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Abstract

In this thesis, we address the Combinatorial Testing (CT) problem through the
application of Satisfiability technology. The goal of CT is to provide a test suite
that is used to capture most of the errors or bugs in a System Under Test (SUT). In
particular, we present several algorithms for the generation of Mixed Covering Ar-
rays with Constraints (MCAC). First, we show how to apply Maximum Satisfiability
technology to generate optimal and suboptimal MCACs. Second, we show how to
effectively compute high-strength MCACs (considering strengths t > 4) by applying
new incomplete algorithms and parallel solutions. Third, we design and implement
a new benchmark generator for Combinatorial Testing that uses instances from the
Satisfiability problem to generate new crafted SUTs. We also provide insights and
recipes on which MCAC algorithm should be used for a particular SUT. All the algo-
rithms designed during this thesis have been implemented into the CTLog package.
Finally, we describe our contributions to the OptiLog Python framework for the de-
velopment of SAT-based applications that we used to create CTLog.
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Resumen

En esta tesis abarcamos el problema de Combinatorial Testing (CT) mediante la apli-
cación de la tecnología de Satisfactibilidad. El objetivo de CT es proveer un conjunto
de pruebas que permita capturar la mayoría de los errores en un Sistema Bajo Prueba
(SUT). En particular, presentamos varios algoritmos para generar Covering Arrays
Mixtos y con Restricciones (MCACs). En primer lugar, mostramos como aplicar la
tecnología de la Máxima Satisfactibilidad para generar MCACs óptimos y subópti-
mos. En segundo lugar, mostramos como computar MCACs con strengths altas de
manera efectiva (considerando strengths t > 4) mediante la aplicación de nuevos al-
goritmos incompletos y soluciones paralelas. En tercer lugar, presentamos el diseño
y la implementación de un nuevo generador de instancias para Combinatorial Test-
ing que utiliza instancias del problema de la Satisfactibilidad para generar SUTs ar-
tificiales. Adicionalmente, hemos sido capaces de extraer distintas recetas sobre qué
algoritmo de MCAC aplicar a un SUT determinado. Todos los algoritmos diseñados
durante esta tesis han sido implementados en el paquete CTLog. Finalmente, de-
scribimos nuestras contribuciones en el framework de Python OptiLog, pensado para
el desarrollo de aplicaciones basadas en la tecnología SAT, el cual ha sido utilizado
para crear CTLog.
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Resum

En aquesta tesi ens centrem en el problema de Combinatorial Testing mitjançant
l’aplicació de la tecnologia de Satisfactibilitat. L’objectiu de CT és proveir d’un con-
junt de proves que permeti capturar la majoria dels errors en un Sistema Sota Prova
(SUT). En particular, presentem diversos algorismes per a generar Covering Arrays
Mixtes amb Restriccions (MCACs). En primer lloc, mostrem com aplicar la tecnolo-
gia de la Màxima Satisfactibilitat per a generar MCACs òptims i subòptims. En
segon lloc, mostrem com computar MCACs amb strengths altes de manera efectiva
(considerant strengths t > 4) mitjançant l’aplicació de nous algorismes incomplets
i solucions paral·leles. En tercer lloc, presentem el disseny i la implementació d’un
nou generador d’instàncies per a Combinatorial Testing que utilitza instàncies del
problema de la Satisfactibilitat per a generar SUTs artificials. Addicionalment, hem
sigut capaços d’extraure diverses receptes sobre quin algorisme de MCAC aplicar a
un SUT determinat. Tots els algorismes dissenyats durant aquesta tesi s’han im-
plementat dins del paquet CTLog. Finalment, descrivim les nostres contribucions al
framework de Python OptiLog, pensat per al desenvolupament d’aplicacions basades
en la tecnologia SAT, el qual s’ha utilitzat per tal de crear CTLog.
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Chapter 1

Introduction

Think for a moment about all the pieces of complex technology that unstoppably are
surrounding us. From our computer, our car, or any industrial process, technology
plays an essential role in our society. In an ideal world, all this technology would
be error-free and fully reliable, especially critical ones. This is a challenging task,
currently underestimated, underregulated and underfunded.

From the software engineering perspective, we can find examples where bugs
in the software have been responsible of disastrous consequences. In the Therac-
25 radiation therapy incident, a bug in the code produced the death of at least five
patients in the 1980s after administering excessive doses of beta radiation1. In the
Northeast blackout incident in 2003, a race condition in the software of an electrical
network control room produced a power outage that affected more than 50 million
people around Ontario and the United States2. Another more recent bug that af-
fected some users of Valve’s Steam Linux client in 2015 was the accidental deletion
of all the user’s files and folders, which was caused by a common unsafe mistake in
shell script programming3.

To try to catch as many of these failures before they are produced, testing has
become an essential part of the development process of a system. Although it is
usually unfeasible to exhaustively test a system, there exist techniques to system-
atically test a system using a reasonable amount of resources. In particular, in this
thesis, we focus on detecting errors that are produced by the interaction of the pa-
rameters of a system, where a parameter is defined as a setting on a system that can be
set to different values.

The Combinatorial Testing (CT) problem [90] encompasses testing techniques in
which multiple combinations of the input parameters are used to perform testing of
the system, where a system can be a program, a circuit, a package that integrates
several pieces of software, a GUI interface, a cloud application, etc. This problem
requires exploring the parameter space of the system by iteratively testing different
settings of the parameters to detect errors, bugs or faults.

Exploring all the parameter space exhaustively is, in general, out of reach. In
particular, if a system has a set of parameters P, the number of different full assign-
ments is ∏p∈P gp = O

(
g|P|

)
, where gp is the cardinality of the domain of parameter

p and g is the cardinality of the greatest domain.
The good news is that, in practice, there is no need to explore all the parameter

space to detect errors, bugs or faults. We just need to cover a portion of the possible

1http://sunnyday.mit.edu/papers/therac.pdf
2https://www.energy.gov/oe/services/electricity-policy-coordination-and-implementation/

august-2003-blackout
3https://www.energy.gov/oe/services/electricity-policy-coordination-and-implementation/

august-2003-blackout

http://sunnyday.mit.edu/papers/therac.pdf
https://www.energy.gov/oe/services/electricity-policy-coordination-and-implementation/august-2003-blackout
https://www.energy.gov/oe/services/electricity-policy-coordination-and-implementation/august-2003-blackout
https://www.energy.gov/oe/services/electricity-policy-coordination-and-implementation/august-2003-blackout
https://www.energy.gov/oe/services/electricity-policy-coordination-and-implementation/august-2003-blackout


Chapter 1. Introduction 2

parameter combinations. For example, most software errors (75%-80%) are caused
by certain individual parameters or by the interaction of just two of them [70].

To cover that portion of parameter combinations exhaustively, Covering Arrays
(CAs) play an important role in CT. Given a set of parameters P and a strength t, a
Covering Array CA(N; t, P) is a test suite of N tests that guarantees to cover all the
possible interactions of t parameters (referred as t-tuples). In general, since execut-
ing a test in the system has a cost, we will be interested in working with relatively
small Covering Arrays.

Another relevant aspect of modern systems is the presence of constraints among
their parameters that rule out some combinations of their values for which the sys-
tem is intentionally not designed to work. We refer to these combinations as not-
allowed or forbidden. In these cases, the system may not allow the user even to input
this combination because of the user interface, or will warn the user the combination
is not allowed or the system will just not react depending on how responsive it is.
In any case, this is conceptually different from a combination that is allowed by the
system, but unexpectedly causes a bug or an error that we can observe since it does
not correspond with the expected behaviour.

For these cases, CT techniques must also ensure that none of the unsupported
configurations represented by these constraints appear in any generated test. There-
fore, the presence of constraints in a system provides another challenge for CT, as
they must be properly handled by the CT algorithms.

Constraint programming approaches [93] are well-suited for handling constraints.
Among them, SAT technology [33] provides a highly competitive generic problem
approach for solving decision problems and MaxSAT technology [33] for optimiza-
tion problems. In particular, the decision problem to be solved is translated into
a SAT instance (a propositional formula) and a SAT solver is used to determine
whether there is a solution, while the optimization problem is translated to MaxSAT
and a MaxSAT solver is used to determine the optimum or a suboptimal solution.
These techniques will play an essential role in the approaches we design and de-
velop in this thesis.

As an example, consider the GCC compiler, which is an optimizing compiler pro-
duced by the GNU Project supporting various programming languages, hardware
architectures and operating systems. GCC is one of the biggest free programs in ex-
istence, and the standard compiler for most projects related to GNU and the Linux
kernel. Obviously, any bug in GCC can have a potential cascade effect on many other
systems.

In particular, GCC has 189 input parameters of domain 2 and 10 input parame-
ters of domain 3, as well as 40 user constraints that rule out forbidden combinations
of the parameters. Checking all the parameter space would require 4.6 · 1061 tests
(settings to the input parameters) on the particular selected scenario (set of bench-
marks where GCC is applied). Even if the test would only take one second when
applied to the scenario, we would need the age of the universe to complete all the
possible tests according to the parameter space of GCC.

However, we could reduce the number of required test scenarios by checking
only the interactions of just 2 parameters. If we apply a naive enumeration approach,
where at each test we only track one single interaction, we would need 82809 tests.
However, by using CT techniques we can reduce this number to just 15 tests. If all
these 15 tests do not produce any error we know that there is no interaction of two
parameters of GCC that causes a failure or bug in our selected scenario.

In this thesis, we focus on designing and developing algorithms for the genera-
tion of Mixed Covering Arrays with Constraints (MCAC). The term Mixed refers to
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the possibility of having parameter domains of different sizes. The term Constraints
refers to the existence of some parameter interactions that are not allowed in the
system.

First, we present a Satisfiability (SAT)-based approach for building Mixed Cov-
ering Arrays with Constraints of minimum length, referred to as the Covering Ar-
ray Number problem. In particular, we show how to apply Maximum Satisfiabil-
ity (MaxSAT) technology by describing efficient encodings for different classes of
complete and incomplete MaxSAT solvers to compute optimal and suboptimal so-
lutions, respectively. Similarly, we show how to solve through MaxSAT technology
a closely related problem, the Tuple Number problem, which we extend to incor-
porate constraints. For this problem, we additionally provide a new MaxSAT-based
incomplete algorithm. The extensive experimental evaluation we carry out on the
available Mixed Covering Arrays with Constraints benchmarks and the comparison
with state-of-the-art tools confirm the good performance of our approaches.

Second, we focus on the efficient construction of Covering Arrays with Con-
straints of high strength. SAT solving technology has been proven to be well suited
when solving Covering Arrays with Constraints. However, the size of the SAT re-
formulations rapidly grows up with higher strengths. To this end, we present a new
incomplete algorithm that mitigates substantially memory blow-ups and its parallel
version that allows reducing run-time consumption. Thanks to these new develop-
ments we provide a tool for Combinatorial Testing in practical environments. The
experimental results confirm the goodness of the approach, opening avenues for
new practical applications.

Third, while there is an active research community working on developing CT
tools, paradoxically little attention has been paid to making available enough re-
sources to test the CT tools themselves. In particular, the set of available bench-
marks to asses their correctness, effectiveness and efficiency is rather limited. We
introduce a new generator of CT benchmarks that essentially borrows the structure
contained in the plethora of available Combinatorial Problems from other research
communities to create meaningful benchmarks. We additionally perform an exten-
sive evaluation of CT tools with these new benchmarks. Thanks to this study we
provide some insights on under which circumstances a particular CT tool should be
used.

Finally, all the developments from this thesis have been conducted on top of Op-
tiLog, a Python framework designed and implemented by our research group, that
eases the development of SAT-based applications. This has led to several contri-
butions related to the features added to OptiLog in the last years: a full redesign
of the solvers module to support the dynamic loading of incremental SAT solvers
with support for external libraries, a module for modelling problems into Non-CNF
format with support for Pseudo Boolean constraints, a module for evaluating and
parsing the results of applications, a module for automatic configuration (tuning)
of any Python function or external tool, and the support for constrained execution
of blackbox programs and SAT-heritage integration. Thanks to these enhancements
OptiLog can become a swiss knife for SAT-based applications in academic and in-
dustrial environments.

1.1 Objectives

This thesis aims to contribute to the advancement of algorithms for computing Mixed
Covering Arrays with Constraints (MCAC). To reach the main goal, we focus on the
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following objectives:

1. Use MaxSAT technology to generate MCACs.

2. Develop algorithms to effectively compute high-strength MCACs (considering
strengths t > 4).

3. Design and implement a new benchmark generator for Combinatorial Testing.

4. Contribute to the development of the OptiLog Python framework, one of the
key pieces in the development of all the algorithms presented in this thesis.

1.2 Structure of this thesis

The first chapter introduces this thesis. In Chapter 2 we provide several preliminary
definitions and examples to better understand the contents of this thesis, as well as
the definitions of some state-of-the-art CT algorithms. Chapter 3 corresponds to Ob-
jective 1 and discusses how to apply MaxSAT technology to generate MCACs. In
Chapter 4, which corresponds to Objective 2, we focus on generating high-strength
MCACs (considering strengths t ≥ 4) and presents new sequential and parallel al-
gorithms that can build these kinds of MCACs. Chapter 5 corresponds to Objective
3 and describes a new benchmark generator for Combinatorial Testing. Finally, in
Chapter 6, we present the contributions that we performed to the OptiLog Python
framework. We conclude this thesis in Chapter 7.

1.3 Thesis Outputs

In this section, we describe the different outputs produced in this thesis. In the first
part, we detail the publications which we have contributed and in the second part
the software tools that we developed.

1.3.1 Publications

Here we present the list of research articles that we produced during the develop-
ment of this thesis.

• Carlos Ansótegui, Jesus Ojeda, António Pacheco, Josep Pon, Josep M. Salvia,
and Eduard Torres. Optilog: A framework for sat-based systems. In Chu-Min
Li and Felip Manyà, editors, Theory and Applications of Satisfiability Testing - SAT
2021 - 24th International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings,
volume 12831 of Lecture Notes in Computer Science, pages 1–10. Springer, 2021.

• Carlos Ansótegui, Jesus Ojeda, and Eduard Torres. Building high strength
mixed covering arrays with constraints. In Laurent D. Michel, editor, 27th In-
ternational Conference on Principles and Practice of Constraint Programming, CP
2021, Montpellier, France (Virtual Conference), October 25-29, 2021, volume 210 of
LIPIcs, pages 12:1–12:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021

• Josep Alos, Carlos Ansótegui, Josep M. Salvia, and Eduard Torres. Optilog V2:
model, solve, tune and run. In Kuldeep S. Meel and Ofer Strichman, editors,
25th International Conference on Theory and Applications of Satisfiability Testing,
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SAT 2022, August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 25:1–25:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

• Carlos Ansótegui, Felip Manyà, Jesus Ojeda, Josep M. Salvia, and Eduard Tor-
res. Incomplete MaxSAT approaches for combinatorial testing. Journal of
Heuristics, 28(4):377–431, August 2022.

• Carlos Ansótegui and Eduard Torres. Effectively Computing High Strength
Mixed Covering Arrays with Constraints. Submitted to Artificial Intelligence
Review.

• Carlos Ansótegui and Eduard Torres. A Benchmark Generator for Combinato-
rial Testing. Submitted to IEEE Transactions on Software Engineering.

1.3.2 Tools

We implemented the different algorithms explained throughout this thesis in the CT-
Log tool, available at http://ulog.udl.cat/static/doc/ctlog/html/index.html.
This tool includes the implementation of five state-of-the-art MCAC algorithms, plus
a generator of CT benchmarks. It has been developed in the Python4 programming
language, and some of its most critical parts in Nim5. We used OptiLog, which pro-
vided efficient access to SAT solvers and SAT encoders in Python, aside from other
important utilities such as the running module to run and parse experiments (see
Chapter 6).

Overall, this tool consists of 74 Python files with more than 7500 lines of code
and 6 Nim files with almost 1000 lines of code. The following list shows the MCAC
algorithms that are implemented in CTLog.

• maxsat-mcac: MCAC generation using MaxSAT technology. This implemen-
tation is used in Chapter 3.

• CALOT: Implementation of the incremental SAT-based MCAC algorithm de-
scribed in [101]. Also used in Chapter 3.

• maxsat-its: Greedy MCAC algorithm that builds MCACs by solving the Tuple
Number problem iteratively using MaxSAT technology. Also used in Chap-
ter 3.

• PRBOT-its: Adaptation of the Algorithm 5 in [100], which is a greedy algo-
rithm to build MCACs. We extended this algorithm with its pool version (the
P in PRBOT-its) and with the refinement version (the R in PRBOT-its). We also
implement the parallel version of PRBOT-its. See Chapter 4 for an in-depth
description and experimentation of these algorithms.

• IPOG: Implementation of the IPOG algorithm [73], another greedy algorithm
for building MCACs. It is used in Chapter 5.

All these algorithms support the ACTS6 and Extended ACTS7 input formats, and
outputs MCACs using an standardized .csv format. Additionally, we provide for

4https://www.python.org/
5https://nim-lang.org/
6The full specification of the ACTS format can be found in https://csrc.nist.rip/groups/SNS/

acts/documents/acts_user_guide_2.92.pdf
7See Section 5.1.1

http://ulog.udl.cat/static/doc/ctlog/html/index.html
https://www.python.org/
https://nim-lang.org/
https://csrc.nist.rip/groups/SNS/acts/documents/acts_user_guide_2.92.pdf
https://csrc.nist.rip/groups/SNS/acts/documents/acts_user_guide_2.92.pdf
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all these algorithms an option to validate the generated MCACs by using an efficient
MCAC checker that we implemented in Nim.

Finally, we briefly describe the benchmark generator tool that is also included in
CTLog.

• SUT-G: Generator of CT benchmarks with constraints by using an input SAT
instance. The generator will try to find satisfiable subproblems on the input SAT
instance that match the user’s requirements in terms of constraints hardness.
See Chapter 5 for a full description of the generator.

Aside from CTLog, we also contributed to the development of OptiLog, available
at http://ulog.udl.cat/static/doc/optilog/html/index.html. Overall, OptiLog
contains over 10000 lines of Python code and over 5000 lines of C/C++ code (exclud-
ing the code of the SAT solver engines). We present in Chapter 6 the main contribu-
tions that we performed in the second iteration of this project.

http://ulog.udl.cat/static/doc/optilog/html/index.html
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Chapter 2

State of the art

In this chapter, we formally introduce all the preliminary concepts that will be re-
quired in the following chapters. We will start introducing concepts related to the
Satisfiability and Maximum Satisfiability problems. After that, we will present sev-
eral Combinatorial Testing definitions and some of the most relevant state-of-the-art
algorithms for building Mixed Covering Arrays With Constraints.

2.1 The Satisfiability and Maximum Satisfiability Problems

In this section, we introduce the definitions related to the Satisfiability and Maxi-
mum Satisfiability problems.

Definition 1. A literal is a propositional variable x or a negated propositional vari-
able ¬x. A clause is a disjunction of literals. A Conjunctive Normal Form (CNF) is a
conjunction of clauses.

Definition 2. A weighted clause is a pair (c, w), where c is a clause and w, its weight,
is a natural number or infinity. A clause is hard if its weight is infinity (or no weight
is given); otherwise, it is soft. A Weighted Partial MaxSAT instance is a multiset of
weighted clauses.

Example 1. The following Weighted Partial MaxSAT instance ϕ = {(x1, 1), (x2, 1), (x1 ∨
x2, 2), (¬x1 ∨ ¬x2, ∞)} contains 3 soft clauses and 1 hard clause.

Definition 3. A truth assignment for an instance ϕ is a mapping that assigns to each
propositional variable in ϕ either 0 (False) or 1 (True). A truth assignment is partial
if the mapping is not defined for all the propositional variables in ϕ.

Definition 4. A truth assignment I satisfies a literal x (¬x) if I maps x to 1 (0);
otherwise, it is falsified. A truth assignment I satisfies a clause if I satisfies at least
one of its literals; otherwise, it is violated or falsified. The cost of a clause (c, w) under
I is 0 if I satisfies the clause; otherwise, it is w. Given a partial truth assignment I, a
literal or a clause is undefined if it is neither satisfied nor falsified. A clause c is a unit
clause under I if c is not satisfied by I and contains exactly one undefined literal.

Definition 5. The cost of a formula ϕ under a truth assignment I, denoted by cost(I, ϕ),
is the aggregated cost of all its clauses under I.

Example 2. Given I = {x1 = 0, x2 = 0} and the instance ϕ in Example 1, the cost(I, ϕ)
is 4.

Definition 6. The Weighted Partial MaxSAT problem for an instance ϕ is to find an
assignment in which the sum of weights of the falsified soft clauses is minimal, de-
noted by cost(ϕ), and all the hard clauses are satisfied. The Partial MaxSAT problem
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is the Weighted Partial MaxSAT problem where all weights of soft clauses are equal.
The SAT problem is the Partial MaxSAT problem when there are no soft clauses. An
instance of Weighted Partial MaxSAT, or any of its variants, is unsatisfiable if its op-
timal cost is ∞. A SAT instance ϕ is satisfiable if there is a truth assignment I, called
model, such that cost(I, ϕ) = 0.

Example 3. The optimal cost of the instance ϕ in Example 1 is 1.

Definition 7. An instance of Weighted Partial MaxSAT, or any of its variants, is un-
satisfiable if its optimal cost is ∞. A SAT instance φ is satisfiable if there is a truth
assignment I, called model, such that cost(I, φ) = 0.

Definition 8. An unsatisfiable core is a subset of clauses of a SAT instance that is
unsatisfiable.

Definition 9. Given a SAT instance φ and a partial truth assignment I, we refer as
Unit Propagation, denoted by UP(I, φ), to the Boolean inference mechanism (prop-
agator) defined as follows: Find a unit clause in φ under I, where l is the undefined
literal. Then, propagate the unit clause, i.e. extend I with x = 1 (x = 0) if l ≡ x
(l ≡ ¬x) and repeat the process until a fixpoint is reached or a conflict is derived (i.e.
a clause in φ is falsified by I).

We refer to UP(I, φ) simply as UP(φ) when I is empty.

Example 4. Given the SAT instance φ = {(x1 ∨ x2), (x1 ∨¬x2 ∨ x3 ∨ x4)} and the partial
truth assignment I = {x1 = 0}, UP(I, φ) simplifies φ to {(x3 ∨ x4)} and extends I to
{x1 = 0, x2 = 1}.
Definition 10. Let A and B be SAT instances.
A |= B denotes that A entails B, i.e. all assignments satisfying A also satisfy B.
It holds that A |= B iff A ∧ ¬B is unsatisfiable.
A ⊢UP B denotes that, for every clause c ∈ B, UP(A ∧ ¬c) derives a conflict.
If A ⊢UP B then A |= B.

Definition 11. We refer as SAT solver to the implementation of an algorithm that
takes as input a SAT instance and decides the SAT problem. The solver is said to
be incremental if the input SAT instance can be modified and solved again while
reusing some information from previous steps.

Definition 12. A pseudo-Boolean (PB) constraint is a Boolean function of the form
∑n

i=1 qili ⋄ k, where k and the qi are integer constants, li are literals, and ⋄ ∈ {<,≤,=
,≥,>}.
Definition 13. A Cardinality (Card) constraint is a PB constraint where all qi are
equal to 1. An At-Most-One (AMO) constraint is a cardinality constraint of the form
∑n

i=1 li ≤ 1. An At-Least-One (ALO) constraint is a cardinality constraint of the form
∑n

i=1 li ≥ 1. An Exactly-One (EO) constraint is a cardinality constraint of the form
∑n

i=1 li = 1.

Code fragment SATSolver shows the interface of a modern incremental SAT
solver. The input instance is added to the solver with functions add_clause and
add_retractable (in case the clause can be retracted) (lines 5 and 6), which operate
on a single clause, while functions add and retract operate on a set of clauses. The
last two functions are overloaded to ease the usage of SAT solvers within MaxSAT
solvers (lines 17 and 20). Variable n_vars indicates the number of variables of the
input formula (line 1).
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Code SATSolver: Members and functions interface
#Attributes

1 n_vars #number of variables of the formula loaded

2 n_con f licts #number of conflicts of the last call to solve

3 core #last core found

4 model #last model found

#Methods
5 function add_clause(c : clause)

#Adds the clause c to the solver

6 function add_retractable(c : clause)
#Adds the clause c to the retractable list of clauses of the solver

7 function retract_clause(c : clause)
#Retracts the clause c from the solver’s list of retractable clauses

8 function solve(assumps : literals)
#If formula is satisfiable, status← SAT, sat.model is updated

#If formula is unsatisfiable, status← UNSAT, sat.core is updated

#If assumps ̸= ∅, sets each literal in assumps to the solver trail

9 return status

10 function propagate(assumps : literals)
#Performs Unit Propagation over the input formula given assumps

11 return The set of propagated literals

12 function set_seed(seed : int)
#Sets the Random Number Generator seed of the SAT solver to the given seed

13 function add(ϕ : SAT formula)
14 foreach ci ∈ ϕ do sat.add_clause(ci)

15 function retract(ϕ : SAT formula)
16 foreach ci ∈ ϕ do sat.retract_clause(ci)

#Overloaded functions for SAT-based MaxSAT algorithms
17 function add(ϕ : Weighted Partial MaxSAT formula)
18 foreach (ci, wi) ∈ ϕ do
19 if wi = ∞ then sat.add_clause(ci) else sat.add_retractable(ci)

20 function retract(ϕ : Weighted Partial MaxSAT formula)
21 foreach (ci, wi) ∈ ϕ do if wi ̸= ∞ then sat.retract_clause(ci)

Function solve (line 8) returns UNSAT (SAT) if the input formula is unsatisfiable
(satisfiable) and sets variable core (model) to the corresponding unsatisfiable core
(model), as well as the attribute n_con f licts to the number of conflicts produced in
this call. Additionally, this function supports the assumps argument, which is a list
of literals and allows to place an assumption on the truth value of each literal be-
fore function solve is called. Regarding the propagate method (line 10), it will apply
Unit Propagation over the input instance, and can also receive a list of assumptions
assumps as in the solve function.

SAT solvers also tend to expose the set_seed function (line 12), which allows fix-
ing the Random Number Generator seed in the SAT solver to a given seed. Finally,
modern SAT solvers also support an incremental solving mode, which allows keep-
ing the learnt clauses across calls to the function solve.
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2.2 The Combinatorial Testing Problem

The Combinatorial Testing (CT) problem [90] addresses the question of how to effi-
ciently verify the proper operation of a system. This can be achieved by exploring
the parameter space of the system and iteratively testing different settings of the
parameters to detect errors, bugs or faults.

In this section, we present all the required concepts related to Combinatorial
Testing. We also include some examples to better understand these ideas.

Definition 14. A System Under Test (SUT) model is a tuple ⟨P, φ⟩, where P is a finite
set of variables p of finite domain, called SUT parameters, and φ is a set of constraints
on P, called SUT constraints, that implicitly represents the parameterizations that
the system accepts. We denote by d(p) and gp, respectively, the domain and the
cardinality domain of p. For the sake of clarity, we will assume that the system
accepts at least one parameterization.

In the following, we assume S = ⟨P, φ⟩ to be a SUT model. We will refer to P as
SP, and to φ as Sφ.

Example 5. Consider an online service that offers a web page and a mobile application that
share the same code base. We want to find potential failures given different OS, platforms,
screen resolutions and orientations. The definition of this example SUT S regarding its
parameters SP is the following:

OS (OS) ∈ {Linux (L), Windows (W), Mac (M), iOS (i), Android(A)}
Plat f orm (Pl) ∈ {Fire f ox (F), Sa f ari (S), Chrome (C), App (A)}

Resolution (Re) ∈ {4K (K), FHD (F), HD (H), WXGA (W)}
Orientation (Or) ∈ {Portrait (P), Landscape (L)}

Notice that in this scenario we also have a set of SUT constraints Sφ:

((OS = L) ∨ (OS = W) ∨ (OS = M))→ ((Or = L) ∧ (Pl ̸= A)) (2.1)

(Pl = S)→ ((OS = M) ∨ (OS = i)) (2.2)

((OS = i) ∨ (OS = A))→ (Re ̸= K) (2.3)

Whenever the OS is Linux, Windows or Mac, the Orientation must be Landscape and
the Platform cannot be App (equation (2.1)). When the Platform is Safari, the OS must be
Mac or iOS (equation (2.2)). Finally, for iOS and Android the Resolution cannot be 4K
(equation (2.3)).

Definition 15. An assignment is a set of pairs (p, v) where p is a variable and v is a
value of the domain of p. A test case for S is a full assignment A to the variables in
SP such that A entails Sφ (i.e. A |= Sφ) . A parameter tuple of S is a subset π ⊆ SP. A
value tuple of S is a partial assignment to SP; in particular, we refer to a value tuple
of length t as a t-tuple.

Example 6. A test case for the SUT model in Example 5 is {(OS, W), (Pl, F), (Re, K), (Or, L)}.
{Os, Pl} is a parameter tuple and {(OS, W), (Pl, F)} is a t-tuple for t = 2.

Definition 16. A t-tuple τ is forbidden if τ does not entail Sφ (i.e. τ |= ¬Sφ). Other-
wise, it is allowed. We refer to the set of allowed t-tuples as Ta = {τ | τ ̸|= ¬Sφ}.
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We refer to the set of allowed t-tuples as T t,S
a = {τ | τ ̸|= ¬Sφ}, to the set of for-

bidden t-tuples as T t,S
f = {τ | τ |= ¬Sφ}, and to the whole set of t-tuples in the SUT

model S as T t,S = Ta ∪ T f . When there is no ambiguity, we refer to T t,S
a , T t,S

f , T t,S as
Ta, T f , T , respectively.

Example 7. The t-tuple {(OS, i), (Re, K)} is a forbidden tuple. There are 82 t-tuples (|T |)
for t = 2 in the SUT of Example 5. 69 of these 82 t-tuples are allowed (|Ta|) and 13 are
forbidden (|T f |).
Definition 17. A test case υ covers a value tuple τ if both assign the same domain
value to the variables in the value tuple, i.e., υ |= τ. A test suite Υ covers a value
tuple τ (i.e., τ ⊆ Υ) if there exist a test case υ ∈ Υ s.t. υ |= τ. We refer to υ ̸|= τ
(τ ̸⊆ Υ) when a test case (test suite) does not cover τ.

