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Universitat Politècnica de Catalunya

Dr. Adrià Gusi-Amigó
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Abstract

Snapshot positioning is the technique to determine the position of a Global Navigation Satel-

lite System (GNSS) receiver using only a very brief interval of the received satellite signal. In

recent years, this technique has received a great amount of attention in the GNSS community

thanks to its unique advantages in power efficiency, Time To First Fix (TTFF) and economic

costs for deployment. However, the state of the art algorithms regarding snapshot positioning

were based on code measurements only, which unavoidably limited the positioning accuracy

to meter level. The present PhD research aims at achieving high-accuracy (centimetre level)

snapshot positioning by properly utilizing carrier phase measurements. Two technical chal-

lenges should be tackled before such level of accuracy can be achieved, namely, inaccurate

estimation of satellite transmission time and the so-called Data Bit Ambiguity (DBA) issue.

The first challenge is essentially originated from the lack of absolute timing accuracy

in the receiver, as only the coarse time information is available from an external assistance

module and its error can be up to a few seconds. Applying a conventional Coarse Time Filter

(CTF) can increase this timing accuracy to the millisecond level. However, this is still not

enough for carrier-phase based positioning since the satellite position errors introduced by

such timing errors range up to one meter, which certainly impedes the carrier phase Integer

Ambiguity Resolution (IAR). A method is proposed to set a global time tag and correspond-

ingly construct the pseudoranges with full period corrections. This method guarantees the

satellite transmission times are accurate to the nanosecond level. Thus, the corresponding

accurate satellite coordinates enable the high accuracy snapshot navigation filter.

The second challenge is caused by the fact that snapshot measurements are generated

based on the results of the correlation between the received signal and the local replicas.

Multiple replicas are typically produced in snapshot positioning following the Multi Hy-

pothesis (MH) acquisition architecture. It may happen that more than one local replica

xiii



ABSTRACT xiv

(i.e. hypothesis) result in the maximum correlation energy. Hence, we need to identify the

actual secondary codes or data bit symbols encoded in the received signal, i.e. to resolve

the DBA. Particularly, when the local replica is generated with exactly opposite symbols to

the actual ones, the resulting carrier phase measurement contains a Half Cycle Error (HCE)

and impedes also the IAR step. A method has been proposed in this PhD to resolve the

DBA issue for pilot signals with encoded secondary codes. This method attempts to form a

consensus among all satellites regarding their secondary codes, under the assistance of the

flight time differences, which are available as a side product of the conventional CTF. A dif-

ferent approach has been developed for data signals. It amends the carrier phase HCEs one

after another by an iterative satellite inclusion procedure. This approach uses the Real Time

Kinematics (RTK) LAMBDA Ratio Factor (LRF) as an indicator to evaluate the potential

existence of the HCEs.

The present PhD focuses on implementing the so-called Snapshot RTK (SRTK) tech-

nique. As in the classic RTK technique, SRTK cancels most of the measurement errors

through the Double-Differenced (DD) process. The workflow details of SRTK are explained

incorporating the aforementioned new algorithms. Several experiments were performed based

on real world signal recordings and the results confirm the feasibility of obtaining SRTK fix

solutions. The performance of SRTK is numerically demonstrated under different parameters

of signal bandwidth, integration time and baseline distance. The SRTK fix rates can reach

more than 90% in most of the scenarios, with centimetre-level positioning errors observed in

the fixed solutions.

It can be concluded that upon the implementation of the global time tag method, high

accuracy snapshot positioning becomes feasible with the SRTK technique and its perfor-

mance varies depending on the SRTK configuration. The algorithms developed for the DBA

issue and carrier phase HCEs also prove to effectively improve the performance of SRTK.



Chapter 1

Introduction

1.1 GNSS Background

The term Global Navigation Satellite System (GNSS) is defined as the collection of all

Satellite Navigation (SATNAV) systems and their augmentations [1]. Currently, there exist

four GNSSs with global coverage: the U.S. Global Positioning System (GPS), the European

Galileo system, the Chinese BeiDou Navigation Satellite System (BDS) and the Russian

Federation GLObal NAvigation Satellite System (GLONASS). these GNSSs are sometimes

referred to as core constellations. Other systems provide navigation services to a dedicated

region only, such as India’s Navigation with Indian Constellation (NAVIC) and Japan’s

Quasi-Zenith Satellite System (QZSS).

1.1.1 GNSS Segments

A GNSS consists of the following three main segments:

1. the space segment, which contains all the satellite vehicles that are continuously

transmitting navigation signals. These signals include the ranging codes and navigation

messages that are modulated to carrier sinusoidal signal at a given frequency. The

navigation message contains the necessary elements, such as the ephemeris data that

are required to compute satellite position, among many other parameters.

1



INTRODUCTION 2

2. the control segment, which consists of a global network of ground facilities that track

the GPS satellites, monitor their transmissions, perform analyses, and send commands

and data to the satellites in the constellation.

3. the user segment that is composed of the GNSS receivers [2]. These devices operate

passively (i.e., receive only) by processing the received GNSS signals and providing

estimates of Position Velocity and Time (PVT) information to the user.

The space and control segments are mainly maintained by the constellation owners and

not accessible to the general public. In contrast, the user segment is mainly controlled by

the GNSS receiver manufacturers and it is the main focus of the present work.

1.1.2 GNSS Market

Many fundamental technologies that are being developed today rely on the continuous ser-

vice of GNSS. The GNSS market report [3] published by the Europe Union Space Program

Agency (EUSPA) listed the market segments where GNSS could potentially play an impor-

tant role, including consumer solution devices, road transportation and automotive, manned

aviation, drones, maritime, rail, agriculture, among many others. Each segment contains a

great variety of applications. For example, applications of consumer solution devices include

personal tracking devices, wearables, digital cameras, etc. Other advanced technologies such

5G, Artificial Intelligence (AI), Internet of Things (IoT) are being used in combination with

GNSS to better serve the day-to-day life of end users.

Snapshot positioning is the technique to determine the position of a Global Navigation

Satellite System (GNSS) receiver using only a very brief interval of the received satellite

signal. The high accuracy snapshot positioning technique presented in this work mainly

concerns the IoT related applications of the consumer solution devices segment. As shown

in the market report, the user needs in this sector are firmly increasing over recent years.

Numerically, the Compounded Annual Growth Rate (CAGR) of personal tracking devices
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and Low-Power Asset Tracking devices are estimated to be 23.7% and 24.2% respectively.

This growth trend is expected to continue until the year 2029.

1.1.3 Basic Principles

From the perspective of the user segment, the basic principle behind GNSS positioning is

a biased passive trilateration process [4]. Such definition involves three key terms. First,

the term “passive” is used since the positioning device only receives the GNSS signal. The

collected signal is then processed to generate a time delay measurement that can be further

converted to distance measurements (i.e., range) by multiplying the speed of light. To be

more precise, this measurement is formed based on the time difference of arrival of syn-

chronized signals. Because these signals are delayed or advanced with respect to the true

geometric distances between the transmitting satellites and the receiver, we refer to them

as pseudoranges, as we will see in Chapter 2. With more satellite signals been processed,

more pseudorange measurements can be obtained. Secondly, the term “trilateration” is the

core operation in the positioning algorithm. This operation makes use of the pseudorange

measurements as the main input and estimates the user coordinates based on the differences

of its distances from the known satellite positions. Finally, the term “biased” is used due to

the fact that all pseudorange measurements share a common bias caused by the inaccuracy

of the receiver clock.

As for the space and control segment, they have their own responsibilities to maintain

the system operational according to the expected performances requirements. As already

mentioned, in order to ensure that the user segment functions properly, the satellites in the

constellation must have clocks that are synchronized to a common time with great accuracy.

This is guaranteed by the use of high accuracy atomic clocks onboard the space vehicles,

and correction parameters containing the bias, drift and acceleration about these satellite

clocks are distributed timely. Besides, in order to accurately estimate the user coordinates,

it is necessary to have a precise knowledge about the satellite coordinates at the time of
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signal transmission. For this purpose, satellite orbit parameters, known as the ephemeris

parameters, are continuously being monitored and provided to the users by the so-called

navigation messages that are modulated to the carrier signal. These fundamental data,

sometimes along with other more precise orbit and clock products, are also distributed by

other communication channels such as internet.

1.1.4 GNSS Performance Parameters

Some parameters are used to evaluate the GNSS performance, the most typical ones are as

follows [3]:

1. Availability, the percentage of time the Position Navigation or Timing (PNT) solution

that can be computed by the user. Two types of availability are usually considered:

the system availability that is determined by the GNSS Interface Control Documents

(ICD) and the overall availability that takes into account the receiver performance and

the user’s environment.

2. Accuracy, the difference between true and computed solution. As formulated in [2],

the following different types of accuracy measures are usually used in GNSS:

(a) Formal accuracy: denoted as the diagonal terms of the covariance matrix of the

navigation solution. It provides a characterisation of the quality and uncertainty

of the coordinates and time estimates, instead of their actual errors.

(b) Predicted accuracy: typically represented by the Dilution Of Precision (DOP) and

the variance of the GNSS measurements. The DOP is only linked to the satellite

geometry and represents a ratio factor between the measurement precision and

that in positioning.

(c) Measured accuracy: the actual navigation solution errors. This accuracy measure

is computed by comparison of the obtained estimated to a set of ground truth

data.
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3. Continuity, the ability of a system to perform its function (deliver PNT services

with the required performance levels [5]) without interruption once the operation has

started.

4. Integrity, the ability of the system to provide warnings to users when it should not be

used. It is the probability of a user being exposed to an error larger than the alert

limits without timely warning

Other parameters include: Robustness, Authentication, Time To First Fix (TTFF),

Power consumption, Resiliency, etc. Among them, the most valued ones for snapshot GNSS

positioning, and as is for the present work, are the accuracy, TTFF, and power consumption.

1.2 Snapshot Positioning

Snapshot positioning is defined as the technique to determine the position of a GNSS receiver

using only a very brief interval of the received satellite signal, where the sampling time ranges

from 2 to 100 milliseconds (ms) [6]. This technique is also referred to as the one-shot GNSS

receiver [7]. Compared to a conventional GNSS receiver that may require tens of seconds

of signal tracking before a first position can be computed, snapshot positioning technique

shows more advantages in applications that require timely positioning results or when energy

consumption is significantly limited.

As pointed out in the IoT white paper published by EUSPA [8], traditional GNSS tech-

nologies do not align well with the stringent constraints of battery-powered IoT devices which

are often expected to function intermittently for multiple years without charging. Multiple

techniques were developed aiming at tackling this issue, including receiver duty cycling,

ephemeris extension and prediction, Assisted GNSS (AGNSS), etc. While these techniques

already contributed to the reduction of power consumption in the receiver, snapshot posi-

tioning technique takes a further step forward as it determines the position by using only

a minuscule interval of a GNSS signal. Furthermore, snapshot positioning technique fits
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Figure 1.1: From receiver to cloud: GNSS optimisation techniques

perfectly for cloud based processing, which relies on the “outsourcing” of the majority of the

computation workload to the cloud infrastructure. This change of strategy further reduces

energy consumption in a significant way.

Figure 1.1 illustrates the most commonly used strategies aiming at reducing energy con-

sumption using cloud-based technology. The blocks located on the left side of the figure

are mainly receiver-based techniques, while those on the right side rely more on cloud-based

techniques. As it can be seen in the last row, in order to take full advantages of cloud

based strategy, the ultimate form of snapshot technology is based on the transmission of raw

snapshots. This implies that the baseband signal processing and navigation filters are all

implemented on the cloud. [9] confirmed that cloud based snapshot solution is up to more

than an order of magnitude more efficient compared to conventional GNSS approaches in

terms of energy consumption.
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Figure 1.2: Connectivity requirements vs energy efficiency

The limitation in data connectivity is also a critical factor when shifting computation

tasks from receiver to the cloud. An overview of connectivity and energy efficiency limitations

for different positioning strategies is shown in Figure 1.2 [8]. As it can be seen, denoted by S1

circle, transmission of raw snapshots enjoys the highest energy efficiency in the positioning

module. Although a relatively high up-link connectivity requirement needs to be fulfilled, no

down-link connectivity is needed since the receiver only uploads the collected binary bits to

the cloud and do not download any data. The present dissertation is focused on processing

of the transmitted raw snapshots on the cloud.
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1.3 Motivation

The increasing need of GNSS positioning modules for mass market IoT applications has been

a key factor that drives the present research on snapshot positioning algorithms, especially

in terms of:

1. Energy efficiency. As already mentioned in Section 1.2, the decrease in power con-

sumption is the main advantage of snapshot positioning compared to conventional

techniques. It motivates a systematic review of the currently most commonly used

algorithms in snapshot technology.

2. Positioning accuracy. Accuracy measures were rarely addressed for snapshot po-

sitioning since currently only code delay based algorithms are developed [10]. It is

thus encouraged to explore snapshot carrier phase measurements and develop new

approaches for the navigation filter in order to obtain high accuracy PVT results.

3. Economic cost. In order to better serve the general public, the overall cost of de-

ploying snapshot positioning service must be reduced to the minimum while satisfying

the desired performance requirements. This motivates a detailed analyse of the per-

formance and the cost. Not only the hardware cost of the snapshot receiver should

be considered, but also the charges due to data transmission and other high precision

data services.

Among these factors, advantages of snapshot positioning in terms of energy efficiency and

economic cost have already been demonstrated in some current researches [8, 9]. It is the

snapshot positioning accuracy that still requires more in-depth investigation as currently

only meter-level accuracy can be achieved. The innovations and new algorithms presented

in this contribution are motivated by the enormous potential applications of this technique,

which have previously been obstructed by the fact that no high accuracy snapshot positioning

algorithms are available so far.
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1.4 Objectives

This thesis work is completed with the following objectives:

• Study and implement a functioning positioning engine incorporating state of the art

GNSS algorithms.

• Consolidate the currently existed algorithms developed for snapshot GNSS positioning,

including both signal processing and navigation filter data processing.

• Research and implement new methods for generating accurate snapshot GNSS observ-

ables, including time-tagged code delay, Doppler frequency offset and snapshot carrier

phase, etc.

• Integrate snapshot observables to classic high accuracy navigation filters to achieve

high accuracy snapshot positioning.

• Evaluate the performance of the state of the art snapshot algorithms together with the

newly proposed methods.

1.5 Contributions

Along with the present dissertation, several other publications are made, including [10] and

[11]. Besides, two related patent applications are filed and pending to be granted at the time

of thesis writing. Furthermore, as part of an industrial PhD program, the algorithms in-

volved in the present research were implemented and integrated to the code library of Albora

Technologies. The author mainly contributed to the development of observable generation

module and the specially designed high accuracy navigation filter.
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1.6 Thesis Outline

This thesis contains six chapters and they are organised in this way: The present chapter

has briefly introduced the background about GNSS and pointed out the motivations of

developing snapshot positioning, as well as the objectives of this thesis.

Chapter 2 provides some details about the traditional GNSS techniques, including the

baseband signal processing module and different types of data processing methods.

Chapter 3 provides a thorough walk-through of the conventional snapshot positioning

algorithms. It focuses on the hypotheses construction in the acquisition module and the full

period ambiguity resolution.

Chapter 4 explains the first main technical challenge faced by high accuracy snapshot

positioning and provides a solution for it. The high accuracy snapshot positioning workflow

is demonstrated and two sets of experiments are presented. Results from the first experiment

confirm the feasibility of obtaining centimetre level positioning solutions under zero-baseline

configuration and the results of the second experiment show more insights about the perfor-

mance under different scenarios.

Chapter 5 tackles the second main challenge that addresses the potential errors in snap-

shot carrier phase measurements. Two different methods are proposed, respectively aiming

at data signals and pilot signals. The improvements after applying these methods are demon-

strated based on real world signals.

Chapter 6 concludes the performance of the above mentioned new methods and provides

some suggestions and outlook for possible contributions on the snapshot positioning research

in the future.



Chapter 2

Traditional GNSS Techniques

Since the start of the development of GNSS technologies in the 1960s, many researches have

been done and contributed to the convenient use of these technologies [1, 12]. Thanks to

the fast development of these technologies, they can be found in more and more modern

applications such as drones, unmanned vehicles, etc. This chapter serves as a walk through

of the GNSS techniques that are commonly used nowadays and provides some more detailed

introduction to some important concepts that are used in the following chapters.

2.1 GNSS Signals

GNSS signals are the electromagnetic waves continuously transmitted by GNSS satellites in

two or more frequencies in L band. These signals mainly consist of three components:

• Ranging code: also named as Pseudo-Random Noise (PRN) code, or primary code.

It is used for the receiver to identify the satellite and determine the travel time from

satellite to the receiver antenna.

• Navigation data: the binary bits of necessary information for each satellite, including

data related to its position (ephemeris and almanac), time of transmission, satellite

clock bias parameters, health status and other complementary contents.

• Carrier: Radio frequency sinusoidal signal at a given frequency in which the previous

11
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two components are modulated.

For the primary codes, they can be characterized by the modulation scheme, code length

(bits), code period (ms) and code bit rate (Hz), which is also known as the chip rate. For

instance, the GPS L1 C/A signals employ the Gold codes of 1023 bits, the corresponding

primary code period is 1 ms and the chip rate is 1.023 MHz. Such primary codes are

modulated through the Binary Phase Shift Keying (BPSK) scheme.

Navigation messages are typically composed of frames that each carries a different set

of information. Each frame may consists of several subframes. Some signals have fixed

structures of such messages, while others employ more flexible formats. It is important to

point out that many modern signals employ separate data and pilot components and the

latter does not contain any navigation message data bits.

For the carrier signal, currently there are a few center frequencies that are used for

different GNSS constellations. For example, the L1 frequency band, which is located at

1575.42 MHz, is used by GPS L1 C/A, Galileo E1, BDS B1C and SBAS signals; the L5

frequency band that is located at 1176.45 MHz holds GPS L5, Galileo E5a, BDS B2a and

other signals from regional constellations such as the NAVIC; the L2 frequency band located

at 1227.6 MHz hosts GPS L2 signals, etc.

Beside these parts, some other components such as overlay codes are also present in the

composition of the so-called Signal In Space (SIS). These codes, also named as secondary

codes, effectively extend the length of the short primary codes by modulating each duration of

primary code period with bits that are well documented in the signal specification documents

[13]. With the knowledge of the secondary code bit values, the receivers can exploit longer

coherent integration times in their processing. A SIS can be characterized by the properties

related to the above mentioned signal components together with some other parameters [14],

such as the modulation type, transmitted power, etc.

Since the primary codes, navigation message data bits and secondary codes are of par-

ticular importance for the present PhD research, the characteristics of some of the most
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commonly used signals are listed in Table 2.1.

Table 2.1: Basic information about the most commonly used GNSS signals. The rows colored
in green represent the pilot signals while the others contain navigation message data bits.

primary code
Chip rate [MHz] Code length Code period [ms]

GPS L1 C/A 1.023 1023 1
GPS L5Q 10.23 10230 1

Galileo E1B 1.023 4092 4
Galileo E1C 1.023 4092 4
Galileo E5a-I 10.23 10230 1
Galileo E5a-Q 10.23 10230 1

Beidou B1C (data) 1.023 10230 10
Beidou B1C (pilot) 1.023 10230 10

Data bits
Bit rate [Hz] Bit duration [ms]

GPS L1 C/A 50 20
GPS L5Q N/A

Galileo E1B 250 4
Galileo E1C N/A
Galileo E5a-I 50 20
Galileo E5a-Q N/A

Beidou B1C (data) 100 10
Beidou B1C (pilot) N/A

Secondary code
Code length Code period [ms] Notes

GPS L1 C/A N/A
GPS L5Q 20 20 20-bit Neuman-Hofman code

Galileo E1B N/A
Galileo E1C 25 100 CS251 code
Galileo E5a-I 20 20 CS201 code
Galileo E5a-Q 100 100 CS1001−50 code

Beidou B1C (data) N/A
Beidou B1C (pilot) 1800 18000 Truncated Weil code

2.2 GNSS Receiver

The GNSS receiver, as a basic unit of the user segment of GNSS, is the device that acquires

the SIS and computes the PVT solution based on the algorithms running inside. Traditional

receivers have a similar architecture that can generally be illustrated in Figure 2.1 that is
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extracted from [15].

First of all, the electromagnetic waves are captured by the antenna, which is usually

accompanied by a preamplifier. The resulting Radio Frequency (RF) signal is then passed

to the RF front-end to be down-converted and filtered in order to obtain the Intermediate

Frequency (IF) signal that can be accepted by the Analogue to Digital Converter (ADC)

module, as denoted by the third block. Note that both the RF front-end and the ADC

require a local oscillator as the input signal. The output at this stage is a time series of

samples that are typically represented in binary format. They are then fed to a baseband

processing module that aims at generating the raw GNSS measurements for each satellite

signal acquired. These raw measurement data consist of code pseudoranges, carrier phases

and Doppler frequency offsets. They are finally processed in the PVT processing block to

compute the navigation solutions that are finally provided to the GNSS users.

The most extensively discussed blocks for the GNSS community are the baseband pro-

cessing and PVT computation blocks [16, 1], the other functional blocks shown in Figure

2.1 are common procedures for any wireless applications. In terms of the baseband signal

processing block, the performance characteristics are mostly influenced by the receiver design

choice between the open-loop batch processing architecture and the closed-loop sequential

processing architecture [17].

The close-loop architecture is most commonly chosen for traditional GNSS receivers. It

consists of multiple channels that each encapsulates the blocks for satellite acquisition, signal

tracking, and demodulation of the navigation message for each signal and for each satellite

being processed. While these steps are being processed sequentially for each channel, the

desired measurements can be estimated continuously during the tracking step that is built

on a close-loop architecture.

The open-loop approach, however, correlates the input signal with a batch of replicas in

parallel. Each replica is constructed based on different code delay and Doppler parameter

candidates, which form the so-called search space. Note that the open-loop work flow is sim-
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Figure 2.1: GNSS receiver functional block diagram [15]

ilar to the acquisition step of the close-loop approach but with more refined search space and

different estimation techniques. More details are described in section 2.2.1. This approach

has received much less attention from the GNSS community although it proves to be more

advantageous in some applications [17].

As for the PVT processing module, also named as a navigation filter, it holds the main

algorithms for the estimation of the navigation solution, including Standard Point Position-

ing (SPP), Real Time Kinematics (RTK), Precise Point Positioning (PPP), etc. All these

procedures and implementation methods are introduced in the following subsections.

2.2.1 Acquisition

The first step of the baseband signal processing block is known as satellite acquisition. This

step collects the IF digital bits that contain the information of the incoming signal and

performs the following two tasks [18]:

• Identify the satellites that are mixed in the signal received at the antenna.

• Roughly determine the estimates of the code phase and the Doppler frequency offset

for the observed satellites.
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Figure 2.2: Block diagram of the serial search algorithm for acquisition

There are several different ways of implementing the acquisition step, but the most basic

workflow is based on a serial search which is presented in Figure 2.2. As it can be seen, the

incoming signal samples are correlated with a primary code replica generated locally. This

output signal is then multiplied by a carrier signal generated by a local oscillator in two

branches. One branch is the In-phase branch, noted by I, and the other is the Quadrature

branch, noted by Q, which has applied a 90 degrees shift in the phase of the locally generated

carrier signal. Both the I and Q branch results are integrated over a period defined by the

coherent integration time, typically denoted by tcoh, and then squared and summed up to

form the final correlation magnitude value.

To successfully perform the acquisition task, the receiver needs to rely on the following

two correlation properties of the GNSS satellite primary code sequences [18]:

• The correlations between primary codes of two different satellites are close to zero.

This is the root reason that allows identifying each satellite available in the obtained

signal. In practice we generate the primary codes locally for all the satellites and only

the channels corresponding to visible satellites present a correlation response at the

end of the acquisition process.
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• The auto-correlation output of the PRN sequence is nearly zero when the lag is over

one chip. The pattern of the Auto Correlation Function (ACF) when the lag is below

one chip depends on the signal modulation method, but the output magnitude is

always at the maximum when the lag is zero. For example, for GPS L1 C/A signal, a

triangular ACF profile can be observed between − 1
1.023

µs and 1
1.023

µs of offset. For

BOC signals, their ACF have profiles with more local peaks, which complicates the

acquisition process as the correct detection of the main peak remains challenging in

the presence of noise.

As it can be expected, due to the second property of the PRN sequences, it is necessary

to sweep through the whole PRN sequence and generate local replicas with all different code

phases in order to get a high magnitude of acquisition output. This refers to the search in

code phase space. Another similar search procedure is applied in order to find the proper

Doppler frequency offset value. This is performed by adding different frequency steps to the

IF in the local carrier generation process that is controlled by the Numerically Controlled

Oscillator (NCO). These two search steps are independent from each other and result in

a two dimensional search space that is extensively explained in various literature about

GNSS baseband signal processing [18, 1]. Since the sequential search will result in a huge

amount of combinations due to the large number of code phase and Doppler offset candidates,

parallel search methods have been introduced in order to reduce the computational burden.

These methods are usually based on the Fast Fourier Transform (FFT) technique, which is

a practical fast implementation of the Digital Fourier Transform (DFT) for computers.

