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Abstract

Abstract

The human activity that takes place in meeting-rooms or class-rooms is reflected in arich variety of
acoustic events, either produced by the human body or by objects handled by humans, so the deter-
mination of both the identity of sounds and their position in time may help to detect and describe
that human activity. Additionaly, detection of sounds other than speech may be useful to enhance
the robustness of speech technol ogies like automatic speech recognition.

Automatic detection and classification of acoustic events is the objective of this thesis work. It
aims at processing the acoustic signals collected by distant microphones in meeting-room or class-
room environments to convert them into symbolic descriptions corresponding to a listener's percep-
tion of the different sound events that are present in the signals and their sources.

First of al, the task of acoustic event classification is faced using Support Vector Machine
(SVM) classifiers, which are motivated by the scarcity of training data. A confusion-matrix-based
variable-feature-set clustering scheme is developed for the multiclass recognition problem, and
tested on the gathered database. With it, a higher classification rate than the GMM-based technique
is obtained, arriving to a large relative average error reduction with respect to the best result from
the conventional binary tree scheme. Moreover, several ways to extend SVMs to sequence process-
ing are compared, in an attempt to avoid the drawback of SVMs when dealing with audio data, i.e.
their restriction to work with fixed-length vectors, observing that the dynamic time warping kernels
work well for sounds that show atemporal structure. Furthermore, concepts and tools from the fuzzy
theory are used to investigate, first, the importance of and degree of interaction among features, and
second, ways to fuse the outputs of severa classification systems. The developed AEC systems are
tested also by participating in several international evaluations from 2004 to 2006, and the results
are reported.

The second main contribution of this thesis work is the development of systems for detection of
acoustic events. The detection problem is more complex since it includes both classification and
determination of the time intervals where the sound takes place. Two system versions are developed
and tested on the datasets of the two CLEAR international evaluation campaigns in 2006 and 2007.
Two kinds of databases are used: two databases of isolated acoustic events, and a database of
interactive seminars containing a significant number of acoustic events of interest. Our developed
systems, which consist of SVM-based classification within a sliding window plus post-processing,
were the only submissions not using HMMs, and each of them obtained competitive results in the

corresponding evaluation.



Speech activity detection was also pursued in this thesis since, in fact, it is a—especially impor-
tant — particular case of acoustic event detection. An enhanced SVM training approach for the
speech activity detection task is developed, mainly to cope with the problem of dataset reduction.
The resulting SVM-based system is tested with severa NIST Rich Transcription (RT) evaluation
datasets, and it shows better scores than our GMM-based system, which ranked among the best
systemsin the RTO6 evaluation.

Finally, it is worth mentioning a few side outcomes from this thesis work. As it has been carried
out in the framework of the CHIL EU project, the author has been responsible for the organization
of the above mentioned international evaluations in acoustic event classification and detection,
taking a leading role in the specification of acoustic event classes, databases, and evaluation proto-
cols, and, especially, in the proposal and implementation of the various metrics that have been used.
Moreover, the detection systems have been implemented in the UPC’s smart-room and work in real

time for purposes of testing and demonstration.
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Resum

Resum

L’ activitat humana que té lloc en sales de reunions o aules d’ ensenyament es veu reflectida en unarica
varietat d’ events acustics, ja siguin produits pel cos huma o per objectes que |es persones manegen. Per
aixo, la determinacio de la identitat dels sons i de la seva posicié temporal pot gudar a detectar i a
descriure I’ activitat humana que té lloc en lasala. A més a més, la deteccié de sons diferents de laveu
pot gjudar a millorar la robustes de tecnologies de la parla com e reconeixement automatica a
condicions de treball adverses.

L’ objectiu d’ aquesta tesi és la detecci6 i classificacio automatica d events acustics. Es tracta de
processar €ls senyals acustics recollits per microfons distants en sales de reunions o aules per tal de
convertir-los en descripcions simboliques que es corresponguin amb la percepcié que un oient tindria
dels diversos events sonors continguts en els senyalsi de les seves fonts.

En primer lloc, S encara la tasca de classificacié automatica d’ events acustics amb classificadors
de maguines de vectors suport (Support Vector Machines (SVM)), eleccié motivada per |’ escassetat de
dades d’entrenament. Per al problema de reconeixement multiclasse es desenvolupa un esquema
d agrupament automatic amb conjunt de caracteristiques variable i basat en matrius de confusio.
Redlitzant proves amb la base de dades recollida, aquest classificador obté uns millors resultats que la
tecnica basada en models de barreges de Gaussianes (Gaussian Mixture Models (GMM)), i
aconsegueix una reduccio relativa de I'error mitja elevada en comparacio amb e millor resultat
obtingut amb |’ esqguema convencional basat en arbre binari.

Continuant amb €l problema de classificacid, es comparen unes quantes maneres alternatives
d estendre els SVM al processament de seqliencies, en un intent d’evitar I'inconvenient de treballar
amb vectors de longitud fixa que presenten els SVM quan han de tractar dades d’ audio. En aguestes
proves s observa que els nuclis de deformaci6 temporal dinamica funcionen bé amb sons que presenten
una estructura temporal. A més ames, s usen conceptes i eines manllevats de lateoria de |ogica difusa
per investigar, d'una banda, la importancia de cada una de les caracteristiques i € grau d’interaccié
entre eles, i d altra banda, tot cercant I’augment de la taxa de classificacio, s'investiga la fusié de les
sortides de diversos sistemes de classificacio. Els sistemes de classificacio d events acustics
desenvolupats s han testgjat també mitjancant la participacio en unes quantes avaluacions d’ ambit
internacional, entre els anys 2004 i 2006.

La segona principal contribucio d'aguest treball de tesi consisteix en el desenvolupament de
sistemes de deteccio d’ events acustics. El problema de |a deteccid és més complex, jaqueinclou tant la

classificacio dels sons com la determinacié dels intervals temporals on tenen lloc. Es desenvolupen

vii



dues versions del sistema i es proven amb els conjunts de dades de les dues campanyes d’ avaluacié
internacional CLEAR que van tenir lloc els anys 2006 i 2007, fent-se servir dos tipus de bases de
dades. dues bases d' events acustics aillats, i una base d’ enregistraments de seminaris interactius, les
quals contenen un nombre relativament elevat d’ ocurréncies dels events acustics especificats. Els
sistemes desenvolupats, que consisteixen en I'Us de classificadors basats en SVM que operen dins
d'una finestra Iliscant més un post-processament, van ser els Unics presentats a les avaluacions
esmentades que no es basaven en models de Markov ocults (Hidden Markov Models) i cada un d'éells
va obtenir resultats competitius en la corresponent avaluacio.

La deteccio d'activitat oral és un altre dels objectius d’ aguest treball de tesi, pel fet de ser un cas
particular de detecci6 d’ events acustics especiament important. Es desenvolupa una tecnica de millora
de I’entrenament dels SVM per fer front a la necessitat de reduccio de I’enorme conjunt de dades
existents. El sistema resultant, basat en SVM, és testggat amb uns quants conjunts de dades de
I"avaluacio NIST RT (Rich Transcription), on mostra puntuacions millors que les del sistema basat en
GMM, malgrat que aguest darrer va quedar entre els primers en I’avaluacio NIST RT de 2006.

Per acabar, val |a pena esmentar alguns resultats col -laterals d’ aquest treball de tesi. Com que s ha
dut aterme en I’ entorn del projecte europeu CHIL, |’ autor ha estat responsable de I’ organitzacio de les
avaluacions internacionals de classificacio i deteccié d' events acustics abans esmentades, liderant
I’ especificacio de les classes d' events, les bases de dades, els protocols d’avaluacio i, especiament,
proposant i implementant les diverses metriques utilitzades. A més a més, els sistemes de deteccid
s han implementat en la sala intel-ligent de la UPC, on funcionen en temps real a efectes de test i

demostracio.
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1.1 ThesisOverview and Motivation

Activity detection and description is a key functionality of perceptualy aware interfaces working in
collaborative human communication environments like meeting-rooms or classrooms. In the context of
person-machine communication, computers involved in human communication activities have to be
designed to have minimal possible awareness from the users. Consequently, there is a need of percep-
tual user interfaces which, besides being multimodal and robust, use unobtrusive sensors. One example
of new challenging multimodal research efforts is the development of smart-rooms. A smart-room is a
closed space equipped with multiple microphones and cameras, and severa functionalities, which are
designed to assist and complement human activities. In the case of the audio processing, some of the
technologies that may be involved are speech activity detection, automatic speech recognition, speaker
identification and verification, and speaker localization.

Indeed, speech usually is the most informative acoustic event, but other kind of sounds may aso
carry useful information. Since in such types of environments the human activity is reflected in arich
variety of acoustic events, either produced by the human body or by objects handled by humans,
detection and classification of acoustic events may help to detect and describe human activity. For
example: clapping or laughing inside a speech, a strong yawn in the middle of alecture, a chair moving
or door slam when the meeting has just started. Additionally, the robustness of automatic speech
recognition systems may be increased if such non-speech acoustic events are previously detected and
identified.

The main goal of this thesis work is detection and classification of meeting-room acoustic events,
namely Acoustic Event Detection/Classification (AED/C). AED/C is a recent discipline belonging to
the area of computational auditory scene analysis [WBO06] that consists of processing acoustic signals
and converting them into symbolic descriptions corresponding to a listener's perception of the different

sound events that are present in the signals and their sources.
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1.2 Thesis Objectives

The primary objective of this PhD thesis is the development of systems for acoustic event detection
and classification. Asrequired in any pattern recognition task, the thesis work focuses on algorithms
for both feature extraction and classification. The developed systems are tested through the partici-
pation in international evaluations in the framework of the project Computers in the Human
Interaction Loop (CHIL). A secondary objective of the thesisis to design and implement a system of
acoustic event detection that provides in real time semantic content to specific services defined in
CHIL.

