

F,h such that

ah
S

(
ϑn+1,i+1

S,h , vh

)
=
〈
qn+θ, vh

〉
Ω

+
〈
qn+θ
N , vh

〉
Γϑ

N
(8.15)

ah
F

(
ϑn+1,i+1

F,h , vh

)
=
〈
qn+θ, vh

〉
Ω

+
〈
qn+θ
N , vh

〉
Γϑ

N
−
〈
kSnS ·∇ϑn+1,i

S,h , vh

〉
ΓSF

(8.16)

where vh ∈ V 0
S,h in 8.15 and in vh ∈ V 0

F,h in 8.16. It is understood that now these spaces

V 0
S,h and V ϑ

S,h are constructed including ΓSF in the Dirichlet part of the boundary in order

to satisfy

ϑn+1,i+1
S,h = ϑn+1,k

F,h on ΓSF

We can take k = i+1 or k = i. In the first case the solution of this problems is sequential,

that is, we solve first for the fluid and then for the solid, whereas in the second one it can

be parallel.

If we use the wall function strategy, the coupling algorithm can be written as: for

each time step and each iteration i find ϑn+1,i+1
S,h ∈ V ϑ

S,h and ϑn+1,i+1
F,h ∈ V ϑ

F,h such that

ah
S

(
ϑn+1,i+1

S,h , vh

)
=
〈
qn+θ, vh

〉
Ω

+
〈
qn+θ
N , vh

〉
Γϑ

N
+
〈
α
(
ϑn+1,i+1

S,h − ϑn+1,i
F,h

)
, vh

〉
ΓSF

(8.17)

ah
F

(
ϑn+1,i+1

F,h , vh

)
=
〈
qn+θ, vh

〉
Ω

+
〈
qn+θ
N , vh

〉
Γϑ

N
+
〈
α
(
ϑn+1,i+1

F,h − ϑn+1,k
S,h

)
, vh

〉
ΓSF

(8.18)

where vh ∈ V 0
S,h in 8.17 and in vh ∈ V 0

F,h in 8.18. Again we can take k = i+ 1 or k = i.

Apart from the fact that the physical models represented by System 8.15-8.16 and by

System 8.17-8.18 are different, some conceptual differences have to be remarked. Firstly, it

is observed that the imposition of the transmission conditions is “symmetric” for the fluid

and the solid, contrary to the Dirichlet-Neumann conditions in 8.15-8.16. Secondly, 8.17-

8.18 does not require the calculation of the normal heat fluxes from the solid to the fluid,
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as needed in 8.16. This calculation is always involved in a finite element code, particularly

for non-matching meshes between the fluid and the solid (see next section). Finally, in

the limit α →∞ it can be shown that the solution of System 8.17-8.18 converges to the

solution of system 8.15-8.16, the convergence rate being α−1. This can be proved using

the analysis developed in [22]. Nevertheless, in our approach α has a physical meaning

and, moreover, taking α large leads to ill-conditioning problems.

8.4 Implementation aspects

8.4.1 A master slave algorithm

One important point of the iteration-by-subdomain strategy proposed is that we already

had programs that solve the fluid dynamics problem and the structural problem. Then

a master/slave algorithm was implemented by developing a third code (the master code)

in order to control the iterative process. The MPICH2 library, an implementation of

the MPI-2 standard, provides functions for process communications that are used to

interchange the data needed to apply boundary conditions on each dedicated (slave) code.

Some minor modifications on these codes are needed in order to exchange data with the

master. In order to perform a calculation, input data for each subproblem needs to be

generated and the master code starts the calculation by starting the slave process (this

is only possible under MPI-2 standard). During the calculation the master code needs

to define the boundary conditions to be applied on each subproblem. The situation is

illustrated in Figure 8.4.