To better grasp the idea of the acquisition process, it is important to understand the

mathematical model behind these correlations. Starting from the digital samples of the

incoming Radio Frequency (RF) signals which were originally down-converted to IF, it can

be mathematically represented as [19]:

r[n] =
L∑
i=1

Aici [n− τi] di [n− τi] cos
[
2πF i

Dn+ ϕi

]
+ η[n] (2.1)
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where:

• L is the total number of satellites that broadcast the received signal

• Ai is the amplitude of the i-th useful signal

• ci is the primary code (or PRN code) sequence, which is known a priori

• di represents the navigation message data bits, which are absent from the pilot com-

ponent of some modern signals

• τi is the code phase at the satellite transmission time, in ms

• F i
D = fIF + f i

D is the sum of the intermediate frequency magnitude and the Doppler

offset, in Hz

• ϕi is the carrier phase measurement at the satellite transmission time, in rad

• η[n] is the signal noise after the front-end processing

These digital samples r[n] are fed to the correlation process with local replicas of spreading

codes and carrier signals, which generates for each signal a Cross Ambiguity Function (CAF)

that can be defined by:

Y (τ, FD) =
1

N

N−1∑
n=0

r[n]c[n− τ ] exp {−j2πFDn} (2.2)

where:

• N is the total number of samples, which depends on the sampling frequency and the

total length of the correlation time

• r[n] is the received signal samples that is expressed in Equation (2.1)

• c[n− τ ] is the local replicas of the primary code

• exp {−j2πFDn} represents the local carrier signal with the frequency set to FD
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As it can be seen in Equation (2.2), τ and FD are the two key variables that determine

the magnitude of CAF output. The target of the acquisition process is to find a set of such

parameters that lead to a distinctive peak of the CAF output. In practice, the complex

correlation with the local carrier signal is implemented by the multiplication of the two

orthogonal components of this carrier: one branch is multiplied by a sine wave and the other

branch multiplied by a cosine wave. In general, the CAF results of these two branches of

local replicas can be represented by:

YI (τ, FD) =
1

N

N−1∑
n=0

r[n] cos (2πFDn) c[n− τ ]

YQ (τ, FD) =
1

N

N−1∑
n=0

r[n] sin (2πFDn) c[n− τ ].

(2.3)

YI and YQ stand for the In-phase and Quadrature components of the correlation results.

With these two components represented in this way, Equation (2.2) can be rewritten as:

Y (τ, FD) = YI (τ, FD) + jYQ (τ, FD) (2.4)

The magnitudes of the CAF outputs are computed with multiple tentative values in the code

phase and Doppler offset dimensions. A detection procedure has to be applied in order to

decide whether we have achieved a successful acquisition of the satellite. Once the acquisition

of the satellite is confirmed, the final estimates of the two critical parameters are determined

by identifying the peak magnitude, which can be represented by:

< τ̂, F̂D >= argmax{Y 2
I (τ, FD) + Y 2

Q (τ, FD)} (2.5)

There are usually different methods that can be applied for this process, the simplest

one is the serial search acquisition method that applies a brute force search on all the grid

points of the two dimensional search space. However, as it can be expected, this method can
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be quite computationally expensive when there is a large amount of grid points to search

on. This search size depends on the search bin margins and the separations of two adjacent

candidates, which is also usually named as the bin width. When a more refined result is

desired, the bin width needs to be reduced and this results in a larger number of candidates

to be searched on. Therefore, the trade-off between the acquisition output precision and the

computational efficiency needs to be well considered. Fortunately, there are other different

algorithms developed that largely accelerates this process. These algorithms rely on the

implementation of the FFT that performs a transformation from time domain to frequency

domain and an Inverse FFT (IFFT) process that transform the frequency domain operation

results back to time domain. The use of such techniques is customary in modern GNSS

receivers, more details can be found in various literature [18, 19, 20, 21].

Following the obtainment of the optimal estimates of the code phase and Doppler offset,

the carrier phase of the signal at satellite transmission time can be represented using the

formula of the complex angle:

ϕ̂ = arctan(
YQ

(
τ̂ , F̂D

)
YI

(
τ̂ , F̂D

) ) (2.6)

Typically the carrier phase measurements are not calculated in the acquisition stage. Instead,

they are obtained in the tracking loops where finer Doppler frequency offset are estimated

and thus result in more accurate and continuous carrier phase measurements. However, for

special applications such as snapshot processing, they are computed in the acquisition step,

more details are given in Chapter 3.

2.2.2 Tracking

The tracking step is a continuous estimation process following the acquisition step. It is

recalled that the acquisition step requires the generation of a local replica signal on each

channel in order to have a rough estimate of the code phase and Doppler frequency offset.
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These replica signals are composed of local carrier signals at a tentative frequency and

the primary codes and other encoded data bits. Due to the movement of GNSS satellites

and possible user dynamics, the Doppler frequency offsets on each channel of the baseband

processing module are continuously varying. Similarly, the code phase on each channel is

also constantly changing since it depends on their propagation times and the signal reception

time.

The main purpose of signal tracking is to match the local replicas with the changes of

the Doppler frequencies and the code phases of each signal being processed. By continuously

tracking the signal, we can avoid the computationally expensive search procedure as required

in the acquisition step and at the same time obtain finer estimates of the main GNSS mea-

surements: the code phase, Doppler offset and carrier phase. Additionally, after stable signal

tracking is established, the data bits encoded in the received signal can be demodulated.

The tracking procedure can be divided into carrier tracking and code tracking. Carrier

tracking is usually implemented in the form of a Phase Lock Loop (PLL) or a Frequency

Lock Loop (FLL), while for code tracking a Delay Lock Loop (DLL) is typically applied [22].

The principles behind these tracking loops are similar: achieving the maximum consistency

with the received signal by adjusting the code delay and Doppler offset parameters of locally

generated replicas.

Figure 2.3 illustrates the basic architecture of GNSS signal tracking. There are mainly

three components in the tracking process for each channel, namely, the correlator, the carrier

tracking loop and the code tracking loop. Starting from the left side of the figure is the

correlator part, which collects the digital samples of the received signals r[n] and performs

two stages of the so-called wipe off process. The first stage of wipe off is to eliminate the

carrier signal by the multiplication with a locally generated sinusoidal signal at the frequency

of F̂D, which was initially obtained in the acquisition process. The second stage is to wipe off

the encoded primary codes, by the multiplication with a local replica of the PRN sequence

with a code phase of τ̂ .
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Figure 2.3: GNSS signal tracking architecture [4]

Ideally, the acquisition results are exactly equal to the actual carrier Doppler offset and

code phase. Then, the two stages of correlation process should totally wipe off the carrier

wave and the primary codes and result in only the accumulated signal amplitude over the

correlation interval. The signs of these amplitude values are actually the remaining data

bits in the received signal such as the navigation message bits or secondary codes. However,

perfect correlations at this stage almost never happen since the acquisition results only

provide coarse estimates, and that is the main reason why tracking loops need to be applied.

The upper part of the right side of Figure 2.3 depicts the carrier tracking loop. As it

can be seen, the correlation results first pass through a carrier discriminator block. The

discriminator is an estimator that provides a measure of the parameter discrepancy between

the local signal and the received signal. In the case of carrier tracking, it estimates the phase

error (for PLL) or the Doppler offset error (for FLL) of the locally generated carrier signal.

The PLL and FLL estimates always contain noise terms, thus a carrier loop filter is used here

in order to reduce the impact of such noise on the accuracy of the discriminator outputs.

After that, these estimates are used to generate a new carrier reference that is then fed back

to the correlator process for the subsequent carrier wipe off.

The code tracking loop is performed in parallel to the carrier tracking loop with a sim-
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ilar procedure. The code discriminator estimates the code phase discrepancy between the

currently used local code reference bits and the actual PRN sequence in the received signal.

After being filtered by the code loop filter, a refined primary code reference sequence is gen-

erated based on the magnitude of this discrepancy and then fed back to the correlator for

the following code wipe off process.

When these tracking loops reach a steady status, the discriminator outputs, i.e., the

local reference carrier and code errors should be relatively low, although their magnitude

still depend on the loop filter design choices. Meanwhile, the updated code phase and carrier

phase estimates can be safely taken from the locally generated reference signals. More details

about tracking loop implementations can be found in various literature [1, 22, 23]. Since the

main focus of the present PhD is on snapshot positioning which adopts the open-loop signal

processing architecture, the signal tracking is not further discussed.

2.2.3 Measurement Generation

Section 2.2.2 presented how continuous estimates of code phase and carrier phase are obtained

through tracking loops. These measurements, however, can not be directly used for the

positioning algorithms because they are generated under different time scales. The tracking

loops for different satellites could be established at epochs that are very different from each

other, even though the signal reception time is the same for all. In other words, the code

phase value obtained at this stage for each satellite is only a fractional value that is between

zero and one full code period (lasting, for instance, 1 ms in GPS L1 C/A signal).

In order to generate a set of full pseudoranges that are properly time tagged, some further

steps must be taken. Only these full pseudoranges can correctly reveal the geometric distance

relationships among all satellites. The computation of these pseudoranges is dependant on

the determination of the misalignment of the time scales within which each code phase value

is measured. This process is equivalent to the determination of the transmission times of

different satellites. To better understand this procedure, the following paragraphs use the
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Figure 2.4: Illustration of computation of satellite transmission time of a GPS satellite [4].
The three rows respectively represent: a subframe containing 300 bits (gray, tb to tb + 6 s),
a bit lasting 20 primary code periods (blue, tc to tc + 20 ms) and a primary code sequence
with 1023 chips (pink, td to td + 1 ms).

GPS L1 C/A signal as an explanatory example.

Figure 2.4 depicts the procedure to compute a GPS satellite transmission time by ex-

ploring different levels of codes modulated in this signal. As it can be seen, in order to find

the transmission time ttr of the currently received signal sample, it is necessary to first have

the knowledge of a highly accurate absolute basis time, denoted as tb. Then, the current bit

index inside a full subframe is also required. In the example shown in Figure 2.4 this index

is denoted as N . Note that this example shows only GPS L1 C/A signal, for which a full

subframe contains totally 300 bits lasting 6 s, thus N is a value between 1 and 300.

Besides, to further increase the precision of this transmission time, the index of the

current primary code period should also be computed, as denoted by M in this example.

Note that M is a value between 1 and 20 since there exists 20 primary code periods in a

GPS L1 C/A signal navigation data bit that lasts 20 ms. Finally, by the addition of the

code phase τ that was previously obtained with the DLL, the satellite transmission time can
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be obtained. This computation can be explained by:

ttr = tb + (N − 1)× 20× 10−3 + (M − 1)× 10−3 + τ (2.7)

where the necessary parameters M , N and tb are respectively found in the processes of bit

synchronisation, frame synchronisation and navigation message data decoding.

These processes are further explained in the following paragraphs. The constants in Equation

(2.7), 20×10−3 and 10−3, respectively represent the 20 ms duration of each data bit and the

1 ms primary code period.

The first step towards the full pseudorange computation is to achieve bit synchronisation,

which aims at finding the edges of the primary code period during which the received signal

was transmitted. To represent it in the second row of Figure 2.4, this step is equivalent

to find the nearest vertical line on the left side of ttr, i.e., the starting edge of CA M that

is shaded in pink. Then, the information about the received signal sample location in the

current bit can be obtained by referring to these detected edges.

The bit synchronisation process is usually achieved by detecting the positions of bit

transitions. It is recalled that when the DLL is successfully established, only the navigation

data bits are left in the correlator output after the two stages of the aforementioned wipe

off process. Figure 2.5 depicts such explanatory example of the resulting values of data

bits sampled every 1 ms with indices that repeat from 1 to 20. Note that initially the

starting index position (red 1) has been randomly chosen and the correction to it needs to

be determined in this step. The blank boxes represent a bit value of +1 and the boxes shaded

in gray represents data bits of -1.

In this example, we can see that the transition edge from blank boxes to shaded boxes is

between index 3 and 4. It indicates that the values of the first 3 ms belong to one navigation

data bit and the following 20 values belong to the next data bit. To avoid the false detection

of bit transitions caused by the correlator output noise, an algorithm based on counting the
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Figure 2.5: Bit synchronisation based on detecting sign transitions in the values of the
correlator output after signal tracking. The blank boxes represent a bit value of +1 and
the boxes shaded in gray represents data bits of -1. Red and green numbers are the indices
before and after correction based on detected bit edge.

number of changes of adjacent values was proposed in [23] for more robust edge detection.

Once these data bit edges are found, the starting index position is corrected (now green 1) to

these edges. Then, the M values of Equation (2.7) for any further epochs are now equivalent

to these corrected index values (green indices).

The next step is the frame synchronisation. The purpose of this step is to determine the

location of the current navigation data bit in the scale of a full subframe of the navigation

message. For the example shown in Figure 2.4, this refers to the determination of the N

value of Equation (2.7). Since the bit synchronisation process has determined the edges of

each data bit, we now can obtain a continuous stream of these bits. In order to find the start

of a subframe, we need to explore the content of the navigation messages. Again following

with the GPS L1 C/A example, the first word of each subframe is the telemetry word, also

known as the TLM word. The first 8 bits inside this word are the synchronisation bits, which

are always 10001011. The starting edge of a subframe is thus detected by searching this fixed

bit sequence in the continuous stream that was obtained following the bit synchronisation

process.

Besides, since the carrier phases are unknown at the initial stage of data demodulation,

the first decoded bit is assigned with a value randomly, either 1 or 0, and then the following

bits are decoded in relation to the initial bit. Thus, the decoded bits can also be totally

opposite to the actual bits, as a results, a search of the reversed synchronisation bits (i.e.,
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01110100) should also be performed. If such reversed synchronisation bits are detected in

the obtained data stream, then all the values in this stream should be reversed to ensure

that they correspond to the actual transmitted bits. In addition, it must be noted that

there is still a low possibility that the same bits could appear in other locations of the

subframe. If we assume equal probability of 0 and 1 to be encoded (thus both 50%), then

the probability of detecting the two possible 8-digit synchronisation sequences (actual or its

reverse) is 2 · (0.5)8 = 0.78%. This is a probability that should not be ignored since subframe

start can be wrongly detected from time to time. In order to improve the reliability of this

detection, other data bits in the navigation message such as the parity check bits should also

be explored [23].

Finally, the data bit stream should also be decoded to obtain the necessary information

needed for positioning, such as the satellite ephemeris or clock correction parameters. The

primary task of this decoding step is to obtain the transmission times of these subframes,

which correspond to the timing basis of tb in Equation (2.7) as shown in Figure 2.4. More

specifically, this time is extracted from the Time Of Week (TOW) information data bits

that are encoded in the Hand Over Word (HOW) that appears as the second word of each

subframe. The TOW marks the number of seconds from the start of the current GPS week.

At the present moment in the processing, the signal transmission times ttr for each

satellite being tracked can already be computed using Equation (2.7). The pseudoranges are

then computed based on these times, together with a receiver clock trx that is common for

all satellites:

P = c · (trx − ttr) (2.8)

where c = 299792458 m/s is the speed of light.

For carrier phase measurements, the procedures mentioned above can not be applied

since there is no such structure for the carrier wavelength that is similar to the different

levels of codes. Thus there is no means to identify how many carrier cycles passed by since

the start of the subframe. Thus, each measurement is biased by a different integer number
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of cycles, which are known as the carrier phase integer ambiguities. Fortunately, once the

carrier tracking is successfully established, a counter can be initiated to record the number

of cycles passed by at the NCO for each channel. Note that since the Doppler frequency

offsets are different for different satellites, such numbers of elapsed cycles are also different

even though the time gap between two epochs is identical for all satellites. By accumulating

these elapsed cycles to the previous epoch, the resulting carrier phase measurements can

reflect the actual geometric distance differences while maintaining the relationship between

the initial carrier phase integer ambiguities.

As can be expected, these measurements are ultra precise, typically millimetre-level, but

are impacted by the existence of the unknown integer ambiguities. The high precision feature

of carrier phase measurements can be utilised for high accuracy positioning only when these

ambiguities are correctly resolved.

2.2.4 SPP Navigation Filter

The above mentioned baseband signal processing steps have generated the three basic mea-

surements of GNSS receivers: Doppler frequency offset, code pseudorange and carrier phase.

For SPP applications, carrier phase measurements are usually omitted due to the existence

of the so-called integer ambiguities and only pseudorange measurements are used in the

navigation filter. The mathematical model of pseudoranges can be written as [2]:

Pfi = ρ+ c(dtrec − dtsat) + T + αiI +Drec,i +Dsat
i +MPi + εi (2.9)

where:

• ρ represents the geometric range between the satellite and the receiver antenna phase

centers, in m

• dtrec and dtsat are the receiver and satellite clock bias, in s
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• c is the speed of light in vacuum, in m/s

• T and I are the slant delays occurred at the Troposphere and Ionosphere, in m

• αi is a constant that depends on the frequency fi

• Drec,i + Dsat
i is the Differential Code Bias (DCB) caused by the instrumental delays

from the receiver and satellite. It is frequency-dependent as well, in m

• MPi is the multipath effect of code pseudorange at frequency fi, in m

• εi is the receiver noise on code measurements, in m

It is important to point out that the receiver position unknowns rrec = [xrec, yrec, zrec]
T are

inside the geometric ranges ρ, which is not a linear function of these unknowns as it is

computed by Equation (2.10):

ρ =
∥∥rsat − rrec

∥∥ =

√
(xsat − xrec)

2 + (ysat − yrec)
2 + (zsat − zrec)

2 (2.10)

Where rsat = [xsat, ysat, zsat]T is the vector of satellite position coordinates computed at the

signal transmission time. As it can be seen, it contains square and square root operations.

In order to simplify the numerical operations, a Taylor expansion is applied to the original

function and after omitting the residual terms with orders higher than one. Then the geo-

metric range can be decomposed into a sum of a constant computed near the position of an

initial guess and a linear multiplication of the position increment and the vector of derivative

coefficients. This is represented by Equation (2.11).

ρj = ρj0 +
x0 − xj

ρj0
dx+

y0 − yj

ρj0
dy +

z0 − zj

ρj0
dz (2.11)

Where ρj0 is the geometric range computed at an approximate position rrec,0 with coordinates

of (x0, y0, z0) and (dx, dy, dz) represent the position solution increment that is actually the

unknowns to be solved in the navigation equation. The superscript j stands for the satellite



TRADITIONAL GNSS TECHNIQUES 30

index and (xj, yj, zj) are the coordinates of satellite j. When the unknown dx, dy, dz values

are solved, they can be summed to the a priori approximate position in order to obtain

a refined receiver position solution. The computation of the position increment has to be

iterated several times in order to have an enough accurate solution, especially when the

initial guess is far away from the actual receiver position. It is common to define the Line

Of Sight (LOS) unit vector for satellite j as:

1j =

[
xj − x0

ρj0
,
yj − y0

ρj0
,
zj − z0

ρj0

]
(2.12)

Inserting Equation (2.12) into Equation (2.11) leads to the simplified linear equation:

ρj = ρj0 − 1j · drrec (2.13)

where drrec = [dx, dy, dz]T represents the vector of increments of receiver position unknowns.

As for other pseudorange error terms expressed in Equation (2.9), they are carefully

modeled in order to reduce their effects on the navigation filter to the minimum. The

satellite clock offset dtsat can be computed using the clock parameters that are transmitted

together with the ephemeris data. For single-frequency users, the satellite DCB terms Dsat
i

are computed using the equation:

Dsat
i = TGDsat

i (2.14)

Where TGDi is the Total Group Delay (TGD) data that is also transmitted in the navigation

message. The Ionosphere delay I is usually computed based on prediction models, the most

commonly used models are the Klobuchar model [24] and the NeQuick model [25]. Note

that satellite DCB and Ionosphere delays are inversely proportional to the square of carrier

frequency, thus for dual frequency receivers, these delay terms can be totally removed by

forming the so-called Ionosphere-Free combination based on this property [26]. The frequency
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dependent coefficient αi is computed by the following equation:

αi =
40.3

f 2
i

1016 (2.15)

The troposphere delay T can be compensated also by models such as the one used in SBAS

[27].

By correcting the error terms mentioned above as well as replacing ρ by its Taylor ex-

pansion as expressed in Equation (2.11), Equation (2.9) can be rewritten as:

P j
fi
−ρj0+ c ·dtsat−αiI−Dsat

i −T =
x0 − xj

ρj0
dx+

y0 − yj

ρj0
dy+

z0 − zj

ρj0
dz+ c · δtrec+MPi+ εi

(2.16)

where δtrec represents the sum of the unknown receiver clock error dtrec and the receiver

side instrumental delay Drec,i, while εi is now redefined as the lump sum of the pseudorange

noise and all the residual error terms after applying their correction models.

The left side of the Equation (2.16) is usually named as the prefit residuals, or the

“Observed - Computed” (“O-C”) measurement. For satellite indexed by j, this value is

denoted by the parameter bj, thus forming the following equation:

bj = P j
fi
− ρj0 + c · dtj − αiI −Dj

i − T (2.17)

The right side of Equation (2.16) contains the four unknowns that need to be estimated

in the navigation filter together with their corresponding coefficients. With each satellite

having one pseudorange measurement, and hence one prefit residual, with more than four

satellites the linear system represented by Equations (2.17) is over-determined. In order

to obtain a positioning solution with minimum squared error, the Least Square Estimation

(LSE) method is usually used to estimate the position and clock offset. By applying Equation

(2.16) to all the satellites available in a particular epoch, the following matrix form of the
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navigation filter can be obtained:


b1

...

bn

 =


x0−x1

ρ10

y0−y1

ρ10

z0−z1

ρ10
c

...
...

...
...

x0−xn

ρn0

y0−yn

ρn0

z0−zn

ρn0
c


 drrec

δtrec

+


ε1
...

εn

 (2.18)

the following matrix form notations are usually used in order to simplify the navigation

equations:

b = G

 drrec

δtrec

+ ε (2.19)

where:

• b is the vector of computed prefit residuals from all available satellites

• G is the (n × 4) geometry matrix that contains the satellite to receiver directional unit

vectors

• ε is the vector of error terms that include the observable noises, residual errors due to

imperfect modelling and multipath effects.

by solving this navigation filter using the LSE method, the resulting navigation solution can

be expressed as:  d̂rrec

δ̂trec

 =
(
GTG

)−1
GTb (2.20)

with d̂rrec obtained, it is used to update the initial solution rrec,0 based on the equation:

rrec = rrec,0 + d̂rrec (2.21)

The covariance matrix corresponding to the LSE estimation is computed by:

P =
(
GTG

)−1
(2.22)



TRADITIONAL GNSS TECHNIQUES 33

Equation (2.21) has completed an update from the initial guess solutions rrec,0 to the new

solutions of rrec. However, as mentioned when linearising the geometric distance ρ, if rrec,0 is

too far away from the actual receiver position, the Taylor expansion terms used in Equation

(2.11) may not be enough accurate. Thus, in these scenarios, in order to ensure that the

navigation Equation (2.16) properly projects the position solution increments to the prefit

residuals, few iterations of such updates using Equation (2.21) need to be performed with

the updated position solution of one iteration being used as the initial guess of the next

iteration.

Equation (2.20) is developed under the assumption that all the elements in vector b

should be trusted to the same extent, which requires that the pseudorange measurements

from different satellites to have the same error variance. This assumption, however, can

not be satisfied most of the time. Satellites from different positions may experience different

atmospheric delays and the geometric distance difference can also introduce different impacts

on the received signal strength for these satellites. Besides, the multipath effect tends to be

greater for low elevation satellites. Thus, different weights are usually assigned to different

satellites in the LSE in order to obtain a more reliable final solution, this refers to the

Weighted Least Squares (WLS) solution. With this in mind, the SPP navigation solution

can be modified as:  d̂rrec

δ̂trec

 =
(
GTWG

)−1
GTWb (2.23)

where W stands for the weighting matrix for all the measurements used in the navigation

filter. The corresponding covariance matrix can be expressed as:

P =
(
GTWG

)−1
(2.24)

Usually, the weighting matrix is taken as the inverse of the measurement covariance

matrix R, that is W = R−1. As it can be seen, in order to obtain accurate WLS navigation
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solutions, it is critical to have proper estimates of the measurement covariance matrix R.

To achieve this, normally we need to consider all the error sources, but there are some

simplified stochastic models [28] that computes the variances values for different satellites

based on their elevation angles only.

For traditional GNSS applications, the receiver device typically works in a continuous

mode, which means the navigation solution needs to be computed epoch by epoch. Thus, the

positioning solutions from the previous epoch may be used as an initial guess of the current

navigation filter, since the position change between two consecutive epochs is usually not

large. In this case, the navigation solutions usually converge after one single iteration. This

method refers to the Sequential Least Square Adjustment [29]. In practice, a Kalman Filter

[30] is also frequently applied for continuous measurement inputs.

The key difference of a Kalman filter compared to the LSE method is the inclusion of the

state transition in the estimation process. This inclusion takes advantages of the information

obtained from previous epochs and thus results in a more reliable output solution. Since

it makes use of the previous status together with the current measurements, the resulting

solutions are typically more smooth compared to the LSE-based methods that only take

into consideration the latter part. The Kalman filter has two basic steps: Prediction and

Update. These two steps lead to each other in an iterative way as the output of one step

is the input of the other. The Kalman filter starts with an initial input of a rough estimate

of the unknowns and its variance covariance matrix, it is firstly used in the prediction step,

and the output estimates are computed every time the update step is performed. These two

steps are described in more details below:

1. The prediction step is based on the state transition equation that can be expressed

as:

x̂−
k+1 = Φkx̂k

P−
k+1 = ΦkPkΦ

T
k +Qk

(2.25)

where:
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• x̂−
k+1 represents the predicted states, which includes receiver position dr−rec and

clock bias δt−rec

• P−
k+1 represents the covariance matrix of the predicted states at epoch k + 1

• Φk is the state transition matrix at the epoch k and is defined by the internal

links between the unknowns of the state vector

• x̂k and Pk are the state vector and its covariance matrix obtained at epoch k

• Qk is the process noise matrix, which is determined by the amount of trust we

have on the transition model applied to the states

2. The update step is more similar to the navigation equations used before in the LSE

method. It merges the information in the measurements collected at the current epoch

into the navigation system. The update step can be formulated as:

Kk = P−
k G

T
k

[
GkP

−
k G

T
k +Rk

]−1

x̂k = x̂−
k +Kk [yk −Gkx̂k]

Pk = [I−KkGk]P
−
k

(2.26)

where:

• Rk is the covariance matrix of the current measurements

• Kk is the Kalman gain matrix computed based on weighing the covariance ma-

trices of the predicted states and the confidence on the current measurements

• yk − Gkx̂k is called innovation and represents the amount of new information

coming into the system from external measurements at the epoch k

• x̂k and Pk are the state vector and its covariance matrix obtained after the update

step and are fed to the prediction step of the next epoch (k+1) of state estimate.

