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Abstract

Graphs are mathematical objects that depict the abstract representation of data

when relations between elements are defined. When data is represented with graphs,

nodes represent the main objects of the data and edges represent the relations be-

tween them. In this context, specific machine learning techniques need to be defined

or adapted to obtain information from the data and predict characteristics or fea-

tures that could be of interest for some applications. During the last 40 years,

researchers have been analysing how to represent data with graphs and how to

adapt machine learning methods to these structures or define new ones adapted to

this framework. With this aim, the concept of Graph Edit Distance (GED) has

been used during decades and several machine learning techniques use the GED as

measure of dissimilarity between graphs to tackle the solution of different problems.

This thesis presents a compendium of machine learning methods focused on graph-

represented data. Diverse tasks have been faced representing the data as graphs and

the majority of the presented methods make use of the concept of GED as a tool to

analyse the structure of the data. The techniques developed on this thesis demon-

strate that the graph representation of data is suitable to solve different situations

and can be explored for future contexts.
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Nomenclature

Symbols

βi,j attribute of edge ei,j

βt
i,j tth attribute of edge ei,j

γi attribute of node vi

γt
i tth attribute of node vi

R+
0 {x ∈ R : x ⩾ 0}

CI
Star Cost of insert the s

Delv Set of all the nodes deletions

e′i,j edge between ith node and jth node in graph G′

ei,j edge between ith node and jth node in graph G

G Graph

G′ Graph

Insv Set of all the nodes insertions

Mn×m(R+
0 ) Set of square matrix with n rows and m columns with coefficients in R+

0

s.t. such that

Subsv Set of all the nodes substitutions

viii
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v′i ith node in graph G′

vi ith node in graph G

we = (we
1, ..., w

e
M) vector of attributes’ weights in edges

wv = (wv
1 , ..., w

v
N) vector of attributes’ weights in nodes

Acronyms

GED Graph Edit Distance

PR Pattern Recognition

LDA Linear Discriminant Analysis

NN Neural Network

SVM Support Vector Machine

P&ID Pipping and Instrumentation Diagram
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1
Introduction
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Attributed graphs are commonly used as abstract representations for common struc-

tures such as documents, images or chemical compounds, among others (Sanfeliu

et al. (2002)). Their applicability ranges from automatic character recognition of

handwritten characters (Chaudhuri et al. (2017)) to toxicity analysis of chemical

compounds (Garcia-Hernandez et al. (2019)), between others. When data is repre-

sented with graphs, nodes of graphs represent local parts of the object and edges

represent the relations between these local parts.

These representations have been of crucial importance in pattern recognition through-

out more than four decades, (Bunke and Allermann (1983); Sanfeliu and Fu (1983a);

Sanfeliu et al. (2002)). Interesting reviews of techniques and applications are Conte

et al. (2004); Vento (2015); Livi and Rizzi (2013) and Foggia et al. (2014). If elements

in pattern recognition are modelled through attributed graphs, error-tolerant graph-

matching algorithms (Conte et al. (2004); Vento (2013)) can be applied. The aim of

these algorithms is to compute a mapping between nodes of two attributed graphs

that minimises some kind of objective function (Solé-Ribalta et al. (2012); Serratosa

and Cortés (2015b)) to deduce which is the best transformation between the graphs

in some sense that is application dependent. A widely extended frameworks to de-

duce similarity between graphs is the concept of Graph Edit Distance (GED) (Bunke

and Allermann (1983); Sanfeliu and Fu (1983b); Sanfeliu et al. (2002); Stauffer et al.

(2017); Gao et al. (2010a)). The general idea of the GED is to find a transformation

between two graphs that minimises a special cost function. This concept allows the

definition of a distance between graphs that can be used to develop machine learning

methods applied to graphs.

This thesis presents diverse machine learning methods applied to graph-represented

2
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Chapter 1. Introduction

data. First of all, details about GED and other fundamental concepts that are

needed to understand the rest of the manuscript are explained in Chapter 2. In

each one of the other chapters, a different method has been developed to solve a

different problem related with data that have been represented with graphs. More

specifically, in Chapter 3, we explain an on-line method to learn some parameters

related with the GED that has been tested in diverse types of graph-represented

data. In Chapter 4, we describe a method to classify molecules based on the GED.

In this chapter, the molecules have been represented with graphs and the GED has

been used as a similarity measure between the molecules.

In Chapter 5 and Chapter 6 we present two different methods related with the

process of digitalisation of industrial diagrams. A data set of pipping and instru-

mentation diagrams of oil and gas facilities has been represented with graphs and we

have faced two different tasks. First, in Chapter 5, we present an automatic method

to help to engineers in the correction of the digitisation of diagrams. Secondly, in

Chapter 6, we present a method to look for substructures in big diagrams using the

GED. Chapter 5 is the only method of this thesis that does not use the GED,

but it is an interesting method that reduces the effort of engineers using the graph

representation of data.

At the end of the manuscript, Chapter 7 is devoted to general conclusions from the

thesis, and the last Chapter 8 is an enumeration of the works published during the

progress of this thesis.

3
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2
Methods

2.1 Introduction

The advance of computation capacities are permitting that the graph representation

of data becomes popular in the field of Pattern Recognition (PR). When PR prob-

lems are addressed with graphs, error-tolerant graph matching techniques outcome

useful. The aim of these techniques is to find the best mapping between nodes and

edges that minimises some kind of objective function that is adapted to the applica-

tion. In this chapter we present the main concepts related with the graph matching

problem and with the definition of the Graph Edit Distance.
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2.2. Graph Matching and Graph Edit Distance Chapter 2. Methods

2.2 Graph Matching and Graph Edit Distance

One of the most used frameworks to define the error-tolerant graph matching is

through the Graph Edit Distance (GED) (Bunke and Allermann (1983); Sanfeliu

and Fu (1983b); Sanfeliu et al. (2002); Stauffer et al. (2017); Gao et al. (2010a)).

The main idea of the GED is to define the difference between two graphs as the

amount of distortion required to transform a graph into another one. Calculate the

GED between a pair of attributed graphs G and G′ consists in finding the best

sequence of edit operations that converts one graph into another with the minimum

cost that is application dependent. To continue with the detailed definition of the

GED, we introduce some concepts and notation that are required.

Given an attributed graph G, we call vi to the ith node in G and ei,j, the edge

between node vi and node vj in G. We define γi as the attribute of node vi and γt
i

as the tth attribute of node vi and βt
i,j is the tth attribute of edge ei,j. Given a node

vi ∈ G, each node vj connected with vi is called neighbour of vi. We can consider the

set of all the neighbours of vi and we call it Neighbourhood of vi. We call degree of

vi, di, to the number of neighbours of vi and we define the Star centered on the node

vi, Star(vi) (Serratosa and Cortés (2015a)), as the local structure composed of the

node itself, its neighbours, and the correspondent edges connecting them. Similarly,

given another attributed graph G′, we define v′i and e′i,j as the i
th node and the edge

between nodes v′i and v′j respectively, and all the concepts are defined in similar way

than in G.

2.2.1 Definition of Graph Edit Distance

Having a pair of graphs, G and G′, a node-to-node mapping f : G → G′ between

nodes of both graphs, is a bijective function that assigns one node of G to only one

node of G′. We suppose both graphs have the same number of nodes since they

have been expanded with new nodes, called Null. Therefore, if n and m were the

initial number of nodes of G and G′ respectively, the final number of nodes in both

graphs is n+m. We use the notation f(a) = i to represent the mapping from node

va to node v′i. Note that the mapping between edges is imposed by the mapping of

5
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2.2. Graph Matching and Graph Edit Distance Chapter 2. Methods

Figure 2.1. Transformation of graph G in graph G’.

the nodes whose edges are connected. We say that f(a) = i is a node substitution

if both nodes are not Null. It is an insertion if node va is a Null and v′i is not a

Null. Finally, it is a deletion if node v′i is a Null and va is not a Null. Similarly

happens with the edges. Given two graphs G and G′, Figure 2.1 shows an example

of the edit operations to transform one into the other.

To quantify the importance of these operations transforming the graphs, a cost is

assigned to each operation depending on the attributes on the involved nodes or

edges. The cost of substituting a node va ∈ G by a node v′i ∈ G′ is denoted by

CS
v (a, i). The cost of deleting a node va is CD

v (a). Finally, the cost of inserting

the node v′i is CI
v (i). Similarly happens with the costs on the edges: The cost of

substituting an edge ea,b by an edge e′i,j is C
S
e (a, i, b, j). The cost of deleting an edge

ea,b is C
D
e (a, b). And finally, the cost of inserting an edge e′i,j is C

I
e (i, j). These costs

are defined in equations 2.1 and 2.2:

Cv(i, a) =


Cv

S(i, a) if vi ̸= Null ∧ v′a ̸= Null

Cv
D(i) if vi ̸= Null ∧ v′a = Null

Cv
I (a) if vi = Null ∧ v′a ̸= Null

(2.1)

Ce(i, j, a, b) =


Ce

S(i, j, a, b) if ei,j ̸= Null ∧ e′a,b ̸= Null

Ce
D(i, j) if ei,j ̸= Null ∧ e′a,b = Null

Ce
I (a, b) if ei,j = Null ∧ e′a,b ̸= Null

(2.2)

We define the cost of transforming graph G into graph G′ through the mapping f

as the sum of all the edit costs with Equation 2.3:

6
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2.2. Graph Matching and Graph Edit Distance Chapter 2. Methods

Cost(G,G′, f) =
∑

{vi∈G}

Cv(i, f(i)) +
∑

{ei,j∈G}

Ce(i, j, f(i), f(j)) (2.3)

We observe that there is not an unique way to transform one graph into another.

Thus, it makes sense trying to find the transformation or mapping between both

graphs that has the lowest cost. With this aim, we define the GED as the minimum

transformation cost, given all transformations from one graph into another. We

define the Graph Edit Distance (GED) as:

GED(G,G′) = min
{f :G→G′}

 ∑
{vi∈G}

Cv(i, f(i)) +
∑

{ei,j∈G}

Ce(i, j, f(i), f(j))

 (2.4)

2.2.2 Computing the Graph Edit Distance

The computation of the GED is an optimisation problem that is NP-hard, it means

that it can not be solved in polynomial time. The optimal computation of the GED

is usually carried out by means of A* algorithm (Hart et al. (1968)). The compu-

tational cost of this method is exponential in the number of nodes of the involved

graphs (Garey and Johnson (1990)). For this reason, some heuristic algorithms that

deduce a sub-optimal GED in polynomial time have been presented (Justice and III

(2006); Neuhaus et al. (2006); Riesen and Bunke (2009); Serratosa (2014b, 2015);

Riesen et al. (2018)). In general, these sub-optimal algorithms optimise local in-

stead of global criteria and a sub-optimal GED can be computed. One of the most

extended algorithms to compute the GED is Bipartite graph matching (Riesen and

Bunke (2009); Serratosa (2014a)), which is the algorithm that we have used in this

thesis to compute approximations of the GED. This algorithm defines a cost matrix,

applies a linear solver such as Hungarian method and deduces the correspondence

f with the sub-optimal GED. For more details, the reader is referred to Riesen and

Bunke (2009) and Serratosa (2014a).

These sub-optimal algorithms define the cost between two graphs for a specific node-

to-node mapping, f , as the addition of the substitution, deletion and insertion costs

of local structures of nodes. One of these local structures that can be used is the
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Star centered in vi, Star(vi), defined in the second paragraph of Subsection 2.2.

We represent the sets of substitutions, deletions and insertions of nodes respectively

with Subsv, Delv and Insv. Moreover, CStar
S (a, i) denotes the cost of substituting

the Star centered at node va ∈ G by the Star centered at node v′i ∈ G′. CStar
D (a)

denotes the cost of deleting the Star centred at va and CStar
I (i) denotes the cost of

inserting the Star centred at v′i. These Star costs depend on the costs on nodes

and edges Cv
S(a, i), C

v
D(a) , C

v
I (i), C

e
S(a, i, b, j), C

e
D(a, b) and Ce

I (i, j) (Serratosa and

Cortés (2015a)).

Then, we can define a sub-optimal costs of the mapping f between G and G′ as:

Cost(G,G′, f) =∑
∀Subsv

CStar
S (a, i) +

∑
∀Delv

CStar
D (a) +

∑
∀Insv

CStar
I (i)

(2.5)

Consequently, a sub-optimal GED can be calculated finding a mapping that min-

imises Equation 2.5.

2.2.3 Learning the costs of the Graph Edit Distance

The penalty costs are application dependent and need to be set such that the GED

reflects the dissimilarity between the graphs. These costs can be manually tuned or

automatically computed through a learning method. In this section, we select several

learning methods and we classify them into three classes, depending on the nature

of the edit costs they learn. We present below a summary with the descriptions of

these three classes of methods.

1) Cv
S, C

v
D , Cv

I , C
e
S, C

e
D and Ce

I as functions.

The methods in this first class define the six node and edge edit costs Cv
S, C

v
D , Cv

I ,

Ce
S, C

e
D and Ce

I in Equation 2.1 and Equation 2.2 as functions that depend on the

attributes on the nodes and edges. These functions are learned using, for instance,
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a neural network or a probability density distribution.

- Neuhaus and Bunke (2005): The method feeds a self-organised map with the

attributes of the nodes or the edges and at the output obtains the substitution,

deletion and insertion costs on nodes and edges. The optimisation function used in

the learning process is the average of eight optimisation functions: Davies–Bouldin,

Dunn, C, Goodman–Krusk, Calinski–Haraba, Rand index, Jaccard, Fowlkes–Mallo.

- Neuhaus and Bunke (2007): This method is similar to the previous method. Nev-

ertheless, it uses the Dunn index as the optimisation function. Moreover, given the

attributes on the nodes or the edges, it computes the costs as the inverse of the

probability set by a probability density function.

- Caetano et al. (2009): In this case, the learning set has a different structure since

it is composed by pairs of attributed graphs and the node-to-node mapping between

them, instead of classified attributed graphs. Thus, the node-to-node mappings in

the learning set become the ground truth mappings and the optimisation function

learns the edit costs such that the resulting node-to-node mappings tend to be close

to the node-to-node mappings in the learning set. This optimisation function has

been called the correspondence accuracy. The method learns the weights wv
S and

we
S of the weighted Euclidean distance that define the substitution costs on nodes

and edges. Insertion and deletion of nodes and edges are not learned and assumed

to be constant.

- Leordeanu et al. (2012): The method learns wv
S and we

S in the same way as Caetano

et al. (2009) but the optimisation function is the maximisation of the recognition

ratio of the training set composed of classified graphs.

- Cortés and Serratosa (2015): The method has the same training set and optimi-

sation function than the one described in Caetano et al. (2009). Nevertheless, the

method learns the insertion and deletion costs as constants. The method assumes

Cv
S and Ce

S are defined as an Euclidean distance without weights.

- Cortés and Serratosa (2016b): The method has the same optimisation function and

learning set as the one in Caetano et al. (2009) but a different learning algorithm.
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2) Cv
D, C

v
I , C

e
D and Ce

I as constants.

In this class, the four node and edge edit costs Cv
D, C

v
I , C

e
D and Ce

I in Equation

2.1 and Equation 2.2 are constants, what means that they do not depend on the

attributes.

- Cortés et al. (2019, 2018): The method learns the substitution functions on nodes

and edges through a neural network being the set of attributes on the nodes and

edges its input. Insertion and deletion of nodes and edges are not learned and

assumed to be constants. In this case the optimisation function is the correspondence

accuracy.

- Santacruz and Serratosa (2019, 2018b): Similar to the method in Cortés et al.

(2019, 2018) but the insertion and deletion costs on nodes and edges are also learned

through a neural network. Thus, the method learns all six edit costs.

