

C h a p t e r 6

VI. EVALUATION

Section VI.1 - Introduction

In this chapter we are going to present and analyse the data obtained from
running the previously described scenarios. Based on such data we will
elaborate on the causes and reasons for these figures, on the goodness of the
different trade-offs assumed during the design and on the effects that the
implementation of some of the initial framework requirements has over the
performance of the system.

Furthermore, we will spend some sections discussing how will the framework
perform under different scenarios. We will justify this expected performance
based on the numbers obtained from the previous ones.

Finally, in addition to this exhaustive analysis of the evaluation data obtained,
we will also compare the results obtained with previous projects dealing with
the management of active networks, in particular with FAIN. We will discuss
the different performance figures and, when applicable, explain their causes.

The evaluation chapter is organised in two sections. The first one explains the
criteria that have been followed to evaluate the performance of the system as
well as what system aspects have been evaluated. The second section presents
the obtained evaluation data and the comparison to the available FAIN
performance results.

Section VI.2 – Evaluation criteria

The overall goal of this evaluation is to assess the framework proposed, and
more specifically, to assess the goodness of the different approaches taken
during the design and the technical solutions used in the proof-of-concepts
implementation.

In order to realise this assessment we must first specify the criteria that rules
such evaluation. In this section we describe these criteria, which is composed
by two main sets. The first one encloses those aspects that will help to
establish whether the initial functional requirements that were specified for
the management framework in our Thesis objectives have been fulfilled and
to which extent. This set will be called ‘functional criteria’. The second set is
focused to analyse the performance of the system when realising the designed
functionality. This set of criteria will be called hereafter ‘statistical criteria’ as

 317

CHAPTER 6 – EVALUATION

their assessment is based on the analysis of statistical data recompiled when
running the scenarios. Often, the results obtained when evaluating the
statistical criteria will be used as input for the evaluation of the functional
criteria.

In the remaining of this section we will enumerate the different criteria
contained within the two sets and define, for each of them, to what we refer
exactly and what will be taken into account when evaluating the criteria.
1st Functional Criteria

A Flexibility

With flexibility we refer to the ability of a management system to cope with
different managed network needs: different types of managed devices,
different services, resources, etc.

In particular, when assessing the flexibility of the system we will pay special
attention to:

· The system ability to manage heterogeneous networks that consists of
different types of passive, programmable and active routers.

· The system ability to take advantage of the technical capabilities and
technologies of the managed devices not only to better manage these devices
but also to enhance the management performance (e.g. by reducing
management traffic, etc.).

· The possibility of distributing different components of the management
system in different machines so that the overall system performance can be
enhanced.

· The system capability of creating different management infrastructures so
that it can be best adapted to the network operator necessities.

· The system support for policy group processing and types of group
processing strategies supported (e.g. atomic, best effort...).

B Extensibility

Extensibility can be seen indeed as part of the system flexibility property, and
hence to be included within the flexibility criteria. However, its relevance is so
high in a management system oriented to the management of active and
programmable networks that it is worth to include it as a separated criterion.

By extensibility we refer to the ability of the system to change dynamically its
behaviour, adapt to new services or managed resources and even to cope with
modifications in the managed network as additions or removals of network
elements in the managed infrastructure.

 318

Section VI.2 – Evaluation criteria

C Delegation

The delegation criterion is used to assess the delegation functionality included
in the framework. By delegation we refer to the ability of the network
operator owning the management system to allow some of his customers to
realise certain management actions over the resources they have got allocated.
The process of assigning these ‘access rights’ to customers is what we call
Delegation.

More specifically, in relation to the delegation ability of the system we will
assess the extent to which the management functionality can be delegated, the
level of granularity of the delegation capability, the simplicity of the solution
adopted and the computational cost associated to it

D Scalability

Scalability refers to the management framework design and the distribution of
the management functionality in such a way that the system can cope with
increasing number of managed devices and user requests.

In relation to the scalability criterion we will pay a special attention to the
scalability of the system in terms of increasing the number of managed
devices. The justification for this is extensively discussed in the following
section.

E Security

Within the thesis objectives it has not been taken into account security, which
is considered as out of the scope of this thesis. However, the framework
designed still considers some minimum security aspects that will also be
assessed. In the final chapter of the thesis we will elaborate around further
security mechanisms that could be used to enhance the overall framework
security.

F Interworking

We will assess the interworking criterion by analysing the framework features
that allow the interworking with other systems. Particularly, we will assess the
simplicity and the level of standardisation offered by these interworking
features.

G Portability

By portability we understand the ability of the system to work on different
types of machines (e.g., SUN, Intel) and with different Operating Systems
(e.g. Solaris, Linux, Windows). This criterion will help us to assess to which
extent the implemented code is portable.

 319

CHAPTER 6 – EVALUATION

2nd Statistical Criteria

A Processing time and CPU

The processing time to which we refer in this criterion is the time spent in
every step of the policy processing. We will evaluate the total processing times
for a policy under different situations as well as the times needed to realise
particular policy functions, such as delegation, validation of a policy against an
XML Schema, policy translation, etc.

Processing time measures give us an idea of the CPU consumption and help
us to assess the computational load of the framework. Although this
parameter depends a lot on the way the system is implemented, it is useful as
approximate information and especially as comparison data between the
different policy processing steps.

In addition to the previous data, we will also provide information about the
MANBoP packages that require more computation in average.

These statistics will be provided for the NL station when working alone, for
the NL station when working over EL managers and for the EL stations.

B Memory

Within the memory criterion we consider both the size of heap consumed in
the Java Virtual Machine and the disk space used by the management system.
Particularly, we will detail the storage space needed by the most parts of the
MANBoP Database.

C Bandwidth

We will measure the bandwidth consumed by the management framework
under different circumstances and when realising different actions. With
management bandwidth we refer to the number of bytes per second
transmitted and received by the management stations to manage the network.
The bandwidth information obtained will be used also as input for evaluating
other functional criteria such as the flexibility or extensibility criteria.

Section VI.3 – Evaluation results

In the next paragraphs we present the main outputs from the analysis of the
evaluation data. For obtaining this data, we have run one by one the scenarios
described in the previous chapter. The statistical data for the evaluation has
been obtained with two programs. The first one, a Profiler plugin [Profiler]
for the Eclipse development platform [Eclipse], has been used to obtain the
heap size, the CPU statistics, and the delays. The second program used has
been the Ethereal traffic analyser [Ethereal] based on the libpcap [tcdump]
library (winPcap [winpcap] for Windows machines).

 320

Section VI.3 – Evaluation results

The management stations where evaluation data is obtained are Intel 1.5 GHz
Pentium IV computers with 500 MB of RAM.
The evaluation information obtained from running the scenarios has been
ordered according to the evaluation criteria enumerated in the previous
section. Along the following paragraphs we will present and analyse these data
for each of the criteria.
1st Functional Criteria

A Flexibility

The system flexibility was measured mainly when running the first scenario.
From this scenario we obtained several significant data. In the following lines
we expose and analyse this information in relation to the flexibility criteria.

The first criterion we considered for evaluating the flexibility of the system is
to assess the capacity of the framework for managing heterogeneous
networks. This capacity was tested by creating a testbed that consisted of two
FAIN active routers, one ABLE active router, one CISCO 7200 router and
one CISCO 2600 router.

The framework run over all these managed devices and was able to manage
them seamlessly. This can be seen with the times needed for managing each
of these routers, which vary very little except for the actual enforcement
interactions that depend exclusively on the managed devices.

In the table below we show the actual times used for processing a policy over
each of the managed nodes in the testbed. This time has been decomposed in
time until policy enforcement, and policy enforcement time.

Managed Node FAIN ANN CISCO 2600 ABLE
Dynamically

installable component
involved

ServicePC_0_FAIN QoSPC_0_CISCO2600 BWMM_0_ABLE

Time for processing
the policy

511ms 520ms 631ms

Time for downloading
the component

400ms 281ms 361ms

Time for the
enforcement

4477ms 3575ms 1382ms

Total time 5388ms 4016ms 2364ms
Table 6 - 1. Times for managing different types of network nodes

The times shown in the table are for the part of the scenario with a
management infrastructure composed by only a network-level manager. The
times in the element-level stations, which are the ones interacting with the
managed devices in this case, for the network-level over element-level
management infrastructure would be approximately the same.

During the execution of the scenario the MANBoP system also demonstrated
been capable of managing more than one node of different types for correctly

 321

CHAPTER 6 – EVALUATION

processing a policy. In the step 11 of the scenario, the management system
monitors an ABLE router to determine when a policy must be enforced, and
finally enforces it over a CISCO 2600 router. The data obtained in the
evaluation shows that this process is done again seamlessly: The NL
management station spends 391 ms for starting the enforcement since it
receives the information that the condition is met.

To assess the second flexibility criterion we observed how the management
system interacted with the managed devices and particularly, whether the
management system took advantage of the facilities and technologies offered
by the managed device.

When running the scenarios the management system interacted with FAIN,
ABLE and CISCO routers. In the case of the CISCO routers it used the CLI
facility of CISCO routers to manage them through a telnet connection.
However, it is for the FAIN and ABLE routers where the system takes more
advantage of active network technologies and of the facilities that these
routers offer.

