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Abstract

The Asset and Liability Management has captured the attention of academics and

financial researchers over the last decades. On the one hand we should try to max-

imise our wealth taking advantage of the financial market, and on the other hand,

we must cover our payments (liabilities) along the time. The purpose of ALM is to

give the investor a series of resources or techniques to select the appropriate assets

of the financial market to obey the aforementioned two key factors: comply with

our liabilities and maximising our wealth.

This thesis presents a set of techniques that are capable of tackling realistic fi-

nancial problems without the usual requirement of considerable computational re-

sources. These techniques are based on heuristics and simulation. Specifically, a

biased metaheuristic model is developed that has a direct application in the usual

immunisation operation of insurance companies. The algorithm makes it possible to

efficiently select the smallest number of assets, mainly fixed income, on the balance

sheet and that guarantees the company’s obligations. This development allows in-

corporating the credit quality of the issuer of the assets used. Likewise, a portfolio

optimisation model with liabilities is developed and it is solved with a genetic algo-

rithm. The portfolio optimisation problem differs from the usual one in that it is

multi-period, and incorporates liabilities over time. Additionally, the possibility of

external financing is included when the entity does not have sufficient cash. These

conditions give rise to a complex problem that is efficiently solved by an evolution-

ary algorithm. In both cases, the algorithms are improved with the incorporation

of Montecarlo simulation. This allows the solutions to be robust when we consider

realistic market situations.

The results are very promising. This research shows that simheuristics is an ideal

method for this type of problem. On the one hand, it is capable of solving problems
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of considerable size avoiding unaffordable computational costs, and also avoiding

excessive simplification of the model, which would lead to a false representation of

reality. On the other hand, the incorporation of the simulation guarantees us that

the results are, within the limitations of the financial model, realistic.
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Chapter 1

Introduction

1.1 Motivation

In finance, every decision leads to the same question: how to increase our wealth. To

do that, we allocate our assets to a huge variety of possibilities, obtaining expected

returns for each one at the same time that we are assuming risks. This is equivalent

to an optimisation problem, that is, how do I have to invest my assets to get the

maximum return subject to a given threshold for the risk level?, or in a similar way,

how do I have to invest my wealth assuming the least possible risk and having, at

least, a given return? This point was first studied by Markowitz (1952) where he

supposed that the returns of assets obey a probability function. From that point

of view, the return of an asset is a random variable and what we consider as a risk

has to be a measure of dispersion, generally, the standard deviation or momentum

of order two. The basic problem considers a set of assets with known probability

functions and with finite variance-covariance matrix. Afterwards, many constraints

have been added to the basic Markowitz theory to get a more realistic model. It is

worth noting that this model only takes into account characteristics that are imposed

by the financial market. Nevertheless, the reality is that we don’t have only assets:

we also have liabilities, so, before thinking about how to increase our wealth, we

have to think about how to comply with our obligations.

1
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In other words, liabilities have to be considered in the basic problem of maximising

our wealth. This is studied in literature under the name of Asset and Liability Man-

agement (ALM). Many different approaches have been developed so far. Probably,

the most common approach is the duration theory by Macaulay (1938). The key of

the ALM theory is to take into account that our liabilities are scheduled and we have

to select those assets that meet the obligations in time. So, the interest rate arises as

a fundamental variable in the asset allocation. Thus, the portfolio optimisation has

to be split in two steps: the first one is to determine how to guarantee our liabilities

by selecting the minimum number of assets from our portfolio; the second step is to

invest the rest of assets according to our risk preferences.

As I have mentioned before, the interest rate is crucial because depending on the

term structure of interest rates we will have to choose the best moment and times-

pan for each investment. But the question is that the value of both liabilities and

assets vary when the interest rates change, and as we will not have a perfect match

between our obligations and the cash-flows generated by our assets, the variation

of the present value will depend directly on these changes in the term structure of

interest rates. The financial immunisation has to do with how to jointly avoid these

variations in the value of assets and liabilities. The Macaulay Duration Theory es-

tablishes a parameter, duration, so that if we select assets with the same duration

to which our liabilities have, under a slight change in the interest rate, we won’t

have differences of value between assets and liabilities. There is another approach,

the Optimal Control Theory (Kirk, 2012), in which we establish correlations among

assets and liabilities, and the variability of the interest rate, so, imitating the basic

concept of the theory of portfolio optimisation by Markowitz, we state an optimisa-

tion problem having a new risk constraint involving the interest rate. A third and

more realistic approach is the Cash-Flow Matching (Mitra and Schwaiger, 2011).

The idea involves the selection of assets so that we will have the amount of money

at the time we have to pay our obligations. As the reality is that our positive cash-

flows won’t match in time with those negatives, we will have to select enough assets

to guarantee a positive amount of money so that every time we have a negative

cash-flow, that quantity will be enough.
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One very important fact is that interest rate is not flat, and it is not static. Therefore,

we should consider that the interest rate for each spot time is a random variable.

Two important models have been developed: Vasicek (1977) and Cox et al. (1985).

If we consider this characteristic of the term structure of the interest rate, we cannot

use the duration model. Additionally, the cash-flow matching is just a sort of real

simulation. So, we can consider new hypotheses or constraints that the theory of

optimal control cannot. For example, if our cash-flow balance in any moment of

the time is negative, we have to consider paying an extra interest rate just because

we have to borrow money. Even, we can find examples in the legal regulation that

limits the number of consecutive negative balances or forbid negative balances at

the beginning of the year. These kinds of constraints make the problem of finding

the optimum assets very complex, so heuristic and metaheuristic approaches can be

strong candidates.

The main contribution of this doctoral thesis will be the application of Simheuris-

tics to solve the selection of assets based on cash-flow matching. The need of using

simulation in combination with Heuristics/Metaheuristics is based on the nature

of Financial Market that is stochastic. This study will face common financial sce-

narios, considering realistic financial structures and moving away from simplistic

hypotheses. So far, the models have had to simplify the balance structure due to

the highly demanding mathematical formulation. But now, we will illustrate how

we can deal with heuristic algorithms to solve those kinds of problems. On the

other hand, we will be able to improve the characteristics of the model itself, with

common constraints and other features of the financial market. This will allow us

to get a framework that is applicable to the financial industry and specially to the

insurance market.

1.2 Thesis Structure

This thesis is a set of works; some of them have been published in conferences and in

journals as it is described below. They are presented in the same temporal sequence

they have been both developed and published. The document treats to be self-

3
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contained on the basis of some fundamental knowledge in finance and programming.

The specific fields used in this thesis are explained in chapter 2, and they are merely

a dense and brief exposition of the starting point of this research. If the reader is an

expert in those fields, it might not be necessary to read the aforementioned chapter.

Figure 1.1: General Structure of the Thesis

The document is structured as follows (Figure 1.1):

• In this Chapter 1, Introduction, the main research objective is discussed.

• In this Chapter 2, entitled as Decision Making in Finance, I introduce a

brief summary of the main financial issues that we will work along the research,

that includes the theory of asset and liability management and the well-known

Markowitz theory for portfolio management.

• In Chapter 3, entitled as Research Methodology, I briefly introduce a sum-

mary of the main theoretical fields we deal through this thesis. First, I present

the family of algorithms classified as Metaheuristics and Simheuristics. As a

preliminary note, we can say that Heuristics doesn’t try to get the best solution

using intractable computational times but to get good and useful solutions.

These kinds of algorithms are the keystone of all this research. Indeed, it is

not so important to reach the exact solution as to get a good one in the fi-

nancial market. The nature of finance is purely stochastic, that means that

once you have calculated a perfect solution, it has expired just one second

after. Sacrificing this ambition gives us the opportunity of introducing more
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realistic models which their set of solutions can be explored thanks to these

kinds of algorithms until we get a good one. I also present one specific case of

metaheuristics, the genetic algorithms due to the relevance it has in order to

solve a very demanding problem that is treated in the last chapters.

• Chapter 4, entitled as ALM in Financial Markets: State of the Art, is

a wide survey of what ALM has been along the last decades. As commented

in this chapter, the asset and liability management is a field whose interest

has been notably increased as a result of the more aggressive environmental

conditions that surrounds the financial market. The main conclusion of this

chapter points out clearly the need to explore heuristics as a way to tackle the

increasing complexity of the financial markets.

This chapter is an update of Nieto et al. (2022a), which has been approved

and is awaiting publication.

• In Chapter 5, entitled as A Simheuristic Algorithm for Reliable ALM,

I present a simple model for the case of matching liabilities with assets in

the scope of an insurance company. The problem is simplified by imposing

one asset to one liability constraint to mainly focus on the algorithm. This

is a first and experimental approach that, in spite of their simplifications,

shows how the metaheuristics can be used to solve this kind of problems. The

chapter concludes with a study of reliability of the solutions using Montecarlo

simulation.

With the proper adaptations and changes, this chapter is derived from the

following paper Bayliss et al. (2020a).

• In Chapter 6, entitled as Matheuristic with Simulation for Stochastic

ALM, we explore the best solution of the assignment of assets to cover the

liabilities in a stochastic framework. It shows that the deterministic solution

is not the best one when we consider stochastic behaviour in both assets and

obligations. It also considers the possibility of attributing many assets to many

liabilities when the problem is solved.

This chapter has been based on Bayliss et al. (2020b).
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My contributions to this paper have been mainly the conceptualisation of the

model together with C. Bayliss, the validation of the results together with A.

Juan, and the writing–original draft preparation together with C. Bayliss.

• Chapter 7, entitled as ALM in Insurance Firms, is a natural extension of

the previous chapter. In this one, we remove the main constraint one to one.

The result is a very fast and powerful algorithm that solves the traditional

match flow of an insurance company having a list of liabilities along the time

and a set of assets in its balance sheet.

The full article, adapted in this thesis, is published as Nieto et al. (2021).

• In Chapter 8, entitled as The Multiperiod Risk Model - Markowitz

Revisited, I develop a theorem that proves the expression of the standard

deviation of an equity portfolio in a multiperiod context, where the price of

each asset obeys a Log-Normal distribution function. This theorem was neces-

sary to formulate adequately a portfolio optimisation problem in a multiperiod

context, which is the objective of the next chapters. This theorem proves that

a n assets × p period problem is equivalent to a n × p assets in one period,

where the correlations of the assets have to be with the correlations of each

asset with itself in the past and the future.

• Chapter 9, entitled as A GA-Simheuristic for the Stochastic and Multi-

Period ALM, is the most extended work of this research. This chapter

develops a genetic algorithm to solve a portfolio optimisation problem in a

multiperiod context and with liabilities. It also includes the option of a loan

if punctually the treasury is not enough to fulfil with our liabilities. The

algorithm is extended with a simheuristic version. The aim of this extension

is to provide the genetic algorithm with a wider vision in terms of simulated

risks. The GA can be considered a deterministic solution and it implies that

some deviations coming from the stochastic nature of the financial market are

not recognised into the algorithm. Thus, introducing inside the genetics a

simulated value for the utility function delivers us a more reliable and realistic

solution.

This chapter is taken from Nieto et al. (2022b), with appropriate modifications:
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• Chapter 10, entitled as Simheuristics in Finance: Managerial Insights,

is an application of four common cases from a managerial point of view, using

simheuristics. In this chapter I introduce a little piece of machine learning to

improve the search of better solutions, and other improvements in the genetic

algorithm to avoid the natural noise that the random selection of individuals

provokes. The four common cases of the market are studied with diverse

conclusions. In some of them, the conclusion is that traditional techniques

don’t introduce too many deviations, but in others, the study concludes that

it is highly recommended to apply these techniques to obtain more robust

solutions. A summary of how simheuristics is applied in finance and the main

aspects from a managerial perspective of view can be found in our recently

published paper Doering et al. (2022).

• Chapter 11, Final Conclusion and Further Research, is a short summary

with the main conclusions of this work and new possible new lines of research.

• Finally, the Thesis ends by attaching two appendices. The first one, Ap-

pendix A, lists all the outcomes of this research work, including all the papers,

six in total, and conferences in which I have been the speaker, three in total.

In the second one, Appendix B, I show the front page of the aforementioned

six papers.
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Chapter 2

Decision Making in Finance

2.1 Portfolio Management

The theory of Portfolio Management is by far the most prolific topic in the field of

Finance. Although many theories or strategies are developed, the most important is

the portfolio theory elaborated by Markowitz (1952). The theory is based on assets

whose return is modelled as a Gaussian random variable. Let α be a market with

N different assets, and let Ri the return of the asset indexed with the number i, as

Ri behaves as a normal random variable, it is completely characterised with only

two values, µi and σi, the expected return or mean and the volatility or standard

deviation respectively for a given period of time. We also have to consider that

assets are correlated as it is usual between random variables, and we represent the

matrix variance-covariance as σij. Let’s suppose we have a portfolio of assets. If

we consider that the value of my portfolio is equal to the monetary unit, and xi

represents the proportion of money we have in the asset i, at the end of the period

we have the following value:

P =
i=N∑
i=1

xi(1 +Ri) (2.1)

Thus, the value of the portfolio is also a normal random variable since it is a linear
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combination of normal variables. The expected return and the volatility of the

portfolio are respectively:

µP =
i=N∑
i=1

xiµi (2.2)

σP =

i,j=N∑
i,j=1

xiσijxj (2.3)

We can select any combination of xi we want. However, we can find combinations

with exactly the same portfolio volatility and a different expected return. It means

that some possible portfolios are superior than others as we consider that portfolio

A is better than B if σA = σB and µA > µB. This can be synthesised in the very

famous optimisation portfolio problem:

Max
i=N∑
i=1

xiµi (2.4)

s.a.
i,j=N∑
i,j=1

xiσijxj ≤ σP (2.5)

i,j=N∑
i,j=1

xi = 1 (2.6)

0 ≤ xi ≤ 1 ∀i (2.7)

The set of pairs (µP , σP ) that optimises the former expression have the shape of

a parabola. That curve is called the Efficient Frontier because it represents the

efficient way to invest given a set of assets. If you choose a portfolio that results in

an outer point of the efficient frontier, you are assuming an extra risk unnecessarily.

Until now, we haven’t considered non risk-free asset. When a non risk-free asset is

present things change a little bit. You can regulate much more what amount of risk

or volatility you are willing to take. This case was studied by J. Tobin (Tobin, 1958)
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where he formulated the two-fund separation portfolio. Basically, he proved that

when we have a market with N risky assets and one risk-free asset, the risk-return

pair of any admissible or feasible portfolio cannot lie above the capital market line

(CML) (figure 2.1) in the risk-return space. Moreover, the portfolio represented

by any point in the CML maximises the Sharpe Ratio (Sharpe, 1994), defined as

follows:

S =
RP −Rf

σP

(2.8)

The Sharpe Ratio is the slope of the CML and represents how much money I will

earn investing one monetary unit in risk.

Figure 2.1: Capital Market Line

The lowest point (0, Rf ) corresponds to invest all the money in the risk-free asset.

The Market Portfolio point (RM , σM) corresponds to the opposite situation, i.e.,

all the money is invested in risky assets. The upper points need to borrow money,

which is related to either a negative or short position in risk-free money, and that

money is invested in risky assets. This situation is clearly theoretical since no one

lends you money while you invest it in a risky market without an extra payment

that compensates your risky investment and your own credit risk. So, the realistic

capital market line goes from the risk-free point to the Market Portfolio point.
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2.2 Asset and Liability Management

Asset and Liability Management refers to the set of techniques that a company

apply to guarantee its debts assigning a number of assets, in a variable interest

rate scenario. A financial institution, generally a bank or an insurance company,

signs a contract in which firstly it gets money from the client and, in the long

term, the institution has to pay back that money with a certain return. In the

meantime, interest rates fluctuate so the financial institution assumes a risk because

risk can decrease and in that case, the company is forced to have its own capital

to keep safe the client’s rights. So, the allocation of the assets is a key question to

protect the rights of the financial consumer, and also for the health of the financial

system. Apart from the interest rate, other aspects can change, as the credit quality

of the asset issuers since they can go bankrupt, or the expected return of equity.

This question is widely treated in literature and also in legislation. In fact, the

legal regulation gives two options to the financial companies: having a matching

between the assets and liabilities following precise rules contained in the regulation,

or assuming a general provision for its liabilities. The problem of assuming the

general provision is that is extremely conservative, and it implies that the company

has to accept a reduction of its profit. There are two ways to face the ALM, the

first one is in terms of accountability, and the second one is in terms of cash-flow.

In the next subsections, I introduce these approaches.

2.2.1 Duration

One very common approach into the ALM theory is the study of financial duration

for an asset. This was studied by Macaulay (1938). It is defined in a flat interest

rate context and fixed cash-flows. The purpose of this approach is to have stability

in our balance sheet under changes of the interest rate. When the interest rate

fluctuates, we can have significant changes in the valuation of both our assets and

liabilities. Let’s suppose we have fixed income, we have a deterministic temporal

structure of revenues coming from the coupons of our fixed income securities. In this

class of assets, we cannot change the maturity date of each coupon, so the variation
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in the present value will depend on those dates. On the liabilities side we have the

same situation. Clients have to be paid in specific dates. So the calculus of the

provision is also affected by the interest rate and its fluctuations. As the amounts

of money in assets and liabilities are not equally distributed along the time, it turns

out that we have a mismatch in terms of total valuation. It means that the value

of our company can be stressed just because the assets and liabilities differ in their

present values under changes in the interest rate. The Duration approach guides us

to select those assets we have in our balance sheet and assign them to our liabilities

so that the total variation is negligible under changes of the interest rate.

The definition of the duration of an asset is:

D =

∑
i tiPVi∑
i PVi

(2.9)

where PVi is the present value of the cash-flow i, and ti is the time in years or

months of the cash-flow i. That expression is the coefficient of the linear term in the

Taylor polynomial for the present value formula having a variation in the interest

rate. So, the present value, upon small variations of the interest rate, the variation

of the present value is as follows:

∆PV = D∆r (2.10)

where ∆PV is the variation of the present value of the cash-flow, D is the duration

and ∆r is the variation in the interest rate. Let’s remember that, in this approach,

the interest rate is flat. As we can see, the variation of the interest rate is also flat,

i.e., we will keep flat the term structure of interest rates all the time. If we choose

a set of assets that have the duration equal to the duration of the liabilities, as a

first approximation, the net present value of our portfolio won’t change, so we get

our goal. If the interest rate variation is not so small, we can add the second term

of the Taylor’s expansion, so that:

∆PV = D∆r +
1

2
C(∆r)2

The C value, named Convexity, is the second term of Taylor for the present value
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expression. A complete development of this topic can be found in (Fabozzi, 1999).

A complete survey of this approach can be found in this research work in chapter 3.

The main weakness of this approach is that it immunises against interest rate

changes, but not against mismatching between cash-flows of assets and liabilities. If

we have to pay before we collect the money from our assets, we will have to borrow

money, so we will have an extra cost of capital that the duration approach doesn’t

consider. This problem is treated in the next subsection.

2.2.2 Cash-Flow Matching

In general, cash-flow matching is the situation we have when both assets and liabil-

ities match in time. If we had that situation, we could guarantee our liabilities with

an accuracy of 100%. The main difficulty in the real world is that the cash-flow

coming from our assets does not match perfectly in the dates we have to make,

and also, we have different risks among the cash-flows due to their different nature.

A plausible matching is to have sufficient positive cash-flows before the maturity

dates of our liabilities. Obviously, this circumstance is also idyllic but we could have

moments along the time where we would have to make a payment but did not have

enough money to perform such payment. In this case, we may be forced to borrow

money from a credit institution. All these considerations or circumstances lead us

to define the balance Si in a recursive way:

Si+1 =

Ai+1 − Li+1 + Si
Di

Di+1
Si ≥ 0

Ai+1 − Li+1 + Si
Ci

Ci+1
Si < 0

(2.11)

Where Ci > Di and they are both discount factors, Ai is the asset in the time i, and

Li is the liability also in i.

The balance is the amount of money we have in each moment of our life. It is the

sum of three components: the addition of positive income (assets), the addition

of negative income which are the payments we have to perform, and the previous

balance we had coming from the previous period, with its interests. If the previous
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balance is negative, we need to borrow money, which is equivalent to increase the

interest rate and capitalise that negative value with that more elevated rate.

Now, our hedging problem is to select a set of assets from our portfolio having such

that Sn ≥ 0, i.e., such that our final balance cannot be negative. Our optimisa-

tion problem has many possibilities. The most direct approach is to maximise the

value of the asset portfolio of the company having allocated some of them to the

immunisation; it is equivalent to say that we want to select the minimum number of

assets for the cash-flow matching. There is another possible optimisation strategy

very related to the insurance market. In this market, the mathematical provision

concerning to the liabilities have to be calculated with a fixed interest rate. The

interest rate you have to use can either be the one imposed by the legal supervisor,

or the one you assured to your client, and for that, you must have cash-flow immu-

nisation that guarantees that interest rate. So, you would prefer to immunise those

liabilities with those assets with the internal rate of return similar to the guaranteed

interest rate to the client. In that case, you would not need to increase the amount of

provision in case of having smaller regulatory interest rate. Let’s take into account

that for a value of 1 billion euros in liabilities, a provision can change around 10

million euros per 0.1% decrease in the interest rate. That could shock the company,

even lead it to bankrupt. So, ALM can be absolutely determinant to the survival of

the financial institution. I treat this problem of asset allocation in chapters 4 and

5.

Another important consideration in the cash-flow matching is that the nature of

these cash-flows can be stochastic. Concerning the liabilities, they depend on the

contractual clauses, and they can change in quantity and maturity if certain events

are triggered. Those events have to be specified in the contract. On the other hand,

our assets have fluctuations in valuation following the evolution of the financial

market as a general rule. This stochastic behaviour makes possible that almost any

scenery would be possible, so we have to treat with random variables and probability

functions. The constraints in our optimisation problem have to deal with tolerable
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risk values, such as:

E[Sn] ≥ 0

δ1 ≤ P (f(Sn)) ≤ δ2

It means that our final balance has to be necessarily positive at least in a mean

term because, in general, we cannot guarantee a particular figure due to its random

nature. The second expression indicates that we can desire or need a function of

the balance with a probability P within a specific interval. These conditions can be

like P (Sn < 0) < 0.05 or P (Si < 0 ∪ Si+1 < 0 ∪ Si+2 < 0) < 0.05. This problem is

a stochastic version of ALM that is also treated in the next chapters and in general

throughout this research work.

Another possible cash-flow matching problem is treating it as a Portfolio Optimiza-

tion Problem with tracking error. In this case, our liability is the portfolio we want

to follow, and we have to select our assets to minimise a tracking error index with

some constraints (the final balance has to be positive or, in case of a stochastic

model, its probability has to be greater than a specific value).

2.3 Legislation

Although this research work is focused on the development of simheuristic algo-

rithms to be applied to the ALM problem, we cannot lose sight that the companies

where ALM is highly used, mutual funds, insurers and banks, operate in regulated

environments in any country of the world. By far, the site where the regulation

is most advanced is Europe. Specifically, in the field of matching and calculation

of technical provisions, the EU published the directive 2009/138/EC of the Eu-

ropean Parliament and of the Council. This directive, among other regulations,

establishes the requirements that an insurance company has to accomplish concern-

ing the technical provisions and the matching adjustment. In particular, we can

find in article 77b the rules for the matching adjustment to the relevant risk-free

interest rate term structure, and in article 77c the rules for the calculation of the
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matching adjustment. The first rule we read is that insurers and reinsurers may

apply a matching adjustment to the relevant risk-free interest rate term structure to

calculate the best estimate of a portfolio of life insurance or reinsurance obligations

subject to prior approval by the supervisory authorities. After that, it establishes

the conditions of eligibility of the assets to be part of this matching adjustment.

These assets can be bonds or other assets with similar cash-flow characteristics and

they have to be maintained over the lifetime of the obligations. This rule has been

specifically pointed out in chapters 4 and 5 when we mention "we freeze the assets".

The article continues declaring that the expected cash-flows of our selected assets

have to replicate the cash-flows of the obligations and any mismatch cannot give rise

to significant risks. A clever solution for those mismatches is integrating a credit

policy, as I have done along all our research. With that solution, the mismatching

doesn’t exist as we interchange it for another obligation, the loan repayment. Nev-

ertheless, not all the rules are so friendly. There are three points that are, in my

opinion, very restrictive:

• the matching adjustment is not permitted if the contracts underlying the obli-

gations give rise to future premiums. The idea underlying this statement is

that the future premiums undermine the ability of the insurer to manage its

match adjustments.

• the cash-flow generated by the portfolio of assets has to be completely deter-

ministic (except if they depend on inflation in the same way as obligations do).

The idea is to minimise all kinds of risks and as a consequence, it restricts the

class of assets to bonds and similar securities.

• if the insurer applies the matching adjustment to a portfolio of obligations, it is

not permitted to revert back to an approach that does not include a matching

adjustment. If a mismatch is produced and it lasts two months, the insurer

is obliged to communicate this situation to the supervisor and it will have to

cease of applying any matching adjustment for a period of 24 months.

It seems that the regulator is so severe because there is not any advanced method to

calculate the intrinsic risk of a matching adjustment, and so, a technique to manage
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with guaranties the matching adjustment in statistical terms. Precisely, these kinds

of clauses incite the importance of researching in the ALM field.

The European Insurance and Occupational Pensions Authority (EIOPA) published

a consultation paper to review the impact of the Solvency II Directive (the Eu-

ropean insurance regulation) https://www.eiopa.europa.eu/document-library/

consultation/consultation-paper-opinion-2020-review-of-solvency-ii_en.

This paper covers many topics including the Matching Adjustment. The results are

quite surprising. Only two countries in all Europe are using matching adjustment

portfolios, the UK and Spain. (In fact, in the EU, and after the brexit, only Spain

is using it as the UK is not a member of the Union anymore). 18 UK firms and

14 in Spain. The consultant Milliman tries to explain why other countries refuse to

apply this regulation (https://assets.milliman.com/ektron/SII_2020_EIOPA_

Opinion_MA.pdf). The main issue that Milliman points out is that if a firm applies

the rules of the matching adjustment, the Solvency Capital Requirement has to be

increased. It is a real contradiction with the objectives pursued by Solvency II. The

reason is that all the assets we choose for the matching cannot be considered for a

parallel requirement of diversification. So, this regulation has a clear disincentive

effect in many ways. Therefore, this fact must serve as a stimulus to investigate

advanced methods that allow us to resolve the limitations in management that

currently exist and that condition the legislator.
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Chapter 3

Research Methodology

3.1 Metaheuristics

Metaheuristics are general-purpose algorithms with which Combinatorial Optimisa-

tion Problems can be addressed (COP). These COPs are infeasible for exact methods

and should generally give a satisfactory approximation to the true optimum within

reasonable computing time. The advantages of metaheuristics include their robust-

ness to changes with respect to objective functions, constraints and problem size,

their simplicity and transparency as well as their transferability to similar problems

(Gilli et al., 2011). Metaheuristics have been classified in numerous ways depending

on their characteristics. In the following, the most common classification features

are presented.

• Trajectory versus discontinuous methods: Metaheuristics can be dis-

tinguished based on whether they follow one search trajectory characterised

by a closed walk or allowed for larger jumps in the neighbourhood including

the temporary acceptance of worse solutions in order to escape local minim

(Birattari et al., 2001). Local search algorithms are generally trajectory.

• Population-based versus single-solution based methods: In single-

solution based metaheuristics, such as tabu search or simulated annealing, a

single solution is manipulated at each step of the process, whereas population-
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based metaheuristics, such as genetic algorithms or ant colony optimisation

employs a set of solutions in order to efficiently explore the search space (Birat-

tari et al., 2001). Thus, the former are exploitation or diversification-oriented,

while the latter are exploration or intensification-oriented (Talbi, 2009). This

fact demonstrates the trade-off between the exploitation of the entire search

space and the intensity of the search within specific areas of the search space

due to computing time limits.

• Nature-inspired versus non-nature-inspired methods: Many metaheuris-

tics are inspired by nature, such as simulated annealing (physics) or ant colony

optimisation (swarm intelligence, social sciences) or genetic algorithms (biol-

ogy) (Talbi, 2009).

• Memory usage versus memoryless methods: Some metaheuristics, such

as tabu search, explicitly retain a search history by which the future search

direction is influenced (Birattari et al., 2001).

• Iterative versus greedy methods: This distinction concerns the starting

point of the method: Metaheuristics either start with a complete generated

solution that is transformed at each iteration (iterative) or with an empty

solution that is filled with decision variables at each step until completion

(greedy) (Talbi, 2009).

• Deterministic versus stochastic methods: This classification is to be ac-

counted for in the performance evaluation of the metaheuristic. A determin-

istic method will always yield the same solution for a given initial solution,

whereas stochastic methods apply rules that are, to some extent, random and

thus possibly lead to different solutions (Talbi, 2009).

A complete classification including further classification aspects, such as dynamic or

static objective function, and the most common metaheuristic methods is provided

in 3.1.
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Figure 3.1: Classification of Metaheuristics (Dreo, 2017)

3.2 Genetic Algorithms

3.2.1 Review

The Genetic Algorithms are a kind of algorithms that imitate the behaviour of the

biological evolution. This technique was first introduced in 1975 by John H. Hol-

land in his Adaptation in Natural and Artificial Systems (Holland, 1992), where he

links a nonlinear mathematical model with the biological evolution. In this work,

he settles the application of this relationship to so many diverse fields as economy,

psychology, game theory or artificial intelligence, among others. The aim of a GA

is to find the best solution in an optimisation problem. To do so, a collection of

individuals is established, where each one represents a possible solution. The pop-

ulation is extended creating new individuals using the previous ones, and parents

and sons receive a value (fitness function). A reduced number of individuals are

selected among all the population, and we repeat the procedure until some conver-
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gence criterion is reached. The keystone of this algorithm is the way we create the

sons. For that purpose, two functions must be established: crossing and mutation.

Each individual has to be codified with a set of parameters (genes) that we call

chromosome. Thus, each possible chromosome represents a possible solution of our

problem. So, the crossover function gives another chromosome from two previous

ones. If nothing more is done, after many applications of the crossover function over

the population, we would have the best possible solution made by the combinations

of the genes coming from the first generation of individuals. In that case, we do not

have any guarantee that we are under a path that drives us to the optimum. In

fact, we will have the best individual made from the finite combination of the initial

genes. To avoid this situation, another function is needed: the mutation. Mutation

gives us the opportunity of creating new individuals in a genetic sense. In other

words, although we didn’t have initially the necessary genes to get the optimum,

we would have the opportunity to get them in the future thanks to the mutation

(creation of new genes). We show the scheme of a standard GA in the figure 3.2:

Figure 3.2: Diagram of a Genetic Algorithm

The GA is useful in those problems where we cannot have the derivative of the

objective function1. When we have some local optimums, the GA does not give us

the confidence of getting the best solution but only a good one, i.e., a local optimum.

