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Abstract 

The past decade has seen several attempts to employ the entropy of 

neuroimaging signals as a potential biomarker for cognitive decline 

or traumatic brain injury (C. Y. Liu et al. 2013; Adhikari et al. 

2017; Li et al. 2018).  Not all these studies properly account for the 

distributed nature of cognition, however, which raises the 

possibility of erroneous estimates of global entropy.  This thesis 

proposes a novel means of estimating the complexity of fMRI 

signals and demonstrates its efficacy in detecting the effects of 

psychiatric disease on neuroimaging signals.  The method 

determines the minimum number of orthogonal dimensions 

necessary to capture nonrandom signal dynamics, then projects the 

dynamic functional connectivity signal into the resultant low-

dimensional space.  In this space, the dynamic functional 

connectivity signal’s entropy may be estimated along each 

dimension independently and summed to find the total entropy per 

subject, thus avoiding the need to estimate interregional effects.  

Tests on two independently collected datasets indicate that this 

pipeline can distinguish between healthy controls and psychiatric 

patients, and that a Hopf bifurcation-based effective connectivity 

model is able to recover meaningful differences between control 

and patient groups when trained in this space. 

 

 

Keywords: whole-brain model; obsessive-compulsive disorder; 

schizophrenia; bipolar disorder (type I); attention-deficit 

hyperactive disorder; entropy; Shannon entropy; independent 

component analysis; eigendecomposition; Hopf bifurcation; 

effective connectivity; network-based statistic 

 



  

Resumen 

 

La última década ha sido testigo de varios intentos de emplear la 

entropía de las señales de neuroimagen como un biomarcador 

potencial para el deterioro cognitivo o la lesión cerebral traumática 

(C. Y. Liu et al. 2013; Adhikari et al. 2017; Li et al. 2018). Sin 

embargo, no todos estos estudios explican adecuadamente la 

naturaleza distribuida de la cognición, lo que plantea la posibilidad 

de estimaciones erróneas de la entropía global. Esta tesis propone 

un medio novedoso para estimar la complejidad de las señales de 

fMRI y demuestra su eficacia en la detección de los efectos de la 

enfermedad psiquiátrica en las señales de neuroimagen. El método 

determina el número mínimo de dimensiones ortogonales necesarias 

para capturar la dinámica de la señal no aleatoria, luego proyecta la 

señal de conectividad funcional dinámica en el espacio resultante de 

baja dimensión. En este espacio, la entropía de la señal de 

conectividad funcional dinámica puede estimarse a lo largo de cada 

dimensión de forma independiente y sumarse para encontrar la 

entropía total por sujeto, evitando así la necesidad de estimar los 

efectos interregionales. Las pruebas en dos conjuntos de datos 

recopilados de forma independiente indican que esta tubería puede 

distinguir entre controles sanos y pacientes psiquiátricos, y que un 

modelo de conectividad efectiva basado en la bifurcación de Hopf 

puede recuperar diferencias significativas entre los grupos de 

control y pacientes cuando se entrena en este espacio. 

 

 

Palabras clave: modelo de cerebro completo; desorden obsesivo 

compulsivo; esquizofrenia; trastorno bipolar (tipo I); trastorno por 

déficit de atención con hiperactividad; entropía; entropía de 

Shannon; análisis de componentes independientes; descomposición 

propia; bifurcación de Hopf; conectividad efectiva; estadística 

basada en la red 
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Preface 

To say that the field of neuroimaging has exploded in the past 

decades would be an understatement.  Between methodological 

developments, technological improvements, and increased 

computing power, the field has ballooned at an almost 

inconceivable rate.  So much information is now available that the 

challenge of the era seems to have shifted from locating relevant 

research to locating which research is relevant. 

 

One of the newest and fastest-growing sections of neuroimaging has 

been in the field of MRI-based dynamic functional connectivity 

(dFC).  Although the first publication of this methodology occurred 

scarcely a decade ago, it has quickly become the basis of a vast 

quantity of research into both healthy and disordered cognition.  Of 

note has been the evolving consensus that the human brain’s resting 

state activity is not random, but rather explores a highly organized 

phase space dominated by a finite number of recurrent connectivity 

patterns, or networks.  These resting-state networks (RSNs) consist 

of both task-positive and task-negative networks, with task-positive 

networks becoming more active while engaged in a cognitive or 

behavioral task and task-negative networks increasing their activity 

in the awake, alert, but inactive rest state.  The most famous of these 

RSNs, the default-mode network, falls firmly into the category of 

task-negative, as its activity appears to be suppressed during active 

tasks.  The majority of its companion RSNs are task-positive 

networks, many of which are visually indistinguishable from 

networks known to support active thought and cognition.  Examples 

include visual, sensorimotor, and auditory networks. 

 

The discovery of these networks has prompted an immense amount 

of effort to be poured into cataloguing them.  The sheer number of 

methodologies applied to this problem is difficult to account.  To 

our knowledge, dynamic clustering algorithms, various types of 

Markov models, independent component analysis, principal 

component analysis, and a wide variety of other methods have been 

used to isolate these connectivity patterns, or substates, from dFC 

data and to track their activity over time.  Many studies have been 

published on this subject, most of which attempt to describe the 

relevant dynamics in terms of transition probabilities or energy 

landscapes—concepts borrowed in no small part from dynamic 
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systems theory.  Yet while these studies have provided valuable 

insights into transition dynamics, they can be difficult to 

summarize.  Some method to directly compare the complexity or 

predictability of dFC dynamics between different subjects is 

needed.  This thesis will attempt to provide such a method. 

 

The role of effective connectivity must also be addressed.  While 

not a part of the neuroimaging field per se, effective connectivity is 

undeniably connected to it.  It is, after all, fundamentally an attempt 

to predict or explain the signals detected in neuroimaging data.   But 

this raises the question, what is effective connectivity?  Simply put 

it is an attempt to predict how various regions of the brain influence 

one another.  In this case, the question of how is restricted to the 

questions, which regions influence one another, how strong is this 

influence, and in which direction does this influence flow?  Note 

that this is distinct from functional connectivity, which cannot 

determine directionality and offers no explanation as to how such 

influence comes to be. 

 

The concept of effective connectivity is not new; the question of 

which regions influence which is as old as the idea that long-range 

influence is possible at all.  What is new is the wide availability of 

computational power necessary to make detailed estimates of such 

influence.  That development, and the enormous quantity of 

research going into computational modeling and artificial 

intelligence, has permitted impressive advancements in the field of 

effective connectivity over the past decade.  It remains, however, a 

developing art, as the question of how regions influence each other 

remains an ill-posed one.  While useful information can be gleaned 

from such models, their results should be taken with a healthy dose 

of skepticism. 

 

Despite this, this thesis attempts to determine interregional 

influence based on dynamic functional connectivity.  Specifically, it 

searches for the connectivity which best predicts the predictability 

of the functional connectivity dynamics.  If that sounds confusing, 

well, hopefully by the end of this you’ll have an idea of how it 

works.  Summarizing it is, unfortunately, not an obvious problem. 

 

But why investigate the level of order in functional connectivity 

dynamics at all?  Several reasons present themselves, but the most 
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pressing is the question of psychiatric disease.  For all the advances 

in our knowledge of how the brain functions, advances in 

psychiatric knowledge and practice remain frustratingly slow.  Two 

of the many unanswered questions which remain is the degree to 

which psychiatric disorders relate with one another, and whether 

psychiatric symptoms are fundamentally a problem of impaired or 

overactive brain dynamics.  As it happens, these are questions 

which the methods developed in this thesis can begin to answer, as 

will be demonstrated in studies on obsessive-compulsive disorder 

(OCD), bipolar disorder (type I), schizophrenia patients, and 

attention-deficit hyperactivity disorder (ADHD).  In the process, 

marked similarities between these disorders will in fact be observed, 

and potential effective connectivity misalignments identified.  It is 

the author’s hope that this will provide a step, however small, 

towards the effective treatment of these disorders. 

 

Now.  Let us begin. 
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1 CONNECTIVITY 

Interconnectedness defines the nervous system, not just in humans, 

but in all animals known to possess one.  The processing power of 

an individual neuron is not adequate for even the most basic 

cognition of a multicellular organism, and a pool of many isolated 

neurons offers no meaningful improvement.  Only by forming 

organized networks does complex processing emerge.  This pattern 

extends across spatial scales in the human brain, as neurons network 

into columns, columns into regions, and regions into the 

interregional networks thought to underly cognition in humans and 

similar vertebrate species.  From cell to cerebrum, connectivity is 

key to complex behavior. 

 

Given the almost self-evident importance of connectivity in 

supporting complex thought, it may surprise some to find that the 

study of large-scale connectivity in the human brain is scarcely 

thirty years old.  Surely attempts to map connections in the brain 

started decades earlier.  Unsurprisingly, they did; researchers have 

realized since first examining the nervous system that its various 

elements and parts must communicate with one another.  Yet until 

the early 1990s, technology did not allow the mapping of neural 

systems larger than a few dozen cells.  Indeed, by 1990, the only 

fully mapped neural connectome was that of C. elegans, consisting 

of 302 neurons—a full seven orders of magnitude smaller than a 

human brain. 

 

In 1990, technology able to precisely locate regions of neural 

activation first became available in the form of the BOLD signal.  

Since its discovery, neuroscientists have raced to make up for lost 

time.  A veritable explosion of research into brain connectivity has 

occurred in the past thirty years, an explosion which has birthed 

entire new fields of neuroscience and medicine.  Perhaps the most 

famous of these fields is that of connectomics, the study of high-

speed interregional communication between physically separated 

brain regions.  While originally focused on the physical wiring 

which facilitates this communication, connectomics has now 

expanded into studying how frequently disparate regions 

communicate, and even in which direction such communication 
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travels.  A brief overview of this field will prove necessary to 

understanding the methods and motivations of this thesis.  

 

 

1.1 Definitions 

1.1.1 Connectivity in the Brain 

The past two decades have seen a dizzying array of innovations at 

every scale of neuroscience, from individual cells to the entire 

nervous system.  One of the most consequential innovations has 

been the introduction of network analysis to neuroscience (Sporns 

2014).  Briefly put, network analysis is the study of networks; what 

may be considered a network, how one is formed, how it operates, 

what rules govern them and so on.  As might be expected, this 

results in an enormously broad spectrum of research, covering 

everything from molecular interactions to global economics.  

Nonetheless, many networks have been found to follow consistent 

structural trends, hinting that even such diverse systems may be  

 

At the scale of the human brain, network analysis is most often 

applied to three major types of connectivity.  The first is structural 

connectivity, which generally refers to the anatomical connections 

which carry neural signals between regions of the brain.  The 

second is functional connectivity, which describes the similarities 

(or lack thereof) of the time-resolved activity between different 

regions of the brain (Friston 2011).  Finally, there is effective 

connectivity, which predicts how neural signals travel between 

regions in the brain.  This requires a fundamentally different 

approach; whereas structural and functional connectivity primarily 

catalog phenomena without modeling its generative mechanisms, 

effective connectivity must employ such models and ensure that 

their predictions align with empirical data (Gilson et al. 2016).  The 

challenges of model selection and fitting do not fall within the 

realm of network analysis per se, being more closely aligned with 

neuromodeling and machine learning respectively; nonetheless, 

they play a vital role and so must be included in any discussion of 

effective connectivity. 
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1.1.2 The Connectivity Matrix 

 

Central to almost all procedures in network analysis is the 

adjacency or connectivity matrix, which provides a convenient and 

mathematically tractable means to record interregional connections 

(Newman 2014).  Given a network with 𝑁 nodes, its adjacency 

matrix is an 𝑁 × 𝑁 matrix 𝐴 in which 

• Element 𝐴𝑖𝑗 = 1 if and only if there exists a link pointing 

from node 𝑗 to node 𝑖 
• Element 𝐴𝑖𝑗 = 0 if there does not exist a link pointing from 

node 𝑗 to node 𝑖 
Note that the adjacency matrix records no information on the 

relative strength of these connections, only that these connections 

exist.  Obviously, not all connections are equal; some regions are 

more tightly linked than others.  Including this information 

produces the network’s connectivity matrix 𝐶, in which 

• Element 𝐶𝑖𝑗 = 𝑤𝑖𝑗  if and only if there exists a link pointing 

from node 𝑗 to node 𝑖, where 𝑤𝑖𝑗  is the weight (strength) of 

the link between nodes 𝑗 and 𝑖. 
• Element 𝐶𝑖𝑗 = 0 if there does not exist a link pointing from 

node 𝑗 to node 𝑖. 
 

 

1.1.3 Node Strength 

A common question to arise when examining networks is the 

relative influence of an individual region.  Network science has 

developed many tools to study this question, but this thesis will 

primarily employ the node strength.  The strength of a node 𝑗 in a 

weighted network is simply the sum of all connections coming into 

(in-strength) or out of (out-strength) that node (Barabási 2016): 

𝑠𝑗
𝑖𝑛 = ∑𝐶𝑖𝑗

𝑁

𝑖=1

 

𝑠𝑗
𝑜𝑢𝑡 = ∑𝐶𝑖𝑗

𝑁

𝑗=1
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1.2 Structural Connectivity 

1.2.1 Definitions 

Structural connectivity is, simply put, the network of physical fibers 

which transmit neural activity or information between different 

regions of the brain (Sporns 2010).  This definition holds at all 

scales of brain architecture, from the white matter fiber bundles 

which connect regions to the individual synapses and dendrites 

which allow intercellular communication.   The spatial scale of 

these connections reflects their temporal stability; at the synaptic, 

cellular, and even columnal levels, the mechanisms of neural 

plasticity ensure that connections change on an order of 

milliseconds, while interconnections visible to the naked eye 

develop over years.  This thesis will remain at the whole-brain 

level, so its use of the term “structural connectivity” will refer 

exclusively to the network of white matter fibers which carry action 

potentials from one anatomically defined brain region to another.  

These long, heavily myelinated axons tend to aggregate in dense 

bundles to efficiently carry messages from one region to another, 

before once again branching in to separate smaller tendrils to 

connect with local processing units.  Detailed maps of these fiber 

bundles have been produced over the past decade as interest in 

network neuroscience has increased and the brain’s capacity for 

distributed cognition have gained recognition, and many atlases of 

such connectivity are now available. 

 

 

1.2.2 Tracing Tracts 

How are such networks charted?  This is a question with a variety 

of answers depending on the study in in question.  In animal studies, 

such as rats and macaques, physical tract-tracing techniques may be 

employed (Lanciego and Wouterlood 2020).  These techniques may 

involve a straightforward dissection of the postmortem brain or may 

involve injecting a labeled tracer molecule into a living specimen 

and observing the diffusion pattern of this tracer.  In these cases, the 

animal must be sacrificed to observe the pattern in the tissue, which 

renders such procedures ethically unsuitable for human studies. 

 

To bypass this problem, human studies make use of the heavy 

myelination of the white-matter tracts of interest.  A family of MRI 



 

 6 

techniques collectively referred to as diffusion-weighted imaging 

allow researchers to track the average direction of the diffusion of 

water molecules in biological tissue (Basser et al. 2000).  As 

biological tissue contains substantial numbers of water-

impermeable structures, water molecules do not diffuse evenly 

throughout it; instead, they tend to follow the path of least 

resistance.  Myelin is predominantly made up of fat, so it is not 

easily water-permeable; thus, water molecules tend to flow along a 

sheet of myelin rather than across it.  Thus, when embedded in a 

bundle of myelinated fibers, such as white matter tracts, water 

molecules tend to travel along the lengths of the fibers rather than 

crossing them.  This differential flow can be measured using a 

diffusion tensor imaging process (Basser, Mattiello, and LeBihan 

1994; Basser et al. 2000), and from this the approximate direction 

and size of the fiber bundle estimated.  The process remains 

imperfect; it cannot easily distinguish between tracts when fiber 

bundles cross, it cannot determine the direction of neural signals in 

the bundles it traces, and its limited resolution means it cannot trace 

individual fibers or small bundles with meaningful precision.  

Nonetheless, it has proven an exceptionally valuable tool for human 

neuroimaging. 

 

 

1.2.3 Atlases 

 

The two studies described in this thesis utilize the 

Automated Anatomical Labels (AAL) atlas (Tzourio-Mazoyer et al. 

2002) and the Desikan- Killiany atlas (Desikan et al. 2006a), 

respectively.  These atlases represent early and relatively coarse 

parcellations of the human cortical surface, with the AAL atlas 

containing 90 cortical regions (45 per hemisphere) and the Desikan- 

Killiany atlas 68 cortical regions (34 per hemisphere).  Both atlases 

are well-established in the neuroimaging communities and include 

structural connectivity matrices as well as anatomical labels and 

spatial coordinates.  For the purposes of this thesis, the anatomical 

labels and structural connectivity matrices provide all required 

information. 

 

 

 



 

 7 

1.3 Functional Connectivity 

1.3.1 Definitions 

 
Functional connectivity, in the neuroimaging context, refers to the 

temporal coincidence of spatially separated neurophysiological 

events (Friston 1994).  This is generally interpreted as the degree of 

statistical dependence between the time series of separate regions in 

the brain.  Such statistical dependence may be estimated in a variety 

of ways, such as the Pearson correlation coefficient, the covariance, 

the mutual information, or, as shall be elaborated on momentarily, 

the phase coherence of neural activity oscillations.  The Pearson 

correlation has been the favored method in the fMRI literature due 

to its conceptual and computational simplicity, although recent 

work has called its use into question due to its inability to capture 

nonlinear interactions (Zhang et al. 2018; Sayed Hussein Jomaa et 

al. 2019). 

 

Why choose to define the functional connectivity in this manner?  

This definition rests on the intuition that events which consistently 

co-occur in time are likely to be related to one another.  Simply put, 

the researcher chooses not to believe in coincidence.  This decision 

has risks of its own, of course—coincidences may indeed occur, or 

observed coincidences be mediated by an unobserved factor—but it 

is an intuitive and generally accepted means of mapping links 

between parts of a network. 

 

One can argue that the great strength of functional connectivity is 

its relative agnosticism to how coincident events occur.  Whereas 

effective connectivity attempts to model how regions communicate 

and is thus susceptible to all the simplifications and assumptions 

that such models require, functional connectivity simply reports 

which regions coactivate and which do not.  This minimizes 

experimental assumptions.  On the other hand, this agnosticism 

means that functional connectivity reveals relatively little about 

how such communication occurs.  This is no small detail, as the 

means for interregional communication in the human brain remains 

an unsolved problem.  Such communication is almost certainly 

mediated by white matter fiber bundles—a presumption reinforced 

by the convergence of structural and functional connectivity 
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(Bettinardi et al. 2017)—but information on the “neural code”, so to 

speak, is absent. 

 

 

1.3.2 Communication Through Coherence 

Rhythmic oscillations across multiple frequency bands have proven 

a consistent theme for neuronal activity across spatial scales, from 

single neurons to whole-brain imaging techniques (Gyorgy and 

Andreas 2004; Engel, Fries, and Singer 2001).  It has been proposed 

(Fries 2005) that these oscillations modulate interregional 

communication by coordinating periods of high and low 

excitability.  Neural excitability is known to vary in time, largely as 

a function of the time since generating an action potential(s).  This, 

coupled with the tendency for neural groups to predictably oscillate 

in activity level, implies that neural groups experience rhythmic 

variations in receptibility to novel inputs.  Input signals which 

arrive out of sync with a neural group’s inherent oscillations are 

unlikely to activate the group, which implies that such signals will 

not be transmitted further.  Signals which arrive in phase with that 

group’s oscillations, on the other hand, will almost certainly be 

passed on.  Prof. Fries thus hypothesizes that oscillatory coherence 

modulates interregional communication, such that regions which 

communicate with one another must necessarily display coherent 

activity.  This communication through coherence (CTC) hypothesis 

neatly solves a pressing question in neuroscience, namely how 

different parts of the brain can flexibly communicate on a fixed 

anatomical structure. 

If one presumes the CTC hypothesis to be correct, this raises the 

question of how to detect which regions are communicating.  

Synchronization between brain areas appears the obvious solution, 

but transmission and activation delays may render perfect, zero-

phase synchrony suboptimal.  Regions must lock phases to 

communicate, with the phase difference dependent on the 

oscillatory frequency and transmission delay.  It follows that, to 

measure functional connectivity, one must determine the pairwise 

phase coupling between all pairs of regions in the brain.  But if this 

is the case, how to go about it? 
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1.3.2.1 The Analytic Signal 

Before we continue, we should discuss the analytic signal and its 

foundation.  Given a real-valued signal 𝑥(𝑡) with a Fourier 

transform ℱ[𝑥(𝑡)], there exists a complex signal 𝑥𝑎(𝑡) such that 

ℱ[𝑥𝑎(𝑡)] = {ℱ[𝑥(𝑡)]|ℱ[𝑥(𝑡)] > 0}.  Put another way, 𝑥𝑎(𝑡) has 

the same positive frequency components as 𝑥(𝑡), but its negative 

frequency components are not defined.  This analytic representation 

can be assembled by means of the Hilbert transform: 

𝑥𝑎(𝑡) = 𝑥(𝑡) + 𝑖H[𝑥(𝑡)] 
where H[𝑥(𝑡)] is the Hilbert transform and 𝑖 is the imaginary unit.  

The mathematically minded may observe that this relation 

resembles Euler’s formula, 

𝑒𝑖𝜑(𝑡) = cos 𝜑(𝑡) + 𝑖 sin𝜑(𝑡) 

where sin is the sinusoid function and cos is the cosine function.  

This similarity is, in fact, crucial, for under certain conditions, the 

analytic signal may be written in terms of Euler’s formula: 

𝑥𝑎(𝑡) = 𝑎(𝑡)𝑒𝑖𝜑(𝑡) 

𝑥(𝑡) = 𝑎(𝑡) cos 𝜑(𝑡) 

H[𝑥(𝑡)] = 𝑎(𝑡) sin𝜑(𝑡) 

with 𝑎(𝑡) being the instantaneous amplitude and 𝜑(𝑡) being the 

instantaneous phase.  Note that this relationship only produces 

practicable results under the terms of Bedrosian’s theorem, i.e. if 

the Fourier transforms of 𝑎(𝑡) and cos 𝜑(𝑡) are separable.  A 

narrow-band signal is essential to ensure such separability.  

Fortunately, bandpass filters of 0.01-0.1 Hz have already been 

adopted as standard practice (Biswal et al. 1995; Buckner et al. 

2009), so this does not necessitate major changes to analysis.  

Having found the equivalence between the analytic representation 

of a signal and Euler’s formula, extracting the signal’s time-

resolved phase 𝜑(𝑡)is relatively straightforward. 