For positioning engines based on Kalman filter, it is important to assign proper values

to the Qk and Rk matrices, the optimal estimates can be obtained only when they are



TRADITIONAL GNSS TECHNIQUES 36

well configured. By adjusting these matrices we are essentially modifying the trust on the

prediction and the update steps. This can be seen in the Kalman gain term Kk. When

the currently obtained measurements are considered to be less trustful, Rk matrix should

be configured with large values and result in a small Kalman gain value, which lead to the

updated states x̂k almost unchanged from the predicted states x̂−
k , which indicates that the

prediction step has taken the main role in deciding the final outputs. Contrariwise, if the

measurements are known to be very precise, the Rk matrix should be filled with entries of

smaller values. Then, with the relatively large values in the Qk matrix, the Kalman gain can

be expected to be almost equal to G−
k . This results in the fact that the x̂k values are almost

only controlled by the measurements yk, that is, rarely being influenced by the predicted

states x̂−
k .

Since Kalman filter considers information coming from previous states, it is not an option

for snapshot positioning since such information is not available due to the nature of extremely

short recordings. Thus, Kalman filter is not further discussed in this thesis.

2.2.5 Real Time Kinematics

RTK is the positioning technique that makes use of carrier phase measurements and aims

at achieving centimeter level accuracy. RTK is developed on the basis of the concept of

Differential GNSS (DGNSS), which takes advantages of the fact that the measurement er-

rors of GNSS receivers are usually correlated temporally and spatially. That is, the range

errors originated from the inaccuracies of satellite clocks, ephemeris, Ionosphere and Tro-

posphere are very similar for two nearby receivers. Thus, they can be largely cancelled out

when computing the differences of GNSS measurements collected simultaneously by such

two receivers. The differencing procedure between two receivers and two satellites forms the

so-called Double-Differenced (DD) measurements, as illustrated in Figure 2.6. It can be seen

that continuous GNSS measurements collected from a base station are required in order to

implement RTK in the moving rover receiver.
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Figure 2.6: Double Differences built up between a moving (rover) receiver, a permanent base
station and two satellites

The main reason that RTK shows a great advantage over SPP in terms of positioning

accuracy is the use of carrier phase measurements, which are highly precise. These carrier

phase measurements can be modelled as:

Φfi = ρ+ c(dtrec − dtsat) + T − αiI + drec,i + dsati +Bi + λiw +mpi + ϵi (2.27)

where:

• Bi = λiNi is the ambiguity term, with λi and Ni respectively representing the wave-

length and the integer ambiguity cycles for frequency i.

• drec,i and dsati are the Uncalibrated Phase Delay (UPD) of from the satellite and the

receiver, respectively.

• λiw represents the carrier phase offset introduced by the satellite to receiver rotation

and the circular polarisation of the GNSS signal, i.e., wind-up.

• ϵi is the noise of carrier phase measurements.
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The main difference of these phase measurements from pseudoranges is that the noise

term ϵi is about two orders of magnitude lower than the code noise εi. Besides, the existence

of carrier phase ambiguity terms Bi and the opposite sign for the Ionosphere are also the

key differences.

After performing the DD procedure as shown in Figure 2.6, the resulting measurements

are free from most of the error terms of Equation (2.27) since they are cancelled out. This

can be seen from the mathematical model of the DD pseudoranges and DD carrier phases:

P
(kl)
rb = ρ

(kl)
rb + αiI

(kl)
rb + T

(kl)
rb + ε

(kl)
rb (2.28)

Φ
(kl)
rb = ρ

(kl)
rb +B

(kl)
rb − αiI

(kl)
rb + T

(kl)
rb + ϵ

(kl)
rb , (2.29)

Where:

• The subscripts r and b represent the rover and base station receiver respectively.

• The notation (·)(kl)rb represents the quantity of the parameter in the bracelet after per-

forming the DD between the rover and base receivers and between satellites with

indexes of k and l.

• B
(kl)
rb = λ ·N (kl)

rb represents the DD carrier phase integer ambiguity term.

Besides the carrier phase ambiguities, the remaining error terms in the DD measurements

are the residual DD Ionosphere and Troposphere slant delays. Atmosphere delays are highly

correlated when the rover and base receivers are located within a very short range (also

known as the RTK baseline). Thus, for short baseline scenarios, these two residual DD

delays are typically very small and are sometimes omitted for simplicity, which results in:

P
(kl)
rb = ρ

(kl)
rb + ε

(kl)
rb (2.30)

Φ
(kl)
rb = ρ

(kl)
rb +B

(kl)
rb + ϵ

(kl)
rb , (2.31)
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It is noticed that this simplified DD model is valid for baseline distances up to few tens of

kilometers.

In fact, the purpose of applying the DD process is to remove as much as possible the

error terms in carrier phase measurements, so that the ambiguity values can be estimated

and fixed to a set of integer values. High accuracy positioning estimates are available only

when these integers are correctly determined.

In order to develop a navigation equation that can be solved by methods similar to those

mentioned in Section 2.2.4, the linearisation step must be done on the DD geometric range

also. After the first differencing step (between rover and base receivers), the SD geometric

range for satellite k can be expressed as:

ρ
(k)
rb = ρ(k)r − ρ

(k)
b = ρ

(k)
r,0 − ρ

(k)
b,0 − (1(k)

r · drr − 1
(k)
b · drb) (2.32)

The term 1
(k)
r and 1

(k)
b can be assumed as equal considering that the geometric range between

the GNSS satellites and the receiver is significantly larger than the baseline distance. This

component can then be simplified as:

ρ
(k)
rb = ρ

(k)
rb,0 − 1(k)

r · (drr − drb) = ρ
(k)
rb,0 − 1(k)

r · drrb (2.33)

With drrb = drr−drb representing the increment of baseline vector. Similarly, the component

for satellite l can be expressed as:

ρ
(l)
rb = ρ

(l)
rb,0 − 1(l)

r · drrb (2.34)

Then, DD measurements can be formed by the subtraction of SD measurements of two

different satellites, which can be expressed as:

ρ
(kl)
rb = ρ

(k)
rb − ρ

(l)
rb (2.35)
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By substituting Equation (2.33) and (2.34) to Equation (2.35), the following final form of

the linearised DD geometric range can be obtained:

ρ
(kl)
rb = ρ

(kl)
rb,0 − (1(k)

r − 1(l)
r ) · drrb (2.36)

Then, by inserting Equation (2.36) to Equation (2.30) and (2.31) the linear DD measure-

ment equations can be represented as:

y
(kl)
P,rb = −(1(k)

r − 1(l)
r ) · drrb + ε

(kl)
rb (2.37)

y
(kl)
Φ,rb = −(1(k)

r − 1(l)
r ) · drrb +B

(kl)
rb + ϵ

(kl)
rb , (2.38)

The left hand side of Equations (2.37) and (2.38) are the DD prefits of pseudorange and

carrier phase measurement values respectively, which can also be computed as:

y
(kl)
P,rb = P

(kl)
rb − ρ

(kl)
rb,0 (2.39)

y
(kl)
Φ,rb = Φ

(kl)
rb − ρ

(kl)
rb,0 (2.40)

By building up the linear DD equations of pseudorange and carrier phase as presented in

Equation (2.37) and (2.38) for each satellite, the following compact form of navigation filter

can be obtained:

yDD =

 G 0

G λ


 drrb

nDD

+

 εDD

ϵDD

 (2.41)

Where:

• yDD =

 yDD,P

yDD,Φ

 is the vector with all the DD prefit values of pseudorange and

carrier phase measurements concatenated together. Here yDD,P = [y
(12)
P,rb, . . . , y

(1m)
P,rb ]

T

are the DD pseudorange prefit residuals while yDD,Φ = [y
(12)
Φ,rb, . . . , y

(1m)
Φ,rb ]

T are the DD
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carrier phase prefit residuals. Note that typically the reference satellite is chosen as

the one with highest elevation angle, it is here indexed as 1 for simplicity. m is the

total number of satellites and thus the length of this vector is 2(m− 1).

• nDD = [N
(12)
rb , . . . , N

(1m)
rb ]T is the vector of only DD carrier phase integer ambiguities.

Its length is m-1.

• G =


−(1

(1)
r − 1

(2)
r )

...

−(1
(1)
r − 1

(m)
r )

 is the RTK geometry matrix that is composed of the LOS

vector difference between each satellite pair. The matrix size is (m-1, 3).

•

 εDD

ϵDD

 is the vector of DD measurement noise terms for both pseudoranges and

carrier phases, its length is also 2(m− 1).

The next step is to solve the navigation filter presented in Equation (2.41). This can be

done by applying the LSE or a Kalman filter similar to those used in the SPP navigation

filter as described in 2.2.4. If there is only a single epoch of data, as in the case of snapshot

positioning, the LSE based method should be chosen as there are no previous estimates

available. In these scenarios, the SPP positioning solution based on this set of measurements

are computed first. Then, these SPP coordinates are used as an initial guess to estimate

the increment of the baseline vector drrb. Regardless of which method was applied, the

navigation solutions can be obtained with the following form:

x̂ =

 r̂

n̂DD

 ;Qx̂ =

 Qr̂ Qr̂n

QT
r̂n Qn̂

 (2.42)

where:

• x̂ is the estimates of the unknown state vector that includes the baseline vector r̂ =

rrb,0 + d̂rrb and the DD carrier phase ambiguities n̂DD. It is noted that rrb,0 represents
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the baseline vector computed using the initial guess of the rover receiver position and

the known base receiver position.

• Qx̂ represents the covariance matrix of the obtained parameter estimates.

This solution is named as float solution since the integer property of the DD carrier phase

ambiguities nDD has not been explored yet. In this regard, the ambiguities estimated in

Equation (2.42) are called float ambiguities. In order to achieve high accuracy positioning,

the correct integers inside the DD carrier phase measurements must be determined correctly.

Only under such circumstances a so-called fixed solution can be obtained. The details about

such Integer Ambiguity Resolution (IAR) procedure is presented in the following section.

2.2.6 Carrier Phase IAR

The previous discussion reveals how float solutions are generated without considering the

integer constraints of the DD carrier phase ambiguities. This section focuses on how these

carrier phase ambiguities can be fixed to the correct integers. There are mainly two ap-

proaches to solve this issue, the first method is to determine the ambiguity integer for each

satellite pair independently (i.e. one after another separately). In contrast, the second

method is to resolve this integer set all together as a group [31].

2.2.6.1 Satellite Independent IAR

The primary step of the first method is to obtain the so called Carrier Minus Code (CMC)

DD measurements that can be computed based on the subtraction of Equation (2.38) from

Equation (2.37):

y
(kl)
Φ,rb − y

(kl)
P,rb = B

(kl)
rb + εDD,CMC (2.43)

As it can be seen in Equation (2.39) and (2.40), the DD prefit residuals y
(kl)
P,rb and y

(kl)
Φ,rb

are computed by subtracting the same term ρ
(kl)
rb,0 to the DD pseudorange and carrier phase
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measurements, the above equation can then be written as:

Φ
(kl)
rb − P

(kl)
rb = λ ·N (kl)

rb + εDD,CMC (2.44)

The CMC combination completely removes the components related to geometric ranges

from the original measurements and leaving only the DD carrier phase ambiguities and

measurement noise, as shown on the right side of Equation 2.44. However, this removal is

obtained at the price of merging pseudorange noises to the carrier phase ones, which results

in a CMC measurement noise level that can be much larger than one wavelength, which is

around 20 cm. The basic principle for the first method is to divide the CMC measurements

by their wavelengths and then individually round off these values to their nearest integers

as shown in Equation (2.45):

N
(kl)
rb =

[
Φ

(kl)
rb − P

(kl)
rb

λ

]
roundoff

(2.45)

However, the correctness of these integer estimates can not be guaranteed because of the

enlarged magnitude of the CMC measurement noise εDD,CMC . In order to obtain reliable

integers directly using such round-off computations, the error induced by thermal noise

should be less than half of one wavelength. To evaluate the reliability of these rounded

integers, we assume that the standard deviation of pseudorange measurement noise is one

meter for both the rover and base receiver and the noise of carrier phase measurements are

millimeter level that can be ignored compared to that of pseudoranges. For signals in the L1

band, their wavelengths are 19.05 cm. Consider that the pseudorange measurements between

receivers and between satellites are all independent to each other, the standard deviation of

DD pseudorange noise, and thus εDD,CMC , can reach 2 m, which is equivalent to more than

10 cycles of noise in the results computed by Equation (2.45). This is not acceptable for

finding the correct integer in a single epoch.

There are two extra operations that can be applied in order to obtain more reliable integer
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estimates based on Equation (2.45):

1. Reducing the noise level of the CMC measurements based on a smoothing process.

2. Create a virtual wavelength that is larger based on a linear combination of wavelengths

from different frequencies.

The first operation aims at reducing the uncertainty of the numerator part of Equation

(2.45) while the second operation seeks to enlarge the denominator part. The first operation

relies on the fact that carrier phase integer ambiguities remain unchanged as long as the

tracking loops are not interrupted, this indicates that the DD integer ambiguities N
(kl)
rb also

remain as constants if both the base station and rover receivers are locked in nominal tracking

status. This operation, however, requires a collection of measurements across a wide time

span since they are highly correlated over time. While traditional receivers adopting the

close-loop architecture can perform a moving average of all the measurements collected in

the designed time window, this operation is not applicable to snapshot receivers due to the

nature of short duration of signal recordings.

The second operation explores the linear relationships between the wavelengths of differ-

ent carrier frequencies. In this process, a virtual wavelength and the corresponding virtual

measurements containing integer numbers of such new wavelengths are constructed based on

original measurements collected from at least two different GNSS carrier frequencies [31, 32].

The Wide Lane (WL) combination [33] is the most commonly used operation for building

such measurements with enlarged wavelengths. Such combination was initially constructed

based on measurements of L1 and L2 frequency bands. With the availability of the new

signals transmitted on L5 band, there are more similar linear combinations that can be

built, such as the Extra Wide Lane (EWL) combination that explores the linear relationship

between signals from L2 and L5 bands. The ambiguity integers of these combined mea-

surements are fixed one after another following a cascading architecture and finally lead to

the resolution of all the individual carrier phase measurements [34]. When measurements
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from more than two frequencies are used for IAR, this technique is named as Three Carrier

Ambiguity Resolution (TCAR) or Multiple Carrier Ambiguity Resolution (MCAR) [35, 36].

More details about the comparison of these methods are described in [37].

There are some drawbacks of this method as it intends to achieve IAR for each satellite

based on measurement from the chosen satellite only. The main disadvantage is that it

typically takes a long duration of signal recording before the correct ambiguity integers can

be found for each satellite pair and thus yield a high accuracy solution. Despite the linear

combinations of measurements from multiple frequencies can alleviate this issue, it requires

the receiver to be capable of processing signals from these frequency bands, which implies

the upgrades of antennas, receiver hardware and software. In order to avoid the long waiting

times, a different approach is presented in the following subsection.

2.2.6.2 Collective IAR: LAMBDA

The main purpose of resolving the ambiguity integers in the DD carrier phase measurements

is to obtain a high accuracy estimate of the baseline vector, since they are estimated jointly

as shown in Equation (2.41). As mentioned before, m−1 carrier phase DD measurements can

be constructed based on the m satellites that are available. Together with the 3 unknowns

included in the baseline vector, it totals m + 2 unknowns to be estimated. This is without

considering the fact that only 3 of these unknowns are actually independent. For example, if

3 DD carrier phase integers are known, then an accurate baseline solution can be computed

based on the 3 unambiguous but precise carrier phase measurements, which can then be

used to deduce all the rest of the ambiguity integers. Similarly, if the 3 baseline parameters

are known, then all the m− 1 integers can be deduced as well [31].

This implies that there is a correlation among integer unknowns from all the satellite

pairs, which has not been taken into account in the previous methods, since all these integers

are estimated separately. In fact, with more than 4 satellites available, we can build up an

over-determined navigation filter with redundant measurements. That is, the number of
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DD carrier phase measurements is greater than the number of independent unknowns of the

system.

Based on this property, IAR methods were developed by counting on all the available

measurements together and the integer ambiguities are solved jointly as a set. These methods

basically are based on solving Equation (2.41) using the Integer Least Squares (ILS) method.

The main issue about ILS is that, as pointed out in [38], it typically does not have a closed

form analytical solution. To tackle this issue, an integer search procedure with the aim of

finding the minimum sum of squared residuals is typically used. This has inspired some of

the most commonly used methods, including the Fast Ambiguity Search Filtering (FASF)

method [39, 40], the Fast Ambiguity Resolution Approach (FARA) [41], the null space

method [42], the Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) [43], etc.

Among all the methods mentioned above, the LAMBDA method was proved to perform

with highest efficiency [42, 37, 44]. The complete LAMBDA method can be generally divided

into the following 4 steps [45]:

1. Obtain float solution. This step is already explained in section 2.2.5 as it is performed

by a typical WLS without considering the integer properties of the DD ambiguity

terms. The resulting float solutions, including the estimates of the unknowns and

covariance matrix of these parameters, are expressed in Equation (2.42).

2. Integer estimation. This step aims at finding an optimal set of integers based on the

float solutions according to a designed criteria.

3. Acceptance test. This is an optional step that decides whether or not to accept the

integer solution computed in the previous step.

4. Obtain fixed solution. With the update from real-valued float ambiguities to the actual

integer ambiguities, an update on the baseline solution is also performed correspond-

ingly to obtain the final high accuracy positioning results.
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The DD carrier phase ambiguities n̂DD in the float solution obtained after step 1 usually

contain large uncertainties, usually up to tens of cycles, due to the inclusion of the less

accurate pseudorange measurements in navigation filter as presented in Equation (2.41).

Besides, there is a high correlation among these DD ambiguity parameters since the same

reference satellite is used in their computation. These properties can be observed in their

covariance matrix Qn̂.

The key of the LAMBDA method is at step 2, where a decorrelation process is applied

to the ambiguity parameters and then the set of integers is selected by the chosen strategy.

There are different strategies that can be used in the search process, including the Integer

Rounding (IR), Integer Bootstrapping (IB) and the ILS. IR and IB will not be discussed fur-

ther due to their inferior efficiency. As for ILS, the main principle is based on the evaluation

of the so-called closeness factor, which can be computed by:

C = (n− n̂)TQ−1
n̂ (n− n̂) (2.46)

where the vector n is a candidate set composed of integers for each DD carrier phase mea-

surement, it can be seen as the coordinates of a grid point in a m − 1 dimensional space.

Note that for simplicity, the float solution n̂DD is expressed as n̂ by omitting the DD sub-

script. Due to the high correlation among the ambiguities, a constant closeness factor C will

lead to a very elongated ellipsoid in the parameter space, that is, the number of possible

candidates that we should search on in one direction is much larger than the other direction.

This has a negative impact on the search efficiency as a lot of integer candidates need to

be put into consideration. The decorrelation process is applied to alleviate this issue by a

re-parametrization step. That is, instead of estimating the original ambiguity integers, we

estimate another set of integers that can be transformed from the original integers but with

much less correlation among the parameters, so that we can largely reduce the search space

and increase computation efficiency. After the optimal integers for the new parameters are
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identified, they are inverted back to the original parameters by a inverse transformation.

The transformation matrix Z must satisfy the following requirements:

• Z must be composed of integers so that for any integer vector entry, the results are

integers as well.

• Z must be invertible.

• Z−1 must have integer entries as well to ensure that the inverted parameters remain

as integers.

The transformation process of the integer candidate vector n and the float ambiguities n̂

can be expressed as:

z = Zn, ẑ = Zn̂ (2.47)

where z and ẑ are the re-parametrization results of the integer candidate and the float

ambiguities. The covariance of the new parameters resulted from float ambiguities can be

computed as:

Qẑ = ZQn̂Z
T (2.48)

The objective of the decorrelation process is to obtain new parameters that are totally

uncorrelated, which means Qẑ should be a diagonal matrix. However, in practice, a perfect

decorrelation is not possible because the Z matrix must satisfy the constraints of having

only integer entries. Despite this obstacle, [44, 46] put more details about the process of

obtaining the Z matrix that drives Qẑ to be as near diagonal as possible. Based on the

above transformation, the closeness factor for any z vector candidate can be now computed

by:

Cẑ(z) = (z− ẑ)TQ−1
ẑ (z− ẑ) (2.49)

Then, an evaluation process should be performed discretely for all the possible z vector
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candidates in a search space that is defined by:

(z− ẑ)TQ−1
ẑ (z− ẑ) ≤ χ2 (2.50)

where χ2 is the constant that controls the volume of the search space. This value should be

large enough to ensure the inclusion of the actual integer grid point in the search space, but

at the meanwhile should be as small as possible to reduce the number of candidates in order

to have a high computation efficiency. More details about the selection of the χ2 value and

analysis about the search volume can be found in [47, 48]. By searching through all these

candidates, the one that returns the smallest closeness factor is picked out and appointed as

the potential final integer solution.

Usually an acceptance test is also implemented in order to verify if the integer set obtained

in the search process could be trusted. This test improves the reliability of the IAR process

and brings more confidence to the final baseline solution [49]. Numerous different acceptance

test approaches have been proposed in previous researches, including the difference test [50],

the projector test [51], and the most commonly use ratio test [52, 53]. The ratio test is based

on the computation of the ratio between the closeness factor of the second best integer set

and that of the best integer set, which can be expressed by:

R =
Cẑ(z

′)

Cẑ(z)
=

(z′ − ẑ)TQ−1
ẑ (z′ − ẑ)

(z− ẑ)TQ−1
ẑ (z− ẑ)

(2.51)

where z′ is the second best integers set obtained from the search process. The resulting ratio

R is named as the LAMBDA Ratio Factor (LRF) and by comparing them with a predefined

threshold value, we can decide whether or not the best integer set should be accepted.

Once the best set of re-parameterized integers passes the ratio test, they are transformed

back to obtain the original integer vector ň by the Z−1 matrix. They are then used to derive



TRADITIONAL GNSS TECHNIQUES 50

the final high accuracy baseline solution by:

ř = r̂−Qr̂n̂Q
−1
n̂ (n̂− ň) (2.52)

It must be pointed out that the threshold value R used in the ratio test is usually

determined based on previous experiences, it is very popular to set this value to 2.5 or 3 in

typical RTK processing [54]. However, there is a major problem of setting the threshold R

to a constant value, depending on the model strength and the measurement qualities, either

the false alarm rate or the failure rate can be unacceptably large [52].

A method based on a fixed failure rate was developed to tackle this issue [52, 55]. The

threshold value in this method is determined by referring to a lookup table that was previ-

ously generated based on analysis of a large amount of data. Such lookup table depends on

the model strength, i.e., number of ambiguities, frequencies, constellations, and noise level,

etc., A tailor-made lookup table can be created by each user with their specific receivers in

use, which could be applicable to snapshot positioning.

2.2.6.3 Summary

Although two approaches of achieving IAR were explained above, most of the time only the

second method is used due to its high efficiency and reliability. Especially for the scenarios

where only a short period of measurements is available and an instant IAR is desired, such

as in the cases of snapshot positioning. In this dissertation, only the LAMBDA method is

applied in the IAR process of the following high accuracy data processing.

2.2.7 PPP

PPP is another approach to obtain high accuracy positioning solutions by processing both

the pseudorange and carrier phase measurements altogether. Different from RTK, PPP

does not require real-time data streams of observables coming from nearby base stations
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or any Virtual Reference Station (VRS) networks. In contrast, PPP requires orbit and

clock correction parameters in real-time. As it can be expected, no DD measurements are

computed and the error terms in the original observables have to be removed individually

with the help of other products and models with the so-called State Space Representation

(SSR). Typically, the following conditions should be satisfied in order to implement the PPP

algorithm:

• Access to precise estimates of GNSS satellites orbits and clock errors. Those are usually

computed in an external data processing center using raw data collected from stations

distributed all over the world, thus these data is valid for all users globally.

• Measurements from at least two frequencies are required in order to have the capability

to remove the ionospheric delay.

• The other error terms in Equation (2.9) and (2.27) should be modelled with accuracy

at the centimeter level. Then, they can be either removed by an approximation or

estimated as part of the unknowns by exploiting the model details. Particularly, some

error terms that are usually neglected in SPP should be taken into consideration [2],

such as the carrier phase windup effect, Antenna Phase Center (APC) variations, tidal

motions on earth, the wet troposphere residual.

• A long period of data collection and processing is needed in order to decorrelate (i.e.

separate) the ambiguity terms, which are treated as real-valued numbers, from other

unknowns such as the receiver position, receiver clock and troposphere parameters. It

can take up to one hour for the positioning solution to converge to decimeter/centimeter

level with a single constellation [56], although this time can be slightly shortened by

processing multiple GNSS constellations.

Although being a high accuracy positioning technique, the long convergence time of PPP

has limited its application in many fields. It is especially contrary to the purpose of snapshot



TRADITIONAL GNSS TECHNIQUES 52

positioning, which is designed to function with extremely short periods of data collection.

Therefore, PPP technique is not further discussed as this dissertation focuses on snapshot

positioning.

2.2.8 PPP-RTK

Section 2.2.5 presented the details of the RTK technique that depends upon the contin-

uous input of GNSS measurements from a nearby reference station, whereas section 2.2.7

mentioned that PPP relies on external correction data in order to have precise models of

measurement errors. A hybridisation of these two techniques, named as PPP-RTK, was

first introduced in [57] in order to integrate the benefits from the two sides and limit their

drawbacks as much as possible.

To better understand PPP-RTK, it is worth first analyzing what are the main drawbacks

for RTK and PPP. The main disadvantage for RTK is the necessity of a data stream from

another receiver that is constantly available and located not too far from the user receiver

(typically less than few tens of kilometers). Besides, the RTK correction data stream pro-

duced by the reference receiver contains the rapidly changing pseudoranges and carrier phase

measurements, this can cause a huge burden on the server and transmitter side due to the

high bandwidth demand for data communication. These constraints have limited the users

to adopt the RTK technique only in local regions such as around cities or smart farms. As for

PPP, the biggest drawbacks are the long convergence time and the requirement of tracking

two frequencies. The latter, complicates the hardware, including the antenna and front-end

module.