Nevertheless, if the size of the population is sufficiently large, the probability of

reaching the best possible solution increases.

1Recall that if we can derive the objective function, we can calculate the gradient, and we are
able to apply the gradient-based optimisation without the need to construct a population, giving
us a way to obtain an local optimum with extraordinary accuracy and speed.
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The first step in this type of algorithms is the creation of an initial population.

This step is essential because not any random selection of individuals gives us an

evolutionary feasible population. That is, we could have a random set of individuals

that, once we cross among them and we proceed to mutations, no son is better than

his parents. This can be possible depending on how we define our constraints and

thus, our feasible solutions. If our domain is not convex, we can fall into the mistake

of selecting individuals that recombined linearly fall outside the domain.

The crossover function is strongly dependent on how we select the genes that define

our solution. In general, this selection is not unique. We can find several ways to

parameterize the solution but, in order to be used in an evolutionary algorithm, we

should think about designing the genes so that each one represents some trait clearly

identified. In this way, when we interchange the genes to build a new individual,

this one will inherit those traits or features from his parents.

There are many ways to specify the crossover function, but the most common are

One-Point Crossover, Two-Point Crossover and Uniform Crossover. Let’s imagine

that our representative chromosome is a binary vector. If we select a specific co-

ordinate or position into the list of gens, and we swap all the coordinates (gens)

between two chromosomes before (or after) this position, we have the case of One-

Point Crossover. In figure 3.3 an example is illustrated. The Uniform Crossover

consists of swapping or not each genes depending on a probability associated to

each one. As we will see in the chapter 8, a variant of One-Point Crossover is used

in our GA. We select a random position each time we cross two individuals and we

swap the gens before that position.
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Figure 3.3: Crossover Function in Genetic Algorithm

As we have mentioned before, the crossover function is not sufficient by itself. Let’s

suppose that our individual can be represented by a vector of natural numbers

between 0 to 10. When we select our primitive population of size N , we select

random numbers to create all the N chromosomes. Effectively, the first crosses

create new individuals, but the number of possible individuals is conditioned by

the primitive selection. For instance, if we don’t have the number 7 in position

1, we will not be able to create an individual with number 7 in the first position

since the possible swaps won’t have that possibility. So, an extra mechanism is

necessary to extend the traits of our individuals. That process is the mutation.

Mutation is absolutely necessary if we want to have variety, and therefore, to have

the opportunity of having the traits that belong to the best solution. Only combining

both crossover and mutation, we have the chance of having the optimum.

3.2.2 Methodological Contribution

The last chapters of this thesis are dedicated to how we can apply the genetic

algorithms to the main topic of this research, the ALM. The problem we solve is
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completely detailed in chapter 8, but for the purpose of this section we will rewrite

it in a more general notation:

Maximise U(xij, πj) (3.1)

U(xi,j) is a nonlinear function of a matrix of unknowns xi,j. The index i identifies

the money of a transaction of the asset i and j is the time where the transaction is

done. The vector πj has to be with the interest rate in each period of time j and is

also a function of xij. In our problem, we suppose that this interest rate can have

only two possible values depending on xij.

πj = πj(xij) (3.2)

This optimisation problem is followed by a considerable list of constraints that can

be summarised as: ∑
i

Ckixij ≥ ck (3.3)

where the coefficients Cki are also dependent on πj.

The size of this problem can be enormous since we have to consider i× j unknowns,

and at least, we consider that U is quadratic, so we have an objective function with

not less than i2 × j2 terms.

This system has two main difficulties, apart from the size of the problem. On the

one hand, we have to tackle with many local optimum solutions and near one each

other, and on the other hand, the parameter πj swaps from one value to another so

it converts our objective function in non derivable.

The approach based on a genetic algorithm gives us the chance of searching better

solutions starting from a trivial one. In this case, if we follow the schema we com-

mented before, we will have a good solution as it is our purpose. But in this kind of

problems, in which time is a relevant player, we cannot be satisfied with just a good

solution: time imposes on us an order and that solution can be considered bad if it
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doesn’t respect the logic of the time. For instance, let’s imagine that we have local

continuity in a period p. In this case, we should impose smoothness to the variables

xip. If we visualise this effect in terms of investment, we could have an investment

of +3 in period p− 1, −2 in period p and +2 in period p+ 1 which is not tolerated

by any investor since the last two transactions are meaningless.

To correct that, we have applied the concept of civilisation. One civilisation is the

population we have as a result of a complete converged cycle of a genetic algorithm.

After we get the convergence, what we have to do is to mutate all the individuals of

the population and so, we have a new population. Obviously, the new population is

worse than the previous one, but we have jumped to another place in our domain.

This new population has also to evolve following the GA and we will stop when a

new convergence criterion is reached (see fig 3.4). In our experience, this process

improves the results not only in the mere value of the objective function but also

in the logic of the time. If we measure the dispersion D as the sum of the absolute

deviation from a transaction to the next one, i.e.: D =
∑ | Ti − Ti+1 |, we can see

that the process of civilisations converges to a minimum dispersion.

Figure 3.4: Chain of Civilisations in a Genetic Algorithm

Definitely, the process of concatenating civilisations improves notably our result and

reduces the dispersion. To the best of our understanding, this is a novel procedure in

the practice of Genetic Algorithms, that is very useful when we treat with solutions

that represent paths along the time.
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3.3 Montecarlo Simulation

3.3.1 Review

In Science, we usually try to describe the behaviour of a system through a mathe-

matical model. In several cases, we need to consider many features because they are

relevant for the whole of the system and impact in its evolution. In such situations,

it is not uncommon that the solution of the model is unreachable and different al-

ternatives have to be taken. If the complexity of the equations is high, one of those

alternatives is Montecarlo simulation. This technique consists of either reproduc-

ing all the elements in a vast recreation using computation or creating a relevant

number of parallel and identical systems and evolve them independently, to gather

statistically the final results, if some of the features follows some known stochastic

behaviour.

The system is formed by elements and these elements have attributes whose evo-

lution is described by the specific model. We can differentiate the models, among

other classifications, in:

a) deterministic model

b) stochastic model

The first kind of models have deterministic laws that drive the state of the elements

along the time. One example could be a planetary system, since the physical laws

are precise, deterministic and well known. In such a case we compute the evolution

of the elements that conform our system. The second kind of models are ruled by

probabilistic functions. So, we cannot proceed as in the deterministic case because

each time we run the simulation, we get a different result. So, we have to create

many instances of the problem and run the simulation for each one. Ultimately, we

must gather all the results to analyse them in statistic terms.

Along this research, we will implement stochastic models because our elements rep-

resent stock prices of a financial market, whose nature is purely stochastic.
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So, if we have a system S in a specific initial state S0 described by a set of N⃗0

parameters, the simulation will lead to a final state S1 where those parameters have

changed to N⃗1 according to the stochastic rules of our model. Having the final state,

we can calculate any required value X related to the parameters of the final state

S1. Repeating this simulation, a specific amount of times, we get an estimator of

the variable X. Following the Central Limit Theorem, we can state that the mean

estimator of X follows a normal distribution with mean X̄ and standard deviation

σ/
√
n, where σ is an unknown standard deviation that comes from our specific

stochastic model and n is the number of simulations. If we take a lot of executions,

the standard deviation of this estimator tends to zero, so the mean can be determined

with accuracy.

3.3.2 Generation of Normal Random Numbers

The simulations we have implemented along this research need the generation of

normal random numbers. There is not only one procedure to do this, and in fact,

we don’t have a library that, by default, gives us that functionality, in the pro-

gramming language we have used, c#. The computers give us the possibility of

getting sequences of pseudo-random numbers in the interval ]0, 1[. So, we have to

implement a procedure that gives us normal random numbers having a uniform

probability distribution. For that, we have followed Box and Muller (1958). This

method states that if U1 and U2 are independent random variables that follow a

uniform distribution, the magnitudes N1 and N2 defined as:

N1 =
√
−2 lnU1 cos(2πU2)

N2 =
√
−2 lnU1 sin(2πU2)

(3.4)

are independent random variables following standard normal distributions. This

method is fast although it has a bias because of the ln. Indeed, when we work

with a 64-bit microprocessor, we will be able to generate a number greater or equal

than 2−64. At most, we will have
√
−2 ln(2−64) = 9.42. So, we won’t have numbers

greater than 9.49 times the standard deviation. Nevertheless, this is not so dramatic
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since the cumulative probability we loose is 2× (1− Φ(9.41)) ≈ 5× 10−21.

When we need to generate correlated random numbers, we use the Cholesky decom-

position (Higham, 2009). It is a method to rewrite a positive semidefinite matrix

Σ in this form: Σ = LLT where L is a lower triangular matrix. Having that, if the

vector Z is a vector of independent normal random numbers, the vector X = LZ is

a vector of correlated normal numbers with Variance-Covariance Σ.

3.4 Simheuristics

As analysed optimisation problems become more complex, an increasing number of

COPs is also characterised by uncertainty. Simheuristics enhance a metaheuristic

framework that yields good solutions for deterministic optimisation by including

simulation in order to account for stochastic uncertainty that is present in many

real-life considerations (Juan et al., 2015a). This uncertainty can be modelled in

the objective function or in the constraints. It is to be noted that the presence of

extreme volatility in either should generally not be modelled employing optimisation

techniques because of the diversity of individual outcomes (Juan et al., 2015a).

It is thus assumed that the methodology that yields a high-quality solution for a

deterministic formulation of a problem can also yield a high-quality solution when

reasonable levels of uncertainty are incorporated through simulation (Juan et al.,

2015a). This assumption justifies the following methodological approach 3.5. The

deterministic version of the COP is considered by eliminating uncertainty and the

metaheuristic is run to determine promising solutions that are consequently sent to

the simulation process, during which only several iterations are run at this stage

to rank the solution in order to sufficiently explore the search space and identify

promising search areas (Juan et al., 2015a). After a stopping criterion is reached

intensive simulation can be performed on a reduced set of solutions. Although

the proposed methodology is relatively new, potential applications benefit from the

extensive research on the application of metaheuristics to deterministic COPs and

thus from their simplicity and efficiency, while enhancing their capability to solve

more realistic real-life COPs.
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Figure 3.5: General Structure of Simheuristic Approaches (Juan et al., 2015a)
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Chapter 4

ALM in Financial Markets: State of

the Art

Abstract

Most financial organisations depend on their ability to match the assets and lia-

bilities they hold. This managerial challenge has been traditionally modelled as

a series of optimisation problems, which have been mostly solved by using exact

methods such as mathematical and stochastic programming. The chapter reviews

the main works in this area, with a special focus on three different problems: du-

ration immunisation, multi-stage stochastic programming, and dynamic stochastic

control. Hence, the main results obtained so far are analysed, and the open chal-

lenges and limitations of the current methods are identified. To deal with these

open challenges, we propose the incorporation of new heuristic-based algorithms

and simulation-optimisation methods.

4.1 Introduction

All financial companies need to manage the risk associated with their liabilities. This

is achieved by properly selecting a convenient set of assets from the market, which
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are then assigned to cover liabilities, thus reducing the risk of bankruptcy. However,

both assets and liabilities are exposed to an innumerable number of external fac-

tors, which need to be factored in order to maintain and update the allocation map

between assets and liabilities. The asset and liability management (ALM) challenge

refers to the set of methods and techniques used to identify those assets that offer

an optimal match with a set of given liabilities. ALM can be seen as an optimisa-

tion problem: the financial institution has to establish a particular strategy, which

gives rise to an objective function subject to a set of constraints. The optimisation

problem typically maximises the company’s value function, it minimises the price of

the selected assets, it maximises the expiration value or terminal wealth or combines

several aforementioned objectives.

The management of assets and liabilities is of paramount importance for financial

institutions, such as banks, insurance companies, and pension funds. Although all

of them are part of the financial system, they differ in terms of the nature of their

liabilities. Accordingly, the strategy of selecting the adequate assets to match their

liabilities also varies across different financial institutions. Among the different types

of institutions, banks take deposits as their main liability. These deposits vary over

time. Insurance companies also have time-varying liabilities, which are derived from

insurance policies they underwrite. A portfolio of an insurance company tends to be

large in order to benefit from the law of large numbers. Pension funds project their

liabilities into the future, when the individual is expected to retire. Due to the time

consideration, the role of an interest rate becomes relevant in the ALM process. It

is also essential to model the stochastic behaviour of the random variables in the

optimisation problem, i.e.: liabilities, assets, interest rates, and/or inflation. Due

to the stochastic and dynamic nature of assets and liabilities, it is reasonable to

assume that the initial asset selection might need to be updated throughout time,

as new information becomes available, so the match between assets and liabilities

is re-optimised taking into account the new data. Thus, the financial institution’s

assets are re-balanced in each period by selling and buying asset shares in order

to benefit from portfolio returns. These considerations lead us to three main tech-

niques in ALM. Firstly, the duration theory, which aims to define an immunisation

strategy so that the value associated with the portfolio of assets matches, at any
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Figure 4.1: Evolution of Scopus-Indexed Documents Related to ALM

time, the value of the liabilities. Hence, a change in the interest rate will not affect

the balance. Secondly, one can consider a single-period version of the problem or a

multi-period one, in which the optimal asset selection is determined at each stage.

Also, the problem can be deterministic – by simplifying some characteristics – or

stochastic in nature. In the latter case, we have to provide a stochastic process for

each asset, which might include random variables in the objective function and even

probabilistic constraints. Thirdly, if time is regarded as continuous, the problem

becomes a stochastic control optimisation one, which gives rise to a system of dif-

ferential equations. As shown in Fig. 4.1, the interest of the scientific community in

asset and liability management (ALM) has been increasing during the last decades.

The contribution of this chapter is threefold. Firstly, it reviews the main works in

this area, with a special focus on three different problems: duration immunisation,

multi-stage stochastic programming, and dynamic stochastic control. Secondly, the

main results obtained so far are analysed, and the open challenges and limitations of

the current methods are identified. Thirdly, the incorporation of new heuristic-based

algorithms and simulation-optimisation methods is proposed in order to deal with

these open challenges. The rest of the chapter is structured as follows: Section 4.2

provides a review of existing work on duration immunisation. Section 4.3 analyses
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applications of stochastic programming to ALM. Section 4.4 completes a review on

stochastic control applied to ALM. Section 4.5 discusses the need for considering

new simulation-optimisation approaches in dealing with these problems. Finally,

Section 4.6 highlights the main conclusions of this work and propose some open

research lines.

4.2 Duration Immunisation

Under the assumption of deterministic cash-flows on both sides, assets and liabilities,

and constant interest rates, Macaulay Macaulay (1938) sought to devise a strategy

for matching values of assets and liabilities. The present value (PV) of a fixed cash-

flow (CF), recorded at times t ∈ {0, 1, . . . , T}, and with a constant interest rate i,

is commonly defined as:

PV =
T∑
t=0

CFt

(1 + i)t
. (4.1)

If the goal is to provide immunisation against variations in the interest rate, we need

to compute the derivative of the present value with respect to the interest rate i:

1

PV

dPV

di
= − D

1 + i
, (4.2)

where D is called the Macaulay Duration and is described as:

D =

∑T
t=0 t · CFt(1 + i)−t

PV
. (4.3)

The immunisation in this approach consists in selecting a set of assets that satisfy

two conditions: (i) the present value of the assets matches the one of the liabilities;

and (ii) the time duration of assets also matches the one of liabilities. Under these

conditions, it is possible to conceive that ‘slight’ changes in the interest rate will not

have a noticeable effect on the values of assets and liabilities. If more pronounced

changes in the interest rate are expected, then it might be necessary to add a third

condition, the so-called convexity requirement, which corresponds to the second

derivative of the price with regard to a change in the interest rate change in a
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Taylor’s series. This approach is clearly focused on potential changes in the interest

rate, and constitutes the first ALM strategy analysed in the scientific literature.

Later, Hicks (1975) introduce the term “corrected duration”, to justify variances in

the present value when the interest rate changes. These authors measure duration

as a percentage, while the previous one measured duration in terms of time.

The first works about immunisation where formalised by Fisher and Weil Fisher

and Weil (1971), who defined the conditions under which the value of an investment

in a bond portfolio is protected against changes in the level of interest rates. The

hypotheses of this work are: i)the portfolio is valued at a fixed horizon date, and

ii) the interest rate changes only by a parallel shift in the forward rates. Fong and

Vasicek Fong and Vasicek (1984) consider a fixed income portfolio whose duration

is equal to the length of a given investment horizon. They prove that, given a

change in the term structure of interest rates, there is a lower limit to the value

of the portfolio. This lower limit depends on two factors: the interest rate change

and the structure of the portfolio. Consequently, they postulate that it is possible

to optimise the exposure of the portfolio under interest rate changes. Bierwag et

al. Bierwag et al. (1993) study the properties of cash-flow dispersion in duration

hedged portfolios. They show that minimising this dispersion is not independent of

stochastic processes, and that the optimisation of the immunisation by minimising

cash-flow dispersion is only valid under specific convexity conditions. Zenios Zenios

(1995) highlights a frequent presence of a mismatch between assets and liabilities in

the financial industry, and shows a complex case of portfolios containing mortgage-

backed securities under the term structure volatility. Among others, techniques

based on duration are explored by this author. Seshadri et al. Seshadri et al.

(1999) embed a quadratic optimiser in a simulation model, which is used to generate

patterns of dividends and market values, thus computing the duration of capital.

This method is used to refine the ALM strategy, and is applied to the Federal

Home Loan Bank of New York. Gajek Gajek (2005) introduces the requirement of

‘solvency’ for a defined benefit pension plan, i.e., under a scenario with a relatively

low interest rate, the assets are chosen to be the smallest concave majorant of the

accumulated liability cash-flow. Ahlgrim et al. Ahlgrim et al. (2004) study the risk

for property-liability insurers of movements in interest rates. Their paper considers
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that liability cash-flows, affected by future claim payouts, change with interest rate

shifts due to the correlation between inflation and the interest rate. This study

concludes that the effective duration is lower than the one measured by traditional

methods. Benkato et al. Benkato et al. (2011) analyse the case of eight banks in

Kuwait, showing that this sample of banks adjusted their portfolio of assets and

liabilities by matching their respective Macaulay’s duration.

4.3 Multi-Stage Stochastic Programming

The allocation of assets in an ALM context is carried out at specific times. When the

manager performs a transaction, she has to cope with transaction costs, asset values

that are dependent on the moment and liquidity constraints, among other variables.

The main goal is to meet the liabilities, but other objectives can be selected simul-

taneously, e.g.: maximising the terminal wealth of the company, minimising the risk

in terms of volatility, etc. As financial markets run in scenarios under uncertainty,

the problem can be regarded as a multi-stage stochastic program (Kouwenberg and

Zenios (2008a)). Multi-stage stochastic optimisation problems refer to situations in

which decisions need to be made at different periods over a planning horizon and

under uncertainty conditions. Typically, at each new period, recourse actions can

also be considered to account for the updated information (Pflug and Pichler, 2016).

Numerous approaches have been studied in the literature, but all of them share a

common structure. On the side of the constraints, two basic sets of equations are

defined: the cash-flow accounting and the inventory balance equations at each time

point. At this point, the volume of each asset class and its values are recorded,

together with information on the number of assets that are purchased and sold. On

the objective function side, the common goal is to maximise expected utility subject

to terminal wealth. In order to solve the optimisation problem, a scenario tree has

to be defined. This represents a lattice of possibilities for each asset, liability, and

other elements in the program, including interest rate, inflation, among others. Each

node is associated with a probability, and the whole lattice needs to be considered

to calculate the expected values. In this regard, Boender et al. (2008) study the
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role of scenarios in ALM, as a lattice of possibilities for each element in the model,

each one with an associated probability. Mulvey et al. (1997) consider a multi-stage

stochastic program and assign a probability to each scenario. Any considered sce-

nario ends with a terminal wealth, and contemplates potential purchases or sales of

assets in each period. In addition, it is usual to consider a vault cash (security stock

of cash). Whenever the liabilities cannot be covered with the existing assets, credit

has to be obtained –notice that this should be a last resource, since it will typically

be associated with a high interest rate. Following Mulvey et al., we can synthesise

the multi-stage stochastic program as follows:

Max
S∑

s=1

πsU(ws
τ ) (4.4)

subject to: ∑
i

xs
i,0 = w0, (4.5)

∑
i

xs
i,τ = wτ , (4.6)

xs
j,t = (1 + ρsj,t−1)x

s
j,t−1 + psj,t − dsj,t, (4.7)

xs
0,t = (1 + ρs0,t−1)x

s
0,t−1 + Σjd

s
j,t − Σjp

s
j,t − bst−1(1 + βs

t−1) + bst , (4.8)

where s represents one possible scenario, πs is the probability of scenario s, ws is

the terminal wealth in scenario s, A is the number of assets, i ∈ {0, 1, . . . , A},
j ∈ {1, 2, . . . , A}, xj is the amount of money invested in asset i, x0 is the vault cash,

psj,t is the purchase of asset j in time t in scenario s, dsj,t is the amount of asset j

sold in time t in scenario s, ρsj,t is the yield of asset j in time t in scenario s, ρs0,t is

the riskless interest rate, bst is the amount of money borrowed in time t in scenario

s, and βs
t is the borrowing rate in time t in scenario s. Finally:

xs
0,t ≥ lt, (4.9)

where lt is the liability cash-flow at time t.

Numerous works have been searching for a better and more realistic description of

the financial system. Hence, Kusy and Ziemba Kusy and Ziemba (1986) study a
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model with legal, financial, and bank-related policy considerations. They apply the

model to a 5-year period for a Canadian bank. Giokas and Vassiloglou Giokas and

Vassiloglou (1991) discuss a multi-objective programming model for the Commercial

Bank of Greece, taking into account institutional characteristics, financial, legal, and

bank-related policy considerations. Oǧuzsoy and Güven Oǧuzsoy and Güven (1997)

present a multi-period stochastic linear model for ALM in banking, assuming a set of

deterministic rates of return on investment and cost of borrowing. They also consider

a set of random deposit levels, liquidity, and total reserve requirements. Mulvey et

al. Mulvey et al. (2000, 1997) show how the Towers Perrin company plans assets and

liabilities to deal with pension-related payments. The model performs an economic

projection, spanning a long-term horizon (10 to 40 years), and finding strategies

via a dynamic assets and liabilities allocation over a range of different scenarios.

Nielsen and Zenios Nielsen and Zenios (1996) study how to apply a multi-period

stochastic program to the problem of funding single-premium deferred annuities, for

which they consider government bonds, mortgage-backed securities and derivative

products. Klaassen Klaassen (1997) shows that, in general, scenarios do not con-

sider the variation over time of some asset prices. Therefore, the solution found by

stochastic programming cannot be considered as optimal in a real-world application,

where uncertainty has to be considered. The paper remarks the crucial importance

of respecting the free of arbitrage hypothesis while defining scenarios. Consiglio et

al. Consigli and Dempster (1998) develop a pension fund problem, in which uncer-

tainty affects both assets and liabilities in the form of scenario-dependent payments

or borrowing costs. Cariño et al. Carino et al. (1994); Cariño et al. (1998); Cariño

and Ziemba (1998) describe the Russell-Yasuda Kasai model. This model, created

by the Russell company and the Yasuda Fire and Marine Insurance Co., determines

an optimal strategy in a multi-period scenario, and it adds the characteristics of

the complex Japanese regulation, such as legal or taxes limitations. In their first

publication, Carino et al. (1994) compare the multistage programming model with

the classical mean-variance model, resulting in an extra income of 42 basis points.

Kouwenberg Kouwenberg (2001) develops a scenario-generation method and applies

it to a multi-stage stochastic program for a Dutch pension fund, where the objec-

tive function consists of minimising the average of contribution rates, taking into
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Figure 4.2: Differences between Scenario Trees and Fixed Mix Approaches. Source: Fleten
et al. (2002)

account the degree of risk aversion. The scenario-tree model is compared to a fixed

mix model as shown in Fig. 4.2.

As sophisticated scenarios are generated in combination with many trading dates,

the number of variables in the mathematical programming model tends to explode.

Gondzio and Kouwenberg Gondzio and Kouwenberg (2001) deal with the computa-

tional complexity of this problem, identifying a bottleneck in memory management.

They combine decomposition methods and high-performance computing to cope

with large-scale instances of the problem, solving a stochastic problem with near

5 million scenarios, more than 12 million constraints, and 25 million variables to

study a pension fund. Gondzio and Grothey Gondzio and Grothey (2006) also solve

non-linear programming models using an interior point solver and a massive paral-

lelisation environment. Bogentoft et al. Bogentoft et al. (2001) study the effects of

the conditional value at risk (CVaR) as a risk measure, the weighted average of the

value at risk (VaR), and the losses exceeding the VaR. They also select similar paths

in the scenario creation, simplifying the problem to representative samples. With

this technique, they are able to solve problems with a very large number of elements

and scenarios. Høyland and Wallace Høyland and Wallace (2001) show that regula-

tion in Norway is not beneficial for the insurance industry, according to the results

of a simple stochastic problem that integrate legal issues. Fleten et al. Fleten et al.

(2002) compare a fixed mix model with a multi-stage stochastic program (dynamic

model). The fixed mix model keeps constant the proportion among the assets, while

the dynamic model changes the proportion in each stage. The conclusion is that the

dynamic model dominates the fixed mix approach. Dash and Kajiji Dash and Kajiji
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(2005) implement a non-linear model based on the Markowitz’s mean-variance ap-

proach Markowitz (1952) for the optimisation of property-liability insurers. Hibiki

Hibiki (2006) compares the results of two different approaches, which model the

evolution of assets both using a scenario tree and a hybrid tree (simulation paths).

(Dempster et al., 2003) combine dynamic stochastic optimisation with Montecarlo

simulation to analyse an ALM problem involving global asset classes and contribu-

tion pension plans. Arguably, their approach can also be used to manage financial

planning problems related to insurance firms, risk capital allocation, and corporate

investment, among others. Additional applications and case studies on ALM can be

found in (Zenios and Ziemba, 2007). Also, (Kouwenberg and Zenios, 2008b) review

stochastic programming models for ALM. Among other issues, they analyse the

performance of these models when applied to pension funds, discussing both their

advantages and limitations. Zhang and Zhang Zhang and Zhang (2009) improve

Hibiki’s model by introducing the CVaR as a risk measure, and market imperfec-

tions. A genetic algorithm is used to solve the new model. Consiglio et al. (2006)

and Consiglio et al. (2008) study the optimisation problem derived from a liability

that includes complex conditions, such as guarantees, surrender options, and bonus

provisions. This leads to a non-linear optimisation problem. Papi and Sbaraglia

Papi and Sbaraglia (2006) solve a problem with two assets, where one of the as-

sets is risky, and the other risk-free. They use a recourse algorithm. Rosmarin

(2008) studies the use of different evolutionary algorithms applied to multi-stage

stochastic models. The author generates a set of scenarios using Montecarlo, and

solves the problem by applying a multi-objective evolutionary algorithm. Ferstl and

Weissensteine Ferstl and Weissensteiner (2011) analyse a multi-stage stochastic pro-

gram under time-varying investment opportunities, where the asset return follows

an auto-regressive process. To minimise the conditional value-at-risk of shareholder

value, the authors utilise stochastic linear programming and a decomposition of the

benefits in dynamic re-allocation. In general, the models do not place limits on

the number of assets, which might be a quite unrealistic assumption in practice.

Examples of specialised books dedicated to ALM are (Bauer et al., 2006), (Adam,

2008), (Mitra and Schwaiger, 2011), and (Choudhry, 2011).Nevertheless, Escudero

et al. Escudero et al. (2009) propose an approach based on discrete variables, lim-
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iting the number of transactions or the number of assets in each time. The model

is solved with a recourse algorithm. Berkelaar and Kouwenberg (2010) introduce

a singular objective function, which consists of a liability-relative draw-down op-

timisation approach. Both assets and liabilities are modelled as auto-regressive

processes. Corsaro et al. (2010) discuss a valuation system of portfolios of life in-

surance policies for stochastic ALM models. They use a parallelised Montecarlo

method combined with the forward risk-neutral measure to speed-up the simulation

process. Gülpinar and Pachamanova (2013) and Gülpınar et al. (2016) treat the

problem under the robust optimisation perspective, deriving in a feasible compu-

tational tractability. These approaches deal with uncertainty in both assets and

interest rates, and are focused on investment products with guarantees, such as

guaranteed investment contracts and equity-linked notes. These authors perform

a series of computational studies with real market data in order to compare the

performance of their approach to that of classical stochastic programming. Several

other approaches to the ALM problem have been studied recently. Thus, Zhang

and Chen (2016) focus on the mean-variance ALM with constant elasticity of vari-

ance. Wei and Wang (2017) focus on random coefficients, while Li et al. (2018b)

study models with stochastic volatility. (Fernández et al., 2018) introduce a stochas-

tic ALM model for a life insurance company. They use GPUs to run Montecarlo

simulations in parallel. (Dutta et al., 2019) employ big data analytics and stochas-

tic linear programming in ALM under uncertain scenarios. The authors study the

relevance of employing a large number of scenarios in solving the stochastic ALM

problem. Finally, (Li et al., 2019) use a multi-period mean-variance model to analyse

an ALM problem with probability constraints. In their model, investors seek to con-

trol for the probability of bankruptcy, while the process is influenced by uncertainty

in the cash-flows. In the Iranian regulation framework, Abdollahi (2020) studies a

multi-objective ALM programming problem where the constraints are realistic legal

conditions of the banking industry. Within a dynamic stochastic control approach,

Sun et al. (2019) studies a mean-variance ALM problem where assets and liabilities

are both stochastic, and where liabilities transfer part of their risk by means of a

reinsurance.Zhou et al. Zhou et al. (2019) construct a program based on the classi-

cal mean-variance efficient frontier. Their approach considers quadratic transaction
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costs. They propose tractability models with and without the risk-less asset, and

derive the pre-commitment and time-consistent investment strategies through the

application of an embedding scheme and a backward induction approach. Movahed

and Fanian (2019) solve a portfolio optimisation problem with realistic constraints

using a GA, where the fitness function is obtained through a Montecarlo simulation

process. Similarly, Solares et al. (2019) solve a portfolio optimisation problem using

a GA, where the fitness function is represented as a confidence interval in order to

model uncertainty. The confidence interval is obtained applying Montecarlo simu-

lation to estimate the expected asset return. Orlova (2019) develops an algorithm

to solve a discrete dynamic process for cash distribution, in which the goal is to

minimise the payment of fines for non-timely financing of expenses. This approach

solves the problem of financial resources distribution under uncertainty over time.