Figure 8.4: Master slave implementation
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8.4.2 Boundary data interpolation

Another aspect of the implementation that deserves a comment is the interpolation of

the boundary conditions to be applied in one subdomain from the results obtained in

the other subdomain. For each interface node, this interpolation is performed finding, in

the mesh of the other subdomain, the element in which it is located, the so called host

element. The process is illustrated in Figure 8.5

Figure 8.5: Boundary data interpolation

The element search strategy used in this work [74] is based on a quad-tree (oct-tree

in 3D) algorithm. It consists of two steps: the preprocess in which a tree-like structure

is built and a process in which the search is performed. In the preprocess the host

computational domain is embedded in a box taking the maximum and minimum nodes

coordinates to define its coordinates. This box is then subdivided recursively into 4 boxes

(eight boxes in 3D) until each box contains a prescribed (small) number of elements. Once

this preprocess has been performed, the process to search the host element of a given point

is faster. Given the test point coordinates x we recursively locate the boxes it belongs

to and we find a small number of elements in which the point must be. Then on each

element we perform a local coordinates test. If the coordinates on the parent domain of

the standard isoparametric mapping are denoted by ξ, we have

x =
∑

a

Na (ξ) xa

and starting with x we solve this equation for ξ using a Newton-Raphson procedure. The

solution permits us to determine if the point belongs to the element and if it is the case

we already have the shape functions on the host mesh evaluated at that point. They are

then used to interpolate the needed boundary data.
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8.5 Numerical examples

In this section we present two numerical examples. The first one is a very simple one-

dimensional example intended to show the role played by the wall function approach when

very thin boundary layers are created. The second example is a practical application of

the thermal coupling described in this chapter.

8.5.1 A one dimensional example

Assume we have two different materials F and S on domains ΩF = [−1, 0] and ΩS = [0, 1],

with conductivities kF and kS, respectively defined by

kF = C
1− e−γ

1− e−γ + γeγx

kS = C
1− e−γ

1− e−γ + γe−γx

where C and γ are constants. Both coefficients have a boundary layer near x = 0 and

the constant γ is a measure of the boundary layer width. The coefficients are shown in

Figure 8.6 for γ = 10 and γ = 100 and C = 1.
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Figure 8.6: Thermal conductivity

The problem can be written as

− d

dx

(
kF
dϑ

dx

)
= QF in ΩF

− d

dx

(
kS
dϑ

dx

)
= QS in ΩS

with the transmission conditions

−kF
dϑ

dx
= −kS

dϑ

dx
at x = 0

ϑF (0) = ϑS (0)
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and the boundary conditions

ϑF(−1) = 1

ϑS (1) = 0

The exact solution to this problem is

ϑF (x) =
1

2

(
−x+

1− eγx

1− e−γ

)
ϑS (x) =

1

2

(
−x− 1− e−γx

1− e−γ

)
We have solved this problem in the case of γ = 100 using the first domain

decomposition strategy using three different meshes of 10, 20 and 40 elements. The

solution is compared to the analytical one in Figure 8.7. We have also solved this problem

using the second approach using a mesh of 10 elements and the result is compared to the

one obtained by the previous method and to the analytical solution in Figure 8.8.
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Figure 8.7: Finite element solution obtained using domain decomposition with two subdomains
compared to the analytic one

-1

-0.5

 0

 0.5

 1

-1 -0.8 -0.6 -0.4 -0.2  0

T

x

DD1
DD1H

DD2
T(x)

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

T

x

DD1
DD1H

DD2
T(x)

Figure 8.8: Finite element solution obtained using domain decomposition with three subdomains
compared to the analytical one

It is clearly seen how the second method gives much better results in the case of

a coarse discretization. The accuracy of this approach depends on the choice of the
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coefficient α. The optimal value used here is found noting that, when γ →∞, the exact

solution tends to

ϑF (x) = −1

2
x+

1

2

ϑS (x) = −1

2
x− 1

2

and the conductions coefficients tend to 1 (except at x = 0 where both are 0) from where

we obtain α = 1/2.

8.5.2 A fire in a tunnel

A fire is a complex phenomenon whose detailed simulation involves many different aspects

that we are not considering in this work. Here we have used a simple model that considers

the fire as a source of heat, without taking into account the exact reactive mechanism,

as this would imply a precise knowledge of the chemical components of the fuel. The

heat released during a fire, which is between 1 MW and 100 MW, is partially dissipated

by the flow and partially transported towards the concrete structure where it is finally

dissipated. Thus, the heat transfer involves both the behavior of the fluid inside the

tunnel and the structural behavior of the concrete and it is therefore necessary to solve a

coupled problem.

We solve the problem using the low Mach number approximation to the compressible

flow equations. This model takes into account the compressibility of the fluid but removes

the acoustic modes [124]. Unlike the Boussinesq approximation, strong temperature and

density gradients are allowed. The numerical treatment of the low Mach number equations

is described in previous chapters.

