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Abstract

This doctoral thesis develops new methods for time series analysis and
applies these to prominent empirical problems in macroeconomics. It
contains three chapters. Chapter one proposes a new non-parametric gen-
eralized method of moments estimator for handling time-varying param-
eters. Chapter two proposes a simple and practical method for estimat-
ing impulse response functions based on using a single flexible and in-
terpretable function to approximate the impulse response. Chapter three
discusses a large-scale simulation study to compare impulse response es-
timates obtained from vector autoregressive model average models with
vector autoregressive and local projection methods.

Resum

Aquesta tesi doctoral desenvolupa nous metodes per a I’analisi de series
temporals i els aplica a problemes empirics destacats en macroeconomia.
Conté tres capitols. El primer capitol proposa un nou metode generalitzat
no parametric d’estimador de moments per al maneig de parametres vari-
ables en el temps. El capitol dos proposa un metode senzill i practic per
estimar les funcions de resposta a I’impuls basat en 1’tds d’una tnica fun-
ci6 flexible i interpretable per aproximar la resposta a I’impuls. El capitol
tres analitza un estudi de simulacié a gran escala per comparar les esti-
macions de resposta a impulsos obtingudes a partir de models mitjans de
models autoregressius vectorials amb metodes autoregressius vectorials 1
de projeccid local.
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Introduction

This doctoral thesis develops new methods for time series analysis and
applies these to prominent empirical problems in macroeconomics. It
contains three chapters. Chapter one proposes a new non-parametric gen-
eralized method of moments (GMM) estimator for handling time-varying
parameters. Chapter two proposes a simple and practical method for es-
timating impulse response functions based on using a single flexible and
interpretable function to approximate the impulse response. Chapter three
discusses a large-scale simulation study to compare impulse response es-
timates obtained from vector autoregressive model average models with
vector autoregressive and local projection methods.

In the first chapter, I extend the standard GMM framework of Hansen
(1982) to allow for time-varying parameters. To conduct inference, I pro-
pose a new non-parametric estimator that is based on a local polynomial
approximation where the true parameters are locally approximated by a
polynomial of specified order. I argue that this method is appealing in
cases where there is no information available about the dynamics of the
parameters to be estimated, e.g., no random walk or ARMA dynamics
are appropriate. As many well-known models can be defined in terms
of moments, e.g., moving average and autoregressive conditional het-
eroskedasticity models, my approach allows extending all these models
to allow for time-varying parameters. I develop the asymptotic theory of
the proposed local polynomial estimator under the assumption of local
stationarity and show that the estimator is consistent and asymptotically
normal. The small sample properties of the nonparametric GMM estima-
tor are studied through Monte Carlo simulations for two examples: the



MA(1) model and the ARCH(1) model. In the empirical part of the study,
the proposed estimator is applied to a gravity model of international trade
with varying parameters and finds that the average patterns are consistent
with previous studies but provide new information for the dynamics of
distance. Specifically, I find evidence of distance instability of the param-
eters of the gravity model for the US economy.

In the second chapter, 1 provide tools for characterizing impulse re-
sponse functions using their canonical characteristics (peak, location, and
half-lives before and after the peak) by introducing functional local pro-
jections as a way to summarize the evidence from any impulse response
estimator. Honest confidence bands are constructed by taking into ac-
count both the bias and variance of the functional approximation. I also
propose an extension that allows for time-varying parameters and derive
the asymptotic properties of the proposed estimator. In a simulation study,
the performance of functional and traditional local projection estimates
are compared in terms of their coverage ratios and lengths for different
levels of smoothness, sample sizes, and experiments. The results show
that functional local projections perform best in terms of coverage when
the degree of smoothness is high and worst when it is low, and their per-
formance improves as the sample size increases. In the empirical study,
the functional local projection approach to estimating impulse response
functions yields smoother and more informative results than the tradi-
tional method and provides additional information about the impulse re-
sponse functions through the estimated parameters of the Gaussian basis
function. It also reveals that the impulse response functions may be time-
varying, with differences in peaks and timing of peaks at different points
in the sample. Overall, the functional local projection method provides
valuable practical knowledge into the effects of shocks on the economy
that helps to characterize and summarize the impulse response functions.

In the third chapter, I conduct a large-scale simulation study to com-
pare impulse response estimates from structural vector autoregressive mov-
ing average (SVARMA) models to those obtained from the more common
structural vector autoregressive (SVAR) and local projection models. The
evaluation of the impulse response estimates is based on quantifying the
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bias and variance across Monte Carlo replications. The simulation de-
sign is based on randomly selected dynamic generalized processes from a
dynamic factor model known to describe US macroeconomic time series
accurately. The SVAR, SVARMA, and LP methods are implemented to
estimate the structural IRFs under three identification schemes: observed
shocks, recursive, and instrumental variables/proxy. The results show that
the SVARMA model exhibits a more extreme bias-variance trade-off than
the vector autoregressive model at intermediate horizons, meaning it has a
lower bias but higher variance. The SVARMA model also faces a similar
trade-off between bias and variance as the VAR model when compared
with the LP method. These results suggest that the SVARMA model may
be a useful estimator in certain contexts where a more extreme trade-off
between bias and variance is desired.






Chapter 1

LOCAL POLYNOMIAL
ESTIMATION OF
TIME-VARYING
PARAMETERS IN GMM

Abstract

In this paper, I propose a new non-parametric GMM estimator for conducting
inference on time-varying parameters in nonlinear economic models. The esti-
mator is based on a local polynomial approximation of the time-varying param-
eters following the approach in Fan and Gijbels (1996) and Kristensen and Lee
(2019). I show that the proposed estimator retains the properties of consistency
and asymptotic normality of the standard GMM under the assumption of uni-
form locally stationarity introduced by Dahlhaus et al. (1997). In a Monte Carlo
study, the proposed estimator exhibits good performance for various models of
interest, such as the moving average and ARCH models. Empirically I study a
canonical gravity model for international trade that I extend to allow for varying
parameters. [ apply the model to the US economy and its main trade partners and
find evidence of varying effects of importer GDP and distance on US exports.



1.1 Introduction

The Generalized Method of Moments (GMM), as introduced in Hansen (1982),
has become an important tool for inference in econometrics. Among others, this
modeling framework has found broad appeal in macroeconomics and finance.!
In particular, two features of the GMM framework are appealing for its appli-
cation in dynamic macroeconomic models: (i) the method relies on a vector of
moment conditions that can often be derived from optimizing behavior of agents
and (ii) under reasonable assumptions it allows for the use of lagged variables
as instrumental variables in order to capture the typical complex relationships
between economic variables. Both of these characteristics can help to handle
partially-defined nonlinear dynamic models (e.g. ?). Hall (2005) provides a text-
book treatment for GMM.

When using economic data, empirical evidence has highlighted the impor-
tance of taking into account the possibility of time instabilities in the estimated
parameters. For example, Stock and Watson (1996) found significant instability
in a large fraction of the univariate and bivariate autoregressive models from 76
representative US monthly macroeconomics time series. Further, Ang and Chen
(2007) found that the market beta of the value portfolio varies considerably over
time when studying the US stocks market. For dealing with time instability in
parameters, most of the current literature has focused on either discrete change
models (e.g. Hamilton, 1989; Boldea et al., 2019) or parametric smooth change
models (e.g. Primiceri, 2005). Both have their limitations. When using economic
data, empirical evidence has highlighted the importance of considering the pos-
sibility of time instabilities in the estimated parameters. For example, Stock and
Watson (1996) found significant instability in a large fraction of the univariate
and bivariate autoregressive models from 76 representative US monthly macroe-
conomics time series. Further, Ang and Chen (2007) found that the market beta
of the value portfolio varies considerably over time when studying the US stock
market. For dealing with time instability in parameters, most of the current liter-
ature has focused on either discrete change models (e.g. Hamilton, 1989; Boldea
et al., 2019) or parametric smooth change models (e.g. Primiceri, 2005). Both
have their limitations.

First, while discrete structural changes in parameters are appealing for in-

I'The applications of GMM in economics and finance are broad and diverse. For a
comprehensive list of applications, see Table 1.1 in Hall (2005).
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terpretability, sometimes abrupt changes are economically implausible. As such
smooth change models can be more appealing.”? While the vast majority of the
macro literature adopts parametric, often random walk, specifications for time-
varying parameters (e.g. Primiceri, 2005), there exists little rationale or justifica-
tion for this. A few works have considered time-varying parameters frameworks
where the parameters are assumed to be a deterministic and smooth function of
time (e.g., Robinson (1989), Orbe et al. (2000), Cai (2007)).

In this study, I extend the GMM framework to allow for time-varying pa-
rameters in a nonparametric fashion. Specifically, parameters are allowed to
vary over time smoothly as in the polynomial approximation setup developed
in Fan and Gijbels (1996). For this extended GMM model, I propose to esti-
mate the true time-varying parameter path using a local polynomial estimator
where the true parameter is locally approximated by a polynomial of order n
(e.g., n = 0 local constant, n = 1 local linear, etc.). In this way, I bring non-
parametric methods into the time-varying parameter GMM model, which offers
several advantages. First, little restrictions are imposed on the functional form of
the parameters, unlike the parametric cases in which we need to assume a pro-
cess for them (e.g., random walk or structural break). Second, the nonparametric
estimates of a time-varying parameters model can give helpful information about
the shape of the coefficients that can be used in subsequent parametric estima-
tion. Third, the estimator is computationally straightforward because there is no
substantial difference from a kernel estimation regression.

In general, parametric models for time-varying coefficients might be more
efficient if the coefficient functions are correctly specified, but this is hardly
the case in practice. For these reasons, various researchers have been consid-
ering nonparametric time-varying/functional coefficients in the context of time
series regressions models such as Robinson (1989), Fan et al. (1999), Cai et al.
(2000),Cai and Li (2008), Chen and Hong (2012), Chen (2015), among others.
I argue that this method is appealing in cases where no information about the
dynamic of the parameters to be estimated is given. In light of these works, my
contribution is to make these methods applicable to the general GMM frame-
work.

This extension covers many specific models of interest, such as time-varying

2As Hansen (2001) comments: “While it may seems unlikely that a structural break
could be immediate and might seem more reasonable to allow a structural change to
take a period of time to take effect”.



moving average (MA) models and autoregressive conditional heteroskedasticity
(ARCH) models. For example, Yan et al. (2020) points out the importance of
considering time-varying parameters in the context of multivariate moving av-
erage models, while Chen and Hong (2016) and Inoue et al. (2020) highlight
evidence of parameter instability in the family of GARCH models. These mod-
els have the additional feature that the implied moment conditions are nonlinear
in the parameters, a characteristic the GMM framework can easily handle.

I develop the asymptotic theory of the proposed estimator based on the as-
sumption of local stationarity as introduced in Dahlhaus et al. (1997). This con-
cept has been adopted and extended in Dahlhaus et al. (2006), Dahlhaus et al.
(2019), and Kristensen and Lee (2019). The idea behind this assumption is that
a locally stationary process can be approximated by its local stationary approx-
imation on each point of time, such as modified versions of the law of large
numbers, and the central limiting theorem can be applied. Based on this assump-
tion, I show that the proposed estimator retains the properties of consistency and
asymptotic normality of the standard GMM. As such, these results can be viewed
as complementary to those of Kristensen and Lee (2019), who show similar re-
sults for time-varying parameter estimates in a likelihood framework. I use the
results from Kristensen and Lee (2019) and Dahlhaus et al. (2019) to establish
the asymptotic properties of the local polynomial estimator within the GMM
framework.

I study the small sample properties of the estimator in a Monte Carlo study
for two examples of interest: the MA(1) model and the ARCH(1) model. In
order to assess the behavior of the proposed estimator, I consider three different
specifications for the time-varying parameters: cosine function, a linear trend
with a break function, and square root function®, while its performance is eval-
uated by computing the mean absolute deviation error (MADE) and root of the
mean squared errors (RMSE) for each case. I find evidence of a good perfor-
mance of the proposed estimator in terms of MADE, RMSE, and coverage of the
confidence intervals.

In the empirical part, I estimate a gravity model of international trade with
“distance”-varying parameters for the US economy and main trade partners. The
gravity model is an analytical framework for the study of bilateral trade flows

3The linear trend with a break is not part of my framework because I assumed that
parameters change smoothly over time, but I consider important to evaluate the perfor-
mance of the estimator under this case.



(see Eaton and Kortum (2002), Anderson and Van Wincoop (2003), Silva and
Tenreyro (2006)). In particular, Kalirajan (1999) and Tzouvelekas (2007) show
some evidence of varying coefficients in gravity models. In this sense, I study
the effects of distance on US exports focusing on the trade-off between the dis-
tance and partners’ market sizes (GDP). I explore “distance”- varying-parameter
gravity model as in Marimoutou et al. (2010) by ordering the data according
to increasing spatial distance: the first observation corresponds to the nearest
neighbor of the US (Canada) and the last one to the country very far from US
(Indonesia) such that the top 100 trade partners are included in the analysis. I
argue that under these definitions, the “distance” can be viewed as “time” in
my framework, and the nonparametric GMM estimator can be applied. I find
evidence of varying effects of partners’ GDP and distance on US exports.

The remainder of this paper is organized as follows. In Section 2, I review
the main papers directly related to the present research. In Section 3, I describe
some examples of what kind of models the proposed method can handle. Section
4 details the general framework and shows the asymptotic theory results. Section
5 displays the main findings of the Monte Carlo study, and Section 6 shows
results from the empirical application. Section 7 concludes. Proofs, tables, and
plots can be found in the appendix of chapter 1.

1.2 Literature Review

There is a significant body of literature on nonparametric techniques for dealing
with time-varying parameters, particularly in linear models. Robinson (1989)
and Robinson (1991) introduced a class of kernel estimators for time-varying
parameters in linear models. He also demonstrated that making the time-varying
parameter depend on the sample size is necessary to provide the asymptotic jus-
tification for any nonparametric smoothing estimators. The “intensity” assump-
tion suggests that consistent estimation can be achieved through an increasing
density of data points or an “intense” sampling of data points. In a series of pa-
pers Orbe et al. (2000), Orbe et al. (2005), and Orbe et al. (2006) built on the
work of Robinson (1989) by including seasonal patterns in the analysis.

It is important to note that the estimators discussed above are local constant
estimators or Nadaraya-Watson estimators, which are known to have a larger
bias and can be affected by boundary effects. In this sense, Cai (2007) proposes
a local linear approach to estimate the time trend and coefficient functions and

9



studies the asymptotic properties of these estimators under certain mixing con-
ditions. Subsequent studies extend the nonparametric local linear estimation of
time-varying parameters even further: Chen and Hong (2012) propose a consis-
tent test for smooth structural changes and abrupt structural breaks with known
or unknown change points. The idea is to estimate smooth time-varying param-
eters by local smoothing and compare the fitted values of the restricted constant
and unrestricted time-varying parameters. Chen (2015) addresses the problem of
modeling and detecting parameter stability in econometric models, focusing on
models with endogenous regressors. He proposes a local linear two-stage least
squares estimation method to estimate coefficient functions in a time-varying
coefficient time series model with potential time-varying endogeneity.

From the parametric point of view, there are different ways to deal with time-
varying parameters in the literature. Some papers related to structural breaks are,
for example, Hamilton (1989), Bai and Perron (1998), Tsay (1998), Kim et al.
(1999), Sims (1999), Sims and Zha (2001) and Sims and Zha (2006), and refer-
ences therein. This model assumes time-varying parameters to allow for abrupt
structural breaks in economic relationships and obtain efficient estimation. An-
other strand of the literature assumes stochastic coefficients generated by a ran-
dom walk. Classic examples of this part of the literature are Primiceri (2005),
who studies changing monetary policy, and Cogley and Sargent (2005) regarding
evolving inflation dynamics.

The present research is also related to the literature on locally stationary pro-
cesses. Dahlhaus et al. (1997) introduced a general minimum distance estima-
tion procedure for nonstationary time series. Dahlhaus et al. (2006) generalized
the ARCH(co) model to the nonstationary class of ARCH(oco) models with time-
varying coefficients, which can be approximated as locally stationary ARCH(co)
processes at fixed time points. Dahlhaus et al. (2019) presented a general theory
for locally stationary processes, including their stationary approximation and sta-
tionary derivative, as well as laws of large numbers, central limit theorems, and
bias expansions.

A paper closely related to the present study is Kristensen and Lee (2019),
in which the authors develop a local polynomial (quasi-) maximum likelihood
estimator of time-varying parameters under the assumption of locally stationary
processes. The main difference is that our framework is based on GMM, leading
to new results on the use of polynomial fitting to estimate time-varying parame-
ters.

10



1.3 Examples

In this section I first introduce some examples that show that the framework
under study deals with typical cases of interest in which there are moments con-
ditions which are time-varying and nonlinear in the parameters.

1.3.1 Moving Average Models

A moving average model is a time series model used to forecast future values
based on past observations. The model is based on the idea that the future value
of a time series can be predicted by taking the average of a certain number of
previous innovations.

Let us consider the simple MA(1) model for outcome variables y; given by

yr = e — PBeg1, t=1,...,n,

where e; has mean zero, variance o2 and is uncorrelated over time. The parame-
ters of this model can be identified from the following moment’s conditions

E(y7) =0*(14+ 8% and  E(py—1)=—08.

Notice that the moment conditions are nonlinear in the model parameters.

The parameters are summarized in the vector = (3,02). Making these
parameters time-varying has been important in various applications; see for ex-
amples Triantafyllopoulos and Nason (2007), and Yan et al. (2020). We consider
0; = (B, 0?) and write the time-varying moment conditions as

yi — o7 (1+ 67)

Elg(vi,6,)] =0  with ,0r) =
[9(ve, 01)] 9060 = | L+ 028

Here v; = (yt,y:—1) and the known function g captures the non-linear and
time-varying moment restrictions. In this paper, I will treat the parameters 6;
deterministic. I propose a new estimator and develop the corresponding theory.

1.3.2 ARCH models

The autoregressive conditional heteroskedastic (ARCH) model is a statistical
model used to model the time-varying volatilities. It is often used to model and

11



predict the variance or volatility of returns in financial markets, while its original
application was for modeling the variance of inflation series (e.g. Engle, 1982).
We consider a simple ARCH(1) model

Yt =V Meer )\t:w—l—ayf_l, t=1,...,n,

where e; has mean zero, variance one, and is uncorrelated over time. The pa-
rameters of this model § = (w, a) are typically estimated by either parametric
maximum likelihood methods, i.e., under an additional distributional assumption
for e, or by using moment methods.

When we adopt moment methods to estimate the parameters in this model,
typical choices for the moments include

W

E(yZ(y? — M) =0 and E (yf) =T

Additionally, we can over-identify the model parameters by also including the
fourth-moment condition
3w?(1+ a)
E(y/) = _ — 3,2
(1 —a)(1—3a?)

when 0 < a < % Chen and Hong (2016), Dahlhaus et al. (2006), and Inoue
et al. (2020) have documented that the parameters § are often unstable over time
when this model is applied to financial data.

We accommodate time-varying parameters in this model by letting 6; =
(wt, o) and setting

yrz(th - At)
Elg(vi,0)] =0  with  g(v,0;) = | ¥ ~ T-a;
4 3wt2(1+at)
Yt ~ T-an)(i-3ad)

where v; = (y2,y}). Compared to the MA model above, this model falls more
precisely in our extended GMM framework as it is nonlinear, time-varying, and
over-identified.

1.3.3 Consumption Capital Asset Pricing Model

In this model, an individual can invest in J risky assets, each with returns R; ;1
(where j ranges from 1 to J), as well as a risk-free asset with a fixed return
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Ry ;11. The Euler equation asset pricing model assumes that an individual has a
preference for consumption C' that follows a power utility function.

l—«a

l—«

U(Ct)

)

where « is a risk aversion parameter. Together the Euler equations are given by
the J + 1 nonlinear equations

Ciy1
C;

E [(Rj,t-i-l — Ryyp1)B(

E{(l + Ry 11)B( )_afft} —-1=0,

Cit1
Cy

)—a|ft} —0, j=1,..J,

where I; represents the information available at time ¢ and /3 denotes the time
discount parameter. The parameters of interest are given by 6 = (3, «).

There is ample evidence that the parameters of this model might change over
time. For example, Bruno and Shin (2015), Rey (2015), Guiso et al. (2018), and
Miranda-Agrippino and Rey (2020) all found evidence that risk aversion changes
over time synchronizing with the business cycle. The time-varying parameter
GMM framework I propose in this paper allows 6 to change smoothly over time
and can therefore capture changes in risk aversion and possibly discounting.

1.3.4 Gravity Models

Another example of models the proposed method can handle is the gravity model
for international trade, see Eaton and Kortum (2002), Anderson and Van Win-
coop (2003), Silva and Tenreyro (2006). The gravity model is an analytical
framework for studying bilateral trade flows. A simple version of this model
is:

E[Y;|X] = exp(X/0)

where Y; denotes trade values such as nominal export, imports, or total trade be-
tween country ¢ and the reference country, X; contains country ¢ features such
as nominal Gross Domestic Product (GDP) and distance between the most pop-
ulated city of country ¢ and the reference country.

As pointed out by Nishihat and Otsu (2020), the estimation of this model
can be viewed as a conditional GMM estimation. By the law of iterated expec-
tations, the conditional moment restriction above implies unconditional model
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restrictions of the form:
E[{Y; — exp(X;0)}h(X1)] = 0

for any function A(.). In particular, h(X) = X yields the Poisson pseudo max-
imum likelihood (PPML) estimator while h(X) = exp(X’'3)X yields the non-
linear least squared (NLS) estimator. Notice that for either choice of the function
h(X), the moment condition is a nonlinear function of the parameter 6.

According to Marimoutou et al. (2010) shows that there is some evidence
that coefficients in gravity models can vary. Allowing the coefficient 6 to change
as 0; may be advantageous. In this scenario, the moment condition becomes:

9(0:) = (Y — exp(X;6;))h(X;)

In this context, it is possible to order the observations based on increasing spatial
distance from the reference country as in Marimoutou et al. (2010). This ranking
allows us to examine the impact of various factors, particularly spatial distance,
on the variable Y;. Using this ranking and considering the moment conditions,
the model can fit into the framework described in this paper. This means that the
assumption in our framework of a smooth time-varying coefficient implies that
the economic phenomena represented by the 8; vector do not vary significantly
between a country and the slightly more distant country. In other words, the
effect of X; on Y; is not significantly different between geographically close
countries.

In conclusion, moving average, ARCH, consumption capital asset pricing
models, and gravity models are all-time series (or could be viewed as) models
used to forecast and analyze economic and financial data. When estimating the
parameters of these models, the moment conditions are often nonlinear in the
model parameters, and it is often useful to allow the parameters to vary over
time. GMM can be applied to estimate the parameters in these models by using
sample counterparts of the moment conditions. The usefulness of allowing the
parameters to vary over time has been highlighted in various applications. The
next sections will develop an extension of the classical GMM to consider these
features.
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1.4 Time-varying parameter GMM

I consider models defined by the following moment conditions
E[g(vnt,0nt)] =0, Ope=06(t/n), t=1,....n, n>1, (11

where g is a ¢ X 1 known function that takes as inputs the observed random
variables vy, ; and the p x 1 parameter vector 6,, ;. The parameters may change
over time according to the smooth function 6(-) : [0,1] — RP. My interest
is in estimating 0(u) for some v € (0,1) given the triangular array v, ; for
t=1,...,nwithn > 1.

Following the literature on the non-parametric estimation of time-varying
parameters (e.g. Robinson, 1989; Fan and Gijbels, 1996) I will generally assume
that 6(-) is a smooth function that can be approximated at u by a polynomial in
t/n for u ~ t/n. Specifically, I consider the approximation

0k (t/n) = p1+P2(t/n—u)~+ ...+ Bmy1(t/n —uw)™/m!
= D(t/n—u)p ’

where 8 = (81,05, ...,B,41) € RPMHD D(u) = (1,u,u?/2,...,u™/m!)®
I,. Note that ;11 = 0@ (u) = 8°0(u)/0"u for i = 0,1, ..., m. For ease of nota-
tion, I omit the dependence on u from the coefficients 3. The polynomial order,
i.e., m, is assumed to be fixed throughout the paper.

To account for the approximation error 6(t/n)—0; (t/n) I use kernel weighted
sample moments to formulate an estimator for #(u) (e.g. Su et al., 2013). I con-
sider

(1.2)

g(vn,t7 D(t/n - U)B)

i, D . t/n—uy1
. EZmﬁm—u st Dltfn IR |

9(vn g, D(t/n — u)B)(Lo=tym

with K3(-) = K(-/b)/b, where K (-) is a kernel function with bandwidth param-
eter b = b,,. Assumptions on the bandwidth parameter are spelled out in Section
1.4.1 and Section 1.4.2 is devoted to the practical implementation.

