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Abstract

The submitted thesis is a contribution to the study of a two-dimensional microwave

synthetic aperture radiometer devoted to Earth observation for the measurement of the soil

moisture and the ocean salinity. The aperture synthesis concept used in radioastronomy for

decades is revised in depth and extended to large thermal sources, the situation found in

Earth remote sensing. Differences between both fields are so fundamental that require a

complete and systematic error analysis, new calibration methods and new inversion

algorithms suitable to deal with antenna pattern errors and extended thermal sources which

suffer the subsampling effects -aliasing- during the reconstruction process. The overall

performance of an Y-shaped space-borne interferometric radiometer, and specially the

radiometric accuracy improvement by means of pixel averaging, is then evaluated by

implementing a simulator that brings together the preceding studies. 

In order to validate, as far as possible, system error analysis, calibration and

inversion algorithms, an experimental X-band digital interferometric radiometer has been

designed and built. It consists of two antennas that are moved to synthesize a set of

baselines. Electronic hardware has been carefully designed, characterized and calibrated.

Experimental results are presented and discussed: the radiometric sensitivity, the angular

resolution and the overall system error evaluation have been measured under controlled

situations proving to be in good agreement with theoretical results. The results of a field

measurement campaign with artificial and natural scenes are finally presented.
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Resumen

La presente tesis es una contribución al estudio de un radiómetro de apertura

sintética bidimensional en la banda de microondas, dedicado a la observación de la Tierra

con el  fin de medir la humedad del suelo y la salinidad del mar. El concepto de apertura

sintética utilizado en radioastronomía durante varias décadas se ha revisado en profundidad

y se ha extendido a fuentes de ruido térmico extensas, la situción encontrada en

teledetección de la Tierra. Las diferencias entre ambos campos es tan básica que se ha

requerido de un completo y sistemático análisis de errores, de nuevos algoritmos de

calibración y de nuevos algoritmos de inversión capaces de incorporar los errores de los

diagramas de las antennas y de tratar con fuentes extensas que, además, sufren los efectos

del submuestreo durante la formación de la imagen ("aliasing"). La implementación de un

simulador que engloba los estudios precedentes ha permitido analizar las prestaciones

globales de un radiómetro interferométrico en forma de Y embarcado en una plataforma

espacial, y en especial, la mejora introducida en la precisión radiométrica mediante el

promediado de pixel.

Para validar, en la medida de lo posible, los algoritmos de calibración e inversión,

se ha diseñado y construido un prototipo de radiómetro interferométrico digital en banda X.

Dicho interferómetro está formado por dos antenas que se mueven para sintetizar un

conjunto de baselines. El hardware electrónico se ha diseñado, caracterizado y calibrado

meticulosamente. Se presentan una serie de resultados experimentales: la sensibilidad

radiométrica, la resolución angular y la evaluación del conjunto de errores del sistema han

sido medidos bajo condiciones controladas, mostrando una buena concordancia con los

resultados teóricos. Finalmente se presentan los resultados de una campaña de medidas de

campo con escenas artificiales y naturales.
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INTRODUCTION 

PREVIOUS WORKS AND JUSTIFICATION OF THE THESIS 

In Earth observation programs there is an increasing interest in the

measurement from the space of some geophysical parameters of crucial importance in

climate models, i.e. the ocean salinity and the soil moisture. These measurements should

preferably be passive and performed at L-band where there is a preserved band  for this

purpose (1400- 1427 MHz). However, the spatial resolution requirements needed by the

scientific community would force to use radiometers with large antennas, about 20 meters

of diameter. At present, these large antennas cannot be boarded in a satellite. 

In the last years aperture synthesis interferometric radiometry has received a

special attention by some spatial agencies as a possible solution to overcome these

problems. In the late '80s, the American hybrid prototype ESTAR (Electronically Steered

Thinned Array Radiometer) demonstrated the validity of the 1D aperture synthesis - 1D real

aperture principle in remote sensing applications. At present, the European Space Agency

is currently studying a two-dimensional aperture synthesis interferometer radiometer called

MIRAS, for Microwave Imaging Radiometer by Aperture Synthesis, with MATRA-

MARCONI SPACE (MMS) as the main contractor. A bread-board demonstrator is currently

under development.

At the beginning of this thesis the available bibliography is reviewed: that

concerning to radioastronomy, mainly [Thompson et al. 86] and [NRAO 89], to the one-

dimensional interferometric radiometer ESTAR and a critical review of the basic equations

of interferometric radiometry performed by Dr. I. Corbella [Bará et al. 94]. In

radioastronomy system errors are analyzed in terms of signal-to-noise degradation, while

the influence of antenna radiation voltage pattern errors and coupling effects is negligible

due to the reduced field of view and the distance between elements. These errors were first

found in the ESTAR prototype which were calibrated and corrected via the G-matrix

inversion method. However, it is difficult to apply this approach to large two-dimensional

interferometers due to the difficulty to measure the elements of the G-matrix, its size and

robustness problems that appear during the inversion process. Consequently, there was a

need to analyze the error sources of the instrument, to establish a calibration procedure and

to devise an inversion algorithm capable to deal with extended thermal sources and with

antenna pattern and receiver mismatches. 
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OBJECTIVES OF THE THESIS

This thesis is a contribution to the analysis of a two-dimensional microwave

synthetic aperture radiometer devoted to Earth observation and has been developed during

three contracts with the European Space Agency related to interferometric radiometry:

"Feasibility Study of a Dual Interferometric Radiometer" (ESTEC Purchase Order

132255, May 1994), "Bi-dimensional Discrete Formulation for Aperture Synthesis
Radiometers" (Contract Change Notice 2 to Work Order No 10 to ESTEC Contract No

9777/92/NL/PB) and "mm-Wave Wide Band Focused Interferometry", (Contract

Change Notice 1 to ESTEC Contract No 10590/93/NL/JV)

The main objectives pursued in those contracts were, given the original bread-

board design proposed by MMS for MIRAS:

i) Determination of the angular resolution of an interferometric radiometer, taking into

account decorrelation effects and system imperfections.

ii) Determination of the radiometric sensitivity of an interferometric radiometer as a function

of the visibility function window, the kind of demodulation, the shape of the receivers'

frequency response and the kind of correlator used. 

iii) Analysis of system errors and evaluation of the radiometric accuracy sensibility to them.

iv) Review of the calibration procedures proposed for MIRAS and proposal of improved

calibration methods.

v) Review of the G-matrix inversion method and its applicability to the MIRAS case, and

proposal of new effective inversion methods.

Without contractual obligation, the following objectives have also been

pursued in this thesis:

vi) The development of a simulator of a space-borne Y-shaped interferometric radiometer

to evaluate the overall performance of such an instrument including system errors,

calibration procedures, inversion algorithms, and specially the determination of the

radiometric sensitivity and the radiometric accuracy improvement by means of pixel

averaging, that is, by averaging a set of consecutive measurements in which a pixel is being

imaged.

vii) The design and implementation of an experimental X-band digital interferometric

radiometer to validate, whenever possible, the preceding studies.
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ORGANIZATION OF THE THESIS

This thesis is composed by three parts:

PART I: BASIC RADIOMETRY CONCEPTS

In part I the basic concepts of radiometry and emission theory (chapter 1), and

interferometric radiometry (chapter 2) are revised. 

PART II: SYSTEM PERFORMANCE, CALIBRATION AND INVERSION
METHODS

In part II, the tools for analyzing the basic performance of an interferometric

radiometer: the spatial resolution and the radiometric sensitivity, are reviewed and improved

to account for system imperfections (chapter three). They are then applied to the Y-shaped

array geometry, which will be demonstrated that it is the optimal one from the point of view

of minimizing electronic hardware requirements (chapter six). The trade-off between the

spatial resolution and the radiometric sensitivity is stated in the interferometric radiometer

incertitude principle, an original contribution of this thesis.

System imperfections are classified, analyzed and their contribution to the

radiometric accuracy and sensitivity budgets are quantified (chapter four). The application

to Y-arrays of the redundant space calibration method used in radioastronomy is studied and

its limitations to Earth observation are pointed out. A new hardware calibration approach

based on noise-injection to small groups of antennas is proposed  (chapter five). Visibility

inversion methods are developed in chapter six: a new technique to perform Fourier

transforms over hexagonal grids with standard rectangular algorithms is proposed. This

technique avoids interpolations and preserves signal-to-noise ratio and is the basic step of

a new iterative inversion algorithm that is proposed to account for antenna voltage pattern

errors and fringe-wash effects. The development of an space-borne interferometric

radiometer simulator to study the overall system's performance is explained in chapter

seven. The radiometric improvement by means of pixel averaging is numerically evaluated

by following pixels' trace during their pass along the FOV. The simulator includes a module

for generating realistic brightness temperature scenes from geophysical parameters observed

from the satellite's position, which is propagated with an orbit generator module.
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PART III: EXPERIMENTAL RESULTS

Chapter eight is devoted to the description, verification tests and calibration

of the electronic hardware developed to experimentally check, whenever possible, the

former  error analysis and to apply the proposed calibration and inversion methods.

Experimental verification of the 2D-passive aperture synthesis concept is presented in

chapter nine through several examples of artificial and natural synthetic images. 

At the end, chapter ten summarizes the main conclusions, the original

contributions of the author and the future research lines.
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Chapter 1. Review of basic concepts on 
radiometry and emission theory

This chapter presents the basic concepts of radiometry: the science devoted to the

study of the thermal radiation and its measurement. Brightness, emissivity and brightness

temperature are defined and studied for different kinds of materials and surfaces. At the end

of this chapter, atmospheric, ionospheric and the space radiation impact on the apparent

brightness temperature are reviewed.

1.1.- BRIGHTNESS AND THE POWER COLLECTED BY AN ANTENNA

The power emitted by a body in a solid angle by unit surface is called the brightness,

units [W sr  m ]. If the emitting surface radiates with a pattern F (2,N), the brightness B(2,N)-1 -2
t 

is given by:

(1.1)

where A  is the total area which is radiating. According to figure 1.1, the power collected byt

an antenna surrounded by a distribution of incident power B(2,N) can be computed as [Ulaby

et al. 81]:

(1.2)

where A  is the effective area of the antenna and R is the distance to the radiating surface. Byr

taking into account that the solid angle observed by the receiving antenna can be expressed

as:

(1.3)

the power collected by the antenna can be computed as:

(1.4)

If the radiating surface is not observed from the maximum of the antenna radiation

pattern, it must be included in equation (1.4):

(1.5)

where | F  (2,N) |  is the normalized antenna radiation pattern. In addition, if the brightnessn
2

is not constant with frequency, a new magnitude must be defined: the spectral brightness
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density B (2,N), units [W sr  m  Hz ]. The total power collected by the antenna is thenf
-1 -2 -1

obtained by integrating expression (1.5) over the system's bandwidth and over the space:

(1.6)

where non-italic B is the bandwidth of the receiving system and the term ½ takes into account

that the antenna collects only half the thermal power emitted which is randomly polarized.

Figure 1.1 .- Geometry of the radiation  incident over the antenna [from Ulaby et al. 81].

1.2.- THERMAL RADIATION

1.2.1. Planck's blackbody radiation's law

All bodies at a non-zero Kelvin temperature emit electromagnetic radiation. Gases

radiate at discrete frequencies. According to quantum theory, each spectral line corresponds

to an electron transition from an atomic energy level ,  to another  one , . The radiation is1 2

produced at a frequency given by Bohr's equation:

(1.8)

where h is the Planck's constant, h = 6.63 10  J.-34
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The atomic emission is originated by a collision with another atom or particle. The

probability of emission is greater for larger atomic densities and high kinetic energies.

Kirchoff's law states that in thermodynamic equilibria all the absorbed energy is re-radiated.

For a perfect absorber body, also called a "black body", the radiated energy follows Plank's

law:

(1.9)

where f is the frequency in Hertz, k  is the Boltzmann's constant k  = 1.38 10   J K , T  isB B ph
-23 -1

the absolute temperature in Kelvins and c is the speed of light  c = 3 10   m s . Natural8 -1

surfaces absorb a fraction of the incident power, the rest being reflected.  A close

approximation to the black body are the microwave absorbers used in anechoic chambers.

Equation (1.9) depends on the frequency and the absolute temperature. Figure 1.2 shows a set

of plots of the spectral brightness density vs. frequency, for different temperatures.

Figure 1.2 .- Planck's radiation law [from Ulaby et al 81].

The higher the physical temperature, the higher the brightness and the frequency where

the brightness reaches its maximum. The Stefan-Boltzmann law provides an expression for

the total brightness and it is obtained by integrating equation (1.9) over all the spectrum:
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(1.10)

where   is the Stefan-Boltzmann constant,  = 5.673 10   [W m K sr ]  and the subscript-8 -2 -4 -1

"bb" stands for the black body radiation.

According to the frequency range two approximations of equation (1.9) can be used.

For high frequencies equation (1.9) reduces to Wien's law:

(1.11)

Rayleigh-Jeans' law is useful for low frequencies and was obtained by Jeans based in the

classic mechanics, prior to Plank's quantum mechanics. Its expression is given by:

(1.12)

Figure 1.3 compares these two approximations with Plank's law. If 8 and T satisfy:

(1.13)

the error committed by the Rayleigh-Jeans approximation is smaller than 1%, if the physical

temperature is 300 K and the frequency is smaller than 117 GHz, which covers a large part

of the microwave spectrum. Expression (1.12) will be used from now on. Note that there is

linear relation between the spectral brightness density and the physical temperature.
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Figure 1.3 .- Planck's radiation law approximations: 

Rayleigh-Jeans' law (low frequency) and  Wien's law (high frequency) [from Ulaby et al 81].

1.2.2.- Relationship between the collected power by an antenna and the temperature

The power collected by a lossless antenna with normalized radiation pattern t(2,N)

surrounded by a black body is given by expression (1.6) and the Rayleigh-Jeans' law (1.12):

(1.14)

If the bandwidth B is small enough to assume that the spectral brightness density does

not change over the frequency range, equation (1.14) reduces to:

(1.15)

where the antenna solid angle has been expressed as a function of its effective area:

(1.16)

Equation (1.15) establishes a linear relation between physical temperature and the collected

power. In 1928, Nyquist found the same expression for the available power at the terminals

of a resistance at a physical temperature T . This means that for an ideal receiver ofph

bandwidth B, the antenna delivers to the load the same power as a resistance at a temperature

T : the antenna temperature.A
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Figure 1.4 .- Brightness temperature of a semi-infinite medium

at a uniform temperature [from Ulaby et al 81].

1.2.3.- Gray body radiation

1.2.3.1.- Brightness temperature and emissivity

A blackbody is an idealized body which is a perfect absorber and a perfect radiator.

Real bodies, however, radiate less power than the blackbody and do not absorb all the incident

power: they are called gray bodies. Figure 1.4 shows a semi-infinite material at a uniform

temperature T . If the emitted brightness depends on the direction B(2,N), a similar equationph

to that of the black body can be written:

(1.17)

where I (2,N) is the equivalent temperature associated to the brightness and it is called theB

brightness temperature.

Since the brightness

temperature of a gray body is

smaller than that of a black body,

the brightness temperature T  isB

smaller than the physical

temperature T . The parameterph

relating both magnitudes is called

the emissivity e(2,N):

(1.18)

Since B(2,N) # B , the emissivity is bounded by 0 # e (2, N) # 1. Thebb

emissivity is zero for a perfect reflecting material, a lossless metal, and is one for a perfect

absorber, the blackbody.
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1.2.3.2.- The apparent temperature

The apparent temperature is an equivalent temperature related to the total brightness

incident over the antenna, B (2,N):i

(1.19)

The apparent temperature depends on several terms related to the different sources

radiating over the antenna. Figure 1.5 shows the relationship between them: the radiation

emitted by the surface (land or sea) reaches the antenna attenuated by the atmosphere, the

radiation emitted downwards by the atmosphere and reflected on the sea/ground in the antenna

direction and the upwards radiation emitted by the atmosphere. In the frequency range from

1 GHz to 10 GHz losses for a cloud free atmosphere are very small and can be neglected.

Consequently, the apparent brightness temperature T  can be approximated by the brightnessAP

temperature T . B

Figure 1.5.- Relationship between the antenna temperature, the apparent temperature and the

brightness temperature [from Ulaby et al 81].
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1.3.- EMISSION THEORY

The reflection of a plane wave over a specular surface produces a plane wave in a

single direction as shown in figure 1.6.a. The reflected power P  is given by:r

(1.20)

where P is the incident power, ' is the specular reflection coefficient and p is the polarization:i 

horizontal or vertical.  In the case of a specular reflection, by the Kirchhoff 's law, the

emissivity can be expressed as a function of the reflection coefficient:

(1.21)

Figure 1.6.- Specular and rough surface scattering and emission: a) Specular reflection; b) Diffuse scattering;

c) Diffuse emission; d) Contributions to T (2) come from many directions [from Ulaby et al 81].B

If the reflection is not produced over a plane surface, the incident power will be

scattered over the space (figure 1.6.b). Some of the scattered power maintains the phase and

is reflected in the specular direction, but the rest of the radiation losses the phase

characteristics and it is scattered. In a similar way, the power radiated by the medium to the

exterior passes through the surface and it is transmitted over a range of directions (figure

1.6.c). Consequently, T  (2  , p) has contributions coming from several directions of the innerB 1

part of the material (figure 1.6.d).
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1.3.1.- General expressions for the emissivity

 The scattering of a rough surface is characterized by its cross-section by unit area,

F (2 , N , 2 , N , p , p ). This parameter relates the scattered power in the (2 , N ) directiono
o o s s o s s s

with p  polarization for an incident plane wave at the  (2 , N ) direction with polarization p .s o o o

If p  and p   are the same, F  is called the horizontal or vertical scattering coefficient. If  p  ando s o
o 

p  are different,  F  is called the cross-polar scattering coefficient. By applying the Kirchhoffs
o 

law to the rough surface case, Peake developed in 1959 the expressions for the horizontal and

vertical emissivities and reflected temperature T  (2 , N , p ) [Peake 59]:SC o o o

(1.22)

(1.23)

1.3.2.- Simple models for the emissivity

Expressions (1.22) and (1.23) can by simplified in two cases of interest: a specular

surface and a completely rough surface.

1.3.2.1.- Emission from a specular surface

The scattering produced at a specular surface consists on the coherent reflection  of

the incident wave. Consequently, the cross-polar scattering coefficient is zero, and the

horizontal or vertical polarization scattering coefficients are delta functions:

(1.24)

where (2 , N ) is the specular direction:sp sp

(1.25)

Substituting equations (1.24) and (1.25) in (1.22) and (1.23), the following expressions

are obtained:

(1.26)

(1.27)

which are equivalent to (1.20) and (1.21).
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1.3.2.2.- Emission from a perfectly rough surface

On the other hand, the scattering coefficient for a perfectly rough surface, also called

a Lambertian surface, depends only on the product cos 2  cos 2o s :

(1.28)

where F  is a constant related to the dielectric properties of the scattering surface. Theo
o

emissivity is obtained by substituting expression (1.28) in (1.22) and (1.23):

(1.29)

which is independent on the polarization and the incident angle.

Sections 1.3.2.1 and 1.3.2.2 have presented the emissivity of two extreme and

idealized cases. Natural surfaces do not have neither specular nor Lambertian characteristics.

They exhibit a mixed behavior depending on its dielectric properties and the surface

roughness compared to the wavelength. Their properties are briefly reviewed in the next

section.

1.3.3.- Sea and terrain emissivity properties

Since the purpose of low-frequency interferometric radiometers is the periodic global

monitoring of the sea salinity and the soil moisture, in the next paragraphs special attention

is paid to the dependence of the emissivity on these parameters and others, such as the wind

over the sea or  the vegetation cover that may mask the measurements. 

1.3.3.1.- Sea emissivity

The penetration depth of electromagnetic waves in sea water is small, 1 cm at 1.4GHz,

and, consequently, in depth salinity variations will not be measurable. Sea surface salinity

monitoring by radiometric measurements requires low frequencies. 

For quiet waters, the brightness temperature of the sea is given by equation (1.26):

(1.30)

where 2 is the incident angle, T  is sea water physical temperature and ' (2,p) is the specularo
sp

reflectivity of the sea, which depends on the incidence angle 2, the polarization  and the

relative permitivity of saline water , , which depends at its turn on the frequency, the physicala

temperature and the salinity S. The measurement of sea salinity to within 1‰ accuracy

requires a high radiometric sensitivity, which is specially critical at low temperatures. 
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In addition, the emissivity is modified by surface roughness, which is mainly governed

by wind which induces waves, ripples and foam over the sea surface. To compute the

expected emissivity at a given direction, equation (1.22) must be evaluated after the

computation of the scattering coefficients for a specified wind velocity and direction [Stogryn

67] [Fung 94]. At 1.4 GHz, the vertical polarization brightness temperature responses ()T )BV

to salinity changes ()S), sea surface temperature changes ()SST) and wind speed changes are

approximately [Skou 89]:

(1.31)

Salinity measurements require corrections for wind and sea temperature. The horizontally

polarized brightness temperature sensitivity is smaller to sea surface temperature and greater

to wind speed. To obtain the sea surface temperature and wind speed information the next

protected band, 2.7 GHz, can be used. At this band Faraday rotation effects are negligible and

the vertical sensitivity to sea salinity is much more reduced and is very independent on wind

speed  while the response to sea surface temperature is good ()T /)SST = 0.6 K/ºC). TheBV

horizontal polarization response to salinity and temperature is lower, but the response to wind

speed is rather large ()T /)WS = 1.4 K/ m/s). To achieve a 0.25 K radiometric sensitivity,BH

the sea surface temperature must be known within 0.5 ºC and the wind speed within 0.5 m/s

[Skou 95].

Sea salinity has small spatial variations, which allows to average measurements over

large areas to improve the instrument's radiometric sensitivity at the expense of spatial

resolution. This solution does not satisfy the spatial resolution required for river mouths

monitoring. However, in this particular situation, buoys can be placed or airborne campaigns

can be carried out.

1.3.3.2.- Terrain emissivity and soil moisture dependence

Soil moisture global monitoring is another parameter needed in present climate

models. In the following paragraphs simple models showing the relations between soil

moisture, soil composition and roughness will be reviewed. The effect of the vegetation cover

will be included at the end.
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Experimental observations in the microwave spectrum have shown that the brightness

temperature for a vegetation free terrain decreases linearly with the soil moisture contents, so

frequency must be as low as possible to avoid vegetation and roughness effects [Ulaby et al.

81]. At 1.4 GHz the majority of the brightness power is emitted from the 2-5 cm soil layer on

beneath the surface. On the other hand, since the physical temperature of this layer is not easily

measured by remote sensing, it must be taken from climatological models or its dependence

eliminated by using a dual polarization instrument and taking the ratio between the horizontal

and the vertical brightness temperatures [Skou 89]. 

The slope of the line:

(1.32)

is called the radiometric sensitivity to soil moisture and decreases with increasing frequency

and soil roughness. The sensitivity to soil moisture also changes with soil texture. Schmugge

in 1980 noted that the brightness temperature  T  is more sensitive to the gravimetric soilBs

moisture, m , in light soils small clay content. g

Vegetation cover attenuates soil emission and emits by itself. If the spacing between

leaves, branches... is comparable to the wavelength in the vertical and horizontal directions,

the vegetation cover can be assumed to be homogeneous and its effects can be modelled as

shown in equation (1.33):

(1.33)

where a is the albedo, the relation between the scattered and the incident power, and T  andv

T  are the physical temperatures of the vegetation cover and the terrain. The 1/L term accountss

for the attenuation in the vegetation cover and can be computed as:

(1.34)

where K  is the extinction coefficient of the vegetation cover, h  is its height and 2 is thee v

refraction angle in the vegetation medium. This model can be applied if the albedo is smaller

than 0.2, scattering inside the vegetation cover is negligible, the reflectivity of the air-

vegetation union is negligible and the refraction index of the vegetation is similar to that of the

air. The dispersive characteristics of the vegetation depend on its structure, leaves, branches...

and are very difficult to be modelled. Typically, the emissivity ranges from 0.36 for humid soils

to 0.99 to dry soils, and the brightness temperature from 105 K to 270 K. These large

variations allow to recover easily the soil moisture content from radiometric measurements,

with a modest 1 K radiometric resolution.
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1.4.- THE APPARENT BRIGHTNESS TEMPERATURE FROM SPACE

In a remote sensing mission, in addition to instrumental errors, other phenomena can

degrade the radiometric resolution and must be accounted to calibrate them. These phenomena

are the Faraday rotation, atmospheric perturbations and cosmic radiation.

1.4.1. Faraday rotation  

At microwave frequencies ionosphere effects are negligible. However, in the low

range, at 1.4 GHz, its effects must be accounted for. The plane of polarization of the

electromagnetic fields propagating from the Earth's surface to the satellite antenna suffers a

rotation while passing the ionosphere. The angle of rotation can be computed from [Skou 89]:

(1.35)

At 1.4 GHz the average rotation angle is 2 = 8.7 . During the day, the maximum angle can beo

as high as 28º, while during the night decreases down to the 10%. Day to day variations within

+100% and -50% of the mean values can be expected. The apparent brightness temperatures

measured by the radiometer T'   and T'  are mixed values of the true ones T  and TBH BV BH BV

[Skou 89]:

(1.36)

Typical T =135 K and T =70 K values, with a Faraday rotation of 10º lead to T' =133.5BV BH BV

K and T' =72.8 K. The 1.5 K error in T  induces an error in the sea salinity of 3‰, whichBH BV

is an unacceptable figure. The system of equations (1.36) can be solved with respect to TBV

allowing to solve for it provided the Faraday rotation angle is known. In fact, the polarization

angle can be obtained from:

(1.37)

where R and R' are the true and the measured polarization coefficients, defined as:

(1.38)
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According to studies performed by the Technical University of Denmark, the true

polarization coefficient of the sea has a marginal dependence on sea salinity and sea

temperature, being mainly governed by wind speed. When the wind speed has been measured

by a 2.7 GHz channel, the true polarization ratio can be precisely estimated (equation 1.38),

the angle 2 computed  (equation 1.37) and the Faraday rotation effect corrected (equation

1.36).

1.4.2.- Space radiation

Microwave radiation emitted from the space reflects over the sea/soil surface and is

collected by the main beam of the antenna. Cosmic radiation level is constant, about 2.7 K,

and does not affect the quality of the measurement. However, galactic noise presents large

variations, from 0.8 K to 16 K at 1.4 GHz, depending if the pole or the center of the galaxy

is reflected over the Earth's surface. This effect must be avoided by selecting an orbit so that

the reflected antenna beam does not intercept the galaxy center. If not, a correction can be

performed on measured data since galactic noise is well mapped. Sun glitter can affect

seriously the measurements, since its high brightness temperature, about 10000 K or more, can

be reflected over the sea surface and collected by the antenna. Direct reflections must be

avoided, for example by choosing a morning sun-synchronous orbit.

1.4.3.- Atmospheric perturbations

The absorption produced by the atmospheric water vapor is usually of great

importance. However, at 1.4 GHz its contribution is negligible. Oxygen absorption is also

important, but in the frequency range from 1 GHz to 10 GHz, the zenith brightness

temperature due to oxygen has a constant value of about 2 K that can be easily corrected.

1.5.- CONCLUSIONS

At this point, keeping in mind the main conclusions of each section, it is interesting to

reproduce some of the SMOS conclusions (Consultative Meeting on Soil Moisture and Ocean

Salinity Measurement Requirements and Radiometer Techniques, April 21-22, 1995, ESA-

ESTEC, Noordwijk, The Netherlands):

"1.- Mission Objectives.

Soil Moisture and ocean salinity are important parameters for modeling the hydrological cycle

in global climate models. They can be measured from space on a global scale using passive

microwave radiometry at 1.4 GHz. No practical alternatives for the measurement of these

parameters exists.
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2.- Instrument Requirements.

A single frequency (1.4 GHz), dual polarization (H and V) instrument in a sun-synchronous

dawn-dusk orbit giving 0.5 K radiometric resolution, 1 K radiometric accuracy, 10 Km spatial

resolution and 1-3 days revisit time would satisfy most user requirements.

3.- Instrument Technology.

Aperture Synthesis is the preferred option over push-broom and scanning techniques. In-orbit

calibration methods need to be developed."

In the next chapters, the basic principles of Aperture Synthesis Radiometry are

reviewed and the basic performance of an Interferometric Radiometer in terms of the spatial

resolution and the radiometric resolution and sensitivity are computed.  Instrumental errors,

calibration procedures and inversion algorithms are then studied. Finally these studies are

corroborated by the development of an experimental Aperture Synthesis Interferometric

Radiometer and the field measurements campaign performed.
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Chapter 2. Introduction to Interferometric Radiometry

A passive radiometer is an instrument that measures the spontaneous

electromagnetic emission. This radiation is normally associated to a thermal effect: the

brightness temperature. As it was shown in chapter one, due to atmospheric effects and

reflection from external sources, i.e. the sun, the measured incident power, although being

related to the physical temperature, it is different and it is called the "apparent brightness

temperature". The spatial resolution achievable by a radiometer is limited by its antenna

size. Total power radiometers have large antennas with a narrow beam which is scanned

along the field of view. However, the measurement of some physical parameters such as

the soil moisture or the sea surface salinity require passive measurements at low

frequencies with high spatial resolution (10-20 Km) requiring large antennas, about 20 m

of diameter, at present technologically unfeasible. For this reason, bi-dimensional

interferometric radiometry is configuring as a preferred option over total power radiometry

in view of its lighter structure, although at the cost of more complex electronic hardware, data

processing and calibration procedures. This chapter is devoted to review the principles of

interferometric radiometry. The relationships between the measurements, also called

"visibilities", the antenna positions and their radiation voltage patterns, as well as the receiver's

frequency responses are shown. These relations are used in the following chapters when

studying instrument errors, calibration procedures and inversion algorithms. Classical total

power radiometers will be treated as a particular case of interferometric radiometers.

2.1.- RADIATION PRODUCED BY THE EARTH

From a radiometer point of view, the Earth is an extended source of electromagnetic

random emission, having equal probability for horizontal and vertical polarization. Since

the antennas are sensitive only to one polarization, this electromagnetic wave can be

considered as polarized. As discussed in [Goodman 68] and [Goodman 85] it can be accu-

rately modelled by a scalar field b(x,y,z,t) satisfying, thus, the scalar wave equation:

(2.1)

where c is the velocity of propagation of light 3 10  m/s and L the Laplacian operator.8

The time and space dependent function b(x,y,z,t) may be viewed as the value of the

component of the electric field parallel to the antenna polarization direction. For a given

point in space, it is a stationary, ergodic, zero-mean and Gaussian random process. It also
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may be described in the frequency domain as  $ (x,y,z,f) with the aid of the Fourier

Transform:

(2.2)

By introducing (2.2) in (2.1), the frequency domain wave equation is obtained:

(2.3)

being k the wave number k = T /c and T = 2Bf the angular frequency.

2.2.-  PRINCIPLE OF OPERATION OF AN INTERFEROMETER

 2.2.1.- Stochastic point source: decorrelation effects

Consider a point source located at given coordinates (X ,Y ,Z ) radiating a random0 0 0

scalar field b(x,y,z,t) as shown in figures 2.1 and 2.2.

Figure 2.1.- A point source and two obser-
vation points

Figure 2.2.- Angular power distribution of
a point source

If the signal in point (x ,y ,z ) is b (t) = b(x ,y ,z ,t), assuming that the process is1 1 1 1 1 1 1

stationary and ergodic, its mean power (power density of the electromagnetic wave) is:

(2.4)

R (J) is the self-correlation function of the real process b (t). Using the properties of theb1 1

analytic signal, this power can be expressed as:
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(2.5)

where R  (non-italic b) is the self-correlation function of b (t), the analytic signal of b (t).b1 1 1

In optics the intensity of the source is defined directly as R (0), which is twice the meanb

power of the real signal.

The function b(x,y,z,t) is expressed in the frequency domain as $ (x,y,z,f) (equation

(2.2)). Solving (2.3) for a point source, the signal at point (x ,y ,z ) is expressed as:1 1 1

(2.6)

where A(f) is now a complex function of frequency and k = 2Bf/c. Alternatively, in the time

domain one has:

(2.7)

where a(t) is the inverse Fourier transform of A(f). The analytic signal of b (t) is obtained1

easily from the analytic signal of a(t):

(2.8)

From (2.5) the mean power density of the wave at the observation point can be

obtained:

(2.9)

where R  is the self-correlation function of the analytic signal of a(t), that is a(t). The terma

½R (0) is defined as the radiation intensity of the source, and will be denoted by P :a a

(2.10)

Let's now consider two points (x ,y ,z ) and (x ,y ,z ), as in figure 2.1, in which the1 1 1 2 2 2

sources produce signals with associated analytic signals b (t) and b (t) respectively. The1 2

visibility function is defined as:

(2.11)
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Using now the expression (2.8) for b (t) and a similar one for b (t), it can be1 2

concluded that :

(2.12)

being )r = r - r . It can be expressed in terms of the self-correlation function of the2 1

complex envelope of a(t) yielding [Goodman 85]:

(2.13)

where  is the self-correlation function of the complex envelope of a(t), k =T /c0 0

and T  is an arbitrary frequency, which, for narrow band signals is usually chosen as the0

mid-band frequency. The function is the inverse Fourier transform of the power

spectral density of the complex envelope, which, in turn, is proportional to the power

spectral density of the real signal shifted to DC:

(2.14)

where S (f) is the power spectral density of the process a(t) and u(f) is the unit stepa

function:

(2.15)

Alternatively, expressing equation (2.13) as a function of the complex degree of

coherence of the analytic signal and the complex envelope:

(2.16)

The term is often called the "fringe-washing function" in interferometry

textbooks. Note that if the signal's bandwidth is reduced to zero, the stochastic noise source

becomes a sinusoidal source, the amplitude of the fringe-washing function is constant and

the visibility function depends only on the pathlength difference )r:

 
(2.17)

For the observation point located at (x ,y ,0), the distance to the source can be written as:1 1

(2.18)

where R  and d  are respectively the distances of the source and the observation points to0 1

an arbitrary origin of coordinates. If we locate this origin of coordinates close to the

observation point then R  is much greater than the two other terms in and a linear Taylor0
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approximation may be done, yielding:

y - x -
R 2

d+R = 
R 2

)y Y+x X( 2-d
+R  r 1010
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0
0

1010
2
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01 ηξ≈ (2.19)

where:

R

Y=   
R

X = 
0

0
0

0

0
0 ηξ (2.20)

Using the same equations for r2 the path difference ∆r can be computed as:

[ ]  )y-y( +  )x-x(    -  
R 2
d-d = r -r r 012012
0

2
1

2
2

12 ηξ=∆      (2.21)

Approximating r1r2 . r2 and defining P = Pa / r2, equation (2.17) simplifies to:

e e P = v)V(u, v]  +u  [2-j j 00 ηξπΨ       (2.22)

where the phase factor Ψ is given by:

0  )d-d(
R

= 2
1

2
2

0

≈Ψ
λ
π

   (2.23)

and the variables u, v are called the baseline and are defined as the projections over the (x,y) axes

of the distance between the antennas normalized to the wavelength:

λλλλ
D = 

y-y
 = v   ; D = x-x =u y12x12 (2.24)

That is, without decorrelation effects equation (2.22) is the Fourier Transform between

the apparent brightness temperature distribution and the visibility function:

        (2.25)
Analysis of a non-sinusoidal signal has a non-desired effect in the amplitude of the

visibility function. An example will clarify the ideas. Suppose that a(t) is a bandlimited point ther-

mal source located at the (ξ0,η0) direction. It has a power spectrum centered on a frequency f0

and constant for a frequency interval lying inside a bandwidth B and zero outside. Then it is

easily found that:

)sinc(B B T k 2=)(R~  > <  
B
ff-

 T k 2=)  f ( BA
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



ΠS (2.26)

being kB the Boltzmann constant and T the apparent brightness temperature. From (2.13) and

(2.21)  the visibility function becomes:
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if ∆r/c is much less that 1/B, the "sinc" function is approximately unity and the result is the
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same as for a sinusoidal function. If not, the amplitude of the visibility function decreases and

vanishes for ∆r = c/B. The time 1/B is called the coherence time of the signal, and this time

multiplied by c is the coherence length. So for an interferometer to perform well, it must satisfy:

For a radioastronomy interferometer this effect supposes no limitation since a time delay

is added to the receivers so as to have an effective ∆r close to 0. This can be done only if the

approximate location of a quasi point source is known a priori. For a wide field of view

radiometer this is not possible in general, since the source is extended. This is the main difference

between radiometry and other applications of interferometry.

 The computed angular power distribution of the source is the inverse Fourier transform

of the visibility function in the variables (u,v) < > (ξ,η):

Equation (2.29) can be integrated by making the change of variables:

leading to:

Note that the amplitude of the recovered brightness temperature of the point source decreases

when it is located out of boresight (ξ,η) = (0,0). Note also that the recovered brightness

temperature distribution suffers from a radial broadening along the line η=η0/ξ0ξ, that is, the

original point source located at (ξ0,η0) appears as a segment ηξζ 2
0

2
o0  + W =  W  long as it is

shown in figure 2.3.

B

c
 = length coherence » r∆ (2.28)
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Spatial decorrelation degrades spatial

resolution out of boresight and is studied in

detail in chapter three.

2.2.2.- Extended stochastic source. The Van Cittert-Zernike Theorem

As stated in the introduction, the Earth must be modelled as an extended source of

thermal radiation. In this section previous results are extended by assuming this type of source.

Following the same procedure, the wave equation must be first solved in the frequency domain

(2.3) and then the analytic signal of the field at two given observation points (x1,y1,0) and

(x2,y2,0) are computed yielding to b1(t) and b2(t). The visibility function is then defined as the

mean cross-power of these two signals, or their cross-correlation function at the origin (τ = 0),

as in equation (2.16). This function depends on the distance between the antennas normalized to

the wavelength (u,v)), and the angular power distribution is then computed by a Fourier trans-

form in the plane (u,v) < > (ξ, η).

The solution of (2.3) for an extended source follows from the Huygens-Fresnel principle

and can be found for example in [Goodman 68]. Using the same notation as in the previous

sections it can be expressed as:

where the integral is extended over the source surface, A(x,y,z,f) is the frequency domain value

of the field at the source, and the geometric

terms are defined in figure 2.4. Equation (2.32) is

only valid if the distance from the source to the

observation point is much greater than the

wavelength, situation which is almost always

met.

The analytic signal of the field at point
(x1,y1,0), namely b1(t) can be readily found from

the above equation. The procedure is described

Figure 2.3.- Angular Power Distribution
for a point source with apparent
temperature T0 at ζ0=0, 0.5 and 0.8.

Figure 2.4.- Definition of geometric terms
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[Goodman 85] and yields the following general result:

(2.33)

where a (x,y,z,t) is the analytic signal of the field at the source point. The time derivative

of an analytic signal can readily be found:

(2.34)

where A is the complex envelope of a(t) and A´ its time derivate. For a narrow-band signal

this time derivate is small and (2.34) becomes:

(2.35)

then (2.33) reduces to:

(2.36)

The mean power at point (x ,y ,0) can be computed as in (2.5) from the self--1 1

correlation function of b  at J = 0, R (0). At this point we must make the assumption that1 b1

the source field is spatially uncorrelated, so that [Goodman 85]:

(2.37)

note that (x,y,z) and (x',y',z') are points on the source surface. Then the power at point

(x ,y ,0), P  is easily obtained from equation (2.36):1 1 1

(2.38)

where we have make use that the emitted power depends on the surface's projection in the

direction of the observation point, that is:

(2.39)

and  is the power emitted in the surface's normal direction 2  = 0.1

Using now the complex degree of coherence, and the radiation intensity of the

source P , from equation (2.38):a

(2.40)

where it has been used that r (0)=1.a
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Considering now two observation points, the visibility function is defined as in

equation (2.11) as the cross-correlation function of b (t) and b (t) at J = 0. Assuming that1 2

the field is spatially incoherent (equation 2.37) and that it has narrow bandwidth (equation

2.35), the following expression can be obtained:

(2.41)

or, in terms of the complex degree of coherence of the complex envelope A(t):

(2.42)

The above general expression has only three assumptions:

a) The source is spatially incoherent

b) The source is narrow band

c) The distance of the source to the observation point is much larger than the wave-

length.

 If the distance between the observation points is much smaller than the distance

from any of them to all points in the source, the paraxial approximation holds:

r  . r  . r radial coordinate of the source point1 2

2 . 2 . 2 elevation coordinate of the source point1 2 

and equation (2.42) can be expressed in the directing cosines coordinates:

(2.43)

where formally r and 2 should be expressed as a function of the respective coordinates, but

are kept in this manner for convenience.

Finally, by making use of equation (2.21), the phase k )r = k  ( r - r ), can be ex-0 0 2 1 

pressed as a function of the coordinates using the equations for r  and r  :1 2
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(2.44)

where Q.0 is defined in equation (2.23), and (u,v) are the (x,y) projections of  the antenna

separation normalized to the wavelength and were defined in equation (2.24).

Now equation (2.42) can be expressed in the directing cosines coordinate as:

(2.45)

where the argument of has been maintained as )r/c for simplicity. 

To summarize, the above expressions are true if one considers the previous

approximations named a),  b) and c) and the following:

d) The distance between the observation points is much smaller that the

distance from them to any source point

e) The two observation points lay in a plane z=0.

Equation (2.45) states that the visibility function is essentially the two-dimensional

Fourier transform of the radiation intensity of the source, which is the result known as the

Van Cittert-Zernike theorem [Goodman 85].

The power at an observation point is given in equation (2.40), which can be

expressed using the directing cosines coordinates and the above approximations:

(2.46)

2.3.-  RADIOMETER OPERATION

In the preceding paragraphs, the theoretical basis of interferometry have been

discussed. The analysis of the operation of a radiometer has to take into account some

additional considerations not considered so far. In particular the field at an observation

point is not narrow band noise, but white thermal noise generated by a hot body (the Earth).

It is measured by locating at that point an antenna with a given power pattern, connected

to a band limited receiver and further processed. In this section the previous results are

modified in order to take into account those particularities of radiometry.
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The output voltage of an antenna is assumed to be proportional to the value of the

scalar field b in the point where the antenna is located. To take into account the directional

properties of the antenna and the frequency response of the receiver, equation (2.32) has

to be modified, and is now:

(2.47)

where the antenna is supposed to be located at the origin of coordinates. F(2,N) is the

voltage pattern of the antenna and H(f) the frequency response of the receiver, including

the antenna. Equation (2.47) is formally the same as equation (2.32) if one considers that

now the value of the field in the frequency domain, is given by:

(2.48)

2.3.1.- Total Power Radiometer

The output power of the receiver at point (x ,y ,0) can be computed from (2.38):1 1

(2.49)

but, using (2.48), R  is easily found from the properties of the analytic signal:a'

(2.50)

and taking into account that the source is thermal noise with temperature distribution

, the power spectral density of the analytic signal a(x,y,z,t) is:

(2.51)

and (2.50) can be expressed in the following way:

(2.52)

By making use of the complex degree of coherence:

(2.53)

where " is the voltage gain of the receiving chain. By introducing (2.52)  into (2.49):

(2.54)

If the antenna has a narrow beam pointing to a given point in the source in the (2 ,0

N ) direction then it can be assumed that the temperature of the source is constant over the0

subtended area of the antenna:
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(2.55)

where dS=sin 2 d2 dN is the differential solid angle. By definition, the antenna effective

area is related to the antenna radiation voltage pattern and the normalized one by:

(2.56)

Then:

(2.57)

That is, the output power of a receiver having a highly directive antenna is

proportional to the apparent brightness temperature of the point of the scene to which it

is pointing.

2.3.2.- Interferometric Radiometer

An interferometric radiometer uses a receiver consisting of a number of antennas

having each a wide beamwidth. The output voltages of different pairs of antennas are

correlated and the visibility function obtained. Using inversion algorithms, the map of

temperatures of the scene is then reconstructed (see chapter 6).

From (2.41), and using (2.48) the visibility function for a pair of antennas is given

by:

(2.58)

where the self-correlation function has been used instead of the complex degree of

coherence. Using now (2.52):
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(2.59)
where the antennas are supposed to be different, and from equations (A1.2) and (A1.3):

being H1 and H2 the frequency responses of the two receivers.

This is the general equation for an interferometer radiometer, and corresponds to equation

(2.42) with the characteristics of the receivers taken into account. The only assumption for it to

be true are the named a), b) and c) in section 2.2.2, understanding b) as referred to the

bandwidth of the receiver.

Finally, if the distance between antennas is much smaller than the distance from satellite to

the earth, and the two antennas are located in the plane z=0, the geometric approximations

made before hold and equation (2.59) can be expressed in the directing cosines coordinates as:

( ) ( ) ( ) ( )

( )
ηξ

ηξ

ηξηξ
ηξ

ηξ
λ

αα

ηξπ

ηξ

ψ

dde
f

vu
r

FF
TAABBek

vuV

f

f
vuj

nn
ee

j
B

0

12

22

2

0
12

1

*
21222

0

2121
2112

~

,,
1

,
,

+−

≤+








 +
−

−−
= ∫∫

    (2.61)

[ ]

f  f  ; e )( r~= )( r        ;e )( R~= )( R

 

)( r B B   )  f  u(ˆ

o12
 f  2 j

1212
 f  2 j

1212

122121
-1

1212 ≈

=

τπτπ ττττ

ταατ  )  f  (H  )  f  (H )( R *
2112 F

(2.60)



30                                                              Application of Interferometric Radiometry to Earth Observation

2.4.- CONCLUSIONS

In this chapter the principles of the aperture synthesis radiometry have been briefly

reviewed. The final equation (2.61) relates the measured correlation from the outputs of two

antennas, V(u,v), with the antennas' and receivers' parameters.

From now on, the constant term outside the integral:

will be omitted by simplicity, wherever its influence does not need to be explicitly show. The

units of the visibility function will no longer be Watt but Kelvin.
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Chapter 3. BASIC INTERFEROMETRIC
RADIOMETER PERFORMANCE: 
SPATIAL RESOLUTION AND
RADIOMETRIC SENSITIVITY

This chapter addresses the basic performance of an interferometric radiometer in

terms of its spatial resolution and radiometric sensitivity. The analysis is focused on Y-

shaped arrays, the optimal configuration, as it is shown in chapter 6. 

System limitations (finite array size and decorrelation effects) and hardware errors

(antenna position errors, antenna radiation patterns and receiver transfer functions: filter

responses, phase and group delay errors) are modelled and analyzed for different windows

commonly used in signal processing. Spatial resolution is analyzed though the Array Factor

first defined in [Ruf et al 88] and it is generalized to account for system errors. Results are

particularized for MIRAS, an Y-shaped array with 43 antennas per arm spaced 0.898, at

1.4 GHz. Results show the signal decorrelation induced for long baselines as the main

perturbing effect, while the incidence on spatial resolution of the remaining errors is

negligible if they are kept within achievable hardware requirements or basic calibration

procedures. 

The second part of this chapter is devoted to the computation of the radiometric

sensitivity of an arbitrary shaped Aperture Synthesis Interferometric Radiometer. The study

is done by assuming that correlations of the signals coming from the antennas are performed

at baseband after I/Q demodulation, as it is usual when the number of correlations is large.

The use of double side band or single side band receivers for the same pre-detection RF

bandwidth is investigated and some design considerations are extracted. The impact of

filters' frequency response on radiometric sensitivity and the kind of correlator

(digital/analog) are also studied. Redundancy between simultaneous measurements is

studied and its use to improve radiometric sensitivity analyzed, pointing out the main

differences with radioastronomy. Results are particularized for MIRAS and the

improvement on radiometric sensitivity by means of pixel averaging for the proposed

platform orbit are quantified.

Finally, the new "Interferometric Radiometer Uncertainty Equation" is obtained.

It states the relationship between spatial resolution and radiometric sensitivity and the

tradeoff between both parameters.
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3.1.- SPATIAL RESOLUTION COMPUTATION

The angular resolution is defined as the width of the impulse response for a point source

in the directing cosines domain. The spatial resolution is computed from the angular resolution

by projecting the synthesized beamwidth over the Earth's surface.

Let's rewrite equation (2.61) in a simplified form as:

with the following definitions for:

and:

with dimensions of Kelvin, is referred to as the modified temperature. This latter, which is the

actual apparent brightness temperature modified by the obliquity factor (1-ξ2-η2)-1/2 and the

antenna normalized radiation pattern, is mathematically a very convenient magnitude and is used

throughout as the basic unknown instead of the apparent brightness temperature.

In chapter 2 the effect of system's bandwidth was analyzed resulting in a radial

broadening of the system's impulse response. In this chapter the "Equivalent Array Factor" is

introduced as the system's impulse response in the modified temperature. The spatial resolution

is analyzed by means of the AF for an ideal system in two steps: the coherent case, when there is

not spatial decorrelation due to finite transit time, and the main beam broadening due to fringe-

washing effects.
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3.1.1.- IDEAL SITUATIONS
3.1.1.1.- LIMITING NARROW-BAND SYSTEM

An ideal system is the one having all the antennas, amplifiers, filters and correlators

identical and ideal, and whose bandwidth is narrow enough to consider the fringe-wash

term unity for all the baselines: B << )r /c. This situation is denoted by a "º" superscript,max

( )º. In this case (3.1) becomes:

(3.4)

which is inverted to yield:

(3.5)

As it was done in chapter two. When there is only a knowledge of the visibility function

in a set of points (u , v ) forming a regular grid in the (u,v) space, an estimation of thei j

modified temperature, denoted as " ", can be computed as:^

(3.6)

where )s is the area of the grid's elementary cell. )s = %3/2 d for an hexagonal (u,v)2 

sampling grid such as those given by Y-shaped and triangular shaped interferometers with

an spacing between adjacent antennas of d wavelengths. For U-, T-, or L-shaped

interferometers, the (u,v) sampling is rectangular and )s=)u )v. In a 1D interferometer,

as ESTAR, )s must be replaced by )u [Ruf et al. 88]. If a weighing function W(u, v) (not

to be confused with the relative bandwidth W) is used to window the visibility samples

prior to inverse Fourier transform to reduce ringing at discontinuities, the array factor AFo

is now defined by:

(3.7)

This array factor is obviously the system's impulse response, that is, the system's

response to a modified temperature consisting in a delta function. It is also called the

system's point spread function (PSF), referred to the modified temperature. The shape of

this array factor has been computed for an Y-array with 43-antennas per arm spaced 0.89

8, as MIRAS, with different windows commonly used in signal processing extended to the

bi-dimensional case through the definitions given in table 3.1 below. Here the windows

have been ordered according to their ability to reduce side lobe levels.
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Figure 3.1.- Structure of a Y-array with 3
antennas per arm spaced 0.89 wavelengths.

Figure 3.2.- Spatial frequencies (u,v) coverage for
the Y-array shown in figure 3.1.

Rectangular

Barlett
(Triangular)

Hamming

Hanning

Blackmann

Table 3.1.-. Windows used in this text.  , 

Figure 3.1 shows the Y-array with 3 antennas per arm and figure 3.2 shows its

corresponding (u,v) coverage.

Results for the rectangular, Barlett, Hamming and Blackmann windows are plotted

in figures 3.3 to 3.6, where the hexagonal shape of the PSF, the progressive reduction of

the side lobes and the widening of the main lobe by the window can be clearly observed.

Level curves are drawn for -0.04, -3.0, -5.0, -10.0, -15.0 and -20.0 dB.
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Table 3.2 summarizes the PSF's main properties: 3 and 10 dB main beam width, nearest

lobe level and main beam efficiency.

Window Relative
Maximum

Side
Lobe
Level
[dB]

∆∆ξξrad

at
 -3dB

∆∆ξξper

at
 -3dB

∆∆ξξrad

at
-10dB

∆∆ξξper

at
-10dB

MBE
at -3dB

MBE
at -10dB

MBE
at SLL

Rectangular 100% 8.4 0.771 0.771 1.261 1.211 27.0% not
defined

42.3%

Barlett 100% 11.3 0.931 0.931 1.541 1.491 42.4% 68.2% 69.3%

Hamming 100% 12.9 0.961 0.961 1.601 1.551 45.0% 72.6% 74.5%

Hanning 100% 13.8 1.011 1.011 1.661 1.621 47.41 76.11 78.3%

Blackmann 100% 16.2 1.101 1.101 1.861 1.811 52.9% 85.7% 89.6%

Table 3.2.- MIRAS' PSF properties for NEL = 43, d = 0.89 λ. Identical receiver delays, pre-detection filters'
bandwidth 20 MHz, central frequency 1.400 MHz and beam maximum at (ξ,η)=(0,0).

