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Abstract

Ribonucleoprotein condensates such as stress granules (SGs) and process-
ing bodies (PBs) form in response to specific stimuli in the cell. Even
though the key protein and RNA elements of these condensates are start-
ing to be uncovered, we do not yet have a full understanding of the molec-
ular network of interactions that can link them. To answer these questions,
we analyzed SGs and PBs components through available high-throughput
data, finding that both RNAs and proteins enriched in these condensates
are poorly structured and create a dense network of contacts. Based on
these results, we developed a database named PRALINE, which stores in-
formation about different types of condensates, the relationship between
their components and the contribution of disease-related single-nucleotide
variants, including both computational and experimental data. In a related
work, we predicted that the 5’ end of SARS-CoV-2 interacts with ele-
ments of the innate immune response that are shared with SGs and PBs
and our calculations indicate that strong interactors could be sequestered
by SARS-CoV-2 for its viral replication, tampering with the formation
of the condensates. Overall our analyses could facilitate the study of the
underlying structure of SGs, PBs and other aggregates and how SARS-
CoV-2 and other pathogens are able to exploit these mechanisms to help
their own survival and infectivity.
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Resumen

Los condensados de ribonucleoproteı́nas, como los gránulos de estrés
(GE) y los cuerpos de procesamiento (CP), se forman en respuesta a
estı́mulos especı́ficos en la célula. Dado que los elementos clave de pro-
teı́nas y ARNs de estos condensados están comenzando a descubrirse, aún
no disponemos de una visión completa de la red molecular de interaccio-
nes que los caracterizan. Para responder a estas preguntas, hemos analiza-
do los componentes de GE y CP a través de los datos de alto rendimiento
disponibles y hemos descubierto que tanto los ARNs como las proteı́nas
enriquecidos en estos condensados están poco estructurados y crean una
densa red de contactos. Sobre la base de estos resultados, hemos desarro-
llado una base de datos llamada PRALINE, que almacena información
sobre diferentes tipos de condensados, la relación entre sus componen-
tes y la contribución de las variantes de un solo nucleótido relacionadas
con enfermedades, incluyendo tanto datos computacionales como experi-
mentales. En otro trabajo relacionado, hemos predicho que el extremo 5’
del SARS-CoV-2 interactúa con elementos de la respuesta inmune innata
que se comparten con los GE y los CP y nuestros cálculos indican que
el SARS-CoV-2 podrı́a secuestrar interactores fuertes para su replicación
viral, alterando la formación de los condensados. En general, nuestros
análisis podrı́an facilitar el estudio de la estructura subyacente de los GE,
CP y otros agregados y dilucidar cómo el SARS-CoV-2 y otros patógenos
pueden explotar estos mecanismos para ayudar a su propia supervivencia
e infectividad.
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Preface

My doctoral thesis revolves around the analysis of macromolecular inter-
actions in the context of ribonucleoprotein condensates like stress gran-
ules and processing bodies, formed through the biophysical process of
phase separation. These organelles exhibit a complex inner structure and
organization and are regulated by the network of contacts established by
their different protein and RNA components. Alterations in their com-
position can convert these complexes into irreversible and pathological
aggregates, involved in several pathological states. Furthermore, these
condensates can be exploited by bacterial and viral pathogens, which can
modulate their formation to favor their replication process.

The results of my research have produced five first-author articles (in ad-
dition to collaborative papers and other manuscripts currently under sub-
mission): a review, three original publications and one pre-print.

These publications are presented along with the thesis, which is struc-
tured into four parts and nine chapters.

In Chapter 1 I will introduce macromolecular interactions patterns and
the field of ribonucleoprotein granules and phase-separation, with a fo-
cus on the formation, composition and function of liquid-like condensates
such as stress granules and processing bodies, their role in neurodegen-
erative diseases and how they are exploited by the pathogens during their
infection process. In Chapter 2 I will summarize the major points artic-
ulated in the introduction and lay out my objectives for the thesis work.
Then, I will start presenting the results obtained in my publications, pref-
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aced with a short introduction for each chapter. In Chapter 3 I present a
review article about how to create a workflow to study protein-RNA in-
teractions patterns and to catalog potentially new RNA-binding proteins,
combining experimental and computational approaches.
Chapter 4 introduces the analysis I did on stress granules and processing
bodies, studying their proteomes and transcriptomes and the networks of
interactions they form.
This analysis helped the creation of PRALINE that I describe in Chap-
ter 5, the new database we developed for the interrogation of proteins
and RNAs in liquid-like condensates, such as SGs and PBs, but also in
solid-like assemblies including amyloids, containing information about
the physicochemical properties of their components and the role of disease-
related single-nucleotide variants (SNVs). Then Chapter 6 describes our
study on SARS-CoV-2, focusing on the characterization of its genome
and on its interactions with the human host.
This work was expanded with a further study introduced in Chapter 7
where we compared different human-SARS-CoV-2 protein-RNA interac-
tome experiments available in the literature, to investigate the small set of
proteins shared among them.
Chapter 8 of my thesis will be the discussion part in which the main
results of the previous chapters are highlighted, together with their im-
portance for the scientific community, while giving my personal opinion
on the current limitations and possible future development of the field and
Chapter 9 summarises the main conclusions of the results presented in
the thesis.
Finally, in Appendix A-C sections I will report the supplementary ma-
terials of my papers, in Appendix D I will include the complete list of
my publications and in Appendix E I will show the posters presented at
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conferences I attended throughout the Ph.D.
The complete bibliography of the thesis is then reported.
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1.1. Macromolecular interactions

A macromolecule is generally a large molecule involved in one or several
biophysical processes. It can be a polymer composed of many single units
called monomers or can be a stand-alone large non-polymeric molecule.
In biochemistry, nucleic acids and proteins are the most common types of
biopolymers, while molecules like lipids are instead non-polymeric (Berg
et al., 2002).
In biology and, more specifically, in the crowded cellular environment,
macromolecules can come into contact, coordinating with each other to
carry out a huge amount of different reactions and biochemical pathways.
In this context, the three most common types of macromolecular interac-
tions involving biopolymers are protein-protein, protein-RNA and RNA-
RNA interactions, where shape recognition, sequence motives, and sec-
ondary and tertiary structure domains or patterns become the basis to reg-
ulate these networks of contacts.

1.1.1. Protein-protein interactions

Protein-protein interactions (PPIs) involve two or more proteins that are
attracted together thanks to chemical bonds and electrostatic forces.
They can be classified according to the affinity of the binding, the com-
position of the aggregate and the reversibility of the interaction (Nooren,
2003).
In this context, PPIs can involve different units (hetero-oligomers) or
identical molecules (homo-oligomers) and in this case, they can further
organize in a bigger structure having structural symmetry (Monod et al.,
1965; Goodsell and Olson, 2000).
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In addition to a compositional difference, a complex can be distinguished
into obligate and non-obligate. In an obligate complex, the single pro-
teins do not exist as stable entities in vivo and usually cannot exert their
functions on their own. Non-obligate complexes instead involve indepen-
dently stable proteins that are often not co-localized, including receptor-
ligand, antibody-antigen interactions and many signaling complexes.

The reversibility and the duration of the interaction are other classification
criteria. Obligate interactions are often permanent, while non-obligate
ones can be permanent or transient (Nooren, 2003).
Furthermore, transient interactions can be weak if the bond is broken and
formed continuously, or strong if they require a specific trigger to be dis-
sociated (Figure 1).

PPIs are also extensively controlled to catalyze the plethora of different
reactions of the cell and this can happen in three ways: co-localization
in time and space of the interacting proteins leading to their physical en-
counter; control of the local concentration through mechanisms like gene
expression, diffusion and temporary storages; regulation through factors
like the concentration of ions, the temperature, pH and phosphorylation
to control the local physicochemical environment.
In addition, the control of PPIs depends on the binding affinity of the
complex. For example, an interaction between a receptor and its ligand,
which are brought together by controlling their localization, is usually an
irreversible and high-affinity binding; on the other hand, in a transient PPI
usually the affinity among the binders needs to change continuously and
in this case a physicochemical control is more appropriate, using ions and
other different factors as triggers to regulate the network.
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This is linked with the binding specificity of proteins, which derives mainly
from chemical and shape complementarity, but also from the local con-
centration of components, their localization and binding affinity. This
gives rise to a plethora of possibilities, with some proteins having multi-
ple potential targets and competing for binders, while others interacting
with a single specific ligand (Nooren, 2003).
Finally, the structural characteristics of the binding interfaces can also af-
fect the interaction networks. Techniques like X-ray crystallography, Nu-
clear magnetic resonance (NMR) spectroscopy and the more recent Cryo-
genic electron microscopy (cryo-EM) have increased a lot the amount of
structural information both on single proteins and on complexes. The X-
ray technique is based on the crystallization of a molecule and optimiza-
tion of its quality, followed by the collection of X-ray diffraction data
(Shi, 2014). The NMR spectroscopy instead is based on the nuclei of dif-
ferent isotopes that are subjected to a magnetic field in the spectrometer.
As these nuclei magnetize they resonate at different frequencies, which
are correlated and combined to extract multidimensional spectra, used by
a computer to calculate an ensemble of 3D structures (Kwan et al., 2011).
Finally, cryo-EM exploits the transmission electron microscope to visual-
ize a sample at very low temperatures (Milne et al., 2013).

In the context of PPI interfaces, several parameters have been studied
such as the polarity and the size of the contact area (Chothia and Janin,
1975; Janin et al., 1988; Jones and Thornton, 1995). In general, the inter-
faces of obligate complexes are larger and more hydrophobic compared
to non-obligate ones (Jones and Thornton, 1996; Lo Conte et al., 1999)
which, being able to exist independently as single units, exhibit a more
polar interface to increase their solubility and facilitate their folding.
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Figure 1: Examples of different types of PPIs, from Nooren and Thornton
(2003). In each complex, every monomer is colored differently. (A) Obli-
gate homodimer. (B) Obligate heterodimer. (C) Non-obligate homodimer. (D)
Non-obligate heterodimer. (E) Non-obligate permanent heterodimer. (F) Non-
obligate transient heterotrimer. In this example the bovine G protein contain a
transient interaction between Gα (green) and Gβγ (red, orange).

Furthermore, complexes with interfaces bigger than ∼1000 Å2 seem to
undergo conformational changes in the event of an interaction (Lo Conte
et al., 1999; Nooren, 2003), such as strong transient PPIs like the het-
erotrimeric G protein, in which Gα and Gβγ subunits dissociate upon
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guanosine triphosphate (GTP) binding, but constitutes a stable trimer in-
teracting with guanosine diphosphate (GDP). Interestingly, the conforma-
tional change of the interfaces is more radical in case of strong molecular
triggers like phosphorylation or GDP/GTP binding, while factors like pH
or temperature generate less powerful modifications and generally influ-
ence only smaller interfaces.
Finally, there is no apparent correlation between the size of the interface
and its other parameters like the hydrophobicity and the binding energy,
with only some exceptions (Brooijmans et al., 2002; Nooren, 2003).

Despite the advances made in recent years in understanding the structural
implications and characteristics of the binding between proteins, there is
still much to uncover and it is currently difficult to distinguish PPIs on
the basis of structural information only. This is the reason why advanced
techniques like the cryo-EM will have in the future a major role in under-
standing single proteins and the complexes they form.

1.1.2. Protein-RNA interactions

Protein-DNA and protein-RNA interactions (PRI) are involved in many
fundamental cellular processes like translation, gene regulation, DNA
damage repair and many others and these functions are carried out through
the binding to different types of RNAs, like messenger RNAs (mRNAs),
transfer-RNAs (tRNAs), ribosomal RNAs (rRNAs) and non-coding RNAs
(ncRNAs). This is the reason why eukaryotic proteomes show a percent-
age of RNA-binding proteins (RBPs) of 4-13% (Jones, 2016). These in-
teractions were first characterized through structure determination, at first
with X-ray crystallography and afterwards with NMR and the more re-
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cent cryo-EM, which have progressively increased the number of avail-
able complexes (Grabowski et al., 2016). However, the majority of RBPs
are often deposited without RNAs bound to them and this is why there is
still the need to develop increasingly advanced computational methods to
simulate the docking of the structures.
In general, protein-DNA interactions have been better characterized than
PRIs (Luscombe et al., 2000). This is probably due to the higher stability
of the regular DNA double helix, while RNAs show a plethora of differ-
ent secondary and tertiary structural patterns such as bulges, hairpin loops
and pseudo-knots (Jones et al., 2001) and proteins seem to interact with
RNAs exploiting these structural elements, with the establishment of non-
Watson-Crick base pairing that can happen in loop regions (Nagai, 1996;
Sanchez de Groot et al., 2019).

In 1999, Draper and colleagues divided protein-RNA structures into a
groove binding class and a β-sheet binding class (Draper, 1999). In the
first one, the protein binds in the groove of an RNA helix using an α-
helix or a loop, while in the second class an unpaired portion of the RNA
is bound by the protein’s β-sheet. However, both these two classes of pro-
tein binding can be observed together with RNAs of different structural
content, such as single-stranded RNAs (ssRNAs), single-stranded RNAs
with single or multiple loops or double-stranded RNAs, with a different
preference depending on the functions the interaction has to exert. In ad-
dition, protein-binding tRNAs contain domains performing both classes
of binding (Jones et al., 2001).
As the number of studied complexes’ structures has grown in time, new
trends have emerged in analyzing interaction data. For example, Van der
Waals interactions seem to be more relevant for the interactions than pre-
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viously anticipated, some amino acids like asparagine, arginine, pheny-
lalanine, tyrosine and threonine are frequent in RNA binding sites and
proteins seem to have a preferential binding to guanine (Jones et al.,
2001).

Interestingly, despite the many functions RBPs carry out in the cell, they
show a relatively small amount of different RNA-binding modules, that
are present in multiple copies and in different structural conformations to
ensure a variety of binding patterns to different substrates (Lunde et al.,
2007). In this way the protein can bind to an RNA combining multi-
ple weak interactions given by the individual domains, resulting in an
increased affinity and specificity, an easier regulation in case of disassem-
bly and the possibility of binding a longer RNA stretch or multiple RNAs,
arranging the RNA to perform different functions thanks to its flexibility
(Sickmier et al., 2006).
In addition, the linker between two different domains is relevant for the
binding process and can be either long and disordered, allowing different
domains to interact with distinct targets at the same time, or short, to bind
a unique long stretch of RNA, undergoing a structural change and form-
ing an α-helix (Deo et al., 1999; Handa et al., 1999; Allain et al., 2000).
Finally, other than enhancing RNA recognition, multiple modules can
also allow RBPs to bind RNA through the simultaneous binding with
other proteins, for example through a dimerization process. These do-
mains can also work together with enzymatic domains to help the regu-
lation and catalysis of their activity, cooperating in recognizing the RNA
through a series of weak protein-protein and protein-RNA interactions
(Lunde et al., 2007).
The RNA binding domains (RBDs) can vary in composition and interac-
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tion patterns and can be divided into different categories (Figure 2).

Figure 2: Examples of different types of RNA binding domains, from Jones
(2016), obtained with X-ray crystallography and NMR. In each figure, the RNA
is shown in green highlighting the different bases, while proteins are represented
in blue depicting their secondary structure conformation. (A) RNA recognition
motif (RRM). (B) hnRNP K homology (KH) domain. (C) PAZ domain. (D)
PIWI domain. (E) Double-stranded RNA-binding domain (dsRBD). (F) Zinc
finger CCCH domain.

The RNA recognition motif (RRM) is the most common among
RBDs and is involved in many post-transcriptional processes. It
is 80-90 amino acids long and it has the βαββαβ topology, with
the two central β-sheets generally binding RNAs, thanks to two
ribonucleoprotein motives containing three Arg/Lys and two aro-
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matic residues that mediate the binding (Oubridge et al., 1994). A
single RRM in general can only bind 4-8 nucleotides, so the coor-
dination of multiple domains is necessary to ensure binding speci-
ficity (Auweter et al., 2006).

The hnRNP K homology (KH) domain can bind both to ssDNA
and ssRNA (Backe et al., 2005). It is ∼70 amino acids long and
can have two alternative topologies, βααββα or αββααβ, which
can both bind four nucleotides thanks to the GXXG loop (Grishin,
2001). Unlike RRMs, the binding is mediated by electrostatic in-
teractions and hydrogen bonds and not by aromatic residues.

The double-stranded RNA-binding domain (dsRBD) is another
domain of 70-90 amino acids with an αβ topology and it is widespr-
ead in eukaryotes and bacteria. It differs from the previous RBDs
because the binding is shape-specific and mostly sequence-indepen-
dent and requires only a sugar-phosphate backbone interaction be-
tween the proteins α-helices and the dsRNA helix (Ryter and Schultz,
1998).

The zinc fingers are domains that can bind both DNA and RNA,
they are repeated several times within a protein and they are classi-
fied according to the residues coordinating the zinc (Carballo et al.,
1998). For example, the C2H2 zinc finger can form electrostatic
contacts with RNA loops using the protein recognition α-helices
located on the fingers (Wolfe et al., 2000), while the CCCH zinc
finger establishes direct hydrogen bonds with RNA bases (Lai et al.,
2000).
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The S1 domain was first identified in the ribosomal protein S1 but
it is present in several exonucleases (Subramanian, 1983). It is 70
amino acids long, distributed in five antiparallel β-barrels and one
short α-helix (Bycroft et al., 1997). The binding pattern is sim-
ilar to RRMs, with the two central β-sheets that can interact with
RNA thanks to the contribution of several aromatic residues and the
surrounding loops and secondary structure elements (Bycroft et al.,
1997; Schubert et al., 2004).

PAZ domains are 110 amino acids long and are formed by a β-
barrel resembling an S1 domain and a small αβ motif (Yan et al.,
2003), creating a clump-like structure that recognizes 2-nucleotides
overhangs at the 3’ of small interfering RNAs (siRNAs) through
hydrogen bonding (Ma et al., 2004; Macrae et al., 2006).

PIWI domains have a highly conserved binding pocket containing
a metal ion that can recognize the 5’ phosphate group of siRNAs
(Parker et al., 2004, 2005).

Pumilio domains are an example of tandem RBDs. Each motif
can recognize one nucleotide, but with multiple repeats, the protein
can bind up to eight nucleotides with high specificity and affinity
thanks to hydrogen bonds between the RNA and two residues in a
domain’s α-helix (Wang et al., 2002).

TRAP domains can recognize a GAG triplet through hydrogen
bonding and stacking interactions provided by β-sheets, which con-
stitute the eleven subunits of the ring-shaped Tryptophan Regulated
Attenuation Protein (TRAP) (Antson et al., 1999).
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SAM domains constitute a hydrophobic cavity within three helices,
which is able to recognize the RNA stem-loop shape through inter-
actions with a base in the loop and the sugar-phosphate backbone
(Oberstrass et al., 2006).

Despite the different ways in which individual domains can interact with
RNAs and the enhanced binding ability given by the presence of multiple
copies of these motives inside proteins, there are still relatively few avail-
able structures of proteins containing multiple RBDs and new structural
analyses will be necessary to expand our knowledge on the number of
combinations and functions provided by these domains.

1.1.3. RNA-RNA interactions

RNA-RNA interactions (RRIs) are another important type of macromolec-
ular interactions important for different biological functions. In particu-
lar, RNAs can exploit their own flexibility to connect different parts of
the same molecule through intramolecular interactions, forming complex
secondary and tertiary structure conformations that shape the RNA ar-
chitecture, such as loops, hairpins and pseudo-knots, or they can contact
other RNA molecules, either directly through base-pairing or thanks to
proteins’ mediation (Xue, 2022). For example, intramolecular contacts
among loops are necessary to shape the 28S rRNA (Cai et al., 2020),
while instead small nuclear RNAs (snRNAs) can bind intronic regions
of precursor mRNAs, sometimes through direct base-pairing in essential
steps of splicing or for RNA interference (Lee et al., 1993; Valadkhan
and Manley, 2001) and sometimes indirectly, like in the case of lncRNA
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Malat1, that seems to interact directly with pre-mRNAs through the me-
diation of different proteic factors (Engreitz et al., 2014). RNA-DNA
interactions are also possible and regulate several phenomena such as the
X-chromosome inactivation by the hand of lncRNA Xist (Penny et al.,
1996; Cerase et al., 2019).
Interestingly, the two types of RRIs can be achieved not only by Watson-
Crick base pairing but also by non-canonical ones (e.g. G-U pairing
that occurs in RNA secondary strcture and tRNA recognition) and base
stacking between single-stranded regions or co-axial stacking of helices
(Zanchetta et al., 2008).

Many RRIs inside the cell originate from the combination of intra- and
inter-molecular interactions that coordinate to achieve a specific function
and different strategies are available nowadays to tackle RRIs identifica-
tion.
In particular, studying intra-molecular RRIs require the mapping of the
RNA secondary structure elements. This can be achieved through either
enzymatic probing or chemical probing methods and can be further clas-
sified according to their in vitro or in vivo application.
Among the enzyme-based in vitro techniques, the most important are the
Parallel Analysis of RNA Structure (PARS) (Kertesz et al., 2010), the
Fragmentation Sequencing (FragSeq) (Underwood et al., 2010), the Par-
allel Analysis of RNA structures with Temperature Elevation (PARTE)
(Wan et al., 2012) and the Protein Interaction Profile sequencing (PIP-
seq) (Silverman et al., 2014).
In the PARS technique, the RNAs are divided into two pools and are
treated with two different enzymes. The first pool is digested with RNase
S1 that cleaves single-strand sequences, while the second pool is cut with
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RNase V1 in double-stranded regions. The resulting segments are then
randomly fragmented and sequenced (Kertesz et al., 2010).
FragSeq is a simpler and faster protocol compared to PARS, where the
RNA is cleaved with RNase P1 in single-stranded regions and reverse-
transcribed. Then, the cDNA segments are sequenced and the structure
of RNA can be mapped by looking at the nuclease digestion sites (Under-
wood et al., 2010).
PARTE is a technique very similar to PARS, in which the RNA is using
RNase V1 at different increasing temperatures in order to assess the RNA
folding energies (Wan et al., 2014).
Finally, PIP-seq is a technique to find RBPs binding sites on RNAs in
crosslinked or non-crosslinked cells, to understand which regions bind to
RBPs and which are insensitive to RNase, in order to obtain information
on both protein binding and RNA structures. Initially, cross-linked cells
(with UV or formaldehyde) and uncross-linked cells are lysed and divided
in an experimental set and an RNase insensitivity control. The first group
is treated with dsRNases or ssRNases and treated with proteinase K to re-
move the RBPs, while the second group is first treated with the proteinase
and then with RNases. Then the fragments are reverse-crosslinked and
used for strand-specific sequencing (Silverman et al., 2014).
In general, these enzymatic techniques can provide a complete map of
single and double-stranded regions but being in vitro they can have only
limited resolution and they do not take into account potential binding to
other proteins that can happen in the cellular environment (Piao et al.,
2017; Nguyen et al., 2018).

Chemical methods instead comprehend in vitro techniques like Chemi-
cal Inference of RNA Structures (CIRS-seq) (Incarnato et al., 2014) and
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Selective 2’-hydroxyl Acylation analyzed by Primer Extension and Mu-
tational Profiling (SHAPE-MaP) (Siegfried et al., 2014), while examples
of in vivo methods are Structure-seq (Ding et al., 2014) Mod-seq (Talk-
ish et al., 2014), Dimethyl Sulfate Sequencing (DMS-seq) (Rouskin et al.,
2014) and in vivo Click Selective 2-hydroxyl Acylation And Profiling Ex-
periment (icSHAPE) (Spitale et al., 2015).
CIRS-seq starts with proteinase K treatment to remove proteins bound
to RNAs, leaving their secondary structure intact. Then, DMS and N-
cyclohexyl- N’-(2-morpholinoethyl) carbodiimide metho-p-toluenesulfo-
nate (CMC) are applied to methylate As and Cs and selectively modi-
fying pseudouridines when the RNA is in single-stranded conformation.
Then, the RNA is reverse-transcribed and sequenced. In this way, DMS
and CMC can be exploited to identify the locations of secondary structure
elements (Incarnato et al., 2014).
SHAPE-MaP has the advantage of retrieving information about RNA sec-
ondary structure at a massive scale at single-nucleotide resolution, it is
very customizable to investigate different types of RNAs and can target
all four nucleotides. It employs the 1-Methyl-7-nitroisatoic anhydride
(1M7) to identify secondary RNA structures by binding to the ribose 2’-
OH groups. Then, mutational profiling (MaP) is performed to induce
non-complementary nucleotide mutations at the moment of reverse tran-
scription. Finally, the sequences are aligned to obtain profiles and study
the mutations’ position (Siegfried et al., 2014).
Structure-seq and DMS-seq are techniques that can assess RNA secondary
structure both in vitro and in vitro at single-nucleotide resolution and use
dimethyl-sulfate to modify the base-pairing faces of Cs and As in RNA
loops. The RNA is then reverse-transcribed to obtain a single-stranded
cDNA that is PCR amplified and sequenced (Ding et al., 2014; Rouskin
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et al., 2014).
Mod-seq is similar to the previous two in the use of DMS but introduces a
new feature to allow a high-throughput profiling even of very long RNAs
(Talkish et al., 2014).
Finally, icSHAPE is useful to assess PRIs and m6A modifications in vivo.
In this protocol, RNA secondary structures are modified by adding a 2-
methylnicotinic acid imidazolide (NAI) probe called NAI-N3 and they
are marked and subsequently tagged with dibenzocyclooxtyne (DIBO)-
biotin after the cell’s lysis. Then, the RNA is reverse-transcribed and
tagged RNAs are captured by streptavidin beads and subsequently se-
quenced (Spitale et al., 2015).
In general, these chemical-based techniques have the advantage of be-
ing applicable in in vivo environments and being able to work at single-
nucleotide resolution, but often have the cons of limiting the analysis to
only two nucleotides out of four and tackling relatively short RNAs. Com-
bining both chemical and enzymatic approaches could cover some of their
specific weaknesses and lead to a major understanding of intramolecular
RRIs and RNA secondary structure elements (Nguyen et al., 2018).

In addition to intramolecular interactions, several approaches have been
developed to investigate the interactions between different RNA molecules.
The first category of these methods are low-throughput approaches, which
aim to study and validate specific RRIs, previously predicted through
computational methods (Gong et al., 2018). In this case, the RRI can
be tested with several biochemical methods.
The first approach is Surface Plasmon Resonance (SPR), a technique in
which a studied RNA segment is immobilized on a sensor chip through
the interaction between biotin and streptavidin in order to monitor the po-
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tential binding with a series of RNA candidates in real-time (Di Primo
et al., 2011).
The Electrophoretic Mobility Shift Assay (EMSA) is instead applied to
RNA fragments extracted from cells or synthesized to investigate their in-
teraction. Since an interacting RNA pair has greater molecular mass than
non-paired transcripts, it will migrate slower in the gel (Bak et al., 2015).
The RNA immobilization is also at the base of single molecule Forster
Resonance Energy Transfer (FRET), in which the RNAs molecules are
either encapsulated in lipid vesicles or fixed on a quartz surface to be
real-time monitored thanks to fluorescent dyes positioned on specific re-
gions of the RNAs. The system is able to produce a signal if an interaction
occurs (Yu et al., 2015).
In another technique, the co-sedimentation assay, a mixture of different
RNAs are subjected to sucrose or glycerol gradient and interacting RNAs
in the same gradient fractions are revealed with Northern blot (Liang and
Fournier, 2006).
Finally, the yeast RNA hybrid system is a cellular method developed in
Saccharomyces Cerevisiae, in which a reporter gene is activated and ex-
pressed only if a bait and a prey RNA interact together (Piganeau et al.,
2006).

However, these techniques are very specific for a particular RRI and usu-
ally are not able to pinpoint the binding site region.
This led to the need to develop high-throughput techniques for the analy-
sis of RRIs. These approaches usually employ cross-linking and proxim-
ity ligation to turn the interacting strands into a chimeric RNA, which is
then sequenced to understand the underlying interaction (Nguyen et al.,
2018).
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The first examples of these methods were targeted techniques, to identify
RRIs mediated by a protein or a specific RNA, like Cross-linking Ligation
And Sequencing of Hybrid (CLASH) (Kudla et al., 2011) and RNA Hy-
brid and individual-nucleotide resolution ultraviolet Cross-Linking and
ImmunoPrecipitation (HiCLIP) (Sugimoto et al., 2015).
In CLASH, RNA duplexes are UV cross-linked to proteins and affinity-
purified and the resulting RNA-RNA hybrids are ligated and reverse-
transcribed to cDNAs for the sequencing, revealing RRIs as chimera reads
mapped to the two transcripts at high-resolution (Kudla et al., 2011).
HiCLIP is an approach similar to CLASH, in which RNAs are cross-
linked with proteins to obtain a duplex and then immunoprecipitated.
Then, a specific adapter is ligated to both strands of the duplex and the
3’ end of the adapter is bound to the 5’ of the other strand, followed by
the removal of the proteins with proteinase K and preparation for cloning.
The advantage of this technique is that the RNA duplex can be formed by
the same RNA or two different transcripts (Sugimoto et al., 2015).

Despite being an upgrade compared to low-throughput techniques, these
methods can only identify RRIs for one target RNA or interactions be-
tween specific transcripts. This is why a huge improvement was ob-
tained with the introduction of transcriptome-wide methods, that poten-
tially could cover all interactions present in a cell. The most famous
of these techniques are shown in Figure 3 and are Psoralen Analysis of
RNA Interactions and Structures (PARIS) (Lu et al., 2016), Sequencing
of Psoralen cross-linked, Ligated, And Selected Hybrids (SPLASH) (Aw
et al., 2016), LIGation of Interacting RNA followed by high-throughput
sequencing (LIGR-seq) (Sharma et al., 2016), MAapping RNA Interac-
tome and structure in vivO (MARIO) (Nguyen et al., 2016) and, more
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recently, the RNA In situ Conformation sequencing (RIC-seq) (Cai et al.,
2020).
In PARIS, RNAs are cross-linked in living cells using an organic com-
pound, a psoralen derivative called 4’-aminomethyltrioxsalen (AMT) and
the duplexes are collected with a 2D electrophoresis, then proximity lig-
ated, reverse-cross-linked and sequenced (Lu et al., 2016).
LIGR-seq is similar to PARIS, but the cross-linked RNA duplexes are di-
gested with nuclease S1, circularized and then treated with RNase R for
the following reverse-cross-linking and sequencing (Sharma et al., 2016).
In SPLASH the cross-linking process is obtained with biotinylated pso-
ralen, then streptavidin-coated beads are used to obtain the duplexes,
which are again proximity-ligated, reverse-cross-linked and sequenced
(Aw et al., 2016).
MARIO differs from the other three techniques because it is an approach
designed to identify RNA interactions mediated by proteins. Instead of
using psoralen derivatives, it starts with UV cross-linking the RNAs with
proteins, followed by protein denaturation with RNase I, biotinylation, the
pull-down of the formed complex and the proximity ligation of the RNAs
with a biotinylated RNA linker. These chimeric RNAs are then purified
and sequenced (Nguyen et al., 2016).
Finally, RIC-seq is another technique to identify protein-mediated RRIs
developed to facilitate the generation of 3D RNA interaction maps. It
starts again with the cross-linking process on formaldehyde, then the
RNAs are randomly cut and RNAs 3’ end is labeled with pCp–biotin,
followed by proximity ligation in situ of RNAs in close proximity with-
out denaturation. In this way, the biotin is located at the junction of two
different RNAs. Later the RNAs are extracted and fragmented and the
ones containing biotin are enriched and sequenced.
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Figure 3: Transcriptome-wide methods for RRIs detection, from Gong et al
(2018). (A) In the PARIS technique interacting RNAs are cross-linked with
AMT and purified using 2D electrophoresis, followed by proximity ligation, re-
verse cross-linking, reverse transcription and sequencing. Then, chimeric reads
mapped to two different transcripts are exploited to identify the RRIs. (B)
SPLASH is similar to PARIS, but in this case, the RNAs are cross-linked with
biotinylated psoralen and purified with streptavidin-coated beads. (C) LIGR-seq
is another method similar to PARIS, but after cross-linking RNA duplexes are
circularized and treated with RNase R for enrichment. (D) MARIO is used to
identify RNA interactions mediated by proteins. RNAs are initially cross-linked
to the proteins, followed by protein denaturation, biotinylation, pull-down and
the subsequent proximity-ligation of RNAs with a biotinylated linker and final
sequencing.
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The use of proximity-ligation in situ and in non-denaturing conditions
seems to reduce the number of false positives compared to other tech-
niques and has led to the production of a vast collection of high-confidence
interactions (Cai et al., 2014; Xue, 2022).

In general, all these methods have helped to increase our knowledge of
RRIs at the cellular level and have the advantage of identifying the bind-
ing regions at very high resolution. One disadvantage of using psoralen
derivatives for cross-linking relies on their preferential activity for pyrim-
idines (Nawy, 2016), so combining different methods and predictive tools
could be a way to reach an even more comprehensive view of direct and
mediated RRIs in the cell.

1.2. Ribonucleoprotein condensates

The importance of macromolecular interactions in regulating countless
biochemical pathways and cellular activities is particularly relevant in the
context of biomolecular condensates, compartments with specific func-
tions in the cell. Even though some of these organelles are physically
separated from the external environment with a physical layer such as the
nucleus, some are membrane-less and form and organize thanks to a phys-
iological process of phase-separation, in which a single-phase molecular
complex separates into a more concentrated phase and a more diluted one.
This process is achieved through free energy minimization of the solution
thanks to the maximization of weak inter and intra-molecular interactions
established among its elements (Alberti et al., 2019; Zbinden et al., 2020).
In particular, phase separation is triggered when an increase in the con-
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centration of biopolymers reaches a specific saturation concentration limit
and depends on environmental variables like temperature, pH and the salt
type and it is responsible for moving macromolecules inside liquid, gel or
solid-like compartments (Wolf et al., 2014; Munder et al., 2016; Verdile
et al., 2019; Garaizar et al., 2022).

