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Abstract 

 
 
Proteins can adopt multiple conformations and material states, from soluble states to self-
assemblies, such as liquid condensates or amyloids. Protein aggregation has been associated with 
many human diseases but how mutations impact protein conformation and cell toxicity is still not 
fully understood, partially due to the low-throughput connotation of both in vitro and in vivo 
mutational approaches to date. 
 
To address this shortcoming, I developed a Deep Mutational Scanning (DMS) method to report 
on the aggregation of thousands of sequences in parallel. I applied this systematic approach to the 
study of the amyloid beta (Aβ) peptide, as a model of classical amyloids. Self-assembly of Aβ 
into amyloid fibrils is a hallmark of Alzheimer’s disease (AD) and dominant mutations in Aβ also 
cause rare familial AD (fAD). By quantifying the effect of >16,000 Aβ variants, we generated the 
first comprehensive atlas of how mutations alter the nucleation of amyloids by any protein in vivo. 
The atlas also represents the first comparison of the effects of substitutions, insertions, truncations 
and deletions in a human disease gene. Variants that increase nucleation from all mutation types 
are highly enriched in the polar N-terminus of Aβ, revealing a modular organization of mutational 
effects along the sequence. Strikingly, the in vivo nucleation scores, unlike computational 
predictors and previous measurements, accurately discriminate all fAD mutations, suggesting that 
accelerated nucleation is the fundamental molecular mechanism by which mutations cause fAD. 
Moreover, the atlas prioritizes many variants beyond substitutions that accelerate aggregation and 
are likely to be pathogenic, providing a resource for future clinical interpretation. 
 
In parallel, I have also pioneered the use of DMS to report on cellular toxicity induced by >50,000 
mutations in a disordered protein domain, namely the prion-like domain of TDP-43, a protein 
associated with amyotrophic lateral sclerosis. While identifying increased hydrophobicity as the 
one feature able to reduce toxicity in yeast cells, this study also revealed that this putatively 
disordered domain actually adopts secondary structure inside the cell.   
 
Overall, my thesis provides a global picture of how sequence changes modulate protein self-
assembly or toxicity. More generally, it illustrates the power of DMS in illuminating sequence-
to-activity relationships suggesting that this approach should be employed to systematically target 
other self-assembling protein sequences. 
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Resum 

 
 
Les proteïnes poden adoptar diferents conformacions estructurals i materials, des d’estats solubles 
a auto-assemblatges, com condensats líquids o amiloides. L’agregació de proteïnes s’ha associat 
a diverses malalties humanes, però es desconeix l’impacte de les mutacions en la conformació 
estructural i la toxicitat a la cèl·lula, degut a que els mètodes de mutagènesi actuals són a petita 
escala, tant in vitro com in vivo. 
  
Aquí, he desenvolupat un mètode d’escaneig profund de mutacions (conegut com DMS) per 
mapar l’agregació de milers de seqüències en paral·lel. He utilitzat aquest mètode sistemàtic en 
el pèptid amiloide beta (Aβ), com a model clàssic d’amiloide. L’auto-assemblatge d’Aβ en fibres 
amiloides és característic de la malaltia d’Alzheimer (AD), i mutacions en Aβ amb herència 
dominant també causen formes minoritàries d’AD familiar (fAD). Quantificant >16,000 variants 
d’Aβ he generat el primer atles exhaustiu de com les mutacions alteren la nucleació d’amiloides 
en qualsevol proteïna in vivo. L’atles també representa la primera comparació dels efectes de 
substitucions, insercions, truncaments i delecions en qualsevol gen humà associat a malaltia. Les 
variants de qualsevol tipus de mutació que acceleren la nucleació es troben majoritàriament a l’N-
terminal d’Aβ, mostrant una organització modular dels efectes de les mutacions al llarg de la 
seqüència. Sorprenentment i, a diferència de predictors computacionals i altres estudis realitzats 
prèviament, la quantificació de nucleació in vivo en aquest estudi discrimina acuradament totes 
les mutacions associades a fAD, suggerint que l’increment de la nucleació d'amiloide és el 
mecanisme molecular fonamental pel qual les mutacions en Aβ causen fAD. Més enllà de les 
substitucions, l’atles prioritza moltes variants que incrementen l’agregació i que són candidates a 
ser patogèniques, proporcionat un recurs per a la futura interpretació clínica de l’impacte de les 
mutacions.  
  
En paral·lel, també he utilitzat un estudi DMS pioner per reportar en l’efecte tòxic de >50,000 
mutacions en el domini desordenat de TDP-43, una proteïna associada a l'esclerosi lateral 
amiotròfica. A més d’identificar que un increment en la hidrofobicitat redueix la toxicitat en 
cèl·lules de llevat, l’estudi també indica que aquest domini desordenat adopta una estructura 
secundària dins la cèl·lula. 
 
En resum, aquesta tesi proporciona una imatge global de com els canvis en la seqüència modulen 
l’auto-assemblatge o la toxicitat en les proteïnes. De manera més general, també il·lustra com la 
tècnica DMS pot il·luminar la relació seqüència-activitat en una proteïna, suggerint que aquest 
mètode hauria de ser utilitzat sistemàticament en altres seqüències proteiques amb capacitat 
d’auto-assemblatge.  
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Abbreviations 

 
 
Aβ  amyloid β 
AD  Alzheimer’s disease 
AFM  atomic force microscopy 
α-syn  α-synuclein 
ALS  amyotrophic lateral sclerosis  
apo A-I  apolipoprotein A-I 
APP  amyloid precursor protein 
APR  aggregation-prone regions 
ARTAG aging-related tau astrogliophaty 
CBP  CREB-binding protein 
CNT  classical nucleation theory 
cryoEM cryo-electron microscopy 
CSF  cerebrospinal fluid 
DHFR  dihydrofolate reductase  
DIM  deep indel mutagenesis 
DLB  dementia with Lewy bodies 
DMC  double mutant cycle  
DMS  deep mutational scanning 
FACS  fluorescence-activated cell sorting 
fAD  familial Alzheimer’s disease 
FTD  frontotemporal dementia 
FUS  fused in sarcoma 
GWAS  genome-wide association studies 
HET-s  heterokaryon incompatibility s 
Htt  Huntingtin 
IDP  intrinsically disordered protein 
IDR  intrinsically disordered region 
indel  insertion and/or deletion 
MAVE  multiplexed assay of variant effects 
MCI  mild cognitive impairment 
MPRA  massively parallel reporter assays 
NMR  nuclear magnetic resonance 
PA  pathological aging 
PCA  protein-fragment complementation assay 
PD  Parkinson’s disease 
polyQ  polyglutamine 
PRD  prion-like domains  
PrP  Prion protein 
PS1 or PS2 presenilin-1 or presenilin-2 
sAD  sporadic Alzheimer’s disease 
SGE  saturation genome editing 
SNP  single nucleotide polymorphism 
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Sup35N nucleation domain of Sup35 
t1/2  half-time 
T2D  type II diabetes 
TDP-43  TAR DNA-binding protein 43  
ThT  thioflavin T 
VUS  variant of uncertain (clinical) significance  
WT  wild type 
Y2H  yeast two-hybrid 
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1. Protein folding

The structure of globular proteins is encoded in their amino acid sequence. During the process of 
folding, protein sequences sample the conformational space in search for a free energy minimum 
- the native state. The shape of the free energy surface is defined by a large number of intermediate 
states, local minimums, energy barriers and protein interactions that control the kinetics and 
thermodynamics of the folding reaction (Figure 1) (Rumbley et al. 2001; Jahn and Radford 
2005).

Figure 1. Free energy surface of protein folding. Adapted from (Hartl and Hayer-Hartl 2009).

In the intermediate states, proteins can be partially unfolded, for example, while they are being 
synthesized in the ribosome, while they are transported through membranes or because they 
temporarily unfold upon environmental fluctuations (Meinema et al. 2011). These intermediates 
may represent on-pathway metastable states that require additional reorganization to reach the 
native state. In these partially unfolded states, proteins are more vulnerable to misfold and 
aggregate. Therefore, there is a complex and delicate equilibrium between states regulated by 
molecular chaperones, quality control machinery and kinetic barriers (Dobson 2003).

Protein aggregates can be amorphous and disordered, but also adopt highly ordered structures 
such as an amyloid conformation. In fact, amyloids represent the most thermodynamically stable 
states in the free energy surface, while the native functional state only represents a local minimum 
(Dobson 2003; Chiti and Dobson 2017). Generally, the formation of amyloids is not favored due 
to a high kinetic barrier, especially for large peptide chains where topological constraints may 
impede packing into amyloid folds. However, it is thought that for shorter peptides with <150 
residues, the amyloid state is somewhat more accessible. Interestingly, all the amyloidogenic 
proteins associated with human diseases have <700 residues with half of them of <100 residues 
(Chiti and Dobson 2017). In contrast, the average number of residues for 30,000 human proteins 
was calculated to be 500 residues, suggesting that evolution has constrained protein length against 
self-assembly (Monsellier et al. 2008; Baldwin et al. 2011; Tiessen, Pérez-Rodríguez, and Delaye-
Arredondo 2012). In addition, protein sequences have incorporated charged and polar regions that 
act as gatekeepers preventing aggregation (Houben, Rousseau, and Schymkowitz 2022).
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In physiological conditions, the native state of proteins is not always globular: in some cases only 
certain regions of the protein are structured, and in others, the full protein sequence adopts a 
completely disordered structure. These are known as intrinsically disordered proteins (IDPs) and 
they constitute more than 30% of the human proteome (Alberti and Hyman 2016). Their intrinsic 
disorder and the presence of multiple interaction motifs make them well suited to interact with 
several partners, facilitating the formation of dynamic assemblies. Thus, many IDPs function as 
central hubs of signaling and regulation pathways (Wright and Dyson 2015), for example, the 
CREB-binding protein (CBP) and p300 acetylate histones and transcription factors and also act 
as scaffolds to recruit and assemble the transcriptional machinery (Dyson and Wright 2005).  
 
IDPs have also been largely associated with disease (Uversky 2015). They populate multiple 
conformations that depend on interactions with specific proteins, post-translational modifications 
or perturbations, such as mutations or environmental changes, and importantly, some of these 
conformations may have pathological consequences. For example, TAR DNA-binding protein 43 
(TDP-43) is a nucleic acid binding protein that contains an intrinsically disordered region (IDR) 
at the C-terminus. TDP-43 generally localizes at the nucleus and is involved in alternative splicing 
and mRNA stability. However, the self-assembly of TDP-43 into insoluble aggregates, driven by 
its IDR, has been associated with amyotrophic lateral sclerosis (ALS) and other 
neurodegenerative conditions (J. P. Taylor, Brown, and Cleveland 2016).  
 
 

2. Amyloids and disease 
 
Aberrant protein folding and aggregation can result in a loss of function of the corresponding 
protein and/or in the generation of toxic species. Currently, there are around 50 different diseases 
which are associated with misfolding and protein aggregation (Chiti and Dobson 2017; Iadanza 
et al. 2018). Many of these disorders are associated with aging, such as Alzheimer’s disease (AD) 
or lifestyle, such as type II diabetes (T2D), and have a great social and economic impact. For 
example, AD is the most common cause of dementia worldwide and the fifth cause of death in 
adults older than 65 years (Wong 2020). T2D, which affects >6% of the population, causes >1 
million deaths per year (M. A. B. Khan et al. 2020).  
 
Many of the pathogenic aggregating proteins assemble into amyloids, such as the amyloid β (Aβ) 
peptide causing AD, α-synuclein (α-syn) causing Parkinson’s disease (PD), Prion protein (PrP) 
causing Creutzfeldt-Jakob disease, Tau causing Pick’s disease, Huntingtin exon 1 (Htt) causing 
Huntington’s disease or β2-microglobulin causing dialysis-related amyloidosis, to name a few. 
Other types of assemblies have also been observed, the precise structural nature of which is still 
debated, such as intracellular inclusions of TDP-43 or fused in sarcoma (FUS), both involved in 
Frontotemporal dementia (FTD) and ALS, or p53 associated to cancer (Chiti and Dobson 2017; 
Iadanza et al. 2018; Zbinden et al. 2020). For sake of simplicity, only the most common disease 
for each protein is mentioned here, but many of these proteins are involved in various disorders.  
 
A total of 37 proteins are found in amyloid deposits in disease, most of them in the extracellular 
space. Importantly, these proteins have little in common between them, since they differ in 
sequence, native structure and function. Many of the proteins involved in disease are intrinsically 
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disordered in their native state, such as Aβ42 and α-syn (Knowles, Vendruscolo, and Dobson 
2014), although there are also examples of globular proteins such as the β2-microglobulin or the 
transthyretin (Colon and Kelly 1992; White et al. 2009; Knowles, Vendruscolo, and Dobson 
2014). A total of 7 proteins form deposits in the central nervous system resulting in 
neurodegenerative diseases, like in AD and PD, 15 of them aggregate in many tissues resulting 
in systemic amyloidosis, while the other 15 aggregate in specific tissues, for example in the case 
of T2D (Chiti and Dobson 2017). 
 
One third of the amyloid diseases are hereditary, generally autosomal dominant and with an early 
age of onset. Half of the diseases are sporadic (note that some conditions can be both familial or 
sporadic) and in this case they have a later age of onset (Chiti and Dobson 2017). Familial forms 
of amyloid diseases have been extensively studied, and it has been shown that mutations drive 
pathogenicity through several different mechanisms. For example, 100 mutations described in 
transthyretin, which has a globular fold in the native state, are known to destabilize the tetrameric 
form of the protein, enhancing the population of amyloidogenic monomers (Sekijima et al. 2005). 
Mutations in the apolipoprotein A-I (apo A-I) induce proteolysis, resulting in N-terminal 
unstructured peptides with increased amyloid propensity (Raimondi et al. 2011). For other 
proteins like Tau, the pathogenicity of more than 50 known mutations varies: some of them cause 
a loss of binding to microtubules, resulting in unfolded and aggregation-prone state (Spillantini 
and Goedert 2013), while others affect alternative splicing and generate a more amyloidogenic 
isoform (Niblock and Gallo 2012). In the case of Aβ42, out of 32 known pathogenic mutations in 
the amyloid precursor protein (APP), 18 fall inside the Aβ 1-42 region and increase aggregation 
rates (Hatami et al. 2017; Seuma et al. 2021). The rest alter the cleavage sites in APP, generating 
different Aβ isoforms (De Jonghe et al. 2001). In some disorders, aggregation is accelerated due 
to aberrant extensions of the protein, such as the expansion of the polyglutamine (polyQ) repeats 
in the exon 1 of the Htt (Aronin et al. 1995). 
 
Finally, it is worth mentioning that not all amyloids are necessarily associated with disease, and 
although many functional amyloids are found in bacteria and fungi, some examples in higher 
organisms such as humans also exist (Otzen and Riek 2019). Amyloids have some unique 
structural properties that nature has exploited with functional purposes. For example, the amyloid 
structure provides a dense and stable packing that is used as a storage system for peptides in 
pituitary secretory granules (Maji et al. 2009); the ability to oligomerize is used for the formation 
of the RIP1/RIP3, involved in programmed cell necrosis in mammals (J. Li et al. 2012); or the 
repetitive structural pattern of amyloids has an avidity effect in the surface and can act as a large 
binding pocket, a feature exploited for the formation of bacterial biofilms (Chapman et al. 2002). 
Overall, why the same type of structures are in some cases exploited to be functional and in others 
strongly associated with disease, is still a very open question in the amyloid field. 
 
 

3. Principles of amyloid structures and their 
stabilizing interactions 
 
Many, if not all, amino acid sequences can form amyloids under certain conditions. This implies 
that amino acid sequences and native structures of proteins capable of forming amyloids are 
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highly diverse. However, when adopting the amyloid structure, all proteins share a generic 
architecture named the cross-β fold and based on β-sheet structures (Knowles, Vendruscolo, and 
Dobson 2014). The X-ray diffraction pattern characteristic of cross-β has 4.7 Å meridional 
reflection and 10 Å equatorial reflection, arising from the regular spacing in all fibrils (Sunde et 
al. 1997).

X-ray diffraction, atomic force microscopy (AFM), solid-state nuclear magnetic resonance 
spectroscopy (ss NMR) and cryo-electron microscopy (cryoEM) have provided very detailed 
information about the molecular structures of amyloids. Amyloids have a hierarchical 
organization, meaning that symmetrical and identical structural units associate at different length 
scales (Figure 2). The highest level of hierarchy are amyloid plaques, with the assembly of mature 
fibrils. Plaques are observed for example, as Aβ42 deposits in the brain of AD patients. Amyloid 
fibrils are elongated, unbranched, with diameters of 7-13 nm and up to 10 um in length (Xue, 
Homans, and Radford 2009). In turn, fibrils are formed by protofilaments wrapping around each 
other, and each protofilament is formed by monomeric subunits stacked one on top of the other 
and oriented perpendicularly to the protofilament axis. Monomeric subunits are composed of β-
strands and upon stacking, they form β-sheets with hydrogen bonds running along the length of 
the fibril. Hydrogen bonds between carbonyl and amide groups of stacked β-strands impose the 
spacing of 4.7 Å seen by X-ray diffraction experiments (Sunde et al. 1997).

Figure 2. Hierarchical organization of amyloids. Monomeric subunits with a β fold conformation 
stack one on top of the other and form protofilaments. Two or more protofilaments twist around 
each other forming fibrils, which in turn assemble into amyloid plaques. Adapted from (A. I. P. 
Taylor and Staniforth 2022).

There is a wide range of intra and inter-monomer and fibril interactions that contribute to the 
overall high stability of amyloids (Sawaya et al. 2021; A. I. P. Taylor and Staniforth 2022). These 
interactions are similar to those in folded proteins, although the balance may differ. For example, 
while the hydrophobic effect determines most of the stability of native proteins, hydrogen bonding 
is the main source of stabilizing interactions in amyloids (A. W. Fitzpatrick et al. 2011).

Despite all amyloids sharing the cross-β fold and being stabilized mainly by hydrogen bonds, 
structures formed by different peptide sequences differ in how subunit side chains arrange, how 
subunits stack one on top of the other and how and how many protofilaments form a fibril 
(Knowles, Vendruscolo, and Dobson 2014; Chiti and Dobson 2017; Sawaya et al. 2021; A. I. P. 
Taylor and Staniforth 2022).
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3.1. Thermodynamics of amyloid formation 
 
As mentioned previously, the amyloid state is thermodynamically more stable than the native 
state of the protein (Baldwin et al. 2011). Amyloids are highly ordered structures with many 
interactions breaking and forming, but generally making a net favorable contribution to stability. 
However, there are also some entropic contributions that need to be considered. For example, 
when a molecule binds to the growing fibril, there is an entropy loss that depends on the 
concentration of the solution: the more diluted the solution, the greater the entropy loss. In 
addition, the growing fibril loses conformational entropy due to topological constraints. These 
losses are compensated by the massive enthalpic contributions arising from the newly established 
interactions, but also by an increase in solvent entropy upon burial of hydrophobic residues. 
Moreover, not all the residues in the peptide will be folded in the amyloid core but some of them 
will remain disordered in the flanking regions. It is possible that in their native structure, these 
residues have a more structured fold and so loss of structure during amyloid formation mitigates 
the loss of entropy in the core (Buell 2022; A. I. P. Taylor and Staniforth 2022). 
 
It is thought that the formation of amyloids is not favored below specific concentrations, where 
the loss of entropy cannot be compensated by the hydrophobic effect or favorable interactions. 
While concentrations used in vitro for amyloid formation are sufficiently high so that 
concentration dependence is not detectable, it is intriguing how amyloid fibrils form in vivo for 
some proteins found at very low concentrations, such as Aβ. One possible explanation is that 
increased local concentration, for example in vesicles or surfaces, helps increase concentration 
above solubility allowing amyloid formation (Buell 2022). 
 

3.2. Monomeric subunit 
 
The monomeric subunit normally consists of a set of β-strands and turns with a compact 
conformation that is mostly stabilized by hydrophobic interactions between side chains. The core 
of the subunits is de-solvated and usually formed by a cluster of hydrophobic residues, an 
arrangement known as steric zipper (Figure 5) (Sawaya et al. 2021; A. I. P. Taylor and Staniforth 
2022). For example, a recent study describes six steric zippers formed by the low complexity 
domain of TDP-43 and hypothesizes that they may be involved in the formation of pathogenic 
amyloid assemblies (Figure 3A) (Guenther et al. 2018).  
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Figure 3. Interactions within monomers. (A) Top view of a steric zipper structure determined for 
an hexamer in the low complexity domain of TDP-43. Three β-sheets and two hydrophobic 
interfaces are shown. Adapted from (Gremer et al. 2017; Guenther et al. 2018). (B) Atomic model 
of a cross section for an Aβ42 structure. Insets depict an intra-monomer (top inset) and an inter-
monomer (bottom inset) salt bridges. Adapted from (Gremer et al. 2017; Guenther et al. 2018). 
 
 
Other types of interactions also contribute to the folding of the monomeric subunits, such as salt 
bridges, either inside or outside steric zippers. Buried salt bridges, for example between residues 
H6-E11 and E11-H13 in one polymorph of Aβ42 (Gremer et al. 2017) allow stabilization of turns 
inside the subunit (Figure 3B). 
 
 

3.3. Stacked monomeric subunits constitute protofilaments 
 
Monomeric subunits containing β-strands stack on top of each other to form a protofilament. 
Subunits adopt a nearly flat structure and orient the backbone hydrogen groups in parallel to the 
protofilament axis. By this means, each β-strand contributes to a global β-sheet all along the 
protofilament and backbone hydrogen bonds are the main interactions stabilizing subunit stacking 
(A. W. Fitzpatrick et al. 2011; Sawaya et al. 2021; A. I. P. Taylor and Staniforth 2022).  
 
Subunits can be oriented in a parallel or antiparallel manner between them (Figure 4A). Parallel 
structures are normally in-register, meaning that identical residues are aligned one on top of the 
other. This arrangement is therefore stabilized by interactions such as π-stacking of aromatic 
residues (Gazit 2002) or amide ladders with hydrogen bonds between amide side chains, first 
observed for polyQs (Perutz et al. 1994). However, electrostatic interactions disfavor parallel in-
register structures and they are better accommodated in antiparallel arrangements (Trovato et al. 
2006). Now that >100 amyloid structures have been solved, it is possible to say that antiparallel 
arrangements are not as common as parallel, and that they are more associated with short 
sequences, where there are less constraints and less pressure to align amino acid residues. Some 
examples of antiparallel structures are the short peptide Aβ11-25 (Petkova et al. 2004) or a 
polymorph of Aβ40 D23N, carrying a mutation associated with disease. Antiparallel fibrils also 
appeared to be the toxic intermediates of the Aβ40 aggregation process, but it was shown that 
these fibrils were metastable and ultimately switched to a parallel in-register conformation (Qiang 
et al. 2012). 
 
There is an additional peculiar possible arrangement of subunits, the β-solenoid, which is well 
known for the heterokaryon incompatibility s (HET-s) prion from Podospora anserina. In this 
case, each subunit folds by itself in a left-handed β-helical manner forming a two-layered 
structure. Each layer contains three β-strands, resulting in protofilaments with three β-sheets of 
two stacked β-strands for each subunit. The HET-s structure resolves the unfavorable stacking of 
opposite charged residues by adopting a pseudo-in-register alignment (Figure 4A) (Wasmer et 
al. 2008).  
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Figure 4. Possible arrangements (A) between stacked monomeric subunits or (B) between 
protofilaments. Adapted from (A. I. P. Taylor and Staniforth 2022). 
 
 

3.4. Arrangement of protofilaments to form fibrils 
 
Typically, two protofilaments twist around each other to form fibrils, although there are examples 
of fibrils with only one protofilament, such as the transthyretin fibrils purified from the tissue of 
a patient with hereditary amyloidosis and solved by cryoEM (Schmidt et al. 2019); and also fibrils 
with more than two protofilaments, for example recombinant Tau cryoEM structures with triple 
and quadruple fibril arrangements (Lövestam et al. 2022).  
 
In the case of a fibril with two protofilaments, these can align in-register (also known as C2 
symmetry), meaning that facing monomeric subunits of each of the protofilaments are in the same 
plane, or have a pseudo-21 screw symmetry. In the latter case, one subunit from one protofilament 
is at ~2.4 Å far from its corresponding facing subunit at the other protofilament, given by the 
overall distance of ~4.8 Å between subunit stacks in each protofilament (Figure 4B) (A. I. P. 
Taylor and Staniforth 2022). 
 
Inter-protofilament interactions at the interface are not especially strong but they occur in large 
numbers all along the length of the fibrils and so have an additivity effect. Indeed, interactions 
between monomers are typically stronger along the fibril (stacking monomers) rather than 
orthogonally (facing monomers, from different protofilaments). The interface between 
protofilaments is normally de-solvated, driven by the hydrophobic effect and van der Waals 
interactions (Figure 5) (Sawaya et al. 2021; A. I. P. Taylor and Staniforth 2022). A cryoEM 
structure for Aβ42 showed that protofilaments are held together by an hydrophobic steric zipper 
between the side chains of V39 and I41. This structure is further stabilized by a salt bridge 
between D1 and K28 of opposite protofilaments (Figure 3B) (Gremer et al. 2017). Apart from 
salt bridges, hydrogen bonds are also common between protofilaments, for example, at the 
interface of a Tau structure three glycine residues form backbone-backbone hydrogen bonds (A. 
W. P. Fitzpatrick et al. 2017). The pseudo-21 symmetry allows both salt bridges and hydrogen 
bonds to form a zig-zag network that holds the two protofilaments together (A. I. P. Taylor and 
Staniforth 2022).  
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Figure 5. Steric zippers form by de-solvation within (blue) or between (orange) monomers, in 
regions with clustered hydrophobic residues. Adapted from (Sawaya et al. 2021). 
 
 

3.5. Flanking regions 
 
Currently, there are more than 80 amyloid structures for around 20 different proteins solved at 
near-atomic resolution (Sawaya et al. 2021). Thanks to these structures and a set of computational 
predictors, the aggregation-prone regions (APRs) and amyloid cores are identified and predicted 
quite accurately (Fernandez-Escamilla et al. 2004; Sormanni, Aprile, and Vendruscolo 2015). 
However, amyloidogenic proteins also contain large disordered regions flanking the APRs, also 
known as the ‘fuzzy coat’ (Tompa and Fuxreiter 2008). Due to their dynamic nature, these regions 
are not visible or result in low resolution densities in electron microscopy images. Therefore, 
despite having high quality structures for the amyloid cores, flanking regions have not been 
exhaustively studied and their structures remain elusive (Ulamec, Brockwell, and Radford 2020). 
Importantly, these regions can represent large fractions of the total sequence. For example, for ɑ-
syn, which has 140 amino acid residues, around 50-70% (depending on the polymorph structure) 
of the sequence is not part of the amyloid core (Guerrero-Ferreira et al. 2020). 
 
Different types of modifications in these regions point at a crucial role for flanking regions in the 
process of amyloid formation: mutations linked to disease, post-translational modifications, 
chaperone interaction, nucleic acid or membrane binding involving flanking regions have all 
shown to enhance or suppress aggregation and be associated with cellular toxicity. For example, 
it has been proposed that flanking regions of aggregation hotspots disfavor aggregation by 
controlling protein expression levels. Inside the cell, there is a fine-tuned balance between protein 
expression and function, since high protein concentrations may help overcome energy barriers 
needed to form amyloids (Tartaglia et al. 2007). TDP-43 self-regulates protein expression by 
binding its own mRNA through an RNA-recognition motif (RRM1) flanking the C-terminal 
region forming the fibril core (Ayala et al. 2011). There are several examples of flanking regions 
binding to molecular chaperones and hence reducing aggregation, such as the N-terminal region 
of Tau binding to chaperone DnaJA2 (Mok et al. 2018) or 17 N-terminal residues of Htt forming 
a complex with Hsc70 and TriC (Monsellier et al. 2008). Small molecules can have a similar 
effect, such as dopamine, that by binding the C-terminal of ɑ-syn drives the formation of off-
pathway oligomers and inhibits fibril formation (Herrera et al. 2008). 
 
Another strategy to avoid aggregation is the presence of gatekeeper residues, i.e. residues that 
prevent aggregation and so if mutated, aggregation increases. In many instances, gatekeepers are 
actually located in flanking regions, such as residue K35 located at the edge of the amyloid core 
of transthyretin (Sant’Anna et al. 2014) or 6 out of 7 gatekeeper residues in the disordered N-
terminus of Aβ42 (Seuma et al. 2021). 
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Flanking regions can also be responsible for increasing amyloid aggregation. Since many of them 
are intrinsically disordered, they are prone to mediate transient intra and inter-molecular 
interactions. For example, the negatively charged C-terminal region of ɑ-syn can interact with the 
positively charged N-terminus, which otherwise protects the NAC region against aggregation 
(Stephens, Zacharopoulou, and Kaminski Schierle 2019). A β-hairpin structure outside the APR 
region protects Tau from aggregation but familial point mutations and alternative splicing disrupt 
this secondary structure and expose the APR (D. Chen et al. 2019). Similarly, mutations at the N-
terminus of apo A-I disrupt a protective helix enhancing aggregation (Das et al. 2016). Flanking 
regions can also interact with molecules and surfaces, for example in the case of heterogeneous 
primary nucleation for ɑ-syn (Galvagnion et al. 2015) or even interact with other amyloidogenic 
proteins: ɑ-syn aggregation is enhanced in the presence of Tau and indeed, these two proteins co-
aggregate in brains of patients with Dementia with Lewy Bodies (DLB) (Colom-Cadena et al. 
2013).   
 

