

C h a p t e r 5

V. PROOF OF CONCEPTS IMPLEMENTATION
DESCRIPTION

Section V.1 - Introduction

Hereafter we proceed to the description of the classes implemented to fulfil
the management functionality conceived for the MANBoP architecture. The
implementation description is structured in sections that represent the main
steps taken by the MANBoP instances during its normal behaviour. More
information about the implemented classes is available in the code itself in the
form of Javadoc documentation [SunJAVAa]. This documentation can be
found at [MANBoP].

Nevertheless, before proceeding to the code description we will briefly review
the naming convention followed in the thesis and the Information Model
used.

Section V.2 – Naming Convention

Describing the naming convention followed during the implementation is
helpful to ease the understanding of the code and its structure.

The naming convention followed deals basically with four issues: the
MANBoP packages naming convention, the database directory naming
convention, the Naming Service registration convention and finally the
dynamically installable files naming convention. These four issues are
described in this section.

It is important noting, before proceeding to the naming convention
description, that for classes and attributes we have followed the JAVA
naming recommendations [SunJAVAc].
1st MANBoP packages naming convention

The functionality implemented for the different MANBoP components has
been grouped under the corresponding JAVA package. We have followed a
concrete naming convention to group these functionalities into JAVA
packages and for naming these packages.

In the figure below the equivalent folder structure to the JAVA packages used
in MANBoP is shown.

 211

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

Figure 5 - 1. MANBoP Packages structure

All packages containing the definition of the Information Model Objects are
contained within the ‘es.upc.nmg.MANBoP.IM’ package.

The IMOs containing topological information (e.g. Node, Link) are grouped
under the Topological package. In particular, within the Topological package
we can find the managed topology IMOs grouped under the MgdTop
package.

Those IMOs containing manager information, as the ManagerInstance object
and the Device object, are grouped under the ManagerInstance package. This
package also contains all IMOs representing components dynamically
installed in the system under the Components package and the IMOs with
underlying devices information are grouped under the UndInt package.

 212

Section V.2 – Naming convention

Finally, those objects containing user information are stored under the User
package. Inside the User package, the Policy package contains all policy-
related user information.

All packages containing MANBoP functionality are contained within the
‘es.upc.nmg.MANBoP’ package.

Inside this package, all classes implementing functionality from a particular
MANBoP component pertain to the same package, which is named with the
component name. These are AuthorisationCheckComponent, Database,
DmMs, PolicyEditor PolicyConsumerManager, PolicyConflictCheck,
TEManager, SigDemux, MonitoringMeter and PolicyConsumer.

The implemented exceptions are used by different MANBoP components.
Hence, the programmed exceptions have been grouped into a separate
package named Exceptions also contained within the ‘es.upc.nmg.MANBoP’
package.

Finally, in addition to the explicit MANBoP functionality some generic
programming utilities, used to speed up the code creation process, have also
been implemented. These utilities have been grouped under a package named
‘org.corba.utils’. Some of these utilities created are: the BasicObject class, which
offers simple methods to realise the most common CORBA-related tasks,
and the XPolicySender class, which simulates a higher-level application that
introduces a policy into a MANBoP instance. More information related with
this helping implemented tools can be found at Appendix D.

Also contained inside the ‘org.corba.utils’ package is the CIA package. The CIA
package contains all functionality related with the Code Installing Application
utility developed as complement to the MANBoP system.
2nd Database directory naming convention

All Information Model Objects implemented in MANBoP are stored within
the Database. The Database implementation chosen is the simplest one,
based on serialising the objects into files saved at a particular path.

These directories and file names should follow a naming convention. In this
section, we are going to describe this convention.

The root of the database directory is on the ($MANBoP)21/Database/Root
path. Under this directory, the whole Information Model is stored following
the hierarchy shown in the figure below.

21 ($MANBoP) is a local environment variable pointing to the directory where the MANBoP package

files are located. This variable is obtained at bootstrap from the manbop.props file.

 213

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

Figure 5 - 2. Database directory structure

As can be seen in the figure, under the Root directory there is the
ManagerInstance directory and directories numbered starting from zero. The
Manager instance directory contains information about the MANBoP
instances running in this machine. In particular, the ManagerInstance objects
for all MANBoP instances are stored in this directory.

The numbered directories contain information related with each MANBoP
instance running in this machine. Indeed, the number designating each
directory stands for the MANBoP instance identifier.

One of the directories storing MANBoP instance-dependent information is
the ManagedTopology directory. This directory contains the
NetworkElement directory from which a number of directories containing
managed nodes information hang. In particular, outgoing link information
(under the ‘Links’ subdirectory), as well as total and used resources. These
node directories are named as: ‘Node_<node_id>’. The node_id is a string with
the IP address of the node. This simplifies the process of obtaining node
information during policy processing.

Inside the NetworkElement directory, the Node and Device objects are
stored. Node objects are stored in files named ‘<node_id>’ and Device objects
in files named ‘<device_id>.iface’.
Inside each node directory, we can find NResources and UNResources
objects for that node. They are stored in files named, respectively,
‘<node_id>_reso.out’ and ‘<node_id>_ureso.out’.

 214

Section V.2 – Naming convention

Finally, inside the Links directory the outgoing Link objects for that node are
stored in files named: ‘Link_<link_id>.out’.
Another directory hanging from the numbered directories containing
MANBoP instance-dependent information is the Users directory. This
directory contains user-related information. More specifically, it stores User
Information Model Objects and contains directories with other user-related
information. The User IMOs are named with the username of the user they
are representing, while the user directories have a ’_dir’ string added to the
username (i.e. ‘<username>_dir’).
Each ‘<username>_dir’ directory might contain a Policies directory containing
information related with policies introduced by this user and a Schemas
directory with the XML Schema files and Schema IMOs named as
<domainId>. In particular, this Policies directory contains some <domainId>
directories and might also contain a Groups directory.

The <domainId> directories contain policy-related IMOs pertaining to the
policy functional domain after which the directory is named. In particular, the
Information Model Objects that might be stored in these directories are the
policy IMO itself, the XML policy serialised and the PRI (Policy Resource
Information) Information Model Object. These IMOs are named respectively
‘<policyconditions><policy rule name>_<sequence number>22.jav’, and the same with
the extensions ‘.xml’ and ‘.pri’. <policyconditions> are the names of all simple
conditions in the policy ordered alphabetically. This information is included in
the name to ease the policy conflict check class (by finding policies with
similar conditions you find some potentially conflicting policies).

The Groups directory might contain a list of numbered directories. The
number of each directory stands for the policy group number of the policy
group whose information is contained within. Each one of these numbered
directories contains: a Group Information Model Object, the policyId IMO,
the credential IMO and policies (both the Policy Information Model and its
XML counterpart). The policyId, credential and policies IMO are stored
under names that stand for its position identifier within the policy group, they
just differ in the extensions, which are respectively: ‘.pid’, ‘.cred’, ‘.jav’ and ‘.xml’.
The position identifier notion will be explored later on the Information
Model section. The Group IMO is stored with the same name as the
directory where it is contained (i.e. the policy group number).

Finally, the last directory hanging from the numbered directories containing
MANBoP instance-dependent information is the DynComponents directory.
This directory might contain a PCC directory, PCs directory and a MMs
directory. Each of these directories will contain IMOs representing the
dynamic components of each class installed within the system. In particular,

22 The meaning of these fields is described in more detail in the Information Model chapter (i.e. in the

Policy information model description).

 215

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

the PCC directory might contain a PCC IMO named as ‘pcc’. The PCs
directory might have many directories named ‘<nodeSetId>’ each of them
containing PC IMOs named ‘<PCId>’ and representing the PC components
implementing functionality for that nodeSet that have been installed within
the system. In a similar way, the MMs directory might also contain many
directories named ‘<nodeSetId>’ each of them containing MM IMOs named
‘<MMId>’ and representing MM components implementing functionality for
that nodeSet that have been installed within the system.
3rd Naming Service registration naming convention

All MANBoP components are started as CORBA components and registered
in the Naming Service. Hence, they should follow a particular naming
convention so that they can be easily registered and retrieved from the
Naming Service. Furthermore, since different MANBoP instances might be
using the same Naming Service we should define a naming convention to
avoid name clashes between the same components at different instances.

All classes that form a MANBoP component and that offer one of the
component interfaces must be registered in the Naming Service. They are
registered following a four-field naming convention as:

 ‘<host_addr>_<MANBoPInstanceId>_<component_acronym>_<class_name>’
The first part of the naming convention is: <host_addr>. This part identifies
the machine where the current MANBoP system is running by its IP address.

The second field is <MANBoPInstanceId>. It is used to distinguish between
components from different MANBoP instances running in the same host.
This field contains the identifier of the current MANBoP instance. This
identifier is stored as a public static field of the PCMCoreImpl class. The
value of this field is obtained at bootstrap by the DBCoreImpl class based on
the number of ManagerInstance objects found in the database. Since there is
one ManagerInstance object per MANBoP instance, the new MANBoP
instance identifier is just the number of ManagerInstance objects stored plus
one.

The third field is the component acronym that identifies the component to
which the registered object pertains. The acronyms used are: PCM for the
PolicyConsumerManager, ACC for the Authorisation Check Component, SD
for the SigDemux component, TEM for the TEManager, DmMs for the
Decision-making Monitoring system, PE for the PolicyEditor, DB for the
Database, PC for the Policy Consumers, MM for the Monitoring Meters and
PCC for the PolicyConflictCheck component.

The last field is the class name whose instance is being registered in the
Naming Service.

 216

Section V.2 – Naming convention

An exception of the above-described rule applies to the dynamically installed
components, in particular to the PC and MM components. These
components are registered in the Naming Service as follows:

‘<host_addr>_<MANBoPInstanceId>_<component_acronym>_<class_name>_<no
deSetId>_<codeId>’
The first four elements of the naming convention are exactly those described
for the general rule. The <nodeSetId> field uniquely describes the nodeSet
being managed by this PC or MM. The <nodeSetId> field is directly obtained
from the UndInt file (see appendix B) at system bootstrap and stored in the
corresponding Device IMOs.

The <codeId> field will be described in more detail in the following sub-
section. It stands for the name of the code file that contains the component
functionality.

Finally, not only MANBoP system components of the current instance are
registered in the Naming Service. Also higher-level entities might be
registered to receive enforcement or monitoring results as well as Code
Installing Application Services.

The higher-level entities might be higher-level Policy Consumers waiting for
the enforcement result of a policy they’ve sent, Monitoring Meters or generic
receivers (which must implement the org.corba.utils.GenRecv interface).
These three types of entities register in the Naming Service following
different naming conventions.

The naming convention for higher-level PCs is:

‘<host_addr>_<MANBoPInstanceId>_HLMANBoP_<hlpcId>’
Where the <hlpcId> field stands for the higher-level Policy Consumer
identifier value. This value is also included in the received XML policies (see
appendix C).

For MMs the naming convention is almost the same:

‘<host_addr>_<MANBoPInstanceId>_HLMANBoP_<hlmmId>’
The <hlmmId> field stands for the higher-level Monitoring Meter identifier.

The naming convention for generic receivers is:

‘<host_addr>_<MANBoPInstanceId>_GenRecv_<number>’
The generic receivers as they register at the Naming Service will be assigned a
sequentially incremented number.

In relation to the Code Installing Application (CIA) services, there is one CIA
client registered in the Naming Service per machine where code
corresponding to any of the MANBoP instances running in this station might
be installed. For example, if we have in this station two MANBoP instances
that might install code, in addition to in the station itself, two and three

 217

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

machines respectively, there will be a total of six CIA clients registered in the
Naming Service: one for the station itself and five for the managed machines.
The naming convention for the registration of these CIA clients is as follows:

‘<host_addr>_CIA_CIAImpl’
Where <host_addr> stands for the IP address of the machine where the CIA
client component (i.e. CIAImpl) is running.
4th Dynamically installable files naming convention

By dynamically installable files we refer here to all those files installed on run-
time to upgrade the MANBoP system with a new component (i.e. PC, MM or
PCC). We must differentiate between two types of such files: .class or .jar files
and XML Schema files. The former are downloaded to add new functionality
(i.e. new policy functional domains) to the system while the latter are
dynamically downloaded to check the rights of a user who is trying to
introduce a policy in the system.

In relation to code files, we need a naming convention both for the name of
the file where the code is included and for the JAVA name of the loaded
classes. The later one is basic for avoid collisions when these classes are
loaded in the JVM.

The naming convention for code files (i.e. .class and .jar files) is as follows:
<code name>_<management topology id>_<interface id>
The name of the code file following this naming convention is called code
identifier (codeId).

The code name is the name of the component to be downloaded as comes
specified in the policy (i.e. PCId or MMId). The name identifier might include
as well the component version.

The management topology identifier is taken from the MANBoP instance
itself. It defines the management level functionality implemented by the
component as well as the expected underlying devices (e.g. network level
functionality over element level managers).

The interface identifier defines the type of underlying devices that the
component can manage and thus defines how the component interacts with
the underlying device. Some possible values of the interface identifier can be,
for example, MANBoP to indicate that the component is implemented to
work over lower-level MANBoP instances, or FAIN to indicate that the
component has been implemented to work over FAIN active nodes. The
interface value can be any but, at least, there must be one component
supporting each type of device included in the managed infrastructure.

In relation to the naming convention for the JAVA name of loaded classes,
this name must have the following structure to avoid collisions:

es.upc.nmg.MANBoP.<Component_name>.Impl.<codeId>_<class_name>

 218

Section V.3 – Information Model

The component name is, obviously, the name of the component of which an
implementation is being dynamically installed (i.e. MonitoringMeter,
PolicyConsumer, PolicyConflictCheck).

The codeId is the one already described in previous paragraphs.

The class name stands for the name of the component class that is being
loaded in the JVM. For example, in the case of the Policy Consumer
component one of its name classes is the MapperImpl class.

The naming convention for XML Schema files depends on the user that tries
to introduce the policy. When the user has full access rights to the policy
functional domain he is trying to access the XML Schema file will be name
simply as: <domainId>.xsd

The domain identifier is simply extracted from the XML Schema name
included in the XML policy. Hence, when the user has full access rights the
XML Schema file assigned to that user will be simply the name of the XML
Schema coming with the XML policy. However, in those cases when the user
does not have full access rights, the user policy must be checked against a
special constraint XML Schema. The name of this schema is stored within a
Schema IMO stored in the DB and bind both with the domain identifier and
the user name.

Section V.3 – Information Model

The Information Model is an essential part of every management system.
MANBoP is not an exception. The Information Model designed for
MANBoP can be divided in two big groups: policies and Information Model
Objects.

The policy part dictates not only the appropriate syntax and semantics of
policies but also the capabilities of those policies in terms of actions that can
be enforced and conditions that should be monitored. Since, MANBoP is a
dynamically extensible architecture the potential number of actions and
conditions supported is infinite. Nevertheless, in this section we will just
describe those that have been implemented for this proof-of-concepts.
Although the Policy objects are as well Information Model Objects their
relevance and importance within the architecture has moved us to explain
them in a separate section.

Information Model Objects (IMOs) provide information to support each
MANBoP system in developing its functionality smoothly. This information
is divided in three main groups, user information, managed topology
information and MANBoP architecture information. While the first two are
used to take proper decisions and realise Call Admission Control (CAC), that
is, to decide whether policy requests can be accepted, the third one is used to
decide on the most adequate components to extend the architecture under a
particular situation.

 219

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

Hereafter, we are going to provide insights to the all Information Model
Objects.
1st Policy Information Model

In MANBoP, policies are expressed and transmitted in XML. The concrete
syntax and basic XML Schemas for this syntax are extensively described in
appendix C. In this section we will just focus in the IMO representing a policy
and the other objects that form it. The Policy IMO is obtained after parsing
the corresponding XML policy into a Java object.

The policy object fields are all domain-independent, so that the system can
parse all policies without the need to understand what they are aimed for. The
processing of domain-dependant parts will be realised by the dynamically
extensible components of the architecture (i.e. Policy Consumers, Monitoring
Meters, etc.). To achieve this, some policy fields are designed in a generic way
to allow any domain-dependent value.

In the following sub-sections, we first explore the Policy Information Model
domain-independent fields and then, we explain some domain-dependant
values we have implemented for this proof-of-concepts.

A Policy Core Information Model

The policy structure used in MANBoP is based on the IETF Policy Core
Information Model [IETF] though simplified by defining as mandatory only
those features essential for policy processing. Hence, the size of policies is
considerably reduced (around five times smaller than the policy size following
the PCIM model) and their processing is simpler.

Conceptually speaking, MANBoP policies can be initially divided into
delegation (or authorisation) policies and obligation policies. Delegation
policies are generally used to specify who is allowed to access to certain
functionality and how it is allowed to do it. They can be further subdivided
into delegation of management responsibility policies and delegation of access
rights policies. The first ones cause, when enforced, the creation of restricted
XML Schemas for a user, so that they can manage their resources using the
operators’ infrastructure in a controlled way. The last ones configure the
security components of managed devices (i.e., active and programmable
routers) so that users are allowed to realise certain actions directly over device
interfaces. As an example, delegation of access rights policies would be used
to specify the node OS functionality accessible to an active service running
inside an execution environment of an active node. Hence, through the
setting of the appropriate delegation of access rights policies a user can be
potentially allowed to manage its resources with its own code. The user
management code either could reside in a separate station or even be installed
in execution environments of active or programmable routers.

 220

Section V.3 – Information Model

Obligation policies specify actions that must be enforced over managed
devices when specific events occur. Obligation policies can also be further
subdivided into many types of policies, such as QoS policies, fault
management policies, monitoring policies, etc.

All MANBoP policies follow the structure shown in Table 5 - 1. The policy
rule consists of eleven fields.
Attribute Name IDL Type Description

schemaId string Name of the schema linked with this policy.
ruleId t_policyruleId Uniquely identifies the policy within the management

infrastructure.
status long Integer containing the policy processing status. Possible

values are: 2 being introduced, 1 not enforced, 0 enforced
roles sequence<string> Identifies the Roles to which the policy applies.
user t_userInfo Contains the identifier of the user that is introducing the

policy in the framework.
validity t_prvp Includes the policy expiration date.
group t_pgroup Used for the correct processing of policy sets.

evaluation t_eval Structure containing information for the correct evaluation
of policy conditions.

act ActEnf Structure containing further information for the correct
processing of policy actions

conds t_crefList The Conditions element includes all policy conditions.
Conditions can be either compound or simple and refer to
an hour of the day, an IP flow, a concrete notification or a
managed device status. The modules needed to monitor
these conditions, if any, are also extracted from the
Conditions element information. This element is optional;
when not included, the framework interprets that the
policy action should be enforced directly.

actions t_arefList The Actions element contains the action type and
parameters as well as information about the module
responsible of enforcing this action. At least one Actions
element is mandatory in all policies but there can be more
that one.

Table 5 - 1. MANBoP policy information fields

First, the schemaId string contains the name of the XML Schema that should
be used to check the correct syntax of the policy as long as the user has full
access to that functional domain. A functional domain is represented in
MANBoP as an XML Schema that determines the allowed fields and field
values. In case the user has restricted access to that functional domain the
schemaId attribute is ignored since a special, restricted, XML Schema will be
used to check user’s policies From the schemaId attribute the policy functional
domain identifier, domainId, is obtained by removing the schema extension
‘.xsd’ from the schemaId.
The ruleId field uniquely identifies the policy within the management
infrastructure. The rule information is enclosed within a t_policyruleId object
formed by two strings and an integer. The strings contain respectively the
policy rule name that uniquely identifies this policy type and the identifier of
the higher-level component that sent the policy if any. The integer represents

 221

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

a sequence number used to distinguish between different policies of the same
type and sent by the same user.

The roles field lists all the roles to which the policy applies. These roles might
be used by Policy Consumers to select the managed devices where the policy
must be enforced. The field is represented as an array of strings, each string
containing one role name.

The user field contains information about the user who is introducing the
policy in the framework. This information is used to authenticate the user and
select the restricted XML Schema against which the user policy should be
validated. The user information is enclosed within a t_userInfo object. This
object consists of two strings, one containing the user name and the other
containing the password.

The policy expiration date is contained within the validity field. Usually the
validity period is given just with the day and hour the policy starts and stops
being valid. Nevertheless, filters specifying concrete months, days and hours
during which the policy is not valid can be also introduced. The policy rule
validity period information is given as a t_prvp object. Six member fields form
this object. The first one is a t_period object formed by four strings
representing respectively: the starting day, starting hour, stopping day and
stopping hour of the validity period of the policy. The second t_prvp field is
an optional JAVA short primitive that represents a mask specifying which
months of the year the validity period specified is applicable. The third is an
optional JAVA long primitive representing a mask that specifies what days of
the month the policy is valid. Fourth, an optional byte primitive that specifies
the valid days of the week. Fifth, an optional string that establishes the valid
day hours. Finally, the sixth field is an optional boolean that specifies if the
hours given follow the local time or the UTC time.

The group field is used for the correct processing of policy sets or groups. A
policy group is a set of policies that should be processed in a particular way,
i.e. atomically, sequentially, etc. This adds more flexibility to the specification
and deployment of policies and allows better determining the expected
behaviour of managed entities. For example, a user (e.g. a service provider)
might require several node resources in order to offer an active service to its
customers. These resources are reserved using several policies that form a
policy group. Such a policy set should be enforced atomically since a single
unreserved resource disables the service, thus making unnecessary the
reservation of the other resources.

The information contained in the group field is enclosed in a t_pgroup object.
Such object contains five fields, four integers and a t_order object. The four
integers represent respectively: the policy group number uniquely identifying
the policy group for that user, the number of policies forming the group, the
execution strategy that must be applied to this group (e.g. sequential, the first
possible, atomically, etc.) and the management level at which the policy group
must be evaluated. The possible values for this last integer are zero when the

 222

Section V.3 – Information Model

policy group must be evaluated at the network-level and one when it must be
evaluated at the element-level. Finally, the t_order object indicates the order
position of that policy within the policy group. More specifically, the t_order
object contains four fields. The first one is a string that indicates the global
position of the policy within the group. The second is an integer indicating
the initial position of the policy within the group. By initial position we mean
the position that the policy had within the group when it was created. This
position might change as the policy is processed by MANBoP instances at
different levels since the processing of the policy at these levels might require
splitting the policy into several more specialised policies. The third field
within the t_order object is indeed, an integer that indicates the number of
times that the policy has been subdivided along higher-level MANBoP
instances. The last field, is an array of t_split objects which are formed by two
integers indicating respectively the partial position of a policy among the
policies generated after a sub-division, and the total number of policies
generated by this sub-division. There is one t_split object in the array per sub-
division made to the policy before arriving to the current MANBoP instance.

The evaluation field contains information concerning policy conditions. More
specifically, it contains two fields, a boolean and an integer. The boolean
indicates whether the different policy conditions follow a Conjunctive
Normal Form ("true") or a Disjunctive Normal Form ("false") [Weisstein].
The integer field specifies whether policy conditions must be evaluated just
at the network-level (0), at the element-level (1) or at all management levels
(2).

The act field contains information that affects the way policy actions should
be processed. This field is contained within a t_actEnf structure. This
structure is formed by two integers, one boolean and an array of strings.
The array of strings contains the identifiers of the managed nodes where the
policy actions must be enforced. The two integers represent respectively
what is the aim of the policy actions (i.e. it specifies if the configuration
must be: 0 created, 1 activated, 2 modified, 3 deactivated or 4 removed) and
how policy actions must be enforced on the target nodes, either in a best
effort way or in a guaranteed way (if the policy is not correctly enforced in
ALL target nodes the enforcement is not considered successful and hence
the policy is uninstalled from all nodes where it was enforced). Finally, the
boolean establishes whether the policy action is oriented towards
configuring the managed device (“false”) or towards configuring the
management station (“true”). This helps the PCCnt class from the PCM
component to decide whether the Policy Consumer component that must
enforce the policy should be installed (if not already done) at the managed
topology, when possible, or at the management station. In this way, Policy
Consumer components configuring the management station, as the
Delegation Policy Consumer, are always installed at the management station
and not at the managed device, which would be nonsense.