Example 8. The test case υ = {(OS, W), (Pl, F), (Re, K), (Or, L)} covers the following
t-tuples for t = 2:

{(OS, W), (Pl, F)}, {(OS, W), (Re, K)}, {(OS, W), (Or, L)},
{(Pl, F), (Re, K)}, {(Pl, F), (Or, L)}, {(Re, K), (Or, L)}

Definition 18. A Mixed Covering Array with Constraints (MCAC), denoted by CA(N; t, S),
is a set of N test cases for a SUT model S such that all t-tuples are at least covered by
one test case. The term Mixed reflects that the domains of the parameters in SP are
allowed to have different cardinalities. The term Constraints reflects that Sφ is not
empty.

Example 9. Table 2.1 shows an MCAC for the SUT S in Example 5

Definition 19. The Covering Array Number, CAN(t, S), is the minimum N for which
there exists an MCAC CA(N; t, S). An upper bound ubCAN(t,S) for CAN(t, S) is an
integer such that ubCAN(t,S) ≥ CAN(t, S), and a lower bound lbCAN(t,S) is an integer
such that CAN(t, S) > lbCAN(t,S).

When there is no ambiguity, we refer to ubCAN(t,S) (lbCAN(t,S)) as ub (lb).

Example 10. Table 2.2 shows an optimal CA(N; t, S) for the SUT model in Example 5. In
this case CAN(2, S) = 21.

Definition 20. The Tuple Number, T(N; t, S), is the maximum number of t-tuples
that can be covered by a set of N tests for a SUT model S. An upper bound ubT(N;t,S)

for T(N; t, S) is an integer such that ubT(N;t,S) ≥ T(N; t, S), and a lower bound
lbT(N;t,S) is an integer such that T(N; t, S) > lbT(N;t,S).

When there is no ambiguity, we refer to ubT(N;t,S) (lbT(N;t,S)) as ub (lb).

Definition 21. The MCAC problem is to find an MCAC of size N.
The Covering Array Number problem is to find an MCAC of size CAN(t, S).
The Tuple Number problem is to find a test suite of size N that covers T(N; t, S) t-
tuples.

The MCAC problem is a decision problem. The Covering Array Number and the
Tuple Number problems, to which we refer in short as the CAN(t, S) and T(N; t, S)
problems, respectively, are optimization problems.

2.3 Mixed Covering Arrays with Constraints Algorithms

In this section, we provide a brief review of some of the existing algorithms for build-
ing Mixed Covering Arrays with Constraints.
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test OS Pl Re Or
υ1 L F F L
υ2 L C H L
υ3 W F W L
υ4 W C K L
υ5 M F H L
υ6 M S W L
υ7 M C F L
υ8 i F H P
υ9 i S F P
υ10 i C W P
υ11 i A F L
υ12 A F H P
υ13 A C W L
υ14 A A F P
υ15 L F K L
υ16 M S K L
υ17 i S H L
υ18 A A H L
υ19 i A W L
υ20 W F F L
υ21 W F H L
υ22 L F W L

TABLE 2.1:
CA(22; 2, S) for
the SUT in exam-

ple 5.

test OS Pl Re Or
υ1 L C K L
υ2 L F F L
υ3 L C H L
υ4 L C W L
υ5 W F K L
υ6 W C F L
υ7 W F H L
υ8 W F W L
υ9 M S K L
υ10 M S F L
υ11 M C H L
υ12 M F W L
υ13 i C F P
υ14 i S H P
υ15 i S W P
υ16 A A F L
υ17 A A H P
υ18 A F W P
υ19 i A W L
υ20 A C H L
υ21 i F H L

TABLE 2.2:
CA(21; 2, S) for
the SUT in ex-
ample 5. This
corresponds to the

CAN(2, S).

2.3.1 The In-Parameter Order General Algorithm (IPOG)

The In-Parameter Order General Algorithm (IPOG) [73] is one of the most widely-
used algorithms for building suboptimal MCACs. It can be found implemented in
different frameworks such as ACTS [34].

The original algorithm did not allow the presence of SUT constraints. However,
there exist several variations where SUT constraints are supported [103, 104]. In this
section, we describe the version in [104], which uses a CP solver to handle the SUT
constraints.

Roughly speaking, the IPOG algorithm, iteratively builds an MCAC of strength
t on a subset of the params in SP. Given an order of the parameters SP, at the kth
step, the algorithm has already an MCAC for the first k− 1 params and extends it to
an MCAC on the first k params.

Algorithm IPOG shows the pseudocode. We start by sorting the Sp parame-
ters (line 1). Then, we initialize the working test suite Υ with the trivial MCAC of
strength t on the first t parameters, i.e., a test for each allowed t-tuple.

The main loop (line 3) iterates on the sorted list of parameters P starting at the t+
1th parameter. In line 4 we compute all the t-tuples that can be composed with the
current parameter p and any t− 1-tuple in Υ and, store them in ρ. These are the new
tuples that need to be allocated to the test suite. To do that we extend horizontally
the current test suite and if needed, fill the empties and grow vertically the test suite
by adding new tests.

From lines 5 to 10 we perform the horizontal extension. We just traverse every
test in Υ and select for the current test υ which is the value for the current parameter
p, that in combination with any set of t− 1 values already in the test, covers more
t-tuples in ρ and update υ and ρ accordingly.

Of course, we double-check the current partially constructed test is consistent
with Sφ. This is performed by checking whether the partial assignment represented
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by the values in the test under construction can be extended to a satisfying assign-
ment in Sφ.

It may be the case that, for a given test, there is more than one possible value for
p but all the new t-tuples that could be obtained with these values have been already
covered in a previous test. Then, we leave empty the value for the parameter p at
this test, and fill this empty opportunistically later.

If we have already covered all the new tuples we can proceed to the next param-
eter (line 10).

It may be the case that by extending horizontally all the tests in Υ we may have
not covered all the new tuples in ρ. Then, we have two ways to cover the rest. We
traverse the remaining t-tuples in ρ and check whether we can allocate the given t-
tuple τ taking advantage of the empties (lines 13-18). Finally, if τ can not be allocated
in the existing test suite Υ, we just add a new test and τ to this test and leave the rest
of the parameters in the test with an empty value (line 20).

Algorithm IPOG: IPOG Algorithm
Input : SUT model S, strength t
Output: Test suite Υ

1 P← argsortp∈Sp d(p)
2 Υ← CAN(t, ⟨{P1, ..., Pt}, Sφ⟩)
3 for p in Pt+1 ... P|P| do

# Initialize tuples pool
4 ρ← {τ | τ ∈ d(p) combined with all the tuples of size t− 1 in Υ}

# Horizontal extension
5 for υ in Υ do
6 Choose best v ∈ d(p) s.t. υ ∪ {(p,v)} covers more tuples in ρ and is

consistent with Sφ

7 υ← υ ∪ {(p,v)}
8 ρv ← {τ | (τ ∈ ρ) ∧ (υ |= τ)}
9 ρ← ρ \ ρv

10 if |ρ| = ∅ then break

11 if |ρ| ̸= ∅ then
12 for τ | (τ ∈ ρ) ∧ (τ consistent with Sφ) do

# Fill the empties
13 covered← false
14 for υ in Υ do
15 if τ ∪ υ is possible and consistent with Sφ then
16 υ← υ ∪ τ
17 covered← true
18 break

# Vertical growth
19 if covered = false then
20 Υ← Υ ∪ {υ s.t. υ |= τ}

21 return Υ
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2.3.2 Algorithm 5 and BOT-its Algorithms

There is another approach for building MCACs. Instead of building an MCAC by
adding one parameter at a time such as in IPOG (see Section 2.3.1) we can build an
MCAC One Test at a Time (also referred to as OTAT [35]).

Several algorithms that implement the OTAT approach, such as PICT [41]. How-
ever, we find other algorithms also based on OTAT that focus on the efficient han-
dling of the SUT constraints.

In [100] the authors describe several of these algorithms, being Algorithm 5 the
most relevant. This algorithm has been reworked in our recent work [7] through the
BOT-its algorithm and its variations.

Essentially, these algorithms build one test at a time, ensuring that at the end
this test case is consistent with the SUT constraint, and amending the parts that are
not consistent. Additionally, the forbidden tuples are lazily detected and removed
by using unsatisfiable cores, which greatly reduces the employed resources for this
task.

Chapter 4 describes in detail these algorithms and proposes several variations
to improve the sizes of the generated MCACs and to scale this approach to larger
instances and strengths.
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Chapter 3

Mixed Covering Arrays with
Constraints through Maximum
Satisfiability

As we introduced in Chapter 1, we are focusing on building Mixed Covering Arrays
with Constraints (MCACs). More formally, a Covering Array CA(N; t, P) (where t
is the strength and P the set of parameters) is a test suite of N tests that guarantee
to cover all the possible interactions of t parameters (referred as t-tuples). Since ex-
ecuting a test in the system has a cost, we are interested in working with relatively
small covering arrays. We refer to the minimum N for which a CA(N; t, P) exists
as the Covering Array Number, denoted by CAN(t, P). In particular, we are inter-
ested in building an optimal CA, i.e., a covering array of length CAN(t, P). Notice
that it is guaranteed that the number of tests required to cover all t-way parameter
combinations, for fixed t, grows logarithmically in the number of parameters [40],
which indicates that optimal or near-optimal covering arrays can be used in practi-
cal terms. The computational challenge is to build optimal CAs in a reasonable time
frame.

There exist several greedy approaches that tackle the problem of building min-
imum MCACs, such as PICT [41], based on the OTAT framework [35], and ACTS
[34], based on the IPOG algorithm [44]. One downside of these approaches is that
they become more inefficient as the hardness of the set of forbidden interactions in-
creases. Therefore, we are more interested in constraint programming approaches,
which are better suited for handling constraints. For example, CALOT [101] is a tool
for building MCACs based on Satisfiability (SAT) technology [32] that can handle
constraints efficiently.

Within constraint programming techniques [93], SAT technology provides a highly
competitive generic problem approach for solving decision problems. In particular,
the decision problem to be solved is translated into a SAT instance (a propositional
formula) and a SAT solver is used to determine whether there is a solution. In this
chapter, we will review in detail the CALOT tool, which essentially solves a sequence
of SAT instances to compute an optimal MCAC. Each SAT instance in the sequence
encodes the decision query of whether there exists an MCAC of a certain length. By
iteratively bounding the length, the optimum can be determined.

Since the problem of computing minimum MCACs is, in essence, an optimiza-
tion problem, we also consider its reformulation into the Maximum Satisfiability
(MaxSAT) problem [32], which is an optimization version of the SAT problem.

We show empirically that MaxSAT approaches outperform ACTS and CALOT
(the state-of-the-art) once the suitable MaxSAT encodings are used. We evaluate
both complete or exact MaxSAT solvers (certify optimality) and incomplete MaxSAT
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solvers (provide suboptimal solutions). In particular, we show that while complete
MaxSAT solvers perform similar to CALOT (substantially in contrast to previously
reported experiments with MaxSAT solvers [101]), incomplete MaxSAT solvers ob-
tain better suboptimal solutions and faster than ACTS and CALOT on many in-
stances. This confirms the practical interest of incomplete MaxSAT approaches be-
cause, in real environments, we are mainly concerned with obtaining the best possi-
ble solution within a given budget of runtime.

Having confirmed the good performance of MaxSAT approaches for computing
minimum MCACs, we explore another related problem, the Tuple Number (TN)
Problem. Informally, the TN problem is to determine the minimum set of missing
t-tuples in a test suite of N tests, or the maximum set of t-tuples that these N tests
cover. This problem is related to the Optimal Shortening Covering Arrays (OSCAR)
problem [36] (which is NP-hard), where given a matrix of tests the goal is to find
a submatrix of a fixed number of tests and parameters that maximizes the number
of covered t-tuples. These shortened covering arrays have been used to improve the
initialization of metaheuristic approaches for Covering Arrays (without SUT con-
straints).

In this chapter, we explore (for the first time) the Mixed and with Constraints
variants of the TN problem, assessing the performance of complete and incomplete
MaxSAT approaches. Obviously, this problem is of interest when N < CAN(t, P)1.
We additionally present another incomplete approach based on MaxSAT technology
to which we refer as MaxSAT Incremental Test Suite (Maxsat ITS), that incrementally
builds the test suite with the help of a MaxSAT query that aims to maximize the
coverage of allowed tuples at every step.

The Covering Array Number problem is concerned with reporting solutions with
the least number of tests. From a practical point of view, whether we are satisfied
with suboptimal solutions will depend on the cost of the tests. This cost basically
includes the cost of generating the tests (computational resources) and the cost of
testing the system. In particular, when the cost is too prohibitive in terms of our
budget, and we are satisfied with covering a statistically significant portion of the
tuples, we aim to solve (even suboptimally) the Tuple Number problem. Therefore,
there exist real-world scenarios where all the approaches described in this chapter
are of practical interest.

The rest of the chapter is structured as follows: Section 3.1 defines different SAT
encodings and sections 3.2 and 3.3 describe techniques to make the SAT encodings
more efficient. Section 3.4 introduces the incremental SAT algorithm CALOT for
computing minimum MCACs. Subsequently, Section 3.5 defines MaxSAT encodings
and Section 3.6 describes how to efficiently apply MaxSAT solvers. For the Tuple
Number problem, Section 3.7 defines a MaxSAT encoding and Section 3.8 presents
a new incomplete approach using MaxSAT solvers. To assess the impact of the pre-
sented approaches, Section 3.9 reports on an extensive experimental investigation
on the available MCAC benchmarks.

3.1 The MCAC problem as SAT

In this section, we present the SAT encoding described in [101] to decide whether
there exists a CA(N; t, S) for a given SUT model S = ⟨P, φ⟩. It is similar to previous
encodings described in [64, 65, 25, 87, 14].

1For N ≥ CAN(t, P), the Tuple Number problem essentially corresponds to determine the number
of allowed tuples in the corresponding MCAC problem.
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In the following, we list the set of constraints that define the SAT encoding and
describe the semantics of the propositional variables they refer to. To encode each
constraint, we assume that AMO and EO cardinality constraints are translated into
CNF through the regular encoding [6, 56] and the typical transformations [97] of→
and↔ are implicitly applied 2.

First, we define variables xi,p,v to be true iff test case i assigns value v to param-
eter p, and state that each parameter in each test case takes exactly one value as
follows (where [N] = {1, . . . , N}):∧

i∈[N]

∧
p∈P

∑
v∈d(p)

xi,p,v = 1 (X)

Second, as described in [88], to enforce the SUT constraints φ, for each test case
i, we add the CNF formula that encodes the constraints of φ into SAT and substitute
each appearance of the pair (p, v) in φ by the corresponding literal on the proposi-
tional variable xi,p,v for each test case i.

∧
i∈[N]

CNF
(

φ

{¬xi,p,v

p ̸= v
,

xi,p,v

p = v

})
(SUTX)

Third, we introduce propositional variables ci
τ and state that if they are true,

then tuple τ must be covered at test i, by forcing the variables p in the test case to be
assigned to the value specified in τ, as follows:∧

i∈[N]

∧
τ∈Ta

∧
(p,v)∈τ

(ci
τ → xi,p,v) (CX)

Notice that only t-tuples that can be covered by a test case are encoded, i.e.,
τ ∈ Ta. In section 3.2, we discuss how to detect the t-tuples forbidden by the SUT
constraints.

Finally, we state that every t-tuple τ ∈ Ta, must be covered at least by one test
case, as follows: ∧

τ∈Ta

∨
i∈[N]

ci
τ (C)

Proposition 1. Let SatN,t,S
CX be X∧C∧CX∧SUTX. SatN,t,S

CX is satisfiable iff a CA(N; t, S)
exists.

Inspired by the incremental SAT approach in [101] (see section 3.4), we present
another encoding where C and CX are replaced by CCX:

∧
i∈[N]

∧
τ∈Ta

∧
(p,v)∈τ

(ci
τ → ci−1

τ ∨ xi,p,v) (a) (CCX)

∧
τ∈Ta

cN
τ (b) (CCX)

∧
τ∈Ta

(cN
τ → ¬c0

τ) (c) (CCX)

2We replace A → B with (¬A ∨ B), and A ↔ B with (A → B) ∧ (A ← B) where A and B are
disjunctions of literals.
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Variables ci
τ have now a different semantics, i.e., if they are true, τ is covered by

test case i or by any lower test case j, where 1 ≤ j ≤ i (equation a). In order to
guarantee that τ will be covered by some test, notice that we just need to force cN

τ

to be true and c0
τ to be false (variables c0

τ are additionally included in the encoding).
This can be achieved by adding the unit clauses cN

τ (equation b) and the implication
cN

τ → ¬c0
τ (equation c) for every allowed tuple τ.

The seasoned reader may wonder why we do not simply replace equation (c) by∧
τ∈Ta
¬c0

τ. Indeed, this is possible. First, notice that UP on the conjunction of equa-
tions (b) and (c) will derive exactly the same. Second, for encoding some problems
where it is not mandatory to cover all the tuples (see section 3.7 on encoding the Tu-
ple Number problem), we have to erase equation (b) from CCX and also guarantee
that if a tuple τ is not covered in an optimal solution, i.e., cN

τ has to be False, then the
related clauses in CCX have to be satisfied (these are hard clauses) and, if possible, to
be trivially satisfied, i.e., without requiring search. Equation (c) eases this case for all
the scenarios in section 3.7. Notice that, once cN

τ is False, clauses in equation (c) are
trivially satisfied and, by setting the remaining ci

τ vars to True, clauses in equation
(a) are also trivially satisfied.

Proposition 2. Let SatN,t,S
CCX be X∧CCX∧ SUTX. SatN,t,S

CCX is satisfiable iff a CA(N; t, S)
exists.

Remark 1. There are some variations of equation (a) in CCX that can be beneficial
when using some SAT solvers, as we will see in section 3.9.1. For example, we can
use full implication instead of half implication in equation (a), i.e., (ci

τ ↔ ci−1
τ ∨

xi,p,v), or we can even use (ci
τ → ci−1

τ ∨ xi,p,v) ∧ (ci
τ ← ci−1

τ ). Also, we can consider
full implication in equation (c) and, for some of the problems analyzed in section
3.9.1, we can even replace equation (c) by

∧
τ∈Ta
¬c0

τ.

Example 11. We show how to build SatN=22,t=2,S
CX for the SUT in Example 5, where N = 22

is an upper bound ub for this SUT (see section 3.2).
To encode the X constraint, we add:

x1,OS,L + x1,OS,W + x1,OS,M + x1,OS,i + x1,OS,A =1,
x1,Pl,F + x1,Pl,S + x1,Pl,C + x1,Pl,A =1,

x1,Re,K + x1,Re,F + x1,Re,H + x1,Re,W =1,
x1,Or,P + x1,Or,L =1,

... (Ex. X)
x22,OS,L + x22,OS,W + x22,OS,M + x22,OS,i + x22,OS,A =1,

x22,Pl,F + x22,Pl,S + x22,Pl,C + x22,Pl,A =1,
x22,Re,K + x22,Re,F + x22,Re,H + x22,Re,W =1,

x22,Or,P + x22,Or,L =1

Next, for each test (1, ..., 22), we encode the SUT constraints SUTX:
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(x1,OS,L ∨ x1,OS,W ∨ x1,OS,M)→ (x1,Or,L ∧ ¬x1,Pl,A)

x1,Pl,S → (x1,OS,M ∨ x1,OS,i)

(x1,OS,i ∨ x1,OS,A)→ ¬x1,Re,K

... (Ex. SUTX)
(x22,OS,L ∨ x22,OS,W ∨ x22,OS,M)→ (x22,Or,L ∧ ¬x22,Pl,A)

x22,Pl,S → (x22,OS,M ∨ x22,OS,i)

(x22,OS,i ∨ x22,OS,A)→ ¬x22,Re,K

Notice that these constraints are not in CNF. Their translation would be the following:

(xi,OS,L ∨ xi,OS,W ∨ xi,OS,M)→ (xi,Or,L ∧ ¬xi,Pl,A) ≡
((¬xi,OS,L ∨ xi,Or,L) ∧ (¬xi,OS,L ∨ ¬xi,Pl,A) ∧ (¬xi,OS,W ∨ xi,Or,L)∧ (CNF 2.1)
(¬xi,OS,W ∨ ¬xi,Pl,A) ∧ (¬xi,OS,M ∨ xi,Or,L) ∧ (¬xi,OS,M ∨ ¬xi,Pl,A))

xi,Pl,S → (xi,OS,M ∨ xi,OS,i) ≡ (¬xi,Pl,S ∨ xi,OS,M ∨ xi,OS,i) (CNF 2.2)

(xi,OS,i ∨ xi,OS,A)→ ¬xi,Re,K ≡
((¬xi,OS,i ∨ ¬xi,Re,K) ∧ (¬xi,OS,A ∨ ¬xi,Re,K)) (CNF 2.3)

Finally, the encoding of the CX and C constraints is shown below. We identify the set of
allowed tuples, (Ta), as described in section 3.2. In particular, there are |Ta| = 69 allowed
tuples as we mention in Example 7.

c1
τ1
→ x1,OS,L, . . . , c1

τ69
→ x1,Re,W

c1
τ1
→ x1,Pl,F, . . . , c1

τ69
→ x1,Or,L

...
. . .

... (Ex. CX)

c1
τ1
→ x22,OS,L, . . . , c1

τ69
→ x22,Re,W

c1
τ1
→ x22,Pl,F, . . . , c1

τ69
→ x22,Or,L

(c1
τ1
∨ c2

τ1
∨ · · · ∨ c22

τ1
), . . . , (c1

τ69
∨ c2

τ69
∨ · · · ∨ c22

τ69
) (Ex. C)

To build SatN=22,t=2,S
CCX , we encode the CCX constraint instead of the C and CX con-

straints:
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c1
τ1
→ c0

τ1
∨ x1,OS,L, . . . , c1

τ69
→ c0

τ69
∨ x1,RE,W

c1
τ1
→ c0

τ1
∨ x1,Pl,F, . . . , c1

τ69
→ c0

τ69
∨ x1,Or,L

...
. . .

... (Ex. CCX a)

c22
τ1
→ c21

τ1
∨ x22,OS,L, . . . , c22

τ69
→ c21

τ69
∨ x22,RE,W

c22
τ1
→ c21

τ1
∨ x22,Pl,F, . . . , c22

τ69
→ c21

τ69
∨ x22,Or,L

c22
τ1

, . . . , c22
τ69

(Ex. CCX b)

c22
τ1
→ ¬c0

τ1
, . . . , c22

τ69
→ ¬c0

τ69
(Ex. CCX c)

Once we run a SAT solver on any of the previous SAT instances, if there exists a
CA(22; 2, S), it will return a satisfying truth assignment. To recover the particular CA(22; 2, S)
implicitly found by the solver, we just need to check the assignment to the xi,p,v variables.
For example, if x1,OS,L is True then parameter OS takes value Linux at test 1.

3.2 Preprocessing for the MCAC problem

In the context of the Covering Array Number problem, we define an upper bound
ub and a lower bound lb to be integers such that ub ≥ CAN(t, S) > lb. When
ub = lb + 1, we can stop the search and report ub as the minimum covering array
number CAN(t, S).

To get an initial value for ub, we can execute a greedy approach to obtain a sub-
optimal CA(N; t, S) and set ub to N. For example, in the experiments, we use the
tool ACTS [34] that supports Mixed Covering Arrays with Constraints. Moreover, a
lower ub also implies a smaller initial encoding.

Additionally, by inspecting the solution, i.e., the test cases that certify the subop-
timal CA(N; t, S), we can compute which tuples are not covered, the set of forbidden
tuples, since the suboptimal CA(N; t, S) guarantees to cover all allowed t-tuples.

Furthermore, let r be the maximum number of allowed t-tuples associated with
any parameter tuple of length t. Then, we can set lb = r − 1, since these r value
tuples (mutually exclusive) need to be covered by different test cases.

Algorithm ForbiddenTuples: Detection of forbidden tuples.

1 Input: SUT model S, SAT solver sat
2 sat.add(SatN=1,t,S

CX [X, SUTX])
3 T f = ∅
4 for τ ∈ T do
5 A ← {x1,p,v|(p, v) ∈ τ}
6 if sat.solve(A) = UNSAT then T f ← T f ∪ {τ}
7 return T f

To detect the forbidden tuples, we can apply the algorithm ForbiddenTuples.
This algorithm tests, for every tuple τ (lines 4-6), if it is compatible with the SUT
constraints (line 2) through a SAT query; if the solver results in unsatisfiability (line
6), the tuple is added to the set of forbidden tuples T f , which is ultimately returned
by the algorithm (line 7).
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For t = 2, which is already of practical importance [70], the experiments carried
out in this chapter show that this detection process is negligible runtime-wise.

3.3 Symmetry Breaking for the MCAC problem

As [101], we fix the r t-tuples that conducted us to set the initial lb (see section 3.2)
to test cases {1, . . . , r}. This helps us break row symmetries for the first r test cases.
We will refer to this as fixed-tuple symmetry breaking.

There are other alternatives. We can impose row symmetry breaking constraints
as [47]; since each row (test) represents a number in base 2, we can add constraints to
order the tests in monotonic increasing order, from test 0 to test N − 1. We can also
apply, as explained above, fixed-tuple symmetry breaking to the first r tuples (first
partition) and apply row symmetry breaking constraints to the remaining ub− lb+ 1
test cases (second partition). Furthermore, we can impose an order among the tuples
in the first partition and the second partition, so that if two sets share the same value
for the fixed tuple, then the one representing the lower number must be in the first
partition.

Our experimental analysis shows that fixed-tuple symmetry breaking is superior
to any other of the mentioned alternatives. For lack of space, we restricted all the
experiments to this symmetry breaking approach.

Example 12. We show how to apply symmetry breaking to the SUT in Example 5. (Os, Re)
is the parameter tuple with the largest number of allowed tuples, being |Ta| = 18. To apply
the fixed-tuple symmetry breaking variant, we just need to fix each allowed value tuple in a
different test as shown below:

x1,Os,L ∧ x1,Re,K

x2,Os,L ∧ x2,Re,F

... (Ex. SYM X)
x18,Os,A ∧ x18,Re,W

3.4 Solving the CAN(t, S) problem with Incremental SAT

In this section, we present the CALOT algorithm, which is an incremental SAT ap-
proach for computing optimal covering arrays with SUT constraints described by
[101]. The input to the algorithm is an upper bound ub (computed as in section
3.2), the strength t and the SUT model S. In line 2, the incremental SAT solver is
initialized with the SAT instance SatN=ub,t,S

CCX . Additionally, breaking symmetries for
the first lb + 1 tuples, as described in section 3.3, are added to the SAT solver. The
output is the covering array number and an optimal model.

The algorithm works by iteratively decreasing the ub till it reaches lb + 1 (line
5) or the current SAT instance is unsatisfiable (line 6). To decrease the ub by one,
the algorithm adds the set of unit clauses

∧
τ∈Ta

ci−1
τ (line 7), which state that every

t-tuple is covered by a test case with an index smaller than i.
There is a subtle detail in lines 9 and 10. Whenever the algorithm finds a new

upper bound, variables xi,p,v related to the previous upper bound are fixed to the
value in the last model found (bmodel in line 8), so that these variables do not need to
be decided in the next iterations. As [101] report, not fixing these variables can have
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Algorithm CALOT: Algorithm 2 in [101]

1 Input: upper bound ub, strength t, SUT model S
2 sat.add(SatN=ub,t,S

CCX )
3 Fix lb + 1 value tuples to break symmetries (see Section 3.3)
4 bmodel ← ∅
5 for i = N, ..., lb + 1 do
6 if sat.solve() = UNSAT then return (i, bmodel)

7 sat.add(
∧

τ∈T ci−1
τ )

8 bmodel ← sat.model
9 for τ ∈ Ta do

10 for (p, v) ∈ τ do bmodel [xi,p,v] ? sat.add({xi,p,v}) : sat.add({¬xi,p,v})
11 return (lb + 1, bmodel)

some negative impact on the performance.

Remark 2. The original algorithm pseudocode is slightly different [101]. First, it
assigns the i-th test at iteration i to the value it had in the previous model found
instead of assigning the i + 1-th test. This does not correspond to the description
given in the text of the paper and may lead to an incomplete algorithm.

Second, the set of constraints (a) (CCX), described in [101], does not set cN
τ to True

as we do in this work, which makes the pseudocode perform a dummy first step that
can cause to report a wrong optimum. We think that these are merely errors in the
description, and we have fixed them. Since the tool CALOT is not available from the
authors for reproducibility, we have tried to do our best to reproduce (or extend) the
idea behind their work.

In section 3.6, we will see that this SAT incremental approach resembles how
SAT-based MaxSAT algorithms behave [4, 85]. Actually, in contrast to [101], we show
that MaxSAT technology can be effectively applied to solve Covering Arrays.

3.5 The CAN(t, S) problem as Partial MaxSAT

[5] proposes an encoding into Partial MaxSAT to build covering arrays without con-
straints of minimum size. The main idea is to use an indicator variable ui that is True
iff test case i is used to build the covering array. The objective function of the opti-
mization problem, which aims to minimize the number of variables ui set to True, is
encoded into Partial MaxSAT by adding the following set of soft clauses:∧

i∈[lb+2...N]

(¬ui, 1) (So f tU)

Notice that we only need to use N − (lb + 1) indicator variables since we know that
the covering array will have at least lb + 1 tests (see section 3.2).

To avoid symmetries, it is also enforced that if test case i + 1 belongs to the min-
imum covering array, so does the previous test case i:∧

i∈[lb+2...N−1]

(ui+1 → ui) (BSU)



Chapter 3. Mixed Covering Arrays with Constraints through Maximum
Satisfiability

23

Then, variables ui are connected to variables ci
τ, expressing that if we want test i

to be the proof that τ is covered, then test i must be in the optimal solution 3:∧
i∈[lb+2...N]

∧
τ∈Ta

(ci
τ → ui) (CU)

Proposition 3. Let PMSatN,t,S,lb
CX be So f tU ∧ BSU ∧ CU ∧ SatN,t,S

CX . If N ≥ CAN(t, S),
the optimal cost of the Partial MaxSAT instance PMSatN,t,S,lb

CX is CAN(t, S)− (lb+ 1),
otherwise it is ∞.

In order to build the Partial MaxSAT version of SatN,t,S
CCX , we just need to change

how variables ui are related to variables ci
τ. This constraint reflects that if ui is False

(i.e., test i is not in the solution and, therefore, due to constraint BSU, none of the
tests > i cannot be in the solution either), then the tuple τ has to be covered at some
test below i: ∧

i∈[lb+2...N]

∧
τ∈Ta

(¬ci−1
τ → ui) (CCU)

Proposition 4. Let PMSatN,t,S,lb
CCX be So f tU∧BSU∧CCU∧SatN,t,S

CCX . If N ≥ CAN(t, S),
the optimal cost of the Partial MaxSAT instance PMSatN,t,S,lb

CCX is CAN(t, S)− (lb+ 1),
otherwise it is ∞.

