
Improvements to Incentives in

Incentive-Driven Blockchain Technologies

Conor McMenamin

January, 2023

TESI DOCTORAL UPF / 2023
Supervisors: Vanesa Daza and Matteo Pontecorvi
Department of Information and Communication Technologies

ii

iii

Thanks
Throughout my PhD, many people have come and gone, but the impor-

tant ones willed out. First, to my family and friends who have been with me
throughout the PhD. They say a journey shared is a journey halved, but this
journey defies the norm. Little did you know that every conversation, every cof-
fee, every hug, every night out, every pádel match, every evening in the Palau
Blaugrana, every Copa Catulunya, every Valheim resource grind, every board
game, everything; it was all carrying me to this point. In the microcosms of
struggle that typically mar a PhD, you got me back to my best. The past three
years and change have been some of the most enjoyable of my life. Time has
flown, and the journey is better described as a dream. This is in large thanks
to you all. Go raibh mı́le mı́le maith agaibh.

Thanks to Matteo, Matthias, Padraic, Bruno, and my extended network of
collaborators. Your insights and discussions have played a significant role in
the PhD, and hopefully this is only the beginning of what has already been
a rewarding and fruitful collaboration. Many thanks must go to Samuel for
tailoring such a haute couture PhD experience while at Nokia. The fit could
not have been better.

The final, and possibly most important thanks of all must go to Vanesa. You
have been at the core of everything good in my PhD. Much of my thesis is based
around the hypothesis that people typically seek to maximize their own utility.
This makes you an exception to the rule, repeatedly and unselfishly seeking to
ensure I had everything I needed to get through the PhD. This is something
for which I will be eternally grateful, and an approach I hope to emulate as I
continue along my path in life. In this sense, I hope imitation indeed serves as
the highest form of flattery Vanesa, as words may never be enough. Thank you.

Funding
This thesis is part of a project that has received funding from
the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement number 814284

iv

v

Abstract

In this thesis, we present a set of protocols in areas at the core of current
blockchain technology literature; consensus, decentralized finance and distributed
computing. These areas are bound by a critical dependency on incentivization.
Despite this, existing protocol standards in each of these areas are vulnera-
ble to well-documented incentivization exploits which limit their attractiveness
compared to centralized alternatives. We first identify the shortcomings of ex-
isting standards in these areas with respect to incentivization. We then take
a common, general approach to these shortcomings, and in each instance, pro-
pose a novel protocol with which to address the incentivization shortcomings
we identify.

Resum

Aquesta tesis presenta una sèrie de protocols en àrees que pertanyen al nucli
de la tecnologia Blockchain com són els algorismes de consens, les finances de-
scentralitzades o la computació distribüıda. Aquestes àrees estan unides per
una dependència cŕıtica dels incentius. Malgrat això, els estàndards dels pro-
tocols existents en cadascuna d’aquestes àrees són vulnerables en l’ús que fan
dels incentius, fet que limita el seu atractiu en comparació amb les alternatives
centralitzades. En aquesta tesi identifiquem primer els defectes dels estàndards
existents en aquestes àrees pel que fa als incentius. A continuació, aproximem
de manera comuna i genèrica aquests defectes i per a cada escenari, introduim
un protocol que evita les mancances detectades als protocols existents.

vi

Contents

List of figures xi

List of tables xiii

1 Introduction 1

2 Preliminaries 7

2.1 State Machine Replication & Blockchain 7

2.2 Game-Theory . 9

2.3 Non-Interactive Zero-Knowledge Set Membership 10

2.4 Relayers . 13

2.5 Financial Terminology . 14

3 Tenderstake 17

3.1 Introduction . 17

3.1.1 Our Contribution . 19

3.1.2 Organization of the chapter 19

3.2 Related Work . 20

3.3 Preliminaries . 22

3.4 A Game-Theoretic Framework for SMR 23

3.5 Achieving SMR in the ByRa Model 27

3.6 Tenderstake . 30

3.6.1 Threat Model . 30

3.6.2 Protocol Outline . 31

3.7 Proving Tenderstake achieves ByRa SMR 40

3.8 Conclusion . 46

vii

viii CONTENTS

4 Marvel DC 49
4.1 Introduction . 49

4.1.1 Our Contribution . 50
4.1.2 Organization of the Chapter 52

4.2 Related Work . 52
4.3 Preliminaries . 53
4.4 Constructing a SINCE DC Protocol 54

4.4.1 Reward Mechanism . 56
4.4.2 Reputation Management Protocol 57

4.5 Marvel DC . 58
4.5.1 Algorithmic Overview . 59
4.5.2 Protocol Properties . 60
4.5.3 Privacy Marvel DC . 63
4.5.4 Further Privacy Enhancements 65

4.6 Implementation Analysis . 66
4.6.1 Gas cost of running Marvel DC and Privacy Marvel DC . 66
4.6.2 Performance metrics . 67

4.7 Conclusion . 68

5 FairTraDEX 71
5.1 Introduction . 71

5.1.1 Our Contribution . 72
5.1.2 Organization of the Chapter 74

5.2 Related Work . 75
5.3 Preliminaries . 78

5.3.1 Frequent Batch Auctions 78
5.4 Width-Sensitive Frequent Batch Auctions 80

5.4.1 Properties of Width-Sensitive Frequent Batch Auctions . 82
5.5 FairTraDEX . 85

5.5.1 System Model . 86
5.5.2 FairTraDEX Algorithms 87
5.5.3 FairTraDEX vs. WSFBA 88
5.5.4 Smart Contract Implementation vs. Algorithmic encoding 89
5.5.5 Description of FairTraDEX Encoding 90

5.6 Properties of FairTraDEX . 97
5.6.1 Clearing Price Verification 102

5.7 Notes on FairTraDEX . 102
5.7.1 Existence of irrational players and coalitions 103
5.7.2 Practical Considerations for FairTraDEX 103

CONTENTS ix

5.8 Cost-Benefit Analysis of FairTraDEX 105
5.9 Conclusion . 107

6 Diamond 109
6.1 Introduction . 109

6.1.1 Our Contribution . 110
6.1.2 Organization of the Chapter 112

6.2 Related Work . 112
6.3 Preliminaries . 113

6.3.1 Constant Function Market Makers 114
6.3.2 Loss-Versus-Rebalancing 115
6.3.3 Auctions . 115

6.4 Diamond . 116
6.4.1 Model Assumptions . 117
6.4.2 Core Protocol . 117
6.4.3 Per-block Conversion vs. Future Contracts 118
6.4.4 Periodic Conversion Auction 119

6.5 Diamond Properties . 119
6.6 Implementation . 121

6.6.1 Core Protocol . 122
6.6.2 Conversion Protocols . 123

6.7 Experimental Analysis . 125
6.8 Conclusion . 130

A Abbreviations and Notation 143

B Publications 147

x CONTENTS

List of Figures

3.1 A state diagram representation of Tenderstake 39

5.1 FairTraDEX phases before order settlement. 73

6.1 Toxicity of Uniswap V3 Order Flow [100]. 110
6.2 Strategy comparison. 126
6.3 Volatility comparison. 127
6.4 LVR rebate comparison. 127
6.5 Conversion frequency comparison. 128
6.6 Fee comparison, given 10% of pool TVL trades per day. 128
6.7 Protocol duration comparison. 129

xi

xii LIST OF FIGURES

List of Tables

3.1 Comparison of consensus protocols claiming incentive compati-
bility (prior to publication of [79]). 20

4.1 Comparison of incentive-aware distributed computing protocol
designs. 53

4.2 Approximate probability of not choosing a majority of rational
computers given specific starting adversarial % of computers α
and selected numbers of computers ncomp 63

4.3 Amortized gas costs for computers and requesters in Marvel DC
and Privacy Marvel DC for several choices of computers to select
and computers to reward. 67

5.1 Comparison of gas costs in batch-auction implementations 106
5.2 Comparison of expected execution costs in USDC of batch-auction

implementations, including the costs of Table 5.1. 107

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Our deepest fear is not that we
are inadequate, our deepest fear
is that we are powerful beyond
measure.

Marianne Williamson

Incentivization can be seen as a symbol of the duality that exists within
the blockchain technology space. On one hand, it is the innovation the sparked
an explosion in blockchain technology. The novel application of incentives in
the now seminal Bitcoin whitepaper [85] beckoned a golden age for distributed-
systems research driven by the popularity of cryptocurrency. In the Bitcoin
whitepaper, Satoshi Nakamoto is immortalized through his proposal to reward
players in expected proportion to provable work done in maintaining and up-
dating the underlying blockchain. This provided the missing piece to decades of
distributed systems literature seeking to establish a truly permissionless trans-
action ledger.

On the other hand, incentivization can be seen as a topic in the blockchain
technology space where innovation is most needed. Following the identification
of several shortcomings in Nakamoto’s model as early as [48, 52], the space
was primed for new advancements building on Nakamoto’s key contribution
of proof-of-work incentivization. Unfortunately, incentivization research in the
years since has largely regressed to pre-Nakamoto assumptions of honest-by-
default players who ignore incentives and always follow prescribed protocols.

1

2 CHAPTER 1. INTRODUCTION

More than this, applications using these shaky consensus-level foundations as
a trusted transaction ledger have been costing their users hundreds of millions
of dollars due to the misalignment of incentives. In the decentralized world of
blockchain technology, resource advantages such as better connectivity to other
players, or more hash-power, can allow certain players to monopolize the right to
order and even include or exclude transactions, powers whose abuse blockchain
applications incentivize. Although these phenomena are being observed and
documented [93, 43], provably secure solutions are lacking [58]. This is the
primary motivator for the thesis.

At the consensus level, this disconnect is highlighted in Fruitchains [92], one
of the most referenced academic works in relation to fairness of reward distribu-
tion and incentive compatibility. Fruitchains crucially relies on an underlying
blockchain satisfying a state machine replication (SMR) protocol in order to
guarantee fairness of rewards on the chain distributing the rewards. The au-
thors fail to consider the incentives of all parts of the system, relying on an
altruistic majority of players participating in an underlying consensus protocol
to fairly reward all players for the work they have done. The fallacy in this
reasoning can be seen through the simple strategy of only rewarding oneself
and not rewarding other players in the Fruitchains protocol (not pointing to
other players’ “fruits”). This strategy strictly dominates the Fruitchains strat-
egy with respect to maximizing rewards share. Oversights like this are ingrained
at the foundations of distributed-system incentivization research, and it is these
oversights which stand as the focus of this thesis.

At the core of the issues we identified in consensus-level incentives was the
dependency on one or more altruistic, honest-by-default players (see Section
3.2 for an extended summary of these findings). Within the foundational BAR
(Byzantine, Altruistic and Rational) player model [6] to which distributed sys-
tems literature on incentives typically reference, such a dependency is allowed.
This motivates the first contribution of the thesis. In Chapter 3, we propose
the ByRa player model, a player model free from altruistic player dependencies
within which incentives are required to be more robust. Within this new player
model, we propose Tenderstake, a consensus-level protocol which is incentive
compatible under a rational majority and adversarial minority of players, and
importantly, without any need for honest players.

Beyond consensus-level incentives, application-level incentives in blockchain-
based systems are not themselves without flaw, and form the basis for the
remainder of the thesis. The most prominent research on blockchain-based
application-level incentives can almost surely be traced back to the now sem-
inal work of Flashboys 2.0 [43]. In Flashboys 2.0, the authors examine the

3

smart-contract enabled Ethereum blockchain at a transaction level. The au-
thors identify that the block-producer privilege of being able to order, censor
and create transactions is highly profitable, beyond the base block rewards for
creating valid blocks. This profitability was coming at the expense of the users
submitting transactions for inclusion in the blockchain, in the now infamous
phenomenon of MEV (then miner extractable value, now maximal extractable
value as this value extraction is not necessarily exclusive to the miner).

Although the incentives in mainstream blockchains were misaligned at the
consensus-layer (as demonstrated in Selfish Mining [48]), the price of anarchy
[83] for deviating from the prescribed protocol and reducing trust in the un-
derlying blockchain seemed to be ensuring that consensus-level incentives were
performing more-or-less as required. However, as evidenced in [93, 43], it was
clear that application-level incentives were not. The foundational example for
this can be seen in the Uniswap decentralized exchange (DEX) protocol [102].
An automated market-maker, accessible by all, allowing swaps from one token
to almost any other was a simple, seemingly effective public good, yet over-
all limited, and deceptively expensive to interact with. Announcing an intent
to trade in an exact size, price and direction before it gets confirmed, as is
done in Uniswap and most other DEX implementations, is highly exploitable
in a competitive trading environment. The quantified losses sustained by users
submitting transactions to Uniswap are in the hundreds of millions of dollars
[93, 50]. Exact figures are impossible to quantify, but are bounded below by
these recorded losses. The total value extracted from users across all protocols
and blockchains is likely therefore to be in the billions of dollars.

This can be seen as a much more pressing issue than consensus-level incen-
tives with no glaring ongoing exploits, and one in which research is identified
as lacking [58, 72]. At the core of MEV is the informational advantage held
by some subset of players in the system when deciding what action to take. If
a player can predict with some probability greater than random how the un-
derlying state machine will update (by observing the transactions likely to be
accepted in the coming blocks for example), players’ strategies change dramat-
ically. In the DEX example, a player aware of an imminent buy imbalance for
a particular token in upcoming blocks gives that player the ability to front-run
the information, and/or back-run the information when this buy imbalance is
likely to cease. This issue forms the basis for Chapters 5 and 6. In these chap-
ters we highlight this advantage, and construct protocols under the assumption
that this information will be used. In this paradigm, we propose two new DEX
variants which protect uninformed users from the negative externalities of such
informational disadvantages.

4 CHAPTER 1. INTRODUCTION

With respect to randomness-based selection, and/or rewarding based on
popular choice, key components in distributed computation (DC) outsourcing,
the problem is no different. Unfortunately, research in the area is significantly
more detached from the realities of incentives, focusing on scalability, speed,
and applications, despite computation outsourcing being a billion dollar priva-
tized industry [8]. For decentralized DC to compete with such a behemoth,
incentivization is needed. There are a litany of works related to DC incentives
[71, 18, 64, 103] which fail to capture a world in which computers must be re-
warded financially for computations, instead depending on computer utility to
be measured in something directly related to the quality of the computations
they are performing. Like using an SMR protocol to incentivize SMR as in [92],
this is another incentives chicken-and-egg scenario, rendering the potential of
DC moot in the real world. In Chapter 4 we address some of the major gaps in
these previous works on incentivization in DC, providing a generic protocol for
blockchain-based DC which is incentive compatible in the ByRa model.

Following on from the foundation on incentives and blockchain formalization
provided in Chapter 3, the remainder of the thesis can be seen as a road-map to
tackle some of the key open problems in decentralized protocol incentives. This
is the backdrop for Chapters 4, 5 and 6 in which we provide incentive-specific
improvements on industry standards with regards to distributed computing,
decentralized exchange and automated market-makers respectively. The contri-
butions of all chapters can be summarized as follows.

• Chapter 3: Tenderstake. We outline the ByRa model, a new player model
free of altruistic players, and argue that this player model more accurately
describes players in distributed games. We outline the properties of strong
incentive compatibility in expectation and fairness as properties that dis-
tributed consensus protocols must possess in the ByRa model in order to
guarantee state machine replication. We then provide Tenderstake as a
protocol which possesses these properties.

• Chapter 4: Marvel DC. We present Marvel DC, a blockchain-based strong
incentive compatible distributed computing protocol. Marvel DC stands
as an improvement on existing industry standards in which computers
are altruistic, or trust third parties (TTPs) are required to ensure honest
behaviour. We also provide Privacy Marvel DC, a privacy enhancement
for Marvel DC which decouples computation outputs from the computers
who computed them, making Privacy Marvel DC appropriate for compu-
tations in which outputs potentially reveal sensitive information about the
computers computing them, such as Federated Learning.

5

• Chapter 5: FairTraDEX. We present FairTraDEX, a decentralized ex-
change protocol based on frequent batch auctions in which the game-
theoretic optimal strategy for all players is to trade at the true market-
implied price of the underlying token swap, excluding explicit fees.

• Chapter 6: Diamond. We present Diamond, an automated market mak-
ing protocol that aligns the incentives of liquidity providers and block
producers in the protocol-level retention of losses-versus-rebalancing [82]
(loss-versus-rebalancing is explained in Section 6.3.2). In Diamond, block
producers effectively auction the right to capture any arbitrage that exists
between the external market price of a Diamond pool, and the price of the
pool itself. The proceeds of these auctions are shared by the Diamond pool
and block producer in a way that is proven to remain incentive compatible
for the block producer.

Organization. The thesis starts with a chapter on preliminaries and back-
ground knowledge that is used throughout the proceeding chapters, but contains
no new results. Afterwards, each chapter corresponds to one paper, some pub-
lished and some in pre-print stage under review for publication. The contents
are essentially the same as in the papers, with only minor modifications to
remove redundancies, unify notation and ensure a more cohesive document.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

This chapter introduces the terminology and definitions necessary to understand
the main results of the thesis. By negl() we denote any function f : N→ R that
decreases faster than any (positive) polynomial p. More formally, ∀ p ∃ λ0 ∈ N :
∀λ > λ0 : f(λ) < 1

p(λ) . In all chapters, for protocol correctness we assume that

some of the involved players may be malicious trying to force the protocol into
incorrect execution, and without any direct benefit for themselves. However, for
the game-theoretic part of the analysis, we assume that a majority of players
are rational, at all times trying to maximize some utility function. Accordingly,
the analysis in our thesis is based on two security parameters, a cryptographic
security parameter κ used to bound the probability that certain protocol exe-
cutions are incorrect, and a game-theoretic security parameter ψ. For now, it is
sufficient to consider the game theoretic parameter as bounding the probability
that one player has an advantage over another with regard to some common
utility function. When ψ is used, the game-theoretic probability it is bounding
is specified.

All references within a chapter to lines or algorithms in provided protocol
encodings are specific to the encodings within that section.

2.1 State Machine Replication & Blockchain

In this thesis, we are typically interested in a distributed set of players {P1, ...,Pn}
interacting with one and other inside a protocol which will produce some output
that all players correctly participating in the protocol can agree on. This output

7

8 CHAPTER 2. PRELIMINARIES

will be a replicated state machine. First, we define a state machine.

Definition 2.1.1. A state machine consists of set of variables, and sequence of
commands/ updates on those variables, producing some output.

The concept of a state machine alone does not capture the notion that po-
tentially many players can reconstruct a common view of the same state of a
machine, and requires extension.

Definition 2.1.2. For a set of players {P1, ...,Pn} and a state machine, state
machine replication (SMR) is a process that allows each player to execute a
common sequence of commands acting on the machine’s state in the same order,
thus maintaining a common view of the machine’s state.

Progressing towards our goal of analysing SMR protocols, we must first
define what we require from an SMR protocol. We take inspiration for our
definition from [1], where their system model is clearly and concisely explained,
and is very similar to ours.

Notation 2.1.3. With respect to protocols and recommended protocol actions, a
correct player is a player who always follows the recommended protocol actions.

Definition 2.1.4. An SMR protocol Π deciding on a potentially infinite se-
quence of state machine updates satisfies the following properties:

• Safety: For any two correct players Pi, Pj in Π, i ̸= j, if Pi decides on an
SMR update Vi at position k in the sequence, and Pj decides on an SMR
update Vj at position k in the sequence, then Vi = Vj.

• Liveness: For any position k in the sequence, every correct player eventu-
ally decides on an SMR update for position k.

To achieve SMR, we utilise the concept of a blockchain. This is done in
a generic manner so as to allow for direct comparison with most blockchain
instantiations.

Definition 2.1.5. A block B is a data structure used to communicate changes
to the state machine view of each player. Blocks consist of a pointer(s) to
previous block(s), and a set of instructions with which to update the state. State
machine updates in a block are applied to the state described by the block(s) to
which they point. The genesis block B1 describes the starting state of the system
and is a priori agreed upon by all players. The global state at any point in the
system is then described by applying the state machine updates according to

2.2. GAME-THEORY 9

some ordering rule starting from the genesis block. A blockchain Blockchain =
[B1, ..., BH] is the ordered data structure created by traversing the block pointers
from the genesis block to all blocks to be applied to the global state according to
the ordering rule. H denotes the height of the blockchain.

2.2 Game-Theory

This section introduces some basic game theory to allow us to properly rea-
son about SMR protocols in our system as games, taking inspiration for our
definitions from [88]. The games we are concerned with, SMR protocols, are
played by players with strict incomplete information, meaning some subset of
players will not know the action choices of other players for certain rounds when
they are required to choose their own actions. As such, we need to be able to
describe what a player knows (and implicitly what they do not), which we call
their private information. Furthermore, we must be able to describe what moti-
vates players in games. This motivation is provided by a utility function, which
attributes a numerical score to each action a player can take. In games, players
choose the action which maximises their utility function.

Definition 2.2.1. A game, denoted G, progressing in rounds with strict in-
complete information for a set of n players {P1, ...,Pn} can be described by the
following:

• For every Pi, a set of actions Xi. We denote by X−i the set of actions
that each player excluding Pi can take. For X−i ∈ X−i, X−i is described
by a vector of actions of length n − 1, with each vector position mapping
to a unique player.

• For every player Pi and round r, a set of private informations T ri . A
value tri ∈ T ri is a private information value that Pi can have at round r.
We denote by tr−i the private informations held by all players excluding Pi
at round r.

• For every player Pi, current round r ≥ 1, and some round r′ ≥ r, the
utility function for Pi with respect to round r′ is defined as :

uri : T
r
i × Xi × ...× Xi︸ ︷︷ ︸

r′+1−r

×X−i × ...× X−i︸ ︷︷ ︸
r′+1−r

→ R (2.1)

where uri (t
r
i ,X ri , ...,X r

′

i ,X r−i, ...,X r
′

−i) is the utility achieved by Pi in round

r′ with private information tri , if player Pi takes the actions X ri , ...,X r
′

i

10 CHAPTER 2. PRELIMINARIES

in rounds r, ..., r′ respectively, and the actions of all other players are
described by X r−i, ...,X r

′

−i in rounds r, ..., r′ respectively.

Although utility functions evaluate actions given the actions of all other
players, the actions of the other players may not be known in advance. There-
fore, players will need to be able to choose their actions solely based on their
private informations. The actions a player takes given some private information
are computed through a strategy, which is defined in Definition 2.2.2.

Definition 2.2.2. A strategy of a player Pi is a function stri : T ri → Xi,
r ≥ 1, which defines the action to be taken by Pi given some private information
value. A strategy stri is mixed if for a player Pi with mi possible strategies
Stri = {str1i , ..., str

mi
i }, they select a strategy to follow from Stri according to

some probability distribution. For every player Pi, str−i describes the mixed
strategies taken by all players excluding Pi.

In this thesis, we also utilize the well-studied concept of strict Nash equilib-
ria, defined as follows.

Definition 2.2.3. Consider a set of non-cooperative players P1 , ..., Pn, with
strategies str1 , ..., strn describing the actions which each player takes throughout
a particular protocol. These strategies form a Strict Nash Equilibrium if any
individual player deviation from these strategies strictly reduces that player’s
utility.

2.3 Non-Interactive Zero-Knowledge Set Mem-
bership

The aim of this section is to outline existing non-interactive zero-knowledge
(NIZK) tools for proving set membership, such as those stemming from papers
like [81, 23, 57, 25, 59]. We define these tools generically, allowing for the
adoption of any secure NIZK set-membership protocol, as we only require a
common functionality that is shared by all of them.

Proving membership has been traditionally solved using cryptographic ac-
cumulators [24], where a prover computes a value (the accumulator) and, based
on this value, a set of short membership proofs that a verifier can easily verify.
Three of the main approaches to construct set membership proofs are Merkle
trees [80], RSA accumulators [19, 30], and pairing-based accumulators [87, 105].

Each approach has its own benefits for public parameters, accumulator or
witness size or need of trusted setup. The exact choice depends on the resource

2.3. NON-INTERACTIVE ZERO-KNOWLEDGE SET MEMBERSHIP 11

constraints of the system. We direct interested readers to [25] for an extended
review of the main features of each of these approaches.

When the prover does not want to reveal a value x, the membership proof of
x in the accumulator should not leak any information on the value of x. At a high
level, the general approach is to guarantee privacy using zero knowledge proofs.
Zero knowledge proofs [56] are powerful cryptographic primitives that allow a
prover P to prove knowledge of the truth of some statement without revealing
the statement contents, to some honest verifier V who needs to be convinced
of the truth of the statement provided by the prover. In this thesis, we are
specifically interested in zero-knowledge proofs that are also non-interactive,
that is, proofs that only depend on the prover’s private information about the
statement and publicly available information. This public information can come
in many forms, but in [81, 23, 57, 25], it must be generated honestly in a process
known as a trusted setup. If a prover knows the private information used to
generate public proof parameters, the knowledge extraction property cannot
exist.

As such, NIZK proofs do not depend on interaction with the verifier. The
main features in a NIZK argument are completeness, soundness, and zero-
knowledge. Completeness guarantees that if the statement is true, the prover
behaving honestly can convince the verifier that the statement is true, while
soundness ensures that a dishonest prover cannot convince an honest verifier.
Zero-knowledge maintains that the only information learned by the verifier is
that the statement is true. However, in practice it is required that the prover
knows a witness for the statement, that is, a zero-knowledge proof of knowl-
edge. In this case, soundness is not enough and is required that a prover cannot
produce a valid proof unless she knows a witness, even if the prover has seen
an arbitrary number of simulated proofs. Furthermore, NIZK arguments are
interesting for constructing other cryptographic primitives, such as a signature
of knowledge (SoK) [37].

The NIZK proving of set membership typically involves some combination
of Merkle Trees and RSA accumulators, as well as NIZK succinct arguments
of knowledge (NIZK-SNARKs). The use of RSA accumulators such as that
described in [81] has been rather thoroughly replaced by NIZK-proofs on Merkle-
tree accumulators [23, 59]. More recently, hybrid approaches have emerged
[25]. The exact choice of NIZK tools depends on the resource constraints of
the system. RSA accumulators favour dynamic set sizes, less public parameters
and reduced prover computation time in general, while Merkle Trees and NIZK-
SNARKs generally favour short verification time and proof size.

Informally, the NIZK proofs used in this thesis allow, for a given set of

12 CHAPTER 2. PRELIMINARIES

commitments Com to user-generated secrets, that any user knowing the secret
corresponding to a commitment com ∈ Com can prove the knowledge of a secret
corresponding to a commitment in the set, without revealing which secret, or
commitment. Moreover, we require that more than one proof relating to the
same commitment is identifiable by a verifier.

We first provide a high-level outline of the key properties that we require
from a NIZK proof-system in line with the existing industry standards utilised
and proved to exist in the above protocols:

• Completeness: If the statement is true, the prover acting honestly can
convince the verifier that the statement is true.

• Knowledge Extraction: If the statement is false, the prover cannot
convince the verifier that the statement is true.

• Zero-Knowledge: If the statement is true, the only information learned
by the verifier is that the statement is true.

• Non-Interactive: Proofs only depend on the prover’s private information
about the statement and publicly available information1. As such, proofs
do not depend on interaction with the verifier.

We now describe the tools more precisely. We define a commitment scheme
commit, a set-membership proof scheme SetMembership, an NIZK proof of
knowledge schemeNIZKPoK and a NIZK signature of knowledge scheme (NIZK-
SoK). We do not specify which instantiation of these schemes to use, as the
exact choice will depend on several factors, such as efficiency, resource limi-
tations and/or the strength of the assumptions used. Provers in this thesis
privately generate two bit strings, the serial number S and randomness R, with
S, R ∈ {0, 1}Θ(κ). Provers then commit to these values by generating a com-
mitment com← commit(S,R). This com is then broadcast to the verifier, with
the set of all commitments denoted by Com. It is this set of commitments Com
to which the prover seeks to prove membership.

• commit(m): A deterministic, collision-resistant function taking as input a
string m ∈ {0, 1}∗, and outputting a string com ∈ {0, 1}Θ(κ).

• SetMembership(com,Com): Compresses a set of commitments Com and
generates a membership proof π that com is in Com if com ∈ Com.

1This public information can come in many forms, but in [81, 23, 57, 25], it must be
generated honestly in a process known as a trusted setup. If a prover knows the private
information used to generate public proof parameters, the knowledge extraction property
cannot exist.

2.4. RELAYERS 13

• NIZKPoK (R,S,Com): For a set of commitments Com, returns a string S
and NIZK proof of knowledge that the player running NIZKPoK () knows
anR producing a proof when running SetMembership(commit(S||R),Com).
This revelation identifies to a verifier when a proof has previously been
provided for a particular, albeit unknown, commitment as the prover must
reproduce S. This is used in the thesis to enforce the correct participation
of players.

• NIZKSoK (m): Returns a signature of knowledge that the player who
chose m can also produce NIZKPoK.

2.4 Relayers

A fundamental requirement for transaction submission in blockchains is the
payment of some transaction fee to simultaneously incentivise block produc-
ers to include the transaction, and to prevent denial-of-service/spamming at-
tacks. However, in both the unspent transaction- and account-based models,
this allows for the linking of player transactions, balances, and their associated
transaction patterns. With respect to DEX protocols, if clients are required
to deposit money into a unspent transaction/account before initiating a trade,
any other player in the system can infer who the client is, what balances the
client owns, what transactions the client usually performs, etc., and use this
information to give the client a worse price.

To counteract this, we utilise the concept of transaction relayers, such as
those used in 0x2, Open Gas Station Network3, Rockside4, and Biconomy5. In
the FairTraDEX and Privacy Marvel DC protocols, users must publicly register
to a smart contract, and in doing so, deposit some escrow. In addition to this
escrow, we also require the users to deposit a relayer fee. When the user wishes
to submit a transaction anonymously to the blockchain, the user publishes a
proof of membership in the set of registered users to the relayer mempool, as
well as the desired transaction and a signature of knowledge cryptographically
binding the membership proof to the transaction, preventing tampering. As the
relayer can verify the proof of membership, the relayer can also be sure that
if the transaction is sent to the protocol contract, the relayer will receive the
corresponding fee. With this in mind, a relayer observing the user transaction

20x https://0x.org/docs/guides/v3-specification
3Open Gas Station Network https://docs.opengsn.org/
4Rockside https://rockside.io/
5Biconomy https://www.biconomy.io/

https://0x.org/docs/guides/v3-specification
https://docs.opengsn.org/
https://rockside.io/
https://www.biconomy.io/

14 CHAPTER 2. PRELIMINARIES

includes it in a normal blockchain transaction, with the first relayer to include
the transaction receiving the fee. As such, relayers are a straightforward exten-
sion of the standard transaction-submission model. Furthermore, if the proof
of membership is NIZK and the message is broadcast anonymously (using the
onion routing (Tor) protocol6 for example), the relayer can only infer that the
player sending the transaction is a member of the set of users.

2.5 Financial Terminology

This section contains an overview of financial terms and definitions as they are
used in Chapters 5 and 6.

• Limit Order : Specifies an amount of tokens to be bought (sold), and a
maximum (minimum) price at which to buy (sell) these tokens. This price
is known as the limit price.

• Market Order : Specifies an amount of tokens to be sold, but no limit price.
Market orders are to be executed immediately at the best available price
based on the liquidity of buy orders.

• Direction: With respect to an order on a market quoted from token x to
y, if the order is trying to buy token y, the direction is buying, while if the
order is trying to sell token y, the direction is selling.

• Forward Price: This is the price at which a seller delivers a token to
the buyer at some predetermined date. In any exchange protocol with-
out instantaneous delivery, the forward price at expected delivery time is
the price at which trades should happen. The difference between current
(spot) price and forward price is known as carry, and can be due to stor-
age/opportunity costs, interest rates, etc. In this thesis, we set carry to
0.

• Notional Value: The value of a set of tokens expressed in some common
reference token. In this thesis, we use the symbol B as the reference token
in which we measure notional, and with which we reason about utility.

• External Market Price (denoted ε): As in [33], the external market price
of a token/token swap is a publicly observable signal which is perfectly
informative of the fundamental price of the underlying token/token swap.

6https://www.torproject.org/

https://www.torproject.org/

2.5. FINANCIAL TERMINOLOGY 15

Moreover, a random order of fixed notional generated by a player in the
system is equally likely to buy or sell tokens at the external market price,
distributed symmetrically around the external market price. Unless oth-
erwise stated, observing the external market price has a prohibitive cost
for players in our system.

• Market : A market in a DEX between two tokens x and y consists of two
limit orders, a bid and offer. When the market is quoted from token
x to y, the offer price indicates the quantity of token x a player must
sell for 1 token y, while the bid price indicates the quantity of token x a
player receives for 1 token y. In this thesis, we represent such a market as
bid @ offer, with 0 < bid ≤ offer.

• Reference Price (εref): For a market bid @ offer, the reference price εref is
the price such that bid

εref
=

εref
offer , i.e., εref is the geometric mean of bid and

offer.

• (Market) Width (width): For a market bid @ offer, the width is calculated
as width = offer

bid (as such width ≥ 1).

• Multiplicative Market-Impact Coefficient (δ): If the pre-trade external
market price for particular swap is ε, the expected post-trade external
market price given a buy order is δ ε for some δ ≥ 1, while the expected
post-trade external market price given a sell order is ε

δ . Unless otherwise
stated, a swap from x to y with multiplicative market-impact coefficient
δ corresponds to buy orders of y having a multiplicative market-impact
coefficient on εy of

√
δ and 1√

δ
on εx. Given our definition of the external

market price, this impact function implies an upward drift in ε if δ > 1.
However, our use of δ is intended to highlight that impact must be consid-
ered, with the exact choice of δ for a particular token pair being a complex
process and beyond the scope of this thesis.

• User : Any player in a DEX protocol who, for an external market price
ε, there exists some minimum user utility fee > 1 such that user buyers
(sellers) have positive expected utility to trade for or below

√
fee ε (at or

above ε√
fee

).

• Market Maker (MM): A player in a DEX protocol with large supplies of
all tokens, who has positive expected utility trading with users on markets
of any width width > 1 with reference price equal to the external market
price. MMs can observe the external market price.

16 CHAPTER 2. PRELIMINARIES

• Automated Market Maker (AMM): A DEX protocol with reserves of 2 or
more tokens allowing any player with access to the AMM to swap tokens
directly with the reserves of the AMM without the interaction of another
player. As such, AMMs typically update their price after each interaction,
adjusting to the previous swap. The most common method for updating
price is keeping some pre-defined function of the reserves constant, known
as a constant function market maker (CFMM). CFMMs are described in
detail in Section 6.3.1.

Chapter 3

Tenderstake

This chapter is based on the paper Achieving state machine replication without
honest players [79].

3.1 Introduction

Existing standards for player characterization in tokenized SMR protocols de-
pend on honest players who will always follow the protocol, regardless of possible
token increases for deviating. Given the ever-increasing market capitalization
of these tokenized protocols, honesty is becoming more expensive and more un-
realistic. As such, this out-dated player characterization must be removed to
provide true guarantees of safety and liveness in a major stride towards uni-
versal trust in SMR protocols and a new scale of adoption. As many SMR
protocols are built on these legacy standards, it is imperative that a new player
model is identified and utilized to reflect the true nature of players in tokenized
protocols, now and into the future.

In Flash Boys 2.0 [43] and the follow-up Flashbots project [50], it is demon-
strated that protocol-deviation opportunities are rampant in Ethereum, and
that players are actively availing of them. In any large-scale SMR protocol,
most, if not all players, will not consider their deviations as affecting SMR.
Therefore, it is essential that we assume non-adversarial players will seek to
maximize tokens in tokenized protocols. As a direct consequence, SMR guar-
antees can no longer depend on honest-by-default users. We explicitly outline
the ByRa (Byzantine or Rational) model as an updated player characterization

17

18 CHAPTER 3. TENDERSTAKE

framework to reflect this weakness in current standards. By moving to the ByRa
model, which we formally define in Definition 3.4.1, the caveat of honest player
dependencies in current SMR protocols is removed. Furthermore, we demon-
strate that it is possible to achieve SMR in the ByRa model by providing the
Tenderstake protocol, an amendment to the Tendermint protocol [68, 31].

To progress towards global adoption, a tokenized SMR protocol must first
ensure that all players will maximize their tokens by following the protocol.
Implementing an SMR protocol that increases a player’s tokens for following
the protocol is known as incentivization, and is a fundamental requirement for
any SMR protocol. Much of the work on incentivization in SMR protocols
stems from the seminal work on selfish mining in Nakamoto-consensus [48]. In
[48], it is demonstrated that certain players are incentivized to deviate from the
prescribed protocol. This eventually leads to a scenario where SMR properties
are violated, as discussed in [48]. It is only upon the performing of actions as
required by the protocol by some majority that it is possible to guarantee the
SMR properties of safety and liveness. This has remained the case in the age of
tokenization.

Despite this, there has been no thorough treatment and analysis of tokenized
SMR protocols from a game-theoretic standpoint involving rational players, who
want to maximize a known utility function, and an adversary, who can corrupt
the owners of some amount of the tokenized consensus resource and behave
arbitrarily. These corrupted players are known as Byzantine. This characteri-
zation of players as either Byzantine or Rational, which we refer to as the ByRa
model, was first considered in distributed systems literature in [83], with recent
advocates including [69, 9, 99]. The closest semblance to this model which has
seen wide-scale adoption with respect to SMRs is the BAR model [6]. The
BAR model crucially includes some portion of altruistic players who disregard
tokenized utility, and always follow the protocol. Examples of authors echoing
our desire to move away from altruistic dependencies are numerous, but this
from Fairledger [69] puts it concisely: “We have to take into account that every
entity may behave rationally, and deviate from the protocol if doing so increases
its benefit”. Non-adversarial, honest-by-default characters do not exist in com-
petitive games, and cannot be depended on in tokenized SMR protocols due
to their gamified nature. Although many other works state the need to move
away from altruistic dependencies, none have proven the critical nature of this
dependency, or provided protocols which achieve SMR, in the ByRa model. In
this chapter, we fulfil both of these essential tasks.

Without the safety net of altruistic players, any successful instantiation of
an SMR protocol in the ByRa model must guarantee that rational players will

3.1. INTRODUCTION 19

always follow the protocol. To ensure this, rational players must expect to
strictly maximize their utility by following the protocol, a property we define as
strong incentive compatible in expectation (SINCE).