The high Reynolds number of the problem implies the need of taking turbulence into

account. We do this introducing a Smagorinsky eddy [130], which is defined by

µt = ρcs∆
2 [ε′(u) : ε′(u)]1/2 ,

where cs is an empirical constant, ∆ a characteristic length usually taken as the mesh

size and ε′(u) is the deviatoric part of the rate of deformation tensor. A subgrid thermal

conductivity is also added. It is defined in terms of the subgrid viscosity as

kt =
µtcp
Prt ,

where Prt is the turbulent Prandtl number, which is assumed to be constant (and taken

to be 0.5).

Two simulations were carried out considering heat sources of 10 MW and 30 MW,

which correspond to a small size fire (a car for example) distributed in a volume of 8 m3.

Based on experimental results, a typical wind in a tunnel in absence of fire has a velocity
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Figure 8.9: Velocity field at t = 180 s for Q = 1.25 MW/m3 (top) and Q = 4.0 MW/m3 (bottom)

Figure 8.10: Temperature field at t = 180 s for Q = 1.25 MW/m3 (top) and Q = 4.0 MW/m3

(bottom)

Figure 8.11: Divergence of the velocity field at t = 180 s for Q = 1.25 MW/m3 (top) and Q =
4.0 MW/m3(bottom)



Thermal coupling of fluids and solids 191

of about 0.5 m/s. A preliminary calculation was performed to reproduce the initial state

of a wind flowing through the tunnel which was obtained applying a pressure difference

between the tunnel inlet and outlet. On the tunnel walls Neumann boundary conditions

based on universal profiles were applied (wall laws). Boundary conditions for temperature

were defined to reproduce the real situation as close as possible. On the tunnel walls a

Robin type condition as in 8.17-8.18 was applied using a convection coefficient suggested

by laboratory experiments and the temperature on the concrete walls was fixed. On the

entrance and exit of the tunnel Neumann boundary conditions were considered.

The physics of the flow is quite complex and the temporal evolution is chaotic.

When the heating starts, strong buoyancy forces determine the formation of a plume and

recirculation zones that now, in contrast to the previous example, are fully tridimensional

and of complex structure. In Figure 8.9 the velocity field at 3 minutes after the starting

of the heating is shown and in Figure 8.10 the corresponding temperature field is shown.

Both figures show a detail of the fire zone introducing cutting planes that intersect the

fire zone. The heat source generates the plume that can be clearly observed in Figure

8.9, where an expansion of the flow is also apparent. This expansion is better shown in

Figure 8.11, where contour lines of divergence of the velocity are shown. They have been

obtained by projecting velocity gradients on the finite element space.

In both calculations we used a time step δt = 1 s. The nonlinear equations describing

the flow are solved using two nested loops, an external global loop and internal loops for

the momentum equations and for the temperature equation (which is non linear in the

low Mach number case because of the dependence of the density on the temperature).

The external loop is also used to account for the domain decomposition coupling. A

maximum number of 5 iterations in the external loop were performed with a convergence

tolerance of 10−3 for the velocity and of 10−4 for the temperature. In most steps 3

iterations were enough to achieve convergence and only in few steps the temperature

residual after 5 iterations was around 0.2× 10−3 (the velocity residual was always under

the prescribed tolerance). The linear system has been solved using a GMRES method

[129] preconditioned using an ILUT(nfill,thres) strategy described in [128], where nfill

denotes the level of filling and acts as a memory limiter and thres is a threshold for the

choice of filling elements and acts as a cpu time limiter. Several combinations of nfill

and thres have been tested for the first time step of the problem and it was observed

that, as expected, increasing the filling and reducing the threshold reduces the number of

GMRES iterations needed to achieve convergence. The optimal compromise depends on

the particular problem considered (including mesh size, initial and boundary conditions,

etc.). Let us only point out that this method is more efficient for higher time steps. This

is shown in figure 8.12, where the residuals after 100 iterations of GMRES as a function

of the nfill parameter are shown for a threshold of 10−2.
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Figure 8.12: GMRES residuals for different time step sizes as a function of the ILUT filling

8.6 Conclusions

In this chapter we have described different aspects related to the numerical approximation

of the thermal coupling between a fluid and a solid. Our basic strategy has been to pose

the problem in a domain decomposition framework. This has allowed us to propose two

alternatives to treat the interface coupling, namely, a classical one considering a perfect

thermal contact (continuity of temperatures and heat flux) and another one based on

the use of wall functions, which leads to a heat flux proportional to the temperature

jump between the fluid and the solid. This surface-convection like transmission condition

depends on a coefficient to which we have given an expression in terms of the parameters

of the wall function approach. When this coefficient increases the perfect thermal contact

condition is recovered.