The navigation filter of the PPP-RTK technique was developed mainly on the basis of

PPP in the sense that only undifferenced measurements are used and the error terms are

removed individually [57, 58]. In other words, both PPP and PPP-RTK utilise State Space

Representation (SSR) that broadcast a single stream containing separated error components

for all user receivers. Its main difference from standard PPP is that the error parameters are
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generated based on signals collected by a finer distributed Continuously Operating Reference

Station (CORS), similar to that of RTK. There are also more types of parameters in the PPP-

RTK products, such as the precise ionosphere parameters, which enables this technique to

be used for single-frequency receivers as well, and the Uncalibrated Phase Delay (UPD) (also

named as phase bias) parameters, which allows cancelling the fractional part of the carrier

phase ambiguity terms and lead to a possible IAR with undifferenced measurements [59]. In

contrast, RTK adopts the Observable Space Representation (OSR) strategy where all error

terms are cancelled out together as the transmitted code and carrier phase measurements

data contains the lump sum of all these error terms.

2.2.9 AGNSS

As mentioned in section 2.2.3, traditional GNSS positioning engine requires the decoding of

navigation message symbols that are modulated in the collected signal. Especially the bits

that contain the information of signal transmission time and satellite and orbit parameters

that are necessary for the computation of satellite positions. However, this implies a long

waiting time since these navigation data are transmitted at a low bit rate.

For example, the GPS L1 C/A signal carries the navigation message with a bit rate of

50 Hz. A full frame lasts 30 seconds and include 5 subframes that each last 6 ms. Even

in the most optimistic scenario, where the first 3 subframes that contain the satellite clock

and ephemeris data are received first, it still takes at least 18 seconds of data collection. In

contrast, worse scenario arises in practice when the signal strength is weak and the error

rate increases in the demodulation process, resulting in an even longer waiting time. This

certainly does not lead to a satisfying TTFF estimate.

Assisted GNSS (AGNSS) was developed in order to tackle this issue. This technique relies

on the assistance data that is obtained from external resources, typically a communication

module is required and the data are collected from internet. A very successful application

of this technique is the smartphone positioning, where a mobile communication module is
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Figure 2.7: Reduced acquisition search space based on AGNSS

present by default and retrieves assistance data that are later fed to the GNSS module of

the device.

Besides the satellite ephemeris and clock parameters, the assistance data should include

other information such as Ionosphere correction parameters, rough knowledge about signal

user position and time as well. With these data available, the AGNSS technique improves

the receiver performance in the following ways:

• Reducing the search space. The knowledge about time and receiver position pro-

vides a rough estimate about the transmission time and thus the code phase of the

received signal. Similarly, the Doppler frequency offset can be roughly estimated based

on the computation of satellite motion using the information available in the assistance

data. These coarse information accelerate the acquisition process by removing the pa-

rameter candidates that do not fall in the region of the rough estimates. As illustrated

in 2.7, only a portion of the whole search space is considered and thus the time required

for computation is reduced.

• Preventing data demodulation. Since the necessary navigation data is already

obtained through the communication module, there is no need to wait for the demod-
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ulation process. As long as the raw measurements are generated, the navigation filter

can start processing them directly.



Chapter 3

Snapshot GNSS Techniques

In recent years, snapshot positioning technique have attracted great attention in the GNSS

community [21, 60, 61] thanks to its advantages of lower cost and lower power consumption

compared to conventional GNSS receivers. Section 1.2 mentioned that only a very brief

interval of the received satellite signal is used for snapshot positioning [6]. This has intro-

duced some technical difficulties in the implementation of such snapshot positioning. In

terms of the overall workflow, both the baseband processing and PVT computation func-

tional blocks require a special design tailored to the short duration of collected snapshot

signals. For the baseband signal processing block, contrary to traditional close loop sequen-

tial signal processing workflow, snapshot positioning follows the open-loop batch processing

architecture. Although received less attention from the GNSS community, the open-loop

architecture shows advantages in several aspects [17], especially in the capability to quickly

generate GNSS observables. As for the PVT computation module, extra steps are required

to ensure that complete measurements are successfully generated. In particular, the naviga-

tion filter is essentially different from the traditional ones due to the fact that only coarse

time information is available.

The overall workflow of snapshot GNSS positioning is illustrated in Figure 3.1. It starts

with the GNSS signals being captured by the antenna connected to the snapshot receiver

hardware. This part is equivalent to the RF front end of traditional receivers and converts

the analog signals to digital bits that are down converted to the baseband. The resulting

56
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Figure 3.1: Overall workflow of conventional snapshot positioning

digital bits are then fed to the assisted acquisition module and the estimates of code phase

and Doppler offset of the current snapshot signal are generated with the help of assistance

data. Such assistance data are further used in the snapshot navigation filter to compute the

PVT solution based on the estimates obtained from the acquisition module.

The remaining part of this chapter provides an insight about the typical techniques

used for snapshot positioning. Section 3.1 introduces the details of the baseband signal

processing module designed for snapshot data. The resulting snapshot measurements and

related parameters are described in section 3.2. Sections 3.3 and 3.4 provide further details

about the snapshot PVT computation module. The former describes the solution to the

full period ambiguity issue, which is typically faced by receivers employing an open-loop

architecture. The latter outlines the Coarse Time Filter (CTF) that is typically applied to

measurements without accurate time tags, i.e., when TOW information is not precise enough.

Note that this chapter focuses on conventional snapshot position techniques targeting meter-

level accuracy. The more innovative algorithms about high accuracy snapshot positioning

are provided in chapter 4 and 5.
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3.1 Baseband Processing

The baseband processing module based on an open-loop architecture typically applies an as-

sisted Multi Hypothesis (MH) acquisition process, without further deploying a signal tracking

step. As its name suggests, this acquisition step differs from the traditional acquisition steps

in the following characteristics:

• The acquisition search space is reduced with the extensive use of assistance data,

including the coarse time and position information, as mentioned in section 2.2.9.

• The acquisition process makes multiple hypotheses about the data symbols that are

encoded in the received signal in order to ensure the maximum energy in the CAF

results.

• Carrier phase estimates are computed along with the code phase, in case they are

required by the following PVT computation module.

Section 2.2.1 introduced the mathematical details applied in traditional acquisition mod-

ules. However, the previous discussion does not take into consideration the bit transitions

that could happen in the middle of the signal that is used in the correlation operation. This

situation happens due to the existence of the navigation data bits di in the collected signal,

as represented in Equation (2.1). These data bits could experience sign changes and they

usually last longer than the PRN code (also known as the primary code) period. For exam-

ple, GPS L1 C/A signal contains navigation data that spans over 20 ms for each bit, while

its PRN code period is just 1 ms. This ensures that there is always a sequence of at least 10

PRN code periods free from bit sign transitions [62].

The total integration time used in the correlation operation can be represented by the

multiplication of the coherent integration time tcoh and the non-coherent integration factor

Nnc. When the receivers experience a harsh environment with, for instance, severe obstruc-

tion of signal, the receiver should be capable of acquiring the signals with high sensitivity.
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In order to achieve high sensitivity, relatively long duration of signal should be used, which

implies greater tcoh and Nnc.

The coherent integration is the ideal correlation that makes use of all the data in the

duration of tcoh with 100% gain efficiency [63]. The correlation result of coherent integration

is represented in Equation (2.4) by the complex number Y (τ, FD). It contains the correlation

energy computed as Y 2
I (τ, FD) + Y 2

Q (τ, FD), which was also used for the detection of the

satellites in Equation (2.5).

The non coherent integration sums such correlation energy magnitude computed for all

the Nnc pieces of coherently integrated signals. This way of processing is introduced mainly

in order to reduce the impact of possible bit transitions occurring in the middle of the total

integration time. It also helps to reduce the negative influences of potential mismatches of

Doppler frequency [63, 64]. The settings of tcoh and Nnc are the design parameters that can

be controlled by the receiver manufacturers. For snapshot receivers that usually have very

limited total length of signal collection, it is important to efficiently use all the available

data.

This dissertation tackles the algorithmic challenges faced by acquisition with fully coher-

ent integration. The longer the coherent integration time, the higher sensitivity is possible

and ultimately achieving a better positioning performance. This choice of adopting fully

coherent integration also indicates that Nnc = 1 and tcoh is identical to the total snapshot

length that is used for acquisition. Even though the non-coherent strategy is also applicable

for snapshot positioning, it will not be further discussed.

The main challenge of extending the coherent integration time is the existence of the

navigation data bits or secondary code symbols. It is recalled that these bits and symbols

are not yet known for the receiver at the time of signal reception, unless provided by some

external assistance services, such as the one mentioned in [65]. In order to tackle this

challenge, the MH acquisition technique was developed. This method modifies the local

replicas by multiplying the PRN sequence with a set of designed data symbols and results
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in the following CAF computation equation:

YI (τ, FD) =
1

N

N−1∑
n=0

r[n] cos (2πFDn) c[n− τ ]d[n− τ ]

YQ (τ, FD) =
1

N

N−1∑
n=0

r[n] sin (2πFDn) c[n− τ ]d[n− τ ].

(3.1)

Where d[n− τ ] represents the designed data symbols based on a hypothesis of the actually

encoded values. Depending on the length of the integration time and the duration of one bit

and one symbol, the total number of hypotheses Nhyp also varies.

Regarding the construction of all these hypotheses of data symbols, there are two sce-

narios that should be considered differently depending on the structure of the GNSS signals.

The first case is for the signals with encoded navigation messages, whose data bits are gener-

ally unknown at the snapshot acquisition stage, unless provided by some external assistance

services [65]. This type of signals are named as the data signals in this dissertation. The

second case is for the pilot signals that do not contain navigation messages. However, these

more modern signals usually apply a secondary code sequence above the primary codes and

the exact sequence of such secondary codes are known beforehand as they are defined in

their ICDs. The construction of hypotheses of d[n− τ ] for these two scenarios are discussed

in the following two subsections, respectively.

3.1.1 Data Signals

Due to the fact that navigation messages are generally unknown when no related assistance

is provided, the MH acquisition module has to blindly generate all the possible hypotheses

that could be encountered. That is, all the possible data bits combinations that could have

been modulated to the received signal should be taken into consideration.

An illustrative example for this scenario can be generated with the popular GPS L1

C/A signal. Figure 3.2 shows the actual data bit values of GPS L1 C/A signal for a 20 ms
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Figure 3.2: Example of actual encoded data bits of GPS L1 C/A signal for a 20 ms snapshot
signal. Blue boxes represent bits of 0 and the pink boxes represent bits of 1.

snapshot. In the upper panel, the blue boxes represent bits of 0 and the pink boxes represent

bits of 1, each of these bits has a duration of 20 ms, as depicted by the length of these boxes.

In the lower panel, the region near the received signal is shown with more details, with each

data bit represented by 20 symbols that each lasts 1 ms. Each symbol is represented by a

box that covers a whole primary code period and the numbers inside the box are the index

of the symbols counted from the start of the current bit.

The total number of encoded data bits Nb that needs to be considered can be computed

by:

Nb = ceil

{
tcoh
Tb

}
+ 1 (3.2)

Where Tb represents the duration of one data bit. For the example shown in Figure 3.2,

tcoh = 20 ms as we assume that the snapshot acquisition module runs in fully coherent

mode. As a result there are a total of 2 bits that should be considered. This is shown in

the green area of Figure 3.2, in which the received snapshot signal indeed spans over 2 bits

that are encoded by [1, 0]. Note that the computation shown in Equation (3.2) includes an

addition of 1, this is in order to guarantee that the whole duration of the collected signal

can be correlated properly.

For a sequence with Nb bits, a total of 2
Nb combinations of data bits are possible to appear

in the signal within the considered correlation time. For the example shown in Figure 3.2,
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besides the correct combination of [1, 0], 3 other combinations could also have been made

as [1, 1], [0, 1], [0, 0]. Regarding the construction of hypotheses, two properties about the

data bits must be pointed out first:

• The duration of one data bit is always an integer number of times the duration of one

primary code period. The ratio between them is denoted as Nr. For example, Nr = 20

for GPS L1 C/A signal.

• The edges of the encoded data bits are also well aligned to the primary code edges.

That is, the beginning of any data bit is always synchronised to a PRN code edge.

For these reasons, the hypotheses can be made for each symbol that has a duration of

one primary code period. This means that each data bit combination should be represented

by a longer sequence of symbols that has a unit length of one primary code period, similar

to that shown in the lower panel of Figure 3.2. For the correct data bit combination of this

example, i.e., [1, 0], there are 20 hypotheses that can be made since the bit transition from 1

(pink box) to 0 (blue box) can happen at any of the PRN code edges. The assigned symbols

for the v-th code period under the u-th hypothesis can be represented by Equation (3.3):

H(u)
v =

 1, v ≤ u

0, v > u
. (3.3)

All the hypotheses of symbols for this example with the [1, 0] combination are listed in

Figure 3.3. Similarly, the wrong data bit combination of [0, 1] will result in the hypotheses

results of:

H(u)
v =

 0, v ≤ u

1, v > u
. (3.4)

The combinations of [0, 0] and [1, 1] will result in hypotheses represented by H
(u)
v = 0 and

H
(u)
v = 1 respectively. They have simpler expressions as there is no bit transition during

the entire correlation time under these two combinations. These expressions are concluded
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Figure 3.3: Hypotheses of data bit symbols based on the [1, 0] bit combination for a 20 ms
snapshot GPS L1 C/A signal

Table 3.1: Hypotheses expressions and indices of different bit combinations for the example
of 20 ms GPS L1 C/A snapshot signal.

Bit combination Hypotheses expression Hypotheses indices range

[1, 0] H
(u)
v =

{
1, v ≤ u
0, v > u

. 1∼20

[0, 1] H
(u)
v =

{
0, v ≤ u
1, v > u

. 21∼40

[0, 0] H
(u)
v = 0 41∼60

[1, 1] H
(u)
v = 1 61∼80

altogether in Table 3.1.

The total number of hypotheses now can be computed by:

Nhyp = 2Nb ·Nr (3.5)

For the case of the explanatory example, Nhyp = 22 · 20 = 80. The Hypothesis Index (HI)

ranges for all the combinations are also listed in Table 3.1. Note that for the combinations

where bit transitions are absent, the data symbols under all the hypotheses of such combi-

nation are identical. For example, the data symbols for the combination [0, 0] are always a

series of 0s, no matter the HI value, the same goes for the [1, 1] combination. In practice,

a single hypothesis is enough for each of such combinations, instead of 20, thus resulting in

the total number of hypotheses to be less than 80 (42 for this example as the 4 ). However,
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in this dissertation, it is decided to keep the consistency of assigning Nr hypotheses for each

combination, this results in a simple conversion from HI to the u index value, which can be

expressed as:

u = HI mod Nr (3.6)

As it can be seen, u is the module-Nr result of the HI value.

In general, the expression of the assigned data bits H
(u)
v can become more complicated

when longer integration times are considered. This is due to the fact that multiple bit

transitions can, and likely will, take place for integration times longer than one single bit

period. The total number of hypotheses Nhyp correspondingly grows in such scenarios.

With all the hypotheses about the encoded symbols been made, the CAF of snapshot

signals with 20 ms of coherent integration time can be represented as:

YI(τ, FD, u) =
20∑
v=1

H(u)
v · YIv (τ, FD) ,

YQ(τ, FD, u) =
20∑
v=1

H(u)
v · YQv (τ, FD) .

(3.7)

Where YIv and YQv are respectively the In-phase and Quadrature components of CAF for

one primary code period as computed by Equation (2.3).

Similar to the traditional acquisition modules, by searching for the maximum magnitude

of the CAF, the optimal code phase and Doppler offset parameters can be determined. The

main difference of MH acquisition is that the optimal HI of encoded symbols is also detected.

It is possible that there are more than one hypothesis that can lead to the CAF peak magni-

tude, this will be further explained in the following chapters. Besides, an interpolation step

needs to be implemented for both the code phase and Doppler offset in order to obtain suffi-

ciently precise measurements for the navigation filter [17], this results in the final estimates

of code phase (τ̂) and Doppler shift (F̂D). In addition, although not needed for conventional

snapshot positioning, the carrier phase at the beginning of the collected signal under the
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optimal hypothesis can be computed by the following equation based on these interpolated

code phase and Doppler offset estimates:

φ̂ = arctan

(
YQ(τ̂ , F̂D, u)

YI(τ̂ , F̂D, u)

)
. (3.8)

3.1.2 Pilot Signals

Pilot signals do not contain navigation messages bits as the data signals that are mentioned

in section 3.1.1. This effectively simplifies the process of construction of symbol hypotheses.

However, the secondary codes that are usually encoded on top of the PRN codes should be

considered. The construction of hypotheses about such secondary codes can be treated in

the same manner as for the navigation data bits mentioned in the previous subsection. The

main difference is that the exact sequence of the complete secondary code symbols is already

known in advance, as they are defined in the ICD documents of the GNSS constellations.

This implies that as long as the transmission time of the signal is known, all the corresponding

secondary code symbols can be deduced. In addition, as it can be seen in Table 2.1, the

duration of one secondary code symbol is equal to one full primary code period. This

allows reducing the number of hypotheses and the corresponding computation workload.

This approach consists of making hypotheses based on the position of the secondary code

symbols over which the recorded signal started, i.e., the Secondary Code Index (SCI). With

the hypothetical SCI and the total duration of the signal, all the corresponding symbols can

be deduced.

Figure 3.4 shows an example of the possible secondary code symbols modulated in Galileo

E1C signal for a 20 ms snapshot. The square boxes represent the 25 symbols of a full

secondary code sequence, among which the shaded ones represent the symbols of ones and

the blank ones represent symbols of zeros. The numbers inside these boxes show their

corresponding SCI values. The collected snapshot signal, whose span is represented by the

green box, starts from the box with SCI equal to 9. Similar to the cases for data signals, the
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Figure 3.4: Example of secondary code symbols of Galileo E1C signal for a 20 ms snapshot
signal, the shaded boxes represent the symbols of ones and the blank ones represent symbols
of zeros. The numbers inside these boxes show their corresponding SCI values.

number of symbols required can be computed based on Equation 3.9.

NS = ceil

{
tcoh
TS

}
+ 1 (3.9)

where TS is the duration of one secondary code symbol. For this example, NS = 6 is

required for the 20 ms of coherent integration time since the secondary code symbol lasts 4

ms for Galileo E1C signal. With the a priori knowledge that the CS251 code is applied, the

actual symbols for the whole snapshot duration can be deduced as [0, 0, 0, 0, 1, 0]. When

attempting to acquire this signal, a total of 2NS = 64 hypotheses are supposed to be made if

conventional method of enumerating all possible sign combinations is applied [66], just as in

the data signal scenarios. However, by exploiting the fact that it is a pilot signal with known

secondary code sequence, only 25 hypotheses are needed and each hypothesis corresponds

to a unique SCI value. The total number of hypotheses based on this new approach is

equivalent to the secondary code length NSC .

For signals with extremely long secondary code sequences, such as the BDS B1C signal,

which contains 1800 symbols and lasts 18 seconds, it is possible to truncate this sequence

to shorter ones located near the rough transmission time that can be obtained with the

assistance of the coarse time information. For that, we need to ensure that the actual

secondary code symbols are fully comprised within this truncated sequence by setting a

proper window size (e.g., 200 ms).

After computing the correlations for all the SCI hypotheses in the MH acquisition process,
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Figure 3.5: Three-dimensional search space of MH acquisition for snapshot signals.

CAF results with 3 dimensions are obtained, representing code phase, Doppler shift and the

SCI value respectively, as illustrated in Figure 3.5. It results in a multi-layer structure due

to the discrete integer SCI values. A search and detect procedure is implemented in order to

find the best estimates of the parameters. Note that a local CAF energy peak can be found

within each layer, but since the wrong SCI values most of the time lead to wrong encoded

symbols, only the ones that have the maximum energy (shown in green) among all layers

lead to the final acquisition output. It should be pointed out that when the snapshot signal

length is relatively short, it it possible that the maximum CAF energy exist in more than

one layer, as their magnitudes are identical. This problem is referred to as the Data Bit

Ambiguity (DBA) issue and will be discussed with more details in Chapter 5.
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3.2 Snapshot Measurements

Snapshot Measurements are the results obtained based on the search of maximum CAF

magnitude computed in the MH acquisition process aforementioned in section 3.1. There

are mainly the following 4 types of measurements that can be generated from snapshot

signals:

• code phase τ . Code phase is the principle measurement required to compute the user

PVT in the navigation engine. These code phase values are fractions of one code period

that essentially show the time difference between the epoch when the received signal

is transmitted and the starting epoch of the code period in which the transmission

epoch locates. These fractional values greatly differ from the typical pseudorange

measurements generated by traditional receivers based on close-loop architecture, as

presented in Section 2.2.3. These differences will be further discussed in Section 3.3.

• Doppler Offset FD. The Doppler offset is originated from the receiver to satellite

relative motion, and the estimated frequency shift accounts also for the receiver clock

drift.

• Carrier phase ϕ. Contrary to the traditional GNSS receivers that generate the carrier

phase measurements based on continuous accumulation of cycles of the local oscillator,

snapshot carrier phase measurements are fractional values of one full cycle that is

computed based on Equation (2.6).

• u index. The hypotheses constructed using the approaches mentioned in section 3.1.1

and 3.1.2 lead to different CAF magnitudes. The identification of the maximum mag-

nitude leads to the correct HIs. For data signals, the u value is computed based on

these HIs with Equation (3.6), whereas for pilot signals this refers to the SCI value.

An important remark is that the first three measurements (τ , FD and ϕ) are not accu-

rately time-tagged since there is no accurate information about absolute timing at the stage
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when the GNSS signals are received by the snapshot receiver. Besides, it is not possible

for the local clock to be synchronised with the satellite clock in such a short time. In con-

trast, measurements generated by traditional receivers are time-tagged with a nanosecond

accuracy.

For snapshot receivers that are being developed nowadays, only the code phase and

Doppler offset measurements are used for positioning. This limits the resulting accuracy to

the meter level accuracy. The other two types of measurements (ϕ and u) mainly concern the

potential high accuracy algorithms. In the present dissertation, a data group including all

of these 4 parameters is defined as a ‘set’ of snapshot measurements. For each satellite, the

MH acquisition process may result in several sets of measurements, each set corresponds to

the results under a certain HI, even though their code phase and Doppler offset parameters

are identical.

3.3 Full Period Ambiguity

Traditional GNSS receivers compute full pseudorange measurements based on Equation (2.8)

within Section 2.2.3. The receiver time trx is a value generated by the local clock and it

contains a common clock bias (i.e. an offset) that is estimated in the navigation filter. This

means that even if the pseudoranges are computed with a trx value that is inaccurate, the

navigation filter can still obtain an accurate positioning solution while fixing this receiver time

inaccuracy. In fact, it is the signal transmission time ttr that is critical in order to generate

valid pseudoranges. However, these transmission times are obtained for traditional receivers

in the processes of bit synchronisation, frame synchronisation and navigation message data

decoding, which are not available for snapshot signal due to their short duration.

Section 3.2 mentioned that the code phase measurements obtained from the MH ac-

quisition results are only the fractional values. In order to be used for positioning, each

of these fractional values need to be specially compensated in order to retrieve the pseudo
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Figure 3.6: Illustration of relationship between code phase and code delay, t[tr], τ , τ
′ and

Tc respectively represent the satellite transmission time, code phase, code delay and the
primary code period.

distance between the user receiver and each different satellite, that is, to generate the full

pseudoranges for each satellite.

For the convenience of the following computations, the code delay parameter τ ′ is defined

as the remaining part of one primary code period after the code phase τ , as illustrated in

Figure 3.6. The part shaded in green represents the first code period length of the collected

signal that is transmitted at ttr. Each full primary code period is bounded by a red box

and as it can be seen, the code phase at transmission time ttr is τ . Whenever the code

phase is estimated during the acquisition process, the code delay can be directly obtained

by Tc − τ , with Tc representing the duration of the primary code. For instance, if the code

delay of a GPS L1 C/A signal is estimated as τ = 0.3 ms, then the corresponding code delay

τ ′ = 0.7 ms since the primary code period Tc = 1 ms.

The GNSS ICD defines that the primary code edges are well aligned with the system time

scale. This implies that for any transmission time ttr, the code phase τ can be determined

by computing its remainder to the primary code period Tc, following the relationship:

t
(k)
tr = τ (k) +X(k)

c · Tc (3.10)

where X
(k)
c is an integer that corresponds to the transmission time and k stands for the
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satellite index. In the present dissertation, the GPS time is applied as the default time scale,

and to represent any specific epoch in time, a tuple of Week number (Wn) and TOW is used.

Similarly, any receiver time can be modelled by:

trx = τr + Yc · Tc (3.11)

where Yc is an integer that corresponds to the receiver time and τr is the fractional part of

the chosen time. As mentioned before, the selection of the receiver time does not impact the

accuracy of PVT computation. Hence, the trx values can be chosen at the edge of the primary

codes so that τr is equal to zero and thus simplifies the following calculation. According to

Equation (2.8), the full pseudoranges of satellite k can be computed as:

P (k) = c · (trx − t
(k)
tr ) = c · (τ ′(k) +N (k)

c · Tc) (3.12)

Where τ ′(k) is the code delay for satellite k and N
(k)
c is defined as the full period integer:

N (k)
c = Yc −X(k)

c − 1 (3.13)

that sums up all the integer parts from Equations (3.10) and (3.11).

The new expression of Equation (3.12) shows that for each satellite, there is an integer

number of full code periods that should be estimated in order to obtain the full pseudoranges.

Figure 3.7 shows the relationships of such integers for all satellites. The red vertical lines

represent the different transmission times for each satellite and the green line represents the

common reception time for all of them. The time difference between them are the flight

times which can be expressed as τ ′(k) + N
(k)
c · Tc and by multiplying the speed of light, the

full pseudoranges are obtained as described in Equation (3.12). The main remaining issue is

that the integer N
(k)
c is still unknown for each different satellite. The process of finding these

integer numbers is referred to as resolving the full period ambiguities, or code ambiguities.
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Figure 3.7: Full code period ambiguities for all satellites due to different transmission times.

Many previous researches focused on GPS L1 C/A signal only and thus also termed this

process as resolving the 1-ms ambiguities [67, 68, 69].