Based on the kernel weight sample moments, I define the GMM estimator

for 3 by
B = argglellrgl@n(ﬁlu) 5 Qn(ﬁ’u) = gn(ﬁ’u)lﬂn(u)gn(ﬂ‘u) y (1~4)
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where €2,,(u) is a positive definite p(m + 1) x p(m + 1) dimensional weighting
matrix which may depend on u. Below I derive the optimal weighting matrix and
clarify the parameter space B C R(™+1P_ The resulting polynomial estimator
of O(u) is O(u) = By and ) (u) = B;41. Note that these estimators depend on
the choice of the weighting matrix, which I suppress in the notation.

To facilitate the theoretical analysis of the proposed estimator, I follow Kris-
tensen and Lee (2019) and introduce the following re-scaled version: & = U, B
where U,, = diag(1,b, ...,b™) ® I,,. It is easy to verify that the re-scaled estima-
tor & satisfies

&= argglengn(aIU) o Qulalu) = gnlalu) Qu(u)gn(alu) . (1.5)
with

9(vne, Dy(t/n — w)ar)
9(Vng, Dy(t/n — u)a) (Lot

gn(aju) = ZK}, (t/mn—u) (1.6)

9(vnz, Dy(t/n — w)a) (Lot )m

where Dy(-) = D(-/b). Importantly, with this transformation, Dj(t/n — u) and
Kb(% — u) depend on the same argument, which facilitates the derivation of
precise restrictions on the parameter space A so that ), («|u) is well-defined for
all o € A.

In practice, B can be easily computed using numerical minimization routines.
However, it is useful to recall that for linear moment conditions (e.g., for a linear
IV model), there exists an easy closed-form solution for problem (1.4). Further,
the re-scaled & is only introduced for theoretical purposes and plays no role in
the practical implementation, which is discussed in section 1.4.2.

1.4.1 Asymptotic theory

I study the asymptotic properties of the class of estimators & as defined in (1.5). I
work in the infill asymptotic framework with rescaled time ¢/n € [0, 1], where n
denotes the number of observations. The theory is based on the assumption that
the moment functions g(vy,+, ) are uniformly locally stationary (e.g. Dahlhaus
etal., 1997, 2006, 2019; Kristensen and Lee, 2019). The original local stationary
assumption imposes that for fixed u € [0, 1], g(vp ¢, 0) should locally (i.e., for
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|u — n/t|<< 1) behave like a stationary process. I will effectively require the
same, but uniformly over the parameter space.

To set this up, I rely on the following definition, taken from Kristensen and
Lee (2019).

Definition 1. A triangular family of random sequences W, (), 0 € O,
fort = 1,...,n and n > 1, is uniformly locally stationary on © (here after
ULS(p,q,®)) for some p,q > 0 if there exists a family processes W/ (0|u),
u € [0, 1], such that: (i) The process {W;"(6|u)} is stationary and ergodic for all
(0,u) € © x [0,1]; (ii) for some C < oo and p < 1,

1
=1

This definition establishes that the nonstationary process W, () is well approx-
imated by its stationary approximation W;*(6|u) around w.

Definition 2. A stationary process W;*(6|u) is said to be L,-continuous w.r.t
6 if the following holds for all 6 € ©: E[||W;"(0|u)||P] < oo and

1/p t
E [sup [|Wh+(60) — Wt*(e\u)Hp] <C <‘ —u
6cO

n

1/p
Ve>036>0:E sup ||W; (0 |u) — W[ (0)u)| P <€
0":]16—0|| <5

As it is stated in Kristensen and Lee (2019), the definition of L,,-countinuous w.r.t
0 is weaker than almost sure continuity, and it can be shown that it also implies
stochastic equicontinuity of @, («|u), see proof of theorem 1 in the appendix.

Definition 3. Let ¢;,¢ € Z be a sequence of i.i.d random variables. Let
Fi = (€, €-1,...) and ft**(t*k) = (€ ooy €t bt 15 €1 oy €b— k15 €L—k—2---)5
where €;*, is a random variable which has the same distribution as €y and is
independent of all ¢, € 7Z. For a process Wy = Hy(F;) € L% with deter-
ministic H; : RY — R let define Wt**(t_k) = Hy(F, *(t_k)) and the uniform
functional dependence measure

ok (t—k
(5}1/‘/(16) = supHWt—Wt*( )H
tez q

With these definitions in place, I state the main assumptions that are needed
to show point-wise consistency for the proposed nonparametric GMM estimator.

Assumption 1. For the moment model defined by equation (1.1), I assume that
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1. (i) The kernel function K(.) > 0 is bounded with bounded variation By,

and compact support K = [-1,1] and [ K (v)dv = 1; (ii) K(.) is sym-
metric around 0; (iii) for some C < oo, |K(v) — K(v")|< Clv — /|,
v,v' €R

2. A={a e RP"D) : D(v)a € ©,Vv € K}, where © is compact and the
true value O(u) € ©.

3. O, (u) is a positive definite and Q,(u) 2> Q(u) with Q(u) positive defi-
nite.

4. (i) g(vne,0) is ULS(p,q,©) for p > 1 and q¢ > 0 with stationary
approximation g; (0|u); (ii) 0 — gf (0|u) is L1 continuous; (iii) 0 —
Elg; (0|u)] = 0 if and only if 0 = 6(u).

Assumption 1.1 excludes Gaussian and other high-order kernels but includes
the Epanechnikov and triangular kernels. The compact support in assumption 1.1
is related to standard assumption 2: we need © to be compact as is standard in
the literature to obtain the desired uniform convergence results. But if the kernel
has unbounded support then Dy(v)a ¢ O as b — 0 for a = (aq, ..., ayy,) With
a; # 0 for some i > 1 and any v # 0. We would need the parameter space A
to collapse to {(a1,0,...,0) : a1 € ©} in order to allow for unbounded kernel
support, which would make unfeasible the Taylor approximation with respect
to « of the loss function. However, by restricting the support of the kernel, we
can verify that Kp(v) f (v, Dp(v)e) is well-defined for all & € A and v € R.
Additionally, as we will notice in the proof, we can argue that (a,..,0) is an
interior point of A and then apply standard Taylor approximation in our analysis
of &. Assumption 1.3 regarding the weighting matrix is standard in the GMM
literature. Finally, Assumption 4. (i) and 4. (ii) are standards in the analysis of
“global” extremum estimators of stationary models. In particular, assumption 4.
iii with K > 0 guarantees that the local polynomial estimator identifies 6(u).

Theorem 1. Given assumption I as b — 0 and nb — oo we have that
a2 (0(u),0,...,0)
In particular, 0(u) 5 0(u).
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The theorem above only provides consistency of 9(u) but is silent about &1
for ¢ = 1,...,m. However, I can provide a precise analysis of these estimates
with additional regularity conditions on the moment condition function.

Assumption 2. For the moment model defined by equation (1.1), we assume that

1. (i) g(vnt,Ont) is twice continuously differentiable with respect to 0, 1;
and (ii) 0(u) lies in the interior of © and is m + 1 times continuously
differentiable with respect to u.

2. Foreachu € [0,1] and j = 1,...,q, there exists a measurable function
7 0
H(u,.) such that g;t(ﬁlu) = H(u, F;) and 531 (k) = SUPyeio.) 5 g5 ( ‘U)(k)

* * 0
satisfies that Ag'fq =0 533 (k) < oo where 5q g5 Ol )(k:) is the uniform
functional dependence measure. Let us define ¥:(u) =

2 kez Cov(go(0(u)|u), g (6(uw)|w)).

3. Let be s(vpt,0) = % € RIY*P, then s(vpy,0) is ULS (p,q,{6 :
1160 — O(u)||< €)} for some p > 1 and q,e > 0 with Ly continuous sta-
tionary approximation s; (0|u) and ¥s(u) = E[s} (0|u)].

Assumption 2.1 is standard in the polynomial fitting estimation literature and
is needed to apply the Taylor approximation. Assumption 2.2 refers to a measure
of dependence frequently used in the local stationary literature, see Dahlhaus
et al. (2019). Finally, assumption 2.3 is needed to obtain an approximation for
the bias and convergence of the derivatives of the moment conditions. Given
these assumptions, I obtain the following result.

Theorem 2. Suppose the assumptions 1 and 2 hold. Then, as b — 0 and nb —
o0,

\/%UH{B(U)—ﬁo(u)—U;;[Go(u)’ﬂ(u)c:o(u)]*1ao(u)/9(u( u)+0,(1 )}
— N (0, [Go(u) @(u)Go(u)] ™ Go(u)' Ruw) A(u) Go () [Go(u) Au) Go(w)] ")

S Lt 1m (m+1)
with U* = diag{b™ ", ™, ...,b} @ I,, B(u) = M ® zs(u)"(miﬂg!), Au) =
K ® X(u), and Go(u) = (Hm+1 ® Zs(u)> x J, where 1, is the identity ma-

trix of order p, and M, K, and J are matrix of constants defined as: M =
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diag{K§, K}, ... KL} € ROVEDXm4l) g [y gt g 1" € Re(ma)xp(meD),
and

Kg) Ki ]Ig?n
K = KK Ko € R(m+1)x(m+1)

with K} = [ K(v)o™H+id, K2 = [ K2(v)vidv, and p; = [ K (v)v'D(v)dv.

The asymptotic covariance can be estimated using plug-in methods. It fol-
lows from the proof of Theorem 2 and by applying propositions 2.5 and 3.8 in
Dahlhaus et al. (2019) for covariances functionals using the invariance property
of the stationary approximation that a consistent estimator for the asymptotic
variance-covariance matrix is A(u) = K ® $(u) g ac where:

n—1
S(u)pac =To+ Y win(@i+T7)
=1

where

By = 37 Ky(t/n—u)g(on e, Dolt/n—u)(w))g(vnss, Dol(t—i)/n—u)ix(w))
t=j+1

with &(u) — a*(u) = (6(u)’,0’,...,0)". Similar estimator for the covariance
has been proposed in Dahlhaus (2012).

As in the standard GMM setup, we can obtain the optimal 2, (u) to minimize
the asymptotic variance-covariance matrix. If we consider ,(u) = A~ (u)
where A(u) = K ® 3(u) , then the asymptotic variance-covariance matrix of

B(u) is [Go(u) A~ (u)Go(u)] L.

1.4.2 Practical implementation

In this section, I put the pieces from the previous sections together and describe
the algorithm for computing the efficient GMM estimate for #(u). Specifically,
for a given v and bandwidth b consider the following steps.

1. Pick a suboptimal weighting matrix, such as the identity matrix {2, (u) =
Iy(m+1)> and solve B° = arg mingep Q. (B|u) for the objective function

Qn(Blu) = gn(Blu) Qn(u)gn (Blu).
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2. Estimate A(u) = K ® $(u)gac using ° to estimate (u)gac as ex-
plained in Section 1.4.1.

3. Set the optimal weighting matrix €2, (u) = f\il(u) and solve §! =
arg mingeg Qn (f|u) where Qn(Blu) = gn(ﬁ|u)’A_1(u)gn(ﬁ|u).

A~

4. The variance matrix for 5! is computed as [Go(u) A~ (u)Go(u)]~" where
we use 3! to estimate Go(u).

1.4.3 Bandwidth Selection

It is well-established that the choice for bandwidth b plays a crucial role in bal-
ancing the bias and variance of kernel estimators. For time-varying parameter
linear regression models, there are several approaches for estimating an optimal
bandwidth parameter, i.e., mean squared error minimizing. One approach is the
use of a nonparametric version of AIC (e.g. Cai and Tiwari, 2000; Cai, 2002,
2007), which has been shown to perform well compared to other methods such
as generalized cross-validation and the classical AIC. Another approach is the
use of cross-validation, as proposed in the work of Robinson (1989) and Chen
(2015). The latter study also proposes a plug-in method for selecting the opti-
mal bandwidth, but this method requires the estimation of the derivative of the
parameter of interest.

For time-varying autoregressive models, time-varying moving average mod-
els, and time-varying GARCH models, Richter and Dahlhaus (2019) propose
an adaptive bandwidth selection method based on cross-validation for local M-
estimators. It should be noted that this method does not apply to the GMM
estimator, which is an extremum estimator that is not an M-estimator. Therefore,
cross-validation is not guaranteed to result in the optimal bandwidth parameter
for locally stationary processes. To the best of my knowledge, there is no cross-
validation procedure for the GMM framework. As a result, we rely on rule-of-
thumb methods for selecting the bandwidth in both the simulation and empirical
sections of our analysis. There is no doubt that further research is necessary for
this area.

21



1.5 Simulation Study

In this section, I present the results of various Monte Carlo simulations designed
for a MA(1) model and an ARCH(1) model. For all simulations, we set m = 1
and estimate the local linear estimator of the time-varying coefficient.

The mean absolute deviation error (MADE) and root mean squared error
(RMSE) are considered to assess the finite-sample performance of the proposed
estimator. In all cases, I utilize the Epanechnikov kernel and apply the rule of
thumb guidelines for the bandwidth parameter. The MADE and RMSE are cal-
culated as follows:

MADE((u 12;98 (u)] RMSE(u) = 512 (65 (u) — 0(u

where 0%(u) is the local linear estimator of @(u) at replication s with s =
1,2,...,S. I also compute the coverage ratio of the 95% confidence interval
for the relevant parameters.

1.5.1 Simulation Design

To evaluate the performance of the proposed estimator in various contexts, we
consider three experiments based on different shapes for the time-varying param-
eters: T'V1, in which the coefficients follow a cosine shape; T'V5, in which the
coefficients exhibit a linear trend with a break at u = 0.50; and T'V3, in which
the coefficients follow a square root function.

The data generating process and moments conditions are set as follows:

1. In simulation exercise 1, I consider a time-varying MA(1) model:
Y = er +0iey

with €; ~ N(0,0?). The moments conditions considered are: F(y?) =
o?(1 +60%) and E(yy;_1) = o0.

2. Insimulation exercise 2, I consider a simple restricted time-varying ARCH(1):

e, M=1—op+ Oétth_l
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where ¢; ~ N(0,1). The moments conditions I use here are E(y?(y? —

A\¢)) = 0 and the fourth moment F(y} — %) = 0. This is
particularly challenging because sometimes the sample replication for the

fourth moment is not informative.

1.5.2 Results

I run 1000 Monte Carlo replications for sample sizes T=500 and T=1000 and
estimate the time-varying parameters at three points in time of the sample: u =
0.10,0.50, 0.90 for each of the models and experiment considered.

Tables A.1 to Table A.5 present the main results of the simulation exercises.
Table A.1 and Table A.2 display the MADE and RMSE, respectively, for the
tv-MA(1) model, where it can be observed that these measures improve as the
sample size is increased in all three experiments. When there is an increase or
decrease in performance as w increases, this is due to the different values of the
true parameter at each specific value of u. Table A.3 shows that the coverage
ratios fall within the acceptable range.

The restricted tv-ARCH(1) model was also analyzed, with sample sizes of
T=2000 and T=4000 included to align with the typical sample sizes used in
ARCH/GARCH models and to account for the estimation of a fourth moment.
Table A.4 presents the performance of the nonparametric GMM estimator in
terms of the MADE and RMSE for this model. It can be seen that the best per-
formance is generally achieved at «w = 0.50, as this is the point at which the most
observations are used to estimate the parameter relative to the extreme points
of u = 0.10 and u = 0.90. The coverage in Table A.5 improves quickly with
increasing sample size and is generally better for the v = 0.5 estimation.

1.6 Empirical Study

I apply the proposed procedure in 3.3 to study a simple gravity model for in-
ternational trade of the US economy, explained in section 1.3.4. In this sense,
I explore “distance”- varying-parameter gravity model as in Marimoutou et al.
(2010) by ordering the data according to increasing spatial distance: the first ob-
servation corresponds to the nearest neighbor of the US (Canada) and the last
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one to the country very far from US (Indonesia) such that the top 100 trade part-
ners are included. The data is obtained from the Gravity database from Research
and Expertise on the World Economy CEPII for 2017. I focus on the estimation
of the “distance” varying coefficients in the model by considering the following
gravity model moment condition:

E[{Y; — exp(X;f)} Xi] =0

wheret = 1,2, ..., 100, Y; is the exports of the US to the country ¢ and X; are the
regressors for country ¢ which includes a constant term, the logarithm of GDP
and the logarithm of distance: X; = (1,log(GDP;),log(distance;))’. The
ranking enables us to study the effect of spatial distance on export relationships.
This model specification fits within our general framework. This framework
requires moment conditions that depend nonlinearly on the parameters, which
are allowed to vary based on distance rather than time. By allowing 3; to change
smoothly, it is assumed that the parameters are not significantly different between
close countries geographically. We use 2(X) = X in the moment condition
specified above as in the Poisson pseudo maximum likelihood (PPML) approach.

1.6.1 Results

After applying the nonparametric GMM estimator to study a gravity model with
distance-varying coefficients for the US and main partners’ datasets, this section
discusses the main findings.

Figure A.1 (a) and Figure A.1 (b) display, respectively, the “distance” vary-
ing coefficients for GDP and distance in the gravity model considered for the US
economy and top 100 trade partners.*. The first result supports previous findings
in the gravity model literature: the coefficient for GDP is positive, while the co-
efficient for distance variables is mostly negative. The reasoning behind these
signs is that the partner’s GDP represents the market’s attractiveness; in other
words, the larger the GDP of the partner, the higher the US exports to that part-
ner. In the case of distance, it is traditionally viewed as a proxy for the cost of
entering a market. Therefore, the greater the distance, the higher the cost of en-
try, discouraging exports to countries far from the US. These relationships align
with the expectations of the law of gravity for trade.

“Epanechnikov kernel and rule of thumbs for the bandwidth were used.

24



The plots reveal new findings in gravity models for the United States. Fig-
ure A.1(a) shows the distance-varying importance of the size of the destination
market for US exports. I find evidence that the importance of the partner’s GDP
diminishes as the distance increases, with a coefficient of around 1.2 for coun-
tries close to the US and a coefficient of 0.5 for countries further from the US.
For countries halfway between these two options, the coefficient of the GDP is
around 1. It is worth noting that the coefficient of GDP (in logs) on US exports
(in logs) can be interpreted as an elasticity, meaning that for countries near the
US, a 1% increase in the partner’s GDP leads to a 1.2% increase in US exports
to that partner.

To further analyze this trend, I will divide the countries into three regions
based on their distance from the US: those that are 3500 km or less away, those
that are between 10000 km or less but more than 3500 km away, and those that
are 10000 km or further away. In the closest region, up to 3500 km away, the
coefficient on GDP (in logs) decreases in a similar trend to that of countries far
away from the US, farther than 10000 km. In contrast, the countries in the second
region have a constant coefficient value.

On the other hand, Figure A.1(b) also reveals new information: the coeffi-
cient for the distance variable is initially negative and decreasing for countries
close to the US, then rapidly increases towards zero and stabilizes around this
value. To further analyze this trend, let us divide the plot into three areas: the
first one for countries up to 5000 km away from the US, the second one for coun-
tries between 7500 km or less but more than 5000 km away from the US, and the
third area for countries that are 7500 km or further away from the US. Similar to
the case of GDP, we can interpret this coefficient as an elasticity: for countries
around 5000 km away from the US, a 1% increase in distance is associated with
a 6% decrease in US exports.

The plot shows that in the first area, the distance variable becomes strongly
negative, which highlights the increasing trade costs in the neighborhood of the
US. In the second area, the rapid increase of the coefficient of the distance vari-
able suggests that this variable loses relevance in explaining bilateral trade. In
the last area, the coefficient fluctuates around a zero value, indicating that this
variable no longer helps to explain US exports.
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1.7 Conclusion

In this paper, I propose a new nonparametric GMM estimator in the presence
of time-varying parameters. In the spirit of Fan and Gijbels (1996), Dahlhaus
et al. (1997), and Kristensen and Lee (2019), I estimate the true time-varying
parameters by polynomial approximation and show formally that the proposed
estimator retains the properties of consistency and asymptotic normality of the
standard GMM under the assumption of uniform locally stationarity. This con-
cept allows us to approximate the non-stationary process locally by its stationary
approximation, which facilities the application of modified versions of the law
of large numbers and the central limiting theorem. In the Monte Carlo study, the
proposed estimator shows good performance for the time-varying MA model and
time-varying ARCH model in terms of MADE and RMSE. Coverage ratios also
show to be reasonably good. In the application, I study a simple gravity model
for international trade with varying parameters for the US economy and main
trade partners and find evidence of varying effects of partners’ GDP and dis-
tance on US exports. I let unexplored an optimal criteria to select the bandwidth
parameter, which might be the topic of future research.
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Chapter 2

SIMPLE FUNCTIONAL
LOCAL PROJECTIONS

Abstract

I propose a simple and practical method for estimating impulse responses. The
method is based on using a single flexible function to approximate the impulse
response and comes with honest confidence intervals that take into account the
bias that is introduced by the functional approximation. The method facilitates
an easy way to interpret and compare impulse responses across model specifi-
cations and estimation methods. I demonstrate the performance of the proposed
method in a simulation study and apply it to study the effects of total factor pro-
ductivity shocks on the US economy. The results show that the functional local
projection approach provides accurate and informative estimates for impulse re-
sponse functions.

2.1 Introduction

The estimation of impulse response functions is a central task of macroeconomic
and macroeconometric research. A large portion of the econometric efforts has
been directed toward finding “efficient” estimation methods, that is, studying the
conditions under which certain estimators should be preferred over others. From
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the macroeconomic literature, the emphasis has been on discovering "new” evi-
dence for macroeconomic relationships, naturally using the available economet-
ric estimation methods.

As such, there has been little effort in synthesizing and unifying the different
impulse response estimates obtained. For instance, what is the peak of the effect
of unemployment in response to a one-unit exogenous change in the short-term
interest rate, and what is the half-life of such peak. When searching for such
answers, the literature provides little guidance as impulse responses are plotted
but rarely numerically quantified in terms of their properties. This makes com-
parisons complicated, and little research has looked into the differences across
methods and methodologies.!

In this paper, I provide some useful tools for characterizing impulse response
functions using their canonical characteristics: peak, location, and the half-lives
before and after the peak. To do so, I introduce simple functional local projec-
tions as a way to summarize the evidence from any impulse response estima-
tor. For clarity of exposition, I focus on the local projection estimates, but the
methodology is applicable to any impulse response estimate.

The main idea is to use one or a few, Gaussian basis functions to quantify the
key features of a given impulse response. Gaussian basis functions are attractive
for this purpose as their parameters directly capture the characteristics of the
impulse response and no summary statistics of the function need to be computed.

Typically, using only a single or a few basis functions to approximate the
impulse response leads to biased estimates. To keep inference honest, I show
how size-correct confidence bands can be constructed by taking into account
both the bias and the variance of the functional approximation. These bands
are conservative, but in realistic simulations, their length does not exceed the
length of standard LP confidence intervals by much. The advantage is that the
functional LPs are smooth and easily interpretable.

I extend the static functional local projection framework to allow for time-
varying impulse responses. While there exists a large literature for time-varying
impulse responses in the context of vector autoregressive models (e.g. Cogley
and Sargent, 2005; Primiceri, 2005), much less work has been done for local
projection models (Ruisi, 2019; Inoue et al., 2022). I develop a non-parametric

! A notable exception is Coibion (2012) who investigates the differences in the effects
of monetary policy stemming from standard VARs, and the Romer and Romer (2004a)
distributed lag approach.
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estimator that allows for smooth time-variation in the impulse responses (e.g.
Robinson, 1989). The estimator is shown to be consistent and asymptotically
normal. Crucially, this extension enables us to study the time variation in the
characteristics of the impulse responses.

In a simulation study, the performance of functional local projection and
local projection estimates are compared in terms of their coverage ratios and
lengths for different levels of smoothness and sample sizes. The results indi-
cate that functional local projections perform best in terms of coverage when
the degree of smoothness is high and worst when the degree of smoothness is
low. Additionally, the functional local projections show improved performance
in terms of coverage as the sample size increases. These results suggest that
functional local projections can provide accurate and reliable estimates for cer-
tain cases. However, their performance may vary depending on the specific char-
acteristics of the data generating process. Put differently, it is easy to construct a
DGP where functional local projections are uninformative, but for commonly ob-
served shapes of impulse responses, the Gaussian basis functions can effectively
summarize the information in impulse responses.

