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Abstract 

The human activity that takes place in meeting-rooms or class-rooms is reflected in a rich variety of 

acoustic events, either produced by the human body or by objects handled by humans, so the deter-

mination of both the identity of sounds and their position in time may help to detect and describe 

that human activity. Additionally, detection of sounds other than speech may be useful to enhance 

the robustness of speech technologies like automatic speech recognition.  

Automatic detection and classification of acoustic events is the objective of this thesis work. It 

aims at processing the acoustic signals collected by distant microphones in meeting-room or class-

room environments to convert them into symbolic descriptions corresponding to a listener's percep-

tion of the different sound events that are present in the signals and their sources.  

First of all, the task of acoustic event classification is faced using Support Vector Machine 

(SVM) classifiers, which are motivated by the scarcity of training data. A confusion-matrix-based 

variable-feature-set clustering scheme is developed for the multiclass recognition problem, and 

tested on the gathered database. With it, a higher classification rate than the GMM-based technique 

is obtained, arriving to a large relative average error reduction with respect to the best result from 

the conventional binary tree scheme. Moreover, several ways to extend SVMs to sequence process-

ing are compared, in an attempt to avoid the drawback of SVMs when dealing with audio data, i.e. 

their restriction to work with fixed-length vectors, observing that the dynamic time warping kernels 

work well for sounds that show a temporal structure. Furthermore, concepts and tools from the fuzzy 

theory are used to investigate, first, the importance of and degree of interaction among features, and 

second, ways to fuse the outputs of several classification systems. The developed AEC systems are 

tested also by participating in several international evaluations from 2004 to 2006, and the results 

are reported.  

The second main contribution of this thesis work is the development of systems for detection of 

acoustic events. The detection problem is more complex since it includes both classification and 

determination of the time intervals where the sound takes place. Two system versions are developed 

and tested on the datasets of the two CLEAR international evaluation campaigns in 2006 and 2007. 

Two kinds of databases are used: two databases of isolated acoustic events, and a database of 

interactive seminars containing a significant number of acoustic events of interest. Our developed 

systems, which consist of SVM-based classification within a sliding window plus post-processing, 

were the only submissions not using HMMs, and each of them obtained competitive results in the 

corresponding evaluation.  
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Speech activity detection was also pursued in this thesis since, in fact, it is a –especially impor-

tant – particular case of acoustic event detection. An enhanced SVM training approach for the 

speech activity detection task is developed, mainly to cope with the problem of dataset reduction. 

The resulting SVM-based system is tested with several NIST Rich Transcription (RT) evaluation 

datasets, and it shows better scores than our GMM-based system, which ranked among the best 

systems in the RT06 evaluation. 

Finally, it is worth mentioning a few side outcomes from this thesis work. As it has been carried 

out in the framework of the CHIL EU project, the author has been responsible for the organization 

of the above mentioned international evaluations in acoustic event classification and detection, 

taking a leading role in the specification of acoustic event classes, databases, and evaluation proto-

cols, and, especially, in the proposal and implementation of the various metrics that have been used. 

Moreover, the detection systems have been implemented in the UPC’s smart-room and work in real 

time for purposes of testing and demonstration. 
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Resum 

L’activitat humana que té lloc en sales de reunions o aules d’ensenyament es veu reflectida en una rica 

varietat d’events acústics, ja siguin produïts pel cos humà o per objectes que les persones manegen. Per 

això, la determinació de la identitat dels sons i de la seva posició temporal pot ajudar a detectar i a 

descriure l’activitat humana que té lloc en la sala. A més a més, la detecció de sons diferents de la veu 

pot ajudar a millorar la robustes de tecnologies de la parla com el reconeixement automàtica a 

condicions de treball adverses.  

L’objectiu d’aquesta tesi és la detecció i classificació automàtica d’events acústics. Es tracta de 

processar els senyals acústics recollits per micròfons distants en sales de reunions o aules per tal de 

convertir-los en descripcions simbòliques que es corresponguin amb la percepció que un oient tindria 

dels diversos events sonors continguts en els senyals i de les seves fonts. 

En primer lloc, s’encara la tasca de classificació automàtica d’events acústics amb classificadors 

de màquines de vectors suport (Support Vector Machines (SVM)), elecció motivada per l’escassetat de 

dades d’entrenament. Per al problema de reconeixement multiclasse es desenvolupa un esquema 

d’agrupament automàtic amb conjunt de característiques variable i basat en matrius de confusió. 

Realitzant proves amb la base de dades recollida, aquest classificador obté uns millors resultats que la 

tècnica basada en models de barreges de Gaussianes (Gaussian Mixture Models (GMM)), i 

aconsegueix una reducció relativa de l’error mitjà elevada en comparació amb el millor resultat 

obtingut amb l’esquema convencional basat en arbre binari.  

Continuant amb el problema de classificació, es comparen unes quantes maneres alternatives 

d’estendre els SVM al processament de seqüències, en un intent d’evitar l’inconvenient de treballar 

amb vectors de longitud fixa que presenten els SVM quan han de tractar dades d’àudio. En aquestes 

proves s’observa que els nuclis de deformació temporal dinàmica funcionen bé amb sons que presenten 

una estructura temporal. A més a més, s’usen conceptes i eines manllevats de la teoria de lògica difusa 

per investigar, d’una banda, la importància de cada una de les característiques i el grau d’interacció 

entre elles, i d’altra banda, tot cercant l’augment de la taxa de classificació, s’investiga la fusió de les 

sortides de diversos sistemes de classificació. Els sistemes de classificació d’events acústics 

desenvolupats s’han testejat també mitjançant la participació en unes quantes avaluacions d’àmbit 

internacional, entre els anys 2004 i 2006. 

La segona principal contribució d’aquest treball de tesi consisteix en el desenvolupament de 

sistemes de detecció d’events acústics. El problema de la detecció és més complex, ja que inclou tant la 

classificació dels sons com la determinació dels intervals temporals on tenen lloc. Es desenvolupen 
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dues versions del sistema i es proven amb els conjunts de dades de les dues campanyes d’avaluació 

internacional CLEAR que van tenir lloc els anys 2006 i 2007, fent-se servir dos tipus de bases de 

dades: dues bases d’events acústics aïllats, i una base d’enregistraments de seminaris interactius, les 

quals contenen un nombre relativament elevat d’ocurrències dels events acústics especificats. Els 

sistemes desenvolupats, que consisteixen en l’ús de classificadors basats en SVM que operen dins 

d’una finestra lliscant més un post-processament, van ser els únics presentats a les avaluacions 

esmentades que no es basaven en models de Markov ocults (Hidden Markov Models) i cada un d’ells 

va obtenir resultats competitius en la corresponent avaluació. 

La detecció d’activitat oral és un altre dels objectius d’aquest treball de tesi, pel fet de ser un cas 

particular de detecció d’events acústics especialment important. Es desenvolupa una tècnica de millora 

de l’entrenament dels SVM per fer front a la necessitat de reducció de l’enorme conjunt de dades 

existents. El sistema resultant, basat en SVM, és testejat amb uns quants conjunts de dades de 

l’avaluació NIST RT (Rich Transcription), on mostra puntuacions millors que les del sistema basat en 

GMM, malgrat que aquest darrer va quedar entre els primers en l’avaluació NIST RT de 2006. 

Per acabar, val la pena esmentar alguns resultats col·laterals d’aquest treball de tesi. Com que s’ha 

dut a terme en l’entorn del projecte europeu CHIL, l’autor ha estat responsable de l’organització de les 

avaluacions internacionals de classificació i detecció d’events acústics abans esmentades, liderant 

l’especificació de les classes d’events, les bases de dades, els protocols d’avaluació i, especialment, 

proposant i implementant les diverses mètriques utilitzades. A més a més, els sistemes de detecció 

s’han implementat en la sala intel·ligent de la UPC, on funcionen en temps real a efectes de test i 

demostració. 
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Chapter 1. Introduction  

1.1 Thesis Overview and Motivation 

Activity detection and description is a key functionality of perceptually aware interfaces working in 

collaborative human communication environments like meeting-rooms or classrooms. In the context of 

person-machine communication, computers involved in human communication activities have to be 

designed to have minimal possible awareness from the users. Consequently, there is a need of percep-

tual user interfaces which, besides being multimodal and robust, use unobtrusive sensors. One example 

of new challenging multimodal research efforts is the development of smart-rooms. A smart-room is a 

closed space equipped with multiple microphones and cameras, and several functionalities, which are 

designed to assist and complement human activities. In the case of the audio processing, some of the 

technologies that may be involved are speech activity detection, automatic speech recognition, speaker 

identification and verification, and speaker localization. 

Indeed, speech usually is the most informative acoustic event, but other kind of sounds may also 

carry useful information. Since in such types of environments the human activity is reflected in a rich 

variety of acoustic events, either produced by the human body or by objects handled by humans, 

detection and classification of acoustic events may help to detect and describe human activity. For 

example: clapping or laughing inside a speech, a strong yawn in the middle of a lecture, a chair moving 

or door slam when the meeting has just started. Additionally, the robustness of automatic speech 

recognition systems may be increased if such non-speech acoustic events are previously detected and 

identified.  

The main goal of this thesis work is detection and classification of meeting-room acoustic events, 

namely Acoustic Event Detection/Classification (AED/C). AED/C is a recent discipline belonging to 

the area of computational auditory scene analysis [WB06] that consists of processing acoustic signals 

and converting them into symbolic descriptions corresponding to a listener's perception of the different 

sound events that are present in the signals and their sources. 
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1.2 Thesis Objectives 

The primary objective of this PhD thesis is the development of systems for acoustic event detection 

and classification. As required in any pattern recognition task, the thesis work focuses on algorithms 

for both feature extraction and classification. The developed systems are tested through the partici-

pation in international evaluations in the framework of the project Computers in the Human 

Interaction Loop (CHIL). A secondary objective of the thesis is to design and implement a system of 

acoustic event detection that provides in real time semantic content to specific services defined in 

CHIL.  

Investigation of different types of features is an important point of any classification system. 

The relevance of conventional sets of features that are widely used in speech processing applications 

will be addressed. Several basic feature sets will be compared and investigated to find the most 

appropriate set of features. Apart from the features used in speech processing, there exist a number 

of features that have a more perceptually-oriented profile. The usefulness of the perceptual features 

will be investigated in terms of individual feature importance and degree of interaction.  

A large part of the work has to be concerned with the problem of acoustic event classification 

(AEC), since detection also requires classification. Due to the problem of scarcity of data in the 

available corpus, the development of classification algorithms that can tackle this problem is crucial 

and necessary. Recently, the Support Vector Machine (SVM) paradigm has proved highly success-

ful in a number of classification tasks. As a classifier that discriminates the data by creating 

boundaries between classes rather than estimating class conditional densities, it may need consid-

erably less data to perform accurate classification. For this reason the SVM classifier is initially 

chosen in this thesis as the main classification technique, and it is compared to Gaussian mixture 

models in a series of tests. As the developed algorithm may benefit from using the temporal evolu-

tion of the acoustic events, several techniques for sequential processing will be compared. The thesis 

will also explore the combination of several information sources in order to capture the interdepend-

encies among them.  

Applications in real meeting-room environments require facing the acoustic event detection 

(AED) problem. For that purpose, it is necessary to produce a database with a sufficient number of 

acoustic events of interest. The database can be used as a training material and as a testing material 

to evaluate the algorithm performance for AED. Besides, participation in the international evaluation 

campaigns is a good way for evaluating and comparing the various approaches submitted by the 

participants. Indeed, those evaluations have to be organized and coordinated, and appropriate 
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metrics and evaluation tools for AED have to be developed. Moreover, the AED systems will be 

implemented in the UPC’s smart-room and work in real time for purposes of testing and demonstra-

tion.  
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1.3 Thesis Outline 

The thesis is organized as follows. Chapter 2 presents state of the art in the area of general audio 

recognition, discussing the schemes for sound organization, presenting a literature review from the 

application point of view, and reporting the features, classification and detection techniques that 

have been used so far for acoustic event detection and classification.  

Chapter 3 reports the work done in the area of acoustic event classification and presents the a 

novel SVM-based classification technique. Moreover, several advanced classification techniques are 

compared in that chapter including those SVM-based techniques which can model the time dynam-

ics of sounds. Importance and interaction of various perceptual features are investigated in the 

framework of fusion several information sources using fuzzy theory and concepts.  

Chapter 5 describes a few new systems for acoustic event detection developed in this thesis. Re-

sults, obtained with the above-mentioned systems of AEC and AED in several international 

evaluations, are reported in Chapter 6.  

Chapter 7 considers the particular problem of speech activity detection and the way SVM clas-

sifier is applied to this problem. Results obtained with the international evaluation datasets are 

reported and compared with the previously developed detectors.  

The activities on AED, which were carried out in the UPC’s smart-room, are described in Chap-

ter 8: database recordings, implementation of the AED system in real time, development of demos.  

Chapter 9 concludes the work. The main achievements are summarised in this chapter. Several 

promising future directions are highlighted.  
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Chapter 2. State of the Art  

2.1 Chapter Overview 

In this chapter the current state of the art in the area of Acoustic Event Detection and Classification 

(AED/C) is presented. 

The remaining sections of this chapter are organized as follows. In Section 2.2 the schemes for 

sound organization are discussed. Section 2.3 presents a literature review from the application point of 

view, while Sections 2.4, 2.5, and 2.6 discuss features, classification and detection techniques that have 

been used so far for AED/C.  
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2.2 Sounds Taxonomy 

The research on sound classification has usually been carried out so far for a limited number of 

classes, like speech/music [PRO02] [MP04] [And04], music/song [Ger03a], or music/speech/other, 

where “other” is any kind of environmental sounds [LZJ02]. In the last years, however, the interest 

in AED/C has been significantly increased. The area of AED/C can be structured by different 

semantic levels. It can be the classification of events specific to a certain environment, classification 

of sounds specific to a given activity, generic sound classification, etc. In all the cases, there exist a 

large number of sounds and it is necessary to limit the number of classes considered. That is the 

reason why authors usually try to provide a sound taxonomy. The development of the sound taxon-

omy helps to better understand the data domain [Ger03b], and increase the accuracy and speed of 

classification [Cow04]. One example of a general sound taxonomy has been first presented in 

[Ger03b] and can be seen in Figure 2.2.1. It divides sounds firstly into hearable and non-hearable. 

Then the hearable part is further divided into noise, natural sound, artificial sounds, speech and 

music. An example of a standard taxonomy suitable for text-based query applications, such as 

WWW search engines, or any processing tool that uses text fields, was used in [Cas02] and it is 

presented in Figure 2.2.2. It is less general than the previous one as it is fitted to a given task. A 

sound taxonomy scheme for environmental sound classification can be found in [Cow04]. Because 

of the uncountable number of classes for a general environment, the author has proposed the taxon-

omy based on the physical states of sounding objects (solid, liquid, gas) and the possible interaction 

of objects (solid-solid, solid-liquid, etc). A scheme proposed in [AN00] has been based on the nature 

of sound sources. Firstly, the sources are divided into continuous and changing. Semantic classes 

appear at the next level.  

Clearly, the conception of sound taxonomy is subjective and it strongly depends on the chosen 

classification domain. In the framework of the CHIL project [CHI] it has been decided that for the 

chosen meeting-room environment it is reasonable to have an acoustic sound taxonomy for general 

sound description and a semantic sound taxonomy for a specific task. The proposed acoustic scheme 

is shown in Figure 2.2.3. Actually, almost any type of sounds can be referred to one of the proposed 

groups according to its acoustical property. On the contrary, the semantic scheme that is presented in 

Figure 2.2.4 is very specific to the CHIL meeting-room scenario. Additionally, with two sound 

taxonomies (acoustic and semantic) it is possible to cope with situations when the produced event 

does not match any semantic label but can be identified acoustically.  
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Figure 2.2.1. Sound taxonomy proposed in [Ger03b] 

 

Music Type 
Culture 
Genre 

Composer 
Performer 

Content 
Chord pattern 

Melody 
Notes 

Music 

Sounds 

Hearable 
Sounds

Non Hearable 
Soundss

Natural 
Sounds 

Artificial 
Sounds

Speech Noise 

Colour 
  White 
  Pink 
  Brown 
  … 

Perceptual 
Features 

Objects 
  Animals 
  Vegetables 
  Minerals 
  Atmosphere 
  … 

Interactions 

Source 

Objects 
  Vehicles 
  Buildings 
  Tools 
  … 
Interactions 

Intent 

Language 

Speaker Speaker 

Emotion 

Content 
Sentences 

Number of 
instruments 

Instrument 
Family 
Type 

Individual 



2.2. Sounds Taxonomy 
 

8

 

Figure 2.2.2. Sound taxonomy proposed in [Cas02] 
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2.3 Applications of Audio Recognition 

2.3.1 Audio indexing and retrieval 

A lot of applications of audio recognition are related to audio indexing and retrieval. In [Sla02a], the 

authors have considered the problem of animal sound classification for the purposes of semantic-

audio retrieval. The semantic and acoustic spaces are clustered and the probability linkage between 

the resulting models is established. The acoustic clustering has been done using Mel-Frequency 

Cepstral Coefficients (MFCC) [RJ93] and an agglomerative clustering algorithm with Gaussian 

Mixture models (GMM) [RJ93] to represent each cluster. The same authors proposed another 

solution for the same domain task in [Sla02b]. In that paper, mixture-of-probability experts have 

been used to learn the association between acoustic and semantic spaces. A similar approach for 

sounds retrieval made according to their nature (changing vs. continuous) is implemented in 

[AN00]. 

The system for content-based classification, search, and retrieval of audio has been proposed in 

[WBK+96]. It was one of the earliest in the domain of audio classification, and it has been patented 

as a “Muscle Fish” system. The authors have discussed how several perceptual features fit to the 

task of sound classification and retrieval. The classification itself was based on the Euclidian dis-

tance between feature vectors that consisted of mean, variance and autocorrelation coefficient at a 

small lag over the features computed by frame analysis. The investigation of feature importance was 

also performed. Several practical applications for similar systems were given as examples.  

In [GL03], the similar task with the same database has been more efficiently solved by using a 

binary tree scheme with Support Vector Machine (SVM) [DHS00] as a node. Retrieval has been 

done based on the distance-from-boundary conception. An improvement in comparison to the 

previous work has been obtained with concatenation of cepstral and perceptual features and SVM 

classification.  

In [APA05], the authors have applied two classification techniques (SVM and GMM) to audio 

indexing. They have performed a discrimination of “speech” and “music” in radio programs and a 

discrimination of environmental sounds (“laughter” and “applause”) in TV broadcasts. 

In [CLH05], the unsupervised approach for discovering and categorizing semantic content in a 

composite audio stream has been developed. Firstly, the authors have performed spectral clustering 

in order to discover natural semantic sound clusters in the analyzed data stream. The auditory scenes 

are categorized then in terms of the extracted audio elements. 
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2.3.2 Audio recognition for a given environment 

Recently, a huge interest has arisen in the area of detecting and classifying sounds which are specific 

to a given environment. Such environments can be lectures or meeting rooms, clinics or hospitals, 

sport stadiums or natural parks, kitchens or coffer shops, etc. In [KE04], the authors have considered 

the detection of “laughter” in meetings with SVM. In their experiments, MFCC features outperform 

the proposed spatial features and modulation spectrum features. No significant gain in the perform-

ance has been reported from combination of the examined features. Also the first six cepstral 

coefficients have been reported to provide the most information for classification.  

In [KE03], the detection of an emphasis for the purpose of characterization of meeting re-

cordings has been proposed. The approach uses only pitch information to identify the utterances of 

interest.  

Apart from the meeting environments, sound classification is performed in environments related 

to the medicine. In [BHM+04], authors have used a classification system to analyze the sound of 

drills in the context of spine surgery. To facilitate the work of surgeon maintain the same accuracy, 

the system gives information about the density of the bones using the results of the sound analysis. 

Several features like zero crossing rate, median frequency, sub-band energies, as well as MFCC and 

pitch have been used with Artificial Neural Networks (ANN) [DHS00], SVM and Hidden Markov 

Models (HMM) [RJ93] classifiers.  

A smart audio sensor for a telemonitoring system in telemedicine has been developed in 

[VIB+03a]. That sensor is equipped with microphones in order to detect a sound event (an abnormal 

noise or a call for help). Comparison of Linear Prediction Coefficients (LPC), MFCC along with 

their combination with time-derivatives and some perceptual features has been considered. The 

same authors have proposed the technique based on transient models and wavelet coefficient tree to 

classify the sounds for clinic telesurvey purposes in [VIS04]. The paper discusses the sound analysis 

of patient activity, psychology and possible stress situations. Among other classification models, 

GMM has been chosen as the least complex one. Bayesian Information Criteria (BIC) has been used 

to find the optimal number of Gaussians. In [VIB+03b], the classification of sounds in different 

Signal-to-Noise Ratios (SNR) for the medical telemonitoring has been investigated.  

Baseball, golf and soccer games have been viewed a unified framework for sport highlight ex-

traction in [XRD+03]. The authors have compared MPEG-7 spectral vectors and MFCC features. 

MPEG-7 feature extraction mainly consists of a Normalized Audio Spectrum Envelope (NASE), 

basis decomposition algorithm (e.g. Singular Value Decomposition or Independent Component 
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Analysis (ICA) [DHS00]), and a spectrum basis projection, obtained by multiplying the NASE with 

a set of extracted basis functions. HMMs with entropy prior and maximum likelihood training 

algorithms have been used as classifiers. The authors have obtained promising results using chosen 

pre- and post-processing techniques and exploiting general sports knowledge.  

In [HMS05], the authors report an experiment with an acoustic surveillance system comprised 

of a computer and microphone situated in a typical office environment. The system continuously 

analyzes the acoustic activity at the recording site, and using a set of low-level acoustic features the 

system is able to separate all interesting events in an unsupervised manner.  

The work presented in [CER05] deals with audio events detection in noisy homeland environ-

ments for a homeland security. The performance of a GMM-based shot detection system was 

improved by considering the hierarchical approach.  

The acoustic event recognition for four different environments - kitchen, workshop (mainte-

nance), office and outdoors – has been applied in [SLP+03]. The paper discusses a prototype of a 

sound recognition system focused on an ultra low power hardware implementation in a button-like 

miniature form. The implementation and evaluation of the final version of the prototype are per-

formed in [SLT04]. In those papers, the authors have used FFT features and compared a k-nearest 

centre classifier with a k-nearest neighbour classifier. To preserve the low energy consume of the 

proposed technique, while maintaining high accuracy, several feature combinations as well as 

feature selection and feature relevance extraction algorithms have been tested. The paper also 

discusses the trade-off between computational cost and recognition rate, analyses the signal intensity 

for two microphones recognition system, and estimates the complexity of different parts of the 

whole system.  

Recognition of sounds related to the bathroom environment has been done in [JJK+05]. The 

system is designed to recognize and classify different activities of daily living occurring within a 

bathroom based on sound. It uses an HMM classifier and MFCC features. Preliminary results 

showed high average accuracy.  

In [RD06], the authors have defined the conception of the background and the foreground 

sounds. It is done by tracking the generative process that consists of detecting and adapting to 

changes in the underlying generative process. The proposed approach for the adaptive background 

modelling was applied to detection of suspicious sounds in an elevator environment.  

In [SKI07], an unsupervised algorithm for audio segmentation is proposed and applied to the 

database of meeting-room isolated acoustic events produced in the CHIL project (see Appendix A). 
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It is compared to the BIC algorithm and the better results are obtained. The algorithm is based on a 

modification of the Expectation-Maximization algorithm.  

In [Luk04], the authors have considered human activity detection in public places mainly by 

concentrating on coffee shop activity detection. The main priority of the final system has been 

defined as a real time or close-to-real time functionality for the activity detection module, and 

dealing with both single speaker acoustic events and a whole auditory scene. A wide range of 

features and two distinct classifiers (k-nearest neighbours and GMM) have been compared. The 

research done on auditory scene analysis has been reported as probably the most interesting and the 

most valuable for the project.  

2.3.3 Recognition of generic sounds  

The group of works presented in this subsection deals with detection and classification of generic 

sounds that are not related to any specific environment. In [Ell01], the author compare two different 

approaches to alarm sound detection and classification, namely: ANN and a technique specifically 

designed to exploit the structure of alarm sounds and minimize the influence of background noise. 

The usefulness of a set of general characteristics in different types of noises has been investigated on 

a collected small database of alarm sounds.  

The commercial removal system for personal video recorders has been considered in 

[GMR+04]. In the paper, the authors have applied k-means clustering to assign a chosen audio 

segment with commercial or program label. Unlike other existing systems, they make no assumption 

about program content resulting to the content-adaptive method.  

Bird species sound recognition has been performed in [Har03]. The authors have investigated 

recognition of a limited set of bird species by comparing sinusoidal representations of isolated 

syllables assuming that a large number of songbird syllables can be approximated as amplitude-and-

frequency-varying brief sinusoidal pulses.  

Jingle detection and classification has been done in [PO04]. A sequence of spectral vectors is 

used to represent each key jingle event. Some heuristic classification procedures are then applied to 

the obtained event “signature”. 

In [NNM+03] the authors have tackled the problem of classifying many types of isolated envi-

ronmental sounds that had been collected in an anechoic room, the RWCP (Real World Computing 

Partnership) sound scene database [NHA+00]. Along with finding the identity of the tested sounds, 

their main goal was to improve the robustness of an ASR system, so they have used HMMs and 

worked in the context of speech recognition.  
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In [CS02], the authors have compared the performance of speech recognition techniques applied 

to the task of non-speech environmental sound recognition. The Learning Vector Quantization 

(LVQ) and ANN have been used. The same authors in [CS03] have presented the results of a 

comparative study of several classification techniques, which are typically used in speech/speaker 

recognition and musical instrument recognition, applied to the environmental sound identification. 

They have found also that conventional “winners” in the speech/speaker recognition are either not 

suitable or performs not so good as other techniques in the environment sound recognition.  

This work in [AMK06] presents a hierarchical approach of audio based event detection for sur-

veillance. A given audio frame is firstly classified as vocal or non-vocal, and then further classified 

as normal and excited. The approach is based on a GMM classifier and LPC features. 

In [Cow04], a system of non-speech environmental sound classification for autonomous surveil-

lance has been discussed. Features based on a wavelet transformation and MFCC features performed 

the best. 

The comparison of MFCC and Mpeg7 features as well as analysis of the latter has been done in 

[KBS04]. The authors have evaluated also three approaches of feature selection (feature space 

reduction): Principal Component Analysis (PCA) [DHS00], ICA, and non-negative matrix factoriza-

tion. The features are fed to a continuous HMM classifier. From analysis of efficiency, it is 

concluded that MFCC features yield better performance in comparison with MPEG-7 features in the 

general sound recognition under some practical constraints. Nevertheless, the best results have been 

obtained with PCA applied to Mpeg7 features. The same authors in [KMS04] have compared one-

level and hierarchical classification strategies based on a HMM and ICA-pre-processed Mpeg7 

features. The best results have been obtained by “hierarchical structure with hints” that implies the 

usage of some auxiliary information about the task domain.  

In [RAS04], a comparison of MFCC and proposed Noise-Robust Auditory Features (NRAF) 

has been done for a four class audio classification problem. Motivated by the fact that MFCCs do 

not perform so well in the presence of noise, a viable alternative in the form of NRAF was proposed. 

GMMs have been used for classification. The proposed alternative has been also conditioned by a 

need to have a low-power autonomous classification system.  

A multi-class audio classification system has been proposed in [HKS05]. The authors have cre-

ated SOLAR: Sound Object Localization and Retrieval in Complex Audio Environments system 

based on frequency band energy based features (band-width, peaks, loudness, etc) and AdaBoost for 

boosting several decision trees. Due to the diversity of sounds, the cascade of classifier is reported to 

recover special types of errors made in previous classification steps. 
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In [SN07], the authors have focused on the problem of discriminating between machine-

generated and natural noise sources. A bio-inspired tensor representation of audio that models the 

processing at the primary auditory cortex is used for feature extraction. Comparing with MFCC 

features, better performance has been obtained using the cortical representation. 

2.3.4 Classification of acoustic environments 

On the contrary to the above-mentioned works where authors recognize sounds specific to a chosen 

environment, the authors in [EL04] have investigated the problem of recognizing environments 

specific to a set of sounds. They have performed personal audio archiving using environment as a 

clustering criteria. The author have tried to facilitate user’s access to the requested information by 

segmenting the audio stream into 16 environment classes like “street”, “restaurant”, “class”, “li-

brary”, “campus”, etc. Spectral clustering of a feature set consisting of bark-scaled frequency 

energies and spectral entropy has been performed.  

An HMM-based classification of different listening environments, like speech in quiet, speech 

in traffic, and speech in babble, for the purposes of hearing aids has been presented in [Nor04]. The 

work also investigates the robustness of the classification at a variety of SNR. In [Buc02], the work 

for hearing aids deals with the problems of how to increase the performance of automatic and robust 

classification of five types of sounds by using the information of the detected acoustic environments.  

In [MSM03] [SMR05] the authors have proposed an approach of rapid recognition of an envi-

ronmental noise, minimizing the computation cost by usage of adaptive learning and easy training 

based on HMMs. The system can rapidly recognize 12 types of environments by classifying 3-

second segments.  

An HMM-based system for classification of 24 everyday audio contexts (street, road, nature, 

market, etc) has been proposed in [EPT+06]. In that work, computational efficiency of the devel-

oped recognition methods have been evaluated. In comparison with a human ability, the proposed 

system has obtained comparative results. Slight increase in recognition accuracy has been obtained 

by using PCA or ICA transformation applied to MFCC features.  
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2.4 Types of Features 

Lots of works on audio recognition have been devoted to the feature extraction block. Good features 

simplify the design of a classifier whereas features with little discriminating power can hardly be 

compensated with any classifier. A long list of features has been investigated, ranging from standard 

ASR features to new application-driven perceptual features.  

As ASR features are well-known, they have been very popular in audio recognition tasks. 

MFCC features have been used in a number of works [Sla02a] [Sla02b] [CLH05] [NNM+03] 

[Cow04] [APA05].  

Nevertheless, in many cases the best performance may be obtained by concatenation of percep-

tual and conventional ASR features as it has been done in [GL03] [BHM+04] [CER05].  

Comparison of MPEG-7 spectral vectors and MFCC features has been done in [KBS04] and 

[XRD+03]. In [RAS04] the authors have tested MFCC features and proposed new noise-robust 

auditory features. Wavelet dispersion feature vectors have been used in [KZD02]. The comparison 

of LPC, MFCC, and their combination with time-derivatives and some perceptual features has been 

done in [VIB+03a].  

The content of the perceptual set of feature differs from application to application. Here we 

mention some of the perceptual features that can be found in the literature:  

• Distance to voicing [BBW+03] is an estimation of the voicing level profile of the wave-

form. Regions above a given threshold are marked as voices. The distance to voicing is 

defined as the distance between the current frame and the closest voiced frame. A dis-

tance of zero indicates that the frame is a voiced frame. A large distance hints that the 

frame is probably a non-speech since human speech typically does not contain long 

segments with no voicing.  

• Frame energy [BBW+03] [SPP99] [ZK01] [GL03] is a total energy of a current frame. 

• The silence ratio [GL03] is the number of silent frames divided by total number of 

frames. 

• The pitched ratio [GL03] is the number of pitched frames divided by total number of 

frames. 

• Spectral tilt [BBW+03] is defined as a ratio of high- to low-frequency energies. Frica-

tives typically display a larger spectral tilt than steady-state noises such as car noise. 

• Sub-band energies [SPP99] [GL03] the log FBE of some number of chosen subbands. 
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• Zero-crossing rate ([SPP99] [Ger03b]) is defined as the number of zero crossing in a 

frame. 

• High zero-crossing rate ratio (HZCRR) [LZJ02] is defined as a ratio of the number of 

frames whose ZCR is above 1.5 fold average zero-crossing rate in one-second window. 

• Low Short-Time Energy Ratio [LZJ02] is defined as a ratio of the number of frames 

whose STE are less than 0.5 times of average short time energy in a one-second. 

• Spectrum Flux [LZJ02] [LLZ03] is defined as a (squared) difference of the spectra be-

tween two adjacent frames. 

• Band Periodicity [LZJ02] [LLZ03] is defined as the periodicity of each sub-band de-

rived by sub-band correlation analysis. 

• Noise Frame Ratio [LZJ02] is defined as a ratio of noise frames in a given audio clip. 