When managing FAIN routers the management system installs the
Monitoring Meter and Policy Consumer components inside the active node.
During the scenario execution, we can observe that two Policy Consumers
(i.e. QoSPC and ServicePC) are installed inside the FAIN ANNs. In this way,
we significantly reduce management traffic, since these components will just
receive the request and return the result to the manager, while all the
interactions with the managed device are done inside the FAIN ANN. Also,
the manager reduces its computational load since part of its components run
inside FAIN ANNs. In the first part of the first scenario (when running with
the network-level-only management infrastructure), we observed that the
network-level manager loads only in its machine the PCC,
QoSPC_0_CISCO2600 and DelegationPC_0_MANBoP components. The
QoSPC_0_FAIN and ServicePC_0_FAIN components are loaded in the
FAIN ANNs. Hence, the component load of the network-level management
station, in terms of dynamically installable components, is reduced from 5 to
3. This would also be true for the element-level managers, although in the
scenario this cannot be observed due to the testbed configuration (the
element-level managers running in the same machines as the FAIN ANNs).

In the case of the ABLE routers the management system also takes advantage
of the facilities that they offer. Although, for the ABLE routers this is not
done by installing Monitoring Meters or Policy Consumers inside the ABLE
active router (not permitted in these routers), but by creating components
that take advantage of the facilities they offer.

In the first scenario, we observe that the monitoring of the ABLE routers is
done by a Monitoring Meter component running inside the management
station. This Monitoring Meter component creates and sends active packets
to the ABLE router in the testbed. These active packets will monitor the
throughput in one of the router’s interface and only when a certain threshold

 322

Section VI.3 – Evaluation results

is exceeded it warns the Monitoring Meter. In this way, the management
station takes again advantage of the facilities of the managed device to reduce
its management traffic and even its computational load, since all the polling
process is done by the active packet inside the ABLE router and not by the
management station.

In the table below we compare the CPU and the management traffic needed
to monitor the throughput every four seconds on the managed device using
an ABLE active packet against using CLI commands.

 Using CLI commands Using ABLE active packet
CPU31 Around 100ms for every polling Around 300ms just once

Management traffic 1453bytes/sec Just one active packet
Table 6 - 2. Comparative table between monitoring using ABLE facilities or not

The third criterion for evaluating the flexibility of the system was to assess the
ability of loading different components of the management system in
different machines. This property, in addition of allowing the distribution of
the management functionality between different machines might help to sort
out different problems that might appear when managing a network.

The fact that the whole MANBoP management system is implemented in
CORBA simplifies a great deal the fulfilment of this criterion.

When running the first scenario we observe that, apart from dynamically
installing Monitoring Meters and Policy Consumers on some ANNs (i.e.
FAIN ANNs), the management system is capable of installing these
components in any kind of machine used with that goal. It needs just to
change the corresponding line of the underlying topology configuration file
introduced in the bootstrap. In the first part of the first scenario (when
running with a network-level-only management infrastructure), we have
configured the network-level MANBoP manager to install the Monitoring
Meter devoted to the monitoring of the ABLE node on the kubrick.upc.es
machine and not in the manager station as would be by default. The reason
for this change was that while setting up the testbed we noticed that active
packets going to the ABLE node were passing through the kubrick.upc.es
machine, but this machine was not forwarding them. We solved this problem
by changing the network-level manager configuration file for installing the
monitoring meter component generating the active packets at kubrick.upc.es.
In this way we solved the problem and showed once more the flexibility of
the designed framework. In Figure 6 - 1 and Figure 6 - 2 we can see the
distribution of Monitoring Meters and Policy Consumers used in the scenario
among the different machines of the testbed.

This capability of the management system can be used also to reduce the load
of a network-level manager working alone without the need to change the

31 The CPU is measured as the number of milliseconds the process is using it.

 323

CHAPTER 6 – EVALUATION

infrastructure to a more distributed one (e.g. with element level managers). In
this case, the network-level station reduces the number of components loaded
in the station and to a great extent also the management traffic and the
computational load. However, with this solution all policies must still be
evaluated at the network-level station, hence in cases of high load a more
distributed management infrastructure (where the evaluation of policies is
distributed between different management stations) will still be advisable and
enhance the overall management system performance. Nevertheless, this
might be a very good intermediary solution for a network operator.

Figure 6 - 1. Distribution of components at the end of the first half of the scenario

video receivers 1
windows machine 2

kurosawa

video senders
windows machine 1

kurosawa

video receivers 2
windows machine 2

172.31.255.3

FAIN 1
(duplicators)

santana.upc.es

FAIN 2
(transcoders)

kubrick

CISCO2600
11.11.11.254

CISCO 7200_2 +
ABLE at 11.11.11.4

NL
kurosawa.upc.es

traffic generator
from 11.11.11.3

to CISCO 7200_2

PCC_0
QoSPC_0_CISCO2600
DelegationPC_0_MANBoP

QoSPC_0_FAIN
ServicePC_0_FAIN

QoSPC_0_FAIN
ServicePC_0_FAIN
BWMM_0_ABLE

CISCO 7200_1

 324

Section VI.3 – Evaluation results

video receivers 1
windows machine 2

kurosawa

video senders
windows machine 1

kurosawa

video receivers 2
windows machine 2

172.31.255.3

FAIN 1
(duplicators)

santana.upc.es

FAIN 2
(transcoders)

kubrick

CISCO2600
11.11.11.254

CISCO 7200_2 +
ABLE at 11.11.11.4

NL
kurosawa.upc.es

traffic generator
from 11.11.11.3

to CISCO 7200_2

PCC_0
QoSPC_2_MANBoP
DelegationPC_2_MANBoP
ServicePC_2_MANBoP
BWMM 2 MANBoP

QoSPC_1_FAIN
ServicePC_1_FAIN

QoSPC_1_FAIN
ServicePC_1_FAIN

santana.upc.es
EL

kubrick.upc.es
EL

kubrick.upc.es
EL

CISCO 7200_1

PCC_1
DelegationPC_1_MANBoP

kubrick.upc.es
EL

kubrick.upc.es
EL

PCC_1
DelegationPC_1_MANBoP

Not used

PCC_1
BWMM_1_ABLE
MonPC_1_ABLE

PCC_1
QoSPC_1_CISCO2600

Figure 6 - . Distribution of components at the end of the first scenario 2

The fourth criterion for evaluating the flexibility of the system is assessing the
ability of the system for creating different management infrastructures based
on the network operator needs (i.e. network topology, number of users, etc.).
This was one of the initial requirements for the framework design and is one
of the main goals of the first scenario. In this scenario, we can see how exactly
the same network and the same service can be managed either with a
network-level-only management infrastructure or with a network-level over
element-level management infrastructure. Furthermore, the creation of the
management infrastructure is a very simple process since the basic code for
every management station is the same: the MANBoP framework.

When running the scenario we first created a network-level only management
infrastructure by instantiating the MANBoP framework with two
configuration files including respectively the managed topology, and the
underlying devices. The underlying devices file contains information needed
to download the Monitoring Meter and Policy Consumer components
appropriate for these devices and where they should be placed.

th two
configuration files including respectively the managed topology, and the
underlying devices. The underlying devices file contains information needed
to download the Monitoring Meter and Policy Consumer components
appropriate for these devices and where they should be placed.

In the second half of the first scenario we created a network-level over
element-level management infrastructure by instantiating one element-level
MANBoP instance per managed device with the appropriate configuration
files and a network-level MANBoP instance. The differences of the
configuration files for the network-level MANBoP instance in relation with
the network-level-only management infrastructure reside on the fact that the
underlying devices configuration file (see appendix B) now contains

In the second half of the first scenario we created a network-level over
element-level management infrastructure by instantiating one element-level
MANBoP instance per managed device with the appropriate configuration
files and a network-level MANBoP instance. The differences of the
configuration files for the network-level MANBoP instance in relation with
the network-level-only management infrastructure reside on the fact that the
underlying devices configuration file (see appendix B) now contains

 325

CHAPTER 6 – EVALUATION

information about the element-level MANBoP managers. Many other
management infrastructures can be created depending on the network
operator needs. However, the big advantage of this framework property is
that all these infrastructure can be created by the network infrastructure by
instantiating always the same code (i.e. MANBoP framework) just with
different parameters depending on the position within the management
infrastructure where it is going to run. Hence, the network operator has a
whole range of solutions available to manage its network using a single piece
of code.

Finally, the last criterion that must be analysed to assess the flexibility of the
system is the support of policy group processing functionality. This
functionality is tested in the first scenario by introducing two groups of four
policies each. The first group is oriented to the creation of a Virtual Active
Network (VAN) to the service provider, while the second one is introduced
by the Service Provider to deploy and configure the webTV service (i.e.
duplicator and transcoder) in its VAN. The two groups are processed as
atomic groups; that is, either all policies of the group are enforced correctly or
none is. Other group processing strategies are also supported, such as: best
effort, sequential enforcement, etc.

When running the first scenario we observe that policy groups are processed
correctly. Group policies were stored until the correct enforcement
confirmation of the previous policy of the group arrived. If a not-successful
result was received the removal of those group policies that were previously
enforced was requested. Finally, the successful enforcement message only
appeared when all group policies were enforced correctly.

