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Abstract 
 

Certain skin disorders are associated with skin microbiome dysbiosis, highlighting the 

importance of the microbiome in the maintenance of the skin's healthy state. Modulating the 

microbiome to reestablish its healthy state is a novel strategy to treat such skin diseases. One 

strategy to modulate the skin microbiome and obtain dermatological benefits is through the 

topical application of probiotics. Identifying and selecting the most suitable bacterial strains to 

treat specific skin diseases is key to success.  

 

 Furthermore, taxonomic identification of skin microbiome samples using 

Nanopore sequencing was benchmarked and improved, contributing to advancements in both 

diagnosis and novel treatments.  

 

 In summary, this research contributed to the advancement in treating skin 

diseases by , benchmarking and improving bacterial taxonomic 

identification using Nanopore sequencing and  

  

 

Ciertas enfermedades de la piel están asociadas a un desbalance en el microbioma de la piel, 

resaltando la importancia del microbioma en mantener la piel sana. Modular el microbioma para 

restablecer su estado sano es una estrategia novedosa para tratar esas enfermedades de la piel. 

Una estrategia para modular el microbioma de la piel y obtener beneficios dermatológicos es la 

aplicación tópica de probióticos. Identificar y seleccionar las bacterias que más se adecuan para 

tratar especificas enfermedades de la piel es clave para el éxito en su tratamiento.  

 

 

 Además, hemos evaluado y mejorado la clasificación taxonómica del microbioma de la piel 

usando Nanopore sequencing, contribuyendo así a avances en el diagnóstico y el desarrollo de 

nuevas terapias para tratar problemas dermatológicos.  

 

 En resumen, esta investigación ha contribuido 

al avance en el tratamiento de enfermedades de la piel , 

evaluando y mejorando la clasificación taxonómica del microbioma de la piel usando Nanopore 

sequencing y .  
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Thesis introduction 
 

Skin microbiome 
The skin is the largest (2m2) and most visible organ of the human body1. Constituted of three 

immunologically active layers2, the epidermis (75 to 150µm), the dermis (<2mm) and the 

hypodermis (1-2mm)3, the skin is also the largest epithelial surface for interaction with 

microbes4. The outer part (the stratum corneum), the appendages (sweat and sebaceous glands, 

hair follicle)5, and the subepidermal compartments6 are indeed colonized by a myriad of 

microorganisms including, on the skin surface, eukaryotes (10%), viruses (30%), and bacteria 

(60%) (Figure 1A)7. Within the dominant bacterial kingdom, representing on the skin a total of 

4.1010 individuals8, four major phyla compose the microbial communities: Actinobacteria (36 – 

51%), Firmicutes (24 – 34%), Proteobacteria (11 – 16%), and Bacteroidetes (6 – 9%) (Figure 

1B)9,10. However, among the different skin sites, these proportions are strongly shaped by 

different skin physiological characteristics such as temperature, pH, UV light exposure, 

moisture/humidity and sebum content11. Thus, three major topographical categories provide 

specific environmental niches: the dry sites (e.g. volar forearm and palm) colonized by a majority 

of Betaproteobacteria, the moist/humid areas (e.g. bend of the elbow) predominated by the 

gena Staphylococcus and Corynebacterium and the oily/sebaceous sites (e.g. face and back) 

largely predominated by the genus Propionibacterium and followed by Staphylococcus and 

Corynebacterium (Figure 1C)12. In these lipid rich microenvironments, but not exclusively, 

relative abundance of bacterial populations is influenced by gender, age, and geographical 

origins. Nonetheless, Propionibacterium still predominates with a relative stability in sebaceous 

sites of healthy individuals (Figure 1D)13–15. This genus, recently reclassified and renamed 

Cutibacterium16, is a sentinel of the healthy human skin microbiome17.  

The human microbiome plays a crucial role in human health18, even though defining a healthy 

microbiome is not a trivial task19. Different gut and skin diseases have been associated with 

microbiome dysbiosis, ‘’elucidating by contraposition’’ its importance in the maintenance of the 

healthy state20. The gut microbiome is the most extensively studied human microbiome21. It has 

essential functions for the healthy state of the gut, such as protection against pathogen invasion, 

nourishing the host cells with their metabolic products, reinforcing the intestinal barrier and, 

training and modulating the immune system22. 

 

Skin diseases and microbiome dysbiosis 
Compared to the gut, lesser is known about the role of the skin microbiome for skin homeostasis, 

but skin microbiome alterations are associated with skin diseases such as atopic dermatitis (AD), 

psoriasis, rosacea and acne vulgaris23,24.  

Acne vulgaris is the most common dermatological condition worldwide25. Aggregating several 

risk factors (e.g. age, skin type) and prevalent for the sebaceous/lipid-rich skin sites (e.g. face 

and back)26, acne is a chronic inflammation of the pilosebaceous unit27 often persisting into 

adulthood28. Extensively described and studied over the past centuries29, firmly associated with 

the skin microbiome and Cutibacterium acnes (C. acnes) proliferation30,31, the paradigm of this 

dysbiosis is now changing. Recently, many authors observed that relative abundance and 
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Cutibacterium acnes in skin homeostasis 
Since some skin diseases are related to a dysbiosis of their natural microbiome, it is also 

expected that the skin microbiome plays a central role in skin homeostasis. One of the key 

players in skin homeostasis, reflected by its dysbiosis in most skin diseases, is the most abundant 

bacteria of the skin microbiome, C. acnes. It is a Gram-positive rod bacterium, aerotolerant 

anaerobic that does not produce spores43. C. acnes has co-evolved with the host to live in the 

pilosebaceous units, where oxygen and easily accessible nutrients are scarce44. To survive in the 

harsh and lipid-rich environment of the pilosebaceous units, C. acnes acquired genes to 

modulate and metabolize, inter alia, host skin lipids45. Through host lipids modulation and other 

mechanisms, C. acnes has been shown to contribute to skin homeostasis46. 