Kopa and Rusý (2020) formulates a complete stochastic program for ALM credit

institutions that grant loans to general customers. In this paper, stochastic multi-

stage scenarios are considered and the behaviour of the consumer are modelled. This

behaviour impacts on the decisions the credit institution has to take and how it has

to allocate its assets.

4.4 Dynamic Stochastic Control

The random behaviour of assets and other market elements, such as interest rate or

inflation, are frequently modelled as a geometric Brownian process in a continuous

time context. ALM is not an exception. Thus, it is possible to consider a stochastic

objective function that also incorporates dynamic equations regulating changes in

market elements. Following Chiu and Li Chiu and Li (2006), we consider n + 1

assets, where asset 0 is considered to be riskless while the other n assets follow a

random walk. The dynamic equation for the price P0 of a risk-less asset can be

written as:

dP0 = P0α0(t)dt, (4.10)

where P0(0) > 0 and α0(t) is the free risk interest rate.
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Since the asset is deemed risk-less, no random component is needed in the dynamic

equation. By contrast, for the price Pi of a risky asset i, the following equations are

used:

dPi = Pi(αi(t)dt+
n∑

j=1

σij(t)dWj(t)), (4.11)

where i ∈ {1, 2, . . . , n}, P0(0) > 0, and W1(t), . . . ,Wn(t) are independent Wiener

processes. Also, αi(t) represents the interest rate for asset i, while σij is the covari-

ance matrix of assets. A typical mean-variance optimisation problem, maximising

the terminal wealth, is shown below:

Maxu(t)E[S(T )] (4.12)

subject to

V ar[S(T )] < σ, (4.13)

where u(t) = (u0, u1, . . . , un)(t) is the amount of money invested in each asset,

S(T ) =
∑n

i=0 Pi(T )−L(T ) is the terminal wealth, L(T ) is the terminal value of the

liabilities, and σ is the user-defined threshold for the tolerated risk. Of course, it is

also possible to consider other objectives based on a specific utility function.

Several authors have proposed different approaches relative to this basic model.

Thus, for example, Chiu and Li Chiu and Li (2006) assume uncertain liabilities,

which follow a Wiener process that is correlated with the assets. Devolder et al. De-

volder et al. (2003) solve a defined contribution pension problem where the benefits

are paid as annuities. To find an analytical solution, they consider one risky asset

and one risk-less asset. The paper shows how the strategy changes immediately be-

fore and immediately after the beginning of an annuity, and depending on the utility

functions as objective functions. Briys and De Varenne Briys and De Varenne (1994)

study a profit-sharing policy in an insurance company. With this policy, the poli-

cyholder has the right to receive a guaranteed interest rate and a percentage of the

company’s revenues. The results are used to evaluate different aspects of regulatory

measures that are frequently encountered in life-insurance business, such as rate

ceilings, capital ratios, and asset restrictions. Barbarin and Devolder Barbarin and

Devolder (2005) develop a model, in which assets are a mix of stocks, bonds, and
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cash, while liabilities are the result of a guaranteed technical rate to the premium,

plus a participation rate in the case of a surplus. The paper integrates a risk-neutral

approach with a ruin probability. VaR and CVaR conditions are tested by includ-

ing an investment guarantee. Koivu et al. Koivu et al. (2005) explore the effects

of Finnish regulation within a stochastic model for a pension insurance company.

Seven economic factors, pertaining to Finland and the EU, are described as a vector

equilibrium correction model. This vector is then used to determine the behaviour of

assets and liabilities. Xie et al. Xie et al. (2008) formulate a mean-variance portfolio

selection model where assets follow a geometric Brownian motion, while liabilities

follow a Brownian motion with a drift. The model also features correlations among

assets and liabilities. They derive explicitly the optimal dynamic strategy and the

mean-variance efficient frontier by using a general stochastic linear-quadratic con-

trol technique. Related to this, Xie Xie (2009) assumes that risk stock prices are

governed by a Markov regime-switching geometric Brownian motion. Detemple and

Rindisbache Detemple and Rindisbacher (2008) explore a dynamic asset allocation

problem with liabilities, where preferences are assumed to be von Neumann Morgen-

stern Von Neumann et al. (2007), where a running utility function is defined over

dividends (withdrawals in excess of net benefit payments), and a terminal utility

function defined over liquid wealth in excess of a floor. Chiu and Li Chiu and Li

(2009) study how to minimise an upper bound of the ruin probability, which mea-

sures the likelihood of the final surplus being less than a given target level. They

identify this criterion as the safety-first ALM problem. Not only does the paper

study this problem in continuous time, but it also solves the problem in a discrete

time context and compares results from the two approaches. The model drives to

a mathematical definition regarding the type of investors (‘greedy’ or not), which

is based on the level of disaster. An approach for pension funds can be found in

Josa-Fombellida and Ricón-Zapatero Josa-Fombellida and Rincón-Zapatero (2010),

who consider a stochastic interest rate, where the investor faces the choice among a

risky stock, a bond and cash. Zeng and Li Zeng and Li (2011) analyse a simple but

realistic model, which features one risky asset, one risk-free asset, and one liability.

The risky asset follows an exponential Levy Process, which allows simulating poten-

tial discontinuities in its random walk. The model comprises two objective functions
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(i.e., it considers two different optimisation problems). The first function is based

on a ‘benchmark’ model: a predefined target value b is considered, and the mean of

the quadratic distance between b and the terminal wealth is minimised. The second

function is based on the classical mean-variance portfolio selection model. The opti-

misation problem in Chiu and Wong Chiu and Wong (2012) consists of minimising

the variance of terminal wealth in a context of co-integrated assets. Specifically,

in this paper, the insurer deals with the payment of uncertain insurance claims,

which are assumed to follow a compound Poisson process. In general, there is a

lack in the literature regarding the study of time-consistency optimisation of asset

allocations in an ALM context – i.e., most studies consider time-dependent invest-

ment strategies. This gap is bridged by Wei et al. Wei et al. (2013) considering a

Markov regime-switching model. These authors conclude that the time-consistency

equilibrium control in this context is state dependent, where that dependency is

generated by the uncontrollable liability process. Chiu and Wong Chiu and Wong

(2014b) study the problem under a market with correlations among risky assets,

where these correlations change randomly over time. In this problem, the objective

is to minimise the variance of terminal wealth, given an expected terminal wealth.

The liabilities are assumed to follow a compound Poisson process, and the problem

becomes a linear-quadratic stochastic optimal control problem with volatility, cor-

relations, and discontinuities – all of them with random behaviour. In a context of

low interest rates, the stochastic behaviour becomes relevant. Chiu and Wong Chiu

and Wong (2014a) also solve a model with liabilities that follow a compound Poisson

process, with a stochastic interest rate distributed according to a Cox-Ingersoll-Ross

model Cox et al. (1985). The model consists of maximising the expected constant

relative risk averse (CRRA) utility function. Along similar lines, Chang Chang

(2015) formulates a model where the interest rate is driven by the Vasicek model

Vasicek (1977), and liabilities follow a Brownian motion with drift. Likewise, Liang

and Ma Liang and Ma (2015) approach a pension fund with mortality risk and

salary risk, with a CRRA utility function. Pan and Xiao Pan and Xiao (2017a)

solve a problem with liquidity constraints and stochastic interest rates, which follow

a Hull-White process Hull and White (1990). This paper compares the two utility

functions that feature CRRA, and constant absolute risk averse, CARA. In another
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work Pan and Xiao (2017b), these authors also include inflation risk under a mean-

variance framework. They also consider a non-common variety of assets, such as

a default-free zero coupon bond, an inflation indexed bond, as well as the typical

risky assets and risk-free asset. Also, they assume that liability follows a geometric

Brownian motion process. Finally, to complete this survey, Li et al. Li et al. (2018a)

solve a classical mean-variance model with stochastic volatility, which introduces a

novel asset; a derivative whose price depends on the underlying price of the risky

stock.

4.5 Need for Metaheuristics & Simheuristics

The growing complexity of the problems being addressed highlights the need for

faster approaches such as metaheurisics Glover and Kochenberger (2006). These

algorithms will be needed as the models introduce further constraints to account

for real-life circumstances. In this regard, Soler-Dominguez et al. Soler-Dominguez

et al. (2017) and Doering et al. Doering et al. (2019b) provide quite complete

and up-to-date reviews on financial applications of metaheuristics, including risk

management and portfolio optimisation problems. In this sense, Kizys et al. Kizys

et al. (2019b) have proposed a heuristic approach to solve a NP-hard variant of the

portfolio optimisation problem. Furthermore, the fact that two or more objectives

have to be considered simultaneously to account for the complexity will require

multi-objective optimisation methods.

Different simulation-optimisation methods are gaining popularity in the application

to stochastic combinatorial optimisation problems in different application areas Juan

et al. (2018). Despite the success of simheuristics in solving stochastic optimisation

problems in different areas, just a few works have focused on the area of finance.

Thus, for example, Panadero et al. Panadero et al. (2018) propose a simheuristic

for solving a multi-period project selection problem. Even though financial data is

characterised by macro- as well as firm-level uncertainty, to the best of our knowl-

edge, none of the finance-related problems analysed in this work has been addressed

with the use of simheuristics so far, which makes this an interesting avenue for future
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research.

4.6 Conclusions & Future Work

The optimal asset allocation subject to liabilities is a financial problem widely stud-

ied in the literature. Broadly speaking, the wealth of strategies can be divided into

two categories. The first category is based on immunising the value of the selected

assets under changes in the interest rate, which is an accountable approach. The

second category is based on cash-flow matching, which is an operational approach.

The immunisation approach is based on the concept of duration. The potential of

application is very limited because: (i) it is a short time approach, and (ii) it only

works when the interest rate is constant and its shift is small. In addition, the cash-

flow matching can bifurcate into continuous time models and discrete time models.

The continuous time models show a limitation in the sense that they need to be re-

strictive analytical models in order to use stochastic differential equations. Hence, it

is a method more oriented to knowing the ‘good’ strategy in qualitative terms, than

in obtaining optimal assignment configurations. Finally, the most realistic approach

is the multi-stage stochastic program, since it permits to easily model characteristics

of the real market. Nevertheless, these models can grow very fast in the number of

equations and variables, which eventually make them extremely difficult to solve in

short computing times.

Due to the limitations found by exact methods in solving large-scale and stochas-

tic versions of the analysed problems, some research opportunities arise, including:

(i) the use of heuristic-based algorithms that can provide reasonably good results

to complex and large-scale financial problems in short computing times; (ii) the

introduction of novel simulation-optimisation approaches – other than stochastic

programming – that can cope, in a more natural way, with the uncertainty existing

in the problems considered in this work; (iii) the introduction of the aforementioned

methodologies will also allow us to consider richer and more realistic versions of the

multi-stage stochastic programming problem; and (iv) lastly, we also see a clear

opportunity to generalise the use of these optimisation methodologies to support
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decision making at the level of the individual consumer.
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Chapter 5

A Simheuristic Algorithm for

Reliable ALM

Abstract

The management of assets and liabilities is of critical importance for insurance

companies and banks. Complex decisions need to be made regarding how to assign

assets to liabilities in such a way that the overall benefit is maximised over a time

horizon. In addition, the risk of not being able to cover the liabilities at any given

time must be kept under a certain threshold level. This optimisation challenge is

known in the literature as the asset and liability management (ALM) problem. In

this work, we propose a biased-randomised (BR) algorithm to solve a deterministic

version of the ALM problem. Firstly, we outline a greedy heuristic. Secondly, we

transform it into a BR algorithm by employing skewed probability distributions.

The BR algorithm is then extended into a simheuristic by incorporating Montecarlo

simulation to deal with the stochastic version of the problem.
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5.1 Introduction

Financial institutions have to face some critical risk-management processes. Among

such processes, asset and liability management (ALM) is of paramount importance

due to its potential consequences. ALM consists of a range of techniques necessary

to invest adequately, so that the firm’s long-term liabilities are met (Ziemba et al.,

1998). For an insurance company, a liability constitutes the legal responsibility to

repay the insurance contributions that the customer has been making over an agreed

length of time, which are increased by the interest rate. This is a typical transaction

of pension or life insurance intended to secure retirement income, which gives rise to

a three-tier financial problem. First, the insurance company receives the customer’s

premium. Second, the company invests this premium in the long term, so that the

financial benefit envisaged in the insurance policy is secured. Third, in the event of

the customer’s retirement or death, the insurance company needs to have sufficient

funds to meet its liability to the customer. While the aforementioned financial

problem unfolds, the insurance company is confronted with a range of risks, which

arise either from its role as a financial intermediary or due to complex regulations

as well as economic and social policies. If the insurer’s obligation to the customer is

not honoured, its default becomes a likely scenario. A default can be very costly for

the firm, since it can inflict a loss of credibility and reputation. On the one hand,

it can face legal action from its creditors. As a result the insurer may be forced to

pay hefty fines by the regulatory body. On the other hand, the firm’s market share

may diminish as its customers may switch to other insurers.

It is thus not surprising that the ALM problem has been widely studied in the litera-

ture. As interest rates vary over time, the present value of both assets and liabilities

responds to such variation. Consequently, optimal and smart asset management so-

lutions become critical to the insurer, who seeks to ensure that the liabilities can be

met at the time when they are required, while at the same time, the value of the firm

is maximised. In practical applications, one of most popular solutions to this asset

management problem is cash-flow matching (Iyengar and Ma, 2009), whose main

objective is to ensure the timely payment of the liabilities. This approach minimises

the number of contractual breaches. In some European countries, the legislation
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does not envisage any specific mechanism to ensure that the firm’s obligations are

met. Instead, capital is regulated by targeting the value of the reserves that the

company needs to build on its balance sheet. In general, regulations impose a spe-

cific interest rate to calculate the provisions of the firm’s liabilities over the short

and medium term. Sufficient provisions are required to achieve the solvency of the

firm. Furthermore, if the firm’s manager can prove that its assets are adequate to

cover its liabilities in the long term, the firm is granted permission to use a higher

interest rate in its provisions. This allows its capital value on the balance sheet to

be lower.

Heuristic and metaheuristic algorithms have become a new standard when dealing

with complex and large-scale portfolio optimisation and risk management problems

(Soler-Dominguez et al., 2017; Doering et al., 2019a). Hence, in this chapter we first

propose a constructive heuristic to solve the deterministic version of the ALM prob-

lem. The greedy behaviour of the heuristic is then relaxed by using a skewed prob-

ability distribution, thus transforming it into a biased-randomised (BR) algorithm.

This BR algorithm is able to generate many promising solutions to the deterministic

version of the ALM problem. Finally, this probabilistic algorithm is extended into a

full simheuristic one (Juan et al., 2018) in order to deal with the stochastic version

of the ALM problem, in which liability values are modelled as random variables.

Thus, our simheuristic algorithm finds out which assets of a firm’s portfolio can be

efficiently used to reduce the risk of liability default while minimising the monetary

cost for the company. The rest of the chapter is structured as follows: Section 5.2

discusses the typical cash-flow behaviour in both assets and liabilities. Section 5.3

provides a formal model for the optimisation problem being analysed. Section 5.4

presents recent work on BR algorithms and simheuristics. Section 5.5 proposes a

greedy heuristic as an initial solving method and its extension to a BR algorithm

and a full simheuristic. A series of computational experiments are carried out in

Section 5.6, while Section 5.7 provides an analysis of the obtained results. Finally,

Section 5.8 highlights the most relevant findings of our work and points out future

research lines.

colorblack
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5.2 Cash-Flows of Liabilities and Assets

Under an insurance policy, the insurer is liable to pay whenever the event described

in the contract takes place. This is a ‘must’ obligation that the insurer has to honour.

Otherwise, the company would face a hefty monetary fine, its reputation would be

severely damaged, and its administrators could be taken to court. The insurer’s

liabilities comprise all policies subscribed by its customers. This aggregation results

in an irregular and difficult-to-predict cash-flow structure. Indeed, each policy has a

different maturity and size, and is bound to a set of conditions. Figure 5.1 illustrates

a series of liabilities (L) and assets (A) with different monetary values (vertical axis)

and time occurrence (horizontal axis).

Figure 5.1: An Illustrative Representation of Different Assets and Liabilities over Time

Once the structure of liabilities and assets is known over a time horizon, the manager

is tasked to select a set of assets to cover the liabilities in each period. Because of

the opportunity cost of these assets, the total value of those selected should be the

minimum required, since these assets remain ‘frozen’ and cannot be used for any

other purpose. In other words, once the assets that will cover the firm’s liabilities

have been selected, they cannot be used in any other transaction. Therefore, this

results in an optimisation problem, in which a set of minimum-value assets has to be

determined to cover the firm’s liabilities. Corporate and government bonds are the

predominant asset classes in the insurance market, since returns on a bond market

investment can be accurately predicted in advance. The static assumption makes it
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simpler to predict the value of assets, as opposed to the value of liabilities. It is also

worth noting that assets feature a significantly shorter span time than liabilities.

For instance, while insurance contracts cover the customer’s retirement or full life

– which can span over 45 years – typical maturities of bond market instruments do

not extend beyond 30 years. This generates a maturity mismatch between assets

and liabilities. In addition, while liability cash-flows might arise at any moment in

time, the cash-flow structure of assets is more concentrated around some particular

time periods.

5.3 Modelling a Stochastic Asset-Liability Manage-

ment Problem

In this chapter, we first propose a deterministic and relatively simple version of the

ALM problem, which is then extended into a stochastic version by modelling liability

values as random variables instead of assuming that they are constant values. The

deterministic version allow us to use exact methods to generate optimal solutions

–at least in some small-sized instances. It is possible then to compare the results

of our BR algorithm against these optimal values, which contributes to validate, at

least in the deterministic scenario, the quality of the proposed methodology.

Given a set of liabilities L and a set of assets A, the binary variable xal takes the

value 1 if asset a ∈ A is employed to cover liability l ∈ L, being 0 otherwise. Let us

denote by ta the time at which asset a ∈ A becomes available, and by va its value

at that time. Similarly, let tl represent the maturity date of liability l ∈ L, and vl

the associated value to be covered. Our initial goal is to find the asset-to-liability

mapping, (al1, al2, . . . , al|L|), that minimises the aggregated net present value (NPV)

of the assets employed to cover all of our liabilities, i.e.:

min
∑
a∈A

∑
l∈L

va

(1 + d)ta
xal,

where d is the discount factor used for calculating the NPV of an asset. Also, we
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need to make sure that each liability l ∈ L is covered by exactly one asset a ∈ A,

i.e.: ∑
a∈A

xal = 1, ∀l ∈ L.

Likewise, we need to ensure that no asset is assigned to more than one liability:

∑
l∈L

xal ≤ 1, ∀a ∈ A.

Also, for each liability l ∈ L, the asset assigned to l needs to be available on or

before tl, i.e.: ∑
a∈A

xalta ≤ tl, ∀l ∈ L.

Likewise, it is required that if an asset a ∈ A is selected to cover a liability l ∈ L,

then the monetary value of a (at the time it becomes available) has to be equal or

higher than the monetary value of l (at its maturity date):

∑
a∈A

xalva ≥ vl, ∀l ∈ L.

Finally, we can add the binary variables to complete the model:

xal ∈ {0, 1}, ∀a ∈ A, ∀l ∈ L.

In this chapter, we will also consider a stochastic version in which the value of

any liability l ∈ L is modelled as a positive random variable, Vl. Therefore, Equa-

tion (5.3) will be transformed in minimising the expected aggregated NPV, while

Equation (5.3) will be substituted by the following probabilistic constraint:

Pr

[∑
a∈A

xalva ≥ Vl

]
≥ p, ∀l ∈ L,

where p is a user-defined probability related to the reliability level required of a

solution in order to avoid costly defaults. Actually, given a solution of the problem,

54



5.4. Recent Work on Biased-Randomised Algorithms and Simheuristics

s = (al1, al2, . . . , al|L|), its associated reliability level, R(s) can be computed as:

R(s) =
∏
l∈L

Pr(val ≥ Vl).

5.4 Recent Work on Biased-Randomised Algorithms

and Simheuristics

By combining skewed probability distributions with Montecarlo simulation, biased-

randomised techniques can be used to transform a greedy heuristic into a proba-

bilistic algorithm. One of the main advantages of BR algorithms is their ability to

generate multiple promising solutions that still follow the logic behind the original

heuristic (Juan et al., 2009). BR techniques have been successfully used during the

last years to solve different rich and realistic variants of vehicle routing problems

(Fikar et al., 2016), permutation flow-shop problems (Ferrer et al., 2016), location

routing problems (Quintero-Araujo et al., 2017), facility location problems (Pages-

Bernaus et al., 2019), waste collection problems (Gruler et al., 2017a), horizontal

cooperation problems (Quintero-Araujo et al., 2019a), and constrained portfolio op-

timisation problems (Kizys et al., 2019a).

A different concept, also combining simulation with heuristic optimisation, is that

of simheuristics (Rabe et al., 2020). Simheuristics can be seen as an extension

of metaheuristics, since a simulation module is integrated inside the metaheuristic

framework to efficiently deal with NP-hard and large-scale stochastic optimisation

problems (Ferone et al., 2019). Notice that simheuristics might employ any type of

simulation, e.g., discrete-event, agent-based, or Montecarlo. These algorithms have

also been used recently in multiple sectors, including: flow-shop scheduling (Hatami

et al., 2018), waste collection management (Gruler et al., 2017a), vehicle routing

(Gonzalez-Martin et al., 2018; Guimarans et al., 2018), Internet computing (Cabrera

et al., 2014), finance (Panadero et al., 2018), e-commerce (Pages-Bernaus et al.,

2019), system reliability (Faulin et al., 2008b), and inventory routing (Gruler et al.,

2018, 2020). All in all, both BR algorithms and simheuristics demonstrate the great

potential that simulation has when combined with heuristics and metaheuristics,
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either for solving NP-hard deterministic optimisation problems as well as to cope

with their stochastic counterparts.

5.5 From a Greedy Heuristic to a Simheuristic

Figure 5.2 offers an overview of our solving approach. First, a fast constructive

heuristic is designed to solve the deterministic version of the problem. The heuristic

completes the following steps: (i) it sorts the list of liabilities from the most chal-

lenging ones (i.e., those with higher values to cover) to the less challenging ones; (ii)

it computes the NPV for each asset; and (iii) for each liability in the sorted list,

it chooses the asset with the minimum NPV among a list including the ones that

occur on or before the maturity date of the liability, with a value exceeding that

of the liability. Covering the largest liabilities first as efficiently as possible helps

to reduce the value of the frozen assets. Algorithm 1 provides the pseudo-code of

this greedy heuristic. In the second step, the previous heuristic is transformed into

a biased-randomised algorithm by using a Geometric probability distribution to in-

troduce a small random deviation in the order in which the assets are selected from

the sorted-by-NPV list (but still respecting the time-precedence constraint). The

single parameter of the Geometric distribution α ∈ (0, 1] defines the probability that

the first element of the sorted-by-NPV list is selected, subsequent elements have a

diminishing probability of being selected. The BR algorithm is capable of generat-

ing multiple solutions per second, all of them following the heuristic criterion (but

with greed biased randomisation), with some of them outperforming the solution

provided by the greedy heuristic itself. Now, in the final step the most promising

solutions generated by the BR algorithm are sent to a Montecarlo simulation pro-

cess, where a number of executions are run using randomly generated values for the

stochastic variables Vl (∀l ∈ L).

The simulation does not only estimate the expected cost associated with any of the

promising solutions generated by the BR algorithm, but it also provides estimates

to other key performance indicators, e.g.: the variability of the values that each

solution generates (which can be used to compare different solutions in a multiple
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Figure 5.2: Schematic Representation of our Simheuristic ALM Approach

Algorithm 1 Greedy Heuristic.
Sort liabilities list L from higher to lower vl (∀l ∈ L)
sol ← ∅
for each liability l in L do

Consider A∗ = {a ∈ A : ta ≤ tl ∩ va ≥ vl}
al ← argmin{NPV (va) : a ∈ A∗}
A← delete al
sol ← add al

end for
return sol
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boxplot), or the reliability level of each solution –measured as the probability that

the corresponding assets-to-liability mapping can be implemented in a stochastic

environment without suffering any default (i.e., the probability that all selected

assets have successfully covered the assigned liabilities).

5.6 Computational Experiments

The proposed approach has been implemented as a Java application running on a

CPU with 3.60 GHz and 16 GB of RAM. Several instances have been generated. Ta-

ble 5.1 provides some details on the number of assets and liabilities for each instance,

as well as the associated discount rate and value modifier –when applicable. Assets

and liabilities have been randomly distributed over time using a uniform probabil-

ity distribution from 0 to 100 and from 50 to 150, respectively. Likewise, values

for assets and liabilities have been randomly generated using a uniform probability

distribution from 0 to 1 and from 0 to 0.5, respectively. This approach results in

feasible instances in which it is possible to cover all of the liabilities. Additionally,

asset values in instance 4 have been modified to consider a scenario where their value

increases over time, i.e.: given an asset a ∈ A with a value va at time ta, a new value

v′a is computed v′a = va(ta/T ), with T = max{ta : a ∈ A}. Likewise, a scenario with

decreasing asset values is considered in instance 5 by using v′a = va(1 − t/T ). As

specified in Table 5.1, similar modifications have been performed on liability values

for instances 6 and 7.

# Instance # assets # liabilities Discount
rate

Asset
value modifier

Liability
value modifier

1 Control_Instance 1000 200 0.05 - -
2 Large_x3 3000 600 0.05 - -
3 Large_x5 5000 1000 0.05 - -
4 Asset_Value_Increases 1000 200 0.05 t/T -
5 Assets_Value_Decreases 1000 200 0.05 1− (t/T ) -
6 Liability_Value_Increases 1000 200 0.05 - t/T
7 Liability_Value_Decreases 1000 200 0.05 - 1− (t/T )
8 Reduced_Discount_Rate 1000 200 0.005 - -
9 Liabilities_x2 1000 400 0.05 - -

Table 5.1: Characteristics of the Set of Instances

Some initial experiments have allowed us to set the parameter α associated with

the geometric probability distribution that drives the BR algorithm. In this case,
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a reasonably good performance seems to be reached when α ∈ (0.70, 0.95). In the

stochastic scenario, and in order to search for more reliable solutions, a ‘safety-

stock’ value has been considered. Thus, given a liability l ∈ L, only assets with

a value exceeding E[Vl] + λσV l can be selected to cover l, where σV l refers to the

standard deviation of Vl and λ ∈ {0, 1, 2, 3}. Notice that the higher the value of

λ, the more reliable the solution will be – i.e., a solution built with a relatively

high value of λ will be able to ‘absorb’ a higher degree of variability in Vl without

suffering a default. However, it is also true that increasing λ comes at the cost of

using assets with a higher value, which will tend to increase the objective function.

A total of 10 seconds per instance has been allowed. Each ‘promising’ solution s

generated by the BR algorithm is sent to the Montecarlo simulation module. In our

experiments, a solution was considered to be promising if its deterministic value was

equal or better than the one provided by the greedy heuristic. Once in the simulation

module, a total of 250 runs are executed per solution. These runs employ random

observations from the probability distribution modelling each Vl, ∀l ∈ L. Given a

solution s = (al1, al2, . . . , al|L|), for each asset al assigned to a liability l, a penalty

cost pl is incurred whenever Vl > val (this cost represents the ‘failure-to-cover-a-

liability’ situation). In that case, pl = 2(Vl − val). Therefore, under the stochastic

scenario, the total cost of a solution is computed as the aggregated NPV of its assets

plus all the penalty costs incurred. In summary, several statistics can be obtained

from the simulation component, among others: (i) expected total cost of a solution

s; and (ii) reliability of s, computed as the percentage of runs in which the mapping

has been implemented without any default.

Table 5.2 provides the experimental results. The first column contains the instance

number (same as in Table 5.1). The second column contains the value of λ used

to compute the ‘safety-stock’ as described before. For λ = 0, the adjacent column

contains the optimal value for each instance as provided by the popular IBM Cplex

solver (this value refers just to the deterministic scenario, and it allows us to validate

the results provided by the greedy heuristic). The next three columns refer to

the greedy heuristic: BDS-D represents the best-deterministic solution evaluated

in a deterministic scenario, while BDS-S represents the cost of the same asset-to-

liability mapping plan being evaluated in a stochastic scenario. The reliability of
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the mapping is also provided. Likewise, for the BR algorithm, the corresponding

columns show the best-stochastic solution under the uncertainty (BSS-S ), and its

associated reliability. Finally, some gaps between pairs of columns are also provided.