Figure 3.3.- AF for a Y-array, 43 antennas per
arm, d=0.89λ Rectangular window, W=0

Figure 3.4.- AF for a Y-array, 43 antennas per
arm, d=0.89λ Barlett window, W=0

Figure 3.5.- AF for a Y-array, 43 antennas per
arm, d=0.89λ Hamming window, W=0

Figure 3.6.- AF for a Y-array, 43 antennas per
arm, d=0.89λ Blackmann window, W=0
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By spatial resolution of an imaging or optical system it is usually understood

its ability to separate two closely spaced identical point sources. Since this ability

depends somewhat on the observer criteria, there is some ambiguity in the definition.

In optics  the Rayleigh's criterium is frequently used: it states that two point sources are

resolved if the valley to peak ratio is 0.80 or less [Born and Wolf 86]. If we apply this

criterium to the Blackmann window, figure 3.7, the spatial resolution turns out to be

1.25 , while its main beam 3 dB width is 1.10 . Since this latter concept is widely usedo o

in antenna theory, it is taken as the system's spatial resolution.  The computation of the

fringe-wash free half-power synthesized beam can be performed with the aid of the

approximate formulas given below. For a rectangular window (no tapper) the main

beamwidth can be approximately computed from: 

(3.8)

where ))))u  = 2%%%%3N d is the maximum dimension of the synthetic aperture: themax EL

distance between the two most distant (u,v) points considering the hermitian ones, NEL

is the number of antennas per arm, without the central one and d is the spacing between

adjacent antennas in wavelengths. The use of tapered weighing functions reduces the

side lobe levels at a expense of a broadening of the main beam by a factor:

(3.9)

Figure 3.7.- Spatial resolution definition by the Rayleigh's criterium (Blackmann window).
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3.1.1.2.- SPATIAL DECORRELATION EFFECTS (FRINGE-WASH)

The fringe-wash term is now taken into account, by inserting

 into the integrand of (3.4). If this equation is now Fourier-

transformed and this situation is denoted by a superscript 'f':

(3.10)

As in chapter 2, equations (2.32) and (2.33), the rightmost integral can be

evaluated through the change of variables:

(3.11)

which reduces to [Bará et al 96A]:

(3.12)

where p(f) is the Fourier transform of :

(3.13)

For instance, for an ideal narrow rectangular band-pass  filter:

(3.14)

then:

(3.15)

where is a weighted averaged version of the modified temperature T along the

diagonal of a cell of dimensions:

(3.16)

centered around each point (>, 0). As in (2.31) the length of the diagonal is:

(3.17)
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Figure 3.8.- Examples of segments along which
the fringe-wash free array factor is averaged by
the fringe-wash effect.

where W is the relative bandwidth and the diagonal is oriented along the line joining the

point (>,0) with the origin (figure 3.8). That is, the temperature averaging depends on

the distance to the origin of the plane (>,0) and it is performed in the radial direction.

Since all the information obtained by the radiometer resides on the visibility function

V(u,v), or equivalently, on its Fourier transform, from (3.15) it is evident that the

decorrelation effects produce an irrecoverable loss of information of the brightness

temperature for directions off-boresight even in the ideal, continuous equation case

(delta function PSF). In other words, the basic equation (3.1) cannot be inverted, that

is, there is no operator that allows the recovery of T from the visibility function.

Anyway, this loss of information

on a radiometer like MIRAS is very small

(B=20 MHz, W=1.4%) even at the edge of

the alias-free region. At this point .=0.4

(see chapter 6), L amounts 0.35 , whileo

the system resolution (Blackmann

window) is 1.10 , as shown before. Wheno

the discrete case is considered, from

(3.15) an estimation of  which is

again an estimation of T and will be still

denoted . Now, equation (3.6) is still

valid with the new definition for the array

factor:

(3.18)

That is, in the discrete case, the decorrelation can be interpreted as affecting the

array factor in such a way that the contributions from baselines non-orthogonal to an

off-boresight direction being observed are reduced, and therefore system's resolution is

also reduced on those directions. The effect of the decorrelation on the array factor can

be accounted for in another way. Let's start from the equations (3.6) and (3.8):

(3.19)
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(3.22)

This integration can also be performed by the change of variables x=F>' and

y=F0' obtaining:

(3.20)

where the averaged array factor has been defined for W<<1 as :

(3.21)

This array factor is, of course, the same as (3.18) computed from a different

point of view. But this form has some advantages; for instance, it can be used to show

that the areas under AF  and AF  are the same:o f

In the last step it is assumed that the observed point (>',0') is well within the unit

circle so that most of the synthesized beam also falls within it. In practice it means a

distance of at least two beamwidths between zeroes, 2 x 1.4º = 2.8º for MIRAS. 

That is, the effect of the decorrelation (fringe-wash term) can be accounted for

by either:

- Assuming that the array factor remains unchanged, AF , and the actual temperatureo

distribution is replaced by the averaged temperature given by (3.15) (effect on the

temperature resolution).

- Assuming the actual temperature distribution but replacing the decorrelation free array

factor AF  by its averaged version as given by (3.19) (effect on the spatial resolution).o

For a working frequency of 1.400 MHz, even if in the use of all the protected

bandwidth 1.400-1.427 MHz, W=0.02, and the integration variable F remains always

very close to unity, a fact that was used to perform some simplifications in the

derivation of (3.19). The array factor for MIRAS has been computed at the most distant
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(from boresight) direction in the field of view, (ξ,η) = (0.32, 0.25), for a bandwidth of 20

MHz and for all the windows shown in table 3.1, and the results are summarized in table 3.3,

where slight degradations can be observed as compared with the fringe-wash free beam.

Window Relative
Maximum

Side
Lobe
Level
[dB]

∆∆ξξrad

at
 -3dB

∆∆ξξper

at
 -3dB

∆∆ξξrad

at
-10dB

∆∆ξξperat
-10dB

MBE
at -3dB

MBE
at -10dB

MBE
at SLL

Rectangular 93.45.% 8.6 0.821 0.761 1.351 1.211 28.8% not
defined

45.1%

Barlett 95.22% 11.6 0.981 0.931 1.631 1.501 43.7% 70.2% 71.5%

Hamming 95.46% 13.2 1.011 0.991 1.701 1.571 46.0% 74.4% 76.6%

Hanning 95.83% 14.0 1.041 0.991 1.701 1.571 46.0% 74.4% 76.6%

Blackmann 96.44% 16.5 1.141 1.101 1.951 1.821 52.2% 86.5% 90.6%

Table 3.3.- MIRAS' PSF properties for NEL = 43, d = 0.89 λ. Identical receiver delays, pre-detection filters'
bandwidth 20 MHz, central frequency 1.400 MHz and beam maximum at (ξ,η)=(0.32, 0.25).

These degradations progressively decrease with the window side-lobe quality, being

minimum for Blackmann's, for which:

- The main beam maximum is reduced by 0.16 dB.

- The nearest lobe level is improved by 0.3 dB.

- Spatial resolution in the radial direction (relative to boresight) is degraded by a 3.6 %.

Figures 3.9 to 3.12 show the windowed array factor for four windows. The elongation of

its whole shape along the radial direction can be clearly observed in the level curves.

The expansion of the fringe-

washed main lobe for the different

windows under consideration as a function

of its radial distance is shown in figure

3.13.

Figure 3.13.- Half power synthesized beam
broadening due to spatial decorrelation vs. ζ.
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Figure 3.9.- AF for a Y-array, 43 antennas per
arm, d=0.898 Rectangular window, W=0.02

Figure 3.10.- AFeq for an Y-array, 43 antennas
per arm, d=0.898 Barlett window, W=0.02

Figure 3.12.- AFeq for an Y-array, 43 antennas
per arm, d=0.898 Blackmann window, W=0.02

Figure 3.11.- AFeq for an Y-array, 43 antennas
per arm, d=0.898 Hamming window, W=0.02

When translated to the Earth's surface, the spatial resolution in the FOV is found

to range from: 

- Minimum value at (>,0)=(0, 0.26), angle of incidence on the Earth's surface of 55 :o

Rectangular window, radial direction: 18.0 km

Rectangular window, perpendicular direction:    17.7 km

Blackmann window, radial direction:     25.6 km

Blackmann window, perpendicular direction:      25.2 km

- Maximum value at (>,0)=(0.40, 0.05), angle of incidence on the Earth's surface of 40 :o

Rectangular window, radial direction:   30.0 km

Rectangular window, perpendicular direction:    27.8 km

Blackmann window, radial direction:     41.8 km

Blackmann window, perpendicular direction:      40.3 km



(u )

i , v )

j) ' (ui , vj)% (*uij , *vij )

42                                                     Application of Interferometric Radiometry to Earth Observation

As it is shown in the second part of this chapter, the loss of spatial resolution

introduced by windows other than rectangular is accompanied by an increase in the

radiometric sensitivity and the choice of the window is a question of trade-off between

them. It should be emphasized that the values quoted above are for an ideal,

imperfection free system, and as such are limiting values.

3.1.2.- EFFECT OF SYSTEM IMPERFECTIONS

"System imperfections" refer to hardware imperfections or deviations from the

assumed model. These affect the following elements:

- Antennas' positions, due mainly to antenna deployment, mechanical modes of

oscillation, thermoelastic effects and long term changes [MMS 95].

- The channels from the antennas to the correlators: amplifiers, filters and down

converters.

- Antennas' properties: namely, its voltage radiation pattern (amplitude and phase) and

pointing errors (which can be reduced to the former). Mutual coupling among different

antennas and coupling between H and V polarizations in the same antennas which will

not be considered.

- The complex correlators, which are actually implemented by two real correlators.

Therefore the actual output of the theoretical complex correlator is affected, among

others, by in-phase and quadrature phase errors.

It is assumed that both hardware and software calibration processes are available

to partially correct these errors. It is therefore understood that these errors are the

residual ones after calibration. The effects of amplitude errors are not considered since

they are known to be much smaller than phase errors as far as the array factor is

concerned. An exhaustive and systematic analysis of error sources is performed in

chapter 4, when computing their impact on the radiometric accuracy.

3.1.2.1.- ERRORS IN THE ANTENNA POSITIONS

In-plane errors in the antenna positions translate into errors in the (u,v) plane

points where the visibility function is measured:

(3.23)

and the fringe-wash free array factor AF  becomes AF  :o o,
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(3.24)  
which, for small errors, can be approximated to first order by:

(3.25)

Note that, since only half the baselines are measured (hermitian property of the visibility

function):

(3.26)

and therefore *AF is a real function. Note also that *AF=0 for (>',0')=(0,0).

*AF is computed for a worst-case example of one fourth 0º - 90º sinusoidal in-plane arm

bending with a maximum deviation at their ends of 10 cm, such that two of the arms

bend towards each other and the third one is fixed. It should be noted that with these

errors the first order approximation (3.25) is not longer valid and (3.24) is directly used.

Results show that the maximum value of |*AF| remain always below 0.5% of the main

beam maximum, and are therefore negligible for spatial resolution considerations. These

figures agree with the theoretical considerations to be given in section 3.1.2.2.3 below.

3.1.2.2.- ERRORS IN THE CHANNELS

In this paragraph the effect of slight differences among the transmission channels from

the antennas to the correlators will be studied, with all the remaining subsystems free

of errors. First, note that since the signals will be down-converted coherently with a

master oscillator to an intermediate frequency f , there will be filtering both before andIF

after down conversion, like in the general diagram of figure 3.14.

Here the inputs to the correlators are at intermediate frequency assuming f < f :ol o

(3.27)

and the fringe-wash term given by (3.14) has to be modified according to: 

(3.28)

where f'  . f . ij IF
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Figure 3.14.- Block diagram of a baseline with
coherent downconversion.

In an actual system, the pre-
multiplication band-pass filter is probably
wider than the post-detection one so as to
yield this latter full control of the filtering
process, but note from (3.28) that the
situation is formally identical with that
without frequency conversion. Therefore,
without loss of generality, equations (2.2)
and (3.1) will be used. For the sake of
mathematical simplicity, each channel will
be modelled by a Gaussian band-pass filter
centered around f.f , with group delay Ji o i

and phase lag N :i

(3.29)

recall that the study is performed by using analytic signals of bandwidth B  defined as ini

appendix 1. From the definition of the complex degree of coherence (see "Nomenclature
and Basic Conventions")  and (3.29) it is found that ( i=1, j=2 ):

(3.30)

Before going further, it is convenient to make estimations of the magnitudes
involved. First, note that the master local oscillator is assumed to be very stable (quartz
controlled), and that the band-pass filtering is effectively performed at the intermediate
frequency: for instance, in the margin 1-27 MHz. From commercial catalogues, with
standard, non-matched components (a really worst case) the following error bounds can
be estimated for the magnitudes involved:

|)f| < 0.5 MHz,    |)B| < 1 MHz,    J  . 80 ns,     |)J | < 2 nsi i
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With these orders of magnitude it turns out that:

(3.31)

For the values assumed above, it can also be found that [Bará et al 96A]:

(3.32)

which is a very large bound indeed. But since phase errors can in principle be corrected

by phase restoration procedures based on the phase closure condition [Lannes 90]

[Torres et al. 96A] or by noise injection procedures [Torres et al. 96B], let's see how this

is affected:

(3.33)

For the same values assumed before, )N #1.08 , which takes the phase residualclosure
o

errors to the order of magnitude of 1  or less. o

Equation (3.30) can now be written as:

(3.34)

This expression can be reasonably extrapolated to filters with a response other than

Gaussian:

(3.35)

where r(t) refers to the correlation function in the absence of errors. But it has to be

admitted that the expressions given by (3.31) in terms of center frequencies and

band-widths for the parameters appearing in (3.35) may not be useful when the filter

shape deviates significantly from an ideal model. Finally, the visibility function can be

written as:
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3.1.2.2.1.- GROUP DELAY ERRORS

Group delay errors affect both the visibility function phase factor φij in (3.36) through

equation (3.31) and the fringe-wash term. Note first the changes appearing in the fringe-wash

term. In the absence of channel errors the geometrical time delay at the edge of the IFOV (ζ
= 0.4) is 19 ns, and this resulted in a widening of 3.6% of the synthesized main beam

(Blackmann window). With the errors assumed for the channels: |τi-τj| < 4ns and ∆B/B < 4%.

Besides, these delays are random, while the original fringe-wash delays are strongly

correlated, and randomness tends to smooth the changes produced.

Therefore, it can be said a priori that the beam distortion at boresight will be negligible,

while at the edge of the IFOV, at worst, the equivalent geometrical time delay is 23 ns. That

is, with the assumed channel errors the main beam distortion will be probably much less than

that existing in the ideal system for ζ= 0.5.

Results of computations performed at (ξ,η) = (0.32, 0.25) for random delay errors with a

normal distribution and standard deviation of 2 ns are shown in table 3.4. It can be seen that

the changes brought about by these errors are practically negligible, as expected.

Window Relative
Maximum

∆∆ξξradial
-3dB ∆∆ξξperp.

-3dB ∆∆ξξradial
-10dB ∆∆ξξperp.

-10dB

Rectang. 92.89% 0.821 0.771 1.321 1.221

Barlett 94.63% 0.961 0.931 1.631 1.501

Hamming 94.86% 1.001 0.941 1.701 1.551

Hanning 95.22% 1.041 1.011 1.73 1.621

Blackmann 95.79% 1.131 1.101 1.951 1.821

Table 3.4.- MIRAS' PSF properties for NEL = 43, d = 0.89 λ. Different receiver delays with standard
deviation στg = 2 ns. Predeteccion filters' bandwidth 20 MHz, central frequency 1.400 MHz and beam
maximum at swath edge: (ξ,η)=(0.32, 0.25)
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3.1.2.2.2.-  FREQUENCY ERRORS

Frequency errors are produced by differences in the channel filters appearing in

the exponent of (3.36) are equivalent to errors in the baseline coordinates given by:

(3.37)

For a given frequency error, these equivalent errors increase with the baseline

coordinates, as in the case of position errors produced by an incorrect alignment of the

arms of the interferometer. Its maximum value is attained for |(u,v)| maximum, |(u,v)|max

= 38.8, and for the frequency errors quoted above, this maximum is equivalent to a

position displacement of 2.9 mm. Therefore, the effect of frequency errors on the spatial

resolution is smaller than the effect of antenna position errors, which are themselves

negligible.

3.1.2.2.3.- PHASE ERRORS

Let's turn next to the phase errors N  appearing in the visibility expression (3.36).ij

From their value given by (3.31) it is seen that they have contributions from the channel

phase errors N  and from frequency differences and group delays. The array factor nowi

takes the form:

(3.38)

which has the same form of the array factor in presence of errors in the antenna

positions (3.24). In fact, it can be seen, for instance, that for (>',0')=(0.4,0.0) a position

error of 10 mm is equivalent to a phase error of 6.72 .o

Computation of the array factors for normally distributed random channel phase

errors with a standard deviation of F =1  show a negligible effect down to values -16,Ni
o

-20 dB below the main beam's maximum and do not affect spatial resolution. It is

important to note here that the same errors have a strong impact on temperature

resolution: 1 K or more [Bará et al. 95B] [Bará et al. 96B]. This is clearly understood

if is realized that a small degradation of the array factor shape far off its main maximum,

in regions where it should be zero, allows a small but spatially large leakage of

temperatures from the whole scene into the pixel under consideration. The same is true,

of course, for the remaining errors under study as long as they also increase values close

to zero above its unperturbed value.
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In order to analyze later the effects of antenna radiation pattern errors it is convenient at

this point to perform some theoretical considerations. Again, as in (3.25) it can be written:

Changing to a continuous formulation and assuming, for the sake of simplicity, a

rectangular window, (3.39) can be written as:

where Suv is the domain in the (u,v) plane covered by the visibility samples (see figure 3.2). At

this point it is expedient to assume that the baseline phase errors are not correlated; in fact

this is true only for baselines which do not share a receiving channels since it is the phase

errors of these latter which are uncorrelated. With this simplifying assumption:

and (3.40) becomes:

Noting that:

it can be written for the MIRAS case that:

σ
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If the validity of this expression is extrapolated to the large value σφc=67.2o=1.17rad,

which, as seen before, is equivalent to a spatial displacement of 10 mm, the obtained value

agrees in order of magnitude (around 1%) with the simulations performed in section 3.1.2.1

(around 0.5%).
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3.1.2.3.- ANTENNA PATTERN PHASE ERRORS

If once again the fringe-wash effect is ignored and phase errors in the antenna

radiation patterns are considered:

(3.45)

Note that this formulation allows inclusion of channel phase offsets as a constant term

independent of (>,0) in )N . The array factor is now:i

(3.46)

Proceeding as in the previous paragraph it can be obtained:

(3.47)

and, for W(u,v)=1:

(3.48)

The simplifying hypothesis, as before, is that the baseline phases are uncorrelated:

(3.49)

Finally, it can reasonably be assumed that there are not preferred directions for the errors

to happen:

(3.50)

and:

(3.51)

a result similar to (3.42). In fact, as pointed out above, (3.42) is a particular case of

(3.51). Therefore, with a proper definition for the phase variance including averaging

for both, the baselines and the directing cosines, the effects of phase errors in spatial

resolution are equivalent to those of channel phase errors.
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The effects of these errors have not been simulated, but from (3.51) and what has

been said for channel errors it can be affirmed that, if they are kept to a level such that

their effect on radiometric accuracy is acceptable (chapter 4), the effect on spatial

resolution is completely negligible.

3.1.3.- CONCLUSIONS ABOUT SYSTEM'S SPATIAL RESOLUTION

The angular and spatial resolutions are computed by means of the equivalent

array factor, which is originally formulated in [Ruf et al. 88] for a linear ideal

interferometer. The array factor formulation has been extended to the two-dimensional

case and to deal with system imperfections. It has been shown that the ideal array factor

AF , which sets the theoretical limit to the spatial resolution, is mostly affected by theo

spatial decorrelation produced for off-boresight directions by the receivers' bandwidth

B, while it is very tolerant to system's  imperfections: antennas' positions, receivers and

antennas' radiation pattern. Actually, an aperture synthesis interferometric radiometer

like MIRAS designed to meet a requirement of 1-2 K radiometric resolution would

show a negligible spatial resolution degradation beyond decorrelation effects, because

small imperfections affect more the synthesized beam shape in the large area where it

should be negligible allowing pixel contamination from the whole scene.

In the case of MIRAS, which operates in the band 1.400-1.427 MHz, bandwidth

is actually limited by the band itself, and use of a maximum value of about 27 MHz

(W=2%) which results in very limited spatial resolution degradation at the edge of a

useful field of view of ±23.6 : 5% for a Blackmann window. With the 20 MHzo

bandwidth actually under consideration this degradation is only 3.6%. Upon the Earth's

surface, for a 31.2  tilt angle with reference to nadir, resolution values range, dependingo

on the window used to process the images, and on the observed direction within the

FOV, from 18 to 40 km. Reaching the objective of 10 Km for the same tilt angle would

require an instrument twice as large, with 17 m long arms and a largest dimension of 25

m.
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3.2.- RADIOMETRIC SENSITIVITY COMPUTATION:

Radiometric sensitivity is computed as the minimum change at the input that can

be detected at the output. There are two phenomena that limit the radiometric

sensitivity: the discretization and finite coverage of the spatial frequencies plane (u,v),

and the signal to noise ratio. As it is shown, signal to noise ratio can be basically

improved by increasing the integration time and/or the pre-detection bandwidth, which

is limited by decorrelation effects and by the allocated spectrum for passive

observations. However, for high signal to noise ratios a saturation limit is reached due

to the finite (u,v) coverage and the ringing (Gibbs phenomenon) introduced in the

recovered modified temperature by the Fourier inversion process.

3.2.1.- Discretization and finite (u,v) coverage.

The antenna temperature measured by a total power radiometer is given by

[Ulaby et al. 81]:

(3.52)

where 0  is the antenna efficiency, 0  is the main beam efficiency, defined as:l M

(3.53)

T  is the average brightness temperature in the main beam, T  is the averageML SL

brightness temperature in the secondary lobes and T  is the physical temperature of the0

antenna.

The antenna temperature measured by a lossless antenna, 0  = 1, is given by:l

(3.54)

instead of the ideal one T'  = T . In fact, the error in the antenna temperatureA ideal ML

measurement depends on the brightness temperature distribution of the scene. In either

case, it can be minimized by maximizing the antenna main-beam efficiency by using

antennas with a tapered current distribution, which in turn reduces the achievable spatial

resolution.

An ideal aperture synthesis interferometer radiometer forms the brightness

temperature map by an Inverse Discrete Inverse Fourier Transform of the visibilities

sampled by the array. According to equation (3.18) the impulse response of the

interferometer in the direction (> ,0 ) can be interpreted as the beam synthesized by theo o
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Figure 3.15.- Unit circle, Earth-sky border and
aliases.

Figure 3.16.- Earth-sky border and aliases. FOV
of interest and error computation domain (zoom)

array and its called the equivalent array factor (AF) [Ruf et al. 88],[Camps et al 95A]:

(3.55)

According to equations (3.63) and (3.65) an equivalent antenna main-beam

efficiency can be defined for the synthesized beam as:

(3.56)

Note that in equation (3.56) the equivalent array factor is not squared since it is

related directly to the modified temperature, which is a power measurement. 0  can beM

maximized by windowing the visibility samples, as it is usual in Fourier techniques.

Table 3.2 shows the side lobe level (SLL) and the main-beam efficiency (MBE) at the

different power levels for the windows defined in table 3.1. These values have been

computed for the MIRAS space borne instrument: an Y-array with 43 antennas per arm

spaced 0.89 wavelengths and neglecting decorrelation effects.

Since the error induced by the secondary lobes depends on the brightness

temperature scene, a number of simulations have been done to estimate more precisely

its impact on the final radiometric sensitivity for a space borne interferometer. The

modified temperature scene used in the simulations is shown in figure 3.15. The unit

circle represents the visible space (> +0 =sin 2#1, 0#2#B/2, 0#N<2B). The ellipsoidal2 2 2

contour represents the Earth-sky border as seen from a satellite 800 Km height with a

tilt angle of 31.2º with respect to nadir.
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The modified temperature of the Earth has been assumed to be constant and

equal to 200 K. It should be noted that, since the spacing between the antennas does not

satisfy the Nyquist criterion for the hexagonal (u,v) sampling, d > 1/%3 wavelengths (see

chapter 6), Earth and sky aliases (dashed lines) are overlapped in the recovered

brightness temperature distribution (see figure 3.16). Sky aliases can be removed by

making use of "a priori" information: an approximately constant value of about 2-3 K

at 1.4 GHz. However, Earth aliases can not be removed and significantly reduce the

alias free field of view (FOV). The trapezoidal contour represents the region over the

Earth with ground incidence angles ranging from 40º to 55º with respect to the surface's

normal, for a 890 Km swath. The circle inside is the region where errors are computed.

This circle was chosen because its distance to the swath extremes avoids the presence

of the ringings (Gibbs phenomenon) induced by the overlapping aliases.

Discretization and finite (u,v) coverage errors have been computed as the

average, for all the pixels lying in the circular region defined above, of the root mean

squared error between the inverse Fourier Transform of the scene's visibilities and T .o

The advantage of this scene is that it has an analytical Fourier Transform. Consequently

there are no numerical errors involved in the computation of the visibilities. Results are

shown in table 3.5. Since signal to noise ratio is infinite, discretization errors can be

viewed as the best radiometric sensitivity achievable by the interferometer.

N  10   15   20   25   30   35   40EL

Rectangular  0.87  0.64  0.33  0.27  0.21  0.09 0.08

Barlett  2.94  1.96  1.45  1.16  0.97  0.83 0.73

Hamming  0.26  0.25  0.12  0.10  0.08  0.03 0.03

Hanning  0.23  0.22  0.11  0.09  0.07  0.03 0.03

Blackmann  0.13  0.12  0.07  0.05  0.04  0.02 0.01

Table 3.5.-  Discretization and finite coverage: Impact in radiometric sensitivity. (in K over a 200 K
constant scene). N  is the number of antennas per arm of a Y-shaped array. Total number of antennasEL

N  = 3.N  + 1T EL

For a large array, such as MIRAS space borne instrument, with 43 antennas per

arm, these errors are well below the typical radiometric sensitivity given by finite

bandwidth and finite integration time and can be neglected. For a small array, as the

MIRAS demonstrator with 3 antennas per arm, discretization errors can be much higher

than finite integration time error and must be included in the radiometric sensitivity

budget. Performing a power fitting of the data given in table 3.5, the following

expressions can be obtained for the windows being studied:
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(3.57) (3.58)

(3.59) (3.60)

(3.61)

which are represented in figure 3.17 as a function of the number of antennas per arm,

N , for T  = 200 K, a worst case situation.EL o

Figure 3.17.- Discretization error vs.the number of antennas per arm of an Y-array.

3.2.2.- Radiometric sensitivity computation

3.2.2.1.- Standard deviation in the visibility samples  due to finite integration time

In our model of a coherent receiver real and imaginary parts of the visibility

function are obtained by correlating the in-phase and quadrature components previously

digitized with a 1 bit / 2  level quantization scheme:

(3.62)
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Radiometric sensitivity computation with this configuration leads to slightly

different results from those presented in [Ruf et al. 88] for the one dimensional

interferometer ESTAR, or in [Thompson et al. 86] [Tiuri 64] in radioastronomy. In our

computations three effects not considered in [Ruf et al. 88] have been taken into

account: pre-detection filters' shape: rectangular or gaussian, difference between the

central filters' frequency (f ) and the oscillator's frequency (f ) for the same pre-o lo

detection bandwidth and the use of analog or digital correlators.

Figure 3.18 shows the fringe-wash function for three kinds of filters: the

equivalent low-pass filter for the 4 filters of MIRAS receivers explained above, a

gaussian filter with the same noise bandwidth B:

(3.63)

and a rectangular filter with the same noise bandwidth B:

(3.64)

Figure 3.18.- Fringe-washing functions for MIRAS bread-board filters (-), equivalent
gaussian filter (-.-) and equivalent rectangular filter (--).

For the decorrelation levels involved ( |J| # 20 ns ) the gaussian filter fits very

well the global response of the MIRAS receivers filters. Consequently, the radiometric

sensitivity computation with gaussian filters is more accurate than with rectangular

filters. Standard deviation in the real and imaginary parts of the visibility function are

computed in Appendix 1. The steps are similar to those presented in [Ruf et al. 88] but
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the analysis is performed for the in-phase and quadrature components. Results obtained

for gaussian pre-detection filters are:

(3.65)

and for rectangular pre-detection filters:

 

(3.66)

where )f = f  - f  and J  is the effective integration time that depends on the kind ofo lo eff

correlator (table 3.6):

Effective integration time Correlator type

J  = J analog or digital multibiteff

J  = J / 2.46 1 bit x 1 bit eff

Sampling frequency = 2B

J  = J /1.82 1 bit x 1 biteff

Sampling frequency = 4B

J  = J / 1.57 1 bit x multibiteff

Sampling frequency = 2B

J  =  J / 1.32 1 bit x multibiteff

Sampling frequency = 4B

J  =  J / 1.29 2 bit x 2 biteff

Sampling frequency = 2B

J  =  J /1.14 2 bit x 2 bit eff

Sampling frequency = 4B

Table 3.6.- Effective integration times for different correlator's type [Hagen and Farley 73].

Examining equations (3.65) and (3.66) it can be seen that for the same RF bandwidth:

- Standard deviation with rectangular pre-detection filters is %2=1.41 times higher than

with gaussian filters. Noise is more compacted in frequency for rectangular filters,
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consequently it suffers less from decorrelation effects and produces a greater output for

the same "signal" input power.

 -For single side band (SSB) receivers (figure 3.19a) the standard deviation is about half

its value for double side band (DSB) receivers (figure 3.19b), even though correlators

with double bandwidth and power consumption will be needed. In practice the use of

DSB receivers requires a careful design of the receiver in order to guarantee that

radiation from local oscillator to the antenna is kept below the threshold of the signals

received in the 1.400-1.427 MHz band, preserved for radio-astronomy uses.

- The use of digital correlators reduces the integration time (J) by a factor that depends

on quantization levels and sampling frequency. Table 3.6 summarizes some of the

properties of commonly used digital correlators [Hagen and Farley 73].

Figure 3.19.- a) Single Side Band Receiver and b) Double Side Band Receiver

For an ideal system, the modified temperature distribution can be obtained

directly by an inverse Fourier transform of visibility samples. Errors in visibility values

are translated into errors in the temperature distribution and, since the Fourier transform

is unitary,  the error norm is preserved.

(3.67)

where (e , e ) are the errors in the real and imaginary parts of the visibility function.Vr Vi

Prior to computation of radiometric sensitivity some considerations about

hermiticity and redundancy and correlation between errors are made:
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3.2.2.2.- Hermiticity of the visibility samples

Since the visibility function is hermitian, only half of the baselines must be

measured (u$0, v$0 and  u<0, v>0) :

(3.68)

Consequently, the noise is hermitian too.

3.2.2.3.- Redundancy and correlation between errors

The cross-correlation of the errors of two identical  baselines 1-2 and 3-4 with

the same integration time T , one of them delayed J, is (appendix 2):int

(3.69)

This expression is still valid if the two baselines share an antenna, or even both of them.

In this latter case the expression for the baseline noise is recovered. Note that in an

actual on-board interferometer like MIRAS all baselines are measured in the same time

interval and J = 0. Given its importance, let's explicitly show that the noise of a

visibility sample can be obtained from (3.69):

(3.70)

From (3.69), it can be seen that with ideal noise-free receivers, errors between

simultaneous measurements (J = 0) of different visibility samples are strongly

correlated if the spacing between antenna pairs 1-2 and 3-4 is much smaller than the

downfall of the module of the visibility function. This happens for scenes consisting on

point sources [Bará et al. 95B]. In this situation averaging simultaneous measurements

does not improve signal to noise ratio. 

On the contrary, for a smooth temperature distribution, as in the case of remote

sensing of the Earth, the visibility function decays rapidly and errors are only partially

correlated (depending on the temperature distribution and its frequency contents) and

averaging reduces significantly the noise power.

On the other hand, if there is a mixer as the first stage of the receiver's chain,

receiver's noise temperature is usually much higher than the brightness temperature to
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be measured. Therefore, the averaging of simultaneous measurements improves the

signal to noise ratio, even for scenes consisting of point sources, due to the reduction

of receiver's noise. However, in Earth observation at low microwave frequencies,

receiver's noise temperature (T .80 K) can be much less than the average brightnessR

temperature (T .250 K) and the benefits of averaging simultaneous measurements areA

only reduced receiver's noise. A detailed analysis of redundancy and its improvement

on radiometric sensitivity requires a specific array configuration and scene under

observation, but noise reduction will never be as high as predicted in [Ruf et al. 88]:

(3.71)

where: N  stands for the total number of visibilities.V

3.2.2.4.- Redundancy in Y-arrays and its impact on the radiometric sensitivity 

Y-shaped arrays provide a very low degree of redundancy [MMS 95], [Bará et.

al 95B] [Bará et al. 96A]. If the three central elements introduced in MIRAS for the

purpose of phase calibration are disregarded, only baselines between antennas on the

same arm can be redundant. By the zero baseline it is understood that corresponding to

u=v=0, which in MIRAS is non-redundant, because it is measured by a dedicated total

power radiometer. For the Y-shaped array with 3 arms, each with N =43 elements, plusEL

a central element, there are:

-Total number of baselines: 3N (3N +1)/2+1 = 8386 (the extra one corresponding toEL EL

V(0,0))

-Non-redundant baselines = non-redundant (u,v)-points: 3N +3N +1 = 5551 EL EL
2

(three are formed by the central antenna and those at the ends of the arms and one is the

zero baseline)

-Redundant (u,v)-points: 3(N -1) = 126, with different degrees of redundancy.EL

-Total number of (u,v)-points: 3N +4+3(N -1) = 3N +3N +1 = 5677EL EL EL EL
2 2

Recall that when the Hermitian property is considered every (u,v)-point is

actually duplicated.

It means that 8386 - 5551 = 2709 correlations (visibilities) lead to 126 (u,v) points.

Assuming uncorrelated errors between these visibility samples, the use of the available

redundant visibility samples in a Y-array has a negligible impact over the radiometric

sensitivity, less than 1% for a 43 antennas per arm Y-array (appendix 3). Consequently,

for computational purposes, it is assumed that the visibility errors are uncorrelated from

sample to sample:

(3.72)
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 The snap-shot radiometric sensitivity can be computed as:

which can be approximated by:

where the LO factor is given by (∆f=0 for DSB or ∆f$B/2  for SSB in (3.65) or (3.66)):

filters onpredetecti rrectangula for 1; = 

filters onpredetecti gaussian for 1.19; = 2 = 

F

4

1

F

α
α  (3.76)

the filter factor is given by ( (3.65) or (3.66) ):

receivers SSBfor 1; = 

receiversDSB for ;1. =  = 

F

F

α
α 412

(3.77)

and the windowing factor is defined as:

In the MIRAS case:

Table 3.7 gives the values of the αw factor for the 5 windows used and a Y-shaped

array.
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Window """"w

Rectangular 1

Triangular 0.5212

Hamming 0.5717

Hanning 0.5446

Blackmann 0.4517

Table 3.7.- Window factors for a Y-shaped array 

with 43 antennas per arm. 

Note that the weighting function attenuates visibility samples between distant

antennas, where signal-to-noise ratio is worse. Radiometric sensitivity is improved at

expenses of a loss in the spatial resolution. It should be pointed out that when obtaining

the brightness temperature map, the antenna pattern amplifies the error for pixels off the

radiation's pattern maximum:

(3.80)

MIRAS space borne snap-shot radiometric sensitivity can then be computed

using equations (3.74-3.79) with the following parameters [MMS 95]:

. Y-array with 43 antennas per arm, generating 11.353 non-redundant visibility samples

. Antenna spacing d=0.89 wavelengths

. Bandwidth: 20 MHz

. Pre-detection filters' central frequency: 1.410 MHz 

. Oscillator frequency: 1.395 MHz 

. Snap-shot integration time: 0.3 seconds

. Effective integration time: 0.122 seconds (1 bit x 1 bit digital correlators)

. Receivers' noise temperature: 80 K

. Antenna temperature: 100 K # T  # 300 KA

With these figures the radiometric sensitivity is bounded by:

(3.81)

Figure 3.21 shows the snap-shot radiometric sensibility in decibels  (10 log ()T)

[dBK] ) as a function of the signal-to-noise ratio defined as:

(3.82)
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for parameters given above. 

(3.83)

Figure 3.21.- Radiometric sensitivity in dBK  vs. signal-to-noise ratio for MIRAS space
borne instrument and T  = 200 KEarth

3.2.3.- Radiometric sensitivity improvement by pixel averaging.

In a 2-D interferometric radiometer, radiometric sensitivity can be improved by

means of "pixel averaging". "Pixel averaging" means that, since a pixel remains in the

Field Of View (FOV) for a long time, the recovered brightness temperature values can

be averaged after proper correction of the incidence angle dependence.

In the MIRAS case, a pixel remains in the FOV for about:

(3.84)

from which 11 seconds correspond to each polarization. The improvement on the

radiometric sensitivity in each polarization is: 

(3.85)

In a single polarization instrument the improvement is 6%2. These
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improvements can be achieved because non-simultaneous measurements are

independent and the error is reduced by the square root of the number of measurements.

Equivalently the integration time has been increased by the same factor.

The final expected worst case radiometric sensitivity values for an space borne

interferometric radiometer as MIRAS are (dual polarization instrument ):

which are close to the values obtained by total power or Dicke radiometers.

3.3.-  SPATIAL RESOLUTION VS. RADIOMETRIC SENSITIVITY:
THE INTERFEROMETRIC RADIOMETER UNCERTAINTY EQUATION.

The comparison between the radiometric sensitivity of the interferometer

radiometer and that of a total power radiometer must be performed in homogeneous

terms since their underlying principles are different: 2-D interferometer radiometers

image all the FOV simultaneously, while total power radiometers image only the pixel

pointed by the antenna.

In order to fix the ideas MIRAS parameters are used. For proposed orbit for

MIRAS platform there are N =130 =16.900 pixels [Camps et al. 95A] [Camps et al.2 2
ant

96A], 8.689 of them in the alias free FOV. An ideal total power radiometer imaging

only the alias free FOV pixels with the same spatial resolution and null steering delays

would have a maximum integration time of:

(3.86)

leading to a worst case radiometric sensitivity of : 

(3.87)

which is very close to the snap-shot radiometric sensitivity of the interferometer

radiometer when the rectangular window (no windowing) is used. In fact, the slight

difference is due to the fact that the pixels are not 100% independent. The basic

hexagonal period defined by the 6 points of the star (u,v) domain (figure 3.2) is not

complete and has missing visibility samples that enlarge a little the synthesized beam.

The improvement on the radiometric sensitivity given by windowing can be also
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understood as a spatial averaging with neighbor pixels. In fact, the sensitivity improvement by
windowing is approximately related to the half-power beamwidths given in [Camps et al.
95B] by:
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Consequently, the product ∆Τ.∆ξ-3dB,W  is a constant. Let us compute its value for an Y-
shaped array. The half-power beam width without weighing function is approximately
(equation 3.8):
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which can be approximated by:
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Equation (3.91) is the Interferometric Radiometer Uncertainty Equation. It states
that the product of the radiometric sensitivity ∆T by the 2D angular resolution ∆ξ -3dB is a
constant that depends only on receivers and correlators parameters. It is the interferometric
radiometer version of the total power radiometer uncertainty equation given in (6.149) of
[Ulaby et al. 81].
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3.4.-CONCLUSIONS

In this chapter the concept of the Array Factor -the impulse response of the

synthetic aperture interferometric radiometer- has been generalized from its original

form [Ruf  et al. 88], to two-dimensional arrays and to deal with spatial decorrelation

effects, system imperfections and the effect of windowing. The spatial resolution has

been evaluated as the half-power synthesized beam-width of the equivalent array factor.

It is found that the ideal array factor AF  sets the theoretical limit to spatial resolutiono

which is mainly degraded by the decorrelation produced for off-boresight directions by

the receivers' bandwidth B (AF ) and it is very tolerant to system imperfections:f

antennas' positions, receivers and antennas' radiation pattern. 

In the case of a Y-array with 43 antennas per arm spaced 0.89 8, with

Blackmann windowing, the half-power beamwidth of the AF  is 1.14º in the radialf

direction and 1.10º in the azimutal direction. The projection of the AF beamwidth overf 

the Earth's surface produces a spot ranging from 25.6 x 25.2 Km  to 41.8 x 40.3 Km ,2 2

for on-ground incidence angles of 55º and 40º respectively, and from a 800 Km height

orbit. 

The radiometric sensitivity analysis presented in [Ruf et al. 88] has been revised

and extended to a 2-D interferometric radiometer. New parameters have been included:

i) the impact of the filters' shape has been analyzed in two ideal situations, rectangular

and gaussian filters, ii)  the use of SSB/DSB receivers and iii) the kind of correlator

used. Numerical simulations have shown that the fringe-washing function of real filters

is better fitted by equivalent gaussian filters than by rectangular ones. The snap-shot,

J = 0.3 s, radiometric sensitivity is found to be about 3.2 K - 6.8 K in the MIRAS case

for the Blackmann windowing. Its improvement by means of pixel averaging has been

also analyzed and particularized for the MIRAS instrument and the proposed orbit. An

improvement by a factor of 6 is found if all the available time is shared between V and

H polarizations.

Finally, the new Interferometric Radiometer Uncertainty Equation has been

derived. It states that the product of the radiometric sensitivity by the spatial resolution

is a constant that depends only on the kind of receivers and correlators and can be

interpreted as an improvement on the radiometric sensitivity by windowing the visibility

samples at the expense of an spatial averaging of the recovered modified temperature

pixels. 
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Chapter 4. Impact of System Imperfections
on the Radiometric Accuracy

This chapter presents a detailed analysis of system imperfections in a two-

dimensional aperture synthesis radiometer and their impact on the radiometric accuracy

defined as the radiometric error obtained when the radiometric sensitivity is zero (infinite

integration time). Their impact on the spatial resolution has shown to be negligible (chapter

3). This new analysis is required since the available literature about the performance of

interferometric radiometers is scarce and reduces to radioastronomy [Thompson and

D'addario 82] [Thompson et al. 86], the 1-D ESTAR experiment [Ruf et al. 88], [LeVine

et al. 89], [LeVine 90], [Ruf 1991], [Tanner and Swift 93] and the MIRAS prototype

[Goutoule et al. 94], [Martín-Neira et al. 94]. 

In radioastronomy, the scenes observed are very small portions of the sky, most of

them consisting on point sources with a nearly constant module spatial Fourier transforms,

or visibilities. These features allow to use highly directive antennas whose pattern can be

precisely known in the Field Of View (FOV). In addition, antennas can be spaced many

wavelengths without aliasing problems in the image reconstruction process, with negligible

antenna coupling. In addition, many baselines can be generated with a single pair of

antennas by using the Earth rotation synthesis which leads to systematic errors that can be

accounted for.

On the other hand, from a low orbit, the Earth appears as a wide thermal source

filling almost completely the FOV. To cope with it and to avoid image blurring due to

satellite motion a complete set of measurements must be obtained in a small fraction of

time, by a large number of small antennas whose pattern must be completely known in all

the FOV [Bará et al. 96A], [Camps et al. 96B]. In addition, to avoid aliasing these antennas

must be closely spaced, increasing the coupling between adjacent antennas and the number

of antennas and receivers needed to satisfy the spatial resolution requirements. All these

features complicate the analysis of the global performance of this instrument, as well as the

calibration procedures [Torres et al. 96B] and the reconstruction algorithms [Camps et al.

95A], [Bará et al. 96A], [Camps et al. 96B].
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4.1.- RECEIVER DESCRIPTION 

In an amplitude interferometer, measurements are obtained by correlating a number

of voltage signal pairs coming from different antennas. Each complex correlation provides

a sample of the visibility function. Consequently, the basic receiver requires two channels

and a complex correlator to compute each visibility sample, as the one shown in figure 4.1.

The receiver is modelled as a system with only an equivalent filter at its input, which sets

the receiver noise bandwidth. In our experimental interferometer there are a band-pass and

a low-pass filters and a DC block placed before the digital correlators. In the MIRAS

bread-board design there are three filters: the spurious band-pass filter, the image band-pass

filter, the low-pass filter and the DC-block before the digital correlators (not shown in

figure 4.1). 

Figure 4.1.- Interferometric radiometer error model.

The signal at the output of the antennas is a narrow-band gaussian noise. It can be

written as:

(4.1)

where S (t) is its amplitude and N (t) its phase. This form is very useful to model receiver1 1

non-idealities.

  
At the output of the I/Q demodulator the RF signal b (t) is down-converted and  its1

baseband components can be written as (figure 4.2):

(4.2)
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Figure 4.3.- Ideal I/Q demodulator.Figure 4.2.- I/Q vector diagram.

      

This demodulation is made for each channel (antenna + receiver) in the system. So,

in the basic two-channel receiver model, there are four signals: two in-phase and two

quadrature baseband real signals. In MIRAS the in-phase and quadrature components of

the channels are the input for a matrix of 1 bit/2 levels (1B/2L) digital correlators, which

can assume the required bandwidth and can be packed with a high degree of integration and

low power consumption. The proper correlation of these signals leads to a sample of the

complex visibility function. Nevertheless, as the correlations are made by an 1B/2L digital

correlator, the outputs Z  and Z  are  not  yet the actual correlation between the two signals,r i

but an intermediate magnitude from which the desired correlations can be obtained [Hagen

and Farley 73]:

(4.3)

Note that 1B/2L correlators measure the normalized visibility function, as:

(4.4)

Where the following relationships between the visibility function V , the analytic signals12

b  (t), the complex envelope e  (t), the signals' amplitude S (t) and phase N  (t) have1,2 1,2 1,2 1,2

been used:
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as shown in the figure 4.2.

In addition, since zero mean, gaussian band-pass symmetric random signals satisfy that:

)()()()( 0R- = 0R    0R = 0R iqqiqqii 21212121
(4.8)

a reduction by a factor of two in the number of real correlators is obtained. By inserting equation

(4.9) in (4.6):

)()( 0Rj  + 0R = V iqii12 2121
(4.9)

which can also be written in terms of separate amplitude and phase terms as:
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 (4.10)
Where S1,2 and φ1,2 are uncorrelated random variables.  Equation (4.10) is very useful when

studying amplitude and phase errors. The baseline zero V(0,0) = TA is assumed to be the same

for all the antennas and it is measured by an extra antenna connected to a total power

radiometer.

4.2.- ERROR CLASSIFICATION AND
STRATEGY TO COMPUTE THE RADIOMETRIC ACCURACY.

The assessment of the performance of an Earth observation interferometric radiometer

instrumental errors, related to non-idealities of system components, can be grouped in: i) antenna

errors, ii) receiver channel errors, iii) and baseline errors. All the errors appear in the samples of

the measured visibility function, which will be called Vraw. However, each error is produced at

different position in the receiving chain: antennas, receivers, I/Q demodulators and correlators 

(figure 4.1), and, accordingly, they can be classified in different groups. This classification is very

important when establishing a calibration procedure because it determines which errors can be

corrected with a particular calibration procedure and the order in which these errors must be
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removed (chapter 5). Errors that can not be calibrated at all or cannot be perfectly calibrated by a

specific method remain as residual errors and reflect the upper bounds allowed at each part, in

order to satisfy the specified performance. These bounds are the basis to elaborate the system's

specifications table at the end of this chapter.

i) Antenna errors affect the exploration of the scene and require perfectly known scenes to be

calibrated, otherwise, some of them can be on ground measured and included in the inversion

algorithm. Antenna imperfections are the antenna pattern phase and gain ripples, the antenna

coupling, antenna pattern pointing errors, position errors and the cross-polarization. Some of

these errors can be grouped together into antenna voltage pattern errors, but they are treated

separately to study their different impact on the radiometric accuracy.

ii) Channel errors appear as separate factors or addends at the visibility samples and require

antenna-based calibration procedures. These errors are due to in-phase channel errors - filters'

phase, time delays... -, I/Q demodulators quadrature errors, and channel gain errors.

iii) Baseline errors cannot be separated into gain factors or phase addends related to antenna

channel parameters and require baseline-based calibration procedures requiring the injection of

correlated noise to all the antennas simultaneously. These kind of errors are due to phase errors -

filters response mismatches-, gain errors -filters response mismatches-, offset errors -correlation

of common unwanted signals... -, channel delay errors appearing inside the fringe-wash factor,

channel frequency responses.

The calibration of the system must be periodically performed on flight when drifts

exceed these pre-established upper bounds. The computation of the calibration period is out of

the scope of this study and would require a detailed knowledge of the temperature control in

orbit and circuit temperature and aging drifts. Errors that are not going to be calibrated on flight

must be minimized by: i) an accurate system implementation (accurate manufacturing process

and use of accurate components) and ii) on ground calibration and drift minimization.

The general equation relating the visibility function and the modified brightness

temperature and the characteristics of the receivers and the antennas:
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(4.11)  
reduces to a Fourier Transform (u,v) < > (>, 0):

(4.12)

in the ideal case (no decorrelation effects , identical receivers f =f , K =K,12 0 12

and identical antenna patterns F  = F  = F ).ni nj n

The study of all the errors is performed by computing their separate impact on the

radiometric accuracy for a reference scene consisting of a modified brightness temperature

distribution inside the Earth-sky border of 200 K (figure 4.4) and 0 K outside it:

(4.13)

Figure 4.4.- Error computation cicle, Instantaneous FOV and Earth-sky

border for the Y-shaped configuration and d=0.89 8 antenna spacing.
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The recovered temperature distribution is given by the inverse Fourier Transform:

(4.14)

where W(u,v) is a 2D-window (table 3.1) and the inverse Fourier Transform of the

contaminated visibilities is performed over the (u,v) hexagonal grid given by the Y-array

and its reciprocal (>,0) reciprocal basis as explained in chapter 6 [Camps et al. 95A],

[Camps et al. 96A]. Fringe-wash effects are neglected since its main effect is a small

broadening of the synthesized beam in the radial direction. The error is computed as the

root mean squared value of the difference between the recovered modified temperature and

(4.13) for all the pixels lying inside the small circle in the FOV:

(4.15)

It should be pointed out that the radiometric accuracy for the modified temperatures

obtained from the ideal visibility samples are not zero, but they are the discretization error

already studied in chapter 3. The impact over the radiometric accuracy of the aliasing due

to subsampling,  d>1/%38 for Y-arrays, is treated in chapter 6, as well as a technique to

minimize its impact over the alias-free FOV.

4.3.- ANTENNA ERRORS

The study of the impact of antenna errors over the radiometric accuracy requires a

complete set of raw visibility samples to be computed and Fourier inverted. According to

the present MIRAS space borne design each Y-arm has 43 antennas, plus a central one and

three extra antennas for calibration purposes. In this case, the number of visibility samples

to be computed is 3N +3N +1=5.677, because the visibility function is an hermitianEL EL
2

function. Each visibility sample must be obtained by means of a two-dimensional

numerical integration of equation (4.11) and it supposes a serious obstacle due to the

excessive computing time. However, these errors are multiplicative errors and, as it is

shown hereafter, simulation results for a reduced number of antennas per arm can be

extrapolated for a larger array. This statement is supported by the fact that the instrument

is observing an extended thermal source, the Earth, whose visibility function has an

important decline when extending over the (u,v) plane and an increase in the number of

antennas adds visibility samples with very small values. Since multiplicative errors are

proportional to the visibilities values, the error committed in the recovered brightness

temperature distribution does not differ noticeably when the (u,v) coverage is large enough.