Lipid modulation  
To obtain energy from the abundant triacylglycerols in the sebum, C. acnes secretes a 

triacylglycerol lipase GehA47. As a product of triacylglycerol fermentation, C. acnes secretes 

short-chain fatty acids (SCFAs). C. acnes predominantly produces the SCFA propionic acid, where 

its former name Propionibacterium comes from44. The role of propionic acid on the skin is yet to 

be uncovered, although it contributes to maintaining the acidic layer on the skin48. Increased pH 

has been reported in different skin disorders49 and skin enzymes involved in maintaining skin 

homeostasis are pH dependent49. 

Follicular niche competition 
C. acnes is highly adapted to live in specific skin niches, where it thrives and outcompetes 

pathogens for nutrient acquisition11. Phylotypes IB and III have been described to contain a 

biosynthetic gene (BSG) cluster capable of producing the antimicrobial thiopeptide cutimycin50. 

It was only expressed when C. acnes was co-cultured with strains from the genus Staphylococcus 

and it has shown in-vitro antimicrobial activity for Staphylococcus aureus. Furthermore, C. acnes 

produced SCFA restored S.epidermidis antibiotic sensitivity by reducing its capacity to form 

biofilms51, usually associated with skin disorders52.  

Immune modulation  
Different skin-resident immune cells contribute to tissue homeostasis2. The immune cells on the 

skin have tight interactions with the skin microbiome to keep the skin healthy53. C. acnes 

phylotypes associated with healthy skin or with acne showed very different immune 

responses54. Immune interactions among C. acnes with keratinocytes and sebocytes would not 

trigger immune response unless environmental changes would trigger higher production of 

SCFAs, highlighting the immune tolerance of the skin towards C. acnes on homeostasis55,56. 

Furthermore, C. acnes has been shown to stimulate skin defences against pathogen invasion by 

enhancing autophagic activity in keratinocytes57 and promoting activation of T helper type 1 

(Th1) cells in vivo58.  

Oxidative stress mitigation 
The skin is constantly exposed to UV radiation, which triggers the formation of reactive oxygen 

species (ROS)59, leading to cell damage and contributing to skin carcinogenesis60. In addition to 

the ROS mitigating strategies of epithelial cells, the most abundant secreted protein of C. acnes, 

the radical oxygenase of Propionibacterium acnes (RoxP), has been reported with antioxidant 

activity47,61. RoxP is the first extracellular bacterial antioxidant enzyme characterized61, which 
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showed to increase the viability of ROS stressed monocytes and keratinocytes in vitro62. 

Furthermore, in actinic keratosis (AK), an initial stage of non-melanoma skin cancer, host cells 

antioxidant function is shown to be deficient 63 and C. acnes abundance and RoxP levels were 

lower compared to healthy areas42,64. 

Microbiome modulation strategies 
Dysbiosis of microbiome composition and function and the adapted metabolic variety of 

commensal microbial strains make microbiome-modulating strategies an interesting avenue for 

the treatment of dysbiotic conditions. Microbiome-modulating strategies have been mainly 

aimed at modulating the gut microbiota to redress dysbiotic patterns of the microbiome 

associated with disease65. Strategies aimed at modulating the gut microbiota involve using 

probiotics, prebiotics, symbiotic and faecal microbiota transplants66. Microbiota 

transplantations are based on transferring the microbiome from a healthy subject to the 

dysbiotic receiver. Faecal microbiota transplants (FMT) have been proven effective for restoring 

the phylogenetic richness of the recipient’s intestinal microbiota, effectively treating gastric 

Clostridium difficile infections67. 

Microbiome modulation through the usage of probiotics already has a long history of health 

claims through oral usage. Probiotics are defined as “live microorganisms which when 

administered in adequate amounts confer a health benefit on the host”68. In light of the research 

mainly conducted in the last 10 years, health benefits of these probiotics administered through 

the gastrointestinal tract act through four different mechanisms of action: (i) improvement of 

the epithelial barrier function, (ii) interference with pathogenic bacteria, (iii) immunomodulation 

and (iv) influence on other organs of the body through the immune system69. Different strains 

of microbial species have specialized enzymatic activities and varied metabolic strategies, even 

within one species70,71.  

Skin microbiome modulation  
Dysbiosis of the skin microbiome associated with skin disorders could be changed via multiple 

mechanisms: skin microbiome transplant, prebiotics, probiotics, synbiotics and putatively 

postbiotics. Whole skin microbiome transplantation would require collecting the skin microbial 

community, which is challenging to obtain compared to faecal microbiota samples, as a culturing 

step is always required. One remains challenged by the uncultivability of microorganisms in-

vitro, also known as the “great plate count anomaly”72. Therefore, performing skin microbiome 

transplantation analogous to FMT is not scalable nor industry applicable.  

Recent years have seen a sharp increase in clinical investigations of probiotics and postbiotics 

used in dermatology. Processes to produce such non-viable fermentation products (postbiotics) 

are industrially scalable, can easily be formulated into products and are widely used in the 

cosmetic industry. Probiotics, on the other hand, pose a challenge for formulation and packaging 

to ensure the viability of the micro-organisms73. As a result, most suppliers formulate with 

postbiotics. Nevertheless, while postbiotics of skin commensals may protect against UV-induced 

oxidative damage, hyperpigmentation74 and pathogens such as S. aureus75, reintroducing viable 

microorganisms to their adapted niche have the potential to modulate the microbiome 76. Skin 

microbiome modulation could mitigate or potentially eliminate pathological skin conditions, 

analogous to strategies in the gut. Callewaert et al 2021 recently reviewed efforts undertaken in 
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skin microbiome modulation strategies76 and reintroduced the term bacteriotherapy to describe 

probiotics and postbiotics.   