The implications in terms of processing times of the policy group processing
functionality are small. The times spent in policy group processing tasks for a
policy, as measured in the scenario, are shown in the table below. We include
also in the table the total policy-processing time and the time percentage
consumed in group processing tasks over the total time. These times are
obtained in the network-level management station for the two management
infrastructures demonstrated. They are obtained at the network-level station
only because it is there where the policy groups were processed in this
scenario. However, other groups might be processed at the element-
management level as well depending on how they are defined.

 326

Section VI.3 – Evaluation results

Policy Group processing

delay
Total policy-

processing time

Percentage over
the total policy

processing time
1st VAN policy 160ms 6179ms 2,58%
2nd VAN policy 90ms 1923ms 4,68%
3rd VAN policy 110ms 611ms 18,00%

th VAN polic 90ms 18737ms 0,48%
1st Service policy 90ms 5388ms 1,67%
2nd Service policy 110ms 7090ms 1,55%
3rd Service policy 70ms 5818ms 1,20%

N
et

w
or

k-
le

ve
l-o

nl
y

m
an

ag
em

en
t

in
fra

st
ru

ct
ur

e

4th Service policy 70ms 10615ms 0,66%

 Average 98,75ms 7045ms 3,85%
1st VAN policy 90ms 1782ms 5,05%
2nd VAN policy 100ms 1612ms 6,2%
3rd VAN policy 101ms 812ms 12,44%
4th VAN policy 150ms 671ms 22,35%

1st Service policy 60ms 581ms 10,33%
2nd Service policy 80ms 431ms 18,56%
3rd Service policy 70ms 530ms 13,21% N

et
w

or
k-

le
ve

l o
ve

r
el

em
en

t-l
ev

el

m
an

ag
em

en
t

in
fra

st
ru

ct
ur

e

4th Service policy 80ms 421ms 19,00%
 Average 91,37ms 855ms 10,68%

4 y

Table 6 - 3. Policy group processing statistics

The assessment of the MANBoP system flexibility has drawn satisfactory
results and presents the framework as a useful tool for network operators to
manage heterogeneous networks in terms of flexibility. The framework
permits the management of active, programmable and passive routers
without, for this reason, loosing any of the advantages that can be obtained
when using the capabilities offered by these technologies. Furthermore, the
flexibility of the MANBoP framework has appeared as an interesting
capability for solving many possible problems that might appear when
managing a network.

In relation to the creation of different management infrastructures based on
the MANBoP framework is quite a simple process since it is only necessary to
start the same piece of code in the different stations with the appropriate
configuration files. The remaining processes for achieving the entire
functionality are automatic.

As will be described later on this chapter, the scalability scenario shows how
the possibility of easily create different management infrastructures can be
very helpful for solving different problems, particularly scalability problems,
in a cost-effective way.

In what refers to the policy group processing functionality, the performance
penalty paid for supporting this functionality is small when compared with
the flexibility that this mechanism adds to the management framework. The
added flexibility derived from including policy group processing functionality
is huge since it allows even a higher automatism of management tasks.
Without policy group processing functionality it would be the user of the

 327

CHAPTER 6 – EVALUATION

management system (network operator or service provider), the responsible
of introducing policies one by one and removing them if an interrelated policy
was not enforced successfully.

B Extensibility

The extensibility properties of the system are used almost on every single step
of every scenario. Nonetheless, it has been during the first scenario where we
have analysed extensibility-related data in order to assess this property.

In the following paragraphs we expose the main outputs from the
extensibility assessment for each of the two extensibility criteria defined.

In relation to the ability of adding new management functionality criterion
and in what refers to the functional assessment, we have observed that the
system is capable of detecting when a new component is needed (even XML
Schemas), what kind of component is it and where it must be installed. With
this information, it simply contacts the CIA component, which does the
work. This extensibility property is essential for the management of active and
programmable networks, since it allows the management system to adapt to
new services or even hardware resources that might have been added
dynamically on the nodes. Furthermore, the extensibility property is also very
useful for the management of passive nodes because it allows to update the
management functionality with a newer version and to have loaded in the
management stations only those functional domains that are really used.

During the first scenario we observed that as policies were being introduced
the components needed for their processing were downloaded: PCC, QoSPC,
DelegationPC, ServicePC, BWMM, etc. Furthermore, these components
where downloaded taking into account: the management level at which the
MANBoP instance was working and the underlying devices they should work
with.

The performance penalty paid for having this extensibility method instead of
fix management functionality is not high. The main implication is the time
needed for downloading a component. However, this time is only spent once
(the first time a policy requires that component to be processed) and each
time the component is re-downloaded because it was previously removed
from the system for any reason. When a component is used frequently the
implication of the download time on the overall behaviour of the system is
negligible.

In the table below we can see the implication of downloading the needed
component over the total policy processing time as well as its null influence
when a second policy arrives to be processed. This information has been
obtained from the first half of the first scenario (when having a network-
level-only management infrastructure). Nevertheless, for whatever
management infrastructure we have, these numbers are approximately the
same in every management station.

 328

Section VI.3 – Evaluation results

Policy Downloaded component Download
time

Total policy-
processing

time

Percentage
over the total

processing time

PCC_0 181ms 2,92% 1st VAN policy
QoSPC_0_FAIN 881ms

6179ms
14,26%

2nd VAN policy DelegationPC_0_FAIN 400ms 1923ms 20,80%
rd VAN p Already downloaded 0 611ms 0%

4th VAN policy Already downloaded 0 18737ms 0%
1st Service policy ServicePC_0_FAIN 400ms 5388ms 7,42%
2nd Service policy Already downloaded 0 7090ms 0%
3rd Service policy Already downloaded 0 5818ms 0%
4th Service policy Already downloaded 0 10615ms 0%

BWMM_0_ABLE 310ms 6,67%

N
et

w
or

k-
le

ve
l-o

nl
y

m
an

ag
em

en
t i

nf
ra

st
ru

ct
ur

e
D

ow
nl

oa
de

d
to

 N
L

m
an

ag
er

 a
t

ku
ro

sa
w

a.
up

c.
es

 (c
o-

lo
ca

te
d

w
ith

 th
e

co
de

 s
er

ve
r)32

CISCO policy
QoSPC_0_CISCO2600 281ms

4647ms
6,04%

Average 409ms 6778ms 9,68% (5,28%)33
PCC_0 90ms 5,05% 1st VAN policy

QoSPC_2_MANBoP 786ms
1782ms

44,10%
2nd VAN policy DelegationPC_2_MANBoP 401ms 1612ms 24,86%
3rd VAN policy Already downloaded 0 812ms 0%
4th VAN policy Already downloaded 0 671ms 0%

1st Service policy ServicePC_2_MANBoP 150ms 581ms 25,82%
2nd Service policy Already downloaded 0 431ms 0%
3rd Service policy Already downloaded 0 530ms 0%
4th Service policy Already downloaded 0 421ms 0%

BWMM_2_MANBoP 291ms 12,80%

N
et

w
or

k-
le

ve
l o

ve
r e

le
m

en
t-

le
ve

l
D

ow
nl

oa
de

d
to

 N
L

m
an

ag
er

at

 k
ur

os
aw

a.
up

c.
es

 (c
o-

lo
ca

te
d

w
ith

 th
e

co
de

 s
er

ve
r)

CISCO policy
Already downloaded 0

2274ms
0%

Average 343ms 1012ms 22,52% (10,24%)
PCC_1 251ms 4,59% 1st VAN policy

QoSPC_1_MANBoP 286ms
5465ms

5,26%
2nd VAN policy DelegationPC_1_MANBoP 140ms 383ms 36,55%
3rd VAN policy Already downloaded 0 425ms 0%
4th VAN policy Already downloaded 0 5789ms 0%

1st Service policy ServicePC_1_MANBoP 231ms 4893ms 4,72%

N
et

w
or

k-
le

ve
l o

ve
r

el
em

en
t-l

ev
el

D

ow
nl

oa
de

d
at

 E
L

m
an

ag
er

 a
t

sa
nt

an
a.

up
c.

es

3rd Service policy Already downloaded 0 5501ms 0%
Average 226ms 3742ms 12,78% (7,3%)

3 olicy

Table 6 - 4. Component downloading time statistics

The second criterion for assessing the extensibility of the MANBoP
framework is the evaluation of the ability of the management system for
supporting the addition or removal of devices to the managed topology. This
one is an important criterion for every management system, since it is
expectable that the managed network changes over time, but particularly
interesting for the management of heterogeneous networks composed of

32 The QoSPC_0_FAIN and ServicePC_0_FAIN component are downloaded at the FAIN ANN

running in santana.upc.es

33 The average percentage between brackets considers also the cases when no components are
downloaded.

 329

CHAPTER 6 – EVALUATION

active and programmable routers and passive routers. The cause is the likely
progressive deployment of this type of routers into the network.

During the first scenario, in the step 9, we try to introduce a policy involving a
managed node that is not included within the managed topology of the
system. The Policy Conflict Check (PCC) component refuses the
enforcement of that policy. Then, before introducing that policy again we add
the involved node in the managed topology using an ‘administrative 34 ’
command supported by the Policy Consumer Manager (PCM) component.
This command includes the new node within the managed topology and
permits the enforcement of the previous policy.