 223

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

The conds field includes all policy conditions. Conditions can be either
compound or simple and refer to an hour of the day, an IP flow, a concrete
notification or a managed device status. The monitoring meters needed to
monitor these conditions, if any, are also extracted from the conds field
information. This field is optional; when not included, the framework
interprets that the policy action should be enforced directly. The field type is
an array of t_condRef objects. This object contains only one array of simple
conditions represented as t_simpleCond objects, and another array of
compound conditions represented as t_comCond objects. This is a way to
exemplify that policy conditions can be either simple conditions or
compound conditions.

Compound conditions are, at they turn, formed by other simple or
compound conditions. Hence, the t_comCond object also contains arrays of
t_simpleCond and t_comCond objects. In addition, the t_comCond object also
contains five more fields. These fields are a string with the policy condition
name, an integer identifying the group of conditions to which this condition
pertains, a boolean that specifies if the condition is negated, an array of
strings, each one containing the identifier of a monitoring meter needed to
monitor these policy conditions and finally, a boolean that indicates whether
packets that mirror the specified filter are to be treated as matching the filter.

To conclude the description of the conds field information, the t_simpleCond
object consists of ten fields. These ten fields can be split in six domain-
independent fields and four domain dependent fields. The domain-
independent fields are: a string with the policy condition name; an integer
specifying the condition group number; a boolean indicating whether the
whole condition is negated; an identifier of the Monitoring Meter component
that might be needed to monitor this simple condition; an array of strings
each one containing the identifier of a node that must be monitored to
evaluate this simple condition; and finally, a boolean that determines whether
all monitoring nodes must evaluate to true so that the condition is true or
instead, just one node evaluating to true is enough.

The four fields containing domain-dependant condition information are four
strings. The first one stands for the name of the data to be monitored. The
second one indicates the data type to be monitored. The fourth one is the
data value that sets a threshold or a filter in the condition. Finally, the third
one expresses how the data must be evaluated, that is, if the condition will be
considered as match only when the data value (i.e. the fourth string) matches
exactly with the data monitored, or when the data monitored is higher than
the data value, or lower, etc…

The last field in the MANBoP’s Policy IMO is the actions field that contains
information about all policy actions. At least one policy action is mandatory in
all policies but there can be more that one. The action information is
represented as a t_actRef object. Such object consists of five fields. These
fields are: a string with the XML type of action; a string with the concrete

 224

Section V.3 – Information Model

name of the action; another string that identifies the Policy Consumer
component capable of processing this policy action; and finally, the domain-
dependant policy action information. This information is expressed with two
arrays of strings: one containing the name of the managed device attributes to
be modified, and the second one containing the new values of these
attributes.

All this information is mapped in the implementation into a JAVA class. The
Policy class is a final class (not modifiable) with eleven fields and a
constructor.

The constructor of the mapped JAVA Policy class simply initiates the
instance fields with the values received as parameters. The constructor
signature is: public Policy(String, t_policyruleId, int, String[], t_userInfo, t_prvp,
t_pgroup, t_eval, actEnf, t_condRef[], t_actRef[])
The Policy JAVA class is included within the es.upc.nmg.MANBoP.IM.
User.Policy JAVA package.

Other objects that are also part of the Policy Information Model although not
included in the Policy IM are the t_policyId and PRI objects.

The t_policyId IMO is used to uniquely identify a Policy within the system so
that it can be easily stored and retrieved from the Database. The t_policyId
consists of four fields: three strings and a t_policyruleId field already described.
The three strings express respectively, the identifier of the policy functional
domain to which the policy pertains, the user name of the user that owns the
policy and a concatenation of the simple conditions names in alphabetic
order. This last field is used to ease the policy conflict check functionality. In
particular the process of finding potentially conflicting policies.

The PRI IMO (Policy Resource Information) contains the resources that have
been reserved or configured by the enforcement of a policy. This information
is used when the policy must be de-installed to remove these reservations or
configurations. In the current version of the proof-of-concepts
implementation this class only contains one field. This field is an array of
strings containing the identifiers of the managed nodes where the policy has
been enforced. In future version, more fine-grained information will be
included in this object.

B Implemented domains

Along this sub-section we are going to describe the information model parts
related with functional domains implemented for the proof-of-concepts.
These parts are mainly the condition and action field values understood by
Monitoring Meter and Policy Consumer components that have been
implemented.

Several conditions have been specified within the policies used in the proof-
of-concepts scenarios described in the last section of this chapter.

 225

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

Nevertheless, just one of these conditions need to be monitored. The
remaining ones provide information to identify either a flow or a user.

In the following sub-sections we will describe all these condition and action
field values.

a VANSitesInfo condition

The first condition we are going to describe is a compound condition
composed by one or more simple conditions. This condition is used to
identify the service provider’s sites that must be interconnected when creating
his VAN. However, in the current proof-of-concepts implementation this
information is finally not taken into account.

In the table below we summarise the field values for this condition.
Compound condition fields values Simple condition fields values

• Policy condition name: ‘VANSitesInfo’
• Group number: by default ‘1’
• Condition negated: ‘false’
• The array of monitoring meter

identifiers is empty
• Mirrored field: ‘false’
• The array of compound conditions is

empty
• The array of simple conditions has one

or more t_simpleCond objects

• Policy condition name: ‘VANSiteInfo’
• Group number: the same as the

compound condition where it is
contained

• Condition negated: ‘false’
• Monitoring meter identifier: ‘null’
• The array of nodes to be monitored is

empty
• Need all nodes evaluate to true?: ‘true’
• Name of the data to be monitored:

‘IPAddr’
• Type of the data to be monitored:

‘IPv4Addr’
• Evaluation method: ‘Match’
• Condition Value: ip address of one of

the service provider’s sites
Table 5 - 2. VANSitesInfo condition values

When the management infrastructure contains element-level managers, the
VANSitesInfo condition is translated into several VANFlowCond compound
conditions. Indeed, there are as much VANFlowCond as couple of service
provider’s sites to be interconnected.

The table below summarises the values of the VANFlowCond fields.

 226

Section V.3 – Information Model

Compound condition fields values Simple condition fields values
• Policy condition name:

‘SourceFlowCond’
• Group number: the same as the

compound condition where it is
contained

• Condition negated: ‘false’
• Monitoring meter identifier: ‘null’
• The array of nodes to be monitored is

empty
• Need all nodes evaluate to true?: ‘true’
• Name of the data to be monitored:

‘IPSource’
• Type of the data to be monitored:

‘IPv4Addr’
• Evaluation method: ‘Match’
• Condition Value: ip address of the site

acting as source for this flow

• Policy condition name:
‘VANFlowCond’

• Group number: the same as the
VANSitesInfo condition from which it
derives

• Condition negated: ‘false’
• The array of monitoring meter

identifiers is empty
• Mirrored field: ‘true’
• The array of compound conditions is

empty
• The array of simple conditions has two

t_simpleCond objects

• Policy condition name: ‘DestFlowCond’
• Group number: the same as the

compound condition where it is
contained

• Condition negated: ‘false’
• Monitoring meter identifier: ‘null’
• The array of nodes to be monitored is

empty
• Need all nodes evaluate to true?: ‘true’
• Name of the data to be monitored:

‘IPDest’
• Type of the data to be monitored:

‘IPv4Addr’
• Evaluation method: ‘Match’
• Condition Value: ip address of the site

acting as destination for this flow
Table 5 - 3. VANFlowCond condition values

b UserCredential condition

The UserCredential condition is a compound condition made of two simple
conditions. The first one containing a user name and the second one
containing the password for that user name. This condition is used in the
proof-of-concepts to establish to which service provider the management
functionality must be delegated.

The table below summarises the values of the UserCredential fields.

 227

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

Compound condition fields values Simple condition fields values
• Policy condition name: ‘Username’
• Group number: the same as the

compound condition where it is
contained

• Condition negated: ‘false’
• Monitoring meter identifier: ‘null’
• The array of nodes to be monitored is

empty
• Need all nodes evaluate to true?: ‘true’
• Name of the data to be monitored:

‘Username’
• Type of the data to be monitored:

‘string’
• Evaluation method: ‘Match’
• Condition Value: username of the

service provider to which management
functionality is being delegated

• Policy condition name: ‘UserCredential’
• Group number: by default ‘1’
• Condition negated: ‘false’
• The array of monitoring meter

identifiers is empty
• Mirrored field: ‘false’
• The array of compound conditions is

empty
• The array of simple conditions has two

t_simpleCond objects

• Policy condition name: ‘Password’
• Group number: the same as the

compound condition where it is
contained

• Condition negated: ‘false’
• Monitoring meter identifier: ‘null’
• The array of nodes to be monitored is

empty
• Need all nodes evaluate to true?: ‘true’
• Name of the data to be monitored:

‘Password’
• Type of the data to be monitored:

‘string’
• Evaluation method: ‘Match’
• Condition Value: password of the

service provider to which management
functionality is being delegated

Table 5 - 4. UserCredential condition values

This condition is kept with the same values for the element-level policy.

c IFBWCond condition

This one is the only condition that needs to be monitored. The IFBWCond is
a simple condition. It is used to monitor the bandwidth used in a router’s
interface. The condition establishes a threshold that, when reached, triggers
the enforcement of the policy. The actual monitoring of this condition is
done, in the proof-of-concepts, by the BWMM Monitoring Meter component
that will be described later on the document.

The following table shows the condition values used in the proof-of-concepts
implementation.

 228

Section V.3 – Information Model

Simple condition fields values
• Policy condition name: ‘IFBWCond’
• Group number: by default ‘1’
• Condition negated: ‘false’
• Monitoring meter identifier: ‘BWMM’
• The array of nodes to be monitored: the

ip addresses of nodes that must be
monitored

• Need all nodes evaluate to true?: ‘false’
• Name of the data to be monitored:

‘LinkUsedBW’
• Type of the data to be monitored:

‘integer’
• Evaluation method: ‘MoreThan’
• Condition Value: ip address of the

router being monitored, type of router,
interface to be monitored and threshold
value
Table 5 - 5. IFBWCond values

When the management infrastructure contains element-level managers. The
BWMM working at the network-level, to monitor the condition, creates a
monitoring policy that is sent to the appropriate element-level managers. This
monitoring policy contains exactly the same condition values as the network-
level one while the policy action indicates which network-level Monitoring
Meter component must be warned when the condition is met.

d QoSAlloc action

The QoSAlloc action is used to allocate QoS resources to a service provider. In
the proof-of-concepts implementation it is used for creating and activating
the VAN to the service provider. The action is enforced by the QoSPC Policy
Consumer component.

The table below includes the action values that have been used. The table
contains three columns. The first one lists the values of those fields that are
independent of the functional domain. The second column lists the fields
included within the array of domain-dependant field names. Finally, the third
column includes the values of these fields, which are included within the
domain-dependant field values array.

Common fields Domain-dependant
field names

Domain-dependant
field values

• Action type: QoSAlloc
• Action name: NLAlloc
• Policy consumer identifier:

QoSPC

0. VNId
1. QoSClass
2. CompQoSClass
3. EE

0. wtv
1. gold
2. silver
3. JVM

Table 5 - 6. QoSAlloc action values

 229

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

The VNId field stands for the unique identifier of the Virtual Active Network
that encloses all QoS resources reserved to that service provider.

QoSClass stands for the class of forwarding quality of service assigned to the
service provider while CompQoSClass stands for the computing class of quality
of service. The possible values for both classes are bronze, silver and gold.

Finally, EE stands for the name of the Execution Environment to which the
computing resources are assigned.

The values listed for these fields in the third column are those used at the
proof-of-concepts demonstration.

When the management infrastructure includes element-level managers this
policy action is translated into an element-level policy action of the same type
(QoSAlloc) where quality of service information is more detailed. Nonetheless,
for this proof-of-concepts implementation we have just included in the
element-level action only those fields that are really taken into account by the
managed devices.

In the table below we list the element-level action values.
Common fields Domain-dependant

field names
Domain-dependant

field values
• Action type: QoSAlloc
• Action name: ELAlloc
• Policy consumer identifier:

QoSPC

0. VNId
1. QoSParameters
2. TrafficProfile
3. EE

0. wtv
1. 1
2. 2000
3. JVM

Table 5 - 7. Element-level QoSAlloc action values

Among those domain-dependant field names that have not been yet
explained, the QoSParameters field contains a numeric representation of the
level of quality of service allocated, where 1 is the second better. The
TrafficProfile field represents the average throughput permitted in kilobytes.

e newUser action

This action is used to register a new user within the management system. The
action might even grant access to certain restricted domains to the user. The
network operator must appropriately create these restricted functional
domains. The newUser policy action must be enforced by the DelegationPC
Policy Consumer component.

The table below includes the action values used in the proof-of-concepts
Common fields Domain-dependant

field names
Domain-dependant

field values
• Action type: newUser
• Action name:

newUserDelegation
• Policy consumer identifier:

DelegationPC

0. User
1. Password
2. Services
3. Applies

0. wtv
1. wtvPass
2. ServicePC
3. All

Table 5 - 8. newUser action values

 230

Section V.3 – Information Model

The User field specifies the name of the user that is going to be registered and
the Password field his password.

The Services field contains the list of functional domains to which the service
provider will have restricted access.

Finally, the Applies field determines where, within the management
infrastructure, the new user must be registered. Possible values for this field
are network-level, element-level or all.
This policy action is not translated, at the element-level it contains exactly the
same fields as in the network-level.

f FDRestriction action

The Functional Domain Restriction (FDRestriction) action is used to create the
restricted functional domains for the service provider. More specifically, this
action specifies those values the service provider is allowed to introduce in
certain fields. The FDRestriction policy action must be enforced by the
DelegationPC Policy Consumer component.

The table below includes the action values used in the proof-of-concepts
Common fields Domain-dependant field names Domain-dependant field

values
• Action type:

FDRestriction
• Action name:

FunctionalDomainD
elegationRestriction

• Policy consumer
identifier:
DelegationPC

0. FDName
1. NodeRestrictions
2. ActRestrictions
3. PolicyRestriction

FieldName="VNId"
FieldRestrictionType="Str
ingEnumeration"

4. PolicyRestriction
FieldName="ServiceNam
e"
FieldRestrictionType="Str
ingEnumeration"

5. Applies

0. ServicePC
1. 147.83.106.104

10.0.4.4
2. ServiceDeploym

ent
ServiceConfigura
tion

3. wtv
4. duplicator,

transcoder
5. All

Table 5 - 9. FDRestriction action values

FDName stands for the name of the functional domain that is going to be
restricted as result of this policy action enforcement.

The NodeRestrictions field lists the managed devices where the service provider
is allowed to enforce a policy from this domain.

ActRestrictions lists all functional domain policy action names that are allowed
to the service provider.

The PolicyRestriction is a generic way used for restricting any possible functional
domain action value. Zero or more PolicyRestriction fields might be included
within the policy action. In this case two fields are restricted, the VNId field
with the only allowed value of wtv and the ServiceName field that permits the
duplicator and transcoder service names.

 231

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

Finally, the Applies field has exactly the same meaning as for the newUser
action.
This policy action is not translated, at the element-level it contains exactly the
same fields as in the network-level.

g ServiceDeployment

The ServiceDeployment action is used to request the deployment of an active
service on one or more managed active nodes. The enforcement of this policy
action is carried out by the ServicePC Policy Consumer component.

The fields, and their values, included in the policy action are shown in Table 5
- 10.

Common fields Domain-dependant
field names

Domain-dependant
field values

• Action type: ServiceDeployment
• Action name: ServiceDeployment
• Policy consumer identifier:

ServicePC

0. VNId
1. ServiceName
2. EE

0. wtv
1. duplicator
2. JVM

Table 5 - 10. ServiceDeployment action values

Both the VNId and EE fields have been described in previous policy actions.
In relation to the ServiceName field, it contains the name of the active service
that must be installed within one or more active or programmable routers.

As in the preceding policy actions, the ServiceDeployment action is also kept with
the same format in element-level policies.

h ServiceConfiguration

The ServiceConfiguration policy action is used to configure active services
installed within the managed network. Obviously, the information contained
within these policies is service-specific, for this reason, the action fields are
made generic to include such information. Furthermore, active services must
include a particular configuration interface to be configured by the MANBoP
management system. More specifically, it is the ServicePC component the one
that develops the active service configuration. Nevertheless, there might be
many types of common active services configuration interfaces and many
types of ServicePC components for configuring these interfaces depending
on the type of managed active node, the type of EE, etc. In any case, this is a
network operator decision according to his business needs.

The values of the ServiceConfiguration policy action fields, as they have been
used in the proof-of-concepts, are included in the following table.

 232

Section V.3 – Information Model

Common fields Domain-dependant
field names

Domain-dependant
field values

• Action type: ServiceConfiguration
• Action name:

ServiceConfiguration
• Policy consumer identifier:

ServicePC

0. VNId
1. ServiceName
2. ConfigurationI

nfo
3. ConfigurationI

nfo
4. ConfigurationI

nfo
5. ConfigurationI

nfo
6. ConfigurationI

nfo

0. wtv
1. duplicator
2. 147.83.106.111
3. 20000
4. 10.0.4.4
5. 172.31.255.3
6. 16000

Table 5 - 11. ServiceConfiguration action values

The only action field that have not yet been explained is the ConfigurationInfo
field. The policy action includes one or more ConfigurationInfo fields. These
fields contain the configuration information that must be introduced to the
managed active service.

In the particular case of the policy action values shown, used for configuring
the duplicator active service in the proof-of-concepts scenario, the
configuration values include the IP address and port of the video source first,
and of the two video destinations afterwards.

At the element-level, the translated ServiceConfiguration policy action contains
exactly the same fields as the network-level ones. However, in particular cases
the configuration information might be more detailed at the element-level.
This can only happen when the network operator’s ServicePC component is
aware of the active service and its configuration parameters.

It is worth noting that the network operator might decide to create service-
aware Policy Consumer components for concrete active services. In this way,
these active services would not need to offer the common configuration
interface as the PC component will be aware of the concrete service interface.

i QoSRouteThrough action

This policy action is used to request the modification of a route for one or
more flows. More specifically, it establishes the routers within the managed
topology that flows must cross. The enforcement of this policy action is done
by the QoSPC component.

The fields included within this policy action are shown below.
Common fields Domain-dependant

field names
Domain-dependant

field values
• Action type: QoSRouteThrough
• Action name: NLRouting
• Policy consumer identifier: QoSPC

0. FlowSource
1. FlowDestinatio

n
2. Hops

0. –
1. 172.31.255.3
2. 172.31.255.1

Table 5 - 12. QoSRouteThrough action values

 233

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

The FlowSource and FlowDestination fields are used to specify the flows that
must be re-routed. Further fields containing source and destination ports as
well as the protocol must be included in the future.

Finally, the Hops field contains the routers through which the flows must be
routed.

The values shown in the table are those used in the proof-of-concepts. As can
be seen, flows are re-routed based just on their destination.

The QoSRouteThrough action is translated as a QoSNHRouting at the element-
level. The main difference of the element-level action is that it specifies just
the next hop for the flow to configure the managed router accordingly.

The table below lists the fields included within the QoSNHRouting policy
action.

Common fields Domain-dependant
field names

Domain-dependant
field values

• Action type: QoSNHRouting
• Action name: ELNH
• Policy consumer identifier: QoSPC

0. NextHop 0. 172.31.255.1

Table 5 - 13. QoSNHRouting action values

The NextHop field specifies the next hop for the flows to be re-routed. In the
element-level policy the flows are given in the policy conditions. Particularly,
they are specified as VANFlowCond policy conditions, which have been
already described.

j MonReporter action

This policy action is included within the monitoring policy created, in the
proof-of-concepts, by the BWMM component to monitor the used
bandwidth in a router’s interface. The MonReporter action specifies the
network-level MM component that must be informed when the monitored
condition is met.

Table 5 - 14 lists the fields and values for the MonReporter policy action.
Common fields Domain-dependant

field names
Domain-dependant

field values
• Action type: MonReporter
• Action name: Reporter
• Policy consumer identifier:

MonPC

0. HLMM 0. BWMM

Table 5 - 14. MonReporter action values

The HLMM field contains the name of the higher-level component to be
contacted when the monitored condition changes its value, either because the
monitored value meets the condition or because the monitored value is no
longer meeting the condition.

 234

Section V.3 – Information Model

2nd Information Model Objects (IMOs)

As already mentioned in the Information Model introductory paragraphs
Information Model Objects contain information needed to realise the
specified management functions.

The figure below shows a logical representation 23 of the MANBoP
Information Model Objects. The diagram includes containment information
represented as numbers and inheritance information represented with the
keyword <<refine>>. The arrow numbers specify how many objects at the
tale of the arrow are contained at the object at the head of the arrow. When
two points appear between the numbers at one of the arrow edges the one-to-
many relationship is then limited within the edges specified with the numbers.
The objects at the head of the arrow marked with the <<refine>> keyword
inherit from the objects at the tale of that arrow.

The Root object acts merely as nexus between the branches, that is, as a way
to conceptually unify the three main branches containing the Information
Model Objects. No information is associated to the root object and therefore
it has not been implemented.

The three branches contain, respectively, user related information, such as
policies introduced and access rights in the form of schemas; managed
topology information with the nodes, links and resources being managed by
the MANBoP instance; and manager-related information describing the
components currently running within the MANBoP instance and underlying
devices information.

The user-related branch and the managed topology branch are logically linked
through the Role UNResources objects. This is justified to represent the fact
that users introduce policies requesting resources to nodes. The information
contained within the UNResources objects will be described in detail in the
following paragraphs.

23 The diagram follows UML recommendations [OMG01].

 235

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

PCs MMs PCC

Component

<<refine>>

<<refine>><<refine>>

Device

Manager Instance

1

n

1

n

1

n

1

n

NResources

GblTop

Link

1

0..n

1

0..n

UNResources

<<refine>>

Root
1

1

1

1

1

1

1

1

Schema

User

0..n

1

0..n

1

1

0..n

1

0..n

0..n

1

0..n

1

Group

Node

1

1

1

1

1

1..n

1

1..n

1 0..n1 0..n

Policy 11 11

0..n

1

0..n

1

1

0..n

1

0..n
PRI

1
1

1
1

Figure 5 - 3. Representation of the MANBoP Information Model Objects

The Information Model Objects description is done in the following sub-
sections. The next three sub-sections deal with the objects containing
respectively, user, managed topology and manager information.

A User-related objects

The User Information Model Objects are those pending from the User
object, the branch in the left. These are User, Policy, PRI, Schema and Group
objects.

The User object contains user information such as its username, password,
references to the policies he has introduced, references to the schemas against
which his policies must be validated. These schemas will effectively delimit
what fields and values the user can introduce in his policies, and therefore,
what is he allowed to do in the managed network.

The Policy IMO has been already explained in the thesis document. It
contains all policy fields necessary to correctly process the user policy. Since it
has already been extensively described in the first section of the chapter, we
will just refer to that section for more information.

The PRI IMO contains information about the resources affected by the
enforcement of this policy. This IMO is used to find out exactly what
resources must be freed when the policy is removed.