3) Cv
S and Ce

S defined as Equation 2.6.

Finally, in this third class, the node and edge substitution edit costs (Cv
S and Ce

S in

Equation 2.1 and Equation 2.2) are defined as Equation 2.6:

Cv
S(i, a) =

N∑
t=1

wv
t

∣∣∣γt
i − γ

′t
a

∣∣∣
Ce

S(i, j, a, b) =
M∑
t=1

we
t

∣∣∣βt
i,j − β

′t
a,b

∣∣∣ (2.6)

where γt
i is the tth attribute of node vi and βt

i,j is the tth attribute of edge ei,j.

The vector wv = (wv
1 , ..., w

v
N) is the vector of nodes attributes’ weights and we =

(we
1, ..., w

e
M) is the vector of edges attributes’ weights. N and M are the dimensions

of the spaces where the attributes in nodes and edges belong to.

- Algabli and Serratosa (2018a): The method learns the weights of the weighted

Euclidean distance to define the substitution costs wv
S and we

S, and also the deletion

and insertion costs as constants on nodes and edges. The optimisation function is
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the correspondence accuracy.

- Martineau et al. (2018): The method learns the weights on each node or edge,

instead of on the node and edge attributes. These weights depend on how important

the nodes and edges are to describe the class of the graph.
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On-line parameter learning
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3.1 Introduction

The costs of the GED are application dependent and need to be set such that the

GED reflects the real dissimilarity between graphs. These costs can be manually

tuned or automatically computed through learning methods and we can discern

between off-line and on-line learning methods.

The main characteristic of the off-line methods is that they learn in a first stage with

the whole learning data set and the deduced model is used in a second phase. But

in some cases, during the learning process, not all the data is available at once and

there is a need to develop on-line learning methods. These on-line methods receive

pieces of data and, each time a new batch is received, new parameters are learned

considering the new data and also the current knowledge of the model.

In this chapter, we present an on-line method to learn the edit costs of the GED

that automatically recomputes the values of the costs when new data are available.

Moreover, the method allows the computation of the GED at the same time as the

costs are learned. It means that we do not need to have all the data set to obtain

an approximation of the GED.

This chapter is organised as follows. Firstly, we present a background in Section 3.2.

Secondly, we present the proposed algorithm in Section 3.3. Thirdly, we show the

experiments in Section 3.4 and, in the end, we present the conclusions of the chapter

in Section 3.5.
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3.2. Background Chapter 3. On-line Parameter Learning

3.2 Background

There are some scenarios where there is not the complete learning set or the learning

set changes in different stages. For instance, in Cortés and Serratosa (2016a); Moreno

and Serratosa (2015); Cortés and Serratosa (2015), an interactive method is defined

where a human helps a fleet of robots to deduce their relative position and also to

learn the computer vision parameters. Another example is the classification of job

advertisements (Boselli et al. (2018)), that have to be continually actualised and

classified at the same time that they appear and disappear. On-line learning is as

well related with active querying approaches to decide which data are most valuable

in the learning process (Zhang et al. (2016)). In these cases, on-line algorithms (Zhao

and Hoi (2013)) can be used to continue learning the characteristics of the learning

data set.

In the specific case of graph matching and learning the costs of the GED, many off-

line algorithms have been published (see Subsection 2.2.3), but, to our knowledge,

the methods published in Conte and Serratosa (2020a) and Rica et al. (2019) are

the only ones that present on-line methods to learn costs and parameters related

with the graph matching problem. In Conte and Serratosa (2020a), correspondences

between graphs are defined in a sequential order, and the method proposes which

node-to-node mapping contributes the most to the learning process. Furthermore,

it gives the possibility of human interaction to correct some node-to-node mappings

that could be incorrect.

The method explained in this chapter is the method presented in Rica et al. (2019).

It is an on-line method that learns the costs of the GED. It is inspired in the

off-line algorithm published in Algabli and Serratosa (2018a). Some processes have

been incorporated to move this algorithm into the on-line paradigm and to keep the

method learning with the minimum amount of data.
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3.3 The proposed method

The aim of this method is to learn the costs and weights involved in the GED in-

troducing new data in each step of the learning process instead of learning with the

whole data set at once. This on-line learning method fits in the second and third

classes of algorithms explained in Section 2.2.3 because the insertion and deletion

costs are defined as constants. Therefore, the insertion and deletion costs of nodes

are imposed to be equal. It means that Cv
I (a) = Cv

D(i) = Kv, being Kv a real

number. In the same way, the insertion and deletion costs of edges are imposed

to be equal, Ce
I (i, j) = Ce

D(i, j) = Ke, where Ke is a real numbers. We also de-

fine the substitution costs through the weighted Manhattan distance described in

Equation 2.6 and we impose the next restrictions in the weights:

N∑
t=1

wv
t = 1

M∑
t=1

we
t = 1 (3.1)

Thus, the parameters to be learned with this method areKv,Ke and wv = (wv
1 , ..., w

v
N)

and we = (we
1, ..., w

e
M), where wv and we are the weights in Equation 2.6 and Equa-

tion 3.1. Given two graphs G and G′, we want to learn these parameters such that

the correspondence g : G → G′ between G and G′ computed by the learning algo-

rithm in each step, becomes closer to the ground-truth correspondence f : G → G′

for all pairs of graphs G and G’. This means that this method can be applied to data

where each element in the data set is a triplet (G,G′, f), where G and G′ are graphs

and f is a node to node mapping that is the ground-truth application between them,

it is, the mapping between nodes that is accepted as the correct mapping between

them.

Throughout the rest of this section, we explain the input, and steps of the method

that returns the edit costs and weights Kv, Ke, wv and we. The algorithm is com-

posed of six main steps which are schematically shown in Figure 3.1 and summarised

in Algorithm 1.
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3.3. The proposed method Chapter 3. On-line Parameter Learning

Figure 3.1. Basic scheme of the on-line learning method.

Input of the method

The input of this on-line method is composed of four main elements that are detailed

below:

1) D1 and D−1. They are two data sets that contain the initial node-to-node map-

pings existing in the learning set. These initial data have been previously embedded

with the embedding function that will be explained in the subsection 3.3 (Embed).

These two data sets represent the current knowledge of the system and the size is

not fixed.

2) (G,G′, f). It is the new data introduced in the system in each step of the learning

process. It is composed of a new triplet where f is the ground-truth node-to-

node mapping and two graphs G and G′. Note that the ground-truth node-to-node

mapping has been imposed by a specialist.

3) K. It is a natural number that controls the amount of data that the algorithm

has to keep for the next iteration.

4) V al DB. A validation data set that is used to validate the values of the learned

parameters.

Below, we explain in detail each step of the method summarised in Algorithm (1):
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Embed

The first step of the algorithm is to embed the available data. The new data is em-

bedded into the euclidean space S ⊆ RN+M+1 with coordinates (Sv
1 , ..., S

v
N , S

e
1, ..., S

e
M , SKe).

This space is the same as described in Algabli and Serratosa (2018a) and the reader

is referred to it for more details.

Given a new triplet (G,G′, f), this step generates two sets, new D1 and new D−1,

composed of elements in space S that represent the node substitutions and node

deletions in (G,G′, f), respectively. According to Algabli and Serratosa (2018a),

each node substitution is transformed into an element in new D1 but each node

deletion is transformed into d elements in new D−1, where d is the number of non-

null nodes in graph G′. The coordinates of the points generated by the embedding

depend on if they are substitutions or deletions:

- The substitution of vi by v′a imposed by f(i) = a, according to Algabli and Ser-

ratosa (2018a), generates the point Si = (Sv
1 , ..., S

v
N , S

e
1, ..., S

e
M , SKe)i in the set new

D1 and the coordinates of this point are defined as follows:

Sv
t =


Zv
1

|ni−ma|−ni−1
if t = 1

Zv
t −Zv

1

|ni−ma|−ni−1
if t>1

Se
t =


Ze
1

|ni−ma|−ni−1
if t = 1

Ze
t−Ze

1

|ni−ma|−ni−1
if t>1

SKe =
|ni −ma| − ni

|ni −ma| − ni − 1

(3.2)

where ni is the number of neighbour nodes of vi and ma is the number of neighbour

nodes of v′a. Moreover, if f(j) = b, according to Algabli and Serratosa (2018a), then

Zv
t and Ze

t are defined as follows:

Zv
t =

∣∣∣γt
i − γ

′t
a

∣∣∣+ ∑
∀Gi,j |∃G′

a,b

∣∣∣γt
j − γ

′t
b

∣∣∣ (3.3)
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Ze
t =

∑
∀Gi,j |∃G′

a,b

∣∣∣βt
i,j − β

′t
a,b

∣∣∣ (3.4)

- The deletion of a node vi imposed by f generates a set of points in new D−1.

The size of this set is the number of nodes in G′ that are not null. Each point

s ∈ S has the coordinates s = (sv1, ..., s
v
N , s

e
1, ..., s

e
M , sKe) that have been computed

according to Algabli and Serratosa (2018a) through Equation 3.2, Equation 3.3 and

Equation 3.4.

Figure 3.1 shows an input triplet composed of two graphs that have five nodes,

each. In the first graph, the five nodes are non-null but there is one null node in the

second graph. There is also the ground-truth correspondence f composed of four

node substitutions (red arrows) and one deletion (blue arrow). Then, this triplet

generates four points in new D1 and four points in new D−1. Note Figure 3.1 shows

the specific case of N = M = 1 then being S a 3-dimensional space with coordinates

S = (Sv
1 , S

e
1, SKe).

Feed and Reduce

The new sets new D1 and new D−1 and the previous ones D′
1 and D′

−1 are put

together. D1 = D′
1 ∪ new D1 and D−1 = D′

−1 ∪ new D−1. The amount of data has

to be almost constant in the on-line algorithms and cannot depend on the number

of iterations of these algorithms. The aim of this step is to reduce the number of

elements in sets D1 and D−1 but holding two properties. The first one is keeping the

general distance between elements as well as their positions. This means that we

want to have less elements but maintain the same information of the sets as much

as possible. The second one is keeping the same ratio of the number of elements

on both sets. This is because, all the classifiers are biased by the order of the sets.

Note that the generated sets D′
1 and D′

−1 are returned by the algorithm to be fed

at the next iteration.

The reduction is performed through the Reduce Function shown below. The input

parameterK is the maximum number of elements per set at the end of each iteration.
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From Line 1 to Line 8, the function deduces the number of elements that the updated

sets D′
1 and D′

−1 will have.

In Lines 9 and 10, the reduction is done in each set. Several strategies can be used

to make this reduction in function Data-Reduction. We have tested two of them.

In the first one, elements obtained by Data-reduction function are the centroids

computed by the clustering algorithm K-means. In the second one, we use K-

Nearest Neighbours algorithm, that is called throughout the thesis Nearest, which

keeps the closest elements to the hyper-plane deduced in the previous iterations.

Reduce Function

Input(D1,D−1,K)

Output(D′
1,D

′
−1)

1. If |D1| > K ∨ |D−1| > K

2. If |D1| ≥ |D−1|

3. K1 = K

4. K−1 = K ∗ (|D−1 | / |D1 |)

5. Else

6. K1 = K ∗ (|D1 | / |D−1 |)

7. K−1 = K

8. End if

9. D′
1= Data-reduction(D1, K1)

10. D′
−1= Data-reduction(D−1, K−1)

11. End if

End Function
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Classify

This step computes the hyper-plane, shown in Equation 3.5 that best splits sets D′
1

and D′
−1. Note that the embedded space S was specifically defined such that the

Equation 3.5 was the linear border between both sets (see Algabli and Serratosa

(2018a) for demonstration). Constants in this linear equation are the substitution

weights wv
2 , ..., w

v
N and we

2, ..., w
e
M and also the insertion and deletion costs on nodes

and edges Kv and Ke.

Sv
1 + wv

2 · Sv
2 + ...+ wv

N · Sv
N+

Se
1 + we

2 · Se
2 + ...+ we

M · Se
M+

Ke · SKe +Kv = 0

(3.5)

We have explored two different strategies to deduce a hyper-plane given these two

sets, Support Vector Machine (Cortes and Vapnik (1995)) and Linear Discriminant

Analysis (Xanthopoulos et al. (2013)).

As an example, Figure 3.2 shows the points generated by substitutions (red crosses)

and deletions (green dots) and, also, the plane that best splits both sets (Equation

3.5) computed using Linear Discriminant Analysis (LDA). We chose the represen-

tation in Letter Low database (explained in the Experiments 3.4) because nodes in

this database have only two attributes (the position in the image (x,y)) and edges

do not have attributes. Consequently, the embedded space S has dimension three

(S ⊆ R3) and we represent its coordinates as (Sv
1 , S

v
2 , SKe). Then, the expression of

Equation 3.5 in this case is

Sv
1 + wv

2 · Sv
2 + SKe +Kv = 0.

Extract

The edit costs constants, wv
1 , ..., w

v
N , we

1, ..., w
e
M , Kv and Ke are extracted from

the hyper-plane (Equation 3.5). Moreover, wv
1 and we

1 are obtained through Equa-

tion 3.1.
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Figure 3.2. Embedded domain S with the embedded points and the splitting

plane. LDA has been used to find the plane

Validate

This step validates wv
1 , ..., w

v
N , w

e
1, ..., w

e
M , Kv and Ke computed in Extract step

using a validation database. For each element (G,G′, f) of this validation database,

we calculate the best correspondence obtained with the weights and costs wv
1 , ..., w

v
N ,

we
1, ..., w

e
M , Kv and Ke deduced by the method. Then, we calculate the number of

node mappings that are different between the obtained correspondence and the

ground truth correspondence. This measure is called the hamming distance. The

values of wv
1 , ..., w

v
N , w

e
1, ..., w

e
M , Kv and Ke are only updated whether the average

hamming distance between the ground truth correspondences in Validation database

and the correspondences returned in the current iteration is lower than the average

hamming distance obtained in previous iterations.

This strategy tries not to unlearn and it is called pocket algorithm (Stephen (1990)).
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Algorithm 1 On-line costs learning.

Input(K,D1,D−1,(G,G′, f),V al DB)
Output(Kv,Ke,wv, we)

1. (new D1, new D−1) = Embed(G,G′, f)

2. (D1, D−1) = Feed(D′
1, D

′
−1, new D1, new D−1)

3. (D′
1, D

′
−1) = Reduce(D1, D−1, K)

4. Hyper-plane = Classify
(
D′

1, D
′
−1

)
5. [K ′v,K ′e,w′v,w′e] = Extract(Hyper-plane)

6. [Kv,Ke,wv,we] = Validate(K ′v,K ′e,w′v,w′e,V al DB)

End Algorithm

3.4 Experiments

We validate the method using eight databases, which were used to test other learn-

ing methods (Moreno-Garćıa et al. (2016), Cortés and Serratosa (2015); Cortés and

Serratosa (2015)). The data sets Letter Low, Letter Med and Letter High represent

artificially distorted letters of the Latin alphabet with an increasing level of dis-

tortion. Boat, East Park, East South and Resid represent images and Fingerprint

represents human fingerprints. The code and databases used to validate our method

are publically available at 1. The main characteristic of these databases is that their

registers are not only composed of a graph and its class, but they are composed of a

pair of graphs and a ground-truth node-to-node mapping between them, as well as

their class. This register structure is useful to analyse and develop graph matching

algorithms and to learn their parameters in a broad manner. Table 3.1 summarises

the main features of these databases. With the aim of using the minimum amount

of information in the learning algorithm, only 5% and 20% of the validation set have

been used for the first three databases and the fifth last databases, respectively.