 

 

1.3.2.2 Phase Synchronization 

 

We now return to the challenge of measuring functional 

connectivity under the CTC hypothesis.  A method from physics 

introduces itself here, namely phase synchronization.  Introduced to 

study the behavior of weakly coupled oscillators, it was first applied 

to fMRI in 2012 (Glerean et al. 2012).  The process compares two 
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signals 𝑚 and 𝑛 by decomposing them into phase and amplitude 

components.  This is achieved by converting their real-valued 

timeseries 𝑥(𝑚, 𝑡) into its analytic representation 𝑥𝑎(𝑚, 𝑡), as 

described above.  Upon obtaining the time-resolved phases of these 

regions, the real-valued phase coherence coefficient at time 𝑡 is 

dFC(𝑚,𝑛, 𝑡) = Re[𝑒𝑖(𝜑(𝑚,𝑡)−𝜑(𝑛,𝑡))] 

dFC(𝑚, 𝑛, 𝑡) = cos(𝜑(𝑚, 𝑡) − 𝜑(𝑛, 𝑡)) 

The cosine function has the notable advantage of continuously 

spanning the range [−1, 1], with cos(𝜑(𝑚, 𝑡) − 𝜑(𝑛, 𝑡)) = 1 

indicating that 𝑚 and 𝑛 are perfectly in phase (θ(m, t) − θ(n, t) =

0,±2π), and cos(𝜑(𝑚, 𝑡) − 𝜑(𝑛, 𝑡)) = −1 indicating that they are 

perfectly out of phase (θ(m, t) − θ(n, t) = ±π).  Repeating this 

process for all pairs of regions in a brain atlas produces an 𝑁 × 𝑁 

matrix of phase coherence coefficients for each time point 𝑡. 

 

Why select this method for computing the functional connectivity, 

rather than the more commonly utilized Pearson correlation?  Two 

arguments present themselves.  First, there is the practical reality 

that the phase coherence method provides a far superior time 

resolution.  Whereas Pearson correlation requires several samples 

and thus necessitates a time window several TRs long, the phase 

coherence method can estimate connectivity on the order of a single 

time-to-repetition.  This order of magnitude improvement in time 

resolution allows far more precise estimates of functional 

connectivity dynamics and likely hews far more closely to the 

actual timescale of brain activity (Deco, Cruzat Grand, and 

Kringelbach 2019). 

 

The second reason may be presented in either a positive or a 

negative light.  Simply put, the communication through coherence 

hypothesis offers a clear, mechanistic argument for how different 

regions in the brain communicate.  On one hand, this discards the 

agnostic nature of correlation-based functional connectivity; in 

logical terms, it introduces a new assumption to the analysis, a new 

assumption which is by no means guaranteed to be correct.  On the 

other hand, this very fact renders the CTC a testable hypothesis; if 

CTC-based functional connectivity dramatically differs from that 

found by correlation-based analysis, it will be clear that one of these 

approaches is flawed.  As results from these two approaches are, in 

fact, consistent (Glerean et al. 2012), it appears that the CTC 
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hypothesis does hold; as such, phase-based functional connectivity 

is a viable means to improve temporal resolution in functional 

connectivity analysis. 

 

 

 

1.4 Effective Connectivity 

1.4.1 Definitions 

Effective connectivity can be defined as the influence one neural 

system exerts on another (Friston 1994).  Such influence can be 

described at any spatial or temporal scale, from the synaptic to the 

cortical level.  At the synaptic level, the effective connectivity can 

often be determined directly by observing the efficacy of synaptic 

transmission between two neurons.  Such direct measurements are 

seldom possible at the cortical level, and entirely impossible in non-

invasive neuroimaging studies.  Human neuroscientists must instead 

rely on mathematical models and computational fitting algorithms 

to estimate effective connectivity at the whole-brain level.  This 

necessarily introduces several problems: which model should one 

use to simulate regional activity?  How should one estimate the 

connectivity strength between regions?  Which algorithm is best 

suited to solving the optimization?  Which cost function will 

provide the best fit?  These are only a few of the questions which 

such optimization requires researchers to answer. 

 

 

1.4.2 How is a neuron like a nitrogen atom? 

The naïve approach to simulating the activity of a cortical region is 

to simulate the interaction of every neuron in said region.  Efforts in 

this direction are in fact being made in the Blue Brain Project, 

specifically in the mouse brain.  The fact that such efforts have thus 

far been ongoing for fifteen years, receive the undivided attention of 

multiple research groups, require multiple computing clusters, and 

are still orders of magnitude short of a complete simulation should 

illustrate the difficulties in achieving such goals.  Suffice it to say, it 

is not a realistic approach for most studies.  Thus, connectivity 

researchers must grapple with the question of how to extract metrics 
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which can describe system-level behavior from an immensely 

complicated system composed of billions of interacting parts. 

 

Fortunately, such a dilemma has been at least partially solved in 

another scientific discipline: statistical physics.  At sea level, a 

single cubic meter of air contains some 1025 molecules.  It should 

be obvious that attempting to track the positions, velocities, and 

interactions of all these molecules is impossible with today’s 

technology.  Fortunately, it is also unnecessary, for the simple 

reason that when dealing with such enormous numbers, the activity 

of a single molecule, or even many thousands of molecules, has no 

meaningful effect on the behavior of the system.  It is not necessary 

to track the behavior of individual molecules; it is only necessary to 

track their average behavior, which turns out to be a far more 

tractable problem.  In the same way, it is not necessary for modern 

computational neuroscientists working at the whole-brain level to 

simulate the behavior of individual neurons, but only to simulate 

their average behavior over a specified region.  So the question then 

arises: how to simulate such behavior? 

 

1.4.2.1 Neural Masses 

The approach followed in this thesis is to consider individual 

cortical and subcortical grey matter regions to be fully spatially 

insulated from one another.  Each region (node) possesses 

independent intrinsic dynamics which are generally assumed to be 

distinct from one another.  All interregional interaction takes place 

via coupling described by a connectivity matrix and global coupling 

parameter, in which the element 𝐶𝑖𝑗 describes the influence node 𝑗 

has on node 𝑖.  This formulation considers the spatial orientation of 

regions relative to one another irrelevant; each region’s behavior is 

spatially continuous, and interactions occur strictly through the 

coupling matrix.  Those with a background in physics may observe 

a parallel between such a simplification and that of the point mass; 

both simplify an object’s interactions with the environment to a 

single parameter and discards information on spatial extent or 

boundaries.  With this parallel in mind, each self-contained region is 

described as a neural mass, with a network of such masses 

comprising a neural mass model. 
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Despite the intuitive nature of neural mass models, their practical 

implementation did not begin until the late 2000s.  This delay can 

be attributed to a lack of computational power, a lack of detailed 

structural connectivity atlases, and the inability to accurately map 

anatomical connections in living patients.  The publication of 

detailed structural connectivity atlases (Kötter 2004) and the 

development of efficient structural MRI algorithms allowed 

realistically wired neural mass models to make an appearance in the 

late 2000s (Honey et al. 2007; 2009; Ghosh et al. 2008a; 2008b; 

Deco et al. 2009; “Correction for Deco et al., Key Role of Coupling, 

Delay, and Noise in Resting Brain Fluctuations” 2009).  Since these 

publications, however, it’s been off to the races. 

Neural mass models are generally derived from a preexisting 

models of neural membrane potential dynamics, of which several 

have proven useful.  One such model is the Morris-Lecar model 

(Morris and Lecar 1981; Larter, Speelman, and Worth 1999), which 

predicts pyramidal cell membrane potential based on voltage-

dependent ion conductance, specifically the conductance of sodium 
(𝑁𝑎+), potassium (𝐾+), and calcium (𝐶𝑎+2) ions.  Conversion of 

this neuron-level model to a neural mass model took place in the 

early 2000s (Breakspear, R. Terry, and J. Friston 2003; Breakspear 

2004) and relied on the assumption of purely excitatory long-range 

coupling.  Such a model has proven capable of replicating some 

features of BOLD signals, such as phase synchrony and self-

organizing activation patterns (Cabral 2012). 

 

The classic Fitzhugh-Nagumo model (FitzHugh 1961; Nagumo, 

Arimoto, and Yoshizawa 1962) has also been converted to a neural 

mass formulation and the dynamics of both isolated and networked 

masses examined as a function of connectivity strength and 

transmission velocity (Ghosh et al. 2008b; 2008a).  Isolated neural 

masses acted as damped oscillators; however, when coupled with 

biologically plausible values of connectivity strength and 

transmission velocity, the network displayed oscillatory behavior 

near the frequency of 10 Hz.  Such behavior was shown to replicate 

the slow BOLD signal fluctuations of the resting state, which 

demonstrates the crucial role that connectivity and transmission 

delays play in shaping brain function. 

 

The final neural mass model of interest to this thesis (although far 

from the last one developed) is the Wilson-Cowan model (Hugh R. 
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Wilson and Cowan 1972; H. R. Wilson and Cowan 1973).  This 

represents one of the earliest attempts to estimate the behavior of a 

neural ensemble rather than individual neurons—no small feat in a 

time before the widely available and powerful computers of modern 

research.  The model treats each region of interest as composed of 

two coupled populations of neurons, one excitatory and one 

inhibitory, which each serves to regulate the other’s output.  

Notably, this model is known to undergo a Hopf bifurcation in some 

regions of parameter space, transitioning from damped oscillatory 

to limit cycle behavior.  When models at the edge of such a 

bifurcation are coupled according to the macaque connectivity 

matrix with biologically realistic transmission delays, two distinct 

anticorrelated functional modules emerge.  These modules compete 

with one another for synchrony across the network, with 

fluctuations in the same frequency range as those observed in 

resting-state BOLD signals.  It thus seems that regular, oscillation-

like fluctuations in activity naturally emerge when coupling neural 

populations across large distances. 

 

1.4.2.2 The Observation of Oscillations 

Despite the disparate bases of these neural mass models, some 

similarities emerge between all of them.  Of note is the fact that, for 

most biologically plausible parameter ranges, all three models 

report oscillatory dynamics which approximate the frequency and 

structure of those observed in resting-state fMRI.  This leads to the 

question: if biologically inspired coupled neural masses naturally 

settle into oscillatory stable states, could a network of coupled 

oscillators reproduce those same dynamics? 

 

This is no minor question.  The neural mass models described above 

have clear bases in biological neural interactions.  A network of 

canonical coupled oscillators, such as the Kuramoto model 

(Kuramoto 1983), has no such basis.  If such a system imitates real 

brain dynamics, even imperfectly, it implies that researchers can 

ignore neural mechanics at the whole-brain level.  The macroscopic 

behavior is independent of the microscopic interactions! 

 

To test this hypothesis, Cabral and colleagues began testing whether 

a network of Kuramoto oscillators coupled according to known 

white matter circuitry could replicate BOLD signals in the human 
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cortex (Cabral et al. 2011).  Conceptually, the Kuramoto model is 

quite straightforward.  An individual Kuramoto oscillator’s 

dynamics can be fully described by its initial phase and its angular 

frequency: 
𝑑𝜃𝑛

𝑑𝑡
= 𝜔𝑛 

with 𝜔𝑛 being the natural frequency of node 𝑛 when uncoupled.  

When dealing with two or more coupled oscillators, researchers 

must hypothesize how this coupling affects each one.  One common 

coupling model is the phase difference coupling, which presumes 

oscillators tend to synchronize.  Assuming a network of 𝑁 phase 

oscillators connected according to a connectivity matrix 𝐂, the 

behavior of any node 𝑛 in the network can be described by 

𝑑𝜃𝑛

𝑑𝑡
= 𝜔𝑛 + 𝐺 ∑ 𝐶𝑛𝑝 sin (𝜃𝑝(𝑡) − 𝜃𝑛(𝑡))

𝑁

𝑝=1

 

with 𝜔𝑛 being the natural frequency of node 𝑛 when uncoupled and 

𝐺 indicating the global coupling efficiency.  This model predicts 

that any node 𝑛 will attempt to oscillate at its natural frequency 𝜔𝑛, 

while other nodes in the network will attempt to synchronize node 𝑛 

with their own oscillations.  The relative influence of internal versus 

external dynamics depends on the global coupling efficiency 𝐺 and 

the in-strength for each node 𝑛. 

 

When applied to the brain, the Kuramoto model’s parameters 

should be conceptualized as, if not biologically derived, then at least 

biologically inspired.  The variables 𝐶𝑛𝑝 and 𝐺 may be 

conceptualized as the axonal and synaptic transmission efficacy, 

respectively.  When modeling brain activity, the structural 

connectivity matrix is generally used to approximate the Kuramoto 

connectivity matrix 𝐂 based on the assumption that interregional 

coupling strength scales linearly with the number of white matter 

tracts connecting two regions.  Implicit in this is the assumption that 

all brain regions are of comparable size; if this is not the case, the 

connectivity strength 𝐶𝑛𝑝 must be normalized by the relative size of 

the target region 𝑛 to balance the relationship between nodes’ 

internal dynamics 𝜔𝑛 and the external influences mediated by 𝐂.  

Finally, to account for the presence of random noise in brain 

activity, Cabral and colleagues added a Gaussian noise term 𝜂𝑛(𝑡) 
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with mean zero (〈𝜂𝑛(𝑡)〉 = 0) and variance 𝜎𝑛
2, both measured in 

radians for a final model of 

𝑑𝜃𝑛

𝑑𝑡
= 𝜔𝑛 + 𝐺 ∑ 𝐶𝑛𝑝 sin (𝜃𝑝(𝑡) − 𝜃𝑛(𝑡))

𝑁

𝑝=1

+ 𝜂𝑛(𝑡) 

Having defined the model, one can now turn to the question: does 

the Kuramoto model, given biologically plausible parameters, 

replicate the dynamics viewed in fMRI BOLD signals?  Cabral and 

colleagues demonstrated one decade ago an affirmative answer one 

decade ago (Cabral et al. 2011; 2012).  This suggests that one can 

model and, to a limited degree, predict human brain activity and its 

dysfunction in disease without reference to neural dynamics at all!  

A canonical oscillatory model is all that is required—a fact which 

vastly simplifies the problem of simulating brain dynamics and 

estimating their controlling parameters.  More importantly, it 

suggests that much human brain dynamics is completely 

independent of microstructure. 

 

 

1.4.2.3 The Hopf Bifurcation 

While the Kuramoto oscillator has proven capable of replicating 

certain elements of human BOLD signals, it remains an imperfect 

model.  One of its greatest drawbacks is the fact that, as the name 

implies, it is restricted to oscillatory dynamics.  While strong 

oscillations have been observed in regional local field potentials, 

individual regions may also display noise-driven deviations from a 

relatively stable quiescent state, or switch between quiescent and 

oscillatory dynamics.  In addition, fMRI BOLD signals do not 

maintain a constant amplitude; indeed, the BOLD signal’s analytic 

representation explicitly includes a time-dependent amplitude term.  

As the Kuramoto model only models the phase of a given region 

and assumes that each node has an inherent frequency 𝜔𝑛, it is 

entirely unable to represent these behaviors.  A more flexible 

regional model is necessary to better capture global dynamics. 

 

In 2011, Freyer and colleagues proposed that the normal form of a 

Hopf bifurcation could fill this need in the context of EEG 

recordings (Freyer et al. 2011; 2012).  The Hopf bifurcation, or 

Stuart-Landau oscillator, is a standard model for systems which can 

transition between stable and oscillatory behavior—precisely the 
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kind of dynamics observed in regional local field potentials.  Deco 

and colleagues applied such a model to both MEG and BOLD data 

in 2017 (Deco, Cabral, et al. 2017; Deco, Kringelbach, et al. 2017) 

and found that that it can predict the slow (0.01-0.1 Hz) fluctuations 

observed in fMRI data well.   

 

How does the Stuart-Landau oscillator differ from the Kuramoto 

oscillator?  One can begin to answer this question by examining the 

governing equations: 

𝑧𝑗 = 𝜌𝑗𝑒
−𝑖𝜃𝑗 = 𝑥𝑗 + 𝑖𝑦𝑗 

d𝑧𝑗
dt

= 𝑧𝑗[𝛼𝑗 + 𝑖𝜔𝑗 − |𝑧𝑗
2|] 

This set of governing equations makes clear that the Stuart-Landau 

oscillators is indeed an oscillator; the phase 𝜃𝑗 changes in time 

dependent on an angular frequency 𝜔𝑗 = 2𝜋𝑓𝑗.  However, the Hopf 

oscillator explicitly includes an amplitude term 𝜌𝑗, whereas the 

Kuramoto model ignores amplitude altogether.  Further, this 

amplitude term can be controlled.  The chain rule of derivatives 

implies that  
d𝜌𝑗

dt
= 𝛼𝑗 − |𝑧𝑗

2| 

which brings us to an interesting conclusion.  Remember that since  

|𝑧𝑗
2| = 𝜌𝑗

2(𝑒−𝑖𝜃𝑗 ∙ 𝑒𝑖𝜃𝑗) = 𝜌𝑗
2, 

d𝜌𝑗

dt
= 0 only at 𝜌𝑗 = √𝛼𝑗.    For 

values of 𝛼𝑗 < 0, 
d𝜌𝑗

dt
< 0 for any value of 𝜌𝑗, so the amplitude 

decays monotonically to zero.  For values of  𝜌𝑗 > √𝛼𝑗, the 

amplitude will decay until 𝜌𝑗 = √𝛼𝑗.  However, for values of  𝜌𝑗 <

√𝛼𝑗, the amplitude will grow until 𝜌𝑗 = √𝛼𝑗.  Thus, at 𝛼𝑗 = 0, the 

system’s behavior changes from a stable fixed point at zero to a 

stable oscillation with amplitude 𝜌𝑗 = √𝛼𝑗.  This provides 

considerably more flexibility to model behavior than the Kuramoto 

oscillator.  The literature on Hopf models is split between polar and 

Cartesian coordinates.  As this group tends to prefer Cartesian 

coordinates, further examples will appear in that system. 

 

Having established that a Hopf bifurcation may better suit the needs 

of a brain modeling, the steps of adding interregional effects and 

noise largely followed the logic of the Kuramoto model.  

Translating into Cartesian coordinates, this produces the final model 
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d𝑥𝑗

dt
= 𝑥𝑗(𝛼𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2) − 𝜔𝑗𝑦𝑗 + 𝐺 ∑𝐶𝑖𝑗

𝑖

(𝑥𝑖 − 𝑥𝑗) + 𝛽𝜂𝑗(𝑡) 

d𝑦𝑗

dt
= 𝑦𝑗(𝛼𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2) − 𝜔𝑗𝑥𝑗 + 𝐺 ∑𝐶𝑖𝑗

𝑖

(𝑦𝑖 − 𝑦𝑗) + 𝛽𝜂𝑗(𝑡) 

 

where, as with the Kuramoto model, 𝜔𝑗 is the characteristic 

frequency of node 𝑗, 𝐶𝑖𝑗 is the connection strength from 𝑗 to 𝑖, and G 

represents global coupling efficiency.  This leaves the modeler with 

four parameters to set for each node: the bifurcation/amplitude 

parameter 𝛼𝑗, the characteristic frequency 𝜔𝑗, the connection 

strength 𝐶𝑖𝑗, and the noise 𝜂𝑗.  For the present thesis, 𝜔𝑗 is 

estimated directly from the BOLD time series by extracting the 

dominant frequency of node j within the band of 0.01 to 0.08 Hz.  𝛼 

and 𝐺 are set to the initial values of 𝛼 = 0 and 𝐺 = 0.2, in line with 

previous work (Deco and Kringelbach 2016; Deco, Kringelbach, et 

al. 2017) while 𝜂𝑗(𝑡) is assumed to follow a standard normal 

distribution, i.e. zero mean and standard deviation of unity. 

 

1.5 Summary 

This section has attempted to summarize some thirty years of 

connectivity research.  No doubt some details—perhaps some 

significant ones—have been omitted. 

• Structural connectivity refers to the physical connections 

between network nodes, regardless of spatial scale. 

• Functional connectivity refers to the temporal coincidence 

of spatially separated neurophysiological events—in the 

present case, regions which display similar phases in their 

time-resolved analytic signals.  Functional connectivity is 

always symmetric. 

• Effective connectivity describes the level of influence one 

region of a network has on another.  This is not necessarily a 

symmetric measure; region 𝑘 may influence region 𝑗 without 

receiving a reciprocal influence. 

• Effective connectivity, by necessity, must model the effect 

each node has on every other node.  This necessitates the 
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development of neural mass models capable of reproducing 

regional time series dynamics. 

• The current analyses utilize a normal form of a Hopf 

bifurcation, which has been proven capable of replicating 

the slow dynamics captured by blood oxygen-level 

dependent (BOLD) signals in fMRI.
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2 The Resting State 

Since the discovery of ordered resting state activity in the human 

brain, considerable effort has been placed into mapping its 

functional and structural characteristics.  The development of 

dynamic functional connectivity, and with it the ability to 

characterize functional dynamics on the scale of seconds rather than 

minutes, has only added fuel to that fire.  Parallel to these efforts at 

characterization have come efforts at modeling, which have the goal 

of predicting not just how but why the resting state networks 

display the structure and functional features which are currently 

known.  Such efforts are ongoing, something which is unsurprising 

given the relatively novel state of the field; nonetheless, some 

trends have begun to emerge. 

 

2.1 Definitions: Brain Activity During Rest 

The resting state is generally understood as the state of 

consciousness which exists while sitting or lying still, fully 

conscious, in the absence of physical or mental tasks.  The modifier 

of fully conscious is crucial in the definition of this state, as sleep, 

drowsiness, coma, and anesthesia are considered entirely distinct 

states which require independent study.  Long considered a mere 

baseline state against which to compare task-based activity, the 

discovery that the resting state in fact displays rich and 

spatiotemporally ordered activity may be the single most 

revolutionary—and, in hindsight, obvious—discovery of the past 

two decades of neuroimaging research. 

 

 

2.2 The Resting State: A History 

2.2.1 Early Days: Discovery and Validation 

It is perhaps fitting that a finding as revolutionary as ordered resting 

state activity was discovered quite by accident.  Indeed, by the 

researchers’ own confession (Biswal 2012), the discovery of 

temporally correlated activity between left and right sensorimotor 
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cortices (Biswal et al. 1995) was so unexpected that many 

researchers considered it an existential threat.  As well they might 

have, for almost all fMRI studies up until that point had treated the 

resting state as simple background noise, to be sampled only as a 

means of filtering unwanted interference from task data.  The 

discovery of order in such supposed noise raised serious questions 

that results from prior task-based studies might be skewed, thus 

rendering their conclusions invalid.  Despite this fear—or perhaps 

because of it—research continued, demonstrating that the observed 

BOLD fluctuations were clearly related to low-frequency 

fluctuations observed in EEG studies (Biswal et al. 1997; Biswal, 

van Kylen, and Hyde 1997), and that some link existed between 

resting-state and task-based activity (Biswal et al. 1998). 

 

With results trickling in and the existence of organized resting-state 

activity confirmed, a clear need for a defined baseline state emerged 

(Gusnard and Raichle 2001).  Research in this direction soon 

revealed that a consistent set of regions displayed greater activity 

during rest than during task (Raichle et al. 2001), and that these 

areas consistently co-activated with one another (Greicius et al. 