3.6. Polymorphism 
 
Amyloids from different peptide sequences share the generic cross-β architecture but differ in all 
other structural arrangements. Importantly, structures not only vary between different peptide 
sequences, but the same sequence can result in monomeric subunits, protofilaments and fibrils 
with different molecular structures and morphologies. This phenomenon, known as 
polymorphism, is at the basis of different ‘prion strains’, in which variants of the same protein 
result in a different phenotype (Uptain et al. 2001; Chiti and Dobson 2017; Iadanza et al. 2018; 
Sawaya et al. 2021). 
 
Polymorphism may be a consequence of the generic ability of sequences to form amyloids, since 
the architecture is not given by the amino acid sequence itself but rather by the physicochemical 
properties it encodes. By this means, one sequence can assemble fibrils in multiple ways (Chiti 
and Dobson 2017; Iadanza et al. 2018; Sawaya et al. 2021). For example, there are 24 different 
structures for ɑ-syn, 6 of which ex vivo, and all of them have conserved β-strands in the 
monomeric subunits and only differ in the interactions between monomers and their orientations 
(Guerrero-Ferreira et al. 2020).  
 
Distinct polymorphs of the same protein have been often linked to different diseases. For example, 
the term ‘tauopathies’ includes about 25 different conditions associated with Tau aggregation and 
for at least 4 of them, each disease is associated with a different polymorph (Falcon, Zhang, 
Murzin, et al. 2018; Falcon, Zhang, Schweighauser, et al. 2018). However, more recently, it has 
also been shown that the same polymorph can be linked to distinct tauopathies. Thus, it is likely 
that each disease is defined by a specific set of polymorphs (Shi et al. 2021). To a lower extent, 
polymorphism also occurs between individuals with the same condition, which may concur to 
explain why patients with the same disease show different symptoms and disease phenotypes or 
why the load of amyloid deposits does not always correlate with disease severity (Qiang et al. 
2017).  
 
Whether a specific polymorph determines disease or conversely, a specific disease leads to 
conditions that shape protein conformation is still under debate. In the first scenario, the 
hypothesis of ‘polymorphism first’ assumes that all conformations are equally probable in all 
individuals and whichever polymorph emerges first, determines disease. In the case of ‘disease 
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first’, it is hypothesized that the cellular environment provides disease-specific conditions that 
determine which polymorph emerges. However, a combination of both scenarios is also plausible, 
where disease-specific conditions select for a set of polymorphs that subsequently interact with 
cellular components in a disease-specific manner to affect phenotype (Sawaya et al. 2021). 
 
 

4. Macroscopic and microscopic mechanisms in 
amyloid aggregation 
 
Amyloid fibril formation is driven by a nucleation and growth process in which the soluble 
peptide assembles into aggregates. More specifically, nucleation is a probabilistic event in which 
molecules self-assemble de novo losing molecular degrees of freedom. This reaction is under 
kinetic control, meaning that free energy barriers - in this case a nucleation barrier - determine 
the outcome of the aggregation process, rather than the free energy of the final aggregates 
(Pellarin et al. 2010; T. Khan et al. 2018).  
 
The number of fibrils formed as a function of time results in a sigmoidal kinetic curve. In a 
simplified polymerization model, monomers convert to nucleus during the lag phase and further 
addition of monomers allows rapid fibril growth during the exponential phase until the system 
reaches a final plateau or equilibrium phase (Ferrone 1999). However, at the microscopic level, 
amyloid fibril formation is a bit more complex, with various molecular mechanisms occurring at 
the same time (Figure 6). These mechanisms can be divided into 1) nucleation and secondary 
processes that increase the total number of aggregates (P), including primary nucleation, surface-
catalyzed secondary nucleation and fibril fragmentation; and 2) growth processes that increase 
the overall aggregate mass (M), including fibril elongation and monomer dissociation (Meisl et 
al. 2017; Michaels et al. 2018). 
 

 
Figure 6. Schematic representation of the microscopic mechanisms of aggregation and their 
contributions to the overall rate of the reaction. kn, k-, k2, k+ and koff are the kinetic rate constants 
for primary nucleation, fragmentation, surface-catalyzed secondary nucleation, elongation and 
dissociation, respectively; and nc and n2 are the reaction orders for primary and secondary 
nucleation. Adapted from (Chiti and Dobson 2017). 
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4.1. Primary nucleation

The first step in protein aggregation is nucleation, also referred as primary or spontaneous 
nucleation. This process drives the protein phase transition of a homogeneous solution to a 
solution where the monomeric solution coexists with an aggregated phase.

In the nucleation process, a first critical nucleus is formed and as mentioned above, this is the 
most unstable species and has the highest Gibbs free energy in the reaction. Nucleation is a slow 
process with a high kinetic barrier which determines the duration of the lag time. After that, 
additional growth happens with lower free energy barriers (Figure 7) (Arosio, Knowles, and 
Linse 2015; Meisl et al. 2017).

Figure 7. Free energy versus reaction progress for amyloid aggregation. The critical nucleus has 
the highest free energy in the system and the formation of fibrils is rate-limited by a high kinetic 
barrier.

According to classical nucleation theory (CNT), small clusters of monomers have high probability 
to dissociate back to single monomers due to the high interfacial energy towards water. However, 
with increasing size of the clusters, stabilization from interactions between monomers becomes 
more significant and the nucleus can further grow. CNT supports a one-step process in which 
conformational changes of the monomeric protein happen simultaneously with the nucleation 
step, and so nucleus enriched in β-sheets are formed directly in solution (Karthika, 
Radhakrishnan, and Kalaichelvi 2016).

Coarse-grained simulations suggest instead that a two-step process involving a pre-nucleation 
event is more likely to occur for amyloid nucleation at physiological conditions. By this means, 
soluble monomers would first assemble in disordered oligomers to then convert to a β fold. These 
oligomers would emerge from nonspecific interactions, help other peptides assemble and 
facilitate the conversion of other monomers into the β fold. Importantly, these studies also showed 
that oligomers preceding nucleation are of a very specific size and are only observed in rare 
fluctuations. All other oligomers dissociate back to monomers in solution after some time (Šarić 
et al. 2014; Šarić, Michaels, et al. 2016).

Overall, while CNT supports that the reaction order of nucleation is related to the size of the 
nucleus, simulations show that the reaction order is related to the proportion of species that 
promote the conformational conversion into the β fold. Amyloidogenic proteins have a wide range 
of structures in their native states, from ɑ-helices, β-sheets or random coils, and so they must 
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undergo conformational rearrangements to adopt the amyloid fold. In this regard, a two-step 
process may be more plausible than the CNT single-step process, in which nucleus conversion 
and nucleation happen simultaneously (Šarić et al. 2014; Šarić, Michaels, et al. 2016).  
 

4.2. Secondary nucleation mechanisms 
 
Secondary nucleation mechanisms include surface-catalyzed secondary nucleation (in some cases 
also referred to simply as secondary nucleation), which is a monomer-dependent process; and 
fibril fragmentation, which is monomer-independent.  
 
4.2.1. Surface-catalyzed secondary nucleation 
 
Secondary nucleation, as primary nucleation, is a monomer-dependent process but in this case, 
the formation of nuclei is catalyzed by the surface of pre-formed aggregates. In specific cases, 
primary nucleation is also catalyzed by a surface, a process known as heterogeneous nucleation. 
One example is ɑ-syn, which can bind and nucleate on a lipid bilayer (Galvagnion et al. 2015). 
However, it is important to distinguish between heterogeneous primary nucleation, occurring on 
external surfaces, from secondary nucleation, where the aggregates themselves act as a surface 
catalyzing aggregation (Törnquist et al. 2018). 
 
While primary nucleation depends solely on available free monomer concentration, secondary 
nucleation represents an autocatalytic positive feedback loop in which existing aggregates control 
the amount of surface available for catalysis. The exponential increase of the number of 
aggregates with time is reflected in the shape of experimentally measured kinetics curve: a long 
lag phase is followed by a sharp and rapid increase of fibril mass (Meisl et al. 2017; Törnquist et 
al. 2018). 
 
Coarse-grained simulations showed that the affinity of the peptide for the surface of the fibril is 
crucial for secondary nucleation and, similarly to primary nucleation, the peptide needs to undergo 
conformational changes (Šarić, Buell, et al. 2016). However, how, where and when these 
conformational changes and fibril formation happen during secondary nucleation is not fully 
understood. Many possible scenarios have been hypothesized and importantly, they do not 
necessarily have to be exclusive between them. 
 

 
Figure 8. Possible mechanisms for surface-catalyzed secondary nucleation. (A) Monomers bind 
the fibrils, undergo a conformational change and then detach. (B) Instead of monomers, oligomers 
are the species binding the fibril surface and then change conformation. (C) Oligomers formed at 
the fibril surface detach before undergoing a conformational change, that happens later in 
solution. (D) Oligomers bind at the structured regions of the fibrils or (E) at the flanking 
disordered regions for subsequent conformational change. Adapted from (Törnquist et al. 2018). 
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For example, it is not known whether oligomers formed in solution are the species that bind the 
fibril surface (Figure 8B) or if monomers bind the surface to then associate into oligomers 
(Figure 8A,C). Then, oligomers need to undergo a conformational conversion to grow into 
fibrillar structures. This can happen either after detachment from the fibril (Figure 8C) or when 
they are still bound to it (Figure 8A,B), which would be more favorable for oligomers to adopt 
the same structure as the parent fibril. In fact, oligomers released in solution in the first scenario, 
with a different structure to that of the parent fibril, may represent non fibrillar toxic species 
(Törnquist et al. 2018). 
 
It has also been debated where in the fibril surface secondary nucleation happens. Studies on 
Aβ42 with molecular chaperones Brichos and clusterin revealed that while Brichos inhibits 
secondary nucleation, clusterin instead inhibits elongation by interaction with fibril ends, pointing 
at the fact that these two processes do not occur at the same surface locations (Cohen et al. 2015; 
Scheidt et al. 2019). It was also suggested that secondary nucleation does not happen in random 
locations but the fibril surface has catalytic sites with high specificity (Cukalevski et al. 2015). 
Importantly and as mentioned above, residues of the peptide chain that do not form the core, 
remain disordered and decorating the fibril surface (see section 3.5. Flanking regions). Nucleation 
could therefore happen at the structured core of the fibril, where residues have a well-defined 
positioning (Figure 8D) or at the more flexible and exposed parts (Figure 8E) (Ulamec, 
Brockwell, and Radford 2020).  
 
4.2.2. Fibril fragmentation 
 
By a process of fragmentation, existing aggregates break and generate smaller fragments, 
exposing new growth comptent fibril ends where more monomeric peptides attach. This results 
in an exponential proliferation of fibril growth and at this point, the lag phase does not depend 
much on primary nucleation but rather on the time it takes for the first fibrils to multiply through 
fragmentation (Knowles et al. 2009; Knowles, Vendruscolo, and Dobson 2014). 
 
Fragmentation, together with surface-catalyzed secondary nucleation, classifies as a secondary or 
multiplication mechanism. When these mechanisms are active, pre-formed aggregates self-
replicate, which means there is an autocatalysis of new aggregates. This accelerates the rate of 
elongation, which subsequently speeds up the formation of other new aggregates through 
secondary processes. It has been recently shown that at least in vitro, self-replication is a common 
feature of many aggregating proteins, including both pathogenic and functional amyloids. Yet, 
self-replication time scales for pathogenic proteins are shorter than disease time scales, suggesting 
that self-replication is sufficiently quick to contribute to disease. Conversely, functional amyloids 
fall at the threshold where self-replication is not quick enough to be relevant to disease 
progression at biological timescales. Overall, self-replication and secondary mechanisms may be 
a common feature in aggregating proteins that have been fine-tuned by evolution (Meisl et al. 
2022).  
 

4.3. Growth mechanisms: elongation and dissociation 
 
Elongation is the main process by which aggregate mass increases. During elongation, monomeric 
peptide is added to the ends of existing fibrils. Similarly to secondary nucleation, elongation can 
be described as a single-step or a two-step reaction. In the latter case, the monomer first attaches 
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to the fibril end in a monomer-concentration manner and then undergoes conformational 
rearrangement, which is independent from monomer concentration and can saturate (Scheibel, 
Bloom, and Lindquist 2004; Meisl et al. 2017). 
 
The other process increasing aggregate mass is monomer dissociation, in which individual 
monomers are removed from the end of the fibrils and are diluted back to the monomeric solution. 
Since dissociation is slower than elongation, it is often neglected in the reaction kinetics (Michaels 
et al. 2018).  
 

4.4. Global kinetic analysis  
 
Studies on amyloid aggregation with well-designed experimental kinetics and mathematical 
models have provided a comprehensive and quantitative understanding of the microscopic 
mechanisms underlying macroscopic observations in amyloid fibril formation (Cohen et al. 
2012). Experimentally, kinetics of aggregation can be monitored by tracking the increase in the 
total mass of aggregates as a function of time. This has been extensively done by using thioflavin 
T (ThT), a dye that specifically binds amyloids (Hellstrand et al. 2010). Macroscopic observations 
can be then transferred to the microscopic scale by using a generalized master equation that 
contains a set of nonlinear differential equations. The master equation describes how all 
elementary mechanisms involved in amyloid aggregation (Figure 6) jointly change the 
population of aggregates of a specific size (j) in function of time. The differential moment 
equations - which are a simplification of the master equation over j - for the aggregate mass 
concentration M(t) and aggregate number P(t) are defined as: 
 

 

 

 
where kn, k2 and k+ are the kinetic rate constants for primary nucleation, secondary nucleation 
and elongation, respectively; and nc and n2 the reaction orders for primary and secondary 
nucleation, respectively.  
 
An analytical solution to the master equation allows derivation of integrated rate laws, which can 
be directly compared to experimental curves (Knowles et al. 2009; Michaels et al. 2018). Just as 
experimental curves, integrated rate laws show a sigmoidal shape with an initial lag time, a rapid 
growth and a final plateau indicating monomer consumption. However, the lag and growth phases 
do not correspond simply to nucleus formation and fibril elongation events respectively, but each 
phase results from a combination of various microscopic mechanisms occurring simultaneously. 
By this means, one single curve is not sufficient to explain the interplay between mechanisms and 
so experimental data needs to be fitted globally by using a range of starting monomer 
concentrations (Figure 9A) (Knowles et al. 2009; Michaels et al. 2018). 
 
Some parameters can be retrieved from the global fitting of integrated rate laws, for example, the 
reaction half-time (t1/2), which is the time it takes for half of the initial monomer concentration 
m(0) to be transformed into aggregates. The t1/2 depends on the initial monomer concentration: 
t1/2  m(0)γ, where γ is the scaling exponent. Experimentally, γ is the slope of the t1/2 plotted against 
the initial monomer concentration in a log-log plot, and its value gives insights into the underlying 
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mechanism dominating the reaction (Figure 9B) (Meisl et al. 2017). In order to successfully use 
integrated rate laws to fit experimental data, it is crucial to obtain high quality and reproducible 
measurements over a range of monomer concentrations, to have pure monomeric peptide without 
pre-formed nuclei, and to verify that ThT fluorescence measurements correlate linearly with the 
total mass of fibrils formed (Michaels et al. 2018).  
 

 
Figure 9. Global fitting of aggregation kinetics. (A) Aggregation is tracked experimentally (data 
points) by measuring aggregate concentration versus time for a range of initial monomer 
concentrations. Global fitting (lines) with a model that assumes fragmentation is the dominant 
mechanism of the reaction (left) fails to reproduce the experimental measurements. Instead, a 
model assuming secondary nucleation as the driving mechanism of aggregation (right), matches 
the data at all starting monomer concentrations. Adapted from (Michaels et al. 2018). (B) The 
scaling exponent is retrieved from the double logarithmic plot of the reaction half-time versus 
monomer concentration. Adapted from (Cohen et al. 2012). 
 
 
This approach has been successfully applied to a set of proteins, for example it was shown that 
for both Aβ42 and Aβ40, the dominant mechanism for amyloid formation is a monomer-
dependent secondary nucleation. However, for Aβ40 it was also shown that the scaling exponent 
is not constant but depends on monomer concentration, indicating that the secondary nucleation 
process saturates at high concentrations, when the conversion and detachment of monomers from 
the fibril become rate-limiting (Cohen et al. 2013; Meisl et al. 2014).  
 
Kinetic analysis has also been informative for perturbations in the system, such as mutations. For 
example, experimental kinetic measurements fitted with integrated rate laws showed that Aβ42 
E22G, a single point mutation associated with familial AD (fAD), is sufficient to switch the 
dominant mechanism of Aβ42 aggregation, from a monomer-dependent to a monomer-
independent secondary nucleation. Strikingly, introduction of a second mutation, Aβ42 
E22G/I31E, reverts the mechanism back to that of the wild type (WT) peptide (Bolognesi et al. 
2014). This type of analysis also allows the investigation of the mechanism by which small 
molecules or chaperones target amyloid species. For example, it was shown that the molecular 
chaperone DNAJ B6 targets Aβ42 and inhibits primary nucleation but proSP-C Brichos binds 
instead the surface of the fibrils, inhibiting secondary nucleation (Arosio et al. 2016).  
 

4.5. Oligomeric species 
 
Oligomers are prefibrillar species with great significance during amyloid formation, not only 
because they take part in the self-association process but also because they are associated with 
toxicity. At the beginning of the reaction and in the absence of fibrils, oligomers generate 
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exclusively through primary nucleation, since surface-catalyzed secondary nucleation requires 
pre-existing aggregates to initiate. Once a critical concentration of aggregates has formed, 
secondary nucleation overtakes primary nucleation as the major source of new oligomers. 
Oligomers can be precursors of amyloid fibrils (on-pathway) but also dead-end assemblies that 
do not further evolve into fibrils (off-pathway). Other mechanisms for amyloid formation such as 
fibril fragmentation also generate oligomers (Chiti and Dobson 2017). 
 
Due to their nature - dynamic, transient and heterogeneous - oligomers have proved to be difficult 
to characterize. For both primary and secondary nucleation, simulations showed that the first 
oligomers that generate have little structure and need to undergo a conformational conversion to 
become growth-competent species (Šarić, Michaels, et al. 2016). This was proved for primary 
nucleation by single molecule studies with the prion protein Ure2p. The characterized oligomers 
had short life and their dissociation rate was higher than their conversion into growing fibrils. 
More rarely, a metastable oligomeric species could convert to a structurally different assembly 
and grow into fibrils (J. Yang et al. 2018).  
 
Some populations of Aβ40 and Aβ42 oligomers have also been isolated, revealing that the content 
of β-sheet structure is related to the molecular weight, hence suggesting that oligomers are more 
structured with increasing numbers of molecules. In these studies, when various oligomers appear 
sequentially during aggregation, the first species are small and largely unstructured, and the ones 
containing β-sheet structures appear at later stages (Figure 10). Early oligomers show both 
antiparallel and parallel out-of-register arrangements, different from mature fibrils that normally 
have a parallel and in-register orientation, highlighting the need for early oligomers to undergo 
structural rearrangements. It is worth noting that some of the larger oligomers that have been 
isolated represent off-pathway species that dissociate back to monomers (Kayed et al. 2003; 
Chimon et al. 2007; Ahmed et al. 2010). 

 
Figure 10. Oligomer structural rearrangements. Initial disordered and small species result in more 
ordered β-sheet structures compatible with fibril formation. Adapted from (Chiti and Dobson 
2017). 
 
 
For ɑ-syn, two distinct types of oligomers (A and B) were found to form sequentially, but with a 
very slow transition between the two forms. Type A oligomers are smaller (less than 15 
molecules), less compact and more disordered than the second population, type B, which instead 
show a substantial amount of β-sheet structure. Importantly, the second type of oligomers are 
more toxic to rat primary neurons, increasing the production of ROS (Cremades et al. 2012). 
Why oligomers are toxic species is not fully understood, but it has been hypothesized that their 
toxicity is due to exposed hydrophobic patches on the surface (Bolognesi et al. 2010), which 
would otherwise remain buried in higher-order structures such as mature fibrils. These 
hydrophobic regions can potentially perturb cellular components. For example, it was shown in 
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primary neurons, that toxic type B ɑ-syn oligomers can insert into lipid bilayers leading to an 
increase of Ca2+ and ROS, ultimately causing cell death (Fusco et al. 2017). It has also been shown 
that generally, smaller oligomers tend to be more toxic and that chaperones can induce further 
assembly into larger species, hence reducing toxicity. This suggests that toxicity from small 
oligomers may be due to exposed hydrophobic patches but also by a higher diffusion coefficient, 
which allows oligomers to diffuse and interact with cellular components more rapidly (Mannini 
et al. 2012).  
 
Finally, although amyloid fibrils are not considered to be toxic per se, they are still species 
relevant to disease as they can serve as reservoirs for oligomers to be released upon fragmentation, 
act as surface catalysts to generate new oligomers or recruit and deplete key cellular components, 
altering protein homeostasis (Chiti and Dobson 2017). 
 

5. Amyloid β 
 
Aggregation of Aβ42 into amyloid fibrils is a hallmark of AD. Aβ is a cleavage product from the 
APP, a transmembrane protein with various cleavage sites. For example, the γ-secretase complex 
has target sites after amino acids 38, 40 or 42, resulting in Aβ peptides of variable length. The 
cleavage site is highly relevant for the subsequent aggregation propensity of the resulting Aβ 
peptide, with Aβ42 known to be more amyloidogenic and responsible for cell toxicity than Aβ40 
(Haass and Selkoe 2007; Meisl et al. 2014). It has been shown that in cerebrospinal fluid (CSF) 
of healthy individuals, Aβ40 is the most common isoform (~50%), followed by Aβ38 (16%) and 
Aβ42 (10%) (Kummer and Heneka 2014). In a mass spectrometry analysis, both Aβ40 and Aβ42 
were observed in plaques in the cortex brain of both AD patients and healthy individuals. 
However, their presence in the hippocampus and cerebellum appeared to be exclusive to AD 
patients (Portelius et al. 2010).  
 
Most cases of AD are sporadic (sAD) and thus of uncertain cause, but specific dominant mutations 
in Aβ42 are known to cause familial forms of AD (fAD). In these cases, there is an early onset of 
the disease affecting individuals younger than 65 years (Hatami et al. 2017). Mutations are located 
either in APP - inside or outside the Aβ 1-42 region - or in presenilin-1 (PS1) or presenilin-2 
(PS2), which are part of the γ-secretase complex responsible for Aβ cleavage. All mutations in 
PS1 and PS2 are known to enhance the production of Aβ42 or to increase the Aβ42/Aβ40 ratio. 
There are a total of 18 known fAD mutations inside the Aβ 1-42 region: 14 of them are single 
amino acid substitutions (A2V, H6R, D7N, D7H, E11K, K16Q, K16N, L17V, A21G, E22Q, 
E22K, E22G, D23N, V24M, L34V and A42T), one is a single amino acid deletion (E22Δ) and 
one is a multi amino acid deletion (Δ19-24). All but two of them (A2V and E22Δ) show a 
dominant pattern of inheritance (Van Cauwenberghe, Van Broeckhoven, and Sleegers 2016; 
Hatami et al. 2017). 
 
The number of mutations in Aβ and mutations in PS1 and PS2 affecting Aβ levels, highlight the 
causative link between Aβ and AD. Despite several studies measuring the propensity of fAD 
variants to aggregate, there is no consensus on their effect on amyloid formation and the 
mechanism by which they cause disease. The main findings from the literature on fAD Aβ42 
mutations were summarized in (Seuma et al. 2021) and are included here in Annex I. 
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Figure 11. Structures for Aβ42 (Lührs et al. 2005; Xiao et al. 2015; Schmidt et al. 2015; Colvin 
et al. 2016; Wälti et al. 2016; Gremer et al. 2017; Y. Yang et al. 2022)). (A) Aβ42 amino acid 
sequence with APR as described in (Fernandez-Escamilla et al. 2004) depicted in yellow. (B) 
Structural models with the C-terminal region 29-42 depicted in darker gray. The first residue in 
each determined structure is indicated. (A,B) Color code indicates amino acid type, red: 
negatively charged, blue: positively charged, brown: aromatic, green: polar, black: glycine, gray: 
hydrophobic. 
 
 
The amino acid sequence of Aβ42 contains a distinguished C-terminal region at residues 29-42, 
composed exclusively by glycine and aliphatic residues and identified as an APR (Fernandez-
Escamilla et al. 2004; van der Kant et al. 2022). At the N-terminus (residues 1-28), there is another 
predicted APR at residues 17-21. The rest of the N-terminus is composed mainly of polar and 
charged residues, with the first 1-11 residues remaining disordered in ex vivo Aβ42 structures 
(Figure 11A) (Y. Yang et al. 2022).  
 
Many structures have been determined for Aβ42 fibrils by solid-state NMR and cryoEM (Figure 
11B and Table 1) (Lührs et al. 2005; Xiao et al. 2015; Schmidt et al. 2015; Colvin et al. 2016; 
Wälti et al. 2016; Gremer et al. 2017; Y. Yang et al. 2022). In most structures, the monomeric 
subunit shows an S-shape with side chains of hydrophobic and aromatic residues - specific in 
each structure - forming two hydrophobic pockets and interacting with hydrogen bonds. The outer 
exposed surfaces are either hydrophobic, such as hydrophobic patches in structures 7Q4M and 
5KK3; or hydrophilic, for example in structure 2NAO and in another surface of structure 5KK3, 
exposing side chains of polar and charged residues like E22 and D23. The arrangement of the two 
protofilaments (how monomers face each other) is very specific to each structure. The interface 
between protofilaments is hydrophobic in some structures (7Q4B or 5OQV) or electrostatic in 
some others, stabilized by a salt bridge between K28 and A42 (structure 7Q4M) or between K28 
and D1 (structure 5OQV). In other cases, the salt bridge K28-A42 is instead stabilizing the 
monomeric subunit (structures 2NAO and 2MXU).  
 
Table 1. Description of determined structures for Aβ42 (Lührs et al. 2005; Xiao et al. 2015; 
Schmidt et al. 2015; Colvin et al. 2016; Wälti et al. 2016; Gremer et al. 2017; Y. Yang et al. 2022). 
 

PDB 
ID 

Source, method 
and residues 
determined 

Main structural features 

7Q4B sAD patient, 
cryoEM 
 
Residues 9-42 

Two protofilaments packing against each other with a pseudo-21 
symmetry. The ordered core of each protofilament is G9-A42 and has 5 
β-strands, with an N-terminal arm at G9-V18 and an S-shaped domain at 
F19-A42. The S-shaped domain is formed by two hydrophobic clusters, 
one with the N-terminal side chains F19, F20, V24 and I31; and the other 
with C-terminal side chains A30, I32, M35, V40 and A42. Between 
protofilaments, there is an hydrophobic interface with L34, V36, V39 and 
I41 on the outer surface of the S-shaped domain of one protofilament, with 
the side chains Y10, V12, Q15 and L17 on the N-terminal arm of the other 
protofilament. There are also hydrogen bonds between the side chains of 
H13 and H14; and E11 and H13. 
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7Q4M fAD patient, 
cryoEM 
 
Residues 12-42 

Two protofilaments with the ordered core at V12-A42, 4 β-strands in each 
subunit and the S-shaped domain comprising F20-A42. Side chain 
orientations are very similar to 7Q4B, with only a different orientation of 
peptides G25-S26 and V36-G37, flipped 180º. G25-S26 flip results in the 
expansion of the N-terminal hydrophobic cluster, accommodating the side 
chains of L17 and V18 instead of F19. The interface between the two 
protofilaments is smaller than 7Q4B: here it is formed by the opposite side 
of the S-shaped domain. The protofilaments pack against each other with 
a C2 symmetry and are stabilized by an electrostatic interaction with K28 
of one protofilament and the C-terminal carboxyl group of A42 of the 
other protofilament. The hydrophobic residues on the outer surfaces of the 
S-shape remain exposed, forming non-polar patches on the surface of 
filaments. 

5KK3 Recombinant, 
spinning NMR 
 
Residues 11-42 

Two protofilaments with the ordered core Q15-A42 and S-shaped 
monomeric subunits. Inside the hydrophobic pockets of the S-shaped 
domain, there are some intramolecular contacts: I41-G29, I41-K28, F19-
I32, F20-V24 and F19-A30. The outer surface contains the hydrophilic 
side chains of E22, D23, K28 and S26. There are also two hydrophobic 
patches with V18, A21, V40 and A42. The salt bridge K28-A42 in this 
case is intramolecular. The protofilaments interact back-to-back, and at 
the interface there is the contact of M35 of one protofilament with Q15 
and L17 of the other.  