This section has been split in two sub-sections. The aim of the first one is to show

the behaviour of our method considering different values of parameter K in the

Reduce step, which controls the amount of data kept in the model. Also we compare

different strategies, on the one hand, K-means or Nearest in the Reduce step, and,

1https://deim.urv.cat/~francesc.serratosa/
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Letter Letter Letter East East Finger-
High Med Low Boat Park South Resid print

Graphs
Learn 750 750 750 5 5 5 5 10

Validation 750 750 750 5 5 5 5 10
Test 750 750 750 5 5 5 5 10

Corresp.
Learn 37500 37500 37500 25 25 25 25 20

Validation 37500 37500 37500 25 25 25 25 20
Test 37500 37500 37500 25 25 25 25 20

N◦ classes 15 15 15 1 1 1 1 5
N◦ attributes 2 2 2 64 64 64 64 4
Description (x,y) SURF (x,y,θ,T/P)

Avg. N◦nodes 4.6 4.6 4.6 50 50 50 50 37.5
Avg. N◦edges 6.2 6.4 9 278.4 276 278.8 276.4 199.2
Max. N◦ nodes 8 9 9 50 50 50 50 71
Max. N◦ edges 12 14 18 282 280 282 278 384
Avg. N◦ subst. 4.2 4.2 4.2 18 16 13 18 4
Avg. Dels./Ins. 0.4 0.4 0.4 32 34 37 32 33.5

Table 3.1. Main features of the eight databases.

on the other hand, Support Vector Machine (SVM) or Linear Discriminant Analysis

(LDA) in the Classify step. The goodness of the method is analysed through the

Area Under the Curve (AUC) and the Accuracy. The aim of the second sub-section

is to compare our on-line method to several off-line methods. The goodness of the

compared methods is evaluated through the accuracy. The accuracy is defined as

the number of node mappings equal to the node ground truth mappings divided by

the total number of node mappings.

3.4.1 Analysis of the on-line method

Tables 3.2, 3.3 and 3.4 show the AUC returned by the on-line method given the com-

bination of strategies K-means or Nearest and algorithms SVM or LDA. More-

over, we show the AUC given K = 125, K = 250, K = 500 in the first seven

databases and K = 25 in the eighth.

Letter Letter Letter East East Finger-
High Med Low Boat Park South Resid print

k-means
SVM 85 82 94 87 88 95 86 79
LDA 85 82 94 74 75 82 77 63

Nearest
SVM 86 86 94 88 91 97 92 73
LDA 86 76 95 76 78 83 78 72

Table 3.2. Area under the curve (AUC) obtained with 100% of the learning

set with K=125 in the first seven databases (columns), and K=10 in the last

one.
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Letter Letter Letter East East Finger-
High Med Low Boat Park South Resid print

k-means
SVM 84 81 94 87 89 95 87 68
LDA 86 78 94 81 75 90 76 80

Nearest
SVM 85 78 94 88 91 97 93 75
LDA 86 78 95 86 84 95 80 71

Table 3.3. Area under the curve (AUC) obtained with 100% of the learning

set with K=250 in the first seven databases (columns), and K=25 in the last

one.

Letter Letter Letter East East Finger-
High Med Low Boat Park South Resid print

k-means
SVM 85 81 94 87 89 95 87 72
LDA 86 78 94 82 85 93 84 65

Nearest
SVM 85 79 93 90 91 96 92 50
LDA 86 68 95 81 84 95 85 72

Table 3.4. Area under the curve (AUC) obtained with 100% of the learning

set with K=500 in the first seven databases (columns), and K=50 in the last

one.

In most cases, it seems as K almost does not influence the AUC when SVM is used.

Contrarily, there is some influence on the AUC when LDA is selected. This influence

is more appreciated in the last five databases. In general, the combination that

returns the highest AUC is Nearest and SVM . Besides, it is also independent of

parameter K. Figure 3.3 shows an example of the Accuracy returned by the test set

while the on-line algorithm keeps incorporating new data from the learning set. We

have selected three different values of K and the combination K-means and SVM .

We realise that the accuracy increases with different slopes at the beginning of the

training process. Higher theK is, slower the training process becomes. Nevertheless,

the accuracy stabilises for each value of K when an enough percentage of data has

been introduced. This behaviour is similar to the other databases and methods.

To illustrate the behaviour of our method, Figure 3.4, Figure 3.5 and Figure 3.6

also show the Accuracy for all the on-line methods with the same value of K in

databases Letter Med, East South and Fingerprint. In the three examples, plots

are different but they stabilise as all databases do.

Tables 3.5 and 3.6 show respectively the values of parameters Kv and Ke obtained

with 20% and 100% of databases with different values of K. We realise that different

algorithms return different values, but in some cases the are similar values.
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Figure 3.3. Letter Low accuracy using K-means and SVM .

Figure 3.4. Accuracy in Letter Med with K=250.

Also, in Table 3.8 we show run times of the method (Matlab 2020a and Intel Core

i7).
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Figure 3.5. Accuracy in East South with K=250.

Figure 3.6. Accuracy in Fingerprint with K=25.

3.4.2 Comparing to the off-line methods

In the first five rows in Table 3.7, it is shown the accuracy of the off-line methods

presented in Neuhaus and Bunke (2005, 2007); Cortés and Serratosa (2015); Algabli

and Serratosa (2018a); Santacruz and Serratosa (2018b) given the test set. These
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Letter Letter Letter East East Finger-
High Med Low Boat Park South Resid print

100% data
k-means

SVM -23.449 -52.372 -0’53 96 125’3 115’6 232’1 -10’9
LDA -0’89 -0’9 -0’81 -0’02 -0’02 -0’02 -0’01 -8’3

Nearest
SVM -80.339 20.071 -0’33 195’3 -6’1 13’3 -51 -2’8
LDA 0’58 -2’27 0’22 -0’02 -0’02 -0’02 -0’02 -0’5

20% data
k-means

SVM 22.190 -90.168 -0’53 127 125’3 1440’3 93’1 1’4
LDA -0’89 -2’77 -0’81 -0’02 -0’02 -0’02 -0’01 -9’5

Nearest
SVM -80.339 -28.854 -0’4 161’6 -6’1 13’3 -19’2 -0’4
LDA -0’14 -0’98 -0’26 -0’01 -0’02 -0’02 -0’01 2’1

Table 3.5. Kv parameter obtained with 100% and 20% of learning set and

k=250 in the first seven databases, and k=25 in the last one.

Letter Letter Letter East East Finger-
High Med Low Boat Park South Resid print

100% data
k-means

SVM -11’24 -0’87 -0’51 0’9 3’8 2’5 1 -12’5
LDA -0’22 -1’07 -0’25 0’02 0’02 0’02 0’01 8’4

Nearest
SVM -0’8 -80.291 -0’15 1’7 16 -17’2 -44’5 -2’4
LDA -3’4 5’28 -0’28 0’02 0’02 0’01 0’02 -0’1

20% data
k-means

SVM -0’34 -0’41 -0’51 0’7 3’8 4’8 4’5 -5’4
LDA -0’22 -0’26 -0’25 0’02 0’02 0’01 0’02 10’9

Nearest
SVM -0’8 1’68 -0’15 16’2 16 -17’2 42’1 -1’5
LDA -1’55 0’27 -0’1 0’01 0’03 0’01 0’02 -2’8

Table 3.6. Ke parameter obtained with 100% and 20% of learning set and

k=250 in the first seven databases, and k=25 in the last one.

values have been extracted from the experimental sections of those papers. In the

rest of the rows in Table 3.7, it is shown the accuracy of our on-line method when

the model has been trained using 100% and 20% of the learning set. We realise

that, on the one hand, our method returns very competitive results in respect to the

off-line methods. In the Letter databases, the accuracy turns out to be almost equal

and in the rest of the databases, our method returns higher values. On the other

hand, the accuracy returned by our method trained only with 20% of the learning

database is almost similar to the accuracy returned by our method but trained with

the whole learning database. The combinations of both facts makes the presented

method to be really interesting since it has the three following properties:

1) The training stage can be alternated to the matching stage.

2) The accuracy tends to be the highest one.

3) Only a portion of the learning data is enough to properly train the model.
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Letter Letter Letter East East Finger-
High Med Low Boat Park South Resid print

[A] 83 76 93 i.c. i.c. i.c. i.c. -
[B] 89 87 97 42 54 40 54 -
[C] - - 71 22 21 20 20 -
[D] 82 70 85 68 68 74 78 -
[E] 89 87 97 44 56 40 55 -

100% data
k-means

SVM 85 82 94 87 89 96 87 87
LDA 86 81 94 83 70 93 77 87

Nearest
SVM 85 82 95 88 91 97 94 87
LDA 86 82 97 86 84 96 84 87

20% data
k-means

SVM 84 80 94 86 89 94 87 45
LDA 86 75 94 75 68 75 76 78

Nearest
SVM 85 74 95 88 91 97 92 74
LDA 86 82 95 80 87 96 72 70

Table 3.7. Accuracies (in percentage) deduced by methods referenced in the

first column given the eight databases. The on-line results are obtained with

20% of the learning set and K = 250 in the first seven databases and K = 25

in the last one. The blank cells are values not given in the original papers.

”i.c” means ”ill conditioned” (the learning method is not able to generate the

Gaussian function). [A]:Neuhaus and Bunke (2005). [B]:Neuhaus and Bunke

(2007). [C]:Cortés and Serratosa (2015). [D]:Algabli and Serratosa (2018a).

[E]:Santacruz and Serratosa (2019).

Letter Letter Letter East East Finger-
High Med Low Boat Park South Resid print

K-means
SVM 314’9 305’8 250’2 56’7 64’4 59’1 53’8 11’5
LDA 1.249’9 1.112’2 1.080’2 72’5 77’4 80’6 76’3 15’7

Nearest
SVM 1.183’1 987’2 1.010’6 52’2 70’3 61’0 55’3 6’1
LDA 164’2 215’5 214’6 43’4 55’8 51’0 46’1 18’2

Table 3.8. Run time in seconds of learning process introducing 20% of

learning data set in each database. It has been set K = 250 in the first seven

databases and K = 25 in the last one.
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3.5 Conclusions

The on-line method presented in this chapter learns the edit costs of the GED em-

bedding node-to-node mappings between graphs into an euclidean space previously

defined in an off-line method.

This on-line method has the particularity that the learning method is limited to

the applications where substitution costs are represented as weighted Manhattan

distances and insertion and deletion costs are constants.

The method needs a parameter, K, that controls the amount of data to be kept

during the learning process and a small validation data set to validate the values

obtained in some steps of the learning process.

The experimental validation shows that the accuracy obtained with the learned

parameters is similar to or higher than the obtained with the off-line methods, but

the needed amount of data is considerably lower.

From a practical point of view, this method has the main advantage that the learned

costs can be used each time the learning process is executed because the training

stage is alternated to the matching stage.
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4
Discrete parameter learning applied to

Virtual Screening
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4.1 Introduction

The high increase in chemical compounds data has created the need to develop

computational tools to reduce the drug synthesis and drug test cycle runtimes.

When activity data are analysed, these tools are required to generate new models

for virtual screening techniques (Kubinyi et al. (2008); Bajorath (2001); Schneider

et al. (2000)). In the drug discovery process, virtual screening is a common step in

which computational techniques are used to search and filter chemical compounds

in databases. Basically, there are two main types of methods in the virtual screen-

ing: ligand-based virtual screening (LBVS) (Cereto-Massagué et al. (2015)) and

structure-based virtual screening (SBVS) (Heikamp and Bajorath (2013)). In this

work, we focus only in LBVS applications. The idea of the LBVS method is to

predict the unknown activity of new molecules (Sun (2008)) using the information

about the known activity of some molecules. Specifically, their behaviour as ligands

that bind to a receptor.

Some LBVS approaches are shape-based similarity (Kirchmair et al. (2009)), phar-

macophore mapping (Sun (2008)), fingerprint similarity and machine learning meth-

ods (Melville et al. (2009)). According to Johnson and Maggiora (1990), structurally

similar molecules are presumed to have similar activity properties. Then, in the con-

text of LBVS methods, the chosen molecular similarity metric is important because

it can determine the success of a virtual screening method to discover proper drug

candidates. Various similarity methods are used in several applications (Bender and

Glen (2004); Nikolova and Jaworska (2003); Willett (2004); Lajiness (1990); Willett

(1987)).
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4.2. Background Chapter 4. Discrete parameter learning

The outline of this chapter is as follows. In Section 4.2, we present a background on

representation and classification of molecules. In Section 4.3 we explain in detail the

method based on the graph representation of molecules and the GED. In Section 4.4,

we present the data sets and we discuss the results of the experiments. Finally, we

present the general conclusions about the method in Section 4.5.

4.2 Background

To compute molecular similarity, it is possible to define a distance and define a

descriptor representing the molecule. Hundreds of molecular descriptors have been

reported in the literature (Xue and Bajorath (2000)). For instance, one-dimensional

descriptors include general molecular properties, such as size, molecular weight, logP

or dipole moment, or BCUT parameters (Menard et al. (1998); Pearlman and Smith

(1999); Schnur (1999); Livingstone (2000)). Two-dimensional descriptors generate

an array of representations of the molecules by simplifying the atomic information

within them, such as 2D fingerprints (Barnard (1993); James and Weininger (1995);

McGregor and Pallai (1997)). Finally, three-dimensional descriptors use 3D infor-

mation, such as molecular volume (Güner (2000); Beno and Mason (2001)). Other

existing methods, instead of representing molecules by an N-dimensional vector, use

relational structures, such as trees (Rarey and Dixon (1998)) or graphs (Barker et al.

(2006); Takahashi et al. (1992)). Regarding the molecule representation by graphs,

some methods represent compounds using reduced graphs (Stiefl et al. (2006); Gillet

et al. (2003, 1991); Fisanick et al. (1994)) and other ones, such as extended reduced

graphs (ErGs) (Stiefl et al. (2006)). Reduced graphs group atomic sub-structures

that have related features, e.g., pharmacophoric features, ring systems, hydrogen-

bonding or others. Moreover, ErGs are an extension of reduced graphs that intro-

duce some changes to better represent shape, size and pharmacophoric properties

of the molecules. The method presented in Stiefl et al. (2006) has demonstrated its

use as a powerful tool for virtual screening.

To perform reduced graph comparisons, three different similarity measures have

been used: In Stiefl et al. (2006); Gillet et al. (2003); Barker et al. (2003), they
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map the reduced graphs into a 2D fingerprint. In Harper et al. (2004), they map

reduced graphs into sets of shortest paths. Finally, in Garcia-Hernandez et al. (2019,

2020), they perform the comparison on the graphs using the Graph Edit Distance

(GED). GED considers the distance between two graphs as the minimum cost of

modifications required to transform one graph into another. Each modification can

be one of the following six operations: insertion, deletion and substitution of both

nodes and edges in the graph (Munkres (1957); Sanfeliu and Fu (1983b); Gao et al.

(2010b)). The main goal of this chapter is to present an algorithm that learns the

edit costs in the GED to improve the classification ratio returned by the system

when the Harper costs were used.

In an initial paper, Garcia-Hernandez et al. (2019), the edit costs were imposed

and extracted from Harper et al. (2004), given the chemical expertise of the authors

and considering the different node and edge types. Later, in Garcia-Hernandez

et al. (2020), authors presented an algorithm for optimising those edit costs based

on minimising the distance between correctly classified molecules and maximising

the distance between incorrectly classified molecules. That work was inspired in a

similar one carried out by Birchall et al. (2006), in which the authors optimise the

transformation costs of a String Edit Distance method to compare molecules using

reduced graphs.

The main problem of the algorithm in Garcia-Hernandez et al. (2020) was the huge

computational cost, which depends on the number of edit costs to be optimised.