Moreover, we must also guarantee that within such an incentive compatible
protocol, the adversary cannot increase their share of tokens to a point where
they control enough tokens to prevent SMR. Despite the existence of strong
incentive compatibility in expectation, it may be possible for an adversary to
receive more than their share of the tokens that get distributed, increasing their
share of control. Therefore, we must additionally ensure that an adversary
cannot increase the share of tokens they control, a property we define as fairness.

3.1.1 Our Contribution

We define the ByRa player characterization model, the properties of SINCE
and fairness, and in Definition 3.4.4, the basic requirements a prospective SMR
protocol must meet in order to guarantee safety and liveness in the ByRa model.
If these requirements are met for a protocol in the ByRa model, the protocol
achieves ByRa SMR. Informally, to achieve ByRa SMR we require that rational
players control a majority of tokens at all times, and are always incentivized to
follow the protocol. We then prove that the properties of SINCE and fairness
are necessary and together sufficient to achieve ByRa SMR in the main theorem
of the chapter.

Theorem 3.5.8. For an SMR protocol Π, Π achieves ByRa SMR if and only
if Π is strong incentive compatible in expectation and fair.

In addition to this new game-theoretical framework, we provide Tenderstake
as a concrete instantiation of an SMR protocol that provably achieves SINCE
and fairness in the ByRa model. Using Theorem 3.5.8, we then prove Tender-
stake achieves SMR in the ByRa model.

3.1.2 Organization of the chapter

In Section 3.2 we review related work and present an overview of attempts
to implement, and works in favour of, the ByRa model for SMR protocols. In
Section 3.3 we provide the background needed to define the ByRa model. Section
3.4 introduces a new game-theoretic framework for analysing SMR protocols.
This new framework defines the ByRa model, and outlines what we require
from SMR protocols in the ByRa model, introducing the properties of SINCE
and fairness. In Section 3.5 we prove that SINCE and fairness are necessary

20 CHAPTER 3. TENDERSTAKE

Protocol Network Model
Player Model

w/o Honest Players
Evolving-Stake Adversary SINCE Fair

Rationals vs. Byzantines [9] Broadcast Synchrony1 ✓ ✗ ✓ 2 ✓ 3

Blockchain Without Waste [98] Synchrony ✓ ✗4 ✓ 5 ✗
Blockchains Cannot Rely on Honesty [99] Synchrony ✓ ✓ ✗ ✗
Fruitchains, Snow White [92, 42] Partial Synchrony ✗ ✗ ✗ ✗
Casper Incentives [34] Partial Synchrony ✗ ✗ ✗ ✗
FairLedger [69] Synchrony ✗ ✗ ✗ ✗
Tenderstake Partial Synchrony ✓ ✓ ✓ ✓

Table 3.1: Comparison of consensus protocols claiming incentive compatibility (prior
to publication of [79]). 1An idealized model where every message, including adversarial
messages, are known to be instantly delivered to all players. 2No explicit reward mechanism
provided, non-trivial for BFT protocols. 3Enforced by the idealized network model/ unspec-
ified reward mechanism. 4No adversary in player model. 5Author creates a dominating cost
unrelated to quantity of stake for deviation.

for a protocol to achieve ByRa SMR. We then prove that together, SINCE
and fairness are sufficient properties for a protocol to achieve ByRa SMR. In
Section 3.6 we outline the Tenderstake protocol as an example, for the first
time in literature, of a SINCE and fair ByRa SMR protocol. In Section 3.7
we reason that Tenderstake satisfies the necessary and sufficient properties of
safety and liveness for SMR when players controlling a majority of the consensus
votes follow the protocol in every round. We then prove that the Tenderstake
protocol is SINCE and fair, which using Theorem 3.5.8, implies Tenderstake
achieves ByRa SMR. We conclude in Section 3.8.

3.2 Related Work

There is a growing appreciation that incentivization is not only important, but
necessary, to ensure the successful instantiation of an SMR protocol. Many
works have argued for the incentivization of players in SMR protocols [63, 98,
94, 10, 9, 99, 34, 92, 42, 17, 73, 65, 83, 16, 3, 75] while many others demonstrate
the critical need for incentive compatibility in tokenized SMR protocols [43, 12,
14, 7, 26, 48, 49, 85, 86, 28, 32, 96].

The characterizations of Byzantine and rational, coupled with that of al-
truistic players who always follow the protocol, segues into the BAR player
characterization model as introduced in [6]. We amend the player characteri-
zations to only include those of Byzantine and rational players in what we call
the ByRa model, removing any dependency on altruistic players.

A very similar player model is discussed in [83, 75], but with respect to one-
shot multiparty computation (MPC). We extend the action space of a one-shot

3.2. RELATED WORK 21

MPC to allow for indefinite, sequentialized action profiles in line with those of
SMR protocols. We introduce the necessity for strict maximization of expected
utility to ensure rational players always follow a protocol. This is opposed
to [83, 75], where it is claimed that equality of utility will suffice to ensure a
rational player will choose one strategy over another, a strong assumption which
we prove to be unnecessary. We also allow the adversary to behave arbitrarily,
as done in [75].

Although [75] labels this player model as mixed-behaviour, and buzzwords
such as Price of Malice and Price of Anarchy are associated with the model in
[83], there has been no consensus on the naming of player models containing
only Byzantine and rational players. Distributed computing literature since
then has been apparently divided on which model to use, while the BAR model
remains prevalent. We believe this is, among other possibilities, a consequence
of the ambiguity of these names compared to the clarity of BAR. We thus refer
to our version of this player model as the ByRa model. The only examples
of this player model in SMR literature making meaningful attempts to remove
altruistic entities are in [9, 99].

Table 3.1 exhibits the shortcomings of related work in providing SMR pro-
tocols that guarantee rational players always follow the protocol (SINCE), and
that prevent an adversary from increasing their share of stake to destroy the
system (fair). Table 3.1 also includes our proposal, Tenderstake, as a standard
against which to compare these works.

In [9], it is implicitly assumed rewards are paid to all players who contribute
to consensus on a block. This is non-trivial in the ByRa model, as rewards in
their system depend on message delivery. From a protocol’s perspective, these
messages need to be recorded by a proposer at some point in the protocol, and
rational proposers may be incentivized to omit players, as is the case in previous
works from subsets of the same authors [11, 12]. We address this omission in
the Tenderstake protocol, providing an explicit solution in the ByRa model.

Although [99] provides an SMR protocol which approaches SINCE, they
do not provide a rigorous player model excluding altruistic players, and in the
presence of a deviating adversary, there are strategies which strictly outperform
the recommended protocol strategy for rational players, preventing both strong
incentive compatibility and fairness. Such a strategy involves ignoring large
forks which per the protocol should be included for rewards, and waiting for
these forks to become stale with respect to the longest chain, so as to ensure
blocks not in the fork do not get penalized by the fork. Although these forks
are likely adversarial, they stand as one of potentially many deviations that a
rational player would take.

22 CHAPTER 3. TENDERSTAKE

After the publication of [79] (on which this chapter is based), the Colordag
protocol was published [2], which follows a similar approach to [99]. Colordag
provides an even stronger notion of incentive compatibility to that of [99] by
explicitly removing the ability for an adversary to fork (with arbitrarily high
probability). As such, it is feasible that the properties of a Colordag blockchain
are as strong as Tenderstake in the Threat Model of Section 3.6.1, with the
added benefit of being applicable to the permissionless setting.

A purely economic approach to SMR protocols is taken in [98]. The proposed
player model only considers rational players, and depends on a dominating cost
for certain deviations that is not quantifiable within the protocol game of max-
imising stake. In this chapter, we demonstrate that it is possible to construct
a protocol, Tenderstake, that strictly maximizes stake by following the proto-
col. As following the protocol maximizes the value of stake in [98], Tenderstake
captures the same maximization of value without the potentially problematic
dependency on unquantifiable external costs unrelated to quantity of stake.

One of the legacy works in relation to fairness and incentive compatibility of
SMR protocols is Fruitchains [92]. The Fruitchains player model consists of an
altruistic majority of players and a cooperative rational minority. Fruitchains
crucially relies on an underlying blockchain satisfying an SMR protocol in or-
der to guarantee fairness of rewards. They fail to consider the incentives of all
parts of the system, relying on an altruistic majority in order to guarantee the
underlying blockchain satisfies the required SMR properties. They then add
a section where claims of incentive compatibility for non-cooperative rational
players are made. The authors claim a protocol is incentive compatible if fair-
ness of rewards has already been guaranteed. As fairness in their system is
only guaranteed if a majority of players follow the protocol, there is no logical
implication which proves that rational players will always follow the protocol,
required for incentive compatibility. This is insufficient to guarantee SMR in
the ByRa model. This dependence on an underlying correct-by-default SMR
protocol/trusted third-party is also demonstrated in [34, 69], where claims of
incentive compatibility and fairness do not hold in the ByRa model.

3.3 Preliminaries

In our system, an SMR protocol Π consists of n players owning shares of a finite
resource, which we will refer to as stake, and denoted Stake1 at initialization. Π
proceeds in fixed-time periods, which we refer to as rounds, beginning in round
1. For any height H > 1 of the blockchain, players participate in Π to decide

3.4. A GAME-THEORETIC FRAMEWORK FOR SMR 23

on a block for that height. Reaching consensus on a block will involve one or
more successful protocol steps. After a block has been decided for height H ≥ 1,
the total stake in the system is denoted StakeH with player shares of StakeH

denoted SH1 ,,SHn . Without loss of generality, we assume
∑n
i=1 SHi = 1, and

for all i ∈ {1, ..., n}, H ≥ 1, SHi < 1
2 .

Definition 3.3.1. For an SMR protocol Π, the recommended strategy, denoted
strΠ, is the strategy that Π requires players to follow in order to successfully
achieve SMR.

3.4 A Game-Theoretic Framework for SMR

In this section we formalize the ByRa framework for SMR protocols, where
participants are either adversarially or rationally motivated. This is in response
to the existential threat posed by the growing trend of players managing SMR
protocols acting in a profit-maximising manner [43] in protocols where security
guarantees depend on honest players. Furthermore, this framing is made quite
naturally, given SMR protocols are accurately modelled as games with strict
incomplete information as defined in Definition 2.2.1.

This is a crucial progression from existing standards in distributed systems
literature where some number of non-adversarial players are honest-by-default.
Due to the distributed nature of SMR protocols, as a baseline we need to account
for some portion of adversarial players who can behave arbitrarily with unknown
utility functions. The remaining rational players follow some known utility
function, and attempt to choose the actions which maximize it. To ensure
the honest behaviour of rational players in SMR protocols within this setting,
following the protocol strategy must maximize the expected utility of rational
players. We define these player characterizations here formally as the ByRa
model.

Definition 3.4.1. The ByRa model consists of Byzantine and Rational players.
A player is:

• Byzantine if they deviate arbitrarily from the recommended strategy within
a game with unknown utility function. Byzantine players are chosen and
controlled by an adversary A.

• Rational if they choose uniformly at random from all mixed strategies
which maximize their known utility function assuming all other players
are rational.

24 CHAPTER 3. TENDERSTAKE

This definition of rational players omits tie-breaking assumptions that bias
a rational player to certain strategies over others with equal utility. If we have a
protocol that requires rational players to choose a certain strategy, it is necessary
to make the payoff for that strategy strictly greater than that of any other.

A rational player who assumes all other players are rational is known as an
oblivious rational player [83, 84]. A rational player who is not oblivious knows
there are players in the system controlling a non-negligible share of stake, con-
trolled by an adversary, who may try to break safety and liveness. Adding
this to the private information of a rational player adds a probability of safety
and liveness failing if protocol actions are not followed, which becomes 1 in the
presence of a maximal adversary. This outcome has a critical cost for rational
players (as used in [9, 98, 83, 84]), which can be made arbitrarily high to pre-
vent rational players from deviating from protocol actions, and the following of
protocol actions trivial.

We believe this is highly unrepresentative of rational players in SMR proto-
cols today, particularly in light of the clear recent evidence that miners can and
are deviating from protocol actions to increase their on-chain rewards [43]. As
such, in the rest of this chapter, we assume all rational players are oblivious, and
prove our main lemmas and theorems given this weakest possible assumption.

To consider rational players in any game, it is necessary to explicitly define
what their utility functions are. Inkeeping with the tokenized assumptions of
our model, we let rational player utility be measured in stake as described by the
blockchain. By their nature, tokenized SMR protocols require it to be expensive
to deviate from the protocol actions, encouraging honest behaviour through
stake rewards, and/or stake punishments for dishonest behaviour. Given the
unprecedented levels of SMR protocol usage as a result of tokenization, we see
stake as the driving utility measure for the players who participate in these
protocols.

As total stake is only meaningful with respect to a particular time-point,
and SMR protocols are played indefinitely, rational players will seek to max-
imize their total stake at all possible rounds sufficiently far into the future.
Therefore, when discussing incentivization and player utility, it is necessary to
refer to stake/share/total stake with respect to rounds. As we are using the
round variable as a counter, and some rounds may be unsuccessful, it cannot be
independently used to determine the height, and vice versa. Rather than add
notation to relate the two, we treat them separately, and make it clear from con-
text which is being used. When referring to stake/share/total stake with respect
to particular rounds, we use superscripts involving r, whereas when discussing
these variables with respect to the height of the blockchain, we use superscripts

3.4. A GAME-THEORETIC FRAMEWORK FOR SMR 25

involving H.
Notation 3.4.2. For an SMR protocol Π, we denote by α the maximal share of
stake such that for players controlling greater than 1− α of the stake following
the SMR protocol, safety and liveness are achieved. The exact value of α will
depend on the network distribution assumptions, in line with the results of [45],
which must be contained in the threat model.

For some security parameter κ ∈ N, our goal is to guarantee that SMR can
be achieved (that is, both safety and liveness are satisfied) in the ByRa model
with probability greater than 1− negl(κ) over any polynomial in κ rounds.

We first need to introduce an equivalence relation for mixed strategies over
finite rounds. When we state the protocol strategy which needs to be followed
to achieve SMR, although there is an infinite number of strategy encodings,
we only require players to follow strategies which result in actions as outlined
by the protocol. We are indifferent to how this is achieved. If a strategy is
encoded differently to the recommended protocol strategy, but results in actions
as prescribed by the protocol with probability greater than 1− negl(κ) over any
polynomial in κ rounds, we see this as equivalent to the recommended protocol
strategy.

Definition 3.4.3. For a player Pi at initialization, and round r′ ≥ 1, two
mixed strategies strai and strbi are equivalent with respect to round r′ if for all
rounds r, 1 ≤ r ≤ r′, and private informations tri ∈ T ri , it is the case that

strai (t
r
i) = strbi (t

r
i). We use strai ≡r

′
strbi to denote this equivalence relation.

If strai ≡r
′
strbi for all rounds r′ polynomial in κ, strai and strbi are equivalent,

denoted by strai ≡ strbi .

With this equivalence relation, we can now define what it means for a pro-
tocol to achieve SMR in the ByRa model. In this chapter, after deciding on a
block at height H ≥ 1, we denote the adversarial share of stake by SHA .
Definition 3.4.4. For an SMR protocol Π and round r, let prΠ be the probability
that players controlling more than 1−α of the total stake follow a mixed strategy
str ≡r strΠ up to and including round r for any S1A < α. Π achieves ByRa SMR

if for all rounds r′ polynomial in κ it holds that pr
′

Π is greater than 1− negl(κ).
Otherwise, Π fails in the ByRa model.

Towards the goal of achieving ByRa SMR, we need to formally define ratio-
nal utility as measured in stake. For a rational player Pi with private informa-
tion tri and round r′ ≥ r, we have:

ur
′

i (t
r
i ,X ri , ...,X r

′

i ,X r−i, ...,X r
′

−i) = Sr
′

i Stake
r′ . (3.1)

26 CHAPTER 3. TENDERSTAKE

However, in a game with strict incomplete information as is the case in an SMR
protocol, a rational player Pi with private information tri will not know their own
future private information values (required to choose their actions), the private
informations of the other players, or str−i, before choosing stri. Therefore,
Pi must choose the mixed strategy which maximizes Pi’s expected stake at

round r′, denoted E(Sr′i Stake
r′), according to the probability distribution that

Pi attributes to possible values for these unknowns. This distribution will be
contained in tri .

Thus, knowing tri is sufficient to calculate Pi’s expected utility of a particular

strategy at round r′, which we express mathematically by E(Sr′i Stake
r′ |tri , stri).

We state this formally in Definition 3.4.5.

Definition 3.4.5. For an SMR protocol Π and rational player Pi with pri-
vate information tri , mixed strategy stri, and a particular round r′ ≥ r, the

expected utility of stri for Pi at round r′ is denoted ur
′

i (t
r
i , stri) and is described

by ur
′

i (t
r
i , stri) = E(Sr′i Stake

r′ |tri , stri).

As such, for a rational Pi in an SMR protocol Π with private information tri ,

Pi will choose the mixed strategy stri which maximizes ur
′

i (t
r
i , stri). To establish

the existence, or not, of such a mixed strategy, we introduce an inequality in
Definition 3.4.6 which allows us to pairwise rank mixed strategies by expected
utility.

Definition 3.4.6. For an SMR protocol Π, rational player Pi and two mixed
strategies strai , strbi , strai strictly dominates strbi in expectation if there exists

r′′ ≥ r, r′′ polynomial in κ , such that for all r′ > r′′, ur
′

i (t
r
i , str

a
i) > ur

′

i (t
r
i , str

b
i).

If strai strictly dominates strbi in expectation, we denote this relationship by
strai >u strbi .

Using the strict dominance in expectancy relationship, we can formally de-
fine what we require from an SMR protocol in order for rational players to
follow the recommended protocol strategy. This requirement is strong incentive
compatibility in expectation, and is defined in Definition 3.4.7.

Definition 3.4.7. An SMR protocol Π is strong incentive compatible in ex-
pectation (SINCE) if for any rational player Pi, strΠ >u stri for all mixed
strategies stri ∈ Stri, with Stri the set of mixed strategies available to Pi, such
that stri�≡ strΠ.

For a protocol to be SINCE in the ByRa model ensures that all rational
players will follow the recommended protocol strategy. However, SINCE is

3.5. ACHIEVING SMR IN THE BYRA MODEL 27

not on its own sufficient to ensure the safety and liveness of an SMR protocol
in ByRa model. It is still possible for an adversary to gain more than their
fair share of rewards, and as such, increase their total share above the critical
threshold of α. Towards achieving SMR in the ByRa model, it must be ensured
that the adversarial share remains strictly bounded by the threshold α required
to achieve SMR if all non-adversarial players follow the protocol. We explicitly
define what we mean by fairness in the ByRa model in Definition 3.4.8.

Definition 3.4.8. An SMR protocol Π with adversary A is fair in the ByRa
model if P (SrA ≤ S1A) > 1− negl(κ) for any round r ≥ 1 .

3.5 Achieving SMR in the ByRa Model

With SINCE and fairness, we have two properties which turn out to be crucial
in achieving ByRa SMR. Towards our final goal of proving that the proper-
ties of SINCE and fairness are necessary, and together sufficient, to achieve
ByRa SMR, the first step is to prove in Lemma 3.5.6 that SINCE is necessary.
To allow us to prove this result, we introduce notation which allows us to con-
sider, for a potential SMR protocol, the strategies from which rational players
choose.

Definition 3.5.1. For a rational player Pi with a set of mixed strategies Stri,
let StrNSD

i ⊆ Stri be such that for all stri ∈ StrNSD
i , there does not exist a

strui ∈ Stri, such that strui >u stri.

That is, if a mixed strategy str ∈ Stri is in the set StrNSD
i , there is no

strategy for Pi which strictly dominates str in expectancy. We provide the fol-
lowing Lemmas towards establishing that rational players will choose strategies
exclusively from StrNSD

i .

Lemma 3.5.2. For an SMR protocol Π, a rational player Pi, any strategy
strai ∈ Stri , and |Stri| ≥ 2, either strai ∈ StrNSD

i or there is some strbi ∈ StrNSD
i

such that strbi >u strai .

Proof. We will do this by induction over the cardinalities of Stri. First we check
|Stri| = 2. If strai is in StrNSD

i , we are finished. Assume otherwise. That is,
strbi >u strai , which implies strai ̸>u strbi , and as such, strbi ∈ StrNSD

i as required.
Assume the inductive hypothesis for |Stri| = k.
Now, given this assumption, we must prove our hypothesis holds for |Stri| =

k + 1. Consider a strategy strci ∈ Stri. We need to prove either strci ∈ StrNSD
i ,

28 CHAPTER 3. TENDERSTAKE

or there exists str ∈ StrNSD
i with str >u strci . If strci is not strictly dominated

by any strategy str ∈ Stri, then strci ∈ StrNSD
i .

Assume instead there exists some strategy strai ∈ Stri, str
a
i >u strci . Consider

Zi = Stri\{strci}. By the inductive assumption, either strai ∈ ZNSD
i , or there

exists strbi ∈ ZNSD
i such that strbi >u strai . If strai ∈ ZNSD

i , then strai ∈ StrNSD
i ,

which implies there exists str ∈ StrNSD
i such that str >u strci . Otherwise, if

strai ̸∈ ZNSD
i , there exists strbi ∈ ZNSD

i , with strbi >u strai . As strbi >u strai , and
strai >u strci , this implies strbi >u strci . As strbi ∈ ZNSD

i , and strbi >u strci , this
implies strbi ∈ StrNSD

i . Therefore, there exists str ∈ StrNSD
i such that str >u strci .

As rational players choose uniformly at random from all mixed strategies
which maximize utility, from Lemma 3.5.2 for a rational player Pi these mixed
strategies will be contained in StrNSD

i . Moreover, Definition 3.4.1 states that Pi
chooses from these mixed strategies in StrNSD

i with uniform probability. There-
fore, to ensure rational players follow strΠ with probability at least 1− negl(κ),
we must identify the conditions where for any rational player Pi, StrNSD

i =
{strΠ}. We state this explicitly in Observation 3.5.3.

Observation 3.5.3. A rational player Pi follows strΠ with probability greater
than 1− negl(κ) if and only if StrNSD

i = {strΠ}.

The precise conditions where StrNSD
i = {strΠ} for a rational player Pi are

identified in Lemma 3.5.4.

Lemma 3.5.4. For an SMR protocol Π and a rational player Pi, StrNSD
i =

{strΠ} if and only if Π is strong incentive compatible in expectation.

Proof. If an SMR protocol Π is SINCE, then for any rational player Pi, strΠ
strictly dominates all other strategies in expectation. From Lemma 3.5.2, this
implies StrNSD

i = {strΠ}.
Now we need to show if StrNSD

i = {strΠ}, then Π is SINCE. From Lemma
3.5.2, we know for any strategy strai , either strai ∈ StrNSD

i or there is some
strbi ∈ StrNSD

i such that strbi >u strai . As the only strategy in StrNSD
i is strΠ,

this implies for any strategy strai�≡ strΠ, strΠ >u strai . This implies Π is SINCE,
as required.

Corollary 3.5.5. For an SMR protocol Π and a rational player Pi, P (Pi
chooses strΠ) > 1 − negl(κ) if and only if Π is strong incentive compatible
in expectation.

Proof. Follows from Observation 3.5.3 and Lemma 3.5.4.

3.5. ACHIEVING SMR IN THE BYRA MODEL 29

This allows us to prove SINCE is a necessary property to achieve ByRa SMR.

Lemma 3.5.6. For an SMR protocol Π, if Π is not strong incentive compatible
in expectation, then Π fails in the ByRa model.

Proof. Consider such a protocol Π. As a consequence of not SINCE, for a
rational player Pi, this means P (Pi chooses strΠ) is not greater than 1− negl(κ),
applying Corollary 3.5.5. From Definition 3.4.4 we are required to consider S1A
maximal. Given this rational Pi and a maximal adversary, there is now players
controlling greater than or equal to α of the total stake who will not choose
a strategy equivalent to strΠ with non-negligible probability in κ. Using the
notation of Definition 3.4.4, this means prΠ is not greater than 1 − negl(κ) for
some r ≥ 1, which implies Π fails in the ByRa model.

Using similar arguments, we are able to prove fairness is also necessary for
a protocol to achieve ByRa SMR.

Lemma 3.5.7. For an SMR protocol Π, if Π is not fair then Π fails in the
ByRa model.

Proof. If Π is not fair, there exists r ≥ 1 such that P (SrA > S1A) is not negligible
in κ. From Definition 3.4.4, we are required to consider the case where S1A is
maximal. In this case, the probability that the adversary controls greater than
or equal to α of the stake at round r is is non-negligible in κ given P (SrA >
S1A) is non-negligible in κ. Given the uniform strategy selection probability
of Byzantine players across all possible strategies, this implies that prΠ is not
greater than 1− negl(κ). Therefore, Π fails in the ByRa model.

Collecting the results of this section, with some additional proof-work, we
are equipped to prove the main theorem of the chapter, Theorem 3.5.8.

Theorem 3.5.8. For an SMR protocol Π, Π achieves ByRa SMR if and only
if Π is strong incentive compatible in expectation and fair.

Proof. For an SMR protocol Π, we will first prove that if Π achieves ByRa SMR
then Π is SINCE and fair. Using the contrapositive of Lemma 3.5.6, we have
that if Π achieves ByRa SMR (does not fail in the ByRa model), then Π is
SINCE. Similarly, using the contrapositive of Lemma 3.5.7, we have that if Π
achieves ByRa SMR, then Π is fair.

We now need to prove if Π is SINCE and fair then Π achieves ByRa SMR. By
SINCE and Corollary 3.5.5, this implies all rational players will always choose
strΠ. Furthermore, as Π is fair, from Definition 3.4.8, we know rational players

30 CHAPTER 3. TENDERSTAKE

will maintain greater than 1 − α of the stake in every round with probability
greater than 1 − negl(κ). Therefore, we have players controlling greater than
1−α of the stake who will follow strΠ with probability greater than 1− negl(κ),
which is precisely the definition of Π achieving ByRa SMR from Definition 3.4.4.

This important theorem completes the first part of the chapter, identifying
the properties of SINCE and fairness as both necessary, and together sufficient,
for a protocol to achieve ByRa SMR, independently of network assumptions
and adversarial capabilities.

3.6 Tenderstake

In this section, we provide the encoding of Tenderstake, and give an overview
of the main differences between the Tenderstake protocol and Tendermint. We
assume a partially synchronous network communication model as in Tendermint
[68]. Players are connected to nodes in a dynamic wide area network, with
each node having direct connections to a subset of all other nodes, forming
a sparsely connected graph of communication channels between nodes. Non-
Byzantine player messages are transmitted through gossiping ; players send a
message to neighbouring nodes, who echo messages to their neighbours until
all nodes eventually receive the message. Formally, there is global stabilization
round GSR > 0, such that all messages sent at round rsend > 0 are delivered
by round rdeliver = max(rsend,GSR) + ∆ for some unknown number of rounds
∆ > 0.

We assume rational players are aware that there is a fixed, but unknown,
upperbound ∆ on message delivery between players in synchrony, which we refer
to as ∆-synchrony, but are unaware of how many players are in ∆-synchrony
at any given time. For a message m, a call to broadcast(m) sends m to all
players, including oneself, under the same gossiping specification. This is partial
synchrony as defined in [45].

3.6.1 Threat Model

In Tenderstake, protocol actions take negligible amounts of time compared to
network delays, so if all non-Byzantine players behave correctly and receive the
same sequence of messages their machines will be in the same state. Rational
players ignore messages which have not been signed using a protocol-associated
private key. We do not consider coalitions of rational players.

3.6. TENDERSTAKE 31

We consider an adversary A with the following properties:

1. A can read all messages sent by non-Byzantine parties, but cannot exis-
tentially forge signatures.

2. A can control and coordinate all Byzantine players in any way, with un-
known utility function.

3. At initialization we have 1
3 − δ < S1A < 1

3 = α, for some δ > 0, in line with
the partially synchronous network distribution limits [45].

4. At initialization, A can choose to corrupt any 1 ≤ f < n− 2 players, say
P1, ...,Pf with shares S11, ...,S1f , such that

∑f
i=1 S1i = S1A.

5. Given A corrupts players P1, ...,Pf as Byzantine for consensus on a block
at height H with shares SH−11 , ..., SH−1f , the adversarial share at the pro-

ceeding height is calculated as SHA =
∑f
i=1 SHi .

We focus on static adversaries for simplicity, and leave other adversarial
types, such as adaptive or mobile[104], as future work. The added complexity
of such adversaries only stands to detract from the primary goals of the chapter,
that is, to demonstrate the importance of ByRa SMR and how it can be achieved
with Tenderstake. We also choose not to allow players to join/leave the protocol
for the same reasons; a desire to limit complexity and to maintain weak network
communication model assumptions. We discuss the addressing of these decisions
as part of future work in Section 3.8.

3.6.2 Protocol Outline

We now describe the pseudocode of Tenderstake as outlined in Algorithm 1. As
the goal of Section 3.6 is to amend Tendermint to achieve ByRa SMR, readers
of [31] will notice that we use large parts of the code and descriptions from
that work. We describe the entire code here for completeness, and highlight
the differences in Tenderstake to Tendermint as they arise. The two funda-
mental additions to the Tendermint protocol used by Tenderstake are proof-
of-transition and slashing functionalities, described in detail at the end of this
section, and included in the code of Algorithm 1. Proof-of-transition ensures
players who send a message at a particular height/ epoch/ step have gotten
there by following the protocol, while the slashing functionality enforces the use
of proofs-of-transition, as well as the sending of valid messages in general, by
punishing players for sending invalid messages.

32 CHAPTER 3. TENDERSTAKE

Algorithm 1 Tenderstake protocol for a player Pi
1: function Initialize(Genesis)
2: Blockchaini := [Genesis] ▷ Pi’s blockchain as a vector
3: Hi := 1 ▷ Tracks height of Blockchaini
4: epochi := 1
5: stepi ∈ {propose, prevote, precommit}
6: lockValuei := nil
7: lockEpochi := −1
8: validValuei := nil
9: validEpochi := −1
10: Stakei := Genesis.stake() ▷ Total stake
11: Sharesi := Genesis.shares() ▷ Vector of player shares
12: Rewardi := Genesis.reward() ▷ Per-Block reward
13: DeviationProofsi := [nil for j ∈ {1, ..., n}] ▷ Deviation proofs
14: prevoteProofi := nil
15: precommitProofi := nil

16: upon start do StartEpoch(1)

17: function StartEpoch(epoch)
18: epochi ← epoch
19: stepi ← propose
20: if proposer(Hi, epochi) = Pi then
21: if validValuei ̸= nil then
22: proposali ← validValuei
23: else
24: proposali ← getValue().include(DeviationProofsi)

25: broadcast⟨PROPOSAL,Hi, epochi, proposali, validEpochi, prevoteProofi⟩
26: else
27: schedule OnTimeoutPropose(Hi, epochi) to be executed after timeout()

28: upon ⟨PROPOSAL, Hi, epochi, value,−1, proof⟩ with valid(proof) from proposer(Hi, epochi)
while stepi = propose do

29: if valid(value) ∧ (lockEpochi = −1 ∨ lockValuei = value) then
30: broadcast ⟨PREVOTE,Hi, epochi, value, prevoteProofi⟩
31: else
32: broadcast ⟨PREVOTE,Hi, epochi, nil, prevoteProofi⟩
33: stepi ← prevote

34: upon ⟨ PROPOSAL,Hi, epochi, value, validEpoch, proofProposal⟩ with valid(proofProposal)
from proposer(Hi, epochi)∧ > 2

3 ⟨PREVOTE, Hi, validEpoch, value, proofPrevote⟩ with

valid(proofPrevote) while
(
stepi = propose ∧ (validEpoch ≥ 0 ∧ validEpoch < epochi)

)
do

35: prevoteProofi ← proof(> 2
3 ⟨PREVOTE,Hi, validEpoch, value⟩ ∪ prevoteProofi)

36: if valid(value) ∧ (lockEpochi < validEpoch ∨ lockValuei = value) then
37: broadcast ⟨PREVOTE,Hi, epochi, value, prevoteProofi⟩
38: else
39: broadcast ⟨PREVOTE,Hi, epochi, nil, prevoteProofi⟩
40: stepi ← prevote

41: upon > 2
3 ⟨PREVOTE,Hi, epochi, ∗, proof⟩ with valid(proof) while stepi = prevote for the

first time do
42: precommitProofi ← proof(> 2

3 ⟨PREVOTE,Hi, epochi, ∗⟩)
43: schedule OnTimeoutPrevote(Hi, epochi) to be executed after timeout()

3.6. TENDERSTAKE 33

Algorithm 1 Tenderstake protocol (ctd.)

44: upon ⟨PROPOSAL,Hi, epochi, value, ∗, proofProposal⟩ with valid(proofProposal) from
proposer(Hi, epochi) ∧ > 2

3 ⟨PREVOTE,Hi, epochi, value, proofPrevote⟩
with valid(proofPrevote) while valid(value) ∧ stepi ≥ prevote for the first time do

45: if stepi = prevote then
46: lockValuei ← value
47: lockEpochi ← epochi
48: precommitProofi ← proof(> 2

3 ⟨PREVOTE,Hi, epochi, value⟩)
49: broadcast ⟨PRECOMMIT,Hi, epochi, value, precommitProofi⟩
50: stepi ← precommit

51: validValuei ← value
52: validEpochi ← epochi

53: upon > 2
3 ⟨PREVOTE,Hi, epochi, nil, proof⟩ with valid(proof) while stepi = prevote do

54: precommitProofi ← proof(> 2
3 ⟨PREVOTE,Hi, epochi, nil⟩)

55: broadcast ⟨PRECOMMIT,Hi, epochi, nil, precommitProofi⟩
56: stepi ← precommit

57: upon > 2
3 ⟨PRECOMMIT,Hi, epochi, ∗, proof⟩ with valid(proof) for the first time do

58: prevoteProofi ← proof(> 2
3 ⟨PRECOMMIT,Hi, epochi, ∗⟩)

59: schedule OnTimeoutPrecommit(Hi, epochi) to be executed after timeout()

In Tenderstake, every correct player is initialized by passing a block Genesis
to the Initialize function (line 1). This ensures all players start from a common
state. Block Genesis contains information on player shares, stake and per-block
reward at initialization.

The algorithm is presented as a set of upon rules that are to be executed
automatically once the corresponding logical condition is TRUE. Variables with
sub-index i denote player Pi’s local state variables, while those without are
value placeholders. The sign ∗ denotes any value. We use the convention of
> x

3 m with COND to stand for the logical statement which is TRUE if and
only if players controlling more than x

3 of the total stake with respect to Pi’s
blockchain Blockchaini (represented as a vector in line 2) deliver messages, with
each messagem satisfying the logical condition COND. Ifm contains a proposed
deviator, that deviator’s share does not count towards the tally (it would be
irregular that a player would affirm a message which tried to destroy their own
stake).

As the total voting power in the system is 1, this means if there are new
deviators proposed in a particular valid value (line 24) with total share Sdev, the
maximum total voting share for that value is 1− Sdev. This ensures any player
Pi at height H with share SH−1i after deciding on the block at height H− 1 can
only have 0 or SH−1i voting power. Rules ending with ‘for the first time’ should
only be executed on the first time the corresponding condition is TRUE.

34 CHAPTER 3. TENDERSTAKE

Algorithm 1 Tenderstake protocol (ctd.)

60: upon > 2
3 ⟨PRECOMMIT,Hi, epochi, nil, proof⟩ with valid(proof) while stepi = precommit

do
61: StartEpoch(epochi + 1)

62: upon ⟨PROPOSAL,Hi, epoch, value, ∗, proofProposal⟩ with valid(proofProposal)
from proposer(Hi, epoch) ∧ > 2

3 ⟨PRECOMMIT,Hi, epoch, value, proofPrecommit⟩
with valid(proofPrecommit) do

63: newDeviators← value.deviators()\Blockchaini.deviators()
64: if valid(value) then
65: if |newDeviators| > 0 then ▷ True if deviators in value not in Blockchaini
66: adjustForSlashing(newDeviators)

67: prevoteProofi ← proof(> 2
3 ⟨PRECOMMIT,Hi, epoch, value⟩)

68: Blockchaini.append(value.include(prevoteProofi))
69: Stakei ← Stakei + Rewardi
70: Hi ← Hi + 1
71: reset lockEpochi, lockValuei, validEpochi, validValuei to initial values
72: StartEpoch(1)

73: upon > 1
3 ⟨∗,Hi, epoch, ∗, proof⟩ with (epoch > epochi ∧ valid(proof)) do

74: prevoteProofi ← proof(> 1
3 ⟨∗,Hi, epoch, ∗, ∗⟩)

75: StartEpoch(epoch)

76: function OnTimeoutPropose(height, epoch)
77: if height = Hi ∧ epoch = epochi ∧ stepi = propose then
78: broadcast ⟨PREVOTE,Hi, epochi, nil, prevoteProofi⟩
79: stepi ← prevote

80: function OnTimeoutPrevote(height, epoch)
81: if height = Hi ∧ epoch = epochi ∧ stepi = prevote then
82: broadcast ⟨PRECOMMIT,Hi, epochi, nil, precommitProofi⟩
83: stepi ← precommit

84: function OnTimeoutPrecommit(height, epoch)
85: if height = Hi ∧ epoch = epochi then
86: StartEpoch(epochi + 1)

87: upon m from Pj with valid(m) = FALSE for the first time do
88: DeviationProofsi[j]← proof(valid(m) = FALSE)

89: broadcast ⟨SLASH,Pj ,Hi, epochi,m,DeviationProofsi[j]⟩

90: upon ⟨SLASH,Pj ,m, proof⟩ from Pk with valid(proof) do
91: if DeviationProofsi[j] = nil then
92: DeviationProofsi[j]← proof

93: broadcast ⟨SLASH,Pj ,m,DeviationProofsi[j]⟩

94: function adjustForSlashing(newDeviators)
95: slashedShare← sum(Sharesi[newDeviators])
96: Sharesi[newDeviators]← 0

97: Sharesi ←
[Sharesi[k]

1−slashedShare for k ∈ [1, ..., n]
]

98: Rewardi ← (1− slashedShare)Rewardi
99: Stakei ← (1− slashedShare)Stakei ▷ Remove deviating stake
100: Stakei ← Stakei + sum([Genesis.shares()[j] for j ∈ newDeviators]) · Rewardi ▷ Slash

Bonus, not dependant on ordering

3.6. TENDERSTAKE 35

The algorithm proceeds in epochs, with each epoch having a dedicated pro-
poser. The mapping of epochs to proposers is known to all players, with the
function proposer(h, epoch) returning the proposer for epoch epoch given current
blockchain height h. Player state transitions are triggered by message reception
and by expiration of the timeout function timeout(). Timeouts are to be called
once per step during each epoch, and only trigger a transition if the player has
not updated their step or epoch variable since starting the timeout function.