2MXU Recombinant, 
ss NMR 
 
Residues 11-42 

One protofilament with an S-shape and 3 β-strands at V12-V18, V24-G33 
and V36-V40, with connecting loops at A21-S26 and G33-M35. The 
fragment 1-10 is disordered. There are (intramolecular) contacts between 
F20-A21, F20-V24, F19-A30, F19-I32 and F19-I31, in addition to the salt 
bridge K28-A42.  

5OQV Recombinant, 
cryoEM 
 
Residues 1-42 

Two protofilaments with a pseudo-21 symmetry and parallel in-register 
cross-β structure. The subunit forms an LS-shaped structure, with an L-
shaped N-terminus and S-shaped C-terminus. The N-terminus is fully 
visible and part of the cross-β structure of the fibril. Three hydrophobic 
clusters stabilize the subunit: 1) A2, V36, F4, L34; 2) L17, I31, F19; 3) 
A30, I32, M35, V40. There is a salt bridge between D7-R5, E11-H6 and 
E11-H13. The salt bridges with E11 stabilize the kink in the N-terminal 
around residue Y10. The interaction between protofilament is not truly 
dimeric because subunits are stepwise shifted along the axis. Also, the 
subunit is not planar and the chain rises along the fibril axis, forming ends 
as ‘groove’ and ‘ridge’. The interface between protofilaments is formed 
by the C-terminus, with interactions between V39 and I41 from each 
subunit. There is also a salt bridge between D1 and K28 between two 
different protofilaments. 

2NAO Synthetic, 
ss NMR 
 
Residues 1-42 

Two protofilaments with C2 symmetry and 5 in-register parallel β-strands, 
at A2-H6, Q15-V18, S26-K28, A30-I32 and V39-A42. Each subunit has 
an S-shape with two hydrophobic cores. Residues L17, F19, F20 and V24 
from one strand interact with side chains of residues A30, I32 and L34. 
There is also an asparagine ladder with side chain N27 and a glutamine 
ladder with Q15. Residues F19 and F20 face the hydrophobic core with a 
non-β-strand like backbone conformation, while E22 and D23 are both 
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exposed to the solvent. This segment and in particular F19-F20, are 
stacked off the main layer, almost reaching the next layer along the fibril 
axis. In the C-terminal hydrophobic core, I31 from one strand faces V36, 
V39 and I41 of the other strand. There is the salt bridge K28-A42 within 
each protofilament. At the interface between the two protofilaments, M35 
interacts with both Q15 and L17, in addition to hydrophobic contacts 
between M35 and L34. The solvent-exposed surface has polar and 
charged side chains.  

5AEF Synthetic, 
cryoEM 
 
Residues 15-42 

A dimer of two subunits with face-to-face packing at region G25-I41 and 
tilde-shaped. The two monomers interact by packing their hydrophobic C-
terminal β-strands. There are three domains described, one central 
domain, with a zipper-like structural element, and two peripheral 
domains.  

2BEG Recombinant, 
NMR 
 
Residues 17-42 

One protofilament with ordered core at V18-A42, with a β-strand-turn-β-
strand arrangement, with the two in-register and parallel β-strands at V18-
S26 and I31-A42. L17, F19 and A21 of one sheet mediate hydrophobic 
contacts with V36 and V40 of the other sheet. The loop N27-A30 connects 
the two strands, together with a salt bridge D23-K28. In addition, K28 
interacts with I32 and L34.  

 
 

6. Intrinsically disordered proteins and other 
types of phase transitions 
 
Intrinsically disordered proteins (IDPs) constitute >30% of the human proteome (Alberti and 
Hyman 2016) and they contain multiple binding motifs that enable multivalent interactions with 
their partners (Martin et al. 2020). For example, some IDP sequences are rich in arginine and 
glycine repeats (RGG or RG) which allow binding to nucleic acids. In addition, some IDPs have  
low-complexity sequences and are enriched in Q, N, S and Y, resembling the composition of yeast 
prions. Thus, they are sometimes known as prion-like domains (PRDs) (Harrison and Shorter 
2017).  
 
Even though some IDPs form amyloids, such as Aβ42 or α-syn, other IDPs - and especially PRDs 
- can also form other types of assemblies with less ordered structures, like biomolecular 
condensates. Indeed, intrinsically disordered regions (IDRs) and IDPs are enriched in proteins 
forming biomolecular condensates, which are membraneless cellular compartments that form by 
a process of condensation known as liquid-liquid phase separation. In this process, an initial 
homogeneous solution of macromolecules demixes into two distinct liquid phases: one that is 
enriched in certain macromolecules and the other that is depleted in the same macromolecules 
(Yoo, Triandafillou, and Drummond 2019). Phase separation has been linked to many biological 
processes, such as heterochromatin formation, transport between the nucleus and the cytoplasm, 
cellular organization, stress sensing and formation of cellular compartments such as the nucleoli. 
However, in many cases, whether phase separation is required for function is still under 
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debate  (Alberti and Hyman 2016; Yoo, Triandafillou, and Drummond 2019; Alberti and 
Dormann 2019).  
 
Apart from liquid-liquid phase separation, other phase transitions also exist, such as gelation or 
liquid-to-solid transitions. An example of the latter is the transition to amyloids. Yet, the 
physicochemical state of the protein does not necessarily determine its function or dysfunction. 
A ‘continuum model’ suggests that different IDPs adopt different material states which are tuned 
to its function and purpose, and so under physiological conditions, each of them populates a 
different region of this spectrum of states (Figure 12). Perturbations like mutations or 
environmental changes compromise the material state and condensation in various ways: by 
changing the mechanism of assembly, by altering the activity of a regulator of condensation, or 
by altering physicochemical conditions inside the cell. By this means, upon perturbation, proteins 
access other states in the continuum that may no longer be physiological but induce pathogenicity 
(Alberti and Hyman 2016). 
 

 
Figure 12. A continuum model for IDP physicochemical states. Under physiological conditions, 
each protein populates a specific material state, with specific dynamics and spatial order. Adapted 
from (Alberti and Hyman 2016). 
 
 
Aberrant phase transitions have been linked to fatal diseases such as cancer and neurodegenerative 
conditions. A hallmark of all neurodegenerative diseases is the aggregation of the causal proteins, 
such as aggregates of TDP-43 or FUS in ALS and FTD (Ling, Polymenidou, and Cleveland 2013). 
However, it still remains unclear whether the aggregates are toxic per se, if they are only the final 
product of an aggregation process with alternative toxic species, or if cell death is due to loss of 
function of the corresponding protein (Fang et al. 2014; Bolognesi et al. 2019). 
 



 

35 
 

7. Variants of uncertain significance: the new 
challenge in human genetics 
 
Recent advances in high-throughput technologies have facilitated the sequencing of human 
genomes and exomes at large-scale with a reduced cost, resulting in increasing amounts of data 
on human genetic variation. For example, the genome of >2,500 individuals from 26 different 
populations were sequenced by the 1000 Genomes Project, reporting a total of >88 million genetic 
variants, of which >84 million are single nucleotide polymorphisms (SNPs), 3.6 million are 
insertions and deletions (indels) and 60,000 are structural variants (1000 Genomes Project 
Consortium et al. 2015). 
 
While this illustrates that genotyping is no longer a limitation, the main challenge nowadays in 
human genetics is to understand the phenotypic consequences of genetic variation: we still cannot 
accurately predict which and how genotypes result in specific phenotypes. The issue is even more 
alarming if we think that a typical genome differs from the reference genome at 4.1-5 million sites 
(1000 Genomes Project Consortium et al. 2015). Due to our inability to interpret how genetic 
variation links to function, most of the variants in the population are currently classified as VUS, 
i.e. variants of uncertain (clinical) significance (Fayer et al. 2021). The increasing amount of 
genomic data is not alleviating the so-called problem of the VUS: the number of unclassified 
variants is growing exponentially over time, currently accounting for the 70% of total variants in 
ClinVar, a repository for genomic variation and its association to human disease (Landrum et al. 
2014; Fayer et al. 2021). 
 
Traditionally, human genetics has focused on mutations displaying an observable trait or disease, 
biasing the attention to a small fraction of all the possible variants that exist in the population. 
One could argue that this strategy is sufficient to take clinical action but given the human 
population size and mutation rate, each single nucleotide change compatible with life is expected 
to occur in >50 individuals (Weile and Roth 2018). Hence, for a timely diagnosis, the effect of 
any variant should be measured ahead of ever being found in an individual. Even in some cases 
where pathogenic mutations are identified, there is still little understanding of the mechanism by 
which they cause disease. On top of that, many phenotypes are complex and emerge from the 
interplay between various genetic and environmental factors. In addition, many genes are 
pleiotropic and give rise to different phenotypes (Chesmore, Bartlett, and Williams 2018).  
 
Most of the mutations described so far are located in coding genes, biased by the fact that studies 
have focused mainly on these regions. However, genome-wide association studies (GWAS) have 
discovered that >90% of SNPs associated with disease are located in non-coding regions, 
affecting splice sites, promoters and regulatory regions (Hindorff et al. 2009).  
 
Multiplexed assays of variant effects (MAVEs) are emerging technologies that rely on massively 
parallel DNA synthesis and DNA sequencing and enable multiplexed construction of libraries 
and quantification of functional effects of thousands of mutations in parallel (Starita et al. 2017; 
Findlay 2021; Tabet et al. 2022). MAVEs have contributed to illuminating sequence-function 
relationships for some coding and non-coding regions, accelerating our understanding of VUS 
and anticipating diagnosis of disease outcomes. More broadly and beyond the scope of disease, 
mutagenesis is a fundamental tool to understand proteins at different levels: function, structure, 
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regulation and evolution. In this regard, MAVEs have the potential to build comprehensive maps 
of the impact of mutations that can guide the development of new therapeutic strategies or the 
engineering of synthetic proteins with improved or new functions. In addition, tracing 
evolutionary trajectories with MAVEs can reveal how adaptive mutations arise in a population 
under selective pressure.  
 

7.1. Genetic variation beyond substitutions 
 
Importantly, many mutagenesis studies have so far only focused on missense mutations - those 
that result from substituting the WT amino acid for another alternative amino acid. However, to 
build a more comprehensive picture of how mutations change proteins and alter gene regulation, 
other mutation types need to be considered, such as indels, recombination and splicing variants. 
 
Other types of mutations matter because first off, they exist: for example indels are highly 
abundant in the human genome and are the second most common form of genetic variation after 
substitutions, accounting for 15-21% of polymorphisms (Mullaney et al. 2010). Second, they 
matter because they cause disease: 24% and 15% of Mendelian diseases are caused by small indels 
and alternative splicing, respectively (Jiang and Chen 2021; Stenson et al. 2017). Importantly, 
indels and other types of mutations have historically been under-reported because they have been 
missed by genotyping and classical sequence alignments. Finally, they also matter because they 
perturb proteins in different ways than substitutions do: while substitutions only alter the 
backbone of the protein, indels change the length of the amino acid sequence and hence the spatial 
positioning and distances between all other residues (Vetter et al. 1996). More generally, 
assessing different types of mutation and systematically comparing them also bring the 
opportunity to explore larger sequence spaces. 
 
Scanning of indels is in its early days, but there are some pioneering studies addressing their 
impact on protein structure and function. For example, one of the first indels studies showed >30 
variants in nine ɑ-helices of T4 lysozyme with different outcomes, highlighting the plasticity of 
ɑ-helices structures and how these structures may have changed during evolution (Vetter et al. 
1996). Similarly, GFP was shown to be tolerant to many deletions in loops, helical elements and 
termini of strands. For one particular mutant, the authors also reported on an alternative folding 
process that would not have been accessible through substitution (Arpino et al. 2014). A recent 
study also revealed that deletions are more disruptive than insertions in a potassium channel 
(Macdonald et al. 2022). Other studies have mapped indels in bacteria (Gonzalez, Roberts, and 
Ostermeier 2019; Stephane Emond et al. 2020) and viruses (Ogden et al. 2019), and we have 
recently presented the first atlas of different mutation types in a human disease gene (Seuma, 
Lehner, and Bolognesi 2022). 
 

8. Multiplexed assays of variant effects and 
deep mutational scanning 
 
MAVEs is a broadly-used term that includes methods such as deep mutational scanning (DMS), 
massively parallel reporter assays (MPRAs) or saturation genome editing (SGE) (Gasperini, 
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Starita, and Shendure 2016; Weile and Roth 2018; Kinney and McCandlish, n.d.; Findlay 2021). 
Generally in DMS experiments and MAVEs, thousands of mutants can be tested in parallel in one 
single experiment that requires three main steps: 1) construction of a DNA library, 2) selection of 
variants for a specific phenotype and 3) deep sequencing of the library to link genotype to 
phenotype (Figure 13). While DMS normally refers to studies assessing protein function, MPRAs 
focus on regulatory regions. In both cases, variant libraries are introduced and over-expressed in 
plasmid constructs. Alternatively and thanks to emerging genetic editing tools such as 
CRISPR/Cas9, base editors or prime editing, it is now possible to integrate programmed variants 
directly into the genome. The great advantage of these technologies is the opportunity of studying 
genetic variation in the native chromosomal context, maintaining enhancers and distal factors that 
would otherwise be missed in plasmid libraries (Findlay et al. 2014; Erwood et al. 2022).  
 

 
Figure 13. Main steps in MAVEs for either regulatory elements or proteins. 1) A library of 
variants of interest in a regulatory region or coding gene is constructed and barcoded, that is, each 
variant is associated to a specific identifier. 2) The library is introduced in a system model that 
undergoes a selection step in which variants are stratified by function or by their alteration in 
RNA expression 3) The library is recovered and the performance of each variant is quantified by 
deep sequencing. Adapted from (Gasperini, Starita, and Shendure 2016). 
 
 
DMS was first described in 2010 by Fowler and Fields, when they used phage display to 
investigate the binding affinity of >600,000 variants of a human WW domain to its peptide ligand, 
coupled to high-throughput DNA sequencing. By this means, they pioneered the DMS 
technology, allowing functional characterisation of genotypic variation at scale (Fowler et al. 
2010). Since then and during the last decade, DMS has been employed to address a range of 
questions in protein biology. Some studies have revealed structural insights such as new binding 
pockets or allosteric sites (McCormick et al. 2021; Faure et al. 2022), mapped key regions for 
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function (Melamed et al. 2013; Coyote-Maestas et al. 2022), discovered in vivo secondary 
structural elements (Bolognesi et al. 2019), described protein-protein interactions (Diss and 
Lehner 2018), tested protein stability (Matreyek et al. 2018) and tracked evolutionary trajectories 
(Domingo, Diss, and Lehner 2018; Starr et al., n.d.; Haddox et al. 2018). MPRAs have been 
instead used to illuminate sequence-function relationships in gene regulatory sequences, like 
enhancers, promoters, splice sites or untranslated regions (Patwardhan et al. 2009; Julien et al. 
2016; Maricque, Chaudhari, and Cohen 2018; Baeza-Centurion et al. 2020; Calderon et al. 2020). 
 
Many of these studies have focused on assessing variant pathogenicity, with assays targeting 
disease genes or proteins. In fact, MAVEs have proved to be a useful tool to classify VUS and 
some of them have a striking pathogenicity predicting power. For example, a SGE study on the 
tumor suppressor gene BRCA1 showed >96% accuracy in classifying pathogenic variants 
(Findlay et al. 2018). Other studies using yeast also accurately classified known disease variants 
and prioritized other current VUS as likely pathogenic, highlighting the potential use of simpler 
models such as yeast to report on disease mechanisms (Seuma et al. 2021; Sun et al. 2020).  
 
Machine learning approaches have taken advantage of DMS datasets to build better predictors of 
pathogenicity (Griffith and Holehouse 2021; Høie et al. 2022), to infer generalizable models of 
genotype-phenotype maps (Tareen et al. 2022; Tonner, Pressman, and Ross 2022), to identify 
core regions in activation domains (Sanborn et al. 2021), to optimize antibodies (Bachas et al. 
2022) or to infer the effect of untested variants in a gene (J. Zhou and McCandlish 2020), as well 
as extrapolating the predictions to new genes (Gray et al. 2018). In addition, there is an 
international community effort to collect MAVEs datasets in repositories such as MaveDB 
(Esposito et al. 2019), and organizations such as the Atlas of Variant Effects Alliance, with the 
mission of characterizing all variants in the human genome and providing accessible data and 
tools. 
 

8.1. Different approaches for library construction 
 
MAVEs require rationally designed libraries. Examples include libraries of single amino acid 
substitutions to study SNPs (Fowler et al. 2010; Melamed et al. 2013; Bolognesi et al. 2019; Starr 
et al. 2020), indels to explore various mutation types (Seuma, Lehner, and Bolognesi 2022; 
Macdonald et al. 2022), double or multiple amino acid substitutions to study combinatorial 
mutagenesis and epistasis (Olson, Wu, and Sun 2014; Diss and Lehner 2018; Schmiedel and 
Lehner 2019), scrambled versions of the WT amino acid sequence for positional dependencies 
(Sanborn et al. 2021; Staller et al. 2022), homologous sequences to map evolutionary trajectories 
(Domingo, Diss, and Lehner 2018), tiling sequences of long domains to identify hotspot regions 
(Sanborn et al. 2021), insertions of new protein motifs (Coyote-Maestas et al. 2019) or sequences 
covering specific physicochemical properties space (Staller et al. 2018).  
 
Site saturation mutagenesis (i.e. substituting the WT codon of a specific position for all other 
possible codons) can be achieved by error-prone PCR. This simple and widely-used approach 
relies on a polymerase that introduces mismatches during PCR amplification at a certain 
frequency (Wilson and Keefe 2001). Although the frequency of error/kb can be tuned by adjusting 
PCR conditions, the polymerase will most likely only introduce one single nucleotide change in 
each codon, hence limiting the number of possible amino acid changes. Similarly, another 
polymerase that introduces frame-shift mutations can be used in PCR amplification to obtain a 
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library with insertions and deletions (Stéphane Emond et al. 2008). Mutagenesis and mutated 
positions can be more directly controlled by using designed PCR primers with degenerate codons, 
such as NNK or NNS. These two codons codify for virtually all codons while ensuring a reduced 
number of stop codons. One example is the inverse PCR method, that uses pairs of PCR primers 
pointing in opposite directions and a degenerate codon at the 5’ of the forward primer. Upon PCR 
linearisation and re-ligation, the plasmid incorporates a new mutation in the targeted position 
(Jain and Varadarajan 2014). However, pairs of oligos targeting each position have to be used in 
independent PCR reactions, limiting the throughput of library construction. Nicking mutagenesis 
(Wrenbeck et al. 2016) and PFunkel (Firnberg and Ostermeier 2012) methods use instead a pool 
of oligos with degenerate codons at different positions in one-pot PCR reaction. In both cases, a 
single strand DNA template is first mutated with mutagenic oligos, followed by synthesis of the 
complementary strand. While nicking mutagenesis relies on restriction enzymes to degrade WT 
template strands, PFunkel uses uracil-containing templates that can be degraded by uracil DNA 
glycosylase. Other strategies that do not rely on PCR amplification to incorporate mutations make 
use of synthetic oligos or oligo pools (Macdonald et al. 2022). These can be directly cloned inside 
the linearised vector provided they are designed with flanking restriction sites for digestion, or 
with regions that have homology with the vector for recombination.  
 
These are only a few of all possible strategies to build mutational libraries, with variable 
mutagenesis efficiency, coverage, positional bias, mutation type outcomes and cost, so that using 
one method or another depends on the experimental purpose. For example, custom oligo pools 
are normally expensive and the synthesis quality drops with sequence length. Yet, they enable the 
construction of comprehensive libraries that would otherwise be very difficult to obtain by means 
of other methods, such as libraries encompassing indels, scrambled versions of the sequence or 
multiple mutated positions. The methods used in our work are summarized in Table 2. 
 
 
Table 2. Comparison of different approaches for library construction. 

Method Type of mutagenesis Advantages Disadvantages 

Error-prone 
PCR 

Substitutions at the 
nucleotide level 

Rapid, low cost, high 
throughput 

Difficult to control mutation 
rate, high representation of 
the WT sequence  

Inverse PCR Substitutions, at both 
nucleotide and amino acid 
level 

Low cost Low-throughput 

Nicking 
mutagenesis 

Substitutions, at both 
nucleotide and amino acid 
level 

Rapid, high throughput Expensive reagent, high 
representation of the WT 
sequence  

Synthetic 
oligo pools 

Customizable 
(substitutions, insertions, 
deletions, scrambled 
sequences) 

Rapid, high-throughput, 
obtain any type of mutation 
and combinatorial libraries 

Expensive, quality drops 
with sequence length 
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8.2. Engineering selection 
 
Tailored selection assays have been used in DMS and MAVEs, in order to interrogate variants 
for a specific phenotype. One important aspect in this step is to evaluate and tune the 
discriminating power of the assay, ensuring a phenotypic dynamic range in which variants with 
divergent outcomes can be selected. To do so, individual variants with a prior known phenotype 
can be used as controls (Kowalsky et al. 2015).  
 
Cell-based assays rely on selectable phenotypes, such as cell growth or fitness: over generations, 
cells carrying detrimental variants will disappear in the population while those carrying a neutral 
or even beneficial variant will be enriched (Findlay et al. 2018; Bolognesi et al. 2019; Gersing et 
al. 2022). Other strategies that rely on cell survival are those that interrogate protein-protein 
interactions, such as yeast two-hybrid (Y2H) or protein-fragment complementation assays (PCA) 
(Diss and Lehner 2018; Faure et al. 2022). Here, cell growth is determined by the strength of the 
interaction between two putative interacting proteins, that - upon binding - reconstitute a 
functional transcriptional factor or enzyme. More complex phenotypes such as cell shape or 
protein colocalization are also selectable thanks to recent advances in microscopy technologies 
(Hasle et al. 2020; Schraivogel et al. 2022).  
 
Libraries can also be selected by auxotrophic or fluorescent reporters. Although it also applies to 
interrogating proteins, this is particularly useful for MPRA with DNA or RNA libraries. For 
example, variants in promoter regions can be selected by fluorescence-activated cell sorting 
(FACS) if the library is fused upstream of a GFP reporter construct (X. Li et al., n.d.; Matreyek 
et al. 2018). The amount of fluorescent signal is a readout of the ability of the promoter variant to 
regulate transcription. Quantification of RNA levels has also been used in MPRA to study 
regulatory elements or splicing events (Patwardhan et al. 2009; Calderon et al. 2020).  
 
It is worth noting that in vivo MAVEs have been applied in different model organisms. Yeast and 
bacteria models have the advantage of being cheap, highly scalable and with fast generation times. 
For example, yeast has been used in many functional complementation assays, where human 
genes can rescue the deletion of their yeast orthologs. By this means, the endogenous yeast gene 
is replaced by a library of variants of a human gene and the relative fitness changes are interpreted 
as a direct effect of each variant. However, only about 200 human genes relevant to disease are 
known to be amenable for functional complementation assays in yeast (Sun et al. 2016). In some 
cases, specific phenotypes may be limited to only one model organism. For example, the 
nucleation assay used in our work for amyloidogenic proteins is exclusive for yeast since it is 
based on a yeast prion switching phenotype (Seuma et al. 2021). In other cases, more complex 
models such as mammalian cell lines may be more suitable to better mimic human phenotypes. It 
was recently shown that some human genes with great relevance to disease are essential in haploid 
human cell lines (e.g. HAP1) and indeed, this model system was used to test pathogenicity in 13 
exons of the BRCA1 gene, a tumor suppressor gene (Findlay et al. 2018).  
 
Alternatively to in vivo methods, in vitro display technologies can also be used to test protein 
variants for their ability to bind interactors. One example is phage display, where the protein is 
displayed on the surface of the phages and subjected to several rounds of binding to its interactor. 
Variants weakly binding to the interactor are washed away and depleted in the final pull (Fowler 
et al. 2010).  



 

41 
 

 
A more extended overview of selection assays that have been already used or have great potential 
to be transferred to DMS can be found in (Seuma and Bolognesi 2022), included here in Annex 
II.  
 

8.3. Using DMS to track amyloid nucleation  
 
In section 1. Protein folding we reviewed that upon mutation, some proteins can adopt multiple 
conformations and undergo a process of self-assembly. DMS approaches that select for specific 
biophysical states are therefore suitable to understand the impact of mutations on the equilibrium 
between the different states.  
 
Two DMS approaches with different selections have been used to map the mutational landscape 
of the Aβ42 peptide. The first strategy reports on solubility: Aβ42 is fused to dihydrofolate 
reductase (DHFR) and only soluble variants of Aβ42 allow the enzyme to remain soluble and 
functional in the presence of its competitive inhibitor methotrexate. All those Aβ42 aggregating 
variants inactivate DHFR and cause cell toxicity (Gray et al. 2019). The second approach tracks 
instead amyloid nucleation (see section 4. Macroscopic and microscopic mechanisms in amyloid 
aggregation for more details on amyloid nucleation). In this case, Aβ42 is fused to the nucleation 
domain of Sup35 (Sup35N), a well-known yeast prion that functions as a translation termination 
factor. Importantly, Sup35 loses its function upon switching from soluble to amyloid 
conformation in the prion state (denoted as [PSI+]). This conformational change occurs naturally 
at very low frequency due to a high kinetic barrier but can be induced by seeding of another prion 
or amyloidogenic protein. This induced loss-of-function phenotype is exploited in selection as 
follows: nucleation of Aβ42 variants is rate-limiting for the nucleation of Sup35N, which induces 
[PSI+] switching of endogenous Sup35p and a read-through of a premature stop codon in the 
adenine gene. Hence, growth in the absence of adenine allows selection of nucleating variants of 
Aβ42 (Figure 14) (Chandramowlishwaran et al. 2018; Seuma et al. 2021; Seuma, Lehner, and 
Bolognesi 2022). 
 

 
 
Figure 14. Amyloid nucleation selection assay. Aβ42 fused to Sup35N seeds aggregation of 
Sup35p, causing a read-through of a premature stop in the ade1 reporter gene and hence allowing 
growth in a selective medium lacking adenine.  
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8.4. Massively parallel sequencing 
 
The last step of DMS experiments is the high-throughput sequencing of DNA extracted from the 
population before and after selection. Each cell carries a DNA sequence that encodes for the 
protein variant that is being expressed and selected for. Therefore, by sequencing the DNA, each 
phenotype is linked to a specific genotype. The performance of each variant inside the population 
is scored by calculating the frequency of reads in the output (after selection) over the input (before 
selection). This quantitative measurement is also known as the enrichment score and is standardly 
normalized to the score of the WT sequence (Kowalsky et al. 2015). 
 
Many DMS studies have used paired-end Illumina sequencing, with primers annealing to the 
constant regions of the plasmid library (Kowalsky et al. 2015). However, this approach has 
coverage and read length restrictions, impeding the targeting of long sequences. To overcome this 
limitation, each variant can be tagged with a short barcode. By this means, and with previous 
barcode-variant association by long-read PacBio sequencing, only the barcodes need to be deep 
sequenced for library quantification (Starr et al. 2020).   
 
Computational pipelines such as DiMSum (Faure et al. 2020) and Enrich2 (Rubin et al. 2018) 
have been developed to support the analysis of DMS data from the processing of the raw 
sequencing data, to the estimation of enrichment scores and diagnosis of data quality. 
 

8.5. Inferring protein structure using DMS 
 
Mutations within a protein are assumed to act independently and have additive effects, meaning 
that the outcome of a double mutant is the sum of the effects of the corresponding single mutants. 
However, when mutations have a non-independent effect, they are called epistatic and a genetic 
interaction is detected. It is assumed that at least some of the residues in direct structural contact 
within a protein will result in non-independent effect when mutated, i.e. variants at these positions 
are strongly interacting (Figure 15) (Domingo, Baeza-Centurion, and Lehner 2019).  
 
Relying on this idea, DMS data, with hundreds or thousands of mutation measurements, has been 
used to determine structural elements in proteins (Schmiedel and Lehner 2019; Rollins et al. 
2019). By mapping genetic interactions all along the protein, the resulting patterns can report on 
secondary structures that are present in the context the protein is being selected for. This approach 
can be used not only in globular domains but also to explore in vivo conformations of disordered 
proteins that are otherwise very difficult to resolve by traditional structural methods (Bolognesi 
et al. 2019).   
 
Double mutant cycles (DMC) have been used to study the energetic coupling between residues, 
decades before DMS (Carter et al. 1984; Horovitz and Fersht 1990; Ackermann et al. 1998). In a 
classic DMC, two residues are mutated separately and in combination and the free energy of a 
specific process - for example, protein folding - is measured. The energetic coupling is then 
calculated as the difference between the expected and the measured energies. This approach can 
be used to study energetic interactions in proteins and complexes of known structure, but also to 
characterize conformations that are inaccessible by traditional structural approaches, such as 
transition states in protein folding (Horovitz and Fersht 1990; Horovitz 1996).  
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Although the specific methods to quantify phenotypes and throughput differ, quantification of 
genetic interactions via DMS and DMC rely on the same principles and have the same goal: to 
identify energetically coupled residues. Thus, combining DMS and DMC will allow 
quantification of the free energy of a specific process for thousands of protein variants at scale.   
 