Thus, for practical reasons, in the experimental section in Garcia-Hernandez et al.

(2020), they presented four experiments, in which only one edit cost was optimised in

each experiment. They imposed the other costs (126 in total) to be the ones defined

in Harper et al. (2004). In contrast, starting from the costs defined by Harper et al.

(2004), the method presented in this chapter learns all the edit costs of the GED to

compare molecules with a lower computational cost obtaining higher classification

ratios in the ligand-based screening application, as shown in the experimental section

(4.4).
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Figure 4.1. Example of molecule reduction using ErG. The original molecule

is on the top and its ErG representation is below. Elements of the same

colour on the top are reduced to nodes on the ErG. R: Ring system, Ac:

Acyclic components.

4.2.1 Molecular representation

Reduced graphs are compact representations of chemical compounds, in which the

main information is condensed in feature nodes to give abstractions of the chemical

structures. Different versions of reduced graphs have been presented (Barker et al.

(2003); Gillet et al. (1991); Harper et al. (2004); Barker et al. (2006); Stiefl et al.

(2006)) and they depend on the features that they summarise or the use that is

given to them. In the virtual screening context, the structures are reduced to track

down features or sub-structures that have the potential to interact with a specific

receptor and, at the same time, try to keep the topology and spatial distribution of

those features. Figure 4.1 presents an example of molecule reduction.

4.2.2 Classification of molecules

Once the molecules are represented as ErGs, we can compare them by means of the

Graph Edit Distance (GED) (Solé et al. (2012); Serratosa (2021)). The GED (see

Section 2.2) is defined as the minimum cost of transformations required to convert

one graph into the other. Thus, in our application, it is the cost to transform an

ErG into the other one. To classify a molecule, we apply the Nearest Neighbour

(NN) strategy that consists of calculating the GED between this molecule and the

other ones, of which class we know, and predicting its class (active or inactive) to

be the class of the nearest molecule. In the case the molecule is equidistant from

more than one classified molecule, the method arbitrarily selects one of the closest
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Node attributes
Attribute Description
[0] hydrogen-bond donor
[1] hydrogen-bond acceptor
[2] positive charge
[3] negative charge
[4] hydrophobic group
[5] aromatic ring system
[6] carbon link node
[7] non-carbon link node
[0, 1] hydrogen-bond donor + hydrogen-bond acceptor
[0, 2] hydrogen-bond donor + positive charge
[0, 3] hydrogen-bond donor + negative charge
[1, 2] hydrogen-bond acceptor + positive charge
[1, 3] hydrogen-bond acceptor + negative charge
[2, 3] positive charge + negative charge
[0, 1, 2] hydrogen-bond donor + hydrogen-bond acceptor + positive charge

Edge attributes
Attribute Description
- single bond
= double bond
≡ triple bond

Table 4.1. Node and edge attributes description in an ErG.

molecules.

Edit costs have been introduced to quantitatively evaluate each edit operation. The

aim of the edit costs is to designate a coherent penalty to the transformation in pro-

portion to the extent to which it modifies the transformation sequence. For instance,

when ErGs are compared, it makes sense that the cost of substituting a ”hydrogen-

bond donor” feature with a joint ”hydrogen-bond donor-acceptor” feature be less

heavily penalized than the cost of substituting a ”hydrogen-bond donor” feature

with an ”aromatic ring” system. Similarly, inserting a single bond should have a

lower penalization cost than inserting a double bond, and so on. In a previous work

(Garcia-Hernandez et al. (2019)), the edit costs proposed by Harper et al. (2004)

were used. The node and edge descriptions are shown in Table 4.1, and the specific

costs proposed by Harper et al. (2004) are exposed in Tables 4.2 and 4.3.

The final edit cost for a given transformation sequence is obtained by adding up all

of the individual edition costs. Figure 4.2 shows a schematic example of a trans-
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formation of a molecule G1 into another one, G2. As we can see, the executed

operations in this transformation are: a deletion of node type [1], a deletion of a

simple edge, an insertion of node type [5], an insertion of a simple edge a substitu-

tion of node type [7] by node of type [2], and a substitution of a simple edge with

a double edge. If we sum the values of Harper costs associated with these opera-

tions in Tables 4.2 and 4.3, we obtain that the cost of this transformation equals:

2 + 0 + 2 + 0 + 3 + 3 = 10.

Figure 4.2. Transformation sequence from graph G1 to graph G2.

Since several transformation sequences can be applied to transform a graph into

another one, the GED resulting for any pair of graphs is defined as the minimum

cost under all those possible transformation sequences. Usually, the final distance is

normalized according to the number of nodes in both graphs being compared. This

is performed in order to make the measure independent of the size of the graphs.

More formally, we define the GED as follows,

GED(Ga, Gb, C1, . . . , Cn) = min
{Ni:i=1,...,n}

C1N1 + . . .+ CnNn

L
(4.1)

where Ct is the imposed cost of the tth edit operation on nodes and edges, and Nt is

the number of times this edit operation has been applied. Moreover, the combination

of N1, N2, . . . is restricted to be one that transforms Ga into Gb. Finally, L is the

sum of the number of nodes of both graphs, and n is the number of different edit

operations on nodes and edges.

Several GED computational methods have been proposed during the last three

decades, they can be classified into two groups: those returning the exact value

of the GED in the exponential computational cost with respect to the number of
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nodes Blumenthal and Gamper (2018), and those returning an approximation of the

GED in the polynomial cost Serratosa (2014a); Santacruz and Serratosa (2018a);

Serratosa (2014b, 2015). These two groups of GED computational methods have

been widely studied Conte et al. (2004); Vento (2015). In our experiments, we used

the fast bipartite graph matching method Serratosa (2014a) (polynomial computa-

tional cost), although our learning method is independent of the matching algorithm.

Substitution costs for nodes
[0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2]

[0] 0 2 2 2 2 2 2 3 1 1 1 2 2 2 1
[1] 2 0 2 2 2 2 2 3 1 2 2 1 1 2 1
[2] 2 2 0 2 2 2 2 3 2 1 2 1 2 1 1
[3] 2 2 2 0 2 2 2 3 2 2 1 2 1 1 2
[4] 2 2 2 2 0 2 2 3 2 2 2 2 2 2 2
[5] 2 2 2 2 2 0 2 3 2 2 2 2 2 2 2
[6] 2 2 2 2 2 2 0 3 2 2 2 2 2 2 2
[7] 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3

[0, 1] 1 1 2 2 2 2 2 3 0 2 2 2 2 2 2
[0, 2] 1 2 1 2 2 2 2 3 2 0 2 2 2 2 2
[0, 3] 1 2 2 1 2 2 2 3 2 2 0 2 2 2 2
[1, 2] 2 1 1 2 2 2 2 3 2 2 2 0 2 2 2
[1, 3] 2 1 2 1 2 2 2 3 2 2 2 2 0 2 2
[2, 3] 2 2 1 1 2 2 2 3 2 2 2 2 2 0 2

[0, 1, 2] 1 1 1 2 2 2 2 3 2 2 2 2 2 2 0

Insertion/Deletion costs for nodes
[0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2]

insert 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2
delete 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2

Table 4.2. Substitution, insertion and deletion costs for nodes proposed

by Harper et al. (2004).

Substitution costs
for edges

- = ≡
- 0 3 3

= 3 0 3

≡ 3 3 0

Insertion/Deletion costs
for edges

- = ≡
insert 0 1 1

delete 0 1 1

Table 4.3. Substitution, insertion and deletion costs for edges proposed

by Harper et al. (2004).

Initially, the edit costs were manually set in a trial and error process considering

the application at hand Harper et al. (2004); Garcia-Hernandez et al. (2019). (As

previously commented, Tables 4.2 and 4.3 show their edit cost proposal.) Neverthe-

less, there has been a tendency to automatically learn these costs since it has been

seen that a proper tuning of them is crucial to achieve good classification ratios in

virtual screening Garcia-Hernandez et al. (2020) and other applications Rica et al.
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(2021); Conte and Serratosa (2020b); Santacruz and Serratosa (2020); Algabli and

Serratosa (2018b); Cortés and Serratosa (2016). In Garcia-Hernandez et al. (2020),

authors presented a learning algorithm that is forced to learn only one edit cost at

once due to runtime restrictions. Thus, they perform four different experiments on

the same data as Garcia-Hernandez et al. (2019) in which they use all the costs

of Garcia-Hernandez et al. (2019) except the one that is learned. These experiments

are:

C1: Learning the deletion/insertion cost of the carbon link ([6]).

C2: Learning the cost of substituting a carbon link node ([6]) with an aromatic ring

system ([5]).

C3: Learning the insertion/deletion cost of the bond edge ([-]).

C4: Learning the substitution cost between a single bond edge ([-]) and a double

bond edge ([=]).

Table 4.4 shows their learnt costs.

Type

of cost
CAPST DUD-E GLL&GDD MUV NRLiSt BDB ULS-UDS

C1 Ins/Del [6] 0.000002 0.005 0.014 0.490 0.012 0.115

C2 Subs [5] by [6] 0.013 0.145 0.333 0.867 0.104 0.500

C3 Ins/Del [-] 0.004 0.001 0.003 0.327 0.003 0.011

C4 Subs [-] by [=] 0.017 0.186 0.206 1.005 0.024 0.607

Table 4.4. Costs obtained in Garcia-Hernandez et al. (2020).

Each row corresponds to one of their experiments C1-C4.

The next section presents our method, which has the advantage of learning the

whole set of edit costs at once.

4.3 The proposed method

We explain the proposed method in the next three subsections. The first one explains

the classification of compounds based on structural information; in the second one,
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we explain the learning algorithm; and in the third one, we detail the code of the

algorithm.

4.3.1 The learning method

We present an iterative algorithm, in which, in each iteration, the NN strategy is

applied and the initial edit costs are modified such that one molecule that has been

incorrectly classified becomes correctly classified. Modifying the edit costs could

cause other incorrectly classified molecules to also be properly classified, but, unfor-

tunately, some other ones that were properly classified become incorrectly classified.

This is the reason why we want to generate the minimum modification on the edit

costs. To do so, the selected molecule is the one that it is easier to move from the in-

correctly classified ones to the correctly classified ones. In the next paragraphs, our

learning algorithm is explained in detail and it is summarised in Subsection 4.3.2.

Let Gj be a molecule in the learning set that has been incorrectly classified using

the NN strategy and the current costs C1, . . . , Cn. We define Dj as the minimal

GED between Gj and all the molecules but restricted to be the ones that have a

different class:

Dj = min
q

GED(Gj, Gq, C1, . . . , Cn) , where class(Gq) ̸= class(Gj). (4.2)

Moreover, we define D′
j as the minimal GED between Gj and all the molecules of

the learning set but restricted to be the ones that have the same class:

D′
j = min

p
GED(Gj, Gp, C1, . . . , Cn), where class(Gp) = class(Gj) (4.3)

Since Gj is incorrectly classified, we can confirm that D′
j > Dj. Figure 4.3 schemat-

ically shows this situation. It turns out that Gj and Gq belong to different classes

even though the distance between them is smaller than the distance between Gj and

its closest molecule that has the same class, Gp.
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Figure 4.3. Classification of molecule Gj . The true classes are in solid

colours. Gj is classified in the wrong class (blue), but the correct class is the

red one. The distance between Gj and Gq is lower than the distance between

Gj and Gp.

The main idea of our method is to permute D′
j and Dj, modifying the edit costs.

With this exchange, we achieve a lower distance between Gj and the molecule of its

same class (Gp) than the distance between Gj and the molecule with different classes

(Gq). Thus, Gj will be correctly classified. However, considering that adapting these

distances affects all the molecules’ classifications, we select a molecule Gi among the

incorrectly-classified ones, {Gj s.t. D′
j > Dj}, which satisfies that the difference of

the distances D′
j −Dj is the minimum one, as shown in Equation (4.4). Note that

in Equation (4.4), all the values of D′
j −Dj are always positive because D

′
j > Dj by

definition of Gj.

Gi = arg min
{Gj s.t. D′

j>Dj}
(D′

j −Dj) (4.4)

Figure 4.4 shows this idea. However, what is crucial to understand is that this

modification is performed in the distances since the molecule representations are

not modified. Furthermore, this is carried out by modifying the edit costs. Thus,

the strategy is to define the new edit costs such that D′
i becomes Di and vice versa.

The rest of this section is devoted to explaining how to modify the edit costs.
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Figure 4.4. Stripped molecules have been improperly classified using NN

strategy. Gi is the one that minimises D′
j −Dj being D′

j > Dj .

Considering Equation (4.1), the distance is composed of edit costs C1, . . . , Cn and

the number of times the specific edit operations have been taken N1, . . . , Nn. Our

method modifies the edit costs without altering the number of operationsN1, . . . , Nn.

Thus, we define Di and D′
i as follows:

Di =
C1N1 + . . .+ CnNn

L

D′
i =

C1N
′
1 + . . .+ CnN

′
n

L′

(4.5)

Then, we exchange the distances Di and D′
i and modify the edits costs by adding

new terms:

Di =
(C1 + α′

1)N
′
1 + . . .+ (Cn + α′

n)N
′
n

L′

D′
i =

(C1 + α1)N1 + . . .+ (Cn + αn)Nn

L

(4.6)

Note that these new terms α1, . . . , αn and also α′
1, . . . , α

′
n are defined such that

the new value of Di is D′
i instead of Di and vice versa. Moreover, the edit costs

C1, . . . , Cn are the same in both expressions. We proceed to explain below how to

deduce the terms α1, . . . , αn and also α′
1, . . . , α

′
n.
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From Equation (4.6), we obtain:

Di =
C1N

′
1 + . . .+ CnN

′
n

L′ +
α′
1N

′
1 + . . .+ α′

nN
′
n

L′

D′
i =

C1N1 + . . .+ CnNn

L
+

α1N1 + . . .+ αnNn

L

(4.7)

We observe that the first terms in both expressions are D′
j and Dj, respectively:

Di = D′
i +

α′
1N

′
1 + . . .+ α′

n′N ′
n

L′

D′
i = Di +

α1N1 + . . .+ αnNn

L

(4.8)

By regrouping the terms again, we have:

Di −D′
i =

α′
1N

′
1 + . . .+ α′

n′N ′
n

L′

D′
i −Di =

α1N1 + . . .+ αnNn

L

(4.9)

Furthermore, finally, we divide by Di −D′
i and D′

i −Di in each expression to arrive

at the following normalised expressions:

1 =
α′
1N

′
1

(Di −D′
i)L

′ + . . .+
α′
nN

′
n

(Di −D′
i)L

′

1 =
α1N1

(D′
i −Di)L

+ . . .+
αnNn

(D′
i −Di)L

(4.10)

Note that, as commented in the definition of the GED, not all of the edit operations

are used to transform a molecule into another. These edit operations are the ones

that Nt = 0 or N ′
t = 0. Because of this, in Equation (4.10), there are some addends

that are null. We use m and m′ to denote the number of edit operations that have

been used, that is, the ones that Nt ̸= 0 or N ′
t ̸= 0, respectively.

We want to deduce α1, α2, . . . and also α′
1, α

′
2, . . . such that Equation (4.10) is ful-

filled. The easiest way is to impose that each non-null term in these expressions
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equal 1/m′ or 1/m, respectively. Then, we achieve the following expressions,

1/m′ =
α′
tN

′
t

(Di −D′
i)L

′ being N ′
t > 0

1/m =
αtNt

(D′
i −Di)L

being Nt > 0

(4.11)

From the previous expressions, we arrive at the definitions of αt that allow the

modification from Di to D′
i. Moreover, we also arrive at the definitions of α′

t′ that

allow the modification from D′
i to Di.