Remark 3. In [5], variables ui are instead connected to variables xi,p,v in the following
way: ∧

i∈[N]

∧
p∈P

(ui ↔
∨

v∈d(p)

xi,p,v) (XU)

This is a more compact encoding but it requires equation X to use an AMO constraint
instead of an EO constraint.

Finally, we can convert these Partial MaxSAT instances into Weighted Partial
MaxSAT modifying So f tU as follows:∧

i∈[lb+2...N]

(¬ui, wi) (WSo f tU)

If we use wi = 2i−(lb+2) we naturally introduce a lexicographical preference in the
soft constraints. This is a key detail to alter the behaviour of SAT-based MaxSAT al-
gorithms when solving Covering Arrays. If the MaxSAT solver applies the stratified
approach [10] (see for more details section 3.6), it suffices to use wi = i− (lb+ 2) + 1,
i.e., to increase the weights linearly. This is of interest since a high number of tests in
WSo f tU can result in too large weights for some MaxSAT solvers.

Proposition 5. Let WPMSatN,t,S,lb
CCX be WSo f tU ∧ BSU ∧ CCU ∧ SatN,t,S

CCX .
If N ≥ CAN(t, S) and wi = 2i−(lb+2) the optimal cost of the Weighted Partial

MaxSAT instance WPMSatN,t,S,lb
CCX is 2CAN(t,S)−(lb+1) − 1, otherwise it is ∞.

If N ≥ CAN(t, S) and wi = i − (lb + 2) + 1 the optimal cost of the Weighted
Partial MaxSAT instance WPMSatN,t,S,lb

CCX is (1 + n) · n/2 where n = CAN(t, S) −
(lb + 1), otherwise it is ∞.

3Notice that τ could be covered by other tests but the respective ci
τ variables be False.
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Example 13. We extend our working example to obtain the Partial MaxSAT and Weighted
Partial MaxSAT encodings described in this section. We first describe how we encode So f tU
(left) and BSU (right) constraints:

(¬u22, 1)
(¬u21, 1)
(¬u20, 1)
(¬u19, 1)

u22 → u21

u21 → u20

u20 → u19

(Ex. SoftU and BSU)

Recall that in our example ub = 22 and lb = 17 (see Examples 11 and 12). Therefore,
we will have N − (lb + 1) = 22− (17 + 1) = 4 ui indicator variables.

To build the PMSatN=22,t=2,S,lb=17
CX instance we add to SatN=22,t=2,S

CX the CU constraint:

c22
τ1
→ u22, . . . , c22

τ69
→ u22

c21
τ1
→ u21, . . . , c21

τ69
→ u21 (Ex. CU)

c20
τ1
→ u20, . . . , c20

τ69
→ u20

c19
τ1
→ u19, . . . , c19

τ69
→ u19

To build PMSatN=22,t=2,S,lb=17
CCX we add to SatN=22,t=2,S

CCX the CCU constraint:

¬c21
τ1
→ u22, . . . , ¬c21

τ69
→ u22

¬c20
τ1
→ u21, . . . , ¬c20

τ69
→ u21 (Ex. CCU)

¬c19
τ1
→ u20, . . . , ¬c19

τ69
→ u20

¬c18
τ1
→ u19, . . . , ¬c18

τ69
→ u19

The weighted counterparts, WPMSatN=22,t=2,S,lb=17
CX and WPMSatN=22,t=2,S,lb=17

CCX , need
only to replace So f tU by WSo f tU (using wi = i− (lb + 2) + 1), as follows:

(¬u22, 4)
(¬u21, 3) (Ex. WSoftU)
(¬u20, 2)
(¬u19, 1)

To build the resulting MCAC from the MaxSAT solver truth assignment, we will discard
the xi,p,v vars whose corresponding ui is assigned to False (i.e. test i does not belong to the
solution), and proceed as in Example 11.

3.6 Solving the CAN(t, S) problem with MaxSAT

In this section, we show that SAT-based MaxSAT approaches can simulate4 the CALOT
algorithm, while the opposite is not true. This is an interesting insight since the

4By simulate, we informally refer to perform the same sequence of upper bound refinements and
the same filtering based on unit propagation.
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MaxSAT approach additionally provides the option of applying a plethora of MaxSAT
algorithms.

Let us first introduce a short description of SAT-based MaxSAT algorithms. For
further details, please consult [4, 85]. Roughly speaking, SAT-based MaxSAT algo-
rithms proceed by reformulating the MaxSAT optimization problem into a sequence
of SAT decision problems. Each SAT instance of the sequence encodes whether there
exists an assignment to the MaxSAT instance with a cost less than or equal to a cer-
tain k. SAT instances with a k less than the optimal cost are unsatisfiable, while the
others are satisfiable. The SAT solver is executed in incremental mode to keep the
clauses learnt at each iteration over the sequence of SAT instances. Thus, SAT-based
MaxSAT can also be viewed as a particular application of incremental SAT solving.

There are two main types of SAT-based MaxSAT solvers: (i) model-guided and
(ii) core-guided. The first ones iteratively refine (decrease) the upper bound and
guide the search with satisfying assignments (models) obtained from satisfiable SAT
instances. The second ones iteratively refine (increase) the lower bound and guide
the search with the unsatisfiable cores obtained from unsatisfiable SAT instances.
Both have strengths and weaknesses, and hybrid approaches exist [13, 12].

3.6.1 The Linear MaxSAT Algorithm

The Linear algorithm [46, 72], described in Algorithm Linear, is a model-guided
algorithm for WPMaxSAT. Let ϕ = ϕs ∪ ϕh (line 1) be the input WPMaxSAT instance,
where ϕs (ϕh) is the set of soft (hard) clauses in ϕ.

Algorithm Linear: Linear SAT-based algorithm

1 Input: Weighted Partial MaxSAT formula ϕ ≡ ϕs ∪ ϕh, SAT solver sat
2 sat.add(ϕh)
3 sat.add({ci ∨ bi|(ci, wi) ∈ ϕs})
4 ub← ∑(ci ,wi)∈ϕs

wi + 1
5 pb← ∑(ci ,wi)∈ϕs

wi · bi ≤ ub− 1
6 sat.add(pb.to_cn f )
7 while True do
8 if sat.solve() = UNSAT then return (ub, sat.model)
9 ub← ∑(ci ,wi)∈ϕs

wi · sat.model[bi]

10 sat.add(pb.update(ub− 1))

At each iteration of the Linear algorithm, the SAT instance solved by the incre-
mental SAT solver is composed of: (i) the hard clauses ϕh (line 2), which guarantee
that any possible solution is a feasible solution; (ii) the reification of each soft clause
(ci, wi) ∈ ϕs into clause (ci ∨ bi), where bi is a fresh auxiliary variable which acts as a
collector of the truth value of the soft clause (line 3); and (iii) the CNF translation of
the PB constraint ∑(ci ,wi)∈ϕs

wi · bi ≤ k, where k = ub− 1 bounds the aggregated cost
of the falsified soft clauses, i.e., the value of the objective function.

Initially, ub is set to (∑(ci ,wi)∈ϕs
wi + 1) (line 4), that is semantically equivalent to

∞. Then, iteratively, if the incremental SAT solver returns satisfiable, ub is updated
to (∑(ci ,wi)∈ϕs

w · sat.model[bi]) (line 9) 5; otherwise, ub is the optimal cost (line 8). If
the input instance is unsatisfiable the algorithm returns ∑(ci ,wi)∈ϕs

wi + 1 (i.e., ∞).

5sat.model[bi] is 1 if bi is assigned to True in the model, otherwise it is 0.
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A technical point to mention is that the PB constraint is translated into SAT
thanks to an incremental PB encoding (line 5) so that whenever we tighten the upper
bound, instead of retracting the original PB constraint and encode the new one, we
just need to add some additional clauses (line 10). Additionally, if all the weights in
the soft clauses are equal, instead of using an incremental PB encoding, we can use
an incremental cardinality encoding for which more efficient encodings do exist.

Proposition 6. The Linear algorithm with Weighted Partial MaxSAT instance WPMSatN,t,S,lb
CCX

as input can simulate the CALOT algorithm (excluding lines 9 and 10).

In the first place notice that in the worst case the Linear algorithm will decrease
the current upper bound by one unit as the algorithm CALOT. Then, the key point
establishing the connection of the Linear algorithm with the CALOT algorithm is to
show that, given the same upper bound k to both algorithms, the Linear algorithm
can propagate the same set of ci−1

τ variables (line 7 in algorithm CALOT).
Let us recall that the Linear algorithm, with input ϕ ≡ WPMSatN,t,S,lb

CCX , will
generate a sequence of SAT instances composed of the original hard clauses ϕh,
the reification of the soft clauses

∧
(ci ,wi)∈ϕs

(ci ∨ bi), the translation to CNF of the
PB constraint ∑(ci ,wi)∈ϕs

wi · bi ≤ k, where (ci, wi) represents the i-th soft clause in
WPMSatN,t,S,lb

CCX , i.e., (¬ui, 2i−(lb+2)) when using the exponential increase, and the
current upper bound k.

Proposition 7. If ϕ ≡WPMSatN,t,S,lb
CCX , then

CCU∧∧
(¬ui ,2i−(lb+2))∈ϕs

(¬ui ∨ bi)∧∑(¬ui ,2i−(lb+2))∈ϕs
2i−(lb+2) · bi ≤ k ⊢UP

∧
k<i≤N+1

∧
τ∈Ta

ci−1
τ .

First of all, notice that the weight of a higher index test is strictly greater than the
aggregated weights of the lower index tests. Given an upper bound k, an efficient
CNF translation of the PB constraint will allow Unit Propagation (UP) to derive that
all bs associated with soft clauses with a weight greater than k must be False. Then,
from the set of clauses that reify the soft clauses (of the form ¬ui ∨ bi), UP will also
derive that the corresponding ui vars must be False and, from the set of hard clauses
CCU, UP will derive that the corresponding ci−1

τ must be true.
If the input problem is a Partial MaxSAT instance, i.e., PMSatN,t,S,lb

CCX where the i-th
soft clause is of the form (¬ui, 1), the Linear algorithm uses a cardinality constraint
instead of a PB constraint to bound the aggregated cost of the falsified soft clauses.
In this case, we can only guarantee that CCU ∧∧

(¬ui ,1)∈ϕs
(¬ui ∨ bi)∧∑(¬ui ,1)∈ϕs

bi ≤
k |= ∧

k<i≤N+1
∧

τ∈Ta
ci−1

τ . Notice that, given an upper bound k, UP cannot derive
on ∑(¬ui ,1)∈ϕs

bi ≤ k the set of bis that must be False, because all correspond to soft
clauses of equal weight.

CALOT algorithm cannot simulate the Linear Algorithm: While the CALOT
algorithm decreases the upper bound by one at each iteration, the Linear algorithm
can decrease it more aggressively. This is the case when it finds a model with a lower
cost than k− 1 (line 9), which can significantly reduce the number of calls to the SAT
solver.

3.6.2 The WPM1 MaxSAT algorithm

The Fu&Malik algorithm [49] is a core-guided SAT-based MaxSAT algorithm for
Partial MaxSAT instances. In contrast to the Linear algorithm, which uses the models
to iteratively refine the upper bound, the Fu&Malik algorithm uses the unsatisfiable
cores to refine the lower bound. In particular, the initial SAT instance φ0 explored
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by the Fu&Malik algorithm is composed of the hard clauses in the input MaxSAT
instance ϕh plus the SAT clauses ci extracted from the soft clauses (ci, wi). We refer to
these ci clauses as soft-indicator clauses.

At each iteration, if φk is satisfiable, the optimum is k. If φk is unsatisfiable, the
clauses in the unsatisfiable core retrieved by the SAT solver are analyzed. If none
of the clauses is a soft-indicator clause, the Partial MaxSAT formula is declared un-
satisfiable and the algorithm stops. Otherwise, the core tells us that we need to
relax the soft-indicator clauses, i.e., we need to violate more clauses. To construct
the next instance, φk+1, each soft-indicator clause in the core of φk is relaxed with a
fresh auxiliary variable b and a hard EO cardinality constraint is added on these new
variables, indicating that at least one clause must be violated (this is what the core
told us) and at most one clause is violated (this prevents jumping over the optimum).

The WPM1 algorithm [11, 83] is an extension of the Fu&Malik algorithm that
solves Weighted Partial MaxSAT instances by applying the split rule for weighted
clauses. In particular, we are interested in using the Stratified WPM1 algorithm
(WPM1) [10], which clusters the input clauses according to their weights6. These
clusters were originally named as strata in [10]. The algorithm incrementally merges
the clusters solving the related subproblem until all clusters have been merged. In
its simpler version, all the clauses in a cluster have the same weight (called the rep-
resentative weight), and clusters are added in decreasing order with respect to the
representative weight, but other strategies can also be applied [10].

Algorithm WPM1: Stratified WPM1

1 Input: Weighted Partial MaxSAT formula ϕ, SAT solver sat
2 ϕwk, ϕre, status← ∅, ϕ, SAT
3 while True do
4 if status = SAT then
5 sat.add(ϕst ← next_stratum(ϕwk, ϕre))
6 ϕwk, ϕre ← ϕwk ∪ ϕst, ϕre \ ϕst

7 if (status← sat.solve()) = SAT then
8 if ϕre = ∅ then return (cost(sat.model, ϕ), sat.model)

9 else
10 if (to_relax ← core_analysis(ϕwk, sat.core)) = ∅ then return (∞, ∅)
11 relaxed, B, residuals← split_and_relax(to_relax, sat.n_vars)
12 sat.retract(to_relax)
13 sat.add(ϕrx ← relaxed ∪ (CNF(∑b∈B b = 1), ∞))
14 ϕwk, ϕre ← (ϕwk \ to_relax) ∪ ϕrx, ϕre∪ residuals

In the WPM1 algorithm, variable ϕwk represents the formula that contains the
merged clusters (strata) so far, while ϕre represents the remaining weighted clauses
from the original input instance ϕ. Whenever we solve to optimality the current
instance ϕwk, i.e., the SAT solver returned a SAT answer in the last call (line 4) but
ϕre ̸= ∅, function next_stratum updates variable ϕst to the new stratum (cluster) to
be merged with ϕwk

7 (the working SAT instance (line 5) and variables ϕwk, ϕre are
updated accordingly (line 6)). Otherwise, the SAT solver returned UNSAT in the

6Recall that hard clauses have weight ∞.
7In [10], the first call to next_stratum returns the cluster of all hard clauses since their representative

weight is ∞
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previous call, meaning that we are still optimizing the current subproblem ϕwk and
need to call the SAT solver again (line 7).

If the SAT solver returns a SAT answer and all the original clauses in ϕ have been
considered, i.e. ϕre = ∅, then we have optimized the input instance ϕ and return its
cost and an optimal model (line 8).

If the SAT solver returns an UNSAT answer, first we analyze the unsatisfiable
core returned by the SAT solver (line 10) and return the soft-indicator clauses to be
relaxed in variable to_relax, if any; otherwise, we have certified that the set of hard
clauses is unsatisfiable, i.e., we return cost ∞ and an empty model.

Function split_and_relax (line 11) first applies the split rule to the soft-indicator
clauses in to_relax and generates two sets, one where all the clauses are normalized
to have the minimum weight, and another with the residuals of each clause with
respect to the minimum weight in to_relax. Second, the set of clauses with the min-
imum weight are extended, each with an additional fresh variable and stored in the
set relaxed as in the Fu&Malik algorithm. The new fresh variables are returned in
set B.

Finally, the original set of clauses to_relax is retracted from the SAT solver (line
12), and the new set relaxed is added to the working SAT instance plus the cardinality
constraint that increases the lower bound as in the Fu&Malik algorithm (line 13)8.
In line 14, ϕwk is updated to reflect the changes in the SAT working formula, and the
remaining formula ϕre is extended with the residuals generated from the application
of the split rule.

As a final remark, notice that if the statements in grey boxes of the WPM1 algo-
rithm are erased and function next_stratum is instructed to report sequentially, first
the hard clauses and then the soft clauses, we get the original Fu&Malik algorithm.

In the context of the Covering Array Number problem, the Fu&Malik algorithm
on the PMSatN,t,S,lb

CCX instance will perform a bottom-up search, i.e, the first query
will correspond to the question of whether the covering array can be constructed
with k = 0 tests, then with k = 1 tests, etc. This approach does not provide any
intermediate upper bounds since the only query answered positively corresponds
to the optimum.

However, interestingly, by considering the weighted version of the Fu&Malik
algorithm, we can perform a top-down search on the Covering Array problem and
provide intermediate upper bounds.

Proposition 8. The Stratified WPM1 algorithm with input WPMSatN,t,S,lb
CCX can simu-

late the CALOT algorithm (excluding lines 9 and 10).

Back to the context of covering arrays, each cluster in WPMSatN,t,S,lb
CCX would be

composed of a single soft clause (¬ui, wi), except the cluster containing all the hard
clauses. The first subproblem seen by the Stratified WPM1 algorithm encodes the
query of whether one can build a covering array using N tests. The next subprob-
lem incorporates the first soft clause (¬uN , wN) and encodes the query of whether
one can construct the covering array using N − 1 tests. Notice that each ¬ui will
propagate, according to CCU, the corresponding ci−1

τ vars as in the CALOT algo-
rithm. Notice also that every solution of a subproblem is an upper bound for the
covering array.

The discussion of this section has provided insights into how to solve Covering
Arrays through MaxSAT, but also into how to fix similar difficulties in other prob-
lems where MaxSAT is not yet effective enough.

8Notice that (CNF(∑b∈b_vars b = 1), ∞) is a set of clauses that have ∞ weight.
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3.6.3 Test-based Streamliners for the CAN(t, S) problem

Notice that a solution for a CAN(t, S) problem can be extended to multiple solutions
in the previous MaxSAT translations. This happens when CAN(t, S) < N, since the
assignment to the x vars related to any test i with i > CAN(t, S) (useless from the
point of view of the CAN(t, S) problem) still needs to be consistent with the X and
SUTX constraints. In general, notice that SUTX can be NP-complete.

Lines 9 and 10 of the CALOT algorithm, as described in section 3.4, fix that prob-
lem but cannot directly be applied within MaxSAT algorithms since the solver is not
aware of the CAN(t, S) problem semantics.

However, we can reproduce a similar effect. At the preprocessing step, we can
build a dummy test case υ by computing a solution to Sφ (e.g. with a SAT solver) or
select any of the test cases in the solution returned by the ACTS tool when comput-
ing the upper bound (see section 3.2). Then, we can state in the MaxSAT encoding
that if a given test i is not part of the optimal solution (i.e., ui is False), then the
corresponding x vars are set to the value in the test case υ.

∧
i∈[lb+2...N]

¬ui →
∧

(p,v)∈υ

xi,p,v

 (NUX)

The dummy test case υ exactly plays the role of the so-called streamliner con-
straints [57], which rule out some of the possible solutions but make the search of
the remaining solutions more efficient.

There is yet another way to mitigate that potential bottleneck. We can indeed
extend SUTX clauses for test i with literal ¬ui. Therefore, whenever test i is no
longer in the optimal solution (i.e. ui is False), the corresponding SUT constraints
are trivially satisfied. However, in the experimental investigation, we confirmed that
this option is less efficient than adding NUX clauses.

Example 14. For the SUT in Example 5, let us assume that we use the following dummy
test υ = {(Os, L), (Pl, C), (Re, K), (Or, L)}. Then, the NUX encoding for υ is:

¬u22 → (x22,Os,L ∧ x22,Pl,C ∧ x22,Re,K ∧ x22,Or,L)

¬u21 → (x21,Os,L ∧ x21,Pl,C ∧ x21,Re,K ∧ x21,Or,L) (Ex. NUX)
¬u20 → (x20,Os,L ∧ x20,Pl,C ∧ x20,Re,K ∧ x20,Or,L)

¬u19 → (x19,Os,L ∧ x19,Pl,C ∧ x19,Re,K ∧ x19,Or,L)

3.7 The T(N; t, S) problem as Weighted Partial MaxSAT

For some applications, we may not be able to use as many test cases as the covering
array number (e.g. due to budget restrictions), but we may still be interested in solv-
ing the Tuple Number problem, i.e., to determine the maximum number of covered
t-tuples we can get with a test suite of fixed size.

Once again, MaxSAT technology can play an important role when SUT con-
straints are considered. Moreover, the size of the SAT/MaxSAT encodings for this
problem are smaller than encodings for computing the Covering Array Number,
since fewer tests are taken into consideration.

In the following, we show how we can modify the SatN,t,S
CX and SatN,t,S

CCX formulae
to become Partial MaxSAT encodings of the Tuple Number problem.
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The basic idea is that we need to soften the hard restriction that enforces all al-
lowed t-tuples to be covered. To this end, we modify the SAT instance SatN,t,S

CX as
follows: First, we soften all the clauses from equation C which encode that every
t-tuple τ must be covered by at least one test case, therefore allowing to violate (or
relax) these constraints. For the sake of clarity, although not required for soundness,
we introduce a new set of indicator variables cτ that reify each ALO constraint in
equation C by introducing the following hard constraints:∧

τ∈Ta

(cτ ↔
∨

i∈[N]

ci
τ) (RC)

Then, we add the following set of soft clauses:∧
τ∈Ta

(cτ, 1). (So f tC)

Finally, we we replace in SatN,t,S
CX the set of constraints C (the hard constraint that

forced to cover all the tuples) by the previous two sets of constraints.

Proposition 9. Let S be a SUT model and let TPMSatN,t,S
CX be SatN,t,S

CX

{
So f tC∧RC

C

}
.

The optimal cost of TPMSatN,t,S
CX is |Ta| − T(N; t, S).

Remark 4. Even if N > lb, we cannot use fixed-tuple symmetry breaking since
we do not know whether the t-tuples that we fix will lead to an optimal solution.
Therefore, fixed-tuple symmetry is disabled for all the encodings in this section.

Remark 5. When computing the tuple number, we can avoid the step of detecting
all forbidden tuples since the encoding remains sound, i.e., we can interchange Ta by
T . Notice that those cτ vars related to forbidden tuples will always be set to False.
Moreover, notice that a core-guided algorithm may potentially detect easily as many
unsatisfiable cores as forbidden tuples which include just the unit soft clause that
represents the forbidden tuple.

In case we want to extend SatN,t,S
CCX to compute the tuple number, we just need

to notice that the previously defined role of cτ corresponds exactly to variable cN
τ in

SatN,t,S
CCX , so we just need to soften the hard unit clauses cN

τ (described in CCX) with
weight 1.

Proposition 10. Let S be a SUT model and let TPMSatN,t,S
CCX be SatN,t,S

CCX

{
(cN

τ ,1)
(cN

τ )

}
. The

optimal cost of TPMSatN,t,S
CCX is |Ta| − T(N; t, S).

Example 15. We show how to build TPMSatN=22,t=2,S
CX for the SUT in Example 5.

We must create a new variable cτ for each value tuple in Ta and then replace constraint
C in SATN=22,t=2,S

CX (see Example 11) by RC (left). Finally, we have to add the So f tC soft
clauses (right):

cτ1 ↔ (c1
τ1
∨ c2

τ1
∨ · · · ∨ c22

τ1
)

...

cτ69 ↔ (c1
τ69
∨ c2

τ69
∨ · · · ∨ c22

τ69
)

(cτ1 , 1)
...

(cτ69 , 1)

(Ex. RC and SoftC)

For the TPMSatN=22,t=2,S
CXX , we just have to soften, with weight 1, the set of clauses from

CCX (b) in SATN=22,t=2,S
CCX (see Example 11).
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In what follows, we present two extensions.

3.7.1 Combining the CAN(t, S) and T(N; t, S) problems

The Covering Array and Tuple Number problems can lead to thinking about a more
general formulation of the optimization problem where we want to maximize the
number of covered t-tuples while minimizing the number of test cases. Notice that
it will depend on the value of N with respect to the covering array number (not
necessarily known a priori) whether we are, in essence, solving the covering array
number or the tuple number problem.

To this end, we take the PMSatN,t,S,lb
CX encoding of the Covering Array Number

problem for a SUT model S, N tests and strength t. As earlier shown in this section,
we first replace the set of hard constraints C by RC and So f tCWU.∧

τ∈Ta

(cτ, |ui|+ 1). (So f tCWU)

Notice that we prefer violating all soft clauses (¬ui, 1) over violating a single soft
clause (cτ, |ui|+ 1). This way, we guarantee that any solution to our new Weighted
Partial MaxSAT instance maximises the number of covered t-tuples while minimises
the number of needed test cases.

Proposition 11. If N ≥ CAN(t, S), the optimal cost of the Weighted Partial MaxSAT
instance PMSatN,t,S,lb

CX

{
So f tCWU∧RC

C

}
is CAN(t, S) − (lb + 1) + (|Ta| − T(N; t, S)) ·

(|ui|+ 1), otherwise it is N − (lb + 1) + (|Ta| − T(N; t, S)) · (|ui|+ 1). 9

The same idea can be applied to PMSatN,t,S,lb
CCX by softening the unit hard clauses

(cN
τ ) in equation (b) from CCX with weight |ui|+ 1. Here, it is important to recall the

discussion in section 3.1 on the need of equation (c) in CCX. The other, perhaps more
natural, alternative was to replace equation (c) in CCX by

∧
τ∈Ta
¬c0

τ. The problem
arises when, in an optimal solution, τ is not covered, what also implies that (cN

τ ) is
False. Notice that we need to satisfy all clauses related to τ in CCX but, in order
to do that, we need to set all ci

τ vars to False. This may not be compatible with
equation CCU (clauses of the form ¬ci−1

τ → ui) when some test i is discarded to be
in the solution and variable ui is set to False, since UP will derive in CCU that ci−1

τ

is True. In this case, a contradiction is reached. On the other hand, as discussed
in section 3.1, equation (c) allows to set all ci

τ vars to True when (cN
τ ) is False and

trivially satisfy all clauses in CCX related to τ.

Proposition 12. If N ≥ CAN(t, S), the optimal cost of the Weighted Partial MaxSAT
instance PMSatN,t,S,lb

CCX

{
So f tCWU

(cN
τ )

}
is CAN(t, S)− (lb+ 1)+ (|Ta|−T(N; t, S)) · (|ui|+

1), otherwise it is N − (lb + 1) + (|Ta| − T(N; t, S)) · (|ui|+ 1). 9

3.7.2 The CAN(t, S) problem with Relaxed Tuple Ratio Coverage as MaxSAT

We can tackle other realistic settings where we still want to use the minimum num-
ber of tests, but there is no need to achieve a 100% ratio of covered t-tuples (manda-
tory per definition in Covering Arrays). Notice that the last tests that shape the
covering array number tend to cover very few not yet covered t-tuples. Therefore, if

9Notice that if N ≥ CAN(t, S), then |Ta| − T(N; t, S) is 0. However, we keep this expression in case
we want to interchange Ta by T . i.e., if we do not prefilter the forbidden tuples (see Remark 5).
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these tests are expensive enough in our setting, we may consider relaxing the ratio
coverage and skip these tests.

The mentioned problem can be encoded by replacing the previously soft con-
straints on the cτ vars with a hard cardinality constraint on the minimum number of
t-tuples to be covered as follows:

∑
τ∈Ta

cτ ≥ ⌈|Ta| · rt⌉ (CCard)

where rt is the ratio of allowed t-tuples that we want to cover. Notice that, for effi-
ciency reasons, CCard can be also described as ∑τ∈Ta

¬cτ ≤ ⌈|Ta| · (1− rt)⌉.

Remark 6. With this formulation, we cannot use the fixed-tuples symmetry breaking
since we do not know whether we will require at least lb tests to cover the specified
ratio of allowed t-tuples.

Proposition 13. Let RTPMSatN,t,S,rt
CCX be PMSatN,t,S,lb=0

CCX

{
CCard
(cN

τ )

}
. The optimal cost of

RTPMSatN,t,S,rt
CCX is the minimum N′ such that T(N′, t, S) ≥ ⌈|Ta| · rt⌉.

3.8 Incomplete MaxSAT Algorithms for the T(N; t, S) prob-
lem

As argued earlier, if certifying optimality is not a requirement and we are just inter-
ested in obtaining a good suboptimal solution in a reasonable amount of time, we
can apply incomplete MaxSAT algorithms on the encodings of the Tuple Number
problem described in the previous section. Additionally, in this section, we present
a new incomplete algorithm to compute suboptimal solutions for the Tuple Number
problem.

3.8.1 MaxSAT based Incremental Test Suite Construction

A way to reduce the search space of any constraint problem is to add the so-called
streamliner constraints [57]. We recall that these constraints rule out some of the
possible solutions but make the search for the remaining solutions more efficient.
However, in practice, streamliners can rule out all the solutions.

In our context, the streamliner constraints correspond to a set of tests that we
think have the potential to be part of optimal solutions. By fixing these tests, we
generate a new covering array problem, easier to solve, but whose Covering Array
Number can be greater than or equal to that of the original covering array, because
we may have missed all the optimal solutions. We iterate this process until all t-
tuples get covered. To select the k candidate test to be fixed at each iteration, we
solve the Tuple Number problem restricted to length k.

In the context of the Tuple Number problem, this iterative process of fixing tests
should not only finish when all t-tuples have been covered but also when the re-
quested N tests have been fixed.

To that end, here we combine a greedy iterative approach with the SAT-based
MaxSAT approaches from section 3.7 in the IncrementalCA algorithm.

In this algorithm, we begin with the remaining tuples to cover Tr, initially as-
signed to allowed tuples Ta, as well as an empty test suite Υ (line 2). Then, we first
check how many tests should be encoded; the minimum between the tests in itera-
tion Ni and the remaining number of tests left to complete the test suite, N− |Υ| (line
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Algorithm IncrementalCA: MaxSAT based Incremental Test Suite Con-
struction
1 Input: SUT model S, Tests Ni per iteration, SAT-based MaxSAT solver msat
2 Tr, Υ← Ta, ∅
3 while Tr ̸= ∅ and |Υ| < N do
4 N′ ← min(Ni, N − |Υ|)
5 msat.add

(
TPMSatN′,t,S

CCX

)
6 msat.solve()
7 υ← tests from msat.model
8 Υ← Υ ∪ υ
9 Tr ← Tr \ {τ | υ |= τ}

10 return Υ

4), storing the result into N′. Next, we solve the Tuple Number problem for these N′

tests, encoded as a TPMSatN′,t,S
CCX formula (lines 5, 6) from section 3.7. We extract the

model from the MaxSAT solver, interpreting it into newly found test cases υ (line 7).
Then, those new tests are added to test suite Υ (line 8). Finally, the tuples covered by
these new test cases are removed from Tr (line 9). This iteration is repeated until no
more tuples are left in Tr or we have reached the requested N test cases (line 3), in
which case we return the constructed test suite Υ (line 10).