When having a management infrastructure in various levels (network,
element, etc.) the add-node administrative command must be done at the
network-level management station that will include it within its managed
topology and also on those element-level management stations of
neighbouring nodes.

The performance implication of the node addition is really small, especially if
we take into account that it will be used only sporadically. The time spent for
the node addition in the scenario is 191ms at the first half (network-level only
infrastructure) and 221ms at the second half (network-level over element-level
infrastructure).

Summarising the extensibility evaluation, we can state that it fulfils the
requirements introduced at design time. Moreover, the performance
implications of the extensibility mechanisms are not significant on the overall
system behaviour while the gains obtained from it are enormous, particularly
taking into account that extensibility support is a must on a management
system for active and programmable networks.

C Delegation

The assessment of the delegation capabilities of the system is based on the
results obtained from running the first scenario. In this scenario the service
deployment and configuration functionality are delegated to the WebTV
service provider with several restrictions.

One criterion for evaluating the delegation capability of the system is the
analysis of the extent to which the management functionality can be
delegated. In the way the delegation capability has been designed and
implemented in MANBoP, creating restricted XML Schemas for users (see
Chapter 4 for more information), the functionality that can be delegated for
users (i.e. service providers) is: any management functionality. To delegate the
entire management functionality the network operator will simply need to
grant access to the service provider to all functional domains; that is to all

34 With administrative we refer in this case to a command oriented exclusively to the administrator of the

system.

 330

Section VI.3 – Evaluation results

XML Schemas without any restriction. Furthermore, the network operator
can even delegate to the service provider the functionality to allow the service
provider delegating part of its functionality to its customers, although this
scenario is not foreseeable.

The delegation of the full management functionality is certainly not advisable.
However, in some particular cases the network operator might desire to grant
full access to certain functional domains to a particular service provider.

Another important aspect for evaluating the delegation capability of the
system is the granularity of the delegation. That is, what is the minimum unit
of functionality that can be delegated? In MANBoP, the minimum unit that
can, potentially, be delegated is a single instance of a policy. That is, a policy
with only one possible value in each of its fields.

The third criterion to evaluate the goodness of the delegation solution
proposed is to analyse the complexity of the solution adopted. The
framework designed bases the delegation capability in the XML validation
mechanism of a policy against its corresponding XML Schemas. We have
taken advantage of the fact that there are many implementations of XML
validators freely available that realise this task quite efficiently. In MANBoP
we have chosen the SUN Multi-Schema Validator [SunMSV] to realise this
task.

By leaving policy validation to a specialised code, we first assign the most
cost-expensive task, and the one executed more often, to a code implemented
with the target of completing the task in an efficient way, and second, we ease
enormously the implementation of the delegation functionality of the system.
This is due to the fact that the only part that needed to be implemented was
that responsible of the creation of the restricted XML Schemas according to
the delegation policies received. The implementation of this part is very
simple, since it is limited to add or modify some strings on the original XML
Schema for that functional domain, while the functional cost associated to
this part is not really relevant since it is done only once when the delegation is
realised.

In the tables below we summarised the statistical data recompiled during the
execution of the first scenario containing information about the
computational costs associated to the delegation mechanism. The first table
includes the validation time for all policies in the scenario and its influence
over the total policy processing time. The second table includes the time
spent for delegating the functionality to the webTV service provider in the
scenario.

 331

CHAPTER 6 – EVALUATION

Policy Validation
time

Total policy-
processing

time

Percentage
over the total

processing time

1st VAN policy 140ms 6179ms 2,27%
2nd VAN policy 211ms 1923ms 10,97%
3rd VAN policy 130ms 611ms 21,27%
4th VAN policy 120ms 18737ms 0,65%

1st Service policy 140ms 5388ms 2,60%
2nd Service policy 91ms 7090ms 1,28%
3rd Service policy 80ms 5818ms 1,37%
4th Service policy 80ms 10615ms 0,75% N

et
w

or
k-

le
ve

l-o
nl

y
m

an
ag

em
en

t
in

fra
st

ru
ct

ur
e

CISCO policy 180ms 4647ms 3,87%
Average 130ms 6778ms 5%

1st VAN policy 140ms 1782ms 7,86%
2nd VAN policy 241ms 1612ms 14,95%
3rd VAN policy 150ms 812ms 18,47%
4th VAN policy 171ms 671ms 25,48%

1st Service policy 110ms 581ms 18,93%
2nd Service policy 100ms 431ms 23,20%
3rd Service policy 70ms 530ms 13,21%
4th Service policy 90ms 421ms 21,38% N

et
w

or
k-

le
ve

l o
ve

r
el

em
en

t-l
ev

el

CISCO policy 70ms 2274ms 3,08%
Average 126ms 1012ms 16,28%

1st VAN policy 271ms 5465ms 4,96%
2nd VAN policy 84ms 383ms 21,93%
3rd VAN policy 152ms 425ms 35,76%
4th VAN policy 112ms 5789ms 1,93%

1st Service policy 110ms 4893ms 2,25%

El
em

en
t-l

ev
el

3rd Service policy 70ms 5501ms 1,27%
133ms 3742ms 11,35% Average

Table 6 - 5. Policy validation time statistics

Delegation task
Time at NL
(NL-only

infrastructure)

Time at NL (NL
over EL

infrastructure)
Time at EL

Create a new user 201ms 401ms 47ms
Assign access rights
(create a restricted

XML Schema) to a user
150ms 361ms 152ms

Table 6 - 6. Time statistics for delegation tasks

Concluding, the delegation mechanism designed and implemented in
MANBoP appears as a good alternative for delegation of functionality in a
policy-based management system using XML as language for expressing
policies. Its main advantages are the wide syntactical and semantical flexibility
that it offers, its simplicity and the fact that the most cost-expensive task is
done by specialised code.

 332

Section VI.3 – Evaluation results

D Scalability

a Introduction

The scalability of a system is one of the most important evaluation criteria. Its
goal is measuring the limits of the system and seeing how it behaves near
those limits. With that concept in mind we have targeted the evaluation of the
MANBoP framework scalability.

There are several situations that can lead a management system to a scalability
problem; among them, the more relevant ones are increasing the size of the
managed network and increasing the number of system’s users. In both cases
this leads to more computations, more management traffic, more memory
used and bigger delays.

In the two scalability tests conducted we have opted to evaluate only the first
one: increasing size of the managed network. There are two justifications for
this decision. First, it certainly represents a much more realistic situation for
the MANBoP framework since the users of the management system are the
network operators and some service providers. This draws a scenario with a
maximum number of users on the scale of tenths. Such scenario would not
create scalability problems in the framework, especially taking into account
that requests on the management plane are usually less frequent than on the
control or data plane [ITU91]. Second, even if we decided to test the
scalability of the system in terms of users by flooding the framework with
policies, such a test would be more an evaluation of the system’s
implementation than of the framework’s design. Nevertheless, at the end of
the scalability evaluation section we elaborate in more detail around the
scalability in terms of number of users.

b Scalability in terms of managed network size

The assessment of the system scalability is developed in the second scenario,
which is targeted to this goal. In this scenario we progressively increase the
number of different types of managed devices monitored. The limitation in
terms of managed devices comes from the number of components that are
downloaded into the management station and the computational resources, as
well as management traffic, that these components consume. In the scenario,
we have figured out the worst possible situation. That is, every new managed
device being monitored is a different type of device than the previous one and
hence, needs a different component to process the policy and monitor it.
Furthermore, all monitored devices are passive routers so Monitoring Meter
components cannot run at the managed device (as would have been the case
with active or programmable routers), and should be loaded at the network-
level management station.

The initial goal was that each Monitoring Meter (MM) component for each
new managed device added in the scenario would realise a real monitoring of

 333

CHAPTER 6 – EVALUATION

the throughput in a CISCO router’s interface, getting the throughput value
every five seconds. The problem we faced, though, is that the CISCO router
supported only a maximum of 30 connections. Therefore, with the data
obtained from this first test, in terms of time spent by the MM in the pooling
and management traffic generated, we created a MM component that will
have the same computational load (i.e. CPU and memory) as the MMs doing
the CISCO monitoring. It has been with the latter ones that we have
completed the scalability test although we present in this section the data
obtained in both cases.

The data shown in the tables below to evaluate the load of the network-level
management station are three processing times (detailed afterwards), the size
of the JVM’s used heap and the management traffic generated. The
management traffic could be measured, for obvious reasons, only on the
telnet test. However, it is easily deducible the time for the 100 components,
since each component generates management traffic for 1453bytes/sec.
Therefore, 100 components would generate, if they could keep the polling
rate, a management traffic with a throughput of 145Kbytes per second. The
three processing times (or delay times) are the time for downloading the
Monitoring Meter component, the time for completing a polling cycle and the
time for enforcing a policy on a CISCO router. This last processing time is
measured for each ten components loaded. The reason for taking this extra
time measure is that the previous two processing times have a great variance
over time because their use of the CPU is relatively small. Hence, even when
the station is quite loaded, if the MMs happen to develop all their actions in
the period of time during which they have the CPU assigned to them, they
can carry them out quite fast. On the other hand, if they do not conclude
their task and need to wait to have the CPU assigned to them again they
spend much more time for concluding their tasks. For this reason, we also
provide the five-sample average time for the first two processing times.