Investigation of different types of features is an important point of any classification system.
The relevance of conventional sets of features that are widely used in speech processing applications
will be addressed. Severa basic feature sets will be compared and investigated to find the most
appropriate set of features. Apart from the features used in speech processing, there exist a number
of features that have a more perceptually-oriented profile. The usefulness of the perceptua features
will be investigated in terms of individual feature importance and degree of interaction.

A large part of the work has to be concerned with the problem of acoustic event classification
(AEC), since detection also requires classification. Due to the problem of scarcity of data in the
available corpus, the development of classification algorithms that can tackle this problem is crucial
and necessary. Recently, the Support Vector Machine (SVM) paradigm has proved highly success-
ful in a number of classification tasks. As a classifier that discriminates the data by creating
boundaries between classes rather than estimating class conditional densities, it may need consid-
erably less data to perform accurate classification. For this reason the SVM classifier is initially
chosen in this thesis as the main classification technique, and it is compared to Gaussian mixture
models in a series of tests. As the developed algorithm may benefit from using the temporal evolu-
tion of the acoustic events, severa techniques for sequentia processing will be compared. The thesis
will also explore the combination of several information sources in order to capture the interdepend-
encies among them.

Applications in rea meeting-room environments require facing the acoustic event detection
(AED) problem. For that purpose, it is necessary to produce a database with a sufficient number of
acoustic events of interest. The database can be used as a training material and as a testing material
to evaluate the algorithm performance for AED. Besides, participation in the international evaluation
campaigns is a good way for evaluating and comparing the various approaches submitted by the
participants. Indeed, those evaluations have to be organized and coordinated, and appropriate
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metrics and evaluation tools for AED have to be developed. Moreover, the AED systems will be
implemented in the UPC’ s smart-room and work in real time for purposes of testing and demonstra-

tion.
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1.3 ThessOutline

The thesis is organized as follows. Chapter 2 presents state of the art in the area of general audio
recognition, discussing the schemes for sound organization, presenting a literature review from the
application point of view, and reporting the features, classification and detection techniques that
have been used so far for acoustic event detection and classification.

Chapter 3 reports the work done in the area of acoustic event classification and presents the a
novel SVM-based classification technique. Moreover, several advanced classification techniques are
compared in that chapter including those SVM-based techniques which can model the time dynam-
ics of sounds. Importance and interaction of various perceptual features are investigated in the
framework of fusion several information sources using fuzzy theory and concepts.

Chapter 5 describes afew new systems for acoustic event detection developed in thisthesis. Re-
sults, obtained with the above-mentioned systems of AEC and AED in severa international
evaluations, are reported in Chapter 6.

Chapter 7 considers the particular problem of speech activity detection and the way SVM clas-
sifier is applied to this problem. Results obtained with the international evaluation datasets are
reported and compared with the previously devel oped detectors.

The activitieson AED, which were carried out in the UPC’ s smart-room, are described in Chap-
ter 8: database recordings, implementation of the AED system in real time, development of demos.

Chapter 9 concludes the work. The main achievements are summarised in this chapter. Several

promising future directions are highlighted.
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2.1 Chapter Overview

In this chapter the current state of the art in the area of Acoustic Event Detection and Classification
(AED/C) is presented.

The remaining sections of this chapter are organized as follows. In Section 2.2 the schemes for
sound organization are discussed. Section 2.3 presents a literature review from the application point of
view, while Sections 2.4, 2.5, and 2.6 discuss features, classification and detection techniques that have
been used so far for AED/C.
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2.2 Sounds Taxonomy

The research on sound classification has usualy been carried out so far for a limited number of
classes, like speech/music [PRO02] [MP04] [And04], music/song [Ger03a], or music/speech/other,
where “other” is any kind of environmental sounds [LZJ02]. In the last years, however, the interest
in AED/C has been significantly increased. The area of AED/C can be structured by different
semantic levels. It can be the classification of events specific to a certain environment, classification
of sounds specific to a given activity, generic sound classification, etc. In al the cases, there exist a
large number of sounds and it is necessary to limit the number of classes considered. That is the
reason why authors usually try to provide a sound taxonomy. The development of the sound taxon-
omy helps to better understand the data domain [GerO3b], and increase the accuracy and speed of
classification [Cow04]. One example of a general sound taxonomy has been first presented in
[Ger03b] and can be seen in Figure 2.2.1. It divides sounds firstly into hearable and non-hearable.
Then the hearable part is further divided into noise, natural sound, artificial sounds, speech and
music. An example of a standard taxonomy suitable for text-based query applications, such as
WWW search engines, or any processing tool that uses text fields, was used in [Cas02] and it is
presented in Figure 2.2.2. It is less general than the previous one as it is fitted to a given task. A
sound taxonomy scheme for environmental sound classification can be found in [Cow04]. Because
of the uncountable number of classes for a general environment, the author has proposed the taxon-
omy based on the physical states of sounding objects (solid, liquid, gas) and the possible interaction
of objects (solid-solid, solid-liquid, etc). A scheme proposed in [ANOO] has been based on the nature
of sound sources. Firstly, the sources are divided into continuous and changing. Semantic classes
appear at the next level.

Clearly, the conception of sound taxonomy is subjective and it strongly depends on the chosen
classification domain. In the framework of the CHIL project [CHI] it has been decided that for the
chosen meeting-room environment it is reasonable to have an acoustic sound taxonomy for genera
sound description and a semantic sound taxonomy for a specific task. The proposed acoustic scheme
isshown in Figure 2.2.3. Actually, amost any type of sounds can be referred to one of the proposed
groups according to its acoustical property. On the contrary, the semantic scheme that is presented in
Figure 2.2.4 is very specific to the CHIL meeting-room scenario. Additionally, with two sound
taxonomies (acoustic and semantic) it is possible to cope with situations when the produced event

does not match any semantic label but can be identified acoustically.
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2.3 Applications of Audio Recognition
2.3.1 Audioindexing and retrieval

A lot of applications of audio recognition are related to audio indexing and retrieval. In [Sla024], the
authors have considered the problem of animal sound classification for the purposes of semantic-
audio retrieval. The semantic and acoustic spaces are clustered and the probability linkage between
the resulting models is established. The acoustic clustering has been done using Mel-Frequency
Cepstral Coefficients (MFCC) [RJ93] and an agglomerative clustering algorithm with Gaussian
Mixture models (GMM) [RJ93] to represent each cluster. The same authors proposed another
solution for the same domain task in [Sla02b]. In that paper, mixture-of-probability experts have
been used to learn the association between acoustic and semantic spaces. A similar approach for
sounds retrieval made according to their nature (changing vs. continuous) is implemented in
[ANOQ].

The system for content-based classification, search, and retrieval of audio has been proposed in
[WBK+96]. It was one of the earliest in the domain of audio classification, and it has been patented
as a “Muscle Fish” system. The authors have discussed how several perceptual features fit to the
task of sound classification and retrieval. The classification itself was based on the Euclidian dis-
tance between feature vectors that consisted of mean, variance and autocorrelation coefficient a a
small lag over the features computed by frame analysis. The investigation of feature importance was
also performed. Severa practical applications for similar systems were given as examples.

In [GLO3], the similar task with the same database has been more efficiently solved by using a
binary tree scheme with Support Vector Machine (SVM) [DHS00] as a node. Retrieval has been
done based on the distance-from-boundary conception. An improvement in comparison to the
previous work has been obtained with concatenation of cepstral and perceptua features and SVM
classification.

In [APAOQ5], the authors have applied two classification techniques (SVM and GMM) to audio
indexing. They have performed a discrimination of “speech” and “music” in radio programs and a
discrimination of environmental sounds (“laughter” and “applause”) in TV broadcasts.

In [CLHO5], the unsupervised approach for discovering and categorizing semantic content in a
composite audio stream has been developed. Firstly, the authors have performed spectral clustering
in order to discover natural semantic sound clusters in the analyzed data stream. The auditory scenes
are categorized then in terms of the extracted audio €l ements.
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2.3.2 Audiorecognition for a given environment

Recently, ahuge interest has arisen in the area of detecting and classifying sounds which are specific
to a given environment. Such environments can be lectures or meeting rooms, clinics or hospitals,
gport stadiums or natural parks, kitchens or coffer shops, etc. In [KEO4], the authors have considered
the detection of “laughter” in meetings with SVM. In their experiments, MFCC features outperform
the proposed spatial features and modulation spectrum features. No significant gain in the perform-
ance has been reported from combination of the examined features. Also the first six cepstra
coefficients have been reported to provide the most information for classification.

In [KEQ3], the detection of an emphasis for the purpose of characterization of meeting re-
cordings has been proposed. The approach uses only pitch information to identify the utterances of
interest.

Apart from the meeting environments, sound classification is performed in environments rel ated
to the medicine. In [BHM+04], authors have used a classification system to analyze the sound of
drills in the context of spine surgery. To facilitate the work of surgeon maintain the same accuracy,
the system gives information about the density of the bones using the results of the sound analysis.
Several features like zero crossing rate, median frequency, sub-band energies, as well as MFCC and
pitch have been used with Artificial Neural Networks (ANN) [DHS00], SVM and Hidden Markov
Models (HMM) [RJI93] classifiers.