The empirical study shows that the functional local projection approach to
estimating impulse response functions yields smoother and more informative re-
sults than the traditional local projection method. The functional approach pro-
vides additional information about the impulse response functions through the
estimated parameters of the Gaussian basis function, allowing for a more detailed
understanding of the system dynamics. In the case of total factor productivity
shocks, the functional approach indicates that their impact on GDP is significant
but temporary at intermediate horizons, while the standard method suggests that
their impact persists in the long term. The functional approach also reveals that
the impulse response functions may be time-varying, with differences in peaks
and timing of peaks at different points in the sample. Overall, the functional local
projection method provides valuable practical knowledge into the effects of total
factor productivity shocks on the economy. For example, the cumulative impulse
response function of GDP to a total factor productivity shock is characterized by
a peak value of ¢ = 1.1, time to peak of b = 14.2, and half-lives before and after
the peak of c\/2 = 138+/2. If time-varying coefficients are allowed, the peak of
the GDP’s response to a total factor productivity shock changes over time, start-
ing at 1.7 at the first quantile of the sample, dropping to 1.4 at the middle point,
and then rising again to 1.8 at the third quantile.
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The remainder of this paper is organized as follows. Section 2 describes
the papers related to this study. Section 3 introduces the main functional local
projection approach and clarifies the benefits of using Gaussian basis functions
to get a smooth version of impulse response functions. Section 4 develops two
estimation procedures to estimate the parameters for the functional local projec-
tion. Section 5 offers a procedure to obtain confidence bands considering the
bias induced by the Gaussian approximation. Section 6 displays the simulation
study, while Section 7 shows an extension of the functional local projection by
allowing the response coefficients to change over time. Finally, Section 8 shows
the empirical application. The appendix shows the proofs and assumptions for
the time-varying extension and displays tables and plots for the simulation and
empirical study.

2.2 Literature Review

The present work is related to estimating impulse response functions using local
projection methods. The modern literature on local projections was started by
Jorda (2005), see also Stock and Watson (2018). My discussion of the literature
focuses on two key features of impulse response functions that can be incorpo-
rated into the local projection framework: smoothness and time instability.

Several previous studies have focused on obtaining smooth estimates of im-
pulse response functions. Prominent examples include Plagborg-Mgller (2017),
Barnichon and Matthes (2018) and Barnichon and Brownlees (2019). These
studies are motivated by the observation that standard local projection methods
often suffer from high variability due to their nonparametric nature. As a result,
the mean squared error of such estimates can be disproportionally large, imply-
ing low efficiency.

Plagborg-Mgller (2017) proposes methods for optimally selecting the degree
of smoothing for a general shrinkage estimator of the impulse response function
and provides procedures for obtaining point-wise and joint confidence sets in
this context. Barnichon and Matthes (2018) propose a functional approximation
of the impulse response function using a few basis functions, which serves as
a dimension reduction tool and makes the estimation more feasible. Barnichon
and Brownlees (2019) introduces a B-spline smoothing technique called smooth
local projections for impulse response function estimation, which increases pre-
cision while preserving the flexibility of standard local projection methods. Re-
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cently, Miranda-Agrippino and Ricco (2021) proposes a Bayesian local projec-
tion method that regularizes impulse response functions using appropriately cho-
sen priors.

There is less research on incorporating time-varying coefficients into the lo-
cal projection framework. Two relevant studies in this area are Ruisi (2019)
and Inoue et al. (2022). Ruisi (2019) models local projections in a time-varying
framework under a Bayesian setting. Inoue et al. (2022) develops a local projec-
tion estimator for estimating impulse responses in the presence of time variation,
allowing for slope coefficients and variance changes.

In this paper, we aim to contribute to the existing literature on impulse re-
sponse function estimation by presenting a framework that allows for the easy
incorporation of smoothness and time variation within the local projection frame-
work.

2.3 Functional Local Projections

In this section, I introduce local projections in a general GMM framework and
discuss the functional local projection approximation.

2.3.1 Local projections

A generic local projection model is given by
gt+h:jt6h+w£7h+€t+ha hZO,l,...,H,

where 9,1, is the h periods ahead outcome variable, Z; is the explanatory vari-
able of interest, w; is a vector of pre-determined control variables and €;, is the
error term. The coefficients of interest are 5y, for h = 0,1, ..., H, where H is
the largest horizon considered. The vector ~;, capture the effects of the control
variables w;.

Without loss of generality I first project out the control variables to obtain

yt+h:$tﬁh+€t+h, h:0717"‘7H7 (21)
where yiin = Jih — Proj(fsn i) and oy = Ty — Proj(Z|wy).

Under suitable identifying assumptions, I can interpret { Bh}tho as the struc-
tural impulse response function, which captures the effect of a one-unit change
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in x; on y;4p. Many different identifying assumptions can be considered, e.g.,
short run, long run, sign, and external instruments; see ? for a concise discussion.
For concreteness, I concentrate on the case where the researcher has available an
L x 1 vector z; of instruments that are correlated with x; but uncorrelated with
er+n- Note that a special case occurs when 2z; = =, which covers the case of
short-run restrictions when vy is suitably chosen.

In the case where z;’s are truly external instruments, I refer to the model
as the local projection instrumental variable (LP-IV) model. Recent examples
of this setup include Jorda and Taylor (2016) and Jorda et al. (2020). In these
applications, noisy proxies for structural shocks are used as instruments to esti-
mate the effects of structural shocks on outcome variables. For example, in our
empirical work, below z; is a proxy for a total factor productivity shock (e.g.
Fernald, 2012) and z; is a measure of economic activity or labor productivity.
Other examples are related to monetary policy shocks, fiscal policy shocks, oil
price shocks, etc.

2.3.2 Functional approximation

In this section, I introduce a functional approximation for the impulse response
{5h}£{:o- The approximation aims to smooth out the otherwise noisy local pro-
jection estimates and enhance the interpretability of the properties of the im-
pulse response function. Importantly, it is not of interest to obtain MSE opti-
mal approximations; there works of Plagborg-Mgller (2017), and Barnichon and
Brownlees (2019) provide tools for this.

To this extent, in this paper, I parameterize the local projection coefficients
with Gaussian basis functions following Barnichon and Matthes (2018). Besides
smoothing out the original estimated impulse responses, this approach also ben-
efits from the fact that the basis functions have an easy interpretation, as can be
seen from the baseline expression:

(h —b)?

B(0) = aexp(~ =

)

where the parameters 6 = (a, b, ¢)’ can be adjusted to approximate the shape of
the true impulse response function. These parameters provide important practi-
cal information about the characteristics of the impulse response function. The
parameter a represents the peak or height of the function, b represents the timing
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of the peak, and c captures the persistence of the shock’s effect. Specifically, c
is the amount of time required for the effect of the shock to be 50% of the peak
value. This allows us to easily interpret the features of the impulse response
function.

One possible extension of the basis function

(h —b)? (h —b)?

BL(0) = aexp(— Lhep — 1p>p)

where in this case the unknown coefficients are = (a, b, ¢1, c2). This extension
of the basis function adds elements to characterize the impulse response function
compared to the original basis function. The extended Gaussian basis functions
are slightly modified compared to the standard case where c¢; = co. This exten-
sion is important as it relaxes the symmetry assumption that is otherwise imposed
by the Gaussian basis function. To illustrate this extension, Figure 2.1 shows a
hump-shape impulse response corresponding to a particular Gaussian basis func-
tion. The coefficient a captures the magnitude of the peak of a shock, b captures
the time to the peak, ¢;v/In 2 captures the “half-life” to the peak, and c2v/In 2
the “half-life” from the peak.

It is generally possible to use multiple basis functions rather than just one.
For example,

N 2
B}{(H) = Zaj exp(—M) .
j=1

Cj

When more than one basis function is used, the interpretability of the estimated
parameters may no longer be guaranteed. However, in some cases, the approx-
imation with multiple Gaussian-basis functions can still be interpretable. For
example, consider an oscillating pattern, the approximation with two Gaussian
functions may still be interpretable if the first Gaussian basis function captures
the initial, positive hump-shaped response and the second Gaussian function cap-
tures the larger, negative hump-shaped effect that occurs later. This allows the
different basis functions to capture different aspects of the response to the shock.
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Figure 2.1: Gaussian Basis Function

c1VIn2 coVIn2

0 h

Notes: This plot represents a typical shape of the Gaussian basis function

in its extended version.

In general, I define the functional local projection model as
Yirn = 2B (0) Fern,  h=0,1,.. H, 2.2)

where the true impulse response is approximated by ﬁf; (0). Here €4, includes
the original error term as well as the error stemming from the approximation of

Bh.-

2.4 Estimation

In this section, I discuss two asymptotically equivalent procedures for estimating
the impulse responses based using the functional local projection model (2.2).
The first one uses a generalized method of moments formulation for estimating
0, whereas the second one is based on a direct fit of the Gaussian basis function
to an unrestricted local projection estimate.
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2.4.1 Generalized Method of Moments

Given the parametrization of the impulse response functions explained above,
I estimate the unknown coefficients ¢ in (2.2) using the generalized method of
moments (GMM). The moment conditions are given by

E(zt(th—mtﬁf:(H))):O, forall h=0,...,H.

Given a sample of observations for time periods ¢t = 1,2, ...,n+ H, I replace the
population moments with their sample counterparts. I obtain

n 2 (ye — fﬂtﬁ({](ﬁ))
gn(0) = %th(e) where gt(0) = 2t (Y1 — 2By (0))
=1

2(Yesn — 2055 (6))

With this notation established, the generalized method of moments estimator for
0 is given by

f = arg min ngn () Wngn(0)
0cO
where W, is an L(H + 1) x L(H + 1) positive semi-definite weighting matrix.
Standard efficient choices can be considered (e.g. Hall, 2005).
Given the estimates 6 I replace the unknown coefficients of the Gaussian
basis functions by their estimates and recover an estimate for 6,{ . That is
(h—b)

B{: = ﬁ,{(é) = &exp(—T) )

This functional impulse response estimate is smooth by construction, and its
characteristics are easily obtained from 6.

2.4.2 Indirect fitting

An alternative approach for estimating 8 is to fit the Gaussian basis function ap-
proximation directly to the unrestricted local projection estimates f. The latter
estimates can be obtained using standard IV methods based on the moment con-
ditions E'(z¢(y¢+r — xfr)) = 0. I use this estimate to obtain an estimation for
0 by solving the minimum distance problem.

0= arg reréiél(ﬁ — B}{(H))'W(B - 5}{(9» )
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where W is a weighting matrix for the horizons. It follows from standard results
in Newey and McFadden (1994a) that this estimator is equivalent to the direct
GMM estimator discussed above.

This indirect estimation procedure can be related to the framework proposed
in Plagborg-Mgller (2017). Specifically, he considers estimators of the form

BN = arg min (8= B)YW (8 = B) + M8 = BYW (B = ).

where 5}{ = ﬁ}{(é), § is defined above, and \ a parameter that controls the
amount of shrinkage towards the Gaussian basis function.

Two important differences distinguish the approach discussed from Plagborg-
Mgller (2017). First, I take the shrinkage parameter to infinity, A — oo, which
means that I shrink the LP estimates completely toward the basis functions that
I use to smooth the impulse response function. This improves the interpretation
of the results due to the Gaussian basis function and saves computation time
because I do not need to implement a procedure to compute an optimal shrink-
age parameter. Second, In contrast to Plagborg-Mgller (2017) I consider basis
functions that are nonlinear in their primitive parameters. This means that the
functional local projection estimator is not available in a closed-form solution,
and I solve the minimum distance problem numerically.

2.5 Honest confidence bands

In this section, I describe a procedure for computing confidence bands for the
functional local projection estimator 5h Crucially, the approach considers the
bias introduced by approximating the impulse responses with Gaussian basis
functions.

Specifically, I do not assume that B,{ LN BZL which would follow if § 2 6 and
the true 3’s satisfy BZL = 5,’: (0). Clearly, this argument relies on the assumption
that the functional approximation is exact in population, which seems too strong
for practical applications. Therefore, I construct confidence bands while taking
into account the bias that is introduced by the functional approximation. For this
purpose, note that the mean squared error of the estimator can be decomposed as

MSE(B]) = E(3] — 81)? = Var(8]) + [E(B]) — 51
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where 1 is the true parameter and B,{ is the functional local projection estimate.

This mean squared error can be easily approximated by simulation, taking
advantage of the fact that the true 37 is consistently estimable using the unre-
stricted local projection estimator. In particular, suppose that:

Va(B - 4 N0, %)

where B is the unrestricted local projection and 3. is the variance-covariance ma-
trix from the local projection estimator. In addition, suppose there is an estimator
S such that & 2 3.

For a given h, confidence bands are based on computing an estimator for the
M SE. First, define for any n € R¥+1 and (H +1) x (H +1) symmetric positive
definite weight matrix W I define

A~

) = argmin(n — B ()W (n — 5(0))

where I is a weighting matrix for the horizons.
Construct the draws () ~ N(j3,%) from s = 1,2..., M, and compute an
estimate for the MSE error using

M , - o .
MSE(3) = < (803~ (7 (B(3)~B7) +(3"~B) (3 B
s=1

where 8/ = Zi,vil B (6(B))). 1t is straightforward to check that MSE is a
consistent estimator of the MSE.

Based on the estimate of the MSE I compute the (1 — «)% pointwise confi-
dence intervals for the functional local projection estimates from

Co = B £ 2a\/ MSE(Bf )

for h = 0,..., H, where z, is the 1 — a quantile corresponding to the standard
normal distribution.

Proposition 1. Assuming that /n(5 — 7) 4 N (0,%). In addition, consider
that we have available the estimator Y such that > 25 Y. Then as n — oo:

Pr(BleCy) >1-a

where Cy, is defined above, the proof can be found in the appendix.
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Alternatively, I consider the following (1 — «)% joint confidence intervals
for the functional local projection estimates as

5 + MSE(B,, .
By % za e ax (B ) hn

The confidence interval constructed using the maximum of the estimated MSE
ensures that the resulting confidence bands have a level of at least 1 — «. Ad-
ditionally, this approach continues with the honest confidence bands by consid-
ering the bias introduced by the approximation in the construction of the confi-
dence bands. Using the maximum quantity when building join confidence sets
has recent applications as in 2.

As mentioned in Plagborg-Mgller (2017), in repeated experiments, pointwise
confidence intervals ensure a predetermined asymptotic coverage probability for
each impulse response individually. These intervals are frequently employed in
applied macroeconomics and panel event studies. On the other hand, joint confi-
dence intervals of asymptotic level 1 — a have a probability 1 — « of covering the
true impulse response at all horizons in repeated experiments for large sample
sizes. Joint bands are necessary for situations such as testing whether the entire
impulse response function is zero or examining the overall shape of the impulse
response function. Indeed, Sims and Zha (1999) and Inoue and Kilian (2016)
have advocated for using joint bands rather than pointwise bands in macroeco-
nomic applications.

Figure 2.2 shows a decomposition of a typical confidence interval constructed
following the previous procedure. The black line indicates the functional local
projection estimate of inflation to a monetary policy shock for the high degree of
smoothness cases; see Section 2.6. The darker gray area represents the part of the
confidence set due to the bias. In comparison, the lighter gray area captures the
part of the confidence region due to the variance of the functional local estima-
tor. For this particular example, the bias contribution is bigger than the variance
contribution to the confidence set at the shorter horizons. This is because most of
the functional projection estimates from the draws BS initiate very close to zero
looking to fit the “bell shape” curve around horizon 15, which causes the low
variance at around horizon 1. Indeed, the variance contribution increases along
the horizons.
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Figure 2.2: Bias and Variance

Inflation

-1.51

Note: The graph displays a decomposition between bias and variance of a typical con-
fidence interval for an impulse response function following the procedure developed in
section 2.5. The darker gray area represents the part of the confidence set due to the bias,
while the lighter gray area captures the part of the confidence region due to the variance
of the functional local estimator.

2.6 Simulation Study

In this section, I discuss the results from a simulation study that was designed to
benchmark the performance of impulse response estimation based on the func-
tional local projection method relative to the standard local projection approach.

2.6.1 Data Generating Process

I consider the same simulation design as in Barnichon and Brownlees (2019).
Specifically, I consider a standard macroeconomic system with Gross Domestic
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Product (GDP) growth gdp;, Personal Consumption Expenditure (PCE) inflation
m¢, and the Fed funds rate f fr;

20 20 20
d
gdpy = Z Bumelh + Z Brany€i—n + Z 513(h)€{f2 ;
h=0 h=1 h=1
20 20 20
d, s
T = Z Bormy€ry, + Z Baan)€t—n + Z 523(h)5,{f2 ;
h=0 h=0 h=1

20 20 20
d
FEre=>"Bamwel® + > Bramern+ Y Bumel)
h=0 h=0 h=0

d . :
where /% ¢7, and €/ /" are i.i.d. structural normal shocks with mean zero and

variances equal to O';dp, o2, and 0]20 #r- Notice that the system is generated using
the usual recursive order restriction such that the monetary policy shock does not
affect contemporaneously neither GDP growth or inflation.

In order to have realistic dynamics in the data generating process, the impulse
response parameters [3;;(h) are set equal to the coefficients of the nine struc-
tural impulse response functions estimated with local projection over 1959Q1-
2007Q4 for the US economy for the variables GDP growth, PCE inflation, and
fed fund rates. These coefficients are estimated following Barnichon and Brown-
lees (2019), who identified the impulse response functions through a recursive
ordering by including in the local projection regression the correct subset of con-
trol variables.

Using these estimates and the data generating process described above, we
simulate the data we use to implement the functional and standard local projec-
tions methods to estimate the impulse response functions. For estimation pur-
poses, we considered the shocks as if they were observed by the econometrician.
This is a common assumption when studying the properties of impulse response
estimation methods; see, for instance, Li et al. (2022) who refer to it as the
observed shock identification scheme. The exercise focuses on estimating the
impulse response of m; and gdp; to a monetary policy shock €y ¢, via functional
local projections and compares this to the standard local projection estimates.

We consider two experiments. In the first experiment, we aim to evaluate the
performance of the functional local projection method in relation to the degree
of smoothness of the true impulse response function. To do this, we will conduct
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three sets of simulations in which we manipulate the coefficients of interest (i.e.,
B13 or Pa3) to increasingly deviate from a perfect fit to a Gaussian function to
their local projection estimates. Meanwhile, the other coefficients will be set to
their local projection estimates. We expect the functional local projection method
to perform best when the true impulse response function is set to a Gaussian
shape over the horizons.

Figure 2.3: Experiment 1 and Degree of Smoothness of the True IRF
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Note: The figure illustrates the true impulse response function for inflation (on the left)
and GDP (on the right) in response to a monetary policy shock at various levels of
smoothness in experiment 1.

In the second experiment, we will examine the performance of the functional
local projection method in a more controlled environment, where the true im-
pulse response function has a Gaussian shape with varying levels of noise. In the
case of low-variance noise, the function will have a high degree of smoothness,
while in the case of high-variance noise, the function will have a low degree of
smoothness. This experiment aims to assess the performance of the functional
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local projection method when the true impulse response function is believed to be
a smooth bell-shaped function over the horizons. Therefore, I expect to observe
further improvements in the functional local projection method over the tradi-
tional local projection estimation in this experiment. The true impulse response
functions for each experiment are reported in Figures 2.3 and 2.4.

Figure 2.4: Experiment 2 and Degree of Smoothness of the True IRF
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Note: The figure illustrates the true impulse response function for inflation (on the left)
and GDP (on the right) in response to a monetary policy shock at various levels of
smoothness in experiment 2.

2.6.2 Results

This section presents the results of 1000 Monte Carlo replications for sample
sizes of n = 200 and n = 500, in which functional local projection and local
projection estimates and their confidence sets are calculated to analyze two key
features of the confidence bands: coverage ratios and lengths.

Table 2.1 and Table 2.2 show the coverage ratios and lengths of a 90% confi-
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dence interval for the response of inflation and GDP growth, respectively, every
horizon and specification of the degree of smoothness of the true impulse re-
sponse parameters for Experiment 1 with a sample size of n = 250. The first
half of the columns shows the coverage ratios, while the last half displays the
lengths. For each of these features of the impulse response functions, the first
three columns contain the results for the high degree of smoothness case, the fol-
lowing three represent the medium degree of smoothness case, and the last three
include results for the low degree of smoothness case. For each of these cases,
the first two columns display the coverage ratios or lengths for the functional
local projection confidence sets denoted as F'L P and F'L P}, where the subscript
j represents the joint confidence interval. In addition, the next column displays
the results for the standard local projection estimate, which I denominate as LP.

In general, Table 2.1 and Table 2.2 demonstrate the good performance of
the confidence interval coverage ratio for functional local projection compared
to standard local projection. For inflation impulse response functions, functional
local projection confidence bands outperform those based on standard local pro-
jection in cases with high levels of smoothness, particularly at shorter horizons,
while maintaining a minimum cost in terms of length. The low coverage around
horizon 4 is due to the jump for the jagged true impulse response function into
positive territory, which the functional local projection with one Gaussian func-
tion is unable to capture. These issues are not present in experiment 2, as shown
in Table B.3 to Table B.6 for sample sizes of n = 250 and n = 500 available
in the appendix. In these cases, functional local projection confidence bands
demonstrate competitive coverage and length across smoothness and horizons.
Additional results can be found in the appendix of this chapter, which includes
plots of specific simulations for the functional local projection and its confidence
intervals for experiment 1 with a sample size of n = 500.

The subsequent subsections provide a more in-depth examination of the re-
sults of the simulation design, in which the performance of functional and stan-
dard local projection methods was compared. The first subsection focuses on
the relative performance of these methods based on the degree of smoothness of
the true impulse response function. The second subsection compares the perfor-
mance of both methods at different horizons of the impulse response functions
in more detail.
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Table 2.1: Coverage and Length for 90 Confidence Interval with n=250 in Experiment 1

Inflation

|

‘ Coverage ‘ Length

‘ High ‘ Medium ‘ Low ‘ High ‘ Medium ‘ Low

| FLP FLP; LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP

097 100 0.84|09 100 0.83]097 1.00 083|031 1.19 032|113 149 036|215 239 044
096 100 085|076 100 0.83]0.75 1.00 083|039 1.19 045|062 149 050|096 239 0.57
096 1.00 08408 100 083]068 1.00 085|045 1.19 051|050 149 055|070 239 0.63
093 1.00 085|099 100 082]078 1.00 083|050 1.19 059|061 149 062|080 239 0.70
092 1.00 084|083 098 082]092 099 082|056 1.19 067|122 149 069|218 239 0.74
0.88 099 083|088 100 083]08 1.00 084|060 1.19 068|079 149 068|119 239 0.71
082 099 082|082 100 082]08 1.00 083|065 1.19 0.69|060 149 068 |0.62 239 0.71
0.81 097 082078 100 081]077 100 082|070 1.19 0.70| 068 149 0.70]0.76 239 0.76
9 |08 09 081|081 098 081]|08 100 082|075 119 069 |1.07 149 067|176 239 0.69
10 | 0.84 094 0.79|080 098 0.81]0.82 1.00 081|079 1.19 070|095 149 070|135 239 0.75
11| 081 093 0.79]091 097 080|094 099 081|081 1.19 077|111 149 078|174 239 0.85
12/ 0.80 091 0.770.79 097 0.80|0.80 1.00 080|085 1.19 086|086 149 086|094 239 093
13078 089 0.78 | 081 096 078|082 1.00 081|092 1.19 092|093 149 092|100 239 098
14078 086 0.77 078 092 077|079 099 080|099 119 096| 1.01 149 096 1.11 239 1.04
15078 083 0.75]08 095 07809 099 079|106 1.19 1.00]|1.14 149 100|145 239 1.06
16 | 0.78 0.82 0.77 077 089 0.79]0.79 099 078|109 1.19 103|112 149 1.02|125 239 1.07
17 |1 077 081 0.76 079 093 077|083 1.00 080|108 1.19 1.03|1.08 149 101|117 239 1.06
18 076 082 0.77|0.75 093 076|080 1.00 079|104 1.19 1.03|1.03 149 101|110 239 1.07
19076 085 0.76 073 095 076]0.77 1.00 079|099 1.19 1.05|09 149 1.02|1.03 239 1.07
20079 091 077068 097 075|068 100 078|096 1.19 1.06|091 149 1.04|1.04 239 1.09

I AAUN AW =T

Note: The table presents data on the coverage ratios and lengths of 90% confidence intervals for the response of inflation in
experiment 1 with a sample size of n = 250. The data is broken down by horizon and degree of smoothness and shows results
for three levels of smoothness: high, medium, and low. The coverage ratios and lengths are displayed in separate halves of the
table. They are shown for functional local projection confidence sets (FLP and FLPj) and standard local projection estimates
(LP). The subscript j in 'L P; represents the joint confidence interval.
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Table 2.2: Coverage and Length for 90 Confidence Interval with n=250 in Experiment 1

\ GDP

\ Coverage Length

\ High \ Medium \ Low High \ Medium \ Low
h |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP
1 /09 100 083096 1.00 085]082 100 083]028 072 025|092 154 025[145 297 030
2 /091 1.00 084]098 100 082|086 099 084|028 072 027|131 154 027|244 297 032
3 /090 1.00 082|090 1.00 084|083 100 082|032 072 029058 154 032]095 297 040
4 |08 099 084]08 100 082|086 100 082|035 072 031[050 154 034|111 297 042
5 085 099 083|087 100 081|091 100 084|036 072 033|058 154 037|148 297 046
6 | 081 099 083|087 100 082|082 100 084|036 072 034|043 154 039|068 297 047
7 1087 1.00 081]091 100 082|087 100 082|034 072 035[040 154 036|049 297 042
8 1094 1.00 081|068 100 083|071 100 083|035 072 034|039 154 036|074 297 042
9 1097 100 082]074 100 084|070 100 086|034 072 034|033 154 036|059 297 040
10 099 1.00 084|086 1.00 085[075 100 086|034 072 034|038 154 036|046 297 041
11099 100 081085 1.00 083|085 100 083|034 072 035]099 154 037|165 297 043
12100 100 083|087 100 080|085 1.00 084|033 072 035|125 154 038|215 297 044
13100 100 083]077 100 084|075 100 083|033 072 035079 154 039|129 297 047
14100 100 083|074 100 083|074 100 086|032 072 035|044 154 040|067 297 050
15100 1.00 084074 1.00 084|069 100 084|032 072 035]043 154 039|066 297 049
16 | 1.00 1.00 0.86 | 0.80 1.00 085|084 100 084|030 072 035[095 154 039|168 297 047
17 1.00 1.00 087|071 1.00 086|075 100 084|031 072 036|066 154 040|116 297 048
18100 100 087|071 1.00 086|072 100 084|031 072 036|057 154 040|097 297 049
19100 1.00 087077 100 086|070 1.00 086|031 072 036|040 154 040|056 297 0.50
20| 1.00 1.00 086|074 100 087|074 100 087|032 072 037|041 154 041|068 297 050

Note: The table presents data on the coverage ratios and lengths of 90% confidence intervals for the response of GDP growth
in experiment 1 with a sample size of n = 250. The data is broken down by horizon and degree of smoothness and shows
results for three levels of smoothness: high, medium, and low. The coverage ratios and lengths are displayed in separate halves
of the table. They are shown for functional local projection confidence sets (FLP and FLPj) and standard local projection
estimates (LP). The subscript j in F'L P; represents the joint confidence interval.