 
Figure 15. Residues in close structural proximity are likely to be epistatic. 
 

 



 

44 
 

  



 

45 
 

 
Objectives 

 
 

 
 Develop a deep mutational scanning assay that tracks amyloid aggregation for thousands 

of protein variants in parallel. 
 

 Map the effect of all possible Aβ42 mutations on amyloid aggregation. 
 

 Systematically compare the effect of different types of mutations on amyloid aggregation, 
including substitutions, insertions, deletions and truncations. 

 
 Decipher the underlying mechanism by which Aβ42 Alzheimer’s disease mutations drive 

aberrant aggregation. 
 

 Map the effect of mutations on toxicity in a disordered domain of TDP-43 by using deep 
mutational scanning. 

 
 Use genetic interactions to identify critical structural contacts for protein function and 

dysfunction. 
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Summary 
 
The results section of this thesis comprises three manuscripts. The first one, The genetic landscape 
for amyloid beta fibril nucleation accurately discriminates familial Alzheimer’s disease mutations 
(see Chapter I) represents the first comprehensive map of how mutations alter the propensity of 
any protein to form amyloid. We used deep mutational scanning (DMS) to quantify the effect of 
>14,000 single and double amino acid substitutions on the nucleation of amyloid β 42 peptide 
(Aβ42). Our data reveals a modular organization of the impact of mutations on Aβ42, with most 
mutations at the C-terminus disrupting nucleation but with a more moderate effect at the N-
terminus. We also identify 7 gatekeeper residues at the N-terminus that prevent amyloid 
nucleation. In addition, we map the effect of all dominant mutations associated with familial AD 
(fAD). Unlike computational predictors or previous experimental assays done before, nucleation 
scores accurately discriminate fAD variants. Moreover, the agreement of nucleation scores with 
human genetics suggests that fAD is a nucleation disease.  
 
The second manuscript is currently under revision and available as a preprint, entitled An atlas of 
amyloid aggregation: the impact of substitutions, insertions, deletions and truncations on amyloid 
beta fibril nucleation (see Chapter II) and represents the first systematic comparison of mutation 
types in any human gene. Here, we used Deep Indel Mutagenesis (DIM) to generate the first atlas 
of amyloid aggregation including different types of mutations beyond substitutions, such as 
insertions, deletions and truncations. This work illustrates how the effect of mutations is not easily 
predictable and that important differences exist among different mutation types. The dataset 
provides fundamental mechanistic insights into the amyloid formation process and identifies 
variants of all types beyond substitutions that accelerate nucleation and are likely pathogenic. 
 
The third manuscript The mutational landscape of a prion-like domain (see Chapter III), 
represents the first comprehensive mutational scanning of a prion-like domain. In this case, we 
developed a DMS toxicity assay to quantify the effect of mutations in the prion-like domain of 
TDP-43. This dataset reveals that TDP-43 toxicity in yeast can be explained mainly on the basis 
of hydrophobicity of its primary sequence, with increased hydrophobicity decreasing toxicity for 
the cell. We show that toxic variants form liquid-like and dynamic condensates, in contrast to 
those non-toxic variants forming insoluble cytoplasmic assemblies. Moreover, liquid condensates 
localize close to the cell nucleus, in agreement with the idea that toxicity may come from 
interfering with transport. We reason that toxicity from TDP-43 liquid condensates may be 
prevented by titrating the protein into solid aggregates. In addition, we quantify genetic 
interactions and identify two secondary structural elements that form in vivo, revealing how 
disordered regions can actually be partially structured in vivo. 
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Abstract Plaques of the amyloid beta (Aß) peptide are a pathological hallmark of Alzheimer’s

disease (AD), the most common form of dementia. Mutations in Aß also cause familial forms of AD

(fAD). Here, we use deep mutational scanning to quantify the effects of >14,000 mutations on the

aggregation of Aß. The resulting genetic landscape reveals mechanistic insights into fibril

nucleation, including the importance of charge and gatekeeper residues in the disordered region

outside of the amyloid core in preventing nucleation. Strikingly, unlike computational predictors

and previous measurements, the empirical nucleation scores accurately identify all known dominant

fAD mutations in Aß, genetically validating that the mechanism of nucleation in a cell-based assay is

likely to be very similar to the mechanism that causes the human disease. These results provide the

first comprehensive atlas of how mutations alter the formation of any amyloid fibril and a resource

for the interpretation of genetic variation in Aß.

Introduction
Amyloid plaques consisting of the amyloid beta (Aß) peptide are a pathological hallmark of Alz-

heimer’s disease (AD), the most common cause of dementia and a leading global cause of morbidity

with very high societal and economic impact (Ballard et al., 2011; World Health Organization,

2012). Although most cases of AD are sporadic and of uncertain cause, rare familial forms of the dis-

ease also exist (Campion et al., 1999). These inherited forms of dementia typically have earlier onset

and are caused by high penetrance mutations in multiple loci, including in the amyloid precursor

protein (APP) gene, which encodes the protein from which Aß is derived by proteolytic cleavage

(O’Brien and Wong, 2011). Several mutations in PSEN1 and PSEN2, the genes coding for the secre-

tases performing sequential cleavage of APP, also lead to autosomal dominant forms of AD. The

two most abundant isoforms of Aß generated upon cleavage are 42 and 40 amino acids (aa) in

length, with the longer Aß peptide associated with increased aggregation in vitro and cellular toxic-

ity (Meisl et al., 2014; Sandberg et al., 2010). The amyloid state is a thermodynamically low energy

state but, both in vitro and in vivo, the spontaneous formation of amyloids is normally very slow

because of the high kinetic barrier of fibril nucleation (Knowles et al., 2014). The process of nucle-

ation generates oligomeric Aß species that have been hypothesized to be particularly toxic to cells

and that then grow into fibrils (Michaels et al., 2020; Bolognesi et al., 2010; Cleary et al., 2005).

Fourteen different mutations in the Aß peptide have been reported to cause familial Alzheimer’s

disease (fAD), with all but two having a dominant pattern of inheritance (Weggen and Beher, 2012;

Van Cauwenberghe et al., 2016). However, it is not clear why these particular mutations cause fAD
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(Weggen and Beher, 2012; Van Cauwenberghe et al., 2016), and these 14 mutations represent

only 3.7% of the possible 378 single nucleotide changes that can occur in Aß. As for nearly all dis-

ease genes, therefore, the molecular mechanism by which mutations cause the disease remains

unclear and the vast majority of possible mutations in Aß are variants of uncertain significance (VUS).

This makes the clinical interpretation of genetic variation in this locus a difficult challenge

(Starita et al., 2017; Gelman et al., 2019). Moreover, given the human mutation rate and popula-

tion size, it is likely that nearly all of these possible variants in Aß actually exist in at least one individ-

ual currently alive on the planet (Conrad et al., 2011). A comprehensive map of how all possible

mutations affect the formation of Aß amyloids and how these changes relate to the human disease

is therefore urgently needed.

More generally, amyloid fibrils are associated with many different human diseases

(Knowles et al., 2014), but how mutations alter the propensity of proteins to aggregate into amy-

loid fibrils is not well understood and there has been no large-scale analysis of the effects of muta-

tions on the formation of any amyloid fibril. Here, we address this shortcoming by quantifying the

rate of fibril formation for >14,000 variants of Aß. This provides the first comprehensive map of how

mutations alter the propensity of any protein to form amyloid fibrils. The resulting data provide

numerous mechanistic insights into the process of Aß fibril nucleation. Moreover, they also accu-

rately classify all the known dominant fAD mutations, validating the clinical relevance of a simple

cell-based model and providing a comprehensive resource for the interpretation of clinical genetic

data.

eLife digest Alzheimer’s disease is the most common form of dementia, affecting more than 50

million people worldwide. Despite more than 400 clinical trials, there are still no effective drugs that

can prevent or treat the disease. A common target in Alzheimer’s disease trials is a small protein

called amyloid beta. Amyloid beta proteins are ‘sticky’ molecules. In the brains of people with

Alzheimer’s disease, they join to form first small aggregates and then long chains called fibrils, a

process which is toxic to neurons.

Specific mutations in the gene for amyloid beta are known to cause rare, aggressive forms of

Alzheimer’s disease that typically affect people in their fifties or sixties. But these are not the only

mutations that can occur in amyloid beta. In principle, any part of the protein could undergo

mutation. And given the size of the human population, it is likely that each of these mutations exists

in someone alive today.

Seuma et al. reasoned that studying these mutations could help us understand the process by

which amyloid beta forms new aggregates. Using an approach called deep mutational scanning,

Seuma et al. mutated each point in the protein, one at a time. This produced more than 14,000

different versions of amyloid beta. Seuma et al. then measured how quickly these mutants were able

to form aggregates by introducing them into yeast cells.

All the mutations known to cause early-onset Alzheimer’s disease accelerated amyloid beta

aggregation in the yeast. But the results also revealed previously unknown properties that control

how fast aggregation occurs. In addition, they highlighted a number of positions in the amyloid beta

sequence that act as ‘gatekeepers’. In healthy brains, these gatekeepers prevent amyloid beta

proteins from sticking together. When mutated, they drive the protein to form aggregates.

This comprehensive dataset will help researchers understand how proteins form toxic

aggregates, which could in turn help them find ways to prevent this from happening. By providing

an ‘atlas’ of all possible amyloid beta mutations, the dataset will also help clinicians interpret any

new mutations they encounter in patients. By showing whether or not a mutation speeds up

aggregation, the atlas will help clinicians predict whether that mutation increases the risk of

Alzheimer’s disease.
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Results

Deep mutagenesis of Aß
To globally quantify the impact of mutations on the nucleation of Aß fibrils, we used an in vivo selec-

tion assay in which the nucleation of Aß is rate-limiting for the aggregation of a second amyloid, the

yeast prion [PSI+] encoded by the sup35 gene (Chandramowlishwaran et al., 2018). Aggregation

of Sup35p causes read-through of UGA stop codons, allowing growth-based selection using an

auxotrophic marker containing a premature termination codon (Figure 1A and Figure 1—figure

supplement 1A). We generated a library containing all possible single nucleotide variants of Aß42

fused to the nucleation (N) domain of Sup35p and quantified the effect of mutations on the rate of

nucleation in triplicate by selection and deep sequencing (Faure et al., 2020; see Materials and

methods). The selection assay was highly reproducible, with enrichment scores for aa substitutions

strongly correlated between replicates (Figure 1B and Figure 1—figure supplement 1B).
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Figure 1. Deep mutagenesis of amyloid beta (Aß) nucleation. (A) In vivo Aß selection assay. Aß fused to the Sup35N domain seeds aggregation of

endogenous Sup35p causing a read-through of a premature UGA in the Ade1-14 reporter, allowing the cells to grow in medium lacking adenine. (B)

Correlation of nucleation scores for biological replicates 1 and 2 for single and double amino acid (aa) mutants. Pearson correlation coefficient and

p-value are indicated (Figure 1—figure supplement 1B) n = 10,157 genotypes. (C) Correlation of nucleation scores with in vitro primary and secondary

nucleation and elongation rate constants (Yang et al., 2018). Weighted Pearson correlation coefficient and p-value are indicated. (D) Nucleation scores

as a function of principal component 1 (PC1) aa property changes (Bolognesi et al., 2019) for single and double aa mutants (n = 14,483 genotypes).

Weighted Pearson correlation coefficient and p-value are indicated. (E) Solubility scores (Gray et al., 2019) as a function of PC1 changes

(Bolognesi et al., 2019) for n = 895 single and double mutants. Pearson correlation coefficient and p-value are indicated.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Reproducibility of the assay and correlation with in vitro fibril nucleation.

Figure supplement 1—source data 1. Raw colony counts from independent testing of the strains expressing the variants reported in Figure 1—figure

supplement 1A.

Seuma et al. eLife 2021;10:e63364. DOI: https://doi.org/10.7554/eLife.63364 3 of 19

Research article Computational and Systems Biology Genetics and Genomics



In vivo nucleation scores are highly correlated with in vitro rates of
amyloid nucleation
Comparing our in vivo enrichment scores to the qualitative effects of 16 mutations analysed in vitro

across 10 previous publications validated the assay, with mutational effects matching the effects on

in vitro nucleation previously reported for 14 Aß variants out of 16. (Supplementary file 1). More-

over, the in vivo scores correlate extremely well with the rate of nucleation of Aß variants in positions

21, 22, 23 (Yang et al., 2018; Törnquist et al., 2018; Figure 1C and Figure 1—figure supplement

1C). We henceforth refer to the in vivo enrichment scores as ‘nucleation scores’ (NS).

Two mechanisms of in vivo Aß aggregation
A prior deep mutational scan quantified the effects of mutations on the abundance of Aß fused to

an enzymatic reporter (Gray et al., 2019). These ‘solubility scores’ do not predict the effects of

mutations on Aß nucleation (Figure 1—figure supplement 1D). Previously we identified a principal

component of aa properties (principal component 1 [PC1], related to changes in hydrophobicity)

that predicts the aggregation and toxicity of the amyotrophic lateral sclerosis (ALS) protein TDP-

43 when it is expressed in yeast (Bolognesi et al., 2019). PC1 is also not a good predictor of Aß

nucleation (Figure 1D) but it does predict the previously reported changes in Aß solubility

(Figure 1E), suggesting that Aß is aggregating by a similar process to TDP-43 in this alternative

selection assay (Gray et al., 2019) but by a different mechanism in the nucleation selection.

Nucleation scores for 14,483 Aß variants
The distribution of mutational effects for Aß nucleation has a strong bias towards reduced nucle-

ation, with 56% of single aa substitutions reducing nucleation but only 16% increasing it (Z-test, false

discovery rate [FDR] = 0.1, Figure 2A). Moreover, mutations that decrease nucleation in our dataset

typically have a larger effect than those that increase it, with many mutations reducing nucleation to

the background rate observed for Aß variants containing premature termination codons

(Figure 2A).

In addition to covering all aa changes obtainable through single nt mutations, our mutagenesis

library was designed to contain a substantial fraction of double mutants. In total, we quantified the

impact of 14,015 double aa variants of Aß. Double mutants were even more likely to reduce nucle-

ation, with 63% decreasing and only 5.5% increasing nucleation (Z-test, FDR = 0.1; Figure 2B).

Therefore, mutations more frequently decrease rather than increase Aß nucleation.

Aß has a modular mutational landscape
Inspecting the heatmap of mutational effects for aa changes at all positions in Aß reveals strong

biases in the locations of mutations that increase and decrease nucleation (Figure 2C and D, and

Figure 2—figure supplement 1A). Mutations that decrease nucleation are highly enriched in the

C-terminus of Aß, whereas mutations that increase nucleation are enriched in the N-terminus

(Figure 2E). Indeed, >84% of mutations in the C-terminus (residues 27-42) reduce nucleation and

only 9.6% increase it (FDR = 0.1). In contrast, the effects of mutations are smaller (Figure 2F) and

also more balanced in the first 26 aa of the peptide, with 38.6% decreasing and 20% increasing

nucleation (FDR = 0.1).

These differences in the direction and strength of mutational effects between the N- and C-termi-

nal regions of Aß suggest a modular organization of the peptide. This modularity is also reflected in

the primary sequence of Aß, which has a hydrophobic C-terminus and a more polar and charged

N-terminus (eight out of nine charged residues in Aß are found before residue 24 and the peptide

consists entirely of hydrophobic residues from position 29) (Figures 2C and 3A). Consistent with this

modular organization, mutations in the few hydrophobic residues in the N-terminus have effects that

are more similar to mutations in polar residues in the N-terminus rather than in hydrophobic residues

in the C-terminus. Similarly, mutations in the most C-terminal charged residue (K28) frequently

strongly reduce nucleation, just as they do in the adjacent hydrophobic positions (Figure 3A).

Gatekeeper residues act as anti-nucleators
Considering the entire Aß peptide, there are only seven positions in which mutations are not more

likely to decrease rather than increase nucleation (FDR = 0.1; Figure 2D). Strikingly, these positions,
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Figure 2. Modular organization of mutational effects in amyloid beta (Aß). (A and B) Nucleation scores distribution for single (A) and double (B) amino

acid (aa) mutants. n = 468 (missense), n = 31 (nonsense), n = 90 (synonymous) for singles, and n = 14,015 (missense) for doubles. Vertical dashed line

indicates wild-type (WT) score (0). (C) Heatmap of nucleation scores for single aa mutants. The WT aa and position are indicated in the x-axis and the

mutant aa is indicated on the y-axis, both coloured by aa class. Variants not present in the library are represented in white. Synonymous mutants are

indicated with ‘*’ and familial Alzheimer’s disease (fAD) mutants with a box, coloured by fAD class. (D) Number of variants significantly increasing (blue)

and decreasing (orange) nucleation at different false discovery rates (FDRs). Gatekeeper positions (D1, E3, D7, E11, L17, E22, and A42) are indicated on

top of the corresponding bar and coloured on the basis of aa type. The N-terminal and C-terminal definitions are indicated on the x-axis. Gatekeeper

positions are excluded from the N-terminal and C-terminal classes. (E) Aa position distributions for variants that increase (+), decrease (�), or have no

effect on nucleation (WT-like) (FDR < 0.1). (F) Nucleation score distributions for the three clusters of positions defined on the basis of nucleation: Nt (2-

26), Ct (27-41), and gatekeeper positions (clusters are mutually exclusive). Horizontal line indicates WT nucleation score (0). Nonsense (stop) mutants

were only included in A and C. Boxplots represent median values and the lower and upper hinges correspond to the 25th and 75th percentiles,

respectively. Whiskers extend from the hinge to the largest value no further than 1.5*IQR (interquartile range). Outliers are plotted individually or

omitted when the boxplot is plotted together with individual data points or a violin plot.

Figure 2 continued on next page
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which we refer to as ‘gatekeepers’ of nucleation (Rousseau et al., 2006; Pedersen et al., 2004),

include five of the six negatively charged residues in Aß. The sixth gatekeeper is an unusual hydro-

phobic residue in the N-terminus, L17, where seven mutations increase nucleation and only one

decreases it (FDR = 0.1; Figure 2D). The final aa of the peptide, A42, also has an unusual distribu-

tion of mutational effects that is different to the rest of the C-terminus, with four mutations increas-

ing and three mutations decreasing nucleation (FDR = 0.1; Figure 2D).

Taken together, on the basis of mutational effects, we therefore distinguish the following mutually

exclusive positions in Aß: the C-terminus (aa 27-41) where the majority of mutations strongly

decrease nucleation, the N-terminus (aa 2-26) where mutations have smaller and more balanced

effects, and seven gatekeeper residues (D1, E3, D7, E11, D22, L17, A42) where mutations frequently

increase nucleation. We consider each of these classes below.

Mutations in the N- and C-terminal regions
Mutations in the C-terminus nearly all decrease nucleation (Figure 3A). This is consistent with the

C-terminus forming part of the tightly packed amyloid core of all known structural polymorphs of

both Aß42 (Colvin et al., 2016; Meier et al., 2017; Wälti et al., 2016; Xiao et al., 2015;

Gremer et al., 2017; Lührs et al., 2005; Schmidt et al., 2015) and Aß40 (Kollmer et al., 2019;

Lu et al., 2013; Qiang et al., 2012; Sgourakis et al., 2015; Paravastu et al., 2008; Schütz et al.,

2015). Consistent with this, we quantified the nucleation of three C-terminal fragments of the pep-

tide (aa 22-42, 24-42, 27-42) and found that they nucleate similarly or better than full length Aß (Fig-

ure 3—figure supplement 1C). Mutations to polar and charged residues in this region nearly all

decrease nucleation, but so too do most changes to other hydrophobic residues (Figure 3B), sug-

gesting specific side chain packing in this region is important for nucleation. The relative effects of

different mutations are only partially captured by changes in hydrophobicity (Figure 3F; Pearson cor-

relation coefficient, R = 0.45) and by predictors of aggregation potential (Figure 3—figure supple-

ment 1A). Only a few mutations in this region increase nucleation: substitutions to isoleucine at

positions 30, 34, and 39; mutations to valine at positions 29, 30, and 34; a change to threonine at

position 30; changes to leucine and methionine at 36; and a mutation to phenylalanine at position

41 (FDR = 0.1).

Mutations in the N-terminus of Aß have a more balanced effect on nucleation, and these effects

are not well predicted by either hydrophobicity or predictors of aggregation potential (Figure 3—

figure supplement 1B,D and E). The effects of introducing particular aa are, however, biased, with

the introduction of asparagine, isoleucine, and valine most likely to increase nucleation (Figure 3C

and Figure 3—figure supplement 2). As at the C-terminus, the introduction of negative charged

residues typically strongly reduces nucleation (Figure 3B and C). However, in contrast to what is

observed in the C-terminus (Figure 3B), the effects of introducing positive charge are less severe

(Figure 3C). Interestingly, the effects of mutations to proline, isoleucine, valine, and threonine in the

N-terminus depend on the position in which they are made: mutations in the first 12 residues typi-

cally decrease nucleation, whereas mutations in the next four to nine residues increase nucleation

(Figure 3E). The conformational rigidity of proline and the beta-branched side chains of isoleucine,

valine, and threonine that disfavour helix formation suggest that disruption of a secondary structure

in this region may favour nucleation. Interestingly, this same region was highlighted as the part of

the peptide remaining most disordered across different states of the solution ensemble of Aß in

molecular dynamics simulations, with the same region also making extensive long-range contacts in

different states of the kinetic ensemble (Löhr et al., 2021).

The role of charge in limiting Aß nucleation
At five of six negatively charged positions in Aß, mutations frequently increase nucleation

(Figures 2D and 3A). Moreover, the introduction of negative charge at other positions strongly

decreases nucleation (Figure 3A), suggesting that negatively charged residues act as gatekeepers

Figure 2 continued

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Mutational effects in amyloid beta (Aß).
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Figure 3. Determinants of amyloid beta (Aß) nucleation. (A) Effect of single aa mutants on nucleation for each Aß position. The wild-type (WT) aa and

position are indicated on the x-axis and coloured on the basis of aa type. The horizontal line indicates the WT nucleation score (0). (B to D) Effect of

each mutant aa on nucleation for the Ct (27-41) (B), the Nt (2-26) (C), and the negatively charged gatekeeper positions (D1, E3, D7, E11, and E22) (D).

The three position clusters are mutually exclusive. Colour code indicates aa type. The horizontal line is set at the WT nucleation score (0). (E) Effect on

Figure 3 continued on next page
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(Pedersen et al., 2004; Rousseau et al., 2006) to limit nucleation (Figure 3D and Figure 3—figure

supplement 1D). In contrast, mutations in the three positively charged residues (R5, K16, K28)

mostly decrease nucleation (Figure 2D). Mutating the negatively charged gatekeepers to the polar

aa glutamine and asparagine, to positively charged residues (arginine and lysine), or to small side

chains (glycine and alanine) increases nucleation (Figure 3D). Mutating the same positions to hydro-

phobic residues typically reduces nucleation (Figure 3D). This is consistent with a model in which the

negative charge at these positions acts to limit nucleation, but that the overall polar and unstruc-

tured nature of the N-terminus must be maintained for effective nucleation.

To further investigate the role of charge in controlling Aß nucleation, we extended our analyses

to the double mutants. Including double mutants allows the net charge of Aß to vary over a wider

range and it also allows comparison of the nucleation of peptides with the same net charge but a dif-

ferent total number of charged residues (e.g., a net charge of �3 can result from a negative/positive

aa composition of 6/3, as in wild-type Aß, or compositions of 7/4, 5/2, etc.). Considering all muta-

tions between charged and polar residues or glycine reveals that, although reducing the net charge

of the peptide from �3 progressively increases nucleation (Figure 3G), the total number of charged

residues is also important: for a given net charge, nucleation is increased in peptides containing

fewer charged residues of any sign (Figure 3G and Figure 3—figure supplement 1F and G). Thus,

both the overall charge and the number of charged residues control the rate of Aß nucleation.

Hydrophobic gatekeeper residues
In addition to the five negatively charged gatekeeper residues, mutations most frequently increase

nucleation of Aß in two specific hydrophobic residues: L17 and A42 (Figure 2C and D). At position

17, changes to polar, aromatic, and aliphatic aa all increase nucleation, as does the introduction of a

positive charge and mutation to proline. Only a mutation to cysteine reduces nucleation (Figure 2C).

This suggests a specific role for leucine at position 17 in limiting nucleation, perhaps as part of a

nucleation-limiting secondary structure suggested by the mutational effects of proline, isoleucine,

valine, and threonine in this region (Figure 3E).

Finally, the distribution of mutational effects at position 42 differs from that in the rest of the

hydrophobic C-terminus of Aß, with mutations most often increasing nucleation (Figure 2D;

FDR = 0.1). The mutations that increase nucleation are all to other aliphatic residues (Figures 2C

and 3A). The distinction of position 42 is interesting because of the increased toxicity and aggrega-

tion propensity of Aß42 compared to the shorter Aß40 APP cleavage product (Meisl et al., 2014;

Sandberg et al., 2010).

Nucleation scores accurately discriminate fAD mutations
To investigate how nucleation in the cell-based assay relates to the human disease, we considered

all the mutations in Aß known to cause fAD. In total, there are 11 mutations in Aß reported to cause

dominantly inherited fAD and one additional variant of unclear pathogenicity (H6R) (Janssen et al.,

Figure 3 continued

nucleation for single aa mutations to proline, threonine, valine, and isoleucine. Mutations to other aa are indicated in grey. The horizontal line indicates

WT nucleation score (0). Point size and shape indicate false discovery rate (FDR) and familial Alzheimer’s disease (fAD) class, respectively (see legend).

(F) Nucleation scores as a function of hydrophobicity changes (Kyte and Doolittle, 1982) for single and double aa mutants in the Ct (27-41) cluster.

Only double mutants with both mutations in the indicated position-range were used. Weighted Pearson correlation coefficient and p-value are

indicated. (G) Nucleation score distributions arranged by the number of charged residues (y-axis) and the total net charge (x-axis) for single and double

aa mutants in the full peptide (1-42). Only polar, charged, and glycine aa types were taken into account, for both WT and mutant residues. Colour

gradient indicates the total number of charged residues. Numbers inside each cell indicate the number of positive and negative residues. The

horizontal line indicates WT nucleation score (0). Boxplots represent median values and the lower and upper hinges correspond to the 25th and 75th

percentiles, respectively. Whiskers extend from the hinge to the largest value no further than 1.5*IQR (interquartile range). Outliers are plotted

individually or omitted when the boxplot is plotted together with individual data points or a violin plot.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Determinants of amyloid beta (Aß) nucleation.

Figure supplement 1—source data 1. Raw colony counts from indepednet testing of the strains expressing the N-terminal truncated varaints reported

in Figure 3—figure supplement 1C.

Figure supplement 2. Effect of mutations to each specific amino acid (aa) on amyloid beta (Aß) nucleation.
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2003). These 12 known disease mutations are not well discriminated by commonly used computa-

tional variant effect predictors (Figure 4 and Figure 4—figure supplement 1A) or by computational

predictors of protein aggregation and solubility (Figure 4 and Figure 4—figure supplement 1B).

They are also poorly predicted by the previous deep mutational scan of Aß designed to quantify

changes in protein solubility, suggesting the disease is unrelated to the biophysical process quanti-

fied in this assay (Gray et al., 2019; Figure 4—figure supplement 1C).

In contrast, the scores from our in vivo nucleation assay accurately classify the known dominant

fAD mutations, with all 12 mutations increasing nucleation (Figure 4, area under the receiver operat-

ing characteristic curve, ROC�AUC = 0.9, two-tailed Z-test, p<2.2e-16). This suggests the

biophysical events occurring in this simple cell-based assay are highly relevant to the development

of the human disease.

Consistent with the overall mutational landscape, the known fAD mutations are also enriched in

the N-terminus of Aß (Figure 2C). In some positions the known fAD mutations are the only mutation

or one of only a few mutations that can increase nucleation. For example, based on our data, K16N

is likely to be one of only two fAD mutations in position 16. However, in other positions, there are

several additional variants that increase nucleation as much as the known fAD mutation. At position

11, for example, there are five mutations with a NS higher than the known E11K disease mutation

(Figure 2C and D). Overall, our data suggest there are likely to be many additional dominant fAD

mutations beyond the 12 that have been reported to date (Supplementary file 2).

In addition to the 12 known dominant fAD mutations, two additional variants in Aß have been

suggested to act recessively to cause fAD (Di Fede et al., 2009; Tomiyama et al., 2008). One of

these variants is a codon deletion (E22D) and is not present in our library. The other variant, A2V,

does not have a dominant effect on nucleation in our assay (Figure 2C), consistent with a recessive

pattern of inheritance and a different mechanism of action, such as reduced ß-cleavage and

increased Aß42 generation, as previously proposed (Benilova et al., 2014). More generally, of the

hundreds of aa changes possible in the peptide, our data prioritize 63 as candidate fAD variants

(Supplementary file 2); 131 variants are likely to be benign, and 262 reduce Aß nucleation and so

may even be protective. These include variants already reported in the gnomAD database of human

genetic variation (Figure 4—figure supplement 1D). With the currently available data for patients
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Figure 4. Amyloid beta (Aß) nucleation accurately discriminates dominant familial Alzheimer’s disease (fAD)

variants. Receiver operating characteristic (ROC) curves for 12 fAD mutants versus all other single aa mutants in the

dataset. Area under the curve (AUC) values are indicated in the legend. Diagonal dashed line indicates the

performance of a random classifier. The nucleation scores and categories for all fAD variants are reported in

Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Discrimination of familial Alzheimer’s disease (fAD) variants by aggregation and variant

effect predictors.
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carrying fAD mutations, we could not observe a correlation between NS and disease age-of-onset

(Ryman et al., 2014; Figure 4—figure supplement 1E).

