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Abstract 

DNA methylation is a biological process defined as the addition of a 
methyl group into a DNA molecule. Among others, genetic and 
environmental factors are the main modulators of this process. DNA 
methylation alterations are associated with many common diseases. 
Thus, it is extremely important to identify which factors are leading to 
methylation changes and, consequently, to disease development. 

In this thesis, we have evaluated the effect of specific genetic variants 
and environmental factors, as well as their interaction, in DNA 
methylation. To this end, we used two main study populations: Human 
Early-Life Exposome (HELIX) and the TruDiagnostic DNA Biobank. 

First, we detected genome-wide differentially methylated CpG sites for 
tobacco, alcohol, and marijuana consumption. Importantly, the top 
alcohol-related CpG site mediated 73.6% of the effect of alcohol 
consumption on hypertension. Second, we found genotype-specific 
methylation patterns in three common polymorphic inversions (8p23.1, 
16p11.2, and 17q21.31). Additionally, we identified multiple significant 
inversion-exposure interactions. Finally, we identified a prenatal 
environment, defined as the combination of four environmental 
exposures, where boys were more likely of being obese than girls. We 
designed an algorithm to predict this environment using the methylome.  

Our findings suggest new genetic and environmental factors modulating 
DNA methylation that should be considered for new targets in disease 
prevention. In addition, personalized medicine is now on the horizon 
since the effect of environmental factors on DNA methylation depends 
on the personal genetic background, as well as the combination of 
multiple exposures.  
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Resum 

La metilació de l’ADN és un procés biològic que es defineix com 
l’adició d’un grup metil a la molècula d’ADN. Entre altres, els factors 
genètics i ambientals són els principals moduladors d’aquest procés. Les 
alteracions en la metilació s’associen amb nombroses malalties comuns. 
Per això, és molt important identificar quins factors donen lloc a canvis 
en la metilació i, per conseqüència, en el desenvolupament de malalties. 

En aquesta tesis, hem avaluat l’efecte de variants genètiques i factors 
ambientals, així com la seva interacció, en la metilació de l’ADN. Amb 
aquesta fi, hem utilitzat dues cohorts: Human Early-Life Exposome 
(HELIX) i el Biobanc d’ADN de TruDiagnostic. 

En primer lloc, hem detectat llocs CpG diferencialment metilats segons 
el consum de tabac, alcohol i marihuana. Més important encara, el 
73.6% de l’associació entre el consum d’alcohol i la hipertensió estava 
mediatitzat pel CpG més associat amb alcohol. En segon lloc, hem trobat 
patrons de metilació específics del genotip de tres inversions 
polimòrfiques (8p23.1, 16p11.2 i 17q21.31). Addicionalment, hem 
identificat múltiples interaccions inversió-exposició significatives entre 
aquestes inversions i exposicions ambientals. Per últim, hem identificat 
un ambient prenatal, definit com la combinació de quatre exposicions, 
on els nois tendeixen a ser més obesos que les noies. A més a més, hem 
dissenyat un algoritme per predir aquest ambient utilitzant la metilació. 

Els nostres resultats suggereixen nous factors genètics i ambientals 
moduladors de la metilació que haurien de ser considerats en la 
prevenció de malalties. Així mateix, s’obre camí a la medicina 
personalitzada, ja que l’efecte dels factors ambientals depèn del context 
genètic, així com de la combinació de vàries exposicions. 
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Resumen 

La metilación del ADN es un proceso biológico definido como la 
adición de un grupo metilo a la molécula de ADN. Entre otros, los 
factores genéticos y ambientales son los principales moduladores de este 
proceso. Las alteraciones en la metilación se asocian con enfermedades 
comunes. Por ello, es crucial identificar qué factores producen cambios 
en la metilación y, por consiguiente, el desarrollo de enfermedades.  

En esta tesis, hemos evaluado el efecto de variantes genéticas y factores 
ambientales, así como su interacción, en la metilación del ADN. Para 
ello, hemos usado dos cohortes: Human Early-Life Exposome (HELIX) 
y el Biobanco de ADN de TruDiagnostic. 

En primer lugar, hemos detectado sitios CpG diferencialmente 
metilados según el consumo de tabaco, alcohol y marihuana. 
Notablemente, el 73.6% de la asociación entre el consumo de alcohol y 
la hipertensión estaba mediado por el CpG más asociado a alcohol. En 
segundo lugar, hemos encontrado patrones de metilación específicos del 
genotipo de tres inversiones polimórficas (8p23.1, 16p11.2 i 17q21.31). 
Además, hemos identificado múltiples interacciones inversión-
exposición significativas. Por último, hemos identificado un ambiente 
prenatal, definido como la combinación de cuatro exposiciones, donde 
los niños son más obesos que las niñas. Hemos diseñado un algoritmo 
para predecir este ambiente usando la metilación.  

Nuestros resultados sugieren nuevos factores genéticos y ambientales 
moduladores de la metilación que podrían ser claves en la prevención 
de enfermedades. Asimismo, se abre camino a la medicina 
personalizada, ya que los factores ambientales dependen del contexto 
genético, así como de la combinación de varias exposiciones.  
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1.1. Epigenetics overview 

Genetics is widely known and studied, and it refers to the alteration of 

gene activation and function due to changes in DNA sequence. 

Conversely, epigenetics is defined as the study of inherited changes in 

gene activity or function without modifying the DNA sequence. Even 

though genetic information is the same in all cells of an organism, not 

all genes are expressed in all cell types [1]. Epigenetics is responsible 

for creating tissue-specific gene expression profiles. Therefore, 

epigenetic processes are natural and essential to many organism 

functions. However, if epigenetic modifications occur improperly, there 

can be major adverse health and behavioral effects [2,3].  

One of the main factors altering epigenetics is exposure to 

environmental hazards, like tobacco smoke or air pollution [4,5]. In this 

way, epigenetics plays a bridge role between our genes and our 

behaviors and environment. Additionally, epigenetic changes may 

persist through multiple cell divisions and may also last for multiple 

generations [6–9]. The main epigenetic mechanisms include DNA 

methylation, histone modifications, and non-coding RNAs.  

 

1.1.1. DNA methylation 

DNA methylation is the most known epigenetic process, and it is defined 

as the addition of a methyl group (CH3) to the carbon-5 position of 

cytosine in DNA, resulting in a 5-methylcytosine (5mC) (Figure 1) 

[10,11]. DNA methylation is responsible for recruiting proteins 

involved in gene repression, increasing or reducing gene expression [1]. 
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Since DNA methylation is the main topic of this thesis, the next sections 

include more information about this epigenetic mark. 

 

 

Figure 1 | Chromatin structure. DNA (orange chain) is packaged around histone 
octamers (blue balls) that constitute nucleosomes. DNA methylation (red balls) 
occurs in position 5 of cytosines (orange balls). Histone modifications are 
represented as pink pentagons. Based on Epigentek (www.epigentek.com). 

 

1.1.2. Histone modifications 

DNA is compacted to fit into the cell nucleus as chromatin. Histones are 

the proteins that act in packaging the DNA double-helix into structural 

units called nucleosomes. These units are octamers of four core histones 

(H2A, H2B, H3, and H4) that wrap 147 base pairs of DNA in two turns 

(Figure 1). Moreover, 50 base pairs separate one nucleosome from the 

next one [12,13]. Importantly, an extra histone (linker histone H1) is 

http://www.epigentek.com/
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required to further condense the chromatin and form the higher order 

structures (Figure 2) [14].  

 

 

Figure 2 | Chromatin structures condensed by linker histones. Based on Zhou 
et al. [14]. 

 

Although the main function of nucleosomes is packaging DNA, they 

also ensure or impair the DNA sequence’s accessibility to proteins 

involved in DNA replication, recombination, gene expression, and DNA 

repair [13]. Therefore, chromatin can be condensed and decondensed 

due to histone modifications depending on the cell’s needs [15]. 

Heterochromatin is known as the type of chromatin that is tightly packed 

and condensed. Heterochromatin is typical of inactive genes since the 
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condensed structure inhibits the recruitment of RNA polymerase and 

gene regulatory proteins. On the other hand, euchromatin is defined as 

loosely wrapped chromatin. In this case, DNA is more accessible and, 

therefore, it is actively transcribed [16]. 

Histone modifications occur at histone tails by adding acetyl, methyl, 

phosphate, ubiquitin, or other groups [16,17]. The histone modification 

can impact gene expression by altering chromatin structure or recruiting 

histone modifiers [17]. Generally, histone acetylation is associated with 

highly transcriptionally regions, whereas hypoacetylated histones are 

found in transcriptionally inactive regions [18]. Histone methylation can 

be found in expressed and non-expressed regions according to the 

specific position within the histone and within the gene.  

 

1.1.3. Non-coding RNAs 

The group of RNAs that do not encode functional proteins is called non-

coding RNAs (ncRNAs). According to their regulatory roles, ncRNAs 

can be classified into two categories (Table 1). Housekeeping ncRNAs 

are abundant and widely expressed in cells, regulating primary cellular 

functions, such as translating messenger RNA (mRNA) into proteins 

[19]. Regulatory ncRNAs encompass many types of RNAs and play 

important roles in gene expression regulation at epigenetic, 

transcriptional, and post-transcriptional levels [20].  

Among other functions, these regulatory non-coding RNAs can induce 

DNA methylation and histone modification, the other two major groups 

of epigenetics [21]. For instance, microRNAs (miRNAs) and small 

interfering RNAs (siRNAs) are involved in the RNA interference 
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pathway, which represses translation by neutralizing target 

complementary transcripts (Figure 3). Piwi-interacting RNAs 

(piRNAs) are involved in transposon silencing and other epigenetic 

pathways. Small nuclear RNAs (snRNAs) have the role to remove the 

introns of a precursor mRNA by establishing small nuclear 

ribonucleoprotein complexes (snRNPs). These snRNPs are combined to 

form a large ribonucleoprotein complex called spliceosome. Using this 

mechanism, a mature transcript can be created during the splicing 

process (Figure 4). 

 

Table 1 | Types of non-coding RNAs (ncRNAs). Housekeeping and regulatory 
ncRNAs are the two main groups according to regulatory roles. Each division 
encompasses seven types of ncRNAs of different sizes. Table from Zhang [19]. 

 

Type Abbreviation Full name Size 

Housekeeping 
ncRNAs 

rRNA ribosomal RNA 120-4,500 nt 
tRNA transfer RNA 76-90 nt 
snRNA small nuclear RNA 100-300 nt 
snoRNA small nucleolar RNA 60-400 nt 
TERC telomerase RNA / 
tRF tRNA-Derived Fragments 16-28 nt 
tiRNA tRNA halves 29-50 nt 

Regulatory 
ncRNAs 

miRNA microRNA 21-23 nt 
siRNA small interfering RNA 20-25 nt 
piRNA Piwi-interacting RNA 26-32 nt 
eRNA enhancer RNA 50-2,000 nt 
lncRNA Long non-coding RNA > 200 nt 
circRNA circular RNA 100-10,000 nt 
Y RNA Y RNA / 
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Circular RNAs (circRNAs) are the unique class of ncRNAs that form 

covalently closed loop structures. They play important roles in 

regulating alternative RNA splicing or transcription, as well as acting as 

competing endogenous RNAs [19,22]. 

 

 

Figure 3 | Target recognition by small interfering (siRNA) and microRNA 
(miRNA). (A) siRNA is usually fully complementary to the coding region of its 
target mRNA; (B) miRNA is partially complementary to its target miRNA. 
Complementary binding usually occurs at the seed region (nucleotides (nt) 2–7 of 
the 5’ end) of miRNA and the 3’ UTR of the target mRNA. Based on Lam et al. 
[23]. 
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Figure 4 | Splicing process where a transcribed pre-mRNA is transformed into 
a mature mRNA. The pre-mRNA contains exons (green) and introns (blue). To 
remove introns, the small nuclear RNA (snRNAs) molecules bind to specific 
proteins to form a small nuclear ribonucleoprotein complex (snRNP). Multiple 
snRNPs (yellow and orange) are combined to form the spliceosome. The 
spliceosome removes the introns from the pre-mRNA leading to a mature mRNA. 
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1.2. DNA methylation overview 

1.2.1. DNA methylation distribution 

DNA methylation mostly occurs at CpG sites, defined as a cytosine 

followed by a guanine, separated by a phosphate group, in the same 

strain along its 5’ → 3’ direction. In short, CpG is the abbreviation for 

5’ – C – phosphate – G – 3’ (Figure 5).  In mammals, CpG sites are less 

frequent than would be expected from the base composition. In human 

DNA, the GC fraction is 0.4, thus, we would expect a frequency of 0.04 

(0.2 x 0.2) to occur for CpG sites. However, this frequency is about 

0.008. This is explained by the common mutation where 5mC 

deaminates to thymine [24].  

 

 

Figure 5 | A CpG site. On the left, the green strand contains a CpG site from 5’ to 
3’. On the reverse DNA strand (blue), the complementary CpG site is shown. On 
the right, a C-G base-pairing is also indicated to distinguish it from a CpG. Based 
on Wikipedia (www.wikipedia.org). 

 

Although a low proportion of CpG sites, these sites are highly 

methylated. In humans, embryonic stem cells present up to 80 % of the 

CpG sites methylated, except for the CpG islands, which tend to be 

unmethylated [25–27]. CpG islands are regions of 1 kb approximately 

with high CpG density near the gene promoters that are often not 

methylated. More than 70% of mammalian promoters reside within CpG 

http://www.wikipedia.org/
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islands, especially within housekeeping and developmentally regulated 

gene promoters. They are unmethylated to avoid deamination and 

consequent mutation to thymine during evolution [1,11]. CpG islands 

have been evolutionarily conserved to promote gene expression since 

they promote the accessibility of DNA and enhance transcription factor 

binding [1].  

Recent studies in humans have demonstrated that cytosine methylation 

also occurs when cytosines are not followed by a guanine. This is known 

as non-CG methylation (mCH) where H corresponds to adenine (A), 

cytosine (C), or thymine (T). Although methylation of CH dinucleotides 

has been found in pluripotent and brain cells, it is still unclear their 

function [28]. 

 

1.2.2. DNA methylation and demethylation processes 

DNA methylation occurs when DNA methyltransferase (DNMT) 

enzymes transfer a methyl group from the cofactor S-Adenosyl-L 

methionine (SAM) to the 5-carbon in cytosine in DNA [29]. There are 

two main groups of DNMTs (Figure 6). The first one includes those 

enzymes that are responsible for de novo methylated sites (DNMT3a 

and DNMT3b). This means establishing DNA methylation marks at 

previously unmethylated sites and occurs during early development. 

Although the specific mechanism whereby de novo DNMTs target DNA 

regions is partially understood, there is evidence that histone tail 

modifications and ncRNAs are involved in guiding the establishment of 

5mC [10,30,31]. The second group comprises DNMTs that aim to 

maintain already established methylated sites during DNA replication 

(DNMT1). During this process, the DNA chain is divided into two 
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strands. When the complementary sequences are synthesized, the new 

chains are hemimethylated because only the old strand is methylated. At 

this moment, DNMTs are recruited, and they methylate the appropriate 

cytosines following the same pattern as in the old chain (Figure 6) 

[10,32,33].  

 

 

Figure 6 | De novo and maintenance DNA methyltransferases (DNMTs). On 
the left, de novo DNA methylation establishes methylated cytosines at previously 
unmethylated sites. On the right, maintenance DNA methylation involves 
recognition of hemi-methylated CpG sites generated during DNA replication and 
methylation of the newly synthesized strand following the same pattern as the old 
strand. Based on Schmitz et al. [10].  

 

DNA demethylation occurs in many methylated cytosines along the 

genome, especially within gene bodies. This process consists of the 

conversion of a 5mC to an unmodified cytosine (C). DNA 

demethylation can occur passively or actively. Passive DNA 

demethylation happens when 5mC disappears from the genome due to a 

lack of maintenance DNMTs. Oppositely, active DNA demethylation 

involves the oxidation of methylated cytosines by ten-eleven 

translocation (TET) enzymes into oxidized derivatives of 5mC [34].  

Active DNA demethylation takes place in a cycle, which starts at 5mC 

and finishes with an unmodified cytosine (Figure 7). First, 5mC is 
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oxidized to 5-hydroxymethylcytosine (5hmC), which in turn is oxidized 

to 5-formylcytosine (5fC), and finally is oxidized to 5-carboxylcytosine 

(5caC). Among these molecules, 5fC and 5caC can be converted to 

unmodified cytosines by thymine DNA glycosylase (TDG) in 

combination with base excision repair (BER). Moreover, 5hmC is the 

most stable oxidized derivative of 5mC. These molecules have been of 

great interest to many recent studies, which suggest a potential role in 

stable epigenetic roles [34].  

 

Figure 7 | Active DNA demethylation cycle. Cytosines (C) can be methylated 
through DNA methyltransferase (DNMT) enzymes, resulting in 5-methylcytosine 
(5mC). 5mC is oxidized to 5-hydroxymethylcytosine (5hmC) by ten-eleven 
translocation (TET) enzymes, which is oxidized to 5-formylcytosine (5fC), which 
in turn is oxidized to 5-carboxylcytosine (5caC). Thymine DNA glycosylase 
(TDG) and base excision repair (BER) convert 5fC and 5caC into C. Based on 
abcam [35]. 
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1.2.3. Functions of DNA methylation 

DNA methylation is crucial for cell differentiation and development, 

being essential for cell viability. Experiments removing DNMT genes 

in mouse models were incompatible with the viability of the organism 

[30,36].  

Although CpG islands within promoters tend to be unmethylated, 

environmental exposures and genetic factors can produce changes at 

methylation levels [37–40]. In general, methylation at promoters leads 

to gene transcription repression. The effect of methylation on gene 

expression is not direct, but methylation can modulate the chromatin 

structure and, consequently, reduce the accessibility of the binding 

factors [11,41]. Even though this is a way of silencing, the inactivation 

of CpG island promoters through histone methylation is also common 

because is more plastic than DNA methylation [42]. Nevertheless, there 

are three major groups of genes whose silencing is stable and is 

regulated by DNA methylation: genes on the inactive X chromosome, 

imprinted genes, and germline-specific genes [11]. 

Oppositely, gene bodies present high levels of methylation and are 

positively correlated with transcription [43]. This may be explained by 

two hypotheses. First, DNA methylation in the gene body facilitates 

transcription elongation and splicing. Therefore, it seems that while 

transcription initiation is sensible to DNA methylation silencing, 

elongation is not [30]. The role of methylation in splicing has been 

suggested because of the change of methylation level at exon-intron 

boundaries, being exons more methylated than introns [44]. Second, it 

avoids the transcription initiation at cryptic promoters [11]. Methylation 
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in a downstream promoter would avoid the transcription from that 

promoter but it would allow the elongation from the first promoter [45]. 

DNA methylation also provides genome stability by repressing the 

activation of repetitive elements (REs). These elements constitute more 

than a third of the genome and are dangerous because they can 

recombine and lead to chromosomal rearrangements. DNA methylation 

is responsible for compacting DNA where REs are present, protecting it 

from the recombination and mobility of these elements. Previous studies 

have demonstrated that hypomethylation in repetitive sequences is 

common in complex diseases, like cancer, where genome instability is 

relevant [11,46]. 

 

1.2.4. DNA methylation and health 

Many of the diseases that cannot be explained by genetics, may be 

explained by epigenetics. For example, monozygotic twins with the 

same genetic variant for a disease can present very different clinical 

characteristics. In this case, genetics is not responsible for the 

phenotypic traits and the twins may have epigenetic differences that lead 

to these differences. In the same line, genetic and epigenetic mutations 

can induce the same phenotype. For instance, one gene can be 

downregulated due to a gene disruption (genetic mutation) or due to the 

high condensation of the chromatin, making impossible its transcription 

(epigenetic mutation). Finally, genetic and epigenetic mutations are not 

exclusive. Genetic alterations may affect proteins involved in the 

epigenetic processes, such as DNMTs, producing epigenetic alterations 

at multiple loci [3]. 
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Epigenetic modifications are maintained during cell division due to the 

maintenance of DNMT enzymes. Therefore, in one organ, one cell will 

be divided into two cells with the same epigenome [3,10]. In addition, 

epigenetic changes can be transmitted to the next generations if they 

affect the germ line.  

The environment is the third key element in the relationship between 

genetics and epigenetics. While genetics predispose to diseases that are 

highly influenced by the environment, environmental factors, such as 

diet or air pollution, alter the epigenome. Thus, identifying 

environmental factors altering epigenetics for specific diseases provides 

information for designing biomarkers for preventing disease [3]. 

Epigenetics is involved in the regulation of all biological processes in 

the body from conception to death and it regulates development and 

adaptations during the lifetime. Therefore, epigenetic alterations may 

result in disorders [2]. Many studies have demonstrated the important 

role of DNA methylation in common diseases, such as cancer, 

autoimmune diseases, neurological disorders, cardiovascular disease 

(CVD), and obesity [2]. Besides, recent studies also highlight the 

importance of methylation alterations in rare diseases [47].  

 

• Cancer 

In patients with cancer, it is common to find hypermethylation of 

promoter regions of tumor suppressor genes, leading to an inactivation 

of tumor suppressor functions. On the other hand, global 

hypomethylation has been found in cancer cells, which contributes to 

genomic instability and cell transformation. Additionally, DNA 
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methylation has an important role in regulating cell division, DNA 

repair, cell differentiation, apoptosis, angiogenesis, metastasis, growth 

factor response, detoxification, and drug resistance [48]. All these 

processes are highly involved in tumor evolution and specific 

methylation marks for these disturbances can be used to early detect 

cancer. It is worth mentioning that not only DNA methylation is being 

used as a cancer biomarker, but also other epigenetic factors, like 

miRNAs [49].  

Importantly, DNA methylation is reversible, so these marks are 

extremely important for therapeutic approaches. Another benefit of 

studying epigenetic changes in cancer versus genetic changes is that 

some methylation abnormalities involved in tumorigenesis appear 

before mutations. Thus, detecting abnormal epigenetic marks may help 

to detect cancer at the very beginning stages. Besides, many methylation 

changes are tissue-specific, such as the hypermethylation at BRCA1 

exclusively in breast and ovarian carcinomas [50]. 

One strategy in current clinical practice for cancer treatment is the use 

of DNMT inhibitors. Although global hypomethylation may contribute 

to tumor progression, the inhibition of DNMTs helps to restore the 

activity of tumor suppressors and genes involved in important cellular 

pathways [51]. Various studies confirm tumorigenesis inhibition after 

drug intake. In particular, Vidaza and Decitabine are two anticancer 

drugs approved by the Food and Drug Administration (FDA) that are 

currently used for the treatment of myelodysplastic syndromes (MDS) 

and chronic myelomonocytic leukemia (CML) [52,53]. 

Even more interestingly, the study of DNA methylation in liquid 

biopsies and, in particular, the analysis of cell-free DNA (cfDNA) is a 
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potential non-invasive diagnostic approach in oncology [54]. cfDNA is 

composed of fragments of DNA released by cells into the circulation, 

mainly due to cell death. In cancer patients, cfDNA also contains DNA 

from tumor cells. Therefore, the detection and analysis of tumor-derived 

cfDNA is a potential strategy for evaluating tumor diagnosis, 

progression, or treatment rejection. As an example, 7 cfDNA 

methylation markers in plasma were able to discriminate epithelial 

ovarian cancer from benign pelvic masses with a sensitivity of 90.6% at 

a specificity of 89.7% [55].  

 

• Autoimmune diseases 

Many studies suggest that autoimmune diseases are also regulated by 

epigenetic factors. Indeed, hematopoietic lineage, antigen-receptor, 

allelic exclusion, and inducible immune response against pathogens are 

epigenetically regulated [56]. Rheumatoid arthritis, a common 

autoimmune disease, is associated with hypermethylation of HDAC1 

and HDAC2 genes [57]. These genes encode two histone deacetylase 

proteins, leading to histone tail modifications. Besides, patients with 

multiple sclerosis present lower methylation levels in central nervous 

system white matter compared to controls [58]. 

 

• Neurological disorders 

Epigenetics is particularly important in brain development and disease. 

Day and Sweatt introduced the discipline ‘Neuroepigenetics’ in 2010, 

defined as the study of the mechanisms that allow dynamic regulation 

of the epigenome in nondividing cells of the nervous system, along with 
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the epigenetic process involved in neuronal differentiation and cell-fate 

determination [59]. During these years, many studies have demonstrated 

the important role of epigenetic alterations in learning, memory, and 

synaptic plasticity, as well as in neurodevelopmental and 

neuropsychiatric disorders, neurodegeneration, and aging [60]. As an 

example, the emergence of Alzheimer’s disease and schizophrenia has 

been seen associated with global hypomethylation due to low levels of 

DNMT3a mRNA and lower methylation levels at REs [61].  

 

• Cardiovascular disease (CVD) 

The role of epigenetics in CVD is complex and partially known. There 

are many risk factors for these diseases that modulate the epigenome, 

such as sex, smoking, aging, and diabetes [62]. Hypertension is a major 

risk factor for stroke and CVD and its pathogenesis seems to be 

modulated by DNA methylation. For example, global hypomethylation 

in peripheral blood leucocytes has been seen in hypertensive patients. 

Moreover, those patients have high methylation levels at the ACE gene 

promoter, inactivating the catalyzation of the angiotensin II production 

crucial for blood pressure regulation [63]. Other studies revealed lower 

methylation levels in hypertensive patients in two CpG sites that 

mapped to two genes SLC7A11 and PHGDH, respectively [64–66]. 

While SLC7A11 was associated with vascular tone regulation, PHGDH 

regulates serin synthesis and tissue growth [66]. 

 

 

 

 



DNA METHYLATION OVERVIEW 
 

20 

• Obesity 

Obesity is defined as abnormal or excessive fat accumulation. People 

with obesity have more risk of suffering from type 2 diabetes, CVD, 

hypertension, or metabolic syndrome, among others. Several factors are 

known to affect abnormal fat accumulation, such as lifestyle behaviors 

(dietary habits, physical exercise, and sleep patterns), social factors 

(educational level and economic status), endocrine disorders 

(hypothyroidism), or intake of certain drugs (like corticosteroids). 

However, there is high inter-individual variability when evaluating the 

effect of these factors. This suggests that genetic and epigenetic 

elements may have an important role in the pathology of obesity [67]. 

Many studies have demonstrated the significant association between 

obesity and changes in DNA methylation levels in many tissues. For 

example, Aslibekyan et al. compared obese with normal-weight adults 

and reported methylation changes in the carnitine palmitoyltransferase 

1A (CPT1A) gene [68]. This gene encodes for a protein implicated in 

the control of fasting triglycerides and lipoprotein levels. Another study 

revealed several CpG sites differentially methylated in cord blood when 

comparing newborns from obese mothers with newborns from normal-

weight mothers [69].  

 

• Rare diseases 

Rare diseases are defined as disorders with a prevalence of less than 1 

person in 2,000 people. Among the 7,000 different rare diseases 

described worldwide, 80% are thought to have a genetic origin [70]. 

Moreover, about 60% of the patients remain undiagnosed [71]. The high 
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number of undiagnosed patients may be explained, in part, due to a non-

genetic origin of the disease. 

Epimutations are rare alterations in DNA methylation patterns. They are 

identified by detecting groups of contiguous CpG sites with aberrant 

methylation values compared with the reference population. Previous 

studies demonstrated that epimutations could explain the development 

of rare diseases [47,72,73]. For instance, Aref-Eshghi et al. diagnosed 

67 individuals with uncertain clinical diagnoses related to 

neurodevelopmental presentations and congenital anomalies by 

identifying specific epimutations [72].  

 

1.2.5. DNA methylation assessment 

Many technologies and strategies have been developed to measure and 

analyze DNA methylation. According to the biological question, it 

would be better to use one or another methodology. They can be 

classified according to three key factors: DNA methylation extends, 

pretreatment, and analytical step.  

 

• DNA methylation extends 

DNA methylation can be estimated at the global level or DNA 

methylation sites. While global-level strategies assess overall changes, 

the second strategy evaluates specific alterations in DNA methylation. 

Additionally, specific changes at DNA methylation sites can be 

estimated at particular genes or in the whole genome. Epigenome-wide 

association studies (EWAS) examine genome-wide epigenetic variants, 

mainly DNA methylation levels at CpG sites, to detect significant 
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differences associated with phenotypes of interest [74]. These studies 

have helped to understand the role of methylation in many diseases. 

Since the number of CpG sites evaluated is very large (can reach 

850,000 CpG sites), bioinformatic tools to process, analyze, and 

interpret methylation data from EWAS have evolved. Typically, results 

from EWAS are displayed in a Manhattan plot, where each point 

represents a CpG site along the chromosomes and the Y axis reflects the 

level of significance (Figure 8).  

 

Figure 8 | Example of a Manhattan plot for EWAS analysis. The x-axis shows 
the genome position of the CpG sites. The y-axis shows the –log10 (P-value). The 
green line indicates Bonferroni genome-wide significance, and the blue line is FDR 
significance. 

 

• Pretreatment 

There are three main types of pretreatments for revealing the presence 

or absence of the methyl group at cytosine residues (Figure 9). The first 

one is enzyme digestion, which relies on the fact that some restriction 

enzymes are inhibited by 5mC and 5hmC in the CpG context. Therefore, 

evaluating   the   patterns   of   cutting   by   such   enzymes   can   provide 
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Figure 9 | The three main types of pre-treatments. At the top, enzyme 
digestion. In the middle, affinity enrichment. At the bottom, bisulfite conversion. 
Based on New England Biolabs, Lee et al., and Epigentek [79–81]. 
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information about DNA methylation. This technique is very sensitive 

but extremely prone to false-positive results caused by incomplete 

digestion [75,76].  

Second, affinity enrichment strategies use antibodies specific for 5mC 

(methyl-DNA immunoprecipitation - MeDIP) or methyl-binding 

proteins with affinity for methylated DNA. They are low-cost and 

straightforward for experienced laboratories but have relatively low 

resolution [75,77].  

Third, bisulfite conversion is considered the gold standard pretreatment 

because of its single-nucleotide resolution, flexibility across organisms, 

and very low input requirements. The treatment with sodium bisulfite 

transforms unmethylated cytosines into uracils, whereas methylated 

cytosines are thermodynamically protected [78]. Then, bisulfite-

converted fragments are subjected to PCR amplification, where uracils 

are replaced by thymines. The last step is to sequence the DNA 

amplified and compare it to a reference unconverted sequence to 

discover the sites that were originally methylated or not [77]. 

 

• Analytical step 

Although the first analyses were performed with gel electrophoresis, 

nowadays microarrays and next-generation sequencing (NGS) 

techniques are broadly used when assessing DNA methylation. 