For the reference modified temperature distribution of (4.13), the following numbers

corroborate this assumption: 
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(4.18)

i) Y-array with 43 antennas per arm plus the central one:

(4.16)

ii) Y-array with 15 antennas per arm plus the central one:

(4.17)

Visibility samples in equations (4.16) and (4.17) have been computed directly from the

Fourier Transform of (4.13). Computing time and memory requirements are strongly

reduced down to 12.7 %, while the extrapolation error is about 0.7 %. Numerical

evaluations for 20 antennas per arm have also been performed, and confirm this

assumption.

4.3.1.- Antenna Pattern Errors

The correct measurement of all the visibility samples requires that all the antennas

have the same radiation pattern, which is technologically unfeasible due to mechanical

tolerances. These differences affect the amplitude and the phase of the antenna voltage

patterns:

  F (>,0) is the radiation voltage pattern of antenna k,  F (>,0) is the average radiationnk n 

voltage pattern of all the antennas, )F (>,0) and N (>,0) are the voltage amplitude andn nk

phase errors.

4.3.1.1.- Theoretical analysis

The impact of antenna amplitude and phase errors over the visibility samples is

derived in appendix 1 and the main result is reproduced here:

(4.19)

Equation (4.19) states that, provided the visibility function has a rapid decline, the

error  induced in the visibility sample (u , v ) by the antenna voltage patterns iskl kl

proportional to the antenna temperature and the sample (u , v ) of the Fourier transformkl kl
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of the antenna pattern cross-error , (>,0) (equation 4.19).kl

At this point, the temperature error and the radiometric accuracy can be computed

from the visibility error by assuming that visibility errors are uncorrelated except for a

sample and its complex conjugate:

(4.20)

where  < > is the expectation operator and A is the (u,v) pixel area: %3d /2 for hexagonal2

sampling,Y-arrays and triangular arrays, and d  for rectangular sampling (T-arrays). In the2

following sections each antenna error is analyzed separately.

4.3.1.2.- Antenna pattern phase and amplitude ripple: numerical analysis

In this section antenna pattern phase error are first analyzed: )N ¥0, )F =0. Thek k

simulations performed make use of an expression for )N (>,0) which approximates thenk

experimental measurements made for three X-band cup-dipole antennas (figure 4.5):

(4.21)

which represents a phase ripple along the radial direction in the (>,0) plane, A  is thek

amplitude ripple and N  is an aleatory displacement in (>,0) in order to randomize the phasek

ripple origin. The number of ripple periods has been chosen to meet the measured phase

patterns (figure 4.5). It should be pointed out that these antennas have been manufactured

at 10.8 GHz, while MIRAS cup-dipoles operate at 1.4 GHz and mechanical tolerances less

critical. Consequently, the curves shown in figure 4.5 must be considered a really worst

case for 1.4 GHz cup-dipoles. 

The radiometric accuracy sensitivity to antenna phase error is shown in table 4.1

as a function of the window used: the rectangular, the triangular or Barlett, the Hanning,

the Hamming and the Blackmann one with rotational symmetry and extended up to the

maximum (u,v) sample being measured. Parallel studies concerning inversion algorithms

have shown the superior performance of the Blackmann window in terms of robustness and

noise reduction. The numerical results presented make use of the Blackmann window
unless specified. Series of simulations for Y-arrays with 20 antennas per arm have also

been performed confirming the multiplicative nature of the errors and their impact over the

radiometric accuracy allowing to extend these results to larger arrays. According to the
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sensitivity shown in table 4.1, the maximum antenna phase error allowed to obtain a 0.5K

radiometric accuracy is about F  = 0.34º for an average brightness temperature of 200K.Ak

Figure 4.5.-  X-band cup-dipole antenna voltage pattern phase ripples (cup-dipoles # 1, 2 and 3)

 Figure 4.6.- a) X-band cup-dipoles E-place module, b) X-band cup-dipoles E-place module mismatch

In a similar way, different antenna pattern gains are modelled as (figure 4.6):

(4.22)

where A  and  N  have the same meaning than for the phase ripple error. k k

According to the computed sensibility to antenna pattern amplitude errors (table 4.1), the

maximum antenna amplitude ripple that can be allowed is about F  = 0.005 = 0.5% inAk

order to obtain a 0.5 K radiometric resolution for an average scene of 200 K.
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4.3.1.3.- Antenna pointing errors

Pointing errors are the third source of antenna radiation voltage pattern errors and

they can be generated by a mechanical misalignment or by an electrical phase error, such

as that produced by the mechanical construction of the cup-dipoles which forces a dipole

arm to be slightly higher than the one connected to the shielding (appendix 10). 

Cup-dipoles antenna gain pattern that can be fitted very well by the following

expression:

(4.23)

where 2 is the angle with respect the Z axis. This antenna pattern has a directivity of  9dB

such as that of the cup-dipoles. With pointing errors, expression (4.23) becomes:

(4.24)

where (2 ,N ) represents the direction of the antenna radiation pattern maximum's.o o

Computed sensitivities are summarized in table 1 for the different windows, as a

function of the standard deviation of the angle 2 , the angle N  being uniformly distributedo o

over [0, 2B]. According to the 0.15º antenna pointing accuracy that can be attained [MMS

1995], the radiometric accuracy is 0.2 K for an average scene of 200 K.

4.3.2.- Antenna position errors.

The mechanical structure of the Y-array consists of 3 arms joined at one extreme

(figure 3.1). The cross-section of the arms is rectangular and the resonant frequencies in

the plane of the array (X,Y) and in the perpendicular direction (Z) are not necessary equal.

Accelerations/decelerations of the platform during its orbit, as well as thermal effects

(dilations/contractions) produce oscillations of the arms around their balance points. The

amplitude of these vibrations are kept low enough to guarantee the correct performance of

the instrument. The study can then be simplified to the first resonant mode:

(4.25)
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where A   and A   are the maximum in-plane and off-plane amplitudes of theip max op max

oscillations in each arm, s is the radial distance to the joining point of the arms, " is the

angle of the arm with the X axis, T  and T  are the in-plane and off-plane resonantr,ip r,op

frequencies of the arm, and N and  N  are their corresponding the phases. ip op

These oscillations induce a phase modulation  in the measured voltage that

produces an uncertainty in the position of the antennas and in the baseline being measured

(appendix 5):

(4.26)

where the formulas relating ) , ) , ) , 2 , 2 , 2  to the mechanical parameters "  , N ,x y z x y z 1,2 ip1,2

N  , A  and A  are developed in appendix 5. This uncertainty can be canceled ifop 1,2 ip 1, 2 op 1,2

the integration time is a multiple of the least common multiple of the in-plane and off-plane

resonant periods, which is not possible because in the initial design the resonant

frequencies are f = f = 0.4 Hz and the integration time is limited to J = 0.30s to avoidrip rop

image blurring. However, baseline uncertainty can be reduced by averaging consecutive

measurements during the time the pixel remains in the FOV: 22 seconds, 11 seconds at

each polarization.

The computed radiometric accuracy sensibility to off-plane position errors is given

in table 4.1 for different windows. Since the maximum amplitude of the oscillation is

guaranteed to be 5 mm for the space-borne instrument [MATRA 1995] the expected

radiometric accuracy is )T=0.0006 cm  . 0.5 cm . 200 K = 0.06 K for a 200 K constant test-1

scene. The analysis for in-plane position errors is performed in a similar way. The

corresponding radiometric accuracy sensibilities are shown in table 1 for different

windows. The expected radiometric accuracy is )T=0.0010 cm  . 0.5 cm . 200 K = 0.10-1

K for a 200K constant test scene. 
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4.3.3.- Antenna V/H cross-polarization

In the present design [MATRA 1995] only one set of visibilities at horizontal or

vertical polarization is computed at each time interval by switching the V/H antennas

preventing from calibration of V/H cross-polarization errors. These errors must then be

upper bounded by a proper design:

(4.27)

The cross-polarization factor ,  is contributed by: i) the antenna cross-polarization ratio,HV

which  is the dominant term for the cup-dipoles proposed for MIRAS [MATRA 1995]

, =25 dB = 3.10  and ii) the error induced by the antenna pointing accuracyHV
-3

, =sin (0.15º) . 7.10  [MATRA 1995]. Accuracy errors can be upper bounded byHV
2 -6

)T =0.16 K and )T =0.63 K, assuming T  = 300 K and T  = 200 K.H V Hmax Vmax

Sensitivity Rectangular Triangular Hamming Hanning Blackmann

Ant. pattern
phase ripple 0.0074 /º0.0120 /º 0.0065 /º 0.0092 /º 0.0089 /º

Ant. pattern 0.53
amplit. ripple

0.84 0.52 0.65 0.63

Ant. pattern 0.0064 /º
pointing error

0.0085 /º 0.0054 /º 0.0068 /º 0.0067 /º

Off-plane 0.0046 /cm
position error

0.0046 /cm 0.0037 /cm 0.0049 /cm 0.0049 /cm

In-plane position 0.0010 /cm
error

0.0019 /cm 0.0013 /cm 0.0010 /cm 0.0010 /cm

Table 4.1.- Radiometric accuracy sensibility to antenna errors

4.3.4.- Antenna coupling

In some interferometric radiometry fields, i.e. radio-astronomy, the effect of antenna

coupling is usually negligible due to several reasons: the antennas are usually very directive

and,  because of the small angular extension of the scenes being imaged, the distance

between the antennas is usually large. On the other hand, interferometric radiometers

devoted to Earth observation require closely spaced antennas with a large half-power
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(4.28)

beamwidth to cope with the large FOV without aliasing problems in the image formation

process. In [Ruf 1991] it is stated that the interference pattern in the ESTAR

unidimensional interferometric radiometer is not sinusoidal because of antenna coupling

and multiple reflections in the array structure. Errors are analyzed through the distorted

interference patterns and the G matrix inversion method. However, the Fourier-based

inversion techniques envisaged for large two-dimensional arrays as MIRAS [Camps et al.

1995][Martín-Neira et al. 1996] require further analysis in order to analyze antenna

coupling errors and possible calibration methods. 

Figure 4.7.- Circuit model for analyzing antenna coupling effects.

Figure 4.7 shows the circuit model of the antenna array. The array is treated as a

multiport where each port corresponds to an antenna. The particular values of Z  and Zmm mn

depend on the geometry, as well as on the antenna distance and their relative orientation

and must be measured when all the antennas are mounted in the array:

In this way, measured input and mutual impedances take into account the effect of the

mechanical structure and their coupling. The voltage v  is the voltage measured at theL m

load connected to port "m" affected by load mismatches and coupling, while vº  is them

voltage that would be measured at the "m" port when all the antennas where open-circuited,

the assumption underlying the derivation of equation (2.61) [Thompson et al. 1986]. The

visibilities  corresponding to (2.61) are named V , while those that are measured with(1)
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antenna coupling errors are named V . The voltage generators lump together the effect(2)

coupling over a particular antenna. The relationship between the "load" and ideal "º"

voltages can be derived from:

(4.29)

(4.30)

by substituting (4.30) in (4.29) and isolating for the load voltages:

(4.31)

which states that the measured voltage is a linear combination of the open-circuit voltages.

Consequently, the ideal and the measured visibilities are related by the  matrix

according to:

(4.32)
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where bi(t) in (4.1) is by definition: bi(t)ê vLi (t)/%Zo (not to be confused with a travelling
voltage wave).

In order to point out the significance of equation (4.32), let us assume that we have
an array formed by two equal antennas satisfying Z11 = Z22, Z12 = Z21 and ZL1 = ZL2. With

these assumptions, the visibility sample that would be measured between antennas 1-1,
V11

(2), and between antennas 1-2, V12
(2), can be computed from (4.32) as:
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where we have make use of V11
(1) = V22

(1) = TA. Equation (4.33) reveals that zero-spacing
visibility sample V11

(2), which should be constant,  contains the spatial frequency V12
(1). On the

other hand, equation (4.34) reveals that the spatial frequency sample V12
(2) is contaminated with

an offset term proportional to the antenna temperature TA=V11
(1). While the visibility sample

V12
(1) of an extended thermal source decreases at least at a 1/ρ = λ/r rate, due to the abrupt

contrast between the sky and the Earth, this offset term decreases with the inverse of the antenna
spacing as 1/r, because of the factor Z12, and may be an important error source. These analytical
results justify the shape of the interference patterns shown in [Ruf 1991]. In a more general
situation, equation (4.32) reveals that the measured visibilities are a linear combination of all the
visibilities that can be synthesized by the array, enlarging the spatial frequency bandwidth, by
transferring power from the smallest baselines to the larger ones, and inducing high frequency
artifacts in the recovered brightness temperature distribution [Bará et al. 1996]. At the same time
the decoupled visibility samples can be obtained from the coupled ones if we manage to compute

or measure the C  matrix. The number of antennas in the array has an obvious influence on the

coupling effect: the more antennas, the greater the coupling, but extra antennas added at the end
of the Y-arms have an almost negligible effect due to the smaller coupling.
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In the preceding analysis sinusoidal signals have been assumed instead of band-

limited thermal noise, because of the low coupling and the small transit time between

coupled antennas (J # 3 ns, d  # 0.9 m, B = 20 MHz, f  = 1.4 GHz), with a negligible1-2 o

impact over decorrelation effects (  ). For high coupling antennas, such

as parallel half wavelength dipoles, an exact analysis including decorrelation effects in the

transit time between far antennas can be carried out by including the transit delay between

antennas in the currents (equation (4.29 ) ). 

In order to evaluate the impact of antenna coupling and residual calibration errors

on the radiometric accuracy two series of numerical simulations have been carried out.

Simulation parameters are: 15 antennas per arm, X-band cup-dipoles measured mutual and

self-impedances data and Blackmann windowing. The radiometric accuracy sensibility to

coupling errors has been computed for two cases: i) antenna coupling is not calibrated at

all ()T /T), and ii) antenna coupling is calibrated assuming that all the parameters have1

their nominal values ()T /T). 2

The first series of simulations assumes that: i) the load impedances are random

gaussian variables with Z  = 50S mean and F  = 2S standard deviation, and ii) theL )ZL

parameters of the  matrix are random gaussian variables with mean their corresponding

measured value, and a variable standard deviation which is a percentage of the mean value

F  =  " Z . Numerical simulations have been performed varying the parameter "  in the)Zmn mn

range [0, 0.3]:

(4.35)

That is, even for low coupling antennas such as these cup-dipoles, |S | # -30 dB for d=0.9812

(appendix 11), uncalibrated antenna coupling errors degrade significantly the radiometric

accuracy which exhibits a negligible dependence on the variation of the input and self-

impedances. On the other hand, the calibration of antenna coupling errors reduces the

residual radiometric accuracy by a factor of 10 even the parameters have drifted: F  = 2S)ZL

and "=4%.

The second series of simulations assumes that the load impedances have their

nominal value Z =50S, and the parameters of the  matrix vary as above:L
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(4.36)

That is, the effect of uncalibrated antenna coupling errors over the radiometric accuracy is:

similar and an ideal calibration may reduce the error down to the discretization threshold

[Bará et al. 1996], or a larger incertitude in the measurement of the input and mutual

impedances is allowed (7%) for a 1 K radiometric accuracy .

4.3.5.- Summary of antenna errors

In this section a general procedure to analyze the major problems associated with

the antenna subsystem in a synthetic aperture interferometric radiometer has been

presented. It has been found that most of the requirements can be satisfied with the

available technology: i) positioning ( )T < 0.16 K), ii) pointing accuracy ()T = 0.19 K)

and iii) cross-polarization ratios ()T .0.16 K and )T .0.63 K). However, antenna voltageH V

patterns and coupling effects are critical and require a calibration procedure or their

correction during the inversion algorithm.

It has been demonstrated that mismatches between a pair of antenna voltage

patterns "k"-"l" produce an error in the visibility sample V(u , v ) being measured whichkl kl

is approximately proportional to the antenna temperature and to the (u , v ) spectralkl kl

component of the error of the product of the two antenna voltage patterns. Closely matched

antenna radiation voltage patterns (0.5 % in amplitude and 0.34º in phase) are required for

a 0.5 K radiometric accuracy. However, antenna patterns can be measured with this

precision to be included in a suitable inversion algorithm that takes into account their

effects [Camps et al. 1995][Martín-Neira et al. 1996]. 

Since Fourier based inversion techniques are envisaged for large two-dimensional

interferometric arrays, a technique has been proposed to quantify the impact of antenna

coupling errors and calibrate them during the antenna design stage. This new method is based

in the measurement of the antenna load impedances and the impedance parameters of the array

over its mechanical structure with a moderate precision: 7% for 1 K radiometric accuracy. This

study shows that each visibility sample being measured is a linear combination of all the

visibility samples that can be synthesized by the array, providing an analytical explanation of

the non-sinusoidal behavior of the interference patterns found in ESTAR [Ruf 1991].
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4.4.- CHANNEL ERRORS

Channel errors appear as separate amplitude factors or phase addends at the

visibility samples and are mainly due to filter's phase errors, different channel gains and

noise temperatures and quadrature errors at I/Q demodulators.

Figure 4.1 shows the model of a baseline formed by two channels and a complex

correlator which is reproduced here for convenience with the definitions of the different

visibilities  involved in the analysis (figure 4.8). 

Figure 4.8.- Receiver phase error model and visibilities definition.

Assuming Gaussian filters, the equivalent band-pass voltage transfer function takes

the form:

(4.37)

where "  is the voltage gain, f  is the local oscillator frequency, f =f +)f  is the filter'sn ol n ol n

central frequency, B =B+)B  is the filters noise bandwidth, J  is the group-delay at then n g

local oscillator frequency, N  is the filters' phase and the phase of the local oscillatorn

arriving at the I/Q demodulators.

Under this assumption, the fringe-wash function takes the form:
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(4.38)
where )f' is the equivalent central frequency deviation of the fringe-wash function:

 

(4.39)

B' is its equivalent noise bandwidth:

(4.40)

)J  = J - J  is the group-delay mismatch, g g1 g2

and N  is the phase mismatch:V

(4.41)

Let's examine equations (4.37)-(4.41) in some detail:
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i) The amplitude term:

 (4.42)

represents a non-separable amplitude gain factor: a baseline error that is studied in section

4.5.1.

ii) The visibility phase error N  is composed by two error terms due to parameters of eachV 

channel:

(4.43)

and a non-separable one:

(4.44)

in which the parameters of both filters are mixed together. The separable one can be

calibrated by the procedures explained in chapter 5, but the non-separable one remains as

a baseline phase error that, to be calibrated, requires the injection of correlated noise to all

the receivers simultaneously.

iii) The group delay mismatch, )J , appears inside the fringe-wash function and must beg

minimized. Note that if there are group delay mismatches in the filters, calibration by

correlated noise injection, even with a perfectly equalized distribution network, would lead

to a wrong amplitude value since the fringe-wash function decreases.

iv) The equivalent frequency deviation )f' appears as a frequency modulation that is

translated into a baseline position error, as well as the antenna arm oscillations. )f' and )Jg

should be minimized by using closely matched filters (see section 4.10).

Before going further, let us make an estimation of the magnitudes involved. The

local oscillator is very stable, and the band-pass filtering is effectively performed at IF and

at base-band. With standard, non-matched commercial components and filters, the

following error bounds for the magnitudes involved can be estimated:

|)f -)f | < 1 MHz, B = 25 MHz, |)B| < 1 MHz, J < 80 ns, |)J | < 2 ns.m n n n

|)f'| < 0.52 MHz, |N | < 0.43º, )A < 2.1012
-3
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Receiver amplitude errors are mainly due to receivers' different gain, when using

analog or multibit digital correlators, or due to receiver's noise temperature when using 1

bit/2 level digital correlators.

The signal at the input of the I/Q demodulator can be written as:

(4.45)

for the signals at the input of the demodulators 1 and 2. In the last expressions, b (t) and1
raw

b (t) are the  signals at the input of the demodulators and may suffer from the antenna2
raw

coupling effects explained in section 4.3.4, whereas n (t) and n (t) are the zero mean1 2

narrow band gaussian noise introduced by the receiver, whose average power is: 

(4.46)

where k  is the Boltzmann constant, T  the i  receiver's noise temperature and B theB Ri
th

receiver's noise bandwidth defined in the section "Nomenclature and basic conventions".

Since n (t) and n (t) are uncorrelated signals, the measured normalized visibility function1 2

can be written as:

(4.47)
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Consequently, the factor K  of equations (3.1) and (3.2), contains an additional12 

term: the correlator gain c  defined as  g g  : 12 1 2

(4.48)

The above equation show that the measured normalized visibility function is always

the ideal one multiplied by two factors depending on the two channels involved in the

given baseline. Note that, since the channel has a non-zero receiver temperature similar or

even greater than the incoming brightness temperature c  is small and must be taken into12

account.

Moreover, the in-phase and quadrature errors  must be taken into account.

Figure 4.9.- In-phase and quadrature components. (a) No error, (b) phase channel and quadrature error.

The signal at the input of the block diagram of figure 4.8 can be expressed as:

(4.49)

where N (t) is the phase of a given channel, that is, the phase due to the path that the signal1

has to undergo to reach the antenna in concern. Note that the information lies mainly in the

phase difference between these two signals. At the output of the I/Q demodulators there are
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two signals: the in-phase i1
raw(t) and the quadrature q1

raw(t) signals which differ from (4.2) if

phase errors θo1 and quadrature θq1 errors are not zero (figure 4.9):

θq1 has been splitted into the I and Q demodulator outputs to ease the calibration procedures
presented in chapter 5 since each phase unknown appears as many times as the others.

By defining the normalized visibility samples as:

both amplitude and phase errors can be taken into account:

or, in a compact notation:

The extension for the whole system produces a sparse system of linear equations:
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Figure 4.10.- Radiometric accuracy vs. in-phase

(S)Q)and quadrature errors (-----) and 50 %

confidence limits

Figure 4.11.-  Radiometric accuracy vs. uncorrelated

phase errors (*), channel phase errors(o) and 50%

confidence limits

where the vector µ  is the vector of normalized visibility samples at the outputs of the(2)

antennas, including mutual coupling effects (equation (4.32)), µ  is the vector containing(4)

the measured normalized visibilities, the P  matrices are defined in equations (4.52) andi

(4.53) and the gain factor c =g g  is the i  correlators' gain defined in (4.47). Equationsi th
12 1i 2i

(4.52)-(4.54) allow to simulate the impact of separable amplitude, in-phase quadrature

errors on the radiometric accuracy. 

4.4.1.- Receiver phase errors

To study the impact of receiver phase errors a series of numerical simulations have

been performed for an Y-array with 15 antennas per arm and Blackmann windowing,

Simulations have been performed for in-phase and quadrature errors added directly to the

receiver's channel: .  Figure 4.10 shows their impact on the

radiometric accuracy, which is very similar.

Assuming that in-phase and quadrature errors are uncorrelated, the variance of

phase errors is  F = F +F . Each curve has been computed by assuming only one of the2 2 2
2 2o qo

two phase errors, the other one being set to zero. From figure 4.10 it can be noted that both

in-phase and quadrature errors impact on radiometric accuracy is very similar.

Simulation results are also compared with the analytical results developed in

Appendix 6. All simulations have been performed with 15 antennas per arm and the

Blackmann window. Observe that the results are better when the phases are added to the
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channels (correlated phase errors) than when they are added to the visibility samples

(uncorrelated phase errors), which is due to image's symmetry [Bará et al 96, WP-10].

The average error decreases for modified temperature distributions where the even
component is greater than the odd one, as it is the case for the test scene. As it will be shown in

chapter 5, residual receiver phase errors after calibration can be as low as 0.11, leading to a
radiometric accuracy of 0.04 K for a 200 K constant scene.

4.4.2- Receiver amplitude errors

Errors treated in the previous section stand for phase differences between the channels.
In this section errors in the module of the visibility samples are taken into account. These errors
are modeled as:

where ∆V12 is a zero mean error of deviation σ∆V:

V = V 2112 ∆∆    (4.56)

Equation (4.55) holds only for small separable amplitude errors due to: i) errors in the
measurement of the receivers' noise temperatures (equation 4.47), ii) the errors induced by the
assumption that all the antenna temperatures are the same TA = TA1 = TA2, when in fact, they
depend on the antenna pattern shape, and iii) the error induced in the measurement of the

antenna temperature TA by means of a total power radiometer (∆TA/TA).

The signal-to-noise ratio can be defined as:

Typical uncertainty of a total power radiometer is σ∆T = 0.015 K, resulting in an

uncertainty of the visibility σ∆Vo = 5 10-5. The high S/N = 43 dB has a negligible impact over the
radiometric accuracy, as shown in figure 4.12. In fact, for this signal to noise ratio, the
radiometric accuracy has reached its saturation value: the discretization error. Then, amplitude
error is mainly given by the remainder calibration amplitude error:
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1 ĝ &1
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Figure 4.12.- Radiometric accuracy vs. residual

amplitude errors: (-) theoretical, (*) uncorrelated

and (o) correlated 

Figure 4.12 shows the results when

simulating amplitude calibration residual

errors, F , for the constant 200 K test scene)V

and an Y-array tilted $=31.2  with respect too

nadir, with N = 15 antennas per arm spacedEL 

d = 0.898. The simulations have considered:

(*) uncorrelated error in the visibilities

corresponding to the theoretical analysis

developed in appendix 6 and (o) uncorrelated

errors in the channels, g leading to correlatedi, 

gain errors in the visibilities. 

 The following table summarizes this last case: 

S/N [dB] 20 25 30 35 40

)T (K) 0.67 0.25 0.14 0.13 0.13

Table 4.2.- Radiometric accuracy vs. signal-to-noise ratio in channel amplitude 

calibration residual errors.  

The amplitude error is very dependent on the error in estimating the gain factors gi,

which depend on the knowledge of the receiver noise temperature T . Let's compute theR

precision when estimating receiver's noise temperature. From (4.50) the calibration gain

factors are:

(4.59)

where all the antenna temperatures have been assumed to be the same T =T =T . Then,A1 A2 A

writing  the receiver's noise temperature as:

(4.60)

The calibrated normalized visibility sample is:

(4.61)

where )µ  is the amplitude error, given by:12
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If  the residual calibration errors are small ∆TRnTR +TA and TR1 .TR2 then, the above

expression can be approximated by:

hence, the receiver's noise temperature residual error is related to the amplitude error by:

A good L-band receiver can have a noise temperature as low as TR=80 K, while the

antenna temperature for a wide pattern antenna from a low orbit is about TA=200 K.  Receiver

noise temperature errors ∆TR can be now related to the radiometric accuracy through equation

(4.63) and table 4.2. Results are shown is table 4.3.

S/N dB 20 25 30 35 40

∆∆T (K) 0.67 0.25 0.14 0.13 0.13

∆∆TR (K) 3.96 1.25 0.39 0.12 0.12

Table 4.3.- Radiometric accuracy vs. error in receiver noise temperature.

Note that the receiver's noise temperature must be estimated with a very small error. A

∆TR = 4 K gives a radiometric accuracy ∆T = 0.7 K which is very "close" to the technological

limit.
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4.5.- BASELINE ERRORS

Baseline errors appear as amplitude and phase error terms that can not be split into

two terms associated to the channels being correlated. They are due to different receivers'

filter shape, but also to local oscillator's amplitude, phase and thermal noise as well as

errors in the correlators themselves.

4.5.1.- Baseline receiver errors

In section 4.4, when presenting receiver errors, a number of errors were found to

depend not only on the parameters of a single channel, but on the parameters of both

channels: they are called baseline errors.

4.5.1.1.- Baseline receiver phase errors

Assuming that the complete receiver voltage transfer function can be approximated

by a gaussian function, the non-separable phase error term can be expressed by (equation

4.47):

(4.65)
which, for typical commercial values: |�f -�f | < 1 MHz, B = 20 MHz,  |�B | < 1 MHz, -m n m m

� 80 ns and |�- | < 2 ns,  is bounded by: m

(4.66)

This non-separable phase error can not be calibrated by correlated noise injection

to groups of antennas nor by "phase closure" relationships (see chapter 5), where its impact

is critical because each phase closure equation is contaminated by an error on the order of

1.3º and it propagates along the antennas when establishing new "phase closure" relations:

 

(4.67)

According to figure 4.15, the impact over the radiometric accuracy of a uniformly

distributed non-separable phase error lies in the range 0.13 K - 0.18 K for a constant test

scene of 200 K.
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Typical filters, however are of Chebyschew type, allowing high frequency selectivity at a

expense of amplitude attenuation ripples in the pass-band and high phase and group delay

distorsion. As explained above, MIRAS bread-board filters in 4 steps. There are two band-pass

filters at 1.410 MHz of Chebyschew type designed from low-pass prototypes of orders 3 and 4

with bandwidths 30 MHz and 35 MHz respectively, and in-band attenuation ripples of 0.05 dB

and 0.075 dB. The low-pass filtering is performed by a Chebyschew filter of order 7, bandwidth

20.75 MHz and in-band attenuation ripple of 0.06 dB. Finally a RC network eliminates the

components below 1 MHz. An analytical study of the non-separable phase error introduced by

these four filters in cascade can not be performed. However, for long integration times, the noise

injection calibration procedure described in chapter 5 has proved to recover very accurately the

separable phase terms in the absence of other errors. When baseline phase errors are introduced,

channel phases are recovered with an error very close to the non-separable one. With this

technique, the baseline receiver phase term can be estimated for the real filters in order to bound

its tolerances. Results are shown in table 4.4 in order to have a baseline error of 0.431 for the

constant test scene of 200 K. 

Parameter Sensitivity to parameter's
variations

Filters' tolerances for
baseline rms phase error of

11
Bandwidth of 1st

band-pass filter (BBP1)
δφ12/δBBP1 = 1.861/MHz 120 KHz

Bandwidth of 2nd

band-pass filter (BBP2)
δφ12/δBBP2 = 2.521/MHz 85 KHz

Bandwidth of the
low-pass filter (BLP)

δφ12/δBLP = 12.541/MHz 18 KHz

Bandwidth of the
RC network (BHP)

δφ12/δBHP = 3.041/MHz 72 KHz

Central frequency of 1st

band-pass filter (fc1)
δφ12/δfc1 = 8.421/MHz 26 KHz

Central frequency of 2nd

band-pass filter (fc2)
δφ12/δfc2 = 12.191/MHz 18 KHz

Attenuation ripple of  1st

band-pass filter (RBP1)
δφ12/δRBP1 = 2.201/dB 0.98 dB

Attenuation ripple of   2st

band-pass filter (RBP2)
δφ12/δRBP2 = 2.301/dB 0.92 dB

Attenuation ripple of   low-
pass filter (RLP)

δφ12/δRLP = 3.971/dB 0.06 dB

Table 4.4.- Baseline error sensitivity to MIRAS BB filters and tolerances for 0.431 baseline phase error

The severe filter's tolerances are due to the high phase and group delay distorsions. If

they can not be met, other filters must be used, which is currently under study in MIRAS/LICEF

activities.



A'
B´

B1 B2

e
&

%
2

(�f1&�f2)2

B
2
1 %B

2
2 � 1%

1
4

�B1

B
&

�B2

B

2

1%
%
4

�f1

B

2

&
�f2

B

2

' 1%�A

�A ' 0.002; S
N

' 27dB

r̃
�r (!,�)

c
%�-gmn

' e
&% u !%v�

fo

%�-gmn

2

�-gmn
« u!%v�

fo


max, swath limit < 4ns

Chapter 4 : Impact of System Imperfections on the Radiometric Accuracy                                           97

4.5.1.2.- Baseline receiver amplitude errors

Assuming that the complete receiver voltage transfer function can be approximated

by a gaussian function, the non-separable amplitude error term can be expressed by

(equation 4.42):

(4.68)  

which, for typical commercial values: |�f -�f | < 1 MHz, B = 20 MHz ,|�B | < 1 MHz, -m n m m

� 80 ns and |�- | < 2 ns,  is bound by: m

(4.69)

which accounts for a radiometric accuracy of  0.2 K (table 4.8, figure 4.17) for the 200 K

constant scene.

4.5.1.3.- Baseline fringe-wash errors

Differential delays introduced by filter responses and transmission lines causes a

decorrelation of the signals and hence an amplitude error. This amplitude error can not be

calibrated with a delay line, as it is performed in radioastronomy, since it depends on the

direction (!,�) of the incoming radiation and the FOV is very wide:

(4.70)

To have a negligible impact on the radiometric accuracy, the differential group delay

must satisfy that:

(4.71)

but �-  is about 2 ns. However, the visibilities affected by high decorrelation levels, fargm

(u,v) points, are very small and its impact over the global radiometric accuracy is

completely negligible.
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4.5.2.- Errors generated by the local oscillator

Each visibility sample is obtained from the complex correlation of the signals received by

each pair of antennas. The complex correlation is obtained as the product of these two signals

followed by a low-pass filter. To simplify the distribution network and the correlation circuitry

the multiplication process is usually performed at baseband and the frequency translation is

achieved by mixing all the signals with a common oscillator to preserve their phase as shown in

figure 4.13.

The local oscillator signal can be expressed as:

n(t) + e ) (t)m + (1 A=(t) x (t))  + t (j 
nlo

nlo φω (4.72)

where mn(t) is the local oscillator's amplitude noise,

φn(t) its phase noise and n(t) is wide-band thermal

noise.

4.5.2.1.- Local oscillator's amplitude noise

Local oscillator's amplitude noise is translated to the IF signal through the mixer

conversion losses, which depend on the local oscillator level:

When analog or multibit digital correlators are used, if the time constant of the low-pass

filter which sets the integration time is much smaller than the LO amplitude fluctuations, mixer

conversion losses are constant and represent an amplitude gain factor. On the contrary, if the

integration time is greater than the LO amplitude fluctuations, they are averaged an its effect is

negligible. In either case, the correlation gain factor:

can be minimized by driving the mixers to saturation as is done in the interferometer that has

been developed (chapter 8). When 1 bit/2 level digital correlators are used, the gain factor (4.74)

has a negligible impact on the measured correlation, provided that the signals' amplitude is much

greater than the errors in the comparators' threshold .

Figure 4.13.- Frequency conversion,

signals. Parameters: G preamplifier's

gain, L conversion loss
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(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

4.5.2.2.- Local oscillator's phase noise

Local oscillator's phase noise N (t) is also translated into the IF signal though then

mixer:

Where L is the mixer's conversion loss, L  is the mixer's conversion loss of the RFC

and image bands at the LO input and G is the preamplifier's gain. However, it does not have

any effect over the computed visibility since it cancels with itself when the signals are

correlated:

4.5.2.3.- Local oscillator's thermal noise

The impact of LO thermal noise over the RF bandwidth:

can be studied by applying the superposition principle at IF, since the amplitude of the

collected signal and the thermal noise are much smaller than that of the LO.

The second term in equation (4.79) is equivalent to a correlated noise term added

to the incoming signal:

When correlating two signals b (t) and b (t), the correlated noise term produces an1 2

offset in the measured visibility:

(4.81)
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where Tlo is the physical temperature of the LO. Let's have a cavity oscillator directly feeding the

mixer at Tlo = 300 K with the following parameters  L = 7dB,  Lc=25dB and a three stage low-

noise preamplifier with G = 25dB. This gives a temperature offset of:

which increases to 0.15 K, 1.5 K or 15 K  if the LO is buffered through a 10 dB, 20 dB or a 30

dB amplifier. In those cases the offset level can be reduced by inserting a selective filter at LO

output to attenuate properly the LO noise at the RF band.

4.5.3.- Errors generated by the correlators

In this section the baseline errors induced by 1B/2L correlators are studied. The study is

focused only in 1B/2L digital correlators since they have been chosen for MIRAS and for the

experimental interferometer radiometer explained in chapter 8. The selection is based on their

simplicity, the ability to cope with large bandwidth signals, their insensitivity to gain fluctuations

and their low power consumption when integrated in a chip.

The principles of digital correlation techniques can be found in [Hagen and Farley 73]. In

this paper the relationships between the measured correlation and the true correlation are derived

for different kinds of digital correlators. For 1 bit/2 level digital correlators the distortion

introduced by the comparator in the signal to be correlated is permissible since for gaussian

signals, the true normalized correlation function can be inferred from the correlation of the

distorted one:

which is denormalized through:

where TA = E[ |b1(t)|
2] = E[ |b2(t)|

2] is the antenna temperature, and TR1 and TR2 are the receivers'

noise temperatures of channels 1 and 2:

TR1 = E[ |n1(t)|2] ,                         TR2 = E[ |n2(t)|2].

Remember that the Boltzmann constant and the wavelength, as well as the receivers' gain and

bandwidth have been omitted for simplicity (equations (2.61) and (2.62)).

K 0.015 = T 
G L
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 = T lo

c
off (4.82)
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(4.85)

Figure 4.14.- 1 bit/2 level digital correlator scheme.

In fact, the digital correlator computes Z  (-) from:12

where T  is the sampling period and N is the total number of counts.s

Errors in the computation of Z  come mainly from two sources: i) errors in the12

threshold of the comparators that perform the "sign(x)" function and, ii) skew and jitter in

the sampling instants of the comparators. They are studied in the following sections.

4.5.3.1.- Threshold errors

When the comparator's threshold is not zero, the relationship between the distorted

correlation, Z , and the normalized one, µ , can be computed by Price's Theorem:12 12

(4.86)

where g (x) = sign(x) for ideal comparators and g (x) = sign(x - �x ) when there aren n n

threshold errors. For two joint gaussian functions b (t) and b (t) with joint probability1 2

density function:
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(4.87)

and for m=1, the distorted correlation can be computed from (4.85):

(4.88)

Integration of expression (4.88) does not have a closed form. However, if the

threshold errors �x  are much smaller than the signal's input power ) , it can be developedn
2

in a Taylor series and then integrated:

(4.89)

where:
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(4.92)

(4.90)

Let's quantify the error committed in the normalized visibility function when equation

(4.89) is inverted as if the comparators were ideal a=b=0:

(4.91)

which can be approximated for µ ��1 by:12

Results are presented in figure 4.15 and have been computed by averaging the

amplitude and phase errors over [0, 2 %]:

(4.93)
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Figure 4.15.- Amplitude and phase baseline errors due to comparators'

threshold errors. 

                                                                                                                                              
                                                                                                                                              
                                                                                                                                              
                                                                                                                                              

                                                                              

For a typical high speed comparator as the MAX 915, the maximum offset voltage

at the input is 1.4 mV. For an input power of 0 dBm, )/�x = 44 dB, the amplitude error is

negligible even for high correlations: µ  = 0.9,  �µ  � 1.6 10 . Phase errors are even less0 12
 -5

important 4 10  º.  -5

However, correlator's performance degrades quickly if the input noise has a small

DC component or the comparator's offset is high compared to the effective signal's

amplitude. Graphical results are shown in figure 4.16 for a 50 mV DC and an input power

of 0 dBm. In this case, amplitude errors can be as high as 17% and phase errors up to 2º can

be expected. The non-separable amplitude and phase errors invalidate channel-based

calibration procedures based on phase closure relationships and those based on noise

injection to groups of receivers. Consequently, it is critical to guarantee that the input

signals being correlated are zero mean.
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(4.95)

Figure 4.16.- Amplitude and phase baseline errors due to comparators' threshold errors for Pin = 0 dBm

and V = 50 mV.T 

4.5.3.2.- Delay errors

Visibility samples are usually computed with real correlators from the in-phase and

quadrature components of  both signals:

(4.94)

When there is a time delay - in one channel with respect to the other one,

the measured correlations are no longer µ  and µ , but:12 r 12 i

where the exponential term is the fringe-washing function, and the cos( ) and sin ( )

functions account for the rotation of the I/Q components when the demodulation has not

translated the signals' components down to baseband. Note also that since the low-pass

filters placed after the I/Q demodulators outputs can be different, B'  and B' , �f'  andi1i2 i1q2 i1i2

�f'  can also be different.i1q2

Let us compute the expected value for the real component µ  when the time delay12r

- is a gaussian random variable with mean t , sampling skew, and standard deviation ) ,d -

sampling jitter.
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Defining:

expression (4.96) can be computed as:
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The expected value for the imaginary component µ12i can be computed in a similar way:

To get an idea of the magnitudes involved, equations (4.98) and (4.99) will be simplified

for the typical values of the parameters involved: for the MAX-915 high speed comparator στ< 3

ns and the propagation delay lies between 6 ns and 8 ns, td < 2 ns. The maximum equivalent

noise bandwidth is about 30 MHz for the protected radioastronomy band 1,400-1,427 MHz and

in the MIRAS case, with the LO at 1,395 MHz, ∆f'.15MHz"0.2 MHz:
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20.651 » 0.0111; » 0.051  =    ; =     = k βα (4.100)
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(4.101)

(4.102)

Equations (4.98) and (4.99) reduce now to:

and:

The first term in equations (4.101) and (4.102) is a fringe-wash gain factor, about

0.95 for the above values, that affects each baseline separately and it is different for the real

and the imaginary parts of the measured correlation. To allow baseline based calibration

procedures this term must be very close to unity, and requires closely matched filters. The

phase term inside the brackets is a different phase error in each component of the measured

visibility sample. It can be decomposed in a baseline phase error and a quadrature baseline

error:

which are comparable to those introduced by the filters. Again, these values must be

minimized by using closely matched filters and samplers. Since noise injection techniques

to all the receivers are not technologically feasible for large arrays, the baseline phase error

must be corrected i.e. by measuring a polarimetric hot point. The quadrature phase error can

not be corrected, but has a small impact over the radiometric accuracy 0.18 K (figure 4.11,

uncorrelated phase errors curve).

4.6.- RADIOMETRIC ACCURACY IMPROVEMENT BY PIXEL AVERAGING

In chapter 3 it was shown that a radiometric sensitivity improvement factor as high

as six can be achieved by means of the pixel averaging technique, because for  the selected

MIRAS orbit, the error due to finite integration time is independent in each of the 36

available measurements per polarization, 11 seconds and 0.3 seconds/measurement. On the

other hand, amplitude and phase errors are systematic or vary very slowly and can be

considered constant over the averaging interval. The pixel averaging improvement is not

easy to quantify and depends on the modified temperature distribution being imaged.

However, an analytical study can be performed by assuming that the modified brightness

temperature distribution is a constant 200 K scene inside the Earth, and the brightness

temperature of the sky is zero.
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When the visibility samples are corrupted with residual amplitude errors after calibration,

the recovered modified brightness temperature can be computed from:

where the visibility amplitude error satisfies that:

)( )( v ,uV  =  v ,u V n- m-n-m-mnmn ∆∆ (4.104)

Similarly, when the visibility samples are corrup(ted with small phase errors, the recovered

modified brightness temperature can be computed from:
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and, since the visibility function is a Hermitian function:

Note that expressions (4.103) and (4.105) are formally identical. Defining:

Assuming that the errors are uncorrelated, except for a (u,v) point and its hermitian one,

the average root mean squared error can be computed as (appendix 6):
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where U stands for the "real part" operator, the "+" sign applies to amplitude errors and the "-"

sign applies to phase errors. Equation (4.108) can be approximated, leading to:
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(4.110)

Figure 4.17.- Pixel's trace over the Earth limited to alias

free FOV

which is independent of the pixel's location.

When the satellite is moving, each pixel follows a trace over the Earth's surface

represented by the series of positions shown in figure 4.17 (appendix 8). Snap-shot pixels

follow approximately a line:

The error after averaging all the (!,�) points over each line can be computed from:

(4.111)
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Remember that in a real situation the averaging must be done over the recovered

parameter, i.e. soil moisture or ocean salinity, in order to avoid the dependence of the

brightness temperature with the angle. The root mean squared error can be computed now,

as in (4.108), assuming independent errors:

(4.112)

which can be approximated by:

(4.113)
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(4.114)

Figure 4.18.- Pixel averaging gain for an Y-array with 43 antennas per arm spaced 0.89 �

Compared to equation (4.109) the "sinc  "function acts as a weighing function tapering long2

baselines for (!,�) pixels out of boresight. The pixel averaging gain can now be defined as

the quotient of the root mean squared error without and with averaging:

Figure 4.18 shows the averaging gain for the (!,�) points shown in figure 4.17, the

visibility samples corresponding to the constant 200 K scene inside the Earth-sky border and

the five windows under study: rectangular, triangular, Hamming, Hanning and Blackmann.

Note that the gain factor is greater for pixels far from boresight because of the faster

variations of the "sinc" function due to the higher (! -! ) and (� -� ) terms.f 0 f 0

Pixel averaging improves the radiometric accuracy by a modest  8%, while

radiometric sensitivity is improved by a 600%. This is due to the nature of the errors: phase

and amplitude errors are multiplicative, while thermal noise due to finite integration time is

additive.

Numerical simulations of this technique have been performed for the same test scene,

in order to verify the analytical study for uncorrelated visibility amplitude and phase errors,

but also to analyze the situation in which errors are correlated, because many baselines share

a common antenna and receiver. Correlated/uncorrelated phase errors have been studied in

the range from 0.2º to 4º. Correlated/uncorrelated amplitude errors have been studied in the

range from 10 dB to 40 dB. The mean averaging gain for all the pixels is quite constant, and

results for uncorrelated amplitude and phase errors are in agreement with the predicted

results. However, the mean averaging gain for correlated errors is two times larger for phase

errors and three times larger for amplitude errors. Tables 4.5 and 4.6 show the mean

averaging gain for phase and amplitude correlated/uncorrelated errors with the Blackmann

and the rectangular windows.
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Rectangular Blackmann
window window

Receiver phase error 12.4 % ± 1.1 %
(correlated)

14.8 % ± 0.9 %

Baseline phase error
(uncorrelated) 

9.9 % ± 1.1 % 8.5 % ± 1.5 %

Table 4.5.- Mean averaging gain for receiver and baseline phase errors

Rectangular Blackmann
window window

Receiver amplitude error 21.8 % ± 2.8 %
(correlated)

25.8 % ± 3.6 %

Baseline amplitude error
(uncorrelated) 

12.4 % ± 1.0 % 9.9 % ± 1.5 %

Table 4.6.- Mean averaging gain for receiver and baseline amplitude errors
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4.7.- SUMMARY OF SYSTEM ERRORS AND CONCLUSIONS.

In this chapter system errors have been systematically investigated and classified

attending to their form in the visibility function: antenna errors, receiver or channel errors and

baseline errors. Results are summarized in table 4.7 Their impact on the radiometric accuracy or

sensitivity for the MIRAS space-borne instrument is given, as well as the tolerances of system

parameters to achieve a performance close to SMOS recommendations (see section 1.5).

ERROR SOURCE (δδT/T)/δδσσ∆∆ ACCURACY

BUDGET

SENSITIVITY

BUDGET

AFTER

 PIXEL

AVERAGING

CONCEPT      

LIMITATIONS

- discretization

& windowing

- 0.02 K 0.00 K

- thermal noise

τ=0.3s (mean value)

- 5.14 K

 (snap-shot)

0.86 K

SYSTEM

IMPERFECTIONS

*ANTENNA ERRORS

- Phase ripple

(σφ=0.341)

0.0074/1 0.50 K 0.44 K

- Amplitude rip.

(σA=0.5%)

0.0053/% 0.53 K 0.44 K

- Coupling

(σZij= 7%)

0.0007/% 1.0 K 0.91 K

- Pointing

(σθ=0.151)

0.0064/1 0.20 K 0.16 K

- In-plane osc.

(5mm)

0.0010/cm 0.10 K 0.02 K

- Off-plane osc.

(5mm)

0.0046/cm 0.06 K 0.01 K

- V/H cross-talk

(X-Polar:25dB)

- 0.16K (H-POL)

0.63K (V-POL)

0.15K(H-POL)

0.58K(V-POL)

*RECEIVER ERRORS

- In-phase & I/Q

(σφ=0.11)

0.0018/1 0.04 K 0.04 K

- Amplitude

 errors (TPRad)

- 0.02 K 0.02 K

- Amplitude errors (∆µij)

(σ∆TR = 1.25 K)

0.001 /K 0.25 K 0.20 K
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*BASELINE ERRORS

- Resid. Offset (OL) - 0.07 K 0.06 K
() =1.5.10 )offset

-6

- Filter's Phase errors - 0.18 K 0.17 K
(N  = 0.43º)12

- Filter's Amplit. errors - 0.20 K 0.18 K
(�µ =0.002)ij

- Digital Correlators - - -
threshold errors

- Digital correlators 0.0058 /º
delay errors:
�f'�15MHz±0.2MHz 0.03 K 0.03 K
B'=30MHz, t  = 2nsd

Phase error:
 5.4º pre-cal, 0.1º cal

Quadrature error: 0.0058/º 0.18 K 0.17 K
 0.7º pre-cal

TOTAL 0.99K (H-POL) 5.14 K 1.46K(H-POL)
(quadratic summation) 1.17K (V-POL) 1.57K(V-POL)

(SNAP-SHOT)  (SNAP-SHOT) (PIXEL AVG.)

Table 4.7.- System requirements and system radiometric resolution and sensitivity performances

As it can be seen, one of the most important error sources are the antennas, which

must have very well matched radiation voltage patterns in amplitude and phase and very low

coupling. Anyway, if antenna pattern tolerances cannot be satisfied, they can be measured

within this precision in order to be included in a suitable inversion algorithm (see chapter

6). A new approach to the antenna coupling impact over the visibilities has been developed

from the impedance matrix of the array. Analytical results explain the shape of the

interference patterns found in ESTAR [Ruf 91], showing the critical  factors.

The second major problem comes from the filters, specially the narrow ones which

determine the effective noise bandwidth,  but introduce large non-separable amplitude and

phase errors terms that hinder phase restoration and channel based noise injection calibration

procedures (chapter 5). Digital correlators sampling delay errors introduce a non-separable

phase error term that must be minimized by using high speed comparators with low skew

delays and low jitter. 

If the parameters' tolerances cannot be satisfied the required radiometric accuracy,

1 K, can be achieved by selecting a baseline based calibration procedure and by measuring

the antennas' radiation voltage patterns to be included in an inversion algorithm.
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Chapter 5. Calibration Procedures

As it has been shown in chapter four, amplitude and phase errors must be calibrated

to achieve the required radiometric accuracy,  )I < 1 K [SMOS 95]. The use of natural

scenes as calibrators is not clear at present due to several factors: Earth and sky aliasing,

natural calibrator models, scene temperature uncertainty.... In addition the use of

calibrating polarimetric warm points over the Earth's surface is not feasible. At this point

it must be pointed out recommendation g) from the SMOS Consultative Meeting [SMOS

95]:

g) The group recommends to consider the importance of the integrity of the 1.400-

1,427 MHz with respect to in-band interferors, as expressed in radio regulation

RR8-92/721: "All emissions in the band 1,400 - 1,427 MHz are prohibited", and

with respect to spurious signals of interferors from services in the adjacent bands.

In the absence of external calibrating signals, antenna imperfections can not be on-

board calibrated (OB) and require an accurate on-ground characterization (OG) to be

accounted for in the inversion algorithm (chapter six).

This chapter is devoted to investigate two calibration procedures: i) the application

of the redundant space calibration method from radioastronomy to Earth observation and

ii) a new method based on the injection of correlated noise to overlapped groups of

antennas instead of the injection of the same correlated noise to all the antennas

simultaneously. Both methods are based on the assumption that all amplitude and phase

errors are separable. Consequently, baseline errors are disturbing factors that must be

minimized by using closely matched receivers, filters and correlators. These errors can not be

calibrated unless correlated noise is injected to all the channels simultaneously, which requires

a large phase stable noise distribution network, at present technologically unfeasible.

5.1.- REDUNDANT SPACE CALIBRATION 
5.1.1.- Introduction

The redundant space calibration method comes from radio-astronomy and it is

based in the measurement of redundant baselines. A brief introduction of radio-astronomy

precedents is presented and then the redundant space method is applied to the calibration

of amplitude and phase of Y-arrays, by studying its geometry and the available redundancy.

Finally, its robustness in front of error sources is studied: signal to noise ratio, non-

separable phase and amplitude errors, quadrature errors, filter's and antenna  mismatches.
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5.1.2.- Radioastronomy precedents

Calibration techniques in radioastronomy benefit from the fact that most of the

scenes being observed are known from prior measurements, mostly in the optical spectrum.

These observations provide valid data which do not vary noticeably with time. A

calibration is performed by measuring the complex gain factors for each baseline when

pointing to a calibrating source close to the region to be observed and then pointing to the

scene to be measured.