In [31] it is proved that non-Byzantine players need to incorporate increasing
timeouts in the number of epochs at a particular height to guarantee eventual
progression. In Tenderstake, we also incorporate increasing timeouts in epochs,
but instead leave the precise definition of the timeout function timeout() to
each player. We do however place the following restriction on the timeout()
calculation: the value of timeout() is increasing in the number of epochs at
every height, such that lim

epoch→∞ timeout(epoch)→∞.
The intuition behind this choice is leaving it sufficiently general so as to not

risk choosing some specific delta/ function for delta which would expose us to
unnecessary optimization analysis, while also ensuring Tenderstake retains the
property of increasing timeouts in the number of epochs at each height required
in the original Tendermint protocol to guarantee safety and liveness.

Messages in Tenderstake contain one of the following tags:
PROPOSAL, PREVOTE, PRECOMMIT, or SLASH. The PROPOSAL tag is used
by the proposer of the current epoch to suggest a potential decision value (line
25), while PREVOTE and PRECOMMIT are votes for a proposed value, as in
Tendermint. SLASH messages identify player deviations, and are described in
detail at the end of the this section.

Every player Pi locally stores the following variables in the Tenderstake
protocol: stepi, lockValuei, lockEpochi, validValuei, validEpochi,
Stakei, Sharesi, Rewardi, and DeviationProofsi, initialized in lines 5-13. The
stepi tracks the current step of the protocol execution during the current epoch.
The lockValuei stores the most recent value for which a PRECOMMIT message
was sent by Pi for a non-nil value, with lockEpochi the epoch in which lockValuei
was updated. As Pi can only decide on a value value if more than 2

3 voting
power equivalent PRECOMMITmessages are received for value, possible decision
values can be any value locked by more than 1

3 voting power equivalent players.
Therefore any value value for which PROPOSAL and more than 2

3 voting power
equivalent PREVOTE messages are received in some epoch is a possible decision
value. The validValuei stores this value, while validEpochi stores the epoch
where this update occurred. The Stakei tracks the total stake in the system,
and Sharesi the current player shares of Stakei. The Rewardi is the total reward

36 CHAPTER 3. TENDERSTAKE

to be distributed among all players for deciding on the next value in Blockchaini.
The DeviationProofsi vector tracks locally observed deviators as identified by
SLASH messages.

Proof-of-Transition Functionality

In Tenderstake, every PROPOSAL, PREVOTE and PRECOMMIT message must
be accompanied by a proof-of-transition which evidences the transition to the
current step claimed by each player is valid. These proofs are stored in the
local player variables prevoteProofi and precommitProofi, with prevoteProofi also
acting as proof for PROPOSAL messages when a player is selected as proposer.
For example, in line 57, each PRECOMMIT message must be accompanied by
a proof which shows that the respective players were at a protocol step which
allowed them to send a PRECOMMIT message (lines 49, 55 or 82). This would
be true either if the player received PREVOTE messages correctly satisfying the
condition at line 53, both of the conditions at lines 44, 45, or the condition at
80 . As these conditions have specific PREVOTE message reception rules, and
given there is only one valid PRECOMMIT messages in each case, valid(proof) is
true if and only if the message was generated correctly, i.e. by receiving a set of
PREVOTE messages which would trigger that PRECOMMIT message according
to the protocol.

Slashing Functionality

If any messages/ proofs are not valid in Tenderstake, players trigger the Slash-
ing functionality and send a SLASH message (line 89), which contains a proof
that the offending message was indeed invalid (described in detail in Section
3.6.2). SLASH messages, along with proofs-of-transition, are a key addition to
Tenderstake in order to prove ByRa SMR, as players identified as deviating by
a correct player through a SLASH message will eventually be seen by all cor-
rect players. When a player is identified as deviating, their proof-of-deviation is
added to the local DeviationProofs vector of the observing player. Then when
a player is selected as proposer, and validValuei = nil, they add all deviation
proofs not already identified in Blockchaini to their proposed value (line 24).
After being seen by all correct players, any deviator will eventually be added to
a correct player’s proposed value and removed from the protocol through the
adjustForSlashing function (line 94).

The adjustForSlashing function takes as input new decided deviators, deletes
their stakes (lines 96, 99), adjusts the remaining player shares to sum to 1 (line

3.6. TENDERSTAKE 37

97), recalibrates the per-block reward to keep the per player reward constant
throughout a Tenderstake instance (line 98), and distributes the initial reward
Genesis.reward() times the initial shares of the deviating players among the
remaining players in proportion to their stake (line 100).

Life-Cycle of an Epoch

Every epoch starts by a proposer suggesting a value in a Tenderstake message
(line 25). If validValuei = nil, this proposed value is generated by the external
getValue() function (line 24), as in Tendermint. In Tenderstake, players also
include in their newly generated propose values any deviation proofs they have
received that are not currently in Blockchaini. Otherwise if validValuei ̸= nil,
the proposer proposes validValuei. The proposer attaches validEpochi to the
message so other processes are informed of the last epoch in which the proposer
observed validValuei as a possible decision value.

Upon receiving a valid ⟨PROPOSAL,Hi, epochi, value, validEpoch,
proofProposal⟩ message, a correct player Pi accepts the proposed value value
if both the external function valid(value) returns TRUE and either Pi has not
locked any value (lockEpochi = −1) or Pi has locked on value (line 29). For a
valid proposed value value with validEpoch ≥ 0, if validEpoch > validEpochi (the
proposed value was more recent than Pi’s locked value) or lockValuei = value,
Pi will accept value (line 36). Otherwise, Pi rejects the proposal by sending a
PREVOTE message for nil. Pi will also send a PREVOTE message for nil if the
timeout triggered in line 27 expires and they have not sent a PREVOTE message
for any other value during this epoch yet (line 78).

If a correct player Pi receives a PROPOSAL message for a valid value value
and PREVOTE messages for value from players controlling more than 2

3 of the
share as described by value, then it sends a PRECOMMIT message for value.
Otherwise, they send a PRECOMMIT message for nil. A correct process will
also send a PRECOMMIT message for nil if the timeout triggered in line 43
expires and they have not sent a PRECOMMIT message for their current epoch
yet (line 82). A correct player decides on a value value if it receives in some
epoch epoch a PROPOSAL message for value and PRECOMMIT messages for
value from players controlling more than 2

3 of the share as described by value.
On a decision, value, including proof of the PRECOMMIT messages allowing Pi
to decide on value, are appended to Blockchaini (line 68). Otherwise, to ensure
progression, if the timeout triggered at line 59 expires, the player proceeds to
the next epoch (line 86).

38 CHAPTER 3. TENDERSTAKE

Proof-of-Deviation

Crucial to the slashing functionality are the proofs-of-deviation which can be
generated upon the reception of any invalid message. As invalid messages can
take various forms, we explicitly define each form of invalid message and how to
generate the corresponding proof-of-deviation. Invalid messages in Tenderstake
can (1) contradict another message from the same sender, (2) propose invalid
values, (3) contain an invalid proof-of-deviation or (4) contain an invalid proof-
of-transition.

Any message which does not contain one or more of the deviations outlined in
this section is valid. As we require a valid, non-contradictory proof-of-transition
with every signed non proof-of-deviation message, there is only a small finite
combination of valid stepi,Hi, epochi and proposed/locked values that will be
valid with respect to such a proof-of-transition. As such, the deviations outlined
in this section are exhaustive.

We do not explicitly encode proofs-of-deviation in this chapter. Upon a
precise specification of Tenderstake, message validity will be verifiable using a
finite set of rules, and therefore any messages not following these rules can be
provided as proof-of-deviation. However, we now describe the maximum amount
of information necessary to prove that a player has deviated, which can then
be represented in some, possibly condensed form within a SLASH message to
prove a player has deviated. In the following we assume a player Pi performs
the corresponding deviation.

1. Contradictory messages: If a player sends two messages m and m′ such
that they both contain valid proofs-of-transition, but it is not possible to
transition from either of the messages to the other, these messages together
constitute a proof of deviation. For example, if there are two messages m
and m′ from Pi with the same Hi, epochi and stepi tags, or if Pi proposes
a newly generated getValue() after sending a PRECOMMIT message in a
preceeding epoch at the same height for a different value (which would
mean validValuei ̸= nil).

2. Invalid proposed values: As the blockchain value validity predicate is
shared by all parties and known a priori, any message from Pi containing
an invalid proposed value value can be used as a proof of deviation.

3. Invalid slashing: A slash message is invalid if the accompanying proof-
of-deviation is not valid. If the proof-of-deviation is not valid, the corre-
sponding slash message/ proposed value (if it first appears in a proposed
value) stands as a proof of deviation.

3.6. TENDERSTAKE 39

Figure 3.1: A state diagram representation of Tenderstake

4. Invalid proof-of-transition: If a message m is received from a player Pi,
where Pi has not attached (a proof of) messages with tag, height, epoch
and value variables which validly trigger the logical conditions necessary to
send m, this constitutes an invalid proof-of-transition. These messages, or
lack thereof, constitute a proof-of-deviation. As Pi signs m, the contents
of m can be verified, and as such Pi’s attempted proof-of-transition can
be proved to belong to Pi (as the signature must correspond to m and the
contained proof-of-transition), and proved to be invalid by all players. Any
message sent by Pi which does not adhere to one of the protocol-specified
broadcast formats6 is considered to contain an invalid proof-of-transition.
This is because there is no protocol-specified transition that would create
such a message.

6Can be thought of as junk, but also includes attempted communication between players
such as, perhaps, to coordinate collusion.

40 CHAPTER 3. TENDERSTAKE

3.7 Proving Tenderstake achieves ByRa SMR

In this section we prove that Tenderstake achieves SMR in the ByRa model. To
this end, we first prove that it is an SMR protocol when more than 2

3 of the
share is controlled by honest players at all times.

Lemma 3.7.1. It is not possible to generate a valid deviation proof for an
honest player.

Proof. A valid deviation proof for some player Pi must identify a message from
Pi that is invalid according to one of the methods listed in the Proof-of-Deviation
subsection of Section 3.6.2, which covers all possible message deviations. By def-
inition, honest players follow all protocol rules and only send valid messages. We
also know that honest player messages cannot be forged under our threat model
assumption regarding unforgeable signatures from Section 3.6.1. Furthermore,
as A is static, every message signed by a currently honest player must have
been generated honestly (by that same player) at some point in the protocol.
Therefore, all honest player messages are valid, and as such, no valid proof-of-
deviation described in Section 3.6.2 can be generated for honest players.

Lemma 3.7.2. Tenderstake achieves SMR when players controlling more than
2
3 of the stake are honest.

Proof. The aim of this proof is to demonstrate that proposed values (line 24)
satisfy safety and liveness in Tenderstake. An initialization of Tenderstake is
equivalent to a standard Tendermint initialization, in addition to the proof-of-
transition and slash functionalities as described in the respective subsections
of Section 3.6.2. For deciding on a value at a particular height H > 1, voting
share is described by the value decided at height H−1, or the current proposed
value (line 24) if it is valid and contains newly identified deviators. From Lemma
3.7.1, we know no valid proof of deviation can be generated for an honest player.
Therefore, honest players can never be included as prospective deviators in valid
proposed values in line 24. This ensures that any valid value proposed will
maintain honest voting share of more than 2

3 .
Proof-of-transition values are simply additional pieces of information at-

tached to standard Tendermint messages. Identically to Tendermint, Tender-
stake does not consider invalid messages for any of the steps needed to decide on
a block (lines 29, 44, 62, 34). Consider an epoch during synchrony, with time-
outs larger than the message delivery delta ∆ for all honest players (necessary
to ensure liveness, as in Tendermint) and an honest proposer. This epoch occurs

3.7. PROVING TENDERSTAKE ACHIEVES ByRa SMR 41

eventually at every height (if no decision has been reached in earlier epochs) as
the network communication model and proposer rotation are identical to Ten-
dermint, and the timeout function is increasing and unbounded in the number
of epochs. As more than 2

3 of the voting share is controlled by honest players at
all times, honest players will decide on the proposed value during that epoch.
This holds for any height H > 1, and the safety and liveness of Tenderstake
follows.

With Tenderstake as an SMR protocol under an honest majority, we now
need to prove Tenderstake achieves ByRa SMR. To do this, we will prove that
Tenderstake is SINCE and fair in the ByRa model, and apply Theorem 3.5.8.
To prove SINCE, we first need some results that bound the reward a player can
achieve for deciding on a value. As each decided value requires an accompanying
> 2

3 PRECOMMIT messages to be valid, the maximum amount of values a player
can attempt to decide on at once is 1, as the proceeding value will need to
point to the decided value and the value’s > 2

3 PRECOMMIT messages. By
bounding the reward a player can get for deciding on values and deviators
(the only rewarding actions) sufficiently low, we are able to prove that this
reward is negligible compared to the potential punishment for being caught,
thus preventing rational players from sending invalid messages.

Lemma 3.7.3. In any instance of Tenderstake, Pi receives less than
S1iGenesis.reward() in total for identifying deviators from the adjustForSlashing
function.

Proof. We can see that the rewards for deciding on new deviators at height
H are distributed at line 100. We will prove that the sum of the rewards
distributed by calling line 100 throughout an instance of Tenderstake are less
than S1iGenesis.reward().

Let there be a set of players newDeviatorsH controlling slashedShare at
height H − 1 identified as deviating for the first time in the value at height
H. In the adjustForSlashing function, this results in Pi’s share being updated

according to line 97, which implies SHi =
SH−1
i

1−slashedShare . Furthermore, letting

RewardH−1 be the total reward after deciding on a value at height H − 1, the
new total reward for height H is RewardH = (1 − slashedShare)RewardH−1

(line 98), while the total stake before distributing rewards for height H is
adjusted to (1 − slashedShare)StakeH−1 (line 99), preserving the total stake
of non-deviators. We then have to add the slash bonus of

∑
j∈newDeviatorsH

Genesis.shares()[j]RewardH (line 100).

42 CHAPTER 3. TENDERSTAKE

First observe that:

SHi Reward
H =

SH−1i

1− slashedShare
(1− slashedShare)RewardH−1

= SH−1i RewardH−1.

(3.2)

Secondly, notice that when no new deviators are identified, and adjust-
ForSlashing is not called, both Si and Rewardi are unchanged from the previous
height, as they are only adjusted in adjustForSlashing. This means:

SHi Reward
H = S1iReward

1 = S1iGenesis.reward(), ∀ H ≥ 1. (3.3)

We know for a set of new deviators newDeviatorsH at height H, Pi receives
SHi Reward

H ∑
j∈newDeviatorsH Genesis.shares()[j](line 100). Furthermore, from

Equation 3.3, we have that SHi Reward
H = S1i Genesis.reward() for all H ≥ 1.

This implies Pi receives an identifying deviator bonus from adjustForSlashing
of S1iGenesis.reward()·

∑
j∈newDeviatorsH Genesis.shares()[j] at height H. Sum-

ming over all heights up to and including H gives a total reward of S1i
Genesis.reward() ·

∑H
k=1

(∑
j∈newDeviatorsk Genesis.shares()[j]

)
for identifying

deviators through adjustForSlashing.
As ∪1≤k≤HnewDeviatorsk ⊂ {1, ..., n} for all H > 1, it must be that∑H
k=1

(∑
j∈newDeviatorsk Genesis.shares()[j]

)
< 1 for all H > 1. This means

the total reward for identifying deviators in Tenderstake through the adjust-
ForSlashing function is less than S1iGenesis.reward(), as required.

Lemma 3.7.4. In addition to any rewards from the adjustForSlashing function,
Pi receives S1iGenesis.reward() for every decided value in Tenderstake.

Proof. The only reward received by Pi not in adjustForSlashing is distributed
at line 69. Letting RewardH be the total reward distributed at line 69 for
height H, Pi receives SHi Reward

H. We have already seen in Equation 3.3 that
SHi Reward

H = S1iGenesis.reward(), for all H ≥ 1, which is the required result.

Remark 3.7.5. In Tenderstake, share increases are counteracted by reward
decreases to keep per-decision rewards constant (Lemma 3.7.4). This avoids
a common, critical, mistake in incentive compatible reward mechanisms where
early share increases permanently increase the size of per-decision rewards a
player receives.

Lemma 3.7.6. Tenderstake is SINCE in the ByRa model.

3.7. PROVING TENDERSTAKE ACHIEVES ByRa SMR 43

Proof. To prove SINCE in the ByRa model, we require that every protocol
action strictly dominates all other possible actions in expectation for rational
players assuming all other players are rational. We do this by proving the
following:

1. Rational players do not send invalid messages.

2. Rational players send valid messages when possible.

3. Rational players obey a timeout function which is increasing and un-
bounded in epochs at every height.

Firstly, consider invalid protocol messages. As an invalid message takes one
of the forms described in Section 3.6.2, it can eventually be identified by all
players and the offending player stake destroyed through the Slashing function-
ality. As identifying deviations of other players is strictly increasing in stake
(line 100) and does not affect proceeding rewards due to Lemma 3.7.4, all ratio-
nal players prefer to eventually identify valid deviations than not identify valid
deviations. As stake is only meaningful with respect to a valid blockchain, Pi
must construct Blockchaini sequentially in it’s height. Therefore, for Hi the
height of Blockchaini, Pi’s messages can only refer to a value at a height less
than or equal to Hi + 1.

Combining Lemmas 3.7.3 and 3.7.4, for any height H > 1, the maximum
additional reward achievable by sending an invalid message up to that height is
less than 2S1iGenesis.reward(). This is because by Lemma 3.7.3, the additional
reward for identifying deviators is less than S1iGenesis.reward(), and by Lemma
3.7.4, the per-decided value reward excluding any reward for identifying devi-
ators is S1iGenesis.reward(), a constant. Therefore, attempting to decide on a
value and/ or deviators (the only ways to be rewarded in Tenderstake) with
an invalid message results in a payoff of less than 2S1iGenesis.reward(). Due to
Lemma 3.7.4, the rewards for proceeding value-decisions remain constant, while
all rewards for identifying deviators must sum up to less than S1iGenesis.reward()
from Lemma 3.7.3. Given proofs-of-deviation can be provided at any time and
all rational players will send SLASH messages when possible, the cost of send-
ing an invalid message, full destruction of stake (line 96) and effective removal
from the protocol, dominates these once-off and bounded potential rewards for
sending an invalid message. As such, no rational player will send an invalid
message.

Given no rational player will send an invalid message, we now need to check
that rational players will send messages when valid messages can be sent, as
per the protocol. The alternative is not sending messages. Given the arbitrary

44 CHAPTER 3. TENDERSTAKE

scheduling of message delivery in any distributed network where other players
have unknown timeouts, and the positive reward for deciding on a block, sending
messages strictly increases the expected rate of messages received by all other
players. This in turn strictly increases the expected rate of player progression
through the protocol, as progression can only occur when proofs can be gener-
ated. This strictly increases the expected number of blocks, and rewards, added
to the blockchain.

Lastly, we must ensure that rational players obey a timeout function which
tends to infinity in the number of epochs at each height. To do this we first show
that rational players obey some non-zero timeout, and then that this timeout
is increasing and unbounded in number of epochs.

If a rational player does not wait for messages to be delivered, they will never
be able to contribute to prevotes for valid values unless they are a proposer. Af-
ter entering a new epoch they will call line 27, immediately followed by line 76,
sending a nil prevote. Moreover, given they send a nil prevote and advance
to the prevote step, they will also send a nil precommit (line 80) as when they
receive more than 2

3 prevotes it includes their own nil prevote, triggering line
41 before it is possible to receive more than 2

3 prevotes for a valid value. By the
same argumentation, they will never be able to decide on a value in the epoch
it is proposed as they will first receive more than 2

3 precommits for inconsistent
values given their nil precommit message, triggering line 57 and then immedi-
ately line 84, preventing a decision. Compare this to obeying some timeout for
messages to be delivered. Waiting for some number of rounds strictly increases
the probability of receiving valid proposed values, and sending a prevote for a
valid value. This subsequently increases the probability of all players sending
valid precommits. By further obeying a timeout for precommits it increases the
probability of receiving the quorum of precommits needed to decide on a value.
Therefore, rational players prefer to wait some number of rounds for messages
to be delivered.

Now we must ensure rational players do not wait indefinitely for messages.
Recall that in Tenderstake, rational players are modelled as assuming for some
unknown but fixed ∆, they are in ∆-synchrony with some subset of players.
At any round r, in order to calculate expected utility for some future round,
Pi will have a private distribution of expected message delivery times from
other players in synchrony7, and thus an expected number of decisions up until
that future round. Let τ ri be such that according to Pi’s private information,

7The distribution of expected message delivery times will be a function of some starting
estimate at initialization (perhaps based on a Genesis suggested value, as in [31]), and the
observed responsiveness of all other players up until round r.

3.7. PROVING TENDERSTAKE ACHIEVES ByRa SMR 45

messages taking longer than τ ri are sent by players out of synchrony with Pi
with statistical significance8.

If the subset of players in synchrony with Pi, including Pi, do not control
more than 2

3 of the total stake, Pi is indifferent to timing out, as no decision
is possible. Otherwise, consider the subset of players in synchrony with Pi,
including Pi, controlling more than 2

3 of the total stake. As messages sent by
players out of synchrony with Pi take arbitrarily long to deliver, the number
of decisions that can be made by using a timeout of τ ri and transitioning to
a proposer in synchrony with Pi is arbitrarily large. Furthermore, as Pi is
unaware of how many players are in synchrony with Pi, the probability of that
subset controlling more than 2

3 of the stake will be positive. This implies Pi
has positive expectancy to obey such a timeout τ ri . Therefore, rational players
obey some timeout, and will not wait indefinitely for messages.

We finally need to show that for a rational Pi at any given height, Pi will
follow increasing, unbounded timeouts in the number of epochs at every height.
For a maximum message delivery time of ∆ rounds during synchrony, if Pi
follows a timeout of τi < ∆, Pi is not necessarily able to contribute to deciding
on a value. Assume players controlling more than 2

3 of the stake are in ∆-
synchrony (if this is not the case, no information can be gained) and no decision
has been made for some number of epochs. As players behave honestly in all
non-timeout actions (points 1 and 2), the only variable which can affect the
probability of deciding for this height is τi. Assume for all rational players there
is a value τmax > 0, such that they choose timeouts less than τmax for all epochs.

If τmax < ∆, it is possible that players may always timeout, sending nil
messages and not contributing to decisions. Given there has been epoch epochs
of not deciding on a value, and all other actions are being followed (which we
have shown to be the case), it must be that P (τmax < ∆|epoch→∞)→ 1. This
implies choosing a timeout up to and including τmax after sufficiently many
epochs of no decision results in decision with negl(κ) probability for proceeding
epochs. Therefore, rational players will eventually only follow timeouts greater
than τmax if no value has been decided, for any value of τmax.

This is sufficient to say rational players follow increasing, unbounded time-
outs, and as such, the recommended protocol.

Lemma 3.7.7. Tenderstake is fair in the ByRa model.

8This statistical significance can be with respect to a function negl(κ), although rational
players may perceive a higher utility by choosing a weaker significance level. This optimization
is unnecessary for the proof.

46 CHAPTER 3. TENDERSTAKE

Proof. As all rational players follow the protocol, and S1A < 1
3 , no rational

player decides on another rational player as deviating. Therefore, the share
of stake controlled by rational players is only increasing (line 97), meaning
the adversary’s share is only decreasing, upperbounded by their starting share.
This implies SHA ≤ S1A for all H ≥ 1, which is precisely the definition of a fair
protocol.

Theorem 3.7.8. Tenderstake achieves ByRa SMR.

Proof. Follows by applying Lemma 3.7.6 and Lemma 3.7.7 to Theorem 3.5.8.

3.8 Conclusion

We provide a game-theoretic framework for analysing SMR protocols. Although
many previous attempts have been made, we are, to the best of our knowledge,
the first to formally treat SMR protocols as games involving only rational and
adversarial players. We detail the ByRa model for player characterization in
SMR protocols, an update to the legacy BAR model, removing the depen-
dency on altruistic players in an era of unprecedented market capitalization of
tokenized SMR protocols. We demonstrate that the properties of strong incen-
tive compatibility in expectation and fairness as described in this chapter, are
both necessary, and together sufficient to achieve SMR in the ByRa model. We
then provide the Tenderstake protocol as an example of a protocol that achieves
ByRa SMR, which is of independent interest both as a strong incentive compat-
ible in expectation and fair protocol in the ByRa model, but also as a yardstick
for addressing the shortcomings of current protocol guarantees in the ByRa
model. The proof techniques we use provide several methodologies with which
SMR protocols can be analysed in this new game-theoretic framework. The
improvements we make to the Tendermint protocol as described in Section 3.6
have immediate practical implications given the current industrial deployment
of Tendermint-style protocols, such as in Cosmos9.

The application of our framework to all proceeding SMR protocol analysis
and development serves as critical future work. Additionally, there are several
avenues for future work that arise from our choice of threat model in Section
3.6.1. Although we provide a new foundation for the game-theoretic analysis
of SMR protocols, player coalitions are an important consideration from a dis-
tributed system security standpoint. Further research is required to establish

9Cosmos. https://cosmos.network/ Accessed: 25/05/2021

https://cosmos.network/

3.8. CONCLUSION 47

the limitations of ByRa SMR protocol guarantees in the presence of coalitions.
Another important consideration is that of the ByRa model under an adaptive
adversary. Investigating the effect of an adaptive adversary whose stake can
increase or decrease based on protocol events makes for interesting future work.

Regarding the joining and leaving of players within the current version of
Tenderstake, we envisage the necessity for stronger network communication
model assumptions to ensure a player leaving the protocol has, at the very
least, not sent any deviating messages that have not been resolved (and pun-
ished) within the protocol. Further research on this will be useful, especially
when applying our work to more practical settings.

48 CHAPTER 3. TENDERSTAKE

Chapter 4

Marvel DC

This chapter is based on the paper Marvel DC: A Blockchain-Based Decentral-
ized and Incentive-Compatible Distributed Computing Protocol [76].

4.1 Introduction

The distributing of computation among computers has beckoned a never-before-
seen level of computing power available to average users with access to as little
as a smart phone and an average internet connection. Distributed computations
(DCs) have typically been outsourced directly to one of the centralized entities
such as Amazon Web Services, or Google Cloud. Unfortunately, centralized ser-
vices like these have many drawbacks. Monopoly of resources, centralized trust,
restricted access for many clients, and in the case of Federated Learning (FL),
lack of diverse data-sets make these centralized services unfit for many users
and purposes. Decentralized computation outsourcing is intended to replace
the centralized computation-as-a-service model. However, existing academic so-
lutions, whether intentionally or otherwise, typically fall back to the same trust
assumptions as centralized servers; permissioned access to the computation mar-
ket with dependencies on trusted parties to monitor computer outputs and to
distribute rewards fairly.

Decentralizing DC protocols brings many new challenges that are largely
protected against in the centralized setting. A significant issue in many ex-
isting decentralized DC implementations [71, 18, 64, 103, 101] is the accurate
rewarding of computers to incentivize rational computers, computers who try to

49

50 CHAPTER 4. MARVEL DC

maximize their utility (e.g. in cryptocurrency tokens), to correctly perform out-
sourced computations. One method to combat this is, for a given computation,
to use ZK tools to prove that a computer performed the actions as prescribed
by the requester [97]. Although theoretically any computation can be encoded
in this way, the practicality with respect to the outsourcing of generic compu-
tations in this way remains an open question.

With respect to incentivization in decentralized settings such as blockchain
protocols, players only follow an action if that action is SINCE, resulting in
strictly higher payoffs than the alternatives. If a computer can free-ride, sub-
mitting incorrectly computed results while receiving some positive reward in
expectation, this has detrimental effects on a DC protocol. Rational comput-
ers are no longer necessarily incentivized to participate honestly, degrading the
quality of computation results, which reduces requester participation which in
turn reduces the overall reward pot for honest computers, eventually causing
the system to collapse. Given the 10s of billions of US dollars in revenue being
generated by centralized systems [8] without guarantees of fair-pricing, decen-
tralized access or computational output quality, there is clear motivation for a
decentralized DC protocol that can provide such guarantees. To this end, we
present Marvel DC, which formally provides all of these guarantees, beckoning
the age of decentralized DC outsourcing, free from the previously unchecked
stranglehold of private monopolies.

4.1.1 Our Contribution

We present Marvel DC, a generic blockchain-based decentralized DC protocol
which addresses the gaps that exist in outsourcing computations without the use
of a TTP. Namely, Marvel DC provides for the first time in literature a decen-
tralized DC protocol which ensures rational computers are strongly incentivized
to follow the protocol. This is a significant advancement in a field where there
remains no viable solution, to the best of our knowledge, for the distributing of
tokenized rewards in a distributed and decentralized manner.

Furthermore, Marvel DC utilizes reputations to isolate correctly-performing
computers when selecting computers for computations. This allows Marvel DC
to efficiently remove adversarial computers from the protocol, a property for-
malized in Lemma 4.5.2. As these reputations are maintained on the blockchain
itself, through careful construction (Section 4.4.2) this reputation protocol nei-
ther affects the decentralization or SINCE of the protocol. Our description of
Marvel DC can be adapted to run on any smart-contract enabled blockchain,
and as such, can make use of the vast existing communities which exist on such

4.1. INTRODUCTION 51

blockchains. This is a further improvement on protocols which require the re-
cruitment and constant participation of an independent network of computers.
In a blockchain, where computers form a subset of users, computers can be
dormant until required to perform a computation. By deploying on an existing
blockchain, any player in that blockchain can also participate in Marvel DC as
a computer and/or requester. We summarize the main contributions of Marvel
DC as follows:

SINCE: In Section 4.4, we describe how to program rewards such that it is
SINCE for every rational player (requesters, computers and/or block-producers)
in the blockchain system to follow the protocol. This is formalized in Theorem
4.5.1.

Handling of symmetric/asymmetric utilities: By tokenising the protocol re-
wards, we are able to handle both symmetric (rational computers and requesters
only want to produce good results) and asymmetric (rational computers want
to be compensated financially) utilities. Thus Theorem 4.5.1 can be applied to
both symmetric and asymmetric utilities.

Decentralization: The description of Marvel DC in Section 4.5.1 can be
translated for use on any tokenized smart-contract enabled blockchain, of which
many (including Ethereum1 and Harmony2) are considered truly decentralized
systems due to their permissionless nature. We demonstrate this by providing a
proof-of-concept implementation of Marvel DC [53] that can be deployed within
such decentralized systems.

We then outline a series of privacy-enhancing amendments for Marvel DC,
culminating in Privacy Marvel DC, a protocol in which results cannot be linked
to the computer which provided the result, except with prohibitive additional
cost to the player performing the revelation. Privacy Marvel DC retains all
of the decentralization and incentive compatibility guarantees of Marvel DC,
while also adding a layer of privacy which makes it appropriate for sensitive
computations where knowing a certain computer computed a particular result
can be used to infer private/unwanted information about the computer. This is
particularly interesting in the case of FL, where computers are asked to use pri-
vate data sets. To do this, we make use of existing NIZK set-membership tools.
Although our privacy techniques are not novel outside of DC, the combination
of decentralization, provable strong incentive compatibility and the ability to
apply one smart-contract instance of Privacy Marvel DC to any computational

1https://ethereum.org/en/
2https://www.harmony.one/

https://ethereum.org/en/
https://www.harmony.one/

52 CHAPTER 4. MARVEL DC

problem with output in Euclidean space (summarized in Table 4.1) stands as a
further novel contribution.

4.1.2 Organization of the Chapter

Section 4.2 reviews related work and presents an overview of prior attempts to
implement decentralized incentive compatible DC protocols. Section 4.3 pro-
vides the background needed to outline the proceeding protocols and their prop-
erties. Section 4.4 constructs an idealized incentive compatible DC protocol,
which we demonstrate in Section 4.5.1 can be implemented in a decentralized
setting through the Marvel DC protocol. Section 4.5.2 formally presents this
incentive compatibility via the main theorem of the chapter, Theorem 4.5.1.
Lemma 4.5.2, also contained in Section 4.5.2, demonstrates that Marvel DC
eventually removes misbehaving computers from consideration when selecting
computers for computations. Privacy Marvel DC is then presented in Sec-
tion 4.5.3. Section 4.6 provides detailed analyses of the costs and performance
of these protocols, with comparisons to the state-of-the-art, as highlighted in
Section 4.2, demonstrating Marvel DC and Privacy Marvel DC stand as clear
improvements on existing works. We conclude in Section 4.7.

4.2 Related Work

Blockchain-based DC protocols [71, 18, 64, 103] have seen significant interest.
Unfortunately, all of these papers consider a blockchain or distributed system
in which all parties share one utility, that is, the ability to use/benefit from a
well-trained shared model, which gives correct behaviour by definition. Such an
assumption makes these protocols and their resulting analyses inappropriate in
the presence of untrusted peers and/or asymmetric utilities.

In [101], a protocol and general framework for incentive mechanism design,
within FL protocols where players measure utility tokenomically, are proposed.
Computer registration and reward distribution must all be performed by players
within the system. Computer registration is performed by an “administrator”,
which prevents decentralization and encourages collusion. Furthermore, com-
putation rewards are distributed based on votes of players within the system.
The incentive compatibility of this choice is not considered, and is non-trivial
to implement. In Marvel DC, rewards are distributed deterministically as part
of the smart-contract execution on requester inputs. We prove that rational re-
questers always submit messages correctly to the blockchain, and thus, correct

4.3. PRELIMINARIES 53

rewarding is SINCE. Moreover, [101] has no mechanism to identify Byzantine
computers and diminish/remove their ability to participate in the protocol. In
Marvel DC, this is achieved using reputations.

Protocol
Tokenized
Rewards

SINCE Computation Independent
Diminishing Adversarial

Selection Prob.

[71, 18, 64, 103] ✗ ✗ ✓ ✓/ ✗

Toyoda et al. [101] ✓ ✗ ✓ ✗

Ruckel et al. [97] ✓ ✓ ✗* ✗

Marvel DC ✓ ✓ ✓ ✓

Table 4.1: Comparison of incentive-aware distributed computing protocol designs.
*Computation independence refers to the ability of a particular smart-contract en-
coding to be re-used for many computations. The ZK circuit-encodings of [97] must
be generated anew for each type of computation, placing significant upfront costs on
computation requesters.

Recently, an extensive survey of existing attempts to construct privacy-
preserving FL protocols[72] was published. Of the investigated works, the most
promising for achieving an incentive-compatible decentralized protocol is [97].
In [97], ZK-proofs are used in the computing stage to prove that a computa-
tion was performed correctly. In a decentralized setting however, this raises
many challenges, as each type of computation requires its own ZK circuit-
generation/trusted set-up to generate the target function. In contrast, Marvel
DC can be implemented using existing, blockchain-deployed ZK-tools and gen-
eralised rewarding functions. Moreover, as acknowledged by the authors of [97],
although their methodology ensures models were trained correctly, it does not
guarantee the models were trained on appropriate data. A proposed solution
is using “certified sensors”, equivalent to TTPs, a non-viable solution in a de-
centralized setting. As the rewarding functions in Marvel DC reward players
based on the relative quality of the results, and not just based on the fact that
a series of computations has been performed correctly, independent of the data
on which the computations are being performed, we are able to avoid this issue.

4.3 Preliminaries

This section introduces additional terms and notation used to describe Marvel
DC. We are interested in a distributed set of n players {P1, ...,Pn} interacting

54 CHAPTER 4. MARVEL DC

with one and other inside a blockchain protocol. These players send and receive
stake among one another, along with the functionality to encode programs to run
within the blockchain protocol in the form of smart contracts. In this chapter,
we assume the ByRa player model as defined in Definition 3.4.1. The ByRa
model is a necessary improvement on the legacy BAR model [70] for the true
consideration of incentives in distributed systems, removing any dependencies
on altruistic, honest-by-default players which cannot be assumed to exist in
incentive-driven protocols like blockchain/DC protocols.

It is the aim of this chapter to construct a DC protocol that ensures rational
players always follow the protocol, a property known as strong incentive com-
patibility in expectation. In this chapter, rational player utility is measured in
blockchain-based tokens. The blockchain protocol acts conceptually as a public
ledger managed by a TTP. In reality, it is the following of the blockchain proto-
col by some majority of players using the blockchain that replicates this TTP.
The blockchain protocol provides availability and correctness of the programs
being run by the blockchain protocol, but does not provide privacy. That is, any
player can observe the current state of all programs being run on the blockchain,
and can verify that this state has been reached through the correct running of
these programs. However, player inputs to these programs must be committed
publicly to the blockchain before they can be passed to the smart contract, and
as such, it will be an important requirement of designing a protocol involving
smart contract interaction, through transactions, that the blockchain will ac-
cept these transactions in a timely fashion. In our system, this is achieved using
incentivization.

4.4 Constructing a SINCE DC Protocol

We first describe an idealized protocol for the distribution of computation be-
tween a set of computers. We then demonstrate how to instantiate such a
protocol using existing blockchain technology. In this description, we consider a
requester who has a computation calc whose calculation the requester seeks to
outsource to some subset of available computers C. Furthermore, the requester
is aware of a threshold nψ such that for any random sample of nψ computers
without replacement from C, a majority of those computers are rational (see
Table 4.2).

We consider the output of all computations in this chapter as a point in
l-dimensional space. To reason about the goodness of a computation result, for
every computation we assume the existence of a deterministic function which

4.4. CONSTRUCTING A SINCE DC PROTOCOL 55

takes the set of computation responses, and given a majority of correctly com-
puted results, outputs a target value κ, which is computed correctly with prob-
ability 1− ϵ, for some ϵ < 0.5. For deterministic calculations, the mode is such
a function. In FL where results are model gradients, the Krum function [29] is
such an aggregation function.

Consider the set of computation results {result1, ..., resultncomp}. We require
for any pair (result+, result−), with result+ a correctly computed result and
result− an incorrectly computed result the following holds:

P (distance(result+,κ) < distance(result−,κ)) > 0.5. (4.1)

Given this, for any subset of computation results taken in ascending order us-
ing the function distance, the expected number of these computations being
correctly computed is greater than those being incorrectly computed. With
respect to deterministic computations, letting κ be the median or mode, all
correctly computed results will be distance 0 to κ. For non-deterministic com-
putations, it is less clear. The function used to compute κ must be chosen such
that Equation 4.1 holds.