The policy enforced on a CISCO router is exactly the same as the one used in
the first evaluation scenario. Its processing time is a much more time-
consuming task. Therefore, the task cannot be completed in one turn of CPU
when the machine is loaded and the behaviour is much more stable. The fact
that it spends around 16 seconds to process the policy has to do with the time
needed to interact with ABLE and with the CISCO routers, where after every
command the thread must sleep for around half a second before sending a
new command. We have also modified the code that executes the monitoring
for this CISCO policy so that it always informs that the condition is met to
avoid that the monitoring influences on the total enforcement time.

The figure below includes the absolute and average download times for the
30 components that could be loaded in the telnet test.

 334

Section VI.3 – Evaluation results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0

100

200

300

400

500

600

Number of components

Average download times
Absolute download times

Figure 6 - 3. Download time statistics for the telnet test

In the figure we observe how the average download time starts growing
slowly, however it remains almost stable.

Figure 6 - 4 shows the polling time statistics for the telnet test.

 335

CHAPTER 6 – EVALUATION

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of components Average polling times
Absolute polling times

Figure 6 - 4. Polling time statistics

The absolute polling time have a great variance over time, although it is
clearly observable that it starts growing from around the 20 components.

The figure below shows the statistics for the enforcement of the policy over
the CISCO router.

 336

Section VI.3 – Evaluation results

1
2

3
4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Number of components in tenths

Time for the enforcement of a policy on a CISCO router
Time in ms

Figure 6 - 5. Policy over CISCO time statistics

In the figure we can see that, in contrast with the downloading times, and
more clearly with polling times, the time for enforcing the policy over the
CISCO router remains stable. This leads us to the conclusion that the system
is not heavily loaded with 30 components.

The two figures below show respectively the size of used heap and the
management traffic generated by the management station.

 337

CHAPTER 6 – EVALUATION

1
2

3
4

p
0

10

20

30

40

50

60

70

Number of components in tenths

Memory in MB

Used heap

Figure 6 - 6. Size of the used heap statistics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30fic

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Number of components

bytes/sec

Management traffic

Figure 6 - 7. Generated management traffic statistics

Both the heap and the management traffic grow at a constant rate. The
reason for this behaviour in the management traffic is due to the fact that
each component generates a fix bandwidth of 1453 bytes/sec. In what relates

 338

Section VI.3 – Evaluation results

to the heap, the reason is that each component uses approximately the same
heap size, around 1.7MB.

The figures that follow pertain to the test with the simulated monitoring
components. The first figures show the behaviour of the framework when
having a network-level only management infrastructure.

The first three figures shown are the component download time, polling time
and policy enforcement on a CISCO router time statistics respectively.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

Number of components Absolute download times
Average download times

Time in ms

Figure 6 - 8. Download time statistics

 339

CHAPTER 6 – EVALUATION

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85

0

500

1000

1500

2000

2500

3000

3500

Number of components
Average polling times
Absolute polling times

Time in ms

Figure 6 - 9. Polling time statistics

1 2 3 4 5 6 7 8 9 10

0

50000

100000

150000

200000

250000

Number of components in tenths

Time for enforcing a policy on a CISCO router

Time in ms

Figure 6 - 10. Policy enforcement time on a CISCO router statistics

 340

Section VI.3 – Evaluation results

In the three figures we can see the same behaviour. When reaching 80
components all times grow significantly. In the test we could not load more
than 91 components because the system was not able to load component
number 92. After half an hour of waiting this component to be loaded we
stopped the test. At 90 components all delays have grown more than 20 times
the initial time.

The figure below shows the statistics for the size of the heap used.

1 2 3 4 5 6 7 8 9 10 11

0

20

40

60

80

100

120

140

160

180

Number of components in tenths
Used heap

Time in ms

Figure 6 - 11. Used heap statistics

As in the telnet test, the load of the heap grows at a constant rate with the
number of components. When reaching the 92 components the heap size is
slightly higher than 180 MB.

In the second part of the scalability test with the simulated components we
evaluate how the system behaves with a network-level over element-level
management infrastructure. With such a management infrastructure the
monitoring is realised at the element-level. The network-level functionality is
limited to translating the network-level policy to an element-level one. As the
policy information is independent of the underlying managed device we only
need one component to translate all policies for all routers. Therefore, the
network-level station only loads one single component in the whole test. For
this reason the heap size remains constants. The second consequence of
doing the monitoring at the element level is that the task at the network-level

 341

CHAPTER 6 – EVALUATION

is limited to the translation of the policy, which is done only once. Hence, the
CPU is not being used periodically as with monitoring components doing
polling tasks. In consequence, the CPU load is low during the entire test and
the times for enforcing the policy on the CISCO router remain constant. The
polling times have also been measured at the element-level but since each
element-level manager receives only one policy, each EL manager loads only
one monitoring component. Another data to be taken into account is the
management traffic generated between the network-level station and the
element-level station. In the best case, when the monitoring component is
already installed in the EL station, the forwarding of the policy generates a
total of 13799 bytes. Hence, for the 100 policies, this makes a total of
1.3Mbytes of management traffic distributed on the total time needed for
processing the 100 policies. Just ten seconds of monitoring of the 100
monitoring components at the network-level station in the network-level-only
infrastructure generate an equivalent traffic.

In the worst case, the monitoring component would need to be downloaded
to the EL station. This would generate, together with the forwarding of the
policy, a total of 27206 bytes of management traffic. Hence, the processing of
the 100 policies, all needing to download the monitoring component, would
generate 2.7Mb of management traffic, equivalent to 20 seconds of
monitoring of the 100 components in the network-level-only case.

The figure below shows the evolution of the times needed for the
enforcement of the policy on the CISCO router as the policies are processed.

1 2 3 4 5 6 7 8 9 10

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Number of policies processed

Times for enforcing a policy on a CISCO router

Time in ms

Figure 6 - 12. Policy enforcement on a CISCO router statistics

 342

Section VI.3 – Evaluation results

The rest of the data obtained is summarised in the table below:
 NL station EL station

Used heap Stable at 16MB 14MB
Polling time Not applicable 91ms

Component-download time 151ms 748ms
Table 6 - 7. Summarised data for the scalability test with the NL over EL management infrastructure

Summarising, the scalability test has shown that a network-level over element-
level management infrastructure solves to a great extent the scalability
problems that might appear because of the managed network size. When
running a network-level over element-level management infrastructure the
system behaved perfectly for 100 components. While, for the same number
of components the network-level-only management infrastructure blocked.

c Scalability in terms of number of users

In this sub-section we are going to extend the arguments and considerations
pointed out at the introduction of the section. There are mainly two
arguments that justify our assertion that the number of users would not create
a scalability problem on the MANBoP system. The first one is the likely
reduced number of users of the management system: in the order of tenths
(most likely even less than ten) [FAIN01]. The second one is the rate of
policies (i.e. management requests) that these users might generate. In order
to have an approximate idea let’s analyse the first scenario. In this scenario a
service provider requests a Virtual Active Network for his own, which
requires four policies, and creates and configures a webTV service for his
customers, which requires again four more policies. This makes a total of
eight policies for getting a VAN, creating a service and configuring it. It is not
adventurous expecting much less policies for service maintenance and
reconfiguration. In the scenario there is only one policy for this task. Hence,
taking into account that, first, resource reservation and service creation are
tasks realised only once in the service lifetime (usually a lifetime of days or
even months or years), and second, that the number of users is expected to be
small, we can state that there are few chances of facing scalability problems in
terms of number of users.

Nevertheless, let’s figure out a bad scenario in terms of number of users. Let’s
imagine a peak of 100 policies at the same time to analyse how would the
framework behave. As it is implemented now, based on the statistics obtained
in the first evaluation scenario, the system spends an average of 1000ms in
processing the policy (omitting enforcement time), which can be developed in
a different machine as we have already seen. Let’s now assume that this
number cannot be reduced (although it can surely be). With these
assumptions, in the worst implementation case (a policy must wait until the
previous one is completely processed) the last policy would be processed after
100 seconds, which is clearly not acceptable. However, with a good
implementation policies would be processed in parallel and only in certain

 343

CHAPTER 6 – EVALUATION

processing points they might need to wait. After the statistics obtained in the
evaluation these points will probably be the validation of the policy (60 ms in
average35) and the component download (300 ms in average). The second
time, the component download will only be realised for a relatively small
number of the 100 policies since most of the times the component will
already be downloaded. Furthermore, both the component download and the
policy validation times can probably be reduced by downloading components
in parallel and by having multiple validator instances running. Hence, with an
optimised implementation (always keeping JAVA as programming language
even if it performs worse), it is realistic estimating a policy processing rate of
one policy every 50ms (20 policies/sec). With such a rate the last policy of the
100 received would be processed after five seconds, which for the
management plane is an acceptable number. A rate of 20 policies/second
allows having 20 service providers sending one policy per second in average,
which is certainly not expectable.

Even though being highly unlikely, let’s now imagine what solutions the
network operator might have for higher rates of policies per second received.
As we have extensively seen, the flexibility of the MANBoP framework
allows the network operator to create the management infrastructure that best
fits its needs. With a distributed management infrastructure (e.g. network-
level over element-level) the scalability of the framework in terms of number
of users is enhanced since many of the policies can be directly introduced at
the element-level managers as element-level policies, thereby reducing the
policy rate at the management station. From the nine policies in the
evaluation scenario, six (the four service policies and the policies for creating
and activating the VEs for the service provider) could have been introduced
directly at the corresponding element-level managers. Furthermore, if the
network operator still faces scalability problems, it might even create a
management infrastructure with several network-level managers managing
each of them a part of the network and communicating via specialised
Monitoring Meter and Policy Consumer components.