Microarrays are composed of bead-ligated probes that distinguish 

methylated and unmethylated loci based on their differential sequence 

[77]. The most extensively used arrays are based on Illumina probe 

extension: Infinium HumanMethylation450 (simplified as 450K) and 
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HumanMethylationEPIC (EPIC) BeadChips. While 450K was first 

developed and evaluates around 450,000 CpG sites epigenome-wide, 

the EPIC array assesses around 850,000 CpG sites. Besides, NGS 

techniques can be whole-genome bisulfite sequencing (WGBS) or 

reduced representation bisulfite sequencing (RRBS) when it is not 

necessary to measure the methylation status of every CpG. Sequence-

based analyses have the advantage over array-based analyses in that they 

apply to any species for which a reference genome exists. A specific 

array of the specie of interest may be available to use the array-based 

methodology [75]. 
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1.3. DNA methylation and genetic background 

There is a high inter-individual variation in DNA methylation. One 

study revealed that approximately 50% of the CpG sites had more than 

50% of variability across samples [82]. This is explained by differences 

in gender, age, environmental exposures, lifestyle, and ethnicity, but 

also due to genetic factors.  

Genetic mutations are defined as any alteration in the DNA sequence. 

They are responsible for human evolution since they create variability 

over generations. When a sporadic mutation occurs in one individual, it 

can be inherited from their children. If the mutation has a positive effect, 

such as increasing the chance of survival or reducing disease risk, it may 

be inherited through generations and spread through the population. 

When this mutation occurs in at least 1% of the population, it is no 

longer considered a genetic mutation but a genetic variant. 

Mutations can be inherited from the progenitors or can occur in the 

individual throughout life due to environmental exposures or errors 

during replication. Depending on the cells affected, we can find 

germline or somatic mutations. Germline mutations are those that occur 

in germline cells (cells that give rise to gametes), allowing to pass the 

mutation to the offspring. In this case, all the cells of the developing 

embryo will carry this mutation. Oppositely, somatic mutations occur in 

cells found elsewhere in an organism’s body. These mutations are 

inherited by daughter cells through mitosis but not by the offspring 

(Figure 10). 
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Figure 10 | Differences between germ-line and somatic mutations. (A) Germ-
line mutation. (B) Somatic mutation. 

 

Changes in the DNA sequence can occur at different levels. First, the 

most common variants are point mutations, which affect a single 

nucleotide. Second, mutations can also occur at the level of the 

chromosome, where large segments of the chromosome are affected. 

Third, genomic mutations are those affecting a whole chromosome. 

 

1.3.1. Genetic mutations 

Genetic mutations are the most common variants in humans and are 

defined as single nucleotide changes (Figure 11). These changes 

include the addition of a nucleotide (insertion), the removal of a 
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nucleotide (deletion), or the exchange of a nucleotide with another 

(substitution).  

 

Figure 11 | Main types of genetic variants. While translocations and inversions 
are balanced structural variants, insertions, deletions, and duplications are 
unbalanced structural variants. 

 

If genetic mutations occur in at least 1% of the population, they are 

considered single nucleotide polymorphisms (SNPs). Due to their 

prevalence, they are normal variants that do not directly cause disease. 

Although SNPs do not result in a disease, they can predispose 

individuals to certain traits or medical conditions. Therefore, SNPs are 

widely used as biomarkers to estimate the risk of disease. Typically, 

genome-wide association studies (GWAS) identify the most significant 

SNPs that are statistically associated with the phenotype of interest. This 

method consists of analyzing the genomes of many people and 

identifying the genetic variants that appear more frequently in those 

individuals with the trait of interest compared with those without the 
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disease or trait. Lastly, these variants are used to search for nearby 

variants that contribute directly to the disease or trait. 

SNPs are one of the genetic factors most associated with DNA 

methylation changes. Many studies have identified a high percentage of 

CpG sites with cis and trans methylation quantitative trait loci (mQTL) 

in blood, lung, breast, kidney, and brain, among other tissues [83–86]. 

Moreover, the proportion of trans-mQTLs (more than 1 Mb between the 

SNP and the CpG site) is much smaller than the proportion of cis-

mQTLs. Shi et al. remarked that mQTLs were enriched for DNase 

hypersensitive sites, modified histones, and binding sites. SNPs may 

affect these epigenetic marks by affecting the core recognition 

sequences, losing or gaining a CpG within a binding region (which 

methylation alters binding), or altering the binding sequence for 

interacting factors [86].  

 

1.3.2. Chromosomal mutations 

Chromosomal mutations are the second type of mutation and are also 

known as structural variants (SVs). They are defined as genetic 

alterations that affect a large region of a chromosome. When the 

alteration does not come with a loss of DNA, they are called balanced 

SVs. Among them, we can find translocations and inversions. 

Sometimes, chromosomal mutations lead to a loss of genetic material. 

In this case, SVs are considered unbalanced and include insertions, 

deletions, and duplications (Figure 11).  

In contrast to SNPs, there are a few studies evaluating the effect of SVs 

on DNA methylation. However, Shanta et al. reported the influence on 
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3D DNA structure by large SVs, which can be highly correlated with 

changes at the DNA methylation level. 

 

• Translocations 

Translocations occur when chromosome breaks and the fragmented 

pieces re-attach to different chromosomes. They are classified as 

reciprocal and Robertsonian. Reciprocal translocations occur when two 

detached fragments from two non-homologous chromosomes are 

switched. This type of translocation occurs in about 1 in 491 live births 

[87]. Although they are usually harmless because the genetic material is 

balanced, their gametes may create unbalanced chromosome 

translocations during meiotic chromosomal segregation. On the other 

hand, Robertsonian translocations are caused by breaks at or near the 

centromeres of two acrocentric chromosomes. The reciprocal exchange 

leads to one large metacentric chromosome and one extremely small 

chromosome that may be lost during chromosome segregation. The 

most common Robertsonian translocation is between chromosomes 13 

and 14 and has a prevalence of 0.97 every 1000 newborns [88]. 

There are a few studies investigating the effect of translocations on DNA 

methylation. McCartney et al. evaluated the effect of the balanced 

translocation between chromosomes 1 and 11, which is linked to major 

mental illness, on DNA methylation [89]. They found a differential 

DNA methylation at the regions surrounding the translocation 

breakpoints, that was, indeed, implicated in neuronal development and 

psychiatric illness.  
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• Inversions 

Inversions are segments of DNA that run in the opposite direction to a 

reference genome. An inversion occurs when a single chromosome 

undergoes breakage and rearrangement within itself. Inversions can be 

classified as paracentric and pericentric depending on whether they 

involve or not the centromere. Pericentric inversions include the 

centromere, and the breakpoints are one in each arm. Paracentric 

inversions have both breakpoints in the same arm, excluding the 

centromere from the inversion.  

Many inversions are identified in a huge proportion of the population 

since they do not directly cause disease. The three most common 

inversions in humans are large and are located at 8p23.1, 16p11.2, and 

17q21.31 cytogenetic regions (Table 2). Like SNPs, inversions are 

important contributors to the genetic basis of common complex diseases 

in humans. Recent studies, most of them carried out at the BRGE lab, 

demonstrated that inversions are associated with an increased risk of 

obesity, diabetes, asthma, cancer, and neurological conditions [90–97].  

Although several studies have demonstrated the effect of inversions on 

gene expression, it is unknown the extent to which inversions are also 

characterized by specific methylation patterns. However, some studies 

have already reported associations between inversion and phenotypes 

likely modulated by specific methylation changes [92,98,99]. For 

instance, Ruiz-Arenas et al. reported that the effect of the inversion 

17q21.31 on colorectal disease-free survival is more likely mediated by 

DNA methylation that by gene expression [92].  
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Table 2 | Characteristics of the three most common polymorphic inversions in 
humans (8p23.1, 16p11.2, and 17q21.31). The table shows the length in kb, the 
mapping coordinates (hg19), and the frequency of all inversions obtained from 
scoreInvHap [97]. 

 

Genomic 
inversion Length (kb) Inversion region Inversion 

frequency (%) 

8p23.1 3,924.86 chr8:8,055,789-11,980,649 57.95 

16p11.2 364.17 chr16:28,424,774-
28,788,943 34.49 

17q21.31 710.89 chr17:43,661,775-
44,372,665 23.96 

 

• Copy number variants 

Copy number variants (CNVs) occur when the number of copies of a 

specific segment of DNA varies among different individuals’ genomes. 

The size of a CNV is typically larger than 50 bp, whereas smaller 

elements are known as insertions and deletions (indels) [100]. CNVs 

may account for almost 10% of an individual’s genome [101]. On some 

occasions, the segment with a different number of copies can include 

one or more genes. When this gene encodes for a protein, the variation 

in the number of copies can result in a variation in the amount of the 

specific protein. Furthermore, CNVS can also regulate gene expression 

by altering regulatory elements associated with gene expression.  

A recent study by Shi et al. demonstrated that germline inter-individual 

CNVs are associated with differences in DNA methylation at the CpG 

level. Indeed, these associated mQTL-CpG patterns are correlated with 

transcript expression, are enriched for regulatory elements, and are 

located in previously reported disease risk loci [102]. Another study 
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demonstrated that somatic CNVs in cancer are associated with DNA 

methylation levels [103]. However, the causality is unclear since there 

are other studies suggesting that methylation changes may lead to CNV 

formation due to the increase in DNA breakage [104]. 

 

1.3.3. Genomic mutations 

The normal karyotype is organized into 46 chromosomes: 22 pairs of 

autosomal chromosomes and two sexual chromosomes (two X 

chromosomes in females and an X and a Y chromosome in males). 

Genomic mutations, also known as aneuploidies, involve the alteration 

of the number of chromosomes, caused by the addition or missing of one 

or more chromosomes. The most common aneuploidy in humans is the 

presence of an additional chromosome (trisomy). Although they 

represent 0.3% of all live births, they also account for 35% of 

spontaneous abortions since most of them are not compatible with life 

[105].  

The most common viable trisomy involves chromosome 21 and it is 

known as Down Syndrome. Muskens et al. found important genome-

wide effects on DNA methylation in hematopoietic cells in newborns 

with Down syndrome. Interestingly, the most significant CpG sites 

mapped to two genes with important roles in the regulation of 

hematopoietic development. They suggested a contribution of DNA 

methylation in the high prevalence of hematological problems in 

children with Down syndrome [106]. 
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1.4. DNA methylation and environment 

As mentioned previously, the epigenetic landscape of genes can be 

altered due to environmental exposures. In some cases, these 

modifications may lead to disease [37–39]. Many studies demonstrate 

that the environment and genetic predisposition are important 

contributors to the risk of chronic diseases. In many cases, it is even 

more important the role of the environment compared with the role of 

genetic causes. In 2005, Wild contrasted the efforts and the costs 

invested in genetic studies and environmental studies. Clearly, genetic 

studies were more developed, with sophisticated techniques, in contrast 

to environmental studies which did not evolve too much since the 70s.  

 

1.4.1. The exposome 

To avoid such inequality, Wild introduced the term “exposome”, which 

did not include only hazard exposures, but all the exposures (internals 

and externals) to which an individual was subjected, from conception 

onwards [107]. This term includes information about the personal 

exposome, the external exposome, and the biological responses of an 

individual (Figure 12).   

The personal exposome does not only encompasses exposures to toxic 

chemicals, drug intake, smoking, and alcohol, but also information 

about the diet, physical activity, hours of sleep, type of work, and social 

life.  
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Figure 12 | The exposome. This figure shows the different types of exposomes 
and examples for each of them. In green, the personal exposome. In blue, the 
external exposome. In orange, the biological responses. Image from ISGlobal 
(https://www.isglobal.org/exposome-hub). 

 

The external exposome is the most similar to the traditional concept of 

environment. This includes exposure to air pollution, noise, traffic, light, 

sunlight, and greenspaces, among others. In this group, it is also 

encompassed whether the individual leaves in an urban environment, 

defined as an area with an increased density of human-created structures 

in comparison to the areas surrounding it. 

Biological responses are maybe the most forgotten part of the exposome. 

However, they are very important since they have an important role in 

disease emergence. Among these internal exposures, it is remarkable the 

importance of the gut microbiome, the stress, the inflammation, the 
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aging, and the different omics involved in the biological pathways (gene 

expression, epigenetics, proteomics, and metabolomics). 

1.4.2. Modulation of DNA methylation by the exposome 

As mentioned previously, the exposome consists of a group of internal 

and external exposures. In this section, the effect of the most important 

exposures on DNA methylation will be described. 

 

• Toxic chemicals 

Many chemicals are known to be carcinogenic. For a long time, it was 

considered that the carcinogenic effect was exclusively due to the 

alteration of DNA. In 1991, Ashby and Tennant found that 162 out of 

301 chemicals tested were carcinogens, and only 98 of them were 

genotoxic [108]. This illustrates that carcinogenesis may occur in the 

absence of mutagenesis, through epigenetic modifications [39]. 

Bisphenol-A (BPA) is an endocrine disruptor and is one of the most used 

chemicals worldwide. It can be found in bottles, plastic containers, and 

cans in which drinks and food are stored. Among the consequences of 

BPA exposure, it is remarkable the gene silencing by CpG promoter 

methylation in breast cancer epithelial cells [109], and the increased 

susceptibility to preneoplastic prostate changes during aging by 

epigenetic mechanisms [110]. 

Most carcinogenic metals are characterized by low mutagenic activity 

and potential epigenetic mechanisms leading to cancer [39]. As an 

example, nickel compounds are not known as mutagens but have 

carcinogenic effects. In this case, Ni2+ can substitute Mg2+ in the DNA 
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phosphate backbone and increase chromosome condensation. This 

establishes heterochromatin regions where gene expression is silenced. 

When these regions contain suppressor genes, their inactivation may 

lead to cancer [111]. Cadmium is another metal highly associated with 

cancer and with low levels of mutagenicity. High concentrations of 

cadmium are correlated with DNMTs inhibition, leading to global 

hypomethylation [112]. Studies in arsenic have revealed global DNA 

alterations and gene promoters’ methylation levels, histone acetylation 

and phosphorylation, and miRNA expressions. Those effects have been 

linked to carcinogenesis [113]. 

 

• Lifestyle 

It is already known that physical activity is an important contributor to 

a better quality of life. In part, this can be attributed to the epigenetic 

changes that are produced after physical exercise. For example, acute 

exercise is associated with hypomethylation of many promoters of 

metabolic genes, resulting in higher expression [114]. Besides, chronic 

moderate exercise protects the cells from the inflammatory environment 

by preventing the activation of inflammatory cytokines [115]. Finally, 

physical activity has been linked to DNA methylation patterns that result 

in oncogene silencing and higher expression of tumor suppressors 

[116,117].  

Some recent studies have shown that people with post-traumatic stress 

disorder present different levels of DNA methylation compared with 

controls [118]. More interestingly, children from mothers who had stress 

during gestation were more likely to have psychiatric disorders due to 

the high expression of glucocorticoid receptors [119]. 



DNA METHYLATION AND ENVIRONMENT 

38 

The sleep pattern also influences methylome. Lahtinen et al. performed 

an EWAS comparing individuals who self-reported insufficient sleep 

versus controls. They found that 78% of the differentially methylated 

positions (DMP) were hypomethylated in cases. This suggests that there 

is a global hypomethylated in individuals with sleep disorders. 

Additionally, they found 12 DMPs in a region that was previously 

associated with Smith-Magenis syndrome, which consists of a rare 

condition that comprises disturbed sleep and inverse circadian rhythm 

[120].  

Tobacco, alcohol, and marijuana are highly consumed worldwide. Due 

to their association with the risk of mortality and many health 

conditions, the high consumption of these drugs has become a public 

health problem. Recent studies suggest that epigenetics is a potential 

mediator between drug consumption and disease risk. Smoking is one 

of the most associated exposures with DNA methylation. Several studies 

have demonstrated the high number of CpG sites differentially 

methylated along the genome [121–124], even when the exposure was 

during pregnancy [125]. On the other hand, alcohol is also associated 

with genome-wide DNA methylation. Compared with tobacco, there are 

more CpG sites differentially methylated but with lower effects [126–

130]. Oppositely to tobacco and alcohol, a few studies have studied the 

effect of marijuana on DNA methylation and they have revealed small 

effects [131,132]. 

 

• Nutrition 

The impact of nutrition during development has been widely studied. 

During World War II, there were a lot of people suffering from hunger, 
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especially pregnant women. Heijmans et al. demonstrated that 

individuals who suffered prenatal hunger showed low DNA methylation 

levels six decades later in IGF2, a gene implicated in growth 

development. Also, these individuals were more likely to develop a 

subset of diseases, including schizophrenia, stress sensitivity, and 

obesity [133]. 

Many studies have evaluated the effect of dietary factors on DNA 

methylation in blood samples. One of the main studied factors is folate 

intake, which has revealed controversial associations depending on the 

study. While Stidley et al. and Ono et al. found a negative association 

between folate intake and global DNA methylation, Zhang et al. and 

Agodi et al. found a positive association between folate intake and 

LINE-1 methylation [134–137]. Moreover, Barchitta and colleagues 

brought to light a positive association between the Mediterranean diet 

and the LINE-1 methylation level [138]. Interestingly, the level 

increased in individuals more adhered to healthy dietary patterns. 

Another study demonstrated that the consumption of fruit was 

associated with differentially methylated CpG sites that mapped to 

genes involved in antigen presentation and chromosome and telomere 

maintenance [139].  

 

• Air pollution 

Recent studies suggest that air pollutants alter epigenetic mechanisms. 

Particulate matters (PM) consist of solid and liquid particles suspended 

in the air. According to their size, they can be classified as coarse 

(diameter 10μm; PM10), fine (diameter 2.5μm; PM2.5), and ultrafine 

(0.1μm; PM0.1) particles [140]. It is demonstrated that PM2.5 and 
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PM10 exposures are associated with the hypomethylation of Alu and 

LINE-1 repetitive elements in leukocytes and buccal cells [141]. 

Additionally, PM2.5 exposure during pregnancy is associated with 

global levels of methylation in the placenta [142]. Besides, high 

exposure to PM2.5 has been seen associated with hypomethylation of 

many tumor suppressor promoters (such as p53, p15, and p16), which 

can be explained by the overexpression of DNMT1 [143]. Other 

epidemiological studies reveal that PM exposure modulates the 

methylation of several inducible nitric oxide synthase (iNOS) genes, 

which are important for asthma pathogenesis [144]. In line with these 

findings, exposures to NO2 and CO alter DNA methylation at genes 

implicated in asthma development [145].  

 

1.4.3. Polyenvironmental risk scores 

Typically, epidemiological studies evaluate individual environmental 

risk factors to establish the risk of a phenotype of interest. An 

environmental risk factor is defined as any exposure from the personal 

exposome, external exposome, or biological responses that could 

predispose an individual to disease. Sometimes, individual exposures 

are not enough to predict a disease by itself. A few studies have 

suggested that an aggregate score representing multiple environmental 

risk factors may predict the development of a medical condition.  

In 2018, Padmanabhan et al. introduced the term “polyenviromic risk 

score” (PERS), analogous to the polygenic risk score used in genetics 

[146]. In their research, they used PERS to predict the conversion to 

psychosis since individual environmental risk factors were insufficient 

to predict the risk. Early identification of individuals at risk of psychosis 
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is very important since the disease may be delayed or even prevent the 

onset with interventions before the full manifestation [147]. Therefore, 

their PERS included nine risk factors that were known to increase the 

risk of psychosis independently in previous studies.  

Following the basis of the polygenic risk score (PRS), a list of odds 

ratios for each risk factor’s association with psychosis was obtained 

from the literature. Similar to the number of risk alleles for each SNP in 

PRS (either 0, 1, or 2), each risk factor was binarized. Then, for an 

individual, the log of the odds ratio for each exposure was multiplied by 

either 1 (risk factor is present in the individual) or by 0 (absent). These 

products were added together, and the sum was divided by the total of 

environmental risk factors assessed (nine in their case). As expected, the 

PERS score was significantly correlated with conversion to psychosis.  

More recent studies have applied similar methodologies to estimate 

aggregate scores that represent multiple environmental risk factors. 

However, most of them are focused on psychosis. For instance, Jeon et 

al. developed a Korea-PERS (K-PERS) for psychosis [147]. It is worth 

mentioning that, in this paper, PERS stands for “polyenvironmental risk 

score” instead of “polyenviromic risk score”. For creating the K-PERS, 

they followed the methodology described in Oliver et al. and Vassos et 

al. [148,149]. Instead of a weighted sum of odds ratio, they used the 

relative risks (RR) associated with each factor. They first estimated a 

raw score for each factor as the 10-base logarithm of its RR. For 

instance, the raw score of the urbanity factor is log10(2.2) = 0.34 because 

the estimated RR of psychosis in individuals in the urban setting is 2.2. 

Second, they subtracted the population average of this raw score, 

resulting in positive scores for those individuals at risk and negative 
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scores for those not at risk. Third, they multiplied the subtracted scores 

by 10 and rounded them to the nearest half-integer for easy use. Using 

this methodology, the K-PERS was developed, and it was able to 

distinguish between patients with schizophrenia spectrum disorders and 

healthy controls. 

Considering that these tools are achieving positive results, similar 

methods should be applied to other diseases in which early detection 

could improve the prevention and monitoring of the medical condition. 
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1.5. Gene-environment interaction 

1.5.1. Definition 

So far, we have described the effects of genetic factors and 

environmental exposures on DNA methylation independently. 

However, there are many situations where the effect of an environmental 

factor on a phenotype varies in different populations, as well as the 

effect of a genetic variant may differ depending on the environment. 

This is what is known as gene-environment (GxE) interaction and it 

refers to the modification of the effect of a genetic variant on a 

phenotypic trait by an environmental factor, and vice versa, the 

modulation of the effect of environmental exposure on a phenotypic trait 

by genetic factors [150].  

The first examples of GxE interactions were described by Caspi et al. 

They showed that antisocial behavior differed according to the 

interaction between childhood experiences of maltreatment (none, 

probable, or severe) and a genetic variant in the MAOA gene, 

characterized by synthesizing high or low levels of the monoamine 

oxidase A (MAOA) enzyme [151]. Similarly, Caspi et al. demonstrated 

that the variation in depression was associated with the interaction 

between the number of stressful life events experienced (0, 1, 2, 3, or 4 

+) and a polymorphism in the gene 5-HTT involved in the regulation of 

serotonin transporters production (high, moderate, or low levels) [152]. 

In both cases, the phenotype (antisocial behavior or depression) was best 

predicted by considering the interaction between the genetic factor and 

the environmental factor than considering the genetic factor alone or the 

environmental factor alone (Figure 13).  
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Figure 13 | Two examples of significant gene-environment interactions. (A) 
Regression analysis estimating the association between the childhood history of 
maltreatment and antisocial behavior as a function of MAOA activity. Figure 
adapted from Caspi et al. [151]. (B) Regression analysis estimating the association 
between the number of stressful life events and depression as a function of the 5-
HTT genotype. Figure adapted from Caspi et al. [152]. 

 

GxE interactions can be useful to modulate the adverse effects of a risk 

allele by avoiding exposure to a specific hazard. Therefore, GxE 

interactions result in a modifiable relationship between genetics and 

phenotype-associated changes [150]. Those interactions can reduce the 

effect of a genetic variant if the environmental risk factor is limited in a 

study population and if the genetic variant has small effects outside that 

environment. Otherwise, individuals living in environments enriched in 

this exposure will show earlier the effects of the genetic variant. 

Therefore, genetic influence may differ depending on the environment 

[153].  

Uher realized that there was another reason that justified GxE 

interactions [154]. Individuals with common psychopathologies, like 

major depression or anxiety, usually have a small reproductive 
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disadvantage. Along with this, we would expect a negative selection to 

remove a harmful genetic variation. When GxE interactions occur, many 

individuals are carrying the risk allele without developing the disease 

because they are not exposed to the environmental risk factor. 

Additionally, the same allele may confer a reproductive advantage in 

other environments or circumstances. Then, the risk allele could persist 

in the population endlessly. 

 

1.5.2. DNA methylation role in GxE interactions 

Environmental and genetic factors are thought to modulate the 

epigenome to determine the phenotype or disease risk [155–157]. As 

mentioned previously, it is explained by the direct effect of 

environmental exposures on epigenetics, mainly on DNA methylation, 

which is associated with changes in gene expression that can explain, 

lastly, the effect on the trait of interest. Moreover, genetic factors also 

have an important role in regulating the epigenome. Therefore, DNA 

methylation is the best intermediary in the relationship between GxE 

interactions and diseases. 

Czamara et al. evaluated the relative contributions of environmental and 

genetic factors on DNA methylation in neonatal blood in variably 

methylated regions [158]. They tested which factors best explained the 

variability of methylation: genotypes (G), environmental factors (E), the 

additive effect (G+E), or the interaction effect (GxE). Their results 

showed that GxE models were the best predictors of DNA methylation 

variance. Interestingly, the enrichment of the SNPs implicated in the 

significant GxE interactions was enriched in common disorders. This 
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suggests that genetic variants alter the effect of environmental exposures 

at the DNA methylation level and the disease risk. 

 

1.5.3. Limitations in GxE interaction research 

One of the main limitations of GxE research is the limited replication 

and vulnerability of publication bias. The statistical power needed to 

detect GxE interactions depends on many factors. First, the detection of 

GxE interactions requires 4 times the sample size needed to find genetic 

main effects. Second, the distribution of the individuals in the different 

environments affects the statistical power. If a genetic factor has the 

main effect in environment A and not in environment B, the interaction 

will be found more easily if the samples are equally distributed in both 

environments. Oppositely, if all the samples are from one of the 

environments, the interaction cannot be detected. Third, the power to 

detect interactions increases when either the quality of measurement of 

the phenotype or the environmental risk factor is high. Fourth, it is easier 

to detect interactions when the gene function is more proximal to the 

phenotype or biological process. 

To sum up, low statistical power can result in a failure to replicate or 

detect an interaction. Nowadays, the most accepted methodology for 

finding interactions is the use of meta-analysis, since it requires multiple 

studies that test the same hypothesis.
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2.1. Hypotheses 

DNA methylation is a dynamic process that has an important role in the 

regulation of gene expression. Since abnormal DNA methylation can 

result in common diseases, evaluating the genetic and environmental 

factors that alter DNA methylation by themselves or by gene-

environment interactions is crucial for developing new biomarkers. 

 

2.1.1. Hypothesis 1 

• General hypothesis 

DNA methylation is altered by the exposome. 

• Specific hypotheses 
 

 Lifestyle factors, such as tobacco, alcohol, and marijuana 

consumption, are potential modulators of DNA methylation along the 

genome. 
 

 The association of drug consumption with DNA methylation may 

partially explain the association between drug use and common 

diseases.  

 

2.1.2. Hypothesis 2 

• General hypothesis 

Genetic factors and gene-environment interactions are strong 

modulators of DNA methylation. 
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• Specific hypotheses 
 

 Polymorphic inversions, a type of structural variant, may be 

associated with DNA methylation patterns because of their large size 

that englobes multiple genes and the association of inversions with 

gene expression and common diseases. 
 

 The effect of environmental factors on DNA methylation may be 

different according to the inversion genotype.  

 

2.1.3. Hypothesis 3 

• General hypothesis 

The aggregation of multiple environmental factors can be used to predict 

sexual dimorphism in disease risk and DNA methylation can participate 

as a mediator. 

• Specific hypotheses 
 

 The combination of multiple exposures during pregnancy may 

identify an environment with different risk of obesity between boys 

and girls. 
 

 Differences in obesity risk between boys and girls can be associated 

with differences in neurodevelopment. 
 

 DNA methylation can be used to determine whether one individual 

belongs to the environment with high sexual dimorphism in obesity.  
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2.2. Objectives 

This thesis aims to find novel modulators of DNA methylation that may 

be used later to develop biomarkers for disease development using large 

populations. 

 

2.2.1. Objective 1 

• General objective 

To detect differentially methylated CpG sites along the genome 

associated with drug consumption to explain the association with 

common diseases.  

• Specific objective 
 

 To identify blood DNA methylation changes associated with the 

level of consumption of tobacco, alcohol, and marijuana by 

carrying out three independent epigenome-wide association 

studies. Manuscript 1 
 

 To identify new DNA methylation loci that mediate the effect of 

drug consumption on cardiovascular disease risk, especially in 

hypertension. Manuscript 1 

 

2.2.2. Objective 2 

• General objective 

To assess the effect of large structural variants on DNA methylation and 

the interaction with the exposome. 
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• Specific objective 
 

 To evaluate whether three common polymorphic inversions in 

humans (8p23.1, 16p11.2, and 17q21.31) affect the methylation 

patterns of their encapsulated and surrounding DNA sequences in 

blood cells from children. Manuscript 2 
 

 To test whether the same DNA methylation patterns are detected in 

prenatal heart tissue. Manuscript 2 
 

 To assess whether a large set of 64 early life exposures had a 

different impact on DNA methylation according to the genotype of 

8p23.1, 16p11.2, and 17q21.31 inversions. Manuscript 2 

 

2.2.3. Objective 3 

• General objective 

To identify an environment with high sexual dimorphism in obesity and 

neurodevelopment detectable by DNA methylation changes.  

• Specific objectives 
 

 To recognize an environment consisting of a multiexposure profile 

during pregnancy where girls are more protected than boys against 

childhood obesity and neurodevelopment delay. Manuscript 3 
 

 To identify a DNA methylation pattern associated with the specific 

environment that affects different the risk of obesity in boys and 

girls. Manuscript 3 
 

 To infer subpopulations with high sexual dimorphism in obesity 

and academic achievement in an independent cohort. Manuscript 

3
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To address the objectives of this thesis, we used data from three different 

study populations. In the following lines, I will briefly describe these 

projects.  

 

3.1.1. HELIX project 

The Human Early Life Exposome (HELIX) project [159] comprises a 

total of 1,301 mother-child pairs from six birth cohorts in Europe: BIB 

(Born in Bradford; the United Kingdom) [160], EDEN (Etude des 

Déterminants pré et postnatals du développement et de la santé de 

l’Enfant; France) [161], INMA-SAB (Infancia y Medio Ambiente; 

Spain; subcohort Sabadell) [162], KANC (Kaunas cohort; Lithuania) 

[163], MoBa (The Norwegian Mother, Father and Child Cohort study; 

Norway) [164], and Rhea (Greece) [165].  

These mother-child pairs participated in a common, completely 

harmonized, follow-up examination between December 2013 and 

February 2016, when children were between 6-11 years old.  

The main goal of this project was to implement exposure assessment and 

biomarker methods to characterize early-life exposure to multiple 

environmental factors [166] and associate these with omics biomarkers 

and child health outcomes.  

For these same children, multi-omics molecular phenotyping was 

performed, including measurement of blood DNA methylation (450K, 

Illumina), blood gene expression (HTA v2.0, Affymetrix), blood 

miRNA expression (SurePrint Human miRNA rel 21, Agilent), plasma 

proteins (Luminex), serum metabolites (AbsoluteIDQ p180 kit, 
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Biocrates), urinary metabolites (1H NMR spectroscopy), and DNA 

microarray (Chemagen kit, Perkin Elmer).  

