
Chapter 3

Max-Tree

3.1 Definition

The Max-Tree is a structured representation of the connected components of the level sets
an image is made of. This representation was developed to be able to deal with classical
anti-extensive connected operators, as well as new ones, in an efficient manner. Due to this
initial strategy the Max-Trees is only able to represent binary or gray-level images, but not
multicomponent images.

In order to construct the tree, the image is considered to be a 3D relief, as shown in
Fig. 3.1. The nodes of the tree represent the connected components of the upper level sets
for all possible gray-level values. The leafs of the tree correspond to the regional maxima
of the image. The links between the nodes describe the inclusion relationship of the binary
connected components.

We want now to formally define the region of support of each node. Let Xh(f) denote
the upper level set resulting from thresholding the function f at gray value h. The con-
nected components of Xh(f) are labelled with a labelling algorithm, using either classical 4
or 8 neighboring connectivity. Let UpCC k

h, k ≥ 1, denote the k’th connected component of

Original Image

Tree creation

Tree representation

Figure 3.1: Constructing the Max-Tree by considering the image to be a 3D relief.
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Xh(f). In the Max-Tree representation each node Nj is associated to one such connected
components1.

In order to establish the parent relationship between nodes, the connected components
associated to Xh(f) and Xh+1(f) are studied. The node Nj2 is a child of the node Nj1 if its
respective associated connected components UpCC i

h+1 and UpCC k
h satisfy:

Nj1 → Nj2 iff UpCC i
h+1 ⊆ UpCC k

h

That is, the links between nodes of the tree representation denote inclusion relationship
between connected components at different gray-levels. Note that a node may have several
children, and therefore the tree structure may be arbitrary.

The Max-Tree is therefore a hierarchical representation of the upper level sets. It should
be noted that the set of upper level sets do not form partition hierarchy but a decomposition
of the image into a set of regions.

Sec. 2.1 studies the relationship between flat zones and the level sets. In particular, the
upper level set of gray-level h is composed by the set of flat zones of gray-level h and the upper
level set of gray-level h+1. Thus, in order to avoid redundancy in the tree representation, each
node Nj only needs to hold the flat zones of gray-level h included in its associated connected
component UpCC k

h. Using this approach, the connected component UpCC k
h associated to

a node Nj can be extracted by taking the union of the set of flat zones associated to its
descendants. With the proposed strategy, we may say that therefore the Max-Tree can also
be viewed as a structured representation of the partition of flat zones an image is made of.
Moreover, the efficient algorithm to construct the tree, described in Sec. 3.4, is based on the
this approach to construct the tree.

In Fig. 3.2 an example of Max-Tree construction is shown. The original image is composed
of seven flat zones identified by a letter {A,B,C,D,E, F,G}. The number following each
letter defines the gray level value of the flat zone. In our example, the gray-level values range
from 0 to 2. In the first step, the threshold h is fixed to the gray-level value 0. The image is
binarized: all pixels at level h = 0 (pixels of region A) are assigned to the root node of the tree
UpCC 1

0 = {A}. Furthermore, the pixels of gray-level value strictly higher than h = 0 form two
connected components UpTCC 1

1 = {G} and UpTCC 2
1 = {B,C,D,E, F} that are temporally

assigned to nodes UpCC 1
1 and UpCC 2

1 respectively. This creates the first tree (for gray-levels
[0, 1]). In a second step, the threshold is increased by one: h = 1. Each node UpTCC k

h=1 is
processed as the original image. Consider, for instance, the node UpTCC 2

1 = {B,C,D,E, F}:
all its pixels at level h = 1 remain unchanged and create the final node UpCC 2

1. However,
pixels of gray-level values strictly higher than h (here {E,C}) create two different connected
components and are moved to two temporary child nodes UpCC 2

2 = {C} and UpCC 3
2 = {E}.

1To simplify, when referring to a node in the Max-Tree we may say “the node UpCC k
h” instead of “the

node Nj whose associated connected component is UpCC k
h”.
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Figure 3.2: Max-Tree representation creation example.