S-Biomedic approach 
S-Biomedic targets skin conditions by modulating the skin microbiome using prebiotics or 

bacteriotherapy, focusing on the most abundant skin commensal, C. acnes. As previously 

described, C. acnes contributes to skin homeostasis by modulating host lipids, competing with 

pathogens for specific skin niches, training and enhancing the host immune system and 

protecting skin cells from oxidative stress. Several skin diseases have been described to correlate 

with a dysbalanced C. acnes population at species or strain level. Acne vulgaris is the first skin 

disease that S-Biomedic focused its research and development program on. Acne vulgaris was 

historically associated with an increase of C. acnes relative abundance, but later advancements 

showed that acne vulgaris is rather associated with an imbalance at C. acnes sub-species level, 

specifically through an increase of C. acnes strains of phylotype IA1
39. The new insights on 

microbiome dysbiosis in acne vulgaris, allowed S-Biomedic to design a C. acnes strain-specific 

probiotic cocktail to modulate the dysbiosis associated with acne.  

The following sections highlight the process that has been followed in this thesis from selecting 

a suitable C. acnes strain to target a skin disease, its production in the laboratory, testing in 

clinical trials and analysis of microbiome modulation. Furthermore, the relatively new Nanopore 

sequencing technology was benchmarked, improved and used for skin microbiome sequencing 

of clinical samples.  

Strain selection  
A key parameter to target skin diseases through microbiome modulation strategies using 

prebiotics or bacteriotherapy is the selection of the bacterial strain or strains to be used in the 

treatment. Understanding the microbiome dysbiosis in disease and the contributions of the 

microbiome commensals to skin homeostasis is fundamental in the design of a successful 

microbiome modulation strategy. For example, facial acne vulgaris has been described to be 

linked with a C. acnes strain diversity reduction, through a relative abundance increase of C. 

acnes phylotype IA1 and relative abundance reduction of phylotypes IB and II40. Therefore, 

applying probiotics of C. acnes phylotypes IB and II could restore the C. acnes diversity on the 

skin of acne vulgaris patients and reduce its dermatological symptoms. These hypotheses must 

be tested in clinical studies to assess their safety and efficacy. To test the hypothesis, first, the 

laboratory growth and downstream processes of the selected strains must be mastered to 

obtain a successful product.  

Production 
To obtain a product based on bacterial strains to be tested in human clinical trials some 

requirements must be met. The pipeline of bacterial production has to be highly controlled and 

reproducible, and each produced batch is then assessed through quality control (QC). A good 

QC has to ensure that each produced batch complies with the determined specifications 

regarding the quality and safety of the product. When producing a bacterial product, the main 

specifications to comply with are:  
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. To obtain a 

successful production pipeline with robust quality control, deep knowledge of microbiology, 

fermentation and sequencing are essential.  

Clinical trial 
Once the bacterial product has passed the QC it can be tested in human clinical trials. The design 

of a clinical trial is at least as much important as obtaining a good product to ensure success 

when testing our hypothesis. Some parameters to consider when designing the clinical trial are: 

(i) have a large enough number of patients to test the proposed Hypothesis, (ii) have enough 

groups (for example placebo vs active) to test the proposed Hypothesis, (iii) carefully select the 

patients for the disease we want to target and their demographic data, (iv) have clear 

measurable outputs to validate or decline our hypothesis, (v) decide the timelines of treatment 

application and outputs measurements, (vi) randomize and anonymize the patients and the 

different groups, (vii) have a robust system of patients data protection and (viii) ensure the 

ethicality of the process by obtaining approval of the ethics committee for the designed clinical 

trial. Designing a clinical trial is a laborious and complex task, where knowledge of statistics, data 

management, human medicine and human ethics are required to be successful.   

Microbiome modulation assessment 
After the clinical trial, it can be assessed If the applied strain is significantly improving the 

addressed dermatological condition. To better understand the dermatological outputs of the 

clinical trial they are paired with additional metadata. This metadata can be profound 

characteristics such as age, usage of skin care products or complex parameters like skin 

microbiome analysis. The effect of skin microbiome modulation can be assessed by determining 

the microbiome populations of the patients at different timepoints of the clinical trial. To do so, 

molecular biology techniques and sequencing technologies are used, to obtain the evolution of 

microbiome profiles over different timepoints. The generated information can help to further 

evaluate the tested hypothesis from the perspective of microbiome modulation. The obtained 

knowledge can be used to formulate a new hypothesis and improve the pipeline of strain 

selection, production, and clinical trial design.  
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MinION™ Nanopore Sequencing of Skin Microbiome 16S and 16S-23S rRNA 

Gene Amplicons 
 

https://doi.org/10.3389/fcimb.2021.806476 

Introduction 
Precise characterization of the different human microbiomes is a critical first step towards 

understanding the host-microbe interactions in human health and disease19,46,124. 

Characterization of bacterial communities was revolutionized by the development of next-

generation sequencing techniques, which allowed microorganisms discrimination to deeper 

taxonomic levels125.   

Due to its simplicity and reliability, the most standardized sequencing strategy to identify 

bacteria is based on the analysis of their 16S rRNA gene126.  The 16S rRNA gene is essential in the 

bacterial domain and consists of ~1500bp containing 9 hypervariable regions (V1 to V9) 

scattered among highly conserved sequences127. All or some of the 16S rRNA gene V1-V9 regions 

are amplified by polymerase chain reaction (PCR) using complementary primers to the 

conserved sequences128. The resulting amplicons are sequenced and assigned to a bacterial 

taxonomic group by nucleotide sequence comparison with a reference nucleotide database (e.g. 

BLASTn)129.  

The first available sequencing technique, Sanger sequencing130, enabled 16S rRNA identification 

of bacterial clonal populations131. Technical difficulties to maintain bacterial diversity when 

obtaining clonal populations, effect known as the great plate count anomaly132, limited the 

detectable species with Sanger sequencing133.  

Overcoming these limitations, Next generation sequencing (NGS) techniques enabled the direct 

analysis of complex bacterial communities by parallel high throughput generation of reads, 

providing faster and cheaper sequencing costs per sample134,135. However, the most popularized 

NGS technique Illumina is limited to short fragments (<600bp) and does not allow sequencing of 

the entire 16S rRNA gene136. Using NGS, taxonomic relative abundances are determined by 

analyzing subregions of the 16S rRNA gene, but the obtained results are biased by the selected 

subregion due to distinct primer binding affinities to each template137–139. Therefore it is not 

recommended to compare microbiome studies based on different 16S rRNA regions140–143.  