α′
t =

(Di −D′
i)L

′

m′N ′
t′

, N ′
t > 0

αt =
(D′

i −Di)L

mNt

, Nt > 0

(4.12)

Note that considering Equations (4.5), (4.6) and (4.12), we have, on one hand, that

the new costs Ct = Ct +αt and, on the other hand, that Ct = Ct +α′
t. Since it may

happen that αt ̸= α′
t, we assume the average option is the best choice when both

weights are computed,

Ct =



Ct +
αt+α′

t

2
, if Nt > 0 and N ′

t > 0

Ct + αt, if Nt > 0 and N ′
t = 0

Ct + α′
t, if Nt = 0 and N ′

t > 0

Ct, if Nt = 0 and N ′
t = 0

(4.13)

In the next subsection, we present our algorithm.

4.3.2 Algorithm

Algorithm 2 is an iterative process that updates the edit costs in each iteration to

correct the classification of one selected molecule. The updated costs are used in the

next iteration to classify all the molecules again. Then, it selects another molecule

incorrectly classified and modifies the costs again to correct it.
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Algorithm 2 Discrete costs learning.

Input ( Learning Set, Initial edit costs, Max Iter )

Output ( Learnt edit costs )

1. Initialise:

iter = 1.

C1,. . . , Cn = Initial edit costs.

While iter ≤ Max Iter:

2. Classify all molecules with nearest neighbour and GED

(Equation (4.1) using C1, . . . , Cn).

3. Compute Dj and D′
j:

(Equations (4.2) and (4.3)) for all Gj incorrectly classified.

4. Deduce Gi (Equation (4.4)).

5. Compute αt, t = 1, . . . ,m and α′
t, t = 1, . . . ,m′: (Equation 4.12).

6. Compute C1,. . . , Cn (Eq. 4.13).

7. Update costs: Ct = Ct, t = 1, . . . , n.

8. iter = iter + 1.

End While

End Algorithm

4.4 Experiments

4.4.1 Datasets

To validate this method, we have used six available public datasets: ULS-UDS (Xia

et al. (2015)), GLL&GDD (Gatica and Cavasotto (2011)), CAPST (Sanders et al.

(2012)), DUD-E (Mysinger et al. (2012)), NRLiSt-BDB (Lagarde et al. (2014)) and

MUV (Rohrer and Baumann (2009)). All these datasets had been formatted and
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standardized by the LBVS benchmarking platform developed by Skoda and Hoksza

(Skoda and Hoksza (2017)). The datasets are composed of various groups of active

and inactive molecules arranged according to the purpose of a target. Each group is

split in two halves, the test and train sets, which are required when using machine

learning methods. The train set is used to optimize the transformation costs, and

the test set is used to evaluate the classification ratio. The targets of the data sets

are shown in Table 4.5. In our experimentation, we have taken a subset of the

first 100 active molecules and 100 of the first inactive molecules per target. Some

datasets have less than 100 active molecules; in this case, all active molecules are

taken and also the same number of inactivemolecules.

4.4.2 Results

Table 4.6 shows the classification ratios obtained in each dataset using different edit

cost configurations, algorithms and initialisations. The first row corresponds to the

accuracies obtained with the costs proposed by Harper et al. (2004), the second

row corresponds to the accuracies deduced by setting all the costs to 1 (no learning

algorithm). The next four rows correspond to the accuracies obtained using the costs

deduced in Garcia-Hernandez et al. (2020) in their four experiments (C1, C2, C3

and C4). Finally, the last two rows present the accuracies obtained by our method:

the first row by initialising the algorithm by the Harper costs and the second one

by initialising all the costs to 1. We note the used costs are the mean of the learned

costs in all the databases, and our algorithm performed 50 iterations.

We realise that in all the datasets, except for MUV and ULS-UDS, our costs with

Harper initialisation obtained the highest classification ratios. In these two datasets,

the best accuracy is obtained by Harper costs. Note that our method initialised

by all-ones costs returns lower accuracies than our method initialised by Harper

costs, except for the ULS-UDS dataset. This behaviour makes us think that the

initialisation point is very important in this type of algorithm. Another highlight

is that we have achieved better accuracies than the four experiments presented

by Garcia-Hernandez et al. (2020) in all the tests. In the ULS-UDS dataset, our

method returns close accuracy to the Harper costs. Nevertheless, that is not the case
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for MUV dataset. To deeply analyse this behaviour, we have computed the accuracy

using the costs learned by only the MUV targets. In this case, the accuracy is 64.9%,

which is significantly lower than using mean costs. This is not the normal behaviour

in learning algorithms since while conducting specific learning, the classification ratio

tends to increase. We think there are other reasons for this abnormal behaviour:

one could be the small size of this dataset and the other the separability between

ligands and decoys in MUV is low, which makes our algorithm not to converge to a

proper solution.

In Figure 4.5, we present the classification ratio obtained in the 127 targets in

the six datasets. At a glance, we realise that our method achieves most of the

highest accuracies in all the targets in CAPST, DUD-E, GLL&GDD and NRLiSt-

BDB databases. Specifically, we point out targets from 19 to 31 in the GLL&GDD

dataset where the other cost combinations have very low accuracies while our method

achieves much higher results. We observe that targets in the datasets MUV and

ULS-UDS, in which our method does not return the highest accuracies, have a high

variability because the same costs produce very different results.
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Figure 4.5. Cont.

Figure 4.5. Classification ratio in the test set over the 127 targets available

in the six datasets. The horizontal axis represents the index of the targets

presented in Table 4.5.

Note that in Garcia-Hernandez et al. (2020), authors computed a cost per each

of the six datasets and each target. Conversely, we learn the edit costs given the

six datasets at once. In general, using several datasets at once makes the learnt

parameters less specific for the application at hand, and thus, the classification
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ratios tend to decrease. In spite of this possible disadvantage, our method returns

better classification ratios than the one in Garcia-Hernandez et al. (2020) in all the

datasets. Figure 4.6 shows the percentage of times that each cost configuration

obtains the highest classification ratio taking into account all the 127 targets, given

the four configurations proposed in Garcia-Hernandez et al. (2020), one configuration

proposed in Harper et al. (2004) and our deduced configuration. The presented

method obtains the best classification ratio the highest number oftimes.

Figure 4.6. Percentage of times that each set of costs returns the best

classification ratio.

Tables 4.7 and 4.8 show the learned edit costs for nodes and edges, respectively. In

bold are the ones that are different to the ones proposed by Harper et al. (2004).

As we can see, the results are very similar to Harper costs because the method

introduces a very small modification in each step. In addition, there are many costs

that have not been modified. This is because these costs were not involved in the

modifications of molecules that are improperly classified, minimising D′
i −Di.
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Data set Used targets
CAPST CDK2, CHK1, PTP1B, UROKINASE
DUD-E COX2, DHFR, EGFR, FGFR1, FXA, P38, PDGFRB, SRC,

AA2AR
GLL&GDD 5HT1A Agonist, 5HT1A Antagonist, 5HT1D Agonist,

5HT1D Antagonist, 5HT1F Agonist, 5HT2A Antagonist,
5HT2B Antagonist, 5HT2C Agonist, 5HT2C Antagonist,
5HT4R Agonist, 5HT4R Antagonist, AA1R Agonist,
AA1R Antagonist, AA2AR Antagonist, AA2BR Antagonist,
ACM1 Agonist, ACM2 Antagonist, ACM3 Antagonist,
ADA1A Antagonist, ADA1B Antagonist,
ADA1D Antagonist, ADA2A Agonist, ADA2A Antagonist,
ADA2B Agonist, ADA2B Antagonist, ADA2C Agonist,
ADA2C Antagonist, ADRB1 Agonist, ADRB1 Antagonist,
ADRB2 Agonist, ADRB2 Antagonist, ADRB3 Agonist,
ADRB3 Antagonist, AG2R Antagonist, BKRB1 Antagonist,
BKRB2 Antagonist, CCKAR Antagonist,
CLTR1 Antagonist, DRD1 Antagonist, DRD2 Agonist,
DRD2 Antagonist, DRD3 Antagonist, DRD4 Antagonist,
EDNRA Antagonist, EDNRB Antagonist,
GASR Antagonist, HRH2 Antagonist, HRH3 Antagonist,
LSHR Antagonist, LT4R1 Antagonist, LT4R2 Antagonist,
MTR1A Agonist, MTR1B Agonist, MTR1L Agonist,
NK1R Antagonist, NK2R Antagonist, NK3R Antagonist,
OPRD Agonist, OPRK Agonist, OPRM Agonist,
OXYR Antagonist, PE2R1 Antagonist, PE2R2 Antagonist,
PE2R3 Antagonist, PE2R4 Antagonist, TA2R Antagonist,
V1AR Antagonist, V1BR Antagonist, V2R Antagonist

MUV 466, 548, 600, 644, 652, 689, 692, 712, 713, 733, 737, 810, 832,
846, 852, 858, 859

NRLiSt BDBAR Agonist, AR Antagonist, ER Alpha Agonist,
ER Alpha Antagonist, ER Beta Agonist,
FXR Alpha Agonist, GR Agonist, GR Antagonist,
LXR Alpha Agonist, LXR Beta Agonist, MR Antagonist,
PPAR Alpha Agonist, PPAR Beta Agonist,
PPAR Gamma Agonist, PR Agonist, PR Antagonist,
PXR Agonist, RAR Alpha Agonist, RAR Beta Agonist,
RAR Gamma Agonist, RXR Alpha Agonist,
RXR Alpha Antagonist, RXR Gamma Agonist,
VDR Agonist

ULS-UDS 5HT1F Agonist, MTR1B Agonist, OPRM Agonist,
PE2R3 Antagonist

Table 4.5. Data sets used for the experiments. Each data set on the left

contains the targets on the right.
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CAPST DUD-E GLL&GDD MUV NRLiSt BDB ULS-UDS Mean
Harper 93,75 95,88 85,68 92,76 93,17 96,10 92,89

1s 92,93 91,25 93,03 56,01 94,75 92,94 86,82
C1 89,25 92,63 82,47 86,06 88,58 89,65 88,11
C2 89,75 91,13 82,51 87,35 88,21 91,69 88,44
C3 91,25 91,25 83,25 86,65 87,75 92,34 88,75
C4 89,50 90,88 82,43 86,00 89,92 92,59 88,55

Our method
95,85 96,38 93,67 88,63 95,90 94,00 94,07

(Harper init.)
Our method

88,15 93,50 93,30 61,76 94,98 95,25 87,82
(1s init.)

Table 4.6. Accuracy (%) obtained in each data set. In bold, the highest

ones. The last column shows the mean accuracy.

Substitution costs for nodes
[0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2]

[0] 0 1,99 2,02 2,00 1,99 2,04 2,05 3,00 1,06 0,99 1,00 2,00 2,00 2,00 0,97
[1] 1,99 0 2,00 2,00 1,98 1.99 1,96 3,00 1,02 1,99 2,00 1,02 1,00 2,00 1,04
[2] 2,02 2,00 0 2,00 2,00 2,00 1,99 3,00 2,00 0,99 2,00 1,00 2,00 1,00 0,98
[3] 2,00 2,00 2,00 0 2,00 2,00 2,05 3,00 1,99 2,00 1,00 2,00 1,00 1,00 2,00
[4] 1,99 1,98 2,00 2,00 0 1,99 2,01 3,00 2,01 2,01 2,00 2,00 2,00 2,00 2,00
[5] 2,04 1,99 2,00 2,00 1,99 0 1,99 3,00 1,96 1,96 2,00 2,00 2,00 2,00 2,02
[6] 2,05 1,96 1,99 2,05 2,01 1,99 0 3,00 2,00 2,01 2,00 2,00 2,00 2,00 1,98
[7] 3,00 3,00 3,00 3,00 3,00 3,00 3,00 0 3,00 3,00 3,00 3,00 3,00 3,00 3,00

[0, 1] 1,06 1,02 2,00 1,99 2,01 1,96 2,00 3,00 0 2,02 2,00 2,00 2,00 2,00 2,01
[0, 2] 0,99 1,99 0,99 2,00 2,01 1.96 2.01 3,00 2.02 0 2,00 2,00 2,00 2,00 2,00
[0, 3] 1,00 2,00 2,00 1,00 2,00 2,00 2,00 3,00 2,00 2,00 0 2,00 2,00 2,00 2,00
[1, 2] 2,00 1,02 1,00 2,00 2,00 2,00 2,00 3,00 2,00 2,00 2,00 0 2,00 2,00 2,00
[1, 3] 2,00 1,00 2,00 1,00 2,00 2,00 2,00 3,00 2,00 2,00 2,00 2,00 0 2,00 2,00
[2, 3] 2,00 2,00 1,00 1,00 2,00 2,00 2,00 3,00 2,00 2,00 2,00 2,00 2,00 0 2,00

[0, 1, 2] 0,97 1,04 0,98 2,00 2,00 2,02 1,98 3,00 2,01 2,00 2,00 2,00 2,00 2,00 0

Insertion/Deletion costs for nodes
[0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2]

insert 1,95 1,98 2,00 2,00 1,99 1,89 0,97 1,00 2,03 2,02 2,00 1,99 2,00 2,00 1,96
delete 1,95 1,98 2,00 2,00 1,99 1,89 0,97 1,00 2,03 2,02 2,00 1,99 2,00 2,00 1,96

Table 4.7. Substitution, insertion and deletion costs of nodes obtained with

our method. In bold, the ones that are different from Table 4.2.

Substitution costs
for edges

- = ≡
- 0 3,00 3,00

= 3,00 0 3,00

≡ 3,00 3,00 0

Insertion/Deletion costs
for edges

- = ≡
insert 0 1,02 1,00

delete 0 1,02 1,00

Table 4.8. Substitution, insertion and deletion costs of edges obtained with

our method. In bold, the ones that are different from Table 4.3.
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4.5 Conclusions

In some ligand-based virtual screening (LBVS) methods, molecules are represented

by extended reduced graphs. In this case, the Graph Edit Distance (GED) can be

used to compute the dissimilarity between molecules.

The method presented in this chapter is an iterative method that, in each itera-

tion, modifies the costs of the GED to properly classify only one molecule that had

been incorrectly classified in the previous step. While updating the costs, other im-

properly classified molecules can be properly classified, but other correctly classified

could become incorrectly classified. This is the reason why the convergence of the

method is not guaranteed. To reduce this effect, the algorithm selects a molecule

that requires the minimum modification of the costs with the aim of slightly moving

to the best solution.

The method requires the initialization of the edit costs. In the experimental section

they have been tuned by aleatory costs and by the costs proposed by Harper. In

all the tests, the highest accuracies appear while initialising the costs by the Harper

proposal, what reveals that the classification accuracy is highly dependent on the

edit costs because a slight modification of the costs can make the classification to

be different.
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Graphs
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5.1 Introduction

Piping and Instrumentation Diagrams (P&IDs) are commonly used for representing

the structure and functionality of Oil & Gas facilities such as oil rigs and plants.

These facilities are huge and composed of thousands of electric, electronic or me-

chanical components that are connected by a vast network of pipelines. In the past,

P&IDs were manually drawn on paper or by means of tools which are incompatible

with modern software. Consequently, printed handbooks composed of thousands of

pages were required to depict them. Currently, these complex engineering drawings

are generated by means of computer-aided design (CAD) tools.

In the last years, there has been a tendency to migrate printed P&IDs towards a

digital environment. Different techniques have been developed and the final result

has always to be validated by an expert to guarantee that there are no errors in the

final document. This chapter explains a method to reduce the effort of engineers

to validate the automatically generated CAD models keeping the zero-error aim.

The main idea is that the engineer does not need to check the whole generated dia-

gram, but only some highlighted components with chance of having been incorrectly

identified.