The Group IMO contains information oriented to facilitate the processing of
policy groups, such as the policy group name, the execution strategy or
references to received, send and enforced group policies.

 236

Section V.3 – Information Model

The Schema IMO contains information to map a user with his access rights.
More specifically, it maps a combination of user and functional domain with
the access rights, in the form of XML Schema, that the user has to access that
policy domain.

a User object

The User object contains user-related information. There is one user IMO for
each user registered in a MANBoP system.

It contains the user credential. In the current implementation, the credential
consists of a username and a password. This information is used by the
authentication components and classes to validate the received user policies.

The table below summarises the information included within this object:
Attribute Name IDL Type Description

username string Unique identifier of a user of the MANBoP
infrastructure.

password string Password of the user identified with the username field.
Table 5 - 15. The User object attributes

This information is mapped in the implementation into a JAVA class. The
User class is a final class (not modifiable) with two fields and a constructor.
The fields are strings containing respectively, the user’s username and
password. These are used to authenticate user’s requests by means of policies.

The constructor of the mapped JAVA User class simply initiates the instance
fields with the values received as parameters. The constructor signature is:
public User(String, String)
The User JAVA class is included within the es.upc.nmg.MANBoP.IM. User
JAVA package.

b Group object

The Group object contains information about a policy group that has been
introduced within the MANBoP system. There is one Group object per
policy group introduced. It contains policy group information such as the
group identifier, the execution strategy, number of policies, actual group
enforcement status and lists with the received, sent, enforced and removed
group policies. This information is used by the PFwCnt class within the
Policy Consumer Manager component for deciding when a policy from a
group must be processed.

The table below summarises the information included within this object:

 237

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

Attribute Name IDL Type Description
pgnum long Number that uniquely identifies the policy group

between those sent by the same user.
nofp long Number of policies forming the group.
execst long Number specifying the execution strategy that must be

followed to process this policy group.
recvPs sequence<t_order> List of group policies, identified by the group position,

received.
sendPs sequence<t_order> List of group policies, identified by the group position,

forwarded to be processed.
enfPs sequence<t_order> List of group policies, identified by the group position,

that have been enforced.
remPs sequence<t_order> List of group policies, identified by the group position,

that have been removed.
status long Number indicating the current status of the policy group.

Its possible values are: waiting for policy (0), waiting for
confirmation (1), completed (2).

Table 5 - 16. The Group object attributes

This information is mapped in the implementation into a JAVA class. The
Group class is a final class (not modifiable) with eight fields and a
constructor. The fields are four integers and four arrays of t_order class
instances. The four integers contain respectively, the policy group number,
number of policies, execution strategy and status of the policy group. The
four arrays contain the positions (the t_order class structure has been
described in the Policy Information Model section see pag. 220) of the
received, sent, enforced and removed policies respectively.

The constructor of the mapped JAVA Group class simply initiates the
instance fields with the values received as parameters. The constructor
signature is: public Group(int, int, int, t_order[], t_order[], t_order[], t_order[], int).
The Group JAVA class is included within the es.upc.nmg.MANBoP.IM.
User.Policy JAVA package.

c Schema object

The Schema IMO is used to assign XML Schemas to users. One Schema
IMO is created for each combination of functional domain and user with
certain access rights to access that domain. The Schema IMO contains only a
string with the name of the XML Schema file against which user policies
pertaining to that domain should be checked. This name is used by the
Authorisation Check Component to obtain the access rights, in the form of
an XML Schema assigned to the user that is trying to introduce a policy from
a particular functional domain.

The table below summarises the information included within this object:

 238

Section V.3 – Information Model

Attribute Name IDL Type Description
schemaId string Name of the assigned XML Schema file without the

extension (i.e. .xsd).
Table 5 - 17. The Schema object attributes

This information is mapped in the implementation into a JAVA class. The
Schema class is a final class (not modifiable) with one field and a constructor.
The field is just a string with the XML Schema file name.

The constructor of the mapped JAVA Schema class simply initiates the
instance field with the value received as parameter. The constructor signature
is: public Schema(String).
The Schema JAVA class is included within the es.upc.nmg.MANBoP.IM.
User.Policy JAVA package.

d PRI object

The PRI (Policy Resource Information) IMO stores the resources either
reserved or configured after the enforcement of a policy. This information is
kept within the Database to ease the complete removal of policy-related
information from the managed devices when the policy expires or is
uninstalled. At the current proof-of-concepts implementation the PRI IMO
only contains the list of nodes affected. However, in future versions this
object must be extended with more fine-grained information. There is one
PRI IMO per policy enforced within the system.

The table below summarises the information included within this object:
Attribute Name IDL Type Description

Nodes Sequence<string> List of nodes whose configuration or state has been
modified due to the policy enforcement.

Table 5 - 18. The PRI object attributes

This information is mapped in the implementation into a JAVA class. The
PRI class is a final class (not modifiable) with one field and a constructor. The
field is an array of strings with the identifiers of configured nodes.

The constructor of the mapped JAVA PRI class simply initiates the instance
field with the value received as parameter. The constructor signature is public
PRI (String []).
The PRI JAVA class is included within the es.upc.nmg.MANBoP.IM. User.Policy
JAVA package.

B Managed topology objects

The managed topology IMOs are those pending from the GblTop object, the
branch in the middle of the diagram. These are the GblTop itself, Node, Link,
NResources and UNResources objects.

 239

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

The GblTop object contains all Nodes and Links forming the managed
topology. Each Node object contains all Link objects representing its
outgoing links and the NResources object representing its overall resources.
Finally, the Node has a reference to the UNResources object that contains
the total used resources in the Node. The UNResources object is a
refinement (implemented as a simple inheritance) of the NResources object.

An exhaustive description of these Information Model Objects is given in the
following sub-sections.

a GblTop object

The GblTop object contains information about all elements (i.e. nodes and
links) conforming the managed topology. Furthermore, the GblTop object
contains also a list with the references to those nodes acting as access points
to the managed network. This list is needed, in particular, by the TEManager
to establish all possible paths between access or end points within the
network and their associated costs.

The table below summarises the information included within this object:
Attribute Name IDL Type Description

nodes sequence<string> List of identifiers of all nodes within the managed
topology.

aps sequence<string> List of identifiers of those nodes acting as access points
within the managed topology.

links sequence<string> List of identifiers of all links within the managed
topology.

Table 5 - 19. The GblTop object attributes

This information is mapped in the implementation into a JAVA class. The
GblTop class is a final class (not modifiable) with three fields and a
constructor. The fields are string arrays containing respectively, the nodeIds
of all managed network nodes, the nodeIds for all access points of the
managed network and the linkIds of all managed network links. nodeIds and
linkIds are fields of the Node and Link JAVA classes uniquely identifying
each instance of these classes respectively. These identifiers are used to
retrieve from the DB the appropriate Node and Link object when necessary.

The constructor of the mapped JAVA GblTop class simply initiates the
instance fields with the values received as parameters. The constructor
signature is: public GblTop(String[], String[], String[])
The GblTop JAVA class is included within the es.upc.nmg.MANBoP.IM.
Topological.MgdTop JAVA package.

b Node object

The Node object contains information about node properties and its
resources. Node resources have been divided in active and passive resources.
Passive resources are represented by references to the nodes outgoing links,

 240

Section V.3 – Information Model

while active resources are represented by one reference to a NResources
object and another one to UNResources object. The active resources
references are different from null only when the node is an active or
programmable one. This is indicated by one of the object attributes.

The table below summarises the information included within the Node
Information Model Object:
Attribute Name IDL Type Description

nodeId string Unique identifier of the Node object instance. It is the IP
address of the managed node.

type long Specifies whether the node is passive (0), active (1) or
programmable (2)

edge boolean True when the node acts as access point to the managed
network

outL sequence<string> List of identifiers of all links leaving the node.
inL sequence<string> List of identifiers of all links entering the node.

nResoId string Identifier of the NResources object instance containing
the overall node resources.

uNResoId string Identifier of the UNRresources object containing the
used node resources.

Table 5 - 20. The Node object attributes

This object is mapped in the implementation to a JAVA class. The Node class
is a final class (not modifiable) with seven fields and a constructor. The seven
fields are the direct mapping of the above attributes into class fields. Hence,
the nodeId, type, edge, outL, inL, nResoId and uNResoId attributes are
mapped to fields of the same name with the corresponding JAVA types
following the IDL-to-JAVA mapping rules [OMG02c]. The last four fields
contain references to Link, NResources and UNResources objects. These
references are in the form of the linkId and nResoId and uNResoId
identifiers for the respective object instances. These identifiers will be
described in the corresponding object description section.

The constructor of the mapped JAVA Node class simply initiates the instance
fields with the values received as parameters. The constructor signature is:
public Node(String, int, boolean, String[], String[], String, String)
The Node JAVA class is included within the es.upc.nmg.MANBoP.IM.
Topological.MgdTop JAVA package.

c Link object

The Link Information Model Object contains information about the
properties and resources of a managed link. The resource information given is
not only the total available resources but also the used resources. For this
proof-of-concepts implementation the only link resource considered is the
total and used link capacity in KB. However, more resource parameters can
be added in future implementations.

 241

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

The table below summarises the information included within the Link
Information Model Object:
Attribute Name IDL Type Description

linkId string Unique identifiers of the Link object instance
sourceNode string nodeId of the source node of this link
sinkNode string nodeId of the sink node of this link

hops long Number of hops between the source and the sink nodes.
capacity long The total link capacity in KB.
ucapacity long The used link capacity in KB.

Table 5 - 21. The Link object attributes

This object is mapped in the implementation to a JAVA class. The Link class
is a final class (not modifiable) with six fields and a constructor. The six fields
are the direct mapping of the above attributes into class fields. Hence, the
linkId, sourceNode, sinkNode, hops, capacity and ucapacity attributes are
mapped to fields of the same name with the corresponding JAVA types
following the IDL-to-JAVA mapping rules. The sourceNode and sinkNode
fields contain references to the corresponding Node objects. These references
are in the form of the corresponding nodeId identifiers.

The constructor of the mapped JAVA Link class simply initiates the instance
fields with the values received as parameters. The constructor signature is:

Public Link(String, String, String, int, int, int)
The Link JAVA class is included within the es.upc.nmg.MANBoP.IM.
Topological.MgdTop JAVA package.

d NResources object

The NResources Information Model Object contains information about the
total active resources associated to an active or programmable node.
Furthermore, the total number of EEs available in that node and their
identifiers are included. For the implemented proof-of-concepts the active
resources considered are the CPU in cycles per second, disk capacity for
active code in KB and memory for active code in KB. More active resources
can be easily added in future implementations if necessary.

The table below summarises the information included within the NResources
Information Model Object:
Attribute Name IDL Type Description

nResoId string Unique identifier of the node resources object instance
cpu long Total number of CPU cycles per second available in the

node for active code.
disk long Total quantity of disk available for active code in KB.

memory long Total size of memory available for active code in KB.
mumberOfEEs long Number of EEs available in the node.

EEIds Sequence<string> Unique identifiers of all EEs available in the node.

Table 5 - 22. The NResources object attributes

 242

Section V.3 – Information Model

This object is mapped in the implementation to a JAVA class. The
NResources class is a final class (not modifiable) with six fields and a
constructor. The six fields are the direct mapping of the above attributes into
class fields. Hence, the nResoId, CPU, disk, memory, numberOfEEs and
EEIds attributes are mapped to fields of the same name with the
corresponding JAVA types following the IDL-to-JAVA mapping rules.

The constructor of the mapped JAVA NResources class simply initiates the
instance fields with the values received as parameters. The constructor
signature is:

Public Link(String, int, int, int, int, String[])
The NResources JAVA class is included within the es.upc.nmg.MANBoP.IM.
Topological.MgdTop JAVA package.

e UNResources object

The UNResources is a simple inheritance from the NResources class.
Therefore, its attributes, and thus its mapping to a JAVA class is the same as
for the NResources class.

The difference between the two Information Model Objects, and thus JAVA
classes, is the semantics of its attributes. While the NResources object reflects
the total number of active resources available in a node, the UNResources
objects reflect the quantity of used resources available in a node. Depending
on what class contains the UNResources instance the used resources can be
global for all users (it is the Node instance the one that contains a reference to
this UNResources instance) or those resources used by a particular user (it
would be an User instance in this case).

The UNResources, as the NResources JAVA class, is included within the
es.upc.nmg.MANBoP.IM.Topological.MgdTop JAVA package.

C Manager-related objects

The manager-related Information Model Objects are those pending from the
ManagerInstance object, the right-hand branch in the diagram. These are the
ManagerInstance itself, the Component objects (i.e. PCs, MMs and PCC
objects) and Device objects. The Component object is an abstract class only
serving as parent class for all component objects.

The ManagerInstance contains references to all components installed within
the current MANBoP system. Furthermore, it also contains the references of
all Device Information Model Objects. These objects provide information
about how to configure the managed node by accessing the underlying
devices (independently of whether they are network elements or lower-level
MANBoP instances). The information provided is that needed to access these
devices and to select and install the appropriate component that must interact

 243

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

with them. The different component Information Model Objects contain
information about its functionality and location.

An exhaustive description of these Information Model Objects is given in the
sub-sections hereafter.

a ManagerInstance object

The ManagerInstance Information Model Object provides information about
a MANBoP instance running at this machine. The information contained
deals with the dynamic components installed in the instance as well as with
the devices controlled by the current instance. One ManagerInstance object is
created per MANBoP instance running within the current machine. Each
MANBoP instance is numbered sequentially starting from zero. This number
acts as MANBoP instance identifier within the scope of the current machine.

The table below summarises the information included within the
ManagerInstance Information Model Object:
Attribute Name IDL Type Description

managerId string Unique identifier of the MANBoP instance within the
current machine.

pcs Sequence<String> List of references to the IMOs representing the Policy
Consumers currently installed within the present
MANBoP instance.

mms Sequence<string> List of references to the IMOs representing the
Monitoring Meters currently installed within the present
MANBoP instance.

pcc String Reference to the Information Model Object representing
the Policy Conflict Check component installed within the
present MANBoP instance.

devices Sequence<string> List of references to the IMOs representing Device
controlled by the present MANBoP instance.

Table 5 - 23. The ManagerInstance object attributes

This object is mapped in the implementation to a JAVA class. The
ManagerInstance class is a final class (not modifiable) with five fields and a
constructor. The five fields are the direct mapping of the above attributes into
class fields. Hence, the managerId, pcs, mms, pcc and devices attributes are
mapped to fields of the same name with the corresponding JAVA types
following the IDL-to-JAVA mapping rules.

The constructor of the mapped JAVA ManagerInstance class simply initiates
the instance fields with the values received as parameters. The constructor
signature is:

Public ManagerInstance(String, String[], String[], String, String[])
The ManagerInstance JAVA class is included within the
es.upc.nmg.MANBoP.IM. ManagerInstance JAVA package.

 244

Section V.3 – Information Model

b Device object

The Device IMO provides information about either a managed network
element or a lower-level MANBoP instance with which the current MANBoP
instance interacts. One Device object is created per managed node. Although,
several managed nodes might be configured through a single lower-level
MANBoP instance, creating one Device object per node eases the process of
finding the correct Device Information Model Object based on the node that
must be managed. The information provided is used to locate and correctly
interact with the device as well as to select and install the appropriate type of
Policy Consumers and Monitoring Meters components that will interact with
that device.

The table below summarises the information included within the Device
Information Model Object:
Attribute Name IDL Type Description

id string Unique identifier of the Device object instance which is
equal to the assigned managed nodeId.

iface string Unique identifier of the underlying device’s interface
nodeSetId string Unique identifier of the nodeSet assigned to this device.

It has the following structure: <IPAddr>_<interface>
nodeSetLoc string String containing the exact location where dynamic

components for this nodeSet must be installed.
addr string Internet address of the underlying device
info sequence<string> Array of strings containing any possible extra information

that might be needed to contact the underlying device
Table 5 - 24. The Device object attributes

This object is mapped in the implementation to a JAVA class. The Device
class is a final class (not modifiable) with five fields and a constructor. The
five fields are the direct mapping of the above attributes into class fields.
Hence, the id, iface, nodeSet, addr and info attributes are mapped to fields of
the same name with the corresponding JAVA types following the IDL-to-
JAVA mapping rules.

The constructor of the mapped JAVA Device class simply initiates the
instance fields with the values received as parameters. The constructor
signature is:

Public Device(String, String, String, String, String, String[])
The Device JAVA class is included within the es.upc.nmg.MANBoP.IM.
ManagerInstance.UndInt JAVA package.

c Component object

The Component Information Model Object contains the abstract
representation of every possible component dynamically installed in the
system. All fields contained within this object must also appear in the
component IMO. This component might be a PCC, PC or MM. The

 245

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

information contained within this object refers to those fields common to all
components. No Component IMO is ever created or stored within the
system, it is just used as basic class to all other component-specific IMOs.

The table below summarises the information included within the Component
Information Model Object:
Attribute Name IDL Type Description

componentId string Unique identifier of the component within the system.
version string Component version.

Table 5 - 25. The Component object attributes

This object is mapped in the implementation to a JAVA class. The
Component class is a class with two fields and a constructor. The two fields
are the direct mapping of the above attributes into class fields. Hence, the
componentId and version attributes are mapped to fields of the same name
with the corresponding JAVA types following the IDL-to-JAVA mapping
rules.
The Component JAVA class is included within the es.upc.nmg.MANBoP.IM.
ManagerInstance.Components JAVA package.

d PCC object

The PCC (Policy Conflict Check) object provides information about the PCC
component that is currently running within this MANBoP instance. The
information contained in this IMO is that obtained from the Component
IMO plus a new field containing the list of functional domains that this
version of PCC component supports. There can be only one instance of the
PCC IMO per MANBoP instance, since there can be only one PCC
component at the same time within a MANBoP instance. The object is
named following the code naming convention rules already described in a
previous section.

The table below summarises the information included within the PCC IMO:
Attribute Name IDL Type Description

componentId string Unique identifier of the component within the system.
version string Component version.

suppDomains Sequence<string> Array of strings, each one containing the identifier of a
policy functional domain supported by the PCC
component represented by this object.

Table 5 - 26. The PCC object attributes

This object is mapped in the implementation to a JAVA class. The PCC class
is a final class (not modifiable) with three fields and a constructor. The three
fields are the direct mapping of the above attributes into class fields. Hence,
the componentId, version and suppDomains attributes are mapped to fields

 246

Section V.3 – Information Model

of the same name with the corresponding JAVA types following the IDL-to-
JAVA mapping rules.

The constructor of the mapped JAVA PCC class simply initiates the instance
fields with the values received as parameters. The constructor signature is:

Public PCC(String, String, String[])
The PCC JAVA class is included within the es.upc.nmg.MANBoP.IM.
ManagerInstance.Components JAVA package.

e PC object

The PC (Policy Consumer) Information Model Object provides information
about PC components currently running within this MANBoP instance. The
information contained in this IMO is basically that obtained from the
Component IMO plus two new fields that indicate respectively the position
within the management infrastructure at which this component is expected to
run, and the underlying interface over which this component works. Within
the DB, there is one instance of PC IMO per Policy Consumer dynamically
installed within the system. The object is named following the code naming
convention rules already described in a previous section.

The table below summarises the information included within the PC IMO:
Attribute Name IDL Type Description

componentId string Unique identifier of the component within the system.
version string Component version.

mgmtTopId long Identifier of the position within the management
infrastructure at which this component is expected to
run.

iface string Unique identifier of the device interface with which this
component is expected to work.

Table 5 - 27. The PC object attributes

This object is mapped in the implementation to a JAVA class. The PC class is
a final class (not modifiable) with four fields and a constructor. The four
fields are the direct mapping of the above attributes into class fields. Hence,
the componentId, version, mgmtTopId and iface attributes are mapped to
fields of the same name with the corresponding JAVA types following the
IDL-to-JAVA mapping rules.

The constructor of the mapped JAVA PC class simply initiates the instance
fields with the values received as parameters. The constructor signature is:

Public PC(String, String, int, String)
The PC JAVA class is included within the es.upc.nmg.MANBoP.IM.
ManagerInstance.Components JAVA package.

 247

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

f MM object

The MM (Monitoring Meter) Information Model Object provides
information about MM components currently running within this MANBoP
instance. The information contained in this IMO is basically that obtained
from the Component IMO plus two new fields that indicate respectively the
position within the management infrastructure at which this component is
expected to run, and the underlying interface over which this component
works. Within the DB, there is one instance of MM IMO per Monitoring
Meter dynamically installed within the system. The object is named following
the code naming convention rules already described in a previous section.

The table below summarises the information included within the MM IMO:
Attribute Name IDL Type Description

componentId string Unique identifier of the component within the system.
version string Component version.

mgmtTopId long Identifier of the position within the management
infrastructure at which this component is expected to
run.

iface string Unique identifier of the device interface with which this
component is expected to work.

Table 5 - 28. The MM object attributes

This object is mapped in the implementation to a JAVA class. The MM class
is a final class (not modifiable) with four fields and a constructor. The four
fields are the direct mapping of the above attributes into class fields. Hence,
the componentId, version, mgmtTopId and iface attributes are mapped to
fields of the same name with the corresponding JAVA types following the
IDL-to-JAVA mapping rules.

The constructor of the mapped JAVA MM class simply initiates the instance
fields with the values received as parameters. The constructor signature is:

Public MM(String, String, int, String)
The MM JAVA class is included within the es.upc.nmg.MANBoP.IM.
ManagerInstance.Components JAVA package.

Section V.4 – Implemented Code

1st System Bootstrap

The first system functionality implemented has been that of the system
bootstrap. To cover this functionality we have defined the appropriate
interfaces in IDL files and implemented some of the defined methods from
several MANBoP packages as well as the Code Installing Application utility
and some exceptions. All system IDL files are included in the appendix A.

 248

Section V.4 – Implemented Code

In concrete, the public and protected methods implemented are detailed in
the table below:
Component

Name Class Name Method Signature

public static void main(String[]) PCMCoreImpl public void main(int, String, String) PCM
GraphBuilder protected boolean instObjects(String, String, int)

DmMs DLgcImpl public DLgcImpl(int, int, String, ORB)
ACC ACntImpl public ACntImpl(String, int, ORB)
PE PECoreImpl public PECoreImpl(int, int, ORB)

TEManager TECoreImpl public TECoreImpl(ORB)
SigDemux SDCoreImpl public SDCoreImpl(int, int, ORB)

public DBCoreImpl(String, ORB)
DB DBCoreImpl

public int getInstId()
public boolean createGblTop(String[], String[], String[])
public boolean createLinkObj(String, String, String, int,

int, int)
public boolean createNResoObj(String, int, int, int, int,

String[])
public boolean createTopObj(String, int, boolean,

String[], String[], String, String)

TopologyImpl

public GblTop getGblTop() throws
DBObjectNotFound

public boolean createUndIntObj(String, String, String,
String)

public boolean setMI(ManagerInstance)

DB

ManagerImpl
public ManagerInstance getMI() throws

DBObjectNotFound
CIAImpl public static void main(String[] args)

CIA
CodeServerImpl public static void main(String[] args)

Table 5 - 29. Methods implemented for the system bootstrap

In the following sub-sections we provide a more exhaustive description of the
tasks implemented within these methods and the implemented exceptions.

A PCM: PCMCoreImpl

a public static void main(String[])

The main method used to start the system from the command line. The
arguments that must be introduced to start a MANBoP instance are:

 · A number indicates the location of the instance within the
management infrastructure. Possible values are: 0 when at the network
level, 1 when at the element level, 2 when at the network level working
over element level MANBoP instances and 3 when at the network level
working over subnetwork level MANBoP instances.