In 2014 Oxford Nanopore Technologies (ONT) released a single-molecule sequencing technology 

that allows sequencing of DNA fragments without a theoretical length limit144. High throughput 

generation of reads is achieved in a pocket-sized portable device such as MinIONTM145. MinIONTM 

instrument made nanopore sequencing widely accessible, allowing research centers to perform 

real-time data analysis, drastically reducing sequencing turnaround times, and lowering the cost 

per sequenced base146. Nanopore technology allows entire 16S gene sequencing in samples with 

bacterial mixtures, overcoming at the same time, the main limitations of Sanger sequencing and 

NGS147. Nonetheless, Nanopore sequencing still has higher base calling error rates than 

established NGS technologies148.  

In this study, a defined human skin bacterial genomic mock community and a skin microbiome 

sample were used to analyze the performance of ONT sequencing kits on taxonomic relative 

abundance and species level determination. Recent studies focusing on other human 
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microbiomes (e.g. gut) have already described bias of ONT sequencing kits towards certain 

genera and species149,150. To the best of our knowledge, no study has focused on analyzing the 

performance of ONT sequencing kits on the skin microbiome. Understanding the bias and 

limitations of ONT kits in taxonomizing bacteria of skin microbiome samples is crucial for future 

experimental designs and data interpretation143. Obtaining insights into the skin microbiome 

composition to genus and species level in skin health and disease will help to develop more 

effective prebiotic, probiotic, or drug therapies to treat skin diseases associated with 

microbiome dysbiosis.  

 

Materials & methods 

Skin microbiome genomic mix  
Skin genomic mock community ATCC MSA-1005 was used in this study. It consists of an even 

mixture of six bacterial species each representing 16.7% (Acinetobacter johnsonii (ATCC 17909D-

5), Corynebacterium striatum (ATCC 6940D-5), Micrococcus luteus (ATCC 4698D-5), 

Cutibacterium acnes (ATCC 11828D-5), Staphylococcus epidermidis (ATCC 12228D-5) and 

Streptococcus mitis (ATCC 49456D-5)). 

Skin microbiome standard 
An artificial skin standard was created by mixing 72 extracted DNA samples of cheek skin swabs. 

Cheek swabs were collected, stored and transported at -20°C, using the eNAT collection and 

transport system (Copangroup, USA). DNA was isolated and purified using DNAeasy 96 

PowerSoil Pro Kit (Qiagen, UK) following its Quick-Start Protocol. In essence, samples were 

disrupted by mechanical bead-beating and DNA was isolated and purified using silica membrane 

spin columns. A DNA skin standard was then obtained by combining 5µL of each of the 72 

extracted samples.  

16S V1-V9 Nanopore sequencing and reads taxonomic assignation  
16S rRNA barcoded amplicons were produced in a single four-primer PCR reaction following 

Matsuo protocol150. The following inner primers for amplification of V1-V9 of the 16S rRNA gene, 

with complementary region underlined and anchor region were used: forward primer (27F) 5′-

TTTCTGTTGGTGCTGATATTGCAGAGTTTGATCMTGGCTCAG-3′ and reverse primer (1492R) 5′-

ACTTGCCTGTCGCTCTATCTTCCGGTTACCTTGTTACGACTT-3′. Barcoded outer primers containing 

the complementary anchor sequence to inner primers from PCR Barcoding Expansion Pack 1-96 

EXP-PBC096 (Oxford Nanopore Technologies, UK) were used. DNA amplification was performed 

using Veriti 96 Well Fast Thermo Cycler in a reaction mix containing 200nM of inner primers, 

200nM of outer primers 12.5µL of LongAmp polymerase mix and 5uL of template in a total 

volume of 25µL. The cycling program used from the Matsuo protocol was adapted to LongAmp 

polymerase. It consisted of 3 min denaturation at 95°C, 5 cycles (95°C – 15s, 55°C – 15s, 65°C – 

90s), 30 cycles (95°C – 15s, 62°C – 15s, 65°C – 90s) and a final extension step of 65°C for 2min. 

Samples were also amplified using a KAPA HiFi HotStart PCR Kit KK2502 (Roche, Switzerland), 

using the same primer concentrations, mastermix prepared following manufacturer 

recommendations and following Matsuo PCR conditions. PCR amplicons were run in 1% agarose 

gel in an electrophoresis chamber, pooled together and purified using DNA clean & concentrator 

kit (Zymoresearch, USA). Purified samples were then quantified with Accublue Broad Range 

dsDNA quantification kit (Biotium, USA) and further processed using SQK-LSK110 kit (Oxford 
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Nanopore Technologies, UK). The library was sequenced using flow cell R9.4.1 (FLO-MIN106D) 

until the sample was exhausted or the desired number of reads was achieved. Basecalling was 

performed on MinION Mk1C using Guppy (version 5.0.13) with fast basecalling model and read 

filtering of min_score=8. Epi2me (version v2021.09.09) was used to demultiplex the samples, 

filter reads retaining size range of 1.2-1.8kb and assign the reads to its taxonomic group with 

default parameters using NCBI 16S database151.  

16S-23S Nanopore sequencing and reads taxonomic assignation  
NanoID kit is designed to produce 16S-23S amplicons of 2.5kb. It contains a forward primer 

complementary to the 16S gene (27F): 5’-AGRRTTYGATYHTDGYTYAG-3’, and a reverse primer 

complementary to the 23S gene (23SR): 5’-AGTACYRHRARGGAANGR-3’. 16S-23S amplicons 

were produced using NanoID kit (Shoreline Biome, USA) and following the manufacturer’s 

instructions except for using DNA clean & concentrator (Zymoresearch, USA) instead of 

magnetic beads for the clean-up step. The library was prepared for sequencing using LSK-110 

(Oxford Nanopore Technologies, UK) and sequenced using flow cell R9.4.1 (FLO-MIN106D) until 

the sample was exhausted or the desired number of reads was achieved. Basecalling was 

performed on MinION Mk1C using Guppy (version 5.0.13) with fast basecalling model and read 

filtering of min_score=8. SBanalyser was used to demultiplex the samples, discard reads <200bp 

and assign the reads to its taxonomic group using Athena 16S-23S database.  