The key to find the proper integer N
(k)
c for each satellite is by analyzing the flight times.

The primary component of the flight time stems from the geometric distance ρ between the

receiver position at the reception time and the satellite position at the transmission time.

While other factors such as the atmospheric effects and hardware delays may also impact

the total flight time, the influence is well modelled [2] and the residual errors after applying

standard corrections are at meter level in distance, which is equivalent to nanoseconds of

flight time difference and can be safely omitted since their magnitudes are orders lower than

a code period.

In order to quantitatively evaluate this difference in distance after correcting these minor

effects from the full pseudorange, a parameter d(k) can be defined as:

d(k) = P (k) −M (k) = P (k) − αiI − T + c · dt(k) (3.14)

where M (k) represents the sum of all modelled terms for satellite k. As it can be seen on the

right side of Equation (3.14), the impacts coming from Ionosphere, DCB, Troposphere and
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satellite clock errors are all corrected using well-known models. Based on the pseudorange

model presented in Equation (2.9), this distance can be further modelled as:

d(k) = ρ(k) + c · δtrec + s(k) (3.15)

where s(k) is a lump sum of the pseudorange multipath error, receiver noise term and the

residual errors after applying the correction models for the minor effects as performed in

Equation (3.14). The magnitude of s(k) is usually at meter level, although it depends on the

measurement quality and model accuracy. Since ρ(k) =
∥∥r(k) − rrec

∥∥, assuming the coarse

estimates of the receiver position rc,rec and satellite positions r
(k)
c are known, by linking

up Equation (3.14) and (3.15) and replacing P (k) based on Equation (3.12), the following

equation is obtained to estimate the full period integers N
(k)
c :

N (k)
c · Tc + τ ′(k) =

∥∥∥r(k)c − rc,rec

∥∥∥
c

+ δtrec +
M (k) + s(k)

c
(3.16)

The only unknowns in this equation are the full period integers N
(k)
c , the receiver clock bias

δtrec that is common to all satellites and the small residual terms s(k). By putting the code

delay estimates τ ′(k) and the primary code period Tc to the right side of the equation, an

estimate of the number of full code periods can be obtained as:

n(k)
c = (

∥∥∥r(k)c − rc,rec

∥∥∥
c

− τ ′(k) + δtrec +
M (k) + s(k)

c
)/Tc (3.17)

Since the magnitude of s(k)

c
is within few nanoseconds, orders of magnitudes lower than Tc,

in principle, the integer N
(k)
c could be obtained by rounding the n

(k)
c estimate to the nearest

integer. However, in practice, this rounding can not be performed due to the existence of

the receiver clock bias δtrec. In order to overcome the estimation difficulties brought by this

unknown bias, a reference satellite can be chosen and a differencing step can be performed

to cancel out this common value. The result of this step represents the difference of number
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of full periods between two different satellites, which, as it results from integer subtraction,

should still be an integer. By assigning the reference satellite with index 0, the integer

difference can be computed by:

N (k0)
c = N (k)

c −N (0)
c = round

(
n(k)
c − n(0)

c

)
(3.18)

After applying Equation (3.18) to all satellites, all the SD integer numbers of full code

periods are obtained. In order to construct the full pseudoranges, a random integer can be

taken for N
(0)
c . As mentioned in [67], the expected flight time of a GPS satellite ranges from

64 ms to 89 ms, according to the geometric distance. With the chosen N
(0)
c value, the full

pseudoranges can be computed based on Equation (3.12) by:

P (k) = c · (τ ′(k) + (N (k0)
c +N (0)

c ) · Tc) (3.19)

Since N
(0)
c is a randomly chosen integer, a common integer bias exists among all the

resulting pseudoranges. This, however, does not impact the accuracy of PVT computation

since these common integer bias parts are assimilated into the common receiver clock offset,

which is estimated in the navigation filter. It is the integer differences N
(k0)
c that contain

the information necessary for snapshot positioning.

The success of the above computation of full pseudoranges relies on the set of information

listed below that can not be obtained by the snapshot GNSS receiver alone. This means

that the assistance module is required to provide these data by gathering them from external

sources. The necessary information includes:

• Satellite ephemeris data. In order to compute the satellite positions at any epoch, the

ephemeris parameters must be available.

• Satellite clock bias parameters. They are usually included in the ephemeris data, but

some organizations (e.g., the International GNSS Service (IGS)) provide high accuracy
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clock parameters through some separate products as well.

• Parameters for Ionosphere and Troposphere models. These data are required to com-

pute the atmospheric effects compensations M (k) as needed in Equation (3.17).

• Coarse estimate of receiver position rc,rec.

• Coarse estimate of the transmission time. This absolute timing information is required

to compute the coarse positions of the satellites r
(k)
c following Equation (3.17).

The first three items are continuously transmitted to the users through the broadcast nav-

igation messages by each GNSS constellation of satellites. However, due to the limitations

in the signal duration, snapshot receivers rely on other channels to obtain these data, such

as internet. The quality of these parameters should be guaranteed by the organizations

providing them. However, the coarse estimates of receiver position and reception time can

not always be accurate enough since it depends on the method to obtain these information.

Some of the typical methods to compute the coarse receiver position are:

• assume the coarse receiver position as the coordinates of a nearby cell towers trans-

mitting the assistance data. The communication data packages usually contain the

coordinates of the nearby cell towers, these coordinates are typically within 10 km of

the communication device.

• use the last estimated position stored in the receiver memory. In most use cases the

coordinates remain within kilometers to the last receiver position, unless the receiver

has been switched off for a long time.

• store the coordinates of a fixed location in the receiver, for instance the center of a

city. Many applications, such as asset tracking, operates only in a certain area. Thus

the object been tracked is usually located within tens of kilometers to the center of the

area in nominal operational conditions.
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As for the coarse timing information, similar strategies can be applied. Typically the time

tag provided by the communication module receiving assistance data contains error that is

lower than few seconds. In order to ensure that the SD code period integer results computed

based on Equation (3.18) are rounded to the correct integers, the following condition should

be satisfied:

|e(k)c − e(0)c | ≤ 1

2
Tc · c (3.20)

Where e
(k)
c and e

(0)
c stands for the total range errors introduced by the inaccuracies of the

coarse position and time information for satellite k and the reference satellite respectively.

Note that the other residual error terms are at nanosecond level and are thus neglected. The

e
(k)
c error can be expressed as:

e(k)c =
∥∥r(k)c − rc,rec

∥∥− ∥∥r(k) − rrec
∥∥ (3.21)

where r(k) represents the actual position of satellite k at the transmission time and rrec

represents the actual receiver location. As mentioned in [67], the maximum range rate of a

GPS satellite is ± 800 m/s, the satellites from other constellations present an even smaller

range rate due to their different orbit heights and inclination angles, except for the GLONASS

satellites whose maximum range is ± 900 m/s. This implies that even in the worst scenarios,

the range errors introduced by coarse time inaccuracy of one minute can reach 48 km for

one GPS satellite.

The reference satellite for the computation in Equation (3.18) should be the satellite with

the highest elevation angle [67]. It is also noted that when the two satellites in consideration

are in the same part of the sky, e
(k)
c and e

(0)
c are affected in a similar way. This largely eases

the fulfillment of the condition listed on the right side of Equation (3.20). A technique of

switching reference satellite is proposed in [67] in order to alleviate the limits of the coarse

position and time errors, such changes of reference satellites ensures that it is always the

two closest satellites being considered. A rule of thumb of error margins for GPS satellites
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is also given as 100 km of coarse position error and 1 min for the coarse time error, since the

GPS primary code period is just 1 ms, which is equivalent to approximately 150 km of total

error margin.

Other techniques were developed in order to further increase the boundary of the tolerable

coarse position and time errors, including an instantaneous positioning algorithm based on

Doppler measurements only [70]. This technique guarantees a positioning result with error

up to a few kilometers, which is completely acceptable for rounding to the correct integer,

as long as the coarse time error is not enormous (i.e., less than 3 minutes). Based on this

technique, the coarse time Doppler navigation algorithm was developed to further expand

the tolerance on initial time error to 1.5 h [61].

3.4 Coarse Time Filter

The full pseudorange measurements generated with Equation (3.19) contain a common inte-

ger bias for all the satellites due to the randomly selected N
(0)
c integer value. Thus, only the

differences between these full pseudoranges (essentially flight times) are accurately known.

Although the common integer bias can be assimilated to the common receiver clock bias

and does not impact the PVT computation workflow, the navigation filter lacks an accurate

knowledge about the absolute times. The main problem brought by this absence of informa-

tion is that the computed satellite positions could suffer from large errors since they relay

on accurately known transmission times. Since the satellites are moving at different velocity

and towards different directions, the amount of satellite position errors resulted from wrong

transmission times are different from each other. Thus, these errors can not be absorbed

into the common clock bias term in the navigation filter.

The inaccurate estimations of satellite transmission times can be observed in Equation

(3.10) as the integer partX
(k)
c can be expressed by Equation (3.22) based on previous analysis
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of Equation (3.13) and (3.18).

X(k)
c = Yc − 1− (N (k0)

c +N (0)
c ) (3.22)

Assuming the N
(k0)
c integer is correctly determined thanks to a successful full period ambigu-

ity resolution process described in section 3.3, the right side of Equation (3.22) still contains

two uncertain parameters:

• Yc, a value that is chosen as the integer part of the receiver time. This value is typically

originated from the coarse time information provided by the assistance module, and is

the only source of absolute time at the stage before a navigation solution is generated.

The error of Yc can range up to few seconds.

• N
(0)
c , a random integer flight time chosen to construct the full pseudoranges. Since the

actual flight times of GNSS satellites are always between 64 ms to 89 ms, any value

chosen between this range should lead to only a few milliseconds of error.

The range errors caused by these time uncertainties are illustrated by the blue arrows as

shown in Figure 3.8, where two different scenarios are shown: satellite 1 is rising while satel-

lite 2 is setting. r(1) and r(2) represent the positions of the two satellites computed at their

actual transmission times, and their actual ranges to the receiver antenna are shown in green

arrows. In contrast, r
(1)
c and r

(2)
c represent the satellite positions when the computations are

done at a wrong transmission time that is caused by the coarse time error, the corresponding

ranges are shown by red arrows. As it can be seen, the actual range is larger than the false

range for satellite 1 and shorter for satellite 2.

The following equation can be used to compute the range errors introduced by the coarse

time error:

δρ(k) = ρ(k)(t
(k)
tr + δtc)− ρ(k)(t

(k)
tr ) (3.23)

where:
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Figure 3.8: Different range errors caused by a common coarse time error. The blue arrows
represent the satellite position errors introduced by the coarse time error.

• δρ(k) is the range error introduced by δtc, in m

• ρ(k)(t) is the range from the receiver to satellite k at epoch t, in m

• δtc stands for the coarse time error attributable to the assistance module, in s

In the example shown in Figure 3.8, δρ(1) is negative and δρ(2) is positive. In order to

avoid these range errors to deteriorate the computation of PVT solution, the range rate of

each satellite can be used to compensate these errors, that is:

δρ(k) = v(k) · δtc (3.24)

where v(k) representing the pseudorange rate of satellite k, in m/s. More specifically, such

range rates can be computed by:

v(k) =
(
e(k) ·V(k) − δ̇

(k)
t

)
(3.25)
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where:

• V(k) is the relative velocity between the receiver and satellite.

• e(k) is the unitary vector to project V(k) to the direction of LOS.

• δ̇
(k)
t represents the satellite clock error rate in unit of length/time

By including these compensations to the full pseudoranges generated for snapshot signals,

the navigation equation presented in Equation (2.16) needs to be updated and can now be

expressed as:

bk =
x0 − xk

ρk0
· dx+

y0 − yk

ρk0
· dy + z0 − zk

ρk0
· dz + c · δtrec + v(k) · δtc (3.26)

where:

• bk is the prefit residual that is computed following Equation (2.17) by using the coarse

time tc and coarse receiver position rc,rec

• (x0, y0, z0) represent the initial guess of the receiver coordinates, for CTF, the coarse

receiver position rc,rec is used.

• (xj, yj, zj) are the coordinates of satellite k computed at the epoch t
(k)
tr + δtc

The resulting position estimates drrec are thus the three-dimensional coordinates vector from

the coarse position to the actual receiver position.

By applying Equation (3.26) to all the satellites, the following matrix form of navigation

equations can be established:


b1

...

bn

 =


x0−x1

ρ10

y0−y1

ρ10

z0−z1

ρ10
c v(1)

...
...

...
...

x0−xn

ρn0

y0−yn

ρn0

z0−zn

ρn0
c v(n)




drrec

δtrec

δtc

+


ε1
...

εn

 (3.27)
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As it can be seen, the vector of unknowns contains five elements following the inclusion

of the coarse time error δtc. Similar to the representation shown in Equation (2.19), the

above navigation equation can be simplified as:

b = H


drrec

δtrec

δtc

+ ε (3.28)

Where H is the geometry matrix for CTF with size n × 5, containing the satellite to receiver

unitary LOS vectors, the speed of light constant and the observed pseudorange rate v for

each satellite.

By solving the navigation filter shown in Equation (3.28) using, for instance, the WLS

method, the resulting coarse time navigation solution can be estimated as:


d̂rrec

δ̂trec

δ̂tc

 =
(
HTWH

)−1
HTWb (3.29)

where W represents the weighting matrix for all the measurements used in CTF. Note that

the hats in this equation means that they are the optimal estimates. The final reception

time of the CTF solution tctf can then be computed by:

tctf = tc − δ̂tc − δ̂trec (3.30)

while the position solution can be obtained by:

rrec = rc,rec + d̂rrec (3.31)

The main difference of the coarse time navigation filter and the traditional SPP filter
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is the inclusion of the fifth element corresponding to the coarse time error δtc. As it can

be seen in Equation (3.24), in order to have an accurate estimate on this unknown, some

special attention should be put on the range rate v(k). If the v(k) values used in the H are

not precise enough, the resulting PVT solution is deteriorated.

Equation 3.25 shows that the magnitudes of the range rates are determined mainly by

the following quantities:

• Satellite velocity. Different satellites travel at different velocities at their signal trans-

mission epochs. These velocities could introduce a range rate of up to 900 m/s [67, 4]

when projected to the LOS.

• Receiver velocity. The receiver velocity is identical for all satellites and thus the coarse

time error will result in an position errors that is identical as well. However, since

the LOS vectors e(k) are different among satellites, the range errors projected to each

satellite are different, unless the receiver is static with zero velocity.

• Satellite clock drift. The satellite onboard oscillators are atomic clocks that are de-

signed to run steadily for a long time without any large satellite error variations. The

nominal satellite clock error rate is at the order of 2−35 s/s, which is equivalent to a

range rate of 1 cm/s, and can thus be neglected considering the magnitude of the range

rates introduced by satellite velocities.

• Receiver clock drift. The receiver clocks have lower quality compared to the satellite

clocks and may present some clock error drift. The coarse time error could result in a

common receiver clock bias that can be absorbed to the fourth element of the unknown

vector δtrec. Thus, this parameter does not impact the positioning performance.

Note that the Doppler frequency offset FD mentioned in Section 3.2 is formed with the above

mentioned quantities. As a result, the range rate can be computed based on such Doppler
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measurements, after an appropriate change of scale factor from cycle/s to meter/s:

v(k) = F
(k)
D · λ (3.32)

In some researches, the range rates are obtained by directly projecting satellite velocities

computed based on the ephemeris parameters to their LOS vectors [71]. Such procedure

assumes that the receiver velocity is zero as in static scenarios [67, 68]. In the present

dissertation, the range rates are obtained based on Equation (3.32). Thus, since the precision

of Doppler measurements are determined by the settings of MH acquisition module, the final

coarse time navigation solution accuracy also depends on these settings.

3.5 Typical Performance

The previous sections have presented the conventional snapshot positioning techniques. In

order to evaluate the performance of these previously developed methods, a software dedi-

cated to snapshot data processing has been developed during the PhD in cooperation with

Albora Technologies. Based on some real-world data sets collected and processed with this

software, this section provides an overview of the typical positioning and timing results of

the conventional snapshot positioning techniques.

3.5.1 Timing Results

The raw GNSS signals were captured by the Labsat 3 record and playback device [72] that

is connected to a high-end multi-frequency GNSS antenna (Septentrio PolaNt-x) [73]. The

output from the Labsat recorder are the I & Q digital bits that are down converted to

baseband. Note that the original data file contains a continuous signal that lasts for 90 s,

but in order to processing these data in snapshot mode, these data are truncated to shorter

duration pieces. More specifically, 450 snapshot files are cut from this data set with each
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snapshot separated by 200 ms. In addition, some more details about these snapshot data

are listed:

• Sampling frequency: the original signals were captured by Labsat with a sampling rate

of 58 MHz, but for the following data processing and performance evaluation, the data

sets are further down sampled to 14.5 MHz.

• Snapshot length: Only the first 40 ms of each truncated snapshots are used, the signals

are processed in fully coherent integration mode, i.e., Tcoh = 40 ms

• Signal selection: Only GPS L1 C/A signals are processed for this experiment.

• Total number of satellites used in the navigation filter: 12

• The elevation angles of the used satellites range between 7.7 and 76.9 degrees, while

their C/N0 values range between 36.2 and 43.43 dB Hz.

In order to evaluate the accuracy of the coarse time estimate, they need to be compared

with a reliable reference data. The following two steps were performed in order to obtain

such a high quality timing reference:

• The reference data are initially obtained based on the timing solutions computed with

accurately time tagged snapshot measurements. These measurements are free from the

transmission time estimation inaccuracies presented in Equation (3.22). These more

advanced measurements are generated following the algorithms described in chapter

4. The accuracy of timing solutions estimated with these measurements are generally

at the nanosecond level, considering that the pseudorange accuracy is at meter level.

Thus, these accurately time tagged snapshot measurements can be used as a reference

for this experiment.

• A further validation of the precision of these reference data is done by taking advantages

of the Labsat clock stability during the short signal collection time. The Temperature
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Figure 3.9: Coarse time errors of the 450 snapshot taken from the 90 s Labsat data collected
on 2020-05-19

Compensated Crystal Oscillator (TCXO) onboard the Labsat recorder guarantees the

clock drift to be within ± 0.1 ppm, which is equivalent to a maximum of 0.009 ms of

clock error for the signals collected during 90 s. Such an error is at least two orders

lower than the typical time errors generated by a CTF. Since the above mentioned

reference data is highly consistent with the TCXO clock time (with less than 0.001 ms

of discrepancies), the effectiveness of this data set is validated.

It can be seen from Figure 3.9 that in general the timing errors are at the level of few

milliseconds, with the maximum error reaching -6.4 ms. Considering that only GPS satellites

are used in this experiment, better timing solutions can be expected when more satellites

from other GNSS constellations are to be incorporated into the CTF.
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Figure 3.10: Antenna location in the north campus of UPC for snapshot data collection

3.5.2 Positioning Results

As for the positioning results, real-world data were collected using a snapshot receiver devel-

oped by Albora Technologies. The receiver was connected to the same antenna as in section

3.5.1. It was located in an open environment at the north campus of Universitat Politècnica

de Catalunya (UPC) in Barcelona, Spain, as shown in Figure 3.10. The snapshots were taken

roughly every 5 minutes and the collected digital bits were transmitted to the cloud server

for PVT computation. The exact time gap between two snapshots slight varies due to the

delays of data upload and cloud processing. Here are some information about the collected

data:
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Figure 3.11: Conventional snapshot positioning errors of 25 hours of data collected on 2021-
02-01

• With a total of 300 snapshots taken, the time span of these collected data exceeds 25

hours.

• The collected I & Q digital bits are sampled at 6.36 MHz.

• The data were processed with coherent integration time of 40 ms.

• Only GPS L1 C/A and Galileo E1C signals are used in this experiment.

The positioning errors in different directions are depicted in Figure 3.11. The mean errors

and its standard deviation were also computed, as represented by µ and σ. It can be seen

that in general the positioning errors are at the meter level. The upper panel represents

the errors in east, north and up directions (respectively represented by ∆E, ∆N and ∆U).

As expected, the main error component is the vertical direction with a standard deviation

of 3 m. The lower panel shows that the horizontal errors is generally less than 5 m while

the maximum 3D error is below 10 m. It can be concluded that for this experiment, the

accuracy of conventional snapshot positioning is at the same level as traditional close loop

receivers processing under the SPP mode, both at meter level.



Chapter 4

High Accuracy Snapshot Positioning

The conventional snapshot positioning techniques introduced in Chapter 3 produce position-

ing results with meter level accuracy only. This level of accuracy suffices some applications,

such as for asset tracking and fleet management. Nowadays, the benefits brought by snap-

shot positioning techniques, especially in terms of power efficiency and economic cost, have

attracted more applications to adopt this method of positioning. Along with classical appli-

cations that require meter level accuracy, others demand high accuracy positioning results.

For example, millimeter level accuracy is required for geodetic displacement monitoring sys-

tem for infrastructures such as bridges, dams, buildings, etc. Traditionally, a network of

high-end GNSS receivers and antennas need to be deployed, together with additional infras-

tructure to power the receivers. It is interesting to evaluate the feasibility of obtaining high

accuracy positioning results based on snapshot receivers, so that these low-cost devices can

replace the expensive networks of traditional geodetic receivers for such applications.

Thanks to the advantages in power consumption, snapshot receivers can reduce the com-

plexity of building new power infrastructures as they can rely on batteries or solar panels.

Besides, snapshot techniques are usually performed in cooperation with cloud computing

techniques in order to explore its full potential of power saving features. That is, the digital

bits generated by the snapshot receivers are uploaded to the cloud and all the following

signal processing and PVT computation tasks are performed on the cloud platform.

As for the choice of positioning algorithms, PPP is a high-accuracy GNSS positioning

88



HIGH ACCURACY SNAPSHOT POSITIONING 89

technique, as introduced in Chapter 2, that requires a long convergence time before reaching

highly-accurate positioning results. The convergence time is at the order of few tens of

minutes, which is against the nature of snapshot recordings since they are designed to be as

short as possible so that the TTFF is short and small data size is transmitted to the cloud.

Thus, the present research focus on integrating snapshot data processing with RTK-based

positioning engine. The technique resulting from this combination is termed as the Snapshot

RTK (SRTK).

SRTK is the first technique aiming at achieving high-accuracy positioning based on snap-

shot data. In order to succeed obtaining a SRTK fix, two necessary conditions must be

satisfied, respectively:

1. Snapshot measurements must be accurately time tagged so that satellite transmission

times can be computed with enough accuracy.

2. DBA issues must be resolved so that there is only an unique set of measurements that

can be generated for each satellite. This step also ensures that Half Cycle Error (HCE)

does not appear in the carrier phase measurements.

In the present chapter, the focus is put on tackling the first condition and on verifying

the feasibility of SRTK. The SRTK workflow and the strategy proposed for generation of

time-tagged snapshot measurements are introduced respectively in section 4.1 and 4.2. Some

feasibility experiments were performed and the results are shown in section 4.3 to confirm the

first success of SRTK fix. Finally, by adjusting some related design parameters for more real

world snapshot recordings, the SRTK performance is analysed in section 4.4. The methods

related to the second condition are discussed in Chapter 5 with more details.

4.1 SRTK Workflow

Figure 3.1 depicted the overall architecture of the SRTK processing engine. Now a cloud-

based SRTK engine is being applied for the experiments performed in this dissertation,
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Figure 4.1: General architecture of cloud-based SRTK positioning.

its overall workflow is firstly illustrated in Figure 4.1. Similar to the conventional snapshot

positioning workflow, the snapshot digital bits are generated by the snapshot receiver. These

data are transmitted to a cloud platform which constantly collects all necessary assistance

data required for snapshot positioning, including coarse time and position data, ephemeris

parameters, etc. The main difference with respect to conventional snapshot positioning is

that, for RTK processing, measurements collected from base stations are also required in

order to compute the DD observables. All these data are gathered and processed by the

SRTK engine on the cloud platform to obtain high accuracy positioning solutions.

The more specific steps inside the SRTK engine are depicted in Figure 4.2. Starting with

the input of snapshot digital bits, the MH acquisition module generates a set of snapshot

measurements for each satellite in view. From there, the SRTK engine workflow can be

divided into two paths. In the uppermost path, the code delay and Doppler measurements

are firstly used in a conventional CTF with the assistance of the coarse time and position

information and ephemeris data, as described in section 3.4. This step, shaded in pink color,

aims at obtaining an absolute reception time information about the collected snapshot data.

The satellite transmission times can also be roughly estimated based on such information.
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Figure 4.2: SRTK engine data processing workflow

As shown by the dashed line, the PVT solution of the CTF is then used in a full measurement

correction process in the bottom panel. This process, also assisted by the coarse information,

is designed to construct full pseudorange measurements that are accurately time tagged based

on the set of fractional values obtained by the acquisition module. The resulting complete

measurements are then fed to a RTK navigation filter together with the measurements

collected from nearby base stations. Finally, this navigation filter generates a new PVT

solution that could be highly accurate. Note that the full measurement correction process

can also correct carrier phase HCEs if related navigation data bits are available on the cloud

platform, this will be further discussed in Chapter 5.

It can be seen that the main difference between the SRTK engine and the conventional

snapshot positioning engine is the inclusion of the blocks shaded in green color. While the

RTK navigation filter is a common module that is specifically discussed in section 2.2.5,

the main innovative step is the full measurement correction module. This unique process

designed for SRTK is discussed in the following section with more details as it is the core of

the whole workflow.



HIGH ACCURACY SNAPSHOT POSITIONING 92

4.2 Full Measurement Correction

4.2.1 Motivation

The main motivation of adopting the CTF instead of a traditional SPP navigation filter

for snapshot data resides in the lack of accurate knowledge about the absolute transmission

time of the signal. In the case such time can not be accurately determined, the satellite

coordinates computed at these erroneous times present large errors. The fifth element in

the CTF geometry matrix is designed to compensate the range errors δρ(k) caused by such

wrong satellite positions.