In the INMA cohort, the children were re-contacted between 2021 and 

2022 when they were around 15 years old. During my PhD, I 

participated in the blood and urine samples processing in AIRLab 

laboratory within ISGlobal (www.isglobal.org).   

 

3.1.2. TruDiagnostic DNA biobank 

The TruDiagnostic DNA biobank includes 3,890 individuals recruited 

between October 2020 and February 2022. Those individuals have taken 

the commercial TruDiagnostic TruAge test [167] and methylation data 

has been generated from them (EPIC, Illumina). As this testing is priced 

to the consumer at approximately $500, this study cohort is relatively 

more affluent than random sampling or traditionally banked cohorts. 

Additionally, most of these individuals tend to be seeking preventive 

medicine and have fewer comorbidities than normal patient populations, 

which is known as the healthy donor effect. 

This biobank includes individuals from the EEUU aged between 13 and 

97 years old. Information about their demography, lifestyle, and history 

is reflected in the questionnaire each participant filled in. 

 

3.1.3. Biobanc Hospital Universitari Vall d’Hebron 

To test whether the DNA methylation patterns in polymorphic 

inversions were detected in prenatal heart tissue, we used samples from 

the Hospital Universitari Vall d’Hebron (HUVH) Biobank. We had 
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access to human fetal samples from 40 fetuses of terminated pregnancies 

due to a major congenital heart defect (gestational age 21-22 weeks in 

all cases). Heart tissue DNA was obtained following necropsy using 

standard procedures, whole genome sequencing was performed at 

Centogene, and DNA methylation was measured with Infinium 

MethylationEPIC [168]. 
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The PhD has provided me with the opportunity to collaborate with a US 

company, TruDiagnostic, thanks to a formal collaboration the company 

has with my PhD supervisor. TruDiagnostic is a start-up company that 

uses a multi-omics approach to help scientists, physicians, and patients 

to understand and benefit from the insights found in the fluid epigenome.  

Mainly, they offer a test to calculate the biological aging of their patients 

based on epigenetic aging algorithms. They provide a complete report 

that is personalized for each patient and summarize the suggestions to 

improve their biological aging based on validated research.  

At the same time, the company is in constant growth and collaborates 

with private and public institutions to improve their knowledge of 

epigenetics and give better suggestions to their patients. We had the 

opportunity to collaborate with them in several lines, some of them 

related to my PhD. First, we created a pipeline for the pre-processing of 

DNA methylation data, as well as for phenotype data. Then, we 

evaluated the impact of multiple drugs on DNA methylation and the 

mediation between drug consumption and hypertension, which resulted 

in very interesting findings. In another study, we used TruDiagnostic 

participants for testing the predictor of a prenatal environment based on 

methylation.  

Collaborating with TruDiagnostic allowed me to know the way private 

companies operate, particularly in the case of start-ups. In the case of 

TruDiagnostic, major efforts are made to transfer scientific research to 

the general public. In this line, I have participated in the creation of an 

audiovisual material to explain why the study of DNA methylation is 

important to people’s health and how it can be used to prevent diseases.  
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5.1. Manuscript 1 

 

Impact of tobacco, alcohol, and marijuana on genome-
wide DNA methylation and its relationship with 
hypertension  

 
  

Carreras-Gallo N, Dwaraka VB, Cáceres A, Smith R, Mendez T, 
Went, H, González JR 
 
Impact of tobacco, alcohol, and marijuana on genome-wide DNA 
methylation and its relationship with hypertension. Epigenetics. 
Under review. IF: 4.9. Position: Q1 
 
Supplementary Material here 
 
 

https://drive.google.com/drive/folders/1GIdudaLmZzBuwv5LdnnMNMU4Km2cvBJZ?usp=sharing
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Impact of tobacco, alcohol, and marijuana on 
genome-wide DNA methylation and its 
relationship with hypertension 

Natàlia Carreras-Gallo1, Varun B. Dwaraka2, Alejandro Cáceres1,3,4, Ryan Smith2, Tavis L. 
Mendez2, Hannah Went2, Juan R González1,3,5 * 

 

Abstract       

Background: Tobacco, alcohol, and marijuana consumption is an important public 

health problem because of their high use worldwide and association with the risk 

of mortality and many health conditions, such as hypertension. High blood pressure 

is the commonest risk factor for death throughout the world. A likely pathway of 

action of substance consumption leading to persistent high blood pressure is DNA 

methylation. Here, we evaluated the effects of tobacco, alcohol, and marijuana on 

DNA methylation in the same cohort (N=3,424). Three epigenome-wide 

association studies (EWAS) were assessed in whole blood using the 

InfiniumHumanMethylationEPIC BeadChip. We also evaluated the mediation of 

the top CpG sites in the association between substance consumption and 

hypertension. 

Results: Our analyses showed 2,569 CpG sites differentially methylated by alcohol 

drinking and 528 by tobacco smoking. We did not find significant associations with 

marijuana consumption at Bonferroni level. We found 20 genes overlapping 

between alcohol and tobacco that were enriched in signaling functions of the 

nervous system and neurodevelopment. In the mediation analysis, we found 8 CpG 

sites that significantly mediated the effect of alcohol consumption on hypertension. 

The top alcohol-related CpG site (cg06690548, P-value = 5.9·10-83) mapped to 
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SLC7A11 and strongly mediated the 73.6% of the effect of alcohol consumption on 

hypertension (P-value = 0.008).  

Conclusions: Our findings suggest that DNA methylation should be considered for 

new targets in hypertension prevention and management, particularly in relation to 

alcohol consumption. Our data also encourage further research into the use of 

methylation in blood to study the neurological effects of substance consumption. 

Keywords: Tobacco, Alcohol, Marijuana, DNA methylation, Epigenome-wide 

association study, Hypertension  
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Introduction 

Tobacco, alcohol, and marijuana are the most commonly used drugs of 

abuse in the United States (1). While tobacco and alcohol consumption is 

legal, marijuana is the most commonly used illicit drug globally (2). The 

consumption of these substances is increasing, mainly among adolescents, 

and the health and social problems associated with them are an important 

public health concern.  

Cigarette smoking is the leading cause of preventable death and disease in 

the US and is responsible for approximately 8 million worldwide deaths 

every year (3). Most of these deaths arise from cancers (mainly lung 

cancer), respiratory disease, and cardiovascular disease (4). Light to 

moderate alcohol intake is associated with reduced risks for total mortality, 

cardiovascular disease, and diabetes. However, excessive alcohol is the 

third leading cause of premature death in the US (5). Heavy alcohol use is 

associated with a higher risk of cardiovascular disease, diabetes, cirrhosis 

of the liver, pancreatitis, and cancer (6). Among marijuana health impacts, 

disturbances in the level of consciousness, cognition, perception, affect or 

behavior, and other psychophysiological functions and responses are 

known as short-term effects. Additionally, long-term marijuana 

consumption can increase the risk of dependence, cognitive impairment, 

mental disorders (psychoses, depression, anxiety, and suicidal behavior), 

and adverse physical health effects such as cardiovascular disease, chronic 

obstructive pulmonary disease, and respiratory and other cancers (2). 

Many of the pathways whereby tobacco, alcohol, and marijuana exert 

adverse effects on health outcomes are unclear. Recent research suggests 

that epigenetics is a potential mediator between the consumption of toxic 

substances and the increase in common disease risk (7–10). DNA 

methylation, the most studied epigenetic modulation, consists of the 
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addition of a methyl group (-CH3) in the cytosine nucleotide without 

changing the DNA sequence. It occurs in the context of CpG sites, which 

are defined as adjacent cytosine and guanine nucleotides by a phosphate 

group. DNA methylation is dynamic and can be modified by genetic 

factors, disease, environmental exposures, and lifestyle (10–12). Moreover, 

DNA methylation can change during the lifetime and across tissues and cell 

types (13,14). 

Although genetic mechanisms have been the focus of understanding human 

diseases, the disruption of the epigenetic balance can result in the 

modulation of gene expression. Consequently, epigenetic disruption can 

cause several major pathologies, including cancer and cardiovascular 

disease (7). Tobacco smoking is one of the exposures with a higher impact 

on DNA methylation, even when the mother smoked during pregnancy 

(15–21). Many studies also demonstrate that alcohol consumption produces 

methylation changes at the CpG site level (22–27). Conversely, only a few 

studies have demonstrated the effects of marijuana consumption on DNA 

methylation, all of which have shown small effects (28,29).  

Hypertension, also known as high blood pressure, is a medical condition in 

which the blood pressure in the arteries is persistently elevated. It affects 

one billion people and is the most common risk factor for death worldwide 

(30). There are many factors associated with a higher risk of hypertension, 

including body mass index, tobacco use, physical activity, and alcohol 

consumption, among others (31). Light to moderate alcohol consumption 

seems to protect against hypertension because it decreases systolic and 

diastolic blood pressure. However, excessive intake accounts for about 16% 

of cases of hypertension worldwide (32,33). Cigarette smoking enhances 

hypertension by inducing cardiovascular mitochondrial oxidative stress 

(34,35). On the other hand, some studies evaluating the effect of marijuana 

consumption on blood pressure have revealed different results. For 
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instance, Abuhasira et al. demonstrated the therapeutic effect of marijuana 

in reducing blood pressure in hypertensive patients (36). However, other 

studies revealed an increase in blood pressure after marijuana consumption 

(37,38). In the light of the above, we hypothesized that changes in DNA 

methylation produced by substance consumption may partially explain its 

relationship with hypertension.  

To this end, in this study we aimed to: i) perform a genome-wide 

association study of DNA methylation with tobacco, alcohol, and marijuana 

consumption; ii) identify the physiological pathways whose methylation is 

affected by those drugs; iii) evaluate the mediation between substance 

consumption and hypertension by methylation changes at the CpG site 

level. 

 

Methods 

The Study Cohort 

Our study sample included 3,590 individuals from the TruDiagnostic DNA 

biobank recruited between October 2020 and February 2022. Those 

individuals have taken the commercial TruDiagnostic TruAge test and 

methylation data was generated from them. This is an EEUU population-

based cohort aged between 13 and 97 years old. Among them, 58.7% are 

male. Demographic and substance use characteristics of the samples that 

met the QC requirements (N = 3,424) are displayed in Table 1. As this 

testing is priced to the consumer at approximately $500, this study cohort 

is relatively more affluent than random sampling or traditional banked 

cohorts. Additionally, most of these individuals tend to be seeking 

preventative medicine and have fewer comorbidities than normal patient 

populations, which is known as the healthy donor effect.  
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Table 1 Characteristics of participants in the TruDiagnostic DNA Biobank. 

 N=3424 

Sex, male 2010 (58.7%) 
Age in years, mean (range) 52.9 (13.3 – 97.8) 
Ethnicity  
European 2584 (75.5%) 
African American or Black 70 (2.0%) 
Asian 41 (1.2%) 
Latino or Hispanic 276 (8.1%) 
Middle Eastern or North African 76 (2.2%) 
Native American or Alaska Native 26 (0.8%) 
Pacific Islander or Oceanian 23 (0.7%) 
Sub-Saharan African 7 (0.2%) 
Other 321 (9.4%) 
BMI (kg/m2), median (range) 25.4 (10.1-58.2) 
Tobacco consumption  
None 3275 (95.6%) 
Less than 1 cigarette per week 48 (1.4%) 
Less than 1 cigarette per day 25 (0.7%) 
1-5 cigarettes per day 27 (0.8%) 
6-10 cigarettes per day 21 (0.6%) 
11-20 cigarettes per day 20 (0.6%) 
More than 20 cigarettes per day 8 (0.2%) 
Alcohol consumption  
Never 634 (18.5%) 
On special occasions 976 (28.5%) 
Once per week 578 (16.9%) 
3-5 times per week 794 (23.2%) 
Regularly 442 (12.9%) 
Marijuana consumption  
Missing 149 
Never 2908 (88.8%) 
On special occasions 180 (5.5%) 
Once per week 46 (1.4%) 
3-5 times per week 73 (2.2%) 
Regularly 68 (2.1%) 
 
All the continuous variables are shown as mean (range) and the categorical 
variables as n (%). 
BMI: body mass index 
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DNA methylation Assessment  

Peripheral whole blood was collected by the lancet and capillary method 

into lysis buffer and DNA extract, and 500 ng of DNA of bisulfite were 

converted using the EZ DNA Methylation kit (Zymo Research) according 

to the manufacturer’s instructions. Bisulfite-converted DNA samples were 

randomly assigned to a chip well on the Infinium HumanMethylationEPIC 

BeadChip, amplified, hybridized onto the array, stained, washed, and 

imaged with the Illumina iScan SQ instrument to obtain raw image 

intensities.  

Meffil R package (39) was used for the pre-processing of DNA methylation 

data. In the sample quality control, we removed the sex detection 

mismatches and the sex detection outliers (based on the difference between 

median chromosome Y and chromosome X probe intensities). We also 

discarded those samples whose predicted median methylated signal was 

more than 3 standard deviations from the expected. We excluded the 

outliers based on deviations from mean values for control probes (dye bias, 

bisulfite 1, and bisulfite 2). Finally, we removed those samples with more 

than 5% of undetected probes (detection P-value larger than 0.01) or with 

a low number of beads (less than 3). This quality control resulted in 3,424 

individuals, indicating that 90,3% of the samples met our QC standards. In 

the feature quality control, we removed those probes undetected or with low 

bead numbers in more than 5% of the samples. We used 

InfiniumAnnotation (40) to filter probes where the 30bp 3’-subsequence of 

the probe is non-unique, probes with INDELs, probes with extension base 

inconsistent with specified color channel (type-I) or CpG (type-II) based on 

mapping, probes with a SNP in the extension base that causes a color 

channel switch from the official annotation, and probes where 5bp 3’-

subsequence overlap with any of the SNPs with global population 

frequency higher than 1%. The functional normalization method was 
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further applied based on the first 10 principal components of the control 

probes. Consequently, the number of CpG probes kept was 745,150, which 

represents 86% of the total EPIC array manifest. CpG sites were annotated 

to genes using EPIC Illumina annotation ilm10b4.hg19. Blood cell type 

proportions were estimated using the blood gse35069 complete cell type 

methylation profile references from the meffil package. We then performed 

a surrogate variable analysis (SVA) to remove the batch effects using the 

SmartSVA package (41). Methylation levels were expressed as residual 

values after adjusting beta values for the first 60 surrogate variables.  

 

Exposure and Clinical History Assessment 

During the recruitment of participants, they were asked to complete a 

survey that included questions about personal information, medical history, 

social history, lifestyle, and family history. Alcohol and marijuana 

consumption was assessed by a 5-point scale (‘never’ to ‘regularly’). 

Participants also reported their level of smoking according to 7 possible 

answers (‘none’ to ‘more than 20 cigarettes per day’). Regarding the 

medical history, the survey covered information about the blood type, 

medications and supplements, and diagnosis of any type of disease 

(cardiovascular, respiratory, skin and hair, endocrine, gastrointestinal, 

genitourinary, musculoskeletal, neuropsychological, reproductive, 

immune, and cancer). 

 

Statistical analyses and reproducibility 

Epigenome-wide association analysis 

The epigenome-wide association study (EWAS) was performed using the 

MEAL Bioconductor package (42). We performed a differential mean 

analysis on different substance consumption (tobacco, alcohol, and 
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marijuana) using the function runPipeline that calls limma (43). Based on 

a priori knowledge, we adjusted all the regression models by sex, age, 

ethnicity, body mass index (BMI), level of education, depression, anxiety, 

slide, cell type, and 60 surrogate variables. For each substance, we fitted 

models 

Ej = αj + βj S j + Σr γr Cr + εj (1) 

where Ej denotes the methylation level vector across individuals at probe j 

(j=1, ... 745150), S is the individuals’ consumption (separated models for 

alcohol, smoking, and marijuana where fitted) with its associated effect, βj, 

Cr is the r adjusting covariate and its effect γr, and εj is the noise that follows 

the distribution of methylation levels with mean 0. P-values obtained from 

each model were corrected for multiple comparisons using Bonferroni’s 

correction. The inflation or deflation of P-values across the methylome was 

assessed with Q-Q plots and lambda values (44). 

 

Enrichment analysis 

Using the CpG sites with a P-value lower than 1·10-4 from the EWAS 

results, we performed an enrichment in Kyoto Encyclopedia of Genes and 

Genomes (KEGG) and Gene Ontology (GO) pathways (45,46). We used 

the gometh function from the missMethyl BioConductor package (47). We 

also evaluated the over-representation of diseases using the DisGeNET 

platform that contains 1,134,942 gene-disease associations (48) and the 

enricher function from the clusterProfiler Bioconductor package (47).  

 

Mediation analysis 

We first used a multivariate mediation (MultiMed package (49)) for 

selecting the potential CpG sites mediating the effect of substance 

consumption on phenotypes. Second, we used the mediate function from 
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the mediation package (50) for estimating the single mediation by the most 

significant CpG sites found in the multivariate mediation step. To this end, 

we tested the total effect, the effect of the independent variable (substance 

consumption) on the mediation (CpG methylation), and the simultaneous 

effect of the mediator and the independent variable on the dependent 

variable (phenotype). Finally, we performed a causal mediation analysis, 

and we estimated the average causal mediation effects (ACME), the 

average direct effects (ADE), the total effect of the independent variable on 

the dependent variable, and the proportion of the effect of the independent 

variable on the dependent variable that goes through the mediator. We 

adjusted all the models by the same covariates as in the EWAS. 

 

Results 

We analyzed 3,424 individuals from the TruDiagnostic DNA Biobank 

recruited from the general population in EEUU. Table 1 presents 

demographic, and substance use characteristics. The mean age was 52.9 

years (range: 13.3 – 97.8) and 58.7% were male. The participants were 

classified according to 7 ethnic groups and ‘other’ for those who had a 

mixed ethnicity. Most participants were Europeans (75.5%), and Latino 

American was the second most common ethnicity (8.1%). There were 149 

current tobacco smokers, classified into seven groups according to the 

number of cigarettes smoked, and 3,275 non-smokers. Regarding alcohol 

consumption, there were 2,790 drinkers grouped by consumption frequency 

and 634 non-drinkers. Marijuana consumption was also classified 

according to the consumption frequency. In total, 2,908 did not smoke 

marijuana, and 367 smoke marijuana at least on special occasions.  
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Genome-wide effect of tobacco smoking on DNA methylation 

We tested the association between the level of smoking (codified as a 7-

point scale from ‘none’ to ‘more than 20 cigarettes per day’; see Table 1) 

with each CpG site using linear regression models run in the MEAL R 

package (42). We found 528 CpG sites associated with smoking levels after 

correcting by multiple comparisons and genomic inflation was not observed 

(λ = 1.031). Table 2 lists the top 15 CpG sites for tobacco smoking (see 

Additional File 1: Table S1 for all the significant CpG sites). Fig. 1A shows 

how the CpG sites are distributed in the genome using a Manhattan plot. 

Among tobacco-related methylation sites, 68.2% were hypomethylated 

(that is, lower DNA methylation associated with higher tobacco 

consumption). If we consider only the top 15 CpG sites, a higher proportion 

of probes were hypomethylated (78.6%). From the 528 probes differentially 

methylated, 374 CpG mapped to 344 unique genes. AHRR, GFI1, PRSS23, 

and IMMP2L had 10, 6, 4, and 4 probes differentially methylated, 

respectively. Moreover, the differentially methylated genes with a P-value 

lower than 1·10-4 were enriched in histone deacetylase complex, 

heterotrimeric G-protein complex, and GTPase complex GO pathways 

(Additional File 1: Table S2). The last two complexes are both involved in 

signal transduction. The most significant pathways in KEGG enrichment 

were alcoholism, morphine addiction, and dopaminergic and serotonergic 

synapses (Additional File 1: Table S3). 

Consistent with previous studies, cg05575921 was the top-ranked CpG with 

a P-value = 1.3·10-226. We further demonstrated that the effect of tobacco 

in this CpG site was proportional to the number of cigarettes smoked (Fig. 

2A). Additionally, we compared our results with the ones previously 

reported in the EWAS catalog (51). This catalog contains all the 

associations CpG-trait with a P-value lower than 1·10-4. In the case of the 

“smoking” trait, we were able to compare our results to 30 publications that  
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Fig. 1 Manhattan plots of the epigenome-wide association study (EWAS) of 
tobacco (A), alcohol (B), and marijuana (C) consumption. The Y-axis represents 
the -log10(p) values and the X-axis the position of the CpG sites within the 
chromosome. The blue line is the suggestive nominal P-value threshold (0.0001) 
and the red line is the P-value adjusted threshold lower than 0.05. 
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accumulated 19,156 significant CpG sites (P-value < 1·10-4). From the 528 

CpG sites differentially methylated in our analysis, we replicated 196 from 

the EWAS catalog and we identified 332 additional sites. More 

interestingly, from the top 50 probes in the EWAS catalog, we were able to 

replicate 46 with a P-value adjusted lower than 0.05 (Additional File 1: 

Table S4). Among the 332 new tobacco-related sites, 6 of them were in the 

top 15 CpG sites in our data, evidencing that tobacco may have important 

effects on them (Table 1). 

 

 

Fig. 2 Boxplots showing the association between CpG methylation and substance 
consumption. (A) Association between cg05575921 methylation (AHRR) and 
tobacco consumption. (B) Association between cg06690548 methylation 
(SLC7A11) and alcohol consumption. The Y-axis represents the residuals for beta 
values after adjusting by covariates. The X-axis represents the number of cigarettes 
smoked and the frequency of drinking, respectively. Methylation means for each 
tobacco consumption level are represented with their 95% confidence intervals. 
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Genome-wide effect of alcohol consumption on DNA methylation 

We identified 2,569 CpG sites differentially methylated according to 

alcohol consumption frequency (5 levels from ‘never’ to ‘regularly’; see 

Table 1). Model fitting showed no indication of genomic inflation (λ = 

1.044). The top 15 CpG sites are shown in Table 3 and all the epigenome 

wide significant CpG sites are listed in Additional File 1: Table S5 and 

represented as a Manhattan Plot in Fig. 1B. Among them, 36.9% were 

hypomethylated for regular consumers compared with non-consumers. On 

the opposite, 12 out of the top 15 CpG sites (80%) were hypomethylated. 

Among the 2,569 alcohol-related methylation sites, 609 were intergenic and 

1,960 were annotated to 1,670 unique genes. Five genes had seven or more 

significant probes mapping to their locus, including RPTOR (11 probes), 

JARID2 (8), and ABCG1 (8). The enrichment revealed an over-

representation of different metabolic processes, such as vitamin B6, L-

serine, and pyridoxal phosphate metabolisms (Additional File 1: Table S6). 

Among the enriched KEGG pathways, the vitamin B6 metabolism was 

again significantly enriched, along with the spliceosome, the cellular 

senescence, and the longevity regulating pathway (Additional File 1: Table 

S7). Additionally, the DisGeNET database revealed three interesting 

diseases associated with the genes differentially methylated: autistic 

disorder, acquired scoliosis, and curvature of the spine (Additional File 2: 

Fig. S1). The top CpG site (cg06690548, P-value = 5.9·10-83) mapped to 

the SLC7A11 gene and its methylation was significantly reduced 

proportionally to the alcohol consumption (Fig. 2B). In the EWAS catalog, 

there were 7,595 CpG sites associated with alcohol consumption with a P-

value lower than 1·10-4 based on 6 publications available. We replicated 

286 CpG sites and we identified 2,283 new alcohol-related sites with a P-

value adjusted lower than 0.05 (3 of them among our top sites). 

Additionally, 33 out of the top 50 probes in the EWAS catalog were 
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replicated in our data with a P-value adjusted lower than 0.05 (Additional 

File 1: Table S8). 

 

Genome-wide effect of marijuana consumption on DNA methylation 

In the EWAS for the frequency of marijuana use (codified as a 5-point scale 

from ‘never’ to ‘regularly’; see Table 1), we did not find any CpG site with 

a P-value adjusted lower than 0.05 (Additional File 1: Table S9 and Fig. 

1C). However, we found 195 CpG sites at a suggestive significant level (P-

value < 1·10-4). From the top 15 CpG sites, 9 CpG sites were 

hypomethylated for regular consumption compared to no consumption 

(Table 4). Gene symbols for the 195 differentially methylated CpG sites at 

suggestive P-value were tested for enrichment in KEGG pathways and 

Gene Ontology (GO). There was strong evidence for enrichment of many 

GO terms related to the neurotoxic effect of marijuana consumption 

(Additional File 1: Table S10). The strongest associations included 

paranodal junction assembly (P-value = 6.6·10-5), myelin assembly (P-

value = 7.1·10-5), and neuromuscular process controlling balance (P-value 

= 2.3·10-4). We also looked at the EWAS catalog and we only found 1 

publication available for lifetime cannabis use (ever vs never) (29). In that 

publication, they found 118 CpG sites with a P-value lower than 1·10-4. 

Comparing those sites with the 195 CpG sites from our analysis, we did not 

find overlapping (Additional File 1: Table S11). This may be in part due to 

the differences in the variable of interest and the study population, such as 

the evaluation of the effect of cannabis use on non-Hispanic white women 

and the risk of breast cancer (29). 

 

Comparison between tobacco, alcohol, and marijuana effects 

We further compared the genes differentially methylated by tobacco, 

alcohol,    and    marijuana    consumption.    We   selected   the   CpG   sites 
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differentially methylated with a P-value lower than 1·10-5 and extracted the 

genes where they were annotated. We found 25 genes associated with more 

than one drug (Fig. 3). Using the GeneMANIA bioinformatics software 

(52), which contains information on genetic and physical interactions, 

shared protein domains, and co-expression data, we found that 23 out of the 

25 genes were connected to form a compact cluster network (Additional 

File 2: Fig. S2). This cluster was enriched in macromolecule and protein 

deacetylation and transcription regulator complex functions. The largest 

overlap was between alcohol and tobacco, revealing 20 genes differentially 

methylated by these two drugs independently. Among these genes, NOP53, 

ZFP36L1, PTK2, and PPP1R16B were associated with 

phosphatidylinositol-mediated signaling and inositol lipid-mediated 

signaling, two signaling events present in the nervous system (53). In 

addition, IFT140, HDAC4, PPP1R16B, and DMTN were associated with 

cell projection assembly. Alcohol and marijuana overlapped in 3 genes, 

being CUX1 the most interesting due to its relationship with neuronal 

differentiation in the brain. Finally, two genes were differentially 

methylated due to tobacco and marijuana use (AHRR and LOC440839). It 

is worth mentioning that the CpG sites mapped to the AHRR gene are the 

same in tobacco and marijuana (cg05575921 and cg21161138) and it is 

present in the top 15 probes for both EWAS. 

 

Mediation between substance consumption and hypertension by CpG 
methylation 

We evaluated whether the changes at the CpG methylation level mediated 

the effect of drugs on hypertension. We first tested the association between 

smoking and hypertension. We considered that the group with the highest 

levels of smoking were those who smoked more than 11 cigarettes per day, 

joining the categories 11-20 and >20 cigarettes due to their low numbers. 

We evaluated the association between smoking codified as numeric and 
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high blood pressure and we did not detect a significant tendency (P-value 

= 0.26). The forest plot shows that the risk of hypertension increases with 

a higher number of cigarettes smoked except for the last group (more than 

11 cigarettes per day) (Additional File 2: Fig. S3). Although we expected 

this group to be the one at the highest risk, we also observed that those 

participants were also the youngest (average of 5.75 years less, P-value = 

0.005), suggesting a particularly strong healthy donor effect for this group. 

We tested the association after removing this group and we found a 

significant association between tobacco smoking and hypertension (P-

value = 0.009, OR = 1.28). The forest plot in Fig. 4A revealed a clear dose-

response relationship where individuals who consume 6 to 10 cigarettes per 

day have 3.19 times of high blood pressure risk compared with non-

smokers (P-value = 0.023). We used the top 200-ranked CpG sites in a 

multivariate mediation analysis between tobacco smoking and hypertension 

and the MultiMed package (49) revealed no CpG sites with a P-value lower 

than 0.05 (Additional File 1: Table S12).  

 

 

Fig. 3 Venn diagram comparing genes differentially methylated for tobacco (pink), 
alcohol (green), and marijuana (orange) consumption. The overlapped genes are 
annotated.  
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Fig. 4 Forest plot of the association between tobacco (A) and alcohol (B) 
consumption with hypertension. OR: Odds Ratio. 

 

We also tested the association between marijuana consumption and high 

blood pressure. We did not find any significant association when comparing 

the 4 levels of consumption (from ‘on special occasions’ to ‘regularly’) with 

non-consumers (Additional File 2: Fig. S4). 

As for alcohol use, we found a significant association between alcohol and 

higher blood pressure (P-value = 0.001, OR = 1.13). In addition, the forest 

plot in Fig. 4B revealed a significant association between daily 

consumption with high blood pressure (P-value = 0.014, OR = 1.39) and a 

non-significant association between light to moderate consumption with the 

phenotype, as expected. Thus, using the top 200 CpG sites from the alcohol 
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EWAS, we performed a multivariate mediation analysis between alcohol 

consumption and hypertension. We found 8 significant mediators that 

coincide with the top 6 CpG sites and two other CpG sites in the EWAS 

analysis (Table 5 and Additional File 1: Table S13). To see the effect of 

each CpG site, we performed a univariate mediation analysis for each of 

these CpG sites (Table 5). All the CpG sites except one mediated 

independently between 12.5 and 30.9% of the effect of alcohol on 

hypertension. The most differentially methylated CpG site by alcohol 

consumption, cg06690548, was also the most significant mediator between 

alcohol consumption and high blood pressure after adjusting by covariates. 

This CpG site mediated 73.6% of the total effect of alcohol on the 

phenotype (P-value = 0.008). As mentioned before, heavy alcohol 

consumption increases by 39% the risk of hypertension. With our data, we 

have demonstrated that this association is mostly due to changes in DNA 

methylation. 

 

Table 5 Mediation analysis between alcohol consumption and hypertension using 
methylation level of CpG sites as mediators. 
 

CpG 

Multivariate 
Analysis 

Univariate Analysis 

Mediated effect Direct effect Proportion 
mediated 

S-
statistic 

P-
Value Estimate P-

value Estimate P-
value Estimate P-

value 

cg06690548 0.0344 0 0.0088 0 0.0032 0.502 0.736 0.008 

cg11376147 0.0146 0.004 0.0034 0 0.0085 0.05 0.282 0.004 

cg26457483 0.0146 0.004 0.0037 0 0.0087 0.062 0.297 0.008 

cg14476101 0.0105 0.04 0.0028 0.002 0.0091 0.044 0.227 0.02 

cg18120259 0.0161 0.004 0.0038 0 0.0084 0.07 0.309 0.014 

cg06088069 0.0124 0.014 0.0028 0 0.0093 0.048 0.231 0.008 

cg16740586 0.0105 0.04 0.0016 0.01 0.0108 0.016 0.125 0.016 

cg15659943 0.0124 0.014 0.0028 0 0.0093 0.036 0.228 0.004 
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Discussion 

The current study evaluated the effect of tobacco, alcohol, and marijuana 

consumption on genome-wide DNA methylation in 3,424 individuals from 

an EEUU population-based cohort. We identified 528 CpG sites 

differentially methylated according to tobacco smoking, 2,569 according to 

alcohol consumption, and 195 suggestive associations of marijuana 

consumption (Nominal P-value < 1·10-4). Second, we detected a large 

overlapping between the differentially methylated genes by these three 

unhealthy lifestyle habits. Third, we found a significant mediation between 

alcohol consumption and hypertension by the top alcohol-related 

methylation sites. 