In radioastronomy, there are hundreds of very bright radio sources of small diameter

isolated from other sources which are ideal for calibrating purposes. This calibration

technique is specially useful because it allows to measure the impulse response of the

system, calibrating the changes induced by the atmosphere, the antennas and the electronic

systems, without any additional hardware.

However, this method can not be applied in all the situations. Rarely the complex

gain factors affecting the calibrator are the same than those affecting the scene to be

measured because they do not share the same atmospheric irregularities. This problem

specially affects the phases of the measured visibilities. In fact, during some time, in the

VLBI (Very Long Baseline Interferometer) only the amplitudes were used because the

phase information was masked by clock instability and atmospheric fluctuations.

5.1.2.1.- Phase and amplitude closures

The "phase closure" is a relationship between the phases of each baseline for each

set of three elements of the interferometer, which is independent of clock and atmospheric

fluctuations [Jennison 58].  The relationship between the measured visibility phase and the

ideal one takes the form:

(5.1)

where  N   is the phase of the measured visibility sample between antennas "i" and "j",raw
ij

ƒ and ƒ  are the phase errors associated with each element (antenna + receiver) ori  j

"instrumental errors" and N  is the phase of the ideal visibility sample. Let's assume aid
ij

closed loop between three baselines formed by three elements "i", "j" and "k". If  N , Nij jk

and N  are the phases associated to the visibilities corresponding to the spaces "ij", "jk" andki

"ki", then:

(5.2)
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which is independent of the phase errors and depends only on the structure of the scene

being observed.

The total number of phase closures can be computed graphically for a N- element

array in the following way: with an antenna fixed all the triangles with two other antennas

are formed. Any other combination between antennas can be written as a linear

combination of the former phase closure relations. Consequently, the number of

independent "phase closures" can be computed as [Rogstad 68]:

(5.3)

which agrees with the number of correlations minus the number of instrumental phase

unknowns, taking an instrumental reference phase as zero.

Applying this method to the amplitudes, it can be found that each amplitude is

affected by two gain factors (only receiver amplitude error terms):

(5.4)

where | V  | is the amplitude of the measured visibility sample between the elements "i"ij
raw

and "j", | g | and | g | are the amplitude gain factors associated with each element and |V |i j ij
id

is the amplitude of the ideal visibility sample. In order to form an "amplitude closure" and

to cancel amplitude errors, four elements measuring four baselines are needed.

(5.5)

The number of amplitude closures can be computed for a 2D N-element array in a

recursive way. For a 4-element array there are 2 amplitude closures, for a 5-element array

there are 3 more closures, for a 6-element one there are 4 more closures. For a N-element

2D array there are:

(5.6)

which agrees with the total number of correlations (redundant or not)  except the gain

unknowns [Rogstad 68].
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5.1.2.2.- "Self-calibration" and "redundant space calibration"

In radio-astronomy there are two basic methods to calibrate the measured

visibilities based on the phase and amplitude closures. The "self-calibration" method is

based on an "a priori" knowledge of the scene to be observed. The "redundant space

calibration" is based on the use of the available redundancies present in the array.

The "self-calibration" method obtains the necessary data to solve the system of

unknowns from the incomplete "a priori" knowledge of the scene. The initial model of the

radio-sources is improved with the phase closures by an iterative method working in the

space domain and its transformed one. The basic requirement of this method is that the

total number of unknowns, complex gain unknowns plus number of parameters in the

brightness temperature distribution model, is smaller than the total number of independent

visibility samples. To perform well, this method requires a high signal-to-noise ratio and

simple radio-sources structures [Thompson et al. 86], [NRAO 89]. Since polarimetric

warm points are forbidden in the 1,400 MHz - 1,427 MHz band,  "self-calibration" has

little chances to be useful for space-borne Earth remote sensing sensors such as MIRAS.

On the other hand , the "redundant space calibration method" obtains the complex

gain factors from different correlations measuring the same baseline. This method is very

suitable to T- or Y-arrays because of the great number of redundant measurements along

the arms where the antennas are placed. It is studied in the next section.

5.1.3.- Redundant space calibration applied to Y-shaped arrays

In an ideal system redundant baselines must produce the same visibilities.

Deviations from this condition are due to instrumental gain and phase errors and their

propagation during the inversion process [Hamaker 77]. If the number of redundant

measurements leads to a determined/overdetermined system of equations the ideal visibility

samples can be estimated from the separable error terms. However, as it is shown later, the

absolute value of the brightness temperature distribution is lost as well as its exact position.

5.1.3.1. - Interferometer's geometry and available redundancies

Figure 5.1.a shows the geometry of an Y-array with 4 antennas per arm. An extra

antenna (numbered 0) is located at the end of one arm for calibration purposes as will be

shown later.
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Figure 5.1.- a) Y-array structure for 4 antennas per arm and b) its (u,v) coverage

          When all the correlations between the signals collected by all the antennas are

measured, the set of visibility samples evaluated at the (u,v) points shown in figure 5.1.b

is obtained. For an Y-array with  N  antennas per arm there are 6N +6N +1 (u,v) points,EL EL EL
2

from which the sample at the origin is obtained by means of a total power radiometer and

only half of the samples,  3N +3N , have to be measured because the visibility function2
EL EL

is hermitian. 

Consequently, there are only 3N +3N  independent correlations from a total2
EL EL

number of ½ (3N +1) (3N ) = 4.5N +1.5N . All the correlations between antennasEL EL EL EL
2

placed in the same arm lead to ½ (N +1) N redundant correlations. The 3/2 (N +1) NEL EL EL EL 

redundant correlations are used by the "redundant space calibration method" to evaluate the

gain and amplitude instrumental errors. In the next section the redundancy required to apply

this method is studied.

5.1.3.2.- Phase closures

As it has been shown, phase closures are formed by the phases of the correlations

measured between three antennas forming a loop:

(5.7)
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The number of independent non-redundant phase

closures is 3N2
EL = 2NEL.NEL+NEL.NEL, which is obtained

from the baselines between an arm and the other two and

the baselines between these two last arms. The number of

visibility phases is then NV=3N2
EL+ 3NEL.

Let see the general form of each of those closures using

some redundant correlations. Assuming that antennas 2 and 3 are measuring the same baseline

than antennas 1 and 2:

Since  φid
12 = φid

23:

By performing all the possible correlations between the elements of an arm 2NEL(NEL-1)

closures are obtained, a new equation for each new redundance. All those equations are not

independent, since there are NEL phases corresponding to the correlations between the central

antenna and the other ones and only NEL-1 independent linear equations, all visibility phases

being referenced to one of them. For the whole array the total number of independent linear

equations is 3 (NEL-1) and the total number of unknowns is 3 NEL, consequently a phase must be

known in each arm to solve for the other phases. At this point the extra antenna, numbered 0 in

figure 5.1.a, introduces new redundant correlations between antennas belonging to different

arms, allowing to relate the reference phases of the three arms between them without

introducing new unknowns.

but φid
01 = φid

1,10 and φid
60 = φid

12:

Finally, a system with two more unknowns than equations is obtained: two reference phases are

needed, whose physical  interpretation is commented in section 5.1.3.4.2.

Note that the planned MIRAS space-borne instrument has three extra antennas for

calibration purposes. The two new extra antennas do not add new linear independent equations,

but add robustness to the calibration procedure in the case of malfunctioning of one of them.

Table 5.1 summarizes the number of available equations and unknowns for the phase

closures:

Figure 5.2.- Baselines forming a phase

closure
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NEL NEL=43
(MIRAS SPACE BORNE)

number of phases 3 NEL
2+3 NEL 5676

number of non-redundant
closures

3 NEL
2 5547

total number of closures 4.5 NEL
2 - 1.5 NEL 8256

number of independent closures 3 NEL
2 + 3 NEL - 2 5674

minimum number of
redundancies

3 (NEL-1)
(+2 extra antenna)

126

(128)

Table 5.1.- Number of phase closure equations, unknowns and redundancies for an Y-array

5.1.3.3.- Amplitude closures

Amplitude closures are formed from the amplitudes of four correlations between four

antennas whose baselines form a closed loop.

or:

Amplitude closures are multiplicative relationships

between amplitudes which can be linearized by taking

logarithms.

The computation of the available number of amplitude closures was done in section

5.1.2.1, obtaining: 2 NT (NT - 3) = 4.5 N2
EL- 1.5 NEL - 1, NT= 3 NEL + 1, which agrees with the

total number of correlations minus the number of instrumental errors: 2NT (NT-1) -NT. Each

redundant correlation that is eliminated, reduces one closure, if all the antennas appear correlated

with two other antennas at least once. Since there are 3/2 NEL (NEL-1) redundant baselines in an

Y-shaped array, the number on non-redundant amplitude closures is:

Figure 5.3.- Possible amplitude

closures
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(5.15)

(5.14)

Table 5.2 summarizes the number of available equations and unknowns for the

amplitude closures:

N N =43EL EL
(MIRAS SPACE-BORNE)

number of amplitudes 3 N  + 3 N 5676EL EL 
2

number of non-redundant
closures

3 N  - 1 5546EL
2

total number of closures 4.5 N  - 1.5 N  - 1 8255EL EL
2

number of independent
closures

3 N  + 3 N  - 1 5675EL EL
2

minimum number of
redundancies

3 N 129EL

Table 5.2.- Number of amplitude closure equations, unknowns and redundancies for an Y-array

5.1.3.4.- Solution of the system  of equations

Once the general form of the equations for the phase and amplitude closures has

been shown, the whole system of equations can be set and then solved. Matrix  relates

the ideal visibility phases in the phase closures relations and matrix  relates the

measured visibility phases, including the redundant ones.

For a 43-antennas per arm, such as MIRAS space-borne, matrix A is 5.804 x 5.676
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and matrix  is 5.804 x 5.804, including the equations that relate the reference phases and

using only the minimum number of redundant correlations. The solution of this system of

equations requires a high computational capability that can be minimized by noticing that

it is equivalent to know only the visibility phases, 3 N  + 3 N , or the instrumental phase2
EL EL

errors, 3 N . If the smallest baselines are taken as the redundant ones, the phase closureEL

equations can be written as:

(5.16)

where f  is the instrumental error of the element "i" (antenna + receiver), not to be confusedi

with receiver's central frequency, and N are the phases of the correlations. Note that the first

element phase is taken as the reference one, and its phase is assigned to 0. 

Equation (5.16) can be written matricially as:

(5.17)

For a 43-antennas per arm, such as MIRAS space-borne, matrix  is 132 x 132,

using the minimum number of correlations: 43 in each arm and other two generated by the

extra antenna relating the reference phases. Once the instrumental channel phases,  f , arei

known, the calibrated visibility phases N  can be derived from the measured ones N  andij ij
raw

the f 's:i

(5.18)

For the amplitude closures a similar system of equations can be derived:
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(5.19)

where matrix  is 136 x 136, including the equation that forces the amplitude reference.

Once the instrumental channel gains g , are known, the calibrated visibility amplitudesi

|V | can be derived from the measured ones  |V  | and the g 's:ij ij i
id raw

(5.20)

5.1.3.4.1.- Reference phases

In this section the impact of an error in the reference phases required by the

redundant space calibration method is studied. Considering only the correlations between

antennas along an arm and that the phase reference is taken between the first and the

second element, the phase closure relationships can be written as:

(5.21)

equivalently:

(5.22)

In general:

(5.23)

and for the correlations between two different arms:

(5.24)

where N  and  N  are the reference phases corresponding to the arms containingid id
1a 1b

antennas "i" and "j" respectively, and "m" and "n" are factors that grow linearly with the
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Figure 5.4.- Calibrated test scene with a phase reference error of 45º. Test scene consisting of a 200K

constant modified temperature inside the Earth border.

distance from antennas "i" and "j" to the central one. This linear dependence has two

important consequences:

i) Errors in the reference phases propagate along the elements growing linearly with the

distance to the central antenna, translating into a linear displacement of the recovered

modified temperature distribution. In radio-astronomy this information can be recovered

by an accurate knowledge of the position of some radio-sources. In an Earth remote sensor

such as MIRAS this information may be recovered by looking at the shape of the Earth

aliases in the recovered modified temperature distribution, as it is shown in figure 5.4.

ii) Errors induced in a baseline by noise, antenna mutual coupling, non-separable error

terms... accumulate along the arm and long baselines suffer from larger phase errors.

To avoid this problem correlated noise can be injected to a reduced set of antennas

at the center of the array (e.g. 1, 2, or 3  antennas per arm plus the central one) allowing to

compute the complex gain g  of each receiver. In this case, the shortest baselines, the mostm

significant ones, and the reference phases are computed with high accuracy by the noise

injection method (see section 5.2). The redundant space method is then used to calculate

the remaining g  complex factors for longer baselines. Note that this mixed method has them

advantage that does not require a large and heavy power distribution network to drive

correlated noise to all the receivers.
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5.1.3.4.2.- The role of the extra antenna 

A phase error in an arm forces a translation of the recovered modified temperature

distribution in the direction of this arm. The extra antenna, numbered as "zero", relates the

phases in the three arms which are no longer independent: 

(5.25)

However, non-separable phase terms in the baselines forming the loop are not

included in equation (5.25) and, in general:

(5.26)

which translates in a phase aberration in the recovered modified temperature distribution.

5.1.3.4.3.- Selection of the redundant baselines.

From a low-orbit remote sensor the Earth appears as an extended thermal source.

This means that its associated visibility function, spatial Fourier Transform, has a rapid

decline with the baseline distance. On the other hand, the baseline noise is constant and

does not depend on the amplitude of the measured correlation (equation (3.65) with

)f>B/2):

(5.27)

Consequently, the redundant space calibration is more robust if the smallest

baselines are used as the redundant ones.

5.1.3.4.4. - Raw measurements pre-processing.

µ , the normalized raw visibilities at the output of the 1 bit/ two level digital(5)

correlators include all the errors studied in chapter four: antenna errors, receiver's and

correlator's phase/quadrature and amplitude errors, separable or not, and offset errors

induced by local oscillator's leakage. The redundant space calibration method does not deal

with all of them and some must be pre-calibrated (see figure 5.5):
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Figure 5.5.- Visibilities definition.

i) Z  is computed by extracting the offset in Z . This is done as:(4) (5)

(5.28)

Note that the offset is measured by injecting uncorrelated noise to all the receivers, which

is done by switching each antenna to a matched load.

ii) µ  is computed taking into account the non-linear relationship between the measured(4)

correlation given by 1B/2L correlators and the ideal normalized correlation:

(5.29)

iii) µ  is computed by removing the quadrature phase errors:(red sp cal)

(5.30)

iv) Compute V  by applying the redundant space calibration method to V(0,0) µ  and(1) (red sp cal)

estimating the receiver gain and phase factors. 
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v) Apply a suitable inversion algorithm to the calibrated visibility samples V(1) (see chapter six).

Note that antenna coupling errors are still present in µµ(red sp cal)  and degrade the

performance of the calibration method as shown later.

5.1.4.- Robustness of the method

In order to test the method, the raw visibilities Vraw of the modified temperature

distribution T(ξ,η) defined in equation (4.13) have been computed by introducing antenna and

receiver imperfections to each channel:

where ∆Vnm is complex noise due to the finite integration time and )(- r mn τ~  is the fringe-wash

term includes receiver phase and amplitude error terms. Note that in the case of antenna pattern

imperfections the double integral must be computed for each visibility sample Vraw
mn. However,

in the case that antenna errors are not taken into account and the spatial delay is negligible, τ.0,

 equation (5.31) can be simplified to:

where Vid(u,v) is the ideal visibility sample computed as the Fourier transform of the test scene

and Gmn is the baseline complex gain between antennas "m" and "n". Once Vraw is computed by

one of the two methods, the redundant space calibration procedure is applied to estimate the

baseline complex gains Gmn and to calibrate the raw visibilities:

To test the calibration robustness the temperature distribution is recovered from an

hexagonal inverse discrete Fourier Transform (see chapter six) when there are only residual

errors:

and by means of a suitable inversion algorithm (chapter 6), in the case that antenna errors are

considered. The radiometric root mean squared error has been computed from (4.15) inside the

circle shown in figure 4.4 .

In the following paragraphs the redundant space calibration procedure is tested to assess

its robustness when dealing with different kinds of errors. Simulations are performed for an Y-

array with 43 antennas per arm, such as the MIRAS space-borne case, when computation time

V  + d d e )(-r ),(F ),(F ),T(= v)(u,V nm
)+v(uj2-

mn
*

nn

1+

raw
mn nm

22

∆∫∫
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~      (5.31)

V + v)(u,VG=v)(u,V mn
id

mn
raw
mn ∆                                       (5.32)

v)(u, V g g = v)(u, V raw
mn

-1

n

-1

m
cal
mn ˆˆ (5.33)

[ ]v)(u, V v)(u, W   F = ),( T cal1- 
Hηξˆ                                  (5.34)
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and memory allocation are not limited, and for an Y-array with 15 antennas per arm otherwise.

Radiometric accuracy due to discretization and finite coverage of the (u,v) plane relating this

two case of interest are ∆T = 0.13 K for NEL=15, and ∆T=0.03 K for NEL= 43, which are the

absolute lower bound for radiometric error.

5.1.4.1.- Effect of signal-to-noise ratio

In this case only a random complex noise term is added to the raw visibility samples in

order to simulate the effect of the finite integration time. The reference amplitude and phases are

supposed to be perfectly known.  To asses the impact at each signal-to-noise ratio 50

simulations have been performed. In each one both the receiver parameters gm and the complex

random term ∆Vmn have been changed. To compute the error introduced by the calibration

method, the degradation in the radiometric accuracy has been computed as:

In this case σTnoise is the radiometric error when the calibration is not required, there are not

phase and amplitude errors and the temperature distribution is recovered by a direct inverse

Fourier transform of the visibility samples contaminated with noise.  σTcalibrated is the radiometric

error when the calibration has to be performed previously to the inverse Fourier transform. In

this way ∆T represents the degradation of radiometric resolution at each S/N due to the

calibration. Simulations have been performed for NEL=15. Results are summarized in table 5.3.

The error recovering the channel phases φm and the channel gains *gm * is included.

S/N σσφφm σσ|gm** ∆∆T σσTnoise

30 dB 1.8628 E 3.6547 % 3.0 K 8.91 K

35 dB 0.5906 E 1.0779 % 0.73 K 2.82 K

40 dB 0.2024 E 0.3437 % 0.20 K 0.90 K

45 dB 0.0602 E 0.1047 % 0.12 K 0.31 K

Table 5.3.- Radiometric accuracy degradation due to calibration affected by noise

The snap-shot degradation for an Y-shaped array of 43 antennas per arm is about 0.73

K. However it should be pointed out that the instrument does not change during adjacent

measurements and averaging of the recovered amplitude and phase parameters can be perfomed.

If each image is corrected from the output of the last 100 measurements, then the equivalent S/N

when calibrating is 45 dB and the degradation falls down to 0.12 K. Of course, it assumes that

the reference phase and amplitude do not change during averaging.

            σσ 2
noise

2
calibrated

2  -  = ΤΤΤ∆                                            (5.35)
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Figure 5.6.- RMS error on phase and amplitude vs. antenna number,  S/N = 45 dB. 

Figure 5.6 shows the rms error on phase and amplitude for each antenna when the

signal-to-noise ratio is 45 dB. Note that error increases linearly as the antennas are more

distant to the center of the array due to error propagation. 

5.1.4.2.- Effect of non-separable error terms

As seen previously, the baseline complex gain G  was factorized into singlemn

channel complex gains g g . However, in a real case there is a non-separable part g  thatm n mn

cannot be split into isolated complex factors. In this case, the measured visibility is

expressed as:

(5.36)
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Such non-separable complex factors are due filter misalignments in each receiver channels

and to sampling errors in the correlators. The calibration process cannot estimate this

factor, which contaminates the calibration procedure and remains as a residual error. This

residual error can be expressed as g =(1+) )e . To assess the impact of non-separablemn mn
j)Nmn

phase errors on the radiometric resolution, V  has been calculated adding non-separableraw

phase errors. Simulations have been performed for N =15 and the degradation ofEL

radiometric resolution )T has been calculated with respect to the ideal case (only

discretization and finite coverage errors, but without noise) for a constant temperature

distribution at T=200 K (figure 4.4). Results are summarized in table 5.4.

)N)N)N)N FFFF ))))T mn )N)N)N)Nm

0.1 EEEE 1.3695 E 0.17 K

0.3 EEEE 4.1753 E 0.7 K

  1 EEEE 16.5411 E 1.86 K

Table 5.4.- Radiometric accuracy degradation vs. non-separable phase error.

Note that the calibration algorithm amplifies the rms phase error. The non-separable phase

error )N  must be kept below 0.3  which imposes serious restrictions on filters tolerancesmn
o

(see table 4.4) and correlator's samplers. In the case of amplitude errors we have:

)))) FFFF ))))Tmn ))))m

0.1 % 0.5235 % 0.3 K

0.5 % 2.3550 % 0.9 K

Table 5.5.- Radiometric accuracy degradation vs. non-separable amplitude error.

Amplitude errors are also amplified by the calibration procedure. The non-separable

amplitude error )  must be kept about 0.2% to get an acceptable residual error, leadingmn

to very restrictive filter tolerances. For an equivalent gaussian filter parameters' deviations

must be bound by (see section 4.5.1.2): f  = 1.4 GHz,  B = 25 MHz, J = 80 ns, *)f * < 0.5o o i

MHz, *)B * < 1 MHz, *)J * < 2 ns. Sampling tolerances in the correlator's samplers arei i

also very restrictive, and sampling errors must be also smaller than 2 ns (see section

4.5.3.2).  

Non-separable amplitude and phase terms are introduced mainly by filter

mismatches and timing errors in the comparator's samplers. Since the redundant space

method requires very low non-separable terms, this gives very stringent filter specifications

that are very difficult to achieve. If filter parameters have low drift due to aging and
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temperature, their specifications can be greatly relaxed by non-separable error pre-processing. If

the receiver voltage response  Hm(f) is ground tested for all the channels, the filter contribution

can be computed for each baseline as:

and , the raw visibilities can be pre-processed as:

the redundant space calibration procedure is applyied to Vpre-proc, in which the non-separable

terms have been significantly reduced.

5.1.4.3.- Effect of quadrature errors

As it has been shown quadrature errors must be removed prior to applying the

redundant space method since they do not allow the complex notation of the baseline gain Gmn.

Instead, a matricial relationship is required:

Quadrature errors can be tested on-ground and assumed not to drift or can be estimated

by placing additional correlators to correlate the in-phase Im and the quadrature signal Qm at each

receiver output as:

This solution requires 3NEL extra correlators, which is not a significant increase

considering the total number of correlators [Laursen 95]. Now, quadrature errors can be

removed by left multiplication of µµ(4) by the inverse of the quadrature matrix P
-1
q

The impact over the radiometric accuracy of residual quadrature errors is summarized in

table 5.6.

e  fH   fH F = (0)r t -j *
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σσθθq σσφφm σσ∆∆m ∆∆T

0.1o 0.8554o 0.1557 % 0.07 K

0.3o 2.0723o 0.4250 % 0.16 K

1o 6.0507o 1.2645 % 1.09 K

2o 13.9492o 2.3833 % 1.57 K

Table 5.6.- Radiometric accuracy degradation vs. residual quadrature error.

In this case residual quadrature errors σθq must be kept around 0.3º or below.

5.1.4.4.-  Effect of antenna imperfections

Antenna imperfections are an important source of errors which can be classified in two

groups: errors due to antenna pattern errors (amplitude and phase ripple, position errors, and

pointing  errors) and mutual coupling between antennas.

Antennas used by interferometer radiometers observing punctual radio-sources can be

modeled by a constant phase and gain antenna pattern. However, the Earth, seen from a low

orbit satellite with low directive antennas, occupies a large part of the antenna main beam.

Hence, antenna pattern imperfections must be taken into account by the calibration and inversion

algorithms to minimize image aberration. Once the receiver phase and amplitude are calibrated,

the inversion algorithm can remove the effect of antenna imperfection [Camps et. al 96B].

However, those antenna imperfections contaminate the redundant space calibration method and

degrade receiver phase and amplitude estimation. As seen previously, this gives stringent

specifications to antenna parameters (phase and amplitude ripple, pointing errors, antenna

position and antenna coupling) in high resolution interferometer radiometers, with a large

number of antennas.

In order to assess the impact of antenna imperfections on radiometric resolution

simulations have been performed as follows: µµ(2) has been computed for the test scene consisting

in a constant temperature distribution at 200 K, assuming a determined phase, amplitude and

antenna pattern for each receiver. Then, phase and amplitude errors have been estimated by the

redundant space method. Once phase and amplitude errors have been removed from µµ(2)  as:

the inversion algorithm recovered the temperature distribution making use of the known antenna

patterns. Standard deviation of antenna imperfections used to perform the simulations are

obtained from chapter 4: 0.15o  pointing error, 0.5% amplitude ripple and 0.34o of phase ripple.

)(ˆˆ)( vu, g g = vu, (2) 

mn

-1

n

-1

m

(1) 

mn µµ (5.42)
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In the case of NEL=15 antennas per arm, the radiometric degradation with respect to the case

without receiver phase and amplitude errors (no need to calibrate the receiver) is about

∆T=0.2 K.

Note that antenna coupling impact on the calibration method can be highly reduced by

selecting as redundant baseline antennas spaced some basic units (e.g. four or five would

suffice). This also gives a decrease in the baseline signal-to-noise ratio that can be compensated

by averaging consecutive measurements.

5.1.5.- Conclusions

The redundant space method, as used  in radio-astronomy, can be applied to the

calibration of an interferometer radiometer devoted to Earth observation provided that some

especial considerations are taken into account.

It has been shown that receiver phase and amplitude errors increase along the arms

which makes the calibration procedure very weak in front of errors not contemplated by the

calibration procedure: quadrature errors, phase and amplitude non-separable errors, antenna

pattern imperfections, etc. if the number of antennas per arm is high. However, since the Earth

appears as an extended thermal source with relatively smooth transitions, its visibility function,

or spatial Fourier transform, has a rapid decline that attenuates the effect of error propagation

along the arms. The shorter baselines, which have the lowest errors, concentrate the largest

percentage of the information collected by the interferometer.

Errors not taken into account by the redundant space calibration procedure have been

classified and studied, obtaining a set of hardware specifications if the calibration procedure is to

be successful. These specifications are basically the same that those obtained in chapter four,

when studying the system errors.
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(5.43)

5.2.- CALIBRATION BY CORRELATED/UNCORRELATED NOISE INJECTION

5.2.1.- Introduction

The correlated noise injection method has some advantages over methods based on

phase and module closure relationships [Thompson et al. 86] [MMS 95]. Noise injection

allows calibration of the receiver parameters, independently of antenna imperfections such

as coupling effects, pointing errors, amplitude and phase errors...  Once the receiver

parameters are determined, antenna imperfections can be calibrated out of the measurement

of a known scene, other external signal sources or by antenna ground testing. Moreover,

correlated/uncorrelated noise injection allows calibration of errors that cannot be taken into

account by phase and module relationships, such as receiver quadrature phase errors or

offsets. On the other hand, noise injection implies increased hardware requirements and

should be used only if errors not corrected by phase and module closure relationships have

critical impact on system performance.

Simultaneous correlated noise injection to all the antennas in large arrays is

technologically very critical because of the stringent requirements on mass, volume and

phase equalization of the noise distribution network.  In this section an approach that makes

use of a set of uncorrelated noise sources uniformly distributed in the array is proposed.

The calibration procedure is optimized in the sense of minimization of hardware

requirements and the number of measurements. Each noise source drives correlated noise

only to a small set of adjacent antennas. These sets of antennas are overlapped in order to

maintain phase and module track along the array. 

This approach reduces drastically mass and volume requirements of the noise

distribution network compared to the standard method, which uses a single correlated noise

source distributed to all the antennas. Moreover,  the phase matching requirements of the

distribution network are strongly relaxed because noise sources are driven to small sets of

adjacent antennas.  Power stability of the uncorrelated noise sources is also not a stringent

requirement, because noise source temperatures are also estimated during the calibration

process. This procedure allows independent phase and module calibration by making use

of a reduced number of redundant correlations.  It shoul be pointed out that the standard

correlated noise injection determines the baseline complex gain factors  as (figure 5.5):

while the reduced set noise injection method estimates channel gain factor g , g  and g  . gm n mn m

g , therefore non-separable amplitude and phase errors remain as residual errors that must ben

minimized and bind by the error in estimating the visibility amplitude and phase terms.
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5.2.2.-  The c/u noise injection method

5.2.2.1.- Uncorrelated noise injection

If  zero-mean, narrow band Gaussian uncorrelated noise is injected at the receiver

inputs, the real and the imaginary outputs of the 1B/2L digital correlators should be Z =0,r

Z =0. Moreover, as explained in chapter four, the measured correlations are not zeroi

Z …0, Z … 0, due to the leakage from the common local oscillator's thermal(5) (5)
uncorr i uncorr 

noise. From now on the measured complex visibility µ  to be calibrated is given by:(4)

(5.44)

Where µ  contains amplitude and phase errors and µ  is free from amplitude errors.(4) (3)

5.2.2.2.- Correlated noise injection

If  zero-mean, narrow band Gaussian correlated noise is injected at the receiver

inputs, the real and imaginary parts of the ideal normalized visibility are µ =1, µ =0, andr i

the unknowns 2 ,  2  , 2 , 2 , T  and T   can be derived out of the measured visibilitiesoi oj qi qj Ri Rj

µ  and µ .  r i
raw raw

(5.45)

However, it must be guaranteed that correlated noise is distributed correctly to all

the antennas. The standard method makes use of a single noise source. However, in a large

array, it is very difficult to maintain phase equalization of the noise distribution network
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Figure 5.7.- Noise distribution scheme. Each source drives

correlated noise to a set of eight adjacent antennas

through the whole operating temperature range. Moreover the mass and volume

requirement of a phase matched on-board distribution network 1-to-131, such as it would

be required in MIRAS, can not be handled. The proposed solution reduces drastically these

hardware requirements. 

Figure 5.7 shows the proposed noise distribution network. Antennas are grouped in

sets of 4 to keep the groups specified in [MMS 95] and allows the use of  2  power dividern

networks. Therefore, in order to have overlapped sets of antennas each noise source must

drive noise to a set of eight consecutive antennas. As seen in figure 5.7, 31 uncorrelated

noise sources are required and each antenna is driven by two adjacent noise sources

allowing phase and amplitude calibration of the array. The source n   must deliver power0

to the remaining 10 central antennas in order to keep phase and module track between the

three arms of the Y-array. This noise source must be monitored with good accuracy so as

to perform amplitude calibration of the whole set of visibility samples.

Figure 5.8 gives a detail of  noise distribution along a single arm. Antennas a  .. a0 7

receive correlated noise only from source n . Therefore the largest baseline that can be1

computed is d = 7 (d = 1 is the basic 0.89 8 baseline). Antennas a  .. a  receive correlated4 11

noise only from source n . And, finally, antennas a  .. a  are common to both groups2 4 7

allowing phase and module tracking along the arms. As it is shown later, errors do not

propagate significantly along the arms when applying this calibration procedure.
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Figure 5.8.- Noise distribution scheme. Each source drives correlated noise to

a set of eight adjacent antennas

Since only short length matched coaxial lines are required mass and volume of the

noise distribution network are greatly reduced. Moreover, its phase matching requirements

are strongly relaxed because it is only necessary within small sets of adjacent antennas.

Only unbalanced phase drifts due to temperature variations must be minimized. The

calibration procedure determines noise source temperatures out of the knowledge of n .0

Hence, simple non-stabilized diodes can be used as noise sources. In addition, as shown

hereafter, it is possible to calibrate phase and amplitude independently with reduced

hardware requirements.

5.2.2.3.- Calibration equations and redundancy 

Once the correlated noise is injected the normalized visibilities should be µ =1(2)
r ij

and µ  =0. Hence, each correlation gives the two following equations:(2)
i  ij

(5.46a)

(5.46b)
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where 2 , 2 , 2 , 2  and the gain factors g ,g  are the unknowns. The gain factors can beoi oj qi qj i j

eliminated by dividing the measured real and imaginary parts of the visibilities. Hence, an

equation relating the phases out of each correlation is obtained:

(5.47)

Once the phases are recovered an estimation of the gain factors g , g  can bei j

computed from (5.46a) or (5.46b).

Now the number of available correlations can be computed. There are two

possibilities:

i)  Use a minimum set of redundant correlations: figure 5.8 shows a close to the minimum

set of redundant correlations which enables calibration of the phase terms. As it can be

seen, a set of 8 antennas leads to 14 correlations (solid arrows). By adding 4 antennas the

number of correlations (dashed arrows) increases by 9. Therefore, there are 95 correlations,

5 non-redundant and 90 redundant relating each arm of 44 antennas.

ii) Use all possible correlations: there are 28 correlations within a set of 8 antennas. By

adding 4 antennas, the number of correlations increases by 22. Therefore, there are 226

correlations, 7 non-redundant and 219 redundant, relating each arm of 44 antennas.

The following table relates the number of available equations to the number of

unknowns:

case of of equation equation phases gains
Number Number Number Number Unknown Unknown

antennas correlations phases gains

(i)
(ii)

44 95 95 95 88 44
44 226 226 226 88 44

Table 5.7.- Number of equations and unknowns for a close-to-the minimum redundant correlation noise

injection calibration and for a full-redundant noise injection calibration.

As it is seen in this table, case (a) makes use of a system of equations with very little

overdetermination while in case (b) it is highly overdetermined. In a Y-array with 43

antennas per arm the following values hold: 8385 complex correlations, 5676 non-

redundant correlations and 2709 redundant correlations. In relation with the calibration

procedure:

 



f(2̂oi, 2̂oj, 2̂qi, 2̂qj)'0

g meas
i ' 1%

TRi

TAi

&
1
2

g meas
j ' 1%

TRj

TAj

&
1
2

g cal
i ' 1%

TRi

Tni

&
1
2 g cal

j ' 1%
TRj

Tnj

&
1
2

140                                                     Application of Interferometric Radiometry to Earth Observation

case (a) 3 x  90=270 redundant

case (b) 3 x 219=657 redundant

That is, even when all possible correlations within each set of  8 antennas are used

only a small fraction of MIRAS redundant samples are required, which implies great

hardware and power supply savings.

5.2.2.4.- Phase Calibration

Once all the measurements are performed, equation (5.47) turns into a system of 226

equations (44 antennas per arm, 226 correlations): 

(5.48)

that is solved by a least-squares minimization to recover the phases.

5.2.2.5.- Amplitude calibration

Once the phase terms are known, the gain factor g g   can be estimated out ofi j

equations (5.46). From the two equations where each product g g  appears, only the valuei j

given by the equation less sensitive to phase estimation errors is used, the one having the

greatest term: cos(2 -2 +2 /2-2 /2) or sin(2 -2 +2 /2+2 /2).oj oi qj qj oj oi qj qj

Note that these gain factors are not those that are required because during the

measurement of a scene:

(5.49)

since during the calibration they are given by:

(5.50)

Therefore, it is not enough to estimate the factors  g  and g  during calibration, but it is alsoi j

required to estimate the receiver noise temperatures T  and T .  Once they are known, theRi Rj

desired calibration factors are computed out of the scene average temperature T  given byA

the total power radiometer.
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At this point it should be noted that, in order to estimate the receiver noise

temperatures, it is necessary that only one noise source is driving each set of eight antennas

that are simultaneously under calibration. Hence, calibration is performed by measuring the

visibilities, first with the even noise sources ON and  the odd sources OFF, and, afterwards,

with the even noise sources OFF and the odd sources ON. From figure 5.8 it is seen that

proceeding in this way, receivers are always driven by a single noise source.

Now, taking into account the first set of eight antennas -(a ..a ) in figure 5.7-, which0 7

are driven by the odd noise source T   (T OFF), the odd coefficient is given by:n1 n2  

(5.51)

out of the correlations performed between antennas "i" and "j". T  and T  are the noiseRi Rj

temperatures of receivers "i" and "j". The system of equations is linearized by taking

logarithms:

(5.52)

where x  stands for a linear coefficient related to antenna "i" when driven by the noise1i

source T . For the 44 antennas, there are 226 equations leading to a linear system:n1

(5.53)

Where  is a 226 x 44 matrix.  is a sparse matrix whose rows contain all zeros except for

two ones relating the position of the receivers in each correlation. The linear coefficients

are determined as x =  a , where  is the pseudo-inverse of .0
0

Once the linear coefficients x  are known, the receiver temperatures can be0

recovered by means of a recursive process. The only requirement is the first noise source

T  to be known. Relating the first set of antennas (a ..a ), the receiver noise temperaturesn1 0 7

are directly:

(5.44)

where only the odd correlations have been used. Once the receiver's noise temperatures of

a  .. a  are determined, the even noise source T  can be extracted out of the even0 7 n2

correlations performed within a ..a  as the mean value:4 7
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(5.55)

Now x  is the linear coefficient of antenna "i" when driven by the even noise source2i

T . Once T   is determined this procedure is repeated with the second set of antennasn2 n2

a ..a  and the unknown odd noise source T . This recursive procedure ends with all the7 11 n3

receiver noise temperatures  T  and noise source temperatures T  are determined.Ri ni

The above procedure is based on the knowledge of the first noise source of each arm

(T  in our example). In fact it is only necessary to know T , which is placed at the centern1 no

of the array and delivers correlated noise to the 10 central antennas.  T , T  and T  (seen1 n11 n21

figure 5.7) are recovered from T  by a procedure similar to the one explained above,no

relating the correlations performed within the set of the 10 central antennas. In conclusion,

the accuracy of module calibration is highly dependent on the accuracy of T  which can ben0

determined either by switching during calibration the total power radiometer to this noise

source, or by dedicating a special power measurement unit.

5.2.3.- Method robustness

To test the proposed calibration procedure a set of measured visibilities is required.

These visibilities must be corrupted with generated receiver phase and module errors, as

well as additive noise to take into account the finite integration time. First of all, the error

coefficients of a real receiver will be defined and the measured visibilities will be generated

and corrupted by noise. After calibration, it allows a comparison between real and

recovered the receiver error coefficients.

A real receiver can be modelled with a matrix C of error coefficients:

(5.56)

where N  = 3 N  + 1  is the number of antennas in the array and s the number of noiseT EL

sources. Note that the central antenna sets the phase reference 2 = 0. Receiver phases haveo0

a zero mean Gaussian distribution with standard deviation F  and F . Noise temperatures2o 2q

have also a Gaussian distribution of mean T  = 80 K and T  = 200 K, and standardR n
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deviation F   and  F .  For calibration purposes, T  is considered to be known withTR Tn no

enough accuracy. Once the receiver coefficients are generated the matrix  that

simulates the real receiver  is computed as:

(5.57)

 is a sparse matrix composed by 2 x 2 matrices   in its diagonal.  (equation

(5.45)) relates the ideal normalized visibilities with their measured counterparts. M is the

number of visibility samples, redundant or not, that are measured during the calibration

process. 

(5.58)

The ideal visibilities µ  when measuring correlated noise are µ =1 and  µ =0.k rk ik

However, zero mean Gaussian noise n  = n + j n  is added to account for the finitek rk ik

integration time. The noise is specified out of the signal to noise ratios which is equivalent

to specifying different integration times:

(5.59)

where F  is the standard deviation of the visibilities. F  in MIRAS it is about 35 dB due tov v

the 0.3 s finite integration time. Note that during the calibration process the integration time

is not limited by the platform's movement and signal-to-noise ratio can be increased by

averaging consecutive calibrations. The effective standard deviation during calibration, F',

is then given by:

(5.60)
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It is, averaging N  = 100 measurements (30 s integration time) gives an increase in signal-avg

to-noise ratio of 10 dB and averaging N = 1.000 measurements (300 s integration time)avg 

the increase is of 15 dB.

Note that two simulations have to be performed in order to account for the following

measurements: 

i) Even T ON, odd T  OFF. Measure of µ   and µ  .ni ni r i

ii) Even T OFF, odd T ON. Measure of µ  and µ  .ni ni r i

where the correlations are changed. Of course, this implies new values for T and the noiseni 

terms n  = n  + j n  .k rk ik

In order to check the consistency of the method, receiver errors have been modelled

with the following parameters: F  = 20 , F  = 5 ,  T  = 80 K, F  = 10 K, T =300 K and2o 2q R TR n
o o

F  = 25 K. Simulations proved not to be very sensitive to this data. Then, a set of measuredTn

normalized visibilities  µ  are simulated and the coefficients recovered using theraw

calibration procedure explained previously. In the following sections the effect of different

errors is analized. Errors are computed as:

(5.61)

5.2.3.1.- Effect of signal-to-noise ratio: averaging adjacent measurements

Figure 5.9 shows the rms error in each receiver along an arm in terms of the S/N.

The estimated coefficient rms errors are summarized below.

S/N  F F F)2o )2q )TR

35 dB 0.018 0.009 0.124 Ko o

40 dB 0.006 0.003 0.041 Ko o

45 dB 0.002 0.001 0.015 Ko o

Table 5.8.- Residual in-phase, quadrature and noise temperature errors vs. signal-to-noise ratio

Note that, when measurements are only corrupted by Gaussian additive  noise, errors

in the estimated parameters are negligible and do not increase significantly along the arms.



Chapter 5 : Calibration Procedures                                                                                                        145

Figure 5.9.- Element errors vs S/N. F =20º,F =5º,T =80 K,F =10 K,T =300K, F =25K, S/N=45dB.2o 2q R TR n Tn

 

5.2.3.2.- Effect of the uncertainty in the central noise source.

Figure 5.10 shows the rms error in each receiver along an arm in terms of the

uncertainty in T  Signal-to-noise ratio is fixed to 45 dB to make results independent ofno.

noise. The estimated coefficient errors are summarized below:

))))T FFFFno ))))TR

0.1%  (0.3 K) 0.04 K

0.5%  (1.5 K) 0.27 K

1.0%   (3 K) 0.47 K

2.0%   (6 K) 1.09 K

Table 5.8.- Residual noise temperature errors vs. )Tno

)T  has negligible error on the phases, as expected. Error in the expected receiverno

noise temperatures is about )T . )T /4, which is consistent with T /T =300K/80K.4.R no no R 
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Figure 5.10.- Element errors vs )T . F =20º,F =5º,T =80 K,F =10 K,T =300K, F =25K, )T =0.3K.no 2o 2q R TR n Tn no

5.2.3.3.- Effect of non-separable phase terms

Figure 5.11 shows the rms error in each antenna along an arm in terms of the

uncertainty in )N . Signal-to-noise ratio is fixed to 45 dB to avoid noise errors and )Tmn no

to 0.1% (0.3K), therefore results depend only on )N . The estimated coefficient errors aremn

summarized below.

 FFFF  FFFF FFFF FFFF)N)N)N)Nmn )2)2)2)2o )2)2)2)2q ))))TR

0.1 o 0.110 0.081 0.222 Ko o

0.3 o 0.665 0.270 0.579 Ko o

1.0 o 1.523 0.838 1.822 Ko o

Table 5.10.- Residual in-phase, quadrature and noise temperature errors 

vs. non-separable phase error

Note that errors in the phases are about F  as expected. However, the error on)N mn

the receiver temperatures is increased. Note that if )T  = 1.25 K, the radiometric accuracyR

is  )T = 0.25 K. This fixes the maximum F  = 0.7 , which is lower than the bound)N mn
o

obtained for the maximum non-separable phase error (see table 4.11).
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Figure 5.11.- Element errors.F =20º,F =5º,T =80 K,F =10 K,T =300K,F =25K,)T =0.3K, )N =0.3º2o 2q R TR n Tn no mn

5.2.3.4.- Effect of antenna losses on the receiver noise temperature estimation

As seen in figure 5.12, the receiver noise temperature estimated when injecting

correlated noise does not include the effect of antenna losses, which must be included when

computing the calibration gain factors g . Let consider an antenna of efficiency 0, ati

physical temperature T  . The noise figure of the receiver after the antenna is T . Theph R

equivalent receiver noise temperature T  is given by:e

Figure 5.12- Model of the noise contribution of an antenna of efficiency 0 at physical temperature T .ph
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(5.62)

The determination of the parameters T , T  and 0:R ph

(5.63)

induces an error in the receiver noise temperature:

(5.64)

which can be simplified to:

(5.65)

where:

(5.66)

The following table relates the error in the receiver noise temperature with the

radiometric accuracy )T.

S/N FFFF ))))T ))))T))))V e

20 dB
25 dB
30 dB

0.010 0.67 K 3.95 K
0.003 0.25 K
0.001 0.14 K

1.19 K

0.40 K

Table 5.11.- Radiometric accuracy impact of receiver noise temperature error.

Where it is assumed that module error is only due to the error in the receiver's noise

temperature estimation )T :e

(5.67)

Taking an antenna temperature T =200 K, a receiver noise temperature T =80 K and ana e

antenna efficiency 0 = 0.9 (0.5 dB) the following table gives the accuracies for the

receiver's noise temperature estimation, the antenna physical temperature measurement and

the antenna efficiency measurement assuming that the three contributions to )T  aree



0̂•1&)0
)Te•)TR% (T̂R% T̂ph))0
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equivalent (equation 5.66).

))))T ))))T ))))T ))))T )0)0)0)0/0000e R ph

0.67 K
0.25 K
0.14 K

3.95 K 2.03 K 18.7 K 1.26% (0.05 dB)
1.19 K 0.61 K 5.6 K
0.40 K 0.20 K 1.9 K

0.38% (0.02 dB)

0.13%(0.006dB)

Table 5.12.-  Accuracies for the receiver's noise temperature estimation, the antenna 

physical temperature measurement and the antenna efficiency measurement.

Note that the error in the antenna efficiency is the most critical parameter since it

is very difficult to characterize with high accuracy. If the efficiency approaches to unity, 0

dB, the error )T  simplifies to:e

(5.68)

As a conclusion, the antenna temperature must be measured  with an accuracy better

than 0.38 % to achieve a radiometric resolution of 0.25 K. This precision can be achieved

by the cryoload technique which attains the 0.1% [Hardy et al. 74] or 0.7 K [Blume 77].

Figure 5.13.- Noise model of the correlated noise distribution network.
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5.2.3.5.- Effect of the noise distribution losses
  on the receiver noise temperature estimation

Figure 5.13 presents a model of the noise contribution of the power divider network

which introduces correlated and uncorrelated noise into the measurement.

Note that noise caused by the loss in the first section, ηa 1,2 , is correlated noise when measuring,

for instance µ12, and it is uncorrelated noise when measuring, for instance  µ15. It is, the

correlations performed within the first  set of 4 adjacent antennas give

Note that noise generated between the 1-to-2 and the 1-to-4 dividers has dramatic impact in the

calibration procedure, that is, it cannot be assigned either to the noise source or to ηbi . This

cannot be taken into account by the calibration procedure, and cannot be processed efficiently to

derive the receiver temperatures TRi . However, the correlations performed within the two

adjacent sets of 4 antennas (e.g.  µ15) give:

Neglecting phase errors, µ15 can be written as:

where:
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(5.72)

Hence, the calibration algorithm recovers:

(5.73)

and the noise contribution of the power divider network can be removed from the estimated

receiver noise temperature as:

(5.74)

The error in estimating T  due to the power divider is mainly contributed by )0,Ri

whose effect over )T  is exactly the same as the antenna efficiency. Note, however thatR

divider losses can be characterized with an accuracy higher than the antenna efficiency.

In order to compute the gain coefficients g  only the correlations between sets of fouri

antennas should be used. That is, 4 # d # 7. This minimizes the noise contribution of the

distribution network. An arm of 44 antennas has 160 of these correlations to solve for the

44 g  unknowns. i

5.2.3.6.- Phase errors due to the power divider network

The calibration process injects noise to the receiver at the antenna output. Hence,

the phase estimated by the algorithm, 2 , does not include the phase contribution of theoi
cal

antenna 2 . Moreover, the phase contribution of the power distribution network  2 isoa on 

added. Therefore, the desired phase 2  is:oi

(5.75)

where the phase error )2 is given by:oi 
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(5.76)

Note that the antenna and the power divider phases must be ground calibrated. The

quadrature error 2  is not affected by this correction and does not require any furtherqi

processing after the calibration algorithm.

5.2.4.- Calibration implementation

The calibration procedures can be summarized as follows:

i) Switch the correlated noise sources OFF and the uncorrelated noise sources ON. Measure

the offset coefficients.

ii) Switch EVEN noise sources ON and ODD noise sources OFF. Measure the correlations

within each set of eight antennas which are driven by the same EVEN noise source.

Remove the offset. Average, i.e. 100 measurements of 0.3 s to have a high signal-to-noise

ratio (MIRAS case).

iii) Switch EVEN noise sources OFF and ODD noise sources ON.  Measure correlations

within each set of eight antennas which are driven by the same ODD noise source. Remove

the offset. Average, i.e. 100 measurements.

iv) Set in-phase error of the antenna 0 (at the center of the array) to  2  = 0. Solve the seto0

of equations relating antenna phases to estimate the 2  and 2 .oi qi

v) Compute the gain factors g g  using the less sensitive equation. Solve the lineari j

coefficients x  using correlations 4 # d # 7 to minimize effect of the distribution network.i

vi) Measure the noise source temperature T  and apply the recursive method to determinen0

the receiver noise temperatures and the noise source temperatures from the x  coefficients.i

vii) Remove the phase contribution of the power distribution network and add the phase

contribution of the antenna.

viii) Remove the noise contribution of the power distribution network and add the

contribution of the antenna losses.

ix) Measure the scene average power T  to compute the receiver gain factors as A
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(5.77)

x) Compute the calibration matrices  out of the error coefficients of each receiver. Note

that  must be computed for all the baselines -redundant or not- that are measured during

scene exploration.

(5.78)

5.2.5.- Hardware requirements

The hardware requirements required by the proposed calibration method can be

summarized as follows:

i) Correlated noise sources: 31 as seen in figure 5.7. They can be implemented by means

of noise diodes operated in the avalanche mode (as Alpha DNA 6337). They have low

power consumption ( < 50 mW) and high noise output ENR = 30 dB).

ii) Uncorrelated noise sources (matched loads): 131. Each receiver requires an uncorrelated

noise source.

iii) Switches: Switches can be avoided if the noise sources are coupled to the antenna path

by 10-15 dB couplers. The noise sources can be switched ON/OFF by means of TTL

signals.

iv) Coaxial cables:

131 ant x 1 cab/ant x 0.4 m/cab x 40 gr/m = 2096 gr

31 nse_sour x 2 cab/nse_sour x 0.4 m/cab x 40 gr/m = 992 gr

total weight =3088 gr = 1029 gr/arm

v) Correlators: The proposed method makes use of all the correlations d#7. It makes 657

redundant correlations. Two measurements are needed to account for the ODD/EVEN noise

sources. 

vi) Antenna efficiency. It is a key point since it must be measured with extreme accuracy

if module calibration is to be performed. 1.26 % error in 0 (0.05 dB) already gives a

radiometric resolution )T = 0.7 K. 
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vii) Power distribution network. Its contribution to module and phase errors can be

extracted from the calibrated values. Accuracy of its characterization seems to be within

technological limits.

5.2.6.- Conclusions

In these section a new calibration approach has been proposed for large synthetic

aperture interferometric radiometers. It makes use of a set of uncorrelated noise sources

uniformly distributed in the array. Each noise source drives correlated noise only to a small

set of adjacent antennas. These sets of antennas are overlapped in order to maintain phase

and module track along the array. This approach reduces dramatically mass and volume of

the noise distribution network, thus being very suitable to space-borne interferometric

radiometers.

5.3.- COMPARISON OF THE TWO CALIBRATION METHODS

The redundant space calibration method and the noise injection to sets of antennas

are both channel based calibration methods. This means that complex baseline gains are not

recovered, but only gain factors and phases associated to the channels from which baseline

gains and phase can be derived, neglecting non-separable error terms.

In addition, the noise injection method provides information about quadrature errors

and errors remain bounded along the Y-arms. On the other hand, in order to position the

image correctly, the redundant space method requires two reference phases to be known

very accurately, as well as the absolute amplitude of the measured brightness temperature.

To compare the performance of both methods an image must be selected, the

corresponding raw visibilities must be calibrated by both methods, and the modified

brightness temperatures, with both calibrations, recovered with a suitable inversion

algorithm (see chapter six).