Greedy BR Algorithm Gaps
# λ Cplex (1) BDS-D (2) BDS-S (3) Rel. (4) BSS-S (5) Rel. (6) (2) - (1) (3) - (2) (5) - (3) (6) - (4)
1 0 1.25 1.26 2.83 0.00 2.68 0.00 0% 125% -5.2% 0.00%
1 1 – 1.34 1.59 0.00 1.56 0.00 18% -1.7% 0.00%
1 2 – 1.43 1.45 0.27 1.45 0.24 1% -0.4% -13.24%
1 3 – 1.56 1.56 0.92 1.56 0.95 0% 0.0% 3.93%
2 0 3.73 3.73 10.22 0.00 9.94 0.00 0% 174% -2.8% 0.00%
2 1 – 4.03 5.19 0.00 5.12 0.00 29% -1.4% 0.00%
2 2 – 4.33 4.43 0.00 4.42 0.00 2% -0.2% 0.00%
2 3 – 4.61 4.62 0.69 4.61 0.70 0% -0.1% 0.58%
3 0 OoM 6.19 17.45 0.00 17.15 0.00 OoM 182% -1.7% 0.00%
3 1 – 6.70 8.81 0.00 8.73 0.00 32% -0.9% 0.00%
3 2 – 7.23 7.42 0.00 7.41 0.00 3% -0.1% 0.00%
3 3 – 7.69 7.70 0.47 7.70 0.47 0% 0.0% 0.00%
4 0 1.22 1.23 2.75 0.00 2.61 0.00 1% 124% -5.3% 0.00%
4 1 – 1.31 1.56 0.00 1.55 0.00 19% -0.8% 0.00%
4 2 – 1.42 1.44 0.24 1.44 0.25 1% -0.2% 3.33%
4 3 Inf. Inf. Inf.
5 0 3.66 3.66 5.87 0.00 5.74 0.00 0% 60% -2.1% 0.00%
5 1 – 4.27 4.69 0.00 4.66 0.00 10% -0.5% 0.00%
5 2 – 5.02 5.05 0.12 5.05 0.10 1% -0.1% -10.34%
5 3 – 5.85 5.85 0.84 5.85 0.88 0% 0.0% 4.74%
6 0 5.99 7.97 8.49 0.00 8.21 0.00 33% 6% -3.3% 0.00%
6 1 – 8.28 8.35 0.00 8.09 0.00 1% -3.1% 0.00%
6 2 – 8.17 8.18 0.42 7.98 0.39 0% -2.4% -8.49%
6 3 – 8.76 8.76 0.94 8.53 0.95 0% -2.6% 0.42%
7 0 10.06 10.18 10.74 0.00 10.65 0.00 1% 6% -0.8% 0.00%
7 1 – 10.88 10.97 0.00 10.83 0.00 1% -1.3% 0.00%
7 2 – 11.23 11.24 0.47 11.23 0.45 0% -0.1% -4.27%
7 3 – 11.71 11.71 0.95 11.65 0.97 0% -0.5% 1.68%
8 0 33.99 34.01 36.36 0.00 36.29 0.00 0% 7% -0.2% 0.00%
8 1 – 37.10 37.50 0.00 37.49 0.00 1% 0.0% 0.00%
8 2 – 39.98 40.01 0.11 40.00 0.12 0% 0.0% 7.14%
8 3 – 42.82 42.82 0.85 42.81 0.90 0% 0.0% 5.16%
9 0 3.58 3.63 6.98 0.00 6.78 0.00 1% 92% -2.7% 0.00%
9 1 – 3.98 4.56 0.00 4.52 0.00 15% -0.9% 0.00%
9 2 – 4.24 4.29 0.04 4.28 0.04 1% -0.2% 0.00%
9 3 – 4.58 4.59 0.83 4.58 0.84 0% -0.1% 0.48%

Table 5.2: Results Obtained for each Instance and λ Value.

5.7 Analysis of Results

As it can be seen in Table 5.2, the greedy heuristic is providing reasonably good

solutions when compared with the optimal ones given by Cplex for the deterministic

scenario with λ = 0. Notice, however, that Cplex is not able to solve all instances

since it gets an “out of memory” (OoM) error for instance 3 (which justifies the

need of using heuristics even for the deterministic case). Also, notice that the cost

of the greedy mapping is quite different in the deterministic scenario (BDS-D) and

in the stochastic one (BDS-S ), as can be easily appreciated in Figure 5.3 (instance

8 has been removed from this multi-boxplot figure since its values were outliers

that make a clear view difficult in this case). In other words, it is not possible to

use the deterministic cost as a good estimate of the stochastic one – therefore, a

simulation component is required while solving the stochastic scenario. Regarding
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reliability values, one can observe that these values rise as λ increases. However,

increasing the ‘safety stock’ will also lead to selecting more expensive assets and,

accordingly, to solutions with a typically higher NPV cost. Moreover, in the case of

instance 4 no feasible solution is obtained when λ is set to its maximum level (i.e.,

for λ = 3 the algorithm cannot find assets with the requested high value). Finally,

a relevant result is that the best-stochastic solution provided by the BR algorithm

for the stochastic scenario (BSS-S ) is frequently able to outperform the equivalent

BDS-S. This justifies the need for using the BR algorithm, which provides different

alternative solutions for the simulation component to evaluate.
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Figure 5.3: A Boxplot Comparison of Different Solutions

5.8 Conclusions

This chapter proposes a simheuristic approach for a stochastic version of the asset

and liability management problem. The chapter first addresses the deterministic ver-

sion of the problem by introducing a greedy heuristic as well as a biased-randomized

algorithm. The latter is then extended into a full simheuristic by integrating simu-

lation into the optimisation framework. Our method is flexible and it can be easily

extended for new constraints, such as those due to financial regulations or the firm’s

strategic plans.
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The results show that the best deterministic mapping of assets to liabilities is far

from being an optimal solution when uncertainty is present. Hence, simulation-

optimisation methods become necessary to generate high-quality solutions when-

ever some components of the asset and liability management problem need to be

modelled as random variables instead of deterministic values. Also, according to

our computational experiments, the savings generated by the simheuristic are no-

ticeable. Considering that the insurance market is strongly regulated, having an

efficient, flexible, and easy-to-implement method to select the proper assets inside a

firm’s portfolio is extremely important.

As future work, we plan to: (i) extend our probabilistic algorithm into a full meta-

heuristic; (ii) include additional characteristics in the model so it fully represents

the real-life problem that insurance companies and other financial institutions have

to face; and (iii) introduce and test the algorithm in real-life bench-mark instances.
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Chapter 6

Matheuristic with Simulation for

Stochastic ALM

Abstract

Specially in the case of scenarios under uncertainty, the efficient management of risk

when matching assets and liabilities is a relevant issue for most insurance companies.

This chapter considers such a scenario, where different assets can be aggregated to

better match a liability (or the other way around), and the goal is to find the asset-

liability assignments that maximises the overall benefit over a time horizon. To

solve this stochastic optimisation problem, a simulation-optimisation methodology

is proposed. We use integer programming to generate efficient asset-to-liability

assignments, and Montecarlo simulation is employed to estimate the risk of failing to

pay due liabilities. The simulation results allow us to set a safety margin parameter

for the integer program, which encourage the generation of solutions satisfying a

minimum reliability threshold. A series of computational experiments contribute to

illustrate the proposed methodology and its utility in practical risk management.
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6.1 Introduction

Within the enormous variety of insurance types that we can find, long-term life

insurance stands out for its complexity in terms of financial management. The

cash-flows generated by these insurances extend over several decades and play an

important role in the social sphere since they have a close relationship with pensions

and retirements and, therefore, with people’s vital planning. For this reason, leg-

islation and administrative authorities play a special role in ensuring that insurers

faithfully comply with their commitments. The fact that they are extended in the

long term, or in the very long term, generates a series of difficulties for their manage-

ment because the insurer must plan the necessary income with enormous precision

to cover its future commitments. Therefore, it is a requirement that the insurer

has a range of techniques that allow for matching its assets, as long-term income

generators, with its liabilities. Conventionally, we refer to this set of techniques as

asset and liability management (ALM) (Ziemba et al., 1998), and it has raised the

interest of numerous researchers over the last few years, with a wide variety of ap-

proaches being proposed. One of most popular solutions to this asset management

problem is cash-flow matching (Iyengar and Ma, 2009), whose main objective is to

ensure the timely payment of the liabilities. This approach minimises the number

of contractual breaches. Due to the volatility of the financial markets, we always

have uncertainty regarding income, and this will be linked to the quality of financial

assets. Moreover, the credit quality of assets plays a fundamental role, in particular

when we deal with bonds, which are widely used in the insurance industry (Gründl

et al., 2016). When the default event occurs, the price of the bond is immediately

decreased, in such a way that we have lower income. Since Merton (1974), a lot of

models have been developed to forecast the price under a default event.

Likewise, the obligations cannot be considered as exact or totally predictable. Those

liabilities or obligations are the customer’s premium that the insurance company re-

ceives. In practice, we consider average values for obligations and we can establish

certain ranges of dispersion that can be estimated based on the insurer’s own expe-

rience. Once the premium has been paid, the company invests it in the long term,

so that the financial benefit envisaged in the insurance policy is secured. Finally,
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in the event of the customer’s retirement or death, the insurance company needs

to have sufficient funds to meet its liability to the customer. Consequently, we are

facing a highly complex asset allocation problem, since the amount of assets that

an insurer can have is large, and the distribution of liabilities over time does not

usually follow any regular pattern, both being stochastic in nature.

Heuristic and metaheuristic algorithms have become a new standard when dealing

with complex and large-scale portfolio optimisation and risk management problems

Soler-Dominguez et al. (2017); Doering et al. (2019a). In this chapter we explore

an asset allocation method by means of heuristic techniques, taking into account

the random nature of both assets and liabilities. The goal is to find the most effi-

cient (minimum cost) combination of assets that meets certain requirements: they

must generate sufficient income to cover the obligations of the insurer with a high

probability. In a recent work, Bayliss et al. (2020a) considered a simplified ALM

problem, based on the net present value (NPV) concept, in which only one-to-one

asset-liability assignment were allowed. Notice that, since we are comparing mone-

tary values of assets that belong to different time periods, it makes sense to consider

the NPV associated with each asset in order to make a fairer comparison of as-

sets. Our work goes a step further and allows many-to-many, one-to-many, and

many-to-one asset-liability assignments as well. Such an approach increases the ef-

ficiency with which liabilities can be covered. This also allows us to address ALM

problems regardless of the number of assets and liabilities, as well as their sizes.

For addressing large scale instances which could not be solved using exact inte-

ger programming techniques, previous approaches were based on the use of greedy

heuristics that prioritised larger liabilities over smaller ones. This work, however,

proposes an improved approach based on sorting liabilities in ascending due date

order, since liabilities with earlier due dates have fewer assets combinations that can

be assigned to them. Additionally, assets with earlier maturity dates have higher

NPVs, which is what is to be minimised. The main methodological contribution of

our approach lies in the introduction of a matheuristic algorithm, which integrates

integer programming and Montecarlo simulation. In particular, an integer program

is solved recursively to generate feasible and efficient asset-liability assignments for

a deterministic scenario (where we assume average values for each random variable
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in the model). After each iteration, the resulting asset-liability assignment mapping

(solution) is assessed under a stochastic scenario by using Montecarlo simulation,

which also provides estimates of the mapping reliability. The simulation outcomes

are also employed to update a safety margin parameter of the integer program that

controls the minimum ratio between the values of the assets and the liabilities of

the generated asset-liability assignments. The proposed approach is then tested in

a wide variety of problem instances. The combination of simulation and optimi-

sation methods in NPV-related financial problems under uncertainty has been also

explored in Panadero et al. (2020).

The rest of the chapter is structured as follows: Section 6.2 introduces a more de-

tailed description of the specific ALM problem considered in this chapter. Section 6.3

proposes a matheuristic algorithm for solving the aforementioned problem. A series

of computational experiments are carried out in Section 6.4, while Section 6.5 pro-

vides an analysis of the obtained results. Finally, Section 6.6 highlights the most

relevant findings of our work and points out future research lines.

6.2 Problem Description and Formulation

When the conditions set out in a contract are met, insurers pay the insured. If

they do not have sufficient available funds, they are subject to monetary fines issued

by monetary authorities and, most likely, to lost customers. In order to ensure

the insurers can meet their liabilities, they perform a process of matching assets

to liabilities. Assigning assets to liabilities in an efficient manner is critical to the

success of an insurance firm, since assigned (or frozen) assets cannot be used for

any other purpose. Assets can only be assigned to liabilities if their maturity date

precedes the due date of the liability. The value of the assets assigned to liabilities

must equal or exceed the liability values. At the same time, asset maturity values

and liability payment values are uncertain, thereby introducing a risk that liabilities

cannot be met, even when the expected values imply that they could be met on the

average.
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An asset-liability assignment is the terminology used in this work to refer to a group

of assets used to cover a group of liabilities. A feasible solution to the net present

value asset-liability management (NPV-ALM) problem consists of a set of asset-

liability assignments such that: (i) all liabilities are covered; and (ii) no individual

assets or liabilities are part of more than one asset-liability assignment. Furthermore,

a solution is also required to be robust under uncertain asset and liability values.

Specifically, a solution must meet a minimum reliability level, where reliability is

defined as the probability that all liabilities can be paid successfully using their

assigned assets. Figure 6.1 illustrates a single asset-liability assignment consisting

of three assets and two liabilities. Notice that, under the expected values for assets

and liabilities (dashed lines), the liabilities can be met. However, due to uncertain

asset maturity values and liability payment values, there is a risk that the assets

fail to cover the liabilities in the assets-liability assignments. If fi is the probability

that asset-liability assignment i fails to cover its liabilities, then the reliability of

a set of asset-liability assignment (I) covering all of our liabilities is computed as

r =
∏
i∈I

(1− fi). Following Faulin et al. (2008b), we employ Montecarlo simulation to

estimate failure probabilities associated with candidate asset-liability assignments.
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Figure 6.1: An Asset-Liability Assignment with a Failure Probability

In this work, we propose a matheuristic algorithm for solving the NPV-ALM prob-

lem. A matheuristic integrates mathematical programming techniques with heuris-

tics in order to develop an algorithm that benefits from exact optimisation as well as

from fast and efficient heuristic techniques. For the case of the NPV-ALM problem,

an integer program (Section 6.2.2) is used to calculate a set of feasible asset-liability
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assignment decisions that cover the liabilities. The solution is tested in a simulation

to measure its reliability, and the result is employed to tune a safety margin param-

eter of the integer program. The safety margin parameter controls the minimum

ratio between the asset values and the liability values of a generated asset-liability

assignment. The process continues until a specified number of iterations have been

completed. Section 6.2.1 formulates the NPV-ALM problem.

6.2.1 A Model for the Net Present Value Asset and Liability

Management Problem

Summary of the Notation

Sets

A : Set of all assets

L : Set of all liabilities

Stochastic variables

ṽa : The uncertain value of asset a at maturity

ṽl : The uncertain value of liability l on its due date

Decision variables

yga : Binary variable indicating whether asset a is selected as part of asset-liability assignment g

zgl : Binary variable indicating whether liability l is selected as part of asset-liability assignment g

wa : Binary variable indicating whether asset a is selected as part of a generated asset-liability assignment

xl : Binary variable indicating whether liability l is selected as part of a generated asset-liability assign-

ment

Input parameters

va : The expected maturity value of asset a

vl : The expected value of liability l on its due date

ta : The maturity maturity date of asset a

tl : The due date of liability l

d : Discount factor used to calculate the net present value of an asset

rmin : Minimum reliability level

m : Safety parameter decrease factor

h : Safety parameter increase factor

Other parameters

fg : Failure probability of asset-liability assignment g

Ng : Asset-liability assignment g

npvg : Net present value associated with Asset-liability assignment g

The objective (6.1) is to minimise the NPV of the assets committed to covering lia-

bilities. In this context, yga is a binary decision variable indicating whether asset a is
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an element of asset-liability assignment g. Similarly, zgl is a binary decision variable

indicating whether liability l is an element of asset-liability assignment g. Each as-

set a ∈ A can only be part of at most one asset-liability assignment, as specified by

Constraint (6.2). Each liability l ∈ L can only be part of one selected asset-liability

assignment, as specified by Constraint (6.3). As a result of Constraints (6.2) and

(6.3), the maximum number of asset-liability assignments is |G| = min (|A|, |L|). A

feasible asset-liability assignment requires that each of the selected assets matures

before all of the selected liabilities in the asset-liability assignment. Constraint (6.4)

introduces a continuous variable ϕg representing the latest maturity date of an asset

in asset-liability assignment g. Constraint (6.5) introduces a continuous variable σg

representing the earliest due date of a liability in asset-liability assignment g. Here,

H is a large number which ensures the feasibility of Constraint (6.5) in asset-liability

assignments that the liability l is not part of. Then, Constraint (6.6) enforces the

time constraints for each asset-liability assignment. Constraint 6.7 requires that the

sum of the asset values exceeds the value of the covered liabilities by a factor S

in each asset-liability assignment g, thus ensuring that our liabilities are covered.

Also, S is a multiplicative safety margin parameter for ensuring that the asset val-

ues are able to cover the liabilities under uncertain asset returns and liability values.

Constraints (6.8) and (6.9) define the binary decision variables.

min
∑
g∈G

∑
a∈A

yga

(
va

(1 + d)ta

)
. (6.1)

∑
g∈G

yga ≤ 1, ∀a ∈ A. (6.2)

∑
g∈G

zgl = 1, ∀l ∈ L. (6.3)

ϕg ≥ ygata, ∀a ∈ A, ∀g ∈ G. (6.4)

σg ≤ zgltl +H (1− zgl) , ∀l ∈ L, ∀g ∈ G. (6.5)

ϕg ≤ σg, ∀g ∈ G. (6.6)∑
a∈V

ygava ≥ S
∑
l∈U

zglvl, ∀g ∈ G. (6.7)

yga ∈ {0, 1}, ∀a ∈ A, ∀g ∈ G. (6.8)
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zgl ∈ {0, 1}, ∀m ∈ L, ∀g ∈ G. (6.9)

6.2.2 An Integer Programming Model for Generating Feasi-

ble Asset-Liability Assignments

Since solution time and memory requirements become an issue when solving the

mixed integer program specified in Section 6.2.1 for realistic sized problem instances,

our heuristic solution approach is based upon solving an integer program repeatedly

to generate a sequence of efficient asset-liability assignments that cover all of the

liabilities. This iterative approach is an alternative to generating all of the required

asset-liabilities assignments in one go. This approach also vastly reduces the size

and complexity of the mathematical programs that need to be solved. This integer

program is denoted as IP (U, V, k, S). Here, U is the set of remaining uncovered

liabilities, and V is the set of available assets currently unassigned to any liabilities.

Initially, U = L and V = A. Every time a new asset-liability assignment is generated

using the integer program, the selected assets are removed from V and the selected

liabilities are removed from U . The integer program is solved repeatedly until the

set U is empty. The input k is a randomly selected uncovered liability that must be

covered by the next asset-liability assignment generated. This provides a mechanism

for randomising the sets of asset-liability assignments generated. The ith asset-

liability assignment generated is denoted as Ni. It contains the set of selected assets

and liabilities. The efficiency of an asset-liability assignment is measured by the

value of the liabilities covered minus the value of the assets used, which encourages

asset-liability assignments to cover as many liabilities as possible with the fewest

assets possible. The net present value of the assigned assets is then subtracted, which

captures our overall objective. Higher values of this efficiency measure correspond

to more efficient asset-liability assignments. This efficiency objective function is

expressed by Objective (6.10). In this expression, xl is a binary variable indicating

which liabilities, l ∈ U , are part of the generated asset-liability assignment, and

wa is a binary variable indicating which assets, a ∈ V , are part of the generated
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asset-liability assignment.

max
∑
l∈U

xlvl −
∑
a∈V

wava

(
1 +

1

(1 + d)ta

)
. (6.10)

A feasible asset-liability assignment requires that each of the selected assets matures

before the selected liabilities. Constraint (6.11) expresses this, where tm is the asset

maturity date or liability due date of an asset or liability m ∈ V ∪ U . Also, H is a

large number which is used to ensure that Constraint (6.11) remains feasible in cases

where liabilities are not selected. Optionally, Constraint (6.11) can be replaced by

a constraint using the same form used in Constraints (6.4)-(6.6).

wata ≤ xltl +H (1− xl) , ∀a ∈ V, ∀l ∈ U. (6.11)

Constraint (6.12) requires that the sum of the asset values exceeds the value of the

covered liabilities by a factor S, where S is a multiplicative safety margin parameter

for ensuring that the asset values are able to cover the liabilities under uncertain

asset returns and liability values.

∑
a∈V

wava ≥ S
∑
l∈U

xlvl. (6.12)

Constraint (6.13) states that the randomly selected uncovered liability, k, must be

included in the next asset-liability assignment generated.

xk = 1. (6.13)

Constraints (6.14) and (6.15) define the binary decision variables.

xl ∈ {0, 1}, ∀l ∈ U. (6.14)

wa ∈ {0, 1}, ∀a ∈ V. (6.15)
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6.3 Our Matheuristic Approach

This section describes our matheuristic algorithm, which combines integer program-

ming and Montecarlo simulation for solving the NPV-ALM problem. This solving

approach consists of two main phases: (i) generation of ‘promising’ solutions; and

(ii) simulation and parameter tuning of the aforementioned solutions. The solution

generation phase uses integer programming (specified in Section 6.2.2) to generate a

set of asset-liability assignments that cover the liabilities. This process is iterative,

i.e., each iteration generates one new asset-liability assignment from the remaining

unused assets and uncovered liabilities. In order to increase the diversity of these

solutions, a random factor is introduced: we randomly select one of the remaining

liabilities and add a constraint which forces this liability to be part of the next

asset-liability assignment. The simulation phase is used to measure the reliability

of the generated solution. Montecarlo simulation is used estimate the failure prob-

ability associated with each asset-liability assignment. This is the probability that

the sum of the maturity values of the assets, in an asset-liability assignment, is less

than the corresponding sum of the liabilities. If the solution is sufficiently reliable,

a best solution check is performed to see if the solution has the lowest associated

NPV of any reliable solution found. The reliability result is also used to update the

safety margin parameter of the integer program. The procedure followed is given in

Algorithm 2.

6.4 Computational Experiments

The proposed heuristic has been implemented as a Python application running on

a CPU with 3.60 GHz and 16 GB of RAM. Instances from Bayliss et al. (2020a)

have been used to test the new approach, plus two new instances that could not be

solved with the methodology presented in the former chapter. Table 6.1 provides the

details on the number of assets and liabilities for each instance, discount rate, and

value modifier (if any was employed). Assets and liabilities have been distributed

over time using a random uniform probability distribution from 0 to 100 and from 50
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Algorithm 2 AssetLiabilityAssignmentGeneration (A,L, rmin, β,m, h, runs)
Data: A set of available assets, L set of liabilities, maxIterations, rmin the minimum reliability level, β geometric

distribution parameter, m safety margin decrease factor, h safety margin increase factor, runs the number
of Montecarlo simulation runs used to estimate asset-liability assignment failure probabilities

iteration = 1 // the number of asset-liability assignments generated so far.
bestSolution← ∅
bestNPV =∞
//Initialise the safety margin parameter S = 1
S = 1
while iteration ≤ maxIterations do

//Reset the set of unassigned assets V and uncovered liabilities U
V ← A
U ← L
newSolutionNPV ← 0
N ← ∅
i← 1
while U ̸= ∅ do

//Select an uncovered liability k from an ascending due date sorted list according to a geometric
distribution with parameter β.
//Solve integer program to obtain the get the next asset asset-liability assignment Ni.
(Ni, npvi)← IP (U, V, k, S)
//Estimate the failure probability fi of the new asset-liability assignment using Montecarlo sampling of
asset return and liability values.
fi ← simulation (Ni, runs)
newSolutionNPV ← newSolutionNPV + npvi
U ← U \Ni

V ← V \Ni

i← i+ 1

end
//Calculate the reliability r of the new solution

r =
i−1∏
j=1

(1− fi)

//Update the safety margin parameter using the reliability level of the new solution
if r ≥ rmin then

//Decrease the safety margin parameter (slowly)
S ← mS
//Check for a new best solution
if newSolutionNPV < bestNPV then

bestNPV ← newSolutionNPV
bestSolution← N

end
else

//Increase the safety margin parameter (relatively quickly)
S ← hS

end
iteration← iteration+ 1

end
return bestSolution
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to 150, respectively. Similarly, values for assets and liabilities have been randomly

generated using a uniform probability distribution from 0 to 1 and from 0 to 0.5,

respectively. Asset values from instances 4 and 5 have been modified to simulate

scenarios where its value varies over time, i.e.: given an asset a ∈ A with a value va at

time ta, a new value v′a is computed v′a = vaf(ta, T ), with T = max{ta : a ∈ A} and

f the asset value modifier function. Likewise, instances 6 and 7 consider scenarios

with liability values varying over time: given a liability l ∈ L with a value vl at

time tl, a new value v′l is computed v′l = vlg(tl, T ), with T = max{tl : l ∈ L} and

g the liability value modifier function. Instance 10 simulates a scenario with small

assets and large liabilities, which encourages the use of multiple assets to cover a

liability, while instance 11 considers a scenario with a few large assets and several

small liabilities, to force the use of a single asset to cover multiple liabilities.

# Instance # assets # liabilities Discount
rate

Asset
value modifier

Liability
value modifier

1 Control_Instance 1000 200 0.05 - -
2 Large_x3 3000 600 0.05 - -
3 Large_x5 5000 1000 0.05 - -
4 Asset_Value_Increases 1000 200 0.05 t/T -
5 Asset_Value_Decreases 1000 200 0.05 1− (t/T ) -
6 Liability_Value_Increases 1000 200 0.05 - t/T
7 Liability_Value_Decreases 1000 200 0.05 - 1− (t/T )
8 Reduced_Discount_Rate 1000 200 0.005 - -
9 Liabilities_x2 1000 400 0.05 - -
10 Small_Asset_Large_Liability 1000 200 0.05 0.5 10
11 Large_Asset_Small_Liability 50 1000 0.05 10 0.2

Table 6.1: Characteristics of the Set of Instances

Some initial experiments have been performed using instance 1 to set the parameter

α associated with the geometric probability distribution that drives the liability

selection and the relative mixed integer programming optimality gap, MIPGap,

which is used to terminate the integer programming algorithm. Experiments to

determine α have been carried out in a deterministic scenario, while experiments to

determine MIPGap have been performed with stochastic variables. In this case, a

better performance is attained with α = 0.75 and MIPGap = 0.4. Figure 6.2 and

Figure 6.3 present the results of the numerical tests.

Each instance in Table 6.1 has been solved using the integer programming algorithm

presented in Algorithm 2, with a limit of 100 iterations. A time-limit of 300 seconds

has also been imposed to terminate the algorithm after a solution has been generated
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Figure 6.2: Boxplot Comparison of Instance 1 - Results with Different alpha Values

Figure 6.3: Boxplot Comparison of Instance 1 - Results with Different MIPGap Values
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if the aforementioned time-limit has been reached. The minimum reliability rmin

to consider a solution as feasible in the stochastic scenario is 0.95. The values

of the parameters to increase and decrease the safety margin parameter S used are

m = 0.99 and h = 1.1. In the stochastic scenario, both asset and liability values have

been considered uncertain, with a standard deviation of 5% of its expected maturity

value. 500 iterations are executed for each asset-liability assignment generated in

the Montecarlo simulation.

Table 6.2 provides the experimental results, compared with the results obtained

in Bayliss et al. (2020a). The first column contains the instance number (same

as in Table 6.1). The second column (Cplex) contains the optimal value for each

instance in a one-to-one asset-to-liability mapping. The third column (BR) contains

the results of a previous biased-randomised algorithm, with its associated reliability

values in the next column. Then, column 5 contains the best values obtained in the

deterministic scenario with our matheuristic algorithm. Similarly, the best solutions

obtained with a reliability higher than 0.95 and its reliability are presented in the

next two columns. Finally, some gaps between pairs of columns are also provided.

Bayliss et al. (2020a) Our Matheuristic Gaps
# Cplex (1) BR (2) r (3) Det. (4) Stoch. (5) r (6) (4) - (1) (5) - (4) (5) - (2) (6) - (3)
1 1.25 1.56 0.95 1.17 1.81 0.95 -6.56% 54.72% 15.84% 0.12%
2 3.73 4.61 0.70 3.51 5.92 1.00 -5.89% 68.65% 28.43% 42.57%
3 OoM 7.7 0.47 5.96 9.43 0.99 - 58.25% 22.44% 111.07%
4 1.22 1.44 0.25 1.18 2.30 0.99 -2.95% 94.06% 59.56% 295.22%
5 3.66 5.85 0.88 1.99 2.97 0.96 -45.73% 49.75% -49.15% 9.61%
6 5.99 8.53 0.95 3.13 3.72 0.98 -47.69% 18.75% -56.38% 2.76%
7 10.06 11.65 0.97 9.97 12.28 0.96 -0.88% 23.20% 5.45% -1.15%
8 33.99 42.81 0.90 34.10 42.64 0.95 0.34% 25.03% -0.39% 5.69%
9 3.58 4.58 0.84 2.49 5.04 1.00 -30.41% 102.21% 9.99% 18.81%
10 - - - 5.25 10.96 0.97 - 108.77% - -
11 - - - 7.70 11.53 0.96 - 49.79% - -

Table 6.2: Results for each Instance

6.5 Analysis of Results

As it can be seen in Table 6.2, the stand-alone matheuristic is providing reason-

ably good solutions when compared with the optimal ones given by Cplex for the

deterministic scenario. Actually, Cplex is not able to solve all instances since it
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gets an “out of memory” (OoM) error for instance 3 (which justifies the need of

using matheuristics even for the deterministic case). Also, notice that the cost

of the assets-to-liabilities mapping is quite different in the deterministic scenario

(Det.) and in the stochastic one (Stoch.). In other words, the deterministic sce-

nario represents an ‘ideal’ (but not realistic) situation that provides a lower-bound

to the real NPV cost under uncertainty conditions. Probably, the most interest-

ing comparison in this table is between columns BR and Stoch. As one can see,

the proposed matheuristic-simulation algorithm is usually able to outperform the

previous simulation-optimisation approach proposed in Bayliss et al. (2020a). This

is mainly due to the fact that the methodology proposed in this chapter does not

require to assume a one-to-one mapping between assets and liabilities, thus allowing

for an increasing number of mapping combinations. The main benefit of using the

matheuristic-simulation algorithm is that it treats reliability as a hard constraint,

an issue which is very important in the context of meeting liabilities. However, since

the matheuristic is a more complex algorithm than BR, the 300 second time limit

meant that there was not enough time for it to find solutions that met the 95%

reliability constraint exactly, allowing it to achieve a low NPV. Notice that the gap

between the NPVs of BR and the matheuristic are largest when the matheuristic re-

turn very reliable solution, while BR returns solution with low reliability. Figure 6.4

highlights the large average reliability gain attained from using the matheuristic, at

the expense of a slightly higher NPV on average.

Figure 6.4: Boxplot Comparison of NPV and Reliability Results w.r.t. a Previous Work
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6.6 Conclusions

This chapter proposes a hybrid matheuristic simulation approach to solve the stochas-

tic version of the asset and liability management problem, where the goal is to min-

imise the net present value of the assets that are employed to cover the liabilities,

while satisfying a reliability constraint. First, a matheuristic is designed by combin-

ing integer programming with a heuristic. The heuristic prioritises the selection of

liabilities with an earlier maturity date, and it also makes use of a random procedure

to increase the diversity of solutions generated. Then, the most promising solutions

generated in the previous stage are simulated in a stochastic scenario. For this,

a Montecarlo simulation is run multiple times in order to obtain estimates of the

NPV-cost and the associated reliability of each solution. One of the main novelties

of this chapter is that approach integrates Montecarlo simulation with a matheuris-

tic to provide and algorithm which can guarantee reliable solutions for the asset and

liability management problem. It also considers the possibility of aggregating dif-

ferent assets, or different liabilities, before completing the assignment mapping, i.e.:

several assets can be aggregated to cover each liability, and multiple liabilities can

be covered by a single asset. To the best of our knowledge, it is the first time that

this many-to-many assignment procedure is considered in the literature on asset and

liability management.