Now, consider the following DC protocol run by a TTP who enforces the
correct participation of all rational players. The proceeding sections then replace
this TTP, in order to achieve full decentralization, through the use of a smart
contract-enabled blockchain and a strong incentive compatible protocol (Marvel
DC, described in Section 4.5) to be run therein.

Idealized distributed computing protocol. Requesters repeatedly enter
the system with independent functions for computation. A requester wishing
to avail of the distributed computation of some function calc submits calc to
the TTP, as well as some number of computers ncomp > nψ. The TTP then
selects ncomp from the set of available computers C. The computers respond to
the TTP with their computation of calc, who then sends all of the computation
results to the requester.

In a distributed setting, such TTPs do not exist. Therefore, to enforce
the correct participation of rational players we need to utilize a mixture of
cryptography and incentivization. With this in mind, we first describe how to
generically construct a reward mechanism such that rational players are strongly
incentivized to follow the protocol. We then outline a reputation management
protocol which maintains this incentivization, while reducing the probability
that incorrectly performing computers are selected for computation.

56 CHAPTER 4. MARVEL DC

4.4.1 Reward Mechanism

We now provide a theoretical lower-bound on the per-computer reward re-
quired to strongly incentivize the correct participation of rational computers
in our DC protocol. Running computations such as sorting arrays or encryp-
tion/decryption on-chain is expensive, so we initially give the requester the
opportunity to correctly submit the set of computers to reward. Computers
have an opportunity to contest this by depositing a bounty on-chain, trigger-
ing the on-chain verification of the reward set. Note that verification is much
cheaper than computation, but with respect to Privacy Marvel DC, this reveals
some private information, which is why verification does not take place auto-
matically. If the contest is valid, the requester loses some initial escrow, herein
lower-bounded. Otherwise, the computer loses the bounty. This is described in
more detail in Section 4.5.

For a given computation calc, we assume an accurate a-priori lower-bound
on the cost to compute a particular computation calc of cost(calc). This lower-
bound is known by all players in the system (in reality this value can be enforced
by the protocol smart-contract). Given that the payment of Fee(tx) per transac-
tion guarantees timely inclusion in the blockchain, rational computers perform
the calculation of calc if and only if:

E(Reward(calc)) > cost(calc) + 2Fee(tx). (4.2)

2Fee(tx) is needed as computers are required to send 2 messages to the
blockchain.To more accurately describe Reward(calc), we introduce 0 ≤ ω, γ ≤ 1
with the probability of good computations being rewarded being ω, and the
probability of bad computations being rewarded being γ, such that without
loss of generality ω > γ. This gives an expected payoff of ωReward(calc) −
(cost(calc) + 2Fee(tx)) > 0 for following the protocol, and an expected pay-
off of γReward(calc) − 2Fee(tx) for submitting a result but not performing the
computation. Therefore, we require:

ωReward(calc)− cost(calc)− γReward(calc) > 0 (4.3)

This reduces to Reward(calc) > cost(calc)
ω−γ . The exact values of ω and γ de-

pend on the computation, number of computers to be rewarded and the chosen
target function. Exact values for ω and γ are difficult to predict a-priori. For
deterministic computations ω ≈ 1, whereas for non-deterministic computations
such as FL, ω will be smaller. Lower-bounding the possible value of ω − γ (al-
though greater than 0) and using this value to compute Reward(calc) ensures
rational players follow the protocol.

4.4. CONSTRUCTING A SINCE DC PROTOCOL 57

To ensure a rational requester correctly submits the set of good computations
to be rewarded, any positive escrow amount escrowreq > Fee(tx) suffices to
strongly incentivize the requester to do this. This can be seen by considering
the payoff for submitting the correct set, which is escrowreq−Fee(tx) > 0, while
the payoff for not submitting the set is 0. In the case of potential collusion of
up to k computers, setting escrowreq ≥ k · Reward(calc) + Fee(tx) guarantees
that the requester correctly submits the set of good computations. If k is set
too small by the protocol/smart contract, not submitting the reward set, and
rewarding all players may be positive expectancy for the requester. Setting k
equal to ncomp conservatively achieves this. With this lower bound on escrowreq,
rational requesters always submit the correct set of good computations to the
blockchain.

4.4.2 Reputation Management Protocol

In this section we describe a reputation management protocol that maintains
the incentive compatibility of a DC protocol with an incentive compatible re-
ward mechanism, while also allowing us to prioritize good computers over bad
computers, meaning both short- and long-term benefits for correctly behaving
computers. We consider a rating mechanism rate() which, under the same as-
sumptions of the previous section, assigns good calculations a score of 1, and
bad calculations a score of 0. For a player Pi taking part in computations for
calc1, calc2, ..., calck, Pi’s base reputation is baseRepi =

∑k
j=1 rate(calcj).

Let initalRep > 0 be the starting reputation for computers registering in
the system. For a given computation, we let Pi be selected as computer for
a computation in block at height H in the blockchain in direct proportion to
baseRepH−1i (initalRep−1) as a fraction of

∑n
j=1 baseRep

H−1
j −n ·(initalRep−1).

With this in mind, the number of computations a player Pi is selected for is
directly proportional to:

probSelectHi =
baseRepH−1i − (initalRep− 1)∑n

j=1 baseRep
H−1
j − n · (initalRep− 1)

. (4.4)

Consider a player Pi who includes a good computation as block proposer for
a computer Pj . This increases Pj ’s base reputation, and thus Pj ’s probSelect,
which has long-term stake implications (more selection = more reward & more
reputation = more selection ...). This negatively affects the probSelect of Pi
however. Therefore, we need to reward the proposer with an increase in base
reputation to counteract the increase in the computers’ expected increase in

58 CHAPTER 4. MARVEL DC

base reputation. Let Erep > 0 be the expected change in base reputation for a
computer whose computation gets included on the blockchain.

For Pi a proposer of a block that includes k transactions containing compu-
tation results, we need the following equality to hold:

probSelectHi =
baseRepHi − (initalRep− 1)

baseRepHi +
∑
j ̸=i baseRep

H−1
j + k · Erep − n · (initalRep− 1)

=
baseRepH−1i − (initalRep− 1)

baseRepH−1i +
∑
j ̸=i baseRep

H−1
j − n · (initalRep− 1)

.

(4.5)

Solving for baseRepHi in this equality gives:

baseRepHi = baseRepH−1i +k·Erep

(baseRepH−1i − (initalRep− 1)∑
j ̸=i baseRep

H−1
j − (n− 1) · (initalRep− 1)

)
.

(4.6)

This means we need to add k · Erep

(baseRepH−1
i −(initalRep−1)∑

j ̸=1 baseRepH−1
j −(n−1)·(initalRep−1)

)
to

baseRepH−1i in order to ensure the proposer is impartial, with respect to rep-
utation and computer selection probability, to adding transactions containing
computation results to the blockchain. For transactions from the requester final-
ising the rewards, we simply have to replace Erep with the actual mean change
in reputation in Equation 4.6, and the rest of the numbers stay the same.

4.5 Marvel DC

The goal of this section is to take the ideal DC functionality of Section 4.4
and it’s properties, and implement them as a set of algorithms encoded as
smart contracts that can be run by a decentralized set of players without a
TTP, but with access to a blockchain. We call this protocol Marvel DC. We
then formally prove in Section 4.5.2 that within Marvel DC, rational computers
always follow the protocol, performing computations correctly, through strong
incentive compatibility. As demonstrated in Section 4.2, this guarantee stands
alone in the field of decentralized DC. Furthermore, as Marvel DC is provided in
a generic manner, it can be deployed on any decentralized blockchain, allowing
the Internet of Things never-before-witnessed access to DC.

4.5. MARVEL DC 59

4.5.1 Algorithmic Overview

Marvel DC is a set of smart contracts provided in pseudocode in Algorithms 2,
3 and 4. The main contracts corresponding to unique phases in the protocol are
labelled Register, Request, Response and Finalize. A proof-of-concept Solidity
implementation of Marvel DC has been made available on Github [53]. We
provide here the intuition to these encodings.

A Marvel DC instance is initialized by calling the Request contract, and
lasting at least T blocks, where T is the number of blocks required for players
to observe an event on-chain, send a transaction and have that transaction
committed on-chain given at least Fee(tx) is paid. We provide here the intuition
to these encodings. Each player Pi has exclusive access to a token balance bali
which is stored as a globally readable variable on the blockchain. For a token
B, bali(B) is the amount of token B that Pi owns. Players in the underlying
blockchain protocol can enter Marvel DC as computers by calling the Register
contract, which for a given computer deposits an escrow escrowcomp (line 44),
granting that computer a reputation of initalRep (line 46).

A computation request specifies the computation details calc, the number of
computers to be selected for the computation ncomp, a deterministic function fκ
for selecting the target result κ from the set of results, the number of computers
to reward nreward, and the per-computer reward Rewardi received by a computer
if included in the set of computers to reward. The requester also must deposit an
escrow of nreward ·Rewardi+escrowreq. The compEncKey is the public key corre-
sponding to the temporary public/private key pair (compEncKey, compDecKey).
This is a key pair generated by the requester specifically for calc. A randomness
beacon is called (line 50), which provides a pseudo-random seed for selecting
ncomp computers to participate in the computation in direct proportion to com-
puter reputations (line 5), with these computers listed in the set calc.C.

Selected computers can then submit results for calc to the blockchain by
calling the Response contract, with results encrypted using calc.compEncKey.
This encryption ensures no other computer can use another computer’s result,
and therefore must themselves perform the computation. Given a valid re-
sponse is recorded, the block producer corresponding to the response is added
to calc.proposers. This is later used to update reputations, in line with the
analysis of Section 4.4.2.

Then, either after T blocks from when the computation calc was requested,
or when all computers in calc.C have responded, the requester of calc can com-
plete the request by calling the Finalize contract. Calling the Finalize con-
tract requires the requester to provide the decryption key calc.compDecKey

60 CHAPTER 4. MARVEL DC

corresponding to calc.compEncKey. If these keys correspond to a valid key
pair, the requester receives back her escrow escrowreq. The contract then uses
compDecKey to decrypt the computer responses, and identify which computers
are to be rewarded (line 19). This is done by applying the pre-specified target
function to the computation results, and computing a target value κ (line 22).
The computers corresponding to the calc.nreward results closest to κ (using Eu-
clidean distance in the provided pseudocode) are selected as the computers to
reward, Cgood (line 23). The computers in calc.Cgood each receive calc.Rewardi.
Finally, all proposers in calc.proposers who are also registered computers receive
reputation increases of avgRepChange (line 30), while computers in calc.Cgood
each receive an increase in reputation of 1 (line 34).

4.5.2 Protocol Properties

This section takes the Marvel DC protocol described in Section 4.5.1, and
demonstrates its SINCE (Theorem 4.5.1), and the long-term benefit provided
by the reputation protocol (Lemma 4.5.2) used therein: namely, that Byzantine
computers not performing computations correctly are selected with diminishing
probability.

In the following, we consider rational requesters idiosyncratically entering
the system, running unique instances of the Request contract. Given this, we
first show that rational computers and rational requesters are strongly incen-
tivized to participate in the protocol.

Theorem 4.5.1. There is a strict Nash Equilibrium in which, for any com-

putation with a per player reward Rewardi >
cost(calc)
ω−γ , rational computers and

requesters follow the Marvel DC protocol.

Proof. Consider a Request(requester, ∗) instance corresponding to a computa-
tion calc, and computers selected for computation calc.C. Based on ncomp > nψ,
the majority of computers in calc.C are rational.

First consider a rational requester. Correctly running Finalize (calc, ∗) al-
lows the requester to receive back calc.escrowreq, and as such, rational requesters
follow the protocol. Consider now rational computers. If the requester correctly
runs Finalize (calc, ∗), then calc.κ and calc.Cgood are generated correctly. There-
fore, if all rational computers follow the protocol, the assumption under which
we chose Rewardi in Section 4.4, for a given rational computer Ci correctly
running Response(calc, ∗), Ci is included in calc.Cgood with probability ω. If
Ci incorrectly runs Response(calc, ∗), Ci is included in calc.Cgood with proba-
bility of at most γ. By our choice of Rewardi, we have seen in Section 4.4,

4.5. MARVEL DC 61

given calc.Cgood is generated correctly and computers included in calc.Cgood re-
ceive this with probability 1, this is sufficient for rational computers to compute
the result correctly, equivalent to calling Response(calc, ∗). Therefore, rational

computers and requesters follow the protocol if Rewardi >
cost(calc)
ω−γ .

This result is enough to ensure rational players follow the Marvel DC proto-
col. As such, a majority of results are correctly computed for every computation,
agnostic to the semantics of the results. Requesters are still required to per-
form due dilligence when using these results as some minority may have been
produced maliciously.

A consequence of using the reputation and computer-selection mechanism
as described in Section 4.4.2, Marvel DC also guarantees that Byzantine com-
puters are selected with diminishing probability in the number of computations,
converging to 0 for any minority of selected computers. This is stated formally
in the following lemma.

Lemma 4.5.2. For a series of computations [calc1, calc2, ..., calci] in Marvel

DC with Rewardi >
cost(calc)
ω−γ and ncomp > nψ, as the number of completed

computations increases, the probability of selecting a Byzantine computer for a

computation with ncomp <
|C|
2 is strictly decreasing in expectancy and converges

towards 0 as i tends to infinity.

Proof. As Rewardi >
cost(calc)
ω−γ , from Theorem 4.5.1 rational computers follow

the protocol. Let α be the share of computers that are Byzantine. We know a
majority of computers selected are rational, as ncomp > nψ. Therefore, Byzan-
tine computers are rewarded with probability γ < ω. For a given computation,
the expected reputation increase of a selected Byzantine computer is γ, while
the expected increase for a selected rational computer is ω. Given ncomp are
selected for the computation, the expected number of these being rational com-
puters is (1 − α)ncomp, while the number of selected Byzantine computers is
αncomp. Furthermore, this means the expected increase in reputation for ratio-
nal computers is (1 − α)ncompω, while the expected increase in reputation for
Byzantine computers is αncompγ. At the beginning of the protocol, the proba-
bility of selecting a Byzantine player from the set of all computers is in direct
proportion to starting reputation. Given initial reputations of initalRep, after
the first computation, the selection probability of a Byzantine computer reduces
in expectancy to:

α(|C| · initalRep+ ncompγ)

|C| · initalRep+ ncomp
(
(1− α)ω + αγ

) . (4.7)

62 CHAPTER 4. MARVEL DC

First it be can see that

α(|C| · initalRep+ ncompγ)

|C| · initalRep+ ncomp
(
(1− α)ω + αγ

) < α (4.8)

meaning Byzantine selection probability is decreasing. To prove that Byzantine
selection probability tends to 0 in the number of computations as described in
the Lemma statements, let αk be the Byzantine computer selection probability
after k computations. We have the expected Byzantine selection probability
after k + 1 computations, denoted , αk+1, is:

αk(|C| · initalRep+ ncompγ)

|C| · initalRep+ ncomp
(
(1− αk)ω + αkγ

)
=

αk(|C| · initalRep+ γncomp)

|C| · initalRep+ ncompω − αkncomp(ω − γ)
.

(4.9)

We have already seen αk+1 equals

αk(|C| · initalRep+ ncompγ)

|C| · initalRep+ ncompω − αkncomp(ω − γ)
< αk. (4.10)

which implies:

(|C| · initalRep+ ncompγ)

|C| · initalRep+ ncompω − αkncomp(ω − γ)
< 1. (4.11)

Letting the term on the left be rk, we can see rk is decreasing in k as:
• ncomp(ω − γ) > 0 (because ω > γ).

• 0 < αk+1 < αk.
These together mean the negative term in the denominator of rk, αkncomp(ω−
γ), is increasing (towards 0) and as such the denominator of rk is increasing.
Therefore αk < α0r

k
0 , with r0 < 1. The result follows.

Lemma 4.5.2 depends on the output of an on-chain randomness oracle be-
ing unpredictable when the Request contract is called. A requester who knows
the input seed randomSeed to the Marvel DC computer selection protocol (line
5) can select Byzantine computers disproportionately, and use this to articially
increase the reputations of Byzantine computers. With a random input seed,
Marvel DC randomly draws from the set of computers in direct proportion to
reputations. Existing randomness solutions, such as the Chainlink Verifiable

4.5. MARVEL DC 63

Random Function 3, provide proofs that a provided randomness was generated
correctly. Given an oracle that can produce randomness periodically, not nec-
essarily related to Marvel DC, the guarantees of Lemma 4.5.2 hold. Analysis of
the quality of on-chain randomness is beyond the scope of this thesis.

As a direct consequence of Lemma 4.5.2, with reasonable choices for reward-
ing functions and number of computers per-computation (explored in Table 4.2),
both enforceable by the protocol, Byzantine players are eventually removed from
the system. This improves the efficiency of the protocol over time, reducing the
minimum requirements for computers, and as such, latency, transaction fees,
and rewards.

ncomp =10 25 100 1000

α =0.45 4.9× 10−1 3.1× 10−1 1.8× 10−1 8× 10−4

0.33 2.1× 10−1 4.2× 10−2 4.2× 10−4 0

0.2 3.3× 10−2 3.7× 10−4 2.1× 10−11 0

0.1 1.6× 10−3 1.6× 10−7 0 0

0.05 6.4× 10−5 3.6× 10−11 0 0

0.01 2.4× 10−8 0 0 0

Table 4.2: Approximate probability of not choosing a majority of rational computers
given specific starting adversarial % of computers α (left column) and selected num-
bers of computers ncomp (top row). These probabilities assume a sufficiently large
population of computers such that adversarial share represents the per-selection prob-
ability of selecting an adversarial computer throughout sampling. We let 0 represent
any positive number less than 10−14 due to precision constraints.

.

4.5.3 Privacy Marvel DC

In this section we outline a privacy enhancement to Marvel DC which we call
Privacy Marvel DC. The motivation for this enhancement is to allow for an
additional level of computer privacy which can be seen as necessary in compu-
tations such as those in FL protocols. This additional privacy on top of the
novel contributions of being SINCE, generically applicable and fully decentral-
ized further add to the applicability and utility of our work in an even larger
set of DC problems.

3https://docs.chain.link/docs/chainlink-vrf/

https://docs.chain.link/docs/chainlink-vrf/

64 CHAPTER 4. MARVEL DC

We present Privacy Marvel DC by describing it’s key differences to Marvel
DC to ensure that in an optimistic scenario, only the requester and computers
involved in a computation learn the results, and that players in the system
can at most infer a computer submitted a good result (or bad result), but not
which of the good results (bad results). In the pessimistic scenario, all players
in the blockchain observe the results, but it still holds that any player in the
system can at most infer a computer submitted a good result (or bad result),
but not which of the good results (bad results). In Privacy Marvel DC, there
is an additional contract, Reveal, which is to be executed after the Response
contract, and before rewards are finalized. The purpose of the Reveal contract
is described later in this section.

During computer registration, computers in Privacy Marvel DC privately
generate S1, R1 ∈ {0, 1}Θ(κ), and attach regID1 ← commit(S1,R1) to the reg-
istration message, as described in Section 2.3, information necessary to prove
set membership at some later point. Then, when a requester requests a compu-
tation, and the indices for computation calc.C are calculated, the requester now
generates a set containing the indices as specified in calc.C, a set to which only
computers in calc.C can prove NIZK set membership. In Privacy Marvel DC,
this allows for the separation of result submission and player identity.

In addition to the deposits of Marvel DC, the requester must also deposit a
pool of money necessary to incentivize relayers (Section 2.4) to publish trans-
actions on behalf of computers involved in the computation. Given the amount
of money required by one relayer to include a blockchain transaction is feer, the
additional required deposit is ncomp · feer for the relaying of computer messages
during the Response phase.

In the Response contract, a computer selected in calc.C can submit a NIZK
proof of membership in calc.C. Such a computer must also generate and submit a
new S2, R2 ∈ {0, 1}Θ(κ) pair, and compute regID2 ← commit(S2,R2) . Setting
m ← ⟨calc, response,R1, regID2⟩, the computer generates a NIZKSoK π1 ←
NIZKSoK [m]{(regID1, R1) : MemVerify (calc.C, regID1) = 1 & regID1 =
commit(S1, R1) }. Finally, the computer then publishes m and π1 to the
blockchain through a relayer, who receives feer upon the transactions addition
to the blockchain.

In the Reveal contract, the requester off-chain performs the same calculations
that were done on-chain in Marvel DC to calculate the results to be rewarded.
Instead of adding computer indices to responsesgood, the requester adds the cor-
responding regID2s. The requester publishes responsesgood and the encryption of
calc.compDecKey using each public key corresponding to computers in calc.C to
the blockchain. However, rewards are not immediately distributed to computers

4.5. MARVEL DC 65

in responsesgood.
In the Finalize contract, computers can choose to contest the computa-

tion of responsesgood for up to T blocks after responsesgood was published. If
responsesgood was computed incorrectly, any of the computers in calc.C can
publish the decryption of all results, and in-so-doing prove responsesgood was
incorrectly computed of by the requester. In this case, all computers are re-
warded, and the requesters escrow is destroyed. To prevent malicious computers
in calc.C from attempting this, a further escrow is required, which is returned
on the correct proving of miscomputation of responsesgood by the requester.

If responsesgood was computed correctly, any computer whose regID2 is in-
cluded in responsesgood can generate a proof of membership to responsesgood.
Furthermore, as regID1 can no longer be used for future computations (using
the same regID1 would reveal the same R1 in the next calc), computers must
now generate a new S3, R3 ∈ {0, 1}Θ(κ) pair and corresponding regID3 ←
commit(S3,R3).

Observation

As computers submit results through a relayer, and with an accompanying
NIZKSoK π proving membership in the selected indices for computation, all
players in the blockchain protocol can be sure the player submitting the mes-
sage must be a selected computer. Crucially, nothing else can be learned about
the submitting player’s identity. Similarly, when collecting rewards, or replacing
regID1, the only thing learned when a computer submits a valid message during
the Finalize phase is to which set, responsesgood or responses\responsesgood, the
computer belongs.

4.5.4 Further Privacy Enhancements

There are further privacy enhancements possible for Marvel DC. One such en-
hancement is to detach reward collection/reputation updates from the com-
putation. Given responsesgood was calculated correctly, computers included in
responsesgood can instead delay their claiming of the reward and associated rep-
utation increase arbitrarily. After a Finalize phase without arbitration, the
set of regID2s corresponding to responsesgood can be added to a pool of all
recorded good responses throughout the protocol. These can then be immedi-
ately/periodically/sporadically claimed by computers, depending on the privacy
requirements of the computer in question. This again uses the same NIZK set-
membership techniques, except now with a larger set in which to diffuse.

66 CHAPTER 4. MARVEL DC

4.6 Implementation Analysis

In this section we analyse the costs and performance of Marvel DC and Privacy
Marvel DC. We show that, on top of the unique decentralized incentive compati-
bility guarantees of Section 4.5.2, both protocols are cost-effective and practical
for computers and requesters. The proof-of-concept encodings of Marvel DC
used for this analysis are available here [53].

4.6.1 Gas cost of running Marvel DC and Privacy Marvel
DC

There are several considerations when calculating the cost of running Marvel DC
on a blockchain. In the case where a computation has a single 256-bit answer,
the costs are significantly less than in the case of gradient estimation problem
where answers contain thousands or millions of numbers. More concerning still
is the prohibitive nature of messages in the order of MBs in many blockchain
protocols. To counteract this, messages for the Response and Finalize contracts
can be submitted to memory-efficient alternatives such as IPFS4, Layer-2 chains
or even through an MPC protocol between computers and requesters.

In Table 4.3 we present, for various values of ncomp and nreward, the ap-
proximate gas and US dollar costs (using the Harmony blockchain5) for Marvel
DC and Privacy Marvel DC given a 256-bit result, with all messages published
on-chain. This can be extended to l-dimensional results for any l > 1. The
key takeaway from Table 4.3 is that the running costs for players to decen-
tralize their computational resources and requests in (Privacy) Marvel DC are
practically negligible, being less than $0.01 for any individual in the examples
provided.

Thus, the primary consideration for players in (Privacy) Marvel DC is ac-
curately estimating the costs for computation. This can be done through a
price-discovery process between protocol participants (players vote/bid on the
cost of performing particular computations), potentially involving on-chain en-
ergy price oracles6 to estimate the cost of particular types of computations
without active participation from protocol participants.

The set-membership tools described in Privacy Marvel DC are pre-compiled,
and currently being used in the Tornado Cash privacy protocol. We thus cal-

4https://ipfs.io/
5https://explorer.harmony.one/, Accessed: 17/08/2022
6Crude Oil price oracle https://data.chain.link/ethereum/mainnet/commodities/

wti-usd, Accessed: 18/08/2022

https://ipfs.io/
https://explorer.harmony.one/
https://data.chain.link/ethereum/mainnet/commodities/wti-usd
https://data.chain.link/ethereum/mainnet/commodities/wti-usd

4.6. IMPLEMENTATION ANALYSIS 67

culate the gas cost of the set-membership tools using the Tornado Cash li-
brary. All other operations are typical on-chain array manipulation, encryp-
tion/decryption, deposit, withdraw and writing to memory operations. We also
include the cost of calling an on-chain randomness oracle in our calculation.
This call needs to be made prior to the calculation of the indices for compu-
tation, and must be made when depositing rewards and escrow to ensure the
requester cannot manipulate the selection of computers.

4.6.2 Performance metrics

A direct comparison of our protocol to existing distributed FL solutions un-
der the headings of latency, throughput and communication complexity is of
limited benefit. The primary reason for this is our protocol does not require
protocol players to manage the blockchain, while previous standalone solutions
[71, 18, 64, 103] must ensure that a majority of nodes involved in the protocols
are efficiently communicating. It is still possible in decentralized blockchain pro-
tocols to participate in the blockchain consensus protocol, although monitoring
services and the payment of gas fees allow individual participants to avoid this.
In a decentralized blockchain setting, protocol participants are only required to
listen for messages and events relevant to themselves. As such, decentralized
protocols with similar scope to our work [101, 97] avoid such comparisons, as
do we.

Marvel DC Privacy Marvel DC

{ncomp, nreward} Comp. Req. Comp.-No Arbitration Comp.-Arb. Req.

{5, 1} 60 (0.19) 763 (2) 828 (3) 541 (2) 1,429 (5)

{5, 3} 60 (0.19) 777 (2) 828 (3) 541 (2) 1,569 (5)

{10, 2} 60 (0.19) 918 (3) 828 (3) 541 (2) 2,686 (9)

{10, 5} 60 (0.19) 960 (3) 828 (3) 541 (2) 3,176 (10)

{25, 5} 60 (0.19) 1,425 (5) 828 (3) 541 (2) 7,868 (25)

{25, 13} 60 (0.19) 1,537 (5) 828 (3) 541 (2) 9,729 (31)

Table 4.3: Amortized gas costs in 1,000s for computers and requesters in Marvel
DC and Privacy Marvel DC for several choices of computers to select ncomp and
computers to reward nreward. The equivalent costs of using the Harmony blockchain
in thousandths of a US dollar are included in round brackets.

However there are comparisons with [101, 97] that we can perform. Using

68 CHAPTER 4. MARVEL DC

the terminology of this thesis, every protocol phase, a period of time where an
event occurs which requires a response, lasts up to T blocks. These T blocks (as
used in Section 4.5.1) are equivalent to the time required to ensure players can
submit transactions to the blockchain after a particular on-chain event, such
as a computation request. Marvel DC therefore lasts up to 2T blocks, which
covers the time for computers to respond to a request, and the time taken for
the requester to reveal the decryption key. The protocol of [101] lasts at least 4T
blocks to ensure workers are incentivized to submit at least one correct model
update (using the terminology of [101], 2 model update rounds are needed for
this to be the case). The additional costs are due to requesters and computers
being required to respond twice each after the initial request. The protocol of
[97] requires at least 3T blocks, as computers must commit to the data-set to
be used, before submitting a computation result. All 3 protocols, including our
own, are equipped to spawn arbitrarily many computations in parallel.

4.7 Conclusion

We present Marvel DC, a SINCE blockchain-based decentralized DC protocol
which stands as a new standard in constructing fully decentralized DC protocols.
This is achieved through a novel combination of strong incentivization of ratio-
nal computers in the presence of Byzantine computers and reputation-aware
computer selection. Furthermore, we outline Privacy Marvel DC, which uti-
lizes privacy-enhancing techniques that can be bootstrapped to the core Marvel
DC protocol to allow for computations on sensitive data without compromising
the privacy of the computers participating in the protocol. We demonstrate in
Section 4.6 that, in addition to the unique incentivization guarantees of Mar-
vel DC and Privacy Marvel DC exhibited in Section 4.5, these protocols are
cost-effective and ready to deploy, while providing provable performance and
running-time improvements on existing state-of-the art.

Much work remains to ensure DC protocols remain incentive compatible
and practical where computations produce large outputs, with storage being a
limiting resources in mainstream blockchain protocols. Marvel DC and Privacy
Marvel DC serve as key protocols with which to continue this research.

4.7. CONCLUSION 69

Algorithm 2 Computer Selection Protocol

1: function genProbSelect()
2: minRep← min(Reps)
3: denominator←

∑
(Reps)− length(Reps) · (minRep− 1)

4: return [
(
(i− (minRep− 1))/denominator

)
for i ∈ Reps] ▷ Probability formula from

Section 4.4.2

5: function selectComputers(randomSeed, ncomp)
6: ctr← 0
7: calc.C← []
8: probSelect← genProbSelect(Reps)
9: randomSeed← commit(randomSeed)
10: while ctr < ncomp do
11: i← 0
12: sumReps← probSelect[i]
13: while randomSeed > sumReps do
14: sumReps← sumReps + (probSelect[i+ +] ∗ (2256))
15: if ¬(i ∈ calc.C) then
16: calc.C.append(i)
17: ctr← ctr + 1

18: randomSeed← commit(randomSeed)

Algorithm 3 Reputation Management

19: function rateComputations(calc, nreward, compDecKey, fκ)
20: Cgood ← []
21: results← decrypt(calc.responses, compDecKey)
22: κ ← fκ(results)
23: for i ∈ [1, ..., nreward] do ▷ add the nreward closest results to κ to Cgood
24: Cgood.append(result.C) ∧ results.remove(result) withdistance(result,κ) =

min(distance(results,κ))

25: Cbad ← results.C ▷ all results not already removed in the for loop are bad results, not to
be rewarded

26: return Cgood, Cbad

27: function updateReputations(Cgood,Cbad, calc)
28: avgRepChange← length(Cgood)/(length(Cgood) + length(Cbad))
29: denominator←

∑
(Reps)− (length(Reps)− 1) · (initalRep− 1)

30: for blockProposer ∈ calc.proposers do ▷ in-line with the results from Section 4.4.2,
block proposers rep. changes should be done before updating computers

31: Reps[blockProposer]← Reps[blockProposer]+
(avgRepChange ·

(
(Reps[blockProposer]−

(initalRep− 1))/(denominator− Reps[blockProposer])
)
) ▷ Necessary for SINCE of

proposers/requester

32: Reps[calc.requester]← Reps[calc.requester]+ (avgRepChange ·
(
(Reps[blockProposer]−

(initalRep− 1))/(denominator− Reps[blockProposer])
)
) ▷ Requester of successfully resolved

computation must receive increase in reputation, in line with Section 4.4.2
33: Reps[tx.blockProposer]← Reps[tx.blockProposer]+

(avgRepChange ·
(
(Reps[blockProposer]−

(initalRep− 1))/(denominator− Reps[blockProposer])
)
) ▷ Proposer including the Finalize

transaction must also receive increase in reputation, in line with Section 4.4.2
34: Reps[Cgood]← Reps[Cgood] + 1

70 CHAPTER 4. MARVEL DC

Algorithm 4 Marvel DC smart contract pseudocode

35: C← [] ▷ Set of active computers
36: initalRep← getInitialRep()
37: Reps← [initalRep for i ∈ C]
38: T ← getFinalizeDeadline() ▷ Globally-defined finalize deadline
39: escrowcomp, escrowreq ← getEscrows() ▷ Globally-defined escrow amounts, in line with Section

4.4
40: nψ ← getMinNumComputersPerComputation() ▷ Set nψ in-line with requirements from

Section 4.4
41: tFunctions← getTargetFunctions() ▷ Define allowable target functions. In reality, this can be

updated during the protocol

42: Register
43: upon ⟨REGISTER⟩ from P with P /∈ C ∧ P.balance > escrowcomp do ▷ add computer to

the system
44: P.transfer(escrowcomp, contract) ▷ Registration cost to prevent Sybil attacks
45: C.append(P)
46: Reps.append(initalRep)

47: Request
48: upon
⟨REQUEST, calc, ncomp, nreward, compEncKey,Rewardi, fκ⟩ from requester with ncomp >
nψ ∧ requester.balance > ((nreward, ·Rewardi) + escrowreq) ∧ fκ ∈ tFunctions do

49: requester.transfer((nreward, ·Rewardi) + escrowreq, contract) ▷ Transfer total reward plus
requester escrow to contract

50: calc.C← selectComputers(genRandom(), ncomp) ▷ Select computers for computation
51: responses← []
52: proposers← [] ▷ Array of the players who recorded each ⟨RESPONSE, ∗⟩ transaction
53: start← Blockchain.height ▷ Record current height of blockchain
54: step← computing

55: Response
56: upon tx← ⟨RESPONSE, calc, result⟩ from C ∈ calc.C

with calc.step = computing ∧ Blockchain.height < calc.start + T do
57: calc.responses.append(result) ▷ result should be the computer C’s result of computing

calc, encrypted using calc.compEncKey
58: if tx.blockProposer ∈ C then
59: calc.proposers.append(tx.blockProposer)

60: Finalize
61: upon tx← ⟨FINALIZE, calc, compDecKey⟩ from calc.requester

with valid(compDecKey, calc.compEncKey) ∧
(
(calc.step = computing ∧ Blockchain.height

< calc.start + T ∧ length(calc.responses) = calc.ncomp) ∨ (calc.step = computing
∧ Blockchain.height ≥ calc.start + T)

)
do

62: calc.transfer(escrow, calc.requester) ▷ Returns the escrow to the requester
63: calc.proposers.append(calc.requester) ▷ Required for SINCE of requester
64: if tx.blockProposer ∈ C then ▷ Required for SINCE of proposers
65: calc.proposers.append(tx.blockProposer)

66: calc.step← finalized
67: Cgood,Cbad ← rateComputations(calc, calc.nreward, compDecKey, calc.fκ) ▷ Function

which deterministically evaluates the goodness of returned computations, returning the indices
of good and bad computers

68: calc.transfer(calc.Rewardi,Cgood)
69: updateReputations(Cgood,Cbad, calc)

Chapter 5

FairTraDEX

This chapter is based on the paper FairTraDEX: A Decentralised Exchange
Preventing Value Extraction [77].

5.1 Introduction

One of the most prominent and widely-used classes of protocols being run on
smart-contract enabled blockchains is that of DEX protocols. DEX protocols
allow a specific set of players, whom we call users, to exchange one token for an-
other in the presence of MMs, who provide liquidity to users, usually in exchange
for a fee. Interacting with a blockchain-based DEX requires a user or MM to
first interact with the players who add transactions to the blockchain, known as
miners or block producers. These interactions typically reveal a player’s inten-
tion to trade to the block producer before the transaction is confirmed on the
blockchain, and in doing so, present the block producer with what has become
known as a miner-extractable value (MEV) opportunity. MEV, first coined in
[43], refers to any expected profits the miner of a block can extract from other
players interacting with the blockchain. This extraction is performed by manip-
ulating the ordering of, injecting, and/or censoring transactions in prospective
blocks. This has been generalised to expected extractable value (EEV) [61],
as non-miner players can also perform many of these attacks. Their definition
of EEV can be translated as follows, using the terminology of this thesis: The
expected extractable value EEVi, describes the total value in value units, which
is transferred to player Pi in expectation using a certain strategy which produces

71

72 CHAPTER 5. FAIRTRADEX

a transaction, sequence of transactions, or blocks that later become part of the
main chain with some probability.

A significant advancement in DEX protocols was the advent of AMMs, with
Uniswap [102] being the most prominent of which. Projects like Flashbots [50]
(a direct spin-off to [43]) have identified that AMMs are the main source of
recorded EEV (> 98%, as seen in the chart labelled “Extracted MEV Split by
Protocol” in [50], of the $665M in EEV identified by Flashbots since August,
2020). A peer-reviewed analysis in [93] identified $540.54M in extracted value
up to August 2021, indicating the current number provided by Flashbots is
significantly lower than the actual amount of extracted value being extracted
from DEX protocols. In [74], it has been further highlighted that in Uniswap V3,
liquidity providers are losing more to EEV attacks (impermanent loss in that
case) than they are collecting in fees. It is clear that the long-term viability of
existing DEX protocols is not plausible.

Although many attempts have been made academically to address this source
of EEV [22, 40, 62, 51, 15], no satisfactory solution has been found. The proto-
cols presented in these works remain vulnerable to basic EEV-extraction strate-
gies, as outlined in Section 5.2. Therefore, there is a clear gap, both in liter-
ature and in practice, to provide a DEX protocol which definitively eliminates
all sources of EEV. In this chapter, we provide such a protocol.

5.1.1 Our Contribution

We introduce width-sensitive frequent batch auctions (WSFBAs), idealised
commit-reveal exchange protocols between and MMs, based on FBAs [33].
WSFBAs are an important improvement on basic FBAs with respect to de-
centralised systems. WSFBAs ensure submit market orders in the presence of
monopolistic MMs, compared to a standard FBA in which are required to sub-
mit limit orders at their interpretation of the true price of the swap, plus some
trade fee. The requirement for to submit limit orders leads to worse order exe-
cution as trade probability is decreased, while also placing a significant burden
on to track this market price. This burden is removed in a WSFBA, providing
an “obvious optimal” for users, as coined in [96]. Furthermore, in the case of
competing MMs, a WSFBA provides equivalent equilibria to [33].