Phase separation is a phenomenon not limited to mammals, but can be
found in numerous organisms such as yeast and C. Elegans but also in
bacteria, fungi and protozoa (Azaldegui et al., 2021; Tweedie and Nissan,
2021).
While liquid-liquid phase separation (LLPS) usually forms reversible struc-
tures in response to a critical rising in concentration or temperature, a
liquid-solid phase transition is generally an irreversible state that creates
aberrant aggregates, such as amyloids, responsible for several neurode-
generative diseases (Hyman et al., 2014; Chiti and Dobson, 2017; Wan
et al., 2018; Verdile et al., 2019).
Among the human liquid-like compartments, the term ribonucleoprotein
(RNP) granules has been used to address those organelles with a high con-
centration of proteins and RNAs and can be located both in the nucleus
and in the cytoplasm, providing a spatiotemporal control of biological
activities (Figure 4) (Matera, 1999; Protter and Parker, 2016; Shin and
Brangwynne, 2017; Verdile et al., 2019).

Among nuclear granules, the most important are Cajal Bodies, paraspeck-
les and nucleoli and more recently a mechanism of phase-separation has
been proposed also for super-enhancer (Verdile et al., 2019).
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Figure 4: Schematic representation of RNP granules (adapted from Verdile et
al. (2019)). Different types of RNP granules can form in the cell’s nucleus or
cytoplasm.

Cajal bodies are involved in small nuclear SNP (snRNP) and small
nucleolar RNP (snoRNP) biogenesis and recycling, as well as other
functions such as telomere maturation and spliceosome formation.
An essential factor in these assemblies is the coilin protein, capable
of aggregating other proteins and RNAs (Gall et al., 1999; Machyna
et al., 2013, 2014).

Paraspeckles control DNA repair and gene expression and are gen-
erated around the lncRNA NEAT1, which acts as a scaffold for sev-
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eral RBPs (Fox et al., 2002; Souquere et al., 2010). These conden-
sates show a subdivision in a denser core and a more diluted outer
shell, where the first one forms around the central part of NEAT1,
while the second one is generated around the 5’ and 3’ ends of the
RNA. Among the proteins bound by NEAT1, there are FUS (lo-
calized in the core), TDP-43 (in the shell) and the family of splic-
ing proteins NONO, RBM14 and PSPC1 (Fox et al., 2002; Hennig
et al., 2015).

Nucleoli are responsible for ribosome biogenesis (Andersen et al
2002). They are divided into three subregions: the first one is in-
volved in the transcription of rRNAs and is enriched in RNA poly-
merase I, the second one is destined for the processing and modifi-
cation of pre-rRNA transcripts, while the third region, enriched in
proteins, is where the ribosomes’ assembly occurs (Boisvert et al.,
2007).

Super enhancers are clusters of transcriptional enhancers assem-
bled with a high level of binding to master transcription factors and
co-activators, together with RNA and RNA polymerase II and this
complex drives gene expression (Whyte et al., 2013; Hnisz et al.,
2017). Reversible chemical modifications and phase separation can
modify the interactome and the activity of these assemblies both in
healthy and pathological cellular states.

In the cytoplasm, two of the most studied condensates are stress granules
and processing bodies.
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1.3. Stress granules and processing bodies

Stress granules (SGs) and processing bodies (PBs) are two types of RNP
granules located in the cytoplasm, forming in response to an accumulation
of untranslated RNAs in the cell due to a stress condition or a phenomenon
that represses translation initiation (i.e drugs, over-expression of repres-
sors, knockdown of translation initiation factors) (Kedersha et al., 2005;
Franks and Lykke-Andersen, 2008; Decker and Parker, 2012; Jain et al.,
2016).
While SGs’ proposed function is mostly related to RNAs’ protection from
harmful conditions and they contain many translation initiation compo-
nents, PBs are more involved in post-transcriptional regulation and con-
tain members of the mRNA decay machinery (Kedersha et al., 2005). This
has led to the hypothesis that these organelles could have a function re-
lated to mRNA degradation (Decker and Parker, 2012; Protter and Parker,
2016; Verdile et al., 2019), even though others disagree, stating that decay
factors are not essential for PBs assembly, there is no detectable change
in RNAs’ decay level upon PBs dissolution and 5’ truncated RNAs were
not detected, suggesting that these mRNAs could be accumulating inside
PBs just for storage upon events of the impaired decay process (Parker
and Sheth, 2007; Hubstenberger et al., 2017).
Both organelles can contribute to removing factors and RNAs from the
cytosol to increase their local concentration inside the condensates, influ-
encing the equilibrium of the cell’s resources and are involved in other
functions such as RNA localization in neurons and embryos (Kiebler and
Bassell, 2006; Decker and Parker, 2012).
As discovered by Fluorescence Recovery After Photobleaching (FRAP)
technique, these assemblies are dynamic entities, capable of exchanging
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components with the surrounding cytoplasm and they often physically in-
teract in mammals (Kedersha et al., 2005; Andrei et al., 2005) (Figure 5).
This plasticity seems to be regulated by several types of ATPases that ex-
ploit ATP to promote changes in their inner interactions and composition,
implying that SGs are not really uniform structures (Jain et al., 2016).
The exchange rate of components is also enhanced thanks to the spherical
shape of these condensates (Johansson et al., 1998; Verdile et al., 2019).

Figure 5: Stress granules and P-bodies can interact with each other, from Li et
al. (2013). Following a stress condition, stalled mRNAs resulting from stopped
translation can lead to the formation of SGs or PBs, that can co-exist and ex-
change components with each other, recruiting factors from the surroundings.
RNAs can then be degraded or can resume translation if a physiological condi-
tion is re-established.

Interestingly, while some proteins and RNA are in common between the
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two types of condensates, the key elements that govern their formation
are different.
Like other types of liquid-like condensates, SGs and PBs are reversible
entities and are usually disassembled upon clearance of the initial stim-
uli, with a consequent resume of the translation process or autophagy of
damaged molecules (Bhattacharyya et al., 2006).

1.3.1. Formation and structure

SGs are not uniform structures, they range from 0.1 to 2 µm and contain
denser and stable regions referred to as cores of around 200 nm, where the
concentration of proteins and RNAs is higher, and a more sparse shell,
potentially more dynamic (Protter and Parker, 2016; Jain et al., 2016).
The number of cores directly correlates with the SG’s volume, they show
higher levels of G3BP1, PABP1 and poly(A+) RNAs and they are more
resistant to chemical disruption than the shell, suggesting stronger macro-
molecular interactions within them.

PBs instead are constitutive assemblies of untranslated RNAs and mem-
bers of the decay machinery that can exist even in unstressed conditions.
They are in the range of 500 nm and their size shifts in presence of stress,
they are limited to 4-7 units per cell and show in general a denser interac-
tions network compared to SGs (Hubstenberger et al., 2017).

A first complete overview of the formation of these condensates focused
on the proteins’ ability to bind other proteins and untranslated mRNAs
through their intrinsically disordered regions (IDRs) and/or prion-like do-
mains (PrLDs), coupled with the post-translational modifications of pro-
teins (mainly methylation, phosphorylation and glycosylation) and ex-
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ploiting the microtubules as motors for the recruitment of these mRNPs
inside the organelles (Protter and Parker, 2016; Jain et al., 2016).

In PBs, after the failure of translation initiation or termination, a complex
including proteins Dcp1, Dcp2, Dhh1 and other variable factors are re-
cruited together with the group of Pat1, Xrn1 and Lsm17p proteins onto
untranslated mRNA that act as a scaffold, forming an aggregate gradually
growing in size thanks to the Pat1 protein multivalency and the mediation
of PrLDs, which recruit decapping enzymes (Anderson and Kedersha,
2006).

SGs instead seem to form when a stress condition (DNA damage, heat
shock, oxidative stress, chemical shock, etc.) blocks the translation pro-
cess, either by phosphorylation of eIF2α or inactivating eIF4A, followed
by the interaction of untranslated mRNAs to PrLDs of TIA-1, TIA-R and
G3BP1 proteins, that seems to trigger SG formation in response to free
cytosolic RNA concentrations and it constitutes the central node of gran-
ule protein-RNA interactions network (Mokas et al., 2009; Yang et al.,
2020). Interestingly, according to the specific condition of the cell, mR-
NAs can be recruited inside one type of organelle and can later resume
translation or become part of other types of condensates through mRNP
rearrangements.

Even though the first description of the formation of these condensates
was already accurate, there was still confusion about the possible role of
RNA-RNA interactions and, in the case of SGs, the order of formation
of the core and shell substructure was unknown: a first model suggested
that SG formation started with initial nucleation of oligomers gradually
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increasing in size to become the cores with a final fusion and the re-
cruitment of the outer shell; the second model instead began with ini-
tial phase-separated droplets of untranslated mRNPs, linked together by
weak molecular interactions, which further grow in a second stage to form
cores thanks to a higher concentration of proteins and RNAs (Protter and
Parker, 2016).

In the last years, new details have emerged, expanding our knowledge of
SGs and PBs. In the first place, the RNAs were discovered to have a much
bigger role in the phase-separation process than previously anticipated,
providing a scaffolding platform for other proteins and RNAs that are re-
cruited. Firstly, RNAs can lower the concentration threshold that leads to
RBPs phase-separation by binding to them, exemplified by G3BP1 role
in partitioning mRNAs inside SGs (Matheny et al., 2021); secondly, a
protein-free transcriptome is able to generate droplets, implying a funda-
mental role of RNA-RNA interactions (Su et al., 2021); thirdly, RNAs in

vitro usually need a lower concentration to condense compared to disor-
dered proteins (Van Treeck et al., 2018; Campos-Melo et al., 2021).
This generates a possible model in which not only specific proteins are
necessary for granule assembly, but their formation depends also on some
RNAs with special functions or characteristics. One of these properties
is the RNA secondary structure profile, responsible for their interactions
patterns. These RNAs could establish a plethora of RNA-RNA interac-
tions and, in parallel, could act as a scaffold for important granule proteins
needed for nucleation (Campos-Melo et al., 2021).
This is the reason why condensates nowadays are believed to be the re-
sult of a combination of multivalent low-affinity interactions that include
protein-protein, protein-RNA and RNA-RNA interactions, exploiting RNA
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flexibility, sequence and structural patterns as well as RNA binding do-
mains inside proteins (Matheny et al., 2021; Su et al., 2021).
Interestingly, the high number of molecular interactions present inside
these condensates is also seen in unstressed cells, implying an underlying
pre-network of interactions that could increase the aggregation speed of
these organelles (Markmiller et al., 2018).

In addition, RNA post-transcriptional modifications seem to be impor-
tant in the regulation of phase separation, among which the N6-adenosine
methylation (m6A), a reversible change catalyzed by METTL enzymes
with the help of other RNA binding proteins able to modify the RNA
structure and the interactions patterns. In recent studies, RNAs under-
going the m6A modification seem to be able to act as a scaffold to par-
tition YTHDF proteins inside SGs, thanks to the previously described
combination of macromolecular interactions, where they can exert multi-
ple functions related to RNA degradation or translation initiation of other
m6A-modified RNAs (Shi et al., 2017; Ries et al., 2019). Furthermore,
m6A can change granule dynamics, for example preventing core proteins
like G3BP1 or CAPRIN1 to bind RNAs (Arguello et al., 2017). In partic-
ular, this modification was found particularly enriched in tRNAs, rRNAs
and at the 3’UTR in mRNAs, with functions related to the regulation of
localization, stability, translation and splicing (Wang et al., 2014; Meyer
and Jaffrey, 2014; Campos-Melo et al., 2021).
Another example is represented by N1-adenine (m1A) methylated RNAs,
which seem to accumulate in SGs during heat shock or oxidative stress
(Su et al., 2021; Alriquet et al., 2021).
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1.3.2. Transcriptome composition

Regarding the transcriptome composition of these condensates, on aver-
age around 10% of the total human transcriptome can be recruited in-
side SGs (Jain et al., 2016; Cid-Samper et al., 2018) but, even though
nearly every expressed gene can be found inside SGs, there are no RNA
species representing more than 1% of the SG transcripts. It is estimated
that around 78–95% of SG composition is made of RNAs (Khong et al.,
2017). In general, around 80% of SG RNAs are coding transcripts, while
the 20% of ncRNAs consist mostly of snRNAs and snoRNAs, found also
to be important in Cajal bodies formation, and of a few highly contacted
long-non-coding RNAs such as NEAT1 and NORAD that are known scaf-
folding RNAs, probably involved in macromolecular interactions that aid
condensates formation (Khong et al., 2017; Cid-Samper et al., 2018).

In 2017, a comprehensive SG transcriptome was published, obtained thro-
ugh RNA-seq analysis of purified SG cores isolated from U-2 OS cells
upon arsenite exposure, combined with a single-molecule fluorescence
in situ hybridization (smFISH) validation (Khong et al., 2017). The au-
thors of the study estimated each core to contain around 21 to 106 mRNA
molecules, suggesting that the heterogeneity of RNAs recovered is due to
the high variability of transcripts among different cores.
Notably, SG transcriptome can also vary under different stress conditions,
probably because of stress-specific translation repression processes. In
this report, the SG transcriptome was divided into enriched and depleted
RNAs, comparing their concentration inside these condensates with the
cytoplasm’s one. In particular, enriched SG RNAs appear to have much
longer coding sequences and 3’UTRs compared to depleted RNAs, with
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an average length of 7.5 kb, suggesting that longer RNAs could be more
easily recruited inside the condensates, probably thanks to a higher num-
ber of possible binding sites, creating a multivalency of interactions with
other proteins and RNAs (Jain et al., 2016). Furthermore, RNAs enriched
inside SGs seem to have a shorter half-life, are more AU-rich and are
more prone to be m6A modified (Khong et al., 2017; Anders et al., 2018).
Interestingly, the isolation of SG mRNAs through Photo-Activatable Ri-
bonucleoside Cross-Linking and Immunoprecipitation (PAR-CLIP) ex-
periments showed that under oxidative stress around 50% of SG tran-
scripts contain the m6A modification (Anders et al., 2018).

PBs transcriptome composition is very similar to SGs, with enrichment
of long, poorly translated and AU-rich RNAs, even though their AU com-
position is usually higher in PBs than SGs (Hubstenberger et al., 2017).
More than one-fifth of the cytoplasmic transcripts can accumulate inside
PBs, with a very high proportion of protein-coding transcripts. In par-
ticular, there is an enrichment in mRNAs encoding for histone modifiers,
regulators of the ubiquitin pathway and factors involved in several pro-
cesses such as cell division and chromatin remodeling.
On the other hand, PBs seem to be depleted in RNAs coding for mitochon-
drial elements, translation machinery components and rRNAs, immunity
factors metabolic pathways enzymes (Hubstenberger et al., 2017).
Furthermore, PBs transcriptome has a shift in their composition accord-
ing to the presence or absence of a stress condition. Interestingly, a study
comparing unstressed HEK293 cells with stressed U-2 OS cells revealed
that stressed PBs seem to increase the percentage of long RNAs and de-
crease the amount of AU-rich RNAs, constituting a transcriptome that is
more similar to the SGs one, compared to an unstressed condition. This
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highlights the potential role of the RNA length in defining the compo-
sition of these condensates in a stressful situation when the majority of
mRNAs are translationally repressed (Matheny et al., 2019).

1.3.3. Proteome composition

SGs and PBs often physically dock together and exchange components
between them. This is the reason why, despite having different functions
and containing unique factors, several components of their transcriptome
and proteome are in common and usually localize at the interface between
the two (Buchan and Parker, 2009; Jain et al., 2016).

In general, SGs proteome contains a great percentage of RBPs, several
translation initiation factors, DNA/RNA helicases, ATPases and several
enzymes for the transfer of methyl and glucosyl groups (Jain et al., 2016;
Markmiller et al., 2018; Kuechler et al., 2020). In particular, TIA-1 and
G3BP1 are two RBPs that are necessary to start SGs nucleation interact-
ing with free RNAs (Tourrière et al., 2003; Gilks et al., 2004), even though
the absence of one or the other could still lead to SG formation according
to the type of stress condition (Kedersha et al., 2016).
SGs can be divided into canonical or non-canonical depending on their
composition. Canonical SGs contain several pro-apoptotic factors that
are sequestered inside them to prevent signal cascades leading to the cell’s
programmed death, while non-canonical SGs lack these components and
this control mechanism (Fujimura et al., 2012; Aulas et al., 2018; Reineke
et al., 2018; Reineke and Neilson, 2019). Some of these factors are the
receptor of activated protein C kinase 1 (RACK1), ribosomal S6 kinase
2 (RSK2), TNF receptor-associated factor 1 (TRAF2), histone deacety-
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lase 6 (HDAC6), mitogen-activated protein kinase 7 (MKK7) and Ras
homolog family member A (RhoA) (Kim et al., 2005; Kwon et al., 2007;
Eisinger-Mathason et al., 2008; Tsai and Wei, 2010; Wasserman et al.,
2010). Interestingly, the formation of canonical or non-canonical SGs
seems to be dependent on the type and duration of the stress. In the case of
chronic nutrient starvation stress, for example, SGs do not show the pres-
ence of RACK1 protein (Reineke et al., 2018), which instead is recruited
inside these condensates in the case of acute oxidative stress, promoting
cell survival (Arimoto et al., 2008; Reineke et al., 2018; Park et al., 2020).
Specific stressors can also determine the formation of non-canonical SGs
even if with limited duration, like in the case of selenite-induced stress,
inducing the exclusion from SGs of both RACK1 and HDAC6 (Fujimura
et al., 2012).

PBs instead contain several proteins involved in mRNA decay and transla-
tion repression, such as the decapping enzyme Dcp1, Dcp2 and the com-
ponents of the deadenylase CCR4-NOT (Sheth and Parker, 2003; Decker
and Parker, 2012), while translation initiation factors including eIF4A, B,
G and the poly-A binding protein Pabp are usually absent and more com-
monly found in SGs. However, several components are shared between
the two, like XRN1 exoribonuclease, the argonaute ARGO2 that regu-
lates miRNA functions and the translation initiation factor eIF4E (Sheth
and Parker, 2003; Kedersha et al., 2005; Decker and Parker, 2012). Com-
pared to SGs, PBs show a much denser network of interactions, due to
a higher concentration of RBPs and transiting RNAs inside them (Jain
et al., 2016; Hubstenberger et al., 2017; Markmiller et al., 2018). More
specifically, PBs show a remarkable 4-fold enrichment in helicases com-
pared to SGs, including DDX6 (Hubstenberger et al., 2017).
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An overview of the differences in proteome composition between the two
types of condensates is shown in Figure 6.
Interestingly, the key factors for the formation of these condensates, as
well as the macromolecular interactions they generate, are redundant and
context-specific, so diverse stress conditions induce condensation in dif-
ferent ways. For example, G3BP1 and G3BP2 are required for SG for-
mation under oxidative stress but not under an osmotic one (Protter and
Parker, 2016).

In recent years, a huge improvement has been made regarding the charac-
terization of these condensates’ components.
In 2016 the development of experimental techniques led to the first pu-
rification of the cores substructures within SGs. In this work, the cores
substructures were obtained from sodium-arsenite stressed U-2 OS cells
through an affinity purification of GFP-G3BP followed by mass-spectrom-
etry (Jain et al., 2016). The analysis revealed a diversified proteome with
∼ 50% of components being RNA-binding proteins, together with other
elements like metabolic or post-translation modification enzymes, prob-
ably recruited through protein-protein interactions (Protter and Parker,
2016; Jain et al., 2016).
Several tRNA synthetases and ribosome factors are also present.
In 2018 Markmiller and colleagues investigated the proteome composi-
tion of SGs through an in vivo proximity labeling approach, employ-
ing an engineered ascorbate peroxidase (APEX2) fused to the SG pro-
tein G3BP1, upon sodium arsenite exposure (Markmiller et al., 2018).
This, combined with an immunofluorescence (IF) screen, led to the iden-
tification of stress-dependent and independent interactors associated with
G3BP1, as well as sensitive proteins that decrease in concentration during
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stress conditions.
Interestingly, the composition of SGs’ proteome seems to be also cell-
specific, with different interactors found in Hela, HepG2 and Neuronal
progenitor cells (NPC), the last one showing the most diverse composi-
tion of SGs, being enriched in PQC factors that are responsible for the
clearance of misfolded proteins by autophagy (Markmiller et al., 2018).
In parallel, Hubstenberger and colleagues developed a Fluorescence-Acti-
vated Particle Sorting (FAPS) method to purify PBs, by expressing a
canonical PB marker GFP-LSM14A in HEK293 cells. This was then
combined with liquid chromatography-tandem mass spectrometry (LC-
MS/MS) and led to the identification of 125 PB’s proteins, such as the re-
pression cofactor DDX6, several decapping enzymes like DCP1A, DCP1B
and DCP2, mRNA decay factors LSM14A, LSM14B and components of
the miRNA pathway like AGO1, AGO2. Ribosomal proteins, several SG
proteins and all translation initiation factors except eIF4E were instead
depleted (Hubstenberger et al., 2017).

In general, the dynamicity of these condensates is influenced by the pres-
ence of ATPases and several DEAD-box helicases, creating a fast ex-
changing rate of components with the environment by disrupting macro-
molecular interactions and unwinding nucleic acids when the concentra-
tion of stalled mRNP becomes too high. These proteins, coupled with
microtubule motors and several chaperones are also the key elements re-
sponsible for the assembly and disassembly of SGs during the recovery
phase from stress (Protter and Parker, 2016). This is why mutations and
imbalances in these components are often the cause of delayed disassem-
bly or even diseases.
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Figure 6: Differences in proteome composition between SGs and PBs, from
Newbury et al. (2006). (A) SGs contain mainly untranslated poly-A mRNAs, as
well as complexes involved in translation initiation and control. (B) Immunoflu-
orescence micrograph of human HeLa cells undergoing arsenite-induced oxida-
tive stress. The nuclei of the cells are shown in blue, while SGs are colored in
red and PBs in green. (C) PBs contain members of decapping and deadenylation
machinery, as well as translation initiation factor eIF4E and miRNA regulators.

1.4. Condensates and diseases

Even though SGs and PBs are enriched in RNA content and this helps
their dissolution upon stress clearance, mutations and changes in their
components’ concentration can contribute to cellular toxicity and dis-
eases. Whereas for some proteins an inappropriate liquid-liquid phase
separation process is linked to proteins’ over-expression (Bolognesi et al.,
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2016), in other cases mutations in the proteins’ sequence or external fac-
tors can promote the formation of solid-like aggregates (Cid-Samper et al.,
2018) leading to pathologic states.

The first scenario can be achieved when the over-expression of a dosage-
sensitive protein (e.g. concentration-dependent) generates an inappropri-
ate liquid-liquid demixing (Bolognesi et al., 2016). This is the case of
Mip6p in yeast, a protein containing two low-complexity regions and
four RNA recognition motives that in physiological conditions is lowly
expressed and diffused in the cytoplasm, but when over-expressed can
relocate in cytoplasmic foci with liquid-like properties establishing inter-
actions with PB components.

The second scenario instead is often linked to a mutated PrLD, enriched
in condensates’ proteins, that becomes the cause of protein-misfolding
diseases (Gotor et al., 2020).
This is especially the case of ATXN1 and ATXN2, where a CAG-repeat in
their coding regions causes respectively the type 1 and type 2 spinocere-
bellar ataxia by inhibiting the shuttling of these proteins between cyto-
plasm and nucleus (Lorenzetti et al., 1997).
Mutated hnRNPA1 and hnRNPA2B1 in their PrLD have been found in
families affected by multisystem proteinopathy (MSP), an anomaly in SG
dynamics and autophagy processes that is linked to other diseases such
as Amyotrophic Lateral Sclerosis (ALS), frontotemporal lobar degenera-
tion (FTLD), inclusion body myopathy (IBM) and Paget disease of bone
(PDB) (Benatar et al., 2013; Le Ber et al., 2014).
Another example is FMR1, where a CGG expansion is responsible for
fragile X-associated tremor/ataxia syndrome (FXTAS), sequestering sev-
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eral proteins like the splicing regulator TRA2A. (Cid-Samper et al., 2018).
A similar case is represented by TDP-43, a protein containing a C-terminal
low complexity region and PrLD that by proteolytic cleavage is able to
phase separate and aggregate in deposits, leading to the insurgence of
ALS and frontotemporal lobar degeneration with ubiquitin-positive in-
clusions (FTLD-U) (Figure 7) (Da Cruz and Cleveland, 2011; Patel et al.,
2015; Verdile et al., 2019; Zbinden et al., 2020; Zacco et al., 2022).
FUS is a protein involved similarly to TDP-43 in different processes of
RNA metabolism and it has one of the best characterized PrLD in the
phase-separation field. A mutation in the RGG/RG domain of this protein
can suppress its physiological LLPS behavior by preventing its binding
to the nuclear import receptor Transportin-1, causing the ALS disease
(Da Cruz and Cleveland, 2011; Kwiatkowski et al., 2009).
Interestingly, TDP-43 and FUS can cross-regulate their concentration and
the diseases they induce are mutually exclusive.

The formation of condensates has also been associated with cancer in-
surgence.
For example, due to chromosomal translocations, the RNA binding do-
main of FET RBPs (FUS,/TLS, EWS and TAF15) can be replaced with
an ETS transcription factor (e.g. FLI1) with the generation of a fusion
protein (e.g. EWS-FLI1), which can cause aggressive pediatric tumors
called Ewing sarcomas (Araya et al., 2005; Paronetto et al., 2011; Verdile
et al., 2019). Another example is the reduction in TIA-1 and TIAR con-
centration, which has been linked to a rise in cell proliferation and tu-
mor growth (Sánchez-Jiménez et al., 2015). In addition, the core protein
G3BP1 seems to enhance cell proliferation, metastasis and chemoresis-
tance (Dou et al., 2016).
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Furthermore, cancer cells can induce the formation of condensates to pro-
tect their survival chances and to resist chemotherapy, as cancer cells
could actively sequester drug molecules inside these condensates to limit
their efficacy and develop resistances, changing their pharmacodynamics
(Anderson et al., 2015). In this sense, pharmacological inhibition of these
organelles could be a way of influencing tumor progression.

Other examples are Tau proteins, cytoplasmic proteins unlike TDP-43
and FUS with no RNA-binding domains, which form cytosolic aggre-
gates called neurofibrillary tangles in the neurons of Alzheimer patients
(Wolozin et al., 1986) and are also involved in many cases of frontotem-
poral dementia (Ling et al., 2013), or α-synuclein, a protein involved in
synaptic homeostasis (Lashuel et al., 2013), which in an oligomeric or
fibrillar conformation can induce the formation of pathological deposits
called Lewy bodies (McKeith et al., 1996; Shahmoradian et al., 2019),
responsible for different types of Parkinson disease and dementia and
containing high concentrations of this protein together with lipid mem-
branes,
Interestingly, while FUS, TDP-43 and Tau physiologically oligomerize
and phase-separate to exert their regulatory functions, α-synuclein oligom-
erization is usually toxic. In general, while all of these proteins differ
in the oligomerization process, in RNA and protein-binding ability and
in both intra- and inter-molecular interactions they form, they all contain
low-complexity regions that can induce their phase-separation, which will
happen differently according to sequence properties and external stimuli,
as well as mutations events and post-translational modifications these pro-
teins may undergo. A sudden change in parameters like phosphorylation,
methylation and acetylation or even mitochondrial ATP production nec-
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essary for maintaining the LLPS can allow a transition to a pathological
state (Zbinden et al., 2020).
The link between changes in the composition of these condensates and
the occurrence of diseases will be an increasingly relevant area of focus
for the scientific community in the next years.

Figure 7: Representation of pathological aggregates forming in different brain
areas and associated with FUS, TDP-43, α-synuclein and Tau, from Zbinden
et al. (2020). Immunohistochemistry images in postmortem brain samples and
phase-separated proteins in vivo and in vitro are shown in the second, third and
fourth rows respectively.
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1.5. Pathogens and phase-separation

In addition to temperature and chemicals, another stressor that can induce
or alter a phase-separation process is represented by pathogenic infec-
tions.
During these events, ribonucleoprotein condensates can recruit several
antiviral proteins like RIG-1 and RNase L, promoting the induction of the
innate immune response of the cell (Onomoto et al., 2012; Reineke and
Lloyd, 2015). This is the reason why several viral and bacterial pathogens
have developed mechanisms to block or hijack the formation of these or-
ganelles.

In the SARS-CoV-2 infection process, for example, its nucleocapsid (N)
protein is a key factor in neutralizing the innate immune response of the
cell. The N protein contains two RNA binding domains and three IDRs
that are able to induce its phase-separation process, which depends also
on several factors such as salt concentration, pH and phosphorylation
mechanisms. This protein can initially be recruited inside SGs through
a phase-separation process, where it binds to SG’s G3BP1, G3BP2 and
other factors, sequestering them to inhibit SG formation, so that these
condensates decrease both in number and size (Luo et al., 2021). Since
SARS-CoV-2 is an enveloped virus, its RNA must be encapsulated to
form a mature virion. The N protein is then responsible for the formation
of nascent virions, through selective condensation and packaging of the
viral genomic RNA (gRNA) and the accumulation of SARS-CoV-2 struc-
tural proteins (S, N, E and M) at the ER-Golgi intermediate compartment
membrane (ERGIC) (Klein et al., 2020), to which follow the recruitment
of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) to form
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viral replication centers (Savastano et al., 2020). The exact formation
of these N-protein condensates containing gRNAs is still not completely
clear, as well as whether they form directly on the ERGIC membrane or
are recruited there only in a second moment.
In parallel, the N protein deactivates the host immune responses. While
in general the double-stranded viral RNA is often detected by host pro-
teins such as RIG-1 or kinase PKR (McNab et al., 2015) which, activating
IRF3 that leads to the expression of type -I interferons (IFNs), induce the
innate immune response (Hou et al., 2011; Cai et al., 2014), the SARS-
CoV-2 N protein phase-separation seems to interfere with the production
of IFNs’ precursors like MAVS and suppress their expression, also pre-
venting the phosphorylation of the PKR protein and activating the NF-kB
signaling pathway through the recruitment of kinases inside the N con-
densates (Wu et al., 2021), increasing the production of pro-inflammatory
cytokines (Cascarina and Ross, 2022), as shown in Figure 8.
Other than SARS-CoV-2, several other viruses have become efficient in
counteracting the cell’s defenses to successfully replicate inside their host
(Gaete-Argel et al., 2019).
Certain viruses can suppress SGs formation and this often is achieved
with the cleavage of the G3BP1 protein, an essential SG factor, in the
case of encephalomyocarditis virus (EMCV) (Ng et al., 2013).
Another example is the Immunodeficiency Virus Type-I (HIV-1), which
impairs SGs despite eIF2α phosphorylation thanks to the binding of the
viral protein Gag to G3BP1, eIF4E or eEF2 depending on the type of
SGs and stressors (Valiente-Echeverrı́a et al., 2014; Poblete-Durán et al.,
2016). Similarly, the West Nile Virus (WNV) sequesters TIA-1 and TIAR
SG components preventing their formation (Gaete-Argel et al., 2019).
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Figure 8: Mechanism of inhibition of SG formation by SARS-CoV-2 N protein,
from Zhou. et al. (2020). SARS-CoV-2 N protein can prevent SG formation
and tamper with the host innate immune response either by sequestering G3BP1,
essential for SG formation, or blocking the kinase PKR that detects environ-
mental stress and activating NF-kB singling pathways to produce inflammatory
cytokines, suppressing the production of IFNs.

Other viruses, instead, including the Ebola virus (EBOV), exploit SG for-
mation to sequester key proteins important for the host translational ma-
chinery such as, eIF3, eIF4G, PABP and G3BP1 (Nelson et al., 2016),
which are relocated into viral replication factories (RFs), sorts of or-
ganelles with liquid-like properties assembled in the cytoplasm or nucleus
of the host cell (Nevers et al., 2020). These structures usually contain
nucleic acids and viral proteins and some key cellular elements that are
sequestered to enhance the replication process or to protect the virus from
the host’s immune defenses. For its replication, the Ebola virus also re-
quires the host nuclear RNA export factor 1 (NXF1), a component of the
nuclear mRNA export pathway. This protein interacts with viral mRNAs
in RFs and with Ebola nucleoprotein and probably is required for export-
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ing viral RNAs to ribosomes for translation (Wendt et al., 2020).
Another example is the Hepatitis C virus (HCV), which induces the for-
mation of RFs in liquid droplets and relocates several SG components like
G3BP1, TIA1, DDX3 and ATX2, interfering with the normal functioning
of SGs in order to avoid the production of anti-viral molecules (Ariumi
et al., 2011; Garaigorta et al., 2012).
Finally, some viral species like Mammalian orthoreovirus (MRV), ini-
tially promote SG formation through eIF2α phosphorylation incorporat-
ing the viral core proteins inside the condensates, which are later dis-
rupted as the infection proceeds to help the viral proteins’ synthesis and
replication occurring in RFs in the perinuclear region (Rhim et al., 1962;
Qin et al., 2011).

Despite the SGs being a more common target in viral replication events,
PBs formation is also blocked or exploited by several pathogens.
For example, adenoviruses accumulate viral mRNAs by reducing the num-
ber of PBs in the cell and sequestering numerous important PB compo-
nents, such as DDX6 and XRN1, which are moved to viral-induced ag-
gresomes to be degraded (Greer et al., 2011).
Other examples are West Nile Virus (WNV) and Dengue Virus (DENV),
which recruit PB components inside RFs, while reducing PB assembly
(Pijlman et al., 2008; Silva et al., 2010).
Some viruses instead seem to increase the number of PBs per cell, such as
for instance SARS-CoV, as its protein Nsp1 is able to increase the mRNA
down-regulation and degradation to maximize viral replication (Huang
et al., 2011). The same happens with the Cytomegalovirus (HCM), which
promotes the PBs accumulation and raises the expression of several PB
components, even though the viral RNA does not localize inside them
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(Seto et al., 2014).
Finally, similarly to what happens for SGs, SARS-CoV-2 and other coro-
naviruses seem to induce PB disassembly through the expression of the N
protein. This causes a significant rise in the concentration of PB-regulated
cytokine transcripts and could be responsible for the abnormal production
of proinflammatory molecules observed in severe SARS-CoV-2 infection
cases (Kleer et al., 2022).