The results show that the best deterministic mapping of assets to liabilities is far

from being an optimal solution when uncertainty is present. Hence, simulation-

optimisation methods become necessary to generate high-quality solutions whenever

some components of the asset and liability management problem need to be modelled

as random variables instead of deterministic values. In addition, the numerical

experiments show how, by allowing many-to-many assignments between assets and

liabilities, our combined matheuristic-simulation algorithm is able to outperform

other simulation-optimisation approaches. As future work, we plan to: (i) include

additional characteristics in the model so it fully represents the real-life problem that

insurance companies and other financial institutions have to face; and (ii) introduce

and test the algorithm in real-life benchmark instances.
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ALM in Insurance Firms

Abstract

The management of assets and liabilities is of critical importance for insurance com-

panies and banks. Complex decisions need to be made regarding how to assign

assets to liabilities such in a way that the overall benefit is maximised over a multi-

period horizon. At the same time, the risk of not being able to cover the liabilities

at any given period must be kept under a certain threshold level. This optimisation

problem is known in the literature as the asset and liability management (ALM)

problem. In this work, we propose a biased-randomised algorithm to solve a real-

life instance of the ALM problem. Firstly, we outline a greedy heuristic. Secondly,

we transform it into a probabilistic algorithm by employing Montecarlo simulation

and biased-randomisation techniques. According to our computational tests, the

probabilistic algorithm is able to generate, in short computing times, solutions that

outperform by far the ones currently practised in the sector.
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7.1 Introduction

Financial institutions have to face some critical risk-management processes Cornett

and Saunders (2003). Among such processes, asset and liability management (ALM)

is of paramount importance due to its potential consequences. ALM consists of a

range of techniques necessary to invest adequately, so that the firm’s long-term liabil-

ities are met Ziemba et al. (1998). For an insurance company, a liability constitutes

the legal responsibility to repay the insurance contributions that the customer has

been making over an agreed length of time, which are increased by the interest rate.

This is a typical transaction of pension or life insurance intended to secure retire-

ment income, which gives rise to a three-tier financial problem. First, the insurance

company receives the customer’s premium. Second, the company invests this pre-

mium in the long term, so that the financial benefit envisaged in the insurance policy

is secured. Third, in the event of the customer’s retirement or death, the insurance

company needs to have sufficient funds to meet its liability to the customer. While

the aforementioned financial problem unfolds, the insurance company is confronted

with a range of risks, which arise either from its role as a financial intermediary

or due to adverse regulatory as well economic and social policies. If the insurer’s

obligation to the customer is not honoured, its default becomes a likely scenario. A

default can be very costly for the firm, since it can inflict a loss of credibility and

reputation. On the one hand, it can face a legal action from its creditors. As a

result the insurer may be forced to pay hefty fines by the regulatory body. On the

other hand, the firm’s market share may diminish as its customers may switch to

other insurers.

It is thus not surprising that the ALM problem has been widely studied in the litera-

ture. As interest rates vary over time, the present value of both assets and liabilities

responds to such variation. Consequently, optimal and smart asset management

solutions become critical to the insurer, who seeks to ensure that the liabilities can

be met at the time when they are required, while at the same time, the value of

the firm is maximised. In practical applications, one of most popular solutions to

this asset management problem is the so-called cash-flow matching Iyengar and Ma

(2009), whose main objective is to ensure the timely payment of the liabilities. In
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some European countries, the legislation does not envisage any specific mechanism

to ensure that the firm’s obligations are met. Instead, capital is regulated by target-

ing the value of the reserves that the company needs to build on its balance sheet.

In general, regulations impose a specific interest rate to calculate the provisions of

the firm’s liabilities over the short and medium term. Sufficient provisions are re-

quired to achieve the solvency of the firm. Furthermore, if the firm’s manager can

prove that its assets are adequate to cover its liabilities in the long term, the firm

is granted permission to use a higher interest rate in its provisions. This allows its

capital value on the balance sheet to be lower.

Heuristic and metaheuristic algorithms have become a new standard when dealing

with complex and large-scale portfolio optimisation and risk management problems

Doering et al. (2019a). Hence, in this paper we propose a heuristic-based algorithm

to find out which assets of a firm’s portfolio can be efficiently used to reduce the

risk of default liability while minimising the monetary cost for the company. Our

approach combines Montecarlo simulation (MCS) with a greedy heuristic. This com-

bination results in a biased-randomised probabilistic algorithm. Biased-randomised

algorithms make use of random sampling from a skewed probability distribution

(e.g., a geometric one) in order to ‘inject’ some non-uniform (oriented) randomness

into a greedy heuristic. That way, the latter is transformed into a more efficient

probabilistic algorithm without losing the logic behind the heuristic Grasas et al.

(2017). The rest of the chapter is structured as follows. Section 7.2 reviews biased-

randomised algorithms using MCS. Section 7.3 discusses the typical cash-flow be-

haviour in both assets and liabilities. Section 7.5 outlines the optimisation problem.

Then, Section 7.6 proposes a greedy heuristic as an initial solving method, while Sec-

tion 7.7 extends the aforementioned heuristic into a probabilistic algorithm. A series

of computational experiments, based on real-life data, are carried out in Section 7.8.

Finally, Section 7.9 concludes.
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7.2 Recent Work on Biased-Randomised Algorithms

Different examples on the use of Montecarlo simulation methods to guide the search

of heuristic-based algorithms can be found in the literature Faulin and Juan (2008);

Faulin et al. (2008a); Juan et al. (2009). One particular case is that of biased-

randomisation (BR) techniques. As described in detail by Grasas et al. (2017), BR

techniques make use of Montecarlo simulation and skewed probability distributions

in order to transform a greedy heuristic into a probabilistic algorithm without losing

the logic behind the heuristic. This transformation is achieved after sorting each

constructive movement by a given criterion and then assigning diminishing prob-

abilities of being selected as the movement becomes less promising. In practice,

the use of randomised greediness here allows for a fuller exploration of the solution

space, but with the advantage that the effective logic behind the greedy heuristic is

retained (Figure 7.1).

Figure 7.1: Schematic Representation of the Biased-Randomisation Process

BR techniques have been successfully used during the last years to solve different rich

and realistic variants of vehicle routing problems Dominguez et al. (2016); Calvet

et al. (2016), permutation flow-shop problems Martin et al. (2016); Gonzalez-Neira

et al. (2017), location routing problems Quintero-Araujo et al. (2017), facility lo-

cation problems De Armas et al. (2017), waste collection problems Gruler et al.

(2017a), horizontal cooperation problems Quintero-Araujo et al. (2019a), and con-
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strained portfolio optimisation problems Kizys et al. (2019a).

7.3 Cash-Flows of Liabilities and Assets

Under an insurance policy, the insurer is liable to pay whenever the event described

in the contract takes place. This is a ‘must’ obligation that the insurer has to honour.

Otherwise, the company would face a hefty monetary fine, its reputation would be

severely damaged, and its administrators could be taken to court. The insurer’s

liabilities comprise all policies subscribed by its customers. This aggregation results

in an irregular and difficult-to-predict cash-flow structure. Indeed, each policy has

a different maturity and size, and is bound to a set of conditions. Being based on

real-life data, Figure 7.2 shows a typical example of how liabilities are distributed

over a period of 30 years. Figure 7.2 unveils a long term liability schedule, which

sheds light on frequent cash-flows arising from transactions in each time period. To

complicate things further, these liabilities are not static, since a common policy can

end in different ways: (i) when a customer decides to cancel it; (ii) when the policy

reaches its maturity date; or (iii) when the customer dies.

Figure 7.2: Liability Cash-flow Profile of a Hypothetical Portfolio

On the flipside of the insurer’s balance sheet, the manager is tasked to select a set

of assets to cover the liabilities in each period. Because of the opportunity cost of
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these assets, the total value of these selected values should be just the necessary one,

since these assets remain ‘frozen’ and cannot be used for any other purpose. In other

words, once the assets that will cover the firm’s liabilities have been selected, they

cannot be used in any other transaction. Therefore, this results in an optimisation

problem, in which a set of minimum-value assets has to be determined to cover

the firm’s liabilities. If liabilities are assumed to be static (deterministic), assets

can be optimally selected in advance. Corporate and government bonds are the

predominant asset classes in the insurance market, since returns on a bond market

investment can be accurately predicted in advance. The static assumption makes it

simpler to predict the value of assets, as opposed to the value of liabilities. It is also

worth noting that assets feature a significantly shorter span time than liabilities.

For instance, while insurance contracts cover the customer’s retirement or full life

– which can span over 45 years – typical maturities of bond market instruments do

not extend beyond 30 years. This generates a maturity mismatch between assets

and liabilities. In addition, while liability cash-flows might arise at any moment in

time, the cash-flow structure of assets is more concentrated around some particular

time periods. Figure 7.3 shows a typical asset portfolio associated with an insurance

company. If we compare this structure with the previous one for liabilities, we can

observe remarkable differences that suggest a non-trivial matching problem.

7.4 Credit Quality and Fundamental Spread

Along this chapter we are studying an efficient method to assign assets included

in the balance sheet to match the liabilities that the company has to tackle in the

future. The asset allocation on which the insurance industry is based is mainly fixed

income, such corporate bonds, treasury, T notes, sovereign debt, loans, etc., as set

forth by the legislation (directive 2009/138/EC of the European Parliament and

of the Council). These kinds of assets are characterised by means of two relevant

features, the first one is that the income is determined a priori and cannot be changed

by the asset issuer or any third parties. This is key to understand why this is the

preferred type of selected asset for cash-flow matching or immunisation in long term
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Figure 7.3: Asset Cash-flow Profile in a Typical Portfolio

liabilities portfolio; the second one is the credit risk of the issuer, in other words, to

what extend we can assure or rely on the fact of receiving the income in the future.

There is a huge amount of study in the literature about modelling the credit risk

of fixed income issuers. In (Adamko et al., 2014) we have a short history of credit

risk models. The first step historically speaking is done by the rating agencies as a

response of the lack of models, highlighting Moody, Poor and Fitch as the pioneers

of their field. Moreover, Fitch in 1924 introduces his rating letter-type, AAA, AA ...

until D, having AAA for the most reliable issuer and D for the worst one, becoming

the method for qualification that is followed for any rating agency nowadays. The

first mathematical models are made by (Beaver, 1968) and (Altman, 1968). These

are based on econometric models using bankruptcy history in a specific industry

and taking a few relevant parameters that describe the company, like revenues, size,

etc. The model calculates a Z score, so that below a threshold we suspect a near

bankruptcy of the company. (Merton, 1974) studies the first structural model for

credit risk. In this paper, the value of the company has a stochastic walk in the same

manner as the Black-Scholes model, such that if the value is less than the liabilities,

a default event is achieved. Thanks to this model, we can link the probability of
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default (PD) and the recovery rate (RR) of the bond. The Recovery Rate is the value

of the bond in case of default. If the PD increases, the model predicts a decrease in

RR, as it can be expected. In contrast with this approach, based on the risk neutral

probability, we can find another way to calculate the price using the actuarial default

probability (Hull et al., 2005). Following this approach, we identify the bond price

as the equivalent policy price where the bond has a mortality; nevertheless, prices

observed in the market are always cheaper due to the extra yield the investor claims

to compensate the risk.

The risk in one period is not only the study of the probability of default but also

the change of the rating of the asset. In (Crouhy et al., 2000) we find a comparative

analysis of current credit risk models where they use a transition matrix that gives

us the probability between one rating state in one period to another possible state

in the next period (table 7.1). Another relevant question is that the probability is

dependent on the issuer industry. In (Qi and Zhao, 2011) we find a comparison of

modelling methods of the Loss Given Default (LGD), which is the part of the value

we lose in case of default. In that paper different LGD are shown among industries.

Rating AAA AA A BBB BB B C Def
AAA 91.00 8.00 0.70 0.13 0.10 0.04 0.02 0.01
AA 0.60 90.90 7.60 0.60 0.10 0.10 0.06 0.04
A 0.10 2.30 91.20 5.00 0.70 0.20 0.10 0.40
BBB 0.00 0.30 5.50 88.20 4.70 1.00 0.10 0.20
BB 0.00 0.10 0.60 7.00 82.70 7.60 0.90 1.10
B 0.00 0.10 0.20 0.40 6.00 85.00 3.40 4.90
CCC 0.20 0.00 0.30 1.00 2.20 9.60 67.30 19.40

Table 7.1: Transition Probabilities of Credit Risk. Source: (Crouhy et al., 2000)

The algorithm presented below calculates the present value just to select what asset

is best to be matched with the portfolio of liabilities. In that present value we

use in our approach a constant risk-free interest rate without considering the credit

quality of the issuer. The easiest way to bring in the default probability is through

the concept of Fundamental Spread, which is recognised in Article 77c(2)(a)(i) of

Directive 2009/138/EC, and in the Delegated Regulation (EU) 2015/35, subsection

4 Matching Adjustment, art. 54. This spread is the number we have to increase

to the free risk interest rate so that we consider the cost of default and downgrade.
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The aforementioned article describes the conditions the company has to fulfil for

the calculation to be valid. In particular, it states that the calculation has to be

transparent and prudent, it has to be considered that 30% of the market value will

be recovered in case of default and the calculation has to be based on data relating

to the last 30 years.

Once we have the fundamental spread of each asset, we merely could use it in our

present value calculation prior to the selection of each asset. Indeed, in equation 7.4

we define our optimisation goal that is related to the Present Value of each asset.

The present value of asset α is defined as:

PVα =
∑
i

CFα
i

(1 + π)i
(7.1)

Where CFα
i refers to all the cash-flows of the asset and π is the risk-free interest

rate. Introducing the fundamental spread, the present value is now:

PVα =
∑
i

CFα
i

(1 + π + δα)i
(7.2)

Where δα is the fundamental spread of asset α. Let’s keep in mind that we will have

to use a different fundamental spread for each kind of asset, even we could use a

fundamental spread having the same issuer since the probability of default not only

depends on the issuer but also on the characteristics of the bond (specifically the

duration of it). And the effect of inserting this spread is lowering the value of the

asset, so our solution will require more amount of money as is easily understandable.

From a computational point of view, the fundamental spread does not bring any

complexity since the algorithms are exactly the same, but it extends the former

analysis to a more complete financial approach. So, we can say that the algorithm

we develop along this chapter, although it doesn’t incorporate the fundamental

spread, is in this sense, complete.
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7.5 The Financial Balance Problem

The financial balance problem consists of choosing a portfolio of assets and blocking

them just to match the liabilities. Thus, the insurer needs to manage the income

arising from assets, invest it in the short term, and use the investment to pay the

liabilities claimed by its customers. If its assets do not generate sufficient cash-

flows, then the insurance company needs to borrow, which inflicts a penalty cost.

Accordingly, it is possible to formulate the financial balance as follows, where t =

1, 2, . . . , T represents the time period:

S0 = A0 − L0 and St =

 St−1rt−1,i + At − Lt if St−1 ≥ 0

St−1(rt−1,t + δ) + At − Lt if St−1 < 0
(7.3)

In Equation (7.3) S0 (St) is the capital in period 0 (t), A0 (At) denotes the value

of assets in period 0 (t), L0 (Lt) denotes the value of liabilities in period 0 (t), and

rt−1,t is the interest rate used to capitalise the resources from period t to t − 1.

Finally, δ represent the bid-ask spread on the interest rate. it is worth noting that

Equation (7.3) is recursive, and the balance sheet sign determines if the bid or the

ask interest rate is used to capitalise the resources until the next term. If the balance

is negative, the company will need to borrow. As a result, it will need to pay the

ask interest rate on the credit line, which will require more capital. Notably, the

selected assets have an effect on the balance sign, creating a binary tree of 2T nodes.

Moreover, if the balance falls negative its size is restricted by the credit limit.

Based on the aforementioned, we are now in a position to outline an optimisation

program that solves for the optimal choice of the assets and the associate weights

to match the liabilities. On an individual basis, let Aj
t be the portfolio of the firm’s

assets, where super-index j refers to a particular asset, and the sub-index t refers

to the cash-flow of asset Aj in period t. Let Lt be the cash-flow associated with

liabilities in period t.
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The goal is to select a portion αj of each asset Aj with the following goal:

min
∑

αjPV (Aj) (7.4)

where PV is the present value, which is computed using the term structure of interest

rates. Moreover, the selection of assets is subject to the following constraints, where

τ refers to the maximum credit line of the firm:

S0 = A0 − L0 (7.5)

Sn ≥ 0 (7.6)

∀t ≥ 1 St >= −τ (7.7)

7.6 A Greedy Heuristic

In this section we propose a greedy heuristic that finds a selection of our assets, αj.

In the next section, this heuristic is extended into a biased-randomised algorithm,

which allows to improve the solutions provided by the greedy heuristic. The heuristic

constructs a feasible solution, one step at a time, by always choosing the ‘best-

next-move’ in the short run (i.e., without taking into account the possible long-run

implications of this selection). For that, we consider that the liability cash-flow can

be estimated by aggregating individual cash-flows in each period of time. Then, we

are interested in solving a simplified matching problem, which considers just the

cash-flow associated with one of these liabilities; the specific liability is randomly

selected. Once the chosen liability has been matched by a set of assets, a new liability

cash-flow is randomly chosen and new assets (from the remaining ones) are drawn

to cover it. This process is re-iterated until all the liabilities have been covered by

asset cash-flows (Algorithm 3).

Notice that the first step in Algorithm 3 is to decide an order for the list of liability

cash-flows. A natural order is the one given by the maturity date, so that the next-

in-time cash-flow that will have to be payed is introduced first, the second one is
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Algorithm 3 Greedy heuristic
Order liabilities by maturity date.
for each liability k do

Insert k
repeat

for each asset j do
Calc asset fraction needed to match k
Select best asset so far, j∗

end for
until Liability k is matched

end for

next, and so on. The selection of the best asset is quite simple, since we have to

match only one liability cash-flow at a time. Hence, we only have to iterate over

the remaining assets to get the minimum fraction needed to match our new liability.

Only assets with a value larger than the current liability value are considered.

7.7 A Biased-Randomised Algorithm

By examining Algorithm 3, one can notice the following: once the order of the

liabilities to be matched has been fixed, the solution (set of assets chosen to cover

the liabilities) is unique. This suggests than one way to generate different solutions

is by introducing a biased-randomised process when sorting the liabilities. To this

end, we make use of a skewed probability distribution (the geometric one in our

case) to re-order the liabilities list, hence using Montecarlo simulation to generate

a differently ordered lists in each run of the algorithm. The geometric distribution

only requires a parameter, p ∈ (0, 1). As p converges to 1, the list tends to be sorted

following the greedy criterion employed by the initial heuristic (i.e., by maturity

date). On the contrary, as p converges to 0, the list tends to follow a uniformly

random order. The values in between are the interesting ones, since they represent

a compromise between a greedy and a uniform random order. Figure 7.4 shows the

Java code employed to generate the biased-randomisation effect.
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Figure 7.4: Code for the Biased-Randomised Selection of Liabilities

7.8 Computational Experiments

In order to test our method, we have considered data from a real-life insurance firm.

This firm holds 21 assets, which are predominantly government bonds and interest

rate swaps. We have considered a discount rate of 1.09%, an interest rate to capitalise

resources of 0.5%, and a time span of 33 years. For the geometric distribution, a

parameter p = 0.8 has been selected after a quick trial-and-error process. Also, we

have used 100 iterations, a maximum credit of 1 million euros, and assumed that

the credit line carries a 5% interest rate. The origin of the liabilities are pensions,

and their present value is 442 million euros.

The assets selected by the actuarial team add up to 490 million euros. Running our

algorithm for a few seconds, we found a solution with an associated value of 450

million euros, which represents an 8% savings with respect the solution provided by

the actuarial team. As shown in Figure 7.5, the solution structure is not trivial, so

it is not surprising that it could not be found without the help of an algorithm as

the one proposed here.

Testing different values for the parameter p does not seem to provide significantly

better results. The fastest result is found if the original liability order is based on

the present value of each liability cash-flow. This makes sense, as we first match the

largest liability values with the best possible asset. Using this initial order criteria,

only 100 iterations are necessary to get a high-quality solution.

91



Chapter 7. ALM in Insurance Firms

Figure 7.5: Solution Showing the Selection of Assets and Percentages

7.9 Conclusions

This chapter proposes a solving approach for the asset and liability management

problem. Our algorithm makes use of Montecarlo simulation to transform a greedy

heuristic into a probabilistic algorithm. The resulting biased-randomised algorithms

is a fast and easy-to-implement method for selecting the minimum amount of assets

to cover a portfolio of liabilities. Our method is flexible and it can be easily extended

to new constraints, either if they provide from a specific regulation or from the firm’s

strategy. Our approach can be used in a real-life situation by iteratively applying

it to a set of liabilities. According to our computational experiments, the savings

it generates can be considerable. Considering that the insurance market is strongly

regulated, having an efficient, flexible, and easy-to-implement method to select the

proper assets inside a firm’s portfolio is extraordinarily important.

As future work, we plan to: (i) extend our probabilistic algorithm into a full meta-

heuristic one; and (ii) test the algorithm in more benchmark data sets –some of

them using real-life data.
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Chapter 8

The Multiperiod Risk Model -

Markowitz Revisited

8.1 Introduction

One of the most successful theories in the field of finance was written by Markowitz in

the last 50’s. In essence, all the architecture of that theory is based on the hypothesis

that any asset in the market behaves as a random variable with a well known mean

and variance. Although we tend to think that the hypothesis is considering the

referred behaviour as Gaussian random variable, the fact is that we don’t need to

follow any specific probability distribution provided that the central second moment

of the distribution f(x) is finite:

< x2 >=

∫
Ω

x2f(x)dx < +∞ (8.1)

The Portfolio Optimisation Problem derived by Markowitz only needs the previous

condition since the key of his idea is the diversification. In other words, let X and Y

two random variables with finite variances σX and σY and with correlation matrix

σXY ; then the random variable aX + bY has a mean a < X > +b < Y > but a

variance a2σ2
X + b2σ2

Y +2abσXY ≤ (aσX + bσY )
2. The trick is in the last equation: if

the mean is just additive but the variance is reduced, we can build better portfolios
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mixing independent assets.

Up to now, the relevant feature of the random variable that models our assets is the

finite variance. In the derivative market we need an extra and strong hypothesis,

which is to consider that the assets must follow the normal distribution. There

are two reasons of why we suspect the inner behaviour has to be normal. It is

the only distribution function that meets these two properties: a) a finite variance,

and b) an stable one (it means that the sum of two random variables results in

a random variable of the same nature) (Mantegna and Stanley, 1999). The real

market seems to violate at least one of these two hypotheses. We think that we

need to keep the stability, so the alternative is to consider that the distribution

probability has no finite variance. Empirical evidence is found since real distributions

are characterised by fatter tails than the Gaussian distribution. Nevertheless, we

will continue assuming the Gaussian distribution along our research assuming that

the differences of the fatter tails are assumable for our interests.

The Markowitz approach is also based on two more characteristics. The first one

is that it drives a strategy of only one period, and the second one is that it only

manages assets. In other words, if we have to match specific treasury conditions in

the future, the Markowitz approach has to be extended. With treasure conditions

we mean liabilities, i.e., those obligations of the company that are known a priori.

The common Markowitz formulation uses proportions to refer the amount of money

we invest in each asset. But when we include liabilities, we have to speak about raw

money instead of proportions as we don’t know a priori the value of the proportions

but we have the price (cash) of the liability in a further moment of the time. To

sum up, we have to transform the standard Markowitz model in an equivalent one

with these characteristics:

• It has to be multiperiod.

• It has to contain liabilities in any moment of time.

• It has to refer to price, not to proportions.
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8.2 The Model Definition

From now on, bold variables like A will refer to random variable, meanwhile A

will mean average of the respective random variable. Otherwise, any variable is

deterministic.

Following our pretensions of extending the standard optimisation portfolio problem,

we define the Terminal Wealth as the amount of money we have at the expiry date of

the transactions along the settled time. We have to determine how many monetary

units we have to purchase or sell in each period of time and subtracting the liabilities

associated to the referred moment. As the assets are stochastic, the Terminal Wealth

is also a random variable. So, we need to know both mean WT and variance σ2
WT

of

the Terminal Wealth WT to extend naturally the Markowitz model.

Max WT (8.2)

s.t.

σWT
≤ σmax (8.3)

To derive the expressions for WT and σ2
WT

we will suppose that the risk-free interest

rate r is constant along all time, the asset returns µα are normal distributions and

so, stock prices are Log-Normal distributions. All the asset returns are correlated

and we have the Variance-Covariance matrix σαβ, assuming that this matrix will

remain constant along the time. We recall that we have T periods and we will use

Greek letters to index the assets and Roman letters to refer to each period of time.

At the beginning of each period i, a known number nα
i of stock purchases/sells

transactions are done with the asset α. All the transactions conclude at the period

T and we will sell all the remaining assets at the end of the expiry date. The amount

of money in that moment will be the Terminal Wealth.

The price of each asset at the end of each period is Pα
i and it is related with the
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price at the beginning of the period as follows:

Pα
i = Pα

i−1e
µα (8.4)

So, recursively up to the beginning, we can formulate the price of any asset in terms

of the deterministic initial price P0 and the sum of all the returns from the beginning

up to the period i:

Pα
i = Pα

0 e
µ1

α+µ2
α+...µi

α (8.5)

Since the asset return µα is considered as a normal random variable, the sum of i

normal variables is also a normal one. Let’s take into account that if the probability

distribution function Y = exp(X) is the Log-Normal, and so, µY = exp(µX + 1
2
σ2
X),

and σ2
Y = exp(σ2

X) − 1, we can conclude that for Pα
i we can express its mean and

variance as follows:

Pi = P0e
i(µ+ 1

2
σ2) (8.6)

σ2
i = P 2

i

(
eiσ

2
α − 1

)
(8.7)

We can define the effective return µeff
α for the asset α as:

µeff
α = µα +

1

2
σ2
α (8.8)

We also define the transaction value Tα
i of asset α at the period i, valuated at the

end of the transaction, as:

Tα
i = Pα eiµ

eff
α −ir+Trnα

i (8.9)

And we define the temporal Variance-Covariance Matrix σ̃ as:

σ̃ij
αβ = e(T−max(i,j))σαβ − 1 (8.10)
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Having our portfolio of assets along the time and all of them are in general correlated,

WT is the Terminal Wealth, r is the risk-free interest rate, T is the number of periods,

and Li is the obligation we have to fulfil in period i, the Terminal Wealth and the

Terminal Wealth Variance follows the next expressions:

WT =
∑
α

T∑
i=0

(
Tα
i − Lie

(T−i)r) (8.11)

σ2
wT

=
∑
α,β

T∑
i,j=0

Tα
i σ̃

ij
αβT

β
j (8.12)

The Terminal Wealth is the sum of all transactions valuated at the maturity date,

using the effective return to capitalise each asset, minus all the liabilities capitalised

according to the risk-free interest rate.

In the next sections we discuss and demonstrate the former expression for the Ter-

minal Wealth Variance.

8.3 Theorem: the Terminal Wealth Variance

Let Ω the set of assets we have in our market and α ∈ Ω and β ∈ Ω be two assets

with returns following a normal distribution with mean µα and µβ respectively, and

σαβ as the variance-covariance matrix. We will also suppose that the returns are not

autocorrelated and homoscedastic along the time. In other words, the returns stay

unaltered along the time and they don’t have memory of the value of the previous

periods.

Let Pα
i ∈ R be the known price of α ∈ Ω in the period i. This known price

corresponds to the amount of money we will transact with that asset in that period.

In our general optimisation problem, the set of these prices are our decision variables.

It implies that we will have to purchase or sell an unknown amount of stock nα
i

because we cannot assure what price the asset will have in that moment since it

follows a Log-Normal random walk.
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Let Pα
i,T = Pα

i

∏k<T
k=i eµ

α
k be the terminal random price corresponding to the random

walk of the normal returns. As said before, the return used to build this random

variable has to be not autocorrelated.

Thus, for two terminal prices Pα
i,T and Pβ

j,T the covariance is:

σPα
i P

β
j
= Pα

i,TP
β
j,T

(
e(T−max(i,j))σαβ − 1

)
(8.13)

where Pα
i,T = ... is the mean value of the random variable Pα

i,T .

Demonstration

We can write the covariance σαβ with the well-known expression:

σPα
i,T Pβ

j,T
= E

(
Pα

i,T Pβ
j,T

)
− E

(
Pα

i,T

)
E
(
Pβ

j,T

)
(8.14)

First, we calculate the first member of the above equation. Each asset follows a Log-

Normal distribution, so Pi = Pi−1e
µ for each asset, where µ is the return random

variable. Therefore, applying the definition of the terminal price we have that:

E
(
Pα

i,TP
β
j,T

)
= E

Pα
i P

β
j e

k<T∑
k=i

µα
k+

l<T∑
l=j

µβ
l

 = Pα
i P

β
j E(eµ

∗
i,j) (8.15)

Where the random variable µ∗i,j =
k<T∑
k=i

µα
k +

l<T∑
l=j

µβ
l is a normal variable because it is

the sum of normal variables. Thus, we can calculate its mean:

E
(
µ∗i,j

)
= (T − i)µα + (T − j)µβ (8.16)

In order to calculate the variance of µ∗i,j we have to take into account that the

return µ is a not autocorrelated random variable, therefore, σµα
i ,µ

β
j
= σαβ with i = j
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∀α ̸= β ∈ Ω, otherwise 0. So, we can write that result in a compact way:

σµα
i ,µ

β
j
= σαβ(1− δαβ)δi,j (8.17)

Where δab is the Kronecker delta that is equal to 1 if a = b, otherwise is 0.