Illumina sequencing and OTU classification 
16S rRNA hypervariable regions V1 and V3 were amplified and sequenced using Illumina MiSeq 

system by BaseClear B.V. (The Netherlands). Initial quality assessment was based on data 

passing the Illumina Chastity filtering and reads containing PhiX control signal were removed 

using a self-developed filtering protocol. Afterwards, reads containing (partial) adapters were 

clipped (up to a minimum read length of 50 bp). A second quality assessment was performed 

based on the remaining reads using the FASTQC quality control tool (version 0.11.8). Paired-end 

sequence reads were collapsed into so-called pseudo reads using sequence overlap with 

USEARCH (version 9.2)152. Classification of these pseudo reads was performed based on the 

results of alignment with SNAP (version 1.0.23)153 against the RDP database (version 11.5)154 for 

bacterial organisms. 

Whole genome shotgun sequencing 
Whole genome shotgun sequencing was performed using Illumina HiSeq system by BaseClear 

B.V., The Netherlands. Initial quality assessment was based on data passing the Illumina Chastity 

filtering and reads containing PhiX control signal were removed using a self-developed filtering 

protocol. Afterwards, reads containing (partial) adapters were clipped (up to a minimum read 

length of 50 bp). A second quality assessment was performed based on the remaining reads 

using the FASTQC quality control tool (version 0.11.8). Alignment-based filtering was performed 

by aligning the Illumina reads against the reference sequence using BBmap (version 38.79). 

Kraken2155 (version 2.0.8) was used to taxonomically classify the metagenomic reads based on 

a reference database enriched with skin-specific genomes. Species and genus-level relative 

abundance profiles were obtained using Bracken (version 2.6.0)156.  

Statistical analysis 
Statistical analysis on bacterial compositions was performed with Prism9 (GraphPad Software 

Inc, USA) for the Pearson correlation coefficient.  
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Results 

Genomic skin mock community taxonomic classification 

Our study aimed to verify whether nanopore sequencing is an accurate technique to investigate 

the skin microbiome. In order to do so, we aimed to generate and sequence a library of V1-V9 

16S rRNA gene amplicons using ONT library prep kits and the defined genomic skin mock 

community. Duplicates of V1-V9 amplicons were successfully generated for the mock 

community using a four-primer PCR. The library was sequenced and basecalled with MinION 

Mk1C, generating more than 25,000 reads in the length range of 1.2-1.8kb with a quality score 

≥ 8 that afterwards were classified to its taxonomic group with Epi2me (Table 20 in Appendix). 

Duplicates statistical comparison and taxonomic relative abundances obtained using LongAmp 

polymerase are shown in Figure 12A. Statistically significant similarities (Pearson correlation) 

were found in the genus relative abundances across the duplicates. Each genus in the mock 

community was expected to be 16.7%. We found in our analysis Staphylococcus (~55.2%) and 

Streptococcus (~23.9%) were respectively highly and mildly overrepresented.   Acinetobacter 

(~13.3%) was slightly underrepresented and Cutibacterium (~0.7%), Corynebacterium (~0.5%) 

and Micrococcus (~0.1%) were highly underrepresented. ~6,5% of the classified reads were not 

assigned to any of these six genera. 

Figure 12. Testing of different amplification methodologies for MinION™ sequencing of human mock skin microbial 
communities. (A), Comparison of taxonomic profiles of classified reads of the mock community. The Pearson 
coefficient (r) between sequencing methods was computed to highlight significant correlation between samples 
and/or methodologies, ns, not significant; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001. (B), Similarity matrix 
and hierarchical clustering of the methodologies based on their relative abundance profiles. (C), Heat map showing 
percentage of classified reads to the correct species between the sequencing methods in the mock community. 
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After assessing the possibilities causing this large bias in some genera, we found that the three 

underrepresented genera have higher GC content (Cutibacterium 60.1%, Corynebacterium 

59.3% and Micrococcus 73.1%) compared to the overrepresented genera (Staphylococcus 32.2% 

and Streptococcus 40.1%). We hypothesized that the polymerase recommended in the ONT 

protocol LongAmp could be one of the reasons for the underrepresentation of genera with high 

GC content. Therefore, we assessed the performance of KAPA, a polymerase widely used for 

NGS applications, to estimate bacterial relative abundance for the mock community. Applying 

the same pipeline but using KAPA instead of LongAmp polymerase, more than 25,000 reads in 

the length range of 1.2-1.8kb with a quality score ≥ 8 were obtained and Epi2me assigned them 

to taxonomic groups (Table 20 in Appendix). Duplicates statistical comparison and taxonomic 

relative abundances obtained using KAPA are shown in Figure 12A. Statistically significant 

similarities (Pearson correlation) have been found in the genus relative abundances across the 

duplicates.  Comparing to the previous results obtained using LongAmp,  relative abundances 

obtained for Staphylococcus (~40.4%), Cutibacterium (~8.2%), Corynebacterium (~2.3%) and 

Acinetobacter (~16.7%) were significantly correlated but closer to the expected in the mock 

community (16.7%). Streptococcus (~25.7%) and Micrococcus (~0.2%) relative abundances were 

not affected by the change of polymerase neither the percentage of unclassified reads to any of 

these genera (~6.5%). Overall, closer relative abundances to the mock community were 

obtained using KAPA, but the obtained relative abundances were still poorly representing the 

mock community. 