Degree of Smoothness

The results from Tables 2.1 and 2.2 show that the functional local projection per-
forms best in terms of coverage ratio when the degree of smoothness is high and
worst when the degree of smoothness is low, as expected. If the true parameter
is already a Gaussian function, then a Gaussian approximation should perform
reasonably well, as the results indicate. However, the medium and low degree of
smoothness cases for the GDP is particularly challenging for the functional local
projection, as they involve both negative and positive values for the true param-
eters as we move forward along the horizons. This explains the undercover for
these cases in the second half of the considered horizons.

By reviewing Tables B.1 and Table B.2, which present results for a sample
size of n = 500, we notice that there is an improvement in coverage for most
cases, except for GDP at medium and low levels of smoothness. This could be
due to the design of experiment 1, in which the true impulse response function
is challenging to approximate using only one Gaussian basis function accurately.
This is also evident in the results for experiment 2 shown in Tables B.3 and
B.4, which have a sample size of n = 250. These tables demonstrate signifi-
cant improvements in coverage for both inflation and GDP across all levels of
smoothness. These improvements are even more pronounced in Tables B.5 and
B.6, which show results for a sample size of n = 500.

Regarding the lengths of the 90% confidence sets, I notice some interesting
points. Firstly, the lengths for the joint confidence set for the functional local
projection are always higher than those of the functional or standard local pro-
jections. This is due to the definition of the joint confidence set, which considers
the maximum of the mean squared errors across all horizons to compute the con-
fidence interval. Secondly, this increase in length is the cost of achieving high
coverage, as the confidence intervals consider the bias induced by the functional
approximation. In this sense, I can consider these confidence intervals to be
“honest”.

Short vs Long Horizons

Table 2.1 shows that in the case of inflation, the best performance for the func-
tional local projection is at the shortest horizons and deteriorates as we move
forward over the horizons. The reason behind this behavior is the shape of the
true impulse response functions: it is close to zero at the shorter horizons. Then it
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goes down, reaching its minimum value at around horizon 15 before going back
toward the zero region. Therefore, the functional local projection estimate cap-
tures this by estimating a negative value for the a parameter of around -2, a value
for the b parameter of around 15, and a value for the ¢ parameter of around 30,
as is displayed in the histograms in Figure B.7 for the high degree of smoothness
case.

Table 2.2 shows the opposite face regarding this behavior. In the case of
GDP growth, the best performance of the functional local projection is at the
longer horizons compared to the shorter horizons. Again, this result is due to
the simulation design of the true impulse response function. In this case, the
true function jumps into the negative territory for a short period of horizons at
the beginning and then vanishes away very fast toward zero. The functional
local projection estimate captures this by computing a negative value of the a of
around -0.6, a value of the b parameter of around 3, and a value of the ¢ parameter
of around 15, which is shown in Figure B.7 for the high degree of smoothness
case. Therefore, in this case, the coverage ratio for horizons longer than 9 is
one because the functional local projection estimates and the true parameters are
Zeros.

In this section, the performance of functional local projection and local pro-
jection estimates were compared in terms of their coverage ratios and lengths
for different levels of smoothness, sample sizes, and experiments. The results
indicate that functional local projections perform best in terms of coverage when
the degree of smoothness is high and worst when the degree of smoothness is
low. Additionally, the functional local projections show improved performance
in terms of coverage as the sample size increases. In terms of length, the joint
functional local projections confidence bands consistently are longer than the
alternative, which can be attributed to their definition as a joint confidence set
across all horizons. The results also show that functional local projections per-
form best at shorter horizons, but their performance decreases as the horizon
lengthens. These results suggest that functional local projections can provide
accurate and reliable estimates for certain cases, but their performance may vary
depending on the specific characteristics of the data.
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2.7 Time-Varying Functional Local Projections

In this section, I extend the functional local projection framework to allow for
time-varying impulse responses. This extension is important as there is sub-
stantial evidence for time variation in macroeconomic impulse responses (e.g.
Cogley and Sargent, 2005; Primiceri, 2005). To implement this extension, I first
extend the standard local projection to allow for time-varying parameters follow-
ing the local polynomial approach of Fan and Gijbels (1996).

2.7.1 Time-Varying Local Projections

Consider the baseline local projection model with time-varying parameters.

Yirh = TeBep + €nitn

where 3 j, is the time ¢ horizon h impulse response.

I propose to estimate (3, ;, using a local linear GMM estimator. This non-
parametric approach has several advantages over a parametric approach. For
example, it imposes fewer restrictions on the functional form of the coefficient.
In contrast, a parametric model requires assumptions about the underlying pro-
cess of the coefficients. However, these assumptions are often challenging to
verify so that a non-parametric approach can be more robust. Additionally, a
non-parametric estimation of time-varying parameters can provide helpful infor-
mation about the shape of the coefficients for subsequent parametric estimations.

The nonparametric GMM local linear estimator is based on the methodology
presented in Chapter 1. However, unlike Chapter 1, the moment conditions are
linear for the local projection model. This allows us to use a polynomial fitting
approximation for the time-varying parameters. I proposed using local linear
approximation because, typically, it is preferred over local constant models in the
nonparametric literature due to their lower bias and fewer issues with boundary
points (see Cai (2007), Chen and Hong (2012), among others).

I assume that these time-varying coefficients are functions of the index ¢
scaled by the total number of periods n, i.e., I write 5, = fp(t/n). The intu-
ition behind this assumption is that the amount of information has to increase
locally as the sample size increases in order to reduce the bias and variance
asymptotically. I assume that 55 (¢/n) can be approximated by a linear function,
i.e., alocal linear polynomial approximation, at any fixed point in time u € [0; 1]
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as follows
Bh(t/n) = Ot(),h + Oéljh(t/’rl — u) y

where the dependency of a, = (g p, @1,)" on w is omitted for simplicity. The
local projection regression can be written around u as

Yi+h = TeQp + €ppth

where Ty = [z ¢(t/n —u)] and ap, = [app 5] The moment conditions
can be written as
E(Z(yt4n — Tran)) =0,

where Z; = [2¢  2:(t/n—wu)]’. If we stack all the moments in one vector, we get

Ze(ye — Travo)

~ Zt(Yp1 — Tearr)

gt(Ol) = = Zt(YHH - XtOé) )

Zt(Ytrm — Trapr)

where Yo = (Ui, Yests oo Yirn)s Zt = Iy @ 2 Xy = Igy1 @ & and
Ipyqisthe (H + 1) x (H + 1) identity matrix. We define the local linear local
projection estimator as

1 ol
& = argmin{ (=~ Ky(t/n—wgi(a)) W (= " Kolt/n— wi(a) )}

n=1 n=1

t/n—u

where the function K(t/n — ) is defined as % where K (.) is a kernel
function with bandwidth parameter b which satisfies that b — 0 and nb — oo as
n — oo. The estimator has a closed-form solution given by

& = (S,ZXWSZ)()_IS/ZXWSZY

where

1 @ -
Szy = - 5 Ky(t/n —u)Z;Yi g
=1

1< - -
Sox =~ > Ky(t/n - u)ZX]
t=1
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the local linear estimate for j3; j, at u is Bh(u) = Ggp for h =0, ..., H. This
estimator is consistent (Theorem 1.1) and asymptotically normal (Theorem 1.2)
under a general set of assumptions. Assumptions and proofs are described in the
appendix section.

2.7.2 Functional approximation

This section demonstrates how to extend the functional approximation method
to handle time-varying parameters, as revised in Section 2.6. I will use an in-
direct functional local projection approach, which involves first estimating the
time-varying parameter at a specific value of u, and then fitting a Gaussian basis
function to these estimates. It is worth noting that an alternative approach would
be to use the nonlinear GMM method introduced in Chapter 1 to directly esti-
mate the coefficients of the Gaussian approximation for each value of u. How-
ever, | have chosen the first approach in order to demonstrate the benefits of the
time-varying local projection extension designed explicitly for linear models, as
described in Section 2.6.

Given the local linear estimate 3(u) = (Bo(w), ..., Br+1(w)) and asymptotic
covariance matrix 3(u) we can define:

A~

0(u) = argmin(5(u) — 5] (0)) W (B(u) — 5, (6))

such that the local linear functional local projection estimates can be defined as
ﬁ,{ (u) = ﬁf: (6(u)). We can implement the inference procedures explained in the
previous section to obtain confidence sets for every u of interest.

For example, for a given h and u, confidence bands are based on computing
an estimator for the M SE of B,{ (u). First, as in section 2.5 define that for any
n € RE+Yand (H 4 1) x (H + 1) symmetric positive definite weight matrix W

6(n) = argmin(n — 51 (0)'W (1 — 5())

where W is a weighting matrix for the horizons.
Construct the draws ) (u) ~ N(B(u),S(u)) from s = 1,2..., M, and
compute an estimate for the MSE error using
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M ,
MSE(H () = - 3 (80O ) — 5 ) (8 B3O (@) — B (w) +

(87 (u) = B(w)) (B (u) — B(w)’
where 37 (u) = 57 Zi\il B5(6(B%) (u))). By the consistency of 3(u), which
is shown in the appendix, it is straightforward to check that MSE is a consistent
estimator of the MSE.

Based on the estimate of the MSE I compute the (1 — «)% pointwise confi-
dence intervals for the local linear functional local projection estimates from

Colw) = Bl () £ 24\ MSE(B7 (w))

for h = 0, ..., H, where z, is the 1 — a quantile corresponding to the standard
normal distribution.

Proposition 2. Assuming that \/n(3(u) — B(u)) 4 N(0,%(w)). In addition,

consider we have available the estimator 3(u) such that (u) 2> S (u). Then
asmn — oo:

Pr(B(u) € Co(u)) >1—a
where C, is defined above. The proof can be found in the appendix.

Alternatively, I consider the following (1 — a)% local joint confidence inter-
vals for the local linear functional local projection estimates as

B (u) + 2 \/heg’éfH} MSE(BS (u))nn -

These intervals are local versions of those presented in section 2.5.

2.8 Empirical Study

In this section, the functional local projection estimator is applied to study the
effects of technology shocks on the US economy. Specifically, I study the ef-
fects of total factor productivity shocks on US aggregate variables such as GDP,
consumption, hours worked, employment, and inflation using functional local
projections.
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2.8.1 Total Factor Productivity shocks

The question of whether total factor productivity shocks affect variables such
as GDP, consumption, or employment has been broadly discussed in applied
macroeconomic research.

Seminal papers such as Gali (1999) and Basu et al. (2006) discuss the effects
of technology shocks on US aggregate variables using different methodologies
and find evidence that a positive total factor productivity shock leads to a decline
in hours worked and employment. These findings can be explained in modern
macro models by imperfect competition and sticky prices.

Francis et al. (2004) finds that technology shocks have had different effects
on hours worked in the US depending on the time period considered. A posi-
tive technology shock increases hours worked in the pre-WWII period, but the
opposite is found in the post-WWII period. This difference is often attributed to
changes in the effect of technology shocks on productivity, i.e., the shocks were
different across periods. In the early period, productivity increased immediately
following a technology shock. However, in the later period, it increased grad-
ually, providing an incentive to reduce hours worked in the short term. Francis
et al. (2014) develops a method for imposing long-run restrictions in analyz-
ing the effects of technology shocks on hours worked and confirms his previous
findings.

In contrast, Uhlig (2004) finds evidence of neutral and small positive re-
sponses of hours worked and employment after a technology shock. He explains
his findings through differences in taxation and long-run shifts in the social atti-
tude towards the workplace. Along the same line, Mertens and Ravn (2011) used
a vector error correction model to study the effects of exogenous tax shocks on
hours worked, controlling for taxes and allowing for cointegration. They found
that a total positive factor productivity shock (technology shock) increased hours
worked in the short run. Similar results have been found by Alexopoulos (2011).

In sum, the literature has yet to reach a conclusion. These differences in
results may be due to various factors, including the methodologies used, the time
period under study, and the specific mechanisms at play. To sort things out, I
argue that the functional local projection estimator can provide valuable practical
information on the topic.

There are many different measurements of total factor productivity shocks
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in the literature of diverse types®. In this empirical application, the analysis
is based on the quarterly measure for total factor productivity constructed by
Fernald (2014), which is a utilization-adjusted total factor productivity series
labeled as “neutral total factor productivity shock”. These are shocks to the total
factor productivity process in the aggregate production function.

2.8.2 Specifications

This empirical application considers three different specifications to study the
effects of total factor productivity shocks on key macroeconomic variables in the
US economy.

The first specification uses total factor productivity as a direct observed shock,
and therefore it is used as a local projection regressor. This means that total factor
productivity is treated as an exogenous variable that affects the other variables in
the model, and regression analysis is used to estimate this effect.

The second specification views total factor productivity shocks as instru-
mental variables. In this case, the true shocks are not directly observed but only
through its noisy proxy (total factor productivity shocks), which is used as an
instrument to help estimate the effect of the labor productivity variable (the en-
dogenous variable) on one of the key macroeconomic variables. This is useful
when the endogenous variable is correlated with the error term, which can bias
the estimates. By using total factor productivity shocks as an instrument, the
estimates can be made more accurate and reliable.

The third specification contemplates the case where the impulse response
function coefficients are allowed to vary over time under the instrumental vari-
able specification. In this case, allowing for time-varying coefficients can pro-
vide a more realistic and accurate representation of the effects of total factor
productivity shocks on the other variables in the model. This is an extension
of the functional local projection method, which was explained in detail in the
previous section.

Overall, this empirical application uses three different specifications to study
the effects of total factor productivity on key macroeconomic variables in the US.
The first specification uses total factor productivity as a direct observed shock,
the second specification uses total factor productivity as an instrumental variable,
and the third specification allows the impulse response function coefficients to

2For an extensive list of these measures, see Ramey (2016).
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vary over time. These different specifications can potentially provide a more
comprehensive and nuanced understanding of the effects of total factor produc-
tivity on the economy.

To this extent, the empirical model considered in this application for the
observed shock case is represented as:

h
Yt+s = Brwe + €44p

for h = 0,1,...20. The y; represents the main macroeconomic variables for
the US economy. They are defined as the first difference in the logarithm of
GDP, consumption, hours worked, employment, and inflation. The z; variable
represents the utilization-adjusted total factor productivity growth taken from
Fernald (2014).

Often applied researchers are interested in the cumulative impulse response
functions, which show the sum of all the individual responses over a specified
time period. For example, if a shock to a variable has a positive effect on another
variable in the short term but a negative effect in the long term, the cumulative
impulse response functions would show the net effect of the shock on the second
variable over the entire time period. Therefore, in order to compute the cumula-
tive responses, the following regression is considered:

h

h
Z Yt+s = B[il't + €t1h
s=0

where the subindex c refers to “cumulative” responses.
In the specification where the total factor productivity shocks are used as an
instrumental variable, the regression is expressed as:

h
Yitrs = BrTr + €4y,

with cumulative regression displayed as:

h

h
Z Yt+s = Blixt + €4
s=0

In this case, the endogenous variable z; is a proxy of labor productivity
which is constructed as in Gali (1999) by dividing GDP by hours worked or
GDP by employment. The productivity measure and total factor productivity
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shock appear to have a strong relationship, as indicated by a correlation of 0.70.
This suggests that there is no weak instrument problem or a situation in which
the instrument used in the regression analysis is not strong enough to identify
the relationship between the variables accurately. The author of the study asserts
that the total factor productivity shocks are exogenous, meaning that it is not
affected by other variables in the model. As a result, the orthogonality condi-
tion should be satisfied, allowing for the use of instrumental variable regression
analysis within the standard linear frameworks.

In the last specification, the impulse response coefficients are allowed to
change over time. In this case, the local projection regression is specified as:

h
Ytts = Bt,hxt + S

with cumulative version as:

h
c h
E Yit+s = 6t7h1’t + €t4n
s=0

For all three specifications, a Gaussian basis function is used to compute the
functional local projection under the framework with the idea of getting a smooth
version of the impulse response function, as is explained throughout the paper in

the estimation section. In particular, the parametrization used implied that the re-
. . _(h=b)? _(h=b)? .
sponse coefficients are specified as 3, = ae™ ¢ or 3; = ae” ¢ . The di-

rect estimation approach is followed in order to get the functional local projection
estimates from standard local projection coefficients. The 90% confidence inter-
vals are computed based on the MSE obtained from 1000 draws following the
simulations procedures in the inference section. For all specifications, 4 lags of
y¢ and x; are included as controls variables w; = (Yp—1, .oy Yt—dy Tt—1y oery Tt—a)-

2.8.3 Results

This section presents the results from the empirical application for the three
specifications and all key macroeconomic variables for the US economy for the
1947Q2-2007Q2 period, which makes the sample size T' = 241.

Figure 2.5 and Figure B.10 present the cumulative impulse response func-
tion estimates for the local projection and functional local projection methods,
respectively, for GDP, inflation, consumption, hours worked, and employment in
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response to a total factor productivity shock under the observed shock specifica-
tion. The first column shows the standard local projection estimates, while the
second column shows the functional local projection estimates. For each impulse
response function, a 90% confidence band is plotted. In the case of the standard
local projection, HAC standard errors are used to calculate the confidence in-
tervals, while for the functional local projection case, the simulation procedure
described previously is used to compute the joint confidence sets. It is worth not-
ing that the axes are set to the same values for plots in the same row to facilitate
comparison.
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Figure 2.5: Cumulative IRFs to a TFP shock - Observed Shock Specifica-
tion - 1
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Note: The figure displays the cumulative impulse response function estimates for GDP
and inflation in response to a total factor productivity shock, using both local projection
and functional local projection methods and under the observed shock specification. The
first column represents the standard local projection estimates, while the second column
shows the functional local projection estimates. A 90% confidence band is plotted for
each impulse response function. Regressions include 4 lags of y; and x; as control
variables Wy = (Yp—1, ooy Yt—ay Tt—1, ooy Tt—q)-

These plots demonstrate the beneficial properties of using the functional lo-
cal projection approach to estimate impulse response functions. While the stan-
dard local projection estimates of the impulse response exhibit jagged, erratic be-
havior, particularly in the case of GDP, the functional local projection-estimated
responses are smooth and follow the Gaussian parametrization. Furthermore, the
functional local projection method provides additional information about the im-
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pulse response functions through the estimated parameters of the Gaussian basis
function, as summarized in Table B.7. In particular, the IRF for GDP is char-
acterized by a peak value of ¢ = 1.1, time to peak of b = 14.2, and half-lives
before and after the peak of V2 = 138V/2.

The results of the inference analysis indicate that total factor productivity
shocks have no impact on consumption, hours worked, and employment in the
short term. In contrast, they have a positive but transitory effect in the intermedi-
ate horizons. Both methods, LP and functional local projection agree with this.
However, the standard local projection approach suggests that the initial positive
effects of total factor productivity shocks on GDP persist in the long term. In
contrast, the functional local projection approach finds a significant but persis-
tent and temporary positive cumulative effect on GDP at intermediate horizons.
In the case of inflation, both methods indicate that there is no impact in the short
term that seems to become positive in the long horizon but remains statistically
Zero.

Figure 2.6 and Figure B.11 present the cumulative IRFs estimates for the lo-
cal projection and functional local projection methods, respectively, in response
to a total factor productivity shock under the IV shock specification. The results
are similar than those obtained under the observed shock specification. In terms
of the features of the impulse response function obtained from the functional lo-
cal projection method, the observation is that there are small changes in the peak,
while time to the peak and half-lives before and after the peak remains the same.
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Figure 2.6: Cumulative IRFs to a TFP shock - IV Shock Specification - 1
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Note: The figure presents the cumulative impulse response function estimates for the
local projection and functional local projection methods for GDP and inflation in re-
sponse to a total factor productivity shock under the IV shock specification. The first
column shows the standard local projection estimates, while the second column shows
the functional local projection estimates. For each impulse response function, a 90%
confidence band is plotted. Regressions include 4 lags of y; and x; as control variables
wy = (yt—la s Yt—a, Tp—15 -0y fEt—4)~

Figure 2.7 and Figure B.12 show the impulse response estimates under the
functional local projection method for the specification, which considers the IV
with time-varying parameters. The first column shows the results for the earliest
period (at the first quantile), the second column shows the results for the middle
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period (at the second quantile), and the third column shows the results for the
latest period (at the third quantile). Again, the axes have the same scale, so the
results can be easily compared.

Figure 2.7: Cumulative IRFs to a TFP shock - IV Shock +TV Specifica-
tion - 1
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Note: The figure presents the cumulative impulse response function estimates for the
functional local projection method for GDP and inflation in response to a total factor
productivity shock under the IV+time varying coefficients shock specification. The first
column shows the standard local projection estimates, while the second column shows
the functional local projection estimates. For each impulse response function, a 90%
confidence band is plotted. Regressions include 4 lags of y; and z; as control variables

Wy = (yt—h vy Yt—4, Tt—1, -~-,$t—4)-
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These graphs provide practical-valuable results. The impulse response func-
tions may be time-varying because they show differences in peaks and timing of
peaks at different points in the sample. For example, Table B.7 shows that the
peak of the GDP’s impulse response function has changed over time, starting at
1.7 at the first quantile of the sample, dropping to 1.4 at the middle point, and
then rising again to 1.8 at the third quantile. This indicates that the peak of a total
factor productivity shock on the GDP may vary depending on the time period.

I have included the impulse response functions for the non-cumulative cases
in the appendix. These plots can be found in Figure B.13 to Figure B.18. In Table
B.8, you can also find the estimates for the parameters a, b, ¢ corresponding to
this case.

2.9 Conclusion

This paper proposes a new method to smooth the impulse response functions
based on functional local projection. The functional local projection brings not
only smoothness to the usually jagged standard local projection estimates but
also makes the result interpretable. The functional local projection uses the
(Gaussian) basis function to estimate local projections while imposing smooth-
ness on the impulse response coefficients. While different smoothing techniques
are possible, i.e., P-splines, the Gaussian function has a unique feature: the co-
efficients of the basis function give important information regarding the impulse
response function dynamics. This could be very attractive for macroeconomics
because of the new knowledge they can infer with the functional local projection,
such as the height of the impulse response, timing to the maximum effect, and
persistence of the effect.

I present an inference procedure that considers the bias induced by the func-
tional approximation of the impulse response and shows evidence of its good
performance relative to the standard local projection inference procedure with a
simulation study. In addition, for the estimation of time-varying local projection
specification, functional local projection offers a flexible nonparametric alterna-
tive to parametric approaches, with the advantage of being computationally not
different from kernel regression. For this extension of the functional local pro-
jection, novel results are shown on the consistency and asymptotic normality of
the proposed estimator.