A considerable amount of literature has been published on DNA 

methylation changes due to smoking. The first studies evaluating these 

changes were carried out in small panels of genes (54,55). It was not until 

2012 that the first epigenome-wide association study on tobacco was 

reported by Wan et al. (56). Since that time, several studies have 

demonstrated the huge impact of tobacco on DNA methylation across the 

human genome, even in newborns when the tobacco exposure was during 

pregnancy (15,16,18–20,57). Our results in TruDiagnostic DNA Biobank 

replicated previous studies revealing a high impact of smoking on DNA 

methylation epigenome-wide. The EWAS catalog (51) is the biggest 

database of epigenome-wide association studies containing associations 

between CpG sites and traits with a P-value lower than 1·10-4. In the case 

of tobacco smoking, this catalog gathers significant associations from 30 

publications. From the top 50 probes in the EWAS catalog, we replicated 

46. We also identified 332 tobacco-related CpG sites that were not 

previously reported in the EWAS catalog. Among them, it is remarkable 

the CpG at PHACTR2 gene because it is involved in actin cytoskeleton 

organization and implicated in Parkinson’s disease (58), and the CpG at 
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GPX5 gene since it protects cells and enzymes from oxidative damage. 

Additionally, our results confirm previous observations where the 

cg05575921 mapped to AHRR (P-value = 9.7·10-221) and the cg21566642 

in the 2q37.1 region (P-value = 5.9·10-65) were the most significantly 

associated CpG sites to tobacco consumption (19–21). 

Alcohol is known to affect DNA methylation. To date, several EWAS have 

detected CpG sites associated with alcohol consumption (22,24–26,59,60). 

Here, we identified more than 2,500 CpG sites associated with drinking. 

Interestingly, these genes were highly associated with autistic disorder, 

acquired scoliosis, and curvature of the spine. Fetal alcohol spectrum 

disorder (FASD) is the general term that encompasses the range of adverse 

effects associated with alcohol exposure during pregnancy. Among FASD 

symptoms, it is common to find autistic-like traits, as well as scoliosis and 

other musculoskeletal anomalies (61–63). In addition, previous studies 

have already investigated the epigenetic mechanism linking autism and 

FASD (64). The EWAS catalog collects information from 6 publications 

and our results replicated 33 out of the 50 top CpG sites. As we identified, 

many studies detected cg06690548 mapped at the SLC7A11 promoter as 

the most alcohol-related methylation site (22,24,25). Furthermore, Lohoff 

et al. demonstrated that various liver biomarkers were robustly associated 

with SLC7A11 methylation status (24), suggesting an implication of this 

gene in the disturbance of the gastrointestinal system when consuming 

alcohol. Further, we identified many CpG sites that were not reported in the 

EWAS catalog. Among them, three sites at PRPF8, CBS, and MBNL2 

genes, respectively, were in the top-ranked differentially methylated probes 

in our data. PRPF8 and MBNL2 are involved in pre-mRNA alternative 

splicing regulation, and CBS is translated to the cystathionine beta-synthase 

enzyme. 
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The studies that have investigated DNA methylation modifications after 

marijuana consumption are limited. In 2015, Watson et al. evaluated in rats 

the effect of cannabis parental exposure on the epigenome of the nucleus 

accumbens (65) and they identified 1027 differentially methylated regions. 

Five years later, Osborne et al. carried out the first EWAS on heavy 

cannabis consumption with and without tobacco comparing 48 consumers 

with 48 controls (28). They found five differentially methylated sites in 

cannabis and tobacco users that replicated previous studies on the effects of 

tobacco. However, cannabis-only users had no evidence of significant 

differential methylation in any gene. Markunas et al. performed another 

EWAS with a larger sample size (1,247 ever users) consisting of women at 

risk of developing breast cancer (29). They identified a unique significant 

CpG mapped to CEMIP 5’ region. However, they designed a biomarker for 

lifetime cannabis use based on the top 50 EWAS CpG sites. In our study, 

367 individuals smoked from occasionally to daily. The EWAS did not 

reveal significant CpG sites at the Bonferroni adjustment. Nonetheless, the 

195 CpG sites with a P-value lower than 1·10-4 were enriched in genes 

related to paranodal junction assembly, myelin assembly, and 

neuromuscular process controlling balance. This suggests a possible 

implication of DNA methylation changes on the long-term neurotoxic 

effects of marijuana smoking. In addition, we detected cg05575921 

(AHRR), the most significant tobacco-associated CpG site, differentially 

methylated according to marijuana use with a nominal P-value equal to 

1.7·10-6. Allen et al. already found that the link between marijuana use and 

epigenetic age acceleration was statistically mediated via hypomethylation 

at site cg05575921 (66). This is consistent with the association of the AHRR 

gene with exposure to tobacco and fine particulate matter (PM2.5) which 

suggests that marijuana inhalation can produce similar effects (66,67). 
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In the current study, we compared the genes differentially methylated by 

tobacco, alcohol, and marijuana at a P-value nominal lower than 1·10-5. 

Surprisingly, we found that 25 genes were affected by more than one drug 

and these genes formed a compact underlying genetic network. From them, 

20 genes were differentially methylated by alcohol and tobacco 

consumption, and they were enriched in signaling pathways involved in 

neurons and cell projection assembly. Among the 3 genes that overlapped 

between alcohol and marijuana effects, it is remarkable the implication in 

neuronal differentiation. AHRR gene was involved in tobacco and 

marijuana epigenetic changes. As mentioned previously, it may be 

explained by the effects of smoke inhalation on this gene. This overlapping 

between different drugs suggests that similar molecular pathways are 

affected by similar unhealthy lifestyle habits. This finding may provide 

insight into new targets for treating addiction and for preventing common 

diseases associated with drug consumption, like cardiovascular disease. 

In our data, tobacco was partially associated with hypertension, and alcohol 

consumption was highly associated with the condition, as demonstrated 

previously (32–35). Marijuana was not associated with hypertension, in line 

with previous studies that have revealed ambiguous results (36–38). In the 

case of tobacco exposure, we found unexpected results because the 

individuals who smoked the most were the ones who had less risk to 

develop hypertension. These results may be explained due to the lower age 

of the individuals in that group and also to the healthy donor effect of the 

data. This means that participants are volunteers who have paid for the 

TruAge test and may have healthy habits that protect them against 

hypertension although they are heavy smokers.  

Our data replicated prior studies where light to moderate drinking was not 

associated with high blood pressure and heavy drinking increased the risk 

of the disease (5,33). Another important finding was that CpG methylation 
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significantly mediated the effect of alcohol consumption on hypertension. 

The multivariate mediation analysis revealed eight CpG sites as potential 

mediators that included the top six alcohol-related probes and were 

previously reported in the EWAS catalog. All of them were 

hypomethylated in heavy consumption, in line with one study that revealed 

a global hypomethylation in hypertensive patients (68). More interestingly, 

lower methylation levels of cg06690548 at SLC7A11 and cg14476101 at 

PHGDH have been seen previously associated with higher systolic and 

diastolic blood pressure (69–71). Additionally, hypomethylation of 

cg06690548 and cg14476101 were associated with higher expression of 

SLC7A11 and PHGDH, respectively (71). SLC7A11 enhances antioxidant 

defense and protects against endothelial dysfunction and vascular 

inflammation. This increases vascular tone and rigidity, and consequently 

blood pressure. Also, Richard et al. evidenced triangular associations 

between methylation, gene expression, and blood pressure (70). We also 

tested univariate mediation based on cg06690548 methylation and we 

revealed that 73.6% of the effect of alcohol on high blood pressure was 

mediated by the CpG methylation level (P-value = 0.008). Besides, 

PHGDH encodes the enzyme which is involved in the early steps of serine 

synthesis, which is highly related to tissue growth. Thus, hypomethylation 

of this gene may act in the vascular adaptation to body-tissue growth during 

adolescence (71). In essence, we have demonstrated that the effect of heavy 

drinking on high blood pressure is partially mediated by hypomethylation 

of CpG sites that are significantly associated with the disease. This finding 

provides new insights on targets to prevent and manage hypertension in 

individuals with regular alcohol consumption. 

The generalizability of these results is subject to certain limitations. First, 

DNA methylation was obtained from blood samples, thus, further research 

is required to understand the implication of the identified markers in each 
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tissue. Second, genetics has an important role in substance use 

predisposition. In our analysis, we were not able to remove the genetic 

factor because of the lack of data. Some of the differentially methylated 

probes may be a consequence of the genetic differences and not the 

exposure itself. Notwithstanding this limitation, we filtered all the probes 

with a SNP in the extension base and all probes where 5bp 3’-subsequence 

overlapped with any of the SNPs with a global population frequency higher 

than 1%. Third, the consumption assessment was self-reported and not 

specific for a time period, limiting the credibility. In addition, we did not 

have information on whether marijuana was smoked mixed or not with 

tobacco. This information could benefit future studies on removing the 

tobacco effect. Fourth, we have compared our results with the EWAS 

catalog, that do not contain all the published EWAS. However, this catalog 

serves as a reference since it contains a large number of published papers.  

Our study also had notable strengths, including a large number of drinkers 

and the high variability in drinking frequency. This allowed us to test the 

mediation analysis between alcohol consumption and hypertension. 

Moreover, most studies are focused on evaluating the effects of one 

substance in drug-specific cohorts. Our data provided information on 

tobacco, alcohol, and marijuana consumption in the same individuals, along 

with clinical data. Since our results for tobacco and alcohol are comparable 

with previous studies, we may assume that our results for marijuana 

consumption are reliable, suggesting that marijuana does not have a big 

effect on blood DNA methylation.  

 

Conclusions 

To the best of our knowledge, this is the first study to assess simultaneously 

the effect of tobacco, alcohol, and marijuana on DNA methylation. We have 

shown that tobacco and alcohol have large effects on genome-wide DNA 
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methylation, while marijuana consumption has small effects. Most 

importantly, many genes differentially methylated by smoking are also 

affected by alcohol and marijuana consumption, suggesting a similar 

epigenetic impact after drug consumption. The results of this research also 

have significant implications for the understanding of how alcohol 

consumption increase hypertension. We demonstrated that the most 

alcohol-related CpG sites are important mediators of the effect of alcohol 

consumption on high blood pressure. Finally, the current data highlight the 

importance of investigating methylation biomarkers in blood to monitor 

diseases, such as neurological disorders derived from substance 

consumption. 
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The early-life exposome modulates the effect of 
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Polymorphic genomic inversions are chromosomal variants with intrinsic 
variability that play important roles in evolution, environmental adaptation, and 
complex traits. We investigated the DNA methylation patterns of three common 
human inversions, at 8p23.1, 16p11.2, and 17q21.31 in 1,009 blood samples from 
children from the Human Early Life Exposome (HELIX) project and in 39 prenatal 
heart tissue samples. We found inversion-state specific methylation patterns within 
and nearby flanking each inversion region in both datasets. Additionally, numerous 
inversion-exposure interactions on methylation levels were identified from early-
life exposome data comprising 64 exposures. For instance, children homozygous 
at inv-8p23.1 and higher meat intake were more susceptible to TDH 
hypermethylation (P=3.8x10-22); being the inversion, exposure, and gene known 
risk factors for adult obesity. Inv-8p23.1 associated hypermethylation of GATA4 
was also detected across numerous exposures. Our data suggests that the 
pleiotropic influence of inversions during development and lifetime could be 
substantially mediated by allele-specific methylation patterns which can be 
modulated by the exposome. 
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Inversions are segments of DNA that run in the opposite direction to a 

reference genome. They are balanced mutations of different sizes, from a 

gene’s exon to a chromosome’s portion1. Because of their role in adaptation 

to the environment, chromosome evolution, and sex determination systems 

in multiple species, polymorphic inversions have traditionally displayed a 

great interest in evolutionary biology2,3. Recent studies have shown that 

they are important contributors to the genetic basis of common complex 

diseases in humans, such as obesity, diabetes, asthma, cancer, and 

neurological conditions such as depression or neuroticism4–11. By capturing 

multiple functional variants, inversions can confer simultaneous risks to 

different diseases, and, as such, increase the frequency of the diseases’ co-

morbidities. Human inversions at 8p23.1, 16p11.2, and 17q21.31 are large, 

common, and associate with multiple diseases, including those co-

occurring with obesity5,8. In addition, they have been strongly correlated 

with the expression of the several genes they encapsulate across multiple 

tissues8,12–14. There are different mechanisms from which inversions can 

modulate gene expression. First, inversions can break genes or displace 

regulatory elements with important functional and phenotypic 

consequences10,12,15. Second, recombination is suppressed in the inverted 

region in heterokaryotypes. As such, inverted and non-inverted alleles 

accumulate different genetic variants that support differences of gene 

expression between alleles2,16,17. Although several studies have 

demonstrated the effect of inversions on gene expression, it is unknown the 

extent to which inversions are also characterized by specific methylation 

patterns. 

DNA methylation, the addition of a methyl group in a CpG DNA site, plays 

an important and complex role in the regulation of gene expression18. 

Depending on the relative position of the CpG site within the gene, its 

methylation can increase or decrease the gene’s expression19. Methylated 
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promoters are often associated with deactivation of transcription, while 

methylation within the gene’s body avoids alternative start sites20. 

Methylation is often strongly correlated across contiguous CpG sites, a fact 

that is used to determine differentially methylated regions (DMR) of 

kilobase pair lengths21. At larger distances, coherent methylation patterns 

may be supported by genomic variants such as copy number variants22. 

However, it is unknown if methylation patterns in inverted regions can also 

be detected. We, therefore, hypothesized that the common human 

inversions at 8p23.1, 16p11.2, and 17q21.31 are correlated with the 

methylation of multiple CpG sites within and surrounding the inverted 

region, creating allele-specific methylation patterns. In support of this 

hypothesis, some studies have already reported associations between 

inversion and phenotypes likely modulated by specific methylation 

changes6,23,24. Besides, since CpG methylation is involved in regulating 

chromatin structure25, these methylation patterns could be associated with 

different tridimensional (3D) DNA structures for each allele. This would be 

in line with the influence on 3D DNA structure by large structural variants 

reported by Shanta et. al26. 

 

Results 

Frequency of inversions at 8p23.1, 16p11.2, and 17q21.31 

We analyzed data from the Human Early Life Exposome (HELIX) project, 

a multicenter European cohort (Spain, UK, France, Lithuania, Norway, and 

Greece). This project comprises 1,301 children with genomic, 

transcriptomic, epigenomic, and exposome data36. HELIX has the goal of 

characterizing the exposome during early-life and evaluating its 

relationship with molecular signatures and child health outcomes. The 

genome-wide blood DNA methylation and blood cell transcriptome were 

measured at the ages between 6 and 11. From this dataset, we selected 
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children with genetic and methylation data. We used Peddy37 to estimate 

major population ancestry groups and individuals of European ancestry 

were kept in the analysis, resulting in a total of 1,009 children included in 

the analyses. 

We called 8p23.1, 16p11.2, and 17q21.31 inversion genotypes from the 

selected children using scoreInvHap11 on imputed SNP array data. 

Inversion genotypes were labeled as N/N for non-inverted homozygous; 

N/I for heterozygous; and I/I for inverted homozygous. We observed that 

the frequencies for the inverted allele were consistent with those reported 

for Europeans (55.70%, 35.70%, and 21.95% for inversions at 8p23.1, 

16p11.2, and 17q21.31, respectively)1,11. As expected, we did not observe 

significant variation between sexes (Supplementary Figure 1a-c), but we 

observed some variations across cohorts (Supplementary Figure 1d-f). As 

previously reported8, we evaluated the south-north gradient for the inverted 

allele frequency and we observed a positive correlation for inv-16p11.2 (r 

= 0.79, P = 0.058), and a negative correlation for inv-17q21.3 (r = - 0.92, P 

= 0.009) (Supplementary Figure 2). For the inv-8p23.1, we did not observe 

a significant south-north gradient (r = - 0.33, P = 0.519).  

 

Inversions as eQTLs in blood cells 

We first evaluated the inversion status as expression quantitative loci 

(eQTL) of the genes within the inversion regions +/- 1 Mb. We performed 

the association analyses of the inversions in each separate cohort adjusting 

by sex, age, cell-type proportions (inferred from methylation data), and 10 

genome-wide principal components of genomic SNP variation (N=790). 

We then combined the results with a meta-analysis across cohorts. Results 

were considered significant when they passed Bonferroni's correction for 

multiple comparisons. We confirmed that the inv-8p23,1 and inv-16p11.2 

were eQTLs for the numerous neighboring genes and the genes they 
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encapsulate (see Supplementary Data 1 and Supplementary Figure 3). We 

observed 12 genes that were significantly associated with inv-8p23.1. We 

detected significant up-regulation of BLK, SLC35G5/SLC35G4, 

FAM86B1/FAM86B2, and FAM86B3P, and down-regulation of FDFT1, 

FAM167A, FAM66D, SGK223, XKR6, and LOC100506990 for the inverted 

allele. In the case of the polymorphic inversion at 16p11.2, we observed 10 

significant associations including up-regulation of TUFM, MIR4721, 

EIF3C/EIF3CL, LAT, SPNS1, and NPIPB9/NPIPB8/NPIPB7 for the 

inverted allele and down-regulation of SGF29, SBK1, LOC388242, and 

SULT1A1. Finally, for inv-17q21.31, we did not observe eQTL effects, 

perhaps because single-copy genes within this inversion are mostly 

expressed in the brain14. We thus confirmed the effect of the inversions 

8p23.1 and 16p11.2 on the gene expression in blood in 6-11 year-old 

children, as previously observed in adults across different tissues8,12–14.  

 

Inversions as mQTLs in blood cells 

We then studied the associations of the genotypes of each of the three 

inversions with the differential methylation of CpG sites within the +/- 1 

Mb regions containing the inversions (Supplementary Data 2). We removed 

CpG sites with single nucleotide polymorphic (SNP) variation. We 

performed the analyses in each separate cohort adjusting by the same 

covariates likewise the transcription analyses. We combined the results 

with a meta-analysis across cohorts (N=1,009). As illustrated in Figure 1a-

c, all three inversions were significantly associated with differences in 

methylation across multiple CpG sites after Bonferroni’s correction for 

multiple comparisons. We also observed that the most significant 

associations were in CpG sites within the inversion region or close to the 

breakpoints. In particular, we observed that 15.21% (129 of 848) CpG sites 

within  and  around  inv-8p23.1  had  significant  differences  in  methylation 
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Figure 1 | Inversion status as methylation quantitative trait locus (mQTL) of 
multiple CpG sites within and surrounding three common human inversions. 
The first column in the plot panel corresponds to inv-8p23.1, the second to inv-
16p11.2, and the third to inv-17q21.31. a-c) Manhattan plots for the significance 
of the associations between the differential methylation of the CpG sites and the 
inversion genotypes in child blood cells (N=1,009). The x-axes show the 
chromosome position (±1Mb between the inversions’ breakpoints). The y-axes 
show the –log10 (P-value). The dashed red line indicates Bonferroni’s threshold of 
significance. Green points are CpG sites with significant associations and those in 
grey are non-significant. The orange block illustrates the inversions’ region. d-f) 
Principal Component (PC) analysis for methylation levels of CpG sites within and 
surrounding the inversions, revealing remarkably distinctive methylation patterns 
among the different inversion statuses. Blue points illustrate non-inverted 
homozygous (N/N), yellow illustrate heterozygous (N/I), and orange illustrate 
inverted homozygous (I/I) individuals. In parenthesis, the methylation variance 
explained by each PC. g-i) Manhattan plots of differentially methylated CpG sites 
depending on the inversion genotypes in fetal heart DNA (N=40).  
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levels according to the inversion status (min. P = 63.1 x 10-147, Figure 1a), 

with 49 significant CpG sites hypermethylated and 80 hypomethylated in 

the inverted concerting the non-inverted allele. For this inversion, we 

observed 24 genes with at least one significant differentially methylated 

CpG site and five genes with more than five differentially methylated sites; 

namely MSRA, MFHAS1, BLK, RP1L1, and XKR6. For inv-16p11.2, we 

found 27 significant CpG sites differentially methylated from a total of 401 

(6.73%, min. P < 10-300, Figure 1b), with 9 significant CpG sites 

hypermethylated and 18 hypomethylated at the inverted allele. For this 

inversion, we observed 11 genes with at least one significant CpG site. IL27 

was the gene with the greatest number of CpG sites (5) differentially 

methylated (all hypomethylated at the inverted allele). Finally, 58 CpG sites 

from 666 (8.71%, min. P < 10-300, Figure 1c) had significant methylation 

differences for inv-17q21.31 (30 hypermethylated and 28 hypomethylated 

at the inverted allele). CRHR1, MAPT, and KANSL1 were the 17q21.31 

genes with the highest number of differentially methylated CpG sites and a 

total of 14 genes had at least one CpG site differentially methylated. 

Therefore, each of these three inversions behaves as an extended 

methylation quantitative trait locus (mQTL) covering hundreds of kilo-

bases, an observation that had not been previously reported. 

To establish the degree to which the association between the effect of 

inversion status on CpG methylation is associated with changes in gene 

expression of surrounding genes, we searched for the methylation changes 

that locate in differentially expressed genes (Supplementary Figure 4). We 

observed that four genes (BLK, FDFT1, XKR6, and FAM167A) overlapped 

for the inv-8p23.1 with differentially methylated CpG sites. We analyzed 

whether the observed expression changes were in the expected directions 

based on the methylation of these regions; that is, hypermethylation of the 

promoters for downregulated genes, hypomethylation of the promoters for 
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upregulated genes, and hypermethylation of the bodies for upregulated 

genes. XKR6 was a highly consistent case whose downregulation and 

methylation, across 11 CpG sites within its body, were associated with the 

inverted allele. For inv-16p11.2, we observed four genes that were 

differentially expressed and methylated by the inversion allele (TUFM, 

SBK1, SPNS1, and SULT1A1). In this case, most of the CpG sites were in 

the promoter region (TSS1500) and the relation between the expression and 

methylation levels was consistent. We further observed that SULT1A1 and 

TUFM had CpG sites in their promoters (cg01378222 and cg00348858) that 

highly associated with the effect of inversion in gene expression. We found 

that cg01378222 mediated the 95% of the association between inv-16p11.2 

and the expression of SULT1A1 (P < 2x10-16), and that cg00348858 

mediated the 5% of the association between the inversion and TUFM 

expression (P = 0.002). 

These findings provided evidence of regulatory pathways where inversion, 

methylation, and gene expression are all involved. In addition, our 

observation that inv-17q21.31 did not show eQTL effects in blood indicates 

that the three-way association of the variables is tissue specific, as we 

observed a clear methylation pattern for the inversion. 

 

Inversion-state specific methylation patterns 

In order to define whether the methylation patterns were specific to each 

inversion allele, we performed principal component (PC) analysis of the 

methylation levels of CpG sites within and around each inversion. We thus 

quantified individual differences in methylation profiles across the inverted 

regions. We included the region +/- 1 Mb to account for the effect of the 

inversions beyond the breakpoints. Remarkably, the first component 

strongly correlated with the inversion genotype of the individuals in all 

three inversions (inv-8p23.1 PC 1: R2 = 0.68, P < 2x10-16, inv-16p11.2 PC 
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1: R2 = 0.05, P = 1.34x10-12, and inv-17q21.31 PC 1: R2 = 0.70, P < 2x10-

16), see Figure 1d-f. We observed that the first PC clearly separated the 

genotypes of inversions at 8p23.1 and 17q21.31, possibly sustained by the 

haplotypic differences between inversion status. While the first PC of inv-

16p11.2 was significantly associated with inversion genotypes, the second 

PC was also needed to distinctly separate the genotypes (R2 = 0.33, P < 

2x10-16). This is in line with the univariate differential analysis, where inv-

16p23.1 showed the smallest proportion of CpG sites differentially 

methylated according to the inversion status. This is possibly explained by 

the multiple haplotypes supported by this inversion11. These analyses 

showed that hyper and hypomethylation patterns of CpG sites across the 

inverted regions are specific to the inversion status.    

 

Inversions as mQTLs in fetal heart DNA 

We asked whether the effect of the inversion on DNA methylation could be 

also seen prenatally and in another tissue. Using methylation data of heart 

DNA from 39 fetuses from interrupted pregnancies at 21-22 weeks of 

gestational age due to congenital heart defects38, we performed the same 

differential analysis adjusting by sex. We observed that all the inversions 

act as mQTLs during early development from conception, although few 

CpG sites per inversion passed Bonferroni’s threshold (Figure 1g-i and 

Supplementary Data 3). This can be explained by the small sample size. 

Nonetheless, we observed that the distribution of the significant 

associations was very similar to the one observed in HELIX data, having 

greater differences in methylation in the CpG sites between the breakpoints. 

Additionally, we saw that 38 CpG significant sites overlapped between 

heart (nominal P-value) and blood (adjusted P-value) tissues, 32 of which 

were in the same direction, suggesting that the effect of inversions on CpG 

methylation may be sustained between tissues and stages of life. 
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Effect of inversion-exposure interactions on DNA methylation 

As these common human inversions at 8p23.1, 16p11.2, and 17q21.31 

offered a solid genetic context where allele-specific methylation patterns 

were found, we then asked whether these patterns were modulated by 

environmental exposures. Thus, we assessed which of 64 exposures at 

early-life differentially modified the methylation levels of the CpG sites 

within the inversion regions according to the inversion status.  

We performed differential methylation analyses for the interactions of the 

3 inversions with 64 exposures (7 during pregnancy and 57 at 6-11 years of 

age) grouped by 12 exposure families, including build environment, air 

pollution, persistent and non-persistent chemicals, diet, and exposure to 

tobacco smoke, among others (Figure 2a and Supplementary Data 4). We 

observed 36 exposures and 58 CpG sites implicated in at least one 

significant inversion-exposure interaction after Bonferroni’s correction for 

multiple comparisons (see Table 1 and Supplementary Data 5). All 

exposure families had at least one exposure that interacted with one of the 

three inversions, except natural spaces and polybrominated diphenyl ether 

compounds (PBDE). Remarkably, the exposure families with the greatest 

number of significant interactions were metals (13 interactions), diet (11), 

phenols (11), and organochlorines (OCs) (10) (Supplementary Data 6). 

Inversion at 8p23.1 had 36 significant interactions with exposures from 9 

different families (Figure 2b). OC was the most predominant exposure 

family involved in 8 interactions, followed by diet with 6 and phenols with 

5. The genes with the greatest number of CpG sites differentially 

methylated according to the interactions were GATA4 (hypomethylated for 

the inverted allele in all but one), XKR6 (hypermethylated for the inverted 

allele in all but one), TDH, and FAM167A, all of them seen differentially 

methylated  depending  on  the  inversion  haplotype.  In  the  case  of  inv- 
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Figure 2 | Inversion-exposure interactions as methylation quantitative trait 
locus (mQTL) of multiple CpG sites within and surrounding three common 
human inversions. a) Number of exposures per family in the early-life exposome 
from the HELIX project. b-d) Manhattan plots showing the significance of the 
associations (N=1,009) between the differential methylation of the CpG sites and 
the inversion-exposure interactions across all 64 exposures (a) and the genotypes 
of three human inversions at 8p.23.1 (b); 16p11.2 (c) and 17q21.31 (d), illustrated 
by the orange block. The x-axes show the chromosome position (±1Mb between 
the inversions’ breakpoints). The y-axes show the –log10 (P-value) of the 
associations. The dashed red line indicates Bonferroni’s threshold of significance. 
Significant results are colored according to the family exposure (a) and labeled 
according to the closest gene to the CpG (Illumina annotation). Grey points are not 
significant.  
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16p11.2, we only found 4 significant interactions (Figure 2c). Notably, 3 

interactions contributed to GSG1L methylation changes: child vegetables 

intake (cg08755784, β = 0.006, P = 8.9x10-9), child Mono-2-ethylhexyl 

phthalate (MEHP) levels (cg03962082; β = -0.011, P = 3.0x10-8), and child 

Perfluorohexane sulfonate (PFHXS) levels (cg01896119; β = -0.014, P = 

3.3x10-8). For inv-17q21.31, we observed 24 significant interactions with 

exposures from 6 exposure families (Figure 2d). The most frequent family 

was metals with 9 significant interactions with inv-17q21.31. The most 

significant interaction of the inversion was with the exposure to lead on 

HEXIM2 methylation (cg19655070: β = -0.043, P = 4.5x10-27). 

Furthermore, several CpG sites in the up-stream region of C1QL1 were 

differentially methylated according to the interaction of inv-17q21.31 with 

phenols. In particular, a CpG site within C1QL1 promoter was 

hypomethylated for the inverted allele when the ethyl paraben (ETPA) 

exposure increased (cg24945657: β = -0.011, P = 3.2x10-9). In addition, 

three intergenic CpG sites near this gene promoter were hypermethylated 

for the inverted allele when the exposure to methyl paraben (MEPA) 

increased (cg06368300: β = 0.008, P = 5.1x10-21; cg11178337: β = 0.019, 

P = 9.0x10-16; cg07822074: β = 0.005, P = 3.6x10-11). It should be noted 

that there are four genes (KANSL1, MAT, LOC100128977, and WNT3) in 

this region with significant associations that were also differentially 

methylated depending on the inversion haplotype. 

 

Genes with strongest and most numerous inversion-exposure 

interactions 

Within the significant interactions (Table 1), we looked in detail at the 

genes that showed both the highest significant levels and multiple 

interactions across different CpG sites for the same gene. We identified 

three relevant genes within inv-8p23.1, namely TDH, GATA4, and 
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TRMT9B. Within TDH we found two CpG sites significantly associated 

with the interaction between the inversion and meat intake: cg01489256 (β 

= 0.0156, P = 3.8x10-22) and cg02601489 (β = 0.0092, P = 1.8x10-8). More 

specifically, we observed that individuals homozygous for the non-inverted 

allele (N/N) had a negative association, while heterozygous individuals did 

not present any association, and homozygous for the inverted allele (I/I) had 

a positive association (Figure 3a). We also observed that the association 

was consistent across all the cohorts, with no significant heterogeneity (P = 

0.39 and P = 0.45), see Figure 3b. We further observed that the increase of 

meat intake reduced the expression of TDH (P = 0.00398) while the 

associated methylation effect on the expression depended on the genetic 

context given by the inversion, adjusting by sex, age, and cohort (CpG-

inversion interaction, P = 0.00193) (Supplementary Figure 5). Remarkably, 

the gene, the inversion, and the exposure have been independently 

associated with obesity in adults5,39–41. 