With that result, we can calculate the variance of µ∗i,j:

V ar
(
µ∗i,j

)
=

k<T∑
k=i

σ2
α +

l<T∑
l=j

σ2
β + 2

k<T∑
k=i

j<T∑
l=j

σαβ(1− δαβδi,j) (8.18)

Now, we can solve the sums. To solve easily the double sum, we have to consider

only the upper index of both assets because lower indexes don’t find a pair in

the other asset. So, the only terms that are different from zero are those with

index ≥ max(i, j). At the same way as the other two terms, we have T −max(i, j)

terms other than zero. So:

V ar
(
µ∗i,j

)
= (T − i)σ2

α + 2(T −max(i, j)) σαβ + (T − j)σ2
β (8.19)

Knowing that the expected value of a Log-Normal random variable eµ is eµ+
1
2
σ2 , and

using the last result to 8.15 we have that:

E
(
Pα

i,TP
β
j,T

)
=

= Pα
i P

β
j e

(T−i)µα+(T−j)µβ+ 1
2((T−i)σ2

α+2(T−max(i,j))σαβ+(T−j)σ2
β)

= E
(
Pα

i,T

)
E
(
Pβ

j,T

)
e(T−max(i,j))σαβ

(8.20)

because E(Pα
i,T ) = PiE(Exp(

∑k<T
k=i µk)) = Pie

(T−i)(µ+ 1
2
σ2).

And finally, we have the final result by subtracting E
(
Pα

i,T

)
E
(
Pβ

j,T

)
:

σPα
i P

β
j
= Pα

i,TP
β
j,T

(
e(T−max(i,j))σαβ − 1

)
(8.21)
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with Pα
i,T = E(Pα

i,T ) = Pα
i e

(T−i)(µ+ 1
2
σ2)

Corollary

Eventually, the variance of the terminal wealth WT generated for a set of asset

transactions along T periods of time is:

σ2
wT

=

i,j=T∑
i,j=1,α,β

Pα
i,TP

β
j,T

(
e(T−max(i,j))σαβ − 1

)
(8.22)

where

Pα
i,T = Pα

i e
(T−i)(µα+

1
2
σ2
α) (8.23)

is the expected price of asset α at the period T whose price in the period i is Pα
i .

8.4 Conclusions

Analysing the former expression we get these conclusions:

• The expression is formally a classical variance-covariance formula if we inter-

pret each transaction as an independent asset itself.

• Although the returns are not autocorrelated, the prices do. It is easy to

understand this because prices have memory!

• Each individual asset (i.e., each transaction) has a correlation with each other,

even if it belongs to the same kind of stock. In that case, the factor (T −
max(i, j))σαα is the variance of the asset α times the number of periods that

both transactions (regarding to the same asset) have concurred along the time.

• The factor e(T−max(i,j))σαβ−1 comes from considering the price as a Log-Normal

distribution. If we consider a few periods and small variance-covariance num-

bers, we recuperate the standard matrix: e(T−max(i,j))σαβ−1 ≈ (T−max(i, j))σαβ.
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• The values of wealth and volatility are higher than if we consider prices nor-

mally distributed. It is necessary to consider Log-Normal behaviour to get

better predictions of the market. Moreover, considering prices normally dis-

tributed would break the necessary homogeneity of the market as prices would

be the product of normal distributions, and that is not possible. For instance,

if P2 = P0exp(µ1)exp(µ2) and we consider each exponential behaving as a nor-

mal distribution, the product is not a normal, but a Bessel function. So, we

wouldn’t guarantee the necessary stability property for the probability distri-

bution function for prices.

To sum up, in this chapter we have developed a natural extension of the Markowitz

portfolio optimisation problem. We have to consider a multiperiod scenario since in a

ALM context the optimisation problems generally run in the mid and the long term.

Obviously, this problem is harder to solve computationally. Even, if we add some

constraints, the size of the problem (recall that is an equivalent problem to N × T

assets), joint to the complexity of the extra constraints suggests that metaheuristics

and simheuristics have to go on stage.
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Chapter 9

A GA-Simheuristic for the Stochastic

and Multi-Period ALM

Abstract

The efficient management of assets to cover a firm’s liabilities over a multi-period

horizon is a relevant challenge for many banks and insurance companies, and one

which can generate significant benefits when an optimal / near-optimal investment

plan is found. Even in its deterministic version, this problem is complex in nature,

since managers have to make difficult decisions about their portfolio of assets at

each period. With the goal of maximising the expected terminal wealth in a sce-

nario under uncertainty, this chapter proposes a novel simheuristic approach that

integrates Montecarlo simulation at different stages of a Genetic Algorithm. Our

approach is capable of generating effective solutions to the considered problem in

relatively short computational times. In addition, our simheuristic is enriched with

several ‘smoothing’ techniques that enhance the attractiveness for managers of the

generated solutions, so they can be effectively employed in real-life applications.

A series of computational experiments, including the use of advanced evolutionary

strategies, contribute to illustrate these concepts and to justify the advantages of

including simulation in financial optimisation problems under uncertainty.
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9.1 Introduction

Dealing with liabilities (financial obligations) in volatile markets with a limited

yield or return is one of the main challenges that insurance firms have to face. The

insurer is forced to pay the amounts agreed in the policy at a specific maturity

date. In order to do that, a set of firm’s assets have to be ‘frozen’ in advance to

cover future payments. Asset-liability management (ALM) refers to the study of

techniques employed in selecting the appropriate assets to face the firm’s liabilities

over time. The financial market is constituted by a huge number of companies,

whose aim is to transform an initial wealth into large returns during a giving time

horizon. According to the consumer preference theory (Mankiw et al., 2007), an

investor would select those assets that provide the highest returns, while taking into

account her budget constraint. As markets are plenty of uncertainty, the volatility

of the assets also has to be considered. This transforms the ALM into a stochastic

and multi-period portfolio optimisation problem. Markowitz (1952) considered the

assets as random variables, so he formulated the classical mean-variance model,

in which different amounts of assets have to be selected in order to maximise a

portfolio’s return, while considering a specific volatility. Alternatively, one might

want to minimise the risk subject to achieving a user-defined level of return (Kizys

et al., 2019b). In any case, these approaches are only valid if our wealth is not

associated with a set of liabilities. Whenever it is, we need to consider a different

strategy, since the obtained returns are employed to cover liabilities. In general,

the purpose of ALM is to support the assets selection process –i.e., by selecting

those that maximise returns while maintaining enough financial resources to satisfy

the liabilities. Among the different ALM approaches in the scientific literature, the

following ones are the most popular ones: (i) duration theory, which is based on the

work of Macaulay (1938), who assumes that the interest rate is almost constant and

also that assets and liabilities have the same present value; (ii) cash-flow matching,

where we select assets in a way that allows us to match them with our debts; and

(iii) stochastic control theory, a quite theoretical approach that studies the evolution

of assets and liabilities in a continuous and stochastic scenario.

This work focuses on the cash-flow matching strategy, which extends the Markowitz’s
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theory to an ALM scenario. Hence, we will consider a realistic mean-variance prob-

lem in a multi-period context under uncertainty, where our decision variables are

the amount of assets we have to buy or sell in each period of time, considering an

initial wealth and a given set of liabilities along time. In other words, given an

initial wealth and a set of financial duties that need to be covered in the future, the

goal is to find the ALM plan that maximises our expected wealth at the end of the

time horizon, taking into account different uncertainty sources. In order to solve the

aforementioned stochastic optimisation problem, we propose a novel simheuristic

approach (Juan et al., 2015b) that integrates Montecarlo simulation (Carsey and

Harden, 2013) at different stages of a Genetic Algorithm or GA (Kramer, 2017).

Depending on the specific application, simheuristics can use Montecarlo simulation,

discrete-event simulation, agent-based simulation, or a combination of different sim-

ulation approaches, thus leading to hybrid simulation methods (Brailsford et al.,

2019). Our approach is capable of generating effective solutions in relatively short

computational times. In addition, our methodology is enriched with several ‘smooth-

ing’ techniques that enhance the attractiveness for managers of the solutions. While

simulation is a tool frequently employed in financial studies (Huang and Willemain,

2006; Khabibullin et al., 2020), and the same can be said for GAs (Soler-Dominguez

et al., 2017; Doering et al., 2019b), the combination of both has been rarely explored

in the ALM literature. Simheuristics, however, have been successfully employed to

solve stochastic optimisation problems in transportation (Gonzalez-Martin et al.,

2018), logistics (Quintero-Araujo et al., 2019b), and telecommunication systems

(Alvarez Fernandez et al., 2021). Still, this is the first time they have been used

to solve the stochastic and multi-period ALM problem. Also, while most of the

simheuristic approaches make use of trajectory-based metaheuristics (Grasas et al.,

2016), the one presented in this article makes use of a population-based metaheuris-

tic. Since they combine simulation with optimisation methods, simheuristics can be

considered as a particular case of hybrid models, which are particularly useful to

promote transdisciplinary research actions (Tolk et al., 2021).

The remainder of the chapter is structured as follows: Section 9.2 introduces the

mathematical model that provides a formal description of the considered ALM prob-

lem. Section 9.3 explains the simheuristic approach proposed to solve the ALM
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problem. Section 9.5 includes a series of computational experiments. These ex-

periments, together with the ‘white-box’ explanation of the hybrid methodology

employed, allow managers to build trust in our approach (Harper et al., 2021). Fi-

nally, Section 9.6 highlights the main conclusions of this work and points out some

open research lines.

9.2 A Formal Description of the Multi-Period ALM

Problem

As already mentioned, the typical goal of the ALM problem consists in maximising

terminal wealth subject to a initial wealth w0. The investor has to decide, in each

period of time, what amount of money is invested, sold, or held for each class of

asset in order to satisfy the scheduled liabilities on time. There is also the possibility

of borrowing money for those circumstances in which we do not have enough cash to

pay our liabilities (negative cash-flows). When considering the stochastic behaviour

of assets, a set of possible scenarios S appear, each weighted by a probability. These

probabilities are used to calculate the value of the manager’s utility function (e.g.,

the firm’s final wealth) at the expiry time τ of the planning horizon. We define the

following parameters and variables:

Parameters
S set of possible scenarios
s a particular scenario. Each scenario is characterised by a particular value of each asset
A set of assets, not including the risk-free asset indexed 0
U the Utility function of the investor
p(s) the probability of the scenario s
τ expiry time of the operation
β the borrowing rate
ρsit the yield of asset i in time t at scenario s
xit, xs

it the amount of money we have in asset i at time t (in scenario s when scenarios are considered)
wτ , ws

τ the terminal wealth (in scenario s when scenarios are considered)
Variables

psit the purchase of asset i in time t at scenario s
dsit the amount of sold asset i in time t at scenario s
bst the amount of borrowed money in time t at scenario s

Table 9.1: Parameter and Variable Definitions

Following Mulvey et al. (1997), and using the previously defined variables, we have

the standard deterministic and multi-period ALM model. Objective (9.1) is to

maximise the (subjective) utility U(ws
τ ) of the terminal wealth (ws

τ ) attained over
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a set S of financial scenarios, where τ is the number of time periods taken as the

planning horizon in each scenario:

Maximise
∑
s∈S

p(s)U(ws
τ ) (9.1)

Constraint (9.2) defines the initial wealth (ws
0) available for investment in each sce-

nario: ∑
i∈A

xs
i0 = ws

0, ∀s ∈ S. (9.2)

Constraint (9.3) defines the terminal wealth (ws
τ ), in each scenario s, as sum of the

values of all investments at the end of the planning horizon:

∑
i∈A

xs
iτ = ws

τ , ∀s ∈ S. (9.3)

Constraint (9.4) updates the value of an investment after one period of time, ac-

counting for the interest rate in the previous time period, ρj(t−1), any addition

investment in the asset in the current time period (psjt), or amount of the asset sold

in the current time period, dsjt:

xs
jt = (1 + ρsj(t−1))x

s
j(t−1) + psjt − dsjt, ∀j ∈ A, ∀t ∈ {1..τ} , ∀s ∈ S. (9.4)

Constraint (9.5) updates the amount of liquid assets/cash after one time period, ac-

counting for the cash interest rate, ρs0(t−1), the amounts of each investment sold/cashed

in,
∑
j∈A

dsjt, the amounts of each investment purchased,
∑
j∈A

psjt, any loans taken and

interest paid on the loan, minus the cash liabilities (lt) due in that time period:

xs
0t = (1+ρs0(t−1))x

s
0(t−1)+

∑
j∈A

dsjt−
∑
j∈A

psjt−bst−1(1+βs
t−1)+bst−lt, ∀t ∈ {1..τ} , ∀s ∈ S.

(9.5)

We have to consider the possibility of having to borrow money due to: (i) at a certain

time, there is not enough cash to cover the liabilities; or (ii) it can be inconvenient

to exchange some assets for cash. In the previous model, lt is the liability cash-flow
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at time t. One more equation is needed in order to ensure that liquid assets are

never negative:

xs
0t ≥ 0, ∀t ∈ {1..τ} , ∀s ∈ S. (9.6)

In our approach, we will consider the stochastic behaviour of assets by assuming

that the return will follow a Gaussian distribution. Therefore, the price obeys to a

Log-Normal distribution. We will also work with continuous interest rates. Having

included the stochastic nature of assets in the model, scenarios are not needed any-

more. Still, it is necessary to reformulate the former equations, so they include the

risk aversion of the investor. The volatility of the final terminal wealth is considered

as the measure of risk. Thus, the objective (9.7) will be to maximise the total wealth

accrued in a time period τ :

Maximise wτ (9.7)

Constraints (9.8) and (9.9) state that all the initial wealth is in our current account,

and that, initially, no money is invested in any of the available investments:

x00 = w0. (9.8)

xj0 = 0, ∀j ∈ A. (9.9)

Constraints (9.10) and (9.11) state that, at the last period, we have to sell every

asset and accumulate all the wealth in the current account –since we have to refund

the money to the investor:

x0τ = wτ . (9.10)

xjτ = 0, ∀j ∈ A. (9.11)

Constraint (9.12) describes the value evolution of asset j along time. As described

above, it accounts for return rate of the investment, any additional investments

made, or the amount of that asset sold in the given time period:

xjt = xj(t−1)e
µj+

1
2
σ2
j + pjt − djt, ∀j ∈ A, ∀t ∈ {1..τ} . (9.12)
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Constraint (9.13) describes the cash-flow evolution of our account. In this equation,

we consider not only the free interest rate and the purchases and sales of assets, but

also transaction costs, cash loaned, loan interest payments, and any liabilities that

must be covered:

x0t = x0(t−1)e
µ0+

∑
j∈A

djt−
∑
j∈A

pjt−bt−1eβt−1+bt−lt−
∑
j∈A

djtc
d
j−

∑
j∈A

pjtc
p
j , ∀t ∈ {1..τ} .

(9.13)

Constraint (9.14) states that we cannot have negative money, since financial author-

ities impose fines otherwise:

x0t ≥ 0, ∀t ∈ {1..τ} . (9.14)

Constraint (9.15) states that purchasing and selling an asset at the same time are

mutually exclusive events (either you buy or you sell):

djtpjt = 0, ∀j ∈ A, ∀t ∈ {1..τ} . (9.15)

Constraint (9.16) introduces the variable ujt to represent the transaction amount

in investment j at time t, which is positive in cases when we divest in asset j and

negative when we invest in asset j. This variable captures buying and selling events

in a single variable, and is used in the following equation:

ujt = pjt − djt, ∀j ∈ A, ∀t ∈ {1..τ} . (9.16)

Equation (9.17) is the risk condition. This condition is the mathematical exten-

sion of the Markowitz’s model considering that the asset behaves as a Log-Normal

random variable. Although the expression seems quite complex, we can recognise

two terms like uit1e
(τ−t1)(µi+

1
2
σ2
i ) which are the expected values of each transaction

at the maturity date, and e(τ−max(i,j))σαβ−1 which is the correlation between two
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transactions in different moments of the time, valued at the maturity date:

σ2
wτ

=
∑
i∈A

∑
j∈A

∑
t1∈{1..τ}

∑
t2∈{1..τ}

uit1e
(τ−t1)(µi+

1
2
σ2
i )ujt2e

(τ−t2)(µj+
1
2
σ2
j )
(
e(τ−max(i,j))σαβ − 1

)
σ2
wτ
≤ σ2

MAX .

(9.17)

Constraint (9.18) describes a realistic limitation of the loan, i.e.: using external aid

to finance cash-flow defaults is usually channelled by means of a mortgage or a credit

policy –as with any financial tool, there is always a limitation of funds that can be

used:

bt ≤M (9.18)

Following the Lagrange’s theory of multipliers (Bertsekas, 2014), we can substitute

the Equations (9.7) and (9.17) by the following one:

Maximize U = wτ −
1

2
λσ2

wτ
. (9.19)

Where λ is the Arrow-Pratt aversion index (Arrow, 1974; Pratt, 1978). Equa-

tion (9.13) deserves some attention. It is an obvious market condition that β > µ0.

In other words, the interest of the loan is higher than the return of the free risk

asset. In that case, there will not be any situation where we take the money of a

loan to invest it in a current account. Thus, we can treat both x0,t and bt as a unique

account, such that if the balance is positive we will have a return of µ0, while if it is

negative we will have a return of β. Notice that, in that case, Equation (9.14) will

be x0t ≥ −M , ∀t ∈ {1..τ}.

9.3 Our GA-Simheuristic Approach

The proposed approach to solve the stochastic and multi-period ALM problem is

based on a novel simheuristic Chica et al. (2020), which integrates Montecarlo sim-
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ulation at different stages of a GA (Kramer, 2017). By doing so, the simulation

component is not only used to provide estimates of the expected terminal wealth

under uncertainty conditions, but it is also employed to guide the GA while the

latter is searching for an efficient investment plan. As discussed in Chica et al.

(2020), simheuristics combine heuristic-based optimisation with simulation. They

have been recently applied in solving stochastic optimisation problems , mainly in

the areas of logistics (Pages-Bernaus et al., 2019; Gruler et al., 2018), transportation

(Guimarans et al., 2018; Onggo et al., 2019), smart cities (Gruler et al., 2017b), pro-

duction (Hatami et al., 2018), and finance (Panadero et al., 2020). They have also

been used to extend existing metaheuristic frameworks, such as the Iterated Local

Search (Grasas et al., 2016) or the GRASP (Ferone et al., 2019). In this paper, it

is employed to extend a GA framework, so that a stochastic financial optimisation

problem can be efficiently solved. Roughly speaking, our GA considers a number

of feasible solutions (individuals) that evolve at each iteration (generation). Hence,

at each generation, new offspring solutions emerge as a result of combining pairs

of individuals (parents). Also, at each generation, only the best solutions are kept

for the next one, while poor-performance individuals are discarded (notice that this

process mimics a natural evolutionary strategy). For each offspring, some alterations

(mutations) can be applied in order to generate a new variety of feasible solutions.

This procedure continues until a given number of generations has been explored or

until the algorithm reaches a certain equilibrium (e.g., new offsprings are not able

to improve upon the parents anymore).

In a realistic model, transaction costs might be not negligible. Hence, our GA has

been designed to account for these costs. This is achieved by adding the transaction

costs to the utility function, which is the reference value employed to select the

survivors in each generation. Extending this concept, we can consider that any ad-

ditional regulation associated with transactions can be treated also as a transaction

cost, e.g.: if a soft regulation is not fully satisfied, a credit must be required to pay a

penalty fee. Each individual (one possible solution) in the GA population contains

a list of periods, where the levels of each asset are registered. The GA has three key

factors: the initial population, the crossover between two parents, and the mutation

of an individual. To build a primitive but feasible individual, we loop along all peri-
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ods, considering if the wealth at the start of each period is positive or negative. To

select the initial relative weight of each asset in each period, a simple rule is utilised:

if the wealth before transactions is negative, we will only use our credit policy, thus

forcing the algorithm to sell all the non-cash assets; if it is positive, we assign a

random number for each asset, taking into account that the loan will not be used,

i.e., the loan is assigned to asset 0, which is the cash. The wealth in each period is

calculated recursively, so the wealth of one period is transferred to the next one by

capitalising the position of each asset with its own factor. Notice that we avoid using

the loan when the initial wealth in a period is positive. Otherwise, the GA would

have to find solutions that compensate the extra cost of using the loan, which would

make its task increasingly difficult due to the high interest rate of these long-term

loans. Figure 9.1 describes the mechanism we use to cross two individuals. Each

box represents the genetic code of each person, as described before. To create an

offspring, the following actions are carried out: (i) we select a random period, taking

the information of relative weights of the first individual until that period; and (ii)

we complete the information using the remaining periods of the other individual.

Once a new offspring has been generated, we mutate all the relative weights adding

a positive, negative, or null noise. After that, we re-normalise the relative weights

so they add up to one.

Figure 9.1: Crossover Operator

The proposed GA works independently of how the utility (fitness) function is eval-

uated. Actually, we propose two ways to compute this utility function. On the one

hand, it can be quickly assessed by employing an analytical expression. However,

this strategy does not allow us to fully consider the scenario under uncertainty. On

the other hand, we can evaluate it via simulation, which allows us to fully consider

112



9.3. Our GA-Simheuristic Approach

the stochastic behaviour of assets. The utility function is composed of two elements,

WT (terminal wealth) and sigma2 (the risk). The first one has been computed via

simulation, and it represents the terminal wealth that we aim to maximise. The

second element is still computed using an analytical expression.

Figure 9.2 presents a flow-chart of the simheuristic algorithm. The “Population

Growth” box represents the procedure where all parents are mixed to increase the

population, following the crossover function described before. Once the population

has been created, we select a set of individuals with high values of the utility function.

According to Equation (9.19), the fitness (utility) function has two components. On

the one hand, the positive terminal wealth. On the other, the risk component

(terminal variance), which is negative. In this work, we have run two versions of the

GA. The first one uses the exact mathematical model introduced in the previous

section. It means that both the terminal wealth and the risk level are analytically

evaluated. In the second one (the simheuristic approach), we compute the expected

terminal wealth using simulation, while the risk is analytically evaluated. Thus, in

order to estimate the expected terminal wealth, we have simulated the time-path

evolution of each individual until the end (maturity date), recreating a tree of future

values in each asset and following the assumed Log-Normal behaviour. Both GA

versions are compared in the next section.

In addition, we enrich the GA-simheuristic with a debugging procedure. For every

asset that changes it sign (from buying to selling or vice versa), this procedure

reviews all pairs of transactions associated with it, and tests if both transactions

can be regrouped in the first one, while leaving the second one to zero. Such a

situation is common in assets that are not relevant: the GA selects a transaction for

a given asset in period t, and chooses the opposite transaction for that asset in period

t+1 without the objective function being affected by any of these transactions. This

contradictory decisions are difficult to understand for a manager and, therefore, the

algorithm tries to remove them to ‘refine’ the solution.

Apart from using parallelisation techniques to speed up computational times, we

also create a chain of ‘civilisations’, i.e.: islands of populations that only interact

from time to time. Thus, after completing a civilisation, several procedures are run.
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Figure 9.2: Flow-Chart of the Proposed GA-Simheuristic

First, assets are classified in terms of importance. Then, we compute the sum of the

transactions along time, and verify if there are assets with a gap of 0.5% or lower with

respect to the most important asset. These non-relevant assets are deleted from the

final solution in order to simplify it and make it easier-to-understand for managers.

In order to get a new civilisation, we take the population of the previous civilisation

and smooth the transactions with a moving average of three points. Apart from

that, we randomly perturbate their relative weights, so that the algorithm starts

from a different point. Although this initial point might be worse than the current

one, starting from a different point reduces the chances of getting trapped into a

local minimum.

9.4 Classes, Structures and Pseudo-Code

The pseudo-code 4 - Classes and Data Structures provides the programming classes

and structures (structs) of the proposed GA. Each individual (solution) in the GA
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population contains a list of periods where the levels of each asset are registered. For

each period and asset, we start with an initial wealth, WealthBeforeTransact. The

RelativeWeight is the fraction of the total wealth in this period that is assigned to

a specific asset before any transaction (asset buying or selling) takes place. Hence,

once we buy or sell, we will have a WealthAfterTransact, which is defined by the

level of each asset after the transaction. The difference between WealthAfterTransact

and WealthBeforeTransact is the transaction cost. Positive numbers indicate buying

assets. Each individual also has the essential descriptive values, i.e.: TerminalValue,

TerminalVariance, and the utility value which is the value used as the fitness of our

GA. The collection of individuals is gathered in the class Civilisation.

Algorithm 4 Classes and Data Structures
public class Civilisation

public Person[] persons
...

end
class Person

double utility ← 0
double TerminalWealth← 0
double TerminalV ariance← 0
Period[] periods← 0

end
class Period...

Asset[] assets
double TotalWealthBeforeTransact
...

end
struct Asset

int TypeStock
double WealthBeforeTransact
double WealthAfterTransact
double Transaction
double RelativeWeight; // random number between 0 and 1
...

end

The GA has three key factors: the initial population, the crossover between two

parents, and the mutation of an individual. Figure 9.3 describes the creation of

the first individuals. To build a primitive but feasible individual, we loop along all

periods, considering if the wealth at the start of each period is either positive or

negative. To select the initial relative weight of each asset in each period, a simple

rule is utilised: if the wealth before transactions is negative, we will only use our

credit policy, thus forcing the algorithm to sell all the assets; if it is positive, we

assign a random number for each asset taking into account that the loan will not
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be used, i.e., the loan is assigned to asset 0 (cash or risk-free asset). The wealth in

each period is calculated recursively, so the wealth of one period is transferred to the

next one by capitalising the position of each asset with its own factor. Notice that

we avoid using the loan when the initial wealth in a period is positive. Otherwise,

the GA would have to find solutions that compensate the extra cost of using the

loan, which would make its task increasingly difficult due to the high interest rate

of these long-term loans.

Figure 9.3: Creating a Primitive Solution of a Genetic Algorithm

The algorithm that generates the evolution of the civilisation is described in pseudo-

code 5 - Start Method. In each generation, a new collection of individuals is created

following the pseudo-code 6 - Person::SonOf Method. After 10 generations without

improvements, the mutation rate is reduced. Thus, we account for the fact that

current mutations over the new individuals are situating them farther away than

their parents with respect the optimal value.

In the process, we insert a procedure called CleanJumps, which reviews all pairs

of transactions associated with every asset that changes its sign and tests if both

transactions can be regrouped in the first one, thus leaving the second one to zero.

This phenomenon is common in assets that are not relevant. In that case, the GA

selects a transaction of one asset in one period and, if the asset is not relevant for

the final result, in the next period the GA will choose the opposite movement, to

compensate the previous movement. The result is that we have two strange move-

ments of opposite sign that we should delete, since they are difficult to understand

for managers. The CleanJumps procedure gives us a faster algorithm with easier-

to-understand solutions. For each generation, we create a deterministic number of

sons, NumSons, which is based on two parents (survivors). This part of the code is

implemented by parallelising the computation, so that we have a huge improvement
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in terms of speed. We loop this process until we complete a pre-established number

of generations.

Algorithm 5 Start Method
Function Evolution():

for int j = 0; j < NumGenerations; j++ do
Parallel.For(0, NumSons, i => persons[NumSurvivors+ i].SonOf(i, Persons)
Sort(Persons)
if j is integer multiple of SomeNumber then

CleanJumps(j);

if persons[0].utility > ant then
ant← persons[0].utility
count = 0

else
count← count+ 1

end
if count > 10 then

MutationRate←MutationRate× 0.9
count← 0

end
end

End

Pseudo-code 6 - Person::SonOf Method describes the way we create a new individual

from two parents. We take two random individuals (parents) and copy the first x

periods from parent 1 and complement them with the last n − x periods of parent

2 (where n refers to the number of total periods in the considered horizon). This

hybridisation of periods will generate a new individual. The periods of this new

individual are mutated according to pseudo-code 7. This mutation is absolutely

necessary, since it is the way to obtain a variety of solutions, thereby diversifying

the search process. Otherwise, we would only have the best solution among the

elements of the initial population. In our case, we have implemented a mutation

over all the assets in each period. This mutation has only three possibilities for each

asset in the given period: increasing its value, decreasing its value, or keeping the

current value. The mutation rate allows us to speed up or slow down the probability

of applying these mutations to each asset in each period.

Finally, we create a chain of civilisations. This process is described in pseudo-

code 8 - Civilisation Chain Process Method. After completing a civilisation, two

procedures are run. The first one computes the classification of the assets in terms

of importance. Then, we compute the sum of the transactions along the time and
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Algorithm 6 Person::SonOf Method
Function Person::SonOf(numson, Persons):

crosspoint← RandomNatural(0, NumPeriods)
u1← numson/NumSonsPerSurvivor
u2← RandomNatural(0, NumSurvivors)
for p in Periods do

if p < crosspoint then
periods[p]← Persons[u1].periods[p]

else
periods[p]← Persons[u2].periods[p]

end
periods[p].Mutate()

end
End

Algorithm 7 Period::Mutate Method
Function Period::Mutate():

for asset in Assets do
k ← RandomNatural(0, 2)− 1
asset.RelativeWeight← asset.RelativeWeight ∗ (1 + k ∗MutationRate)

end
End

verify whether there are assets with a gap of 0.5% or lower with respect to the most

important asset. These non-relevant assets are deleted from the final solution in

order to simplify it and make it easier to understand for managers. This process is

called ComputeAssetCardinality in pseudo-code 8. In order to get a new civilisation,

we take the population of the previous civilisation and smooth the transactions with

a moving average of three points. Apart from that, we perturb their RelativeWeights

with an initial MutationRate. That transformation allows the algorithm to start

from a different point. Although this initial point might be worse than the current

one, the fact of starting from a different point prevents us from getting trapped in

local minimum and increases the chances of improving the results of the previous

civilisation.

9.5 Computational Experiments

The proposed heuristic has been implemented as a C# application running on a

CPU with Intel(R) Core(TM) i7-8700 CPU@3.20GHz and 16 GB of RAM. As a

preliminary study, and in order to test the efficiency of our simheuristic approach,
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Algorithm 8 Civilisation Chain Process Method
Function Start():

for i == 1 to NumCivilizations do
if i == 1 then

civilisation[i].CreateInitialPopulation
else

civilisation[i].CreatePopulationFromCivilisation[i− 1]
end
civilisation[i].Evolution
civilization[i].ComputeAssetCardinality

end
End

three small instances have been created and solved using both an exact method and

the simheuristic algorithm. These instances contain 5 periods and 2 assets, and we

use a high value for the credit loan to show how the two approaches differ. In the

case of the exact method, a Montecarlo simulation has been applied on the obtained

solutions in order to get an accurate estimate of their values in a real-life scenario

under uncertainty. The results are shown in Table 9.2. Notice that, when simulated

in a real-life scenario, the solutions generated using the exact method offer a worse

performance than the ones generated by our simheuristic approach, both in terminal

wealth and volatility. This justifies the need for employing our simheuristic approach

in scenarios under uncertainty.