 · The path where the file with the managed topology information is
located.

 249

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

 · The path where the file with the underlying devices interface
information is located.

This method just makes an initial test over the arguments to assess their
correctness and starts the ORB and the POA storing its references in
protected class attributes.

Furthermore, within this main method the system properties that are needed
to run the MANBoP instance correctly are retrieved from the ‘manbop.props’
file. This file is located at the root path where the MANBoP system is
installed. It contains properties such as the directory where the MANBoP
package is located.

Then, the method creates an instance of the PCMCoreImpl class passing the
received arguments to the constructor. These arguments are stored as
attributes of the PCMCoreImpl: the location within the management
infrastructure as a public attribute and the file paths as protected attributes.
Finally, the ‘public void main(int, String, String)’ method form the PCMCoreImpl
object is called.

b public void main(int, String, String)

This overloaded main method coordinates the whole MANBoP instance
bootstrap taking into account the specified location.

The bootstrap of the different components and classes is realised following a
specific order, since bootstrap processes within some components need that
other components are already running. The bootstrap sequence is as follows:

 · 1. Database: all DB interfaces are started and registered in the
Naming Service.

 · 2. PCM internal classes: all PCM internal classes are instantiated in
this order: GraphBuilder, PFwCntImpl, PCCnt, PCCCnt and LfCnt.
Only the PFwCntImpl object offers an external interface to other
MANBoP components, hence it is the only one started as CORBA
object and registered in the Naming Service. References to all these
objects are stored as private attributes of the PCMCoreImpl object.

 · 3. Location-independent MANBoP components: all components
that should be started irrespectively of the location at which the
MANBoP instance is running are started now. These components are
started in the following order: Policy Editor (PECoreImpl), Decision-
making Monitoring system (DLgcImpl), Authorisation Check
Component (ACntImpl) and the SigDemux (SDCoreImpl). All these
components are registered in the Naming Service.

 · 4. Location-dependant MANBoP components: the last component
instantiated is the TEManager. It is instantiated only if the MANBoP
instance is not running at the element level. When instantiated, it is also
registered in the Naming Service.

 250

Section V.4 – Implemented Code

B PCM: GraphBuilder

a protected boolean instObjects(String, String, int)

This method is called during bootstrap by the GraphBuilder constructor and
every time the managed topology is updated. The method arguments are the
file paths of the managed topology and underlying devices files and an integer
that specifies whether the method is being called due to an addition of a node
to the managed topology (0), a removal of a node from the managed topology
(1) or because the system is being bootstrapped (2). Based on the value of this
integer private methods realising the requested functionality are called.

When called during the bootstrap, the functionality implemented in the
GraphBuilder object is that of creating the Information Model Objects that
reflect the information within the managed topology and underlying devices
files. Such objects are the GblTop, Node, Link, NResources and Device
objects, which have already been described in detail in the Information Model
section. The way the information is structure within the managed topology
and underlying devices files is described in appendix B. It must be pointed
out that the ManagerInstance object stored in the database is updated with
references to all Device objects created during this process.

C DmMs: DLgcImpl

a public DLgcImpl(int, int, String, ORB)

This constructor method initialises the component variables with the received
parameters (i.e. management topology identifier, MANBoP instance
identifier, path where MANBoP directories are placed and ORB where the
component must run) and starts the component on the received ORB.

D ACC: ACntImpl

a public ACntImpl(String, int, ORB)

This constructor method initialises the component variables with the received
parameters (i.e. path where MANBoP directories are placed, MANBoP
instance identifier and ORB where the component must run) and starts the
component on the received ORB.

E PE: PECoreImpl

a public PECoreImpl(int, int, ORB)

This constructor method initialises the component variables with the received
parameters (i.e. management topology identifier, MANBoP instance identifier
and ORB where the component must run) and starts the component on the
received ORB.

 251

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

F TEManager: TECoreImpl

a public TECoreImpl(ORB)

This constructor method just starts the component on the received ORB. For
this proof-of-concepts the Traffic Engineering Manager component has no
been implemented.

G SigDemux: SDCoreImpl

a public SDCoreImpl(int, int, ORB)

This constructor method of the SDCoreImpl class is used mainly for starting
and registering in the database all SigDemux interfaces. In particular, it starts
one SigDemux component (i.e. its interfaces) per managed nodeSet. The
received parameters are two integers and an ORB reference. The integers
contain respectively the managed topology identifier and the MANBoP
instance identifier. These two values are needed to the correct behaviour of
the component. Finally, the ORB is used to start the SigDemux component
within the same ORB as the PCM component to avoid unnecessary resource
consumption.

H DB: DBCoreImpl

All Information Model Objects are stored in the Database. The DB offers
methods to create, retrieve, modify and remove all these objects. These
methods are grouped under different DB interfaces according to the object
types being stored. The storage is made by serialising the object into a file at
the appropriate path, as described in the Naming Convention section.

a public DBCoreImpl(String, ORB)

This constructor method starts and registers within the Naming Service the
different Database interfaces. Furthermore, this method is responsible of
obtaining the number of ManagerInstance objects stored in the DB (thus, the
number of MANBoP instances running in this machine) and assigns the
corresponding value to the MANBoPInstanceId field based on it. The
PCMCoreImpl class will afterwards obtain this value. The constructor is also
responsible of creating and storing the ManagerInstance object for the
current MANBoP system.

The received parameters are String and an ORB reference. The first one
contains the root directory from where all MANBoP files hang. This
information is obtained at bootstrap by the PCM component. The latter is
used to start the DB component within the same ORB as the PCM
component to avoid unnecessary resource consumption.

 252

Section V.4 – Implemented Code

b public int getInstId()

This method is offered by the DB through the DBCoreImpl class. It is used
only once at bootstrap. The PCM component accesses this method to retrieve
the value of the MANBoP instance that has been calculated by the
DBCoreImpl class at bootstrap.

There are no received arguments, and the logic of the method is as simple as
returning the value of the MANBoPId protected field of the DBCoreImpl
class. This field is an integer, which is directly returned.

I DB: TopologyImpl.

a public boolean createGblTop(String[], String[], String[])

Method offered by the DB, through the Topology interface, to create the
GblTop object based on the received arguments and store it.

The received arguments are three arrays of strings with the identifiers of the
nodes, access points and links that conform the managed topology
respectively.

The logic created for this method simply instantiates the GblTop object with
the received arguments and stores (i.e. serialises) it at the appropriate location
(i.e. file path).

The method returns a boolean indicating whether the object creation has
succeeded.

b public boolean createLinkObj(String, String, String, int, int, int)

Method used for creating and storing a Link object.

The received arguments are the link identifier, source node identifier, sink
node identifier, number of hops between the source and the sink, total link
capacity and used link capacity.

The functionality implemented in the method instantiates a Link object with
the received arguments and stores it at the appropriate location.

The method returns a boolean indicating whether the object creation has
succeeded.

c public boolean createNResoObj(String, int, int, int, int, String[])

This method creates and stores two node resource objects: one NResources
and one UNResources object. As this method is used only at bootstrap or
when a node is being added to the managed topology that is, while the node
resources are still used. We simplify the node resources objects creation
process by instantiating both the NResources object (specifying the total
amount of resources in the node) and the UNResources object (specifying the
amount of resources unused) in a single step.

 253

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

The received arguments are the node resources identifier, number of CPU
cycles, disk, memory, number of EEs within the node and a list with the node
EE identifiers.

The programmed functionality instantiates a NResources object and an
UNResources object with the received arguments and stores them at the
appropriate location.

The method returns a boolean indicating whether the objects creation has
been successful.

d public boolean createTopObj(String, int, boolean, String[], String[], String,

String)

Method used for creating and storing a Node object within the DB.

The arguments received are the Node identifier, the type of node (i.e. passive,
active or programmable), a boolean indicating whether the node is an access
point or not, a list of outgoing link identifiers, a list of incoming list
identifiers, the associated NResources object identifier and the associated
UNResources object identifier.

The code implemented instantiates a Node object based on the received
arguments and stores it at the appropriate location.

The method returns a boolean indicating whether the objects creation has
been successful.

e public GblTop getGblTop() throws DBObjectNotFound

This method is used for retrieving from the Database the GblTop object of
the current MANBoP instance.

The method receives no arguments; the MANBoP instance identifier needed
for retrieving the object is directly obtained from a DBCoreImpl field.

The method returns the GblTop object, in case it could be found and
obtained from the Database. Otherwise, a DBObjectNotFound exception
will be raised.

J DB: ManagerImpl

a public boolean createUndIntObj(String, String, String, String, String, String[])

This method is used for creating and storing in the Database a Device object.

The arguments received are four strings and an array of strings. The four
strings specify the device or node identifier, the device interface identifier, the
device nodeSet identifier, the device nodeSet location and the device address.
Finally, the array of strings contains any possible extra information that might
be needed to contact the underlying device.

 254

Section V.4 – Implemented Code

The method programmed instantiates a Device object based on the received
parameters and stores it at the appropriate location.

The method returns a boolean indicating whether the objects creation has
been successful.

b public boolean setMI(ManagerInstance)

Method used for storing in the database the ManagerInstance object received
as parameter.

The only argument received is the ManagerInstance object, which is stored at
the appropriate Database location.

The method returns a boolean indicating whether the object storage has been
successful.

c public ManagerInstance getMI() throws DBObjectNotFound

Used for retrieving from the Database the ManagerInstance object of the
current MANBoP instance.

The method receives no arguments; the MANBoP instance identifier needed
for retrieving the object is directly obtained from a DBCoreImpl field.

The method returns the ManagerInstance object, in case it could be found
and obtained from the Database. Otherwise, a DBObjectNotFound
exception will be raised.

K CIA: CIAImpl

The Code Installing Application is not considered part of the MANBoP
framework. Nonetheless, it offers a service of great importance to MANBoP
and it has been designed indeed to cover MANBoP needs. The CIA service is
used to download and dynamically install components. These components are
installed in the directory specified in the method call and run in the same
ORB as the CIA service.

The CIAImpl component acts as client component of the CIA service. There
must be one CIAImpl component per machine where MANBoP
components might be dynamically installed. The CIA clients obtain the
CodeServerImpl component, which acts as code server, from the Naming
Service that runs at port 12002 of the machine introduced at the CIAImpl
component bootstrap. Each CIAImpl component registers itself at the
Naming Service of the machine where the MANBoP instance to which they
serve runs. The naming convention for this registration has already been
described at the Naming Convention section (see pag. 216).

a public static void main(String[] args)

The main method used to start the CIA service client component from the
command line. The arguments that must be introduced to start it are:

 255

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

 · A string containing the domain name of the CIA server (the code
server).

 · The IP address of the station where the MANBoP instance linked
with this CIA client runs.

 · The IP address with which we want the CIA component to
register at the Naming Service. By default it would be the machine’s
localhost IP address.

This method just makes an initial test over the arguments to assess their
correctness and starts the ORB and the POA storing its references in private
class attributes.

Then, it obtains from the Naming Service running at port 12002 of the code
server domain, the CodeServerImpl component that will act as CIA server.

Finally, it registers itself at the Naming Service running at port 12001 of the
station where the MANBoP instance linked with this CIA client runs and
starts the service.

L CIA: CodeServerImpl

The CodeServerImpl component acts as a server of the CIA service, that is, a
code server. This server will receive code requests, look for the requested
code in the repository and send it to the CIA client that requested it if it could
be found.

The code repository is structure around a root directory introduced at
bootstrap. From this directory hang a number of directories containing code
files and a ‘Schemas’ directory that contains XML Schema files. The directories
containing code files are named ‘<codeId>’, where the code identifier is
received in the request. This directory contains two files which are both sent:
one ‘<codeId>.sto’ file and one ‘<codeId>.jar’ file.

The ‘.sto’ file contains a JAVA class that will be dynamically loaded in the JVM
of the CIA client. This JAVA class is started to install correctly the MANBoP
component requested.

The ‘.jar’ file is a JAVA jar package containing all component files.

The CodeServerImpl service uses sockets at port 12003 to send the requested
files.

a public static void main(String[] args)

The main method used to start the CIA service server component from the
command line. The argument that must be introduced to start it is:

 · A string containing the directory from where all code files hang.

 256

Section V.4 – Implemented Code

This method just makes an initial test over the arguments to assess their
correctness and starts the ORB and the POA storing its references in private
class attributes.

Finally, it starts the CIA code server service.

M Exceptions

a DBObjectNotFound

This exception is sent by the DB component interfaces when a requested
object could not be found in the DB.

The exception is defined with just one field, which is a string used to provide
extra information about the cause of the raised exception.

This exception will be captured by the client component so that it can react in
consequence.
2nd Policy Processing: Policy Reception and Policy Group Processing

After the bootstrap, we have implemented policy-processing functionality.
Extensive description of this functionality can be found in the Proposed
Model chapter. In this section we will just enumerate and briefly describe the
code that has been implemented to develop part of the designed functionality
and particularly, within this section, code involved when the policy is
introduced in the system.

The implementation covered the definition of a number of IDL files, the
development of methods from the Policy Editor, Policy Consumer Manager
and Database components and a number of exceptions. All system IDL files
are included in appendix A.

In concrete, the public and protected methods implemented are detailed in
the table below:

 257

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

Component
Name Class Name Method Signature

AuthenticationModule protected static boolean authenticate(credential)
PE PECoreImpl public void recvXPolicy(credential, string) throws

UnknownUser

PFwCntImpl public void dispatch(credential, string) throws
UnProcessablePolicy

public Policy parse() throws WrongSyntaxException PCM
Parser protected static String getCondNames(Policy)

seqACK_PGES protected static t_order[] precv(Policy, Group)
throws UnProcessablePolicy

seqNACK_PGES protected static t_order[] precv(Policy, Group)
throws UnProcessablePolicy

first_PGES protected static t_order[] precv(Policy, Group)
throws UnProcessablePolicy

atomic_PGES protected static t_order[] precv(Policy, Group)
throws UnProcessablePolicy

PCM: PGES

be_PGES -24
public User getUser(string) throws

DBObjectNotFound UserImpl
public boolean setUser(User)

public Policy getPolicy(t_policyId) throws
DBObjectNotFound PolicyImpl

public boolean setPolicy(Policy, String, t_policyId)
public boolean setGroup(Group,string)

public boolean setGroupP(Policy, String, credential,
t_policyId)

public Group getGroup(int, string) throws
DBObjectNotFound

public Policy getGroupP(int, string, string) throws
DBObjectNotFound

public string getGroupXP(int, string, string) throws
DBObjectNotFound

public boolean rmGroupP(int, string, string)
public t_policyId getGroupPId(int, String, String)

DB

PGroupImpl

public credential getGroupPUserCred(int, String,
String)

Table 5 - 30. Methods implemented for policy group processing

In the following sub-sections we provide a more exhaustive description of the
tasks implemented within these methods and the implemented exceptions.-

A PE: AuthenticationModule

a protected static boolean authenticate(credential)

This method is called by the PECoreImpl class to authenticate a user who is
trying to introduce a policy in MANBoP. The only argument defined is the
credential of the user. In the current implementation, the credential structure

24 Although not method has been implemented yet for the best effort Policy Group Execution Strategy,

we’ve added it here to show the five execution strategies that have been implemented in this proof-of-
concepts.

 258

Section V.4 – Implemented Code

consists of two strings containing respectively the user name and the
password. The method returns a boolean.

Based on this information, the logic implemented within the
AuthenticationModule will try to retrieve from the DB the User IMO
corresponding to that user and compare the credential information contained
within that object with the one received. Either if the User IMO searched
cannot be found or if the credential information contained within the object
does not match with the one received the method returns false, otherwise, it
returns true.

A User IMO can be created either after a user registration through the GUI
or after the enforcement of a delegation policy. We have also implemented a
helping tool named UserCreator to directly create User objects in the DB.
More information about this helping tool can be found at appendix D.

To retrieve the User IMO information the AuthenticationModule uses the
User interface from the DB implemented in the UserImpl class.

B PE: PECoreImpl

a public void recvXPolicy(credential, string) throws UnknownUser

Method offered to higher-level applications or other MANBoP instances to
introduce policies. This is one of the possibilities offered by the PE to
introduce policies and probably the main alternative to the one represented by
the PE component GUI. The method has been defined with two arguments:
the user’s credential and a string. The user’s credential is used to request the
user authentication to the AuthenticationModule class just described. The
string contains the policy to be processed expressed in XML language.

The logic implemented in this method is as simple as requesting the
authentication of the user to the AuthenticationModule class and, unless the
authentication fails, forward the policy to the PCM component through its
dispatch interface implemented by the PFwCntImpl class and described in the
next sub-section.

When the user authentication fails the method throws an UnknownUser
exception.

C PCM: PFwCntImpl

a public void dispatch(credential, string) throws UnProcessablePolicy

The dispatch method implements one of the “northern” access methods
defined in the PCM component interface. It is used to introduce policies to
be processed within this MANBoP instance. More specifically, the PE
component uses this method to forward policies to the PCM component.
The method defines two input arguments, which are the user’s credential and
a string with the policy in XML.

 259

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

The implemented logic for this method deals with the processing of policy
groups with the help of many auxiliary classes implemented that are described
hereafter. Apart from the policy-group processing logic, this method also
requests the parsing of the XML policy received to a JAVA Policy IMO so
that the processing of the policy is computationally easier and faster.

When the received policy is not part of a policy group the policy is directly
stored in the DB and sent to the PCMCoreImpl object for its processing.
Otherwise, the policy is processed according to its policy group position and
the policy group execution strategy specified.

When the policy could not be processed correctly within this component by
any reason an UnProcessablePolicy exception is thrown. More information
about the cause of the exception might be included in the exception itself.

D PCM: Parser

a public Policy parse() throws WrongSyntaxException

This method is offered by the internal class Parser to create a Java Policy
IMO based on the information extracted from the XML policy received. The
method is defined without input parameters since the string containing the
XML policy to be parsed is introduced in the constructor, when the Parser
instance is created. The method returns the parsed Policy object.

The implemented logic for this method simply looks for chains of characters
that establish the location of expected information within the XML
information, extracts the information found and converts it to the type
specified in the corresponding field of the Policy object.

If at any time along the process an expected information (i.e. chain of
characters) is not found, a WrongSyntaxException is thrown and the parsing
is skipped.

b protected static String getCondNames(Policy)

This method is used by other component classes, in particular the PCMCore
class, to build a string containing a concatenation in alphabetic order of all
simple condition names included within the policy. This method is used when
the t_policyId structure corresponding to the policy is being created. The
policy identifier contains the concatenation of simple conditions to ease the
policy conflict checking functionality by simplifying the process of finding
potentially conflicting policies (e.g. those that have common conditions).

The method receives the Policy IMO from which the condition names must
be extracted and returns the concatenated simple condition names in form of
a string.

 260

Section V.4 – Implemented Code

E PCM: PGES: seqACK_PGES

a protected static t_order[] precv(Policy, Group) throws UnProcessablePolicy

The seqACK_PGES class encloses all the logic related to the sequence with
acknowledgement policy group execution strategy. This execution strategy
forwards the group policies only if the precedent policy, based on group
positions, has been enforced correctly (i.e. the enforcement acknowledgement
has been received). More specifically, the precv method contains the logic for
processing group policies following this execution strategy at the time they are
introduced in the system. The method is defined with two arguments: the
Policy IMO that corresponds to the received policy and the Group IMO of
the corresponding policy group.

Based on this information, the implemented logic decides if the received
policy should be processed or instead should be stored until a precedent
policy is correctly enforced. It updates the Group object accordingly and
returns the list of policies, identified by their policy positions that must be
processed.

In case an unexpected error occurs during this process, an
UnProcessablePolicy exception is thrown.

F PCM: PGES: seqNACK_PGES

a protected static t_order[] precv(Policy, Group) throws UnProcessablePolicy

The seqNACK_PGES class, as well as its precv method, is the equivalent to
the above except that the execution strategy implemented is the sequence not
acknowledged policy group execution strategy. So, policies are forwarded as
long as precedent policies in policy group order have been previously sent to
process. Therefore, the precv method returns the list of policies (the one
received plus maybe others previously received although not yet processed)
that must be processed. These policies are included in the list in the same
order as they must be forwarded to the PCMCoreImpl object.

In case an unexpected error occurs during this process, an
UnProcessablePolicy exception is thrown.

G PCM: PGES: first_PGES

a protected static t_order[] precv(Policy, Group) throws UnProcessablePolicy

The first_PGES class encloses the logic related to the Policy Group
Execution Strategy (PGES) that enforces group policies in sequential order
until one of them is enforced successfully. At this point, the group processing
is stopped, that is, no more group policies are enforced. More specifically, the
precv method contains the logic for processing group policies following this
execution strategy at the time they are introduced in the system. The method

 261

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

is defined with two arguments: the Policy IMO that corresponds to the
received policy and the Group IMO of the corresponding policy group.

Based on this information, the implemented logic decides if the received
policy should be processed or instead should be stored until a precedent
policy is enforced. It updates the Group object accordingly and returns, when
any, the list of policies (identified by their policy group positions) that must be
processed.

In case an unexpected error occurs during this process, an
UnProcessablePolicy exception is thrown.

H PCM: PGES: atomic_PGES

a protected static t_order[] precv(Policy, Group) throws UnProcessablePolicy

The atomic_PGES class encloses the logic related with an atomic policy
group execution strategy. In this execution strategy, group policies are
enforced in sequential order and only when the previous group policy has
been enforced correctly. Furthermore, if one of the group policies cannot be
enforced, all previous group policies that had been enforced correctly are
uninstalled from the system. More specifically, the precv method contains the
logic for processing group policies following this execution strategy at the
time they are introduced in the system. The method is defined with two
arguments: the Policy IMO that corresponds to the received policy and the
Group IMO of the corresponding policy group.

Based on this information, the implemented logic decides if the received
policy should be processed or instead should be stored until a precedent
policy is correctly enforced. It updates the Group object accordingly and
returns the list of policies, identified by their policy group positions that must
be processed.

In case an unexpected error occurs during this process an
UnProcessablePolicy exception is thrown.

I PCM: PGES: be_PGES

The be_PGES is the simplest possible Policy Group Execution Strategy. It
simply forwards the group policies to be processed as they arrive to the
system. The group is completed when all group policies have been processed,
no matter if they could be enforced successfully or not.

J DB: UserImpl

This method is used for retrieving from the Database the User object that
represents the user name introduced as parameter.

The method receives just one argument: a string containing the user name.

a public User getUser(string) throws DBObjectNotFound

 262

Section V.4 – Implemented Code

The method returns the User object, in case it could be found and obtained
from the Database. Otherwise, a DBObjectNotFound exception will be
thrown.

b public boolean setUser(User)

Method used for storing in the database the User object received as
parameter.

The only argument received is the User object, which is stored at the
appropriate Database location, as described in the naming convention section.

The method returns a boolean indicating whether the object storage has been
successful.

K DB: PolicyImpl

a public Policy getPolicy(t_policyId) throws DBObjectNotFound

This method is used for retrieving from the Database a Policy object
identified with a t_policyId structure.

The method receives a t_policyId structure as argument. This structure
contains all information to uniquely identify the policy and, hence, locate it
within the DB.

The method returns the Policy object, in case it could be found and obtained
from the Database. Otherwise, a DBObjectNotFound exception will be
raised.

b public boolean setPolicy(Policy, string, t_policyId, credential)

Method used for storing in the database the Policy object together with the
corresponding XML policy as well as the user credential linked with this
policy. All these objects are received as parameters.

The arguments received are the Policy object, the XML policy and the
credential, which are stored at the appropriate Database location as well as the
t_policyId structure use to establish the location at which the policy objects
must be stored.