The chapter is structured as follows. Section 5.2 presents the current state of the

art methodology used to transform P&IDs into digital assets. Section 5.3 examines

the necessary concepts and presents the methodology aimed at aiding on the human

validation of the digitised asset. Section 5.4 presents the experiments carried out to

validate the proposed model. Finally, Section 5.5 is reserved for conclusions.
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5.2. Background Chapter 5. P&ID Validation

5.2 Background

Recently, there has been an increased effort to join forces between the research

community and industrial partners 1 to collaborate in the digitalization of printed

engineering drawings. 2 This has been tested in the past by numerous authors for

different types of printed assets, such as mechanical drawings (Vaxiviere and Tombre

(1992)), electrical drawings (Yu et al. (1997)), telephone manholes (Arias et al.

(1995)), sensor-equipment diagrams (Moreno-Garćıa (2018)), P&IDs (Howie et al.

(1998)), (Tan et al. (2016)), (Moreno-Garćıa et al. (2017)), (Rahul et al. (2019)),

(Rantala et al. (2019)), (Kang et al. (2019)), even on maps (Cao and Tan (2002)) and

musical scores (Calvo-Zaragoza et al. (2018)). The process of migration paper P&IDs

to CAD models is extremely complex due to the quality of the scanned papers, and

the amount and variability of the involved components. Consequently, the possibility

of symbol miss-identification during the digitisation or the incorrect association of

some properties to certain components becomes high (Arroyo et al. (2016), Elyan

et al. (2018)). Thus, it is expected that this process is not perfect and therefore, most

systems enable human interaction to validate the symbol identification, connection

and property association. Therefore, the final Automatic CAD document is always

verified by an engineer due to the need of being a zero-error process.

5.2.1 Generating a CAD model given a P&ID

The previously explained migration of paper P&IDs implies two main steps: digiti-

sation and contextualisation.

Digitisation

In this first step, the main shapes of the P&ID are detected and localised. Basically,

there are three types of figures in these drawings: symbols representing equipment

and instrumentation, lines providing the connectivity between equipment and text

1https://cfmgcomputing.blogspot.com/2018/06/rgu-and-dnv-gl-join-forces-to-create.

html
2https://cfmgcomputing.blogspot.com/2018/06/rgu-and-dnv-gl-join-forces-to-create.

html
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Figure 5.1. An example of a piece of a P&ID.

describing the characteristics of equipment and connectors. Figure 5.1 shows a piece

of a P&ID that contains these elements.

As mentioned in Section 5.1, numerous systems have been proposed in the literature

for the digitisation of P&IDs. Most of these systems rely in heuristic-based computer

vision methods to recognise the shapes (Howie et al. (1995), Tan et al. (2016), Arroyo

et al. (2016), Moreno-Garćıa et al. (2017), Kang et al. (2019)), although most recent

literature has preferred the use of deep learning based technologies to localise and

extract the figures from the engineering drawing (Gellaboina and Venkoparao (2009),

Rahul et al. (2019)). Regardless of the approach, the outcome of a digitisation

system is usually a list of components along with some characteristics (such as tag

id, thickness or location within the drawing or the facility) and a list of pipelines

(i.e. connectors between components). Notice that in the case of P&IDs, it may

be the case that pipelines also have some associated properties, such as material,

thickness, composition, etc. These properties are usually indicated by text which

lies adjacent to the line or that is connected to the pipeline through a lead line.

Although most of the times digitisation is done as a standalone process where shapes

are recognised either by heuristic or deep learning based methodologies, some pre-

vious work has been benefited from understanding a priori the standards used to

produce these drawings to obtain all shapes with improved accuracy. For instance,
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Moreno-Garćıa et al. (2017) presented a comparative study of text/graphics sep-

aration algorithms (Tombre et al. (2002)) applied on P&IDs, where parametrical

symbols (i.e. the ones described with circles and lines) were found first by means

of state-of-the-art methods such as Hough circles and transform (Ballard (1981)).

Based on the previous knowledge, the text within the shapes is located and charac-

terised easily. Thus, some text characters can be detected along with their properties

(i.e. width, height, pixel density, stroke, amongst others). This allows an easier de-

tection of the remaining text throughout the drawing.

Once the P&ID has been digitised, a netlist which contains the position of each

element within the drawing is produced. Nonetheless, a netlist is not directly usable

for an expert, as it only contains the positions of the found shapes, and it does

not reflect the topology of the schema. Some online tools have been presented to

do quick visualisations of the extracted netlists, such as NetVis or Netlist2CAD3,

however none of these tools offer a true connectivity comprehension of the extracted

information. Still, these come handy for a quick human inspection of the extracted

data and to manipulate/correct some shapes.

Contextualization

In this second step, the shapes in the netlist are contextualised. Contextualisation

means making sense out of the digitised data. Thus, the CAD model topology

describes the connectivity and the relation between the components. The output

can be a standardised file (Howie et al. (1995), Arroyo et al. (2016)) or a graph

(Rantala et al. (2019)). These files are naturally imported by CAD applications.

For a more in-depth analysis of the challenges of digitising and contextualising these

drawings, the reader is referred to the reviews presented in Moreno-Garćıa et al.

(2019), Moreno-Garćıa and Elyan (2019).

Regarding actual contextualisation, the use of graph-based or tree-based structures

to represent and store P&IDs has become widespread in recent years (Howie et al.

(1998); Rahul et al. (2019); Rantala et al. (2019); Kang et al. (2019)), however no

attempts have been done at analysing the topology of the diagram or exploiting the

3http://cfmgcomputing.blogspot.com/p/software-demos.html
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Figure 5.2. The process of deducing the CAD document, in which a human

is involved to validate the data.

topological information contained on the key drawings (i.e. the sheet containing

the legend of each symbol and the most common configurations, an example can be

found in4) to improve or automatically correct the digitisation of P&IDs.

The methods presented until now perform the digitisation and contextualisation and

the final result is always validated by a human expert. Figure 5.2 shows a general

flow diagram of this classical approach. Thus, the topology of the P&ID is deduced

from the digitisation but the identity of the components is never reviewed given

the deduced topology of the P&ID. The final result obtained after the Automatic

Digitisation and Contextualization will be called Automatic CAD during all this

chapter. The method that will be explained in the next section reviews the identity

of the components in the Automatic CAD by comparing the deduced topology to

the most probable one. Then, it presents to the human the components that could

have been incorrectly identified.

5.3 The proposed method

The method is represented in Figure 5.3. The difference between this model and clas-

sical models (Figure 5.2) is the incorporation of the Automatic Validation method

that is marked in red in the figure. The aim of this method is to deduce the iden-

4https://www.edrawsoft.com/pid-legend.php
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Figure 5.3. Our model for automatic detection of possible incorrectly iden-

tified components and final human validation.

tity of the components in the Automatic CAD and highlight the ones that must be

reviewed by an human expert. In this way, the number of components that need to

be reviewed is reduced.

Our Automatic Validation method is composed of two main modules that are rep-

resented in Figure 5.4 and detailed in the next subsections:

Figure 5.4. Automatic Validation module incorporated in Figure 5.3.

5.3.1 Graph representation and data embedding module

The aim of this first module is to represent a P&ID as an attributed graph (see

Section 2.1) and embed it in a euclidean space.

Graph representation

To do the graph representation of the P&IDs, nodes represent components and edges

represent pipelines that connect these components. Moreover, nodes have only one

attribute, which is the component identity (for instance, valve or compressor) and
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edges are unattributed and undirected. A sample of graph representation of a P&ID

is presented in the left part of Figure 5.5.

Data embedding

Graphs have some limitations when they are applied to machine learning, due to

their intrinsic relational representation and because some trivial mathematical op-

erations used in traditional numeric machine learning have not an equivalence in

the graph domain. Given an arbitrary set of graphs, a possible way to address

this problem is to define an embedding function from the graph domain to a vector

space (Gibert et al. (2012)). Broadly speaking, an embedding function converts

an attributed graph into a vector. However, defining such embedding function is

extremely challenging, when the constraints on time efficiency and preserving the

underlying structural information is concerned.

Explicit graph embedding is based on defining a function that, given a graph, gen-

erates points in an euclidean space. These embedding functions can be divided into

four classes:

• Graph probing (Luqman et al. (2013)) that measures the frequency of specific

substructures.

• Spectral graph theory (Caelli and Kosinov (2004)), which analyses the struc-

tural properties of graphs in terms of eigenvectors and eigenvalues.

• Dissimilarity measurements (Duin and Pekalska (2011)), in which the function

depends on its distance to a selected set of graphs.

• Geometric deep learning (Defferrard et al. (2016)), in which the embedding

uses deep neural networks.

The embedding used in this work is a probing embedding that, given a node, has a

computational cost linear in respect to the number of outgoing edges of the node.

It considers a node and the set of nodes and edges connected with it. It is defined

as follows:
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Φ : G → Rn+2

vi 7→ Φ(vi) = (ci, di, f
1
i , ..., f

n
i )

where ci is the identity of node vi, di is the degree of vi, f
p
i is the number of neighbours

of vi with identity p, with p = 1, ..., n, and n is the number of different identities. A

sample of a node embedding is presented in the right part of Figure 5.5.

After representing the P&ID as a graph and embed all the nodes, the output of this

module is the set of the embeddings of all the nodes representing the components

of the P&ID.

Figure 5.5. An example of embedding a Valve check star into a vector.

5.3.2 Machine learning and verification

The Machine Machine Learning and Verification module performs the following

tasks:
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Figure 5.6. Creation of the Highlighted CAD.

Machine learning

The set of vectors representing the embedded components in the P&ID are intro-

duced into a feed-forward neural network (NN) that returns the predicted identity

of each component. This NN is composed of three layers (input, hidden and output

layer). It has a hidden sigmoid neuron and softmax output neuron. The training of

the NN is done with scaled conjugate gradient back propagation algorithm.

Verification

The identities returned by the NN are contrasted with the identities obtained from

the digitised and contextualized Automatic CAD that have not been verified by the

engineer. Thirdly, the method detects the components of the Automatic CAD whose

identities are different to the identities obtained by the neural network. Then, they

are highlighted in a Highlighted CAD that has to be validated by the human expert.

Figure 5.6 represents this step.

5.3.3 Theoretical analysis of the validation method

The simplest metric to evaluate the quality of an identification method is by the

percentage of correctly identified elements (true predictions) and the percentage

of incorrectly identified elements (false predictions). Nevertheless, the aim of this

method is not to evaluate the quality of the predictions given by the neural network,
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but to detect the errors in the Automatic CAD deduced by the Digitisation and

Contextualisation process. In this method there are not only the ground-truth

identities and the predicted identities, but also the identities in the Automatic CAD.

This means that this method deals with three different sets of data.

In this context, the identities predicted by the NN are split in two main scenarios

presented in Table 5.1. Per each component, it is considered whether the identity

predicted by the NN (called ”Prediction” in Table 5.1) is the same as or different

from the identity obtained by the Automatic CAD (columns in Table 5.1). This is

because, if they are the same, the human is not asked to validate the identity of the

component but, if they are not the same, the human is asked to validate it. In this

second case, the component is highlighted in the Highlighted CAD (Figure 5.6).

To find the errors that could appear, we compare the predictions of the NN with the

ground truth set, that is, the set of components that have been previously checked by

the engineer. We call this set the Validated CAD. We split the previously explained

categories (columns in Table 5.1) again depending on whether the prediction given

by the NN is equal to the ground truth (True Prediction) or it is different from the

ground truth (False Prediction) (rows in Table 5.1). With this division, the next

four situations are possible:

• Case A: Both identities are the same and they are correct. The human is not

asked to validate the component and the identity in the Automatic CAD is

correct. Therefore, there is no error in this situation and the component does

not need to be corrected.

• Case B: Both identities are the same and they are incorrect. Although both

identities are incorrect, the human is not asked to validate the component

because both are the same. In this case, we face a not detected error.

• Case C: Both identities are different. The predicted by the NN is correct but

the identity in the Automatic CAD is not. The human is asked to validate the

identity of the component, there is need of validation. We cannot influence on

the number of elements in C since it depends on the quality of the Automatic

CAD.

62

UNIVERSITAT ROVIRA I VIRGILI 
GRAPH EDIT DISTANCE APPLIED TO DIVERSE FRAMEWORKS: LEARNING, MATCHING AND EXPLORING TECHNIQUES 
María Elena Rica Alarcón 
 



5.4. Experiments Chapter 5. P&ID Validation

• Case D: Both identities are different. The prediction of the NN is incorrect

and the identity in the Automatic CAD is correct. The human is asked to

validate it because both are different. Validation is required to check the

correct identity in the Automatic CAD.

Prediction=Automatic CAD Prediction̸=Automatic CAD
True Prediction A C
False Prediction B D

↓ ↓
Human does not validate Human does validate

Table 5.1. Possible cases of the Automatic Validation method.

After considering the previous cases, we propose two metrics to validate the Auto-

matic Validation method instead of the classical True Prediction or False Prediction.

These are:

• Human effort: The percentage of components that the human has to validate

since the identities in the Automatic CAD and the predicted by the NN. It

is given by the sum of cells C and D in Table 5.1. Clearly, we wish this

metric to be the lowest as possible to reduce the economical and temporal

impact of checking the incorrectly identified components in the Automatic

CAD, although we cannot influence on C as commented above.

• Validation error: The percentage of components that the human does not

validate and would have to be validated. This value is shown in cell B. If we

want the method to be error-free, this value has to be strictly zero.

5.4 Experiments

In this section the dataset, experimental setup, results and discussions are presented.

5.4.1 Dataset

The experiments have been carried out with industrial data. A batch of P&IDs

was obtained from an existing collaboration with an industrial partner by means of
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a project funded by Scottish Innovation Centres. Nevertheless, all data have been

anonymised to fulfil the company requirements. The experimental validation has

been carried out as follows. First, four P&ID sheets from the same standard have

been used. From each P&ID, the Validated CAD sheet has been used for training,

and the Automatic CAD sheet for test.

Thus, the learning set is composed of four Validated CAD sheets (ground truth set)

and the test set is composed of the four Automatic CAD sheets. Table 5.2 shows the

number of components and different identities in each P&ID sheet in the learning

set.

Sheet 1 Sheet 2 Sheet 3 Sheet 4 Total

Number of components 125 107 177 115 524

Number of identities 22 10 24 18 38

Table 5.2. Number of components and identities in the four sheets that

compose the learning set.

As we can see, in the learning set there are 524 components, which have 38 different

identities. Note that the total number of identities is not the sum of the number of

identities in all the sheets because some identities appear in more than one sheet.

Table 5.3 shows the most common identities with their total frequencies in the

learning set. We observe that there are 108 Valve Ball components, which is one

fifth of the learning set. In Table 5.3 there are only 7 classes presented because the

other ones have less than 19 appearances and we did not present them. In total,

there are 38 different identities, it means that there are other 31 identities very

poorly represented in the learning and test set. This means that we have a highly

unbalanced learning set that hinders the learning process.
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Identity Frequency

Valve Ball 108

Reducer 77

Continuity Label 68

Flange Joint 41

Arrowhead 35

DB&BPV 23

DB&BBV 19

Table 5.3. Frequencies of the most common identities in the learning set.

Junctions are not considered as nodes.

5.4.2 Experimental setup

On the previously described sets, the ”Graph Representation & Data Embedding”

module (Figure 5.5 and Section 5.3.1) returns the embedding of each component.

As the total number of identities is 38 (see Table 5.2), the vectors resulting from the

embedding are of dimension 40. The first position in each vector is the identity of

the component and the second position is the number of pipelines connected to the

component. Each one of the other 38 positions, i, is the number of neighbours with

identity i.