In summary, RNA viruses seem either to inhibit granule assembly in or-
der to favor their viral cycle, or they accomplish this task by building
membrane-less replication organelles, which share many characteristics
with SGs and PBs.

Viruses are surely the most studied pathogens in connection with phase-
separated organelles but recently other organisms have shown the capa-
bility of affecting the innate immune response of the cell, among which
several bacteria, fungi and protozoa.
In particular, SGs formation upon infection has been recovered in three
species of bacteria (Salmonella Typhimurium, Shigella and Listeria) and
in the protozoan parasite Plasmodium (Tweedie and Nissan, 2021).
Salmonella Typhimurium infection induces the phosphorylation of eIF2α,
triggering SG formation in a relatively small amount of cells (Abdel-Nour
et al., 2019) while Shigella exhibits a more pronounced SG host response,
always eIF2α-phosphorylation dependant (Vonaesch et al., 2016). Other
organisms instead employ different approaches, with the parasite Plas-
modium not showing any SG formation upon infection (Hanson and Mair,
2014) and Listeria showing an oscillating SG induction over time, depen-
dent on eIF2α phosphorylation (Abdel-Nour et al., 2019).
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However, the differential composition of these microbial-induced SGs has
not been yet addressed, as well as the role of SGs or PBs and the seques-
tration of their components during these infections, for which a lot instead
is known for viral pathogens.
A hypothesis suggests that SGs could regulate the formation of inflamma-
somes, an important mechanism of the innate immune response to bac-
terial infection, by sequestering the DEAD-box helicase DDX3X (Samir
et al., 2019), or SG assembly could be regulated by the ubiquitin-proteasome
system (Lin and Machner, 2017) and these pathways could be exploited
and hijacked by microbes to their advantage.
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In summary, macromolecular interactions are fundamental mechanisms
needed for a plethora of cellular pathways. Protein and RNA components
can adopt different conformations and establish a network of contacts that
can be the trigger for phase-separation processes leading to the formation
of ribonucleoprotein condensates. By recruiting components and altering
their concentration, these condensates can control and catalyze biochemi-
cal reactions. Among the different types of membrane-less organelles that
can form in the nucleus or in the cytoplasm of the cells, SGs and PBs are
nowadays two of the best characterized and studied. Their formation is in-
duced by external stimuli, when the RNAs translation rate is slowed down
or stopped and they can exert multiple functions related to RNA storage
and degradation or protection of important molecules from harmful con-
ditions. They are dynamic entities and they can exchange components
among themselves and with the surrounding environment. Furthermore,
the proteome and transcriptome composition of these condensates is not
fixed but can vary according to the type of stress condition, cell types and
incubation period.
Despite being reversible in physiological conditions, mutations or other
events changing the biophysical equilibrium of molecules inside the cell
can trigger pathological aggregation events that can lead to different neu-
rodegenerative diseases or even cancer. Furthermore, these organelles
and the underlying interaction networks can be exploited or repressed by
pathogens, which can sequester key components of the cell to antagonize
the host’s innate immune response and to help the viral replication.
A summary of SGs in different pathological conditions is shown in Fig-
ure 9.
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Figure 9: SGs in different pathological conditions, from Campos-Melo et al
(2021). SG formation can be inhibited by viruses blocking kinase PKR, which
senses environmental adverse conditions and by sequestering key components
for granule assembly like TIA-1 or G3BP1, impairing the innate immune re-
sponse of the cell by suppressing IFNs production. Furthermore, SGs assembly
can be vital for cancer cells, which can become resistant to chemotherapies by
storing drug molecules inside these condensates, changing their action and con-
centration. Finally, changes in SGs components can lead to aberrant irreversible
aggregates responsible for several neurodegenerative diseases and pathological
states.

However, while there is evidence supporting that these condensates are
sustained by a combination of protein-protein, protein-RNA and RNA-
RNA interactions, little is still known about which are the specific ele-
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ments promoting each type of interaction and how these factors can regu-
late one another. In addition, in the context of infections, pathogens seem
to hijack or repress these condensates exploiting some of their key ele-
ments, but there is still a lot of work to do to unravel the specific network
of interactions that these infectious agents establish with the host and a
complete picture of all the cellular factors that are preferentially targeted
is still missing, especially for bacteria and viruses of great global interest
and relatively new insurgence like SARS-CoV-2.

This thesis aims to answer these questions with the following steps.

Characterize protein and RNA elements that are enriched in SGs
and PBs, unraveling the link between the secondary structure con-
tent of both protein and RNAs and how the different types of macro-
molecular interactions are established and connected.

The creation of PRALINE, a database that aims to combine the
characterization of physicochemical properties of both liquid-like
and solid-like condensates’ components with information of disease-
related SNVs occurring in both proteins and RNAs.

Predict the protein-RNA interactome between the human host and
SARS-CoV-2 genome and identify relevant loci, to highlight poten-
tially relevant factors that could be sequestered or targeted by the
virus to increase its infectivity.

Investigate the reason behind the relatively small overlap of inter-
actors found in different human-SARS-CoV-2 protein-RNA inter-
actomes experiments, speculating their importance in the context of
host infection.
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Review: Zooming in on protein–RNA interac-
tions: a multilevel workflow to identify interac-
tion partners

Ribonucleoprotein complexes have been largely studied in recent years in
order to understand the different ways in which RNAs and proteins can
exert their function while binding to each other. Every protein that comes
in contact with a transcript is commonly defined as an RNA-binding pro-
tein (RBP).
However, this interaction is dependent on the cellular environment and
its strength can vary according to the context and the affinity between
the molecules. Furthermore, while canonical RBPs usually bind RNA
thanks to known domains like RNA recognition motives, non-canonical
RBPs generally harbor non-canonical domains, often located in poorly
structured regions, and are more difficult to study (Castello et al., 2012;
Conrad et al., 2016; Monti et al., 2021).
In this context, classifying and defining new RBPs is a necessary task,
even though the identification of precise RNA binding domains remains
challenging.
Despite the development of sophisticated experimental high-throughput
techniques in recent years, there is still the need to combine them with
computational tools to filter the vast amount of both relevant and non-
specific interactions collected with these techniques in order to select
only the most important candidates, aiming at the creation of organized
pipelines that can be reproducible and available to the public.

In this review article, we propose a workflow for the classification of
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new putative RBPs and the identification of their binding partners, start-
ing from a pool of potential interactors collected by performing high-
throughput in-cell technique experiments and progressively narrowing
down their numbers with computational predictors, which can help to
identify the regions involved in the binding and estimate the binding stren-
gth of the interactions.

This workflow could be viewed as a multidisciplinary approach, exploit-
ing powerful high-throughput methods and predictors to create an inte-
grated and productive pipeline useful for the scientific community.

This work was published in the Biochemical Society Transactions journal
in 2020.

As a co-first author, I mainly contributed to the review by describing
the computational methods for protein-RNA interactions prediction and,
more specifically, catRAPID algorithm and its different implementations.
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Interactions between proteins and RNA are at the base of numerous cellular regulatory
and functional phenomena. The investigation of the biological relevance of non-coding
RNAs has led to the identification of numerous novel RNA-binding proteins (RBPs).
However, defining the RNA sequences and structures that are selectively recognised by
an RBP remains challenging, since these interactions can be transient and highly
dynamic, and may be mediated by unstructured regions in the protein, as in the case of
many non-canonical RBPs. Numerous experimental and computational methodologies
have been developed to predict, identify and verify the binding between a given RBP and
potential RNA partners, but navigating across the vast ocean of data can be frustrating
and misleading. In this mini-review, we propose a workflow for the identification of the
RNA binding partners of putative, newly identified RBPs. The large pool of potential
binders selected by in-cell experiments can be enriched by in silico tools such as
catRAPID, which is able to predict the RNA sequences more likely to interact with spe-
cific RBP regions with high accuracy. The RNA candidates with the highest potential can
then be analysed in vitro to determine the binding strength and to precisely identify the
binding sites. The results thus obtained can furthermore validate the computational pre-
dictions, offering an all-round solution to the issue of finding the most likely RNA binding
partners for a newly identified potential RBP.

Introduction
Since their discovery and until recently, RNA-binding proteins (RBPs) have been identified by the
presence of one or more RNA-binding domains in their sequences [1]. However, concomitantly to a
new appreciation for RNA as key biological macromolecule acting at post-transcriptional level [2–4],
there has also been a re-evaluation of what constitutes an RBP. Since one of the principal ways by
which RNA exerts its function is by the formation of ribonucleoprotein complexes, every protein
capable of establishing even weak and extemporary interactions with an RNA molecule may be
defined as RBP [5,6]. The interactions of proteins with RNA can be highly dynamic and heavily
dependent on the cellular environment [7], which makes the goal of defining the range of affinities
and specificities quite challenging [8]. In fact, indiscriminate binding of RNA by RBPs is a quite
common phenomenon [9], and the assumption that stronger affinity translates into more relevant bio-
logical functions is not necessarily correct [10]. For the scientific community, the revelation of the
dynamicity and malleability of the partnership between RBPs and RNA allows for the exploration of
new possible interaction mechanisms, networks, genes and protein regulation systems to investigate. It
becomes, therefore, increasingly important to complete the catalogue of eukaryotic RBPs, at present
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containing >315 000 elements (about 6000 orthologues from >150 species) of which 3500 are from H. sapiens
and can be divided in conventionally-defined RBPs and several classes of non-canonical RBPs [5,11,12].
Large-scale identification of new potential RBPs can reveal unexpected biological and pathological functions

and, when confronted with a novel RBP, the identification of its RNA binding partners is a critical step to
define the protein’s cellular and molecular roles. To achieve this goal, increasingly sophisticated high-
throughput methodologies have been developed, spanning from methods that aim to preserve the native cellu-
lar RNA–RBP interactions [13–15] to finely-controlled in vitro techniques that allow to define kinetics and
dynamic parameters for each binding pair [16,17]. However, the field that has probably seen the biggest evolu-
tion in the shortest time span is the one of computational prediction algorithms [18–22]. The wide range of
computational tools available includes several data-driven methods based on learning models, in which the
algorithms are trained using experimental outcomes and databases to identify RNA–RBP binding patterns and
define the genome-wide profiling of RNA–protein interactions [22].
In this short review, we propose a work pipeline for the identification of the RNA binding partners for novel

putative RBPs. Starting from in-cell data harvesting, we would like to guide the reader through the employment
of the different tools offered by catRAPID [23,24], our in-house developed RNA–protein interaction prediction
algorithm, and propose some indications on how to validate the outcome experimentally. Our wider goal is to
support the scientific community in the identification of novel biologically relevant non-canonical RBPs.

Identification of RNA binding partners in cellular context
The validation and training of computational algorithms for the prediction of protein-RNA interactions is
strongly supported by experimental data (Figure 1). Prediction software can be significantly enriched by the
output of techniques able to identify a protein’s RNA partners within the cellular environment; such proce-
dures are key to defining native interaction pairs and to monitoring responses and variations upon physio-
logical stimuli or under pathological stress.

RIP-based approaches
The main tool to obtain information about the RNA binding partners of a target protein in the cellular envir-
onment is immunoprecipitation (IP), a widespread technique to pull down the protein of interest together with
its physiological RNA binding partners. RNA immunoprecipitation (RIP) requires incubation of cell lysates
with an antibody raised against the target protein [25]. RNA molecules bound to the target protein can then be
isolated and analysed to reconstruct physiological native complexes formed within the cell. RIP can be coupled
to either microarrays (RIP-Chip) or high-throughput sequencing (RIP-Seq). In either case, RIP can only deter-
mine the identity of the RNA molecules associated to the target protein, unless digestion-optimized RIP
(DO-RIP) is performed [26]. This variation of RIP introduces an RNase digestion step to preserve only the
portion of RNA bound to the protein, allowing for binding-site mapping [27]. If, instead, the interest is
focused on identifying multi-subunit ribonucleoproteins, the most appropriate RIP variant may be RIP in
tandem (RIPiT), which employs two distinct IP steps performed either with antibodies against different pro-
teins of the complex or with antibodies binding different regions of the same target protein [28]. Information
about native protein–RNA complexes formed within the cell can also be obtained by employing affinity tags
[29], without having to rely on the antibody’s specificity and sensitivity.

CLIP-based approaches
To overcome RIP’s limitations (enrichment of indirectly bound RNAs, detection of interactions not present in
cell but formed after lysis, loss of weaker interactions due to the required stringent washing conditions), cross-
linked RNA immunoprecipitation (CLIP) has been developed [30]. CLIP promotes the stabilisation of the
bonds between a protein and its interacting RNA, generally by UV radiation [31]. A large amount of CLIP var-
iants is available, and most of them can offer high-resolution results at the single nucleotide level. Pioneers
among these are, for example, the high-throughput sequencing CLIP (HITS-CLIP), that enriches the RNA
population for sequences corresponding to the RBP binding sites [32]; the individual nucleotide-resolution
CLIP (iCLIP) [33,34] and enhanced CLIP (eCLIP) [35], that utilise different oligonucleotide adapter configura-
tions to obtain RNAs of different lengths employed to build the interacting fragments at single-nucleotide reso-
lution; and the photoactivatable ribonucleoside CLIP (PAR-CLIP), that relies on metabolic incorporation of
labelled ribonucleoside analogues that yield photo-adducts when cross-linked at selected wavelengths [36].
Radiation-free CLIP variants, such as infrared-CLIP (irCLIP), have also been reported [37]. To overcome the
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restrictions imposed by the use of irreversible UV cross-linking, formaldehyde-based techniques such as fCLIP,
which are more efficient in capturing interactions with dsRNA [38], can also be employed [39]. One limit of
CLIP-Seq approaches is that low crosslinking efficiency makes low abundant transcripts difficult to detect,
while transcripts present at high amounts are usually over-represented in IP samples. This issue can be partial
solved with a proper bioinformatic analysis.

Bioinformatic analysis
High-throughput sequencing of the RNAs isolated through RIP, CLIP and related protocols yields millions of
short ‘reads’, which represent the sequenced portions of cDNA fragments obtained through RNase titration (a
step omitted in standard RIP-Seq), followed by reverse transcription and PCR amplification. The RNase treatment
allows to obtain fragments long enough to be uniquely mappable but short enough to identify the binding site
with the highest possible resolution. Library preparation ends with the production of cDNA fragments flanked by
adapters that allow amplification and sequencing, resulting in the generation of short reads that can undergo bio-
informatic analysis aimed at identifying RNA targets for the RBP (Figure 2). Reads pre-processing steps, including
demultiplexing and adapter trimming, are often required, especially in those cases in which Unique Molecule
Identifiers (UMIs) are used [40]. UMIs are random barcodes which identify unique cDNA fragments, allowing to
detect and remove PCR duplicates that are commonly produced during CLIP-Seq library preparation [34,35].
To identify the RNA molecules from which they derive, reads are aligned to a reference genome using

splice-aware alignment programs commonly used to analyze standard RNA-Seq data, like TopHat2 [41] or Star
[42]. If the RBP under investigation binds mature mRNAs, reads can be mapped directly to the transcriptome
[43] using a splice-unaware mapper like Bowtie2 [44]. Reads coming from HITS-CLIP experiments have high
mutation rates (usually deletions) at the cross-linking site (CIMS, standing for cross-linking induced mutation
sites), which are due to residual amino acids hindering the reverse transcriptase [45–47]. Similarly, the use of 4-
thiouridine (4-SU) or 6-thioguanosine (6-SG) in the PAR-CLIP protocol leads to a high number of transition
events (T to C or G to A, respectively) at the cross-linking sites [48]. Reads mapping can be improved by
taking into account the high rate of such mutations. For instance, the splice-unaware BWA aligner [49] has
been modified in order to incorporate an error model that favours PAR-CLIP specific transitions [50,51]. Reads
produced by iCLIP, and likely eCLIP, experiments do not require such special treatment, since such protocols
enrich for cDNAs truncated at the cross-linking site (CITS, standing for cross-linking induced truncation sites),
while only a minor proportion of fragments represent CIMS-containing read-through cDNAs [43].
Post-processing of aligned reads is a mandatory step in RIP-Seq and CLIP-Seq data analysis. Reads aligning

to multiple genomic positions are usually removed [52]. However, such multi-mapped reads can be used to
identify regulatory RNA sites localized within repetitive regions [53]. To filter out PCR duplicates, reads
mapping to the same genomic position are collapsed; UMIs, when present, can be used to avoid removing
natural read duplicates, common in case of high sequencing depth [54].
In RIP-Seq experiments, target RNAs can be identified either by transcript enrichment analysis of IP versus

control samples [55–57], which can be performed using procedures commonly adopted in differential expres-
sion analysis, or with ad-hoc peak-calling tools [58,59]. Binding site identification in HITS-CLIP experiments
is usually accomplished by means of peak-calling approaches, that identify regions which are enriched in reads
with respect to their genomic context (gene, transcript, metagene region) [59], the background represented by
control experiments (input, IgG, mock IP) [60], or baseline expression profiles [59]. Single-nucleotide

Figure 1. The workflow of discovering RNA partners for an RBP.

Protein and RNA sequence databases, structural information and results from RIP/CLIP experiments feed computational

prediction tools such as catRAPID. The software utilises this information to define RNA sequences with high probability of

interacting with a given RBP and rank them accordingly. Several in vitro techniques allow for the validation of predicted results,

for the calculation of binding strength and the definition of the binding sites.
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resolution in HITS-CLIP data analysis can be achieved by looking for statistically significant CIMS [59]. Such
resolution in binding site identification can also be attained in PAR-CLIP, by searching for transition events
that are not likely to be caused by sequencing noise, single nucleotide polymorphisms or contamination [61].
The first nucleotide of reads from iCLIP and eCLIP experiments most often marks the truncation site and it is
therefore located one nucleotide after the cross-linking site. Statistically significant CITS can be identified by
using tools like iCount [62] and PureCLIP [63].

In silico prediction of protein–RNA interactions
The outcome of the data analysis obtained by means of CLIP-Seq experiments is of enormous value in
approaching the study of a potential RBP with unknown RNA partners. However, there are two major draw-
backs in limiting the investigation to CLIP-Seq approaches: the protein regions in direct contact with the target
RNAs remain unknown, and there are not sufficient data to speculate on the strength of the interaction for
each protein–RNA pair. The use of predictive algorithms such as catRAPID would integrate the results of a
CLIP-Seq experiment with this information [24] (Figure 1).

catRAPID
catRAPID is an algorithm able to compute protein–RNA interaction propensities with strong predictive power
(area under the Receiver Operating Characteristic curve of 0.78 on >1 000 000 interactions) [64], through the
calculation of secondary structures, hydrogen bonding and van der Waals contributions. The algorithm was
trained on PDB crystals [24] and was later adapted to predict CLIP-Seq interactions with long non-coding
RNAs [65]. For large proteins (>750 amino acids) and RNAs (>1000 nucleotides), the algorithm fragments
sequences into overlapping segments and computes the interaction propensity through the analysis of physical–
chemical properties and secondary structures of the molecules. According to the chosen implementation
(Table 1), the method can either reconstruct the overall interaction propensity score for each protein–RNA pair
[66] or rank the fragments according to the predicted interaction strength [67]. The outcome of this analysis
allows to map both protein and RNA binding sites and to estimate the overall strength of the interactions [68],
overcoming the limitations of CLIP-Seq techniques mentioned above. If used in combination with CLIP-Seq
data relative to the protein of interest, catRAPID can be employed to select the best targets based on calculated
binding strength, but it could be also useful in predicting putative targets that are not expressed within the cel-
lular system. If no information about the RNA targets is available, catRAPID can represent a promising tool
for the investigation of the protein’s genome-wide RNA-binding potential against an RNA sequence library.
Here we suggest a pipeline that could be followed in such circumstance:

1. If the RNA binding potential of a given protein is unknown, catRAPID signature [71] can be used to
predict it, along with the putative RNA-binding regions. This approach is particularly recommended if a
potential RBP needs to be selected from a panel of candidate proteins;

2. catRAPID omics [69] can then be used to predict the interactions between the protein and a precompiled or
custom RNA library. The result is a ranked list of protein–RNA pairs;

3. If the protein of interest is human, its co-expression with the putative interactors in different tissues can be
evaluated using catRAPID express [70];

4. Once the most promising binding partners have been identified, catRAPID strength can be employed to
evaluate the strength of each interaction [67];

5. Finally, catRAPID fragments [66] can be run on the highest scoring protein–RNA pairs to predict the
binding sites. Interactions with long RNAs can be analyzed using Global Score [65] or omiXcore [68].

By narrowing down the number of potential targets and by suggesting the most likely binding sites, such
approach can be employed to guide further experimental and computational analyses. Being a predictive tool,
there is always the chance that catRAPID may fail in identifying valid RNA targets. Prediction accuracy
depends on the set provided to train the algorithm. As more and more data become available, retraining of the
algorithm will be necessary to achieve better performances.

catRAPID alternatives
catRAPID is only one of several possible computational methods developed for predicting protein–RNA inter-
actions. We would like to mention here some valid alternatives:
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• LncPro [72]: similar to catRAPID in the employment of RNA secondary structure, hydrogen-bonding and
van der Waals interaction propensities. It is designed to predict whether a specific long non-coding RNA
interacts with one or more protein sequences. Propensities are calculated for both protein and RNA and a
probability score ranging from 0 to 100 is generated;

Figure 2. Bioinformatics analysis of CLIP-Seq and RIP-Seq data.

After being de-multiplexed based on sample-specific barcodes, reads undergo a pre-processing phase. UMIs are not always used, being more

common in iCLIP and eCLIP protocols. When employed, they are sometimes used to remove PCR duplicates directly at this stage, but in most

cases reads are simply marked based on UMI sequence, as shown by the colours assigned to trimmed reads. After the alignment of reads to the

genome or to the transcriptome is performed, post-processing is needed to filter out multi-mapped reads and to collapse reads mapping at the

same position, that are likely to represent PCR duplicates; if UMI-based read marking occurred, natural duplicates, which map at the same place

but have different UMIs, can be retained, as shown here. RNA target identification and binding site detection strategy depend on the protocol.

Roughly, such approaches can be divided into transcript enrichment analysis (RIP-Seq), which is analogous to differential expression analysis, and

peak-calling (all protocols). Single-nucleotide resolution can be achieved using CIMSs in HITS-CLIP, transitions in PAR-CLIP and CITSs in iCLIP/

eCLIP. HITS-CLIP experiments do not always produce clear and usable CIMS patterns.
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• RPISeq [73]: protein and RNA sequences are encoded into features that are then used to train Support
Vector Machine (SVM) and Random Forests classifiers;

• RPI-Pred [74]: it combines RNA and protein sequences with predicted or actual 3D structures. The features
are then used to train an SVM classifier;

• iDeepS [75]: a deep learning-based method that exploits convolutional neural networks (CNNs) trained on
RNA sequences and predicted secondary structures. At the end of the pipeline, a classification layer is

Table 1 A summary of the different catRAPID implementations

Name of
the
algorithm Description Input Output

catRAPID
fragments
[66]

It divides inputted protein and RNA into
fragments and computes the
interaction propensity between each
fragment.

• A protein sequence in
FASTA format.

• An RNA sequence in
FASTA format.

• Interaction profile plota.
• Interaction matrixb.
• Table of interacting
protein–RNA fragments.

Global
Score [65]
omiXcore
[68]

A variant of catRAPID fragments
calibrated on CLIP-Seq data, it is able
to predict interaction with >1000 nt
long RNAs and to provide an overall
interaction score.

• A protein sequence in
FASTA format.

• An RNA sequence in
FASTA format.

• Interaction profile plota

• Interaction matrixb.
• Table of interacting
protein–RNA fragments.

catRAPID
omics [69]

It computes the interactions between a
molecule (protein/RNA) and the
reference set (transcriptome/
nucleotide-binding proteome) of a
model organism.

• Protein/RNA sequence
in FASTA format.

• Reference set of
protein/RNA sequences.

• Graphical representation
of protein sequence/
domains.

• Pie chart with ranking
distributionc.

• Table of interacting
protein–RNA pairs.

catRAPID
express
[70]

It allows the identification of
co-expressed protein–RNA pairs in
human tissues.

• A protein sequence in
FASTA format

• An RNA sequence in
FASTA format.

• (Only one protein
sequence or one RNA
sequence is required for
the omics option).

• Correlation coefficient
representing the
coexpression of the
protein–RNA pair.

• Interaction heatmapd.
• Table of tissue expression.

catRAPID
signature
[71]

It scans a protein sequence for
RNA-binding regions.

• One or more protein
sequences in FASTA
format.

• Overall binding score.
• Binding propensity plote.

catRAPID
library [69]

It allows the creation of a new reference
set for catRAPID omics.

• One or more protein or
RNA sequences.

• A library ID that can be used
in catRAPID omics.

catRAPID
strength
[67]

It computes the interaction strength of
a protein–RNA pair with respect to a
reference set of sequences of similar
length.

• A protein sequence in
FASTA format

• A RNA sequence in
FASTA format.

• Table of interaction strength
(significance of interaction
propensity).

• Cumulative distribution
function plots of protein-RNA
interaction scoref.

aThe interaction profile plot represents the interaction score (y-axis) of the protein along the RNA sequence (x-axis), giving information about the
transcript regions that are most likely to be bound by the protein;
bThe interaction matrix is an heatmap showing the interaction propensity between each possible fragment of the protein (y-axis) and the RNA
(x-axis);
cThe pie chart shows the proportion of targets having High, Moderate and Low star rating score. Star rating score weights the interaction based on
the interaction propensity, the presence of RNA/DNA binding domains and the presence of known RNA motifs;
dThe interaction heatmap shows the interaction score of the individual amino acid-nucleotide pairs;
eThe binding propensity plot reports, for each amino acid (x-axis), the propensity to be part of a binding region;
fThe Cumulative distribution function plots report the interaction score of the query protein–RNA pair within the distribution of the interaction scores
from the reference set.
A more detailed explanation of the different algorithms is available on catRAPID tutorial page (http://s.tartaglialab.com/static_files/shared/tutorial.html)
and documentation page (http://s.tartaglialab.com/static_files/shared/documentation.html).
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Table 2 Methods for in vitro characterisation of protein–RNA binding

Method Principle of detection Sample requirements Detection range Sample capacity
Direct
measurements

EMSA [90] Detection of RNA–protein
complex’ electrophoretic
mobility properties,
typically different
compared to free RNA.

• Labelled RNA.
• nM concentrations
of RNA and protein.

≥10−18 mol RNA. 0.5–500 ml
depending on
electrophoresis
setup.

Kd, n

Filter binding
assay [88]

Quantification of
32P-labelled RNA via
imagine screen or
scintillation counter.

• About 0.1 mM
labelled RNA
(usually with 32P).

• Purified protein
serial dilutions.

≥10−15 mol RNA. Multi-well plate
dot-blot setup.

kon, koff, Kd, n

Fluorescence
anisotropy
[91,92]

Changes in fluorescence
anisotropy or polarisation
of excitation light upon
binding.

• Fluorescent labelling
of one of the
partners.

• 1 nM RNA.

nM ranges of
fluorophores.

Multi-well plates. Kd

FRET [93,94] Energy transfer of between
fluorophores detected as a
change in fluorescence
intensity.

• Two fluorophores,
either one on each
partner or strategically
placed on one for
structural studies.

single-molecule
experiments.

Single molecule to
multi-well plates.

Kd, kon, koff,
distance between
fluorophores.

SPR [95] Variations in the refractive
index of polarised laser
light upon molecular
binding.

• About 200 ml 25 nM
RNA/sensor.

• Variable conc. of
protein (ideally
100-times Kd), up to
4 ml of sample.

• Immobilisation of one
partner required.

1 pM < Kd < 1 mM Up to 16 channels
with microfluidics.

Kd, kon, koff

BLI [96] Detection of the variation
of refracted white light
upon the binding of the
interaction partner to the
immobilised ligand on the
optical fibres.

• 1–50 mg/ml of ligand,
immobilised on
biosensor.

• 1 nM–mM of receptor.
• 5–250 ml of sample
per measurement.

1 nM < Kd <
10 mM

Single channel,
5 min per
measurement
(BLItz) or multi-well
plate, 1–8
simultaneous
channels.

Kd, kon, koff

MST [97] Variations in
temperature-induced
fluorescence emission of a
target as a function of the
concentration of a
non-fluorescent ligand.

• 1–20 ml, nM–mM
concentrations.

• Fluorescent labelling.

pM < Kd<mM Up to 96 samples
per run in a
multi-capillary
system.

Kd

switchSENSE
[98]

Voltage-dependent
variations of the movement
of short fluorescent DNA
nanolevers attached to a
gold surface upon binding
of an analyte.

• Immobilisation of one
binding partner.

• 20 ml of 1 mM RNA for
biochip saturation.

• 250 ml of 0.2 mM
protein.

nM < Kd <mM Four flow channels
with six
microelectrodes for
sampling per chip

Kd, kon, koff, Rh

ITC [99] Measuring the heat
consumed/released during
titration of sample with the
ligand in regard to
reference cell.

• 200 ml–2 ml of
1-2 mM receptor.

• 40–500 ml 10×
concentration ligand.

• Kd > nM (direct
measurements).

• Kd > pM
(competitive
binding).

single cell. Kd, ΔH, n

Kinetic constants are measured directly and are used as basis for equilibrium thermodynamic parameters calculations, apart from ITC where the
reaction enthalpy can be obtained without relying on kinetic data. Kd: equilibrium dissociation constant; kon: association rate constant; koff:
dissociation rate constant; n: stechiometry of binding; Rh: hydrodynamic radius (radius of a theoretical sphere with the same translational diffusion
coefficient); ΔH: reaction enthalpy.
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responsible for RBP binding sites prediction. Deep learning models are generated individually for each RBP
based on available CLIP-Seq data, allowing the formulation of predictions on a limited set of proteins.

Functional characterization of RNA targets and binding
sites
Once the RNA targets of a protein have been determined, further analyses are necessary in order to verify the
reliability of the results and to gain insights into the biological function of the RBP. Both tasks can be
approached by looking at the function of target RNAs. A common way to do that is to perform an Over
Representation Analysis (ORA) [76], which consists of identifying over-represented functional categories in a
list of genes. Enrichment is evaluated against a background composed of all the expressed genes. A more
sophisticated approach, called Gene Set Enrichment Analysis (GSEA) [76], involves ranking genes based on a
certain score and evaluating if some categories are enriched at the top or the bottom of the ranked list. An
implementation of this method that is specific for CLIP-Seq data is provided by the Seten tool [77]. This
program requires as input a set of CLIP-Seq peaks, each with a score assigned by the peak-caller, but it could
also work starting from predicted binding sites, as long as an interaction score is provided.
Another common analysis consists in scanning the identified binding sites in order to detect common pat-

terns highlighting RBP binding preferences (motif analysis). Sequence motifs recurring in large sets of binding
sites can be discovered using different tools, like MEME-ChIP [78] and SeAMotE [79]. Both tools start from a
set of sub-sequences identified in the positive sequence set and evaluate their enrichment with respect to a
control sequence set (unbound RNAs). A more recent tool, named mCross, exploits the single-nucleotide reso-
lution offered by CLIP-Seq techniques to enhance the accuracy of de novo motif discovery [80].
Sequence alone may not be sufficient to fully explain the binding specificity of an RBP: a sequence motif

could be accessible only when put in a proper secondary structure context. Tools like GraphProt [81], ssHMM
[82] and BEAM [83] are able to detect motifs encoding both sequence and secondary structure information.

In vitro validation of predicted RBP–RNA interactions
To validate the prediction accuracy of the computational analysis proposed so far, it is ideal to evaluate each
interacting pair within a controlled environment. A most accurate validation should start from the screening of
potential binders, followed by the precise determination of binding sites and kinetic and thermodynamic para-
meters, and completed with structural insights into the drivers of the interaction (Figure 1). A comprehensive
review of the methodology is beyond the scope of this article and for more details we refer to a number of
recent reviews of the field [16,17,84–86].

Kinetics and thermodynamics of RBP–RNA interactions
As for other molecular interactions, the binding between a protein and an RNA molecule is kinetically charac-
terised by the rate at which they associate (kon) and dissociate (koff ). Conventionally, the dissociation constant
(Kd), which is the ratio between koff and kon at the chemical equilibrium, is used to express the binding affinity:
the lower the Kd, the greater the affinity. It is however important to note that binding pairs with the same Kd

may have different kon and koff and therefore different binding mechanisms. To add another layer of complex-
ity, many RBPs have multiple binding regions that may vastly differ in their affinity towards the same RNA
[87].
There are several established methods for determining the kinetic and thermodynamic parameters of

binding (Table 2). Techniques such as electrophoretic mobility shift assay (EMSA) and filter binding assay can
be useful to estimate binding affinities with basic molecular biology tools [88,89]. Both these methods represent
a viable first step analysis, especially because of short protocols and limited amounts of samples required. The
latter criterion can be crucial in protein–RNA interaction studies, since some RBPs can be very difficult to
isolate, tagged RNA synthesis can be expensive and advanced methods for more reliable and accurate determin-
ation of molecular binding characteristics generally have specific sample requirements and higher operation
costs. Despite these advantages, since EMSA and filter binding experiments are performed within conditions
very distinct from the in vivo ones (polyacrylamide gel and nitrocellulose filter, respectively), more reliable
kinetic data may be obtained by other techniques. Examples of such methods are bio-layer interferometry
(BLI), multi-channel surface plasmon resonance (SPR), microscale thermophoresis (MST), the employment of
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fluorescence resonance energy transfer (FRET), and the most recent switchSENSE (Table 2, [86–89, 95]). Some
of these require the labelling of one of the interactors with fluorescent dyes, as in the case of MST and FRET,
or sample immobilisation on biosensors, as needed for SPR and BLI experiments. These requisites can impose
certain structural restraints and thus compromise the binding and the results obtained. Comparing how the
same RBP binds to RNA molecules that differ only in one nucleotide can help the identification of the RNA
portion physically interacting with the protein. However, the determination of the exact nucleotides involved in

Table 3 A short overview of the major structural biology techniques with a comparison of their advantages and
disadvantages for the study of protein–RNA interactions

Method
Principle of
detection Resolution Sample requirements Pros/Cons

NMR [111,114] Detection of the
electric current,
induced by the
magnetization of the
non-equilibrium
spins in a magnetic
field. Upon Fourier
transform, the
results can be used
to determine
structural constraints
and produce a
molecular model.

atomic
(<2 Å).