3.9 Experimental Evaluation

In this section, we report on an extensive experimental investigation conducted to
assess the approaches proposed in the preceding sections. We start by defining the
benchmarks, which include 28 industrial, real-world or real-life instances and 30
crafted instances, and the algorithms involved in the evaluation.

We contacted the authors of [101] and [100] to obtain the benchmarks used in
their experiments. In particular, the available benchmarks are: (i) Cohen et al. [38],
with 5 real-world and 30 artificially generated (crafted) covering array problems; (ii)
Segall et al. [96], with 20 industrial instances; (iii) Yu et al. [102], with two real-life
systems reported by ACTS users; and (iv) Yamada et al. [100], with an industrial
instance named “Company_B”.

Table 3.1 provides information about the System Under Test of each instance,
where SP is the number of parameters and their domain (e.g. the meaning of 22931

in instance 7 is that the instance contains 29 parameters of domain 2 and 1 param-
eter of domain 3); Sφ is the number of SUT constraints and their sizes (e.g. the
meaning of 21332 in instance 7 is that the instance contains 13 constraints of size 2
and 2 constraints of size 3); and # lits CNF(Sφ) is the number of literals of the CNF
representation of Sφ (i.e. the sum of the sizes of all clauses).

Table 3.1 also reports, for t = 2, the following data: ubACTS, which indicates
the upper bound returned by the ACTS tool (see section 3.2); ub≃, which is the best
known upper bound (a star indicates that it is optimal, i.e., CAN(2, S)); lb, which
reports the lower bound (computed as in section 3.2); and |Ta| and |T f |, which report
the number of allowed and forbidden tuples, respectively.

Finally, we also show, for the PMSatN,t=2,S,lb
CCX encoding of each instance, the fol-

lowing information: # vars, which is the number of variables used by this encoding;
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# clauses, which is the number of clauses; # lits, which is the number of literals; and
size (MB), which is the file size of the WCNF formula in MB.

Notice that we focus on t = 2 strength coverage.

System Under Test (SUT) Bounds for t = 2 PMSatN,t=2,S,lb
CCX

Instance SP Sφ

# lits
CNF(Sφ) ubACTS ub≃ lb |Ta| |T f | # vars # clauses # lits size (MB)

Cohen et al. [38]

1 28633415562 2203341 53 48 37 35 23876 474 1158588 2620675 7463282 60.01
2 28633435161 21933 47 32 30* 29 20331 237 657890 1371738 3984183 29.91
3 22742 2931 21 19 18* 15 1838 14 36217 79008 222390 1.47
4 251344251 21532 36 22 20* 19 7530 386 168852 358291 1025536 7.33
5 215537435564 2323641 86 54 45 35 76259 73 4142574 9720622 27451121 236.74
6 2734361 22634 64 25 24* 23 11382 1878 289001 597814 1730859 12.72
7 22931 21332 32 12 9 5 1567 231 19566 49758 132435 0.85
8 210932425363 2323441 80 47 36* 35 33680 1098 1597165 3590459 10247230 84.50
9 25731415161 23037 81 22 20* 19 6835 1720 153584 325984 932515 6.63
10 213036455264 24037 101 47 41 35 52659 2029 2493173 5608369 16010703 135.34
11 28434425264 22834 68 47 39 35 23636 707 1123311 2523897 7200149 57.70
12 213634435163 22334 58 43 36* 35 49522 978 2144718 4675267 13461992 108.23
13 212434415262 22234 56 40 36* 35 38862 1701 1567084 3319517 9632256 75.77
14 281354363 21332 32 39 36* 35 20544 618 810618 1697204 4936072 37.18
15 25034415261 22032 46 32 30* 29 8388 155 273410 569181 1650514 12.10
16 281334261 23034 72 25 24* 23 14600 2303 370051 765960 2218422 16.44
17 212833425163 22534 62 41 36* 35 43390 66 1792402 3835891 11100545 88.14
18 212732445662 2233441 62 52 41 35 50128 28 2625808 6092947 17250882 146.38
19 217239495364 23835 91 51 43 35 98778 114 5064366 11694341 33170488 287.31
20 213834455467 24236 102 60 54 35 64620 3320 3903864 9411047 26386102 227.62
21 27633425163 24036 98 39 36* 35 15442 2742 610938 1279170 3717471 27.90
22 272344162 22032 46 37 36* 35 13405 1181 503127 1028139 3008516 22.48
23 2253161 21332 32 14 12* 11 1495 173 21856 47740 132915 0.85
24 2110325364 22534 62 48 41 35 34204 570 1656252 3748659 10679658 88.30
25 211836425266 2233341 59 52 49 35 46968 52 2461280 5710735 16167454 136.81
26 287314354 22834 68 34 26 24 20921 667 719347 1643461 4647485 36.52
27 25532425162 21733 43 37 36* 35 9714 43 365524 746797 2183919 16.18
28 2167316425366 23136 80 57 50 35 96599 74 5535861 13181074 37087871 322.33
29 21343753 21933 47 29 25* 24 45839 32 1338905 2899941 8321499 64.34
30 2733343 23134 74 22 16* 15 12453 1308 277976 640938 1792681 13.16
apache 215838445161 23314251 22 33 30* 29 66927 3 2221926 4701044 13619419 109.16
bugzilla 2493142 2431 11 19 16* 15 5818 4 112768 247130 697953 4.82
gcc 2189310 23733 83 23 15 8 82770 39 1913568 5063264 13685896 112.78
spins 21345 213 26 26 19* 15 979 13 27050 64498 177169 1.23
spinv 24232411 24732 100 45 33 15 8741 56 401069 1063265 2888090 22.53

Segall et al. [96]

Banking1 3441 5112 560 15 13* 11 102 0 1938 5864 19573 0.11
Banking2 21441 23 6 11 10* 7 473 3 5591 12845 34672 0.21

CommProtocol 21071 210310412524

630730812 704 19 16* 13 285 35 6047 15914 50363 0.29

Concurrency 25 243152 21 6 5* 3 36 4 278 667 1686 0.01
Healthcare1 26325161 23318 60 30 30* 29 361 8 12090 24661 70619 0.44
Healthcare2 253641 2136518 110 16 14 11 466 1 8212 18853 52268 0.31
Healthcare3 21636455161 231 62 38 34* 29 3092 59 121950 271023 768538 5.38
Healthcare4 21331246526171 222 44 49 46* 41 5707 38 287980 619634 1783211 13.14
Insurance 26315162111131171311 - 0 527 527* 526 4573 0 2509047 5009492 14863678 122.95
NetworkMgmt 224153102111 220 40 112 110* 109 1228 20 148402 301059 877206 6.28
ProcessorComm1 233646 213 26 29 21 15 1058 13 32957 80475 219601 1.54
ProcessorComm2 233124852 142121 246 32 25* 24 2525 854 85287 193248 541399 3.73
Services 23345282102 338642 1166 106 100* 99 1819 16 204692 460866 1346965 9.78
Storage1 21314151 495 380 17 17* 14 53 18 1294 4270 13468 0.07
Storage2 3461 - 0 18 18* 17 126 0 2826 5652 15552 0.09
Storage3 2931536181 238310 106 50 50* 39 1020 120 54810 122009 344328 2.47
Storage4 253741526271101131 224 48 136 130* 129 3491 24 495046 1012862 2970799 22.45
Storage5 253853628191102111 2151 302 218 215 109 5342 246 1206084 3020149 8366680 72.16
SystemMgmt 253451 21334 38 17 15* 14 310 14 5935 12813 35376 0.21
Telecom 2531425161 2113149 61 32 30* 29 440 11 15650 32761 93262 0.59

Yu et al. [102]

RL-A 25344754657481123 11224913345 2029 155 153 143 7066 7156 1142671 2491775 7220414 59.32

RL-B
283243536191

101122143201241371
18211273277

417555106462048 27721 767 727 519 17018 5597 13365222 35733711 109278283 1026.60

Yamada et al. [100]

Company2 263484 12235389454534

62073481694 1247 81 72 55 1149 261 100546 252543 744203 5.35

TABLE 3.1: General information of all benchmarks used.

Regarding existing tools for solving Mixed Covering Arrays with Constraints,
the main tool we compare with is CALOT [101]. Unfortunately, CALOT is not avail-
able from the authors but we did our best to reproduce it (see section 3.4), showing
our experimental investigation that the results are consistent with those of [101].
Our implementation of CALOT and all algorithms presented in this chapter can be
found in http://hardlog.udl.cat/static/doc/inc-maxsat-ct/html/index.html,

http://hardlog.udl.cat/static/doc/inc-maxsat-ct/html/index.html
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which we think is also a nice contribution for both the combinatorial testing and
satisfiability communities.

Since all the algorithms presented in this chapter are built on top of a SAT solver,
we compared, when possible, all the algorithms with the same underlying SAT
solver. That is not the case in [101], which may lead to flawed conclusions. In our
experimental investigation we choose Glucose (version 4.1) [16], as most of the state-
of-the-art MaxSAT solvers are built on top of it.

We also use the ACTS tool [34] to compute fast and good enough upper bounds
of the Covering Array Number problem, although it is not competitive with SAT-
based approaches.

The environment of execution consists of a computer cluster with machines equipped
with two Intel Xeon Silver 4110 (octa-core processors at 2.1GHz, 11MB cache mem-
ory) and 96GB DDR4 main memory. Unless otherwise stated, all the experiments
were executed with a timeout of 2h and a memory limit of 18GB. To mitigate the
impact of randomness we executed all the algorithms using five different seeds for
each instance.

The rest of the experimental section is organized as follows. Regarding the Cov-
ering Array Number, in subsection 3.9.1, we compare the CALOT algorithm with
the MaxSAT encodings and SAT-based MaxSAT approaches described in sections
3.5 and 3.6. Regarding the Tuple Number problem, in subsection 3.9.2, we eval-
uate the complete and incomplete MaxSAT algorithms on the encoding described
in section 3.7. Then, in subsection 3.9.3, we evaluate the incomplete approach for
computing the Tuple Number described in section 3.8.

3.9.1 SAT-based MaxSAT approaches for the Covering Array Number prob-
lem

In this experiment, we compare the performance of state-of-the-art SAT-based MaxSAT
solvers with the CALOT algorithm described in section 3.4. We hypothesise that
since these SAT-based MaxSAT algorithms, once executed on the suitable MaxSAT
encodings, can simulate the behaviour of the CALOT algorithm (see Propositions 6
and 8) but the opposite is not true, MaxSAT algorithms may perform similarly or
outperform the CALOT algorithm. This hypothesis would contradict the findings
in [101], where it was reported that the CALOT algorithm clearly dominates the
MaxSAT-based approach in [14]. If our hypothesis is correct, MaxSAT approaches
for solving the Covering Array Number problem would be put back on the agenda.
We focus in anytime algorithms that must be able to report suboptimal solutions 10.

Solvers: The CALOT algorithm (described in section 3.4) and the model-guided
Linear SAT-based MaxSAT algorithm Linear (described in section 3.6) were imple-
mented on top of the OptiLog [7] python framework for SAT solving. This frame-
work includes python bindings for several state-of-the-art SAT solvers and the python
binding to the PBLib [78].

We additionally tested several complete and incomplete algorithms from the
MaxSAT Evaluation 2020 [23]. From complete MaxSAT solvers we tested MaxHS
[21], EvalMaxSAT [20], RC2 [67] and maxino [3]. We only report results for RC2 and
one seed11, as this was the complete solver that reported better results. MaxHS ob-
tained the best results for 2 of the tested instances, but we decided to exclude it from

10We adapted RC2 MaxSAT solver to report suboptimal solutions when applying the stratified strat-
egy (see section 3.6)

11Unfortunately RC2 MaxSAT solver does not allow to specify a seed.
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the comparison since it cannot report upper bounds for most of the instances and it
uses another underlying SAT solver than Glucose41.

Regarding incomplete MaxSAT algorithms we tested Loandra [26], tt-open-wbo-
inc [86] and SatLike [74]. We report results for Loandra and tt-open-wbo-inc as Sat-
Like crashed in some of the tested instances.

MaxSAT encodings: We report results on PMSatN,t,S,lb
CCX and the weighted ver-

sion WPMSatN,t,S,lb
CCX using a linear increase for the weights (wi = i− (lb + 2) + 1, see

equation WSo f tU in section 3.5). We found that WPMSatN,t,S,lb
CCX with the linear and

exponential increase (wi = 2i−(lb+2)) lead to the same performance, but the expo-
nential increase represented a problem for some MaxSAT solvers when i was high
enough.

We further tested the three different alternatives for equation (a) from CCX,
where two reported good results. The first one is the original (a) equation shown
in section 3.1, (ci

τ → ci−1
τ ∨ xi,p,v), which we will refer to as a.0. The second one is the

variation (ci
τ → ci−1

τ ∨ xi,p,v) ∧ (ci
τ ← ci−1

τ ), which we will refer to as a.1.
Results: Table 3.2 shows the results of our experimentation. For each row and

solver column, we give the average size of the minimum MCAC (out of the 5 execu-
tions per instance) and the average runtime. Bold values represent the best results.
In case there are ties in size, the best time is marked. Sizes that have a star represent
that the optimum has been certified in at least one of the five seeds executed for the
current benchmark instance.

Table 3.3 aggregates the information presented in Table 3.2 to analyze the domi-
nance relations among approaches. In particular, we show for each row the number
of wins (W) and loses (L) with respect to each of the approaches in columns, for both
size and run times. We consider that if algorithm A finds a smaller MCAC than B,
then A also needs less runtime than B. In this sense, we will say that an approach
outperforms another if it provides a strictly better solution within the given timeout
or finds the same best suboptimal solution faster. For example, in the ACTS row we
found that it obtains worse sizes than CALOT CCX a.0 in 52 instances (0 W, 52 L in
column size), better runtimes in 2 and worse runtimes in 56 (2 W, 56 L in column
time).

We observe how both tt-open-wbo-inc and loandra outperform the results obtained
by CALOT, improving the sizes in more than 10 of the 58 available instances and, in
the case of tt-open-wbo-inc, we also improve runtimes in more than 40 instances. This
confirms our hypothesis that MaxSAT approaches can simulate and even improve
the results obtained by the CALOT algorithm.

Regarding the different variations of the CCX encoding, we notice that for tt-
open-wbo-inc and loandra, variation a.1 slightly improves results obtained by the orig-
inal variation a.0. In particular, we observe that tt-open-wbo-inc with this specific en-
coding obtains the best size12 in instance RL-B (727), while algorithm CALOT reports
a size of 760. However, this behaviour of the encoding a.1 is not observed in algo-
rithm CALOT, as in this case, the best variation of equation (a) seems to be a.0. These
results suggest that in case we use a new MaxSAT solver we should not discard at
front any encoding variation.

For RC2 and linear approaches we can observe clear differences among them
when applying the PMSatN,t,S,lb

CCX encoding, as linear obtains better sizes and times in
21 and 57 instances respectively. These results show that, for the Covering Array
Number problem, it is more effective to perform a search that incrementally refines
the upper bound as the linear approach does (see section 3.6). However, we observe

12To the best of our knowledge this is the best known upper bound for t = 2 for this instance.
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CALOT
CCX a.0

CALOT
CCX a.1

RC2-B
CCX a.0

RC2-B
CCX a.0 wpm

linear
CCX a.0

loandra
CCX a.0

loandra
CCX a.1

tt-open-wbo-inc
CCX a.0

tt-open-wbo-inc
CCX a.1

tt-open-wbo-inc
CCX a.0 wpm

tt-open-wbo-inc
CCX a.1 wpm

size time size time size time size time size time size time size time size time size time size time size time
W L W L W L W L W L W L W L W L W L W L W L W L W L W L W L W L W L W L W L W L W L W L

ACTS 0 52 2 56 0 52 2 56 21 32 23 35 2 51 4 54 0 52 2 56 3 52 4 54 3 52 4 54 1 52 2 56 0 53 1 57 1 52 2 56 0 53 1 57
CALOT CCX a.0 - - - - 5 3 52 6 21 0 57 1 5 4 53 5 3 2 47 11 3 12 44 14 3 12 44 14 1 13 13 45 0 13 12 46 2 12 15 43 0 12 19 39
CALOT CCX a.1 - - - - - - - - 21 0 57 1 4 3 50 8 5 5 27 31 3 12 42 16 3 11 42 16 1 12 9 49 0 13 6 52 1 10 7 51 0 11 11 47
RC2-B CCX a.0 - - - - - - - - - - - - 0 19 31 25 0 21 1 57 2 20 3 54 2 20 6 51 0 20 1 56 0 21 1 57 0 20 1 56 0 21 1 57
RC2-B CCX a.0 wpm - - - - - - - - - - - - - - - - 3 5 7 51 2 11 8 49 2 10 10 47 0 11 1 56 1 13 4 54 0 9 2 55 1 11 6 52
linear CCX a.0 - - - - - - - - - - - - - - - - - - - - 3 11 41 17 3 11 41 17 1 12 7 51 1 13 4 54 2 11 3 55 1 12 7 51
loandra CCX a.0 - - - - - - - - - - - - - - - - - - - - - - - - 2 7 38 17 4 5 9 48 4 7 9 49 5 3 12 45 3 5 10 48
loandra CCX a.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 3 13 44 6 5 9 49 7 3 13 44 6 5 13 45
tt-open-wbo-inc CCX a.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 3 39 19 4 2 38 19 2 4 42 16
tt-open-wbo-inc CCX a.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 3 21 37 2 3 39 19
tt-open-wbo-inc CCX a.0 wpm - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 4 43 15

TABLE 3.3: Dominance relations for CALOT and SAT-based MaxSAT
approaches for the Covering Array Number problem. Bold values

highlight winning algorithm per size or runtime.

a substantial improvement when using the WPMSatN,t,S,lb
CCX with the RC2 MaxSAT

solver, improving the sizes obtained by its unweighted counterpart in 19 of the 58
instances, which produces similar results than CALOT and PMSatN,t,S,lb

CCX linear ap-
proaches. This is expected since the weighted version forces RC2 to perform a top-
down search as discussed in section 3.6.

We also tested the WPMSatN,t,S,lb
CCX encoding over the tt-open-wbo-inc, a not core-

guided MaxSAT solver. We observe that results are similar or slightly worse than
with the PMSatN,t,S,lb

CCX . We believe the WPMSatN,t,S,lb
CCX encoding is more useful for

core-guided MaxSAT solvers as it modifies their refinement strategy (i.e. improve
the upper bound instead of the lower bound). We also observed that refining the
lower bound for the Covering Array Number problem is more challenging than re-
fining the upper bound, as there are some instances where encoding PMSatN,t,S,lb

CCX
with RC2 (which would refine the lower bound) is not able to report any results,
usually on instances where the CAN is not found.

3.9.2 Weighted Partial MaxSAT approaches for the Tuple Number prob-
lem

Encouraged by the good results of the proposed MaxSAT approaches for the Cov-
ering Array Number problem, we now evaluate the MaxSAT approach described in
section 3.7 on SAT-based MaxSAT approaches for solving the Tuple Number prob-
lem. Notice that the CALOT algorithm only works for solving the Covering Array
Number problem. In this sense, this is a pioneering work on applying SAT technol-
ogy to solve the Tuple Number problem.

Solvers: We choose the tt-open-wbo-inc MaxSAT solver to perform these experi-
ments, as this has been the approach that achieved better results in section 3.9.1.

MaxSAT encodings: We recall there are also some variations of the TPMSatN,t,S,lb
CCX

encoding, due to the way constraint CCX is formulated, i.e. the relation among ci
τ

vars and xi,p,v vars (see remark 1 in section 3.1). According to some preliminary ex-
perimentation we observed that variation (ci

τ ↔ ci−1
τ ∨ xi,p,v), to which we refer as

a.2, reported also good results, while variation a.1 did not and was excluded.
We additionally noticed that, when computing the tuple number, the cost of the

solution returned by the MaxSAT solver when using the original encoding of equa-
tion (a) in CCX, (ci

τ → ci−1
τ ∨ xi,p,v), can indeed overestimate the real cost of the solu-

tion induced by the value of the xi,p,v vars, i.e., the assignments that represent the ac-
tual tests used in the solution. This can happen since it is possible to set to False a ci

τ

even if the right-hand side of the implication is True. Enforcing the other side of the
implication corrects this issue. For these reasons we will use the (ci

τ ↔ ci−1
τ ∨ xi,p,v)

variation of CCX.
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Results: We would like to study the evolution of the number of covered tuples
as a function of the number of tests, as we hypothesise that adding a new test close
to the Covering Array Number (that guarantees all tuples can be covered) will allow
adding very few additional tuples. In that sense, if these tests are expensive enough,
they will not pay off in terms of the available budget and the additional percentage
of coverage we can achieve.

In Figure 3.1, we show the number of tests required to reach a certain percentage
of the tuples to cover for the tt-open-wbo-inc approach. Notice that tt-open-wbo-inc is
an incomplete MaxSAT solver and we are therefore reporting a lower bound on the
possible percentage by a particular number of tests. For lack of space, we only show
the most representative instances of all the benchmark families.

We observe, for all the tested instances, that most of the tuples are covered using
a relatively small number of tests and the remaining tuples require a relatively large
additional number of tests. In our experiments, with only 52% of tests required for
the Covering Array Number or for the best suboptimal solution from Table 3.2 in
section 3.9.1, we are able to reach a 95% coverage, whereas the remaining 5% of
tuples need the remaining 48% of tests.

We also notice that the Tuple Number problem is more challenging than the Cov-
ering Array Number problem. According to some experimentation that we per-
formed using complete MaxSAT solvers, none of the tested approaches has been
able to certify any optimum for N > 1, even for the instances that were easy to solve
for the Covering Array Number problem.

Another interesting observation is the erratic behavior on the RL-B instance [102]
(Figure 3.1, bottom right). RL-B is the biggest instance in the available benchmarks,
having 27 parameters with domains up to 37, and with a suboptimal solution for
the Covering Array Number (for t = 2) of 727 tests. After 100 tests, the results for
the Tuple Number problem become quite unstable in contrast to the behaviour on
the rest of the instances. This phenomenon points out that the approach analyzed in
this section has some limitations when instances are large enough. For a fixed set of
parameters, instances become bigger when we increase the strength t or the number
of tests as in this case.

To conclude this section, we have confirmed that MaxSAT is a good approach
to solve the Tuple Number problem with constraints. We have also observed that
with a relatively small number of tests we can cover most of the tuples, and that this
approach can be useful for medium-sized instances that do not need a large number
of tests to reach a reasonable coverage percentage.

In the next section, we explore the Incremental Test Suite Construction for the Tu-
ple Number problem described in section 3.8.1. It allows us to tackle more efficiently
those Tuple Number problems involving a relatively large number of tests.

3.9.3 MaxSAT based Incremental Test Suite Construction for T(N; t, S)

In section 3.9.2, we have analyzed an approach that can be used to maximise the
number of tuples covered by a number of tests inferior to CAN(t, S). However, we
have seen that it becomes less efficient if we require to compute the Tuple Number
problem for a large enough number of tests.

Solving approaches: Here we propose three incomplete alternatives for solving
the Tuple Number problem, with the aim of improving the results obtained in sec-
tion 3.9.2. Our hypothesis is that the application of incomplete approaches can be
more suitable when solving bigger instances.
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FIGURE 3.1: Number of tests required to reach a certain coverage
percentage for the tt-open-wbo-inc approach.
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The first approach is the greedy algorithm presented in [100], referred to as
maxh − its. This algorithm incrementally adds a test at a time. The test is con-
structed through a heuristic [41] that tries to increase the number of covered tuples
so far, by selecting at each step the parameter tuple with the most value tuples yet
to be covered.

The second approach is the Incremental Test Suite Construction from section 3.8.1
(referred here as maxsat− its), which also adds a test at a time 13, but this test is built

13The algorithm allows to add more than one test at a time, but this experiment is out of reach in this
work.
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by solving the Tuple Number problem through an incomplete MaxSAT solver in-
stead of using a heuristic as in the previous approach.

In the third approach, instead of a MaxSAT query, as in the second approach, we
apply a SAT query to return a test that covers at least one more tuple (referred to as
sat− its) than the incremental test suite built so far.

We also evaluate the approach described in section 3.7.2. The idea is to relax the
Covering Array Number problem by allowing to cover only a 95% of the allowed
tuples (τa). We refer to this approach as mints− 95%|τa|. As for the Covering Array
Number problem, we use the upper bound returned by the ACTS tool (see section
3.2) for the initial number of tests.

Results: We present the relative performance of the previous four approaches re-
spect to the best incomplete MaxSAT approach (tt-open-wbo-inc) for solving the Tuple
Number problem from section 3.9.2, referred as ≃ T(N; t, S) (we use the symbol ≃
to indicate that the values reported for ≃ T(N; t, S) correspond to suboptimal solu-
tions). All the approaches shown in this section also use the incomplete SAT-based
MaxSAT solver tt-open-wbo-inc, except sat− its which uses the Glucose41 SAT solver.
For the encoding of equation (a) of CCX we use variation a.2 (ci

τ ↔ ci−1
τ ∨ xi,p,v) as

in section 3.9.2.
To perform a fair comparison we tried to execute all the algorithms within the

same runtime conditions. We use as a reference the runtime that maxsat− its needs
to cover all the allowed tuples. In more detail, we set a timeout of 100s to each
iteration of the maxsat − its approach 14. Therefore, the total runtime in seconds
consumed by maxsat − its is the number of tests it reaches multiplied by 100. For
maxh− its and sat− its, the timeout is the total runtime consumed by maxsat− its.
For mints − 95%|τa|, we use as timeout the runtime consumed by ≃ T(N; t, S) to
reach 95% of coverage. Finally, for ≃ T(N; t, S), we use a timeout of N · 100 seconds
for each N. Notice that in this last case we are ensuring that for a given N, both
≃ T(N; t, S) and maxsat− its approaches will have the same execution time limits.

All approaches have been executed with 3 seeds and the mean is reported. The
experimental results are presented in Figures 3.2 and 3.3. As in section 3.9.2, we only
plot the most representative instances.

Figure 3.2 shows the increment (or decrement) of the number of tests required
by maxsat− its, maxh− its and mints− 95%|τa| to cover the same number of tuples
as ≃ T(N; t, S). On the other hand, Figure 3.3 shows the increment (or decrement)
of tests required to reach the same coverage ratio as ≃ T(N; t, S). For the sat− its
approach we found that in most cases it is able to cover only one tuple per test, so
we decided to exclude these results in the figures as they were clearly outperformed
by the rest of the presented approaches.

In both figures, we plot a vertical line to show the points where ≃ T(N; t, S)
reaches 95% and 100% of tuples covered.

In general, maxsat − its clearly outperforms maxh − its. This can be expected
since the nature of the incremental approach is to do the best at each possible itera-
tion, and maxsat− its tackles exactly this goal by solving the Tuple Number problem,
while maxh− its do not.

We also observe that maxsat− its outperforms the tuple coverage that≃ T(N; t, S)
can achieve on the first tests. Particularly, maxsat− its is able to improve the number
of tests required to cover 95% of the allowed tuples in 7 of the 8 instances we show
in Figures 3.2 and 3.3. On the other hand, above 95%, ≃ T(N; t, S) seems to be the
best approach in terms of using fewer tests for the same coverage. This makes sense

14We assume that maxsat− its is able to cover at least one more tuple in 100 seconds
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FIGURE 3.2: Comparison of the required number of tests for different
methods with regards to the number of test used by ≃ T(N, t, S) (as

base) to cover each number of tuples.
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since the incomplete nature of maxsat− its makes it less efficient when approaching
the complete coverage, which may not be needed for several applications.

In figure 3.2 we observe an erratic behaviour of instance RL-B, which is the largest
instance that we had available. These results are in line with the ones in figure 3.1
of section 3.9.2, and shows the possible issues that ≃ T(N; t, S) can suffer when
dealing with large instances. In particular, figure 3.4 shows the number of literals
of the MaxSAT instance solved by ≃ T(N; t, S) and maxsat − its as the size of the
test suite increases for the RL-B benchmark. We observe that≃ T(N; t, S) has to deal
with an increasing size of the Partial MaxSAT instance proportional to the number of
tests in the test suite. In contrast, for maxsat− its the size of the instance decreases,
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FIGURE 3.3: Comparison of the required number of tests for different
methods to cover as much tuples at each test from ≃ T(N, t, S) (as

base).
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since only one test is encoded and the number of tuples to cover decreases along
with the size of the test suite built so far. This is an interesting insight since RL-B
instance comes from an industrial application and it may reflect what we can face in
harder real-world scenarios. Therefore, maxsat− its may seem more well suited for
these harder real-world domains and may extend the reach of Combinatorial Testing
for more complex SUTs.

Finally, although mints− 95%|τa| is not consistently the best option to obtain a
good suboptimal test suite that covers 95% of the total tuples, it obtains the best
result on instances NetworkMgmt and Storage5. Moreover, it is the only method that
guarantees optimality when combined with a complete MaxSAT solver.
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FIGURE 3.4: Partial MaxSAT formula size for RL-B in literals as a
function of test suite size.
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Chapter 4

Effectively Computing High
Strength Mixed Covering Arrays
with Constraints

In Chapter 3 we have studied how to build MCACs of minimum size for strength
t = 2. Additionally, we have also defined a new problem called the Tuple Number
problem that can be applied in situations where we have a limit on the number of
tests that can be applied.

While these approaches may be efficient enough for testing some SUTs, the size
of the SAT or MaxSAT formulas required for building MCACs rapidly grows with
the number of tests and size of SUT constraints, but mostly with the strength t taken
into consideration.

Regarding the number of tests and size of the SUT constraints, the SAT and
MaxSAT formulations of the mentioned approaches need to incorporate at least N
copies of the SUT constraints where N is the size of the test suite we try to build.
In this sense, if the ACTS tool is not able to provide a good enough upper bound
then other strategies need to be taken into account since the trivial upper bound, as
discussed, can be unaffordable in terms of size.

There are approaches like [100] (based on SAT and the domain-dependent PICT
heuristic) and [15] (based on MaxSAT) that mitigate this problem by iteratively con-
structing the test suite, i.e. adding just one single test at a time that aims to maximize
the number of interactions covered so far 1. The addition of one single test guaran-
tees we only deal with one copy of the SUT constraints.