We describe FairTraDEX, a blockchain-based implementation of a WSFBA.
At a high-level, must first register to participate in the protocol by depositing
an escrow to the smart-contract. To then enter a WSFBA in the FairTraDEX
protocol, commit to an order along with a ZK proof proving that they deposited
an escrow to the smart contract. MMs simultaneously commit to markets (bids

5.1. INTRODUCTION 73

Figure 5.1: FairTraDEX phases before order settlement. B : indicates the transfer
of some tokens, but not necessarily in the same denomination.

and offers), although depositing an escrow at time of commitment (MM escrows
do not reveal direction due their neutral directional nature). In the proceeding
reveal phase, to ensure the correct revelation of information as in the reveal
phase of FairTraDEX, any user/MM who committed to orders/markets in the
commit phase but do not reveal lose access to their deposit. After the reveal
phase finishes, the auction is settled at a single clearing price which maximises
trade volume. A representation of the information and escrow flow in Fair-
TraDEX prior to order settlement is presented in Figure 5.1.

In FairTraDEX, order commitments are recorded on-chain (to enforce the
corresponding escrow punishment). We utilize ZK set-membership proofs to
allow players to commit to their orders anonymously. As such, in FairTraDEX,
every user must initially register to the protocol, depositing an escrow. Then,
whenever a user wants to commit to an order, the user only has to prove mem-
bership of the player set registered in the protocol. Given enough registrations,
the probability that a user’s ZK set-membership proof/committed order relates

74 CHAPTER 5. FAIRTRADEX

to the actual order contents approaches 0 (we formalize this notion in Section
5.5). In other words, no other player in the system can see the committed or-
der and use it to infer anything about what the order is. To definitively hide
order information, orders are committed, including the ZK-proof, by using a
relayer, a third-party who receives a fee for including relayed transactions in the
blockchain (see Section 2.4 for further details).

This combination of tools serves as a subtle, yet crucial, improvement to
previous attempts to implement blockchain-based FBAs [22, 51, 40]. In these
previous attempts, on-chain order commitments reveal user/order-specific infor-
mation which allows observant counterparties to improve their ability to guess
user order information. With sufficiently many registered users, no counterparty
using FairTraDEX can learn information that can be used to bias prices against
users with positive expectancy. As such, EEV is prevented in FairTraDEX when
enough users register to the protocol.

We provide an extensive Ethereum virtual-machine compatible proof-of-
concept for FairTraDEX [54] including a comparison of protocol running costs
with previous solutions in Section 5.8, which remain constant with respect to
order size, price and direction. When compared to potentially percentage-point
slippages and EEV-attack costs required to trade on current DEXs, also high-
lighted in Section 5.8, FairTraDEX’s formal guarantees of protocol-level EEV
prevention and up-front, fixed and explicit costs set a new standard for DEX
protocols.

5.1.2 Organization of the Chapter

Section 5.2 analyzes previous work related to the construction of EEV-proof
DEX protocols. Section 5.3 outlines the terminology used in the chapter, in-
cluding chapter-specific player definitions needed to formally reason about Fair-
TraDEX. Section 5.4 defines the ideal WSFBA functionality, and identifies the
strategies of both users and MMs. Section 5.5 maps the ideal WSFBA func-
tionality to a series of algorithms which form the FairTraDEX protocol. Section
5.6 outlines the properties of FairTraDEX, proving that rational players follow
FairTraDEX, and then that FairTraDEX implements a WSFBA. Section 5.7
contains detailed discussions and considerations with regard to implementing
FairTraDEX. Section 5.8 provides an analysis of the smart-contract encoding
of FairTraDEX, including a cost-benefit comparison to existing solutions. We
conclude in Section 5.9.

5.2. RELATED WORK 75

5.2 Related Work

In this section, we detail the most closely related works to FairTraDEX. The
main works aimed at protecting DEX users from EEV either focus on preventing
front-running of orders [39, 22], the fair ordering of transactions based on their
delivery time [62], or on hiding user trade information until the trade has been
committed to the blockchain [51, 15, 40]. Of these works, the closest to our
proposal are [39, 22, 51, 40]. All of these works critically depend on honesty
from MMs, auction operators and/or the block proposers.

In this chapter we adopt the concept of expected extractable value (EEV) as
introduced in [61]. There, the authors attempt to formalise extractable value
and generalise it beyond value extractable be miners. We also believe it is nec-
essary to model the decision of all rational players based on that can generated
by particular orderings of transactions/blocks by any player in the system, and
not just the miner. The approach taken is to consider EEV as the maximum
of all non-protocol strategies, with protocols considered secure if the EEV of
following the protocol is strictly dominated by following the protocol strategy,
as formalized in Chapter 3. In this thesis, we also consider an additional case of
EEV not necessarily considered in [61] which is prevalent in commit-reveal pro-
tocols such as [39]. In such protocols, honest behaviour usually involves sending
a valid second transaction (the reveal transaction in a commit-reveal protocol),
but where players can extract value in expectancy by not sending these trans-
actions. However, we believe the definition of EEV in [61] can be extended to
include these attacks. As such, we also attempt to move away from the legacy
use of MEV, and focus instead on the prevention of the more general EEV.

In [39], users submit orders to a single (monopolistic) MM in an off-chain Σ-
protocol. Users contact the MM with a size, direction (communicated on-chain)
and price (communicated off-chain). If the MM accepts, the MM then publishes
the trade on the blockchain, otherwise aborts. User orders are sequentialized so
only one order can be executed at a time, preventing the MM from reordering
user orders. Crucially, the MM is always allowed to see orders from users and
can choose to abort them. It is argued that MMs are happy to trade against
all orders, including informed orders. Furthermore, it is assumed that users are
independent, with random information. This is not true in real-world trading
environments, and as such, Theorem 3 therein may not hold in practice. The
paper references [44] as justification for the quality of price/service provided by
the MM, however there is a subtle but crucial difference between the games in
[44]: in [44] the user has the final decision on whether or not to execute the trade,
while in [39] the MM has the final decision. This optionality has an implicit

76 CHAPTER 5. FAIRTRADEX

cost for the user and provides a source of EEV to the MM. In FairTraDEX, no
optionality is given to the MM or users, while given enough registered users,
the direction of any individual user remains hidden until the trade has been
committed. As such, FairTraDEX is able to benefit from the results of [44]
in a single MM game, that is, liquid (tradeable and of a user-specified width)
markets centred around the pre-trade external market price when a trade is
accepted by the MM.

The P2DEX protocol [22] is an off-chain MPC protocol run by servers where
players can submit orders to exchange tokens from one blockchain to another
(although it also appears applicable to one blockchain with many tokens). The
orders are encrypted using a threshold secret-sharing scheme with each server
receiving a unique share. The protocol has mechanisms to identify double-
spending of player funds sent to the servers, and deviation (failure/ misbe-
haviour) of servers, as the MPC matching protocol is publicly verifiable. As
such, all players in the blockchain can verify that a set of orders have been
matched correctly, or some of the servers deviated from the protocol. The ex-
change depends on all servers participating in a secret-sharing protocol to match
orders, with at least one server being honest/not colluding with other servers.
As with [51, 40], an emphasis is placed on not revealing unmatched orders.

In P2DEX, users must publicly deposit the tokens with which to trade in the
same time frame as the order matching takes place, exposing users to standard
identity- and directional-based EEV exploits. Separating token deposit and
identity revelation from a user’s commitment to a specific auction are impor-
tant advancements used in FairTraDEX to protect against EEV. Furthermore,
at least one of the servers in charge of fairly executing orders is required to be
honest-by-default. If the servers, a minority subset of players in the P2DEX
protocol, are rational and monopolised/colluding, the servers can front-run or-
ders. In FairTraDEX, such value-extraction is prevented by keeping all order
information hidden until every order in a particular settlement round has been
committed. Furthermore, the set of servers act as a point-of-failure as server
participation is required to finalise order-settlement. No subset of players in
FairTraDEX can prevent the matching of correctly-revealed orders, while in
P2DEX, any majority of servers can prevent order-matching.

Similar commit-reveal protocols to FairTraDEX for blockchain-based token-
exchange are proposed in [51, 40]. The protocol in [51] attempts to implement an
FBA, and as such has many similarities to FairTraDEX. As in FairTraDEX, the
protocol progresses in rounds of Commit, Reveal and Resolution phases. In [51],
there is a designated operator who is in charge of settling the auction. Players
commit to orders in the Commit phase, as well as providing cryptographic

5.2. RELATED WORK 77

information, which is used to prove correct settlement in the Resolution phase.
Unlike FairTraDEX, these commit messages are sent by players directly to the
blockchain, revealing identity and trade direction. In the Reveal phase, players
encrypt their orders using the operator’s public key, and send the encryptions
to the operator. In the Resolution phase, the operator then chooses a clearing
price which intersects the buy and sell liquidity, maximising the notional to
be traded. The operator then publishes a list of all matched orders to the
blockchain, along with a range proof which is used to verify the correct execution
of orders, while not revealing any information about unexecuted orders other
than that already revealed in the commit phase. This protocol is exposed to
several game-theoretic exploits which contradict its protection against front-
running. These include the necessity to reveal order direction a-priori, and
the non-trivial handling of the linkability between commitments and account-
balances. The protocol also depends on an operator who does not participate
in token-exchange, gains exclusive access to order information, and is depended
on for protocol completion.

In [40], the protocol attempts to implement an FBA, and is the most similar
to FairTraDEX. It is an improvement on [51], with a direct comparison of the
two protocols forming the main basis of the justification of [40]. As in [51], the
protocol is overseen by an operator who is in charge of receiving orders privately
from players and correctly executing the auction. As in FairTraDEX, the pro-
tocol progresses in rounds of Commit, Reveal and Resolution phases. In the
Commit phase, players commit to orders and publish these commitments to the
blockchain. Although not revealing the trade direction as is the case in [51],
these commit messages are sent by players directly to the blockchain, and as
such reveal identity In the Reveal phase, players encrypt their orders using the
operator’s public key, and send these encryptions to the operator. The operator
then publishes all executed orders, while revealing nothing about unexecuted
orders. The validity of execution depends on all players who submitted orders
verifying that their order should not have been executed given the list of ex-
ecutions. As users commit their own orders to the blockchain, revealing their
identities, this also reveals corresponding token balances and execution patterns
which can be used by a basic professional MM to skew prices and extract value
from the user. Both of [51, 40] aim to protect unmatched orders from being
revealed, but to do so, both protocols depend on a TTP selected before the auc-
tion begins to execute order-matching (no one else in the ecosystem can finalise
the auction, a single point of failure). Both protocols assume that the operator
does not reveal unexecuted order information.

78 CHAPTER 5. FAIRTRADEX

5.3 Preliminaries

This section introduces the terminology and definitions necessary to understand
the main results of the chapter. Much of the terminology used in this chapter
is introduced in Section 2.5, although we extend this with a detailed definition
of an FBA and its main properties, which is specific to this chapter.

In creating a DEX protocol, an idealised goal would be to ensure that there
exists an SNE in which users trade at the external market price in expectancy.
However, this is unrealistic as MMs are a key component in liquidity provision.
Therefore a more realistic, yet still desirable, goal would be to ensure that there
exists an SNE where users can trade at the external market price in expectancy
in exchange for some pre-determined fee, payable to the MMs, which is bounded
by the users’ utility gain from the swap. In existing AMMs and DEX protocols,
this realistic goal remains unachieved, as explained in Section 5.2. FairTraDEX
however, achieves this goal.

Note that MMs differ from liquidity pools in AMMs. The decision logic
of AMM liquidity pools is public and deterministic, and any adjustments to
liquidity pools must be queued publicly in the mempool, exposing it to EEV
attacks. MMs, however, make private trading decisions and communicate them
on-chain. One possible action is to add liquidity to an AMM, or in the case
of FairTraDEX, add a market to an auction. Following the analysis of [74]
and the losses being incurred by liquidity providers in AMMs, players currently
providing liquidity in AMMs, although acting honestly, do not fit our rational
player model. In FairTraDEX, by ensuring following the protocol forms an SNE,
honesty and rationality are equivalent. If players deviate from the protocol
in FairTraDEX, this strictly decreases their expected utility, which is further
discussed in Section 5.7.1.

5.3.1 Frequent Batch Auctions

As stated in Section 5.1, FairTraDEX is based on an FBA [33]. FBAs are used
in many of the largest centralised exchanges such as the FCA1, CBOE2, and
ESMA3. As FBAs were initially intended for a centralised setting, we consider
them being run by a TTP who enforces the correct participation of all players.
In FairTraDEX, the key TTP functionalities needed to instantiate an FBA are

1FCA https://www.fca.org.uk/publications/research/periodic-auctions
2CBOE https://www.cboe.com/europe/equities/trading/periodic_auctions_book/
3ESMA https://www.esma.europa.eu/sites/default/files/library/esma70-156-1035_

final_report_call_for_evidence_periodic_auctions.pdf

https://www.fca.org.uk/publications/research/periodic-auctions
https://www.cboe.com/europe/equities/trading/periodic_auctions_book/
https://www.esma.europa.eu/sites/default/files/library/esma70-156-1035_final_report_call_for_evidence_periodic_auctions.pdf
https://www.esma.europa.eu/sites/default/files/library/esma70-156-1035_final_report_call_for_evidence_periodic_auctions.pdf

5.3. PRELIMINARIES 79

replicated using ZK set-membership proofs, incentivization and a blockchain as
a censorship-resistant bulletin-board. We define an FBA here using the termi-
nology of the thesis.

Definition 5.3.1. A frequent batch auction (FBA) (sometimes referred to as
a periodic auction) involves users and MMs privately submitting either limit or
market orders to the TTP. These orders are collected until a specified deadline.
After this deadline, the orders are settled at the clearing price. A single clearing
price is chosen which maximises the total notional traded based on the specified
sizes and prices of all orders. If there is more supply (quantity of tokens being
sold) at the clearing price than demand (quantity of tokens being bought), all sell
orders offered at the highest price at or below the clearing price are pro-rated
based on size such that supply equals demand at the clearing price. Similarly,
if there is more demand than supply at the clearing price, all buy orders bid at
the lowest price at or above the clearing price are pro-rated based on size such
that demand equals supply at the clearing price. Any limit buy orders below/sell
orders above the clearing price are not executed.

There are two key differences between this definition and the specification
in [33]:

1. In our definition, if an order is not fulfilled, it is revealed with any tokens
not being sold returned to the seller. This does not affect the game-
theoretic guarantees, as the results in [33] only depend on the hiding of
order information while players are submitting orders to the auction.

2. As every order in our auction must be submitted independently for each
auction, there is no time priority applied when pro-rating orders in case
of a supply-demand imbalance. This is a sub-case of the FBAs as defined
in [33], and consequently, our protocol retains the same game-theoretic
guarantees.

Game-Theoretic Guarantees of a Frequent Batch Auction

In this section we investigate the properties of an FBA between rational MMs
and rational users, where MMs do not know the desired trade direction of the
users.

We first restate, using the terminology from this thesis, the main result from
[33] which applies to our game-theoretically equivalent definition of an FBA.
To do this, we let D represent the net trade imbalance of users in a particular
instance of an FBA in terms of B. A positive D indicates a user buy imbalance

80 CHAPTER 5. FAIRTRADEX

(more user buyers than sellers of the swap), while a negative D indicates a user
sell imbalance. We require a finite bound on the absolute imbalance, which we
denote Qnot < ∞, for the existence of optimal MM strategies. As in [33], we
assume that |D| ≤ Qnot, and in-keeping with the notion of an external market
price, D is symmetric around 0 at the external market price.

Theorem 5.3.2. [33] For an FBA with at least two non-cooperative MMs, there
is a strict Nash equilibrium where users only submit market orders and MMs
show a market of width 1 (bid = offer) centred around the external market price
in size greater than Qnot.

This is a useful result in the case of at least two non-cooperative MMs, with
users receiving a game-theoretic guarantee that they can exchange one token for
another at the external market price in expectancy in an FBA. Furthermore,
as MM liquidity is greater than the net user trade size, the implicit impact to
these trades in [33] is bounded by the width, which is 1. As users have a strictly
positive utility for exchanging tokens, this is equivalent to users always having
positive expectancy to participate in an FBA. However, it is also shown in
this equilibrium that MMs have 0 expected utility. A basic adjustment to the
protocol in that setting would then be to charge users a fee for the service and
pro-rate these fees to the MMs to ensure the long-term participation of MMs.

5.4 Width-Sensitive Frequent Batch Auctions

In this section we outline the properties of an idealised variation of an FBA
which we define as a width-sensitive FBA. Width-sensitive FBAs maintain the
desirable properties of FBAs with respect to optimal strategies for MMs and
users [33], while also adding important protections for users in a decentralised
setting where monopolistic MMs may exist. The important assumption with re-
gard to the guarantees of an FBA is the presence of at least two non-cooperative
MMs. In a decentralised setting, this can be seen as insufficient. One of the
most desirable properties of FBAs in the presence of 2 non-cooperative MMs
is the fact that users submit market orders. We envisage users as relatively
uninformed players for whom choosing the correct/fair price to trade has an im-
plicit cost. Market orders remove this burden, providing users with an “obvious
optimal” as advocated in [96]. To reach a similar equilibrium in the presence of
a monopolistic MM, we must amend the basic FBA protocol. In this section,
we define a width-sensitive FBA (WSFBA) to handle monopolistic MMs, while

5.4. WIDTH-SENSITIVE FREQUENT BATCH AUCTIONS 81

retaining the desirable properties of an FBA in the presence of two or more
non-cooperative MMs.

In the presence of a single rational MM, we need to utilise the value gained by
users for exchanging token. That is, recall from Section 5.3, users in our protocol
observe a positive utility of at least the minimum user fee fee for exchanging
tokens. In a WSFBA, this fee is translated to a market width, and input with
users orders as a maximum market width on which users are willing to trade.
This allows us to prove submitting market orders remains a SNE. Conversely
in an FBA, if MMs cooperate/are replaced by a monopolistic MM, submitting
market orders is a strictly dominated strategy for users, with users now required
to submit a limit price. WSFBAs avoid this degradation of user experience, and
the corresponding reduced probability of execution and quality of liquidity this
has on FBAs.

We now define a WSFBA.

Definition 5.4.1. A width-sensitive frequent batch auction (WSFBA) involves
MMs submitting markets to the TTP with total notional on the bid and offer
of at least Qnot. Users and MMs privately submit limit and market orders to
the TTP including a requested maximum width from the tightest MM, above
which the order is not executed. Orders are collected until a specified deadline.
After this deadline, user orders with requested width greater than or equal to
the tightest MM width, along with a randomly-selected market from the tightest
provided markets, are settled at a single clearing price which maximises the total
notional traded, and then minimises the net trade imbalance.4 If there is more
supply at the clearing price than demand, sell orders at the highest price at
or below the clearing price are pro-rated based on size such that supply equals
demand at the clearing price. Similarly, if there is more demand than supply at
the clearing price, buy orders at the lowest price at or above the clearing price
are pro-rated based on size such that demand equals supply at the clearing price.
Any limit buy orders below/sell orders above the clearing price are not executed.

The key differences between a conventional FBA and a WSFBA are the spec-
ification of MM widths by users, the minimum MM notional requirement on the
bid and offer, and the requirement for the clearing price to minimise the imbal-
ance over all prices which maximise the notional traded. Minimising imbalance
is a small optimisation which produces a reasonable and precise clearing price
when MMs do not show width 1 markets as in an FBA. A precise algorithm

4As Qnot is greater than the absolute user order imbalance, the clearing price must lie
between the MM bid and offer

82 CHAPTER 5. FAIRTRADEX

for verifying a given clearing price satisfies these proprieties is included both in
Algorithm 8 and [54], and described in Section 5.6.1. The other amendments
are intended to protect users against monopolistic MMs, and are discussed in
the proceeding section.

5.4.1 Properties of Width-Sensitive Frequent Batch Auc-
tions

In Theorem 5.4.3, we identify an SNE for WSFBAs, and show that it is equiv-
alent to the SNE of an FBA. The case of a single monopolistic MM is more
complex. First, we observe that an MM in a WSFBA always shows a market
with reference price equal to the external market price.

Lemma 5.4.2. For an MM in a WSFBA between x and y with external market
price equal to εx→y =

εy
εx

and a user order of notional ZB > 0, she strictly
maximizes her expected utility by showing a market with reference price εref =
εx→y for any fixed width width ≥ 1.

Proof. Let us define the market in terms of εref and width as described in Sec-

tion 5.3, namely,
εref√
width

@
√
width εref. In the cases of a user buyer and user

seller of the swap, we convert user notional orders into the tokens being sold,
mark the trades to their respective external market prices using a multiplicative
market-impact coefficient for the token swap of δ, then reconvert the tokens into
notional.

If the user is a buyer of the swap, the user is selling x, with trade size of ZBεx
in x. The trade occurs on the token swap offer of

√
width εref, resulting in the

sale of ZBεx
1√

width εref
token y by the MM. Finally, the y bought by the user have

an expected per-token value of
√
δεy, while the notional acquired by the MM

(x) has an expected value of ZB√
δ
. This is an expected net profit for the MM

measured in notional of:

ZB√
δ
− ZB

εx
√
width εref

√
δεy =

ZB√
δ
−
√
δZB√
width

εx→y
εref

. (5.1)

If the user is a seller of the swap, the user is selling y, with trade size of
ZB
εy

in y. The trade occurs on the token swap bid of
εref√
width

, resulting in the

sale of ZB
εy

εref√
width

token x by the MM. Finally, the x bought by the user have

5.4. WIDTH-SENSITIVE FREQUENT BATCH AUCTIONS 83

an expected per-token value of
√
δεx, while again, the notional acquired by the

MM (y) has an expected value of ZB√
δ
This is an expected net profit for the MM

of:
ZB√
δ
−
√
δZB√
width

εref
εx→y

. (5.2)

We know the expected buying and selling of ZB notional at εx→y are equally
likely by the definition of an external market price as a perfectly-informed signal.
Therefore, the total expected profit is:

ZB
(1
2
(
1√
δ
−

√
δ√

width

εx→y
εref

) +
1

2
(
1√
δ
−

√
δ√

width

εref
εx→y

)
)
. (5.3)

To find the maximum with respect to εref, we take the first derivative of this
formula, and let it equal to 0:

εx→y
ε2ref

− 1

εx→y
= 0. (5.4)

Solving for εref gives εref = εx→y, which is equivalent to the MM strictly maxi-
mizing her expected profits by letting εref = εx→y.

This result is independent of the choice of width and market-impact coef-
ficient. However, it assumes that the MM trades with the user on either the
bid or the offer. With respect to a WSFBA without notional restrictions and
a monopolistic MM, if users submit market orders, there are fringe cases (large
imbalances) which incentivize MMs to show markets far from the external mar-
ket price. Removing these restrictions from a WSFBA makes for interesting
future work.

Recall users have a strictly positive utility to exchange tokens described by
the minimum user fee fee, which is equivalent to being strongly incentivized to
trade on a market with reference price εref and width width ≤ fee. With this in
mind, we can now apply the main result of [33] to a WSFBA.

Theorem 5.4.3. For a WSFBA, the strict Nash equilibria strategies given the
number of non-cooperative MMs submitting markets being N are:

• N = 1: users submit market orders of requested width fee and the MM
shows a market of width at most fee with reference price equal to the
external market price.

84 CHAPTER 5. FAIRTRADEX

• N ≥ 2: users submit market orders of requested width greater than 1 and
MMs show a market of width 1 with reference price equal to the external
market price.

Proof. We now investigate each of the cases described in the theorem statement
in terms of the number of non-cooperative MMs N .

N = 1: Consider first the strategy of a user. Although users are not neces-
sarily aware of the external market price, let us consider their strategies taking
the external market price price as a variable with an arbitrary distribution. For
buy orders, the strategy of submitting a limit order with price price less than√
fee ε is dominated by all prices greater than price and less than or equal to√
fee ε. For limit sell orders, this limit is ε√

fee
. As such, the equilibrium for

users involves submitting orders equivalent to a market of width equivalent to
at least fee with reference price equal to the external market price. If a user
knows a MM submits a market of width less than or equal to fee with reference
price equal to the external market price, this strategy is further dominated by
submitting a market order with requested width fee, as market orders strictly
increase the user’s probability of trading. Furthermore, any strategy for a user
which involves trading on a price outside [ε√

fee
,
√
fee ε] is strictly dominated

by not trading. As such, the only possibilities for equilibria can occur on a
market of ε√

fee
@
√
fee ε. Furthermore, the submission of market orders (in-

creasing probability of trading) with requested width fee is strictly dominant if
the MM shows a market with reference price equal to the external market price
in sufficient size to fill all users’ orders. As Qnot > |D|, this would be the case
given the appropriate reference price. In Lemma 5.4.2, we have seen that a MM
trading on a market against a random user shows a market with reference price
equal to the external market price. Therefore users submit market orders with
requested width fee. Moreover, this strategy does not require the user to know
the external market price.

Consider now the MM strategy. As only the tightest market in every auction
is included for settlement, the MM only submits one market. Any MM order
bidding above/offering below the external market price has negative expected
utility, and as such, no rational MM does this this. Also, by definition, the MM
must show a market in size Qnot ≥ |D|, meaning the MM has sufficient notional
on the bid and offer to trade all user orders and as such the clearing price must
be inside the provided MM market (between the bid and offer prices). Next,
we have seen in Lemma 5.4.2 that a MM trading on a market against a random
user shows a market with reference price equal to the external market price.
Furthermore, from Equation 5.3 we can see that the expected utility of a MM is

5.5. FAIRTRADEX 85

strictly increasing in width. Any strategy involving a market with width greater
than fee cannot be an equilibrium as users strictly prefer to trade on markets
of lesser width, as argued above. Therefore, the MM maximises her expectancy
against a random user by showing a market of width fee with reference price
equal to the external market price. Against multiple users, a positive notional
imbalance at the external market price is decreasing in price (resp. a negative
notional imbalance is increasing as price decreases), which may cause the MM
to provide a market of width less then fee.

Consider the strategy of a MM providing a market of width less than or equal
to fee with reference price equal to the external market price, and the strategy
of users submitting market orders with requested width fee. We have shown
that any player deviation strictly decreases that player’s expectancy, making
this a strict Nash Equilibrium.

N ≥ 2: As MMs in a standard FBA provide markets of width 1 when
the width is not a restriction, applying the requested width adjustments of
a WSFBA, further incentivizing tighter markets, does not change the unique
equilibrium of Theorem 5.3.2. Similarly, as there is a unique clearing price when
a width-1 market is submitted, it must also minimise the imbalance over prices
that maximise total notional traded. The restriction on the notional of markets
in a WSFBA is in line with the inequality of Theorem 5.3.2. Furthermore, any
requested width > 1 in this equilibrium ensures a user’s order trading through
the external market price is included in the final auction settlement, with the
maximum allocation occurring when a user submits a market order.

Theorem 5.4.3 identifies that users always submit market orders, and in
settings where it is unclear whether there is a single monopolistic MM, or many
non-cooperative MMs, it can be seen that users always submit market orders
with requested width fee.

5.5 FairTraDEX

In Section 5.4 we constructed a WSFBA using a TTP to enforce correct player
balances, order sizes, revelation of orders, correct calculation of the clearing price
and the settlement of orders. In a decentralised setting with rational players,
such a TTP does not exist. However, we do have access to censorship-resistant
public bulletin boards in the form of blockchain-protocols. As discussed in the
Section 5.1, these bulletin boards have many caveats such as the ordering of
transactions based on transaction send time not being preserved (transaction

86 CHAPTER 5. FAIRTRADEX

re-ordering attacks). However, if we are able to bound the delay of updates being
added to such a bulletin board (transactions being confirmed on the blockchain),
we can implement a WSFBA in such a setting.

In this section we construct the FairTraDEX protocol as a sequence of algo-
rithms. We then provide a series of results regarding the incentive compatibility
of these algorithms with the goal of proving FairTraDEX instantiates a WSFBA,
and that following the protocol is an SNE.

5.5.1 System Model

1. All players P1, ...,Pn are members of a blockchain-based distributed ledger,
and a corresponding PKI.

2. The ledger is represented by a linear blockchain with its state progressing
by having new blocks sequentially appended. For simplicity, we assume
instant finality of blocks meaning that such an appended (valid) block
cannot be replaced at any later point in time.

3. A transaction submitted by a player for addition to the blockchain (either
directly or relayed) while observing blockchain height H, is included (and
thus finalised) in a block of height at most H +T , for some known T > 0,
given that the transaction remains valid for sufficiently many intermediate
ledger states.

4. The public NIZK parameters are set-up in a trusted manner.

We do not make any assumptions regarding transaction ordering in blocks.
Specifically, the order in which transactions are executed is at the discretion
of the block proposer. Our assumption on block finality helps to simplify the
proceeding analysis. The protocol can be extended to blockchains with even-
tual finality, by increasing T to be the number of blocks between a transaction
tx1 being finalised on the blockchain, and the maximum number of blocks re-
quired to finalise another transaction tx2 which is submitted for addition to the
blockchain when tx1 is finalised.

If block producers are participating as MMs/users, we need to adjust T .
Let 0 < m < 1 bound the fraction of blocks produced over chains of length
greater than T by a MM responding to/the set of users requesting trades in a
particular instance of a FBA (we need to consider all users in a request phase, as
they may all have the same direction, and as such, some positive expectancy to
preventing a MM revelation). We need to increase T by a factor of 1

1−m (similar

5.5. FAIRTRADEX 87

to the methodology behind the Chain Quality property in [52, 91]). Moreover,
our property can be seen as a ‘block-based’ variant of the time-based liveness
property defined in [52, 91]. An example for instant finality is Algorand [38]
which stands in contrast to, e.g., Bitcoin which only guarantees eventual finality,
while example of a public NIZK parameter setup is a Perpetual Powers of Tau
ceremony, as used in Zcash [89].

5.5.2 FairTraDEX Algorithms

Each player Pi owns (has exclusive access to) a set of token balances bali which
are stored as a global variable. For a token tkn, bali(tkn) is the amount of token
tkn that Pi owns. Algorithm outputs are not signed, so players observing the
output of an algorithm instance can only infer information about the player run-
ning the algorithm from public outputs and any corresponding global variable
updates.

We now outline FairTraDEX as a set of algorithms: Setup(), Register(),
CommitUser(), CommitMM(), RevealUser(), RevealMM() and Resolution(). A
FairTraDEX instance is initialised by running Setup(), and proceeds indefinitely
in rounds of three distinct, consecutive phases: Commit, Reveal and Resolution,
each of length T blocks (see Section 5.5.1). For readability, we provide here the
intuition to the algorithms of FairTraDEX, with a detailed pseudocode imple-
mentation of these algorithms provided in Algorithms 5-9.

Players in the underlying blockchain protocol can enter FairTraDEX as users
by running an instance of Register(), which for a given user deposits an escrow
escrowuser, and generates private information (S, R ∈ {0, 1}Θ(κ)) which is used
in CommitUser() to prove that the user indeed deposited an escrow, without
revealing which deposit.

In the Commit phase, all players can run any number of CommitUser()
and/or CommitMM() instances. CommitUser() generates a user order, commits
to that order publicly and proves in ZK that the player deposited an escrow. If
such a proof cannot be generated, or a proof has already been generated for the
same S, no order can be committed. A correctly run CommitMM() instance
generates a market for a prospective MM, commits to that market publicly and
deposits an escrow escrowMM.

In the Reveal phase, players can run any number of RevealUser() and/or Re-
vealMM() instances. RevealUser() publishes an order generated through Com-
mitUser(), returning the escrow corresponding to the CommitUser() instance,
and as such the Register() instance, to the user. RevealMM() publishes a market
corresponding to a CommitMM() instance, and returns the corresponding es-

88 CHAPTER 5. FAIRTRADEX

crow. Both Reveal phase algorithms assert that the user and MM have sufficient
token balances to submit their order and market respectively. These assertions
are also ensured in the Commit phase, but must be rechecked to ensure correct
balances at the point of token transfer.

In the Resolution phase, any number of Resolution() instances can be run.
The first correct Resolution() instance selects the tightest market from the set
of revealed markets, revealedMkts, for inclusion in order settlement, and any
tie-breaks settled using commit(revealedMkts), as a random seed5. The clearing
price which maximises notional traded, and then minimises the notional im-
balance of the remaining market and orders is computed. A precise algorithm
for verifying the clearing price is provided in Algorithm 8 lines 95-118, and de-
scribed in Section 5.6.1. The intuition behind the algorithm is as follows: Given
more tokens are sold than bought at the proposed price, it can be seen that
checking the next price point lower, first for higher traded notional, and then
for a greater or equal absolute imbalance is sufficient to verify the proposed
price is a valid clearing price. The equivalent check at the next price point
above holds when more tokens are bought than sold at the proposed price.

Orders and markets are then settled based on this clearing price. Finally,
the arrays tracking active commitments, orders and markets userCommits, MM-
Commits, revealedOrders, revealedMkts are cleared, so unsuccessfully revealed
commitments during this round cannot be used to run RevealUser() or Re-
vealMM() in future rounds. This effectively destroys the deposited escrows of
such commitments.

As mentioned already, FairTraDEX protocol encodings are provided in Al-
gorithms 5-9. In these algorithms, for arrays containing array objects, the array
objects are uniquely identifiable by the first item in the array (i.e. User identi-
fier, serial number, ZKProof). For an arbitrary bit-string m ∈ {0, 1}∗, relay(m)
indicates broadcastingm to the relay transaction mempool, wherem is included
as a transaction in the blockchain if and only if it gives the including relayer
access to a relayer fee feer.

5.5.3 FairTraDEX vs. WSFBA

The main differences between FairTraDEX and a WSFBA are as follows:
• Escrows are used to enforce the correct revelation of players who commit
to orders or markets. Escrows are only returned to players if orders are

5Given all markets are revealed, the final value of revealedMkts, and as such
commit(revealedMkts), is unpredictable in the presence of two or more non-cooperative MMs.
We prove in Lemma 5.6.3 that all MMs running CommitMM() also run RevealMM().

5.5. FAIRTRADEX 89

revealed and correspond to a valid commit. Furthermore, escrows are cho-
sen large enough to ensure the reclamation of escrows has strictly higher
utility than not, ensuring rational players follow the protocol.

• An algorithm involving deposits and/or withdrawals updates the set of
balances for all players, identifying the player calling the algorithm.

• FairTraDEX separates the depositing of user escrow and user order com-
mitments. This is a key functionality necessary to preserve user anonymity
and the guarantees of a WSFBA. If a user deposits an escrow in the
same instance as committing to an order, that information can be used
to identify the player, and imply information about the player’s order.
By separating the two, commitment does not require the update of global
variables that can be used to identify the user.

• Set-membership proofs in ZK in the CommitUser() algorithm are used to
prove that a player committing to a user order has deposited a user escrow.
As FairTraDEX separates the deposit and commitment steps, these proofs
allow a user who deposited an escrow to generate one (and only one, as
ZK proofs reveal S) order per escrow, while only revealing that the order
corresponds to a deposited escrow. As the number of deposited escrows
increases, the probability that an order commitment matches any particu-
lar escrow approaches 0. This replicates the anonymous order submission
of a WSFBA.

• Tokenised incentives are used to ensure some player in the blockchain
calculates the clearing price, and settles orders correctly.

5.5.4 Smart Contract Implementation vs. Algorithmic
encoding

We outline here the key differences between Algorithms 5-9, and the smart-
contract encoding [54]. As a blockchain-based implementation under the model
of Section 5.5.1 involves a PKI for message sending, all public algorithm outputs
must now be signed using the PKI. These messages must now be included in
blockchain transactions, with a transaction fee required to ensure the transaction
gets added to the blockchain.

For a player to publish a transaction to a blockchain-based smart contract
without revealing her identity, she must utilise a relayer (for details on relayers,
see Section 2.4). Otherwise, the transaction fee is payable from her account,

90 CHAPTER 5. FAIRTRADEX

revealing sensitive information such as trading patterns and account balances.
Furthermore, this relayer must be rewarded on-chain for relaying the trans-
action. This reward is added by the user when depositing her escrow, and
retrievable by the first relayer publishing the transaction to the blockchain.
Furthermore all checks, such as those for the previous use of serial numbers in
CommitUser(), or the recording of the tightest MM width in Resolution(), are
explicitly encoded in the provided implementations.

Algorithm 5 Register

1: players← generatePopulation()
2: RegIDs← []
3: userCommits← []
4: MMCommits← []
5: phase←
6: widthtight ← any
7: revealedBuyOrders, revealedSellOrders, revealedMkts← []
8: lastPhaseChange← 0 ▷ tracks the block number of last step update
9: feer ← getRelayerFee()
10: minTickSize← getMinimumTickSize()
11: commitDeadline, revealDeadline← T ▷ Deadline for responses equal to the maximal reveal

delay described in the Threat Model
12: escrowuser ← E ▷ Escrow required to show each market, in line with the Threat Model
13: Qnot ← getMaxAuctionNotional()
14: c← random(R>1)
15: escrowMM ← c ·Qnot ▷ Escrow required to show each market, some amount greater than Qnot
16: εx ← getTokenAIndicativePrice()
17: currAucNotional← 0
18: blacklistedSNs← [] ▷ Tracks revealed serial numbers that misbehaved

19: function Initialise()
20: phase← Commit

21: upon ⟨CLIENT-REGISTER, regID⟩ from player ∈ players
with player.balance(B) > escrowuser + feer do ▷ register player as a user

22: player.transfer(escrowuser + feer,B, protocolContract) ▷ Add user deposit to the contract
account

23: users.append(regID)

5.5.5 Description of FairTraDEX Encoding

The following is an overview of the blockchain-based encoding of FairTraDEX
from Algorithms 5-9.

Register

Users randomly generate S, R ∈ {0, 1}Θ(κ), and compute regID← commit(S,R).
Then, the user sends a ⟨CLIENT-REGISTER, regID⟩ to the blockchain using

5.5. FAIRTRADEX 91

Algorithm 6 Commit

24: upon relay(⟨COMMIT, com,S, π⟩) from player ∈ players with
currAucNotional < Qnot ∧ Verify(π, com) = 1 ∧ phase = Commit ∧ ¬(S ∈ blacklistedSNs)
do

25: currAucNotional← currAucNotional + escrowuser

26: userCommits.append([S, com])
27: protocolContract.transfer(feer,B, player)) ▷ Reward relayer

28: upon ⟨COMMIT, com⟩ from player ∈ players with player.balance(B) > escrowMM∧
¬(player ∈ MMCommits) phase = Commit do ▷ Allow only one market per player address

29: player.transfer(escrowMM,B, protocolContract) ▷ Transfer escrow to the protocol contract
account

30: MMCommits.append([player, com])

31: upon phase = Commit ∧ Blockchain.height() = lastPhaseChange + commitDeadline do
32: phase← Reveal
33: lastPhaseChange← Blockchain.height()

the blockchains PKI. Upon addition to the blockchain, this deposits an escrow
of escrowuser and a relayer fee of feer to the blockchain (line 22), with regID
added to users (line 23).