• Isotope labelling,
side-chain deuteration
essential for larger
complexes to avoid
lengthy relaxation times.

• Protein concentration
varies according to MW.

• Solution-based, can
observe time-resolved
experiments and kinetics,
most accessible on the
list, possibilities of
differential isotope
labelling, saturation
transfer experiments and
more.

• Poor signal-to-noise ratio,
line broadening and
complex spectra with
higher molecular mass
complexes.

X-ray
crystallography
[115,116]

Detection of
diffracted X-ray
photons, scattered
by the crystal, from
which an 3D
electron density map
is calculated, which
is then used to build
the molecular
structure model.

atomic
(<2 Å).

Crystals of the protein–RNA
complex, frozen in liquid
nitrogen.

• Highest resolution limit
with free electron lasers.

• Relies on quality crystals,
often difficult to obtain.

Cryogenic
electron
microscopy
[117]

Based on electron
microscopy, the
sample images are
grouped into specific
projections, with a
3D model calculated
based on them.

high (<5 Å). Monodisperse sample
blotted onto grids and
frozen under cryogenic
conditions.

• Solution based, flexible
buffer components, no
need for crystals etc.

• Maximum resolution limit
around 3.5 Å for molecules
with a MW ∼50 kDa.

• Very difficult to obtain
sufficient quality data for
determination of
structures of elements
with MW< 150 kDa under
the resolution of 5 Å.

Small angle
scattering
[110,112,118]

Detection of
diffracted X-ray
photons (SAXS) or
neutrons (SANS) on
sample solutions
under small angles
(typically <10°), from
which a scattering
curve and a 3D
shape can be
calculated.

medium
(>10 Å).

• Monodisperse sample,
dilution series from
1 mg/ml to 20 mg/ml.

• Possible deuteration or
isotope labelling for SANS
studies.

• Investigation of molecule
shape as well as other
information, selective
deuteration can provide
valuable contrast (SANS).

• Need for monodisperse
sample, rather high protein
concentrations for the
dilution curve, no exact
molecular structure.
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the binding can be highly challenging without structural studies. Once the RNA targets have been precisely
characterised, selective mutations on the protein region thought to be responsible for the binding may be useful
to determine which amino acids are directly responsible for the interaction. The same approach could be
extended to mutating selected nucleotides or regions of the RNA molecules for further characterisation of the
binding spots without obtaining an atomic resolution structure.
Kinetic studies are essential for determining the binding propensity and validating different binding partners

[10]. However, experiments conducted in vitro with isolated components often do not allow studies under
physiologically relevant conditions. Isolated proteins can be sensitive to higher temperatures, especially under
prolonged experiments that far exceed their in-cell lifespans. Since chemical equilibriums are temperature-
dependent, in vivo kinetics may thus significantly differ from those measured in vitro. The thermodynamics of
binding can also reveal the energetic landscape of protein–RNA interactions [100–102]. It is therefore very
important to measure the thermodynamics parameters directly, when experimentally possible, or to calculate
them. Isothermal titration calorimetry (ITC) allows direct measurements of the equilibrium constant, stoichi-
ometry and reaction enthalpy (ΔH) at a given temperature [99]. Using the van’t Hoff equation, these can then
be used to determine the temperature dependency of the equilibrium constant. SPR and MST also allow calcu-
lation of thermodynamic data based on the stable temperature of the measurement cell, while BLI is considered
less reliable.

Structural approaches of studying RBP–RNA interactions
Kinetic and thermodynamic data obtained from interaction studies provide a good numerical description of the
binding and, through the use of RNA-centric methods, a library of RNA sequences with high binding propen-
sities [103]. However, protein and RNA sequences alone may not be sufficient to fully characterise their
binding specificity. This is especially true in the case of non-canonical RBPs that do not contain a consensus
RNA-recognition sequence [104]. RNA structure has been shown to be the driver behind most non-canonical
RBP binding events, with highly structured RNAs having bigger protein interactomes [105,106]. The
approaches to determine the structure of separate components have been extensively reviewed [107,108].
Among the most pertinent techniques to determine the macromolecular structure of a complex, there are X-ray
crystallography, nuclear magnetic resonance (NMR) and cryogenic electron microscopy (cryo-EM) (Table 3).
However, the definition of structural details by these methodologies can be challenging [107]. A large number
of RBPs contain intrinsically disordered regions and tend to form macromolecular condensates, making their
crystallisation impractical; NMR, that bypasses the need for crystals, is dependent on the molecular weight of
the complexes that can make relaxation times slow and signal-to-noise ratio poor; obtaining results at atomic
resolution with cryo-EM remains difficult [108]. These limitations make a strong case for the employment of
complementary structural biology techniques [107]. A particularly promising development is the advance of
small angle scattering and computational methods for data analysis, in particular small angle neutron scattering
(SANS) [109]. Selective deuteration enables a higher degree of contrast between binding partners and can
therefore provide a rough position for each component of the complex [110]. Data obtained from the above
mentioned methods can be used as structural restraints for molecular dynamics simulations and data-driven
docking [111,112] and can be integrated together in a hybrid multi-level approach for studying RNA-protein
complexes, thus completing the full circle of integrated methodologies [75,113,119,120].

Perspectives
• Our understanding of many physiological and pathological phenomena cannot be exempted

from an in-depth knowledge of protein–RNA interactions underlying them.

• Such comprehension, which goes from the identification of targets RNAs to binding modes
characterization, requires a multidisciplinary approach involving biochemistry, molecular
biology, bioinformatics and physics.
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• As new and more powerful high-throughput methods and predictors are being developed, an
integrated and productive usage of both approaches becomes more and more feasible. For
instance, predictive tools such as catRAPID, which is general enough to be applied to any
protein–RNA pair, could also be employed to improve the specificity of omics studies.
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The interplay between disordered regions in RNAs
and proteins modulates interactions within stress
granules and processing bodies

Phase separation is a widespread subject of interest in the scientific liter-
ature. In particular, liquid-like condensates such as stress granules (SGs)
and processing bodies (PBs) are being studied in detail thanks to the
development of new experimental techniques, leading to a better under-
standing of their transcriptomes and proteomes (Decker and Parker, 2012).
One of the main questions remaining unsolved revolved around the inter-
action networks of their proteic and ribonucleic components as to how
they shape and sustain these organelles. In particular, a precise physico-
chemical characterization of such networks was yet to be established.
For this reason, we decided to analyse the proteome and the transcriptome
of these condensates and the interactions they establish, focusing both on
SGs and PBs in order to unravel the differences and similarities between
the two. To do so, we relied on both wet and dry approaches in order to
strengthen the results we found.

We show that poorly structured RNA and protein elements seem to in-
teract within themselves and with each other, creating a sort of circular
scenario in which disorder of both proteins and transcripts seems to be
the driving elements in creating the interaction network that sustains these
condensates.

This analysis provides a complete overview of the main players involved
in phase-separating condensates and the relevance of their molecular in-
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teractions, setting a baseline for the investigation of specific molecules or
pathways that could be important for the survival and functioning of these
organelles.

This work was published in the Journal of Molecular Biology in 2021.
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Abstract

Condensation, or liquid-like phase separation, is a phenomenon indispensable for the spatiotemporal reg-
ulation of molecules within the cell. Recent studies indicate that the composition and molecular organiza-
tion of phase-separated organelles such as Stress Granules (SGs) and Processing Bodies (PBs) are
highly variable and dynamic. A dense contact network involving both RNAs and proteins controls the for-
mation of SGs and PBs and an intricate molecular architecture, at present poorly understood, guarantees
that these assemblies sense and adapt to different stresses and environmental changes. Here, we inves-
tigated the physico-chemical properties of SGs and PBs components and studied the architecture of their
interaction networks. We found that proteins and RNAs establishing the largest amount of contacts in SGs
and PBs have distinct properties and intrinsic disorder is enriched in all protein-RNA, protein-protein and
RNA-RNA interaction networks. The increase of disorder in proteins is accompanied by an enrichment in
single-stranded regions of RNA binding partners. Our results suggest that SGs and PBs quickly assemble
and disassemble through dynamic contacts modulated by unfolded domains of their components.
� 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://crea-

tivecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Cells exploit the spatiotemporal confinement for
efficient organization of biochemical reactions.1 In
the complex and crowded intracellular milieu,2 con-
densation in membrane-bound or membrane-less
organelles allows to control concentration and inter-
actions of the reactants.3 These assemblies,
located in both cytoplasm and nucleus, participate
in multiple cellular functions4 including stress

response, transport channels in the nuclear pore
complex and chromatin reorganization.5

Molecular condensation is currently the subject of
intense investigation and recent advances started to
reveal their composition and inner architecture.3,6,7

Molecular interactions within molecular conden-
sates are not yet understood, but involve proteins
and RNAs.8,9 These assemblies have liquid-like
properties and are commonly formed through a pro-
cess that requires phase separation.10,11 Valency or
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number of interaction sites dictates the contact den-
sity of the molecular network regulating the stability,
organization and composition of the
condensates.10,12

Through helical interactions, canonical and non-
canonical Watson-Crick base-pairing, RNAs
interact with other RNAs and promote phase
separation.13 Yet, technical difficulties in the study
of RNA-RNA contacts currently impede our com-
plete understanding of this phenomenon.14

Protein-protein interactions, and especially prion-
like elements, contribute to condensation by pro-
moting protein associations.10,15 More specifically,
perturbation of the native state16 accompanied by
an increase in structural disorder17 and hydropho-
bicity18 enhance the propensity of proteins to
aggregate.15

Depending on their binding preferences, RNA-
binding proteins (RBPs) interact with either single
or double-stranded regions of RNAs.19 Highly struc-
tured RNAs attract large amounts of proteins thanks
to their intrinsic ability to establish stable interac-
tions.12,20 RNAs can be often scaffolding elements:
whereas a polypeptide of 100 amino acids can inter-
act with one or two proteins, a chain of 100 nucleo-
tides is able to bind to 5–20 proteins.21 Not only
RNA attracts proteins, but also proteins can in turn
contribute to change RNA properties: chemical
modifications such as N1-methyladenosine (m1A)
and N6-methyladenosine (m6A) can modify RNA
structure22,23 and influence the formation of ribonu-
cleoprotein condensates.24,25 Helicases such as
the Eukaryotic initiation factor 4A-I can also alter
RNA structure by opening up double-stranded
regions and altering cellular interactions.26

Here, we used a computational approach to
investigate the interactions and properties of RNA
and protein in the two of the best-known biological
condensates: stress granules (SGs)27 and
processing-bodies (PBs).28 These large assemblies
arise upon viral infection or when chemical and
physical insults occur to cells. They are thought to
form to protect transcripts that would otherwise be
aberrantly processed. More specifically, SGs store
non-translating mRNAs as indicated by translation
initiation factors enriched in the pool of proteins that
compose them, whereas PBs facilitate RNA decay
because of the abundance in RNA decapping and
deadenylation enzymes.29

Proteins7,9 and RNAs27,30 contained in SGs and
PBs are only now starting to be unveiled and their
interaction networks are largely unknown. With the
present systematic analysis, we aim to characterize
how structure influences the interactions sustaining
these biological condensates, including both pro-
teins and RNAs and all its possible combinations
(RNA-RNA, protein-protein and RNA-protein). Our
results show similarities and interconnections
between the most contacted players of both molec-
ular types. We report the intriguing result that RNAs
enriched in SGs and PBs are disordered and form a

large number of contactswithRNAs and proteins. At
the same time, proteins enriched in SGs and PBs
are disordered and form a large number of contacts
with proteins and RNAs. Taken together, our data
suggest that structural disorder is a property that dis-
tinguishes dynamic fuzzy-like assemblies such as
PBs and SGs from solid-like aggregates.31,32

Results

RNA structure drives interaction with proteins
in SGs and PBs

SGs and PBs are two of the best-known biological
condensates. They contain multiple proteins whose
concentration changes with stress, cell state and
environmental conditions.9,29 Among them, a small
specific set of proteins essential for their formation
has been found and they are involved in the recruit-
ment of the other components and in sustaining the
condensate. Despite this, there are still uncertain-
ties regarding how the cell regulates their content
and assembly.
We recently reported that protein-RNA

interactions build up the scaffold of phase-
separating organelles10,33 and their selective
recruitment is dictated by RNA physicochemical
properties.12,20 Specifically, we have shown that
RNAs engaging in interactions with many protein
partners are enriched in double-stranded content
(Figure 1(A)).19,20 The origin of this property,
observed with a number of different experimental
approaches, is that double-stranded regions reduce
the flexibility of the polynucleotide chain. Presence
of a stable fold favors the formation of stable and
well-defined binding sites where the protein can
bind. However, our observation does not suggest
that protein binding sites and double-stranded
regions are the same. If a specific interaction occurs
in a small loop at the end of a stem, the overall
region is enriched in double-stranded nucleotides,
although the exact binding could be in a single-
stranded region.
We wondered whether RNA structure drives the

interaction with proteins present in SGs and PBs
as detected in the whole transcriptome
analysis.19,20 Following up on our previous compu-
tational analysis,19,20 we used protein-RNA interac-
tions available from enhanced CLIP (eCLIP)
experiments34 to rank protein associations with
RNAs present in SGs and PBs (Materials and
Methods). We first selected the transcripts with
the largest and lowest amount of protein contacts
from the list of RNA reported in SGs27 and PBs30

(Supplementary Table 1) and then compared their
secondary structure content. We used CROSS35 to
predict the secondary structure properties of tran-
scripts using the information contained in their
sequences and we found that RNAs with more pro-
tein contacts in SGs and PBs are significantly more
structured (Figure 1(B); Materials and Methods).
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CROSS reproduces transcriptomic experiments
such as in vivo click selective 2-hydroxyl acylation
and profiling experiment (icSHAPE)22 and Parallel
Analysis of RNA Structure (PARS)36 with accura-
cies higher than 0.80.37 To assess whether the cal-
culations are in agreement with experimental data,
we used data coming from dimethyl sulfate (DMS)
foot-printing experiments carried out in vitro and
in vivo38 (Materials and Methods). DMS modifica-
tion of the unpaired adenosine and cytidine nucleo-
tides is commonly used for revealing structural
properties of RNA molecules.39 The results are in
complete accordance withCROSS predictions, with

the most contacted RNAs being more structured
than the least contacted ones (Figure 1(C) and
Supplementary Figure 1). Although the conditions
in which DMS experiments were performed did not
take into account formation of SGs and PBs, our
results show that for both SGs and PBs the amount
of double-stranded regions is statistically associ-
ated with the number of protein contacts SG’s and
PB’s RNAs can form (Figure 1(C)).
Our results indicate that RNAs establishing

interactions with a large number of proteins12,40

act as scaffolds for the formation of ribonucleopro-
tein complexes,33,41 which suggests that specific

Figure 1. RNAs enriched in SGs and PBs are less structured and contact a larger amount of proteins. A.
Graphical representation of the relationship between number of protein interactions and double-stranded content of
RNAs. The trend was identified by using different computational and experimental techniques. B. Double-stranded
content dsRNA (CROSS predictions) of RNAs present in SGs and PBs. The RNAs are categorized in two classes:
least- and most-contacted depending on the amount of protein interactions detected by eCLIP. An equal amount of
200 transcripts is used in each class (SGs and PBs, least and most contacted RNAs). Significant differentiation is
found (SG p-value < 0.013 and PB p-value < 0.029, Wilcoxon test). C. Single stranded content ssRNA (dimethyl
sulfate modification, DMS, measured in vivo) for RNAs most and least contacted by proteins in SGs and PBs. RNA
classes follow the definition given in panel B. Significant differentiation is found (SG p-value < 1.15e-34, PB p-
value < 3.19e-35, Wilcoxon test). D. Double stranded content dsRNA (CROSS predictions) for RNAs enriched or
depleted in SGs and PBs. An equal amount of 200 transcripts is used for each category (SGs and PBs, depleted and
enriched RNAs). Significant differentiation is found (SG p-value < 0.006, PB: p-value < 1.88e-54, Wilcoxon test). E.
Single stranded content ssRNA (DMS, measured in vivo) for RNAs enriched or depleted in SGs and PBs. RNA
classes follow the definition given in panel D. Significant differentiation is found (SG p-value < 4.51e-67, PB p-
value < 2.43e-67, Wilcoxon test). F. catRAPID predictions of protein interactions with RNAs enriched or depleted in
SGs and PBs. RNA classes follow the definition given in panel D. Significant differentiation is found (SG p-
value < 3.69e-33, PB p-value < 4.62e-21, Wilcoxon test); G. eCLIP detection of protein interactions with RNAs
enriched or depleted in SGs and PBs. RNA classes follow the definition of panel D. Significant differentiation is found
(SG p-value < 1.44e-06, PB p-value < 0.075, Wilcoxon test). Significance indicated in the plots: * p-value < 0.1, ** p-
value < 0.01 and *** p-value < 0.001.
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transcripts could be the ‘hubs’ in the transcriptional
and post-transcriptional layers of regulation.19,20

This observation indicates that RNAs could be
regarded as network connectors or ‘kinetic con-
densers’ sustaining and capturing the different com-
ponents of the biological condensates. Actually,
recent evidence indicates that RNA interactions
with other RNAs occur spontaneously, thus an addi-
tional level exists in the inner regulation of SGs and
PBs architecture.13

RNA enriched in SGs and PBs are less
structured

Since SGs can contain mRNAs from essentially
every expressed gene,27 we decided to study a sub-
set of RNAs that are specifically enriched in SGs or
PBs. Indeed, it is possible to distinguish two subsets
of transcripts, enriched and depleted, depending on
their abundance in SGs and PBs relative to the rest
of the transcriptome (Materials and Methods and
Supplementary Table 1). We stress that the distri-
bution in these groups is independent of the total
transcript abundance or the AU content.42 We also
note that the overlap between SGs and PBs is just
25%, and this percentage varies when comparing
different sets. Despite these differences, enriched
RNAs share similar properties in both cases: they
are composed by transcripts with less translation
efficiency and longer sequences.27,28

Since longer sequences have higher probability
to have a larger number of interaction partners,7,9

we expected to find an enrichment of double-
stranded regions in PBs and SGs.20 However, our
predictions carried out with CROSS indicate that
these RNAs contain more single-stranded regions
than depleted transcripts (Figure 1(D)).
To assess whether the calculations are in

agreement with experimental data, we compared
our predictions with DMS experiments.38 The
results are in complete accordance, with enriched
RNAs beingmore unstructured than depleted RNAs
(Figure 1(E)). Interestingly, the 50 UTRs, CDS and
30 UTRs consistently show a lower amount of struc-
ture, which indicates that the trend identified is par-
ticularly robust (Supplementary Figure 2). We
obtained similar results using another experimental
approach to reveal RNA secondary structure,
PARS (Supplementary Figure 3).36 PARS is an
approach based on deep sequencing fragments of
RNAs treated with structure-specific enzymes43

(Materials and Methods). Again, RNAs enriched
in SGs and PBs have a significantly increased num-
ber of single-stranded regions.

RNAs enriched in SGs and PBs bind a large
amount of proteins

We next investigated protein interactions with
RNAs enriched in SGs and PBs. In this context,
we previously showed that the interactions
between proteins and RNAs could scaffold the

formation of phase-separating organelles12,21,33

and the incorporation of RNAs depends on their
physico-chemical properties.19,20 We used the
catRAPID approach to predict RNA interactions
with proteins (Materials andMethods).44,45 catRA-
PID exploits secondary structure predictions cou-
pled with hydrogen bonding and van der Waals
calculations to estimate the binding affinity of
protein-RNA pairs with an average accuracy of
0.78.46,47 For both SGs and PBs, our predictions
indicate that enriched RNAs have a significantly lar-
ger number of interactions with proteins than
depleted RNAs (Figure 1(F)).
To experimentally validate our predictions, we

retrieved protein-RNA interactions available from
eCLIP experiments (Materials and Methods).34

On the same set of proteins investigated with
catRAPID, we observed that RNAs enriched in
PBs and SGs have an increased number of protein
partners (Figure 1(G)).
Although predictions and experiments used in our

analysis do not consider the cellular context in
which SGs and PBs are formed, our models are
based on physico-chemical properties of the
molecules involved and they are therefore
expected to have general validity.19,20 Intriguingly,
RNAs enriched in SGs and PBs establish a dense
network of contacts with proteins despite their
increase in single-stranded content. This contra-
dicts the trend previously identified and suggests
that these RNAs might have an interaction network
that deviate from those characterizing the average
transcriptome.19,20

Single stranded regions are involved in RNA-
RNA interactions

Even though protein interactions correlate with
the amount of double stranded regions found in
them (Figure 1(B)), it is possible that other RNA
properties are involved in different interactions.
We hypothesized that RNAs enriched in SGs and
PBs may interact among themselves through a
mechanism of base-pairing recognition in single-
stranded regions.48 To investigate if an increase in
single-stranded regions is a property favouring con-
tacts among RNAs, we compared the structures of
RNAs that build a larger number of contacts with
RNAs and those more prone to interact with pro-
teins (Figure 2(A)). The analysis of the DMS struc-
ture shows that the RNAs interacting with a larger
number of RNAs are more single-stranded.
Using IntaRNA to predict RNA-RNA interactions

(Materials and Methods),48 we then compared
the binding ability of themost enriched and depleted
RNAs in SGs and PBs. Our results clearly show that
enriched RNAs are more prone to interact with
RNAs (Figure 2(B)).
We then searched available experimental data to

validate our predictions. To this aim, we used the
RISE database containing RNA-RNA interactions
assessed through high-throughput approaches.49
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By counting the number of binding partners that
each transcript has with other transcripts (Materials
and Methods), we found that the enriched RNAs
are associated with a large number of binding part-
ners (Figure 2(C)). Altogether, our results indicate
that enriched RNAs are more single-stranded and
base-pair with multiple RNAs to establish a larger
number of contacts.
Thus, RNAs enriched in SGs and PBs are able to

establish a dense network of contacts not just with
proteins but also with RNAs. This result suggests
that RNAs in SGs and PBs could act as central
players sustaining their inner architecture.

Enriched RNAs are populated by master
regulators of protein- and RNA-binding

To understand how enriched RNAs are able to
create a dense network of contacts, we studied
their molecular composition. Starting from the pool
of enriched transcripts, we calculated the
intersection between the RNAs showing the
largest and smallest amounts of protein contacts
(eCLIP experiments)34 against the RNAs showing
the largest and smallest amounts of RNA contacts
(RISE database).49 This approach is useful to
reveal the existence of a particular subset spe-
cialised in binding specific molecular types. The
results are shown in Supplementary Figure 4,
where we report the intersection of the strongest
and poorest protein and RNA binders, comparing

them with a control. Despite the vast majority of
RNAs does not show significant preference for a
certain molecular type, we detected an enrichment
in the set of RNAs that binds extensively both pro-
teins and RNAs (Supplementary Table 3). Thus,
these data confirm that the interactivity of the RNAs
enriched in SGs and PBs with boths proteins and
RNAs is significantly higher than the other tran-
scripts, supporting their importance in sustaining
the network of these biological condensates.

SGs and PBs protein pairs are enriched in
structural disorder

We next investigated the properties of proteins
accumulating in SGs and PBs to better
understand how they contribute to their interaction
network. First, we analyzed how structure affects
the formation of protein pairs in these biological
condensates in comparison with the rest of the
proteins.
We retrieved from BioGRID50 all binary protein-

protein interactions (PPIs) involving proteins
located in SGs and PBs (Materials and Methods
and Supplementary Table 2) and, as a control,
an equal amount of PPI with interactors that were
not found therein (extracted multiple times, Supple-
mentary Figure 5). In this analysis, we measured
the amount of disorder available using MobiDB
(mean disHL disorder score for each pair)51

(Figure 3(A) and Supplementary Figures 5 and

Figure 2. RNAs enriched in SGs and PBs are less structured and contact a larger amount of RNAs. A.
Single-stranded content ssRNA (DMS measured in vivo) of RNAs enriched in protein interactions (eCLIP
experiments) and RNAs enriched in RNA interactions (RISE database). An equal amount of 200 transcripts is
used in each category (SGs and PBs, protein and RNA binders). Significant differentiation is found (SG p-
value < 0.091, PB p-value < 0.007, Wilcoxon test). B. IntaRNA predictions of the energies associated with RNA-RNA
interactions. An equal amount of 2500 predicted interactions are used in each category (50 transcripts from SGs and
PBs, enriched and depleted interacting with 50 random human RNAs). Significant differentiation is found (SG p-
value < 2.54e-108, PB p-value < 1.57e-69, Wilcoxon test). For each plot the interaction bonding energy is reported
(kcal/mol). C. Number of RNA-RNA interactions (RISE database). An equal amount of 200 transcripts is used in each
category (SGs and PBs, enriched and depleted). Significant differentiation is found (SG p-value < 1.54e-19, PB p-
value < 5.89e-09, Wilcoxon test). Significance indicated in the plots: * p-value < 0.1, ** p-value < 0.01 and *** p-
value < 0.001.
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6). In addition, we also measured the amount of dis-
order of single condensates and non-condensates
proteins (Supplementary Figure 7). Both analyses
indicated that proteins from PBs and SGs are more
disordered than the rest of the proteome.
Thus, in addition to RNAs with increased content

of single-stranded regions, our results indicate that
SGs and PBs contact networks are enriched in
proteins with a lower amount of structure. Since it
is known that structural disorder promotes
allosteric interactions and favours binding with
many protein partners,52 we speculated that SG

and PB proteins could have a large number of
contacts.
To this aim, we took proteins from SGs and PBs

and as a control an equal number of proteins that
were not found therein (extracted multiple times,
Supplementary Figure 8). We then counted how
many interactions were reported in BioGRID
(Figure 3(B) and Supplementary Figure 8).50

Our results indicate that SG and PB proteins have
a significantly larger number of partners, suggesting
that they have a denser contact network than the
rest of the proteome. Therefore, we found an equiv-

Figure 3. Protein interaction in SGs and PBs is lead by disorder. A. Disorder content of protein–protein
interactions associated with SGs and PBs (BioGRID database). For each organelle (SG and PB), an equal number of
protein pairs (9336 for SG, 3920 for PB) with the non-condensate control is used. The mean disorder content of each
pair was retrieved from the MobiDB database (disHL score). Significant differentiation is found (SG p-value < 1.05e-
157, PB p-value < 2.21e-33, Wilcoxon test). B. Number of protein–protein interactions associated with SGs and PBs
proteins (BioGRID database). For each organelle (SG and PB), an equal number of proteins (586 for SG, 231 for PB)
with the non-condensate control is used. Significant differentiation is found (SG p-value < 3.36e-126, PB p-
value < 1.51e-58, Wilcoxon test). C. catRAPID predictions of protein interactions with RNAs most single stranded and
double stranded in SGs and PBs and calculation of mean proteins disorder content. An equal amount of 200
transcripts is used in each category (SGs and PBs, most single-stranded and double-stranded RNAs). The mean
disorder content of the interacting proteins for each RNA is retrieved from MobiDB (disHL score). Significant
differentiation is found (SG p-value < 0.056, PB p-value < 0.067, Wilcoxon test). D. Disorder content of eCLIP proteins
interacting with SG and PB most single stranded and double stranded RNAs. An equal amount of 200 transcripts is
used in each category (SGs and PBs, most single-stranded and double-stranded RNAs). The mean disorder content
of the interacting proteins for each RNA is retrieved from MobiDB (disHL score). Significant differentiation is found
(SG p-value < 2.89e-17, PB p-value < 4.97e-19, Wilcoxon test). E. Graphical representation of interaction patterns
found in our analysis. Condensate enriched RNAs and proteins are responsible for the creation of a contact network
that involves both other RNAs and proteins. This leads to the hypothesis that granule proteins and enriched RNAs are
crossed “hubs” recruiting and sustaining the different components of SGs and PBs. Significance indicated in the plots:
* p-value < 0.1, ** p-value < 0.01 and *** p-value < 0.001.
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alence between RNAs and proteins enriched in
SGs and PBs, in which both are characterized by
a larger number of contacts.

Disorder proteins in SGs and PBs interact
more with non-structured RNA

Since RNA binding proteins (RBPs) contain
disordered regions,53 and SG and PB contact net-
works are enriched in disordered proteins, we
investigated which type of structural properties reg-
ulate the interactions between RNAs and proteins.
Based on the increased amount of single-stranded
regions in enriched RNAs and their capacity to form
a larger number of interactions with proteins, we
expected an increased amount of disorder in RBPs.
To test this hypothesis, we analyzed the least and
most structured RNAs (data from DMS measured
in vivo)38 in SGs and PBs and measured the disor-
der content (disHL score from MobiDB) of the inter-
acting proteins51 (Materials and Methods). In this
analysis we focused on proteins that bind to RNA
as predicted by catRAPID and for which the eCLIP
interactome is available.34 The analysis shows that
single-stranded RNAs in SGs and PBs are prefer-
entially contacted by disorder proteins (Figure 3
(C)). The same result was obtained considering
interactions from eCLIP experiments, which con-
firms the validity of our predictions (Figure 3(D)).
In the same way, this analysis, carried out only on
the RNAs enriched in SGs and PBs, also repro-
duces this trend (Supplementary Figure 9).
From two independent points of viewwe arrived at

the same conclusion about the organization of
molecules contained in SGs and PBs (Figure 3
(E)). Enriched RNAs, which are more single-
stranded, form a larger number of interactions with
RNAs but also have a strong potential to interact
with proteins. Disordered proteins are enriched in
SGs and PBs, have a larger number of PPIs, but
also can form more contacts with single-stranded
RNAs. So, the two molecular sets that we detected
as the most interacting, RNAs and proteins, are
both depleted in structure, and form strong
interactions between them. This finding indicates
that proteins and RNAs in SGs and PBs act
together as “hubs” that recruit and sustain
the different components of the assemblies
(Figure 3(E)).

Discussion

We previously observed that RNAs enriched in
double-stranded regions attract a large number of
proteins.19,20 The origin of this trend, also identified
in SG and PB analyses, is that double-stranded
regions favor stable interactions with proteins by
reducing the intrinsic flexibility of polynucleotide
chains.19,20 While for each amino acid residue there
are two torsional degrees of freedom, RNA
conformational space is greater - for each

nucleotide residue there are seven independent tor-
sion angles.
Here, we report the novel result that RNAs

enriched in SGs and PBs contain single-stranded
regions that increase the structural disorder. Since
recent reports indicate that single-stranded RNAs
have strong ability to act as scaffolds of SGs and
PBs,13,30 we focused our analyses on their interac-
tions with proteins and RNAs.
We first found that RNAs enriched in single-

stranded regions are prone to engage in RNA-
RNA contacts. This result is not unexpected since
single-stranded transcripts are able to base-
pair48,54 and, by doing so, can establish a network
of stable interactions. We note that the analysis of
RNA-RNA interactions does not take into account
the cellular context in which SGs and PBs are
formed, thus our results are compatible with a sce-
nario in which specific transcripts are highly prone
to interact to quickly promote molecular
condensation.13

In parallel, the analysis of the SGs and PBs
protein interaction networks revealed that proteins
enriched in disordered elements form a larger
number of contacts with other proteins. This result
is very well in line with recent reports indicating
that unstructured regions modulate the formation
of phase separated assemblies.31 Indeed, phase
separation is a widespread phenomenon in the
cell55 and disordered interactions greatly contribute
to the assembly formation.56 By reporting that
single-stranded RNAs preferably contact disorder
proteins, we extended the concept of “fuzziness”
to RNA molecules. Our work leads to the intriguing
result that the two molecular sets identified as the
most interacting in the proteome and transcriptome
are both depleted in structure and bind one to the
other. Thus, specific elements in proteins and RNAs
have the ability to recruit and sustain all the compo-
nents of SGs and PBs (Figure 3(E)).
In conclusion, our work suggests that there is not

only great diversity in the interaction partners (RNA-
RNA, protein-protein, and RNA-protein) but also in
their binding modes.57,58 In this complex scheme,
RNA ability to induce phase separation can have
an impact on both ordered and disordered proteins:
while structural elements can irreversibly sequester
globular proteins,12 disordered regions dynamically
engage in interactions that lead to phase separa-
tion.59 Our study shows that the inner architectures
of SGs and PBs are intrinsically governed by RNAs
and proteins with an increased amount of struc-
turally disordered domains. Thanks to the dynamic-
ity of these regions, protein-RNA complexes are
able to assemble and disassemble without the need
of strong efforts by the cell. RNA-RNA interactions,
at present poorly investigated, are expected to
greatly contribute to establishing molecular associ-
ations within SGs and PBs.13 Indeed, RNA mole-
cules are versatile platforms1,40 capable of
interacting with all other molecules,19 thus
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promoting the efficient coordination of transcrip-
tional and post-transcriptional layers of regulation.20

Materials and methods

SG and PB transcriptomes

SG transcriptome was collected from Khong et al.
27. The data was generated through RNA-
sequencing (RNA-seq) analysis of purified SG
cores and single-molecule fluorescence in situ
hybridization (smFISH) validation. The PB tran-
scriptome was retrieved from Hubstenberger et al.
30; in which a fluorescence-activated particle sorting
(FAPS) method was used to purify cytosolic PBs
from human epithelial cells. In our statistical analy-
sis, we applied filtering and retained only RNAs with
an experimental p-value < 0.01. Within the tran-
scriptome, we distinguished two subsets of tran-
scripts depending on their abundance with respect
to the cell transcriptome: enriched (fold-change
>=2) and depleted (fold-change<=0.5).