Regarding the strength t, the size of the SAT/MaxSAT formulas in existing ap-
proaches is proportional to the potential number of allowed interactions, i.e. O

(
(|P|t ) · gt

)
where g is the cardinality of the greatest domain. Typical applications use values of
t = 2 and barely t = 3. However, the more complex the SUT is, the higher the prob-
ability that faulty or buggy interactions be caused by a larger number of parameters.
Therefore, we need to consider higher values like t = 4 and t = 5, which clearly is a
bottleneck for the mentioned SAT or MaxSAT approaches.

Finally, there are other recent Constraint Programming approaches but they fo-
cus on t = 2 ([59, 63]) or they do not allow SUT constraints ([69]).

In this chapter, we show how we can build practical higher strength MCACs
through SAT technology without incurring in memory blow-ups. In particular, we
first present a new incomplete algorithm named (Refined Build One Test - Incre-
mental Test Suite) RBOT-its, inspired by Algorithm 5 in [100]. RBOT-its builds the
MCAC test by test and optimizes (refines) subsets of the incremental test suite built
so far by applying a MaxSAT based approach. Then, we present another incomplete

1[15] can add more than one test at each iteration.
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algorithm named PRBOT-its (Pool-based Refined Build One Test - Incremental Test
Suite) that iteratively builds the MCAC while simultaneously keeping in a memory
pool just a fraction of all the possible t-tuples of the SUT fulfilling the memory size
requirements.

Extending our work in [8], we introduce the Parallel PRBOT-its algorithm which
effectively parallelizes the task of processing the different fractions of t-tuples seen
by algorithm PRBOT-its. We carry out an extensive experimental evaluation that
allows showing that we clearly outperform the state-of-the-art ACTS tool based on
the IPOG algorithm and provide new upper bounds for some instances.

This chapter is structured as follows. Section 4.1 presents the BOT-its algorithm
(Build One Test - Iterative Test Suite), an algorithm that incrementally builds MCACs
test by test. Section 4.2 presents the RBOT-its algorithm that uses a MaxSAT ap-
proach to improve the BOT-its algorithm. Section 4.3 describes the PRBOT-its algo-
rithm that shows how to adapt RBOT-its to operate on low memory requirements.
Section 4.4 shows how to effectively parallelize the PRBOT-its algorithm. Finally, in
Section 4.5 we study how these approaches compare to the ACTS tool.

4.1 Incremental Test Suite (ITS) Construction Algorithms

In this section we present another incomplete approach to solve the CAN(t, S) prob-
lem, based on the algorithms in [100]. Unlike in the IPOG algorithm (see Section
2.3.1), these approaches iteratively build an MCAC by adding one test at a time.

Algorithm BOT-its (BOT-its: Build One Test - Iterative Test Suite), which is in-
spired on Algorithm 5 in [100], builds an MCAC by iteratively calling Algorithm
BuildOneTest (BOT) (an algorithm that greedily builds a new test, see details be-
low). BOT-its keeps a pool p of the t-tuples yet to cover. Then, it incrementally
extends the working test suite Υ by appending the new test υ computed by the BOT
algorithm. The pool p is simplified by erasing those t-tuples covered by υ. Finally,
the algorithm returns when the pool becomes empty.

Algorithm BOT-its: Build One Test - Incremental Test Suite algorithm
Input : SUT model S, strength t, consistency check conflict budget cb
Output: Test suite Υ

1 Υ← ∅ # Working test suite
2 p← pool with all t-tuples of S
3 sat← incremental SAT solver initialized with X and SUTX constraints
4 while p ̸= ∅ do
5 υ, p← BOT(S, p, sat, cb)
6 Υ← Υ ∪ {υ}
7 pυ ← {τ | τ ∈ p ∧ υ |= τ} # Tuples in p covered by υ
8 p← p \ pυ

9 return Υ

Next, we show the pseudocode for Algorithm BuildOneTest (BOT) (BOT: Build
One Test), also inspired on Algorithm 5 in [100]. The BOT algorithm receives the
pool p with the t-tuples yet to cover. In order to build the current test, BOT uses the
PICT heuristic [41] to identify the parameter tuple (to which we refer as the PICT
t-tuple) with most t-tuples in the pool. Then, it selects one to initialize the test under
construction (line 1).
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Algorithm BuildOneTest (BOT): Inspired on Algorithm 5 in [100]
Input : SUT model S, Tuples pool p, SAT solver sat, consistency check

conflict budget cb
Output: A new test case υ
# All functions can access S, p and sat

1 υ← choose τ ∈ p as in PICT s.t. consistent(τ, ∞) # υ covers at least τ
2 while there exist (p, v) s.t. υ ∪ {(p, v)} covers a tuple in p and

consistent(υ ∪ {(p, v)}, cb) do
3 Choose such best (p, v) # υ ∪ {(p, v)} covers more tuples in p
4 υ← υ ∪ {(p, v)}
5 if exists τ ∈ p s.t. τ can be covered in υ and consistent(τ, cb) then
6 choose τ ∈ p as in PICT
7 υ← υ ∪ τ
8 go to line 2

9 υ← amend(υ)
10 return υ, p

To make sure the PICT selection is consistent with the SUT constraints, BOT runs
a consistency check (of unlimited cb conflicts). In particular, in function consistent in
BOT auxiliary functions, a SAT solver is used to check the validity of the parame-
ters assigned so far with respect to the SUT constraints. The SAT instance represents
the SUT constraints and the SAT solver is executed using as assumptions the partial
assignment of all the fixed parameters in the current test. If the check fails, an unsat-
isfiable core is retrieved2, i.e., a subset of the formula that is already unsatisfiable. In
particular, the core contains the set of assumptions responsible for the unsat answer.
Moreover, the t-tuples in the pool subsumed by the core are removed since these are
forbidden tuples (line 4 in function consistent). Notice that this way a lazy removal
of forbidden tuples is implemented.

After the PICT selection, it iteratively selects from the set of unassigned parame-
ters, the pair parameter-value (p, v) that, in combination with the parameters fixed
so far, covers at least one t-tuple in the pool, preferring the one that covers the most
(lines 2 - 4). To preemptively detect if the selected parameter plus the previous par-
tial assignment is inconsistent with the SUT constraints, it calls function consistent
but with a limited number of conflicts cb, since the check can be expensive and we
can not afford a full check at this point.

Whenever the above process saturates, i.e. reaches a fixpoint, and there are yet
unassigned parameters, a new t-tuple is selected as in PICT and assigned to the test.
Then, the process starts again (line 8). In this case, we also guarantee the selected
tuple is consistent with the SUT constraints running consistent function with limited
conflicts budget cb.

At this point, we have heuristically built a partial test that aims to cover most of
the t-tuples in the pool, but we may not be able to extend it to a full test consistent
with the SUT constraints. Therefore, the partial test may have to be amended (line
9).

This amend process (see BOT auxiliary functions) tries to preserve the greatest
slice of the partial test that can be extended to a full test consistent with the SUT
constraints through the call to function consistent with an unlimited budget. In case

2When cb ̸= ∞ the result of the check might be unknown.
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Algorithm BOT auxiliary functions: Auxiliary functions for algorithm
BOT
# All functions can access S, p and sat

1 function consistent(τ, cb)
2 if sat.solve(τ, cb) = True then return True
3 else
4 p← p \ {τ | sat.core() ⊆ τ ∧ τ ∈ p} # p updated in place
5 return False

6 function amend(υ)
7 while not consistent(υ, ∞) do
8 (p, v)←most recently fixed (p, v) in υ s.t. (p, v) ∈ sat.core()
9 υ← υ \ {(p, v)}

10 Fix unfixed parameters in υ according to sat.model()
11 return υ

the partial test is inconsistent, to amend it, the assumptions in the core are removed
in reverse chronological order (lines 7 - 9 in function amend) till the SAT solver is able
to complete the test satisfying the SUT constraints (line 10).

When the BOT algorithm ends, it returns the new test just built υ and the in-
put pool p without those forbidden t-tuples that were detected (line 4 in function
consistent).

The implementation of Algorithm 5 in [100], on which BOT-its and BOT algo-
rithms are inspired, is not available after request to the authors for reproducibility
purposes. Our BOT algorithm, apart from implementation details, differs funda-
mentally on function consistent. In particular, on how we specifically conduct a con-
sistency check with a limited number of conflicts.

4.2 Test Suite Refinement Algorithm

In Section 4.1 we showed how Algorithm BOT-its (BOT-its) builds incrementally an
MCAC. Notice that the MCAC might not be optimal (i.e. it may exist a smaller
MCAC) since BOT-its is a greedy algorithm.

Taking as upper bound the size of the suboptimal MCAC provided by the BOT-
its algorithm (see section 4.1), we can always try to find a smaller MCAC by using
MaxSAT, as described in section 3.5. Notice that depending on the number of param-
eters, the strength t and the number of tests, the Partial MaxSAT encoding might be
unreasonably large.

To circumvent this issue, we essentially compute whether a portion of the MCAC
under construction can be refined to use fewer tests but cover the same t-tuples in the
pool p. We refer to this portion (test suite) as the window to be refined.

In this section we present Algorithm RBOT-its (RBOT-its), which is an improve-
ment over Algorithm BOT-its. Red lines show the extensions.

In particular, we keep an sliding window of tests that starts at w.i and ends in the
last test of Υ. This window also keeps track of the t-tuples (w.p) of the pool p covered
by the window (line 11).

We keep track of the potential memory size of the Partial MaxSAT required to
refine the window. While we hit the maximum allowed size by our system (i.e.
function window_is_full in line 12 returns true) we execute the refining process (line
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Algorithm RBOT-its: Refined BOT-its algorithm. Differences with BOT-its
in red

Input : SUT model S, strength t, consistency check conflict budget cb
Output: Test suite Υ

1 Υ← ∅ # Working test suite
2 p← pool with all t-tuples of S
3 sat← incremental SAT solver initialized with X and SUTX constraints
4 w.p← ∅ # Window of covered tuples
5 w.i← 0 # Window starting test index
6 while p ̸= ∅ do
7 υ, p← BOT(S, p, sat, cb)
8 Υ← Υ ∪ {υ}
9 pυ ← {τ | τ ∈ p ∧ υ |= τ} # Tuples in p covered by υ

10 p← p \ pυ

11 w.p← w.p ∪ pυ

12 while window_is_ f ull(Υ, w) do
13 Υ, p, w← re f ine(Υ, p, w)

14 Υ, p, w← re f ine(Υ, p, w)
15 return Υ

13). As we will see below, the refine process, even reducing the number of tests, it
may cause to cover additional t-tuples that were not previously in the window. The
side effect is that the window may remain full in terms of memory requirements.

Once the algorithm has covered all t-tuples in p, we apply a last refinement to
the last window to ensure that it is refined even if the window is not full (line 14).

Function refine in Algorithm Refine tries to cover the same tuples covered in the
window w.p but using less tests. First, it encodes as Partial MaxSAT the problem of
building a test suite with the minimum number of tests that covers the t-tuples in the
window. This can be achieved by making use of the Partial MaxSAT encoding for
the CAN(t, S) problem described in section 3.5, but taking as Ta the set of t-tuples
into the window and as upper bound ub the window size.

Then, we run a MaxSAT solver and extract the test suite induced by the solution
it reports. If the size of this test suite is smaller than the window size, we use it to
replace the window in Υ (line 5). We also update the t-tuples covered by the window,
since we may cover extra tuples px with the new tests (lines 6 - 8). Otherwise, we
reduce the size of the window by excluding the test w.i and update properly the
window (lines 10 - 13).

4.3 Augmenting ITS Algorithms with an Incremental Pool of
t-tuples

There is yet a main practical problem with the BOT-its algorithm, which is the high
memory consumption by the pool of t-tuples to be covered. In particular, when t or
the number of parameters is high enough.

In this section we present Algorithm PRBOT-its (PRBOT-its), an extension of Al-
gorithm RBOT-its (see section 4.2) to avoid memory blow-ups by limiting the num-
ber of t-tuples to be considered when building a test. Red lines show the differences
respect to Algorithm RBOT-its.
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Algorithm Refine: Test suites refinement function

# re f ine function can access S, t and b
1 function refine(Υ, p, w)
2 φ← encode(S, Υ≥w.i, w.p)
3 Υr ← solve(φ)
4 if Υr ̸= ∅ and |Υr| < |Υ≥w.i| then
5 Replace Υ≥w.i by Υr in Υ
6 px ← {τ | τ ∈ p ∧ Υr |= τ}
7 p← p \ px
8 w.p← w.p ∪ px

9 else
10 υr ← test case with index w.i in Υ
11 Υ← Υ \ {υr}
12 w.p← w.p \ {τ | τ ∈ w.p ∧ υr |= τ}
13 w.i← w.i + 1

14 return Υ, p, w

This algorithm works on a partial pool p of size at most b. The pool is incre-
mentally filled with new pending t-tuples, to finally traverse all the t-tuples (line
8). Once the pool p is full, the BOT algorithm is called to build a test that tries to
cover as much t-tuples as possible in p (line 9, see section 4.1). Then, the algorithm
proceeds as Algorithm RBOT-its (lines 10 - 16). The main loop ends when the pool is
empty and there are not pending tuples (unseen tuples) to add to the pool (function
unseen_tuples?). Finally, as in Algorithm RBOT-its we perform a last refinement.

BOT algorithm has been also modified in the following way. In particular, within
function consistent (called by BOT algorithm) whenever we discard forbidden tuples,
we additionally call function fill_pool after line 4 in Algorithm BOT auxiliary func-
tions, as follows:

Υ, p, w, τ ← f ill_pool(Υ, p, w, τ)

The goal is to take advantage of the available extra space in the pool thanks
to the lazy detection and removal of forbidden tuples. Consequently, the call to
function BOT in Algorithm PRBOT-its (line 9) is extended with the additional entry
parameters Υ, w and output parameters w, τ.

To fill the pool of t-tuples we call function fill_pool in Algorithm Fill pool. This
function iteratively adds new t-tuples to the pool that are neither in Υ nor in the
pool, till p is full or all t-tuples have been processed (seen) (lines 2 - 4).

New t-tuples are selected taking into account the latest tuple seen τ by calling
function next_tuple (a total order is implicitly assumed, line 3). Notice that whether
τ is a forbidden tuple (not consistent with the SUT constraints) it is handled by the
BOT algorithm into the consistent function as previously described.

If τ was not already covered in Υ, it is added to the pool p. Otherwise, if the new
tuple is in particular covered by the current window, it is consequently added to the
window pool (line 6). Since the window may get full, as in previous algorithms we
refine the window pool till it is not full anymore (lines 7 - 8).
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Algorithm PRBOT-its: Pool-based RBOT-its algorithm. Differences with
RBOT-its in red

Input : SUT model S, strength t, consistency check conflict budget cb, pool
budget b

Output: Test suite Υ
# All functions can access S, t and b

1 Υ← ∅ # Working test suite
2 sat← incremental SAT solver initialized with X and SUTX constraints
3 w.p← ∅ # Window of covered tuples
4 w.i← 0 # Window starting test index
5 p← ∅ # Working pool of tuples to cover
6 τ ← ∅
7 while p ̸= ∅ or unseen_tuples?(S, t, τ) do
8 Υ, p, w, τ ← f ill_pool(Υ, p, w, τ)
9 υ, p, w, τ ← BOT(S, p, sat, cb, Υ, w)

10 Υ← Υ ∪ {υ}
11 pυ ← {τ | τ ∈ p ∧ υ |= τ} # Tuples in p covered by υ
12 p← p \ pυ

13 w.p← w.p ∪ pυ

14 while window_is_ f ull(Υ, w) do
15 Υ, p, w← re f ine(Υ, p, w)

16 Υ, p, w← re f ine(Υ, p, w)
17 return Υ

4.4 Parallel ITS algorithms

One of the main drawbacks of the PRBOT-its algorithm is the high run-time con-
sumption when solving large instances with high strength (i.e. t ≥ 5). In this section,
we present the last piece to get a practical application for Combinatorial Testing. In
particular, we present a Parallel approach for Incremental Test Suites algorithms that
leverages the power of parallel or distributed computing to build Covering Arrays
in reasonable time.

Thanks to our particular design of the PRBOT-its algorithm (that operates on
chunks and pools of t-tuples, see section 4.3) we can now apply a simple but effective
master-worker parallel approach to scale to bigger instances and higher strengths,
while slightly increasing the generated test suite size as we can see in section 4.5.

Algorithm Parallel PRBOT-its master shows the pseudocode of the master pro-
cess. Essentially, we traverse all the tuples of the input SUT S and strength t (line 3).
Whenever we reach the chunk size limit c (line 3) we submit a worker that will oper-
ate from the starting tuple τs (included) to the ending tuple τe (excluded, line 8)3. We
use these markers since we want to avoid explicitly the set of t-tuples to the worker.
The worker will generate these t-tuples thanks to the markers and an implicit order
of the t-tuples (see section 4.3).

The ending tuple τe becomes the starting tuple for the next worker (line 9), and
the tuples counter is set to 0 (line 10). Finally, we must perform a final submission
with the remaining tuples (line 11).

If we are not using any queue submission engine, to avoid the concurrent sub-
mission of too many parallel jobs we use the input job limit maxw. Function wait_for_free_slot

3τs = ∅ corresponds to the first tuple, and τe = ∅ corresponds to the last one.
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Algorithm Fill pool: Fill pool function

# f ill_pool function can access S, t and b
1 function fill_pool(Υ, p, w, τ)
2 while |p| < b and unseen_tuples?(S, t, τ) do
3 τ ← next_tuple(S, t, τ)
4 if τ ̸⊆ Υ then p← p ∪ {τ}
5 elif τ ⊆ Υ≥w.i then
6 w.p← w.p ∪ {τ}
7 while window_is_ f ull(Υ, w) do
8 Υ, p, w← re f ine(Υ, p, w)

9 return Υ, p, w, τ

Algorithm Parallel PRBOT-its master: Master parallel PRBOT-its algo-
rithm

Input : SUT model S, strength t, chunk size c, max parallel workers maxw,
worker args wargs

1 #tupls← 0
2 τs, τe ← ∅, ∅
3 while unseen_tuples?(S, t, τs) do
4 τe ← next_tuple(S, t, τe)
5 #tupls++
6 if #tupls = c then
7 wait_for_free_slot(maxw)
8 submit(τs, τe, wargs)
9 τs ← τe

10 #tupls← 0

11 submit(τs, ∅)

(line 7) monitors the output of the previously submitted workers, and if there are al-
ready maxw active workers it waits.

Function submit (line 8) submits the worker job considering the start and end
tuples, as well as all the other supported arguments by the original PRBOT-its algo-
rithm.

Regarding workers, we performed two simple modifications to the PRBOT-its
algorithm explained in section 4.3. First, PRBOT-its will receive an starting and end-
ing tuples (τs and τe respectively). Additionally, we can activate an option to load
all the test suites generated by previous workers (what we called warmstarting). This
way we can discard tuples that are already covered, which reduces substantially the
size of the final test suite.

Finally, we can take even more advantage of warmstarting by applying what we
call progressive submission. We start submitting just one parallel job and we wait until
it finishes (i.e. enforcing a hard synchronization point). Then, we increase the num-
ber of parallel jobs by n, and we enforce warmstarting in all the submitted workers.
Once we reach maxw jobs we deactivate all the hard synchronization points and pro-
ceed as we did without progressive submission. This way we ensure that workers
load more test cases at the expense of having hard synchronization points. In sec-
tion 4.5 we show how this approach helps to effectively reduce the total number of
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generated tests while keeping similar or even better execution times.

4.5 Experimental Results

In this section, we report the experimental investigation we conducted to assess the
performance of the approaches proposed in the preceding sections. We use a total of
58 SUT instances, which are extracted from [38], with 5 real-world and 30 artificially
generated covering array problems, [96] with 20 real-world instances, [102] with two
industrial instances and, [100] with another industrial instance.

In table 4.1 we show the information about each SUT instance. SP provides the
number of parameters and their domain (e.g. in instance Banking1, 3441 means 4
parameters of domain 3 and 1 of domain 4) and, Sφ the number of SUT constraints
and their sizes (e.g. instance Banking1 has 112 constraints that involve 5 parame-
ters, 5112 in the table). Additionally, we provide an approximation for the memory
consumption of keeping all the tuples in memory for t = 3, t = 4 and t = 5.

We use Python as programming language and the Python framework OptiLog
[7] that provides bindings to state-of-the-art SAT solvers. For our experimentation,
we use Glucose 4.1. For the implementation Parallel PRBOT-its we also used Nim to
implement an extension to efficiently query whether a t-tuple is already covered in
the current test suite.

We implemented our own version of Algorithm BOT-its, as the implementation
of Algorithm 5 described in [100] was not available from authors for reproducibility
purposes4. We also found that our implementation is not able to reproduce exactly
the results reported in the original work. In particular, we notice that in our case the
sizes of the reported MCACs are just slightly higher. Moreover, our implementation
also seems to be significantly slower5. Notice the authors used as underlying SAT
solver lingeling [28] and we use Glucose 4.1, and this may explain part of the di-
vergence. However, this also means that if the implementation of Algorithm 5 from
[100] was available we could probably even get better results with our algorithms
RBOT-its and PRBOT-its which extend BOT-its. We set the consistency check conflict
budget cb parameter for all the BOT-its algorithms to 1 (see section 4.1).

For the Refine function in algorithms RBOT-its and PRBOT-its we consider the
encoding PMSatN,t,S,lb

CCX described in section 3.5. We use a custom implementation
of the linear [46, 72] MaxSAT algorithm that is able to report suboptimal solutions6,
using CaDiCaL as the underlying SAT solver [30]. We set a window size of approx-
imately 500MB, a total time limit for the MaxSAT solver of 180s, and a timeout of
30s between solutions (see section 4.2). Notice that this setting could be fine-tuned
although we did not carry out this analysis. In previous approaches results are pro-
vided up to t = 3, here we carry out our experiments for t = 3, t = 4, and t = 5
which, as mentioned previously, are also of interest to many applications.

The execution environment consists of a computer cluster with machines equipped
with two Intel Xeon Silver 4110 (octa-core processors at 2.1GHz, 11MB cache mem-
ory) and 96GB DDR4 main memory. All the experiments were executed with a time-
out of 12h and a limit of 12GB of RAM. We executed all the algorithms with 10
different seeds, except for the ACTS tool (as it does not expose the seed parameter).

4The tools we implemented are available in http://hardlog.udl.cat/static/doc/prbot-its/
html/index.html as well as detailed installation and execution instructions.

5In [100] their algorithms are implemented in C programming language
6Since Algorithm RBOT-its is incomplete by nature, there is actually no need to use a complete

MaxSAT solver.

http://hardlog.udl.cat/static/doc/prbot-its/html/index.html
http://hardlog.udl.cat/static/doc/prbot-its/html/index.html
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inst SP Sφ
mem
t = 3

mem
t = 4

mem
t = 5

[38]

1 28633415562 2203341 20.1MB 1.4GB 74.2GB
2 28633435161 21933 15.6MB 1.0GB 48.8GB
3 22742 2931 416.0kB 7.5MB 99.3MB
4 251344251 21532 3.7MB 147.8MB 4.2GB
5 215537435564 2323641 112.7MB 14.1GB 1.3TB
6 2734361 22634 8.1MB 422.4MB 16.0GB
7 22931 21332 399.7kB 7.1MB 94.2MB
8 210932425363 2323441 34.5MB 2.9GB 184.2GB
9 25731415161 23037 4.2MB 172.9MB 5.2GB
10 213036455264 24037 68.2MB 7.2GB 579.4GB
11 28434425264 22834 20.1MB 1.4GB 74.0GB
12 213634435163 22334 60.5MB 6.1GB 475.5GB
13 212434415262 22234 43.5MB 4.0GB 273.4GB
14 281354363 21332 16.3MB 1.1GB 52.1GB
15 25034415261 22032 4.1MB 171.5MB 5.1GB
16 281334261 23034 11.6MB 691.4MB 29.7GB
17 212833425163 22534 48.3MB 4.5GB 325.2GB
18 212732445662 2233441 59.9MB 6.0GB 465.5GB
19 217239495364 23835 166.3MB 23.7GB 2.5TB
20 213834455467 24236 94.5MB 11.1GB 998.5GB
21 27633425163 24036 13MB 796.2MB 35.3GB
22 272344162 22032 9.3MB 511.3MB 20.3GB
23 2253161 21332 352.7kB 5.9MB 73.5MB
24 2110325364 22534 34.5MB 2.9GB 184.0GB
25 211836425266 2233341 54.3MB 5.3GB 394.1GB
26 287314354 22834 16.8MB 1.1GB 55.1GB
27 25532425162 21733 5.1MB 224.5MB 7.2GB
28 2167316425366 23136 160.7MB 22.7GB 2.4TB
29 21343753 21933 52.4MB 5.1GB 374.4GB
30 2733343 23134 8.5MB 456.4MB 17.6GB
apache 215838445161 23314251 92.5MB 10.9GB 971.3GB
bugzilla 2493142 2431 2.3MB 79.4MB 1.9GB
gcc 2189310 23733 127.6MB 16.7GB 1.6TB
spins 21345 213 156.2kB 1.9MB 16.6MB
spinv 24232411 24732 4.3MB 181.2MB 5.5GB

[96]

Banking1 3441 5112 3.8kB 8.0kB 6.3kB
Banking2 21441 23 51.2kB 432.2kB 2.4MB

CommProtocol 21071 210310412524

630730812 26.0kB 157.5kB 616.9kB

Concurrency 25 243152 0.9kB 1.2kB 0.6kB
Healthcare1 26325161 23318 31.9kB 201.2kB 801.8kB
Healthcare2 253641 2136518 48.2kB 379.6kB 1.9MB
Healthcare3 21636455161 231 918.8kB 21.4MB 366.0MB
Healthcare4 21331246526171 222 2.2MB 73.2MB 1.7GB
Insurance 26315162111131171311 - 1.3MB 27.3MB 363.7MB
NetworkMgmt 224153102111 220 189.4kB 2.0MB 12.6MB
ProcessorComm1 233646 213 172.7kB 2.1MB 18.5MB
ProcessorComm2 233124852 142121 1015.3kB 24.3MB 424.0MB
Services 23345282102 338642 365.6kB 5.4MB 52.5MB
Storage1 21314151 495 1.8kB 1.9kB 0.1kB
Storage2 3461 - 5.1kB 11.4kB 9.5kB
Storage3 2931536181 238310 184.4kB 2.2MB 18.8MB
Storage4 253741526271101131 224 1.0MB 23.2MB 372.2MB
Storage5 253853628191102111 2151 2.1MB 61.7MB 1.3GB
SystemMgmt 253451 21334 26.7kB 162.5kB 629.8kB
Telecom 2531425161 2113149 43.2kB 302.9kB 1.3MB

[102]

RL-A-mod 25344754657481123 11224913345 8.6MB 438.0MB 15.6GB

RL-B-mod
283243536191

101122143201241371
18211273277

417555106462048 16.4MB 956.6MB 37.9GB

[100]

Company2 263484 12235389454534

62073481694 247.9kB 3.2MB 28.4MB

TABLE 4.1: SUT parameters domains and constraints for each in-
stance (columns SP and Sφ) and memory consumption for t = 3, t = 4

and t = 5 (mem).
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4.5.1 PRBOT-its evaluation

The first question we address is the impact of RBOT-its, the refined version of BOT-
its, in terms of size of the reported test suite and run time for t = 3. Moreover, we
compare with ACTS with its default configuration. We describe the results in Table
4.2 under columns tests and time, respectively. Since all approaches are incremental
construction methods, we report (under columns "%") a lower bound on the per-
centage of allowed t-tuples covered by the retrieved test suite. When the percentage
is 100 it means it was possible to build an MCAC. On the other hand, instances that
have a "-" in all columns were not able to report any test suite. As we can see, RBOT-
its is able to report better MCAC sizes than ACTS and Algorithm BOT-its on 42 of
the 58 instances. This confirms the goodness of the refined approach.

The second question we address is about how much memory is consumed by
the BOT-its algorithm. In particular, we estimate the required memory to keep all
the t-tuples in memory at the same time. We consider integers of 32 bits and we
exclude the memory resources required by other auxiliary data structures or by the
SAT solver called within BOT-its. Table 4.1 shows the result of our analysis under
column mem. For t = 4 there are 20 out of the 58 instances that would consume more
than 1GB. For t = 5 the memory consumption is greatly increased, as 23 of the 58 in-
stances would consume more than 32GB (some of these instances would need more
than 1TB). Therefore, it is obvious we can not aim to run any approach that explicitly
considers all allowed t-tuples or tests at once under low memory requirements.

The third question we address is whether the Pool-based versions of BOT-its and
RBOT-its are efficient compared to ACTS for t = 4 and t = 5. For both PRBOT-its
and PBOT-its (as PRBOT-its but refine is deactivated) we consider a pool budget of
1GB (1278264 tuples for t = 4 and 721600 for t = 5). For t = 4 the combination
of PBOT-its and PRBOT-its report better sizes than ACTS and Algorithm BOT-its in
35 of the 58 instances. Finally, for t = 5 we found that ACTS and BOT-its can only
report test suites for 39 and 18 instances respectively, while PBOT-its and PRBOT-its
can report test suites for all the 57 instances7.

Overall, we found that ACTS reports MCACs in 49 more instances than RBOT-
its and PRBOT-its. However, we may be observing a horizon effect, as RBOT-its and
PRBOT-its with the given resources are able to improve the results of ACTS in 89
out of 107 instances where both these algorithms and ACTS reach 100% of coverage,
where ACTS only obtains better results in 8 (the remaining 10 are ties).

Regarding run times, ACTS is significantly faster than BOT-its, RBOT-its, PBOT-
its and PRBOT-its. However, ACTS will report the same suboptimal solution with
more available run time. In contrast, RBOT-its, and PRBOT-its can get better solu-
tions if we increase the timeout for the MaxSAT call related to the refining process.

A more fine-grained analysis of the new methods reveals the following insights.
We observe PBOT-its subsumes BOT-its, as it can obtain an MCAC on the same

instances as BOT-its plus 23 and 7 more for t = 4 and t = 5 respectively. Regarding
MCAC sizes we observe similarities with the results reported by BOT-its. Regarding
run times we found that PBOT-its can obtain MCACs slightly faster than BOT-its.