Commit

A user wishing to submit an order of the form order ← (tkn, size, price,width),
first generates a commitment to the order com ← commit(order). The user
then generates a NIZK signature of knowledge π ← NIZKSoK(com){(regID,
R) : MemVerify(RegIDs, regID) = 1 & regID = commit(S,R) } on the com-
mitment. The user then relays a message of the form ⟨COMMIT, com, S, π⟩ to
the relayer mempool, which is then sent to the smart contract by a relayer. The
transaction is only valid if Verify(π) returns 1, and as such, a relayer cannot
tamper with com. The contract first checks that the maximum auction notional
has not been reached (currAucNotional < Qnot, line 24).

Furthermore, a valid ⟨COMMIT, com,S, π⟩ message must not reveal a serial
number S which has previously been added to blacklistedSNs (initialised line
18). Serial numbers in blacklistedSNs correspond to user commits that were
not revealed according to the protocol during a previous Reveal phase. The
escrow corresponding to serial numbers of blacklistedSNs are effectively burned
by the protocol, with users permanently losing access to them. If S is not in
blacklistedSNs, the order commitment is recorded in userCommits (line 26), and
the relayer who relays the transaction to the blockchain receives the fee (line
27).

92 CHAPTER 5. FAIRTRADEX

Algorithm 7 Reveal

34: upon ⟨CLIENT-REVEAL, tkn, size, price,width, S,R, regID , regIDNew⟩
from player ∈ players with S ∈ userCommits ∧ regID = commit(S,R)
∧ commit(tkn, size, price = userCommits[S].com ∧ phase = Reveal do

35: if price ̸= withdraw then
36: if tkn = x ∧ player.balance(x) ≥ size then
37: size← minimum(size, escrowuser/εx)
38: revealedBuyOrders.append([player, size, price,width]) ▷ Add user order to array of

orders to trade
39: player.transfer(size, x, protocolContract)
40: if regIDNew = ∅ then
41: protocolContract.transfer(escrowuser,B, player))
42: else
43: users.append(regIDNew)

44: else if tkn = y ∧ player..balance(y) ≥ size then
45: size← minimum(size, escrowuser/(εx · price))
46: revealedSellOrders.append([player, size, price,width]) ▷ Add user order to array of

orders to trade
47: if regIDNew = ∅ then
48: protocolContract.transfer(escrowuser,B, player))
49: else if player.balance(B) > feer then
50: player.transfer(feer,B, protocolContract)
51: users.append(regIDNew)

52: else ▷ User wants to withdraw
53: protocolContract.transfer(escrowuser,B, player))

54: users.remove(regID)
55: userCommits.remove(S)

56: upon phase = Reveal ∧ Blockchain.height() = lastPhaseChange + revealDeadline do
57: tieBreaker← 0
58: tightMkt← ()
59: tieBreakSeed← commit(revealedMkts) ▷ Generate seed for tie-breaks before revealed

markets is changed
60: for MM ∈ revealedMkts do ▷ Select the unique market corresponding to the tie-breaker in

the proceeding If statement
61: if (Qnot/(εx ·MM.offer) ≤ MM.sizeoffer ≤ MM.balance(y))
∧ (Qnot/εx ≤ MM.sizebid ≤ MM.balance(x)) then ▷ Check MM still has provided the
minimum required liquidity

62: protocolContract.transfer(escrowMM,B, MM))

63: if widthtight = any ∨ (offer
bid < widthtight)

∨ (offer
bid = widthtight ∧ commit(tieBreakSeed||MM||MM.market) > tieBreaker) then

64: widthtight ← offer
bid

65: tieBreaker← commit(tieBreakSeed||MM||MM.market)
66: tightMkt← [MM,market]

67: revealedMkts.remove(MM)

68: sizebid ← minimum(tightMkt.sizebid, escrowMM/εx)
69: sizeoffer ← minimum(tightMkt.sizeoffer, escrowMM/(εx · tightMkt.offer))
70: revealedBuyOrders.append([player← tightMkt.MM,

size← sizebid, price← tightMkt.bid,width← any]) ▷ Add tightest market to set of orders to
be settled

71: revealedSellOrders.append([player← tightMkt.MM,
size← sizeoffer, price← tightMkt.offer,width← any])

72: tightMkt.MM.transfer(sizebid, x, protocolContract)
73: tightMkt.MM.transfer(sizeoffer, y, protocolContract)
74: for S ∈ userCommits do ▷ Add all users who did not reveal order to blacklist, preventing

further commitments
75: blacklistedSNs.append(S)
76: userCommits.remove(S)
77: for MM ∈ MMCommits do ▷ MMs who did not reveal market in time
78: MMCommits.remove(MM) ▷ Remove from protocol without adding to revealedOrders,

effectively burning escrow

79: phase← Resolution
80: lastPhaseChange← Blockchain.height()

5.5. FAIRTRADEX 93

Algorithm 8 Reveal (continued), Resolution, Clearing Price Verification

88: upon ⟨MM-REVEAL,market← (bid, sizebid, offer, sizeoffer)⟩ from MM ∈
MMCommits with commit(market) = MMCommits[MM].com ∧ phase = Reveal do

89: if (Qnot/(εx · offer) ≤ sizeoffer ≤ player.balance(y))
∧ (Qnot/εx ≤ sizebid ≤ player..balance(x)) then ▷ Check MM has provided the minimum
required liquidity, Qnot

90: revealedMkts.append(MM,market)
91: MMCommits.remove(MM)

92: upon phase = Reveal ∧ len(MMCommits) = 0 ∧ len(userCommits) = 0 do ▷ All reveals
published

93: phase← Resolution
94: lastPhaseChange← Blockchain.height()

95: upon ⟨CP, volumeSettled, imbalance⟩ fromplayer ∈ players with
player.balance(B) > resBounty ∧ phase = Resolution do

96: player.transfer(resBounty,B, protocolContract) ▷ To prevent Sybil attacks, player must
deposit funds which are returned if CP is valid

97: revealedSellOrders← revealedSellOrders[revealedSellOrders..width() >
widthtight ∨ revealedSellOrders.width() = any] ▷ Remove sell orders that cannot trade due to
requested width

98: revealedBuyOrders← revealedBuyOrders[revealedBuyOrders..width() >
widthtight ∨ revealedBuyOrders.width() = any]

99: Assert(volumeSettled > 0 ∨ minimum(revealedSellOrders.price) <
maximum(revealedBuyOrders.price)) ▷ If the indicated clearing price is below the lowest
offer/above highest bid, all of the proceeding checks pass.

100: buyVolume← sum(revealedBuyOrders[revealedBuyOrders.price ≥ CP].size)
101: sellVolume← sum(revealedSellOrders[revealedSellOrders.price ≤ CP].size)
102: Assert(minimum(buyVolume/CP, sellVolume) = volumeSettled))
103: Assert((buyVolume/CP)− sellVolume = imbalance)
104: if imbalance = 0 then ▷ We are done
105: SettleOrders(CP, buyVolume, sellVolume)

106: if imbalance > 0 then ▷ As the auction is bid at CP, check if next price increment
above clears higher volume OR smaller imbalance

107: priceToCheck← CP + minTickSize
108: buyVolumeNew← (buyVolume− sum(revealedBuyOrders[CP ≤

revealedBuyOrders.price < priceToCheck].size))/CP
109: sellVolumeNew← sellVolume + sum(revealedSellOrders[CP <

revealedSellOrders.price ≤ priceToCheck].size)
110: Assert((minimum(buyVolumeNew, sellVolumeNew) < volumeSettled) ∨

(minimum(buyVolumeNew, sellVolumeNew) = volumeSettled ∧
imbalance ≤ |buyVolumeNew− sellVolumeNew|)) ▷ If the next price clears less volume, or
clears the same volume with a larger imbalance, the proposed CP is valid

111: SettleOrders(CP, buyVolume, sellVolume)

112: if imbalance < 0 then ▷ As the auction is offered at CP, check if next price increment
below clears higher volume OR smaller imbalance

113: priceToCheck← CP−minTickSize
114: buyVolumeNew← (buyVolume + sum(revealedBuyOrders[CP >

revealedBuyOrders.price ≥ priceToCheck].size))/CP
115: sellVolumeNew← sellVolume− sum(revealedSellOrders[CP ≥

revealedSellOrders.price > priceToCheck].size)
116: Assert((minimum(buyVolumeNew, sellVolumeNew) < volumeSettled) ∨

(minimum(buyVolumeNew, sellVolumeNew) = volumeSettled
∧ imbalance ≤ |buyVolumeNew− sellVolumeNew|))

117: SettleOrders(CP, buyVolume, sellVolume)

118: protocolContract.transfer(2resBounty,B, player)) ▷ Return deposit, and reward player
for submitting valid clearing price

94 CHAPTER 5. FAIRTRADEX

Algorithm 9 Resolution: Settle Orders

112: function SettleOrders(CP, buyVolume, sellVolume)
113: buyVolume← buyVolume/CP ▷ Convert sell volume to equivalent in x
114: if buyVolume > sellVolume then ▷ pro-rate buy orders at the min price above (or equal

to) the clearing price
115: pricepro-rate ← minimum(revealedBuyOrders[revealedBuyOrders.price ≥ CP].price)
116:

sizepro-rate ← sum(revealedBuyOrders[revealedBuyOrders.price = pricepro-rate].size)/CP

117: for order ∈ revealedBuyOrders[revealedBuyOrders.price = pricepro-rate] do

118: protocolContract.transfer(order.size · (1− buyVolume−sellVolume
sizepro-rate

), x, order.player) ▷

return tokens not going to be exchanged

119: order.size← order.size · buyVolume−sellVolume
sizepro-rate

120: else if sellVolume > buyVolume then ▷ pro-rate sell orders at the max price below (or
equal to) the clearing price

121: pricepro-rate ← maximum(revealedSellOrders[revealedSellOrders.price ≤ CP].price)

122: sizepro-rate ← sum(revealedSellOrders[revealedSellOrders.price = pricepro-rate].size)

123: for order ∈ revealedSellOrders[revealedSellOrders.price = pricepro-rate] do

124: protocolContract.transfer(order.size · (1− sellVolume−buyVolume
sizepro-rate

), y, order.player) ▷

return tokens not going to be exchanged

125: order.size← order.size · sellVolume−buyVolume
sizepro-rate

126: for order ∈ revealedBuyOrders, revealedSellOrders do ▷ iterate through orders
127: if order ∈ revealedBuyOrders ∧ (order.price ≥ CP ∨ order.price = mkt) then ▷

execute buy order if bid greater than clearing price
128: tokenTradeSize← order.size/CP
129: protocolContract.transfer(tokenTradeSize, y, order.player)
130: else if order ∈ revealedSellOrders ∧ (order.price ≤ CP ∨ order.price = mkt) then ▷

execute sell order if bid greater than clearing price
131: tokenTradeSize← (order.size)/CP
132: protocolContract.transfer(tokenTradeSize, x, order.player)
133: else ▷ Order not executed
134: protocolContract.transfer(order.size, order.tkn, order.player)

135: phase← Commit
136: currAucNotional← 0
137: revealedBuyOrders, revealedSellOrders← []
138: widthtight ← any
139: lastPhaseChange← Blockchain.height()

5.5. FAIRTRADEX 95

MMs who wish to participate generate a market of the form market ←
(bid, sizebid, offer, sizeoffer), and submit a transaction directly to the blockchain
of the form ⟨COMMIT, commit(market)⟩. This transaction deposits an escrow
of escrowMM to the smart contract. The commitment is then recorded in
MMCommits (line 30).

User and MM Commit transactions are collected until the Commit phase
deadline, commitDeadline (line 11), has passed (line 31).

Reveal

A user who committed to trade through a ⟨COMMIT, com,S, π⟩ transaction
in the Commit phase submits a Reveal transaction directly to the blockchain
of the form ⟨CLIENT-REVEAL, tkn, size, price,width, S,R, regID regIDNew⟩
(line 34). If the user intends to ren-enter the protocol as a user, regIDNew is a
commitment to a new serial number and randomness. Otherwise, it is the null
value.

This ⟨CLIENT-REVEAL, ∗⟩ transaction reveals the token being sold, token
amount to sell, and requested width of the order. The price either reveals a
limit price at which the user is selling, that the order is the market order if
price = mkt, or that the user is withdrawing their escrow if price = withdraw.
The contract checks:

• S ∈ userCommits to verify a commitment corresponding to that serial
number has been recorded.

• regID = commit(S,R) to ensure that user was indeed the same player that
generated the regID and that the user order is the same as that committed
in the Commit phase commit(tkn, size, price,width) = userCommits[S].com.

If the transaction is valid, the order is then added to revealedBuyOrders or
revealedSellOrders, depending on direction. If the token being sold by the user is
x, the effective order size for clearing price calculation and trade size allocation
is the minimum of size and escrowuser/εx, the maximum token x order size
allowable (line 37), with the order recorded in revealedOrders (line 38). If the
token being sold by the user is y, the order size is the minimum of size and
escrowuser/(εx · offer) (line 45), with the order recorded in revealedOrders (line
46).

Finally, if regIDNew is the null value, the escrow is returned (line 41 or 48),
while if it is not, it corresponds to re-entering the protocol as a new user (saving
on an additional transaction to re-enter as a user).

96 CHAPTER 5. FAIRTRADEX

A MM who committed to a market with a ⟨COMMIT, com⟩ message in the
commit phase submits ⟨MM-REVEAL, market← (bid, sizebid, offer, sizeoffer)⟩
(line 88). The contract verifies:

• The market market matches the previously commitment from the commit
phase (commit(market) = MMCommits[MM].com) (line 88).

• For the bid, Qnot/εx ≤ sizebid, which verifies the MM has provided the
minimum notional required by a WSFBA (line 89).

• For the offer, Qnot/(εx ·offer) ≤ sizeoffer, which again verifies the MM has
provided the minimum notional required by a WSFBA (line 89).

Any MM not revealing a market (line 77) loses their escrow (line 78) and is
prevented from participating in the Resolution phase. Otherwise, from the set of
all valid revealed markets revealedMkts, the tightest market is selected, including
a tie-breaking procedure for more than one market with width equal to the tight-
est width. The tie-breaker used in our implementation of FairTraDEX takes, for
a MM MM (identified by a unique public key) and submitted market market,
the market corresponding to the largest value of commit(commit(revealedMkts)
|| MM || market) (lines 57-73). Given the tightest market market ← (bid,
sizebid, offer, sizeoffer) after tie-breaks, the two implicit limit orders are added
to the set of revealed orders revealedBuyOrders and revealedSellOrders. As was
the case with user orders, the effective order size for clearing price calculation
and trade size allocation of the bid is the minimum of sizebid and escrowMM/εx,
while the effective offer size is the minimum of sizeoffer and escrowMM/(εx ·offer).

Reveal transactions are collected until the Reveal deadline, revealDeadline
(line 11), has passed (line 31).

Resolution

Once the protocol enters the Resolution phase, any player in the system can pro-
pose a clearing price by submitting a ⟨CP, ∗⟩ message. Players submitting such
a message must deposit a token amount (which we set as resBounty, although
any significantly large value to prevent invalid calls to the smart contract will
do). This deposit, along with a bounty is returned to the player if CP is a valid
clearing price.

The orders are then settled based on the clearing price CP (lines 114-134).
If the quantity of x being sold is greater than the quantity being bought, the sell
orders at the highest sell price below the clearing price are pro-rated based on
the quantity of x being sold. If the quantity of token x being bought is greater

5.6. PROPERTIES OF FAIRTRADEX 97

than the quantity being sold, the buy orders at the lowest buy price above the
clearing price are pro-rated based on the quantity of x being bought. Remaining
unexecuted order balances and escrows are returned to the owners.

5.6 Properties of FairTraDEX

We now argue that FairTraDEX possesses all of the necessary properties to
instantiate a WSFBA, and discuss the practical implications of these properties.
As the Register() and CommitUser() algorithms are constructed analogously to
the Mint() and Spend() functions of [81], we can make use of the results as
provided therein. These can be translated informally as:

1. Linkability: Consider a player Pj , a set of registrations RegIDs to which Pj
does not know the privately committed values, and a valid ZK signature of
knowledge π and serial number S corresponding to some regIDi ∈ RegIDs.
Pj in has no advantage in linking π and S to the corresponding regIDi
over probability 1

|RegIDs| + negl(κ).

2. Double-spending: Given a set of registrations RegIDs, and any number of
valid (π, S) pairs corresponding to elements in RegIDs, it is computation-
ally infeasible to generate a new serial number S ′ and corresponding valid
proof of registration π ′ in RegIDs.

Given that all players in the system are registered as users, by definition of
the external market price, the expected trade imbalance implied by their orders
is 0. However, in reality, we cannot always expect this level of user participation,
with less user registrations typically resulting in a greater advantage for rational
players in predicting the implied trade imbalance of committed orders.

To account for this in our analysis, we introduce nψ denoting the minimal
number of registrations required to guarantee that EEV is negl(ψ). Note that
in certain blockchain systems, as the total number of players may be unknown
to players within the system, precisely defining nψ may not be possible (for
example, a player registering for the second time observes a smaller relative
increase than a player registering for the first time). In that sense, our analysis
demonstrates that the listed desirable properties can be achieved under a suffi-
cient level of registration (nψ registrations), but not necessarily that a user can
detect whether this level is met in a given auction instance. In practice, a user’s
decision whether or not to commit to an order in FairTraDEX will be based on
heuristics involving the number nc of observed user registrations, noting that
non-negligible EEV may be tolerable if the total expected participation fees are

98 CHAPTER 5. FAIRTRADEX

less than fee.

Towards proving FairTraDEX forms an SNE for rational users and MMs, we
provide a series of Lemmas that we use to prove the main result of the section,
Theorem 5.6.8. We first prove that some player in the blockchain protocol runs
a Resolution() instance every round.

Lemma 5.6.1. At least one player runs Resolution() in every round.

Proof. Consider a Resolution phase where at least one player has not called a
CommitUser() or CommitMM() instance in the preceding Commit phase. This
player is indifferent to the settlement of orders, and as such the only payoff for
that player by running Resolution() correctly is the receipt of resBounty ∈ R+.

Consider instead the case where all players in the system called at least
one instance of CommitUser() and/or CommitMM() in the preceding Commit
phase. In this case, all players have an additional payoff for receipt of the tokens
currently locked in the protocol. As at least one of the buyers or sellers of the
swap must receive a non-zero amount of tokens, the receipt of which having at
worst 0 utility. This, in addition to the receipt of resBounty makes the calling
of Resolution() positive expectancy for at least one player in the system.

We now prove a series of Lemmas demonstrating that given a rational user
(resp. MM) runs an instance of Register() (resp. CommitMM()), that same
player correctly runs CommitUser() and RevealUser() (resp. RevealMM()) in
the proceeding phases.

Lemma 5.6.2. A rational user who correctly runs an instance of Register()
also runs correct corresponding instances of CommitUser() and RevealUser().

Proof. By correctly running Register(), a player deposits escrowuser. The only
way to receive escrowuser back is to correctly run a RevealUser() instance, which
itself can only be run after having run a CommitUser() instance in the previous
phase. By construction, escrowuser is greater than any incurrable losses by
running CommitUser() and RevealUser(), with maximal losses occurring where
the user’s order is settled for tokens that have 0 notional (price goes to 0). As
the user’s initial deposit had notional value strictly less than escrowuser, so must
the incurred loss. The result follows.

Lemma 5.6.3. A rational MM who correctly runs an instance of CommitMM()
also runs a correct instance of RevealMM() in the proceeding phase.

5.6. PROPERTIES OF FAIRTRADEX 99

Proof. By correctly running CommitMM(), a player deposits escrowMM. The
only way to receive escrowMM back is to correctly run a RevealMM() instance
in the proceeding. By definition, as the MM’s bid and offer has notional value
greater than or equal to the total notional in the auction, Qnot, so must the in-
curred loss of not revealing a market. Therefore, players running CommitMM()
always correctly run RevealMM().

Lemma 5.6.4. Consider an instance of FairTraDEX between x and y. A ra-
tional user Pi with bali(B) > escrowuser runs an instance of Register().

Proof. Consider such a user Pi with minimum user utility fee to exchange one
token for another. To execute the swap, Pi must first call Register(). Given Pi
calls Register(), we know from Lemma 5.6.2 that Pi also calls CommitUser()
and RevealUser(). We know from Lemma 5.6.1, Resolution() will be run in
every round, meaning Pi either trades or the tokens are returned. Given a
trade occurs, Pi realises the utility of trading given the restrictions of the order
generated by Pi in CommitUser(), which can be chosen to be any value with
positive utility (buy below the external market price/sell above the external
market price). If no trade occurs, Pi’s realised utility (of 0) does not change.
Therefore, Pi runs Register().

The following lemma demonstrates that it is indeed an SNE for a user (resp.
MM) to run Register() (resp. CommitMM()).

Lemma 5.6.5. Consider an instance of FairTraDEX between x and y, and
at least 1 previously called instance of Register(). Any rational MM Pi with
bali(B) ≥ escrowMM and bali(x), bali(y) > 0 runs an instance of CommitMM().

Proof. Consider such a player Pi. Given Register() was called by some player
Pj , Pi knows Pj must call CommitUser() and RevealUser(). Furthermore, Pi
knows the total order size is bounded by Qnot (Section 5.4). Given external
market price εx→y and the definition of a MM, there is some market market←
(bid@offer) at which Pi observes positive utility to trade with Pj . Therefore,
Pi submits market to the auction. We must now ensure Pi submits the order
by calling CommitMM(). By the calculation of order settlement, if Pi submits
market through the necessary Register() and CommitUser() calls and Pi submits
a market order with finite requested width, no trade happens. As such, Pi runs
CommitMM().

With these lemmas in hand, we have it that rational users and rational
MMs correctly execute all algorithms as outlined by FairTraDEX. This can be

100 CHAPTER 5. FAIRTRADEX

expressed concisely in the following corollary. In this corollary, and the theorem
that follows, we assume users and MMs satisfy the token-balance requirements
as described in Lemmas 5.6.4 and 5.6.5 respectively.

Corollary 5.6.6. Rational users and MMs always follow the FairTraDEX pro-
tocol.

Observation 5.6.7. It can be seen that FairTraDEX with at least nψ previous
Register() calls implements a WSFBA when all players follow the protocol. In
the Commit phase, CommitUser() specifies a user order which is committed to,
while CommitMM() specifies a market which is also committed to. As users
commit to these orders and sign this commitment using a NIZKSoK, nothing is
revealed about the user’s order, as there are are least nψ Register() calls. This
is equivalent to privately submitting the order.

CommitMM() and RevealMM() ensure MMs provide the equivalent of at least
Qnot notional on the bid and offer. Furthermore, as MMs are indistinguishable
(see Section 5.3), a MM commitment reveals nothing about the liquidity on the
bid or offer6.

When the Commit phase is finished, no further orders or markets can be
submitted for that auction round, and as such, the clearing price is predeter-
mined. During the Reveal phase, RevealUser() and RevealMM() reveal the or-
ders corresponding to CommitUser() and CommitMM() instances from the pre-
vious phase, which are settled in the Resolution phase according to clearing price
rules which maximise the amount of notional to be traded, as is in a WSFBA.

With these results in hand, we have it that rational users and rational MMs
correctly execute all algorithms as outlined by FairTraDEX. We now show that
with at least nψ Register() calls, the optimal strategy for a user is to submit
market orders, while the optimal strategy for a MM with external market price
εx→y is to show a market bid @ offer with bid ≈ εx→y ≈ offer in the case where
there are at least 2 non-cooperative MMs, and of width width ≤ fee otherwise.

Theorem 5.6.8. Consider an instance of FairTraDEX between x and y with
external market price εx→y and at least nψ previously called instances of Reg-
ister(). For N non-cooperative MMs, the following strategies form strict Nash
equilibria:

6MMs are also allowed to participate as users if privacy is a concern. CommitMM() provides
professionals with a functionality to efficiently provide liquidity in a decentralised setting. It
is possible to introduce a RegisterMM() function analogous to Register(), allowing MMs to
relay markets in ZK. We believe this has negligible benefit for professionals who already have
price and market-size hidden through the commitment scheme.

5.6. PROPERTIES OF FAIRTRADEX 101

• N = 1: users run Register(), followed by CommitUser() producing market
orders of width fee. The MM runs CommitMM() producing a market of
width at most fee with reference price equal to εx→y in size Qnot. Users
and MMs then run RevealUser() and RevealMM() respectively.

• N ≥ 2: users run Register(), followed by CommitUser() producing market
orders of width greater than 1. MMs run CommitMM() producing markets
of width 1 with reference price equal to εx→y in size of at least Qnot. Users
and MMs then run RevealUser() and RevealMM() respectively.

Proof. From Corollary 5.6.6, we know the running of FairTraDEX is a strictly
dominant strategy for users and MMs. Furthermore, from Observation 5.6.7,
we have seen that FairTraDEX with at least nψ previously called instances
of Register() implements a WSFBA. Given FairTraDEX is a WSFBA, the
statement follows by applying Theorem 5.4.3.

Although providing width 1 markets may seem prohibitive for MMs, the
unique guarantees of FairTraDEX ensure that no players external to the protocol
can extract value from players within the protocol. As player value is being
retained within the FairTraDEX protocol, fees can be introduced to compensate
MMs. Given the potential value retention of FairTraDEX (see Section 5.8, Table
5.2), these fees can be substantial while still ensuring FairTraDEX provides users
with best-in-class liquidity.

Remark 5.6.9. To minimise expected absolute trade imbalances in a DEX
auction, existing protocols, including FairTraDEX, require the hiding/mixing
of order-information. Consider how FairTraDEX compares to previous DEXs
aimed at ensuring user privacy [22, 40, 51]. In these previous protocols, each
order commit reveals the same, and in some cases more information per-order
than a Register() call in FairTraDEX. EEV protection guarantees in these pre-
vious protocols which require nψ orders per auction are achieved in FairTraDEX
for every order in every auction when nψ players are registered to participate in
the protocol. This is an nψ factor improvement in EEV protection/block-space
requirements per auction.

More than this, these previous protocols face liveness issues when players are
concerned about EEV. The first players entering one of these previous protocols
must choose to do so without any guarantees of protection against EEV attacks
based on information leaked from order commitment (trade direction, identity,
trading patterns, etc.).

102 CHAPTER 5. FAIRTRADEX

5.6.1 Clearing Price Verification

The protocol in Algorithm 8 checks that a given clearing price CP clears the
highest notional with respect to x. To do this, it checks the imbalance and total
notional that would be settled at CP. Note, that the statements that follow are
true given some volume trades at the proposed clearing price, which is asserted
in the protocol (line 99).

If the imbalance is 0 (line 104), it can be seen that this price must maximise
the volume traded while minimising the absolute value of the imbalance. Higher
prices strictly reduce the buying notional/ strictly increase the selling notional,
while lower prices strictly reduce the selling notional/increase the buying no-
tional, which creates an imbalance without increasing the notional traded.

If the imbalance is positive (line 106), this implies there will be buy orders
(partially) unfilled at or above CP. We can see that the only prices at which
more notional can trade must be greater than CP. Thus, the contract checks the
next price increment above (line 107), and verifies the total notional traded at
that price is less than at CP, or equal, but with a larger absolute imbalance (line
116). If the notional traded is lower at this higher price, the clearing price is
correct as a lower price reduces the value of the selling notional, and increases the
value of the buying notional. If the notional traded is the same, but the absolute
value of the imbalance is higher, this imbalance must be a sell imbalance by the
same reasoning (buying notional decreases, selling notional increases). If the
absolute value of the imbalance is higher (although negative), the imbalances
at all price points above that price are increasing (buying notional decreases,
selling notional increases).

The same holds for sell imbalances at a proposed clearing price (line 112).
Checking the price point below (line 113) and ensuring the notional is lower, or
that the notional traded is the same but with a large absolute imbalance (line
116) guarantees that the proposed clearing price is valid.

5.7 Notes on FairTraDEX

This section contains several subsections dedicated to addressing some of the
questions that arose throughout the development and dissemination of Fair-
TraDEX.

5.7. NOTES ON FAIRTRADEX 103

5.7.1 Existence of irrational players and coalitions

When analysing the optimal strategies of rational players in WSFBAs, our re-
sults are based on all players being rational and that nψ instances of Register()
are called. If we consider the presence of irrational players in the system, we
can apply the following adjustments:

• Irrational MM: In Lemma 5.4.2, it is shown that the optimal strat-
egy for a MM is to show markets centred around the external market
price. Any other (irrational) strategy must therefore result in reduced ex-
pectancy for the MM, and higher expectancy for users. Therefore, given
the presence of irrational MMs, submitting market orders maximises user
expectancy (with greater expected utility than in the presence of rational
MMs, although with increased variance).

• Irrational user: Given the optimal strategy for rational users is to submit
market orders, a irrational user may then submit limit orders. This merely
reduces the irrational user’s chance of trading vs. other users. This would
not change the strategy of non-colluding rational MMs, but may have
some affect on a monopolistic MM’s interpretation of fee.

Furthermore, if less than nψ instances of Register() are called, users resort
to submitting limit orders. This can be seen in the proof of Theorem 5.4.3. In
the proof, if users are not sure that a MM will show a market with reference
price equal to the external market price, the case when less than nψ instances
of Register() are called, the optimal strategy for users is to submit limit orders,
which only stands to reduce the users’ probability of trading. As the number of
non-cooperative players in FairTraDEX decreases towards two, the guarantees
of FairTraDEX approach those of an AMM. However, as user price and order
size remain hidden until the counterparty chooses her strategy, and before the
clearing price is fixed (end of the Commit phase), FairTraDEX maintains ad-
vantages over AMMs against user-based EEV attacks, such as price/order-size
specific front-running and selective participation.

5.7.2 Practical Considerations for FairTraDEX

Practical approaches to ensure equivalent to nψ Register() calls are taken in
existing anonymity protocols. For example, Tornado Cash 7 rewards players

7https://torn.community/t/anonymity-mining-technical-overview/15 Accessed:
20/07/2022

https://torn.community/t/anonymity-mining-technical-overview/15

104 CHAPTER 5. FAIRTRADEX

proportionally to the (Tornado Cash equivalent of the) number of Register()
calls, as well as the length of time between calling Register() and CommitUser().

Escrow choices

Choosing escrow amounts for users and MMs should reflect the emergent use
cases of the protocol. It is possible to create different FairTraDEX instances
for the same pair of tokens based on trade size, both for liquidity purposes
(MMs will require wider markets for larger-sized orders, but the corresponding
increased escrow requirements might prevent smaller users from participating)
and auction use-cases (day-trading vs. end-of-day balancing). Furthermore, as
the escrow denomination (B) in our description is different to at least one of the
tokens, there needs to be some way to translate the escrow amount into order
sizes. This will depend on the environment, but on Ethereum for example, price
oracles (existing AMMs, Chainlink8, etc.) can be used. It is also possible to
use previous clearing prices from within the FairTraDEX ecosystem, although
a self-referential oracle must be implemented carefully as there may be game-
theoretic implications. If a satisfactory price oracle exists, deposits can be made
in the respective tokens of the swap, further reducing the capital requirements
for players and encouraging adoption.

Incentive compatibility given transaction fees

In Section 5.5, we mention that our strict Nash equilibria are dependent on
the utility gained by users and MMs being greater than the cost for participa-
tion. The choice of smart-contract enabled blockchain on which to deploy will
dictate the barrier of entry for users and MMs alike. Like existing attempts
to implement blockchain-based FBAs [51, 40], we have an amortised number
of transactions per player of two. A naive comparison to AMMs, where this
is reduced to 1 for users, and 0 for MMs, certainly has less direct costs than
FairTraDEX. However, when factors like impermanent loss, slippage9, front-
running, and EEV attacks in general, the value being extracted from DEXs
incurs a significant indirect cost for users. Immediately, we can increase the ex-
pected cost of using AMMs by the slippage required by AMMs (set to 0.5% as of
writing in Uniswap V3, but for larger orders this must increase by the nature of
AMMs). We can increase this further by the probability orders are not executed
(where prices move more than the slippage, potentially due to front-running)

8https://chain.link/
9https://docs.uniswap.org/protocol/concepts/V3-overview/swaps

https://docs.uniswap.org/protocol/concepts/V3-overview/swaps

5.8. COST-BENEFIT ANALYSIS OF FAIRTRADEX 105

but are added to the blockchain. As such, the indirect costs are substantial, are
increasing in order-size increases and proportionally to improvements in user
trading ability as strategies can be replicated/front-run. A thorough compari-
son of the monetary costs of FairTraDEX vs. AMMs over various order-sizes,
and trading scenarios makes for interesting future work as FairTraDEX begins
to be deployed and tested in the wild.

It can be seen from the proof of Theorem 5.4.3 that the user strategies iden-
tified are strong incentive compatible in expectation as the MM always shows
markets of width less than or equal to fee. However, the MM strategy of show-
ing width 1 markets is not strong incentive compatible. In addition to the fees
described in the protocol, an additional fee can be applied within the protocol
itself to incentivize the participation of MMs. This can be a function of MM
participation/market widths. As with all additional fees/rewards, the game-
theoretic implications of such an incentivization scheme must be considered.

In our encoding of FairTraDEX, we do not explicitly introduce a cost for
users and MMs in Commit/Reveal phases to reward the submission of the clear-
ing price. In reality, the result in Lemma 5.6.1 holds without the introduction of
an explicit reward, as there all participating users and MMs will have positive
expectancy to receive tokens through correct order resolution. The use of an
explicit reward is for illustrative purposes, and to avoid complications regarding
transaction fees for running the clearing price checks. The costs of running the
Resolution contracts must be ensured to be less than the utility gained by at
least one player in the blockchain protocol for calling the contract.

5.8 Cost-Benefit Analysis of FairTraDEX

The aim of this section is to demonstrate the contributory significance of Fair-
TraDEX vs. current state-of-the-art protocols as introduced in Section 5.2. Our
results are based on the Solidity implementation of the protocol provided in [54].
In Table 3.1 we include an overview of the gas costs for running FairTraDEX
compared to the previous blockchain-based attempts to implement batch auc-
tions of [51, 40], with numbers taken from the respective papers. These are the
fixed costs for including and executing the transactions on a blockchain. It can
be seen that FairTraDEX has a slightly greater upfront gas cost for users, but
a lesser cost for MMs. This is directly related to the added costs of correctly
using ZK tools to hide users identity and order information until all orders have
been committed. Compared to the variable costs of revealing this information,
we see these costs as acceptable.

106 CHAPTER 5. FAIRTRADEX

FairTraDEX 10 Uniswap [40] [51]

Register 112,800 - 87,000 -
Commit User 344,500 - 52,000 276,150
Commit MM (per order) 24,300 - 52,000 276,150
Reveal (per order) 172,000 190,000 171,000 48,750
Settle (per order) 11 45,500 - 122,500 54,000

Total User 674,800 190,000 432,500 378,900
Total MM 266,100 - 397,500 649,050

Total User (USDC) 7.27 2.05 4.66 4.08
Total MM (USDC) 2.87 - 4.09 7

Table 5.1: Comparison of gas costs in batch-auction implementations. 10 Costs
provided for FairTraDEX are amortised over 128 user orders and 8 markets. 11 We add
an estimated cost for token transfer from smart contract to player of 40,000 to the figures
provided in [51] to standardise the costs therein with those of FairTraDEX and [40].

To demonstrate the benefits of FairTraDEX, Table 5.2 compares specific
swaps that allow for EEV attacks in existing state-of-the-art protocols. We
perform our analysis on ETH/USDC swaps, as this is the highest volume pool
on Uniswap, which at time of writing had pool sizes of 120k ETH and 185M
USDC, an indicative EMP of 1 ETH equal to 1,540 USDC [102]. Furthermore,
we use a gas cost of 7 gwei [46]. Consider 3 buy ETH orders of 10k, 500k
and 10M USDC from 2 different players who are known to need to trade at
any price. P1 has large quantities of both ETH and USDC, and buys or sells
ETH pseudo-randomly, while P2 only owns USDC/only buys ETH. We take the
estimated impact for each order to be 0, 0.15% and 1% respectively, numbers
taken from the Uniswap V3 API [102] (these are more realistic impacts than
those implied by the constant product impact [13] of 0, 0.54% and 11.1%
respectively). Although this is a simplification of order impact, true impact
is likely some multiple/factor of this impact. Protocol fees incentivizing MMs
to provide liquidity are omitted as they are not considered in the provided
academic protocols. After gas costs, this fee should be approximately equal for
all protocols (the Uniswap fee for this pool is 0.3%).

When P1 submits an order in FairTraDEX or [51], no information is gained
about the direction of the trade. However, in [40], direction is revealed. As such,
any blockchain participant can front run that impact on all other markets, and
thus the EMP for any MM responding to the order will be the impacted EMP.
When P2 submits an order in either of [40, 51] the direction is known, and the
EMP is impacted in the same way as for P1. Crucially, this impact takes place

5.9. CONCLUSION 107

FairTraDEX Uniswap [40] [51]

P1-10,000 7 52 5 4
P2-10,000 7 52 5 4
P1-500,000 7 3002 755 4
P2-500,000 7 3002 755 754
P1-10,000,000 7 150,002 100,005 4
P2-10,000,000 7 150,002 100,005 100,004

Table 5.2: Comparison of expected execution costs in USDC of batch-auction imple-
mentations, including the costs of Table 5.1.

before any player interacts with P2, giving P2 a worse price. Using estimated
price impacts of 0, 0.15% and 1%, Table 5.2 demonstrates the costs of executing
these swaps, excluding transaction fees, in these protocols, and Uniswap. For
Uniswap, we must also add the recommended slippage, an additional 0.5% of
the order size, as it is always in a block producers interest to give Uniswap
players worst execution. It can be seen that these costs become increasingly
more significant as order size increases, dominating the differences in gas costs
of Table 3.1.

Although Table 5.2 can be seen as simplifying how orders are handled, it
demonstrates two crucial motivators for our work. Firstly, any information re-
vealed about users before a trade is agreed can, is and will continue to be used
against users. Furthermore, this cost is not necessarily paid to the MM. As or-
ders are committed in public, any blockchain participant can use the committed
information to front run the impact on the EMP before the MM or users have
an opportunity to trade, extracting money from the DEX protocol. Secondly, as
the effects of these value-extraction techniques increase super-linearly in order-
size, a protocol with the value-extraction guarantees of FairTraDEX is needed
to allow typically large users to utilise the benefits of DEXs, and blockchain
protocols in as a whole, at a fixed cost, as demonstrated in Table 3.1, without
incurring the prohibitive execution costs of previous solutions, as demonstrated
in Table 5.2.