GATA4 was the gene with the greatest number of CpG sites that changed 

their methylation according to different interactions between inv-8p23.1 

and exposures from different families. These interactions included 

manganese (cg26020513: β = -0.033, P = 4.8x10-11), diethyl-phosphate 

(DEP) (cg22320962: β = -0.005, P = 1.1x10-9), Mediterranean Diet Quality 

Index for children and teenagers (KIDMED) (cg12395012: β = -0.004, P = 

5.1x10-9), mercury (cg27100236: β = -0.007, P = 1.8x10-7), and PCB 138 

(cg13293535: β = 0.013, P = 3.5x10-7) exposures. We observed that this 

CpG was hypermethylated in the individuals homozygous for non-inverted 

allele when increasing the exposure to manganese (Figure 3c). The meta-

analysis also revealed consistency across cohorts with no significant 

heterogeneity (P = 0.74) (Figure 3d). Interestingly, hypermethylation of 

GATA4 in developing heart DNA, particularly at cg26020513, has been 

previously associated with congenital heart defects in fetuses42. 
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Figure 3 | Interaction and forest plots for TDH, GATA4, and TRMT9B genes. 
a) Interaction plot illustrating differences across inv-8p23.1 genotypes in the 
association between cg01489256 (TDH) methylation and meat intake (expressed 
in servings per week). Methylation means given meat intake status and inversion 
genotype are represented with their 95% confidence intervals (N=1,009). b) Forest 
plot showing the meta-analysis effect estimates of inv-8p23.1-meat intake 
interaction on cg01489256 methylation across HELIX cohorts. c) Interaction plot 
illustrating differences across inv-8p23.1 genotypes in the association between 
cg26020513 (GATA4) methylation and manganese (N=1,009). d) Forest plot 
showing the meta-analysis effect estimates of inv-8p23.1-manganese interaction 
on cg26020513 methylation across HELIX cohorts. e) Interaction plot illustrating 
differences across inv-8p23.1 genotypes in the association between cg08196601 
(TRMT9B) methylation and parental smoking (N=1,009). f) Forest plot showing 
the meta-analysis effect estimates of the inv-8p23.1-parental smoking interaction 
on cg08196601 methylation across HELIX cohorts. Blue points and lines illustrate 
non-inverted homozygous (N/N), yellow illustrate heterozygous (N/I), and orange 
illustrate inverted homozygous (I/I) individuals. The error bar represents one 
standard deviation. 
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Another interesting result of our analysis relates to the methylation of the 

TRMT9B gene, also known as C8orf79 or KIAA1456, a tRNA 

methyltransferase. The gene has been seen to associate with 

laryngotracheitis, an upper respiratory tract disease in chicken43,44. We 

observed that parental smoking during childhood significantly modulated 

the inversion-associated methylation of cg08196601 (β = -0.010, P = 

1.3x10-10) (Figure 3e). The interaction of the inversion with maternal 

smoking during pregnancy was also associated with the methylation of 

cg08196601 (β = -0.020, P = 5.9x10-8). In addition, the methylation of 

cg26339990 was associated with the interaction of the inversion with 

outdoor PM2.5 (an air pollution exposure) during pregnancy (β = -0.003, P 

= 5.5x10-8). In the three cases, the non-inverted allele was associated with 

increased levels of methylation with the exposures. We observed that the 

heterogeneity across cohorts was not significant (P = 0.63) (Figure 3f). In 

line with these observations, the non-inverted allele for inv-8p23.1 has been 

found to associate with asthma5 while parental smoking and exposure to 

high levels of PM2.5 during pregnancy or childhood increase the risk of 

respiratory diseases in children45–47.  

 

Discussion 

Here, we show that the common human chromosomal inversions at 8p23.1, 

16p11.2, and 17q21.31 have distinctive methylation patterns in blood 

across the inverted regions and that the early-life exposome modulates these 

patterns. We observed that during childhood approximately 10% of the 

CpG sites within the inverted regions +/- 1 Mb were significantly 

differentially methylated according to the inversion genotype. The amount 

of the differentially methylated CpG sites was high within the region and 

sharply decreased after the breakpoints, indicating the targeted effect of 

genomic inversions on DNA methylation. We could also identify the effects 
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of the inversions at prenatal stages in heart tissue, suggesting their relevant 

role during development even in utero. As such, inversions are early 

methylation quantitative loci for the genes they enclose. Our findings, 

therefore, add to other effects that inversions have on gene 

expression8,13,14,48, derived from their genetic variability or from the 

displacement of regulatory elements near the breakpoints10. While 

individual CpG associations with the inversion may be due to the inversion 

or to local genetic variability in linkage with the inversion, our observations 

in the PC analysis reveal a spatial pattern given by the correlation of several 

CpG sites associations that fits the extension of the inversion. It is clear that 

the cause of such extended pattern along the affected sequence has been 

produced by the presence of the inversion, likely due to both the DNA 

reconfiguration and the accumulation of specific genetic variability along 

the segment that results from the suppression of recombination between 

inversion states. 

We show that an important influence of inversions on phenotypes could be 

derived from the methylation patterns they support. Few previous studies 

have analyzed targeted methylation changes when studying a specific 

inversion or disease. We previously reported that the effect of inv-17q21.31 

on colorectal disease-free survival is more likely mediated by DNA 

methylation than by gene expression6. Here, we document that the effect of 

inversions on methylation is strong along the inverted segment and already 

significant during early embryonic and fetal development in heart tissue 

DNA. One of the main stablished mechanisms underlying the influence of 

inversions on phenotypic traits and their pleiotropy is the suppression of 

recombination within the inverted sequence in heterozygotes. Allele 

combinations can thus be protected, leading to the generation and possible 

selection of specific haplotypes for each inversion state10. In addition, 

inversion breakpoints can disrupt coding regions or regulatory elements, 
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altering gene expression or generating novel transcripts with phenotypic 

consequences, including deleterious effects15. These effects likely play a 

role in the association of these three polymorphic inversions with complex 

diseases, like obesity5,8, autoimmune diseases49, or neurodegenerative 

disorders50–52. For these diseases with important environmental 

components, our results further suggest the additional role of inversion-

associated methylation that is modifiable by environmental exposures.  

Allele-specific methylation patterns in inversions can be caused or 

facilitated by their specific genetic variability and/or different chromatin 

structure. In our study, we removed probes with SNPs within 5bp distance 

and overall population frequency higher than 1%, ruling out technical and 

genetic variation as main contributors to the methylation differences. We 

observed that inversions at 8p23.1 and 17q21.31 were strongly 

characterized by their methylation patterns in the region. However, the 

effect was less strong for inv-16p11.2, which can be due to the higher 

number of haplotype groups supported by the inversion, that is two distinct 

haplotype groups in the standard allele and one in the inverted allele, and 

the fact that this inversion is smaller in size (0.45Mb versus 0.9Mb for inv-

17q21.31 and almost 4Mb for inv-8p23.1)8. These specific effects on the 

methylation patterns could be mainly caused by differences in the three-

dimensional (3D) DNA configuration for each allele26, rendering some 

haplotypes more accessible to the different factors that could facilitate DNA 

methylation. This mechanism would explain how a recurrent but non-

polymorphic inversion at Xq28 causing Hemophilia A has been associated 

with specific methylation changes23 or how de novo inversions at 11p15.5 

causing Beckwith-Wiedemann syndrome can be hypermethylated24. The 

possible correlation of inversion haplotypes with different 3D 

configurations and nuclear localization should be investigated in future 

studies.  
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We found that while the effects of the inversion on gene transcription and 

CpG methylation are widespread across the affected region with some 

overlap, the specific expression changes driven by inversion-association 

methylation need to be individually assessed. While the extended pattern of 

methylation across the inversion can be a consequence of the 

reconfiguration of the chromatin structure, gene expression may be more 

susceptible to the tissue and the local genetic variability in linkage with an 

inversion allele. In the case of 17q21 inversion, for instance, we found clear 

methylation patterns associated with inversion alleles, but no expression 

differences, which suggests that these methylation changes would have no 

relevant consequences in blood. By contrast, we also identified a relevant 

and specific mediator role by the methylation at promoters of TUFM and 

SULT1A1 on the associations of their expressions with inv16p11.2. 

Remarkably, these are candidate genes in the association between inv-

16p11.2 and the co-occurrence of asthma and obesity8. 

Previous studies have reported transcriptomic effects of inv-17q21.31 in 

blood only in genes with multiple copies53,54. This is a complex region with 

high variability in the gene copies within the inversion alleles, high 

homology between the genes with multiple copies, and low expression of 

the genes in blood14,55. This could explain the lack of eQTL effects of inv-

17q21 in blood that we observed. 

We have found that several methylation effects of inversions are modifiable 

by numerous environmental exposures, suggesting additional inversion-

methylation effects to those driven by genetic variability. We observed that 

inversions significantly interacted with a wide range of exposures affecting 

DNA methylation across the inverted segments. Therefore, inversions are 

common copy-neutral polymorphisms that seem to be important 

contributors to gene-environment interactions, whose detection remains 

elusive in genomic and high dimensional exposure data56–58. We analyzed 
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data from an exposome study, covering a wide range of exposure families 

believed to affect children’s development. The exposome data included 

environmental exposures but also exposures from the diet, urban exposome, 

and chemical compounds31. In total, we assessed 64 exposures (7 during 

pregnancy and 57 at 6-11 years of age) grouped in 12 families. We observed 

inversion interactions in most of the exposure families, most prominently 

in metals, diet, phenols, and organochlorines. Validation of these results 

and their consequences remain to be evaluated. Our results support the 

notion that inversions can change the way exposures affect a child’s 

development by changing the genetic context. Carriers of genomic variants, 

such as these inversions that may affect the function of a set of genes in a 

specific direction, can be more susceptible to (or naturally protected 

against) disease or developmental disorders if exposed to a relevant 

environmental risk factor59. Thus, allele-specific methylation in response to 

different environmental factors could also contribute to the positive 

selection that has been documented for all three inversions in some human 

populations8,12,60. 

We found numerous significant inversion-exposure interactions on 

methylation levels in important genes which deserve further study. These 

include amongst others, Alzheimer’s MAPT and its associations with 

copper61, MSRA’s role in repairing oxidative damage to proteins and its 

relation with diet and parental smoking, and the oncogene WNT3 and its 

relation to molybdenum and mercury. Here, we highlight three interactions 

with potential clinical interest and substantial support from previous 

studies. First, we observed the interaction of inv-8p23.1 with meat intake 

associated with TDH methylation levels. Remarkably, the inversion, the 

exposure, and the gene are independently associated with obesity in 

adults5,39–41. Our data revealed that non-inverted homozygous individuals, 

those with a higher risk of obesity, decreased methylation of two CpG sites 



 

132 

within TDH as meat intake increases. While further studies are needed to 

describe the role that this pseudogene plays in obesity during development, 

it is clear that these need to incorporate the effects of the inversion and its 

methylation status. In addition, clinical interventions of obesity aiming at 

managing meat intake should consider the methylation of the gene and the 

inversion genotype of individuals. Second, we observed that cg26020513 

within GATA4 was hypermethylated in blood when manganese exposure 

increased but only in non-inverted homozygous individuals. It is notable 

that the hypermethylation of cg26020513 has been strongly associated with 

congenital heart defects in fetuses42, mutations in GATA4 have been 

associated with cardiac septal defects62, and manganese toxicity in heart 

tissue is well documented63. The inversion also interacted with other 

relevant exposures on GATA4 methylation including mercury, with 

reported effects in heart rate variability in children64, diethylphosphate, 

Mediterranean diet, and PCB 138. Therefore, the extent to which the 

inversion status can protect against the positive association between these 

exposures and GATA4 methylation deserves further scrutiny. Third, we 

observed that the effects of tobacco smoke (during pregnancy or in 

childhood) and air pollution (outdoor PM2.5 exposure) on TRMT9B 

methylation changed depending on the inv-8p23.1 genotype. Since these 

two exposures increase the risk of respiratory diseases45–47 and TRMT9B is 

a gene associated with an upper respiratory tract disease43,44, our results 

suggest a likely role of the gene in the association between inv-8p23.1 and 

asthma5. 

To the best of our knowledge, this is the first study to systematically assess 

the methylation landscape within three common human inversions and its 

interaction with the exposome. We have shown that genomic inversions are 

associated with the methylation of the CpG sites within the inversion region 
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and that this association is modulated by a wide range of environmental 

exposures during childhood. 

 

Methods 

Study population 

The Human Early Life Exposome (HELIX) project36 comprises a total of 

1,301 mother-child pairs from six birth cohorts in Europe: BIB (Born in 

Bradford; the United Kingdom)65, EDEN (Etude des Déterminants pré et 

postnatals du développement et de la santé de l’Enfant; France)66, INMA-

SAB (Infancia y Medio Ambiente; Spain; subcohort Sabadell)67, KANC 

(Kaunas cohort; Lithuania)68, MoBa (The Norwegian Mother, Father and 

Child Cohort study; Norway)69, and Rhea (Greece)70. These mother-child 

pairs participated in a common, completely harmonized, follow-up 

examination between December 2013 and February 2016, when children 

were between 6-11 years old71. The main goal of this project was to 

implement exposure assessment and biomarker methods to characterize 

early-life exposure to multiple environmental factors and associate these 

with omics biomarkers and child health outcomes. For these same children, 

multi-omics molecular phenotyping was performed, including 

measurement of blood DNA methylation (450K, Illumina), blood gene 

expression (HTA v2.0, Affymetrix), blood miRNA expression (SurePrint 

Human miRNA rel 21, Agilent), plasma proteins (Luminex), serum 

metabolites (AbsoluteIDQ p180 kit, Biocrates), urinary metabolites (1H 

NMR spectroscopy), and DNA microarray (Chemagen kit, Perkin Elmer). 

All studies received approval from the ethics committees of the centers 

involved and written informed consent was obtained from all participants. 
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Molecular phenotypes 

Inversion genotype data 

DNA was obtained from buffy coat collected in EDTA tubes at 6-11 years 

of age. Briefly, DNA was extracted using the Chemagen kit (Perkin Elmer) 

in batches of 12 samples. Samples were extracted by cohort and following 

their position in the original boxes. DNA concentration was determined in 

a NanoDrop 1000 UV-Vis Spectrophotometer (ThermoScientific) and with 

Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies). Genome-

wide genotyping was performed using the Infinium Global Screening Array 

(GSA) MD version 1 (Illumina) at the Human Genomics Facility (HuGe-

F), Erasmus MC (www.glimdna.org). Genotype calling was done using the 

GenTrain2.0 algorithm based on a custom clusterfile for 692,367 variants 

implemented in the GenomeStudio software. Annotation was done with the 

GSAMD-24v1-0_20011747_A4 manifest, SNP coordinates were reported 

on human reference GRCh37 and Source strand (Forward strand report in 

GenomeStudio). The initial dataset consisted of 1,397 samples and 692,367 

variants. Samples with discordant sex, duplicated, contaminated (high 

heterozygosity), and relatives (IBD >0.185) were filtered out. SNPs with 

variant call rate <95%, minimum allele frequency <1%, and HWE P-value 

(1x10-6) were excluded. Major population ancestry groups were estimated 

using Peddy37 and only individuals of European ancestry were kept in the 

analysis. The final dataset consisted of 1,009 samples and 509,344 SNP 

variants. From this dataset, we selected inversions that could be genotyped 

with scoreInvHap and had more than 10 CpG sites in the inversion region: 

inv-8p23.1, inv-16p11.2, and inv-17q21.31 (Table 2 and Supplementary 

Table 2-3). 
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DNA methylation 

The DNA was obtained using the same methodology as for genetics data. 

DNA methylation was assessed using the Infinium Human Methylation 450 

beadchip (Illumina), following the manufacturer’s protocol. Minfi R 

package72 was used for the pre-processing of DNA methylation data. 

MethylAid package73 was employed to perform the first quality control of 

the data. Probes with low call rates were filtered following the guidelines 

of Lehne et al.74 The functional normalization method was further applied, 

including Noob background subtraction and dye-bias correction75. Several 

quality control checks were performed: sex consistency using the 

shinyMethyl package76, consistency of duplicates, and genetic consistency 

for the samples that had genome-wide genotypic data. Duplicated samples 

and control samples were removed as well as probes that measure 

methylation levels at non-CpG sites77. Probes that cross-hybridize were 

excluded. Moreover, we used InfiniumAnnotation from 

https://zwdzwd.github.io/InfiniumAnnotation to filter probes where 30bp 

3’-subsequence of the probe is non-unique, probes with INDELs, probes 

with extension base inconsistent with specified color channel (type-I) or 

CpG (type-II) based on mapping, probes with a SNP in the extension base 

that causes a color channel switch from the official annotation, and probes 

where 5bp 3’-subsequence overlap with any of the SNPs with global 

population frequency higher than 1%. Consequently, the number of CpG 

probes analyzed was 371,533, initially available for 1,192 subjects. We then 

used Combat algorithm to remove the batch effects supported by the slide. 

Methylation levels were expressed as beta values (average methylation 

levels for an individual, between 0 for a never methylated CpG site and 1 

for an always-methylated CpG site) and CpG sites were annotated to genes 

by Illumina HM450 manifest file (version 1.2). We discarded the subjects 

without inversion status data and without European ancestry based on 
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genomic data, resulting in 1,009 individuals for the analysis. For each 

inversion, we selected the CpG sites contained in the inversion region +/-1 

Mb, resulting in 848 CpG sites for inv-8p23.1, 401 for inv-16p11.2, and 

666 for inv-17q21.31 (Table 2 and Supplementary Table 2). Blood cell type 

proportions were estimated from methylation data according to Houseman 

et al. algorithm78 and Reinius reference panel79.  

 

Table 2 | Characteristics of HELIX data relating 3 common polymorphic 
inversions in humans. The table shows the length in kb, the mapping coordinates 
hg19 +/-1Mb, the frequency of all the inversions obtained from scoreInvHap11, and 
the number of samples and features used in transcriptome and methylome analysis 
for each inversion. *The allele in the reference genome is the least frequent in the 
population. 

Genomic 
inversion 

Length 
(kb) 

Inversion 
region +/- 1Mb 

Inversion 
frequency 

(%) 
Omics 

Number 
of 

samples 

Number 
of 

features 

8p23.1 3,924.86 chr8:7055789-
12980649 57.95 Methylome 1009 848 

Transcriptome 926 83 

16p11.2 364.17 chr16:27424774-
29788943 34.49 Methylome 1009 401 

Transcriptome 926 58 

17q21.31 710.89 chr17:42661775-
45372665 23.96 Methylome 1009 666 

Transcriptome 926 61 
 

Gene expression 

At the period of clinical examination that took place when children were 

between 6 and 11 years old, RNA was extracted from whole blood collected 

in Tempus tubes. Samples with RIN >5 were considered. Gene expression 

was assessed using the GeneChip® Human Transcriptome Array 2.0 (HTA 

2.0) (Affymetrix, USA) at the University of Santiago de Compostela (USC, 

Spain), following the manufacturer’s protocol. Samples were randomized 

and balanced by sex and cohort within each batch. Data were normalized at 

the gene level with the GCCN (SST-RMA) algorithm, and batch effects and 

blood cell type composition were controlled with two surrogate variable 

analysis (SVA) methods, isva80 and SmartSVA81, during the differential 
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expression analyses. Gene expression values were log2 transformed, and 

annotation of transcript clusters (TCs) to genes was done with NetAffx 

annotation (version 36). Genes without Gene Symbol annotation or with 

call rate <20% were removed, restricting to 25,255 genes. From this number 

of genes, we selected those within the inversion regions +/- 1Mb (inv-

8p23.1: 83 genes; inv-16p11.2: 58 genes; inv-17q21.31: 61 genes). From a 

total of 1,158 subjects that had transcriptomic data, we selected individuals 

with European ancestry (based on genomic data) who had available 

inversion status data and cell type proportions assessed from methylation 

data, resulting in a total of 790 subjects (Table 2 and Supplementary Table 

1). 

 

Exposome assessment 

The assessment of the exposome has been previously published82. In our 

study, we included 7 exposures assessed during pregnancy and 57 

exposures assessed during childhood at age 6-11y (Supplementary Data 4). 

These 64 exposures were selected from the entire exposome dataset 

according to the number of missing values they had. We did not include 

exposures that had more than 10% of missing in the whole dataset or with 

more than 20% missing in one or more cohorts. We also excluded exposures 

whose levels were not present in all cohorts. Third, we selected the most 

representative exposures within each family.  

The pregnancy exposome consists of 7 exposures, including outdoor 

PM2.5, normalized difference vegetation index (NDVI), 4 PFASs, and 

maternal smoking during pregnancy. The postnatal exposome was divided 

into 12 exposure families: outdoor air pollution (2), building environment 

(1), diet (6), metals (9), natural spaces (1), organochlorines – OCs (8), 

organophosphate pesticides – OP pesticides (5), polybrominated diphenyl 

ethers – PBDEs (2), perfluorinated alkylated substances – PFAS (5), 
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phenols (7), phthalates (10), and second-hand exposure to tobacco smoke 

(1) (Figure 2a). Metals, OCs, OP Pesticides, PBDEs, PFASs, phenols, and 

phthalates were assessed by biomarkers in children at the time of the 

clinical examination, from a pool of two urine samples or one serum 

sample83. Air pollution, natural spaces, and building environment 

quantification were assessed during the year before child examination or 

during pregnancy by environmental geographic information systems (GIS). 

Tobacco smoke and diet were evaluated by questionnaires. Missing values 

for all exposures were imputed using the method of chained equations84, as 

described in detail elsewhere82. Most exposure variables were transformed 

as described in Supplementary Data 4.  

 

Fetal heart tissue samples  

Human fetal samples from 40 fetuses of terminated pregnancies due to a 

major congenital heart defect (gestational age 21-22 weeks in all cases) 

were obtained from Biobanc Hospital Universitari Vall d’Hebron (HUVH) 

in a related project addressed to define the genetic and epigenetic basis of 

congenital heart defects38. Informed consent was obtained from parents and 

the study was approved by the institutional ethics committee. Heart tissue 

DNA was obtained following necropsy using standard procedures, whole 

genome sequencing was performed at Centogene, and DNA methylation 

was measured with Infinium MethylationEPIC38.  

After quality control, one sample was discarded (Supplementary Table 4). 

During the pre-processing of methylation data, probes with a single-

nucleotide polymorphism (SNP) with overall population frequency higher 

than 1% based on InfiniumAnnotation from 

https://zwdzwd.github.io/InfiniumAnnotation were removed. Selecting the 

CpG sites within the inversion region +/- 1Mb, we analyzed 898 CpG sites 

from inv-8p23.1, 409 from inv-16p11.2, and 698 from inv-17q21.31. 
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Statistics and Reproducibility 

Genome-wide analysis 

Differential methylation analyses were performed using MEAL 

Bioconductor’s package85. We performed a differential mean analysis 

(DMA) on inversion genotypes using the function runDiffMeanAnalysis 

that calls limma86. Based on a priori knowledge, we adjusted all the 

regression models by sex, age, population stratification (using the first 10 

principal components of the GWAS that highly correlated with cohort), and 

cell type (Supplementary Table 1-2). To correct for the variance between 

cohorts, we performed this analysis for each cohort separately and we meta-

analyzed the results using the function metagen from meta package87. For 

each inversion, in each cohort, we fitted models 

Ej = αj + βjk Ik + Σr γr Cr + εj (1) 

where Ej is the methylation or expression level vector across individuals at 

probe j, Ik are the individuals’ genotypes for inversion k (8p23.1, 16p11.2, 

17q21.31), Cr is the r covariate and its effect γr, and εj is the noise that 

follows the distribution of methylation or expression levels with mean 0. βjk 

is the effect of interest measuring the effect of the inversion. The βjk were 

then meta-analyzed across cohorts. P-values derived from the meta-

analyses were corrected for multiple comparisons for the number of probes 

using Bonferroni’s correction. The inflation or deflation of P-values across 

the methylome or transcriptome was tested with Q-Q plots. 

 

Exposome-wide interaction analysis 

Based on the genome-wide analysis, the same functions were implemented 

for the exposome-wide interaction analysis. In this case, the effect of 

interest was the inversion-exposure interaction in the model 
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Ej = αj + βjik (Xi × Ik) + Σr γr Cr + εj  (2) 

where Xi is the level of exposure i across individuals. βjik is the effect of 

interest given by the exposure-inversion interaction. In this case, the 

covariates also included exposure i, the inversion genotypes, maternal 

education level, and child body mass index (BMI). P-values were corrected 

for multiple comparisons across CpG sites and exposures using 

Bonferroni’s correction. The inflation or deflation of P-values across the 

methylome was tested with Q-Q plots. 
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Code availability  

Any custom code or software used in our analysis is available at 

https://doi.org/10.5281/zenodo.6417926  

(URL: https://zenodo.org/badge/latestdoi/296552532).  
 

Data availability  

The HELIX data warehouse has been established as an accessible resource 

for collaborative research involving researchers external to the project. 

Access to HELIX data is based on approval by the HELIX Project 

Executive Committee and by the individual cohorts. Further details on the 

content of the data warehouse (data catalog) and procedures for external 

access are described on the project website 

(http://www.projecthelix.eu/index.php/es/data-inventory). The data used in 

this analysis are not available for replication because specific approvals 

from HELIX Project Executive Committee and the University of Southern 

California Institutional Review Board must be obtained to access them. 

Source data underlying Fig 2a, 3a, and 3e is available in Supplementary 

Data 7.  
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A prenatal environment of female protection 
against childhood obesity is associated with sex 
differences in neurodevelopment and adult 
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Abstract  

Background: Obesity and neurodevelopmental delay are complex traits that often 
co-occur and differ between boys and girls. Prenatal exposures are believed to 
influence children’s obesity, but it is unknown whether exposures of pregnant 
mothers can confer a different risk of obesity between sexes, and whether they can 
affect neurodevelopment and adult academic achievement. 

Methods: We analyzed data from 1,044 children from the HELIX project, 
comprising 93 exposures during pregnancy, and clinical, neuropsychological, and 
methylomic data during childhood (5-11 years). Using exposome-wide interaction 
analyses, we identified prenatal exposures with the highest sexual dimorphism in 
obesity risk, which were used to create a multiexposure profile. We applied causal 
random forest to classify individuals into two environments: E1 and E0. E1 consists 
of a specific combination of exposure levels where girls have significantly less risk 
of obesity than boys as compared to E0, which consists of the remaining 
combination of exposure levels. We investigated whether E1 had a lower female-

                                                            
3 Instituto de Salud Global de Barcelona (ISGlobal), Barcelona 08003, Spain, 2 Centro de Investigación Biomédica en Red en 
Epidemiología y Salud Pública (CIBERESP), Spain, 3 Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), 
Universitat Politècnica de Catalunya, Barcelona 08019, Spain, 4 Department of Environmental Science, Vytautas Magnus University, 
44248 Kaunas, Lithuania, 5 Department of Health and Experimental Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain, 6 Center 
for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain, 7 Medicine Genomics Group, 
Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CEGEN-PRB3, 
Santiago de Compostela, Spain, 8 Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de 
Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, 9 Department of Preventive Medicine, Keck 
School of Medicine, University of Southern California, Los Angeles, USA, 10 TruDiagnostic, Lexington, KY, United States, 11 Department 
of Environmental Health, Norwegian Institute of Public Health, 0456, Oslo, Norway, 12 Institut national de la santé et de la recherche 
médicale (Inserm) and Université Grenoble-Alpes, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology 
applied to Reproduction and Respiratory Health, Grenoble, France, 13 Bradford Institute for Health Research, Bradford Teaching Hospitals 
NHS Foundation Trust, Bradford, UK, 14 Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra (Barcelona) 08193, 
Spain. † These authors contributed equally. * Emails: alejandro.caceres@isglobal.org and juranr.gonzalez@isglobal.org 

1 

1 



 

154 

associated risk of neurodevelopmental delay than E0. We performed an 
epigenome-wide association study between the environments and assessed whether 
the methylation profile tagged to E1 was associated with sex differences in adult 
obesity and academic achievement in a large cohort (N=3,259). 

Results: We observed that E1 was defined by the combination of low dairy 
consumption, low cotinine levels in blood, low facility richness, and the presence 
of green spaces during pregnancy (ORinteraction=0.070, P=2.59×10-5). E1 was also 
associated with a lower risk of neurodevelopmental delay in neuropsychological 
tests of non-verbal intelligence (ORinteraction=0.42, P=0.047), working memory 
(ORinteraction=0.31, P=0.02) and with methylation probes enriched with several 
neurodevelopmental functions. The methylation profile linked to E1 was 
significantly associated with sex differences in adult academic achievement 
(ORinteraction=1.58, P=0.008) and not obesity. 

Conclusions: The risk of obesity can be different for boys and girls in certain 
prenatal environments. We identified an environment defined as a combination of 
four exposure levels that protects girls from obesity. The environment was 
associated with a lower risk of neurodevelopmental delay and higher academic 
achievement in adult life. The combination of single exposures into multiexposure 
profiles using causal inference can help determine populations at risk. 

Keywords: prenatal environment, sexual dimorphism, childhood obesity, 
neurodevelopment, DNA methylation, causal inference, multiexposure profile 
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Introduction 

Boys and girls develop differently. For instance, their immune response to 

infections differs from an early age, their brains grow at different rates, and 

the prevalence of numerous common diseases, like obesity, is also different 

[1–3]. Boys are more susceptible to obesity than girls [3]. Given the 

contrasting paths of development, it is remarkable that biomedical studies 

typically consider sex as a confounder rather than the main effect or an 

effect modifier [4]. Exposome studies, in particular, are characterized by 

the acquisition of massive amounts of data at individual and population 

levels [5]. A crucial goal of these studies is to inform the likely conditions 

for which a given public health intervention would be optimal, such that the 

best intervention is applied at the right time to the right population [6]. 

However, as the main difference between individuals is sex, exposome 

studies aiming at improving precision medicine and precision public health 

cannot do without considering how environmental risk factors affect sexual 

dimorphism in development and disease. 

From a mechanistic context, studying the factors that increase sexual 

dimorphic outcomes of disease can offer important insights into its etiology 

and comorbidities, and inform of possible interventions and targeted 

treatments. Important advancements have been made in studying sex-

related risk factors for diseases like cancer, Alzheimer’s, and autoimmune 

diseases [7]. However, a relevant component of these age-related diseases 

is hormonal regulation. Studying sex differences in preteens offers not only 

the opportunity for identifying targeted treatments for early-age illnesses 

but also to explore disease mechanisms unlikely influenced by sex 

hormones that may also onset early in life. Previous research has, for 

instance, underlined that maternal factors during pregnancy can affect 
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disease outcomes later in life [8] and, therefore, motivates the question of 

which pregnancy factors may promote later sexual dimorphism in disease.   

