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Abstract 

Chronic wounds are characterized by their inability to heal within an expected 

time frame. Although the clinical approach to chronic conditions has improved, there 

are insufficient tools to provide proper wound monitoring and early wound prognosis, 

and thus be able to make more informed decisions in therapies selection. On the other 

hand, the physiological repair of dermal wounds is regulated by molecular factors, but 

there is a lack of knowledge about how these molecular factors regulate fibroblast 

migration in the context of chronic wounds. The main objectives of this thesis are: 1) 

to study the effect of the vascular endothelial growth factor (VEGF) on dermal 

fibroblast migration in the framework of wound healing, 2) to develop new tools to help 

clinical staff to obtain quantitative measures of the wound healing evolution and to 

assess the efficacy of therapies in chronic wounds, and 3) to review the uses of artificial 

intelligence (AI) for skin lesion classification and develop pedagogical materials to 

make this technology more accessible to non-experts. Our results at the cellular and 

nanoscopic level about the effect of VEGF on dermal fibroblasts have brought to light 

some new evidence to understand the mechanisms behind therapies based on growth 

factors. Moreover, we implemented two tools that allow us to determine characteristic 

wound healing time, which is useful for early prognosis determination of wounds, and 

to compare the efficacy between therapies. Finally, we have provided accessible deep-

learning algorithms to facilitate comprehension and acceptance of these tools by 

healthcare staff in the medical community. In conclusion, this thesis provides evidence 

of the benefits of a multidisciplinary approach to improving the comprehension of 
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molecular and cellular mechanisms of wound healing and introduces new technologies 

to support clinical wound healing follow-up and clinical decision-making.  

  



III  

Resum 

Les ulceres cròniques es caracteritzen per la seva incapacitat de cicatritzar en 

un període establert de temps. Tot i que els avenços clínics han millorat recentment, 

encara manquen eines per realitzar un seguiment acurat d’aquestes ferides per tal de 

poder anticipar-ne l’evolució i que el personal mèdic pugui prendre millors decisions i 

seleccionar les teràpies més adequades.  Per altra banda, s’ha descrit que els processos 

fisiològics implicats en la cicatrització estan regulats per factors moleculars. No obstant 

això, encara hi ha poc coneixement sobre com aquests factors moleculars regulen la 

migració dels fibroblasts en el context de les úlceres cròniques. Els objectius principals 

d’aquesta tesi son: 1) estudiar l’efecte del VEGF en l’activitat dels fibroblasts dèrmics 

en el context de la cicatrització de ferides, 2) desenvolupar noves eines per tal d’ajudar 

al personal mèdic a obtenir paràmetres quantitatius que permetin determinar l’evolució 

de la ferida així com l’eficàcia de teràpies per al tractament de ferides cròniques, i 3) 

fer una revisió dels usos de la intel·ligència artificial (AI) per a la classificació de 

lesions de la pell, així com desenvolupar materials pedagògics per tal de fer aquesta 

tecnologia més accessible a no experts en la matèria. Els nostres resultats a nivell 

cel·lular i nanoscòpic sobre l’efecte del VEGF en els fibroblasts dèrmics aporten 

evidències que contribuiran a millorar la comprensió dels mecanismes d’actuació de 

les teràpies basades en aquests factors de creixement. També, hem implementat dues 

eines que permeten determinar el temps característic de cicatrització, mesura que 

permet determinar en estadis primerencs la prognosis d’una ferida i comparar també 

l’eficàcia de diferents teràpies. Finalment, hem apropat al personal mèdic els fonaments 

dels algoritmes de deep learning per facilitar-ne la seva comprensió i acceptació en el 

col·lectiu de professionals de la salut. Per concloure, aquesta tesi posa de manifest que 
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l’abordatge de la recerca en ferides des d’una perspectiva multidisciplinària permet 

millorar la comprensió dels mecanismes moleculars i cel·lulars implicat en la 

cicatrització així com introduir noves tecnologies per facilitar el seguiment clínic de 

ferides cròniques i la presa de decisions clíniques. 
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Chapter 1. 

Introduction 

1. Wound healing 

It is estimated that 1–2% of the population will suffer a chronic cutaneous 

wound in their lifetime in developed countries. Chronic wounds generally affect the 

adult population because of complications from aging or other comorbidities (diabetes, 

obesity, and cardiovascular diseases)12. Ulcer prevalence and incidence rates are triple 

in the population over 75 years of age, and the presence of pressure ulcers has been 

associated with a 2- to 4-fold increased risk of death in the elderly. Considering that the 

population of elder people (aged 85 and over) is set to double over the next 20 years, 

the incidence of chronic wounds is expected to become a considerable challenge for 

health services3. It has been reported that new advanced therapies have contributed to 

increasing the healing of chronic wounds up to 50-60%45. However, around 40% of 

wounds remain without a cure, which leads to a growing social problem with a 

significant impact on the use of health resources (2-3% of health budgets in developed 

countries)67. More research on the wound healing process is necessary in order to 

contribute to the improvement of advanced therapies, which will end in an 

improvement in the life quality of elder people. 
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Human skin structure  

The skin is the body's largest organ, covering the entire surface of the body 

(approximate area in adults of 2 m2) and it is structured in three layers: the epidermis, 

the dermis, and the hypodermis (Figure 1). The skin is one of the few organs in the 

human body that can repair and regenerate (recover its functionality) by itself after 

suffering an injury and it is also highly adaptive with different thicknesses and 

specialized functions in different body sites8. This characteristic is what allows the skin 

to perform its functions: a) a physical barrier against the environment, protecting us 

against temperature, ultraviolet light, pathogens, infection, and trauma; and b) 

immunologic surveillance, sensory perception, and control of the body’s homeostasis 

in general8.  

The epidermis is formed of several layers of keratinocytes. The most external 

one is composed of a dead cell layer filled with keratin, which has the functionality to 

act as a waterproof barrier and contributes to skin tone. The epidermis also contains 

sweat glands, sebaceous glands, and hair follicles. The dermis is rich in extracellular 

matrix (ECM), fibroblasts, hair follicles, blood vessels, lymphatic vessels, sweat 

glands, growth factors, and mechanoreceptors and provides the skin with strength, 

nutrients, and immunity (Figure 1). The subcutaneous adipose tissue or hypodermis 

underlies the dermis and functions as an energy reserve because of its composition of 

fat molecules and connective tissue8. 
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Figure 1.  Anatomy of the human skin. 

The skin consists of three layers: epidermis, dermis, and hypodermis organized with 

cellular components inserted into an extracellular matrix structure. Source Ref. 9 

Extracellular matrix in skin 

Each skin layer is composed of specific cell types surrounded by the proteins of 

the extracellular matrix (ECM). The ECM is composed of several proteins, sugars, and 

other components that exercise the following main active functionalities: 1) to anchor 

the cells via membrane proteins to support their viability and proliferative activity, 2) 

to promote cell differentiation profiles through a biomechanical activity, and 3) 

contribute to the skin repair and regeneration after injury10. Each ECM component 

exercises a different contribution to skin functionality. Collagen, mostly produced by 

fibroblasts, endothelial, and epithelial cells, is responsible for supporting cell adhesion 

and migration and providing tensile strength. Elastin allows the skin to recover from 

continuous stretching11. Fibronectin has multiple binding sites for different growth 
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factors such as fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), 

and vascular endothelial growth factor (VEGF) with regulated skin cell functionality12. 

Fibronectin is a multidomain structure formed by server repeats of Type I, II, and III 

subunits. (Figure 2). In domain 9-10, a region formed by (Arg-Gly-Asp) amino acids, 

called RGD epitope exists, which form the binding domain for integrins a5b1, their 

principal receptor13. Fibronectin also has a union site for VEGF and other growth 

factors in domains 13-14. Some results reported that both RGD and VEGF union sites 

enhance migration and proliferation induced by VEGF and promote strong 

phosphorylation of the VEGF receptors14. The union sites of VEGF and the proximity 

to a5b1 lead to a collaborative relationship that may affect cell function12.

Figure 2. Fibronectin schematic structure and binding sites for other proteins 

Fibronectin structure is formed by repeating homologous type I, II, and III units. Type 

III repeat sites are created by alternative splicing, as well as CSIII. The binding site for 
α5β1, αvβ1, α8β1, and αvβ6 integrins, as well as for heparin, VEGF, TGF-b1, collagen, 

and fibrin are also shown. Adapted from13. 

The wound-healing process 

We refer to a cutaneous wound as any alteration of the epidermal layer that can 

be caused by underlying pathophysiological changes or by external factors. When the 

VEGF
TGF-β1
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skin is injured, multiple cell types within the several skin layers need to coordinate to 

bring about healing. Wound healing is a complex and dynamic process starting 

immediately when the skin is injured and involves the reconstitution of the various 

layers of the skin15. 

The wound healing process progresses through the following sequential and 

overlapping stages: hemostasis, inflammation, proliferation, and remodeling. The 

wound-healing process requires the synchronization of several cell types: epithelial 

cells, fibroblasts, immune cells, and endothelial cells.  

 

Hemostasis phase 

The hemostasis or coagulation phase starts immediately after injury to prevent 

exsanguination and generate a matrix to allow cell invasion to protect the vascular 

system. At this moment the platelets in the bloodstream are activated when they contact 

the collagen and other components of the injured tissue (Figure 3-1). This process of 

platelet activation causes the release of coagulation factors, growth factors, and 

cytokines that produce clot formation (stopping the bleeding) and the activation of the 

immune system16. 

 

Inflammatory phase 

During this phase growth factors and other cytokines released by platelets 

attract the cells of the immune system (neutrophils and monocyte) into the wound bed 

where they are responsible for preventing infection through their ability to eliminate 

pathogenic agents (Figure 3-2). Later, monocytes differentiate into macrophages to 

remove bacteria. Those cells act as regulatory cells for the inflammatory response 

providing different cytokines and other chemoattractant agents (growth factors like 
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transforming growth factor beta (TGF-β) and PDGF which allow fibroblasts, 

keratinocytes, and endothelial cells to be recruited to the wound area17. 

The inflammatory stage progression and stop are critical for the other phases of 

the healing process to be properly activated. In fact, it has been described that low levels 

of macrophages and monocytes could produce persistent inflammation which drives 

healing problems like poor wound debridement, delayed angiogenesis, and delayed 

fibroblast proliferation and migration18. 

 

Proliferation phase 

The proliferation phase (also called new tissue generation) starts around 3 days 

after injury and includes five subphases that occur simultaneously: fibroplasia, ECM 

synthesis, angiogenesis, contraction, and re-epithelialization19,20. Fibroplasia or 

granulation tissue is produced by the accumulation of fibroblasts that proliferate and 

migrate until occupying the entire wound bed (Figure 3-3). Granulation tissue is 

observed macroscopically and is a good clinical indicator for wound management. The 

active fibroblasts synthesize the ECM, mainly collagen III, which is deposited in the 

wound giving consistency to the newly formed tissue and acting as structural elements 

to support the angiogenesis process. 

Angiogenesis (or new blood vessels) is critical for the progression of the 

proliferative phase promoting wound healing success. Local wound cells produce 

several angiogenic factors like transforming growth factor alpha (TGF-⍺), TGF-β, 

PDGF, FGF, and VEGF21. Those angiogenic factors promote endothelial cell 

proliferation, migration, and differentiation to generate new vessels22 

The granulation tissue formed during this phase provides volume to the wound 

and the fibroblasts that make it up undergo a process of differentiation into 



 

9 

myofibroblasts by interacting with the ECM. Myofibroblasts are a cell phenotype that 

is characterized by a high contractile capacity that promotes wound contraction and 

facilitates its closure. 

Re-epithelialization, the last subphase of the proliferative phase, progresses by 

the keratinocytes’ migration from the wound edges and allows the re-establishment of 

intact epidermis over granulation tissue23. 

 

Figure 3. The wound healing phases with the essential cell types involved in this 

process.  

Schematic diagram of wound healing process detailing the four continuous and 
overlapping phases: 1) Hemostasis, 2) Inflammation, 3) Proliferation, and 4) 

Remodeling. In each phase, the three skin layers and the main cell types involved are 

shown. From ref 9. 
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Remodeling phase/ Maturation phase 

In the last phase of the wound healing process (from day 21 to up to 1 year), the 

ECM experiences a lot of compositional changes. Collagen III is replaced by collagen 

I which increases skin elasticity (Figure 3-4). In addition, massive apoptosis of cells 

involved in the wound healing process produces the completed skin repair and the skin 

tensile strength repair24. 

However, several pathological conditions can alter this efficient and well-

organized healing process. These conditions can slow down the healing process, which 

can last for long periods (weeks, months, or years) or even fail from the start, depending 

on the persistence of causal agents. Chronic cutaneous wounds, also known as ulcers, 

are characterized by their inability to heal following an orderly healing process to 

guarantee the anatomical and functional integrity of the wound area25. The main factors 

that cause chronic wounds include local factors of the wound (infection, persistent 

inflammation, presence of necrotic tissue) and other clinical or social conditions of the 

patient (aging, frailty, hypoperfusion, presence of vascular diseases, diabetes, obesity, 

poor nutrition, excessive pressure, immunosuppression, severe burns or malignancy). 

Chronic wounds are heterogeneous in terms of size, body location, etiology, 

pathogenesis, morbidity, risk of loss of affected limb, host factors, and several other 

variables. The main factors that cause chronic wounds include local features of the 

wound (infection, persistent inflammation, presence of necrotic tissue) and other 

clinical or social conditions of the patient (aging, frailty, hypoperfusion, presence of 

vascular diseases, diabetes, obesity, poor nutrition, excessive pressure, 

immunosuppression, severe burns, or malignancy)26. 

An essential element to successfully treat chronic wounds is the correct clinical 

assessment, which includes the identification of the underlying cause of the wound, 
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called etiology. According to the etiology, the Wound Healing Society classifies 

chronic wounds into the following: venous ulcers, diabetic foot ulcers, arterial ulcers, 

and pressure ulcers27. The wound etiology characterization is important for establishing 

appropriate wound management and treatment. The main characteristics of each wound 

etiology are described below: 

Venous ulcers. Venous ulcers affect 5% of the adult population and are the most 

common wound etiology, representing about 57% of total leg ulcers. These ulcers are 

caused by chronic venous insufficiency due to the incompetence of vein valves which 

leads to elevated venous pressure due to venous reflux. The use of compression 

bandages is the most effective treatment for venous ulcer healing28.  

Diabetic ulcers. Diabetic ulcers are a common pathology in diabetic patients 

and represent 1% of chronic wounds. The main causes of diabetic foot ulcers are 

neuropathy (nerve damage causing loss of sensitivity in extremities), peripheral arterial 

disease, and mechanical pressure. Better control of diabetes disease contributes to the 

prevention of these kinds of ulcers29. 

Arterial ulcers. Arterial ulcers represent about 2.2% of ulcers but this prevalence 

increases considering that they are commonly mixed with other etiologies such as 

venous or diabetic. Those wounds are caused by peripheral arterial disease usually 

derived from atherosclerosis or other pathologies. Arterial ulcers heal when leg 

revascularization is achieved with surgical procedures like angioplasty or arterial 

bypasses28. 

 Pressure ulcers. Pressure ulcers (PU) affect 0.02% of the population and are a 

common problem among patients with impaired mobility ranging from 3 to 32% of 

prevalence in long-term care patients. Those wounds occur over bony prominences and 

among the main causes are pressure but also shear, friction, moisture, and poor 



 

12 

nutrition. The best treatment for PU is prevention with continued repositioning of the 

patient30. PU treatments depend on the ulcer severity and the patient’s clinical 

conditions, and include a variety of treatments: conventional dressing, growth factors-

rich therapies, vacuum therapies, and surgical reconstruction31. 

2. Dermal fibroblasts’ role in wound healing 

Fibroblasts are the most abundant cells in connective tissues, and in the 

cutaneous tissue, they have a relevant role, especially during tissue repair after injury. 

As we previously described, fibroblasts play a key role in different phases of the wound 

healing process where they contribute at different levels such as structural filling of 

wound spaces or secreting ECM components and other mediators (growth factors and 

cytokines).  

Fibroblasts can show different phenotypes depending on the tissue and can be 

also modified depending on the tissue functionality. Mostly, fibroblasts show an 

elongated or star-like cell shape, with some cytoplasmic projections with different 

morphologies and lengths that allow physical contact between cells. Fibroblasts have a 

well-differentiated cytoskeleton, especially when they acquire the myofibroblasts 

phenotype. Actin and alpha-actin proteins of the cytoskeleton are mostly distributed in 

the cell periphery promoting anchoring points of the plasma membrane with the ECM 

through transmembrane proteins, such as integrins. These structural interactions allow 

the fibroblasts to migrate through the ECM and be involved in tissue transformation32. 

During the wound-healing process, fibroblasts suffer several morphological and 

functional changes that we describe below. 
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Activation states of dermal fibroblasts along the wound-healing process 

In the skin, fibroblasts can show different phenotypes depending on the skin's 

integrity and functionality, which affect their activity status. In normal healthy skin, 

fibroblasts are in a quiescent state characterized by having their cell cycle blocked but 

in a reversible mode, maintaining the ability to restart the cell cycle when conditions 

are favorable or stimulate cell division (Figure 4-A)33. In this quiescent state, fibroblasts 

produce low levels of ECM, have no internal stress fibers, and have limited migratory 

activity34. This quiescence state, also called cell-cell contact inhibition of proliferation, 

is activated by high cell density conditions allowing the regulation of tissue size to 

prevent uncontrolled cell expansion. Several signaling pathways are involved in this 

contact inhibition process, among them cadherins35. Nevertheless, there is a lack of 

knowledge to fully understand the mechanism of this regulation36. 
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Figure 4. Fibroblasts progress during the wound healing stages and depending on the 

tissue microenvironment 

A) Quiescent fibroblast phenotype in normal health conditions B) Continued 

mechanical stress activates myofibroblast precursor, which leads to pre-activated cells 
or proto-myofibroblasts. C) Under persistent stress and pro-fibrotic framework, 

fibroblasts become myofibroblasts that have a non-migratory behavior and high 

contractile forces. Adapted from37. 

Mechanical stress or tissue injury can switch fibroblasts from the quiescent to 

the proliferative state. Proliferative fibroblasts have stress fibers and secrete ECM 

proteins becoming proto-myofibroblasts or pre-activated fibroblasts (Figure 4-B). The 

main features of proto-myofibroblasts are their high migration and proliferation activity 

that, in the injury context, promote new tissue formation (granulation tissue). 

In persistent mechanical forces or a pro-fibrotic environment, promoted by the 

presence of transforming growth factor-beta 1 (TGF)-β1 or other cytokines38, the proto-

myofibroblasts can differentiate into myofibroblasts (Figure 4-C).  

B

C

A



 

15 

Myofibroblasts are a cell phenotype characterized by a high contractile 

capacity, due to their high expression levels of α-smooth muscle actin (α-SMA), which 

favors the contraction of the wound and facilitates its closure. 

Myofibroblasts apoptosis is essential in the final phase of wound healing. 

However, in persistent fibrotic and inflammatory environmental conditions, the 

apoptotic mechanism fails to produce a permanent presence of myofibroblast in the 

tissue which impairs wound healing or produces several skin pathologies like fibrotic, 

hypertrophic, and keloid scars37.  

Role of fibroblasts migration in wound healing 

As fibroblast migration is essential to promote successful wound healing, much 

effort has been done to understand the mechanism of action involved in fibroblast 

migration regulation.  Several in vitro models have been developed to reproduce the in 

vivo conditions for a better understanding of the fibroblast migration role in wound 

healing, as the following: collective cell migration (to simulate migration in the context 

of high cell density) and single-cell migration (to study migration without the influence 

of cell-cell interactions). A study of the in vitro migration process is possible since there 

are fully-automated microscopes equipped with an incubation chamber to control 

temperature, gas, and humidity.  Now we can create a proper environment for tracking 

living cells in culture for hours even days taking an image every few minutes. 

 

 Single-cell migration  

Single or individual-cell migration experiments are those performed at low-cell 

densities (about 20% confluency, or less, of cell monolayer) where cells move 

independently. A single cell with free space around it can move in the x and y axes and 
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can change its direction several times during the period of study39. On the other hand, 

cells can show a preferred migration direction (directional persistence) as a response to 

growth factors’ gradient from zones with higher cell densities40. This behavior makes 

it necessary to detect the position of each cell in each frame and finally connect those 

localizations to obtain trajectories. This process is usually performed with the help of 

tracking programs. Using the trajectory information, it is possible to determine 

variables like mean-squared displacement (MSD) and diffusion, but also turning 

angles, persistence, punctual velocity, etc. (See Appendix 2 for detailed measurements).  

Cell migration is a multi-step process that implies the coordination of multiple 

membrane and intracellular components, so the single-cell migration assays are very 

useful to precisely study the cell migration mechanism. These assays are usually 

performed in two dimensions (2D) coating the plate surface using a specific ECM 

component such as collagen or fibronectin39.  

The single-cell migration process can be divided into several steps that can be 

repeated cyclically (Figure 5). From an unpolarized cell position (Figure 5-0), the 

asymmetric detection of cell migration-promoting agents, like cytokines or growth 

factors, causes the polarization of the cell40 (Figure 5-1). Polarization is a complex 

process in which the main proteins related to cell movement are distributed to one cell 

edge. This polarization promotes actin polymerization resulting in the protrusions being 

pushed from the inside of the cell. 

Those protrusions can create new adhesion points between actin filaments and 

ECM components through transmembrane receptors called focal adhesions. These 

focal adhesions newly created in the lamellipodium structure involve cytosolic proteins 

that connect several kinds of membrane integrins to the cytoskeleton. (Figure 5-2)41. 

These adhesion complexes confer traction points that allow the cell to move in the 
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migration direction while the adhesion points in the rear end of the cell detach by local 

proteolysis and contract (Figure 5-3) to allow the cell body translocation (Figure 5-4). 

 

Figure 5. Steps and cellular changes in the single-cell migration process.  

Diagram with both top and side views of a cell before and during migration. (0 

unpolarized cell status. (1) Cell polarization determination in response to extracellular 
stimuli (2) Front protrusion and lamellipodium extension. (3) Rear contraction by 

stress fiber contraction effect. (4) Forward cell body translocation. Adapted from39.  