Differential primer affinities to 16S rRNA genes have been described to produce bias when 

determining relative abundances in mixed bacterial samples157. When comparing the previously 

used 1492R primer to the 16S gene sequences present in the mock community using the NCBI 

database, we observed that 1492R does not completely bind any of the genera. To see if primers 

with affinity to a broader range of bacteria would improve the relative taxonomic abundances 

obtained, we used the NanoID kit from Shoreline Biome. NanoID uses a degenerated version of 

27F primer and a reverse degenerated primer complementary to the 23S gene, which is ~1kb 

downstream of the binding site of 1492R. 16S-23S amplicons were successfully generated 

following NanoID guidelines and sequenced and basecalled with MinION Mk1C. Sbanalyzer 

filtered reads below 200bp and successfully assigned more than 95.000 reads to a bacterial 

taxonomic level (Table 20 in Appendix). The obtained taxonomic relative abundances and 

statistical comparisons are shown in Figure 12A. Comparing to V1-V9 results obtained using 

KAPA and LongAmp polymerase, NanoID shows non-significant similarities. Relative abundances 

obtained with NanoID for Staphylococcus (~27.3%), Cutibacterium (~17.2%), Corynebacterium 

(~14.5%) and Streptococcus (~13.9%) were considerably closer to the mock community. 

Acinetobacter (~21.1%) estimation was less accurate and Micrococcus (~1.1%) was improved but 

still largely underrepresented. A slightly lower percentage of reads (~5%) were not classified to 

any of the genera from the mock community. Even though Micrococcus was largely 

underrepresented,  NanoID showed the better overall performance to determine bacterial 

relative abundance in the mock community than the previously tested protocols (see similarity 

matrix Figure 12B). 

Another relevant parameter to analyze is the percentage of reads in each genus that were 

classified to the proper specie. All V1-V9 reads were classified to a species while a small fraction 

of  16S-23S reads were classified to a species level. In the mock community, each genus is 

exclusively composed of a single bacterial species and the number of reads assigned to the 
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correct species was analyzed to calculate the percentage of correctly identified species in each 

genus (Figure 12C). No differences were observed in V1-V9 sequencing runs between LongAmp 

and KAPA and are shown together as V1-V9. The obtained percentages of correctly identified 

species for V1-V9 and 16S-23S were respectively the following: Staphylococcus epidermidis 

(~83.6%, ~99.9%), C. acnes (~99.5%, ~100%), Corynebacterium striatum (~74%, ~99.9%), 

Streptococcus mitis (~85.4%, 33.8%), Acinetobacter johnsonii (~93.3%, ~94.6%). This value was 

not determined for Micrococcus luteus due to the low number of reads obtained. Overall 16S-

23S amplicons resulted in a more accurate species determination with the sole exception of 

Streptococcus mitis, for which ~66.1% of the reads were classified as Streptococcus pneumoniae.  

Skin standard taxonomic classification  
We tested if the described observations in the skin mock community would also apply to a real 

skin microbiome sample. First, since our skin microbiome standard had an unknown 

composition, we analyzed the bacterial relative abundance by sequencing its V1-V3 16S rRNA 

region with Illumina MiSeq and by whole genome shotgun (WGS) sequencing (Figure 13A). The 

relative abundances obtained with MiSeq and WGS were, respectively, the following: 

Staphylococcus (~14.6%, ~3.4%), Cutibacterium (~63.3%, ~80.1%), Corynebacterium (~2%, ~2%), 

Streptococcus (~1.3%, 0.4%), Acinetobacter (~0.8%, 0.1%) and Micrococcus (0.1%, 0.1%). Then 

we processed the skin microbiome standard with the three conditions previously tested (V1-V9 

with LongAmp, V1-V9 with KAPA and 16S-23S with NanoID). We generated, 16,617 and 2,610 

reads for LongAmp duplicates,  more than 15,000 for KAPA duplicates and more than 78,000 

reads for NanoID (Table 20 in Appendix). Afterwards, with its corresponding software and 

database, reads were assigned to a taxonomic group. The obtained taxonomic relative 

abundances and statistical comparisons between duplicates and different methods are shown 

in Figure 13A. Statistically significant similarities (Pearson correlation) have been found in the 

genus relative abundances across the duplicates. Relative abundances obtained using LongAmp, 

KAPA and NanoID were respectively the following: Staphylococcus (~44,9%, ~18,4%, ~21,2%) , 

Cutibacterium (~14,8%, ~58,2%, ~66,5%), Corynebacterium (~2,1%, ~0,4% , ~2,7%), 

Streptococcus  (~3,9%, ~1,1%, ~1,3%), Acinetobacter (~1,8%%, ~0,16%, ~0,15%) and Micrococcus 

(<0,1%, <0,1%, <0,1%). As can be seen in Figure 13A and taking WGS as a reference, 

Staphylococcus was largely overrepresented when using the recommended polymerase by ONT 

kits LongAmp and to a lesser extent, still overrepresent for all other techniques. Except for 

LongAmp polymerase, the other techniques have a significant Pearson correlation compared to 

WGS. The similarity matrix (Figure 13B) shows similarities for all the techniques except for 

LongAmp. Altogether, these results suggest that the biases observed in the mock community 

also apply to real skin microbiome samples and this bias can be reduced by changing the 

polymerase or primers used.  
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Discussion 
Nanopore is revolutionizing sequencing in laboratories by generating high throughput reads that 

can be analyzed in real-time, reducing total processing time and sequencing costs per sample. 

Nevertheless, its lower basecall accuracy (85-93%) and described biases towards certain genera 

and species in complex bacterial samples149,150 urged us to investigate if ONT is ready to be used 

in skin microbiome analysis. Using a defined genomic skin mock community, we show that 

recommended polymerase (LongAmp) and 16S primer sequences in ONT kits have a strong bias 

toward the most prevalent skin bacterial genera and towards low GC content bacteria (Figure 

14). Furthermore, we show that using a different polymerase (KAPA) and primer selection 

(NanoID) can reduce this bias and improve the overall results. These improvements were 

demonstrated on a bacterial skin mock community and confirmed in a real skin microbiome 

sample. 

 

Figure 13. Testing of different amplification methodologies for MinION™ sequencing of human skin samples 
microbial communities. (A), Comparison of taxonomic profiles of classified reads of the skin samples communities. 
The Pearson coefficient (r) between sequencing methods was computed to highlight significant correlation between 
samples and/or methodologies, ns, not significant; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001. (B), 
Similarity matrix and hierarchical clustering of the methodologies based on their relative abundance profiles. 
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Upon studying the performance of the recommended polymerase by Nanopore, LongAmp, on 

the skin mock community, we observed a strong bias towards certain genera (Figure 12A). 