In the empirical section, the functional local projection approach to impulse
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response function yields smoother and more informative results than the tradi-
tional local projection method. The functional local projection method provides
additional information about the impulse response functions through the esti-
mated parameters of the Gaussian basis function, allowing for a more detailed
understanding of the dynamics of the system. In the case of total factor produc-
tivity shocks, the functional local projection approach indicates that their impact
on GDP is significant but temporary at intermediate horizons. In contrast, the
standard local projection method suggests that their impact persists in the long
term. Additionally, the functional local projection method reveals that the im-
pulse response functions may be time-varying, with differences in peaks and
timing of peaks at different points in the sample. In sum, the functional local
projection method provides valuable practical knowledge into the effects of total
factor productivity shocks on the economy.
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Chapter 3

VARMA BASED IMPULSE
RESPONSE ESTIMATION

Abstract

I study the accuracy of impulse response estimates obtained from the vector au-
toregressive moving average (VARMA) model and compare these to the more
common vector autoregressive (VAR) and local projection (LP) estimates. The
evaluation of each approach is based on quantifying the bias and variance across
Monte Carlo replications. The simulation design is based on a large-scale dy-
namic factor model known to accurately describe US macroeconomic time se-
ries. The results indicate that the VARMA models face a more significant trade-
off between bias and variance than VAR models relative to LP models, i.e.,
VARMA models register lower bias but higher variance at intermediate horizons.

3.1 Introduction

The estimation of impulse response functions (IRFs) has been an important topic
in econometrics, and various methods have been proposed in the literature. On
one side, the family of vector autoregressive methods introduced by Sims (1980)
and its extension, such as vector autoregressive (VAR), structural vector autore-
gressive (SVAR), bayesian vector autoregressive (BVAR), structural vector au-
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toregressive with IV (SVAR-IV). On another side, the family of Local Projection
methods introduced by Jorda (2005) and its extensions, such as local projec-
tion (LP), local projection with IV (LP-IV), and smooth local projection (SLP).
Recently, Plagborg-Mgller and Wolf (2021) showed that LP and VAR methods
produce similar results asymptotically, while Li et al. (2022) found that LP es-
timators have lower bias but higher variance compared to VAR estimators in a
simulation study for thousands of relevant data generating processes (DGPs).

Inrecent years, there has been growing interest in using vector autoregressive
moving average (VARMA) models for analyzing multivariate time series data,
where theses models have been shown to be promising candidates to joint the
above groups for the analysis of IRFs. Important theoretical contributions aiming
at making VARMASs accessible to applied macroeconomists are due to Athana-
sopoulos and Vahid (2008a), Metaxoglou and Smith (2007), Poskitt (2016),
Chan and Eisenstat (2017) among others. In applied work, many studies have
used the VARMA method for analyzing IRFs in a specific context, such Das
(2003), Raghavan et al. (2009), and Raghavan et al. (2016). Probably, the most
promising area where there is more evidence of the importance of VARMA
models is forecasting. In this topic, studies such as Athanasopoulos and Vahid
(2008b), Dufour and Pelletier (2022), Dias and Kapetanios (2018), Athanasopou-
los et al. (2012), Kascha and Trenkler (2015) have shown the good forecasting
properties of VARMAs.

Despite this, VARMA models are scarcely used to represent multivariate
time series compared to VAR models because the latter models are easier to im-
plement. Indeed, VAR models can be estimated by least-squares methods, and
specification is also easier for VAR models because only one lag order needs to
be chosen. However, VAR models have some drawbacks. They are often less
parsimonious than VARMA models, and the family of VAR models is not closed
under marginalization and temporal aggregation (Fry et al. (2005)). In fact,
models in macroeconomics often contain an MA component (for some exam-
ples Chen et al. (2017)), and linearized dynamic stochastic general equilibrium
(DSGE) models typically result in VARMASs, not VARs (for more details, see
Cooley and Dwyer (1998), Ferndndez-Villaverde et al. (2007), Ravenna (2007),
Kapetanios et al. (2007), Chari et al. (2008)).

In consequence, VARMA models appear to be preferable from a theoretical
viewpoint, but their adoption is complicated by identification and estimation dif-
ficulties. The unrestricted VARMA representation is not identified, and we need
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to decide on a set of constraints to impose to achieve identification. Regard-
ing this, Cooley and Dwyer (1998) mention: “While VARMA models involve
additional estimation and identification issues, these complications do not jus-
tify systematically ignoring these moving average components, as in the SVAR
approach”.

In this context, the aim of the present study is to conduct a simulation anal-
ysis to compare the performance of IRFs estimation from a VARMA model to
the performance of the SVAR and LP estimates. The evaluation of each estima-
tion method is based on quantifying the bias and variance across Monte Carlo
replications. The simulation design is based on the work of Li et al. (2022), who
randomly selected DGPs from a large-scale dynamic factor model (DFM) of
Stock and Watson (2016) known to accurately describe US macroeconomic time
series. For each DGP, the SVAR, VARMA, and LP methods are implemented to
estimate the structural IRFs under three common identification schemes in ap-
plied macroeconomics: observed shocks, recursive, and IV/proxy identifications
scheme.

I find evidence that the VARMA model exhibits a more extreme bias-variance
trade-off than the VAR models. This means that at intermediate horizons, the
VARMA model has a lower bias than the VAR model but higher variance at the
intermediate horizon. Also, VARMA models face a similar trade-off between
bias and variance to VAR models when compared with LP methods. These re-
sults suggest that the VARMA model may be a useful estimator in certain con-
texts where a more extreme trade-off between bias and variance is desired.

The paper is organized as follows. Section 2 presents a literature review on
VARMA models and highlights the main recent contributions to specification,
estimation, and identification. Section 3 shows the VARMA models and how we
can obtain IRFs from the estimation of this model. Section 4 explains the simu-
lation design. Section 5 shows the main results from the Monte Carlo exercise,
and Section 6 concludes with the main takeaways and further steps.

3.2 Literature Review
This section examines previous studies on the use of VARMA models for ana-
lyzing multivariate time series data, with a focus on their ability to capture the

dynamic relationships between variables in a time series and their usefulness in
estimating IRFs. Previous studies have demonstrated the advantages of using
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VARMA models for IRFs and forecasting compared to VAR models and have
proposed new methods for identifying and estimating VARMA models. Addi-
tionally, the flexibility of VARMA models has been demonstrated in a variety of
real-world applications. However, some studies have also highlighted the chal-
lenges of using VARMA models, such as their potential for non-identification
and the need for careful model specification. This literature review discusses
these findings and their implications for the use of VARMA models in impulse
response analysis.

In recent years, there has been growing interest in using VARMA models for
analyzing multivariate time series data, where these models have been shown to
be promising candidates for the analysis of IRFs. Dufour et al. (2022) demon-
strate the advantages of using VARMA models for impulse response estimation
and forecasting compared to standard VAR models. They propose new meth-
ods for estimating and identifying VARMA models and show their effectiveness
through simulation studies and an application to a six macroeconomic variable
model of US monetary policy. The results show that VARMA models can im-
prove impulse response estimation and forecasting compared to VAR models.

Some studies have addressed some limitations in the VARMA framework
with researchers developing practical methods for identifying and estimating
VARMA models'. Athanasopoulos and Vahid (2008a) proposes an extension
to scalar component methodology of Tiao and Tsay (1989) for the identification
and estimation of VARMA models. This leads to an exactly identified system of
equations that is estimated using full information maximum likelihood. Metax-
oglou and Smith (2007) introduce a state-space representation for VARMA mod-
els that enables maximum likelihood estimation using the EM algorithm. They
show via simulations that the proposed algorithm converges reliably to the maxi-
mum, whereas gradient-based methods often fail because of the highly nonlinear
nature of the likelihood function.

Moreover, Poskitt (2016) develops a new methodology for identifying the
structure of VARMA time series models. The analysis proceeds by examining
the echelon form and presents a fully automatic, strongly consistent, data-driven
approach to model specification. In the context of a Bayesian approach, Chan
et al. (2016), Chan and Eisenstat (2017), and Chan et al. (2022) develop diverse
techniques to estimate VARMA models efficiently and demonstrate how it can

'For a textbook analysis of identifying and estimation method for VARMA models
refer to Liitkepohl (2005).
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be extended to models with time-varying vector moving average (VMA) coeffi-
cients and stochastic volatility.

Another advantage of VARMA models is their flexibility, as they can be used
to model a wide range of time series data in various real-world settings. This
has been demonstrated in a number of papers, including Raghavan et al. (2009),
Raghavan et al. (2016), and Das (2003). The former used VARMA models to
investigate Malaysian monetary policy. The authors use full information max-
imum likelihood to efficiently identify and estimate the model parameters and
compare the impulse responses generated by VARMA, VAR, and SVAR models
for the pre-and post-crisis periods. The results show that the VARMA model im-
pulse responses are consistent with economic theories and policies pursued by
the Malaysian government, particularly in the post-crisis period.

In terms of forecasting, VARMA models have been shown to be competi-
tive with alternative methods, such as SVARs. For example, in their simulation
study, as in Athanasopoulos and Vahid (2008b) and Dufour and Pelletier (2022)
compare the out-of-sample forecasts generated by VARMA and VAR models
and find that the VARMA models perform well. VARMA models can generate
forecasts superior to those obtained from Bayesian VARs and factor models (see
Dias and Kapetanios (2018). Other examples are Athanasopoulos et al. (2012),
and Kascha and Trenkler (2015), while more examples can be found in Liitke-
pohl (2006).

Despite these theoretical developments, there are some results that point
out VARMA estimation might not bring the expected improvements over VARs
models. For example, Yao et al. (2017) simulated synthetic data from known
data generating processes that are commonly used in economics. They compared
the performance of fitted VAR and VARMA models in characterizing these data
generating processes. Their results showed that while VARMA models can be
theoretically identified and can produce precise estimates of impulse responses
when given sufficient data, their parameters are close to the non-identified region
in the parameter space. This makes it unlikely that VARMA models can produce
precise estimates of impulse responses with the small amount of data typically
used in macroeconomic analysis. As a result, VARMA models do not offer any
significant advantage over VAR models in characterizing known data generating
processes in small data sets. Another study by Kascha and Mertens (2009) es-
timated VARMA and state space models using simulated data from a dynamic
stochastic general equilibrium model. They compared the true and estimated im-
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pulse responses of hours worked in response to a technology shock. Their results
showed that there were few benefits to using VARMA models.

Overall, the literature suggests that VARMA models are a potentially good
candidate for the analysis of IRFs, as they are flexible, capable of capturing dy-
namic relationships in time series data and have been applied successfully in
both theoretical and real-world settings. Additionally, recent work has addressed
some of the limitations of VARMA models, making them more practical for
use in empirical studies. Further research is needed to explore the potential of
VARMA models for studying weakly stationary processes and developing more
efficient and effective estimation methods.

3.3 VARMA Models

This section presents a simple framework for studying VARMA models with
the aim of using them to estimate IRFs. Let’s consider K -dimensional vector
process Y; = (y1¢, ..., Yit)' follows a VARMA(p,q) representation:

P q
Yi=Y Vit Ui—Y Ol
i=1 j=1

where Uy = (u1¢, ..., ug) are assumed to be a zero-mean sequence of uncorre-
lated random variables with a nonsingular K x K covariance matrix >,,. We can
express this using matrix lag operators:

(L)Y = ©(L)U;

where U = (u1t, ..., uit) are assumed to be a zero-mean sequence of uncorre-
lated random variables with a nonsingular K x K covariance matrix ,, we can
express this using matrix lag operators:

H(L>Yt =Uy ; Y= ‘I’(L)Ut

where ¥ (L) = ®(L)"1O(L) = I} — Z;’il ;L

To gain an understanding of the identification of VARMA models, we can
consider a more general representation, in which ®( and © are not identity ma-
trices, usually refers as nonstandard VARMA. This allows us to better understand
the role of these matrices in the identification of VARMA models:

DY, =Y 1+ ...+ CI)pY;_p + OoU; — O1Uiq + ... — ®qUt—q
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We can rewrite the previous equation in terms of the polynomial functions oper-
ators:

Y, = (@9 — B1L — ... — BpLP) 1(0g — O1L — ... — ©,L)U;

Provided that & and ©¢ are nonsingular, this process has a standard represen-
tation. Let the previous expression be premultiply by @, 1 and define U; =
q)a 1@0 U,

V=@ @Yy + . + @@V, + Uy — 0510105 0Ty + ...
~9,'0,0,'00U;_,

The issue of identifying unique parameterizations of VARMA models has been
an important topic of study in econometrics and statistics. We say that two
VARMA representations are equivalent if the MA operator ®(L)~1O(L) are the
same. In contrast to the reduced form VAR models, setting &g = ©¢ = I} is
not sufficient to ensure a unique VARMA representation. To ensure the unique-
ness of a VARMA representation, we must impose restrictions on the AR and
MA operators so that, for given W(L), there is one and only one set of operators
®(L) and ©(L) which generate W(L). This is typically done by setting a set of
parameters equal to ones/zeros.

Let us consider a VARMA(1,1) model as an example of the computation
of IRF. Following Tsay (2013), it is possible to achieve block identifiability for
VARMAC(1,1) under conditions 1: (L) and O(L) are left-coprime and condition
2: rank of the join matrix [®; ©;] = K, the number of variables. In this case,
the IRFs can be recovered in the following way:

Y=Y, 1+ U — 01U

or (Ig — ®1L)Y; = (Ix — ©1)U,. Therefore, the VMA(co) representation of
this process is:

Y; = (Ix — & L) ' (Ix — ©,L)U;

= 3.1
= Ik + &1L+ DL+ ..)(Ix — O L)U, = Y WU, G-
7=0

From the previous equation, we can recover the ¥ matrices from which the IRFs
can be computed. In particular, ¥y = I and ¥; = \Iﬂl—l(\pl —01).
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3.4 Simulation

This simulation study relies on Li et al. (2022) (LPW hereafter), where the au-
thors conduct a comprehensive simulation study, applying LP and VAR methods
to thousands of empirically relevant data generating processes (DGPs). The re-
sults show that the usual least-squares LP estimator tends to have a lower bias
than the least-squares VAR estimator, but this bias reduction comes at the cost of
higher variance. Therefore, unless researchers are primarily concerned with bias,
least-squares LP is not optimal, and shrinkage estimation via Bayesian VARs or
penalized LPs is usually more attractive. This study highlights the importance of
considering both bias and variance when choosing an impulse response estimator
in finite samples.

In a separate paper, Plagborg-Mgller and Wolf (2021) prove that LP and VAR
methods asymptotically estimate the same impulse responses when the lag length
used for estimation tends to infinity. However, the question of which estimator
to choose in finite samples remains open.

To study the performance of estimation methods in small samples, I ran a
Monte Carlo simulation study based on a small-scale version of the simulation
design found on LPW in which the authors randomly selected thousands DGPs
from a large-scale dynamic factor model (DFM) of Stock and Watson (2016)
known to accurately describe US macroeconomic time series. For each DGP,
the SVAR, VARMA, and LP methods are implemented to estimate the structural
IRFs under three common identification schemes in applied macroeconomics:
observed shocks, recursive, and I'V/proxy identifications scheme.

Specifically, for each of the Monte Carlo replications, one DGP (instead of
3000 thousand in the original version) is randomly selected, containing three
variables with a sample size of 7' = 250 from the 207-time series generated
by the DFM. The estimation procedures are implemented by imposing two lags
for the SVAR and LP methods, i.e., an SVAR(2) and an LP with two lags as
control variables in order to mop up residual variance. In the case of the VARMA
model, I consider a VARMA(2,1) specification for its parsimonious and potential
to capture underlying dynamics between variables (Benati et al. (2020), Dias and
Kapetanios (2018), among others). The estimation procedure for VARMA is
based on maximum likelihood estimation following Tsay (2013).2.

’I implement the estimation with the R package “MTS” for the VARMA models,
which is a kind of companion toolbox for the textbook Tsay (2013). For the rest
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The identification frameworks considered are three schemes commonly im-
plemented in applied econometrics research as explained and applied in differ-
ent works such as Romer and Romer (2004b), Ramey (2011), Gertler and Karadi
(2015), Christiano et al. (1999), Blanchard and Perotti (2002)). The first is the di-
rectly observed shock scheme, in which the researcher observes both the endoge-
nous variables and the structural shock. The second is IV/proxy identification,
where the researcher uses a noisy proxy variable to infer the shock. The third
scheme is one in which the researcher only observes the endogenous variables
and uses recursive orthogonalization to estimate the impulse responses of the
variables. These schemes are relevant in empirical studies of structural shocks,
such as monetary and fiscal shocks.

3.4.1 Large-Scale Dynamic Factor Model (DFM)

The DGPs are randomly selected from an encompassing model that is known
to accurately describe the population of the US macroeconomic time series: the
large-scale DFM of Stock and Watson (2016). The DFM establishes thatanx x 1
vector of observed macroeconomic time series, Xy, is driven by any x 1 vector
of latent factors, f;, and a nx X 1 vector of idiosyncratic components v;. The
latent factors are assumed to follow a stationary VAR(p) process.

fi=®(L)fi—1+ He

where ¢, = (€14, ..., ant)/ isanny x 1 vector of aggregate shocks, which are
ii.d. and mutually uncorrelated, Var(e;) = In,. The ny x ny matrix H deter-
mines the contemporaneous responses of the factors with respect to the aggregate
shocks. The observed macroeconomic aggregates X, are given by

Xi=Afi + v

where the idiosyncratic component v;; for macro observable X;; follows the
AR(q) process with errors i.i.d. across ¢t and 7. All shocks and innovations are
assumed to be jointly normal and homoskedastic. In order to calibrate the DFM,
I follow LWP and set the number of factors ny = 6 with two lags in the factor
equation and two lags in the idiosyncratic component.

of the simulation implementation, I use the codes of LPW, which are available here
https://github.com/dake-li/lp " var'simul
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The matrix H in the factor equation varies depending on the identification
scheme. LPW explains that in the case of observed shock and IV, H is chosen in
a way that maximizes the effects of the first shock on fed fund rates (in the case
of a monetary policy shock) and government spending (in the case of a fiscal
policy shock). This ensures that monetary and fiscal shocks play a significant
role in short-term changes in nominal interest rates and government spending,
respectively. In the case of recursive identification, for monetary policy DGPs,
the federal funds rate is placed last in the order of variables. This means that the
other included variables cannot respond immediately to the monetary innovation.
For fiscal policy DGPs, the government expenditure series is placed first, which
means that the fiscal authority responds to other innovations in the recursive VAR
with a lag.

3.4.2 Small DGPs and Experiments

In this study, I investigate two sets of DGPs and examine how different estima-
tion methods perform when applied to each of these sets under three different
identification schemes. This means that a total of six experiments are conducted.
The first set of DGPs includes a government spending variable and is used to
study the effects of fiscal policy shocks. This set is referred to as ’G”. The sec-
ond set of DGPs includes the fed funds rate and is used to study the effects of
monetary policy shocks. This set is referred to as "MP”. The remaining vari-
ables in each set are randomly selected from a pool of 207-time series variables
generated using a DFM model. For each experiment, I run 1000 Monte Carlo
simulations. In this small-scale simulation study, I only include one specifica-
tion with three variables for each type of policy shock (as opposed to the 3000
specifications used in the original LWP paper).

3.5 Results

The bias-variance trade-off is a fundamental concept in statistics and machine
learning, and it has important implications for the design and evaluation of es-
timators. For each of the six experiments explained above, I explore this trade-
off in the context of fiscal and monetary policy shocks and recursive, observed
shock, and IV identification schemes.
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Figure 3.1: Recursive G: Mean Bias of Estimators
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Note: IRFs have been divided by the root mean squared value of the true IRFs out to
horizon 20 in order to cancel out units of the response variables. For each of the 1000
Monte Carlo replications, one specification is considered.
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Figure 3.2: Recursive G: Standard Deviation of Estimators
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Note: IRFs have been divided by the root mean squared value of the true IRFs out to
horizon 20 in order to cancel out units of the response variables. For each of the 1000
Monte Carlo replications, one specification is considered.

Figure 3.1 and Figure 3.2 show the absolute bias and standard deviation,
respectively, of the VAR, VARMA, and LP estimators at various horizons for
the case of fiscal policy shock and recursive identification schemes. The bias
and variance are computed by normalizing the units of the response variables by
dividing the IRFs by the root mean squared value of the true impulse response
function out to horizon 20. These figures illustrate the trade-off between bias and
variance in these estimators at different horizons.

Overall, the figures suggest that VAR, VARMA, and LP estimators exhibit
similar bias and variance at short horizons, while the LP estimator has a lower
bias at longer horizons. Indeed, The LP bias is close to zero at all horizons, yet
the variance is high and does not decrease with the horizon. In contrast to the LP
estimator, the VAR and VARMA estimators have a higher bias at intermediate
horizons, but their variance decreases rapidly as the horizon increases.

From the plots, we can infer that the VARMA(2,1) model exhibits a more
extreme bias-variance trade-off than the VAR models. This means that at inter-
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mediate horizons, the VARMA model has a lower bias than the VAR model but
higher variance at intermediate horizons. This trade-off between bias and vari-
ance is also observed between the VAR and LP estimators, with the LP estimator
having a lower bias and the VAR estimator having a lower variance, which is
a result we can find in the LWP paper. These results suggest that the VARMA
model may be a useful estimator in certain contexts where a more extreme trade-
off between bias and variance is desired compared to VAR models.

Figures C.1 and Figure C.2 show similar results for the experiment involving
monetary policy shocks under the recursive identification scheme. In this case,
the bias plot exhibits more jagged behavior but continues to indicate the low
degree of bias of the LP method compared to the VAR and VARMA methods,
as well as the superiority of VARMA models over VAR models. On the other
hand, the variance of the VAR and VARMA models decreases rapidly towards
zero, with the fastest decay observed again for the VAR model.

Figure C.7 and C.6 present results for the IV/proxy identification scheme in
the fiscal policy shock case. These plots highlight that the external instruments’
SVAR-IV procedure faces an even more extreme bias-variance trade-off but in
the opposite direction than VARMA models. In this case, the extremely high bias
is accompanied by a lower standard deviation. According to LWP, the reason for
this is that the VAR-IV is asymptotically biased when the shock is not invertible,
and the degree of invertibility is generally low in the DGPs considered. The rest
of the results are listed in the appendix section.

3.6 Conclusion and further steps

In this paper, I conduct a small-scale simulation study to investigate the perfor-
mance of VARMA models in the estimation of IRFs compared to other common
methods, such as VAR and LP models. Our simulation design mirrors that of
LPW, using dynamic factor models to simulate the dynamics of 207 US macroe-
conomic time series variables. The main finding is that VARMA models face
a trade-off between bias and variance, though not as extreme as the trade-off
faced by SVAR-IV methods. These results add to the existing literature on the
bias-variance trade-off in the estimation of IRFs for VAR and LP models as pre-
sented in LPW and highlight the importance of considering this trade-off when
choosing an appropriate estimator for a given application. By understanding the
inherent trade-off between bias and variance in these estimators, econometri-
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cians can make more informed decisions about which estimator is best suited
to a particular problem, ultimately improving the accuracy and reliability of our
estimates of IRFs in macroeconomic applications.

This simulation study might inspire several potential avenues for future re-
search. One of these is increasing the number of specifications at the level of
LPW, which could provide more robust results but would require intense com-
putational effort. Another interesting extension of this study would be to in-
corporate the different variations of the estimation methods, such as Bayesian
estimations, to see if they improve the estimation of IRFs in VARMA models.
Additionally, there are several structural identification schemes in the VARMA
literature that could be explored in a large-scale simulation study. Regulariza-
tion techniques could potentially be implemented to address the dimensionality
problem that can arise in models with a large number of variables or high orders
of the model.

Overall, there are many opportunities for future research to improve and ex-
tend this simulation study, and these avenues of inquiry could provide valuable
knowledge into the behavior of VAR and VARMA models.
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Appendix A
CHAPTER 1

A.1 Proofs

In this appendix I provide the proofs of the main results. I start by stating a useful
lemma from Kristensen and Lee (2019). This lemma is defined for a function
L(-) that satisfies: (i) L(-) has a compact support and (ii) for some C' < oo,
|L(v) — L(v")|< Clv—2'|,v,v" € R. The bandwidth re-scaled function is given
by Ly(-) = L(-/b)/b.