• Fundamental frequency [GL03] [ZK01] is the lowest frequency in a harmonic series. 

• Spectral centroid [LZJ02] is a centroid of the (linear) spectrum. It is a measure of the 

spectral “brightness”.  

• Spectral roll-off [LZJ02] is the 95th percentile of the spectral energy distribution. It is a 

measure of the “skewness” of the spectral shape. 

• Spectral bandwidth [LZJ02] is a measure of spreading of the spectrum around the spec-

tral centroid. 

• Modulation spectrum [KE04] [SA02] is characterization of the time-varying behaviour 

of the signal.  

Because of a large number of possible features several works have studied feature selection 

techniques. In [SLP+03] [SLT04] a selection of FFT features has been carried out based on rele-

vance estimation algorithms. Three approaches of feature selection (feature space reduction), 

namely PCA, ICA, and non-negative matrix factorization, have been evaluated in [KBS04] 

[EPT+06].  
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2.5 Audio Classification Algorithms 

Any recognition task requires a classification. The task of classification is to provide a label for an 

unseen input pattern. However, as it was mentioned in the previous subsection, a poor feature process-

ing can hardly be compensated by a good classification.  

One of the very first works on audio classification has used a minimum distance classification 

model - simple distance-based classifier with the Euclidian distance between extracted features 

[WBK+96]. The minimum distance classifiers choose a class according to the closest training sample. 

Little more complex algorithms pick k-nearest neighbours to an unknown input and then choose the 

class that is most often picked. In that case classification gets very complex with a lot of training data, 

as one must measure a distance to all training samples. Performing clustering and storing only centres 

of the clusters (class prototypes) can improve computational efficiency. Mentioned algorithms and 

related optimization steps for audio classification have been reviewed in [SLP+03] [SLT04] [Luk04] 

[GMR+04].  

A rule-based classification algorithm that initially also relies on good feature extraction has been 

used in [PO04]. In that work several task-specific features have been proposed with a set of heuristic 

classification rules. 

Among other classification paradigms a way to classify audio data is to use already developed and 

well-tested speech recognition algorithms. In ASR usually GMMs or HMMs are used. They are well 

suited to work with time series data, may use information included in the temporal evolution of an 

audio signal. A lot of audio recognition works have exploited the mentioned techniques. GMMs have 

been used in [Sla02a] [Sla02b] [AN00] [VIB+03a] [VIS04] [VIB+03b] [Luk04] [RAS04] and HMMs 

in [BHM+04] [XRD+03] [KE04] [NHA+00] [KMS04] [Nor04] [MSM03] [SMR05].  

In [CS03] the comparison of ASR techniques for the task of the environmental sound recognition 

has been performed. The conclusion was that conventional ASR techniques are not that suited for the 

general task of audio recognition. Instead of using generative classification models like GMM, dis-

criminative classification models have been used in a number of works, like ANN in [BHM+04] 

[Ell01] [KZD02], VQ in [CS02], decision trees in [HKS05], SVM in [GL03] [KE04] [BHM+04] 

[LLZ03] [APA05].  
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2.6 Audio Detection Algorithms 

It is necessary to mention that detection is only involved in those tasks that deal with continuous 

audio and not with events that have been already extracted. Indeed, the audio detection can be 

performed in two different ways. The first one consists of detection of a sound endpoints and then 

classification of the end-pointed segment. Hereafter we refer to it as detection-and-classification. 

The second one detects by classifying the consecutive audio segments. We refer to it as detection-

by-classification.  

2.6.1 Detection-by-classification 

Most papers give preference to the detection-by-classification due to its natural simplicity. In that 

way, the detection task converts to the classification task. The problem consists of the choice of a 

window length. The detection itself is carried on by assigning a segment with a label given by the 

classification when applied to that segment (Figure 2.6.1). The number of works that use this 

strategy is by far larger than the number of works that perform detection and then classification. 

Clearly, the window length is an arbitrary value. For “laughter” detection it may be one second 

[KE04] [APA05], for “music” a window of several seconds may be chosen [KZD02]. Depending on 

the task domain, the length of a segment usually goes from half a second up to several minutes 

[KE04] [BHM+04] [SLP+03] [SLT04] [NHA+00] [And04] [Ell01] [KZD02] [GMR+04] [DL04] 

[HKS05].  

Although the scheme can be soundly applied only to signals where the main part is stationary 

this type of detection has been successfully applied to impulse-like sounds in [Ell01] and [HKS05]. 

Consequently, knowledge of task domain may have a great impact upon the accuracy of chosen 

detection scheme. The choice of the length and the shift of the sliding window becomes very impor-

. . .
C L A S S I F I C A T I O N  

w i n d o w  l e n g t h

s h i f t  

 

Figure 2.6.1. Detection-by-classification 
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tant. Moreover, a kind of a compromise between temporal resolutions of the decision-making and 

implied computational cost has to be found. The influence of the window length on the classification 

results has been reviewed in [KBS04] and the reasons for the chosen detection strategy have been 

investigated in [HKS05].  

An important aspect of the detection-by-classification strategy is the application of some post-

processing techniques. As even an appropriate window length and shift cannot naturally satisfy all 

acoustical requirements of a signal, a certain smoothing of results is necessary. Under the assump-

tion that it is improbable that sound types change suddenly or frequently in an arbitrary way, a 

smoothing of the final segmentation of an audio sequence can be applied. For instance, the sequence 

labelled as “Music-Music-Speech-Music-Music” may be smoothed to “all-Music” sequence. The 

rules usually are highly heuristic. Smoothing applied to silence /speech /music /environment seg-

mentation in [LZJ02] can serve as an example. 

Another aspect in the detection-by-classification strategy is a usage of a classifier that has its 

own segmentation algorithm inside. As an example, HMMs borrowed from speech/speaker recogni-

tion sphere has been successfully used in [XRD+03] [Nor04] [KMS04] [KBS04]. The difference 

with above-mentioned methods is that it has no constant window length for decision-making as it 

classifies by accumulating probabilities. In that case the limitation of the technique is that HMM 

accurate modelling requires relatively large amount of data.  

2.6.2 Detection-and-classification 

An interesting strategy appears to be detection and then classification of the segment bounded by 

detection algorithm. It should be noted that resulting temporal segmentation does not try to interpret 

the data but in case the classes under review consist of both stationary and impulse-like sounds both 

affected by background noise the detection algorithms become quite challenging.  

Thus, in [Pfe01] the approach based upon exploration of relative silences has been proposed. A 

relative silence has been considered as a pause between important foreground sounds. However, the 

approach has been mainly designed for spoken words extraction. As an example a reporter speech 

on the background crowd noise was considered.  

A large number of papers in detection-and-classification deal with metric-based detection tech-

niques. In that sense segmentation refers to the process of breaking audio into time segments based 

on what could be called “texture” of sound [TC99]. A sliding window goes through the signal and a 

certain similarity measure between adjacent regions is calculated and compared to the chosen 

threshold. This way no classification decision is made, instead, a segment boundary is claimed to be 
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detected when the metric value exceeds the threshold. As a similarity measure distance measures 

such as Euclidian distance [WBK+96] [PO04], Mahalanobis distance [TC99], Kullback-Leibler 

[CTK+03], Bhattacharyya [PCC01] have been used. An important issue is the usage of the self-

adapting threshold and other heuristics. For instance, in [TC99] the peaks of the derivative of 

Mahalanobis distance correspond to texture changes and are used to automatically determine 

segmentation boundaries; or in [PO04] only candidates that have a value less than half of the mean 

of the values in the window are considered. The distance-based methods have some advantages and 

disadvantages. Low computational cost and real time processing possibility from one side and 

difficult choice of a threshold and a relatively long window required from the other side. Moreover 

to apply some of the distance-based similarity measure the assumption that the features follow some 

distribution (usually Gaussian) is done.  

To overcome some of the above-mentioned disadvantages, similarity measures that are not 

based on distances have been used in [VIB+03b] [VIB+03a]. In those papers, the authors have used 

two metrics: cross-correlation and energy spline interpolation. In the first one, maximum value of 

cross-correlation has been taken as a measure of similarity between two adjacent windows. For the 

energy prediction-based method, ten previous values of energy have been used to predict the next 

one using spline interpolation. The authors have investigated the behaviour of the detection tech-

niques in artificial and real environmental noises with different SNR.  

On the other hand the model-based algorithms like BIC do not need any threshold and can be 

applied directly to audio streams [CW03] [CW04] [EL04]. However they also have disadvantages as 

a relatively high computational cost and a need for long windows that is bearable for stationary 

sounds and not suitable for impulse-like sounds. For the latter, the technique based on median-filter 

is proposed in [DBA+00]. The signal energy is estimated for every successive time block. Then, the 

obtained energy sequence is median-filtered, and the output of the filter is subtracted from the 

energy resulting in a new sequence which being normalized emphasizes the relevant energy pulses. 

A very interesting method for detection of both stationary and impulse-like sounds has been 

proposed in [VIB+03b] where six techniques for sound detection have been compared. The discrete 

wavelet transform has been applied to extract high order wavelet coefficients that are reported to 

detect impulsive sounds almost clearly. The method is shown to outperform two methods based on 

median-filtering, simple energy-variance-based method, and the cross-correlation and spline interpo-

lation for energy prediction methods for different noises with several SNR conditions tested. The 

above-mentioned method has been modified in [VIS04] [VIS+05] where the authors have used 

transient models based on dyadic trees of wavelet coefficients. 
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2.7 Chapter Summary 

In this chapter we have quickly reviewed the work done so far in the area of acoustic event classifi-

cation and acoustic event detection. Firstly, the main schemes for sound semantic organization have 

been discussed. Also, a literature review from the application point of view has been presented, 

where the application domain has been subdivided into audio indexing and retrieval, sound recogni-

tion for a given environment, recognition of generic sounds, and classification of acoustic 

environments. Then, the features and classification techniques that have been used in the area of 

audio recognition have been discussed. Finally, detection techniques, subdivided into detection-by-

classification and detection-and-classification, have been explained, and the relevant reported works 

have been presented. 
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Chapter 3. Basic Pattern Recognition Techniques 

3.1 Chapter Overview 

Three basic classification techniques are considered in this work: Support Vector Machine (SVM), 

Gaussian Mixture Model (GMM), and Fuzzy Integral (FI). In this section, the above-mentioned tech-

niques will be presented.  

Firstly, the basic theory of SVM will be given in Section 3.2. Specifically, the construction of 

SVM will be overviewed in Subsection 3.2.2. Subsection 3.2.3 will discuss the generalization proper-

ties of SVM. Finally, the main advantages and disadvantages of SVM will be highlighted in Subsection 

3.2.4.  

The very basics of GMM will be given in Section 3.3. 

The basic theory of the FI and Fuzzy Measure (FM) that are used to fuse various information 

sources in the way to benefit from the interactions between them will be presented in Section 3.4. 
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3.2 Support Vector Machines 

3.2.1 Introduction 

The SVM is a discriminative model classification technique that mainly relies on two assumptions. 

First, transforming data into a high-dimensional space may convert complex classification problems 

(with complex decision surfaces) into simpler problems that can use linear discriminant functions. 

Second, SVMs are based on using only those training patterns that are near the decision surface 

assuming they provide the most useful information for classification. In this section the basic theory 

of SVM will be given. Firstly, the construction of an SVM classifier will be presented in Subsection 

3.2.2. Subsection 3.2.3 gives the basics of Structural Risk Minimization (SRM) and its connection to 

the SVM classifier. The outline of the main advantages and disadvantages of SVM concludes the 

section in Subsection 3.2.4.  

3.2.2 Construction of SVM 

Let us assume a typical two-class problem in which the training patterns (vectors) n
ix ℜ∈ are 

linearly separable, as in [Bur98], where the decision surface used to classify a pattern as belonging 

to one of the two classes is the hyperplane H0 (Figure 3.2.1). If x is an arbitrary vector ( nx ℜ∈ ), we 

define 

bxwxf +⋅=)(  (3.2.1) 

where nw ℜ∈  and )(⋅  denotes the dot product. H0 is the region of vectors x which verify the equa-

tion 0)( =xf  [SS02], and H1 and H-1 are two hyperplanes parallel to H0, and defined by 1)( =xf  

and 1)( −=xf , respectively. The distance separating the H1 and H-1 hyperplanes is  

w
2   (3.2.2) 

and it is called margin. The margin must be maximal in order to obtain a classifier that is not much 

adapted to the training data, i.e. with good generalization characteristics. As we will see, the deci-

sion hyperplane H0 directly depends on vectors closest to the two parallel hyperplanes H1 and H2, 

which are called support vectors. 

Consider a set of training data vectors }{ ,,,...1
n

iL xxxX ℜ∈= and a set of corresponding la-

bels }{ { }1,1,,...1 −∈= iL yyyY . We consider that the vectors are optimally separated by the 
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hyperplane H0 if they are classified without error and the margin is maximal. In order to be correctly 

classified, the vectors must verify  

11)( +=+≥ ii yforxf  (3.2.3) 

11)( −=−≤ ii yforxf    

Or, more concisely, 

.   ,1)( ixfy ii ∀≥  (3.2.4) 

Thus the problem of finding the SVM classifying function H0 can be stated as follows: 

minimize 2

2
1 w  (3.2.5) 

subject to .   ,1)( ixfy ii ∀≥   

This is called the primal optimization problem [Bur98] [SS02] [MMR+01]. In order to solve it, 

we form the following Lagrange function 

∑
=

−−=
L

i
iii xfywbwL

1

2 ]1)([
2
1),( α   (3.2.6) 

where the Lagrange multipliers αi verify 

.   ,0 ii ∀≥α  (3.2.7) 

Figure 3.2.1. Two-class linear classification. The support 
vectors are indicated with crosses 

1H

1−H
0H  

Separating 
hyperplane 

w  



3.2. Support Vector Machines 
 

26

The Lagrangian L(w,b) must be minimized with respect to w and b, so its gradient must vanish, 

i.e. 

0),(,0),( =
∂
∂=

∂
∂ bwL

w
bwL

b
 (3.2.8) 

From the two above equations, it follows, respectively, that  

0
1

=∑
=

i

L

i
i yα  (3.2.9) 

and ii

L

i
i xyw ∑

=

=
1

α  (3.2.10) 

Substituting the conditions (3.2.9) and (3.2.10) into the Lagrangian (3.2.6), we arrive at the so-

called dual optimization problem:  

maximize ∑∑∑
= ==

−
L

i
jijij

L

j
i

L

i
i xxyy

1 11

·
2
1 ααα  (3.2.11) 

subject to 0
1

=∑
=

i

L

i
i yα  and ii ∀≥    ,0α    

The dual optimization problem is a (convex [Ber90]) quadratic programming problem that can 

be efficiently solved with a number of mathematical algorithms [Ber95]. In our work we use the 

decomposition method with conventional modifications [MMR+01]. 

Data observed in real conditions are frequently affected by outliers. Sometimes they are caused 

by noisy measurements. If the outliers are taken into account, the margin of separation decreases so 

the solution does not generalize so well, and the data patterns may no longer be linearly separable. 

To account for the presence of outliers, we can soften the decision boundaries by introducing a slack 

positive variable ξi for each training vector [SS02]. Thus, we can modify the equations (3.2.3) in the 

following way: 

11' +=−+≥+ iii yforbxw ξ   (3.2.12) 

11' −=+−≤+ iii yforbxw ξ    

Obviously, if we take ξi large enough, the constraints (3.2.12) will be met for all i. To avoid the 

trivial solution of large ξi , we introduce a penalization cost in the objective function in (3.2.5), and 

thus the primal optimization formulation becomes: 
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minimize )
2
1(

1

2 ∑
=

+
L

i
iCw ξ  (3.2.13) 

subject to ,   ,1)'( ibxwy iii ∀−≥+ ξ   

where C is a positive regularization constant which controls the degree of penalization of the slack 

variables ξi, so that, when C increases, fewer training errors are permitted, though the generalization 

capacity may degrade. The resulting classifier is usually called soft margin classifier. If C = ∞, no 

value for ξi except 0 is allowed; it is the so-called hard margin SVM case.  

The formulation (3.2.13) leads to the same dual problem as in (3.2.11) but changing the positiv-

ity constraints on iα  by the constraints Ci ≤≤ α0 . Thus, it can be shown that the optimal solution 

has to fulfil the following conditions (known as Karush-Kuhn-Tucker optimality conditions) 

[MMR+01]: 

01)(0 =≥⇒= iiii andxfy ξα  (3.2.14) 

01)(0 ==⇒<< iiii andxfyC ξα   (3.2.15) 

01)( >≤⇒= iiii andxfyC ξα   (3.2.16) 

The above equations reveal one of the most important features of SVM: since most patterns lie 

outside the margin area, their optimal αi’s are zero (equation (3.2.14)). Only those training patterns 

xi which lie on the margin surface (equation (3.2.15)) or inside the margin area (equation (3.2.16)) 

have non-zero αi, and they are named support vectors. Consequently, the classification problem 

consists of assigning to any input vector x one of the two classes according to the sign of 

,)(
1
∑

=

+⋅=
M

j
jjj bxxyxf α  (3.2.17) 

being M the number of support vectors. The fact that the support vectors are a small part of the 

training data set makes the SVM implementation practical for large data sets [MMR+01]. 

In real situations, the distribution of the data among the classes is often not uniform, so some 

classes are statistically under-represented with respect to other classes. To cope with this problem in 

the two-class SVM formulation, we can introduce different cost functions for positively- and 

negatively-labelled points in order to have asymmetric soft margins, so that the class with smaller 

data size obtains a larger margin [VCC99]. Consequently, the conventional soft margin approach 

can be generalized as 
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minimize )
2
1(

1:1:

2 ∑∑
=

+
−=

− ++
ii yi

i
yi

i CCw ξξ  (3.2.18) 

subject to .   ,1)'( ibxwy iii ∀−≥+ ξ  

As the formulation (3.2.18) suggests, when C+ increases, the number of allowed training errors 

from positively-labelled data decreases, but at the expenses of increasing the allowed number of 

training errors from the negatively-labelled data. And the opposite occurs when C- increases. 

The resulting dual problem has the same Lagrangian as in (11), but the positivity constraints on 

iα  now become: 

+≤≤ Ciα0  for 1+=iy  (3.2.19) 

−≤≤ Ciα0  for 1−=iy   

For a non-linearly separable classification problem we have first to map the data onto a higher 

dimensional (possibly infinite) feature space where the data are linearly separable. Accordingly, the 

Lagrangian of the dual optimization problem (3.2.11) must be changed to 

∑∑∑
= ==

⋅−
L

i
jijij

L

j
i

L

i
i xxyy

1 11
)()(

2
1 φφααα  (3.2.20) 

Notice the input vectors are involved in the expression through a kernel function 

),()(),( jiji xxxxK φφ ⋅=  (3.2.21) 

which can be thought as a non-linear similarity measure between two datapoints. According to the 

Mercer’s theorem [GR79], any (semi) positive definite symmetric function can be regarded as a 

kernel function, that is, as a dot product in some space, so we will look for (semi) positive definite 

symmetric functions that imply a data transformation to a new space where the classes can be 

linearly separated. Note that there is no need to know the mapping function φ  explicitly, but only 

the kernel ),( ji xxK . 

The most often used kernel functions in SVM applications are the following two: 

Radial Basis Function (RBF):
σxx

exxK ji
ji

2/
),(

2
−−

=  (3.2.22) 

Polynomial: d
jiji xxxxK )(),( ⋅=  (3.2.23) 
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Thus, from equation (3.2.17) and the kernel concept, it follows that the two-class classification 

process with a SVM consists of assigning a positive/negative label to each input vector x through the 

following equation: 

)),(sgn()(
1
∑

=

+=
M

j
jjj bxxKyxy α  (3.2.24) 

being M the number of support vectors. 

3.2.3 Generalization error and SVM 

As it was said in the previous subsection the SVM problem is to find a hyperplane that separates the 

data. It is obvious that the problem is ill-posed as many of such hyperplanes exist. As a criterion of 

optimality, the hyperplane that gives the maximal margin to the nearest datapoints is chosen. Here 

we will shortly summarize how that maximal margin principle that is used in SVM is connected to 

SRM and thus to the generalization problem.  

Consider a same set of training data vectors }{ n
iL xxxX ℜ∈= ,,...1 and a set of corresponding 

labels }{ { }1,1,,...1 −∈= iL yyyY . Further, assume that the samples are all drawn i.i.d. (independent 

and identically distributed) from an unknown but fixed probability distribution P(x, y). If a unit loss 

is defined for a misclassified point, and a zero loss for a correctly-classified point, we can define the 

empirical risk as a measure of average absolute error (L1 norm) on the training data: 

∑
=

−=
m

i
iiemp yxf

m
R

1
)),((1)( θθ  (3.2.25) 

where the ),( θixf  is the class label predicted for the i-th training sample by the machine learning 

algorithm which may be parameterized by a set of adjustable parameters denoted by θ . It is clear 

that different values of θ  generate different learning functions f. The empirical risk minimization 

(ERM) principle is widely used in current learning algorithms. The least squares method in the 

problem of regression estimation or the maximum likelihood method in the problem of density 

estimation are realizations of the ERM principle for specific loss functions [Vap99]. 

The danger for the researcher that arises from using the ERM principle is that )(θempR  can be as 

low as desired for the arbitrarily-chosen parameters θ  of the function f. Let’s assume a learning 

algorithm that can memorize all training points. Obviously, it will obtain 0% error on training data 

but will not generalize on test data. The actual risk, also called generalization error, which is the 
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mean of the error rate on the unknown entire distribution P(x, y) can be found by integrating over 

the entire distribution, that is: 

∫ −= ),()),(()( yxdPyxfR iiactual θθ  (3.2.26) 

Although the law of large number [SS02] states that with ∞→m  

actualemp RR →  (3.2.27) 

it does not imply the optimal results in the limit of the infinite sample size as the law of large 

numbers is not uniform over the whole set of functions f that the learning machine can implement 

[Vap99]. 

Statistical learning theory or Vapnik – Chervonenkis (VC) theory shows that it is imperative to 

restrict the set of functions from which f is chosen to one that has a capacity suitable for the amount 

of training data. By capacity the authors (V.C.) mean an index or a number that measures the 

flexibility that a function has. For example, intuitively, a quadratic function is more flexible than a 

linear function; therefore it should have a higher capacity. The best-known capacity concept from 

VC theory is the VC dimension. It was introduced in [VC71] to measure the capacity of a hypothe-

sis space. The m datapoints can be labelled in 2m different ways as positives or negatives. It means 

that 2m learning problems can be defined. If for any i-th problem we can find a hypothesis Hi that 

separates the positive examples from the negative, H is said to shatter (separate) m datapoints. The 

maximum number of datapoints that can be shattered by H is called the VC dimension of H and is 

Figure 3.2.2. Four points in two dimensions shattered by axis-aligned 
rectangles 
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denoted as h. Consider the following example. In Figure 3.2.2 we see how four points in a two-

dimensional space can be shattered by an axis-aligned rectangle for any possible labelling of the 

four points (the trivial cases are not plotted). Thus, the VC dimension of the hypothesis class of axis-

aligned rectangles in a two-dimensional space is 4. Note that it is enough that we find a case of four 

points that can be shattered; it is not necessary that any four points can be shattered. For example, 

four points placed in a line can not be shattered by rectangles. However, for five points placed 

anywhere in two dimensions we can not find such a set of rectangles that is able to separate the 

positive and the negative examples for all possible labellings [Alp04]. 

It was shown in [Vap79] that for a whole set of functions f with known VC dimension h an up-

per bound for the value of actual risk given the empirical risk can be derived. For a given ( ]1,0∈η , 

with probability of at least η−1  the following bound holds: 

m
hmhRR empactual

)4/ln()1)/2(ln()()( ηθθ −++≤  (3.2.28) 

From [3.2.28] it comes that generalization error relates the number of examples (m), the training set 

error ( )(θempR ) and the VC dimension (h). The right side of the equation (3.2.28) is called structural 

risk (or functional risk). The expression (3.2.28) can be understood intuitively as follows. As it was 

said above, the ERM criterion may lead to overfitting. That is why the second term – capacity – is 

added. We can expect that the capacity term gets larger if we increase the VC dimension (h), and in 

the same time the empirical error will decrease. On the other hand the capacity term gets smaller as 

we increase the number of training datapoints (m), because the learning functions f get better con-

strained by data and in the same time empirical error will increase. Conceptually, the expression 

(3.2.28) is shown in Figure 3.2.3.  

Recall from the previous subsection that one of the optimization criteria of SVM is to maximize 

the margin by minimizing its norm ||w||:  

w
2=∆  (3.2.29) 

One can show [SS02] that the VC dimension h is bounded: 

12

2

+
∆

< rh  (3.2.30) 

where r indicates the radius of the minimal sphere containing all datapoints. It is obvious from 

(3.2.30) that maximizing the margin we minimize the VC dimension h and thus the capacity term of 
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the expression (3.2.28). Now the equation (3.2.5) can be reformulated as: to minimize the capacity 

term of the expression (3.2.28) with the restriction to correctly classify all datapoints. It justifies that 

the hyperplane with the largest margin of separation is the optimal hyperplane in the framework of 

the VC-dimension-based risk bounds [Zha01].  

3.2.4 Summary on SVM 

The key advantages of SVM can be outlined in the following way: 

•  The control on capacity is obtained by maximizing the margin inspired by SRM.  

•  The absence of local minima that comes from convexity [Ber90] of the quadratic optimiza-

tion problem.  

•  The dual formulation that enables the usage of kernels. The kernel function represents a 

computational shortcut because we never explicitly have to evaluate the feature map in the 

high dimensional feature space. The number of operations required is not necessarily propor-

tional to the number of features. The kernel defines a similarity measure between two 

datapoints and thus allows us to incorporate our prior knowledge of the problem.  

Figure 3.2.3. Graphical depiction of the SRM principle. A set of functions f are 
decomposed into a nested sequence of subsets S of increasing size and capacity.  
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•  The sparseness of the solution. Only a small part of data is preserved. 

The main disadvantages are:  

•  The choice of the kernel is crucial for the success of all kernel algorithms because the kernel 

constitutes prior knowledge that is available about a task.  

•  The selection of the kernel function parameters and the parameter C that controls slack vari-

ables. 

•  Both training and testing speed and size of the high algorithmic complexity and extensive 

memory requirements of the required quadratic programming in large-scale tasks. 

•  The disability of SVM to deal with non-static data (dynamic data, sequences)  

•  A lack of optimal design for multiclass SVM classifiers. 
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3.3 Gaussian Mixture Models 

Gaussian mixture models are quite popular in speech and speaker recognition. In the design step, we 

have to find the probability density functions that most likely have generated the training patterns of 

each of the classes, assuming that they can be modelled by mixtures of Gaussians. 

In the GMM, the likelihood function is defined as 

∑
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Σ=
P

i
iii xNwxp

1
),;()( µ   (3.3.1)  

where P is the number of Gaussians, the weights wi  verify 
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and ),;( ΣµxN denotes the multivariate Gaussian distribution 
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being µ the mean vector and Σ  the covariance matrix (often considered diagonal). As the goal is to 

maximize the likelihood (ML), the parameters of the GMM ( iiiw Σ and ,,µ ) are obtained via the 

Expectation-Maximization (EM) algorithm [RJ93]. Unlike SVM, which is a two-class classifier, 

GMM-based classifiers can handle an arbitrary number of classes. The GMM-ML classifier belongs 

to the group of generative classifiers, unlike SVM, which is a discriminative classifier. Due to this 

different approach, GMM generally needs a larger training set than SVM and so it is usually consid-

ered more complex [DHS00]. 
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3.4 Fuzzy Integral and Fuzzy Measure 

We are searching for a suitable fusion operator to combine a finite set of information sources 

},...,1{ zZ = . Let },...,,{ 21 zDDDD =  be a set of trained classification systems and 

},...,,{ 21 Nccc=Ω  be a set of class labels. Each classification system takes as input a datapoint 

nx ℜ∈  and assigns it to a class label from Ω .  

Alternatively, each classifier output can be formed as an N-dimensional vector that represents 

the degree of support of a classification system to each of N classes. It is convenient to organize the 

output of all classification systems in a Decision Profile (DP) [Kun04]:  
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where a row is classifier output and a column is a support of all classifiers for a class. We suppose 

these classifier outputs are commensurable, i.e. defined on the same measurement scale (most often 

they are posterior probability-like).  

Let’s denote hi, i=1,..,z, the output scores of z classification systems for the class cn (the sup-

ports for class cn, i.e. a column from DP) and before defining how FI combines information sources, 

let’s look to the conventional WAM fusion operator. A final support measure for the class cn using 

WAM can be defined as: 

∑
∈

=
Zi

iWAM hiM )(µ  (3.4.1) 

where ∑
∈

=
Zi

i 1)(µ  (additive), Ziallfori ∈≥ 0)(µ  

The WAM operator combines the score of z competent information sources through the weights 

of importance expressed by )(iµ . The main disadvantage of the WAM operator is that it implies 

preferential independence of the information sources [Mar00].  

Let’s denote with }),({),( jiji µµ =  the weight of importance corresponding to the couple of 

information sources i and j from Z. If µ  values are not additive, i.e. ( ) ( ) ( )[ ]jiji µµµ +≠,  for a 

given couple Zji ⊆},{ , we must take into account some interaction among the information sources. 

Therefore, we can build an aggregation operator starting from the WAM, adding the term of “second 
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order” that involves the corrective coefficients ( ) ( ) ( )[ ]jiji µµµ +−, , then the term of “third order”, 

etc. In this way, we arrive to the definition of the FI: assuming the sequence hi, i=1,..,z, is ordered in 

such a way that zhh ≤≤ ...1 , the Choquet fuzzy integral [Kun03] [Gra95a] [Gra04] can be computed 

as 

( ) ( )[ ]∑
=

+−=
z

i
iFI hzizihM

1
,...,1,...,),( µµµ  (3.4.2) 

where 0ø)()1( ==+ µµ z . )(Sµ  can be viewed as a weight related to a subset S of the set Z of 

information sources. It is called fuzzy measure and has to meet the following conditions:  

1)( 0,ø)( == Zµµ , Boundary 

)( )( TSTS µµ ≤⇒⊆ , Monotonicity 

where ZTS ⊆, .  

To illustrate the FI, let us consider a case of two information sources with outputs h1 and h2, and 

assume that h1<h2. Consequently, we have corrective coefficients of the second order only: 

( ) ( ) ( )[ ]212,1 µµµ +− . According to (3.4.2), FI is computed as 

( ) ( )[ ] ( ) 21 222,1),( hhhM FI µµµµ +−=  (3.4.3) 

which, after a slight manipulation, results in 

( ) ( ) ( )( )[ ] ( ) ( ) 211 21122,1),( hhhhM FI µµµµµµ +++−=  (3.4.4) 

where the first term corresponds to the “second order” correction mentioned above. 

For Z information sources there are a total of 2Z FM parameters that can be arranged in a lattice 

with the usual ordering of real numbers [CG03]. The lattice representation shows the monotonicity 

of the FM and particular values involved in the FI calculation. An example of lattice representation 

of FM defined for 4 information sources is shown on Figure 3.4.1. The lattice consists of Z+1 layers 

with each node representing a particular subset of Z. Two nodes in adjacent layers are connected 

only if there are set-inclusion relationships between the two subsets of Z whose measures they 

represent. The red line on the Figure 3.4.1 shows the values used for the FI calculation given the 

following ordering of classifiers’ scores: h1<h4<h2<h3. 
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Indeed, the large flexibility of the FI aggregation operator is due to the use of FM that can 

model interaction among criteria. And although the FM )(iµ  provides an initial view about the 

importance of information source i, all possible subsets of Z that include that information source 

should be analysed to give a final score. For instance, we may have 0)( =iµ , suggesting that ele-

ment i, Ti ∉ , is not important; but if, at the same time, )()( TiT µµ >>∪ , this actually indicates i is 

an important element for the decision. For calculating the importance of the information source i, 

the Shapley score [Gra95a] [Mar00] is used. It is defined as:  
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µµµφ −∪
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= ∑
⊆

 (3.4.5) 

Generally, (3.4.5) calculates a weighted average value of the marginal contribution 

)()( TiT µµ −∪  of the element i over all possible combinations. It can be easily shown that the 

information source importance sums to one.  