Two images have been selected: i) the first one is the reference scene used when

computing the impact of system errors over the radiometric accuracy (equation (4.14)), and

ii) an image of Cape Cod (scales not preserved) modified properly to give realistic modified

temperature values: 100 K over the sea and between 200 K and 300 K over the land, inside

an ellipse defining the Earth-sky border as in (4.13), see figure 5.14.
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Figure 5.14.- Pseudo-modified temperature image of

Cape Cod

Non-separable phase and amplitude

terms have been modelled by equivalent

gaussian filters with 1 MHz noise

bandwidth standard deviation, 1 MHz

central frequency standard deviation and 1

ns group delay standard deviation.

Table 5.13 summarizes the impact

of residual calibration errors over the 200

K constant test scene.

Redundant Noise Injection
Space Method

Calibration

S/N = 45 dB 0.11 K 0.003 K

Quadrature error (0.3 )o 0.16 K -

Filter errors (FFFF =1MHz,))))B

FFFF =1MHz, FFFF =1ns)))))fc )J)J)J)J

0.71 K 0.36 K

Antenna coupling
 (X-band cup-dipoles 30dB)

0.53 K -

Table 5.13.- Test scene radiometric accuracy calibrated with the redundant space 
calibration method and the noise injection method.

For the noise injection method quadrature errors are not shown since they are

recovered by the method, as well as antenna coupling errors that do not affect the

calibration procedure and are calibrated afterwards.

Table 5.14 summarizes the average root mean squared calibration error for the Cape

Cod test scene. Error images will be presented in the next chapter.
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Redundant
Space

Calibration

Noise Injection
Method

  S/N = 35 dB 
(MIRAS case)

3.3 K 2.38 K

  Quadrature Error (0.5o) 0.77 K -

Filter errors (σσ∆∆B=1MHz,
σσ∆∆fc=1MHz, σσ∆∆ ττ=1ns)

2.97 K 1.05 K

  Antenna coupling
 (X-band cup-dipoles 30dB)

1.54 K -

Table 5.14.- Cape Cod  scene radiometric accuracy calibrated with the redundant space
calibration method and the noise injection method.

From tables 5.13 and 5.14 it is apparent that the noise injection method is somewhat
more robust and produces better results because of the constant gain and phase residual errors
along the arms. In addition, the redundant space method requires two reference phases to be
known very precisely, and the antenna coupling can contaminate them harmfully, while with the
noise injection method a single noise source drives correlated noise to the ten closest antennas,
allowing a baseline calibration of the most significant visibility samples. However, it requires
additional hardware with its mass, volume and power consumption requirements.

The noise injection method can be applied to calibrate the receiver, and then the
redundant space method can be applied to the improvement of the calibration of the phase in the
path between the antennas to the point where noise is injected.

5.4.- CALIBRATION OF ANTENNA COUPLING

Antenna coupling can be tested on-ground, and calibrated by using the coupling matrix

C  derived in section 4.3.4:

As seen in 4.3.4, a radiometric accuracy of 1 K is achieved provided mutual impedances
are known with an error smaller than 7 %.

Note that, in order to recover V(1), all the baselines, redundant or not, must be measured.
However, distant antennas within an arm are slightly little coupled and their associated mutual
impedance Zij can be set to zero. In fact, X-band cup-dipoles mutual impedance is too small to
be measured for d > 3. Hence, redundant baselines along an arm can be constrained to d # 7, as
required to calibrate the receiver by the noise injection method.

C V C = V
H(2) (1)  (5.79)
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5.5.- FULL CALIBRATION PROCEDURE

In this section it is assumed that system imperfections have already been

characterized with enough accuracy. As presented in the previous sections, this

characterization has been performed either by on-board testing (receivers) or ground

measurements (antennas). 

i) Z  is the raw output of the 1B/2L digital correlator, which is corrupted by all system(5)

imperfections.

ii) µ  is computed by extracting the offset in Z  and using the non-linear function that(4) (5)

relates the true correlation and the measured one. This is done as:

(5.80)

Note that the offset is measured by injecting uncorrelated noise to all receivers,

which is done by switching all the antennas to different matched loads.

iii) µ  is computed taking into account the channel gain factors:(3)

(5.81)

iv) V  is computed by removing the phase and amplitude contribution of the receivers and(2)

denormalization:

(5.82)

Note that the matrix  and the gain factors g  and g  are computed by injecting1 2

correlated noise to groups of receivers.

Since noise is injected just behind the antennas:

(5.83)

The phase and amplitude terms which are recovered, , are not those

which are required. The contribution of the noise distribution network must be removed,

and the contribution of the antenna must be added:
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The average scene temperature V(0,0) = TA is measured by means of the total power
radiometer. Now, the gain coefficients gi can be computed and the visibility samples
denormalized.

Note that the gain coefficients gi are computed from TA and TRi, because they cannot be
derived directly when injecting correlated noise. When calibrating, the antenna temperature TA is
substituted by the noise source temperature Tno, and the gain factors are not those which are
required during scene exploration.

v) V(1) is computed by removing the effect of antenna coupling. It is calculated as:

where C  relates the antenna open circuit voltage vo with the measured voltages vraw when

antenna coupling is present.

vi) V(0) is the visibility function when system imperfections have already been removed, being
only affected by the fringe-wash term, different antenna patterns and small errors in the antenna

positions due to Y-arm oscillations. It is computed from V(1) by removing other antenna
imperfections such as antenna phase and amplitude ripple and position errors. This error
extraction is performed by a suitable inversion algorithm such as that presented in chapter six.
Since MIRAS does not measure both polarizations simultaneously, V/H crosstalk remains as a
residual error.
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
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(5.85)

C V C = V
H(2)  (1)  (5.86)
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5.6.- CONCLUSIONS

In this chapter two receiver-based calibration methods have been investigated: i) the

application of the redundant space method, based on amplitude and phase closures, to Y-

arrays and ii) a new method based on the injection of correlated noise to overlapping groups

of antennas by means of a set of distributed  noise sources. The first one is simpler, while

the second one is more robust to system imperfections but requires a specific calibration

hardware.

An space-borne interferometric radiometer may take advantage of both methods by:

i) A noise-injection baseline-based calibration of the central baselines, since the central

noise source feeds the closests antennas in the three arms. This calibration would greatly

improve system's performance since the smallest baselines are the most significant ones.

ii) Since both methods are sensitive to gain factors, a noise-injection channel-based

amplitude calibration can be implemented with a power detector in each channel, like those

planned to be integrated to test MIRAS/LICEF receivers.

iii) A noise-injection channel-based phase calibration of the rest of the baselines by using

the distributed noise-injection method proposed.

iv) A calibration of antenna coupling effects, if necessary (it depends on antenna type and

the array's geometry).

v) And a channel-based calibration of the average antenna amplitude and phase errors by

means of the redundant space method.

Non-constant antenna pattern amplitude and phase errors can be included in a

suitable inversion algorithm if they are accurately measured. 
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Chapter 6. Inversion Algorithms in 
Interferometric Radiometry

The need of passive low frequency (L-band) measurements to monitor soil moisture

and ocean salinity with high spatial resolution 10-20 Km, a radiometric resolution of 1 K

and a revisit time of 1-3 days [SMOS 95] has raised the interest in interferometric

radiometers because of their reduced mass and hardware requirements. As explained in the

preceding chapters, interferometric radiometers measure the correlation between pairs of

nondirective antennas. Each complex correlation is a sample of the "visibility" function

which, in the ideal case (identical antenna patterns and negligible fringe-wash effects) is

the spatial Fourier transform of the modified brightness temperature distribution. On-board

hardware requirements -antennas, receivers and correlators- can be minimized by a proper

choice of the interferometer's array shape which determines the (u,v) sampling strategy and

the minimum number of visibility samples required for a determined aliasing level (alias-

free swath). In this sense, it is demonstrated that Y-shaped and triangular-shaped arrays

with equally spaced antennas are optimal.

In the first part of this chapter discrete Fourier transforms over non-rectangular

grids are studied and the hexagonal FFT is proposed. This technique allows to process the

visibility function sampled over the hexagonal sampling grids given by Y- and triangular-

arrays with standard rectangular FFT routines, preserving signal to noise ratio, avoiding

interpolation processes and minimizing the risk of induced artifacts in the recovered

brightness temperature over the wide Field Of View required in Earth observation

missions.

In the second part, some inversion techniques found in the radioastronomy and

remote sensing literature are briefly reviewed, as well as some image processing

techniques. Since most receiver phase and amplitude errors can be hardware calibrated,

antenna pattern errors and mutual coupling must be small, Fourier-based inversion

algorithms can be applied. In this line, a new Fourier-based iterative inversion algorithm

to recover the modified brightness temperature distribution out of the set of visibility

samples is proposed. Its properties, the acceleration of the convergence and its robustness

are studied and presented through several examples.
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6.1.- INVERSION ALGORITHMS IN APERTURE SYNTHESIS
INTERFEROMETRIC RADIOMETRY : IDEAL CASE

After proper calibration of system errors, the equation (3.1) must be solved for

I(>,0). It should be noted that the whole physical space, 0#2#B and  0#N#2B, is mapped

into the (>,0) unit the circle and, therefore, any modified brightness temperature

distribution I(>,0) is supported by the unit circle:

(6.1)

From signal theory it is known that this class of signals are optimally sampled by

using an hexagonal grid, in the sense that this grid requires the minimum density of (u,v)

samples to recover it with a specified aliasing level (13.4% less samples than rectangular

sampling) [Mersereau 79] [Dudgeon and Mersereau 84]. Y-shaped and triangular-shaped

arrays (figures 6.1a and 6.1b) produce visibility samples over an hexagonal grid in the

spatial frequencies domain (u,v) (figures 6.2a and 6.2b). Figure 6.2a shows the (u,v)

coverage in the case of MIRAS breadboard, a simpler Y-shaped interferometer radiometer

with only 3 antennas per arm spaced 0.89 wavelengths. As it can be seen in figures 6.2a

and 6.2b, for the same hardware complexity, similar number of antennas, receivers and

correlators, the spatial resolution obtained for a Y-shaped array is better than that for a

triangular-shaped array, since the spatial frequency coverage is larger in the first case. On

the other hand, triangular-shaped arrays cover a complete hexagonal period, while Y-

shaped arrays have missing (u,v) samples between the star points (figure 6.1a). These

missing values must be extrapolated in some way [Bará et al. 96A] [Camps et al. 96B] in

order to prevent the artifacts induced by the (u,v) star-shaped low-pass window. However,

this is an important effect only in small arrays where the star-shaped window effectively

low-pass filters the visibility function. For large arrays, such as the planned MIRAS space

borne instrument, with 43 antennas per arm, less than 0.7 % visibility power is not

collected by the array and this effect is negligible [Bará et al. 96A]. 

Figure 6.1.- a) Y-shaped array and b) Triangular-shaped array 



u ' 3
2

d k1; k1, k2 : 0 ... NT

v '
d
2

(&k1%2k2)

V(u,v) ÷ V(k); k ' (k1,k2)

x̃(t)

Chapter 6 : Inversion Algorithms in Interferometric Radiometry                                                        163

Figure 6.2.- (u,v) Spatial frequency coverage for a) Y-shaped array and b) Triangular-shaped array .

From now on, the study will only be focused on Y-shaped arrays where the

visibility function is sampled over the grid:

(6.2)

where N  = 3 N  + 1 is the total number of antennas, N  is the number of antennas in eachT EL EL

arm of the Y array and d is the spacing in wavelengths between adjacent antennas. It should

be pointed out that since the brightness temperature distribution is obtained by an inverse

discrete Fourier transform, it can suffer from aliasing, which is determined by the spacing

between adjacent antennas "d". This effect is studied in detail in section 6.1.2. In the next

section a new procedure devised to apply standard rectangular FFT routines to the

hexagonal (u,v) coverage given by Y-shaped arrays, avoiding the need of interpolations,

preserving signal to noise ratio and retaining the benefits of the hexagonal sampling grid

is presented.

6.1.1.- Hexagonal FFT, Smith-normal decomposition and reciprocal basis

Let's first recall some concepts about 1D Fourier Transforms. The DFT of a band

limited 1D sequence x(n) of length N obtained by sampling the signal x(t) each T  seconds,s

gives N samples of the spectrum of the signal , the periodic extension of x(t) in time

interval [0, N.T ]. These N frequency samples are a single period of the periodic spectrum.s

As they come out of the FFT these samples appear swapped, this means that the samples
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(6.3)

Figure 6.3.- Periodic extension of the (u,v) coverage given in figure 6.2.a. Mersereau's

HFFT required [Mersereau 79]

corresponding to negative frequencies appear right after the positive ones. On the other

hand, by padding the sequence x(n) with zeros a smoother spectrum's shape can be

obtained without adding new information.

In band-limited 2D sequences, in addition to the number of zero padded samples

that can be put, the periodic extension of the spectrum itself can be chosen (figures 6.3 and

6.4). This means that the known spectrum samples do not need to be necessarily

periodically repeated along the "u" and "v" axes. The way the spectrum is repeated is

characterized by its periodicity matrix :

where  is the periodic extension of ,  is a non-singular integer matrix

called the periodicity matrix and  is an integer vector.

The number of samples, zero or not, in one period is given by , for a given

periodicity matrix  [Dudgeon and Mersereau 84]. For an Y-array, the number of non-
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(6.5)

redundant visibility samples is given by:

(6.4)

and the number of missing samples to be initially padded with zeros is:

which should be minimized by properly choosing the periodicity matrix . The choice

of  is not unique. A possible choice is presented in figure 6.3 for N  = 3. For thisEL

periodic extension,  is given by:

    (6.6)

which leads to Mersereau's hexagonal FFT algorithm [Mersereau 79] and [Dudgeon and

Mersereau 84].

Figure 6.4.- Periodic extension of the (u,v) coverage given in figure 6.2.a. Standard

rectangular FFT can be applied.
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A more general approach can be used with the help of the Smith Normal

decomposition [Gündüzhan et al. 94] [Bernardini and Manduchi 94], which states that any

non-singular integer matrix  can be diagonalized by pre- and post-multiplication by

unimodular integer matrices  and  :

(6.7)

(6.8)

 is a diagonal matrix, thus any arbitrary fundamental period, not only that presented

in figure 6.3, and over any arbitrary sampling grid, not only an hexagonal one, can be

mapped into a rectangular one allowing rectangular FFT routines to be used in the

reordered indexes  and :

(6.9)

where:

(6.10)

and:

(6.11)

 The method proposed in this thesis is based in the choice of an appropriate diagonal

matrix  that minimizes the number of samples in the periodic cell, 3N , and theT
2

number of non-measured visibilities which must be initially padded with zeros, 3N  - N ,T V
2

allowing to use standard rectangular FFT routines and avoiding the permutation of indexes

required by the Smith-Normal decomposition (equations (6.10) and (6.11) ). Let's

periodically extend the (u,v) fundamental period as in figure 6.4. In this scheme measured

visibility samples are repeated  following the relation given below:
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(6.12)

where:

(6.13)

is a sampling matrix in the (u,v) domain. The  matrix is not unique, since all the

sampling matrices given by:

(6.14)

reproduce the same periodic extension in the (u,v) plane. This choice, however, determines

the numbering of the (u,v) and (>,0) samples to process them properly. The associated

periodicity matrix in the (k , k ) axes is:1 2

(6.15)

If the sampling points in the (>,0) directing cosines are forced to satisfy the

following relation:

(6.16)

then:

(6.17)

and the Fourier transform kernel becomes separable, even if the (u,v) and (>,0) sampling

points are not chosen over a rectangular grid.  form the so called reciprocal

basis of  in the (>,0) domain (figures 6.4 and 6.5). With this concept, the

sampled (u,v) and (>,0) points are given by:



168                                                           Application of Interferometric Radiometry to Earth Observation

1)( -N ... 0 : k ,k ;k2+k- 
2

d
  ,k d 

2

3
 = v)(u, T21211 





(6.18a)

1-)( N ... 0 : n ,n ;n
d N

1
 ,n 2+n 

d N 3

1
 = ),( T211

T
21

T






ηξ (6.18b)

And the Inverse Fourier Transform of  the hexagonally sampled V(u(k1,k2),v(k1,k2)) is given by:

Expression (6.19) can be recognized as a standard rectangular FFT with n1 and n2 interchanged.

The factor 
%

3d2/2 is the hexagonal-shape pixel's area in the (u,v) domain. The recovered
modified brightness temperature distribution given by equation (6.19) is repeated periodically

over the (ξ,η) domain. The centers of periodic cells can be found by applying the periodicity
condition to the argument in the Fourier kernel:
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Figure 6.5.- Sampled points in the directing cosines domain and the reciprocal basis [ξ1,ξ2] of figure 6.4
[u1,u2] basis
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whose solutions closest to the origin are:

(6.21)

If the extension of the modified brightness temperature is the whole unit circle, the

(> ,0 ) points must be at a distance of 2 from the origin to completely avoid aliasing. Itn n

forces a maximum antenna spacing of d # 8/%3. Compared to rectangular sampling, where

the maximum antenna spacing is d # 8/2 to avoid aliasing, a 13.4 % = 1 - (8/2) / (8/%3)

hardware savings is provided by the hexagonal sampling. Figures 6.6a and 6.6b show the

alias-free FOV for a T-array, rectangular (u,v) sampling, and a Y-array, hexagonal (u,v)

sampling, whose adjacent antennas are spaced in both cases d = 0.89 8. It can be observed

that the alias free FOV is larger for hexagonal sampling. In the Earth observation situation,

the Earth does not occupy the hole unit circle and the antenna spacing condition can be

relaxed depending on the required alias-free swath (figure 6.6). The 0.89 8 spacing between

antennas in MIRAS is a compromise between array thinning and alias free swath, which

is about 900 Km for on-ground incidence angles between 40º and 55º [MMS 95]. This

swath satisfies the 3 day revisit time necessary to update soil moisture and ocean salinity

measurements [SMOS 95].

Figure 6.6.- Alias-free regions for a: a) T-array (rectangular (u,v) sampling) and b) Y-array (hexagonal

sampling) with adjacent antennas spaced 0.898

In addition, since there are not interpolations in the inversion process, neither in the

(u,v) domain nor in the (>,0) domain, artifacts are not induced in the recovered brightness

temperature map and signal to noise ratio is preserved. At this point two important

relationships between the interferometer's array geometry and the (u,v)-(>,0) points should

be pointed out: 
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i) the total number of correlations, NT
2, is equal to the number of samples in the fundamental

hexagonal (u,v) and (ξ,η) cells (equation (6.15) ).

ii) the number of redundant correlations between antenna pairs, including those leading to the

zero baseline, is equal to the number of missing (u,v) visibility samples which are initially

padded with zeros.

This technique has been applied to the particular sampling grids given by Y-arrays, such

as MIRAS, but it can be used with any other sampling strategy with an appropriate Ξ 31 matrix
satisfying equations (6.17), (6.18a) and (6.18b).

6.1.2.- Example of  application: aliasing and windowing impacts

Figures 6.7 and 6.8 show the results of the application of this technique to a case similar
to the space-borne MIRAS (Y-interferometer with 43 antennas per arm spaced 0.89
wavelengths). The image treated in this example has been taken from MATLAB ((c) The
MATH WORKS Inc.) and has been properly modified in order to give realistic brightness

temperature values. This image is composed by an ellipsoidal (ξ,η) contour (figure 6.7a,
equation (4.13) ) representing the Earth-sky border as seen from a platform 800 Km height with

the Y-array tilted 31.21 with respect to nadir. The sky occupies the zone in between the
ellipsoidal contour and the unit circle and its brightness temperature is assumed to be 3 K. The
brightness temperature of the sea has been taken 100 K and that of the coast ranges from 220 K
to 300 K.

The original brightness temperature is shown in figure 6.7a, from which the set of
visibilities have been computed over the (u,v) hexagonal grid given in equation (6.18a)
according to expression (3.1). When computing these values the noise due to finite integration

time has been assumed to be negligible (τ = 4), consequently any error in the recovered images
is only due to the Fourier inversion process.  Figure 6.7b shows the brightness temperature map
restricted to the alias free field of view (FOV). Figures 6.7c and 6.7d show the inverse Fourier
Transform of the visibility samples computed according to (6.18a) without weighting function
(rectangular window) and with a Blackmann window respectively. Since the spacing between

antennas exceeds 1/
%

3 wavelengths, the Nyquist criterion for hexagonal sampling is not satisfied
and some aliasing exists (see figure 6.6b): results are shown cut to the alias free FOV. Note the
absence of artifacts, usually of periodic character, that generally appear when interpolations are
performed [Camps et al. 95A]. Note also that the Blackmann windowed image appears more
blurred than its rectangular windowed counterpart. Figures 6.8a and 6.8b show the discretization
and (u,v) finite coverage errors computed as the difference between the recovered brightness
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temperature maps (figures 6.7c and 6.7d) and the original brightness temperature (figure 6.7b).
Note the high errors due to Gibbs phenomenon at the coast line due the 120 K step in the
brightness temperature. Errors decrease when highly tapered windows are used. The trade-off
shown in chapter 3 [Camps et al. 96A] between high spatial resolution, requiring low weighting
functions, and high radiometric resolution, requiring highly tapered weighting functions, can be
easily appreciated.

Since the (u,v) coverage is finite, its inverse Fourier Transform is not limited and some
alias' "tails" partially enter in the nominal alias free FOV. In figures 6.7c and 6.8a one pixel of the
border has been removed to minimize this effect. However, it is more apparent in figures 6.7d
and 6.8b because of the wider system's impulse response caused by the Blackmann weighting
function. However, as it will be shown in section 6.2.3, aliasing impact in the FOV can be
minimized by using some "a priori" information such as the sky brightness temperature and the
average Earth brightness temperature. Aliasing degrades interferometer's performance at swath
edges and presents added difficulties in the inversion process since measured visibilities depend
also on the brightness temperature from the aliased regions. These difficulties can be partially
alleviated by restricting the inversion region to a smaller area inside the alias free FOV [Bará et
al. 96A].
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Figure 6.7.- 6.7a 6.7b

6.7c 6.7d

Figure 6.8.- 6.8a 6.8b

Figure 6.7a.- Hypothetical Earth model for hexagonal visibility processing using standard FFT as seen

from a 800 Km height, 31.2º tilted platform.

Figure 6.7b.- Alias free field of view of figure 6.8.a. Subsampling with 0.898 spacing between antennas

reduces alias free swath to 900 Km

Figure 6.7c.- Recovered brightness temperature in the alias free field of view by inverse Fourier

transform of hexagonally sampled visibilities with rectangular weighting window.

Figure 6.7d.- Recovered brightness temperature in the alias free field of view by inverse Fourier

transform of hexagonally sampled visibilities with Blackmann weighting window.

Figure 6.8a- Error in the recovered brightness temperature with rectangular weighting window (figure

6.8b minus 6.8.c)

Figure 6.8b- Error in the recovered brightness temperature with Blackmann weighting window (figure

6.8b minus 6.8d)
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6.1.3.- Conclusions

It has been shown that a proper choice of the interferometer's array configuration

allows a substantial reduction of the number of visibility samples and hardware

requirements for a determined aliasing level. In this sense Y-shaped and triangular-shaped

arrays sample the visibility function over a hexagonal grid which is the optimal one.

Compared to rectangular (u,v) sampling a hardware reduction of 13.4 % is obtained. In

addition, Y-shaped arrays provide larger (u,v) coverage than triangular-shaped arrays, thus

improving the spatial resolution capabilities of the instrument.

This section has presented a simple procedure to fully exploit the benefits of the

hexagonal sampling grid given by Y-shaped arrays, as MIRAS: reduction on  hardware

requirements and the number of visibility samples (13.4 %), increased computational speed

(25 %) with standard rectangular row-column routines and avoidance of the drawbacks of

hexagonal to rectangular conversion mainly: additional computational load, interpolation

induced artifacts and signal to noise degradation. This technique is based on the use of

rectangular FFT to process hexagonally sampled signals provided that the (>,0) pixels are

properly chosen over the reciprocal grid of the (u,v) hexagonal grid. However, it is not

restricted to hexagonal grids and can be used with other sampling strategies, provided that

the reciprocal basis is used. 

An example of this technique has been presented applied to an Y-array with 43

antennas per arm, as MIRAS. Subsampling problems have been pointed out: mainly

aliasing and radiometric resolution degradation at swath edges.
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6.2.- INVERSION ALGORITHMS IN APERTURE SYNTHESIS
INTERFEROMETRIC RADIOMETRY: GENERAL CASE

At this point it is important to remember that, since most errors can be accurately

calibrated, the inversion process should be addressed to recover the brightness temperature

distribution from the V  set of visibility samples: that is, the visibility samples affected by(1)

the fringe-washing function and by antenna pattern amplitude and phase errors.

6.2.1.- Review of inversion methods

In order to solve equation (3.1) numerically, it can be discretized as follows:

(6.22)

The (u , v ) points are determined by the array shape, in our case the Y-array which iskl kl

optimal in terms of minimum number of samples required. (> ,0 ) are the directingpq pq

cosines sampling points and can be arbitrary chosen provided the discretization error is low

enough so that equation (6.22) holds. However, since in the ideal case equation (6.22)

reduces to an hexagonal DFT, it is interesting to take the (>  ,0  ) pixels over thepq pq

reciprocal grid previously given by equation (6.18a). In this case, the brightness

temperature pixel area is given by:

(6.23)

By mapping (k,l) and (p,q) pairs of indexes into single ones "m" and "s", the set of

equations (6.22) for all the visibility samples can be written simultaneously in matrix

notation:

(6.24)

where each element of the G operator is given by:

(6.25)

It should be noted that the value assigned to the  elements is not the same of

that presented for ESTAR [Ruf et al. 88]. In that case the impulse response of the system

(  matrix elements) was directly measured, including all system imperfections: antenna

coupling effects, antenna pattern, receiver errors ... In our approach, antenna coupling and

receiver phase/quadrature errors must be previously calibrated.
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When solving equation (6.24) there are three possible situations:

i) The number of unknowns (brightness temperature pixels) is the same as the number of

available visibility samples. In this case the expected temperature vector will be given by:

(6.26)

ii) The number of unknowns is smaller than the number of visibility samples. In this case

a least squares fitting can be done:

(6.27)

iii) The number of unknowns is greater than the number of visibility samples and there are

infinite possible solutions that satisfy equation (6.24). Among all the possible solutions,

an analytical solution is obtained by the Moore-Penrose pseudo-inverse given by [Ruf et

al. 88][LeVine et al. 89][LeVine et al. 90][LeVine et al 92][Tanner and Swift 93][Jain 89]:

(6.28)

which is used as the basis in the ESTAR inversion process [Ruf et al. 88].

As it has been shown in section 6.1, the number of redundant correlations

corresponds to the number of missing visibility samples required to fill up a fundamental

hexagonal period. Thus the number of unknowns is (basic hexagonal (>,0) cell) is:

(6.29)

and the number of data is (number of non-redundant (u,v) samples):

(6.30)

This problem corresponds to the third situation on above and, since there is no

unique solution, there are different techniques to find a reasonably "good" solution, not

only the one provided by the pseudo-inverse (equation  (6.28) ).

In the following paragraphs a quick review to different inversion techniques that

have been explored is presented and the relationships between them are pointed out.

Special attention is paid to the  operator and the possibility to be extended to 2-D

interferometers. The Maximum Entropy Method and the CLEAN algorithm, currently used

in radioastronomy are also reviewed. Other procedures, such as the Krylov method, the

conjugate gradient method and the preconditioned conjugate gradient method are briefly

revised to show their relationships with the algorithm that is proposed in section 6.2.2. 

At this point it should be noted that most of these methods (7 of 10) have been

programmed and tested to study their suitability to the problem  that concerns us.  
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6.2.1.1.- The G operator

The inverse  operator defined in equation (6.28) is also called the Moore-

Penrose pseudoinverse. In the ideal case, when the  operator becomes the 2-D discrete

Fourier Transform Operator, it can be easily shown that the solution given by (6.28)

corresponds to that obtained by an inverse Fourier Transform with non-measured visibility

samples set to zero, since:

(6.31)

In this case, since the Fourier transform preserves the norm and non-measured

visibilities have been set to zero, the solution that is obtained is the Minimum Norm

Solution.

The main problems appearing with a 2-D  operator inversion approach are:

i) Difficulty in measuring the impulse response for a 2-D aperture synthesis radiometer

since the number of independent temperature pixels grows with the square of the number

of antennas. In addition, as it was done in ESTAR, the number of pixels must be much

higher in order to stabilize the inversion process by lowering the condition number of the 

matrix. For a space-borne interferometer, drifts in receivers parameters require a periodic

calibration which needs to locate over the Earth's surface a large number of polarimetric

hot points, which is impractical, and forbidden by frequency regulation boards (RR8-

92/721).

ii) Stringent memory requirements:  operator's size is N  = 11,353 rows byV

N =16,900 columns, that is 1,92 10  complex elements requiring 3,07 Gigabytes to beT
2 8

stored. Even though these values can be halved by benefiting from the hermiticity resort,

it is a large amount of information to be stored.

iii) Large computational load: 

- The evaluation of each term of the  operator (equation  (6.25) ) requires 3 complex

products and 2 real products. The total number of complex products required raises to

N =(4 x 3+2) N   N  = 2,69 10 real products1 V T
2 9 

- The computation of  requires N .N  complex products or N = 4 N  N = =T V 2 T V
2 2 2 2

8,71 10  real products.12
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- The computation of the inverse  by the Gauss-Jordan algorithm

requires about of 5/6 N  complex products or  N  = 10/3 N  =  4,88 10  real productsV 3 V
3 3 12

- And finally, the product  requires N  =  4 N  N   =  8,71 10  real products4 T V
2 2 12

  

The total number of operations raises up to N = N +N +N +N  = 22,3 10  real1 2 3 4
12

products. Considering that the total number of pixels in the FOV of interest is about 2500,

at each snap-shot the number of operations to be performed in order to recover the

brightness temperature map is: N'  =  4  2,500  N   =  113 10   real products.V
6

The amount of operations is quite impressive and would require a considerable

amount of time to be performed, even in a super-computer. Memory requirements are also

very demanding and would occupy most of the available RAM in today's super-computers.

iv) On the other hand, this method is not well adapted to describe a dynamic system that

must be periodically re-calibrated.

v) And since the required radiometric resolution is high, the condition number or stability

of the inversion process must be studied to asses the impact of noise amplification due to

error propagation.

It has been found that the condition number of  increases with: narrower

antenna patterns, higher decorrelation effects, increasing number of antennas and smaller

spacing between antennas. Due to memory requirements and the large computational load,

the study has been carried out with a number of antennas per arm up to 8, this means 25

antennas in total. Depending on the half-power beam-width, from 60º to 90º, and on the

ratio W = B/f , from 0 to 0.2, the condition number ranges from about 25 to more thano

1.000. The dependence with the half power beam-width is very strong and can be

understood by the mixing effect that is produced in the product , where pixels

pointed by the main beam are multiplied by others pointed from a low gain portion of the

antenna pattern. In either case these numbers are not acceptable because the recovered

brightness temperature values found are too noisy.

Figures 6.9-6.12 show the sparsity graphs for the  product, for a half-

power beam-width of 70º, for N =3 and 5 and d=1/%3 and 0.89 wavelengths respectively.EL

The mixing effect commented before is apparent. Note that, in the ideal case, the G

operator tends to the discrete Fourier operator and  tends to the identity matrix,



G G
H
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while in fact the  matrix tends to a band-matrix, as it can be seen in figures 6.9 to

6.12, for different number of antennas per arm and different antenna spacings.

In order to benefit from this configuration some iterative techniques have been

studied, such as the Pan-Reif algorithm [Phip 86] [Press 86].  The bands near the corners

slow the convergence of these methods and direct algorithms (i.e. Gauss-Jordan) have

proven to perform better.

              
Figure 6.9.- GG  sparsity graph: N =3,H

EL

d=1/%38, )2 =70º-3dB

Figure 6.10.- GG  sparsity graph: N =3,H
EL

d=0.898, )2 =70º-3dB

          
Figure 6.11.- GG  sparsity graph: N =5,H

EL

d=1/%38, )2 =70º-3dB

Figure 6.12.- GG  sparsity graph: N =5,H
EL

d=0.898, )2 =70º-3dB
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6.2.1.2- Singular Value Decomposition and Generalized Inverse

The vector  that is a solution of equation (6.24) and has the minimum norm

among all the possible solutions is called the minimum norm least squares solution

(MNLS):

(6.32)

Using the Singular Value Decomposition of , it can be shown that the

transformation between  and  is linear and unique. It is given by [Jain 89]:

(6.33)

The  matrix is called the generalized inverse of . If the MxN (N xN )V T
2

 matrix has the SVD expansion given by:

(6.34)

where  are the eigenvectors of  and  are the eigenvectors of ,

its generalized inverse is a NxM matrix with a SVD decomposition:

(6.35)

corresponding to the singular values 8 .m

Note that the rank of  is M=N  + N , since there are N  independent equationsV T V
2

and N  unknowns. In such a case the SVD decomposition of  satisfies:T
2

(6.36)

which is equivalent to the Moore-Penrose Pseudoinverse (equation (6.28) ). With this

approach, the main problem is the required computational load to calculate the vectors

 and  for large matrices, as the   operator.



I

Tn%1 ' Tn & Fn gn ; T0 ' 0

gn ' & G
H

( V & G Tn )

Fn '
g H

n gn

g H
n G

H
G gn

G
H

G

Fopt '
2

8max( G
H

G ) % 8min( G
H

G )
; 0 < F < 2

8max

Ti%1 ' Ei V

Ei ' F j
i

k'0
( I & F G

H
G ) k G

H

180                                                        Application of Interferometric Radiometry to Earth Observation

6.2.1.3.- One-step Gradient Methods: the steepest descent method

If there is no interest in the pseudoinverse itself, but only in the recovered vector

, iterative gradient methods are practical because they avoid the need to store and

invert huge matrices.

These methods take the form [Jain 89]:

(6.37)

where:

(6.38)

In order to improve the speed of convergence the parameter F should be adjusted

at each iteration according to:

(6.39)

6.2.1.4.- The Van Cittert Filter [Dudgeon and Mersereau 84] [Jain 89]

When the matrix  is ill conditioned the speed of convergence of one-step

gradient methods is not significant lowered by replacing F  by a constant F. The optimumn

value of this constant is given by:

(6.40)

In this case, the solution at the i  iteration can be written as:th

(6.41)

where:

(6.42)

Since this unconstrained iteration converges to the inverse filter solution, it

possesses most of the undesirable properties associated with inverse filtering, i.e. noise

amplification and convergence problems. However, the imposition of some restrictions on

the solution such as positiveness or finite support may alleviate these problems [Schaffer

et al. 81], [Trussell 83], [Jain 89]. The similitudes between the method proposed in sections

6.2.2.2 and 6.2.2.3 and this one, as well as the restrictions imposed to the solution, mainly

the finite support, will become more apparent.
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6.2.1.5.- The Wiener Filter

Let's consider a zero mean brightness temperature distribution leading to equation

(6.24), except for the zero baseline, which accounts for the average value:

(6.43)

where  represents the noise vector present in the measurement of the visibilities. The

dimensions of vectors  and  are N x1,  is N x1 and  is N xN . TheV T V T
2 2

true brightness temperature distribution is obtained at the end by adding the average value

T  to . The best linear estimate:A

(6.44)

that minimizes the average mean square error:

(6.45)

is obtained by the orthogonal relation:

(6.46)

which leads to the Wiener filter as a N  x N  matrix [Jain 89]:T V
2

(6.47)

where  and  are the covariance matrices of  and :

(6.48)

(6.49)

and:

(6.50)

If noise is uncorrelated from sample to sample, which is approximately true as a

result of the redundancy study (section 3.2.2.3), then the covariance matrix ,

where  stands for the identity matrix. The  matrix, the brightness temperature

covariance matrix, is very difficult to find because it depends on the particular image, but

according to the physical phenomenon involved in the thermal radiation process, it can be

assumed that pixels are uncorrelated (equation (2.37) ) and .

With these two assumptions, the Wiener Filter becomes:

(6.51)
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(6.53)

(6.54)

(6.55)

which tends to the Moore-Penrose Pseudoinverse in the absence of noise (F  -> 0). Whenn
2

measurements are noisy, as it is usual, the pseudoinverse method explained above is not the

optimum.

On the other hand, the method has been tested and for signal-to-noise ratios about

S/N.35 dB (J = 0.3 s, B = 20 MHz) the diagonal term added to the  matrix

(figures 6.9-6.12) does not improve noticeably its condition number, while the memory

requirements and computational load is the same.

6.2.1.6.- The Krylov method

The Krylov method is a general iterative procedure to solve systems of equations:

(6.52)

The solution is sought as follows [Cátedra et al. 95]:

where  is an arbitrary linear operator to be chosen. The additional degree of freedom

introduced by the parameters (  allows to find the searching direction in a morenm

sophisticated way, improving the convergence of the method. The functional 

is minimized at each iteration on the subspace spanned by:

with the following parameters:

However, the solution being sought, , appears in (6.55) for a . Consequentlyn

a  can only be explicitly calculated in a few cases. Table 6.1 summarizes some versions ofn

the Krylov method:
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(6.56)

i M Functional a Krylov method: (((( CG method: ((((
Minimized

n n,m n,m

1 LA

2 I

2 LA

3 I

Table 6.1.- Different versions of the Krylov and CG methods [Kleinmann & Van den Berg 91] 

Note: For i=2, T=I is only valid if L is self-adjoint, for i=3 is valid only if L is self-adjoint and positive.

6.2.1.7.- Conjugate Gradient Method

The versions of the CG method that are most commonly used are obtained as

particularizations of the Krylov methods where the  operator is self-adjoint with

respect to some scalar product. In this case [Cátedra et al. 95]:

and the functions  depend only on , but the error is minimized on the subspace

spanned by all the previous functions.

Some versions of the CG method and their relationships with the Krylov method

are summarized in table 6.1.
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(6.57)

6.2.1.8.- Preconditionned Conjugate Gradient Algorithms

Note that if  is chosen so that:

and , equation (6.53) reduces to:

(6.58)

and the exact solution is found in only one iteration, which is an obvious result.

In our case, the inverse operator is not known. However, if a preconditioner

operator  is chosen such that  is close to the identity operator, then the CG

method would converge much faster than the   operator itself.

In section 6.2.2.1, the inversion algorithm that is proposed is based on the selection

of a simple preconditioner operating over differential visibilities, followed by a simple

Neumann iteration. This algorithm has proven to be performant and its convergence is very

fast, without computing the a  and (  coefficients.n n,m

6.2.1.9.- Maximum Entropy Methods

Maximum Entropy Methods are commented here in order to make the link to

deconvolution techniques for radio synthesis images. The method has been tested to verify

its performance with subsampled extended thermal sources.

All ME algorithms are based on maximizing [Mersereau and Dudgeon 74]

[McDonough 74] [Andrews and Hunt 77] [González and Wintz 77] [Wernecke and

d'Addario 77] [Lang and McClellan 80] [Trussell 80] [Lim and Malik 81] [Lang and

McClellan 82] [Malik and Lim 82] [Wahl 87] [Jain 89]:

(6.59)

or:
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(6.60)

subject to the constrain:

(6.61)

The "ln" function in (6.59) and (6.60) forces new extrapolated visibility samples

and super-resolution on bright, isolated objects. In addition, it has been reported that this

method works also for extended sources [Wernecke and d'Addario 77]. In the literature it

has been demonstrated that other functions satisfying positive first derivate and negative

second derivate provide similar results [Lim 90].

Even though an analytical solution exists for the 1-D problem, the solution of

equations (6.59) or (6.60) and (6.61) in the 2-D case must be obtained in an iterative way.

Among the different methods proposed in the literature which are very computationally

demanding, the method proposed by Lim and Malik [Lim and Malik 81], apparently one

of the most efficient, has been tested. As reported in [Lim 90], this algorithm to be

performant requires: a small set of data, typically less than [7 x 7], a large domain where

visibility samples are to be extrapolated in order to assure no aliasing in the DFT and a low

signal-to-noise ratio ( S/N < 5 dB).

Even though these conditions are far from those that are found in Earth observation,

this method has been tested for the case of the MIRAS bread-board, a small Y-array with

3 antennas per arm providing 73 visibility samples with a signal-to-noise ratio of 35 dB.

The domain where visibility samples are to be extrapolated is extended up to [128 x 128]

from the minimum coverage required [N xN ] = [10x10] (N  = 3 N + 1= 10 antennas).T T T EL 

Results for an extended source, a constant brightness temperature inside the Earth contour

as seen from the satellite (equation 4.13), even the case of no aliasing (spacing between

antennas d=1/%3 wavelengths) were deceiving and little or null convergence was

experimented due the high signal-to-noise ratios involved.

In this method, the nonlinear function 'ln' does not work with zero mean

temperatures, and since in the case that d=0.89 wavelengths there is no Earth-sky transition,

all the recovered brightness temperatures have positive values and the extrapolation power

due to the "ln" function is not apparent.
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6.2.1.10.- The CLEAN algorithm 

The 'CLEAN' algorithm was devised by J. Högbom in 1974 and provides a solution

to the convolution equation given by (3.20) which relates the recovered and the true

brightness temperature distributions through the Equivalent Array Factor. 

(6.62)

where the equivalent array factor is given for the hexagonal sampling grid by:

(6.63)

The convolution of the true brightness temperature distribution with its space-

variant impulse response, the equivalent array factor, represents the response of the

interferometer.

The 'CLEAN' algorithm represents a radio source by a number of point sources in

an empty field of view. An iterative approach is employed to find the positions and

strengths of these point sources. The final "cleaned" image is the sum of these point sources

convolved with a beam, usually a gaussian beam, with the same half-power beamwidth of

the original synthesized beam. This allows a low-pass filtering of the high frequency

components which are usually very noisy.

Since this algorithm is fundamental to understand the algorithm that is proposed in

section 6.2.2.1, its basic steps are commented without discussing other optimized versions

such as the Clark or the Cotton-Schwab algorithms [NRAO 89]:

i) The position and the strength of the most brilliant (absolute value) peak is found in the

dirty image. In some cases it is interesting to search only in a restricted area.

ii) The dirty beam (equivalent to the Point Spread Function in Image Processing and to the

Equivalent Array Factor defined before) is subtracted from the dirty image multiplied by

the peak strength and a damping factor ( called loop gain. Current values for ( normally

lie in the [0.1, 0.25] range.

iii) The process is repeated until any remaining peak is below an specified threshold.
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iv) And the map obtained by the point sources is convolved with a gaussian beam with the

same half-power beamwidth as the dirty beam.

  

From its principles it is clear that in this form, this algorithm would have difficulties

when applied directly to the Earth observation case because the Earth appears as an

extended thermal source almost filling the FOV and not as a set of point sources. 

6.2.1.11.- Conclusions

In this section, several inversion algorithms used in Earth observation

interferometric radiometry, radioastronomy, and image processing have been presented.

Except for the Singular Value Decomposition, the Van Cittert filtert and the general Krylov

method, which reduce to other methods, the seven other algorithms have been programmed

and tested to analyze their applicability to large two-dimensional interferometric

radiometers.

i) The ESTAR's  operator has been extended to the 2D case and it has been shown to

be impractical because of the required computational load and memory requirements, but

also because of the intrinsec difficulty in measuring its elements for large 2D arrays.

ii) The SVD and the Generalized Inverse tend to the  operator because the rank of

 is rank ( ) = N + N , and the pseudo-inverse satisfies the Moore-PenroseV T
2

equation (6.36).

iii) Steepest-descent gradient methods are useful when there is no need to compute the

whole pseudoinverse and one is only looking for the solution.

iv) However, when the problem is ill conditioned, as it is, convergence is not significantly

slowed down if the step size is fixed. In this case, the previous method reduces to the Van

Cittert filter, which tends to the inverse filter and has most of its undesirable properties:

noise amplification, convergence problems ...

v) The Wiener filter has also been studied. It has shown that, provided certain reasonable

hypotheses about the signal's and noise's covariance matrices and the signal-to-noise ratio

is high, about 35 dB, as it is in the MIRAS case, it tends to the Moore-Penrose pseudo-

inverse.

vi) Maximum Entropy Methods are used satisfactorily in radioastronomy when observing

points sources over constant brightness temperatures. However, to perform well they

require a small set of visibilities and a low signal-to-noise ratio (S/N < 5 dB), conditions

that are not satisfied in the MIRAS bread-board case, and even less, in the space-borne

case.



V(u,v) Ė
76 I(>,0)*Fn(>,0)*

2

r̃ (t).1
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(6.64)

vii) The CLEAN algorithm has been briefly revised, as well as the Krylov method,  the CG

and the Preconditionned CG methods. As it will become apparent in the next section, when

observing extended sources, the Neumann iteration performed pixel by pixel in the CLEAN

algorithm, performs much better when dealing with all the pixels simultaneously. The

convergence of the Neumann iteration is so accelerated by using differential pre-

conditionned visibilities, that the computation of the a  and (  factors in the Krylov andn n,m

CG methods is not required.

6.2.2.- Proposed inversion method applied to 2D large synthetic aperture radiometers

This section is devoted to the description of an inversion algorithm suitable to large

2D interferometric radiometers. This method takes into account antenna pattern errors and

receiver mismatches appearing inside the fringe-washing function. The convergence of the

method is accelerated by using some available "a priori" information, the sky brightness

temperature and the Earth-sky border, that allows to work over a set of differential

visibilities and by restricting the domain of the solution to the alias-free FOV.

6.2.2.1.- The use of "a priori" information: differential visibilities processing

As it was shown in chapter five most errors can be hardware calibrated by noise

injection and/or by the redundant space method, and antenna coupling effects can be

minimized by a proper design of the antennas, or can be calibrated with on-ground

measurements. Consequently, the inversion process is reduced to solve equation (3.1) for

T(>,0).  In the general case, this equation has not an analytic solution. Only when all the

antenna patterns are all equal and the fringe-wash factor is negligible ( ) for all

the baselines, equation (3.1) reduces to a Fourier Transform and can be easily inverted.

Where Ė stands for the Fourier Transform. From now on, the hexagonal discrete

Fourier Transform F  (equation 6.19) and the available "a priori" information about theH

scene will be used to simplify and optimize the inversion process. 

In order to not force conditions that could not be met in a real situation, the only "a

priori" information that will be  used is:

i) the knowledge of the average sky temperature, T  about 2 or 3 K at 1.4 GHz., providedsky

that neither the sun, the moon, the center of the galaxy or any other radiation source enters

in the antenna beam directly or by a reflection over the Earth or the sea surfaces.
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ii) the function "earth (ξ,η)" that defines the region occupied by Earth over the sky as seen from
the satellite, for a given altitude and tilt angle in the directing cosines reference system (equation

(4.13) ). It equals unity for (ξ,η) pixels over the Earth and zero otherwise.

With this information, calibrated visibility samples V(1) can be decomposed in three
terms:

)()()()( vu,  + vu,  + vu,V = vu,V EarthEARTHSKYSKY
(1) γγ ΤΤ∆ (6.65)
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   |Fno (ξ,η)|2 is the radiation pattern of the total power radiometer antenna.

Note that γSKY (u,v) and  γEARTH(u,v) are normalized unitless visibilities and, according to (6.65)

∆V(0,0) = 0.

Equation (3.1) has now to be solved for ∆V(u,v) instead of V(u,v). It should be noted
that since the sky brightness temperature has been removed, the alias free Field Of View has

expanded and it is now limited by the periodic repetition of the Earth-sky border and not by the

periodic repetition of the unit circle (figure 6.13).
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Figure 6.13.- Extended alias-free FOV by sky brightness temperature substraction.

6.2.2.2.- Description of the proposed algorithm

The algorithm that is presented proceeds in a similar way as the 'CLEAN' algorithm

(section 6.2.1.10) [Thompson et al. 86], [NRAO 89], with the following main differences:

i) The Earth is an extended source that fills almost completely the Field Of View, and it is

recovered overlapped with 6 alias of itself (figure 6.13): there are some pixels whose value

accounts for the brightness temperature of 2 or even 3 directions of the space. In this

situation, the recovery of any aliased value is unfeasible and the reconstruction algorithm

should be limited to the alias free FOV. As it has been shown previously, the alias free

FOV can be partially extended by subtracting the sky contribution: in this case the AF-FOV

is not limited by the periodic repetition of the unit circle, but of the earth-sky border.

ii) The equivalent to the 'CLEAN' dirty map is called the brightness temperature residue

(T ), and the 'cleaned' image is the deconvolved brightness temperature (T ). res dec

iii) In the "CLEAN" algorithm each iteration searches the most brilliant pixel. In the

proposed algorithm iterations are performed at each step for all the pixels available in the

alias free FOV (AF-FOV) at the same time. It should be noted that usually 1 guard-pixel

should be left at the border of the AF-FOV, since the equivalent array factor or space

variant impulse response (equation 6.63) for pixels lying in the aliased zone extends into

the AF-FOV and are truncated and vice versa. When errors are large, mainly due to very
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different antenna patterns, the extension of the equivalent array factor is larger and more guard-
pixels should be taken.

iv) When the number of visibility samples is low, as it is in the MIRAS bread-board instrument,
the number of pixels should be increased in order to assure that the discretization error in
equation (6.22) is low. This process is performed by zero padding the fundamental (u,v)
hexagonal period. In this way, when the brightness temperature distribution is truncated to the
AF-FOV, the high frequency content of the visibility function has been increased, but does not
suffer from aliasing of itself. In the case of the MIRAS space-borne instrument, the low-pass
shape of visibility function makes discretization errors given by the minimum [NT x NT] mesh low
compared to the thermal noise (NT = 130).

The main steps of the algorithm are presented below:

i) Hardware calibration of receiver errors by i.e. correlated/uncorrelated noise injection. Removal
of system errors: correlators' offset, phase/gain errors and antenna coupling errors by computing

V(1) out of µµ(5).

ii) Computation of the average Earth modified temperature and the differential visibilities by
subtracting the sky and the average brightness temperature of the Earth visibilities (equations
(6.65) to (6.68) ).

iii) Equation (3.20) can be to discretized and written in the following way:

where:

F H
1-  stands for the hexagonal inverse Fourier Transform

 the "./" operator stands for the division element by element
and:
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In fact, the  operator defined in equations (6.24) and (6.25)  applied over a

modified temperature  returns a set of visibility samples that are weighted with a

window . Of course, these visibilities are affected by fringe-washing effects, antenna

pattern errors and antenna position errors. When it is inverted simply by means of a Fourier

transform (the hexagonal one if the (u,v) points are placed over a hexagonal grid) and the

result is compensated by the average antenna radiation pattern of all the antennas, a good

estimate of the modified temperature is obtained. This estimate is the first term of a series

in which the solution of (6.69), , is expanded (equations (6.74) and (6.76))

It is advantageous to work over the modified temperatures instead of the visibilities

because the aliasing can be easily removed in the (>,0) domain, restricting the inversion

process only to the alias-free FOV. 

Note that the operator:

(6.71)

acts as a preconditioner of the , as in some CG algorithms. In fact, in the ideal case, when

all the antenna patterns are the same and fringe-washing effects are negligible:

(6.72)

and .

Each row of the  operator in (6.69) can be understood as the array factor or

impulse response to a point source located at (>',0')= (> ,0 ).s s

The inversion method follows as explained below:

iv) Start the iteration for k=1,2,3...

(6.73)

(6.74)

with the initial values:

(6.75)

and:

(6.76)

both limited to the alias-free FOV.
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v) Repeat step (iv) until the squared Euclidean norm of the residue decreases below a

determined threshold:

(6.77)

The first term in the right hand side of equation (6.77) corresponds to the thermal

noise and can be computed with the formulas derived in [Thompson et al. 86], [NRAO 89],

[LeVine et al. 90], [LeVine 90], [Camps et al. 95B] or [Bará et al. 96A]. The second one

corresponds to the oscillations or ringing due to the finite (u,v) coverage which are known

as the Gibbs phenomenon and depends basically on T  (equation 6.68), the averageEarth

brightness temperature of the Earth and the window used to taper the visibility samples. It

can be computed with the formulas derived in [Camps et al. 95] or in chapter 3.