SG and PB proteomes

SG proteome data was retrieved from
experiments in various stress conditions and
different cell types7,9,60 for a total of 632 proteins.
The first dataset was obtained purifying SG cores
from Sodium Arsenite (NaAsO2) stressed U-2 OS
cells using a series of differential centrifugations
and then affinity purification of GFP-G3BP. The
second dataset was obtained using a combination
of ascorbate peroxidase (APEX)-
mediated in vivo proximity labeling with quantitative
mass spectrometry (MS) and an RBP-focused
immunofluorescence (IF) to identify SG proteins in
neuronal and non-neuronal cells and under different
types of stress conditions (heat shock, ER stress
and oxidative stress). The third dataset employs
systematic in vivo proximity-dependent biotinylation
(BioID) analysis to identify core components of SGs
and PBs. PB proteome data was retrieved combin-
ing two studies30,53 for a total of 259 proteins. In the
first study, a fluorescence-activated particle sorting
(FAPS) method was developed to purify cytosolic
PBs from human epithelial cells, while the second
dataset is the one mentioned before, which identi-
fied core proteins for both PB and SG using BioID
analysis.

RNA secondary structure prediction

We predicted the secondary structure of
transcripts using CROSS (Computational
Recognition of Secondary Structure).35 The algo-
rithm predicts the structural profile (single- and
double-stranded state) at single-nucleotide resolu-
tion using sequence information only and without
sequence length restrictions (scores > 0 indicate
double stranded regions). The obtained scores are

then averaged to obtain a secondary structure
propensity score for each transcript.

RNA secondary structure measured by DMS

Data on RNA structural content measured by
dimethyl sulfate modification (DMS) in vitro and
in vivo conditions were retrieved from Rouskin
et al. 38. The number of reads of each transcript
was normalized to the highest value (as in the orig-
inal publication) and averaged.

RNA secondary structure measured by PARS

To profile the secondary structure of human
transcripts, we used Parallel Analysis of RNA
Structure (PARS) data.36 To measure PARS struc-
tural content for each transcript, we computed the
fraction of double-stranded regions over the entire
sequence. Given the stepwise function #(x) = 1
for � > 0 and #(x) = 0 otherwise, we computed
the fraction of structured domains as:

PARSstructuralcontent ¼ 1

l

Xl

i
#

V ðiÞ
SðiÞ

� �

where V(i) and S(i) are the number of double- and single-
stranded reads.
To measure the secondary structure content of

the human transcripts 50- and 30- UTR and CDS,
we retrieved the corresponding locations of the 50-
and 30-UTR from Ensembl database and repeated
the same procedure described above simply
considering only the corresponding part of the
sequence.

Protein-RNA interaction prediction

Predicted interactions with human proteins were
retrieved from RNAct,47 a database of protein-
RNA interactions calculated using catRAPID
omics,61 an algorithm to estimate the binding
propensity of protein-RNA pairs by combining sec-
ondary structure, hydrogen bonding and van der
Waals contributions.44 As reported in the analysis
of about half a million of experimentally validated
human interactions,47 the algorithm is able to sepa-
rate interacting vs non-interacting pairs with an area
under the ROCcurve of 0.78.62 The output is filtered
according to the Z-score column, which is the inter-
action propensity normalised by the mean and stan-
dard deviation calculated over the reference RBP
set. For our analysis, we considered only predicted
interactions with a Z-score > 1.

Experimental data on Protein-RNA interactions

RNA interactions for 151 RBPs were retrieved
from eCLIP experiments63 performed in K562 and
HepG2 cell lines. In order to measure the fraction
of protein binders for each transcript, we applied
stringent cut-offs [�log10(p-value) > 5 and � log2(-
fold_enrichment) > 3] as in previous work.63 Fur-
thermore, in case of interactions established in
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one cell line, only interactions seen in 2 replicates
were retained, while in case of two cell lines, only
interactions seen in at least 3 out of 4 replicates
were retained.

RNA-RNA interactions predictions

RNA-RNA interactions were predicted using the
stand-alone IntaRNA software,48 a program for
the fast and accurate prediction of interactions
between two RNA molecules. It has been designed
to predict mRNA target sites for given non-coding
RNAs, such as eukaryotic microRNAs (miRNAs)
or bacterial small RNAs (sRNAs), but it can be used
to predict other types of RNA-RNA interactions. For
each predicted RNA-RNA interaction we retrieved
the most optimal one and considered the associ-
ated interaction energy.

Experimental data on RNA-RNA interactions

Information about human RNA-RNA interactions
were retrieved from RNA Interactome
from Sequencing Experiments (RISE) database.49

RISE is a comprehensive repository of RNA-RNA
interactions that mainly come from transcriptome-
wide sequencing-based experiments such as
PARIS; SPLASH, LIGRseq, and MARIO, and tar-
geted studies like RIAseq, RAP-RNA, and CLASH.
Currently it hosts 328,811 RNA-RNA interactions
mainly coming from three species (human, mouse,
yeast). Human RNA-RNA interactions were filtered,
and we retrieved only those in which both partners
had an available Ensembl ID.

Experimental data on protein-protein
interactions

We used BioGRID (version 4.2.193) for
experimental data on protein-protein interactions
data.50 BioGRID is a biomedical interaction reposi-
tory with data compiled through comprehensive
curation efforts, and it contains protein and genetic
interactions, chemical interactions and post transla-
tional modifications from major model organism
species. We used BioGRID to retrieve protein-
protein interactions involving condensates proteins
against a control. To further strengthen our results,
our analyses were done considering both the entire
available human BioGRID interactome and physical
interactions.

Protein disorder information

Information about human protein disorder
predictions were retrieved from MobiDB database
(version 4.0)51; that contains several data resources
and features for protein disorder. Structural and
functional properties of disordered regions are
based on third party databases and a set of predic-
tion methods, which are assembled to provide a
comprehensive view of properties of disordered
regions at the residue level. From the whole set of

predictive methods, we selected scores obtained
with DisEMBL tool with hot loops threshold (DisHL),
developed for the prediction of loops with a high
degree of mobility, considered important for the def-
inition of protein disorder.64

Statistical analysis

To assess the significance of the different trends
throughout the analysis, we used the Wilcoxon
rank sum test (two-sided). It is a non-parametric
test that can be used to compare two independent
groups of samples. In order to have analysis with
balanced groups, for each comparison performed
in our study we used the same number of RNAs/
proteins for each category, except when stated
otherwise.
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Phase separation is a phenomenon that in physiological conditions is re-
versible and can help the control of biological reactions, with the result-
ing liquid-like condensates exerting important functions that include the
protection of important molecules from harmful conditions to the cell
(Decker and Parker, 2012; Protter and Parker, 2016). On the other hand,
liquid-to-solid phase transition usually generates irreversible aggregates
that are responsible for pathological states. However, despite liquid-liquid
phase separation being usually a reversible state, changes in the compo-
sition or concentration of condensates’ components can also lead to pro-
tein misfolding or aberrant accumulation of molecules, resulting in toxic
aggregates and subsequent neurodegenerative diseases (Bolognesi et al.,
2016; Cid-Samper et al., 2018; Campos-Melo et al., 2021).

In this context, we created the PRALINE database (Protein and Rna hu-
man singLe nucleotIde variatioNs in condEnsates), which contains infor-
mation about proteins and RNAs components enriched in liquid-like (e.g.
SGs and PBs) or solid-like (e.g. amyloids) condensates and their inter-
actions, providing data collected from high-throughput experimental and
computational approaches. Compared to similar databases, PRALINE is
the first to combine experimental and predicted physicochemical proper-
ties of the condensates and their inner macromolecular interactions with
disease-related single-nucleotide variants (SNVs), describing how these
variations can affect these condensates’ equilibrium and change the struc-
ture of their components.
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Considering the existing link between mutations in condensates’ compo-
nents and the insurgence of pathological states, this database will help the
design of experiments to study condensates’ formation and implication in
human diseases.

This work is currently under submission and available as a BioRxiv pre-
print.
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ABSTRACT

Summary: Biological condensates are membraneless organelles with different material properties.

Proteins and RNAs are the main components, but most of their interactions are still unknown. Here we

introduce PRALINE, a database for the interrogation of proteins and RNAs contained in stress-granules,

processing bodies, and other assemblies including droplets and amyloids. PRALINE provides information

about the predicted and experimentally validated protein-protein, protein-RNA and RNA-RNA

interactions. For proteins, it reports the liquid-liquid phase separation and liquid-solid phase separation

propensities. For RNAs, it provides information on predicted secondary structure content. PRALINE

shows detailed information on human single-nucleotide variants, their clinical significance and presence

in protein and RNA binding sites, and how they can affect condensates’ physical properties.

Availability: PRALINE is freely accessible on the web at http://alvinlee.bio.uniroma1.it/praline.

Supplementary information: General information is at http://alvinlee.bio.uniroma1.it/praline/about,

where we provide a detailed description of the datasets and the tools employed in the database. Data

provided in PRALINE are available at http://alvinlee.bio.uniroma1.it/praline/downloads. The tutorial is at

http://alvinlee.bio.uniroma1.it/praline/tutorial.

1

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.03.518982doi: bioRxiv preprint 

105



INTRODUCTION

Although the exact composition and functions of the different condensates are unknown, they are

enriched in protein and RNA molecules that interact through protein-protein, protein-RNA and

RNA-RNA networks. Solid-like condensates, and in particular amyloids, are generally considered to be

inherently irreversible aberrant clumps (Dobson, 2017), while liquid-like condensates are dynamic entities

that exchange components with the surrounding environment and grow, collapse and fuse in the nucleus

and cytoplasm (Marchese et al., 2016). Liquid-like condensates perform different functions on RNA

molecules such as storage in the germline, localization in neurons and protection from harmful conditions.

The most known liquid-like condensates are processing bodies (PBs) and stress granules (SGs), both

enriched in RNA that allows them to form and dissolve rapidly (Lorenzo Gotor et al., 2020). Yet, subtle

changes in the composition or concentration of condensates’ constituents can induce the formation of

solid-like assemblies (Cid-Samper et al., 2018). This is the case of Amyotrophic Lateral Sclerosis (ALS),

where single-nucleotide variants (SNVs) in FUS trigger a liquid-to-solid phase transition (Patel et al.,

2015). Structural properties of the RNA and changes upon mutations are important, since they play a role

in the process of condensation. Highly structured RNAs attract large amounts of proteins thanks to their

intrinsic ability to establish stable interactions (Sanchez de Groot et al., 2019). Moreover, RNAs can act

as scaffolding elements (Armaos et al., 2021): whereas a polypeptide of 100 amino acids can interact with

one or two proteins, a chain of 100 nucleotides is able to bind to 5–20 proteins (Vandelli et al., 2022).

Poorly structured transcripts also induce condensation, as they base-pair with other RNAs establishing a

dense network of contacts (Treeck et al., 2018). All this information is gathered in PRALINE, a database

that provides information on different condensates’ components, their interaction networks, and

disease-related variants.

METHODS

RNA set. All RNAs sequences were retrieved from Ensembl version 105 (Cunningham et al., 2022). 1841

Stress Granule (SG) enriched RNAs were taken from Khong et al. (Khong et al., 2017) selecting the ones

with log2(fold-change) >=1 and p-value <=0.01. 4852 Processing Body (PB) enriched RNAs are taken

from Hubstenberger et al. (Hubstenberger et al., 2017), retrieving the ones with log2(fold-change) >=1

and q-value <= 0.01) for a total of 5614 unique genes upon removal of obsolete gene ids in the ensembl

version 105. For each gene, the longest isoform was taken. The CROSS algorithm for secondary structure

prediction of RNAs was launched on the 5614 RNA sequences with Globalscore parameters (Delli Ponti

et al., 2017).
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Protein set. 997 UniprotKB IDs were retrieved from different sources. Stress Granule (SG) proteins were

retrieved from Markmiller et al. (Markmiller et al., 2018), Youn et al. (Youn et al., 2018) and Jain et al.

(Jain et al., 2016) studies. From Jain work we retrieved 411 proteins that were either already known SG

proteins or newly discovered through mass spec and IF. From Markmiller and colleagues, we retrieved

397 proteins either already known from previous experiments or found with APEX technique in hek293,

NPC and IPSC cells, as well as proteins found to be stress / cell specific or independent. 60 SG proteins

were retrieved from Youn’s work. We retrieved proteins with Non-negative matrix factorization (NMF)

values = 9 or in case of a different NMF value, we collected proteins found to co-localise with G3BP1.

Processing Body (PB) proteins were retrieved from Hustemberger et al. Hubstenberger and Youn et al.

(Youn et al., 2018). From the Hustemberger’s study, we collected 125 proteins found to be significantly

enriched in PBs with p-value < 0.025 as reported in the paper. From Gingras and colleagues' work, we

retrieved 42 proteins either with NMF value =8 or that co-localize with DCP1A.

From Vendruscolo and Fuxreiter work we retrieved 280 droplet forming proteins and 68 amyloid forming

ones (Vendruscolo and Fuxreiter, 2022).

SNVs. DisGeNet (release 7.0) curated variant-disease associations (Piñero et al., 2020) and ClinVar

variants (Landrum et al., 2014; Mj et al., 2018) with a review status higher than one (“practice guideline”,

“reviewed by expert panel” and “criteria provided, multiple submitters, no conflicts”) were downloaded

in May 2022. From these datasets, we retrieved disease-related single nucleotide changes (SNVs). 13857

SNVs from DisGeNet and 48671 SNVs from ClinVar fell in the coding region of RNAs enriched in SG

and PB and their relative position in the transcripts was retrieved from the Ensembl Variation 105

(Cunningham et al., 2022) in Human Short Variants dataset, excluding insertions and deletions. The

CROSS algorithm with Globalscore parameters was launched on RNA fragments of 51 nt with the SNV

in the center to calculate the difference in secondary structure content between the reference and

alternative RNA sequences (Delli Ponti et al., 2017). To avoid smaller-size fragments, SNVs falling at the

beginning and at the end of the RNAs were removed. The reference and alternative CROSS secondary

structure propensity profiles of the 51 nt RNA fragments were represented against each other in plots. The

mean difference in secondary structure between reference and alternative sequence was computed on a

window size of 11 nt upstream and downstream the SNV. Information on the expression quantitative trait

loci (eQTL) and splicing quantitative trait loci (sQTL) of the SNVs was obtained from GTEx V8 (GTEx

Consortium, 2020).
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RNA-RNA interactions. In May 2020, we retrieved human RNA-RNA interactions from the RISE

database (version 1.0) focusing on the experimental interactions obtained with PARIS technique (Gong et

al., 2018). For each RNA, binding site location were mapped to the longest transcript in Ensembl 105,

using blastn algorithm (Cunningham et al., 2022). We retrieved a total of 25.232 RNA-RNA interactions

with at least one interactor being an enriched RNA in SG or PB. In 934 of those interactions we found at

least a SNV located inside a binding site.

Protein-RNA interactions. We provide experimentally determined protein-RNA interactions validated

through eCLIP experiments available in May 2022 from https://www.encodeproject.org/eclip/ (Van

Nostrand et al., 2020) as well as catRAPID predictions available in RNAct (Lang et al., 2019). For the

experimentally validated interactions, binding sites are displayed.

Protein-Protein interactions. As binding sites related to protein-protein interactions are not physically

available, we provide links to an external database. Human curated protein-protein interactions are linked

to BioGRID database version 4.4 (Oughtred et al., 2021).

LLPS and LSPT Propensities. We computed the propensity to undergo liquid-like and solid-like

condensation for the set of 997 proteins detailed previously and for their 6152 natural variants (involving

632 of them), retrieved from UniProtKB (release 2022_01) (The UniProt Consortium, 2021). We

considered 5949 single point mutations and 203 deletions. To quantify the extent to which each sequence

is prone to undergo LSPT and LLPS we used the Zyggregator (Tartaglia et al., 2008) and catGRANULE

algorithms (Bolognesi et al., 2016), which compute the liquid-solid and liquid-liquid propensities,

respectively.

We note that LLPS and LSPT are promoted by both intrinsic and extrinsic contributions. By intrinsic

contributions we mean physico-chemical properties of the polypeptide chain such as the hydrophobicity

for Zyggregator and the structural disorder for catGRANULE. The extrinsic contributions relate to

environmental factors, such as concentration, pH, ionic strength, but not only, for instance crowding

agents are also to be included. Our methods predict intrinsic properties of the polypeptide chain and do

not take into account the different extrinsic contributions at present.

For the proteins that do not have natural variants present in UniProtKB we only report the WT scores of

Zyggregator and catGRANULE.
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INTERPRETATION AND USE OF THE DATABASE

PRALINE can be accessed using protein or RNA names provided as: Gene Name, Ensembl Gene /

Transcript ID (https://www.ensembl.org/) and UniprotKB ID (https://www.uniprot.org/; Figure 1A).

● Searching for a specific protein, the user can retrieve information on the condensate state

(Droplet/liquid-like or Amyloid/solid-like) and the organelle in which it has been found (SG/PB). The

predicted Liquid-liquid phase separation (LLPS) and liquid-solid phase transition (LSPT) propensities and

profiles of the wild-type sequence are provided, calculated with catGRANULE (Bolognesi et al., 2016)

and Zyggregator (Tartaglia et al., 2008) methods, respectively (>0.80 accuracy in predicting regions of the

proteins involved in protein condensation; Figure 1B). Experimentally validated protein-protein

interactions are available through links to BioGRID (https://thebiogrid.org/; Methods), while

experimental and predicted protein-RNA interactions can be retrieved from RNAct (https://rnact.crg.eu/;

Methods). Protein-RNA interactions are calculated using catRAPID, an algorithm trained on NMR and

X-ray structures (AUC of 0.77 on eCLIP interactions) (Lang et al., 2019). The number of SNVs is shown

for the protein of interest and, for each SNV, it is possible to interrogate the amino acid position, the

difference in LSPT and LLPS propensities compared to the reference (i.e., wild-type protein) and retrieve

information related to disease (Landrum et al., 2014; Piñero et al., 2020). LSPT and LLPS scores and

profiles are provided (Figure 1C; Methods).

● Searching for a specific RNA, the user can retrieve information on the condensate state (SG/PB),

the RNA secondary structure content (table and profile predicted using CROSS,

http://s.tartaglialab.com/page/cross_group), the experimentally validated RNA interactions (RISE

database, http://rise.life.tsinghua.edu.cn/) and the predicted or experimentally validated protein

interactions reported in RNAact (https://rnact.crg.eu/) for both the reference sequence and SNVs (Mj et

al., 2018; Piñero et al., 2020)(Figure 1D,E; Methods). The RNA-RNA interactions table reports

information on different binding partners, if the interactors belong to a condensate, binding sites location

in the transcripts and related SNVs (Figure 1F; Methods). The SNV section reports the position in the

transcript, the difference in secondary structure compared to the reference (a numerical value and a profile

image are provided) (Delli Ponti et al., 2017), associated diseases and interactions with RNAs (RISE

database) as well as proteins (eCLIP https://www.encodeproject.org/eclip/; Methods) that involve the

SNV containing region (Figure 1F; Methods).
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For most genes, information is available at both the protein and RNA levels, so it is possible to navigate

from one molecule to the other, revealing the links between them.

APPLICATIONS

PRALINE is a database that provides a comprehensive view of protein and RNA interactions and SNVs in

human liquid-like and solid-like condensates. Information about experimentally validated and predicted

molecular interactions, including protein-protein, protein-RNA and RNA-RNA, is provided, as well as the

predicted  RNA secondary structure content and both LLPS and LSPT propensities of proteins.

For each SNV, we provide a description of the associated diseases, the binding sites and the change in

RNA secondary structure, LLPS and LSPT propensites. Combining physico-chemical properties of

molecules and disease-related annotations, PRALINE helps to unravel macromolecular connections that

sustain different types of condensates and how variants can affect their equilibrium. PRALINE is the first

database providing LLPS and LSPT predictions for SNPs, and we envisage that it would greatly facilitate

the design of experiments to study condensates’ formation and implication in human diseases. We note

that although tested extensively and validated experimentally, catGRANULE predictions could not be

benchmarked against a database of individual SNVs causing LLPS, due to lack of adequate published

resources. The availability of such databases will lead to a more precise understanding of the relationship

between SNVs, structural conformations, protein-RNA assembly  and diseases.
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Figure 1. PRALINE database (A) Search bar. The input can be a protein or an RNA in different ID
formats (B) Liquid-liquid phase-separation (LLPS) and liquid-solid phase-transition (LSPT) propensity
profiles of a protein are predicted using catGRANULE and Zyggregator algorithms. (C) Protein SNVs
description table: the difference in LLPS and LSPT compared to the WT is provided. (D) CROSS
secondary structure propensity profile image of a RNA sequence. (E) RNA SNVs description table: the
difference in CROSS secondary structure propensity, compared to the WT, corresponding to a 11-nt
window around the mutation is provided, as well as proteins and RNAs interacting with the query
transcript containing the SNV. (F) Example of an RNA-RNA interaction table. The information about
RNAs’ binding sites, condensates localization and SNVs falling inside at least one of the binding sites are
reported.  The examples B-F relate to TARDBP.
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CHAPTER 6

STRUCTURAL ANALYSIS OF
SARS-COV-2 GENOME AND

PREDICTIONS OF THE HUMAN
INTERACTOME
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Structural analysis of SARS-CoV-2 genome and
predictions of the human interactome

In early 2020, the insurgence of the Covid-19 pandemic raised the need
to quickly investigate the molecular pathways of SARS-CoV-2 infection
and to identify the key players involved in the host-virus interactions. At
the time, many groups decided to tackle the difficult task of studying this
new 30kb virus by comparing several known coronavirus strains using
multiple sequence alignments tools, in an attempt to highlight possible
similarities (Li et al., 2020; Alqahtani et al., 2020).
In this context, our group focused on the computational analysis of struc-
turally relevant viral genomic regions and on predicting the interactions
between SARS-CoV-2 and the human proteome, with the aim of provid-
ing a list of potential candidates that could be relevant in the infection
process.

Comparing different coronavirus species and strains, we show that the vi-
ral regions corresponding to the nucleotides 22000-23000 are highly con-
served at the structural level, while the region one thousand nucleotides
upstream is very variable. These two regions code for a domain in spike
S protein that binds to the human ACE2 receptor, and is responsible in
MERS-CoV respiratory syndrome for the interaction with sialic acids.
The 5’ and 3’ of the viral genome are instead predicted to be highly
structured attractors of proteins, among which some seem to be known
condensate components and are implicated in other known viral infection
processes. Furthermore, some of these candidates are involved in the in-
nate immune response of the cell, so could be potentially targeted by the



120 CHAPTER 6

virus to escape the organism’s defenses, preventing the storage of these
elements inside phase-separating condensates.
In this regard, in more recent studies several DEAD-box helicases (e.g.
DDX1, DDX6) have been proven experimentally to be exploited by SARS-
CoV-2 to increase its infectivity and to tamper with SGs and PBs forma-
tion and a similar workflow could be used to unravel infection mecha-
nisms of other pathogens.

An experimental follow-up of this project is currently under submission
and available in BioRxiv at https://www.biorxiv.org/conten
t/10.1101/2022.07.18.499583v1.full.pdf+html

This work was published in the Nucleic Acids Research journal in 2020.

https://www.biorxiv.org/content/10.1101/2022.07.18.499583v1.full.pdf+html
https://www.biorxiv.org/content/10.1101/2022.07.18.499583v1.full.pdf+html
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ABSTRACT

Specific elements of viral genomes regulate inter-
actions within host cells. Here, we calculated the
secondary structure content of >2000 coronaviruses
and computed >100 000 human protein interactions
with severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). The genomic regions display differ-
ent degrees of conservation. SARS-CoV-2 domain
encompassing nucleotides 22 500–23 000 is con-
served both at the sequence and structural level. The
regions upstream and downstream, however, vary
significantly. This part of the viral sequence codes
for the Spike S protein that interacts with the human
receptor angiotensin-converting enzyme 2 (ACE2).
Thus, variability of Spike S is connected to different
levels of viral entry in human cells within the pop-
ulation. Our predictions indicate that the 5′ end of
SARS-CoV-2 is highly structured and interacts with
several human proteins. The binding proteins are
involved in viral RNA processing, include double-
stranded RNA specific editases and ATP-dependent
RNA-helicases and have strong propensity to form
stress granules and phase-separated assemblies.
We propose that these proteins, also implicated in
viral infections such as HIV, are selectively recruited
by SARS-CoV-2 genome to alter transcriptional and

post-transcriptional regulation of host cells and to
promote viral replication.

INTRODUCTION

A disease named Covid-19 by the World Health Organiza-
tion and caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has been recognized as re-
sponsible for the pneumonia outbreak that started in De-
cember 2019 in Wuhan City, Hubei, China (1) and spread
in February to Milan, Lombardy, Italy (2) becoming pan-
demic.

SARS-CoV-2 is a positive-sense single-stranded RNA
virus that shares similarities with other beta-coronavirus
such as severe acute respiratory syndrome coronavirus
(SARS-CoV) and Middle East respiratory syndrome coro-
navirus (MERS-CoV) (3). Bats have been identified as the
primary host for SARS-CoV and SARS-CoV-2 (4,5) but the
intermediate host linking SARS-CoV-2 to humans is still
unknown, although a recent report indicates that pangolins
could be involved (6).

Coronaviruses use species-specific proteins to mediate the
entry in the host cell and the spike S protein activates the in-
fection in human respiratory epithelial cells in SARS-CoV,
MERS-CoV and SARS-CoV-2 (7). Spike S is assembled as
a trimer and contains around 1300 amino acids within each
unit (8,9). The receptor binding domain (RBD) of Spike S,
which contains around 300 amino acids, mediates the bind-
ing with angiotensin-converting enzyme (ACE2), attacking
respiratory cells. A region upstream of the RBD, present in
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MERS-CoV but not in SARS-CoV, is involved in the adhe-
sion to sialic acid-containing oligosaccharides and plays a
key role in regulating viral infection (7,10).

At present, few molecular details are available on SARS-
CoV-2 and its interactions with the human host, which are
mediated by specific RNA elements (11). To study the RNA
structural content, we used CROSS (12) that was previously
developed to investigate large transcripts such as the human
immunodeficiency virus HIV-1 (13). CROSS predicts the
structural profile of RNA molecules (single- and double-
stranded state) at single-nucleotide resolution using se-
quence information only. Here, we performed sequence and
structural alignments among SARS-CoV-2 strains avail-
able and identified the conservation of specific elements
in the spike S region, which provides clues on the evolu-
tion of domains involved in the binding to ACE2 and sialic
acid.

As highly structured RNAs have strong propensity to
form stable contacts with different proteins (14) and pro-
mote specific assembly of complexes (15,16), SARS-CoV-2
domains enriched in double-stranded content are expected
to establish interactions within host cells that are important
to replicate the virus (17). To investigate the interactions
of SARS-CoV-2 RNA with human proteins, we employed
catRAPID (18,19). catRAPID (20) estimates the binding
potential of a specific protein for an RNA molecule through
van der Waals, hydrogen bonding and secondary structure
propensities allowing identification of interaction partners
with high confidence (21). The computational analysis of
more than 100 000 interactions with SARS-CoV-2 RNA re-
veals that the 5′ end of SARS-CoV-2 has strong propensity
to bind to human proteins involved in viral infection and re-
ported to be associated with HIV infection. A comparison
between SARS-CoV and HIV reveals similarities (22) that
are still unexplored. Interestingly, HIV and SARS-CoV-2,
but not SARS-CoV nor MERS-CoV, have a furin-cleavage
site occurring in the spike S protein, which could explain the
high velocity spread of SARS-CoV-2 compared to SARS-
CoV and MERS-CoV (23,24).

We hope that our large-scale calculations of structural
properties and binding partners of SARS-CoV-2 will be
useful to identify the mechanisms of virus replication within
the human host.

MATERIALS AND METHODS

Structure prediction

We computed the secondary structure of transcripts using
CROSS (Computational Recognition of Secondary Struc-
ture) (12,13). The algorithm predicts the structural pro-
file (single- and double-stranded state) at single-nucleotide
resolution using sequence information only and without
sequence length restrictions (scores > 0 indicate double
stranded regions). We used the Vienna RNA Package (25) to
further investigate the RNA secondary structure of minima
and maxima identified with CROSS (13).

CROSS alive was employed to predict SARS-CoV-2 sec-
ondary structure in vivo (26). CROSS alive (m6A+ fast
option) predicts long range interactions and can identify
pseudoknots of 50–100 nucleotides. The RF-Fold algo-
rithm of the RNAFramework suite (26) was used to iden-

tify pseudoknots in SARS-CoV-2. In this analysis, the par-
tition function was calculated using CROSS calculations as
soft-constraints. RNA was then folded employing Vienna
RNA Package (25) and pseudo-knotted bases were hard-
constrained to be single-stranded.

MN908947 predictions are available at http:
//crg-webservice.s3.amazonaws.com/submissions/2020-05/
270257/output/index.html?unlock=fd65439e7b (CROSS)
and also http://crg-webservice.s3.amazonaws.com/
submissions/2020-05/271372/output/index.html?unlock=
1de1d3a54a (CROSS alive).

Structural conservation

We used CROSSalign (12,13), an algorithm based on Dy-
namic Time Warping (DTW), to check and evaluate the
structural conservation between different viral genomes
(13). CROSSalign was previously employed to study the
structural conservation of ∼5000 HIV genomes. SARS-
CoV-2 fragments (1000 nt, not overlapping) were searched
inside other complete genomes using the OBE (open begin
and end) module, in order to search a small profile inside
a larger one. The lower the structural distance, the higher
the structural similarities (with a minimum of 0 for almost
identical secondary structure profiles). The significance is
assessed as in the original publication (13).

The Infernal package (version 1.1.3) was employed to
build covariance models (CMs) for fragments 22, 23 and
24 (27). The package was then used to search for sequence
and structural similarities among RNAs in our database
(267 representative sequences), which allows to identify a
series of matches below a specific E-value threshold (0.1, 1
and 10). The analysis shows agreement with CROSSalign
(12,13) results. The minimum and maximum number of
identified motifs were 224 and 4878 (E-value of 10), 136 and
3093 (E-value of 1) and 94 and 1060 (E-value of 0.1). The
motifs in Spike S region were counted for annotated coro-
naviruses (239 genomes out of 246, of which 161 within E-
value of 0.1).

Sequence collection

The FASTA sequences of the complete genomes of SARS-
CoV-2 were downloaded in March 2020 from Virus
Pathogen Resource (VIPR; www.viprbrc.org), for a to-
tal of 62 strains. An additional non-redundant set was
downloaded in August 2020 for further analyses (462 se-
quences). Regarding the other coronaviruses, the sequences
were downloaded in March 2020 from NCBI selecting
only complete genomes, for a total of 2040 genomes.
The reference Wuhan sequence with available annotation
(EPI ISL 402119) was downloaded from Global Initiative
on Sharing All Influenza Data in March 2020 (GISAID
https://www.gisaid.org/).

Protein-RNA interaction prediction

Interactions between each fragment of target sequence
and the human proteome were predicted using catRAPID
omics (18,19), an algorithm that estimates the binding
propensity of protein–RNA pairs by combining sec-
ondary structure, hydrogen bonding and van der Waals
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contributions. As reported in a recent analysis of about
half a million of experimentally validated interactions
(21), the algorithm is able to separate interacting vs
non-interacting pairs with an area under the ROC curve
of 0.78. The complete list of interactions between the 30
fragments and the human proteome is available at http:
//crg-webservice.s3.amazonaws.com/submissions/2020-03/
252523/output/index.html?unlock=f6ca306af0. The output
then is filtered according to the Z-score column, which is
the interaction propensity normalised by the mean and
standard deviation calculated over the reference RBP set
(http://s.tartaglialab.com/static files/shared/faqs.html#4).
We used three different thresholds in ascending or-
der of stringency: Z greater or equal than 1.50, 1.75
and 2 respectively and for each threshold we then
selected the proteins that were unique for each frag-
ment for each threshold. omiXscore calculations of
ADAR and ADARB1 are interactions are respectively
at http://crg-webservice.s3.amazonaws.com/submissions/
2020-04/263420/output/index.html?unlock=f9375fdbf9
and http://crg-webservice.s3.amazonaws.com/submissions/
2020-04/263140/output/index.html?unlock=bb28d715ea.

GO terms analysis

cleverGO (28), an algorithm for the analysis of Gene On-
tology annotations, was used to determine which fragments
present enrichment in GO terms related to viral processes.
Analysis of functional annotations was performed in paral-
lel with GeneMania (29). The link to cleverGO analyses for
fragment 1 is at http://www.tartaglialab.com/GO analyser/
render GO universal/3073/0d66e887c3/ (Z≥2).

RNA and protein alignments

We used Clustal W (30) for 62 SARS-CoV-2 strains align-
ments and T-Coffee (31) for spike S proteins alignments.
The variability in the spike S region was measured by com-
puting Shannon entropy on translated RNA sequences. The
Shannon entropy is computed as follows:

S(a) = −
∑

i

P(a, i )log P(a, i )

where a correspond to the amino acid at the position i and
P(a,i) is the frequency of a certain amino-acid a at position
i of the sequence. Low entropy indicates poorly variability:
if P(a,x) = 1 for one a and 0 for the rest, then S(x) = 0. By
contrast, if the frequencies of all amino acids are equally dis-
tributed, the entropy reaches its maximum possible value.

Predictions of phase separation

catGRANULE (32) was employed to identify proteins as-
sembling into biological condensates. Scores >0 indicate
that a protein is prone to phase separate. Structural disor-
der, nucleic acid binding propensity and amino acid pat-
terns such as arginine–glycine and phenylalanine–glycine
are key features combined in this computational approach
(32).