Another interesting concept is interaction among information sources. As long as the FM is not 

additive, there exists some correlation among information sources. When )()(),( jiji µµµ +<  the 

information sources i and j express negative synergy and can be considered redundant. On the 

contrary, when )()(),( jiji µµµ +> , the information sources i and j are complementary and express 

positive synergy. For calculating the interaction indices, instead of the marginal contribution of 

element i in (3.4.5), the contribution of a pair of information sources i and j is defined as the differ-

Figure 3.4.1. Lattice representation of fuzzy measure for 4 information 
sources. 
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ence between the marginal contribution of the pair and the addition of the two individual marginal 

contributions [Mar00], or equivalently: 

)()()(),())(( , TjTiTjiTTji µµµµµ +∪−∪−∪=∆  (3.4.6) 

and the interaction indices are calculated as: 
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 (3.4.7) 

We can see the index is positive as long as i and j are negatively correlated (complementary) 

and negative when i and j are positively correlated (competitive).  

As was mentioned in [Mar00], FI has very good properties for aggregation: it is continuous, 

non-decreasing, ranges between a minimum and a maximum value, and coincides with WAM 

(discrete Lebesgue integral) as long as the FM is additive. Actually, it was shown in [Mar00] that 

the ordered weighted average, the WAM, and the partial minimum and maximum operators are all 

particular cases of FI with special FM. In fact, FI can be seen as a compromise between the evidence 

expressed by the outputs of the classification systems and the competence represented by the FM’s 

knowledge of how the different information sources interact [Kun03]. 

As the FM is a generalization of a probability measure, we can calculate a measure of uncer-

tainty associated to FM analogously to the way the entropy is computed from the probability 

[Mar02], that is: 

[ ]∑ ∑
= ⊆

−∪=
z

i iZT
T TiTgH

1 \
)()()( µµγµ  (3.4.7) 

where !/!)!1( ZTTZT −−=γ , xxxg ln)( −= , and 00ln0 = by convention.  

When normalized by Zln , )(µH  measures the extent to which the information sources are be-

ing used in calculating the aggregation value of ),( hM FI µ . When that entropy measure is close to 

1, all criteria are used almost equally; when it is close to 0, the FI concentrates almost on only one 

criterion [KMR02].  
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3.5 Chapter Summary 

In this chapter the basic theory of 3 techniques, support vector machines, Gaussian mixture models, and 

fuzzy integral, used in the work, has been given.  

Firstly, the construction of SVM classifier has been presented followed by the basic notion of the 

structural risk minimization theory and its connection to the SVM classifier. The main advantages and 

disadvantages of SVM have been mentioned and discussed.  

The GMM classifier is used in the work mostly for comparison purposes. In this chapter the basis 

of GMM has been presented and the detailed information has been referenced.  

General information on information fusion and the fundamentals of fuzzy integral and fuzzy meas-

ure theory has been also given in this chapter. The FI is used to fuse various information sources in 

order to capture and benefit from the information about importance and interaction among the informa-

tion sources.  
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Chapter 4. Acoustic Events Classification 

4.1 Chapter Overview 

Acoustic events produced in controlled environments may carry information useful for perceptually 

aware interfaces. In this chapter we focus on the problem of classifying meeting-room acoustic events.  

In Section 4.2, we define the features that will be used throughout the work.  

Section 4.3 presents 16 types of events and gathered sound database. Then, several classifiers 

based on Support Vector Machines (SVM) are developed using confusion matrix based clustering 

schemes to deal with the multi-class problem. Also, several sets of acoustic features are defined and 

used in the classification tests. In the experiments, the developed SVM-based classifiers are compared 

with an already reported binary tree scheme and with their correlative Gaussian mixture model (GMM) 

classifiers. 

SVM are discriminant classifiers, but they cannot easily deal with the dynamic time structure of 

sounds, since they are constrained to work with fixed-length vectors. Several methods that adapt SVM 

to sequence processing have been reported in the literature. In Section 4.4, they are reviewed and 

applied to the classification of the 16 types of sounds from the meeting room environment. 

Fuzzy Integral (FI) is a meaningful formalism for combining classifier outputs that can capture in-

teractions among the various sources of information. In Section 4.5, fusion of different information 

sources with the FI, and the associated Fuzzy Measure (FM), is applied to the problem of classifying a 

small set of highly confusable human non-speech sounds.  
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4.2 Audio Features 

We use the following notation in feature definition: 

s(n) – signal value at the time index n; 

N – frame length; 

f(i), a(i) – frequency value at the frequency bin i and the corresponding Discrete Fourier Trans-

form (DFT) amplitude, respectively; 

x(k), y(k) – value of mel-scaled logarithmic filter-bank energy at the sub-band frequency index k 

corresponding to the current and previous frame, respectively; 

The following types of frame-level acoustic features with the number of features per frame in 

parenthesis are investigated in this thesis: 

Zero crossing rate (1). It measures the number of zero crossings of the waveform within a frame 

and is calculated as: 
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nsnsIZCR  (4.2.1) 

where the indicator function I{A} is 1 if its argument A is true and 0 otherwise. 

Short-time energy (1). Total signal energy in a frame calculated as: 
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nsnsSTE  (4.2.2) 

Fundamental frequency (1). A simple cepstrum-based method was used to determine the pitch in 

the range [70, 500] Hz [Nol67]. When the signal is unvoiced, a zero value is used.  

Sub-band log energies (4). The 4 sub-bands are equally distributed along the 20 mel-scaled FBEs 

(5 per sub-band). The energy of each sub-band is calculated as: 
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 (4.2.3) 

where N=5 is the number of log FBEs per sub-band. 

Sub-band log energy distribution (4). Percentage distribution of the total log frame energy among 

the above-defined 4 sub-bands. 

Sub-band log energy correlations (4). This new type of feature is a measure of correlation of log 

FBEs between two adjacent frames and within each of the above defined 4 sub-bands. It is com-
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puted as the maximum absolute value of the cross-correlation function between the two sequences 

x(k) and y(k):  
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where mx(j) and my(j) are the means of the corresponding sub-band spectra, d=0,1…,N-1 are mel-

scaled sub-band frequency delays, and N=5 is the number of log FBEs per sub-band. 

Sub-band log energy time differences (4). It measures the changes of spectra in time and is 

calculated as difference of log energies between two adjacent frames for the above defined 4 sub-

bands: 
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where N=5 is the number of log FBEs per sub-band. 

Spectral centroid (1). The centroid is a measure of the spectral “brightness” of the spectral frame 

and is defined as the linear average frequency weighted by DFT amplitudes, divided by the sum of 

the amplitudes:  
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Spectral roll-off (1). It is a measure of the skewness of the spectral shape and is defined as a 

frequency bin fc below which the c percentage of the spectral amplitudes is concentrated (in our case 

c=95): 
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Spectral bandwidth (1). A measure of spreading of the spectrum around the spectral centroid: 
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where CE is the spectral centroid of the frame. 

We will call the above-mentioned features as perceptual throughout the work, since it has a 

more perceptually-oriented profile than the conventional features taken from ASR. The ASR fea-

tures used in the work are: 

Cepstral coefficients (12) - 12 mel-frequency cepstral coefficients (MFCC) are computed for each 

frame using 20 mel-scaled spectral bands. The zero-th cepstral coefficient was removed, but the 

frame energy was added to the set. 

FF-based spectral parameters (13) - parameters based on filtering the frequency sequence of log 

FBEs (FFBE) [NHG95] [NMH01]. We have used the usual second-order filter H(z)=z-z-1, which 

implies subtraction of the log FBEs of the two adjacent bands. Before filtering, the sequence of log 

FBEs along frequency is extended with one zero at each side. In this way, the first and last parame-

ters actually are the energies of the second and the second last sub-bands. That is the reason why the 

frame energy was not used with these features. 
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4.3 Classification of Acoustic Events Using SVM-Based Clustering Schemes 

4.3.1 Introduction 

In this section we focus on acoustic events that may take place in meeting-rooms or classrooms and 

on the preliminary task of classifying isolated sounds. The number of sounds encountered in such 

environments may be large, but in this initial work we have chosen 16 different acoustic events, 

including speech and music, and a database has been defined for training and testing. While in 

[NNM+03] the authors looked at the problem from the point of view of speech recognition, applying 

the usual ASR strategy (cepstral features, classifier based on Hidden Markov Models (HMM) and 

GMM)), in our work we consider, develop and compare several feature sets and classification 

techniques, aiming at finding the ones which are most appropriate for the problem we are dealing 

with. In this way, not only the parameters that are used in speech recognition to model the short-time 

spectral envelope of the signals and its time derivatives are considered, but also other perceptual 

features which may be more fitted to non-speech sounds. Moreover, HMMs require relatively large 

amount of data to accurately train the models, something that is not realistic in our task, since there 

are not many collections of meeting recordings and the number of samples of some type of sounds 

that can be found in them is small.  

Recently, the Support Vector Machine (SVM) paradigm has proved highly successful in a num-

ber of classification tasks. As a classifier that discriminates the data by creating boundaries between 

classes rather than estimating class conditional densities, it may need considerably less data to 

perform accurate classification. In fact, SVMs have already been used for audio classification 

[GL03] and segmentation [LLZ03]. In this work we use SVM classifiers and compare them with 

GMM classifiers.  

As SVMs are binary classifiers, some type of strategy must be employed to extend them to the 

multi-class problem. In [GL03], the authors used the binary tree classification scheme to cope with 

several classes. That approach requires a relatively high number of classifiers and classification 

steps, and the number of classes has to be a power of 2 to get the most benefit from the technique. 

There are other ways of applying SVMs to the multi-class problem; see [HL02] for a comparison of 

different methods of multi-class SVM classification. In our work, we propose and develop several 

variants of a tree clustering technique. Relying on a given set of confusion matrices, that technique 

chooses the most discriminative partition and feature set at each step of classification, and, unlike 

the binary tree, works for any number of classes. 
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Comparative tests have been carried out using the two basic classifiers (GMM and SVM) and a 

number of classification schemes (binary tree and several clustering alternatives). The effects of 

using two different regularization parameters of the SVM classifiers to compensate data unbalance, 

and a confusion matrix based modification of those parameters are also investigated in this work.  

The section is organized as follows. In Subsection 4.3.2 we present the database of gathered 

sounds. Subsection 4.3.3 describes the features and explains the construction of feature sets. The 

classification techniques are overviewed in Subsection 4.3.4. The experiments and a discussion of 

the results are presented in Subsection 4.3.5. Finally, conclusions are given in Subsection 4.3.6. 

4.3.2 Database 

The first problem we had to face when trying to develop a system for classifying acoustic events 

which take place in a meeting-room environment was the lack of data. As mentioned above, there 

exists a relatively large database of sounds, the RWCP sound scene database, but only a small part 

of the sounds included in that database can be considered as usual or at least possible in a meeting 

room.  

The second column of Table 4.3.1 shows the sixteen categories of sounds that were chosen. As 

can be seen in the third column, only four of them belong to the RWCP database. The other sounds 

Table 4.3.1. The sixteen acoustical events considered in our database, includ-
ing number of samples and their sources (I means Internet) 

 Event Source Number 
1 Chair moving I 12 
2 Clapping RWCP + I 100+7 
3 Cough I 47 
4 Door slam I 80 
5 Keyboard I 45 
6 Laughter I 26 
7 Music I 38 
8 Paper crumple RWCP 100 
9 Paper tear RWCP 100 
10 Pen/pencil handwriting I 30 
11 Liquid pouring I 40 
12 Puncher/Stapler RWCP 200 
13 Sneeze I 40 
14 Sniffing I 13 
15 Speech ShATR 52 
16 Yawn I 12 
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have been found in a large number of websites, except the speech sounds, which were taken from 

the ShATR Multiple Simultaneous Speaker Corpus [ShA] and include short fragments from both 

close-talk and omnidirectional microphones. The number of samples is 100 or larger for the sounds 

taken from the RWCP database, but it is much smaller for a few classes. As shown in the fourth 

column of Table 4.3.1, chair moving and yawn events have only 12 samples in the database. The 

whole database amounts 53 min of audio (942 files).  

Indeed both the diversity in the number of samples per class and the small number of samples 

for some sounds are a challenge for the classifier. And, the fact that sounds were taken from differ-

ent sources makes the task even more complicated due to the presence of several (at times even 

unknown) environments and recording conditions. 

4.3.3 Features extraction 

The signals from all the sounds in the database presented above were downsampled to 8kHz, 

normalized to be in the range [-1 1], and partitioned in frames using: frame length=128, overlapping 

of 50%, and a Hamming window. The silence portions of the signals were removed using an energy 

threshold.  

Three basic types of acoustic feature were considered in this work. Two of them are spectrum 

envelope representations used in speech/speaker recognition, namely the typical MFCC plus the 

frame energy [RJ93], and the recently introduced FFBE [NHG95]. Like in speech recognition, they 

will be considered either alone or together with their first and second time derivatives (the so-called 

delta and delta-delta features) [RJ93]. We consider both types of features because we want to 

compare their discriminative capability in this application. The third type of features is a small set 

which includes perceptual features which are not considered in the above feature sets and may be 

more adequate for some kind of sounds (fundamental frequency and zero crossing rate), and also a 

reduced representation of the spectral envelope and its time evolution.  

Thus, the acoustic features considered in this work are defined in the following way: 

1. Perceptual features 

•  Short time signal energy  

•  Sub-band energies 

•  Spectral flux  

•  Zero-crossing rate 

•  Fundamental frequency 

2. Cepstral coefficients 
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3. FF-based spectral parameters 

The three above defined types of acoustic features were combined to build the 9 different fea-

ture sets shown in Table 4.3.2 which are considered in the experiments reported in Subsection 4.3.5. 

The mean and standard deviation of those features, estimated by averaging over the whole acoustic 

event signal, were taken for classification, thus forming one final statistical feature vector per audio 

event with a number of elements which doubles the length of the acoustic feature set.  

4.3.4 Classification techniques 

Two basic classification techniques are considered in this work: SVM and GMM. The former is 

based on decision surfaces, and the latter models data with probability distributions.  

As SVM is a binary classifier, we cannot employ it directly in our acoustic event classification 

problem, since we have a set of 16 classes. In the literature, several methods of extending from 

binary classifiers to multi-class classifiers can be found: one against all, one against one, 

DAGSVM, ECOC,… (see [HL02] [RK04] for a comparison). In our experiments, we first use the 

scheme proposed in [GL03], namely a binary tree with a SVM at each node. A disadvantage of the 

binary tree approach is that the number of classes has to be a power of two, otherwise the tree is 

unbalanced and some classes are more likely to be chosen than others. The alternative that is pro-

posed in Subsection 4.3.5 is based on a decision tree that uses a specific feature set at each node, and 

it is trained with a clustering technique from a given set of confusion matrices. In this way, it uses 

the most discriminative feature set at each step of classification and works for any number of 

Table 4.3.2. Feature sets that were used in this work, the way they were constructed 
from the basic acoustic features, and their size. d and dd denote first and second 
time derivatives, respectively, E means frame energy, and “+” means concatena-
tion of features. 

 Feature set Content Size 
1 Perc Perceptual features 11 
2 Ceps+der E+MFCC+d+dd 39 
3 Ceps E+MFCC 13 
4 FF+der FFBE+d+dd 39 
5 FF FF 13 
6 Perc+ceps+der “Perc”+“Ceps+der” 50 
7 Perc+ceps “Perc” + “Ceps” 24 
8 Perc+FF+der “Perc” + “FF+der” 50 
9 Perc+FF “Perc” + “FF” 24 
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classes. The effect of a confusion matrix based modification of the generalization parameters C+ and 

C- of the SVM classifier is also presented in Subsection 4.3.5. 

4.3.5 Experiments 

Several experiments were carried out to assess the classification performance of the selected feature 

sets and the classification systems, either based on SVM or GMM. To perform the evaluation, the 

acoustic event samples were randomly permuted within each class and indexed, so odd index 

numbers were assigned to training and even index numbers to testing. Also, 20 permutations were 

used in each experiment. Because of unevenness in the number of representatives of the various 

classes, the overall performance is computed as an average of the individual class performances.  

As preliminary tests with the SVM classifier showed a superiority of the Radial Basis Function 

(RBF) kernel over the polynomial one, only the former was used in the evaluation. There are two 

main parameters (hyperparameters) that are to be specified using SVMs: σ from the RBF kernel and 

the regularization parameter C presented in Chapter 3. Regarding the setting of σ, 5-fold cross-

validation [Bur98] was applied. After that kernel parameter is found, the whole training set is used 

again to generate the final classifier.  

4.3.5.1  Binary tree scheme  

First of all, a binary tree with a SVM at each node was applied to our acoustic event classification 

problem. Figure 4.3.1 illustrates how the classifier works. In our implementation, the classes in the 

bottom level are ordered randomly. In [GL03], each SVM was trained using C=200; in our work, we 

chose C=1, since this value yielded better results in the experiments, a fact that may indicate that our 

data are more noisy (contains more outliers) than data used in [GL03]. 

This SVM-based classification system was compared with a GMM classifier. The latter has one 

model per class and, for every test pattern, the model with maximal likelihood is chosen. Both a 

fixed and a variable number of Gaussians per class were tried; the best accuracy was achieved by 

using a variable number that depends on the amount of data per class.  

Figure 4.3.2 shows results for both classifiers. The best feature set in combination with the 

GMM classifier was the set number 9 (Perc + FF), with recognition rate 78,9%, whereas for the 

SVM classifier was the set number 8 (Perc + FF + der), with 82,9% recognition rate. Note that, in 

our experiments, the SVM approach shows a higher performance than the GMM one across all types 

of feature sets.  
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4.3.5.2 Confusion matrix based clustering scheme  

We have developed a tree clustering algorithm which makes use of confusion matrices, one for each 

feature set. They are obtained from the experiments reported in the last section, by averaging over 

the 20 permutations, and normalizing their elements so that each row adds up 1. Those confusion 

matrices are used to find the best way of splitting the classes at a given node into two clusters with 

the least mutual confusion. As we have a relatively small number of classes, we can perform ex-
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Figure 4.3.1. Binary tree structure for eight classes. Every test pattern 
enters each binary classifier, and the chosen class is tested in an upper 
level until the top of the tree is reached. The numbers 1–8 encode the 
classes. The figure shows a particular example, where class 1 is the class 
chosen by the classification scheme. 
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Figure 4.3.2. Percentage of classification rate for the SVM-based binary 
tree classifier and the GMM classifier on the defined feature sets. 
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haustive search and get the global minimum. For the sake of homogeneity, we use confusion matri-

ces obtained by SVM classifiers for SVM clustering, and GMM matrices for GMM clustering. 

As our database contains a large variety of sounds, the feature set that gets the largest classifica-

tion rate for a given class is not necessarily the best one for a different class. This fact is illustrated 

in Figure 4.3.3, where the three considered classes (liquid pouring, sneezing and sniffing) show their 

performance peaks at different feature sets and none of the sets is the 8th, the one that yields the best 

overall performance. Therefore, it is reasonable to assume that the performance can improve by 

using a specific feature set to discriminate within each pair of classes or groups of classes.  

The clustering algorithm that selects a specific feature set for each tree node will be presented in 

the next section. The simpler case that uses the same feature set at every node is also considered in 

the experiments. We refer to them, respectively, as variable-feature-set and fixed-feature-set cluster-

ing schemes. In the following, we will present the former clustering algorithm since the latter is a 

particular case of it. 

The variable-feature-set clustering algorithm 

The algorithm for clustering with a variable-feature-set approach is formally described in Figure 

4.3.4. At the first step, all possible combinations of grouping 16 classes into two clusters (i.e. 

grouping 6 and 10, 8 and 8, etc) are searched over the available 9 confusions matrices that corre-
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Figure 4.3.3. Dependence of performance of classifying “liquid_pouring”, 
“sneeze” and “sniff” upon the feature sets using SVMs. 
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spond to the 9 considered feature sets. For example, for the SVM clustering, we found that the 16 

classes were best separated choosing the clusters C1={9} and C2={1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 

13, 14, 15, 16}, and the 6th feature set. That process is carried out until we have single event clus-

ters. Note in the expression of mn
kS ,  from Figure 4.3.4 that the confusion measures k

ije  are 

normalized by the corresponding accuracies k
iie  to cope with the dispersion of performance rates 

among the classes. Regarding the GMM classifier, the algorithm also groups the classes into two 

clusters, but in this case two models are generated at each step, one for each cluster. 

1. Initialize N=16. 
 

2. For  n=1…N/2 
a. Determine M combinations of grouping N classes into two clus-

ters C1 and C2 containing n and N-n classes, respectively. 
b. For m=1…M 

i. Having the m-th grouping combination, look up at each 
confusion matrix and measure how much are C1 and C2 
confused for each feature set k, by computing  
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where k
ije  denotes the i,j-th element of the k-th confusion 

matrix, and |C1| and |C2| are the  number of classes (cardi-
nalities) of the two clusters. 

ii. Find the minimum confusion measure over all feature sets 
)( min mn,

k, SB
kmn =  

c. Find the minimum confusion measure over all grouping combi-
nations for the current number of classes at each cluster 

)(B min mn,mnT =  

 

3. Find the minimum confusion measure over all possible numbers of 
classes at each cluster 

)( min nn
TR =  

 

4. Repeat steps 2-3 for each node of growing tree, initializing N with N-n 
for the right branch and N with n for the left one, until N=1 is reached. 

 

Figure 4.3.4. Clustering algorithm based on an exhaustive search and using a set of 
estimated confusion matrices. 
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The above clustering technique is intended for a relatively small number of classes, as in our 

acoustic event classification task. When the number of classes is large either agglomerative hierar-

chical clustering or divisive hierarchical clustering [Voo86] can be used if they are modified to 

handle several feature sets while searching; however, they do not guarantee to reach the global 

minimum. 

Dealing with the data unbalance problem 

In our experiments, we have tried several ways of alleviating the problem of having a too much 

different amount of training data between the two clusters at a given tree node. A straightforward 

way of tackling that problem which has been considered in the experiments consists of restricting 

the exhaustive search in Figure 4.3.4 to look for an equal number of classes at each cluster, i.e. 

having only the index value n=N/2 at step 2 of the algorithm. That solution is no longer optimal in 

terms of the tree structure, but the involved SVMs will work with more balanced data. Hereafter, we 

will refer to it as restricted clustering. Figure 4.3.5 shows the trees obtained by the normal (unre-

stricted) and restricted clustering algorithms in the SVM case. Note that the two trees show a very 

different structure, but they have the same number of nodes (N-1), that is the same number of trained 

SVM classifiers. Indeed, the restricted tree shows a balanced structure, whereas, as it can be ob-

served in Figure 4.3.5, in the normal clustering case we mostly have only one class separated on 

each clustering step. Actually, there is only one case where there are two classes grouped in the 

smaller cluster, which corresponds to classes 11 and 12. We have observed that the amount of 

confusions between both classes is a large portion of the total error for class 11. Regarding the 

GMM-based techniques, since each class model is trained without using information about the other 

classes it is not so much influenced by the problem of data unbalance. However, we will also 

consider both clustering schemes for the GMM case. The resulting schemes are similar to those in 

Figure 4.3.5. 

The alternative way of coping with data unbalance used in our experiments (already mentioned 

in Subsection 3.2.2) is to introduce different regularization parameters for positively- and nega-

tively-labelled training samples. Additionally, since a measure of confusions at each tree node can 

be obtained as a byproduct of the clustering algorithm, we have used these estimated measures to 

adapt the regularization parameters. The greater the confusion is, the larger the error should be 

allowed during training, and so the smaller the regularization parameters should be. Consequently, 

we force those parameters to be inversely proportional to the confusion measures. Indeed, we have a 

∞  value at the beginning for normal clustering since the confusion at this step is 0. Note from 
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Figure 4.3.4 that if the performance of a class for a given feature set were 0 ( 0=k
iie ), the value of 

mn
kS ,  would be ∞ . In order to decrease the contribution of that possible zeroth performance of a class 

to the computation of the confusion measures of the whole cluster, we substitute zero by a small 

value. In our algorithm, we use 0.001. 

Three different methods of using and computing the regularization parameters in the SVM-

based classifiers are considered in this work, along with the baseline method that uses only a con-

stant parameter C=K. They are defined in the following, denoting by nS  the confusion measure at 

the n-th classification step: 

1) Only one regularization parameter C computed as  

nS
KC 1= . (4.3.1) 

2) Two different parameters C+ and C-, defined such that 

+

−
+ =

A
AKC

−

+
− =

A
AKC  (4.3.2) 

where A+ and A- are the number of positive and negative training samples, respectively. In this way, 

the training errors of the two classes contribute equally to the cost of misclassification.  

3) The effect of doing both adaptations simultaneously, namely, 

nn SA
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AKC 1   ,1

−

+
−

+

−
+ ==  (4.3.3) 

In our tests, K was set to value 10 since it gave the best performance for the baseline method with 

constant C.  

4.3.5.3 Results and discussion 

Table 4.3.3 shows classification performance for GMM and SVM classifiers using either a variable- 

or a fixed-feature-set approach, and either normal (N) or restricted (R) clustering. The table also 

shows the standard deviation for each experiment, estimated over the 20 repetitions. The first 

column of results corresponds to C=K=10, and the other 3 columns correspond, respectively, to the 

three above-mentioned methods of computing the regularization parameters in the SVM cases. Note 

that SVM performs consistently better than GMM, and with SVM the highest accuracies are ob-

tained using the third method. 
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The column C=K in Table 4.3.3 shows that, without any adaptation, SVM-based restricted clus-

tering performs equally well as normal clustering (and better than the binary tree scheme). In that 

table, we can notice that SVM-N takes advantage of using different C values for each class accord-

ing to the simple equation of proportionality, since the training set sizes are largely spread across 

classes in our database. And SVM-R does not take any advantage due presumably to the balancing 

average implied by the half-to-half constraint. Additionally, as we can see from Table 4.3.3, intro-

ducing prior knowledge (about confusions) with the generalization parameter C (method 1) does not 

have a positive influence on the classification performance, while introducing it along with different 

C values for positive and negative classes (method 3) leads to an improvement for both types of 

clustering trees. The gain in performance, however, is not much significant, so there is a need to 

have a more sophisticated algorithm of introducing prior knowledge about confusions in the regu-

larization parameters. In restricted clustering we can obtain only the global minimum of error within 

the constraint that is why the final performance of the SVM-R technique is worse than that of the 

normal one (Table 4.3.3, method 3). We can also observe that normal clustering seems to perform 

slightly better than restricted clustering for GMM. 

Notice in Table 4.3.3 how the results for SVM fixed-feature-set clustering show just a slightly 

worse performance with respect to the variable-feature-set ones. This can be explained in the 

following way. On the one hand, for fixed-feature-set clustering, the chosen feature set is the one 

which yielded the best results in the previous experiments with binary tree, i.e. the 8th, which 

includes all kind of features: perceptual, envelope representation and time derivatives. On the other 

hand, the SVM classifier has somehow a built-in feature selection process. In fact, as it implicitly 

works with features in a transformed domain, if the kernel and the hyperparameters are appropri-

ately chosen (so that good results are obtained), its transformation may imply emphasizing those 

features that are crucial for a good classification. That is why for the SVM classifier no feature 

selection technique leads to a huge classification improvement [WMC+00]. Moreover, using real-

world data, it was shown in [WMC+00] that the best feature set was the one that included all types 

of features. Additional evidence from our experiments is given by the fact that the difference in 

performance between fixed- and variable-feature-set is more noticeable for the GMM classifiers 

than for the SVM ones. Nevertheless, in spite of that kind of “implicit feature selection” process in 

SVM classifiers, and the fact that a fixed-feature-set scheme requires less computation, the variable-

feature-set scheme may still be advantageous for the SVM case. In fact, apart from offering some 

information about the acoustical properties of the chosen classes, the variable-feature-set scheme 
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Figure 4.3.5. Normal and restricted clustering schemes for SVM classifiers 

Table 4.3.3. Performances of variable-feature-set and fixed-feature-set classifiers using 
different adaptations of the regularization parameters for the SVM classifiers. -N and -R, 
denote normal and restricted clustering scheme, respectively. Standard deviations estimated 
over 20 repetitions are denoted with ± σ. 

 C=K Method 1 Method 2 Method 3 
SVM-N variable 84.67 ± 2.5 84.05 ± 1.7 86.71 ± 1.4 88.29 ± 2.1 
SVM-R variable 84.72 ± 2.6 84.88 ± 2.7 84.95 ± 2.2 87.20 ± 1.5 
GMM-N variable 83.6 ± 2.2 
GMM-R variable 82.15 ± 2.3 
SVM-N fixed 84.6 ± 1.9 84.4 ± 1.6 86.6 ± 3.0 87.10 ± 1.8 
SVM-R fixed 84.6 ± 2.7 83.8 ± 1.2 84.4 ± 2.3 87.06 ± 1.8 
GMM-N fixed 81.2 ± 2.3 
GMM-R fixed 80.7 ± 2.4  

Table 4.3.4. Confusion measure Sn (multiplied by 100), best separating feature set, and percent-
age distribution of the classification error (for the best results in Table 4.3.3) along the 15 nodes 
(depicted in Figure 4.3.5 for SVM) for both normal and restricted clustering, and for the vari-
able-features-set SVM classifier and the GMM classifier. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Confusion 0 0.01 0.03 0.07 0.78 0.82 0.83 0.98 3.90 1.27 1.57 2.57 8.44 15.00 46.88
Features 6 3 6 7 7 8 3 7 5 9 5 3 6 4 9 SVM-N 

Error 0.78 1.97 0 0 7.65 15.42 2.19 6.30 4.47 4.38 6.64 19.63 18.93 6.23 5.39 
Confusion 0.41 2.15 0.04 0.15 15.74 1.74 0 0 4.41 46.88 2.23 3.31 0 0 0 
Features 7 9 7 8 6 9 6 5 5 4 8 8 3 1 1 SVM-R 

Error 23.59 12.35 1.14 0.69 23.1 6.01 0.46 9.12 5.32 4.76 6.51 1.29 3.95 1.20 0.53 
 

Confusion 0.01 0.1 0.18 0.22 0.28 0.74 1.10 1.14 2.41 3.77 3.00 7.55 13.76 29.86 55.07
Features 6 9 9 3 7 7 9 5 9 4 5 7 1 6 1 GMM-N 

Error 0.07 1.00 3.46 2.91 2.19 6.55 6.89 5.94 8.33 10.63 6.11 5.28 14.61 14.60 11.42
Confusion 0.53 5.59 0.10 15.60 1.92 0.58 0 12.03 55.07 0.81 6.84 0.77 0.92 0 0.1 
Features 9 6 7 6 8 3 1 1 1 5 5 7 7 1 6 GMM-R 

Error 25.35 24.27 3.27 15.43 3.23 3.18 0 3.18 9.50 2.63 7.18 0.51 1.83 0.38 0.07  
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Figure 4.3.6. Distribution of the errors along the tree path for SVM-N, 
GMM-N, SVM-R and GMM-R. A darker cell means a larger error. 

 

obviously shows a smaller restriction bias than that of the fixed-feature-set clustering, thus resulting 

in a smaller inductive bias and a presumable higher overall accuracy [LYC02].  

The proposed clustering schemes (both normal and restricted) show two computational advan-

tages in front of the binary tree classifier. First, the required number of trained SVM is N-1, where N 

is the number of classes, while for the binary tree (N-1)N/2 trained SVM are needed. Second, the 

proposed schemes involve a smaller number of classification steps, 4 for restricted clustering, and 

between 1 and 14, depending on the input pattern, for normal clustering in our case (see Figure 

4.3.5), whereas the binary tree requires 15. However, the proposed variable-feature-set scheme has 

an obvious disadvantage: with our choice of feature sets (see Table 4.3.2) up to 9 feature sets can be 

involved in testing, 7 in our case (numbers 3 4 5 6 7 8 9).  

From Table 4.3.4 we can extract some observations concerning the feature sets. Looking at bold 

numbers in the SVM case of Table 4.3.4, which correspond to a confusion measure larger than 10, it 

seems that the best separating feature sets for the most confused classes mostly are FFBE-based 

features (sets 4,5,8,9), while observing the italic numbers, which correspond to a confusion measure 

smaller than 1, it appears that the for the least confused classes the best separating feature sets are 
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MFCC-based (sets 2,3,6,7). This fact may indicate that the FFBE-based features are more discrimi-

native than the MFCC features for highly overlapped data distributions, while MFCC features 

appear to show the best performance when there is a clearer separation between classes. However, 

for the most confused classes in the GMM case (see bold numbers in the GMM part of Table 4.3.4) 

the average best feature set is the one we have called perceptual set. This may be due to the rela-

tively low size of that feature set, which facilitates the estimation problem. 