The neural network defined in the ”Machine Learning and verification” module (see

Figure 5.4 and Section 5.3.2) has 40, 39 and 38 neurons in the input, hidden and

output layers respectively. The neural network architecture and training process has

been carried out through the ”Neural Network Matlab tool”.

5.4.3 Experimental results

Table 5.4 shows the true and false predictions per each sheet in the test set. A

detailed theoretical explanation of the results was presented in Section 5.3.3.

65

UNIVERSITAT ROVIRA I VIRGILI 
GRAPH EDIT DISTANCE APPLIED TO DIVERSE FRAMEWORKS: LEARNING, MATCHING AND EXPLORING TECHNIQUES 
María Elena Rica Alarcón 
 



5.4. Experiments Chapter 5. P&ID Validation

Pred.=Automatic CAD Pred.̸=Automatic CAD

Sheet 1
True Pred. 42 2

False Pred. 0 81

Sheet 2
True Pred. 66 1

False Pred. 0 40

Sheet 3
True Pred. 56 3

False Pred. 0 118

Sheet 4
True Pred. 35 0

False Pred. 0 80

Total
True Pred. 199 6

False Pred. 0 319

Table 5.4. Evaluation of the proposed method. Pred. represents the identity

predicted by the neural network.

Considering the total values of the four sheets (two last rows in Table 5.4, we observe

that there are 199 components that do not need to be validated by the human expert

because both predictions are equal and both are correct. There are six cases where

both predictions do not match, our method is correct but the Automatic CAD does

not. On the other hand, there are 319 cases in which the two predictions are different

and the NN predicts an incorrect identity. In these cases, some of them have been

correctly predicted by the Automatic CAD, but others do not. The human expert

has to check the identity of 6 + 319 = 325 components instead of the total 524. It

means that the expert just has to check 62.02% of the components. We observe that

there are not cases in which both methods deduced the same incorrect identity and,

consequently, all errors are detected and we achieve the aim of zero-error process.

Table 5.5 shows the two metrics presented in Section 5.3: Human effort and Val-

idation error. It turns out that, thanks to our method, in the worst of the cases

(Sheet 4), the human expert needs to check 69.57% of the components and in the

best case (Sheet 2), just 38.32%. The average human effort is 60.66% of the effort

without applying our method, this means that there is a human effort reduction of

39.34%, which is the main aim of our method. Also, it is important to note that in

all the sheets, the zero-error process is achieved because all the incorrectly identified
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components have been detected (Validation error = 0).

Sheet Human effort Validation error
1 66.40 % 0 %
2 38.32 % 0 %
3 68.36 % 0 %
4 69.57 % 0 %

Average 60.66 % 0 %

Table 5.5. Human effort and Validation error of the four sheets and their

average.

We realise that there is a human effort reduction keeping an error-free process and

therefore, our aim has been achieved. Nevertheless, there is a gap to improve these

results. We believe a higher reduction of the human effort could be achieved by

increasing the size of the learning set.

5.5 Conclusions

The automatic migration of paper engineering drawings into digital environment is a

tendency and the development of new techniques to validate the digitisation process

is required.

The method explained in this chapter is designed to reduce the human effort while

validating the digitisation of pipping and instrumentation diagrams.

The method is based on the graph representation and embedding of the diagrams.

The diagrams have been represented with attributed graphs and their components

have been embedded into vectors that reflect the connections between the compo-

nents. For each vector, a neural network has been used to predict the identity of

the component represented by this vector. Only the components where the pre-

dicted identity is different from the identity that had been previously automatically

deduced, are presented to the human expert to be validated.

The experimental validation shows an average reduction of approximately the 40%

of the human effort, while keeping an error-free process.
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6.1 Introduction

As commented in Chapter 5, there is a tendency to migrate printed P&IDs towards

a digital environment. In this context, new tools that facilitate the use of digital

engineering drawings are needed. Some have been presented to visualise the digital

information of the drawings, but the development of new techniques is required to

extract more information from the sheets of components.

In this chapter we continue with this topic adding the new functionality of finding

in a P&ID a group of components that has a specific structure or similar to it.

For instance, to detect the appearances of structures that include a valve check

connected to two general valves and a butterfly valve. In the field of graphs, this

problem is related with Top-K-sub-graph search, that consists on finding the K

appearances of a query graph into a commonly larger graph. Algorithms solving

this problem have been widely used in some applications such as internet searches

and social data analysis.

This chapter is organised as follows: In Section 6.2, some algorithms related with

this topic are exposed. In the Section 6.3, the algorithm is detailed. In Section 6.4,

different experiments analyse some characteristics and the goodness of the method

and Section 6.5 is dedicated to conclusions.
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6.2. Background Chapter 6. Subgraph querying

6.2 Background

As commented in Chapter 5, if we represent P&IDs with graphs, nodes represent the

components of the diagram and the attributes in nodes are one value representing

the identity of the component (Rantala et al. (2019); Rica et al. (2020)). In this

situation, the problem of searching a component in a P&ID is linear respect to

the number of components in the P&ID. Nonetheless, moving from detecting the

appearance of one component to K similar groups of connected components to a

query one, makes the problem to be much more complex. In this case, the equivalent

in the field of graphs is to detect the appearance of K similar sub-graphs in a graph,

called Top-k sub-graph search problem. In this case, we are facing a NP-problem (it

is not solvable in polynomial computational cost in respect to the number of nodes).

In this context, this problem has been addressed in two main different directions.

The aim of the first direction is to find K exact appearances of the query graph

seekingK exact sub-graph isomorphisms (Yang et al. (2016); Zou et al. (2007)). The

aim of the second one is to find K sub-graphs in the larger graph that are similar

in some sense to the query graph. This similarity is commonly measured through

the definition of a distance that is adapted to each application. In this case, the

algorithms return what are usually called non-exact sub-graph isomorphisms (Habi

et al. (2019); Fan et al. (2013); Khan et al. (2011); Gou and Chirkova (2008)).

The problem of searching groups of connected components similar to a given one in a

P&ID, fits with the second family of methods because we do not need only the exact

substructure. But methods presented in Habi et al. (2019); Fan et al. (2013); Khan

et al. (2011) or Gou and Chirkova (2008) are based on the assumption that connected

nodes tend to be similar. If we think about the graph representation of a P&ID,

the attribute in each node is just the numerical representation of the identity of the

component without any real relation between the attribute and the component (for

instance, ”valve” is represented with a ”1”, and ”reducer” is represented with a ”2”).

Indeed, we can not guarantee that connected components are similar and, thus, we

can not apply these methods to the problem of searching similar substructures in

P&IDs. Although we can not guarantee that connected components are similar,

we can define some type of measure of similarity between components in a P&ID
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independently on if they are connected or not. To do it, we suggest to make use of

the concept of Graph Edit Distance (GED). Using the GED, the expert engineer

is allowed to set the approximated cost of changing a component for another one

in a P&ID. For instance, the engineer can set the cost of changing one valve for a

reducer equal to some value depending on the application. If this change represent

a big modification in the diagram, the cost should be tuned as high, whereas if the

change does not affect a lot to the diagram, the cost should be set as low.

6.3 The proposed method

The presented method is called Top-K-GED sub-graph search algorithm and it

returns K locations in the P&ID where similar sets of components appear. The

value of K is previously set by the user and it defines the number of substructures

that the engineer needs to find. The main idea of the method is to compute the edit

cost of transforming the queried substructure into other ones and to give as output

the K substructures that have obtained lower cost. Moreover, the method returns

them ordered by the similarity between the queried substructure and the detected

ones.

This section has three subsections. In Subsection 6.3.1, general considerations about

the algorithm are presented. In Subsection 6.3.2, the input and output parameters of

the algorithm are defined. And finally, in Subsection 6.3.3, the algorithm is detailed.

6.3.1 General considerations of the method

Before explaining the method, it is necessary to set the following premises that will

condition the performance of the algorithm:

• Only engineers know how similar two components in the P&ID are. This

knowledge is introduced into the system through the cost of substituting com-

ponents imposed by the engineers before doing the query.

• In a similar way, only engineers know how important is a component or a
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pipeline in the P&ID. This knowledge is considered in the cost of deleting and

inserting a component or a pipeline.

As commented before, the algorithm defines P&IDs as attributed graphs. In these

graphs, nodes represent components and edges represent pipelines that connect these

components. Moreover, nodes have only one discrete attribute, which is the identity

of the component (valve, compressor,...), and edges are unattributed and undirected

since we do not have information about the type of pipelines or their features.

Moreover, the method defines the local substructure to be queried as other smaller

graph.

The costs that the engineer sets for substitution, deletion and insertion of compo-

nents and pipelines (nodes and edges), correspond to the costs presented in Equa-

tion 2.1 and Equation 2.2 respectively and the presented method is based on min-

imising the suboptimal value of Equation 2.5. To minimise this equation, it is

needed to use some optimisation algorithm. In this work, we have applied Belief

graph matching algorithm (Santacruz and Serratosa (2018a)). This algorithm has

been chosen because it has two main properties not found in other algorithms:

• The computational cost of Belief algorithm is linear in respect to the number

of nodes.

• The substituted nodes and edges in the resulting query, form a compact graph,

that is one of the main objectives of the method.

6.3.2 Input and output parameters of the algorithm

The input of the method is composed of:

• Q: A small graph that represents the queried substructure. Q has n nodes

(components).

• G: A graph larger than the queried graph Q representing the big P&ID. G

has m nodes (m > n).
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• K: The number of compact substructures that the method has to return.

• Sv ∈ MN×N(R+
0 ): A matrix of nodes substitution costs (N is the total number

of different existing attributes (identities) in nodes in G and Q). Each cell

of the matrix Sv is a non-negative real number that represents the cost of

substituting a component with identity i by a component with identity j. All

the elements in the diagonal are zeros.

• Dv ∈ (R+
0 )

n: A vector of node deletion costs. Each cell Dv(i) is a non-negative

real number that represents the cost of deleting a component with identity i.

• De ∈ R+
0 : Edge deletion cost. Since edges do not have attributes, the cost of

deleting an edge is the same for all edges. It is a constant, previously set.

Note that the edge substitution cost is not an input parameter since edges (pipelines)

do not have attributes. Furthermore, edge and node insertion costs are not input

parameters either since they equal zero to assure that the number of components in

the big graph does not influence on the final result.

In the application of the method on the P&IDs or in any other applications, the

values of the introduced costs Sv, Dv, De have to be imposed by an expert engi-

neer in the field where we want to apply the method. As it will be explained in

Subsection 6.4.3, the introduced values affect directly on the obtained results.

The output of the method is composed of:

• {f1, ..., fK , s.t. fi : Q → G, i = 1, ..., K}. A list of K node-to-node mappings

between the query graph Q and the big graph G.

• {Cost(Q,G, f1) ,..., Cost(Q,G, fK)}. A list of K edit costs (Equation 2.5),

given the query graph Q, the big graph G and the above mappings fp, 1 ≤

p ≤ K. If we define Gp as the nodes in G reached by substitutions in

fp, then Cost(Q,G, fp) is the distance between Q and Gp, Cost(Q,G, fp) =

GED(Q,Gp) where GED is defined in Equation 2.4.

The mappings f1,...,fK returned by the algorithm hold the following four conditions:
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• For each 1 ≤ p ≤ K, the set of nodes {fp(v)|v ∈ Q} and the corresponding

edges, define a compact sub-graph.

• If fp(v) = fq(v),∀v ∈ Q ⇒ p = q. This means that two mappings cannot be

identical.

• The mappings f1,...,fK are listed in ascending order on their edit costs:

Cost(Q,G, f1) ≤ Cost(Q,G, f2) ≤ ,..., ≤ Cost(Q,G, fK).

• If f /∈ {f1, ..., fK} ⇒ Cost(Q,G, f) ⩾ Cost(Q,G, fp), ∀p = 1, ..., K. This

means that the mappings f1,...,fK might have to be the ones that return the

minimum costs. Note that this imposition cannot always be guaranteed due

to our algorithm does not always return the optimal solution.

6.3.3 Top-K-GED sub-graph search algorithm

In this section, Top-K-GED sub-graph search algorithm is explained and summa-

rized in Algorithm 3. It has three main steps:

In the first one, a cost matrix C is computed with dimensions m× n, where m and

n are, respectively, the number of nodes of the query graph Q and the big graph

G with m ≤ n. Each cell in C, C(a, i), 1 ≤ a ≤ m, 1 ≤ i ≤ n, represents the

cost of substituting the star Sa in Q by the star Si in G as follows (see Chapter 2,

Section 2.2):

C(a, i) = CStar
S (a, i) 1 ≤ a ≤ m and 1 ≤ i ≤ n (6.1)

where CStar
S (a, i) denotes the cost of substituting the Star centred at node va by the

Star centred at node v′i as presented in Equation 2.5.

In the second step, the K cells in the cost matrix that have the minimum value are

selected. These substitution costs are used to set the K different Seeds that Belief

algorithm is going to use in the K times it is run in the next step of our algorithm.
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If we define Cp as the p lowest value in C, then:

Seedp = (a, i), being Cp = C(a, i) (6.2)

Note that several cells can be selected from the same column or from the same row.

Thus, it is accepted to have Seedp = (a, i) and Seedq = (b, j), p ̸= q, being a = b or

i = j but not both.

Finally, in the third step, a modified version of Belief algorithm is executedK times.

Each time, a different seed is used: Seed1, ..., SeedK . Using a different seed makes

the algorithm to return a different mapping between the query Q and the big graph

G. This property could be considered a drawback in other methods but it becomes

a must in this case. Matlab implementation in 1.

Algorithm 3 Top-K-GED
Input: Q, G, Sv, Dv, De, K

Output: f1, ... , fK , Cost1, ... , CostK , being Costp = Cost(Q,G, fp)

1. C = ComputeCostMatrix(Q,G, Sv, Dv, De)

2. (Seed1, ..., SeedK) = SelectLowerCostCells(C,K)

For p = 1..K

3. (fp, Costp) =Belief (C, Seedp)

End For

End Algorithm

6.4 Experiments

The experimental validation is divided in five subsections. In the first one (6.4.1),

the metric to evaluate the method is defined. In the second one (6.4.2) the data

set is introduced. In the third (6.4.3) and fourth (6.4.4) ones, the analysis of the

1http://deim.urv.cat/~francesc.serratosa/SW/
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influence of the graph matching algorithm and the edit costs on the query results

are presented. In the fifth one (6.4.5), two examples of query results are shown and

finally, in the last one (6.4.6), the evaluation of the method is presented.

6.4.1 Metric to evaluate the method

We use Recall metric to analyse our method, as usual in retrieval applications. In

our case, it is:

Recall =
Number of relevant retrieved sub-graphs

Number of relevant sub-graphs in the P&ID
(6.3)

The relevant retrieved sub-graphs (the numerator in Equation 6.3) are the ones

found by the method that have an edit cost lower than a threshold imposed by the

user, Costmax. This threshold is a parameter independent of the method and it is

defined to decide which returned sub-graphs are considered as acceptable or not.

The value of this parameter determines how similar the retrieved structures are to

the original query. The lower the value of Costmax is, the more similar the found

substructures are to the queried graph. More specifically,

Recall(Q,G,K,Costmax) =
|{fp : Q → G, p = 1...K s.t. Cost(Q,G, fp) ⩽ Costmax}|

|{f : Q → Gs.t. Cost(Q,G, f) ⩽ Costmax}|
(6.4)

Note that in our case, the value of Recall depends on K and on Costmax. More

specifically, the numerator depends on K and Costmax, but the denominator only

depends on Costmax. This is because the method returns the number of substruc-

tures given by the value of the parameter K (number of retrieved sub-structures).