Such compensations based on range rate (or Doppler offset) have been proved to work

properly for conventional snapshot receivers when only code measurements are used and

meter-level accuracy is desired. For high-accuracy applications, however, this method fails

due to the stringent requirement about the satellite position accuracy. As it was shown

in section 3.5.1, the timing accuracy of conventional snapshot CTF is at millisecond level

even though the coarse time error δtc is estimated in the filter. Thus, a residual range error

may still exist in each full pseudorange generated based on Equation (3.19). These range

errors are too large for a positioning engine aiming at fixing carrier phase ambiguities. For

example, for GPS satellites, 1 ms of absolute timing error implies that the full pseudorange

may be prone to errors of up to 0.8 m, and, that the DD range error can reach 1.6 m in

the worst scenarios. The magnitude of such range errors may be acceptable for meter-level

positioning accuracy. However, in contrast, it is much larger than 20 cm of the L1 signal

wavelength and therefore will totally corrupt the possibility of carrier phase IAR and deny

the RTK solution to be fixed. As a result, a different approach of measurement generation

is required for SRTK in order to correct these range errors caused by timing inaccuracies.

These corrected measurements are expected to reflect the actual satellite transmission times

with nanosecond level accuracy.
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Figure 4.3: 3 stages of absolute time precision evolution in the SRTK positioning engine

An additional motivation of correcting the measurements to indicate accurate satellite

transmission times is that when external sources of navigation data bits are available, smaller

time errors will result in less possibility of retrieving the wrong bit from these distributed

data set.

4.2.2 Global Time Tag Determination

The full pseudoranges of the acquired satellites are computed, according to Equation (3.12),

based on the differences of the receiver time trx and the transmission times for each satellite.

The receiver time trx, as defined by Equation (3.11), is common to all satellites. Since the

pseudoranges can be generated with any time tag, usually they are chosen at epochs with

full integers of primary code periods for simplicity of pseudorange computation. That is,

τr = 0 and the time tag is located at a primary code edge. Such receiver time is defined as a

global time tag in this dissertation. The key, however, is to ensure the accuracy of satellite

transmission times.

Before explaining the details of the method to obtain high accuracy transmission times

and corresponding full pseudoranges, it is important to overview the accuracy of the receiver

time that is available in the system. As illustrated in Figure 4.3, the absolute time accuracy

in the SRTK filter gradually improves throughout three stages. In the first stage, the time

information comes from the assistance data, typically from a cellular network, and it may

include errors of up to 2 s [67]. Then, the second stage of time accuracy improves to the

millisecond level after the CTF generates a time solution by estimating the coarse time error.
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Figure 4.4: Relationship between the global time tag and other time parameters.

Finally, the third stage aims at an accuracy equivalent to that of the code delay estimates,

i.e., nanosecond level. The present section focuses on describing the process from stage two

to stage three.

According to Equation (3.10), the satellite transmission times can reach nanosecond level

only when the integer number of codes Xc can be correctly determined. However, as shown

in Equation (3.22), these integers suffer from the uncertainties of integer Yc brought by the

selection of receiver time tag, as well as the reference flight time integer N
(0)
c . The problem

can be now redefined as to find a pair of these two values that returns the actual magnitude

of Yc − N
(0)
c . Note that this pair of values is not unique, if the receiver time is chosen to

be later, the correct transmission time integer Xc can still be determined if the pseudorange

measurements of all satellites are increased by the same amount.

The method to solve this problem is, in short, to determine a proper global time tag and

then correspondingly adjust the pseudorange measurements to it. Figure 4.4 presents the

relationships of different time parameters that are involved in this method. This figure is

similar to Figure 3.7 that is used to illustrate the process of full period ambiguity resolution

for fractional code delay measurements. As in both Figures, the satellite transmission epochs
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t
(k)
tr are represented by the red vertical lines on the left side. However, in Figure 4.4, each

black box represents the duration of one data bit or a secondary code period, denoted by TS,

instead of a primary code period Tc. This shows that the determination of global time tag is

performed at symbol level, instead of at code level, in order to ensure the correct rounding

process.

Analogous to the code delay quantity τ ′(k), which was defined as a fraction of a primary

code period shown in Figure 3.7, the secondary code delay, denoted by τ
′(k)
sc , is now defined

as the time delay between the transmission time and the latest edge of data bit or secondary

code period. This value can be obtained with high accuracy based on the MH acquisition

results based on Equation (4.1).

τ ′(k)sc = τ ′(k) + u(k) · Tc (4.1)

where τ ′(k) and u(k) are the code delay and hypothesis index that can be obtained from the

set of snapshot measurements for satellite k. Note that the index u also represents the SCI

value in the cases of pilot signals.

The detailed process of generating accurately time-tagged measurements is:

1. Compute the signal reception time tctf using the conventional CTF. This time is de-

noted by the yellow dash line in Figure 4.4. Note that tctf is the only source of absolute

time available in the receiver at this step and its accuracy is at millimeter level.

2. Estimate the actual flight times based on the geometric ranges computed using assis-

tance data and the corrections of other modeling terms M (k) such as satellite clock

errors and atmospheric propagation delays. For this step, Equation (4.2) can be ap-

plied.

t
(k)
f rough =

∥∥∥r(k)c − rc,rec

∥∥∥+M (k)

c
(4.2)

As already mentioned in the full period ambiguity resolution process described in
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section 3.3, the t
(k)
f rough estimate errors are guaranteed to be less than 0.5 ms.

3. Compute the rough transmission times for each satellite based on the coarse receiver

time tctf . Equation (4.3) can be applied

t
(k)
tr rough = tctf − t

(k)
f rough (4.3)

These rough transmission times are accurate to millisecond level.

4. Add the secondary code delays τ
′(k)
sc to the rough transmission times. In principle, if

the milliseconds of errors did not exist, this summation should result in a global time

tag tg located at the edge of a data bit or a secondary code period. Fortunately, errors

at the level of the milliseconds do not impede the successful retrieval of these edges.

The computation consists of a rounding process represented by Equation (4.4)

tg = round

(
t
(k)
tr rough + τ

′(k)
sc

TS

)
· TS. (4.4)

This step can be successfully implemented thanks to the fact that TS is typically one

order of magnitude larger than the aforementioned timing inaccuracies. For example,

TS = 100ms for Galileo E1C signals as it correspond to the duration of a secondary

code period, thus, a few milliseconds of error in t
(k)
tr rough is tolerable for the rounding

process.

5. Find the actual integer number of secondary code periods or data bit duration, which

is required for the construction of full pseudoranges paired with the chosen global time

tag.

Z
(k)
S = round

(
tg − t

(k)
tr rough − τ

′(k)
sc

TS

)
. (4.5)

6. Compute the final pseudorange measurements Pfinal for each satellite that correspond
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to the time tag tg based on Equation (4.6).

P
(k)
final = c · (τ ′(k)sc + Z

(k)
S · TS). (4.6)

It is important to mention that the time tag tg detected at step 4 and the integer values

Z
(k)
S computed at step 5 correspond to one pair of successful solutions that guarantee high

accuracy transmission times to be obtained. However, such pair is not the only possible

combination. For example, if the global time tag is chosen at t′g = tg + TS instead of the

tg obtained by Equation (4.4), then based on Equation (4.5), the resulting pseudoranges

will contain integer values of Z
′(k)
S = Z

(k)
S + 1 that compensate this common bias without

affecting the transmission time accuracy. As a result, the pair of t′g and Z
′(k)
S is valid as

well for high-accuracy applications. In fact, Equation (4.4) is applied mainly because the

actual receiver time is usually within one cycle of TS after the satellite transmission time.

For example, if the transmission time TOW of a Galileo E1C signal is at 259169.2193, then

the optimal tg candidate would be 259169.3 since the flight times are between 64 ms to 89

ms.

4.3 Zero Baseline SRTK Feasibility

The time-tagged pseudoranges constructed with the method presented in the previous section

can be used in combination with the snapshot carrier phase measurements by the RTK nav-

igation filter to achieve high accuracy snapshot positioning. The present section introduces

some experiments performed under the “zero baseline” configuration, which indicates that

most of the measurement error terms listed in Equation (2.9) and (2.27) are identical for the

rover and base receivers since they are connected to the same antenna. This configuration

eases the RTK data processing work flow and prevents the DD measurements from being

impacted by the residual errors such as atmosphere and antenna phase center variation.
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4.3.1 Experiment Goals

As mentioned in [74], it is actually the pseudorange measurement noise level, instead of car-

rier phase measurement quality, that plays the dominate role in impacting the possibility of

achieving RTK fixes. The noise of full pseudoranges is essentially originated from the snap-

shot code delay measurement τ (k). Such noise level is determined by the signal bandwidth

and integration time [64, 75, 76], which can be evaluated by its Cramér-Rao Bounds (CRB).

CRB is proportional to ∝ 1
(C/N0)BTint

, where Tint, B and C/N0 variables denote the coherent

integration time, signal bandwidth and carrier to noise ratio, respectively. It can be seen

that code delay error decreases when the integration time Tint or bandwidth B increases.

While C/N0 parameter depends on the surrounding environment, the other two parameters

can be controlled by adjusting the snapshot receiver settings.

The experiments in this section were performed with three goals.

1. The primary goal was to perform carrier phase IAR for the first time using snapshot

signals so as to confirm the feasibility of obtaining a SRTK fix.

2. The collected data were processed also to explore the relationship of code noise level

and IAR fix rates of snapshot signal under different bandwidth and integration times.

3. Different settings of data processing were used in order to analyse the influences of

multi-constellation and multi-frequency data on IAR fix rate.

4.3.2 Experiment Processing Options

The snapshot data set used in the present subsection is the same as the one mentioned

in section 3.5.1, collected by a Labsat recorder. For RTK processing, the measurements

generated with these snapshots are termed as rover measurements. As for the base station,

a high-end GNSS receiver (Septentrio PolaRx-5e [77]) is used, it provides measurements at a

1 Hz rate. Note that under “zero baseline” configuration, the Labsat recorder and the base
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Figure 4.5: Zero baseline configuration with antenna located near Sabadell for snapshot data
collection.

station receiver are connected to the same antenna (Septentrio PolaNt-x MF [73]) through

a RF splitter that ensures that the same GNSS signal is received by them. The antenna is

statically located on a roof with open environment near Sabadell, Spain, as it can be seen

in Figure 4.5.

As for data processing, the snapshot signal and data processing software used in section

3.5.1 was expanded to include the new implementations of time tag and full measurement

generation. This upgraded software was able to export these snapshot measurements in

RINEX format that is very commonly used in the GNSS industry, the base station receiver

was able to produce measurements in this format as well. As for the RTK navigation

filter, the open source tool RTKLIB [78] was applied. All the baseband signal processing

and SRTK filter data processing as shown in Figure 4.2 were performed in post-processing

mode. Note that as mentioned in the beginning of this chapter and will also be discussed

more thoroughly in Section 5.1, some snapshot carrier phase measurements may be prone to
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potential HCEs, these situations are avoided by making use of navigation message data bits

archived in the data base of German Research Centre for Geosciences (GFZ) [65] and by

applying the methods mentioned in Chapter 5. As a result, all the snapshot carrier phases

are valid (absent from HCEs) for RTK processing. The fact that they are fractional values

of a cycle does not represent a problem since the integer parts of the DD carrier phases are

estimated as unknown parameters in the RTK filter.

Since each snapshot data only produces one set of measurements, the RTK navigation

filter was set to run in instantaneous mode, which means the estimation and IAR were

performed using only measurements from one single epoch. In contrast, traditional receivers

usually generate carrier phase measurements containing integer ambiguities that remain

as constants across multiple epochs until the so-called cycle slip occurs and introduces a

discontinuity. This fact allows some RTK filters to process measurements across several

epochs in order to better estimate the unchanged integer ambiguities as constant values. The

fact that only fractional parts of carrier phase measurements are available in the snapshot

means that their integer parts need to be estimated at each epoch, no matter if the snapshots

are taken continuously.

In order to achieve SRTK fix, multiple sets of full measurements were generated by

processing the collected snapshot data with different coherent integration times and different

bandwidth settings. Namely, integration times of 20 ms, 40 ms, 60 ms, 80 ms and 100 ms

were used while signal bandwidths of 11.2 MHz, 14 MHz, 15.4 MHz, 17.5 MHz, 19.6 MHz,

and 24.5 MHz were applied. The changes of bandwidth were realised by down-sampling the

original 58 MHz snapshot digital bits to lower sampling frequencies since such decreases of

sampling rate effectively reduces the bandwidth as well. Two quantities are used to indicate

the SRTK performance: the LAMBDA Ratio Factor (LRF) and the fix rate. The fix rate

is equivalent to the percentage of snapshots with LRF greater than a predefined threshold

value. For the experiments described in this section, this threshold value is set to 3.

In order to assess the noise level in the code measurements, the DD code measurement
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values were saved before being fed to the RTK navigation filter. As shown in Equation

(2.37), these values should be equivalent to the DD code noise when the baseline drrb is

equal to zero. Thus, from these stored data, the Rooted Mean Square Error (RMSE) of DD

code measurement caused by noise can be concluded for all satellites and all epochs following

Equation (4.7).

RMSE(t) =

√√√√ n∑
k=2

(P 1k
rb (t))

2/(n− 1) (4.7)

where n is the total number of satellites and P 1k
rb (t) represents the DD pseudorange computed

at epoch t between satellite k and the reference satellite, denoted as k = 1. Thus, the counter

starts at k = 2 and a total of n − 1 DD pseudoranges are available. Note that by default

the satellites were sorted based on their elevation angle and the one with largest elevation is

used as the reference satellite.

In order to address the influences of multi-constellation and multi-frequency data on the

IAR fix rate, snapshot measurements were fed to the navigation filter but this time with

different constellations and frequency selection. This experiment only considered GPS and

Galileo constellations and signals from the L1 and L5 frequency bands.

4.3.3 Experiment Results

First of all, the SRTK performance with GPS L1 C/A signals was verified. Figure 4.6

depicts results for the data set using 11.2 MHz bandwidth and different integration times.

The corresponding carrier-to-noise density (C/N0) values of these satellite measurements are

plotted in Figure 4.7. The variation of calculated LRF values are represented in the upper

panel of Figure 4.6. As it can be seen, for all the integration time settings used, there are

always some snapshots that result in LRF values higher than the predefined threshold, which

means the carrier phase IAR were successful at these epochs. This implies that RTK-level

positioning accuracy results can be obtained for snapshot signals. The bottom panel of

Figure 4.6 shows the RMS of DD pseudoranges. The blue curve, which represents the signal
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Figure 4.6: Time plot of LRF and DD code noise RMS for 11.2 MHz bandwidth under zero
baseline.

Figure 4.7: C/N0 of GPS satellites in the collected snapshot data.
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Figure 4.8: Integration time and bandwidth impact on fix rate and DD code noise RMS
under zero baseline

with integration time of 20 ms, shows a larger DD code noise RMS compared to the purple

curve that represents an integration time of 100 ms. The SRTK fix rate and the mean RMS

values for the whole set of 450 snapshots are also computed and shown in the legends of the

two subplots respectively. As expected, the longer the integration time, the higher fix rate

can be achieved and the lower the DD pseudorange noise. This pattern can be observed

more clearly in Figure 4.8 where impacts from different bandwidths are shown as well.

Figure 4.8 confirms the increase of the fix rate and the reduction of code measurement

noise when the signal is acquired with a larger bandwidth. The lowest DD code noise RMS

value obtained in these date sets is less than 1.5 m, which corresponds to the fix rate of

51%. Although about half of the snapshots can manage to obtain a RTK fix, such fix rate

is rather low, this could be explained by the fact that only GPS L1 C/A signals are used to

compute the results presented here.

It is recalled that for the previous analysis, GPS L1 C/A signals measurements were

generated with 5 different integration time and 6 different bandwidth settings, which means

a total of 30 sets of measurements are available, with 450 epochs included in each of them.

In order to explore the code noise impact on IAR fix rate, DD code RMSEs of all satellites

are calculated for each of these 13500 snapshots and plotted on the left side of Figure 4.9.
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Figure 4.9: Relation ship between DD code RMSE, IAR fix rate and LRF

A basic trend can be observed in Figure 4.9: the smaller DD code RMSE becomes, the

LRF tends to be higher and thus a higher fix rate can be expected. In order to show more

clearly the relationship between the DD code quality and the fix rate, a simple partitioning

is performed on these data points. They were sorted by their DD code RMSE magnitudes

in an ascending order and divided into 270 groups with the sorted index, with each group

containing 50 snapshots and the maximum DD code RMSE of the current group is smaller

than the minimum of the next group. Then, the mean LRF and fix rate of each group is

calculated and plotted on the right side of Figure 4.9. The trend matches the raw data

points on the left, which shows a decrease in fix rate and mean LRF magnitude when the

code RMSE goes higher. From this plot, it can also be seen that in order to achieve a 90%

fix rate, the DD code measurement RMSE should be smaller than 1 m, which correspond to

a mean LRF between 6 and 8.

Finally, in order to investigate the improvements brought by using Multi-Constellation

Multi-Frequency (MCMF) signals from GPS and Galileo, different combinations of signals

and constellations were applied to the navigation filter and the results are shown in Table 4.1.

Snapshot signals with 6 different bandwidths were processed while the identical integration
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time of 100 ms was set for all cases for generating these experiment results.

Table 4.1: IAR fix rate with different combinations of constellation and frequency bands,
with 100 ms integration time under zero baseline

Bandwidth [MHz] GPS L1CA GAL E1C GAL E5A
GPS L1CA&
GAL E1C

11.2 27.78% 36.67% 23.56% 100%
14.0 24.22% 43.11% 69.78% 100%
15.4 41.56% 45.33% 90.89% 100%
17.5 39.11% 50.00% 99.56% 100%
19.6 48.00% 50.22% 100% 100%
24.5 51.33% 57.33% 100% 100%

Bandwidth [MHz]
GPS L1CA&

GPS L5
GAL E1C&
GAL E5A

MCMF

11.2 97.33% 100% 100%
14.0 98.67% 100% 100%
15.4 99.78% 100% 100%
17.5 99.78% 100% 100%
19.6 100% 100% 100%
24.5 100% 100% 100%

When only using GPS L1 C/A signals, as analysed before, the maximum fix rate that

can be reached among all these data sets is 51.33%, it is slightly higher when only Galileo

E1C signal is used, although the maximum fix rate is still only 57.33%, which is achieved at

the bandwidth of 24.5 MHz. However, Galileo E5A signal brings an improvement in terms

of fix rate, except for the cases when a bandwidth of 11.2 MHz is used, in other cases of

bandwidths of 19.6 MHz and 24.5 MHz, the fix rates are 100%. Note that the nominal

bandwidth of Galileo E5A signal is 20 MHz, it can be expected that their performance is

worse when a lower bandwidth is used. The case with GPS L5 signal only is not listed here

because there were only 5 GPS satellites observed in this data set transmitting signals in L5

frequency band, and no Integer Ambiguity Resolution (IAR) fix has been achieved for this

case.

However, when both GPS and Galileo constellations are used simultaneously, the result

shows that IAR is not a problem anymore, as a 100% fix rate is obtained for all cases. As for

single-constellation and multi-frequency processing, the output fix rate is also almost 100%
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Figure 4.10: Horizontal errors of SRTK fixed positioning solution under zero baseline, using
GPS L1 C/A and GPS L5 signal at 24.5 MHz bandwidth with 100 ms integration time

for all scenarios, except for the cases when GPS L1CA and L5 are used with bandwidths

lower than 17.5 MHz, nevertheless, these values are still higher than 97%. The column for

Multi-Constellation Multi-Frequency (MCMF) represents that case when all four signals are

used, and 100% fix rate can be achieved as well in this case.

The SRTK fixed positioning results in zero baseline configuration are shown in Figure

4.10, using GPS L1 C/A and GPS L5 signal at 24.5 MHz bandwidth with 100 ms integration

time. The positioning errors in north and east are all less than 5 mm. The Circular Error

Probable (CEP) circle, shown in orange color, contains half of the positioning points inside,

and it has a radius of 1.4 mm. The RMSE in the horizontal dimension is presented as the

green circle and has a magnitude of 1.8 mm. The P95 circle, which represents the error
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Figure 4.11: Relationships between the parameters of interest for SRTK data processing

magnitude that 95% of the data points reside in, has a radius of 3.4 mm. Note that these

results correspond to a zero baseline experiment with a high-end reference receiver. Overall it

shows that the SRTK positioning accuracy can reach millimeter level under such conditions.

4.4 SRTK Performance

The experiments performed in section 4.3 only considered zero baseline configuration and

mainly intended to prove the feasibility of the SRTK technique. This section extends the

previous experiments to different baseline distances and provides a deeper insight into the

performance of SRTK in terms of the IAR fix rate. Besides, this performance is analysed

from a more practical point of view as the total data size of the captured snapshot data is

also considered.

4.4.1 Experiment Goals

The main objective of the experiments performed in this section is to explore the impact

of the following three parameters on the SRTK performance: snapshot signal bandwidth,

integration time, and baseline distance, which are shaded in red color in Figure 4.11. This

figure shows the relationships between all the parameters of interest. Starting from these
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three parameters, it can be explored from the left and right directions to find their impacts

on the SRTK fix rate and the snapshot data size respectively.

Looking leftwards, it can be seen that the observables noise of the rover is determined

by the signal bandwidth and the integration time, while the baseline distance impacts the

magnitude of the atmosphere delay variation between the rover and the base receiver. The

rover observable noise, together with other error terms such as reference receiver measure-

ment noise and atmosphere delay residual errors, contribute to the final DD measurement

errors. Note that for snapshot receivers, additional satellite position errors caused by timing

inaccuracies may exist if the measurements are not generated with the method mentioned

in section 4.2.

Looking rightwards, the bandwidth puts a constraint on the signal sampling rate in order

to avoid the signal aliasing problems, that is, the sampling rate must be higher than the

Nyquist rate, which is usually twice the bandwidth [79]. Furthermore, the integration time

sets a minimum value of the total duration of the captured signal. These two parameters,

together with the quantization factor, directly determine the minimum snapshot data size

as it can be computed by:

S = 2 ·Q× Fs× T + A, (4.8)

where:

• S is the size of the snapshot data, in bits

• Q represents the constant quantization parameter, in bits per sample

• Fs stands for the sampling rate, in Hz

• T is the total integration time, in s

• A stands for the size of additional data, in bits

The additional data size term A is usually very small (less than 1 kB) since only very

limited amount of metadata is needed along side the snapshot signal data bits, such as rover
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receiver identifier number. The multiplication by the constant 2 is due to the different I and

Q streams of the snapshot signal.

From a commercial point of view, one of the major costs of adopting SRTK service arises

from the transmission of raw GNSS data from the user end to the remote cloud platform.

The mobile network data plan chosen for this service will depend on the minimum size of the

data packet needed for each snapshot. The smaller the snapshot, the cheaper this service is.

It is therefore of great interest to explore the minimum data size of a snapshot required for

obtaining a given IAR fix rate.

4.4.2 Experiment Processing Options

A total of 240 snapshots were recorded for this section using the snapshot receiver designed

by Albora Technologies, the same one as used for the results shown in section 3.5.2. The

total duration of signal collection is 4 hours as each snapshot is separated by 1 min from

the adjacent one. The receiver is also connected to the same high-end antenna shown in

Figure 3.10. The snapshots were sent to the cloud platform to be processed by the software

containing the SRTK positioning engine as presented in Figure 4.2. The navigation message

data bits archived in the data base of GFZ are used in the MH acquisition module to ensure

that HCEs do not appear in snapshot carrier phase measurements.

The base station data were collected using the VRS service provided by Institut Car-

togràfic i Geològic de Catalunya (ICGC). Several streams of VRS data were collected si-

multaneously by setting a series of reference points with different baseline distances to the

snapshot receiver. The original data contains signals from L1 band, however, only GPS L1

C/A and Galileo E1C signals were used to generate the following results. Although BDS

B1C signals are also in the L1 frequency band, the corresponding measurements were not

provided by the VRS service for reference data collection, thus BDS constellation was not

processed. GLONASS constellation was discarded as well due to their inferior signal strength

and requirements on the RF front-end. An elevation mask of 10 degrees was applied to fil-
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ter out the low elevation satellites. The RTK navigation filter was running in instantaneous

mode, which means the computations were performed based on observable data from a single

epoch. The solution is regarded as fixed when the computed LRF value is greater than the

threshold that is set to 2. The RTK filter considers only the short baseline DD measurement

models represented by Equation (2.30) and (2.31) by neglecting the residual DD Ionosphere

and Troposphere slant delays.

The experiment results were generated by processing the snapshot data set with all

combinations of the following settings:

• Integration time (ms): {40, 60, 80, 100}

• Signal bandwidth (MHz): {6.36, 7.95, 10.6, 12.72, 15.9, 21.2, 25.44, 31.8}

• Baseline distance (km): {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}

4.4.3 Experiment Results

First of all, Figure 4.12 presents the number of satellites and the DOP changes during the 4

hours of data collection. As it can be seen, more than 15 satellites are used in the navigation

filter for most of the snapshots.

To assess the fix rate and mean LRF results, two plots can be generated for each integra-

tion time used, with the horizontal axis representing the varying settings of baseline distance

and the vertical axis representing the SRTK fix rate and mean LRF value respectively. As an

example, Figure 4.13 and 4.14 are generated for all the bandwidths used when the integra-

tion time is set to 100 ms. As it can be seen, the two plots follow a similar pattern, as it can

be clearly observed that generally both the mean LRF value and SRTK fix rate drop when

the baseline distance increases. This makes sense since the LRF values directly determine

the possibility of obtaining a SRTK fix. For other integration times, similar trends can be

obtained as well.
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Figure 4.12: Number of satellites used (top) and the DOP values (bottom) of the 4 hours
snapshot data collected on 2021-02-10
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Figure 4.13: SRTK fix rate for different bandwidths when 100 ms integration time under
different baselines

Figure 4.14: MeanLRF value for different bandwidths when 100 ms integration time under
different baselines
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Besides, when the baseline distance is less than 10 km, the decreasing trend does not

appear to be quite obvious as the SRTK fix rate curve is almost flat and the mean LRF

variation is also small. As the baseline distance increases, the SRTK fix rate drops more

rapidly, which could be caused by the simple DD measurement modeling adopted in the

RTK filter. More specifically, with 100 ms of integration time, and a baseline shorter than

15 km, more than 90% of snapshots generated valid RTK fixed solutions, regardless of the

signal bandwidths used. In contrast, when the baseline distance increased to 50 km, the fix

rate dropped to approximately 30%, with an average LRF value below 2.