Note in Table 4.3.4 that for normal clustering the largest errors are more located towards the 

end of the tree path while for restricted clustering they are towards the beginning. This effect, which 

is also illustrated in Figure 4.3.6, can be expected for the normal clustering technique, due to the 

way the clustering algorithm in Figure 4.3.4 works. Apparently, the restrictions applied by restricted 

clustering make the largest errors are placed at the beginning. That information can be useful to 

improve classification by boosting, since the most erroneous steps generally contain rare class data 

and boosting the SVM that deal with rare categories has been shown to improve general perform-

ance in [LYC02]. 

Table 4.3.5 shows the confusion matrix corresponding to the best results. The resulting classifi-

cation rates for the various types of sounds are diverse due to both the acoustic nature of sounds and 

the unevenness of the number of samples in the database. Notice that the sounds we could name 

human vocal-tract non-speech (HVTNS) sounds (numbers 3, 6, 13, 14, and 16) account for a large 

relative amount of confusions, since they only are 5/16 of the total number of classes and contribute 

with 69.7% of the total error. The only other sound with more than 10% error is number 11. In 

average, the HVTNS classes have a small number of samples in the database, but there are other 

sounds with similar number of samples (like chair moving), which do not show such a high error. 

Furthermore, the HVTNS sounds are mainly confused among themselves (the average for the 5 

classes is 73.96%). Actually, although the proposed clustering schemes are based on acoustic 

features, some clusters can be interpreted from a semantic point of view, that is according to their 

source identity; e.g. the shaded cluster in contains “cough”, “laughter”, “sneeze”, and “yawn”, 

sounds which belong to that HVTNS set. 
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Table 4.3.5. Confusion matrix corresponding to the best results (88.29 %) 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 96.67 0 0 0 0 1.67 0 0 0 0 0 0 0 0 0 1.67
2 0 96.79 0 0.19 0.57 0.19 0 0 0.57 0 0 0.38 1.13 0.19 0 0 
3 0 0.43 88.70 2.61 0 5.22 0 0 0 0 0 0.43 2.61 0 0 0 
4 0 0.75 0.50 96.50 0 0.75 0 0 0.50 0 0.50 0 0.50 0 0 0 
5 0 0 0 2.27 87.73 3.64 0 0 0 0 2.27 3.18 0.91 0 0 0 
6 0.77 0 26.92 3.85 0 48.46 0 0 0 9.23 0 0 10.00 0.77 0 0 
7 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 
8 0 0.20 0 0.40 0 0 0 98.8 0.20 0 0 0.2 0.20 0 0 0 
9 0 0 0 0 0 0 0 0.2 99.80 0 0 0 0 0 0 0 
10 0 0 1.33 1.33 0 3.33 0 0 0 92.67 0 0 1.33 0 0 0 
11 0 0 0 2.00 1.50 1.00 0 2.5 0 3.50 77.00 10.0 2.50 0 0 0 
12 0 1.30 0 0 0 0.60 0 0.2 0 0 0.10 97.2 0.60 0 0 0 
13 0 0.50 14.50 0 0 8.00 0 0 0 0.50 2.50 0 74 0 0 0 
14 0 5.00 5.00 0 0 0 0 0 0 6.67 0 0 6.67 76.67 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 
16 0 0 11.67 0 0 3.33 0 0 0 1.67 0 0 1.67 0 0 81.67 

 

Figure 4.3.7. Restricted clustering tree based on SVM. The numbers in the nodes are the 
ordinal numbers of the 15 SVM classifiers, and the bold numbers between each pair of 
clusters denote the best separating feature sets. 
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4.3.6 Conclusion 

The work in the section is a preliminary attempt to deal with the problem of classifying acoustic 

events that occur in a meeting-room environment. A preliminary small database has been defined, 

and several feature sets and classification techniques have been tested with it. In our tests, the SVM-

based techniques show a higher classification capability than the GMM-based techniques, and the 

best results were consistently obtained with a confusion matrix based variable-feature-set clustering 

scheme, arriving with SVM to a 88.29 % classification rate, which implies a 31.5% relative average 

error reduction with respect to the best result from the conventional binary tree scheme. That good 

performance is mostly attributable to the presented clustering technique, and to the fact that SVM 

provides the user with the ability to introduce knowledge about data unbalance and class confusions. 
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4.4 Comparison of Sequence Discriminant Support Vector Machines for 
Acoustic Event Classification 

4.4.1 Introduction 

A drawback of SVMs when dealing with audio data is their restriction to work with fixed-length 

vectors. Both in the kernel evaluation and in the simple input space dot product, the units under 

processing are vectors of constant size. However, when working with audio signals, although each 

signal frame is converted into a feature vector of a given size, the whole acoustic event is repre-

sented by a sequence of feature vectors, which shows variable length. In order to apply a SVM to 

this kind of data, one needs either to somehow normalize the size of the sequence of input space 

feature vectors or to find a suitable kernel function that can deal with sequential data.  

Several methods have been explored to adapt SVMs to sequence processing [Die02]. The most 

common approach is to extract some statistical parameters from the sequence of vectors and thus 

transform the problem into that of fixed-length vector spaces. For example, the mean and the 

standard deviation of the features extracted from every frame of an audio clip were taken as feature 

vector for audio analysis in [GL03]. Despite the good results we obtained using this approach for 

acoustic event classification in Section 4.3, when frame-level features are transformed into statistical 

event-level features there exist an unavoidable loss of information.  

In the work reported in this section, we aim at using SVMs for AEC but preserving the informa-

tion contained in the sequentiality of data, i.e. the temporal structure of the acoustic events. For that 

purpose, after choosing a set of meaningful reported techniques, we have compared their perform-

ance in the framework of our meeting-room AEC task. The fact that the used set of acoustic event 

types includes time structured sounds (e.g. music) but also sounds whose time evolution is not 

relevant (e.g. liquid pouring), allows us to investigate the appropriateness of the various techniques 

to classify the different types of sounds. 

While in our previous work we tested several feature sets and several multi-class schemes for 

SVM, here we use only the best feature set from Section 4.3 and a Directed Acyclic Graph (DAG) 

[PCS00] classification scheme. Moreover, the influence of the generative model parameters’ estima-

tion error on the Fisher score derivative is investigated.  

The section is organized as follows: Subsection 4.4.2 quickly reviews the SVM-based methods 

used in the work, Subsection 4.4.3 presents experimental results and discussions, and Subsection 

4.4.4 concludes the work. 
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4.4.2 SVM-based sequence discriminant techniques 

We have chosen three different SVM kernels techniques that make use of dynamic time warping 

(DTW), namely: dynamic time-alignment kernel (DTAK) [SNN01], Gaussian dynamic time warp-

ing (GDTW) kernel [BHB02], and the recent polynomial dynamic time warping kernel (PolyDTW) 

[WC05]. Additionally, we included in the comparison the Fisher score kernel [JH99] and the Fisher-

ratio kernel [WR05] [SG02], which aim at using generative model classifiers like GMM in the 

discriminative framework, and have been applied for speech/speaker recognition using SVM 

[WR05] [SG02]. On the other hand, among the algorithms reported in the literature that normalize 

the size of the vector sequences [ASS04], we have chosen the simple outerproduct of trajectory 

matrix method, which was the winner in [ASS04]. As references for comparison, we also use a 

standard GMM classifier, and an SVM classifier with statistical event-level features. Besides, 

several promising sequential kernels like GMM SuperVector kernel [CSR+06] or Incomplete 

Cholesky Decomposition Sequence Kernel [LDB06] were not used in the work as they appeared a 

little after the work was done.  

4.4.2.1 Fisher kernel 

Fisher kernel is one of the most successful approaches that enable SVM to classify whole sequences. 

Inspired by using statistical modelling method, Fisher kernel recently has become very popular in 

the areas that involve time-series recognition. The generalized idea of Fisher kernel the score-space 

kernel was applied to speech recognition in [SG02]. Modification of likelihood score space kernel 

(i.e. Fisher kernel) known as likelihood ratio score-space kernel has shown comparative results in 

the sphere of speaker verification [WR05]. 

The idea of Fisher kernel includes in mapping the variable length sequence to a single point in 

fixed-dimension space, the so-called score-space. To perform such a mapping, Fisher kernel applies 

the first derivative operator to the likelihood score of the generative model. Given an input sequence 

X, and a model M, parameterized by θ, the Fisher score is defined as  

( ) ( )θψ θ ,log MXPXfisher ∇=  (4.4.1) 

The Fisher score can be interpreted in the following way. When a generative model is trained by 

ML (maximum likelihood) criterion, it uses the same set of derivatives to compute how close it is to 

the local extreme. Another motivation of using Fisher score is that the gradient of the log-likelihood 

can capture the generative process of the whole sequence better than just a posterior probability. 

Furthermore, in [JH99] it was shown that, under the condition that the class variable is a latent 
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variable in the probability model, the learning machines, that use Fisher kernel, are asymptotically at 

least as good as making decision based on the generative model itself (maximum a posteriori). In 

[JH99] applied to bio-sequences recognition Fisher kernel performed significantly better than 

HMM. 

4.4.2.2 Outerproduct of trajectory matrix 

The time analysis of the data gives a sequence of l-dimensional parametric vectors. The sequence is 

considered as a trajectory in the l-dimensional space. If we define the l-by-m trajectory matrix as X 

= [x1,x2, …xm], the outerproduct matrix Z [ASS04] is defined as  

Z=XTX (4.4.2) 

Thus the outerproduct matrix Z is l-by-l and no longer depends on the length of the sequence. 

The vectorized outerproduct thus can feed the SVM classifier directly. It is obvious that this method 

explicitly considers sequence duration information. Despite the simplicity of the given approach, it 

showed considerably better results than Compaction and Elongation method in the task of spoken 

letters recognition [ASS04]. 

4.4.2.3 Gaussian dynamic time warping (GDTW) 

This approach as well as a previous one does not assume a model for the generative class condi-

tional densities. The GDTW [BHB02] method addresses the problem of variable length sequences 

classification by introducing the DTW technique to SVM kernel. Recalling the standard RBF kernel 

for SVM  

( )2exp),( RTRTK −−= γ  (4.4.3) 

where T, R denote two patterns to compare. As mentioned in Subsection 4.4.1, if the two patterns 

are sequences of different length, they cannot be compared in the kernel evaluation directly. An 

obvious modification of (4.4.3) is to substitute the squared Euclidian distance computation with the 

equivalent that can cope with temporally distorted variable length sequences. Thus, in [BHB02] 

GDTW kernel was defined as  

( )( )RTDRTK ,exp),( γ−=  (4.4.4) 

where ( )RTD ,  is a DTW distance between sequences T and R. 

The proposed method was successfully applied to handwriting recognition and showed com-

parative and at times superior results to HMM and MLP in [BHB02].  
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4.4.2.4 Dynamic time alignment kernel (DTAK) 

The approach proposed in [SNN01] also deals with DTW. Instead of substituting the Euclidian 

distance in Gaussian kernel (4.2.3) by DTW distance, it substitutes the Euclidian distance in defini-

tion of DTW local distance by a kernel.  

( ) ( ) ( )∑
=

==
N

n
nRnT

rtk
N

RTDRTK
1

)()(
,1,, φφφ  (4.4.5) 

where k(.) is a kernel function that can be either a simple dot product or any conventional SVM 

kernel and Ф is the optimal DTW path. Actually, DTAK performs DTW in the feature space. Unlike 

the original DTW, which finds the optimal path that minimizes the accumulated distance/distortion, 

the DTAK algorithm maximizes the similarity. In the task of phoneme recognition, the proposed 

DTAK method outperformed HMM with a small or medium amount of training data and it got 

comparable results with a larger dataset [SNN01]. 

4.4.2.5 Polynomial dynamic time warping (PolyDTW) 

The method shares the same idea of performing DTW in transformed feature space. After spherical 

normalization [WR05] each vector t of a sequence is projected onto the sphere surface as  
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Then the arcos of the dot product between normalized vectors can be taken as a local distance 

for DTW. Thus, the kernel is given as 
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This method has been successfully applied to the task with high intra-class variation such as dy-

sarthric speech recognition and showed superior results to HMM [WC05]. 

4.4.3 Experiments and discussion 

4.4.3.1 Experimental setup  

Our previous efforts in Section 4.3 were focused on developing a variable-feature-set clustering 

scheme and using SVM with statistical event-level features. In this work, for simplicity, we use 

DAG [PCS00] multi-class scheme, and only one feature set, the one that showed best results in 

Section 4.3, namely, a concatenation of perceptual features (ZCR, Spectral Flux, etc) and frequency 
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filtering features [NHG95] (plus their first and second derivatives). The number of features per 

frame is 50 and there is a frame each 10ms.  

In all the experiments we use the databases of acoustic events described in Subsection 4.3.2. 

The database contains the 16 classes of meeting-room acoustic events that are summarized in Table 

4.3.1. 

For the outerproduct, DTAK, and GDTW methods we use a Gaussian kernel, and a 5-fold 

cross-validation on the training database was applied to find the optimal kernel parameter. The 

techniques that exploit DTW required some optimization steps to be feasible in practice (beam 

search strategy, kernel caching). For PolyDTW, a polynomial of third degree was chosen with α=1, 

as suggested in [WC05]. Also, we chose the linear SVM kernel for the Fisher score and the likeli-

hood ratio methods, since it performed better than RBF. 

The mean of individual class accuracies was chosen as a metric as in Section 4.3.  

4.4.3.2 Comparison results 

Figure 4.4.1 shows the results of the 8 considered techniques when applied to the database of 

acoustic events. The best average result is obtained with the Fisher kernel, 88.13%, and it is fol-

lowed by the results from PolyDTW, likelihood ratio kernel and GMM. All mentioned results are 

better than 83.1%, the score of the non-sequential SVM technique that uses statistical event-level 

features (SVM stat). A similar result was observed in Section 4.3 using a binary tree instead of a 

DAG scheme: 82.9%. 
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Figure 4.4.1. Classification accuracy for the 8 techniques 
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It is also worth noticing that the result with the Fisher kernel (88.13%) is comparable to the best 

result in Section 4.3 using non-sequential SVM techniques: 88.29%. However, the latter result was 

obtained by using a variable-feature-set clustering, a classification scheme that is more developed 

than DAG, and by using the most discriminative feature set on each step of classification.  

4.4.3.3 Influence of the number of Gaussians on the derivatives of the generative model 

Interesting enough that the best results for GMM were obtained with 8 Gaussians, while for Fisher 

kernel the appropriate generative model that leaded to the best performance was 1-Gaussian GMM.  

Figure 4.4.2 shows the dependence of performance of Fisher kernel, Likelihood ratio kernel and 

GMM on the number of Gaussians. As can be seen from Figure 4.4.2 there is an apparent inconsis-

tency in the results, in the sense that the recognition rate improves in the case of the GMM classifier 

as the number of Gaussians increases, but at the same time, the results degrade in the case of the 

Fisher kernel. There is a two-fold explanation of this phenomenon. The first is related to the fact that 

the likelihood of the observation given the model is computed by means of a linear combination of 

Gaussians. The weight of each Gaussian is proportional to the number of samples that are assigned 

to it. Therefore, the parameters estimated with a small number of samples (i.e. that have a higher 

estimation error), have a lower influence in the likelihood. In the case of the Fisher score, the 

derivative of the likelihood with respect to each parameter inherits the estimation error, and it is not 

concealed, as it is the case of the GMM. Furthermore this effect is augmented by the fact that the 

dimensionality of the Fisher kernel increases proportionally to the number of Gaussians, and the 
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Figure 4.4.2. Dependence of the performance of the Fisher score kernel, likelihood 
ratio kernel and GMM on the number of Gaussians (log2Ng) 



Chapter 4. Acoustic Events Classification
 

67

number of noisy coordinates can be majority [TKM03]. The second explanation uses the concept of 

sensitivity, which is the percentage change of a function for a given percentage change of one of the 

parameters:  

dx
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x
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xfxfS )(

)(/
)(/)(

≈
∆

∆
=  (4.4.8) 

We computed the sensitivity of the likelihood of a GMM, and the Fisher kernel associated to the 

GMM. The resulting expressions are highly complicated. Nevertheless, simulations for one Gaus-

sian confirmed that the sensitivities to the mean and the weight of each Gaussian are similar for both 

GMM and Fisher kernel, but the sensitivity to the variance is at least three times higher in the case 

of the Fisher kernel.  

4.4.3.4 Dependence of the classifier performance on the temporal structure of the acoustic 
event signals 

The signals to be classified are quite heterogeneous, and have different temporal structures. There-

fore, as was expected the performance of each classifier was biased to a given subset of the classes. 

For instance the DTW based classifiers behaved better with signals such as “music”, or “sneeze”, 

while classifiers that did not take into account the temporal structure of the signal did better with 

other signals that did not have that structure, such as “pen writing” or “liquid pouring”. Ranking 

eight classifiers for a given class (giving the score 1 to the best one and 8 to the worst one) these 

properties can be summarized in Figure 4.4.3 and Figure 4.4.4, where we compare the 8 classifiers 

for above-mentioned pairs of classes.  

In Figure 4.4.3 it can be seen that in the case of “music” and “sneeze” the best classifiers, i.e. 

highest ranking and recognition rate, are DTW-based such as GDTW, PolyDTW and DTAK. While 

the classifiers that do not take into account the temporal structure, give inferior results. In Figure 

4.4.4 the ranking of classifiers is opposite, and the classifiers that specifically dismiss the temporal 

order fare better; the highest ranking corresponds to the GMM, and the Fisher Ratio. Another 

general feature that was detected, and that is reflected in these figures, is that there are signals that 

are easier to classify. It can be seen that systematically the results for a given class are better than for 

the others consistently for all the 8 classifiers, i.e. the distribution of the results for all classification 

systems are separated, although the order of the systems can be different for each signal.  

As a general summary, we can assert that there was a correlation between the classes and the 

classifiers, which is masked in the mean values presented in Figure 4.4.1. For both types of signals, 
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with time structure or without it, the overall best accuracy with Fisher kernel is usually in the middle 

offering a good balance between the two groups of classes.  

4.4.4 Conclusions  

Several methods that adapt SVMs to sequence processing have been reviewed and applied to the 

classification of sounds from the meeting room environment. We have seen that the dynamic time 

warping kernels work well for sounds that show a temporal structure, but due to the presence of 

less-time-structured sounds in the database the best average score is obtained with the Fisher kernel. 

Moreover, only one Gaussian is used in that method due to its high sensitivity to the variance 

parameters as a consequence of the scarcity of data. On the other hand, the observed bias of the 

classifiers to specific types of classes is a good condition for a successful application of fusion 

techniques.  
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Figure 4.4.3. Comparison results for the classes “music” (7) and 

“sneeze” (13) 
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Figure 4.4.4. Comparison results for the classes “pen writing” (10) and 

“liquid pouring” (11) 
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4.5 Fuzzy Integral Based Information Fusion for Classification of Highly 
Confusable Non-Speech Sounds 

4.5.1 Introduction 

A rich variety of information sources is obtained in this work by extracting a set of ten different 

kinds of features and using them as inputs of ten different SVM classifiers, whose outputs are 

combined to give a final classification score. Besides the above-mentioned fusion of information 

sources at the decision level, and for clarity purposes, we also consider information fusion at the 

feature level, i.e. an early integration of information sources, and will be carried out by the SVM. 

These two kinds of fusion are depicted in Figure 4.5.1. 

Usual combinations of classifier outputs like sum, product, max, min, weighted arithmetical 

mean (WAM), etc [Kun03], assume that each output represents an independent source of informa-

tion that can be treated separately. Often, this is not the case, and an approach that considers the 

interactions among the classifier outputs is needed. Over the past several years there have been a 

number of successful applications of the FI [Kun03] [Sug74] in decision-making and pattern recog-

nition using multiple information sources (e.g. [Gra95a] [CG03] [Gra95b]). FI is a meaningful 

formalism for combining classifier outputs which can capture interactions among the various 

sources of information. Moreover, the FM, which is associated with the FI, furnishes a measure of 

importance for each subset of information sources, allowing feature selection and giving a valuable 

insight into the classification problem itself. 

Both feature-level fusion and decision-level fusion are compared in our AEC experiments. As a 

default classifier we use the SVM classifier, which helps to overcome the problem of the high-

dimensionality [WCC+04] of the input feature space.  

Figure 4.5.1. Fusion at the feature level (a) and at the decision level (b). 
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In this section, we focus on the classification of a particular type of acoustic events, a set of five 

human vocal-tract non-speech sounds (cough, laughter, sneeze, sniff and yawn), which were found 

responsible for a large part of errors in the classification of meeting-room acoustic events in Section 

4.3. In fact, those sounds contributed with 70% of the total classification error, in spite of accounting 

only for 30% of the acoustic events included in the testing database. Additionally, it was observed in 

Section 4.3 that those human non-speech sounds were mainly confused among themselves. Using 

the same small database and keeping SVM as the basic classifier, the work presented in this section 

is intended to reduce the classification error rate of the above mentioned set of highly confusable 

human non-speech sounds by turning to the fusion of different information sources that in our case 

consists of the combination of classifier outputs. 

Finally, as the FI aggregation may be appropriate when the feature-level fusion is difficult (e.g. 

due to the different nature of the involved features), or when it is beneficial to preserve the applica-

tion or technique dependency (e.g. when fusing well established feature-classifier configurations), 

we have also conducted experiments to combine HMM that use frame-level features with the SVM 

using signal-level features, and have witnessed an additional improvement. As smart-rooms are 

usually equipped with a network of microphones and video cameras that provide multimodal 

information, fusion of information with the FI may find a useful application in such a framework.  

The rest of the section is organized as follows: Subsection 4.5.2 gives the details of the FM 

learning algorithm. Audio features investigated in this work are presented in Subsection 4.5.3. 

Subsection 4.5.4 presents the experiments and discussion. Finally, conclusions are given in Subsec-

tion 4.5.5. 

4.5.2 Fuzzy measure learning 

From Section 3.4 it is obvious that FI completely relies on the FM. The better the FM describes the 

real competence and interaction among all classification systems, the more accurate results can be 

expected. There are two methods of calculating the FM known to the authors (if it is not provided by 

an expert knowledge): one based on fuzzy densities [Kun03], and the other based on learning the 

FM from training data [CG03] [Gra95b]. In our work, we have used the latter method: a supervised, 

gradient-based algorithm of learning the FM, with additional steps for smoothing the unmodified 

nodes:  

Step 1. Initialize the FM to the equilibrium state Zi /1)( =µ , where Z is the number of information 

sources and FM is additive, i.e. )()(),( jiji µµµ +=  

Step 2. For a data point x with label cn  
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Step 2.1. Obtain the DP(x) and calculate the FIs Mn for each of N classes (i.e. for each col-

umn of the DP). 

Step 2.2. Calculate the error for each of N classes: εn = cn - Mn, where cn is one for the cor-

rect class and zeros for the others. 

Step 2.3. For each of N classes, update the FM µ values that were used in the calculation of 

Mn (e.g. in Figure 3.4.1, those that are on the red line, i.e. µ234, µ23 and µ3) using the 

formula derived from a mean-squared-error criterion [CG03]. Note that for each 

class the order of classifiers may differ, what implies that different µ values are 

used for the calculation of Mn. 

Step 2.4. Verify the monotonicity condition for the µ values that were used in the calculation 

of Mn.  

Step 3. Due to the scarcity of data, verify the monotonicity condition of the unmodified µ values and 

smooth their values. The smoothing is based on the average values of the upper and lower 

neighbours of the current node.  

For the detailed description of the algorithm and exact parameter update equations refer to 

[CG03] [Gra95b].  

4.5.3 Feature extraction 

Although the best feature sets for AEC in Section 4.3 consisted of combinations of features used in 

automatic speech recognition and other perceptual features, in the current work we only focus on the 

latter, since their contribution to vocal-tract sounds is not so well-established. 10 types of features 

were chosen with a substantial degree of redundancy in order to use FM to find out their relative 

importance and their degree of interaction. The following types of frame-level acoustic features with 

the number of features in parenthesis are investigated in this thesis:  

1. Zero crossing rate (1) 

2. Short-time energy (1) 

3. Fundamental frequency (1) 

4. Sub-band log energies (4) 

5. Sub-band log energy distribution (4) 

6. Sub-band log energy correlations (4) 

7. Sub-band log energy time differences (4) 

8. Spectral centroid (1) 

9. Spectral roll-off (1) 
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10. Spectral bandwidth (1) 

Therefore, 22 acoustical measures are extracted from each frame, using 16ms/8ms frame 

length/shift. Then, from the whole time sequence of each acoustical measure in an event, four 

statistical parameters are computed: mean, standard deviation, autocorrelation coefficient at the 

second lag, and entropy. Those four statistical values per acoustical measure are used to represent 

the whole acoustic event.  

4.5.4 Experiments and discussion 

4.5.4.1 Experimental setup 

Database 

Due to the lack of an acceptable corpus, the acoustic event database used in this work has been 

assembled using different sources. Part of the database was taken from the seminar recordings 

employed within the CHIL project [EVA]. The other part has been found in a large number of 

Internet websites.  

All sounds were down-sampled to 8 kHz. The fact that the acoustic events were taken from dif-

ferent sources makes the classification task more complicated due to the presence of several 

(sometimes unknown) environments and recording conditions. Table 4.5.1 shows the five acoustic 

classes considered in this work and Figure 4.5.2 shows their sample spectrograms. Notice that each 

realization of “cough” and “sniff” (there are two in the depicted time interval) shows a rather 

stationary behaviour, and “laughter” is almost periodic. Conversely, both “sneeze” and “yawn” have 

more spectral change. Actually, the “sneeze” sound results from the concatenation of two very 

different waveforms, and the “yawn” sound shows a decreasing pitch in its first segment.  

There is a high variation in the number of samples per class, which represents an additional dif-

ficulty. In order to achieve a reasonable testing scenario, the data has been approximately equally 

split into the training and testing parts in such a way that there was the same number of representa-

Table 4.5.1. Sound classes and number of samples per class 

 Event Number
A Cough & Throat 119 
B Laughter 37 
C Sneeze 40 
D Sniff 37 
E Yawn 12 
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tives from the two data sources in the training and testing part. 10 runs were done in all the experi-

ments.  

SVM setup 

The training data for each binary SVM classifier were firstly normalized anisotropicly to be in the 

range from –1 to 1, and the obtained normalizing template was then applied also to the testing data 

that are fed to that classifier. In the experiments with the SVM we used the Gaussian kernel. Leave-

one-out cross validation [SS02] was applied to search for the optimal kernel parameter σ. To cope 

with the data imbalance we introduce different generalization parameters (C+ and C-) for positively- 

and negatively-labelled training samples: 
+

−
+ =

A
AKC , 

−

+
− =

A
AKC  where A+ and A- are the number 

of positive and negative training samples, respectively. In this way, the training errors of the two 

classes contribute equally to the cost of misclassification (see Section 4.3). K was set to value 10 for 

all experiments as it was done in Section 4.3. MAX WINS (pairwise majority voting) [HL02] 

scheme was used to extend the SVM to the task of classifying several classes. The softmax function 
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Figure 4.5.2. Sample spectrograms of acoustic events from 
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was applied to the class densities, which were calculated with pairwise majority voting, in order to 

obtain probability-like values.  

Metrics 

For comparison of the results, three metrics are used. One is the overall system accuracy, which is 

computed as the quotient between the number of correct hypothesis (outputs) given by the classifier 

for all the classes and the total number of instances in the testing set. The other two metrics are the 

mean per class recall and the mean per class precision, which are defined as: 

∑
∈
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C )(
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cr
ch

C )(
)(1Rec  (4.5.1) 

where │.│ denotes cardinality of a set, C is the set of classes, c is a specific class, r(c) is the number 

of reference (manually-labelled testing) instances and h(c) is the number of hypothesis instances for 

class c. The subscript corr refers to a correct hypothesis. Due to the imbalance in amount of data per 

class, we think that the recall measure is more meaningful than the overall accuracy, but we use both 

of them for our comparisons, together with the precision measure.  

4.5.4.2 Shared, semi-shared, and individual fuzzy measure 

The FM can be defined for all classes (shared FM), as we did in all experiments reported below in 

this section, or it can be defined for each class separately (individual FM), or for a group of classes 

(we call it semi-shared FM). When shared FM is used, it is learned using the error of all classes. 

Thus, one FM covers all class-classifier dependences. When using individual FM, the error of a 

given class contributes to change only its own FM. In that way, the various FMs allow different 

order of importance of classifiers for each class. In that individual FM case, enough data should be 

available to train each class FM. As an intermediate solution, semi-shared FM may be used, assign-

ing each FM to a group of similar classes. Table 4.5.2 shows the results obtained for each case.  

Table 4.5.2. FI result for individual, semi-shared and shared fuzzy measure 

 FI (ind) FI (semi-sh)
15vs234 

FI (semi-sh) 
35vs124 FI (sh) 

Prec 81.24±3.1 80.16±2.0 81.75±2.4 81.22±1.8

Rec 80.80±2.4 79.88±1.5 81.11±1.4 81.47±1.2

Acc 83.02±1.9 82.76±1.6 83.79±1.1 83.88±0.6
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As it can be seen from Table 4.5.2 shared, semi-shared and individual FMs show similar results, 

although shared FM is preferable than individual FM in our case when a small database is available, 

due to slightly better average recall and lower standard deviation of the results. Columns 2 and 3 

show that, when using semi-shared FM, one should define FM for a meaningful group of classes, as 

done in column 3 when classes are grouped into two sets (3-5 and 1-2-4) according to the degree of 

non-stationarity of the corresponding types of sounds. On the contrary, in column 2, classes are 

divided simply to have an equal amount of data for each group, and the fusion performance is lower.  

4.5.4.3 Feature and decision level information fusion 

In this section, the two ways of information fusion mentioned in the Introduction are compared. For 

the feature-level fusion (see Figure 4.5.1 (a)), all ten types of features were used to feed the input of 

one SVM classifier. For the decision-level fusion (see Figure 4.5.1 (b)), ten independent SVM-based 

classifiers were trained, one for each feature type. The ten input criteria, represented by these ten 

classifiers, were then combined by WAM operator and FI with learned shared FM. For the weights 

in WAM operator we use uniform class noise model with the weights computed as 

ii E
i

E
ii EE −−= 1)1(µ  where Ei is the training error of class ci [Kun04]. 

As we can see from Figure 4.5.3, all fusion approaches show a strong improvement in compari-

son to the SVM with the best single feature type (number 4). As expected, feeding all the features to 

the SVM classifier increased significantly the performance (SVM, 10 feature types). Interestingly 

enough, the fusion at the decision-level by FI showed comparable results to the powerful SVM 

classifier, which uses all the features. To gain an insight into the way FI works, we compare in Table 

4.5.3 the individual recall score of the best feature type (column 2) for a given class, and the FI score 

(column 3) for the same class. Notice that, for the most represented class (A), the FI performance is 

lower, whereas for two less represented classes (C and D) it is higher. As the FM was trained using 

the errors of the particular classes as cost functions, we observe that, at the expense of accepting 

more errors for the most represented classes, the FI can recover a few errors for infrequent classes 

and thus obtain higher recall.  

However, the accuracy and precision measures for both FI and WAM were slightly worse than 

that of the SVM: Accuracy=83.9 and Precision=81.2 for FI, versus Accuracy=84.8 and Preci-

sion=84.5 for SVM. Notice also that FI fusion has approximately a 10 times higher computation cost 

than SVM feature-level fusion (10 independent SVM classifiers vs. one), and therefore the latter 

would seem preferable in this case. 
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4.5.4.4 Feature ranking and selection 

An information source consists of two parts: a classifier and a set of features. When using the same 

classifier for each information source, we can interpret the FM as the importance of features for the 

given classification task and we can use it for feature ranking and selection.  

The information about both the importance of each feature type and the interaction among dif-

ferent feature types can be extracted applying the Shapley score to the FM. Using this approach, 

Figure 4.5.4 shows that in our case the new feature type 6 (SBE correlations) is the most important 

followed by feature type 7 (SBE time difference). As both feature types measure the changes of the 

spectral envelope along the time, we can conclude that that information is of high importance. The 

only other feature type with importance score above the average is number 4 (SBE). Interestingly 

that although the new feature type described in Section 4.2 has the highest overall importance, 

individual accuracy is only around 50% as it can be seen from Figure 4.5.4. We also observed that 

without calculating the maximum absolute value in (4.2.4) the new feature individual accuracy 

increases to around 63% while the fusion result decreases to 79.4 %. 