 

External
cues
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 Collective cell migration 

We refer to collective cell migration as the movement of multiple cells in the 

same direction, at the same time, and a similar speed. This group dynamic is more 

directed and faster than individual cell migration because it is guided by soluble signals 

and by cell-cell interactions. This type of migration plays an important role during 

embryonic development, in cancer metastasis, and in different phases of wound 

healing42. However, different kinds of collective cell migration have been described 

depending on the cell type. As can be seen in Figure 6-A, epithelial cells like 

keratinocytes move collectively as a sheet keeping cells together with stable cell-cell 

junctions (adherens junctions, desmosomes, tight junctions, and gap junctions) to 

maintain their barrier function. However, fibroblasts, as a mesenchymal cells type, 

migrate collectively forming transient connections with each other. When two polarized 

mesenchymal cells collide, they form cell-cell N-cadherin-adhesions. This process, 

called contact-inhibition of locomotion produces changes in the cell migration 

movement because it causes the loss of polarity, retraction of cell protrusions, and 

finally cell re-polarization in the opposite direction43. In contrast to these repulsion 

forces, cells are guided back to high cell density zones following a higher concentration 

of attractants produced for those cells44. 
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Figure 6. Collective cell migration types and cellular structures in polarized cells. 

A) Top: mesenchymal cell migration behavior (i.e fibroblasts). Cells migrate 

directionally forming transient cell-cell connections. Bottom: Epithelial cell 
(keratinocytes) migration as a cohesive group, maintaining cell-cell adhesions. 

Adapted from45. B) Representation of main components and organelles involved in cell 
polarization and cell migration. Adapted from42. C) Reflection Interference Contrast 

(RIC) image of dermal fibroblast 4h after wound (scratch) generation. Fibroblasts are 
polarized with protrusions in the leading edge oriented through the free space (left 

down part of the image). Darker parts show cell zones strongly attached to the glass. 

Scale bar=15 µm. Own source. 

In both collective cell migration mechanisms, cells in the leading edge have the 

role of leaders due to their polarization (Figure 6-C)45. As a distinctive characteristic of 

mesenchymal cell migration, in this case, cells in the second line and posterior become 

polarized when they lose contact with cells of previous lines. In addition, once transient 

cell-cell adhesions are broken, the cells migrate following the same steps explained in 

single-cell migration (Figure 5). 

Collective cell migration has been traditionally studied through scratch assay 

experiments due to its technical simplicity46. Briefly, this assay consists of the creation 

of a cell gap in a confluent cell monolayer that promotes cell migration from each edge 

A

B

Epithelial collective
 migration

Mesenchymal collective 
migration

C
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in the direction to the center of the gap. The cell migration rate can be determined by 

the quantification of the free cell area reduction by the calculation of several measures 

of the gap size (further details of this assay are in Appendix 1). 

Integrins and their role in cell migration 

Integrins are a major family of cell-surface-adhesion receptors that play 

important roles during developmental, and in normal and pathological cellular 

processes in humans. Integrins are transmembrane heterodimers of noncovalently 

associated α and β subunits. There are 24 different integrins in mammals resulting from 

the combination of 18 different α subunits and 8 β subunits (Figure 7-A). The subunits 

are linked through noncovalent interactions forming an extracellular ligand-binding 

head, two multi-domain “legs”, two transmembrane helices, and two short cytoplasmic 

tails47 (Figure 7-B). 
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Figure 7. Integrin’s family, structure, and different conformations. 

A) Representation of the 24 different integrins described in mammals detailing the a 

and b units combination grouped by the ECM ligand they bind. B) Schematic 

representation of subunits a and b domains. C) Representation of several integrins 

conformations. Image from48. 

The principal role of integrins is to mediate the attachment of cells to the ECM 

ligands and transduce biochemical signals into the cells through intracellular proteins 

to give information to the cell about its environment49. Remarkably, they work in a 

bidirectionally way, meaning they can transmit information both outside in and inside 

out. Inside-out signaling is an activation process of the integrins from the cytosol where 

protein adaptors, like talin, interact with the short cytosolic tail of the integrin triggering 
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a conformational change that allows integrin to bind the ligand50. On the other hand, 

outside-in signaling occurs when integrins bind their ligand, which stabilizes their 

conformational state and, in turn, leads to integrin clustering further enhancing their 

avidity to the EMC ligand50. 

 Depending on the activation route and status, integrins have three main different 

conformations: i. a bent-closed or inactive form, ii. An extent-closed conformation, and 

iii. An extended-open or active form (Figure 7-C). The integrins’ conformation can be 

partially identified through the study of its mobility along the cell membrane: mobile 

integrins present the bent or inactive conformation and confined or immobile integrins 

have an extended-open conformation51. 

One of the most relevant integrins involved in fibroblast migration is integrin 

α5β1. This integrin belongs to a group of integrins that bind to ECM components such 

as fibronectin or vitronectin through the RDG epitopes of these proteins.  

In normal conditions, during cell migration, small clusters of integrins appear 

at the leading edge binding the ECM called nascent adhesions. Those nascent adhesions 

evolve into bigger protein clusters, called focal adhesion complexes (FAC), formed by 

different types of integrins, intracellular proteins, some growth factor receptors, and 

cytoskeletal elements like actin bundles. The formation kinetics, shape, size, and 

distribution of these focal adhesions vary depending on their cell location and cell 

phenotype52. It has been reported that integrin α5β1 is implicated in several pathologies 

such as cancer, inflammation, respiratory diseases, and viral infections such as SARS-

Cov2. Some of the explanations for the involvement of this integrin in these 

pathological processes is the fact that integrin α5β1 expression in epithelia is associated 

with inflammation and active proliferation53. Since the regulation of the fibroblast 
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migration process is essential during the wound healing process, in this thesis, we are 

interested in studying the behavior of integrin α5β1 in the context of wound healing. 

The role of VEGF on dermal fibroblasts activity 

As we previously explained, VEGF is a growth factor with an important role as 

a signaling molecule for the mobilization of different cell types during wound healing. 

In addition, there is different evidence related to altered levels of the growth factor or 

its receptors in chronic wounds54. In addition, it has been reported that a decreased 

expression of VEGF is associated with poor wound healing55. Several forms of VEGF 

have been identified in humans: VEGF-A, VEGF-B, and VEGF-C, VEGF-A being the 

most common form in adults. There exist 6 different isomeric forms of VEGF-A (121, 

145, 165, 189, and 206), and the VEGF165 is the most common and most biologically 

active56. Cellular VEGF signaling depends on the interaction with different receptors. 

VEGF family receptors are composed of three receptors: VEGFR-1 (also known as Flt-

1: fms-like tyrosine kinase 1), VEGFR-2 (KDR or Flk-1: fetal liver kinase-1), and 

VEGFR-3 (Flt-4) and two co-receptors Nrp-1 and Nrp-2 (Neuropilin 1 and 2) (Figure 

8). Also, soluble forms of each VEGFR called sVEGFR1, sVEGFR2, and sVEGFR3 

exist, which miss the transmembrane and intracellular domain. 

The structure of the VEGF receptors is characterized by seven extracellular 

domains of which domains 2nd and 3rd are responsible for the interaction with VEGF 

and domains 4 to 7th for receptor dimerization57. 

In terms of the biological function of the VEGF receptors, it has been described 

that VEGFR-1 is the main contributor to the inflammation process, VEGFR-2 

facilitates angiogenesis, and VEGFR-3 is expressed in lymphatic endothelium and may 

play a role in lymphangiogenesis. In addition, all three receptors have an important role 



 

24 

during embryonic vessel formation: in patients with compromised circulation, the 

VEGFR-2 decrease contributes to wound chronicity. On the other hand, in patients 

without compromised circulation, increased levels of VEGFR-1 increase the 

probability of wound chronicity58. Those pieces of evidence lead us to believe that 

abnormal patterns of VEGFRs might be key elements of wound chronicity. 

 

Figure 8: Schematic representation of all VEGF receptors and their ligands. 

Image showing the three types of VEGF receptors in their homodimeric and 

heterodimeric form and some ligands. On the top, the soluble form of each receptor is 
represented that can also bind the ligand preventing the activation of the VEGF 

signaling through the full-length receptor. On the bottom the main biological function 

the signaling cascade activates for each receptor is reflected. Adapted from Ref. 59.  

VEGFR-1 is the only VEGF receptor expressed on dermal fibroblast60 and for a long 

time, it was considered a simple decoy receptor with no signaling function, so it has 

Migration

sVEGFR-1
sVEGFR-2 sVEGFR-3
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been poorly studied. VEGFR-1 binds to VEGF-A with an affinity that is approximately 

tenfold higher than VEGFR-261; however, the precise biological mechanism of 

VEGFR-1 signaling is not well understood. VEGFR1-deficient mice exhibit 

overgrowth and disorganization of blood vessels. This result suggests that VEGFR-1 is 

a negative regulator of angiogenesis during embryonic development61. However, 

neither the role of VEGFR-1 signaling in wound healing is well understood nor its 

effect on dermal fibroblast activity. 

Integrins and growth factors interactions and crosstalk  

There is no reported evidence of the physical interaction between VEGFR-1 and 

integrin a5b1. In addition, by making a query in the protein-protein interaction network 

using VisANT62 we observed a lack of direct interaction between both proteins (Figure 

9). As can be seen in the interaction network, neither integrin subunit a5 (ITGA5, 

purple) nor subunit b1 (ITGB1, green) have direct interactions with VEGFR-1 (red). 

Although, there are interactions through VEGFR-1 co-receptors NRP1 (pale pink). 

Figure 2 shows that fibronectin has union sites for integrin a5b1 and VEGF in closer 

domains. Due to this proximity, some synergetic relations between VEGF and integrins 

had been reported on endothelial cells63.  
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Figure 9: Protein-protein interaction network involving integrin a5b1 and VEGFR-1. 

Protein-protein interaction network performed with VisANT62 (accessed 11/06/2020) 

to study the interactions between integrin a5 subunit (ITGA5, purple), integrin b1 

subunit (ITGB1, green), VEGFR-1 (red) and VEGFA (yellow)  

VEGF and biological therapies for treating chronic wounds 

One of the current advanced therapies for chronic wounds is the autologous 

platelet-rich plasma (PRP) therapy which is based on biological preparations rich in 

growth factors. Previous studies in our group have demonstrated promising results for 

treating chronic wounds64,65. However, the different methods to prepare this therapy 

and the differences in patients’ blood levels of those growth factors, make it difficult to 

characterize its composition and to study its efficacy66. Despite the huge variability of 

PRP composition, several publications have described that VEGF165 is one of the most 

enriched growth factors in PRP in comparison to normal blood levels67. So, we have a 
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major interest in studying the role of VEGF concerning fibroblast migration for a better 

understanding of the efficacy of PRP therapy and its mechanism of action.  

Single particle tracking (SPT) and reflection interference contrast microscopy 

(RICM) are powerful techniques used in the study of cell receptors. SPT allows for the 

visualization and tracking of individual molecules, providing information about their 

movement and interactions within the cell membrane68. RICM, on the other hand, is a 

surface-sensitive imaging technique that can reveal the topography and composition of 

the membrane69. By combining SPT and RICM, we can gain a more comprehensive 

understanding of the behavior and organization of cell receptors. A detailed explanation 

of these techniques and how we applied it can be found in Annex 3. 

3. In vivo wound healing monitoring and quantification 

Chronic wounds are complex to treat and require great expertise from clinical 

staff to guarantee wound resolution. The presence of several wound etiologies and the 

high effect of other comorbidities of patients such as diabetes or vascular diseases are 

among the causes of this complexity. Among the strategies with effective results, are 

weekly visits for wound cleaning, monitoring, and treatment application. 

Wound healing monitoring techniques 

Clinical wound monitoring included the visual description of the aspect of the 

wound, the identification of the presence of exudates, color, the presence of granulation 

tissue, and the precise quantification of the wound area. The determination of wound 

area can be difficult to quantify on some occasions by employing a ruler as it can be 
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irregular or formed by multiple spread ulcers. Among the methods used for wound 

measurement, manual and digital planimetry are considered reliable and cost-effective 

methods, particularly in wounds with irregular shapes70.  

To carry out a planimetry a sterile transparent adhesive film with a measurement 

grid (1 cm pace; OpSite flexigrid, Smith & Nephew) is placed over the wound and the 

wound margin is directly traced with a pen on the adhesive film (Figure 10-B). When 

direct contact with the wound does not constitute a matter of concern, this is the most 

widely used method. The ensuing evaluation of the area, performed by counting the 

number of squares falling within the outline, makes this method error-prone and 

tedious71. There are also some methods based on the market based on measurement of 

photography of the wound72. These methods usually need a reference mark with a 

known size near the wound to determine its real size. In some parts of the body, these 

methods are not very precise due to wound curvature or the difficulty to hold the 

reference mark, the camera, and the extremity of the patient at the same time. More 

complex methods, based on 3D reconstruction, volume filling, or laser scanners have 

also been proposed but are not routinely used due to their cost or invasiveness 72. 

Despite the existence of these new devices for wound area measurement, more effort 

should be invested in this area to create new technologies that facilitate more precise 

measurements while being useful in the clinical practice setting, meaning they should 

be able to connect to the patient’s clinical history, recording these values during the 

various visits.  

The real interest in determining the wound area lies in being able to use these 

measurements for better clinical decision-making in choosing the appropriate 

treatment, especially for chronic wounds. In fact, as detailed in Appendix 2, various 

equations have been described over the years to determine the rate of healing and it has 
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been demonstrated that the healing rate has a predictive value in wound evolution and 

may also have a prognostic value. So, further studies in this area are needed to improve 

wound care. 

 

 

Figure 10.  Leg ulcer monitoring using a planimetry 

A) Image of a patient’s leg ulcer. B) Detail of the planimetry from the leg ulcer using 
OpSite flexigrid transparent sheets. Big green squares delimited by tick lines (including 

2 x 2 small squares) are 1 x 1 cm2. Own source. 

 Artificial intelligence as a future of wound monitoring 

One of the challenges in wound care practice is to have staff with the appropriate 

expertise to correctly diagnose wounds for later making correct decisions on wound 

treatment. For trainees and junior professionals, it may be very useful to have some 

support in this clinical decision-making especially when they are working alone. In this 

context, artificial intelligence tools that are currently developed might be good 

instruments to help these professionals. On the other hand, the accessibility of the 

updated variables of wound morphology in the clinical history of patients can be very 

helpful to clinicians for wound management follow-up. 

Over the last two decades, artificial intelligence methods like convolutional 

neural networks (CNNs)73 have become established tools for the classification of 
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biomedical images and they have been proposed as an instrument for clinical diagnosis 

in disciplines such as radiology, histology, ophthalmology, and dermatology74. In 

dermatology, CNNs can be used for different finalities: i) segmentation purposes, 

allowing the automatic detection of skin lesion margins, and ii) classification, which 

permits the automatic diagnosis of the type of ulcer. 

 

Segmentation process 

Segmentation consists of the use of DL algorithms to detect and group pixels 

with similar characteristics and split pictures into different segments or structures75.  In 

the context of wound healing, this technology may be useful for the detection of skin 

lesions’ margins to perform, in a second step, an automatic area measurement. 

Implementing this technology with a small device with a camera like a tablet or a 

smartphone can speed up the wound area measurement and the data entry of the clinical 

history and can save the development of tedious manual planimetry automatizing this 

part for reducing clinicians’ time and improving the patient’s comfort78. 

 

Classification process 

Classification is the wider application of CNNs in medicine and, in concrete, in 

dermatology. Classification is described as the capacity of a CNN algorithm to assign 

a class level to a given image. That classification can be binary, which used to be in 

most of the clinical applications of malignant or benign lesions or multi-class 

classification. In the field of dermatology, important efforts have been dedicated to 

creating tools for the detection of skin cancer from dermoscopic images only76 or in 

combination with regular photographic images77. Without any prior knowledge about 

dermatology, CNNs extract and combine sets of abstract features and automatically 
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generate identifying characteristics (such as a combination of colors, shape, texture, 

border geometry, etc.) associated with the different data categories. In this way, an 

algorithm can learn how to achieve a precise classification of images not included in 

the training dataset, and even find patterns not identified by humans78.  

Those great advances in the skin lesions classification have been made possible 

because there are public repositories of skin lesions. The International Skin Imaging 

Collaboration (ISIC) has developed several repositories of skin lesions images and their 

metadata associated with the classification. These repositories have been used from 

2016 to 2020 for the ISBI melanoma detection challenge. In those challenges, teams 

around the world competed for the creation of the CNN architecture that best classifies 

different types of melanomas and skin lesions76,79,80. Unquestionably, a milestone was 

set by the work published by Esteva and coworkers in Nature77, in which they trained 

a standard CNN architecture (Google’s Inception v3) on both dermoscopic and standard 

photographic images using a dataset of over 100,000 images, proving that the CNN 

performed similarly to tested experts in classifying malignant versus benign lesions of 

both epidermal and melanocytic origin. 

Currently, for chronic wound classification, no public database of chronic 

wounds exists for properly training a DL algorithm to assist clinicians in wound 

etiology classification or other purposes. For an adequate algorithm training process, 

the dataset should be representative of all types of etiologies, including the less common 

ones; it must ensure the presence of wounds from all human skin colors; and the images 

must avoid the presence of illumination reflexes that can be usual in case of wounds 

with wet exudate. In 2020, Wang and colleagues collected the best existing wound 

image collection with 1109 annotated ulcers. Wang’s team in collaboration with two 

different health centers needed 2 years to gather this information81. Despite this great 
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achievement and the investment of huge efforts to carry out this project, this has a huge 

limitation because this dataset only includes foot ulcers, making this dataset unusable 

for wound diagnosis (classification) finalities75. Therefore, it would be interesting if 

clinicians and researchers from all around the world could collaborate to extend the 

Wang’s collection to include other etiologies. 

On the other hand, despite the great results obtained using DL in dermatology, 

this technology is still poorly used or tested by doctors for several reasons. In general, 

clinicians have little background in computing programming skills and in using the 

jargon of the AI area, factors that might condition their interest in furthering their 

understanding of that area. It is also challenging for clinicians to be able to access 

testing platforms about that kind of technology, which would be the best way to 

understand this technology. All these factors lead to some reservations about the use of 

DL algorithms for assisting in the diagnosis of dermatological diseases. In addition, if 

physicians are not part of the teams that develop and test processes, this would increase 

the difficulties to validate them and for them to be accepted by the medical community.  
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Chapter 2. 

Hypothesis and objectives 

Chronic wounds are characterized by their inability to heal within an expected 

time frame. Although the clinical approach to chronic conditions has improved 

(prevention, diagnosis, and treatment) there are insufficient tools for a proper wound 

evolution follow-up for anticipating wound prognosis and thus be able to better 

decision-making in therapies selection. On the other hand, the physiological repair of 

dermal wounds is regulated by molecular factors generated in the dermal and blood 

tissues. However, there is a lack of knowledge about the mechanism of fibroblast 

migration regulation in the context of chronic wounds.  

 

Our hypothesis is that a multiscale approach from a biophysics point of view 

should provide a new perspective for a better understanding of the wound healing 

process and gives useful tools for clinical wound healing follow-up to support clinical 

decision-making. This thesis’ objectives are detailed as follows:  

 

Objective 1. To study the VEGF effect on dermal fibroblast migration activity in 

the framework of wound healing: 

• By determining the VEGF effect on fibroblasts' collective and single-cell 

migration in the context of high and low cell density, respectively. 

• By analyzing the VEGF effect on the membrane diffusion of two membrane 

receptors (VEGFR-1 and integrin a5b1) in the context of isolated cells and in a 

wound healing in vitro model. 



 

34 

 

Objective 2. To develop new tools to help clinical staff to get quantitative values 

of the wound healing evolution and to assess the efficacy of therapies in chronic 

wounds: 

• By creating a tool for precise wound area and shape measurements. 

• By developing a routine to get wound evolution parameters with prognostic 

value. 

 

Objective 3. To review the uses of artificial intelligence (AI) for skin lesions 

classification and develop pedagogical materials to make this technology more 

accessible to non-experts: 

• By introducing the utility of deep learning (DL) for automated skin image 

classification to non-experts. 

• By developing pedagogical material to support clinicians and medical students 

in becoming familiar with the principles of convolutional neural network 

(CNN) used in AI tools to classify skin lesions. 
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Chapter 3. 

Results  

The development of the objectives of this thesis has led to the publication of 

three scientific articles and one in the process of revision, listed below. A copy of each 

article and a summary of the results of each one is included in this chapter.  

• VEGF-A differentially influences fibroblast migration and receptor 

spatiotemporal organization as a function of cell density. 

Cullell-Dalmau M, Otero-Viñas M, Masoliver M, Bertran J, Manzo C. (To be 

submitted). 

 

• A toolkit for the quantitative evaluation of chronic wounds evolution for 

early detection of non-healing wounds 
Cullell-Dalmau M, Otero-Viñas M, Ferrer-Solà M, Sureda-Vidal H, Manzo C. 

J Tissue Viability. 2021 May;30(2):161-167. doi: 10.1016/j.jtv.2021.02.009. 

Epub 2021 Mar 2. 

 

• Research Techniques Made Simple: Deep Learning for the Classification 

of Dermatological Images 

Cullell-Dalmau M, Otero-Viñas M, Manzo C. J Invest Dermatol. 2020 

Mar;140(3):507-514.e1. doi: 10.1016/j.jid.2019.12.029. 

 

• Convolutional Neural Network for Skin Lesion Classification: 

Understanding the Fundamentals Through Hands-On Learning 

Cullell-Dalmau M, Noé S, Otero-Viñas M, Meić I, Manzo C. Front Med 

(Lausanne). 2021 Mar 4;8:644327. doi: 10.3389/fmed.2021.644327. 
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ARTICLE 1. VEGF-A differentially influences fibroblast migration and receptor 

spatiotemporal organization as a function of cell density. 

The main objective of this study was to analyze the role of VEGF-A on dermal 

fibroblast migration functionality at molecular and cellular levels.  

Our results on sparse cells showed that VEGF treatment increases the migration 

velocity but reduces the motion persistence. We also observe that those differences 

changed in a time-dependent fashion. On high cell density conditions, we determine the 

collective cell migration behavior. We again observed a rich temporal pattern and 

dependence of migration velocity on the initial gap area. To include these dependencies, 

we determine the rate1/2 which significantly decreased as a function of VEGF-A 

concentration. These opposite results depending on cell density conditions led us to 

hypothesize possible crosstalk between VEGF-A signaling and cell-cell interactions.  

We also analyzed the VEGFR-1 and integrin a5b1 spatial distribution on the cell 

membrane in two experimental cell models: on cells from the wound scratch margin 

and cells from the unperturbed monolayer, under control and VEGF-A treatment 

conditions. For the integrin, we observed a mixture of diffraction-limited spots and 

small clusters forming focal adhesions with a higher density at the wound margin 

compared to those in the unperturbed monolayer. However, the VEGF-A treatment 

reduces the median spot size of integrin a5b1 independently of the cell location. 