The main advantage of this approach to the inversion problem is that it avoids large

matrix products, which require a high computational capability, nor need to store huge

matrices. In fact, the  operator is easily computed by: 

i) calculating the intermediate visibilities multiplying, row by row, the  operator by the

modified temperature distribution, 

ii) taking the 2D inverse Fourier Transform over the hexagonal grids defined in (6.18a,b)

iii) and dividing the result by the average antenna radiation pattern.

The  operator uses the information about the antenna voltage patterns, antenna

positions and receivers' frequency responses through equation (6.25). The maximum vector

size to be processed at any time is [N  x 1] = [16.900 x 1] long and the size of the 2D-FFTT
2

is [130 x 130], which can be performed in a PC.

This algorithm is, in fact a simple Neumann iteration, a particular case of the

general Krylov method (6.2.1.6) with , a  = 1 and (  = 0. The residue in then n,m

Krylov formulas (6.58) is computed from the visibility samples, while in the proposed

algorithm it is computed equivalently from the modified brightness temperature pixels.
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6.2.2.3.- Convergence of the inversion process

The recovered modified temperature distribution is the 2D convolution of the actual
brightness temperature with the space variant interferometer impulse response or equivalent
array factor (equation 6.63). Using the recursions shown in equations (6.73) to (6.77) the values
of the residue and deconvolved temperature at the kth iteration can be expressed as:

T . H - I = T
raw k(k) res ∆∆ )(  (6.78)

T . H - I  = T
raw n

1-k

=0n

(k) dec ∆∆ ∑ )(  (6.79)

The matrix series of equation (6.79), if it converges, tends to:

provided that:   

where λ' are the eigenvalues of H .

In practice, the residue given by equation (6.78) shows the rms error committed. The

eigenvalues of H  do not need to be computed since, when the process is not convergent, the
norm of the residue vector grows at each step. In this case, the procedure can be initialized with

a damping factor γ<1, as it is done in the CLEAN algorithm:

T . H  - I  = T
raw k(k) res ∆∆ )(  γ         (6.82)

T . H  - I   = T
(0) res n

1-k

=0n

(k) dec ∆∆ ∑ )( γγ         (6.83)

This resort is only necessary when very large antenna errors are present, a situation not
found in simulations with real antenna patterns.

In the ideal case, when the G  operator tends to the 2D Fourier operator F , the H

operator tends to the identity operator   I , all the eigenvalues of H  are  λ'=1, the inversion
process stops at the first step and reduces to an inverse Fourier Transform followed by antenna
pattern compensation.  In a non-ideal case two factors accelerate noticeably the convergence
process: i) the processing of differential visibilities and ii) the precompensation by the average

antenna radiation pattern, which approaches the G operator to F, the discrete Fourier Operator.

Depending on the magnitude of the errors and the number of antennas (affects ∆T for the same
S/N), convergence is usually achieved in up to 2-6 iterations for a Y-interferometer of 10-43
antennas per arm with tolerances in the present MIRAS instrument design [MMS 95] and the

available SNR=35dB  (τ  = 0.3 s).

H    H - I 1-n
1-k

=0n

→∑ )( (6.80)

                1< -  |1| maxλ ′                                   (6.81)
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6.2.2.4.- Inversion robustness in front of errors

The image processed in this example is the same of the previous examples (figure 6.7a).
In order to have reasonable processing times we have worked with a Y-interferometer with 10
antennas per arm.

System parameters can be adjusted to check system's response in terms of radiometric
accuracy and robustness of the inversion algorithm. The parameters that can be adjusted are the
following. See [MMS 95] for a detailed description of each one:

- Array parameters:
. Number of antennas per arm.
. Spacing between antennas in the arm.
. Tilt angle of the Y-array with respect to nadir.
. In-plane arm deviation amplitude (sinusoidal oscillation)
. Out-of-plane arm deviation amplitude (       "         "    )
. In-plane arm  first resonant frequency.
. Off-plane arm first resonant frequency.
. Phase of each arm deviation.

- Antenna parameters:
. Polarization (V/H) (to compute antenna coupling

[King 57] [Baker  62], [Richmond and Geary 70].
. Selection of wire-dipoles/cup-dipoles for antenna coupling [Appendix 3]
If wire-dipoles are selected:
. Dipole length.
. Dipole radius.

Antenna pattern (equations (6.34) and (6.35)):
. Directivity parameter.

. θo pointing error standard deviation, φ uniform in [0,2π].

. Amplitude error standard deviation.

. Phase error standard deviation.
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- Receiver parameters:
. Total Power Radiometer sensitivity.
. Nominal receiver noise temperature  & st.dev.
. Coaxial characteristic impedance (ZL0).
. Antenna matching: antenna charge impedances can be selected between ZLO and the
complex conjugate input impedance when the antenna is isolated in free space.

  . Local oscillator frequency.
. Band-pass filters' central frequency & st.dev for spurious and image filters
. Spurious filter nominal bandwidth & st. dev.
. Image filter nominal bandwidth & st. dev.
. Low-pass filter nominal bandwidth & st. dev.
. DC-block cut-off frequency & st. dev.
. Spurious filter in-band ripple    & st. dev.
. Image filter in-band ripple & st. dev.
. Low-pass filter in-band ripple    & st. dev.
. Spurious filter low-pass prototype order.
. Image filter low-pass prototype order.
. Low-pass filter order.

. St. deviation of channels time delay.

. St. deviation of local oscillator phase at each I/Q demod.

. St. deviation of I/Q phase unbalance at each I/Q demod.

. St. deviation of correlators' offset.

. Correlators' integration time.

. Correlator type: 1 bit/Nyquist rate
1 bit/2 times Nyquist rate
analog

- Platform parameters:
. Earth radius.
. Platform altitude.

- Field of View:
. Swath.
. Minimum incidence angle over the Earth.
. Maximum incidence angle over the Earth.
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- Processing parameters:

. Resolution mode: 

enhanced  (use all the available (u,v) samples)
standard  (use (u,v) samples in the inner hexagon to the (u,v) 

coverage: reduced, but complete hexagonal period)

. Visibility window (Rectangular, Bartlett, Hamming, Hanning and Blackmann

windows with rotational symmetry).
. Damping factor (().

A series of simulations have been performed for each one of the following error

sources. In each series, the error has been increased until the algorithm fails to work. These
effects are: i)  fringe-wash effects (identical receivers but increasing system bandwidth), ii)

fringe-wash and receiver phase errors due to bandwidth, central frequency, time delay and

in-phase errors, iii) fringe-wash and receiver quadrature phase errors, iv) antenna-pattern

shape, v) antenna pattern mismatches due to pointing errors, vi) antenna pattern mismatches
due to amplitude errors, vii) antenna pattern mismatches due to phase errors, viii) in-plane

arms oscillations, ix) off-plane arms oscillations, x) finally all errors have been included

simultaneously with their maximum allowed values. From this study it can be concluded

that antenna voltage pattern errors, specially phase errors, are critical when receiver

phase errors have been calibrated and antenna coupling is negligible or it has been

calibrated.

Table 6.2 summarizes the main results of these simulations. RMS errors have been
computed inside a nominal constant brightness temperature square over the sea constant

brightness temperature, at the up-right side. The average rms error for the whole map is

lower after the inversion process (figure 6.17b with respect 6.17a) even though it is higher

inside the constant domain where the standard deviations have been computed (table 6.2).

The ideal image is obtained by taking the Inverse Fourier Transform of the visibility

samples computed for a perfect system. The raw image is obtained by taking the Inverse

Fourier Transform of the visibility samples computed for an interferometer with the antenna

pattern imperfections and fringe-wash effects. Finally, the deconvolved image is the result

of the inversion process previously described. The error images are defined as the difference

between the ideal image and the raw/deconvolved images.

Figure 6.14a shows the original image from which visibilities will be computed.

Figure 6.14b shows the ideal image restricted to the extended alias free FOV (sky

information has been removed). Figures 6.14c and 6.14d represent the raw and the

deconvolved images for an exaggerated large antenna voltage pattern phase error (F =15º).)N
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This is not a realistic situation but it demonstrates how errors can be incorporated into
the inversion algorithm and how image quality can be improved. Even in this case, the coast
contour can be recognized because of the high contrast with the Earth's brightness temperature
(100 K - 220 K).

The effect of the proposed inversion method is more apparent when comparing the two
error images (figures 6.15a and 6.15b). Note that, since the interferometer's size has been
reduced by a factor 4.3 with respect to the example in figure 6.7, the synthesized  beam broadens
by the same factor and the spatial resolution is poorer. In the raw temperature error image high

error bands are present, while in the deconvolved temperature error image errors are

distributed more uniformly over the entire image except at the border. However, antenna
pattern phase errors are so large that the algorithm is not able to compensate them perfectly.

The error in the deconvolved image is concentrated in the border due to:
i) the truncation of the impulse responses of the pixels lying inside the alias free FOV and ii) the
truncation of the "tails" of the impulse responses of the pixels lying outside the alias free zone
that enter in the alias free FOV.

Error source Min. value Max. value σσtyp(Tid-Traw) [K]
Tid = 100K

σσtyp(Tid-Tdec) [K]
Tid = 100K

Fringe-wash B = 20 MHz
fo= 1410 MHz

B = 86 MHz
fo= 1410 MHz

1.02 3.37

Fringe-wash &
phase errors

σ∆f = 0.5 MHz
σB  = 1 MHz
στg = 10 ps
στph= 10 ps

σ∆f = 0.5 MHz
σB  = 1 MHz
στg = 0.6 ns
στph= 50 ps

1.43 3.27

Fringe-wash &
I/Q errors

σI/Q = 0.11 σI/Q = 11 1.19 3.71

Antenna pattern
shape

isotropic
antennas |Fn(θ)|2=cos3(θ)

- -

Antenna pointing σθ = 11 σθ =21 1.55 3.14

Antenna
amplitude

σAa = 0.05 σAa = 0.4 0.95 3.10

Antenna phase σAph = 0.51 σAph = 151 5.62 7.60

In-plane arm
oscillation

Aip = 5mm - 1.20 3.75

Out-of-plane arm
oscillation

Aop = 5mm - 1.40 3.82

Table 6.2.- Error source range and typical errors (discretization and fringe-wash errors are included in σ's)



Chapter 6 : Inversion Algorithms in Interferometric Radiometry                                                        199

Figure 6.14.- a) Original brightness b) Extended alias free FOV 

 temperature distribution (pixels available N  = 10) EL

 c) Raw Temperature d) Deconvolved Temperature

 distribution distribution
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Figure 6.15.- a) Raw error image b) Deconvolved error image 
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6.2.2.5.- Snap-shot simulation of a large 2D synthetic aperture interferometric
radiometer

These simulations are intended to show how different error sources or remainder

calibration errors -see figure 5.5- affect the radiometric accuracy for a 2D large Y-shaped

interferometric radiometer with 43 antennas per arm. Figure 6.16a shows the original

modified brightness temperature distribution,  figure 6.16b its truncation to the extended

alias free FOV, figure 6.16c the ideal image and figure 6.16d shows deconvolved image:

the final result of the deconvolution algorithm (note that the images are in a different order

than in 6.14). Figure 6.16e is the raw image, obtained by direct Inverse Fourier Transform

of the V  visibilities (antenna pattern and position errors and fringe-washing effects). In(1)

this case only two iterations have been required to reduce the 6.5 K rms error present in

figure 6.16e down to 2.5 K (figure 6.16d), below )T=4K, the noise threshold for 43

antennas per arm (equation 6.77), Blackmann windowing and T = 145 K. It is difficultEarth

to notice visually the differences between both images because of the small rms error

compared to the scale (6.5K over 320K). However, it can be appreciated an improvement

on the definition of the island (low-right side) and in the constant brightness temperature

of the sea (most of the yellow dots in figure 6.16e disappear in figure 6.16d. 

Figure 6.16f shows the result of direct inverse Fourier Transformation of V(2)

visibilities (same as V with antenna coupling errors) and average antenna pattern(1) 

compensation, antenna coupling not been calibrated. Figure 6.16g shows the result of the

direct inverse Fourier Transform of V  (same as V  with receiver phase errors) and(3) (2)

average antenna pattern compensation. Finally, figure 6.16h shows the results of

 direct inverse Fourier Transform and average antenna pattern compensation

(all system errors are included: amplitude and offset errors too).

 From this simulations it can be concluded that channel phase errors are the most

important and must be properly hardware calibrated. Time delay mismatches need to be

minimized by design, since they appear inside the fringe-wash function.

Figures 6.16i and 6.16j show similar results obtained by direct Inverse Fourier

Transform and average antenna pattern compensation of the V  and V  visibilities. In this(1) (2)

case antenna coupling has been computed with half-wavelength wire dipoles [King 57]

[Baker 62] [Richmond and Geary 70]), vertical polarization. In this case the modified

brightness temperature distribution has been completely blurred. The high impact of

antenna coupling over the visibilities, amplifying high frequency components at a expense

of low frequency components, is clear and makes other error sources negligible (figure

6.16h).
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These simulations have required the following computational load: 76.1 Gflops to

compute system's model and the 8.450 2D numerical integrations for the visibility samples

and 52.4 Gflops in the 2 iterations required to reduce the residue below the threshold.

However, this algorithm can been run, and in a 486 personal computer with 16 Mbytes of

RAM. If required, the inversion time can be reduced in parallel machines by a factor up to

8.450 by computing simultaneously as many visibitities as processors.

6.2.2.6.- Conclusions

A new deconvolution algorithm suitable for 2D large arrays, as MIRAS space borne

instrument, has been proposed in this section. It is based on a Neumann iteration on the

differential visibilities obtained by substracting from the calibrated visibilities, the

contributions coming from the sky and an average modified temperature from the Earth.

Iterations are performed in the (>,0) reciprocal grids of the hexagonal (u,v) grid  using the

Hexagonal Fourier techniques described in the former section. The main advantages of the

proposed algorithm are: 

i) capability to deal with instrument imperfections. Updated parameters can be directly used

as inputs in the algorithm to invert a new set of measured visibilities, 

ii) computational speed and low memory requirements by using FFTs and row-column

matrix operations. No large matrices must be stored, nor processed, allowing MIRAS space

borne instrument simulations to be run on a PC, and

iii)  the algorithm is well adapted to parallel machines. The speed up factor can be as high

as 8.450 for the MIRAS space borne instrument, opening the doors to real time processing.
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Figure 6.16.- a) Original brightness b) Truncation of 6.16a to the
temperature distribution extended alias-free FOV

c) Ideal temperature d) Deconvolved temperature 
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Figure 6.16.- ANTENNA COUPLING MODELLED WITH MEASURED X-BAND CUP-DIPOLES 
e) Raw temperature (V )            f) Brightness temperature distribution(1)

with antenna coupling errors (V )(2)

g) Brightness temperature distribution h) Brightness temperature distribution

with phase errors (V ) with all errors ( (T +T )µ  )(3) (5)
A R
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Figure 6.16.- ANTENNA COUPLING MODELLED WITH 

VERTICAL HALF-WAVELENGTH WIRE DIPOLES
i) Raw brightness temperature j) Brightness temperature distribution

distribution (V ) with antenna coupling errors (V )(1) (2)

k) Brightness temperature distribution l) Brightness temperature distribution

with phase errors (V ) with all errors ( (T +T )µ  )(3) (5)
A R



G

206                                                        Application of Interferometric Radiometry to Earth Observation

6.3.- CONCLUSIONS

In this chapter some configurations for an interferometer array have been studied.

Y-shaped and triangular-shaped arrays sample the visibility function over a hexagonal (u,v)

grid saving a 13.4% of the required visibility samples and the associated hardware for a

determined aliasing level or available swath. In addition, Y-shaped arrays provide larger

(u,v) coverage than triangular-shaped arrays, thus improving the spatial resolution

capabilities of the instrument.

A new technique based on the use of rectangular FFT to process hexagonally

sampled signals has been proposed. It requires that the (>,0) pixels are properly chosen over

the reciprocal grid of the (u,v) hexagonal grid. This procedure avoids interpolations and

induced artifacts, and preserves signal-to-noise. This technique is general, it is not

restricted to hexagonal grids and can be used with other sampling strategies, provided that

the reciprocal basis is used. 

Several inversion algorithms used in 1D-interferometric radiometry devoted to

Earth observation, radioastronomy, and image processing have been revised: the ESTAR's 

operator extended to the 2D MIRAS' case, the SVD and the Generalized Inverse, the

steepest-descent gradient method, the Van Cittert and the Wiener filters, and two non-linear

methods used in radioastronomy: the Maximum Entropy and the CLEAN algorithms. The

Krylov method, the CG and the Preconditioned CG methods have also been briefly

presented to show the relationships of the proposed method with other methods found in

the literature.

Finally, a deconvolution algorithm suitable for large 2D arrays has been presented.

It is based on a Neumann iteration on the differential visibilities obtained by subtracting

from the calibrated visibilities the contributions coming from the sky and an average

modified temperature from the Earth. Iterations are performed in the (u,v) < > (>,0)
reciprocal grids using the proposed Hexagonal Fourier techniques. Its main advantages are:

the capability to deal with instrument imperfections, computational speed and low memory

requirements by using FFTs and row-column matrix operations. 
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Chapter 7. Implementation of a Y-shaped Space Borne
Interferometric Radiometer Simulator

The need of the implementation of a 2D space borne interferometric radiometer

simulator appears when system's global performance is to be studied, specially the

radiometric accuracy and sensitivity improvement by means of pixel averaging. As

explained in chapter four, an analytical study of pixel averaging is only possible with some

simplifying considerations: very simple modified brightness temperature distributions and

inversion of the set of visibility samples by means of a Fourier transform. It is, for a real

system, with residual calibration errors, antenna pattern errors and time varying scenes,  the

improvement that can be achieved by pixel averaging can only be quantified numerically

with the aid of an interferometer simulator.

To represent a real system, the simulator must be able: 

i)  to propagate platform's orbit to get accurately the rate of variation of the scenes being

imaged, 

ii) to generate realistic scenes. It is brightness temperature distributions generated from

geo-physical parameters, i.e. physical temperature, snow and vegetation cover, soil

moisture and sea salinity...

iii) to model the system: antenna radiation patterns and mutual coupling, receivers'

frequency response and correlators' response.

iv) to apply a calibration algorithm, as the one presented in chapter five, and a suitable

inversion algorithm, as the one presented in chapter six.

v) to represent the results graphically to be easily interpreted.

vi) and, at the end of a sequence of consecutive snap-shot images, to perform an error

analysis to assess the pixel averaging improvement.

This chapter is composed of four sections. In the first one the procedure used to

compute platform's orbit is briefly discussed. The second one is devoted to the L-band

synthetic brightness temperature scene generator, including simple sea and soil models. The

third one deals with the system's modelling and the graphical representation of the results.

And finally, the fourth one presents some examples of the simulator and the results on

radiometric accuracy improvement by means of pixel averaging for a sequence of 25 snap-

shots of the Mediterranean coast of Spain.
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7.1.- ORBITAL PROPAGATOR

To formulate the mathematics of a satellite navigation problem it is necessary to

choose a reference coordinate system, usually a Cartesian one. For the purpose of

computing the position of the satellite and the pixels being imaged at each snap-shot it is

convenient to use a coordinate system that rotates with the Earth, known as an Earth-

centered Earth-fixed (ECEF) system. The ECEF system that will be used is the same as the

GPS one. It has the XY plane coincident with the Earth's equatorial plane, the +X-axis

points in the direction of 0º longitude, the +Y-axis points in the direction of +90º East

longitude and the +Z-axis is chose to be normal to the equatorial plane in the direction of

the geographical north pole. 

If the Earth were a perfect sphere of uniform density, Earth's gravity would behave

as if the Earth were a point mass. Then the gravitational force acting on the object

would be given by:

(7.1)

where M is the mass of the Earth, is the acceleration of the object in an inertial system

(note that the ECEF system previously defined is not an inertial system), and the distance
from the center of the Earth to the object is r = | r |. Equation (7.1) can be rewritten as:

(7.2)

which is the expression of the Keplerian satellite motion. 

Since the Earth is not spherical and has an uneven distribution of mass, the true

acceleration due to Earth's gravity can be modelled by a potential function [Kaplan 95]:

(7.3)

where r is the distance of the point from the origin, 2 = 90º - latitude is the angle measured

from the +Z-axis, 8 is the right ascension of the point, a is the mean equatorial radius of

the Earth (6,378,137 m in WGS-84), P  is the associated Legendre function and C  andlm lm

S  are the spherical harmonic cosine and sine coefficients of degree l and order m. Notelm

that equation (7.2) is recovered from (7.3) if all the harmonic cosine and sine coefficients

are set to zero. 
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Figure 7.1.- The three Keplerian orbital elements
defining the shape of the orbit [Kaplan 95]

Figure 7.2.- The three Keplerian orbital elements
defining the orientation of the orbit [Kaplan 95]

Although many applications require the accuracy provided by the fully perturbed

equations of motion, orbital parameters are often defined in terms of the six elements of

the Keplerian satellite motion. These Keplerian elements depend on the initial conditions

r , v  and t  for which the solution of (7.2) is the section of a conic by a plane. Figure 7.10 0 0

shows the first three Keplerian orbital elements that define the shape of the orbit: a the

semimajor axis of the ellipse, e the eccentricity of the ellipse and JJJJ the time of perigee

passage (hyperbolic and parabolic trajectories are not be considered for Earth observation

satellites).

        

Figure 7.2 shows the second three Keplerian orbital elements that define the

orientation of the orbit: i the inclination of the orbit, SSSS the longitude of the ascending node,

which is the point in the satellite's orbit where it crosses the equatorial plane with +z

component of velocity, and TTTT the argument of the perigee, that measures the angle from

the ascending node to the direction of the perigee. It should be noted that for a fully

perturbed motion the six Keplerian orbital elements are not constant and must be

periodically updated.

The impact of other forces acting over the satellites are reviewed in appendix 7, and

their impact has been studied with the aid of the "Orbital Workbench v1.1" program

[Cygnus 90] by enabling or disabling different forces to act. The orbit parameters of the

MIRAS' reference orbit are [MMS 95]: 

- Semi-major axis (a): 7159,5 Km

- Inclination (i): 98,549387º

- Eccentricity (e): 0,001165

- Argument of perigee (T): 90º
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Figure 7.3.- Ground track for a complete MIRAS
orbital period. Thick line: ground track of
simulation performed in section 7.4

- Local time descending node (S): 10:00 h

- Nodal crossing time (descending): 10:00 h

and: - Mean altitude: 799,8 Km

Disturbances due to the Moon, the Sun and the solar radiation pressure are found

to be approximately of the same order of magnitude, but they are negligible in front of

geo-potential harmonics (equation (7.3) ). On the other hand, it should be noted that the

atmospheric drag is the dominant perturbation factor below 300 Km height and it is

important up to 1,000 Km height (planned MIRAS' platform height is 800 Km), but it has

not been modelled because of the lack of the knowledge of the platform.

Platform's trajectory is computed by integrating equation (7.3) and taking into

account that at each step the platform's longitude has to be decreased according to the Earth

rotation rate  , where = 7,2921151467 10  rad/s [Kaplan 95].-5

Figure 7.3 shows the ground track

computed with our orbital propagator for a

complete orbit period, about 100 minutes.

The darker line represents the 100 seconds

simulated in section 7.4

7.2.- L-BAND BRIGHTNESS TEMPERATURE SCENE GENERATOR

The L-band brightness temperature scene generator is the module charged of the

computation of a "realistic" brightness temperature distribution for simulation purposes.

The brightness temperature distribution map is computed from the satellite position given

by the orbital propagator over a thin mesh to guarantee that the errors committed in the

numerical two-dimensional integration of the visibility samples are negligible. It requires

the distance between the sampling (>,0) points to be much smaller than the synthesized

half-power beam-width in the (>,0) coordinates, a kind of Nyquist sampling criterion.

Vertical and horizontal brightness temperatures are computed from the following

physical parameters: soil and snow albedos, snow depth, soil roughness, vegetation
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(7.4)

Figure 7.4.- Geometry for the
incidence angle computation.

albedos, soil moisture, soil surface temperature, ocean salinity, zonal and meridional winds

over the oceans, vegetation height, ocean surface temperature and ocean ice cover. These

parameters have been extracted from the CD set: "Global Data Sets for Land-Atmosphere

Models ISLSCP Initiative 1: 1987-1988 Volumes 1-5" of the NASA Goddard Space Flight

Center [NASA 95 A] [NASA 95 B] and the book series "Microwave Remote Sensing:

Active and Passive" volumes II and III [Ulaby et al 82][Ulaby et al 86]. The data contained

in this CD set has been acquired from a variety of sources, including model outputs,

satellite and ground measurements and are mapped in a common spatial resolution: a 1º x

1º grid, with a monthly temporal resolution. However, some parameters have a 6 hour

temporal resolution. The data corresponding to December 1988 has been selected, that is

why most mountain ranges appear covered by snow, showing a contrast in the brightness

temperature.

The 1º x 1º grid corresponds to a pixel's size of 110 Km x 110 Km over the equator,

which is larger than the spot over the Earth's surface of the synthesized beam-width of an

Y-array with 43 antennas per arm spaced 0.898 as MIRAS (chapter 3). To solve this

problem the resulting brightness temperature pixels have been linearly interpolated to a

thinner grid. To preserve the high frequency content, the coast line has been computed with

high spatial resolution, up to 1/12º x 1/12º = 9.26 Km x 9.26 Km, from the NOAA

ETOPO5 5 minutes resolution global digital elevation model.

The sequence used to compute the brightness temperature for each pixel is the

following: 

i) A (>,0) mesh is created over the interval [-1,1] x [-1 1].

ii) For each (>,0) pixel pointing to the Earth (equation (4.13) ), its latitude and altitude are

computed for a given orbital position according to the formulas given in the appendix 8.

iii) The angle with respect to the Earth's surface normal is computed according to ( figure 4 ):

iv) If the pixel's coordinates (latitude, longitude)=(2,8) correspond to soil, then two models

may apply [Ulaby et al 86, chapter eleven]:

iv.1) If soil is covered by snow, then the brightness temperature is computed from:
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where a is the snow albedo, Γ is the specular power reflection coefficient at incidence angle θ in

"p" polarization, and the subscripts "as" denotes air-snow boundary, "sg" snow-ground

boundary, "s" snow and "g" ground. By approximating the physical temperatures of soil and

snow by Ts.Tg.To, and since ΓasΓsg< 0.01 and Γsg < 0.05 for θ # 701, then substituting

e = L )  (   d  ke θ ′sec , equation (7.5)  reduces to:

where d is the snow depth,  
m  3.25

1
  

1
 = k

p
e ≈

δ
. and θ' is the angle of refraction in the snow.

iv.2) If the soil is covered by vegetation, the brightness temperature is computed from:

where a is the vegetation albedo, Tv and Ts are the vegetation and soil physical temperatures,

e = L )  (   h  ke θ ′sec , h is the vegetation height, θ' is the angle of refraction in the vegetation, Γs  is the

reflectivity of the vegetation-soil boundary:

e p)  ,(  = p) ,( )  (   h-sp
s

inc
2 θθθ cos′ΓΓ (7.8)

Γsp (θ,p) is the specular surface power reflection coefficient at "p" polarization, σ 22 k 4 = h′ , and

σ is the soil roughness. As it was shown in chapter one, at 1.4 GHz the soil brightness

temperature is mainly governed by the soil moisture content though the dependence of the

specular reflection coefficient on the dielectric permitivity.

On the other hand, if the pixel's coordinates correspond to the sea, again two models

may apply [Ulaby et al 86, chapter eleven]:

iv.3) If the sea is not covered by ice, the brightness temperature is computed from:

where:

Γsp (θ, p) is the specular surface reflectivity, that depends on the surface salinity though the

dependence of the water dielectric constant on the salinity contents, To is the physical
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temperature of the sea, "a(θ, p) " is a function that depends on the incidence angle and the

polarization and "u" [m/s] is the wind speed at a certain height in the up-wind direction. A linear

fit indicates that a.0 for vertical polarization and for the horizontal polarization "a" increases

from 0.34 K/m at 1.4 GHz to 1.06 K/m at 19.34 GHz at θ=551, provided that neither foam nor

whitecaps are present on the water surface, in that case a rapid increase in the brightness

temperature is observed. The " a(θ, p)" function has been obtained empirically from the

numerical results of [Brey 91] and those that will be presented in chapter ten.

iv.4) If the sea is partially covered by ice, the brightness temperature are computed as the

weighted sum of the brightness temperature due to the sea, equation (7.15), and the brightness

temperature due to the ice:

T  ic + T ic) - 1 ( = T ice  B,  seaB, seaiced  B, (7.11)

where "ic" is the fraction of the sea surface covered by ice. The brightness temperature of the

iced sea is computed according to the equation (7.11) with the dielectric constant of the ice

computed with the formulas given in the appendix E of [Ulaby et al. 86].

Since the purpose of this simulator is not to include very accurate brightness

temperatures models, but to study the radiometric accuracy improvement of the pixel averaging

technique and the overall system's response, atmospheric attenuation effects -otherwise

negligible at 1.4 GHz- and solar reflections have not been modeled.

Figure 7.5 shows an example of the computed brightness temperatures in vertical and

horizontal polarizations for the Mediterranean sea region. It should be noted that most of the

models found in the literature are given for incidence angles up to 601-801 and may lead

inaccurate results when extrapolated.

Figure 7.5.- Computed vertical and horizontal brightness temperatures from 201 E, 351 N,  4.000 m.
Mediterranean sea, December 1998
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7.3.- INSTRUMENT'S MODELING

This section is devoted to the explanation of the modeling of the hardware of the 2D

interferometer:

i) the array structure modeling and its mechanics are based on [MMS 95],

ii) antenna patterns have been fitted from MMS measured cup-dipoles, while mutual impedances

values have been taken from measurements of frequency scaled X-band cup-dipoles,

iii) receivers' frequency response are computed numerically for the basic scheme and the

parameters and standard deviations specified in [MMS 95],

iv) 1B/2L digital correlators are modeled according to the error analysis performed in chapter

four, and the experience gained in the design of the digital correlator unit (chapter eight).

The calibration hardware modeling is based on the distributed noise-injection technique

described in chapter five and the iterative inversion algorithm is the one proposed in chapter six.

In the following sections each subsystem is explained in more detail.

7.3.1.- Array structure

The structure of the interferometer's array is shown in figure 7.10 [MMS 95]. It is

composed by three arms forming 120º between them. In the MIRAS space-borne instrument

each arm is about 9 m long and has NEL= 43 cup-dipole antennas spaced d=0.89 wavelengths. In

the center there are three extra antennas for calibration purposes (phase restoration techniques)

[MMS 95]. In fact, as explained in chapter five, two of them are redundant and only one is

strictly necessary to relate the phases between the arms when establishing the phase closure

relationships.

The oscillations of the arms and their relationships with the integration time and the error

committed in the baseline are modeled in section 4.3.2.

7.3.2.- Antenna modeling

In order to improve the antenna voltage pattern model used in the error analysis, the lists

of measurements provided by MMS of MIRAS bread-board cup-dipoles have been fitted.

Measurements were given for three cuts (φ = 0º, 45º and 90º) for which they have been fitted,

for other φ angles interpolation formulas have been used. Amplitude pattern errors are smaller

than 3% and phase pattern errors are smaller than 0.25º, for |θ|<60º. More details can be found

in appendix 9.
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7.3.3.- Receivers modeling

The basic MIRAS bread-board scheme is the same as used in the error analysis except

that instead of a single equivalent filter there are four filters:

i) the spurious filter to prevent signal interferences. It is a Chebyschew band-pass filter obtained

from a 3rd order Chebyschew low-pass filter prototype.

ii) the image filter to reject the image band. It is a Chebyschew band-pass filter obtained from a
4th order Chebyschew low-pass filter prototype.

iii) the low-pass filter to set signals' bandwidth after I/Q demodulation. In the MIRAS BB design

it is a 7th order Chebyschew low-pass filter, but the simulator allows to analyze the response to a

flat delay inverse Chebyschew filter to minimize decorrelation effects due to filters' tolerances.

iv)  the DC-block RC high-pass filter at comparators' input to eliminate offset voltages induced

in the demodulators.

The nominal frequency response of each filter is set by three parameters:

i) their -3 dB bandwidth: 30 MHz, 35  MHz, 20.75 MHz and 1 MHz respectively.

ii) their in-band ripple: 0.05 dB, 0.075 dB and 0.06 dB for the three Chebyschew-type filters.

iii) and the order of the low-pass prototype: 3, 4 and 7

while the central frequency for the two band-pass filters is common and is set equal to f0=1.410

MHz. The common local oscillator frequency is equal fLO=1.395 MHz.

Three additional parameters establish filters' tolerances: the -3 dB bandwidth standard deviation,

the in-band ripple standard deviation and the central frequency error standard deviation.

Other error sources modelled are: delay errors due to path differences (σtd=50ps,

corresponding to a path mismatch of 1 cm with an εr = 2.1), errors in the LO phase σθLO=21 and

quadrature errors between the I/Q signals at demodulators' output σθIQ = 21.

In order to simulate the impact of comparators' offset errors, receivers' gain is assumed

to be G = 100 dB " 0.2 dB. Receivers' noise temperature is assumed to be TR=80K " 10 K.

Antenna coupling errors is modelled with the mutual impedances measured between our X-band

cup-dipoles (appendix 11), with a 50 Ω charge load -the LNA input impedance- or the antenna

free-space self-impedance: Z11 .

With all the information relative to the receiver, the fringe-wash factor is computed as:
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where: Hk(f) and Hl(f) are the equivalent band-pass responses of the receivers involved in the

correlation:

Figure 7.6 shows the nominal response of the spurious, the image and the low-pass

Chebyschew filters with the group delay response. As it can be appreciated, the most important

contribution to decorrelation is due to mismatches in the group delay response of the low-pass

filters. However, numerical simulations have shown that contributions from the narrow band-

pass filters are not negligible and can degrade system's performance if tolerances are not strictly

controlled.

       

Figure 7.7 shows the low-pass equivalent receiver's frequency response from which the

fringe-wash response is computed for each baseline:

For computational purposes, the amplitude of the fringe-wash factor is then adjusted by a

gaussian function, and the phase is adjusted by a line:

as it is shown in figure 7.8. Beq is the equivalent noise bandwidth of the baseline, t0 is the

equivalent group delay difference, Φ0 is the equivalent phase difference and fp is the equivalent

central frequency. For gaussian filters, the analytical formulas of the parameters B, ∆τg, φV and

∆f' are found in equations (4.38) to (4.42).
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Figure 7.6.- Nominal frequency response of
MIRAS BB spurious, image and low-pass
Chebyschew filters
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7.3.4.- Correlators and LO modeling

1 bit/2 level digital correlators have been modeled according to the error analysis
performed in chapter four (equations (4.90), (4.91), (4.101) and (4.102)) and the experience
gained in the development of the digital correlator unit (chapter 8 and appendix 15). LO thermal
noise in the RF band introduces an offset term that is added at the end.

At this point the sequence followed to generate a set of raw visibility samples is complete:

i) Generation of a brightness temperature distribution from a propagated orbital position.
ii) Computation of the V(1) visibilities by a two-dimensional numerical integration of equation
(3.1), including the computed brightness temperature distribution, different antenna radiation
voltage patterns, errors in the antenna positions and different receivers' frequency response
trough the fringe-wash function.
iii) Addition of a zero-mean gaussian random variable to simulate the measurement uncertainty
due to finite integration time (equation (3.65) ):

V + ) v ,u( V = ) v ,u( V i r,klkl
(1) 

i r,klkl
(1) 

i r, ∆ˆ (7.16)

iv) Computation the coupled visibility samples (equation (4.32) ):

Figure 7.8.- Fringe-wash function and gaussian fit.
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v) Addition in-phase and quadrature errors: ∆θOL, ∆θIQ, and ∆θo (equation 4.52):

vi) Computation of the normalized visibility samples µµkl
(4) [Hagen and Farley 73]:

vii) Introduction of comparators' threshold errors and correlator's gain due to jitter errors in the

sampling instant (equations (4.90), (4.91), (4.101) and (4.102) ).

viii) And addition of offset errors due to local oscillator leakage:

7.3.5.- Calibration hardware modeling

From the two methods proposed in chapter five, the distributed noise injection method

has been implemented in the simulator because of its greater robustness. However, it has been

found that the large non-separable amplitude errors that are introduced by the filters, with

present MIRAS bread-board specifications, may cause errors in the calibration of the receiver

gain factors. To avoid this problem, the measurement of each receiver's noise temperature and

the antenna's temperatures is modeled with a linear power detector.

The calibration hardware scheme is modeled according to figures 5.7 and 5.8.

Calibration parameters are:

i) the noise temperature at the input of the LNA, Tnoise . 300 K, which is different from the noise

temperature of the noise source,  Tdiode . 2.400 K,

ii) the standard deviation of the noise temperatures at the input of the LNAs, ∆Tnoise.10K, 

iii) and the number of 0.3 s integrations that are performed to improve the signal-to-noise ratio.

( ) C  V C = V 1-  H(1)  1-  (2) (7.17)
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Figure 7.9.- Definition of the standard resolution
mode and the enhanced resolution mode 

(7.21)

7.3.6.- Processing parameters

The processing parameters affect the way the inversion process is performed and,

consequently, the spatial resolution and the radiometric sensitivity and accuracy. The

resolution-mode parameter sets the (u,v) set of samples to be used in the inversion process.

In the standard resolution mode only the (u,v) samples of the inner hexagon are taken (see

figure 7.9), in the enhanced, all the available visibility samples are used. It has been noticed

that there is not any problem due to the missing (u,v) samples that have to be extrapolated

between the star points, and it is preferable over the standard mode because of its better

spatial resolution, even for small arrays.

The window used to tapper

the visibility samples can also be selected

between the five ones used in this study: the

rectangular one, the Barlett one, the

Hamming one, the Hanning one and the

Blackmann one (table 3.1).

The best performance of the

inversion algorithm is obtained with very

smooth windows, i.e. the Hamming, the

Hanning and the Blackmann windows, and

the selection between them is a trade-off between spatial resolution and radiometric

sensitivity. In our simulations the Blackmann window is always used. The rectangular and

the Barlett windows are not very useful because of the high secondary lobes of the impulse

response that make the truncation error to the alias-free FOV very high and slow down the

convergence of the inversion process.

The gain loop factor ( can also be selected to prevent convergence problems. In

theory, it should be selected to satisfy:

but in practice, a factor of (=0.5 suffices. Rarely the inversion process is not convergent,

in fact, this problem has only been noticed for very large antenna amplitude and phase

errors (F > 15º) or when the calibration process has provided wrong receivers' noise)1 

temperatures and/or  receivers' phase error estimates due to large filters' mismatches.

Since the inversion process controls the convergence trough the norm of the residue

(equation (6.77) ), when convergence is not achieved, the process is re-initialized with a

new factor: ('=(/2.
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Finally, the number of guard pixels in the alias-free FOV border can also be

selected. As commented in chapter six, for the errors and tolerances involved one guard

pixel is sufficient, but it can be increased if antenna pattern errors are too large to make the

tails of the impulse response of outside pixels to enter excessively in the alias-free FOV.

7.3.7.- Graphical representation of results

The original brightness temperature distribution, as well as the simulation results

can be displayed in the directing cosines representation as well as in the cartographic

projections and expansions [Martín 90], which are just listed below:

i) Directing cosines representation.

ii) Cartographic projections: stereographic projection, gnomonic projection (central,

meridian or transverse and horizontal or oblique),  stereographic (polar, meridian or

transverse and horizontal or oblique) and orthographic (equatorial or direct, meridian or

transverse and horizontal or oblique).

iii) Cartographic expansion: Lambert's equivalent cylindrical expansion, equivalent

cylindrical expansion with automecoic meridians, Mercator shaped cylindrical expansion,

transverse cylindrical expansion, UTM projection, conical expansion and Lambert's shaped

conical expansion.

7.4.- Simulation results and radiometric accuracy 
improvement by means of pixel averaging

In order to analyze the radiometric improvement by means of pixel averaging the

first 25 snap-shots, with a 4 seconds interval, of the orbit shown in figure 7.4 have been

simulated. The interferometer is an Y-array with 27 antennas per arm, corresponding to two

of the three sections that will form each arm of the MIRAS instrument. The array's size

reduction translates into shorter execution times, while keeping the main characteristics of

MIRAS. Anyway, the simulation of the 25 snap-shots took more than 116 hours in a

100MHz Pentium with 16 Mbytes of RAM.

The imaged FOV passes from the Noth of Africa to the Noth of the Mediterranean

coast of Spain. Instrumental parameters and errors are those specified in chapter four to

achieve a 1.2 K radiometric accuracy and 0.86 K radiometric sensitivity. Calibration

parameters have been obtained with the noise-injection method described in chapter five

by averaging 100 measurements of 0.3 seconds. The inversion process is that explained in

chapter six with (=0. Simulation results of snap-shots numbers 12 and 25 are shown in
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figure 7.10 restricted to the alias-free FOV. In the left side the ideal brightness temperature maps

that would be obtained with an ideal Y-shaped interferometer with 43 antennas per arm and an

infinite integration time. In the right side, the recovered brightness temperature maps with an

instrument modeled with all the errors studied in chapter four, including digital correlator errors

(σ∆xi = 1 mV, σtd = 0.1 ns), fringe-washing effects, non-separable amplitude and phase errors and

thermal noise corresponding to 0.3 seconds integration time.

Figure 7.11 shows the rms error of each pixel followed along the FOV during the

different snap-shots according to figure 4.17. The average rms error for all the pixels in the FOV

is 4.76 K, which includes 3.42 K corresponding to the 0.3 seconds finite integration time

(continuous lines). The average rms error for all the pixels after the averaging of all available

measurements in the FOV is reduced down to 2.34 K, from which 0.84 K come from the

averaging of the thermal noise (dotted lines). Consequently, the improvement in the radiometric

accuracy by means of pixel averaging can be computed approximately as Gpix avg . 1.54 from:
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which is is good agreement with the

theoretical analysis and the computer

simulations performed in chapter four for the

200 K constant brightness temperature

scene. However, this gain depends on the

scene being imaged and can only be

considered as a guide for system's

performance prediction.

Present filters tolerances generate 

non-separable phase terms as high as 61, that

hinder the calibration algorithm, and 

account for the high radiometric error computed, about 8.25 K. This means that a baseline-based

calibration procedure by c/u noise injection is required at least for the shortest baselines, the

most significant ones, to improve the instrument's performance.

Figure 7.11.- Radiometric error in the pixels' column
with (-.) and without (-) pixel averaging.
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7.5.- CONCLUSIONS

This chapter has described the simulator implemented to analyze the radiometric

improvement by means of pixel averaging: the orbital propagator, the scene generator to obtain

realistic brightness temperature distributions, the system modeling: from MMS measured cup-

dipoles to the digital correlators developed by us.

The chapter ends with the simulation of a platform carrying a Y-interferometer of 27

antennas per arm (two sections of the three that would form each MIRAS' arm) flying over the

Spanish Mediterranean coast. All error sources are modeled and taken into account with the

values given in [MMS 95]. The pixel averaging improvement is found to be about 1.54, which is

somewhat higher than predicted in the theoretical analysis and the computer simulations

performed for a constant temperature scene for correlated or uncorrelated phase and amplitude

visibility errors (section 4.6). However, this is not a definitive result since it depends on the test

scene.

Figure 7.10.- Ideal and deconvolved images corresponding to snap-shots #12 and #25.
Snap-shot rms errors are about 8.25 K
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Chapter 8. Design and characterization of a 2D            
                     Experimental Interferometric Radiometer

This chapter presents the characterization of the circuits designed to implement an

experimental 2D interferometric radiometer developed to verify, as far as possible, the

performance predicted in preceding chapters, as well as the calibration and inversion

algorithms. It should be pointed out that, while the purpose of a Space Borne

Interferometric Radiometer is to obtain L-band passive measurements, the prototype has

been developed at X-band because of the availability of commercial components. In

addition, following the technique described in [Laursen & Skou 94] only a baseline formed

by two antennas, two receiving chains and a complex digital correlator has been built. The

complete set of baselines is synthesized by changing the antenna positions along the array.

First of all system's overall scheme is presented. Then each subsystem is explained

and characterized: i) the mechanical design of the array, ii) the antenna design and

characterization, iii) the RF front-end and IF section, including TV-DBS external units,

custom IF amplifiers and I/Q demodulators, iv) the LF circuit design, including a selection

of the filters, video amplifiers and peak detector and v) the 1 bit/2 level digital complex

correlator unit. 

At the end of the chapter, the whole system is characterized in terms of global

offset, amplitude and phase errors and its calibration sequence is presented.  The sensitivity

of the instrument is checked through  several laboratory experiments.

8.1.- INSTRUMENT DESCRIPTION

Figure 8.1 shows the schematic of the interferometric radiometer that has been

built. Its main characteristics are: input frequency 10.7 GHz, equivalent noise bandwidth

30MHz, equivalent noise temperature T  < 120 K and 93 dB / 107 dB adjustable gain.  ItRi

is composed of four blocks:

i) The PVC Y-array mounted over a photographic tripod where two cup-dipole antennas

are placed. Cup-dipole antennas have been selected because of their small size: 0.89 8
diameter, the low coupling presented: less than 30 dB even when they are touching, and the

wide antenna pattern: about 70º half-power beam-width. The RF band is centered at 10.7

GHz, occupying a protected band for passive measurements. 
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ii) The RF front-end is formed by two DBS external units, whose local oscillator has been

extracted and substituted by a common synthesized one. The external units also perform

the first frequency conversion from 10.7 GHz down to 881.5 MHz, where the signal is

further amplified and its in-phase and quadrature components are extracted to perform the

correlation at baseband by means of real correlators. I/Q demodulators are also driven by

a common synthesized local oscillator to preserve the phase information.

iii) The Low Frequency section is formed by a bank of four 7  order, 21.4 MHz half-powerth

bandwidth Chebyschew filters that limit signals' bandwidth to satisfy the Nyquist criterion

when sampled at 66 MHz by the digital correlators unit (DCU). An adjustable gain video

amplifier amplifies signals' level to drive properly the comparators of the DCU. The DCU

computes the real and imaginary parts of the visibility samples from the correlation of the

in-phase signals and the mixed correlation of a quadrature signal with and in-phase one:

(8.1)

Since only three of the four available signals are used, q (t) signal is driven to a peak2

detector to monitor signal's power.

iv) The 1B/2L DCU uses high speed comparators and Fast-TTL technology to cope with

high clock frequency. The DCU board is controlled by a signal acquisition board and a C++

program. Integration time can be adjusted from 1 ms to 64 s. Correlators' outputs are then

software denormalized and pre-calibrated.

Figure 8.1.- Experimetal Interferometric Radiometer scheme.
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Figure 8.2 legend:

1.- Cup-dipole antennas 4.- TV external units 7.- I/Q demodulators 10.- Peak detector

2.- Non-resistive power splitter 5.- Wilkinson power splitter 8.- Low-pass filters bank 11.- 1B/2L digital correlator unit

3.- Phase-shifter 6.- IF amplifiers 9.- Video amplifiers bank 12a.- Analog circuitry power supply

12b.- Digital circuitry power supply

8.2.- ARRAY AND ANTENNA DESIGN
8.2.1.- Array design

The array is designed according to an Y-shaped geometry, which provides an hexagonal

sampling in the spatial frequencies (u,v) plane. In chapter six, it has been shown that this

configuration is the optimal one in terms of the required number of visibility samples for an

specific aliasing level: minimizing hardware requirements in a complete array and, in our two-

antenna interferometer, minimizing the sequence of measurements to be carried out.

The Y-array is built from a PVC board and it is mounted over a photographic tripod that

allows some kind of orientation. Three slots have been cut in the arms to let the antennas slide.

At 10.7 GHz, cup-dipoles' diameter is 0.89λ and Y-arms' length correspond to up to fifteen

different antenna positions. A graduated rule has been marked in each arm to indicate the

antenna position along the arm. Since the minimum antenna spacing is greater than 1/%3 λ, the

Nyquist criterion for hexagonal sampling of signals supported by the unit circle is not satisfied

and the recovered image suffers from aliasing effects in the reconstruction process, as it is shown

in the next chapter.

Figure 8.2.- Experimetal Interferometric Radiometer picture during laboratory tests .



226                                                           Application of Interferometric Radiometry to Earth Observation

8.2.2.- Antenna design and characterization

Independently of the particular kind of antenna that is chosen, mechanical aspects are of

great importance since they are first required to be light and second to slide along the three Y-

arms preserving the polarization when changed from one arm to another one. To satisfy these

two requirements the antenna is mounted over an hexagonal bolt, whose sides form a 1201

angle. In this way, the antenna slides along each arm guided by two opposite sides of the

hexagon and polarization in preserved.

A third key point in the mechanical design of the antenna is the balun (BALanced-to-

UNbalanced) which forces symmetric currents over the dipole arms. Since the antenna must

work in a narrow band, 30 MHz at 10.7 GHz, a 0.3 % relative bandwidth, a simple Bazooka

balun is selected. It consists on a conducting cylinder λ/4 height short-circuited by the ground

plane to the coaxial line driving the dipole (figure 8.3).

Finally to improve antenna coupling, specially when antennas are very close, an external

metal cylinder wrapping all the structure has been made (figure 8.3). Since the external cylinder

height impact on the antenna matching and the shape of the antenna radiation pattern was not "a

priori" known, it was designed to be movable and can be fixed with a screw.

The first, the second and the fourth requirements are satisfied because the mechanical

structure of the antenna has been specially designed. The third one depends mostly on the kind

of feeder illuminating the aperture of the cup. As indicated in the precedent sections, a dipole is

selected because of its simplicity. However, the soldering of dipoles arms to the coaxial line was

found to be the most critical part of the construction because of the reduced size of the dipole

arms and the small soldering points.

Two kind of dipoles have been tested: triangular dipoles and wire dipoles. Triangular

dipoles have a larger bandwidth and are easier to tune. However, the capacitive effect induced

by the balun thickness -2 mm- and its proximity -0.5 mm- to the dipole arm distorted the current

distribution over the dipole arms and the radiation pattern. This effect is clearly shown in the E-

plane cut, while it is not observed in the H-plane, due to the symmetry in the current distribution

(figure 8.4). To minimize this effect wire dipoles were tested, showing an improvement in the

antenna radiation pattern at a expense of the ease of tuning, because of the  resonance peak

shown at the frequency where the arm's length is a quarter wavelength. Figures 8.5 and 8.6 show

the final voltage radiation pattern of the three cup-dipoles in the E- and H-planes as well as the

amplitude and phase errors.
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(8.2)

              
Figure 8.3.- Cup-dipole antenna Figure 8.4.- Triangular cup-dipoles: measured E-

plane and H-plane radiation pattern. 

              
Figure 8.5.- Wire cup-dipoles: meausred E-plane
cut, E-plane module and phase errors (10.7GHz)

Figure 8.6.- Wire cup-dipoles: measured H-plane
cut, H-plane module and  phase error (10.7GHz)

The directivities are: 8,94 dB, 9.05 dB and 9.00 dB for the cup-dipoles 1, 2 and 3

respectively. Directivities have been computed from the integration of the whole antenna

radiation pattern and agree very well with the values predicted in the appendix 10. 

Note that the maximum's of the radiation pattern in the E-plane is deviated 4º

because a dipole arm is 0.5 mm higher than the other one, inducing an electrical phase shift

of "=5º. This deviation can be approximately computed by assuming that the centers of the

arms are spaced 8/4 and:

Note also, that the 12º constant phase error between cup-dipole number 3 and the

other two corresponds to a 0.9 mm error in the length of the coaxial feeding the dipole.

This error does not present any problem during the measurements because it is calibrated

with other separable phase errors induced by the receiving chain by means of a

"polarimetric hot point" (chapter 9).



228                                                     Application of Interferometric Radiometry to Earth Observation

Appendix 11 lists the complete set of antenna coupling measurements for different

antenna positions in the Y-array, which is always better than 30 dB.