Discussion
Taken together, the data presented here provides the first large-scale analysis of how mutations pro-

mote and prevent the aggregation of an amyloid. The results reveal a modular organization for the

impact of mutations on the nucleation of Aß. Moreover, they show that the rate of nucleation in a

cell-based assay identifies all of the mutations in Aß that cause dominant fAD. The dataset therefore

provides a useful resource for the future clinical interpretation of genetic variation in Aß.

A majority of mutations in the C-terminal core of Aß disrupt nucleation, consistent with specific

hydrophobic contacts in this region being required for nucleation. In contrast, mutations that

increase nucleation are enriched in the polar N-terminus with mutations in negatively charged gate-

keeper residues and the L17 gatekeeper being particularly likely to accelerate aggregation. Indeed,

decreasing both the net charge of the peptide and the total number of charged residues increases

nucleation.

Little is known about the structure of Aß during fibril nucleation, but the results presented here

are in general consistent with the nucleation transition state resembling the known mature fibril

structures of Aß where the C-terminal region of the peptide is located in the amyloid core and the

N-terminus is disordered and solvent exposed (Figure 5 and Figure 5—figure supplements 1 and

2). Although the N-terminus is not required for nucleation, it does affect the process when present

and most mutations that accelerate nucleation are located in the N-terminus. Interestingly, the

effects of mutations in residues immediately before position 17 suggest that the formation of a struc-

tural element in this region may interfere with nucleation.

That accelerated nucleation is a common cause of fAD is also supported by the effects of muta-

tions in APP outside of Aß and by the effects of mutations in PSEN1 and PSEN2. These mutations

destabilise enzyme-substrate complexes, increasing the production of the longer Aß peptides that

more effectively nucleates amyloid formation (Szaruga et al., 2017; Veugelen et al., 2016). In addi-

tion, Aß42 oligomers are hypothesised to be more toxic (Michaels et al., 2020; Bolognesi et al.,

2010). It is possible that the effects of some of the mutations reported here on nucleation are also

mediated by a change in the concentration of Aß rather than by an increase in a kinetic rate parame-

ter. Some of the variants evaluated here may have additional effects, for example, altering cleavage

of APP. Future work will be needed to test these hypotheses.

Comparing our results to the effects of mutations on Aß solubility quantified in a previous high-

throughput analysis (Gray et al., 2019) provides evidence that, in the same type of cell (yeast), Aß

can aggregate in at least two different ways. Moreover, the different performance of the two sets of

scores from these datasets in classifying fAD mutations suggests that one of these aggregation pro-

cesses (quantified by the nucleation assay employed here) is likely to be very similar to the aggrega-

tion that occurs in the human brain in fAD. The other pathway of aggregation (quantified by the

solubility assay; Gray et al., 2019), however, is less obviously related to the human disease, because

mutations that cause fAD do not consistently affect it. This second aggregation pathway is, at least

to a large extent, driven by changes in hydrophobicity, similar to what we previously reported for

the aggregation in yeast of the ALS protein, TDP-43 (Bolognesi et al., 2019).

More generally, our results highlight how the combination of deep mutational scanning and

human genetics can be a general ‘genetic’ strategy to quantify the disease relevance of biological

assays. Many in vitro and in vivo assays are proposed as ‘disease models’ in biomedical research

with their relevance often justified by how ‘physiological’ the assays seem or how well phenotypes

observed in the model match those observed in the human disease. The range of phenotypes that

can be assessed and their similarity to the pathology of AD human brains are appealing features of

many animal models of AD and many important insights have been derived – and will continue to be

derived – from animal models (Sasaguri et al., 2017). However, there are applications where animal

models cannot be realistically used, for example, for high-throughput compound screening for drug

discovery and for testing hundreds or thousands of genetic variants of unknown significance. For

these applications, in vitro or cell-based (Pimenova and Goate, 2020; Veugelen et al., 2016) assays

are required and an important challenge is to evaluate the ‘disease relevance’ of different assays.

Our study highlights an approach to achieve this, which is to use the complete set of known disease-
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causing mutations to quantify the ‘genetic agreement’ between an assay and a disease. Thus,

although the yeast-based assay that we employed here might typically be dismissed as ‘non-physio-

logical,’ ‘artificial,’ or ‘lacking many features important for a neurological disease,’ unbiased mas-

sively parallel genetic analysis provides very strong evidence that it is reporting on biopysicall events

that are extremely similar to – or the same as – those that cause the human disease. Indeed, one

could argue that this simple system is now better validated as a model of fAD than many others,

including animal models where the effects of only one or a few mutations (including control muta-

tions) have ever been tested. Similarly strong agreement between mutational effects in a cellular

assay and the set of mutations already known to cause a disease is observed for other diseases

(Starita et al., 2017; Gelman et al., 2019), suggesting the generality of this approach.

K16A21

D23 Gatekeepers 

Mean Nucleation score

H6
E22

D7 E11

A42
L17

D1 E3 -3.5 0 0.5

Figure 5. Mutational landscape of the amyloid beta (Aß) amyloid fibril. Average effect of mutations visualized on

the cross-section of an Aß amyloid fibril (PDB accession 5KK3; Colvin et al., 2016). Nucleation gatekeeper

residues and known familial Alzheimer’s disease (fAD) mutations positions are indicated by the wild-type (WT) aa

identity on one of the two monomers; gatekeepers are indicated with blue dots and fAD are underlined. A single

layer of the fibril is shown and the unstructured N-termini (aa 1-14) are shown with different random coil

conformations for the two Aß monomers. See Figure 5—figure supplement 2 for alternative Aß42 amyloid

polymorphs.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Modular organization of Aß42 and Aß40 polymorphs.

Figure supplement 2. Modular organization of mutational effects and gatekeepers visualized on Aß42

polymorphs.
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We suggest therefore that the combination of deep mutational scanning and human genetics

provides a general strategy to quantify the disease relevance of in vitro and cell-based assays. We

encourage that deep mutagenesis should be employed early in discovery programmes to ‘geneti-

cally validate’ (or invalidate) the relevance of assays for particular diseases. The concordance

between mutational effects in an assay and a disease is an unbiased metric that can be used to prior-

itize between different assays. Quantifying the ‘genetic agreement’ between an assay and a disease

will help prevent time and resources being wasted on research that actually has little relevance to a

disease.

Finally, the strikingly consistent effects of the dominant fAD mutations in our assay further

strengthen the evidence that fAD is a ‘nucleation disease’ ultimately caused by an increased rate of

amyloid nucleation (Aprile et al., 2017; Cohen et al., 2018; Knowles et al., 2009). This accelerated

nucleation can be caused by the direct effects of mutations in Aß — such as those quantified here —

or by changes in upstream factors (Szaruga et al., 2017). If this hypothesis is correct, then nucle-

ation is the key bioph step to target to prevent or treat AD. We suggest that the ‘genetic validation’

of assays by mutational scanning and comparison to sets of known disease-causing mutations will be

increasingly important in assay development and drug discovery pipelines.

Materials and methods

Plasmid library construction
The plasmid PCUP1-Sup35N-Ab42 used in this study was a kind gift from the Chernoff lab

(Chandramowlishwaran et al., 2018).

The Ab coding sequence and two flanking regions of 52 bp and 72 bp, respectively, upstream

and downstream of Ab were amplified (primers MS_01 and MS_02, Supplementary file 3) by error-

prone PCR (Mutazyme II DNA polymerase, Agilent). Thirty cycles of amplification and 0.01 ng of ini-

tial template were used to obtain a mutagenesis rate of 16 mutations/kb, according to the manufac-

turer’s protocol. The product was treated with DpnI (FastDigest, Thermo Scientific) for 2 hr and

purified by column purification (MinElute PCR Purification Kit, Qiagen). The fragment was digested

with EcoRI and XbaI restriction enzymes (FastDigest, Thermo Scientific) for 1 hr at 37˚C and purified

from a 2% agarose gel (QIAquick Gel Extraction Kit, Qiagen). In parallel, the PCUP1-Sup35N-Ab42

plasmid was digested with the same restriction enzymes to remove the WT Ab sequence, treated

with alkaline phosphatase (FastAP, Thermo Scientific) for 1 hr at 37˚C to dephosphorylate the 5’

ends, and purified from a 1% agarose gel (QIAquick Gel Extraction Kit, Qiagen).

Mutagenised Ab was then ligated into the linearised plasmid in a 5:1 ratio (insert:vector) using a

ligase treatment (T4, Thermo Scientific) overnight. The reaction was dialysed with a membrane filter

(Merck Millipore) for 1 hr, concentrated 4x, and transformed in electrocompetent Escherichia coli

cells (10-beta Electrocompetent, NEB). Cells were recovered in SOC medium and plated on LB with

ampicillin. A total of 4.1 million transformants were estimated, ensuring that each variant of the

library was represented more than 10 times; 50 ml of overnight E. coli culture was harvested to

purify the Ab plasmid library with a midi prep (Plasmid Midi Kit, Qiagen). The resulting library con-

tained 29.9% of WT Ab, 23.8% of sequences with 1 nt change, and 21.8% of sequences with 2 nt

changes.

Large-scale yeast transformation
Saccharomyces cerevisiae [psi-pin-] (MATa ade1-14 his3 leu2-3,112 lys2 trp1 ura3-52) strain (also pro-

vided by the Chernoff lab) was used in all experiments in this study (Chandramowlishwaran et al.,

2018).

Yeast cells were transformed with the Ab plasmid library starting from an individual colony for

each transformation tube. After an overnight pre-growth culture in YPDA medium at 30˚C, cells were

diluted to OD600 = 0.3 in 175 ml YPDA and incubated at 30˚C 200 rpm for ~5 hr. When cells reached

the exponential phase, they were harvested, washed with milliQ, and resuspended in sorbitol mix-

ture (100 mM LiOAc, 10 mM Tris pH 8, 1 mM EDTA, 1M sorbitol). After a 30 min incubation at room

temperature (RT), 5 mg of plasmid library and 175 ml of ssDNA (UltraPure, Thermo Scientific) were

added to the cells. PEG mixture (100 mM LiOAc, 10 mM Tris pH 8, 1 mM EDTA pH 8, 40%

PEG3350) was also added and cells were incubated for 30 min at RT and heat-shocked for 15 min at
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42˚C in a water bath. Cells were harvested, washed, resuspended in 350 ml recovery medium (YPD,

sorbitol 0.5M, 70 mg/L adenine) and incubated for 1.5 hr at 30˚C 200 rpm. After recovery, cells were

resuspended in 350 ml -URA plasmid selection medium and allowed to grow for 50 hr. Transforma-

tion efficiency was calculated for each tube of transformation by plating an aliquote of cells in -URA

plates. Between 1 and 2.5 million transformants per tube were obtained. Two days after transforma-

tion, the culture was diluted to OD600 = 0.02 in 1 l -URA medium and grown until the exponential

phase. At this stage, cells were harvested and stored at �80˚C in 25% glycerol.

Selection experiments
Three independent replicate selection experiments were performed. Tubes were thawed from the

�80˚C glycerol stocks and mixed proportionally to the number of transformants in a 1 l total -URA

medium at OD600 = 0.05. A minimum of 3.7 million yeast transformants were used for each replicate

to ensure the coverage of the full library and reaching therefore a 10x coverage of each variant.

Once the culture reached the exponential phase, cells were resuspended in 1 l protein inducing

medium (-URA, 20% glucose, 100 mM Cu2SO4) at OD600 = 0.05. As a result, each variant was repre-

sented at least 100 times at this stage. After 24 hr the input pellets were collected by centrifuging

220 ml of cells and stored at �20˚C for later DNA extraction (input pellets). In parallel, 18.5 million

cells of the same culture underwent selection, with a starting coverage of at least 50 copies of each

variant in the library. For selection, cells were plated on -ADE-URA selective medium in 145 cm2

plates (Nunc, Thermo Scientific) and let grow for 7 days at 30˚C. Colonies were then scraped off the

plates and recovered with PBS 1x to be centrifuged and stored at �20˚C for later DNA extraction

(output pellets).

For individual testing of specific variants, cells were plated on -URA (control) and -ADE-URA

(selection) plates in three independent replicates. Individual growth was calculated as the percent-

age of colonies growing -ADE-URA relative to colonies growing in -URA.

DNA extraction
The input and output pellets (three replicates, six tubes in total) were thawed and resuspended in 2

ml extraction buffer (2% Triton-X, 1% SDS, 100 mM NaCl, 10 mM Tris pH 8, 1 mM EDTA pH 8), and

underwent two cycles of freezing and thawing in an ethanol-dry ice bath (10 min) and at 62˚C (10

min). Samples were then vortexed together with 1.5 ml of phenol:chloroform:isoamyl 25:24:1 and

1.5 g of glass beads (Sigma). The aqueous phase was recovered by centrifugation and mixed again

with 1.5 ml phenol:chloroform:isoamyl 25:24:1. DNA precipitation was performed by adding 1:10 V

of 3M NaOAc and 2.2 V of 100% cold ethanol to the aqueous phase and incubating the samples at

�20˚C for 1 hr. After a centrifugation step, pellets were dried overnight at RT.

Pellets were resuspended in 1 ml resuspension buffer (10 mM Tris pH 8, 1 mM EDTA pH 8) and

treated with 7.5 ml RNase A (Thermo Scientific) for 30 min at 37˚C. The DNA was finally purified using

75 ml of silica beads (QIAEX II Gel Extraction Kit, Qiagen), washed and eluted in 375 ml elution

buffer.

DNA concentration in each sample was measured by quantitative PCR, using primers (MS_03 and

MS_04, Supplementary file 3) that anneal to the origin of replication site of the plasmid at 58˚C.

Sequencing library preparation
The library was prepared for high-throughput sequencing in two rounds of PCR (Q5 High-Fidelity

DNA Polymerase, NEB). In PCR1, the Ab region was amplified for 15 cycles at 68˚C with frame-

shifted primers (MS_05 to MS_18, Supplementary file 3) with homology to Illumina sequencing pri-

mers; 300 million of molecules were used for each input or output sample. The products of PCR1

were purified with an ExoSAP-IT treatment (Affymetrix) and a column purification step (QIAquick

PCR Purification Kit) and then used as the template of PCR2. This PCR was run for 10 cycles at 62˚C

with Illumina indexed primers (MS_19 to MS_25, Supplementary file 2) specific for each sample

(three inputs and three outputs). The six samples were then pooled together equimolarly. The final

library sample was purified from a 2% agarose gel with silica beads (QIAEX II Gel Extraction Kit, Qia-

gen); 125 bp paired-end sequencing was run on an Illumina HiSeq2500 sequencer at the CRG Geno-

mics Core Facility.
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Data processing
FastQ files from paired-end sequencing of the Aß library before (‘input’) and after selection (‘out-

put’) were processed using a custom pipeline (https://github.com/lehner-lab/DiMSum). DiMSum

(Faure et al., 2020) is an R package that uses different sequencing processing tools such as FastQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) (for quality assessment), Cutadapt

(Martin, 2011) (for constant region trimming), and USEARCH (Edgar, 2010) (for paired-end read

alignment). Sequences were trimmed at 50 and 30, allowing an error rate of 0.2 (i.e., read pairs were

discarded if the constant regions contained more than 20% mismatches relative to the reference

sequence). Sequences differing in length from the expected 126 bp or with a Phred base quality

score below 30 were discarded. As a result of this processing, around 150 million total reads passed

the filtering criteria.

At this stage, unique variants were aggregated and counted using Starcode (https://github.com/

gui11aume/starcode). Variants containing indels and nonsynonymous variants with synonymous sub-

stitutions in other codons were excluded. The result is a table of variant counts which can be used

for further analysis.

For downstream analysis, variants with less than 50 input reads in any of the replicates were

excluded and only variants with a maximum of two aa mutations were used.

Nucleation scores and error estimates
On the basis of variant counts, the DiMSum pipeline (Faure et al., 2020; https://github.com/lehner-

lab/DiMSum) was used to calculate nucleation scores (NS) and their error estimates. For each variant

in each replicate NS was calculated as:

Nucleationscore ¼ ESi�ESwt

where ESi ¼ log Fi OUTPUTð Þ � log Fi INPUTð Þ for a specific variant and

ESwt ¼ log Fwt OUTPUTð Þ � log Fwt INPUTð Þ for Aß WT.

DiMSum models measurement error of NS by assuming that variants with similar counts in input

and output samples have similar errors. Based on errors expected from Poisson-distributed count

data, replicate-specific additive and multiplicative (one each for input and output samples) modifier

terms are fit to best describe the observed variance of NS across all variants simultaneously.

After error calculation, NS were merged by using the error-weighted mean of each variant across

replicates and centered using the error-weighted means frequency of synonymous substitutions aris-

ing from single nt changes. Merged NS and NS for each independent replicate, as well as their asso-

ciated error estimates, are available in Supplementary file 4.

Nonsense (stop) mutants were excluded for the analysis except when indicated (Figure 2A and C

and Figure 2—figure supplement 1A).

K-medoids clustering
We used K-medoids, or the partitioning around medoids algorithm, to cluster the matrix of single aa

variant NS estimates by residue position with the number of clusters estimated by optimum average

silhouette width, for values of K in [1,10]. The silhouette width is a measure of how similar each

object (in this case residue position) is to its own cluster. In order to take into account uncertainty in

NS estimates in the determination of the optimum number of clusters, we repeated this analysis

after random resampling from the NS (error) distributions of each single aa variant (n = 100). Based

on this clustering, we defined the N-terminus as aa 2-26 and the C-terminus as aa 27-41 (Figure 2—

figure supplement 1B). Seven positions where as many (or more) single mutations increase as

decrease nucleation were defined as ‘gatekeepers’ (D1, E3, D7, E11, L17, E22, A42) and excluded

from the N- and C-terminus classes. Only those positions where most mutations are significantly dif-

ferent from WT (FDR = 0.1) were considered for the definition of gatekeepers.

Aa properties, aggregation, and variant effect predictors
Nucleation scores were correlated with aa properties and scores from aggregation, solubility, and

variant effect prediction algorithms. Pearson correlations were weighted based on the error terms

associated with the NS of each variant using the R package ‘weights.’ The aa property features were

retrieved from a curated collection of numerical indices representing various aa physicochemical and
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biochemical properties (http://www.genome.jp/aaindex/). We also used a principal component of

these aa properties from a previous work (PC1; Bolognesi et al., 2019) that relates strongly to

changes in hydrophobicity. For each variant (single and double aa mutants), the values of a specific

aa property represent the difference between the mutant and the WT scores.

For the aggregation and solubility algorithms (Tango [Fernandez-Escamilla et al., 2004], Zyggre-

gator [Tartaglia and Vendruscolo, 2008], CamSol [Sormanni et al., 2015], and Waltz [Olive-

berg, 2010]), individual residue-level scores were summed to obtain a score per aa sequence. We

then calculated the log value for each variant relative to the WT score (single and double aa mutants

for Tango, Zyggregator, CamSol and single aa mutants for Waltz). For the variant effect predictors

(Polyphen [Adzhubei et al., 2013] and CADD [Rentzsch et al., 2019]), we also calculated the log

value for each variant (only single aa mutants) but in this case values were scaled relative to the low-

est predicted score.

fAD, gnomAD, and Clinvar variants
The table of fAD mutations used in this study was taken from https://www.alzforum.org/mutations/

app. Allele frequencies of APP variants were retrieved from gnomAD (Karczewski, 2020) (https://

gnomad.broadinstitute.org/) and the clinical significance of variants was taken from their Clinvar

(Landrum et al., 2014) classification (https://www.ncbi.nlm.nih.gov/clinvar).

ROC curves were built and AUC values were obtained using the ‘pROC’ R package.

PDB structures
The coordinates of the following PDB structures were used for Figure 5, Figure 5—figure supple-

ments 1 and 2: 5OQV, 2NAO, 5KK3, 2BEG, 2MXU, 5AEF, 6SHS, 2LMN, 2LMP, 2LNQ, 2MVX, 2M4J,

2MPZ (Gremer et al., 2017; Colvin et al., 2016; Wälti et al., 2016; Lührs et al., 2005; Xiao et al.,

2015; Schmidt et al., 2015; Kollmer et al., 2019; Lu et al., 2013; Qiang et al., 2012;

Sgourakis et al., 2015; Schütz et al., 2015).
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Favero E, et al. 2009. A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis.
Science 323:1473–1477. DOI: https://doi.org/10.1126/science.1168979, PMID: 19286555

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.
DOI: https://doi.org/10.1093/bioinformatics/btq461, PMID: 20709691

Faure AJ, Schmiedel JM, Baeza-Centurion P, Lehner B. 2020. DiMSum: an error model and pipeline for analyzing
deep mutational scanning data and diagnosing common experimental pathologies. Genome Biology 21:207.
DOI: https://doi.org/10.1186/s13059-020-02091-3, PMID: 32799905

Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L. 2004. Prediction of sequence-dependent and
mutational effects on the aggregation of peptides and proteins. Nature Biotechnology 22:1302–1306.
DOI: https://doi.org/10.1038/nbt1012, PMID: 15361882

Gelman H, Dines JN, Berg J, Berger AH, Brnich S, Hisama FM, James RG, Rubin AF, Shendure J, Shirts B, Fowler
DM, Starita LM, Brotman Baty Institute Mutational Scanning Working Group. 2019. Recommendations for the
collection and use of multiplexed functional data for clinical variant interpretation. Genome Medicine 11:85.
DOI: https://doi.org/10.1186/s13073-019-0698-7, PMID: 31862013

Gray VE, Sitko K, Kameni FZN, Williamson M, Stephany JJ, Hasle N, Fowler DM. 2019. Elucidating the molecular
determinants of ab aggregation with deep mutational scanning. G3: Genes, Genomes, Genetics 9:3683–3689.
DOI: https://doi.org/10.1534/g3.119.400535, PMID: 31558564

Gremer L, Schölzel D, Schenk C, Reinartz E, Labahn J, Ravelli RBG, Tusche M. 2017. Fibril structure of Amyloid-
ß(1-42) by cryoelectron microscopy. Science 9:eaao2825. DOI: https://doi.org/10.1126/science.aao2825

Janssen JC, Beck JA, Campbell TA, Dickinson A, Fox NC, Harvey RJ, Houlden H, Rossor MN, Collinge J. 2003.
Early onset familial Alzheimer’s disease: Mutation frequency in 31 families. Neurology 60:235–239.
DOI: https://doi.org/10.1212/01.WNL.0000042088.22694.E3, PMID: 12552037

Karczewski KJ. 2020. The mutational constraint spectrum quantified from variation in 141,456 humans. bioRxiv.
DOI: https://doi.org/10.1101/531210

Seuma et al. eLife 2021;10:e63364. DOI: https://doi.org/10.7554/eLife.63364 17 of 19

Research article Computational and Systems Biology Genetics and Genomics



Knowles TP, Waudby CA, Devlin GL, Cohen SI, Aguzzi A, Vendruscolo M, Terentjev EM, Welland ME, Dobson
CM. 2009. An analytical solution to the kinetics of breakable filament assembly. Science 326:1533–1537.
DOI: https://doi.org/10.1126/science.1178250, PMID: 20007899

Knowles TP, Vendruscolo M, Dobson CM. 2014. The amyloid state and its association with protein misfolding
diseases. Nature Reviews Molecular Cell Biology 15:384–396. DOI: https://doi.org/10.1038/nrm3810, PMID: 24
854788

Kollmer M, Close W, Funk L, Rasmussen J, Bsoul A, Schierhorn A, Schmidt M, Sigurdson CJ, Jucker M, Fändrich
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Meier BH, Riek R, Böckmann A. 2017. Emerging structural understanding of amyloid fibrils by Solid-State NMR.
Trends in Biochemical Sciences 42:777–787. DOI: https://doi.org/10.1016/j.tibs.2017.08.001, PMID: 28916413

Meisl G, Yang X, Hellstrand E, Frohm B, Kirkegaard JB, Cohen SI, Dobson CM, Linse S, Knowles TP. 2014.
Differences in nucleation behavior underlie the contrasting aggregation kinetics of the ab40 and ab42 peptides.
PNAS 111:9384–9389. DOI: https://doi.org/10.1073/pnas.1401564111, PMID: 24938782
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Alzheimer’s-Causing Mutations Shift Ab Length by Destabilizing g-Secretase-Abn Interactions. Cell 170:443–
456. DOI: https://doi.org/10.1016/j.cell.2017.07.004, PMID: 28753424

Tartaglia GG, Vendruscolo M. 2008. The zyggregator method for predicting protein aggregation propensities.
Chemical Society Reviews 37:1395–1401. DOI: https://doi.org/10.1039/b706784b, PMID: 18568165

Tomiyama T, Nagata T, Shimada H, Teraoka R, Fukushima A, Kanemitsu H, Takuma H, Kuwano R, Imagawa M,
Ataka S, Wada Y, Yoshioka E, Nishizaki T, Watanabe Y, Mori H. 2008. A new amyloid beta variant favoring
oligomerization in Alzheimer’s-type dementia. Annals of Neurology 63:377–387. DOI: https://doi.org/10.1002/
ana.21321, PMID: 18300294

Törnquist M, Michaels TCT, Sanagavarapu K, Yang X, Meisl G, Cohen SIA, Knowles TPJ, Linse S. 2018.
Secondary nucleation in amyloid formation. Chemical Communications 54:8667–8684. DOI: https://doi.org/10.
1039/C8CC02204F

Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. 2016. The genetic landscape of Alzheimer disease:
clinical implications and perspectives. Genetics in Medicine 18:421–430. DOI: https://doi.org/10.1038/gim.
2015.117, PMID: 26312828

Veugelen S, Saito T, Saido TC, Chávez-Gutiérrez L, De Strooper B. 2016. Familial Alzheimer’s disease mutations
in presenilin generate amyloidogenic Ab peptide seeds. Neuron 90:410–416. DOI: https://doi.org/10.1016/j.
neuron.2016.03.010, PMID: 27100199
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Insoluble protein aggregates are the hallmarks of many neurodegenerative diseases. For

example, aggregates of TDP-43 occur in nearly all cases of amyotrophic lateral sclerosis

(ALS). However, whether aggregates cause cellular toxicity is still not clear, even in simpler

cellular systems. We reasoned that deep mutagenesis might be a powerful approach to

disentangle the relationship between aggregation and toxicity. We generated >50,000

mutations in the prion-like domain (PRD) of TDP-43 and quantified their toxicity in yeast

cells. Surprisingly, mutations that increase hydrophobicity and aggregation strongly decrease

toxicity. In contrast, toxic variants promote the formation of dynamic liquid-like condensates.

Mutations have their strongest effects in a hotspot that genetic interactions reveal to be

structured in vivo, illustrating how mutagenesis can probe the in vivo structures of

unstructured proteins. Our results show that aggregation of TDP-43 is not harmful but

protects cells, most likely by titrating the protein away from a toxic liquid-like phase.
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The conversion of specific proteins into insoluble aggregates
is a hallmark of many neurodegenerative disorders,
including Alzheimer’s, Parkinson’s, Huntington’s, and

Amyotrophic Lateral Sclerosis (ALS) with dominantly inherited
mutations in aggregate-forming proteins causing rare familial
forms of these diseases1–6. However, both in humans and in
animal models, there is often only a weak association between the
presence of aggregates and disease progression7–9. Indeed, mul-
tiple therapeutic approaches that reduce the formation of aggre-
gates have failed at different stages of development10–12. On the
other hand, there is increasing evidence that alternative protein
assemblies generated during or in parallel to the aggregation
process may be toxic13–17. Despite evidence that cellular damage
may be induced either before, after or independent of the for-
mation of insoluble aggregates, the latter are still widely assumed
to be pathogenic in many neurodegenerative diseases18,19.

For many proteins, aggregation depends critically on intrinsi-
cally disordered regions with a low sequence complexity resem-
bling that of infectious yeast prions. These prion-like domains
(PRDs) are also enriched in proteins that can form liquid-like
cellular condensates20–22 through liquid-demixing. This is a
concentration-dependent process through which proteins can
separate into two coexisting liquid phases and it has been exten-
sively characterized both in vitro and in the cytoplasm23. In several
proteins PRDs are necessary and sufficient for liquid-liquid
demixing23,24. At least in vitro, insoluble aggregates can nucleate
from more liquid phases24–26, leading to the suggestion that liquid
de-mixed states can mature into pathological aggregates19.