VEGFR-1 showed a homogeneous distribution through the membrane of diffraction-

limited spots and a significant increase in spot density in cells at the wound margin. 

VEGF-A treatment revealed no effect on VEGFR-1 spot density. 

In addition, the analysis of the VEGF-A effect, at the nanoscopic level, on the 

lateral diffusion of integrin a5b1 and the VEGFR-1. For integrin a5b1 we observed an 

influence of cell density with a progressive increase in the probability of undergoing 
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mobile motion determined in unperturbed monolayer (⪅ 10%), cells at the wound 

margin (≈15%), or isolated cells (≈ 30%) without differences in the averaged diffusion 

coefficient across conditions. For the VEGFR-1 most trajectories were compatible with 

receptor immobilization with probabilities of ⪅ 15% of being mobile for all conditions 

and we determine an average diffusion coefficient in the range of 0.1-0.2 $m2/s.  In that 

case, the VEGF-A treatment produced small changes in the mobile fraction that 

correlated with those observed for cell migration. While VEGF-A nearly doubled the 

mobile fraction of VEGFR-1 for fibroblasts in the unperturbed monolayer and at the 

wound margin, the treatment produced a minor decrease in isolated cells. In fact, the 

average diffusion coefficient was found to be insensitive to VEGF-A treatment but was 

significantly higher at the wound margin and for isolated cells concerning the 

unperturbed monolayer. 
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ABSTRACT VEGF-A is a potent angiogenic growth factor that specifically acts on endothelial cells and has various e�ects,
including the induction of angiogenesis and the promotion of cell migration. However, the role of VEGF-A in regulating cell
migration and the process of wound healing is yet unclear. In this work, we used optical microscopy to investigate the e�ect
of VEGF-A on human dermal fibroblast migration with a multiscale approach. Experiments performed on cell monolayers
and individual cells were complemented with single-molecule imaging of receptors involved in adhesion and migration
(the integrin U5V1), and signaling (VEGFR-1). The results showed that VEGF-A treatment led to increased velocity and
reduced persistence in individual cell migration. In contrast, VEGF-A treatment slowed down the collective migration of
fibroblasts. VEGF-A further a�ected the dynamic nanoscale organization of cell surface receptors in a nontrivial way,
showing a dependence on the cell density. Overall, the results highlight a complex interplay between VEGF-A signaling,
cell-cell interactions, adhesion, and migration.

INTRODUCTION
Wound healing is a complex biological process that involves
a series of events to restore tissue integrity after injury and
requires the coordination of various cells and molecular
signals. Understanding the mechanisms underlying wound
healing is important for developing treatments to promote
faster and more efficient healing (1).

Dermal fibroblasts are key players in the process of tis-
sue repair and are involved in the formation of a provisional
extracellular matrix (ECM) that serves as a scaffold for cell
migration and tissue repair. Additionally, fibroblasts secrete
growth factors and cytokines that stimulate angiogenesis and
recruit immune cells to the wound site. Fibroblasts also re-
spond to physical cues in the environment, such as mechanical
stress, and can migrate towards the wound site to help close
the wound and restore tissue integrity (2).

Vascular endothelial growth factor A (VEGF-A) is a
potent angiogenic factor that has been shown to play a role in
regulating cell migration and the process of wound healing.
VEGF-A acts as a chemoattractant for fibroblasts, attracting
them to the site of injury (3). This process is facilitated by
the binding of VEGF-A to its receptors, Vascular Endothelial
Growth Factor Receptor 1 (VEGFR-1, also known as Flt-1) and
2 (VEGFR-2, also known as KDR) (4). VEGFR-1 is widely
expressed in many cell types, including dermal fibroblasts.
For long, VEGFR-1 has been considered a decoy receptor that
does not directly activate signaling pathways, but contributes
to the overall regulation of VEGF-mediated signaling by
preventing VEGF interaction with other receptors, such as
VEGFR-2 (5). However, recent studies have challenged this
interpretation and proposed a direct role for VEGF (6).

VEGF-A has been shown to play a role in enhancing wound

healing and tissue regeneration in the context of platelet-rich
plasma (PRP), a concentrate of platelets obtained from a
patient’s own blood that is rich in growth factors, including
VEGF-A (7). Additionally, VEGF has been shown to interplay
with integrin receptors (8–10) which mediate adhesion to
the ECM and modulate migration (11). Yet, clinical trials
using recombinant VEGF-A reported non-significant results
on wound healing treatment (12).

In this article, we use microscopy techniques to study
VEGF-A effect in regulating the individual and collective
migration of human dermal fibroblasts. We further apply
single-molecule imaging to link cellular function to the spa-
tial organization and dynamics of the integrin U5V1 and
VEGFR-1. Through the combination of imaging at the cel-
lular and molecular level, we reveal a complex interplay of
VEGF-A with the cellular locomotory and signaling machin-
ery, involving the effect of adhesion and cell-cell interactions.
The results of these studies postulate a direct role for VEGFR-1
and provide insights into the mechanisms by which VEGF-
A influences the behavior of fibroblasts during migration.
As such, they may have important implications for the de-
velopment of new treatments for a variety of diseases and
conditions.

MATERIALS AND METHODS
Cell culture and sample preparation
Primary dermal fibroblasts from newborn foreskin (ATCC,
Manassas, VA, SCRC-1041) were cultured in high-glucose
Dulbecco’s modified eagle medium (DMEM, Gibco, 11960085)
with 1% of penicillin, 1% of streptomycin, and 1% glutamine
(hereafter, complete medium) supplemented with 10% fetal
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bovine serum (FBS, Sigma-Aldrich, F0804) at 37 �C in 5%
CO2 atmosphere.

Primary dermal fibroblasts were seeded on fibronectin-
coated 35-mm diameter glass-bottom dishes (VWR, 734-
2904) in DMEM complete medium with 10% FBS at 1⇥105

cell/mL for migration assays and 3.2⇥105 cell/mL for wound
healing assays. Cells were incubated for 48 h. Dishes were
previously coated with 4 mg/mL fibronectin (Sigma-Aldrich,
F2006) for 1 h and then blocked with 2 mg/mL bovine serum
albumin (BSA). Before imaging, cells were starved for 24 h
in DMEM complete medium with 0.5% FBS to arrest cell
proliferation. We performed the wound healing experiments
by scratching the monolayer with a sterile 200-µL pipette
tip to generate a cell-depleted region. Samples were washed
twice with phosphate-buffered saline (PBS) and supplied with
DMEM complete medium with 0.5% FBS (control medium).
To assess the effect of VEGF-A, samples were further supplied
with either 20 ng/mL or 100 ng/mL of VEGF-A 165 (Sigma-
Aldrich, V5765).

For fluorescence imaging, samples were prepared as de-
scribed for wound healing assays. After 4 h of treatment
with VEGF-A or control medium, cells were fixed with 4%
paraformaldehyde (PFA) for 10 min and permeabilized with
Triton X-100 at 0.1% for 10 min. After washing, cells were
blocked with 3% BSA, 2% human serum, and 20 nM of
glycine in PBS for 20 min. Cells were first incubated with
primary antibodies, either anti-integrin U5 (BD Pharmingen,
555651) or anti-VEGFR-1 (Invitrogen, SY09-09) at 5 `g/mL
for 45 min, and, after washing, with secondary antibodies (ei-
ther anti-mouse IgG Alexa Fluor 488 or anti-rabbit IgG CFTM
594, 5 `g/mL for 45 min). Fluorescent beads (TetraSpeck,
Invitrogen) were added as fiducial markers for channel overlay
in two-color imaging. Computational analyses were carried
out to ensure that the anti-VEGFR-1 antibody did not interfere
with the extracellular binding site of VEGFR-1.

Live-cell single-molecule imaging (SMI) experiments
were performed either on isolated cells or on cell monolayers
ensuing wound healing. Samples were prepared as described
for cell migration and wound healing assays, respectively.
For SMI on isolated cells, no starving was performed. Af-
ter 4 h of treatment, cells were washed and blocked with
PBS with MgCl2 and CaCl2 (+/+ PBS) (Sigma-Aldrich,
D8662) supplemented with 6% BSA. Cells were labeled
with 0.01 mg/mL half-antibody fragments previously conju-
gated with streptavidin-coated quantum dots (Sigma-Aldrich,
Q10121MP) dissolved in +/+ PBS with 6% BSA for 15 min
at 37 �C. Samples were washed and imaged in +/+ PBS with
6% BSA. Half-antibody fragments were obtained following a
protocol similar to the one used in (13). Briefly, mouse anti-
human integrin U5 antibody (50`L; BD Biosciences, 610633)
was dialyzed (ThermoFisher, Slide-A-Lyze MINI Dialysis
Device, 2K) against PBS overnight at room temperature to
replace the commercial buffer. Then, antibodies were reduced
with 1 mM DTT for 30 min at room temperature and dialyzed
again, using Slide-A-Lyze MINI Dialysis Device 2K, for 4h
at room temperature against PBS to remove DTT. To avoid
reassociation of reduced antibodies, sulfhydryl groups were
blocked by incubating with iodoacetamide 20 mM for 1 hour
at 4 �C with agitation. Iodoacetamide was then removed from
the reaction by dialysis overnight at 4 �C. Finally, reduced

antibodies were biotinylated with a 10-fold molar excess of
EZ-Link Sulfo-NHS_LC_Biotin (Thermo Scientific) for 30
min at room temperature with agitation and stored at 4 �C
until use.

Imaging experiments
Experiments were performed on a Leica DMi8 inverted fluo-
rescence microscope equipped with a total internal reflection
fluorescence (TIRF) module and an environmental chamber
(Okolab).

For wound healing and individual cell migration assays,
samples were imaged with a 10⇥ phase-contrast objective at
37 �C in a 5% CO2 atmosphere for 24 h at time intervals of
15 min (migration) or 30 min (wound healing). For individual
cell migration, we selected 5 to 8 regions of interest (ROIs) per
sample in zones with approximately 20% of cell confluence.
For wound healing assays, 5 to 8 ROIs were selected per
sample taking care to avoid irregular zones and peripheric
regions and including both the wound margins and inner
regions of the cell monolayer.

For fluorescence and live-cell SMI, samples were illumi-
nated in TIRF geometry. Excitation was provided by the light
of two CW lasers (Obis, Coherent, _=488 nm, 1 kW/cm2 and
Oxxius, _= 561 nm, 2.5 kW/cm2). Fluorescence was collected
through an oil-immersion objective (Leica, 100⇥, NA = 1.47)
and guided toward an sCMOS camera (95B, Photometrics)
using proper filters (Chroma). For SMI, movies were recorded
at a frame rate of 50 Hz at 37 �C in a 5% CO2 atmosphere.
Reflection interference contrast (RIC) images were obtained
by illuminating the sample with an LED (pE300, CoolLED)
filtered with a bandpass filter (Chroma) and collecting the
reflected light through a 10/90 beam splitter (Chroma).

Image processing and statistical analysis
For individual cell migration assays, cell detection and track-
ing were performed with ImageJ using the plugin Track-
Mate (14) with a blob diameter of 40 `m, a maximum linking
distance of 30 `m, a gap closing distance of 50 `m, and a
maximum frame gap of 2 frames. Only trajectories longer
than 30 frames (corresponding to 7.5 h) were used for further
quantification that were performed in MATLAB (the Math-
Works Inc., Natick, Massachusetts) using custom scripts. For
wound healing assays, images were analyzed using scripts
written in MATLAB based on the algorithm described in (15)
to detect the area corresponding to the wound region. Furher
kinetic parameters were calculated using custom MATLAB
scripts (16). For fluorescence imaging, spots were detected in
MATLAB following a pipeline similar to the one described
in (17).For live-cell SMI, movies were analyzed using the u-
track package (18). Trajectories were quantified and classified
according tho the algorithm described in (19).

Statistical analysis were performed in R (R Core Team,
2022). For data that did not pass the normality test, sta-
tistical significance was calculated with the Kruskal-Wallis
test followed by post hoc Wilcoxon test. Sample sizes were
based on previously published experiments in which statistical
differences were identified.
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RESULTS
VEGF-A di�erentially influences the
collective and individual cell migration
Individual cell migration
We first sought to investigate the effect of VEGF-A treat-
ment on the individual migration of human dermal fibrob-
lasts in vitro. We thus performed time-lapse microscopy and
recorded the motion of cells seeded at a low confluence on
fibronectin-coated coverslips. We used tracking software (14)
to reconstruct individual cell trajectories (Figure 1A-B) and
estimate kinetic parameters for ⇡ 1000 cells in each condition.
Trajectories of individual cells in both conditions showed a
directional persistence (Figure 1B) with a distribution of the
turning angle pronouncedly peaked around q = 0 (Figure 1C).
The calculation of the average velocity (Figure 1D) and the
motile persistence (i.e., the end-to-end displacement divided
by the total displacement, Figure 1E) for each cell revealed
small but significant differences in cell motility upon VEGF-
A treatment, characterized by a higher velocity and reduced
persistence.

To better understand these differences, we represented
these two quantities as a function of time (Figure 1F-G). The
velocity displayed a progressive increase up to ⇡ 12 h from
the beginning of the experiments (Figure 1F). Treated cells
moved faster in the first phase of the experiments, until ⇡ 7
h. The directional persistence of cells in control conditions
slightly increased over time, whereas cells treated with VEGF-
A maintained a rather constant persistence (Figure 1G). Cells
in both conditions showed comparable persistence values for
the first ⇡ 7 h, after which they showed a diverging behavior.
As a further test, in Figure 1H we quantified the mean-squared
displacement for each trajectory, which displayed the typical
superdiffusive behavior with scaling exponent 1 < U < 2, as
expected for the active process of cell locomotion (20). In
agreement with the results obtained for the motile persistence,
we observed a significant reduction of U upon VEGF-A
treatment (Figure 1I).

VEGF-A seems to promote a faster yet less persistent
motion for isolated cells. Our data seemingly indicate the
occurrence of a time-dependent mechanism, defining two
temporal regions responsible for the differences observed in
Figures 1D-E.

Collective migration
To gain insights into the mechanism responsible for changes
in fibroblasts’ migration induced by VEGF-A, we reckoned to
measure the collective migration properties of fibroblasts. We
performed wound healing assays by scratching cells’ mono-
layers and imaging them using phase-contrast microscopy
(Figure 2A), both in control medium and with VEGF-A treat-
ment. The time-lapse imaging shows a progressive reduction
of the initial wound area over time due to the movement of the
two wound margins until the monolayer is fully reconstituted
(Figure 2A). Time traces of the wound area vs. time corre-
sponding to similar values of initial wound area (Figure 2B)
suggested a progressive slowdown of the wound healing pro-
cess as a function of VEGF-A concentration (Figure 2B) and a
reduction of the longitudinal wound closure rate (Figure 2C).

Figure 2C also shows that the closure rate exhibits a rich
temporal pattern that was hardly reproducible for different
wounds and regions of interest. Together with the variability
in initial gap length, this made difficult the quantification
of kinetic parameters. A plot of half the initial gap size
(gap/2) as a function of t1/2, i.e. the time to reduce the gap
to half of its initial value (Figure 2D), showed a positive
correlation between the two quantities and a change of slope
upon VEGF-A treatment. To monitor the wound healing
velocity and mitigate the dependence on the initial gap size,
we thus calculated rate1/2 = gap

2·t1/2 for every region of interest
previously imaged. As shown in Figure 2E, rate1/2 significantly
decreased as a function of VEGF-A concentration.

In contrast to the experiments of individual migration,
VEGF-A seems to slow down the collective migration of
fibroblasts. This evidence led us to hypothesize a possible
crosstalk between VEGF signaling, cell-cell interactions, and
scratch-induced signaling in migration.

The spatial distribution of integrin U5V1 and
VEGFR-1 is influenced by cell density and
VEGF-A treatment
Migration experiments suggested a complex interplay of
VEGF-A with other signal mechanisms involved in migration.
We thus focused our investigation at the molecular level by
studying the spatial organization of two membrane proteins:
the integrin U5V1, a major cellular receptor for the extracellu-
lar matrix protein fibronectin, that plays a fundamental role
in adhesion and migration (21) and the VEGFR-1 receptor,
involved in the activation of several intracellular signaling
pathways upon VEGF-A binding (22).

We used RIC and TIRF microscopy to image the basal
membrane of fibroblasts and determine the spatial distribution
of both receptors after scratching. We performed experiments
both on cells forming the unperturbed monolayer or at the
wound margin, in control medium or with VEGF-A treatment
(Figure 3A). In all the cases, RIC imaging (Figure 3A, top
panels) showed well-stretched cells, with an elongated shape
in the unperturbed monolayer and a large adhesion area
at the wound margin. The TIRF images obtained for the
integrin U5V1 (Figure 3A, middle panels) revealed a mixture
of diffraction-limited spots and small clusters, forming focal
adhesions (FAs) or fibrillar adhesions aligned along stress
fibers (23).

The density of these structures was higher in cells at the
wound margin as compared to those in the monolayer, as
further confirmed by the image quantification in Figure 3B,
whereas VEGF-A produced no difference. However, VEGF-A
produced a reduction of the median spot size, independently of
the cell location and concentration (Figure 3C). TIRF imaging
of VEGFR-1 showed the occurrence of diffraction-limited
spots with a quite homogeneous distribution throughout the
membrane (Figure 3A, lower panels). Similarly as observed
for the integrin U5V1, the quantification of the spot density
revealed no effect of VEGF-A treatment but a significant in-
crease in spot density for cells at the wound margin (Figure 3D).
As shown in Figure 3E, the spot size was roughly constant,
independent of both the treatment and the cell location.
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Figure 1: VEGF-A effect on individual migration. A Phase-contrast images of a region of interest from a cell migration
experiment at different times. Orange circles and segmented lines indicate the centroid of the detected cells and the linked
trajectory. Scale bar = 150 `m. B Representative trajectories of the same duration (20 h) obtained for cells in control medium
(orange) and 100 ng/mL VEGF-A (blue). Scale bar = 500 `m. C Schematic of the calculation of the turning angle q and rose
plots of q for cells in control medium (orange) and 100 ng/mL VEGF-A (blue). D-E Boxplot of the average velocity (D) and the
motile persistence (end-to-end displacement divided by total displacement, (E) measured for each cell in the two experimental
conditions. F-G Cell velocity (F) and motile persistence (G) as a function of time. Continuous lines represent the average
values calculated over a time window of 3 frames (velocity) or 10 frames (persistence), and the shaded areas correspond to
the standard error of the mean. H Log-log plot of the mean-squared displacement (MSD) versus the timelag. Colored lines
correspond to exemplary trajectories and symbols to their ensemble averages. Gray lines depict the scaling law of Brownian
motion (U = 1) and ballistic motion (U = 2) and are meant as a guide to the eye. I Boxplot of the anomalous diffusion exponent
U obtained from the power law fit of the MSD for each cell in the two experimental conditions. Differences were assessed
through a two-tail Wilcoxon test (·: ⇤⇤: ? < 0.01, ⇤ ⇤ ⇤: ? < 0.001). Data correspond to n = 1002 cells, 3 technical replicates
(control) and n = 921 cells, 3 technical replicates (VEGF-A).

The lateral di�usion of the integrin U5V1 and
VEGFR-1 is influenced by cell density and
VEGF-A treatment

The experiments discussed so far provided interesting hints
about the role of VEGF-A for dermal fibroblast migration.
First, VEGF-A showed a small but nontrivial effect on cell
migration. Second, the density of both integrin U5V1 and

VEGFR-1 was enhanced in cells with a pronounced migratory
phenotype, as those at the wound margin. However, the pres-
ence of VEGF-A seemed to reduce integrin U5V1 clustering.
To gain more insights into the effects observed at the molecular
scale and link them to the migration properties, we performed
live-cell SMI to study the lateral diffusion of integrin U5V1
and VEGFR-1 in control condition or upon VEGF-A treatment
in different cellular arrangements (Figure 4).
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Figure 2: VEGF-A effect on collective migration. A Schematic of the experimental procedure used for the wound healing
assay and exemplary phase-contrast images of the same field of view at different times. Scale bar = 500 `m. B Time traces of
the percentage of wound area versus time for representative experiments having similar initial wound gap size performed in
control medium (empty blue dots), 20 ng/mL (filled orange squares), and 100 ng/mL VEGF-A (filled blue dots). C Wound
closure rate for the same experiments as in B. D Scatter plot of half the initial gap size (gap/2) as a function of the time to
reduce the gap to half of its initial value (t1/2) obtained for each field of view of different experiments performed in control
medium, 20 ng/mL, and 100 ng/mL VEGF-A. Lines represent the result of linear regression with an intercept equal to 0,
providing the following slopes (mean ± s.e.) and ?-values (C-test): (24.3 ± 0.7) `m/h for the control of 20 ng/mL VEGF-A
(? <0.001), (22.5 ± 0.5) `m/h for 20 ng/mL VEGF-A (? < 0.001), (24.0 ± 0.6) `m/h for the control of 100 ng/mL VEGF-A
(? < 0.001), (17.9 ± 0.9) `m/h for the 100 ng/mL VEGF-A (? < 0.001). E Boxplot of the rate1/2 obtained for each field of
view of different experiments performed in control medium, 20 ng/mL, and 100 ng/mL VEGF-A. The meaning of the symbols
is the same as in D. Data in D-E correspond to 2 (20 ng/mL VEGF-A) and 3 biological replicates (100 ng/mL VEGF-A).
Differences were assessed through a one-tail Wilcoxon test (·: ? < 0.1, ⇤: ? < 0.05, ⇤⇤: ? < 0.01).

These experiments were performed on cells of the un-
perturbed monolayer (Figure 4A), at the wound margin (Fig-
ure 4B), or isolated (Figure 4C). RIC images were used to
select regions of interest for tracking and thus exclude trajec-
tories lying outside the cell area. We used TIRF microscopy
to record the motion of individual molecules sparsely labeled
with half-antibody fragments conjugated with quantum dots
(Figure 4D). Movies were analyzed to obtain single-molecule
trajectories (Figure 4E) and quantify diffusion parameters
(Figure 4F,G).