A.1.1 Lemmal

Lemma 1. The following holds as b — 0 and nb — oo:

(i) Suppose W,, (8)is ULS(p, q, ©) with its stationary approximation W} (0|u)
being L, continues with p > 1 and q > 0 and © compact. For A defined
in assumption 1.2

1 Z Ly(t/n — w)Wht (Dp(t/n — u)or) — /L(U)E (W (D(v)aju)] dv

n
t=1

sup
acA

= op(1)

(ii) Suppose W, (0) is ULS(p, q, ©) with its stationary approximation W (0|u)
being L,, continues with p > 1 and q > 0 and © compact. Moreover,
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for each u € [0, 1], there exist a measurable function H(u,.) such that
Wi (0lu) = H(u, Fy) and (5}1/‘/* (k) = supyefo,1 (5 " )(k) satisfies that
Agf/q* = 1o 0y (k) < co. Then, it holds that:

\f > La(t/n ) (W (000/1) ~E W 0/ )

4N (0, / L2(v)dv2‘(u)> |

where X(u) = Y ;.. Cov(Wg (0(uw)|u), Wi (0(u)|u))

Proof. See Lemma 1 in Kristensen and Lee (2019) for Lemma 1.(i). In order
to prove Lemma 1.(ii) I apply theorem 2.10 in Dahlhaus et al. (2019). In order
to do so, let’s verify whether the conditions in theorem 2.10 in Dahlhaus et al.
(2019) hold:

1. Assumption 2.6 in Dahlhaus et al. (2019) regarding the kernel function
K : R — R is met by assumption 1.(i). The setup guarantees that the
kernel function has to be a bounded function with bounded variation B
and with compact support [—1, 1] satisfying [ Kdz = 1.!

2. Assumption 2.1(S1) in Dahlhaus et al. (2019) establish bounds between
the stationary approximation and the non-stationary process and fits on
assumption 1.(iv) joint with definition 1 as is shown in Vogt (2012). For-
mally, following definition of the uniformly locally stationary of the pro-
cess Wy, +(0) and p, ¢ > 0. Take u = % and ¢ < 1:

p} 1/p

p11/p t
] <E [sup
< (Cn™¢

: We0) = W7 (6)

B | [Wa0) - W)

0c®

which is the approximation error by replacing the non-stationary process
with the stationary approximation. Now, for v € [0, 1]:

'Dahlhaus (2012) explains the equivalent of the support [—1,1] and [—1, 1] for the
kernel.
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1/p
E [|[|[Wt(6) — Wy (00)[IP)/? < E [gggl!Wn,t( ) — Wi (Ov)|”

<
ol +5)
w0 -t

Wi (0]~ ) Wi (0]v)
with the previous results we can verify that

p11/p + q
| <e(li-)
n

3. Assumption 2.1 (S2) in Dahlhaus et al. (2019) is met by assumption 1.(iv)
and definition 2 regarding L, — continuous w.r.t §. As Kristensen and
Lee (2019) point out, the definition of L, — continuous is weaker than
almost sure continuity which is required as a condition in Dahlhaus et al.
(2019).

— v

By Minkowski inequality:

1/p
E [sup |Whe(0) — Wt*(0|v)Hp] <E [sup
0cO 0cO

E [Sup
(UG

E [sup
UsS)

W (0]~ ) Wi (6]v)

4. Finally, Assumption 2.3 (M1) is considered in assumption 2.(2).

Notice that in our case, in assumption 2.(2), g;(f|u) is a vector of ¢ x 1 and
that theorem 2.10 in Dahlhaus et al. (2019) is stated for scalar random variables.
However, Lemma 1.(ii) can also be considered for a random vector by applying
Cramer-Wold device, theorem 2.10 in Dahlhaus et al. (2019) and considering that
a linear combinations of the elements of g; (f|u) retains the property of finite sum
of the functional dependence measure.

O

A.1.2 Theorem 1

Proof of Theorem 1. 1 verify the following conditions: (i) Q*(«|u) is uniquely
minimized at o = (0(u)’,0’,...,0")’; (ii) O is compact; (iii) Q* (c|u) is contin-
uous in «; (iv) @y (cr|u) converges uniformly in probability to Q*(«|u), where
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Q*(alu) = g*(arfu) Q(u)g* (o|u) with

[ K()E[g* (v, D(v)alu)] dv
9" (alu) = JE@)oE[g" (vr, D(v)alu)] dv

i K(.v)vaE [g* (ve, D(v)a|u)] dv

(i) For any o = (o, ..., a;,, 1) with a; # 0 for i > 2 D(v)a is non-constant
almost everywhere, therefore for any o« # o* = (0(u),0/,...,0") we have
D(v)a # D(v)a* = 0(u) for almost all v € [0, 1] and so by assumption 1.3 and
14.(iid) Q(w)E[g7 (D(v)alu)] £ 0 = Qu)Elg; (D(v)a*[u)] = Q(u)Elgf (8(u) v)]
for almost every v. Since K(-) > 0 by assumption 1.1 this in turn implies that
g*(a|u) # 0 and therefore Q*(av|u) # 0. It means that Q*(a|u) > Q*(a*|u) =
0 by assumption 1.4.(iii), then o uniquely minimizes Q* (6|u).

(i1) is imposed by assumption 1.2.

(iii) is satisfied thanks to assumption 1.4.(ii) and the dominated convergence the-
orem. Specifically, since o — g (D(v)a|u) is Ly continuous, we have that
E[||gf (D(v)a)||] < oo. Take a sequence o, — v, then

Jim [ K(0)0°E[g; (D(v)an|u)] = /K(U)USE gz (D(v)alu)] ,

for s = 0,1, ..., m, by the dominated convergence theorem. Therefore, we have
that:

lim Q(an|u) = lim g*(an|u)W(u)g*(anlu) = g*(alu) W(u)g"(alu) = Q(alu)

n—oo

which show the continuity of o — Q*(a|u).
(iv) First, consider L(v) = K(v)v® for s = 0,1, ...,m. By assumption 1.1 we
have

L(v) — L()|= [ K (0)0" — K (/W] < [K(0)0" — K)o’ |+ K ()" — K (o)
< [K(v) = K ()]0 [+ K (@)]|(0" = )]
< C(w — ) |o" [+ K ()| (0" = o)
< (v~ )

then L(v) = K (v)v® satisfies the condition for applying Lemma 1 with L () =
[K(-/b)/b](-/b)°. By assumption 1.4.(i) g(vp,0) is ULS(p, q,©) for p > 1,
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g > 0 with L; stationary approximation g; (6|u) and © being compact by as-
sumption 1.2. Then, for A defined in assumption 1.2, all conditions are satisfied,
so I can apply lemma 1.(i) for s = 0

sup
acA

nZLb t/n —u)g(vnt, Dy(t/n —u)a) — /L(U)E g7 (D(v)er|u)] dv
t=1

= op(1) .

and for s > 0 we have

Z Kyt /n — u)((t/n — u) /b)*g(vns, Dy(t/n — u)or)—

sup
acA

n

| K@wE g (D@alw] o] = oy(1).

From the previous results and assumption 1.4, I get that:
sup |Qn(alu) — Q" (afu)| = op(1).
achA

Therefore, conditions (i)-(iv) in theorem 2.1 in Newey and McFadden (1994b)
are satisfied which imply that &(u) — o*(u). O

A.1.3 Theorem 2

Proof of Theorem 2. Recall that s(vy, ¢, 0) = W and let G, (a|u) = 89’5(5‘“)
such that

s(vn.t, Dp(t/n — u)a)

$(vne, Dy(t/n = u)) (V)"

Gn(aju) = ZKZ, t/n—u) Dy(t/n—u) .
(vnt, Dy(t/n — u)a) (L)

At the optimum & = arg min,e 4 Qn(|u) the first order conditions of @, (cr|u)
with respect to « are given by

0 = Gn(alu) Q(u)gn(@lu) . (A.1)
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From theorem 1 we know that & %> ((u)’,0', ..., 0’) which is an interior point
of A by Assumption 2.1.(ii); then with probability approaching one we have that
& is also an interior point of A. This implies that for n sufficiently large we can
apply the mean value theorem to g, (&|u) and get

gn(&u) = gn(afu) + Gn(alu)(@ — a) (A2)

where & lies between & and a. Pre-multiplying (A.2) by G, (G&|u) Q2 (u) and
using (A.1) gives

0= Gn(@|u),Qn(u)gn(d‘u) = Gn(a‘u),Qn(u)gn(aW)Jr
G (a|u)' Qn(u)Gr(alu) (@ — a) .
Recall, 8} (t/n) = D(t/n —u)B = Dy(t/n — u), such that (slightly abusing

notation) g, (a|u) = g, (0 (t/n)|u), which are the sample moments evaluated at
the approximating parameter 0 (¢/n). I also define

9(vn,t, 0(t/n))

Unt, 0(t/n tn—uy
a6t/ ) = ZKbt/n—u 9( ‘ (t/n)(*5—) |

9(vng, B(t/n)) (Lot ym

This allows us to decompose the moment function into bias and variance com-
ponents by adding and subtracting g,,(6(¢/n)|u) from the first order condition.

0 =Gn(afu)n(u) (gn(0y,(t/n)[u) = gn(0(t/n)u) + gn(0(t/n)|u))

+ Gr(@|u) Q (u)Gr(alu) (& — «) (A.3)
I define
B, (u) =Gp(&|uw) (uw)by (u)
Sn(u) =G (|u) 2 (u)gn (0(t/n)[u)
Hy (u) =G (Glu) Qn(u)Gn(alu)
where b, (u) = g, (0 (t/n)|u) — gn(0(t/n)|u). Rearranging terms and multiply-

ing (B.8) by v/nb gives
0 = VnbSr(u) + Hy, (w)Vnb (& — o + Hy (u) "By (u)) .

To work out the limit of this expression, we need to prove the following:
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(i) Vnbgn(0(t/n)|u) 5 N(0,K ® Eu(u))
(i) Gn(@u) B Go(u) and Gy (@lu) B Go(u), where Go(u) = (Ipy1 ®
S(u) x J

9(m+1)(u)

(Gii) by (u) B —bmt1 (M ® Lo (1) L) + op(1>> = b (B(u) + 0p(1))

where: ) ) )
Kg K% e ]Igm
K = S c RO+ x(m+1)
) . /
= [ K*(v)v'do,M = dzag{KO,K%, . } andJ = [p ph .. gl
with K1 [ K(v)v™t*idv and p; = [ K (v v)dv.

For results (1) ﬁrst note that:

Vnbg, (0|u) = \/EZ V(t/n—u) @ g(vn,0)
t=1

where V(t/n - u) Ky(t/n —w)(1, (MB=yl L (H2=2)ymy and note that
JV(v )dv =

By Assumptlons 1 1 and application of lemma 1.(ii) and Cramer-Wold de-
vice we get vVnbg, (0(t/n)|u) KN N(0,K® X(u)) where

=Y Cov(g5(6(u)|u), gi (6(u)|u)).

k€EZ

Now, let’s go forward with result (ii). We know that:

Gn(alu) = ZV t/n —u) @ s(vng, Dy(t/n — u)a)Dy(t/n — u)
t 1

We want to apply lemma 1.(i) to s(vy, Dyp(t/n — u)a). Let’s verify whether the
conditions are satisfied in this case. By similar argument in theorem 1 we know
that L(v) = K(v)v®*D(v) for s = 0,1, ..., m satisfies condition in lemma 1.(i).
Assumption 2 guarantees that s(vy, ¢, 0) is ULS (p,q, {0 : [|0 — 0(u)||< €)} for
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some p > 1 and ¢,e > 0 with L; continuous stationary approximation s; (6|u)
with ¥(u) = E(s;(6(u)|u)). All conditions in lemma 1.(i) are met. Then, with
B(e) = {a: ||a — a*||< €} for some € > O:

sup ||+ 3" Ky (t/n — u)s(vne, Dy(t/n — u)a)(t/nb_u)sDb(t/n —u)—
a€eB(e) n —1

/ K (0)0*Els}(D(v)a]u)] D(v)dv]|= 0,(1)

for s = 0,1,...,m, where E[sf(6|u)] is continuous w.r.t # by assumption 2.
Then, given that &(u) — a*(u) = (6(u)’, 0, ...,0’)" we can apply the previous
results and obtain:

s%rg)ui S Ko(t/n — wis(ena, Dift/n — w)au) (L Dyt — )~
aeb(e t=1

2.(u) [ K)o Dlo)dull= oy(1)
If we stack the previous results for all s = 0, 1, ..., m we obtain:
Gl @(w)lt) = (L1 © S(w)) x I
with] = [y py ... u;n]/where i = [ K(v)v'D(v)dv € RP¥PI+1),
Moreover, we know that &(u) — o*(u) because a&(u) is on the line between
&(u) and o* (u). Thus we can apply the same arguments and get:
Gn(a(u)lu) = (Imy1 @ X(u)) x J
Next, we continue with result (iii). Remember that
bn(u) = gn (04 (t/n)|u) — gn(0(t/n)|u)

9(ng, 03, (t/n)) — g(vnyt, e(t/n))/
n 9(0n, 05(t/n)) = g(vn, 0(t/n)) ) ()

b (1) = %ZKb(t/n—u) ( , )
t=1

(9(one, 05t/m)) = 9w, 6t/m)) ) (L5724
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We can apply the mean-value theorem twice and obtain that for some §(¢/n) on
the line between 6;;(¢/n) and 6(t/n) and some u’ € [t/n, u|:

9(vne 0 (t/n)) = g(vn, 0(t/n)) =s(vns,0(t/n))(0;,(t/n) — O(t/n))

3 (m+1)
— 5o, 9<t/n))9(m+(1))(t/n _gymH

Let’s add and subtract s(vy, ¢, 0(t/n ))w(t/n u)™ L

9(m+1)(t/n)
(m+1)!

{5000, 00t/m)0 D 1/n) = 50,0t /0))0 D () |

= —8(vnt, 0(t/n)) (t/n—u)" "y
(t/m —u)mH
(m+1)!
(A.4)
By assumption 2, the first term is ULS and by applying lemma 1.(i) we get:

9(m+1)(t/n)
(m +1)!

mal t/m—u.;
(t/n — w1 (L0

9(m+1)(u)
(m+1)!

—ZKb (t/n —u)s(vne, 0(t/n))
— bm—HK%Es(u)

where K! = [ K(v)v™!*dv. For the remaining term, notice that |t/n —
u|< Cband ||0(t/n) — 0(t/n)||< ||0%(t/n) — 0(t/n)|| because O(t/n) is on
the line between 6 (¢/n) and 6(¢/n). Using these inequalities and consider the
Taylor approximation in 1.2 we get ||0(t/n) — 6(t/n)||< Cb™ 1. We can use
the ULS properties of s(vy, ¢, ) in assumption 2 and establish:

sggE[Hs(vmu 0(t/n)) — s(vng, 0(t/n))]|]

< E[sup||s(vnt, 0(t/n)) — s(vns, 0(t/n))|]] <

n,t

t/n—u 1 N "
ol Ly o ap B[S0 - s @) 0

q -
" lle-er<Com

as n — oo. In the same way, we can use the uniform continuity of 0(m+1)(.)
and obtain that sup,, ;| |0+ (¢/n) — 0+ (¢ /n)(u)||— 0 as n — oo because
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u’ € [t/n),u]. Therefore, these results guarantee that the second term in A4 is
op(1). Thus,

9(m+1)(u)

br(u) — —bm ! (M ® 2o(0) oy

+ Op(1)>

where M = diag{K{,K1,..., KL }. The result of theorem 2 comes after
applying Slusky’s theorem to results (i), (ii) and (iii). ]

A.2 Tables

Table A.1: TV-MA(1) model: MADE

TV TV, TV3

u 0, o? 0; o? 0, o?

T=500 0.10 0.1760 0.2218 0.1229 0.1125 0.1419 0.1405
0.50 0.1572 0.1638 0.1501 0.1377 0.1778 0.1929
090 0.1212 0.1093 0.1847 0.2139 0.1842 0.2229
T=1000 0.10 0.1542 0.1756 0.0905 0.0815 0.1068 0.1018
0.50 0.1132 0.1201 0.1073 0.1002 0.1403 0.1489
0.90 0.0875 0.0803 0.1580 0.1701 0.1601 0.1781

The table shows the mean absolute deviation error (MADE) for each of the param-
eters 6;, 0, at different points in time (v = 0.10,0.50,0.90) for two sample sizes
T = 500, 1000. There are three different functional forms for the true parameters: 7'V,
the coefficients take a cosine shape; TV the coefficients are linear trend with a break at
u = 0.50; and T'V3 the coefficients take a square root function.
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Table A.2: TV-MA(1) model: RMSE

TV, TVy TV,

u 9t 0_152 Qt 0152 Qt O'tQ

T=500 0.10 0.2127 0.2688 0.1638 0.1397 0.1868 0.1738
0.50 0.2028 0.2011 0.1969 0.1687 0.2180 0.2354
090 0.1644 0.1355 0.2206 0.2580 0.2191 0.2695
T=1000 0.10 0.1914 0.2157 0.1197 0.1017 0.1451 0.1269
0.50 0.1500 0.1508 0.1456 0.1258 0.1809 0.1851
090 0.1172 0.1028 0.1962 0.2093 0.1985 0.2193

The table shows the root of the mean squared errors (RMSE) for each of param-
eters 6;,0; at different points in time (v = 0.10,0.50,0.90) for two sample sizes
T = 500, 1000. There are three different functional forms for the true parameters: 7'V
the coefficients take a cosine shape; TV the coefficients are linear trend with a break at
u = 0.50; and T'V; the coefficients take a square root function.

Table A.3: TV-MA(1) model: Coverage

TV, TV, TV3

2 2

U 0, o 0, o 0, o?

T=500 0.10 0.9210 0.9730 0.9530 0.9120 0.9420 0.9320
0.50 0.9430 0.9400 0.9460 0.9340 0.9380 0.9590
0.90 0.9660 0.9390 0.9290 0.9640 0.9300 0.9670
T=1000 0.10 0.9240 0.9730 0.9490 0.9400 0.9450 0.9480
0.50 0.9490 0.9500 0.9510 0.9320 0.9380 0.9610
0.90 0.9640 0.9430 0.9340 0.9830 0.9390 0.9820

The table shows the coverage for each of the parameters at different points in time (u =
0.10,0.50, 0.90) for two sample sizes T' = 500, 1000. The coverage is defined as the
proportion of time where a 95% confidence interval contains the true value. There are
three different functional forms for the true parameters: TV; the coefficients take a
cosine shape; T'V5 the coefficients are linear trend with a break at «w = 0.50; and T'V3
the coefficients take a square root function.
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Table A.4: TV-ARCH model: o;

MADE RMSE

U V) TV, TVs TV} TV, TVs

T=500 0.10 0.1395 0.1004 0.1111 0.1642 0.1143 0.1247
0.50 0.1012 0.1069 0.1231 0.1151 0.1228 0.1478
0.90 0.1380 0.1799 0.1557 0.1640 0.2146 0.1866
T=1000 0.10 0.1190 0.0868 0.0970 0.1454 0.1008 0.1124
0.50 0.0915 0.0982 0.1148 0.1051 0.1164 0.1408
090 0.1249 0.1533 0.1367 0.1506 0.1880 0.1671
T=2000 0.10 0.1033 0.0792 0.0881 0.1298 0.0909 0.1040
0.50 0.0793 0.0855 0.0979 0.0933 0.1023 0.1231
0.90 0.1062 0.1222 0.1123 0.1324 0.1531 0.1410
T=4000 0.10 0.0892 0.0718 0.0799 0.1132 0.0826 0.0952
0.50 0.0718 0.0772 0.0863 0.0857 0.0945 0.1113
0.90 0.0867 0.0949 0.0895 0.1107 0.1219 0.1177

The table shows the mean absolute deviation error (MADE) and the root of the
mean squared errors (RMSE) for the parameters oy at different points in time (u =
0.10,0.50, 0.90) for two sample sizes T" = 500, 1000, 2000, 4000. There are three dif-
ferent functional forms for the true parameters: 7'V; the coefficients take a cosine shape;
T'V; the coefficients are linear trend with a break at «u = 0.50; and T'V3 the coefficients
take a square root function.
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Table A.5: TV-ARCH(1): Coverage

U V) TV, TVs

T=500 0.10 0.8990 0.8670 0.8930
0.50 0.8680 0.8750 0.8800
0.90 0.8940 0.7770 0.8470
T=1000 0.10 0.9060 0.8930 0.9200
0.50 09110 0.9230 0.9020
0.90 0.8800 0.7380 0.8220
T=2000 0.10 0.9090 0.9120 0.9310
0.50 0.9310 0.9390 0.9270
0.90 0.8990 0.7330 0.8360
T=4000 0.10 0.9010 0.9150 0.9460
0.50 0.9380 0.9350 0.9000
0.90 0.8840 0.7270 0.8020

The table shows the coverage for the parameters o, at different points in time (v =
0.10,0.50, 0.90) for two sample sizes 7' = 500, 1000, 2000, 4000. The coverage is de-
fined as the proportion of time where a 95% confidence interval contains the true value.
There are three different functional forms for the true parameters: 7'V; the coefficients
take a cosine shape; T'V5 the coefficients are linear trend with a break at u = 0.50; and
T'V3 the coefficients take a square root function.
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A.3 Figures

Figure A.1: Gravity Model with “Distance” Varying Coefficients
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Note: The Plots display the distance-varying coefficient of a gravity model for the US
and 100 top partners by implementing the nonparametric GMM local linear estimator.
A 90% confidence set is computed with HAC standard errors. Panel (a) shows results
for GDP (in logs) of the partner and Panel (b) depicts results for the distance variable (in
logs).
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Appendix B
CHAPTER 2

B.1 Proof of Lemma 1

Proof. Consider first the case where:
A~ ~ d ~
Bl — B % N (0. MSE(B]))

The optimization explained in section 2.5 determines that B,’: is the best fit to 3
and this difference is the approximation error. Therefore we can say:

lim Pr

n—oo

( Bl - p

= = §za) =1—-«
MSE(B )

By adding B — A1 taking advantage that B is a consistent estimator of 31 as
n — oo:

lim Pr

n—oo

+ < Za

VMSE@ ) MSE@

( By -8 b -t )=1-a

As a result, we have proven our desired result.

8l — gt

lim Pr
<Nmﬂﬂhh

n—oo

Sza)zl—a
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Now consider the case where
Bl — B % N(Abias(B]), Avar(5]))

where MSE(B,’:) = Abias(B}:)2 —|—Avar(5£). In this case, the following is true:

3f B Abs 3f
By, — B — Abias(53;) < Za) PR

lim Pr
( Avar(ﬁ}{)

n—oo
nh_}rrolo Pr(ﬁ}}: — B < Abias(ﬁ}{) + 24 Avar(,@jﬁ)) =1—-«
Let’s compare this expression with the one in the lemma:
lim PT’(B{L —B< 2z M:S‘E(Bf)hh)
n—o0

Notice that for high levels of bias relative to the variance, the expression in the
lemma is bigger which is the most likely case with one or few basis functions.
Then we can affirm that:

lim Pr(B] = 8 < 2/ MSE(3)) 21~ a

B.2 Proof of Lemma 2

Proof. Following similar strategy than in lemma 1. Consider first the case where:

Bl(w) = Blw) S N (0, MSE(H] ()))

The optimization explained in section 2.7.2 determines that B}{ (u) is the best fit
to 5(u) and this difference is the local approximation error. Therefore we can
say:

( 3 (w) — B(u)

§2a>:1—a



By adding 3(u) — (u) taking advantage that 3(u) is a consistent estimator of
B(u) as n — oo:

Blw) —bw) , BB <z)=1-a

VMSEB ) \/MEEB ()

As a result, we obtain:

lim Pr(

n—oo

Bl () — B(u)

lim Pr
( MSE(B! )

n—oo

Sza)zl—a

The proof for the other case follows the same logic as the comparison in the
proof of lemma 1, so it has been omitted here.
O

B.3 GMM Local Linear Estimator for Linear
Models

Let’s consider a h-step predictive regression model with endogenous regressors
and time-varying coefficients:

Yern = 20" (t/n) + €y (B.1)

for h = 0,1,2,...H, where 2; and §"(t/n) are d x 1 vectors, and y;, is an
scalar. Let’s assume that §”(¢/n) can be approximated by a linear function at
any fixed time point u € [0, 1] as follows:

SM(t/n) = al + bl (t/n — u)

where 0" (1) = al and 6" (u) = bl". Therefore, the model can be written
around w as:
Yern = Xty + etin (B.2)

where X;,, = [z; x4(t/n —u)] and O = [a" bP] and [6"(u) " (u)] are
2d x 1 vectors.

We assumed there is available a m x 1 vector of instrumental variables z;
such E(e], ,|2¢) = 0. In the same way than before, let’s define the 2m x 1
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vector Zy o = [zt z(t/n — u)]. Notice that E(Z; uef,,) = 0 because of the
exogeneity of the instruments.