A smart audio sensor for a telemonitoring system in telemedicine has been developed in
[VIB+03a]. That sensor is equipped with microphones in order to detect a sound event (an abnormal
noise or a cal for help). Comparison of Linear Prediction Coefficients (LPC), MFCC aong with
their combination with time-derivatives and some perceptua features has been considered. The
same authors have proposed the technique based on transient models and wavelet coefficient tree to
classify the sounds for clinic telesurvey purposesin [V1S04]. The paper discusses the sound analysis
of patient activity, psychology and possible stress situations. Among other classification models,
GMM has been chosen as the least complex one. Bayesian Information Criteria (BIC) has been used
to find the optimal number of Gaussians. In [VIB+03b], the classification of sounds in different
Signal-to-Noise Ratios (SNR) for the medical telemonitoring has been investigated.

Baseball, golf and soccer games have been viewed a unified framework for sport highlight ex-
traction in [XRD+03]. The authors have compared MPEG-7 spectral vectors and MFCC features.
MPEG-7 feature extraction mainly consists of a Normalized Audio Spectrum Envelope (NASE),

basis decomposition algorithm (e.g. Singular Vaue Decomposition or Independent Component
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Analysis (ICA) [DHS0Q]), and a spectrum basis projection, obtained by multiplying the NASE with
a set of extracted basis functions. HMMs with entropy prior and maximum likelihood training
algorithms have been used as classifiers. The authors have obtained promising results using chosen
pre- and post-processing techniques and exploiting general sports knowledge.

In [HM S05], the authors report an experiment with an acoustic surveillance system comprised
of a computer and microphone situated in a typica office environment. The system continuously
analyzes the acoustic activity at the recording site, and using a set of low-level acoustic features the
system is able to separate al interesting eventsin an unsupervised manner.

The work presented in [CERO05] deals with audio events detection in noisy homeland environ-
ments for a homeland security. The performance of a GMM-based shot detection system was
improved by considering the hierarchical approach.

The acoustic event recognition for four different environments - kitchen, workshop (mainte-
nance), office and outdoors — has been applied in [SLP+03]. The paper discusses a prototype of a
sound recognition system focused on an ultra low power hardware implementation in a button-like
miniature form. The implementation and evauation of the final version of the prototype are per-
formed in [SLTO4]. In those papers, the authors have used FFT features and compared a k-nearest
centre classifier with a k-nearest neighbour classifier. To preserve the low energy consume of the
proposed technique, while maintaining high accuracy, several feature combinations as well as
feature selection and feature relevance extraction algorithms have been tested. The paper also
discusses the trade-of f between computational cost and recognition rate, analyses the signal intensity
for two microphones recognition system, and estimates the complexity of different parts of the
whole system.

Recognition of sounds related to the bathroom environment has been done in [JJK+05]. The
system is designed to recognize and classify different activities of daily living occurring within a
bathroom based on sound. It uses an HMM classifier and MFCC features. Preliminary results
showed high average accuracy.

In [RDO6], the authors have defined the conception of the background and the foreground
sounds. It is done by tracking the generative process that consists of detecting and adapting to
changes in the underlying generative process. The proposed approach for the adaptive background
modelling was applied to detection of suspicious soundsin an elevator environment.

In [SK107], an unsupervised algorithm for audio segmentation is proposed and applied to the
database of meeting-room isolated acoustic events produced in the CHIL project (see Appendix A).

11
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It is compared to the BIC agorithm and the better results are obtained. The algorithm is based on a
modification of the Expectation-Maximization algorithm.

In [Luk04], the authors have considered human activity detection in public places mainly by
concentrating on coffee shop activity detection. The main priority of the fina system has been
defined as a real time or close-to-rea time functionality for the activity detection module, and
dealing with both single speaker acoustic events and a whole auditory scene. A wide range of
features and two distinct classifiers (k-nearest neighbours and GMM) have been compared. The
research done on auditory scene analysis has been reported as probably the most interesting and the

most valuable for the project.

2.3.3 Recognition of generic sounds

The group of works presented in this subsection deals with detection and classification of generic
sounds that are not related to any specific environment. In [EII01], the author compare two different
approaches to alarm sound detection and classification, namely: ANN and a technique specifically
designed to exploit the structure of alarm sounds and minimize the influence of background noise.
The usefulness of a set of general characteristics in different types of noises has been investigated on
a collected small database of alarm sounds.

The commercial removal system for persona video recorders has been considered in
[GMR+04]. In the paper, the authors have applied k-means clustering to assign a chosen audio
segment with commercial or program label. Unlike other existing systems, they make no assumption
about program content resulting to the content-adaptive method.

Bird species sound recognition has been performed in [Har03]. The authors have investigated
recognition of a limited set of bird species by comparing sinusoidal representations of isolated
syllables assuming that alarge number of songbird syllables can be approximated as amplitude-and-
frequency-varying brief sinusoidal pulses.

Jingle detection and classification has been done in [PO04]. A sequence of spectral vectors is
used to represent each key jingle event. Some heuristic classification procedures are then applied to
the obtained event “signature”.

In [NNM+03] the authors have tackled the problem of classifying many types of isolated envi-
ronmental sounds that had been collected in an anechoic room, the RWCP (Real World Computing
Partnership) sound scene database [NHA+00]. Along with finding the identity of the tested sounds,
their main goal was to improve the robustness of an ASR system, so they have used HMMs and

worked in the context of speech recognition.

12
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In [CS02], the authors have compared the performance of speech recognition techniques applied
to the task of non-speech environmental sound recognition. The Learning Vector Quantization
(LVQ) and ANN have been used. The same authors in [CS03] have presented the results of a
comparative study of several classification techniques, which are typically used in speech/speaker
recognition and musical instrument recognition, applied to the environmental sound identification.
They have found aso that conventional “winners’ in the speech/speaker recognition are either not
suitable or performs not so good as other techniques in the environment sound recognition.

Thiswork in [AMKO06] presents a hierarchical approach of audio based event detection for sur-
veillance. A given audio frame is firstly classified as vocal or non-vocal, and then further classified
asnormal and excited. The approach is based on a GMM classifier and LPC features.

In [Cow04], a system of non-speech environmental sound classification for autonomous surveil-
lance has been discussed. Features based on awavelet transformation and MFCC features performed
the best.

The comparison of MFCC and Mpeg7 features as well as analysis of the latter has been done in
[KBS04]. The authors have evaluated also three approaches of feature selection (feature space
reduction): Principal Component Analysis (PCA) [DHS0Q], ICA, and non-negative matrix factoriza-
tion. The features are fed to a continuous HMM classifier. From analysis of efficiency, it is
concluded that MFCC features yield better performance in comparison with MPEG-7 features in the
genera sound recognition under some practical constraints. Nevertheless, the best results have been
obtained with PCA applied to Mpeg7 features. The same authors in [KMS04] have compared one-
level and hierarchical classification strategies based on a HMM and ICA-pre-processed Mpeg7
features. The best results have been obtained by “hierarchical structure with hints’ that implies the
usage of some auxiliary information about the task domain.

In [RAS04], a comparison of MFCC and proposed Noise-Robust Auditory Features (NRAF)
has been done for a four class audio classification problem. Motivated by the fact that MFCCs do
not perform so well in the presence of noise, aviable alternative in the form of NRAF was proposed.
GMMs have been used for classification. The proposed alternative has been also conditioned by a
need to have alow-power autonomous classification system.

A multi-class audio classification system has been proposed in [HKS05]. The authors have cre-
ated SOLAR: Sound Object Localization and Retrieval in Complex Audio Environments system
based on frequency band energy based features (band-width, peaks, loudness, etc) and AdaBoost for
boosting several decision trees. Due to the diversity of sounds, the cascade of classifier isreported to

recover specia types of errors made in previous classification steps.

13
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In [SNO7], the authors have focused on the problem of discriminating between machine-
generated and natural noise sources. A bio-inspired tensor representation of audio that models the
processing at the primary auditory cortex is used for feature extraction. Comparing with MFCC
features, better performance has been obtained using the cortical representation.

2.3.4 Classification of acoustic environments

On the contrary to the above-mentioned works where authors recognize sounds specific to a chosen
environment, the authors in [EL04] have investigated the problem of recognizing environments
specific to a set of sounds. They have performed personal audio archiving using environment as a
clustering criteria. The author have tried to facilitate user’s access to the requested information by
segmenting the audio stream into 16 environment classes like “street”, “restaurant”, “class’, “li-
brary”, “campus’, etc. Spectral clustering of a feature set consisting of bark-scaled frequency
energies and spectral entropy has been performed.

An HMM-based classification of different listening environments, like speech in quiet, speech
in traffic, and speech in babble, for the purposes of hearing aids has been presented in [Nor0O4]. The
work also investigates the robustness of the classification at a variety of SNR. In [Buc02], the work
for hearing aids deals with the problems of how to increase the performance of automatic and robust
classification of five types of sounds by using the information of the detected acoustic environments.

In [MSMO03] [SMRO5] the authors have proposed an approach of rapid recognition of an envi-
ronmental noise, minimizing the computation cost by usage of adaptive learning and easy training
based on HMMs. The system can rapidly recognize 12 types of environments by classifying 3-
second segments.

An HMM-based system for classification of 24 everyday audio contexts (street, road, nature,
market, etc) has been proposed in [EPT+06]. In that work, computational efficiency of the devel-
oped recognition methods have been evaluated. In comparison with a human ability, the proposed
system has obtained comparative results. Slight increase in recognition accuracy has been obtained
by using PCA or ICA transformation applied to MFCC features.

14
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2.4 Typesof Features

Lots of works on audio recognition have been devoted to the feature extraction block. Good features
simplify the design of a classifier whereas features with little discriminating power can hardly be
compensated with any classifier. A long list of features has been investigated, ranging from standard
ASR features to new application-driven perceptual features.

As ASR features are well-known, they have been very popular in audio recognition tasks.
MFCC features have been used in a number of works [Sla02a] [Sla02b] [CLHO5] [NNM+03]
[Cow04] [APAOS].