2003).  At about the same time, magnetoencephalographic (MEG) 

studies and electroencephalographic (EEG) studies (Nikouline et al. 

2001; Z. Liu et al. 2010; Laufs et al. 2003) found that beta-band 

power fluctuations (17-23 Hz) appear to underlie this specific 

resting-state hemodynamic activity.  Thus the default mode network 

(DMN), so called because it appeared to operate as the standard, or 

“default”, activity pattern of a human brain not engaged in an active 

task, reached a form recognizable today. 

 

It did not take long for other resting-state networks to be identified 

(Beckmann et al. 2005; Damoiseaux et al. 2006).  A veritable 

explosion of studies soon revealed roughly ten distinguishable 

resting-state networks, with the exact number varying slightly from 

study to study.  Of these networks, the majority were found to be 

task-positive; that is, cerebral blood flow to these networks 

increases during a task and decreases in the resting condition.  This 

is perhaps unsurprising, as these task-positive networks appear to in 

fact be task-based networks; studies have identified visual, auditory, 

salience, sensorimotor, attention, and executive control networks in 

the resting state (Fox et al. 2005; Beckmann et al. 2005; 

Damoiseaux et al. 2006; de Luca et al. 2006; Mantini et al. 2007; 
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Brookes et al. 2011; Larson-Prior et al. 2011; Moussa et al. 2012).  

By contrast, the default-mode network sees its activity suppressed 

during cognitive tasks.  A somewhat odd picture thus emerges: 

while the default-mode network dominates in the resting state, task-

based networks do not fully deactivate.  Instead, the brain appears 

to intermittently activate task networks even while resting, as a 

boxer might shift his position during a lull in the match.  It is, 

perhaps, a telling parallel.  A boxer must never set his weight while 

sparring, for once set, he cannot easily move it again, and is thus 

left unable to quickly respond to his opponent.  Perhaps, in a similar 

fashion, the brain must avoid settling into a single state lest 

unexpected sensory inputs demand rapid action. 

 

Simultaneous with the fMRI studies listed above, efforts were made 

to further characterize the electrophysiological signals of the resting 

state.  These studies began to bear fruit in 2007, when Mantini et. 

al. demonstrated that resting-state networks appear to correlate with 

electrophysiological signatures (Mantini et al. 2007).  Intercranial 

studies soon confirmed that slow neural fluctuations did indeed 

underlie the observed MRI signals, while EEG studies showed that 

gamma-band local field potentials (LFPs) and firing rate 

modulations control task-positive RSNs (Miller, Weaver, and 

Ojemann 2009; Shmuel and Leopold 2008).  Note that this contrasts 

with the default-mode network, which most strongly maps to the 

alpha- and beta-bands electrophysiological signal.  Further studies 

suggested that each RSN maps to a specific electrophysiological 

signature, each spanning a range of frequency bands (Mantini et al. 

2007; de Pasquale et al. 2010).  This led to suggestions that the 

various frequency bands may control specific aspects of neural 

processing (Womelsdorf et al. 2007; Palva and Palva 2012), a 

suggestion strengthened by the discovery of frequency-specific 

spatial correlations in spontaneous neural oscillations (Hipp et al. 

2012).  These correlations appear to link functional hubs of the 

brain to specific frequency bands; for instance, theta-band 

frequencies most strongly correlate in the medial temporal lobes, 

while lateral parietal areas resonate most strongly with alpha- and 

beta-band frequencies.  All in all, then, task-negative networks 

appear to associate with alpha- and beta-band signals, while task 

networks associate with the higher frequencies. 
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For all this apparent progress, one question so far remains 

unanswered: are the observed resting state networks consistent 

across subjects?  Damoiseaux and colleagues demonstrated that this 

is indeed the case; not only do the RSNs display remarkable 

consistency across subjects (Damoiseaux et al. 2006), but what 

variation does exist can be explained almost entirely by changes in 

age and sex (Biswal et al. 2010; Andrews-Hanna et al. 2007; H. Liu 

et al. 2009).  These findings were only further reinforced in 2011, 

when Brookes et. al. mapped the resting-state networks within 

magnetoencephalography (MEG), a far more direct measure than 

the blood-oxygen level-dependent (BOLD) signal of fMRI 

(Brookes et al. 2011). 

 

So, come 2012, what image had emerged?  The human resting state 

is organized into several separable functional networks.  These 

networks may be separated into the categories of task-positive and 

task-negative.  Each network produces unique spatial and frequency 

signatures.  The primary task-negative network, namely the default-

mode network, operates primarily in the alpha- and beta-band 

frequencies, while task-positive networks are controlled by gamma-

band frequencies.  Task-positive resting-state networks appear to in 

fact be task networks, which are not deactivated in the resting state 

but simply reduced to a low-power, or standby, state.  The 

implication appears to be that the resting-state does not remain in a 

single functional network over the course of a scan, but rather 

alternates between many, with the default mode network only being 

the strongest amongst many attractive states.  Without further 

temporal resolution, it would be difficult to explore the realm of 

resting-state functional connectivity further.  Fortunately, this 

dilemma solved itself virtually before being noticed, for in 2009, 

dynamic functional MRI entered the stage. 

 

 

2.2.2 Dynamism in Data 

The development of dynamic functional MRI (dfMRI) has been yet 

another shock to a scientific community which is still attempting to 

metabolize the discovery and popularization of the resting state.  

While EEG and MEG studies have long demonstrated that brain 

activity changes on the scale of milliseconds, neither method yet 

possesses the spatial resolution of fMR.  Thus, for several decades, 
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researchers faced the dilemma of choosing between high spatial and 

poor temporal resolution, or poor spatial and high temporal 

resolution.  Attempts to bridge this gap via joint fMRI-EEG studies 

yielded some progress, but such experiments add considerable 

complexity to analysis. 

 

The introduction of an MRI method which could resolve 

hemodynamic activity on the scale of seconds, rather than minutes 

(Sakoğlu and Calhoun 2009; Sakoğlu et al. 2010), was little short of 

a revolution.  While far from the millisecond resolution of EEG and 

MEG, it still represented a full order of magnitude’s improvement.  

The original version, presented in 2009 and 2010, consists in 

essence of multiple consecutive correlation-based functional 

connectivity estimates.  Rather than correlating regional activity 

over an entire scan, the scan is segmented into overlapping 

windows, usually several tens of seconds in length.  The correlation 

coefficients of the time courses in each window are then estimated 

to produce a correlation matrix.  This process is repeated for each 

window to produce a series of time-resolved correlation matrices, 

each representing the average functional connectivity of a separate 

window.  Conceptually, Calhoun’s approach was a natural evolution 

from the previous “static” functional connectivity; whereas static 

functional connectivity (sFC) correlates regional time series over an 

entire scan, sliding-window functional connectivity (so-called for 

the windowing of the time series) correlates regional time series 

over short windows which slide along the temporal dimension of 

the scan.  Such an approach is not without disadvantages: the use of 

correlation- or covariance-based metrics requires that windows be 

several times-to-repetition (TRs) long, with predictable effects on 

temporal resolution.  Nonetheless, its development virtually 

immediately confirmed the transience of resting-state networks first 

observed in MEG and allowed for an explosion of studies into the 

dynamics of functional connectivity. 

 

Although introduced in 2010, dynamic functional MRI did not fully 

break into the neuroimaging world until the end of 2014 (Zalesky et 

al. 2014).  Given this short timeframe, the field remains rather 

unconsolidated, although efforts are being made to rectify this 

(Preti, Bolton, and van de Ville 2017; Vohryzek et al. 2022; 

Kringelbach and Deco 2020).  Despite this, certain trends have 
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clearly emerged, one of which is the existence of separable, 

recurrent connectivity patterns.  This finding is not entirely 

unexpected, as EEG and MEG studies have long demonstrated 

recurrent microstates (Khanna et al. 2015).  Nonetheless, the 

proliferation of MRI-based dFC has allowed previously 

unattainable spatial resolution and quantity of data to be collected, 

which in turn has allowed researchers to confirm the existence of 

repeating connectivity states in the resting brain. 

 

How does one isolate those states?  This is a question without a 

consistent answer.  Several methods have been employed to this 

end, including principal component analysis (Leonardi et al. 2013), 

eigendecomposition and k-means clustering (Cabral et al. 2017; 

Lord et al. 2019; Figueroa et al. 2019), eigendecomposition and 

independent component analysis (Blair et al. 2022), hidden or semi-

hidden Markov models (Shappell et al. 2019), and non-negative 

matrix factorization (Du, He, and Calhoun 2021; Glomb et al. 

2017).  Efforts have also been made to predict these functional 

substates from known anatomical and dynamic constraints 

(Ashourvan et al. 2021; Deng et al. 2022; Gu et al. 2018; Atasoy et 

al. 2018).  Unfortunately, efforts to compare or harmonize the 

results from these various studies remain in their infancy, so little 

information is available on these methods’ reliability in either 

spatial or temporal dimensions.  Yet the essential finding—namely 

that recurrent connectivity substates exist and that the resting brain 

transitions between them in the absence of external stimuli—

remains consistent.  Increasingly, it appears that most, if not all, 

such functional substates correspond to identified resting state 

networks (Vohryzek et al. 2020). 

 

In addition to the spatial structure of these dynamic resting state 

networks (dRSNs), considerable effort has been placed into 

describing their dynamics.  Such efforts have employed both 

predictive (Gu et al. 2018; Atasoy et al. 2018) and empirical (Deco 

et al. 2019) strategies, and most have utilized some version of a 

transition matrix.  While an intuitive and powerful method for 

describing the likelihood of each dRSNs’ appearance as a function 

of the brain’s current state, the transition matrix does imply that 

each dRSN exists in only one of two states, on or off, and that no 

two dRSNs may be active simultaneously.  This is likely an 
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oversimplification of actual dRSN interactions, which may well 

display co-activation and large variations in activity levels.  A 

method to capture and visualize dRSN dynamics on a continuous 

scale is needed to bridge this gap. 

 

 

2.2.3 Summary 

The human brain’s resting state has proven to contain remarkably 

complex behavior.  Laudable efforts have been and are being made 

to chart its organization, but these efforts remain in their infancy.  It 

is nonetheless clear that resting-state activity contains multiple 

recurrent states, which dynamically shift activity levels.  This raises 

the question: what form of dynamic system does this activity take? 

 

 

2.3 Current Hypotheses 

2.3.1 The Resting State as a Multistable System 

A dynamic system may have points in its phase space from which 

the system will not move unless disturbed.  For example, a 

pendulum at rest in a gravitational field will not spontaneously 

begin to oscillate.  Similarly, a sled on a leveled area above a hill 

will not spontaneously begin to slide; it must enter the sloped area 

of the hill before gravity can pull the sled downwards.  Although 

their behavior is very different once in motion—the pendulum will 

oscillate around its rest position, while the sled will accelerate away 

from that rest position—both examples share a common feature; 

absent some external force or a change in environmental conditions, 

they will remain in their rest position.  A position in a dynamical 

system’s phase space which satisfies this condition is called a fixed 

point, as a system which starts at that point is “fixed” there absent 

some external driving force. 

 

It should be obvious that the two scenarios described above—the 

pendulum and the sled—have very different behaviors once in 

motion, however.  Once in motion, a pendulum will oscillate around 

its rest position.  A real pendulum’s oscillations will decay over 

time due to the dampening effect of friction, while an ideal 

pendulum will continue to oscillate around its rest position forever.  
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In both cases, the pendulum remains in the vicinity of its rest 

position.  The sled, on the other hand, will travel away from its rest 

position once in motion, and will continue to do so until it reaches 

another leveled area.  These distinctions—a tendency to return to 

the resting position, a tendency to oscillate around the resting 

position, and the tendency to travel away from the resting 

position—define three of the basic trajectories of dynamical 

systems: a stable fixed point, a cycle, and an unstable fixed point.  A 

system which is moved a small distance from a stable fixed point 

will eventually return to that fixed point, much like a real pendulum 

will eventually come to rest.  A system which enters a cycle will 

trace a closed trajectory through its phase space, which is to say it 

will continue tracing the same path unless disturbed, just as a 

pendulum would in the absence of friction.  Finally, a system 

leaving an unstable fixed point will accelerate away from that fixed 

point, just as a sled will accelerate away from the peak of a hill. 

 

What if a system has more than one fixed point?  Actually, all three 

systems described above do.  The pendulum has an obvious fixed 

point at its rest position, i.e. with the main mass directly below the 

pivot point, but it also has a fixed point in the inverse position, i.e. 

with the mass directly above the pivot!  This second fixed point is 

obviously unstable, as even a miniscule deviation from perfect 

balance will cause the pendulum to swing away from the vertical, 

but nonetheless, this second fixed point does exist.  In the case of 

the sled, an unstable fixed point exists at the hill’s peak, but a stable 

one also exists at its base.  Any level sections of the hill’s slope will 

form a semi-stable fixed point, i.e. a fixed point which attracts the 

sled from one direction and repels it from the other.  In both cases, 

then, we find that the system contains several fixed points.  

However, it should be obvious that the system tends to enter only 

one of its fixed points, that being the stable one.  For this reason, we 

can call these fixed points attractors, because they attract the 

system to enter a permanent state.  An attractor’s basin of attraction 

refers to the region of phase space under the attractor’s influence; 

that is, if the system enters a basin of attraction, it will tend to move 

towards the attractor, just as a sled, once on the slope of a hill, tends 

to move towards the hill’s base. 

 

Suppose now that our sled is not at the top of one hill but is rather 

sitting at the top of a low ridge between two hills.  Also suppose 
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that in the two pockets between this ridge and either hill, there are 

children who, if the sled falls towards them, will climb partway up 

the ridge to sled down.  Each child will climb an arbitrary distance 

before growing tired and jumping on the sled.  If one child carries 

the sled to the top of this ridge, he will have the option of either 

sledding to his original group or sledding to the other.  Thus the sled 

may alternate between the two sides of the ridge, according to the 

(somewhat) random whims of whoever catches it on the downwards 

journey.  It is important to note that both sides of this ridge are 

attractors, as absent the children’s interference, the sled would slide 

to one side and remain there.  It is only due to this unpredictable 

input of energy that the sled may move between the two basins. 

 

A system such as this—one with two or more stable attractors 

which it may alternate between—is called a multistable system.  

The terminology is (hopefully) somewhat self-explanatory.  Such 

systems are familiar from the realm of optical illusions, such as 

Rubin’s vase or Ludwig Wittgenstein’s duck-rabbit: 

 

 
Figure 1: Behold the mighty duck-rabbit.  Credit to the 23 October 1892 issue of Blätter. 
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Both these illusions are examples of bistability: they may be 

perceived as one of two potential objects, and the observer may 

alternate between which object he (or she) perceives.  For the 

Rubin’s vase, most observers will alternate between seeing an 

ornate vase or two facial silhouettes; for the duck-rabbit, an 

observer may see a duck, a rabbit, or may alternate between the 

two.  Most observers will not see both at once, however.  This is 

one of the characteristics of a multistable system: while it may 

switch between stable states, it does not exist in both 

simultaneously.  Instead, external interference may cause the system 

to alternate between the two (or more) attractors. 

 

Well and good, but what does this have to do with resting state 

functional connectivity?  Recall that it has (very) recently been 

established that the human brain, while at rest, alternates between a 

finite and countable number of functional connectivity substates.  It 

is not too great a leap of logic to suggest that these substates are 

attractors; stable fixed points which whole-brain connectivity tends 

to enter in the absence of external perturbation.  The tendency to 

switch between these states is explained by the simple fact that the 

living brain is never inactive; intrinsic activity and neuronal noise 

are features which could easily provide the energy necessary to 

transition between connectivity substates.  The suggestion that the 

human brain may exhibit a multistable regime is not unique to the 

realm of neuroimaging; it has been postulated to exist at virtually 

every level of cognition (Scott Kelso 2012).  The idea has gained 

substantial traction in the past decade, particularly with the 

explosive growth of dynamic functional connectivity providing 

ever-greater evidence of recurring connectivity substates in the 

resting brain.  However, this framework began to fall out of favor 

after several studies suggested that a multistable system is unable to 

reproduce both the static FC and the dynamics of dFC networks 

(Hansen et al. 2015; Deco et al. 2013).  Some new framework was 

needed to explain these dynamics. 

 

 

2.3.2 The Resting State as a Metastable System 

The resting state may also be described as a metastable system.  The 

difference between these two formulations lies in the existence of 

stable fixed points; whereas a multistable system has two or more 
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such points, a metastable system does not.  Instead, metastable 

systems are characterized by excursions into recurrent, but 

temporary, non-equilibrium states.  Herein lies the key difference 

between a multistable and a metastable system; even in the absence 

of noise, a metastable state will not persist indefinitely.  Instead, a 

metastable system may wander through a landscape of 

intermittently stable states, spending substantial periods of time in 

each, without ever settling into a final configuration (Afraimovich, 

Zhigulin, and Rabinovich 2004).  Such a system bears some 

resemblance to both the needs of adaptive cognitive functions 

(Rabinovich et al. 2008) and the subjective experience of mind-

wandering (Christoff et al. 2016; Kucyi 2018).  More importantly, 

metastable network models have proven capable of replicating both 

static and dynamic FC in the human resting state (Honey et al. 

2007; Cabral et al. 2014; Vidaurre et al. 2018), and these results 

have plausible bases in known physiological phenomena 

(Beckmann et al. 2005; Smith and Nichols 2009; Brookes et al. 

2011). 

 

 

2.3.3 Metastable Multistability? 

A recurrent debate in the neuroimaging literature is the question of 

whether the human brain is a multistable or metastable system.  It 

has recently been proposed that it may satisfy both criteria via self-

modulation of the dynamic connectivity energy landscape 

(Vohryzek et al. 2022).  Under this hypothesis, certain fixed points 

of the brain’s connectivity landscape may either emerge or 

disappear under a change in brain state. 

 

Why consider metastability as a potential model for the resting 

state?  To answer this, we refer to the fact that metastable states 

frequently occur in the vicinity of a fixed point which has 

disappeared due to a system parameter change.  Recent research 

suggests that the resting brain spends a plurality of its time in a 

globally synchronized state, with brief excursions into task-relevant 

network configurations (Vohryzek et al. 2020).  The transience of 

these excursions suggests multiple metastable states in the resting 

state energy landscape, with the most stable of these corresponding 

to the globally synchronized state.  The resemblance of these 

metastable states to known task networks provides an interesting 
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hypothesis; that the brain’s energy landscape alters upon engaging 

in a task, converting the relevant task network to a stable attractor 

while removing that of global synchrony.  It is plausible that the 

resting state balances system parameters to keep these task-relevant 

states just below stability, yet close enough to stability that they 

may still affect global dynamics.  Upon entering a task, some 

mechanism alters the system parameters to convert the relevant task 

network to a stable attractor while the global state is rendered 

unstable.  Of yet, this hypothesis remains unvalidated; perhaps 

future research will shed additional light. 

 

2.4 Summary 

Research into the resting state of the human brain remains a 

dizzyingly active field of research.  The number of methods and 

findings in the field increases virtually weekly, to the point that 

discerning useful signal from spurious noise is arguably the greatest 

challenge that today’s neuroimaging researcher face.  Nonetheless, 

clear themes have emerged over the past twenty years.  These 

themes include the existence of distinct resting-state networks 

(RSNs) which appear to consistently jockey with one another for 

dominance of brain activity.  The precise number of these networks 

remains a subject of active research, as does the nature of the 

mechanisms underlying them; indeed, the Organization for Human 

Brain Mapping (OHBM) has recently announced a collaboration 

dedicated to the task of identifying canonical resting-state and 

dynamic resting-state networks (Uddin et al. 2022).  Given this 

ongoing and rapid evolution, it is difficult to make confident 

assertions on what conclusions the field will reach.  Following its 

continued evolution will likely prove interesting. 
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3 Statistical Neurophysics: or, Measuring 
Entropy 

Since the inception of the field, one of the key goals of 

neuroimaging has been to discover robust, precise biomarkers for 

psychiatric disease.  Such a biomarker would provide something 

that the psychiatric field of medicine has sought for decades: a 

measurable diagnostic test for disease, which might inform the 

clinician which treatment a patient requires.  No such test yet exists.  

Instead, psychiatric diagnoses rely upon self-reported tests or 

clinical interviews which seek to capture the symptoms of the 

afflicted.  Such diagnoses provide little insight into the causal 

mechanisms underlying the symptoms, and as such, prescribing 

treatment remains something of an exercise in trial and error.  Each 

advance in the field of neuroimaging has brought hope for the 

discovery of such a test, some feature visible on a scan which could 

clearly delineate the well from the unwell.  Enormous progress has 

been made in this direction, with a dizzying quantity of studies 

demonstrating differences between healthy controls and psychiatric 

patients in any number of neuroimaging features.  Nonetheless, a 

clear delineating line between both healthy controls and between 

patients of different disorders remains frustratingly difficult to 

locate. 

 

Fundamentally, the search for a meaningful biomarker comes down 

to the question: what brain features are affected by psychiatric 

disease?  As it stands, this is an impossibly broad question: as such, 

the first step is to shrink it to a manageable size.  With this in mind, 

the specific question to be answered in this thesis is, do psychiatric 

disorders affect the complexity of functional processing in the 

human brain?  While still a broad question, its phrasing allows us to 

begin parsing it.  The key term is complexity, as this is a well-

defined concept in several scientific disciplines.  In information 

theory, a signal’s complexity may be considered inversely 

proportional to its predictability, as one intuitively considers highly 

predictable signals to be easily interpretable (and vice versa).  Each 

sample of a given signal contains information on the signal’s state, 

with the amount of information per sample being inversely 

proportional to the signal’s predictability.  It is thus possible to draw 

a direct link between the information contained in a message and 



 

 33 

the complexity of that message’s source signal: a link made explicit 

in Claude Shannon’s entropy. 

 

 

3.1 What is Entropy? 

Despite its ubiquitous roles in statistical mechanics and information 

theory, entropy has proven a remarkably difficult concept to define.  

It has been called a measure of information, but information in what 

sense?  It has been described as measuring the disorder in a system, 

yet ordered systems can contain high levels of entropy.  One can 

measure the richness of a system’s dynamics with entropy, but 

again we come to the question, what does dynamical richness 

mean?  Unfortunately, many articles and even some textbooks 

which use the entropy fail to clarify these questions or answer them 

tautologically.  Perhaps this is what John von Neumann meant when 

he told Claude Shannon “You should call it [uncertainty measure] 

entropy, for two reasons.  In the first place, your uncertainty 

function has been used in statistical mechanics under that name, so 

it already has a name.  In the second place, and much more 

important, no one really knows what entropy really is, so in a debate 

you will always have the advantage.” 