Environmental exposures likely orchestrate environments that are more 

toxic to one sex than to the other one. However, methods to determine such 

multiple-exposure environments are not readily available. We have 

developed a method of causal modeling, based on causal random forest, 

that can determine profiles of multiple exposures that are associated with 

high sexual dimorphism [9]. Here, we aimed to adapt our method to 

determine which combination of prenatal exposures can produce an 

environment where girls are more protected from obesity than boys during 

the preteen years. Furthermore, obesity in children is associated with lower 

cognitive function, particularly inhibitory control and working memory, 

critical for academic achievement [10]. Obesity often co-occurs with 

neurodevelopmental disorders, particularly in boys [11]. Therefore, we also 

evaluated whether the environment of high sexual dimorphism in obesity 

also shows a significant sexual dimorphism in non-verbal intelligence, 

working memory, attention, and ADHD. 

Finally, we investigated whether a methylation profile may be associated 

with the protective environment since many exposures during pregnancy 

are associated with specific methylation profiles [12]. We then used 

methylation data from adults for targeting individuals who likely belonged 

to this profile and assessed their sex-specific differences in the risk of 

obesity and a neurocognitive trait.  

Here, we aimed to: (1) combine multiple exposure levels to define an 

environment with high sexual dimorphism in obesity risk; (2) given the 

correlation between obesity and neurodevelopmental delay in children, we 

also enquired if the subpopulation exposed to this environment shows a 

significant sexual dimorphism in neurodevelopment; (3) we then 
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hypothesized that the individuals who belong to such an environment can 

be characterized by specific patterns of DNA methylation patterns and 

aimed to use these patterns to infer subpopulations of high sexual 

dimorphism in obesity and academic achievement in a large independent 

cohort of adults. 

 

Methods 

Study population 

We analyzed data from The Human Early Life Exposome (HELIX). This is 

a multi-center study that included a total of 1,301 mother-child pairs from 

six existing birth cohorts in Europe: BIB (Born in Bradford; the United 

Kingdom) [13], EDEN (Etude des Déterminants pré et postnatals du 

développement et de la santé de l’Enfant; France) [14], INMA-SAB 

(Infancia y Medio Ambiente; Spain; subcohort Sabadell) [15], KANC 

(Kaunas cohort; Lithuania) [16], MoBa (The Norwegian Mother, Father 

and Child Cohort study; Norway) [17],), and Rhea (Greece) [18] The pairs 

participated in a common, completely harmonized, follow-up examination, 

when children were between 5-11 years old [19]. A blood sample was 

collected, and high dimensional exposure and molecular data were then 

assessed. In our analyses, we selected the individuals who had data on 

prenatal exposures, performed the clinical and neurodevelopment 

examination, and had methylation data (n=1044). All studies received 

approval from the ethics committees of the centers involved and written 

informed consent was obtained from all participants. Cohort characteristics 

are shown in Table 1. 
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Table 1 | Characteristics of the HELIX cohort. Clinical characteristics of 
children during pregnancy and follow-up.   

Children assessed at follow-up N=1044 

Sex, male 571 (54.6%) 

Age in years, mean (range) 7.9 (5.4-11.9) 

Sub-cohort  
      BIB (UK) 90 (8.6%) 
      EDEN (France) 135 (12.9%) 
      INMA (Spain) 198 (19.0%) 
      KANK (Lithuania) 196 (18.8%) 
      MOBA (Norway) 239 (22.9%) 
      RHEA (Greece) 136 (17.8%) 

BMI (kg/m2), median (range) 16.3 (12.2-29.5) 
      Obesity 62 (5.9%) - F: 23 (4.9%) - M: 39 (6.8%) 

Raven’s matrices, median (range) 27 (9-36) 
      Affected 189 (18.2%) - F: 78 (16.6%) - M: 111 (19.5%) 

N-back (2-back accuracy), median (range) 0.91 (0.36-1) 
      Affected 104 (12.9%) - F: 46 (12.6%) – M: 58 (13.0%) 

ANT (accuracy), median (range) 0.97 (0.51-1) 
      Affected 206 (20.0%) - F: 72 (15.6%) - M: 134 (23.7%) 

ADHD 104 (10.0%) - F: 27 (5.8%) - M: 77 (13.6%) 

Prenatal characteristics N=1044 

Mother’s age at pregnancy, mean (range) 30.9 (16-34) 
Mother’s BMI at pregnancy, median 
(range) 23.6 (15.8- 51.4) 

Maternal education  
      Primary school 119 (11.3%) 
      Secondary school 359 (34.3%) 
      University degree or higher 566 (54.2%) 

Gestational age, median (range) 40 (30.8-44.1) 
 

BMI: Body Mass Index. ANT: Attention Network Test. ADHD: Attention Deficit 
Hyperactive Disorder. F: Female. M: Male.  
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Clinical outcomes 

Height and weight measurements were converted to body mass index (BMI 

in kg/m²) for age-and-sex z-scores using the international WHO reference 

curves to allow comparison with other studies [20]. Obese children were 

defined as those above the age-and-sex-specific 95th percentile, as 

recommended by WHO. 

Neurodevelopmental outcomes were assessed through a battery of 

internationally standardized, non-linguistic, and culturally blind computer 

tests. We assessed working memory, attention and general non-verbal 

intelligence with the N-back test [21], the attention network test (ANT) 

[22], and Raven’s colored progressive matrices [23]; respectively. The tests 

were administered in a standardized way by trained field workers through 

study-provided laptops. The outcomes did not distribute normally. We 

dichotomized them, taking as cases individuals with outcomes below the 

first quintiles (20%). We thus studied as clinical outcomes the events of 

having these cognitive abilities affected. We also considered ADHD 

diagnosis. 

 

Pregnancy Exposome 

HELIX has collected a wide range of environmental contaminant 

exposures, as well as indicators of the built environment, natural spaces, 

lifestyle, and noise. Using residential address histories, exposure estimates 

were assigned for ambient air pollutants, road traffic noise levels, 

surrounding green and blue spaces, built environment, ultraviolet (UV) 

radiation, and meteorological variables during pregnancy [19, 24]. 

Biomarkers of contaminant exposure, including cotinine levels, were 

measured in appropriate biological samples collected from mothers during 

pregnancy.  
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In our study, we included 93 exposures assessed during pregnancy 

distributed across 17 exposure families. Air pollution, natural spaces, and 

built environment quantification were assessed during pregnancy by 

environmental geographic information systems (GIS). Tobacco smoke and 

diet were evaluated by questionnaires. Exposure variables with their 

corresponding transformation are described in Table S1. 

Missing values for all exposures were imputed using the method of chained 

equations using the mice package in R [25], as described in detail elsewhere 

[26]. When possible, multiple imputation procedure was applied (missing 

values are imputed stochastically several times). For the imputation 

process, continuous variables should have a normal distribution. Thus, 

skewed exposure variables were transformed to achieve normality or 

categorized if no transformation worked. Exposures with more than 70% of 

missing values were excluded. Therefore, missing values ranged from 1.5% 

in traffic density to 65% in fast-food intake during pregnancy. Although 

none of the participants had complete data on all exposures, 95% of 

individuals had missing values in less than 30% of exposures. 

 

DNA methylation 

One of the main goals of HELIX was to associate multiple environmental 

factors with omics biomarkers and child health outcomes. For these same 

children, multi-omics molecular phenotyping was performed, which 

included measurement of blood DNA methylation (450K, Illumina), among 

others.  

The DNA was obtained from buffy coat collected in EDTA tubes at 5-11 

years of age. Briefly, DNA was extracted using the Chemagen kit (Perkin 

Elmer) in batches of 12 samples. Samples were extracted by cohort and 

following their position in the original boxes. DNA concentration was 
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determined in a NanoDrop 1000 UV-Vis Spectrophotometer 

(ThermoScientific) and with Quant-iTTM PicoGreen® dsDNA Assay Kit 

(Life technologies). DNA methylation was assessed using the Infinium 

Human Methylation 450 beadchip (Illumina), following the manufacturer’s 

protocol. Preprocessing of methylation data has been described elsewhere 

[27]. After sample and probe quality control measures, the number of CpG 

probes analyzed was 371,533, initially available for 1,192 subjects. We 

used the Combat algorithm to remove the batch effects supported by the 

slide. Methylation levels were expressed as beta values and CpG sites were 

annotated to genes by Illumina HM450 manifest file (version 1.2). We 

discarded the subjects without exposome data and without European 

ancestry based on genomic data, resulting in 993 individuals for the 

methylome analysis. We computed blood cell type proportions following 

Houseman et al. algorithm [28] and Reinius reference panel [29]. 

 

Statistical Methods 

Figure 1 shows the statistical workflow. 

 

Identification of prenatal exposures with sexual dimorphism in obesity risk 

We used exposome-wide interaction analyses to determine the exposures 

whose association with obesity was significantly different between sexes. 

We assessed the associations between obesity (cases and controls) and the 

interactions between sex (S) and each of the prenatal exposures (Di) using 

the logistic regression model 

E(Y)= logit-1(αi + βi (S × Di) + Σr=1…k γir Cri) 

where Y is the obesity status of an individual with sex S and i-th exposure 

Di. γir are the regression coefficients of the k covariates Cri that included 

sex, exposure I, cohort, year of birth, mother’s BMI, mother’s weight gain 
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during pregnancy, gestational age, mother’s age at pregnancy, mother’s 

education, whether parents were native from the country cohort, parity, and 

children age at clinical assessment. Βi were the effects of interest that 

measure the association between obesity and the interaction between sex 

and each exposure i.  

 

 

Figure 1 | Statistical workflow. The figure shows all the statistical analyses 
carried out along the paper and the datasets used for each analysis. 
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Creation of a multiexposure profile (E1 and E0)  

The pregnancy exposures with nominal significant interactions with sex 

were adjusted by all covariates. Then, we used the residuals as covariates 

in causal inference modeling, using causal random forest, for the effect of 

sex on obesity. We aimed to classify individuals into two environments: E1 

and E0. The first one (E1) consists of a specific combination of exposure 

levels that protects girls against obesity. The second one (E0) consists of 

the remaining combinations of exposure levels. We applied the algorithm 

teff, taking sex as the treatment variable, to define the multiexposure profile 

associated with E1 [9] (https://teff-package.github.io/). 

 

Neurodevelopment differences between E1 and E0 

We used the classification of individuals into E1 and E0 to assess their 

relationship with sex differences in neurodevelopment. For this analysis, 

we used logistic regression models on the clinical outcomes (working 

memory, attention and general non-verbal intelligence with the N-back test, 

ANT, Raven’s colored progressive matrices, and ADHD) and we adjusted 

by the same covariates as in the epigenome-wide interaction analysis. 

 

Methylation profile associated with E1 and E0 

We performed an epigenome-wide association study (EWAS) in the 

HELIX cohort between E1 and E0. As previously, we used logistic 

regression models and adjusted all the analyses by the same covariates, 

adding in this case surrogate variables and counts of different immune cells 

in the blood. For the latter analyses, we used Bioconductor packages 

(V.3156) SVA and limma, and clusterProfiler for enrichment analyses. The 

commented analysis code is available in Supplementary Methods. 

https://teff-package.github.io/
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In order to predict prenatal environments E1 and E0 in independent studies 

using methylomic data, we used the K-nearest neighbor algorithm from the 

caret R-library. To build the predictor, we analyzed normalized beta signals 

but uncorrected by batch effects for unit consistency between studies (beta 

values). We trained a model in a random selection of 75% individuals from 

the HELIX data with CpG sites whose associations from the EWAS 

between E1 and E0 were significant at P<0.001 level. We tested the 

sensitivity and specificity of the predictor in 25% of test samples. 

 

Association between the methylation profile with adult obesity and 

academic achievement 

We aimed to predict E1 and E0 in an independent adult study. As such, we 

analyzed methylation data from TruDiagnostic DNA biobank that included 

3,590 individuals recruited between October 2020 and February 2022. 

Those individuals have chosen TruDiagnostic for DNA methylation 

analysis and clinical data has been collected from them. After the quality 

control, 3,425 participants were included in our study. However, we 

discarded 166 participants who had missing in at least one CpG site from 

the methylomic predictor, leading to 3,259 participants. The TruDiagnostic 

DNA biobank is an EEUU population-based cohort aged between 13 and 

97 years old. Among them, 58.7% are male. Since they are adults, obesity 

in this cohort is defined as a BMI equal to or higher than 30. Cohort 

characteristics are shown in Table 2.  

For the DNA methylation analysis, DNA was extracted from peripheral 

whole blood. The Infinium HumanMethylationEPIC BeadChip was used 

for DNA methylation assessment following the manufacturer’s protocol. 

Several quality controls and functional normalization were performed using 

the meffil package, resulting in 745,150 probes, as described in detail 

elsewhere [30]. CpG sites were annotated to genes using EPIC Illumina 
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annotation ilm 10b4.hg19. Blood cell types were estimated using the blood 

gse35069 reference panel from the meffil package.  

 

Table 2 | Characteristics of the TruDiagnostic DNA Biobank. Clinical 
outcomes of adults in a large cohort who chose TruDiagnostic for methylomic 
analysis.   

Adult population in TruDiagnostic DNA Biobank N= 3259 

Sex, male 1924 (59.0%) 

Age in years, mean (range) 52.9 (13.2- 97.8) 

BMI (kg/m2), median (range) 24.9 (10.10- 71.01) 

      Obesity 446 (13.6%) - F: 120 (3.7%) - M: 326 (10.0%) 

Education  

      Did not complete high school 30 (0.92%) 

      High school or equivalent 207 (6.35%) 

      Technical or occupational certificate 76 (2.33%) 

      Associate degree 119 (3.65%) 

      Some college coursework completed 268 (8.22%) 

      Bachelor’s degree 1160 (35.60%) 

      Master’s degree 701 (21.50%) 

      Doctorate (PhD) 144 (4.41%) 

      Professional (MD, DO, DDS, JD) 554 (17.0%) 

Educational Achievement 2559 (78.5%) - F: 1038 (31.9%) - M: 1521 
(46.7%) 

 

BMI: Body Mass Index. F: Female. M: Male. Educational Achievement: completed university 
degree or higher. 

 

We classified the individuals into E1 and E0 in the TruDiagnostic dataset 

according to their methylation data based on the predictor trained in 

HELIX. Although the predictor considered all the CpG sites differentially 

methylated when comparing E1 and E0, we trained again the predictor 

using the CpG sites that were common between HELIX and TruDiagnostic. 

We tested the interaction between sex and the environment on adult obesity 
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and educational achievement, defined as a completed university degree or 

higher. 

 

Results 

Sexual dimorphism of clinical outcomes  

We first assessed whether obesity and the categorized neuropsychological 

measures were associated with differences between sexes (Figure 2A). We 

fitted logistic regression models adjusting by covariates. Girls showed a 

lower frequency of obesity than boys, but it was not statistically significant 

(OR=0.64, P=0.13, see Figure 2B). For the neuropsychological measures, 

we observed that ADHD was lower in girls than boys, consistent with girls’ 

higher protection in attention difficulty. Both associations were statistically 

significant (OR=0.37, P=2.87×10-5, OR=0.54, P=4.32×10-4). For Raven’s 

matrices and N-back, we did not see significant associations with sex 

(OR=0.72, P=0.10, OR=0.94, P=0.78) (Figure 2B). 

 

Exposome-wide analysis of sex-exposure interactions on obesity  

We searched for prenatal exposures that could modulate the association 

between sex and obesity in childhood. Particularly, we searched for 

maternal exposure levels in which one sex would be more obese than the 

other at 5-11 years of age. We performed logistic regressions on obesity for 

all 93 sex-prenatal exposures interactions, adjusting for all covariates 

(Figure 2C-D). We did not observe any interaction that passed multiple 

comparison corrections. However, at the nominal level (P<0.05), we 

observed four interactions between sex (males as reference) and prenatal 

exposures. First, dairy consumption (ORintreraction=2.44, P=0.008), defined 

as   mother’s   dairy   consumption  during  pregnancy times  per  week  and  
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Figure 2 | A) Distributions of clinical outcomes in the HELIX study. Analyses 
were performed for categorized variables shown in grey (reference) and red. B) 
Association of sex with the clinical outcomes, adjusting by covariates. C) 
Number of prenatal exposures in each family measured in HELIX.  D) 
Exposome-wide Manhattan plot. Association of obesity with 93 sex-prenatal 
exposure interactions (the color follows the exposure family from panel B). The 
dotted line marks nominal significance (P=0.05).  

 

categorized as less than 17.1, between 17.1 and 27.1, and more than 27.1. 

Second, cotinine levels in mother during pregnancy (ORintreraction=1.92, 

P=0.034), classified into three categories: non-smokers (less than 18.32), 

second-hand smokers (between 18.4 and 48.4), and smokers (more than 
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50). Third, facility richness (ORintreraction=1.11, P=0.013), defined as the 

percentage of different facility types present compared to the maximum 

potential number of facility types at a 300m buffer during the pregnancy 

period. Fourth, the presence of green spaces (ORintreraction=0.27, P=0.029), 

answering the question of whether the mother lived within a distance of 

300m of green space during the pregnancy period. A stratified analysis by 

sex of the association between obesity and the significant exposures 

revealed that dairy consumption and cotinine levels were risk factors only 

for girls (OR= 2.88, P= 0.0009; OR=1.91, P=0.0128) while facility richness 

and green spaces were protective and risk factors for boys, respectively 

(OR= 0.92, P= 0.005; OR=5.06, P=0.007), see Figure 3. 

 

Exposure environment of high differences in obesity risk between sexes 

We asked whether a combination of the four significant exposures and their 

levels could define specific environments where one sex is likely more 

obese than the other one. The exposure residuals, adjusted by covariates, 

were used in causal inference modeling, with the aim to classify individuals 

into environments of high sexual dimorphism in obesity. We considered the 

multiexposure profile defined by the mother’s dairy intake, cotinine levels, 

living richness facilities, and green spaces during pregnancy. We randomly 

selected a set of 208 individuals from the HELIX cohort to infer their 

expected sex-difference in obesity risk given their personal multiexposure 

profiles. We thus applied the causal modeling algorithm teff, taking sex as 

the treatment variable, and observed 27 children (13 females, 14 males) 

living in personal environments where girls are less likely obese than boys. 

By contrast, we found only one boy living in a personal environment where 

girls are more likely obese than boys (Figure 4). 
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Figure 3 | Sex-exposure interaction plots on obesity. A) Mother’s dairy 
consumption during pregnancy. The figure shows the highest proportion of 
obesity in girls with the highest level of dairy consumption. B) Mother’s cotinine 
levels in the blood. The highest levels of obesity were observed in girls with high 
cotinine levels. C) Facility richness in living neighborhoods of pregnant 
mothers. A high abundance of facility richness is correlated with a low prevalence 
of obesity in boys. D) Green spaces at 300m from pregnant mothers’ homes. 
The highest prevalence of obesity was observed in boys with mothers living in the 
presence of green spaces.  The bars represent the 95% confidence intervals for the 
estimated proportion of obesity. 
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Figure 4 | The estimated sex difference on obesity risk in personal prenatal 
environments. The personal prenatal exposure environments were defined by the 
mother’s dairy intake, cotinine levels, living richness facilities, and green spaces. 
The sex of the individual living in a particular prenatal environment is shown in 
blue (male) and orange (female). The bars show the 95%CI for the effect of a 
personal prenatal environment on females in relation to males. The intervals were 
estimated using causal modeling implemented in teff. Green lines are significant 
sex differences in obesity risk given by the prenatal environments. 

 

We then aimed to determine whether the personal environments where girls 

are less likely obese than boys could be averaged into a single prenatal 

environment, whose female protection against obesity was stronger than 

those observed for the individual exposures. We created an average 

environment with highly significant female protection against obesity, 

which hereinafter we will refer to it as E1. This environment was obtained 

using the personal environments of the 27 children where girls are expected 

to be less obese than boys. E1 was defined as a binary vector, with one entry 

for each level of the four exposures, indicating whether a given exposure 

averaged across 27 individuals was higher or lower than the average across 
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the entire training set of 208 children. We used the multiexposure profile of 

each child to classify all the individuals in the HELIX cohort depending on 

whether they belong to the E1 or not. To this end, we used soft targeting 

that tested whether they matched the environment in at least 60% of the 

exposures. We observed a total of 675 (64%) individuals classified into E1. 

All the individuals that did not match E1 were classified into environment 

E0.  E1 was characterized by moderate dairy consumption, low cotinine 

levels, low abundance of facility richness, and the presence of green spaces 

(Figure 5A-D). Therefore, the environment captured both obesity 

protection for girls and obesity risk for boys, as expected from the 

individual exposures.   

 

 

Figure 5 | Characterization of the common prenatal environment where girls 
are more protected than boys against obesity (E1) against the reference 
environment (E0). Environment E1 is the common environment of individuals 
with personal environments where girls are significantly less obese than boys, these 
are the individuals with green confidence intervals in Figure 4. E1 is defined by 
low mother dairy intake, low cotinine levels, low richness facilities, and the 
presence of green spaces. An individual belongs to E0 if he/she does not belong to 
E1. 
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We then observed a strong association of the sex-environment interaction 

on child obesity, adjusting by covariates (ORinteraction=0.070, P=2.59×10-5). 

Stratified associations by sex between the environment and obesity risk 

were also significant (girls: OR= 0.18, P= 4.73×10-4; boys: OR=3.14, 

P=0.012), suggesting stronger environment gains in the protection for girls 

than in the risk for boys (Figure 6A). These results show that E1 can be 

regarded as a prenatal environment of female protection against childhood 

obesity, with much stronger protection than those given its individual 

exposure components. 

 

 

Figure 6 | A) Sex-environment interaction plot on obesity risk. The figure 
shows that E1 defines a prenatal environment of strong female protection against 
childhood obesity, across HELIX. B) Sex-environment interaction plot on 
raven’s matrices underperformance. Affected individuals are those with 
outcomes below the first quintiles. C) Sex-environment interaction plot on N-
back underperformance. Affected individuals are those with outcomes below the 
first quintiles. 

 

Sexual dimorphism in obesity and neurodevelopment 

We asked whether the environment of high differences in obesity between 

sexes was also an environment of high differences in neurodevelopment. 

First, we assessed the association between obesity and four 

neuropsychological outcomes, fitting logistic regression models on obesity 

and adjusting by all covariates, including sex. We observed that low values 
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of Raven’s matrices and N-back test tests were significant risk factors for 

obesity (OR= 2.42, P=0.01; OR= 2.65, P=0.02, see Figure 6B), as ADHD 

diagnosis increased the risk (OR= 2.15, P=0.03, see Figure 6C). However, 

we did not find significant associations between obesity and attention 

outcome.  

We tested whether the subject classification into the environments E1 and 

E0 significantly interacted with sex on each of the neuropsychological 

outcomes, as it did with obesity. We found that the sex-environment 

interaction was associated with higher outcomes of both Raven’s matrices 

(ORinteraction=0.42, P=0.047) and N-back test (ORinteraction=0.31, P=0.02), 

suggesting a higher performance of girls with respect to boys in these two 

tests, within E1. Associations were fully adjusted by covariates.   

 

Methylomic profile associated with the prenatal environment of high 

sex-differences in obesity 

We aimed to investigate whether the methylome captured the differences 

between individuals belonging to E1 or E0. We performed an epigenome-

wide association study (EWAS) of the classification of children in the 

prenatal environment, adjusting by covariates and immune cell counts. 

Methylation data was extracted from blood samples and were previously 

normalized and corrected for surrogate variation. We did not observe any 

significant association at a genome-wide level, after correcting for multiple 

comparisons, see top associations in Table S2. We also performed an 

enrichment analysis for the top associations (nominal P<0.01). We tested 

different GO terms from molecular function, cellular components, and 

biological processes (Figure 7), and observed several pathways related to 

neuronal processes. Most remarkably, synapse organization (P-

adjusted=0.0001) and regulation of synapse structure or activity (P-
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adjusted=0.006) are two biological processes directly related to 

neurodevelopment.   

 

 

Figure 7 | Enrichment analysis for the differentially methylated sites 
associated with E1.  A) Gene Ontology. B) Cellular components. C) Biological 
processes. Epigenome-wide analysis for the prenatal environment E1 was 
performed and methylation probes with associations at P<0.001 were selected. 
Probes were mapped to genes that were used in enrichment analyses. The analyses 
mainly show pathways related to neuronal function. 

 

Sex differences in adult obesity and academic achievement 

We used methylation data from TruDiagnostic DNA Biobank to determine 

if adult individuals could be classified into groups whose methylation 

profiles were consistent with the two prenatal environments in children. We 

aimed to test whether these methylation profiles were associated with sex 

differences in obesity and academic achievement in adulthood. 
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TruDiagnostic data comprises 3,259 adult individuals with methylome data 

and clinical information, see Table 2. We used the K-nearest neighbor 

algorithm to build a predictor of the environment using the methylation data 

from HELIX. We selected the CpG sites whose associations with the 

environment were significant at a nominal P-value lower than 0.001 and 

that were common with TruDiagnostic methylation data (143 CpG sites). 

We observed a 77% specificity of the predictor on a 25% test set of HELIX 

individuals, randomly selected to train the predictor.  

We used the methylomic predictor on TruDiagnostic data and observed that 

1,764 individuals (54.0%) were classified into the group with consistent 

methylation to the prenatal environment E1. We then tested whether the 

individuals classified into this group had high differences in obesity when 

comparing men and women, but we did not observe any significant 

association (OR=1.14, P=0.56). We adjusted by sex, group classification, 

ethnicity, and age. We also tested the association of the interaction with 

academic achievement, considering individuals that completed a college 

degree (78.5%). We found a significant association between the sex-by-

group interaction and education achievement (OR=1.59, P=0.008, see 

Figure 8), suggesting higher academic achievement of women with respect 

to men, within this methylation-defined group.    

 

Discussion 

We have shown in the HELIX cohort that environments defined by a 

multiexposure profile with different effects on obesity for each sex can be 

identified with the novel use of causal inference [9]. In a previous study on 

the same cohort, no significant associations were observed for individual 

prenatal exposures with overweight and obesity status, while cotinine levels 

were associated with BMI only at nominal significance [31]. Although we 
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observed only four nominally significant interactions between prenatal 

exposures and sex on obesity, we revealed a prenatal environment defined 

by specific levels of these exposures whose effect on obesity strongly 

changed between sexes, with a 93% reduction in obesity risk for girls in 

relation to boys (ORinteraction=0.070, P=2.59×10-5). In the environment 

defined by moderate dairy consumption, low cotinine levels, low facility 

richness, and the presence of green spaces, girls are more protected than 

boys against obesity. 

 

 

Figure 8 | Sex-methylation profile interaction plot on adult academic 
achievement in the TruDiagnostic cohort. Individuals were classified into two 
methylation groups that correlated with two different prenatal environments, being 
one of them an environment where girls were protected against obesity in the 
HELIX study. A positive academic achievement was considered for individuals 
with a university degree.   

 

Previous studies have shown conflictive findings on dairy intake during 

pregnancy and its relation to long-term body composition of children. 

Voerman et al. reported significant associations with abdominal fat in 
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children and strong interaction with sex on the pericardial fat mass index, 

with a higher risk for girls [32]. However, other studies have reported no 

significant associations [33, 34]. Our findings suggest that part of the 

discrepancy could be due to the interaction with sex. 

Concerning obesity and cotinine levels in the blood of pregnant mothers, 

previous studies have shown a 50% increase in childhood overweight for 

smoking during pregnancy [35], with a dose-response relationship [36]. 

Cotinine levels have also been associated with low birth weight but rapid 

gains in BMI after delivery [37]. In a Japanese population, Susuki et al. 

observed that boys of mothers who smoked during pregnancy had higher 

gains in BMI trajectories compared with girls [38]. We found, however, 

higher obesity frequency for girls of mothers with high cotinine levels. In a 

large study of ~90,000 mother-children pairs, also in Japan [37], they 

observed that rapid gains in BMI of children were associated with urinary 

cotinine concentration of mothers but not with self-reported smoking status. 

While their results were not stratified by sex, it shows that cotinine is a more 

accurate assessment of pregnancy smoking.   

In relation to green spaces, systematic reviews have shown weak evidence 

for its relationship with children’s obesity [39, 40]. Associations of green 

spaces during pregnancy and their differential effect on sex have not been 

previously assessed. We found that prenatal green space is a risk factor for 

boys’ obesity only. A recent study of the HELIX cohort showed significant 

associations between children’s overweight and obese status with the built 

environment (land use mix) [41]. Children living in built environments in 

absence of green spaces could be at higher risk of obesity (likely due to its 

relationship with physical activity). However, we observed that a low 

abundance of facility richness and the presence of green spaces during 

pregnancy are risk factors for obesity in boys. Both environmental 
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conditions of the pregnant mother are consistent with less urbanized 

environments where adult obesity may be more frequent [42].   

In this study, we observed that the combination of the specific levels for the 

four exposures maximizes the differences in obesity risk between girls and 

boys. Previous studies have already suggested that better prediction of an 

outcome can be obtained from the aggregation of multiple environmental 

factors into risk scores [43, 44] or the use of mixture models [45].  In line 

with this, we used causal inference for classifying the individuals in two 

environments (E0 and E1) based on the combination of the four exposures.  

After classifying individuals in the two environments, we further 

investigated whether the individuals belonging to the environment with 

higher sexual dimorphism in obesity presented also sexual dimorphism in 

neurodevelopmental delay. Based on previous studies, prenatal factors, 

such as maternal obesity, have been seen associated with both obesity in 

children and lower cognitive abilities and ADHD [46, 47]. Animal studies 

have shown that mice whose mothers were on high-fat diets during 

pregnancy have alterations in brain methylation of dopaminergic and opioid 

genes [48, 49]. In addition, the neurodevelopmental delay appears to be 

more frequent in obese boys [11].  A longitudinal prospective study has 

shown that working memory and attention performance are reduced by 

increasing BMI in children [50]. Our study offers additional evidence of 

this relationship, since the environment that protects girls against obesity 

also protects girls against neurodevelopmental delay, while having the 

opposite effect in boys.  Furthermore, the environment is associated with 

methylation probes that are enriched in neurodevelopmental pathways, 

providing more evidence for this hypothesis. 

In relation to the long-term association between obesity and academic 

achievement, a systematic review of longitudinal studies has shown the 
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strongest evidence for the negative association between adolescent girls’ 

BMI and math attainment [51]. Our analyses support the notion that 

cognitive abilities involving executive functions may explain part of the 

association, as they share a common environment that may protect girls 

against obesity. Furthermore, we observed that the methylomic profile 

associated with the sexual dimorphic environment was also associated with 

higher academic achievement in women. However, we did not observe 

associations with adult obesity. This can be due to the loss of specificity of 

the predictor as a marker of sexual dimorphism of obesity in adult life. 

Therefore, further work is required to validate these findings. 

 

Conclusion 

We aimed to advance a novel approach to the study of sexual dimorphism, 

based on high dimensional exposure data and recent methods of causal 

inference. The methodological approach can also be used to determine the 

environmental landscape that promotes sexual dimorphisms in studies with 

high dimensional exposure data. 