Let’s define an estimator 67 (W) such that it is obtained by minimizing the
following GMM-form loss function:

9109) = argmin { (23" wtt/mw1gl, @) W (2 kitm-wal, @)}
t=1 t=1

(B.3)
where g{fu(G) = Zt,u€?+h = Ztu(Yern — X{,0) which satisfies the moment

(4=t
b

conditions E(Zt,ueZJrh) = 0. The function ky(t/n — w) is defined as k
where k(.) is a kernel function with bandwidth parameter b which satisfies that
b — 0and nb — oo as n — o0o. Moreover, W = H51WH51 such that W is a
symmetric positive definite 2m x 2m matrix and He = diag(1,b) ® I () with
I, as the identity matrix of order m.

We can rewrite the estimator as:

~h, ~ . 1 & ~\/
0. (W) = arg min {(5 X kolt/n = w) Zeayern — X1,6)) W
t=1

(% Zn: ko(t/n =) Zea (e — X1 ,0) }

t=1
Let’s define:
wh 1
Sy = > kt/n—w)Zuuyrin (B.4)
t=1
1 n
Shx = > k(t/n—u)Zeu X, (B.5)
t=1
In matrix form:
LS~ ky(t/n — u)zy
guh _ n >t kb tYt+h B.6
Zy LlL Zt:l ky(t/n — u)zeyen(t/n — ) (8.6
gu_ [ =3 K (t/n — u)z) = ky(t/n — u)zxi(t/n — u)
XS ket n — w)zp(t/n —u) S ke(t/n — u)z(t/n — u)?

(B.7)
Expressing the nonparametric estimator in terms of S;: and S%
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OL(W) = argmin {( S, — Spx0)W (S, — S5x0)}
é
The first order condition for the above minimization problem is:

SYx WSy = Sy WS40

Hence, .
b, (W) = (S WSy ) Sy WSy (B.8)
3h u m I U — U T U
I:gh/((u))] — (SZ{)(WSZX) 1SZ/_XWSZ7: (B9)

The local linear estimator for 6" (u) is just the first d rows of HLh(VAV):
0" (u) = (¢} ® 1)) (SYx WS x) ' SYx WSy (B.10)

where e; = [1 0]

B.3.1 Assumptions

Assumption 1. The set of m instruments, z, satisfy:
E(elp|2t) =0 (B.11)

Assumption 2. Assume (x}, z;, €?+ ,) IS a a-mixing stochastic process such that

36> 0,E | 2 P< coand E | z |??+0) < oco. Additionally, the mixing
. . B SN e o (246)(146)

coefficients satisfy o(p) = O(p~?) with ¢ = .

Assumption 3. (i) §"(t/n) : [0,1] — R% is a smooth function such that its sec-
ond order derivative is continuous in [0, 1. (ii) M, (t/n) = E(zx}) : [0,1] —
]R;”Xd is a smooth function such that its second order derivative is continuous in
[0, 1] where ]R;”Xd denotes the set of matrices of order m x d which are of full
column rank. (iii) Ds(t/n) = cov(zeel, ), 245€p, ;) is a smooth function such
that its second order derivative is continuous in [0, 1].

Assumption 4. The kernel function k(.) : [—1,1] — R is symmetric bounded
probability density function which satisfies the Lipschitz condition. Therefore,
f_ll k(u)du = 1 and for any j, f_ll u? Tk (u)du = 0.
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Assumption 5. Wis a symmetric positive definite 2m x 2m matrix such that

W £> W with W symmetric positive definite.

Assumption 6. nb'*5 — oo,

B.3.2 Asymptotic Theory

The following theorems summarize the main important asymptotic properties of
the proposed estimator. Proof of theorem 1 and 2 can be found in Appendix A
and B, respectively.

Theorem 1. Consistency. Under assumptions 1-5, for any u € (0,1) and h =
1,2,..., H, as n — oo we have:

Hy(6," (W) — 61) — bias — 0,(b?) + O,((TH)M?)  (B.12)
M2Mzz(u)5h”(u):|

s M(u) =
s () () )
MOMzm (u) NIMZJJ(U)] g . .
i = | wWk(u)duforj =0,1,2,3; H = diag(1,b)®
[Mlez(U) M2sz(u) 137} f ( ) f J 1 g( )
2 sh

L4y such that I 4y is the identity matrix of order d; and M (u) = 9 gugu). In the
particular case when d = m (the number of instrumental variables is equal to
the number of endogenous variables), the expression for the bias term simplifies

htt
to bias = %bQ H20 (u)} which is similar to the bias term in Cai (2007) and

0
Chen (2015).

where bias = $b*{M (u)W M (u)} 1M (u) W [

Theorem 2. Asymptotic Normality. Under assumptions 1-6, for any u € (0,1)
and h =1,2,..., H, asn — oo we have:

Vrb[Hy (6," (W) — 61 — bias + op(bQ)} = N(o, Avar(e;h(w))) (B.13)

where

Avar(f, (W) = {M (u)' WM (u)} = M (u) W (u)W M (u){ M (u) WM (u)}

B UOQ(U) 'UlQ(u)
and ¥(u) = [UIQ(u) vaS2(u)

[ uk?(u)du.

]’. Qu) = Th(u) + 232, T(u); and vy =
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B.3.3 Asymptotic Variance Estimator

Suppose there is available a estimator for (u), say Q(u). A consistent estimator
for Avar(01(W)) is:

Avar(Qu(W)) = {M(u)’WM(u)}—1M(u)'Wi(u)WM(u){M(u)'WM(ui}—l
(B.14)
vofil(u) vlﬁ?(u)
v1Q(u) V() )
MOsz( ) Mlez(u) where ~ u _1ym n—
ponteee) 1M )] here () = 4 S0

u)z¢Xy. There is left to find potential candidates for Q. Cai (2007) proposes:

where 3 (u) = [ } an the estimator M () is obtained by replac-

i%MM)mMW)[

b
= Olﬁ(Zk;b(t/n €t+h2t Zkb t/n — )€t+hzt) (B.15)
t=1

where €', = y4p — 26" (u).

However, this estimator does not have good properties en small samples.
Therefore, let’s consider an alternative estimator for {2(u): a HAC estimator
which takes into account that ztéﬁrh might be serially correlated or/and het-
eroskedastic. Following the Newey and West (1986) procedure, the HAC es-
timator for Q(u) is

{
A+1

A
Qu) =vy ' (Jo+ ) (1- )(J; + J-3)) (B.16)
i=1

where ) is the bandwidth parameter for the Bartlett kernel and:

Z Futku(r—s) T4 461 (B.17)
t s+1

B.3.4 Proof of Theorem 1

Let’s define the residual of a second order Taylor approximation:
1
M(t/n) = 6"(t/n) — 6" (u) — 6" (u)(t/n — u) — iéh”(u)(t/n —u)? (B.18)
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From the expression for the estimator in equation B.8:

6." (W) — 0 = (S¥xWSkx) ¥ WS — ot (B.19)

6. (W) — 0 = (S¥xWS%x)  (SEx WSS — SYxWSEe6h)  (B.20)

Substituting Y4, and 6 by x}6"(t/n) + €', and [6"(u)" 6" (u)"], respec-
tively:

0, (W) — 0" = (SY\WSL ) HSY W — Zkb (t/n — u)ze (6" (t/n) + €l py)—

SY W~ Zkzb (t/n — u)Zs )0t — SY W = Zk:b (t/n —w) Zy w2 (t/n — u)d)
i i
(B.21)

Substituting 5" (¢/n) by equation B.18:

0, (W) — 0" = (SY W SL ) H(SY W= Zkb t/n — ) Zp (2, M(t)+
t 1

8" ) + 0" () (/. — ) + 5™ )t/ — ) + )

SY W = Zkbt/n—u)Ztumt5

SY W = Zkb (t/n —u) Zyu2h(t/n — u)d)
i3
(B.22)

After some terms cancel out we get:

0, (W) — 0" = (SY W SE ) H(SYy W= Zkbt/n—u)met (t/n)+

s W = Zkb (t/n — ) Zy ;6™ (u)(t/n — u)’+

SY W = Zkb t/n—u)Ztuet+h)
i

(B.23)
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Let’s define:

S = SYWS%y =S¥ Hy ' HyWHyHy 1S%

1 n
R= =" ky(t/n —w) Zyu;M(t/n)
t=1

s B.24
B = %Zkb(t/n_U)Zt,uxgéh"(u)(t/n_u)Q ( )
t=1

1 n
T=_ > klt/n = u)Ziuelyy,
t=1

Then, equation B.23 can be rewritten as:

6," (W) —6h = SLS¥ WR+ SLSY WB + S~IS¥,WT  (B.25)

Scaling by H and defining

Hy(6," (W) — 6h) = (H7 \SH Y "V HT ' S¥y Hy V HyW HyHy ' R+

(H{'SH Y 'H{'SY Hy ' HoWHo Hy ' B+ (B.26)
(H{'SH Y 'H 'Sy Hy " HoW Ho Hy '
where Hy = dia:q(l, b) 024 IA(dXd) and Hy = diag(l, b) X I(me).
Recall that W = H, 'WH,

Hy(6," (W) — 6"y = (H7 SHT ) HT SYy Hy "W Hy ' R+

(H{'SH Y 'H'SY Hy '\ WH, ' B+ (B.27)
(Hy'SHy )T H ' SYc Hy 'WH, 'T
The expression H sy 1 ! can be written as:
H{'SH' = H'SYy Hy VHyW Ho H; 1S4 H! B.28)
= Hy ' Syx Hy "WH; ' Sy Hy ! |

Let’s define S(u) = H, 'S% H; ', therefore equation B.27 can be rewritten as:

H(6," (W) — 61) = {S(u)WS(u)} 1S (u)' W Hy ' R+

. R X X (B.29)
{S(u)WS(u)} LS(u)WH;'B + {S(u)WS(u)}y 1S (u)WH;'T

99



Notice that S(u) can be written as:

% Yoy ke(t/n — u)z) % Yoy ke(t/n — u)z) (t/n (t/n—u)
L5 ot — et 570 LS i — )t G

=[50 o)

(B.30)
such that S(u,j) = 2 >0 | ky(t/n — u)zta:g(t/nb_“)j.
Lemma 1. Under assumptions I to 4:
S(u,j) — piMog(u) = op(1) (B.31)
where j1s = [uk(u)du
Proof. Taking expectations:
1 & t/n—u.
==Y ky(t/n— / I =
) = 5 3 halt/n = Bt ()
- (B.32)

- k:t/n—u t/n—u

Moy (tfm) (F )

M

t=1

Under assumptions 2 and 3, by the Riemann sum approximation of an inte-
gral and a change of variables:

(1—u)/o
E(S(u, §)) :/ W () Mo (b + ) + 0,(1) (B.33)
—u/b

As ub — 0:

(/b
E(S(u, ) = Mz (u) /u/b wk(u)du + op(1) (B.34)

= pj Mo (u) + op(1)
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Now, let 17,4 be the (p, g)th element of S(u, j). Thatis, nyg = £ 31 ky(t/n—
u)zpt:):qt(t/ifu )7. Then,

tn — ..,
Var(npg) = QZkb (t/n —u)Var(zpzqe)( /nb u)23+
t=1
2072 > Cov(zpigi, 2 k(i /n — u)(z/ ”b_ Uy (B.35)
1<i<l
chyft/n - )Lty
Var(ipg) = 1 + Iy (B.36)
3 k? t/n— u) t/n_u ‘
22 —— Var(epaa) (~——)Y (B.37)
- n k2(t/n i t/n_u '
= (nb) 1; Tf Var(zptxqt)(T)QJ (B.38)

Let C = max(Var(zpxq)), then by the Riemann sum approximation of an
integral:

kQ(t/n ) t/n—u
-1 2j
I, < C(nb) ; () (B.39)
(I-w)/b
I < C’(nb)_l/ Pk (u)du < C*(nb) ™' = 0,(1) (B.40)
—u/b
Now, let’s analyze Is:
Iy =2n2 Z Cov(zpi®gi, Zpixq)kp(i/n — u)(z/nb— u)j
1<i<l (B.41)
l/n—u. .
<hy(tfn —uy( =y
n . /n—u.;
L <[ I |< 2072 > | Cov(zpitgir zpitqr) || ko(i/n — u)( / )
1<i<l
l/n—u.;
<l tfn — (P
(B.42)
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By applying Corollary A.2 in Hall and Heyde (1980) which is cited by Cai
(2007). We can find a similar result in Proposition 2.5 in Fan and Yao (2003).
Under assumption 2, we have:

1 1

| Cov(zpitgi, 2piqr) |< 8{E | 2piwgi ’2+6}2+5 {E | zpzq ’2+6}2+5
T e

a(l — i)' "z 7

Moreover, under assumption 4 we get that E | 2,24, |>t0< oo for r =i, 1:

Cov(2piTgi, ZpiTal SCal—i% (B.44)
pilqis Zpllq

Therefore,

1220 Y all i) klifn - (L=t
1<i<l (B.45)

In—u..

<l (tfn — ) (L2 |

Changing the index in the summation:

n—1 n—p .
1< 20072 Y ()75 3 | kytin —u) (L1
s=1 i=1 (B.46)
. l/n—u s
Al hifn —ut (L 2
n—1 n—p i/n—u .
k _
L |< 2002 Y aferhn Y | B iy,
=1 = (B.47)
QA Y
b b nb
Asn — oo, s/nb goes to zero:
n—1 n—p i/n—u .
(U n=u .
I |<20m72 Y aferhn Y | B iy,
=1 i=1 (B.48)
z/n u
o ) M) Mz
b b



By the Riemann sum approximation of an integral:

n—1 n—p ;2/i/n—u .
-1 72 k25— ji/n —u .y,
T2 2000)71 Y a8 ) (R B49)
n—1 s (1—u)/b
| I |< 2C(nb) a@yﬂa/’ W) e (B.50)
s=1 7“/b
n—1 s
| L |< C* (nb) ") a(s)? (B.51)
s=1

o

Given that a(s)2+3 = O(s~(1+9) by assumption 2, 3 "_] La(s )% = O(1).
Then,

)

n—1
| I [< C*(nb) ™) " a(s)75 < C**(nb) ™! = 0,(1) (B.52)
s=1

Putting the pieces together:

E(S(u,j)) = pjM.z(u) + 0p(1) (B.53)
Var(S(u,j)) = op(1) + 0p(1) = 0p(1) (B.54)
Thus,
S(u,j) — M.z (u) = op(1) (B.55)
]

Lemma 2. Under assumptions 1 to 4:
Hy 'R — 0,(b?) (B.56)
Proof. Let’s consider b2 H. 9 IR

1 n -2
o | w2t Re(t/n = uw)zexibT M (t/n) ] _ [Ro]
b H2 R = Zt . kb(t/n . U)ZtlUt (t/n u) QM(t/TL) = R, (B.57)
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such that R; = 1S Ky (t/n — w)zea)(L%4)Ib~2M (¢ /n). Taking the ex-
pectation of last expression we get:

E(R;) = % S ky(t/n - u)E(ztx;)(Wl:"“‘)jb—QM(t/n) (B.58)
t=1
B n k(t/n;u) t/n—uj B
E(R;) = ; nz (“—5 ) Mew(t/n)0 2M(t/n) (B.59)

By the Riemann sum approximation of an integral:

(1-u)/b
E(R;) = / W k(u) M, (ub + u)b™2M (ub + u)du + 0,(1)  (B.60)
—u/b

By the Taylor approximation, we know that: M (ub+u) = 0,(b?) for any u.
Therefore b2 M (ub + u) — 0,(1).

E(Rj) = ptj Mo (w)b™> M (ub + u)du + 0p(1) = 0p(1) (B.61)

Using the same techniques in the proof of Lemma 1, we have that:

Var(R;) = op(1) (B.62)
Thus,
b 2Hy'R = 0,(1) then Hy'R — o0,(b%) (B.63)
O]
Lemma 3. ()5 ()
1 M (1)d™ (u
-1 12 |H2 My 2
158 - g [ o) * ) (B8
Proof.

H;lB = 1b2 %Z?:l ky(t/n — U)thédh//(u)(z/nb_uy ) lbz [32}
2 % Z?Zl k?b(t/n —_ u)ztx;(shl/(u)( /nb_u)3

Such that B; = L S ki (t/n — w) 2,0 (u) (L2)i = S(u, §)6" (u)
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From Lemma 1:

Bj — ;M. (w)6" (u) = 0,(1) (B.66)
Therefore:
1 Lo [pe Moy (u)d™ (u) 2
Hy'B = 5b [ungw)éh"(u)] o) (B67)
O
Lemma 4.
(nb)Var(Hy 'T) — X(u) — o0p(1) (B.68)

where vy = [uk?(u)du ; Qu) = Th(u) + 232, T (u); and X(u) =
N

U1
Proof.
1
Ky (t
e LU ;)theti/é uy| = [TO] (B.69)
n Zt:l kp(t/n — )tht-i-h(T) T,
1 | (nb)Var(Ty) (nb)Cov(Ty, Ty)
(b)Var(H, °T) = [(nb)Cov(To, Ty (nb)Var(Ty) ®.70)
Let’s define, T (t/n) = Cov(z€l, ), ze4k€l ) and consider T:
(nb)Var(Ty) = n_lbz Cov(zel p, zel, )k (t/n — )
t=1
+2n~ ' Z C’ov(zle;ﬁrh, zkez+h)kb(l/n —u)kp(k/n — u) (B.71)
1<i<k<n
=1I3+ 14
First, consider I3:
I3 = n_lbz Cov(zte?+h, zte?+h)k§(t/n —u) =
= (B.72)

(t/n u)

ZFO t/n
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Under assumption 3, by the Riemann sum approximation of an integral and tak-
ing into account ub — 0:

(1—u)/b
Is = / k2 (u)Th (ub + u)du + 0y(1) =
b (B.73)

(1—u)/b
I (u) / L Rt o) =Tl + op(1)

For 14 we follow Cai (2007) and Chen (2015). There exists d; — oo such
that dr/v/n — 0 and dp/(nb) — 0:

Li=2n"1b Z Cov(zlelfﬁrh, zkeZJrh)kb(l/n —wky(k/n—u) (B.74)
1<l<k<n

n—1 n

I, = 2n*1bz Z Cov(z1€) zkeZ+h)kb(l/n —w)ky(k/n—u) (B.75)
1=1 k=l+1

n—1
I, = 2n71bz Z Cov(zlel}:_h, zk62+h)kb(l/n —u)ky(k/n —u)+
=1 1<k—I<dr

n—1
2n_1bz Z Cov(zlelﬂh? zk62+h)kb(l/n —w)ky(k/n —u)
=1 dp<k—-I<n—1

= Iy + Iyo
(B.76)

Let’s work out I4o:

n—1
Iy = 2nflbz Z Cov(z1€), 1, Zwer )k (l/n — w)ky(k/n — u)
1=1 dp<k—l<n—1

B.77)
For any (p, q)th element of 143, . we have:
n—1
| I42<p,q> |= 2! Z | ko(l/n —u) |
=1 (B.78)
xS Covlendin mgchan) | bho(k/n ) |

dp<k—Il<n—1

106



n—1 l/n—u

k()

’ 142(1341) ‘: 2 Z ‘ nb
=1

k/n—u
x| Y | Covleelin zanekn) | K(=——) |
dp<k—I<n—1

(B.79)

Under assumption 2, by applying Corollary A.2 in Hall and Heyde (1980) which
is cited by Cai (2007). We can find a similar result in Proposition 2.5 in Fan and
Yao (2003).

1
‘ COU(ZpZEIhJFthquZJrh) |< 8{F | Zplfﬁrh |2+6}2+5

W oase L N (B.80)
$AE | zgregn |70} a(k — 1) 77T
Letting C' be a constant term:
)
| Cov(2pi€)s 1> 2greiign) |< Calk — )75 (B.81)

Moreover, we know that &(.) is bounded by assumption 4. By defining C* =

mazp{k( k/?;“)}, we can guarantee:

n—1 l/n—u
Z k(+=— 5

| I42<p’q) |§ 200* ‘ (’[’LZ) ‘ E Oé(kj — l) 246 (B82)
=1

= dr<k—I<n—1

n—1 l/n—u n—1
* ( b ) 6
‘ I42(p’q) |<20C ZE; ] — | Zd: a(s)z+s (B.83)
= s—dop

By the Riemann sum approximation of an integral and considering that a(s) =
_ (249)(1+49)

O(s 5 ) by assumption 2. Notice that ZZ;;T a(s)ﬁ = ZZ;;T O(s~(1H9)) =
O d7(1+5)
(dp ).

(1—u)/b n—1

| Laz, ) IS QCC*/ k(u)du Z a(s)z%a (B.84)
—u/b s—dp
n—1 s
| Ling, ) 120000 S als)7 < 0" < 0d7? = 0,(1) (B.85)
S:dT

which follows from d — oo.
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Now consider (p, q)th element of I (p.q)¢ WE have:

P,q)°

n—1

_ -1 h h
Ing,, =2n bz Z Cov(2pi€l's hs 2qk€htn)
I=1 1<k—I<dp

xkp(l/n —u)ky(k/n —u)

n—1

I41(p,q) = 2n_lbz Z COU(Zplelh—i—ha qu52+h)
=1 1<k—I<drp
x (ky(1/n — w)ky(k/n —u) — Ky (I/n —u) + ki (1/n — u))
n—1

_ -1 h h
141(,,’(1) =2n bz Z Cov(2p€]' s Zqk€hrn)
=1 1<k—I<dr

x (kp(1/n — u)ky(k/n — u) — k2 (1/n — u))+

n—1
2n71bz Z Cov(zpielsns Zgkersn) ki (l/n — u)

=1 1<k—I<dr
- I411(P7q) + I412(p,q)
Then:
n—1
Inz,, = 20~ b Z k:g(l/n —u) Z COU(ZplG?—khv qutfg_,_h)
=1 1<k—I<dr

By the definition I'}:(t/n) = Cov(z€]! 1, Ze4k€l pip):

Ql/nu

Lin2,,) = 22 . Zrh /)

(B.86)

(B.87)

(B.88)

(B.89)

(B.90)

By the Riemann sum approximation of an integral and noticing that ub — 0 and

dr — 0o asn — oo:

(1—u)/b ) dr .
1412(1774) = 2/ P k (’LL) Z Fs (ub + u)(p,q) + Op(l)
—u s=1

- 2UOZF (pq) + op(1)
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Now, I411(p,q) :

n—1
1411(17711) = 2”_1bz Z COU(ZPZE?-i-h? queécl—&-h) B.92
1=1 1<k—I<dr (B.92)
x (ky(1/n — uw)ky(k/n —u) — k2 (1/n — u))
n—1
]411@74) = 2n_1bz ky(l/n — ) Z C’ov(zpleﬁh, zqkeZ’+h)
=1 1<k—I<dr (B.93)
X (ky(k/n —u) = ko(l/n — u))
n—1
| L1, ) 1< 2717162 ky(l/n — u)
=1 (B.94)
X Z | CO,U(ZPZE;L+h7 qu62+h) || kp(k/n —u) — kp(l/n —u) |
1<k—I<dp
By assumption 3, k(.) satisfies the Lipschitz condition, thus:
k=1 _dp
| ky(k/n—u) — ky(I/mn—u) |<C e SCW (B.95)

Then,

n—1
| a1, 4 < Cni2b71dTZkb(l/” —u) Z | COU(Zplﬁ?JrhankGZJrh) |

=1 1<k—I<dp
(B.96)
Adding and subtracting a covariance term at period T'u:
n—1
—2;-1
| i1, |SCn77b dTZkb(l/n —u)
=1
il X X , . (B.97)
X Z | Cov(2pi€)n, Zgi+s€14-san) — COV(2ptelsns Zqtts€ipsrn)t
s=1

h h
COU(ZptetJrhv th+s€t+s+h) ‘

109



n—1

‘ 1411(p’q) ’S C?”L_zb_ldT Z kb(l/n — u)
=1

dr (B.98)

h h h h
X E (I Cov(zplel+hvqu+s€l+s+h) - COU(Zptet-i-ha th+s€t+s+h) |+
s=1

h h
| COU(ZptEt-s-h, th+s€t+s+h) )

Under | COU(*"’pKﬁhv qu+86?+s+h) - COU(Zpt€?+hv th+8€?+s+h) |=O(b):

n—l dT
| Inyg,, IS Cn_Qb_ldTZkb(l/n —u) Z(bC*—i— | TH(w) ) ) (B.99)
=1 s=1
n—1
| Iny,,, |< Cn 207 dr Y ke(l/n — u)
=1 (B.100)
dr
X(Z | T2(w) (jmy | +drbC™)
s=1
n—1 (l/nfU)
| I, IS Cn7 07 dp ng
=1 (B.101)
dr
<O 1MW) (jymy | +drbC*)
s=1
n—1 l/n—u
< SRR
411(1741) — nb
=1 (B.102)

dr
x(Cn~ ' dp Y [ T8 (u)(jmy | +Cn ' d7C™)

s=1

We know that as n — oo, dp//n — 0 and dr/(nb) — 0:
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| Lty 1< p0(C Y [ THW) Gy | 007 dr + CC™n 1Y)
s=1 (B.103)

o dr | d
<C (% + ;T) = 0p(1)

Putting the pieces together:

(nb)VaT(To) =13+ 1y =134+ 141 + Iyo = I3 + 1411 + 1410 + 142 (B.104)

(nb)Var(To) = vo(I'h (u +2ZFh )+ 0p(1) = voQ(u) + 0p(1) (B.105)

Analogously, we have:

(nb)Var(Ty) = va (TR (u +2Zrh )+ 0p(1) = v2Q(u) 4 0p(1) (B.106)

(nb)Cov(To, T1) = v1 (LA (u +2Zrh ) + 0p(1) = v1Q(u) + 0,(1)

(B.107)
Therefore,
(nb)Var(Hy'T) — [2(1) ”1} ® Q(u) = 0p(1) (B.108)
by Chebyshev’s inequality the result above implies:
Hy'T — 0,((nb)~1/?) (B.109)
O

Under Lemma 1:

poMo(u)  p1 Mo (u)

SO = M) 2 Mo (1)

+op(1) = M(u)+0p(1) = Op(1) (B.110)
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We also know that W — W = op(1). Therefore, under lemmas 1-4 the equation
B.29:
Hy(6," (W) — ) = {S(u) WS (u)} 1S (u) W Hy ' R+
{S(u)WS(u)} 1S (u)W Hy ' B+ (B.111)
{S(u)'WS(u)} LS (u)'WHy T

It converges to:

H (0" (W) = 00) = 0,(8) + (M (u) WM ()} " M(u)WH; "B oo
+O,((nb) ™)
B.3.5 Proof of Theorem 2
To show Theorem 2 is sufficient to prove that:
VnbH;'T — N(0, % (u)) (B.113)

To prove this we use the Cramer-Wold device. It means that we need to show
that for any unit vector d in R?™:

Vnbd Hy 'T — N(0,d'S(u)d) (B.114)

Let’s define P, = n~Y/26Y/2d’ Hy 'ky(t/n — w) Zy el p,. Then, vnbd'Hy 'T =
> iy P:. By Lemma 4:

Var()_ P) = d'S(u)d + op(1) (B.115)
t=1

Here we use the small-block large-block technique used in Cai (2007). That
is, let’s build a partition of {1,...,n} into 2¢p subsets: gr subsets with large-
block of size rp = | (nb)/2]; gr subsets with small-block of size s7 = | (nb)'/?/log(n)];
and one last subset with the remainders. The value of g = |n/(rp+s7)]. Take
ri = j(rp + s7) and define the random variables, for 0 < j < gp — 1:

r;errT r;f+1 n
nj = Z P, &= Z P, and Q5= Z P, (B.116)
t:r;+1 t:r;f+rT+1 t:r;‘JrrTJrl
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then, vn bd/H2_1n = @1 + Q2 + @3, where Q1 = ZqTO nj and Qo =
ZQT ! ;. Let’s take the following results from Cai (2007):

E(Q2)* — 0, E(Q3)* -0, (B.117)
For any s:
qr—1
zSQ1 H ]E zan ‘_> 0 (B.118)
and
qr—1
Var(Q1) —» d'S(u)d and Y E(|n; ) =0 (B.119)
7=0

The results in B.117 imply that Q2 and ()3 are asymptotically irrelevant. The
result in B.118 means that 7’s are asymptotically independent and the result
in B.119 refers to the standard Lindeberg-Feller and Lyapounov conditions for
asymptotic normality. Cai (2007) shows that under assumptions 1-6, results
B.117,B.118, and B.119 are accomplished.