 

It is, of course, entirely possible that von Neumann was speaking 

tongue in cheek in this instance.  Physicists have senses of humor as 

well.  However, a student first entering information theory or its 

applications could be forgiven for thinking that von Neumann had a 

point, i.e. that most of those using the entropy do not fully 

understand in what sense it quantifies information, disorder, 

surprise, or any of the other concepts it is meant to measure.  So, the 

first step of this section shall be an attempt to answer that question, 

from the perspective of thermodynamics, statistical mechanics, and 

information theory. 

 

 

3.1.1 The Thermodynamic Entropy 

To begin this discussion, we must define a system in the 

thermodynamical or statistical mechanical sense.  In these fields, a 

system is defined simply as “whatever part of the universe is 
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selected for study” (Blundell and Blundell 2010).  This is a rather 

vague answer, but it does have the advantage of generalizability; a 

system may consist of a single cylinder of an internal combustion 

engine, a section of a turbine, or a biological organ, e.g. the human 

brain.  All of these are systems which may (hypothetically) be 

studied in isolation from the rest of the universe. 

 

One may also discuss the state of a system.  A system’s state may 

be defined by the measurable—or, perhaps more precisely, the 

controllable—variables.  Taking the example of an engine’s 

cylinder, one can either measure or control its temperature, 

pressure, volume, and the amount of energy injected into or 

removed from it.  One cannot (nor generally does one want to) 

control the locations or trajectories of individual molecules within 

this cylinder.  Thus, the pressure, volume, temperature, and energy 

can define a cylinder’s state; a change in any of these variables 

causes a change in state.  There are conceptual parallels here to the 

concept of a brain state, which can be (crudely) controlled via 

inputs to the relevant brain’s sensory organs and instructions to the 

brain’s owner (assuming an in vivo study). 

 

What does all this have to do with entropy?  Thus far, the discussion 

of entropy has been based on its role in thermodynamics.  

Thermodynamics approaches entropy from the perspective of 

temperature and heat flow—unsurprising given the field’s 

foundation in the operation of steam engines during the Industrial 

Revolution.  There is no need to go into the exact equation and 

derivation in this thesis, but the thermodynamic entropy may be 

summarized as a measure of the reversibility of the system’s change 

in state.  If a change in state does not generate entropy, that change 

may be reversed with no net energy loss.  A change in state which 

does generate entropy, on the other hand, that change cannot be 

perfectly reversed, nor the energy expended perfectly recovered. 

 

 

3.1.2 Entropy in Statistical Mechanics 

The definition of entropy given in statistical mechanics relates 

somewhat more directly to neuroscience.  Roughly speaking, in 

statistical mechanics, one can interpret the entropy of a given state 

as a measure of the probability of that state being observed given 
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known constraints.  Understanding this requires unpacking the 

definition of entropy used in statistical mechanics, which is 

𝑆 =  𝑘𝐵 lnΩ 

with 𝑆 being the specified state’s entropy and 𝑘𝐵 the Boltzmann 

constant.  Understanding Ω requires some additional background.  

Statistical mechanics maintains a distinction between two types of 

states: macrostates and microstates.  Roughly speaking, a 

microstate describes the condition of every particle in a system 

individually, while a macrostate considers their aggregate behavior.  

Given a box containing 100 coins, one could say that the system’s 

microstate is the position of each individual coin: coin one is heads, 

two is heads, three is tails, etc.  The macrostate, on the other hand, 

is simply the number of heads and tails visible; which coin displays 

which face is irrelevant. 

 

The laws of statistics imply that certain macrostates are more 

probable than others due to the number of microstates that they 

contain.  It should be clear, for instance, that our hypothetical box 

of coins has many, many microstates which produce the macrostate 

of fifty heads and fifty tails (on the order of 1029), but only one 

which produces the macrostate of 100 heads.  Assuming that every 

microstate is equally probable (the so-called ergodic hypothesis), 

the macrostate of fifty heads and fifty tails is some 1029 times more 

probable than that of 100 heads. 

 

What does this have to do with the entropy?  Return to Boltzmann’s 

definition of entropy: 

𝑆 =  𝑘𝐵 lnΩ 

As previously mentioned, 𝑆 is the entropy of the macrostate under 

investigation, and 𝑘𝐵 is the Boltzmann constant.  Ω is the number of 

microstates which can produce the given macrostate.  Evidently a 

macrostate containing many microstates will have a higher entropy 

than one containing few. 

 

It is worth nothing that despite common assertions, entropy is not a 

measurement of a state’s “disorder” or “randomness”.  While 

disordered or random states are often more likely than ordered ones, 

this is not always the case.  Imagine, for instance, that the system is 

a suitcase packed with some number of travel articles.  If the size of 

the items to be packed is comparable to the size of the suitcase, 
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simply cramming everything into the case at random is unlikely to 

work; while there is no doubt some random arrangement which will 

make everything fit, there are many more which do not.  Neatly 

packing the articles is much more likely to let the case close, 

because minimizing the space each article takes means that more 

arrangements which meet the constraints, i.e. fit in the suitcase, are 

available.  Translating this into the terminology of statistical 

mechanics, the final state of the suitcase (packed and closed) is the 

macrostate, and the possible internal arrangements of articles 

(which shirt is where) the microstates.  Intuitively, one perceives 

that packing each article neatly produces more microstates than 

random shoving would.  This implies that, for this example system, 

a more ordered arrangement has more entropy than a random one—

quite the contradiction to common assertion! 

 

While theoretically coherent, the definition of entropy given above 

has one glaring practical problem.  Microstates are difficult to 

measure directly.  Indeed, in most cases they are impossible to 

measure directly; one cannot, even in theory, perfectly measure 

both a molecule’s position and its velocity.  This raises an obvious 

question: if microstates cannot be measured, how are they to be 

counted?  If they cannot be counted, how is Boltzmann’s definition 

of entropy to be used? 

 

These questions reveal the need for a definition of macrostate 

entropy which does not require counting microstates.  Dr. Josiah 

Willard Gibbs recognized this need and devoted some of his 

considerable intellect to it.  His solution involves converting the 

entropy from a measure based on quantities to a measure based on 

probabilities—specifically the probabilities of the relatively easily 

measured and countable macrostates.  To begin this process, define 

the total number of microstates as 𝑁 and the number of microstates 

in the macrostate 𝑖 to be 𝑛𝑖.  Assuming that each microstate is 

equally likely, the probability of the system being in macrostate 𝑖 is 

then 

𝑃𝑖 =
𝑛𝑖

𝑁
 

It should be observed that the system’s total entropy does not only 

consist of the entropy of the macrostates, but that of the microstates 

as well.  Until now, this has been neglected because microstates are 

(as mentioned) extremely difficult, in most cases impossible, to 
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measure or count.  Nonetheless, using the terminology defined 

above, the entropy of the individual microstates in macrostate 𝑖 is  

𝑆𝑖𝑚𝑖𝑐𝑟𝑜
= 𝑘𝐵 ln 𝑛𝑖 

so the entropy of microstates across all available macrostates is 

𝑆𝑚𝑖𝑐𝑟𝑜 = 〈𝑆𝑖𝑚𝑖𝑐𝑟𝑜
〉 = ∑𝑃𝑖𝑆𝑖𝑚𝑖𝑐𝑟𝑜

𝑖

= 𝑘𝑏 ∑𝑃𝑖 ln 𝑛𝑖

𝑖

 

The system’s total entropy is simply the entropy estimated across 

all possible microstates 𝑁: 

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑘𝐵 ln 𝑁 

and is the sum of the entropy of microstates and macrostates: 

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆 + 𝑆𝑚𝑖𝑐𝑟𝑜  

This leads rather directly to the conclusion that the entropy 

associated with the system’s macrostates—which one can measure 

and count—is 

𝑆 = 𝑆𝑡𝑜𝑡𝑎𝑙 − 𝑆𝑚𝑖𝑐𝑟𝑜  

𝑆 = 𝑘𝐵 ln 𝑁 − 𝑘𝑏 ∑𝑃𝑖 ln 𝑛𝑖

𝑖

 

𝑆 = 𝑘𝐵 (∑𝑃𝑖ln𝑁

𝑖

− ∑𝑃𝑖 ln 𝑛𝑖

𝑖

) 

𝑆 = 𝑘𝐵 ∑𝑃𝑖(ln𝑁 − ln𝑛𝑖)

𝑖

 

𝑆 = 𝑘𝐵 ∑𝑃𝑖 (−ln
𝑛𝑖

𝑁
)

𝑖

 

𝑆 = −𝑘𝐵 ∑𝑃𝑖 ln 𝑃𝑖

𝑖

 

which is a far more practically useful definition than Boltzmann’s. 

 

 

3.1.3 The Entropy in Information Theory 

Now we can turn to the question of how information theory 

approaches entropy.  When Claude Shannon turned to the question 

of how to measure the information in a signal, he was not aware of 

the entropy’s role in statistical physics.  Thus, he approached the 

problem from quite a different angle.  His challenge was to find a 

means of measuring the amount of information which a message 

carries.  This process requires two steps: defining a measure for 

information and defining a model for messages. 
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How does one define the amount of information carried in a 

message?  It’s hardly a trivial question.  One can start by asking, 

how informative is an answer to a question?  To take a banal 

example, suppose I wish to know whether it will rain this afternoon.  

If, upon stepping outside, I find a bright, clear, dry day, I will 

expect that it will remain clear, as such days normally do.  

Intuitively, I expect a high probability of good weather in the 

afternoon, and thus a low probability of bad weather.  If, upon 

reviewing the weather forecast, I see that it is indeed predicted to 

remain pleasant all day, this only confirms a previous belief.  Little 

new information has been gained.  On the other hand, if the weather 

report predicts a thunderstorm, I would be quite surprised and 

would have to reevaluate my prior belief in light of this substantial 

new information.  Following this example, one can intuit that an 

unlikely message conveys more information than a likely one, 

which implies that information is an inverse function of probability: 

𝐼(𝑎) ∝
1

𝑃(𝑎)
 

What of the case of two independent messages?  How would the 

joint information of these combine?  If the messages are 

independent, e.g. a weather report and a reminder to pick up 

groceries, one intuitively expects the information they contain to 

combine linearly (add): 

𝐼(𝑎&𝑏) = 𝐼(𝑎) + 𝐼(𝑏) 

Yet the probabilities of two independent events occurring combine 

multiplicatively: 

𝑃(𝑎&𝑏) = 𝑃(𝑎)𝑃(𝑏) 

and it is already established that information is an inverse function 

of probability.  Fortunately, there is a class of functions which 

bridges this divide: the logarithm. 

log 𝑃(𝑎&𝑏) = log 𝑃(𝑎)𝑃(𝑏) = log 𝑃(𝑎) + log 𝑃(𝑏) 

log
1

𝑃(𝑎&𝑏)
= log

1

𝑃(𝑎)𝑃(𝑏)
= log

1

𝑃(𝑎)
+ log

1

𝑃(𝑏)
 

Remembering that the logarithm of an inverse is the negative 

logarithm, 

log
1

𝑃(𝑎)
+ log

1

𝑃(𝑏)
= − log 𝑃(𝑎) − log 𝑃(𝑏) 
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Putting all this together, it seems that the information contained in 

two independent messages is proportional to the negative log 

probability of each message: 

𝐼(𝑎) ∝ − log 𝑃(𝑎) − log 𝑃(𝑏) 

Extending this line of logic to an arbitrary number of independent 

messages 𝑁 produces 

𝐼(𝑀) ∝ −∑log 𝑃(𝑚𝑖)

𝑁

𝑖=1

 

with 𝑀 being a combination of 𝑁 independent messages and 𝑚𝑖 

being the 𝑖th message. 

 

Any measure of information must also account for dependencies 

between messages.  Suppose that upon seeing the weather report, I 

retrieved an umbrella.  At work, a colleague notices this and asks 

why I brought an umbrella to work given the good weather.  To 

this, I reply that while the weather is good now, it will not remain 

so.  My colleague has just received two messages: 

1. It is predicted to rain this afternoon 

2. I am carrying an umbrella because of the previous fact 

It is patently obvious that these messages are not independent; the 

second follows from the first.  It is also clear that these messages 

conflict with prior beliefs, as my colleague presumably did not 

expect rain and did not expect me to carry an umbrella.  Thus, any 

measure of information must account for both pieces of information 

and their dependency.  In his seminal article, Dr. Shannon 

demonstrates that the only expression which satisfies such a 

condition is (Shannon 1949) 

𝑆 = −𝐾 ∑𝑃𝑖 ln𝑃𝑖

𝑖

 

which, aside from the constant 𝐾, is identical to the Gibbs entropy 

described in Section 3.1.2. 

 

Where does this leave the entropy?  One can say that in this case, 

the entropy of a single sample (symbol) is a measurement of the 

amount of flexibility possessed by the transmitter.  One could also 

say that it is the amount of uncertainty which the message resolves 

when received.  These two statements are equivalent; a transmitter 

sending a highly stereotyped message will have very little flexibility 

in the message’s contents, and the recipient will be able to predict 
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those contents with considerable certainty.  Conversely, the sender 

of a highly unpredictable message—stream-of-consciousness 

poetry, for instance—will have a great deal of choice (flexibility) in 

the message’s contents, and the recipient will find the contents very 

difficult to predict. 

 

3.1.4 Tied Together 

So in the final analysis, what is entropy?  Combining the definitions 

of thermodynamics, statistical mechanics, and information theory, 

we can roughly say that it is a measure of the flexibility of the 

system’s dynamics.  A system or message with high entropy will 

always have more options for organizing its internal structure than a 

system with low entropy.  This explains that classic thermodynamic 

finding that entropy always increases: a system with low entropy 

can ontain only a few states, whereas a system with high entropy 

can contain many more.  Assuming that all these states are equally 

likely (the so-called ergodic hypothesis), a system is more likely to 

enter a state which contains many substates than a state which 

contains only a few. 

 

 
 

3.2 Why to Measure It? 

As described in Section Two, the discovery of temporal variability 

in dynamic functional connectivity raised led to questions about 

these dynamics’ organization.  Do the dynamics of the human 

functional connectome lie in a multistable regime, a metastable 

regime, or some combination of the two?  

 

Entropy provides a potential means of resolving this question.  

Intuitively, one expects a system composed of stable attractors to be 

more constrained in its dynamics than a system without such 

attractors.  Thus, assuming equal numbers of attractors, a metastable 

system should have more display higher entropy than a multistable 

one.  Such a finding could be further investigated by fitting a 

generative model to empirical data and examining the optimal 

working point of each region.  Alternatively, novel methods have 

been proposed to directly measure the broken detailed balance and 
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turbulent dynamics of neuroimaging signals (Martín 2019; Deco 

and Kringelbach 2020; Deco et al. 2021), all of which are closely 

related to Shannon entropy. 

 

Beyond the scientific question of whether the brain exists in a 

multistable or a metastable regime, entropy-based analyses allow 

direct comparisons of stability between healthy and patient groups.  

Several psychiatric disorders are hypothesized to display aberrant 

connectivity dynamics.  For instance, major depressive disorder 

(MDD) is thought to be partially caused by hyperstability of the 

default mode network (Vohryzek et al. 2022), which may cause the 

ruminative thoughts known to characterize MDD.  Such 

hyperstability should alter the entropy of depressive patients’ 

network dynamics. 

 

Alterations in entropy have the potential to act as more than a 

biomarker for disease, however.  Recent work suggests that it may 

be possible to alter human network dynamics from a diseased to a 

healthy state (Deco et al. 2019), and the advent of noninvasive 

stimulation methods such as trans-cranial magnetic stimulation 

(TCM) make such interventions clinically feasible.  Such 

interventions will need precise targets, however, so the ability to 

detect which functional networks display aberrant dynamics is 

essential.  An analysis method which can identify both the 

functional networks of interest and directly compare the entropies 

of these networks between populations may provide a powerful tool 

for identifying such targets in future clinical practice. 
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4 Datasets 

4.1 Motivation 

We elected to test this pipeline on a dataset (Moreira et al. 2017) 

consisting of obsessive-compulsive disorder (OCD) patients and 

number of age-, gender-, and education-matched controls (NOCD = 

40, Ncontrol = 39).  The wide prevalence and severe effects of OCD 

factored into this choice of dataset; with some 2.1% of the 

population affected each year (DuPont et al. 1995), it is a 

widespread, yet poorly understood disorder that causes its victims 

great distress.  Obsessive thoughts and compulsive behaviors often 

hinder victims’ ability to concentrate, with predictable effects on 

learning and productivity (Piacentini et al. 2003; Weidle et al. 

2014).  These factors contribute to a high societal cost of illness 

(DuPont et al. 1995; Lenhard et al. 2021a) and reduced quality of 

life for patients.  Despite its prevalence, the disorder’s functional 

dynamics remain poorly understood; in particular, we have been 

unable to find any attempts to examine the functional complexity of 

OCD patients.  In this study, we demonstrate that the obsessive-

compulsive group displays elevated joint entropies compared to 

healthy controls.  Indeed, not only can we identify which group has 

higher joint entropy, but also along which dimension the entropy 

changes. 

 

Though primarily a methodological work, this thesis also intends to 

explore the functional signatures and potential network-based 

causes of psychiatric disease.  I could cite any number of studies 

detailing the sociological or economic costs of psychiatric disease 

(Piacentini et al. 2003; Weidle et al. 2014), but the primary motive 

is far simpler.  Multiple members of my family have suffered and 

continue to suffer the effects of anxiety and compulsive disorders, 

with mood disorders happy to play their typical supporting roles.  

The experience is not a pleasant one. 

 

It should come as little surprise, then, that I have long had an 

interest in psychiatry and the neural mechanisms underlying it.  

More recently, the problem of screening for disease has caught my 

attention as well.  It is widely believed that psychiatric disease is 

underreported and underdiagnosed due to a combination of social 

stigma and simple ignorance (Takayanagi et al. 2014).  While 
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public awareness campaigns have begun to mitigate these problems, 

neither has been eliminated.  Additionally, efforts to screen for 

vulnerability psychiatric distress have raised the hope that some, 

perhaps many, cases of psychiatric distress could be preempted via 

targeted intervention before symptoms reach the clinical stage.  A 

methodologically sound means of screening for such disorders or 

vulnerability to them could prevent enormous suffering, to say 

nothing of the monetary savings and economic benefit that such 

prevention implies (DuPont et al. 1995; Lenhard et al. 2021b). 

 

The above information adequately explains my interest in 

obsessive-compulsive disorder, which is thought to lie in or 

adjacent to the anxiety spectrum.  What of the second dataset, 

however?  The three disorders contained within—schizophrenia, 

bipolar type I, and attention-deficit hyperactivity disorder 

(ADHD)—have no known relationship to the anxiety or compulsive 

spectra, although many ADHD patients are known to be impulsive.  

Nonetheless, the general motives remain similar; a desire to 

mitigate emotional distress, a desire to reduce the monetary burden 

on patients and their relations, and frustration at the economic waste 

that mitigation, care, and treatment represent.  Further, from a 

methodological perspective, there is the need to confirm the 

robustness of the LEiDA framework.  Thus, I sought to test the 

pipeline on unrelated disorders to confirm that LEICA could 

recover functional alterations across a wide behavioral and 

cognitive spectrum. 

 

4.2 Datasets 

4.2.1 Obsessive-Compulsive Disorder 

This study uses a dataset from a previous study at the Universidad 

do Minho, Portugal (Moreira et al. 2017).  A detailed description 

may be found in that paper, but a summary is included here for 

completeness. 

 

Eighty right-handed subjects (40 patients with OCD, 40 controls) 

participated in this study.  Recruitment ensured that controls 

matched patients in age, sex, education, and ethnic origin.  Both 

patients and controls were screened to remove subjects with 
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comorbid mental health, neurological or major medical disorders 

(except nicotine use or dependence).  Patients were all confirmed to 

have been using stable doses of medication for three months prior to 

the study.  Specifically, 72.2% used selective serotonin reuptake 

inhibitors (SSRIs), 11.1% tricyclic antidepressants (TCA), and 

16.7% a combination of these medications. 

 

Image acquisition occurred in a 1.5 T Siemens Magnetom Avanto 

MRI scanner (Siemens, Erlangen, Germany) with a standard 12-

channel receiver coil.  Images were visually examined for artifacts 

and the functional data preprocessed using FSL.  Slice-timing 

correction used the first slice as a reference, a rigid-body spatial 

transformation aligned the volumes of each subject with the mean 

volume, and motion scrubbing identified time points contaminated 

by significant motion.  Participants with more than 20 such time 

points were removed from analysis.  Images were then non-linearly 

normalized to MNI standard space and linear regression used to 

remove motion-related variance and signals from white matter and 

cerebrospinal fluid.  Acquisitions were filtered with a Gaussian 

spatial smoothing kernel (8 mm FWHM) and a temporal band-pass 

filter (0.01 to 0.08 Hz).  This frequency band has demonstrated 

greater reliability and functional relevance in fMRI compared to 

others (Glerean et al. 2012; Biswal et al. 1995; Buckner et al. 2009; 

Achard et al. 2006).  This low frequency band has the additional 

advantage of averaging out physiological noise and hemodynamic 

response functions, as these signals have frequencies above 0.08 Hz 

and thus fall outside the passband of this filter.  Finally, following 

the preprocessing, Moreira et al. extracted the mean BOLD time 

series of the 116 cortical, subcortical, and cerebellar regions of the 

Anatomical Automatic Labeling atlas (Tzourio-Mazoyer et al. 

2002).  As our study focuses on cortical and subcortical regions, the 

26 cerebellar regions of the Anatomical Automatic Labeling (AAL) 

atlas were removed. 

 

4.2.2 Cross-Disorder 

This article utilizes a publicly available dataset from the 

Consortium for Neuropsychiatric Phenomics (Poldrack et al. 2016).  

We include a summary of the dataset for completeness; details may 

be found in the accompanying article. 
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The dataset includes four groups of subjects: healthy controls, 

schizophrenia patients, bipolar disorder (Type I) patients, and 

persons with attention deficit hyperactivity disorder (ADHD).  

Subjects were recruited from the wider Los Angeles area through a 

combination of community advertisements and patient-oriented 

clinical outreach.  Final sample demographics span both men and 

women, ages 21 to 50, with no less than eight years of formal 

education and who primarily speak English or Spanish.  Applicants 

with substantial medical illness or which failed a urinary test for 

drugs of abuse (cocaine, methamphetamines, morphine, THC, or 

benzodiazepines) were excluded.  Previous diagnosis for 

schizophrenia or other psychotic disorders, bipolar disorder, or 

substance abuse and dependence (nicotine and caffeine excepted) 

were grounds for exclusion from the control group, as was current 

diagnosis for major depressive disorder, attention deficit 

hyperactivity disorder (ADHD), suicidality, or an anxiety disorder 

(obsessive compulsive disorder, panic disorder, generalized anxiety 

disorder, post-traumatic stress disorder).  Control applicants 

displaying sub-threshold ADHD or who had undergone medical 

treatment for ADHD in the preceding twelve months were also 

excluded. 