The complete tree construction is done by iterating this process for all nodes k at level h and
for all possible thresholds h (from 0 to the highest gray-level value). The algorithm can be
summarized saying that, at each temporary node UpTCC k

h, a “local” background is defined
by keeping all pixels of gray-level value equal to h (the “local” background itself may not
be connected) and that the various connected components formed by the pixels of gray-level
value higher than h create the child nodes of the tree. In this procedure, some nodes may
become empty. Therefore, at the end of the tree construction, the empty nodes are removed
since they do not contribute any relevant information to the tree structure.

Note that the description of the previous technique does not necessarily correspond to the
actual implementation of the tree construction. The tree should be constructed in such a way
that each pixel is analyzed the least number of possible times. Sec. 3.4 is thus devoted to the
efficient construction of the tree.

Fig. 3.3 (resp. Fig. 3.4) shows an example of Max-Tree representation. The original image
is made up of 150 (resp. 100) flat zones. The associated Max-Tree is depicted, and on some
nodes the associated connected components are shown.

The final tree is called a Max-Tree in the sense that it is a structured representation
oriented towards the maxima of the image. In fact, the leaves of the tree represent the
regional maxima of the image, whereas the rest of the nodes are ordered along the tree
branches according to the gray-level value of the corresponding flat zones. Finally, the root
node corresponds to the lowest gray-level value of the image.
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Figure 3.3: Max-Tree example. The original image is shown on top. At each node of the
Max-Tree, its associated gray-level is indicated.
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Figure 3.4: Max-Tree example. The original image is shown on top. At each node of the
Max-Tree, its associated gray-level is indicated.
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Figure 3.5: Example of Min-Tree representation. The original image is shown on top. At
each node of the Min-Tree its associated gray-level is indicated.
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3.2 Min-Tree

By duality, the Min-Tree is defined. Whereas the Max-Tree is constructed using the upper
level sets, the Min-Tree is a structured representation of the lower level sets. As for the Max-
Tree, in the Min-Tree each connected component of Xh(f), LowCC h

k , is associated to a node
of the tree. The parent relationship is established based on the inclusion relationship of the
connected components of Xh(f) and Xh−1(f). The Min-Tree is a structured representation
of the image oriented towards the minima of the image. The leaves of the tree represent the
regional minima of the image, and the root node corresponds to the greatest gray-level value
in the image. In Fig. 3.5 an example of Min-Tree is shown.

The Min-Tree can also be constructed on −f using the Max-Tree construction algorithm.
In the image processing framework, −f is usually computed as NG−f , where NG represents
the highest possible gray-level value of an image (usually NG = 255).

3.3 Discussion

The Max-Tree and Min-Tree structures are scale-space representations. Connected compo-
nents of small size appear near the leaf nodes, whereas large size connected components appear
near the root node. Moreover, there is a close relationship of the Max-Tree and Min-Tree
with the Area Tree and Inclusion Tree reviewed in Sec. 2.3.4 and Sec. 2.3.5, respectively.

First, notice that the Max-Tree can also be constructed by applying the algorithm de-
scribed in 2.3.4 using the area opening γ as sieve. In fact, let us denote with γs the area
opening of size s [94]. When γs is applied on the image, the regional maxima of size s are
removed from the image. The area opening of size s applied over an image f ensures that in
the resulting image g = γs(f) all of its connected components of the upper level set have a
size greater (or equal) than s [94]. The Area Tree created using γs as sieve represents the way
the connected components are removed from the image as scale s increases. Small connected
components appear near the leaves of the tree since they are the first to be removed, whereas
large connected components appear near the root node. The way the area opening γs acts on
the image is represented in fact by the Max-Tree (we assume that its associated empty nodes
have been removed, see example in Sec. 3.1).

The reader may have noticed, by comparing Fig. 3.4 and Fig. 3.5 that the structures of
a Max-Tree and of its dual, the Min-Tree, are quite different. In [43] (see also Sec. 2.3.5)
this issue is studied and a new representation is developed, the Inclusion Tree, in which
the information associated to the Max-Tree and Min-Tree has been merged into one tree.
Moreover, the Inclusion Tree representation is self-dual. That is, f and −f lead to the same
tree representation.