As typically observed for membrane proteins (24, 25),
trajectories obtained for both receptors displayed diverse
diffusion patterns (Figure 4E). In fact, membrane heterogene-
ity, conformational changes, and interactions with ligands
and other membrane components produce different diffusion

modes that can be detected through dedicated analysis at the
single-trajectory level (26). Using an algorithm based on the
moment scaling spectrum (19), trajectories were classified as
restrained (i.e., immobile or confined), mobile, or directed.
The average MSD and the distribution of the diffusion co-
efficient obtained for the trajectory of each of these classes
are shown in Figure 4F, G for the integrin U5V1 in isolated
fibroblasts in control medium. The probability of occurrence
of directed motion was nearly negligible (<2%) in all the
cases. For each class, we calculated the fraction of occurrence
and the average diffusion coefficient. To compare results ob-
tained for the two receptors in all the experimental conditions,
we focused the following discussion on the quantification of
trajectories classified as mobiles.

The integrin U5V1 displayed a progressive increase in the
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Figure 3: VEGF-A and wound influence receptors’ spatial organization. A Reflection interference contrast (RIC, upper
panels) and total internal reflection fluorescence (TIRF) imaging of the integrin U5V1 (middle panels) and VEGFR-1 (lower
panels) in cells of the unperturbed monolayer and the wound margin, either in control conditions or treated with 20 ng/mL
VEGF-A. Bright spots outside the cell areas correspond to fiducial markers used for channel overlay. Scale bar: 20 `m; B-E

Boxplot corresponding to the quantification of the images described in A, reporting the spot density (B, D) and the median
spots size (C, E) measured for the integrin U5V1 (B, C) and VEGFR-1 (D, E) on different cells. Data correspond to 17 to 34
cells for each condition out of 3 technical replicates. Differences were assessed through a one-tail Wilcoxon test (⇤: ? < 0.05,
⇤⇤: ? < 0.01, ⇤ ⇤ ⇤: ? < 0.001).

probability of undergoing mobile motion when the cell density
was reduced. The mobile probability measured for cells of the
unperturbed monolayer was / 10% and increased for cells at
the wound margin (⇡15%) and isolated (⇡ 30%, Figure 4H).
VEGF-A did not produce significant changes in the mobile
probability. The average diffusion coefficient of the mobile
fraction (Figure 4I) showed similar values (⇡0.15 `m2/s)
across all conditions, except for a small (non-significant)
increase observed at the wound margin without treatment.

Surprisingly, most of the trajectories obtained for VEGFR-
1 were found compatible with receptor immobilization or
confinement. In all the conditions, the mobile population had
a probability / 15% and an average diffusion coefficient in
the range of 0.1-0.2 `m2/s. For VEGFR-1, the treatment with
VEGF-A (Figure 4L) produced small changes in the mobile
fraction that correlated with those observed for cell migration.
VEGF-A nearly doubled the mobile fraction of VEGFR-1 for
fibroblasts in the unperturbed monolayer and at the wound
margin and produced a minor decrease in isolated cells. The
average diffusion coefficient was found to be insensitive to
VEGF-A but was significantly higher at the wound margin and
for isolated cells with respect to the unperturbed monolayer
(Figure 4M).

DISCUSSION
Several studies have reported an increased migration induced
by VEGF in endothelial cells (27, 28). However, the literature
investigating this effect in dermal fibroblasts is surprisingly
poor, in particular, if one considers the essential roles that these
cells play in cutaneous wound repair and angiogenesis (29).

As schematically depicted in Figure 5, our experiments
reveal a complex interplay of VEGF-A with the signaling

machinery, involving cell activation and with subtle effects
on the molecular spatiotemporal organization.

For sparse fibroblasts, we found that VEGF-A increases the
migration speed while decreasing the directional persistence,
with a complex temporal pattern. A similar effect was observed
for epidermal growth factor (30) and, qualitatively, it is in line
with results obtained in monocytes and endothelial cells (31).
Persistent cell motility has been linked to the activation of the
transcriptional coactivators Yes-associated protein (YAP) and
transcriptional coactivator with PDZ-binding motif (TAZ) by
limiting FA maturation (32).

Interestingly, this effect was reversed for the collective
migration of fibroblasts. The wound healing assays showed
that VEGF-A produces a slower collective migration, although
with a small effect size.

Fibroblasts migrating in vitro have been shown to have
different speeds and morphology when compared to single
fibroblasts in cell culture (33). It has been also shown that
confluent endothelial cells have a reduced capacity to respond
to specific growth factors as compared with sparse cells (34,
35). Nevertheless, the comparison between the two situations
offered hints about the interplay between VEGF-A and the
signaling mechanisms involved in cell locomotion. In both
situations, cells are influenced by the biochemical and physical
properties of their surroundings and use similar mechanisms to
adhere to the surrounding matrix and protrude (36). However,
while individual migration mostly relies on interactions with
the extracellular matrix, during collective migration cells
influence each other’s behavior through cell-cell contacts (33).

A similar effect was observed for epidermal growth fac-
tor (30) and, qualitatively, it is in line with results obtained in
monocytes and endothelial cells (31).

In wound healing assays, cells are grown at a high conflu-
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Figure 4: VEGF-A treatment and cell arrangement influence the lateral diffusion of membrane receptors. A-C Reflection
interference contrast (RIC) images of dermal fibroblasts in the different cell arrangements used for the live-cell single-molecule
imaging experiments, i.e, the unperturbed monolayer (A), the wound margin (B), and isolated cells (C). The images were used
to draw regions of interest (dashed lines) and track molecules lying within these areas. Scale bar = 20 `m. D Zoomed-in region
of a frame of a single-molecule imaging experiment, showing sparse quantum dots labeling the molecule of interest. Scale bar
= 5 `m. E Representative trajectories of the same duration (3 s) obtained for the integrin U5V1 displaying different diffusion
patterns. Scale bar = 1 `m. F-G Ensemble averaged mean-squared displacement (F) and probability density of the diffusion
coefficient of individual trajectory (G) of the integrin U5V1 in isolated fibroblasts in control medium. The colors in E-F indicate
trajectories classified as immobile (violet), confined (blue), and mobile (orange). H-M Fraction (H, L ) and diffusion coefficient
(I, M) of the mobile trajectories of the integrin U5V1 (H, I ) and VEGFR-1 (L, M ) in all the experimental conditions. Small
symbols correspond to the results of individual biological replicates. Large symbols correspond to averages over biological
replicates, error bars represent standard error of the mean. Data correspond to at least 30 cells and 2000 trajectories for each
biological replicate. Differences were assessed through a one-tail Wilcoxon test (·: ? < 0.1, ⇤: ? < 0.05, ⇤⇤: ? < 0.01).

ence and low serum concentration. In these conditions, direct
contact between cells activates the Hippo pathway and leads
to the inactivation of YAP and TAZ to maintain cell quies-
cence (37–39). Similarly as in tissue injury (40), wounding
of in vitro cultured cells activates YAP, which drives cell
migration to promote wound healing (41–43). YAP/TAZ can
enhance the assembly of FA complexes by directly promoting
the transcription of integrins and FAs docking proteins (44).

Mechanical and biochemical stress can also activate fi-
broblasts to become myofibroblasts through an intermedi-
ate step in which they show a proto-myofibroblast pheno-
type (45). The intermediate phenotype is characterized by
increased contractility, more bundles of actin-myosin stress
fibers, and more prominent FA structures, accompanied by
clustering of integrins (46) in a process that is driven by Rho
GTPase (47). YAP/TAZ also promote myofibroblast differ-
entiation, increased matrix remodeling potential (48), and
contribute to the maintenance of a synthetic and contrac-
tile phenotype (49). For cardiac fibroblasts, inactivation of
the Hippo signaling has been shown to produce the sponta-

neous transition toward myofibroblast (50, 51). Myofibroblast
YAP/TAZ have critical importance in driving progressive
scarring in the kidney, lung, and liver (52).

Along this line, Our experiments suggest that the different
behavior observed for the two conditions could be related
to the YAP/TAZ activation and/or to the fibroblast to proto-
myofibroblasts transition produced by cell scratching.

YAP/TAZ also has a role in mediating VEGF signal-
ing. VEGF signaling impacts Rho family GTPase activity
and cytoskeletal dynamics, which contribute to YAP/TAZ
activation, and YAP/TAZ-mediated transcriptional changes
sustain Rho family GTPase activity and cytoskeletal dynam-
ics to impact vascular growth and remodeling in endothelial
cells (53, 54). The presence of growth factors influences the
phenotype transition from fibroblast to myofibroblast (55),
but how it affects proto-myofibroblast maturation is currently
unclear (56). Recently, studies of the effect of platelet-rich
plasma on growth factor-induced differentiation of fibroblasts
into myofibroblasts showed that the fibroblast-myofibroblast
transition is negatively regulated via VEGF-A/VEGFR-1 to
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Figure 5: Schematic of the experimental results. VEGF-A differentially influences fibroblast migration depending on cell
density and activation through changes of receptor spatiotemporal organization. At high cell density, cells show elongated
shapes consistent with a quiescent fibroblast phenotype. Upon wounding, their shape is consistent with an activated fibroblast
phenotype, similar to the one observed for proto-myofibroblast. Cells at the wound margin and isolated show different migration
properties and receptor spatiotemporal organization as a consequence of VEGF-A treatment, pointing toward a complex
interplay between different signaling pathways.

attenuate the myofibroblast phenotype (57).
A partial switch of primary human fibroblasts to a

myofibroblast-like phenotype has been observed also under
common culture conditions (58). Moreover, the scratching of
the cell monolayer activates several mechanisms that can con-
tribute to the shift of quiescent fibroblasts into pre-activated
proto-myofibroblasts, such as the increase in intracellular
calcium (59). In this scenario, the reduced wound healing
rate observed for the collective migration of fibroblasts (Fig-
ure 2B-E) in the presence of VEGF-A could be associated
to the attenuation of fibroblasts’ differentiation into proto-
myofibroblasts. While in control medium, the biochemical and
mechanical stress induce by starvation and wounding induce
the migratory phenotype, this effect is reduced in treated cells
by VEGF-A/VEGFR-mediated antifibrotic pathway (57).

The imaging experiments shown in Figure 3 further sup-
port this hypothesis. The RIC images show a marked change
of phenotype between the unperturbed monolayer and the
wound margin. Fluorescence imaging further displays a cor-
responding increase of receptor density for both the integrin
U5V1 and VEGFR-1. Integrin V1 expression has been strongly
linked to fibroblast differentiation (60–62) and found to be
upregulated in myofibroblasts through YAP/TAZ-mediated
signaling (63). At low cell density, cells have a higher numbers
of FAs and associated stress fibers (64).

Moreover, the presence of VEGF-A produces a reduction
in integrin clustering, one of the steps for the acquisition of
the proto-myofibroblast phenotype (46). While this finding
is consistent with the attenuation of the myofibroblast pheno-
type induced by the VEGF-A treatment (57), it might also
involve the VEGF-induced recycling of the integrin U5V1 (65).
Emerging evidence suggests an active role of VEGFR-1 in cell
migration (6). The increase of VEGFR-1 density at the basal
membrane could be associated with receptor overexpression

triggered by the increase of intracellular calcium ensuing cell
damage (66). On the other hand, it could also be explained as
a consequence of the redistribution of membrane receptors
involved in cell-cell contacts ensuing monolayer scratching,
as reported for VEGFR-2 (35).

Several studies have previously investigated the diffusion
of the U5V1 and other V1 integrins in living cells, with over-
all results in line with our experiments on untreated sparse
cells (67, 68) . Integrin mobility has been often used as a
proxy for inferring the conformational state and/or interactions
with ligands and the actin cytoskeleton (69). Our experiments
(Figure 4) indicate a major difference in the fraction of mobile
integrins between sparse cells and monolayers and no signif-
icant effect of VEGF-A. In particular, quiescent fibroblasts
in the unperturbed monolayer only have a minor fraction of
mobile integrins, which is increased upon the activation of
the migratory phenotype. These results can be interpreted
according to the differences in mobile fraction induced by
integrin activation (69) and location inside or outside FA (68).
According to this view, integrins in cell monolayers are mostly
immobilized in an extended conformation and engaged with
the actin cytoskeleton. This fraction significantly decreases in
combination with the formation of FAs observed at the wound
margin. Individual fibroblasts display a further increase of
the mobile fraction that can be associated with integrins free
or transiently localized in nascent adhesions during adhesion
turnover (23).

To the best of our knowledge, the lateral diffusion of
VEGFR-1 at the single-molecule level has not been reported
earlier. We found VEGFR-1 to be mainly immobile or confined,
as reported for other growth factors (24). The small mobile
component showed a diffusion coefficient similar to the one
measured for VEGFR-2 (70). The increase of VEGFR-1
mobility upon VEGF-A treatment is rather counter-intuitive as
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one would have expected an increase of receptor dimerization
under the presence of its ligand, with a consequent reduction of
mobility (70). A possible explanation might involve a change
in VEGFR-2 dimerization constant upon VEGF-A binding,
converting VEGFR-1 involved in heterodimers in resting
conditions into monomers (5, 71). However, this hypothesis
is challenged by the fact that several studies reported that
VEGFR-2 is not expressed in fibroblasts (72, 73). Changes
in the receptor diffusion coefficient in confluent cells might
instead be generally associated with cell density-dependent
phenomenon regulating the activity of growth factor receptors
as, e.g., observed for VEGFR-2 (74) but the understanding of
the exact mechanism needs further study.

CONCLUSION
Our experiments and analyses demonstrate a complex relation-
ship between receptors’ interactions, molecular organization,
and mobility that determine fibroblasts’ behavior in migra-
tion and wound healing. Our data further hint that these
mechanisms are modulated by other factors, such as cell den-
sity, differentiation, and signaling ensuing cell damage. The
comparison of experiments performed in different cellular
arrangements strongly suggests the involvement of the Hippo
pathway and of the fibroblast to proto-myofibroblats transi-
tion in controlling cellular and molecular behavior. Overall,
these results highlight the need to perform multiscale studies,
investigating receptors at the nanoscopic level in their native
cellular environment and linking them to cellular outcomes,
thus bridging the gap between the molecular, cellular, and
multicellular scales.
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ARTICLE 2. A toolkit for the quantitative evaluation of chronic wounds 

evolution for early detection of non-healing wounds 

The main objective of this study was to provide physicians with a useful tool 

based on the analysis of wound area vs. time for the early prediction of non-healing 

wound evolution to support clinicians in clinical decision-making to select the 

appropriate therapy for chronic wounds. 

We realize that the first step to achieving this goal was to develop a method to 

obtain exact measures from wound planimetries. So, we developed user-friendly 

software (Woundaries) in Matlab to calculate the exact surface area, perimeter, and the 

following shape descriptors: initial wound circularity, roughness, and aspect ratio, from 

scanned or photographed planimetries. We supplied our software with a graphic user 

interface with two sliders to easily control the parameters of the image processing 

algorithm. Once the image is adjusted, the users can define a calibration area based on 

the measurement grid for unit conversion. Finally, the software shows the measures on 

the screen and gives the user the option to export the results to a file.  

The software was tested using a validated device by comparing the area 

measurements of 48 different wound planimetries, resulting in non-significant 

differences in measurements between both methods. The repeatability and 

reproducibility assessments showed non-significant differences in wound 

quantification between different operators and good reproducibility results.  

In addition, we developed another tool to determine the characteristic healing 

time, based on a previously reported wound healing exponential decay model. Due to 

the presence of a delay time at the beginning of the healing process observed in some 

wounds, we developed a methodology to include that situation. Our script tests for the 

better fit between a simple exponential behavior with 2 free parameters or a mixed 
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model, composed of an initial linear behavior followed by an exponential decay, with 

4 free parameters in total.  

Finally, our tools were tested on simulations and retrospectively applied to data 

from 120 wounds from 85 patients treated with biological therapy (autologous platelet 

plasma therapy) or with conventional therapeutics in a wound clinical unit. Our results 

showed a significant difference between both groups, with faster healing (lower 

characteristic time of healing) in wounds of patients treated with biological therapy. 

The therapy results analyzed by gender showed significant differences in the healing 

time for those patients receiving the therapy in comparison with those receiving 

conventional treatments. However, no statistically significant differences between both 

therapeutic strategies were observed in men. In addition, no significant differences were 

observed in healing time by patients' age, wound localization, or other health 

conditions. Interestingly, our results showed that traumatic wounds heal significantly 

faster than arterial and unclassified wounds. However, we did not find any relation 

between characteristic healing time and wound shape descriptors.  
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Carlo Manzo a 

a The Quantitative BioImaging (QuBI) Lab, University of Vic – Central University of Catalonia (UVic-UCC), C. de La Laura, 13, 08500, Vic, Spain 
b Tissue Repair and Regeneration Laboratory (TR2Lab), University of Vic – Central University of Catalonia (UVic-UCC), Fundació Hospital Universitari de la Santa Creu 
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A B S T R A C T   

Background: Chronic wounds resulting from a number of conditions do not heal properly and can pose serious 
health problems. Beyond clinician visual inspection, an objective evaluation of the wound is required to assess 
wound evolution and the effectiveness of therapies. 
Aim: Our objective is to provide a methodology for the analysis of wound area vs. time for the early prediction of 
non-healing wounds evolution. 
Methods: We propose a two-step approach consisting of: i) wound area quantification from planimetries and ii) 
classification of wound healing through the inference of characteristic parameters. For the first step, we describe 
a user-friendly software (Woundaries) to automatically calculate the wound area and other geometric parameters 
from hand-traced planimetries. For the second, we use a procedure for the objective classification of wound time 
evolution and the early assessment of treatment efficacy. The methodology was tested on simulations and 
retrospectively applied to data from 85 patients to compare the effect of a biological therapy with respect to 
general basic therapeutics. 
Results: Woundaries provides measurements of wound surface equivalent to a validated device. The two-step 
methodology allows to determine if a wound is healing with high sensitivity, even with limited amount of 
data. Therefore, it allows the early assessment of the efficacy of a therapy. 
Conclusion: The performance of this methodology for the quantification and the objective evaluation of wound 
area evolution suggest it as a useful toolkit to assist clinicians in the early assessment of the efficacy of treat-
ments, leading to a timely change of therapy.   

1. Introduction 

The term chronic wound generally refers to an ulcer that does not 
progress through the normal stages of healing and often stall in the in-
flammatory phase [1]. Chronic wounds frequently occur in adults with 
vascular disease or diabetes and are generally classified as vascular ul-
cers, pressure ulcers (UPP), and diabetic ulcers [2]. Due to the societal 
and economic burden associated with chronic wounds and their 
increasing incidence, extensive efforts toward the development of 
advanced therapies, including plasma-derived products have been 

deployed [3,4]. 
In spite of the application of advanced therapies, chronic wounds 

often do not respond to treatments. In these cases, an early detection of 
unresponsiveness, followed by wound re-assessment and change of 
treatment, can reduce the risk of complications and lead to an improved 
outcome [5]. Usually, the evolution of the wound is only assessed 
through visual inspection, e.g. by monitoring surface granulation and 
size. In this scenario, a quantitative characterization of wound geometry 
as a function of time can help to detect subtle variations before a 
visually-observable change occurs, leading to a change of therapy at an 
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early stage [6]. For this reason, several approaches have been proposed 
for the measurement of wound size [6–11]. Among them, digital 
planimetry is considered a reliable and cost-effective method for area 
measurement, particularly in wounds with irregular shapes [6]. How-
ever, its accuracy is affected by the camera lens orientation [7,9] and by 
the three-dimensional curvature of the wound. When the direct contact 
with the wound does not constitute a matter of concern, these problems 
can be simply overcome by manually tracing its outline on a transparent 
film placed over the wound. The ensuing evaluation of the area, per-
formed by counting the number of squares falling within the outline, 
makes this method error-prone and tedious [7]. More complex methods, 
based on 3D reconstruction, volume filling or laser scanners have also 
been proposed but are not routinely used due their cost or invasiveness 
[10,12]. 

Besides the measurement of the wound area, the prediction of its 
evolution is essential to assist clinicians in timely therapeutic decisions. 
This prediction can be obtained through the proper modelling of the 
kinetic of wound area and the inference of parameters that quantify the 
effect of treatments [13–17]. While the kinetic of wound area has been 
extensively described and approximated by means of nonlinear models 
[13–15,17], the number of attempts aimed at using size and shape in-
formation to predict wound evolution have been so far rather limited 
[16]. Recently, methods based on artificial intelligence have shown 
outstanding results but they still require further validation before being 
accepted for routine clinical uses [18]. 

In this work, we describe and validate a simple toolkit for the mea-
surement and quantitative evaluation of wounds evolution. We further 
apply it to a set of clinical data from patients with chronic wounds 
treated with different therapies. In addition, we assess its capability for 
the early detection of unresponsive wounds, with the objective to 

support professionals in clinical decision making. 

2. Methods 

2.1. Wound area and shape quantification 

At each weekly visit, after wound cleaning, wounds were photo-
graphed with a digital camera (Fig. 1A). Thus, a sterile transparent ad-
hesive film with a measurement grid (1 cm pace; OpSite flexigrid, Smith 
& Nephew) was placed over the wound and the wound margin was 
directly traced, obtaining the wound planimetry (Fig. 1B). All the clin-
ical procedures used were in accordance with the institutional guide-
lines and were approved by the ethics committee of the hospital. 
Patients gave written informed consent. 

The wound margin was digitalized through either a scanner or a 
digital camera and processed using a custom software named Wounda-
ries (freely available on the github repository https://github.com/ 
qubilab/woundaries) written in Matlab (The MathWorks, Inc., Natick, 
Massachusetts, United States) to calculate the surface area, perimeter, 
and several other shape descriptors. The software consists in a graphic 
user interface (Fig. 1C) that allows the upload and the visualization of 
the digitalized planimetry and the selection of the area of interest. The 
user can adjust two sliders controlling the values of parameters of the 
image processing algorithm. The first slider controls a threshold value 
used to transform the image in a black and white map, and it is aimed at 
removing the grid texture from the image, while highlighting the wound 
planimetry. In the case of a not completely closed planimetry, the second 
slider can be used to join gaps in the wound boundary by an edge linking 
function [19]. The steps of the image processing algorithm are visual-
ized and updated at each sliders’ movement, together with the overlay 

Fig. 1. Schematic and performance of the Woundaries software. (A) A digital photograph of a representative wound and (B) the corresponding planimetry. (C) 
Screenshot of the Woundaries software during the quantification of the wound represented in panels A–B. (D–E) Comparison of the quantification of 23 repre-
sentative wounds performed by means of Woundaries and Visitrack. (D) A log-log scatter plot of the data (circles) and a straight line with unitary slope and null 
intercept, used as a visual reference. (E) A Bland–Altman semilog plot of the percentage of relative difference between the two methods of measurement (circles). 
Continuous black line corresponds to the mean difference. Dashed blue lines correspond to the standard error of the mean and dashed magenta lines to the standard 
error. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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of the original planimetry with the wound area (Fig. 1C). Once the 
adjustment of the parameters produces a closed contour faithfully 
matching the planimetry outline and completely filled (Fig. 1C), then 
the “Measure” button enables the calculation of wound area, shape and 
other geometry descriptors. The software allows users to define a cali-
bration area based on the measurement grid for unit conversion. By 
means of this calibration, the unknown area of a pixel can be calculated 
and thus the total number of pixels (and their fractions) contained 
within the contour are converted into area units. All the measurements 
can be saved in a text file for further analysis. 