5.9 Conclusion

We provide FairTraDEX, a blockchain-based DEX protocol based on WSFBAs
in which we formally prove the strategies of rational participants have strict
Nash equilibria in which all trades occur at the external market price plus or

108 CHAPTER 5. FAIRTRADEX

minus bounded upfront costs (specified market widths) which approach 0 in the
presence of non-cooperative MMs. This is an attractive alternative to exist-
ing mainstream protocols such as AMMs where rational players effectively and
systematically prevent such an equilibrium from happening. Compared to pre-
vious blockchain-based attempts to implement EEV-proof DEXs, FairTraDEX
is the first to practically allow for indistinguishable user-order submissions by
decoupling order submission from escrow deposit and order revelation. The
FairTraDEX benefits formalised in Section 5.6, summarised in Remark 5.6.9,
and demonstrated in Section 5.8 provide important improvements on previous
protocols regarding EEV protection, setting a new standard for EEV protection
in DEXs.

As stated in the comparisons of Section 5.8, protocol fees are omitted for all
protocols. Given the total retention of value within the FairTraDEX protocol
(no extractable value), fees in line with the utility gained by users for exchanging
their tokens can be charged to incentivize the long-term participation of MMs
in FairTraDEX. These fees should reflect the need to incentivize MMs while
retaining the unique user-side benefit of trading at the external market price
in expectation, which is proven to occur in FairTraDEX. Analysis of these fees
makes for interesting future work.

Chapter 6

Diamond

This chapter is based on the paperDiamonds are Forever, Loss-Versus-Rebalancing
is Not [78].

6.1 Introduction

CFMMs such as Uniswap [102] have emerged as the dominate class of AMM
protocols. CFMMs offer several key advantages for decentralized liquidity pro-
vision. They are efficient computationally, have minimal storage needs, match-
ing computations can be done quickly, and liquidity providers can be passive.
Thus, CFMMs are uniquely suited to the severely computation- and storage-
constrained environment of blockchains.

Unfortunately, the benefits of CFMMs are not without significant costs. One
of these costs is definitively formalized in [82] as loss-versus-rebalancing (LVR).
It is proved that as the underlying price of a swap moves around in real-time,
the discrete-time progression of AMMs leave arbitrage opportunities against
the AMM. In centralized finance, market makers typically adjust to new price
information before trading. This comes at a considerable cost to AMMs (for
CFMMs, [82] derives the cost to be quadratic in realized moves), with similar
costs for AMMs derived quantitatively in [90, 35].

These costs are being realized by liquidity providers in current AMM proto-
cols. Furthermore, toxic order flow, of which LVR is a prime example, is con-
sistently profiting against AMM liquidity providers (Figure 6.1). All of these
factors point towards unsatisfactory protocol design, and a dire need for an

109

110 CHAPTER 6. DIAMOND

Figure 6.1: Toxicity of Uniswap V3 Order Flow [100]. This graph aggregates the
PnL of all trades on the Uniswap V3 WETH/USDC pool, measuring PnL of each order
after 5 minutes, 1 hour, and 1 day. This demonstrates the current losses being suffered
by AMM pools are significant, consistent, and unsustainable. As LVR is significant
and consistent, a large part of these losses can be prevented by minimizing LVR.

LVR-resistant automated market maker. In this chapter, we provide Diamond,
an AMM protocol which formally protects against LVR.

6.1.1 Our Contribution

We present Diamond, an AMM protocol which isolates the LVR being captured
from a Diamond liquidity pool by arbitrageurs, and forces these arbitrageurs to
repay some percentage of this LVR to the pool. As in typical CFMMs, Diamond
pools are defined with respect to two tokens x and y. At any given time, the
pool has reserves of Rx and Ry of both tokens, and some pool pricing function1

PPF(Rx, Ry). We demonstrate our results using the well-studied Uniswap V2
pricing function of PPF(Rx, Ry) =

Rx
Ry

.

We introduce the concept of its corresponding CFMM pool for each Diamond
pool. For a Diamond pool with token reserves (Rx, Ry) and pricing function
PPF(Rx, Ry) =

Rx
Ry

, the corresponding CFMM pool is the Uniswap V2 pool with

reserves (Rx, Ry). If an arbitrageur tries to move the price of the corresponding
CFMM pool adding Υx tokens and removing Υy, the same price is achieved in
the Diamond pool by adding (1− β)Υx tokens for some β > 0, with β the LVR

1See Equation 6.1 for a full description of pool pricing functions as used in this chapter

6.1. INTRODUCTION 111

rebate parameter. The arbitrageur receives (1− β)Υy. In our framework, it can
be seen that PPF(Rx + (1− β)Υx, Ry − (1− β)Υy) < PPF(Rx +Υx, Ry −Υy),

which also holds in our example, as Rx+(1−β)Υx
Ry−(1−β)Υy <

Rx+Υx
Ry−Υy . A further ηy tokens

are removed from the Diamond pool to move the reserves to the same price as
the corresponding CFMM pool, with these tokens added to a vault.

Half of the tokens in the vault are then periodically converted into the other
token (at any time, all tokens in the vault are of the same denomination) in one
of the following ways:

1. An auction amongst arbitrageurs.

2. Converted every block by the arbitrageur at the final pool price. If the
arbitrageur must buy η

2 tokens to convert the vault, the arbitrageur must
simultaneously sell η2 futures which replicate the price of the token to the
pool. These futures are then settled periodically, either by

(a) Auctioning the η
2 tokens corresponding to the futures to the arbi-

trageurs, with the protocol paying/collecting the difference.

(b) The use of a decentralized price oracle. In this chapter, we consider
the use of the settlement price of an on-chain frequent batch auction,
such as that of Chapter 5, which is proven to settle at the external
market price in expectancy.

Importantly, these auctions are not required for protocol liveness, and can be
arbitrarily slow to settle. We prove that all of these conversion processes have 0
expectancy for the arbitrageur or Diamond pool, and prove that the LVR of a
Diamond pool is (1−β) of the corresponding CFMM pool. Our implementation
of Diamond isolates arbitrageurs from normal users, using the fact that only
arbitrageurs compete to capture LVR. This ensures the protections of Diamond
can be provided in practice while providing at least the same trading experience
for normal users. Non-arbitrageur orders in a Diamond pool are performed
identically to orders in the corresponding CFMM pool. Although this means
orders remain exposed to the front-running, back-running and sandwich attacks
of corresponding CFMMs, the LVR retention of Diamond pools should result in
improved liquidity and reduced fees for users.

We discuss practical considerations for implementing Diamond, including
decreasing the LVR rebate parameter, potentially to 0, during periods of proto-
col inactivity until transactions are processed, after which the parameter should
be reset. This ensures the protocol continues to process user transactions, which
becomes necessary when arbitrageurs are not actively extracting LVR. If arbi-
trageurs are not arbitraging the pool for even small LVR rebate parameters, it

112 CHAPTER 6. DIAMOND

makes sense to allow transactions to be processed as if no LVR was possible.
In this case, Diamond pools perform identically to corresponding CFMM pools.
However, if/when arbitrageurs begin to compete for LVR, we expect LVR rebate
parameters to remain high.

We present a series of experiments in Section 6.7 which isolate the benefits
of Diamond. We compare a Diamond pool to its corresponding Uniswap V2
pool, as well as the strategy of holding the starting reserves of both tokens,
demonstrating the power of Diamond. We isolate the effects of price volatility,
LVR rebate parameter, pool fees, and pool duration on a Diamond pool. Our
experiments provide convincing evidence that the relative value of a Diamond
pool to its corresponding Uniswap V2 pool is increasing in each of these vari-
ables. These experiments further evidence the limitations of current CFMMs,
and the potential of Diamond.

6.1.2 Organization of the Chapter

Section 6.2 analyzes previous work related to LVR in AMMs. Section 6.3 out-
lines the terminology used in the chapter, including chapter-specific player def-
initions needed to formally reason about Diamond. Section 6.4 introduces the
Diamond protocol. Section 6.5 proves the properties of Diamond. Section 6.6
describes how to implement the Diamond protocol, and practical considerations
which should be made. Section 6.7 provides an analysis Diamond over multiple
scenarios and parameters, including a comparison to various reference strategies.
We conclude in Section 6.8.

6.2 Related Work

There are many papers on the theory and design of AMMs, with some of the
most important including [5, 4, 82, 20, 21]. The only peer-reviewed AMM
design claiming protection against LVR [67] is based on live price oracles. The
AMM must receive the price of a swap before users can interact with the pool.
Such sub-block time price data requires centralized sources which are prone to
manipulation, or require the active participation of AMM representatives, a
contradiction of the passive nature of AMMs and their liquidity providers. We
see this as an unsatisfactory dependency for DeFi protocols.

Attempts to provide LVR protection without explicit use of oracles either
use predictive fees for all players [47] and/or reduce liquidity for all players
through more complex constant functions [27]. Charging all users higher fees to

6.3. PRELIMINARIES 113

compensate for arbitrageur profits reduces the utility of the protocol for genuine
users, as does a generalized liquidity reduction. In Diamond, we only reduce
liquidity for arbitrageurs (which can also be seen as an increased arbitrageur-
specific fee), providing at least the same user experience for typical users as
existing AMMs without LVR protection.

A recent proposed solution to LVR published in a blog-post [60] termed
MEV-capturing AMMs (McAMMs) considers auctioning off the first transac-
tion/series of transaction in an AMM among arbitrageurs, with auction revenue
paid in some form to the protocol. Two important benefits of Diamond com-
pared to the proposed McAMMs are the capturing of realized LVR in Diamond
as opposed to predicted LVR in McAMMs, and decentralized access to Diamond
compared to a single point of failure in McAMMs.

In McAMMs, bidders are required to predict upcoming movements in the
AMM. Bidders with large orders to execute over the period (e.g. private price
information, private order flow, etc.) have informational advantages over other
bidders. Knowing the difference between expected LVR excluding this private
information vs. true expected LVR allows the bidder to inflict more LVR on
the AMM than is paid for. As this results in better execution for the winner’s
orders, this may result in more private order flow, which exacerbates this effect.
Diamond extracts a constant percentage of the true LVR, regardless of pri-
vate information. McAMMs also centralize (first) access control to the winning
bidder. If this bidder fails to respond or is censored, user access to the pro-
tocol is prohibited/more expensive. Diamond is fully decentralized, incentive
compatible and can be programmed to effectively remove LVR in expectancy.
Future McAMM design improvements based on sub-block time auctions are
upper-bounded by the current protection provided by Diamond.

6.3 Preliminaries

This section introduces the key terminology and definitions needed to under-
stand LVR, the Diamond protocol, and the proceeding analysis. In this work we
are concerned with a single swap between token x and token y. We use x and
y subscripts when referring to quantities of the respective tokens. The external
market price of a swap is denoted by a lowercase p, while pool prices/ price
functions are denoted using an uppercase P , with the price of a swap quoted as
the quantity of token x per token y.

114 CHAPTER 6. DIAMOND

6.3.1 Constant Function Market Makers

A CFMM is characterized by reserves (Rx, Ry) ∈ R2
+ which describes the total

amount of each token in the pool. The price of the pool is given by pool price
function PPF : R2

+ → R taking as input pool reserves (Rx, Ry). PPF has the
following properties:

(a) PPF is everywhere differentiable, with
∂PPF

∂Rx
> 0,

∂PPF

∂Ry
< 0.

(b) lim
Rx→0

PPF = 0, lim
Rx→∞

PPF =∞, lim
Ry→0

PPF =∞, lim
Ry→∞

PPF = 0.

(c) If PPF(Rx, Ry) = p, then PPF(Rx + cp,Ry + c) = p, ∀c > 0.
(6.1)

These are typical properties of price functions. Property (a) states the price
of y is increasing in the number of x tokens in the pool and decreasing in
the number of y tokens. Property (b) can be interpreted as any pool price
value is reachable for a fixed Rx, by changing the reserves of Ry, and vice versa.
Property (c) states that adding reserves to a pool in a ratio corresponding to the
current price of the pool does not change the price of the pool. These properties
trivially hold for the Uniswap V2 price function of Rx

Ry
, and importantly allow

us to generalize our results to a wider class of CFMMs.
For a CFMM, the feasible set of reserves C is described by:

C = {(Rx, Ry) ∈ R2
+ : PIF(Rx, Ry) = k} (6.2)

where PIF : R2
+ → R is the pool invariant and k ∈ R is a constant. The pool is

defined by a smart contract which allows any player to move the pool reserves
from the current reserves (Rx,0, Ry,0) ∈ C to any other reserves (Rx,1, Ry,1) ∈ C
if and only if the player provides the difference (Rx,1 −Rx,0, Ry,1 −Ry,0).

Whenever an arbitrageur interacts with the pool, say at time t with reserves
(Rx,t, Ry,t), we assume as in [82] that the arbitrageur maximizes their profits
by exploiting the difference between PPF(Rx,t, Ry,t) and the external market
price at time t, denoted εt. To reason about this movement, we consider a pool
value function V : R+ → R defined by the optimization problem:

V (εt) = min
(Rx,Ry)∈R2

+

εtRy +Rx, such that PIF(Rx, Ry) = k (6.3)

Given an arbitrageur interacts with the pool with external market price εt, the
arbitrageur moves the pool reserves to the (Rx, Ry) satisfying V (εt).

6.3. PRELIMINARIES 115

6.3.2 Loss-Versus-Rebalancing

LVR, and its prevention in AMMs is the primary focus of this chapter. The
formalization of LVR [82] has illuminated one of the main costs of providing
liquidity in CFMMs. The authors of [82] provide various synonyms to concep-
tualize LVR. In this chapter, we use the opportunity cost of arbitraging the pool
against the external market price of the swap, which is proven to be equivalent
to LVR in Corollary 1 of [82]. The LVR between two blocks Bt and Bt+1 where
the reserves of the AMM at the end of Bt are (Rx,t, Ry,t) and the external
market price when creating block Bt+1 is εt+1 is:

Rx,t +Ry,tεt+1 − V (εt+1) = (Rx,t −Rx,t+1) + (Ry,t −Ry,t+1)εt+1. (6.4)

As this is the amount being lost to arbitrageurs by the AMM, this is the quantity
that needs to be minimized in order to provide LVR protection. In Diamond,
this minimization is achieved.

6.3.3 Auctions

To reason about the incentive compatibility of parts of our protocol, we outline
some basic auction theory results.

First-price-sealed-bid-auction: There is a finite set of players I and a
single object for sale. Each bidder i ∈ I assigns a value of Xi to the object.
Each Xi is a random variable that is independent and identically distributed
on some interval [0, Vmax]. The bidders know its realization xi of Xi. We will
assume that bidders are risk neutral, that they seek to maximize their expected
payoff. Per auction, each player submit a bid bi to the auctioneer. The player
with the highest bid gets the object and pays the amount bid. In case of tie,
the winner of the auction is chosen randomly. Therefore, the utility of a player
i ∈ I is

ui(bi, b−i) =

{
xi−bi
m , if bi = maxi{bi},

0, otherwise

where m = |argmaxi{bi}|. In our protocol, we have an amount of tokens z that
will be auctioned. This object can be exchanged by all players at the external
market price ε. In this scenario, we have the following lemma.

Lemma 6.3.1. Let I be a set of players that can exchange at some market
any amount of tokens x or y at the external market price ε. If an amount z of
token y is auctioned in a first-price auction, then the maximum bid of any Nash
equilibrium is at least zε.

116 CHAPTER 6. DIAMOND

Proof. By construction, we have that the support of Xi is lower bounded by
zε. Therefore, in a second-price auction, in equilibrium, each player will bid
at least, zε. Using the revenue equivalence theorem [66], we deduce that the
revenue of the seller is at least zε obtaining the result.

In one variation of Diamond, it possible to use a periodically updated price
oracle to ensure the incentive compatibility of the protocol. To instantiate a
game-theoretically secure decentralized price oracles, we can use the settlement
price of a decentralized frequent batch auction (see Chapter 5). Frequent batch
auctions have been proven to settle in expectancy at the external market price
when the auction is run [33]. Such guarantees were originally intended to bene-
fit the users of the frequent batch auction. However, given the settlement price
of the auction has expectancy equal to the external market price at a specific
time, we can use this as a practical and secure price oracle for settling deriva-
tives depending on this price, without the need for centralized alternatives like
Chainlink [36].

6.4 Diamond

This section introduces the Diamond protocol. When the core protocol of Sec-
tion 6.4.2 is run, some amount of tokens are removed from the pool and placed
in a vault. These vault tokens are eventually re-added to the pool through a
conversion protocol. Sections 6.4.3 and 6.4.4 detail two conversion protocols
which can be run in conjunction with the core Diamond protocol. Which con-
version protocol to use depends on the priorities of the protocol users, with a
comparison of their trade-offs provided in Section 6.7. These trade-offs can be
summarized as follows:

• The process of Section 6.4.3 ensures the available liquidity is strictly in-
creasing in expectancy every block, and can be used in conjunction with
a decentralized price oracle to ensure the only required participation of a
arbitrageurs is in arbitraging the pool (see process 2 in Section 6.4.3).

• The process in Section 6.4.4 incurs less variance in the total value of tokens
owned by the pool (see Figure 6.2), and involves a more straightforward
use of an auction.

Section 6.5 formalizes the properties of Diamond, culminating in Theorem
6.5.4, which states that Diamond can be parameterized to reduce LVR arbitrar-
ily close to 0. It is important to note that Diamond is not a CFMM, but the
rules for adjusting pool reserves are dependent on a CFMM.

6.4. DIAMOND 117

6.4.1 Model Assumptions

We outline here the assumptions used when reasoning about Diamond. Inkeep-
ing with the seminal analysis of [82], we borrow a subset of the assumptions
therein, providing here a somewhat more generalized model.

1. External market prices follow a martingale process.

2. The risk-free rate is 0.

3. There exists a population of arbitrageurs able to frictionlessly trade at the
external market price, who continuously monitor and periodically interact
with AMM pools.

4. An optimal solution (R∗x, R
∗
y) to Equation 6.3 exists for every external

market price ε ≥ 0.
The use of futures contracts in one version of the Diamond protocol makes

the risk-free rate an important consideration for implementations of Diamond.
If the risk free rate is not 0, the profit or loss related to owning token futures
vs. physical tokens must be considered. Analysis of a non-zero risk-free rate is
beyond the scope of the thesis.

6.4.2 Core Protocol

We now describe the core Diamond, which is run by all Diamond variations.
A Diamond pool Φ is described by reserves (Rx, Ry), a pool pricing function
PPF(), a pool invariant function PIF(), an LVR-rebate parameter β ∈ (0, 1),
and conversion frequency τ ∈ N.

We define the corresponding CFMM pool of Φ, denoted CFMM(Φ), as the
CFMM pool with reserves (Rx, Ry) whose feasible set is described by pool in-
variant function PIF() and pool constant k = PIF(Rx, Ry). Conversely, Φ is
the corresponding Diamond pool of CFMM(Φ). It is important to note that
CFMM(Φ) changes every time the Φ pool reserves change. The protocol pro-
gresses in blocks, with one reserve update per block.

Consider pool reserves (Rx,0, Ry,0) in Φ and a player wishing to move the

price of Φ to p1 ̸= Rx,0
Ry,0

. For a player wishing to move the price of CFMM(Φ)

to p1 from starting reserves (Rx,0, Ry,0), let this require Υy > 0 tokens to be
added to CFMM(Φ), and Υx > 0 tokens to be removed from CFMM(Φ). The
same price in Φ is achieved by the following process2:

2If Υy > 0 tokens are to be removed from CFMM(Φ) with Υx > 0 tokens to be added
in order to achieve p1, then (1 − β)Υy tokens are removed from Φ and (1 − β)Υx tokens

118 CHAPTER 6. DIAMOND

1. Adding (1− β)Υy tokens to Φ and removing (1− β)Υx tokens.

2. Removing υx > 0 tokens such that:

PPF(Rx,0 − (1− β)Υx − υx, Ry,0 + (1− β)Υy) = p1.
3 (6.5)

These υx tokens are added to the vault of Φ.
After this process, let there be (vx, vy) ∈ R2

+ tokens in the vault of Φ. If
vyε1 > vx, add (vx,

vx
ε1
) tokens into Φ from the vault. Otherwise, add (vyε1, vy)

tokens into Φ from the vault. This is a vault rebalance.
Every τ blocks, after the vault rebalance, the protocol converts half of the

tokens still in the vault of Φ (there can only be one token type in the vault
after a vault rebalance) into the other token in Φ according to one of either
conversion process 1 (Section 6.4.3) or 2 (Section 6.4.4). After the conversion
process, all tokens still in the vault of Φ are added into the Φ pool.

6.4.3 Per-block Conversion vs. Future Contracts

After every arbitrage, the arbitrageur converts η equal to half of the total tokens
in the vault at the pool price pc, equivalent to buying η tokens for pc. Simulta-
neously, the arbitrageur sells to the pool η future contracts in the same token
denomination at price pc. Given the pool buys η future contracts at conversion
price pc, and the futures settle at price εT , the protocol wins η(εT − pc).

These future contracts are settled every τ blocks, with the net profit or
loss being paid in both tokens, such that for a protocol settlement profit of
PnL measured in token x and pool price pT , the arbitrageur pays (sx, sy) with
PnL = sx + sypT and sx = sypT . These contracts can be settled in one of the
following (non-exhaustive) ways to settle futures:

1. Every τ blocks, an auction takes place to buy the offered tokens from the
players who converted the pool at the prices at which the conversions took
place. For a particular offer, a positive bid implies the converter lost/the
pool won to the futures. In this case the converter gives the tokens to
the auction winner, while the pool receives the winning auction bid. A
negative bid implies the converter won/the pool lost to the futures. In this
case, the converter must also give the tokens to the auction winner, while
the pool must pay the absolute value of the winning bid to the auction
winner.

are added to Φ, with a further υy > 0 removed from Φ and added to the vault such that
PPF(Rx,0 + (1− β)Υx, Ry,0 − (1− β)Υy − υy) = p1.

3Achievable as a result of properties(a) and (b) of Equation 6.1.

6.5. DIAMOND PROPERTIES 119

2. Every τ blocks, a blockchain-based frequent batch auction takes place in
the swap corresponding to the pool swap. The settlement price of the
frequent batch auction is used as the price at which to settle the futures.

6.4.4 Periodic Conversion Auction

Every τ blocks, η equal to half of the tokens in the vault are auctioned to all
players in the system, with bids denominated in the other pool token. For
winning bid b in token x (or token y), the resultant vault quantities described
by (sx = b, sy = η) (or (sx = η, sy = b)) are added to the pool reserves. In this
case, unlike in Section 6.4.3, there are no restrictions placed on sx

sy
. As such,

they may be in a different ratio than the pool reserves.

6.5 Diamond Properties

This section outlines the key properties of Diamond. We first prove that both
conversion process have at least 0 expectancy for the protocol.

Lemma 6.5.1. Converting the vault every block vs. future contracts has ex-
pectancy of at least 0 for a Diamond pool.

Proof. Consider a conversion of η tokens which takes place at time 0. Let
the conversion be done at some price pc, while the external market price is
ε0. WLOG let the protocol be selling η y tokens in the conversion, and as
such, buying η y token futures at price pc. The token sells have expectancy
η(pc − ε0). For the strategy to have at least 0 expectancy, we need the futures
settlement to have expectancy of at least η(ε0 − pc). In Section 6.4.3, two
versions of this strategy were outlined. We consider both here. In both sub-
proofs, we use the assumption that the risk-free rate is 0, which coupled with
our martingale assumption for ε means the external market price at time t is
such that E(εt) = ε0. We now consider the two options for settling futures
outlined in Section 6.4.3

Option 1: Settle futures by auctioning tokens at the original con-
verted price. The arbitrageur who converted tokens for the pool at price pc
must auction off the tokens at price pc. Let the auction happen at time t, with
external market price at that time of εt. Notice that what is actually being
sold is the right, and obligation, to buy η tokens at price pc. This has value
η(εt − pc), which can be negative. As negative bids are paid to the auction
winner by the protocol, and positive bids are paid to the protocol, we are able

120 CHAPTER 6. DIAMOND

to apply Lemma 6.3.1. As such, the winning bid is at least η(εt − pc), which
has expectancy of at least

E(η(εt − pc)) = η(E(εt)− pc) = η(ε0 − pc). (6.6)

Thus the expectancy of owning the future for the protocol is at least η(ε0− pc),
as required.

Option 2: Settle futures using frequent batch auction settlement
price. For a swap with external market price εt at time t, a batch auction in
this swap settles at εt in expectancy (Theorem 5.6.8). Thus the futures owned
by the protocol have expectancy

E(η(εt − pc)) = η(E(εt)− pc) = η(ε0 − pc). (6.7)

Lemma 6.5.2. A periodic conversion auction has expectancy of at least 0 for
a Diamond pool.

Proof. Consider a Diamond pool Φ with vault containing 2η tokens. WLOG
let these be of token y. Therefore the pool must sell η tokens at the external
market price to balance the vault. Let the conversion auction accept bids at
time t, at which point the external market price is εt. For the auction to have
expectancy of at least 0, we require the winning bid to be at least ηεt. The
result follows from Lemma 6.3.1.

Corollary 6.5.3. Conversion has expectancy of at least 0 for a Diamond pool.

With these results in hand, we now prove the main result of the chapter.
That is, the LVR of a Diamond pool is (1 − β) of the corresponding CFMM
pool.

Theorem 6.5.4. For a CFMM pool CFMM(Φ) with LVR of L > 0, the LVR
of Φ, the corresponding pool in Diamond, has expectancy of at most (1− β)L.

Proof. To see this, we first know that for CFMM(Φ) at time t with reserves
(Rx,t, Ry,t), LVR corresponds to the optimal solution (R∗x,t+1, R

∗
y,t+1) with ex-

ternal market price εt+1 which maximizes:

(Rx,t+1 −Rx,t) + (Ry,t+1 −Ry,t)εt+1. (6.8)

Let this quantity be

L = (R∗x,t+1 −Rx,t) + (R∗y,t+1 −Ry,t)εt+1. (6.9)

6.6. IMPLEMENTATION 121

In Diamond, a player trying to move the reserves of Φ to (R′x,t+1, R
′
y,t+1) only

receives (1− β)(R′x,t+1 −Rx,t) while giving (1− β)(R′y,t+1 −Ry,t) to Φ. Thus,
an arbitrageur wants to find the values of (R′x,t+1, R

′
y,t+1) that maximize:

(1− β)(R′x,t+1 −Rx,t) + (1− β)(R′y,t+1 −Ry,t)εt+1 + E(conversion). (6.10)

where E(conversion) is the per-block amortized expectancy of the conversion
operation for the arbitrageurs. From Lemma 6.5.3, we know E(conversion) ≥ 0
for Φ. This implies the arbitrageur’s max gain is less than:

(1− β)(R′x,t+1 −Rx,t) + (1− β)(R′y,t+1 −Ry,t)εt+1, (6.11)

for the (R′x,t+1, R
′
y,t+1) maximizing Equation 6.10. From Equation 6.9, we know

this has a maximum at (R′x,t+1, R
′
y,t+1) = (R∗x,t+1, R

∗
y,t+1). Therefore, the LVR

of Φ is at most:

(1− β)((R∗x,t+1 −Rx,t) + (R∗y,t+1 −Ry,t)εt+1) = (1− β)L. (6.12)

6.6 Implementation

We now detail an implementation of Diamond. In our implementation, we con-
sider block producers as arbitrageurs, with names interchangeable, with block
producers in Diamond not charged protocol fees. The main focus of our imple-
mentation is ensuring user experience in a Diamond pool is not degraded com-
pared to the corresponding CFMM pool. To this point, applying an β-discount
on every Diamond pool trade is not viable. To avoid this, we only consider
LVR on a per-block, and not a per-transaction basis. Given the transaction se-
quence, in/exclusion and priority auction capabilities of block producers, block
producers can either capture the block LVR of a Diamond pool themselves, or
effectively sell this right to other arbitrageurs.

From an implementation standpoint, who captures the LVR is not important,
but it is the block producer who must repay the LVR of a block. To enforce
this, for a Diamond pool, we check the pool state in the first pool transaction
each block and take escrow from the block producer. This escrow is be used
in part to pay the realized LVR of the block back to the pool. The first pool
transaction also returns the collateral of the previous block producer, minus
the realized LVR (computable from the difference between the current pool
state and the pool state at the beginning of the previous block). To ensure the

122 CHAPTER 6. DIAMOND

collateral covers realized LVR, each proceeding pool transaction verifies that
the LVR implied by the pool state as a result of the transaction can be repaid
by the deposited collateral. Our implementation is based on the following two
assumptions:

1. A block producer always sets the final state of a pool to the state which
maximizes the LVR.

2. The block producer realizes net profits of at least the LVR corresponding
to the final state of the pool.

If the final price of the block is not the price maximizing LVR, the block
producer has ignored an arbitrage opportunity. The block producer can always
ignore non-block producer transactions to realize the LVR, therefore, any addi-
tional included transactions must result in greater or equal utility for the block
producer than the LVR.

6.6.1 Core Protocol

The first transaction interacting with a Diamond pool Φ in every block attests
to the maximum and minimum prices attained by Φ during the block, pmax
and pmin respectively. We call this transaction the pool unlock transaction.
Only one pool unlock transaction is executed per pool per block. Given a
current pool price of p0 corresponding to reserves (Rx,0, Ry,0), it must be that
pmin ≤ p0 ≤ pmax. As such, given a move to pmin, some amount λx ≥ 0 must
be returned to the Φ pool and vault by the block producer. Similarly, given a
move to pmax, λy ≥ 0 must be returned to the Φ pool and vault by the block
producer. For a final pool price p1 with Υx > 0 tokens added to the pool and
Υy > 0 tokens removed (implying p1 > p0), βΥx tokens are removed from λx,
while βΥy tokens are returned to the producer who deposited λx. A further υx
tokens are removed from λx such that:

PPF(Rx,0 − (1− β)Υx − υx, Ry,0 + (1− β)Υy) = p1. (6.13)

The λy and remainder of λx, if any, are returned to the producer who deposited
λx and λy. Given p1 ≤ p0, the same process is repeated with βΥy and υy paid
to the pool and vault respectively. These amounts (λx, λy) must be deposited
to the protocol contract in the pool unlock transaction.

Every proceeding user transaction interacting with Φ in the block first ver-
ifies that the implied pool move stays within the bounds [pmin, pmax] specified
at the start of the block. Non pool-unlock transactions are executed as they
would be in the corresponding CFMM pool CFMM(Φ) without a β discount

6.6. IMPLEMENTATION 123

on the amount of tokens that can be removed. If a transaction implies a move
outside of these bounds, it is not executed.

The next time a pool unlock transaction is submitted (in a proceeding block),
given the final price of the preceding block was p1 the actual amount of token x
or y required to be added to the pool and vault (the βΥ and υ of the required
token, as derived earlier in the section) is taken from the deposited escrow, with
the remainder returned to the block producer who deposited those tokens.

Remark 6.6.1. Setting the LVR rebate parameter too high can result in protocol
censorship and/or liveness issues as certain block producers may not be equipped
to frictionlessly arbitrage, and as such, repay the implied LVR to the protocol.
To counteract this, the LVR rebate parameter should be reduced every block in
which no transactions take place. As arbitrageurs are competing to extract LVR
from the pool, the LVR rebate parameter will eventually become low enough for
block producers to include Diamond transactions. After transactions have been
executed, the LVR rebate parameter should be reset to its initial value. Rigorous
testing of initial values and decay curves are required for any choice of rebate
parameter.

6.6.2 Conversion Protocols

The described implementations in this section assume the existence of a decen-
tralized on-chain auction.4

Per-block Conversion vs. Futures

Given per-block conversion (Section 6.4.3), further deposits from the block pro-
ducer are required to cover the token requirements of the conversion and collat-
eralizing the futures. The conversions for a pool Φ resulting from transactions
in a block take place in the next block a pool unlock transaction for Φ is called.
Given a maximum expected percentage move over τ blocks of σT , and a conver-
sion of λy tokens at price p, the block producer collateral must be in quantities
πx and πy such that if the block producer is long the futures:

1. πx + πy
p

1 + σT
≥ λy(p−

p

1 + σT
), and 2.

πx
πy

=
p

1 + σT
. (6.14)

4First-price sealed-bid auctions can be implemented using a commit-reveal protocol. An
example of such a protocol involves bidders hashing bids, committing these to the blockchain
along with an over-collaterlization of the bid, with bids revealed when all bids have been
committed.

124 CHAPTER 6. DIAMOND

If the block producer is short the futures it must be that:

1. πx + πyp(1 + σT) ≥ λypσT , and 2.
πx
πy

= p(1 + σT). (6.15)

The first requirement in both statements is for the block producer’s collateral
to be worth more than the maximum expected loss. The second requirement
states the collateral must be in the ratio of the pool for the maximum expected
loss (which also ensures it is in the ratio of the pool for any other loss less than
the maximum expected loss). This second requirement ensures the collateral
can be added back into the pool when the futures are settled.

At settlement, if the futures settle in-the-money for the block producer,
tokens are removed from the pool in the ratio specified by the settlement price
with total value equal to the loss incurred by the pool, and paid to the block
producer. If the futures settle out-of-the-money, tokens are added to the pool
from the block producer’s collateral in the ratio specified by the settlement price
with total value equal to the loss incurred by the block producer. The remaining
collateral is returned to the block producer. The pool constant is adjusted to
reflect the new balances.

Remark 6.6.2. As converting the vault does not affect pool availability, the
auctions for converting the vault can be run sufficiently slowly so as to eliminate
the risk of block producer censorship of the auction. We choose to not remove
tokens from the pool to collateralize the futures as this reduces the available
liquidity within the pool, which we see as an unnecessary reduction in benefit
to users (which would likely translate to lower transaction fee revenue for the
pool). For high volatility token pairs, τ should be chosen sufficiently small so as
to not to risk pool liquidation.

If Diamond with conversion versus futures is run on a blockchain where the
block producer is able to produce multiple blocks consecutively, this can have an
adverse effect on incentives. Every time the vault is converted and tokens are
re-added to the pool, the liquidity of the pool increases. A block producer with
control over multiple blocks can move the pool price some of the way towards
the maximal LVR price, convert the vault tokens (which has 0 expectancy from
Lemma 6.5.1), increase the liquidity of the pool, then move the pool towards
the maximal LVR price again in the proceeding block. This process results in a
slight increase in value being extracted from the pool in expectancy compared to
moving the pool price immediately to the price corresponding to maximal LVR.
Although the effect on incentives is small, re-adding tokens from a conversion
slowly/keeping the pool constant constant mitigates/removes this benefit for such
block producers.

6.7. EXPERIMENTAL ANALYSIS 125

Periodic Conversion Auction

Every τ blocks, given η tokens in the vault, η2 of these tokens are auctioned off,
with bids placed in the other token. The winning bidder receives these η

2 . The
winning bid, and the remaining η

2 tokens in the vault are added to the pool.

6.7 Experimental Analysis

This section presents the results of several experiments, which can be reproduced
using the following public repository [55]. The results provide further evidence of
the performance potential of a Diamond pool versus various benchmarks. These
experiments isolate the effect that different fees, conversion frequencies, daily
price moves, LVR rebate parameters, and days in operation have on a Diamond
pool. Each graph represents a series of random-walk simulations which were
run, unless otherwise stated, with base parameters of:

• LVR rebate parameter: 0.95.

• Average daily price move: 5%.

• Conversion frequency: Once per day.

• Blocks per day: 10.

• Days per simulation: 365.

• Number of simulations per variable: 500.

Parameter Intuition

For a Diamond pool to be deployed, we expect the existence of at least one
tradeable and liquid external market price. As such, many competing arbi-
trageurs should exist, keeping the LVR parameter close to 1. 5% is a typcial
daily move for our chosen token pair. Given a daily move of 5%, the number
of blocks per day is not important, as the per block expected moves can be
adjusted given the daily expected move. Given a simulator constraint of 5,000
moves per simulation, we chose 10 blocks per day for a year, as opposed to
simulating Ethereum over 5,000 blocks (less than 1 day’s worth of blocks), as
the benefits of Diamond are more visible over a year than a day.

126 CHAPTER 6. DIAMOND

Each graph plots the final value of the Diamond Periodic Conversion Auction
pool (unless otherwise stated) relative to the final value of the corresponding
Uniswap V2 pool. The starting reserve values are $100m USDC and 76, 336
ETH, for an ETH price of $1, 310, the approximate price and pool size of the
Uniswap ETH/USDC pool at the time of writing [102].

Figure 6.2 compares four strategies over the same random walks. Periodic
Conversion Auction and Conversion vs. Futures replicate the Diamond protocol
given the respective conversion strategies (see Section 6.4). HODL (Hold-On-
for-Dear-Life), measures the performance of holding the starting reserves until
the end of the simulation. The final pool value of these three strategies are
then taken as a fraction of the corresponding CFMM pool following that same
random walk. Immediately we can see all three of these strategies outperform
the CFMM strategy in all simulations (as a fraction of the CFMM pool value,
all other strategies are greater than 1), except at the initial price of 1310, where
HODL and CFMM are equal, as expected.

Figure 6.2: Strategy comparison.

6.7. EXPERIMENTAL ANALYSIS 127

Figure 6.3: Volatility comparison.

Figure 6.4: LVR rebate comparison.

128 CHAPTER 6. DIAMOND

Figure 6.5: Conversion frequency comparison.

Figure 6.6: Fee comparison, given 10% of pool TVL trades per day.

6.7. EXPERIMENTAL ANALYSIS 129

Figure 6.7: Protocol duration comparison.

The Diamond pools outperform HODL in a range around the starting price,
as Diamond pools initially retain the tokens increasing in value (selling them
eventually), which performs better than HODL when the price reverts. HODL
performs better in tail scenarios as all other protocols consistently sell the token
increasing in value on these paths. Note Periodic Conversion slightly outper-
forms Conversion vs. Futures when finishing close to the initial price, while
slightly underperforming at the tails. This is because of the futures expo-
sure. Although these futures have no expectancy for the protocol, they increase
the variance of the Conversion vs. Futures strategy, outperforming when price
changes have momentum, while underperforming when price changes revert.