Disordered regions27 and low-complexity sequences28 are also
enriched in dosage-sensitive proteins that are toxic when their
concentration is increased. At least for one model protein that has
been tested, however, it is the formation of a concentration-
dependent liquid-like phase—not aggregation—that causes cel-
lular toxicity28. Similarly, the toxicity of two mutant forms of the
prion Sup35 could be explained only on the basis of their ability
to populate a non-aggregate, liquid-like state20,29.

Cytoplasmic aggregates of the TAR DNA-binding protein 43
(TDP-43) are a hallmark of ALS, present in 97% of post-mortem
samples2,30. TDP-43 aggregates are also present at autopsy in nearly
all cases of frontotemporal dementia (FTD) that lack tau-containing
inclusions (about half of all cases of FTD which is the second most
common dementia)31. TDP-43 aggregates also represent a hallmark
of inclusion body myopathy, and a secondary pathology in Alz-
heimer’s, Parkinson’s, and Huntington’s disease31–33. However,
TDP-43 aggregates are also observed—albeit at low frequency—in
control samples34 and, in vitro, TDP-43 can form both amyloid
aggregates and liquid condensates35–39. Mutations in TDP-43 cause
~5% of familial ALS (fALS) cases8,40, with these mutations reported
to interfere with nuclear-cytoplasmic transport, RNA processing,
splicing, and protein translation7,41–46. However, despite extensive
investigation, the molecular form of the protein that causes cellular
toxicity is still unknown7,47.

We reasoned that systematic (‘deep’) mutagenesis could be an
unbiased approach to identify and investigate the toxic species of
proteins48–50. A map of which amino acid (AA) changes increase
or decrease the toxicity of a protein to a cell should, if sufficiently
comprehensive, clarify both the properties of the protein and its
in vivo conformational states associated with toxicity51. The
effects of a small number of mutations on TDP-43 toxicity or
aggregation have been previously reported15,35,52–55. However, on
the basis of a handful of mutations, the relationship between
aggregation and toxicity is far from clear.

Here we show by quantifying the effects of >50,000 mutations
in the PRD of TDP-43 that increasing hydrophobicity and
aggregation strongly reduce the toxicity of this protein in yeast.
Moreover, mutations that increase the toxicity of TDP-43 actually

promote the formation of dynamic liquid-like cytoplasmic con-
densates. Mutations have their strongest effects in a central
‘hotspot’ region of the PRD TDP-43. The patterns of genetic
interactions in double mutants in this region reveal that this
‘unstructured’ region is actually structured in vivo. Our results
illustrate how deep mutagenesis can be used to probe the
sequence-function relationships and the in vivo structures of
‘disordered’ proteins. We propose that aggregation of TDP-43 is
not harmful but actually protects cells, most likely by titrating
protein from a toxic liquid-like phase.

Results
Deep mutagenesis of the TDP-43 prion-like domain. We used
error-prone oligonucleotide synthesis to comprehensively mutate
the PRD of TDP-43. We introduced the library into Saccharomyces
cerevisiae cells, induced expression and used deep sequencing
before and after induction to quantify the relative effects of each
variant on growth in three biological replicates (Fig. 1a). After
quality control and filtering (Supplementary Fig. 1a and c), the
dataset quantifies the relative toxicity of 1,266 single and 56,730
double amino acid (AA) changes in the PRD with high reprodu-
cibility (Fig. 1b, Supplementary Fig. 1d and e). The toxicity scores
also correlate very well with the toxicity of the same variants re-
tested in the absence of competition (Fig. 1c).

The toxicity of both single and double mutants has a tri-modal
distribution (Fig. 1d, Supplementary Fig. 2a and c), with 18,023
variants more toxic and 16,152 variants less toxic than wild-type
(WT) TDP-43 (t-test false discovery rate, FDR= 0.05). The
dataset therefore allows us to investigate how mutations both
increase and decrease toxicity. Very interestingly, ALS TDP-43
mutations increase toxicity, with a strong bias towards moderate
effects (t-test, p-value= 0.005) (Fig. 1d, Supplementary Fig. 2d).

Mutation effects are largest in a central hotspot of the PRD.
Plotting the mean toxicity of all mutations at each position in the
sequence reveals a 31 AA hotspot (312–342) where the effects of
mutations are strongest (Fig. 1e). The variance in toxicity per
position is also the highest within this hotspot, with mutations
both strongly increasing and decreasing toxicity (Fig. 1e). A
heatmap of the toxicity of all of the single mutations also clearly
reveals this hotspot, with most mutations of strong positive or
negative effect falling within this 31 AA window (Fig. 1f). Equally
strikingly, mutations to the same AA but in different positions
within the hotspot often have very similar effects (Fig. 1f). In
particular, mutations to charged and polar residues increase
toxicity throughout the hotspot and mutations to hydrophobic
AAs decrease toxicity (Fig. 1f).

Hydrophobicity and aggregation potential predict toxicity. To
more systematically identify features associated with changes in
toxicity we made use of all 53,468 variants carrying one or two
AA substitutions (excluding STOP codon variants). We used
principal components analysis (PCA) to reduce the redundancy
in a list of over 350 AA physicochemical properties (Supple-
mentary Fig. 3) and linear regression to quantify how well
changes in these physicochemical properties predict changes in
the toxicity of TDP-43. A principal component very strongly
related to hydrophobicity is the most predictive feature of toxi-
city, explaining 66% of the variance in toxicity of all 8,040
mutants within the 312–342 hotspot and 51% of the variance in
toxicity of all genotypes (Fig. 2a). With the same approach, we
tested the performance of established predictors of protein
aggregation, intrinsic disorder and other properties. None of
them are as predictive as hydrophobicity (Fig. 2b). Importantly,
after controlling for hydrophobicity, additional features such as
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charge and aromaticity do not predict toxicity (Fig. 2d, e, Sup-
plementary Fig. 4a) with aggregation potential accounting for an
additional 4% of variance in the hotspot (Fig. 2f, g).

That increased hydrophobicity and aggregation potential are
strongly associated with reduced toxicity across >50,000 genotypes

was unexpected given previous work that reported an increased
number of intracellular aggregates for a set of TDP-43 variants
toxic to yeast54 and the widely-held view that aggregation is
harmful to cells42,52,56. We therefore further investigated the effects
of mutants that alter the hydrophobicity and toxicity of TDP-43.
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Two classes of cytoplasmic TDP-43 foci. WT TDP-43 localizes
to both the nucleus and to the cytoplasm of yeast cells54,55

(Fig. 3a). In the nucleus, TDP-43 is diffuse, but in the cytoplasm it
forms puncta, consistent with previous observations41,57. We
observe that cytoplasmic WT TDP-43 forms two types of

assemblies: small foci in the nuclear periphery and larger foci
detached from the nucleus (Fig. 3a, c). We find that mutations
that decrease TDP-43 hydrophobicity and increase TDP-43
toxicity increase the number of the small foci at the nuclear
periphery and reduce the number of large distal foci (Fig. 3b, c, f,
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Supplementary Fig. 5a). TDP-43 mutations reported in ALS
(Supplementary Fig. 2e) also increase the number of foci at the
nuclear periphery compared to WT TDP-43 (Supplementary
Fig. 6a, b). In contrast, mutations that increase hydrophobicity
and reduce toxicity reduce the number of small nucleus-
associated foci and increase the number of large distal foci
(Fig. 3b, c, f, Supplementary Fig. 5a).

Toxic mutations promote dynamic liquid-like condensates. We
used fluorescence recovery after photobleaching (FRAP) to
characterize the dynamics of TDP-43 variants in the different
foci. The large cytoplasmic foci formed by non-toxic variants
show little exchange of TDP-43 molecules with the soluble
cytoplasmic pool. In contrast, the small foci localized at the
nuclear periphery can exchange more protein with the cytoplasm,
consistent with a more liquid-like state (Fig. 3d, e). Such differ-
ences in dynamics have been described also for distinct types of
misfolded protein compartments58. Both types of compartments
co-localize with the yeast chaperone Hsp104 (Supplementary
Fig. 7a). The large immobile TDP-43 foci are also brighter than
the small dynamic ones (Fig. 3g), similar to what has been
observed for Huntingtin variants that partition between immobile
bright assemblies and liquid-like dimmer ones59. The non-toxic
TDP-43 variants also have a higher protein concentration
quantified by Western blotting (Supplementary Fig. 5b).

Taken together, these results suggest that mutations that
increase the hydrophobicity of TDP-43 result in a re-localization
of the protein away from small and dynamic, liquid-like foci at
the nuclear periphery to large and more solid aggregates in the
cytoplasm. A reduction in hydrophobicity has the opposite effect.

Genetic interactions reveal the hotspot structure in vivo. The
hotspot region of the TDP-43 PRD (AA 312–342) is a conserved
region35,36, with hydrophobicity more similar to the globular
domains of TDP-43 than to the surrounding hydrophilic dis-
ordered regions (Fig. 4b). The hotspot is contained within a
region (311–360) that was previously shown to be sufficient for
both in vitro aggregation and the formation of cytoplasmic foci35.
Fragments from within this region have previously been shown to
have the potential to form different types of secondary structures
in vitro. More specifically, nuclear magnetic resonance (NMR)
spectroscopy of the PRD revealed that residues 321–342 can
adopt an α-helical structure in certain conditions35,36,47 and four
different 6–11 AA peptides from the region could form cross-β
amyloid or amyloid-like fibrils whose structures were determined
by X-ray crystallography52. However, it is unknown whether any
of these structures exist in vivo for full-length TDP-43.

We have shown recently that the pattern of genetic (epistatic)
interactions between mutations in a protein can report on the

secondary structure of that molecule when it is performing the
function that is being selected for51,60. In particular, when a
sequence forms an α-helix, the side chains of residues separated
by 3–4 AA are close in space and similarly oriented so that
mutations in these AA interact similarly with mutations in the
rest of the protein. In contrast, in a β-strand, the side chains of
residues separated by 2 AA are close and similarly oriented and
so make similar genetic interactions with other mutations
(Fig. 4a)61.

We used the 52,272 double mutants (excluding STOP codon
variants) in our dataset to identify pairs of mutations that
genetically interact. We first identified pairs of mutations that had
unexpectedly high or low toxicity (<5th and >95th percentile of
the expected toxicity distribution, negative and positive epistasis
for growth rate, respectively). We then quantified the similarity of
epistasis enrichment profiles between pairs of positions and
compared these patterns to those expected for α-helices and β-
strands, scoring significance by randomization51 (Fig. 4a).

This revealed that the patterns of epistasis in our dataset are
consistent with two secondary structure elements forming inside
the PRD in vivo: a β-strand at residues 311–316 and an α-helix at
residues 324–331 (Fig. 4c). The β-strand identified by the epistasis
analysis coincides with one of the peptides in the TDP-43 PRD
that, in vitro, can form cross-β structures52 typical of protein
aggregates (Fig. 4d). The crystals of this specific peptide consist of
a non-conventional β-strand termed a low-complexity aromatic-
rich kinked segment (LARKS)62. In this in vitro structure, Phe
313 and Phe 316 face the same side of the sheet, whereas in a
canonical sheet the side chains of odd and even residues face
opposite sides. Strikingly, this non-canonical contact between Phe
313 and Phe 316 is also identified by the in vivo epistasis analysis,
with a similarity in interaction profile ranking amongst the top
two residue pairs in this region. In addition, the contact between
Phe 316 and Ala 315, which again is compatible with a LARKS
but not with a canonical β-strand has the highest predicted
contact score among neighbouring residues (Fig. 4d). The
predicted contact map built on the basis of in vivo epistatic
interactions strikingly matches the Protein Data Bank (PDB)
structure for LARKS 312–317 (Fig. 4d, Supplementary Fig. 8).

On the other hand, the genetic interactions of mutations in the
324–330 region match those expected for an α-helix (Fig. 4e).
This region is part of the portion (321–342) of TDP-43 that can
transiently and cooperatively fold into an α-helix in vitro36,47,63.
This helix is stabilized by inter-molecular contacts and its self-
interaction was proposed to seed liquid-demixing in vitro.
Amyloid fibrils can grow from the liquid de-mixed state and
circular dichroism spectroscopy revealed that the helix can
transition to a β-sheet over time, compatible with the process of
aggregation35,63. On the basis of epistasis, the top scoring
predicted contacts in this region are between residues separated

Fig. 3 Mutations leading to formation of solid-like aggregates rescue toxicity. a Representative fluorescence microscopy images of yeast cells expressing
indicated YFP-tagged TDP-43 variants (W334K TDP-43= toxic, A328V TDP-43= non-toxic). H4-mCherry marks nuclei (red). Contrast was enhanced
equally for the green and red channels in all images. b Percentage of cells with cytoplasmic foci (Cells scored: n[toxic]= 219, n[WT]= 30, n[non-toxic]=
213). Fisher’s Exact test. c Percentage of cells with cytoplasmic foci with size over 5 pixels automatically detected by CellProfiler. Fisher’s Exact test. (Cells
scored: n[toxic]= 167, n[WT]= 23, n[non-toxic]= 167). d Percentage of cells with foci at the nuclear periphery (Cells scored: n[toxic]= 219, n[WT]=
30, n[non-toxic]= 213). Fisher’s exact test. e Distance of foci from nucleus center for toxic (red), non-toxic (blue), and WT (black) TDP-43. Boxplots
represent median values, interquartile ranges and Tukey whiskers with individual data points superimposed. Kruskal Wallis with Dunn’s multiple
comparisons test (n= >20 foci/variant). f Average fluorescence intensity of foci localized closer (<15 pixels, n=147) or further (>15 pixels, n= 138) from
the nucleus. Boxplots represent median values, interquartile ranges and Tukey whiskers with individual data points superimposed. Mann–Whitney test.
g Representative individual fluorescence recovery traces for variants reported in panel (e). Lines are the result of a single exponential fitting. h Mobile
Fraction as calculated by fitting FRAP traces for toxic (red), non-toxic (blue) and WT (black) TDP-43. Each point results from fitting an individual trace.
One-way ANOVA with Tukey’s multiple comparisons test. Images were taken on cells growing from at least 3 independent starting colonies. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001. Scale bar= 5 μM. Source data are provided as a Source Data file
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by 3–4 AA such as Ala 324 and Ala 328, or Ala 325 and
Ala 328, consistent with interactions between side chains of an
α-helix (Fig. 4e).

The pattern of in vivo epistatic interactions between mutations
in TDP-43 therefore is compatible with a model in which two of
the secondary structures that have previously been observed
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strategy to identify in vivo secondary structures. Double mutant variants are classified as epistatic if they are more (95th percentile) or less (5th percentile)
toxic than other variants with similar single mutant toxicities (top). A pair-wise interaction (PWI) matrix of epistasis correlation scores is then constructed by
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residues at minimal distance between side chain heavy atoms. Side chain atoms are depicted in blue. e Epistatic interactions in region 321–330 are consistent
with positions of similar side-chain orientations interacting in an α-helix. Epistasis correlation matrix and top seven epistasis correlation score interactions
annotated on the Helix reference structure (monomer from PDB entry 5whn, https://www.rcsb.org/structure/5WHN)
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in vitro for fragments of TDP-43 actually form in vivo in the full-
length protein.

Discussion
Specific protein aggregates have long been recognized as the
hallmarks of many neurodegenerative diseases4–6,52,64. However,
whether these aggregates are the cause of these diseases, non-
pathological by-products, or a protective mechanism is still very
unclear and hotly debated13–16. Indeed, although it is often
assumed to be the case, it is not even clear whether aggregates are
the cause of toxicity when aggregating proteins are expressed in
simpler cellular systems54,55. We reasoned that deep mutagenesis
might be an effective approach to resolve this question.

In this study, we have tested this approach using the ALS
protein TDP-43 that both aggregates and causes toxicity in the
model eukaryote, S. cerevisiae. Quantifying the effects of >50,000
mutants of TDP-43 revealed unequivocally that increasing the
hydrophobicity and aggregation of TDP-43 strongly reduces the
toxicity of this protein in yeast cells. Consistently, mutations that
reduce hydrophobicity and the aggregation potential of TDP-43
increase the toxicity of the protein. Although they reduced the
formation of large, solid aggregates, mutations that increase
toxicity promote the formation of alternative foci—dynamic,
liquid-like TDP-43 condensates clustered at the nuclear periph-
ery. We propose therefore that aggregation reduces the toxicity of
TDP-43 to yeast cells because it titrates TDP-43 away from this
toxic liquid-like phase (Fig. 5a).

That TDP-43 aggregates are protective rather than toxic is
consistent with previous work in multiple systems, including the
rescue of toxicity by the accumulation of RNA lariats that
sequester TDP-43 into large aggregates65. Moreover, in mam-
malian cells, liquid de-mixed TDP-43 was recently shown to
recruit the nuclear pore component Nup62 and the importin-α
transporter, resulting in nuclear transport impairment and toxi-
city44. Thus, although it still remains to be established whether
aggregation of TDP-43 is also protective in mammalian cells and
neurons, it seems likely that this will be the case. The observation
that all recurrent fALS mutations increase the toxicity of TDP-43
in yeast and by a similar magnitude (Supplementary Fig. 2d) is
very striking and suggests that the yeast system may indeed
capture molecular mechanisms relevant to the human disease.
Indeed, given the late age of onset of ALS, it is particularly
interesting that the fALS mutations are all moderate effect
mutations when expressed in yeast, as it may be the case that the
more toxic variants of TDP-43 are embryonic lethal in humans.

More generally, our results demonstrate that deep mutagenesis
is a powerful approach for determining the sequence-function
relationships of intrinsically disordered proteins, including
probing their in vivo structures. Mutations had their strongest
effects within a central hotspot region of the TDP-43 PRD. Our
recently developed approach51 that uses the patterns of genetic
interactions in double mutants to report on structural contacts
reveals that this ‘unstructured’ hotspot region is very likely to be
structured in vivo with the formation of these secondary struc-
tures altering the toxicity of the protein. Indeed, secondary
structure elements within this region have been shown to be
important for the phase separation and aggregation of fragments
of TDP-43 in vitro35,36,52. A parsimonious model based on pre-
vious in vitro work35,36,47 is that the helix forms first in the
pathway of aggregation towards a β-rich species (Fig. 5b). Con-
sistent with this, destabilizing mutations, such as any substitution
of Phe 313 and Phe 316 in the LARKS, or the introduction of
proline into the 324–330 helix, increase toxicity (Fig. 1f).

The conformations of ‘unstructured’ proteins are notoriously
difficult to study and the interactions between mutations in
double mutants provide a general method to probe the in vivo
structures of these proteins whenever a selection assay is available.
We envisage that this approach can be adopted to study the
functions, toxicity, and in vivo structures of other intrinsically
disordered proteins, including the many other proteins impli-
cated in neurodegenerative diseases.

Our conclusions derived from deep mutagenesis of TDP-43 are
also consistent with observations for other genes, such as the
reduced toxicity of SOD-1 variants that increase aggregation16,66

and the increased survival of neurons containing Huntingtin
inclusion bodies67. They are also consistent with increasing evi-
dence that insoluble aggregates are not pathogenic in multiple
other neurodegenerative diseases64,68,69, and with the clinical
failure of therapeutic approaches that reduce the occurrence of
aggregates10,12,70–72.

Indeed, if insoluble aggregates generally titrate proteins away
from alternative toxic phases, interactions and functions, then
promoting rather than alleviating aggregation might be the more
appropriate therapeutic goal in neurodegenerative diseases.

Methods
Yeast strains and plasmids. Saccharomyces cerevisiae S288C BY4741 (MATa
his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) was used in all experiments. Plasmid pRS416
containing TDP-43 or TDP-43-YFP under control of the Gal1 promoter was
purchased from Addgene54. Mutagenesis for the characterization of TDP-43 var-
iants was performed through PCR linearization with specifically-designed primers
(Supplementary Data 1, primers: BB_1 to BB_6). The resulting products were then
either treated with DpnI or purified from a 1% agarose gel with a QIAquick Gel
Extraction Kit (Qiagen) and transformed into E.coli DH5α competent cells

b

?

a Non-toxic

Aggregate

Nuc

Toxic

Nuc

Liquid-like

Fig. 5 Model of how AA changes determine toxicity of TDP-43. aMutations
that promote formation of insoluble cytoplasmic aggregates decrease
TDP-43 toxicity, while mutations that cause the protein to stall in a liquid
de-mixed phase increase its toxicity to the cell. b Secondary structure
elements, within the toxicity hotspot 312–342, promote the aggregation
process of TDP-43, with a transient helix forming on pathway to β-rich
aggregates
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(Invitrogen) for plasmid purification and validation through Sanger sequencing.
The plasmid used in the co-localization assays contains RNQ1-mCherry under
control of the Gal1 promoter was a kind gift from the Rick Gardner lab. Genes
coding for the other proteins for which co-localization was tested were cloned in
this plasmid by gap-repair.

Library construction. Two 186 nt oligonucleotides were purchased from TriLink.
Each consisted of a ‘doped’ region of 126 nt, corresponding to TDP-43 AA
290–331 or AA 332–373, flanked by 30 nt of the WT TDP-43 sequence on each
side. Each position in the mutated area, was doped with an error rate of 1.59%. The
target frequency for each library was 27.0% for single mutants and 27.3% for
double mutants. With this approach, the WT sequence was represented with a
frequency of 13.3%. Although a barcoding strategy73 could have improved the
robustness of sequencing reads, we estimated that the impact of misreads due to
the direct sequencing approach here employed would sum up to less than two
additional counts per double nucleotide variant attributable to sequencing error
(see Variants Toxicity and Error Estimates). Each oligonucleotide was amplified by
PCR (Q5 High-Fidelity DNA Polymerase, NEB) for 15 cycles, purified using an E-
gel electrophoresis system (Agarose 2%) followed by column purification with a
MinElute PCR Purification Kit (Qiagen). In order to introduce the doped sequence
in the full-length TDP-43 sequence, the purified oligonucleotide was cloned into
100 ng of linearized pRS416 Gal TDP-43 by a Gibson approach (Supplementary
Data 1, primers BB_7 to BB_10). The product was then transformed into 10-beta
Electrocompetent E. coli (NEB), by electroporation in a Bio-Rad GenePulser
machine (2.0 kV, 200Ω, 25 μF). Cells were recovered in SOC medium (NEB) for
30 min and plated on LB with ampicillin. A total of ~ 2.7 × 106 transformants were
estimated. The plasmid library was purified with a GeneJET Plasmid Midiprep Kit
(Thermo Scientific).

Yeast transformation and selection experiments. Yeast cells were transformed
with the TDP-43 doped plasmid in 4 independent biological replicates for each
library. One single colony was grown overnight in 30 ml YPDA medium at 30 °C
for each replica. Cells were diluted to 0.3 optical density at a wavelength of 600 nm
(OD600) in 175 ml of YPDA and incubated for 4 h at 30 °C. Cells were then
harvested, washed, re-suspended in 8.575 mL SORB (100 mM LiOAc, 10 mM Tris
pH 8.0, 1 mM EDTA, 1 M sorbitol) and incubated for 30 min at room temperature.
For the transformation, 10 mg per mL of salmon sperm DNA and 3.5 μg TDP-43
plasmid library were used. Cells were mixed to 100 mM LiOAc, 10 mM Tris-HCl
pH 8.0, 1 mM EDTA/NaOH pH 8.0 and 40% PEG 3350. Heat-shock was per-
formed for 20 min at 42 °C. YPD with 0.5 M sorbitol was used to recover the cells,
incubating them for 1 h at 30 °C. After recovery, cells were resuspended in SC-URA
2% raffinose medium, while an aliquote was plated to calculate transformation
efficiency.

After ~50 h of growth, cells were diluted in SC-URA 2% raffinose medium and
grown for 4.5 generations. At this stage, 400 mL of each replica were harvested,
washed, split into two tubes and frozen at −20 °C for later extraction of input
DNA. To induce plasmid expression, for each replicate two cultures were diluted in
SC-URA 2% galactose medium. After 5–6 generations, 2 × 400 mL for each
replicate were harvested to obtain output pellets for DNA extraction.

DNA extraction and library preparation. Input and Output pellets were resus-
pended in 1.5 mL extraction buffer (2% Triton-X, 1% SDS, 100 mM NaCl, 10 mM
Tris-HCl pH 8.0, 1 mM EDTA pH 8.0). Two cycles of freezing in an ethanol-ice
bath and heating at 62 °C were performed. Deproteinization was performed using
25:24:1 phenol-chloroform-isoamyl alcohol and glass beads. After centrifugation,
the aqueous phase, containing the DNA, was recovered and treated again with
phenol-chloroform-isoamyl alcohol. The samples were incubated for 30 min at
−20 °C with 1:10 V 3M NaOAc and 2.2 V 100% ethanol for DNA precipitation. At
this stage and after centrifugation for 30 min, the pellets were dried overnight at
room temperature. RNA was eliminated by incubation with RNAse 10 mg per mL
for 30 min at 37 °C. DNA purification was achieved with a QIAEX II Gel
Extraction Kit (Qiagen) and DNA was eluted in 375 μL of elution buffer. DNA
concentration was measured by q-PCR, with primers annealing to the Ori site of
the pRS416 plasmid (Supplementary Data 1, primers BB_11, BB_12).

The TDP-43 library was then prepared for deep sequencing by PCR
amplification in two steps using Q5 High-Fidelity DNA Polymerase (NEB). In step
1, 300 million plasmids were amplified for 15 cycles using frame-shifted adaptor
primers with partial homology to standard Illumina sequencing primers
(Supplementary Data 1, primers BB_13 to BB_47). Samples were treated with
ExoSAP (Affymetrix) and purified with QIAEX II kit (Qiagen). PCR products from
the first step were used as templates in the second PCR step, where indexed
Illumina primers (Supplementary Data 1, primers TS_HT_D7X_7 to
TS_HT_D7X_95) were used for a 10 cycles amplification. DNA concentration was
then quantified by means of a Quant-iT™ PicoGreen® dsDNA Assay Kit (Promega).
All replicates were pooled together in an equimolar ratio. Finally, the pooled
sequencing library was run on a 2% agarose gel, purified and sent for 125 base-pair
(bp) paired-end Illumina sequencing at the CRG Genomics Unit.

Individual growth rate measurements. Yeast cells expressing selected TDP-43
variants were grown overnight in SC-URA 2% raffinose non-inducing medium and
diluted to 0.2 OD600 until exponential phase. Then they were diluted to 0.1 OD600
in SC-URA 2% galactose to assess growth in inducing conditions. Growth was
monitored by measuring OD600 in a 96-well plate at 10 min intervals inside an
Infinite M200 PRO microplate reader (Tecan). Plates were kept constantly shaking
at 30 °C. Growth curves were fitted in order to extrapolate growth rates that cor-
respond to the maximum slope of the linear range of the LN(OD600) curve
over time.

Equipment and settings. Imaging was performed by using a Confocal TCS SP8
and a Confocal TCS SP5 (Leica) equipped with PMT detectors both for fluores-
cence and transmitted light images. AOBS beam-splitter systems are in place on
both instruments. 63X oil immersion objectives and the LAS AF software were
used for all imaging. YFP fluorescence was excited with a 488 nm laser, while
mCherry fluorescence with a 561 nm laser. Ranges for emission detection were
495–554 and 637–670 nm respectively. Image depth is 8-bit in all cases and pixel
size equals 120.4 nm. The LUT is linear and covers the full range of the data.

Fluorescence microscopy and image analysis. Yeast cells expressing TDP-43
selected variants were grown in SC-URA 2% raffinose non-inducing medium and
then transferred to SC-URA 2% galactose medium to induce protein expression for
8 h. They were then imaged under a Confocal TCS SP8 microscope (Leica).
Counting of foci was conducted both manually and by automated pipelines using
the CellProfiler software where quantification of fluorescent intensity was tracked
for each focus. The coordinates of the center of each focus and nucleus were derived
from CellProfiler and used to calculate distances using a custom R script (pipelines
available at https://github.com/lehner-lab/tardbpdms_cellprofiler_scripts).

Fluorescence recovery after photobleaching. Yeast cells expressing TDP-43
selected variants were grown in SC-URA 2% raffinose non-inducing medium and
then transferred to SC-URA 2% galactose medium to induce protein expression for
8 h. The cells were immobilized to an 8-well cover slide by Concanavalin-A-
mediated cell adhesion. Cells were then imaged under a Confocal TCS SP5
microscope (Leica) where bleaching was achieved with 488 Laser Power at 70% for
three frames (1.3 s per frame) while fluorescence recovery was recorded for 50
frames. The curves were then fitted to a single exponential, following normal-
ization, with the EasyFrap package74.