In addition, Figure 4.13 depicts that the bandwidth also impacts the fix rate. The

green line representing 6.36 MHz of sampling rate is lower than the one for 31.8 MHz by

approximately 5% for most baseline distance cases. However, this impact seems much less

significant compared to influences of baseline distance. As also shown in Figure 4.14, the

mean LRF value is only slightly decreased from 7.2 to 5.8 for short baselines. This variation

is even less noticeable under longer baseline scenarios.

Table 4.2: RTK fix rate (in percentage) for different integration times at different baselines.

5 km 10 km 15 km 20 km 25 km 30 km 35 km 40 km 45 km 50 km

40 ms 92.53 90.87 87.14 82.16 74.69 66.39 53.11 51.45 40.66 31.54
60 ms 95.44 95.02 90.46 84.65 78.01 70.54 55.6 46.89 37.34 28.63
80 ms 98.34 98.76 94.19 88.38 80.91 74.69 59.34 56.02 43.98 27.80
100 ms 100 99.17 96.27 90.46 84.65 76.35 63.07 62.24 48.55 32.78

Table 4.3: Mean LRF values for different integration times at different baselines.

5 km 10 km 15 km 20 km 25 km 30 km 35 km 40 km 45 km 50 km

40 ms 5.92 5.56 4.99 4.35 3.69 3.06 2.51 2.38 2.03 1.73
60 ms 6.58 6.18 5.49 4.67 3.9 3.23 2.64 2.32 2.04 1.73
80 ms 7.15 6.72 5.93 4.99 4.1 3.48 2.81 2.55 2.14 1.74
100 ms 7.38 6.88 6.07 5.19 4.33 3.63 3.05 2.81 2.23 1.86

The fix rate and meanLRF results for different integration times at different baselines

are listed in Table 4.2 and 4.3, using a signal bandwidth of 31.8 MHz. Both tables show
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that the performance of longer integration time is generally better compared to those shorter

ones, although its impact is not as significant as the baseline distance. By looking at Table

4.2, an 8% improvement is observed when increasing the integration time from 40 ms to

100 ms, while this improvement becomes less noticeable when the baseline distance grows

larger than 40 km. Table 4.2 also shows that the fix rate can still reach 90% for all the

integration times used when the baseline distance is smaller than 10 km, and a fix rate of

80% can be assured for 20 km baselines. Results in Table 4.3 further confirm that the mean

LRF improves when longer integration time is used. An overall 20% improvement in the

meanLRF value is observed when integration time increases from 40 ms to 100 ms, except

for the scenarios with baseline distances over 40 km.

Table 4.4: Snapshot data size (top value, in kB) and SRTK fix rate (bottom value, in
percentage) for different integration times and bandwidths at 15 km baseline.

31.8
MHz

25.44
MHz

21.2
MHz

15.9
MHz

12.72
MHz

10.6
MHz

7.95
MHz

6.36
MHz

40 ms
636 508.8 424 318 254.4 212 159 127.2
87.14 92.95 87.14 89.21 93.36 88.38 82.16 78.84

60 ms
954 763.2 636 477 381.6 318 238.5 190.8
90.46 91.29 87.97 90.46 90.04 88.38 86.72 82.99

80 ms
1272 1017.6 848 636 508.8 424 318 254.4
94.19 94.19 92.95 94.19 90.87 90.46 90.87 87.55

100 ms
1590 1272 1060 795 636 530 397.5 318
96.27 95.85 95.85 96.68 95.02 95.02 94.19 91.25

Finally, the data size corresponding to the chosen settings are represented in Table 4.4

together with the corresponding SRTK fix rates. To show the relationship between the SRTK

fix rate and the data size more clearly, all their values at 15 km baseline distance are presented

in Figure 4.15. Note that results from different integration times are represented by different

colored markers to show that snapshot data size increases along with the integration time.

In general, larger snapshot sizes result in a higher possibility of fixing SRTK ambiguities.

In this regard, the smallest data size used in this section is 127.2 kB and result in a 78.84%

fix rate, while the largest data size used is 1590 kB, which is 12.5 times of the smallest
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Figure 4.15: SRTK fix rates in relation to the snapshot sizes at 15 km baseline for different
integration times.

data size, brings a fix rate of 96.27%. There is an obvious trade-off to consider between the

data size and the expected accuracy. Assuming a minimum acceptable fix rate of 90%, the

smallest data size able to achieve this goal in the test scenario is 254.4 kB, by using 12.72

MHz of bandwidth and 40 ms of integration time, for an observed fix rate of 93.36%.

The errors in the estimated coordinate are depicted in Figure 4.16 and Figure 4.17 to

show the accuracy performance of SRTK when carrier phase ambiguities are fixed. These

results are generated using 100 ms of integration time, 31.8 MHz signal bandwidth and 5

km baseline distance, for which a 100% fix rate was achieved, as shown in Table 4.2.

Figure 4.16 shows a small bias in the solutions, respectively -0.11 cm, 0.93 cm and 0.48

cm for East, North and Up directions. These biases might be a result of the inaccuracies in

the ground truth, which was computed by averaging RTK fixed solutions from a closed-loop

receiver (u-blox F9P). The corresponding standard deviations are 0.29 cm, 0.41 cm and 0.59

cm. It can be also seen in Figure 4.17 that the position points are generally located inside

a 2 cm x 2 cm region with a calculated CEP of 1.012 cm, as denoted by the red circle. The
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Figure 4.16: East (blue), North (orange) and Up (green) errors of SRTK fixed solutions,
based on 100 ms of integration time, 31.8 MHz signal bandwidth and 5 km baseline distance

horizontal positioning RMSE is 1.066 cm and the 3D RMSE is 1.309 cm. The 95th percentile

(P95) errors in the horizontal domain (denoted by the green circle) and 3D errors are 1.619

cm and 1.921 cm, respectively.
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Figure 4.17: Horizontal positioning errors in East and North directions, based on 100 ms of
integration time, 31.8 MHz signal bandwidth and 5 km baseline distance



Chapter 5

Data Bit Ambiguity

DBA is defined as the phenomenon when more than one of the data bit hypothesis candidates

can bring about the detection of an acquisition energy peak. It is one of the main challenges

faced by the SRTK technique that must be dealt with so that a unique set of snapshot

measurements is obtained. The present chapter is dedicated to such DBA issues and describes

some methods that can be applied to avoid, or at least to alleviate, the destructive influences

that DBA poses on the SRTK performance.

Section 5.1 describes the fundamental reasons behind such phenomenon and the resulting

HCEs that may appear in the carrier phase measurements. Due to the differences in signal

structure of pilot signals and data signals, two new methods are introduced in this chapter,

respectively aiming at these two types of signals. The first method is based on exploring the

possible consensus of SCI values that can be formed among all satellites, the full description

and performance analysis for this method is presented in section 5.2. The second method

is an iterative process that focuses on the change of LRF result after each attempt of HCE

correction. This method is discussed with more details in section 5.3.1.

5.1 Introduction

The main difference of snapshot baseband processing module from the traditional close-

loop receivers is the application of the MH acquisition. As shown in Equation (3.1), the two

118
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Figure 5.1: The ambiguous situation with two carrier phase measurements separated by half
a cycle.

branches of correlation results are computed including the multiplication of the data symbols

d[n − τ ] from one of the predefined hypotheses. It is recalled that the estimation of the

acquisition results are based on evaluating the correlation energy computed as Y 2
I (τ, FD) +

Y 2
Q (τ, FD). When the hypothesis symbols d[n−τ ] are exactly the same as the actual symbols

encoded in the collected signal, the maximum correlation energy is obtained. However, this

is not the only situation that leads to the correlation energy peak. In fact, when the symbols

of d[n− τ ] are exactly opposite to the actual symbols, the same maximum energy magnitude

can be obtained while the complex output of the correlation output can be represented as

−YI − jYQ, instead of the nominal output YI + jYQ.

The carrier phase error caused by this ambiguous situation is plotted in Figure 5.1. As-

suming that the black arrow represents the nominal complex correlation result (normalised),

then the orange dashed line arrow shows the results obtained when multiplying symbols with

exactly opposite signs. It can be seen that there is a 180 degrees offset between the complex

angles of these two sets of results, such carrier phase offsets are referred to as the HCE.



DATA BIT AMBIGUITY 120

Note that the SRTK performance will not be impacted if such carrier phase HCEs exist in

all satellites, this is because they will be cancelled out when performing measurement differ-

encing between satellites. The problem, however, is when only part of the satellites present

such errors.

5.2 Pilot Signals

5.2.1 Current Limitations

Thanks to the fact that pilot signals do not contain navigation message data bits and the

whole sequence of secondary code symbols is known beforehand, the MH acquisition module

is able to generate the SCI values as one of the snapshot measurements. The SCI values are

important for the SRTK processing mainly for the following two reasons:

1. to compute an accurate secondary code delay τ
′(k)
sc based on Equation (4.1), which

will leave a resolution of a full secondary code period TS for the navigation filter to

determine the global time tag of the observables, as described in section 4.2.2. Only

when accurate SCI values are known, the satellite transmission times can be properly

computed based on the integer round-off procedure and the satellite position errors are

within an acceptable range for the RTK navigation filter.

2. to ensure that the secondary code symbols are estimated correctly and the carrier

phases are free from potential HCEs.

For pilot signals, DBA issues do not exist when the snapshot signal is long enough. This

is because there is no other subsets of the known sequence that contains exactly the same

symbols or with exactly the opposite signs, and thus the MH acquisition module produces a

unique set of measurements that correspond to the actual SCI hypothesis. The DBA issue

gradually appears when the snapshot length decreases, as discussed in the following example.
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Figure 5.2: Different Galileo E1C signal SCIs for different satellites (represented as different
rows) in a 20 ms snapshot signal (depicted in green). The vertical lines represent the start
(red) and end (black) of a full Galileo E1C signal secondary code period of 100 ms.

Figure 5.2 presents different SCIs of different satellites in a 20 ms snapshot recording.

The vertical lines represent the start (red) and end (black) of a full Galileo E1C signal

secondary code period of 25 bits, lasting 100 ms. Each row represents one satellite and

each square box carries one secondary code symbol that lasts 4 ms, where the shaded ones

represent bit 0s and blank ones represent bit 1s. It is recalled that such secondary codes are

identical for all satellites, as shown by the fact that all rows share the same shade pattern.

The number inside each box represents their SCI, counted from the secondary code edge

(marked in red). In this example, the actual SCI values for these satellites at the start of

the received snapshot signal are [17, 18, 12, . . . , 16]. The CAF energy peak should be found

under these hypotheses.

However, because the snapshot data is so short, the CAF peak can be detected for some

other particular SCI hypotheses as well. Such incorrect (i.e. ambiguous) cases can be divided

into two groups based on their potential consequences on the secondary code delay τ
′(k)
sc and

the carrier phase measurements:

1. The ambiguous SCI lead to secondary code symbols that are exactly the same as the
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actual ones. In these scenarios, the false SCI values only disrupt the computation of

the secondary code delay τ
′(k)
sc but not the carrier phase measurement.

2. The ambiguous SCI lead to secondary code symbols that are exactly opposite to the

actual ones. In these scenarios, the false SCI values disrupt the computation of the

secondary code delay τ
′(k)
sc and at the same time introduce HCEs to the carrier phase

measurements.

Figure 5.3 shows all the 4 possible ambiguous cases for Galileo E1C pilot signal with

a received signal length of 20 ms. Six secondary code symbols (i.e. NS = 6) are required

following Equation (3.9), with tcoh = 20 ms and TS = 4 ms. The coloured (green, blue

and pink) rectangles represent the locations of the local replica secondary codes according

to their SCI hypotheses.

The top row depicts the ambiguous scenario 1, where SCI indexes of 6 and 7 lead to

exactly the same secondary code symbols, both with the sequence of [1 1 1 1 1 1]. In

contrast, the other three rows depict the ambiguous scenario 2; the pairs of ambiguous SCI

values all lead to exact opposite secondary code symbols, and thus are shaded by different

colors. For instance, the second ambiguous case has SCI of 3 (blue) and 25 (pink) that

correspond to the sequences of [0 0 0 1 1 1] and [1 1 1 0 0 0] respectively. In these cases, the

carrier phase measurements will contain a HCE if the acquisition result sets are chosen with

the wrong SCI value.

There is an upper limit in the duration of received signal for which DBA issues can

still appear. When the snapshot length is long, a unique set of acquisition result can be

found instead of multiple ambiguous sets. In these long-snapshot scenarios, the DBAs are

automatically solved in the MH acquisition process. This way of solving DBA issues is named

as the satellite independent method in this thesis since the SCI determination process

is only related to one particular satellite, in contrast to the consensus-based method

proposed later. Also, when the snapshot is shorter than this limit, it does not mean that

DBA will definitely happen. For the example shown in Figure 5.2, only the last row (SCI of
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Figure 5.3: Four ambiguous cases that are possible for 20 ms of Galileo E1C signal. The
first row show two SCI hypotheses lead to exactly the same secondary code symbols (in
green), whereas the other three rows show different SCIs leading to exact opposite secondary
code symbols (blue and pink) and hence can cause HCE in the corresponding carrier phase
measurements. The vertical lines represent the start (pink) and end (black) of a full Galileo
E1C signal secondary code period of 100 ms.

16) could be impacted by the DBA issue since Figure 5.3 has shown that [2, 3, 6, 7, 16, 21,

24, 25] are the only 8 candidates potentially exposed to such issue in this example.

These 8 SCI candidates among all the 25 possible values implies a probability of 32% that

a particular satellite can not obtain a unique acquisition result set. Table 5.1 presents the

results of such probability calculations for other snapshot lengths as well as their theoretical

number of ambiguous SCIs (denoted by Namb). Table 5.1 also includes other details such

as NS following Equation (3.9), and the maximum Nhyp, which is defined as the maximum

number of SCI candidates that lead to the same secondary code sequence. Note that the

minimum coherent integration time tested is 4 ms to ensure at least one full primary code

period is included.

Table 5.1 shows that the DBA issue vanishes in MH acquisition results when the collected

Galileo E1C signal has a duration greater than 24 ms. Only under this condition it can be

assured that the resulting snapshot carrier phase measurements are free from HCEs. In the

light of these results, a new method has been developed in order to alleviate such limitations

and ensure the absence of DBAs in carrier phase measurements for integration times shorter
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Table 5.1: Number of ambiguous SCIs for Galileo E1C pilot signal when acquired indepen-
dently.

Tcoh [ms] NS Namb Possibility of DBA Maximum Nhyp

(0, 4] 2 25 100% 12
(4, 8] 3 25 100% 4
(8, 12] 4 25 100% 3
(12, 16] 5 17 68% 2
(16, 20] 6 8 32% 2
(20, 24] 7 2 8% 2
(24, ∞) ≥ 8 0 0% 1

than 24 ms.

Whenever the DBA issue appears, no matter which type, it blocks the SRTK engine as

the global time tags and highly accurate pseudoranges can not be determined correctly. The

actual SCI value must be picked out from the ambiguous set and the snapshot measurements

should be filtered to remain only the correct set of data.

The SCI identification process is known as the Data Bit Ambiguity Resolution (DBAR)

and the overall workflow including this procedure is presented in Figure 5.4. As it can be

seen, the MH acquisition results contain multiple ambiguous sets for each satellite, depicted

in the leftmost table with red texts. The superscripts of the measurements denote the

satellite, ranging from 1 to N, whereas the subscripts from 1 to M i stand for the SCI of

the acquisition result sets for satellite i, where M i is the total number of ambiguous sets

of satellite i. Since the M i value is different for different satellites, this table could have a

different number of rows for each column.

Note that for each satellite, the code delay measurements are identical for all the ambigu-

ous sets, thus, the full period ambiguity resolution process is not impacted by the existence

of DBAs. The key in Figure 5.4 is that the transmission time differences among satellites are

also computed in this process as they are a critical input for the DBAR process. Ideally, the

DBAR process should filter the MH acquisition results and generate a unique set of solution

for each satellite, just like in the nominal cases where DBA issue does not exist. Then, these

filtered outputs (shown in the table with green texts) are fed to the SRTK engine together
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Figure 5.4: The overall SRTK workflow with the DBAR procedure for short snapshots.

with the full pseudoranges to obtain the PVT results.

5.2.2 Consensus-based Method

The consensus-based solution is based on the fact that the full period integer differences

N
(k0)
c can be accurately determined following Equation (3.18) as long as the coarse time and

position errors are within acceptable ranges, as described in section 3.3. The transmission

time differences can also be computed based on the N
(k0)
c values since the reception time

is common for all satellites. Since the a priori knowledge about the whole secondary code

sequence is available, the mappings from transmission times to the encoded secondary codes

are already known, thus, the expected relationships between SCI values of different satellites

can be obtained as well. That is, if N
(k0)
c = 1, then it should be expected that SCI(0) −

SCI(k) = 1, where SCI(0) and SCI(k) represent the SCI value for the reference satellite and

satellite k, respectively. These relationships then work as a constraint for the SCI values

obtained from the MH acquisition results.

The fundamental rule behind these restrictions is that all the satellites share the same
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signal reception time. For any individual satellite k, its reception time can be represented

as trx by Equation 5.1, as a summation of the transmission time t
(k)
tr and the flight time t

(k)
f .

trx = t
(k)
tr + t

(k)
f (5.1)

where t
(k)
tr and t

(k)
f are the transmission time and flight time of satellite k, respectively. The

former is represented in Equation 3.11 as the combination of the integer part Yc and the

fractional part τr of a primary code period Tc, i.e., trx = τr + Yc · Tc. Equation 3.11 can be

re-defined concerning the secondary code period TS as:

t
(k)
tr = τ (k) + SCI(k) · Tc +X

(k)
S · TS (5.2)

where X
(k)
S is an integer that corresponds to the transmission time, analogous to X

(k)
c but

with a lower resolution in time (TS instead of Tc, e.g., 100 ms instead of 4 ms for Galileo

E1C signal). The signal flight time t
(k)
f can be represented by τ ′(k) + N

(k)
c · Tc according to

Equation 3.12. Then, Equation 5.1 can be re-written as:

trx = τ (k) + SCI(k) · Tc +X
(k)
S · TS + τ ′(k) +N (k)

c · Tc (5.3)

Notice that it was defined in Figure 3.6 that τ (k) + τ ′(k) = Tc, i.e, their sum is actually equal

to one full primary code period Tc, the above equation can be further simplified as:

trx = X
(k)
S · TS + (N (k)

c + SCI(k) + 1) · Tc (5.4)

The reception time can be computed using Equation 5.4 for two different satellites, such as

a reference satellite indexed as 0 and another indexed as k, the following equation can be

obtained:

X
(0)
S · TS + (N (0)

c + SCI(0) + 1) · Tc = X
(k)
S · TS + (N (k)

c + SCI(k) + 1) · Tc (5.5)
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Note that N
(k)
c can be expressed as N

(0)
c + N

(k0)
c , where N

(0)
c is the random integer chosen

for the reference satellite and N
(k0)
c is the full period integer difference that is accurately

determined based on section 3.3. After further simplification, the final equation linking SCI

values and N
(k0)
c results can be obtained:

SCI(k0) = X
(k0)
S · TS/Tc −N (k0)

c (5.6)

WhereX
(k0)
S = X

(k)
S −X

(0)
S is the difference between integers of secondary code periods of their

transmission times. Most of time X
(k0)
S is zero unless the transmission times are located in

two different TS periods. The term SCI(k0) = SCI(k)−SCI(0) is the SCI difference between

the two satellites. Equation 5.6 implies that the difference in full period integers N
(k0)
c can

be used to deduce SCI(k0), which reveals the differences between the SCI values of different

satellites.

The new consensus-based method can be generally divided into five steps:

1. The MH acquisition generates all the SCIs that lead to a acquisition peak for each

satellite, including the ones with correct secondary codes and the ones with exactly

opposite signs. For each satellite, only one candidate is correct and the target is to

identify it as other candidates could lead to HCEs.

2. Perform the full period ambiguity resolution and store the N
(k0)
c results. Note that the

reference satellite is always indexed as 0.

3. Shift all potential SCI candidates (computed in step 1) for each satellite by an amount

corresponding to N
(k0)
c obtained in step 2 and obtain the modulus of shifted indexes

for each satellite (in order to remove the X
(k0)
S term).

4. Find a unique common integer value among the modulus of all shifted indexes (com-

puted in step 3). This process can be achieved by a weighted voting procedure, which

is described in the following paragraphs. In this way, the SCI ambiguities for each
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satellite are resolved.

5. Shift back the unique integer values obtained in step 4 according to their flight time

differences (by the same amount as in step 3) and retrieve the actual SCI values for

each satellite. Finally, filter out other measurement values that correspond to the

wrong SCI candidates

Figure 5.5 provides an overall example of the consensus method, using Galileo E1C pilot

signals (recall that one full Galileo E1C signal secondary code period contains 25 bits).

The integration time Tcoh is 12 ms and thus, NS = 4 following Equation (3.9) with a 100%

probability of DBA according to Table 5.1. As in the previous discussion, each row represents

one satellite.

The top right corner at Figure 5.5-(a) shows an example of the MH acquisition results.

The red square boxes represent three ambiguous SCI hypotheses that lead to a CAF energy

peak, while only one of them is the correct one. Notice that according to Table 5.1, we can

have a maximum Nhyp = 3, i.e., among all the ambiguous sets, each set contain no more

than three SCI values with Tcoh = 12 ms.

The aim of the consensus-based method is to resolve those DBAs and find the actual

SCI of each satellite with the help of the flight time difference information N
(k0)
c , which is

provided at the top left corner. These differences are computed based on Equation (3.18)

using the second satellite as the reference, following the Step 2 previously described.

Step 3 shifts all the ambiguous SCI candidates for each satellite by an amount that

corresponds to their flight time differences and update the SCI values, as shown in Figure

5.5-(b). That is, the first, third, and N -th satellites are shifted by N
(10)
c = 5, N

(30)
c = 7,

and N
(N0)
c = 8. In contrast, the second satellite has been shifted by a full secondary code

period (i.e. 25 bits) in order to better illustrate the consistency among satellites under the

secondary code rollover, which is taken into account by the modulus operation.

Step 4 finds a common integer of 4, based on the consensus among these shifted SCIs

(shaded in green on the right side of Figure 5.5-(b).), while the other SCI candidates are
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Figure 5.5: Example of DBA resolution based on transmission time consensus.

considered as false and are discarded. These false candidates are marked by a cross in Figure

5.5-(c).

Step 5 finally shifts back this common index with the same amount as N
(k0)
c , we can find

the actual SCI values for each satellite. In the example shown at Figure 5.5-(c), we obtain

SCIs as [24, 4, 22, . . . , 21]. The carrier phase measurements built based on these SCI values

are free from HCEs.

In many actual recordings, the acquisition process could provide results that are prone

to errors when the received signal strength is weak. When such errors exist in SCI results,

it is possible that the proposed method can not find a common shifted SCI value from all

the satellites. In this case, the consensus is destroyed by a minority that shows an anomaly

due to false acquisition. In order to still obtain a robust solution in these scenarios, it is
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proposed to perform a voting procedure to form the final consensus among all the satellites.

Each satellite participates with a different weight, which can be based on, for instance, its

energy magnitude obtained in the CAF. This procedure brings two advantages:

1. The voting weight leverages the different reliability of different satellites and this results

in a final solution that agrees more with the satellites with higher correlation peaks.

2. This step ensures that a unique solution can still be found even when a minority of

satellites show anomalies and interrupt the procedure of finding the common SCI.

Even though the proposed method brings great benefits for signals with short coherent

integration times, it is still not possible to totally solve all the DBA issues, especially when

the number of acquired satellites is reduced. The effectiveness of this method depends on

three factors:

1. The diversity in the estimated satellite transmission times,

2. Total number of satellites,

3. The number of ambiguous SCI hypotheses for each satellite. Nhyp

The first factor depends on the satellite-receiver geometry. It determines the flight time

of each satellite and since the reception time is common to all satellites, it results in the

differences in the transmission times and SCI values among satellites. If all acquired satellites

have very similar geometric distance to the receiver and result in almost the same flight times,

the shifted SCIs as described in step 4 of section 5.2.2 would tend to be identical. Under

such circumstance, the procedure of weighted voting could fail to find a unique index at

step 5 and the acquisition result remains ambiguous. The second factor impacts the solution

mainly because the more satellites participate in the voting, the higher chance that a unique

solution can be obtained. The third factor is determined by the number of secondary codes

encoded in the snapshot signal NS, which is higher for longer coherent integration times and

lower for shorter signals. For these reasons, unsuccessful DBAR could still happen when
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the integration time is short and there is a limited number of satellites acquired. We have

performed experiments under these scenarios and the results are presented in section 5.2.3.

5.2.3 Experiment Results

In order to show the improvements of the proposed consensus-based method compared to the

conventional satellite independent method for SCI determination, the following experiment

campaign was performed based on real snapshot GNSS signal recordings. The original

snapshot data set used for evaluating the performance is the same as that used in section

4.4, which contains 240 snapshots across a duration of 4 hours. The difference with respect

to the experiments performed in section 4.4 is that only Galileo E1C signals are used since

this method mainly concerns pilot signals.

Since the traditional satellite independent method can already solve DBA issues when

the snapshot length is longer than 24 ms, the experiments in this section were focused on

snapshot lengths of {4, 8, 12, 16, 20}ms. The acquisition module was running in full coherent

integration mode using the whole length of the truncated snapshot data. In order to get

the true values of the SCI values of each satellite, the data set was processed in advance

with long integration time of 40 ms using the satellite independent method to ensure that

the detected SCI values are reliable. The results of the new method were then compared

to these true values in order to evaluate its performance variation under different snapshot

lengths.