Pruning algorithms applied to a Max-Tree result in removal of bright components of the
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image, while dark components are removed if the pruning is applied to a Min-Tree. In other
words, each tree is oriented towards the removal of different types of components of the
image. The resulting operators are called anti-extensive and extensive, respectively. Pruning
operators on these trees are not self-dual. Self-duality may be an important issue depending
on the application, since it ensures that bright and dark components are processed in a
symmetrical way. In Chap. 4 we will see that the Binary Partition Tree may be constructed in
a self-dual manner, and therefore the resulting pruning strategies result in self-dual operators.
As a matter of fact, the Inclusion Tree reviewed in Sec. 2.3.5 leads to self-dual operators.

3.4 Efficient implementation

3.4.1 Algorithm

The efficient implementation of the construction of the tree is based on a recursive flooding
algorithm. The flooding algorithm begins at the root node of the tree (that is, the lowest
gray value of the image f) and constructs in a recursive way each of the branches of the tree.

Our algorithm is based on using hierarchical first-in first-out (FIFO) queues. First-in first-
out queues have been extensively used in order to implement operators such as the watershed
or reconstruction with a marker [95, 94]. We need NG + 1 first-in first-out queues, where
NG is the highest possible gray-level value of an image f (usually NG = 255). Each of the
individual queues is associated to a particular gray-level value h. These queues are used to
define the scanning and processing order of the pixels composing the image. The processing is
done in such a way that each pixel of the image needs to be introduced only once in one of the
first-in first-out queues. The set of queues are used in a hierarchical way. Pixels associated
to the queue with highest gray value are processed first.

In order to create the Max-Tree, the following three queue functions are necessary

• fifo-add(h,p): add the pixel p (of gray-level h) in the queue associated to gray-level h.

• fifo-first(h): extract (and remove) the first available pixel of queue of associated to
gray-level h.

• fifo-empty(h): returns “true” if queue associated to gray value h is empty. Returns
“false” otherwise.

We will also make use of the following notations: number-nodes(h) defines the number of
nodes that have been found so far at gray-level h. The values of number-nodes are initialized
to zero at the beginning of the tree construction. As the tree structure is created, this variable
is updated as new nodes are created at gray-level h. The variable node-at-level(h) is used
to know if, for the branch that is being analyzed, a non-empty node is located at gray-level
h. Its values are initialized to “false”.
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Let ORI denote the original image and ORI(p) the gray-level value of pixel p. The matrix
STATUS stores the information of the pixels; STATUS(p) gives us the state of a particular
pixel p: “not-analyzed” if the pixel p hasn’t been visited by the algorithm, “in-the-queue” if
the pixels p has been introduced in the queue, or STATUS(p) > 0 indicating that pixel p
belongs to the node UpCC STATUS(p)

ORI(p) . All components of the STATUS matrix are initialized
to “not-analyzed”.

The flooding procedure is described precisely in Fig. 3.6. The pseudocode can be divided
into two stages: the first one (lines 02–14) actually performs the propagation of the pixel
through its associated flat zone, whereas the second step (lines 15–26) defines the parent/child
relationships. The recursive call is located in line 13. Note that line 05 in Fig. 3.6 defines the
neighborhood relationship between two pixels, and therefore, defines the connectivity of the
connected components of each node UpCC k

h. Supported connectivities are based on 4 and 8
neighbor relationship.