We have discussed also the iteration-by-subdomain strategy we have implemented

using a master-slave strategy. Again, the domain decomposition framework turns out to

be crucial to formulate this (otherwise standard) iterative strategy.

From the practical point of view, we have found the algorithmic frame presented here

very handful, easy to implement once the basic dedicated codes are available and, what

is more important, robust (in accordance with results known from the literature). An

application example of the overall formulation has been presented.
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Conclusions

In this chapter we present the conclusions and the possible research lines that could be

followed starting from this thesis.

9.1 Achievements

The first objective of this work, to understand the derivation of the simplified models

that describe low speed flows as well as the relation between them, has been achieved.

The unified asymptotic approach presented in chapter 2 permits us to derive simplified

models whose justification was separately known. Using these results we are in position of

determining, a priori and in terms of dimensionless parameters, the range of applicability

of each model. An important conclusion is that for the kind of problems we have in

mind the Boussinesq approximation cannot be used and the low Mach number model is

necessary.

The second and most important objective of this work was to develop a subgrid scale

stabilized finite element formulation for the kind of problems we are considering. We

started from the scalar convection diffusion reaction equation and we arrived to thermally

coupled flows. The main conclusions are the following

• In chapter 3 the main contribution is the definition of a new stabilization parameter

that improves the robustness of the numerical scheme when the mesh is anisotropic.

It was also clearly demonstrated that the numerical scheme obtained using the

standard definition with the minimum element length is unstable.

• In chapter 4 the contribution is the extension of results of chapter 3 to systems of

equations. Two possible approximations of the solution of the fine scale problem

have been proposed. The first one results in the usual diagonal approximation to

the stabilization matrix whereas the second one results in a stabilization operator

that consists in the usual term plus extra differential terms. The stability analysis
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of the resulting scheme obtained has been performed. Numerical experiments for

the diagonal approximation show that the OSS method performs much better than

the ASGS method as it is much less sensitive to the choice of the element length.

They also indicate that defining the stabilization paramters with the minimum

element length results in an unstable scheme even for the Stokes problem. Using

the maximum element length for this definition numerical oscilation are not found

but the result deteriorates when the mesh is anisotropically refined.

• In chapter 5 the main contribution is to consider the subscale time dependent

tracking it along the temporal evolution. This apparently natural approach leads

to important improvements in the numerical scheme (stability for any time step,

commutation of space and time discretizations). Tracking of subscales along

nonlinear process permits global conservation of momentum. It also opens the door

to the possibility of modelling turbulence.

• In chapter 6 the main contribution is the extension of the ideas of chapter 5 to

thermally coupled flow tracking the subscales along the iterative coupling between

equations leading to global energy conservation. The possibility of modelling

turbulence is particularly appealing in this case due to the performance of turbulence

models for thermal problems.

The third objective is to develop a finite element code to solve this problems. Apart

from the discrete formulation of the problems, the final ingredient that we need is an

algorithm for the solution of the discrete problem. In chapter 7 different linearization

strategies are compared and the final algorithm is presented.

The fourth and last objective of this work is to apply the developed code to the

problem of thermal coupling of fluids and solids. To achieve this goal, a coupling strategy

based on a domain decomposition approach has been developed. This strategy implies

the development of a small code to manage the coupling between the solid and the fluid.

This development was applied to the problem described of a fire in a tunnel described

above. Both the strategy and the application were described in chapter 8. As mentioned

in the introduction, the work developed during this theses is the base for the following

publications:

• Chapter2: ”On the low Mach number and the Boussinesq approximations for low

speed flows”, J. Principe and R. Codina, Submitted.

• Chapter3: ”The modelling of subgrid scales in the finite element approximation of

convection diffusion reaction problems on anisotropic meshes”, J. Principe and R.