Nevertheless, in many cases the best performance may be obtained by concatenation of percep-
tual and conventional ASR features asit has been donein [GLO3] [BHM+04] [CERO05].

Comparison of MPEG-7 spectral vectors and MFCC features has been done in [KBS04] and
[XRD+03]. In [RAS04] the authors have tested MFCC features and proposed new noise-robust
auditory features. Wavelet dispersion feature vectors have been used in [KZDO02]. The comparison
of LPC, MFCC, and their combination with time-derivatives and some perceptual features has been
donein [VIB+03q].

The content of the perceptual set of feature differs from application to application. Here we
mention some of the perceptual features that can be found in the literature:

» Distance to voicing [BBW+03] is an estimation of the voicing level profile of the wave-
form. Regions above a given threshold are marked as voices. The distance to voicing is
defined as the distance between the current frame and the closest voiced frame. A dis-
tance of zero indicates that the frame is a voiced frame. A large distance hints that the
frame is probably a non-speech since human speech typically does not contain long
segments with no voicing.

* Frameenergy [BBW+03] [SPP99] [ZK01] [GLO3] isatota energy of acurrent frame.

e The silence ratio [GLO3] is the number of silent frames divided by total number of
frames.

* The pitched ratio [GLO3] is the number of pitched frames divided by total number of
frames.

o Spectral tilt [BBW+03] is defined as a ratio of high- to low-frequency energies. Frica
tivestypically display alarger spectral tilt than steady-state noises such as car noise.

» Sub-band energies [SPP99] [GLO03] the log FBE of some number of chosen subbands.

15
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e Zero-crossing rate ([SPP99] [Ger0O3b]) is defined as the number of zero crossing in a
frame.

* High zero-crossing rate ratio (HZCRR) [LZJ02] is defined as a ratio of the number of
frames whose ZCR is above 1.5 fold average zero-crossing rate in one-second window.

e Low Short-Time Energy Ratio [LZJ02] is defined as a ratio of the number of frames
whose STE are less than 0.5 times of average short time energy in a one-second.

o Spectrum Flux [LZJ02] [LLZO3] is defined as a (squared) difference of the spectra be-
tween two adjacent frames.

* Band Periodicity [LZJ02] [LLZO03] is defined as the periodicity of each sub-band de-
rived by sub-band correlation analysis.

* Noise Frame Ratio [LZJ02] is defined as aratio of noise framesin a given audio clip.

* Fundamental frequency [GLO3] [ZK01] isthe lowest frequency in a harmonic series.

o Spectral centroid [LZJ02] is a centroid of the (linear) spectrum. It is a measure of the
spectral “brightness’.

o Spectral roll-off [LZJ02] is the 95th percentile of the spectral energy distribution. It isa
measure of the “ skewness’ of the spectral shape.

o Spectral bandwidth [LZJ02] is a measure of spreading of the spectrum around the spec-
tral centroid.

* Modulation spectrum [KEQ4] [SA02] is characterization of the time-varying behaviour
of the signal.

Because of a large number of possible features several works have studied feature selection
techniques. In [SLP+03] [SLT04] a selection of FFT features has been carried out based on rele-
vance estimation agorithms. Three approaches of feature selection (feature space reduction),
namely PCA, ICA, and non-negative matrix factorization, have been evaluated in [KBS04]
[EPT+06].
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2.5 Audio Classification Algorithms

Any recognition task requires a classification. The task of classification is to provide a label for an
unseen input pattern. However, as it was mentioned in the previous subsection, a poor feature process-
ing can hardly be compensated by a good classification.

One of the very first works on audio classification has used a minimum distance classification
model - simple distance-based classifier with the Euclidian distance between extracted features
[WBK+96]. The minimum distance classifiers choose a class according to the closest training sample.
Little more complex algorithms pick k-nearest neighbours to an unknown input and then choose the
class that is most often picked. In that case classification gets very complex with alot of training data,
as one must measure a distance to all training samples. Performing clustering and storing only centres
of the clusters (class prototypes) can improve computational efficiency. Mentioned algorithms and
related optimization steps for audio classification have been reviewed in [SLP+03] [SLT04] [Luk04]
[GMR+04].

A rule-based classification algorithm that initially also relies on good feature extraction has been
used in [POO04]. In that work several task-specific features have been proposed with a set of heuristic
classification rules.

Among other classification paradigms a way to classify audio data is to use already developed and
well-tested speech recognition algorithms. In ASR usually GMMs or HMMs are used. They are well
suited to work with time series data, may use information included in the temporal evolution of an
audio signal. A lot of audio recognition works have exploited the mentioned techniques. GMMs have
been used in [Sla02a] [Sla02b] [ANOQ] [VIB+03a] [VIS04] [VIB+03b] [Luk04] [RAS04] and HMMs
in [BHM+04] [XRD+03] [KEO4] [NHA+00] [KMS04] [Nor04] [MSMO03] [SMRO5].

In [CS03] the comparison of ASR techniques for the task of the environmental sound recognition
has been performed. The conclusion was that conventional ASR techniques are not that suited for the
general task of audio recognition. Instead of using generative classification models like GMM, dis-
criminative classification models have been used in a number of works, like ANN in [BHM+04]
[EII01] [KZD02], VQ in [CS02], decision trees in [HKS05], SVM in [GLO3] [KEO4] [BHM+04]
[LLZO03] [APAOS].
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2.6 Audio Detection Algorithms

It is necessary to mention that detection is only involved in those tasks that deal with continuous
audio and not with events that have been aready extracted. Indeed, the audio detection can be
performed in two different ways. The first one consists of detection of a sound endpoints and then
classification of the end-pointed segment. Hereafter we refer to it as detection-and-classification.
The second one detects by classifying the consecutive audio segments. We refer to it as detection-

by-classification.

2.6.1 Detection-by-classification

Most papers give preference to the detection-by-classification due to its natural simplicity. In that
way, the detection task converts to the classification task. The problem consists of the choice of a
window length. The detection itself is carried on by assigning a segment with a label given by the
classification when applied to that segment (Figure 2.6.1). The number of works that use this
strategy is by far larger than the number of works that perform detection and then classification.
Clearly, the window length is an arbitrary value. For “laughter” detection it may be one second
[KEO4] [APAOS], for “music” awindow of several seconds may be chosen [KZD02]. Depending on
the task domain, the length of a segment usually goes from half a second up to several minutes
[KEO4] [BHM+04] [SLP+03] [SLT04] [NHA+00] [And04] [EII01] [KZD02] [GMR+04] [DL04]
[HKS05].

window length

i _shift
1

II

e 1T

CLASSIFICATION

Figure 2.6.1. Detection-by-classification

Although the scheme can be soundly applied only to signals where the main part is stationary
thistype of detection has been successfully applied to impulse-like soundsin [Ell01] and [HKS05].
Consequently, knowledge of task domain may have a great impact upon the accuracy of chosen

detection scheme. The choice of the length and the shift of the sliding window becomes very impor-
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tant. Moreover, a kind of a compromise between temporal resolutions of the decision-making and
implied computational cost has to be found. The influence of the window Iength on the classification
results has been reviewed in [KBS04] and the reasons for the chosen detection strategy have been
investigated in [HKS05].

An important aspect of the detection-by-classification strategy is the application of some post-
processing techniques. As even an appropriate window length and shift cannot naturally satisfy all
acoustical requirements of a signal, a certain smoothing of results is necessary. Under the assump-
tion that it is improbable that sound types change suddenly or frequently in an arbitrary way, a
smoothing of the final segmentation of an audio sequence can be applied. For instance, the sequence
labelled as “Music-Music-Speech-Music-Music” may be smoothed to “al-Music” sequence. The
rules usually are highly heuristic. Smoothing applied to silence /speech /music /environment seg-
mentation in [LZJ02] can serve as an example.

Another aspect in the detection-by-classification strategy is a usage of a classifier that has its
own segmentation algorithm inside. As an example, HMMs borrowed from speech/speaker recogni-
tion sphere has been successfully used in [XRD+03] [Nor04] [KMS04] [KBS04]. The difference
with above-mentioned methods is that it has no constant window length for decision-making as it
classifies by accumulating probabilities. In that case the limitation of the technique is that HMM

accurate modelling requires relatively large amount of data.

2.6.2 Detection-and-classification

An interesting strategy appears to be detection and then classification of the segment bounded by
detection algorithm. It should be noted that resulting temporal segmentation does not try to interpret
the data but in case the classes under review consist of both stationary and impul se-like sounds both
affected by background noise the detection al gorithms become quite challenging.

Thus, in [Pfe01] the approach based upon exploration of relative silences has been proposed. A
relative silence has been considered as a pause between important foreground sounds. However, the
approach has been mainly designed for spoken words extraction. As an example a reporter speech
on the background crowd noise was considered.

A large number of papers in detection-and-classification deal with metric-based detection tech-
niques. In that sense segmentation refers to the process of breaking audio into time segments based
on what could be called “texture” of sound [TC99]. A diding window goes through the signal and a
certain similarity measure between adjacent regions is calculated and compared to the chosen

threshold. This way no classification decision is made, instead, a segment boundary is claimed to be
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detected when the metric value exceeds the threshold. As a similarity measure distance measures
such as Euclidian distance [WBK+96] [PO04], Mahaanobis distance [TC99], Kullback-Leibler
[CTK+03], Bhattacharyya [PCCO1] have been used. An important issue is the usage of the self-
adapting threshold and other heuristics. For instance, in [TC99] the peaks of the derivative of
Mahalanobis distance correspond to texture changes and are used to automatically determine
segmentation boundaries; or in [PO04] only candidates that have a value less than half of the mean
of the values in the window are considered. The distance-based methods have some advantages and
disadvantages. Low computational cost and real time processing possibility from one side and
difficult choice of athreshold and arelatively long window required from the other side. Moreover
to apply some of the distance-based similarity measure the assumption that the features follow some
distribution (usually Gaussian) is done.