 

Patients were diagnosed following a Structured Clinical Interview 

for the Diagnostic and Statistical Manual of Mental Disorders, 

Fourth Edition-Text Revision (DSM-IV) to ensure that diagnoses 

followed DSM-IV categories.  The Adult ADHD Interview was also 

employed to fully characterize the lifetime history of ADHD in 

adults.  Interviewers were trained according to , with minimum 

acceptable symptom agreement consisting of overall 𝜅 ≥ 0.75, 

specificity of 𝜅 ≥ 0.75, sensitivity of 𝜅 ≥ 0.75, and diagnostic 

accuracy of 𝜅 ≥ 0.85.  Interviewer skill was measured according to 

the SCID Checklist of Interviewer Behaviors and the Symptom 

Checklist of Interviewer Behaviors , and no interviewer displayed 

an annual 𝜅 < 0.75 during the study.  Patient groups were mutually 

exclusive, i.e. subjects which suffered from two or more of the 

disorders under study were removed.  Stable medication was 

permitted.  All participants gave written informed consent 

according to procedures approved by the institutional review boards 

of the University of California, Los Angeles and the Los Angeles 

County Department of Mental Health.  
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The resting-state fMRI scan lasted 304 seconds, with participants 

asked to remain relaxed with eyes open.  No stimuli were presented 

during this scan.  MRI data were acquired on two 3T Siemens Trio 

scanners, one at the Ahmanson-Lovelace Brain Mapping Center 

(Siemens version syngo MR B15) and one at the Staglin Center for 

Cognitive Neuroscience (Siemens version syngo MR B17) at the 

UCLA.  Functional MRI used a T2*-weighted echoplanar imaging 

sequence with the parameters: slice thickness = 4mm, 34 slices, TR 

= 2s. TE = 30ms, flip angle = 90°, 64 × 64 matrix, 192mm field of 

view, with an oblique slice orientation.  Echo-planar imaging was 

again used to acquire diffusion-weighted imaging data with 

parameters: slice thickness = 2mm, 64 directions, TR = 9000ms. TE 

= 93ms, flip angle = 90°, 96 × 96 matrix, axial slice orientation, 

𝑏 = 1000
𝑠

𝑚𝑚2, one average.  An MPRAGE and a T2-weighted 

matched-bandwidth high-resolution anatomical scan were also 

collected using the same slice prescription as the fMRI scan.  High-

resolution scan parameters were: slice thickness = 4mm, TR = 

5000ms. TE = 34ms, flip angle = 90°, 128 × 128 matrix, four 

averages.  MPRAGE parameters were: slice thickness = 1mm, 176 

slices, TR = 1.9s. TE = 2.26ms, 256 × 256 matrix, 250mm field of 

view, slices in the sagittal plane.  No MRI data were collected for 

left-handed subjects, subjects who might be pregnant, had metal in 

the body, or were otherwise unable to safely enter an MRI machine. 

 

Of 272 initial participants, we received resting-state fRMI data for 

260, of which 121 were healthy controls, 50 schizophrenia patients, 

49 bipolar disorder patients, and 40 in treatment for ADHD.  The 

data for six subjects were found to be unusable, reducing the final 

numbers to 118 healthy controls, 48 schizophrenia patients, 49 

bipolar disorder patients, and 39 ADHD patients.  fMRI data were 

segmented according to the Desikan-Killiany atlas integrated with 

subcortical areas (Desikan et al. 2006b), and the standard Desikan-

Killiany structural connectivity template used as a connectivity 

mask. 

 

4.3 Summary 

The datasets employed in this thesis cover multiple psychiatric 

disorders with a wide range of symptoms.  So wide a distribution 
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offers a thorough test for any analysis pipeline, as it much be able to 

both detect and distinguish multiple symptoms and causal 

mechanisms.  The application of LEICA to this task, and the results 

of said applications, will be the topic of the following chapters. 
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5 Extracting Entropy 

5.1 Reasoning 

It has been hypothesized that the dynamic resting-state networks 

may operate somewhat like the proposed independent channels 

which Shannon imagined when envisioning his measure of entropy, 

with each acting largely independently of the others.  Under this 

hypothesis, each substate may be considered a separate channel (or, 

equivalently, processing unit) of the resting state signal.  This line 

of logic results in two immediate corollaries: 

• It should be possible to separate the signals from each 

channel (source reconstruction) 

• The signals from each channel should be (partially) 

independent 

From these corollaries spring two immediate consequences: 

• It should be possible to estimate the complexity of each 

processing unit’s activity 

• The complexity of the entire fMRI signal may be estimated 

as a function of these (semi-)independent signals 

Given the mathematical equivalence of complexity to information, 

it should be possible to use metrics from information theory to 

quantify the complexity of biological signals.  The most general 

such metric, the Shannon entropy, also has the advantage of being 

mathematically tractable for a multichannel signal.  Assuming 

statistically independent channels, the Shannon entropy of a 

multichannel signal is simply the sum of the entropies of each 

channel. 
 

5.2 Pipeline 

5.2.1 Functional Connectivity 

We elected to calculate the dynamic functional connectivity (dFC) 

using Coherence Connectivity Dynamics (Glerean et al. 2012; 

Ponce-Alvarez et al. 2015; Deco and Kringelbach 2016).  Unlike 

sliding window correlation, Coherence Connectivity Dynamics can 

achieve temporal resolution of a single time to repetition and has no 

free parameters to set, making it both simpler and more precise than 
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sliding window correlation.  It achieves this by passing each 

region’s time series through the Hilbert transform, which outputs 

the analytic representation of the BOLD signal.  As the analytic 

representation is a complex signal, it can be described by a time-

varying amplitude multiplied by a time-varying phase angle: 

𝑠𝑎(𝑡) = 𝑠𝑚(𝑡)𝑒𝑖𝜑(𝑡) 

where 𝑠𝑚(𝑡) ≡ |𝑠𝑎(𝑡)| and 𝜑(𝑡) ≡ 𝑎𝑟𝑔(𝑠𝑎(𝑡)), with the argument 

being defined by Euler’s formula  

𝑒𝑖𝜑 = cos𝜑 + 𝑖 sin𝜑 

Instantaneous interregional coherence is estimated as the difference 

between regional time-dependent phases.  More specifically, phase 

coherence between regions 𝑚 and 𝑛 at time 𝑡 (dFC(𝑚, 𝑛, 𝑡)) is  

𝐝𝐅𝐂(𝑚, 𝑛, 𝑡) = cos(θ(𝑚, 𝑡) − θ(𝑛, 𝑡)) 

with cos (the cosine function) normalizing the value into the range 
[−1,1].  The result is an N × N × T dFC array, with N being the 

number of ROIs and T being the number of time points.  cos(θ) 
being an even function, each N × N matrix 𝐝𝐅𝐂(𝑡) is symmetric. 
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Figure 2 | computing the phase of the BOLD signal.  Each regional time series (green 

trace) is converted into an analytic signal using the Hilbert transform.  Euler’s formula 

converts this analytic signal into a time-resolved phase signal (A) with both real and 

imaginary parts (dashed black traces).  This process is repeated for all brain regions (B) 

at across time points. 

 

5.2.2 Eigendecomposition 

The fundamental goal of the LEiDA process is to project the 

dominant spatial connectivity pattern dynamics into a lower-

dimensional space for ease of analysis.  This dominant pattern is 

easily identifiable at each time point because functional 

connectivity matrices are always both real and symmetric.  Such 

matrices are always diagonalizable, so the dFC at any time point 𝑡 

can be decomposed into 

dFC(𝑡) = 𝑉𝐷𝑉−1 

with 𝑉 being the eigenvectors of dFC(𝑡) and 𝐷 the diagonal matrix 

of eigenvalues.  As the eigenvectors of a symmetric matrix must be 

orthogonal, 𝑉−1 = 𝑉𝑇; thus,  
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dFC(𝑡) = 𝑉𝐷𝑉𝑇 

which may be equivalently written as 

dFC(𝑡) = 𝑉𝐷𝑉𝑇 = ∑𝜆𝑛𝑣𝑛𝑣𝑛
𝑇

𝑛

 

where 𝑣𝑛 is the 𝑛𝑡ℎ eigenvector and 𝜆𝑛 the  𝑛𝑡ℎ eigenvalue of 

dFC(𝑡).  At each time point, the instantaneous FC matrix may be 

decomposed into a weighted sum of eigenvector outer products 

𝑣𝑛𝑣𝑛
𝑇  weighted according to the respective eigenvalue 𝜆𝑛.  Thus, 

finding the dominant spatial pattern at any time point simply 

involves finding the eigenvector with the largest eigenvalue at that 

time point.  In addition, one may easily compute the proportion of 

variance which this pattern captures simply by dividing the leading 

eigenvalue by the sum of all eigenvalues: 

ρ =
𝜆𝑙

∑ 𝜆𝑛𝑛
 

Previous work demonstrates that the leading eigenvector 

consistently represents more than 50% of data variance (Cabral et 

al. 2017; Lord et al. 2019), a finding confirmed in the present thesis.  

Further, experiments with the use of additional eigenvectors 

demonstrated no improvement in performance or clinical 

interpretability.  The author thus believe that a single eigenvector is 

sufficient to represent functional connectivity dynamics. 

 

This compression has three distinct advantages for signal analysis.  

First, compressing each N × N dFC(t) matrix to an N × 1 vector pl 

reduces sample dimensionality from 
N(N−1)

2
 to N.  Second, the 

primary connectivity pattern should contain no noise, as noise 

components generally appear in trailing eigenvectors.  Finally, 

previous work in spectral community detection (Newman 2006; 

Leicht and Newman 2008) demonstrated that the leading 

eigenvector pl(t) separates network nodes into communities based 

on the sign of each node r ∈  pl(t), with the magnitude of r 

indicating that assignment’s “strength”.  Thus, transforming the 

dFC(t) matrix to pl(t) converts interregional phase-locking values 

into regional community assignment values.  The leading 

eigenvector of an FC matrix naturally separates networks into two 

mutually opposing communities. 
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The Leading Eigenvector Dynamics Analysis framework (LEiDA) 

(Cabral et al. 2017; Figueroa et al. 2019; Lord et al. 2019) examines 

only the leading eigenvector 𝐯l(t) of each 𝑁 × 𝑁 𝐝𝐅𝐂(t) matrix.  

At each time point, the leading eigenvector of the 𝑁 × 𝑁 𝐝𝐅𝐂(t) is 

extracted; once the leading eigenvectors of all time points have been 

extracted, they are concatenated horizontally to form a space-time 

matrix 𝐄.  Each row 𝑟 of 𝐄 represents one brain region r, and each 

column 𝑡 contains the leading eigenvector 𝐯l(t) for time 𝑡.  The 

laws of linear algebra render 𝐯l(t) and −𝐯𝐥(t) equivalent, so we 

follow the convention that most elements in each eigenvector 

should be negative (Figueroa et al. 2019). 

 

 
Figure 3 | Eigendecomposition.  After computing the phases of each region at time 𝑡 (A), 

the cosine distance between each pair of regions is computed to produce an instantaneous 

functional connectivity matrix (B).  The leading eigenvector V1 of this functional 

connectivity matrix is then isolated (C).  Repeating this process across time points results 

in a 2-D array of eigenvectors, each representing a distinct time point in the data. 

A) 

B) C) 
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5.2.3 Component Detection 

Finding the communities that recur above chance requires 

determining a significance threshold for regional co-activation.  

Although surrogate methods, e.g. a permutation test, can establish 

such a threshold, they are slow and computationally intensive.  A 

far cheaper and more elegant method is available by leveraging 

based on autocorrelation matrix eigenvalues (Peyrache et al. 2009; 

2010).  It has been established for several decades that if an 𝑚 × 𝑛 

matrix 𝐌 has statistically independent rows (as would be expected 

for uncoupled noisy oscillators), the eigenvalues of its 

autocorrelation matrix follow the Marčenko-Pastur distribution 

(Marčenko and Pastur 1967).  Crucially, this distribution has 

analytically tractable limits 

λmin
max = σ2 (1 ± √

1

q
)

2

 

where σ is the standard deviation of 𝐌 and q ≡
n

m
≥ 1.  Thus, if 

communities do not recur over time, the eigenvalues of 𝐄’s 

correlation matrix should lie within the limits imposed by λmin
max.  

Conversely, should any communities of 𝐄 recur at a rate 

significantly above chance, a corresponding number of eigenvalues 

of the correlation matrix of 𝐄 should exceed the upper limit λmax.  

This method has been validated in the spike activity context (Lopes-

dos-Santos et al. 2011; Lopes-dos-Santos, Ribeiro, and Tort 2013) 

and in a previously published fMRI study (Deco, Cruzat Grand, and 

Kringelbach 2019). 

 

5.2.4 Component Extraction 

Upon finding the total number of recurrent communities with the 

Marčenko-Pastur distribution, we utilize the fastICA algorithm 

(Laubach, Shuler, and Nicolelis 1999; Hyvärinen and Oja 2000) to 

extract these communities and their activity time courses from the 

matrix E.  Since the fastICA algorithm requires the user to manually 

specify the number of independent components, the Marčenko-

Pastur distribution threshold is crucial to providing an objective, 

data-driven metric for the number of components. 
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After computing 𝐄’s covariance matrix, twelve (12) eigenvalues 

were found to surpass the Marčenko-Pastur upper bound.  ICA was 

then run to extract these twelve distinct and temporally independent 

components.  As fastICA can only extract the magnitude of an 

independent component, not its sign, the spatial map’s positive and 

negative signs should be understood to represent relative 

orientations rather than absolute weights. 

 

Why select independent component analysis to extract functional 

connectivity states?  ICA minimizes the statistical dependencies 

between its output components, a fact which has been confirmed in 

the dynamic functional imaging context (Calhoun et al. 2013).  

Thus, running ICA along the time dimension of dynamic functional 

imaging data may be understood as a search for connectivity states 

which display no temporal relationships between one another.  This 

should completely—or at least almost completely—prevent the 

temporal dependencies between components, which greatly 

simplifies calculation of the entropy. 

 

But how, precisely, does independent component analysis function?  

It is a relatively new method which seeks to solve an old problem: 

the problem of blind source separation.  We can turn to the classic 

example of the cocktail party problem: given a group of perhaps 

twenty persons in a room, all speaking at once, how can one 

identify and extract a single conversation of interest from the 

overall noise? 
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Figure 4: the cocktail party problem: given two or more signals which have been mixed, 

how can one isolate the original signals?  

 

As is often the case in mathematical analysis, one must start with 

assumptions.  The first assumption is that the signals are mixed 

linearly, i.e. they combine via simple addition: 

𝒙 =  𝑨𝒔T 

where 𝒙 are the received signals and 𝒔 are the original signals 

(which we hope to recover).  The second assumption is that the 

signals 𝒔 are statistically independent, i.e. knowledge of any one 

signal provides no information on the content of the others.  Given 

an absence of additional knowledge, independent component 

analysis (ICA) must satisfy the following conditions: 

1. it must be a linear model 

2. the signals it isolates must be statistically independent 

3. it must require no inputs aside from the mixed signals 𝒙 and 

the number of original signals 𝒔 

These constraints enforce a linear mixture model 

𝒙 =  𝑨𝒔T = ∑𝒂𝒋𝒔𝒋

𝒏

𝒋=𝟏

 

with variables 

𝒔 =  [𝐬𝟏, … , 𝐬𝒏] n original, independent components 

(sn) 
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𝑨 = [

𝐚𝟏𝟏 ⋯ 𝐚𝟏𝒏

⋮ ⋱ ⋮
𝐚𝑚𝟏 ⋯ 𝐚𝑚𝒏

] 
mixed according to the coefficients 

(aij) 

𝒙 =  [𝐱𝟏, … , 𝐱𝑚] to produce m observed linear mixtures 

(xm) 

 

Of course, ICA does not want to find the mixing model; its goal is 

to find the unmixing, or inverse, model, which should satisfy 

𝒔 = 𝑾𝒙T = ∑𝒘𝒋𝒙𝒋

𝒏

𝒋=𝟏

 

 

Solving this problem is equivalent to finding the inverse matrix 𝑾, 

which might seem obvious; setting 𝑾 = 𝑨−1 would suffice: 

𝒙 =  𝑨𝐬 

𝐀−1𝒙 = 𝐀−1𝑨𝐬 = 𝐬 

The problem is that we do not know 𝑨, so inverting it is not a 

simple application of linear algebra.  Instead, one must estimate it 

based on the available constraints and a suitable cost function. 

 

It is here that one encounters—again—the Central Limit Theorem.  

Briefly, the Central Limit Theorem states that any linear 

combination of independent variables will tend to form a normal 

distribution, regardless of the distribution of the original variables.  

Thus, for any original signal 𝑠𝑘, unless 𝑠𝑘 is Gaussian white noise—

that is unless it follows a normal distribution—then the combined 

signal 𝒙 will more strongly resemble a normal distribution than 𝑠𝑘 

does.  More importantly, any reconstructed signal 𝑦 will be closer to 

a normal distribution than 𝑠𝑘 unless 𝑦 = 𝑠𝑘 (or unless 𝑠𝑘 follows a 

normal distribution itself!). 

 

Can this cost function help us estimate the inverse mixing matrix 

𝑾?  To answer that question, we can engage in some slight-of-hand 

by introducing a new variable 𝒛: 

𝒛 = 𝑨𝐓𝑾 
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y = 𝑾T𝒙 = 𝑾𝐓𝑨𝒔 = 𝒛T𝒔 = ∑𝑧𝑗
𝑗

𝑠𝑗 

where y is the estimate of the 𝑘th signal 𝑠𝑘.  By the Central Limit 

Theorem, y is more Gaussian than 𝒛T𝒔 unless 𝑦 = 𝑠𝑘.  But 𝑦 = 𝑠𝑘 

is only true if 𝑧𝑘 = 1 and 𝑧𝑗≠𝑘 = 0, which is only possible if 

𝑾𝐓𝑨 = 𝑰, i.e. if 𝑾 = 𝐀−1.  Thus, by minimizing the Gaussianity of 

𝒛T𝒔, we can in principle recover the original signal 𝑠𝑘.  Better yet, 

there’s no need to introduce the variable 𝒛 at all; since 𝑾𝑇𝒙 = 𝒛𝑇𝒔, 

minimizing the Gaussianity of 𝑾𝑇𝒙 implies minimizing the 

Gaussianity of 𝒛𝑇𝒔, so we simply need to find a 𝑾 such that 𝑾𝑇𝒙 is 

maximally non-Gaussian. 

 

Thus, one approach to solving the source separation problem is to 

establish a linear model 

y = 𝑾T𝒙 

and minimize the Gaussianity of y.  This leads to another question: 

how should we determine how Gaussian or non-Gaussian our 

variable has become?  In the language of machine learning, what 

cost function should we employ for our algorithm? 

 

Two primary metrics for Gaussianity exist: the excess kurtosis and 

the negentropy.  Given a probability distribution 𝑦, excess kurtosis 

is defined as the expected value of 𝑦’s fourth moment minus three 

times the expected value of its second moment: 

𝑘𝑢𝑟𝑡(𝑦) = 𝐸{𝑦4} − 3𝐸{𝑦2} 

This formulation is computationally straightforward and has the 

interesting property of equalling zero if and only if 𝑦 follows a 

Gaussian distribution.  If 𝑦 is flatter than a Guassian distribution, 

the excess kurtosis falls below zero; if 𝑦 is more strongly peaked 

than a Gaussian, the excess kurtosis rises above zero.  Thus, the 

kurtosis fulfills two necessary feature for a cost function: it is easily 

estimated, and it is easily interpretable. 
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Figure 5: Kurtosis 

 

Unfortunately, kurtosis has one highly undesirable property for a 

cost function; it is not robust to outliers.  Given the fact that real 

data seldom confirms perfectly to a specified probability 

distribution, this renders it unsuitable for independent component 

analysis. 

 

The second potential Gaussianity metric is known as the 

negentropy, which is defined as the difference in entropy between 𝑦 

and a Gaussian variable 𝑦𝑔𝑎𝑢𝑠𝑠  with a covariance matrix identical to 

𝑦: 

𝑱(𝐲) = 𝑯(𝐲𝐆𝐚𝐮𝐬𝐬) − 𝑯(𝐲) 

where 𝐲 is the variable of interest, 𝐲𝐆𝐚𝐮𝐬𝐬 is a Gaussian variable with 

same covariance matrix as 𝐲, and 𝑯(𝐲) is the entropy of 𝐲.  In 

principle, this is an ideal cost function; highly robust and zero if and 

only if 𝑦 follows a Gaussian distribution exactly.  Unfortunately, 

estimating 𝑦’s entropy requires estimating 𝑦’s probability 

distribution, which is seldom practical.  Thus analysts use 

approximations.  Hyvarinen and Oja—the authors of the fastICA 

algorithm—chose a somewhat non-obvious formulation: 

𝑱(𝒚) ≈ ∑𝑘𝑗

𝑝

𝑗=1

[𝐸{𝐺𝑗(𝒚)} − 𝐸{𝐺𝑗(𝝂)}]
𝟐
 

with 𝑘𝑗 being arbitrary constants (kj ≥ 0 for all j), 𝐺𝑗 being a non-

quadratic function, and 𝝂 being a Gaussian variable of zero mean 

and unitary variance (Hyvärinen 1999; Hyvärinen and Oja 2000).  
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The authors explain that while this is not the classical estimate of 

the negentropy, it does have advantages of consistency and 

robustness given appropriate choices for 𝐺𝑗: 

𝐺1(𝑢) =
1

𝑎
𝑙𝑛(𝑐𝑜𝑠ℎ(𝑣)) for 1 ≤ 𝑎 ≤ 2 

𝐺2(𝑢) = −𝑒−
𝑢2

2  

Hyvärinen and Oja found that, after whitening 𝒚, these selections 

resulted in a 𝑱(𝒚) which was highly robust to outliers, universally 

nonnegative (𝐽(𝒚) ≥ 0 for all 𝒚), and zero if and only if 𝒚 follows a 

Gaussian distribution—which is to say, an ideal cost function. 

 

Having identified a suitable cost function, the next challenge is to 

find a suitable optimization algorithm.  After all, a traveler’s ability 

to measure how far he is from his goal is of little use unless he can 

also determine which direction he must go.  This process can be 

simplified by centering and whitening our observed data 𝒙: that is, 

by removing its mean 𝐦 = 𝐸{𝐱} from x, by removing correlations 

between the component variables, and by rescaling component 

variables to achieve a unitary variance: 

𝑬{𝒙�̃�𝑻} = 𝑰 

𝒙 being the whitened, demeaned version of x. 

These alterations are well-defined in linear algebraic literature and 

are easily reversed.  Thus, any alteration in the estimated source 

signals 𝒚 are easily compensated at the end of optimization. 