RESULTS

SARS-CoV-2 contains highly structured elements

Structured elements within RNA molecules attract pro-
teins (14) and reveal regions important for interactions with
the host (33). Indeed, each gene expressed from SARS-
CoV-2 is preceded by conserved transcription-regulating se-
quences that act as signal for the transcription complex dur-
ing the synthesis of the RNA minus strand to promote a
strand transfer to the leader region to resume the synthesis.
This process is named discontinuous extension of the mi-
nus strand and is a variant of similarity-assisted template
switching that operates during viral RNA recombination
(17).

To analyze SARS-CoV-2 structure (reference Wuhan
strain MN908947.3), we employed CROSS (12) that was
previously developed to predict the double- and single-
stranded content of RNA genomes such as HIV-1 (13).
We found the highest density of double-stranded regions in
the 5′ end (nucleotides 1–253), membrane M protein (nu-
cleotides 26 523–27 191), spike S protein (nucleotides 21
563–25 384), and nucleocapsid N protein (nucleotides 28
274–29 533; Figure 1A) (34). The lowest density of double-
stranded regions were observed at nucleotides 6 000–6 250
and 20 000–21 500 and correspond to the regions between
the non-structural proteins nsp14 and nsp15 and the up-
stream region of the spike surface protein S (Figure 1) (34).
In addition to the maximum corresponding to nucleotides
22 500–23 000, the structural content of Spike S protein
shows minima at around nucleotides 21 500–22 000 and
23 500–24 000 (Figure 1). We used the Vienna method (25)
to further investigate the RNA secondary structure of spe-
cific regions identified with CROSS (13). Employing a 100-
nucleotide window centered around CROSS maxima and
minima, we found good match between CROSS scores and
Vienna free energies (Figure 1).

RNA structure in vitro and in vivo could be signifi-
cantly different due to interactions with proteins and other
molecules (26). Using CROSS alive to predict the double-
and single-stranded content of SARS-CoV-2 in the cellular
context, we found that both the 5′ and 3′ ends are the most
structured regions followed by nucleotides 22 500–23 000 in
the Spike S region, while nucleotides 6 000–6 250 and 20
000–21 500 have the lowest density of double-stranded re-
gions (Figure 1B). The region corresponding to nucleotides
13 400–13 600 shows high density of contacts. This part of
SARS-CoV-2 sequence has been proposed to form a pseu-
doknot (35) that is also visible in CROSS profile (Figure
1A), but CROSS alive is able to identify long range interac-
tions and better identifies the region. Additionally, we used
the RF-Fold algorithm of the RNAFramework suite (36)
(Material and Methods) to search for pseudoknots. Em-
ploying CROSS as a soft-constraint for RF-Fold, we pre-
dicted 6 pseudoknots (nucleotides 3 394–3 404, 13 723–13
732, 14 677–14 711, 16 867–16 905, 24 844–24 884, 27 969–
27 990). The pseudoknot at nucleotides 13 723–13 732 is in
close proximity to the one proposed for SARS-CoV-2 (35)
and the one at nucleotides 27 969–27 990 is at the 3′ end,
where pseudonoknots have been shown to occur in coron-
aviruses (37).
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Figure 1. Predictions of SARS-CoV-2 structure. (A) Using the CROSS approach (12,13), (A) we predicted the structural content of SARS-CoV-2 in vitro.
We found the highest density of double-stranded regions in the 5′ end (nucleotides 1–250) and within membrane M protein (nucleotides 26 500–27 000),
and spike S protein (nucleotides 22 500–23 000) regions. Regions with the highest structural content are predicted by Vienna to have the lowest free energies.
(B) Using CROSS alive (26), we studied the structural content of SARS-CoV-2 in vivo. The 5′ and 3′ ends (indicated by red boxes) are predicted to be highly
structured. In addition, nucleotides 22 500–23 000 in Spike S region and nucleotides 13 400–13 600 (indicated by a red box) forming a pseudoknot (35) show
high density of contacts. (C) Comparison of CROSS predictions with the secondary structure landscape of SARS-CoV-2 revealed by SHAPEMaP (38).
From low (10%) to high (0.1%) confidence scores, the predictive power, measured as the Area Under the Curve (AUC) of Receiver Operating Characteristics
(ROC), increases monotonically (HC corresponds to 10 nucleotides with highest/lowest scores). (D) CROSS performances on betacoronavirus 5′ and 3′
ends (39–42). Using different confidence scores, we show that CROSS is able to identify double and single stranded regions with great predictive power.

To validate our results, we compared CROSS predic-
tions of double- and single-stranded content (as released
in March 2020) with the secondary structure landscape
of SARS-CoV-2 revealed by SHAPE mutational profiling
(SHAPEMaP) (38). In their experimental work, Manfre-
donia et al. carried out in vitro refolding of RNA followed
by probing with 2-methylnicotinic acid imidazolide. In our
comparison, balanced lists of single and double stranded re-
gions were used for the calculations: A confidence score of
10% indicates that we compared the SHAPE reactivity val-
ues of 3000 nucleotides associated with the highest CROSS
scores (i.e. double stranded) and 3000 nucleotides associ-
ated with the lowest CROSS scores (i.e. single stranded).
From low (10%) to high (0.1%) confidence scores, we ob-
served that the predictive power, measured as the Area Un-
der the Curve (AUC) of Receiver Operating Characteristics
(ROC), increases monotonically reaching the value of 0.73
(the AUC is 0.74 for the 10 highest/lowest scores; Figure

1C), which indicates that CROSS reproduces SHAPEMaP
in great detail.

We also assessed CROSS performances on structures of
betacoronavirus 5′ and 3′ ends (39–42) (Figure 1D). In this
analysis, we used RFAM multiple sequence alignments of
betacoronavirus 5′ and 3′ ends and relative consensus struc-
tures (RF03117 and RF03122) (39–42). We generated the
2D representation of nucleotide chains of consensus struc-
tures. We extracted the ‘secondary structure occupancy’,
as defined in a previous work (20), and counted the con-
tacts present around each nucleotide. Following the pro-
cedure used for the comparison with SHAPEMaP, differ-
ent progressive cut-offs were used for ranking all the struc-
tures using balanced lists of single and double stranded
regions: 10% indicates that we compared 600 nucleotides
associated with the highest amount of contacts and 600
nucleotides associated with the lowest amount of con-
tacts. From low (10%) to high (0.1%) confidence scores we
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observed that the AUC of ROC increases monotonically
reaching the value of 0.75 (10 highest/lowest scores have
an AUC of 0.78; Figure 1D), which indicates that CROSS
is able to identify known double and single stranded re-
gions reported in great detail. We also tested the ability of
CROSS to recognize specific secondary structures in repre-
sentative cases for which we studied both the 3′ and 5′ ends:
NC 006213 or Human coronavirus OC43 strain ATCC
VR-759, NC 019843 or Middle East respiratory syndrome
coronavirus, NC 026011 or Betacoronavirus HKU24 strain
HKU24-R05005I, NC 001846 or Mouse hepatitis virus
strain MHV-A59 C12 and NC 012936 or Rat coronavirus
Parker (Supplementary Figure S1).

In summary, our analysis identifies several structural el-
ements in SARS-CoV-2 genome (11). Different lines of
experimental and computational evidence indicate that
transcripts containing a large amount of double-stranded
regions have a strong propensity to recruit proteins
(14,43) and can act as scaffolds for protein assembly (15,16).
We therefore expected that the 5′ end attracts several host
proteins because of the enrichment in secondary structure
elements. The binding would not just involve proteins in-
teracting with double-stranded regions. If a specific protein
contact occurs in a loop at the end of a long RNA stem, the
overall region is enriched in double-stranded nucleotides
but the specific interaction takes place in a single-stranded
element.

Structural comparisons reveal that a spike S region of SARS-
CoV-2 is conserved among coronaviruses

We employed CROSSalign (13) to study the structural con-
servation of SARS-CoV-2 in different strains (Materials
and Methods).

In our analysis, we compared the Wuhan strain
MN908947.3 with 2040 coronaviruses (reduced to 267
sequences upon redundancy removal at 95% sequence
similarity (44); Figure 2; full data shown in Supplementary
Figure S2).

We note that the regulatory regions located at the 3′ end
are slightly longer (about 250–500 nts containing a bulged
stem loop, a pseudoknot plus a poly-A tail) than the ones
at the 5′ end (the 1–4 stem loops are within the first 200
nucleotides) and their structural elements are therefore bet-
ter recognized within the 1000 nucleotides window that we
use for our analysis (45). Although the 5′ end is variable,
it is more structured in SARS-CoV-2 than other coron-
aviruses (average structural content of 0.56, indicating that
56% of the CROSS signal is >0). The 3′ end is less vari-
able and slightly less structured (average structural content
of 0.49). By contrast, the other coronaviruses have lower av-
erage structural content of 0.49 in the 5′ end and 0.42 in the
3′ end.

One conserved region falls inside the Spike S genomic
locus between nucleotides 22 000 and 23 000 and exhibits
an intricate and stable secondary structure (RNAfold mini-
mum free energy = −285 kcal/mol) (25). High conservation
of a structured region suggests a functional activity that is
relevant for host infection.

Figure 2. Structural comparisons of coronaviruses. (A) We employed the
CROSSalign approach (12,13) to compare Wuhan strain MN908947.3
with other coronaviruses. One of the regions with the lowest structural vari-
ability encompasses nucleotides 22 000–23 000. The centroid structure and
free energy computed with the Vienna method (25) are displayed. (B) We
studied the conservation of nucleotides 22 000–23 000 (fragment 23) and
the adjacent regions using structural motives identified with RF-Fold al-
gorithm of the RNAFramework suite (36) with CROSS as soft-constraint.
We found that nucleotides 501–750 within fragment 23 are the ones with
the highest number of matches at confidence thresholds (E-values).

To demonstrate the conservation of nucleotides 22 000–
23 000 (fragment 23), we divided this region and the adja-
cent ones (nucleotides 21 000–22 000 and 23 000–24 000)
into sub-fragments. We then used the RF-Fold algorithm
of the RNAFramework suite (36) to fold the different sub-
regions using CROSS predictions as soft-constraints. The
structural motives identified with this procedure were em-
ployed to build covariance models (CMs) that were then
searched in our set of coronaviruses using the ‘Infernal’
package (27). We found that nucleotides 501–750 within
fragment 23 have the highest number of matches for dif-
ferent confidence thresholds, implying a higher chance of
sequence and structure conservation across coronaviruses
(E-values of 10,1, 0.1; Figure 2B). We specifically counted
the matches falling in the Spike S region (±1000 nucleotides
to take into account the division of the genome into frag-
ments; Supplementary Table S1). For the large majority of
annotated sequences, we found a match falling in the Spike
S region (239 genomes out of 246, of which 161 with E-value
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below 0.1) This further emphasizes the conservation of the
region in exam.

Sequence and structural comparisons among SARS-CoV-2
strains

To better investigate the sequence conservation of SARS-
CoV-2, we compared 62 strains isolated from different
countries during the pandemic (including China, USA,
Japan, Taiwan, India, Brazil, Sweden and Australia; data
from NCBI and in VIPR www.viprbrc.org; Materials and
Methods). Our analysis aims to determine the relationship
between structural content and sequence conservation.

Using ClustalW for multiple sequence alignments (30),
we observed general conservation of the coding regions
(Figure 3A). The 5′ and 3′ ends show high variability due to
practical aspects of RNA sequencing and are discarded in
this analysis (46). Indeed, their sequences are less well char-
acterized (47), and their variation results higher than other
parta of the viral sequence. One highly conserved region is
between nucleotides 22 000 and 23 000 in the Spike S ge-
nomic locus, while sequences up- and downstream are vari-
able (purple bars in Figure 3A). We then used CROSSalign
(13) to compare the structural content (Material and Meth-
ods). High variability of structure is observed for both the
5′ and 3′ ends and for nucleotides 21 000–22 000 as well as
24 000–25 000, associated with the Spike S region (purple
bars in Figure 3A). The rest of the regions are significantly
conserved at a structural level (P-value < 0.0001; Fisher’s
test).

We note that sequence conservation (Figure 3A) and
secondary structure profiles (Figure 1A) are statistically
related. Following the analysis to compare CROSS and
SHAPE scores, we selected balanced groups of nucleotides
with the highest and lowest sequence conservation and mea-
sured their single and double stranded content: a conserva-
tion score of 1% indicates that we compared 300 nucleotides
with the highest sequence similarity and 300 nucleotides
with the lowest sequence similarity. At conservation score of
1% (or less stringent threshold of 10%), the match between
similarity and structure, measured as the AUC of ROC is
0.76 (or 0.60, respectively). The association is statistically
significant: shuffling the sequence conservation profiles, the
empirical P-values are <0.02 (at both 10% and 1% conser-
vation scores).

We also compared protein sequences coded by the Spike
S genomic locus (NCBI reference QHD43416) and found
that both sequence (Figure 3A) and structure (Figure 2) of
nucleotides 22 000–23 000 are highly conserved. The region
corresponds to amino acids 460–520 that contact the host
receptor angiotensin-converting enzyme 2 (ACE2) (48) pro-
moting infection and provoking lung injury (24,49). By con-
trast, the region upstream of the binding site receptor ACE2
and located in correspondence to the minimum of the struc-
tural profile at around nucleotides 22 500–23 000 (Figure 1)
is highly variable (31), as indicated by T-coffee multiple se-
quence alignments (31) (Figure 3A). This part of the Spike S
region corresponds to amino acids 243–302 that in MERS-
CoV binds to sialic acids regulating infection through cell–
cell membrane fusion (Figure 3B; see related manuscript by
E. Milanetti et al.) (10,50,51).

Our analysis suggests that the structural region between
nucleotides 22 000 and 23 000 of Spike S region is con-
served among coronaviruses (Figure 2) and that the bind-
ing site for ACE2 has poor variation in human SARS-CoV-
2 strains (Figure 3B). By contrast, the region upstream of
the ACE2 binding site, which has also propensity to bind
sialic acids (10,50,51), showed poor structural content and
high variability (Figure 3B). The region downstream of the
ACE2 binding site and located at the beginning of S2 do-
main shows high variability (Figure 3B). The results are
confirmed by analysing a pool of 462 genomes having a ±5
nucleotides length difference with respect to MN908947.3
(August 2020; Supplementary Figure S3).

Analysis of human interactions with SARS-CoV-2 identifies
proteins involved in viral replication

In order to obtain insights on how the virus replicates in
human cells, we predicted SARS-CoV-2 interactions with
the whole RNA-binding human proteome. Following a pro-
tocol to study structural conservation in viruses (13), we
first divided the Wuhan sequence in 30 fragments of 1000
nucleotides each moving from the 5′ to 3′ end and then
calculated the protein–RNA interactions of each fragment
with catRAPID omics (3 340 canonical and putative RNA-
binding proteins, or RBPs, for a total 102 000 interactions)
(18). Proteins such as Polypyrimidine tract-binding protein
1 PTBP1 (Uniprot P26599) showed the highest interaction
propensity (or Z-score; Materials and Methods) at the 5′
end while others such as heterogeneous nuclear ribonucle-
oprotein Q HNRNPQ (O60506) showed the highest inter-
action propensity at the 3′end, in agreement with previous
studies on coronaviruses (Figure 4A) (52).

For each fragment, we predicted the most significant in-
teractions by filtering according to the Z score. We used
three different thresholds in ascending order of stringency:
Z ≥ 1.50, 1.75 and 2 respectively and we removed from
the list the proteins that were predicted to interact promis-
cuously with more than one fragment. Fragment 1 corre-
sponds to the 5′ end and is the most contacted by RBPs
(∼120 with Z ≥ 2 high-confidence interactions; Figure 4B),
which is in agreement with the observation that highly struc-
tured regions attract a large number of proteins (14). In-
deed, the 5′ end contains multiple stem loop structures that
control RNA replication and transcription (53,54). By con-
trast, the 3′ end and fragment 23 (Spike S), which are still
structured but to a lesser extent, attract fewer proteins (10
and 5, respectively) and fragment 20 (between Orf1ab and
Spike S) that is predicted to be unstructured, does not have
predicted binding partners. Fragments 1 and 29 together
with the adjacent regions are also predicted to be the most
structured in vivo and show the highest amount of contacts
for different Z scores (Figure 1B).

The interactome of each fragment was analysed using
cleverGO, a tool for Gene Ontology (GO) enrichment anal-
ysis (28). Proteins interacting with fragments 1, 2 and
29 were associated with annotations related to viral pro-
cesses (Figure 4C; Supplementary Table S2). Considering
the three thresholds applied (Material and Methods), we
found 23 viral proteins (including 2 pseudogenes), for frag-
ment 1, 2 proteins for fragment 2 and 11 proteins for
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Figure 3. Sequence and structural comparison of human SARS-CoV-2 strains. (A) Strong sequence conservation (ClustalW multiple sequence alignments
(28)) is observed in coding regions, including the region between nucleotides 22 000 and 23 000 of spike S protein. High structural variability (purple bars on
top) is observed for both the UTRs and for nucleotides between 21 000 and 22 000 as well as 24 000 and 25 000, associated with the S region. The rest of the
regions are significantly conserved at a structural level. (B) The sequence variability (Shannon entropy computed on T-Coffee multiple sequence alignments
(31)) in the spike S protein indicate conservation between amino-acids 460 and 520 (blue box) binding to the host receptor angiotensin-converting enzyme
2 ACE2. The region encompassing amino-acids 243 and 302 is highly variable and is implicated in sialic acids in MERS-CoV (red box). The S1 and S2
domains of Spike S protein are displayed.

fragment 29 (Figure 4D). Among the high-confidence in-
teractors of fragment 1, we discovered RBPs involved in
positive regulation of viral processes and viral genome
replication, such as double-stranded RNA-specific editase
1 ADARB1 (Uniprot P78563), 2–5A-dependent ribonu-
clease RNASEL (Q05823) and 2–5-oligoadenylate syn-
thase 2 OAS2 (P29728; Figure 5A). Interestingly, 2–5-
oligoadenylate synthase 2 OAS2 has been reported to be up-
regulated in human alveolar adenocarcinoma (A549) cells
infected with SARS-CoV-2 (log fold change of 4.2; P-value
of 10−9 and q-value of 10−6) (55). While double-stranded
RNA-specific adenosine deaminase ADAR (P55265) is
absent in our library due to its length that does not
meet catRAPID omics requirements (18), the omiXcore ex-
tension of the algorithm specifically developed for large
molecules (56) attributes the same binding propensity to
both ADARB1 and ADAR, thus indicating that the inter-
actions with SARS-CoV-2 are likely to occur (Materials and
Methods). Moreover, experimental works indicate that the
family of ADAR deaminases is active in bronchoalveolar
lavage fluids derived from SARS-CoV-2 patients (57) and is

upregulated in A549 cells infected with SARS-CoV-2 (log
fold change of 0.58; P-value of 10−8 and q-value of 10−5)
(55).

We also identified proteins related to the establishment
of integrated proviral latency, including X-ray repair cross-
complementing protein 5 XRCC5 (P13010) and X-ray re-
pair cross-complementing protein 6 XRCC6 (P12956; Fig-
ure 5A). In accordance with our calculations, comparison
of A549 cells responses to SARS-CoV-2 and respiratory
syncytial virus, indicates upregulation of XRCC6 in SARS-
CoV-2 (log fold-change of 0.92; P-value of 0.006 and q-
value of 0.23) (55). Moreover, previous evidence suggests
that the binding of XRCC6 takes places at the 5′ end of
SARS-CoV-2, thus giving further support to our predic-
tions (58). Nucleolin NCL (P19338), a protein known to
be involved in coronavirus processing, was also predicted
to bind tightly to the 5′ end (Supplementary Table S2) (59).

Importantly, we found proteins related to defence re-
sponse to viruses, such as ATP-dependent RNA helicase
DDX1 (Q92499), that are involved in negative regulation
of viral genome replication. Some DNA-binding proteins
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Figure 4. Predictions of protein interactions with SARS-CoV-2 RNA. (A) In agreement with studies on coronaviruses (52), PTBP1 shows the highest
interaction propensity at the 5′ and HNRNPQ at 3′ (indicated by red bars). (B) Number of RBP interactions for different SARS-CoV-2 regions (colours
indicate catRAPID (18,19) confidence levels: Z = 1.5 or low Z = 1.75 or medium and Z = 2.0 or high; regions with scores lower than Z = 1.5 are omitted);
(C) enrichment of viral processes in the 5′ of SARS-CoV-2 (precision = term precision calculated from the GO graph structure lvl = depth of the term;
go term = GO term identifier, with link to term description at AmiGO website; description = label for the term; e/d = enrichment / depletion compared
to the population; % set = coverage on the provided set; % pop = coverage of the same term on the population; p bonf = P-value of the enrichment. To
correct for multiple testing bias, use Bonferroni correction) (28); (D) viral processes are the third largest cluster identified in our analysis;

such as Cyclin-T1 CCNT1 (O60563), Zinc finger protein
175 ZNF175 (Q9Y473) and Prospero homeobox protein 1
PROX1 (Q92786) were included because they could have
potential RNA-binding ability (Figure 5A) (60). As for frag-
ment 2, we found two canonical RBPs: E3 ubiquitin-protein
ligase TRIM32 (Q13049) and E3 ubiquitin−protein ligase
TRIM21 (P19474), which are listed as negative regulators
of viral release from host cell, negative regulators of viral
transcription and positive regulators of viral entry into host
cells. Among these genes, DDX1 (log fold change of 0.36; P-
value of 0.007 and q-value of 0.23) and TRIM21 (log fold
change of 0.44; P-value of 0.003 and q-value of 0.18) are
also upregulated in A549 cells infected with SARS-CoV-2
(55). Ten of the 11 viral proteins detected for fragment 29
are members of the Gag polyprotein family, that perform
different tasks during HIV assembly, budding, and matura-
tion. More than just scaffold elements, these proteins are el-
ements that accompany viral and host proteins as they traf-
fic to the cell membrane (Supplementary Table S2) (61). Fi-
nally, among the RBPs with the highest interaction propen-
sity for fragment 23, we found nucleosome assembly protein
1-like 1 NAP1L1 and E3 ubiquitin-protein ligase makorin-

1 MKRN1, which could have an effect on the regulation of
cell proliferation.

Analysis of functional annotations carried out with Gen-
eMania (29) revealed that proteins interacting with the 5′
of SARS-CoV-2 RNA are associated with regulatory path-
ways involving NOTCH2, MYC and MAX that have been
previously connected to viral infection processes (Figure
5A) (62,63). Interestingly, some proteins, including DDX1,
CCNT1 and ZNF175 for fragment 1 and TRIM32 for frag-
ment 2, have been shown to be necessary for HIV func-
tions and replication inside the cell, as well as SARS-
CoV-1. DDX1 has been shown to enable the switch from
discontinuous to continuous transcription in SARS-CoV-
1 infection and its knockdown reduced the number of
longer sub-genomic mRNA (sgmRNA) through interac-
tion with the SARS-CoV-1 nucleocapsid protein N (64)
and Nsp14 (65). It functions as a bidirectional helicase,
which distinguishes it from the coronaviruses helicases,
which can only unwind RNA in the 5′ to 3′ direction
(66), a very important function in highly structured RNA
such SARS-CoV-2. DDX1 is also required for HIV-1 Rev
as well as for avian coronavirus IBV replication and it
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B
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Figure 5. Characterization of protein interactions with SARS-CoV-2 RNA. (A) Protein interaction network of SARS-CoV-2 5′ end (inner circle) and
associations with other human genes retrieved from literature (blue: genetic associations; purple: physical associations); (B) number of RBP interactions
identified by Gordon et al. (71) and Schmidt et al. (76) for different SARS-CoV-2 regions. Representative cases are shown in black (Gordon et al. (71)) and
gray (Schmidt et al. (76)). (C) Proteins binding to the 5′ with Z score ≥1.5 show high propensity to accumulate in stress-granules (same number of proteins
with Z score <−1.5 are used in the comparison; *** P-value <0.0001; Kolmogorov−Smirnoff).

binds to the RRE sequence of HIV-1 RNAs (67,68), while
CCNT1 binds to 7SK snRNA and regulates transactiva-
tion domain of the viral nuclear transcriptional activator,
Tat (69,70).

Analyses of SARS-CoV-2 proteins interactomes reveal com-
mon protein targets

Recently, Gordon et al. reported a list of human proteins
binding to Open Reading Frames (ORFs) translated from
SARS-CoV-2 (71). Identified through affinity purification
followed by mass spectrometry quantification, 332 proteins
from HEK-293T cells interact with viral ORF peptides. By
selecting 274 proteins binding at the 5′ with Z score ≥1.5
(Supplementary Table S2), of which 140 are exclusively in-
teracting with fragment 1 (Figure 4B), we found that 8 are
also reported in the list by Gordon et al. (71), which indi-
cates significant enrichment (representation factor of 2.5;
P-value of 0.02; hypergeometric test with human proteome
in background). The fact that our list of protein-RNA bind-
ing partners contains elements identified also in the protein-
protein network analysis is not surprising, as ribonucleo-
protein complexes evolve together (14) and their compo-
nents sustain each other through different types of interac-
tions (16).

We note that out of 332 interactions, 60 are RBPs (as re-
ported in Uniprot), which represents a considerable frac-
tion (i.e. 20%), considering that there are around 1500 RBPs
in the human proteome (i.e. 6%). Comparing the RBPs
present in Gordon et al. (71) and those present in our
list (79 RBP annotated in Uniprot), we found an over-
lap of six proteins (representation factor = 26.5; P-value
< 10−8; hypergeometric test), including: Janus kinase and
microtubule-interacting protein 1 JAKMIP1 (Q96N16), A-
kinase anchor protein 8 AKAP8 (O43823) and A-kinase an-
chor protein 8-like AKAP8L (Q9ULX6), which in case of
HIV-1 infection is involved as a DEAD/H-box RNA heli-
case binding (72), signal recognition particle subunit SRP72
(O76094), binding to the 7S RNA in presence of SRP68,
La-related protein 7, LARP7 (Q4G0J3) and La-related pro-
tein 4B LARP4B (Q92615), which are part of a system for
transcriptional regulation acting by means of the 7SK RNP
system (73) (Figure 5B; Supplementary Table S3). We spec-
ulate that sequestration of these elements is orchestrated by
a viral program aiming to recruit host genes (74). LARP7
is also upregulated in A549 cells infected with SARS-CoV-
2 (log fold change of 0.48; P-value of 0.006 and q-value of
0.23) (55).

Moreover, by directly analysing the RNA interaction
potential of all the 332 proteins by Gordon et al. (71),
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catRAPID identified 38 putative binders at the 5′ end (Z
score ≥ 1.5; 27 occurring exclusively in the 5′ end and not in
other regions of the RNA) (18), including Serine/threonine-
protein kinase TBK1 (Q9UHD2), among which 10 RBPs
(as reported in Uniprot) such as: Splicing elements U3
small nucleolar ribonucleoprotein protein MPP10 (O00566)
and Pre-mRNA-splicing factor SLU7 (O95391), snRNA
methylphosphate capping enzyme MEPCE involved in
negative regulation of transcription by RNA polymerase
II 7SK (Q7L2J0) (75), Nucleolar protein 10 NOL10
(Q9BSC4) and protein kinase A Radixin RDX (P35241; in
addition to those mentioned above; Supplementary Table
S3).

Using the liver cell line HuH7 a recent experimental study
by Schmidt et al. (76). identified SARS-CoV-2 RNA asso-
ciations within the human host (76). Through the RAP-MS
approach, 571 interactions were detected, of which 250 are
RBPs (as reported in Uniprot) (76).

In common with our library we found an overlap of
148 proteins. We compared predicted (as released in March
2020) and experimentally-validated interactions employing
balanced lists of high-affinity (high fold-change with respect
to RNA Mitochondrial RNA Processing Endoribonucle-
ase RMRP) and low-affinity (low fold-change with respect
to RNA Mitochondrial RNA Processing Endoribonuclease
RMRP) associations: a confidence score of 25% indicates
that we compared the interaction scores of 35 proteins with
the highest fold-change values and 35 interactions associ-
ated with the lowest fold-change values. From low (25%) to
high (5%) confidence scores, we observed that the predic-
tive power, measured as the AUC of ROC, increases mono-
tonically reaching the remarkable value of 0.99 (the AUC is
0.72 for 25% confidence score; Supplementary Figure S4),
which indicates strong agreement between predictions and
experiments. In addition to DDX1 and DDX3X (O00571),
other interactions corresponding to catRAPID scores >1.5
and fold-change >1 include Insulin-like growth factor 2
mRNA-binding protein 1 IGF2BP1 (Q9Y6M1), Insulin-
like growth factor 2 mRNA-binding protein 2 IGF2BP2 2
(Q9Y6M1) and La-related protein 4 LARP4 (Q71RC2; also
in Gordon et al. (71)).

By directly analysing RNA interactions of all the 571
proteins by Schmidt et al. (76), catRAPID identified 18
strong RBP binders at the 5′ end (Z score ≥ 1.5; fold-change
>1; P-value of 0.008 computed with respect to all the in-
teractions; Fisher exact test; Supplementary Table S4), in-
cluding Helicase MOV-10 (Q9HCE1), Cold shock domain-
containing protein E1 CSDE1 (O75534), Staphylococcal
nuclease domain-containing protein 1 SND1 (Q7KZF4),
Pumilio homolog 1 PUM1 (Q14671), and La-related pro-
tein 1 LARP1 (Q6PKG0), among other interactions (Sup-
plementary Table S4).

The 5′ end is enriched in host interactions implicated in other
viral infections

In the list of 274 proteins binding to the 5′ end (frag-
ment 1) with Z score ≥1.5, we found 10 hits associated
with HIV (Supplementary Table S5), which represents a
significant enrichment (P-value = 0.0004; Fisher’s exact
test), considering that the total number of HIV-related pro-

teins is 35 in the whole catRAPID library (3340 elements).
The complete list of proteins includes ATP-dependent
RNA helicase DDX1 (Q92499), ATP-dependent RNA he-
licase DDX3X (O00571 also involved in Dengue and Zika
Viruses), Tyrosine-protein kinase HCK (P08631, nucleotide
binding), Arf-GAP domain and FG repeat-containing pro-
tein 1 (P52594), Double-stranded RNA-specific editase 1
ADARB1 (P78563), Insulin-like growth factor 2 mRNA-
binding protein 1 IGF2BP1 (Q9NZI8), A-kinase anchor
protein 8-like AKAP8L (Q9ULX6; its partner AKAP8
is also found in Gordon et al. (71)) Cyclin-T1 CCNT1
(O60563; DNA-binding) and Forkhead box protein K2
FOXK2 (Q01167; DNA-binding; Figures 4B and 5A; Sup-
plementary Table S5).

Smaller enrichments were found for proteins related to
Hepatitis B virus (HBV; P-value = 0.01; three hits out of
seven in the whole catRAPID library; Fisher’s exact test),
including Nuclear receptor subfamily 5 group A member
2 NR5A2 (DNA-binding; O00482), Interferon-induced,
double-stranded RNA-activated protein kinase EIF2AK2
(P19525), and SRSF protein kinase 1 SRPK1 (Q96SB4) as
well as Influenza A (P-value = 0.03; two hits out of four;
Fisher’s exact test), including Synaptic functional regulator
FMR1 (Q06787) and RNA polymerase-associated protein
RTF1 homologue (Q92541; Supplementary Table S5). By
contrast, no significant enrichments were found for other
viruses such as for instance Ebola.

Very importantly, specific chemical compounds have
been developed to interact with HIV- and HVB-related
proteins. The list of HIV-related targets reported in
ChEMBL (77) includes ATP-dependent RNA helicase
DDX1 (CHEMBL2011807), ATP-dependent RNA he-
licase DDX3X (CHEMBL2011808), Cyclin-T1 CCNT1
(CHEMBL2348842) and Tyrosine-protein kinase HCK
(CHEMBL2408778), among other targets. In addition,
HVB-related targets are Nuclear receptor subfamily 5
group A member 2 NR5A2 (CHEMBL3544), Interferon-
induced, double-stranded RNA-activated protein kinase
EIF2AK2 (CHEMBL5785) and SRSF protein kinase 1
SRPK1 (CHEMBL4375). We hope that this list can be the
starting point for further pharmaceutical studies.

Phase-separating proteins are enriched in the 5′ end interac-
tions

As SARS-CoV-2 represses host gene expression through
a number of unknown mechanisms, sequestration of cell
transcription machinery elements could be exploited to al-
ter biological pathways in the host cell. A number of pro-
teins identified in our catRAPID calculations have been
previously reported to coalesce in large ribonucleopro-
tein assemblies similar to stress granules. Among these
proteins, we found double-stranded RNA-activated pro-
tein kinase EIF2AK2 (P19525), Nucleolin NCL (P19338),
ATP-dependent RNA helicase DDX1 (Q92499), Cyclin-
T1 CCNT1 (O60563), signal recognition particle subunit
SRP72 (O76094), LARP7 (Q4G0J3) and La-related pro-
tein 4B LARP4B (Q92615) as well as Polypyrimidine tract-
binding protein 1 PTBP1 (P26599) and Heterogeneous nu-
clear ribonucleoprotein Q HNRNPQ (O60506) (78). To fur-
ther investigate the propensity of these proteins to phase
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separate, we used the catGRANULE algorithm (Mate-
rial and Methods) (32). Differently from other methods
to predict solid-like aggregation (79,80), catGRANULE
estimates the propensity of proteins to form liquid-like
assemblies such as stress granules (81). We found that
the 274 proteins binding to the 5′ end (fragment 1) with
Z score ≥1.5 are highly prone to accumulate in assem-
blies similar to stress-granules (274 proteins with the low-
est Z score are used in the comparison; P-value <0.0001;
Kolmogorov−Smirnoff; Figure 5C; Supplementary Table
S6). We note that there is not a direct correlation between
RNA-binding scores (catRAPID) and phase-separation
propensities (catGRANULE; Supplementary Figure S5).