 
Figure 4.5.3. Recall measure for the 10 SVM systems running on each feature 
type, the combination of the 10 features at the feature-level with SVM, and the 
fusion on the decision-level with WAM and FI operators. 

Table 4.5.3. Comparison of individual recall scores for each class 

Class Best score FI 
A(119) 0.85 0.81 
B(37) 0.61 0.61 
C(40) 0.95 1.00 
D(37) 0.77 1.00 
E(12) 0.67 0.67 
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On the other hand, Figure 4.5.5 shows the interaction among the feature types in our task; it can 

be seen that feature types 6 (SBE time correlation) and 7 (SBE time difference) express a negative 

interaction, which coincide with their similar character. As an extreme case, the light cell (4,5) has a 

large negative value and thus indicates a high competitiveness (redundancy) of the mentioned 

feature types. Therefore it would be better to consider only one of the two feature types. Actually, 

feature type 4 (SBE) and the feature type 5 (SBE Distribution) become roughly the same feature 

after using the SVM normalization. In a similar way, as feature types 1 (ZCR) and 8 (Sp. Centroid) 

are both targeting the “main” frequency, their cell is also rather light. Also, from the two lighter 

cells in the bottom of the Figure 4.5.5, one can conclude that feature type 9 is redundant if feature 

types 8 and 10 are considered. On the contrary, feature types 4 and 6, or 4 and 7, or 4 and 10 seem to 

be highly complementary, and thus are preferable to be considered together. 

In the following AEC tests, we use the information from Figure 4.5.4 and Figure 4.5.5 to per-

form the feature selection. In the first test, we select the 5 best feature types according to the 

 
Figure 4.5.4. Importance of features extracted from FM. 

Dashed line shows the average importance level. 

 
Figure 4.5.5. Interaction of features extracted from FM. 
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individual feature type importance (Method 1), while to select the 5 best features in the second test, 

both the individual feature type importance and the interaction indices are used (Method 2, see 

[MZ99] for a detailed description). The selected features are then fed to the SVM classifier. 

The performance of the SVM with all features is considered as a baseline in this part. It can be 

seen from the results in Table 4.5.4 that Method 1 did not lead to a better performance, while 

Method 2 obtained a slight improvement over the baseline.  

The last column in Table 4.5.4 shows that the FI scores resulting from using the feature types 

chosen by Method 2 are clearly worse than the SVM ones. Notice that, although apparently FI 

should benefit from a feature selection based on FM, the 5 features have been selected according to 

a FM computed from 10 information sources, while FI scores in Table 4.5.4 result from a different 

FM, since it has been trained using only data corresponding to the 5 selected features.  

Note that the recall score in the last column of Table 4.5.4 is much lower than the one shown in 

Figure 4.5.3 (and last column in Table 4.5.2) for the FI technique when using the whole set of 

features, in spite of the fact that FI technique apparently should benefit from a feature selection 

based on FM. There are two reasons for this behaviour. First, the 5 features have been selected 

according to a FM computed from 10 information sources, while FI scores in Table 4.5.4 result from 

a different FM, since it has been trained using only data corresponding to the 5 selected features. 

The second reason is based on the measure of uncertainty defined by (3.4.7). As it was mentioned in 

Section 3.4, if that entropy measure is close to 1 almost all information sources are equally used. In 

fact, for the 10 features case, it is 0.86, meaning that to achieve the results shown in Figure 4.5.3, the 

FI operator uses in average 8-9 out of 10 information sources, so preserving only 50% of all features 

is not sufficient.  

Table 4.5.4. Classification results using feature selection based on FM 

Support Vector Machines FI  

Baseline Method 1 Method 2  

Features 10 (all) 5(1,4,6,7,10) 5(4,6,7,8,10) Method 2 

Prec 84.50±2.1 82.76±1.3 86.14±1.7 81.74±2.4 
Rec 80.98±1.1 75.31±2.1 80.14±1.6 74.79±2.5 
Acc 84.83±2.3 83.97±2.2 85.86±1.4 83.79±1.6 
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4.5.4.5 Fusion of different classifiers using FI 

In previous subsections we showed that the FI decision-level fusion obtains comparative results to 

the feature-level fusion using the SVM classifier. Indeed, from the computational cost point of view 

the feature-level fusion is preferred. However, when the resulting feature space has a too high 

dimensionality or when features are conveyed by different data types (strings, matrices, etc) the 

feature-level fusion is not an option.  

On the other hand, it may be beneficial to combine the outputs of different well-established 

classification configurations for a given task; for example, the output of a SVM classifier which is 

discriminative but uses features from the whole signal with the output of a HMM generative classi-

fier which considers time localized features. Based on that, we have tested with the FI formalism the 

combination of a SVM classifier that uses statistical (event-level) features with a HMM classifier 

that uses acoustic (frame-level) features. In these experiments, the best 5 feature types selected in 

the previous subsection by Method 2 are used with the SVM classifier. For HMM, we use a standard 

configuration coming from speech recognition: a 3 state left-to-right continuous density HMM 

model per class, with 8 Gaussians per state, and 13 frequency-filtered filter-bank energies (FFBE) 

[NHG95] as features.  

The first four columns in Table 4.5.5 show the performance of the SVM classifier and several 

HMM classifiers, where ∆FFBE means the time derivatives of FFBE features [NMH01]. HMM-

∆FFBE gives low performance because the time derivatives only carry information about dynamics 

of sound but lack the basic static representation of the audio signal. The low score resulting from the 

HMM classifier when it uses as features both FFBE and their time derivatives (fourth column in 

Table 4.5.5), indicates that the amount of data we use is not enough to train the 26-dimensional 

vector data properly. Then, we decided to fuse the outputs of the previous classifiers: SVM, HMM-

FFBE and HMM-∆FFBE. From the second last column of Table 4.5.5 an improvement can be 

observed by FI fusion of the SVM and HMM-FFBE outputs. A further improvement is obtained by 

Table 4.5.5. Individual performance of SVM, HMM on FFBE with and without time derivatives, 
and FI fusion 

 SVM 
(1) 

HMM-FFBE 
(2) 

HMM-∆FFBE
(3) 

HMM-
FFBE+∆FFBE FI(1,2) FI (1,2,3) 

Prec 86.14±1.7 69.28±3.5 51.06±4.7 66.70±3.2 88.23±1.8 89.47±1.9 
Rec 80.14±1.6 67.36±2.7 60.73±3.8 59.31±2.5 81.43±1.5 82.43±1.0 
Acc 85.86±1.4 84.48±2.1 52.59±4.6 79.17±2.6 87.07±2.2 87.93±1.8 
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fusion of the SVM output with two information sources that separately give much lower individual 

performances, but use different features, as it is shown in the last column of Table 4.5.5.  

Note from Figure 4.5.3 that a much higher improvement was observed by fusing a larger num-

ber of information sources (10). Actually, the higher is the number of information sources the larger 

is the degree of interaction between them, and thus the better is the performance expected from the 

FI with an appropriately-learned FM. However, the difficulty of learning FM increases with the 

number of information sources. From our experience in this work, we would suggest to apply the FI 

formalism to fuse a number of information sources between 3 and 10.  

4.5.5 Conclusion 

In this work, we have carried out a preliminary investigation about the fusion of a relatively large 

number of information sources with the FI approach. We have shown an improvement over the 

baseline SVM approach in the task of classifying a small set of human vocal-tract non-speech 

sounds. By interpreting an information source as a specific combination of a classifier and a set of 

features, we have been able to carry out different types of tests.  

In the experiments, fusion of several information sources with the FI formalism has shown a 

significant improvement with respect to the best single information source. Moreover, the FI deci-

sion-level fusion approach has shown comparable results to the high-performing SVM feature-level 

fusion. The experimental work has also indicated that the FI may be a good choice when feature-

level fusion is not an option.  

We have also observed that the importance and the degree of interaction among the various fea-

ture types given by the FM can be used for feature selection, and it gives a valuable insight into the 

problem.  
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4.6 Chapter Summary 

The problem of classifying a set meeting-room acoustic events has been tackled in this chapter. A 

database has been defined and a set of experiments has been carried out.  

Firstly, a confusion matrix based variable-feature-set clustering algorithm based on SVM classifier 

has been developed and applied to the problem. A 31.5% relative average error reduction with respect 

to the conventional binary tree scheme has been achieved.  

Various sequential kernels have been tried to adapt the SVM classifier to sequence processing. The 

results of comparison has shown that using dynamic kernels a better performance can be obtained for 

sounds with a temporal structure; however the worse results on less-time-structured sounds and high 

computational cost of sequential kernels make their usefulness low at present.  

Finally, fusion of several information sources with the FI formalism has been performed and has 

shown a significant improvement with respect to the best single information source. It has also been 

observed that the importance and the degree of interaction among the various feature types given by the 

FM can be used for feature selection, and it gives a valuable insight into the problem.  
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Chapter 5. Acoustic Event Detection 

5.1 Chapter Overview 

In the previous chapter the work done on classification of acoustic events was reported. More complex 

is the problem of Acoustic Event Detection, which purpose is to determine the presence of a given 

acoustic event of interest.  

In this chapter we describe the AED systems developed at the UPC and submitted to the CLEAR 

evaluations that were carried out in March 2006 and March 2007, respectively. The system of year 

2006, which is explained in Subsection 5.2.1, is based on two steps: performing silence/non-silence 

segmentation and then classification of non-silence portions by SVM classifiers. A set of features 

described in Section 4.3 is used. The system of year 2007, which is explained in Section 5.2.2, merges 

the two steps (segmentation and classification) and is also based on SVM classifiers. Besides, accord-

ing to the importance and degree of interaction shown in Section 4.5, several features are selected and 

added to the set of features used in the AED system 2006 and one feature is eliminated. Additionally, 

multi-microphone decision fusion is added to the AED system 2007.  

The acoustic event classification system used for evaluations 2006 is also explained in this chapter 

in Section 5.2.1.  

As the systems have only been evaluated through participation in the international evaluation cam-

paigns, the results are not presented in this chapter but in the next one.  
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5.2 Acoustic Event Detection systems 

5.2.1 Acoustic event detection and acoustic event classification systems 2006 

5.2.1.1 General description 

The systems are based on SVM. A DAG [PCS00] multi-classification scheme was chosen to extend 

the SVM binary classifier to the multi-classification problem. 5-fold cross-validation [SS02] on the 

training data was applied to find the optimal SVM hyper parameters that were σ for the chosen 

Gaussian kernel, and C, a parameter that controls the amount of data allowed to be misclassified 

during the training procedure. In all the experiments the third channel of the Mark III microphone 

array was used. 

Firstly, the sound is downsampled from the initial 44 kHz sampling rate to 22 kHz, and framed 

(frame length = 25 ms, overlapping 50%, Hamming window). For each frame, the set of spectral 

parameters that showed the best results in Section 4.3 was extracted. It consists of the concatenation 

of two types of parameters: 1) 16 Frequency-Filtered (FF) log filter-bank energies [NHG95] taken 

from ASR, and 2) a set of other perceptual parameters: zero-crossing rate, short time energy, 4 sub-

band energies, spectral flux calculated for each of the defined subbands, and pitch. The first and 

second time derivatives were also calculated for the FF parameters. In total, a vector of 59 compo-

nents is build to represent each frame.  

5.2.1.2 AEC system 

The mean, standard deviation, entropy and autocorrelation coefficient of the parameter vectors were 

computed along the whole event signal thus forming one vector per audio event with 4x59 elements. 

Then, that vector of statistical features was used to feed the SVM classifier, which was trained on 

the training set of the two databases of isolated acoustic events. The resulting system was used to 

test both UPC and ITC databases of isolated acoustic events, which are described in Chapter 6, so 

neither features nor system adaptation related to a specific database were applied. 

5.2.1.3 AED system 

The scheme of the AED system is shown in Figure 5.2.1. Using a sliding window of one second 

with a 100 ms shift, a vector of 4x59 statistical features was extracted like in the AEC system 

described in the last subsection for each position of the window (every 100 ms).  

The statistical feature vector is then fed to an SVM-based silence/non-silence classifier trained 

on silence and non-silence segments of the two isolated acoustic events databases. At the output, a 
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binary sequence of decisions is obtained. A median-filter of size 17 is applied to eliminate too short 

silences or non-silences.  

Then, the SVM-based event classifier is applied to each detected non-silence segment. The 

event classifier was trained on a parameters extracted from a sliding window with 100 ms shift 

applied to each event in the way that the first and the last windows still include more than 50% of 

the event content. The event classifier is trained on both isolated acoustic events and seminar 

databases to classify a set of 12 defined acoustical classes, plus classes “speech” and “unknown”. A 

sequence of decisions made on a 1-second window every 100 ms is obtained within the non-silence 

segment. That sequence is smoothed by assigning to the current decision point the label that is most 

frequent in a string of five decision points around the current one. Also, a confidence measure is 

calculated for each point as the quotient between the number of times that the chosen label appears 

in the string and the number of labels in the string (5).  

The sequence of decisions from the non-silence segment is then processed again to get the de-

tected events. In that step, only the events that have their length equal or larger than the average 

event length are kept, and the number of events kept in the non-silence segment is forced to be lower 

than a number which is proportional to the length of the segment. The average length of the events is 

estimated from the training and development databases. Finally, if the average of the above-

mentioned computed confidences in a detected event is less than a threshold, the hypothesized event 

is marked as “unknown”; otherwise, it maintains the assigned label. 

5.2.2 Acoustic event detection system 2007 

The general scheme of the proposed system for AED is shown in Figure 5.2.2. Firstly, in the data 

pre-processing step, the signals are normalized based on the histograms of the signal energy. Then, a 

Figure 5.2.1. UPC acoustic event detection system 2006 
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set of frame-level features is extracted from each frame of 30 ms and a set of statistical parameters is 

computed over the frames in a 1-second window. The resulting vectors of statistical parameters are 

fed to the SVM classifier associated to the specific microphone. A single-microphone post-

processing is applied to eliminate uncertain decisions. At the end, the results of 4 microphones are 

fused to obtain a final decision.  

5.2.2.1 Histogram-based energy normalization  

The development database that is explained in Chapter 6 has been recorded in 5 different rooms. 

Due to this fact, the energy level of audio signals varies from one audio file to another. In this work 

as a pre-processing step we decided to perform energy normalization of all audio files to a prede-

fined level. Because the energy level of a given AE depends both on its type, the manner it is 

produced, and the position of the person who produces it, the energy normalization is based on the 

energy level of silence. For this the histogram of the audio signal log-energy calculated each 30 ms 

with 10 ms shift has been plotted. The results for one development seminar are shown in Figure 

5.2.3. The lower-energy hump corresponds to the silence energy level. A 2-Gaussians GMM has 

been trained on the energy values and the lowest mean has been taken as the estimation of the 

silence energy. In Figure 5.2.3, the estimated silence level corresponds to the point 10.41 whereas 

the true value of silence energy level, calculated on the annotated silence segments, is 10.43. The 

normalizing coefficient is then calculated as )exp(/)9exp( acoef = , where a is the estimated 

silence level and 9 is the predefined final silence energy level. The exponential is used to come from 

the log scale back to the initial signal amplitude scale. Then, the development seminar signal is 

multiplied by coef.  

Figure 5.2.2. The block-scheme of the developed AED system 2007 
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5.2.2.2 Feature extraction 

The sound signal is down-sampled to 16 kHz, and framed (frame length/shift is 30/10 ms, a Ham-

ming window is used). For each frame, a set of spectral parameters has been extracted. It consists of 

the concatenation of two types of parameters (see Section 4.2): 1) 16 FFBE along with the first and 

the second time derivatives, and 2) a set of the following parameters: zero-crossing rate, short time 

energy, 4 sub-band energies, spectral flux, calculated for each of the defined sub-bands. Addition-

ally, according the importance and degree of interaction shown in see Section 4.5, two features are 

added, namely, spectral centroid, and spectral bandwidth, and pitch is eliminated. In total, a vector 

of 60 components is built to represent each frame. The mean and the standard deviation parameters 

have been computed over all frames in a 1-second window with a 200ms shift, thus forming one 

vector of 120 elements.  

5.2.2.3 One-microphone SVM system  

For AED, SVM classifiers [SS02] have been implemented. They have been trained using the 

isolated AEs from the two DBs of IAE explained in Chapter 6, along with segments from the 

development data seminars that include both isolated AEs and AEs overlapped with speech. The 

segments that contain the overlapping of two or more AEs with or without speech are not used. In 

both training and testing processes, a vector of 120 statistical parameters has been computed from 

each 1-second window. The 1 vs. 1 multiclass strategy has been chosen to classify among 14 classes 

that include “Speech”, “Unknown”, and the 12 evaluated classes of AEs. Besides, “Silence” vs. 

“Non-silence” SVM classifier has been trained where “Non-silence” class includes all 14 classes. In 

that case, in order to decrease the number of training vectors and make training feasible, the dataset 

reduction technique described in following section of this chapter has been applied.  

The testing stage scheme is shown in Figure 5.2.4. An input vector of statistical components 

computed over the frames from a 1-second window is firstly fed to the “Silence” vs. “Non-silence” 
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classifier and if the decision is “Non-silence”, the vector is further fed to a SVM multiclass (14 

classes) classifier based on the DAG testing scheme [PCS00]. The most frequent event (the “win-

ner”) is taken from the final decision window of 4 decisions that corresponds to the time interval of 

1.6 seconds. If the number of votes of the “winner” does not exceed the threshold the event is 

marked as “Unknown”. The threshold has been set in order that the winner has to get at least 3 

votes. The final decision window is shifted by 2 decisions, i.e. 400 ms. Consequently, the temporal 

resolution of the produced system output AEs is 400 ms, and the corresponding AE label is assigned 

to the central 400 ms of the 1.6-second window. 

For instance, for the first window of 4 decisions that corresponds to the time interval from 0 to 

1.6s, the starting and ending timestamps of the system output AE will be 0.6 and 1s.  

5.2.2.4 Multi-microphone processing 

The database used in the evaluation has been recorded with a set of microphones. Depending on the 

site where the part of the database was recorded, which were Universitat Politèchnica de Catalunya 

(UPC), Instituto Trentino di Cultura (ITC), Athens Information Technology (AIT), and University 

of Karlsruhe (UKA), the following audio equipment has been used: one or two Mark III (array of 64 

microphones), 3-7 T-shape clusters (4 mics per cluster), and several tabletop and omni directional 

microphones. To construct a multi-microphone AED system it has been decided to choose one 

microphone from each wall of the room and train a SVM classifier for each wall microphone. Due 

Figure 5.2.4. One microphone AED system  
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to the different configuration of the rooms where the development and testing data have been 

recorded and due to different numbering of the microphones, a mapping of the microphones across 

the sites has been performed. The Mark III microphone array has been chosen as the fixed point. For 

the remaining walls the T-shape cluster microphones have been chosen. An example of choice of the 

cluster microphones for the UPC’s smart-room is shown in Figure 5.2.5. The following microphone 

numbers have been chosen 1-5-9, 6-1-25, 1-5-9, 1-5-9 for the AIT/ITC/UKA/UPC smart-rooms, 

respectively. For instance, one SVM has been trained on audio signals from microphones 1, 6, 1, 1 

taken from AIT/ITC/UKA/UPC, respectively. For the Mark III array the 3rd microphone has been 

chosen across all sites.  

For multi-microphone decision fusion, the voting scheme has been used. The AE label with the 

largest number of votes is sent to the system output. In case of draw the event is chosen randomly. 

 

 

 

Figure 5.2.5. The choice of the microphones for the UPC’s smart-room 
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5.3 Chapter Summary 

In the current chapter the AED/C systems developed at UPC for the international evaluations of 

years 2006 and 2007 have been presented. The features and classifiers have been described. As the 

systems have only been evaluated through participation in the international evaluation campaigns, 

the results have not been presented in this chapter but will be reported in the next one.  
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Chapter 6. Participation in International Evaluations 

6.1 Chapter Overview 

The chapter reviews the results obtained with the developed systems for Acoustic Event Classification 

(AEC) and Acoustic Event Detection (AED).  

Section 6.2 presents the results of the very first dry-run evaluation on AEC. The definition of the 

task, metrics and a set of meeting-room acoustic events are given. Then the results of the AEC system 

are presented and discussed.  

The modifications of the first AEC task definitions and the evaluation setup of the second interna-

tional evaluation on AEC are presented in Section 6.3. New metrics are defined and the results of the 

new systems tested on both the previous and the new databases are reported.  

In Section 6.4, we present the results of the AED and AEC evaluations carried out in February 

2006 by the three participant partners from the CHIL project. The primary evaluation task was AED of 

the testing portions of the isolated sound databases and seminar recordings produced in CHIL. Addi-

tionally, a secondary AEC evaluation task was designed using only the isolated sound databases. The 

set of meeting-room acoustic event classes and the metrics were agreed by the three partners and 

ELDA was in charge of the scoring task.  

Next, the AED system developed at the UPC and its results in the CLEAR evaluations carried out 

in March 2007 are reported in Section 6.5. The system is based on SVM classifiers and multi-

microphone decision fusion. Also, the current evaluation setup and, in particular, the two new metrics 

used in this evaluation are presented.  
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6.2 CHIL Dry-Run Evaluations 2004 

6.2.1 Introduction 

The CHIL-sponsored dry-run evaluations were carried on in spring 2004. The presented technolo-

gies were: ASR – Automatic Speech Recognition, SAD – Speech Activity Detection, Speaker ID – 

Speaker Identification, ASL – Acoustic Speaker Localization, and AEC – Acoustic Event Classifi-

cation.  

Crucial to the goal of the CHIL project is the ability to determine human context from auditory 

or visual cues in the environment. Toward this end, systems to identify common acoustic events in 

the first CHIL scenario seminars were developed and evaluated. In this section we describe the first 

evaluations that were carried out for the task of AEC.  

The section is organized as follows. In Subsection 6.2.2 we present the database of gathered 

sounds and the evaluation setup with metrics. The classification techniques are overviewed in 

Subsection 6.2.3. The experiments and discussion of the results are presented in Subsection 6.2.4. 

Finally, conclusions are given in Subsection 6.2.5. 

6.2.2 Database & evaluation setup 

The evaluation used CHIL seminar data collected at Universität Karlsruhe in 2003. The seminar 

database consists of seven technical seminars. The natural meeting-room settings were designed 

without planning acoustic events. 

Audio was collected with a combination of microphones. The 3rd channel of a wall-mounted 64-

microphone array (MarkIII array) was used for the AEC evaluation. The data were transcribed with 

36 noise classes. Over 2800 individual noise instances were collected. These instances were tran-

scribed with tight temporal bounds, allowing to perform an isolated-sound test.  

The sound classes that were transcribed are presented in Table 6.2.1. Additionally, Table 6.2.1 

shows number of sound instances that appeared in training and testing data. From all the acoustic 

classes the ones that had more than 8 instances for both training and testing were chosen. The 

dropped acoustic classes are shown in grey in Table 6.2.1. 
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The dry-run evaluation had two participants: Interactive System Laboratories from Carnegie 

Mellon University (ISL-CMU) [Mal06] and our TALP research group from UPC. In this corpus, we 

found 25 classes suitable for use in the evaluation: breathing, bang, bump, click, conversation (i.e. 

background speech between two parties which is not part of the seminar interaction), cough, paper 

crumple, door, exhale, footsteps, inhale, metal, microphone, chair moving, pen, pop, electrical noise, 

silence, lip smack, snap, speech, squeak, tap, throat clear, and typing. This set was ad hoc in the 

sense that we did not know a priori what kinds of sounds would be present in the database; hence 

Table 6.2.1. Evaluated acoustic event classes 

Name Train Test Comments 
Breath 24 33  
Bang 2 6  
Bump 59 79  
Chair moving 5 1 A chair being moved 
Click 34 48  
Conv 8 4 Conversation (simultaneous speech) 
Cough 4 10  
Crump 3 6 Paper crumple 
Door 11 8 Door slams 
E 11 8 Expiration 
Fan 0 3  
Foot 3 10 Steps 
I 288 267 Inspiration 
Keyb 83 76 Keyboard typing 
Knock 1 0 Door/table knock 
Laugh 1 1  
Metal 3 7 Metallic noise 
Mic 15 14 Microphone noise 
Mn 4 2 An unidentified mouth noise 
Mov 8 27 Movement, someone moving 
N 1 3 Generic noise 
Pen 2 10 Pen, pencil, whiteboard-pen writing 
Pop 5 6  
Punch 0 1 Puncher & stapler 
Rattle 1 1  
Shh 24 17 Steady environmental noise 
Silence 715 630  
Smack 19 15 Smack, pressing the lips together 
Snap 8 12  
Sniff 4 2  
Speech 1309 1209  
Squeak 10 14  
Tap 10 5  
Throat 10 4 Throat noise 
Wh 2 0 Whistle 
Whir 2 5 Whirring 
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we relied on transcriber’s judgment to select the noise set. This decision resulted in a large amount 

of class overlap (e.g. “bang” and “bump”), but it was important to determine which classes were 

actually present in quantity.  

The dry run data consisted of isolated sound segments only. There were 2805 total segments, 

which we divided into training (1425 segments) and evaluation sets (1380) at random.  

Accuracy and recall were used as metrics in the evaluations. The former is defined as the num-

ber of correctly classified acoustic events divided by the total number of acoustic events. Recall is 

defined as a mean of the individual class recalls calculated as the number of correctly-classified 

events of a particular class divided by the number of events of that class.  

6.2.3 Developed systems  

In the evaluations we used the front-end described in Subsection 4.3.3. Namely, the signals from all 

the sounds in the database presented above were downsampled to 8kHz, normalized to be in the 

range [-1 1], and partitioned in frames using: frame length=128, overlapping of 50%, and a Ham-

ming window. The silence portions of the signals were removed using an energy threshold. We 

tested all 9 acoustic feature sets presented in the Subsection 4.3.3, specifically, a set of perceptual 

features (Perc), a set of cepstral coefficients (MFCC), a set of frequency-filtered features (FF), and 

combinations of the formers. The mean, standard deviation of those features, estimated by averaging 

over the whole acoustic event signal, were taken for classification, thus forming one final statistical 

feature vector per audio event with a number of elements which doubles the length of the acoustic 

feature set. Besides, along with the mean and standard deviation we decided to calculate the autocor-

relation coefficient at the second lag and the entropy, to compare the results with and without the 

last two statistical parameters.  

GMM and SVM classifier were used as alternative back-ends of the developed systems. Both 

classifiers were compared across all available feature sets. For the SVM case, we used the binary 

tree scheme that is explained in Subsection 4.3.5.1.  

6.2.4 Results and discussion 

The best results were obtained using the 3rd feature set (E + MFCC) for GMM and the 8th for SVM 

(Perc + FF + ∆FF + ∆∆FF). Interestingly enough, that the best results with GMM were obtained 

with mean and standard deviation of the 3rd feature set while, in the case of SVM, the set of mean, 

standard deviation, autocorrelation coefficient at the second lag, and entropy calculated over the 8th 
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feature set showed the best performance. The best GMM and SVM results are summarized in Table 

6.2.2.  

As it can be seen from Table 6.2.2, the worst (at times 0%) performance is obtained for the 

classes with small number of acoustic event instances for training, like “bang”, “crump”, “foot”. 

Also we can see from Table 6.2.2, that for most classes, SVM shows better performance than GMM, 

finally achieving better accuracy and recall. Additionally, Table 6.2.2 shows the baseline recall and 

accuracy calculated as if the system always guesses the most frequent class i.e. “speech” in our case. 

As it can be seen, the accuracy of GMM is even worse than that of the baseline; however the GMM 

recall is much higher. SVM system clearly outperforms the baseline for both metrics. 

The accuracy metric is affected by the imbalance of the number of instances per acoustic event 

Table 6.2.2. Results of the dry-run evaluations on AEC 

 Recall for Each Class (%) 
Event GMM SVM 

b 10.61 3.03 
bang 0 0 
bump 22.78 41.77 
click 19.57 30.43 
conv 25.00 0 
cough 15.00 40.00 
crump 0 0 
door 50.00 62.50 

e 25.00 0 
foot 0 0 

i 52.81 74.00 
keyb 37.50 60.53 
metal 0 0 
mic 3.57 7.14 
mov 1.85 0 
pen 0 0 
pop 0 0 
shh 8.82 17.65 

silence 56.20 58.00 
smack 13.33 26.67 
snap 12.50 0 

speech 96.00 100.00 
squeak 21.43 7.14 

tap 0 0 
throat 62.50 75.00 

 
Baseline (Recall) 4.0 

Baseline (Accuracy) 47.8 
Recall 21.38 24.15 

Accuracy 47.4 55.1 
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classes, so that the good performance shown for “speech” class contributed significantly to the 

accuracy metric.  

It is worth to note that the low system performance is attributable to the noisy conditions of the 

recorded seminars (far-field microphone, reverberation, etc). Besides, the annotation of acoustic 

events describes them from a semantic point of view while acoustically most of classes are similar 

(“bump” and “bang”, “shh” and “silence”, etc.). Additionally, the high number of acoustic classes 

made it rather difficult to correctly transcribe the seminars, resulting in a number of outliers. 

6.2.5 Conclusions  

The first official evaluation of acoustic event classification was carried out in 2004 and has been 

described in this section. In that pioneering work, the set of meeting room acoustic events has been 

defined based on the number of acoustic event instances and the metric has been agreed by the 

participants. Previously developed systems have been applied to the AEC task and comparative 

results have been obtained.  
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6.3 CHIL Evaluations 2005 

6.3.1 Introduction 

The first year of the CHIL project concluded with the CHIL evaluation campaign in January 2005, 

followed by the first CHIL evaluation workshop, which took place in Athens on 20th and 21st of 

January 2005.  

During this campaign, 12 technological components were evaluated: 5 vision technologies (face 

detection, visual person tracking, visual speaker identification, head pose estimation, and hand 

tracking); 6 sound and speech technologies (close-talking automatic speech recognition, far-field 

automatic speech recognition, acoustic person tracking, acoustic speaker identification, speech 

activity detection, acoustic scene analysis; and 1 contents processing technology (automatic summa-

rization). AEC, along with acoustic environment classification, were considered subtasks of the 

acoustic scene analysis task.  

As it was mentioned the goal of the AEC efforts in the CHIL project is to provide situation 

awareness to smart CHIL spaces by monitoring ambient audio. Many events which carry semantic 

relevance to scene understanding cannot be detected by visual analysis, but are relatively easy to 

detect with auditory analysis. Some of these events are speech-related and can thus be handled by 

SAD or ASR systems. Many others, however, are not speech-related and must be dealt with sepa-

rately. Examples of these types of events include applause, doors opening and closing, knocking on 

doors, telephones ringing, music, and electrical noise characteristic of some piece of office equip-

ment like a printer or fax machine. The CHIL AEC task was conceived to reliably classify sounds 

like these, along with speech and other human noises.  

The section is organized as follows. In Subsection 6.3.2 we present the database of gathered 

sounds and the evaluation setup with metrics. The classification techniques are overviewed in 

Subsection 6.3.3. The experiments and discussion of the results are presented in Subsection 6.3.4. 

Finally, conclusions are given in Subsection 6.3.5. 

6.3.2 Database & evaluation setup 

ISL-CMU and UPC were also the only participants in the AEC evaluation 2005. For this evaluation, 

we worked to limit the number of classes to those which were both easy for transcribers to identify 

and semantically relevant to the CHIL task. However, as we wished to retain a label for every sound 

in the corpus, whether it was easily identifiable or not, we split the label set into two types, semantic 

labels and acoustic labels. Semantic labels correspond to specific named sounds with CHIL rele-
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vance; e.g. doors slamming, speech, etc. The semantic classes that were annotated are presented in 

Table 6.3.1. In total there are 8 human noises and 13 environmental noises. Based on the availability 

of samples per class, the following 15 semantic classes were finally chosen for evaluation: breath-

ing, chair moving, click, door, footsteps, laughter, mouth noise, papers, silence, speech, throat, 

typing, and electrical noise.  

Acoustic labels correspond to unnamed sounds which are either unidentifiable or have no CHIL 

relevance. The acoustic labels use names describing both tonal and rhythmic features of a sound. 

The set of acoustic-labelled sounds consists of continuous non-tonal sounds, continuous tonal 

sounds, single non-continuous sounds, non-continuous sounds repeated in a regular pattern, non-

continuous sounds repeated in an irregular pattern, and other noises. Table 6.3.2 shows the acoustic 

classes used in the evaluations.  