The flooding algorithm is rather complex, and therefore let us see how the Max-Tree is
created for the image in Fig. 3.2. For that purpose, lets denote with floodN (h) that the
algorithm is in the N ’th level of recursivity. The tree begins to be created by first locating in
the image a pixel with the lowest gray-level value h = hmin, then inserting such pixel in the
queue at level hmin and calling flood0(hmin). Any pixel of the flat zone A may be therefore be
inserted in the queue at level h = 0. Then, flood0(0) begins the flooding through the flat zone
A (lines 05–14 in Fig. 3.6). Assume that during the flooding a pixel of flat zone C is found.
This pixel is inserted in the queue at level 2 (line 08) and then a recursive call, flood1(2),
is performed (line 13). The flooding through region C is then performed. Note that at is
point we still haven’t found any pixel of flat zone B, D or F (which is the parent of node
associated to flat zone C, see Fig. 3.2). During the flooding of region C, some pixels of region
B or D are found. These pixels are inserted in the queue at level h = 1 and node-at-level(1)
is set to “true”, indicating that there is a node at level h = 1 in the branch of the tree that
contains region C (lines 08–10). Note that during the analysis of region C no recursivity call
is done (that is, the current node being analyzed has no descendants). When the flooding of
region C is finished (that is, the FIFO queue associated to gray value h = 2 is empty, line
02), the code passes to search for (the gray value of) the parent of region C (lines 15–17).
Since node-at-level(1) is “true”, the loop at line 16 ends with m = 1. Line 21 establishes
the parent relationship between the two nodes, that is, the node UpCC 1

1 (associated at the
moment to some pixels of flat zone B and D) is the parent of node UpCC 1

2 (associated to flat
zone C). The function returns m = 1 (that is, the gray value associated to the parent that
has been found), and this value is assigned to m at line 13 of the previous call, flood0(0), in
which region A is analyzed. The code then checks (line 14) if the parent that that has been
found at the previous recursive call (in this case UpCC 1

1) is the same than the region that is
being flooded at that moment (in this case UpCC 1

0). For that purpose, only the gray-level
associated to the nodes has to be checked. In our case, m = 1 and h = 0, and therefore
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the loop condition (line 14) is not hold. A recursive call is then performed (line 13) with
m = 1, flood1(1). The propagation of flat zones B and D is then performed (remember that
previously, during flooding of region C, some pixels of B and D where introduced in the
queue). During such propagation, some pixels of A may be introduced in the queue at level
h = 0. Note that some pixels of E should also be found. As before, a new recursive call is
then performed to define the region of support of E. During this propagation, some pixels
of F may be introduced in the queue at level h = 1 and as before, a new parent relationship
is defined (lines 15–23) indicating that the node UpCC 1

1 is parent of node UpCC 2
2 (which is

associated to region E). The function flood2(2) then returns m = 1, and the code returns to
the point of the previous recursive call, flood1(1). The condition at line 14 is hold, and then
the propagation of flat zones B, D and F is continued until the queue at level h = 1 is empty
(line 02). Note that once the queue is empty, the support of node UpCC 1

1, which is made
of flat zones B, D and F , has been defined. Then the algorithm defines the parent for node
UpCC 1

1, which is node UpCC 1
0, and returns a value of m = 1 to flood1(0). The condition at

line 14 is hold, and the propagation of flat zone A is continued. During this flooding, the flat
zone G should be found and defined with a recursive call. Finally, when flood0(0) ends with
an empty queue (line 02), the tree has been completely defined. The condition at line 18 is
defines node UpCC 1

0 as the root node (line 23).

3.4.2 Tree complexity

Several tests have been performed in order to estimate the complexity of the tree. Since the
tree is oriented to represent gray-level images, its associated height (see Sec. 2.2.1) is at most
NG . Thus, the number of nodes of the tree representation created from an image may be
used as a measure of the tree complexity. Fig. 3.7 shows the two images that have been taken
to perform our tests. In order to assess the number of nodes for different image sizes, we have
taken squared subimages of different size by placing the upper left corner of these subimages
at all possible positions given by a fixed squared grid. The points of the grid are spaced 10
pixels. Fig. 3.8 shows the plot of number of nodes of the tree representation as a function of
the image width (or height) in pixels against of the subimages. As expected, the number of
nodes of the resulting tree depends on the image content. For instance, for an image width of
250 pixels, the number of nodes in the tree structure ranges from 1.45× 104 to 1.7× 104 and
from 1.9× 104 to 2.3× 104 for the plot shown respectively on top and bottom of Fig. 3.8. It
can be seen that for larger sized images (550 pixels) the number of nodes of the tree increases
to values which are greater than 105. As can be seen, the number of nodes of the Max-Tree
representation may be obtained.