The following table summarizes the main performances of the wire cup-dipole

antennas:

Center frequency 10.7 GHz

Directivity 9 dB

Half-power beam-width 71º

Cross-polarization < -17 dB

Antenna coupling (d = 0.89 8888) < -30 dB 

Matching < -10 dB

Table 8.1.- Wire cup-dipoles parameters

8.3.- RF CIRCUIT DESIGN AND CHARACTERIZATION

This section presents the RF section of the interferometer. It consists on a pair of

low-cost X-band TV-DBS external units, having a low noise figure and a high gain, that

perform the first frequency conversion down to UHF. Their LO were extracted and then

substituted by a common synthesized LO to preserve signals' phase. At UHF there is a

second custom amplifier followed by an in-phase/quadrature demodulator that splits the

IF signals into their I and Q baseband components to be correlated.

8.3.1.- RF front-end

The RF front-end is composed by two X-band TV DBS external units model GSE-

303 of TAGRA, for the reception of the ASTRA satellites in the 10.7 GHz - 11.8 GHz

band, whose Local Oscillator (LO) has been extracted and replaced by a 50 S line and a

SMA connector (appendix 12).

Because of the availability of commercial components at IF (filters and I/Q

demodulators), the IF center frequency was fixed at 881.5 MHz, which is out of the

specified output frequency band. The LO frequency was changed accordingly resulting in

a loss of the overall gain mainly due to an increase in mixer's insertion loss. TV-DBS

external units were characterized to check their output bandwidth, their gain and their noise

factor. The following table summarizes the main performance of the two TV-DBS external

units:
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Parameter DBS external Unit A DBS External Unit B

Input Frequency 10.6895 GHz 10.6895 GHz

Output frequency 881.5 MHz 881.5 MHz

LO Frequency 9.808 GHz 9.808 GHz

LO power 10 dBm 10 dBm

Gain 41.50 dB 42.05 dB

Noise Factor 1.22 dB 1.5 dB

Table 8.2.- DBS external units performance for use

 in the experimental interferometric radiometer.

8.3.2.- IF section

The IF section satisfies five missions:

i) it provides the power supply to the DBS external unit in the same coaxial cable,

ii) it matches the 75Ω output impedance of the DBS external unit to the 50Ω input impedance

of the filters and amplifiers used,

iii) acts as the first stage of the filtering process,

iv) acts as the second stage in the amplifier chain and

v) performs the second frequency conversion and I/Q demodulation

The DBS external unit power supply is driven through the inductance on the left side.

The impedance matching circuit is formed by the inductance and the capacitor in "L"

configuration.

IF filters are KDF-881RY-25A type, of Kyocera. They consist of three capacitive

coupled "tuned" high-Q ceramic cavities using coaxial connections. Their center frequency is

881.5 MHz and their half power bandwidth is specified to be larger than 25 MHz.

Since filters' response mismatches are responsible for non-separable errors, a set of six

filters were characterized, confirming manufacturers specifications: half-power bandwidth

greater than 25 MHz, 3 dB maximum insertion loss, input/output return losses smaller than 13

dB, and, what is even more important from the point of view of the interferometer system,

group delay is closely matched with peak differences of only 0.3 ns.
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The IF amplifier is built with two MAR-8 MINICIRCUITS integrated amplifiers,

each one having a nominal gain at 900 MHz of 23 dB. Oscillation problem were solved by

connecting a 100 S resistance in parallel with IF filter's output at a expense of a gain loss.

The main performance of the two IF amplifiers is shown in table 8.3.

Parameter Amplifier 1 Amplifier 2

Half-power bandwidth 40 MHz 46 MHz

Gain 33 dB 36 dB

Input return loss -17 dB - 6.4 dB

Output return loss -16 dB - 7.8 dB

Table 8.3.- Performance of IF amplifiers

The phase-quadrature demodulators perfom two basic functions:

i)  Split each signal into its in-phase and its quadrature components and

ii) Perform the second frequency conversion to allow a third amplifying stage prior to

sampling and correlation.

MINICIRCUITS MIQC-895D I/Q demodulators have been selected because of their

commercial availability. The main performance given by the manufacturer are reproduced

in the table below. Note the order of the errors involved and the residual errors required

(chapter 4).

Parameter Value

RF and OL band 868 - 895 MHz

I/Q band DC - 5 MHz

Conversion loss 8.7 dB typ.

Amplitude unbalance 0.3 dB max.

Phase unbalance 4º max.

OL level 10 dBm

1 dB compression
point

4 dBm at the input

I/Q current 40 mA

Table 8.9.- I/Q parameters.

Note that the I/Q band ranges from DC to 5 MHz, while our 2  IF band ranges up tond
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Figure 8.7.- I/Q demodulators performance.

25 MHz approximately.

Consequently, demodulators were

previously tested to verify their

performance over the required 25

MHz bandwidth. Results are shown

in figure 8.7 and demonstrate that

they perform well for larger

bandwidths than specified. Note that

quadrature phase error is not constant

over the whole bandwidth and

deviations from a constant

differential quadrature error can not

be calibrated and remain as a

residual error as it is shown later.

8.4.- LF CIRCUIT DESIGN AND CHARACTERIZATION

The low frequency section performs two basic functions:

i)   filters the four signals coming from the I/Q demodulators: i , i , q  and q , and1 2 1 2

ii) amplifies them to a level high enough to make threshold errors in the 1 bit comparators

negligible, without saturating neither the last amplifying stage nor the comparators.

In addition, since the computation of the real and the imaginary parts of the visibility

function requires only three signals, V  = E [ i  i ] and V  = E [q i ], the signal q  isr 1 2 i 1 2 2

connected to a peak detector and a signal conditioning circuit provides an approximate

measurement of the input power.

Low-pass filters have the smallest bandwidth and set system's bandwidth. Since the

sampling frequency of the 1 bit comparators of the Digital Correlator Unit is 66 MHz,

filters must be narrow enough to attenuate properly the higher frequencies and satisfy the

Nyquist criterion: B <  33 MHz, but noise bandwidth must be as large as possible in order

to improve the radiometric sensitivity. However, if the filter is required to have a sharp

transition from the pass-band to the stop-band, it will have high peaks in the group delay

frequency response. Differences in the group delay response, about several nanoseconds,

are translated into the fringe-washing function, with a rapid decrease, showing the

decorrelation suffered by the signals. On other hand, filters having a good group delay

performance, have very smooth attenuation characteristics and must have a small

bandwidth to properly attenuate frequencies over 33 MHz. 
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Figure 8.8.- SCLF-21.4 and PBLP-39 MINICIRCUITS filters frequency and group delay responses.

In order to study this trade-off two kind of filters have been tested: the

MINICIRCUITS' SCLF-21.4, Chebyschew 7  order, and the flat group delayth

MINICIRCUITS' PBLP-39 filters. Figure 8.8 shows the frequency responses of the two

banks of four filters. 

As it can be observed, Chebyschew filters are more selective and have a high group

delay peak. Filter mismatches are apparent. On the other hand, flat delay filters have a very

smooth transition and a nearly constant group delay. 

SCLF-21.4 filters were finally selected because of their frequency selectivity. Once

the whole system was assembled filter mismatches were minimized by interchanging filters'

position in the bank. The final V -V  amplitude mismatch is only 4 % (section 8.6.3). r i

As commented before, the bank of video amplifiers amplifies the four signals

coming from the I/Q demodulators to a level where comparators' threshold errors are

negligible, about 0 dBm or 220 mV  over 50 S. The input power is:ef

(8.3)
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and the overall gain of the previous stages is about G . 42 dB + 33 dB  - 9 dB = 66 dB, this

means that the required gain for the video amplifiers must cover the range from 33 dB to

38 dB. To avoid the offset voltage generated by the I/Q demodulators amplifiers are DC

decoupled and matched to 50 S at its input. More details about their design and

performance are given in appendix 13.

Finally, the peak detector is composed by a 50 S parallel resistor to match input's

impedance, followed by a Schottky diode and a parallel capacitor acting as a low pass filter.

The peak detector signal conditioning circuit is shown in appendix 14.

8.5.- DIGITAL CORRELATOR UNIT DESIGN AND CHARACTERIZATION

In the original design of the interferometric radiometer analog correlators were

selected because of its theoretical better performance in terms of radiometric sensitivity.

An analog correlator circuit was implemented with two AD-834-JN analog 500 MHz four

quadrant multipliers and two RC low-pass filters. Since the multipliers have differential

inputs and outputs the video amplifier section was included in the printed circuit board and

was used to perform the conversion from single-ended to differential. 

The main problems that were found to be associated with the analog correlator unit are:

i) There is a voltage offset due to a current unbalance at the outputs of the multipliers. This

voltage offset is about 20 times smaller than the measured correlations and  suffered drifts

during the measurement process. It was found that the 13 dB dynamic margin at the output

was completely insufficient for this application.

ii) Since the receiving chain has not an automatic gain control and the analog correlator is

sensitive to signal's amplitude, variations and drifts in the overall channels' gain were

detected at the output, being eventually interpreted as variations of the signal's power.

These reasons lead to us to design a new correlator unit insensitive to signal's

amplitude, with very low offsets and small drifts and with an adjustable integration time,

between 1 ms to 64 s. From the number of digital correlators described in the literature

[Hagen & Farley 73], the most appropriate for our application is the 1 bit/2 level digital

correlator because of its simplicity and its insensitivity to signals' amplitude and to

threshold errors (see chapter four). 1B/2L digital correlators compute the cross-correlation

of two signals by looking at their sign and increasing a counter each time the sign is the

same (figure 4.14). 
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In order to check the performance of the digital correlator unit a series of tests are

performed. Even though 1B/2L digital correlators are well suited to compute the correlation of

signals with a gaussian statistics, correlator's linearity is tested with a zero mean rectangular

wave in the i2 channel and constant +5V signals in the i1 and q1 channels. In this way, correlator's

outputs:

give a measurement of the duty cycle of the input signal. Signal's parameters: amplitude,

frequency and duty cycle are varied to test correlator's performance vs. amplitude -threshold

errors or saturation of the comparators- and vs frequency -timing errors-.

8.5.1.- Linearity vs. signal's frequency

Figure 8.9 shows the relative error in the measured linearity for a signal with 300mVpp

amplitude and a duty cycle of 50 % as a function of frequency. As it can be expected, the higher

the frequency, the larger the errors, because the ratio delay error to signal's period increases

(equations (4.101) and (4.102) ). Linearity tests for other duty cycles have shown the same trend

but with decreasing errors as the duty cycle is increased.

8.5.4.2.- Linearity vs. signal's amplitude

Figure 8.10 shows the relative error in the measured linearity for a 15 MHz signal and a

duty cycle of 50% vs. signal's amplitude. As expected, due to comparator's threshold errors the

error is very high for low amplitudes. For large amplitudes the saturation of the comparators

causes an extra delay that increases the correlation error. Consequently, for an optimum

operation (error < 0.5%), signals' frequency must be smaller than 15 MHz and signals' amplitude

must be in the range 200 to 500 mVpp, which is attained by adjusting video amplifiers' gain.

 
N

N
 = Z     ; 

N

N
 = Z

count

i-q count
r

count

i-i count
r

2121 (8.4)



Chapter 8: Design and Characterization of a 2D Experimental Interferometric Radiometer                 235

Overall correlators performance has proven to be excellent, with a near to 35 dB

dynamic margin, allowing to achieve a high differential radiometric sensitivity: 0.1 K.

8.6.- INSTRUMENT CHARACTERIZATION

Once all the subsystems are integrated and adjusted for optimum performance, the whole

system is characterized in order to verify its global performance and its calibration (see section

5.5). In addition to the basic control routine of the digital correlator unit, a number of routines

have been implemented to ease the calibration of offset and in-phase errors, as well as the

measurement of the radiometric sensitivity.

8.6.1.- Calibration of offset errors

As explained in chapter 4, offset errors are mainly originated from local oscillator's

thermal noise leakage through the mixers. Offset errors are software calibrated by subtracting to

the measurement, the correlation that is measured when two different matched loads are

connected instead of the antennas.

In order to have a good radiometric accuracy, offset calibration is performed during a

long period of time, usually on the order of 20-30 seconds, for which the radiometric sensitivity

is about σµr,i = 2 10-5. It has been noticed that the real channel has always a small positive offset,

and the imaginary one a small negative one (figure 8.11). Measured offset drifts are very small,

even for long measurement periods (figure 8.11). Peak-to-peak offset drifts are as small as ∆Zr =

3 10-4 (∆Vr=0.18 K) in one hour and a half.

Figure 8.9.- Digital Correlator Unit linearity
error vs. signal's frequency. η = 50 %, 
A=300mVpp
(Function generator accuracy "0.5%)

Figure 8.10.- Digital Correlator Unit linearity
error vs. signal's amplitude. η = 50 %,
f=15MHz.
(Function generator accuracy "0.5%)

Z - Z = Z offset i r,
(5)

measured i r,
(4)

i r, (8.5)
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Figure 8.11.- Real and imaginary offset drifts.

Once offset errors are calibrated, the normalized correlation is obtained by using the

non-linear relationship:

(8.6)

8.6.2.- Calibration of in-phase errors

In-phase errors are hardware calibrated by injecting correlated noise to both

channels and by adjusting the phase with an X-band phase shifter inserted between the LO

and a TV-DBS external unit (figures 8.1 and  8.2).

The injection of correlated noise is a major problem, since any passive power

splitter with isolated outputs, i.e. a Wilkinson power divider, contains at least one resistor

that also introduces correlated noise. In addition, the noise generated in the Wilkinson's

resistance is in 0º-180º phase at its outputs and cancels the noise generated by a matched

load connected at the Wilkinson's input. Therefore, it was necessary to built a X-band  non-

resistive power splitter (figure 8.2). However, since its outputs are not isolated, front-end

inputs must be well matched in order to perform properly. In this way, the amount of noise

that is reflected and then coupled to the other port through the non-isolated outputs of the

power splitter is negligible and phase calibration is not perturbed by new offset terms. 

At this point, the phase calibration routine allows the user to introduce the real and

imaginary offsets, or to pick up the offset values that were previously measured. The

correlation is then measured with typical integration times on the order of 3 seconds, and

phase calibration is repeated until the measured imaginary part of the correlation is zero.
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Mid-term system's phase stability is shown in figure 8.12. Anyway, during the

measurement of a set of baselines system's phase stability is mainly degraded by the

movement of the cables connecting the antennas to the front-end. Phase errors must be

considered even if a pair of phase stable cables are used. In the next chapter, a procedure

is described to track these phase variations, which are very important when forming

synthetic images.

Figure 8.12.-Measured phase drifts.

8.6.3.- Calibration of amplitude and quadrature errors

As it is shown in chapter four, amplitude and quadrature errors appear as a

consequence of mismatches in the channel's frequency response and differential errors in

the sampling times in the comparators of the real and imaginary channels of digital

correlators. In this section, a new procedure is devised to characterize, measure and then

calibrate overall system's amplitude and quadrature errors, neglecting their origin: filters'

response, correlators... . This technique consists on the measurement of the response of

both real and imaginary channels when the phase of the phase-shifter (figure 8.1) is varied.

In this situation, the theoretical real and imaginary correlations, should vary according to:

(8.7)

However, when amplitude and I/Q errors are present, the measured normalized

correlations take the form µ , µ  (equations (4.52) and (4.53) ):r i
(4) (4)
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Figure 8.13.- Graphical calibration of overall
amplitude and quadrature errors.

Figure 8.14.- Uncalibrated (µ , µ ) plot forr i
(4) (4)

different IF attenuations.

(8.8)

from which the calibrated correlations can be extracted. Figure 8.13 shows the plot of

(µ , µ  ), continuous line, and that of (µ ,µ ), dotted line. Unknowns have been foundr i r i
(4) (4) (2) (2)

by adjusting the set of measurements to a circle by the least squares method. Prior to the

optimization process g  is set to 1, and µ  is computed from the knowledge of the physicalr o

temperature of the matched load connected to the input of the non-resistive power splitter,

and the previous measurements of the front-ends' noise temperature, including cables and

connectors' losses. The overall quadrature error is about 2 =-5.55º, which is above theq

demodulator's quadrature nominal error because  they are forced to work in a larger

bandwidth, and the overall amplitude error has found to be g =0.96, which is within thei

predictions made in chapter 4 for the filters' and correlators' baseline amplitude error.

 

The uncalibrated eccentricity diminishes from 1.13 down to 1.02. At present, it is

not well known why it is not possible to calibrate completely the eccentricity, but it can be

probably due to the fact that quadrature errors (figure 8.7) are not constant with frequency.
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To validate the calibration method, and to test the robustness of the digital correlator unit

versus signal's power level, the previous measurement has been repeated by inserting attenuators

from 10 dB up to 30 dB at the IF stage. Results are shown in figure 8.14, and demonstrate that

even when signals' level is strongly reduced, the correlator unit performs well and the ellipse

preserves approximately its shape and orientation. However, ellipse's amplitude has decreased

because signal's amplitude is too low to excite the comparators at each sampling time and some

counts are missed. The slight deformation suffered by the ellipse, is mainly due to the impact of

signal's level and comparators' threshold errors.

8.6.4.- Characterization of system's fringe-wash function

The fringe-wash function is the measurement of the decorrelation suffered from a signal

when it is correlated when a delayed version of itself. It is related to the receivers' frequency

response trough:

The measurement of the fringe-wash response is performed by injecting correlated noise

to both channels with the non-resistive power splitter. Different delays are generated by inserting

different coaxial cables in the path of the i1 baseband signal. These delays are measured with a

reflectometer measuring the two-way delay introduced when a pulse train is injected.

Noise is generated with a Hewlett-Packard wide band noise source with a ENR=15dB

[HP A], which is equivalent to a matched load at a physical temperature of:

The theoretical module of the normalized correlation at τ=0 is given by:

which is very close to unity.

e  r =  r
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However, the measured correlation at the

origin is much smaller, 0.827 (figure 8.15),

coming from an absolute gain loss due to

differences in the receivers' frequency response

between the i1-i2 channels:

gr=0.827/0.977=0.846.  In addition, in section

8.6.3 it is found that the relative loss in the

correlation between i2-q1 was gi=1/0.96=1.04

times smaller than that between the i1-i2 channels,

resulting in an absolute loss due to receivers'

frequency response between the i2-q1 channels of:

gi=0.846 0.96 = 0.812. As studied in chapter

four, it is found that for the decorrelation levels

involved τ < 10 ns, the fringe-wash function is

best fitted by a gaussian function (gaussian filters

B=30 MHz), while for large delays, the

secondary lobes are best fitted by a "sinc"

function (rectangular filters B = 30 MHz). At

present, the large amplitude of the secondary lobe

shown in figure 8.15 is not well understood.

8.6.5.- Radiometric sensitivity characterization

Radiometric sensitivity is characterized with two tests:

i) Two matched loads are connected to front-ends' input the standard deviation is computed

from a large set of measurements for different integration times and

ii) A matched load is connected to the input of the non-resistive power splitter  producing

correlated noise. Two adjustable attenuators are connected to power splitter's outputs producing

uncorrelated noise and attenuating the correlated noise generated by the matched load. The

complex correlation is then measured for different values of the attenuation and for different

phases determined by the phase shifter. Results are checked with theoretical results to be

validated.

Figure 8.15.- Measured fringe-wash function: i)
measured module and gaussian/rectangular fits
and ii) measured phase
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8.6.5.1.- Radiometric sensitivity dependence on the integration time

Correlator's output when two different matched loads are connected to the inputs of the

front-end must be zero except for small offset errors that drift very slowly and can be calibrated

and thermal noise due to finite integration time. When the visibility sample is zero: V = 0 + j 0,

the radiometric sensitivity is given by (equation (3.65)):

where: TA = 290 K, TR1 = 120 K, TR2 = 90 K, B . 30 MHz is obtained by adjusting the fringe-

wash function by a gaussian function and for 1B/2L digital correlators the effective integration

time is related to the integration time are related by (table 3.6):

With these parameters, equation (8.12) reduces to:

Figures 8.16 and 8.17 show the normalized radiometric sensitivity of the real and the imaginary

channels:

         
These plots are very well fitted by equation (8.14). Note that the error in the imaginary

part of the normalized visibility is slightly smaller than that in the real part. However,  to calibrate

amplitude and I/Q errors, the imaginary channel must be multiplied by an 1.04 factor and,

therefore, noise is amplified too.

At this point it should be remembered that these radiometric sensitivities correspond to a

single baseline but, when forming synthetic radiometric images (chapter 9), uncalibrated system

errors and antenna errors must be also taken into account.
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Figure 8.16.- Radiometric resolution of the real
part of the normalized visibility.

Figure 8.17.- Radiometric resolution of the
imaginary part of the normalized visibility.
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8.6.5.2.- Experimental validation of the radiometric sensitivity figures

Figure 8.18 shows the test set-up used to perform sensibility measurements and to

demonstrate that the instrument has the required radiometric sensitivity.

Figure 8.18.-Sensibility measurements test set-up.

A matched load injects correlated noise to the two channels by means of a 3 dB non-

resistive power splitter. This correlated noise is further attenuated by two attenuators placed

at each divider output that add their own uncorrelated noise to receivers' noise. System's

output is then given by:

(8.15)

where N = N -N + N  and N  is the phase of the  i  channel and N  is the phase introduced1 2 OL i OL
th

by the phase shifter. If high values of attenuation are considered, the absolute correlate

noise detected by the system is given by:
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Figure 8.19 shows the theoretical sensitivity circles for 0, 10, 20 and 30 dB of

attenuation for TR = 100 K.  For B = 30 MHz, τ = 5 s, and

K395K90K290K120K290Tsys =++= , the radiometric sensitivity is given by:

which sets the minimum module of the normalized visibility that can be measured.

Figure 8.20 shows the measured sensitivity circles for τ = 5 s. When the detected

correlated noise is decreased the effect of radiometric resolution and system drifts are more

important. System's drifts have a  critical impact at 30 dB attenuation: in fact, the high

eccentricity of figure 8.20d is due to an offset drift in the imaginary channel on the order of the

magnitude being measured.
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Figure 8.19.- Theoretical sensibility circles.T = T =100 K,  J = 4.R1 R2

Figure 8.20.- Measured sensibility circles.T = 120 K, T = 90 K,  J = 5 s.R1 R2
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Figure 8.21.- Photograph of the complete interferometric radiometer.

8.7.- CONCLUSIONS

This chapter has presented a description of the basic hardware composing the

interferometric radiometer. The description of some basic subsystems, such as power

supplies, WR-75 to SMA and WR-75 to WR-90 transitions, or the mechanization and

integration of all the subsystems in a portable instrument has been omitted. 

Subsystems have been characterized pointing out the critical aspects and their

influence in the overall system's performance, which has also been verified. At this point

it is interesting to note that a new procedure to characterize and calibrate amplitude and

phase errors in an interferometer baseline has been devised. 

The result is a high sensitivity (differential) instrument: )I . 0.1 K for J = 1 s,

reliable and easy to work with, as it has been demonstrated during the field measurements

campaign (chapter nine), in which it has suffered from transportation shocks, long periods

of continuous working and temperatures in the shade of 30 ºC.  The complete integrated

system is shown in figure 8.21.
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Chapter 9. EXPERIMENTAL VERIFICATION OF
A 2D SYNTHETIC APERTURE
INTERFEROMETRIC RADIOMETER

The first part of this chapter presents a review of the steps involved to obtain an

apparent brightness temperature synthetic image: the initial hardware calibration and the

calibration of phase drifts, the measurement sequence of the visibilities itself, the software

calibration and the inversion of the set of visibility samples. Some of these steps have been

previously explained in detail (chapter eight) or are special cases of more general calibration

procedures (chapter six) and inversion algorithms (chapter five).

The second part is devoted to the measurement of the angular resolution of a 2D

Synthetic Aperture Interferometric Radiometer. Experimental results are checked with the

theoretical ones obtained in chapter three.

Finally the third part of this chapter presents a set of synthetic brightness temperature

images of artificial and natural test scenes obtained with this hardware. One of this

measurements is performed inside an anechoic chamber (constant brightness temperature).

Errors in the reconstructed image agree with the radiometric accuracy budget performed in

chapter four.

9.1.- OBTAINING AN APPARENT BRIGHTNESS TEMPERATURE  IMAGE

9.1.1.- Calibration of the visibility samples

Offset errors are mainly generated by local oscillator leakage through the mixers and

are calibrated by subtracting to each measurement the correlation obtained when the antennas

are replaced by two matched loads.

Since peak-to-peak offset drifts are very small, on the order of 0.18 K (figure 8.11) these

calibration values hold during all the measurement process.

Phase is initially hardware calibrated by injecting correlated noise generated by a

matched load connected to a non-resistive power splitter whose outputs are connected instead

of the antennas. Phase is adjusted by means of a phase shifter inserted between the first local

oscillator and the mixer of a channel.

Z - Z = Z offset ir,
(5)

measured ir,
(4)

ir, (9.1)
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However, the phase drifts from the initial calibration values due to several reasons:

i) each time the "phase-stable" cables connecting the antennas to the external units are bent,

phase varies several degrees,

ii) there are phase variations introduced each time cables are unplugged to replace the non-

resistive power splitter by the antennas, or when the antennas are slid along the Y-arms, and

iii) by the instrumental drifts themselves (figure 8.12).

Phase drifts are calibrated by means of a "polarimetric hot point" consisting in a

matched load connected to a 26 dB gain X-band amplifier connected itself to a pyramidal horn

located right in front of the center of the Y-array. Once the offset is calibrated, the alignment of

the "hot point" is performed by measuring the normalized correlation for two antenna positions

aligned horizontally and vertically and finding its maximum. The photograph in figure 9.17

shows this configuration. Then, at each baseline a measurement with the X-band amplifier

connected is performed. From this measurement the phase of the visibility sample is extracted

and then subtracted from the next measurement.

When due to the geometry of the scene being imaged, it is not possible to locate the "hot

point" right in the center of the field of view, the previous procedure is followed, as before, but

an additional phase term +2π (u ξo + v ηo) is added to the phase-calibrated visibility samples to

account for the off-boresight position of the "hot point". The position (ξo, ηo)  of the "hot point"

is determined by direct hexagonal inverse Fourier Transform of the visibility samples used for

calibration. The impulse response obtained in this way is blurred because of phase drift errors,

but its maximum is very close its true position (section 9.2).

Amplitude mismatches and quadrature errors are calibrated according to equation (8.8):

Finally, visibility samples are denormalized by multiplying by the channel gain factors:
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(9.4)

and the zero-baseline is set as:

 (9.5)

The antenna temperature must be measured with a total power radiometer or a Dicke one,

which was not available at the time these measurements were done. Except for the

measurement performed inside the anechoic chamber, T  is estimated from an imageA

obtained for T = 0 K, depending on the portion occupied in the image by the sky and byA 

the Earth, whose apparent brightness temperatures can be estimated. T  usually ranges fromA

200 K to 300 K. 

At this point, an appropriate window is computed to tapper the visibility samples.

As in the error analysis and inversion methods, the Blackmann window is preferred over

the rest because it is the one with the lowest secondary lobes. The rectangular one, even

though has the highest spatial resolution, produces low-quality images because of the high

secondary lobes that generate artifacts in the reconstructed image.

(9.6)

Finally, since fringe-washing effects are completely negligible B/f  = 0.3 % and0

there is only a pair of antenna patterns, visibility samples are inverted simply with the

hexagonal inverse Discrete Fourier Transform explained in chapter six.

(9.7)

9.1.2.- Measurement Sequence

Figure 9.1 shows the measured (u,v) points (asterisks) and the (u,v) samples

obtained by the hermiticity of the visibility function (dots) for a Y-array of N  = 10EL

antenna positions per arm spaced d = 0.89 8. It also shows the set measurements used to

cover the (u,v) domain with a minimum number of changes of the antennas (plugging-

unplugging). The measurement sequence is summarized below. Antenna positions are

counted from the center of the Y.



l ' 2 D 2

8
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Figure 9.1.- (*) Measured (u,v) samples and (.) (u,v) samples obtained
by hermiticity for NEL=10 antennas per arm spaced d=0.898

i) With antenna 1 in arm 1,

position 1, all the

correlations with antenna 2

in arm 3, positions from 1

to N , are measured.EL

ii) Repeat (i) with antenna

1 in arm 1, positions 2, 3,

4... N  and antenna 2 inEL

arm 3.

iii) Repeat steps (i) and (ii)

moving antenna 1 along

arm 2 instead. 

iv) Repeat steps (i) and (ii)

with antenna 1 slid along

the first arm and antenna 2

slid along the second arm.

v) With antenna number 1 in the center and antenna number 2 in arms 1, 2 and 3

respectively measure all the possible correlations lying along the Y-arms.

For each position at least two measurements are made, the first for phase calibration

by turning on the "polarimetric hot point", and the second one to measure the apparent

brightness temperature distribution by turning off the "hot point". Usually a second

redundant measurement is performed to check information's integrity.

9.2.- EXPERIMENTAL VERIFICATION OF 
INTERFEROMETER'S ANGULAR RESOLUTION

The impulse response of a Y-shaped two-dimensional interferometric radiometer

is theoretically studied in chapter three. In this section the experimental results obtained by

measuring noise point sources are presented and compared to the theoretical ones. As in

antenna theory, the far-field condition is given by (22.5º phase error due to the spherical

wave-front):

(9.8)

where D the maximum baseline distance, D = 15.6 8, and 8 = 2.8 cm at 10.7 GHz. Since

this condition can not be satisfied in laboratory conditions, one of the antennas is placed

right in the center, and it is used for phase calibration as explained in section 9.1, while the

other is touching the first one. 
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Figure 9.2.- Near-field experimental setup for
angular response measurement.

In this way, the image is focused in

the center of the field of view and signals

coming from the both noise sources are

focused. The experimental setup is shown in

figure 9.2, for which the angular spacing

between the point sources is:

(9.9)

In order to distinguish both sources, their

angular spacing must be larger than the

interferometer's half-power synthesized

beam-width. It is found that the minimum

number of antenna positions per arm is N =10 with d =  0.89 8 spacing for the BlackmannEL

window and N  = 7 with d =  0.89 8 spacing for the rectangular window. Table  9.1 showsEL

the main properties of the equivalent arrray factor for the rectangular and the Blackmann

window.

Rectangular Rectangular Blackmann Blackmann
window: window window: window:

theoretical )2)2)2)2  measured  )2)2)2)2 theoretical )2)2)2)2 measured )2)2)2)2-3dB -3dB -3dB -3dB

N = 10EL 3.21º 3.17º 4.75º 4.70º

N = 9EL 3.55º 3.52º 5.27º 5.21º

N = 8EL 3.99º 3.94º 5.91º 5.84º

N = 7EL 4.54º 4.49º 6.73º 6.66º

N = 6EL 5.20º 5.22º 7.82º 7.74º

Table 9.1.- Half-power synthesized beamwidth for different windows and different number of antenna

positions per arm spaced d=0.89 8. Point sources angular spacing: 5.17º

Figures 9.3 to 9.7 show the measured response of the two-point scene. The 0 = 0

cut clearly shows the effect of beam broadening due to the smaller synthesized effective

area because of the smaller number of antenna positions per arm. The agreement between

theoretical and measured half-power synthesized beamwidths is shown in table 9.1.

Measured Side Lobe levels also agree very well with the theoretical values: measured SLL

are 7.9 dB and 15dB for the rectangular and Blackmann windows, while the corresponding

theoretical values are 8.6 and 16.5 dB.
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Figure 9.3.- Measured response of two-point sources. N =10 antenna positions per arm, d=0.89 8EL

spacing between antennas.

Figure 9.4.- Measured response of two-point sources. N =9 antenna positions per arm, d=0.89 8EL

spacing between antennas.
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Figure 9.5.- Measured response of two-point sources. N =8 antenna positions per arm, d=0.89 8EL

spacing between antennas.

Figure 9.6.- Measured response of two-point sources. N =7 antenna positions per arm, d=0.89 8EL

spacing between antennas.
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Figure 9.7.- Measured response of two-point sources. N =6 antenna positions per arm, d=0.89 8EL

spacing between antennas.

9.3.- FIELD MEASUREMENTS CAMPAIGN

9.3.1.- Artificial Scenes

The field measurement campaign demonstrates the passive 2D-aperture synthesis

concept with artificial and natural scenes with contrasts much smaller than those of the "hot

points" used to measure the impulse response. Two types of artificial test scenes are shown:

i) the first one consists in the measurement inside a closed anechoic chamber of the set of

visibility samples and  then, the generation of the synthetic apparent brightness temperature

distribution with the antenna temperature known to be the physical temperature of the

anechoic chamber. This test image is used to analyze the generation of errors in the

imaging process including uncalibrated errors, residual calibration errors and errors induced

in discretization and inversion processes.

ii) the rest of these measurements are metallic forms over a 45º inclined plane of

microwave absorbers reflecting the sky radiation plus the atmospheric downwards

contribution. Metallic forms are constructed with adhesive aluminum paper glued to shaped

cardboards.
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9.3.1.1.- Artificial Scene No 1:
 Measurement inside an Anechoic chamber: Image Error Generation

When the interferometer is put inside an anechoic chamber, microwave absorbers act as

a black body: the antenna temperature is equal to the physical temperature of the absorbers and

the apparent brightness temperature is constant in all directions. Consequently, all the visibilities

should be zero, except for the zero baseline. However, the error sources studied in chapter four,

as well as residual calibration errors in the visibilities lead to a non-constant apparent brightness

temperature. This scene is then used to verify overall system's performance, including the

calibration and the inversion algorithms. The radiometric accuracy budget for the interferometric

radiometer can be summarized as follows:

- Discretization error: 0.13 K

- Finite integration time error: 0.61 K NEL = 10, τ = 2s, Blackmann window

- Amplitude error: 1.00 K 2 % residual eccentricity

- Phase error: 0.83 K 21 residual phase error

- In-plane position errors: 0.18 K 1 mm positioning error

Predicted radiometric accuracy: 1.45 K rms

while the standard deviation computed from the reconstructed image shown in figure 9.8 in

the alias free FOV is: 1.73 K, and peak errors are:  ∆Τmax= 4.1 K and ∆Τmin = - 4.9K. This value

agrees within a 20% with the predicted one, which does not include uncalibrated coupling

effects.

9.3.1.2.- Artificial Scene No 2:
 Inverted metallic "L" with small metallic square over microwave absorbers

The following results are presented showing three images: a photograph of the scene

being imaged on the left side, on the upper right side the alias free field of view reconstructed

image, AF-FOV . "171, and the complete synthesized image including the aliased regions in the

lower right side. As it is shown later, in some images the alias-free field of view can be partially

extended when there are sky regions overlapping with Earth regions.

Figure 9.9 shows a metallic inverted "L" with a metallic small square underneath. The

high contrast presented between the apparent brightness temperature of the microwave

absorbers and the sky, on the top, or the sky radiation reflected on the metal plates is very

noticeable. Note also the temperature decrease in the right side due to the edge of the absorbers,

and in the center due to the small hole between them.
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Figure 9.8.-  Artificial Scene No 1: Measurement inside an Anechoic chamber: Generation of errors.
T =298K, N =10, d = 0.89 8A EL

Figure 9.9.- Artificial Scene No 2:  Inverted metallic "L" with small metallic square over microwave
absorbers. N  = 10, d = 0.89 8.EL
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9.3.1.3.- Artificial Scene No 3: 
 Metallic frame over microwave absorbers

The photography of figure 9.10 shows a metallic frame over microwave absorbers.

One of the Y-arms of the array can be seen on the bottom right side of photograph. 

In the reconstructed brightness temperature image, in the upper side, it can be

appreciated the lower temperature of the sky and also a sky reflection from a metallic hook

of the wooden table used to support the microwave absorbers. Note that the apparent

temperature in the aliased region under the frame is low because there are sky contributions

adding, while in the left and right sides there overlapping contributions of the absorbers.

In addition, note also that the "tails" of the left side alias region are more important because

of the high brightness temperature of the brick wall compared to the sky temperature in the

right side.

9.3.1.4.- Artificial Scene No 4: 
 Metallic cross over microwave absorbers

Figure 9.11 shows a photography of a metallic cross over microwave absorbers. In

this scene the dimensions of the cross are much larger than the spot of the synthesized

beam in order to observe the definition of contours and to test how constant is the

reconstructed image inside the cross. 

In the alias free reconstructed image it can be appreciated that the apparent

brightness temperatures both in the metallic cross and in the absorbers is quite uniform, as

expected, except for the alias tails in the left side due to the high brightness temperature of

the brick wall.

In the complete reconstructed brightness temperature image, at the end of the right

arm of the cross, it can be appreciated the edge of the microwave absorber, as well as in the

upper side it can also be appreciated the contour formed by the contrast between the

apparent brightness temperature of the microwave absorbers and that of the sky. 
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Figure 9.11.- Artificial Scene No 4:  Metallic cross over microwave absorbers N = 10, d = 0.89 8EL

Figure 9.10.-  Artificial Scene No 3: Metallic frame over microwave absorbers. N =10, d =0.898EL
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Figure 9.12.- Artificial Scene No 5: Metallic UPC logo and acronym over microwave absorbers. 
N =10, d=0.89 8EL

9.3.1.5.- Artificial Scene No 5: 
  Metallic UPC logo and acronym over microwave absorbers

The bottom side of figure 9.12 shows the logotype of the Polytechnic University of

Catalonia and its acronym "UPC" formed with metallic pieces. In the upper side there are

represented the four recovered brightness temperatures images. Each sign has been imaged

in a single measurement since for the alias free FOV, about ±17º, and the 4.75º synthesized

half-power beamwidth, alias free images are formed by about 7 x 7 independent pixels,

from the N  x N  = 31 x 31 original ones (N  = 3 N  +1 = 31).T T T EL

The balls in the lowest side of the UPC logotype were designed to be 17 cm of

diameter, just the size of the spot of the half-power synthesized beamwidth at the distance

of 2 meters. The upper balls are of the same size but, as they are more distant, they are

observed under a smaller angle and they are resolved more poorly. In the recovered image

note the shape of the microwave absorber that is outstanding in the upper side.

As in the previous images, in the images showing the letters "U", "P" and "C" it can

be observed the border between the apparent brightness temperature of the microwave

absorber and that of the sky. 
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9.3.2.- Natural Scenes 

As natural scenes we have imaged landscapes and buildings seen from the Campus

Nord of Polytechnic University of Catalonia, Barcelona. In this section five successfully

recovered synthetic images are presented, as well as two other ones that suffered from

interferences when the interferometer was pointing to two different microwave relays.

9.3.2.1.- Natural Scene No 1: 
 Water tank and mountain

Figure 9.13 shows a water tank over the mountain located in the right side of the

photograph. On the right side of figure 9.13 it can be observed the recovered alias free FOV

and the complete synthetic images corresponding to the previous photograph. It should be

noted that this image has been obtained with the Y-array with 5 antenna positions per arm

and the spatial resolution is poorer than before )2  = 9.35º.syn
-3dB

This synthetic image is a clear example in which the alias free FOV can be

extended beyond the strict limits imposed by the unit circle repetition. In figure 9.13c the

ground-sky border can be easily appreciated. From left to right: a descent due to the brick

building, an ascent due to the mountain, a hot spot in the center probably due to building,

another ascent due to the mountain and, already in the aliased region, a flat summit with

a small peak due to the water tank and then another ascent due to the mountain.

 

9.3.2.2.- Natural Scene No 2: 
  Sta. Caterina de Siena Street and Collserola mountain range

Figure 9.14 shows a photograph of a landscape of the Collserola mountain range

which limits Barcelona at the West. This image has been synthesized from the Y-array

configuration with N = 5 antenna positions per arm, spaced d=0.89 8. In the alias freeEL

synthetic image on the right side it can be appreciated how the brightness temperature map

follows the mountain-sky border. Two clear spots can be appreciated in the left side. They

are due to two houses with inclined slate roofs reflecting the downwards radiation from the

sky. In fact, in the photograph of 9.14 only one of these two houses is shown, but they can

be seen in figure 9.18. In the right side of Sta. Caterina de Siena Street (vertical in the

photograph) there is another house with an inclined roof, appearing as a cold spot in the

synthetic image.  The vegetation in the mountains and the street appear at a higher apparent

brightness temperature.
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Figure 9.13.- Natural Scene No 1: Water tank and mountain.N  = 5, d = 0.898EL

Figure 9.14.- Natural Scene No 2: Sta. Caterina de Siena Street and Collserola mountain range 
N =5, d=0.898EL
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9.3.2.3.- Natural Scene No 3: 
 UPC Campus Nord: roof of building D4 seen from D3's roof

Figure 9.15 shows the roof of building D4 seen from the roof of building D3. This

is a quite complex image because the building-sky contour has more details and there are

metallic parts over the roofs: air conditioning systems, pipes, antennas... However, in the

alias-free synthetic image the building-sky contour is appreciated, from left to right: a peak

due to next building's penthouse, a descent in the middle, and in the right side and ascent

due to the part of D3's penthouse being imaged. Note in the upper right side the step in the

brightness temperature following the step in the building. 

The brightness temperature in the lower zone is not as uniform as it is in other

images because the variety of materials found over the roofs: metals, woods, bricks and

stones. The cold spot that is clearly appreciated in the middle is probably due to the air

conditioning systems of the next building.

9.3.2.4.- Natural Scene No 4: 
  UPC Campus Nord: roof of buiding C3 seen from D3's roof

Figure 9.16 shows the roof of building C3 seen from the roof of building D3. In the

reconstructed synthetic image there is a straight horizontal line: the building-sky contour,

only interrupted by the ventilation tower on the right side. The three small chimneys on the

left side occupy an angular spacing of the half-power synthesized beamwidth and are not

resolved by the system, not even as a single point, because of the mixture with the sky.

This simple image clearly shows that the alias-free region can be extended, since

in the left and right sides there are only sky regions overlapping with themselves. It should

be pointed out that the sky apparent brightness temperature appears to be very uniform and

free of artifacts, except for the alias borders.
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Figure 9.16.-  Natural Scene No 4: UPC Campus Nord: roof of buiding C3 seen from D3's roof 
N =10, d= 0.89 8EL

Figure 9.15.-   Natural Scene No 3: UPC Campus Nord: roof of building D4 seen from D3's roof
 N =10, d=0.89 8EL
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Figure 9.17.- Natural Scene No 5: UPC Campus Nord: C5 and D5 buildings seen from the street
N =10, d= 0.89 8EL

9.3.2.5.- Natural Scene No 5:
   UPC Campus Nord: C5 and D5 buildings seen from the street

Figure 9.17 shows UPC Campus Nord C5 and D5 buildings seen from the street.

In the synthetic image the brightness apparent temperature contour of the buildings can be

appreciated over the cold brightness temperature of the sky. From left to right: a decreasing

line due to the perspective of the buildings on the left, a flat zone in the middle with a peak

at the position of the lamppost (vertical yellow line) and a vertical line for the building in

the right.

Note that the alias free FOV can not be extended since most of the aliased regions

are occupied by overlapping regions of high apparent brightness temperature: those of the

ground and the brick buildings.
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Figure 9.19.-  Natural Scene No 7: Tibidabo mountain and Norman Foster's commu
nications tower N =10, d= 0.89 8EL

Figure 9.18.-  Natural Scene No 6: TV relay N =10, d= 0.89 8EL
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9.3.2.6.- Natural Scenes No 6 and No 7:
   i) TV relay ii) Tibidabo mountain and Norman Foster's Communications
Tower

Figures 9.18 and 9.19 show the recovered synthetic images from a TV relay tower

and the Tibidabo mountain respectively. Even though the interferometer was designed to

work in the frequency band reserved for passive observations, due to radio-frequency

interference from other emissions in the saturated X-band, during the measurement

normalized visibilities took abnormal values and the polarimetric hot-point noise-injection

calibration procedure failed. 

The brilliant point in synthesized image in figure 9.19 is due to RF-interference

from Norman Foster's Communications Tower. It looks like the impulse response  without

phase calibration. 

9.4.- CONCLUSIONS

This chapter has first briefly presented the measurement technique to obtain two-

dimensional synthetic aperture radiometric images: i) the calibration procedures, ii) the

measurement sequence and iii) the processing of the measurements to get a synthetic

brightness temperature image.

The impulse response of a Y-shaped bi-dimensional interferometric radiometer has

been then measured in a phase-focused near-field set-up. 

And finally, some results of a field measurement campaign have been presented:

i) a measurement inside an anechoic chamber to study error propagation and generation in

the reconstructed image. Computed errors from the synthetic image agree with the

radiometric accuracy budget performed, according to the error analysis developed  in

chapter four,

ii) a set of near-field focused artificial scenes made from metallic pieces reflecting the sky

radiation, placed over inclined microwave absorbers, and

iii) a set of natural scenes of landscapes seen from the campus: mountains and buildings.

At the end, two unsuccessful results have also been presented to show the sensitivity  to

RF-interference.
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Chapter 10. CONCLUSIONS, 
ORIGINAL CONTRIBUTIONS 
AND FUTURE RESEARCH LINES.

10.1.- CONCLUSIONS

The submitted thesis is a contribution to the study of large two-dimensional

synthetic aperture interferometric radiometers devoted to Earth observation, with high

radiometric resolution 0.5 K, radiometric accuracy 1 K and spatial resolution 10 Km

planned to monitor geophysical parameters of the Earth's surface at a global scale with 1-3

days revisit time.

To do this, the equations of interferometric radiometry were previously revised in

[Bará et al 94] by Dr. I. Corbella. Previous approaches found in the literature for the

computation of the angular resolution and radiometric sensitivity have been also revised

and extended to the two-dimensional case and to include system imperfections and other

receiver peculiarities: filter model, type of demodulation Single Side Band/Double Side

Band... The trade-off between angular resolution and radiometric sensitivity is stated

mathematically in the original Interferometric Radiometer Incertitude Principle.

A new and exhaustive analysis of system imperfections and their impact on the

radiometric accuracy has been carried out, allowing to identify critical subsystems in which

efforts must be focused, mainly the repeatability of the antenna voltage radiation patterns

and frequency response of the channels. The improvement of system performance has also

been studied by means of a space-borne Y-interferometer simulator, which includes system

error models as well as the calibration and inversion algorithms described.

The calibration methods used in ESTAR, in radioastronomy and the current noise

injection method proposed for the MIRAS bread-board have been revised and a new

calibration method is proposed. It is a hybrid of: i) an original distributed correlated noise

injection method to calibrate channel amplitude and phase errors and ii) the redundant

space method, used in radioastronomy and now applied to Y-arrays, to calibrate constant

antenna amplitude and phase errors.
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The inversion methods used in ESTAR, in radioastronomy and some image

processing techniques have been revised. Because of the difficulties encountered in these

methods to deal with extended sources or to incorporate system errors, a new iterative

inversion algorithm has been proposed. The method proposed in this thesis is capable to

deal with system imperfections: antenna voltage pattern errors, antenna position errors and

fringe-wash effects and it is based on the Hexagonal Fourier Transform proposed by the

author. The HFFT processes the (u,v) hexagonally sampled visibilities by Fourier

transforming them into the reciprocal (>,0) grid with standard rectangular FFT routines,

preserving signal to noise ratio and avoiding interpolation artifacts.

Finally, these studies have been confirmed, as far as possible, by the development

of an experimental X-band two-dimensional interferometer radiometer. Instrument's

circuitry has been fully designed, implemented, characterized and calibrated with a new

procedure that calibrates overall amplitude and phase errors. The instrument consists of a

moving baseline formed by two antennas, two receiving channels and a 66 MHz complex

1 bit/2 level digital correlator. A measurements field campaign has been carried out to

assess its performance and compare it with the theoretical predictions in terms of:

radiometric sensibility and accuracy, angular resolution, calibration and synthetic image

formation algorithms.
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10.2.- ORIGINAL CONTRIBUTIONS

The original contributions of this thesis are listed below:

i) Generalization of the 1D ideal array factor originally described for ESTAR [Ruf et al. 88]

to the two-dimensional case and to take into account system errors and decorrelation

effects.

ii) Evaluation of the standard deviation of the visibility samples by taking into account the

following new effects: the kind of demodulation and the shape of the receivers' frequency

response.

iii) Evaluation of the average radiometric sensitivity taking into account the new formulas

derived by the author for the standard deviation of the visibility samples, the hexagonal

Fourier transform (viii) and the studies concerning redundancy and correlation between

errors performed by Dr. J. Bará.

iv) Derivation of the new "Interferometric Radiometer Uncertainty Principle", which states

that the product of the angular resolution by the radiometric sensitivity is a constant that

depends only on receivers' and correlators' parameters.

v) Systematic analysis and classification of interferometer errors and evaluation of their

impact over the radiometric accuracy budget. The main contributions in this field are: 

a) A visibility sample affected by antenna pattern errors has an error that is roughly

proportional to the antenna temperature and to the same spatial frequency

component of the Fourier Transform of the sum of the amplitude pattern errors

added to the difference of the phase pattern errors, 

b) The analysis of the impact of antenna coupling  explains the shape of the

experimental interference patterns found in [Ruf 91] and [Tanner and Swift 93].

c) Baseline errors, associated to the pair of antennas, receivers and the correlator

establish the design tolerances if a technically feasible noise injection calibration

method as proposed (iv) is to be used.

vi) Theoretical and numerical evaluation of the radiometric sensitivity and accuracy

improvements by means of pixel averaging.

vii) Proposal of the distributed noise injection method originally devised by Dr. F. Torres

and developed/tested by us.
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viii) Proposal of a new technique to perform FFTs over hexagonal grids with standard

rectangular algorithms, avoiding interpolations and preserving the signal-to-noise ratio.

ix) Proposal of a new iterative inversion algorithm that takes into account antenna voltage

pattern errors and fringe-wash effects, the other errors being previously calibrated.

x) Proposal of an experimental procedure to characterize the overall performance of a

baseline and calibrate it.

10.3.- FUTURE RESEARCH LINES

The future research lines opened by this thesis are:

i) a detailed analysis of channels' response, including antenna plus receiver's frequency

response, in the frame of MIRAS/LICEF activities,

ii) the construction of a Dicke radiometer to complete the digital interferometer developed:

providing a measurement of the antenna temperature that will enable to accurately

denormalize the visibility samples and to calibrate the effect of antenna coupling.

iii) an experimental field campaign to analyze the impact of antenna coupling in the

antenna radiation patterns and in the interference pattern of a baseline.

iv) the development of an integrated digital correlator to miniaturize and improve the

performance of the 1 bit/2 level digital correlator unit.

v) an improvement of the 2D space-borne Y-interferometric radiometer simulator to test

improved calibration methods and to analyze in more detail system's performance and its

improvement by means of pixel averaging,
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NOMENCLATURE AND BASIC CONVENTIONS

The conventions for the names and symbols of the magnitudes involved described below

are used (figure N.1) :

( )i Refers to the channel number

( )ij  Refers to the baseline formed by antennas i-j

α [-] Receiver voltage gain (defined below).

αOL [-] Local oscillator ∆Τ factor

αW [-] Windowing ∆Τ factor

αF [-] Filter type ∆Τ factor

β(x,y,z,f) [V Ω-2 Hz-1] Frequency domain scalar field

(∆u, ∆v, ∆w) [-] Baseline error due to antenna arm oscillations or

filter mismatches

εHV [-] Cross-polarization ratio

Γp (θ,φ) [-] Fresnel reflection coefficient at p polarization

ζ  = (ξ2+η2)1/2 [-] Distance to the origin in the (ξ,η) plane

ξ  = sin θ cos φ [-] Directing cosine with respect to x axis

η  = sin θ sin φ [-] Directing cosine with respect to y axis

ηM [-] Antenna efficiency

ηl [-] Main beam efficiency

λ [m] Wavelength

ρ = (u2+v2)1/2 [-] Distance to the origin in the (u,v) plane

σ [W sr-1 m-2 K-4] Stefan-Boltmann const = 5,670 10-8 Wsr-1m-2K-4

σo
s [-] Scattering coefficient

µ(i) (u,v) [-] Normalized version of V(i) (u,v)

Ω [ sr ] Solid angle

a [-] Albedo

a, b [-] 1B/2L digital correlator's threshold error parameters

Figure N.1.- Geometry of the source
(X,Y) and observation (x,y) planes.
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Ae [m2] Antenna effective area

Ar [m2] Receiving antenna effective area

AFo (ξ,ξ´,η,η´) [-] Ideal array factor or impulse response to a modified

temperature consisting in a delta function located at

(ξ',η ')

AFoε(ξ,ξ´,η,η´) [-] Same as AFo (ξ,ξ´,η,η´) for imperfect antennas,

receivers or correlators without spatial

decorrelation effects

AFf (ξ,ξ´,η,η´) [-] Same as AFo (ξ,ξ´,η,η´) for with spatial

decorrelation effects

b(x,y,z,t) [V Ω-2] Time domain scalar field

B [Hz] Bandwidth

B (θ,φ) [W sr-1 m-2] Brightness

Bbb [W sr-1 m-2] Total brightness of the blackbody

Bf (θ,φ) [W sr-1 m-2 Hz-1] Spectral brightness density

Bi  (θ,φ) [W sr-1 m-2] Total brightness incident over an antenna

c [ m s-1] Speed of light c = 2.998 10 8 m s-1

cij [-] Gain of the (ideal) correlator i-j

d = %(Dx
2+Dy

2) [m] Spacing between antennas

Dx, Dy [m] Spacing between antennas: x- and y- component

e (θ,φ) [-] Emissivity

e (t) [V Ω-2 or K
2

](*) Complex envelope of a signal

E[g] Time average of the time variable g(t)

E[g]e Ensemble average of the random variable g

f [Hz] Frequency

F (θ,φ) [-] Antenna radiation voltage pattern Defined such that

F(θ,φ) = %D . Fn (θ,φ), where D is the directivity

Fn (θ,φ) [ - ] Normalized antenna radiation voltage pattern

defined such that *Fn*max = 1. It is assumed to be

frequency indepdendent.