Staphylococcus was highly and Streptococcus mildly overrepresented while Cutibacterium, 

Corynebacterium and Micrococcus were strongly underrepresented. Overrepresented and 

underrepresented genera had respectively low and high genomic GC contents. It has been 

described that polymerase performance can be negatively influenced by high GC content158. To 

assess this problem, we tested KAPA, a widely used polymerase for NGS studies which has 

improved performance on GC-rich templates159. Using KAPA, Staphylococcus abundance 

overrepresentation decreased and Cutibacterium, Corynebacterium and Acinetobacter 

abundances increased, obtaining for the four genera, closer bacterial relative abundances to the 

defined mock community. Streptococcus overrepresentation and Micrococcus vast 

underrepresentation did not improve with KAPA polymerase (Figure 12A). Micrococcus is the 

genus with the highest GC content (73.1%) in the mixture which makes it a complicated target. 

It is known that GC-rich DNA double strands require higher energy for strand dissociation, 

reducing their availability for primer binding and resulting in lower PCR amplification160. Other 

factors such as the differences in 16S gene copy number mean in the genomes of Staphylococcus 

epidermidis (5.9), Streptococcus mitis (3.9), Acinetobacter johnsonii (7) Cutibacterium acnes 

(3.1), Corynebacterium striatum (4) and Micrococcus luteus (2.1) can influence the amplicon 

amounts produced on PCR161,162.  

Another important variable described to cause bias in amplification of mixed genomic samples 

is the primer binding affinity to each target, which decreases with lower sequence similarity157. 

The NCBI database show differences in sequence similarity of primer 1492R among the genera 

in the used mock community. A different primer pair was used in an attempt to improve the 

obtained relative abundance. These primers, included in the NanoID kit, were designed by 

Shoreline biome to have a higher affinity to a broader variety of bacterial species. It is important 

to notice that the polymerase used by NanoID kit is not disclosed by the provider. When using 

NanoID kit to amplify the 16S-23S region, Staphylococcus, Cutibacterium, Corynebacterium and 

Figure 14. Basic linear regression analysis used to correlate the GC content (%) of 
mock community skin genera in sequenced samples (x-axis) compared to the number 
of reads in the MinION™ sequenced samples (y-axis). 
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Streptococcus relative abundances were closer to the mock community than the ones obtained 

with V1-V9 amplifications. NanoID have slightly poorer performance in determining 

Acinetobacter relative abundance than the V1-V9 region, and even if NanoID performed better 

for Micrococcus, this genus was still vastly underrepresented (Figure 12A). Primers used in 

NanoID are a degenerated version of 27F primer and instead of the 1492R primer, it contains a 

degenerated primer complementary to the downstream 23S rRNA gene. Degenerated primers 

have already been shown to be a good alternative when targeting a broad taxonomic range of 

bacteria128. Overall NanoID obtained better relative abundances than any of the tested 

polymerases amplifying the region V1-V9. Even though, it is not clear if the improvement in 

relative abundances using NanoID is caused by their degenerated primers, their undisclosed 

polymerase, or a combined effect of both.  

V1-V9 sequencing data was analyzed with Epi2me assigning all reads to species level, a much 

larger percentage compared to NanoID kit data analyzed with Sbanalyzer. This large difference 

in assigned reads percentages is due to software restrictions for species level read classification. 

Default criteria for reads assignation to species level are less restrictive on Epi2me than on 

Sbanalyzer, resulting in a higher percentage of false positive results for species identification and 

making Sbanalyzer species results more reliable. This observation is consistent for all the genera 

except for Streptococcus where species S. pneumoniae, a well-recognized human pathogen, 

accounted for more than half of the genus assigned reads. Besides, it is important to keep in 

mind that NanoID generates 16S-23S amplicons, which are longer than the V1-V9 amplicons, 

allowing a more precise reads discrimination to species level163. Differentiation at the species 

level of a skin commensal such as Staphylococcus epidermidis from the skin pathogen 

Staphylococcus aureus can be crucial in diagnostic procedures164.  Therefore, depending on the 

aim of the study and the impact of false positives, more permissive or restrictive analysis criteria 

should be chosen accordingly.  

In order to assess if the described relative abundance biases for the mock community using ONT 

kits also apply to real skin samples, a real skin microbiome sample was analyzed. Since the actual 

taxonomic composition of the skin sample was unknown, shotgun whole genome sequencing 

(WGS) and V1-V3 MiSeq were performed as a means of comparison. WGS has been described 

as the most accurate technique for determining bacterial taxonomic relative abundances on skin 

samples, while V1-V3 MiSeq gives a close estimation143. Taking WGS as the more realistic 

estimation, LongAmp performed very poorly on determining Cutibacterium and Staphylococcus 

abundances compared to all other methods. V1-V9 amplified with KAPA, NanoID and V1-V3 

MiSeq, show similar levels of Cutibacterium underrepresentation and Staphylococcus 

overrepresentation. V1-V3 MiSeq and NanoID gave a better approximation of Corynebacterium 

than V1-V9 methods. For the rest of the genera in the mock community, it is difficult to assess 

the performance of the different conditions since each of these genera represent less than 0.5% 

in the WGS data. Overall, we showed that the observed bias in a defined skin mock community 

also applies to a real skin microbiome sample and can also be reduced by using alternative 

polymerases and primers. 
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Conclusions 
Human skin microbiome dysbiosis can have clinical consequences. Characterizing taxonomic 

composition of bacterial communities associated with skin disorders is important for 

dermatological advancement in both diagnosis and novel treatments. This study aimed to 

analyze and improve the accuracy of taxonomic classification of skin bacteria with MinION™ 

nanopore sequencing using a defined skin mock community and a skin microbiome sample. 