The method returns a boolean indicating if the storage of the objects has
been successful.

L DB: PGroupImpl

a public boolean setGroup(Group,string)

Method used for storing in the database the Group object received as
parameter.

 263

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

The arguments received are the Group object to be stored and a string
containing the user name of the user owning the group to choose the
appropriate DB location.

The method returns a boolean that indicates if the object storage has been
successful.

b public boolean setGroupP(Policy, string, credential, t_policyId)

Method used for storing in the database the Policy object and the
corresponding XML policy as well as the credential of the user that
introduced the policy and the t_policyId structure of this policy. All these
objects are received as parameters. These policies, and related objects, are part
of a policy group. They are stored until they turn to be processed arrives. The
credential and t_policyId objects are stored together with the policy to easily
obtain this information, necessary for the policy processing, when the group
policy is finally processed.

The arguments received are the Policy, the XML policy, the credential and
t_policyId objects, which are stored at the appropriate Database location for
the policy group.

The method returns a boolean indicating if the storage of all objects has been
successful.

c public Group getGroup(int, string) throws DBObjectNotFound

This method is used for retrieving from the Database a Group object
identified by the policy group number and the user name of the user owning
the policy group. These two are the arguments introduced in the method as
an integer containing the policy group number and a string containing the
user name.

The method returns the Group object, in case it could be found and obtained
from the Database. Otherwise, a DBObjectNotFound exception will be
thrown.

d public Policy getGroupP(int, string, string) throws DBObjectNotFound

This method is used for retrieving from the Database a Policy IMO that
corresponds to a group policy. The requested group policy is identified by the
received arguments, which are an integer representing the policy group
number to which the policy pertains, a string indicating the position identifier
of the requested policy and another string indicating the user name of the user
owning the group policy.

The method returns the Policy object, in case it could be found and obtained
from the Database. Otherwise, a DBObjectNotFound exception will be
raised.

 264

Section V.4 – Implemented Code

e public string getGroupXP(int, string, string) throws DBObjectNotFound

This method is used for retrieving from the Database an XML policy, stored
as a serialised string, and that corresponds to a group policy. The requested
XML group policy is identified by the received arguments, which are an
integer representing the policy group number to which the policy pertains, a
string indicating the position identifier of the requested policy and another
string indicating the user name of the user owning the group policy.

The method returns the XML policy, in case it could be found and obtained
from the Database. Otherwise, a DBObjectNotFound exception will be
raised.

f public boolean rmGroupP(int, string, string)

Method used for removing from the Database, in particular from the
corresponding group directory, the Policy object and the corresponding XML
policy pointed by the received parameters.

The received parameters are an integer with the policy group number, a string
containing the position identifier of the policy to be removed and the user
name of the user owning the policy.

The method returns a boolean indicating if the removal of both objects has
been successful.

g public t_policyId getGroupPId(int, String, String) throws DBObjectNotFound

This method is used to obtain from the Database the policy identifier stored,
together with a group policy, as a serialised string. The requested t_policyId
structure is identified by the identification of the linked policy with the
received arguments. These arguments are an integer representing the policy
group number to which the policy pertains, a string indicating the position
identifier of the requested policy and another string indicating the user name
of the user owning the group policy.

The method returns the t_policyId structure, in case it could be found and
obtained from the Database. Otherwise, a DBObjectNotFound exception
will be raised.

h public credential getGroupPUserCred(int, String, String) throws

DBObjectNotFound

This method is used to obtain from the Database the user credential stored,
together with a group policy, as a serialised string. The requested credential
object is located by finding the linked policy with the received arguments.
These arguments are an integer representing the policy group number to
which the policy pertains, a string indicating the position identifier of the

 265

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

requested policy and another string indicating the user name of the user
owning the group policy.

The method returns the credential object in case it could be found and
obtained from the Database. Otherwise, a DBObjectNotFound exception
will be raised.

M Exceptions

a UnknownUser

This exception is sent by the PE component when the authentication of the
user trying to introduce a policy within the MANBoP system fails.

The exception is defined with just one field, which is a string used to provide
extra information.

The client might capture this exception to react in consequence.

b UnProcessablePolicy

This exception is sent when a received policy could not be processed because
of unexpected errors along the process.

The exception is defined with string field providing additional information
about the exception cause.

c WrongSyntaxException

The Parser class within the PCM component raises this exception when an
unexpected policy syntax structure is detected.

The exception is defined with a string that can be used to provide additional
information about the reason of the exception being raised.
3rd Policy processing: Task coordination and Policy checking

The next functionality we have implemented, following policy-processing
steps, is the coordination of all tasks and policy checking (i.e. authentication
and conflict checking). Extensive description of this functionality can be
found in the Proposed Model chapter. In this section we will just enumerate
and briefly describe the code that has been implemented to develop part of
the designed functionality.

The implementation covered the definition of a number of IDL files, the
development of methods from the Policy Consumer Manager, Authorisation
Check Component, Policy Conflict Check and Database components and a
number of exceptions as well as the Code Installing Application (CIA)
service. All system IDL files are included in appendix A.

In concrete, the public and protected methods implemented are detailed in
the table below:

 266

Section V.4 – Implemented Code

Component
Name Class Name Method Signature

PCMCoreImpl public void procP(credential, t_policyId) throws
UnProcessablePolicy PCM

PCCCnt protected boolean checkConfl(t_policyId, int, String[])
ACC ACntImpl public boolean authorise(t_policyId, credential, String)

public void dwSchema(String, String) throws
CodeNotFound CIAImpl public void dwCode(String, String, String[]) throws
CodeNotFound

protected Class findClass(String) throws
ClassNotFoundException CIAClassLoader

protected String findLibrary(String)
public String obtainLocation(String, String, int)

CIA

CodeServerImpl public void obtainCode(String)

PolicyImpl public String getXPolicy(t_policyId) throws
DBObjectNotFound

public Schema getSchema(String, String) throws
DBObjectNotFound SchemaImpl

public boolean setSchema(Schema, String, String)
public PCC getPCC() throws DBObjectNotFound

DB

ManagerImpl public boolean setPCC(PCC)
Table 5 - 31. Methods implemented for task coordination and policy checking

In the following sub-sections we provide a more exhaustive description of the
tasks implemented within these methods and the implemented exceptions.

A PCM: PCMCoreImpl

a public void procP(credential, t_policyId) throws UnProcessablePolicy

The procP (stands for process policy) method implements the main
functionality for coordinating the policy-processing tasks and the taking of
decisions. More specifically, the PFwCntImpl class uses this method to start
the processing of a policy after the policy group logic, when applicable, has
been developed. The method defines two input arguments, which are the
user’s credential and the policy identifier of the policy to be processed.

The implemented logic for this method deals mainly with the coordination of
all tasks involved in policy-processing by contacting other components and
acting based on the result. The tasks are extensively described in the design
chapter but, in brief, are the authorisation checking, conflict checking,
monitoring, policy enforcement and result notification.

The policy to be processed is retrieved from the Database with the policy
identifier received as parameter.

When the policy could not be processed correctly within this component by
any reason an UnProcessablePolicy exception is thrown. More information
about the cause of the exception might be included in the exception itself.

 267

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

B PCM: PCCCnt

a protected boolean checkConfl(t_policyId, int, String[])

The checkConfl method implements the logic for finding out whether the
PCC component installed is capable of realising the requested check, and if
not, install the newer version of the PCC component before requesting to it
the realisation of the appropriate policy conflict checking.

This method is always called by the PCMCoreImpl class as part of the normal
policy processing functionality and is used for both static and dynamic policy
conflict checks. The method defines three input arguments, which are the
identifier of the policy to be checked, an integer establishing the type of check
to be done and the list of node identifiers where the policy must be applied
(when specified in the policy).

The method returns a boolean containing the result of the policy conflict
checking.

C ACC: ACntImpl

a public boolean authorise(t_policyId, credential, String)

The authorise method implements the logic for assessing if the user
introducing the policy is allowed to do so. This functionality has been
implemented taking advantage of XML language and tools. In particular, we
realise the assessment by validating the received XML policy against an XML
Schema assigned to that user and functional domain. If the user has no XML
Schema assigned for that functional domain it means that he is not authorised
to access that domain. If he does have one, then his XML policy is validated
against his XML Schema, which might be restricted to allow only a certain
type of action or condition values. The validation itself, functionality designed
for the ACkr class of the ACC component, is done by a freely available XML
validation tool. More specifically, we are using the Sun Multi-Schema XML
Validator tool [SunMSV].

This method is always called by the PCMCoreImpl class as part of the normal
policy processing functionality. The method defines three input arguments,
which are the identifier of the policy to be authorised, the credential of the
user introducing the policy and a string identifying the functional domain of
the policy being authorised.

The method returns a boolean containing the result of the authorisation
check.

 268

Section V.4 – Implemented Code

D CIA: CIAImpl

a public void dwSchema(String, String) throws CodeNotFound

This method is used to request the download of an XML Schema file to the
correct directory of the MANBoP DB. Thereby, the download of XML
Schemas for new policy functional domains is done dynamically avoiding the
need of human intervention. The schema will only be requested when the
user whose policy is being checked has rights to access the functional domain
represented by that Schema, which might be a restricted schema created for
the user or not.

The method logic simply requests the XML Schema file to the code server
and stores it in the appropriate MANBoP DB directory. The method contains
two input arguments, which are the name of the XML Schema file to be
downloaded and the destination directory where this file must be stored.

The method throws a CodeNotFound exception if the requested XML
Schema could not be found in the code server.

b public void dwCode(String, String, String[]) throws CodeNotFound

This method is used to request the download of a dynamically installable
component to a MANBoP instance and its installation.

The method will first check that the requested code is located within the code
server. If so, it requests the download of the component code, packed in a
JAVA jar file, and the download of the installer class. This installer class must
compulsorily implement the Installer interface.

The Installer interface defines just one method that expects two arguments:
an array of strings that contain the arguments needed to appropriately start
the downloaded component and the ORB where the component must run.

The installer class will be then dynamically loaded in the Java Virtual Machine
(a CIAClassLoader has also been implemented to aid in this process), started
and a request to its install method will be raised. When receiving this request
the install class will realise all needed tasks to correctly start the dynamically
installable component within the MANBoP instance. These tasks are, for
example, the registration of the component at the Naming Service, or the
creation of the corresponding component IMOs (i.e. PCC, PC or MM IMO)
using the appropriate DB interfaces.

The dwCode method is defined with three input arguments, which are the
identifier of the requested code, the version (if any is specified) of the
requested code and an array of strings containing the arguments that must be
used to appropriately start the component.

The method throws a CodeNotFound exception if the requested code could
not be found in the code server.

 269

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

E CIA: CIAClassLoader

The CIAClassLoader class extends the generic JAVA ClassLoader to provide
the needed functionality to find and load the installer class. This functionality,
as described in the JAVA documentation, must be introduced through the
findClass and findLibrary methods. More information about the exact
functionality can be found in the JAVA language documentation
[SunJAVAb].

a protected Class findClass(String) throws ClassNotFoundException

Method used to locate and return as a Class object the installer class
downloaded together with a dynamically installable component.

The method defines just one input argument: the JAVA name (including the
package) of the class to be loaded.

It returns a Class object representing the installer class to be loaded. For more
information refer to JAVA documentation.

b protected String findLibrary(String)

Method used to locate any possible library that might be needed to start a
dynamically installable code.

The method defines just one input argument, which is the name of the library
to be loaded.

It returns a String containing the full path where the searched library can be
found.

F CIA: CodeServerImpl

a public String obtainLocation(String, String, int)

The obtainLocation method is used by the CIA client to check if the
requested code is stored in the code repository and if so, where exactly it is
placed.

The method receives three input parameters that contain respectively, the
identifier of the code requested, the requested version of the code and an
integer that expresses if the request is for code (0) or an XML Schema file (1).

The method returns a string containing the full path within the code
repository where the requested code or XML Schema can be found.

b public void obtainCode(String)

This method implements the server-side code downloading functionality.
When a request is received a new thread is started that will accept client
bindings to the server socket and proceed to send the requested code through
this socket.

 270

Section V.4 – Implemented Code

The method is defined with one input parameter: a string containing the
location of the requested code. This location will have been previously
obtained by the CIA client through the obtainLocation method.

G DB: PolicyImpl

a public String getXPolicy(t_policyId) throws DBObjectNotFound

This method is used for retrieving from the Database the XML Policy linked
with a t_policyId structure.

The method receives a t_policyId structure as argument. This structure
contains all information to uniquely identify the policy and, hence, locate it
within the DB.

The method returns a String containing the XML Policy, in case it could be
found and obtained from the Database. Otherwise, a DBObjectNotFound
exception will be raised.

H DB: SchemaImpl

a public Schema getSchema(String, String) throws DBObjectNotFound

This method is used for retrieving from the Database a Schema IMO for a
concrete user and functional domain.

The method receives two strings containing respectively, the user name and
the functional domain identifier. These strings are used to locate the Schema
IMO within the DB.

The method returns the Schema, in case it could be found and obtained from
the Database. Otherwise, a DBObjectNotFound exception will be raised.
b public boolean setSchema(Schema, String, String)

This method is used for storing in the Database a Schema IMO for a concrete
user and functional domain.

The method receives the Schema IMO to be stored and two strings
containing respectively, the user name and the functional domain identifier.
These strings are used to decide where to store the Schema IMO within the
DB.

The method returns a boolean indicating whether the storage of the Schema
IMO has been realised successfully.

 271

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

I DB: ManagerImpl

a public PCC getPCC() throws DBObjectNotFound

This method is used to obtain from the Database the PCC IMO representing
the Policy Conflict Check component currently running with the MANBoP
instance.

Since there can be only one PCC component running at the same time within
a MANBoP instance, there is no need for an input argument to identify the
PCC IMO to be obtained.

The method returns the PCC IMO, in case it could be found and obtained
from the Database. Otherwise, a DBObjectNotFound exception will be
raised.

b public boolean setPCC(PCC)

This method is used for storing in the Database a PCC IMO representing the
PCC component being installed in the MANBoP instance.

The method receives the PCC IMO to be stored as parameter. It returns a
boolean indicating whether the storage of the PCC IMO could be realised
successfully.

J Exceptions

a CodeNotFound

Exception sent by the Code Installing Application client when a code or
schema that had been requested could not be found in the code repository.
This exception is not a MANBoP exception but a CIA exception, hence it has
been implemented within the package where the whole CIA service is
contained.

The exception is defined with just one field, which is a string used to provide
extra information.

The MANBoP instance component requesting the code might capture this
exception to react in consequence.
4th Policy processing: Monitoring

One of the key parts within the framework is the decision taking. This part is
realised jointly by the PCM and the DmMs components. In this section we
are going to describe the monitoring functionality implemented. The
monitoring functionality within MANBoP is focused to evaluate the value of
policy conditions; hence, it provides the basis for decision-making. Extensive
description of this functionality can be found in the Proposed Model chapter.
In this section we will just enumerate and briefly describe the code that has
been implemented to develop part of the designed functionality.

 272

Section V.4 – Implemented Code

The implementation covered the definition of a number of IDL files, the
development of methods from the Policy Consumer Manager, Decision-
making Monitoring system, Monitoring Meters25 and Database components
and a number of exceptions. All system IDL files are included in appendix A.

In concrete, the public and protected methods implemented are detailed in
the table below:
Component

Name Class Name Method Signature

PCM PCMCoreImpl public void triggerEnf(t_policyId, boolean)
public boolean regCond(t_policyId, Policy, credential) DLgcImpl public void ISValue(String, boolean) DmMs

MMCnt protected boolean regIS(String, t_simpleCond, credential)
throws MonitoringError

public Device getUndIntObj(String) throws
DBObjectNotFound

public MM getMM(String, String) throws
DBObjectNotFound

DB ManagerImpl

public boolean setMM(MM, String)
Table 5 - 3 . Methods implemented for monitoring functionality 2

In the following sub-sections we provide a more exhaustive description of the
tasks implemented within these methods and the implemented exceptions.

A PCM: PCMCoreImpl

a public void triggerEnf(t_policyId, boolean)

The triggerEnf (stands for trigger enforcement) method is used to start the
tasks that lead to either the enforcement or de-enforcement of the policy.
This method is only used by the DmMs component when the global
assessment of the policy conditions changes. That is, if the policy conditions
do not longer match (or assess to false) the DmMs requests the de-
enforcement of the policy; on the contrary, when policy conditions do finally
match (or assess to true), the DmMs requests the enforcement of the policy.
The method is defined with two parameters the policy identifier of the policy
to be enforced and a boolean containing the new value of the policy
conditions.

The implemented logic for this method is that designed for the policy
enforcement procedure. These tasks are extensively described in the design
chapter but, in brief, are the Policy Consumers lifecycle control, the dynamic
conflict checking, policy enforcement and result notification.

The policy to be processed is retrieved from the Database with the policy
identifier received as parameter.

25 The implementation of Monitoring Meter components will be described in the domain-dependent

implementation section.

 273

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

B DmMs: DLgcImpl

a public boolean regCond(t_policyId, Policy, credential)

This method implements the main functionality for coordinating monitoring
tasks. More specifically, the PCMCoreImpl uses this method to request the
monitoring of policy conditions and be warned when the global assessment
of these conditions changes. The method defines three parameters, which are
the identifier of the policy whose conditions must be monitored, the Policy
IMO representing this policy and the user’s credential.

The implemented logic for this method deals basically with creating a logic
expression that reflects the policy conditions, map it to the policy identifier
and request the monitoring of each element (i.e. Individual Statement) of the
logic expression. Further information about these tasks can be found in the
design chapter.

The method returns a boolean that determines if the registration of the policy
conditions to be monitored could be carried out successfully.

b public void ISValue(String, boolean)

The ISValue method implements the logic to change the value of an
Individual Statement within a logic expression and re-assess the logic
expression. If the global value changes the DLgcImpl class will request the
enforcement or de-enforcement of the corresponding policy to the PCM
component. More specifically, Monitoring Meter components use this
method to inform when the value of an IS they are monitoring changes its
value. The method is defined with two parameters, which are, respectively,
the identifier of the monitored IS and the new value of this IS. Further
information about these tasks can be found in the design chapter.

C DmMs: MMCnt

a protected boolean regIS(String, t_simpleCond, credential) throws

MonitoringError

This is a component internal method offered by the MMCnt class of the
DmMs component to request the monitoring of an Individual Statement (IS).
More specifically, the DLgcImpl class uses this method to request the
monitoring of an IS by the appropriate Monitoring Meter component. The
method receives three parameters: the identifier of the Individual Statement
to be monitored, a structure containing the simple condition linked with this
IS and the credential of the user that introduced the policy causing this
monitoring.

The implemented logic for this method deals basically with finding out which
Monitoring Meter component must monitor this IS, request the installation of

 274

Section V.4 – Implemented Code

this MM if not already installed and finally, forward to it the monitoring
request. The method also updates accordingly the MM lifecycle control
information kept within this class. Further information about these tasks can
be found in the design chapter.

The method returns a boolean with the initial value of the Individual
Statement. This initial value is calculated from the responses of all MM
components contacted to monitor the IS.

When for any reason an error occurs in the registration of the IS or its
monitoring to obtain the initial value the method throws a MonitoringError
exception.

D DB: ManagerImpl

a public Device getUndIntObj(String) throws DBObjectNotFound

This method is used for obtaining from the Database a Device object.

The argument received is a string containing the unique identifier of the
Device IMO within the system.

The method returns the requested Device IMO if it could be found within
the Database. Otherwise, it throws a DBObjectNotFound exception.

b public MM getMM(String, String) throws DBObjectNotFound

This method is used to obtain from the Database a MM IMO representing
one of the Monitoring Meter components currently running at the MANBoP
instance.

The method receives two strings used to uniquely identify the requested MM
IMO. These strings are respectively the identifier of the nodeSet where the
component represented by the requested IMO must run and the identifier of
the component itself.

The method returns the requested MM IMO, in case it could be found and
obtained from the Database. Otherwise, a DBObjectNotFound exception
will be raised.

c public boolean setMM(MM, String)

This method is used to store in the Database a MM IMO.

The method receives as parameters the MM IMO to be stored and a string
containing the identifier of the nodeSet where the component represented by
this IMO must run. It returns a boolean indicating whether the storage of the
MM IMO could be realised successfully.

 275

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

d public boolean rmMM(String, String)

This method is used to remove from the Database a MM IMO representing a
Monitoring Meter component no longer running within the system.

The method receives two strings used to uniquely identify the requested MM
IMO. These strings are respectively the identifier of the nodeSet where the
component represented by the requested IMO runs and the identifier of the
component itself.

It returns a boolean indicating whether the removal of the MM IMO was
realised successfully.

E Exceptions

a MonitoringError

This exception is sent by either MM components or the MMCnt class within
the DmMs component when an error occurs while monitoring an Individual
Statement.

The exception is defined with just one field, which is a string used to provide
extra information.
5th Policy processing: Policy enforcement and result processing

The final part of policy processing, domain-independent functionality
implemented is that of policy enforcement and result processing. Extensive
description of this functionality can be found in the Proposed Model chapter.
In this section we will just enumerate and briefly describe the code that has
been implemented to develop part of the designed functionality.

The implementation covered the definition of a number of IDL files, the
development of methods from the Policy Consumer Manager, Policy
Consumers 26 , Policy Editor, Decision-making Monitoring system and
Database components and a number of exceptions. All system IDL files are
included in the appendix.

In concrete, the public and protected methods implemented are detailed in
the table below:

26 The implementation of Monitoring Meter components will be described in the domain-dependant

implementation section.

 276

Section V.4 – Implemented Code

Component
Name Class Name Method Signature

PCCnt protected int enforce(Policy, String[], t_policyId, credential)
throws UnableToEnforceP

PFwCntImpl protected void pProcSt(t_policyId, int, String)
PCMCoreImpl public boolean uninstallP(t_policyId, int)

PCM

PCCCnt protected boolean uninstPR(t_policyId, boolean)
be_PGES protected static int last(Policy, Group, int)

protected static int last(Policy, Group, int)
first_PGES protected static t_order[] resrecv(Policy, Group, int) throws

UnProcessablePolicy
seqNACK_PGES protected static int last(Policy, Group, int)

protected static int last(Policy, Group, int)
seqACK_PGES protected static t_order[] resrecv(Policy, Group, int) throws

UnProcessablePolicy
protected static int last(Policy, Group, int)

PCM: PGES

atomic_PGES protected static t_order[] resrecv(Policy, Group, int) throws
UnProcessablePolicy

PE PECoreImpl public void recvEnfResult(String, t_policyId, int)
DLgcImpl public boolean unregCond(t_policyId) DmMs MMCnt protected boolean unregIS(String)

public PC getPC(String, String) throws
DBObjectNotFound

public boolean setPC(PC, String)
public boolean rmMM(String, String)

ManagerImpl

public boolean rmPC(String, String)
public credential getPolicyUserCred(t_policyId) throws

DBObjectNotFound)
public PRI getPRI(t_policyId) throws

DBObjectNotFound
public boolean setPRI(t_policyId, PRI)

public int getPSts(t_policyId) throws DBObjectNotFound
public boolean modPStatus(t_policyId)

PolicyImpl

public boolean removeP(t_policyId)

DB

PGroupImpl public boolean rmGroup(int, String)
- GenRecv public void recvEnfResult(String, t_policyId, int)

Table 5 - 33. Methods implemented for policy enforcement and result processing

In the following sub-sections we provide a more exhaustive description of the
tasks implemented within these methods and the implemented exceptions.