Along the sub-section we have justified why we do not expect the
management framework to experiment scalability problems in terms of
number of users, and hence, why we have not realised any evaluation in that
sense. We have also reflected about how will the system behave in front of a
high load of policy requests and what solutions offers the MANBoP
framework to network operators to solve this kind of scalability problems.
We have seen how the flexibility properties of MANBoP are, once more,
useful to solve many management problems, and particularly, scalability
problems.

35 We are considering here only the time where the XML validation is made and not other processes also

related with the validation, which have been considered in the delegation evaluation, but not
considered here because they can be realised in parallel.

 344

Section VI.3 – Evaluation results

d Security

The security aspects of the system have been never considered for the
MANBoP framework as they are seen as out of the scope of this project
thesis. The reason for this is that the management framework we wanted to
design does not offer any challenge in terms of security. There are many
existing security tools that could be used to secure the framework. The
inclusion of these tools within the framework requires a substantial effort, and
on the other hand, it would not provide any added value in terms of research
interest neither on the framework’s functionality. In consequence, I decided
to skip the security issues and focus the effort on other framework
functionality.

In the conclusions and future work chapter of the thesis we will elaborate
extensively around the basic security mechanism that can be added to the
framework.

Nevertheless, some minor, effortless, security mechanisms have been
included in the framework’s implementation. These security mechanisms are
mainly two: authentication and authorisation mechanisms.

The authentication system implemented is based on a simple login and
password strings. These strings are included in the method used to introduce
the XML policy in the system. The system checks that there is a registered
user in the system with that login and password. Such login and password
strings represent the user who is introducing the policy and against whose
access rights the policy must be validated.

The XML policy includes another couple of login and password. These ones
represent the user to whom the policy affects, either modifying his assigned
resources or delegating to him new management functionality.

In any of the two cases the login and password strings are encrypted and
hence they offer, as they are implemented now, weak security.

The second security mechanism implemented is an authorisation mechanism
that comes from the implementation of the delegation functionality in the
system. The delegation of functionality, as already described, is based on the
creation of restricted XML Schemas to which validate user’s policies. This
functionality represents a simple authorisation mechanism based on the XML
validation properties. The user management request (represented as an XML
policy) is validated against the user access rights (represented as a restricted
XML Schema). The restricted XML Schemas assigned to each user are
included within Information Model Objects (IMOs), called Schema objects,
in the Database.

Again, this authorisation mechanism is relatively weak because there are no
integrity mechanisms implemented for the XML Schemas, neither for the
Schema IMOs.

 345

CHAPTER 6 – EVALUATION

The performance data obtained in the evaluation for these security
mechanisms implemented have been already given in part in the Delegation
sub-section. However, in brief, the authentication procedure spends an
average of 10ms to be completed, while the authorisation mechanism spends
an average of 130ms.

Summarising, the security of the MANBoP framework is yet on a foetal state
and several security mechanisms should be added to guarantee the safety of
the system. In the conclusions and future work chapter we will elaborate a bit
more on which could be these security mechanisms.

E Interworking

The interworking of a system depends mainly on three aspects: the level of
standardisation of the technologies used, the level of standardisation of the
interfaces offered and the level of standardisation of the adopted Information
Model.

In what concerns to the technologies used in MANBoP they are all well
standardised and offer good interworking capabilities. The programming
language, JAVA, is widely known and standardised. Nevertheless, the
programming language is not so important since we are working over a
CORBA platform [OpenORB] that provides programming language
transparency, as well as location and technology transparency.

The fact of using CORBA for the implementation of the MANBoP
framework is probably the most important aspect in terms of interworking
because it simplifies a lot the interworking process.

The last important technology, in relation with interworking, chosen in
MANBoP is XML. The XML language is used for expressing policies. The
XML language is becoming a de-facto standard for the expression of different
types of documents, including policies.

The use of XML language for expressing MANBoP policies eases the
interworking with the MANBoP interface. Furthermore, CORBA technology
can be used to discover the interface dynamically.

MANBoP offers three external interfaces to request management actions.
These are, a GUI offered by the Policy Editor (not implemented in the proof-
of-concepts), the upper interface to receive policies from higher-level
applications and the lower interface to receive signalling request (not
implemented neither).

The GUI is a guided, easy-to-use interface oriented to human intervention,
hence it requires no interface standardisation and is not interesting in terms of
interworking.

The upper interface is a simple interface, easily discoverable with CORBA
that introduces just the XML policy and the user’s credentials. The IETF
Policy Working Group [IETFPol] , which is in charge of standardising policy-

 346

Section VI.3 – Evaluation results

based management, has not standardised any interface for a Policy-based
management yet. However, this drawback can be easily overcome by
introducing one of the de-facto standard ways of transmitting XML policies
(e.g. SOAP [W3C03] and XML-RPC [XMLRPC]) in the interface. In this way
XML policies could be easily introduced in the system enhancing a bit more
the interworking capabilities of the system.

The lower interface has been designed to support any type of signalling
protocol through a dynamic extensibility mechanism (see chapter 4 for more
information). Therefore, the interworking capabilities through the lower
interface are optimal.

The last criterion to assess the interworking capabilities of the system is the
Information Model. This is probably the weakest aspect, in relation with
interworking, of the MANBoP framework. In practice, the only Information
Model part affecting the interworking is the Information Model used for
defining the policies. The IETF has standardised a Policy Core Information
Model (PCIM) [IETF]. Nonetheless, in MANBoP we have decided not to use
this model and define our own, although based on the PCIM. There are two
reasons for this. The first one is that the PCIM model, although it could be
adapted to cope with active and programmable network requirements, is not
oriented to this goal. The second and main reason, is that the PCIM model is
too complex needing several classes to define a policy action or policy
condition. We have simplified the PCIM model to reduce its size
substantially. Hence, the size of policies is considerably reduced (at least five
times smaller than following the PCIM model) and their processing is faster.
Furthermore, the use of the IETF’s PCIM model is still small and its success
is uncertain.

Overall, we can state that the MANBoP framework has good interworking
properties basically due to the technologies used in the implementation. The
use of the standard Policy Core Information Model would probably enhance
the interworking capabilities of the system although it would certainly lower
down the overall system performance.

F Portability

The portability properties of a system are mostly based on the technologies
used, although a small part has to do also with the way the implementation is
made. In this sub-section we are going to analyse the portability criterion of
the MANBoP framework.

The technologies used in the implementation of the system (XML, JAVA and
CORBA) assure a complete portability on every machine. The only
requirements for the machine are some minimum computational
requirements, as CPU and memory. The framework has run on a station with
a Pentium 166Mhz processor, although this might be the minimum for an
acceptable performance.

 347

CHAPTER 6 – EVALUATION

The second factor that might influence the system portability is how the
implementation is made. Particularly, how are implemented the interactions
with the computer resources (e.g. disk files, etc.). To have full portability of
the system, this must be done in an OS-independent way. In MANBoP we
have taken particular care in this sense.

As conclusion of the portability analyses we can highlight that the MANBoP
framework has run with success in different Windows and Linux computers
without any adaptation needed. Hence, the system has good portability
properties as long as the minimum computational requirements are available.
2nd Statistical Criteria

In this section we recompile and present all performance evaluation data
obtained during the evaluation of the framework. Part of this information has
been already presented when assessing some functional criteria.

In those parts where there is performance information publicly available from
similar projects (i.e. FAIN) we will compare both and try to justify the
differences.

The information obtained when running the scalability scenario has already
been all presented in the scalability evaluation sub-section. For this reason, we
will not include it in this section.

A Delay and CPU

The two tables below contain a summary of the performance evaluation data
related with processing times and CPU consumption obtained when running
the scenarios.

The first table provides the main processing times, as well as the total time,
for the bootstrap and for all policies processed in the first scenario. These
times are given for the network-level station when working both alone and
over element-level managers and for the element-level stations.