Ft(θ,φ) [ - ] Surface radiation pattern

fo [Hz] Nominal center frequency of receiver i

fi [Hz] Actual center frequency of receiver i

fOL [Hz] Local oscillator frenquency

fIF = fO-fOL [Hz] Nominal intermediate frequency

fi´= fi -fOL [Hz] Intermediate frequency of receiver i

fij [Hz] Equivalent centerl frequency of the i-j baseline
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h [J s] Plank's constant h = 6.626 10-34 J s

hv [m] Vegetation cover height

h(t) Impulse response of H(f)

H (f) [-] Frequency voltage transfer function of the channel,

from the antenna output down to the correlator

input

Hn(f) [-] Normalized (*Hn(f)*max = 1) of H (f)

i (t), q(t) [V Ω-2 or  K
2

](*) In-phase and quadrature components of a bandpass

signal

k [rad m-1] Wavenumber

kB [J K-1] Boltzmann constant = 1.381 10-23 J K-1

Ke [m-1] Extintion coefficient of the vegetation cover

L [-] Mixer conversion loss

Lc [-] Mixer attenuation of the LO at the FI port

mg [g m-3] Gravimetric soil moisture

mv [g m-3] 0-5 cm average soil moisture

NEL [-] Number of antennas per arm in a Y-,T-, U-... array

NT [-] Total number of antennas per arm in the array

NV [-] Number of available different (u,v) points

P [W] Power

Pi [W] Incident power

Pr [W] Reflected power

r [m] Distance to the origin of coordinates

R, R' [-] Polarization coefficients

Ra(τ) [W] Self-correlation of a(t): the analytic signal a(t).

)( R A τ~ 1 [W] Self-correlation of the complex envelope of a(t).

si [V Ω-2 or K
2

](*) Analytic output of receiver i

S [l] Sea salinity

SA(f) [W Hz-1] Spectral density of the complex envelope of a(t)

SST [K] Sea surface temperature

( ) )()(
)(

,T ηξηξ
ηξ

ηξ
ηξ  , F   , F  

 -  - 1

 , 
 = n

*

n22

B
21

Τ Modified brightness temperature  [K]

)( ηξ  , f  Τ [K] Recovered Τ(ξ,η) from Vf(u,v)
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TA [K] Antenna temperature

TAP (θ,φ) [K] Apparent brightness temperature

TB [K] Brightness temperature = e Tph

TDN (θ,φ) [K] Atmospheric downward radiation

Tlo [K] Physical temperature of the local oscillator

Tph [K] Physical temperature

Ts [K] Soil physical temperature

TSC (θ,φ) [K] Scattered radiation

TUP (θ,φ) [K] Atmospheric upward radiation

Tv [K] Vegetation physical temperature

TR [K] Receiver's noise temperature

Tsys=TA+TR [K] System's temperature

u = Dx/λ [-] Normalized version of the antenna spacing:

x-component

v = Dy/λ [-] Normalized version of the antenna spacing:

y-component

Vo (u,v) [K or W](*) Ideal visibility function: Vo(u,v) = ö [Τ (ξ,η)]
Vf (u,v) [K or W](*) Same as Vo (u,v) but considering spatial 

decorrelation effects

Vij [K or W](*) Visibility sample measured as the correlation from

signals coming from channels i and  j

V(1) (u,v) [K or W](*) Visibility function including antenna pattern and

fringe-washing errors

V(2) (u,v) [K or W](*) Same as V(1) but includes antenna coupling errors

V(3) (u,v) [K or W](*) Same as V(2) but includes in-phase and quadrature

errors

V(4) (u,v) [K or W](*) Same as V(3) but includes amplitude errors

V(5) (u,v) [K or W](*) Same as V(4) but includes offset errors

W [-] Relative bandwidth, B/fo

WS [m s-1] Wind speed

x, y, z [m] Coordinates in the observation plane

X, Y, Z [m] Coordinates of the object plane

Zij [Ω] Mutual impedance between antenna ports i-j

(*) Note:

If the visibility function is defined to be a power, its units are [W] and the analytic signals

from which it is computed have the dimensions of [V Ω-2].

If the visibility function (2.61) is normalized by (2.62), its units are [K] and the normalized

analytic signals from which it is computed have the dimensions of [K
2

]
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(N.4)

(N.5)

(N.6)

normalized analytic signals from which it is computed have the dimensions of [K ]½

* H(f) = " H (f) by definition. n

* Ideally, all the filters should be identical and centered around f , where H (f ) shouldo n o

equal unity.

* Note also that the study is performed with analytic functions, whose spectra is defined

only for positive frequencies. Receiver absolute and relative noise bandwidths, B and

W, are defined as:

(N.1)

* The cross-correlation function R  of the signals coming from receiving chains i andij

j is related to receivers' impulse responses and its normalized value r  (t) (complexij

degree of coherence) by the following expressions:

(N.2)

where  and  refer to the receiver transfer functions translated to the

frequency origin and f  ¶ f , but accounts for possible errors in the filter's centerij o

frequencies. It turns out that:

(N.3)

* Definition of functions:

Rectangle function:

Triangle function:

Step  function:
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APPENDIX 1. RADIOMETRIC SENSITIVITY COMPUTATION FOR
SSB/DSB INTERFEROMETRIC RADIOMETERS
USING COHERENT I/Q DEMODULATION

Let the signals at the outputs of the antennas be:

Subindexes "i" and "q" stand for the in-phase and quadrature components of these

signals which are corrupted with receivers' thermal noise: n i q 1,2(t). The in-phase and quadrature

components of these signals, when coherently demodulated and low-pass filtered, prior to

correlation, are given by:
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 (A1.2)

where: ∆ω = 2π ∆f = 2π ( fo - flo ).

Real and imaginary parts of the visibility function are computed by taking the cross-

correlation between the in-phase (or quadrature components) and between the in-phase with the

quadrature components of s1' and s2':

where Eτ stands for the average over τ seconds. The standard deviation of Vr and Vi are

computed as the AC power of the product of those signals after low-pass filtering.

Let's first compute the auto-correlation function of pr(t):
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(A1.5)

Since all the signals involved in the fourth moment computation are jointly gaussian

random processes:

(A1.6)

Assuming gaussian predetection filters the following relations hold for the

following second order moments:

(A1.7)

where:
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(A1.8)

When all receivers are identical equation (A1.6) reduces to:

(A1.9)

The spectrum of p (t) is obtained by taking the Fourier Transform in equationr

(A1.9):

(A1.10)

where "*" stands for the convolution operator. 

By passing p (t) through a low-pass filter which integrates p (t) over J seconds:r r

(A1.11)

The DC component in (A1.10) gives the expected value for the visibility sample:

(A1.12)

The AC power will be obtained, by approximating the spectrum by its value at f=0

and multiplying by 1/2J, since 1/2J << B.
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Note that this expression, except for the %2 factor coming from gaussian filters, reduces

to (A.II.17) of [Ruf et al. 88] when ∆f = 0 (DSB receivers), but in the MIRAS case since ∆f >

B/2 the noise power at correlator's output is reduced by an extra factor of 2.

Proceeding in a similar way for the imaginary part of the visibility function, it can be

shown that:
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If digital correlators are used, the integration time τ should be replaced by an effective

integration time τeff that depends on the correlator´s type. Values for τeff are shown in table 3.6

and are reproduced from [Hagen and Farley 73].
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APPENDIX 2. REDUNDANCY AND CORRELATION OF ERRORS
BETWEEN VISIBILITY SAMPLES

Let us consider four antennas labelled (1,2,3,4) as in figure A2.1 [Bará et al. 95B] [Bará

et al. 96].

Antennas (3,4) produce the following visibility

sample by integration in the time interval (t,t+Tint):
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where bi(t)  refers to the signal from th channel in the

absence of noise, ni(t)  is the noise introduced by the

amplifying/down-converting chain and a(t) is the post-

multiplication low-pass filter impulse response, which fixes

the integration time Tint.  Similarly, antennas (1,2) produce,

in the delayed time interval (t+τ, t+τ+Tint):
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Let us compute their correlation by taking ensemble averages (denoted by E [ ]e):
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where both the bi(t) and the ni(t) are complex zero mean Gaussian random processes with

circular joint Gaussian statistics for which [Goodmann 85]:
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In the integrand of (A2.3) there are 16 products of which 15 have at least one of the ni. Since

each ni(t) is uncorrelated with all the remaining processes, when taking expected values these 15

terms vanish and:
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Figure A2.1.- Two baselines
measured with the same integration
time Tint, one of them delayed τ.
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(A2.6)

(A2.12)

Therefore, (A2.3) becomes:

Note that the low-pass filter may have an integration time of the order of 1 s, while if B.20

MHz then 1/B.5x10  s; therefore, in (A2.6) a(t-D)a(t+J-F) varies very slowly as compared-8

to and can approximated by:

(A2.7)

If the low-pass filter has the shape:

(A2.8)

then:

(A2.9)

(A2.10)

and (A2.6) can be written:

(A2.11)

And the cross-correlation of the errors of the two identical baselines 1-2 and 3-4 with

the same integration time T , one of them delayed J, is:int
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(A3.1)

APPENDIX 3. REDUNDANCY IN MIRAS AND ITS IMPACT ON THE
RADIOMETRIC RESOLUTION

MIRAS Y-shaped array provides a very low degree of redundancy [MMS 95], [Bará

et. al 95B] [Bará et al. 96A]. If the three central elements introduced for the purpose of

phase calibration are disregarded, only baselines between antennas on the same arm can be

redundant. By the zero baseline it is understood that corresponding to u = v = 0, which in

MIRAS is measured by a dedicated radiometer and, consequently, it is not redundant. For

the Y-array with N  = 43 antennas per arm, plus a central element, there are:EL

-Total number of baselines: 3N (3N +1)/2+1 = 8386 (the extra one corresponding toEL EL

V(0,0))

-Non-redundant baselines = non-redundant (u,v)-points: 3 N + 3 N + 1 = 5551 EL EL
2 

(three are formed by the central antenna and those at the ends of the arms and one is the

zero baseline)

-Redundant (u,v)-points: 3 (N -1) = 126, with different degrees of redundancy.EL

-Total number of (u,v)-points: 3N  + 4 + 3 (N -1) = 3N +3N +1 = 5677EL EL EL EL
2 2

Recall that when the Hermitian property is considered every (u,v)-point is actually

duplicated.

It means that 8386 - 5551 = 2709 correlations (visibilities) lead to only 126

different (u,v) points. The use of the available redundancy in a Y-array has a negligible

impact over the radiometric sensitivity, less than 1% for 43 antennas per arm Y-array.

If all (u,v)-points are measured only once, the norm of the visibility error vector is:

Let us now consider redundance. For each arm let V(m) be the visibility function

corresponding to the baseline formed by two antennas separated by m basic spacings

(d=0.898). If all possible baselines produce a visibility sample, V(m) has a redundacy (N-

m+1). Therefore, the errors of the 126 previously non-redundant (u,v)-points:

(A3.2)

have to be replaced by (assuming uncorrelated errors):
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(A3.3)

where C is the Euler's constant=0.5772. That is, with full redundancy in the arms of the

interferometer the norm of the error vector becomes:

(A3.4)

and therefore, the radiometric resolution improvement is given by:

(A3.5)

That is, the average temperature resolution improvement contributed by the 2709

redundant complex correlators, from a total of 8386, is just a 1 % with the uncorrelated

errors approximations, what it has seen to be somewhat higher than in the actual case due

to their correlation. 
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(A4.2)

APPENDIX 4. VISIBILITY ERRORS DUE TO 
ANTENNA PATTERN MISMATCHES

Let F  (>,0) be the normalized radiation voltage pattern of the antenna k and letnk

)F (>,0) and )N (>,0) be its amplitude and phase errors.nk k

(A4.1)

Then, the product  F  (>,0) F  (>,0) in (2.61) can be approximated by:nk nl
*

where the term ,  (>,0) takes into account amplitude and phase errors and can be expandedkl

in a Fourier series as:

(A4.3)

The coefficient E  (p,q) is the (p,q) coefficient of the two-dimensional Fourier expansionkl

of the antenna pattern error between antennas k and l.

At this point, assuming negligible decorrelation errors, equation (1) can be

expressed as:

(A4.4)

where V   (u,v) is the ideal visibility sample measured between antennas k and l andkl
o

)V (u,v) is its error due to an antenna radiation pattern mismatch. Inserting (A4.3) inkl

(A1.4), the visibility error can be expressed as:

(A4.5)

which can be approximated by:
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(A4.6)

where )S  is the two-dimensional half-power band-width in (u,v) domain. Equation-3dB

(A4.6) holds for low-pass visibility functions, that correspond to extended thermal sources,

as the Earth seen from 800 Km height (angle of vision of 120º ).
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APPENDIX 5. PHASE MODULATION AND BASELINE ERROR DUE TO 
ANTENNA ARM OSCILLATION

Let's evaluate the visibility function when the distances from the source to the

antennas (r  and r ) are time dependent. Taking account the basic expressions given in1 2

[Thompson 86] [NRAO 89]:

(A5.1)

This expression is also valid when r  = r (t) and r  = r (t). If: 1 1 2 2

(A5.2)

Then, if )r(t).)r +)r'(t) , equation (A5.1) can be written as:o

(A5.3)

assuming that R (t) is a smooth function, )r'(t) << )r , and )r'(t)/c << 1/B:A o 

(A5.4)

Defining:

(A5.5)
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(A5.6)

Leads to:

(A5.7)

which induces a frequency modulation:

(A5.8)

If the displacements are small: 2B) , 2B) , 2B)  << 1, then, the expression for the baselinex y z

error reduces to:

(A5.9)

Where:

(A5.10)
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APPENDIX 6. MODULE AND PHASE RESIDUAL ERRORS IMPACT ON
 RADIOMETRIC ACCURACY

6.1.-  RESIDUAL MODULE CALIBRATION ERRORS  

For an ideal interferometer, the expression of the expected brightness temperature

can be written as:

(A6.1)

where: %3d /2 is the pixel area in the (u,v) plane, 2

and: d is the spacing between antennas in wavelengths.

If the module of the visibility function has an error, it translates to the recovered

temperature of the scene according to equation (A6.1):

(A6.2)

If the value of the visibility function is replaced by its expression, equation (A6.2)

can be re-written as:

(A6.3)

Then:

(A6.4)

Now, the error in the expected brightness temperature distribution is:

(A6.5)
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where:
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stands for Gibbs phenomenon and aliasing effects and the term:
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Its expected value is:
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where the expectation inside the summation is different from zero only for r=m and s=n or r=-m

and s=-n, since errors are assumed to be uncorrelated and the hermiticity resort is used.

Moreover, in order to simplify the equations, it can be defined:
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The first double summation accounts for m=r and n=s, and the second one for m=-r and n=-s

(with m and n different from zero).
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Equation (A6.11) can be re-written as:
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Inserting this expression in equation (A6.4), the radiometric accuracy due to residual module
errors is given by:
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the last term in equation (A6.13) accounts for Gibbs phenomenon and aliasing effects.

6.2.-  RESIDUAL PHASE CALIBRATION ERRORS 

To take into account the error in the phase of the visibility function, equation (A6.1) must
be replaced by:
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where the new exponential accounts for phase errors. When errors are small, it can be
approximated by its Taylor's first degree development:
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The development of the expressions to reach the expression of the radiometric resolution
is similar as in last section.

Now:
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where the first double summation is different from zero when m = r and n = s, and the other

summation is different from zero when m=-r and n=-s (m and n being different from zero).

Consequently:
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And finally:
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Again, the last term accounts for the Gibbs phenomenon and aliasing effects.
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APPENDIX 7. CONSIDERATIONS ABOUT THE ORBITAL PROPAGATOR 

This appendix discusses some considerations to be taken into account in the

implementation of the orbital propagator: the orbit perturbing forces for a determined

accuracy, and the numerical integration of the resulting equation.

7.1.- ORBIT PERTURBING FORCES

The Keplerian satellite motion (equation (7.1)) includes only the Earth's monopole

term, while equation (7.2) includes higher terms accounting for the Earth's shape and

uneven mass distribution. Other relevant sources of perturbation affecting satellite's motion

must be studied prior to the implementation of the orbital propagator. Table A7.1

summarizes the main perturbing forces and the acceleration experimented by the SEASAT

or a ERS-1 type satellite due to the perturbing force, whose orbit is very similar to the orbit

that has been proposed for MIRAS platform [MMS 95], and the acceleration uncertainty

[Milani et al. 87].

Force Acceleration Acceleration
(SEASAT/ERS-1) uncertainty

(1) Earth's monopole 790 cm/s 4 10  cm/s2 -5 2

(2) Earth's oblateness 0.93  cm/s 6 10  cm/s2 -7 2

(2) Low-order geopotential
harmonics l=m=2

5.4 10  cm/s 5 10  cm/s-3 2 -6 2

(2) High-order geopotential
harmonics l=m=18

3.9 10  cm/s 3.9 10  cm/s-5 2 -5 2

(3) Perturbation due to the Moon 1.3 10  cm/s 1.0 10  cm/s-4 2 -9 2

(3) Perturbation due to the Sun 5.6 10  cm/s 2 10  cm/s-5 2 -10 2

(3) Perturbation due to other
planets (e.g. Venus)

7.3 10  cm/s --9 2

(4) Indirect oblation 1.4 10  cm/s --9 2

(5) Relativistic correction 4.9 10  cm/s --7 2

(6) Atmospheric drag 2.0 10  cm/s 7 10  cm/s-5 2 -6 2

(7) Solar radiation pressure 9.2 10  cm/s 2 10  cm/s-6 2 -6 2

(8) Earth's albedo radiation
pressure

3.0 10  cm/s 1.0 10  cm/s-6 2 -6 2

(9) Thermal emission 1.9 10  cm/s 1.9 10  cm/s-7 2 -7 2

Table A7.1.- Accelerations on spacecrafts due to perturbing forces [Milani et al 87].
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Similarly, table A7.2 summarizes the equivalent accelerations and their respective

uncertainties suffered by the SEASAT or a ERS-1 type satellite due to tidal effects. In the

following paragraphs the perturbing forces are briefly explained:

Force Acceleration (SEASAT/ERS- Acceleration uncertainty
1)

(10) Kinematic solid tide 5.8 10  cm/s 1.7 10  cm/s-7 2 -8 2

(11) Kinematic oceanic tide 1.0 10  cm/s 2.0 10  cm/s-7 2 -8 2

(12) Dynamic solid tide 3.3 10  cm/s 3.3 10  cm/s-5 2 -7 2

(13) Dynamic oceanic tide 3.3 10  cm/s 3.3 10  cm/s-6 2 -7 2

(14) Non-rigid Earth
nutation

2.0 10  cm/s 3.0 10  cm/s-10 2 -11 2

Table A7.2.- Equivalent accelerations on spacecrafts due to tidal effects [Milani et al. 87]

Therefore:

(1) Earth's monopole term µ/r  is the largest force influencing satellite's motion, to which2

other disturbing forces must be compared to evaluate the shift from the Keplerian orbit.

(2) Earth's mass distribution is not uniform nor spherical, and these departures create

additional forces that are represented by the series of spherical harmonics of the

gravitational Earth's potential.

(3) Gravitational perturbations due to other celestial bodies are not caused by the full

gravitational attraction, but only by the tidal term: the difference between the force of the

Earth and that on the satellite. The most important effects are due to the Moon and the Sun,

whose effects are on the order of magnitude of the medium order geopotential harmonics.

Planetary perturbations are small and do not cause any significant acceleration uncertainty.

(4) Indirect oblation force is due to Earth's oblateness that affects the motion of the Moon,

and shifts the mass center of the Earth-Moon system. Its effect on the acceleration

uncertainty is negligible and that of Moon's oblateness is even smaller.

(5) The relativistic correction represents the main correction to the Newtonian equations

of motion introduced by the general relativity theory, but the introduced acceleration

uncertainty is negligible.

(6) An exact prediction of the perturbations resulting from atmospheric drag is very

complicated, because it requires a model of the upper atmosphere, the atmospheric density

as a function of height, but also of time, due to solar and geomagnetic activities. In addition

other parameters depending of the satellite's shape, the cross-section area perpendicular to

satellite's motion and satellite's velocity relative to the atmosphere are required.
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Atmospheric drag has an impact on accelerations uncertainty similar to that of high-order

geopotential harmonics and must be taken into account, specially for low-orbit satellites.

(7) The magnitude of the radiation pressure acceleration depends on the satellite's ratio area-to-

mass, and the solar energy flux. Time variations in the cross-sectional area, the solar activity and

the eclipse events introduce further uncertainties.

(8) Earth-reflected solar radiation also introduces a perturbing acceleration proportional to the

mean albedo of the Earth, which depends also on the reflecting surface of the Earth and the

season. Solar radiation pressure and Earth's albedo radiation pressure have a similar impact on

low-orbit satellites, which is an order of magnitude below the high-order geopotential

harmonics.

(9) Thermal re-emission of the radiation absorbed by the satellite occurs usually in a anisotropic

way due to emissivity, shape and satellite's surface temperature anisotropies. In addition, the

radiation emitted by satellites carrying active instrumentation produces also  a recoil

acceleration. It has a negligible impact over accelerations' uncertainty.

(10)-(11) Moon's attraction causes periodic pulsations of the Earth, of the tracking stations and

of the oceans (tides). Their impact is smaller than the higher geopotential harmonics.

(12)-(13) Dynamic solid and oceanic tides produce a geopotential time variation that affects

satellite's motion. Their effects are on the order of magnitude of the higher geopotential

harmonics.

(14) And tides also perturb the rotation of the Earth, affecting the reference systems used in the

computation of satellite's orbit. This effect is completely negligible for our purposes.

The impact of the different forces has been studied with the aid of the "Orbital

Workbench v1.1" program [Cygnus 90] by enabling or disabling different forces to act. The

orbit parameters of the MIRAS' reference orbit are [MMS 95]:

- Semi-major axis: 7159.5 Km

- Inclination 98.5493871

- Eccentricity 0.001165

- Argument of perigee 901

- Local time descending node 10:00 h

- Nodal crossing time (descending) 10:00 h

and: - Mean altitude 799.8 Km

for which disturbances due to the Moon, the Sun and the solar radiation pressure are

approximately on the same order the magnitude, but their influence is negligible in front of

geopotential harmonics.

Since MIRAS' platform is not yet defined and platform parameters are missing, the effect

of atmospheric drag, the dominant perturbation factor below 300 Km height and  important up

to 1000 Km height, has not been modeled.
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7.2.- Numerical integration of the orbit

In the preceding section it was shown that the most important perturbing forces are

those due to the spherical harmonics series in which the gravitational potential of the Earth

is expanded and the atmospheric drag. The coefficients of the spherical harmonics are

compiled in a number of texts [Lundquist and Veis 66][Michele 67][Lerch et al. 79][Lerch

et al. 83][WGS-84]. As commented previously, atmospheric drag can not be at present

accurately computed due to the absence of information concerning the platform. 

Taking into account only the perturbations due to gravitational Earth's potential the

integration of the orbit from an initial point with an initial velocity can be performed in the

following way:

i) From equation (7.2), the acceleration suffered by the satellite is given by:

(A7.1)

ii) And the velocity vector can be obtained by integrating (A7.1):

(A7.2)

where it has been assumed that for a small time interval (t-t ) the gravitational potential ofo

the Earth has not changed.

iii) Integrating equation (A7.2) with respect to the time, the position vector can be then

computed:

(A7.3)

Finally, equation (A7.3) is a first order non-separable differential equation in 

that can be integrated numerically by means of a i.e. 4  order Runge-Kutta method toth

obtain the new position vector at the new time instant .

When integrating equation (A7.3) some subtleties must be taken into account: 



8 (t) ' 80&
0S ( t& t0 )

0S
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298                                                     Application of Interferometric Radiometry to Earth Observation

Figure A7.1.- Orbital Workbench (-) and propagated orbit (...):
i)Geodetic Height ii) Latitude and iii) Longitude.

i) the numerical integration is carried in Cartesian coordinates because its simplicity, 

ii) at each step, it is necessary to know the rotation rate of the Earth to decrease the

longitude of the satellite's position and compute the new gravitational potential properly:

(A7.4)

where is the Earth's rotation rate, and according to WGS-84 is

 [Kaplan 95].

iii) the azimuth correction due to Earth's rotation is performed in spherical coordinates. The

transformations from Cartesian-to-spherical coordinates and from spherical-to-Cartesian

coordinates must be performed with the sine and cosine functions keeping the angle's

quadrant to avoid errors in the satellite's position.

Figure A7.1 shows the

geodetic satellite's height, the

satellite's latitude and the

satellite's longitude for a 30

seconds flight computed with

both the Orbital Workbench

(continuous line) and with our

orbital propagator (dotted line).

As it can be appreciated the

latitude and the longitude are

computed to within ±0.0005

degrees, which is the precision

given by the Orbital Workbench.

However, satellite's geodetic

height grows initially about 30

m, but the orbit finishes closing

after a complete period. This

height error: 30m over 780Km

geodetic height (4 10 %), has a-3

negligible impact in the simulations because of the size of the synthesized beam's. It has

been found that this error is generated in the change between spherical and cartesian

coordinates due to a round-off error in the evaluation of the trigonometric functions.
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APPENDIX 8. LATITUDE AND LONGITUDE CORRESPONDING
TO A (ξξ,ηη) PIXEL

The computation of the transformations between reference systems is a main concern

in the simulator of a 2D space borne interferometric radiometer because the need to know

exactly if a (ξ,η) pixel lies over the visible Earth's surface and, in that case, what are its

coordinates over the ECEF reference system of the Earth (section 7.1) and the incidence

angle in order to assign a particular value of the brightness temperature (section 7.2).

Given a (ξ,η) pixel's coordinates, its latitude and altitude can be computed according to:

i)

ηξµ 22  -  - 1  =     (A8.1)

ii)


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Figure A8.1.- Geometry of the Y-array and the satellite for changing of the reference system.



A1 ' Bcos2 (")%Csin2 (")

B1 ' Asin2 ($)%Bsin2 (")cos2 ($)%Ccos2 (")cos2 ($)%Dcos(")sin($)cos($)

C1 ' Acos2 ($)%Bsin2 (")sin2 ($)%Ccos2 (")sin2 ($)&Dcos(")sin($)cos($)

D1 ' &Dsin(")

E1 ' 2Asin($)%Dcos(")cos($)

F1 ' &2Acos($)%Dcos(")sin($)

G1 ' 2Bsin(")cos(")cos($)&2Csin(")cos(")cos($)&Dsin(")sin($)

H1 ' 2Bsin(")cos(")sin($)&2Csin(")cos(")sin($)%Dsin(")cos($)

I1 ' &2Asin($)cos($)%2Bsin2 (")sin($)cos($)%2Ccos2 (")sin($)cos($)%

%Dcos(") sin2 ($)&cos2 ($)

A2 ' A1
>2

µ2
%B1
02

µ2
%C1%G1

>0

µ2
%H1

>
µ
% I1
0
µ

B2 ' D1
>
µ
%E1
0
µ
%F1 RSAT

C2 ' A R 2
SAT&1

RSAT ' hSAT%
ab

a 2 cos2 (2SAT)%b 2 sin2 (2SAT)

zp1
'
&B2& B 2

2 &4A2 C2

2A2

xp1
'
>
µ

zp1

yp1
'
0
µ

zp1

300                                                     Application of Interferometric Radiometry to Earth Observation

iii)

(A8.3)

iv)

(A8.4)

 

v)

(A8.5)
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vi)

(A8.6)

vii)  Select (x , y , z ) pixels satisfying that:11 11 11

(A8.7)

which means that they lie over the Earth's surface.

viii)

(A8.8)

ix)

(A8.9)

(x , y , z )  are the pixels' ECEF coordinates, corresponding to a latitude and ap3 p3 p3

longitude:

x)

(A8.10)

where u(x) is the step function defined as:

(A8.11)
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(A9.1)

APPENDIX 9.       MMS CUP-DIPOLE RADIATION VOLTAGE PATTERN FIT

In the interferometric radiometer simulator described in chapter 7, antenna radiation

voltage patterns have been modelled by fitting the lists of measurements provided by

MATRA-MARCONI SPACE for thee cuts (0º, 45º and 90º) of nine antenna patterns: four

X-polarization and five Y-polarization cup-dipoles. 

It has been found that amplitudes are very well fitted, with an error smaller than 3%

over the FOV |2|<60º, by the following expressions and the five parameters " , " , " , "1 2 4 5

and " :6

where the subscript "p" is the cup-dipole number and "q" is the cut of the antenna voltage

pattern: N  = 0º, N  = 45º, N  = 90º1 2 3

The following table summarizes the mean and the standard deviation of the

matching parameters for the amplitude of MIRAS bread-board antenna voltage pattern:

"""" """" """" """" """" |F (0)|1 2 4 5 6 n

Mean 
NNNN=0º

0.0009 1.7573 0.4734 0.0176 1.1536 2.8390

Std deviation
NNNN=0º

0.0005 0.2346 0.0146 0.0065 0.0950 0.0463

Mean
 NNNN=45º

0.0010 1.6841 0.4728 0.0203 1.1482 -

Std deviation
NNNN=45º

0.0004 0.1597 0.0336 0.0036 0.0661 -

Mean
 NNNN=90º

0.0009 1.7012 0.5049 0.0169 1.1535 -

Std deviation
NNNN=90º

0.0005 0.2047 0.0125 0.0035 0.0562 -

Table A9.1.- Matching parameters for MIRAS breadboard cup-dipoles antenna voltage pattern amplitude.
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Intermediate values for other azimuth angles are interpolated according to:
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/2-  
9 , F +    , F + 

  
 0 , F =  ,F nnnn

)(sin4

))((4sin
 |)º0(||)(2sin| | )º45(|

sin 4

)(4sin
|)º(||)(|

πφ
πφ

θφθ
φ
φ

θφθ

(A9.2)
For the phase of the antenna radiation voltage pattern an eighth degree polynomial is

required to fit the pattern with an error smaller than 0.51, the limit required by the radiometric

accuracy budget (chapter four).

degrees :   ;   = )  ,( F r
r

8

=0r
qn q p,p

θθβφθ ∑∠ (A9.3)

where the subscript "p" is the cup-dipole number and "q" is the cut of the antenna voltage

pattern: φ1 = 01, φ2 = 451, φ3 = 901. The following table summarizes the mean and the standard

deviation of the matching parameters for the phase of MIRAS bread-board antenna voltage

pattern:

ββ0 ββ1 ββ2 ββ3 ββ4 ββ5 ββ6 ββ7 ββ8

Mean
φφ=011

180.61 -1.82 10-1 5.72 10-2 -6.53 10-3 3.35 10-4 -8.73 10-6 1.25 10-7 -8.81 10-10 2.55 10-12

Std deviation
φφ=011

4.76 10-1 3.29 10-1 7.00 10-2 6.13 10-3 2.71 10-4 6.59 10-6 8.89 10-8 6.25 10-10 1.78 10-12

Mean
φφ=4511

-
-1.53 10-1 6.02 10-2 -6.99 10-3 3.52 10-4 -8.96 10-6 1.22 10-7 -8.52 10-10 2.38 10-12

Std deviation
φφ=4511

-
1.58 10-1 4.12 10-2 3.41 10-3 1.32 10-4 2.85 10-6 3.57 10-8 2.46 10-10 7.19 10-13

Mean
φφ=9011

-
4.34 10-2 1.00 10-2 -1.61 10-3 9.33 10-5 -2.60 10-6 3.81 10-8 -2.85 10-10 8.50 10-13

Std deviation
φφ=9011

-
8.86 10-2 3.58 10-2 3.61 10-3 1.67 10-4 4.18 10-6 5.79 10-8 4.18 10-10

1.23 10-12

Table A9.2.- Matching parameters for MIRAS breadboard cup-dipoles antenna voltage pattern phase.

Intermediate values for other azimuth angles are also interpolated according to (A9.2).

Figures A9.1 and A9.2 show the measurements, the fitted values and the relative error

committed when approximating cup-dipole #3 Y-polarization antenna voltage pattern amplitude

and phase with equations (A9.1) and (A9.3) respectively. It should be noted that if antenna

amplitude and phase errors were smaller, antenna voltage patterns could be fitted with less errors

by simpler functions.
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Figure A9.1.- Cup-dipole #3 Y-polarization measured amplitude pattern values (o), approximated values
(.) and relative error.

Figure A9.2.- Cup-dipole #3 Y-polarization measured phase pattern values (o), approximated values (.) and
relative error.
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APPENDIX 10. ANALYSIS OF CUP-DIPOLE RADIATION PATTERN

A detailed analysis of the radiation pattern of the cup-dipole is complicated because

it is large to use MoM methods and small to use geometrical optics ones.  The radiation

problem has been analyzed as that of an aperture located at the X-Y plane illuminated with

a transverse electric field of the form:

(A10.1)

satisfying the boundary conditions over the inner and external metal cylinder surfaces:

(A10.2)

and:

(A10.3)

over the dipole's arms, which are oriented along the x axis.

The solution of  (A10.1) with the boundary conditions (A10.2) and (A10.3) is given

by:

(A10.4)

where:

(A10.5)

and k   is obtained from:c np

(A10.6)
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Figure A10.1.- Theoretical E-plane radiation
pattern of the cup-dipole.

Figure A10.2.- Computed normalized amplitudes of the
electric field over the aperture (cup-dipole centered and
oriented along x-axis)

that must be solved numerically. Table A10.1 summarizes the first TE modes and their cut-

off wave-numbers, the B parameter and the illumination efficiency:

kc B 0000n,p il

k  =271.46 rad/m 2.3716 -c 0,1

k  77.52 rad/m -0.1844 45%c 1,1=

k  =261.78 rad/m -0.0925 -c 1,2

k  =323.98 rad/m -0.4319c 2,1 -

Table A10.1.- First modes in the cup-dipole structure and cut-off wave-numbers

a=6.5 mm, b=20 mm, f=10.7 GHz, k=2B/8=226.2 rad/m

As it can be observed, the only mode that can be excited at the frequency of 10.7 GHz is

the TE  one, as in a cylindrical waveguide, for which k =77.52 rad/m < k=226.2 rad/m11 c 11

and B=-0.1844. The aperture illumination efficiency computed from (A10.4) is 45% and

corresponds to a directivity of 9.08 dB. Figure A10.1 shows the computed E plane cut of

the radiation pattern and figure A10.2 shows the electric field components corresponding

to the TE  mode according to equation (A10.4).11

The cup-dipole antenna has been implemented by means of a cylindrical cavity with

an open side in which a feeder has been placed. Two kind of feeders dipoles have been

tested: triangular dipoles and wire dipoles. Measured antenna patterns are shown in figures

8.4 to 8.6. 
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Figure A11.1.- Antenna numbering in the Y-array

APPENDIX 11.   X-BAND CUP-DIPOLES MEASURED COUPLING 

This appendix provides the information about the parameters of coupling between

the antennas manufactured for the experimental interferometric radiometer.

The numbering of the antennas corresponds to the next illustration:

The minimum distance between

antennas is 0.898 and the central frequency

10.7GHz. The antennas are tested for vertical

polarization. To achieve these results, 50

measures have been averaged. The next table

presents the scattering parameters measured

for several pairs of antennas according to

figure A11.1. The module is given in

thousandths and the phase in degrees.

POSITION S S S S11 12 21 22

1-2 301.39 31.09 32.284 214.48
ê -80.33 ê 140.08 ê 141.07 ê -21.363

1-3 320.11 10.87 11.05 217.1
ê -34.57 ê 143.71 ê 143.2 ê -13.152

1-4 282.17 6.949 7.42 223.27
ê -46.637 ê -112.59 ê -111.79 ê -12.037

1-4 (extra
antenna in
between)

289.17 5.5182 5.28 222.98
ê -46.50 ê -120.45 ê -117.88 ê -13.451

1-22 323.56 20.132 21.146 212.14
ê -88.706 ê -130.19 ê -130.76 ê -20.451

1-23 322.83 8.01 8.476 235.07
ê -35.115 ê -95.258 ê -96.5 ê -17.571

1-24 317.11 0.91 1.205 231.03
ê -34.393 ê -141.23 ê -124.11 ê -17.75

1-12 302.81 29.589 30.294 217.58
ê -79.97 ê 134.6 ê 136.89 ê -15.142

1-13 319.85 4.4796 4.398 223.75
ê -34.56 ê 148.94 ê 147.62 ê -19.394

2-12 134.41 16.56 16.67 228.04
ê -14.78 ê 176.13 ê 177.17 ê 10.079

2-13 134.67 2.3953 2.585 218.86
ê -14.347 ê -151.55 ê -153.85 ê -19.979
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3-12 319.89 12.518 13.04 245.19
ê -78.157 ê -92.848 ê -93.864 ê 39.678

3-13 315.54 5.19 5.94 277.49
ê -77.178 ê 4.33 ê 7.10 ê -19.223

3-14 313.1 9.16 9.33 203.32
ê -76.85 ê 118.7 ê 119.81 ê -14.726

3-15 312.1 2.966 3.6 200.55
ê -76.902 ê -172.34 ê -167.96 ê -13.612

4-12 305.95 9.633 9.698 243.52
ê -76.069 ê 63.346 ê 62.53 ê 40.261

4-13 304.93 1.16 1.15 246.64
ê -76.266 ê 165.58 ê 161.96 ê 40.802

2-22 218.44 6.5 6.537 247.18
ê -49.182 ê 46.85 ê 50.26 ê 39.93

2-23 218.73 0.736 0.638 253.63
ê -49.081 ê -38.23 ê -20.83 ê 40.873

3-22 218.03 2.742 2.919 250.5
ê -48.61 ê -56.033 ê -52.192 ê 41.3

12-22 309.13 3.53 3.425 250.55
ê 2.038 ê -44.63 ê -47.552 ê 41.25

12-23 310.75 4.35 4.21 254.79
ê 3.16 ê 115.68 ê 117.23 ê 40.953

12-24 310.2 3.14 2.917 253.11
ê 3.1242 ê -34.538 ê -22.449 ê 42.413

13-22 307.83 3.037 2.86 253.45
ê 4.06 ê 176.49 ê -170.44 ê 40.794

13-23 317.6 4.22 3.66 247.9
ê 5.05 ê -48.816 ê -42.344 ê 41.12

13-24 313.67 2.83 2.78 254.91
ê 4.52 ê 99.049 ê 114.19 ê 40.592

13-25 318.65 1.979 2.53 254.23
ê 5.81 ê 134.62 ê 135 ê 40.894

Table A11.1.- Scattering parameters of X-band cup-dipoles.
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Figure A12.2.- Bottom side of the TV external
units used as RF front-ends. Note the replacement
of the LO by a 50 Sline.

Figure A12.1.- Upper side of the TV external units
used as RF front-ends

APPENDIX 12. RF FRONT-END DESIGN AND CHARACTERIZATION

The RF front-end is composed by two X-band TV DBS external units model

TAGRA GSE-303, for the reception of the ASTRA satellites in the 10.7GHz-11.8GHz

band. The performance provided by the manufacturer are listed in the table below:

Input Frequency 10.7 GHz - 11.8 GHz

Input connector Waveguide WR-75

Noise factor 1.0 dB

Gain 50 dB - 60 dB

Output Frequency 950 MHz - 2050 MHz

LO Frequency 9.750 MHz

LO Power at the Input -60 dBm (max)

Output power 0 dBm (min)

Output Connector "F" type 75S female

Current consumption 200 mA (max)

Voltage Supply 13 V - 24 V

Operating Temperature Range -40ºC - + 60ºC

Table 8.5.- GSE-303 TAGRA DBS external units parameters

Figures A12.1 and A12.2 show, respectively, the detail of the top and the bottom

sides of the external units. In the top side (figure A12.1), it can be observed the three stage

LNA (upper left side), the coupled line image rejection filter (upper right side) and the

mixer (lower right side), as well as the quarter wavelength coupled lines for the LO (lower

side). In the bottom side (figure A12.2), it can be observed the two stage wide band IF

amplifier (right side), and a detail of the LO extraction and its replacement by a 50 S line

and a SMA connector.
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Figure A12.3.- Output frequency response of the
TV DBS external units used as a front -end.

Figure A12.4.- TV DBS external units measured
gain and noise figure.

Because of the availability of commercial components at IF (filters and I/Q

demodulators), the IF center frequency was fixed at 881.5 MHz, which is out of the

specified output frequency band. Consequently, the LO frequency was changed accordingly

and the overall gain was affected due to an increase in mixer's insertion loss. TV-DBS

external units were characterized to check their output bandwidth, their gain and their noise

factor.

TV-external units' frequency response was measured with a HP-70206 A spectrum

analyzer. The curve in figure A12.3 shows that the half-power bandwidth cut-off frequency

is 750 MHz. A similar frequency response was obtained for the other external unit with a

half-power band-width cut-off frequency of 775 MHz. Ripples above 1.8 GHz are due to

the cut-off frequency of the bias-T used to polarize the external units during the

measurement. 

Figure A12.4 shows the gain and noise factor measured with a HP 8970B Noise

Figure Meter [HP B] as a function of the output frequency. Remember that the LO is

extracted and replaced by a 50 S line carrying a synthesized oscillator [HP C] that allows

frequency tuning. The following table summarizes the main performance of the two TV-

DBS external units:

The following table summarizes the main performance of the two TV-DBS external units:

Parameter DBS external Unit A DBS External Unit
B

Gain 41.50 dB 42.05 dB

Noise Factor 1.22 dB 1.45 dB

Table A12.2.- DBS external units performance for use

 in the experimental interferometric radiometer 

(f  = 10.6895 GHz, f = 881.5 MHz, f =9.808 GHz, LO power = 10 dBm). i o OL
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Figure A13.1.- IF amplifier scheme: matching network, IF filter and two-
stage IF amplifier

Figure A13.2.- IF amplifiers picture

(A13.1)

APPENDIX 13. IF SECTION DESIGN AND CHARACTERIZATION

The scheme of a single amplifier is shown in figure A13.1.

which is shown in figure A13.2.

13.1.- Impedance  matching network

The impedance matching network is a simple L-circuit formed by a capacitor and

an inductor, as shown in figure A13.3. Component values are computed with the Hewlett

Packard's APPCAD program leading to:

 
Figure A13.3.- Impedance
matching network

The matching circuit was finally built with a 1.5 pF SMD capacitor and a self-constructed

three turns, 1 mm diameter inductance of  0.3 mm diameter wire. Measured matching over

the IF band was better than 25 dB.
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Figure A13.4.- IF filter's input return loss. Figure A13.5.- IF filter's insertion loss.

Figure A13.6.- IF filter's group delay.

13.2.- IF Filters measurements

Figure A13.4 to A13.6 show the measured input return loss, the insertion loss and

the group delay frequency response.

          

13.3.- IF two stage amplifier

The two-stage IF amplifier is built with two MAR-8 MINICIRCUITS integrated

amplifiers, each one having a maximum gain at 900 MHz of 23 dB. Chips are DC

decoupled and have input/output impedances of 50 S. To avoid oscillations of the first

amplifier due to the output impedance of the filter out of pass-band ground via-holes were

approached to the chip and a 100 S resistance was added in parallel with the filter's output.

Figures A13.7 and A13.8 show the measured gain and group delay of one channel. The

main performance of the two IF amplifiers is shown in table A13.1.
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Figure A13.7.- IF amplifiers gain frequence
response.

Figure A13.8.- IF amplifiers group delay
frequency response.

Parameter Amplifier 1 Amplifier 2

Half-power bandwidth 40 MHz 46 MHz

Gain 33 dB 36 dB

Input return loss -17 dB - 6.4 dB

Output return loss -16 dB - 7.8 dB

Table A13.1.- Performance of IF amplifiers
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Figure A14.1 Video amplifier scheme.

APPENDIX 14. LF SECTION DESIGN AND CHARACTERIZATION

The LF section is formed by a bank of four filters, a bank of four video amplifiers

and a peak detector (figure 8.2). 

                                           

14.1.- The Bank of  Video Amplifiers

          The bank of video amplifiers is implemented with the Linear LSI NE-592 circuit,

which satisfies gain and bandwidth requirements. Its main performance are summarized

in the next table.

Parameter Value

Differential voltage gain 40 dB typ

Bandwidth 90 MHz

Input resistance 30 K6

Input capacitance 2 pF

Input bias current 5 µA

Output offset voltage 1.5 V

Output resistance 20 6

Table A14.1- NE-592 main performance

Since comparators' reference level is zero volts and amplifiers' output offset voltage

is 1.5 V, an additional DC block is included at the output. On the other hand, to avoid

oscillation problems when large gain is required, a 100 6 resistance has been added in

series with the 200 6 gain potentiometer (not shown in figure A14.1). 

Figure A14.1 shows the scheme

of each of the four video amplifiers

designed. Input/output DC blocks, as

well as the gain potentiometer can be

appreciated. Figure A14.2 shows the

frequency response of one channel for

the maximum and minimum gain.
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Figure A14.2.- Video amplifier frequency response for maximum and minimum gain.

Figure A14.3.- Peak detector scheme. Figure A14.4.- Scheme of the voltage-current
transducer used to monitor signal's power.

Figure A14.5.- Peak detector transfer curve.

14.2.- Peak detector and signal conditioning circuit

The peak detector scheme is shown in figure A14.3. It is composed by a 50 6
parallel resistor to match input's impedance, followed by a Schottky diode and a parallel

capacitor acting as a low pass filter. Figure A14.4 shows the signal conditioning circuit. It

is composed by a voltage-current transducer in which R  is used to adjust the zero and R2 4

the gain.

Figure A14.5 shows the output voltage

vs. the input power at different frequencies. As

it is seen detector's bandwidth is limited from

10KHz up to 20MHz.
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Figure A15.1.- MAX-915 block diagram

APPENDIX 15. DESIGN OF A 1 BIT/2 LEVEL DIGITAL CORRELATOR UNIT

15.1.- Technology and IC's selection  

At the preliminary stage of the design and according to the availability of

commercial components, system's bandwidth is set to 30 MHz. This requires a minimum

sampling frequency of 60 MHz.

To avoid conversions between signals' levels of different technologies, i.e. ECL-

TTL, the first choice is the selection of all the ICs of a single technology. On the other

hand, since the available acquisition board -National Instruments' PC-LAB- uses TTL

circuits, correlators' ICs are selected from the FAST TTL family for the XOR gates, the

buffers and the counters,  and from the LS TTL family for the shift registers that form the

PISO (Parallel Input Serial Output). Available FAST TTL circuits are capable to go up to

100 MHz, above the 66 MHz clock frequency that is finally selected. LS TTL circuits are

selected to minimize power consumption where speed is not required.

In the following paragraphs the function of the ICs selected is briefly described:

i) Clock: The function of the clock is to generate the signal used to control the sampling

times of the comparators and to activate the counters. Kyocera´s MC68EC 66 MHz

oscillator is selected because of its TTL compatible digital output and its +5V power

supply. A buffer is required to improve its 10 gate fan-out.

ii) Buffer: The 74F125 FAST TTL circuit is selected because its low propagation delay, 5

ns, and its large fan-out: up to 30 gates. However, when the unit is mounted it is found that

the clock does not arrive to the most distant ICs and a second buffer is connected in parallel

with the first one.

iii) Sampler: The MAXIM's MAX-915 high

speed comparator is selected because its low

propagation delay, 6 ns, its +5 V power supply,

the availability of the complementary TTL

output -used to simplify the multiplier circuit-

and the insensitivity to oscillations provided by

a Master-Slave flip-flop that isolates the input

and the output, as it can be seen in figure

A15.1. Its response at 66 MHz is previously

tested, because the manufacturer guarantees
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its performance up to 50 MHz.

iv) Multiplier: In the 1B/2L digital correlator the analog multiplier is substituted by a

simple NOT-XOR  gate. However, this function can be also performed if one input is

negated, as indicated in table 8.11. The negated input is obtained from the complementary

output of the MAX-915 comparator.

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 0

1 0 1 0 1 1

Table A15.1.- XOR function.

v) Counters: The 74F163 and 74F161 FAST TTL 4 bit counters are selected because they

are the only ones commercially available. The 74F163 ICs have a synchronous reset, while

the 74F161 have an asynchronous one. 

vi) Shift registers: The 74LS166 8 bit shift registers perform the Parallel Input to Serial

Output conversion. When the correlation is finished, the result is stored in the counters, it

is loaded into the shift registers and then it is downloaded bit by bit to the PC-LAB

acquisition board.

15.2.- Scheme of the digital correlator unit and control flow

Correlator's scheme is composed by three counter units: the first one for equalities

in the i and i  channels, leading to the real part of the visibility sample being measured, the1 2

second one for equalities in the i  and q  channels, leading to the imaginary part of the2 1

visibility sample, and the third one that counts during all the integration time. The third

counter is included to improve the measurement of the integration time due to timing errors

of the acquisition board. These slight errors are, however, too large to have a precise

measurement of the correlation between the two signals, specially for small integration

times.

The number of bits of each counter unit is determined by the maximum integration

time, 64 s, and the sampling frequency: 66.666 MHz.



unts ' 66.666MHz 64s ' 4.266.624.000 ' 232 '> 32

318                                                     Application of Interferometric Radiometry to Earth Observation

Figure A15.3.- Digital Correlator top view. Figure A15.4.- Digital Correlator bottom view 

(A15.1)

this means: 8 x  4 bit counters and 4 x 8 bit shift registers in each counter unit.

Figure A15.2 shows the scheme of a correlator unit composed by i) the sampler and

the XOR multiplier and ii) the counter unit and the control signals.

Figure A15.2..- Scheme of a correlator: XOR (digital multiplication) and counter (digital integration).

Figures  A15.3 and A15.4 show the top and bottom views of the digital correlator

unit: In the upper side the three MAX-915 comparators can be appreciated on the left,

followed by the 74F86 XOR gates. The upper and lower ICs blocks are the correlators of

the real and imaginary parts of the visibility sample, while the block of 12 ICs in the middle

counts during the whole integration time. On the lower side the clock can be seen, as well

as the two buffers in parallel with a radiator.

As commented before, the control of the digital correlator unit is performed by a

signal acquisition board by means of nine signals:



CLEAR

LOAD
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i) Signal  resets the counters before a new correlation is performed. The

H/ENABLE signal controls the time interval in which the correlation is computed (figure

A15.5) and the correlator-board CLOCK controls the sampling instants.

 Figure A15.5.- Control flow during the initialization and correlation intervals.

ii) When the correlation is finished, the signal forces the shift registers to be

initialized with counters' values and the MASTER RESET signal resets the counters for

the next correlation. Then, the acquisition board sends a serial clock (S_CLOCK) to the

three sets of shift registers and at each clock pulse, three bits, corresponding to the three

counter units: N , Ncount  and N , are downloaded through independentcount i1-i2 i2-q1 count total

lines  to the acquisition board (figure A15.6).

Figure A15.6.- Control flow during the download of data to the PC-LAB adqusition board.
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