Figure 6.3 identifies a positive relationship between the volatility of the price
and the out-performance of the Diamond pool over its corresponding CFMM
pool. This is in line with the results of [82] where it is proved LVR grows
quadratically in volatility. Figure 6.4 demonstrates that, as expected, a higher
LVR rebate parameter β retains more value for the Diamond pool.

Figure 6.5 shows that higher conversion frequency (1 day) has less vari-
ance for the pool value (in this experiment once per day conversion has mean
1.011234 and standard deviation 0.000776 while once per week conversion has
mean 1.011210 and standard deviation 0.002233). This highlights an important

130 CHAPTER 6. DIAMOND

trade-off for protocol deployment and LPs. Although lower variance correspond-
ing to more frequent conversion auctions is desirable, more frequent auctions
may centralize the players participating in the auctions due to technology re-
quirements. This would weaken the competition guarantees needed to ensure
that the auction settles at the true price in expectancy.

Figure 6.6 compares Diamond to the CFMM pool under the specified fee
structures (data-points corresponding to a particular fee apply the fee to both
the Uniswap pool and the Diamond pool) assuming 10% of the total value locked
in each pool trades daily. The compounding effect of Diamond’s LVR rebates
with the fee income every block result in a significant out-performance of the
Diamond protocol as fees increase. This observation implies that given the LVR
protection provided by Diamond, protocol fees can be reduced significantly for
users, providing a further catalyst for a DeFi revival. Figure 6.7 demonstrates
that the longer Diamond is run, the greater the out-performance of the Diamond
pool versus its corresponding CFMM pool.

6.8 Conclusion

We present Diamond, an AMM protocol which provably protects against LVR.
The described implementation of Diamond stands as a generic template to ad-
dress LVR in any CFMM. The experimental results of Section 6.7 provide strong
evidence in support of the LVR protection of Diamond, complementing the for-
mal results of Section 6.5. It is likely that block producers will be required to
charge certain users more transaction fees to participate in Diamond pools to
compensate for this LVR rebate, with informed users being charged more for
block inclusion than uninformed users. As some or all of these proceeds are paid
to the pool with these proceeds coming from informed users, we see this as a
desirable outcome.

Given the protocol-level protections provided by Diamond, research must
now focus on user protections in order to keep protocol utility in the hands of
protocol contributors. Rook [95] and CoW protocol [41] have taken important
steps in this regard, although many open problems still exist.

Bibliography

[1] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling
Ren. Efficient Synchronous Byzantine Consensus. https://eprint.

iacr.org/2017/307, 2017. Accessed: 10/01/2023.

[2] Ittai Abraham, Danny Dolev, Ittay Eyal, and Joseph Y. Halpern. Col-
ordag: An Incentive-Compatible Blockchain. https://eprint.iacr.

org/2022/308, 2022. Accessed: 03/01/2023.

[3] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexan-
der Spiegelman. Solida: A Blockchain Protocol Based on Reconfigurable
Byzantine Consensus. In James Aspnes, Alysson Bessani, Pascal Felber,
and João Leitão, editors, 21st International Conference on Principles of
Distributed Systems (OPODIS 2017), volume 95 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 25:1–25:19, Dagstuhl, Ger-
many, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[4] Hayden Adams, River Keefer, Moody Salem, Noah Zinsmeister, and Dan
Robinson. Uniswap V3 Core, 2021.

[5] Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap V2 Core,
2020.

[6] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-
Philippe Martin, and Carl Porth. BAR Fault Tolerance for Cooperative
Services. SIGOPS Oper. Syst. Rev., 39(5):45–58, October 2005.

[7] Humoud Alsabah and Agostino Capponi. Pitfalls of Bitcoin’s Proof-of-
Work: R&D Arms Race and Mining Centralization. https://ssrn.com/
abstract=3273982, 2020. Accessed: 10/01/2023.

131

https://eprint.iacr.org/2017/307
https://eprint.iacr.org/2017/307
https://eprint.iacr.org/2022/308
https://eprint.iacr.org/2022/308
https://ssrn.com/abstract=3273982
https://ssrn.com/abstract=3273982

132 BIBLIOGRAPHY

[8] Amazon. Amazon Web Service Revenues, Q1 2022. https:

//ir.aboutamazon.com/news-release/news-release-details/

2022/Amazon.com-Announces-First-Quarter-Results-f0188db95/.
Accessed: 18/08/2022.

[9] Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and
Sara Tucci-Piergiovanni. Rational vs Byzantine Players in Consensus-
Based Blockchains. In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’20, page 43–51,
Richland, SC, 2020. International Foundation for Autonomous Agents and
Multiagent Systems.

[10] Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and
Sara Tucci-Piergiovanni. Rational Behaviors in Committee-Based
Blockchains. In Quentin Bramas, Rotem Oshman, and Paolo Romano, ed-
itors, 24th International Conference on Principles of Distributed Systems
(OPODIS 2020), volume 184 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 12:1–12:16, Dagstuhl, Germany, 2021. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

[11] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-
Butucaru, and Sara Tucci-Piergiovanni. Correctness and Fairness of
Tendermint-core Blockchains. https://arxiv.org/pdf/1805.08429,
2018. Accessed: 03/01/2023.

[12] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-
Butucaru, and Sara Tucci-Piergiovanni. On Fairness in Committee-
Based Blockchains. In Emmanuelle Anceaume, Christophe Bisière,
Matthieu Bouvard, Quentin Bramas, and Catherine Casamatta, edi-
tors, 2nd International Conference on Blockchain Economics, Security
and Protocols (Tokenomics 2020), volume 82 of Open Access Series in
Informatics (OASIcs), pages 4:1–4:15, Dagstuhl, Germany, 2021. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

[13] Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and
Tarun Chitra. An Analysis of Uniswap Markets. In Cryptoeconomic
Systems Journal, 2019.

[14] Nick Arnosti and S. Matthew Weinberg. Bitcoin: A natural oligopoly. In
Avrim Blum, editor, 10th Innovations in Theoretical Computer Science,

https://ir.aboutamazon.com/news-release/news-release-details/2022/Amazon.com-Announces-First-Quarter-Results-f0188db95/
https://ir.aboutamazon.com/news-release/news-release-details/2022/Amazon.com-Announces-First-Quarter-Results-f0188db95/
https://ir.aboutamazon.com/news-release/news-release-details/2022/Amazon.com-Announces-First-Quarter-Results-f0188db95/
https://arxiv.org/pdf/1805.08429

BIBLIOGRAPHY 133

ITCS 2019, Leibniz International Proceedings in Informatics, LIPIcs, Ger-
many, January 2019. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik
GmbH, Dagstuhl Publishing. Funding Information: Supported by NSF
CCF-1717899.; 10th Innovations in Theoretical Computer Science, ITCS
2019 ; Conference date: 10-01-2019 Through 12-01-2019.

[15] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rotten-
streich, Ronen Tamari, and David Yakira. Helix: A Fair Blockchain Con-
sensus Protocol Resistant to Ordering Manipulation. IEEE Transactions
on Network and Service Management, 18(2):1584–1597, 2021.

[16] Sarah Azouvi and Alexander Hicks. Sok: Tools for Game The-
oretic Models of Security for Cryptocurrencies. Cryptoeconomic
Systems, 0(1), 2021. https://cryptoeconomicsystems.pubpub.org/

pub/azouvi-sok-security.

[17] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi,
Patrick McCorry, Sarah Meiklejohn, and George Danezis. SoK: Consensus
in the Age of Blockchains. In Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, AFT ’19, pages 183–198, New York,
NY, USA, 2019. Association for Computing Machinery.

[18] Xianglin Bao, Cheng Su, Yan Xiong, Wenchao Huang, and Yifei Hu.
FLChain: A Blockchain for Auditable Federated Learning with Trust and
Incentive. In 2019 5th International Conference on Big Data Computing
and Communications (BIGCOM), pages 151–159, 2019.

[19] Niko Baric and Birgit Pfitzmann. Collision-Free Accumulators and Fail-
Stop Signature Schemes without Trees. In Proceedings of the 16th Annual
International Conference on Theory and Application of Cryptographic
Techniques, EUROCRYPT’97, page 480–494, Berlin, Heidelberg, 1997.
Springer-Verlag.

[20] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente.
A Theory of Automated Market Makers in DeFi. In Ferruccio Damiani
and Ornela Dardha, editors, Coordination Models and Languages, pages
168–187, Cham, 2021. Springer International Publishing.

[21] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente.
Maximizing Extractable Value from Automated Market Makers. In
Financial Cryptography and Data Security, Berlin, Heidelberg, 2022.
Springer Berlin Heidelberg.

https://cryptoeconomicsystems.pubpub.org/pub/azouvi-sok-security
https://cryptoeconomicsystems.pubpub.org/pub/azouvi-sok-security

134 BIBLIOGRAPHY

[22] Carsten Baum, Bernardo David, and Tore Frederiksen. P2DEX: Privacy-
Preserving Decentralized Cryptocurrency Exchange. In Kazue Sako
and Nils Ole Tippenhauer, editors, Applied Cryptography and Network
Security, pages 163–194. Springer International Publishing, 2021.

[23] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
Anonymous Payments from Bitcoin. In 2014 IEEE Symposium on Security
and Privacy, pages 459–474, New York, NY, USA, 2014. IEEE Computer
Society.

[24] Josh Benaloh and Michael de Mare. One-Way Accumulators: A Decentral-
ized Alternative to Digital Signatures. In Tor Helleseth, editor, Advances
in Cryptology — EUROCRYPT ’93, pages 274–285, Berlin, Heidelberg,
1994. Springer Berlin Heidelberg.

[25] Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and
Dimitris vKolonelos. Zero-Knowledge Proofs for Set Membership: Effi-
cient, Succinct, Modular. In Nikita Borisov and Claudia Diaz, editors,
Financial Cryptography and Data Security, pages 393–414, Berlin, Hei-
delberg, 2021. Springer Berlin Heidelberg.

[26] Bruno Biais, Christophe Bisière, Matthieu Bouvard, and Catherine
Casamatta. The blockchain folk theorem. IDEI Working Papers 873,
Institut d’Économie Industrielle (IDEI), Toulouse, 2017. Accessed:
19/05/2021.

[27] Maxim Bichuch and Zachary Feinstein. Axioms for Automated Mar-
ket Makers: A Mathematical Framework in FinTech and Decentral-
ized Finance. https://arxiv.org/abs/2210.01227, 2022. Accessed:
18/10/2022.

[28] Georgios Birmpas, Elias Koutsoupias, Philip Lazos, and Francisco J.
Marmolejo-Cosśıo. Fairness and Efficiency in DAG-Based Cryptocurren-
cies. In Financial Cryptography and Data Security, pages 79–96, Cham,
2020. Springer International Publishing.

[29] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien
Stainer. Machine learning with adversaries: Byzantine tolerant gradient
descent. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, page 118–128, Red Hook, NY,
USA, 2017. Curran Associates Inc.

https://arxiv.org/abs/2210.01227

BIBLIOGRAPHY 135

[30] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching Techniques
for Accumulators with Applications to IOPs and Stateless Blockchains.
In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in
Cryptology – CRYPTO 2019, pages 561–586, Cham, 2019. Springer In-
ternational Publishing.

[31] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on
BFT consensus. https://arxiv.org/abs/1807.049385, 2019. Accessed:
21/05/2021.

[32] Eric Budish. The Economic Limits of Bitcoin and the Blockchain. Working
Paper 24717, National Bureau of Economic Research, June 2018.

[33] Eric Budish, Peter Cramton, and John Shim. The High-Frequency Trad-
ing Arms Race: Frequent Batch Auctions as a Market Design Response
*. The Quarterly Journal of Economics, 130(4):1547–1621, 07 2015.

[34] Vitalik Buterin, Daniel Reijsbergen, Stefanos Leonardos, and Georgios
Piliouras. Incentives in Ethereum’s Hybrid Casper Protocol. In 2019 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC),
pages 236–244, Seoul, South Korea, 2019. IEEE.

[35] Agostino Capponi and Ruizhe Jia. The Adoption of Blockchain-based
Decentralized Exchanges. https://arxiv.org/abs/2103.08842, 2021.
Accessed: 18/10/2022.

[36] Chainlink. https://chain.link/. Accessed: 11/10/2022.

[37] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In
Proceedings of the 26th Annual International Conference on Advances in
Cryptology, CRYPTO’06, page 78–96, Berlin, Heidelberg, 2006. Springer-
Verlag.

[38] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed
ledger. Theoretical Computer Science, 777:155–183, 2019.

[39] Michele Ciampi, Muhammad Ishaq, Malik Magdon-Ismail, Rafail Ostro-
vsky, and Vassilis Zikas. FairMM: A Fast and Frontrunning-Resistant
Crypto Market-Maker. Cryptology ePrint Archive, Report 2021/609,
2021. Accessed: 02/02/2022.

https://arxiv.org/abs/1807.049385
https://arxiv.org/abs/2103.08842
https://chain.link/

136 BIBLIOGRAPHY

[40] Theodoros Constantinides and John Cartlidge. Block Auction: A Gen-
eral Blockchain Protocol for Privacy-Preserving and Verifiable Periodic
Double Auctions. In 2021 IEEE International Conference on Blockchain
(Blockchain), pages 513–520, United States, 2021. IEEE Computer Soci-
ety.

[41] CoW Protocol. https://docs.cow.fi/. Accessed: 11/10/2022.

[42] Phil Daian, Rafael Pass, and Elaine Shi. Snow White: Robustly Recon-
figurable Consensus and Applications to Provably Secure Proof of Stake.
In Financial Cryptography and Data Security, pages 23–41. Springer In-
ternational Publishing, 2019.

[43] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao,
Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash Boys 2.0: Fron-
trunning, Transaction Reordering, and Consensus Instability in Decentral-
ized Exchanges. https://arxiv.org/abs/1904.05234, 2019. Accessed:
19/01/2022.

[44] Sanmay Das and Malik Magdon-Ismail. Adapting to a Market Shock: Op-
timal Sequential Market-Making. In Proceedings of the 21st International
Conference on Neural Information Processing Systems, NIPS’08, page
361–368, Red Hook, NY, USA, 2008. Curran Associates Inc.

[45] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. J. ACM, 35(2):288–323, April 1988.

[46] Etherscan. https://etherscan.io/gastracker. Accessed: 25/07/2022.

[47] Alex Evans, Guillermo Angeris, and Tarun Chitra. Optimal Fees for Ge-
ometric Mean Market Makers. In Matthew Bernhard, Andrea Bracciali,
Lewis Gudgeon, Thomas Haines, Ariah Klages-Mundt, Shin’ichiro Mat-
suo, Daniel Perez, Massimiliano Sala, and Sam Werner, editors, Financial
Cryptography and Data Security. FC 2021 International Workshops, pages
65–79, Berlin, Heidelberg, 2021. Springer Berlin Heidelberg.

[48] Ittay Eyal and Emin Gün Sirer. Majority is Not Enough: Bitcoin Mining
is Vulnerable. Commun. ACM, 61(7):95–102, June 2018.

[49] Giulia Fanti, Leonid Kogan, Sewoong Oh, Kathleen Ruan, Pramod
Viswanath, and Gerui Wang. Compounding of Wealth in Proof-of-Stake
Cryptocurrencies. In Ian Goldberg and Tyler Moore, editors, Financial

https://docs.cow.fi/
https://arxiv.org/abs/1904.05234
https://etherscan.io/gastracker

BIBLIOGRAPHY 137

Cryptography and Data Security, pages 42–61, Cham, 2019. Springer In-
ternational Publishing.

[50] Flashbots. https://explore.flashbots.net. Accessed: 11/10/2022.

[51] Hisham S. Galal and Amr M. Youssef. Publicly Verifiable and Secrecy
Preserving Periodic Auctions. In Matthew Bernhard, Andrea Bracciali,
Lewis Gudgeon, Thomas Haines, Ariah Klages-Mundt, Shin’ichiro Mat-
suo, Daniel Perez, Massimiliano Sala, and Sam Werner, editors, Financial
Cryptography and Data Security. FC 2021 International Workshops, pages
348–363, Berlin, Heidelberg, 2021. Springer Berlin Heidelberg.

[52] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin Back-
bone Protocol: Analysis and Applications. In Advances in Cryptology
- EUROCRYPT 2015, pages 281–310, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[53] Github. https://github.com/The-CTra1n/MarvelDC, 2022.

[54] Github. https://github.com/MEVProof/Contracts, 2022.

[55] Github. https://github.com/The-CTra1n/LVR, 2022.

[56] S Goldwasser, S Micali, and C Rackoff. The Knowledge Complexity of In-
teractive Proof-Systems. In Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing, STOC ’85, page 291–304, New York,
NY, USA, 1985. Association for Computing Machinery.

[57] Jens Groth. On the Size of Pairing-Based Non-interactive Arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology
– EUROCRYPT 2016, pages 305–326, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[58] Lewis Gudgeon, Daniel Perez, Dominik Harz, Benjamin Livshits, and
Arthur Gervais. The Decentralized Financial Crisis. In 2020 Crypto Valley
Conference on Blockchain Technology (CVCBT), pages 1–15, 2020.

[59] Kobi Gurkan, Koh Wei Jie, and Barry Whitehat. Community Proposal:
Semaphore: Zero-Knowledge Signaling on Ethereum, 2020. Accessed:
25/01/2022.

[60] Josojo. MEV capturing AMMs. https://ethresear.ch/t/

mev-capturing-amm-mcamm/13336, 2022. Accessed: 18/10/2022.

https://explore.flashbots.net
https://github.com/The-CTra1n/MarvelDC
https://github.com/MEVProof/Contracts
https://github.com/The-CTra1n/LVR
https://ethresear.ch/t/mev-capturing-amm-mcamm/13336
https://ethresear.ch/t/mev-capturing-amm-mcamm/13336

138 BIBLIOGRAPHY

[61] Aljosha Judmayer, Nicholas Stifter, Philipp Schindler, and Edgar Weippl.
Estimating (Miner) Extractable Value is Hard, Let’s Go Shopping!
https://ia.cr/2021/1231, 2021. Accessed: 18/05/2022.

[62] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-
Fairness for Byzantine Consensus. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology - CRYPTO 2020, pages 451–
480, Cham, 2020. Springer International Publishing.

[63] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A Provably Secure Proof-of-Stake Blockchain
Protocol. In Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology – CRYPTO 2017, pages 357–388. Springer International Pub-
lishing, 2017.

[64] Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim.
Blockchained On-Device Federated Learning. IEEE Communications
Letters, 24(6):1279–1283, 2020.

[65] Abhiram Kothapalli, Andrew Miller, and Nikita Borisov. Smartcast: An
incentive compatible consensus protocol using smart contracts. In Andrew
Miller, Michael Brenner, Kurt Rohloff, Joseph Bonneau, Vanessa Teague,
Andrea Bracciali, Massimiliano Sala, Federico Pintore, Markus Jakobsson,
and Peter Y.A. Ryan, editors, Financial Cryptography and Data Security
- FC 2017 International Workshops, Revised Selected Papers, pages 536–
552, Sliema, Malta, 2017. Springer-Verlag Berlin Heidelberg.

[66] Vijay Krishna. Auction theory. Academic press, 2009.

[67] Bhaskar Krishnamachari, Qi Feng, and Eugenio Grippo. Dynamic Au-
tomated Market Makers for Decentralized Cryptocurrency Exchange. In
2021 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), pages 1–2, 2021.

[68] Jae Kwon. Tendermint: Consensus without mining. https://

tendermint.com/static/docs, 2014. Accessed: 19/05/2021.

[69] Kfir Lev-Ari, Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi.
FairLedger: A Fair Blockchain Protocol for Financial Institutions. In Pas-
cal Felber, Roy Friedman, Seth Gilbert, and Avery Miller, editors, 23rd
International Conference on Principles of Distributed Systems (OPODIS
2019), volume 153 of Leibniz International Proceedings in Informatics

https://ia.cr/2021/1231
https://tendermint.com/static/docs
https://tendermint.com/static/docs

BIBLIOGRAPHY 139

(LIPIcs), pages 4:1–4:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[70] Harry C. Li, Allen Clement, Edmund L. Wong, Jeff Napper, Indrajit Roy,
Lorenzo Alvisi, and Michael Dahlin. BAR Gossip. In Proceedings of the
7th Symposium on Operating Systems Design and Implementation, OSDI
’06, page 191–204, USA, 2006. USENIX Association.

[71] Yuzheng Li, Chuan Chen, Nan Liu, Huawei Huang, Zibin Zheng, and
Qiang Yan. A Blockchain-Based Decentralized Federated Learning Frame-
work with Committee Consensus. IEEE Network, 35(1):234–241, 2021.

[72] Ziyao Liu, Jiale Guo, Wenzhuo Yang, Jiani Fan, Kwok-Yan Lam, and Jun
Zhao. Privacy-Preserving Aggregation in Federated Learning: A Survey.
https://arxiv.org/abs/2203.17005, 2022. Accessed: 30/06/2022.

[73] Ziyao Liu, Nguyen Cong Luong, Wenbo Wang, Dusit Niyato, Ping Wang,
Ying-Chang Liang, and Dong In Kim. A Survey on Blockchain: A Game
Theoretical Perspective. IEEE Access, 7:47615–47643, 2019.

[74] Stefan Loesch, Nate Hindman, Mark B Richardson, and Nicholas Welch.
Impermanent Loss in Uniswap v3. https://arxiv.org/abs/2111.09192,
2021. Accessed: 18/10/2022.

[75] Anna Lysyanskaya and Nikos Triandopoulos. Rationality and Adversar-
ial Behavior in Multi-party Computation. In Cynthia Dwork, editor,
Advances in Cryptology - CRYPTO 2006, pages 180–197, Berlin, Hei-
delberg, 2006. Springer Berlin Heidelberg.

[76] Conor McMenamin and Vanesa Daza. Marvel DC: A Blockchain-Based
Decentralized and Incentive-Compatible Distributed Computing Protocol.
https://arxiv.org/abs/2207.14011, 2022. Accessed: 04/01/2023.

[77] Conor McMenamin, Vanesa Daza, Matthias Fitzi, and Padraic
O’Donoghue. FairTraDEX: A Decentralised Exchange Preventing Value
Extraction. In Proceedings of the 2022 ACM CCS Workshop on
Decentralized Finance and Security, DeFi’22, page 39–46, New York, NY,
USA, 2022. Association for Computing Machinery.

[78] Conor McMenamin, Vanesa Daza, and Bruno Mazorra. Diamonds are For-
ever, Loss-Versus-Rebalancing is Not. https://arxiv.org/abs/2210.

10601, 2022. Accessed: 04/01/2023.

https://arxiv.org/abs/2203.17005
https://arxiv.org/abs/2111.09192
https://arxiv.org/abs/2207.14011
https://arxiv.org/abs/2210.10601
https://arxiv.org/abs/2210.10601

140 BIBLIOGRAPHY

[79] Conor McMenamin, Vanesa Daza, and Matteo Pontecorvi. Achieving
State Machine Replication without Honest Players. In Proceedings of
the 3rd ACM Conference on Advances in Financial Technologies, AFT
’21, page 1–14, New York, NY, USA, 2021. Association for Computing
Machinery.

[80] Ralph C. Merkle. A Digital Signature Based on a Conventional Encryp-
tion Function. In Carl Pomerance, editor, Advances in Cryptology —
CRYPTO ’87, pages 369–378, Berlin, Heidelberg, 1988. Springer Berlin
Heidelberg.

[81] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Ze-
rocoin: Anonymous Distributed E-Cash from Bitcoin. In 2013 IEEE
Symposium on Security and Privacy, pages 397–411, United States, 2013.
IEEE Computer Society.

[82] Jason Milionis, Ciamac C. Moallemi, Tim Roughgarden, and Anthony Lee
Zhang. Quantifying Loss in Automated Market Makers. In Fan Zhang and
Patrick McCorry, editors, Proceedings of the 2022 ACM CCS Workshop
on Decentralized Finance and Security. ACM, 2022.

[83] Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. When Self-
ish Meets Evil: Byzantine Players in a Virus Inoculation Game. In
Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’06, pages 35–44, New York, NY, USA,
2006. Association for Computing Machinery.

[84] Thomas Moscibroda, Stefan Schmid, and Roger Wattenhofer. The Price
of Malice: A Game-Theoretic Framework for Malicious Behavior. Internet
Mathematics, 6(2):125–156, 2009.

[85] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf, 2008. Accessed: 19/05/2021.

[86] Kevin Alarcón Negy, Peter R. Rizun, and Emin Gün Sirer. Selfish Mining
Re-Examined. In Joseph Bonneau and Nadia Heninger, editors, Financial
Cryptography and Data Security, pages 61–78, Cham, 2020. Springer In-
ternational Publishing.

[87] Lan Nguyen. Accumulators from bilinear pairings and applications. In
Proceedings of the 2005 International Conference on Topics in Cryptology,
CT-RSA’05, page 275–292, Berlin, Heidelberg, 2005. Springer-Verlag.

https://bitcoin.org/bitcoin.pdf

BIBLIOGRAPHY 141

[88] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani.
Algorithmic Game Theory. Cambridge University Press, Cambridge, 2007.

[89] Perpetual Powers of Tau. https://zkproof.org/2021/06/30/

setup-ceremonies/. Accessed: 11/10/2022.

[90] Andreas Park. The Conceptual Flaws of Constant Product Automated
Market Making. ERN: Other Microeconomics: General Equilibrium &
Disequilibrium Models of Financial Markets, 2021.

[91] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain
protocol in asynchronous networks. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017,
pages 643–673, Cham, 2017. Springer International Publishing.

[92] Rafael Pass and Elaine Shi. FruitChains: A Fair Blockchain. In
Proceedings of the ACM Symposium on Principles of Distributed
Computing, PODC ’17, pages 315–324, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery.

[93] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying Blockchain Ex-
tractable Value: How dark is the forest? In 2022 IEEE Symposium on
Security and Privacy (SP), pages 198–214, 2022.

[94] Ioanid Roşu and Fahad Saleh. Evolution of Shares in a Proof-of-Stake
Cryptocurrency. Manage. Sci., 67(2):661–672, feb 2021.

[95] Rook. https://docs.rook.fi/reference/. Accessed: 11/10/2022.

[96] Tim Roughgarden. Transaction Fee Mechanism Design. SIGecom Exch.,
19(1):52–55, jul 2021.

[97] Timon Rückel, Johannes Sedlmeir, and Peter Hofmann. Fairness, In-
tegrity, and Privacy in a Scalable Blockchain-Based Federated Learning
System. Comput. Netw., 202(C), jan 2022.

[98] Fahad Saleh. Blockchain Without Waste: Proof-of-Stake. In Review of
Financial Studies, volume 34, pages 1156–1190, 2021, 07 2020. March.

[99] Jakub Sliwinski and Roger Wattenhofer. Blockchains Cannot Rely on
Honesty. https://disco.ethz.ch/courses/fs19/sirocco/honesty.

pdf, 2020. Accessed: 21/05/2021.

https://zkproof.org/2021/06/30/setup-ceremonies/
https://zkproof.org/2021/06/30/setup-ceremonies/
https://docs.rook.fi/reference/
https://disco.ethz.ch/courses/fs19/sirocco/honesty.pdf
https://disco.ethz.ch/courses/fs19/sirocco/honesty.pdf

142 BIBLIOGRAPHY

[100] @thiccythot. https://dune.com/thiccythot/uniswap-markouts. Ac-
cessed: 11/10/2022.

[101] Kentaroh Toyoda and Allan N. Zhang. Mechanism Design for An
Incentive-aware Blockchain-enabled Federated Learning Platform. In 2019
IEEE International Conference on Big Data (Big Data), pages 395–403,
2019.

[102] Uniswap. https://app.uniswap.org/. Accessed: 11/10/2022.

[103] Jiasi Weng, Jian Weng, Jilian Zhang, Ming Li, Yue Zhang, and Weiqi
Luo. DeepChain: Auditable and Privacy-Preserving Deep Learning
with Blockchain-Based Incentive. IEEE Transactions on Dependable and
Secure Computing, 18(5):2438–2455, 2021.

[104] Moti Yung. The Mobile Adversary Paradigm in Distributed Computation
and Systems, page 171–172. Association for Computing Machinery, New
York, NY, USA, 2015.

[105] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. An Ex-
pressive (Zero-Knowledge) Set Accumulator. In 2017 IEEE European
Symposium on Security and Privacy (EuroS P), pages 158–173, United
States, 2017. IEEE.

https://dune.com/thiccythot/uniswap-markouts
https://app.uniswap.org/

Appendix A

Abbreviations and Notation

This section outlines the abbreviations and notation as used throughout the
thesis.

Abbreviations

FBA: Frequent Batch Auction.

WSFBA: Width-Sensitive Frequent Batch Auction.

MM: Market Maker.

LP: Liquidity Provider.

CP: Clearing Price.

SINCE: Strong Incentive Compatible in Expectation.

SNE: Strong Nash Equilibrium.

PKI: Public Key Infrastructure.

GSR: Global Stabilization Round.

SMR: State Machine Replication.

ZK: Zero Knowledge.

NIZK: Non-Interactive Zero Knowledge.

143

144 APPENDIX A. ABBREVIATIONS AND NOTATION

SNARK: Succinct Argument of Knowledge.

PoK: Proof of Knowledge.

SoK: Signature of Knowledge.

FL: Federated Learning.

DC: Distributed Computing.

TTP: Trusted Third Party.

MEV: Maximal Extractable Value.

EEV: Expected Extractable Value.

AMM: Automated Market Maker.

CFMM: Constant-Function Market Maker.

DEX: Decentralized Exchange Protocol.

MPC: Multi-Party Computation.

LVR: Loss-Versus-Rebalancing.

McAMM: MEV-capturing AMM.

BAR: Byzantine-Altruistic-Rational.

Notation

negl(): negligible function.

κ: cryptographic security parameter.

ψ: game-theoretic security parameter.

R: randomness.

S: serial number.

Π: protocol.

A: adversary.

145

B: block.

H: blockchain height.

X : action.

u: utility.

r: round.

P: player.

V : SMR update.

tri : player private information.

T ri : set of player private information.

str: strategy.

α: adversarial share.

J : deviator set.

Str: strategy set.

S: stake share.

tx: transaction.

≡: strategy equivalence relation.

StrNSD
i : set of non-dominated strategies for Pi.

>u: strategy dominance relation.

∆: bound on message delivery after GSR.

blacklistedSNs: blacklisted serial numbers.

ω: probability of good computations being rewarded.

γ: probability of bad computations being rewarded.

κ: computation target value.

fκ : target function.

146 APPENDIX A. ABBREVIATIONS AND NOTATION

C: computer.

C: set of computers.

ε: external market price.

δ: multiplicative market-impact coefficient.

D: net notional imbalance in a FairTraDEX auction.

Qnot: max notional imbalance in a FairTraDEX auction.

ZB: notional.

p: pool price.

η, Υ, υ: token quantities.

Φ: Diamond pool.

R: pool reserves.

PnL: profit-or-loss.

PPF: pool pricing function.

PIF: pool invariant function.

τ: conversion frequency.

k: pool constant.

β: LVR-rebate parameter.

147

148 APPENDIX B. PUBLICATIONS

Appendix B

Publications

Conference proceedings

2021 Conor McMenamin, Vanesa Daza, & Matteo Pontecorvi. Achieving state
machine replication without honest players. In AFT ’21: Proceedings of
the 3rd ACM Conference on Advances in Financial Technologies.

Abstract. Existing standards for player characterization in tokenized
state machine replication protocols depend on honest players who will
always follow the protocol, regardless of possible token increases for devi-
ating. Given the ever-increasing market capitalization of these tokenized
protocols, honesty is becoming more expensive and more unrealistic. As
such, this out-dated player characterization must be removed to provide
true guarantees of safety and liveness in a major stride towards uni-
versal trust in state machine replication protocols and a new scale of
adoption. As all current state machine replication protocols are built
on these legacy standards, it is imperative that a new player model is
identified and utilized to reflect the true nature of players in tokenized
protocols, now and into the future. To this effect, we propose the ByRa
player model for state machine replication protocols. In the ByRa model,
players either attempt to maximize their tokenized rewards, or behave
adversarially. This merges the fields of game theory and distributed
systems, an intersection in which tokenized state machine replication
protocols exist, but on which little formalization has been carried out.
In the ByRa model, we identify the properties of strong incentive com-
patibility in expectation and fairness that all protocols must satisfy in
order to achieve state machine replication. We then provide Tender-
stake, a protocol which provably satisfies these properties, and by doing
so, achieves state machine replication in the ByRa model.

149

2022 Conor McMenamin, Vanesa Daza, Matthias Fitzi & Padraic
O’Donoghue. FairTraDEX: A Decentralised Exchange Preventing Value
Extraction. In DeFi’22: Proceedings of the 2022 ACM CCS Workshop
on Decentralized Finance and Security.

Abstract. We present FairTraDEX, a DEX protocol based on FBAs,
which provides formal game-theoretic guarantees against extractable
value. FBAs, when run by a trusted third-party, ensure that the unique
game-theoretic optimal strategy for all players is to trade at the true
market-implied price of the underlying token swap, excluding explicit,
pre-determined fees. FairTraDEX replicates the key features of an
FBA that provide these game-theoretic guarantees using a combination
of set-membership in zero-knowledge protocols and an escrow-enforced
commit-reveal mechanism. We extend the results of FBAs to handle mo-
nopolistic and/or malicious liquidity providers. We provide real-world
examples that demonstrate that the costs of executing orders in existing
academic and industry-standard protocols become prohibitive as order
size increases due to basic value extraction techniques, popularized as
maximal extractable value. We further demonstrate that FairTraDEX
protects against these execution costs, guaranteeing a fixed fee model in-
dependent of order size, the first guarantee of it’s kind for a DEX proto-
col. We also provide detailed Solidity and pseudo-code implementations
of FairTraDEX, making FairTraDEX a novel and practical contribution.

150 APPENDIX B. PUBLICATIONS

Preprints

2022 Conor McMenamin, Vanesa Daza, & Bruno Mazorra. Diamonds are
Forever, Loss-Versus-Rebalancing is Not.

Abstract. The always-available liquidity of AMMs has been one of the
most important catalysts in early cryptocurrency adoption. However, it
has become increasingly evident that AMMs in their current form are not
viable investment options for passive liquidity providers. This is because
of the cost incurred by AMMs providing stale prices to arbitrageurs
against external market prices, formalized as LVR. In this paper, we
present Diamond, an automated market making protocol that aligns the
incentives of liquidity providers and block producers in the protocol-level
retention of LVR. In Diamond, block producers effectively auction the
right to capture any arbitrage that exists between the external market
price of a Diamond pool, and the price of the pool itself. The proceeds of
these auctions are shared by the Diamond pool and block producer in a
way that is proven to remain incentive compatible for the block producer.
Given the participation of competing arbitrageurs, LVR is effectively
prevented in Diamond. We formally prove this result, and detail an
implementation of Diamond. We also provide comparative simulations of
Diamond to relevant benchmarks, further evidencing the LVR-protection
capabilities of Diamond. With this new protection, passive liquidity
provision on blockchains becomes rationally viable, beckoning a new age
for decentralized finance.

151

2022 Conor McMenamin & Vanesa Daza. Marvel DC: A Blockchain-Based
Decentralized and Incentive-Compatible Distributed Computing Proto-
col.

Abstract. Decentralized computation outsourcing should allow any-
one to access the large amounts of computational power that exists in
the Internet of Things. Unfortunately, when trusted third parties are
removed to achieve this decentralization, ensuring an outsourced com-
putation is performed correctly remains a significant challenge. In this
paper, we provide a solution to this problem. We outline Marvel DC,
a fully decentralized blockchain-based distributed-computing protocol
which formally guarantees that computers are strictly incentivized to
correctly perform requested computations. Furthermore, Marvel DC uti-
lizes a reputation management protocol to ensure that, for any minority
of computers not performing calculations correctly, these computers are
identified and selected for computations with diminishing probability.
We then outline Privacy Marvel DC, a privacy-enhanced version of Mar-
vel DC which decouples results from the computers which computed
them, making the protocol suitable for computations such as Federated
Learning, where results can reveal sensitive information about that com-
puter that computed them. We provide an implementation of Marvel DC
and analyses of both protocols, demonstrating that they are not only the
first protocols to provide the aforementioned formal guarantees, but are
also practical, competitive with prior attempts in the field, and ready to
deploy.

152 APPENDIX B. PUBLICATIONS

	List of figures
	List of tables
	Introduction
	Preliminaries
	State Machine Replication & Blockchain
	Game-Theory
	Non-Interactive Zero-Knowledge Set Membership
	Relayers
	Financial Terminology

	Tenderstake
	Introduction
	Our Contribution
	Organization of the chapter

	Related Work
	Preliminaries
	A Game-Theoretic Framework for SMR
	Achieving SMR in the ByRa Model
	Tenderstake
	Threat Model
	Protocol Outline

	Proving TEXT achieves TEXT
	Conclusion

	Marvel DC
	Introduction
	Our Contribution
	Organization of the Chapter

	Related Work
	Preliminaries
	Constructing a SINCE DC Protocol
	Reward Mechanism
	Reputation Management Protocol

	TEXT
	Algorithmic Overview
	Protocol Properties
	Privacy TEXT
	Further Privacy Enhancements

	Implementation Analysis
	Gas cost of running TEXT and Privacy TEXT
	Performance metrics

	Conclusion

	FairTraDEX
	Introduction
	Our Contribution
	Organization of the Chapter

	Related Work
	Preliminaries
	Frequent Batch Auctions

	Width-Sensitive Frequent Batch Auctions
	Properties of Width-Sensitive Frequent Batch Auctions

	TEXT
	System Model
	TEXT Algorithms
	TEXT vs. TEXT
	Smart Contract Implementation vs. Algorithmic encoding
	Description of TEXT Encoding

	Properties of TEXT
	Clearing Price Verification

	Notes on FairTraDEX
	Existence of irrational players and coalitions
	Practical Considerations for TEXT

	Cost-Benefit Analysis of FairTraDEX
	Conclusion

	Diamond
	Introduction
	Our Contribution
	Organization of the Chapter

	Related Work
	Preliminaries
	Constant Function Market Makers
	Loss-Versus-Rebalancing
	Auctions

	TEXT
	Model Assumptions
	Core Protocol
	Per-block Conversion vs. Future Contracts
	Periodic Conversion Auction

	TEXT Properties
	Implementation
	Core Protocol
	Conversion Protocols

	Experimental Analysis
	Conclusion

	Abbreviations and Notation
	Publications