 

Having prepared the data, our next step is to find in which direction 

to take it.  The goal is to find a transformation 𝒘 of 𝒙 which 

minimizes the Gaussianity of 𝒘𝑻𝒙, i.e. which maximizes 𝑱(𝒘𝑇𝒙).  

The maxima of any function will be a fixed point, i.e. a point where 

the derivative 
𝑱(𝒘𝑻𝒙)

𝒘
= 0; thus, the goal is to find a 𝒘′ which 

satisfies 
𝑱(𝒘′𝑻𝒙)

𝒘
= 0.  To do this, Hyvärinen and Oja propose the 

following algorithm: 

• Choose initial (random) weight vector 𝐰0 

• Set 𝑔 ≡ �⃗⃗� (𝐺) 
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• Set the update rule: 

o At each iteration 𝑛, define 

𝐰+ = 𝑬{𝐱𝒈(𝐰𝒏−𝟏
T𝐱)} − 𝑬{𝒈′(𝐰𝒏−𝟏

𝑻𝒙)}𝐰𝒏−𝟏 

o Set 𝐰𝑘 =
𝐰+

||𝐰+||
 

• Repeat until convergence, i.e. 𝐰𝑘−1 ∙ 𝐰𝑘 ≈ 1. 

The proof for this algorithm is provided in (Hyvärinen and Oja 

2000). 

 

Well and good, provided we only want to find a single original 

component 𝑦 = 𝒘𝑇𝒙.  In general, however—and certainly in the 

human brain—the goal is to find multiple components.  This raises 

a problem: re-running the iteration algorithm described above may 

produce duplicate results.  Clearly, it is of little use to extract the 

same 𝒙 several times; one must find a means to prevent this.  The 

solution presented by Hyvärinen and Oja is to decorrelate each 

output after each iteration.  This can be accomplished via another 

iterative algorithm (Hyvärinen 1999): 

• Given 𝑛 desired outputs 𝐰1 …𝐰𝑛 , define 𝑾 ≡

(𝒘1, … , 𝒘𝑛)
𝑇 

• Set 𝑾 =
𝑾

√||𝑾𝑾𝐓||
 

• Iterate Step 2 until convergence: 𝑾 =
𝟑

𝟐
𝑾 −

𝟏

𝟐
𝑾𝑾𝐓𝑾 

This step completes the optimization algorithm to find 𝒘 such that 

y = 𝒘T𝒙 ≈ 𝐬. 

 

 

5.2.5 Entropy Estimation 

Since independent component analysis forbids statistical 

dependencies between its component outputs, the joint entropy over 

all components is simply the sum of the individual components’ 

Shannon entropies (Cover and Thomas 2005): 

H(C1, … , CN) = ∑H(Cj)

N

j=1
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It is possible to compute the joint entropy of each subject by 

computing the Shannon entropy of each component’s activation 

time series and summing them.  This allows the construction of a 

distribution of subject joint entropies, which can then be analyzed 

for group-level differences. 

There is, of course, the problem of estimating the entropy of 

each individual component.  Dr. Shannon, in his seminal article, 

provides a definition of entropy for continuous variables: 

𝐻(𝑥) = −∫𝑝(𝑥) ln 𝑝(𝑥) 

where 𝑝(𝑥) is the probability density function of the continuous 

variable 𝑥.  However, this definition is seldom practical as, in most 

cases, researchers cannot access 𝑝(𝑥).  This led to considerable 

research into the problem of estimating 𝑝(𝑥) based on a finite 

sample of 𝑥 (Dudewicz and van der Meulen 1981; Goria et al. 2005; 

Delattre and Fournier 2017).  This thesis employs a variant of the 

Kozachenko and Leonenko estimator (Singh et al. 2003) as 

implemented by Zoltan Szabó in the Information Theoretical 

Estimators toolbox (Szabó 2014). 

 

5.2.6 Comparisons 

Group-level differences are examined via a difference-of-means 

permutation test (Krol 2021) with 10,000 permutations, and provide 

multiple-comparison correction via the false discovery rate 

(Benjamini and Hochberg 1995).  The Bonferroni (Bonferroni 

1935) and Šidák (Sidak 1967) thresholds verify these results. 

 

 

5.3 Results 

5.3.1 Functional Connectivity 

5.3.1.1 Study I: Obsessive-Compulsive Disorder 

Both control and patient time series are parcellated according to the 

AAL atlas (Tzourio-Mazoyer et al. 2002).  Each subject’s dynamic 

functional connectivity is computed using Coherence Connectivity 

Dynamics (Deco, Cabral, et al. 2017).  Analysis is restricted to the 

cortical and subcortical regions; as such, the 26 cerebellar regions 

of the AAL atlas are discarded.  The resultant three-dimensional 
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array must be converted into two dimensions for further analysis.  

Three methods are tested.  In the first method, we extract the 

leading eigenvector (90 × 1) of each time point’s connectivity 

matrix.  The eigenvectors of all time point are then concatenated to 

form a subject-level 90 × 175 eigenvector time series 𝐄.  In the 

second method, each time point’s connectivity matrix is averaged 

horizontally, and the resulting average coherence vectors (90 × 1) 
are concatenated to form a subject-level 90 × 175 mean coherence 

time series 𝐌.  Finally, each time point’s connectivity matrix is 

vectorized to form a 4005 × 1 connectivity vector, and these 

vectors are again concatenated to form a subject-level 4005 ×
175 𝐝𝐅𝐂 time series (as each connectivity matrix is symmetric and 

the main diagonal neglected, only the upper triangle is vectorized). 
 

5.3.1.2 Study II: Multiple Disorders 

We elect to define the basis based on the control group.  In order to 

find the number of necessary basis vectors, a “global” time series is 

constructed by concatenating all controls along the time dimension.  

The autocorrelation matrix of this global signal undergoes 

eigendecomposition; the number of eigenvalues which surpass the 

upper bound of the Marčenko-Pastur distribution (Marčenko and 

Pastur 1967) is the number of dimensions necessary to describe the 

nonrandom activity of the control time series.  In this study, 

fourteen (14) dimensions were found to be sufficient. 

 

Upon determining the number of dimensions necessary, ICA 

converts the 68-dimensional control time series 𝑇𝐶 into its fourteen-

dimensional representation 𝐴𝐶  (Lopes-dos-Santos et al. 2011; 

Lopes-dos-Santos, Ribeiro, and Tort 2013).  The time series of the 

three patient groups are mapped to this fourteen-dimensional space 

via the mixing matrix 𝑾.  No additional formats are utilized: all 

data are analyzed using the LEiDA framework. 

 

 

5.3.2 Functional Dimensions 

5.3.2.1 Study I: Obsessive-Compulsive Disorder 

To determine the number of dimensions necessary, all subjects’ 

time series are concatenated and the autocorrelation matrix of this 

global time series array calculated.  The number of significant 
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dimensions is then the number of eigenvalues in the autocorrelation 

matrix which exceed the upper bound of the Marčenko-Pastur 

distribution (Marčenko and Pastur 1967).  Applying this method to 

the eigenvector time series 𝐄 identifies twelve independent 

dimensions across the resting state of all subjects.  ICA can then 

convert the 90-dimensional eigenvector time series 𝐄 into its 

twelve-dimensional representation 𝐓𝐸 (Lopes-dos-Santos et al. 

2011; Lopes-dos-Santos, Ribeiro, and Tort 2013).  Repeating this 

process for the vectorized 𝐝𝐅𝐂 produces the 347-dimensional 

representation 𝐓𝐹 , and the spatially averaged 𝐌 produces the 

eleven-dimensional representation 𝐓𝑀. 

 

5.3.2.2 Study II: Multiple Disorders 

We elect to define the basis based on the control group.  In order to 

find the number of necessary basis vectors, a “global” time series is 

constructed by concatenating all controls along the time dimension.  

The autocorrelation matrix of this global signal undergoes 

eigendecomposition; the number of eigenvalues which surpass the 

upper bound of the Marčenko-Pastur distribution (Marčenko and 

Pastur 1967) is the number of dimensions necessary to describe the 

nonrandom activity of the control time series.  In this study, 

fourteen (14) dimensions were found to be sufficient. 

 

Upon determining the number of dimensions necessary, ICA 

converts the 68-dimensional control time series 𝑇𝐶 into its fourteen-

dimensional representation 𝐴𝐶  (Lopes-dos-Santos et al. 2011; 

Lopes-dos-Santos, Ribeiro, and Tort 2013).  The time series of the 

three patient groups are mapped to this fourteen-dimensional space 

via the mixing matrix 𝑾. 

 

 

5.3.3 Joint Entropy 

5.3.3.1 Study I: Obsessive-Compulsive Disorder 

Since each time series in the low-dimensional space is statistically 

independent, each dimension’s Shannon entropy may be calculated 

(Singh et al. 2003; Delattre and Fournier 2017) independent of the 

others’.  Computing the subject-level Shannon entropy of each 

substate’s time series results in a 𝐷 × 𝑆 array of entropy values for 

patients and controls, where 𝑆 is the number of dimensions and 𝑆 
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the number of subjects per group.  This format means that 

computing the subject-level joint entropy simply requires summing 

along this array’s first dimension.  This produces two 1 × 𝑆 joint 

entropy distributions, which can be compared with any standard 

statistical test.  Applying this process to eigenvector-based entropy 

scores again shows elevated entropy in patients relative to controls 

(p = 0.0119, Hodges’ G = -0.5833); controls display a joint entropy 

of 14.5695 ± 1.2473, while patients display a mean joint entropy 

of 15.2214 ± 1.1535.  However, the joint entropy distributions of 

𝐓𝐹  and of 𝐓𝑀 display no significant group-level differences.  

Eigenvector-based analysis thus appears to preserve the information 

of the full signal while reducing dimensionality almost thirtyfold—a 

crucial consideration, as the curse of dimensionality states that 

patterns become exponentially harder to detect as dimensionality 

increases. 

 

 
Figure 6: Analysis of eigenvector-based component time series (T_E ) shows that 

obsessive-compulsive patients display significantly higher joint entropy than age-, gender-, 

and education-matched controls.  Notably, only the  

 

5.3.3.2 Study II: Multiple Disorders 

In the control basis space, the statistical independence of each basis 

vector means that each subject’s joint entropy is simply the sum of 

its dimensional entropies.  Thus, by independently estimating 

Shannon entropy of subject activities along each dimension (Singh 

et al. 2003; Delattre and Fournier 2017) and summing over the rows 

of the resulting 𝐷 × 𝑆 matrix (𝐷 being the number of control-based 

basis vectors and 𝑆 being the number of subjects), we obtain a 1 × 𝑆 

joint entropy distribution which can be examined by standard 
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statistical tests.  Applying this procedure to the current dataset 

reveals that the control group displays significantly lower joint 

entropy than any of the patient groups (Figure 7 and Table 1), but 

no patient group displays changes in joint entropy relative to 

another patient group.  Elevated levels of randomness (variability) 

in connectivity time series thus appear to be a core characteristic of 

several psychiatric disorders. 

 

 
Figure 7: Group-level comparisons of the joint entropy.  Controls display significantly 

lower joint entropy than any patient group, while no such difference is apparent between 

patient groups. 

On average, controls display a joint entropy of 18.2676 ± 0.9845.  

By contrast, schizophrenia patients display a mean joint entropy of 

19.0099 ± 1.0344, bipolar patients a mean of 18.8994 ± 1.1336, 

and ADHD patients a mean of 18.7945 ± 1.0140.  After multiple 

comparison correction, patient groups display no significant 

differences in joint entropy between one another. 

 
Table 1: p-values for pairwise joint entropy comparisons.  Controls display significantly 

lower entropy than any patient group.  No such difference is visible between patient 

groups. 

Comparison p-value Hodges’ G Significant? 
Controls vs. 
schizophrenia 

9.999 × 10−5 -0.7430 True 

Controls vs. bipolar 2.9997 × 10−4 -0.6134 True 
Controls vs. ADHD 0.0059 -0.5313 True 
Schizophrenia vs. bipolar 0.6224 0.1017 False 
Schizophrenia vs. ADHD 0.3322 0.2101 False 
Bipolar vs. ADHD 0.6586 0.0970 False 
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5.3.4 Dimension-Specific Entropy 

5.3.4.1 Study I: Obsessive-Compulsive Disorder 

To determine whether alterations in entropy concentrate in specific 

dimensions, start with the same 𝐷 × 𝑆 patient and control arrays of 

entropy values as the previous section.  Each row of these arrays 

was compared and corrected with the false discovery rate.  As 

above, this analysis was run for all three compression methods: 𝐓E 

(eigenvectors), 𝐓F (uuncompressed), and 𝐓M (spatial average).  

Only the eigenvector-based representation (𝐓E) detects a significant 

alteration along any dimension, specifically the first (ordered 

according to mean activity).  This dimension consists of paired 

anticorrelated communities and both display significantly higher 

entropy in patients than in age-, gender-, and education-matched 

controls. 

 
In component space, one LEICA component displays higher entropy 

in patients than in controls (1.1818 ± 0.1401, 1.3075 ± 0.2276, 
𝑝 = 0.0020, Hedges’ 𝑔 = −0.6634).  This substate consists of two 

opposing communities, with the sign of each brain region denoting 

to which community that region belongs and the magnitude of that 

region’s weight denoting the strength of its association with that 

community.  Concentrating on regions with absolute z-scores above 

1.3 (|𝒛| > 1.3) (Figure 8).  Under these constraints, the first 

community contains the left precentral gyrus, left and right frontal 

superior cortex (orbital), left middle frontal gyrus (orbital), the left 

inferior frontal gyrus (opercular), left cuneus, right olfactory bulb, 

and right inferior parietal gyrus.  Its opposite number includes the 

right lingual gyrus, right occipital medial gyrus, right putamen, right 

pallidum, left amygdala, right middle temporal gyrus, and right 

temporal pole of the middle temporal gyrus (Figure 8).  This result 

survives both the false discovery rate and the Sidak multiple 

comparison correction. 
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Figure 8 | Twelve of the eigenvalues of E’s autocorrelation matrix exceed the upper limit 

of the Marčenko-Pastur distribution, suggesting that twelve dimensions are necessary to 

capture E‘s activity.  Independent component analysis reveals how these dimensions map 

to brain regions (A).  Map weights have been converted into z-scores for this figure and 

regions with a weight z < 1.3 are depicted in faded color.  Plotting these mapping vectors 

in the brain and as connectivity (B) reveals that the trailing dimensions (nine, ten, eleven, 

and twelve) display notable homotopic symmetry, while leading dimensions are strongly 

asymmetric.  Finally, group-level entropy analysis shows that the first dimension displays 

significantly higher entropy in obsessive-compulsive patients than in controls (C).  Note 

that dimensions are ordered according to average activity level across the dataset. 
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Table 2 | High-Weighted Regions in OCD 

Component 1 (z > 1.3) 

Positive Negative  

L Precentral Gyrus L Amygdala 

L Superior Frontal Gyrus, Orbital Part R Temporal Pole: Middle Temporal Gyrus 

L Middle Frontal Gyrus, Orbital Part R Middle Temporal Gyrus 

L Inferior Frontal Gyrus, Opercular Part R Lenticular Nucleus, Pallidum 

L Cuneus R Lenticular Nucleus, Putamen 

R Inferior Parietal Gyri R Middle Occipital Gyrus 

R Olfactory Cortex R Lingual Gyrus 

R Superior Frontal Gyrus, Orbital Part  
Table 2 | displays the regions of the first dimension with absolute z-scores exceeding 1.3 

(|𝑧| > 1.3).  The sign of each regional weight indicates to which of two communities it 

belongs, with the magnitude of its weight indicating its centrality to that community.  

Regions with absolute z-scores exceeding 1.3 (|𝑧| > 1.3) can be considered core nodes in 

a more distributed network which covers the entirety of the brain space. 

 

5.3.4.2 Study II: Multiple Disorders 

 

The independence of each dimension in the control basis space also 

allows researchers to determine whether entropy alterations 

concentrate in individual dimensions or spread evenly across the 

space.  This may be done via statistical tests on the individual rows 

of the entropy array 𝐷 × 𝑆 (with appropriate multiple comparison 

correction).  Three dimensions are found to display substantial 

inter-group alterations, specifically the sixth, seventh, and twelfth 

(ordered from highest to lowest mean activity) (Figure 8).  

Differences between controls and ADHD patients concentrate in the 

sixth dimension (𝑝 =  8.991 × 10−4, 𝐻𝑜𝑑𝑔𝑒𝑠′ 𝑔 = −0.6167 ) 
while the seventh appears to most influence schizophrenia patients 
(𝑝 =  0.0011,𝐻𝑜𝑑𝑔𝑒𝑠′ 𝑔 =  −0.5821).  Bipolar patients, unlike 

ADHD or schizophrenia, display elevated entropy in both the 

seventh (𝑝 =  9.999 × 10−5, 𝐻𝑜𝑑𝑔𝑒𝑠′ 𝑔 =  −0.7020) and twelfth 
(𝑝 =  6.9993 × 10−4, 𝐻𝑜𝑑𝑔𝑒𝑠′ 𝑔 =  −0.6120) dimensions.  

Patients display elevated entropy relative to controls in all pairings.  

The most influential regions in each of these dimensions may be 

viewed in Table 3, and a list of dimensional entropies per condition 
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in Table 4.  Error! Reference source not found. displays p-values 

for tests on the joint entropy. 

 

 

 
Figure 9 | Fourteen of E‘s autocorrelation matrix eigenvalues exceed the upper limit of the 

Marčenko-Pastur distribution, suggesting that fourteen dimensions are necessary to 

capture E‘s activity.  Independent component analysis reveals how these dimensions map 

to brain regions (A).  Map weights have been converted into z-scores for this figure and 

regions with a weight z < 1 are depicted in faded color.  Plotting these mapping vectors in 

the brain and as connectivity matrices (B) reveals that dimensions three, four, five, six, 

nine, and fourteen display notable homotopic symmetry, while inter-hemispheric activity 

appears to be anticorrelated in dimensions one, seven, eight, and twelve. 
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Figure 10 | Group-level entropy analysis shows that three components—six, seven, and 

twelve—display significant alterations between control and patient entropies (A).  These 

alterations appear disorder-specific, with ADHD displaying elevated entropy only along 

the sixth component and schizophrenia only along the seventh.  Bipolar disorder (type I) 

displays alterations along both components seven and twelve.  The spatial maps of these 

components are displayed in greater detail in panel (B). 

 
Table 3 | Significant LEICA Dimensions 

 
Dimension 6 Dimension 7 Dimension 12 

L Bank's Superior Temporal Sulcus     

L Caudal Anterior Cingulate      

L Caudal Middle Frontal     

L Cuneus    

L EntoRinal      

L Fusiform      

A) 

B)
) 



 

 71 

L Inferior Parietal    

L Inferior Temporal      

L Isthmus Cingulate     

L Lateral Occipital     

L Lateral Orbitofrontal      

L Lingual      

L Medial Orbitofrontal     

L Middle Temporal      

L Parahippocampal     

L Paracentral      

L Pars Opercularis     

L Pars Orbitalis     

L Pars Triangularis     

L Pericalcarine    

L Postcentral    

L Posterior Cingulate     

L Precentral     

L Precuneus    

L Rostral Anterior Cingulate     

L Rostral Middle Frontal    

L Superior Frontal     

L Superior Parietal     

L Superior Temporal      

L Supramarginal     

L Frontal Pole     

L Temporal Pole       

L Transverse Temporal    

L Insula     

L Thalamus Proper      

L Caudate      

L Putamen    

L Pallidum      

L Hippocampus     

L Amygdala       

L Accumbens      
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R Accumbens Area     

R Amygdala      

R Hippocampus    

R Pallidum       

R Putamen    

R Caudate    

R Thalamus Proper      

R Insula      

R Transverse Temporal     

R Temporal Pole     

R Frontal Pole     

R Supramarginal     

R Superior Temporal     

R Superior Parietal    

R Superior Frontal    

R Rostral Middle Frontal     

R Rostral Anterior Cingulate     

R Precuneus     

R Precentral    

R Posterior Cingulate      

R Postcentral    

R Pericalcarine     

R Pars Triangularis      

R Pars Orbitalis      

R Pars Opercularis     

R Paracentral     

R Parahippocampal    

R Middle Temporal       

R Medial Orbitofrontal     

R Lingual      

R Lateral Orbitofrontal       

R Lateral Occipital      

R Isthumus Cingulate     

R Inferior Temporal      

R Inferior Parietal      
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R Fusiform      

R EntoRinal     

R Cuneus     

R Caudal Middle Frontal     

R Caudal Anterior Cingulate    

R Bank's Superior Temporal Sulcus     

 

 
Table 4 | LEICA Dimensional Entropies 

 Control Schizophrenia Bipolar ADHD 

Comp. 1 1.3314 ± 0.18354 1.3817 ± 0.17252 1.392 ± 0.15928 1.3476 ± 0.14804 

Comp. 2 1.3631 ± 0.15676 1.417 ± 0.13407 1.4133 ± 0.14623 1.3654 ± 0.15778 

Comp. 3 1.0527 ± 0.10891 1.0712 ± 0.11667 1.0808 ± 0.13456 1.087 ± 0.1068 

Comp. 4 1.0678 ± 0.11119 1.0959 ± 0.09644 1.0774 ± 0.13626 1.0662 ± 0.131 

Comp. 5 1.3068 ± 0.20813 1.3259 ± 0.17096 1.3431 ± 0.16761 1.3052 ± 0.16197 

Comp. 6 1.3509 ± 0.1608 1.4065 ± 0.13561 1.3872 ± 0.14497 1.4481 ± 0.14761 

Comp. 7 1.339 ± 0.19451 1.4498 ± 0.17964 1.4759 ± 0.19629 1.4251 ± 0.13253 

Comp. 8 1.3518 ± 0.17209 1.3756 ± 0.19924 1.3438 ± 0.22108 1.4191 ± 0.17177 

Comp. 9 1.3356 ± 0.18963 1.4173 ± 0.16614 1.3672 ± 0.15345 1.3842 ± 0.15147 

Comp. 10 1.359 ± 0.16396 1.4222 ± 0.13863 1.3724 ± 0.14273 1.3831 ± 0.1449 

Comp. 11 1.3482 ± 0.15999 1.4234 ± 0.15426 1.396 ± 0.16183 1.3835 ± 0.16683 

Comp. 12 1.3608 ± 0.15143 1.4212 ± 0.12474 1.4522 ± 0.1445 1.3993 ± 0.12304 

Comp. 13 1.3493 ± 0.17731 1.4133 ± 0.1802 1.3844 ± 0.14786 1.3936 ± 0.18206 

Comp. 14 1.3513 ± 0.18844 1.3888 ± 0.13996 1.4137 ± 0.1372 1.3869 ± 0.14364 

 
 

5.4 Conclusions 

The LEICA framework has proven remarkably capable of 

separating psychiatric patients from controls, regardless of the 

condition with which it is presented.  This is a substantial 

achievement, as many studies focus on a single disorder rather than 

several simultaneously.  Further, the LEICA framework identifies 

which resting state network(s) are affected by each disorder, which 

provides researchers with clear targets for future investigations.  
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Our initial study demonstrated that the use of the functional 

connectivity’s leading eigenvector provides a demonstrable 

improvement in discriminability compared to the use of the full 

functional connectivity matrix, thus validating the use of this format 

in our second study.  Thus, one can state that the LEICA 

framework, using Shannon entropy as a functional feature, provides 

a powerful tool in the continued search for explanatory biomarkers 

in neurological and psychiatric disease. 
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6 Predicting Connectivity 

6.1 Motivations 

Having established that psychiatric disorders affect the 

functional complexity of resting-state brain activity, the next logical 

question is how these effects are implemented in the brain.  This is, 

as most questions in neuroscience are, an exceedingly complex 

question.  It should surprise no one that neuroscience and 

complexity science substantially overlap.  Thus, as with the metrics 

used before, one must approach this question by first establishing 

which aspect of it to address.  The present thesis addresses it 

through the filter of whole-brain effective connectivity, which seeks 

to estimate the influence that each region of the brain has on other 

regions.  Such an approach has gained increasing popularity in the 

past decade, as an abundance of neuroimaging data, the increased 

availability of powerful computational resources, and an explosive 

growth in machine learning techniques have made implementing 

such estimates ever more feasible. 