The remaining of this experimental section is divided into two parts. The first

one (case A) explores the solution of a multi-period case without extra cash-flows,

i.e.: only cash-flows associated with the initial investment are considered. In the

second one (case B), a stochastic cash-flow is considered. In both cases, realistic

market data with 20 assets is employed. This data comes from different industries,

and covers different periods and risk aversion levels. Figure 9.4 shows the wealth-

volatility efficient frontiers for both cases. For the respective 10, 20, and 40 period

cases. These curves represent the maximum terminal wealth per final volatility.

They have been computed with the same risk aversion parameters and with 100

parents, 5 sons per parent, 1500 generations, and a total of 3 civilisations. The last

point assumes absolute risk aversion (the associated volatility is zero), which has

been computed after setting all decision variables to zero.

The noise that these curves show is due to the fact that the GA does not guarantee

optimal solutions. Nevertheless, it is possible to recognise the shape of the efficient
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Instance Term. Wealth Term. Volatility Sim. Wealth Sim. Volatility Error TW Error TV

1 Exact 27,058 € 19,215 € - 632 € 52,447 € -102% 173%
SimHeur 13,441 € 19,515 € 12,185 € 41,293 € -9% 112%

2 Exact 54,165 € 31,738 € 29,448 € 58,484 € -46% 84%
SimHeur 49,851 € 31,342 € 39,934 € 40,231 € -20% 28%

3 Exact 102,661 € 49,003 € 95,388 € 55,578 € -7% 13%
SimHeur 86,707 € 50,307 € 82,814 € 51,081 € -4% 2%

Table 9.2: Results of the Exact and Simheuristic Methods with Instances with 2 Assets
and 5 Periods

Figure 9.4: Efficient Frontiers
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frontiers, which are quite similar to the ones obtained in the Markowitz-Tobin’s

model (Tobin, 1958). Notice that the first part of each line is a straight line, while

the second one is a curve and corresponds to the speculative range. The difference

between these two parts vanishes as the period size is increased, which is due to the

fact that the volatility effect decreases as the number of periods is increased. We

can also see that the curves corresponding to case B (with cash-flows) have a lower

slope. This is due to the fact that cash-flows distribute the investment along time,

thus shortening the investment period.

Table 9.3 displays the experimental results following the exact utility function. Each

test has been repeated 5 times, and the result is shown in the output columns as

the average value. The error is computed as the difference between the largest and

the smallest of the obtained values divided by the average value. The instances are

in groups of four, where differences in each group are due to the corresponding GA

parameters. In each group, we combine 50 or 100 survivors with 5 or 10 sons per

parent, which provides four different variants. The market data we have used is

listed in Table 9.4.

By inspecting the utility error, one can notice that results are quite accurate. How-

ever, the greater the number of periods we consider, the lower the accuracy is. Notice

that this accuracy value is not related to the gap with respect to the optimal solution

(which is unknown), but to the stability of the solution provided by the algorithm.

If we compare the instances where the product survivors× sons is constant (tests

with the same number of individuals to be evaluated per generation, i.e., 50 × 10

and 100 × 5 in our tests), one can observe the following: (i) if the aversion risk is

high (Av = 4), it is better to use more survivors; and (ii) if the aversion risk is

low (Av = 40), we have similar results using either more survivors or more sons.

In general, when more survivors are considered there are more chances to explore

new paths in the search for the optimal solution (and, hence, a higher chance of

obtaining better results). However, if the number of survivors is reduced while the

number of sons is increased, there is a higher level of exploration per survivor. As a

result, it is possible to converge to the best solution for that survivor faster.

As can be observed, only a reduced set of assets (out of the 20 assets considered)
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Type Periods Aversion Survivors Sons Time (s) Wealth (€) Volatility (€) Utility (€) % Error Best (€)
A 10 4 50 5 13 2,358,199 491,263 1,925,640 2.2% 1,951,784
A 10 4 50 10 21 2,351,879 478,897 1,940,784 1.1% 1,949,999
A 10 4 100 5 27 2,358,095 477,748 1,948,979 1.3% 1,954,704
A 10 4 100 10 38 2,346,317 470,859 1,949,076 0.9% 1,955,041
A 10 40 50 5 9 1,388,465 88,011 1,249,681 0.4% 1,252,112
A 10 40 50 10 15 1,389,901 88,599 1,249,255 0.3% 1,251,003
A 10 40 100 5 17 1,389,874 88,413 1,249,819 0.5% 1,252,283
A 10 40 100 10 26 1,391,240 88,356 1,251,365 0.4% 1,253,478
A 20 4 50 5 77 3,532,947 754,085 2,610,918 4.1% 2,653,723
A 20 4 50 10 117 3,580,576 759,290 2,645,795 2.8% 2,663,542
A 20 4 100 5 131 3,564,083 765,356 2,614,264 2.9% 2,664,681
A 20 4 100 10 228 3,579,912 765,220 2,630,482 2.8% 2,665,033
A 20 40 50 5 56 1,614,149 109,271 1,420,576 0.2% 1,422,285
A 20 40 50 10 85 1,614,978 109,549 1,420,416 0.3% 1,421,770
A 20 40 100 5 90 1,616,858 109,754 1,421,571 0.5% 1,425,124
A 20 40 100 10 156 1,616,704 109,780 1,421,323 0.3% 1,423,525
A 40 4 50 5 352 5,331,440 1,140,497 3,604,676 4.5% 3,665,794
A 40 4 50 10 605 5,360,064 1,145,383 3,618,386 3.7% 3,675,175
A 40 4 100 5 526 5,397,406 1,142,927 3,663,502 0.6% 3,673,083
A 40 4 100 10 989 5,364,962 1,138,455 3,644,638 4.1% 3,685,045
A 40 40 50 5 170 2,084,857 148,813 1,790,883 1.4% 1,798,195
A 40 40 50 10 335 2,086,945 149,268 1,791,190 0.9% 1,795,477
A 40 40 100 5 349 2,095,890 150,346 1,795,866 0.5% 1,799,240
A 40 40 100 10 556 2,089,541 149,595 1,792,504 0.4% 1,795,594
B 10 4 50 5 13 2,212,216 481,497 1,837,064 2.5% 1,858,076
B 10 4 50 10 21 2,222,288 479,405 1,850,600 3.4% 1,881,531
B 10 4 100 5 21 2,223,724 474,013 1,860,603 2.0% 1,879,867
B 10 4 100 10 42 2,231,684 478,752 1,860,555 2.8% 1,884,339
B 10 40 50 5 9 1,463,555 82,396 1,353,751 1.6% 1,359,171
B 10 40 50 10 12 1,471,013 84,182 1,356,477 1.0% 1,361,002
B 10 40 100 5 16 1,476,345 85,115 1,359,291 0.6% 1,362,414
B 10 40 100 10 27 1,473,315 84,069 1,359,098 0.7% 1,363,337
B 20 4 50 5 75 2,742,241 601,106 2,104,725 2.7% 2,126,379
B 20 4 50 10 126 2,750,436 609,303 2,095,710 4.3% 2,131,542
B 20 4 100 5 132 2,765,805 601,979 2,126,745 1.0% 2,135,910
B 20 4 100 10 259 2,718,116 592,996 2,097,882 6.0% 2,148,412
B 20 40 50 5 52 1,434,341 92,149 1,284,596 1.2% 1,291,395
B 20 40 50 10 86 1,438,900 92,808 1,286,996 1.1% 1,292,405
B 20 40 100 5 71 1,432,231 91,557 1,284,334 1.1% 1,292,075
B 20 40 100 10 202 1,443,114 93,543 1,288,764 0.9% 1,291,972
B 40 4 50 5 339 5,000,434 1,086,280 3,431,944 7.1% 3,538,602
B 40 4 50 10 612 5,140,309 1,104,041 3,521,593 1.6% 3,546,089
B 40 4 100 5 727 4,971,247 1,079,097 3,424,646 3.9% 3,479,514
B 40 4 100 10 1,086 5,040,306 1,092,249 3,455,198 11.4% 3,570,234
B 40 40 50 5 233 2,063,311 145,415 1,782,475 1.1% 1,793,671
B 40 40 50 10 359 2,057,467 144,773 1,779,113 0.6% 1,784,228
B 40 40 100 5 320 2,046,794 142,831 1,775,824 1.2% 1,788,071
B 40 40 100 10 637 2,069,224 146,260 1,785,138 0.7% 1,790,863

Table 9.3: Summary of Results

Asset 0 1 2 3 4 5 6 7 8 9 10
Return 1.0% 15.2% 15.7% 7.1% 7.2% 8.0% 6.4% 1.5% 4.4% 5.1% 3.7%
Std Dev 0.0% 14.6% 18.3% 15.9% 17.8% 14.4% 18.0% 1.1% 6.2% 16.3% 31.4%
Asset 11 12 13 14 15 16 17 18 19 20
Return 2.0% 1.2% 2.5% 3.5% 3.9% 0.3% 7.1% 0.2% 0.8% 1.5%
Std Dev 8.4% 5.2% 22.0% 8.4% 8.3% 7.8% 9.1% 0.8% 1.7% 6.0%

Table 9.4: Market Data
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play a relevant role in each solution. We can also observe a minor contribution of

other assets, and the rest of them play no role. Moreover, it is possible to recognise

regular and well-known shapes, like the exponential one or different polynomials.

Notice that it is common to find solutions with a predominant asset along the first

periods. In a real-life case, this is not a convenient solution: although we use a

plausible risk model, each asset has other unknown or unpredictable risks. Hence, it

is usual that the investor imposes additional constraints, such as limiting the amount

of money per asset or per class of asset.

Another interesting conclusion is related to the connection of consecutive civilisa-

tions. We have considered slight modifications that introduce a relatively small

change in the population of the last civilisation. On the one hand, we analyse the

weight of each asset in the whole solution. Hence, if the asset is not relevant in

comparison with the most used one, it will not be considered anymore. We also re-

view transactions located between two adjacent transactions that are either higher

or lower simultaneously (i.e., we recognise “V” or “Λ” patterns). Under some general

conditions, we substitute the transaction at the centre for the average of the three

consecutive ones. Finally, we add some random variation over all the transactions of

each asset. All of these changes might generate a slight degradation of the current

solution, but they also allow us to obtain new individuals that are used to explore

different investment paths.

Figure 9.5 displays the evolution of all civilisations associated with one instance.

Notice that the first civilisation shows a huge improvement. This is because it

starts with an initial random population and the survivors are getting better after

each generation until a stationary stage is reached. At this point, a new civili-

sation begins, improving over the previous one, although the marginal improve-

ment decreases. This process continues until the algorithm’s termination criterion

is reached. Moreover, Figure 9.6 displays the evolution of the dispersion, where

dispersion D is the sum of the absolute deviation from a transaction to the next

one, i.e.: D =
∑ | Ti − Ti+1 |. Notice that there is a noticeable improvement in

terms of solution stability, which is mainly produced by the innovation of the linked

civilisations.
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Figure 9.5: Utility Evolution - Instance with 20 periods, A - P100× S10 - Aversion = 4

Figure 9.6: Dispersion Evolution - Instance with 20 periods, A - P100 × S10 - Aversion
= 4
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These instances have also been computed using the full simheuristic approach, i.e.,

by replacing the analytical expression of the terminal wealth with a Montecarlo

simulation. Indeed, the use of simulation also allows us to include rich and real-life

characteristics that are difficult (or even impossible) to consider by just using ana-

lytical expressions. Therefore, the use of simulation leads to more realistic solutions,

although the computational time increases. We present the results provided by our

simheuristic approach in terms of terminal wealth and volatility.

As a final step in our approach, we also make use of Montecarlo simulation to assess

the solutions provided by the GA when they are implemented in a realistic scenario

under uncertainty. This is done both for the GA-alone solution as well as for the

solution provided by our GA-simheuristic. The best results per instance have been

chosen (12 in total), and in order to test the robustness of the provided solutions

we have simulated the random walk of each asset using a Log-Normal probability

distribution. The number of simulation runs per test is 1000. During the simulation,

we define the deviation concept as any situation in which the predicted plan cannot

be accomplished. That situation occurs whenever the plan includes a future sale of

an asset and the simulated balance of that asset is less than the planned one. In those

cases, we count a deviation event. The magnitude of this deviation is also considered

in our computations. The simulation results are provided in table 9.5 and table 9.5.

The first five columns reproduce the best results for each instance –outcomes of the

GA-alone approach in the first table, and those of the GA-simheuristic in the second

one. The next three columns refer to the terminal values obtained by the Montecarlo

simulation final assessment. The last columns give us the average amount of money

that could not be transacted (deviation amount) and the ratio between the shortfall

and the utility given by the GA.

The following conclusions can be derived: both the GA-alone and the GA-simheuristic

values are quite similar, which confirms the good quality of the predicted values pro-

vided by the GA. Moreover, we see that the deviation amounts are similar to the

predicted volatility values. According to our simulation results, the average devi-

ation value is similar to the volatility, with a variation of ±25%. This gives us a

new interpretation of the risk: the risk value is not only the possible variation of
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Type Periods Wealth Volatility Utility SimWealth SimVol SimUtility Deviation Dev/Utlty
A-4 10 2,354,261 € 472,039 € 1,955,041 € 2,366,183 € 509,492 € 1,901,098 € 317,905 € 17%
A-40 10 1,394,636 € 88,762 € 1,253,478 € 1,398,951 € 110,193 € 1,181,398 € 89,529 € 8%
A-4 20 3,607,262 € 762,367 € 2,665,033 € 3,634,443 € 844,866 € 2,477,255 € 561,442 € 23%
A-40 20 1,622,672 € 110,388 € 1,425,124 € 1,626,673 € 140,393 € 1,307,139 € 115,076 € 9%
A-4 40 5,423,180 € 1,144,341 € 3,685,058 € 5,438,825 € 1,315,474 € 3,141,967 € 878,654 € 28%
A-40 40 2,101,708 € 150,958 € 1,799,240 € 2,106,720 € 193,932 € 1,607,526 € 157,373 € 10%
B-4 10 2,241,337 € 470,057 € 1,884,339 € 2,119,337 € 487,271 € 1,735,713 € 263,139 € 15%
B-40 10 1,478,082 € 84,272 € 1,363,337 € 1,362,446 € 96,974 € 1,210,505 € 71,904 € 6%
B-4 20 2,760,055 € 588,966 € 2,148,412 € 2,713,467 € 693,312 € 1,865,898 € 411,823 € 22%
B-40 20 1,446,561 € 93,502 € 1,292,405 € 1,442,396 € 115,830 € 1,205,827 € 95,052 € 8%
B-4 40 5,209,902 € 1,111,176 € 3,570,234 € 4,938,387 € 1,376,608 € 2,421,806 € 819,998 € 34%
B-40 40 2,083,029 € 147,612 € 1,793,671 € 2,082,589 € 196,695 € 1,568,811 € 153,518 € 10%

Table 9.5: Results of the Montecarlo Simulation: GA-alone Utility Function

Type Periods Wealth Volatility Utility SimWealth SimVol SimUtility Deviation Dev/Utility
A-4 10 2,050,870 € 338,391 € 1,845,709 € 2,075,337 € 372,073 € 1,827,302 € 249,307 € 14%
A-40 10 1,288,876 € 58,681 € 1,227,180 € 1,293,987 € 70,919 € 1,203,876 € 57,284 € 5%
A-4 20 2,610,240 € 469,905 € 2,252,269 € 2,727,568 € 529,791 € 2,272,540 € 381,048 € 17%
A-40 20 1,390,444 € 58,301 € 1,335,339 € 1,401,191 € 66,631 € 1,329,217 € 54,712 € 4%
A-4 40 3,596,210 € 721,195 € 2,905,851 € 3,725,761 € 934,240 € 2,567,288 € 620,066 € 24%
A-40 40 1,829,065 € 109,349 € 1,670,356 € 1,854,895 € 124,263 € 1,649,943 € 88,034 € 5%
B-4 10 2,035,842 € 360,382 € 1,826,001 € 1,926,590 € 380,201 € 1,693,034 € 222,362 € 13%
B-40 10 1,392,940 € 57,507 € 1,339,507 € 1,278,916 € 66,361 € 1,207,763 € 49,580 € 4%
B-4 20 2,117,869 € 407,265 € 1,825,406 € 2,157,399 € 453,658 € 1,794,510 € 309,732 € 17%
B-40 20 1,283,880 € 53,980 € 1,232,502 € 1,295,817 € 62,874 € 1,226,112 € 52,811 € 4%
B-4 40 3,760,930 € 730,028 € 3,053,197 € 3,882,929 € 942,914 € 2,702,241 € 602,770 € 22%
B-40 40 1,622,043 € 61,839 € 1,571,260 € 1,649,946 € 73,129 € 1,578,927 € 56,961 € 4%

Table 9.6: Results of the Montecarlo Simulation: GA-simheuristic Utility Function

the terminal wealth, but also the deviation in the transaction amounts compared

to those in the investment plan generated by the GA. However, the most relevant

result comes when we compare the ratio Deviation/Utility: in all of the cases, the

GA-simheuristic utility function presents a lower ratio than the equivalent case with

the GA-alone utility function. Hence, as expected, integrating the simulation com-

ponent at different stages of the GA optimisation module leads to a more robust

solution. The reason, of course, is because the solution evolution is driven by a

more realistic terminal wealth. All in all, it is possible to conclude that: (i) the

transaction plan given by the GA-alone is fairly reasonable; and (ii) this plan can

be further enhanced by inserting simulation at each stage of the GA, as proposed in

our GA-simheuristic approach.

9.6 Conclusions and Further Work

This chapter has analysed the stochastic and multi-period asset-liability problem.

This is a complex optimisation problem that many financial institutions have to
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face in order to guarantee that their liabilities are covered by a number of dedicated

assets, which vary from period to period. The goal is to define the portfolio of assets

to be kept at each period so that the terminal wealth is maximised while satisfying

all liabilities in due time. In order to solve the problem, we have proposed a GA-

simheuristic approach that integrates Montecarlo simulation at different stages of a

genetic algorithm. As discussed in the experimental section, our GA-simheuristic

constitutes an effective methodology for solving complex financial problems that

require the matching of assets and exogenous cash-flows (liabilities). The proposed

GA-simheuristic provides accurate results in terms of utility value, and it can be

easily extended to consider other risk definitions or models with richer characteris-

tics.

The experimental section shows that the GA-simheuristic is able to obtain good-

quality solutions in short computing times. However, the methodology required

some refinements in order to generate ‘smooth’ solutions that can be accepted by

most managers. Our results also show that injecting a simulation component along

the evolution of the population increases the robustness of the results, thus reducing

the number and volume of defaults along the planned horizon.

Several open research lines are listed next: (i) to explore the use of a multivariate

regression model as a proxy (surrogate) model for some of the intermediate sim-

ulations, which will speed up the computations; (ii) to test constraints according

to the standards of the market –e.g., dividing the assets into classes and limiting

the investment per asset class; and (iii) to introduce fixed incomes with default

conditions.
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Chapter 10

Simheuristics in Finance: Managerial

Insights

10.1 Introduction

In the last chapter I presented a combination of two powerful techniques. On the

one hand, I developed a genetic algorithm to solve a complex asset and liability

optimisation problem. The big number of constraints and also the common size of

a problem like this suggests us the implementation of a solution based on heuristics

since an exact solution seems hard to achieve. This approach gives in a reasonable

time a plausible solution although it has a clear weakness which comes from the

mathematical formulation. Our model is an extension of the traditional Markowitz

– Tobin problem and it is well formulated in mathematical terms as I proved in

Chapter 7. Nevertheless, the risk formula we developed has a crucial hypothesis,

the asset returns behave as normal probability distributions. When we impose con-

straints like xi ≥ 0 we are violating the mentioned hypothesis. Indeed, the one

period two-fund theorem proves that the capital market line is just that, a straight

line, and that is possible because you can purchase or sell any amount of assets, i.e.,

any amount positive or negative. In other words, you can have negative assets in

you balance sheet. In some markets it is possible, like in the derivatives market. In

those markets it is not relevant to physically own stocks because when the maturity
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date is achieved, you clear the transaction by differences among the prices in the

contract and the quoted prices in the market. In the field of portfolio management

things work differently, you purchase real stocks and you keep them in your balance

as real assets. This affects directly to our model because it is not possible to have

negative positions, so the random walk of one asset is necessarily truncated. And

so, it is not a normal distribution anymore. As we did before, simulation is then

necessary, and we had to develop a simheuristic model to solve our multiperiod op-

timisation problem.

However, the solution is not free of difficulties. Inserting Montecarlo as a technique

to evaluate the terminal wealth increases extraordinarily the needs of computational

resources and the execution time, and not only that, it adds a great amount of noise

in our solutions in spite of having reasonable final values. In figure 10.1 we present

the time functions of the main assets that are part of the solution of the instance

A with aversion risk = 4 and 40 periods without simulation, and in figure 10.2 we

show the equivalent sketch inserting simulation. As we see, the first figure tends to

be regular and the second one lacks absolutely of regularity or continuity. Even if

the results of simheuristics are better (in terminal wealth and in stability terms),

it is unlikely that any chief financial officer would admit that solution as investing

strategy plan in the mid or long term. Along this chapter we will explore a different

way to include simulation into our genetic algorithm just to solve that inconvenience,

we will compare this new approach with the previous one, and at the same time, we

will check our results for a set of four simple instances that imitate real management

problems in the financial industry.

10.2 Simheuristic Model

As we have just mentioned, we will continue solving the multiperiod optimization

problem, fully described in the previous chapter of this thesis. We have seen that this

deterministic model can be well solved using a Genetic Algorithm (GA). Neverthe-

less, this model is limited in many aspects. First, the solution that our GA gives us
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Figure 10.1: Shape of Main Assets as a part of a GA Solution

Figure 10.2: Shape of Main Assets as a part of a GA & MC Solution
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is based on average values. But it is only an approximation because the random walk

of a price can decrease so that the equation xα,t ≥ 0, ∀α ∈ A∗, ∀t ∈ {1 . . . T − 1} is

not met. That means that our problem is a set of deterministic values, but if we run

a further simulation, the price of an asset can decrease enough to violate that con-

straint. Recall that we don’t admit negative balances in our assets. Moreover, the

liability cash-flow is considered deterministic but a realistic model should consider it

as stochastic. In fact, the possible cash-flows can present complex behaviours that

should be considered in a hypothetical realistic model. Finally, the λ parameter

is useful to solve the equations but it is a theoretical construction. An investor

wants to determine the maximum risk capital (or another reference parameter), he

doesn’t know anything about the Arrow-Pratt aversion index, so a method to pair

risk capital (volatility) and λ is needed.

Therefore, we will consider an extension of the deterministic problem adding random

behaviour in all our prices using Montecarlo simulation, and we will provide an

efficient way to match the aversion risk with the required volatility using Machine

Learning.

The basis of our model is to maximise the terminal wealth selecting a specific risk

capital that is suitable with our risk profile. At the same time, we have to meet

the expected cash-flow. Using the Lagrangian formulation, we find the concept

of Arrow-Pratt aversion index that gives us a parameter that represents our risk

profile or in other words, the capital risk that we are willing to tolerate. Maximising

the formulation with this parameter, we get the values of the decision variables

that represent the sales and purchases of our assets along the transaction. Our

genetic algorithm consists in generating a specific number of random solutions, called

individuals, and selecting a fraction of them with the criteria of having the best

utility values. After that, as it is common in a GA, we cross pairs of survivors getting

a new population, and simultaneously we mutate the decision variables that are in

each individual. We iterate this procedure until we reach a stationary state. The

crossing method consists in selecting a random period and interchange the decision

variables before and after that selected period for the two selected individuals. This

GA converges in a relatively short time with a reasonable good solution. To improve
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the solution, we establish a chain of civilisations. It means that the converged

population we get is shocked randomly generating a new one population but with

an interesting feature: this population is near the last population but with new seeds

(new individuals) and it gives us the opportunity of repeating the same procedure

we have just commented but with better results. This interlinking of populations

ends when no improvement is achieved or a convergence criterion is reached.

The best solution of the genetic algorithm is only a solution in a complete deter-

ministic scheme. Unfortunately, this approach is not so realistic. A real market has

a complete random behaviour. It is true that our model considers a random walk

of equities, and more specifically, a Log-Normal random walk for prices as a conse-

quence of considering normal distribution for the returns of the assets. Nevertheless,

we know that many other hypotheses can be feasible in equities, like volatility of the

volatility, inflation, etc., which in turn it admits a great variety of models. Moreover,

our problem is dual: not only we have the intrinsic random behaviour of assets, but

also we have our cash-flow. In general, the cash-flow represents, on the one hand,

the liabilities of our firm, and on the other, the revenues we will get along the time

and both of them can be also random variables (in fact they are always stochastic).

In short, our model is insufficient to respond to the question of which financial plan

I have to expect along the horizon to fulfil the obligations, maximising my invest-

ment, and assuming a certain level of risk as it doesn’t consider those other risks.

If we consider the equivalence of the capital risk we are willing to assume with the

Arrow-Pratt aversion risk, we sub-estimate this risk. Indeed, we also have to con-

sider in our model the extra volatility that comes from the random behaviour of the

cash-flows and the random expectation of the assets that is not considered in the

classical Markowitz model.

Implicit Aversion Risk Index

The easiest way to calculate the utility function taking into account all our consid-

erations is using Montecarlo techniques. From this point, we have two alternatives.

The first one is to calculate our deterministic problem with some initial Arrow-Pratt
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aversion risk index, and after that, to re-estimate that solution using Montecarlo.

The simulation will give us a bigger amount of capital risk, so we will be forced to

adjust the aversion risk index and we will have to repeat the loop again until the

system converges. This derives in a final aversion risk index that we can call it the

implicit aversion risk index. It means that this new index can be interpreted as

the one we have to use in the deterministic general model to get our capital in a

stochastic context. This is not a new idea. In fact, we can interpret this implicit

aversion risk index as the equivalent Lagrangian multiplier of the implicit volatility.

This implicit volatility would be similar to the one we have to use in the derivatives

market (Rogers et al., 1994). In it, we have to recalculate the volatility that we

have to use in our Black-Scholes model to reproduce realistic prices. Here, we have

to calculate (via simulation) the new volatility to use it in our GA and get the final

solution. This schema is represented in figure 10.3.

The second alternative consists in substituting the exact risk calculus for Montecarlo,

inside the genetic algorithm. This approach has been fully developed in chapter

8. It has the advantage that if we choose an accurate Montecarlo simulation (i.e.

we use a lot of iterations), we don’t need extra concepts and we reuse the GA

including our non-standard financial model. But on the other hand, we will have

a very heavy system and we will depend on our available computational resources.

Indeed, Montecarlo can be fast to have a reasonable result, but it can be very slow

if we need very accurate results, and the genetic algorithm is fast if equations are,

computationally speaking, fast. In order to get a valuation of the risk formula, the

simulation would need million iterations, so it is slow to apply it in our GA frame.

Nevertheless, our aim is to apply Montecarlo because as we proved, simheuristics

gives us a better solution compared to the pure GA. In our approach we will develop

the first alternative, as the second one is in terms of computational times almost

unfeasible because in order to the GA we need a precise calculus of our utility

function and MC will only give us an approximation so that the natural selection of

our population will be erroneous.

Our schema starts with an intermediate λ. Each time we have selected a λ we

solve the deterministic problem with the GA. It gives a winner (individual with best
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Figure 10.3: Montecarlo and Genetic Algorithm

utility value) and we calculate the realistic volatility of that solution using MC. So,

it gives us a pair (λ, σ) that it is used to feed a linear regression. In fact, let’s

consider our objective function:

U(WT ) = WT −
1

2
λσ2

WT
. (10.1)

Generally, when we are near the solution, a linear approximation can be made, so

that we can consider a linear relation between the terminal wealth and the terminal

volatility:

WT = a+ bσ (10.2)

Substituting the former expression to our utility function, we have that:

U(WT ) = a+ bσ − 1

2
λσ2

WT
(10.3)

and setting the derivative equal to zero we have:

dU

dWT

= b− λσ = 0 (10.4)

That means that λ× σ = constant. So, taking into account that λ is an exogenous

variable and the genetic algorithm introduces necessarily a random error, we can
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write the former expression as follows:

σ =
β1

λ
+ ϵ (10.5)

This means that σ is the endogenous variable of a linear regression where the ex-

ogenous variable is the inverse of λ and the independent constant of the regression

β0 is set to zero. Based on the previous simple expression, our algorithm that gets

the implicit aversion risk index is described as follows:

Algorithm 9 Calculation of Implicit Aversion Risk
Function CalcImplicitAversionRisk()

λ← λ0

repeat
σ = GA(λ)
Regression(β1)← (λ, σ)
λ← β1/σ

until σ ≈ σ0 and ∆λ→ 0;
End

Ascent Gradient

Concerning our Genetic Algorithm, we divide it into three parts. The first part

is the execution of a three-civilisation solution (we will see that we won’t need

more than three). After that, we select the winner of this stage and we check the

use of the credit policy. In other words, we inspect the cash-flow generated by

borrowing the money and afterwards, the paid off. Having this, we substitute the

credit policy by an extra cash-flow, and we execute again the GA with a three-

civilisation configuration. The difference between the first execution and the second

one is that we don’t have to borrow money in the second one, and therefore, we

don’t have different free risk interest rates.

This is a critical point of our improvement. Having different interest rates creates a

lot of possible branches and that situation contributes to one of the major difficulties

of having feasible individuals. We have to keep in mind that changing just a value of

one decision variable can imply a change in the interest rate in some period. In other

words, let’s suppose that a solution (individual) is represented as a vector x⃗, where
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each coordinate xα
i represents a transaction (decision variable) in time i of asset α.

The Terminal Wealth can be expressed as WT = WT (r⃗, x⃗), where r⃗ is the interest

free rate vector, where each coordinate refers to the interest rate of each period. The

vector r⃗ is a function of the specific solution because each individual determines if

we need to use the credit loan or not. So, we have r⃗ = r⃗(x⃗). We have to take into

account that this rate function has accountable jump discontinuities so we cannot

guarantee the existence of the derivatives. So, we can make this statement:

∃x⃗, α, i : ∂WT

∂xα
i

̸∈ R (10.6)

This is the reason of why we cannot improve our GA with the standard ascent

gradient technique, at least directly. To avoid this, we transform the credit policy

into a new deterministic cash-flow. If the solution gives us the need of using the

loan, we consider an income, and after, we will consider a liability that includes the

extra interest rate we would have to pay. So, with this trick, we have a Terminal

Wealth that is free of jump discontinuities since r⃗ = r(1, 1, 1, . . . , 1, 1), so ascent

gradient can be applied.