Observing the expression, Recall is a non-decreasing function with respect K given

a specific Costmax. If K increases, the number of relevant retrieved mappings should

increase. As a consequence, for each query Q and a fixed Costmax, whenK increases,

Recall should increase up to its maximum value, 1.
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6.4.2 Dataset

All the experiments have been carried out using the ground-truth data used in

Chapter 5, available in 2. In these experiments junctions have been considered as

normal nodes and the most common types of components have been summarised in

Table 6.1 (note that in Chapter 5, junctions were not considered as nodes).

Label Junction
Valve

Reducer
Continuity Flange

Arrowhead
Ball Label Joint

Number of
262 108 77 68 41 35

appearances

Table 6.1. Most common types of components in the four P&IDs (or different

labels in the graphs).

6.4.3 Influence of the graph matching algorithm

The aim of this section is to heuristically analyse how the graph matching algorithm

affects the results when searching sub-graphs. We compare Fast Bipartite algorithm

(Serratosa (2014a)) and Belief algorithm (Santacruz and Serratosa (2018a)). Other

algorithms that returns an optimal distance such as (Ferrer et al. (2015)) could not be

executed due to time restrictions. To do this analysis, we have mapped a graph with

both algorithms to see the difference between the results. Figure 6.1 shows a query

graph with nine nodes and eight edges and, in the right, its representation based on

spatial positions. Yellow cells represent positions where there is one component. In

the lower row, we show the query results over the same P&ID obtained by the two

algorithms.

First of all, we realise that the mapped sub-graph in the P&ID returned by Belief

algorithm is a compact sub-graph, which is an important imposition of this method

for the application of sub-graphs in P&IDs. This is not the case of the sub-graph

returned by the Fast Bipartite algorithm.

2http://deim.urv.cat/~francesc.serratosa/databases/
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(a) Fast Bipartite algorithm. (b) Belief algorithm.

Figure 6.1. Upper images: In the left, a query graph with nine components

and in the right its representation based on its spacial positions. The yellow

squares are components and the dark blue ones are positions without compo-

nents. Lower row images: In cyan the query results over the same P&ID. In

the left, Fast Bipartite algorithm (Serratosa (2014a)) has been used and in

the right, Belief algorithm (Santacruz and Serratosa (2018a)). Pipelines are

not shown.

6.4.4 Influence of the edit costs

In this section, we study how different combinations of the edit costs affect the

returned sub-graphs. To do so, we have run Top-K-Belief algorithm three times

setting different values of the edit costs given the same query in a synthetically

generated P&ID. The query and the P&ID are composed of 7 and 259 components

respectively. Edges are only defined between nearby nodes and there are 20 different

types of components equally distributed among the nodes. Thus, the node substitu-

tion costs form a matrix Sv ∈ M20×20(R+
0 ) and the node deletion costs form a vector

Dv ∈ (R+
0 )

20.

In the three runs of the algorithm, K = 3 has been set and Sv has been defined as a

matrix of all ones except for the diagonal cells that equal zero. This means that we

consider the cost of substituting an identity by another one is exactly the same for

all the components. Moreover, the 20 cells of Dv and De have been set as follows:
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1) In the first run: Dv(a) = De = 0.1, 1 ≤ a ≤ 20.

2) In the second run: Dv(a) = De = 1, 1 ≤ a ≤ 20.

3) In the third run: Dv(a) = De = 10, 1 ≤ a ≤ 20.

We set the cost of deleting a component to be the same than the cost of deleting a

connection,De = Dv(a), because we observe that the identities are usually connected

in the same way and deleting a node or edge might have the same impact in the

substructure.

In general, the value of De, Dv(a) and Sv(a) are not important per se, but the

proportions between them. Note that if all of these costs are multiplied by a real

number, the GED in Equation (2.4) will be multiplied by this number because GED

is linear respect to the costs. Thus, the final optimal node-to-node correspondence

will be the same. Nevertheless, the increase or decrease of some of these costs will

make the optimal correspondence to be different and therefore, the resulting GED

and optimal node-to-node correspondence will be different.

Figure 6.2 shows in the upper-left image a query composed of seven nodes. The three

next images show the results obtained in the three runs of the algorithm. Since we

have set K = 3, we obtain three sub-graphs, f1, f2 and f3, in each run. The last

row in Figure 6.2 shows the detail of the nodes of the query graph that have been

substituted in the P&ID.

In the first run, the cost of deleting a node and an edge is very low compared to the

substitution cost. For this reason, the three returned sub-graphs are composed of

only two nodes since seven nodes of the query have been deleted. In the other two

runs, the costs of deleting nodes and edges increase and, consequently, the number

of substituted nodes increases to decrease the final cost.

We realise that in the last run, when De = Dv(a) = 10, we obtain an exact appear-

ance of the query graph. In this case, the cost of deleting nodes and edges is 10

times higher than the substitution cost. It means that we prioritise substitutions

instead of deletion of connections and components. If the method finds exactly the

same queried substructure is because all the nodes and edges have been substituted

and any node is deleted. This sub-graph does not emerge in the other previous runs
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(a) First run.

(b) Second run. (c) Third run.

Figure 6.2. Upper left: The query graph and its representation based on

its spacial positions. Upper right and second row: The P&ID components

represented by yellow cells and the three returned mappings in each of the

three runs of our algorithm are highlighted in cyan. Bottom row: A detail of

the three mappings deduced in the last run. From left to right: f1, f2 and f3.
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because the cost of substituting the nodes is larger than deleting some of them. In

this sense, if the user wants to obtain exactly the same substructure, the costs of

substitution must be much higher than deletion costs. In the presented case, other

experiments with substitution costs higher than 10, made the method to return only

isomorphic graphs.

As a final conclusion, we realise that the configuration of the costs affect the fi-

nal result of the algorithm. In the proposed example, the combination of values:

De = 10, Dv(a) = 10 and Sv(a) = 1, was the most exact, but other proportional

configurations would obtain the same results.

6.4.5 Two examples of sub-structures detection

To analyse the behaviour of the method, we show two examples of sub-graph de-

tection to see how the method works. Figure 6.3 shows an example of two queried

substructures. The substructure in the left has been queried in Sheet 2 and the

results of the algorithm are shown in Figure 6.4. The substructure in the right of

Figure 6.3 has been queried in Sheet 3 and the results are shown in Figure 6.5. In

both examples, K has been set to 10.

All edit costs in this section and in Section 6.4.6 have been set to one. That is, for

the deletion costs, De = Dv(a) = 1, 1 ≤ a ≤ 39 (there are 39 different components,

as shown in Table 5.2). And, for the substitution costs, Sv(a, b) = 1 if a ̸= b and

Sv(a, a) = 0, 1 ≤ a, b ≤ 39.

Figure 6.3. Queries searched in Sheets 2 and Sheet 3 of our database,

respectively. Notation: C.L.: Continuity label, R.: Reducer, R.D.: Rupture

Disc, V.B.: Valve ball, J.: Junction.

Table 6.2 shows, in each row, the returned node-to-node mappings of the first ex-

ample. The first two columns are the node-to-node mapping and the cost of these
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Costi
(Eq. 2.5) v1 = C.L. v2 = R. v3 = J. v4 = J. v5 = R. v6 = C.L.

f1 0 v′2 = C.L. v′40 = R. v′151 = J. v′150 = J. v′41 = R. v′3 = C.L.
f2 0 v′3 = C.L. v′41 = R. v′150 = J. v′149 = J. v′42 = R. v′4 = C.L.
f3 0 v′4 = C.L. v′42 = R. v′149 = J. v′148 = J. v′43 = R. v′5 = C.L.
f4 0 v′5 = C.L. v′43 = R. v′148 = J. v′147 = J. v′44 = R. v′6 = C.L.
f5 0 v′8 = C.L. v′45 = R. v′145 = J. v′144 = J. v′46 = R. v′9 = C.L.
f6 0 v′9 = C.L. v′46 = R. v′144 = J. v′143 = J. v′47 = R. v′10 = C.L.
f7 3 v′6 = C.L. v′44 = R. v′147 = J. v′146 = J. v′98 = R.+ F. v′7 = C.L.
f8 4.8 v′10 = C.L. v′47 = R. v′143 = J. Del Del Del
f9 4.8 v′12 = C.L. v′49 = R. v′138 = J. Del Del Del
f10 5 v′11 = C.L. v′54 = R. v′137 = J. v′111 = J. v′100 = F.J. v′107 = A.B.

Table 6.2. Returned mappings by Top-K-GED in Sheet 2 with K=10.

Notation: A.B.: Area Break, C.L.: Continuity label, F.J.: Flange Joint, R.:

Reducer, R.+F.: Reducer+Flange Joint, R.D.: Rupture Disc, V.B.: Valve

ball, J.: Junction.

mappings, respectively. For the rest of the table, if the cell in ith row and jth column

takes the value ”v′n = M” then it holds that: 1) fi(vj) = v′n: the node vj of the

query Q has been substituted by the node v′n of G. 2) v′n = M : the identity of the

image node v′n is M . Contrarily, if the cell in ith row and jth column takes the value

fi(vj) = Del, it means that the node vj of the query Q is deleted in the node-to-node

mapping fi.

Figure 6.4. A screen shot of the first example.
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The first six node-to-node mappings produce a zero cost, Costi = 0, i = 1, .., 6.

Deletion operations are set to have a non-zero cost and substitution operations are

set to have a non-zero costs when the identities are different. This configuration

forces the identity of each query node in Q to be the same as the identity of its

image node in G and also the pipelines to be located in the same positions. This is

seen in the table since the identity in each column are exactly the same. The rest of

mappings produce a non-zero cost, Costi > 0, i = 7, .., 10. Two of them are achieved

by deleting three nodes in the query, f8 and f9, and the other ones by mapping all the

nodes in the query, f7 and f10. Note the substitution f7(v5) = v′98 produces a non-

zero cost since v5 = R and v′98 = R + F . Similarly happens with f10(v5) = v′100 and

f10(v6) = v′107. Finally, we realise that different mappings have query components

mapped to the same component in the P&ID. For instance, f6(v6) = f8(v1) = v′10 or

f1(v4) = f2(v3) = v′150.

Figure 6.4 shows a screen shot of the first example. The six first mappings that

returned a null cost are highlighted by red points and rectangles. Some rectangles

are overlapped, this is because, as we have just commented, different mappings

have query components mapped to the same component in the P&ID. The four last

mappings that returned a positive cost are highlighted by blue and green points

and ellipses. The mappings that have deletions (f8 and f9) have blue points and

the mappings without deletions (f7 and f10) have green points. There are some

overlapping parts between ellipses and rectangles.

Figure 6.5 shows a screen shot of the second example. In this case, we do not

show the specific mappings, as it is done in Table 6.2 but we realise two mappings

returned cost zero and the other eight ones returned a larger cost. Six of them do

not have node deletion operations and three of them have node deletion operations.

As in the previous case, we observe that there are nodes that are involved in several

mappings.
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6.4. Experiments Chapter 6. Subgraph querying

Figure 6.5. A screen shot of the second example.

6.4.6 Evaluation of the method

To evaluate the method, we have queried ten small substructures in the four sheets.

Figure 6.6 shows the substructures queried in the P&IDs. We have chosen these

ones to guarantee that they appear in the P&IDs.

Figure 6.6. Ten queried substructures in the P&IDs. ESDV = ESDV Valve

Ball Piston Operated, V.B. = Valve Ball, J = Junction, R = Reducer, R.D.

= Rupture Disc, C.L. = Continuity Label, DB&BPV.
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6.4. Experiments Chapter 6. Subgraph querying

As commented in Subsection 6.4.1, the metric used to evaluate this method is the

Recall. Figure 6.7 shows the average Recall values obtained in the four sheets of

the database given the 10 different query sub-graphs and three different thresholds,

Costmax. These thresholds represent the ....

Given that all edit costs equal one, when Costmax = 1 only one deletion operation

(on a node or on an edge) or one node substitution with different identities is allowed.

In the cases where Costmax = 2 or Costmax = 3 further combinations of edit costs

are allowed that have a cost lower or equal to Costmax.

Figure 6.7. Average Recall returned by our method given 10 queries in the

four sheets.

If we fix parameter K, the value of the numerator and the denominator only de-

pends on parameter Costmax. Moreover, both numerator and denominator are non-

decreasing functions with respect Costmax. From the experiment shown in Figure 6.7

we realise the Recall tends to be higher when Costmax is higher, given a specific K.

Nevertheless, it is not always true, as we can see in the higher values of Sheet 2,

Sheet 3 and Sheet 4.

85

UNIVERSITAT ROVIRA I VIRGILI 
GRAPH EDIT DISTANCE APPLIED TO DIVERSE FRAMEWORKS: LEARNING, MATCHING AND EXPLORING TECHNIQUES 
María Elena Rica Alarcón 
 



6.5. Conclusions Chapter 6. Subgraph querying

Finally, note that the average Recalls returned in the four plots in Figure 6.7 do

not achieve 1. This is because K has not been set larger enough. We do not have

used values larger than 200 since it is not usual in this type of applications, where

the engineer has to look up a whole P&ID.

In Figure 6.8, we show average runtimes in seconds of the algorithm (Matlab 2020a

and Intel Core i7). We realise that the runtime is approximately linear in respect

to K although the increment is not very significative.

Figure 6.8. Average runtimes of our method.

6.5 Conclusions

Engineers that maintain gas and oil factories use CAD applications to inspect piping

and instrumentation diagrams. These applications allow them to search for specific

components but not to search for groups of connected components that are similar

to some specific structure.

The method presented in this chapter looks for connected substructures similar to

a queried one and it is based on solving the problem of inexact sub-graph search.

Since graph matching is an NP-hard problem, heuristic algorithms have been used

to achieve an acceptable runtime at the cost of not obtaining the optimal results.

The method has linear computational cost respect to the number of nodes and it

achieves good results in a data set of industrial diagrams.
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6.5. Conclusions Chapter 6. Subgraph querying

The method is not compared to other ones because the analysed sub-graph match-

ing algorithms return non-connected sub-graphs and they can not be applied to this

problem because the principal objective of this method is to find connected sub-

structures. On the other hand, the analysed Top-K sub-graph searching algorithms

cannot be used since they are based on the fact that close nodes tend to have similar

properties and this assumption is not fulfilled in these diagrams.

This method is a novel functionality that could be adapted and added to other CAD

tools.
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7
General Conclusions

The general conclusions of this thesis are as follows:

The graph representation of data allows researchers to understand the structure

of data and create specific machine learning algorithms that take into account the

relations between the elements in data that are represented through nodes and edges.

The Graph Edit Distance can be used as measure of similarity between graphs to

solve the task of classification of nodes and graphs, and to search elements in data.

The combination of the Graph Edit Distance with vector embeddings, Support Vec-

tor Machine and Linear Discriminant Analysis achieves good results in the task of

graph matching applied to diverse types of data sets.

It is possible to define on-line methods to learn the costs of the Graph Edit Distance

performing a considerable reduction of the amount of data needed in the learning

process.
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Chapter 7. General Conclusions

The combination of the Graph Edit Distance with the K-Nearest Neighbours strat-

egy achieves as well good results in the task of classification of molecules.

The graph representation of pipping and instrumentation diagrams and the applica-

tion of neural networks facilitates the task of supervision in the process of digitisation

of these type of industrial diagrams. The human effort can be decreased maintaining

a zero error process.

The application of the Graph Edit Distance in the field of pipping and instrumen-

tation diagrams allows to find small groups of connected substructures similar to a

queried one in big diagrams with low computational cost.

As future prospects and perspectives, other concepts such as the Quadratic Assign-

ment Problem or Graph Convolutional Neural Networks could be explored to solve

tasks similar to the presented in this thesis.
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