To overcome some of the above-mentioned disadvantages, similarity measures that are not
based on distances have been used in [VIB+03b] [VIB+03a]. In those papers, the authors have used
two metrics. cross-correlation and energy spline interpolation. In the first one, maximum value of
cross-correlation has been taken as a measure of similarity between two adjacent windows. For the
energy prediction-based method, ten previous values of energy have been used to predict the next
one using spline interpolation. The authors have investigated the behaviour of the detection tech-
niquesin artificial and real environmental noises with different SNR.

On the other hand the model-based agorithms like BIC do not need any threshold and can be
applied directly to audio streams [CW03] [CWO04] [EL04]. However they also have disadvantages as
a relatively high computational cost and a need for long windows that is bearable for stationary
sounds and not suitable for impulse-like sounds. For the latter, the technique based on median-filter
is proposed in [DBA+00]. The signal energy is estimated for every successive time block. Then, the
obtained energy sequence is median-filtered, and the output of the filter is subtracted from the
energy resulting in a new sequence which being normalized emphasizes the relevant energy pul ses.

A very interesting method for detection of both stationary and impulse-like sounds has been
proposed in [VIB+03b] where six techniques for sound detection have been compared. The discrete
wavelet transform has been applied to extract high order wavelet coefficients that are reported to
detect impulsive sounds almost clearly. The method is shown to outperform two methods based on
median-filtering, simple energy-variance-based method, and the cross-correlation and spline interpo-
lation for energy prediction methods for different noises with several SNR conditions tested. The
above-mentioned method has been modified in [VIS04] [VIS+05] where the authors have used

transient model s based on dyadic trees of wavelet coefficients.
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2.7 Chapter Summary

In this chapter we have quickly reviewed the work done so far in the area of acoustic event classifi-
cation and acoustic event detection. Firstly, the main schemes for sound semantic organization have
been discussed. Also, a literature review from the application point of view has been presented,
where the application domain has been subdivided into audio indexing and retrieval, sound recogni-
tion for a given environment, recognition of generic sounds, and classification of acoustic
environments. Then, the features and classification techniques that have been used in the area of
audio recognition have been discussed. Finally, detection techniques, subdivided into detection-by-
classification and detection-and-classification, have been explained, and the relevant reported works

have been presented.
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Chapter 3. Basic Pattern Recognition Techniques

3.1 Chapter Overview

Three basic classification techniques are considered in this work: Support Vector Machine (SVM),
Gaussian Mixture Model (GMM), and Fuzzy Integral (FI). In this section, the above-mentioned tech-
niques will be presented.

Firstly, the basic theory of SVM will be given in Section 3.2. Specifically, the construction of
SVM will be overviewed in Subsection 3.2.2. Subsection 3.2.3 will discuss the generalization proper-
ties of SVM. Finally, the main advantages and disadvantages of SVM will be highlighted in Subsection
3.2.4.

The very basics of GMM will be given in Section 3.3.

The basic theory of the FI and Fuzzy Measure (FM) that are used to fuse various information

sources in the way to benefit from the interactions between them will be presented in Section 3.4.
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3.2 Support Vector Machines
3.21 Introduction

The SVM is a discriminative model classification technique that mainly relies on two assumptions.
First, transforming data into a high-dimensional space may convert complex classification problems
(with complex decision surfaces) into simpler problems that can use linear discriminant functions.
Second, SVMs are based on using only those training patterns that are near the decision surface
assuming they provide the most useful information for classification. In this section the basic theory
of SVM will be given. Firstly, the construction of an SVM classifier will be presented in Subsection
3.2.2. Subsection 3.2.3 gives the basics of Structural Risk Minimization (SRM) and its connection to
the SVM classifier. The outline of the main advantages and disadvantages of SVM concludes the

section in Subsection 3.2.4.

3.2.2 Construction of SVM

Let us assume a typica two-class problem in which the training patterns (vectors) xJ O"are
linearly separable, as in [Bur98], where the decision surface used to classify a pattern as belonging
to one of the two classes is the hyperplane Ho (Figure 3.2.1). If x is an arbitrary vector (X1 O"), we

define

f(x) =wX+b (3.2.2)

where id 00" and (1) denotes the dot product. Hy is the region of vectors x which verify the equa-
tion f (x) =0 [SS02], and H; and H_; are two hyperplanes paralel to Ho, and defined by f(x) =1
and f(x) =-1, respectively. The distance separating the H; and H.; hyperplanesis

2
2 (322

i
and it is called margin. The margin must be maximal in order to obtain a classifier that is not much
adapted to the training data, i.e. with good generalization characteristics. As we will see, the deci-
sion hyperplane Hy directly depends on vectors closest to the two paralel hyperplanes H; and Ho,

which are called support vectors.

Consider a set of training data vectors X ={x,,..x_}, X1 0", and a set of corresponding la-

belsY ={y,...y, }, vy, {1-} . We consider that the vectors are optimally separated by the

24



Chapter 3. Basic Pattern Recognition Techniques

o
®© 000 | Sading
o hyperplane

Figure 3.2.1. Two-class linear classification. The support
vectors are indicated with crosses

hyperplane Hy, if they are classified without error and the margin is maximal. In order to be correctly

classified, the vectors must verify

f(x)=+l for y, =+1 (3.2.3)
f(x)<-1for y,=-1

Or, more concisely,
y.f(xrp 1 0Oi (3.2.4)

Thus the problem of finding the SVM classifying function Hp can be stated as follows:
T T
minimize §||w1| (3.2.5)

subjectto y, f(x 2 1, L.

Thisis called the primal optimization problem [Bur98] [SS02] [MMR+01]. In order to solve it,

we form the following Lagrange function
1, 2 <
L(w,b) ZEHWH _zai [y, f(x)-1 (3.2.6)
i=1
where the Lagrange multipliers a; verify

az 0, Oi. (32.7)

25



3.2. Support Vector Machines

The Lagrangian L(w,b) must be minimized with respect to w and b, so its gradient must vanish,

9 | wb)=0,2

o S Lwb) =0 (3.2.8)

From the two above equations, it follows, respectively, that

L
2.ay =0 (32.9)
i=1
L
and w=>"a,y,x (3.2.10)

i=1
Substituting the conditions (3.2.9) and (3.2.10) into the Lagrangian (3.2.6), we arrive at the so-
called dual optimization problem:

L L L
maximize ) a, —%ZZaiaj VY% X, (3.2.11)
i=1

i=1 j=1

L
subjectto » a;y, =0 and az 0, Oi

i=1

The dual optimization problem is a (convex [Ber90]) quadratic programming problem that can
be efficiently solved with a number of mathematical agorithms [Ber95]. In our work we use the
decomposition method with conventional modifications [MMR+01].

Data observed in rea conditions are frequently affected by outliers. Sometimes they are caused
by noisy measurements. If the outliers are taken into account, the margin of separation decreases so
the solution does not generalize so well, and the data patterns may no longer be linearly separable.
To account for the presence of outliers, we can soften the decision boundaries by introducing a slack
positive variable & for each training vector [SS02]. Thus, we can modify the equations (3.2.3) in the

following way:

wx +tb=>+1-¢ for y =+1 (3.2.12)
wx, +b<-1+¢§ for y =-1

Obvioudly, if we take & large enough, the constraints (3.2.12) will be met for al i. To avoid the
trivial solution of large & , we introduce a penalization cost in the objective function in (3.2.5), and

thus the primal optimization formulation becomes:
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minimize (%”v_v”z + ciz;:a) (3.2.13)

subjectto y, (Wx+ be * &, Li,

where C is a positive regularization constant which controls the degree of penalization of the slack
variables & so that, when C increases, fewer training errors are permitted, though the generalization
capacity may degrade. The resulting classifier is usually called soft margin classifier. If C = o, no
valuefor & except Oisalowed; it isthe so-called hard margin SVM case.

The formulation (3.2.13) leads to the same dual problem asin (3.2.11) but changing the positiv-

ity constraints on a, by the constraints 0< a, <C. Thus, it can be shown that the optimal solution

has to fulfil the following conditions (known as Karush-Kuhn-Tucker optimality conditions)
[MMR+01]:

a =0 = yf(x)=1 and ¢ =0 (3.2.149)
O<a, <C = yf(x)=1 and ¢ =0 (3.2.15)
a =C = yf(x)<l and ¢ >0 (3.2.16)

The above equations reveal one of the most important features of SVM: since most patternslie
outside the margin area, their optimal a;’s are zero (equation (3.2.14)). Only those training patterns
X which lie on the margin surface (equation (3.2.15)) or inside the margin area (equation (3.2.16))
have non-zero a;, and they are named support vectors. Consequently, the classification problem

consists of assigning to any input vector x one of the two classes according to the sign of
M
f(x) = a,y,x, X+b, (3.2.17)
j=1

being M the number of support vectors. The fact that the support vectors are a small part of the
training data set makes the SVM implementation practical for large data sets [MMR+01].

In real situations, the distribution of the data among the classes is often not uniform, so some
classes are statistically under-represented with respect to other classes. To cope with this problem in
the two-class SVM formulation, we can introduce different cost functions for positively- and
negatively-labelled points in order to have asymmetric soft margins, so that the class with smaller
data size obtains a larger margin [VCC99]. Consequently, the conventional soft margin approach

can be generalized as
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minimize (%”W”z +C.YE+C, T E) (3.2.18)

iy;=-1 ity =1
subjectto y,(Wx+ bp ¥ &, 0i.