Therefore, using only three civilisations as maximum, you get a reasonable good

solution. With that solution you get an idea of the need of the credit loan. So, you

can transform the credit loan that your solution requires into a deterministic asset

(income coming from the loan) and a liability (payment of the loan plus interest),

and process a common ascent gradient approach that is referred as ILS in our chart

(fig. 10.3). In the computational experiments, we will show in what manner our GA

solutions are highly improved.

10.3 Description of the Instances

We will test our simheuristic model with four idealised but usual cases we can find

in the market, a well capitalised firm or solvent company, an indebted company, an

annuity and a simple pension plan. Each one represents typical cases we can find in
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an ALM context, not only in the financial market but also in the scope of personal

finance. These four models don’t pretend to be accurate models of real life, but they

want to illustrate how our approach is useful as a good tool to guide a long-term

financial strategy.

Case A - A Solvent Company

To model this situation in an easy way, we consider that the solvent company gets

regular income along the time. The company has also regular expenses but those

are always after the income. In other words, this company never needs to borrow

money. In Figure 10.4 we can see the cash-flow of the model. This case can represent

a company with reverse production life-cycle, like an insurance firm. In this case, we

have to worry about investing but reserving part of the capital to pay our obligations

in the short time.

Figure 10.4: Well Capitalised Company Cash-Flow

Case B - An Indebted Company

The indebted company is similar to the previous case, but with the cash-flow in a

reverse order. So, this company needs to borrow money all the time because the

obligations appear before the income. We can see the cash-flow of this instance in

Figure 10.5. As we see, first we have to satisfy our liabilities lending money, so it is
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quite difficult to manage this situation, and it is very responsive to the risk profile

of the company.

Figure 10.5: Indebted Company Cash-Flow

Case C - An Annuity

This instance is a simplified model of an annuity. First, we have a high income in

our balance sheet, and we have to pay an annuity each period until the annuitant

passes by. This model is in fact an average of that situation. If we only consider an

individual, he receives the income until he dies. But we have considered a decrease

of a 5% in each period emulating the death of part of the pensioners (figure 10.6). In

other words, this model corresponds to an annuity in statistical or actuarial sense,

without considering rigorous mortality details.

Case D - A Pension Plan

This last instance is a fair model of the cash-flows in a pension plan (figure 10.7).

During a period of time, we receive the contributions from the stakeholders. That

amount of money is considered decreasing because at the same time we get the

income we also pay to new pensioners. This schema is repeated along the span of

time of our operation, so the cash-flows become negative, which means that we have

more pensioners than contributors.
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Figure 10.6: Annuity Cash-Flow

Figure 10.7: Pension Plan Cash-Flow

140



10.4. Computational Experiments

10.4 Computational Experiments

The proposed heuristic has been implemented as a C# application running on a

CPU with Intel(R) Core(TM) i7-8700 CPU@3.20GHz and 16 GB of RAM.

Asset 0 1 2 3 4 5
Return 1.00% 1.5% 3.5% 5.0% 8.0% 10.0%
Standard Deviation 0.00% 1.0% 3.5% 7.5% 14.0% 20.0%

Table 10.1: Portfolio of Assets Used for Application Solutions

We have considered five assets plus the free risk asset and 40 periods (table 10.1).

We didn’t consider correlations because methodologically it is not strictly necessary.

First, we have run the instance A (solvent company) with deterministic liability with

the two possible simheuristic models, according to the parameters we further define

for all the instances. The inner simheuristic approach has the implementation as we

have described in the previous chapter, i.e., having a pure genetic algorithm with

the objective function evaluated by simulation. The outer simheuristic model (im-

plicit aversion risk approach) is a pure genetic algorithm with the objective function

evaluated mathematically (exact method) but corrected dynamically according to

the evaluation given by simulation over the final solution.

We show the balance sheet of the assets (fig 10.8). In each chart we draw the cash-

flow as a reference and the different solutions of the inner and outer simulation. As

we can see, the first three assets have different shapes, while the three other assets

are quite similar. The higher weight has that asset in the solution, the greater the

similarity . We observe clearly that the inner simulation generates a lot of noise, and

the outer simulation is well defined. The reason for this great difference is that in

the first case we have to simulate each individual in an evolutionary process, which

implies that when we have to organise the population from the best to the worst,

we will commit mistakes since the evaluation is not exact. On the other hand, we

have got an exact solution (recall that eventually we use ascent gradient) and we

run the simulation only for the best individual. Running the simulation for only

one individual can be done with extreme accuracy without a relevant computational

sacrifice, but if we do it into the evolutionary process, we have to simulate hundreds
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of individuals, in hundreds of generations, so we have to reduce the accuracy of

Montecarlo just not to die in the attempt (in this experiment we have used 100,000

iterations per evaluation). In fact, the outer simulation approach gets the solution

in 8 minutes, while the inner simulation process needs 8 hours! The other aspect,

and not less important, is the shape. An irregular shape means in some manner a

chaotic investment strategy, so no CFO will follow that solution.

(a) Asset 0 (b) Asset 1

(c) Asset 2 (d) Asset 3

(e) Asset 4 (f) Asset 5

Figure 10.8: Comparison between Simheuristic Models

Following the implicit aversion risk approach, we have considered two scenarios for

each instance, one with no volatility in our cash-flow and the other with volatility.

In this case, we have considered that our cash-flows follow a normal distribution
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with a standard deviation of 10% with regard to the cash-flow value. The number

of iterations used for Montecarlo simulation is 1,000,000, and we have run it in

parallelisation.

Our objective will be to solve the optimisation problem with a terminal volatility of

2,500,000 for all the instances.

The results for terminal values with and without simulation are in table 10.2, and

we show in figure 10.9 the amount of money per each asset, corresponding to the

variable xα,t for the case of cash-flows with volatility. The columns TerminalWealth

and TerminalVolatility correspond to the values of the implicit aversion risk in-

dex. The next two columns correspond to the values given by the simulation. The

next columns are the variations between the deterministic solution and its simu-

lation. And the last column shows the computation time and the deviation from

the volatility goal. We also present in figure 10.10 the terminal wealth probability

distribution for all the cases in figure 10.10.

Genetic Algorithm 3+3
Instance Lambda Terminal Wealth Terminal Volatility SimTWealth SimTVolatility Exec Time (s) Result
A 7.58 9,359,595.91 2,461,603.75 9,349,148.79 (-0.11%) 2,468,407.42 (0.28%) 473 -1.26%
A CF w Vol 8.30 9,047,159.26 2,288,150.80 8,596,490.19 (-4.98%) 2,457,390.88 (7.40%) 1091 -1.70%
B 4.08 4,663,215.92 2,500,365.07 4,651,220.44 (-0.26%) 2,494,109.51 (-0.25%) 156 -0.24%
B CF w Vol 4.70 4,355,452.79 2,204,710.89 4,084,951.78 (-6.21%) 2,461,496.20 (11.65%) 569 -1.54%
C 1.02 6,932,313.93 2,453,980.40 6,881,364.18 (-0.73%) 2,459,717.07 (0.23%) 645 -1.61%
C CF w Vol 1.02 6,933,648.95 2,454,880.03 6,866,180.75 (-0.97%) 2,466,952.79 (0.49%) 599 -1.32%
D 0.97 5,134,263.67 2,444,418.51 5,097,455.45 (-0.72%) 2,453,065.79 (0.35%) 326 -1.88%
D CF w Vol 0.97 5,143,031.01 2,452,109.07 5,042,428.95 (-1.96%) 2,467,517.74 (0.63%) 688 -1.30%

Table 10.2: Results

In all the instances with no volatility in cash-flows, we can see that the simulation is

very close to the deterministic calculation. When we consider volatility in our cash-

flows, things are slightly different. The first two instances present a considerable

jump with deviations of at least 5% in the terminal wealth and naturally higher in

the terminal volatility. Two factors have to be considered to explain such deviations.

On the one hand, perturbations affect to both income and expenditures, that means

that sometimes we have higher values in our expenditures and at the same time,

less income. That means that our predetermined assets wont be enough in several

moments of time, so that we will be reduced our expectation of the terminal wealth.

On the other hand, the natural volatility given by our assets has to be increased with

the contribution of the volatility coming from our cash-flows. As we see, instance B
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(a) Instance A (b) Instance B

(c) Instance C (d) Instance D

Figure 10.9: Balance Sheets of Instances

has greater effects than instance A because the margin of that operation is smaller.

In fact, it needs an intensive use of the credit facility. Moreover, when we check the

probability distribution, we observe that when we consider the volatility in our cash-

flows, in instance A, as it is a very well capitalised company, it keeps a negligible

probability of ruin. This is quite different when we have a highly indebted company,

as we see that the probability of ruin starts to be visible. It is remarkable that

our model is a very simple one and models that consider higher and more complex

volatility models, most likely our probability of ruin won’t be negligible.

In instance C we see a very low impact. The terminal wealth expectation is the

same in both cases, with volatility and without volatility in our cash-flows. It is

because the first cash-flow has no volatility, it is deterministic because it occurs now,

therefore there is not uncertainty. On the other hand, the values of the annuities

are small compared to the initial investment, and assuming they are not correlated,

we almost can neglect this impact. This fact is well corroborated in the probability

distribution (fig. 10.10c), as we see a very small difference from one curve to the

other one.
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(a) Instance A (b) Instance B

(c) Instance C (d) Instance D

Figure 10.10: Terminal Wealth Probability Distribution

In instance D we also see the effects we have just commented, but not so intensely.

Indeed, we observe that the impact on volatility is almost negligible. With respect

to the terminal wealth, expectations are reduced if we have assets whose balance

is near zero, as commented before. Indeed, the simulation can make the prices go

below zero, and we don’t admit negative assets, so we move them to cash, and recall

that our cash-flow crosses the zero in one specific moment of time, so it is in that

moment when we have cut down our expectations in statistics terms. But in terms

of volatility, as the values of our operation are smaller than in the first two instances,

the contribution is not as significant as it was in instances A and B.

Finally, in order to compare the computational time of a not correlated problem

with a correlated one, we have to take into account that the computational time

is directly proportional to the size of the correlation matrix. In our approach, we

considered no correlation between one asset and other different one, but there is

correlation between one asset in one specific period and the same asset in other

period. For the case of correlation among assets, we have a symmetric correlation

matrix with np(np + 1)/2 different elements, having n the number of assets and p

the number of periods. In the case of a not correlated model, we have p(p + 1)/2
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elements for each different asset in its itself correlation sub-matrix, multiplied by n

different assets. So, the final ratio between correlated and not correlated market is
np+1
p+1

. In our case, we should expect 5 more times if we run a market with correlated

assets.

10.5 Conclusions and Further Work

This chapter has analysed the multiperiod mean-variance optimisation problem ap-

plied to ALM. I have used a genetic algorithm to get the decision values (transac-

tions) and I have also considered that the cash-flow can have stochastic behaviour,

such that it adds an extra volatility component to our problem. This extra com-

ponent and furthermore, the need to determine an specific capital risk drives us to

introduce the concept of implicit aversion risk index. With this new concept and

combining a relatively fast genetic algorithm, Montecarlo Techniques and a little

piece of machine learning, we can get good solutions that can be used as the in-

vestment strategy that a company need to accomplish with all its liabilities and

maximising the terminal wealth.

In particular, we have tested the model with four simple cases, and we have checked

that depending on the stochastic behaviour we consider for our market and for our

future cash-flows, a corrected aversion risk index is crucial to keep the solvency

requirements of the company (capital risk) fulfilling all our liabilities. We have

compared two models of management for a company, both with the same nominal

cash-flows but in a different order. The conclusion is clear, the company that de-

pends highly on external credit reduces considerably its terminal wealth and even

compromises its future increasing its probability of ruin. And we have also checked

two very common financial operations like pension funds or annuities, concluding

that they are well consistent under stable uncertainty of the future liabilities, so

long as the mean values accomplish.

The model can easily be adapted to much more complex market modellings, so we

understand that this tool is a very effective one to design the long-term financial
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plan of a complex cash-flow structure.

In future work we plan to implement techniques that get us a more robust solution.

Our solution is optimum for a static market, nevertheless, the financial market

changes at every moment. So, it would require a dynamic revision of our solution

and sacrifice part of our future wealth for the benefit of a robust solution. Moreover,

although our model is completely general, part of our solutions present structural

regularity, as we have seen before, so new techniques based on pattern recognition

(neural networks, machine learning) could help to improve not only computational

times but also the accuracy of the solutions.
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Chapter 11

Final Conclusions and Further

Research

11.1 Conclusions

Along this thesis we have studied a great variety of aspects that concern the manage-

ment of liabilities and assets. This field of study is not new, it starts in the second

quarter of the last century when Macaulay established the first studies about how to

synchronise the variations in price of both assets and liabilities under slight changes

in the free interest rate. From then, many branches have been treated or researched

to answer the same question: what to do with assets to meet our liabilities.

In chapter 4 we reviewed the most relevant results related to ALM up to now. As I

have mentioned, the duration approach by Macaulay gives some light when we worry

about changes in the value of the company due to the mismatching between the cash-

flows provided by the assets and the liabilities. Although it is an important issue, we

have to recognise that in some manner it is a mere nominal problem: the company

is the same and nothing has changed but the stock price. So, the scientific literature

opens a new branch, multi-stage stochastic programming, or from an easier point

of view, the cash-flow matching approach. This field of study is a clear recognition

that our real objective in ALM is not to control the stock price but to guarantee
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the liabilities through several techniques. In parallel, a distinct discipline based

on differential stochastic equations treats the same question from a complex and

theoretical frame. Needless to say that both approaches have its limits. On the one

hand, the cash-flow matching is a predator in computational resources if we want

to solve realistic problems, and on the other hand, the complexity of the stochastic

equations doesn’t allow us to face problems of great size. One of the conclusions of

this thesis is that while conceptually the cash-flow matching is the best choice to

solve ALM, we need to tackle the problem with a new perspective, which involves

using heuristics.

The lack of efficient algorithms and computational techniques derives necessarily in

legal restrictions as we highlighted in chapter 2 in the part dedicated to Regulation.

These mentioned restrictions constitute a loss in efficiency and profitability and this

in essence becomes a risk in a company where it has to manage a huge amount of

investment and obligations along the mid and long term. Our first result in this

thesis is the development of a simple greedy heuristic algorithm to prove that this

methodology is feasible to solve the cash-flow matching. Our results prove that,

effectively, a heuristic approach is optimal as the numerical solutions are very near

the optimum and the computational resources are very low-demanding. Dwelling on

this subject, we recognise that, since the financial market is not deterministic, we

need to test our heuristic solutions from a stochastic point of view. This is explored

in chapter 5 and chapter 6, and the conclusion is that the greedy heuristic algorithm

converted into a simheuristic one is even more convenient as it keeps the properties

of a heuristic approach and it also covers the nuances of a random environment.

Following these results, we close this first phase of the thesis developing the ALM

in Insurance Firms, which is in chapter 7. The scheme is basically the same as

the previous results. But we remove some limitations we had imposed in our first

greedy algorithm giving us a complete and general procedure to solve the cash-flow

matching in an insurance firm. These results are quite powerful because we have

got a very fast algorithm that dives among the thousand of possible combinations

we can choose between our fixed income assets and our obligations shared along the

time. This approach can reduce the asset capital a firm needs to freeze to cover the

liabilities more than 10%, which could mean hundred million euros.
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Nevertheless, the ALM problem is also extensive to equity instruments beyond the

fixed income. To explore a heuristic approach using equities, we needed to review the

well-known portfolio theory by Markowitz. This has been necessary because we need

to develop a mechanism to manage equities in the long term at the same time we

guarantee our debts. In the Markowitz theory we treat the investment management

in only one period, and we don’t have to worry about any specific liability, so it leads

to a standard portfolio optimisation problem. But when we have to guarantee that

we have to pay a certain amount of money in some specific dates, we have to take

this into our financial strategy. In chapter 8 we have developed this model as another

contribution of this thesis. After that, we use that result to build the new portfolio

optimisation problem and we design a genetic algorithm to get a good solution. In

this genetic algorithm we also contribute with a methodological improvement that

gives us better solutions in time dependent functions. But the main contribution

in this part of the thesis is the implementation of simulation driving the evolution

of the algorithm. We have proved that if we consider the stochastic nature of the

problem into the objective function, the evolution prevents defaults we would have

in a deterministic solution. This leads again to simheuristics as a very convenient

method to solve large and complex financial problems. Finally, we close our research

with chapter 10, that is an improvement of the simheuristic method of the previous

chapter. This gives amazing accurate results, and we use this to illustrate how it

could be applied in the financial industry through four common examples.

To sum up, along this thesis we have contributed with new and powerful techniques

that could help the financial market to defeat the limitations imposed by govern-

ments such as the eligibility of the type of assets for ALM (for instance, equities are

not eligible), or the prohibition of considering future premiums, among other limi-

tations. Moreover, these techniques would improve the efficiency of the investments

and reduce risks over time without the need of huge computational resources. All

these contributions point in the same direction: Simheuristics.
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11.2 Further Research

Following this thesis, new lines of research are opened up, all of them aimed at

providing more powerful means than those currently existing in the financial market.

I outline some of them.

(i) The multi-period portfolio management model with liabilities discussed in

chapter 9 and chapter 10, although sufficient for a large part of the market

casuistry, allows for improvements in terms of the policies that any portfolio

manager imposes. In particular, we should explore the possibility of group-

ing assets by category (commodities, currencies, hedge funds, private equity,

small/mid cap, energy, technology, etc.) and impose restrictions on the weight

that a portfolio should have in each of the defined categories. This type of re-

strictions can be approached in different ways, both by means of evolutionary

algorithms and new matheuristic algorithms.

(ii) Another of the questions we raise as future lines of work consists of being

able to define simheuristics that control portfolios where assets of a different

stochastic nature are mixed, such as portfolios where fixed income and equities

coexist simultaneously.

(iii) Without having to move away from the structure that the models presented in

this thesis, it is possible to study the modification of the normal and log-normal

behaviour and to establish stochastic perturbations to the aforementioned dis-

tributions. In the field of dynamic models we can find models such as Hull

and White (2001), or Vasicek (1977) that mathematically deal with these or

similar questions. However, and as cited in this thesis, these works are not

clearly applicable to more complex market situations such as the ones we have

developed. A first step in this direction can be found in the recent work Kizys

et al. (2022), where new stochastic elements are incorporated in a one-period

Portfolio Optimisation Problem (POP). Therefore, this constitutes an inter-

esting line of research and due to their statistical weight and complexity, the

role of simulation combined with heuristics can be decisive.
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Liabilities. Journal of Simulation (indexed in ISI SCI, 2020 IF = 2.205,

Q3; 2020 SJR = 0.294, Q2). ISSN: 1747-7778. https://doi.org/10.
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Chapter 1

Asset and Liability Risk Management
in Financial Markets

Armando Nieto, Angel A. Juan, and Renatas Kizys

Abstract Most financial organisations depend on their ability to match the
assets and liabilities they hold. This managerial challenge has been tradition-
ally modelled as a series of optimisation problems, which have been mostly
solved by using exact methods such as mathematical and stochastic program-
ming. The chapter reviews the main works in this area, with a special focus on
three different problems: duration immunisation, multi-stage stochastic pro-
gramming, and dynamic stochastic control. Hence, the main results obtained
so far are analysed, and the open challenges and limitations of the current
methods are identified. To deal with these open challenges, we propose the
incorporation of new heuristic-based algorithms and simulation-optimisation
methods.

1.1 Introduction

All financial companies need to manage the risk associated with their liabil-
ities. This is achieved by properly selecting a convenient set of assets from
the market, which are then assigned to cover liabilities, thus reducing the
risk of bankruptcy. However, both assets and liabilities are exposed to an in-
numerable amount of external factors, which need to be factored in order to
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ABSTRACT

The management of assets and liabilities is of critical importance for insurance companies and banks.
Complex decisions need to be made regarding how to assign assets to liabilities in such a way that the
overall benefit is maximised over a time horizon. In addition, the risk of not being able to cover the liabilities
at any given time must be kept under a certain threshold level. This optimisation challenge is known in
the literature as the asset and liability management (ALM) problem. In this work, we propose a biased-
randomized (BR) algorithm to solve a deterministic version of the ALM problem. Firstly, we outline a greedy
heuristic. Secondly, we transform it into a BR algorithm by employing skewed probability distributions.
The BR algorithm is then extended into a simheuristic by incorporating Monte-Carlo simulation to deal
with the stochastic version of the problem.

1 INTRODUCTION

Financial institutions have to face some critical risk-management processes. Among such processes, asset
and liability management (ALM) is of paramount importance due to its potential consequences. ALM
consists of a range of techniques necessary to invest adequately, so that the firm’s long-term liabilities are
met (Ziemba et al. 1998). For an insurance company, a liability constitutes the legal responsibility to repay
the insurance contributions that the customer has been making over an agreed length of time, which are
increased by the interest rate. This is a typical transaction of pension or life insurance intended to secure
retirement income, which gives rise to a three-tier financial problem. First, the insurance company receives
the customer’s premium. Second, the company invests this premium in the long term, so that the financial
benefit envisaged in the insurance policy is secured. Third, in the event of the customer’s retirement or
death, the insurance company needs to have sufficient funds to meet its liability to the customer. While
the aforementioned financial problem unfolds, the insurance company is confronted with a range of risks,
which arise either from its role as a financial intermediary or due to complex regulations as well as economic
and social policies. If the insurer’s obligation to the customer is not honoured, its default becomes a likely
scenario. A default can be very costly for the firm, since it can inflict a loss of credibility and reputation.
On the one hand, it can face legal action from its creditors. As a result the insurer may be forced to pay

2093978-1-7281-9499-8/20/$31.00 ©2020 IEEE
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Abstract: Specially in the case of scenarios under uncertainty, the efficient management of risk
when matching assets and liabilities is a relevant issue for most insurance companies. This paper
considers such a scenario, where different assets can be aggregated to better match a liability (or the
other way around), and the goal is to find the asset-liability assignments that maximises the overall
benefit over a time horizon. To solve this stochastic optimisation problem, a simulation-optimisation
methodology is proposed. We use integer programming to generate efficient asset-to-liability
assignments, and Monte-Carlo simulation is employed to estimate the risk of failing to pay due
liabilities. The simulation results allow us to set a safety margin parameter for the integer program,
which encourage the generation of solutions satisfying a minimum reliability threshold. A series
of computational experiments contribute to illustrate the proposed methodology and its utility in
practical risk management.

Keywords: assets and liabilities management; risk management; uncertainty; matheuristics; simulation

1. Introduction

Within the enormous variety of insurance types that we can find, long-term life insurance stands
out for its complexity in terms of financial management. The cash flows generated by these insurances
extend over several decades and play an important role in the social sphere since they have a close
relationship with pensions and retirements and, therefore, with people’s vital planning. For this reason,
legislation and administrative authorities play a special role in ensuring that insurers faithfully comply
with their commitments. The fact that they are extended in the long term, or in the very long term,
generates a series of difficulties for their management because the insurer must plan the necessary
income with enormous precision to cover its future commitments. Therefore, it is a requirement that
the insurer has a range of techniques that allow for matching its assets, as long-term income generators,
with its liabilities. Conventionally, we refer to this set of techniques as asset and liability management
(ALM) (Ziemba et al. 1998), and it has raised the interest of numerous researchers over the last few
years, with a wide variety of approaches being proposed. One of most popular solutions to this
asset management problem is cash-flow matching (Iyengar and Ma 2009), whose main objective is
to ensure the timely payment of the liabilities. This approach minimises the number of contractual
breaches. Due to the volatility of the financial markets, we always have uncertainty regarding income,
and this will be linked to the quality of financial assets. Moreover, the credit quality of assets plays
a fundamental role, in particular when we deal with bonds, which are widely used in the insurance
industry (Gründl et al. 2016). When the default event occurs, the price of the bond is immediately
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ABSTRACT

The management of assets and liabilities is of critical importance for insurance companies and banks.
Complex decisions need to be made regarding how to assign assets to liabilities such in a way that the
overall benefit is maximised over a multi-period horizon. At the same time, the risk of not being able to cover
the liabilities at any given period must be kept under a certain threshold level. This optimisation problem is
known in the literature as the asset and liability management (ALM) problem. In this work, we propose a
biased-randomised algorithm to solve a real-life instance of the ALM problem. Firstly, we outline a greedy
heuristic. Secondly, we transform it into a probabilistic algorithm by employing Monte-Carlo simulation and
biased-randomisation techniques. According to our computational tests, the probabilistic algorithm is able to
generate, in short computing times, solutions that outperform by far the ones currently practised in the sector.

Keywords: Heuristics, Asset and Liability Management, Biased Randomised Algorithm, Monte Carlo

1 INTRODUCTION

Financial institutions have to face some critical risk-management processes (Cornett and Saunders 2003).
Among such processes, asset and liability management (ALM) is of paramount importance due to its
potential consequences. ALM consists of a range of techniques necessary to invest adequately, so that the
firm’s long-term liabilities are met (Ziemba et al. 1998). For an insurance company, a liability constitutes
the legal responsibility to repay the insurance contributions that the customer has been making over an
agreed length of time, which are increased by the interest rate. This is a typical transaction of pension
or life insurance intended to secure retirement income, which gives rise to a three-tier financial problem.
First, the insurance company receives the customer’s premium. Second, the company invests this premium
in the long term, so that the financial benefit envisaged in the insurance policy is secured. Third, in the
event of the customer’s retirement or death, the insurance company needs to have sufficient funds to meet
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ABSTRACT
The efficient management of assets to cover a firm’s liabilities over a multi-period horizon is 
a relevant challenge for many financial companies. Even in its deterministic version, this 
problem is complex since managers have to make difficult decisions about their asset portfolio 
each period. With the goal of maximising the expected terminal wealth in a scenario under 
uncertainty, this paper proposes a novel simheuristic approach that integrates Monte Carlo 
simulation at different stages of a Genetic Algorithm. Our approach is capable of generating 
effective solutions to the considered problem in relatively short computational times. 
Moreover, our simheuristic is enriched with several “smoothing” techniques that enhance 
the attractiveness for managers of the generated solutions, so they can be effectively 
employed in real-life applications. A series of computational experiments, including the use 
of advanced evolutionary strategies, illustrate these concepts and justify the advantages of 
including simulation in financial optimisation problems under uncertainty.
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1. Introduction

Dealing with liabilities (financial obligations) in volatile 
markets with a limited yield or return is one of the main 
challenges that insurance firms have to face. The insurer 
is forced to pay the amounts agreed in the policy at 
a specific maturity date. In order to do that, a set of 
firm’s assets have to be “frozen” in advance to cover 
future payments. Asset-liability management (ALM) 
refers to the study of techniques employed in selecting 
the appropriate assets to face the firm’s liabilities over 
time. The financial market is constituted by a huge 
number of companies, whose aim is to transform an 
initial wealth into large returns during a giving time 
horizon. According to the consumer preference theory 
(Mankiw et al., 2020), an investor would select those 
assets that provide the highest returns, while taking into 
account her budget constraint. As markets are plenty of 
uncertainty, the volatility of the assets also has to be 
considered. This transforms the ALM into a stochastic 
and multi-period portfolio optimisation problem. 
Markowitz (1952) considered the assets as random vari-
ables, so he formulated the classical mean-variance 
model, in which different amounts of assets have to be 
selected in order to maximise a portfolio’s return, while 
considering a specific volatility. Alternatively, one 
might want to minimise the risk subject to achieving 
a user-defined level of return (Kizys et al., 2019). In any 
case, these approaches are only valid if our wealth is not 
associated with a set of liabilities. Whenever it is, we 

need to consider a different strategy, since the obtained 
returns are employed to cover liabilities. In general, the 
purpose of ALM is to support the assets selection pro-
cess – i.e., by selecting those that maximise returns 
while maintaining enough financial resources to satisfy 
the liabilities. Among the different ALM approaches in 
the scientific literature, the following ones are the most 
popular ones: (i) duration theory, which is based on the 
work of Macaulay (1938), who assumes that the interest 
rate is almost constant and also that assets and liabilities 
have the same present value; (ii) cash-flow matching, 
where we select assets in a way that allows us to match 
them with our debts; and (iii) stochastic control theory, 
a quite theoretical approach that studies the evolution 
of assets and liabilities in a continuous and stochastic 
scenario.

This work focuses on the cash flow matching strat-
egy, which extends the Markowitz’s theory to an ALM 
scenario. Hence, we will consider a realistic mean- 
variance problem in a multi-period context under 
uncertainty, where our decision variables are the 
amount of assets we have to buy or sell in each period 
of time, considering an initial wealth and a given set of 
liabilities along time. In other words, given an initial 
wealth and a set of financial duties that need to be 
covered in the future, the goal is to find the ALM plan 
that maximises our expected wealth at the end of the 
time horizon, taking into account different uncer-
tainty sources.
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Barcelona, Spain
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Abstract

Managerial decisions in the area of finance and insurance can often
be modeled as combinatorial optimization problems. It is also frequent
that these optimization problems fall into the category of NP-hard ones,
which justifies the need for using metaheuristic algorithms when tackling
large-sized instances. In addition, decision-making in real-life financial &
insurance activities is usually performed in scenarios under uncertainty.
Hence, stochastic versions of the aforementioned NP-hard problems have
to be considered, and simulation-optimization methods are required in
order to obtain high-quality solutions. This paper analyzes how biased-
randomized techniques (which transform greedy heuristics into probabilis-
tic algorithms) and simheuristics (hybridization of simulation with meta-
heuristics) can be employed to efficiently cope with a variety of challenging
optimization problems, even those under uncertainty scenarios.

Keywords: Optimization, Finance, Insurance, Metaheuristics, Biased-
Randomized Algorithms, Simheuristics
AMS Subject classifications: 90-10, 90B50, 90B99, 68W20, 68T20

1 Introduction

Numerous managerial challenges in the areas of finance and insurance (F&I)
can be modeled as combinatorial optimization problems. Traditionally, exact
methods have been employed in determining optimal solutions to these prob-
lems. This is the case, for instance, of the classical Markowitz model [1], which
minimizes the risk associated with a portfolio of assets while establishing a min-
imum threshold for its return value. Exact methods, however, present certain
limitations when solving large-sized portfolio optimization problems with richer
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