 348

Section VI.3 – Evaluation results

Policy
Group

processing
time

Validation
time Conflict

checking
Extensibility

time36
Enforcement
[/Monitoring]

Total
policy-

processing
time

bootstrap - - - - - 2935ms
1st VAN policy 160ms 140ms 230ms 1062ms 3977ms 6179ms
2nd VAN policy 90ms 211ms 140ms 0 201ms 1923ms

rd VAN p 110ms 130ms 120ms 0 150ms 611ms
4th VAN policy 90ms 120ms 130ms 0 18146ms 18737ms

1st Service policy 90ms 140ms 121ms 400ms 4477ms 5388ms
nd Servic 110ms 91ms 0 6469ms 7090ms

3rd Service policy 70ms 80ms 100ms 0 5458ms 5818ms
4th Service policy 70ms 80ms 110ms 0 10205ms 10615ms

N
et

w
or

k-
le

ve
l-o

nl
y

m
an

ag
em

en
t i

nf
ra

st
ru

ct
ur

e

CISCO policy - 180ms 150ms 591ms 3575 / 27ms 4647ms
bootstrap - - - - - 2744ms

1st VAN policy 90ms 140ms 140ms 876ms 110ms 1782ms
2nd VAN policy 100ms 241ms 200ms 401ms 410ms 1612ms
3rd VAN policy 101ms 150ms 80ms 0 361ms 812ms

th VAN po 150ms 171ms 0 150ms 671ms
1st Service policy 60ms 110ms 80ms 150ms 51ms 581ms
2nd Service policy 80ms 100ms 90ms 0 111ms 431ms
3rd Service policy 70ms 70ms 80ms 0 220ms 530ms
4th Service policy 80ms 90ms 80ms 0 70ms 421ms N

et
w

or
k-

le
ve

l o
ve

r
el

em
en

t-l
ev

el

CISCO policy - 70ms 231ms 291ms 140ms 2274ms
bootstrap - - - - -

1st VAN policy - 271ms 293ms 537ms 1927ms 5465ms
2nd VAN policy - 84ms 120ms 140ms 47ms 383ms
3rd VAN policy - 152ms 90ms 0 123ms 425ms
4th VAN policy - 112ms 110ms 0 5537ms 5789ms

1st Service policy - 110ms 100ms 231 4418ms 4893ms El
em

en
t-l

ev
el

3rd Service policy - 70ms 121ms 0 5283ms 5501ms

Policy

3 olicy

2 e policy 110ms

4 licy 90ms

Table 6 - 8. Policy processing times summary

The second table contains those MANBoP packages that require, in average,
more computational power. This information is given as an average global
number for all possible positions within the management infrastructure.

Component name Average time
Policy Consumer (PC) 3006ms

Code Installer Application (CIA) 542ms
Policy Consumer Manager (PCM) 202ms

Decision-making Monitoring system (DmMs) 191ms
Database (DB) 176ms

Monitoring Meter (MM) 140ms
Table 6 - . MANBoP components with higher processing times in average 9

36 With extensibility time we refer to the total time needed to download all components that have been

installed to process the policy.

 349

CHAPTER 6 – EVALUATION

a Comparison against FAIN

The only performance data publicly available from the FAIN project are
some processing times published in the deliverable D40 [FAIN03a] and other
figures [FAIN03b]. Nevertheless, it is very hard to take any conclusion from
the comparison between both proposals since the scenario, the testbed or the
times taken are not exactly the same in any case.

Deploy functional domain VAN creation time VAN activation time QoSPDP DlgPDP
38000ms 53000ms 1000ms 250ms

Table 6 - 10. Processing times in the FAIN NMS

The processing times shown in the table above correspond to the FAIN
NMS in a scenario very similar to the first evaluation scenario presented.
However, the machine used as NMS in that testbed was an Intel 166
Pentium. This might explain the different results when compared with
MANBoP. In MANBoP the VAN creation time is 6179ms and the VAN
activation time is 18737ms. Moreover, since these times are so generic that it
is hard to find out the cause of these differences.

In relation to the times for deploying new functional domains, these times
have a lot to do with the size of the component being downloaded. In
MANBoP these times are around 800ms for the QoSPC component and
around 400ms for the DelegationPC.

FAIN provides some more times obtained at the FAIN EMS. In this case the
machine is an Intel 1,5GHz Pentium IV machine with 500 MB of RAM. The
table below shows this information.

Deploy Policy Deploy Functional Domain
QoS Dlg QoS PDP Service PEP Dlg PDP

19000ms 10500ms 6000ms 4500ms 160ms
Table 6 - 11. Processing times in the FAIN EMS

The interest of the EMS data, in terms of comparison with MANBoP, is in
the processing times for the deployment of the QoS and delegation policies.
In MANBoP these times are around 5500ms for a QoS (VAN1 or VAN4)
policy and around 400ms for a delegation policy (VAN2 or VAN3). It is hard
to find an explanation to the differences between the times, however in the
case of the delegation policies it might be perfectly caused by the different
delegation mechanism implemented in FAIN and MANBoP.

In FAIN the delegation mechanism implemented by default is the creation of
a Management Instance for the service provider. A Management Instance is
an environment within the management station where the service provider
obtains the delegated management functionality. Within this environment the

 350

Section VI.3 – Evaluation results

service provider is free to do anything. It is a concept similar to that of a
sandbox.

The process of creating this Management Instance is much more resource-
consuming that the delegation process in MANBoP where only a restricted
XML Schema is created and assigned to the service provider. This might
explain the big difference in the processing times of the delegation policies
between FAIN and MANBoP.

As commented before the times for the deployment of components are
closely related with the size of the component, hence no direct conclusion can
be extracted from the published times.

Finally, the last performance data for the FAIN management system has been
obtained from [FAIN03b]. The information published in this paper is shown
in the table below:

Instantiation of components times VE time
QoSPDP DelegationPDP

10637ms 212ms 176ms
Table 6 - 1 . Processing times in the FAIN EMS for a VE and delegation 2

The times published in the paper were those that where necessary to first,
create and activate a VE for a SP and second the times needed for
instantiating the QoSPDP and DelegationPDP components in an EMS
station. The machine where these measures were taken was an Intel 1,5GHz
Pentium IV computer with 500 MB of RAM. In this case, the scenario was
completely different since the testbed consisted of just one FAIN ANN and
one EMS.

The VE time shown in the table is the time for creating a VE for a service
provider, creating a MI to this service provider and activating the VE for that
service provider. These processes are similar to those done when enforcing
the policy group for creating the VAN in the MANBoP EL manager. The
times for enforcing these four policies in MANBoP make a total of 12062ms,
which is a similar number. Again, it is very hard to find out the differences in
the comparison, although it might probably have to do with the scenario,
particularly if we take into account the difference between the numbers in the
FAIN D40 deliverable and the FAIN paper. Also, another possible
explanation for the differences is that in the scenario published in the paper
the dynamic components are not downloaded but just instantiated when they
are needed.

B Memory

In this sub-section we will provide graphics with the size of the heap used by
the MANBoP framework at any time of the management process when
running the first scenario. Additionally, we also provide the size of the heap
being used at any time by the CIA component.

 351

CHAPTER 6 – EVALUATION

At the end of the sub-section we will also provide some numbers on the disk
size occupied by the Database.

The figures below show the evolution of the used heap for the MANBoP
components as well as for the CIA component. There is one figure for the
network-level station when working alone, another for the network-level
station when working over element-level managers and a last one for the
element-level station.

1 2 3 4 5 6 7 8 9 10 11 12

0

2

4

6

8

10

12

14

16

18

Scenario steps

Used heap by MANBoP components
Used heap by the CIA component

Memory in MB

Figure 6 - 13. Network-level only Used Heap

 352

Section VI.3 – Evaluation results

1 2 3 4 5 6 7 8 9 10 11 12

0

5

10

15

20

25

30

35

40

Scenario steps

MANBoP Used heap
CIA used heap

Memory in MB

Figure 6 - 14. Network-level over Element-level Used Heap

1 2 3 4 5 6 7 8 9 10 11 12

0

5

10

15

20

25

30

Scenario steps

MANBoP Used Heap
CIA Used Heap

Memory in MB

Figure 6 - 15. Element-level Used Heap

 353

CHAPTER 6 – EVALUATION

There are few remarkable comments to make about these figures. In relation
to the heap used by MANBoP, it is interesting to note that it grows with the
number of policies processed, not with components loaded as the CIA does,
and how it tends to stabilise around five megabytes.

The CIA heap depends a lot on the components loaded into the system and
how much memory do they require as these components run inside the CIA
ORB. On the other hand, policy processing does not almost affect the heap
used by the component.

In the table below we give some data about the disk size occupied in the
Database and its different parts.

 User Info User
Policies37 Manager info Managed

Topology Info Total

Disk size in KB 48 11,4 1,8 7,6 68,8

Size per unit /
unit type

24KB/User 1,2KB/Policy 0,3KB/Dynamically
installed component

info

1,5KB/Managed
device

68,8KB/Manager

Figure 6 - 16. Database size occupied when running the first scenario

C Bandwidth

In the table below we show the statistics obtained for the management traffic
generated in the scenario for each of the management infrastructures. We
provide the information for both the network-level management station and
for the element-level management station.

 NL-only NL over EL
(NL station)

NL over EL
(EL station)

Total number of packets 690 873 325
Management traffic packets 418 256 99
Code downloading packets 171 410 118

Naming service packets 101 207 108

Average packet size (bytes) 300
Average management packet

size (bytes)
97 186 188

Average code downloading
packet size (bytes)

471 463 501

Average Naming Service
packet size (bytes)

135 196 185

Total bytes of traffic 134650 277943 97792
Bytes of management traffic 40486 47775 18613
Bytes of code downloading

traffic
80556 189653 59163

Bytes of Naming Service traffic 13608 40515 20016

195 318

Figure 6 - 17. Traffic generation statistics

37 User’s policies are indeed part of the user info. Nevertheless, because of their significance we have

included the amount of disk they occupy in a different column.

 354

Section VI.4 – Conclusions

From the table above the most interesting information is comparing the
management traffic generated by the network-level station when working
alone against the management traffic generated when working over network-
level managers.

The total traffic when working over element-level managers is more than two
times the traffic when working alone, although most of the difference is due
the traffic generated for downloading the components.