In summary, girls in childhood may be protected against obesity if their 

pregnant mothers had moderate dairy consumption, low cotinine levels, and 

lived in environments with a low abundance of rich facilities and the 

presence of green spaces. The environment is also protective against the 

neurodevelopmental delay of non-verbal intelligence and working memory 

that may be reflected in their adult academic achievement. While female 

protection is measured against male risk, female protection outweighs the 

risk of obesity in boys. Our study motivates further public health efforts to 

raise public awareness of moderating a high-fat diet, and avoiding smoking 

and second-hand smoking during pregnancy to protect children against 

obesity and neurodevelopmental delay. 
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6.1. General discussion 

In this thesis, we have gone one step further in the integration of genetic 

and environmental exposures in the study of DNA methylation and its 

influence on complex diseases. To meet this goal, I required abilities in 

multiple areas, including genetics, bioinformatics, epidemiology, 

statistics, and programming, which I have learnt during my Genetics 

Degree, Bioinformatics Master and during this PhD in Biomedicine. In 

this last step, I had the opportunity to train all these abilities participating 

in several courses and interacting with members of the Bioinformatic 

Research Group in Epidemiology (BRGE). Table 3 summarizes the 

main results of the three papers described in this thesis.  

 

Table 3 | Overview of the manuscripts of this thesis along with the main 
results.  

 Cohorts Modulator Outcome Analysis Results 

1 TruDiagnostic 
DNA Biobank 

Tobacco, 
alcohol, and 
marijuana 

consumption 

DNA 
methylation EWAS 

Tobacco and 
alcohol: large 

effects. Marijuana: 
small effects. 

Alcohol-
related CpG 

sites 
Hypertension Mediation 

Significant 
mediation by 8 

CpG sites 

2 
HELIX and 

HUVH 
Biobank 

Genomic 
inversion 

DNA 
methylation 

EWAS 
and PCA 

Methylation 
patterns in 
inversions 

Inversion-
exposure 

interaction 

DNA 
methylation EWAS 64 significant 

interactions 

3 
HELIX and 

TruDiagnostic 
DNA Biobank 

Environment
-sex 

interaction 

Obesity and 
Neurodeve-

lopment 

Causal 
inference 
and linear 
regression 

Prenatal 
environment with 

sexual dimorphism 
for obesity and 

neurodevelopment 
delay 
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We first evaluated the effect of the three most consumed drugs - tobacco, 

alcohol, and marijuana - on DNA methylation. We identified large 

genome-wide effects for tobacco and alcohol and small effects for 

marijuana consumption. We then explored whether changes in 

methylation were mediating the association between heavy alcohol use 

and hypertension, and we identified 8 CpG sites significantly mediating 

this association. Next, we moved on to investigate the effect of common 

polymorphic inversions on DNA methylation. We found a clear 

methylation pattern associated with the status of the inversion. We also 

identified a different effect of multiple environmental exposures on 

DNA methylation according to the inversion genotype. We finally 

demonstrated that a prenatal environment consisting of a multiexposure 

profile is associated with a different risk of obesity in boys and girls. 

This environment can be inferred from a methylomic profile and, 

therefore, can be used to predict obesity risk in childhood.  

To accomplish our objectives, we used population-based studies based 

on three cohorts: Human Early-Life Exposome (HELIX), TruDiagnostic 

DNA Biobank, and Hospital Universitari Vall d’Hebron (HUVH) 

Biobank (Table 3). While the HELIX cohort comprises children (6-11 

y), the TruDiagnostic DNA Biobank consists of an adult cohort (13-97 

y), and the HUVH biobank comprises prenatal heart tissues. In these 

cohorts, DNA methylation was assessed with the standardized arrays 

450K and EPIC that test thousands of CpG sites along the genome 

(450,000 and 850,000 CpG sites, respectively). We performed 

epigenome-wide association studies (EWAS) to test the association 

between each of these CpG sites with our traits of interest. We also used 
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mediation analyses and causal inference methods for evaluating the 

clinical relevance of some of our findings.  

Altogether, this thesis suggests that the association between DNA 

methylation and complex diseases should be studied along with the 

environmental and genetic context of each individual. This thesis 

provides examples of genetic influences, individual and combined 

environmental exposure effects, and gene-environment interactions on 

DNA methylation. 
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6.2. Effect of drug consumption on DNA methylation 

We first hypothesized that lifestyle was a potential modulator of DNA 

methylation along the genome. Among lifestyle factors, we focused on 

tobacco, alcohol, and marijuana consumption because they are the three 

most used drugs worldwide and they have negative effects on health. 

We performed an EWAS independently for each drug and we identified 

528 CpG sites differentially methylated according to tobacco smoking, 

2,569 according to alcohol consumption, and 195 suggestive 

associations (nominal P-value < 1·10-4) for marijuana consumption. 

Interestingly, we found a large overlap between the differentially 

methylated genes by these three unhealthy lifestyle habits. As 

mentioned previously, these drugs are associated with common 

diseases. In particular, heavy alcohol consumption is associated with a 

higher risk of hypertension. In our research, we found that the top 

alcohol-related methylation sites were mediating the association 

between alcohol consumption and hypertension. 

 

6.2.1. Previous research 

There is a huge number of published studies investigating the effect of 

smoking on DNA methylation. While the first studies used small panels 

of genes [169,170], the first epigenome-wide association study on 

tobacco was from 2012 [171]. From then on, several studies have 

demonstrated the DNA methylation changes along the genome 

associated with tobacco, even when the exposure was during pregnancy 

[121,122,124,125,172,173]. To date, the EWAS catalog, which is the 

biggest database of EWAS [174], gathers 30 publications regarding 
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tobacco consumption. Most of these publications agree that the 

cg05575921 mapped to AHRR and the cg21566642 in the 2q37.1 region 

are the most significantly associated CpG sites with smoking 

[6,125,172]. 

In the case of alcohol consumption, several studies demonstrated the 

large effect of drinking on DNA methylation [126,128,129,175–177]. 

Many of these studies found the cg06690548 mapped to the SLC7A11 

promoter as the most associated methylation site to alcohol consumption 

[126,128,129]. In addition, many liver biomarkers were associated with 

the methylation level of SLC7A11, which suggests that this gene may be 

implicated in gastrointestinal disturbance after alcohol consumption 

[128]. 

Compared with the large research on tobacco and alcohol, a few studies 

have evaluated the changes in DNA methylation after marijuana 

consumption. The first study was performed in 2015 and evaluated the 

effect of cannabis parental exposure on nucleus accumbens of rats where 

they identified more than a thousand differentially methylated regions 

[178]. In 2020, Osborne et al. carried out the first EWAS on heavy 

cannabis consumption in a reduced population (48 consumers and 18 

controls) [131]. In the first analysis, they compared cannabis and 

tobacco users to non-smokers and they found 5 differentially methylated 

sites. Second, they selected only cannabis users (no tobacco) and did not 

find differentially methylated sites. In another study, Markunas et al. 

evaluated the effect of smoking marijuana on more than 2 thousand 

women at risk of developing breast cancer [132]. Only one CpG mapped 

to the CEMIP 5’ region was identified as significant. Nevertheless, using 
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the top 50 CpG sites from the EWAS, they designed a biomarker for 

lifetime cannabis use.  

 

6.2.2. Tobacco, alcohol, and marijuana as modulators of DNA 

methylation 

In our research, we replicated previous studies revealing a high impact 

of smoking on DNA methylation along the genome. From the top 50 

associations in the EWAS catalog, we replicated 46. We also identified 

332 new CpG sites that were not previously reported in the EWAS 

catalog. Additionally, the two CpG sites most associated with tobacco 

in most studies (cg05575921 and cg21566642) were also the top CpG 

sites in our study. 

We also replicated a large number of CpG sites for alcohol consumption. 

Interestingly, differentially methylated genes were highly associated 

with autistic disorder, acquired scoliosis, and curvature of the spine. The 

set of adverse effects associated with alcohol consumption during 

pregnancy is known as fetal alcohol spectrum disorder (FASD). One of 

the main FASD symptoms is autistic-like traits, as well as scoliosis and 

other musculoskeletal anomalies [179–181]. Our data suggest that DNA 

methylation may be the link between alcohol consumption and FASD. 

In our study, we identified cg06690548 mapped at the SLC7A11 

promoter as the most alcohol-related methylation site, like many studies 

[126,128,129].  Besides, we identified new CpG sites that were not 

previously reported in the EWAS catalog, such as three sites at PRPF8, 

CBS, and MBNL2 genes that were in the top-ranked differentially 

methylated probes. Whereas the main function of PRPF8 and MBNL2 
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is the regulation of pre-mRNA alternative splicing, CBS is in charge of 

synthesizing cystathionine. 

Although the EWAS for marijuana consumption did not reveal 

significant CpG sites at the Bonferroni adjustment, we found 195 CpG 

sites at a suggestive P-value lower than 1·10-4. These CpG sites mapped 

to genes that were enriched in paranodal junction assembly, myelin 

assembly, and neuromuscular process controlling balance. This suggests 

a possible implication of DNA methylation changes on the long-term 

neurotoxic effects of marijuana smoking. 

 

6.2.3. Drug consumption and hypertension mediation 

In TruDiagnostic data, we found a slight association between smoking 

and hypertension and a strong association between alcohol consumption 

and hypertension, as previously seen [182–185]. Besides, marijuana did 

not show a significant association with hypertension, in line with 

previous research that revealed ambiguous associations [186–188].  

While light to moderate drinking was not associated with high blood 

pressure in our study, heavy drinking significantly increased the risk of 

the disease, as already seen before [185,189]. We performed a 

multivariate mediation analysis to see whether DNA methylation was 

mediating the effect of heavy alcohol consumption on hypertension. We 

found 8 CpG sites as potential mediators that included the six most 

associated CpG sites with alcohol use. All these CpG sites had lower 

methylation in heavy consumers compared with no consumers, in line 

with the global hypomethylation in hypertensive patients revealed 

previously [62]. Additionally, the low methylation of two of the 
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potential mediators (cg06690548 at SLC7A11 and cg14476101 at 

PHGDH) was associated with systolic and diastolic blood pressure in 

multiple studies [64–66]. Indeed, hypomethylation of these CpG sites 

was associated with higher expression of their respective genes [66].  

SLC7A11 encodes a protein responsible for enhancing antioxidant 

defense and protecting against endothelial dysfunction and vascular 

inflammation. This leads to an increased vascular tone and rigidity, that 

ultimately leads to high blood pressure. Moreover, Richard et al. 

demonstrated the association between methylation and expression of 

SLC7A11 with blood pressure [65]. In the univariate mediation using 

cg06690548 as a mediator, we found that the methylation level of this 

CpG site mediated 73.6% of the effect of heavy alcohol on hypertension 

(P-value = 0.008).  

The transcription of PHGDH results in an enzyme involved in the early 

steps of serine synthesis, which is associated with tissue growth. Low 

methylation levels of this gene may participate in vascular adaptation to 

body-tissue growth during adolescence [66]. 

Overall, we demonstrated that hypomethylation of CpG sites that are 

correlated with alcohol consumption and hypertension may mediate the 

effect of heavy drinking on hypertension. This finding provides new 

targets to prevent and manage hypertension in individuals with regular 

alcohol consumption.  
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6.3. Effect of polymorphic inversions on DNA 

methylation 

Beyond lifestyle factors, we hypothesized that genetic variants also 

influenced DNA methylation. Although many studies demonstrated the 

association between SNPs and DNA methylation changes, there are a 

few studies on structural variants’ impact. We focused on polymorphic 

inversions since they are common in humans, englobe multiple genes, 

and have been associated with complex diseases. We wanted to see 

whether the three most common inversions at 8p23.1, 16p11.2, and 

17q21.31 were correlated with differentially methylated sites within and 

around the inversion region. We found that approximately 10% of the 

CpG sites within the inverted regions +/- 1Mb were significantly 

differentially methylated according to the inversion genotype. These 

differences were reflected in distinctive methylation patterns supported 

by the inversion status. We also validated the effect of inversions on 

methylation at prenatal stages in heart tissue. Finally, we suspected that 

the effect of genomic inversions on DNA methylation may differ 

between individuals due to different environmental exposures. We 

found 64 significant interactions involving many exposure families, 

suggesting the important contribution of genomic inversions to gene-

environment interactions. 

 

6.3.1. Previous research 

Recent studies have demonstrated that polymorphic inversions are 

important contributors to the genetic context of complex diseases in 

humans, such as obesity, diabetes, asthma, and cancer, among others 
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[90–97]. The three most common inversions in humans include 8p23.1, 

16p11.2, and 17q21.31. They are polymorphic, non-recurrent, large, and 

are associated with multiple diseases, including those co-occurring with 

obesity [91,94].  Due to their big size, they can encapsulate multiple 

genes and modulate their expression across multiple tissues [94,190–

192]. Nonetheless, it is unknown whether genomic inversions have 

distinctive methylation patterns in the inversion region. Few previous 

studies have investigated methylation changes at specific sites when 

studying the association between an inversion and a disease. For 

instance, Ruiz-Arenas et al. reported a significant mediation between 

inv-17q21.31 and colorectal cancer using the methylation level of 

specific CpG sites as mediators [92]. Another two ideas that support our 

hypothesis are that Shi et al. found methylation patterns in copy number 

variants [102] and that Shanta et al. reported a big influence on 3D DNA 

structure by large structural variants [193]. 

 

6.3.2. DNA methylation patterns associated with inversion 

genotypes 

We identified distinctive methylation patterns in blood across the 

inverted regions for the human polymorphic inversions at 8p23.1, 

16p11.2, and 17q21.31. We found around 10% of the CpG sites in the 

inversion region and surroundings to be differentially methylated in all 

the inversions. We also identified differentially methylated sites at 

prenatal stages in heart tissue, suggesting that the impact of inversions 

is relevant during development even in utero. 

It is worth mentioning that the individual CpG associations that we 

identified with the inversions may be due to the inversion itself or due 
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to local genetic variability in linkage with the inversion. However, we 

carried out a principal component analysis that revealed a spatial pattern 

given by the correlation of several CpG site associations that fits the 

extension of the inversion. In this case, the only possibility is that such 

an extended pattern is due to the inversion itself, likely as a result of the 

combination of DNA reconfiguration and the accumulation of specific 

genetic variability along the segment that results from the suppression 

of recombination between inversion states. These patterns may be 

caused by differences in the three-dimensional (3D) DNA configuration 

for each allele [193]. The different configurations of DNA in some 

haplotypes may produce modifications in the accessibility of the factors 

that facilitate DNA methylation. This may explain the association 

between the recurrent and non-polymorphic inversion at Xq28 causing 

Hemophilia A with specific methylation changes [98]. Another example 

is the hypermethylation at de novo inversions, such as the inversion at 

11p15.5 causing Beckwith-Wiedemann [99]. 

Although inversions at 8p23.1 and 17q21.31 were strongly 

characterized by their methylation patterns, inversion at 16p11.2 was 

associated with a less strong pattern. This can be explained by the higher 

number of haplotypes supported by inv-16p11.2 (two haplotypes in the 

standard allele and one in the inverted allele) and by the smaller size 

compared with the other inversions (0.45Mb versus 0.9Mb for inv-

17q21.31 and almost 4Mb for inv-8p23.1) [94].  

Overall, we suggest that the association between genomic inversions 

and common diseases may be mediated by the methylation patterns in 

the inversion region. Further studies may investigate the possible 

correlation between inversion haplotypes and 3D configurations. 
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6.3.3. Early-life exposome modulates the effect of genomic 

inversions on DNA methylation 

We further observed that the methylation patterns due to inversion 

genotypes were modifiable by environmental exposures. We identified 

multiple interactions between inversions and environmental exposures 

affecting DNA methylation across the inverted region. Most of the 

exposures involved in significant interactions were metals, diet, phenols, 

and organochlorines. 

Among the significant interactions, we highlight three of them due to 

potential clinical interest and substantial support from previous studies. 

All of these interactions involve the inversion at 8p23.1. 

First, we identified the interaction between inv-8p23.1 and meat intake 

associated with TDH methylation. This interaction was interesting due 

to the independent association of all the factors (inversion, exposure, 

and gene) with obesity in adults [91,194–196]. In our data, we found 

that increased intake of meat was associated with lower methylation 

levels at two CpG sites only in non-inverted homozygous individuals. 

Interestingly, individuals with this genotype are more at risk of obesity 

[91]. We propose to consider the methylation of TDH and the inversion 

genotype of individuals who aim to reduce obesity by managing meat 

intake. 

Second, we observed that non-inverted homozygous individuals 

presented hypermethylation at cg26020513 within GATA4 when 

manganese exposure increased. It is worth noting that hypermethylation 

of this CpG has been strongly associated with congenital heart defects 

in fetuses [197], mutations in GATA4 are correlated with cardiac septal 
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defects [198], and previous studies have demonstrated heart toxicity by 

high exposure to manganese [199]. Altogether, this interaction deserves 

further scrutiny.  

Finally, we identified different interactions involving the same inversion 

and the same gene. We observed that the effects of parental tobacco 

smoke (during pregnancy or in childhood) and air pollution (outdoor 

PM2.5 exposure) on TRMT9B methylation were different according to 

the genotype of 8p23.1 inversion. Smoking and air pollution have been 

largely associated with respiratory diseases [200–202]. Moreover, 

TRMT9B is associated with an upper respiratory tract disease [203,204]. 

Since inv-8p23.1 and asthma have been seen correlated, our results 

suggest a likely role of gene-environment interaction in this association. 

Although validation of the significant interactions remains to be 

evaluated, we suggest that carriers of specific genetic variants may be 

more susceptible to (or protected against) disease or developmental 

disorders if exposed to a relevant environmental risk factor. 



PRENATAL ENVIRONMENT WITH HIGH SEXUAL DIMORPHISM 

206 

6.4. Prenatal environment with high sexual 

dimorphism 

Obesity is a complex disease whose prevalence differs between boys 

and girls. Genetic and environmental factors are important contributors 

to obesity risk. As the main difference between individuals is sex, 

exposome studies aiming at improving precision medicine cannot do 

without considering how environmental factors affect sexual 

dimorphism in disease. Recent research has shown that maternal factors 

during pregnancy can affect disease outcomes later in life. Therefore, 

we hypothesized that the aggregation of multiple prenatal exposures and 

behaviors may promote later sexual dimorphism in obesity. We found 

that girls are more protected than boys against obesity in a prenatal 

environment defined by moderate dairy consumption, low cotinine 

levels, low richness facilities, and the presence of green spaces. We then 

showed that this environment also protected girls from 

neurodevelopment delay. Finally, we developed a predictor based on 

methylation to classify individuals into the protector environment or not. 

We tested the predictor in an independent adult population, and we 

found that the environment was associated with a high dimorphism in 

academic achievement. 

 

6.4.1. Previous research 

Previous studies have evaluated the association between dairy intake 

during pregnancy and obesity during life. However, they showed 

contradictory results. Voerman et al. revealed a significant association 

between dairy intake and abdominal fat in children, as well as a strong 
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interaction between dairy intake and sex on the pericardial fat mass 

index, being girls more at risk than boys [205]. Other papers have shown 

no significant association [206,207]. Our results suggest that the 

interaction with sex may be the clue for obtaining replicative results. 

Independent studies have investigated the association between cotinine 

levels during pregnancy and obesity in the life course. Oken et al. 

revealed an increment of 50% in children overweight when mothers 

smoked during pregnancy [208]. Moreover, another study demonstrated 

that this association is dose-dependent, being more overweighted those 

children with mothers who smoked more cigarettes [209]. Other studies 

did not evaluate the effect of smoking but cotinine levels in the blood 

and found a significant association with low birth weight and rapid gains 

in BMI after delivery [210]. In Japan, boys had higher gains in BMI 

trajectories compared with girls when their mothers smoked during 

pregnancy [211]. In a study with more than 90,000 mother-child pairs 

from Japan they observed that while cotinine levels in urine during 

pregnancy were associated with BMI of children, self-reported smoking 

status was not associated with BMI [210]. It seems, therefore, that 

cotinine is a more accurate assessment of smoking during pregnancy.  

Studies involving green spaces revealed weak evidence for the 

association with children’s obesity [212,213]. Stratified studies by sex 

for evaluating the effect of green spaces during pregnancy on BMI have 

not been previously assessed. One study using HELIX data reported a 

significant association between obesity and the built environment [214]. 

Although the presence of green spaces may be associated with higher 

physical activity, less urbanized areas with low facility richness and a 
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higher abundance of green spaces are characterized by more prevalence 

of adult obesity [215]. 

On the other hand, previous studies have reported the association 

between obesity and neurodevelopmental delay [216]. Maternal obesity 

is associated with obesity in children, lower cognitive abilities, and 

ADHD [217,218].  Besides, a longitudinal study revealed that increasing 

BMI in children can result in a reduction in working memory and 

attention performance [219].  

Finally, a systematic review showed that adolescent girls’ BMI is 

negatively associated with math attainment, suggesting an association 

between obesity and academic achievement [220].  

 

6.4.2. Environment with sexual dimorphism in obesity and 

neurodevelopment 

We first identified four exposures during pregnancy significantly 

interacting with sex on obesity: dairy intake, cotinine levels, facility 

richness, and green spaces. We observed that a multiexposure profile 

defined by the combination of these exposures at specific levels was 

more significant than the independent exposures. This environment 

defined by moderate dairy consumption, low cotinine levels, low 

richness facilities, and the presence of green spaces was associated with 

protection against obesity only in girls.  

Furthermore, we tested whether the environment presented sexual 

dimorphism for neurodevelopment traits. We found that girls in this 

environment had less delay in non-verbal intelligence and working 
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memory compared with boys, in consistent with previous studies [216–

218]. 

 

6.4.3. Prediction of the environment based on methylomic data 

We aimed to investigate whether the methylome captured the 

differences between individuals belonging and not belonging to the 

protector environment for girls. We performed an EWAS based on the 

classification of children in the prenatal environment, and we did not 

observe any significant association at the genome-wide level after 

correcting for multiple comparisons. However, the enrichment analysis 

of the CpG sites with a nominal P-value below 0.01 revealed pathways 

related to neuronal processes, such as synapse organization and 

regulation of synapse structure or activity. This suggests that DNA 

methylation may be mediating the interaction between the environment 

and sex on neurodevelopment traits. 

We then investigated whether DNA methylation profiles could be used 

to classify individuals in independent cohorts into belonging to the 

protector environment or not. We trained the algorithm in the HELIX 

cohort where we had environmental and methylation data, and we then 

tested the classifier in TruDiagnostic data where only methylation data 

was available. We used the K-nearest neighbor algorithm to build the 

predictor based on the CpG sites with a nominal P-value below 0.01 and 

that were common with TruDiagnostic methylation data (143 CpG 

sites). We observed a 77% specificity of the predictor on a 25% test-set 

of HELIX individuals, randomly selected to train the predictor. This 

lower-than-expected accuracy of the predictor was likely due to the 

methylation levels uncorrected for surrogate variation which were used 
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to increase translation into TruDiagnostic. It may also be due to the low 

number of CpG sites overlapped between both datasets.  

We applied the classifier to TruDiagnostic, and we found that 54% of 

the individuals were classified into the environment where girls are less 

obese than boys. We did not observe differences in obesity comparing 

men and women belonging to the environment. However, we observed 

a significant interaction between the environment and sex on academic 

achievement. Women belonging to the protector environment had a 

higher academic achievement compared with men in the same 

environment. 

 

6.4.4. Clinical implications 

In summary, girls in childhood may be protected against obesity if their 

pregnant mothers had moderate dairy consumption, low cotinine levels, 

and lived in environments with a low abundance of rich facilities and 

the presence of green spaces. This environment is also protective of non-

verbal intelligence and working memory delays, which may be reflected 

in their adult academic achievement.  

Our study motivates further public health efforts to raise awareness of 

moderating a high dairy diet and avoiding smoking and second-hand 

smoking during pregnancy to protect children against obesity and 

neurodevelopment delay, particularly in girls.  

 



DISCUSSION 

211 

6.5. Limitations and strengths 

While this thesis is subject to several limitations, it also has notable 

strengths, as described below. 

6.5.1. Limitations 

• DNA methylation was obtained from blood samples in all the 

cohorts. Then, further research is required to understand the 

implication of the identified markers in each tissue. 
 

•  DNA methylation only at a one-time point. The DNA 

methylation process is dynamic and changes according to 

genetic and environmental factors throughout life. Studying 

only one-time points may ignore other methylation levels that 

can be present in specific time intervals. 
 

• Different arrays for assessing DNA methylation. In our data, 

while HELIX and HUVH Biobank used the 450K array, 

TruDiagnostic used the EPIC array. These differences may 

difficult the application of algorithms tested in one cohort and 

applied to another cohort. 
 

• Non-availability of genetic data in TruDiagnostic. The effect 

of drug consumption on DNA methylation was evaluated in 

TruDiagnostic. However, genetics has an important role in 

substance use predisposition. Further research should be done to 

remove the differentially methylated probes that are a 

consequence of genetic differences and not to the exposure 

itself. 
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• Heterogeneity within population studies. The batch effect is 

always an uncontrollable factor. While several methods have 

been applied for removing the batch effect, such as DNA 

methylation normalization and surrogate variable analyses, 

there is not a standard method suitable for all the datasets.  

 
• Self-reported drug consumption. The drug consumption was 

self-assessed and not specific for a time period, limiting the 

credibility. In addition, there was no information on whether 

marijuana was smoked mixed or not with tobacco. This 

information could benefit future studies on removing the 

tobacco effect.  

 

6.5.2. Strengths 

• Big sample size. All the objectives of this thesis have been 

studied in large populations. The HELIX project comprises 

1,301 mother-child pairs and the TruDiagnostic Biobank 

includes 3,890 adults. Moreover, the heart tissue from 40 fetuses 

of terminated pregnancies is especially valuable due to the 

difficulty of obtaining these samples. 
 

• Multi-omics datasets. In addition to big sample sizes, these 

populations have hundreds of variables for each individual. The 

HELIX project has information relating to the exposome and the 

child health outcomes, as well as DNA methylation, gene 

expression, miRNA expression, plasma proteins, serum 

metabolites, urinary metabolites, and DNA microarray. Besides, 

TruDiagnostic collected information for personal information, 
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medical history, social history, lifestyle, and family history. 

Although during our study we only had access to DNA 

methylation data, the company is now collecting information for 

the metabolome and the genome.  
 

• Evaluation of clinical implication. As mentioned in the 

previous strength, we had information for health outcomes. This 

allowed us to evaluate the clinical implication of our findings in 

the same population. 
 

• Standardized methods to measure the exposome. HELIX is a 

big project involving six European countries. They applied the 

same standardized methods to assess the exposure to different 

hazards in each cohort. A detailed description of the methods 

used is described elsewhere [166].  
 

• The validation of previous studies allows for improvement 

in the credibility of new findings. In TruDiagnostic data, we 

were able to evaluate the effect of different drugs on the same 

individuals using the same normalized methylation values. 

Since our results for tobacco and alcohol were comparable with 

previous studies, we may assume that the new findings for 

marijuana consumption may be reliable. The same happened 

with the significant mediation between alcohol and 

hypertension, which implicated sites that were previously seen 

associated with alcohol or hypertension. 
 

• Correction for multiple comparisons. All the P-values in the 

different studies were adjusted by Bonferroni, following a 

conservative approach.
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6.6. Further research work 

DNA methylation is a dynamic process with huge implications for 

disease emergence. In this thesis, we evaluated different modulators of 

DNA methylation, including genetic and environmental factors. 

However, further work needs to be done to establish the clinical 

implications of these modifications. 

First, the evaluation of DNA methylation changes by marijuana 

consumption should be repeated in a larger consumer population with 

consumption patterns better defined. We found that the top CpG sites 

were associated with neurological processes. Then, further work is 

needed to fully understand the implications of these modifications in the 

mediation between high marijuana consumption and neurological 

disorders. 

Another application of our investigation is related to the estimation of 

biological age based on DNA methylation. As it is extensively known, 

many lifestyle factors accelerate biological age. Further analyses should 

be performed to develop a predictive model based on multiple 

methylation sites to determine whether an individual has been exposed 

to tobacco, alcohol, and/or marijuana. This predictor will better estimate 

the effect of these drugs on biological mechanisms compared to self-

reported questionnaires. Then, the biological age acceleration of heavy 

consumers may be predicted if they do not stop consuming drugs. 

Our research has thrown up the possibility of designing a methylomic 

biomarker to manage and prevent cardiovascular disease in heavy 

drinkers. Further research, using a larger group of individuals with 

hypertension and high alcohol consumption, could shed more light on 
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this hypothesis. In the next years, in collaboration with TruDiagnostic, 

we will work on the design of this product that will be commercialized 

by the company. 

We demonstrated that inversions show differentiable methylation 

patterns along the inverted region. Since DNA methylation is involved 

in chromatin structure regulation, these methylation patterns may 

produce different tridimensional DNA structures for each allele. The 

possible association between inversion alleles and different 3D 

configurations should be investigated in future studies.  

Recent studies have demonstrated that common inversions are 

associated with common diseases, such as obesity, asthma, and 

neurological disorders. Further work is required for evaluating the 

implication of the allele-specific methylation patterns in the risk of these 

diseases.  

As previously mentioned, one of the main limitations in gene-

environment interactions is the difficulty in replicating the results and 

the vulnerability of publication bias. Therefore, further studies need to 

be carried out in order to validate the significant interactions between 

genomic inversions and environmental exposures. 

In the last manuscript, we combined multiple exposures to estimate the 

risk of obesity in girls and boys independently. Since we found a better 

association for the aggregated exposures compared with the independent 

variables, it is recommended to use this methodology in future research. 

We also defined an environment with high sexual dimorphism in obesity 

and neurodevelopment in children. We created an algorithm to predict 
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the environment based on DNA methylation. We tested this predictor in 

an adult population, and we did not find an association between sexual 

dimorphism in obesity in adults and the environment. This can be due 

to the loss of sexual dimorphism as growing older, or due to the low 

specificity of the predictor. Therefore, further work is required to 

validate these findings. 

Finally, we have demonstrated that the influence of genetics and 

environment on DNA methylation should be evaluated simultaneously 

since the interaction between these factors occurs often.  
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7.1.1. Conclusion 1 

• General conclusion 

We revealed that tobacco, alcohol, and marijuana have large effects on 

genome-wide DNA methylation and that those effects may partially 

explain the association with neurodevelopment and cardiovascular 

diseases. 

• Specific conclusions 
 

 We identified 538 CpG sites differentially methylated according to 

smoking levels, 2,569 according to alcohol consumption, and 195 

suggestive associations for marijuana consumption. 
 

 Genes differentially methylated for marijuana use were enriched in 

neurological processes. The overlapped genes between alcohol and 

tobacco were enriched in signaling events in the nervous system 

and neurodevelopment. This suggests that methylation may be 

mediating the association of substance use with neurotoxic effects.  
 