B.4 Tables and Figures
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Table B.1: Coverage and Length for 90 Confidence Interval with n=500 in Experiment 1

‘ Inflation

‘ Coverage ‘ Length

‘ High ‘ Medium ‘ Low ‘ High ‘ Medium ‘ Low
h |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP
1 (099 100 085[096 100 088]1.00 100 086[022 086 024]1.09 128 027]212 225 033
2 1098 100 086[075 100 087|079 100 087|029 086 034|052 128 037|088 225 043
3 /097 100 086[070 100 085|071 100 087|031 086 038]038 128 041065 225 047
4 09 100 087|085 100 085|073 100 088|036 086 044|047 128 046|066 225 052
5 1094 1.00 086|090 098 087|097 100 086|041 086 050|115 128 052|211 225 055
6 | 091 1.00 088|085 1.00 086|090 100 086|045 086 051|067 128 051|109 225 053
7 | 086 1.00 089|087 1.00 086|086 100 087|049 086 052|046 128 051|046 225 053
8 | 087 099 086|083 1.00 087|083 100 087|054 086 052[053 128 053|062 225 056
9 |08 098 085|090 099 087|096 100 085|057 086 051|098 128 051|171 225 051
10 | 087 097 085087 099 086|091 100 084|059 08 052|081 128 054|127 225 0.56
110386 096 084092 097 085]095 100 085|060 086 057|097 128 060|163 225 0.63
12086 094 085|087 099 086|084 100 084|063 086 065|066 128 067|070 225 0.69
13085 092 084087 099 085|086 100 084|069 08 069|072 128 071|074 225 0.74
14085 089 083|085 099 086|083 100 083|075 086 073|078 128 075|085 225 0.78
15085 087 084|091 097 085|091 1.00 082|079 086 076|094 128 078|127 225 0.80
16 | 0.85 0.87 0.84 085 097 084|082 100 084|082 086 078088 128 080|098 225 082
17 | 085 086 084|086 097 085|088 100 084|082 086 077|085 128 079|090 225 081
18 | 0.83 0.87 0.84|084 098 083|086 1.00 085|080 086 078082 128 080|085 225 081
19082 089 083|081 098 084|082 100 084|076 086 079|077 128 080|080 225 0.82
20083 092 082]077 099 083|075 100 084|071 086 080|075 128 081|091 225 0.83
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Table B.2: Coverage and Length for 90 Confidence Interval with n=500 in Experiment 1

\ GDP

\ Coverage Length

\ High \ Medium \ Low High \ Medium \ Low
h |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP
1 /093 1.00 088]099 1.00 088]086 100 086]021 050 018|094 142 0.19] 164 278 022
2 /091 1.00 088|100 100 087|091 100 088|020 050 020|130 142 020|244 278 024
3 /091 100 086|091 100 088087 100 086|023 050 022|051 142 024]091 278 029
4 090 099 086|090 1.00 087|087 100 087|025 050 023|041 142 025|091 278 031
5 089 099 086|089 100 085|094 100 086|027 050 025|045 142 028|112 278 034
6 088 099 085[091 100 085|086 100 085|028 050 026|033 142 029054 278 035
7 1088 1.00 085]091 100 086|087 100 088|026 050 026|030 142 027|042 278 031
8 1096 1.00 085]069 100 085|081 100 086|024 050 026|035 142 027|073 278 031
9 1099 100 086|066 100 088|076 100 091|023 050 025|027 142 027|055 278 029
10 1.00 1.00 089078 1.00 088|072 1.00 088|022 050 026|028 142 027|040 278 0.30
11100 100 088093 1.00 087]092 100 087|022 050 026095 142 027|173 278 031
12 1.00 1.00 087096 1.00 088092 100 086|023 050 026|124 142 028|227 278 032
13100 100 088|085 100 088|086 100 086|022 050 026|077 142 029|140 278 035
14100 100 087]069 100 087|074 100 087|023 050 026|034 142 029060 278 037
15100 1.00 088070 1.00 087|074 100 088|022 050 026|034 142 029|062 278 0.36
16 | 1.00 1.00 086|089 1.00 086|093 1.00 089|023 050 026|093 142 028|179 278 035
17 1.00 1.00 087|078 1.00 086|087 100 087|022 050 026|065 142 029|124 278 035
18 1.00 1.00 087076 1.00 088|082 100 087|022 050 026|055 142 029|101 278 0.36
19100 1.00 087070 1.00 090|069 100 088|023 050 026|031 142 029|051 278 0.36
20| 1.00 1.00 088|072 100 086|075 1.00 090|022 050 026|034 142 029|059 278 036
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Table B.3: Coverage and Length for 90 Confidence Interval with n=250 in Experiment 2

‘ Inflation

‘ Coverage ‘ Length

‘ High ‘ Medium ‘ Low ‘ High ‘ Medium ‘ Low
h |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP
1 (094 100 085[090 100 087[088 1.00 084]028 095 025]031 098 026|039 113 027
2 /090 1.00 084|090 100 083|087 100 085|031 095 030|034 098 031|041 113 031
3 /089 1.00 084]090 100 083|088 100 085|034 095 031|037 098 032|044 113 032
4 088 1.00 085|087 100 085|086 100 083|037 095 035|039 098 036|046 113 036
5 087 099 083|087 1.00 082085 100 084|040 095 041|043 098 041|049 113 041
6 | 085 099 082]08 099 083|085 100 081|044 095 043|047 098 043|053 113 043
7 | 084 098 081|085 099 083085 099 080|050 095 047|051 098 047057 1.13 047
8 | 084 097 080|084 098 081|084 099 080|055 095 052)056 098 052]061 1.13 052
9 | 083 094 080|084 096 082|083 097 080|059 095 057[060 098 056|065 1.13 056
10 | 0.82 093 080|083 095 081|082 097 078|063 095 060 064 098 059|069 113 0.60
11081 092 080081 094 080|082 095 079|067 095 063|067 098 062|072 113 0.63
12080 091 079081 093 079|080 095 077|070 095 0.66|0.71 098 065|076 1.13 0.66
13079 091 078079 092 078079 096 077|072 095 067|073 098 066|077 113 0.67
14077 092 078078 093 078|078 096 077|071 095 067|072 098 066075 113 067
15077 095 078077 094 078|078 097 078|068 095 068|069 098 067|072 113 0.68
16 | 0.82 097 080|081 097 078|081 099 077|065 095 068|066 098 068070 113 0.67
17 /092 099 080|087 098 077|085 099 078|064 095 068|065 098 068069 113 0.67
18096 099 078090 099 078|089 099 077|065 095 069|064 098 069071 113 0.69
19098 100 077]095 100 078|091 1.00 077|065 095 070|066 098 069|071 113 0.69
20098 1.00 079096 1.00 079|091 100 077|067 095 070|067 098 070|071 113 070
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Table B.4: Coverage and Length for 90 Confidence Interval with n=250 in Experiment 2

\ GDP

\ Coverage Length

\ High \ Medium \ Low High \ Medium \ Low
h |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP
1 /090 100 083090 1.00 084[090 1.00 085[030 079 024|032 086 024]037 106 026
2 | 091 100 083]08 100 082|088 100 083|030 079 029032 086 029|039 106 030
3 /088 099 083]088 100 082|08 100 083|036 079 034|038 08 035|043 1.06 035
4 1086 099 085|085 099 081|086 099 082|038 079 038]041 086 038|046 106 038
5 084 098 082]082 099 080|083 100 080|041 079 040|043 086 040|048 1.06 041
6 | 085 098 081|083 098 079|086 099 080|043 079 041[045 086 041|051 1.06 042
7 1083 098 081|081 098 079|081 099 078|044 079 042|046 086 041|051 1.06 042
8 081 099 082|081 099 078|081 100 079|043 079 042|045 086 041|050 1.06 042
9 082 099 083]080 100 080|082 100 080|041 079 041|043 086 041|049 1.06 042
10 | 087 1.00 081084 1.00 083|082 100 082|040 079 042|042 086 041|048 106 0.42
11092 1.00 080089 1.00 083|087 100 081|040 079 042|043 086 042|050 106 0.42
12095 100 082]091 100 083|088 100 081|040 079 042|043 086 043049 106 043
13096 100 080|092 100 082|088 100 081|041 079 042|042 086 042049 1.06 043
14098 100 081]093 100 083|087 100 084|041 079 042|042 086 042]048 1.06 043
15098 1.00 084093 1.00 084|083 100 083|038 079 043|042 086 042|046 106 043
16 | 099 1.00 084|091 1.00 085|086 100 084|037 079 042|040 086 043|048 106 043
17 1.00 1.00 084092 100 086|082 100 085|038 079 043|041 086 043|047 106 044
18 1.00 1.00 084089 1.00 084|084 1.00 083|039 079 043|042 086 043|049 106 044
19100 1.00 085089 1.00 084|084 100 083|040 079 043|039 086 043|049 106 0.44
20| 1.00 1.00 084|089 100 087|081 100 085|039 079 044|039 086 044|048 1.06 045
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Table B.5: Coverage and Length for 90 Confidence Interval with n=500 in Experiment 2

Inflation

Coverage

Length

High

Medium

Low

High

Medium

Low

| FLP FLP,

LP | FLP FLP,

LP | FLP FLP,

LP | FLP FLP,

LP | FLP FLP,

LP | FLP FLP,

LP

I AAUN AW =T

0.94
0.93
0.91
0.90
0.89
0.88
0.87
0.87
0.86
0.85
0.84
0.83
0.83
0.82
0.81
0.81
0.90
0.96
0.98
0.99

1.00
1.00
1.00
1.00
1.00
0.99
0.99
0.97
0.96
0.94
0.92
0.91
0.90
0.91
0.94
0.97
0.99
1.00
1.00
1.00

0.86
0.86
0.87
0.87
0.86
0.86
0.84
0.84
0.84
0.84
0.83
0.84
0.82
0.83
0.82
0.82
0.83
0.84
0.84
0.85

0.91
0.89
0.91
0.88
0.87
0.89
0.89
0.88
0.88
0.87
0.86
0.87
0.85
0.86
0.85
0.85
0.90
0.91
0.94
0.95

1.00
1.00
1.00
1.00
1.00
0.99
0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.94
0.96
0.97
0.99
0.99
1.00
1.00

0.86
0.87
0.89
0.86
0.87
0.88
0.87
0.85
0.85
0.84
0.84
0.86
0.85
0.85
0.85
0.84
0.86
0.86
0.86
0.85

0.87
0.89
0.89
0.89
0.86
0.89
0.89
0.88
0.88
0.89
0.86
0.85
0.84
0.84
0.84
0.83
0.84
0.85
0.88
0.86

1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.99
0.99
0.99
0.97
0.98
0.97
0.98
0.97
0.99
0.99
1.00
0.99
1.00

0.84
0.86
0.86
0.86
0.86
0.87
0.86
0.85
0.85
0.85
0.84
0.84
0.84
0.82
0.82
0.83
0.81
0.84
0.84
0.85

0.20
0.23
0.25
0.27
0.30
0.33
0.36
0.40
0.44
0.47
0.49
0.53
0.55
0.56
0.53
0.49
0.46
0.44
0.43
0.43

0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66
0.66

0.19
0.23
0.23
0.26
0.30
0.32
0.35
0.39
0.42
0.45
0.48
0.50
0.50
0.50
0.51
0.51
0.51
0.52
0.52
0.52

0.24
0.26
0.29
0.31
0.33
0.36
0.39
0.43
0.47
0.49
0.52
0.55
0.58
0.58
0.56
0.52
0.49
0.46
0.46
0.46

0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72

0.19
0.23
0.23
0.26
0.31
0.32
0.35
0.40
0.43
0.46
0.48
0.50
0.51
0.51
0.52
0.52
0.52
0.52
0.52
0.53

0.35
0.36
0.36
0.39
0.41
0.43
0.46
0.50
0.52
0.55
0.57
0.61
0.63
0.62
0.60
0.57
0.54
0.53
0.51
0.51

0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92
0.92

0.20
0.24
0.24
0.27
0.31
0.33
0.36
0.40
0.43
0.46
0.49
0.51
0.51
0.52
0.52
0.52
0.52
0.52
0.53
0.53
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Table B.6: Coverage and Length for 90 Confidence Interval with n=500 in Experiment 2

\ GDP

\ Coverage Length

\ High \ Medium \ Low High \ Medium \ Low
h |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP |FLP FLP, LP
1 /092 100 087|091 1.00 087]094 100 089]023 054 018]024 065 0.18]029 089 0.19
2 /092 1.00 086|089 100 088|089 100 087|022 054 022|024 065 022|032 089 022
3 /089 099 087]089 100 085|090 100 086|026 054 026|029 065 026|036 089 026
4 1089 099 085]089 099 085|089 100 086|029 054 028]032 065 029|039 089 029
5 089 098 085]085 099 085|089 100 086|031 054 030[033 065 031|041 089 031
6 089 099 086|087 099 086|090 100 086|031 054 031]034 065 031|041 089 032
7 1088 099 087086 099 083|086 099 085|032 054 032]035 065 032|042 089 032
8 086 099 085|085 099 085|086 100 085|033 054 031|036 065 031|043 089 032
9 1086 099 086|084 099 083|085 100 085|032 054 031|035 065 031|042 089 032
10 | 088 099 086|086 1.00 085|084 100 084|031 054 031|034 065 032|041 089 032
11092 099 087|088 100 085|085 1.00 086|029 054 032033 065 032|039 089 032
12095 100 084|088 100 085|086 1.00 085|029 054 032032 065 032|041 089 032
13096 100 087091 100 087|089 100 086|028 054 032|031 065 032|039 089 032
14098 1.00 086|089 1.00 088|088 1.00 087|028 054 032|030 065 032|040 089 0.32
15098 1.00 088090 1.00 087|083 100 088|027 054 032]030 065 032|038 089 033
16 | 099 1.00 087|090 1.00 088|084 100 086|027 054 032]030 065 032|038 089 033
17099 1.00 088089 1.00 086|081 100 085|027 054 032]030 065 032|037 089 033
18 1.00 1.00 088086 1.00 088|082 100 085|027 054 032]030 065 032|039 089 033
19100 1.00 087087 1.00 087|081 100 087|027 054 032|031 065 032|039 089 033
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Figure B.1: IRF to a Monetary Policy shock with High Smoothness and T=500 in Experiment 1
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Figure B.2: IRF to a Monetary Policy shock with Medium Smoothness and n=500 in Experiment 1
Functional Local Projection
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Figure B.3: IRF to a Monetary Policy shock with Low Smoothness and n=500 in Experiment 1
Functional Local Projection
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Figure B.4: Confidence Interval Simulations with High Smoothness and n=500 in Experiment 1
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Figure B.5: Confidence Interval Simulations with Medium Smoothness and n=500 in Experiment 1
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Figure B.6: Confidence Interval Simulations with Low Smoothness and n=500 in Experiment 1
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Figure B.7: Histogram of a,b,c with the High Smoothness and n=500 in Experiment 1
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Figure B.8: Histogram of a,b,c with the Medium Smoothness and n=500 in Experiment 1
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Figure B.9: Histogram of a,b,c with the Low Smoothness and n=500 in Experiment 1
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Figure B.10: Cumulative IRFs to a TFP shock - Observed Shock Specification - 2
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Figure B.11: Cumulative IRFs to a TFP shock - IV Shock Specification - 2
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Figure B.12: Cumulative IRFs to a TFP shock - IV Shock +TV Specification - 2
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Figure B.13: Non-Cumulative IRFs to a TFP shock - Observed Shock Specification - 1
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Figure B.14: Non-Cumulative IRFs to a TFP shock - Observed Shock Specification - 2
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Figure B.15: Non-Cumulative IRFs to a TFP shock - IV Shock Specification - 1
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Figure B.16: Non-Cumulative IRFs to a TFP shock - IV Shock Specification - 2
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Figure B.17: Non-Cumulative IRFs to a TFP shock - IV Shock +TV Specification - 1
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Figure B.18: Non-Cumulative IRFs to a TFP shock - IV Shock +TV Specification - 2
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B.5 Tables

Table B.7: Estimated Parameters of the Gaussian basis for cumulative

IRFs

\ \ GDP Inflation Consum HoursW  Emp

Direct Shock | a | 1.10 -1.05 0.33 0.53 0.46
b | 14.20 15.39 15.62 14.32 15.20

c | 138.88 164.84 124.35 18.12 20.24

v a| 145 -1.39 0.43 0.69 0.60
b | 14.20 15.39 15.62 14.32 15.20

c | 138.88 164.84 124.35 18.12 20.24

IV;r =025 |a| 1.66 -0.43 0.68 1.39 1.10
b | 13.85 9.55 16.51 14.32 15.50

c | 86.71 31.21 89.70 21.51 24.16

IV,r =050 |a| 141 -2.02 0.48 0.68 0.56
b | 11.47 17.35 10.95 12.39 13.03

c | 125.22  200.00 75.21 26.70 23.79

IV,r=0.75 |a| 1.8l -1.30 1.14 1.36 1.94
b | 14.58 11.11 17.18 14.92 15.79
c | 200.00 54.23 200.00  128.26  156.87

Note: This table displays the point estimates of the parameters a,b,c which describe
the Gaussian basis function under the FLP framework. Each column represents the
response variables to a TFP shocks. The rows exhibits each specification considered in
the empirical study. The last three rows correspond to the IV case with time-varying

parameters at the first, second and third quantiles of the sample.
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Table B.8: Estimated Parameters of the Gaussian basis for non cumulative
IRFs

Speciﬁcation‘ ‘GDP Inflation Consum. Hours. W  Emp.

Direct Shock | a | 1.10  -0.14 0.05 0.19 0.17
0.81 4.15 8.00 9.45 9.91
c| 006 20.50 9.82 6.48 6.60
v a| 129 -0.18 0.07 0.25 0.22
0.84 4.15 8.00 9.45 9.91
c| 0.06 20.50 9.82 6.48 6.60
IV, 7=0.25 | a | 1.07 -0.13 0.17 0.57 0.45
0.85 5.39 8.19 9.46 9.90
c | 0.06 4.03 7.84 4.46 5.24
IV, 7=0.50 |a| 147 -0.22 0.08 0.26 0.21
0.82 0.00 0.00 7.12 7.42
c| 005 114.25 51.05 3.38 4.05
IV, 7=075 |a| 1.28 0.25 1.35 9.97 0.22
0.91 18.39 1.42 8.48 0.00

c | 0.05 8.61 0.14 0.07 106.01

Note: This table displays the point estimates of the parameters a,b,c which describe
the Gaussian basis function under the FLP framework. Each column represents the
response variables to a TFP shocks. The rows exhibits each specification considered in
the empirical study. The last three rows correspond to the IV case with time-varying
parameters at the first, second and third quantiles of the sample.
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Appendix C
CHAPTER 3

C.1 Plots

Figure C.1: Recursive MP: Mean Bias of Estimators

—Svar
08 varia

+1p
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Note: IRFs have been divided by the root mean squared value of the true IRFs out to
horizon 20 in order to cancel out units of the response variables. For each of the 1000
Monte Carlo replications, one specification is considered.
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Figure C.2: Recursive MP: Standard Deviation of Estimators
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Note: IRFs have been divided by the root mean squared value of the true IRFs out to
horizon 20 in order to cancel out units of the response variables. For each of the 1000
Monte Carlo replications, one specification is considered.
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Figure C.3: Observed Shock G: Mean Bias of Estimators
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Note: IRFs have been divided by the root mean squared value of the true IRFs out to
horizon 20 in order to cancel out units of the response variables. For each of the 1000
Monte Carlo replications, one specification is considered.
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Figure C.4: Observed Shock G: Standard Deviation of Estimators
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Note: IRFs have been divided by the root mean squared value of the true IRFs out to
horizon 20 in order to cancel out units of the response variables. For each of the 1000
Monte Carlo replications, one specification is considered.
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Figure C.5: Observed Shock MP: Mean Bias of Estimators
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Note: IRFs have been divided by the root mean squared value of the true IRFs out to
horizon 20 in order to cancel out units of the response variables. For each of the 1000
Monte Carlo replications, one specification is considered.
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Figure C.6: Observed Shock MP: Standard Deviation of Estimators

svar
varma

—w—1p

Note: IRFs have been divided by the root mean squared value of the true IRFs out to
horizon 20 in order to cancel out units of the response variables. For each of the 1000
Monte Carlo replications, one specification is considered.
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Figure C.7: IV G: Mean Bias of Estimators
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Note: IRFs have been divided by the root mean squared value of the true IRFs out to
horizon 20 in order to cancel out units of the response variables. For each of the 1000
Monte Carlo replications, one specification is considered.
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Figure C.8: IV Shock G: Standard Deviation of Estimators
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Note: IRFs have been divided by the root mean squared value of the true IRFs out to
horizon 20 in order to cancel out units of the response variables. For each of the 1000
Monte Carlo replications, one specification is considered.
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Figure C.9: IV Shock MP: Mean Bias of Estimators
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Note: IRFs have been divided by the root mean squared value of the true IRFs out to
horizon 20 in order to cancel out units of the response variables. For each of the 1000
Monte Carlo replications, one specification is considered.
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Figure C.10: IV Shock MP: Standard Deviation of Estimators
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Note: IRFs have been divided by the root mean squared value of the true IRFs out to
horizon 20 in order to cancel out units of the response variables. For each of the 1000
Monte Carlo replications, one specification is considered.
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