Finally, we also note that with enough run time, RBOT-its and PRBOT-its al-
gorithms would subsume BOT-its and PBOT-its respectively. In particular, results
show that the refine approach can reduce the sizes on 92 out of the 106 instances
where all these algorithms are able to obtain an MCAC, while for the remaining 14
instances they report the same sizes. In these particular cases, we observe that refine

7For instance Storage1 it is not possible to report an MCAC for t = 5 as it only has 4 parameters.
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t = 3
ACTS BOT-its RBOT-its

inst tests % time tests % time tests % time

[38]

1 293 100% 4s 294.20 100% 12m 294.20 100% 1.3h
2 174 100% 3s 176.50 100% 6m 149.10 100% 39m
3 71 100% 1s 72.90 100% 4s 50.50 100% 5m
4 102 100% 2s 108.10 100% 48s 81.10 100% 7m
5 386 100% 14s 384 100% 1.6h 384 100% 3.3h
6 119 100% 2s 133.20 100% 2m 98.60 100% 14m
7 35 100% 1s 39 100% 3s 28.40 100% 3m
8 326 100% 5s 306.60 100% 23m 306.20 100% 1.1h
9 84 100% 2s 94.30 100% 44s 60 100% 4m
10 329 100% 9s 342.60 100% 51m 341.30 100% 2.4h
11 318 100% 4s 328.70 100% 13m 328.60 100% 1.4h
12 263 100% 7s 269.80 100% 36m 250 100% 1.6h
13 200 100% 7s 214.40 100% 19m 183.70 100% 1.0h
14 244 100% 3s 244.30 100% 7m 216.30 100% 20m
15 173 100% 2s 180.10 100% 1m 150.90 100% 5m
16 117 100% 3s 138.50 100% 3m 96.40 100% 9m
17 265 100% 6s 263.50 100% 30m 239.40 100% 1.3h
18 344 100% 8s 327.20 100% 41m 327.20 100% 2.1h
19 373 100% 21s 385 100% 2.6h 365.50 100% 6.7h
20 463 100% 12s 465.60 100% 1.5h 465.60 100% 4.3h
21 235 100% 3s 235.40 100% 5m 216.50 100% 17m
22 164 100% 2s 164.70 100% 3m 144 100% 8m
23 48 100% 1s 55.40 100% 3s 37.30 100% 3m
24 341 100% 5s 337.70 100% 25m 337.70 100% 1.6h
25 404 100% 7s 407.70 100% 47m 407.70 100% 2.6h
26 207 100% 3s 205.10 100% 7m 195.30 100% 47m
27 204 100% 2s 210.90 100% 2m 180.50 100% 10m
28 420 100% 21s 421.80 100% 2.6h 421.80 100% 4.6h
29 154 100% 5s 156.10 100% 20m 125.70 100% 43m
30 100 100% 2s 93.70 100% 2m 73.80 100% 14m
apache 173 100% 9s 191.60 100% 36m 168.20 100% 1.7h
bugzilla 68 100% 1s 72.20 100% 22s 49.50 100% 9m
gcc 108 100% 10s 121 100% 43m 81.80 100% 1.4h
spins 98 100% 1s 112.80 100% 2s 105.60 100% 3m
spinv 286 100% 2s 251.70 100% 2m 238.90 100% 1.2h

[96]

Banking1 58 100% 2s 55.10 100% 0s 45 100% 30s
Banking2 39 100% 1s 44.70 100% 0s 30 100% 3m
CommProtocol 49 100% 3s 50.30 100% 0s 41 100% 3m
Concurrency 8 100% 1s 8 100% 0s 8 100% 0s
Healthcare1 105 100% 1s 107.50 100% 0s 96 100% 9s
Healthcare2 67 100% 1s 68.40 100% 0s 54.80 100% 3m
Healthcare3 209 100% 1s 205.70 100% 15s 177.10 100% 41m
Healthcare4 294 100% 1s 309 100% 39s 274.90 100% 53m
Insurance 6866 100% 1s 6861.10 100% 3m 6858.40 100% 15m
NetworkMgmt 1125 100% 1s 1107.70 100% 4s 1100.40 100% 2m
ProcessorComm1 163 100% 1s 144.10 100% 2s 131.60 100% 3m
ProcessorComm2 161 100% 2s 169.30 100% 11s 145.50 100% 31m
Services 963 100% 6s 926.80 100% 13s 926.80 100% 5.7h
Storage1 25 100% 2s 25 100% 0s 25 100% 0s
Storage2 74 100% 0s 71.50 100% 0s 54 100% 1s
Storage3 239 100% 1s 239.20 100% 3s 222 100% 9m
Storage4 990 100% 1s 970.40 100% 28s 916.40 100% 15m
Storage5 1879 100% 4s 1936.10 100% 3m 1000.50 96% 12h
SystemMgmt 60 100% 1s 58.10 100% 0s 45 100% 2s
Telecom 126 100% 1s 125.20 100% 0s 120 100% 5s

[102]

RL-A-mod 1132 100% 16s 1079.40 100% 4m 1069.20 100% 7.8h
RL-B-mod 14977 100% 4m 13319.40 100% 3.1h 4954 92% 12h

[100]

Company2 424 100% 15s 432.50 100% 7s 427.20 100% 54m

TABLE 4.2: Test suite size, percentage of tuple coverage and time for
t = 3. In bold the method with better results with the lexicographic
criteria (coverage percentage, number of tests, exhausted time). For
the coverage percentage enough precision was taken into account.

Resources: 12GB memory and 12h timeout.
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has not been able to improve the size of the window within the given time con-
straints, so these results could be improved by tuning the time limits, the MaxSAT
solver’s parameters or even using a different MaxSAT solver.

To conclude this section, it seems we can confirm the goodness of the PRBOT-its
algorithm. We have shown how the refine method can be used to improve the sizes
of the reported suboptimal MCACs. Additionally, we extended the practical usage
of algorithm BOT-its to strengths higher than t = 3.

4.5.2 Parallel PRBOT-its evaluation

As we can observe in Table 4.3, there are 18 instances for strength t = 5 where
none of the tested methods is able to complete an MCAC. For the final part of our
experimental evaluation, we will try to find MCACs for these instances by extending
the memory and time limits described in section 4.5.

In particular, we extended the memory and run-time limits to 1TB and 48h, and
changed the environment of execution to a cluster with nodes equipped with two
AMD 7403 processors (24 cores at 2.8 GHz) and 21 GB of RAM per core.

We used the parallel PRBOT-its algorithm described in section 4.4, and we com-
pared against the results of ACTS with extended resources. For the parallel PRBOT-
its algorithm, we set a memory limit of 20GB per worker and used 48 workers plus
one master job8.

We tested three different versions of the parallel PRBOT-its algorithm to assess
the effectiveness of the proposed improvements in section 4.4. The first one only
applies warmstarting to the PBOT-its algorithm (P-PBOT-its (ws)), the second one
adds progressive submission (P-PBOT-its (ws + prog)) and the last one adds MaxSAT
refinement (P-PRBOT-its (ws + prog)). For all the approaches we set a pool limit of
1GB, and each worker operates on a chunk size limit c of 10 pools. For the progres-
sive submission, we increment one job after each synchronization until we reach the
maximum number of parallel jobs. For the refinement approach, we set a window
limit of 500MB and only apply a refinement of 300s at the end of each worker.

We noticed that instance RL-B needed more memory resources per worker due
to the size of the generated MCAC, so we reduced the number of parallel workers
from 48 to 24 and extended their memory limit from 20GB to 40GB. We also reduced
the chunk size limit c per worker from 10 to 2 and extended the total time limit from
48h to 72h.

Table 4.4 shows the results of our experimentation. We noticed that ACTS was
able to report MCACs only in 2 of the 18 selected instances for t = 5, whereas Parallel
PRBOT-its obtains MCACs in all of them. Particularly, ACTS timeouts in 7 of the
16 unsolved instances, while for the 9 remaining it would need more than 1TB of
memory.

Regarding MCAC sizes, ACTS obtains better results in the two instances that
it is able to solve. For the rest, P-PRBOT-its (ws + prog) clearly outperforms the
two variants of P-PBOT-its without refinement, being able to report an MCAC on
instances where both P-PBOT-its (ws) and P-PBOT-its (ws + prog) timeout (instances
19, 28 and RL-B) and greatly improving the sizes on the rest.

For the run-times, we observe how all the versions of the parallel PRBOT-algorithm
obtain better times than ACTS. This is an interesting result, as Parallel PRBOT-its
can be used to generate MCACs quicker than ACTS, at the expense of an increase on
their sizes.

8With this setup, we are using the same resources as a single ACTS job consuming 1TB of memory
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ACTS
P-PBOT-its

(ws)
P-PBOT-its
(ws + prog)

P-PRBOT-its
(ws + prog)

inst tests time tests time tests time tests time

[38]

1 8592 17h 378306 2h 157562 3h 57652 4h
5 M OUT - 1465455 40h 1460093 41h 258196 19h
8 M OUT - 517154 3h 270236 4h 83429 6h
10 M OUT - 831583 11h 817998 13h 153379 9h
11 10252 22h 402037 2h 180094 4h 56464 5h
12 M OUT - 757465 8h 726851 10h 83472 8h
13 M OUT - 368530 3h 326664 4h 40171 6h
17 M OUT - 458383 5h 434318 6h 68608 8h
18 T OUT 48h 997527 7h 949027 9h 126586 8h
19 T OUT 48h T OUT 48h T OUT 48h 381470 46h
20 T OUT 48h 1573128 21h 1513108 22h 401293 16h
24 T OUT 48h 557110 3h 368689 4h 96652 6h
25 T OUT 48h 1121699 8h 1072473 10h 230558 9h
28 T OUT 48h T OUT 48h T OUT 48h 449609 38h
29 M OUT - 522676 6h 485201 8h 44068 6h
apache M OUT - 1155093 23h 1089386 25h 60391 13h
gcc M OUT - 946247 39h 889371 45h 50241 21h

[102]

RL-B T OUT 72h 16163442 57h 15085848 67h 14736438 72h

TABLE 4.4: Results for the unfinished instances in Table 4.3 for t = 5
with extended limits. MCAC size and run-time are reported for each

approach. Best results are marked in bold.

Another interesting result is the decrease on run-time of the P-PRBOT-its (ws +
prog). Even though this approach has a call to a MaxSAT solver of 300s on each
worker, it is able to reduce the run-times with respect to the other P-PBOT-its varia-
tions on many instances. This result shows that an early improvement on the sizes
of the intermediate test suites can also be positively reflected on the run-times.

To the best of our knowledge, this is the first work where MCACs are obtained
for t = 5 in the 16 instances in Table 4.4 where ACTS was not able to find a solution.
We will make available to the community the smallest MCACs that we found for
these instances.
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Chapter 5

A Benchmark Generator for
Combinatorial Testing

One of the main drawbacks that we found when designing Combinatorial Testing
(CT) tools, which are used to test other tools, is the absence of a rich collection of
SUT benchmarks to test empirically the correctness and goodness of these CT tools.
This is particularly true when we deal with CT tools for SUTs with constraints since
unless we obtain benchmarks (SUTs with constraints) from the industry field, we
have to artificially generate them. Moreover, we also want to control the hardness of
the constraints associated with the SUT.

In the literature, we find a limited collection of benchmarks for SUT with con-
straints. These benchmarks consist of 28, relatively easy, real-world benchmarks [38,
96, 102, 100] and 30 artificial benchmarks that were artificially generated considering
the features of some of the first ones [38].

The absence of a rich collection of benchmarks, in contrast to other disciplines,
such as in the Satisfiability research community [33], is a source of an endless list of
disadvantages. Prevents the CT community from having a deeper understanding of
the competitiveness of CT tools and slows down the development of new algorithms
and tools. Moreover, current CT tools can be biased toward solving problems that
are similar to the reduced set of available benchmarks, and, last but not least, makes
it difficult to run competitions in the field, events that historically have boosted the
research in other disciplines1.

In this paper, we present a new generator for SUTs with constraints. We take an
original approach since the SUT will actually be a subproblem of an existing decision
combinatorial problem. In particular, we will focus on the SAT problem and SAT
instances. In this sense, we fix some variables in the SAT instance and simplify
the formula by applying some incomplete inference Boolean mechanism such as
Unit Propagation. From the variables in the new remaining subformula, we select
some Boolean variables to be the input parameters of the new SUT and the rest to
be auxiliary variables. The clauses in the subformula become the constraints of the
new SUT.

Our approach allows in a natural way access to the rich diversity of constraints
that belong to the plethora of industrial, crafted and random SAT instances available
in the SAT community.

Moreover, the current SUT benchmarks available in the literature do contain a set
of constraints that we can consider easy from the point of view of its computational
hardness. We should expect these sets of constraints to be harder as CT techniques

1The CT community has recently organized also a competition: https://fmselab.github.io/
ct-competition/Competition2022.html

https://fmselab.github.io/ct-competition/Competition2022.html
https://fmselab.github.io/ct-competition/Competition2022.html
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are applied to more complex real-world scenarios. In this sense, we show how to
control empirically the hardness of the constraints included in the SUT.

Equipped with this new generator of SUTs with constraints, we generate a new
set of SUT benchmarks and conduct an extensive evaluation on some of the available
CT tools. In particular, we focus on the evaluation of the IPOG [73] and BOT-its [8,
100] algorithms. Thanks to our experimental investigation we are able to come up
with some new interesting recipes on when to use a particular CT tool to test a given
SUT. As an additional contribution, we will make available to the community the
generated benchmarks as well as the generator.

This paper is structured as follows: Section 5.1 presents our approach to gen-
erate SUT with constraints benchmarks. First of all, we review some of the most
widely-used formats to represent SUT with constraints and extend one of them in
Section 5.1.1 to make more convenient the representation of the generated SUT con-
straints. Then, in Section 5.1.2 we describe in detail the SUT-G generator. Later, in
our experimental evaluation (Section 5.2.2), we use the IPOG [73] and BOT-its [7,
100] MCAC algorithms to solve benchmarks generated with the SUT-G generator
and try to provide another point of view on the their behaviour. Thanks to this
experimental evaluation, we are able to provide in Section 5.3 several recipes to ef-
fectively apply MCAC generation tools to real-world scenarios.

5.1 Generating SUTs with Constraints

In this section, we present the SUT-G generator, a novel benchmark generator that
can craft Systems Under Test (SUT) models with constraints from any SAT instance.
First of all, we review some of the current state-of-the-art formats to represent SUTs
with constraints and propose an extended format to represent SUT constraints more
conveniently in some scenarios. Finally, we describe the SUT-G generator, the sec-
ond main contribution of this paper.

5.1.1 Available formats for representing SUTs

We review four of the most widely used formats for representing SUT models.

The CASA format

CASA [55] is CT tool for building Covering Arrays through Simulated Annealing.
This tool defines a SUT format2 that is still used by some recent tools such as WCA [48]
or AutoCCAG [81].

This format consists on two separate files: the .model file, that defines the SUT
parameters and their domains, and the .constraints, which define the SUT con-
straints.

For the .model file, we must define the number of parameters of the SUT, the
desired strength of the interactions, and the domain of the parameters. No more
information can be added to the .model file. In Figure 5.1 we show the associated
CASA model file for Example 5 and strength t = 2.

Regarding constraints, these can only be represented as conjunctions of disjunc-
tions (i.e. CNF format). We must specify the total number of clauses, and for each

2The full CASA format specification can be found in http://cse.unl.edu/~citportal/
citportal/academic

http://cse.unl.edu/~citportal/citportal/academic
http://cse.unl.edu/~citportal/citportal/academic
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4
2
5 4 4 2

FIGURE 5.1: CASA model file for Example 5

clause its number of symbols. These symbols (also named as literals) can only re-
fer to parameters’ values, and they are derived from the parameter order defined in
the model file, starting from 0. Literals can be positive or negative. For example,
in Example 5, OS = Linux would be symbol 1, OS = Windows symbol 2, and so
on. Figure 5.2 shows the CASA constraints for Example 5, where we have manually
converted the SUT constraints to CNF.

9
2
- 0 + 14
2
- 1 + 14
2
- 2 + 14
2
- 0 - 8
2
- 1 - 8
2
- 2 - 8
2
- 4 - 9
2
- 3 - 9
3
- 6 + 2 + 3

FIGURE 5.2: CASA constraints file for Example 5

Notice that this format for SUT constraints does not allow auxiliary variables (i.e.
all the literals that appear in the constraints must be part of the defined parameters).
As we will discuss in Section 5.1.1, auxiliary variables are very useful to represent
certain SUT constraints in a more convenient way.

The PICT format

PICT [41] is another CT tool that also defines its own format for representing SUT
models3.

This is a more advanced format than CASA and offers more features in terms of
the definition of the SUT.

In this case, all the SUT is defined using a single .pict file. Unlike in CASA, in
PICT we can define the name of the parameter, its type (string or numeric) and, for
strings, the name of the parameter’s values. This can be useful to better understand
the definition of the SUT, as well as the output test suite.

3The full specification for the PICT format can be found here: https://github.com/microsoft/
pict/blob/main/doc/pict.md

https://github.com/microsoft/pict/blob/main/doc/pict.md
https://github.com/microsoft/pict/blob/main/doc/pict.md
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OS: L, W, M, i, A
Pl: F, S, C, A
Re: K, F, H, W
Or: P, L

IF ([OS] = "L" OR [OS] = "W" OR [OS] = "M")
THEN ([Or] = "L" AND [Pl] <> "A")
IF [Pl] = "S" THEN ([OS] = "M" OR [OS] = "i")
IF ([OS] = "i" OR [OS] = "A") THEN [Re] <> "K"

FIGURE 5.3: Representation of SUT in Example 5 in PICT format

Regarding SUT constraints, PICT offers if-then operands, as well as negations,
conjunctions and disjunctions. SUT constraints are the conjunction of all the defined
constraints.

PICT also provide additional features for its format such as negative testing or
weighting. Its full definition can be found here: https://github.com/microsoft/
pict/blob/main/doc/pict.md

Figure 5.3 shows Example 5 expressed in PICT format.

The CTWedge format

CTWedge [53] is a CT tool that also defines its own SUT format4.
As in PICT, CTWedge also allows to name parameters and values, as well as to

define their type (which can be Bool, Enumerative and Range).
To define constraints, it also allows to use negation, conjunction, disjunction and

implication operands, and SUT constraints are the conjunction of all the defined
constraints. As in all the previous cases, this format also does not support auxiliary
variables.

Figure 5.4 shows Example 5 represented using the CTWedge format.

Model MySUT

OS: { L W M i A }
Pl: { F S C A }
Re: { K F H W }
Or: { P L }

Constraints:
# (OS == "L" || OS == "W" || OS == "M") =>

(Or == "L" && Pl != "A") #
# Pl == "S" => (OS == "M" || OS== "i") #
# (OS == "i" || OS == "A") => Re != "K" #

FIGURE 5.4: Representation of SUT in Example 5 in CTWedge format

4The grammar of the CTWedge format can be found here: https://github.com/fmselab/
ctwedge/blob/master/ctwedge.parent/ctwedge/src/ctwedge/CTWEdge.xtext

https://github.com/microsoft/pict/blob/main/doc/pict.md
https://github.com/microsoft/pict/blob/main/doc/pict.md
https://github.com/fmselab/ctwedge/blob/master/ctwedge.parent/ctwedge/src/ctwedge/CTWEdge.xtext
https://github.com/fmselab/ctwedge/blob/master/ctwedge.parent/ctwedge/src/ctwedge/CTWEdge.xtext
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[System]
Name: MySUT
[Parameter]
OS (enum) : L,W,M,i,A
Pl (enum) : F,S,C,A
Re (enum) : K,F,H,W
Or (enum) : P,L
[Constraint]
C1: (OS == "L" || OS == "W" || OS == "M") =>

(Or == "L" && Pl != "A")
C2: Pl == "S" => (OS == "M" || OS== "i")
C3: (OS == "i" || OS == "A") => Re != "K"

FIGURE 5.5: Representation of SUT in Example 5 in ACTS format

The ACTS format

ACTS [34] is one of the most widely used CT tools for building Covering Arrays.
It implements several CT algorithms, and also defines its own format for defining
SUTs5.

As in PICT and CTWedge, in ACTS we can define the name of the parameter, its
type (int, enum or bool) and, for enums, the name of the parameter’s values.

Regarding SUT constraints, ACTS allows the usage of implications, conjunctions
and disjunctions to define a constraint. SUT constraints are defined as the conjunc-
tion of each of the defined constraints. All the symbols that appear in the SUT con-
straints must refer to some defined parameter and value, and as we have seen in all
the previous formats, auxiliary variables cannot be represented using ACTS.

The ACTS format also has additional features, such as support for mixed inter-
action strength (where the user can specify different strengths for different subsets
of parameters).

In Figure 5.5 we show Example 5 represented using the ACTS format.

The new Extended ACTS format

Here, we propose an extension of the ACTS format to describe SUTs with constraints.
As we have seen in Section 5.1.1, none of the reviewed formats supports the addi-

tion of auxiliary variables to the SUT constraints. In other words, all the symbols that
appear in the SUT constraints must refer to some parameter’s value in the SUT. This
can be an important limitation of the current formats, as it will be more convenient
to represent certain constraints using auxiliary variables.

Essentially, we propose a simple extension to the ACTS format described in
Section 5.1.1. In particular, we define a new section on the format under the tag
[Auxiliar] where the user can define the list of auxiliary variables that will appear
in the set of constraints. Auxiliary variables are defined using the same syntax as
parameters and can be of any of their types. Then, both the parameters and the
auxiliary variables can be freely used in the SUT constraints.

In the next section we present the SUT-G generator, which uses the Extended
ACTS format to represent the generated SUT constraints.

5The full specification of the ACTS format can be found in https://csrc.nist.rip/groups/SNS/
acts/documents/acts_user_guide_2.92.pdf

https://csrc.nist.rip/groups/SNS/acts/documents/acts_user_guide_2.92.pdf
https://csrc.nist.rip/groups/SNS/acts/documents/acts_user_guide_2.92.pdf
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5.1.2 The SUT-G Generator

The SUT-G generator that we present in this section generates a SUT instance taking
as input a SAT instance.

Algorithm SUT-G: SUT Generation algorithm from SAT instances
Input : SAT formula φ, Number of SUT input parameters n, Max

conflicts cmax, Min conflicts cmin, Assumptions increase ∆A,
Assumptions decrease ∇A, Seeds S , Maximum number of tries
MAX_TRIES

Output : SUT model S
1 ⟨status, A⟩ ← f ind_satis f iable_subproblem( φ, n, cmax, cmin, ∆A, ∇A, S ,

MAX_TRIES )
2 if status = FAIL then return None
3

# Generate the constraints of the SUT
4 for lit ∈ A do

# Add each literal in A to φ as unit clause
5 φ← φ ∪ {{lit}}
6 φ′ ← simpli f y(φ)
# Select the input parameters of the SUT

7 P← sample(φ′.vars, n)
8 SUT ← ⟨P, φ′⟩
9 return SUT

Algorithm SUT-G shows the pseudocode of the proposed SUT-G generator. Es-
sentially, this generator receives a SAT formula φ and returns a SUT model with
constraints, where this input formula φ has been adapted to the desired difficulty.
We need a hardness measure to adapt φ, and in our case, we decided to use the number
of conflicts the SAT solver needs in average to solve the instance.

Aside from φ, SUT-G receives as input parameters the number of parameters
n of the output SUT, the maximum and minimum number of conflicts of the SUT
constraints (cmax and cmin), and other parameters that control several aspects of SUT
generation that will be explained later (∆A, ∇A, S and MAX_TRIES).

On a high level, the SUT-G generator will try to find a satisfiable subproblem
over the input formula φ (line 1). This subproblem will match all the requirements
specified in the input parameters of the algorithm. In case the input formula is unsat-
isfiable or if the requirements cannot be fulfilled, the find_satisfiable_subproblem
method will return a fail status and the generator will exit. Otherwise, find_satisfiable_subproblem
will return a success status and a list of assumptions that will adapt the input formula
to the hardness requirements when applied to the original formula φ.

To apply this modifications to the original formula, we just add as unit clauses
each literal in A (lines 4 and 5). Then, we simplify this formula to obtain φ′ (line 6),
which will become the SUT constraints.

This simplification process propagates all the unit clauses in the formula and
obtains a list of literals lits with a fixed value. Then, it iterates all the clauses in φ
and eliminates all the ones that have a literal in lits (i.e. this clause is satisfied and
can be ignored in the resulting formula). On the other hand, if a literal in a clause
appears with opposite polarity in lits we can remove this literal from the clause.
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Finally, we rename the variables in the new formula to ensure that all the variables
from 1 to φ′.n_vars appear in the constraints.

To finish the generation of the SUT, we just have to select its parameters. In this
case they are randomly selected from 1 to φ′.n_vars taking into account the number
of parameters n specified by the user (line 7). The rest of the variables in φ′ will be
auxiliary variables.

Algorithm SUT-G (Auxiliary functions) shows the auxiliary functions used by
the SUT-G generator.

Algorithm SUT-G (Auxiliary functions): Auxiliary functions for SUT-G

1 function f ind_satis f iable_subproblem(φ, n, cmax, cmin, ∆A, ∇A, S ,
MAX_TRIES)

2 sat← incremental SAT solver initialized with φ
3 A ← ∅
4 ⟨model, c⟩ ← solve_subproblem(sat,A,S)
5 if model = ∅ or sat.n_vars− |sat.propagate(A)| < n or c < cmin then

return ⟨ FAIL, _ ⟩
6 tries← 1
7 while tries < MAX_TRIES do
8 if sat.n_vars− |sat.propagate(A)| < n or c < cmin then
9 if |A| = 0 then return ⟨ FAIL, _ ⟩

10 A ← A \ sample(A, ∇A)
11 elif c > cmax then A ← A∪ sample(model \ A, ∆A)
12 else return ⟨ SUCCESS, sat.propagate(A) ⟩
13 if sat.n_vars− |sat.propagate(A)| ≥ n then
14 ⟨model, c⟩ ← solve_subproblem(sat,A,S)
15 tries← tries + 1

16 return ⟨ FAIL, _ ⟩
17

18 function solve_subproblem(sat,A,S)
19 c← 0
20 models← ∅
21 for seed ∈ S do
22 sat.set_seed(seed)
23 if sat.solve(A) = UNSAT then return ⟨ _, ∅, _ ⟩
24 models← models ∪ {sat.model}
25 c← c + sat.n_con f licts

26 return ⟨sample(models, 1), c/|S|⟩

Function find_satisfiable_subproblem (used in line 1 of Algorithm SUT-G)
starts initializing an incremental SAT solver with the input formula φ, as well as
the set of assumptions A to the empty set (lines 2 and 3). Then, it uses the func-
tion solve_subproblem to find the hardness of the subproblem in terms of conflicts
c, which is defined by the original formula φ and the set of assumptions A6 (line 4).
Additionally, solve_subproblem will return a model that will be used later.

In case the original formula is UNSAT (which we represent when the model is
empty), or there are not enough unfixed variables that could become parameters of

6Initially A is empty, this is equivalent to solving the original formula φ
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the SUT7 (sat.n_vars− |sat.propagate(A)| < n), or the formula is too easy (c < cmin),
the function will return a fail status (line 5).

Lines 6 - 15 show the main loop of the function. We consider a maximum num-
ber of tries MAX_TRIES to obtain the desired subproblem (which is a parameter
of SUT-G, see Algorithm SUT-G). In case these MAX_TRIES are reached and the
desired subproblem could not be obtained, we also return a fail status, as shown in
line 16).

At each iteration of the main loop, the algorithm tries to find a subproblem by
increasing or decreasing the assumptions A that will contain enough variables (to
become the parameters in the SUT) and with the desired hardness in terms of the
number of conflicts.

The idea is that by increasing the assumptions we are making the problem easier,
and decreasing them harder. This is however a greedy approach, and there might
be the case where the problem becomes harder when increasing the constraints, and
vice-versa. Nonetheless, we found this greedy process quite successfully when gen-
erating interesting SUTs, as we show in our experimental evaluation (see Section 5.2.2).

In line 8 we check if there are not enough unfixed variables that could become pa-
rameters of the SUT (sat.n_vars− |sat.propagate(A)| < n), or the current subprob-
lem is too easy (c < cmin). If that is the case, we try to decrease the assumptions A.
In case we have some literals in the assumptions, we remove ∇A random literals in
A in line 10, which is one of the input parameters of SUT-G (see Algorithm SUT-G).

However, it might be the case where the assumptions that we have at this point
are empty (line 9). This means that we cannot simplify the subproblem anymore,
and therefore we return a fail. Notice that this case is possible due to the incremental
nature of the SAT solver. At first, we might find that the original formula is too
hard in line 4, so in the main loop, we will increase the assumptions (as it will be
explained next). Then, the SAT solver might learn some clauses that make easier the
original problem8. At this point, decreasing assumptions will not help to increase
the hardness of the subproblem, so when we reach |A| = 0 we can stop the loop.

On the other hand, if the current subproblem is too hard (c > cmax, line 11),
we increase the assumptions A by adding to them ∆A random literals of the model
returned by solve_subproblem. (∆A is another input parameter of SUT-G, see Algo-
rithm SUT-G).

If none of these cases is found, we are within the conflicts range and there are
enough unfixed variables that can become parameters of the output SUT. Therefore,
we just return a success state and the list of propagated assumptions (line 12).

Finally, in lines 14 and 15 we call solve_subproblem again to update the number
of conflicts c and the model according to the changes in A that we performed, and
we add one try to tries. Notice however that these two lines are only executed in
case there are enough unfixed variables in the subproblem (line 13). If this is not the
case, we will keep decreasing A without solving the subproblem nor increasing the
number of tries.

In line 18 we describe function solve_subproblem. This function will solve each
subproblem and estimate its hardness in terms of conflicts.

First, it starts initializing the number of conflicts c and a set of models models to
0 and ∅ respectively (lines 19 and 20).

Then, in line 21 it iterates S , which contains a list of seeds provided by the user
as input in SUT-G. We set the Random Number Generator of the SAT solver to the

7We are also considering as fixed variables that cannot become SUT parameters the Unit Propagation
ofA. If some of these variables is selected as a parameter of the SUT it will have just one possible value.

8These clauses are kept between calls to solve
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current seed in line 22, and proceed to solve the current subproblem in line 23 (which
is the formula in the SAT solver plus A). In this same line, we check if the subprob-
lem is UNSAT, and return an empty model if this is the case. Otherwise, when the
subproblem is SAT, we retrieve the model and add it to models in line 24. Addition-
ally, we compute the number of conflicts and sum them to c in line 25. At the end in
line 26 we return one random model from the list of models, as well as the average
on the number of conflicts 9.