To validate our method, area measurements obtained for a subset of 
planimetries with different shapes and sizes were measured with 
Woundaries (by the same operator) and with a previously-validated 
device (Visitrak, Smith & Nephew, United Kingdom, measurements 
were performed by two members of the sanitary staff of the hospital) 
[7]. The subset was composed by 48 wounds (mean area = 6.32 cm2, 
median area = 3.87 cm2, IQR = 5.05 cm2, minimum area = 0.19 cm2, 
maximum area = 39.17 cm2). The equivalence of both measurements 
was assessed through a Passing-Bablock regression, providing results 
compatible with null intercept (−0.02 cm2, 95% confidence interval 
−0.19 to 0.12 cm2) and unitary slope (1.00, 95% confidence interval 
0.96 to 1.04). 

The results can be visually confirmed through the scatter plot of the 
data and a Bland–Altman plot of the percentage of relative difference 
between the two methods (Fig. 1D–E). The relative difference was 
calculated as the absolute difference between the two measures divided 
by their average and multiplied by 100 to be transformed in a per-
centage. To assess the repeatability and reproducibility of Woundaries, 3 
wounds having small (6.54 cm2), medium (13.38 cm2), and large size 
(20.05 cm2), were repeatedly measured (n = 10) by three different op-
erators. A statistical analysis performed through a Gage R&R ANOVA 
showed non-significant differences in wound quantification due to 
different operators (p-value = 0.923) and interactions (p-value = 0.29) 
and was used to calculate repeatability (standard deviation = 0.27 cm2, 
corresponding to 4.1% percent study variation) and reproducibility 
(standard deviation = 0 cm2). 

2.2. Wound evolution classification routine 

We developed a routine for wound classification, based on model 
selection, parameter inference, and a statistical test. Time series corre-
sponding to at least 3 wound area measurements collected at different 
times were analysed using a custom routine written in R 3.5.0 [20] as 
schematically represented in Fig. 2A. 

Time series composed by at least 5 measurements were first analysed 
through a fitting procedure aimed at establishing whether it was 
possible to identify a delay time, produced by an initial stall or increase 
in wound area [17]. This analysis is based on the comparison of the 
results obtained by fitting the data with two models: a first model, 
consisting in a simple exponential behaviour with 2 free parameters; and 
a mixed model, composed by an initial linear behaviour followed by an 
exponential decay, with 4 free parameters in total (Fig. 2B and C). The 
best model was determined as the one providing the smallest reduced χ2. 
In order to avoid overfitting, no attempt was made to calculate an initial 
delay for time series composed by less than 5 measurements; moreover, 
the delay parameter was constrained to be smaller than the time at 
which the (n-2)th data point was collected. In the cases in which the 
mixed model provided a better fitting, only the data collected at times 
larger than the calculated delay were considered for the following cal-
culations. For time traces composed by 3 or 4 points, the analysis 
described above was bypassed, and data were directly fed into the 
ensuing step. At this point, we performed a linear regression of the 
logarithm of the area vs. time, logA = logA0 − t/τ, where A represent the 
surface area, t is the time at which the area was measured, A0 is the area 
at time zero, and τ is a characteristic time. Based on the fitting results 
obtained for the characteristic time and its 95% confidence interval, 
wounds were classified as healing if the null hypothesis, corresponding 
to τ ≤ 0, could be rejected. It must be noticed that a negative τ produces 
an area increasing with time. 

2.3. Data simulations 

To test the classification/regression routine performance, we simu-
lated data reproducing area vs. time for both healing and non-healing 
wounds. The traces were composed by a varying number of data 

Fig. 2. Schematic and performance of the clas-
sification routine. (A) Flow diagram of the pro-
cedure used to classify wound as healing or non- 
healing and calculate the characteristic parameter. 
(B–C) Representative data sets of wound areas vs. 
time (circles) and corresponding fits by means of 
simple exponential (dashed magenta line) and a 
mixed model (dashed blue line), composed by an 
initial linear behaviour followed by an exponential 
decay. The fit comparison was used to determine the 
best fit and calculate the initial delay. The data in 
panel (B) were best fitted with a simple exponential 
and no delay was determined (continuous black 
line). In contrast, the data in panel (C) were best 
fitted with a mixed model. Only the data collected at 
times larger than the delay were considered for 
further calculations (continuous black line). The 
characteristic time errors correspond to the 95% 
confidence interval. (For interpretation of the ref-
erences to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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points and had a different frequency of collection. To mimic the actual 
conditions, the logarithm of the area vs. time was simulated as to follow 
a linear behaviour with different slopes. The data were further corrupted 
with Gaussian noise with zero mean and standard deviation σ = 0.125, 
as estimated from the clinical data (Fig. 3A). 

2.4. Methodology application to clinical data 

The methodology described above was retrospectively applied to 
clinical data of patients to evaluate its capability to determine the 
wound healing kinetics upon different treatments. Patient socio- 
demographic characteristics, wounds’ aetiologies, and wound treat-
ment were collected. Patients were classified between those receiving 
autologous poor-platelet plasma (PPP) therapy [21] and those receiving 
general basic therapeutics [4]. The characteristic time of healing was 
used to classify the wounds as healing (τ> 0) or non-healing. For the 
healing ones, this parameter was further used for the statistical com-
parison of wound healing rate upon different treatments. 

2.5. Data treatment and statistical analysis 

Unless differently specified, data were analysed using parametric 
tests to compare the mean of two (t-test) or more groups (ANOVA). 
Shapiro-Wilk and Levene tests were first applied to check for normality 
and homoscedasticity. Non-normal and heteroscedastic data were Box- 
Cox or logarithmically transformed. Post-hoc analyses were performed 
by means of Tukey’s honest significant difference test. The tests were 
considered significant if their p-value was smaller than 0.05. 

3. Results 

3.1. Wound area measurement 

We first validated the tool for wound area and shape characteriza-
tion. The area of 23 wound planimetries was quantified through the 
Woundaries (Fig. 1A–C). These results were thus compared to those 
obtained through the validated device Visitrak [22] applied to the same 
dataset. 

The scatter plot of the results obtained with both methods of mea-
surement (Fig. 1D) display a good agreement. A Bland–Altman plot [23] 
of their relative differences with respect to the average (Fig. 1E) and a 
paired t-test (p = 0.152) were used to exclude significative differences 
between both methods. As a further verification, a paired-samples test of 
equivalence [24] also showed the equivalence of both methods at a level 
of significance of 5%. 

3.2. Wound evolution assessment 

We developed and validated a routine for the classification of wound 

area time-series and the inference of kinetic parameters. The routine is 
based on a model selection scheme, followed by a regression for the 
inference of the characteristic time of healing. 

To test its performance, the routine was applied to simulated data 
corresponding to healing and non-healing wounds. The method shows a 
high specificity, with a false positive rate well below the nominal type I 
error (5%). Expectedly, the method sensitivity was found to depend on 
the number of points available for the fit and to the extent of time these 
points cover with respect to the healing characteristic time (Fig. 3B). As 
an example, while with 4 data points covering ~0.87 τ (corresponding 
to an expected reduction of the initial area of the ~60%) it is possible to 
classify a wound as healing with 90% sensitivity, reaching the same 
conclusion within a time of ~0.3 τ (corresponding an area reduction of 
~25%) requires 21 measurements (Fig. 3B). Therefore, our results show 
that a quantitative inspection of the wound at high frequency can further 
improve the determination of its evolution. 

As an a posteriori validation of the model used to describe the data, 
the logarithm of areas and times were plotted after rescaling by the 
fitting parameters A0 and τ, respectively (Fig. 3B), showing a very good 
agreement. 

3.3. Application to clinical data 

We carried out a retrospective study on observational data corre-
sponding to 120 wounds from 85 patients treated in our wound clinical 
outpatient unit between 2015 and 2017. Table 1 shows patients’ 
characteristics. 

Fig. 4A and B shows the distribution of wounds with respect to their 
aetiology and the sex of the patient (4A), and respect to patient age 
group and sex (4B). Ulcers were treated with PPP therapy (47.5%) or 
general basic therapeutics (52.5%). 

Fig. 3. Performance of the classification 
routine on simulated data. (A) Plot of all the 
measured wound areas vs. time (circles) rescaled 
on the basis of the parameters A0 and τ calculated 
by the fitting procedure and for times larger than 
the respective delays. The agreement with an 
exponential decay with unitary parameters vali-
dates the choice of the model. Dashed magenta 
lines correspond to standard errors. (B) Detection 
rate (dashed lines) and false positive error rate 
(dotted lines) as a function of the normalized 
characteristic time of healing, as determined 
from simulations with a varying number of data 
points (different colours). (For interpretation of 
the references to colour in this figure legend, the 
reader is referred to the Web version of this 
article.)   

Table 1 
Baseline patients’ characteristics.  

Characteristic  Number of patients (%) 

Sex Males 36 (42.4%) 
Females 49 (57,6%) 

Number of ulcers 1 ulcer 59 (69,4%) 
2 ulcers 19 (22,4%) 
3 or 4 ulcers 7 (8,2%) 

Aetiology Venous 35 (29,2%) 
Arterial 17 (14,2%) 
Traumatic/surgical 23 (19,2%) 
Pressure 12 (10%) 
Others 33 (27,6%) 

Age groups 50–59 years 9 (10,6%) 
60–69 years 21 (24,7%) 
70–79 years 25 (29,4%) 
80–89 years 24 (28,2%) 
90 years or older 6 (7,1%)  
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According to the criterion of classification described above, the PPP 
therapy did not produce significative differences in the probability of 
healing (Fisher’s test, p = 0.355), despite a slightly lower percentage of 
healing (54.4%) observed in PPP-treated wounds with respect to 
wounds treated conventionally (63.5%). For healing wounds, the fitting 
provided the characteristic time of healing τ, corresponding to the time 
at which the wound area reduces to ~37% of its initial value. This 
parameter did show a significative difference between groups under-
going different treatments, with a significantly faster healing (lower 
characteristic time of healing τ) for the PPP-treated ones. This effect can 
be almost entirely attributed due to female patients (Fig. 4C, p = 2.5 ×
10−4), whereas wounds from male patients do not seem to heal faster 
when treated with PPP. To investigate whether this difference was 
related to other factors, e.g. a higher incidence of a given type of wound 
in a sex group, we analysed the healing time with respect to wound 
aetiology and treatment (Fig. 4D). This analysis shows that traumatic 
wounds heal significantly faster than arterial (p = 4.5 × 10−4) and un-
classified wounds (p = 6.2 × 10−5). Similar analyses were also carried 
out to explore whether patients’ age, the presence of health conditions, 
and wound location had any influence on the wound healing time but 
did not show significative effects. 

We attempted to find correlation between healing and other 
measured geometrical parameters (initial wound circularity, roughness, 
and aspect ratio) as a function of the main factors involved in the study, 
however we could not find any conclusive evidence. 

4. Discussion 

Monitoring the evolution of ulcers is a complex process in which 
quantitative variables such as wound area are essential. Despite 
emerging methods to measure the area based on photography or 3D 
scanners, planimetries are still widely used. In this scenario, we reck-
oned it could be useful to develop a graphic user interface (Woundaries) 
for wound area measurements. Woundaries aims to provide a user- 
friendly tool that allows the automatic calculation of wound area 
together with several shape descriptors from digitalized planimetries. To 
help the user to intuitively adjust the image, all the steps of the image 
processing algorithm are visualized. The code works also for partly open 
curves that can result from an incomplete planimetry drawing. The 
output data are easily saved in a text file for further processing (e.g., the 
wound classification step) or batch analysis. Importantly, we demon-
strated that measurements obtained by Woundaries are equivalent to 
those provided by the validated device Visitrack. Being based on digi-
tized planimetry images, our method does not present fundamental 
limitations with respect to the size of wound to be assessed. However, 
we must point out that large wounds (area larger than 400 cm2) cannot 
be easily traced on planimetry. Therefore, alternative strategies for the 
tracing must be used to subsequently enable the use of Woundaries. 
Additionally, we observed that measurements obtained by Woundaries 
show a good repeatability and reproducibility in the explored range of 
wound sizes. The wound descriptors provided by the Woundaries can be 
further processed by means of other routines for prognostic use. Along 
this line, we developed a classification routine that uses wound area vs. 
time traces to sort wound as healing or non-healing. For the healing case, 

Fig. 4. Statistical analysis of chronic wounds. (A–B) Frequency histogram of the analysed wounds as a function of aetiology and patients’ sex (A) and of age group 
and sex (B). (C–D) Box and whiskers plot of the healing time determine by the fitting algorithm as a function of wound treatment and patients’ sex (C) and of wound 
aetiology (D). *** corresponds to p-value smaller than 0.05. 
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the characteristic parameter of wound area evolution was also inferred, 
thus predicting the dynamics of wound closure. With the help of simu-
lations, we analysed the performance of our routine in providing a 
reliable prognosis as a function of the number and the frequency of 
measurements. As an example, for a wound with a nominal character-
istic healing time of 2.5 months, predicting its evolution with ~70% 
classification sensitivity requires collecting measurements at least once 
a week for 5 consecutive weeks. The same sensitivity can be reached 
earlier if the frequency of measurement is increased. In addition to the 
need of an accurate methodology, this result further stresses the 
importance of a regular and frequent clinical follow up of the wound. In 
fact, wound healing characteristic time should be estimated as soon as 
possible in order to verify if a specific treatment is being effective. 

Since it has been previously reported that other wound and patient 
factors also have prognostic value [16], the classification routine could 
provide a more accurate prediction by the simultaneous evaluation of 
additional wound descriptors as, e.g., the geometrical parameters pro-
vided by the Woundaries. However, the implementation of these ana-
lyses requires further efforts in studying and modelling their time 
evolution in healing and non-healing wounds. 

The rapid determination of the efficacy of a specific treatment is 
particularly crucial when applying advanced therapies for chronic 
wounds [25]. In fact, biological therapies are expensive and 
time-consuming to prepare; they usually require several applications 
before their effect could be visually observed. Therefore, a method able 
to determine the effect of a treatment in a shorter time could signifi-
cantly contribute to improve wound management. 

We applied our methodology to analyse 120 wounds of different 
aetiologies from patients receiving conventional therapeutics or PPP 
therapy, a well-established autologous therapy in our clinical facilities. 
The statistical analysis of the data showed that traumatic wounds heal 
significantly faster than other aetiologies such as venous wounds. 
Moreover, while the PPP therapy does not seem to increase the proba-
bility of healing as compared to conventional treatment, it shows a 
significative effect in reducing the wound closure time in female pa-
tients. However, assessing whether this is a direct effect of patient’s sex 
or a consequence of other factors, such as the higher incidence among 
female patients of wounds with a shorter healing time (e.g. venous 
wounds), requires further verification. 

In addition, we didn’t report any relation with healing kinetics and 
initial morphology although other authors reported some correlations 
studying a unique aetiology wounds [26,27]. 

5. Conclusion 

In this study, we demonstrated a reliable and user-friendly method 
for the quantification of area and shape descriptors from digitalized 
hand-traced planimetries. Based on our results, the proposed method 
has a straightforward implementation and could be easily adopted in 
routine wound monitoring. In this sense, we are currently developing a 
phone/tablet app including the Woundaries capabilities. 

Our methodology provides information on wound healing evolution 
and estimates kinetic parameters of the process. It is based on an 
objective evaluation of parameters of wound evolution and provides the 
early identification of non-healing wounds, thus facilitating the assess-
ment of the efficacy of therapies. Therefore, we believe that our meth-
odology can assist sanitary staff in clinical decision making, thus 
improving chronic wounds management and early prediction of wounds 
evolution. 
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ARTICLE 3. Research Techniques Made Simple: Deep Learning for the 

Classification of Dermatological Images 

The objective of this article was to introduce the basics of deep learning (DL) 

architecture for clinical image classification, in a manner accessible to nonexperts to 

support them in interpreting and evaluating scientific publications involving these tools.  

In this review article, we introduced the readers to several concepts related to 

artificial intelligence, machine learning, and DL. We also explained the fundamental 

operations applied by DL routines and described the metrics for the evaluation of its 

performance.  

First, we explained the main operations performed for a CNN, starting with the 

input image decomposition. Then we detailed the importance of the kernel used for the 

convolution, its size and the influence of the shifting steps or stride, and the down-

sampling image output because of this process. Once the parts were introduced, we 

discussed the general architecture of the CNN. We explained the architecture of a basic 

fully connected network composed of an input layer, several hidden convolutional 

layers, and an output layer. Next, we also described a series of tests used to quantify 

the model performance, like classification accuracy, the area under the curve, or the 

receiver operating characteristics curve.  

Secondly, we presented examples of recent applications for dermatology image 

analysis, especially in the field of skin cancer, to show the capability of DL to achieve 

a highly accurate classification of those lesions. We briefly explained the classification 

process performed by the ResNet-152 CNN, its architecture, and its outstanding 

performance obtained in skin lesions classification.  

Although the equivalence between computer and human diagnosis has been 

reported, in this article, we also identified and discussed several limitations or 
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challenges in the use of DL in medicine. Among them: 1) the need of having a large 

training dataset of images to avoid any bias by including images from different 

conditions, ethnicities, and other clinical conditions, 2) the need for standardized 

images associated with precise clinical metadata, and 3) the difficulty of obtaining 

information about the decision-making process established during automatic 

classification.  

 



Research Techniques Made Simple:
Deep Learning for the Classification
of Dermatological Images
Marta Cullell-Dalmau1, Marta Otero-Viñas2,3 and Carlo Manzo1

Deep learning is a branch of artificial intelligence that uses computational networks inspired by the human
brain to extract patterns from raw data. Development and application of deep learning methods for image
analysis, including classification, segmentation, and restoration, have accelerated in the last decade. These tools
have been progressively incorporated into several research fields, opening new avenues in the analysis of
biomedical imaging. Recently, the application of deep learning to dermatological images has shown great
potential. Deep learning algorithms have shown performance comparable with humans in classifying skin
lesion images into different skin cancer categories. The potential relevance of deep learning to the clinical
realm created the need for researchers in disciplines other than computer science to understand its funda-
mentals. In this paper, we introduce the basics of a deep learning architecture for image classification, the
convolutional neural network, in a manner accessible to nonexperts. We explain its fundamental operation, the
convolution, and describe the metrics for the evaluation of its performance. These concepts are important to
interpret and evaluate scientific publications involving these tools. We also present examples of recent ap-
plications for dermatology. We further discuss the capabilities and limitations of these artificial intelligence-
based methods.

Journal of Investigative Dermatology (2020) 140, 507e514; doi:10.1016/j.jid.2019.12.029

ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, AND DEEP
LEARNING
Artificial intelligence (AI) describes a branch of computer
science that uses machines to simulate cognitive functions of
the human mind, such as learning or reasoning (Figure 1). An
increasing number of systems based on AI, such as voice-
powered assistants like Alexa and Siri, are progressively
affecting human habits. Self-driving cars, speech recognition,
and machine vision promise to broadly improve human lives,
with applications to business, education, and healthcare.

Subcategories of AI include machine learning (ML) and
deep learning (DL, Figure 1). ML is based on the acquisition of
knowledge from data and does not provide specific rules for a
given task; the machine undergoes a learning process based
on examples and optimizes its performance on a specific
assignment. ML has been successfully applied to several
tasks, including classifying gene expression patterns associ-
ated with diseases, predicting protein structures from genetic
sequences, or designing chemical scaffolds in drug discovery
(Marx, 2019). Generally speaking, DL is one of the several
computing systems for ML inspired by the biological neural
networks that constitute the human brain. DL utilizes artificial
neural networks (ANNs), which attempt to mimic how the
brain works, especially the connections between neurons. An

ANN is formed by a collection of nodes (also called artificial
neurons) arranged in layers and connected to transmit signals
(Figure 2). Typically, each signal consists of a number, and
the output of each node is a nonlinear function of the sum of
the inputs. Nodes and connections are characterized by
weights that are adjusted through the learning process to in-
crease or decrease the strength of a given signal. The aggre-
gate signal of an artificial node may pass through an
activation function, such as transmitting only signals above a
threshold (Figure 2a). An ANN may have a single or multiple
hidden layers between the input and the output. The number
of hidden layers and the number of nodes in each layer
constitute the variables controlling the architecture of the
network, called hyperparameters. ANNs with several hidden
layers are generally referred to as deep neural networks, thus
leading to the use of the term deep learning (Figure 2b).
However, there is no clear consensus on the minimum
number of layers for a network to be qualified as deep. One of
the first deep ANNs had only three hidden layers (Hinton
et al., 2006). A high number of layers makes DL more
capable than traditional ML of modeling complex data.
Moreover, DL can automatically discover the features needed
to accomplish its task, whereas ML requires being pro-
grammed with the criteria defining such features. However,
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as a consequence of the higher number of weights to be
determined, the training of DL networks requires large
quantities of data.

CONVOLUTIONAL NEURAL NETWORK
Study and application of DL has rapidly accelerated in aca-
demic research, business, and popular interest. These ad-
vances have been based mainly on the use of the
convolutional neural network (CNN), an algorithmic archi-
tecture inspired by the human visual cortex (Schmidhuber,
2015). Although CNNs were invented in the 1980s
(Fukushima, 1980), it was not until the early 2010s that

massive amounts of labeled data became available for
training (Wehner et al., 2017). The growth of computer power
deriving from graphics-processing units have fueled massive
application of CNNs, in particular as a tool for image classi-
fication. As an example of their versatility and power, a CNN
constitutes the core of AlphaGo, the computer system that
defeated the world’s best human player at the game Go (Silver
et al., 2016).

As implied by their name, CNNs are mainly based on
convolutional layers. Convolution is a mathematical opera-
tion between two mathematical functions, which consists in
taking element-wise multiplications followed by a sum while
shifting one function along the other. CNNs are very well-
suited to work with images because of their similarity with

SUMMARY POINTS
! Inspired by the visual cortex mechanism,
convolutional neural networks exploit the
information contained in image datasets to
automatically learn features and patterns not
always identified by humans.

! Deep learning has demonstrated the capability of
achieving highly accurate classification of images
of skin lesions associated with cancer and other
dermatological conditions.