Table 6.3.1. Annotated semantic classes 

Class Description 

 Human Noises 
[b] Breathe (in general, when it is not possible to be more precise) 
[lgh] Speaker laughing 
[thr] Throat noise /Cough 
[tsk] Willful noise made to express one’s disagreement: “tsk tsk tsk…” 
[conv] Whisper or conversation in the background 
[mn] Generic mouth noise (including smacks) 
[snif] Sniffing 
[sp] Speech segment  
 Non-speech, environment noises 
[app] Hand clapping, audience applauding 
[beep] Some device beeping 
[click] Click 
[chr] A chair being moved 
[door] A door opening, closing, slamming or grating 
[fst] Footsteps 
[key] Keys jiggling or being knocked on a surface. 
[mus] Some music, e.g. radio or mobile phone 
[pap] The noise of some action done with paper sheets 
[sil] Silence (more or less, event if there is a background noise global 

to the recording) 
[typ] Someone typing on a keyboard 
[unk] Unknown 
[whir] Some kind of electrical whirring 
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It was decided to perform two independent evaluations: acoustic and semantic. For acoustic 

evaluation, all semantically-labelled classes were mapped to the corresponding acoustic classes. The 

mapping is shown in the Table 6.3.3. 

Like in the dry-run, the AEC evaluation set consisted of isolated sounds only, collected in 

seminars at Universität Karlsruhe. The data were split into a training set, a development test set, and 

an evaluation set. There were 7092 total segments; 3039 were used for training (1946 speech, 333 

breath, 333 silence, 232 unk, 44 footsteps, 24 throat, 16 click, 15 paper…), 2949 for development 

testing (749 speech, 183 unk, 139 silence, 9 throat, 9 breath, 7 typing…), and 1104 for evaluation 

(2084 speech, 348 silence, 274 unk, 123 breath, 30 throat, 25 footsteps, 18 chair…).  

The far-field microphone, that was the 4th channel of MarkIII microphone array, was used in the 

entire evaluation. Participants were permitted to use for system training only the data distributed for 

this evaluation and identified as training data. No other data were allowed for training purposes, 

though development data may be used for strobe testing and cross-validation.  

For measuring the performance, the error rate metric was exploited. It is defined as 1 – accu-

racy. The accuracy is calculated as the number of correctly classified acoustic events divided by the 

total number of acoustic events. 

Table 6.3.2. Evaluated acoustic classes 

Class Description 
[c-t] Continuous tone 
[c-nt] Continuous sound without tone 
[nc-s] Single non-continuous sound 
[nc-xreg] Regular repetitive non-continuous sound 
[nc-xirr] Irregular repetitive non-continuous sound 
[n] Generic noise, all other kinds of sounds 

 

Table 6.3.3. Semantic acoustic mapping 

Semantic label Acoustic label 
[lgh], [sp] c-t 

[b], [snif], [pap], [whir], [thr] c-nt 
[click], [chr], [door], [mn] nc-s 

[fst] nc-xreg 
[typ] nc-xirr 
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6.3.3 Developed systems 

In the AEC evaluation 2005, we used an SVM-based variable-feature-set clustering approach, i.e. an 

enhanced version of the dry-run SVM binary tree scheme system. The idea is to choose the most 

appropriate feature sets on each step of classification. The hierarchical structure of the final system 

is constructed based on the confusion matrices obtained from initial experiments. The system is 

described in details in Subsection 4.3.  

As feature sets, various perceptual and conventional spectral representations of the signal were 

used. The experiments in the dry-run evaluations explained above showed that SVM obtained better 

results with two additional statistical parameters – autocorrelation and entropy. Thus, instead of only 

mean and standard deviation, both the mean, standard deviation, autocorrelation coefficient at the 

second lag, and entropy were calculated from the whole event. 

6.3.4 Results and discussion  

The results of the evaluations were presented at the HSCMA’05 workshop in March 2005 

[MMT+05] and are shown in Table 6.3.4. As it can be seen from Table 6.3.4 the proposed confu-

sion-matrix-based SVM clustering approach improves the results obtained with the SVM binary tree 

on the dry-run evaluation database. Additionally, Table 6.3.4 shows the baseline error rate calcu-

lated as if the system always guesses the most frequent class i.e. “speech” in case of semantic set 

and “continuous tone” in case of acoustic set. The obtained results are clearly better than the base-

line.  

The AEC evaluation 2005 was unfortunately suffering from problems of corpus. Transcription 

mistakes were still quite frequent; hence, the labels were not as reliable as they could have been. 

Further, the corpus was extremely unbalanced; a large majority of the segments were made up of 

speech. Many interesting classes had only a few examples in the training or test sets, and hence were 

not well-modelled by our systems.  

Table 6.3.4. Results of the AEC evaluations 2005 

Dry-run database 2005 year database 
Dry-run systems 2005 year SVM system 

 

GMM SVM 
2005 year  

SVM system Acoustic set Semantic set 
Error rate 52.6% 44.9% 37.1% 22.11% 18.51% 
Baseline 
Error rate 52.2% 29.3% 29.4% 
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6.3.5 Conclusions 

The 2005 CHIL evaluation of acoustic event classification has been carried out and described in this 

section. The set of meeting room acoustic events has been defined. Along with a semantic AEC, an 

acoustic AEC task has been proposed and performed. An appropriate mapping between the semantic 

set and the acoustic set of acoustic events has been established. The developed SVM-based variable-

feature-set clustering scheme presented in Subsection 4.3.5.2 has been applied to the AEC task. The 

results of the 2004 AEC evaluations have been improved and comparative results for the new 

database of 2005 have been obtained. For the future, it was decided to limit to a group of events 

relevant to actual CHIL services. For the purpose of measuring the performance of AEC, the largely 

prevailing “speech” class was proposed to be eliminated from scoring. Besides, we planned to move 

from classification to detection of a limited number of transcribable acoustic events like doors, 

applause, laughing, etc. In order to have a sufficient number of non-speech acoustic events, intro-

ducing the scenario of the recordings is crucial. 
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6.4 Classification of Events, Activities and Relationships – CLEAR'06 
Evaluation and Workshop 

6.4.1 Introduction 

The spring 2006 CLEAR evaluation and workshop was an international effort to evaluate systems 

that are designed to analyze people, their identities, activities, interactions and relationships in 

human-human interaction scenarios, as well as related scenarios. CLEAR was meant to bring 

together projects and researchers working on related technologies in order to establish a common 

international evaluation campaign in this field. The CLEAR 2006 evaluation was supported by the 

European Integrated project CHIL, the US ARDA VACE program, and the NIST.  

The tasks to be addressed in CLEAR 2006 were the following: Person Tracking (2D and 3D, 

audio-only, video-only, and multimodal), Face Tracking, Head Pose Estimation (2D, 3D), Person 

Identification (audio-only, video-only, and multimodal), Acoustic Event Detection and Classifica-

tion (AED/C). These tasks were conducted on various multimodal data sets collected in lecture and 

meetings domains, as well as on broadcast news data.  

The results of the evaluations were presented during the CLEAR 2006 evaluation workshop 

held on April 6-7, in Southampton, UK. The CLEAR 2006 post-workshop proceedings are available 

under the Springer LNCS book series: LNCS 4122: Multimodal Technologies for Perception of 

Humans.  

In this section, we present the results of the AED/C CLEAR evaluations carried out by three 

participants UPC, CMU and Instituto Trentino di Cultura (ITC). The primary evaluation task was 

AED of the testing portions of the two isolated sound databases (from ITC and UPC) and 4 UPC’s 

seminar recordings produced in CHIL. Additionally, a secondary AEC evaluation task was designed 

using only the isolated sound databases and it is also included in this report. All the participants 

agreed the set of acoustic classes a priori before recording the databases. A common metrics was 

also developed at the UPC and agreed with the other partners. ELDA was in charge of the scoring 

task. 

The section is organized as follows: Subsection 6.4.2 gives the experimental setup. Specifically, 

the databases used in the evaluations are described in Subsection 6.4.2.1, while the evaluation 

scenario and metrics are given in Subsection 6.4.2.2 and 6.4.2.3, respectively. Subsection 6.4.3 

reviews the systems used by each of the AED/C evaluation participants. The results obtained by the 

detection and classification systems in the CLEAR evaluations are shown and discussed in Subsec-

tion 6.4.4. Conclusions are presented in Subsection 6.4.5.  
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6.4.2 Evaluation setup 

6.4.2.1 Databases 

The conducted experiments were carried out on 2 different kinds of databases, namely: 2 databases 

of isolated acoustic events recorded at the UPC and ITC, and 5 interactive seminars recorded at the 

UPC.  

The two former databases contain a set of isolated acoustic events that occur in a meeting room 

environment and were recorded specially for the CHIL AED/C task. The recorded sounds do not 

have temporal overlapping and no interfering noises were present in the room.  

The UPC database of isolated acoustic events (see Appendix A for the detailed description) was 

recorded using 84 microphones, namely, Mark III (array of 64 microphones), three T-shape clusters 

(4 mics per cluster), 4 tabletop directional, and 4 omni-directional microphones. The database 

consists of 13 semantic classes plus “unknown”. Approximately 60 sounds per each of the sound 

classes were recorded as shown in Table 6.4.1. Ten people participated in recordings: 5 men and 5 

women. There are 3 sessions per each participant. At each session, the participant took a different 

place in the room out of 7 fixed different positions.  

The ITC database of isolated acoustic events [ZO05] was recorded with 32 microphones. They 

were mounted in 7 T-shaped arrays (composed by 4 microphones each one) plus there were 4 table 

microphones. The database contains 16 semantic classes of events. Approximately 50 sounds per 

almost each of the sound classes were recorded as shown in Table 6.4.1. 9 people participated at the 

recordings. For each experiment 4 positions in the room were located. People swapped their posi-

tions after every session. During each session every person reproduced a complete set of acoustic 

events.  

Additionally, the AED techniques were applied to the database of the interactive seminars 

[CS04] recorded at the UPC. 5 interactive seminars have been collected. The difference with two 

previous databases of isolated acoustic events is that seminars consist of real environment events 

that may have temporal overlapping with speech and/or other acoustic events. Each seminar consists 

of a presentation of 10-20 minutes to a group of 3-5 attendees in a meeting room. During and after 

the presentation there are questions from the attendees with answers from the presenter. There is 

also activity in terms of people entering/leaving the room, opening and closing the door, standing up 

and going to the screen, some discussion among the attendees, coffee breaks, etc. The databases was 

recorded using 88 different sensors that include 3 4-microphoned T-shaped arrays, 1 64-microphone 
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Mark III array, 4 omni-directional table-top microphones, 4 directional table-top microphones, and 4 

close-talk microphones. The number of events of one of the seminars is summarized in Table 6.4.1.  

6.4.2.2 Evaluation scenario 

The AED/C evaluation is done on 12 semantic classes that are defined as:  

•  Knock (door, table)  [kn]  

•  Door slam   [ds] 

•  Steps    [st] 

•  Chair moving   [cm] 

•  Spoon (cup jingle)  [cl] 

•  Paper wrapping  [pw] 

•  Key jingle   [kj] 

•  Keyboard typing  [kt] 

•  Phone ringing/Music  [pr] 

•  Applause    [ap] 

Table 6.4.1. Number of events for the UPC and ITC databases of isolated 
acoustic events, and the UPC interactive seminar 

Number of events 
Event type UPC-

isolated 
ITC-

isolated 
UPC-

seminar 
Door knock 50 47 4 
Door open 60 49 7 
Door slam 61 51 7 
Steps 73 50 43 
Chair moving 76 47 26 
Spoon/cup jingle 64 48 15 
Paper work 84 48 21 
Key jingle 65 48 2 
Keyboard typing 66 48 14 
Phone ring 116 89 6 
Applause 60 12 2 
Cough 65 48 5 
Laugh 64 48 8 
Unknown 126  12 
Mimo pen buzz  48  
Falling object  48  
Phone vibration  13  
Speech   169 
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•  Cough    [co] 

•  Laugh    [la] 

Also there are two other possible events that are present but are not evaluated 

•  Speech    [sp]  

•  Unknown    [un] 

Actually, the databases of isolated acoustic events contain more semantic classes than the above-

proposed list as shown in Table 6.4.1. For that reason, the classes that are out of the scope of the 

current AED/C evaluation were marked as “unknown”.  

Two main series of experiments are performed: AED and AEC. AED was done in both isolated 

and real environment conditions. For the task of AEC and isolated AED the databases of isolated 

acoustic events were split into training and testing parts, namely, for the UPC database sessions 1 

and 2 were used for training and session 3 for testing; for the ITC database sessions 1-3 were used 

for training and session 4 for testing. For the task of AED in real environment all databases of 

isolated acoustic events and one of five seminars were allowed to use for training and developing, 

while for testing a 5-minute extract from each of the remaining 4 seminars was proposed forming in 

total 4 five-minute segments. The selection of extracted parts was done by ELDA.  

The primary evaluation task was defined as AED evaluated on both the isolated databases and 

the seminars.  

6.4.2.3 Metric 

As it was mentioned above, the acoustic events that happen in real environment may have temporal 

overlapping. The appropriate metric was developed to score the system outputs. It consists of two 

steps: projecting all levels of overlapping events into a single-level reference transcription and 

comparing a hypothesized transcription with the single level reference transcription.  

For instance, let’s suppose we have a reference that contain overlapping of level 2 and can be 

represented as shown in Figure 6.4.1 and  

REF_1: _la_kt_ 

REF_2:  _co_ds_cl_la_ 

where REF_1 and REF_2 model two overlapping acoustic event sequences. Then we can form the 

single-level reference transcription and a list of events to detect as shown in Table 6.4.2.  
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Following definitions are needed to compute the metric:  

An event is correctly detected when the hypothesized temporal centre is situated in the appro-

priate single-level reference interval and the hypothesized label is a constituent or a full name of this 

interval single-level reference label. After an event is claimed to be correctly detected, it is marked 

as detected in the list of events to detect. 

Empty intervals are the reference intervals that contain speech, silence or events belonging to 

the “unknown” class.  

Figure 6.4.1. From reference transcription with overlapping of level 2 to refer-
ence single-level transcription 

Table 6.4.2. Obtained single-level reference transcription and a list of events to 
detect 

Single-level reference  
transcription 

  1           2  3   4   5    6               7         8         9   

REF_1 

REF 2 

 

Single-level reference 
transcription 
1 – co1 
2 – la1 
3 – la1_ds1 
4 – la1 
5 – la1_cl1 
6 – cl1 
7 – la2 
8 – kt1_la2 
9 – la2 

List of events to detect: 
1 – cough1 
2 – laugh1 
3 – ds1 
4 – spoon1 
5 – laugh2 
6 – keyboard1 
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A substitution error occurs when the temporal centre of the hypothesized event is situated in 

the appropriate single-level reference interval and the label of the hypothesized event is not constitu-

ent or the full name of the label of that single-level reference interval. 

An insertion error occurs when the temporal centre of the hypothesised event is not situated in 

any of the single-level reference intervals (i.e. are situated in empty intervals) 

A deletion error occurs when there is an event in the list of events to detect that is not marked 

as detected. 

Finally, Acoustic Event Error Rate (AEER) is computed as  

AEER= (D+I+S)/N * 100 

where N is the number of events to detect, D – deletions, I – insertions, and S – substitutions.  

6.4.3 Acoustic event detection and classification systems 

The system of AED and AEC are explained in Subsection 5.2.1. Briefly, for classification, a vector 

of statistical parameters that include mean, standard deviation, autocorrelation and entropy is 

calculated from the frame-level acoustic features of the whole event, and fed to the SVM-based 

event classifier (system UPC-C). For detection, a vector of statistical parameters is calculated from a 

sliding window and then fed to an SVM-based silence/non-silence classifier to perform the segmen-

tation step. The silence/non-silence classifier is trained on silence and non-silence segments of the 

two isolated acoustic events databases. At the output, a binary sequence of decisions is obtained. 

After a post-processing of the sequence the SVM-based event classifier, which is trained on the 

events taken from both two isolated acoustic event databases and development seminars, is applied 

to each detected non-silence segment. After smoothing a final decision is made (system UPC-D).  

6.4.4 Results and discussion 

Table 6.4.3 shows classification error rates obtained using the classification system described above. 

The UPC system used one set of models for the both testing databases. In fact, the SVM-based 

system obtained best error rate among all the participants despite the fact that database-specific 

systems were not used for SVM.  

In the detection task we took and approach of first performing segmentation and then classifica-

tion. Table 6.4.3 shows detection error rates for the two isolated event databases and the interactive 

seminar database. Although our system achieved the best results among all submitted systems in 

classification, in detection the results are much worse. If we add up the results obtained for the 

detection task for both isolated and seminar conditions the error rate of 69.6% is calculated. Al-
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though there might be a number of reasons to explain the bad performance of the AED-D system we 

conjecture that the initial segmentation step is the main cause of the lower overall detection per-

formance. Further investigation is needed in the direction of the approach to see whether it can 

outperform the well-established scheme that is used in ASR. Besides, it can be seen from the Table 

6.4.3, the error rates increase significantly for the UPC seminar database, although being the lowest 

among all submitted systems. One of possible reasons of such a bad performance is that it is difficult 

to detect low-energy acoustic classes that overlap with speech, such as e.g. “chair moving”, “steps”, 

“keyboard typing”, and “paper work”. Actually, these classes cover the majority of the events in the 

UPC seminars and probably they are the cause of the bad results we obtained in the seminar task. A 

usage of multiple microphones might be helpful in this case. 

6.4.5 Conclusions 

The presented work has focused on the CLEAR evaluation tasks concerning the detection and 

classification of acoustic events that may happen in a lecture/meeting room environment. In this 

context, we have evaluated two different tasks, acoustic event classification and acoustic event 

detection, AED being the primary objective of the evaluation. Two kinds of databases have been 

used: two databases of isolated acoustic events and a database of interactive seminars containing a 

significant number of acoustic events of interest. 

Preliminary detection and classification systems have been presented. Our system is based on 

the SVM discriminative approach and uses FF features and four kinds of perceptual features. In the 

classification task, the UPC SVM-based system showed the best performance over all participants. 

In the detection task, first performing segmentation and then classification showed worse perform-

ance than merging the segmentation and classification in one step as performed by the Viterbi search 

in the state-of-the-art ASR systems. 

 

Table 6.4.3. Error rate (in %) for acoustic event classification 
and detection tasks 

Systems
Databases UPC-C UPC-D 

ITC isolated DB 4.1 64.6 
UPC isolated DB 5.8 58.9 
UPC seminars DB  97.1 
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6.5 Classification of Events, Activities and Relationships – CLEAR'07 
Evaluation and Workshop 

6.5.1 Introduction  

After the AED evaluation within the CLEAR evaluation campaign 2006, explained in the previous 

section, organized by the CHIL project, several modifications have been introduced into the task for 

the CLEAR evaluation campaign 2007. The old metric has been substituted by two new metrics: 

Accuracy and Error Rate, which are based, respectively, on precision/recall and on a temporal 

measure of detection error. Additionally, AED is performed only in seminar conditions, where the 

AEs are often overlapped with speech and/or other AEs. The definition of the classes of AEs is kept.  

Six participants submitted their systems for CLEAR 2007, namely: Athens Information Tech-

nology (AIT), Institute for Infocomm Research (IIR), Foundation Bruno Kessler (IRST), Tampere 

University of Technology (TUT), University of Illinois (UIUC), Technical University of Catalonia 

(UPC).  

The results of the evaluations were presented during the CLEAR 2007 evaluation workshop 

held on May 9-10, in Baltimore, USA. The CLEAR 2007 post-workshop proceedings will soon be 

available under the Springer LNCS book series: Multimodal Technologies for Perception of Hu-

mans.  

In this section, after presenting the current evaluation setup and, in particular, the two new met-

rics used in this evaluation, we describe the AED system developed at the UPC and submitted to the 

CLEAR evaluations carried out in March 2007 along with its results.  

The section is organized as follows. In Subsection 6.5.2 the evaluation setup is presented. Spe-

cifically, the definition of the task is given in Subsection 6.5.2.1. Subsection 6.5.2.2 describes the 

databases assigned to development and testing. Metrics are given in Subsection 6.5.2.3, and Subsec-

tion 6.5.2.4 states the main evaluation conditions. The short overview of the proposed system is 

given in Subsection 6.5.3. The results obtained by the detection system in the CLEAR evaluations 

are shown and discussed in Subsection 6.5.4. Conclusions are presented in Subsection 0. 

6.5.2 Evaluation setup 

6.5.2.1 Acoustic event classes 

The AED evaluation use the same 12 semantic classes, i.e. types of AEs, used in the past evaluations 

CLEAR 2006. The semantic classes with the corresponding annotation label are shown in black in 
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the first column of Table 6.5.1. Apart from the 12 evaluated classes, there are 3 other possible events 

shown in grey in Table 6.5.1 which are not evaluated. 

6.5.2.2 Databases 

The database used in the CLEAR evaluation campaign 2007 consists of 25 interactive seminars of 

approximately 30 min long each that have been recorded by AIT, ITC, IBM, UKA, and UPC in their 

smart-rooms.  

Five interactive seminars (one from each site) were assigned for system development. Along 

with the seminar recordings, the databases of isolated AEs recorded at UPC (Appendix A) and ITC 

[ZO05] have been used for development.  

The development database details in terms of the number of occurrences per AE class are 

shown in Table 6.5.1. In total, development data consists of 7495 seconds, where 16% of total time 

is AEs, 13% is silence, and 81% is “Speech” and “Unknown” classes.  

The remaining interactive seminars have been conditionally decomposed into 5 types of acous-

tic scenes: “beginning”, “meeting”, “coffee break”, “question/answers”, and “end”. After observing 

the “richness” of each acoustic scene type in terms of AEs, 20 5-minute segments have been ex-

tracted by ELDA maximizing the AE time and number of occurrences per AE class. The details of 

Table 6.5.1. Number of occurrences per acoustic event class for the development 
and test data 

Number of Occurrences 
Development Test Event Type  

UPC iso ITC iso Seminars Seminars 
Door knock [kn] 50 47 82 153 

Door open/slam [ds] 120 100 73 76 
Steps [st] 73 50 72 498 

Chair moving [cm] 76 47 238 226 
Spoon/cup jingle [cl] 64 48 28 28 

Paper work [pw] 84 48 130 88 
Key jingle [kj] 65 48 22 32 

Keyboard typing [kt] 66 48 72 105 
Phone ring [pr] 116 89 21 25 
Applause [ap] 60 12 8 13 

Cough [co] 65 48 54 36 
Laugh [la] 64 48 37 154 

Unknown [un] 126 - 301 559 
Speech [sp]  - 1224 1239 
Silence  Not annotated explicitly  
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the testing database are given in Table 6.5.1. In total, the test data consist of 6001 seconds, where 

36% are AE time, 11% are silence, and 78% are “Speech” and “Unknown” classes. Noticeably, 

during about 64% of time, the AEs are overlapped with “Speech” and during 3% they are over-

lapped with other AEs. In terms of AE occurrences, more than 65% of the existing 1434 AEs are 

partially or completely overlapped with “Speech” and/or other AEs 

6.5.2.3 Metrics 

Two metrics have been developed at the UPC, with the agreement of the other participating partners 

which are involved in CHIL: an F-score measure of detection accuracy (which combines recall and 

precision), and an error rate measure that focuses more on the accuracy of the endpoints of each 

detected AE. They have been used separately in the evaluations, and will be called, respectively, 

AED-ACC and AED-ER. 

AED-ACC  

The aim of this metric is to score detection of all instances of what is considered as a relevant AE. 

With this metric it is not important to reach a good temporal coincidence of the reference and system 

output timestamps of the AEs but to detect their instances. It is oriented to applications like real-time 

services for smart-rooms, audio-based surveillance, etc. AED-ACC is defined as the F-score (the 

harmonic mean between precision and recall):  

RecallPrecision*
Recall*PrecisionACCAED

+
+=− 2

2 *)1(
β

β , 

where  

AEsoutputsystemallofnumber
AEsoutputsystemcorrectofnumberPrecision =

 

AEsreferenceallofnumber
AEsreferenceecteddetcorrectlyofnumbercallRe =

 
and β is a weighting factor that balances precision and recall. In this evaluation the factor β has been 

set to 1. A system output AE is considered correct or correctly produced either if there exist at least 

one reference AE whose temporal centre is situated between the timestamps of the system output 

AE and the labels of the system output AE and the reference AE are the same, or if the temporal 

centre of the system output AE lies between the timestamps of at least one reference AE and the 

labels of the system output AE and the reference AE are the same. A reference AE is considered 

correctly detected either if there exist at least one system output AE whose temporal centre is 
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situated between the timestamps of the reference AE and the labels of the system output AE and the 

reference AE are the same, or if the temporal centre of the reference AE lies between the timestamps 

of at least one system output AE and the labels of the system output AE and the reference AE are 

the same. 

AED-ER 

For some applications it is necessary to have a good temporal resolution of the detected AEs. The 

aim of this metric is to score AED as a task of general audio segmentation. Possible applications can 

be content-based audio indexing/retrieval, meeting stage detection, etc.  

In order to define AED-ER, the NIST metric for speaker diarization [Spr06] has been adapted to 

the task of AED. The audio data is divided into adjacent segments, whose borders coincide with the 

points whether either a reference AE or a system output AE starts or stops, so that, along a given 

segment, the number of reference AEs and the number of system output AEs do not change.  

The AED-ER score is computed as the fraction of time, including regions of overlapping, in 

which a system output AE is not attributed correctly to a reference AE, in the following way: 

( ) ( ) ( )( ){ }

( ) ( ){ }∑

∑ −

=−

seg
all

REF

seg
all

correctSYSREF

segNsegdur

segNNNsegdur

ERAED
*
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where, for each segment seg:  

dur(seg):  duration of seg 

NREF (seg): number of reference AEs in seg 

NSYS (seg): number of system output AEs in seg 

Ncorrect (seg): number of reference AEs in seg which correspond to system output AEs in seg 

Notice that an overlapping region may contribute with several errors. Also, “Silence” is not ex-

plicitly transcribed, but is counted in the context of this metric as an AE.  

The numerator of the AED-ER expression includes the substitution time, that corresponds to the 

wrong AE detection, the deletion time (missed AEs), and the insertion time (AE false alarms).  

Only the 12 above-mentioned evaluated classes can cause errors. For example, if the reference 

label is “Speech” and the system output is “Unknown”, there is no error; however if the system 

output is one of the 12 classes, it will be counted as an error (insertion). Similarly, if the reference is 

one of the 12 classes and the system output is “Speech”, it will be also counted as an error (dele-

tion). 
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6.5.2.4 Evaluation scenario 

In order to have systems comparable across sites, a set of evaluation conditions were defined:  

- The evaluated system must be applied to the whole CLEAR 2007 test DB.  

- Only primary systems are submitted to compete.  

- The evaluated systems must use only audio signals, though they can use any number of micro-

phones.  

6.5.3 Acoustic event detection system 

The system of AED is described in Subsection 5.2.2. In a nutshell, on the data pre-processing step, 

the signals are normalized based on the histograms of the signal energy. Then, a set of frame-level 

features is extracted from each frame of 30ms and a set of statistical parameters is computed over 

the frames in a 1-second window. The resulting vectors of statistical parameters are fed to the SVM 

classifier associated to the specific microphone. A single-microphone post-processing is applied to 

eliminate uncertain decisions. At the end, the results of 4 microphones are fused to obtain a final 

decision.  

6.5.4 Results and discussion 

The results obtained with the primary system submitted to the evaluation are shown in Table 6.5.2. 

Along with the main metrics, accuracy and error rate, the intermediate values are also given. They 

are precision and recall for accuracy, and DEL (deletions), INS (insertions), and SUB (substitutions) 

for error rate. A contrast system has been also submitted, showing little worse results than the 

primary system: ACC=23, ER=141.57. The difference between the primary and contrast system is 

that for multi-microphone fusion the former uses voting among the “winners” of the one-

microphone systems while the contrast system performs voting adding up the confidences of the 

“winners” calculated as the number of times the “winner” is found in the 4-decision window. 

Table 6.5.3 shows the results of each one-microphone SVM system before applying the voting 

decision. Actually, the final results of the multi-microphone system shown in Table 6.5.2 are worse 

that the results of the one-microphone SVM system obtained on the 3rd microphones of MarkIII 

array (Mic4). This fact may indicate that simple fusion methods, i.e. voting, do not work properly 

when the scores of the various systems differ significantly.  

The individual class accuracies are shown in Table 6.5.4. Interestingly enough, we have ob-

served that the low accuracy and high error rate are mostly attributable to the bad recognition of the 

class “steps”, which occurs more than 40% of all AE time.  



6.5. Classification of Events, Activities and Relationships – CLEAR'07 Evaluation and Workshop 
 

114

Besides, more than 76% of all error time occurs in the segments where AEs are overlapped with 

speech and/or other AEs. If the overlapped segments were not scored, the error rate of the primary 

submitted system would be 32.33%.  

 

6.5.5 Conclusions 

The presented work focuses on the CLEAR evaluation task concerning the detection of acoustic 

events that may happen in a lecture/meeting room environment. The evaluation has been performed 

on the database of interactive seminars that have been recorded in different smart-rooms and contain 

a significant number of acoustic events of interest. Two different metrics have been proposed and 

implemented. One is based on the precision and recall of the detection of the AEs as semantic 

instances, and the other is based on a more time-based error. Although the proposed system, which 

was the only submission not using HMM, ranked the second among 6 participants, there is still a big 

room for improvement.  

 

Table 6.5.2. Official results obtained by the submitted AED primary system 

Accuracy (%) 
(Precision / Recall ) 

Error Rate (%) 
(DEL/INS/SUB) 

23.0 
(19 / 29) 

136.69 
(50.3 / 57.1 / 29.3) 

 

Table 6.5.3. The results obtained with each one-microphone SVM system before 
applying voting 

 Mic1 Mic2 Mic3 Mic4 
Accuracy (%) 

(Precision / Recall ) 
20.5 

(17/27) 
22.6 

(19/28) 
19.9 

(15/29) 
26.8 

(34/22) 
Error Rate (%) 

(DEL/INS/SUB) 
145 

(51/64/30) 
136 

(54/55/27) 
155 

(46/74/34)
98 

(69/13/16) 
 

Table 6.5.4. Accuracy scores for each class obtained with the primary 
system 

ap = 0.81 cl = 0.29 cm = 0.22 co = 0.19 
ds = 0.42 kj = 0.18 kn = 0.05 kt = 0.08 
la = 0.38 pr = 0.28 pw = 0.12 st = 0.16 
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6.6 Chapter Summary 

The results of the systems developed for acoustic event classification and acoustic event detection 

international evaluation campaigns have been presented in this chapter. The evaluation setups that 

include the evaluation databases, metrics and evaluation rules have been also reviewed.  

The first CHIL evaluations on the recent discipline of AEC have been carried out in 2004. The se-

mantic set of meeting room acoustic events was defined based on the number of acoustic event 

instances and the metric was agreed. Initial systems for the task were developed and compared among 

the participants.  

In the next evaluation in 2005 both a semantic AEC and an acoustic AEC tasks were proposed and 

performed. An appropriate mapping between the semantic set and the acoustic set of acoustic events 

was established. The previously developed SVM-based variable-feature-set clustering scheme was 

applied to the AEC task. The results of the 2004 AEC evaluations were improved and comparative 

results for the new database of 2005 were obtained. 

The CLEAR evaluation tasks in 2006 concerned the detection and classification of acoustic events 

that may happen in a lecture/meeting room environment. In this context, two different tasks were 

evaluated, AEC and AED, AED being the primary objective of the evaluation. Two kinds of databases 

were used: two databases of isolated acoustic events and a database of interactive seminars containing a 

significant number of acoustic events of interest. A preliminary detection system and its results were 

presented.  

The CLEAR evaluations 2007 were performed on the database of interactive seminars. Two dif-

ferent metrics were proposed and implemented. The proposed SVM-based system ranked among the 

best being the only submission not using HMMs. However the results indicate there is still a big room 

for improvement. 
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Chapter 7. Speech Activity Detection 

7.1 Chapter Overview 

Speech Activity Detection (SAD) is a key objective in speech-related technologies. Although speech 

usually is the most informative acoustic event, other kind of sounds may also carry useful information. 

Detection of speech may be seen as a subtask of the general sound detection task. And, conversely, a 

set of acoustic events may be considered as a refinement of the non-speech class in SAD. In this 

chapter, work done on SAD is described.  