For this version of the algorithm, we are considering that all the parameters in
the SUT have domain 2. In next versions, we will consider the generation of SUT
models with mixed domains.

We present an example of a generated benchmark using the SUT-G generator.
Let the DIMACS10 formula shown in Figure 5.6 be the input SAT formula φ

to SUT-G. This corresponds to the AProVE09-21 SAT instance, extracted from the
SAT2009 competition [95], which describes a Termination Analysis problem for Term
Rewrite Systems (TRSs) [50].

p cnf 29964 91044
29964 0
29964 -29842 -29963 0
-29964 29842 0
...
29962 -11821 0
-29961 -11763 0
29961 11763 0

FIGURE 5.6: Example input formula φ

As we can observe from the header of the file (p cnf 29964 91044), this input
formula has 29964 variables and 91044 clauses.

To exemplify the usage of SUT-G, we will generate the AProVE09-21 SUT bench-
marks that appears in Table 5.7 of Section 5.2, wich has 100 SUT parameters. Fig-
ure 5.7 shows a portion of this generated benchmark11.

The SUT-G generator will output the SUT instance in the Extended ACTS format
(see Section 5.1.1), as it is more convenient to represent this kind of constraints using
auxiliary variables. We observe a reduction in the number of variables and clauses
with respect to φ (from 29964 variables to 28301, and from 91044 clauses to 85144).
This is the result of finding a satisfiable subproblem that meets the requirements in
terms of the required hardness window.

In this case, we have generated a SUT with 100 binary parameters (declared in
the [Parameter] section of the SUT). The rest of the variables have been declared
as auxiliary variables in the [Auxiliar] section of the SUT. Then, under the section
[Constraint], we have specified the SUT constraints, both referring to parameters
and auxiliary variables.

9We return the average on the number of conflicts over all the S to mitigate lucky and unlucky runs
of the SAT solver

10http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps
11We will make available to the community all the generated benchmarks, as well as the SUT-G

generator

http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps
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[System]
Name: AProVE09-21
[Parameter]
p70 (bool): TRUE,FALSE
p302 (bool): TRUE,FALSE
p705 (bool): TRUE,FALSE
...
p27729 (bool): TRUE,FALSE
p27961 (bool): TRUE,FALSE
p28179 (bool): TRUE,FALSE
[Auxiliary]
p1 (bool): TRUE,FALSE
p2 (bool): TRUE,FALSE
p3 (bool): TRUE,FALSE
...
p28299 (bool): TRUE,FALSE
p28300 (bool): TRUE,FALSE
p28301 (bool): TRUE,FALSE
[Constraint]
C1: p1 == TRUE || p2 == TRUE
C2: p1 == TRUE || p3 == FALSE || p4 == FALSE
C3: p1 == FALSE || p3 == TRUE
...
C85142: p28301 == TRUE || p11219 == TRUE
C85143: p28301 == FALSE || p11158 == FALSE
C85144: p28301 == TRUE || p11158 == TRUE

FIGURE 5.7: Example output SUT for SUT-G

5.2 Assessing MCAC Tools with SUT-Gen

In this section we assess the state-of-the-art IPOG [73] and BOT-its [8, 100] MCAC
algorithms that are described in Sections 2.3.1 and 4.1 by using the available MCAC
tools and benchmarks generated with the SUT-G generator (see Section 5.1)

This evaluation has two main goals:

1. Analyze the impact of the generated SUT constraints with respect to the same
unconstrained SUT.

2. Evaluate and compare the differences in test suite size and runtime of the men-
tioned MCAC algorithms using the generated CT benchmarks, and compare
their behaviour with the available CT benchmarks.

Unfortunately, we did not find any state-of-the-art tool for generating MCACs
that supported the Extended ACTS format described in Section 5.1.1. Although there
are some MCAC tools that could be adapted to support this format (one of them is
the ACTS tool [34], in particular, their IPOG implementation that uses a Constraint
Programming (CP) solver to handle SUT constraints [104]), these modifications were
out of the scope of this work. Instead of that, we decided to adapt our own version
of the IPOG algorithm (named CTLOG) with full support for both the ACTS and
Extended ACTS SUT formats. In this case, constraints are handled using the SAT
solver Glucose 4.1 [16].
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To ensure that our implementation is competitive with ACTS, we tested both
algorithms using the 58 state-of-the-art benchmarks for strengths t = {2, 3, 4}, as
both implementations support this input format. Table 5.1 shows these results. We
executed the ACTS implementation one time and our implementation 10 times with
different seeds to mitigate the stochastic behaviour of the algorithm 12.

As we can observe, the CTLOG implementation of IPOG is able to solve 9 more
instances than ACTS for strengths t = {2, 3, 4}. In general, our IPOG implementa-
tion finds MCACs faster than ACTS. Regarding MCAC sizes, both approaches obtain
similar results. Therefore, it makes sense to use our own IPOG implementation as
we have demonstrated that it is equivalent to or even better than the ACTS imple-
mentation.

We selected the BOT-its and PBOT-its [8] algorithms to compare against IPOG.
All our algorithms are implemented in Python except for the most critical parts,
which have been implemented in Nim 13. We use the OptiLog [2] Python framework
to efficiently use SAT solvers and encoders. In both cases, we use the Glucose 4.1 SAT
solver [16]. These algorithms have been adapted to support the new SUT format
discussed in Section 5.1.1.

Regarding the generated benchmarks, we decided to use industrial SAT instances
for our study. The main idea is that the generated SUT constraints will keep some of
the industrial-like structure of the original SAT formula, and can be a good approxi-
mation of the constraints of other real-world industrial SUTs.

We selected the instances of the SAT competition 2009 [95] to try to find solvable
satisfiable instances for modern SAT solvers more easily 14. Notice that this selection
is only for convenience, as SUT-G is able to adapt the hardness of the input instance
as explained in Section 5.1.

We also used Glucose 4.1 [16] as incremental SAT solver for Algorithm SUT-G.
We set the parameters rnd-freq and rnd-pol-freq of the solver to 0.5 to allow some
variations on the results of the solve_subproblem function. We set the constants
∆A and ∇A to 10 and 5 respectively, S to five random seeds and MAX_TRIES to
100. Additionally, we limited each query to the SAT solver to 300s, so if one of these
queries cannot be completed we consider the formula as UNSAT.

We generated benchmarks with 25, 50 and 100 parameters of domain 2 using a
limit cmax of 5000 and 10000 conflicts, setting cmin always to cmax/2 (see Section 5.1
for more details regarding the generation parameters). In total, we generated 105
crafted benchmarks that we will make available to the community, as well as the
generator.

Our experimentation environment consists of a cluster of nodes with two AMD
7403 processors each (24 cores at 2.8GHz) and 21 GB of RAM per core. Tables 5.2,
5.3, 5.4, 5.5, 5.6 and 5.7 show the results of our experimentation. We show in bold
the best results in terms of test suite size and time. We run each benchmark with 5
different seeds to mitigate the stochastic behaviour of the tested algorithms, using
a time limit of 8h and a memory limit of 21 GB. Additionally, we executed each
benchmark for strengths t = {2, 3, 4}.

In the following sections we will analyze the results of our experimental evalua-
tion.

12The ACTS tool does not expose the seed parameter
13The Nim programming language (https://nim-lang.org/)
14Theoretically, SAT solvers that apply modern techniques should be able to solve more efficiently

instances of previous SAT competitions.

https://nim-lang.org/
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t = 2 t = 3 t = 4
ACTS CTLOG ACTS CTLOG ACTS CTLOG

size time size time size time size time size time size time

[38]

1 48 9s 44.9 4s 293 12s 288.3 8s 1680 1207s 1678.6 143s
2 32 9s 34.5 4s 174 6s 181.3 7s 873 586s 883.6 89s
3 19 9s 20.0 4s 71 2s 66.3 4s 212 2s 214.3 4s
4 22 7s 22.6 4s 102 3s 101.4 4s 374 12s 381.2 18s
5 54 10s 51.9 5s 386 177s 378.0 16s - - 2437.7 1006s
6 25 8s 26.7 4s 119 5s 120.9 6s 491 116s 492.9 90s
7 12 9s 12.2 1s 35 2s 35.4 1s 93 2s 96.7 3s
8 47 8s 45.7 2s 326 63s 317.3 9s 1988 6819s 1896.8 340s
9 22 9s 21.3 4s 84 4s 83.5 5s 268 77s 273.8 50s
10 47 8s 46.7 3s 329 117s 328.4 14s 2063 17447s 2032.5 1185s
11 47 8s 46.7 4s 318 26s 316.3 8s 1885 2150s 1896.2 149s
12 43 11s 41.1 4s 263 46s 262.0 12s 1465 5676s 1443.8 588s
13 40 10s 38.5 2s 200 10s 207.9 8s 1040 1668s 1042.3 488s
14 39 12s 39.5 4s 244 4s 242.1 7s 1163 225s 1161.7 86s
15 32 9s 32.9 4s 173 4s 174.2 5s 770 21s 774.5 17s
16 25 7s 25.5 4s 117 7s 119.2 8s 453 321s 452.0 146s
17 41 9s 41.0 2s 265 48s 262.2 7s 1514 4904s 1463.5 285s
18 52 9s 47.6 4s 344 27s 321.3 14s 2145 3999s 1990.4 451s
19 51 11s 50.1 5s 373 159s 374.4 21s - - 2494.8 2095s
20 60 10s 58.7 3s 463 482s 465.8 23s - - 3261.1 2414s
21 39 9s 39.5 2s 235 9s 234.1 6s 1070 494s 1091.6 185s
22 37 9s 36.7 4s 164 5s 165.3 6s 664 100s 669.3 73s
23 14 9s 14.1 4s 48 2s 47.9 4s 140 3s 140.3 5s
24 48 8s 48.7 4s 341 42s 336.8 14s 2105 4512s 2095.6 517s
25 52 7s 53.5 4s 404 58s 403.1 12s 2673 9514s 2652.0 369s
26 34 9s 35.0 4s 207 17s 208.2 8s 1111 1373s 1136.0 151s
27 37 7s 37.8 4s 204 4s 212.0 5s 1004 22s 1017.6 19s
28 57 8s 54.7 5s 420 119s 419.6 23s - - 2865.7 2332s
29 29 7s 28.6 4s 154 6s 153.2 8s 681 1354s 713.3 203s
30 22 7s 20.7 4s 100 5s 94.8 6s 386 142s 376.0 76s
apache 33 9s 33.0 5s 173 7s 173.1 10s 838 3468s 838.7 362s
bugzilla 19 7s 18.1 4s 68 2s 67.0 5s 242 4s 229.0 3s
gcc 23 7s 24.6 5s 108 7s 167.3 64s 444 3386s 573.4 6669s
spins 26 6s 25.5 4s 98 2s 114.8 4s 393 3s 426.3 5s
spinv 45 7s 45.4 4s 286 4s 305.9 15s 1631 20s 1818.0 870s

[96]

Banking1 15 11s 16.2 4s 58 3s 55.4 4s 139 3s 141.8 4s
Banking2 11 11s 11.5 4s 39 2s 39.0 3s 96 2s 95.6 4s
CommProtocol 19 13s 19.7 4s 49 7s 50.4 4s 97 36s 98.3 4s
Concurrency 6 11s 5.4 4s 8 2s 8.0 4s 8 2s 8.0 4s
Healthcare1 30 10s 30.2 4s 105 2s 102.5 4s 341 2s 326.6 4s
Healthcare2 16 11s 16.4 4s 67 2s 64.1 3s 220 4s 222.0 4s
Healthcare3 38 11s 38.4 4s 209 3s 202.9 4s 1004 11s 973.4 9s
Healthcare4 49 12s 48.6 4s 294 3s 292.4 5s 1644 15s 1630.6 13s
Insurance 527 11s 527.9 4s 6866 2s 6930.4 13s 75764 5s 75669.1 99s
NetworkMgmt 112 11s 116.3 4s 1125 2s 1129.9 4s 6267 3s 6248.2 10s
ProcessorComm1 29 11s 28.9 4s 163 2s 159.9 4s 670 3s 668.1 6s
ProcessorComm2 32 13s 31.4 4s 161 65s 160.9 4s 744 7250s 741.2 14s
Services 106 17s 106.4 4s 963 186s 915.1 5s 6855 4718s 6853.7 14s
Storage1 17 11s 17.3 4s 25 2s 25.0 4s 25 2s 25.0 4s
Storage2 18 11s 18.2 4s 74 1s 61.6 4s 195 1s 181.9 4s
Storage3 50 12s 54.5 4s 239 5s 239.2 4s 752 40s 753.4 5s
Storage4 136 10s 133.5 4s 990 2s 1005.7 6s 6636 3s 6589.3 21s
Storage5 218 13s 228.6 4s 1879 6s 1941.7 10s 13292 17s 13454.5 113s
SystemMgmt 17 10s 16.7 4s 60 2s 56.1 3s 152 2s 149.8 4s
Telecom 32 11s 30.7 4s 126 2s 125.4 3s 392 2s 395.2 4s

[102]

RL-A-mod 155 436s 158.5 4s - - 1155.9 13s - - 7767.3 336s
RL-B-mod - - 761.3 8s - - 14201.1 205s - - - -

[100]

Company2 81 31s 82.3 1s 424 630s 432.4 2s - - 1392.1 5s

TABLE 5.1: Comparison of IPOG implementations in ACTS and CT-
LOG tools for strengths t = {2, 3, 4}
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t = 2 t = 3 t = 4

ipog bot ipog bot ipog bot
size time size time size time size time size time size time

unconstr 12.00 2.07 12.40 1.06 30.10 1.30 29.70 1.40 73.90 1.50 76.10 9.69

AProVE09-01 10.00 11.33 10.20 9.54 22.40 15.53 21.80 11.19 54.20 26.06 55.20 18.12
AProVE09-05 8.40 12.18 10.00 10.58 16.60 14.74 18.60 13.39 23.60 21.13 24.60 18.49
AProVE09-07 3.00 9.99 3.00 8.46 3.00 10.64 3.00 9.30 3.00 16.21 3.00 12.90
AProVE09-08 2.00 9.09 2.00 9.13 2.00 9.76 2.00 9.89 2.00 12.61 2.00 12.13
AProVE09-17 8.20 24.65 10.40 23.41 18.60 32.45 24.20 32.20 43.00 52.07 52.20 48.40
AProVE09-20 16.00 143.69 24.00 245.39 47.80 191.92 77.40 327.50 130.60 352.73 185.80 385.19
AProVE09-21 21.40 304.04 33.00 161.28 77.00 741.11 137.20 552.50 245.40 2111.51 441.00 1348.85
AProVE09-24 13.00 27.53 19.60 21.01 42.00 47.59 55.80 29.13 120.80 150.69 136.20 51.08
gss-14 1.00 98.04 1.00 110.95 1.00 140.92 1.00 247.86 1.00 164.23 1.00 400.54
q_query_3_L60 2.00 52.19 2.00 47.35 2.00 58.76 2.00 45.50 2.00 93.62 2.00 53.59
q_query_3_l37 13.00 20.04 15.80 14.85 39.00 28.83 41.40 17.37 99.00 54.76 102.40 28.17
q_query_3_l38 10.60 14.15 11.00 10.40 28.80 18.79 28.40 11.92 68.60 29.98 70.80 17.26
q_query_3_l39 10.20 12.91 10.60 11.06 26.00 17.19 26.20 12.20 62.80 32.05 65.00 17.39
q_query_3_l40 10.00 18.09 10.60 15.46 24.40 21.06 25.00 17.34 59.80 30.35 61.20 24.93
q_query_3_l41 10.40 20.13 13.60 21.46 29.20 25.63 32.60 24.66 77.60 43.71 79.80 31.10
q_query_3_l42 9.20 22.58 10.40 22.43 22.60 25.64 23.20 25.40 55.80 34.54 56.40 26.82
q_query_3_l43 9.00 18.04 8.80 14.79 21.80 20.40 21.00 14.67 50.60 27.81 50.20 19.68
rbcl_xits_14 8.20 72.41 11.40 49.86 19.40 123.42 23.60 44.50 37.80 108.83 42.00 96.74
rbcl_xits_14-1 8.20 72.45 11.40 49.99 19.40 120.37 23.60 46.51 37.80 104.15 42.00 96.50
rpoc_xits_17 - - - - - - - - - - - -
rpoc_xits_17-1 - - - - - - - - - - - -

TABLE 5.2: Test suite size and runtime for the instances with 25 pa-
rameters and 5000 conflicts

t = 2 t = 3 t = 4

ipog bot ipog bot ipog bot
size time size time size time size time size time size time

unconstr 12.00 2.07 12.40 1.06 30.10 1.30 29.70 1.40 73.90 1.50 76.10 9.69

AProVE09-07 3.00 9.27 3.00 7.95 3.00 13.04 3.00 10.94 3.00 19.00 3.00 13.87
AProVE09-08 5.00 23.99 5.00 19.05 6.00 25.87 6.00 27.21 6.00 35.57 6.00 23.03
AProVE09-15 11.00 82.52 20.80 48.83 27.20 144.29 48.60 78.44 76.00 319.77 92.60 103.55
AProVE09-20 21.60 247.92 33.60 261.64 71.40 359.70 111.40 429.13 197.40 661.52 292.40 638.34
UR-10 6.00 38.68 6.20 35.13 8.20 40.39 10.20 41.61 16.00 63.62 16.00 42.41
gss-14 1.00 143.38 1.00 101.77 1.00 175.34 1.00 154.93 1.00 260.89 1.00 366.99
q_query_3_l37 11.40 40.40 13.40 18.87 35.00 69.35 37.00 27.01 92.80 115.16 100.00 42.81
q_query_3_l38 10.00 21.16 11.60 13.94 26.40 28.51 29.00 16.79 70.00 43.00 73.80 24.17
q_query_3_l39 10.80 18.30 12.20 16.08 27.00 21.29 30.40 16.83 70.00 35.90 71.40 23.42
q_query_3_l40 12.80 45.53 15.80 38.42 36.20 57.04 42.80 48.12 107.40 80.07 107.00 56.26
q_query_3_l41 9.80 23.39 11.20 22.60 24.80 29.62 26.40 27.30 62.40 46.15 64.20 28.15
q_query_3_l42 8.00 25.12 7.80 29.08 16.40 30.46 16.80 26.68 35.20 34.51 37.40 35.00
q_query_3_l43 10.00 13.80 9.80 11.68 24.00 16.62 24.20 11.44 56.80 23.57 58.60 17.33
rbcl_xits_14 8.80 3515.88 12.20 1654.27 22.80 8542.25 33.75 2206.95 57.25 8448.56 76.80 4854.20
rpoc_xits_17 - - - - - - - - - - - -

TABLE 5.3: Test suite size and runtime for the instances with 25 pa-
rameters and 10000 conflicts
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t = 2 t = 3 t = 4

ipog bot ipog bot ipog bot
size time size time size time size time size time size time

unconstr 14.00 1.24 15.40 1.07 39.20 1.23 39.00 4.67 101.10 1.99 101.20 230.84

AProVE09-01 12.00 14.69 13.00 9.01 31.20 27.47 32.00 14.10 79.80 81.84 82.00 96.79
AProVE09-05 18.20 16.41 20.40 15.57 39.00 30.69 42.00 20.66 51.60 247.81 54.40 148.37
AProVE09-07 5.00 9.81 5.00 9.82 5.00 15.79 5.00 12.77 5.00 130.74 5.00 87.56
AProVE09-08 2.00 8.15 2.00 8.23 2.00 11.12 2.00 10.50 2.00 47.45 2.00 67.34
AProVE09-17 15.20 53.27 26.60 40.34 55.60 142.20 100.60 110.45 199.00 730.10 306.20 542.11
AProVE09-20 37.60 206.62 61.20 251.94 168.80 607.08 255.40 397.35 670.00 8655.74 863.40 1579.16
AProVE09-21 48.40 568.46 92.20 348.80 266.00 3485.15 584.60 3215.69 1225.00 20551.41 2454.40 11135.27
AProVE09-24 21.60 43.64 31.20 27.10 88.40 188.11 103.80 58.96 338.80 2537.30 362.20 527.29
gss-14 1.00 103.44 1.00 126.74 1.00 119.52 1.00 265.68 1.00 162.76 1.00 463.80
q_query_3_L60 7.20 57.50 10.80 96.95 14.20 74.70 20.40 128.28 27.80 173.44 31.40 251.91
q_query_3_l37 18.00 26.64 23.80 17.56 66.40 68.08 78.60 29.48 218.00 415.56 228.00 178.33
q_query_3_l38 17.20 19.17 20.40 11.74 62.40 50.78 66.80 17.69 216.80 246.18 223.60 139.10
q_query_3_l39 12.40 16.94 14.20 12.57 36.00 34.06 41.00 15.20 104.80 211.00 118.80 137.61
q_query_3_l40 11.40 19.33 12.80 17.40 34.20 32.73 35.80 18.63 94.80 156.48 104.00 110.74
q_query_3_l41 14.00 26.66 17.80 20.73 48.80 54.39 54.40 30.10 163.60 267.29 172.60 175.98
q_query_3_l42 11.40 29.71 11.40 25.04 29.80 41.17 30.80 23.00 83.40 111.42 91.00 111.47
q_query_3_l43 11.60 18.97 11.40 14.55 35.80 33.80 34.60 18.22 90.40 91.49 95.80 93.42
rbcl_xits_14 11.00 100.32 21.60 60.70 34.20 140.27 55.20 49.82 82.40 207.96 123.60 237.65
rpoc_xits_17 - - - - - - - - - - - -

TABLE 5.4: Test suite size and runtime for the instances with 50 pa-
rameters and 5000 conflicts

t = 2 t = 3 t = 4

ipog bot ipog bot ipog bot
size time size time size time size time size time size time

unconstr 14.00 1.24 15.40 1.07 39.20 1.23 39.00 4.67 101.10 1.99 101.20 230.84

AProVE09-07 6.00 13.92 6.20 12.57 8.00 17.85 8.00 11.11 8.00 95.15 8.00 99.85
AProVE09-08 6.40 22.28 6.60 27.18 8.00 27.55 8.00 28.67 8.00 117.15 8.00 100.95
AProVE09-15 19.40 162.12 36.00 102.05 75.40 511.28 156.40 285.90 270.00 3099.48 437.20 1091.52
AProVE09-20 35.20 334.61 58.40 377.62 168.40 791.53 268.00 663.72 737.80 12134.04 1003.80 2334.18
UR-10 7.20 43.48 8.40 40.72 13.80 51.24 16.20 48.60 26.20 144.98 28.40 116.96
gss-14 1.00 124.86 1.00 221.15 1.00 185.78 1.00 197.57 1.00 237.18 1.00 308.75
gss-15 1.00 42.59 1.00 77.40 1.00 59.96 1.00 76.36 1.00 99.12 1.00 207.27
q_query_3_l37 23.80 57.71 32.20 29.65 111.60 179.69 129.20 62.27 406.20 1613.19 461.60 328.03
q_query_3_l38 16.60 28.07 19.80 17.39 63.40 62.65 75.40 24.72 226.60 269.64 241.80 170.71
q_query_3_l39 15.60 23.31 18.00 16.68 53.80 47.27 57.80 20.76 186.00 322.07 189.20 141.60
q_query_3_l40 20.80 55.32 25.80 57.08 85.60 115.03 92.20 67.61 272.60 569.56 284.40 269.98
q_query_3_l41 13.20 28.55 14.60 27.47 41.60 50.95 43.80 26.81 123.00 204.09 136.40 141.97
q_query_3_l42 10.60 29.34 11.80 34.17 27.80 41.61 28.20 37.92 72.60 88.61 79.20 107.75
q_query_3_l43 11.80 18.23 12.80 11.54 35.40 31.77 33.60 12.79 92.20 95.67 98.20 87.13
rbcl_xits_14 11.33 9438.27 22.20 3470.61 43.25 8778.63 68.50 8434.12 105.00 14957.99 181.20 7680.59
rpoc_xits_17 - - - - - - - - - - - -

TABLE 5.5: Test suite size and runtime for the instances with 50 pa-
rameters and 10000 conflicts
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t = 2 t = 3 t = 4

ipog bot ipog bot ipog pbot1G
size time size time size time size time size time size time

unconstr 16.00 1.31 17.10 1.36 48.30 1.75 48.10 39.29 131.40 16.40 240.20 1575.46

AProVE09-01 13.60 19.86 14.20 5.94 40.80 61.75 43.80 34.94 118.20 693.01 145.60 1165.26
AProVE09-05 26.80 15.74 29.60 15.63 53.00 117.18 54.80 70.81 71.20 3405.83 75.40 1272.09
AProVE09-07 5.00 5.98 5.00 6.64 5.00 53.24 5.00 31.71 5.00 3119.65 5.00 1078.51
AProVE09-08 4.00 4.31 4.00 4.87 4.00 15.52 4.00 24.79 4.00 628.45 4.00 1092.38
AProVE09-17 35.00 86.08 59.40 66.98 192.00 1535.24 270.00 357.02 - - 1027.80 2482.75
AProVE09-20 66.80 307.55 108.20 276.30 462.20 4036.59 597.40 964.15 - - 3065.20 9220.35
AProVE09-21 100.00 898.98 191.60 654.85 893.60 24042.60 1784.80 9812.63 - - - -
AProVE09-24 42.40 120.59 51.20 54.57 224.40 2401.02 239.00 355.86 - - 1154.00 3983.49
gss-14 1.00 108.34 1.00 133.56 1.00 155.89 1.00 312.83 1.00 785.80 1.00 1537.03
q_query_3_L60 10.00 70.75 13.20 58.36 27.80 103.27 37.80 99.90 72.60 1200.75 85.40 1278.38
q_query_3_l37 34.00 41.02 45.80 21.80 173.00 416.29 187.60 100.40 680.75 13673.49 728.60 1987.41
q_query_3_l38 27.20 29.13 33.20 11.03 129.20 288.13 132.40 61.04 531.00 12746.11 550.00 1371.29
q_query_3_l39 17.80 25.30 18.40 10.98 67.40 183.52 70.80 54.98 240.20 5492.51 272.60 1187.12
q_query_3_l40 16.60 23.18 19.20 13.67 64.00 132.17 67.20 43.66 236.00 5006.47 241.40 1093.34
q_query_3_l41 22.60 36.09 26.60 22.28 98.00 224.07 99.80 62.51 433.00 4265.88 411.00 1298.78
q_query_3_l42 14.20 30.25 14.60 21.96 50.60 78.71 54.00 50.37 185.60 1113.71 192.40 1052.16
q_query_3_l43 17.40 25.14 17.40 12.09 81.80 127.90 66.20 47.24 231.20 2203.31 230.60 1122.33
rbcl_xits_14 14.80 92.34 34.20 67.15 63.00 139.40 93.00 81.29 173.00 842.88 258.40 1679.15
rpoc_xits_17 - - - - - - - - - - - -

TABLE 5.6: Test suite size and runtime for the instances with 100 pa-
rameters and 5000 conflicts

t = 2 t = 3 t = 4

ipog bot ipog bot ipog pbot1G
size time size time size time size time size time size time

unconstr 16.00 1.31 17.10 1.36 48.30 1.75 48.10 39.29 131.40 16.40 240.20 1575.46

AProVE09-07 11.40 10.65 14.00 10.11 24.20 36.28 25.60 59.94 31.00 919.37 33.40 1177.58
AProVE09-08 7.00 19.58 8.00 28.75 10.20 42.11 10.40 57.62 12.00 1185.18 12.00 1087.00
AProVE09-15 50.00 378.53 76.20 210.04 326.60 12624.17 440.40 1012.74 - - 2027.00 6279.95
AProVE09-20 61.60 387.18 97.80 478.77 457.80 8122.76 627.60 1236.00 - - 3380.20 10364.28
UR-10 8.20 46.61 10.00 47.52 16.40 93.37 20.60 69.26 38.80 1957.95 48.80 1310.88
gss-14 1.00 194.64 1.00 537.10 1.00 241.69 1.00 466.77 1.00 854.17 1.00 1621.46
q_query_3_l37 48.20 159.63 55.20 105.19 272.40 2027.72 339.60 350.08 - - 1447.80 3708.98
q_query_3_l38 31.20 46.08 37.20 16.22 159.20 406.82 172.80 81.76 709.25 11638.60 715.00 1758.13
q_query_3_l39 22.00 31.87 25.40 15.82 90.20 213.85 87.80 50.49 371.80 3670.82 348.00 1189.03
q_query_3_l40 34.00 79.07 46.40 75.93 190.20 735.57 183.80 143.70 635.33 12984.01 641.00 1956.74
q_query_3_l41 17.80 38.95 24.40 33.39 71.00 161.96 84.60 76.65 248.40 3405.22 304.80 1294.24
q_query_3_l42 12.40 28.19 13.60 29.93 42.20 64.01 44.20 48.39 133.80 733.06 155.00 1079.87
q_query_3_l43 14.80 20.69 15.80 9.28 58.60 87.31 51.80 35.39 170.40 1900.25 181.40 1018.44
rbcl_xits_14 21.60 4482.73 62.80 3014.47 88.60 7630.25 222.50 3060.48 293.50 18368.60 627.40 5589.34
rpoc_xits_17 - - - - - - - - - - - -

TABLE 5.7: Test suite size and runtime for the instances with 100 pa-
rameters and 10000 conflicts
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5.2.1 Impact of the SUT constraints

The first question we address is how these SUT constraints impact the performance
of the tested algorithms. To analyze this, we included an execution of a benchmark
with the same number of parameters but without SUT constraints on the unconstr
row of Tables 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7.

In general, we observe that the addition of SUT constraints has a negative impact
on the generation runtime of the MCAC, regardless of the number of parameters
of the SUT, the strength t or the MCAC algorithm. This is expected, as at some
point we need to ensure that the test case that we are building is consistent with the
SUT constraints. This negative effect is amplified when we increase the number of
parameters, strength or hardness of the SUT constraints (i.e. number of conflicts).

However, we found some cases where the runtime is reduced, especially in some
executions for t = 4 on the BOT-its and PBOT-its algorithms (for example, bench-
mark AProVE09-08 in Table 5.4 for t = 4 and BOT-its, or benchmark q_query_3_l43
in Table 5.7 for t = 4 and PBOT-its). This suggests that some of the efficiencies on
the BOT-its algorithms regarding SUT constraints handling might benefit its perfor-
mance in some circumstances.