As the formulation (3.2.18) suggests, when C. increases, the number of allowed training errors
from positively-labelled data decreases, but at the expenses of increasing the allowed number of
training errors from the negatively-labelled data. And the opposite occurs when C. increases.

The resulting dual problem has the same Lagrangian asin (11), but the positivity constraints on

a, now become:
O<a, <C, for y =+1 (3.2.19)
O<a,<C_for y, =-1

For a non-linearly separable classification problem we have first to map the data onto a higher
dimensional (possibly infinite) feature space where the data are linearly separable. Accordingly, the
Lagrangian of the dual optimization problem (3.2.11) must be changed to

L

2.0 -

i=1

L

> aayy, dx)Hx;) (3.2.20)

i=1 j=1

N

Notice the input vectors are involved in the expression through a kernel function
K (%, %) = ¢(x) (x,), (3.2.21)

which can be thought as a non-linear similarity measure between two datapoints. According to the
Mercer’'s theorem [GR79], any (semi) positive definite symmetric function can be regarded as a
kernel function, that is, as a dot product in some space, so we will look for (semi) positive definite
symmetric functions that imply a data transformation to a new space where the classes can be

linearly separated. Note that there is no need to know the mapping function ¢ explicitly, but only
the kernel K(x,X.).

The most often used kernel functionsin SVM applications are the following two:

{%-x[*1 20
Radial Basis Function (RBF): K(x,x;) =e .

1777

(3.2.22)

Polynomial: K(x,x;) = (x X;)° (3.2.23)
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Thus, from equation (3.2.17) and the kernel concept, it follows that the two-class classification
process with a SVM consists of assigning a positive/negative label to each input vector x through the
following equation:

y(X) :sgn(iaj y;K(X, ;) +b) (3.2.29)

being M the number of support vectors.

3.2.3 Generalization error and SVM

Asit was said in the previous subsection the SVM problem is to find a hyperplane that separates the
data. It is obvious that the problem is ill-posed as many of such hyperplanes exist. As a criterion of
optimality, the hyperplane that gives the maximal margin to the nearest datapoints is chosen. Here
we will shortly summarize how that maximal margin principle that is used in SVM is connected to
SRM and thus to the generalization problem.

Consider a same set of training data vectors X ={x,,...x_}, X1 0"and a set of corresponding
labels Y ={y,,...y, }, v, {1-} . Further, assume that the samples are all drawn i.i.d. (independent
and identically distributed) from an unknown but fixed probability distribution P(x, y). If a unit loss

is defined for a misclassified point, and a zero loss for a correctly-classified point, we can define the

empirical risk as ameasure of average absolute error (L, norm) on the training data:
1 m
Rerp (0) = EZI(f (x%,60)- ) (3.2.29)
i=1

where the f(x,6) isthe class label predicted for the i-th training sample by the machine learning

algorithm which may be parameterized by a set of adjustable parameters denoted by . It is clear
that different values of & generate different learning functions f. The empirical risk minimization
(ERM) principle is widely used in current learning algorithms. The least squares method in the
problem of regression estimation or the maximum likelihood method in the problem of density
estimation are realizations of the ERM principle for specific loss functions [Vap99].

The danger for the researcher that arises from using the ERM principleisthat R,,,,(6) canbeas

low as desired for the arbitrarily-chosen parameters 6 of the function f. Let’s assume a learning
algorithm that can memorize all training points. Obviously, it will obtain 0% error on training data

but will not generalize on test data. The actual risk, also called generaization error, which is the
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mean of the error rate on the unknown entire distribution P(x, y) can be found by integrating over
the entire distribution, that is:

Rua (6) = [ (F(x,.6) ~ y,)dP(x, y) (3.2.26)
Although the law of large number [SS02] states that with m — oo

Remp - Ractual (3227)

it does not imply the optimal results in the limit of the infinite sample size as the law of large
numbers is not uniform over the whole set of functions f that the learning machine can implement
[Vap99].

Statistical learning theory or Vapnik — Chervonenkis (VC) theory shows that it isimperative to
restrict the set of functions from which f is chosen to one that has a capacity suitable for the amount
of training data. By capacity the authors (V.C.) mean an index or a number that measures the
flexibility that a function has. For example, intuitively, a quadratic function is more flexible than a
linear function; therefore it should have a higher capacity. The best-known capacity concept from
VC theory is the VC dimension. It was introduced in [V C71] to measure the capacity of a hypothe-
sis space. The m datapoints can be labelled in 2™ different ways as positives or negatives. It means
that 2™ learning problems can be defined. If for any i-th problem we can find a hypothesis H; that
separates the positive examples from the negative, H is said to shatter (separate) m datapoints. The
maximum number of datapoints that can be shattered by H is called the VC dimension of H and is
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Figure 3.2.2. Four pointsin two dimensions shattered by axis-aligned
rectangles
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denoted as h. Consider the following example. In Figure 3.2.2 we see how four points in a two-
dimensional space can be shattered by an axis-aligned rectangle for any possible labelling of the
four points (the trivial cases are not plotted). Thus, the VC dimension of the hypothesis class of axis-
aligned rectangles in atwo-dimensional space is 4. Note that it is enough that we find a case of four
points that can be shattered; it is not necessary that any four points can be shattered. For example,
four points placed in a line can not be shattered by rectangles. However, for five points placed
anywhere in two dimensions we can not find such a set of rectangles that is able to separate the
positive and the negative examples for al possible labellings [Alp04].

It was shown in [Vap79] that for a whole set of functions f with known VC dimension h an up-

per bound for the value of actual risk given the empirical risk can be derived. For a given 770 (0,1] ,
with probability of at least 1-7 the following bound holds:

h(In(2m/h) +1) —In(r7 / 4)
m

Roca (6) < Ry, (6) +\/ (3.2.28)

From [3.2.28] it comes that generalization error relates the number of examples (m), the training set
error (R,,,(6)) and the VC dimension (h). The right side of the equation (3.2.28) is called structural

risk (or functional risk). The expression (3.2.28) can be understood intuitively as follows. As it was
said above, the ERM criterion may lead to overfitting. That is why the second term — capacity — is
added. We can expect that the capacity term gets larger if we increase the VC dimension (h), and in
the same time the empirical error will decrease. On the other hand the capacity term gets smaller as
we increase the number of training datapoints (m), because the learning functions f get better con-
strained by data and in the same time empirical error will increase. Conceptually, the expression
(3.2.28) isshown in Figure 3.2.3.

Recall from the previous subsection that one of the optimization criteria of SVM is to maximize

the margin by minimizing its norm |jw/]:

2
A=-2 (3.2.29)
W
One can show [SS02] that the VC dimension h is bounded:
r 2
h<—+1 (3.2.30)

A2

where r indicates the radius of the minimal sphere containing all datapoints. It is obvious from
(3.2.30) that maximizing the margin we minimize the VC dimension h and thus the capacity term of
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Figure 3.2.3. Graphical depiction of the SRM principle. A set of functions f are
decomposed into a nested sequence of subsets S of increasing size and capacity.

the expression (3.2.28). Now the equation (3.2.5) can be reformulated as: to minimize the capacity
term of the expression (3.2.28) with the restriction to correctly classify al datapoints. It justifies that
the hyperplane with the largest margin of separation is the optimal hyperplane in the framework of
the V C-dimension-based risk bounds [Zha01].

3.24 Summary on SVM

The key advantages of SVM can be outlined in the following way:

* The control on capacity is obtained by maximizing the margin inspired by SRM.

» The absence of loca minima that comes from convexity [Ber90] of the quadratic optimiza-
tion problem.

* The dua formulation that enables the usage of kernels. The kernel function represents a
computational shortcut because we never explicitly have to evaluate the feature map in the
high dimensional feature space. The number of operations required is not necessarily propor-
tiona to the number of features. The kernel defines a similarity measure between two

datapoints and thus allows us to incorporate our prior knowledge of the problem.
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» The sparseness of the solution. Only asmall part of datais preserved.
The main disadvantages are:

» The choice of the kernel is crucial for the success of all kernel a gorithms because the kernel
constitutes prior knowledge that is avail able about a task.

» The selection of the kernel function parameters and the parameter C that controls slack vari-
ables.

» Both training and testing speed and size of the high agorithmic complexity and extensive
memory requirements of the required quadratic programming in large-scale tasks.

* Thedisability of SVM to deal with non-static data (dynamic data, sequences)

* A lack of optimal design for multiclass SVM classifiers.
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3.3 Gaussian Mixture Models

Gaussian mixture models are quite popular in speech and speaker recognition. In the design step, we
have to find the probability density functions that most likely have generated the training patterns of
each of the classes, assuming that they can be modelled by mixtures of Gaussians.

In the GMM, the likelihood function is defined as

P
p(x) = > WN(X4,5,) (33.1)
i=1
where P is the number of Gaussians, the weights w; verify
P
> w =land wz O, (332

i=1

and N(x; i, 2) denotes the multivariate Gaussian distribution

N(x u,%) = exp( —%(x -u)TZ‘l(x—ﬂ)j (33.3)

(2m)2 I
being 1 the mean vector and 2 the covariance matrix (often considered diagonal). As the goal isto
maximize the likelihood (ML), the parameters of the GMM (w;, & ,andZ,) are obtained via the
Expectation-Maximization (EM) algorithm [RJ93]. Unlike SVM, which is a two-class classifier,
GMM-based classifiers can handle an arbitrary number of classes. The GMM-ML classifier belongs
to the group of generative classifiers, unlike SVM, which is a discriminative classifier. Due to this

different approach, GMM generally needs a larger training set than SVM and so it is usually consid-
ered more complex [DHS00].
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3.4 Fuzzy Integral and Fuzzy Measure

We are searching for a suitable fusion operator to combine a finite set of information sources
Z={1..,z. Let D={D,,D,,.,D,} be a set of trained classification systems and
Q={c,c,,..,.Ccy} be aset of class labels. Each classification system takes as input a datapoint

XI 0" and assignsit to aclasslabel froma.