 We identified eight CpG sites as potential mediators in the 

association between heavy drinking and a higher risk of 

hypertension. Particularly, the methylation levels of cg06690548 

mapped to SLC7A11 mediated 73.6% of this association. 
 

7.1.2. Conclusion 2 

• General conclusion 

We demonstrated that common polymorphic inversions show allele-

specific methylation patterns along the inverted region which can be 

modulated by multiple environmental exposures. 



 

 

• Specific conclusions 
 

 During childhood, we found that around 10% of the CpG sites 

within the inverted regions +/-1 Mb were differentially methylated. 

Similar changes were observed in prenatal heart tissue, suggesting 

their relevant role even in utero. 
 

 The PCA revealed allele-specific patterns given by the correlation 

of several CpG sites along the inversion region, particularly in 

8p23.1 and 17q21.31 inversions. 
 

 

 We identified 64 significant inversion-exposure interactions, 

suggesting that DNA methylation changes associated with the 

inversions were modifiable by numerous environmental exposures. 
 

 We observed that non-inverted homozygous individuals for inv-

8p23.1, those with a higher risk of obesity, had lower methylation 

levels of two CpG sites (cg01489256 and cg02601489) within the 

TDH gene as meat intake increased.  

 

7.1.3. Conclusion 3 

• General conclusion 

We identified a multiexposure profile with high sexual dimorphism in 

obesity and neurodevelopment that was reflected in a DNA methylation 

profile. 

• Specific conclusions 
 

 

 We recognized a prenatal environment defined by low dairy 

consumption, low cotinine levels in blood, low abundance of 
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facility richness, and the presence of green spaces where girls are 

more protected from obesity than boys. 
 

 The environment is also protective against the neurodevelopmental 

delay of non-verbal intelligence and working memory for girls. 
 

 We designed a methylation-based predictor of this environment to 

assess the risk of obesity and neurodevelopment delay in boys and 

girls in populations without exposome data. 
 

 We found that in adulthood the environment predicted based on 

DNA methylation is associated with higher academic achievement 

for women compared to men.
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9.1. PhD Portfolio 

 
Other merits 

- PIF-Salut PERIS fellowship awarded by the Departament de Salut 
from the Generalitat de Catalunya to develop the PhD thesis 

- 1st prize in the 3-minute thesis competition during the LMB-IBM 
Graduate Life Science Symposium 2021 

- 2nd prize in Rin4’ UPF 2022, a competition to explain your PhD 
research in 4 minutes 
 
Video: http://hdl.handle.net/10230/54136 

- Best poster award (1st place) in the Women in Data Science 
Barcelona Biomedicine 2022 Conference 

- 1st prize in the Chalk Talk Competition during the 8th ISGlobal 
PhD Symposium 

 

Other tasks developed during the PhD 

- Pre-processing of DNA methylation data from TruDiagnostic 
cohort (Appendix 2) 

- Processing of HELIX urine and blood samples at the laboratory 
AirLab (2022) 

- Case-study seminar given in the International Summer School on 
Advanced Methods in Global Health course organized by 
ISGlobal (September 2021, Online) 

- Epimutacions workshop given in the “Técnicas ómicas en el 
dignóstico de enfermedades raras” course organized by ISGlobal 
and CNAG (16 and 17 November 2022, Parc Científic de 
Barcelona) 

- ISGlobal PhD representative (2021-2022) 

- Bioinformatic Research Group in Epidemiology (BRGE) 
community manager (2020-2022) 

http://hdl.handle.net/10230/54136
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Scientific divulgation tasks 

- Nature Portfolio Post titled “The early-life exposome modulates 
the effect of polymorphic inversions on DNA methylation” - 
https://go.nature.com/3vUHwqO  

- ISGlobal website post titled “Both Genetics and Environment 
Play a Role in DNA Methylation and Thereby in the Expression 
of Certain Genes” written by Adelaida Sarukhan - 
https://www.isglobal.org/en/-/tanto-la-genetica-como-el-
ambiente-juegan-un-papel-en-la-metilacion-del-adn-y-por-lo-
tanto-en-la-expresion-de-ciertos-genes  

- El·lipse website post titled “What do your cells think about you 
smoking marijuana?” - https://ellipse.prbb.org/what-do-your-
cells-think-about-you-smoking-marijuana/ 

- 100tífiques volunteer in 2021 and 2022. It is an initiative 
organized by the Barcelona Institute of Science and Technology 
(BIST) and Fundació catalana per la recerca i la innovació (FCRI) 
that aims to foment science among girls in secondary school. 

- Air Pollution workshop for general audience during the PRBB 
science festival 2021 

- Career guidance in the Biosciences Faculty 2022, UAB 

- Q&A interview with TruDiagnostic 
 

Presentations in congresses 

- EUTOPIA Week in Ljubljana (21st to 25th November 2022) – 
Poster presentation. ONLINE. 

Title: The effect of polymorphic inversions on DNA methylation 
and its modulation by the early-life exposome. 

- 8th ISGlobal PhD Symposium (5th October 2022) – Oral 
presentation. Barcelona, Spain. 

Title: What do your cells think about you smoking marijuana and 
drinking alcohol? 

https://go.nature.com/3vUHwqO
https://www.isglobal.org/en/-/tanto-la-genetica-como-el-ambiente-juegan-un-papel-en-la-metilacion-del-adn-y-por-lo-tanto-en-la-expresion-de-ciertos-genes
https://www.isglobal.org/en/-/tanto-la-genetica-como-el-ambiente-juegan-un-papel-en-la-metilacion-del-adn-y-por-lo-tanto-en-la-expresion-de-ciertos-genes
https://www.isglobal.org/en/-/tanto-la-genetica-como-el-ambiente-juegan-un-papel-en-la-metilacion-del-adn-y-por-lo-tanto-en-la-expresion-de-ciertos-genes
https://ellipse.prbb.org/what-do-your-cells-think-about-you-smoking-marijuana/
https://ellipse.prbb.org/what-do-your-cells-think-about-you-smoking-marijuana/
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- Women in Data Science 2022 (28th September 2022) – Poster 
presentation. Barcelona, Spain. 
 
Title: The effect of polymorphic inversions on DNA methylation 
and its modulation by the early-life exposome. 

- European Human Genetics Conference 2022 (11th to 14th June 
2022) - Poster presentation. Vienna, Austria. 

Title: The effect of polymorphic inversions on DNA methylation 
and its modulation by the early-life exposome. 

- Rin 4’ UPF competition (24th May 2022) – Oral presentation. 
Barcelona, Spain.  

Title: ¿Qué piensan tus células de que fumes marihuana? 

- 17th INMA Scientific Conferences (23rd to 24th November 2021) – 
Oral presentation. San Sebastián, Spain. 

Title: The effect of polymorphic inversions on DNA methylation 
and its modulation by the early-life exposome. 

- 7th ISGlobal PhD Symposium (30th September 2021) – Oral 
presentation. Barcelona, Spain. 

Title: The state of the Y chromosome as a biomarker to monitor 
cancer in men. 

- LMB-IBMB Graduate Life Sciences Symposium 2021 (30th June 
to 2nd July 2021) – Oral presentation. ONLINE 

Title: The state of Y chromosome as a biomarker to monitor 
cancer in men. 

 

Courses 

PRBB intervals courses:  
- “Scientific writing: putting the why before the how” 
- “Introduction to scientific publishing and how to read a paper” 
- “Behind the scenes - a small group tutorial in oral presentation 

skills for scientists” 
- “Gestión del estrés para profesionales de investigación” 
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- “Understanding career opportunities” 
- “Business Opportunities in science and beyond” 

 
BIST courses: 

- “Writing thesis bootcamp” 
- “Social Media” 
- “CVs and Employability” 

 
ISGlobal courses: 

- “De las microagresiones al acoso. Las mujeres en investigación 
científica” 

- “Concienciación de ciberseguridad” 
 

DataSHIELD courses:  
- “DataSHIELD Beginners Workshop” 
- “DataSHIELD Resources” 
- “DataSHIELD Statistical Analysis” 
- “DataSHIELD Omics” 

 
Other courses: 

- “Data Visualization for Environmental Epidemiology with 
ggplot2” (US EPA) 

- “Preparación y defensa de un póster científico” (Universidad de 
Granada) 

- “Introduction to exploring genome-phenome data with EGA” 
(EMBL-EBI) 

- “Podcasting” (LMB-IBMB) 
- “Enhance your Job application skills: How to write your CV and 

tips to prepare a job interview” (UPF) 
- “Técnicas ómicas en el dignóstico de enfermedades raras” 

(ISGlobal and CNAG) 
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9.2. Pre-processing TruDiagnostic data 
 

  General information 

Array: IlluminaHumanMethylationEPIC 
Quality control software: meffil 
N (initial): 5,816  N (final): 3,424 
Probes (initial): 865,859  Probes (end): 740,023 
 

  SampleSheet from idat files 

- /PROJECTES/GENOMICS/TruDiagnostic/Processing_Scripts/M
effil/A_Create_SampleSheet.R 
Time ~ 2 min 

We first separated the initial idat files (6,187) in two folders: 

- idat_remove (387 idat files) 
This folder contains the negligible data (most of them are fictitious 
data). It consists of 6 smaller folders: 08142020 Pre Open DMAPs, 
Duplicates, 205735180078, iScan Comp Comparison, Redo, and 
Test Run 02162022. We avoided these idat files. 

- idat_use (5,816 idat files) 
Here, we collected all the idat files that should be considered in the 
following steps. 

We created a SampleSheet using the idat files from the idat_use folder with 
the meffil.create.sample.sheet function. This function generated a 
data.frame of 5,816 rows (IDs). 

Since we needed the sex annotation of these individuals for the sample 
Quality Control (QC), we compared the IDs from the SampleSheet with the 
ones in the Patient Metadata file (after removing those individuals with a 
BMI out of the range 10-60 and with intersex sex).  

At the end, we obtained 3,599 individuals matching between the 
SampleSheet and the Metadata with Male/Female sex. However, we 
removed three individuals (205772280052_R06C01, 
205772280052_R07C01, and 205772280052_R08C01) that showed 
troubles in the QC step and 6 individuals that were duplicated 
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(205772280137_R08C01, 205772280146_R01C01, 
205772290045_R01C01, 205828610080_R05C01, 
205832310130_R08C01, and 205832310143_R07C01), leading to a final 
SampleSheet of 3,590 individuals with biological sex annotated (Figure 1). 

 

  Sample Quality Control 

- /PROJECTES/GENOMICS/TruDiagnostic/Processing_Scripts/M
effil/B_Sample_QC.R 

- /PROJECTES/GENOMICS/TruDiagnostic/Processing_Scripts/M
effil/B_call_SampleQC.sh 
Time ~ 4h 30 min / Mem ~ 23 Gb 

Using the SampleSheet previously mentioned with 3,590 IDs, we 
performed the sample QC using the meffil.qc function with the “blood 
gse35069 complete” as reference. 

 

 

 

Figure 1 | Selection of the individuals based on the available metadata and 
the sample Quality Control (QC). 
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We used the default parameters for the QC report: 

- detection.threshold = 0.01, 
- bead.threshold = 3 
- beadnum.samples.threshold = 0.05 
- detectionp.samples.threshold = 0.05 
- detectionp.cpgs.threshold = 0.05 
- beadnum.cpgs.threshold = 0.05 
- sex.outlier.sd = 3 

The QC report file can be found at the following path:  

/PROJECTES/GENOMICS/TruDiagnostic/prepro_files/QC/qc-
report_whole.html 

The report showed outliers for a lot of conditions, but we only selected the 
outliers based on: 

- Control probe (dye.bias) – 7 
- Methylated vs Unmethylated - 74 
- X-Y ratio outlier - 55 
- Low bead numbers - 1 
- Detection P-value - 1 
- Sex mismatch - 36 
- Control probe (bisulfite1) - 0 
- Control probe (bisulfite2) - 0 

Among them, we found 7 samples with more than one issue:  

- 205676380102_R02C01 
 Sex mismatch 
 X-Y Ratio Outlier 

- 205676390016_R08C01 
 Sex mismatch 
 Detection P-value 
 X-Y Ratio Outlier 

- 205676390106_R03C01 
 Methylated vs Unmethylated 
 X-Y Ratio Outlier 

- 205772280075_R02C01 
 Methylated vs Unmethylated 
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 X-Y Ratio Outlier 
- 205772280075_R03C01 

 Methylated vs Unmethylated 
 X-Y Ratio Outlier 

- 205772280091_R04C01 
 Sex mismatch 
 X-Y Ratio Outlier 

- 205832330027_R08C01 
 Methylated vs Unmethylated 
 X-Y Ratio Outlier 

In total, the outliers represented 166 samples. We decided to remove all of 
them and continue the analysis with 3,424 individuals (Figure 1). We 
estimated the cellular composition based on methylation levels and we 
generated another QC report with these selected individuals: 

/PROJECTES/GENOMICS/TruDiagnostic/prepro_files/QC/qc-
report_clean.html 

 

  Functional Normalization 

- /PROJECTES/GENOMICS/TruDiagnostic/Processing_Scripts/M
effil/C_Functional_Normalization.R 

- /PROJECTES/GENOMICS/TruDiagnostic/Processing_Scripts/M
effil/C_call_FunctNorm.sh 
Time ~ 11h 30min / Mem ~ 100 Gb 

The next step is to normalize the CpG methylation values. To this end, we 
first estimate the number of principal components to use based on the 
methylation levels of the control probes (Figure 2). Looking at the plot, we 
considered that 10 PCs was a good approximation for the normalization. 

Previously to generate the beta values, we set poorly detected methylation 
values to missing. Poor signal was identified during QC as signal that failed 
to pass the detection P-value threshold (0.01) or bead threshold (3). 
Moreover, we removed probes that have more than 5% of poorly detected 
values. In total, we removed 28,117 probes. Among them, 3,297 had poor 
detection P-value, 24,365 failed the bead threshold, and 455 failed both 
thresholds (Figure 3). 
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Figure 2 | Plot showing the fit of the residuals for different numbers of 
principal components (PCs). M: methylated; U: unmethylated. 

 

During the normalization process, we decided to save the output to a GDS 
(Genomic Data Structure) because of the magnitude of the output and the 
high memory demand. 

Once we got the normalized betas, we removed the CpG sites that had 
accumulated more than 5% of missing (1,110 probes), leading to a total of 
836,632 CpG sites. In the case of the IDs, there were not individuals with 
more than 5% of missing. In the final norm.beta object we had 0.34% of 
missing. 

Finally, we calculated the principal components of normalized betas based 
on the 50,000 most variable CpG sites (this is the value by default).  

We created a normalization report using 4 variables as batches (slide, sex, 
Sentrix_Row, and Sentrix_Col) and the default parameters: 

- control.pcs=1:5 
- batch.pcs=1:5 
- batch.threshold=0.01 

The report can be accessible at: 

/PROJECTES/GENOMICS/TruDiagnostic/prepro_files/Functional_Norm
alization/normalization-report_clean.html 
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Figure 3 | Selection of the CpG sites based on the Quality Control (QC), the 
number of missing, and the probes with SNPs. The removal of probes with 

SNPs is based on the InfiniumAnnotation from 
https://zwdzwd.github.io/InfiniumAnnotation. 

 

  Create GenomicRatioSet 

- /PROJECTES/GENOMICS/TruDiagnostic/Processing_Scripts/M
effil/D_Create_GenomicRatioSet.R 

- /PROJECTES/GENOMICS/TruDiagnostic/Processing_Scripts/M
effil/D_call_GRset.sh 
Time ~ 2h 15min / Mem ~ 185Gb 

The GenomicRatioSet (GRset) is an object that can group different type of 
data: 

- Beta values mapped to a genomic location 
- Metadata  accessible with the pData() function 
- Annotation data  accessible with the getAnnotation() function or 

with the rowData() in case you have included it there 

We created a GRSet for our data using the normalized beta values from the 
norm.beta_clean object. For the metadata, we recodified some variables to 
simplify the further analyses (See “Descriptive_Analysis_metadata.html”). 
We joined the 120 metadata variable, the estimated cellular composition (7 

https://zwdzwd.github.io/InfiniumAnnotation
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variables), and the Slide variable and we included it in the GRset metadata. 
For the annotation information, we used the default EPIC annotation by 
Illumina (ilm10b4.hg19).  

We created the GRSet object using the makeGenomicRatioSetFromMatrix 
function from the minfi package.  

After creating the GRset object, we used InfiniumAnnotation from 
https://zwdzwd.github.io/InfiniumAnnotation to filter probes where 30bp 
3’-subsequence of the probe is non-unique, probes with INDELs, probes 
with extension base inconsistent with specified color channel (type-I) or 
CpG (type-II) based on mapping, probes with a SNP in the extension base 
that causes a color channel switch from the official annotation, and probes 
where 5bp 3’-subsequence overlap with any of the SNPs with global 
population frequency higher than 1%. 

Finally, we checked the last version in HGNC of the gene symbols and we 
changed the ones that were annotated using previous versions. 

Our final GenomicRatioSet object contains: 

- 3,424 columns (IDs) 
- 740,423 rows (CpG sites) 
- 128 columns in the colData (metadata + cellular composition + 

Slide) 
- 6 columns in the rowData 
- 46 columns in the annotation information 

This object can be found at: 

/PROJECTES/GENOMICS/TruDiagnostic/Final_datasets/GRset_clean.R
data 

 

  Principal Component Analysis 

In the normalization-report, we observed that there was a slightly division 
of the normalized betas into two clusters when comparing PC1 and PC2 
(Figure 4). We tested whether the first 3 PCs were associated with any of 
the variables from the metadata that were potential variables to show big 
differences in methylation: sex, ethnicity, slide, age, cell type and collection 
date (Table 2). In Figure 4, we can see graphically the association between 
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sex, ethnicity, and collection year with the first 3 PCs. In Table 2, we can 
see the most significant associations with their effect and significance. 
Among these, the different cell types, the slide, and the collection date are 
very associated with the first 3 components. The age, sex, and ethnicity are 
also associated with the PC1, but the significance and the correlation are 
lower.  

Although we have found different variables that are associated with the 
PCs, we performed a Surrogate Variable Analysis (SVA) to detect batch 
variables that were unknown. To this end, we first imputed missing data. 

 

 

 

 
 

Figure 4 | Principal Component Analysis comparing the first 3 Principal 
Components (PCs) with Biological sex, ethnicity, and collection year in 

normalized beta. 
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Table 2 | Significant pairwise associations (p<0.000001) between variables 
(sex, ethnicity, slide, age, cell type, and collection date) and the first 3 Principal 
Components (PCs) in normalized beta. “Year” means the year when the sample 
was collected. “Year_Month” is calculated by multiplying the year by 12 plus the 
month.  
 

x y test p.value estimate r2 
CD4T PC1 F-test 0 2721.623083 0.442999684 
Neu PC1 F-test 0 10322.13186 0.751021015 
NK PC1 F-test 0 2323.246347 0.404377151 

Bcell PC1 F-test 1.1581E-273 1508.132326 0.305900983 
Neu PC2 F-test 1.0991E-138 689.9388481 0.16778918 

CD4T PC2 F-test 1.7935E-121 595.9287929 0.14831741 
CD8T PC2 F-test 1.43432E-94 453.3301882 0.116978468 
CD8T PC1 F-test 2.82849E-91 436.2226842 0.113063117 

Year_Month PC2 F-test 4.44468E-86 410.1926453 0.1102315 
Slide PC2 F-test 3.60693E-80 379.1273236 0.099740759 
Year PC2 F-test 1.21324E-69 326.3142668 0.08971297 

Year_Month PC1 F-test 4.74343E-52 238.7017295 0.067245574 
Slide PC1 F-test 2.0153E-48 220.6752853 0.060580554 
NK PC3 F-test 4.18784E-41 185.1520449 0.051329149 

Year PC1 F-test 5.52047E-40 179.9051618 0.051535391 
CD8T PC3 F-test 2.68267E-36 162.0260174 0.045207824 
Year PC3 F-test 3.12093E-36 161.837986 0.046601076 

Year_Month PC3 F-test 7.38517E-34 150.4612995 0.043467567 
Mono PC3 F-test 1.41682E-28 125.2231654 0.035301744 
Slide PC3 F-test 3.31958E-26 114.0206628 0.032245474 
NK PC2 F-test 1.78607E-19 82.45216775 0.023527834 

Mono PC2 F-test 1.03948E-18 78.88967139 0.022534178 
Bcell PC3 F-test 1.53303E-15 64.19268692 0.018413408 

Biological_Sex PC2 t-test 1.90839E-12 -1.82941353 0.014601133 
Bcell PC2 F-test 7.12737E-11 42.75478946 0.012339918 
age PC1 F-test 1.29471E-10 41.57303771 0.012002934 

Mono PC1 F-test 2.37329E-09 35.83178487 0.010362501 
Ethnicity PC2 t-test 3.44457E-07 -1.552481302 0.007647631 
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  Impute data 

- /PROJECTES/GENOMICS/TruDiagnostic/Processing_Scripts/M
effil/F_Impute_Data.R 
Time ~ 25 min / Mem ~ 80Gb 

To perform SVA, we need data without missing. Then, we have created 
another GRset with imputed betas based on the median of each CpG site: 

/PROJECTES/GENOMICS/TruDiagnostic/Final_datasets/GRset_clean_i
mp.Rdata 

Again, we have tested pairwise associations between the previous variables 
and the first 3 PCs and the results are very similar compared with the non-
imputed normalized betas (Figure 5 and Table 3). Therefore, we can 
assume that the imputation is not altering our data. 

 

  Surrogate Variable Analysis 

- /PROJECTES/GENOMICS/TruDiagnostic/Processing_Scripts/M
effil/G_SVA.R 

- /PROJECTES/GENOMICS/TruDiagnostic/Processing_Scripts/M
effil/G_call_SVA.sh 
Time ~ 1 day / Mem ~ 150Gb 

In the SVA analysis, we included some covariates in the model in order to 
keep their effect on DNA methylation: marijuana, biological sex, ethnicity, 
age, neuropsychological, cardiovascular, respiratory, and endocrine 
diseases, tobacco, alcohol, amphetamines, benzodiazepines, hallucinogens, 
and MDMA use, and drug or alcohol addiction for mother or father. We did 
not include cell type nor slide nor collection date because they were not 
variables of our interest, and we want to remove their effect on DNA 
methylation. 

First, we estimated the number of surrogate variables (SVs) using 
isva::EstDimRMT and it was 127. Since it was a huge number of SVs, we 
decided to follow the guidelines from GTEX where they recommend using 
60 SVs when N>350. 
(https://gtexportal.org/home/documentationPage#staticTextAnalysisMeth
ods). 

https://gtexportal.org/home/documentationPage#staticTextAnalysisMethods
https://gtexportal.org/home/documentationPage#staticTextAnalysisMethods
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Figure 5 | Principal Component Analysis comparing the first 3 Principal 
Components (PCs) with sex, ethnicity, and collection date in imputed 

normalized beta. 
 

Second, we calculated the 60 SVs from our data, and we saved the object: 

- /PROJECTES/GENOMICS/TruDiagnostic/prepro_files/batch/sv.
obj.Rdata 

Third, we adjusted the beta values by these SVs, and we created a new 
GRset with the residuals: 

- /PROJECTES/GENOMICS/TruDiagnostic/Final_datasets/GRset_
SVA.Rdata 
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Table 3 | Significant pairwise associations (p<0.000001) between variables 
(sex, ethnicity, slide, age, cell type, and collection date) and the first 3 
Principal Components (PCs) in imputed normalized beta. “Year” means the 
year when the sample was collected. “Year_Month” is calculated by multiplying 
the year by 12 plus the month. 

x y test p.value estimate r2 
CD4T PC1 F-test 0 3298.833 0.490837 
Neu PC1 F-test 0 14642.29 0.810565 
NK PC1 F-test 0 2408.706 0.413107 

Bcell PC1 F-test 1.6E-276 1527.071 0.308557 
CD8T PC1 F-test 9.3E-113 549.1642 0.138288 

Year_Month PC2 F-test 4.7E-89 425.5886 0.113898 
Neu PC2 F-test 4.92E-85 404.0305 0.1056 
Slide PC2 F-test 1.22E-84 402.0029 0.105126 

CD4T PC2 F-test 9.79E-79 371.8198 0.098007 
Year PC2 F-test 7.02E-73 342.6801 0.09379 

CD8T PC2 F-test 7.93E-66 306.6752 0.082248 
Year_Month PC1 F-test 8.34E-36 159.7895 0.046038 

Mono PC3 F-test 1.62E-35 158.2805 0.044209 
Slide PC1 F-test 2.67E-33 147.6898 0.041373 
Year PC1 F-test 2.06E-27 119.7947 0.034917 

CD8T PC3 F-test 7.9E-19 79.44316 0.022689 
Biological_Sex PC2 t-test 1.2E-18 -1.7044 0.02303 

NK PC3 F-test 1.2E-17 73.95152 0.021153 
Mono PC2 F-test 1.48E-12 50.44953 0.014529 
Mono PC1 F-test 2.82E-12 49.16834 0.014165 

age PC1 F-test 9.3E-12 46.79456 0.01349 
Ethnicity PC2 t-test 3.58E-10 -1.44119 0.011619 

NK PC2 F-test 5.33E-10 38.77541 0.011204 
Ethnicity PC2 t-test 3.05E-08 -1.52286 0.009507 

Biological_Sex PC3 t-test 9.09E-08 0.535045 0.008388 
 

Finally, we calculated the first PCs from these residuals, and we evaluated 
again the association of these PCs with the previously variables mentioned 
(Figure 6 and Table 4).  
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Table 4 | Significant pairwise associations (p<0.00001) between variables 
(sex, ethnicity, slide, age, cell type, and collection date) and the first 3 
Principal Components (PCs) in SVA.  

x l y test p.value estimate r2 
Ethnicity  PC2 F-test 1.9412E-220 152.7985525 0.263594142 

Biological_Sex  PC1 F-test 1.0874E-124 613.3341816 0.151990927 
Biological_Sex Male PC1 t-test 2.9545E-123 -0.922146543 0.151087284 
Biological_Sex Female PC1 t-test 9.3239E-123 0.91750348 0.150596286 

Ethnicity Other PC2 t-test 1.8096E-114 1.285252055 0.142778418 
Ethnicity Ocea PC2 t-test 5.2228E-100 3.736507287 0.127807482 
Ethnicity Asia PC2 t-test 5.43227E-70 2.313987409 0.090544531 
Ethnicity Euro PC2 t-test 8.12027E-52 -0.53141297 0.067179053 
Ethnicity Afr_Ame PC3 t-test 1.19913E-51 -1.741490472 0.064962381 
Ethnicity  PC3 F-test 8.30806E-49 31.95998289 0.069654634 

Biological_Sex Male PC2 t-test 1.26926E-47 0.489724572 0.060903123 
Ethnicity Afr_Ame PC2 t-test 3.12632E-25 1.003281787 0.0323071 
Ethnicity  PC1 F-test 1.36925E-18 12.98417007 0.029518925 
Ethnicity Afr_Ame PC1 t-test 3.32232E-17 -1.160572825 0.020770515 

Biological_Sex  PC2 F-test 7.53485E-17 70.24919389 0.020115745 
Ethnicity Lati PC2 t-test 3.56142E-14 0.383422047 0.017339014 

Biological_Sex Female PC2 t-test 1.53287E-09 -0.207886878 0.010819591 
Ethnicity Euro PC3 t-test 4.7569E-09 0.228699768 0.009996995 
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Figure 6 | Principal Component Analysis comparing the first 3 Principal 
Components (PCs) with biological sex, ethnicity, and collection date in SVA 

residuals. 
 

We can see that the associations with cell type, slide, and collection date 
have disappeared, most likely because the SVs estimated explain most of 
their variability. To prove this, we have tested correlation between SVs and 
these variables (Figure 7). First, it is worth mentioning that slide is highly 
associated with Year_Month variable (r2=0.837). This did not surprise us 
because the different slides have been used in different days or months. In 
addition, the different cell types are also correlated. Second, we can see that 
SV1 and SV2 are the two surrogate variables that are more correlated with 
covariates.  
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To see these correlations more in detail, we evaluated the pair-wise 
associations between a lot of variables (including drugs consumption and 
some diseases) with SVs (Table 5). Among them, we can see again slide, 
cell type, and collection date altogether with sex and age. Sex is mainly 
correlated with SV19 and age is mainly correlated with SV17. 

 

Figure 7 | Correlation plot between slide, collection date (Year and 
Year_Month), cell types (Bcell, CD4T, CD8T, Eos, Mono, Neu, and NK) with 
the first 20 surrogate variables (SVs).  
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Table 5 | Significant pairwise associations (r2<0.1) between variables (sex, 
ethnicity, slide, age, cell type, collection date, drugs, alcohol, and 
neurological, cardiovascular, respiratory, and endocrine diseases) and 
surrogate variables (SVs).  

x l y test p.value estimate r2 
Neu  SV2 F-test 0 2808.473 0.450764031 
Neu  SV1 F-test 0 1971.284 0.365507137 
NK  SV1 F-test 0 1751.664 0.338573201 

CD8T  SV2 F-test 2.8E-269 1479.149 0.30179633 
Bcell  SV1 F-test 5.4E-212 1115.784 0.245887396 
CD4T  SV2 F-test 2.3E-211 1111.932 0.245246688 
CD4T  SV5 F-test 8.6E-195 1012.049 0.228244849 
Bcell  SV9 F-test 7E-186 959.2464 0.218943723 

Biological_Sex Female SV19 t-test 6E-176  0.209365268 
Biological_Sex  SV19 F-test 5.6E-171 872.3528 0.203139519 
Biological_Sex Male SV19 t-test 9.7E-170  0.202708486 

age  SV17 F-test 2.7E-145 726.6454 0.175152449 
Bcell  SV8 F-test 1.5E-143 716.8678 0.173203836 
Slide  SV15 F-test 2E-140 699.5484 0.169729512 
Slide  SV1 F-test 5.3E-140 697.2175 0.169259686 

Year_Month  SV15 F-test 1.2E-134 669.6864 0.168233907 
NK  SV2 F-test 1E-127 629.8141 0.155440029 

Year_Month  SV1 F-test 1.6E-119 587.0054 0.150591228 
Year  SV12 F-test 6.4E-114 556.7952 0.14395674 
Slide  SV12 F-test 3.6E-117 572.7905 0.143384361 
Year  SV1 F-test 4.1E-100 483.3929 0.12739663 
CD4T  SV1 F-test 4.9E-101 487.1228 0.124611782 

age  SV16 F-test 5.6E-88 419.1817 0.109128321 
Bcell  SV2 F-test 1.57E-81 386.0765 0.10138361 
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  Summary GRsets 

 

 Description GenomicRatioSet 

GRset_clean Normalized beta with missing values after QC 
sample 

GRset_clean_imp 
Normalized beta with imputed values using 

median method 

GRset_ SVA Residuals after adjusting the normalized and 
imputed betas by the 60 SVs 

 

 

 



 

 

  



 

 

 