! Deep learning might be a formidable tool to
potentially assist dermatologists in their
diagnostic decisions.

! Important limitations to the extension of deep
learning methods to care practice include the
lack of clarity of the automated decision-making
process, inherent to convolutional neural
networks and concerns about its accuracy,
related to the use of not fully representative
training datasets or nonstandardized images.

Advantages
! Automated classification of images of skin
lesions associated with different diseases with
high accuracy.

! Short execution time after training.
! Useful to support clinicians in diagnosis
! Cost saving by reducing unnecessary biopsies or
instrumental analysis.

Limitations
! Need for large training datasets including images
from different conditions, ethnicities, and
settings.

! Need for standardized images associated with
precise clinical metadata.

! Obscure decision-making process for
classification.

! Limited accuracy and generalizability when
trained on datasets with underrepresented
conditions.

Figure 1. The evolution of artificial intelligence, machine learning, and deep
learning. Schematic representation of the timeline and relationship between
the three fields, together with a few representative key milestones. CNN,
convolutional neural network; SVM, support-vector machine.

Figure 2. Artificial neurons and neural networks. (a) Structure of a node or
artificial neuron. The neuron receives inputs from one or more sources,
multiplies each of these inputs by a weight, and adds the resulting products.
The resulting sum is passed to an activation function and it provides a single
output. (b) Schematic representation of a basic fully connected network. For
illustrative purpose, we show a simple network composed of an input layer,
three hidden layers, and an output layer. Each hidden layer is composed of
four nodes. The training process creates a model by assigning values to all the
weights of the network.
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the animal visual cortex, which is composed by neurons that
individually respond to small regions of the visual field. An
image can be simply viewed as a collection of planes (cor-
responding to different colors, e.g., 3 for RGB or 1 for gray-
scale), where each plane is a two-dimensional matrix of
numbers (the pixel values).

The convolution of an image plane implies the use of a
second matrix, called a kernel, which is shifted along the first
one. At each shift position, every pixel of the region of the
input image overlapping with the kernel is multiplied by the
corresponding pixel of the kernel. The sum of these products
produces the value of a pixel of the convolutional feature
(Figure 3a). Thus, the pixels of the kernel act like the weights
of an artificial neuron over an input corresponding to a region
of the input image. The kernel size defines the receptive field
of the neuron, that is, the region of the input that is codified
into a single value of the output. To make it possible for the
kernel to operate at the edges of the input image and preserve
the size, convolutional layers generally use zero-padding, the
insertion of zero elements around the input image (Figure 3b).
Moreover, the convolved image can be obtained by shifting
the kernel in steps of one or more pixels. The length of these
steps is called stride and, if larger than one, provides an
output with smaller lateral size with respect to the original
image (Figure 3b). In this way, the convolution can allow for
the downsampling of the image while retaining information
contained in adjacent pixels.

An important characteristic of convolution is that it can
perform different operations on the original image by
changing the kernel (Figure 3c). Examples of these operations
include blurring, sharpening, denoising, and edge detection.
Therefore, a clever combination of randomly selected kernels
can lead to the refinement of the computer vision model and,
thus, lead to the discovery of new properties.

CNN workflow and model evaluation
To better understand how a CNN works, we will discuss a
schematic example from dermatology. Although several types

of algorithms have been developed, because of space limi-
tations, we will focus on a supervised learning algorithm for
skin lesion classification (Figure 4a). The task of the algorithm
is to determine from a digital photograph (input) whether a
skin lesion is associated with a malignant cancer or is a
benign lesion (output). Because the possible outputs are
limited to a finite set of values (only two in this case), this is a
(binary) classification problem.

In a typical CNN architecture for classification, the input
image is progressively downsampled while increasing the
number of kernels and thus obtaining more convolutional
features. The last layers have the role of transforming the
feature map into a vector, the values of which represent the
probability that the image belongs to each class (Figure 4a). In
addition to convolutional layers, other layers contribute to
perform the mathematical operations necessary to transform
the input image and to associate it to the output class.
However, their description goes beyond the scope of this
article.

In a supervised approach, the algorithm is trained using a
labeled dataset, a set of images for which the gold standard
output label has been obtained with alternative methods,
such as a biopsy. As further detailed in Torres and Judson-
Torres (2019), the data are usually split in the following
three cohorts: the training set, which is used to determine the
weights characterizing the model; the validation set, which is
used to assess the model performance during training; and the
test set, which is used to evaluate how well the model per-
forms on an unknown input. A CNN iteratively updates the
kernel weights of its layers in a random fashion to automati-
cally calculate features from the images and combine them to
optimize the connection between the input and the output on
the training dataset.

Once the training is complete, the test set is used to
quantify the model performance. The simplest quality mea-
sure is the classification accuracy, which reports the per-
centage of correct predictions over the total. However, a high
accuracy alone does not guarantee the goodness of a model.

Figure 3. The basics of a CNN: the convolution operation. (a) Example of the convolution (*) of a 5 " 5 pixels2 grayscale image with a 3 " 3 pixels2 kernel.
Grayscale images correspond to numeric matrices, where each pixel is associated with a numeric value. The convolutional feature is obtained by shifting the
kernel over the image. At each position, the value of a pixel of the convolutional feature is obtained by multiplying each pixel of the input image by the
corresponding pixel of the kernel and then taking the sum. (b) Symmetrically padding the input with zeros allows the kernel to operate at the edges of the image
and thus preserve the size. Downsampled images can be obtained by changing the stride, the step length at which the kernel is shifted along the input. (c)
Examples of different features obtained by applying different convolutional kernels to the same input image. CNN, convolutional neural network.
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For example, a naïve model that always classifies skin lesions
as benign will score 96% accuracy on an unbalanced dataset
containing 100 images of skin lesions of which only 4
correspond to cancer. The same model will only reach 50%
accuracy on a balanced dataset in which the images are
equally split between the categories. This ambiguity can be
removed by using the confusion matrix, a table reporting the
number of correct and incorrect predictions with respect to
the actual class. These metrics provide a complete overview
of the performance of a model, and its off diagonal elements
characterize the level of misclassification.

The typical output of a binary classifier is a numerical value
associated with the probability that a given image belongs to
the cancer or benign class. A threshold must thus be set to
assign an input to one of these two classes based on this
probability value. This property allows for the definition of
another useful metric for model performance, the area under
the curve (AUC) of the receiver operating characteristic (ROC)
curve (Figure 4b). The ROC curve is the plot of the sensitivity
against the false positive rate (i.e., one minus the specificity)
obtained by varying the discrimination threshold used to
assign the input to either of the two classes (Figure 4b). It is
important to note that the ROC is insensitive to the proportion
of the elements contained in each class (Fawcett, 2006). The

ROC curve will go from the origin of the axes (0, 0) to (100%,
100%) with a trend that depends on the model behavior. An
ROC curve steeply increasing toward high sensitivity at small
false positive rates indicates a model that achieves high recall
without significantly losing precision. In contrast, an ROC
curve increasing with a 45# slope indicates a model with no
predictive power. The AUC of the ROC curve can thus be
used as a metric to summarize the ROC behavior, because a
larger AUC is obtained for models more capable of correctly
discriminating between classes.

When extending the problem to a multiclass classification,
the confusion matrix further allows for simultaneously visu-
alizing the results of all the classes at a glance. The calcula-
tion of the ROC curve becomes a complicated
multidimensional problem. A simplification relies on calcu-
lating an ROC curve for each class against all the others.
However, this approximation removes the insensitivity of the
ROC to class imbalance (Fawcett, 2006). An alternative
metric for multiclass problems is the top-(n) accuracy, which
scores the probability of providing the correct classification
within its (n)th choice. In fact, for a given input, a multiclass
model will provide probability outputs associated with each
class, which will allow ranking of the categories from the
most likely (highest output probability) to the least. The top-(1)

Figure 4. CNN applied to skin cancer classification. (a) Scheme of the ResNet-152 CNN used by Han et al. (2018a). Input images with a size of 224 " 224
pixels2 are analyzed through 152 convolutional layers and classified among 12 different skin diseases. At each block of layers, the CNN progressively
downsamples the images while increasing the number of kernels and thus obtaining more convolutional features. The last layers transform the feature map into a
vector, the values of which represent the probability that the image belongs to each class. (b) ROC curves for the prediction of malignancy in the Edinburgh
dataset cases (220 images) reported in Han et al. (2018a). The gray curve corresponds to the results obtained by the ResNet-152 CNN in comparison with 16
dermatologists (red and blue dots). The other curves display the global specificity (black) and the specificity for benign (blue) and malignant conditions (red).
CNN, convolutional neural network; ROC, receiver operating characteristic.
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accuracy, calculated by taking into account only the pre-
diction associated with the highest output probability, pro-
vides the percentage of inputs correctly classified, that is, the
standard accuracy. The top-(n) accuracy relaxes this condi-
tion by quantifying if the correct class is within the top-(n)
outputs provided by the model.

Recent applications to dermatology
Without any prior knowledge about dermatological images,
CNNs extract and combine sets of abstract features and
automatically generate identifying characteristics (such as a
combination of colors, shape, texture, and border geometry)
associated with different data categories. In this way, a CNN
will learn how to achieve a precise classification of images
not included in the training dataset and even find patterns not
identified by humans.

In the last years, researchers have started to extensively use
DL and CNNs for the analysis of medical images from several
disciplines, including dermatology (Esteva et al., 2019; Litjens
et al., 2017). Because skin cancer is one of the most common
malignancies globally, important efforts have been dedicated
to its detection from dermoscopic images only (Codella et al.,
2015) or in combination with regular photographic images
(Esteva et al., 2017).

To support research and development of methods for
automated diagnosis of melanoma, the International Skin
Imaging Collaboration (ISIC) has developed a repository of
dermoscopic images and it yearly organizes a challenge
for the analysis of images of skin lesions (Codella et al.,
2018; Marchetti et al., 2018; Tschandl et al., 2019). All
the teams taking part in the ISBI melanoma detection
challenge in 2016 used DL methods. In 2017, approaches
combining DL with additional data led to the highest
performance in classification tasks. DL is rapidly becoming
the method of choice for image analysis, as testified by the
increasing number of publications, especially in the last
two years (Brinker et al., 2018). Unquestionably, a mile-
stone was set by the work published in Nature by Esteva
et al. (2017), in which a standard CNN architecture
(Google’s Inception v3) was trained on both dermoscopic
and standard photographic images using a dataset of over
100,000 images. The authors proved that the CNN per-
formed similarly to tested experts in classifying malignant
versus benign lesions of both epidermal and melanocytic
origin. Several other studies have been devoted to the
same topic by using other CNN architectures (Fujisawa
et al., 2019; Haenssle et al., 2018; Han et al., 2018a).
As an example, Figure 4 depicts the architecture of the
ResNet-152 CNN used by Han et al. (2018a) and some of
the corresponding results. All of these works have reported
the equivalence between computer and human diagnosis.
Besides skin cancer detection, DL is also being success-
fully applied to other areas of dermatology, such as the
monitoring of wound healing (Shenoy et al., 2018), the
classification of ulcers (Goyal et al., 2018), and onycho-
mycosis (Han et al., 2018b).

In addition to classification tasks, DL-based models for
the segmentation of skin lesions and ulcers have also been
successfully developed (Yap et al., 2019). In particular,
these methods have been shown to provide an accurate

wound area quantification (Lu et al., 2017; Wang et al.,
2015) and promising results on image-based identification
of distinct tissues within dermatological wounds (Blanco
et al., 2020).

LIMITATIONS AND CHALLENGES
Advances in DL have been accompanied by contrasting re-
actions. Enthusiastic claims about the outperformance of
human diagnosis have been dampened by doubts and criti-
cisms about DL being nothing but an overhyped black box.
As always, the truth seems to lie somewhere in between. DL
has undoubtedly achieved notable accomplishments in very
specific tasks and fields, but it is still far from the realization of
a human-equivalent AI.

DL is often considered a black box because its decision-
making process is somehow obscured by the thousands of
training parameters. In practice, weights and features are
often uninterpretable and it is thus difficult for the re-
searchers to fully grasp the working process of a model or
the reason why it provides specific performance. The extent
to which the inner working of a CNN can be explained in
human terms is referred to as explainability. Improving
explainability represents a key point for AI to ultimately
make decisions on behalf of humans in critical areas, such
as in health care. Efforts for gaining insight into why a CNN
made a specific decision involve the development of
methods to visualize what a CNN sees, such as saliency
maps that simplify CNN feature maps into a more mean-
ingful representation.

Because DL approaches are data-driven, their principal
limitations often come from the data themselves. A usual
criticism concerns the need for large labeled datasets. How-
ever, the development of transfer learning has relaxed this
requirement by introducing the ability to reuse a model
developed for a task and trained on a large dataset as the
starting point of a new model with a different task.

Beyond the role of the amount of data, the work of Han
et al. (2018a) triggered an interesting discussion about the
composition of the training dataset. A letter to the editor of
the Journal of Investigative Dermatology (Navarrete-
Dechent et al., 2018) raised concerns about the general-
izability of automated diagnosis when the training dataset
presents limitations in the spectrum of human populations
and/or clinical presentation, as well as variability in image
acquisition settings and limited clinical metadata. Indeed,
the underrepresentation of clinical or demographic cate-
gories is a common and often inherent problem in
healthcare-related data, and it might limit the generaliz-
ability of a model.

The inclusion of metadata containing sociodemographic
information about the patient (sex, skin type, race, and age) is
thus necessary to verify the presence of biases related to
imbalance or underrepresentation (Navarrete-Dechent et al.,
2018). When possible, the obvious solution to this problem
is to broaden the dataset by including images and data of
patients from less represented groups. As an alternative, the
robustness of a model requires further validation, such as
through prospective studies.

An inherent weakness of many of the DL models applied so
far to dermatology resides in the lack of a “none of the above”
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output. If presented with an image not corresponding to any
of the training classes, a model will force it into one of the
other categories. In this case, to deal with this issue and
prevent misclassification, it is thus necessary to use an
approach enabling open set recognition.

The lack of standardization of dermatological images
represents a strong limitation that affects the development
of the research in this field and undermines its integrity
and reproducibility. The variability of dermatological im-
ages is due to several causes, such as the type of device
used to acquire the images, the image acquisition condi-
tions, the amount and type of metadata, and the lack of a
standard terminology. Establishing common criteria for
data collection and management is fundamental for the
creation of large datasets and their sharing between sys-
tems and users. Moreover, the lack of standardization,
together with the opacity of the CNN inner process, poses
a problem for the operation of classifiers. For example, if
images of lesions associated with a specific pathology are
generally taken at a high resolution, a CNN might learn to
detect the high resolution instead of discriminating the
right diagnosis.

An effort toward the establishment of standardized condi-
tions is being carried out by the ISIC to ensure image quality,
privacy, and interoperability. The project includes the crea-
tion of a public archive of images (https://isic-archive.com) to
permit independent assessment of the performance of any
software. According to ISIC guidelines, images should comply
to standards belonging to three categories, technology, tech-
nique, and terminology. Furthermore, the presence of
detailed metadata including device characteristics, photo-
graph settings, and information about both the patient and the
skin lesion is of paramount importance to take full advantage
of the information contained in the images. However, the
large number of images needed for training further imposes
the development of a quality test to automatically assess
whether an image respects such quality standards.

Besides image standardization, another strategy might
involve the use of an algorithm to intrinsically take this vari-
ability into account by introducing an ad hoc augmentation
procedure capable of artificially creating variations of
brightness, camera angle, body geometry, and skin back-
ground, or even introducing rulers, as observed in actual
images. Variability sources associated with technical and
geometrical parameters might either be measured separately
or estimated from the image itself and thus corrected or
accounted for by an image preprocessing step. An effective
contribution in this sense might come from other DL archi-
tectures that are able to infer information such as depth or
shape from regular images.

The importance of clinical metadata deserves to be further
stressed, because it has also been shown that combining lesion
images with sociodemographic data (age and sex), clinical
variables (location of the lesion), and close-up images improved
the performance of a classifier (Haenssle et al., 2018).

In conclusion, DL and CNN have demonstrated the capa-
bility of achieving highly accurate diagnoses in the classifi-
cation of skin cancer and other dermatological conditions. DL
constitutes a formidable tool to potentially assist dermatolo-
gists in their clinical decisions. The computer science and

dermatology communities are fruitfully collaborating to
develop novel approaches toward dermatologic diagnosis.
However, the use of DL in healthcare practices still requires
further substantiation by data and prospective studies to
obtain the acceptance of patients and physicians. For this

MULTIPLE CHOICE QUESTIONS
1. Which of the following statements about

artificial intelligence is FALSE?
A. It is a branch of computer science.
B. It is a synonym of deep learning.
C. It includes machine learning and deep

learning as subcategories.
D. It uses machines for simulating cognitive

functions of the brain.

2. The advantages of convolutional neural
networks do NOT include:
A. Automated image classification with high

accuracy.
B. Once training is done, it achieves fast

classification.
C. It combines abstract features to find patterns.
D. Fast training by using small labeled

databases, publicly available.

3. Which of the following statements about
convolutional neural network datasets is TRUE?
A. They are usually divided into three groups

for training, validation, and test.
B. Relatively large datasets are needed.
C. It needs to be labeled with the correct

output.
D. All of the above.

4. Which of the following quantities are usually
used to evaluate the performance of a classifier?
A. The area under the receiver operating

characteristic curve.
B. The ratio between sensitivity and specificity.
C. The false positive rate at varying thresholds.
D. The Jaccard index.

5. Deep learning is often dubbed “black box”
because:
A. It is commonly used as a flight recorder.
B. It is the name of the company that first used

this technology.
C. Its decision-making process is obscured by

the thousands of training parameters.
D. It is the color of its shipment case.

See online version of this article for a detailed explanation
of correct answers.
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reason, a careful risk evaluation should be assessed before
making publicly available any research tool without a pro-
spective validation (Narla et al., 2018).
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Glossary
Term Description

Activation function A nonlinear function that controls the magnitude of the output signal of a node
Artificial neural network A brain-inspired computing system that learns to perform tasks by considering examples
Connection A link between nodes; it transmits the (modified) output signal of a node as the input of another
Convolution A mathematical operation consisting of the sum of element-wise products between an image and a kernel while

shifting one along the other
Convolutional neural
network

A class of artificial neural network using the mathematical operation called convolution; they are inspired by the function
of the human visual cortex and are well-suited for image analysis

Hidden layer A layer positioned between the input and the output layer of a network
Kernel A matrix, generally small, used to extract features from an image through convolution
Layer A collection of nodes operating simultaneously in the network sequence of tasks
Learnable parameters Parameters, like weights and biases, that are adjusted during the training process to improve a model
Node, or artificial neuron The basic unit of a neural network that performs an operation over one or more input signals to produce

an output
Stride The step length in pixels of the kernel shift along the input image during the convolution
Weight The numerical value associated with a connection that modifies the value of the incoming signal; weights are adjusted during

the learning process to strengthen or inhibit specific signals
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DETAILED ANSWERS

1. Which of the following statements about artificial intel-
ligence is FALSE?

Answer: B. Artificial intelligence and deep learning are not
synonyms. Deep learning is a subcategory of machine learning,
which in turn is a subcategory of artificial intelligence.

2. The advantages of convolutional neural networks do NOT
include:

Answer: D. In general, the training is not a very fast process
because it requires optimization over a large amount of
labeled data, often difficult to obtain.

3. Which of the following statements about convolutional
neural network datasets is TRUE?

Answer: D. Large labeled datasets are needed to train
the great number of parameters of convolutional neural net-
works. The data are split into three groups and
used for training, validation, and testing the model
performance.

4. Which of the following quantities are usually used to
evaluate the performance of a classifier?

Answer: A. The area under the curve of the receiver operating
characteristic measures how good a model is in distinguishing
between classes.

5. Deep learning is often dubbed “black box” because:

Answer: C. The information about the model is
encoded inside the values of the weights and is difficult to
interpret.
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ARTICLE 4. Convolutional Neural Network for Skin Lesion Classification: 

Understanding the Fundamentals Through Hands-On Learning 

The main objective of this article was to develop a hands-on pedagogical 

activity that dissected the procedures to train a CNN using a dataset of skin cancer 

images. This activity was created to support clinicians and medical students in 

becoming familiar with the working principles of these algorithms and intuitively 

facilitate their understanding. 

The article includes the following: 1) an introduction to DL architectures for the 

classification of images that have shown outstanding results in a variety of disciplines, 

including dermatology, and 2) a hands-on pedagogical activity available open source, 

which execution does not require the installation of software. 

The hands-on activity allows the user to dissect the procedures to train a CNN 

for skin lesion classification providing the scripts, in separated building blocks, with a 

step-by-step description of the algorithm. In addition, the application allows the 

visualization and evaluation of the result performed for each block. The code is open 

source and provided in the Google Colaboratory platform (Colab) for easy execution 

without any software installation. That network makes it possible to perform the 

training on GPU on the Colab server, instead of on a particular computer, which could 

take several days.  

The pedagogical activity presented in this article provides accurate explanations 

and pieces of advice about pre-processing steps, the CNN architecture selection, the 

training process, and the performance evaluation. In addition, to make this training 

activity more accessible, we provide instructions to access the ISIC archive of images, 

which included more than 25,000 images of skin lesions and their verified diagnostic.  
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Deep learning architectures for the classification of images have shown outstanding

results in a variety of disciplines, including dermatology. The expectations generated by

deep learning for, e.g., image-based diagnosis have created the need for non-experts to

become familiar with the working principles of these algorithms. In our opinion, getting

hands-on experience with these tools through a simplified but accurate model can

facilitate their understanding in an intuitive way. The visualization of the results of the

operations performed by deep learning algorithms on dermatological images can help

students to grasp concepts like convolution, even without an advanced mathematical

background. In addition, the possibility to tune hyperparameters and even to tweak

computer code further empower the reach of an intuitive comprehension of these

processes, without requiring advanced computational and theoretical skills. This is

nowadays possible thanks to recent advances that have helped to lower technical and

technological barriers associated with the use of these tools, making them accessible

to a broader community. Therefore, we propose a hands-on pedagogical activity that

dissects the procedures to train a convolutional neural network on a dataset containing

images of skin lesions associated with different skin cancer categories. The activity is

available open-source and its execution does not require the installation of software. We

further provide a step-by-step description of the algorithm and of its functions, following

the development of the building blocks of the computer code, guiding the reader through

the execution of a realistic example, including the visualization and the evaluation of

the results.