An enhanced version of the training stage of a SAD system based on the SVM classifier is pre-

sented in Section 7.2, and its performance is tested with the Rich Transcription 2005 (RT05) and RT06 

evaluation tasks. A fast algorithm of data reduction based on proximal SVM is developed and, further-

more, the specific characteristics of the metric used in the US National Institute of Standards and 

Technology (NIST) SAD evaluations are taken into account during training. 

In Section 7.3, we summarize the systems developed in our lab in last years and the results ob-

tained with them in the previous NIST RT SAD evaluations, and also present the SAD results that have 

been obtained for the last RT-07 evaluation with the developed SVM-based system within the Speaker 

Diarization task performed on conference meetings. 
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7.2 Enhanced SVM Training For Robust Speech Activity Detection 

7.2.1 Introduction 

In smart-room environments, the availability of a robust SAD system is a basic requirement. Detect-

ing the presence of speech is a key objective in speech-related technologies. In fact, the use of SAD 

usually allows an increase of recognition rate in automatic speech or speaker recognition, and it is 

also required in both speech/speaker recognition and speech coding to save computational resources 

(and batteries) in the devices where the processing of non-speech events is not needed.  

In the previous work done at our lab [PMN05], a SAD algorithm was developed and compared 

with other reported techniques using a subset of the SPEECON database. The SAD system was 

based on a decision tree classifier and FFBE. That system was posteriorly improved by adding two 

additional features (measures of energy dynamics at low and high frequencies) [MNT06], and by 

developing two alternative classifiers based, respectively, on GMM [MNT06] and SVM [SS02]. 

Here only the SVM-based SAD system will be described. 

A set of several hundred of thousand of examples is a usual amount of data for classical audio 

and speech processing techniques that involve GMM. However, it is an enormous number of feature 

vectors to be used for a usual SVM training process and hardly makes such training feasible in 

practice. A number of methods of dataset reduction for SVM have been recently proposed. In 

[LZL03], a speech / non-speech classification with SVM has been done by changing from frame-

based to segment-based decisions and computing mean and deviation of all feature vectors inside 

the chosen segment. The proposed method, however, results in a temporal resolution decrease of the 

SAD system and thus is better suited to audio indexing (for what it was actually designed) than to 

SAD. In [RYG+06], SVMs have been also applied to the SAD problem using a training set that 

consists of an arbitrarily chosen small portion of the whole database (12 utterances out of 4914). In 

[ZJZ+06], a method based on regression trees has been proposed to reduce the available dataset for 

audio classification, and a cross-training method has been exploited in [BBW04]. Unfortunately, 

none the above mentioned methods is suitable for our SAD task, either because they show a small 

ratio of data reduction or they have been applied to relatively small datasets on which it was possible 

to train a classical SVM. Active learning literature [TK01] propose several alternatives to deal with 

moderately large databases, however they involve continuous retraining that with accurate sub-

sampling strategy and large initial dataset becomes computationally very expensive. 
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In this work, the usual training algorithm of the SVM classifier has been enhanced in order to 

cope with that problem of dataset reduction, proposing a fast algorithm based on Proximal SVM 

(PSVM) [FM01]. Besides that, the SVM learning process has been adjusted in order to take into 

account the specific characteristics of the metric used in the NIST RT evaluations. The resulting 

SVM SAD system has been tested with the RT06 data, and it has shown better scores than the 

GMM-based system which, submitted by the authors, ranked among the best systems in the RT06 

evaluation. 

The whole chapter is organized as follows. The databases are described in Subsection 7.2.2. The 

features used by the SAD system are explained in Subsection 0. Subsection 7.2.4 gives the metrics, 

and Subsection 7.2.5 provides with the detailed description of the developed system. The experi-

mental results and discussion are proposed in Subsection 7.2.6. Finally, Subsection 7.2.7 concludes 

the work.  

7.2.2 Databases 

Several databases have been used in this work. A subset of the Spanish SPEECON database, already 

used in [PMN05] [MNT06], was used for classifier training. The single distant microphone evalua-

tion database from the RT05 “conference room” meeting task was used for development in the first 

stage and for training in the second one. It contains 10 extracts from 10 English language meetings 

recorded at 5 different sites. Each extract is about 12 minutes long. The proportion of speech / non-

speech is highly unbalanced: approximately 90% of the whole signal is speech. 

For testing, we have used the RT06 dataset that consists of two kinds of data, conference meet-

ings (“confmtg”) and lecture meetings (“lectmtg”). The “confmtg” dataset is similar to the 

previously described RT05 data. The “lectmtg” data were collected from lectures and interactive 

seminars across the smart-rooms of different CHIL (Computers in the Human Interaction Loop) 

project partners. 

SPEECON and the RT data are similar in the sense that they are recorded in closed environ-

ments using far-field microphones, thus the recordings have a relatively low SNR due to 

reverberation and environmental noise. However, there are some differences that should be men-

tioned: different speech and non-speech proportion and also the fact that the main attention of a 

speaker in SPEECON was the recording itself, while in the RT databases the recording was secon-

dary. As a consequence, the RT databases are more spontaneous, speakers speak not necessarily 

heading the microphone, and the data contain overlapped speech. Other features of the databases 

used in the work are presented in Table 7.2.1.  
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7.2.3 Features 

The same feature set from [MNT06] was used. The first part of it extracts information about the 

spectral shape of the acoustic signal in a frame. It is based on Linear Discriminant Analysis (LDA) 

of FF parameters [PMN05]. The size of the FF representation (16FF+16∆FF+16∆∆FF+∆E=49) is 

reduced to a single scalar measure by applying LDA. The second part of the feature set focuses more 

on the dynamics of the signal along the time observing low- and high-frequency spectral compo-

nents [MNT06].  

The contextual information is involved in several ways. First, before applying the LDA trans-

form, the current delta and delta-delta features involve an interval of 50 and 70 ms, respectively, in 

their calculation. Next, for the representation of the current frame, eight LDA measures are selected 

from a time window spanning the interval of 310 ms around the current frame. Finally, low and high 

frequency dynamics involve a smoothed derivative calculation that uses 130 ms interval.  

The first and the second part of the feature set form a vector of 10 components. Additionally, 

for RT06 evaluation task, a cross-frequency energy dynamic feature, which is obtained as a combi-

nation of low and high frequency dynamics and was also introduced in [MNT06], is added to the 

final feature vector.  

7.2.4 Metrics 

As a primary metric we use the one defined for the SAD task in the NIST RT evaluation. It is 

defined as the ratio of the duration of incorrect decisions to the duration of all speech segments in 

reference. We denote this metric as NIST metric in our results.  

Notice that the NIST metric depends strongly on the prior distribution of speech and non-speech 

in the test database. For example, a system that achieves a 5% error rate at speech portions and a 5% 

error rate at non-speech portions, would result in very different NIST error rates for test databases 

with different proportion of speech and non-speech segments; in the case of 90-to-10% ratio of 

Table 7.2.1. SPEECON, RT05 and RT06 databases summary 

Database SPEECON RT05 RT06 
Language Spanish English English 

Type Single 
utterances Conference Conference & 

Lecture 

Microphone 2-3 m in front of 
a speaker On the table On the table 

Signal 16kHz, 16b 16kHz, 16b 16kHz, 16b 
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speech-to-non-speech the NIST error rate is 5.6%, while in the case of 50-to-50% ratio it is 10%. 

Due to this fact we also report three metrics that are used for the CHIL project SAD evaluations: 

Mismatch Rate (MR), Speech Detection Error Rate (SDER), and Non-Speech Detection Error Rate 

(NDER) defined as: 

MR = duration of incorrect decisions / duration of all utterances 

SDER = duration of incorrect decisions at speech segments / duration of speech segments 

NDER = duration of incorrect decisions at non-speech segments / duration of non-speech seg-

ments 

7.2.5 SVM-based speech activity detector 

A set of several hundreds of thousand of feature vectors hardly makes SVM training process feasible 

in practice. Alternative methods should be effectively applied to reduce the amount of data. In 

[MNT06] a hard data reduction was imposed by randomly selecting 20 thousand examples where 

the two classes of interest are equally represented. In this section we propose two modifications of 

the SVM training process that aim to improve SAD performance of the SVM classifier from 

[MNT06]. We use the same pre-processing steps. The training data are firstly normalized anisot-

ropicly to be in the range from –1 to 1, and the obtained normalizing template was then applied also 

to the testing dataset. In all experiments the Gaussian kernel is used. To train the system the 

SVMlight software [SVM] was used.  

7.2.5.1 Dataset reduction by PSVM 

Proximal Support Vector Machine (PSVM) has been recently introduced in [FM01] as a result of the 

substitution of the inequality constraint of a classical SVM yi(wxi+b)≥1 by the equality constraint 

yi(wxi+b)=1, where yi stands for a label of a vector xi, w is the norm of the separating hyperplane H0, 

and b is the scalar bias of the hyperplane H0 .  

This simple modification significantly changes the nature of the optimization problem. Unlike 

conventional SVM, PSVM solves a single square system of linear equations and thus it is very fast 

to train. As a consequence, it turns out that it is possible to obtain an explicit exact solution to the 

optimization problem [FM01].  

Figure 7.2.1 shows a geometrical interpretation of the change. H-1 and H1 planes do not bound 

the negatively- and the positively-labelled data anymore, but can be viewed as “proximal” planes 

around which the points of each class are clustered and between which the separating hyperplane H0 

lies.  
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In the nonlinear case of PSVM (we use a Gaussian kernel) the concept of Support Vectors 

(SVs) (Figure 7.2.1, in grey) disappears as the separating hyperplane depends on all data. In that 

way, all training data must be preserved for the testing stage.  

Our proposed algorithm of dataset reduction consists of the following steps:  

Step 1. Divide all the data into chunks of 1000 samples per chunk. 

Step 2. Train a PSVM on each chunk performing 5-fold cross-validation (CV) to obtain the 

optimal kernel parameter and the C parameter that controls the training error. 

Step 3. Apply an appropriate threshold to select a pre-defined number of chunks with the 

highest CV accuracy  

Step4. Train a classical SVM on the amount of data selected in Step 3.  

The proposed approach is in fact similar to Vector Quantization (VQ) used for dataset reduction 

for SVM in [LCC04]. With Step 2 some kind of clustering is performed, and Step 3 chooses the data 

that corresponds to the most separable clusters. However, unlike VQ, SVs, which are obtained with 

the proposed algorithm in Step 4, are taken from the initial data. Besides, additional homogeneity is 

achieved because the PSVM data clustering is performed in the transformed feature spaces with the 

transformation functions that correspond to the Gaussian kernel and the same kernel type is applied 

to the chosen data in Step 4. Additionally, as it will be shown in the experimental part, the proposed 

algorithm gives flexibility to select an efficient dataset for different levels of difficulty of the tested 

databases.  

Figure 7.2.1. Geometrical interpretation of PSVM 
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Classical 
SVM PSVM 

H1 H-1 H1 
Separating 

 hyperplane H0 
Separating  
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7.2.5.2 Adjustment to NIST metric 

The second modification makes use of the knowledge of the specific NIST metric during the train-

ing phase. As it has been mentioned in Subsection 7.2.4, NIST metrics depends on the prior 

distribution of speech and non-speech in the test database. For this reason, if we want to improve the 

NIST scores we should penalize the errors from the speech class more than those from the non-

speech class. That is possible for a discriminative classifier as SVM in the training stage by intro-

ducing different costs for the two classes. In that way, the separating hyperplane H0 will no longer 

lie exactly in the middle of the H-1 and H1 hyperplanes (Figure 7.2.1). In our case the SVMlight 

coefficient j was fixed to 10. 

For a GMM classifier, however, it is possible to favour one of the classes only in the testing 

stage as it was done in [MNT06]. In that work the final decision was made from the condition 

αp1(x)-(1-α)p2(x) > 0, where α is a balancing factor, p1(x) and p2(x) are the likelihoods calculated 

with non-speech and speech GMMs, respectively. When positive, a non-speech label is assigned. α 

was fixed to 0.4. Although it was not done in this work, it is worth to mention that favouring a class 

in the testing stage could be done for SVM in a similar way through the bias b of the separating 

hyperplane.  

7.2.6 Experiments 

7.2.6.1 RT05 results 

For the RT05 evaluation, the SPEECON database was used for training and development as it was 

done in [MNT06].  

For SVM training we select the same number of data: 20 chunks = 20 thousand samples. Table 

7.2.2 shows results of the RT05 evaluation with the SVM system, modified according to Subsec-

tions 7.2.5.1 and 7.2.5.2, along with the ones obtained with the best SVM and GMM systems in 

[MNT06]. 

From Table 7.2.2 we observe that, as it can be expected after the second modification, the 

NDER score has increased but the SDER score, which has the major influence on the NIST meas-

ure, has strongly decreased. In consequence, after both modifications, the NIST error for the 

modified SVM system decreases from 11.45% to 8.03%, showing comparable results to the best 

GMM system.  
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7.2.6.2 RT06 results 

In [MNT06] for the “confmtg” task and for the GMM classifier both SPEECON and RT05 data-

bases were used for training. For the “lectmtg” task also a small amount of data collected in CHIL 

was added into training of the “lectmtg” system. For the SVM classifier, the dataset reduction 

algorithm was applied to the whole database available for training for RT06 task, namely, 

SPEECON, RT05, and the small amount of CHIL data. Only 10 thousand samples were selected for 

the final SVM training. Table 7.2.3 shows the results obtained with SVM for the RT06 task. 

As it can be seen from Table 7.2.3, the SVM SAD system while performing well for the 

“confmtg” task becomes almost a dummy system (the one that says everything is speech) for the 

“lectmtg” task with a non-speech error rate of 98%. The “lectmtg” part actually is quite different 

from “confmtg” part and due to the spontaneous character of the former it is more difficult for SAD. 

As well as a small amount of CHIL data, which can be considered noisier than the RT05 data, was 

added to the training dataset of the GMM system, we decided to change Step 3 of the algorithm of 

dataset reduction and choose for the “lectmtg” training the lowest CV accuracy instead of choosing 

the highest CV accuracy as it was done for the “confmtg” task.  

Table 7.2.4 shows the error rate of the GMM and SVM systems for the “confmtg” and 

“lectmtg” parts of the database. The values in bold in the GMM part were submitted for the NIST 

evaluations where our GMM SAD system outperformed all other submitted systems in the single 

distant microphone (sdm) condition.  

Table 7.2.2. Error rates obtained for RT05 with the 
modified SVM system 

 NIST 
MR / SDER / NDER 

GMM [MNT06]. 8.47 
7.69 / 4.61 / 38.42 

SVM [MNT06] 11.45 
10.41 / 7.99 / 34.56 

SVM 
modified 

8.03 
7.30 / 2.51 / 55.07 

 

Table 7.2.3. SVM SAD results for two RT06 evaluation tasks  

 “confmtg” “lectmtg” 

SVM 4.88 
(4.6 / 0.8 / 72) 

13.86 
(12.2 / 0.2 / 98)
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The diagonal elements of the SVM part show lower error rates than the diagonal elements of the 

GMM part. That indicates that the proposed algorithm managed to select the appropriate 10000 

samples out of the whole training database available that consists of more than 1.5 million examples.  

From Table 7.2.4 we observe that for the “lectmtg” case the change of Step 3 of the proposed 

algorithm has an intermediate influence. Chunks with the lowest CV accuracy, which contain less 

separable data, are more important for the final classical SVM training in Step 4 for the given 

subtask. 

Notice that the NIST evaluation scenario allows having an independent system for each subtask 

so the comparison conditions for the GMM and for the SVM are the same.  

On the other hand, the off-diagonal elements of the GMM part from the Table 7.2.4 show lower 

error rates than the off-diagonal elements of the SVM part. That can be either an indication that the 

GMM is not so sensitive to the mismatch between the training and testing databases or can be the 

result of the fact that GMM used much larger amount of data for training.  

Actually, the off-diagonal elements are not considered in NIST but here we include them to 

show the behaviour of the GMM and SVM classifiers for the case when the characteristics of the 

training and testing databases do not match. 

Note that, for comparison with GMM, the feature extraction process was left unchanged. Actu-

ally, taking one LDA measure and reducing the dimension of the final feature vectors can be 

beneficial for a generative model classifier as GMM since it means decreasing the difficulty of the 

estimation problem [DHS00] but in this way one of the main advantages of SVM classifiers – to 

make use of a much larger feature set – is not exploited. To check it we made a straightforward 

experiment. Instead of taking 1 LDA measure we decided to preserve 4 LDA measures for each 

Table 7.2.4. Error rates obtained for the RT06 evaluation for the “confmtg” 
and the “lectmtg” parts of the database. The results for matched conditions 

are given in bold. 

NIST 
MR / SDER / NDER  

SVM GMM 
Test

Train confmtg lectmtg confmtg lectmtg 

confmtg 4.88 
(4.6 / 0.8 / 72) 

13.86 
(12.2 / 0.2 / 98)

5.45 
(5.1 / 3.1 / 41.4)

11.71 
(10.3 / 0.1 / 83) 

lectmtg 11.84 
(11.2 / 11 / 14) 

6.16 
(5.4 / 1.4 / 33)

9.54 
(9 / 8.2 / 22.4) 

7.1 
(6.2 / 0.4 / 48) 
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frame, thus multiplying the total number of feature in a vector approximately by 4 (the 3 features 

based on energy dynamics remain the same). We tested it on the “lectmtg” task and observed an 

improvement of the error rate from 6.16% to 4.51% (the best GMM results were 7.1%). In conse-

quence, further work should be done to design the front-end that can better fit the capacity of the 

SVM classifier. 

7.2.7 Conclusions 

The presented work is oriented towards robust SVM-based speech activity detection systems for 

smart-room environments.  

Two modifications of the usual training algorithm of the SVM-based classifier presented in 

[MNT06] have been developed in order to cope with two problems of that classifier in our applica-

tion: the very large amount of training data and the particular characteristics of the NIST metric. 

With those two modifications, the SVM system has reduced the error rate on the RT05 database 

from 11.45% to 8.03%, score comparable to the best GMM score of 8.47%. With the RT06 SAD 

evaluation task, the modified SVM system has achieved an error reduction with respect to the GMM 

system from 5.45% to 4.88% for the “confmtg” task, and from 7.1% to 6.16% for the “lectmtg” task. 

Additionally, the error rate for “lectmtg” task has been further decreased to 4.51% by preserving 4 

LDA measures.  
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7.3 SAD Evaluation in NIST Rich Transcription Evaluations 2006 -2007 

7.3.1 Introduction  

The Rich Transcription 2006-2007 spring meeting recognition evaluation were the fourth and fifth 

NIST sponsored evaluation of speech technologies within the meeting domain. The evaluations are 

related to the CLEAR evaluations since both are concerned with multimodal signals and sensor 

fusion experiments in the meeting domain. 

The RT-06 evaluation included three meeting domain tasks in the evaluation: Speech-To-Text 

(STT), diarization “who spoke when” (SPKR also known as “Speaker Diarization”), and SAD. The 

RT-07 evaluation dropped the task of the SAD however the task of speaker diarization needs SAD 

as a component of the system.  

In Section 7.2 we already presented the results obtained by the proposed SVM-based SAD sys-

tem for the RT-05 and RT-06 SAD evaluations. In this section we summarize the results of the 

previous RT SAD evaluations and also present the SAD results that were obtained for the last RT-07 

evaluation within the speaker diarization task performed on conference meetings [LAT+07].  

7.3.2 SAD systems overview and results on referenced datasets 

In this subsection we present the results of the last SAD systems developed in our lab and tested in 

various RT evaluations conducted in the conference room environment. Table 7.3.1 shows the NIST 

metric error rates obtained by three UPC’s systems on the RT datasets. The system based on the 

Decision Tree (DT) classifier with the basic feature set that consists of the Frequency-Filtering-and-

Linear-Discriminant-Analysis-extracted features (FF-LDA) was developed by J. Padrell et. al. in 

[PMN05] where on Speecon and SpeechDat databases it showed better results in comparison to the 

commercial GSM cell-phone standard SAD system and two SAD systems taken from the ETSI 

Advanced Front-End standard for noisy speech recognition [ETS02]. D. Macho et. al. in [MNT06] 

proposed three new energy dynamics features in addition to the basic FF-LDA feature set and 

substituted the DT classifier by the GMM classifier. The proposed GMM-based system showed 

better performance than DT-based system on RT-05 dataset in the tested sdm condition as it can be 

seen from Table 7.3.1. Besides, the GMM-based SAD system has been submitted to the RT-06 

evaluation and outperformed all other submitted systems in sdm subtask in both the “lectmtg” and 

“confmtg” conditions. The proposed SVM-based SAD system substitutes the GMM classifier by 

SVM and proposes the solutions to the problems that appear when applying SVM to the SAD task. 

As it can be seen from Table 7.3.1, the SVM-based SAD system showed better results than the 
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GMM system on the RT-05 and RT-06 datasets. Additionally, Table 7.3.1 shows the results ob-

tained with the proposed SVM-based system on the RT-07 sdm. The result obtained on a signal 

enhanced by beamforming signals from the multiple distant microphones (mdm) is also presented in 

Table 7.3.1. 

7.3.3 Conclusions 

In this section, the results obtained with the NIST RT evaluation datasets by the SAD systems 

developed in our lab have been shortly overviewed. The comparison has shown that the recently 

developed SVM-based SAD system performed better than both the GMM and the DT-based systems 

on the tested RT datasets. Additionally, the error rates produced with the proposed SVM-based SAD 

system on the last RT-07 evaluation dataset have been presented. 

 

 

Table 7.3.1. NIST error rates obtained for the “confmtg” task with 
the RT 05-07 evaluation databases by the UPC SAD systems. 

 RT-05 
sdm 

RT-06 
sdm 

RT-07 
sdm 

RT-07 
mdm 

SVM 8.03 4.88 7.03 4.72 
GMM 8.47 5.45 - - 

DT 11.54 - - - 
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7.4 Chapter Summary 

An enhanced version of the training stage of the SVM-based SAD system has been presented. It 

consists of a fast algorithm of data reduction and an adjustment to the specific characteristics of the 

metric used in the NIST SAD evaluations has been presented. Tested with the RT06 data, the resulting 

SVM SAD system has shown better scores than the best GMM-based system developed by the authors 

and submitted to the past RT06 evaluation.  

The results obtained on the NIST RT evaluation datasets by the SAD systems developed in last 

years in our lab have been shortly overviewed showing better performance obtained by the developed 

SVM-based SAD system. 
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Chapter 8. UPC’s Smart-Room Activities 

8.1 Chapter Overview 

In this chapter the activities concerning Acoustic Event Detection (AED) in the UPC’s smart-room 

are described.  

The remaining sections are organized as follows. In Section 8.2, a brief description of the Com-

puter in the Human Interaction Loop (CHIL) project is proposed. The smart-room built at UPC in 

the framework of CHIL project is described in Section 8.3. Section 8.4 presents the information 

concerning the recording of the database of isolated acoustic events and the recording of seminars 

that were used in the CLEAR evaluation campaign on AED. Section 8.5 gives basic information on 

the implementation of the AED component in the smart-room. Finally, three different demos devel-

oped in the UPC’s smart-room, in which the implemented AED component has participated, are 

presented in Section 8.6.  
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8.2 CHIL Project 

The project CHIL [CHI] is an Integrated Project (IP 506909) funded by the European Union under 

its 6th framework program. The project started on January 1st, 2004 and has a planned duration of 

three years.  

The CHIL team is a consortium of internationally renowned research labs in Europe and the 

US, who collaborate to bring friendlier and more helpful computing services to society. Rather than 

requiring user attention to operate machines, CHIL services attempt to understand human activities 

and interactions to provide helpful services implicitly and unobtrusively.  

Considerable human attention is expended in operating and attending to computers, and humans 

are forced to spend precious time on fighting technological artefacts, rather than on human interac-

tion and communication. CHIL aims to radically change the way we use computers. Rather than 

expecting a human to attend to technology, CHIL attempts to develop computer assistants that 

attend to human activities, interactions, and intentions. Instead of reacting only to explicit user 

requests, such assistants proactively provide services by observing the implicit human request or 

need, much like a personal butler would. To achieve this goal, machines must understand the human 

context and activities better; they must adapt to and learn from the humans’ interests, activities, 

goals and aspirations. This requires machines to better perceive and understand all the human 

communication signals including speech, facial expressions, attention, emotion, gestures, and many 

more.  

Based on the perception and understanding of human activities and social context, a new type of 

context aware and proactive services can be developed. Within the years of the CHIL project, four 

instantiations of such CHIL services have been implemented:  

•  The connector: This service attempts to connect people at the best time by the best media, 

whenever it is most opportune to connect them. In lieu of leaving streams of voice messages 

and playing phone tag, the Connector tracks and knows its masters’ activities, preoccupa-

tions and their relative social relationships and mediates a proper connection at the right time 

between them.  

•  The memory jog: This is a personal assistant that helps its human user remember and retrieve 

needed facts about the world and people around him/her. By recognizing people, spaces and 

activities around its master, the memory jog can retrieve names and affiliations of other 

members in a group. It provides past records of previous encounters and interactions, and re-

trieves information relevant to the meeting.  
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•  Socially supportive workspaces: This service supports human gathering. It offers meeting 

assistants that track and summarize human interactions in lectures, meetings and office inter-

actions, and provide automatic minutes and create browseable records of past events.  

•  The attention cockpit: This agent tracks the attention of an audience and provides feedback 

to a lecturer or speaker.  

CHIL represents a vision of the future - a new approach to more supportive and less burden-

some computing and communication services. The research consortium includes 15 leading research 

laboratories from 9 countries representing today’s state of the art in multimodal and perceptual user 

interface technologies in European Union and the US. The team sets out to study the technical, 

social and ethical questions that will enable this next generation of computing in a responsible 

manner.  

The CHIL results are disseminated and made available to a wide community of interested par-

ties.  
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8.3 UPC’s Smart-Room 

The UPC has built the smart-room – a room equipped with multiple cameras and microphones – in 

order to investigate the video and audio perception of the computer systems. The main objective is 

to make the computer systems be aware of the activity that is going on in the room and to stop them 

being only the tools from which the humans can only obtain help as a reaction to the very special 

request. If computers know the environment they can interact with us in the same manner we 

interact with each other. The technologies of the perceptual interface have to enable computers help 

us with their information services better do our everyday work.  

The smart-room is an intelligent space designed as a meeting-room with a table in the centre 

and chairs around it. The configuration of the UPC’s smart-room can be found in Appendix A. 

Among others, there are several audio-visual sensors (cameras and microphones), synchronization 

and acquisition equipments, working computers, and a video projector. The smart-room is the 

indispensable installation for the UPC research groups that work on multimodal interfaces. The 

acquired audio-visual signals allow both developing the technologies of audio and video analysis 

and making demos that can offer specific services in the configuration of meeting rooms or teaching 

rooms.  

The UPC’s smart-room forms the part of the CHIL project, described in the previous subsec-

tion, along with other 15 participants, universities, and research groups from Europe and the United 

States.  

The speech-related technologies like speech recognition are the fundamentals of the analysis of 

the human activity in the smart-rooms. At present, robust speech recognition systems are investi-

gated that use a signal from a far-field microphone in order to avoid bothering people wear cables or 

close-talk microphones. On the other hand, the video technologies analyze the presence, localization 

and movements of the peoples, face recognition, gesture detection, postures and attention tracking, 

in order to classify the events, activities, and relationships. The detection technologies, classification 

and recognition based on multiple sensors, like audio and visual localization, person identification 

based on speech and face, activity detection based on acoustics or images, can increase the robust-

ness of existing systems.  

As a practical examples consider a meeting room. Imagine that you come late to the meeting. 

The system of perceptual analysis recognized who spoke and what was when you were absent. 

Then, when you joined the meeting, the system proposed you the summary of what was said during 

the time when you was absent. In order to achieve the objective the system had to: 1) localize the 
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speakers, 2) focus the acoustics of the room to obtain the signal cleaned from noises and interfer-

ences of the far-field microphone, 3) identify the interval when something was said, 4) process the 

signal with a speech recognizer to generate the transcription of what was said, 5) finally, process the 

transcription to generate the summary.  

With respect to the video analysis, the extraction of the data about the position, activity or ges-

tures in the scene allow to obtain high level semantic information like knowing whether the person 

is sitting or standing, if the person makes a voting gesture (a hand picked up), etc. Besides, the 

UPC’s smart-room allows reconstructing the virtual 3D scene from the images of multiple cameras 

that will be described in Subsection 8.6.3. 
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8.4 Recordings of the Databases in the Smart-Room 

To work in real environments acoustic event detection problem has to be faced. For the purposes of 

AED a database of isolated acoustic events has been designed and collected at the UPC, which will 

be publicly disseminated by the European Language Resources Association. This database has been 

used as a training material and as a testing material to evaluate the algorithm performance for 

AED/C as it has been reported in Chapter 6. Along with other databases, it has been used in the 

international CLEAR evaluation campaigns that have taken place in spring 2006 and spring 2007, 

where the AED/C evaluation task has been coordinated by our UPC's group, which has defined the 

AED metrics and developed the corresponding evaluation tools. The details on the database of 

isolated acoustic events are given in Appendix A. Apart from the database of isolated acoustic 

events, UPC contributed to the seminar recordings that were also used as a part of the development 

and testing datasets in the international evaluation campaigns. In order to increase the number of 

acoustic events in the recorded seminars, a list of suggestions was produced and disseminated 

among the partners that contributed to the recorded database. The suggestions include instructions 

on how to introduce acoustic events into the seminars in a natural and unobtrusive way. The details 

of the instructions as well as a trade-off between the naturalness of the seminar recordings and AE 

recordings are discussed in Appendix B.  
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8.5 Acoustic Event Detection Component Implementation 

Our system, which is described in Section 6.5, is written in C++ programming language and is a part 

of the smartAudio++ software package developed at UPC which includes other audio technology 

components (such as speech activity detection, acoustic source localization, and speaker identifica-

tion) for the purpose of real-time activity detection and observation in the smart-room environment. 

The software architecture chosen in the UPC’s smart-room is based on NIST smartflow system 

[NIS] and KSC socket messaging system. The lower level of the software architecture consists of 

the video and audio sensors. The signal capture software is implemented as smartflow clients in the 

computers with the corresponding acquisition hardware. The resulting data streams are transferred 

as smartflow flows into other computers that can either pre-process the data streams or directly 

analyze the raw data streams (as in the case of the speech activity detection audio technology). 

Smartflow also provides a mechanism to dynamically decide on which computer in the local area 

network a specific technology should run. The KSC message server and the KSC client library allow 

sending results of data analysis asynchronously.  

Figure 8.5.1 shows the smartAudio map that corresponds to the AED system described in Sub-

section 6.5.3. The map shows the needed smartflow clients and the interconnections among them. 

Firstly, a audio signal from cluster microphones and the MarkIII microphone array are captured with 

data acquisition clients RMEAlsaCapBlock and UPCMarkIIICapturev0.1, respectively. Three 

cluster microphones (one from each cluster) and the 3rd channel of the MarkIII are extracted with the 

RMEChannelExtractors and the MarkIIIChannelExtractor, respectively. Then, with the Resample-

Clients the signals are downsampled to 16 kHz. Feature extraction and SVM-based sliding window 

classification are performed for each channel with the AEDOnLine client, and the fusion of deci-

sions is applied with the AEDFusion client. Depending on the demo, in which the AED perceptual 

component is involved, there can be clients shared among several perceptual components, for 

instance data acquisition or resample clients, and clients responsible for results visualization.  
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Figure 8.5.1. SmartAudio map that corresponds to the AED system 
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8.6  Acoustic Event Detection Demonstrations 

8.6.1 Acoustic event detection and acoustic source localization demo 

Acoustic event detection and acoustic source localization (ASL) are two of the functionalities 

implemented in the UPC’s smart-room.  

A Graphic User Interface (GUI) that shows both functionalities working together has been de-

veloped and it is currently running in real time in the smart-room. It is used to test the technologies 

and to demonstrate them. A video has been recorded with the output of the GUI during a session 

lasting about 2', where four people in the room speak, are silent, or make one of the 12 meeting-

room sounds defined in CHIL and a few others1. The 12 defined sounds, ordered according to time 

of occurrence in the session, are: knock (door), door slam (door open, door close), steps, chair 

moving, spoon clings (cup jingle), paper wrapping, key jingle, keyboard typing, phone ringing, 

applause, cough and laugh. The screenshot of the GUI is given in Figure 8.6.1 when a laugh sound 

is produced.  