Protein extraction and western blotting. Single yeast colonies were grown
overnight in non-inducing medium and then diluted to 0.2 OD600 in galactose
medium to induce protein expression for ~8 h. At this stage, 6 × 107 cells were
collected and re-suspended in 200 μL EtOH and 2.5 μL PMSF. Samples were
vortexed with glass beads for 15 min at 4 °C and frozen overnight at −80 °C. The
samples were dried in a speed vacuum for 20 min and resuspended in 200 μL
solubilizing buffer (20 mM Tris HCl pH 6.8, 2% SDS). After boiling for 5 min, the
lysate fraction was run on a NuPAGE 4–12% Bis-Tris gels (Novex) and transferred
to PVDF membranes in an iBlot (Invitrogen). Membranes were blocked with 5%
milk powder in TBS-T and incubated overnight at 4 °C with primary antibodies:
anti-GFP mouse antibody (Santa Cruz sc-9996) and anti-PGKD1 mouse antibody
(Novex 459250) diluted 1:1000 and 1:5000 in 2.5% powder milk respectively.
Secondary antibody anti-proteinG was incubated for 1 h at room temperature.
Proteins were detected with an enhanced chemi-luminescence system (Millipore
Luminata) and visualized using an Amersham Imager 600 (GE Healthcare).

Sequencing data pre-processing. FastQ files from paired-end sequencing of
replicate deep mutational scanning (DMS) libraries before (‘input’) and after
selection (‘output’) were processed using a custom pipeline (https://github.com/
lehner-lab/DiMSum, manuscript in prep.). DiMSum is an R package that wraps
common biological sequence processing tools including FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) (for quality assessment), cutadapt
(for demultiplexing and constant region trimming), USEARCH75 (for paired-end
read alignment) and the FASTX-Toolkit (http://hannonlab.cshl.ed/fastx_toolkit/).
First, 5′ constant regions were trimmed, but read pairs were discarded if 5′ constant
regions contained more than 20% mismatches to the reference sequence. Read
pairs were aligned (reads that did not match the expected 126 bp length were
discarded) and Phred base quality scores of aligned positions were calculated using
USEARCH. Reads that contained base calls with Phred scores below 30 (290–331
DMS library) or below 25 (332–373 DMS library) were discarded. Approximately
five and seven million reads passed these filtering criteria in each sample corre-
sponding to the 290–331 and 332–373 libraries respectively. Finally, unique var-
iants were counted and merged into a single table of variant counts (aggregated
across technical output replicates) per DMS library. One out of four input repli-
cates (and all associated output samples) from each DMS library were discarded
due to considerably lower correlations with the other replicates (Supplementary
Fig. 1a, b).
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Variant toxicity and error estimates. All analyses of toxicity were performed on
variants with a maximum of two AA mutations, but no synonymous mutations in
other codons. Firstly, sample-wise counts for variants identical at the AA level were
aggregated. For each replicate selection, relative toxicity of variants was calculated

from variant counts in input Fxinput

� �
and output Fxoutput

� �
samples as

Relative toxicityx ¼ ESWT � ESx ð1Þ

where ESx ¼ ln
Fxoutput
Fxinput

and ESWT represents the WT enrichment score. Uncertainty

of toxicity values was estimated as a combination of expected Poisson error based
on read counts and error between replicate selections as:

εx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Fxinput
þ

1
Fxoutput

þ
1

FWTinput

þ
1

FWToutput

þ ε2r

s
: ð2Þ

Here, εr , the error between replicate selections, is estimated from the variance of
toxicity estimates across replicates for variants whose expected count-based Pois-
son error approaches zero. Toxicity estimates and associated errors per replicate
selection were also normalized by the replicate-specific number of cell doublings
during selection to yield relative growth rates per generation.

In ‘doped’ variant libraries, individual double mutants are represented less
frequently than single mutants or the WT sequence and due to this under-
representation toxic double mutants (that are depleted due to slower growth during
selection) are often not observed in the output samples (Supplementary Fig. 1c). To
calculate toxicity estimates for such double mutants and avoid skewed marginal
toxicity distributions due to these drop-out events, we used a Bayesian approach to
estimate toxicity of double mutants based on a prior, i.e., toxicity distributions of
highly represented doubles that originate from single mutants with similar toxicity
estimates51. These corrected toxicity estimates show improved heteroscedasticity
and reduced variance, especially for under-represented double mutants
(Supplementary Fig. 1c).

Variant toxicity distributions were first normalized between replicate selections
of the same DMS library to have equal standard deviations. Then toxicity estimates
of each variant across replicate selections were merged by taking the error-weighted
mean across replicate selections. Finally, distributions of merged toxicity estimates
from each DMS library were centred on the error-weighted means of toxicity of
single codon synonymous (silent) variants in each DMS library and scaled such
that the error-weighted means of single STOP codon variants coincided for both
DMS libraries (Supplementary Fig. 2a and c). Furthermore, we removed low
confidence variants supported by an average of less than ten input reads from all
downstream analyses. Merged and normalized toxicity estimates, as well as toxicity
estimates from independent replicates before merging and normalisation, are
available in Supplementary Data 3 and 4 respectively.

The impact of misreads (i.e. sequencing errors) was evaluated by measuring
the per base error frequency in the WT sequence 10 bp upstream and 10 bp
downstream of the mutagenized (doped) region. The frequency of an incorrect
base call in these regions is 0.0001 (sd= 6 × 10−5) for the 290–331 library and
0.0004 (sd= 4 × 10−4) with little variability depending on the wild-type base. By
multiplying these frequencies by the length of the doped region we calculated the
probability of a misread in each variant (0.0126 for the 290–331 library and
0.0504 for the 332–373 library). Single nucleotide substitutions account for ~2 ×
106 reads in a typical input sample of the 290–331 library, of which we estimate
98.74% to be “true” single nucleotide variants on the basis of a 0.0126 misread
probability. Therefore, we estimate an additional 2 × 104 misreads originate from
single nucleotide variants (2 × 104= 0.0126/0.9874 × 2 × 106). In the 126 bp
mutagenized region, a total of 7875 × 3 × 3= ~7 × 104 possible double nucleotide
variants exist, since each base in each pair can be mutated to one of the three
other nucleotides. We therefore estimated that, even in a scenario in which
single nucleotide variants are solely distributed among all possible double
nucleotide variants, the additional count due to sequencing errors in the
290–331 library would be ~0.5 as it follows from the estimated additional 2.6 ×
104 misreads over a total of 7 × 104 possible doubles. Similarly, additional counts
due to sequencing errors would not reach 2 even in the 332–373 library, where
the misread frequency was higher (0.0004).

Linear regression models to predict variant toxicity. We used simple linear
regression to predict variant toxicity from (i) a collection of AA property features,
(ii) a panel of scores from aggregation/structure algorithms and (iii) location with
respect to the toxicity hotspot.

The AA property features were derived from a PCA of a curated collection of
numerical indices representing various physicochemical and biochemical
properties of AAs (http://www.genome.jp/aaindex/). From a total of 539 indices,
we retained 379 high confidence indices with no missing values (including five
additional indices absent from the original database; see Supplementary Data 2).
Results of PCA and selected variable loadings on the normalized matrix are shown
in Supplementary Fig. 3. For single mutant variants, AA property feature values
represent the difference between the WT and mutant PC scores.

Similarly, aggregation, disorder, structure and other feature values for single
mutant variants represent the difference between scores obtained using WT and
single mutant AA sequences. AGADIR, catGRANULE and Tango provide a single

score per AA sequence. Unless a single score per AA sequence was provided (i.e.
AGADIR, catGRANULE, Tango), individual residue-level scores were summed to
obtain a score per AA sequence (i.e. BetaTPred3, DISEMBL, IUPred2A, Waltz,
ZipperDB, Zyggregator). The entire PRD AA sequence was supplied to AGADIR
and all unique six-mers to ZipperDB. For the remainder, the full-length AA
sequence was used.

Variants inside the hotspot were defined as those with mutant residue positions
in the range of 312–342. Change in absolute charge (regardless of sign) is shown in
Fig. 2d, e, because this feature is more predictive of toxicity than change in charge
itself. For double mutant variants, we summed the feature values of the constituent
singles for both AA property and aggregation/structure algorithm features.
Regression models were built using either (i) all variants, restricting variants to
those occurring either (ii) inside or (iii) outside the toxicity hotspot (for double
mutants both mutations have to occur either inside or outside the hotspot region),
or (iv) including a binary location variable (0: one/all outside, 1: one inside, one
outside, 2: one/all inside toxicity hotspot) and a third term indicating the
interaction between location and the AA property or aggregation/structure
algorithm feature.

Predicting secondary structure from epistasis. Epistasis is the non-
independence of mutation effects, i.e., the toxicity of double mutants is different
from that expected given the toxicity of their constituent single mutant variants.
We have previously shown that epistasis between double mutants can result from
structural interactions within proteins and therefore can be used to infer secondary
and tertiary structural features51,60. In brief, double mutants were classified as
epistatic if they had more extreme toxicity values (below 5th percentile or above
95th percentile) than other double mutants with similar single mutant toxicities,
which was estimated from non-parametric surface fits of double mutant toxicity as
a function of a two-dimensional single mutant toxicity space (Fig. 4a).

Double mutants close to the lower or upper measurement range limits (where
the power to detect significant epistasis is reduced) were excluded from epistasis
quantification. We calculated position-pair enrichments for epistatic double
mutants resulting in a pair-wise enrichment matrix. Diagonal entries on this matrix
were imputed as column-wise mean enrichments. An epistasis correlation score
matrix was then derived from this enrichment matrix by calculating the partial
correlation of epistasis interaction profiles (columns of the enrichment matrix)
between all pairs of positions. The rationale for the correlation score is that
structurally close positions within a protein should have similar epistatic
interactions with all other positions in the protein. Calculating partial correlations
additionally removes transitive interactions and was found to be superior over
epistasis enrichments in estimating secondary structures51.

Secondary structure propensities were calculated by testing for agreement of
epistasis correlation score patterns with the stereotypical periodicities of an α-helix
and β-strand, using two-dimensional kernels at each position along the diagonal of
the epistasis correlation score matrix51. Significance of secondary structure
propensities was assessed by comparison to propensities derived from 104

randomized epistasis correlation score matrices.
Similarly, LARKS structure propensities were calculated using PDB-structure

derived contact matrices based on a minimal side-chain heavy atom distance of
4.5 Å (Supplementary Fig. 8) for both WT (PDB 5WHN [https://www.rcsb.org/
structure/5WHN]) and mutant sequences (PDB 5WHP [https://www.rcsb.org/
structure/5WHP] and 5WKB [https://www.rcsb.org/structure/5WKB]). Contact
matrix values were normalised to have zero sum. Association score matrix values
were normalised to have mean of zero and unit variance. Significance of LARKS
structure propensities was assessed by comparison to propensities derived from 104

randomized epistasis correlation score matrices, where randomization was
restricted to within-LARKS interactions, i.e., distances compatible with a six-mer.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request. Raw sequencing data and the processed data table (Supplementary
Data 3) have been deposited in NCBI’s Gene Expression Omnibus (GEO) and are
accessible through the GEO Series accession number GSE128165. The source data
underlying Fig. 3 and Supplementary Figs. 5 and 6 are provided as a Source Data file.

Code availability
All software code and custom scripts are available on GitHub: https://github.com/lehner-
lab/DiMSum for raw read processing, https://github.com/lehner-lab/tardbpdms for all
downstream analyses and to produce all figures, and https://github.com/lehner-lab/
tardbpdms_cellprofiler_scripts for CellProfiler pipelines.
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Predicting mutational effects in amyloid forming 
sequences 
 
To build a comprehensive map for the impact of mutations on amyloid nucleation, we successfully 
developed a novel approach that couples a yeast phenotypic assay to deep mutational scanning 
(DMS) and allows testing thousands of protein variants at scale. We used this approach for the 
amyloid β peptide (Aβ42), one of the most well-known mammalian amyloidogenic proteins 
linked to Alzheimer’s Disease (AD). Our work represents the first mutational scanning of the 
aggregation of any amyloid protein and the first systematic comparison of mutation types in any 
human gene. 
 
The majority of single amino acid substitutions in the hydrophobic C-terminus decrease 
nucleation, consistent with all proposed Aβ structures where this region is forming the amyloid 
core of the fibrils. However, not only mutations to polar and charged residues in the core disrupt 
nucleation, but also changes to aliphatics and aromatics. In fact, there are only a few hydrophobic 
changes that are tolerated in this region, such as valine or isoleucine at positions 29, 30 or 34, in 
addition to some polar residues, for example cysteine at positions 29, 38 and 42, or asparagine at 
positions 33 and 42. Overall, this suggests a very specific arrangement of the side chains for the 
packing of the core with only a handful of solutions for proper nucleation, which would not have 
been easily predicted. At the N-terminus, mutations have a more balanced effect but similarly to 
the C-terminus, they are very position-specific. For example, increasing hydrophobicity disrupts 
nucleation when mutating the first ten residues, but after position 11 some aliphatic amino acids 
such as valine and isoleucine are tolerated. In addition, many polar, proline residues and positive 
- but not negative - charges increase nucleation. Interestingly, the same amino acid type does not 
always have the same impact at each position, for example, while aspartic acid increases 
nucleation at positions 18 and 19, its counterpart glutamic acid decreases it.  
 
Moreover and beyond substitutions, with our approach we could also assess and compare the 
impact on nucleation of other types of mutations in Aβ42, such as insertions, deletions and 
truncations. We found that the modular effect of mutations is common across all classes, with a 
general trend showing that mutations at the C-terminus are more disruptive than at the N-terminus, 
the latter having a substantial amount of increasing-nucleation variants. Beyond this, the impact 
of the different classes of mutations is not easily predictable, and the effect of mutations of similar 
amino acid identity and position do not always correlate between mutation types. For example, 
the effect of substitutions and insertions only correlates when averaging the effect of mutations 
of specific amino acid types for the N and C-terminus separately or at specific positions, but not 
when taking each individual residue identity and position all along the sequence. In addition, 
some regions of the peptide are more tolerant to specific types of mutations. This is well illustrated 
with the 33-38 region at the C-terminus, where virtually all insertions and deletions decrease 
nucleation but a handful of substitutions are tolerated. Another example is that while at the last 
four residues of the peptide some substitutions and insertions increase nucleation, no deletions or 
truncations are tolerated. In some other regions, all mutation types have similar effects on 
nucleation. For example, the region 17-27, defined as the hotspot of deletion effects with 35 
aggregating large deletions, also contains variants of all other mutation types that increase 
nucleation, such as single deletions of residues 22-26 or substitutions and insertions at positions 
22 and 23. 
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Overall, the amino acid preferences for nucleation are difficult to predict especially because they 
are very position and region specific along the peptide sequence. Indeed, existing computational 
tools poorly predict the outcome of mutations on nucleation and their association to disease, with 
only mutational effects at the C-terminus partially captured by hydrophobicity and predictors of 
aggregation, such as Zyggregator or Tango. Moreover, these algorithms are trained and - up to 
this work - tested only on single amino acid substitutions. We showed they also have little 
predictive power for insertions and single deletions, and that they cannot assess mutations 
affecting multiple residues - with proven biological and clinical relevance - because they rely on 
sequence length (Figure 16). This highlights the urge to include various types of genetic variants 
in the design of mutational libraries and generate experimental data that can be then used to build 
better computational predicting tools. More broadly, testing the performance of all possible 
variants in a protein results in the full distribution of possible mutational effects. This is crucial 
to put the impact of specific variants into the context of the whole phenotypic space, rather than 
comparing them simply to another variant such as the wild type (WT), as it has been historically 
done. 
 

 
Figure 16. Evaluation of mutational effect and aggregation predictors. Correlation of nucleation 
scores with the predictions of aggregation predictors (Tango, Zyggregator, Waltz and Camsol) 
(Fernandez-Escamilla et al. 2004; Tartaglia and Vendruscolo 2008; Sormanni, Aprile, and 
Vendruscolo 2015; Oliveberg 2010), variant effect predictors (CADD, Polyphen) (Rentzsch et al. 



 

125 
 

2019; Adzhubei, Jordan, and Sunyaev 2013), solubility scores (Gray et al. 2019), PC1 (Bolognesi 
et al. 2019) and hydrophobicity (Kyte and Doolittle 1982) for single amino acid mutations, at the 
N-terminus (left) or the C-terminus (right). Pearson correlation coefficients are indicated. Dashed 
lines indicate the WT nucleation score (0).  
 
 
Two aggregation-prone regions (APRs) have been identified by Tango, one of the most widely 
used computational tools for protein aggregation. One APR is located at residues 17-21 at the N-
terminus and the other comprises the C-terminal 29-42 residues. Despite both being hydrophobic 
stretches, our data show their tolerance to mutations is completely different. While APR1 behaves 
very similarly to the rest of the N-terminus 1-28, with many mutations increasing nucleation, 
APR2 is very sensitive and intolerant to changes. This further highlights that the behavior of 
amyloid proteins is not readily predictable from their primary sequence. 
 
Structural biology has substantially contributed to our understanding of Aβ42 fibrils, for example, 
by determining the existence of the amyloid core with a very similar structure in all known 
polymorphs. However, these studies do not capture the specific amino acid preferences at the 
different positions and are not able to determine flexible and disordered regions such as the N-
terminus of Aβ42, which we showed has high implications in nucleation and disease. Overall, we 
envision that experimental deep mutagenesis of disordered sequences is a powerful tool to gain 
mechanistic insights of protein regions that remain unsolved by traditional structural methods. 
  

Discriminating disease variants and prioritizing 
disease candidates 
 
The dataset of single amino acid substitutions contains all 16 dominant familial AD (fAD) 
mutations known to date, and all of them show increased nucleation relative to WT Aβ42. Indeed, 
nucleation scores accurately classify all fAD variants, meaning they can be used to predict the 
outcome of variants of unknown significance (VUS). In addition, the agreement of our data with 
human genetics suggests that fAD is very likely to be a nucleation disease. The power of 
nucleation scores to classify fAD variants is further confirmed by assessing other types of genetic 
variants: the only single amino acid deletion, E22Δ, and the only multi amino acid deletion, Δ19-
24, associated with fAD, both show increased nucleation score. 
 
Some of the fAD mutations were described while we were performing these experiments, for 
example, K16Q, L17V or Δ19-24 mutations were found only after 2020. Traditionally, new Aβ42 
fAD associated mutations are reported only once they are seen in a patient and a bit alarmingly, 
the rate at which they are being discovered is not any better than in the early 90s when the first 
cases were described (Figure 17).  
 
Our assay overcomes this limitation and can contribute to the classification of candidate 
pathogenic variants by providing a nucleation score for all possible mutations in the peptide at 
scale. In total, our approach prioritizes 307 variants as candidate fAD, 108 of them are 
substitutions, 77 insertions, 5 single amino acid deletions, 13 truncations and 104 multi amino 
acid deletions; revealing that all mutation types beyond substitutions are likely to cause disease. 
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Strikingly, 267 of the total 307 are located at the N-terminus of Aβ42, the region already 
containing 16 out of the 18 fAD mutations. 
 

 
Figure 17. Number of Aβ42 mutations associated with fAD discovered with time. Red line 
indicates the cumulative number of mutations (Data from APP | Alzforum. (n.d.). Retrieved 
August 30, 2022, from https://www.alzforum.org/mutations/app) 
 
 
It is worth mentioning that not all Aβ42 mutations have a dominant pattern of inheritance, but 
E22Δ and A2V are recessive. While E22Δ shows the same effect as dominant fAD mutations, an 
increase in nucleation, A2V instead decreases nucleation in our assay. 
 
E22Δ, known as the Japanese mutation, was originally found in three individuals: one 
homozygous with AD, one heterozygote with mild cognitive impairment (MCI) and another 
heterozygous but healthy individual. Only the homozygous individual showed AD, but since one 
heterozygous individual manifested MCI (which may precede dementia in some cases), the 
authors suggested an incomplete penetrance behavior of the mutation that may act in a dose-
dependent manner (Tomiyama et al. 2008). One limitation of our approach is that homozygous 
versus heterozygous genotypes cannot be assessed. However, the incomplete penetrance behavior 
suggested for E22Δ could be approached by running the experiment at different protein 
expression levels, since the library is expressed under a concentration-dependent inducible copper 
promoter (data not shown).  
 
A2V, the other mutation with a recessive pattern of inheritance, is known to alter the processing 
of APP, increasing the production of Aβ (Di Fede et al. 2009). Our assay cannot assess this 
mechanism because the library construct contains only the Aβ42 fragment and so cleavage and 
processing steps are omitted. The same study suggests that pathogenicity may also come from the 
A2V Aβ42 peptide due to increased aggregation relative to the WT. Yet, this was only tested in 
the Aβ40 isoform background, which is well-known to be less aggregation-prone than Aβ42. In 
our assay, Aβ40 shows decreased nucleation score, highlighting the importance of the last two 
residues for proper nucleation. Therefore, we reasoned that the A2V mutation - or any other 
mutation - may have completely a different outcome in the Aβ40 or Aβ42 backgrounds and 
indeed, for a dataset of single amino acid substitutions tested in both backgrounds (n=155), we 
see a very poor correlation of nucleation scores (r=0.27, data not shown).  
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Another aspect in our assay that generates debate is the use of yeast as a disease model. Generally, 
more complex systems such as animal models are considered more appropriate for reproducing 
human disease phenotypes, especially when it comes to neurodegenerative diseases. However, 
some of the common AD mouse models, for example, rely on two or three overexpressed 
transgenes to obtain an observable phenotype, which does not always fully recapitulate that of 
human disease (Sasaguri et al. 2017) and thus we argue that this is not necessarily a particularly 
physiological model. In yeast, by assessing large numbers of sequence variants or experimental 
conditions in a simpler and scalable mode, we have the possibility of statistically testing whether 
the outcome of (all) disease variants can be distinguished from that of the overall set of variants. 
This work is therefore a tangible example of how a yeast assay can become more powerful than 
many other assays that were assumed to be more ‘physiological’ in the first place: whichever 
mechanism is occurring inside the yeast cell, it may be the same or very similar to that causing 
human fAD. Overall, we believe that any assay in any model, from simple cell-based assays to 
animal models, should be genetically validated (or invalidated) for its relevance to disease by 
using clinical genetic data. 
  

Structural insights from deep mutagenesis 
 
Various structures have been proposed for Aβ42, including two from AD human brains, and a set 
of structures for fibrils formed by the Aβ40 isoform. Having in mind how polymorphic amyloid 
proteins are, it is very likely that differences in experimental conditions, even if subtle, have a 
great impact on the final arrangement of the protofilaments and fibrils. However, the vast majority 
of Aβ42 structures (6 out of 8) share some fundamental features, such as an S-shape fold of the 
monomeric subunit from residue 9 (starting position varies on each polymorph) to residue 42, and 
a tightly packed amyloid core at residues 29-42. The first residues of the peptide remain instead 
undetermined and likely disordered in 4 of these 6 structures. For simplicity, here we focus the 
discussion on the two ex vivo models for Aβ42 fibrils in disease. 
 
The two models for Aβ42 fibrils, type I and type II, have been associated with AD with different 
patterns of inheritance. Type I fibrils were more abundant in individuals with sporadic AD (sAD, 
87%, 100% and 77% of type I fibrils in three patients, respectively), while type II were more 
abundant in individuals with familial AD (fAD, 100% and 76% in two patients, respectively). 
Here, individuals with fAD did not have any mutation inside the Aβ42 region, but one in the APP 
gene downstream of Aβ42 and the other in the PSEN1 gene, meaning that the amino acid sequence 
encoding type I and type II fibrils both correspond to WT Aβ42. Type I fibrils were also found in 
fAD patients and vice versa, although to a lower extent. Five additional individuals with other 
amyloidogenic conditions (aging-related tau astrogliopathy, ARTAG; Parkinson’s disease, PD; 
dementia with Lewy bodies, DLB; frontotemporal dementia, FTD; and pathological aging, PA) 
showed a 100% of type II fibrils (Y. Yang et al. 2022). This raises the question of how different 
types of fibrils are formed in sAD versus fAD and other conditions, and whether polymorphs 
determine disease phenotypes or conversely, whether one specific polymorph emerges as a 
consequence of disease-specific conditions. The fact that type II fibrils are involved in many 
different diseases suggests that the disease is responsible for establishing specific environmental 
conditions in which the same type of fibrils emerge. However, that type I fibrils are specific to 
one unique disease also suggests that protein conformation is responsible for the disease outcome. 
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In any case, it is plausible that the two structures coexist and indeed, type I fibrils were also found 
in fAD patients and vice versa, although to a lower extent (Y. Yang et al. 2022).  
 
The β fold forming the amyloid core for both types of fibrils is almost identical. It is known that 
different polymorphs typically share a common β fold and differ on the arrangement of more 
exposed flanking regions. In the amyloid core, there is a very tight and specific arrangement of 
side chains, as our mutational data supports. For example, the insertions dataset identifies a stretch 
between residues 33-38 that cannot accommodate any additional side chain. Moreover, all 
alternative amyloid cores discovered in the internal deletions dataset indicate that residues from 
position 33 are essential and that alternative stretches re-arranging the core can only have the 
same, or a very similar length to that of the WT core. In both types of fibrils, the hydrophobic 
pocket at the C-terminus is formed by side chains of residues A30, I32, M35 and V40. A42 is also 
part of the hydrophobic core in type I fibrils but forming a salt bridge with K28 in the inter-
monomer interface in type II. The other hydrophobic pocket in the S-shape is different for the two 
structures due to a twist of the backbone at residues G25-S26 in type II, resulting in a bigger intra-
monomer interface but impeding an inter-monomer interface. In type I, F19 and F20 form the 
intra-monomer interface, and Y10, V12, Q15 and L17 of one monomer, which also face inside, 
form the inter-monomer interface with residues L34, V36, V39 and I41 of the other monomer. In 
type II, due to the backbone flip, L17 and V18 are part of the intra-monomer hydrophobic pocket 
and Q15 remains solvent-exposed. Y10 and V12 are not determined in type II and so their 
orientation is unclear but, in any case, Q15 and L17 are not available for an inter-monomer 
interface. Therefore, in type II the inter-monomer interface is not hydrophobic but formed by a 
salt bridge between residues K28 of one monomer and A42 of the other monomer, which in this 
case is not part of the hydrophobic C-terminal pocket. The hydrophobic C-terminal side chains 
that are not part of the hydrophobic pocket remain exposed to the solvent (Figure 18). 
 

 
Figure 18. Schematics of type I and type II fibrils structures with depicted interfaces. Yellow: 
hydrophobic intra-monomer interfaces; blue: hydrophobic inter-monomer interface in type I; 
green: electrostatic inter-monomer interface in type II.  
 
 
Here, we are assuming that folding of the amyloid core precedes the arrangement of the rest of 
the monomer (for example the formation of a second hydrophobic pocket) as well as the 
arrangement of the dimer. Folding of the amyloid core is mainly driven by the hydrophobic effect 
and may be one of the first steps in the overall aggregation process, determining which residues 
and regions remain available for the subsequent formation of inter-monomer interfaces. In this 
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line, folded or partially folded monomers would exist in solution to then form pre-fibrillar 
assemblies, either stacking one on top of the other, or creating facing dimers with an inter-
monomer interface. Another possibility though, is that interactions for the formation of the dimer 
interface are required for the folding of the monomer and its amyloid core. However, it seems 
unlikely that inter-monomer interfaces as different as those in type I and type II, drive the 
formation of such similar amyloid cores. In addition, elongation, which takes place once the first 
nuclei are formed by nucleation, may also contribute to the folding of the monomer. By this 
means, the free ends of pre-existing fibrils may template the folding of monomers that eventually 
adopt the same structure as the peptides already incorporated in the fibril.  
 
Our data shows that a positive residue in front of the C-terminal region (i.e., K28 in the sequence) 
represents the minimal core necessary for nucleation. This could agree with all previous 
arguments, as a charged residue could keep the hydrophobic core soluble facilitating a 
conformation-specific folding of the core, rather than amorphous aggregation. It could also drive 
the formation of the dimer interface, as the salt bridge in type II fibrils; or even stabilize the 
monomer with a salt bridge with A42 in the same monomer, as seen for some other structures 
(5KK3, 2MXU and 2NAO).   
 
We also show that not only K28 in front of the amyloid core influences nucleation, but all the N-
terminal region plays a critical role in modulating nucleation. For all types of mutations, the 
majority of mutations that increase nucleation cluster in this region. One extreme example are 
truncations, where only those at the N-terminus increase nucleation, while all those affecting the 
C-terminus decrease it. As mentioned above, there is a specific stretch at the N-terminus between 
residues 17 and 27 where many variants increase nucleation. In the context of the fibril structures, 
these residues are forming the second hydrophobic pocket of the S-shape. Residues E22 and D23 
are two negative charges in this region and in the two structures they are both exposed to the 
solvent, even if they are one next to the other. This disposition facilitates the looping in the S-
shape and indeed, E22 has the angles in a glycine-specific region of the Ramachandran plot, 
suggesting it is well accommodated in a turn (Figure 19). We also define E22 and D23 - together 
with other negatively charged residues at the N-terminus - as gatekeepers of nucleation, meaning 
that mutating or removing them accelerates nucleation. Up to six fAD mutations, including 
substitutions, one single amino acid deletion and one large internal deletion, affect these two 
positions. Overall, this suggests that altering this loop and the hydrophobic pocket increases 
nucleation in many cases and has direct implications in disease.    
 
Disruption of the N-terminus may lead to other conformations, for example, exposing flanking 
regions that recruit new monomeric protein and accelerate formation of new aggregates by 
secondary nucleation. However, there are other possible scenarios for how the N-terminus 
controls nucleation rates. For example, the N-terminus could be important for the ensemble of 
soluble peptides or establish specific interactions at the transition state of nucleation. 
 