Keywords: convolutional neural networks, skin lesion analysis, classification, melanoma, deep learning

INTRODUCTION: BACKGROUND AND RATIONALE FOR THE
EDUCATIONAL ACTIVITY INNOVATION

Over the last two decades, convolutional neural networks (CNNs) (1) have become established as
an invaluable tool for biomedical image classification and have been proposed as an instrument for
clinical diagnosis in disciplines such as radiology, histology, ophthalmology, and dermatology (2).

The rapid spread of CNNs and other deep learning techniques, has created the need for
non-experts to become familiar with these complex tools and understand their principles of
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operation. There is a broad literature of introductory articles
offering basic reviews on CNNs principles and applications.
However, on the practical side, tutorials to start working with
CNNs often require a familiarity with terms and concepts
that could discourage readers without a solid background in
mathematics and/or computer programming to obtain a further
understanding of these techniques.

In this scenario, we aim to close this gap by offering a
hands-on activity based on the step-by-step execution of a
computer code involving all the procedures carried out when
implementing a CNN classification, along with their description.
Similar educational activities have been recently proposed for
other research fields (3). The activity guides the student through
two complete examples based on images of skin lesions, starting
from the pre-processing of the dataset, and leading through
the steps of data augmentation, the choice of the network
architecture and its fine-tuning, until the final evaluation of
the results.

In our opinion, this hands-on activity can help students to
obtain an intuitive understanding of the operations performed
by the CNN building blocks, e.g., by visualizing the effect
of image convolution with a specific kernel, the feature map
generated at specific network layers, or even by performing
the network training and exploring the effect of different
hyperparameters on the results. The activity can be performed
at different levels of difficulty, depending on the user expertise
in programming. At the basic level of execution, the students
can interactively play with the different sections just by changing
input parameters from simple form fields and can run the
program by pushing the play button, without even visualizing
the code. At the intermediate/advanced levels, students can
unfold cells to show, read and (possibly) modify portions of the
code. In both cases, the use of the Google Colab and GitHub
platforms allows to run the activity in the cloud from any internet
browser, without any software installation, strongly simplifying
configuration requirements and enabling the capability to use
hardware accelerators.

PEDAGOGICAL FRAMEWORK AND
LEARNING ENVIRONMENT

We aimed at developing a hands-on activity mainly directed
to students (medical school, biomedical engineering), but with
the potential of being of interest also for clinicians and other
professionals willing to get acquainted with deep learning and
CNNs. Four major developments make such a learning-by-doing
experience nowadays possible, even for non-experts. First, the
creation of specific software libraries, which have reduced the
complexity and length of the code necessary to implement these
networks, thus allowing their use to operators with a basic
knowledge of computer programming. Secondly, the distribution
of pre-trained classical CNN under license for reuse has enabled
the possibility to perform transfer learning further simplifying
the coding and speeding up the training. Third, the free
availability of cloud computing on virtual machines with graphics
(GPUs) and tensor processing units (TPUs), which has played

an important role in speeding up training procedures. The last
development of note is the accessibility of databases containing
labeled images for training.

Along these lines, for the proposed activity we use Keras
(4), an open-source framework developed by Francois Chollet.
Several open-source frameworks are nowadays available for
deep learning such as PyTorch or Caffe. However, Keras is
recommended for beginners since it is relatively easy to use
and has a high-level API that permits to build complex models
by writing a few lines of code. In addition, Keras has several
models of the best performing architecture (Alexnet, ResNet,
VGGNet, Inception, etc.) pre-trained on large datasets (e.g.,
the one used for the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC, http://image-net.org) containing millions of
photographs from 1,000 categories) that have thus achieved very
general classification capabilities. These trained networks can be
“reconverted” to the classification of different target images in few
simple steps and their learnable parameters (weights and biases)
are fine-tuned to provide high classification accuracy, through a
procedure called transfer learning.

The code for the activity is provided on the Google
Colaboratory platform (Colab, https://colab.research.google.
com/notebooks/intro.ipynb). Colab is a free cloud service that
enable coding in Python and program execution in a web
browser, in a highly interactive fashion. In addition, it requires
a minimum number of configuration steps, offers free access
to GPUs and TPUs, and allows sharing of contents in a
straightforward manner. The notebooks and metadata necessary
for the activity are shared on GitHub (www.github.com), a free
hosting service for software development and version control.

Deep learning requires a massive amount of information
in the form of labeled images. Several repositories contain
high-quality images associated to dermatology, available as
research tools in clinical training and computer science.
For example, the archive of the International Skin Imaging
Collaboration (ISIC, https://isic-archive.com/), or the Edinburgh
Dermofit Library (https://licensing.edinburgh-innovations.ed.ac.
uk/i/software/dermofit-image-library.html) host images of skin
lesions, labeled according to their diagnoses. For the activity, we
use images from the dataset that has been recently made available
for the training ofmethods competing for the ISIC 2019 challenge
(https://challenge2019.isic-archive.com), a competition aimed at
supporting research toward automated melanoma detection. The
full dataset contains 25,331 images of skin lesions associated
to 8 different diagnostic categories (melanoma, melanocytic
nevus, basal cell carcinoma, actinic keratosis, benign keratosis,
dermatofibroma, vascular lesion, and squamous cell carcinoma)
and can be accessed by registering to the ISIC website.

DESCRIPTION OF THE HANDS-ON
ACTIVITY

The files to perform the activity are stored on the GitHub public
repository https://github.com/qubilab/CNN-for-skin-lesion-
classification. The two links, associated to examples of a binary
(benign/malignant) and a multiclass (melanoma/melanocytic
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nevus/basal cell carcinoma/actinic keratosis/benign
keratosis/dermatofibroma/vascular lesion/squamous cell
carcinoma) classification of images of skin lesions, automatically
redirect to the respective Colab notebooks.

For the basic use of the notebook, no configuration is needed.
For applications requiring hardware accelerators (e.g., training
or fine-tuning), GPU or TPU can be enabled by picking the
required accelerator from the menu that appears by selecting
Runtime/Change runtime type.

For a better pedagogical support, the notebook is organized
in consecutive sections, each with a brief explanation of the task
performed, that guide the user steps-by-step along the activity.
To execute the code in a cell, it is sufficient to select it with a
click and then either press the play button within the cell box
or use the keyboard shortcut “Command/Ctrl+Enter.” For more
advanced applications, the visualization of input form fields or
code is achieved by unfolding the cell content, by clicking on
the little arrowhead at the left of the cell, thus enabling the
necessary editing.

Image Pre-processing and CNN Basics
The first cell “0. Imports” gives access to the code provided in
other modules and libraries and defines some basic functions.
Once this operation has been performed, we enter into the core
of the activity. In fact, since most of the deep learning approaches
are data-driven, a major focus must be set on the dataset and its
organization. The cell “1. Loading and organizing the dataset”
loads the labeled images on the Colab cloud space and arrange
them into folders (Figure 1A). The first block of this section
requires the input of user credential to login on the ISIC archive
and the selection of the number of images per category. The
photographs will then be organized into folders according to their
category and further randomly split into training, validation, and
test sets. A variable percentage of images (10–30%) can be used
for the final testing, whereas the others are split between training
(70–80%) and validation. The folder tree can be visualized in the
left frame of Colab, by selecting “Files.” In the example, we use
percentages of 65, 20, and 15% of the total number of images for
training, validation and test, respectively. These percentages can
be changed by the user through the form fields of block 1.3.

The cell “2. Understanding images and convolution” allows
the user to visualize an image from a selected folder, together
with its decomposition into layers according to RGB color model
and the representation of the pixel intensity value. To provide
an intuitive understanding of the principle of CNN, the activity
shows different convolution kernels and their pixel values. The
convolution of the image with these kernels is further provided.
An introductory description of the convolution and of the
hyperparameters of a convolutional layer can be found in our
previous article (5).

Often, the limited amount of data available for training might
produce the memorization of specific details of the training
images, leading to overfitting and the inability of the model
to generalize. In this case, it is recommendable to perform
a procedure called data augmentation. The augmentation
generates modified images by applying random transformations,
such as rotation, shift, scaling, and reflection, to existing

data (Figure 1B). Typically, the computer function used for
augmentation also takes care of resizing the images to the input
size required by the network. These steps can be visualized on a
random image by executing the cell “3. Data augmentation.”

CNN Selection
Once the data have been obtained and properly organized, the
following step entails the choice of the classification network. In
principle, users could build their own network by assembling
it layer-by-layer. Application program interfaces allow one to
create a CNN from scratch relatively easily. However, this is
generally not recommended for beginners, since it requires some
background knowledge, a good dose of intuition, and some trial
and error. Moreover, unless one is facing a new and very specific
image classification task, a personalized CNN is often not needed:
many popular deep learning architectures are released under a
permissive license for reuse. Even in the case that it is essential
to build a custom model, classic networks might still serve as an
inspiration, a scaffold, or as a block of the new model. Nowadays,
several networks offering outstanding performance for image
classification are available, therefore choosing the most suitable
CNN for one’s application is not straightforward. Since these
CNNs have been originally built for applications on different
datasets, the selection should be based on their performance
on the target dataset and thus requires their evaluation and
comparison (6).

ResNet-50
We use the CNN ResNet-50 (7). ResNet architectures were
developed by the Microsoft Research team (7) and are
available in several versions with different number of layers,
such as 50, 101, 152 (https://github.com/KaimingHe/deep-
residual-networks). Notably, the ResNet-152 won the 1st
places in all the sections of the ILSVRC and COCO (http://
cocodataset.org/#detection-2015) competitions in 2015. Pre-
trained ResNet architectures have been frequently used for the
classification of skin lesions, even by several participants to ISIC
challenges (8–12).

A schematic representation of the architecture and functions
of ResNet-50 is shown in Figure 2. Figure 2A shows examples of
feature maps obtained at specific layers. Moreover, the code of
the hands-on activity displays the feature map for any selected
layer of the CNN (cell “8.5 Visualize features generated at a
specific layer”). Figure 2B contains a scheme of the layers and
the connections of the network. Figure 2C shows the effect
of the application of specific operations (convolution, batch
normalization, activation and maxpooling) on an image.

As shown in Figure 2A and in cell “2. Understanding
images and convolution,” an image is a collection of two-
dimensional matrices (channels) which elements (pixels) have
numeric values representing the brightness in each channel.
Color images are composed of multiple channels (e.g., 3 for the
RGB representation) whereas grayscale images only have one.
The application of the network over an input image, produces its
progressive transformation into a larger number of features with
smaller lateral dimensions. Eventually, the features are combined
to obtain a set of scalar values with the same dimension of the
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FIGURE 1 | Data pre-processing and augmentation. (A) Example of the organization of the training dataset ISIC 2019. Images are first divided into folders associated

to the different categories. A specific function split them randomly into training, validation and test datasets. (B) An original image from the training dataset ISIC 2019

(class NV) and possible outputs of the application of the augmentation procedure, consisting in combinations of random shift, rotation, and reflection. The data

augmentation function resizes the images to fit the input size of the network (224 × 224 × 3).

output categories. This is achieved through the repetition of
mathematical operations performed by the layers and depending
on a large number of learnable parameters.

The input is first processed by a convolutional layer.
Convolution is a mathematical operation involving the input
image and a kernel, typically a matrix with smaller lateral
dimensions with respect to the input. During CNN training,
kernels are randomly generated and each kernel produces a
different feature. Convolution is performed by sequentially
shifting the kernel along the input image by a fixed number of
pixels, called stride. At each step, the sum of the element-by-
element multiplication between overlapping pixels returns the
pixel value of the convolutional feature. In cell “2. Understanding
images and convolution” the output provided by different kernels
can be interactively explored. It must be pointed out that a stride
larger than one can be used to obtain features with reduced lateral
size with respect to the input.

The first convolutional layer of the ResNet-50 uses 64 kernels
of 7 × 7 pixels2 with a stride of 2 pixels and thus produces 64
features with half the lateral size of the input image (Figure 2).
The features are regularized through a batch normalization layer
(Figure 2C), that performs the standardization of the input,
corresponding to the subtraction of the mean of the batch and
the division by the standard deviation. The convolutional and
batch normalization layers are generally followed by an activation
function that performs a non-linear transformation of the feature
map, providing the input for the next convolutional layer. Non-
linear functions (like sigmoid or hyperbolic tangent) are used as
activation functions for their similarity to the behavior of real

neurons, i.e., the transformation of a continuous input into a
digital output. The most widely used function is the rectified
linear unit (ReLU). The ReLU performs a simple calculation:
it returns the same value provided by the input if the input is
positive. However, if the input value is negative or null, it returns
zero. Inputs that are converted to zero constitute non-activated
neurons. In this way, not all neurons are firing simultaneously.
The sparse activation and the simpler mathematical operation
guarantee a higher computational efficiency for ReLU as
compared with other non-linear functions.

The batch normalization and the activation layers preserve the
lateral size of features obtained at the output of the convolution
layer. However, it is often recommendable to create a lower
resolution version (downsampling) of the output image to reduce
the number of parameters and account for variations in the
position of features in the input image. A common approach is
to use a pooling layer, which substitutes adjacent subregions of
specific size with the sum, average or maximum values of the
corresponding pixels. The ResNet-50 uses a maxpooling layer
(Figure 2C) to downsample images by taking the maximum of
the input over 3× 3 regions.

Combinations of these layers are applied along the network,
progressively reducing the lateral size from 224 × 224 to 7 ×

7 and increasing the depth of the feature map from 3 (the RGB
layers of the input image) to 2048. At this point, a group of three
layers flattens the feature map, i.e., transforms it into a score
vector with the same length as the number of categories. The
values of elements of this vector correspond to the probability
that the input image belongs to each category (Figure 2B) and
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FIGURE 2 | Schematic and operations of a ResNet-50. (A) Feature maps obtained at different layers of a trained ResNet-50, from the input RGB image, to the

8-element probability vector predicting the image class. (B) Schematic illustration of representative layers of the network. (C) Effect of convolution, batch

normalization, activation, and maxpooling on 1 of the 64 features produced by the first convolutional layer from the input image.

the maximum of this vector will correspond to the category
assigned to the input image by the CNN. The first layer of
the group performs a downsampling through average pooling, a
pooling operation returning the mean of the region of the image
considered. By using an average pooling over 7× 7 regions, each
of the 2048 features is thus reduced to a single value given by the
average of all the pixels in the 7× 7 map (Figure 2A).

The further reduction of the number of elements of the vector
to a size equal to the number of categories is obtained through
the fully connected layer. Each output value of this layer has a
complete connection with all the 2048 inputs, as it is obtained as
their weighted sum. The very last layer normalizes these values
into the probabilities to belong to each labeled category. Usually,
this task is performed through a softmax function that generalizes
binary logistic regression to the case of a multiclass problem.

Training
Once the dataset is ready and the CNN has been chosen, it
is possible to start the actual training of the network. During

this procedure, values of the learnable parameters are randomly
changed, and the corresponding features are calculated to
provide a tentative classification of the images in the training set.
The performance of the network is evaluated by the calculation
of a metric (loss function) that quantifies the similarity between
the prediction and the ground-truth. Parameters are iteratively
adjusted to optimize the loss function and thus increase
correct predictions.

However, as mentioned earlier, we need to distinguish
between two different situations. The first refers to the case in
which the network needs to be fully trained. In this case, the
values of all the parameters of the network need to be learned
from scratch. This procedure requires very large datasets, often
not available for medical applications. However, the use of a
classical network further enables the possibility of performing
transfer learning: besides using the same architecture as a classical
network, one can also take advantage of parameters learned by
the previous training of the CNN on a different, larger dataset.
In transfer learning, the parameters obtained from the training
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of the model over a large dataset are only fine-tuned to adapt
the network for the classification of a different target dataset. In
this way, one can skip the time-consuming training steps but
still take advantage of the features learned from the training
over many photographs. As reported in (6), the top-performing
methods submitted for ISIC challenges 2016, 2017, and 2018
used CNNs pre-trained on the ImageNet database. In cells 4–6,
we perform these steps using the ResNet-50 pre-trained on the
ImageNet dataset.

The ResNet-50 is designed for the ImageNet challenge and
thus its output is composed of 1,000 categories. To use the
ResNet-50 to classify skin lesion images among a different
number of classes, it is first necessary to replace the last layers
by ones providing an output over the desired number (2 or 8)
of categories (Figure 2B). This procedure is performed in the
section “4. The CNN: ResNet-50.”

Hyperparameters
The CNN will learn weights and biases by minimizing the loss
function over the training set using a method called stochastic
gradient descent. However, due to the large size of the dataset
and the limited memory, it is not possible to feed all the
images simultaneously to the CNN. Therefore, training images
are generally passed to the CNN in smaller groups called batches
(cell 4.1). The optimum batch size must be set by trial and error
in order to provide the fastest convergence. As a rule of thumb,
small but not too small batch sizes (e.g., 32, 64, 128) are preferred,
since they show higher accuracy than very large batches (13). The
number of iterations necessary for the network to “see” the entire
training dataset constitutes an epoch.

Another relevant hyperparameter is the global learning rate
(cell 5.1), a number between 0 and 1 determining the step size
used to update the weights at each iteration. The learning rate
sets the speed at which the model is adjusted to the data. A low
learning rate applies small changes to the weights at each update,
thus requires more epochs of training. Although a high learning
rate produces faster changes, if too high it might not converge to
an optimal model. The correct learning rate should be empirically
chosen to obtain convergence in a reasonable amount of time.
Typically, the learning rate is not fixed but is progressively
reduced during the optimization. Large rates are first used to
quickly obtain values of the weights corresponding to a loss
function close to its minimum. At that point, smaller rates further
adjust the weights to better approximate the exact minimum of
the loss function (cell 5.2). In addition, since in CNN the features
provided by the early layers are more generic, whereas those
belonging to the last layers are dataset specific, one can introduce
non-uniform learning rates and either “freeze” the early layers
or train the new layers at a faster rate with respect to the others
(cell 5.1 and 5.3). Besides, several other hyperparameters need to
be set in relation to the optimization procedure. In the activity,
we adopt a procedure and use hyperparameters similar as those
described in (11).

Optimization
The algorithm is now ready to start the optimization process,
a procedure involving the minimization of a loss function that

FIGURE 3 | Learning curves. Accuracy (A) and loss function (B) as a function

of the number of iterations for the training batch (blue line for raw data, black

line for filtered data) and validation sets (red symbols), as obtained through the

optimization procedure. The white and gray areas delimit different epochs. The

slightly higher accuracy and lower loss values obtained for the training dataset

respect to the validation one reveals a slight overfitting.

measure the distance between the predicted and the ground-truth
classification. For classification tasks, the cross-entropy function
is the usual choice (cell 5.4). The optimization will run until some
convergence condition is met. This condition is set by the user
based either on the value of accuracy/error calculated on the
validation set, or on a maximum number of validations without
improving the loss value (cell 5.2).

The actual training is performed in section “6. Fine-tuning
the model.” The learning process can be visually monitored
by displaying the trend of learning curves calculated from
both the training and validation datasets as a function of
algorithm iterations, to have an idea about how well the model
is, respectively, learning and generalizing (defined in cell 5.5).
Typically, plots of learning curves associated to optimization
(e.g., cross-entropy loss) and performance (e.g., accuracy)
are simultaneously created for both datasets (Figures 3A,B).
The comparison of learning curves obtained for training and
validation datasets is a valuable diagnostic method for the model
behavior. A training loss showing a continuous decrease with a
validation loss showing a minimum, in general correspond to an
overfitting model. A good fit is usually associated with training
and validation losses decreasing simultaneously toward closely
spaced horizontal asymptotes (4). However, a higher accuracy
(lower loss) of the training set with respect to the validation
can still indicate some degree of overfitting, as obtained for the
example shown in Figures 3A,B.

Since the training can sometimes run for quite a long time, in
section “7. Load a trained network” we also provide a previously-
trained model with weights. By loading this model, the user can
perform the remaining part of the activity without having to wait
for the completion of the training procedure.

Performance Evaluation
Once the learning phase is complete, the network can be finally
applied to predict the class of the images contained in the test
dataset, that were not used for the training. Since the ground-
truth of these images is known, they can be used to calculate
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FIGURE 4 | Model evaluation over the test dataset. (A) Confusion matrix displaying the number of images of the test dataset associated to each category by the

ResNet-50 network. (B) ROC curves obtained on the same dataset and the corresponding values of the AUC for each class.

metrics to assess the performance of the classifier (section “8.
Performance assessment”). Besides the overall accuracy, the
confusion matrix, reporting the number of correct and incorrect
predictions over all the classes, (Figure 4A) visually summarize
classification and mis-classification performance of the model.
The evaluation of the model performance further includes the
plot of the receiver operating characteristic (ROC) curves and the
calculation of the area under the curve (AUC) for each category
(Figure 4B), obtained as detailed in (5).

DISCUSSION AND CONCLUSIONS

We have developed a hands-on activity based on the interactive
computer code and a detailed description of the steps needed
to implement and fine-tune a CNN to perform the classification
of dermatological images, together with an intuitive explanation,
suitable for non-experts, of the functions performed by the main
blocks of the network. The description is based on two practical
examples, consisting of the fine-tuning of a pre-trained ResNet-
50 network on a public dataset, containing images of skin lesions
corresponding to different diagnoses. The use of ad hoc toolboxes
and libraries largely simplifies the coding and makes it accessible
to beginners.

In our opinion, the hands-on example, together with the
description provided in this article, can act as a tool for
students interested in obtaining a first understanding of the
inner working of a CNN. However, the same activity can also be
offered to provide a tutorial for beginners’ initiation to computer
programming for building and optimizing CNNs. In the first
case, the code can be simply executed with the default parameters
to visualize the output of each cell. The visualization of the
results provides an intuitive understanding of CNN principles.
As an example, plotting the feature maps obtained at consecutive
layers allows comparing the changes introduced on the features
by pooling, batch normalization and activation layers. In the
second case, the user can further explore how modifications
of the dataset and the change of hyperparameters affect the

network’s performance. Examples in this sense might involve the
comparison of performance upon the change of learning rates (or
even the freezing) of specific layers.

The use of an interactive hands-on activity reproducing a
novel approach in its complexity might be a powerful strategy
to approach the development of problem-solving and analytical
skills, possibly through group work in the classroom. In addition,
we believe that making this technology more accessible for non-
expert will contribute to further strengthen the collaboration
between dermatologists and computer scientists, toward the joint
effort of improving image-based medical diagnosis.

AUTHOR CONTRIBUTIONS

CM and MC-D contributed to conception and design of the
study. SN, IM, and CM wrote the code and performed analyses.
MC-D wrote the first draft of the manuscript. CM wrote the
final version of the manuscript. CM and MO-V supervised the
research. All authors contributed to manuscript revision, read,
and approved the submitted version.