Alternatively, each classifier output can be formed as an N-dimensional vector that represents
the degree of support of a classification system to each of N classes. It is convenient to organize the
output of all classification systemsin aDecision Profile (DP) [Kun0O4]:

_dl,l(x)"' dyp(X)..dyy (X) |

DP (x) = .(;I.jyl(x)... d;,(X)..d; (X

_d 21 (X)end,  (X)..d, (x) |
where arow is classifier output and a column is a support of al classifiers for a class. We suppose
these classifier outputs are commensurable, i.e. defined on the same measurement scale (most often
they are posterior probability-like).

Let’s denote h;, i=1,..,z, the output scores of z classification systems for the class ¢, (the sup-
ports for class ¢, i.e. acolumn from DP) and before defining how FI combines information sources,
let’s look to the conventional WAM fusion operator. A final support measure for the class ¢, using
WAM can be defined as:

My = D 40 (34.1)

i0z

where ) u(i) =1 (additive), p(i)=0forallidz

iz
The WAM operator combines the score of z competent information sources through the weights
of importance expressed by (i) . The main disadvantage of the WAM operator is that it implies

preferential independence of the information sources [MarQ0].

Let’s denote with u(i, j) = u({i, j}) the weight of importance corresponding to the couple of
information sources i and j from Z. If u values are not additive, i.e. (i, ) # [u(i)+ u(j) for a
given couplefi, j} O Z , we must take into account some interaction among the information sources.

Therefore, we can build an aggregation operator starting from the WAM, adding the term of “second
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3.4. Fuzzy Integral and Fuzzy Measure

order” that involves the corrective coefficients (i, j) —[u(i)+ 1(j)] , then the term of “third order”,
etc. In thisway, we arrive to the definition of the FI: assuming the sequence h;, i=1,..,z, isordered in
such away that h, <...<h,, the Choquet fuzzy integral [Kun03] [Gra95a] [Gra04] can be computed

as
M, (,h) = i[,u(i,..., 2)-u(i +1,...2) h (34.2)

where p(z+1) = u(e) =0. u(S) can be viewed as a weight related to a subset S of the set Z of

information sources. It is called fuzzy measure and has to meet the following conditions:
H(8) =0, u(Z) =1, Boundary
SOT= u(S) < u(T), Monotonicity

where S, TOZ.

To illustrate the Fl, let us consider a case of two information sources with outputs h; and h,, and
assume that h;<h,. Consequently, we have corrective coefficients of the second order only:

u(1,2) - [ () + p(2)) . According to (3.4.2), Fl is computed as

M (1) =[p(L2) - p(2)] 1y + p(2) 1, (34.3)

which, after a slight manipulation, resultsin

Mg (i h) =[p(1.2) = (u(2) + @) by +p() by +4(2) h, (34.4)

where the first term corresponds to the “ second order” correction mentioned above.

For Z information sources there are atotal of 2° FM parameters that can be arranged in a lattice
with the usual ordering of real numbers [CGO3]. The lattice representation shows the monotonicity
of the FM and particular values involved in the FI calculation. An example of |attice representation
of FM defined for 4 information sources is shown on Figure 3.4.1. The lattice consists of Z+ 1 layers
with each node representing a particular subset of Z. Two nodes in adjacent layers are connected
only if there are set-inclusion relationships between the two subsets of Z whose measures they
represent. The red line on the Figure 3.4.1 shows the values used for the FI calculation given the

following ordering of classifiers’ scores: hy<hs<h,<hg.
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Figure 3.4.1. Lattice representation of fuzzy measure for 4 information
Sources.

Indeed, the large flexibility of the FI aggregation operator is due to the use of FM that can
model interaction among criteria. And although the FM u(i) provides an initial view about the

importance of information source i, all possible subsets of Z that include that information source

should be analysed to give a final score. For instance, we may have u(i) = 0, suggesting that ele-
ment i, i JT , isnot important; but if, at the sametime, p(T Oi) >> u(T), thisactualy indicatesi is

an important element for the decision. For calculating the importance of the information source i,
the Shapley score [Gra95a] [Mar00] is used. It is defined as:

(2 =[-8 iy -
[4(T O) - (7)) (345)

Aui=y

TOZ)N |Z|!

Generdly, (3.4.5) caculates a weighted average value of the marginal contribution
M(T O0) — u(T) of the element i over all possible combinations. It can be easily shown that the
information source importance sums to one.

Another interesting concept is interaction among information sources. As long as the FM is not
additive, there exists some correlation among information sources. When u(i, j) < u(i) + u(j) the
information sources i and | express negative synergy and can be considered redundant. On the
contrary, when (i, j) > u(i) + 4(j) , the information sourcesi and j are complementary and express
positive synergy. For calculating the interaction indices, instead of the margina contribution of

element i in (3.4.5), the contribution of a pair of information sourcesi and j is defined as the differ-
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3.4. Fuzzy Integral and Fuzzy Measure

ence between the marginal contribution of the pair and the addition of the two individual marginal

contributions [Mar0Q], or equivalently:
A(C,,0E) p@ i, p iy w((TO)+u(T) (346
and the interaction indices are calcul ated as:

(2]-[T]- 2)!|T|!(Ai,jﬂ)(r)] (3.4.7)

| (45, ) —m;,j 2D

We can see the index is positive as long as i and | are negatively correlated (complementary)
and negative when i and | are positively correlated (competitive).

As was mentioned in [Mar00], FI has very good properties for aggregation: it is continuous,
non-decreasing, ranges between a minimum and a maximum value, and coincides with WAM
(discrete Lebesgue integral) as long as the FM is additive. Actually, it was shown in [MarQ00] that
the ordered weighted average, the WAM, and the partial minimum and maximum operators are all
particular cases of FI with special FM. In fact, FI can be seen as a compromise between the evidence
expressed by the outputs of the classification systems and the competence represented by the FM’s
knowledge of how the different information sources interact [KunO3].

As the FM is a generalization of a probability measure, we can calculate a measure of uncer-
tainty associated to FM analogously to the way the entropy is computed from the probability
[Mar02], that is:

H =Y Sy ol 0i) - u(m)] (34.7)

i=1 TOZ\i
where y; =(1Z| =[T|=D![T| / |Z]!, 9(x) =-xInx, and 0In0=0by convention.
When normalized by InZ|, H(4) measures the extent to which the information sources are be-

ing used in calculating the aggregation value of M, (x4, h). When that entropy measure is close to

1, al criteria are used ailmost equally; when it is close to 0, the FI concentrates ailmost on only one
criterion [KMRO02].
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3.5 Chapter Summary

In this chapter the basic theory of 3 techniques, support vector machines, Gaussian mixture models, and
fuzzy integral, used in the work, has been given.

Firstly, the construction of SVM classifier has been presented followed by the basic notion of the
structural risk minimization theory and its connection to the SVM classifier. The main advantages and
disadvantages of SVM have been mentioned and discussed.

The GMM classifier is used in the work mostly for comparison purposes. In this chapter the basis
of GMM has been presented and the detailed information has been referenced.

Genera information on information fusion and the fundamentals of fuzzy integral and fuzzy meas-
ure theory has been also given in this chapter. The Fl is used to fuse various information sources in
order to capture and benefit from the information about importance and interaction among the informa-

tion sources.
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Chapter 4. Acoustic Events Classification

4.1 Chapter Overview

Acoustic events produced in controlled environments may carry information useful for perceptually
aware interfaces. In this chapter we focus on the problem of classifying meeting-room acoustic events.

In Section 4.2, we define the features that will be used throughout the work.

Section 4.3 presents 16 types of events and gathered sound database. Then, severa classifiers
based on Support Vector Machines (SVM) are developed using confusion matrix based clustering
schemes to deal with the multi-class problem. Also, severa sets of acoustic features are defined and
used in the classification tests. In the experiments, the developed SVM-based classifiers are compared
with an already reported binary tree scheme and with their correlative Gaussian mixture model (GMM)
classifiers.

SVM are discriminant classifiers, but they cannot easily deal with the dynamic time structure of
sounds, since they are constrained to work with fixed-length vectors. Several methods that adapt SVM
to sequence processing have been reported in the literature. In Section 4.4, they are reviewed and
applied to the classification of the 16 types of sounds from the meeting room environment.

Fuzzy Integra (FI) is a meaningful formalism for combining classifier outputs that can capture in-
teractions among the various sources of information. In Section 4.5, fusion of different information
sources with the FI, and the associated Fuzzy Measure (FM), is applied to the problem of classifying a

small set of highly confusable human non-speech sounds.
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4.2 Audio Features

We use the following notation in feature definition:

s(n) —signal value at the time index n;

N — frame length;

f(i), a(i) — frequency value at the frequency bin i and the corresponding Discrete Fourier Trans-
form (DFT) amplitude, respectively;

x(K), y(k) — value of mel-scaled logarithmic filter-bank energy at the sub-band frequency index k
corresponding to the current and previous frame, respectively;

The following types of frame-level acoustic features with the number of features per frame in
parenthesis are investigated in thisthesis:
Zero crossing rate (1). It measures the number of zero crossings of the waveform within a frame
and is calculated as:

N-1
ZCR=Y Hs(n)s(n-1)<g (4.2.1)
n=0
where the indicator function I{A} is 1 if itsargument A istrue and O otherwise.
Short-timeenergy (1). Total signal energy in aframe calculated as.