There are two screens in the GUI output as it is shown in Figure 8.6.2. One corresponds to the 

real video captured from one of the cameras installed in the UPC’s smart-room, and the other is a 

graphical representation of the output of the two technologies. The video has not been edited at all, 

and it shows what can be seen in the room in real time.  

The two functionalities are simply juxtaposed in the GUI, so e.g. it may happen that the AED 

output is correct but the output of acoustic source localization is not, so showing the right event in a 

wrong place. There is some clutter noise in the localization output due to the fact that the algorithm 

allows sudden changes of position and no other information has been used for smoothing the output 

position during an event. 

The AED technology includes an “unknown” output, symbolized with “?”. There are two dif-

ferent situations when the “unknown” label may appear. Firstly and most frequently, it appears 

when the AED algorithm does not have enough confidence to assign a detected non-silent event to 

one of the above-mentioned 12 classes. Secondly, the “unknown” label is produced when an out-of-

list acoustic event is detected. 

                                                 
1 The video is downloadable from http://gps-tsc.upc.es/veu/personal/temko/presents/AEDLdemo_UPC.avi 



8.6. Acoustic Event Detection Demonstrations 
 

140

 

Figure 8.6.1. The developed GUI for demonstration of AED and ASL functionalities (“laugh” is 
being produced) 

 

   
   (a)      (b) 

Figure 8.6.2. The two screens of the GUI: real-time video (a) and the graphical representation of 
the AED and ASL functionality (“keyboard typing” is being produced) 



Chapter 8. UPC’s Smart-Room Activities
 

141

8.6.2 Acoustic event detection in CHIL mockup demo 

The aim of the mockup demonstration [CN07] designed at UPC is to gain context awareness in the 

context of the CHIL memory jog assistant. It is achieved by means of detection of people, objects, 

events, and situations in the interaction scene. The information needed to build the relevant context 

awareness stems from the analysis of the signals acquired in real-time from a collection of sensors. 

Specifically, the memory jog service developed at UPC focuses at providing information to a group 

of newspaper journalists gathered together in the CHIL smart-room. Figure 8.6.4 shows the screen-

shot of the journalist’s laptop. In the lower right part of the Figure 8.6.4, the Skype-based bi-

directional audio communication allows talking to the journalists in the room. The upper right shows 

the real-time video stream from one of the cameras of the meeting room. An automatic cameraman 

is choosing the optimal camera from five possible angles. This decision is based on the location of 

the last acoustic event and smoothed by a hysteresis to avoid rapid camera-changes. The real-time 

video streaming also displays annotations in the form of subtitles that explain the situation, e.g., 

“people enter”, “interaction with ASR”, “sound of keys”, “front page published”, “The meeting has 

started”. On the left side of the screen, a graphical user interface allows the field journalist of add a 

piece of news (a test and an image) to the decision GUI of the journalists in the room. Within ten 

minutes the front page of tomorrow’s edition of their newspaper has to be decoded. One of the most 

outstanding means of the memory jog to interact with the journalists is a talking head shown in 

Figure 8.6.3 that not only informs the journalists about available resources, and points out events 

such as the arrival of a latecomer or news being contributed by remote colleagues, but also facili-

tates information requests from the journalists in a human-like interface based on automatic speech 

recognition technologies.  

In the service implemented at the UPC’s smart-room, context awareness consists of knowledge 

about the number of persons in the room, their identification, position in the room and their orienta-

tion. Objects in the room and acoustic events also add to the context awareness. It is worth to 

mention that when humans experience the computer-driven service like the Memory Jog, another 

subjective bias naturally arises: unexpected actions of the service triggered by a false-positive 

detection of one of the technologies turn out to be far more annoying than a service not provided due 

to false-negative detection. Due to that fact, only acoustic events that can be reliably detected are 

chosen: door knock, door opening/closing, speech, applause, and key jingles.  

Perceptual components are computing modules that analyze the signals provided by the network 

of sensors in order to detect and classify objects of interest, persons and events adding information 
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to context awareness. In total 8 perceptual components which are based on around 42 smart-flow 

clients, are integrated into the single application called central logic. The combination of video-

based and audio-based systems allows the system to gain a basic understanding of what happens in 

the smart-room. Among others it is possible to do the following:  

a) A person of interest (e.g. the latecomer) can be tracked in the room. This location is used to 

direct the talking head and an automatic cameraman to his current position.  

b) The position of all participants can be used to guesstimate changes of the state of the session, 

e.g. between the states “people enter”, “meeting starts” or “coffee break”. 

c) The position and identity of sudden acoustic event can be determined. The automatic cam-

eraman has been configured to capture these events by choosing the camera that is positioned 

furthest from the location of the acoustic event.  

d) In the current implementation of the context awareness, the detection of a latecomer is based 

on a multitude of criteria amongst which the first two depend on the person and object tracking: 

increase of the number of person, appearing of a new object close to the door, detection of the 

acoustic signal of a door-knock, a door-slam or steps close to the door.  

e) Person identification is performed based on face ID and speaker ID technologies.  

f) The dialogue system allows a human-like verbal interaction with the memory jog system. It is 

based on two components: a commercially available 2D animation of a talking head and an ASR 

based dialogue system that utilizes the HTK recognizer [You93].  

g) Interactive behaviour of the talking head depending on an acoustic event detected, like an ut-

terance “Don’t forget your keys!” when “key jingle” is detected or exclamation “Great! Well done!” 

when “applause” is detected.  

 

 

Figure 8.6.3. The talking head is a mean of demonstrating the context 
awareness given by perceptual components 
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Figure 8.6.4. Screenshot of the field journalist’s laptop  

 

 

 

 

8.6.3 Acoustic event detection and 3D virtual smart-room demo 

The last demo is developed to demonstrate the UPC’s smart-room remotely. The functionalities that 

are currently involved in the demonstration are the 3D person tracking, ASL, and AED.  

The virtual 3D scene is reconstructed from the images of multiple cameras in the smart-room. 

Figure 8.6.5 shows the developed 3D visualizer. Specifically, it shows one detected person sitting, 

and the other passing in the room. “Steps” are detected with the AED and localized in space with the 

ASL. The text label “steps” is assigned to the place where the event happens. Additionally, the small 

screen at the lower left corner shows the corresponding real video. 
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Figure 8.6.5. A snapshot that shows the built virtual UPC’s smart-room  
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8.7 Chapter Summary 

In this chapter the activities concerning Acoustic Event Detection (AED) in the UPC’s smart-room 

have been described.  

A brief description of the CHIL project has been proposed and the main objectives have been high-

lighted. The smart-room built at UPC in the framework of CHIL project has been described. The basic 

information concerning the recording of the database of isolated acoustic events and the recording of 

seminars that were used in the CLEAR evaluation campaign on AED has been reported. The imple-

mentation of AED component has been reviewed. Finally, three different demos developed in the 

UPC’s smart-room and in which the implemented AED component participated have been presented. 

Specifically, the demo of AED and acoustic source localization with a cartoon animation, the role of 

AED in the versatile mockup demo, and the 3D demonstration of the UPC’s virtual smart-room using 

the 3D person tracking, acoustic source localization, and AED, have been described. 
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Chapter 9. Conclusions and Future Work 

9.1 Summary of Conclusions 

This thesis is a pioneering work in the area of audio classification that, by focusing on the acoustic 

events which are naturally produced in a meeting-room environment, ranges from classification of 

previously segmented acoustic events to detection of acoustic events in seminar sessions, and its 

real-time implementation in the smart-room of the UPC. SVM classifier is chosen as a basic classi-

fication technique in this thesis. 

The first main contribution of this thesis is an attempt to deal with the problem of classifying 

acoustic events. When trying to deal with the problem of acoustic event classification in the frame-

work of the CHIL project [CHI], we soon noticed that reported works are scarce. Actually, 

classification of sounds has usually been carried out so far to segment digital audio streams using a 

limited number of categories, like music/speech/silence/environmental sound. We have focused on 

acoustic events that may take place in meeting-rooms or classrooms and on the preliminary task of 

classifying isolated sounds. The number of sounds encountered in such environments may be large, 

but in the initial work we have chosen 16 different acoustic events, including speech and music, and 

a database has been defined for training and testing. Several feature sets and classification tech-

niques have been tested with it. In our tests, the SVM-based techniques show a higher classification 

capability than the GMM-based techniques, and the best results were consistently obtained with a 

confusion matrix based variable-feature-set clustering scheme. With it, a large relative average error 

reduction with respect to the best result from the SVM conventional binary tree scheme has been 

obtained. That good performance is mostly attributable to the proposed clustering technique, and to 

the fact that SVM provides the user with the ability to introduce knowledge about data unbalance 

and class confusions. 

A drawback of SVMs when dealing with audio data is their restriction to work with fixed-

length vectors. Both in the kernel evaluation and in the simple input space dot product, the units 

under processing are vectors of constant size. However, when working with audio signals, although 

each signal frame is converted into a feature vector of a given size, the whole acoustic event is 

represented by a sequence of feature vectors, which shows variable length. In order to apply an 

SVM to this kind of data, one needs either to normalize somehow the size of the sequence of input 

space feature vectors or to find a suitable kernel function that can deal with sequential data.  

Several methods that adapt SVMs to sequence processing have been reviewed and applied to the 

classification of sounds from the meeting room environment. We have seen that the dynamic time 
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warping kernels work well for sounds that show a temporal structure, but due to the presence of 

less-time-structured sounds in the database the best average score is obtained with the Fisher kernel. 

Moreover, only one Gaussian is used in that method due to its high sensitivity to the variance 

parameters as a consequence of the scarcity of data.  

Usual combinations of classifier outputs like sum, product, max, min, weighted arithmetical 

mean, assume that each output represents an independent source of information that can be treated 

separately. Often, this is not the case, and an approach that considers the interactions among the 

classifier outputs is needed. Fuzzy integral fusion can capture interactions among the various 

sources of information. Moreover, the fuzzy measure, which is associated with the fuzzy integral, 

furnishes a measure of importance for each subset of information sources, allowing feature selection 

and giving a valuable insight into the classification problem itself. Experiments with fuzzy integral 

have been carried out with a set of five human vocal-tract non-speech sounds (cough, laughter, 

sneeze, sniff and yawn) which was found responsible for a large part of errors in the classification of 

meeting-room acoustic events. Ten types of features were chosen with a substantial degree of 

redundancy in order to use the fuzzy measure to find out their relative importance and their degree 

of interaction.  

In the experiments, a system which fuses several information sources with the fuzzy integral 

formalism has shown a significant improvement with respect to the best single information source. 

Moreover, the fuzzy integral decision-level fusion approach has shown comparable results to the 

high-performing SVM feature-level fusion. Finally, the experimental work also indicates that the 

fuzzy integral may be a good choice when feature-level fusion is not an option e.g. when the feature-

level fusion is difficult (e.g. due to the different nature of the involved features), or when it is 

beneficial to preserve the application or technique dependency (e.g. when fusing well-established 

feature-classifier configurations). For that purpose we have also conducted experiments to combine 

hidden Markov models that use frame-level features with the SVM using signal-level features, and 

have witnessed an additional improvement.  

Systems of acoustic event classification developed in this thesis have participated in the dry-run 

evaluation on acoustic event classification in 2004, in the first official evaluation on acoustic event 

classification in 2005, and in the international CLEAR evaluation campaign in 2006. In all those 

evaluations, the system ranked among the best, and, in the last one, outperformed the other two 

submitted systems. 

The second main contribution of this thesis is the development of systems for detection of 

acoustic events. AED is more complex than AEC since it includes both classification and determi-
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nation of the time intervals where the sound takes place. Two acoustic event detection systems were 

developed at the UPC for CLEAR evaluations.  

The first system has participated in the CLEAR 2006 evaluation tasks concerning the detection 

of acoustic events that may happen in a lecture/meeting room environment. Two kinds of databases 

have been used: two databases of isolated acoustic events, and a database of interactive seminars 

containing a significant number of acoustic events of interest.  

The system of year 2006 was based on two steps: performing silence/non-silence segmentation 

and then classification of non-silence portions. Our system was based on an SVM discriminative 

approach and used frequency filtering features and four types of perceptual features. The detection 

results indicated that first doing segmentation and then classification performs worse than merging 

both segmentation and classification in one step, as it is performed by Viterbi search in the state-of-

the-art ASR systems that have been developed for many years and therefore can be considered as a 

challenging reference for other presented approaches/systems in the acoustic event detection task 

like our SVM-based system.  

The next AED system has participated in the CLEAR 2007 evaluation. The evaluation has been 

performed with the database of interactive seminars that has been recorded at different smart-rooms 

and contains a significant number of acoustic events of interest. Two different metrics have been 

proposed and implemented. One is based on precision and recall of the detection of the AEs as 

semantic instances, and the other is more time. The system of 2007 merges the two steps (segmenta-

tion and classification) and is also based on SVM classifiers. Each sliding window is classified with 

SVM classifiers and a post-processing is applied to the sequence of decisions. According to the 

importance and degree of interaction of features from the work with the fuzzy integral, several 

features were added to the set of features used in the AED system 2006 and one feature was elimi-

nated. Additionally, multi-microphone decision fusion was introduced into the AED system 2007. 

The proposed system, which was the only submission not using HMM, ranked the second out of six 

participants.  

A work oriented towards robust SVM-based SAD for smart-room environments has also been 

carried out. A set of several hundred of thousand of samples is a usual amount of data for classical 

audio and speech processing techniques that involve GMM. However, it is an enormous number of 

feature vectors to be used for a usual SVM training process and hardly makes such training feasible 

in practice. In this thesis, the usual training algorithm of the SVM classifier has been enhanced in 

order to cope with that problem of dataset reduction, proposing a fast algorithm based on Proximal 

SVM. Besides that, the SVM learning process has been adjusted in order to take into account the 
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specific characteristics of the metric used in the NIST RT evaluations. The resulting SVM SAD 

system has been tested with the RT06 data, and it has shown better scores than our GMM-based 

system which was submitted to the RT06 evaluations and ranked the first among all submitted 

systems in single distant microphone condition.  

This thesis has proactively contributed to provide the tools and resources that make the research 

possible, including: recordings and labelling of the databases, providing support to worldwide open 

competitions organized in CHIL, the organization of AED/C evaluations, definition of classes, 

evaluation scenarios and conditions, databases, etc. The metrics were changing starting from the 

first evaluations in 2004. Finally, after almost four years of task evolution, two grounded metrics 

have been proposed, agreed, and used in the last CLEAR evaluation campaign. The evaluation plans 

as well as other coordinating activities have been reflected in several CHIL deliverables, revised 

implementation plans, and UPC internal reports. 

Another contribution of this thesis is the real-time implementation of the developed AED and 

SAD systems. The system based on four extracted LDA measures and SVM classifier has been used 

in UPC’s smart-room for real-time SAD. A GUI that shows AED and acoustic source localization 

functionalities working together has been developed and it is currently running in real time in the 

smart-room. It is used to test the technologies and to demonstrate them. A video has been recorded 

with the output of the GUI during a session lasting about 2', where four people in the room speak, 

are silent, or make one of the 12 meeting-room sounds defined in CHIL and a few others. Besides, 

the developed real-time AED component contributed to two more demonstrations of technologies 

and services developed within CHIL project.  
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9.2 Future Work 

From the work done in this thesis a set of problems and limitations have been detected and should 

be faced in future. In this subsection we will critically summarize the drawbacks of the techniques 

that were developed and used throughout the work, and also propose a few envisaged research lines 

that seem promising. 

9.2.1 Feature extraction and selection 

In this thesis work several feature sets have been used for the AEC task. In Section 4.5, a set of what 

we called perceptual features was investigated and one new feature was proposed. For the feature 

selection, the importance and interaction indices were calculated with FI. However, we concentrated 

on the interrelations inside the perceptual set of features and so did not calculate the interaction 

between the conventional ASR feature set and the perceptual features. We think it can be useful to 

group all perceptual and conventional ASR features into several acoustic groups according to the 

way each feature describes an audio signal. In this way, we plan to investigate the importance of and 

interactions among the mentioned groups of features in order to see which combinations of groups 

may be beneficial for audio processing.  

The normalization of the acoustic features to make different instances of a given event appear as 

similar as possible is also an important problem in classification and detection of acoustic events. 

More time should be also spent on the low-level features to try to ensure good generalization across 

different channel characteristics. 

When applying SVM in our work we used statistical parameters like mean and variance, or 

mean, variance, autocorrelation, and entropy in order to transform the frame-level features into 

segment-level features. Indeed, the performed averaging over frames results in a huge loss of 

information. Alternative approaches can be envisaged like the recently proposed GMM SuperVector 

kernel [CSR+06] where the final vector is constructed from the parameters of GMMs trained on 

every segment of an audio signal.  

9.2.2 Sequence-discriminative SVM 

The ability to model dynamics of the observed data is one of the major characteristics of the state-

of-the-art HMM techniques in speech and audio processing, and it is a big advantage over static 

classification techniques like SVM classifiers. However, the good performance of SVM for several 

classification tasks and its excellent theoretical background stimulate the research community to 
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keep looking for ways to enable SVM to work with variable-length sequences. In our work in 

Section 4.4, we compared several sequential kernels for the task of AEC. The experiments were 

performed on a small database and it would be interesting to see if the same conclusions can be 

drawn from much larger databases. Besides, the observed bias of classifiers in our results with 

sequential kernels to specific types of AE classes is a good basis for a successful application of 

fusion techniques. On the other hand, the efficient way to introduce the dynamics of the sequences 

into the kernel is still an open research area.  

9.2.3 Acoustic event detection in real environments 

Detection of acoustic events appeared to be a very interesting and difficult task. The initial works 

carried out in this direction in this thesis and the results obtained within the international evaluation 

campaigns showed that, although the proposed system, which was the only submission not using 

HMM, ranked among the best, there is still a big room for improvement.  

The biggest problem in real environment AED is overlappings – i.e. temporal intervals where 

the AE of interest is overlapped with speech and/or other AEs. It was found that the overlapping 

segments account for more than 70% of errors produced by every submitted system. The problem of 

overlapping of different speakers has been addressed since the NIST RT-07 [Spr06] evaluation 

campaign where the tasks (e.g. Speaker Diarization) have been evaluated on overlapped segments as 

well. Actually, the problem of acoustic overlappings is closely related to the “cocktail-party” 

problem [Bre90] [WB06]. In the latter, however, one usually tries to separate one speech source 

from others. Conversely, in our application we would like to separate acoustic events from speech. 

Conceptually, the problem of overlapping can be addressed at different system levels. At the signal 

level, it can be dealt with source separation techniques like ICA. The overlapping problem can be 

addressed at the level of models by modelling also the possible combination of sounds by classifiers. 

Finally, at the level of decision, different weights can be assigned within the multi-microphone 

system architecture to particular microphones. In the latter case the main assumption is that the 

audio sources (in our case, speech and acoustic events) are well separated in space, and an acoustic 

event of interest can be the most powerful signal in some microphone. Future work will be devoted 

to search a better way to deal with overlapping sounds.  

Additional improvement is expected by integrating the developed variable-feature-set clustering 

scheme (see Section 4.3) into the AED system.  
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Multimodal AED is another approach from which a performance improvement can be expected. 

Some sounds can be detected by video technologies, e.g. “steps” can be assumed when detecting an 

object moving around the smart-room, etc. 

The choice of the system structure is also very important. In fact, none of the AED systems pre-

sented to the evaluations was built as a set of isolated detectors. That is, there were no systems 

which intended to detect one particular sound. This approach can be addressed in future.  

When an SVM-based AED/C system is trained, it would be interesting to be able to adapt it to a 

new environment keeping the same acoustic event classes. For this it is necessary either to design a 

mechanism of online learning or perform an adaptation of the learnt SVM classifier to new envi-

ronmental acoustics similar to MAP or MLLR adaptation for GMM. Some works on the former 

approach can be found in the literature [DC03] while the latter is still an open question.  

Detection of higher-level semantics like the stage of a meetings based on the statistics of occur-

rences of AEs is an interesting topic and deserves attention. For example, detection of frequent 

cup/spoon jingles may indicate that the meeting is in its “coffee break” stage, etc.  

9.2.4 Fuzzy integral fusion for multi-microphone AED 

A few information sources were fused in our work with the FI formalism. The use of semi-shared 

and individual FMs is a promising approach. Unfortunately, we were not able to explore it more due 

to the scarcity of the data in the evaluation corpus. Future work will also be devoted to the applica-

tion of the FI to multi-microphone classification and detection of acoustic events with a much larger 

dataset recorded in meeting rooms (see Section 6.5). Also, a further improvement can come from the 

fact that signals captured from microphones placed at different positions in the room may carry 

different information about the acoustic events taking place in it. 

9.2.5 Acoustic source localization for AED 

Combination with other audio technologies can be very beneficial for AED. For instance, based on 

the position of the localized audio source and its orientation, different weights can be efficiently 

assigned to the microphones in the smart-room to increase the performance of AED.  

9.2.6 Speech activity detection  

The work concerning SAD presented in this thesis mostly intended to show how SVM can be 

efficiently applied to the SAD task. In Chapter 7, it was shown that the proposed SVM-based SAD 

system showed results which were competitive and at times significantly superior to GMM and 
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decision tree classifiers. As it was reported in Chapter 7, making use of a much longer feature set by 

preserving 4 LDA measures for each frame improved the error rate for SVM. Further work should 

be done to design the front-end that can better fit the capacity of the SVM classifier. 

The system based on four extracted LDA measures and an SVM classifier has been used in the 

UPC’s smart-room for real-time SAD. However, although the algorithm has shown a very good 

performance in the offline tests, as reported in Chapter 7, in the online tests it produces lots of 

confusion of speech with high-energy acoustic events (cough, door slam, etc). In fact, we also tried 

the GMM method but it performed badly either. Actually, although most existing SAD methods are 

energy based as usual testing datasets designed for the SAD task do not have a rich variety of 

acoustic events, but just speech and silence, the Speech vs. Non-Speech task becomes a Silence vs. 

Non-Silence task. Again, this fact shows that AED and SAD are two interlaced problems which 

require a common solution when working in real seminar environments. Further investigation will 

be devoted to a closer integration of both technologies. 
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Appendix A. UPC-TALP Database of Isolated Meeting-Room Acoustic 
Events 

Introduction 

This database contains a set of isolated acoustic events that occur in a meeting room environment 

and were recorded for the CHIL Acoustic Event Detection (AED) task. The recorded sounds do not 

have temporal overlapping. The database can be used as a training material for AED technologies as 

well as for testing AED algorithms in quite environments without temporal sound overlapping. 

Description of the acoustic events 

For recording, we used the same list of sounds that was defined in CHIL with conventional labels, 

except for “door slam” that was further divided into “door open” and “door close”: 

 

Acoustic event     Label 

Knock (door, table)    kn 

Door open     do 

Door close     dc 

Steps      st 

Chair moving     cm 

Spoon (cup jingle)    cl 

Paper work (listing, wrapping)   pw 

Key jingle      kj 

Keyboard typing     kt 

Phone ringing/Music    pr 

Applause      ap 

Cough      co 

Laugh      la 

Unknown      un 

 

Description of the recording setup 

The whole database was recorded using the following audio equipment: Mark III (array of 64 

microphones), three T-shape clusters (4 mics per cluster), 4 tabletop and 4 omni directional micro-
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phones. In total 64+12+8=84 microphones. The positions of the microphones in the UPC CHIL - 

room are described in Figure A.1. Figure A.2 describes the configuration of the T-shaped clusters. 

Data was recorded at 44.1 kHz, 24-bit precision, and then converted to 16-bit Raw Little-Endian 

format. All the channels were synchronized. During all the recordings two-three additional people 

were inside the room for a more realistic scenario.2 

                                                 
2 Video data was also acquired simultaneously to audio data. 

Figure A.1. Microphone and camera positioning in the UPC’s smart-room 

 

Figure A. 2. Configuration & orientation of the T-shaped 
microphone clusters 
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Description of the recorded database 

Approximately 60 sounds per each of the sound classes were recorded. Ten people participated in 

recordings: 5 men and 5 women. There are 3 sessions per each participant. At each session, the 

participant took a different place in the room out of 7 fixed different positions that are marked in 

Figure A.3. The exact coordinates of the positions are given in Table A.1. Participant positions for 

each session are shown in Table A.2. 

Table A.1. X, Y coordinates of the positions 

Position X (meters) Y(meters)

P1 1.28 1.58 
P2  1.28 2.40 
P3 1.28 3.05 
P4 2.28 3.53 
P5 3.03 3.05 
P6 3.03 2.40 
P7 2.19 1.26 

 

Figure A.3. Graphical illustration of participants’ positions 
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During each session a person had to produce a complete set of sounds two times. A script indi-

cating the order of events to be produced was given to each participant. Almost each event was 

followed and preceded by a pause of several seconds. All sounds were produced individually, except 

“applause” and several “laugh” that were produced by the people that were inside the room alto-

gether 

Annotation of the database 

The annotation was done manually by listening at signals from a single channel (the 3rd channel 

from Mark III microphone array). The following criterion was used during the annotation. If an 

event of class X includes a pause of minimum 300ms and both parts of the event, the one before the 

pause and the one after the pause, can be (subjectively) assigned a label X, then the event is anno-

tated as two separated events of class X. If either the pause length is less than 300ms or the 

first/second part of the event is not recognizable without hearing the other part, the whole event is 

marked as only one event of class X. That kind of events only occurs for classes “cough”, “laugh”, 

and “phone ring”.  

Contents of the distributed database  

The database that is distributed in 3 DVDs contains signals corresponding to 23 audio channels and 

the corresponding labels. The 23 audio channels correspond to: 12 microphones of the 3 T-shaped 

clusters, 4 tabletop omni directional microphones, and 7 channels of the Mark III array: 3rd, 13th 

23rd, 33rd and 43rd, 53rd, and 63rd. The 7 mics from the array can be viewed as three clusters, as 

shown in Figure A.4. 

Table A. 2. Position of each participant for each session 

 Session 1 Session 2 Session 3

UPC_AE01(m) P2 P7 P3 
UPC_AE02(m) P4 P6 P1 
UPC_AE03(m) P4 P5 P6 
UPC_AE04(m) P2 P7 P3 
UPC_AE05(f) P4 P5 P1 
UPC_AE06(f) P4 P2 P3 
UPC_AE07(f) P7 P6 P5 
UPC_AE08(m) P1 P4 P5 
UPC_AE09(f) P2 P3 P7 
UPC_AE10(f) P1 P6 P3 
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The splitting of the data for purposes of training and testing can be based on either participants 

or sessions. To produce the DVDs, we chose the latter option, so the database is distributed on three 

DVDs each one containing one session. Table A.3 shows the distribution of the audio material 

among the three sessions. 

The name of a signal file is raw_K_44100_16b_upc_aeM_N.raw, where K is the number of the 

microphone, 44100 is the sampling frequency, 16 is the number of bits per sample, M is the person 

number (from 01 to 10), and N is the session number (from 1 to 3). There is a different number 

ordering for the Mark III microphones and the other microphones (T-shaped clusters and tabletop 

omni directional microphones). The former ones are ordered from 001 to 064 (although only 7 of 

them are included), and the latter from 001 to 016, according to the ordering indicated in Figure A.1.  

Figure A. 4. Selected channels of Mark III array, distance between them and 
symbolic grouping into clusters 

Table A. 3 Number of annotated acoustic events in each session 

Event type Session 1 Session 2 Session 3 

kn 15 18 17 
do 20 20 20 
dc 20 21 20 
st 28 24 21 
cm 23 28 25 
cl 23 21 20 
pw 31 29 24 
kj 21 21 23 
kt 21 25 20 
pr 37 36 43 
ap 20 20 20 
co 22 22 21 
la 22 21 21 
un 38 46 42 

 

... ... 
20cm 

... ... 
20cm 

33 43 53 63 23 13 3 
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The name of an annotation file is upc_aeM_N.csv (e.g. upc_ae01_1.csv – person 1, session 1). 

The format of its content is analogical to that of the AGTK ".csv" format, i.e. “start_ts, end_ts, 

event_id”, where the labels start_ts, end_ts, event_id denote the starting time stamp (from he begin-

ning of the file), the ending time stamp, and the event label, respectively. The time stamps are given 

in seconds from the beginning of the file.  

DVD structure 

The structure of a DVD_N (the division is session-wise) is: 

/hammer //T-shape and omni-directional microphones – see Figure A.1 

           raw_001_44100_16b_upc_ae01_N.raw 

           ... 

           raw_001_44100_16b_upc_ae10_N.raw 

           ... 

           raw_016_44100_16b_upc_ae10_N.raw 

/markiii  //Mark III chosen channels – see Figure A.4 

           raw_003_44100_16b_upc_ae01_N.raw 

           ... 

           raw_003_44100_16b_upc_ae10_N.raw 

           raw_013_44100_16b_upc_ae10_N.raw 

           raw_023_44100_16b_upc_ae10_N.raw 

           ... 

           raw_063_44100_16b_upc_ae10_N.raw 

/transcr  //annotation files 

           upc_ae01_N.csv 

           upc_ae02_N.csv 

           ... 

           upc_ae10_N.csv 

/IAE_UPC_database.pdf  // this document 

/license_agreement.pdf  // license agreement 

/readme.txt    // short explanation of database content  
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Appendix B. Guidelines for Having Acoustic Events within the 2006 
CHIL Interactive Meeting Recordings 

In order to evaluate properly the AE detection systems, a sufficient number of acoustic events (AE) 

must appear in the recordings. Ideally, they should appear in a natural way inside the meetings, but 

as the duration of meetings is limited, the number of occurrences of some events would not be large 

enough. However, forcing the recording of a given number of AE per meeting may cause some lack 

of naturalness, which should be avoided. On the other hand, if AE are produced outside the meeting, 

they may suffer of lack of naturalness. Consequently, there is a tradeoff between “natural meeting 

recordings” and “natural AE recordings”. 

We consider that an hybrid approach may be adequate: as many AE as possible are recorded 

during the main part of the interactive meeting, and the remaining ones are recorded in a short time 

interval at the end of the meeting. Each site may find its own concrete way of dealing with it; 

anyway, we give some guidelines in the following. 

Types of acoustic events 

The whole set of acoustic events of interest include 12 events that can be tentatively divided into 

two sets: 

AE1) Those which can be produced more or less naturally within a recorded meeting: 

•  Door knock 

•  Door slam  

•  Steps 

•  Chair moving 

•  Applause 

•  Keyboard typing 

AE2) Those which are more difficult to be produced naturally, at least in a sufficient number: 

•  Paper work (listing, wrapping) 

•  Phone ringing/Music 

•  Spoon/cup jingle 

•  Key jingle 

•  Cough 

•  Laugh 
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Inclusion of AE within the interactive meeting scenario 

1. Try to produce sounds included in set AE1 within the meeting in a natural way. For that: 

a. each participant knocks the door before entering the CHIL room, closes it once is in-

side walk to the chair and seat (enter one by one);  

b. at the end, each participant leaves the room separately and produces a door slam; 

c. have somebody taking notes of the meeting on a laptop not far from a microphone; 

d. clap after each (short) presentation; 

e. etc. 

2. If appropriate, try to include also sounds from AE2. For example: 

a. call a participant on the phone from outside the smart-room; 

b. distribute handouts of the presentations among the participants so that they may look 

and take notes on them; 

c. etc. 

3. Remind the participants about all these sounds just before the recording starts. 

4. It helps to have a person (or two) which are responsible for either doing the noises or re-

minding it to the other participants: starts to clap, typewrites, etc. 

Production of the remaining AE after the interactive meeting scenario 

AE from the set AE2 (and those from AE1 which have not been produced within the interactive 

meeting) can be produced purposefully at the end of the interactive meeting. For that: 

1. At least two people should be performing in order to have some overlapped events and, spe-

cially, AE overlapped with speech. 

2. They can either stay in the room after the other participants have left or re-enter. 

3. It is recommended that they are doing a natural activity like: 

a. Coffee break (drinking coffee/tea, moving around the room, commenting the meet-

ing, laughing, etc) 

b. Clear up the room (moving chairs, picking papers up, putting keys away, etc) 

c. Any other activity that does not break the semantic integrity of the meeting scenario. 

For example: one person, who is drinking, makes a question to another (who may be 

one of the presenters), they walk to the whiteboard and the latter answers the question 

writing on it. 



Appendix B. Guidelines for Having Acoustic Events within the 2006 CHIL Interactive Meeting Recordings
 

163

Number of AE per interactive meeting of approximately half an hour 

The recommended minimum number of sounds from AE2 per interactive meeting is 5, but indeed a 

larger number is preferable. 
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