We can also see that the naming service related traffic is much higher when
working over the element-level managers because a big part of it is generated
when preparing the download of the components. Hence, in a situation
where the components needed to process a policy are already downloaded the
management traffic generated is almost the same.

The reasons why it is still higher when working over element-level managers
is that most of the policies in the scenario, indeed all except the enforcement
of the last one, is done over active routers (i.e. FAIN and ABLE routers).
Therefore, the components that monitor and enforce these policies, and
hence generate more management traffic, are located in the machines
themselves, and the management traffic with the management station is
simply a CORBA request and reply session.

On the other hand, when working over element-level managers the
management traffic generated for processing these policies (those over the
active routers) is due mainly to two reasons. The first one is that the policy-
processing request to the element-level managers generates more traffic, as
the XML policy is included in this request. The second one is that in this case,
the reply is not sent as result of the method called but afterwards, hence at
least a second CORBA request and reply session is needed.

If we look only at the traffic generated for the policy enforcement in the
passive router the management traffic generated by the network-level
manager, in the network-level only management infrastructure this traffic is
16363 bytes in 272 packets, while for the network-level over element-level
management infrastructure is 4483 bytes in 30 packets.

Summarising the behaviour in terms of bandwidth performance will only be
better for a network-level-only management infrastructure when the
percentage of management actions over active routers is much higher than
the percentage of management actions over passive routers.

Section VI.4 – Conclusions

In this chapter we have evaluated the MANBoP framework based on a
number of criteria that have also been described. The evaluation criteria have
been extracted from analysing the Thesis objectives. These criteria have been
grouped in two types: functional criteria and statistical criteria.

 355

CHAPTER 6 – EVALUATION

The functional criteria, which comprises flexibility, extensibility, delegation,
scalability, security, interworking and portability, is oriented towards assessing
the functional aspects of the MANBoP framework.

On the other hand, the statistical criteria, comprising processing time and
CPU, memory and bandwidth, is targeted towards recompiling, analysing and
assessing the performance figures of MANBoP.

After the description of the criteria followed to evaluate the framework we
have presented and analysed the evaluation results for each of the above-
mentioned criteria.

A general output from the evaluation of the framework is that, probably, the
design decision with a higher impact on the performance of the management
system was that of using a policy-based management system. When compared
with other, non policy-based, alternatives the main drawback of a policy-
based system is basically its worse computational performance since policies
must be parsed and interpreted. Nevertheless, on the management plane,
where decisions are usually long-term decisions, this is not an issue as crucial
as in the data or even control planes.

On the other hand, the election of a policy-based management system has
many advantages in terms of flexibility and even management station load.

The first advantage of a policy-based management system is that policies
allow a more autonomous management. With a policy-based management
system the operator can specify the rules that govern the network behaviour.

Another advantage of a policy-based management system, indeed of being an
interpreted system, is that it eases the process of dynamically extending the
management functionality by downloading new components capable of
interpreting new policies. This allows the dynamic addition of new
functionality to cope with new requirements or even with new managed
resources.

Finally, the fact of having independent components dynamically installable
and removable from the system is helpful to reduce the overall load of the
management station by removing those components that are not being used.

All these advantages together with the natural fit of policies for specifying
delegation of functionality and access rights, one of the key requirements for
managing active and programmable networks, have justified our election of a
policy based management system.

Looking into the evaluation of the flexibility criteria, the main conclusion that
can be extracted is that the obtained results present the framework as a useful
tool for network operators to manage heterogeneous networks in terms of
flexibility. The results have shown that the framework permits the
management of active, programmable and passive routers (the times for
managing different types of routers are on the same scale) without, for this
reason, loosing any of the advantages that can be obtained when using the

 356

Section VI.4 – Conclusions

capabilities offered by these technologies. This is shown by the way we
manage FAIN and ABLE routers in the scenarios. In particular, we have
demonstrated how the use of ABLE facilities for its management significantly
reduces the management traffic required. In brief, the flexibility of the
MANBoP framework has appeared as an interesting capability for solving
many possible problems that might appear when managing a network.

In relation to the creation of different management infrastructures based on
the MANBoP framework we have demonstrated in the scenario the simplicity
of the process. Indeed, it is only necessary to start the same piece of code in
the different stations with the appropriate configuration files. The remaining
processes for achieving the entire functionality are automatic. Moreover, the
scalability scenario shows how the possibility of easily create different
management infrastructures can be very helpful for solving different
problems, particularly scalability problems, in a cost-effective way.

The last aspect analysed within the flexibility criteria is the policy group
processing functionality. The results show that the performance penalty paid
for supporting this functionality (an average of 6% over the total policy
processing time) is small when compared with the flexibility that this
mechanism adds to the management framework. The added flexibility derived
from including policy group processing functionality is huge since it allows
even a higher automatism of management tasks. Without policy group
processing functionality it would be the user of the management system
(network operator or service provider), the responsible of introducing policies
one by one and removing them if an interrelated policy was not enforced
successfully.

In what refers to the results obtained from the extensibility evaluation, we can
state that it fulfils the objectives introduced at design time. Moreover, the
performance implications of the extensibility mechanisms are not significant
on the overall system behaviour. The processing times expended on the
extensibility mechanism when a new component is installed are around a 13%
of the total processing time. On the other hand, the gains obtained from it are
enormous; specially taking into account that extensibility support is a must on
a management system for active and programmable networks.

The evaluation of the delegation criteria has also given satisfactory results.
The delegation mechanism designed and implemented in MANBoP appears
as a good alternative for delegation of functionality in a policy-based
management system using XML as language for expressing policies. Its main
advantages are the wide syntactical and semantical flexibility that it offers, its
simplicity and the fact that the most cost-expensive task, the authorisation of
policies, is done by specialised code. Indeed, the processing time expended in
the authorisation process is around a 10% of the total policy processing time.
Another significant data obtained from the evaluation is that the
Authorisation Check Component, that carries out the authorisation process,

 357

CHAPTER 6 – EVALUATION

is not among the six components consuming more computational resources
of the framework.

The results obtained from evaluating the scalability criteria indicate that a
network-level over element-level management infrastructure solves to a great
extent the scalability problems that might appear because of the managed
network size. When running a network-level over element-level management
infrastructure the system behaved perfectly for 100 components. While, the
network-level-only management infrastructure performance was severely
damaged when reaching 75 components and at 100 components the system
was completely blocked.

When evaluating the scalability criteria we have also justified why we do not
expect the management framework to experiment scalability problems in
terms of number of users, and hence, why we have not realised any evaluation
in that sense. We have also reflected about how will the system behave in
front of a high load of policy requests and what solutions offers the
MANBoP framework to network operators to solve this kind of scalability
problems.

The evaluation of the security criteria has been developed as a way to describe
the scarce security mechanisms actually implemented in MANBoP as security
is considered as out of the scope of this Thesis. Summarising, MANBoP
security is yet on a foetal state and several security mechanisms should be
added to guarantee the safety of the system. In Chapter Seven we will
elaborate a bit more on which could be these security mechanisms.

The results obtained from evaluating the interworking criteria show that the
framework has acceptable interworking properties. These properties are
mainly due to the technologies used in the implementation. The use of the
standard Policy Core Information Model would probably enhance the
interworking capabilities of the system although it would certainly lower
down the overall system performance.

The last functional criteria evaluated were the portability criteria. The results
have demonstrated that the MANBoP framework has run with success in
different Windows and Linux computers without any adaptation needed.
Hence, we can state that the portability of the system is good as long as the
minimum computational requirements are available.

The evaluation of the statistical criteria provides a recompilation of the
performance figures of the framework. In terms of processing times, it is
interesting reviewing the six components that spend more time realising their
tasks. The one expending more processing time is the Policy Consumer
component followed by the Code Installing Application, Policy Consumer
Manager, Decision-making Monitoring system, Database and Monitoring
Meter components. These results are not surprising as, in the one hand the
time needed for enforcing a policy depends a lot on the managed device and,
on the other hand, when the Code Installing Application component is called

 358

Section VI.4 – Conclusions

it must find, download and install the dynamically installable component
required.

In those occasions when it has been possible, we have compared the data
obtained with that available from the FAIN project. Although the observed
figures were different the comparison was difficult to make due to different
evaluation environments or very high-level information coming from the
FAIN project.

The results obtained from evaluating the memory consumed by the
framework indicate that the heap consumed by all MANBoP components
except the CIA remains almost stable around 5 Mb. On the other side, the
heap consumed by the CIA component depends on the number and size of
the dynamically installed components that are loaded in the system. We have
also measured the disk size occupied by the Database, which for two users,
five network elements and ten policies is almost 70 Kbs.

Finally, in terms of bandwidth performance the results show that the
framework performs better for a network-level-only management
infrastructure when the percentage of management actions over active routers
is much higher than the percentage of management actions over passive
routers. Otherwise, a more distributed management infrastructure will
perform better.

Summarising, along this section we have assessed the MANBoP framework
following different functional and statistical criteria. Overall, the results
obtained from the evaluation have been satisfactory meeting the initial
objectives of the Thesis.

The following chapter presents the final conclusions of the thesis. We will
highlight the most relevant points of the work done and elaborate a bit
around future work that might be realised to enhance the system
functionality.

 359