Regarding the test suite size, we observe more variation than with runtime. In
some cases it increases (for example benchmark AProVE09-21 in Table 5.4 for all
the strengths and algorithms), while in others it decreases (for example benchmark
rpoc_xits_14 in Table 5.3 for t = 3 in the IPOG algorithm). In the first case, there
might be some combinations that belong to some tests of the unconstrained version
that are now forbidden, so these tests need to be splitted into different tests, increas-
ing the overall test suite size. For the second case, the generated benchmark is so
constrained that it is forbidding some of the possible tests that we can find in the
unconstrained version, reducing the final test suite size. An extreme example of
that is benchmark AProVE09-07 in Table 5.6. Its test suite size is always 5 for all the
strengths and algorithms, which suggests that there are only 5 possible models for
the SUT constraints.

Notice that the IPOG and BOT-its algorithms cannot guarantee the optimality of
the reported test suite (i.e. they cannot certify the CAN), so solutions with smaller
test suites may exist. Nonetheless, these results provide interesting insights about
the behaviour of practical MCAC generation algorithms when dealing with hard
SUT constraints, as complete approaches that can obtain optimal MCACs such as
MaxSAT MCAC [15, 5] or the CALOT [101] algorithm will struggle with these kinds
of benchmarks (see Section 5.3 for more in-depth discussion about this).

5.2.2 Comparing the performance of the IPOG and (P)BOT-its algorithms

In Section 5.2.1 we analyzed the overall impact of the generated benchmarks over
their unconstrained version. In this section we analyze the differences on perfor-
mance for the IPOG and (P)BOT-its algorithms (see Sections 2.3.1 and 4.1 respec-
tively).

In general, we observe how IPOG obtains better sizes than BOT-its but worse
run times. As we discussed in previous sections, the BOT-its algorithm heuristically
creates one test at a time that might be inconsistent during its construction, and
later amends it to try to reduce the number of SAT solver queries. It is clear that
this procedure reduces the efficiency of the heuristic and therefore can increase the
final test suite size, as some of its choices might be suboptimal once the test case is
repaired. On the other hand its final run time is reduced, especially when dealing
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with hard SUT constraints, as SAT solver queries are also reduced with respect to
IPOG.

This is an interesting result, as in previous works the IPOG algorithm obtained
better run times than BOT-its on the original state-of-the-art benchmarks [100, 8].

In Tables 5.6 and 5.7, where we are solving SUT models with 100 parameters, we
observe the limitations in terms of memory consumption of both IPOG and BOT-its.
When we increase the strength t above 3, IPOG is only able to report an MCAC for
25 of the 34 benchmarks, while the basic BOT-its could not report any of them15.
This is why we executed the pool version of the BOT-its algorithm with a pool of 1GB
(referred as pbot1G in the mentioned tables, see [8]). In contrast, this algorithm can
solve all benchmarks except 3.

In these cases, we observe larger differences in runtime between IPOG and PBOT-
its. In particular we observe a difference of an order of magnitude for benchmarks
q_query_3_l37 and q_query_3_l38 in Table 5.6, and q_query_3_l38 and q_query_3_l40
in Table 5.7 for t = 4.

In contrast, we observe a slightly increase in the test suite size in PBOT-its for
these benchmarks, compared to IPOG. We noticed other benchmarks where this gap
in terms of test suite size is further amplified (AProVE09-21 for t = 3 in Table 5.2,
AProVE09-15 for t = {2, 3} in Table 5.3 and AProVE09-21 for t = 2, 3, 4 in Table 5.4
are some examples where (P)BOT-its almost doubles the test suite size obtained by
IPOG).

Finally, we observe that there is a particular benchmark that is never solved
(benchmark rbcl_xits_17 in Tables 5.2, 5.3, 5.4, 5.5 and 5.7). Although we tried to
adapt the hardness of the generated benchmarks in Algorithm SUT-G, there might
be cases where this is not always possible. In particular, it seems that in this bench-
mark the algorithms try to explore an exponential branch of the formula when com-
pleting certain test cases. Notice that the IPOG algorithm would not be able to avoid
these branches. On the other hand, BOT-its could be modified to try to mitigate this
effect by adapting the amend procedure on each test. This can be considered future
work.

Thanks to the development of the SUT-G generator, we have been able to provide
another point of view on the performance of two well-known MCAC generation
algorithms. As result, in the next section, we will try to provide some recipes to
effectively apply MCAC algorithms in real-world scenarios.

5.3 Recipes for Choosing MCAC Tools

In this section, we provide several interesting insights about the application of MCAC
generation tools. We extracted them thanks to the experimental evaluation that we
conducted using the SUT-G generator instances (see Section 5.1). These instances
provided another point of view on the behaviour of the tested algorithm with re-
spect to the currently available CT benchmarks. Notice that in this case, we focus on
the MCAC problem, but other CT problems can also be considered for this analysis.

In [8, 100], authors show how IPOG is faster than the BOT-its/Algorithm 5 algo-
rithm for the current CT benchmarks. However, as we discussed in Section 5.2.2,
we observe now, that in general, the BOT-its algorithm is able to obtain an MCAC
in less time than IPOG. Notice that IPOG needs to ensure at each point that all the
partially-built test cases are consistent with the SUT constraints (see Section 2.3.1).

15We did not include these results in the tables. Instead, we just report the results of PBOT-its
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This implies a query to the SAT solver for each value that it fixes in horizontal ex-
tension, another query to the SAT solver for each tuple that has not been covered
and an additional query for each of the tests where a tuple can be covered until it is
covered.

In contrast, the BOT-its algorithm only checks the first tuple that it fixes in the
test and once it finishes building it16 (see Section 4.1). In case it is not, it removes the
last fixed parameter and checks the test again, until the test is consistent. Although
this method can produce as many SAT queries as the IPOG algorithm in the worst
case, we observe that this is not true for the average case. Therefore, the BOT-its
algorithm can potentially reduce the number of SAT queries with respect to IPOG.
This comes with the drawback of having a more incomplete heuristic than IPOG,
which can increase the test suite size. Additionally, the BOT-its algorithm is able to
eliminate forbidden tuples more efficiently than IPOG (i.e. it does not require one
SAT query for each forbidden tuple).

On the other hand, IPOG obtains better MCAC sizes in general. This is also
observed in [8] for the current CT benchmarks.

As rule of thumb, we recommend using the IPOG algorithm for SUTs with sim-
ple constraints and low strength t (which are all the available CT benchmarks until
this work). To try to obtain smaller test suites for these instances, metaheuristic
approaches such as [48, 81] can also be useful. These approaches take an already-
built MCAC (for example, one obtained using IPOG) and try to eliminate test cases
by swapping values in the test suite using local search techniques. For the cases
where an optimal MCAC is required there exist several algorithms such as MaxSAT
MCAC [15, 5] or CALOT [101]. Notice however that obtaining a minimal MCAC
for a given SUT and strength t is an NP-Hard [82] problem, and that only relatively
small instances with small strengths (e.g. t = 2) are suitable for these methods.

In case the generation time is important, for more complex constraints we rec-
ommend the BOT-its algorithm and its variants. Additionally, for higher strengths
where the memory consumption of the IPOG algorithm is too high, the PBOT-its
variant of BOT-its can mitigate these memory issues. As a side note, notice also that
BOT-its and PBOT-its allow online testing of the SUT, as test cases can be applied to
the system as soon as they are produced. In the IPOG algorithm, a test case is not
completed until the algorithm finishes.

Trying to find optimal MCACs for this kind of instances by using MaxSAT MCAC
or CALOT can be more challenging. Unlike in IPOG or BOT-its, these other algo-
rithms need to encode a copy of the SUT constraints for each test, making these
approaches impractical when having large SUT constraints (even for t = 2).

Similarly, metaheuristic approaches can also suffer when dealing with hard SUT
constraints, as for each change that they perform in the test suite, they must ensure
that it is consistent with the SUT constraints by querying the SAT solver.

16For each of the fixed parameters, BOT-its performs a limited query to the SAT solver, which is much
more efficient in terms of time
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Chapter 6

OptiLog v2: Model, Solve, Tune
And Run

6.1 Introduction

In the last twenty years, the efficiency of SAT engines (solvers) has experimented
a great success. Actually, they have become the core engines of other higher-level
engines: #SAT (Sharp-SAT), MaxSAT (Maximum Satisfiability), QBF (Quantified
Boolean Formulas), PBO (Pseudo-Boolean Optimization), SMT (Satisfiability Mod-
ulo Theories), Model finding, Theorem proving, ASP (Answer Set Programming),
LCG (Lazy Clause Generation), CSP (Constraint Satisfaction Problems), etc.

Despite the tremendous success of SAT applications in several domains, the ac-
cess to these resources by members of other research communities, industrial envi-
ronments, and students of undergraduate courses has been rather limited due to the
absence of friendly frameworks. The same story applies to other areas of computer
science.

The Python programming language [98], thanks to its simplicity, has dramati-
cally turned the situation around, becoming the middleware to interconnect many
scientific libraries through Python bindings such as Numpy [62], Pandas [99], scikit-
learn [92], Pytorch [91], Keras [37], etc. This interconnection has definitely allowed
to develop more complex applications and to indirectly justify further the individual
utility of each library.

In Constraint Programming we also find several Python applications or bindings
such as CPLEX [66], Gurobi [61], OR-Tools [58], COIN-OR [39], SCIP [52], Z3 [42],
PySMT [54], cnfgen [71], PySAT [68], PyPbLib [80], SAT Heritage [17], OptiLog [7],
etc.

In this paper, we focus on a new release of the OptiLog Python framework [7]
for SAT-based applications with significant contributions. The idea is to make of
OptiLog the tool of choice to support researchers, practitioners, or students along all
the development process that involves modelling the problem, implementing a solv-
ing approach, tuning the overall approach, and evaluating its effectiveness. OptiLog
covers all these steps. Moreover, thanks to its versatility, it can be used to develop
other systems not necessarily related to SAT problems.

The paper is structured as follows: in Section 6.2 we present the general archi-
tecture of the new OptiLog framework. In Section 6.3, we present the new Modelling
module to define problems. In Section 6.4 we describe how the Solvers module has
been completely redesigned. Next, in section 6.5 we introduce the new BlackBox
module to execute external tools within OptiLog. In Section 6.6 we describe the new
additions to the Tuning module. Finally, in Section 6.7 we describe the new Running
module to execute experiments and parse the results.
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We provide in OptiLog’s documentation [79] a case study with full detail that
covers all the steps of the development process.

6.2 OptiLog Framework Architecture

OptiLog [7] was designed as a Python library for rapid prototyping of SAT-based
systems. However, we will see that it provides features (such as the running and tun-
ing modules) that can be used in other scenarios not necessarily only for developing
constraint programming systems. In particular, OptiLog provided four main mod-
ules for its end-user API: The Formula module, the PB Encoder module (renamed
as Encoder Module), the SAT solver module, and the Automatic Configuration (AC)
module (renamed as Tuning module).

In this paper, we extend OptiLog’s end-user API to ease its usage in education
and industry by providing three new modules: a higher-level modelling language
within the Modelling module, a Running module that simplifies the execution of ex-
periments and their analysis, and a BlackBox Module that eases the integration of
third-party tools. Additionally, the original Solvers module, which allows executing
within OptiLog the C++ libraries of incremental SAT solvers, has been completely
redesigned. Also, the Tuning module that allows the interconnection with automatic
configurators has been extended and integrated with the new Running module.

OptiLog is the evolution of our PyPbLib [80] package, which is also used by
PySAT [68]. OptiLog is now also available through PyPi [51]:

$ pip install optilog

Figure 6.1 shows the new architecture we propose for OptiLog, a full description
on the current architecture can be found in the OptiLog manual [79]. This architec-
ture supports the user along the development process:

1. Model the problem into a more richer and compact formalism (combining
Non-CNF Boolean and Pseudo-Boolean expressions) through the Modelling
module. And, translate the model into a formalism supported by constraint
programming solvers, e.g. Boolean formulas in Conjunctive Normal Form
(CNF) or Weighted CNF, thanks to the Formula and Encoders modules.

2. Implement the solving algorithmic approach through: (i) the Solvers module
that allows using External Libraries such as libraries of incremental C++ SAT
solvers and, (ii) the BlackBox module to execute External Tools such as gener-
ators, preprocessors, feature extractors, binaries of other solvers (such as the
SAT solvers available from SAT Heritage [18]), or any other system command,
etc.

3. Tune both the encoding and solving choices from a holistic point of view,
through the Tuning module, to increase the effectiveness of their interconnec-
tion on a given training set.

4. Evaluate the resulting system on a test set thanks to the Running module.

In the following, we describe with further detail the new contributions.
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FIGURE 6.1: OptiLog’s architecture.

6.3 Modelling Module

This module provides a rich and compact formalism to model problems. In partic-
ular, this module allows modelling problems with non-CNF Boolean and Pseudo
Boolean expressions that can be automatically transformed into the SAT formula
provided by the Formulas module. The non-CNF expressions are translated into
SAT using the Tseitin transformation. The Pseudo-Boolean expressions are normal-
ized [1] translated into SAT with the additional use of the Encoders Module. The
goal is to come up with a richer formalism, that frees the user from reimplementing
typical transformations to SAT, yet close enough to the formalism accepted by the
solvers in OptiLog. We think that OptiLog can be further used by other Tools with
higher formalism such as Minizinc [89], i.e, sort of OptiLog FlatZinc.

1 a = Bool(’a’)
2 b = Bool(’b’)
3 c = Bool(’c’)
4 e1 = ~a + ~b + ~c < 2
5 e2 = ~(a & b & c)
6 e3 = e1 & e2
7 e4 = If(a, b ^ c)
8 p1 = Problem(e1, name=’p1’)
9 p2 = Problem(e2, name=’p2’)

10 p3 = Problem(e3, name=’p3’)
11 p4 = Problem(e4, name=’p4’)
12 t = TruthTable(p1, p2, p3, p4)
13 t.print()

FIGURE 6.2:
Basic ex-
ample of
a problem

definition.

| a | b | c | p1 | p2 | p3 | p4 |
+---+---+---+----+----+----+----+
| 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 |

FIGURE 6.3: Truth
table representa-
tion for p1, p2, p3

and p4

In Figure 6.2, we can see a little example of the new modelling formalism. We
first define the Boolean variables that will appear in the formula (lines 1-3). These
variables have to be labelled with an identifier.

Then, in line 4 we create our first expression to encode the constraint ¬a + ¬b +
¬c < 2. In general, we can directly use the Python logic operators (∼, &, |, ∧) and
their counterparts (Not, And, Or, Xor) to create Boolean expressions and the Python



Chapter 6. OptiLog v2: Model, Solve, Tune And Run 81

arithmetic operators (+,−,*,<,<=,>=,>,==) to create Pseudo-Boolean expres-
sions. We can also use the If, Iff classes to create implications and double implica-
tions1. Lines 5 and 7 encode the constraints ¬(a∧ b∧ c) and a→ (b⊕ c) respectively,
whereas in line 6 we encode the conjunction of expressions e1 and e2.

Finally, in lines 8-11 we transform the created expressions to instances of the class
Problem. A Problem represents the conjunction of a set of expressions. In this case,
we add a single expression to each Problem, and we name each of the problems to
reference them later.

In line 12, as an example of how this package can be used for also for educational
purposes, we create the truth table for our four problems and we print them in line
13 producing the output shown in Figure 6.3. This is very useful not only to teach
any introductory course on propositional logic but also to double-check some small
formulas.

Lines 14-19 in Figure 6.4 show how we can use a SAT solver to obtain a solution
for our problem. First of all, we need to translate our formula into CNF DIMACS
format [43] which is the input format for SAT solvers. In line 14, we create an in-
stance of the SAT solver Glucose41. Then, in line 16, we add the clauses forming our
CNF formula to the SAT solver and execute the solver in line 17. If the input instance
is satisfiable we can obtain a model and decode that model according to the labels of
our variables. The resulting model is finally printed in line 19 obtaining the output:
P3 solution: [a, b, ∼c].

13 (...)
14 s = Glucose41()
15 p3_cnf = p3.to_cnf_dimacs()
16 s.add_clauses(p3_cnf.clauses)
17 s.solve()
18 solution = cnf.decode_dimacs(s.model())
19 print(’P3 solution:’, solution)

FIGURE 6.4: Example on how to solve p3 and extract its model.

Now, we can also query whether problem p4 is a logic consequence of p3 (p3
entails p4), i.e., ¬a + ¬b + ¬c < 2,¬(a ∧ b ∧ c) |= a→ (b⊕ c) which is equivalent to
ask whether the conjunction of all the premises and the negation of the consequence,
i.e., (¬a + ¬b + ¬c < 2) ∧ ¬(a ∧ b ∧ c) ∧ ¬(a → (b⊕ c)) is unsatisfiable. Figure 6.5
shows how to do it in OptiLog.

19 (...)
20 s = Glucose41()
21 p5_cnf = Problem(e3 & ~e4).to_cnf_dimacs()
22 s.add_clauses(p5_cnf.clauses)
23 print(’Is p5 Satisfiable:’, s.solve())

FIGURE 6.5: Logic consequence example.

Since the logic consequence is valid the SAT solver reports the formula is unsat-
isfiable: Is p5 Satisfiable: False.

In the OptiLog documentation[79], we can find a more complex application of
OptiLog to model, solve, tune and run the SlitherLink problem2.

1These two classes do not naturally map to any Python operator.
2Also in the appendix attached to this submission.
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There exist other modelling python libraries that can be used to model problems.
For example, CPMpy [60] is a library that allows the representation of matrix-related
constraints using Numpy arrays [62]. pyAiger is a circuit-oriented modelling library
to model combinatorial circuits. Although it shares some similarities with OptiLog’s
Modelling module, it lacks some of its higher-level features such as Pseudo-Boolean
expressions support. As future work, we will integrate these libraries into OptiLog
to be used within the Modelling module.

6.4 Solvers Module

The solvers module has been completely redesigned with a more modular philoso-
phy that allows dynamic solver loading and a more flexible compilation pipeline:

1. Release of the iSAT interface: Within this version the python framework Op-
tiLog is able to use External Libraries provided they implement a given in-
terface. In particular, OptiLog releases the iSAT C++ interface to the devel-
oper community [77] and welcomes solver developers to make their C++ SAT
solvers compliant with this interface. Now, a SAT solver compiled with the
interface as a shared object (.so file) can be dynamically loaded into OptiLog.
At [77] GitHub repository several examples of solvers implementing the iSAT
interface can be found.

2. Dynamic Solver loading: On import, OptiLog will automatically bind all its
incorporated solvers and the user-provided ones. A user may include a new
SAT solver by setting the OPTILOG_SOLVERS environment variable to the path
where the .so files added by the user are located.

3. Out of the box SAT solver integration: OptiLog integrates several state-of-the-
art SAT solvers as .so files that can be directly used in Python: Cadical 1.0.2 and
Cadical 1.5.2 [31], Glucose 4.1 and Glucose 3.0 [19], Picosat [27], Minisat [45]
and Lingeling 18 [29]. Unlike in PySAT these solvers can be also parameterized
from OptiLog.

4. Fast and Flexible Development: This new way of managing External Libraries
allows fast integration of the solvers by decoupling the solvers from the frame-
work itself. Moreover, now solver developers are in control of the compilation
pipeline, which allows them to link or include external libraries and modules.
On the other hand, PySAT requires solver developers to implement their inter-
face with a full binding through Python’s C API and a corresponding Python
wrapper class, forcing developers to have extensive knowledge of Python’s
C API. OptiLog’s approach is simpler and less error-prone by removing code
repetition and does not require solver developers to have Python knowledge.

Since the last release, we have also expanded the capabilities of the interface.
Now with automatic support for bz2 compression, solver cloning, SIGINT
handling, and multithread support:

5. Signal handling and multithread support: OptiLog is able to handle SIG-
INT signals while providing multithread support by releasing the Global In-
terpreter Lock (GIL) before calling solve or propagate, while PySAT cannot
handle signals when multithread support is enabled. This may be a bottle-
neck for complex SAT-systems where one thread is executing a SAT solver and
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other threads are dedicated to other tasks. In this case, PySAT can not manage
signals sent to the SAT solver.

Moreover, OptiLog handles SIGINT signals gracefully, allowing multiple SIG-
INT signals to be caught and handled, meanwhile, PySAT implementation
blocks and does not throw exceptions after the first signal.

6. Support for Solver cloning: We have added support for solver cloning. Solver
cloning allows solvers to copy their current state and create a new solver object
that is equivalent to the original. Cloning can involve replicating the internal
state of all the data structures of the solver. The goal is that we can guarantee
that the search in the new solver will evolve exactly as in the original solver at
the point where the cloning was performed.

7. Efficient formula loading: In contrast with PySAT, our formula loading meth-
ods are implemented directly in C++, which allows very efficient loading.
These formulas may be loaded into Formula objects or directly into the solvers,
avoiding the inefficient representation in Python. OptiLog provides support
for .cnf and .wcnf files that may be compressed with gz or bz2. Here we can
find a comparison in runtime speed between PySAT and OptiLog. The bench-
mark instantiates a Glucose 4.1 solver and loads the hard clauses of every
WCNF instance in the Incomplete Weighted track of the MaxSat Evaluation
2021. The graph below shows the mean of the loading times of the 33 uncom-
pressed instances that took more than 30 seconds to load on PySAT. OptiLog
was able to load all the instances with less than 12GB of RAM, while PySAT
required 36GB.

Their average size of the instances in number of clauses is 34.5M, while their
average size in MB for uncompressed, compressed in .gz, and in .bz2 is 1055.5
MB, 176.37 MB, and 102.7 MB respectively. Additionally, the largest instance
that we used had 132.7M clauses, and a size of 3.7GB, 501MB, 200MB for its
uncompressed version, compressed with .gz, and .bz2 respectively.
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6.5 BlackBox Module

Executing External tools such as: generators, preprocessors, feature extractors, bina-
ries of other solvers, or any other system command, usually becomes a very ad-hoc
and contrived procedure. These are the main contributions:
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1. Execution and configuration of External Tools: We have developed the Black-
Box module that allows the execution and parsing of arbitrary programs while
running in a memory and time-constrained environment with the help of the
runsolver tool [94]. These black boxes are also integrated with the Tuning mod-
ule so that they can be automatically configured (see section 6.6). We also
provide utilities to parse the output of the execution of these programs with
regular expressions.

2. Integration with Satex: We have further merged the Blackbox module with
SAT Heritage [18]. This allows OptiLog to run any SAT solver developed in
SAT Competitions [24] since 2000. We are in the process of collecting the con-
figurable parameters for these solvers to enable the tuning of them. We have
integrated the wrapper wSatex (see Figure 6.1) that acts as a bridge for the SAT
Heritage Docker Images. With this wrapper, OptiLog can call solvers from
all the SAT competitions and automatically parse their output. Solvers can be
called with .cnf files or by using the CNF formula, which will transparently
use memory files that do not write to disk for a more efficient resource usage.

6.6 Tuning Module

This module allows the user to define a configuration scenario to tune a given ap-
plication (solver, algorithm, function, blackbox, etc). With this scenario OptiLog au-
tomatically generates all the files and resources to run independently an automatic
configurator (tuner) 3 (see example in the supplementary material). These are the
new features we have added:

1. Automatic deployment of the winning configuration. We have also simpli-
fied the user interaction with the tuning process. Now, the winning configura-
tion reported by the tuner can be automatically recovered. The user can now
get a new instance of the application properly set to the wining configuration
and ready to be executed.

2. Automatic configuration of BlackBoxes. Thanks to the addition of the Black-
Box module, we now allow to automatically configure any of the executables
that the BlackBox module can handle (see section 6.5). We follow the same in-
terface that we use to configure Python functions and iSAT solvers, as it can
be seen in Figure 6.6. This addition opens the door to use OptiLog to ease
the configuration process of any External tool and be applied in other research
communities, education programs, or industrial environments.

Configurable

BlackBox

SystemBlackBoxSatexBlackBox

iSAT

...Cadical152Glucose41

FIGURE 6.6: Diagram of the Configurable classes in OptiLog.

As we can see in the example on the Slitherlink problem in the documentation
and the supplementary material, by applying the tuner GGA[9] we are able to solve
25% more instances and we decrease the PAR10 metric by 66%.

3We currently support GGA [9] and SMAC [75]
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6.7 Running Module

To evaluate the performance of an application (e.g. SAT-based system) we typically
evaluate it on test data-sets (e.g. set of SAT instances) and analyze the results ac-
cording to some metric. In this context, a task is the evaluation of the application on
a particular data-set.

In this work, we have also extended OptiLog to tackle this tedious and error-
prone step by providing an automatic procedure. This procedure submits all these
tasks to (potentially) any execution environment, collects and parses the output of
these tasks, and aggregates the results. These are the main features of the new Run-
ning module:

1. Execution scenario. An execution scenario is defined by: (i) the application(s),
(ii) the data-sets (e.g. SAT instances) that will be used, (iii) the execution limits
(CPU, memory. . . ), and (iv) a submitter script.

2. Running the scenario. In order to execute the scenario, OptiLog will call a
submitter script supplied by the user. OptiLog provides example scripts for
executing locally (using Task Spooler [76]) and in a High Performance Cluster
(using Sun Grid Engine [84]), and potentially on the cloud (currently under de-
velopment). Note that OptiLog remains agnostic against execution platforms,
thus allowing the user to provide ad-hoc scripts for custom execution environ-
ments without hassle. Upon execution, the logs for each task will be stored in
the scenario directory.

3. Parsing and aggregating results. Optilog also provides tools to extract in-
formation of the logs, once the experiment has finished. It will read the raw
output of each task and will parse the information that the user specifies using
filters. The information is then presented to the user as a Pandas [99] dataframe.
We decided to use this data structure as, over the years, it has become the de
facto standard by data scientists. Its flexibility, as well as the large support
from third-party tools (such as visualization tools), allows the user to extract
insights from the results of the experiment painlessly.

A filter is defined by:

• The regular expression for the value to be extracted.

• If we want to retrieve all the matches of the regular expression.

• If we want to store the timestamp from when the value was reported.

• A name for the value. This will correspond to a column in the dataframe.

In particular, for SAT-based solvers that follow a standardized output format,
we provide some templates. Currently, we support SAT solvers and MaxSAT
solvers that conform to the DIMACS output format used by the SAT competi-
tion [24] and MaxSAT evaluation [22]. For example, the SAT template comes
with filters to detect the satisfiability of a formula and its model. The MaxSAT
filter also detects the cost.

Competition organizers, research groups, etc. have already their own tools, less
or more automatized, to carry out their experiments. This is a very time-consuming
part, error-prone of the research process and a non-negligible task of software engi-
neering. Even in the same research group or community different individuals rein-
vent the wheel systematically when it has to do with managing experiments.
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OptiLog aims to provide a common baseline so that we can all build on top and
mitigate the impact of this step in the development process. Moreover, having this
common base we enforce the reproducibility and trust on experimental results.
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Chapter 7

Conclusions and Future Work

In this section, we conclude with the approaches and experimental investigation
conducted in this thesis.

From the results in Chapter 3 we conclude that MaxSAT technology is well-
suited for solving the Covering Array Number problem for Mixed Covering Arrays
with Constraints through SAT technology. In particular, we discussed efficient en-
codings and how MaxSAT algorithms perform on them.

We also presented MaxSAT encodings for the Tuple Number problem. To our
best knowledge, this is the first time that this problem is studied with SUT Con-
straints. Additionally, we presented a new incomplete algorithm that can be applied
efficiently to solve those instances where the Tuple Number problem encoding into
MaxSAT is too large. In particular, we proved we can build good enough solutions
by incrementally adding a new test synthesized through a MaxSAT query that aims
to maximize the coverage of additional allowed tuples, with respect to the test suite
under construction.

Another interesting result that we obtained is that if we do not aim to cover all
t-tuples but a statistically significant fraction, we can save a great number of tests. We
experimentally showed that to cover a 95% percentage, we just need, on average,
a 52% percentage of the best suboptimal solution reported so far. This is of high
practical importance for applications where test cases are expensive according to the
budget.

From the point of view of Combinatorial Testing, it is reasonable to say that the
practical and theoretical interest application of our findings and approaches will
grow proportionally to the hardness or complexity of the SUT constraints. This will
certainly extend the reach of Combinatorial Testing to more challenging SUTs.

From the point of view of Constraint programming, the lessons learnt on how
to design efficient encodings for MaxSAT solvers can be exported to solve similar
problems. These problems are roughly characterized by having an objective function
whose size is proportional to the best-known upper bound.

SAT and MaxSAT communities will also benefit from new challenging bench-
marks to test the new advances in the field. Moreover, any future advance in MaxSAT
technology can be applied to solve more efficiently the Covering Array Number and
Tuple Number problems with no additional cost.

From the results in Chapter 4, we conclude that bugs or failures involving 4 or 5
parameters (even more) do exist and are likely to arise in complex systems. We have
provided an effective approach to compute MCACs of such strength with low mem-
ory requirements. Thanks to this low memory consumption plus the partitioning
nature of the Pool based approach, we have also presented a parallel version of our
algorithms that provides a practical approach to be applied in real environments.
Our experimental results provide improved upper bounds for 16 benchmarks.
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From the results in Chapter 5, we conclude that thanks to the original and simple
design of our new generator for SUT benchmarks, now it is possible to have access,
from the CT research community to many different kinds of structures contained
in SAT instances that do represent real-world problems. In particular, we can now
generate SUT benchmarks of a given size and constraint hardness that will ease the
development of new CT tools. Additionally, this approach can be easily adapted to
take advantage of the available instances in other constraint programming or oper-
ation research formalisms. Finally, an important contribution of this work is to have
provided a first detailed study of available CT tools. This study helps to characterize
better when we should use a given CT tool and therefore increase the robustness of
our testing strategies when facing a new SUT.

As future work, about SAT-based Combinatorial Testing approaches, we will
continue exploring how to better integrate Satisfiability and other Constraint Pro-
gramming technology into our algorithms, explore other applications of Covering
Arrays and come up with variations and extensions that can better satisfy the in-
dustrial requirements. Moreover, we plan to extend CTLog to become the CT tool of
reference.

Finally, from Chapter 6 we conclude that the new extensions for the framework
OptiLog open a new range of applications. These new applications range from sup-
porting researchers, educators, and practitioners to create more ambitious end-to-
end applications cases where SAT plays a key role. OptiLog allows focusing our
energy on modelling and solving problem issues while still being able to carry out
comprehensive experimental studies involving also tuning steps.

As future work, we plan to enrich the OptiLog framework. From a more tech-
nical perspective, we plan to extend it with support for distributed algorithms (in-
cluding cloud computing) and a new module for metaheuristic algorithms. From a
more educational point of view, we will generate a database of course assignments
with instructions for educators and students including autograders.
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