 

Why estimate the influence that a node has over any other?  As 

mentioned previously, there is the scientific impulse to learn the 

causal mechanisms underlying observed functional alterations.  One 

must remember, however, that neuroscience is motivated not only 

by scientific curiosity, but also by the need for more effective 

interventions for neurological and psychiatric disease.  Such 

interventions must also be targeted to avoid affecting healthy 

function.  As such, knowledge of where aberrant activity 

originates—whether for surgical intervention, as is the case for 

epilepsy, or for pharmaceutical intervention, if a neurotransmitter 

network is suspected—is vital both for planning immediate 

interventions and for researching new ones.  

 

6.2 Determining the Method 

While the approach of whole-brain effective connectivity represents 

only a small part of the methods for evaluating how psychiatric 

disease affects brain function, even this small part contains a vast 

number of potential implementations.  Each study must select 
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between a model-based or model-free approach, the brain 

parcellation to use, the machine learning algorithm to employ, and 

the features on which to fit the estimate, along with other variables.  

Thus, as with the question of how psychiatric disease affects 

functional complexity, one must choose which models to implement 

and which to ignore. 

 

The studies composing this thesis employ a model-based approach, 

with a Hopf bifurcation (Section 2.4.b.iii) serving to simulate the 

slow dynamics of each region in the brain.  This approach has 

become standard in the Computational Neuroscience (CNS) Group 

following confirmation of its ability to replicate the slow dynamics 

detected in fMRI signals (Deco, Cabral, et al. 2017; Deco, 

Kringelbach, et al. 2017).  One of the principal advantages of the 

Hopf model is its simplicity.  The dynamics of each individual node 

𝑗, depend upon only three parameters: the intrinsic frequency 𝜔, the 

oscillation amplitude parameter 𝛼, and the incoming connections 

∑ 𝐶𝑖𝑗𝑖 .  This simplicity imposes a high degree of abstraction from 

neurobiologically interpretable parameters, but it also simplifies the 

both the fitting procedure and the mathematical interpretation of the 

resulting model.  Of note, such a model demonstrating that brain 

regions in the resting state appear to operate near a critical point 

(Deco, Kringelbach, et al. 2017), which maximizes the metastability 

and functional flexibility of connectivity dynamics (Hansen et al. 

2015). 

 

The parcellations employed were largely determined by the datasets 

available for study.  The first dataset arrived in the 116-region 

Automated Anatomical Labeling parcellation (Tzourio-Mazoyer et 

al. 2002), with the second using the 68-region Desikan-Killany atlas 

(Desikan et al. 2006a).  Both parcellations include standardized 

structural connectivity atlases, which are used as masks1 for the 

estimation of effective connectivity.  More fine-grained 

parcellations have since become available, but computational 

requirements scale with the square of number of regions; as such, 

studies must always accommodate available resources in their 

pursuit of detail. 

 

 
1 Only connections corresponding to the atlas’ nonzero elements are estimated; all 

others are set to zero. 
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The choice of machine learning algorithm is perhaps the least 

constrained of those detailed in this thesis.  While the Hopf model 

has become the standard model in the CNS group and parcellations 

were determined externally, the field of machine learning 

algorithms has grown to a dizzying size and shows no signs of 

stopping.  Whichever method was selected, however, would need 

the ability to fit a high-dimensional space with relatively few 

constraints.  Ideally, it would not be constrained to strictly linear 

models, as brain dynamics tend to be nonlinear.  Finally, 

demonstrable efficacy in fitting biological data was necessary.  

These three considerations led the author to, on his advisor’s 

suggestion, employ the particle swarm optimization method 

(Kennedy and Eberhart 1995), which has proven to fit the above 

criteria.  
 

 

6.3 Pipeline 

6.3.1 Brain Network Model 

For each study, the employed parcellation defines the brain network 

model.  Specifically, each network model consists of 𝑁 nodes, with 

each node representing a single region in the parcellation of interest.  

The parcellation’s standard connectivity template C defines the 

model’s interregional coupling (network links).  Thus, for the OCD-

patient dataset, the network model consists of 90 nodes representing 

the 90 cortical and subcortical regions of the AAL parcellation, 

coupled according to the standard AAL connectivity matrix.  For 

the second, four-group dataset, the network model contains the 68 

nodes of the Desikan-Killany parcellation and is coupled according 

to that parcellation’s standard connectivity template. 

 

In both studies, internal node dynamics are modeled as the normal 

form of a Hopf oscillator set to criticality (Deco, Kringelbach, et al. 

2017).  This produces 

dxj

dt
= xj(αj − xj

2 − yj
2) − ωjyj + G∑Cij

i

(xi − xj)βηj(t) 
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dyj

dt
= yj(αj − xj

2 − yj
2) − ωjxj + G∑Cij

i

(yi − yj)βηj(t) 

where Cij is the connection strength from j to i and G represents 

global coupling efficiency.  ωj is estimated directly from the BOLD 

time series by extracting the dominant frequency of node j within 

the band of 0.01 to 0.08 Hz.  α and G are set to the initial values of 

α = 0 and G = 0.2, in line with previous work (Deco and 

Kringelbach 2016; Deco, Kringelbach, et al. 2017). 

 

6.3.2 Optimization 

The nonzero connection strengths 𝐂ij are optimized using the 

population swarm algorithm (Kennedy and Eberhart 1995; Erik, 

Pedersen, and Pedersen 2010; Mezura-Montes et al. 2011), which 

simulates a population of individuals (particles) randomly moving 

within an 𝑁-dimensional space.  𝑁 is the number of free parameters 

in the model.  At each optimization step, each particle can continue 

exploring the space, move to its optimal prior position, or move to 

the global optimal prior position.  The model is then tested using the 

new positions of each particle as parameters, and the individual and 

global optima are updated as necessary.  This method has proven 

robust and sensitive in biological optimization problems, 

particularly problems with a high dimensionality to data ratio; as 

such, it was a natural choice for the current model. 

 

As with every optimization algorithm, the particle swarm algorithm 

needs a cost function to quantify the difference between simulated 

and empirical data distributions.  For the present studies, we found 

that the Euclidean distance between entropy distributions, 

𝑑(𝑆, 𝐸) = √∑(𝑆(𝑗) − 𝐸(𝑗))
2

𝑁

𝑗=1

 

provided a robust and easily interpretable measure of distance 

between simulation and observation.  In the above formula, 𝑆(𝑗) 

indicates the simulated entropy of component 𝑗, while 𝐸(𝑗) 

represents the empirical entropy of the same component.  The 

overall goal of the fitting procedure was to find the location in 

parameter space which minimized this distance. 
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With a parameter space composed of nonzero elements of each 

connectivity matrix, the entropy cannot be estimated directly.  

Instead, at each optimization step, a temporary network model is 

built for each particle with particle location values forming 

connection weights.  The regional BOLD signals of this temporary 

network are then estimated, these simulated signals mapped to 

component time series via the mixing matrix 𝑊, and the Shannon 

entropy of each component is computed.  The Euclidean distance 

between the simulated entropy distribution and its empirical 

counterpart is used as the optimization cost function, which guides 

the particle swarm algorithm’s estimates for optimal model 

parameters. 

 

It should be emphasized that only the nonzero elements of the 

structural connectivity matrix 𝐒𝐂 are optimized; all elements 

satisfying 𝐶ij = 0 was not altered.  This choice was necessary as the 

large number of parameters to be optimized raised the danger of 

overfitting.  Empirical tests demonstrated that optimizing the full 

matrix did not improve performance. 

 

 

6.3.3 Node Strength 

In order to find network-level connectivity changes in obsessive 

compulsive disorder patients, two group-level analyses are applied 

to the connectivity estimates obtained in the previous section.  The 

first of these is group-level strength of the individual nodes in the 

network.  A node’s strength is simply the sum of the weights of all 

connections leading into (in-strength) or out of (out-strength) the 

node in question and provides some insight into the importance of 

that node to the network dynamics.  As a rule, the higher a node’s 

strength, the more crucial a role it plays in the network’s function 

(although exceptions have been found in nature and human 

designs).  

 

6.3.4 Network-Based Statistic 

The network-based statistic (Zalesky, Fornito, and Bullmore 2010) 

represents an attempt to circumvent the multiple comparison 

problem in network analysis.  As the number of possible links 𝑙 
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scales according to 𝑙 ∝ 𝑁2, link-based analyses of even small 

networks will require extreme family-wise error correction.  This 

means that most link-level effects will be ignored.  However, while 

the number of links scales quadratically with network size, the 

number and size of components may not.  Equally important, a null 

model for the number of expected components may be simulated by 

permuting network link locations while keeping the number of links 

constant.  This allows researchers to estimate a null distribution for 

the number and size of components in the network and determine 

which, if any, extant communities fall outside this distribution. 

 

Based on this intuition, the network-based statistic (NBS) employs 

the following procedure for detecting significant components.  First, 

a group-level t-test establishes linkwise effect sizes in the 

network(s) of interest.  A threshold is then applied to prune the 

network, and a breadth-first search establishes the number and size 

of surviving communities.  The null distribution of suprathreshold 

community sizes is then determined via permutation and this null 

distribution used to estimate the p-value of each empirical 

community.  In most networks, this test provides substantially 

greater power than link-based family-wise error control at the cost 

of being unable to identify the significance of individual links. 

 

 

6.4 Results 

6.4.1 Goodness-of-Fit 

Subject-level effective connectivity was estimated by fitting a 

network model of homogenous Hopf oscillators (Deco, 

Kringelbach, et al. 2017) to each subject’s entropy profile.  We 

selected the particle swarm algorithm for model optimization 

(Kennedy and Eberhart 1995) as this algorithm has demonstrated a 

good mixture of accuracy, robustness, and computational efficiency 

in biological models (Mezura-Montes et al. 2011; Poli, Kennedy, 

and Blackwell 2007; Erik, Pedersen, and Pedersen 2010).  The 

component-level Euclidean distance between simulated and 

empirical entropy serves as cost function for model optimization. 
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Only the eigenvector-based decomposition produced a generative 

model which displays significant group-level alterations in network 

connectivity; the spatially averaged and uncompressed 

decompositions failed to find meaningful results.  As such, only 

eigenvector-based estimates are displayed in the following sections. 

 

6.4.1.1 Study I: Obsessive-Compulsive Disorder 

Modeling each subject separately provides a complete distribution 

of distances for each group and each component, illustrated in 

Figure 11.  Comparisons of pre- and post-fit distances demonstrate 

that the particle swarm algorithm performs admirably on the control 

group, as all components’ estimated entropy distributions are 

brought into alignment with those from empirical data.  

Optimization on the patient group is markedly less successful.  

While patients’ simulated distribution means grow closer to 

empirical means, the patients’ simulated distribution variances grow 

enormously.  Repeated efforts at model fitting demonstrate that this 

explosion in estimated variance appears to be a consistent theme, 

but one restricted to patients alone.  As both groups undergo 

identical procedures and the empirical variances of the two groups 

are similar, the cause of this discrepancy is not clear. 
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Figure 11 | The particle swarm fitting algorithm, like most optimization algorithms, 

minimizes a cost function which (in principle) measures how well the predicted solution 

aligns with measurable data.  We chose the Euclidean distance between empirical and 

simulated entropy vectors as a cost function due to its conceptual simplicity and confirmed 

its superiority versus absolute maximum distance.  Comparisons of component-level 

entropy distributions pre-fit (A) and post-fit (B) demonstrate that this method does 

improve the model for controls, a finding confirmed in measurements of the joint entropy.  

While optimization brings the mean entropies of patient models closer to those of 

empirical subjects, its performance is quite inconsistent in this group.  This is reflected in 

the extremely high variance in post-optimization dimensional and joint entropies (B). 

 

6.4.1.2 Study II: Multiple Disorders 

The optimization procedure for the second dataset is identical to 

that employed in the obsessive-compulsive data, with the resultant 

distance distributions illustrated in Figure 12.  Unlike the original 

dataset, comparisons of pre- and post-fit distances do not 

demonstrate a dramatic condition-dependent effect on optimization 
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performance.  Dramatic component-dependent effects are evident, 

however, as trained models substantially underestimate the entropy 

of components six (6) and seven (7) (Figure 12).  Component eight 

(8) is less dramatically but still consistently underestimated, while 

models overestimate the entropy of component three (3).  While 

these components represent fewer than a third of the total signal, 

their poor fit suggests that connectivity alone may be unable to 

replicate the functional signals of the brain. 

Despite these errors, optimization generally improves the 

match between modeled and empirical data (Figure 12).  The 

general tendency to underestimate empirical data can likely be 

ascribed to components six and seven depressing the estimate of 

joint entropy.  It is notable that the control group is substantially 

better fit than patient groups, suggesting that the decision to define 

components on control data alone has affected the model’s 

sensitivity to other groups.  This implies that psychiatric disorders 

may affect the components’ structure as well as their functional 

signatures, a possibility which may warrant investigation in a future 

study. 
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Figure 12 | The particle swarm fitting algorithm, like most optimization algorithms, 

minimizes a cost function which (in principle) measures how well the predicted solution 

aligns with measurable data.  We chose the Euclidean distance between empirical and 

simulated entropy vectors as a cost function due to its conceptual simplicity and confirmed 

its superiority versus absolute maximum distance.  Comparisons of component-level 

entropy distributions pre-fit (A) and post-fit (B) demonstrate that this approach 

substantially improves the model’s fidelity to real data across multiple groups. 

 
 

6.4.2 Node Strength Analysis 

Upon obtaining effective connectivity estimates, node strength 

distributions were compared across groups to determine which, if 

any, conditions express over- or under-connectivity.  Identical 

procedures were applied to both datasets, with appropriate multiple 

comparison corrections applied to the four-group data. 
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6.4.2.1 Study I: Obsessive-Compulsive Disorder 

No meaningful differences in node strength were apparent between 

obsessive-compulsive patients and healthy controls.  This may be 

due to the relatively poor fit between patients and controls in this 

study, as the wide distribution of patient entropies suggests a lack of 

consistency in estimated connectivity. 

 

6.4.2.2 Study II: Multiple Disorders 

In the four-group data, results were surprisingly robust: all three 

patient groups express an increase in both in- and out-strength over 

the control group (Figure 14).  This result is both widespread and 

monotonic, with most regions displaying increased connectivity in 

both directions and in all patient groups (Table 5).  This suggests 

that schizophrenia, ADHD, and bipolar disorder may be 

characterized by overconnectivity across a large part of the cortex 

and subcortical regions.  This, in turn, may contribute to the 

elevated levels of entropy found in patients (Figure 12). 
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Figure 13 | Results from in- and out-strength analysis of controls vs. patient groups.  After 

familywise error correction, all six pairwise combinations display significant node-level 

differences in strength in both directions.  Control strengths are lower than patient 

strengths across conditions, and this difference remains significant for most regions even 

after multiple comparison correction.  It appears that schizophrenia, bipolar disorder, and 

ADHD may be characterized by overconnectivity across much of the brain, which may be 

a contributing factor to the elevated disorder in patients. 
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Inter-disorder strength comparisons are sparser, but still notable.  

Schizophrenia patients displays significantly lower in- and out-

strength than either bipolar or ADHD patients in most regions, with 

the exceptions of the right fusiform gyrus (in-strength, bipolar) and 

the right pars orbitalis (out-strength, bipolar).  This suggests that 

lowered connectivity may differentiate schizophrenia from bipolar 

or ADHD patients, although the sparsity of these results should be 

considered before treating such findings as definitive.  As for 

bipolar disorder, the left parahippocampus, left putamen, and right 

parahippocampus display elevated in-strength versus ADHD 

patients, but this is reversed in the right fusiform gyrus.  The 

general trend reverses in the outgoing direction, with ADHD 

expressing higher out-strength in the right pars orbitalis and right 

middle temporal gyrus compared to bipolar disorder.  Only the right 

caudal middle frontal gyrus displays higher out-strength in bipolar 

disorder than in ADHD.  Strength analysis thus suggests that all 

three psychiatric conditions examined in this study display dramatic 

hyperconnectivity compared to healthy controls, while 

schizophrenia appears to have the least elevated connectivity 

amongst patient groups.  Complete lists of significant regions and 

their mean strength per condition may be found in Supplementary 

Table I and II. 

 



 

 88 

 
Figure 14 | Results from in- and out-strength analysis of patient groups vs. other patient 

groups.  Results are much sparser between patient groups than between patients and 

controls, but trends remain apparent.  For instance, all but one result show schizophrenia 

with reduced strength values compared to ADHD or bipolar disorder.  Comparing bipolar 

disorder to ADHD, on the other hand, shows that bipolar disorder generally has elevated 

in-strengths but lower out-strengths.  A rough hierarchy is thus apparent, in which bipolar 

disorder and ADHD are highly overconnected and schizophrenia slightly overconnected 

compared to controls.  It is intriguing to note that bipolar disorder is also the only 

disorder to display elevated entropy in two LEICA dimensions rather than only one. 
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Table 5 | Number of Significant Regions per Comparison 

 in-strength out-strength 
Controls vs. schizophrenia 52 52 
Controls vs. bipolar 61 61 
Controls vs. ADHD 59 59 
Schizophrenia vs. bipolar 4 4 
Schizophrenia vs. ADHD 1 1 
Bipolar vs. ADHD 4 4 

 

 

6.4.3 Network-Based Statistic 

In order to hypothesize on causes for the observed alterations in 

Shannon entropy, a networked Hopf model (Deco, Kringelbach, et 

al. 2017) was fit to each subject’s entropy profile.  While previous 

studies have examined the working point 𝛼 of networked Hopf 

oscillators, these two studies instead sought to find which 

connectivity changes might cause the observed functional 

alterations.  After estimating subject-level effective connectivity 

profiles from these models, we applied the network-based statistic 

(NBS) (Zalesky, Fornito, and Bullmore 2010) to determine which, 

if any, connections display significant group-level alterations. 

 

Results from the network-based statistic depend upon the t-statistic 

chosen at the thresholding step.  Unfortunately, no data-driven 

method for determining an optimal threshold has yet been 

developed, nor has such a threshold been established 

experimentally.  As such, it must be treated as a free parameter. 

 

6.4.3.1 Study I: Obsessive-Compulsive Disorder 

Obsessive-compulsive connectivity estimates underwent NBS 

analysis at 𝑡-thresholds of 4.0, 4.5, 5.0, 5.5, and 6.0.  A 𝑡-threshold 

of 4.5 reveals a single large hyperconnected component and eleven 

small hypoconnected components in the patient population (Figure 

15).  These components consist of 

1. Left superior frontal gyrus (orbital), left superior frontal 

gyrus (medial orbital), and left lenticular nucleus (putamen) 
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2. Left middle frontal gyrus and left caudate nucleus 

3. Left Rolandic operculum, left insula, left supramarginal 

gyrus, left superior temporal gyrus, left middle temporal 

gyrus, and left temporal pole (middle temporal gyrus) 

4. Left middle occipital gyrus, left superior frontal gyrus 

(medial), left middle occipital gyrus, left inferior occipital 

gyrus, left and right precuneus, left superior parietal gyrus, 

and right superior occipital gyrus 

5. Left calcarine fissure, left fusiform gyrus, left cuneus, left 

and right posterior cingulate gyrus, and left superior 

occipital gyrus 

6. Right temporal pole (superior temporal gyrus), right inferior 

temporal gyrus, and right middle frontal gyrus (orbital) 

7. Right middle temporal gyrus and right inferior frontal gyrus 

(orbital) 

8. Right supplementary motor area and right paracentral lobule 

9. Right amygdala and right fusiform gyrus 

10. Right inferior frontal gyrus (triangular) and right middle 

frontal gyrus 

11. Right inferior frontal gyrus (opercular) and right precentral 

gyrus 

Other settings of the t-statistic threshold produce slightly different 

results.  For example, raising the threshold to t = 5 causes the 

hyperconnected network to fragment into a single large component 

and two small ones.  Similarly, one could expect that 

hypoconnected components would consolidate into fewer, larger 

networks at lower thresholds. 
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Figure 15 | Results from the network-based statistic.  A t-statistic threshold of 4.5 returns 

twelve connected components (C), visualized as a connectivity matrix (A) and in cortical 

space (B). Cyan links indicate a connection which is stronger in OCD patients than in 

controls, while magenta links indicate the converse.  One connected component including 

87 of the 90 cortical nodes displays increased strength in OCD, suggesting widespread 

cortical hyperconnectivity.  The eleven control-biased components consist of between one 

to six links, with large components clustering in small areas.  Many regions displaying 

depressed connectivity in patients are involved in top-down control and impulse inhibition.  

OCD may thus be characterized by localized disruptions in top-down inhibitory activity, 

which may explain the widespread hyperconnectivity observed in patients. 
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6.4.3.2 Study II: Multiple Disorders 

As with the obsessive-compulsive dataset, the t-statistic threshold is 

treated as a free parameter with the thresholds of 3.0, 3.5, 4.0, 4.5, 

and 5.0. being tested.  Significant alterations were found in all three 

patient groups relative to controls.  Notably, most of these 

alterations suggest hyperconnectivity in patients.  Of the three 

conditions examined, only ADHD displays any hypoconnected 

pathways, and these are substantially outnumbered by 

hyperconnected tracts.  Hyperconnectivity thus seems to be a 

characteristic trait of all the disorders examined here.  The results 

also suggest a weak hierarchy amongst the disorders, with ADHD 

displaying relatively weak connections and bipolar disorder 

relatively strong ones. 