A PCM: PCCnt

a protected Result enforce(Policy, String[], t_policyId, credential) throws

UnableToEnforceP

This is a component internal method offered by the PCCnt class of the PCM
component to request the enforcement of a policy. More specifically, the
PCMCore class uses this method to request the enforcement of a policy by
the appropriate Policy Consumer components. The method receives four
parameters: the Policy IMO representing the policy to be enforced, an array

 277

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

of strings containing the identifiers of the nodes where the policy must be
enforced, the identifier of the policy and the credential of the user introducing
the policy27.

The implemented logic for this method deals basically with finding out what
Policy Consumer component must enforce this policy, request the installation
of this PC if not already installed and finally, forward to it the enforcement
request recompile the results and return them. Further information about
these tasks can be found in the design chapter.

The method returns a Result type. This type consists of an integer and an
array of strings. The integer indicates the enforcement result. Possible values
of this integer are enforced (0), de-enforced because of policies no longer
matching (1), de-enforced because removal of the policy (2), enforcement
error (3) and undefined (4). The undefined value is used when the
enforcement result is not known immediately (e.g. when working over other
MANBoP instances). By returning an undefined value, we avoid the PCM to
be waiting for an enforcement result that could last a long time. The array of
strings is used to include further information related with the enforcement
result as error information or others.

When for any reason an error occurs in the enforcement of the policy, the
method throws a UnableToEnforceP exception.

B PCM: PFwCntImpl

a public void pProcSt(t_policyId, Result, String)

Public method offered by the PFwCntImpl class of the PCM component to
receive the policy enforcement result and react accordingly. More specifically,
either the Policy Consumer component or the PCMCore class can use this
method to request the realisation of appropriate actions (e.g. user report,
policy group execution, etc.). The method receives three parameters: the
identifier of the policy enforced, the enforcement result as described in the
previous method and a string containing further information in the case there
has been an enforcement error.

The implemented logic for this method deals basically with, depending on the
enforcement result, updating the policy status information, removing the
policy from the database28, re-start the policy group execution strategy when
appropriate and finally, inform upper management layers (e.g. higher-level

27 Although not being initially included in the design, the credential parameter has been added so that PC

components can configure the node even if it has some security rights configured in relation to this
user. The same applies to the PC interface (i.e. enforceP method).

28 This supposes a change in relation to the design where the policy removal could be realised in both
the PCMCoreImpl (uninstallP method) and PFwCntImpl classes. In the current proof-of-concepts
only the PFwCntImpl can remove policies from the DB. This has been done for sake of simplicity
and clarity.

 278

Section V.4 – Implemented Code

applications, users, higher-level Policy Consumer components). In particular,
the enforcement result information message is sent to any higher-level Policy
Consumer registered in the current MANBoP instance. Only if there are no
higher-level Policy Consumers registered, it forwards the information to any
generic receiver29 registered. Finally, if no generic receiver is registered neither,
it forwards the policy result information to the Policy Editor component that
will show it through the GUI.

Further information about these tasks can be found in the design chapter.

C PCM: PCMCoreImpl

a public boolean uninstallP(t_policyId, int)

Method offered in the PCM interface. It is used to request the removal of a
policy from the system. This method can be called because of several reasons.
These reasons are expressed in the integer received as parameter. This integer
has four possible values: (0) explicit request from the owner, (1) due to the
policy group processing method, (2) policy expiration and (3) to solve a
conflict. Aside, the method receives also the identifier of the policy to be
uninstalled.

The implemented logic for this method removes all configuration data related
with the policy in either the MANBoP instance or the managed nodes. This
configuration data ranges from policy reservations information, configuration
data in the managed devices, conditions registered in the monitoring system,
lifecycle information, etc. Further information about these tasks can be found
in the design chapter.

The method returns a boolean that indicates whether all removal tasks could
be developed successfully.

D PCM: PCCCnt

a protected boolean uninstPR(t_policyId, boolean)

This is a component internal method offered by the PCCCnt class to request
the removal or update of policy resource configuration from the PCC
component and the DB. In this case the PCCCnt acts as interface with the
PCC component and simply forwards the request to it. The method is
defined with two arguments; the first one is the identifier of the policy whose
resource information must be removed. The second argument is a boolean
that indicates if the resource information should be updated or removed. The
resource information must be updated only when the policy is either enforced

29 Any application must implement the GenRecv (Generic Receiver) interface to be able to receive policy

enforcement result reports. This interface is described at the end of the section.

 279

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

or de-enforced. If the policy is removed, the resource information linked with
this policy is also removed.

The method returns a boolean that indicates whether all tasks could be
developed correctly.

E PCM: PGES: be_PGES

a protected static int last(Policy, Group, int)

All classes implementing a PGES must offer this method. It implements the
functionality to decide if the group policy that has just been enforced is the
last one or not. The method is defined with three parameters. These are the
Policy IMO representing the policy that has just been enforced, the Group
IMO containing group information and an integer containing the policy
enforcement result information. This integer contains the same information
as the integer included within the Result type detailed before.

The implemented logic for this method calculates if the enforced policy is the
last one according to the best effort execution strategy. That is, the method is
completed only if all group policies have been enforced.

The method returns the next step to be taken. Possible values are: 2 this is the
last policy of the group and therefore it is completed, 1 the groups is not
completed because some policies must be de-enforced and 0 the group is not
completed because some policies must be enforced.

F PCM: PGES: first_PGES

a protected static int last(Policy, Group, int)

The last method implements the functionality to decide if the group policy
that has just been enforced is the last one or not. The method is defined with
three parameters. These are the Policy IMO representing the policy that has
just been enforced, the Group IMO containing group information and an
integer containing the policy enforcement result information.

The implemented logic for this method calculates if the enforced policy is the
last one according to the first correct execution strategy. That is, the method
is completed when a correct enforcement result is received.

The method returns the next step to be taken. Possible values are: 2 this is the
last policy of the group and therefore it is completed, 1 the groups is not
completed because some policies must be de-enforced and 0 the group is not
completed because some policies must be enforced.

b protected static t_order[] resrecv(Policy, Group, int) throws UnProcessablePolicy

Most of classes implementing a PGES must offer this method; only those
with an obvious behaviour are not implemented. For example, the best effort
execution strategy does not care about policy enforcement results because it

 280

Section V.4 – Implemented Code

will continue to forward group policies as they are received. It implements the
functionality to continue the policy group execution based on the policy
enforcement result received. The method is defined with three parameters.
These are the Policy IMO representing the policy that has just been enforced,
the Group IMO containing group information and an integer containing the
policy enforcement result information as has been described previously.

The implemented logic for this method calculates the group policies that must
be either enforced or de-enforced to continue the policy group execution. In
the case of this execution strategy, if the group is not finished, it returns the
next policy following the group order in case it has been received.

The method returns the group positions of those policies that must be either
enforced or de-enforced to continue with the group execution. In case an
error occurs while realising these tasks, the method throws an
UnProcessablePolicy exception.

G PCM: PGES: seqNACK_PGES

a protected static int last(Policy, Group, int)

In this PGES the last method implements the functionality to decide if the
group policy that has just been enforced is the last one or not. The method is
defined with three parameters. These are the Policy IMO representing the
policy that has just been enforced, the Group IMO containing group
information and an integer containing the policy enforcement result
information.

The implemented logic for this method calculates if the enforced policy is the
last one according to the sequential, not confirmed, execution strategy. That
is, the method is completed when the last policy in sequential order has been
enforced.

The method returns the next step to be taken. Possible values are: 2 this is the
last policy of the group and therefore it is completed, 1 the groups is not
completed because some policies must be de-enforced and 0 the group is not
completed because some policies must be enforced.

H PCM: PGES: seqACK_PGES

a protected static int last(Policy, Group, int)

In this Policy Group Execution Strategy the last method implements the
functionality to decide if the group policy that has just been enforced is the
last one or not. The method is defined with three parameters. These are the
Policy IMO representing the policy that has just been enforced, the Group
IMO containing group information and an integer containing the policy
enforcement result information.

 281

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

The implemented logic for this method calculates the group policies that must
be either enforced or de-enforced to continue the policy group execution.

The method returns the next step to be taken. Possible values are: 2 this is the
last policy of the group and therefore it is completed, 1 the groups is not
completed because some policies must be de-enforced and 0 the group is not
completed because some policies must be enforced.

b protected static t_order[] resrecv(Policy, Group, int) throws UnProcessablePolicy

For this PGES the resrecv method implements the functionality to continue
the policy group execution based on the policy enforcement result received.
The method is defined with three parameters. These are the Policy IMO
representing the policy that has just been enforced, the Group IMO
containing group information and an integer containing policy enforcement
result information.

The implemented logic for this method calculates the group policies that must
be either enforced or de-enforced to continue the policy group execution. In
the case of this sequential, confirmed, execution strategy, if the group is not
finished, it returns the next policy following the group order in case it has
been received.

The method returns the position within the group of the policies that must be
either enforced or de-enforced to continue with the group execution. In case
an error occurs while realising these tasks, the method throws an
UnProcessablePolicy exception.

I PCM: PGES: atomic_PGES

a protected static int last(Policy, Group, int)

The last method for the atomic PGES implements the functionality to decide
if the group policy that has just been enforced is the last one or not. The
method is defined with three parameters. These are the Policy IMO
representing the policy that has just been enforced, the Group IMO
containing group information and an integer containing policy enforcement
result information.

The implemented logic for this method calculates if the enforced policy is the
last one according to the atomic execution strategy. That is, the method is
completed only when either all group policies have been enforced correctly or
all group policies are uninstalled.

The method returns the next step to be taken. Possible values are: 2 this is the
last policy of the group and therefore it is completed, 1 the groups is not
completed because some policies must be de-enforced and 0 the group is not
completed because some policies must be enforced.

 282

Section V.4 – Implemented Code

b protected static t_order[] resrecv(Policy, Group, int) throws UnProcessablePolicy

The resrecv method for this PGES implements the functionality to continue
the policy group execution based on the policy enforcement result received.
The method is defined with three parameters. These are the Policy IMO
representing the policy that has just been enforced, the Group IMO
containing group information and an integer containing policy enforcement
result information.

The implemented logic for this method calculates the group policies that must
be either enforced or de-enforced to continue the policy group execution. In
the case of the atomic execution strategy, if the group is not finished, it
returns either the next policy following the group order (in case it has been
received) when the result of the previous policy enforcement is correct, or all
previously enforced policies when the result of the previous policy
enforcement is incorrect.

The method returns the group position of the policies that must be either
enforced or de-enforced to continue with the group execution. In case an
error occurs while realising these tasks, the method throws an
UnProcessablePolicy exception.

J PE: PECoreImpl

a public void recvEnfResult(String, t_policyId, Result)

This method is offered by the “southern” interface of the Policy Editor
component, i.e. that offered to the PCM component. The PE offers this
interface defined in the GenRecv interface described at the end of this
section, in order to be able to receive information about the enforcement of
policies and policy groups. This information will be then shown in the GUI
offered to the user.

The implemented logic for this method formats the received information so
as to show it in the GUI offered to the user. The method is defined with
three arguments. These are, the identifier of the policy enforced, the
enforcement result and a string containing further information in the case
there has been an enforcement error. The enforcement result is given as a
Result type that contains an integer and an array of strings. The Result type
has been already described at page 2 . Further information about these tasks
can be found in the design chapter.

77

K DmMs: DLgcImpl

a public boolean unregCond(t_policyId)

Method offered through the DmMs interface. It is used to request the
removal of all monitoring-related information linked with a policy from the

 283

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

DmMs component. The method receives the identifier of the policy whose
monitoring information must be removed.

The implemented logic for this method removes all monitoring data related
with the policy in either the MANBoP instance or the managed nodes.
Further information about these tasks can be found in the design chapter.

The method returns a boolean that indicates whether all removal tasks could
be developed successfully.

L DmMs: MMCnt

a protected boolean unregIS(String)

Internal method of the DmMs component used to request the removal of all
monitoring-related information linked with a policy from the DmMs
component, Monitoring Meter components and managed devices. The
method receives the identifier of the Individual Statement whose monitoring
information must be removed.

The implemented logic for this method removes all monitoring data related
with the policy in either the MANBoP instance or the managed nodes. Aside,
it updates the lifecycle information of the involved Monitoring Meter
components accordingly. If any Monitoring Meter is no longer being used it is
uninstalled from the system. Further information about these tasks can be
found in the design chapter.

The method returns a boolean that indicates whether all removal tasks could
be developed successfully.

M DB: ManagerImpl

a public PC getPC(String, String) throws DBObjectNotFound

This method is used to obtain from the Database a PC IMO representing one
of the Policy Consumer components currently running with the MANBoP
instance.

The method receives two strings used to uniquely identify the requested PC
IMO. These strings are respectively the identifier of the nodeSet where the
component represented by the requested IMO must run and the identifier of
the component itself.

The method returns the requested PC IMO, in case it could be found and
obtained from the Database. Otherwise, a DBObjectNotFound exception
will be raised.

b public boolean setPC(PC, String)

This method is used to store in the Database a PC IMO.

 284

Section V.4 – Implemented Code

The method receives as parameters the PC IMO to be stored and a string
containing the identifier of the nodeSet where the component represented by
this IMO must run. It returns a boolean indicating whether the storage of the
PC IMO could be realised successfully.

c public boolean rmPC(String, String)

This method is used to remove from the Database a PC IMO representing a
Policy Consumer component no longer running within the system.

The method receives two strings used to uniquely identify the requested PC
IMO. These strings are respectively the identifier of the nodeSet where the
component represented by the requested IMO runs and the identifier of the
component itself.

It returns a boolean indicating whether the removal of the PC IMO could be
realised successfully.

N DB: PolicyImpl

a public credential getPolicyUserCred(t_policyId) throws DBObjectNotFound

This method is used for retrieving from the Database a user credential linked
with a t_policyId structure (i.e. a policy identifier).

The method receives a t_policyId structure as argument. This structure
contains all information to uniquely identify the policy to which the user
credential is linked and, hence, locate the credential within the DB.

The method returns the credential structure, in case it could be found and
obtained from the Database. Otherwise, a DBObjectNotFound exception
will be raised.

b public PRI getPRI(t_policyId) throws DBObjectNotFound

This method is used for retrieving from the Database a user PRI IMO linked
with a t_policyId structure (i.e. a policy identifier).

The method receives a t_policyId structure as argument. This structure
contains all information to uniquely identify the policy to which the PRI IMO
is linked and, hence, locate the requested IMO within the DB.

The method returns the PRI IMO, in case it could be found and obtained
from the Database. Otherwise, a DBObjectNotFound exception will be
raised.

c public boolean setPRI(t_policyId, PRI)

Method used to store in the database a Policy Resource Information (PRI)
IMO linked with a policy.

 285

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

The method is defined with two arguments: the identifier of the policy to
which the PRI IMO is linked and the PRI IMO itself.

The method returns a boolean indicating whether the object storage has been
successful.

d public int getPSts(t_policyId) throws DBObjectNotFound

This method is used for obtaining from the Database the status of a policy.

The method receives a t_policyId structure as argument. This structure
contains all information to uniquely identify the policy. Once the policy is
identified, the method logic retrieves the Policy IMO object from the DB and
returns its status field. If the Policy IMO could not be found, a
DBObjectNotFound exception will be raised.

e public boolean modPStatus(t_policyId)

This method is used for modifying the policy status of a Policy IMO stored in
the Database.

The method receives a t_policyId structure as argument. This structure
contains all information to uniquely identify the policy. Once the policy is
identified, the method logic retrieves the Policy IMO from the DB, modifies
its status field and stores it again.

The method returns a boolean indicating whether all tasks could be
developed successfully.

f public boolean removeP(t_policyId)

This method is used for removing from the Database policy-related
information. In particular, the XML Policy, the Policy IMO, the PRI IMO
and the credential are all removed from the Database.

The method receives a t_policyId structure as argument. This structure
contains information to uniquely identify the policy and the related
information to be removed.

The method returns a boolean indicating whether all tasks could be
developed successfully.

O DB: PGroupImpl

a public boolean rmGroup(int, String)

This method is used for removing from the Database group-related
information. In particular, all group XML policies and Policy IMOs, policy
identifier structures and linked credentials are removed from the Database.

The method receives two arguments to uniquely identify the group
information to be removed. These arguments are an integer containing the

 286

Section V.4 – Implemented Code

policy group number and a string with the user name of the user that
introduced the group.

The method returns a boolean indicating whether all tasks could be
developed successfully.

P PC: XStringFields

XStringFields is an interface included within the Policy Consumer component
package. It contains various string fields with text needed to create an XML
policy. This allows all PC components needing to create XML policies,
particularly those running over other MANBoP managers, to have the
common XML strings easily available.

We do not include here the concrete fields contained in the interface since it
would take too long and it would not provide any relevant information.

Q GenRecv

The GenRecv is an interface that must be implemented by all applications
pretending to receive policy enforcement result reports. This interface defines
one single method, described hereafter. This interface is implemented also by
those framework components that might also receive policy enforcement
result reports, e.g. Policy Editor and Policy Consumer components.

a public void recvEnfResult(String, t_policyId, Result)

This method allows the component implementing it to receive information
about the enforcement of policies and policy groups. The component must
also be registered at the Naming Services of all MANBoP instances from
where it wants to receive these reports.

The method is defined with three arguments. These are: the identifier of the
policy enforced, the enforcement result and a string containing further
information in the case there has been an enforcement error. The Result type
has already been described at page 277.

R Exceptions

a UnableToEnforceP

This exception is sent by either PC components or the PCCnt class within the
PCM component when an error occurs while enforcing a policy.

The exception is defined with three fields: one string and two arrays of
strings. The string is used to provide extra information about the cause of the
error. The arrays contain, respectively, a list of node identifiers where the
policy could be enforced successfully and a list of node identifiers where it
could not be enforced.

 287

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

This information is used by the PCCnt class that collects all possible
exceptions raised by Policy Consumers and raises a new one with the
recompiled information. Finally, the PCMCoreImpl class catches this
exception and decides, based on the enforcement type field of the policy (see
the Policy IM at pag. 2) whether the policy should be removed from those
nodes where it was successfully enforced or not.

20

6th Adding a node to the managed topology

In addition to the policy-processing functionality just described, we have also
implemented management functionality needed to modify the managed
topology. More specifically, we have implemented the logic needed to add a
new node to the managed topology.

In concrete, the public and protected methods implemented are detailed in
the table below:
Component

Name Class Name Method Signature

PCM PCMCoreImpl public void addN(String, String)

DB TopologyImpl public Link getLinkObj(String, String) throws
DBObjectNotFound

Table 5 - 3 . Methods implemented for the node addition mechanism 4

A PCM: PCMCoreImpl

a public void addN(String,String)

This method is used to add a new node on the managed topology. The
method might be used by the network operator to update the managed
topology with the addition of a new managed device.

The main tasks developed as consequence of calling this method are first, the
creation of the corresponding IMOs and their storage within the DB. Second,
the recalculation of the routing algorithm with the new information.

The information received as method parameters are two strings containing
respectively, the path where the file describing the new managed topology,
including the new resources, is located and the path where the file describing
how to access the new node is located.

B DB: TopologyImpl.

a public Link getLinkObj(String, String) throws DBObjectNotFound

The getLinkObj method is used to obtain a Link IMO from the Database.

The method receives two parameters that uniquely identify the link. Both
parameters are strings. The first string indicates the source node of the link.

 288

Section V.4 – Implemented Code

The second string contains the identifier of the link. Such identifier is unique
for links in the source node.

The method returns the Link IMO retrieved from the Database if any is
found. Otherwise, a DBObjectNotFound exception is raised.
7th Domain-dependant components

The domain-dependant functionality implemented can be classified in three
types of components: Policy Conflict Check (PCC) components, Monitoring
Meter (MM) components and Policy Consumer (PC) components.

All implemented components from the same type share the same interface,
the component interface; thereby, the implemented methods are exactly the
same for all components of the same type. However, the functionality
implemented inside the method is different depending on the component
goal, the functional domain and the underlying devices.

Not all methods defined in the component’s interface have been
implemented. The table below summarises the interfaces implemented for the
proof-of-concepts per component type.
Component

Name Class Name Method Signature

PAnImpl public boolean checkConfl(t_policyId) PCC PCCCore public static boolean findResources(Policy, t_prvp)
public boolean[] monIS(String, t_simpleCond,

credential) throws MonitoringError
public boolean sMonIS(String) MM MFactImpl

public void recvMonResult(String, t_policyId, boolean)
public Result enforceP(Policy, int, credential, String[],

int) throws UnableToEnforceP PC Mapper
public void recvEnfResult(String, t_policyId, Result)

Table 5 - 35. Domain-dependant methods implemented

In the following paragraphs we will extensively describe the logic
implemented for each of these methods and for all implemented functional
domain components.

A PCC: PAnImpl

a public boolean checkConfl(t_policyId)

This method is used to initiate the conflict checking mechanism. Such
mechanism verifies that no inconsistencies exist between the new policy and
the previously introduced policies. This method is called during the policy-
processing tasks by the Policy Consumer Manager component to be sure that
there will be no inconsistencies before continuing the process.

The only argument received in the method is the identifier of the new policy
against which conflict checks must be realised. The method returns a boolean
indicating whether there was any conflict.

 289

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

The method has been implemented just for the network-level PCC: the
PCC_0 component.

The logic implemented simply obtains the corresponding Policy IMO from
the Database based on the policy identifier received and extracts from it the
policy validity period. With this information, it contacts the findResources
method from the PCCCore class, described in the following sub-section, to
request the conflict checks.

B PCC: PCCCore

a public static boolean findResources(Policy, t_prvp)

The findResources method is called by the PAnImpl class for requesting the
resources needed by a policy either for an established interval or at
enforcement time and verifying that there are no inconsistencies with other
policies.

The method has two input parameters. The first one is the Policy IMO while
the second is the times during which the policy will be enforced.

The result is a boolean that indicates if any conflict was found.

As the checkConfl method just described this method has been implemented
just for the network-level PCC. The implemented logic finds out all managed
devices involved in the policy and verifies that these devices exist within the
managed topology.

C MM: MFactImpl

a public boolean[] monIS(String, t_simpleCond, credential) throws

MonitoringError

The monIS method is called by the DLgcImpl class to request the monitoring
of an Individual Statement (IS) from a policy condition.

The method is defined with three input parameters. The first one is a string
containing the unique identifier of the IS to be monitored. The simple
condition with the IS information is included next. Finally, the last parameter
is the credential of the user requesting the monitoring. Such credential is used
to monitor the resources with the user’s access rights.

Additionally, the method throws a MonitoringError exception if a problem
occurs during the monitoring of a policy. This exception contains a field
providing more details about the cause of the problem. The exception will be
caught by the DLgcImpl class, which will react in accordance.

This method has been implemented in all Monitoring Meter components
developed for the proof-of-concepts. In the following paragraphs we will
explore the concrete logic in each of these implementations.

 290

Section V.4 – Implemented Code

The logic implemented in the BWMM_0_ABLE component for this method
monitors the used bandwidth in an ABLE router interface. It does this by
creating, compiling and sending an active packet for the ABLE router based
on the information contained in the simple condition received. Additionally, it
waits for value changes in the simple condition evaluation coming from the
active packet in the ABLE router. These value changes are sent via a socket
created at a particular port. When the IS (i.e. simple condition) evaluated
value changes, it contacts the DLgcImpl class to report the new value. When
this new value changes the global policy condition evaluation the policy
enforcement is triggered.