3.4 Efficient implementation 45

01 flood(h)
02 while not fifo-empty(h)
03 p←fifo-first(h)
04 STATUS(p)← number-nodes(h) + 1
05 for every q ∈ NE(p)
06 if STATUS(q) = “not-analysed”
07 m← ORI(q)
08 fifo-add(m, q)
09 STATUS(q)← “in-the-queue”
10 node-at-level(m)← “true”
11 if (m > h)
12 repeat
13 m← flood(m)
14 until m = h

15 m← h− 1
16 while m ≥ 0 and node-at-level(m) = false

17 m← m− 1
18 if m ≥ 0
19 i← number-nodes(h) + 1
20 j ← number-nodes(m) + 1
21 UpCC j

m is parent of UpCC i
h (UpCC j

m → UpCC i
h)

22 else
23 UpCC i=1

h has no father (UpCC i=1
h is root node)

24 node-at-level(h)← “false”
25 number-nodes(h)← number-nodes(h) + 1
26 return m

Figure 3.6: Flooding procedure for the creation of the Max-Tree.
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Size 352× 288 Size 720× 576

Figure 3.7: Images used to test the tree construction algorithm of Fig. 3.6.

3.4.3 Performance

Number of comparisons

The performance of the proposed algorithm (see Fig. 3.6) is rather high, since each pixel needs
to be introduced only once in the hierarchical queue. Thus, each pixel is processed (lines 05–
14 of algorithm code) only once. Each time a pixel is extracted from the queue it is compared
with its neighbors. When 4-connectivity is used the algorithm performs 4 comparisons for each
pixel, and when 8-connectivity is used a total of 8 comparisons are performed. This is true
even for the pixels located at the frontier of the image, since before entering the construction
algorithm a border is set around the image avoiding thus the condition statements that would
be needed in order to know if we are accessing a pixel outside the image. Therefore, for an
image of size N ×M , the total number of comparisons that are performed is N ×M × 4 or
N ×M × 8 depending on if 4 or 8 connectivity is used, respectively. Note that the number of
comparisons is constant for a specific image size and does not depend on the image content.
This does not mean, however, that the CPU time needed to construct the tree does not
depend on the content on the image. Note that as new connected components are located in
the image, new nodes have to be dynamically created in the memory heap.

CPU time

On of the most usual figures used to test the performance of an algorithm is the CPU time,
that is, the number of seconds the algorithms spends to perform a specific task. In our case,
we have tested our algorithm using a Pentium II processor running Linux with a clock speed
of 400MHz and 256Mbytes of RAM.

Fig. 3.9 shows the time needed to construct the tree for the subimages of Fig. 3.7. Similarly
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Figure 3.8: Number of nodes for several squared subimages. The maximum and minimum
obtained value is indicated. Top: Original image shown on the left of Fig. 3.7, Bottom:
Original image on right of Fig. 3.7.
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Figure 3.9: Time spent for the tree construction for several squared subimages. The maxi-
mum and minimum measured value is indicated. Top: Plot for the image is shown on the left
of Fig. 3.7, Bottom: Plot for the image on right of Fig. 3.7. Tests performed on a Pentium
II 400Mhz based sytem.
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Figure 3.10: Memory consumption, in Megabytes (Mb), for the tree construction algorithm
using as input several squared subimages of the image shown on the left of Fig. 3.7.

to Sec. 3.4.2, for a fixed image size the time needed to construct the tree depends on its
contents. The results show that the algorithm is very efficient for mid size images: less than
0.8 seconds for images of size lower than 500 × 500 is enough for enabling the use of this
representation for a wide range of applications.

Memory consumption

An important figure used to test the algorithm performance is the memory consumption,
which is plotted in Fig. 3.10. As for the CPU time, memory consumption depends on the
contents of the image. As can be seen, memory consumption is kept to rather low levels.
Moreover, it is worth to mention that the actual implementation of the tree structure con-
struction has not been designed to be efficient in memory. For instance, in our node structure
definition we have a member that points to the parent and a member that points to the
children nodes. This is a redundant representation since it is enough to keep only the parent
relationship. Thus, the plot shown in Fig. 3.10 should be considered as a rough upper bound
of the memory usage.
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