STE =Y s(n)s(n) (4.2.2)

=0

>

Fundamental frequency (1). A simple cepstrum-based method was used to determine the pitch in
therange [ 70, 500] Hz [Nol67]. When the signal is unvoiced, azero value is used.

Sub-band log energies (4). The 4 sub-bands are equally distributed along the 20 mel-scaled FBES
(5 per sub-band). The energy of each sub-band is calculated as:

$E(j)= 3 x(K) for | =0...3 (4.23)

k=5]

where N=5 is the number of log FBES per sub-band.

Sub-band log energy distribution (4). Percentage distribution of the total log frame energy among
the above-defined 4 sub-bands.

Sub-band log energy correlations (4). This new type of feature is a measure of correlation of log

FBEs between two adjacent frames and within each of the above defined 4 sub-bands. It is com-
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puted as the maximum absolute value of the cross-correlation function between the two sequences
X(K) and y(K):

5j+N-1

- [(k) —mod)) iyl —) -myf )]

$Bd j) = max abg - —=

f%‘l(x(k)—mm»zJSjgz‘l(y(k—d)—m))z

k=5 k

(4.2.4)

for j=0,...3

where mx(j) and my(j) are the means of the corresponding sub-band spectra, d=0,1...,N-1 are mel-
scaled sub-band frequency delays, and N=5 is the number of log FBES per sub-band.

Sub-band log energy time differences (4). It measures the changes of spectra in time and is
calculated as difference of log energies between two adjacent frames for the above defined 4 sub-

bands:

5j+N-1

8BD(j)= > (x(k)-y(k)) for j=0,..,3 (4.2.5)

k=5]

where N=5 is the number of log FBES per sub-band.
Spectral centroid (1). The centroid is a measure of the spectral “brightness’ of the spectral frame
and is defined as the linear average frequency weighted by DFT amplitudes, divided by the sum of

the amplitudes:

> f(i)a()
E-o (4.2.6)

3 a(i)

Oi

Spectral roll-off (1). It is a measure of the skewness of the spectral shape and is defined as a
frequency bin f; below which the ¢ percentage of the spectral amplitudes is concentrated (in our case
c=95):

f

C

> a() :ﬁZa(i) 4.2.7)

Spectral bandwidth (1). A measure of spreading of the spectrum around the spectral centroid:

> (f(i) - CE)*a%(i)
BW = |-X (4.2.8)

> a%()
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where CE is the spectral centroid of the frame.

We will call the above-mentioned features as perceptua throughout the work, since it has a
more perceptually-oriented profile than the conventional features taken from ASR. The ASR fea-
tures used in the work are:

Cepstral coefficients (12) - 12 mel-frequency cepstral coefficients (MFCC) are computed for each
frame using 20 mel-scaled spectral bands. The zero-th cepstral coefficient was removed, but the
frame energy was added to the set.

FF-based spectral parameters (13) - parameters based on filtering the frequency sequence of log
FBEs (FFBE) [NHG95] [NMHO1]. We have used the usua second-order filter H(z)=zz, which
implies subtraction of the log FBEs of the two adjacent bands. Before filtering, the sequence of log
FBEs along frequency is extended with one zero at each side. In this way, the first and last parame-
ters actually are the energies of the second and the second last sub-bands. That is the reason why the

frame energy was not used with these features.
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4.3 Classification of Acoustic Events Using SVM-Based Clustering Schemes
4.3.1 Introduction

In this section we focus on acoustic events that may take place in meeting-rooms or classrooms and
on the preliminary task of classifying isolated sounds. The number of sounds encountered in such
environments may be large, but in this initial work we have chosen 16 different acoustic events,
including speech and music, and a database has been defined for training and testing. While in
[NNM+03] the authors looked at the problem from the point of view of speech recognition, applying
the usual ASR strategy (cepstral features, classifier based on Hidden Markov Models (HMM) and
GMM)), in our work we consider, develop and compare several feature sets and classification
techniques, aiming at finding the ones which are most appropriate for the problem we are dealing
with. In thisway, not only the parameters that are used in speech recognition to model the short-time
spectral envelope of the signals and its time derivatives are considered, but also other perceptual
features which may be more fitted to non-speech sounds. Moreover, HMMs require relatively large
amount of data to accurately train the models, something that is not realistic in our task, since there
are not many collections of meeting recordings and the number of samples of some type of sounds
that can be found in them is small.

Recently, the Support Vector Machine (SVM) paradigm has proved highly successful in a num-
ber of classification tasks. As a classifier that discriminates the data by creating boundaries between
classes rather than estimating class conditional densities, it may need considerably less data to
perform accurate classification. In fact, SVMs have already been used for audio classification
[GLO3] and segmentation [LLZ03]. In this work we use SVM classifiers and compare them with
GMM classifiers.

As SVMs are binary classifiers, some type of strategy must be employed to extend them to the
multi-class problem. In [GLO3], the authors used the binary tree classification scheme to cope with
several classes. That approach requires a relatively high number of classifiers and classification
steps, and the number of classes has to be a power of 2 to get the most benefit from the technique.
There are other ways of applying SVMs to the multi-class problem; see [HLO0Z2] for a comparison of
different methods of multi-class SVM classification. In our work, we propose and develop severd
variants of atree clustering technique. Relying on a given set of confusion matrices, that technique
chooses the most discriminative partition and feature set at each step of classification, and, unlike

the binary tree, works for any number of classes.
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Comparative tests have been carried out using the two basic classifiers (GMM and SVM) and a
number of classification schemes (binary tree and several clustering alternatives). The effects of
using two different regularization parameters of the SVM classifiers to compensate data unbal ance,
and a confusion matrix based modification of those parameters are also investigated in this work.

The section is organized as follows. In Subsection 4.3.2 we present the database of gathered
sounds. Subsection 4.3.3 describes the features and explains the construction of feature sets. The
classification techniques are overviewed in Subsection 4.3.4. The experiments and a discussion of

the results are presented in Subsection 4.3.5. Finally, conclusions are given in Subsection 4.3.6.

4.3.2 Database

The first problem we had to face when trying to develop a system for classifying acoustic events
which take place in a meeting-room environment was the lack of data. As mentioned above, there
exists arelatively large database of sounds, the RWCP sound scene database, but only a small part
of the sounds included in that database can be considered as usual or at least possible in a meeting
room.

The second column of Table 4.3.1 shows the sixteen categories of sounds that were chosen. As

can be seen in the third column, only four of them belong to the RWCP database. The other sounds

Table 4.3.1. The sixteen acoustical events considered in our database, includ-
ing number of samples and their sources (I means Internet)

Event Sour ce Number
1 Chair moving I 12
2 Clapping RWCP + | 100+7
3 Cough I a7
4 Door slam I 80
5 Keyboard I 45
6 Laughter I 26
7 Music I 38
8 Paper crumple RWCP 100
9 Paper tear RWCP 100
10 Pen/pencil handwriting I 30
11 Liquid pouring I 40
12 Puncher/Stapler RWCP 200
13 Sneeze I 40
14 Sniffing I 13
15 Speech ShATR 52
16 Yawn I 12
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have been found in a large number of websites, except the speech sounds, which were taken from
the ShATR Multiple Simultaneous Speaker Corpus [ShA] and include short fragments from both
close-talk and omnidirectional microphones. The number of samplesis 100 or larger for the sounds
taken from the RWCP database, but it is much smaller for a few classes. As shown in the fourth
column of Table 4.3.1, chair moving and yawn events have only 12 samples in the database. The
whole database amounts 53 min of audio (942 files).

Indeed both the diversity in the number of samples per class and the small number of samples
for some sounds are a challenge for the classifier. And, the fact that sounds were taken from differ-
ent sources makes the task even more complicated due to the presence of several (at times even

unknown) environments and recording conditions.

4.3.3 Featuresextraction

The signals from all the sounds in the database presented above were downsampled to 8kHz,
normalized to be in the range [-1 1], and partitioned in frames using: frame length=128, overlapping
of 50%, and a Hamming window. The silence portions of the signals were removed using an energy
threshold.

Three basic types of acoustic feature were considered in this work. Two of them are spectrum
envelope representations used in speech/speaker recognition, namely the typical MFCC plus the
frame energy [RJ93], and the recently introduced FFBE [NHG95]. Like in speech recognition, they
will be considered either alone or together with their first and second time derivatives (the so-called
delta and delta-delta features) [RJ93]. We consider both types of features because we want to
compare their discriminative capability in this application. The third type of features is a small set
which includes perceptual features which are not considered in the above feature sets and may be
more adequate for some kind of sounds (fundamental frequency and zero crossing rate), and also a
reduced representation of the spectral envelope and itstime evolution.

Thus, the acoustic features considered in this work are defined in the following way:

1. Perceptual features
e Short time signa energy
e Sub-band energies
e Spectra flux
e Zero-crossing rate
* Fundamental frequency
2. Cepstral coefficients
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3. FF-based spectral parameters

The three above defined types of acoustic features were combined to build the 9 different fea-
ture sets shown in Table 4.3.2 which are considered in the experiments reported in Subsection 4.3.5.
The mean and standard deviation of those features, estimated by averaging over the whole acoustic
event signal, were taken for classification, thus forming one final statistical feature vector per audio

event with anumber of elements which doubles the length of the acoustic feature set.

Table 4.3.2. Feature sets that were used in this work, the way they were constructed
from the basic acoustic features, and their size. d and dd denote first and second
time derivatives, respectively, E means frame energy, and “+” means concatena-
tion of features.

Feature set Content Size
1 Perc Perceptual features 11
2 Cepstder E+MFCC+d+dd 39
3 Ceps E+MFCC 13
4 FF+der FFBE+d+dd 39
5 FF FF 13
6 Perc+cepst+der “Perc’ +“ Ceps+der” 50
7 Perc+ceps “Perc” + “C