Strong bias was observed on the main skin genera abundances when recommended polymerase 

(LongAmp) and 16S primers by Oxford Nanopore Technologies kits were used. We suggested an 

alternative polymerase (KAPA) and primers (NanoID) that generated better results in a defined 

skin mock community and a skin microbiome sample. Nonetheless, variables such as polymerase 

and primers selection, PCR conditions and bioinformatic analysis should be further improved to 

obtain more reliable data with this technology. Once these issues are addressed, nanopore 

sequencing will allow precise, faster, and cheaper generation of data in skin microbiome studies.  
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Thesis conclusions 
 

The human microbiome plays a crucial role in human health, even though defining a healthy 

microbiome is not a trivial task. New developments in sequencing technologies allowed more 

precise characterization of the skin microbiome, which alterations have been associated with 

common skin diseases such as acne vulgaris, psoriasis, rosacea, and atopic dermatitis. S-

Biomedic targets skin diseases associated with skin microbiome alterations by modulating the 

skin microbiome, focusing on the most abundant skin commensal Cutibacterium acnes. C. acnes 

contributes to skin homeostasis by modulating host lipids, impeding skin pathogens 

colonization, training and enhancing the host immune system, and protecting skin cells from 

oxidative stress. The benefits that C. acnes bring to skin homeostasis are strain dependent, and 

dysbiosis at this taxonomic level has been described for some skin diseases. Therefore, selecting 

or generating C. acnes strains with the desired phenotype is a key step toward successfully 

treating each different skin disease. To test the hypothesis of whether the chosen strain can 

improve the dermatological condition it is tested in a clinical trial. Afterwards, the patients skin 

microbiome can be assessed to understand If the dermatological improvement is linked to a 

microbiome modulation towards a healthy state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The second project of this research consisted in benchmarking and improving the accuracy of 

skin microbiome samples taxonomic classification using Nanopore sequencing.  Identifying 

bacterial communities in skin health and disease is important for dermatological advancement 

in both diagnosis and novel treatments. A strong bias in determining the relative abundance on 

a defined genomic skin mock community and a skin microbiome sample was observed when 

using the recommended reagents by Oxford Nanopore Technologies. Alternative reagents were 

suggested and tested, resulting in an improvement in taxonomic classification for the defined 

mock and microbiome samples. Even though improvements were established, there is still a bias 

to be addressed. This bias ranges from the scope of sample processing, bioinformatics analysis 

and Nanopore sequencing technology. However, Nanopore sequencing is a fast-evolving 

technique, and it can be expected that these biases can be addressed soon. Once these biases 

are addressed, Nanopore sequencing will allow a precise, faster, and cheaper generation of data 

in skin microbiome studies. 
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Summarizing, in the performed research  

 Nanopore sequencing was benchmarked and improved for skin 

microbiome samples sequencing,  

. All these advancements will contribute to 

improving current diagnoses and novel treatments in the dermatology field.  
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Appendix 
 

Basecalling using Google Colab 
Using Google Colab, the following scripts will do a high accuracy basecalling of the obtained 

fast5 files from Nanopore sequencing. In red are displayed the scripts to be executed. 

Download Guppy 
Once you have access and can navigate to the 'Software Downloads' section of the ONT 

community forum you will see a listing for Guppy. I recommend grabbing the pre-compiled 

binaries, i.e. the version listed as Linux x64-bit GPU, it should have a file name similar to ont-

guppy_X.X.X_linux64.tar.gz - where the X's denote the version number. You can copy the link 

to this download and paste it into the code block below, i.e. replace the 

section [paste_guppy_link_here] 

%%shell 

GuppyBinary=[paste_guppy_link_here] 

wget $GuppyBinary 

Extract the compressed Guppy binaries 
Before we can use the Guppy binaries we need to extract the file we downloaded. Replace the 

X's in the below code block with the version you downloaded and then run the code block. If 

we use version 4.5.3 as an example: 

%%shell 

tar -xzvf ont-guppy_4.5.3_linux64.tar.gz 

Check Guppy version 
We should now be able to run the Guppy binaries we downloaded. They are located in ./ont-

guppy/bin. The below code block should run guppy_basecaller and report the version of the 

software. 

%%shell 

./ont-guppy/bin/guppy_basecaller --version 

Mount your Google Drive 
By mounting your Google Drive you will be able to upload fast5 files which can be processed 

and the output can be written back to the same location within Drive. 

The below chunk performs the mounting. You will be asked to authenticate, just follow the 

instructions and things should go smoothly. 

from google.colab import drive 

drive.mount('/content/gdrive', force_remount=True) 
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For this example, I created a directory within My Drive called ONT and then within this folder 

another directory called example_data. I then uploaded a few fast5 files to this location. 

We can check that the mounted drive and files are identified in the notebook environment 

below. 

%%shell 

ls gdrive/MyDrive/ONT/example_data 

Basecalling with Guppy 
With all the above working then we can now basecall our data. First we will set a few variables. 

The below code block creates shell variables for input and output locations, the guppy binary 

(basecaller) and several model files for basecalling (i.e. fast, hac and modified bases). 

HAC model run 
This basecalling run performs high accuracy calling. I was actually very surprised with the 

speed of the GPU that generated this output (Nvida T4). I feel it would be a decent option if 

you wanted to turn around a small amount of data using the hac model. 

The below code block will perform hac: 

%%shell 
inputPath="gdrive/MyDrive/ONT/example_data" 
outputPath="gdrive/MyDrive/ONT/example_data" 
guppy_bc=./ont-guppy/bin/guppy_basecaller                               # set 
guppy_basecaller binary location 
guppy_cfg_fast=./ont-guppy/data/dna_r9.4.1_450bps_fast.cfg              # 
fast model calling 
guppy_cfg_hac=./ont-guppy/data/dna_r9.4.1_450bps_hac.cfg                # 
high accuracy calling 
guppy_cfg_mod=./ont-guppy/data/dna_r9.4.1_450bps_modbases_5mc_hac.cfg   # 
base modification calling 
 
$guppy_bc -i $inputPath -s $outputPath  \ 
--recursive \ 
--config $guppy_cfg_hac \ 
--gpu_runners_per_device 16 \ 
--cpu_threads_per_caller 2 \ 
--device cuda:0 
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