Codina, In preparation.
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• Chapter 4:”The modelling of subgrid scales in the finite element approximation of

incompressible flows”, J. Principe and R. Codina, In preparation.

• Chapter 5: ”Time dependent subscales in the stabilized finite element approximation

of incompressible flow problems”, R. Codina, J. Principe, O. Guasch and S. Badia,

Computer Methods in Applied Mechanics and Engineering, 196 (2007), 2413-2430.

• Chapter 6: ”Dynamic subscales in the finite element approximation of thermally

coupled incompressible flows”, R. Codina and J. Principe, International Journal for

Numerical Methods in Fluids, 54 (2007), 707-730.

• Chapter 7: ”A stabilized finite element approximation of low speed thermally

coupled flows”, J. Principe and R. Codina, International Journal of Numerical

Methods for Heat & Fluid Flow, Accepted.

• Chapter 8: ”A numerical approximation of the thermal coupling of fluids and solids”,

J. Principe and R. Codina, Submitted.

9.2 Future work

Several research lines emerge from this thesis. In the first important line is the modelling

of the subgrid scales, what has been the main subject of this thesis but that is still not

mature. As mentioned in chapters 3 and 4, three steps can be followed to build such a

model

1. uncoupling of the fine scale problem into local (element) problems

2. approximation of the differential operator

3. choice of the space of subscales

The contribution of chapters 3 and 4 focus on step 2 and further research is needed to

numerically evaluate the second approximation proposed for the Oseen problem. Stability

of the resulting scheme has been shown but numerical results were only presented for the

diagonal approximation. The better performance of the OSS method over the ASGS one

has been shown but still several points need further examination such as, for example, the

definition of the instability direction. Another point to investigate is the comparison of

the projections P̃τ (the τ weighted projection) and P⊥
h . Actually, the choice of the space

of subscales could be performed a priori, that is, before step 1 and in this case the choice

would influence the locality of the fine scale problem. In [83] it is shown that the H1
0 (Ω)

projection leads to a local problem without any further approximation. A particular choice

of the space of subscales is the space of bubble functions that also introduce a particular
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projection. The equivalence of the variational multiscale method and the bubble function

stabilization has been shown in [16] for the steady state problem. The concept of transient

subgrid scale gives rise to the concept of transient bubble, something that, surprisingly,

has not been considered up to date. When bubble functions are used, several terms

defined as integrals over the element boundaries vanish. This is not the case if a general

subgrid function is used although these terms are usually neglected. Considering these

terms implies a definition of the subscale on the element boundaries something that we

are currently investigating.

The second important line is the evaluation of the subgrid models for the solution of

turbulent flow problems using the incompressible Navier Stokes equations as a continuous

model without the use of a physical model for the turbulence effects. This line is intimately

related to the previous one because the requirements the model should satisfy, detailed

in chapter 5, can depend on the modelling of the fine scale problem. We already started

research in this direction analyzing the dissipative structure of the orthogonal subscale

model and showing it is capable of predicting backscatter [125]. Certainly much more

numerical evidence is needed to analyze the performance of numerical methods in the

solution of turbulent flow problem, specially regarding the prediction of mean flow features

such as approximation of boundary layers, separation, etc. However we call the attention

of the reader to other (more qualitative) features as well, such as the dimension of the

global attractor or the prediction of transition and relaminarization. Finally let us also

mention the potential of this approach for the analysis of thermal turbulence.

The third important line is the application of the techniques developed in this thesis

to the class of problems that motivated it, the problem of simulation of fires. Although the

physical mechanisms involved in a fire a really complex, a simulation with some degree

of accuracy needs at least three ingredients. The first one is the simulation thermal

turbulence that must be based on the solution of the low Mach number equations and

not on the solution of the Boussinesq model. Needless to say that this point is related to

the second research line mentioned above. The second ingredient is the simulation of the

combustion process and third one the simulation of the radiative heat flux . The last two

problems have not been even considered in this work and certainly need research.
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[34] R. Codina, E. Oñate, and M. Cervera. The intrinsic time for the streamline upwind

/ Petrov-Galerkin formulation using quadratic elements. Computer Methods in

Applied Mechanics and Engineering, 94:239–262, 1992. Available from: http:

//dx.doi.org/10.1016/0045-7825(92)90149-E. 53

[35] R. Codina and J. Principe. Dynamic subscales in the finite element approximation of

thermally coupled incompressible flows. International journal for numerical methods

in fluids, 54(6-8):707–730, 2007. Available from: http://dx.doi.org/10.1002/

fld.1481. 181, 182

[36] R. Codina, J. Principe, O. Guasch, and S. Badia. Time dependent subscales

in the stabilized finite element approximation of incompressible flow problems.

http://dx.doi.org/10.1016/S0045-7825(00)00254-1
http://dx.doi.org/10.1016/S0045-7825(00)00254-1
http://dx.doi.org/10.1016/S0045-7825(02)00337-7
http://dx.doi.org/10.1016/S0045-7825(02)00337-7
http://dx.doi.org/10.1016/S0045-7825(96)01154-1
http://dx.doi.org/10.1016/S0045-7825(96)01154-1
http://dx.doi.org/10.1007/s002110000174
http://dx.doi.org/10.1007/s007910100068
http://dx.doi.org/10.1007/s007910100068
http://dx.doi.org/10.1002/fld.1215
http://dx.doi.org/10.1016/0045-7825(92)90149-E
http://dx.doi.org/10.1016/0045-7825(92)90149-E
http://dx.doi.org/10.1002/fld.1481
http://dx.doi.org/10.1002/fld.1481


Bibliography 201

Computer Methods in Applied Mechanics and Engineering, 196(21-24):2413–2430,

2007. Available from: http://dx.doi.org/10.1016/j.cma.2007.01.002. 113,

127, 132, 181, 182, 183

[37] R. Codina and O. Zienkiewicz. CBS versus GLS stabilization of the incompressible

Navier-Stokes equations and the role of the time step as stabilization parameter.

Communications in Numerical Methods in Engineering, 18:99–112, 2002. 134, 144

[38] G. D. V. Davis and I. Jones. Natural convection in a square cavity: a comparison

exercise. International Journal for numerical methods in fluids, 3:227–248, 1983.

158

[39] P. de Sampaio, P. Hallak, A. Coutinho, and M. Pfeil. A stabilized finite

element procedure for turbulent fluid-structure interaction using adaptive time-

space refinement. International Journal for Numerical Methods in Fluids, 44:673–

693, 2004. 115

[40] J. Dennis and R. Schnabel. Numerical methods for unconstrained optimization and

nonlinear equations. Prentice-Hall series in computational mathematics. Prentice-

Hall, New Jersey, first edition, 1983. 154, 155

[41] J. Donea. A Taylor-Galerkin method for convection transport problems.

International Journal for Numerical Methods in Engineering, 20:101–119, 1984. 40

[42] J. Douglas and T. Russel. Numerical methods for convection dominated problems

based on combining the method of characteristics with finite elements or finite

difference procedures. SIAM journal of numerical analysis, 19:871–885, 1982. 40

[43] J. Douglas and J. Wang. An absolutely stabilized finite element method for the

Stokes problem. Mathematics of computation, 52:495–508, 1989. 40

[44] J. A. Dutton and G. H. Fichtl. Approximate equations of motion for gases and

liquids. Journal of the atmospheric sciences, 26:241–253, 1969. 21, 29, 35

[45] A. ElSheikh, S. Chidiac, and W. Smith. A posteriori error estimation based on

numerical realization of the variational multiscale method. Computer Methods in

Applied Mechanics and Engineering, In Press, 2008. 45

[46] G. Evans and S. Paolucci. The thermoconvective instability of plane Poiseuille

flow heated from below: A proposed benchmark solution for open boundary flows.

International Journal for Numerical Methods in Fluids, 11:1001–1013, 1990. 137,

138

[47] A. T. Fedorchenko. A model of unsteady subsonic flow with acoustics excluded.

Journal of Fluid Mechanics, 334:135–155, 1997. 20

http://dx.doi.org/10.1016/j.cma.2007.01.002


202 Bibliography

[48] L. Formaggia, S. Micheletti, and S. Perotto. Anisotropic mesh adaptation in

computational fluid dynamics: Application to the advection-diffusion-reaction and

the stokes problems. Applied Numerical Mathematics, 51(4):511–533, Dec 2004.