The logic implemented for the BWMM_1_ABLE component, the same
Monitoring Meter component but for the element-level, is basically the same.
The only difference is that the network-level BWMM_0_ABLE component
has the possibility of monitoring several ABLE nodes, while the
BWMM_1_ABLE, for obvious reasons, does not contemplate this possibility.

The third BWMM component implemented is the BWMM_2_MANBoP
component. This component is the one installed at the network-level
manager when working over element-level managers. The logic implemented
for the monIS method in this component creates an element-level monitoring
policy based on the simple condition information and forwards it to the
appropriate element-level MANBoP managers. Additionally, it registers as
higher-level Monitoring Meter component at the Naming Services of these
element-level stations so that it is informed when the condition is met.

Other MM components developed that implement this method are the
TimeMM components. These components have been implemented for the
scalability evaluation scenario (described at the end of the chapter). The
TimeMM_0_CISCOX and TimeMM_1_CISCOX components have been
implemented with exactly the same logic. The X stands for the number of the
simulated type of CISCO router being monitored starting from 2601 (see
page 309 for more information). Initially, the logic contained in these
components realised the monitoring of the used bandwidth in a CISCO
router interface during an established period of time. The time used in the
scenario was big enough to last all along the scenario. Additionally,
independently on what the monitored value was they do not report that the
condition is met. They polled the value every five seconds. Nonetheless, the
logic implemented at last, just simulated this behaviour.

The TimeMM_2_MANBoP component implemented contains exactly the
same logic as the BWMM_2_MANBoP component for this method. It
creates the element-level monitoring policy information based on the
condition information received, forwards the monitoring policy to the
appropriate element-level stations and registers at the Naming Services
running at these stations as higher-level monitoring meter.

 291

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

b public boolean sMonIS(String)

This method is used by the DLgcImpl class to request the end of the
monitoring of an Individual Statement.

The method is defined with a single parameter, which is the identifier of the
IS that should no longer be monitored. The method returns a boolean
indicating whether the requested action could be realised successfully or not.

Only the BWMM_0_ABLE and BWMM_1_ABLE components implement
this method. In both cases the logic is the same. They both stop the active
packet running in the ABLE node, close the socket through which they
received condition value changes and exit the method.

c public void recvMonResult(String, t_policyId, boolean)

The recvMonResult method is used to report monitored values into a higher-
level Monitoring Meter component.

Three parameters are defined. The first parameter is an integer containing the
identifier of the target node from where the reported monitored value has
been obtained. The policy identifier of the monitoring policy that causes, with
its enforcement, this report is the second parameter. Finally, a boolean is
included as the last parameter. This boolean contains the new evaluated value
for the monitored Individual Statement.

Among the Monitoring Meter components implemented for the proof-of-
concepts, just the BWMM_2_ABLE component implements this method.
The logic contained at the component informs the DLgcImpl class that the
Individual Statement is met if there is only one monitored node, or if there
are many monitored nodes and either all monitored values meet the condition
or the condition establishes that just one node meeting the condition suffices.
The BWMM_2_ABLE component contains a table that maps policy
identifiers of created monitoring policies with the Individual Statement
identifiers that are being monitored with those policies.

D PC: Mapper

a public Result enforceP(Policy, int, credential, String[], int) throws

UnableToEnforceP

The enforceP method is used by the Policy Consumer Manager component to
start the enforcement of a policy in one or more target nodes. More
specifically, this method translates policy action values into commands
understandable by the underlying device, configures the device with these
commands and returns the result.

The method expects five input parameters. The first one is the Policy to be
enforced. Second, an integer containing a sequence number that is used to

 292

Section V.4 – Implemented Code

differentiate between the enforcement of the same policy at different target
nodes of different types, that is at different nodeSets. Third, the credential of
the user is included to enforce the policy with the user’s access rights. The
fourth parameter is an array of strings. Each string contains a node identifier
of a device where the policy must be enforced. Finally, an integer containing
the number of the action among all actions included in the policy that must
be enforced by the component.

The method defines a Result type as return parameter. This type contains an
integer indicating whether the policy enforcement was successful and an array
of strings that might include further information related with the policy
enforcement.

If an unexpected error occurs while enforcing the policy the method throws
an UnableToEnforceP exception. This exception will provide more
information about the cause of the problem and, optionally, the target node
where the problem occurred.

All Policy Consumers must implement this method. For the proof-of-
concepts we have implemented several PCs. In the following paragraphs we
will explain the logic included in this method for each of them.

The first Policy Consumer implemented in the proof-of-concepts is the
QoSPC_0_FAIN. The logic for the enforceP method included in this
component mainly creates or activates a Virtual Environment (VE) for a
service provider over one or more FAIN nodes [FAIN03d] based on the
parameters received in the policy. Furthermore, the specified computational
and forwarding resources are allocated to the created VEs. To carry out this
functionality the component uses the facilities that FAIN nodes offer. If the
enforcement is successful the component includes in the Result type returned
two strings containing respectively, the Virtual Environment identifier
assigned by the node and the Virtual Network identifier that came in the
policy itself.

The QoSPC_1_FAIN component contains almost the same logic as the
QoSPC_0_FAIN component, as it is the element-level component from the
same functional domain. The main difference is that the mapping of policy
action values to FAIN node commands is slightly faster since the received
action values are more detailed than network-level ones. For the rest, the logic
contained in this method is mainly the same.

The logic implemented for the method in the QoSPC_0_CISCO2600
component is oriented to the modification of the routing tables of
CISCO2600 routers [CISCO2600]. The component maps the received policy
action values into CLI commands introduced in the router via telnet. More
specifically, the component receives a flow specification, a list of target nodes
to be managed and a list of next hop addresses. Then, the component
accesses each of the target nodes and modifies the routing table with the new

 293

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

next hop address for that flow. Finally, the component returns the Result type
with the global enforcement result on all target nodes.

The element-level QoSPC_1_CISCO2600 Policy Consumer component
contains almost the same logic as its network-level equivalent just described.
The only difference is that in this case only the CISCO2600 router managed
by the element-level manager where the component runs is configured.
Hence, the component creates the corresponding CLI commands and sends
them to the router to add the new next hop address for the specified flow. It
returns the result of the policy enforcement on the managed node.

The QoSPC_2_MANBoP is the last component for the QoSPC functional
domain that has been implemented in the proof-of-concepts. This
component is installed when needed, at the network-level station when
running over element-level MANBoP managers. The method logic
implemented translates all network-level QoSPC functional domain policies
defined for the proof-of-concepts into the corresponding element-level
QoSPC policies. Once the policies are created it forwards them to the
appropriate element-level managers to be processed. Additionally, it registers
at the Naming Services for these element-level managers as receiver of policy
enforcement results. Finally, it returns an unspecified result value to avoid
having the PCM blocked waiting for the enforcement result. The real
enforcement result value will not be known until element-level policies are
enforced and inform the component of the enforcement result via the
recvEnfResult method that will be described in the following sub-section.

The DelegationPC_0_MANBoP and DelegationPC_1_MANBoP have been
implemented with the exactly the same logic in this method. Both
components contain logic for registering new users in the management
station and for creating restricted functional domains for these users.
Particularly, they look at the action type to be enforced. When it is a newUser
action, they create the new User IMO in the Database with the information
received in the policy. They also create and store the Schema IMO that allows
the user to access the restricted functional domains specified in the policy.
When the policy action is a FDRestriction action, the components first obtain
the user name and password from the policy conditions. Then, they verify
that they are correct. Afterwards, they obtain the permitted restricted
functional domains and check that the functional domain to be restricted is
among the ones permitted. If so, they download the XML Schema to be
restricted and finally, modify the XML Schema to introduce the restrictions.
Finally, they return the enforcement result.

The DelegationPC_2_MANBoP component in addition to the logic just
described for the other DelegationPC components implements the logic for
translating network-level delegation policies into element-level ones. The
translation is carried out only if the delegation policy applies at the element-
level. Translated element-level policies are forwarded to the corresponding
element-level stations where they will be enforced. Additionally, the

 294

Section V.4 – Implemented Code

component registers at the Naming Services of these stations as receiver of
enforcement result reports. Finally, the component returns the unspecified
result value.

The method logic implemented in the ServicePC_0_FAIN component deals
with the deployment and configuration of active services in FAIN nodes. In
particular the active services supported are those used for the proof-of-
concepts: the duplicator and the transcoder active services. When the policy
action is a ServiceDeployment action the component contacts the ASP system
[FAIN03c] in the FAIN active node to request the deployment of the active
service with the appropriate parameters. These parameters are calculated
taking into account the policy action values. Then, the component stores the
IOR of the deployed service and returns it with the correct enforcement
Result type. When the policy action is a ServiceConfiguration action the
component uses the IOR of the component to configure it based on the
received action values. If the configuration is successful, a correct
enforcement result is returned.

The ServicePC_1_FAIN component carries out almost the same
functionality. The main difference with its network-level equivalent is that
configuration parameters received in the policy action are much more detailed
and hence, the translation of these parameters into service parameters is a bit
faster.

In the case of the ServicePC_2_MANBoP component, the logic included in
the method is the translation logic. This component translates all network-
level service policies supported in the scenario into element-level ones. Then,
it forwards the element-level policies to the corresponding element-level
stations. Finally, the component registers at the Naming Services running in
that element-level stations as receiver of enforcement result reports and
returns the unspecified result value.

The last Policy Consumer component implemented for the proof-of-concepts
is the MonPC_1_ABLE component. This component enforces monitoring
policies introduced by higher-level Monitoring Meter components. The logic
implement for this method in the component is oriented towards informing
the corresponding network-level MM component of a new value in a
monitored condition. More specifically, the component looks in the Naming
Service if the MM component to be informed is registered. If so, it uses the
recvMonResult method from that MM to inform it about the new monitored
condition value in the managed device. Afterwards, and if no error occurs, the
component simply returns a successful enforcement result.

b public void recvEnfResult(String, t_policyId, Result)

This method is called by lower-level MANBoP managers to inform about the
enforcement result of a policy. More specifically, this method receives the
enforcement result from all underlying devices where a policy has been

 295

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

enforced and based on these results it constructs the global enforcement
result. Then, it informs the PCM of the final enforcement result of the policy.

The method has been defined with three parameters. The first parameter is a
string containing further information if an error has occurred during the
policy enforcement. Then, the policy identifier of the policy being enforced is
also introduced. The last parameter is the Result type containing the
enforcement result and any further information of interest.

Three Policy Consumer components among those implemented for the
proof-of-concepts include logic for this method. These components are the
QoSPC_2_MANBoP, DelegationPC_2_MANBoP and ServicePC_2_
MANBoP components. In all three cases the implemented logic in this
method is exactly the same. For every enforcement result received they add
the result information into the global result. Just one incorrect enforcement
value in any of the element-level enforcement results received sets the global
enforcement result value to incorrect enforcement. Also, the method logic
compares the number of enforcement results received with the number of
element-level managers to which the policy has been forwarded. When all
enforcement results have been received, the PCM component is informed
about the global enforcement result.

Section V.5 – Proof-of-concepts demonstration description

1st Introduction

In order to evaluate the proof-of-concepts implementation just described, we
have envisaged two scenarios that run over testbeds prepared in our
laboratory. Each of these two scenarios is targeted towards an evaluation goal.
More specifically, the first scenario is oriented towards assessing the
functional requirements of the system: the system flexibility, delegation
mechanism, etc. On the other hand, the second scenario is targeted to assess
the system scalability.

Along this sub-section we will describe in detail both scenarios as well as the
testbeds where they are going run. We will first describe the scenario targeted
towards evaluating the functional requirements and then the scenario
prepared for the scalability assessment.
2nd Functional assessment scenario (first scenario)

A Description

The scenario starts when a service provider contacts a network operator
because he wants to offer to his customers a webTV service. The webTV
service consists on the broadcasting of a video program in the Internet that
customers are able to watch irrespectively of their terminal capabilities.

 296

Section V.5 – Proof-of-concepts demonstration description

Customers interested in the service will subscribe directly to the service
provider.

The service provider needs from the network operator a Virtual Active
Network (VAN), containing computational and forwarding resources,
wherein he can deploy services that may be customised to meet customer
requirements.

The service provider and the network operator negotiate a Service Level
Agreement (SLA) that establishes the exact resources that will be assigned to
the service provider and where will them be assigned. These resources are:

i. Two Virtual Environments in two different FAIN active nodes
[FAIN03d]. The computational resources assigned to the VEs must
be enough to run the service provider’s active services.

ii. The SLA also establishes the allocation of certain forwarding
resources enough for the transmission of the video data with an
acceptable quality.

iii. To guarantee the forwarding resources assigned to the service
provider the network operator assigns an ABLE router [ABLE] to
monitor the used bandwidth, if a threshold is exceeded the traffic
from the service provider is routed through a backup route.

iv. The service provider is allowed to introduce some types of service
policies into the management system with which it will install and
configure his actives services freely.

v.

The active services from the service provider will be registered and
stored in the active service repository owned by the network
operator.

Once the SLA negotiation is concluded, the network operator must configure
his managed network to fulfil all points of the agreement. The configuration
is executed by enforcing five policies, four of them are grouped in a policy
group that must be enforced atomically. These four policies will create the
VAN for the service provider and delegate the management functionality (i.e.
restricted types of service policies) to the service provider. The VAN creation
encompasses the creation and activation of the VE in the two FAIN active
nodes, the delegation of the restricted service management functionality and
the reservation of the necessary resources. The fifth policy is processed
individually. This policy is responsible of guarantying the forwarding
resources30. It re-routes the service provider flows through a backup route
when a threshold is exceeded in the initial route. However, when the network
operator tries to introduce the policy, the management framework, more
specifically the Policy Conflict Check component, will refuse the enforcement

30 This policy is enforced over a CISCO router. For this reason many times along the document the

reader might see references to this policy as: ‘the policy enforced over a CISCO router in the scenario’.

 297

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

of this policy. The reason is that one of the nodes in the backup route is not
registered as part of the managed network inside the management system.
This part of the scenario has been included exclusively to demonstrate the
capability of the system of adding and removing managed elements
dynamically. The network operator will add the node in the managed
topology with an administrative command and introduce the policy again.
This second time the policy is introduced successfully. Finally, the network
operator registers and stores the service provider’s active services in the
service repository.

When the managed network and the management framework are both
configured as established in the SLA, the service provider will start the
creation of the webTV service.

In the scenario, the service provider has two customers that have previously
subscribed to use this service. Hence, the service provider creates the webTV
service to satisfy these two customers. One of the customers has subscribed
for the reception of the video in MPEG format while the second one wants
to receive it in H.263 format. Therefore, the service provider will create a
service topology as the one shown in the figure below.

MPEG

MPEG h263

Video
emitter

(SP)

Transcoder

Duplicator

Video receiver

(Customer 1)

MPEG

Video receiver

(Customer 2)

Figure 5 - 4. WebTV Service topology

To create such a service topology the service creator will introduce a policy
group of service policies that must be enforced atomically. The policy group
consists of four policies. Two policies will be enforced in the FAIN active
node that is closer to the video emitter. These policies will serve to request
the deployment and configure the duplicator active service. The duplicator
active service receives the video data, duplicates it and forwards it to two
destinations specified. The other two policies will be enforced in the second
FAIN node to request the deployment and configure the transcoder active
service. The transcoder active service receives video data in MPEG and codes
the video information with a new video format, in this case H263. Both active
services will be deployed from the active service repository owned by the
network operator.

Once everything is set up and running both customers are capable to see the
video in their respective format. The bandwidth is also monitored periodically
to assure the video quality.

 298

Section V.5 – Proof-of-concepts demonstration description

At this point, interfering traffic starts flowing through the same links as the
video flow to Customer 2. Soon, the threshold of the video quality assurance
is reached. This causes the enforcement of the policy that will re-route the
service provider flow avoiding the interfering traffic.

The process just described will be carried out two times, each time being one
half of the whole scenario. During the first half of the scenario, the first time
the above process is carried out, the management infrastructure will consist
only on a MANBoP network-level station. In the second half, the
management infrastructure will be formed by a MANBoP network-level
station working over MANBoP element-level managers. There will be one
element-level manager per managed device.

The objective of running the process described two times is showing the
system’s capability of simple creation of different management infrastructures.
Furthermore, we will analyse and compare the management system behaviour
with both management infrastructures.

In the following sub-section we will go into details and describe this scenario
as a sequence of steps.

B Steps

a Step 1: Creation of the Virtual Environments

This step encompasses the enforcement of the first policy from the VAN
creation policy group. This policy is enforced in the two FAIN active nodes
and causes the instantiation of a Virtual Environment as well as the allocation
of the corresponding resources to the service provider in each node.

The policy group information carried inside the policy specifies that the policy
group must be processed at the network-level. Hence, the other group of
policies are stored at the network-level station until the correct enforcement
of this policy is received.

The policy has no condition that needs monitoring, hence it is enforced
directly. The policy action specifies the type of Execution Environment (EE)
that will be instantiated (in this case a JVM), the quality of service class
assigned to the service provider and the identifier for the VAN. There are
three levels of QoS: bronze, silver and gold.

The policy is enforced by the QoSPC component running inside the
corresponding active node. This QoSPC will map the received policy action
attributes to node interface commands to carry out the requested action.
Since this is the first QoS domain policy processed in the scenario, the
download and installation of the QoSPC will be requested on each FAIN
active node where it must be enforced. Additionally, when the management
system infrastructure is that of a network-level over element-level managers, a
QoSPC component realising policy translation between QoS network-level
policies and QoS element-level policies will also be installed at the network-

 299

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

level management system. Furthermore, the Policy Conflict Check
component (PCC) will also be dynamically installed in all those management
stations where the policy is processed. The PCC component is always
installed with the first policy processing in a management station and every
time a newer version is needed.

b Step 2: Registration of the Service Provider

If the previous step is completed successfully and the enforcement
confirmation is received at the network-level station, the second policy from
the VAN group is processed.

This second policy is a delegation policy that will register the service provider
as authorised user of the management system and grant him access to the
restricted functional domain that will be created with the next policy.

The delegation policy action contains a field called ’Applies’ that determines
where the delegation must be done; i.e. at network-level, at element-level or
both. In this case the delegation policy specifies that the functionality must be
delegated at both levels, obviously just when both levels are used in the
management infrastructure created.

Other policy action fields included in the policy are the user name and
password from the service provider and the restricted functional domain to
which it will have access.

The policy has no conditions, therefore it is enforced directly on those
management stations within the management infrastructure where the service
provider is allowed to use such functionality. The policy is enforced by the
DelegationPC component. Again, this policy is the first delegation policy
processed in the scenario. Thereby, the processing of this policy causes the
dynamic download and installation of the DelegationPC component at every
management station within the management infrastructure. The actual
enforcement of the policy causes the creation of the appropriate user
information in the management station’s Database.

c Step 3: Delegation of a restricted Service Functional Domain

Once the service provider is correctly registered in the system, the processing
of the third policy of the group begins. This policy will create the restricted
XML Schema assigned to the service provider in each management station
where the functionality has been delegated to him.

The policy condition need not be monitored. The two policy conditions
included are the service provider’s user name and password.

The policy action includes those policy fields that must be restricted. In this
case, the policy fields restricted are the allowed target nodes, the list of actions
from the service domain permitted and two policy action fields. These two
policy action fields are the VAN name which is restricted to be exclusively the

 300

Section V.5 – Proof-of-concepts demonstration description

name of the service provider’s VAN and the active services names that might
be used, which are restricted to ‘duplicator’ and ‘transcoder’.
The policy is enforced by the DelegationPC component on those
management stations within the management infrastructure where the service
provider has obtained the delegated functionality.

d Step 4: Activation of the Virtual Environments

When the enforcement confirmation from the previous policy is received the
last policy of the group begins its processing. This policy will activate the
Virtual Environment previously created for the service provider and
definitively allocate the corresponding resources. This policy is included as the
last of the policy group to avoid taking network resources before time and
before being sure that the other group policies will be enforced correctly.

The policy includes no conditions needing monitoring. Thus, the policy is
enforced directly by the QoSPC component running in the FAIN active
nodes. The policy action fields are the same as those included in the Virtual
Environment creation policy.

Only when the enforcement confirmation of this policy is received, the last
one from the group, the user is informed about the correct enforcement of
the group. If any of the group policies would have failed, previously enforced
policies would have been removed and the user would have been informed
about the impossibility of correctly enforcing the group.

At this point the service provider can start using and configuring his VAN.
The processing of the quality assurance policy has been moved to later steps
on the scenario in order to keep all quality assurance steps together.
Moreover, the policy would not be needed until then.

e Step 5: Deployment of the duplicator active service

To prepare his Virtual Active Network (VAN) to offer the WebTV service,
the service provider will introduce a policy group in the management system.
This policy group is formed by four service policies that will create the service
topology shown in Figure 5 - 4. The four service policies will be authorised
with the service provider’s access rights. That is, they will be validated against
the restricted XML-Schema.

The first group policy will be processed immediately. This policy will request
the deployment of the duplicator active service in the FAIN active router that
is closer to the video emitter.

The policy contains no condition, so it will be enforced immediately. As long
as the policy is not refused in the authorisation process.

The policy action is a ‘ServiceDeployment’ action permitted to the service
provider. The policy action has many fields. The first field is the name of the
service provider’s VAN where the active service must be deployed. This field

 301

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

is restricted to the VAN identifier of the service provider’s VAN. The second
action field is the name of the active service that must be deployed, in this
case ‘duplicator’, which is one of the two allowed values. Finally, the last field is
the identifier of the EE where the active service must be installed, in the
policy the value is ‘JVM’. This last field is not restricted, however at VAN
creation’s time the only EE specified for that VAN was the JVM.

The policy is enforced by the ServicePC running on the corresponding FAIN
active node. As this is the first policy from the service domain enforced in the
scenario the download and installation of the ServicePC will be requested for
correctly enforcing the policy. The ServicePC components will be installed at
those FAIN active nodes where the policy is going to be enforced.
Additionally, a ServicePC translating service network-level policies into
service element-level policies will be installed at the network-level station
when the management infrastructure is that of a network-level over element-
level managers.

The enforcement of the policy is done by mapping the policy fields into
commands send to the Active Service Provisioning (ASP) facility
implemented in FAIN [FAIN03c].

f Step 6: Deployment of the transcoder active service

As soon as the correct enforcement confirmation of the previous policy is
received the processing of the second service group policy begins. This policy
requests the deployment of the transcoder active service inside the second
FAIN active node.

The policy is validated against the service provider’s restricted XML Schema.
If the authorisation process does not refuse the policy its processing
continues normally.

The policy is very similar to the previous one. As the previous one it has no
conditions, which causes that the enforcement process is started immediately.

The policy action fields are also very similar to those in the previous policy,
the only change is that the service name field value is ‘transcoder’ instead of
‘duplicator’.
The enforcement of the policy causes the dynamic installation of the
ServicePC component that will enforce the policy at the second FAIN active
node. This Policy Consumer (PC) component was not installed as a
consequence of the previous policy enforcement simply because it was not
needed, as this FAIN active node was not contacted as result of the previous
policy enforcement. As in the previous policy, the enforcement is done by
contacting the FAIN ASP system available in the node.

 302

Section V.5 – Proof-of-concepts demonstration description

g Step 7: Configuration of the duplicator

The reception of the correct enforcement confirmation from the previous
policy starts the processing of the third service group policy. This policy will
configure the duplicator with the appropriate information according to the
service topology that is being created.

This service policy has no conditions either. Hence, as long as the policy is
not refused by the authorisation mechanism the policy enforcement process is
started immediately.