Supporting this hypothesis, DDX1 and CCNT1 have
been shown to condense in membrane-less organelles such
as stress granules (82–84) that are the direct target of
RNA viruses (85). DDX1 is also the primary component
of distinct nuclear foci (86), together with factors associ-
ated with pre-mRNA processing and polyadenylation. Sim-
ilarly, SRP72, LARP7 and LARP4B proteins have been
found to assemble in stress granules (78,87,88). A recent
work also suggests that the binding of LARP4 and XRCC6
takes places at the 5′ end of SARS-CoV-2 and contributes
to SARS-CoV-2 phase separation (58). Moreover, emerg-
ing evidence indicates that the SARS-CoV-2 nucleocapsid
protein N has a strong phase separation propensity that
is modulated by the viral genome (58,89,90) and can en-
ter into host cell protein condensates (89), suggesting a
possible mechanism of cell protein sequestration. Notably,
catGRANULE does predict that nucleocapsid protein N is
the viral protein with highest propensity to phase separate
(91).

As is the case with molecular chaperones (92), RNAs
can influence the liquid-like or solid-like state of proteins
(93). This observation is particularly relevant because RNA
viruses are known to antagonize stress granules formation
(85). Stress granules and other phase-separated assemblies
such as processing bodies regulate translation suppression
and RNA decay, which could have a strong impact on virus
replication (94).

DISCUSSION

Our study is motivated by the need to identify molec-
ular mechanisms involved in Covid-19 spreading. Using
advanced computational approaches, we investigated the
structural content of SARS-CoV-2 genome and predicted
human proteins that bind to it.

We employed CROSS (12,13) to compare the structural
properties of ∼2000 coronaviruses and identified elements
conserved in SARS-CoV-2 strains. The regions containing
the highest amount of structure are the 5′ end as well as
glycoproteins spike S and membrane M.

We found that the Spike S protein domain encompass-
ing amino acids 460–520 is conserved across SARS-CoV-2
strains. This result suggests that Spike S must have evolved
to specifically interact with its host partner ACE2 (48) and
mutations increasing the binding affinity should be highly
infrequent. As nucleic acids encoding for this region are
enriched in double-stranded content, we speculate that the
structure might attract host regulatory elements, such as

nucleosome assembly protein 1-like 1 NAP1L1 and E3
ubiquitin-protein ligase makorin-1 MKRN1, further con-
straining its variability. The fact that this region of the Spike
S region is highly conserved among all the analysed SARS-
CoV-2 strains suggests that a specific drug could be de-
signed to prevent interactions within the host.

The highly variable region at amino acids 243–302 in
spike S protein corresponds to the binding site of sialic acids
in MERS-CoV (7,10,51) and could play a role in infection
(50). The fact that the binding region is highly variable sug-
gests different affinities for sialic acid-containing oligosac-
charides and polysaccharides such as heparan sulfate, which
provides clues on the specific responses in the human popu-
lation. At present, a glycan microarray technology indicated
that SARS-CoV-2 Spike S binds more tightly to heparan
sulfate than sialic acids (95).

Using catRAPID (18,19) we computed >100 000 protein
interactions with SARS-CoV-2 and found previously re-
ported interactions such as Heterogeneous nuclear ribonu-
cleoprotein Q HNRNPQ and Nucleolin NCL (59), among
others. We discovered that the highly structured region at
the 5′ end has the largest number of protein partners includ-
ing ATP-dependent RNA helicase DDX1, which was pre-
viously reported to be essential for HIV-1 and coronavirus
IBV replication (96,97), and the double-stranded RNA-
specific editases ADAR and ADARB1, which catalyse the
hydrolytic deamination of adenosine to inosine. Other pre-
dicted interactions are XRCC5 and XRCC6 members of the
HDP-RNP complex associating with ATP-dependent RNA
helicase DHX9 (98) as well as and 2–5A-dependent ribonu-
clease RNASEL and 2–5-oligoadenylate synthase 2 OAS2
that control viral RNA degradation (99,100). Interestingly,
DDX1, XRCC6 and OAS2 were found upregulated in hu-
man alveolar adenocarcinoma cells infected with SARS-
CoV-2 (55) and DDX1 knockdown has been shown to re-
duce the number of sgmRNA in SARS-CoV-1 infected cells
(64). In agreement with our predictions, recent experimen-
tal work indicates that the family of ADAR deaminases is
active in bronchoalveolar lavage fluids derived from SARS-
CoV-2 patients (57).

Comparison with protein-RNA interactions detected in
the liver cell line HuH7 (76) shows agreement with our pre-
dictions. We note that the experiments have been carried out
24 h after infection (76) and the protein interaction land-
scape might have changed with respect to the early events
of replication. Yet, the accordance with our calculations
indicates participation of elements involved in controlling
RNA processing and editing (DDX1, DDX3X) and trans-
lation (IGF2BP1 and IGF2BP2), although proteins such as
ADAR and XRCC5 were reported to have poorer binding
capacity (76).

A significant overlap exists with the list of protein in-
teractions reported by Gordon et al. (71) and among the
candidate partners we identified AKAP8L, involved as a
DEAD/H-box RNA helicase binding protein involved in
HIV infection (72). In general, proteins associated with
retroviral replication are expected to play different roles
in SARS-CoV-2. As SARS-CoV-2 massively represses host
gene expression (74), we hypothesize that the virus hi-
jacks host pathways by recruiting transcriptional and post-
transcriptional elements interacting with polymerase II
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genes and splicing factors such as for instance A-kinase
anchor protein 8-like AKAP8L and La-related protein 7
LARP7. In concordance with our predictions LARP7 has
been reported to be upregulated in human alveolar adeno-
carcinoma cells infected with SARS-CoV-2 (55). The link to
proteins previously studied in the context of HIV and other
viruses, if further confirmed, is particularly relevant for the
repurposing of existing drugs (77).

The idea that SARS-CoV-2 sequesters different elements
of the transcriptional machinery is particularly intriguing
and is supported by the fact that a large number of pro-
teins identified in our screening are found in stress granules
(78). Indeed, stress granules protect the host innate immu-
nity and are hijacked by viruses to favour their own replica-
tion (94). As coronaviruses transcription uses discontinuous
RNA synthesis that involves high-frequency recombination
(59), it is possible that pieces of the viruses resulting from a
mechanism called defective interfering RNAs (101) could
act as scaffold to attract host proteins (14,15). In agreement
with our hypothesis, it has been very recently shown that the
coronavirus nucleocapsid protein N can form protein con-
densates based on viral RNA scaffold and can merge with
the human cell protein condensates (89), which provides a
potential mechanism of host protein sequestration.
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17. Moreno,J.L., Zúñiga,S., Enjuanes,L. and Sola,I. (2008)
Identification of a coronavirus transcription enhancer. J. Virol., 82,
3882–3893.

18. Agostini,F., Zanzoni,A., Klus,P., Marchese,D., Cirillo,D. and
Tartaglia,G.G. (2013) catRAPID omics: a web server for large-scale
prediction of protein-RNA interactions. Bioinformatics, 29,
2928–2930.

19. Cirillo,D., Blanco,M., Armaos,A., Buness,A., Avner,P.,
Guttman,M., Cerase,A. and Tartaglia,G.G. (2017) Quantitative
predictions of protein interactions with long noncoding RNAs. Nat
Meth, 14, 5–6.

20. Bellucci,M., Agostini,F., Masin,M. and Tartaglia,G.G. (2011)
Predicting protein associations with long noncoding RNAs. Nat.
Methods, 8, 444–445.

21. Lang,B., Armaos,A. and Tartaglia,G.G. (2019) RNAct:
Protein–RNA interaction predictions for model organisms with
supporting experimental data. Nucleic Acids Res., 47, D601–D606.

134 CHAPTER 6



11282 Nucleic Acids Research, 2020, Vol. 48, No. 20

22. Kliger,Y. and Levanon,E.Y. (2003) Cloaked similarity between
HIV-1 and SARS-CoV suggests an anti-SARS strategy. BMC
Microbiol, 3, 20.

23. Hallenberger,S., Bosch,V., Angliker,H., Shaw,E., Klenk,H.D. and
Garten,W. (1992) Inhibition of furin-mediated cleavage activation of
HIV-1 glycoprotein gp160. Nature, 360, 358–361.

24. Glowacka,I., Bertram,S., Herzog,P., Pfefferle,S., Steffen,I.,
Muench,M.O., Simmons,G., Hofmann,H., Kuri,T., Weber,F. et al.
(2010) Differential downregulation of ACE2 by the spike proteins of
severe acute respiratory syndrome coronavirus and human
coronavirus NL63. J. Virol., 84, 1198–1205.
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Phase separation drives SARS-CoV-2 replication:
a hypothesis

In recent years, many experimental works have been published with the
aim of capturing as much information as possible on the SARS-CoV-2 in-
teractivity with the human host and were carried out in different cell types
following various purification techniques (Gordon et al., 2020; Flynn et al.,
2021; Schmidt et al., 2021; Kamel et al., 2021; Lee et al., 2021).
However, while this collective effort led to the identification and confir-
mation of several important players, we noticed that only a small overlap
of interactors was actually found across all experiments, while the major-
ity of them were either unique to one study or shared by a few of them.

Following this thread, in this work we compare four interactome experi-
ments performed in different conditions and identify twenty-one proteins
shared by all of them. These elements are predicted to bind preferen-
tially to the 5’ of the viral genome and contain proteins involved in stress
granule formation, pre-mRNA regulators and factors involved in the repli-
cation process of SARS-CoV-2 and other viral species. Furthermore, this
group of interactors also shows the highest binding propensity to the vi-
ral genome. This indicates that strong-affinity binders are highly repro-
ducible and therefore more likely to be found in a greater number of ex-
periments. In addition, the enrichment of proteins belonging to phase-
separating condensates constitutes further evidence of SARS-CoV-2 se-
questration of these elements to antagonize the cell’s defenses.

This work was published in Frontiers in Molecular Biosciences journal in
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2022.

As a co-first author, I contributed to the work by conceiving the study
and computing the predictions of binding strength and phase-separating
propensity of the different protein datasets.
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Identifying human proteins that interact with SARS-CoV-2 genome is important to
understand its replication and to identify therapeutic strategies. Recent studies have
unveiled protein interactions of SARS-COV-2 in different cell lines and through a number of
high-throughput approaches. Here, we carried out a comparative analysis of four
experimental and one computational studies to characterize the interactions of SARS-
CoV-2 genomic RNA. Although hundreds of interactors have been identified, only twenty-
one appear in all the experiments and show a strong propensity to bind. This set of
interactors includes stress granule forming proteins, pre-mRNA regulators and elements
involved in the replication process. Our calculations indicate that DDX3X and several
editases bind the 5′ end of SARS-CoV-2, a regulatory region previously reported to attract
a large number of proteins. The small overlap among experimental datasets suggests that
SARS-CoV-2 genome establishes stable interactions only with few interactors, while many
proteins bind less tightly. In analogy to what has been previously reported for Xist non-
coding RNA, we propose a mechanism of phase separation through which SARS-CoV-2
progressively sequesters human proteins hijacking the host immune response.

Keywords: viral RNA, phase separation, stress granules, protein-RNA interactions, RNA-binding proteins

INTRODUCTION

Identification of viral interactions within the host cell can lead to the design of novel strategies against
infection. Recently, different high-throughput strategies have been implemented to characterize host
interactions with SARS-CoV-2 proteins and genomic RNA.

Non-structural proteins of SARS-CoV-2 have been used for affinity purification to retrieve host
binding partners using mass spectrometry in HEK-293T/17 cells (Gordon et al., 2020). A total of 332
interactions between human and SARS-CoV-2 proteins have been identified. Around 40% of SARS-
CoV-2 interacting proteins are associated with vesicle trafficking pathways and endomembrane
compartments.

Here, we focus on four experimental studies aiming to characterize interactions with SARS-CoV-
2 genomic RNA.

In one experiment, a multi-omic approach was employed to identify which viral and human
RNA-binding proteins (RBPs) are involved in SARS-CoV-2 infection (Kamel et al., 2021). The
“comparative RNA interactome capture” (cRIC) method was developed to find in which way the
RNA-bound proteome responds to the infection. The results show that SARS-CoV-2 genome is the
epicenter of critical interactions with host proteins: many cellular RBP networks are remodeled upon
SARS-CoV-2 infection and around 300 proteins are affected, mostly related to RNA metabolic
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processes and antiviral defenses. A second approach called “viral
RNA interactome capture” (vRIC) was employed to identify
cellular and viral proteins interacting with SARS-CoV-2
genomic RNA (Kamel et al., 2021). Inhibition of specific
proteins interacting with viral RNA was shown to impair
SARS-CoV-2 infection.

In another study (Lee et al., 2021), the repertoire of host
proteins associated with SARS-CoV-2 and HCoV-OC43
genomes was identified. The work relies on a robust
nucleoprotein (RNP) capture protocol. More than 100 host
factors directly binding to SARS-CoV-2 RNA were detected.
By applying RNP capture on HCoV-OC43, evolutionary
conserved interactions between the viral RNAs and the host
proteins could be identified. Upon knockdown experiments
and transcriptome analysis, Lee et al. identified 17 antiviral
and 8 pro-viral RBPs that have a role in several steps of the
mRNA life cycle. The authors identified La-related protein 1
(LARP1), a downstream target of the mTOR signaling pathway,
as an important antiviral host factor that interacts with SARS-
CoV-2 RNA.

Another group exploited an approach in which a
comprehensive identification of RBPs followed by mass
spectrometry (ChIRP-MS) led to the identification of host
proteins that bind SARS-CoV-2 genomic RNA during active
infection (Flynn et al., 2021). The results were corroborated
with analyses from three RNA viruses and contributed to
characterize the specificity of virus-host interactions. Flynn
et al. also carried out a series of targeted CRISPR screens that
highlighted the fact that a big portion of functional RNA-binding
proteins act as host’s protectors from virus-induced cell death.
Comparative CRISPR screens, performed across seven RNA
viruses, reveal both shared and SARS-specific antiviral factors.
By combining the RNA-centric approach and the functional
CRISPR screens, the authors found a functional connection
between SARS-CoV-2 and mitochondria, showing that this
organelle is a platform for antiviral activity.

A slightly different experiment led to the identification of more
than 100 human proteins that directly and specifically bind to
SARS-CoV-2 RNAs in infected cells, performing RNA antisense
purification and mass spectrometry. Schmidt et al. linked SARS-
CoV-2 interactome with changes in proteome abundance
induced by viral infection, identifying cellular pathways
relevant to SARS-CoV-2 infections. The authors demonstrated
by genetic perturbation that both Cellular Nucleic-acid Binding
Protein (CNBP) and LARP1, which are two of the most enriched
viral RNA binders, have the ability to restrict SARS-CoV-2
replication in infected cells and provide a general map of their
direct RNA contact sites. The authors demonstrated a reduced
viral replication rate in two human cell lines after a
pharmacological inhibition of three other binding partners
(PPIA, ATP1A1, ARP2/3 complex).

As experimental studies require time and resources and are
affected by intrinsic limitations (for instance mass-spec cannot
identify every protein with the same efficiency), computational
methods can be exploited to prioritize candidate targets. We
previously used the CROSS method (Delli Ponti et al., 2017) to
predict secondary structure content of and the catRAPID

approach (Bellucci et al., 2011; Agostini et al., 2013b; Cirillo
et al., 2017) to compute >100000 human protein interactions with
SARS-CoV-2 genomic RNA (Vandelli et al., 2020). The 5′ and 3′
end of SARS-CoV-2 were found to be highly structured, in
agreement with subsequent experimental reports (Manfredonia
et al., 2020) and show strong propensity to interact with human
proteins. Among the identified interactors we identified there are
several RNA editases and ATP-dependent RNA helicases that
play a role in viral RNA processing and have a high propensity to
participate in large macromolecular complexes. A number of
proteins are predicted to be sequestered by SARS-CoV-2 genome
and their recruitment contributes is thought to modify both the
transcriptional and post-transcriptional regulations of host cells.

Here, we analyzed four experimental and one computational
studies on human RBPs interactions with SARS-CoV-2 genomic
RNA. We exploited the catRAPID algorithm to estimate the
ability of proteins to bind SARS-CoV-2 and identified a tight
correlation between the number of experiments in which a
specific protein is detected experimentally and its predicted
binding affinity. Finally, we propose a model in which SARS-
CoV-2 RNA promotes the formation of a phase-separated
assembly by sequestering specific human proteins.

RESULTS

Interactomes Comparison
To retrieve interactions relevant for SARS-CoV-2 infection, we
analysed four protein-RNA interactome experiments
(Supplementary Material S1).

Twenty-one proteins were found in common to the four datasets
(Flynn et al., 2021; Kamel et al., 2021; Lee et al., 2021; Schmidt et al.,
2021) (Figure 1A). The list includes PABPC1 (Polyadenylate-
binding protein 1), SND1 (Staphylococcal nuclease domain-
containing protein 1), PPIA (Peptidyl-prolyl cis-trans isomerase
A), DDX3X (ATP-dependent RNA helicase DDX3X),
HNRNPA2B1 (Heterogeneous nuclear ribonucleoproteins A2/B1),
HNRNPA0 (Heterogeneous nuclear ribonucleoprotein A), G3BP1
(Ras GTPase-activating protein-binding protein 1), G3BP2 (Ras
GTPase-activating protein-binding protein 2), EIF4B (Eukaryotic
translation initiation factor 4B), RPS2 (40S ribosomal protein S2),
RPS3 (40S ribosomal protein S3), EIF3G (Eukaryotic translation
initiation factor 3 subunit G) and YBX1 (Y-box-binding protein 1),
Supplementary Tables S1, S2).

These proteins form a dense protein-protein network
(Figure 1B) containing several stress granule components
(G3BP1, G3BP2, EIF4B, DDX3X, YBX1, PABPC1), ribosomal
units (RPS2 and RPS3) and pre-mRNA processing units
(HNRNPA1/B2, HNRNPA0, YBX1) (Warde-Farley et al., 2010).
The biological relevance of these interactions is confirmed by the fact
that SARS-CoV-2 N protein impairs stress granule by sequestering
G3BP1 (Lu et al., 2021; Zheng et al., 2021). RPS2 and RPS3 are
important because the NSP1 protein of SARS-CoV-2 is responsible
for the impairment of mRNA translation by blocking the entry
access to the ribosome. The docking within the ribosomal entry
channel occurs through binding with RPS2 and RPS3 together with
18S RNA (Mendez et al., 2021).
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Some of these proteins have been shown to be also relevant for
other viruses’ infection. SND1 is involved in Epstein-Barr infection
(Tong et al., 1995); PABPC1 positively regulates Dengue virus
infection (Suzuki et al., 2016); PPIA acts as a mediator for SARS-
CoV nucleoprotein during the cell invasion process and stimulates
RNA-binding ability of HCVNS5A (Chen et al., 2005; Foster et al.,
2011); EIF3G is involved in FCV infection process (Pöyry et al.,
2007) and DDX3X has been shown to facilitate the viral replication
of other several viruses, such as HIV-1, Dengue, Zyka, Venezuelan
equine encephalitis and hepatitis C virus (Yedavalli et al., 2004;
Amaya et al., 2016; Doñate-Macián et al., 2018). DDX3X has been
identified as a suitable target to fight against SARS-CoV-2 infection
by Ciccosanti et al. (2021). More precisely, DDX3X has the
capability of unfolding viral RNA secondary structures
(Kukhanova et al., 2020) as reported for HIV-1 (Brai et al.,
2020) in which it enhances both translation and nucleus-to-
cytoplasm transport (Stunnenberg et al., 2018), and West Nile
(Brai et al., 2019). DDX3X belongs to the DEAD-box family of
ATP-dependent RNA helicases and assumes a crucial role in an
important variety of processes concerning RNA metabolism,
including transcription, splicing, and initial phase of translation
(Ariumi, 2014). Importantly, DDX3X interacts with the N protein
of SARS-CoV-2 and is required to infect both Vero E6 and Calu-3
cells (Ciccosanti et al., 2021). Additionally, SARS-CoV-2 protein N
interacts withDDX3X to inhibit its activity in the antiviral response
(Winnard et al., 2021). For these reasons, treating cells with
DDX3X inhibitors represents a promising approach to block
SARS-CoV-2 replication and viral production (Maga et al.,
2011; Brai et al., 2020).

Relationship Between Experimental
Interactomes and Computational
Predictions
We used the catRAPID method to understand the relationship
between experimental evidence of binding and predicted
interaction propensity that estimates interaction affinity
(Agostini et al., 2013a; Cid-Samper et al., 2018). For this
analysis we followed a procedure previously introduced to
study the interactome of the long non-coding RNA Xist
(Cirillo et al., 2017). We computed all SARS-CoV-2
interactions with proteins reported in the four experimental
datasets and counted how many times they were identified
(Supplementary Material S1). We observed a distinct
correlation between occurrence and strength of interactions,
indicating that high-affinity interactions are more likely to be
detected (Figure 1C). We note that in the case of Xist, strong
interaction proteins were predicted to initiate the formation of a
phase-separated assembly (Cerase et al., 2019, 2022), as recently
confirmed experimentally (Markaki et al., 2021; Jachowicz et al.,
2022).

Evaluation of the Predictions of
SARS-CoV-2 Protein Interactions
The vRIC dataset by Kamel et al. contains both enriched and
depleted interactions (Kamel et al., 2021) and thus can be used to
assess the ability of catRAPID to distinguish between binding and
non-binding proteins. To analyze the vRIC interactome, we

FIGURE 1 | Datasets of protein interactions with SARS-CoV-2 genome. (A) experimental datasets (Flynn et al., 2021; Kamel et al., 2021; Lee et al., 2021; Schmidt
et al., 2021). The name of each dataset is shown above the diagrams. (B) diagram showing the protein-protein interactions among the 21 proteins identified in the four
experiments, as annotated by GeneMANIA (Warde-Farley et al., 2010). (C) catRAPID interaction scores (Agostini et al., 2013b; Armaos et al., 2021) correlate with the
number of experiments reporting a protein to interact with SARS-CoV-2, indicating that strong binding proteins are more likely to be identified; *p-value < 0.05;
**p-value < 0.01 (Wilcoxon rank sum test); I II, II, III and IV indicate proteins detected in 1,2,3 or 4 experiments, respectively.
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computed catRAPID predictions of interactions with an
experimental FDR <0.10 for SARS-CoV-2 RNA following a
procedure detailed in a previous work (Vandelli et al., 2020)
(Supplementary Material S1).

As shown in Figure 2A, catRAPID performs extremely well
when the proteins are ranked according to their experimental
scores (fold change; Supplementary Table S3): the predictive
power is proportional to the significance of protein interactions:
the Area Under the ROC Curve (AUC) increases from 0.60 to
0.99 while the experimental scores move from 30% (i.e., the 30%
strongest positives vs. the 30% strongest negatives) to 2.5%
(i.e., the 2.5% strongest positives vs. the 2.5% strongest
negatives). Thus, in agreement with the results presented in
Figure 1C, computational approaches such as catRAPID can
be exploited to address the problem of which proteins bind more
tightly to SARS-CoV-2 genome.

Specific Binders to SARS-CoV-2 Genomic
Fragments
catRAPID was employed for the localization of protein binding sites
on SARS-CoV-2 genomic RNA. To identify which regions of SARS-
CoV-2 bind to specific proteins, we computed interactions for the
four experimental protein datasets (30 fragments; Supplementary
Material S4), a procedure already proven to be efficient in a previous
work (Vandelli et al., 2020).

For each dataset the proteins bound to one fragment at a
certain interaction threshold were retained as interactors. We
applied three Z-score thresholds (Z ≥ 1.5, Z ≥ 1.75 and Z ≥ 2) in

order to evaluate the binding at the different levels of stringency.
Higher Z-scores correspond to higher interaction strength
(Supplementary Material S5).

Regions encompassing nucleotides 1–1000, 1001–2000,
22001–23000, 26001–27000, 28001–29000, 29001–29903
(Fragments 1, 2, 23, 27, 29 and 30 respectively) are the most
contacted SARS-CoV-2 regions, with a high number of
interactors in fragments 1, 2 and 30. (Figure 2B; Supplementary
Figures S1–S3). In particular, fragment 1, corresponding to the 5′
end of SARS-CoV-2 genome, is the region showing the highest
number of specific interactors in all four datasets, as previously
discovered (Vandelli et al., 2020). DDX3X is the only common
interactor reported in the experimental and computational studies.
At a Z ≥ 1.75 we DDX3X is found to bind specifically to fragment 1
of SARS-CoV-2.

Experimental Interactors Have a High
Propensity to Phase-Separate
Stress granules facilitate the establishment of an antiviral state by
limiting viral protein accumulation and regulating signaling cascades
that affect replication (McCormick and Khaperskyy, 2017). The
sequestration of G3BP1, G3BP2, EIF4B, DDX3X, YBX1, PABPC1,
among other proteins, is part of a mechanism through which SARS-
CoV-2 eludes the host immune response by weakening the
formation of stress granules (Lu et al., 2021; Zheng et al., 2021).
Biochemically, stress granule proteins form labile protein-protein
and protein-RNA interactions (Balcerak et al., 2019; Vandelli et al.,
2022), which induces the condensation in liquid-liquid phase

FIGURE 2 | catRAPID and catGRANULE predictions of protein interactions. (A) catRAPID performance evaluation. On the X axis we report different portions of the
experimental dataset ranked by fold change and on the Y axis there is the corresponding predictive power (Area Under the ROC Curve, AUC). On the right, we report a
summary table showing the Uniprot IDs of top 2.5%, 5% and 7.5% experimental cases. (B) Distribution of specific binders for Kamel et al. dataset (Kamel et al., 2021).
Themost contacted SARS-CoV-2 genomic regions correspond to the 5’ (first fragment) e 3’ (30th fragment). (C) catGRANULE phase separation propensity scores
correlate with the number of experiments reporting a protein to interact with SARS-CoV-2 (Bolognesi et al., 2016; Cid-Samper et al., 2018); *p-value < 0.05; ****p-value <
0.0001 (Wilcoxon rank sum test); I II, II, III and IV indicate proteins detected in 1,2,3 or 4 experiments, respectively.
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separated assemblies (Gotor et al., 2020). We reasoned that the
relatively small overlap among experimental datasets (Figure 1A)
could be caused by the establishment of weak molecular interactions
with SARS-CoV-2 RNA. In agreement with this observation,
previous studies have suggested that phase separation could be a
mechanism through which SARS-CoV-2 attracts host proteins
(Iserman et al., 2020; Vandelli et al., 2020).

Using the catGRANULE algorithm to predict phase
separation propensities (Bolognesi et al., 2016; Cid-Samper
et al., 2018) we analyzed the interactomes of the four
experimental datasets. We discovered that the phase
separation propensity correlates with how many times proteins
are identified experimentally (Figure 2C). Considering that
strong binding propensities are associated with proteins
reported in the four experiments (Figure 1C) and the
reliability of our approach (Figure 2A), we speculate that a
possible mechanism of action for SARS-CoV-2 is to target
proteins that attract other partners through phase separation.

DISCUSSION

This work is a comparative analysis on protein-RNA interactomes
reported in experimental and computational studies. We found
several proteins shared by the four experiments, including
PABPC1, SND1, PPIA, EIF3G and DDX3X, which previous
studies have shown to regulate replication of viruses.

DDX3X is found in all the experimental studies and it has been
proven fundamental in SARS-CoV-2 biological processes and in
the replication process of other viruses (Maga et al., 2011; Ariumi,
2014; Stunnenberg et al., 2018; Brai et al., 2019, 2020; Kukhanova
et al., 2020; Ciccosanti et al., 2021; Winnard et al., 2021).
catRAPID predictions of human protein interactions with
SARS-CoV-2 showed a prevalence of specific binders to the 5′
end of the virus, with DDX3X being one of them. Since catRAPID
reproduces experimental data to a remarkable extent, as assessed
by directly comparing performances at different cut-offs, we
believe that this information on the localization of protein
interactions is to be taken into account for future analyses.

Predictive studies always have a margin of error, so further work
will be necessary for a complete understanding of the specific
binding sites and the role(s) of proteins in the context of infection.

In a recent study (Cirillo et al., 2017), we reported that the long
non-coding RNA Xist physically interacts with few specific
proteins that attract several other proteins (Cerase et al., 2019)
forming a phase-separated assembly that silences the X
chromosome (Cerase et al., 2022; Jachowicz et al., 2022). The
relatively poor overlap of interactors among SARS-CoV-2 studies
(only 21 proteins in common out of hundreds identified in total)
suggests a mechanism similar to the one identified for Xist. The
fact that SARS-CoV-2 binding proteins are either stress granules
components or have high phase separation propensity supports
our hypothesis. Indeed, phase separation is caused by weak
protein-protein or protein-RNA interactions (Balcerak et al.,
2019; Vandelli et al., 2022), which renders the identification of
binding partners particularly difficult at the experimental level
(Tartaglia, 2016; Cerase and Tartaglia, 2020) and could hamper

their reproducibility. Moreover, the fact that proteins with the
highest interaction and phase separation propensities were
identified in all experimental studies suggests that they could
act as the primary attractors to ignite the formation of an
assembly that is capable of using host elements for replication.
Further work is needed to study this fundamental aspect of SARS-
CoV-2 biology and how it could be exploited to prevent viral
infection. For example, molecular chaperones (Tartaglia et al.,
2010; Alagar Boopathy et al., 2022) could be important players
(Guihur et al., 2020) to be investigated in more detail.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

AV and GT conceived the study. AV and GV carried out the
analysis. AV, GV, and GT wrote the paper.

FUNDING

The research leading to these results has been supported by
European Research Council (RIBOMYLOME_309545 and
ASTRA_855923), the H2020 projects (IASIS_727658 and
INFORE_825080) and the Spanish Ministry of Science and
Innovation (RYC 2019-026752-I and PID 2020-117454RA-I00).

ACKNOWLEDGMENTS

The authors would like to thank Prof. Alberto Danielli and Prof.
Marc Torrent Burgas for illuminating discussions.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2022.893067/
full#supplementary-material

Supplementary Table S1 | Twenty-one proteins shared by the four experimental
studies. Uniprot IDs and gene names of the proteins are provided.

Supplementary Table S2 | Proteins found in each different experimental study.

Supplementary Table S3 | Dataset used for the evaluation of catRAPID
performances. For each protein, its Uniprot ID, experimental fold-change and
normalized catRAPID score are reported. The top experimental cases are
highlighted in different colors according to the relative portion of the dataset.

Supplementary Table S4 | Sequence and genomic location of each of the 30
fragments of SARS-CoV-2.