Available from: http://dx.doi.org/10.1016/j.apnum.2004.06.007. 41

[49] L. Franca and C. Farhat. Bubble functions prompt unusual stabilized finite element

methods. Computer Methods in Applied Mechanics and Engineering, 123:299–308,

1995. Available from: http://dx.doi.org/10.1016/0045-7825(94)00721-X. 40

[50] L. Franca, S. Frey, and T. J. R. Hughes. Stabilized finite element methods:

I. Application to the advective-diffusive model. Computer Methods in Applied

Mechanics and Engineering, 95:253–276, 1992. Available from: http://dx.doi.

org/10.1016/0045-7825(92)90143-8. 40

[51] L. Franca, G. Hauke, and A. Masud. Revisiting stabilized finite element methods

for the advective-diffusive equation. Computer Methods in Applied Mechanics and

Engineering, 195(13-16):1560–1572, Feb 2006. Available from: http://dx.doi.

org/10.1016/j.cma.2005.05.028. 40

[52] L. Franca and A. Macedo. A two-level finite element method and its application

to the Helmholtz equation. International Journal for Numerical Methods in

Engineering, 43:23–32, 1998. 47

[53] L. Franca, A. Nesliturk, and M. Stynes. On the stability of residual-free bubbles for

convection-diffusion problems and their approximation by a two-level finite element

method. Computer Methods in Applied Mechanics and Engineering, 166(1-2):35–49,

1998. Available from: http://dx.doi.org/10.1016/S0045-7825(98)00081-4. 47

[54] L. Franca and A. Russo. Deriving upwinding, mass lumping and selective reduced

integration by residual-free bubbles. Applied Mathematics Letters, 9(5):253–276,

1996. 40

[55] L. Franca and F. Valentin. On an improved unusual stabilized finite element

method for the advective-reactive-diffusive equation. Computer Methods in Applied

Mechanics and Engineering, 190(13-14):1785–1800, Dec 2000. Available from:

http://dx.doi.org/10.1016/S0045-7825(00)00190-0. 40

[56] K. Gage and W. Reid. The stability of thermally stratified plane Poiseuille flow.

Journal of Fluid Mechanics, 33:21–32, 1968. 138

[57] D. Gawin, F. Pesavento, and B. A. Schrefler. Simulation of damage-permeability

coupling in hygro-thermo-mechanical analysis of concrete at high temperature.

Communications in numerical methods in engineering, 18:113–119, 2002. 170, 172

http://dx.doi.org/10.1016/j.apnum.2004.06.007
http://dx.doi.org/10.1016/0045-7825(94)00721-X
http://dx.doi.org/10.1016/0045-7825(92)90143-8
http://dx.doi.org/10.1016/0045-7825(92)90143-8
http://dx.doi.org/10.1016/j.cma.2005.05.028
http://dx.doi.org/10.1016/j.cma.2005.05.028
http://dx.doi.org/10.1016/S0045-7825(98)00081-4
http://dx.doi.org/10.1016/S0045-7825(00)00190-0


Bibliography 203

[58] T. Gelhard, G. Lube, M. Olshanskii, and J. Starcke. Stabilized finite

element schemes with LBB-stable elements for incompressible flows. Journal of

Computational and Applied Mathematics, 177:243–267, 2005. 111, 112

[59] J. Gibbon and E. Titi. Attractor dimension and small length scale estimates for the

three dimensional Navier-Stokes equations. Nonlinearity, 10:109–119, 1997. 115

[60] M. Giles. Stability analysis of numerical interface conditions in fluid-structure

thermal analysis. International Journal for Numerical Methods in Fluids, 25:421–

436, 1997. 184

[61] D. O. Gough. The anelastic approximation for thermal convection. Journal of the

atmospheric sciences, 26:448–456, May 1969. 21, 29, 35

[62] V. Gravemeier. The variational mulstiscale method for laminar and turbulent flow.

Archives of Computational Mechanics–State of the Art Reviews, 13:249–324, 2006.

115

[63] D. D. Gray and A. Giorgini. The validity of the Boussinesq approximation for

liquids and gases. International Journal of Heat and Mass Transfer, 19(5):545–551,

1976. 20, 28, 37

[64] J. Guermond. Finite-element-based Faedo-Galerkin weak solutions to the Navier-

Stokes equations in the three-dimensional torus are suitable. Journal de
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