The policy action of the policy is a ‘ServiceConfiguration’ action, which is one of
the two action types delegated to the service provider. The action fields are
first, the identifier of the VAN where the service to be configured is located.
The only allowed field is the identifier of the service provider’s VAN. The
second action field is the named of the service to be configured. In this policy
the service name is obviously ‘duplicator’, which is also allowed. Finally, the rest
of the policy action fields are ‘ConfigurationInfo’ fields. A service configuration
action might have from zero to, potentially, an infinite number of
‘ConfigurationInfo’ fields. These fields are service-specific as they contain the
parameters that actually configure the service. In this case, the policy action
contains five ‘ConfigurationInfo’ fields providing information about the address
of the video emitter and the addresses of the two destinations of video data.

The policy is enforced by the ServicePC component running at the
corresponding FAIN active node. This component keeps the IOR (CORBA
Object reference) of all active services that it has installed within the active
node. Therefore, the ServicePC component uses the IOR from the
transcoder to contact it directly and introduce the parameters contained in the
policy. If a service provider wants its active service to be managed with the
MANBoP management system, that active service must offer a common
interface. However, the network operator might wish to create a special
Policy Consumer component for managing one particular active service, with
a different interface, owned by the operator himself or even from by one of
his service providers, but it will not usually be the case.

h Step 8: Configuration of the transcoder

Finally, if the duplicator active service could be configured correctly, the
processing of the last service group policy is started. This policy will configure
the transcoder active service with the necessary parameters to fit the service
topology being created and the ‘Customer 1’ requirements.

As the rest of service group policies, the policy contains no conditions. If the
authorisation is successful, the policy enforcement begins.

The policy action fields are almost the same as in the previous policy. The
only difference is in the ‘ServiceName’ field, which in this case is ‘transcoder’ and
obviously the ‘ConfigurationInfo’ fields. The configuration information

 303

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

contained in these fields tells the transcoder the source and destination of the
video data as well as the video and audio quality of service classes. In this
case, the video source is the address of the duplicator, while the destination of
the coded video is the customer’s address. Finally, the video and audio quality
of service classes have three possible values: bronze, silver and gold.

The policy is enforced by the corresponding ServicePC in the appropriate
FAIN node. The ServicePC will use the IOR of the transcoder service to
contact it and configure it with the information contained in the policy.

The confirmation of the correct enforcement of the policy causes that the
management system informs the user of the successful enforcement of the
service policy group.

At this point, the webTV video service is ready and both customers are able
to see the video channel in the respective coding formats.

In the following scenario steps, we will describe the quality of service
assurance part of the scenario.

i Step 9: Quality assurance policy refused

Once the service is up and running the only missing part of the scenario is
that of assuring the bandwidth QoS to the service provider. In order to do
that the network operator introduces in the management system a policy that
monitors the throughput in an ABLE node that is part of the VAN assigned
to the service provider. When a certain threshold is reached the policy is
enforced causing the service provider traffic to be re-routed through a backup
route. However, to test the MANBoP framework’s capability of dynamically
adding or removing managed elements to the managed topology, one of the
nodes in the backup route has not been included within the managed
topology when the management system is booted. In consequence, when the
network operator tries to introduce the quality assurance policy the
management framework refuses the policy introduction with the following
error message: ‘One or more nodes involved in the policy are not included within the
managed network topology’.
It is the PCC component that when realising the static conflict checking
detects the conflict and refuses the policy processing with that error message.

The network operator must first register the new managed device in the
managed network to be allowed to introduce the quality assurance policy.

j Step 10: Addition of a node to the managed topology

This step is done by the network operator via an administrative command
supported by the Policy Consumer Manager (PCM) component. With
administrative we refer to the fact that it is a command oriented to the
administrator of the network, usually the network operator. This command is
implemented in the addN method that has already been described in Section

 304

Section V.5 – Proof-of-concepts demonstration description

V.4 – Implemented Code. This method receives as parameters the new
managed topology information and the information to correctly access the
new underlying device (either the managed device or its correspondent
element-level manager).

After requesting the managed device addition in the network-level station and
all element-level managers (when they are included in the management
infrastructure) managing neighbouring devices to the one added, the network
operator might try again the introduction of the quality assurance policy.

k Step 11: Quality assurance policy accepted

At this point the network operator introduces the quality assurance policy in
the management system and this time it is not refused by the conflict check
component.

The policy contains a policy condition that needs to be monitored to decide
when the policy must be enforced. This policy condition is an interface
bandwidth condition (‘IFBWCond’) that establishes a threshold. When the
threshold is reached the condition is met and the policy enforcement process
will be triggered. The policy condition value field contains four strings that
contain information for doing the monitoring correctly. These four strings
indicate the IP address of the router being controlled by the ABLE node that
must be monitored, the router type (in this case a CISCO 7200 router
[CISCO7200]), the interface that must be monitored and the bandwidth
threshold.

To realise the monitoring the BWMM component is dynamically downloaded
and installed in the system. This Monitoring Meter (MM) when the
management infrastructure is formed by a network-level manager only, will
directly realise the monitoring by sending an active packet to the ABLE active
router.

When the management infrastructure is that of network-level over element-
level managers, the BWMM component is also installed at the network-level
station. However, this time the BWMM running at the network-level creates
an element-level monitoring policy with the policy condition information
received. This monitoring policy is forwarded to the corresponding element-
level manager that will realise the monitoring through the BWMM
component installed at the element-level.

l Step 12: Re-routing of service provider’s flows

At this point we will boot a traffic generator that will start sending packets
through the monitored interface. This will cause that soon the threshold
established by the policy condition is reached.

When the management infrastructure consists of a network-level station only,
it is directly the BWMM running at this station the one informed by the active
code running in the ABLE router that the condition is met.

 305

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

On the other hand, when the management infrastructure is formed by
network and element-level managers, the active code running at the ABLE
router will inform the BWMM of its attached element-level manager that the
condition is met. This will cause the enforcement of the element-level
monitoring policy. A Monitoring Policy Consumer (MonPC) that is
dynamically downloaded and installed within the element-level station will
enforce this policy. The enforcement of the policy is simply informing the
network-level BWMM that the condition is met.

Once the BWMM knows that the quality assurance policy condition is met it
triggers the policy enforcement that will cause the re-routing of the service
provider’s flows through the backup route. The enforcement of the policy
will be done by the QoSPC component.

When running a network-level only management infrastructure the
management station is running directly over the managed devices and hence
all dynamically installed components interacting with the managed devices are
specific for that type of devices. Up to know only QoSPC components for
FAIN routers have been installed and they are running on the active routers
themselves. Hence, a QoSPC component for managing CISCO 2600 routers
(the one that is going to be reconfigured to change the route) is dynamically
downloaded and installed in the station.

On the other hand, when the management infrastructure is a network-level
over element-level management infrastructure, components running at the
network-level station have only one type of underlying devices: MANBoP
element-level managers. For this reason, the needed QoSPC component for
processing the policy would have been previously installed since it is the same
as when processing VAN QoS policies. Nevertheless, at the corresponding
element-level manager the QoSPC component for managing CISCO 2600
routers will do have to be dynamically downloaded and installed to enforce
the policy.

The policy action fields of the quality assurance policy contain the necessary
information to re-route service provider’s flows through the backup route.
These fields are the flow source (optional) and flow destination values to
identify the service provider’s flows and the hops addresses through which
these flows must routed, that is, the backup route.

The policy is enforced by the corresponding QoSPC component by
configuring the CISCO router using CLI commands. These CLI commands
are introduced in the router opening a telnet session with it.

After the enforcement of this policy, service provider’s video flow to
Customer 2 will be re-routed through the backup router skipping the
interfering traffic.

All these twelve steps are done twice in the scenario, once for each
management infrastructure considered.

 306

Section V.5 – Proof-of-concepts demonstration description

C Testbed

The managed topology created prepared for this scenario is shown in the
figures below. The first figure shows the managed topology before the node
addition and before the service provider’s flow is re-routed. The second figure
shows the managed topology at the end of the scenario.

Figure 5 - 5. Managed network topology before re-routing through the backup route te

Customer 1
berlin.upc.es

video sender
kurosawa.upc.es

Customer 2
172.31.255.3

FAIN 1
(duplicator)

santana.upc.es

FAIN 2
(transcoder)

kubrick.upc.es

CISCO2600
11 11 11 254

CISCO 7200_2 +
ABLE at 11.11.11.4

traffic generator
at 11.11.11.3

Managed
network

Customer 1
berlin.upc.es

video sender
kurosawa.upc.es

Customer 2
172.31.255.3

FAIN 1
(duplicator)

santana.upc.es

(transcoder)
kubrick.u

FAIN 2

pc.es

CISCO2600
11 11 11 254

CISCO 7200_2 +
ABLE at 11.11.11.4

traffic generator
at 11.11.11.3

Managed
network

CISCO 7200_1
172.31.255.1

Figure 5 - 6. Managed network topology after re-routing through the backup route Figure 5 - 6. Managed network topology after re-routing through the backup route

In the figures below we show the whole topology including the management
stations. The first figure shows the topology with the network-level only
management infrastructure and the second the topology with the network-
level over element-level management infrastructure.

In the figures below we show the whole topology including the management
stations. The first figure shows the topology with the network-level only
management infrastructure and the second the topology with the network-
level over element-level management infrastructure.

 307

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

Managed
network

NL Manager
kurosawa.upc.es

Figure 5 - 7. Testbed topology with the network-level only management infrastructure

Figure 5 - 8. Testbed topology with the network-level over element-level managed topology

NL Manager
kurosawa.upc.es

EL Manager
santana.upc.es

Managed
network

EL Managers
kubrick.upc.es

 308

Section V.5 – Proof-of-concepts demonstration description

All nodes are physically located at building D4 inside the North Campus of
the Universitat Politècnica de Catalunya (UPC). Indeed, except Kurosawa,
Santana and Berlin, which are installed in a separate room all the other nodes
are located in the same room. Finally, all links between nodes are Fast
Ethernet links except those between CISCO routers, which are connected
through Serial interfaces.

After having a clear picture of all the nodes involved in the testbed we
provide in the table below the properties of each testbed node.

Node IP Computer properties OS Testbed-related
installed software Roles played

Kurosawa.upc.es 147.83.106.111 PC Pentium IV 1500
512MB RAM HD 30 GB

Windows
2000 Server

MANBoP, CIA, JMF
[SunJAVAd], Eclipse

profiler [Profiler]

Santana.upc.es 147.83.106.104 PC Pentium IV 1500
512MB RAM HD 30 GB

Linux
Debian

MANBoP, CIA, FAIN
ANN, ASP, Eclipse

profiler

Kubrick.upc.es 10.0.4.4 PC Pentium III 667 384
MB RAM HD 14GB

Linux
Debian

MANBoP, CIA, FAIN
ANN, ASP

11.11.11.4 11.11.11.4 PC Pentium 150 32MB
RAM HD 800 MB

Linux
Debian

ABLE

CISCO2600 11.11.11.254 CISCO 2600 Router IOS -
CISCO 7200_1 172.31.255.1 CISCO 7200 Router IOS -
CISCO 7200_2 172.31.255.2 CISCO 7200 Router IOS -

172.31.255.3 172.31.255.3 CISCO 7200 Router IOS -

Berlin.upc.es 147.83.106.75 PC Pentium III 450
128MB RAM HD 1,6 GB

Windows
98

JMF

11.11.11.3 11.11.11.3 PC Pentium 150 32MB
RAM HD 2 GB

Linux
Debian

MGEN [MGEN]

• Network manager
• Code server
• Video server
• Performance

profiler
• FAIN ANN
• EL Manager for

santana.upc.e
s

• Performance
profiler

• FAIN ANN
• 4 EL Managers:

(kubrick,
11.11.11.4,
11.11.11.254,
172.31.255.1)

• ABLE Router

• Passive router
• Passive router
• Passive router

under ABLE
• Video flow

destination
• Video flow

destination
• Traffic generator

Table 5 - 3 . Testbed-nodes properties 6

As can be seen in the table the two nodes with more computing power are
the ones responsible for obtaining the performance evaluation data.
3rd Scalability assessment scenario (second scenario)

A Description

To assess the scalability of the system, let’s imagine that the service provider’s
flows cross more and more passive routers of different types where, in order
to assure the video quality the monitoring of bandwidth at their

 309

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

corresponding interface must be done. Now, let’s imagine that the network
operator decides to assure the flow quality introducing a quality assurance
policy for each monitored node. This would create a situation where each
policy causes the monitoring of the corresponding node to decide when it
must be enforced. Nevertheless, this time the monitoring is done by
periodically polling the passive routers with CLI commands via a telnet
connection since the monitoring is done over passive routers and not ABLE
routers as before.

As more and more policies are being introduced, more and more Monitoring
Meter components are dynamically installed to carry out the polling of the
information. As each MM component is using certain computational and
forwarding resources, the station where these components run has less free
resources as the number of MMs grows.

Before going on with the description of the scenario let’s clarify the reason of
some adopted decisions. Particularly, the reason why the monitored nodes
must be passive nodes of different types is that it is the only way of flooding
the management station with MM components. If the managed devices were
active or programmable routers, the MM components would not be installed
inside the management station but on the routers themselves, or at least more
efficient ways for monitoring them would be available. In the same way, if
they were all passive routers of the same type, for example CISCO 2600
routers, the monitoring for all routers could be done by a single MM
component, with a significant reduction of the manager load. Thereby, we
need that the monitored devices are passive routers of different types, which
must be therefore monitored in different ways and thus, need different MM
components to do the monitoring.

In a more realistic scenario, where we have many devices of the same type,
and some active routers, the manager station would be able to support the
monitoring of much more devices that in this fictitious scenario.

The network operator will progressively introduce more and more quality
assurance policies until the maximum number of 100 is reached or until the
management system gets blocked. Obviously, we do not have in our
laboratory the possibility of creating a testbed with one hundred routers of
different types. In consequence, we will cheat the MANBoP system
bootstrapping it with a testbed as the one described, although Monitoring
Meter components will be all monitoring the same CISCO 7200 router.
Monitoring Meters will poll the used bandwidth in one of the routers
interface at five seconds intervals.

Furthermore, even if we could not use the CISCO router to open one
hundred telnet sessions, we would simulate the expected behaviour of
Monitoring Meter components based on the data obtained from a single
monitoring on the router.

 310

Section V.5 – Proof-of-concepts demonstration description

This scenario, where the network operator progressively introduces one
hundred policies that need to be monitored by one hundred different MM
components, will be realised twice. The first time with a management
infrastructure of a single network-level management station. The second time,
the management infrastructure will consist of a network-level station working
over as many element-level managers as managed devices (i.e. one hundred).

B Steps

The steps for this scenario are very simple. Indeed, one single step is repeated
up to one hundred times.

In this step the network operator introduces a quality assurance policy that
causes the monitoring of the used bandwidth on a passive router’s interface
to decide when the policy must be enforced. If the threshold were reached in
the monitored bandwidth, which will never happen, the policy would be
enforced causing the re-routing of the service provider’s flows.

The policy condition contains the information needed to correctly monitor
the underlying device, as the device interface to be monitored and the
threshold.

A new Monitoring Meter component will be dynamically downloaded and
installed to monitor the corresponding managed device. Each MM
component will actually monitor the same CISCO 7200 router with the IP
address 11.11.11.253, although it will never inform that the threshold is
reached whatever the monitored value is.

C Testbed

The testbed in this scalability scenario is physically simpler than in the
previous scenario although the MANBoP system sees a much more complex
one.

In the figures below we can see the testbed for both the network-level only
management infrastructure and the network-level over element-level
management infrastructure.

 311

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

NL Manager
kurosawa.upc.es

MM100

PR1 PR2 PR3 PR100

PRx Passive Router Number x

CISCO 7200 Router (11.11.11.253)

MM 1

MMx Monitoring Meter component Number x

MM 2 MM 3

Figure 5 - 9. Scalability scenario testbed for the network-level only management infrastructure

EL Managers 2-100
In different machines

EL Manager1
santana.upc.es

PR1

NL Manager
kurosawa.upc.es

PR2 PR3 PR100

PRx Passive Router Number x

CISCO 7200 Router (11.11.11.253)

MM MM MM MM

MM

MM Monitoring Meter component
Figure 5 - 10. Scalability testbed scenario for the network-level over element-level management

infrastructure

Some testbed properties that may be worth explaining appear in the figures.
The first one is noticing how we have represented the fact that all passive
routers are physically the same CISCO 7200 router receiving all requests. The
second important aspect is that we do not have the possibility of using one
hundred computers in our laboratory for introducing one hundred element-
level managers. Thereby, from the second to the last element-level manager,
they are run at different machines (as much as we need to

 312

Section V.6 – Conclusions

boot them all), because we don’t really mind the load at these computers since
the profiling will exclusively be done at santana.upc.es and at kurosawa.upc.es
and the performance data obtained is not affected by the load in the other
computers. The computers that might be used for that goal are
kubrick.upc.es, candanchu.upc.es and satriani.upc.es.

The description of the nodes location and the network connections between
them given for the previous scenario applies equally in this one.

In the table below we show the main characteristics of each node in the
testbed.

Node IP Computer properties OS
Testbed-related

installed
software

Roles played

Kurosawa.upc.es 147.83.106.111 PC Pentium IV 1500
512MB RAM HD 30 GB

Windows 2000
Server

MANBoP, CIA,
Eclipse profiler

11.11.11.253 11.11.11.253 CISCO 7200 Router IOS -
Santana.upc.es 147.83.106.104 PC Pentium IV 1500

512MB RAM HD 30 GB
Linux Debian MANBoP, CIA,

Eclipse profiler

Kubrick.upc.es 10.0.4.4 PC Pentium III 667
384MB RAM HD 14GB

Linux Debian MANBoP, CIA

Candanchu.upc.es 147.83.106.70 PC Pentium III 667
256MB RAM HD 14GB

Linux RedHat 7.2
/ Windows 2000

MANBoP, CIA

Satriani.upc.es 147.83.106.105 PC Pentium III 667
256MB RAM HD 14GB

Linux RedHat 7.2
/ Windows 98

MANBoP, CIA

• Network manager
• Code server
• Performance

profiler
• Passive router
• EL Manager 1
• Performance

profiler
• Several EL

Managers
• Several EL

Managers
• Several EL

Managers
Table 5 - 3 . Testbed nodes properties 7

Again the nodes responsible for obtaining the evaluation information in the
testbed are santana.upc.es and kurosawa.upc.es

Section V.6 - Conclusions

Along the chapter we have reviewed the components and functionality
implemented for the proof-of-concepts as well as the scenarios with which
this functionality will be evaluated.

First of all, we have described in detail the naming conventions followed
during the implementation. These conventions affect the names of MANBoP
packages, the names of directories where Database information is stored, the
names of the classes registered in the Naming Service and finally, the names
of the code that might be dynamically installed in the framework.

The naming conventions for both the MANBoP packages and the Database
directories have been defined with the goal of naming them as simply and
understandably as possible. On the other hand, the naming conventions for
the Naming Service and the dynamically installable code are more complex

 313

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

because they are oriented towards facilitating the extensibility of the
framework and the interactions between components.

A normal user will not need to know any of these conventions to use
MANBoP normally. However, following the specified naming conventions is
essential for modifying the framework or implementing new dynamically
installable components for new functional domains.

The second aspect covered in this chapter is the description of the
Information Model defined for MANBoP. We have described first the
Information Model part related with policies and their fields and afterwards,
the part containing information needed by the framework to work (i.e.
managed topology information, user information, manager information, etc.).

Moreover, the policy Information Model part has been split in those objects
containing functional domain independent information and those objects (i.e.
policy conditions and policy actions) that have been implemented for
functional domains used in the scenarios defined in the Thesis for the proof-
of-concepts.

The policy structure used in MANBoP is based on the IETF Policy Core
Information Model (PCIM) though simplified by defining as mandatory only
those features essential for policy processing. Hence, the size of policies is
considerably reduced (around five times smaller than following the PCIM
model) and their processing is simpler.

On the one hand, we have simplified the definition of policy conditions and
policy actions, that needed the use of several classes following the IETF
PCIM, into just one class for each simple policy condition and each policy
action. On the other hand, we have modified the way policy sets (or policy
groups) are specified to permit the individual introduction of policies of a
group into the framework. In other words, we do not need to introduce into
the framework the whole policy group at the same time.

Furthermore, we have included some new fields, not considered in the IETF
PCIM, to fulfil the specific requirements of this Thesis. Two examples of
these fields are the schemaId and the user fields needed by the extensibility and
delegation mechanism respectively.

Besides the Policy Information Model, a number of Information Model
Objects (IMOs) have been defined in MANBoP to support the normal
behaviour of the framework. These IMOs can be grouped in objects
containing information about the managed topology, objects containing user
information and objects containing information about the management
system itself.

Managed topology IMOs contain information about network elements and
links forming the managed network as well as about the resources available
and used within the network. This information is used by MANBoP instances

 314

Section V.6 – Conclusions

to find out whether resources requested by a user can be allocated and where
they can be found within the managed topology.

The IMOs containing user information indicate what policies or policy
groups has introduced each user, what are the access rights of the user and
what are the resources assigned to a user through the enforcement of one or
more policies.

In addition to the managed topology and user information, each MANBoP
instance keeps information about the instance itself. In particular, it stores
information about the location of the instance within the management
infrastructure and about the components dynamically installed in the system.
Indeed, the information about the location of the instance within the
management infrastructure together with the functional domain requested is
used to identify the components that should be dynamically installed.

Along the chapter, we have also described the code that has been
implemented to proof the concepts proposed in the Thesis. The code has
been implemented in JAVA (JDK 1.4.1) and over a CORBA platform
(OpenORB).

In some cases the implemented functionality does not match exactly the
designed functionality. These differences are most of the times due to the fact
that we have tried to ease the implementation of the proof-of-concepts, and
other times because we have tried to enhance the performance of the system.
However, these changes are always small, as parameter types changes in some
methods, while the expected behaviour from components and the sequence
diagrams followed in every process designed have been fully respected in the
implementation.

The election of the functionality implemented has been guided mainly by two
concepts. The first one is to choose that functionality needed to achieve and
assess the main objectives of the Thesis. The second concept was to keep the
implemented functionality in a reasonable scale and not dealing with aspects
that are not covered in this Thesis, as advanced conflict checking or traffic
engineering algorithms.

It is obvious that not including these functionality in the implementation has
an impact over the performance figures, since the system is more lightweight
and performs slightly better. However, it is also true that an implementation
oriented to an optimum performance of the system would probably
compensate the performance degradation derived from including all
functionality.

The last item described in the chapter is the proof of concept demonstration
scenarios. Two scenarios have been described for the evaluation of the
management framework proposed. The reason for defining two scenarios is
that the definition of a scenario suitable for evaluating all aspects of the
MANBoP framework (e.g. flexibility, extensibility, scalability, etc.) was a
complex task. Furthermore, the resulting scenario would have been difficult

 315

CHAPTER 5 – PROOF OF CONCEPTS IMPLEMENTATION DESCRIPTION

to implement, process, evaluate and understand. By defining two simple
scenarios linked among them, we simplify the comprehension of the
scenarios as well as the testbed setup.

The first scenario described is oriented to assess all MANBoP properties
except its scalability, which is addressed exclusively in the second scenario.
More specifically, the second scenario is focused in the evaluation of the
framework behaviour when the managed network grows. As we do not have
in our laboratory the number of devices necessary to simulate a managed
network of that size, we have configured the management system to send all
management commands for an imaginary big network towards one single
device in our laboratory.

In the following chapter we will analyse the implemented proof-of-concepts
system by running the scenarios described in this chapter. We will also
evaluate the MANBoP framework based on the results obtained and on very
concrete criteria that will be also described in detail in the next chapter.

 316