Supplementary Table S5 | List of interactors for each experimental dataset,
predicted to bind univocally each of the 30 SARS-CoV-2 fragments.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 8930675

Vandelli et al. Comparative Analysis of SARS-CoV-2 Interactions

147



REFERENCES

Agostini, F., Cirillo, D., Bolognesi, B., and Tartaglia, G. G. (2013a). X-inactivation:
Quantitative Predictions of Protein Interactions in the Xist Network. Nucleic
Acids Res. 41, e31. doi:10.1093/nar/gks968

Agostini, F., Zanzoni, A., Klus, P., Marchese, D., Cirillo, D., and Tartaglia, G. G.
(2013b). catRAPID Omics: a Web Server for Large-Scale Prediction of Protein-
RNA Interactions. Bioinformatics 29, 2928–2930. doi:10.1093/bioinformatics/
btt495

Alagar Boopathy, L. R., Jacob-Tomas, S., Alecki, C., and Vera, M. (2022).
Mechanisms Tailoring the Expression of Heat Shock Proteins to
Proteostasis Challenges. J. Biol. Chem., 101796. doi:10.1016/j.jbc.2022.101796

Amaya, M., Brooks-Faulconer, T., Lark, T., Keck, F., Bailey, C., Raman, V., et al.
(2016). Venezuelan Equine Encephalitis Virus Non-structural Protein 3 (nsP3)
Interacts with RNA Helicases DDX1 and DDX3 in Infected Cells. Antivir. Res.
131, 49–60. doi:10.1016/j.antiviral.2016.04.008

Ariumi, Y. (2014). Multiple Functions of DDX3 RNAHelicase in Gene Regulation,
Tumorigenesis, and Viral Infection. Front. Genet. 5. 423. doi:10.3389/fgene.
2014.00423

Armaos, A., Colantoni, A., Proietti, G., Rupert, J., and Tartaglia, G. G. (2021).
catRAPID Omics v2.0: Going Deeper and Wider in the Prediction of Protein-
RNA Interactions. Nucleic Acids Res. 49, W72–W79. gkab393. doi:10.1093/nar/
gkab393

Balcerak, A., Trebinska-Stryjewska, A., Konopinski, R., Wakula, M., and
Grzybowska, E. A. (2019). RNA-protein Interactions: Disorder,
Moonlighting and Junk Contribute to Eukaryotic Complexity. Open Biol. 9,
190096. doi:10.1098/rsob.190096

Bellucci, M., Agostini, F., Masin, M., and Tartaglia, G. G. (2011). Predicting Protein
Associations with Long Noncoding RNAs. Nat. Methods 8, 444–445. doi:10.
1038/nmeth.1611

Bolognesi, B., Lorenzo Gotor, N., Dhar, R., Cirillo, D., Baldrighi, M., Tartaglia, G.
G., et al. (2016). A Concentration-dependent Liquid Phase Separation Can
Cause Toxicity upon Increased Protein Expression. Cell Rep. 16, 222–231.
doi:10.1016/j.celrep.2016.05.076

Brai, A., Martelli, F., Riva, V., Garbelli, A., Fazi, R., Zamperini, C., et al. (2019).
DDX3X Helicase Inhibitors as a New Strategy to Fight the West Nile Virus
Infection. J. Med. Chem. 62, 2333–2347. doi:10.1021/acs.jmedchem.8b01403

Brai, A., Riva, V., Saladini, F., Zamperini, C., Trivisani, C. I., Garbelli, A., et al.
(2020). DDX3X Inhibitors, an Effective Way to Overcome HIV-1 Resistance
Targeting Host Proteins. Eur. J. Med. Chem. 200, 112319. doi:10.1016/j.ejmech.
2020.112319

Cerase, A., Armaos, A., Neumayer, C., Avner, P., Guttman, M., and Tartaglia, G. G.
(2019). Phase Separation Drives X-Chromosome Inactivation: a Hypothesis.
Nat. Struct. Mol. Biol. 26, 331–334. doi:10.1038/s41594-019-0223-0

Cerase, A., Calabrese, J. M., and Tartaglia, G. G. (2022). Phase Separation Drives
X-Chromosome Inactivation. Nat. Struct. Mol. Biol. 29, 183–185. doi:10.1038/
s41594-021-00697-0

Cerase, A., and Tartaglia, G. G. (2020). Long Non-coding RNA-Polycomb Intimate
Rendezvous. Open Biol. 10, 200126. doi:10.1098/rsob.200126

Chen, Z., Mi, L., Xu, J., Yu, J., Wang, X., Jiang, J., et al. (2005). Function of
HAb18G/CD147 in Invasion of Host Cells by Severe Acute Respiratory
Syndrome Coronavirus. J. Infect. Dis. 191, 755–760. doi:10.1086/427811

Ciccosanti, F., Di Rienzo, M., Romagnoli, A., Colavita, F., Refolo, G., Castilletti, C.,
et al. (2021). Proteomic Analysis Identifies the RNA Helicase DDX3X as a Host
Target against SARS-CoV-2 Infection. Antivir. Res. 190, 105064. doi:10.1016/j.
antiviral.2021.105064

Cid-Samper, F., Gelabert-Baldrich, M., Lang, B., Lorenzo-Gotor, N., Ponti, R. D.,
Severijnen, L. W. F. M., et al. (2018). An Integrative Study of Protein-RNA
Condensates Identifies Scaffolding RNAs and Reveals Players in Fragile
X-Associated Tremor/Ataxia Syndrome. Cell Rep. 25, 3422–e7. e7. doi:10.
1016/j.celrep.2018.11.076

Cirillo, D., Blanco, M., Armaos, A., Buness, A., Avner, P., Guttman, M., et al.
(2017). Quantitative Predictions of Protein Interactions with Long Noncoding
RNAs. Nat. Methods 14, 5–6. doi:10.1038/nmeth.4100

Delli Ponti, R., Marti, S., Armaos, A., and Tartaglia, G. G. (2017). A High-
Throughput Approach to Profile RNA Structure. Nucleic Acids Res. 45, e35.
doi:10.1093/nar/gkw1094

Doñate-Macián, P., Jungfleisch, J., Pérez-Vilaró, G., Rubio-Moscardo, F.,
Perálvarez-Marín, A., Diez, J., et al. (2018). The TRPV4 Channel Links
Calcium Influx to DDX3X Activity and Viral Infectivity. Nat. Commun. 9,
2307. doi:10.1038/s41467-018-04776-7

Flynn, R. A., Belk, J. A., Qi, Y., Yasumoto, Y., Wei, J., Alfajaro, M. M., et al. (2021).
Discovery and Functional Interrogation of SARS-CoV-2 RNA-Host Protein
Interactions. Cell 184, 2394–2411. doi:10.1016/j.cell.2021.03.012

Foster, T. L., Gallay, P., Stonehouse, N. J., and Harris, M. (2011). Cyclophilin A
Interacts with Domain II of Hepatitis C Virus NS5A and Stimulates RNA
Binding in an Isomerase-dependent Manner. J. Virol. 85, 7460–7464. doi:10.
1128/JVI.00393-11

Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., et al.
(2020). A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug
Repurposing. Nature 583, 459–468. doi:10.1038/s41586-020-2286-9

Gotor, N. L., Armaos, A., Calloni, G., Torrent Burgas, M., Vabulas, R. M.,
De Groot, N. S., et al. (2020). RNA-binding and Prion Domains: the Yin
and Yang of Phase Separation. Nucleic Acids Res. 48, 9491–9504. doi:10.1093/
nar/gkaa681

Iserman, C., Roden, C. A., Boerneke, M. A., Sealfon, R. S. G., McLaughlin, G. A.,
Jungreis, I., et al. (2020). Genomic RNA Elements Drive Phase Separation of the
SARS-CoV-2 Nucleocapsid. Mol. Cell 80, 1078–1091. e6. doi:10.1016/j.molcel.
2020.11.041

Jachowicz, J. W., Strehle, M., Banerjee, A. K., Blanco, M. R., Thai, J., and Guttman,
M. (2022). Xist Spatially Amplifies SHARP/SPEN Recruitment to Balance
Chromosome-wide Silencing and Specificity to the X Chromosome. Nat.
Struct. Mol. Biol. 29, 239–249. doi:10.1038/s41594-022-00739-1

Kamel, W., Noerenberg, M., Cerikan, B., Chen, H., Järvelin, A. I., Kammoun, M.,
et al. (2021). Global Analysis of Protein-RNA Interactions in SARS-CoV-2-
Infected Cells Reveals Key Regulators of Infection. Mol. Cell 81, 2851–2867.
doi:10.1016/j.molcel.2021.05.023

Kukhanova, M. K., Karpenko, I. L., and Ivanov, A. V. (2020). DEAD-box RNA
Helicase DDX3: Functional Properties and Development of DDX3 Inhibitors as
Antiviral and Anticancer Drugs. Molecules 25, 1015. doi:10.3390/
molecules25041015

Lee, S., Lee, Y.-s., Choi, Y., Son, A., Park, Y., Lee, K.-M., et al. (2021). Young-sukThe
SARS-CoV-2 RNA Interactome.Mol. Cell 81, 2838–2850. doi:10.1016/j.molcel.
2021.04.022

Lu, S., Ye, Q., Singh, D., Cao, Y., Diedrich, J. K., Yates, J. R., et al. (2021). The SARS-
CoV-2 Nucleocapsid Phosphoprotein Forms Mutually Exclusive Condensates
with RNA and the Membrane-Associated M Protein. Nat. Commun. 12, 502.
doi:10.1038/s41467-020-20768-y

Maga, G., Falchi, F., Radi, M., Botta, L., Casaluce, G., Bernardini, M., et al. (2011).
Toward the Discovery of Novel Anti-HIVDrugs. Second-Generation Inhibitors
of the Cellular ATPase DDX3 with Improved Anti-HIV Activity: Synthesis,
Structure-Activity Relationship Analysis, Cytotoxicity Studies, and Target
Validation. ChemMedChem 6, 1371–1389. doi:10.1002/cmdc.201100166

Manfredonia, I., Nithin, C., Ponce-Salvatierra, A., Ghosh, P., Wirecki, T. K.,
Marinus, T., et al. (2020). Genome-wide Mapping of SARS-CoV-2 RNA
Structures Identifies Therapeutically-Relevant Elements. Nucleic Acids Res.
48, 12436–12452. doi:10.1093/nar/gkaa1053

Markaki, Y., Gan Chong, J., Wang, Y., Jacobson, E. C., Luong, C., Tan, S. Y. X., et al.
(2021). Xist Nucleates Local Protein Gradients to Propagate Silencing across the
X Chromosome. Cell 184, 6174–6192. doi:10.1016/j.cell.2021.10.022

McCormick, C., and Khaperskyy, D. A. (2017). Translation Inhibition and Stress
Granules in the Antiviral Immune Response. Nat. Rev. Immunol. 17, 647–660.
doi:10.1038/nri.2017.63

Mendez, A. S., Ly, M., González-Sánchez, A. M., Hartenian, E., Ingolia, N. T.,
Cate, J. H., et al. (2021). The N-Terminal Domain of SARS-CoV-2 Nsp1
Plays Key Roles in Suppression of Cellular Gene Expression and
Preservation of Viral Gene Expression. Cell Rep. 37, 109841. doi:10.
1016/j.celrep.2021.109841

Pöyry, T. A. A., Kaminski, A., Connell, E. J., Fraser, C. S., and Jackson, R. J. (2007).
The Mechanism of an Exceptional Case of Reinitiation after Translation of a
Long ORF Reveals Why Such Events Do Not Generally Occur in Mammalian
mRNA Translation. Genes Dev. 21, 3149–3162. doi:10.1101/gad.439507

Schmidt, N., Lareau, C. A., Keshishian, H., Ganskih, S., Schneider, C., Hennig, T.,
et al. (2021). The SARS-CoV-2 RNA-Protein Interactome in Infected Human
Cells. Nat. Microbiol. 6, 339–353. doi:10.1038/s41564-020-00846-z

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 8930676

Vandelli et al. Comparative Analysis of SARS-CoV-2 Interactions

148 CHAPTER 7



Stunnenberg, M., Geijtenbeek, T. B. H., and Gringhuis, S. I. (2018). DDX3 in HIV-1
Infection and Sensing: A Paradox. Cytokine. Growth Factor Rev. 40, 32–39.
doi:10.1016/j.cytogfr.2018.03.001

Suzuki, Y., Chin, W.-X., Han, Q. E., Ichiyama, K., Lee, C. H., Eyo, Z. W., et al.
(2016). Characterization of RyDEN (C19orf66) as an Interferon-Stimulated
Cellular Inhibitor against Dengue Virus Replication. PLOS Pathog. 12,
e1005357. doi:10.1371/journal.ppat.1005357

Tartaglia, G. G., Dobson, C. M., Hartl, F. U., and Vendruscolo, M. (2010).
Physicochemical Determinants of Chaperone Requirements. J. Mol. Biol.
400, 579–588. doi:10.1016/j.jmb.2010.03.066

Tartaglia, G. G. (2016). The Grand Challenge of Characterizing Ribonucleoprotein
Networks. Front. Mol. Biosci. 3, 24. doi:10.3389/fmolb.2016.00024

Tong, X., Drapkin, R., Yalamanchili, R., Mosialos, G., and Kieff, E. (1995). The
Epstein-Barr Virus Nuclear Protein 2 Acidic Domain Forms a Complex with a
Novel Cellular Coactivator that Can Interact with TFIIE. Mol. Cell. Biol. 15,
4735–4744. doi:10.1128/MCB.15.9.4735

Vandelli, A., Cid Samper, F., Torrent Burgas, M., Sanchez de Groot, N., and
Tartaglia, G. G. (2022). The Interplay between Disordered Regions in RNAs and
Proteins Modulates Interactions within Stress Granules and Processing Bodies.
J. Mol. Biol. 434, 167159. doi:10.1016/j.jmb.2021.167159

Vandelli, A., Monti, M., Milanetti, E., Armaos, A., Rupert, J., Zacco, E., et al. (2020).
Structural Analysis of SARS-CoV-2 Genome and Predictions of the Human
Interactome. Nucleic Acids Res. 48, 11270–11283. doi:10.1093/nar/gkaa864

Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P.,
et al. (2010). The GeneMANIA Prediction Server: Biological Network
Integration for Gene Prioritization and Predicting Gene Function. Nucleic
Acids Res. 38, W214–W220. doi:10.1093/nar/gkq537

Winnard, P. T., Vesuna, F., and Raman, V. (2021). Targeting Host DEAD-Box
RNA Helicase DDX3X for Treating Viral Infections. Antivir. Res. 185, 104994.
doi:10.1016/j.antiviral.2020.104994

Yedavalli, V. S. R. K., Neuveut, C., Chi, Y.-h., Kleiman, L., and Jeang, K.-T. (2004).
Requirement of DDX3 DEAD Box RNA Helicase for HIV-1 Rev-RRE Export
Function. Cell 119, 381–392. doi:10.1016/j.cell.2004.09.029

Zheng, Z.-Q., Wang, S.-Y., Xu, Z.-S., Fu, Y.-Z., and Wang, Y.-Y. (2021). SARS-
CoV-2 Nucleocapsid Protein Impairs Stress Granule Formation to Promote
Viral Replication. Cell Discov. 7, 38. doi:10.1038/s41421-021-00275-0

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Vandelli, Vocino and Tartaglia. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 8930677

Vandelli et al. Comparative Analysis of SARS-CoV-2 Interactions

149





Part III

CLOSING REMARKS





CHAPTER 8

GENERAL DISCUSSION





155

In my thesis, I presented two distinct but interconnected topics: the char-
acterization of ribonucleoprotein condensates and the analysis of human-
SARS-CoV-2 interactions networks.

In the first part of my Ph.D., I focused my attention on protein and RNA
interactions (Chapter 3) occurring in SGs and PBs, two condensates form-
ed through a process of liquid-liquid phase separation (Chapter 4). My
goal was to study how different types of macromolecular interactions
(protein-protein, protein-RNA and RNA-RNA interactions) and structural
information could be linked together to define the network sustaining
these condensates. My main finding is that poorly structured RNA and
protein elements are key ingredients to reversibly aggregate components
of SGs and PBs. My observations were based on a previous study of dif-
ferent experimental and computational methods to assess physicochem-
ical determinants of protein-protein, RNA-RNA and especially protein-
RNA interactions (Chapter 3).
My analysis of RNP condensates was integrated with information on amy-
loid aggregates, disease-related SNVs and their effect on these organelles’
components in a new database called PRALINE (Chapter 5), a very com-
plete resource containing both experimental and computational high-thro-
ughput data.

The second part of my Ph.D. is related to studies on SARS-CoV-2. Since
very little information was available in March 2020, I employed compu-
tational methods to assess the structural properties of the virus, to com-
pare them with other coronaviruses and to generate a complete interac-
tome with human proteins (Chapter 6). Comparing my predictions and
available experimental interactomes, I proposed that few protein interac-
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tors found in multiple experiments and different conditions promote pro-
gressive accumulation of protein components involved in viral replication
(Chapter 7).

The link between the two topics of my thesis is evident if we consider
that biological condensates store essential protein and RNA elements of
the cell to promote survival in stress conditions, induced not only by
physicochemical shocks but also by infection. Several viral and bacte-
rial pathogens are known to modulate condensate formation to protect
themselves from host defenses. This can be achieved by cleavage of es-
sential condensates proteins (e.g. West Nile virus), or by sequestration
of components into viral factories (e.g. Hepatitis C virus) (Ariumi et al.,
2011; Gaete-Argel et al., 2019).
This is one of the reasons why at the beginning of the pandemic, I hypoth-
esized that the SARS-CoV-2 genome could establish interactions with
the human host targeting specific molecules essential for host immune
response, which otherwise would be recruited inside condensates to be
protected or would impair the viral replication.

8.1. Macromolecular interactions in RNP con-
densates

Phase separation is nowadays an extensively studied topic that seems to
influence and coordinate a lot of cellular mechanisms, controlling the
concentration of molecules and biochemical reactions and can lead to
the formation of condensates to store important components in stress-
ful moments of the cell or can organize chromatin like in the case of
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X-chromosome inactivation (Cerase et al., 2019).
SGs and PBs are two of the best characterized macromolecular assem-
blies formed through liquid-liquid phase-separation and despite having
different essential elements and different functions, they share many pro-
tein and RNA factors and communicate with each other (Li et al., 2013).
Despite previous studies on essential components of these condensates
and various attempts made to characterize each type of macromolecular
interactions separately, there were still limitations in what we knew about
these condensates, and in particular about how structural information of
both protein and RNAs could influence the way in which protein-protein,
protein-RNA and RNA-RNA interactions can regulate each other.

This is what I addressed in the first part of my Ph.D. and in particular in
Chapter 4, in which I compared SGs and PBs employing high-throughput
experimental data from techniques for RNA secondary structure assess-
ment and inter-molecular interactions characterization, combined with
computational approaches to strengthen the signal obtained experimen-
tally.
Given that RNAs enriched in SGs and PBs are very long and I found them
to be globally poorly structured, I hypothesized they could be prone to
bind multiple molecules and to act as scaffolds to lead the formation and
stability of these granules, just like the lncRNA NEAT1 for paraspeck-
les (Souquere et al., 2010). Indeed, longer RNAs can guarantee larger
single-stranded regions to bind to other RNAs and, at the same time, they
could still contain structured regions prone to protein binding (Sanchez de
Groot et al., 2019).
Looking at the signal derived from both experimental and computational
data, I found that a population of RNAs enriched in these granules have an
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extremely high degree of interactivity with both proteins and other RNAs,
confirming my hypothesis. In parallel, I focused on protein-protein in-
teractions. In agreement with a previous report indicating that proteins
with a higher structural disorder are generally more prone to aggregate
(Tartaglia et al., 2008), I found that highly disordered proteins enriched
in condensates have higher interactivity among themselves compared to
non-granule proteins. This led me to the realization that poorly structured
RNAs and proteins preferentially tend to bind each other and that disor-
dered regions in both proteins and RNAs of these condensates are the key
factors to link all types of macromolecular interactions together, creating
a circular scenario in which precise protein and RNAs elements could act
as scaffolds and generate a dense network of contacts.

There are of course limitations in my analysis. First of all, the compo-
sition of the condensates and in particular of SGs is strongly dependent
on stress and cell types, with a dramatic change even in the essential pro-
tein and RNA components (Markmiller et al., 2018). In addition, what
we know about the SGs is strongly limited to their cores, easier to purify,
while the composition of the shell is more difficult to study due to its di-
luted phase (Jain et al., 2016). Since each SG has multiple cores with only
a limited amount of proteins and RNAs (Khong et al., 2017), the popu-
lation of proteins and RNAs with high multivalency that we discussed in
Chapter 4 could be actually a series of different small networks that be-
long to different cores rather than a unique set of interactions. Secondly,
experimental techniques to assess macromolecular interactions are often
carried out in physiological conditions of the cell, so in absence of stress,
even though real-time monitoring of SGs dynamics is partially possible
nowadays thanks to particular probes binding to core components (Shao
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et al., 2021). In addition, the techniques for secondary structure deter-
mination and interactions identification are not bias-free. For example,
cross-linking procedures for RNA-RNA interactions detection which em-
ploying AMT and derivatives have limited efficiency (Garrett-Wheeler
et al., 1984; Harris and Christian, 2009), mainly due to the preferential
binding of AMT to pyrimidines and the limitations in the ligation ap-
proach, causing drops in performances, especially in highly structured
small RNAs (Sharma et al., 2016; Lu et al., 2016). This is then reflected
in multiple computational tools using these data as training sets.

However, the establishment of stress-free interactions could also be in-
terpreted as a mechanism to form a series of pre-networks of contacts that
facilitates the recruitment of essential components under actual harmful
conditions, to form firstly the different cores of SGs and then the entire
condensates, helping also their dissolution upon stress clearance. Further
analyses will be needed to confirm or reject this interesting hypothesis.
All these factors, coupled with the dynamicity of these aggregates, make
the study of condensates’ structure and composition fairly complex. New
techniques for real-time imaging tracking different components simulta-
neously, together with the development of more precise methods for the
assessment of the interactions will certainly help the characterization of
these assemblies.

SGs, as well as other types of ribonucleoprotein condensates, are transient
and reversible entities that form in the cell during harmful conditions and
can dissolve upon stress clearance. However, changes in the composition
or concentration of components inside these assemblies can lead to the
formation of irreversible, solid-like assemblies causing oftentimes neu-
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rodegenerative diseases (Murakami et al., 2015; Bolognesi et al., 2016).
The analysis carried out in Chapter 4 highlighted the role of structural
content and macromolecular interactions in liquid-like condensates, in-
volving both proteins and RNAs. This is the reason why I decided to
build PRALINE (Chapter 5) that includes both experimental and compu-
tational high-throughput data of SGs and PBs.
Furthermore, I included information on proteins coalescing in solid-like
aggregates to have a more comprehensive view. Since SNVs seem to
determine the transition between liquid-like to solid-like behavior, I pro-
vided information on disease-related SNVs falling inside coding regions
of RNAs and proteins enriched in SGs, PBs and amyloids. Being my fo-
cus on structure and interactions, I calculated changes in the secondary
structure propensity of mutated RNA sequences compared to the wild-
type and I collected variants falling inside binding regions in the context
of condensates’ macromolecular interactions.
In addition, PRALINE is the first database to show the predicted dif-
ference in liquid-liquid phase-separation (LLPS) and liquid-solid-phase
transition (LSPT) potential of mutated proteins compared to the wild-type
sequences (Tartaglia et al., 2008; Bolognesi et al., 2016).
Mutations and SNVs can influence the conformations and interfaces of
macromolecules and consequently the already mentioned network of con-
tacts inside the condensates and has to be considered another layer that
adds up to the already complex scenario created by these assemblies.

As mentioned in the analysis done in Chapter 4, the accuracy of our
data is constrained by current limitations affecting the experimental tech-
niques for the interactions assessment and the predictive methods based
on them. Furthermore, predictions of LLPS obtained with catGRANULE
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algorithm (Bolognesi et al., 2016) for individual SNVs could not be tested
on experimental data, due to the lack of available databases of SNVs’ in-
fluence on phase-separation, even though mutational assays were carried
out in previous works starting from this algorithm’s predictions (Bolog-
nesi et al., 2016; Gotor et al., 2020). The introduction of new experimental
data could help to increase the resolution of the method, providing new
insights into the SNVs’ influence on condensate dynamics.

8.2. SARS-CoV-2 infection and interactions with
human cells

The second part of my Ph.D. started in 2020 when the Covid-19 pandemic
hit the world. While I was investigating the composition and functions of
the condensates, I realized that many viral pathogens were already known
either to suppress or regulate the formation of these assemblies, or to
sequester components of these organelles as one of their defense mecha-
nisms to tamper with the innate immune response of the cell (Gaete-Argel
et al., 2019).
In this context, I hypothesized that SARS-CoV-2 could exploit similar
mechanisms once come in contact with the human host. This fueled the
work done in Chapter 6. Firstly, I compared its sequence with others of
known coronavirus to identify regions with high structural content that
could act as attractors of many proteins. Secondly, I predicted the interac-
tions of the viral genome with the human proteome to search for human
factors that could be targeted by the virus to enhance its replication. The
results confirmed my previous observations, as especially the 5’ of the
SARS-CoV-2 genome was predicted to be a highly structured region and
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an attractor of many human proteins known to be condensates compo-
nents and belonging to the innate immune response of the cell, like the
helicases DDX1 and DDX3X.

At the time of my first analysis, there were still few published human-
SARS-CoV-2 interactome experiments to confirm my predictions (Flynn
et al., 2021; Schmidt et al., 2021; Kamel et al., 2021; Lee et al., 2021),
but I already noticed that the number of human interactors found simul-
taneously in multiple experiments was very little, while the majority of
them was collected only in one or two studies. Since the experiments
were carried out in different cell types and following different protocols,
I speculated that the most shared binders were either the ones with the
strongest affinity to bind the viral genome, or were particularly important
targets to protect the virus survival, or both. This set the baseline for the
work carried out in Chapter 7, where I found that these factors had both
the highest propensity to bind the SARS-CoV-2 genome and the highest
propensity to phase-separate, with some elements already known com-
ponents of SG and PBs and already linked to the infection processes of
several other viruses like Dengue and HIV-1, confirming that probably
SARS-CoV-2 has an interest in sequestering these components to help its
survival and replication while avoiding their entry into phase-separating
assemblies.

Certainly, our methods are limited by the use of only computational tools
and predictors and by the massive length of the SARS-CoV-2 genome.
To use catRAPID algorithm (Bellucci et al., 2011) for the calculation of
protein-RNA interactions predictions, we divided the viral genomic se-
quence into multiple fragments in order to retain as much structural and



163

physicochemical information as possible while avoiding calculation prob-
lems. This fragmentation procedure though had already been employed
effectively in previous viral studies (Delli Ponti et al., 2018) and several
works have demonstrated that catRAPID predictions can be validated ex-
perimentally, while the algorithm itself has been updated regularly to al-
low the analysis of entire proteomes and transcriptomes for multiple or-
ganisms (Armaos et al., 2021).

Since the publication of my work on SARS-CoV-2, other studies have
detailed aspects of the infection process, including critical steps in the
translation and transcription of the genome once entered in the cell thanks
to the binding to ACE2, the packaging of new virions at the ER-Golgi in-
terface (Klein et al., 2020), mechanisms of defense antagonizing the pro-
duction of interferons (Wu et al., 2021) and exploiting host components to
regulate its infectivity, such as DEAD-box helicases DDX1, DDX6 and
several others (Ariumi, 2022), while ribonucleoprotein condensates are
regulated by the phase-separation of the viral N protein (Luo et al., 2021).
Many other questions have yet to be answered, including the differen-
tial modulation of host defenses by distinct SARS-CoV-2 variants and the
difference in the infection’s response at the individual level.

8.3. Future perspectives

These new developments are in agreement with my predictions and have
opened new lines of investigation.
Currently, I am planning to improve the accuracy of the prediction of
phase-separating propensity, either by integrating new proteomic data now
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available in the literature or by developing an algorithm for predicting the
RNA ability to be recruited inside condensates, that is currently unavail-
able in the field.
I am also contributing to the experimental validation of other host interac-
tors that could be binding to SARS-CoV-2 in order to study other potential
host mechanisms of modulation of viral infectivity.
At the same time, I am involved in the analysis of other pathogens’ in-
fection pathways, following a similar protocol adopted for SARS-CoV-2.
On the one hand, I am investigating the family of Flaviviridae, composed
of a group of single-strand RNA viruses causing hemorrhagic fevers like
Dengue and Zika. During the infection process, their genomic RNA is
targeted by the host cell’s 5’-3’ exoribonuclease 1 (XRN1) that stalls
at 3’UTR due to the presence of stem-loops-like secondary structures.
This results in an undigested fragment called subgenomic flavivirus RNA
(sfRNA) that accumulates in the cell and antagonizes the cell’s innate im-
mune response (Funk et al., 2010; Chapman et al., 2014). In this context,
my work could help in identifying which host proteins are actually tar-
geted and sequestered by these viruses to help their infection process.
On the other hand, I am studying Salmonella Typhimurium, a bacterium
causing severe gastrointestinal symptoms. The infection is caused by ef-
fector proteins, which are secreted by the bacterium and enter the host cell
through endocytosis, where they generate a cascade of reactions and are
known to induce the formation of SGs (Abdel-Nour et al., 2019). How-
ever, the potential presence of bacterial effector proteins inside these gran-
ules has yet to be investigated and, even though some of these proteins
have RNA-binding potential and present RNA-binding domains (Gerovac
et al., 2020), there is currently no evidence of them binding to host RNAs
during the infection process.
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I speculate that some of these effectors could phase-separate and behave
like the N protein in the context of SARS-CoV-2 infection to modulate
the formation and dissolution of SGs. Furthermore, I think that some of
these bacterial proteins could bind host RNAs during the infection process
and prevent their translation or their scaffolding ability to form conden-
sates. This is why I propose to use an approach similar to the one adopted
for SARS-CoV-2 but focusing on the prediction of the human transcrip-
tome bound to Salmonella effectors. This analysis and the assessment of
the RNA-binding ability of these effectors proteins are already pointing
to some promising candidates showing high phase-separating potential
which will be tested experimentally.





CHAPTER 9

CONCLUSIONS





169

The work carried out during my Ph.D. can be divided into two different
stages. The first focused on the characterization of the molecular network
of interactions inside liquid-like phase-separating condensates such as
SGs and PBs, followed by the creation of a database on the physicochemi-
cal properties of these organelles and amyloid formations, including infor-
mation collected from experimental and computational high-throughput
data and focusing on the impact that disease-related SNVs have on their
components.
In the second stage, I investigated the molecular interactions established
between SARS-CoV-2 and the human host and identified the viral re-
gions acting as attractors of the majority of the binders. I predicted a
complete human-SARS-CoV-2 protein-RNA interactome while analyzing
structural conserved elements shared among different coronavirus species
and identified several human proteins that could be targeted by the virus to
enhance its replication process and to avoid storage inside phase-separating
organelles. Finally, I compared different experimental protein-RNA inter-
actomes already published, investigating the scarcity of conserved inter-
actors across different studies and the link between binding strength and
phase-separation propensity of such binders.

Collectively, the main findings of my thesis can be summarized in the
following points:

Stress granules and processing bodies are enriched in poorly struc-
tured elements that show a high degree of interactivity. Single-
stranded RNAs enriched in condensates show a high degree of RNA-
RNA interactions, while granule proteins enriched in disordered re-
gions form a large number of contacts with other protein partners.
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These two molecular sets identified as the most interacting at the
proteome and transcriptome level are both depleted in structure and
bind one to the other, creating a circular pattern of macromolecular
interactions that regulate the condensates.

PRALINE is the first database to combine physicochemical prop-
erties of phase-separating condensates with disease-related single-
nucleotide variants information, including high-throughput experi-
mental and computational data to describe their components.

The genomic locus corresponding to nucleotides 22000-23000 is
highly conserved at the sequence and structural level and shared
among several coronavirus species, while the region upstream is
highly variable. These regions code for a viral spike S protein do-
main which binds to the human ACE2 receptor and favors the inter-
action with sialic acids in MERS-CoV respiratory syndrome. This
variability could be one of the different possible causes for the dif-
ferences in symptoms across the human population.

The 5’ end of SARS-CoV-2 is a structured RNA region predicted
to be an attractor for many different human proteins, among which
there are many granules components and members of the innate
immune response machinery that the virus could sequester to help
its own replication process.

Only strong-affinity binders to the SARS-CoV-2 genome can be
found in multiple human-virus protein-RNA interactome experi-
ments. These proteins have also a high propensity to phase sep-
arate and were found in infection processes involving several other
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viruses. This indicates that these strong interactors could act as pri-
mary attractors and be exploited by SARS-CoV-2 to modulate its
viral replication.
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Supplementary Materials of Chapter 6 are available at

https://academic.oup.com/nar/article/48/

20/11270/5929227#supplementary-data
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Supplementary Materials of Chapter 7 are available at

https://www.frontiersin.org/articles/10.

3389/fmolb.2022.893067/full#SM1
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The hidden side of stress granules 
 Andrea Vandelli, Fernando Cid Samper, 

 Natalia Sanchez de Groot, Gian Gaetano Tartaglia 

Background 

Stress granules (SGs) are membrane-less compartments formed by a process of 
phase separation in stress condition of the cell.1,2 The translation of mRNA is slow or 
stopped in SGs. Their main components are proteins and RNAs, which assembly 
results in the formation of several dense solid-like cores surrounded by liquid-like shell. 

The problem 
•  Only one SG transcriptome and few SG proteomes has been published so far. 
•  Our knowledge about the interactions between the molecules inside SG is poor. 

•  Analyze	the	SGs	interaction	network	to	understand	the	molecular	contacts	involved	
in	its	formation	and	arrangement.	

[1] D. S W Protter and Roy Parker. Principles and Properties of Stress Granules. Trends in Cell 
     Biology. 2016.  
[2] A. Khong, et al. The Stress Granule Transcriptome Reveals Principles of mRNA Accumulation in 
     Stress Granules. Molecular Cell. 2017. 
[3] R.J Ries, et al. M6a enhances the phase separation potential of mRNA. Nature. 2019 
[4] E. L Van Nostrand, et al. Robust transcriptome-wide discovery of RNA-binding protein binding 
     sites with enhanced CLIP (eCLIP). Nature Methods. 2016. 
[5] J. Gong, et al. RISE: a database of RNA interactome from sequencing experiments. NAR. 2018 
[6] R. Delli Ponti et. Al. CROSSalive: a web server for predicting the in vivo structure of RNA 
     molecules. Bioinformatics. 2019 
	
	

Discussion 

 1) RNAs are involved in SG proteins arrangement 

•  RNAs are important for proteins arrangement in SG formation. 
•  Enriched SG RNAs pre-network of interactions can favor SG 

formation (e.g. acceleration). 
•  Enriched RNAs linearity is enhanced after m6a modification 

which may be crucial to keep the SGs liquid state. 

The aim 

Context 

Results 

RNA-protein contacts are able to cluster together SG proteins better than 
protein-protein contacts. 
 
(A) Proteins clustered by the protein-protein network, interactions obtained from 
BioGRID. In red are represented the proteins that are constitutively present in 
SG, in black the non granule proteins.  
 
(B) Proteins clustered by the protein-RNA network, interactions obtained from 
the eCLIP dataset4. In both plots, the interaction between each pair of proteins 
is represented by the Jaccard distance, calculated as: intersection of protein 
targets/union of protein targets, subtracted to 1. A similar result is obtained by 
the use of shortest path length as a measure of distance (data not shown). In 
the schematic representations squares are RNAs and circles are proteins. 
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Cell diagram: SGs RNAs have been 
classified in 3 group accordingly to 
their abundance in respect to the total 
RNAs in the cell: enriched (more in 
the SGs), depleted (less in the SGs) 
and control (no significant).2 
 
Enriched RNAs are the best 
binders for both proteins and RNAs 
in vivo. (A) Number of protein 
interactions from eCLIP. (B) Number 
of RNA interactions from RISE5. Both 
in non-stress conditions. 
 
Enriched RNAs are hubs of the 
network of RNA-RNA interactions 
in the cell. 
(C) Betweenness centrality score for 
each of the three classes of SG 
RNAs. It calculates the shortest path 
between every pair of nodes in a 
connected graph (RNA-RNA network). 
Each node (RNA) receives a score 
based on the number of shortest 
paths passing through the node. 
Nodes that lies more frequently on 
these path have higher scores. 
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B 

C 

The boxplots show the percentage of secondary structure content, for the 
three classes of RNAs in SG, predicted by CROSSalive6 algorithm in 
presence or absence of m6a methylation. This algorithm, developed in our 
lab, predicts the secondary structure in vivo using contribution from RNA 
sequence and protein partners interactions. It is trained on icSHAPE data. 
 
It has been reported that M6a methylation enhances the phase 
separation potential of mRNAs3. The comparison between the above left 
and right boxplots show that RNAs undergoing this modification 
become more linear and prone to bind other RNAs, two properties 
associated with the SGs material state.  
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At the end of each trial, the correct category w
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