Although the two types of fibrils discussed here may co-exist, it is possible that one is kinetically 
more favorable or thermodynamically more stable than the other, or that one is more causative of 
disease. Our current mutational datasets cannot determine whether we are tracking only one type 
of structure or a combination of both, since we cannot distinguish whether a mutation impacts 
only the monomer or the dimer interface. For example, a mutation from leucine to valine at 
position 17, resulting in increased hydrophobicity, could favor the formation of the hydrophobic 
core in type II structure but the inter-monomer interface in type I. 
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Figure 19. Ramachandran plots for glycine residues with mapping of psi (Ѱ) and phi (ɸ) angles 
in type I (7Q4B) and type II (7Q4M) Aβ42 structures. Background density data from 500 proteins, 
obtained from (Lovell et al. 2003). 
 
 

Aggregation kinetics and the transition state 
 
We proved our DMS approach is tracking nucleation by correlating the scores with in vitro 
measurements of aggregation kinetics for a handful of variants for which rate constants were 
accurately measured and available. We find that our scores strongly agree with both primary and 
secondary nucleation. Secondary nucleation is the microscopic mechanism known to be rate 
determining for the WT Aβ42 aggregation reaction, but at least for the subset of variants 
correlated here, we cannot distinguish whether our assay is tracking either only one or both types 
of nucleation. In case there were any substantial differences inside the yeast cell, additional in 
vitro kinetic measurements for more variants would be required to decouple them. 
 
Computer simulations and experimental studies on oligomeric species suggest that the first 
oligomers formed during nucleation are disordered and emerge from nonspecific interactions. 
Eventually, they undergo conformational changes and become more ordered species, most likely 
containing a substantial amount of β-sheet structures that make them compatible with pre-formed 
fibrils. However, there are still many unanswered questions regarding how nucleation happens at 
the molecular level. For example, it is not known whether the minimal nucleus at the transition 
state corresponds to an early or a late oligomer; whether it is disordered or already contains some 
structural elements and contacts. In case the minimal nucleus is ordered to some extent, it is not 
known how many molecules are needed and how they are arranged, whether they stack forming 
a pre-protofilament or instead they face forming a dimeric complex. Thus, whether the structures 
adopted by oligomeric species during the aggregation process resemble or differ from those of 
mature fibrils, it is not fully understood. 
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By measuring nucleation - the rate-limiting step in the aggregation reaction with a high kinetic 
barrier - we assume we are reporting on the species formed at the transition state. We do not know 
what these species are in terms of structures, size or morphology. It is plausible to think they are 
oligomers with an extent of structure that allows them to act as seeds for further aggregation, but 
we currently do not have a way to measure this in vivo. What we know is that mutational impact 
suggests that species in the transition state have - to some extent - a similar structure to that of 
mature fibrils, with a highly packed C-terminal amyloid core. More plainly, we use the mature 
fibril structures to rationalize the effect of mutations because they are the only currently available 
structural models for Aβ42.  
 
Yeast prion biology also helps us speculate further through which mechanism nucleation 
increases. What is known for yeast prion proteins and thus for Sup35, used as a reporter in our 
assay, is that arrangement of different amyloid structures results in different phenotypes, known 
as ‘prion strains’. By this means, amyloid fibrils of the Sup35 protein with a less rigid amyloid 
core are more easily fragmented by molecular chaperones and produce more oligomeric seeds. 
This results in increased prion proliferation, increased stop codon read-through capacity and better 
growth in a medium lacking adenine. Therefore, it is possible that our assay is measuring 
oligomeric seeds that result from fibril fragmentation, with very similar structures to those of 
mature fibrils. In addition, that fibrils with less rigid amyloid cores are associated with increased 
proliferation, is compatible with a scenario in which mutations that increase nucleation drive the 
formation of alternative fibrils, for example, with more exposed flanking regions that facilitate 
surface-catalyzed secondary nucleation processes.  
 
Finally, it has been suggested that different types of oligomeric species, on- or off-pathway 
towards fibril formation, may be toxic to cells and potentially causative of disease. Importantly, 
our assay is not providing direct information on the specific properties of the toxic species formed 
during aggregation. However, the agreement of nucleation scores with clinical genetic data proves 
our assay is reporting on a mechanism relevant to human AD and that can be further used to 
predict the outcome of mutations of currently unknown significance.  
 

Genetic interactions to infer structural 
conformations 
 
We envision that more complex libraries may be useful to rationalize the specific conformations 
present at the transition state. For example, a library of double mutants, if sufficiently exhaustive, 
could shed light on the interactions required - within and between molecules - to generate the first 
nucleus that then seeds further aggregation. 
 
The Arrhenius equation links the kinetic rate constant (k) to the highest free energy of Gibbs 
relative to the initial state (ΔG ) as:  

 

 
where A is a prefactor, R is the universal gas constant and T is temperature (Cohen et al. 2018). 
By this means, nucleation scores, which are indeed kinetic rate constants, can be fitted to a 
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thermodynamic model and values of ΔG for each mutant variant can be extracted. By using a 
double mutant cycle (DMC) analysis, we may then identify which residues and mutations have 
non-additive effects, meaning they are energetically coupled and forming required interactions at 
the transition state (Horovitz 1996). However, this type of analysis is not trivial as it requires 
coverage of the entire dynamic range of the effects of mutations and multiple measurements for 
each single substitution background. This means that many if not all possible double mutant 
combinations need to be tested, resulting in highly complex libraries, for example, of >310,000 
double mutants in Aβ42, difficult to tackle in our assay currently limited to ~150,000 variants by 
experimental scalability. 
 
In a parallel study (see Chapter III. The mutational landscape of a prion-like domain in the Results 
section), we proved that genetic interactions are very convenient to illuminate sequence-to-
structure relationships in disordered proteins. By quantifying interactions in the prion-like domain 
(PRD) of TAR DNA-binding protein 43 (TDP-43), we identified two secondary structural 
elements, an ɑ-helix and a β-strand, that form in vivo and were previously determined in vitro for 
fragments of TDP-43. These results highlight how unstructured regions may be partially 
structured in vivo while the protein is under selection for a specific function.  
 

One assay, multiple proteins; one protein 
multiple assays 
 
It is worth noting that phenotypic outcomes may be caused by a combination of various altered 
mechanisms and functions (X. Li and Lehner 2020). For example, it was recently shown that 
biophysical ambiguities prevented from accurately predicting the outcome of mutations on 
protein allostery: binding to an interaction partner could be affected by changes in stability or 
binding affinity. This was solved by testing both phenotypes in two different DMS approaches 
with specific selections (Faure et al. 2022), illustrating the power of DMS in tackling phenotypic 
ambiguities. Thus, one library can be tested in multiple selection assays targeting a specific 
phenotype and in addition, each selection assay can be used for different libraries (Cagiada et al. 
2021).  
 
Our DMS nucleation approach, here piloted in Aβ42, is easily and readily transferable to other 
amyloidogenic proteins, not only mammalian or human ones but also yeast and bacteria prion 
proteins. Furthermore, other disordered sequences such as PRDs are also potential candidates to 
test. For example, the PRD of TDP-43 - our other model protein - drives its self-assembly. It has 
been shown that in vitro and under specific conditions, TDP-43 can form liquid condensates as 
well as amyloid aggregates. We showed that at least inside the yeast cell, TDP-43 toxic variants 
adopt a liquid de-mixed state while insoluble and bigger assemblies prevent cell toxicity. Pairing 
TDP-43 with the DMS nucleation approach remains to be done, but we envision it may be very 
informative to further characterize the nature of the assemblies with different toxicity in yeast. In 
addition, the DMS nucleation approach in TDP-43 may reveal whether a completely different 
sequence to Aβ42, or any of its mutant variants, are able to nucleate amyloids in a similar way to 
classic ones. 
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The Aβ42 library can also be tested in the DMS toxicity approach, to verify that none of the 
classified as non-nucleating variants in our dataset are simply disappearing in the population due 
to toxicity. We proved in a pilot experiment with a handful of Aβ42 variants that none of them 
has altered toxicity (data not shown), but further assessment of the complete library is missing. 
 
In both nucleation and toxicity approaches, we cannot exclude the possibility that expression 
levels or degradation affect variants in distinct ways. This is a common caveat for many DMS 
approaches, which can be solved for example, with a fusion to a fluorescent tag that can be 
quantified by flow cytometry. However, this is currently not doable in our studies due to library 
design. In the TDP-43 work, we could verify by western blotting at small scale, that there is no 
bias in protein expression for toxic versus non-toxic variants, proving that toxicity is not directly 
related to protein overexpression. In the case of Aβ42 we are tracking a gain of function, meaning 
that degraded or low expressed variants may be classified as non-nucleators, which in any case, 
is a better scenario than misclassifying them as nucleators.  
 
One solution to account for degradation in the DMS nucleation approach is to run the experiment 
using a different yeast strain, with pre-formed aggregates in the background as previously shown 
in (Chandramowlishwaran et al. 2018). In this scenario, non-nucleating variants would survive in 
the population because SupN nucleates on top of pre-existing aggregates, in contrast to degraded 
variants, that would disappear in the population.  
 
Other DMS approaches could be used for both Aβ42 and TDP-43. For example, an assay that 
reports on condensation would be very informative for TDP-43, to more systematically assess the 
biophysical state of the toxic variants identified in our study, which we suggested have a more 
liquid-like state compared to the non-toxic ones. Another option would be to introduce other 
factors in the DMS experiments, such as molecular chaperones known to have a disaggregating 
role and that are potential therapeutic strategies. 
 
One example of how different DMS selections report on different mechanisms, is the comparison 
between our Aβ42 DMS approach with a Sup35N fusion tracking nucleation, and the DMS 
approach used in (Gray et al. 2019), in this case with Aβ42 fused to dihydrofolate reductase 
(DHFR) and tracking solubility. Data from the two datasets do not correlate and only the 
nucleation assay correctly classifies all fAD mutations. Solubility scores from the DHFR assay, 
but not the nucleation scores from our assay, can be largely explained on the basis of 
hydrophobicity. Overall, this suggests that inside the yeast cell there are at least two different 
mechanisms of aggregation: one, that is driven by hydrophobicity and is not reporting on disease, 
and the other, that is instead exquisitely conformation-specific and extremely relevant to human 
disease.  
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Conclusions 

 
 

 The impact of mutations on nucleation reveals a modular organization of Aβ42: the C-
terminus is very sensitive to mutations and forms the amyloid core required for 
nucleation, while the disordered N-terminus is enriched in mutations that increase 
aggregation and are causative of disease. 
 

 In vivo nucleation scores accurately discriminate all familial Alzheimer’s disease 
mutations in Aβ42, proving that this DMS nucleation approach is tracking a mechanism 
that is extremely relevant to disease, making it a useful resource for clinical interpretation 
of genetic variation in Aβ42. 

 
 The atlas of amyloid aggregation discovers novel Aβ42 mutations of all classes - 

including substitutions, insertions, deletions and truncations - that accelerate nucleation 
and are likely pathogenic. 
 

 The atlas of amyloid aggregation also provides mechanistic insights into the process of 
nucleation: it reveals a central hotspot region between residues 17 to 27 at the N-terminus 
where mutations of all types increase nucleation. 
 

 The mutational landscape of the prion-like domain of TDP-43 reveals that mutations 
promoting self-assembly into large insoluble foci reduce toxicity in yeast cells, most 
likely by titrating the protein away from toxic liquid condensates. 

 
 Genetic interactions identify structural elements in TDP-43 that form in vivo and can be 

potentially used to determine critical contacts in the transition state of Aβ42 nucleation. 
 

 Deep mutagenesis is a powerful tool to study the effect of mutations on disease, function 
and conformation of intrinsically disordered proteins, which are otherwise difficult to 
characterize by means of existing biophysical approaches and computational predictors. 
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Table with the impact on aggregation rates for Aβ42 variants from the literature. The table 
reports on familial AD class (D: dominant, R: recessive), nucleation scores (NS), NS class at 
FDR10 (NS+: significantly increasing NS, NS-: significantly decreasing NS or WT-like NS) 
reported in our study, and the qualitative agreement with the published data from the literature 
(X. Yang et al. 2018; Bolognesi et al. 2014; Thacker et al. 2020; Hori et al. 2007; Meisl et al. 
2016; W.-T. Chen et al. 2012; L. Zhou et al. 2011; Benilova et al. 2014; Morimoto et al. 2004; 
Murray et al. 2016; Thu et al. 2019). 
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Understanding and evolving prions by yeast multiplexed 

assays 

Mireia Seuma* and Benedetta Bolognesi*   

Yeast genetics made it possible to derive the first fundamental 
insights into prion composition, conformation, and propagation. 
Fast-forward 30 years and the same model organism is now 
proving an extremely powerful tool to comprehensively explore 
the impact of mutations in prion sequences on their function, 
toxicity, and physical properties. Here, we provide an overview 
of novel multiplexed strategies where deep mutagenesis is 
combined to a range of tailored selection assays in yeast, which 
are particularly amenable for investigating prions and prion-like 
sequences. By mimicking evolution in a flask, these multiplexed 
approaches are revealing mechanistic insights on the 
consequences of prion self-assembly, while also reporting on 
the structure prion sequences adopt in vivo. 
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From classic prions to a wide set of prion-like 
proteins 
Prions are infectious proteins that can self-template and 
self-propagate, acting as protein-based epigenetic ele-
ments [1]. Prion-forming sequences have challenged for 
decades our understanding of sequence–structure–-
function relationships. Not only have these proteins 
proved that the same primary sequence can adopt sev-
eral stable folds, but also that their ability to self-as-
semble can provide phenotypic advantage, at least under 
certain circumstances. If in the last five years we all 
warmed up to the idea of functional self-assembly, 
thanks to extensive efforts aiming at deciphering the 

role of condensation inside the cell [2], the hypothesis 
that the aggregation of specific proteins could be a 
common means to heritable phenotypic variability was 
far from trivial to formulate 30 years ago when the first 
yeast prions [URE3] and [PSI+] were characterized [3]. 
It is only thanks to pioneering work in S. cerevisiae that 
we now have a better idea of how prions arise and of the 
range of phenotypic outcomes they can result in. [4]. 
While paving the way for our current understanding of 
these sequences, the clever genetic manipulation of 
yeast in these early studies led to landmark mechanistic 
and structural insights, such as inferring the parallel in- 
register β-sheet arrangement of [URE3] and [PSI+] [5,6] 
(Figure 3a). 

These studies also showed that prion phenotypes can be 
induced by increasing the frequency of conformational 
change by protein overproduction [7] and that the re-
sulting phenotype is often similar to that of deleting or 
mutating the causal protein. Over time, other properties 
have been attributed to classic prions: they form amy-
loids, they are rich in Q/N with overall low sequence 
complexity, depend on Hsp104 for propagation, and are 
inheritable [8–10]. 

There is now growing evidence that a wider set of in-
trinsically disordered proteins in yeast can give rise to 
specific phenotypes upon self-assembly and that these 
can be inherited over several generations [11,12]. Al-
though these sequences do not share all properties of 
classic prions (e.g. they do not necessarily form amy-
loids) [11], they are commonly also classified as prions or 
prion-like proteins. Even a subset of the human pro-
teome is nowadays considered to be prion-like. These 
sequences are found in 1% of protein-coding genes [13], 
they are intrinsically disordered, and their low-com-
plexity composition resembles that of classic yeast 
prions: rich in Q, N, but also S and Y. These sequences 
encode the information required for self-templated ag-
gregation. Surprisingly, yeast proved to be an excellent 
model to explore many of these sequences, as they can 
be easily swapped for the prion domain of yeast proteins 
and assessed for their ability to support specific in-
heritable phenotypes [14,15]. 

Classic alignment approaches are not useful when 
looking at prions, as conservation is mostly evident at the 
level of composition rather than down to their exact 
primary sequence [16]. Composition is conserved, for 
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example, across 21 fungi that diverged over one billion 
years ago and homologs of prion proteins in different 
species have retained the ability to aggregate [17]. 
Moreover, the self-assembly properties of some more 
recently discovered prions show patterns of conservation 
all the way to humans [18•,19]. Nonetheless, many 
single amino acid changes in prion sequences are enough 
to prevent or enhance prion formation [20]. These 
polymorphisms are a key element in preventing prion 
propagation between species, a phenomenon commonly 
known as species barrier [21]. One single change in the 
amino acid sequence is sometimes sufficient to affect the 
ability of a ‘mutated’ monomer to template the ag-
gregation of a wild-type molecule [22]. 

Fitness trade-offs 
In yeast, the ability of prion sequences to switch to an 
aggregated state provides fitness advantages in a wide 
range of scenarios (bet hedging), with adaptation arising 
from the possibility of quickly acquiring complex traits 
that would be less likely to appear upon sequential se-
lection of mutations contributing to them [23]. A typical 
example is the aggregation and sequestration of the 
yeast translation-termination factor Sup35p into ag-
gregates, leading to the read-through of premature stop 
codons and the onset of the [PSI+] phenotype [4]. On 
the other hand, several recently discovered prions result 
instead in fitness advantage [24] by potentiating the 
action of their causal protein [18•]. The discovery of 
prions in at least a third of the wild yeast strains tested 
supports their role in the adaptation of yeast through a 
changing environment and it was even suggested 
that stress may promote prion switching [21,23,25–27]. 

Prion and prion-like domains (PRDs and PRLDs) were 
also shown to drive adaptive reversible protein con-
densation through liquid‐liquid phase separation. 
Proteins containing these sequences can sense and ra-
pidly respond to cellular stress — pH, starvation, and 
temperature — by condensing and temporarily seques-
tering or releasing proteins and transcripts [28••–30]. 
Condensed Ded1p promotes translation of stress mRNA 
upon heat-induced stress, an adaptive mechanism that 
has been fine-tuned to the growth temperature of each 
species [28••]. Another example consists of the protein 
Whi3 whose aggregation controls cell cycle in multi-
nucleate cells, via sequestration of cyclin mRNAs, in-
ducing phenotypic heterogeneity even in the absence of 
stress [31,32]. 

While providing interesting examples of the adaptive 
role of prions, these observations do not exclude that the 
states these sequences adopt can be toxic under certain 
circumstances. Indeed, the loss of function caused by 
aggregation can be detrimental and even lethal. Even 
when loss of function is not detrimental, such as for 

Ure2p, the prion state can still drastically affect fitness, 
suggesting that the prion itself or intermediate assem-
blies in its formation are toxic for the cells [33]. On this 
line, a few versions of [PSI+] and [URE3] obtained in 
the lab have even been named ‘suicidal’ due to their 
high toxicity [34]. Although prions are found in wild 
yeast strains, their frequency is lower than certain 
viruses that are notoriously detrimental [35], suggesting 
they are actually overall harmful for the cells. This as-
sumption has however been challenged by i) modeling 
the frequency of other reversible epigenetic elements  
[36,37] and ii) the finding that specific prions such as 
[RNQ+] and [Het-S] are instead detected in a vast ma-
jority of natural isolates [23,38]. 

In the human proteome, PRLDs are particularly enriched 
in nucleic acid binding proteins [39,40], suggesting a role 
for these sequences in promoting functional condensation 
and temporal sequestration of RNAs also in more complex 
organisms. Many PRLDs exist in essential genes and ag-
gregation of prion-like proteins plays a role in signal 
transduction from fungi to humans. This is the case of Het- 
S polymerization at the basis of heterokaryon incompat-
ibility [41] and of the antiviral signaling cascade activated 
by MAVS prion switching [42]. However, PRDs and 
PRLDs can also drive pathological aggregation in devas-
tating diseases, such as Fatal Familial Insomnia and 
Amyotrophic Lateral Sclerosis, and mutations in these 
protein regions cause dominant forms of disease [43–45]. 
The phenotypic consequences of these mutations are di-
verse and how different cell and tissue specificities depend 
on the identity and function of the aggregating sequence 
has not been fully elucidated yet. Altogether, the role and 
impact of these sequences in the human proteome is just 
another reminder of how the interplay between beneficial 
and detrimental effects of self-assembly and their se-
quence determinants is not trivial to decipher. 

The multiplexed era 
Altogether, prion conformation, function, toxicity, and 
environment all concur to the final phenotypic outcome 
of each cell. This interplay is particularly challenging to 
decipher, calling for well-defined assays to report — if 
possible — on just one of these biological mechanisms 
at once. 

We suggest that high-throughput approaches such as 
multiplexed assays of variant effects (MAVEs) can be a 
useful tool to decouple the different layers of these 
complex systems. The basic principle behind MAVEs, 
also known as deep mutational scanning (DMS), is the 
construction of a library of thousands of variants that can 
be selected for a specific phenotype in a cell-based 
assay [46]. The performance of each variant is quantified 
by sequencing the population before and after selec-
tion [47]. Using mutations to disrupt or enhance a 
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process in order to understand it is the main power of 
MAVEs where variant libraries can be rationally de-
signed to address a range of questions, from prion 
polymorphism to explore evolutionary paths or prion 
sequence space in a hypothesis-free manner [48–50] 
(Figure 1). Libraries can be selected in parallel assays 
that report on different phenotypes in variable experi-
mental conditions mimicking fluctuating environments. 
Overall, the versatility of MAVEs makes them very 
suitable for studying the different layers of prion biology 
and the scale required for these approaches makes yeast 
an excellent system to employ: simple manipulation, 
large population, and fast generation time. 

Engineering selection 
Next, we report on a series of selection assays that have 
already been employed or have great potential to be 
transferred to MAVEs to quantify prion properties at 
scale (Figure 2). 

Toxicity 

Prion toxicity can be assessed in a MAVE simply on the 
basis of cell viability (Figure 2a): over generations, cells 
carrying a toxic variant of the prion sequence will be 
depleted in the population, while those carrying a non- 
toxic variant will be enriched. This is quantified by deep 
sequencing before and after expression of the protein, an 
approach that was employed to quantitatively map 
toxicity for thousands of variants of the PRLD of the 
human protein TDP-43 [50]. 

Gain and loss of function 

Cell viability can also be used to select for gain or loss of 
function (Figure 2b). For example, switching to 
[SMAUG+] or [GAR+] represents an adaptive advantage 
upon glucose depletion: [SMAUG+] hyperactivates the 
function of its causal protein Vts1 [18•], and [GAR+] 
supports yeast growth on mixed carbon sources [27]. In 
contrast, [SWI+] causes a loss of function of its causal 
protein and slows growth in nonfermentable carbon 

sources [51]. Thousands of variants of these proteins can 
be scored for their impact on prion formation by se-
quencing before and after selection in a medium lacking 
glucose. Mutational libraries can also be coupled to 
downstream auxotrophic reporters — such as ura3 — or 
fluorescence reporters [52]. 

Biophysical state 

Other genetically engineered yeast systems are suitable to 
select for specific protein physical states (Figure 2c). The 
yTRAP system couples the aggregation state of a protein 
of interest to the activity of a transcription activator acting 
on a fluorescence reporter, allowing variant discrimination 
using fluorescence-activated cell sorting [53]. A drug-re-
sistance selection assay has been used in a MAVE to test 
aggregation of the amyloid beta (Aβ) peptide fused to di-
hydrofolate reductase (DHFR) [54]. Only when the 
DHFR is fused to a soluble Aβ variant, but not to an ag-
gregating one, cells will be able to grow in the presence of 
methotrexate. Similarly, fusion to TEM-1 β-lactamase has 
been used to identify aggregation-prone sequences both in 
yeast and in the periplasmic space of E. coli [55]. The 
correct folding of the protein fusions brings the two halves 
of the enzyme in proximity, restoring function and al-
lowing selection against β-lactam antibiotics. These assays 
share one common limitation: poorly expressed or de-
graded sequences would lead to the same phenotypic 
readout as those that aggregate. 

There are two systems that instead track nucleation of 
protein assemblies, that is, the very first step in the 
formation of self-templating aggregates. One consists in 
fusing a sequence to the nucleation domain of Sup35p  
[56,57•]. Nucleation of Sup35p and induction of the 
[PSI+] phenotype is a readout of the ability of the fused 
sequence to nucleate amyloids. This approach was used 
to map > 17 000 Aβ variants [57•,58]. The other system, 
DAmFRET, is also particularly suited to run MAVEs. In 
this case, nucleation barriers and prion switching are 
observed by means of amphifluoric FRET and the 

Figure 1  

Current Opinion in Genetics and Development

Mutational library design. Examples of library design include (a) all possible single mutants in a given sequence to systematically explore the 
consequences of polymorphism [57•], (b) a range of deleted variants to identify key regions driving protein aggregation [58], (c) sequences mapping 
entire evolutionary trajectories [28••], (d) scrambled versions of the same sequence to gather insights about structural arrangements [5], and (e) 

different combinations of double mutants to infer specific residue–residue contacts in prion proteins [50].   

Systematic mutagenesis and selection of prions Seuma and Bolognesi 3 

www.sciencedirect.com Current Opinion in Genetics & Development 75( 2022) 101941 



frequency of nucleation is measured as a function of 
protein concentration in yeast cells [59•]. 

The ability of prions to form condensates is also select-
able, at least for those sequences that were shown to 

promote cell viability in stress conditions [29,30]. These 
selection experiments can also be performed at different 
temperatures to report on the condensation of protein 
homologs from different species, which have adapted to 
their thermal niche [28••]. 

Figure 2  

Experimental selection assays to quantify prion properties at scale. (a) Tracking cell growth over time reports on toxic and nontoxic prion variants [50]. 
(b) Gain and loss of function can be assessed with cell fitness, or an auxotrophic or a fluorescent reporter. Replacing dan1 — transcriptionally 
repressed by Mot3p in normal conditions — with ura3 and sequencing of variants growing in the absence of uracil can report on the loss of function 
induced by Mot3p prion switching to [MOT3+] [12]. Similarly, replacing flo family genes with ura3 has been used to report on switching to [SWI+] and 
identify antiprion chemical compounds in a high-throughput screening [52]. (c) Solubility can be quantified by the yTRAP system, where the prion is 
fused to a synthetic transcription-activation domain that recognizes a binding site upstream of a fluorescent reporter gene [53] by means of a DHFR 
fusion, where soluble protein variants allow the enzyme to remain soluble and functional in the presence of its competitive inhibitor methotrexate, and 
so to reduce DHF to THF [54,65], thanks to a tripartite fusion, where two domains of TEM-1 β-lactamase are fused to a prion protein. The enzyme can 
only be reconstituted and hence functional if the prion remains soluble, providing antibiotic resistance in bacteria or yeast cells [55]. Amyloid 
nucleation can be tracked with a supN fusion, in a yeast strain with a premature stop codon in the adenine gene. Endogenous full-length Sup35p, a 
translation-termination factor, recognizes the stop codon when soluble. SupN nucleation, induced by nucleation of the protein of interest, recruits 
Sup35p, causing a read-through of the stop codon and allowing growth in a medium lacking adenine [56,57•]. The DAmFRET system tracks prion 
nucleation by fusing the protein of interest to a photoconvertible fluorescent protein. Emission of FRET signal quantifies concentration-dependent 
protein self-assembly in thousands of single cells in one single experiment [59•,66]. Protein condensation can be assessed by cell growth in changing 
environments. For example, changes in pH, temperature, or nutrient availability can induce protein-phase separation, which ensures cellular fitness 
during recovery, a mechanism that has been shown to be adaptive and fine-tuned to a specific range of growth temperatures in different 
species [11,28••]. Finally, prion phenotypes can also be screened and selected with a fluorescent tag and by means of imaging coupled to cell 
sorting [61••].   
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Finally, visualizing prions with traditional microscopy 
showed that they can adopt multiple shapes and have 
different subcellular localizations [12,50]. Recently, 
fluorescence imaging has been coupled to cell-sorting, 
enabling the selection of variants of a library by a mul-
tiple set of morphological and spatial traits [60,61••]. 

Inferring in vivo protein conformation 
Beyond illuminating genotype-to-phenotype relation-
ships, MAVEs of combinatorial libraries can be used to 
infer structural elements since the genetic interactions 
between mutations in structurally proximal residues are 
likely to have nonindependent effects (i.e. be epistatic,  
Figure 3b) [62,63]. This approach provides a great op-
portunity to explore in vivo conformations of disordered 
proteins and is particularly appealing to study prions, 
which, due to their aggregation propensity, are otherwise 
very difficult to approach by traditional biophysical 
techniques. In this line, Wickner’s vision was absolutely 
right and ahead of his time: yeast genetics can be ex-
tremely informative on protein structure (Figure 3). 

Disclaimer: not just DNA 
There is one element of prion biology that cannot be 
mimicked well by carefully tailored multiplexed assays. 
The very same DNA sequence often gives rise to dif-
ferent prion strains that differ in their amyloid structure, 
stability, and propagation [56,64]. Although this one-to- 
many relationship between genotype and phenotype 
cannot be captured by assays relying on DNA variation, 

we believe that the power of MAVEs to massively assess 
phenotypes by scanning thousands of genotypes will 
provide the mechanistic insights required to guide also 
our understanding of those prion phenotypes not written 
in the coding sequence. 
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