The snapshot processing results are shown in Figure 5.6. The upper panel represents with

green dots the results where successful DBARs are achieved a single set of acquisition output

is filtered out, while results with red crosses show that the SCI ambiguities remain after the

filtering process. The lower panel of Figure 5.6 shows the number of Galileo satellites that

are acquired.

There are two metrics that should be taken into account when evaluating the performance

of the consensus-based method:
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Figure 5.6: Snapshots with successful (green) and failed (red) DBAR procedure after apply-
ing the consensus-based method for different integration times.
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1. Percentage of Uniqueness Pu. This value represents the success rate of achieving the

DBA resolution. It shows the percentage of snapshots with unique set of acquisition

results, as described in step 5 of the previously mentioned procedure.

2. Percentage of Correctness Pc of the final filtered acquisition results. It shows the

rate of resulting unique sets of SCI values that are the same as the true values, for all

satellites. A simple way to evaluate this is to verify the correctness of the shifted SCI

value, which is computed in step 3 of the procedure. In this way, we only need to make

the comparison once, instead of comparing SCI values for each satellites.

Table 5.2 lists Pu and Pc for different integration times. We can see that by applying the

proposed consensus-based method, a unique solution can be obtained for all (i.e. Pu = 100%)

snapshots longer than 12 ms. As for the performance in terms of the correctness, the Pc

values show that basically all the actual SCI values are filtered out correctly as long as a

unique SCI set can be found. The only exception is when the snapshot is less than 4 ms, a

few snapshots (7.4%) have been fixed to the wrong SCI values. This might be caused by the

false acquisitions due to the short integration time and since only 2 secondary code symbols

are involved, the larger number of hypothesis (Nhyp = 12 in Table 5.1) brings difficulties to

the successful achievement of DBAR.

Tcoh [ms] Pu Pc

(0, 4] 39.42% 92.6%
(4, 8] 82.37% 100%
(8, 12] 95.44% 100%
(12, 16] 100% 100%
(16, 20] 100% 100%
(20, ∞] 100% 100%

Table 5.2: Performance of consensus-based method in terms of uniqueness and correctness.

Figure 5.7 compares the results of the consensus-based method with the traditional satel-

lite independent method. We can see that the latter (denoted by the blue line with cross

markers) needs at least 24 ms of snapshot length to achieve Pu = 100%, while the former,
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Figure 5.7: Probability of DBA issue (computed as 1 − Pu) to happen for Galileo E1C signal
using satellite independent method (blue) and proposed consensus-based method (orange).

as confirmed by Table 5.2 also, requires only 12 ms. When the snapshot length goes even

shorter, the new method still shows superiority as it results in a much lower possibility of

DBA.

5.3 Data signals

5.3.1 Current Limitations

The consensus-based method mentioned above can only be applied to pilot signals due to

the following reasons:

• The a priori knowledge about the exact secondary code sequence does not exist for

data signals, since the navigation message data bits are constantly changing and thus,

there is no direct link between the transmission time and the encoded data bits that

can be utilised.

• Even if the time-tagged navigation data bit streams are provided through external
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assistance and the potential transmission time candidates can be deduced based on

the u index values MH acquisition results, it would be still difficult to form a final

consensus among all the satellites due to the limited diversity in transmission time

differences compared to the bit duration. For example, GPS L1 C/A and Galileo E5a-

I signals both employ navigation data bits that last 20 ms (i.e. modulated at 50 Hz).

Considering that the transmission times are separated by a maximum of 30 ms due to

the difference in geometric ranges from the receiver to different satellites, it is highly

possible that the transmission epochs of many satellites are located in a time period

that is covered by the same bit. This fact severely reduces the probability to find a

unique solution.

For these reasons, it is not practical to attempt to resolve the DBA issues for data signals.

In order to make use of the data signal measurements in the navigation filter, the potential

HCE errors must be excluded from the snapshot carrier phase measurements.

5.3.2 Iterative Amendment Method

An iterative method has been developed by evaluating the LRF values computed with dif-

ferent subsets of measurements. Section 2.2.6.2 presented how the LRF values are computed

and it is known that when the number of measurements increases in the navigation filter, the

LRF value typically increases. However, if any carrier phase measurement contains HCE, the

corresponding DD carrier phase measurement is contaminated by the same amount as well.

Such erroneous measurement severely impacts the ratio test and the LRF value decreases to

a value close to 1, which indicates that the second best solution of integer set is almost the

same as the best solution in terms of their “closeness” to the float solutions. By observing

the changes of the LRF value after including one measurement, it is possible to determine

if the newly added measurement is affected by the HCE. The proposed method is based

on iterative inclusions of satellites, and, once a HCE-impacted measurement is detected, it

corrects the carrier-phase measurements by adding half a cycle and then proceed to the next
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satellite inclusion until completing the iteration of such error detection.

As an initial step, the first LRF value (denoted by R0) should be computed based on all

measurements that are guaranteed to be free from HCEs. Pilot signal measurements, thanks

to the consensus-based DBAR method mentioned before, can be used as a starting point,

before any satellites with navigation data bits are iteratively included into the navigation

filter.

The overall workflow of the proposed iterative method is presented in Figure 5.8. Starting

from the initial LRF value R0, one satellite measurement with potential HCE is included

to the navigation filter and the corresponding new LRF value R1 is computed. On another

parallel branch, the newly included carrier phase measurement is intentionally added by a

half cycle bias, obtaining a parallel LRF value of R′
1. The decision is made by comparing R1

and R′
1 values: if R1 is larger, then we assume that the included measurement was free from

HCE and vice versa. If the decision is that HCE exists in the newly added carrier phase

measurement, it is directly amended by adding half a cycle and used as a base measurement

for the next iteration of computation for R2 and R′
2. The same procedure is repeated for

other satellites and the index k in the Figure denotes the results after the kth satellite is

included. In this way all the measurements can be amended one by one, resulting in a final

solution with an increased number of satellites included into the navigation filter.

The key in the proposed process is the decision making step. In some cases, the LRF

value does not change much with added satellites, in some other cases, the LRF value even

slightly decrease when a HCE-free carrier phase is included due to the bad quality of this

newly added measurement. Thus, the simple strategy based on direct comparison of LRF,

as shown in Figure 5.8, may not always lead to accurate HCE detection. Some additional

conditions can be added to make the decision making process more accurate and robust to

anomalies. These more advanced strategies are left for future research and the remaining

part of this section focuses on the performance of the simple strategy shown in Figure 5.8.
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Figure 5.8: Workflow of HCE amendment based on iterative satellite inclusion. The decision
making is based on direct comparison of the LRF values computed with and without adding
satellites contaminated by HCE.
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5.3.3 HCE Amendment Performance

The same data set as in Section 4.4 is used for the evaluation of the proposed method,

consisting on a zero baseline configuration shown in Figure 4.5. Only GPS L1 C/A and

Galileo E1C signals are processed for the experiments presented in this section. The Galileo

E1C signals are used as the base measurements to compute the R0 value. GPS L1 C/A

signals are prone to possible HCEs and are included to the solution one by one according to

the iterative method.

In order to verify the effectiveness of the proposed method, the actual carrier phase

measurements are computed with the assistance of the actual navigation data bits that

are collected from the data base of GFZ [65]. By post-processing the collected data with

the knowledge of such data bits, the DBA issues can now be prevented from happening at

the acquisition stage, resulting in snapshot carrier phases that are free from HCEs. These

carrier phase values are then used as the ground truth. Then, additional HCEs are added

to the carrier phase measurements of all GPS satellites on purpose for the evaluation of the

proposed method.

Figure 5.9 shows an example of changes in the LRF after including one correct (.e., HCE-

free) and one wrong carrier phase measurement containing a HCE. The green line shows the

LRF value change when all the inclusions are free from HCEs, while the red branches show

the results when the included measurements contain such errors. For this example, R0 = 1.08

is computed using 9 Galileo satellites, whereas another 9 GPS satellites are included to the

navigation filter one by one and their resulting LRF values are computed.

The LRF values (both computed with and without HCEs) and GDOP values after iter-

ative GPS satellite inclusions are presented in the following table:

The result shows that if the included satellite carrier phase is correct, the LRF value

basically increases, as shown by the green line and the Rk column in Table 5.3. In contrast,

once a HCE is present in the newly included measurement, the LRF value drops drastically
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Figure 5.9: Satellite inclusion result for one snapshot with successful carrier phase amend-
ment. Green line represents the LRF results after correct satellite inclusion, red lines repre-
sent the LRF values after including one satellite containing HCE.

to near 1, as indicated by the red branches and the R′
k column of Table 5.3. Note that the

wrong addition is under the basis that all previous inclusions are correct and the pre-inclusion

LRF value is computed without any HCEs. It can also be noticed that the GDOP follows

a decreasing trend to be about 4 times better (from 1.55 to 0.37) when all GPS L1 C/A

satellites are included, compared to the scenario before any inclusion, indicating a better

estimated positioning accuracy. In this example, all the red branches reduce the LRFs and

therefore are below the green line, which means that the proposed method can successfully

detect and correct all the carrier phase HCEs. Unfortunately, such successful cases do not

happen all the time, among all 239 snapshots only 103 snapshots have all their GPS satellite

HCEs detected and amended correctly. This indicates a success rate of around 43.1% by

simply applying the proposed method.

There are some other scenarios where the proposed method does not perform optimally,

which points out that better strategies should be envisaged. Figure 5.10 shows an example
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Number of inclusions k LRF(correct) Rk LRF(wrong) R′
k GDOP

1 5.33 1.49 1.55
2 8.79 1.09 1.5
3 8.57 1.15 1.33
4 9.8 1.07 0.75
5 14.18 1.21 0.53
6 24.13 1.27 0.52
7 27.65 1.09 0.5
8 23.76 1.28 0.41
9 23.45 1.06 0.37

Table 5.3: LRF and GDOP variation results for one snapshot based on the iterative inclusion
method.

where after the second inclusion, the resulting R2 value computed without half cycle is

smaller than its counterpart R′
2. As pointed out by the vertical red arrow, the red branch

extends to the upper side of the green line. In this case the proposed method will fail to

detect the HCE.

This situation is contrary to what is expected as it seems that the LRF computed with

measurements containing a HCE is better than that with only correct measurements. Such

LRF evolution could be caused by the large noise of the newly included measurement, al-

though the root causes still need to be investigated more thoroughly.

Besides, it is noticed that the LRF value before the measurement inclusion impacts the

successful identification of the HCEs as well. That is, there is a relationship between the

probability of a successful repair of the kth measurement and the pre-inclusion LRF value

Rk−1. In order to evaluate how much impact this value has on the success rate, the following

statistics are computed: For all the 239 snapshots processed, each time a satellite is included,

a decision is made based on the proposed method. Thus, a total of 2026 decisions were made

for all the data, among which 222 decisions were wrong. All these wrong decisions are made

based on a relatively small LRF from previous measurements, when the previous LRF values

are large, the follow up decisions about the HCE are generally correct. Figure 5.11 shows a

distribution of the pre-inclusion LRF values for all the 222 wrong decisions (false detections)
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Figure 5.10: Result of the scenario where proposed method fails to detect the HCE that
exists in the second satellite. Green line represents the LRF results after correct satellite
inclusion, red lines represent the LRF values after including one satellite containing HCE.
The red arrow shows when the proposed iterative inclusion method fails.

that were made.

It can be seen that when the LRF is already greater than 3, it is very likely that a correct

decision can be made by the proposed method for the follow up satellite inclusion. The

success rate for this scenario is about 99.03%.

In addition, the order of satellite inclusions also has an impact on the final success rate.

If the more reliable satellites are included first, there is a higher chance that the following

satellite can be corrected and the LRF value can be more reliably increased. For this, the

same data set was used but the satellites are sorted in descending order in terms of their

elevation angles. In this way, the satellites with higher elevation angles are included first to

ensure a higher chance of correct identification and correction. The inclusion results after

this modification were slightly better as a total of 113 snapshots managed to be corrected,

equivalent to a success rate of 47.3% for the proposed method.
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Figure 5.11: Histogram of pre-inclusion LRF values for all the false decisions been made.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The present PhD dissertation has put the focus on the implementation of high accuracy

snapshot GNSS positioning techniques. Conventional snapshot positioning algorithms only

reach meter level accuracy, since only snapshot code delay measurements are used. These

conventional methods, including its signal processing and measurement data processing, have

been reviewed and consolidated. The MH acquisition module is described and special care

is taken in the hypotheses construction process. The snapshot pseudorange measurement

generation process is presented by extending the typically used 1-ms code ambiguity to the

more general full period ambiguity resolution procedure, which enlarges the amount of signals

this method can be applied for. Besides, the fractional carrier phase generation for snapshot

signals has been also described. The general performance of conventional snapshot technique

has been analysed based on processing different sets of real-world snapshot collections. The

results of Section 3.5.1 show that under nominal conditions, i.e., 40 ms of coherent integration

time and 14.5 MHz of sampling rate, the absolute timing error of the conventional CTF

solution is within few milliseconds, with a maximum error of 6.4 ms. As for the positioning

accuracy, Section 3.5.2 showed that the horizontal errors are below 5 m while the vertical

error presents a standard deviation of 3 m, being the maximum 3D error below 10 m. The

143
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fundamentals established by the conventional snapshot positioning techniques are of vital

importance for the following more advanced data processing.

My research encountered with two main challenges blocking high accuracy snapshot po-

sitioning results. Namely, the generation of full pseudorange measurements that are highly-

accurate in terms of satellite transmission times and the presence of possible carrier phase

HCEs that are caused by the DBA issues.

For the first challenge, Chapter 4 proposed a dedicated solution based on global time tag

determination. The zero-baseline experiment results proved, for the first time, that SRTK

is feasible and high-accuracy positioning results can be obtained based on snapshot GNSS

recordings. Further experiments were performed and the SRTK performance was evaluated

in more details, under different scenarios of processing parameters. The following conclusions

can be drawn based on the results obtained:

• Increasing the coherent integration time used in the MH acquisition step improves the

code measurements quality and as a result, increases the SRTK fix rate. The same

principle applies for the bandwidth parameter. The higher it is, the more feasible

the IAR becomes. Note that the bandwidth parameter is adjusted by changing the

sampling rate of the collected snapshot signal. Thus, the increase of SRTK fix rate

is at the price of a larger size of data to be transmitted to the cloud server and a

corresponding higher computational burden. The trade-off between these parameters

should be well considered when developing the snapshot receiver.

• When processing with only single constellations, Galileo signals perform slightly better

than GPS signals according to the zero baseline results. By using multiple constella-

tions together, a 100% fix rate can be achieved for all the data sets that have been

processed under zero baseline mode.

• The availability of snapshot measurements from multiple frequencies dramatically in-

creases the fix rate.
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• Non-zero baseline SRTK positioning is also achievable. In fact, the navigation filter

used for the experiments applied a short baseline model, i.e., ignoring the residual DD

atmospheric delays. In this case, the baseline distance has a more significant impact

on the fix rate than the bandwidth and integration time when the distance is larger

than 10 km.

• Test results in Section 4.4 have also shown that a snapshot with the size of 255 kB

could result in a potential fix rate of more than 93% with 15 km baseline distance.

• 100% fix rate was achieved with 100 ms of integration time and 31.8 MHz of sampling

rate for 5 km baseline distance. When the snapshot carrier phase ambiguities are

correctly fixed, centimetre level positioning accuracy can be obtained, as shown in

Figure 4.17.

For the second challenge, different solutions are proposed for pilot signals and data sig-

nals. The pilot signals contain known sequence of secondary code bits and hence HCEs are

eliminated from the source by resolving the DBA issues using a consensus-based method.

This method exploits the inherent relationship between the flight time differences and the SCI

values that can be obtained from the MH acquisition results. Real-world snapshot recordings

were processed based on the proposed method to evaluate its performance compared to the

traditional workflow where the DBA of each satellite is solved independently. Galileo E1C

was chosen as the signal to be experimented and the results showed that the consensus-based

method largely improves the capability to solve DBA issues. The consensus-based method

guaranteed correct identification of SCI values for all satellites whenever the coherent inte-

gration time was longer than 12 ms. It remained partially effective even for signals as short

as 4 ms. In contrast, 24 ms were needed by the traditional method based on the independent

DBA removal. This better capability of obtaining correct SCI values effectively expanded

the scope where high precision positioning can be achieved with snapshot data, thanks to

the more genuine carrier phase measurements that are generated in the acquisition process.



CONCLUSIONS AND FUTURE WORK 146

For data signals, the consensus-based method can not be applied due to the lack of

knowledge about the exact sequence of the encoded bits. In order to still obtain SRTK fixed

solutions, another method is proposed focusing on detecting and amending the HCEs that

still exists in the snapshot carrier phase measurements after the MH acquisition process.

This method is based on observing the change of the SRTK LRF values after iteratively

including the potentially erroneous satellite carrier phase into the navigation filter. This

iterative method successfully detected and amended all the HCEs that were included in

43.1% of the snapshots that were tested. The other part of the snapshots in the data set

were only partially fixed, which indicates room for improvement in the proposed method:

• First, the order by which the measurements are processed in the sequential inclusion

algorithm can be improved: when satellites with higher elevation angles (and hence,

lower measurement noise) are included first, the overall success rate increases from

43.1% to 47.3%.

• Second, enhanced decision making performance can be obtained when considering the

pre-inclusion LRF values. When such value is already larger than 3, the proposed

method obtained more than 99% success rate.

After the HCE identification and correction procedure, more satellites can be used to de-

termine the user position and as a result, smaller GDOP values and thus better positioning

solutions can be obtained.

6.2 Future Work

The present PhD work has initialised the investigations into algorithms dedicated to high-

accuracy snapshot GNSS positioning, resulting in only the initial results of this subject. Some

further investigations can potentially improve the performance of the proposed methods and

algorithms, some recommendations for future researches in this subject are given below:



CONCLUSIONS AND FUTURE WORK 147

• For the non-zero baseline scenarios, the SRTK performance were only analysed us-

ing GPS L1 C/A and Galileo E1C signals. Following the experiments performed in

this research, more signals could be processed to statistically characterize the SRTK

performance in a robust manner.

• The consensus-based method still does not guarantee 100% of DBAR for Galileo E1C

signals, especially when snapshots are shorter than 8 ms. It is recommended to further

improve the performance of this algorithm by using satellites from other constellations

and signals. Besides, a more extensive use of time assistance and a narrower window

can be applied to filter out the SCI hypothesis with wrong transmission times.

• The proposed iterative HCE detection and amendment scheme can be refined in or-

der to obtain a self-contained method that tackles HCEs with higher efficiency and

effectiveness than the one proposed in the present work. Possible improvements may

include carrier phase residual data analysis and multiple measurements inclusion si-

multaneously. Additionally, a better inclusion sequence can be investigated to not only

consider the elevation angle, but also other parameters such as the signal to noise ratio.
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ACF Auto Correlation Function

ADC Analogue to Digital Converter

AGNSS Assisted GNSS

AI Artificial Intelligence

APC Antenna Phase Center

BDS BeiDou Navigation Satellite System

BOC Binary Offset Carrier

BPSK Binary Phase Shift Keying

CAF Cross Ambiguity Function

CAGR Compounded Annual Growth Rate

CEP Circular Error Probable

CMC Carrier Minus Code

CORS Continuously Operating Reference Station

CRB Cramér-Rao Bounds

CTF Coarse Time Filter

DBA Data Bit Ambiguity

DBAR Data Bit Ambiguity Resolution

DCB Differential Code Bias

DD Double-Differenced

DFT Digital Fourier Transform
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DGNSS Differential GNSS

DLL Delay Lock Loop

DOP Dilution Of Precision

EUSPA Europe Union Space Program Agency

EWL Extra Wide Lane

FARA Fast Ambiguity Resolution Approach

FASF Fast Ambiguity Search Filtering

FFT Fast Fourier Transform

FLL Frequency Lock Loop

GDOP Geometric Dilution Of Precision

GLONASS GLObal NAvigation Satellite System

GNSS Global Navigation Satellite System

GPS Global Positioning System

HCE Half Cycle Error

HI Hypothesis Index

HOW Hand Over Word

IAR Integer Ambiguity Resolution

IB Integer Bootstrapping

ICD Interface Control Documents

ICGC Institut Cartogràfic i Geològic de Catalunya

IF Intermediate Frequency

IFFT Inverse FFT
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IGS International GNSS Service

ILS Integer Least Squares

IoT Internet of Things

IR Integer Rounding

LAMBDA Least-squares AMBiguity Decorrelation Ad-

justment

LOS Line Of Sight

LRF LAMBDA Ratio Factor

LSE Least Square Estimation

MCAR Multiple Carrier Ambiguity Resolution

MCMF Multi-Constellation Multi-Frequency

MH Multi Hypothesis

NAVIC Navigation with Indian Constellation

NCO Numerically Controlled Oscillator

OSR Observable Space Representation

PLL Phase Lock Loop

PNT Position Navigation or Timing

PPP Precise Point Positioning

PRN Pseudo-Random Noise

PVT Position Velocity and Time

QZSS Quasi-Zenith Satellite System
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RF Radio Frequency

RMS Rooted Mean Square

RMSE Rooted Mean Square Error

RTK Real Time Kinematics

SATNAV Satellite Navigation

SBAS Satellite-based Augmentation System

SCI Secondary Code Index

SD Single-Differenced

SIS Signal In Space

SPP Standard Point Positioning

SRTK Snapshot RTK

SSR State Space Representation

TCAR Three Carrier Ambiguity Resolution

TCXO Temperature Compensated Crystal Oscillator

TGD Total Group Delay

TOW Time Of Week

TTFF Time To First Fix

UPC Universitat Politècnica de Catalunya

UPD Uncalibrated Phase Delay

VRS Virtual Reference Station

WL Wide Lane
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WLS Weighted Least Squares
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[7] G. López-Risueño and G. Seco-granados. “Measurement and Processing of Indoor GPS
Signals Using One-Shot Software Receiver”. In: Proceedings of the IEEE Vehicular
Technology Conference. Springer, 2005.

[8] European GNSS Agency (GSA). Power-efficient positioning for the Internet of Things.
Luxembourg: Publications Office of the European Union, June 2020. isbn: 978-92-9206-
048-0. doi: 10.2878/437669. url: https://www.gsa.europa.eu/sites/default/
files/uploads/gsa_internet_of_things_white_paper.pdf.

[9] V. Lucas-Sabola et al. “Efficiency Analysis of Cloud GNSS Signal Processing for IoT
Applications”. In: Proceedings of the 30th International Technical Meeting of The
Satellite Division of the Institute of Navigation (ION GNSS 2017) (Mar. 2017). doi:
10.33012/2017.15237.

[10] X. Liu et al. “RTK Feasibility Analysis for GNSS Snapshot Positioning”. In: Pro-
ceedings of the 33rd International Technical Meeting of the Satellite Division of The

153

https://doi.org/10.2878/031762
https://www.gsa.europa.eu/system/files/reports/market_report_issue_6_v2.pdf
https://www.gsa.europa.eu/system/files/reports/market_report_issue_6_v2.pdf
https://www.icao.int/Meetings/PBN-Symposium/Documents/9849_cons_en[1].pdf
https://www.icao.int/Meetings/PBN-Symposium/Documents/9849_cons_en[1].pdf
https://insidegnss.com/what-is-snapshot-positioning-and-what-advantages-does-it-offer/
https://insidegnss.com/what-is-snapshot-positioning-and-what-advantages-does-it-offer/
https://doi.org/10.2878/437669
https://www.gsa.europa.eu/sites/default/files/uploads/gsa_internet_of_things_white_paper.pdf
https://www.gsa.europa.eu/sites/default/files/uploads/gsa_internet_of_things_white_paper.pdf
https://doi.org/10.33012/2017.15237


BIBLIOGRAPHY 154

Institute of Navigation (ION GNSS+ 2020) (Sept. 2020), pp. 2911 –2921. doi: 10.
33012/2020.17768.

[11] X. Liu et al. “Cloud-Based Single-Frequency Snapshot RTK Positioning”. In: Sensors
21.11 (May 2021), p. 3688. issn: 1424-8220. doi: 10.3390/s21113688. url: http:
//dx.doi.org/10.3390/s21113688.

[12] D. Gebre-Egziabher and S. Gleason. GNSS Applications and Methods. GNSS technol-
ogy and applications series. Artech House, 2009. isbn: 9781596933309. url: https:
//books.google.es/books?id=juXAE3SHQroC.

[13] ARINC Research Corp. Navstar GPS Space Segment / Navigation User Interfaces (IS-
GPS-200). 2021. url: https://www.gps.gov/technical/icwg/IS-GPS-200M.pdf.

[14] “SATNAV SIGNALS”. In: Engineering Satellite Based Navigation and Timing: Global
Navigation Satellite Systems, Signals, and Receivers. John Wiley & Sons, Ltd, 2015.
Chap. 3, pp. 37–101. isbn: 9781119141167. doi: https : / / doi . org / 10 . 1002 /

9781119141167.ch3. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/9781119141167.ch3.

[15] European GNSS Agency (GSA). GNSS User Technology Report. Luxembourg: Publi-
cations Office of the European Union, Oct. 2020. isbn: 978-92-9206-049-7. doi: 10.
2878 / 565013. url: https : / / www . euspa . europa . eu / sites / default / files /
uploads/technology_report_2020.pdf.

[16] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle. GNSS - Global Navigation
Satellite Systems: GPS, GLONASS, Galileo and more. Springer Vienna, 2008. isbn:
9783211730126.

[17] N. Linty. “Snapshot Estimation Algorithms for GNSS Mass-Market Receivers”. In:
PhD dissertation. Politecnico Di Torino, Torino, Italy (Apr. 2015).

[18] K. Borre et al. “A Software-Defined GPS and Galileo Receiver”. In: Birkhauser Boston,
2007. Chap. 5, pp. 69–73.

[19] D. Borio. “A Statistical Theory for GNSS Signal Acquisition”. PhD thesis. Politecnico
di Torino, Sept. 2014.

[20] M. Foucras. “Performance Analysis of Modernized GNSS Signal Acquisition”. PhD
thesis. Ecole Nationale d’Aviation Civile (ENAC), Feb. 2015.
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