 

 
Figure 16 | Results from the network-based statistic comparing controls vs. schizophrenia 

patients.  A t-statistic threshold of t = 3.0 reveals a single, large, fully connected network 

of heightened connectivity in patients.  Raising the threshold to t = 3.5 splits this large 

component into three smaller subcomponents and raising it to t = 4.0 returns four 

significant interregional links. This figure visualizes the results as t = 3.0 via a 

connectivity matrix (A) and in cortical space (B).  Patients display hyperconnectivity at all 

examined thresholds. 
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Figure 17 | Results from the network-based statistic comparing controls vs. bipolar 

patients.  A t-statistic threshold of t = 3.0 reveals two connected networks.  The first of 

these components displays lower connectivity in patients compared to controls.  The other, 

substantially larger component displays heightened connectivity in patients.  This 

hyperconnected component encompasses the majority of the regions examined in this 

study.  Raising the threshold to t = 3.5 splits this large hyperconnected component into 

two smaller subcomponents. while raising it to t = 4.0 produces fourteen small 

hyperconnected components.  Of these fourteen components, ten consist of only a single 

link; the remainder vary in size from three to five links.  This figure visualizes the results of 

t = 3.0 as a connectivity matrix (A), in cortical space (B), and as individual components 

(C). 
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Figure 18 | Results from the network-based statistic comparing controls vs. ADHD 

patients.  A t-statistic threshold of t = 3.0 reveals a single, large, fully connected network 

of heightened connectivity in patients.  Raising the threshold to t = 3.5 splits this large 

component into six smaller subcomponents.  Intriguingly, a threshold of t = 4.0 returns ten 

significant components, of which only nine are stronger in patients than in controls; the 

final link displays the opposite trend, i.e. a decrease in patient connectivity relative to 

controls.  This hypoconnected component only appears at a threshold of t = 4.0 and 

consists of only a single link.  Other thresholds reveal only hyperconnected components, 

with all components at thresholds of t = 3.0 and t = 3.5 consisting of multiple links. 
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Figure 19 | Results from the network-based statistic comparing bipolar vs. ADHD 

patients.  A t-statistic threshold of t = 3.5 returns two significant components (C), 

visualized together as a connectivity matrix (A) and in cortical space (B).  Of these two 

components, one is stronger in bipolar patients than in ADHD patients, with the other 

being stronger in ADHD than in bipolar patients.  All components consist of two links, 

none of which are interhemispheric. 

Raising the threshold to t = 4.0 substantially changes the resulting connectivity map.  This 

threshold reveals three links, two of which are stronger in bipolar patients than in ADHD 

patients.  Surprisingly, only one of these three links is shared with the components 

revealed at t = 3.5; the other two are novel.  This discrepancy is presumably an artifact of 

the alterations in probability distributions that these two thresholds generate. 
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Figure 20 | Results from the network-based statistic comparing bipolar vs. schizophrenia 

patients.  A t-statistic threshold of t = 3.0 reveals two hyperconnected components in 

bipolar patients (C), visualized together as a connectivity matrix (A) and in cortical space 

(B).  Raising the threshold to t = 3.5 unsurprisingly prunes, but does not eliminate, these 

components.  However, it also causes a third component, also hyperconnected in bipolar 

patients, to appear in the left ventral cortex.  This discrepancy is presumably an artifact of 

the alterations in probability distributions that these two thresholds generate.  This 

additional component consists of only two links, one of which survives a threshold of t = 
4.0. 
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Figure 21 | Results from the network-based statistic comparing schizophrenia vs. ADHD 

patients.  A t-statistic threshold of 4.0 returns one significant link (C), visualized as a 

connectivity matrix (A) and in cortical space (B).  This link is stronger in schizophrenia 

patients than in ADHD patients.  No other threshold reveals any difference between these 

two conditions. 

 

6.5 Conclusions 

The networked Hopf model appears to have successfully recovered 

meaningful effective connectivity alterations in all examined 

conditions.  To this author’s knowledge, this is the first time the 

Hopf model has been employed to estimate connectivity directly; 

previous studies from the CNS group have optimized alternative 

parameters, most notably the bifurcation parameter 𝛼, to determine 

the whether the brain’s working point operated in a critical, 

subcritical, or supercritical space.  The success of these studies may 

encourage further use of the Hopf model in connectivity-based 

research, as its relative simplicity makes implementation 

straightforward. 

 

Hyperexcitability has been reported in recent studies of obsessive-

compulsive disorder (Cano et al. 2018), so the finding of a broad 

network of hyperconnectivity in this disorder is not overly 

surprising.  Indeed, such hyperexcitability may underly the 



 

 98 

increased entropy reported in the previous section; increased 

sensitivity to inputs may cause more erratic network behavior.  In 

addition, some of the hypoconnected links appear to affect 

regulatory regions which normally mediate cortical activity.  For 

example, the palladium is known to inhibit output from the striatum 

to the thalamus and subthalamus; altered inhibitory output from the 

external globus palladium to the subthalamus may cause the 

thalamic and cortical hyperexcitability reported in some OCD 

patients.  Other affected regions include the Rolandic operculum, 

which has been linked to the impulsivity of autogenous obsessions 

and compulsions in some patients (Subirà et al. 2013; Alonso et al. 

2013) and the premonitory obsessions of some tics and sensory 

phenomena (Wang et al. 2011) that many OCD patients display 

(Rosario et al. 2009). 

 

The recovery of hyperconnectivity in all patient groups is somewhat 

surprising.  Schizophrenia, in particular, has long been believed to 

be characterized by long-range hypoconnectivity (Friston et al. 

2016).  Recent studies have begun to contest this hypothesis (Rolls 

et al. 2020), suggesting that schizophrenia patients may display a 

mixture of hyper- and hypoconnectivity in long-range connections.  

Nonetheless, the fact that all significant links in schizophrenia 

patients are significantly stronger than in controls is, to this author’s 

knowledge, unusual.  Lowering the t-threshold of the network-based 

statistic may reveal weakened connections in schizophrenia and 

other disorders; however, the universal elevation of in- and out-

strengths in schizophrenia patients makes this author suspect 

otherwise.  Unfortunately, the author does not feel qualified to 

speculate on reasons for this apparent contradiction. 

 

The relatively poor fit of patient data in the obsessive-compulsive 

dataset is worthy of further examination.  The Hopf model’s 

performance on the second dataset suggests that model suitability is 

not the problem; rather, some other factor prevents an adequate 

capture of the data’s dynamics.  The larger feature space of the 

AAL parcellation—90 regions compared to the Desikan-Killany’s 

68—may make finding an optimal solution more difficult.  

Alternatively, the decision to run independent component analysis 

across both patients and controls may have limited the specificity of 

the resultant components; however, it is unclear why this would 

affect patients more than controls, as both groups are very nearly 
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the same size.  The causes for this poor performance and the 

discrepancy between datasets may warrant investigation in future 

studies. 
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7 Discussion & Future Steps 

7.1 General Review 

Overall, during this thesis, the author has demonstrated that a 

neuroimaging signal’s entropy is a feasible and sensitive biomarker 

for several common psychiatric disorders.  All disorders examined 

thus far display elevated entropy compared to controls, although it 

remains to be seen whether this trend holds for others.  That four 

disorders spanning multiple behavioral families all display a similar 

global trend, albeit within different dimensions, is somewhat 

surprising.  It is hardly beyond the realm of possibility, but 

verification via alternative datasets and methodologies is necessary 

before drawing firm conclusions. 

 

The use of a critical Hopf bifurcation as a basis for model-based 

effective connectivity is, to the author’s knowledge, entirely novel.  

While Hopf bifurcations have been used to explore the criticality 

and timescale of the human brain (Deco, Cruzat Grand, and 

Kringelbach 2019), attempting to predict the direction and 

magnitude of activity flow in the brain is a novel application.  This 

is perhaps unsurprising; the Hopf bifurcation is itself a relatively 

new addition to the field, seeing its full debut only five years before 

the submission of this work.  Nonetheless, the fact that a relatively 

simple and abstract model can recover functionally plausible 

network connectivity further suggests that the dependence of 

macroscale dynamics on microscale activity is not straightforward. 

 

That all four disorders display elevated entropy and 

hyperconnectivity indicates that these may be common causes for a 

wide range of psychiatric symptoms.  Previous studies on 

obsessive-compulsive disorder have produced contradictory 

findings on connectivity and functional complexity, while 

schizophrenia has long been considered an underperformance of 

long-range connectivity and global integration.  Reports are 

contradictory, however, and none utilize the methodology or 

parcellations applied in these studies.  Further investigation is 

required to comment on these findings. 
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7.2 Review: Obsessive-Compulsive Disorder 

7.2.1 The Phenomenology of Obsessive-Compulsive Disorder 

The discovery of elevated entropy across all four investigated 

disorders raises intriguing questions regarding dynamics and 

information flow in psychiatric disorders.  Thisf finding is of 

particular note in obsessive-compulsive disorder, as previous 

studies report decreased entropy in obsessive-compulsive patients 

(Aydin et al. 2015).  Analysis of networks of cortical and 

subcortical nodes in the cortico-striatal-thalamo-cortical (CSTC) 

circuit, on the other hand, have found increased entropy in 

adolescents with OCD (Sen et al. 2020), and more general 

desynchronization has been demonstrated elsewhere (Pujol et al. 

2019).  How this apparent increase in complexity—which, in 

information-theoretic terms, is equivalent to randomness—maps to 

the well-established tendency of obsessive-compulsive patients to 

become “stuck” in stereotyped, repetitive patterns will be an 

interesting topic for future research.  It may be that these 

stereotyped patterns represent a coping mechanism, intended to 

reduce the randomness of brain activity by imposing control of 

inputs and responses. 

 

Such a hypothesis receives some support in the fact that the 

dimension found to increase patient entropy maps to two 

anticorrelated networks which roughly separate prefrontal-parietal 

regions vs. subcortical-temporal nodes.  Prefrontal and parietal 

regions exert a top-down inhibitory control on striatal and limbic 

regions, which has been related to emotion regulation and cognitive 

control capacities (Ochsner, Silvers, and Buhle 2012; Etkin, Büchel, 

and Gross 2015).  Alterations in such interregional interactions have 

been associated with mood and anxiety disorders, including OCD 

(Etkin and Wager 2007; Picó-Pérez et al. 2017).  Decreased order 

within this network may disrupt of top-down inhibition and thus 

affect emotion regulation and cognitive control, both of which are 

affected in the context of CSTC dysfunction in OCD (van den 

Heuvel et al. 2016).  Stereotyped, repetitive behaviors—i.e. 

compulsions—may thus act as a compensatory mechanism by 

which the brain attempts to impose order on its surroundings. 
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Interestingly, the affected dimension also contains several occipital 

nodes. Although the occipital cortex have not typically been 

considered a core part of neurobiological models of OCD, previous 

research has shown that such regions and their projections to limbic 

cortices may play an important role in the induction of increased 

anxiety levels in patients with contamination obsessions induced by 

actual or mental images (i.e., intrusive thoughts) of dirt (Göttlich et 

al. 2014; Moreira et al. 2017).  In future research, it may be worth 

examining whether the patient’s entropic alterations along this 

dimension correlates with anxiety or compulsive behavior, which 

could be as measured by e.g. the Hamilton Anxiety Rating Scale 

(HAM-A) (HAMILTON 1959) or the Yale-Brown Obsessive-

Compulsive Scale (Y-BOCS) (Goodman et al. 1989). 

 

7.2.2 Effective Connectivity in Obsessive-Compulsive Disorder 

The networked Hopf model appears to have successfully recovered 

meaningful effective connectivity alterations in all examined 

conditions.  To this author’s knowledge, this is the first time the 

Hopf model has been employed to estimate connectivity directly; 

previous studies from the CNS group have optimized alternative 

parameters, most notably the bifurcation parameter 𝛼, to determine 

the whether the brain’s working point operated in a critical, 

subcritical, or supercritical space.  The success of these studies may 

encourage further use of the Hopf model in connectivity-based 

research, as its relative simplicity makes implementation 

straightforward. 

 

Hyperexcitability has been reported in recent studies of obsessive-

compulsive disorder (Cano et al. 2018), so the finding of a broad 

network of hyperconnectivity in this disorder is not overly 

surprising.  Indeed, such hyperexcitability may underly the 

increased entropy reported in the previous section; increased 

sensitivity to inputs may cause more erratic network behavior.  In 

addition, some of the hypoconnected links appear to affect 

regulatory regions which normally mediate cortical activity.  For 

example, the palladium is known to inhibit output from the striatum 

to the thalamus and subthalamus; altered inhibitory output from the 

external globus palladium to the subthalamus may cause the 

thalamic and cortical hyperexcitability reported in some OCD 

patients.  Other affected regions include the Rolandic operculum, 
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which has been linked to the impulsivity of autogenous obsessions 

and compulsions in some patients (Subirà et al. 2013; Alonso et al. 

2013) and the premonitory obsessions of some tics and sensory 

phenomena (Wang et al. 2011) that many OCD patients display 

(Rosario et al. 2009). 

 

The relatively poor fit of patient data in the obsessive-compulsive 

dataset is worthy of further examination.  The Hopf model’s 

performance on the second dataset suggests that model suitability is 

not the problem; rather, some other factor prevents an adequate 

capture of the data’s dynamics.  The larger feature space of the 

AAL parcellation—90 regions compared to the Desikan-Killany’s 

68—may make finding an optimal solution more difficult.  

Alternatively, the decision to run independent component analysis 

across both patients and controls may have limited the specificity of 

the resultant components; however, it is unclear why this would 

affect patients more than controls, as both groups are very nearly 

the same size.  The causes for this poor performance and the 

discrepancy between datasets may warrant investigation in future 

studies. 

 

 

7.3 Review: Schizophrenia, Bipolar Disorder (Type 
I), and ADHD 

7.3.1 Phenomenology 

The author is unsure what to make of the elevated entropy across 

patient groups.  Given the alterations concentration in separate 

components per condition, it is plausible, but nonetheless surprises 

him.  He does not feel qualified to comment on the 

phenomenological plausibility of such a finding.  That LEICA is 

able to separate all disorders from healthy controls, and to a limited 

degree from one another, supports the framework’s sensitivity to 

functional alterations. 

 

7.3.2 Connectivity 

The recovery of hyperconnectivity in all patient groups is somewhat 

surprising.  Schizophrenia, in particular, has long been believed to 

be characterized by long-range hypoconnectivity (Friston et al. 
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2016).  Recent studies have begun to contest this hypothesis (Rolls 

et al. 2020), suggesting that schizophrenia patients may display a 

mixture of hyper- and hypoconnectivity in long-range connections.  

Nonetheless, the fact that all significant links in schizophrenia 

patients are significantly stronger than in controls is, to this author’s 

knowledge, unusual.  Lowering the t-threshold of the network-based 

statistic may reveal weakened connections in schizophrenia and 

other disorders; however, the universal elevation of in- and out-

strengths in schizophrenia patients makes this author suspect 

otherwise.  Unfortunately, the author does not feel qualified to 

speculate on reasons for this apparent contradiction, and he is still 

awaiting input from a collaborator with more experience in 

neuroanatomy and regional function. 

 

7.4 General Comments 

The discovery of elevated entropy and connectivity across all four 

investigated disorders raises intriguing questions regarding 

dynamics and information flow in psychiatric disorders.  While the 

author is not an academic expert in any single psychiatric disease, 

much less all four examined in this thesis, the universality of these 

findings should be confirmed on other datasets.  The effect of 

medication must also be considered, as all patients in this study had 

been on stable medications for multiple weeks at time of scans. 

 

 

7.5 Limitations 

Three cautionary notes must be added.  First, the LEICA method is, 

by necessity, agnostic as to the true orientation of its communities.  

Since eigendecomposition and ICA can determine only the 

orientation of communities relative to each other, not relative to the 

data itself, LEICA cannot determine which community is “positive” 

or “negative” in any absolute sense.  This may be established by a 

parallel analysis observing which community is more or less active 

at any given time; such an analysis is unnecessary for the present 

purposes. 
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Second, the Hopf model should not be considered predictive at the 

level of individual links.  It has been able to replicate known 

phenomena and mechanisms in past studies (Jobst et al. 2017) and 

brain-level results, e.g. the widespread cortical hyperconnectivity in 

obsessive-compulsive patients, appear robust.  However, a Hopf 

bifurcation remains an idealized simplification of neural dynamics.  

To predict neurobiological mechanisms would require both more 

detailed data and a more sophisticated model, e.g. a model 

incorporating transmission delays and neuromodulation.  Link-level 

model results in this paper should thus be considered starting points 

for future research rather than forming hard conclusions themselves. 

 

Finally, while the network-based statistic (NBS) is a well-

established method, its results remain dependent on the choice of t-
statistic threshold employed.  This does not affect the power of the 

results, only the effect size of the results reported.  Unfortunately, 

no data-driven method has yet been established for determining an 

appropriate threshold.  However, studying which connections 

survive the different thresholds allows us to partially quantify the 

group-level effect size. 

 

7.6 Future Steps 

7.6.1 Biomarker Research 

Beyond the societal and medical costs of such anxiety and 

compulsive disorders, I am personally aware of the high cost these 

disorders place upon the families and friends of the afflicted.  They 

do not make for pleasant memories.  Better treatment and screening 

are desperately needed to alleviate the effects of such disorders, and 

to detect them in the general population.  Psychiatric disorders are 

notoriously underreported and underdiagnosed due to social stigma 

or simple ignorance.  The detection of robust, reliable biomarkers 

for such diseases would go far towards reducing that 

underdiagnosis. 

 

To that end, I hope to continue researching biomarkers and possible 

treatment targets for such disorders in the future.  Through Prof. 

Carles Soriano-Mas, I have discovered several efforts in the 

psychiatric community to thoroughly map the functional and 
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structural features of anxiety and compulsion-related disorders, 

particularly obsessive-compulsive disorder and anorexia nerviosa.  

Regrettably, I did not discover these efforts in time to incorporate 

them into my doctoral studies.  However, I do hope to become 

involved in such work in the future.  A potential start to such work 

might involve a translational role, in which LEICA or other 

methods in the Deco group are applied to the pooled datasets which 

Prof. Soriano-Mas and collaborators have been compiling. 

 

The explosion of the neuroimaging field has largely extinguished 

hopes that a single biomarker will be adequate to define a single 

disorder (Fullana et al. 2020).  Instead, research appears to be 

moving towards the concept of a biomarker space which represents 

individual patients as vectors of functional and structural features.  

Such a space, with the exponential increase in information that high 

dimensionality provides, may allow the delineation of patients into 

behaviorally and medically distinct groups.  The search for this 

space has been a topic of research for a considerable period of time, 

but the past decade has demonstrated that some methods can detect 

behaviorally distinct groups within individual DSM-IV diagnoses 

(Brodersen et al. 2011; 2014).  While isolated for the moment, this 

finding indicates that such spaces do exist, although to find them 

requires prudent feature selection. 

 

It would be intriguing to explore which, if any, functional and 

structural features correlate or otherwise predict the behavioral 

dimensions hypothesized to describe psychiatric symptoms 

(Robbins et al. 2012).  Some evidence already suggests that this is 

the case (Xia et al. 2018).  While not as immediately clinically 

useful as a simple test, such a space does have the potential to 

meaningfully link observed structural and functional features to 

behavior, a link which has historically been murky at best.  Such a 

map might prove more informative than a simple test, as would 

directly point to the features which cause behavioral and emotional 

distress.  From such a position, estimating the functional alterations 

which cause these symptoms is (conceptually) a simple step, and 

predicting treatment is a natural next step from such estimates.  

With this in mind, the author hopes to begin surveying such a map 

between structural, functional, and behavioral features in disorders 

characterized by anxiety, obsessions, and compulsions. 
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7.6.2 Consolidation of Resting-State Networks 

LEICA is in further need of validation.  While it has proven able to 

find group-level, all studies in this thesis have assumed that patients 

and controls possess identical components.  This assumption has not 

yet been validated.  It is plausible that psychiatric disease so alters 

the patients’ dynamic functional connectivity that patients and 

controls possess structurally distinct components.  The implications 

of such a finding are beyond the scope of this work (the author has, 

albeit late, learned to take research one step at a time), yet might 

provide useful insights towards screening or treatment of the 

disorders in question. 

 

Additional methods for choosing the number of components are 

also worthy of consideration.  A recent study exploring the efficacy 

of various clustering validity indices indicates that not all such 

indices are made equal (Vergara et al. 2020).  While the Marčenko-

Pasteur method is theoretically sound, its efficacy has not been 

directly compared to other metrics.  Such a study might further 

validate the LEiDA framework, LEICA included, as a useful tool in 

the search for functional biomarkers in psychiatric disease.  These 

are projects to pursue in the immediate future and will require 

minimal adjustments to the current pipeline. 

 

In the less immediate future, the author believes that the field of 

resting-state networks needs consolidation.  To his knowledge, few 

studies have attempted to compare methods for extracting these 

resting-state networks directly.  Given the sheer number of such 

methods which are now available, this presents the new researcher 

with a difficult choice of which method to employ for a given study.  

It further confuses the search for reliable biomarkers, as the plethora 

of methods obscures which structural or dynamic functional 

differences are robust and which are particular to a specific 

methodology.  This problem appears to be gaining attention in the 

scientific community, as OHBM has recently announced a project 

aimed at producing a consistent taxonomy of static and dynamic 

resting-state networks (Uddin et al. 2022).  Such a consistent 

taxonomy, along with the documentation and ratings of methods 

that the effort will necessitate, may prove a great boon to both 
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functional neuroimaging in general and the mapping of behavioral 

dimensions in particular. 

 

 

7.6.3 Tracing Activity Propagation 

The widespread alterations in cortical connectivity likely affect 

activity propagation and organization.  While such alterations were 

outside the scope of this study, they are of great interest to the 

understanding of OCD’s functionality.  Leveraging established 

network analyses frameworks, such as community detection, node 

centrality measures, or mappings of node to function, may provide 

further insights into cortical activity adaptations OCD, and 

potentially in related disorders such as anxiety and depression.  

Several frameworks for such studies have been proposed in the 

Deco group (Klimm et al. 2014; Gilson et al. 2019; 2018); I hope to 

eventually begin applying them to psychiatric disease directly. 

 

 

7.7 Final Thoughts 

Initial results from this thesis suggest that the LEiDA framework, 

particularly its LEICA subform, is highly sensitive to the functional 

alterations representative of psychiatric disease.  The ability to 

distinguish which components display altered functional complexity 

surpassed initial expectations for the framework, particularly given 

the high number of components and the resultant need for multiple 

comparison correction.  In addition, the discovery that a simple 

Hopf bifurcation model is able to recover substantial alterations in 

effective connectivity adds further evidence that global dynamics 

can be abstracted from microscale mechanisms, an approach already 

common in statistical physics.  Nonetheless, the imperfect matches 

between simulated and empirical dynamics suggest that further 

improvement is possible, and the entire framework should be 

further tested for robustness and sensitivity on both the same and 

other datasets.  Comparisons with alternative methods should also 

be considered in order to confirm these results. 
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