FUNDING

CM gratefully acknowledges funding from FEDER/Ministerio
de Ciencia, Innovación y Universidades – Agencia Estatal de
Investigación through the Ramón y Cajal program 2015 (Grant
No. RYC-2015-17896), and the Programa Estatal de I+D+i
Orientada a los Retos de la Sociedad (Grant No. BFU2017-
85693-R); from the Generalitat de Catalunya (AGAUR Grant
No. 2017SGR940). CM also acknowledges the support of
NVIDIA Corporation with the donation of the Titan Xp GPU.
MO-V gratefully acknowledges funding from the PO FEDER
of Catalonia 2014-2020 (project PECT Osona Transformació
Social, Ref. 001-P-000382) and the Spanish Ministry of Science,
Innovation, and Universities through the Instituto de Salud
Carlos III-FEDER program (FIS PI19/01379). IM acknowledges
the support of the Erasmus+ program of the European Union.

Frontiers in Medicine | www.frontiersin.org 7 March 2021 | Volume 8 | Article 644327

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Cullell-Dalmau et al. Hands-On Learning of CNN

REFERENCES

1. LeCun Y, Haffner P, Bottou L, Bengio Y. Object recognition with gradient-
based learning. In: Shape, Contour and Grouping in Computer Vision Lecture
Notes in Computer Science, vol 1681. Berlin; Heidelberg: Springer (1999).
p. 319–45. doi: 10.1007/3-540-46805-6_19

2. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian
M, et al. A survey on deep learning in medical image analysis.
Med Image Anal. (2017) 42:60–88. doi: 10.1016/j.media.2017.
07.005

3. Erickson BJ. Magician’s corner: how to start learning about deep learning.
Radiol Artif Intell. (2019) 1:e190072. doi: 10.1148/ryai.2019190072

4. Chollet F. Deep Learning with Python. Shelter Island: Manning Publications
Company (2018).

5. Cullell-Dalmau M, Otero-Viñas M, Manzo C. Research techniques
made simple: deep learning for the classification of dermatological
images. J Invest Dermatol. (2020) 140:507–14.e1. doi: 10.1016/j.jid.2019.
12.029

6. Perez F, Avila S, Valle E. Solo or ensemble? Choosing a CNN architecture for
melanoma classification. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops. Long Beach, CA (2019).

7. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. (2016) 2016-
Decem:770–8. doi: 10.1109/CVPR.2016.90

8. Gutman D, Codella NCF, Celebi E, Helba B, Marchetti M, Mishra N, et al.
Skin lesion analysis toward melanoma detection. In: A Challenge at the
International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the
International Skin Imaging Collaboration (ISIC) (2016). Available online at:
https://arxiv.org/abs/1605.01397

9. Marchetti MA, Codella NCF, Dusza SW, Gutman DA, Helba B, Kalloo
A, et al. Results of the 2016 international skin imaging collaboration
international symposium on biomedical imaging challenge: comparison of

the accuracy of computer algorithms to dermatologists for the diagnosis of
melanoma from dermoscopic images. J Am Acad Dermatol. (2018) 78:270–
7.e1. doi: 10.1016/j.jaad.2017.08.016

10. Codella NCF, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW,
et al. Skin lesion analysis toward melanoma detection: a challenge at the
2017 International symposium on biomedical imaging (ISBI), hosted by
the international skin imaging collaboration (ISIC). In: 2018 IEEE 15th
International Symposium on Biomedical Imaging (ISBI 2018). New York, NY:
IEEE (2018). p. 168–72.

11. Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classification
of the clinical images for benign and malignant cutaneous tumors
using a deep learning algorithm. J Invest Dermatol. (2018) 138:1529–38.
doi: 10.1016/j.jid.2018.01.028

12. Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D,
et al. Skin lesion analysis toward melanoma detection 2018. In: A Challenge
Hosted by the International Skin Imaging Collaboration (ISIC). Washington,
DC (2019).

13. Mishkin D, Sergievskiy N, Matas J. Systematic evaluation of convolution
neural network advances on the Imagenet. Comput Vis Image Underst. (2017)
161:11–9. doi: 10.1016/j.cviu.2017.05.007

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Cullell-Dalmau, Noé, Otero-Viñas, Meić and Manzo. This is an
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Chapter 4. 

Discussion 

VEGF-A differentially influences fibroblast migration and receptor 

spatiotemporal organization as a function of cell density (article I) 

The study of the cellular and molecular mechanisms altered in chronic wounds 

has advanced in the last decades with good clinical results. However, some unknown 

mechanisms could explain the persistence of some kinds of chronic wounds. In our 

Article I, we focused on the understanding of the VEGF-A role in dermal fibroblast 

activity because it is one of the most enriched growth factors in currently employed 

biological therapies. For years, the VEGFR-1 was considered a decoy receptor, but 

more recent results suggest it has other signaling functions82.  

For sparse fibroblasts, we found that VEGF-A increases the migration speed 

while decreasing directional persistence. We expected the decrease of the directional 

persistence as VEGF-A artificially added masks natural gradients of VEGF expressed 

by other fibroblasts guiding the cell migration. Surprisingly, the VEGF-A effect in high 

cell density conditions is the opposite. Both results are consistent with the regulation of 

the Hippo pathway which controls the expression of YAP and TAZ transcriptional 

coactivators promoting cell migration83.  

At the molecular level, we have described for the first time the lateral diffusion 

of VEGFR-1 at the single-molecule level. The study of VEGFR-1 and integrin a5b1 

density and spatiotemporal organization show differences depending on the cell density 

and fibroblast phenotype, contributing new evidence of the recently discovered feed-

forward loop of the Hippo pathway84.  
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New tools to obtain quantitative values of wound healing evolution and to assess 

the efficacy of therapies in chronic wounds (article II) 

Monitoring the evolution of chronic wounds is a complex process, even for 

experienced healthcare staff. An efficient wound healing follow-up requires paying 

attention to several clinical variables: 1) descriptive parameters (color or exudate 

presence) and 2) quantitative variables (wound area and shape) to also guarantee an 

objective monitoring process. Because the planimetry technique is still common in 

wound clinical units, we have developed a graphic user interface for wound area and 

shape descriptors measurements (Woundaries) based on the planimetry methodology. 

Our tool is easy to use, and practical since it allows different forms of planimetry 

digitalization, like scanning or photographing. The Woundaries tool can detect the area 

inside the wound perimeter also in the case of partially open wound contours, avoiding 

the need for tracing again the contour after wound image digitalization. Area values, 

together with the other wound descriptors provided by the Woundaries, can be further 

analyzed to determine wound evolution values with prognostic applications85.  

Our classification routine has several advantages in comparison with others 

previously reported. First, the determined characteristic healing time is a measure 

independent of the initial wound extent, being a more robust parameter than total 

healing time. Secondly, our routine can automatically determine if the wound healing 

process follows a simple exponential decay model or a mixed model, which is a wound 

with a delayed start of healing. In agreement with other authors86, we observed that 

some wounds show a delayed start of healing, and our tool is able to automatically 

detect this behavior which increases the robustness of our method. And finally, the 

obtained characteristic healing time has prognostic value allowing clinicians to identify 

wounds with a bad prognostic after only 5 weeks. This earlier prognosis determination 
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will be very useful for healthcare staff to consider changing wound treatment to a more 

appropriate one87. 

In addition, we tested our methodology to compare the efficacy of an autologous 

therapy with conventional therapies. The characteristic healing time values resulted in 

enough sensitivity to observe statistically significant differences among sexes and 

etiologies in response to the analyzed therapy. We are convinced that the use of these 

metrics for testing the efficacy of new therapies can lead to more efficient use of 

complex or expensive therapies, especially in cases that require blood extraction and 

processing, applying them to those patients who would really benefit from them.  

Our tools have improved the existing methods to support clinicians in better 

decision-making to treat chronic wounds. In fact, nowadays, the complete healing time, 

which is highly influenced by the initial area, is the healing parameter used and 

accepted by medical agencies like FDA. If the use of the characteristic healing time is 

broadly adopted, it would result in a more objective metric and will lead to more 

efficient chronic wound treatment, reducing medical costs and inconveniences for 

patients. 
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Improving knowledge and access to use of artificial intelligence (AI) for skin 

lesions classification (articles III-IV) 

Although the above-mentioned tools for wound follow-up have been very 

useful, we observed that they can result in laboriousness, especially in chronic-wound 

units that treat a lot of ulcers every day. For that reason, we decided to explore the 

state of the art of using artificial intelligence algorithms in assisting diagnostics in 

dermatology. Among the different subcategories of AI, machine learning (ML) and 

deep learning (DL) have demonstrated the capability to achieve great results in the 

classification of skin lesions based on images. We soon realized there was a lack of a 

big data set of standardized ulcer images and diagnostics, an essential element for the 

training of DL algorithms. With the SARS-CoV-2 pandemic heavily pressurizing the 

healthcare system, it was impossible to collect such a data set of images during this 

thesis. For that reason, we decided to study and tune our DL algorithm in the context 

of cancerous skin lesion classification, a dermatological area where DL has been 

tested for years76.  

We realized that the literature about DL applied to dermatology is, in general, 

explained in a very technical language, making its understanding very difficult for non-

experts in this area. So, we focused our first review article on comprehensively 

explaining this technology to approach this technology to the end users, the clinicians. 

We centered our efforts on the use of comprehensive vocabulary and the creation of 

figures that visually help to comprehend these advanced methods. In the same way, we 

also supplemented our paper with some slides and a short multiple-choice test that can 

be downloaded from the online version and used for teaching purposes. After 

explaining each part of those algorithms and the main operations performed, we 
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dedicated a section to emphasizing the benefits but also the possible risks of this 

technology, and the main tests to detect possible bad performance.  

We focused our second review article on the creation of a hands-on tool to allow 

students and clinicians to interact with the DL algorithm. Based on the learning-by-

doing philosophy we divided the code into blocks with a brief explanation in each of 

them, allowing the user to see the code, execute it, and test the effect in the final output. 

Also, more advanced users are encouraged to change some hyperparameters to 

visualize their effect in the final output. As an end user, seeing the results of the 

intermediate steps of a DL algorithm is an important way to learn while experimenting 

with the code. Again, in this review, we emphasize the importance of proper training 

and the performance evaluation metrics and plots that will help the user to detect the 

performance level of the tested configuration.  

Considering together the first article of this series, introducing DL technology, 

its main parts and operations, and the second article, allowing non-experts to get a 

deeper comprehension while applying the example algorithm on a real data set of skin 

lesions images, we are convinced that we have made a significant contribution to make 

this emerging AI technology more comprehensive and accessible to non-experts. 
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Chapter 5. 

Conclusions 

 

• From article I: “VEGF-A differentially influences fibroblast migration and 

receptor spatiotemporal organization as a function of cell density” we can 

conclude: 

 There is a complex relationship between cell density, cell damage 

signaling, receptor-ligand interactions, and spatiotemporal organization of 

VEGFR-1 and integrin %5&1, which determines fibroblast behavior in 

migration and affects the wound healing process. 

 

• From article II: “A toolkit for the quantitative evaluation of chronic wounds 

evolution for early detection of non-healing wounds” we can conclude: 
We provide new tools to assist healthcare staff in monitoring the 

wound healing process for improving clinical decision-making in chronic 

wound management and early prediction of non-healing wounds. This is a 

reliable and user-friendly method for the quantification of area and shape 

descriptors from digitalized hand-traced planimetry that provides 

information on wound healing evolution and estimates the kinetic 

parameters of the process. 
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• From article III: “Research Techniques Made Simple: Deep Learning for the 

Classification of Dermatological Images” we can conclude: 

We describe the necessary concepts for clinicians to approach DL 

algorithms applied to dermatology, detailing their structure, basic 

processes, and performance evaluation in an understandable way for non-

experts in the area.  

 

• From article IV: “Convolutional Neural Network for Skin Lesion Classification: 

Understanding the Fundamentals Through Hands-On Learning” we can 

conclude: 

We provide a hands-on activity and a detailed description of the 

steps needed to run and fine-tune a CNN to perform the classification of 

dermatological images. This pedagogical activity introduces 

dermatologists and medical students to these technologies and contributes 

to strengthening the collaboration between doctors and computer 

scientists, to improve image-based medical diagnosis.  

 

Conclusion 

Working from a multidisciplinary perspective allows us to improve the 

comprehension of wound care by understanding the molecular and cellular mechanisms 

involved in wound healing and introducing new technologies to support clinical 

decision-making.  
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Limitations of this doctoral thesis 

This thesis has produced new tools and provided evidence of the benefits of 

using wound healing monitoring aids for improving daily chronic wound management. 

However, the research included in this doctoral thesis has several limitations: 

• The assessment of the clinical tools developed in the context of this thesis for 

identifying wound healing prognosis was only validated using the most common 

wounds. Therefore, new studies should be performed using less usual wound etiologies 

to test the fit and performance of characteristic healing time in this group of wounds. 

For that purpose, cooperation with different hospitals to increase wound data would be 

necessary. 

• Our methodology for wound area measurement is time-consuming as it 

includes several steps: drawing the planimetry, digitalizing it, and performing the 

measurement. Additionally, healthcare staff must spend extra time to perform the fit 

and obtain the characteristic healing time. That is a relevant limitation of our 

methodology, especially to be used in clinical wound units where nurses must visit 

dozens of patients with chronic wounds every day. Therefore, it may be difficult to 

appreciate the benefits of investing this time, particularly if it leads to longer waiting 

times for patients. 

• We found that the healthcare staff generally had a low background in 

mathematics and programming, which posed an additional barrier to using our 

methodology in its current structure. Additionally, computers in hospitals and primary 

health care centers are strongly protected and installing new software may require 

numerous permissions and licensing costs. 

To address these limitations, we explored the implementation of AI algorithms 

to create more user-friendly wound-monitoring software. However, we encountered 
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new limitations concerning the lack of a public database with ulcer images and their 

classification for training the AI algorithms.  

 

Outlook and future plans  

To address the limitations of our tools for wound healing monitoring and 

prognostic evaluation previously described, we propose integrating these tools into a 

tablet application. This technological integration would simplify the process, starting 

with the capture of wound or planimetry photographs using the tablet camera. However, 

a collaborative agreement with other specialists will be needed since our research team 

doesn’t have the expertise to develop this technological device. In addition, we strongly 

believe that the application of AI in the wound healing management fields holds 

promise. However, the development of a complete wound image and classification 

repository is needed before testing our algorithm architecture in this area. 

On the other hand, our study of the VEGF effect on dermal fibroblast activity 

is just scratching the surface and will require a deeper investigation for a better 

understanding of the cellular and molecular mechanisms involved. We plan to use dual-

color single-molecule localization microscopy to study the organization of receptors 

and obtain a clear image of the distribution and clustering of the integrin %5&1 and the 

VEGFR-1 with VEGF treatment, concerning cell density. Furthermore, we are 

interested in performing other assays to analyze the effect of VEGF in other skin cells 

like keratinocytes which have also an essential role in good wound healing resolution. 

Given the strong effect of cell density in VEGF migration regulation observed in this 

doctoral thesis, we plan to further investigate the involvement of cell-cell interactions 

and the role of the Hippo pathway control mechanism. 
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Appendix 1. 

Molecular techniques 

Antibody reduction 

 Briefly, 0.05mg of the mouse anti-human integrin ⍺5 (BD Pharmingen, 

555651) and VEGF Receptor 1 rabbit anti-human antibody (SY09-09, Invitrogen) were 

dialyzed (Slide-A-Lyze MINI Dialysis Device, 2K, Thermo Fisher) in PBS for 4h at 

room temperature to remove the commercial buffer. Then the antibody was reduced 

with 1 mM DTT (dithiothreitol) for 30 min at room temperature and purified from DTT 

via dialysis as mentioned before. To avoid reassociation of the reduced Abs, sulfhydryl 

groups were blocked with 20mM of iodoacetamide for 1 hour at 4 ºC. Then 

iodoacetamide was removed from the reaction solution by dialysis. To check the result 

of the digestion process 10ul of each reduced antibody was mixed with an equal amount 

of 2X nonreductive sample buffer and directly loaded in an SDS-Page gel with 8% 

polyacrylamide (detailed in the next section).  
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Figure I. 3D representation of half antibody fragment interaction site prediction and 

reduction testing. 

 A) Representation of crystallized structures of VEGFR-188 (PDB: 5T89) in green and 
a generic half IgG89 (PDB:1Igy) in yellow and orange. Red color marks the binding 

site reported in the commercial antibody SY09-09 (Thermo Fisher) technical sheet and 

in blue the vascular endothelial growth factor in his binding site. B) Image of the gel 

testing the result of the antibodies digestion process. For each antibody, we tested the 
half antibody fragment after the digestion process (hAB) and after the digestion and 

the biotinylation process (EZ-HAb). The half antibody fragment (75-kDA+ 
glycosylation’s weight) is present in both antibodies while the full antibody fragment 

(150kDa) is indistinguishable. Own source. 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

Gels were prepared at 8% acrylamide/bisacrylamide for the resolving gel and 

4% for the stacking gel. The samples after the reduction process and the biotinylation 

process (detailed in the next section), were mixed with 2x non-reducing buffer, heated 

at 95ºC for 10 min, and loaded in the gels. Gels were run at 35mA per gel. The running 

buffer was Tris 25mM, glycine 192mM, and SDS 0,1%. Proteins were separated 

according to their molecular weight until the front of the electrophoresis reached the 
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bottom of the gel. After running the gel was stained with Coomassie stained and imaged 

on a Versadoc scanner (Versadoc 4000MP, Bio-Rad) (Figure I-B). 

 

Half antibody fragment biotinylation and conjugation with quantum dots (QD) 

To use the reduced antibody for single particle tracking is necessary to 

biotinylate and conjugate them with quantum dots. The antibody biotinylation was 

performed following the commercial protocol, with a 10-fold molar excess of EZ-Link 

Sulfo-NHS_LC_Biotin (Thermo Fisher, A39257) for 30 min at room temperature under 

movement. This reaction adds biotins to the side chain of lysine and at the N-terminus 

of the polypeptides.  

Once biotinylated, the half antibody fragments are ready to be conjugated with 

quantum dots655 streptavidin conjugates (Thermo Fisher Q10123MP). To perform the 

reaction and get the desired proportion of 1 QD for each half antibody fragment we 

perform the reaction with 1hAb:1QD:10 D-biotin (Thermo Fisher D1595) molecules 

proportions, where biotin is used to compete for the binding in 10-fold higher 

concentration. Tree final 200µl solutions a) hAb fragments at 20mM, b) D-biotin at 

200mM, and c) quantum dots at 20mM, all of them diluted in PBS with 6% of BSA 

were finally joined and incubated together for 2 hours at 4ºC in an orbital tray. 
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Appendix 2. 

Wound healing and single particle tracking experiments 

In this Appendix 2, we detail the methodologies used to analyze the fibroblast 

migration data obtained in this thesis. We describe the processes and equations used for 

cell migration quantification and for describing the motion of cell membrane receptors. 

 

Diffusion measurements 

Diffusion measurements are applied similarly to study individual cell migration 

behavior or membrane protein diffusion, with the unique difference of the scale of 

distances and time. For cells moving in a 2D plane, the diffusivity measures to get the 

rate at which cells spread from the initial position. This is a time-consuming technique, 

so it is recommended to use software to automatically detect the precise localization of 

all objects (cells or labeled proteins) in all frames matching the expected cell or particle 

radius (Figure II-A) and then connect all the localizations in tracks (Figure II-B).  

 

 

Figure II.  Cell tracking detection and tracks resulting after a single localization 

connection. 
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 A) Example of a phase contrast image at low cell density for individual fibroblast 
migration assays. Magenta circles show the bright spots (cells) detected in that frame 

by the tracking software TrackMate90. Scale bar = 150µm. B) Plot of the trajectories 
resulting from the detection and connection of all cell positions in each frame during 

24h for the same field of view. Own source. 

The main equation used to determine single-cell or single-protein diffusion is the mean-

squared displacement (MSD) given in Equation 1, which describes the average extent 

of space explored by a cell or a particle as a function of different time intervals (also 

called time lag “tlag”). For a single particle j moving in 2D, MSD is calculated by 

determining their position coordinates xj = {xj, yj} sampled at N discrete times mΔt 

(Figure III-A). MSD can be used to characterize the mode of motion91,92. 

'()*+!"# = -∆+/ = 1
1 −- 3 45$(+% +-∆+) − 5$(+%)8

&
'()

%*+
 

Equation 1. 

In Figure III-B we can observe an exemplary MSD plot. While increasing tlag, MSD 

data points result in more scattered and less statistically significant91 for the calculation 

of diffusion parameters. For this reason, the fitting used is performed over a limited 

number of points having larger statistics, usually the first 4 or 6 points. Therefore, only 

trajectories having a minimum length of at least 20 points are typically used, causing 

the rejection of a great number of shorter trajectories. To determine the effective 

diffusion coefficient also from short trajectories, Jaqaman and colleagues developed an 

alternative method (Equation 2). This calculation uses frame-to-frame squared 

displacement (r2) and localization precision s averaged over all frames of the track93 

(https://github.com/kjaqaman/diffModesF2F). 

) = 9&
4 − ;

& 

Equation 2. 
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Figure III. Diffusion calculation and trajectory types. 

A) 2D trajectory example showing different time intervals (tlag.). Adapted from Ref. 94. 
B) MSD plot at different tlag for a 2D trajectory. The dotted line shows the linear fit 

over the first 4 points to get the slope or the diffusion coefficient. Own source. C) MSD 

plot of representative different types of motion. D) Examples of different types of 

trajectories. Adapted from Ref. 95. 

As it can be appreciated in Figure III-C and D, a pure random walk like 

Brownian motion produces a straight line in an MSD plot as given by Equation 3, where 

d represents the dimensionality of the space in which the motion takes place (2 for a 

2D motion) and D is the diffusion coefficient.  

'()*+!"#/ = 2=)+!"# 

Equation 3. 

If the diffusing particle finds obstacles, the diffusion shows an anomalous 

behavior, characterized by Equation 4, where k is a generalized diffusion constant and 
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a is the anomalous exponent. This exponent can indicate a sub-diffusive behavior if 

a<1 or a super-diffusive behavior if a>1. 

'()*+!"#/ = 2=>+!"#,  

Equation 4.  

Less frequent but also present are those trajectories showing directed motion 

behavior. This can be defined as straight-line particle motion and is sometimes 

observed for active transport events along microtubules or molecular motors96. For a 

2D diffusion, directed motion is defined by Equation 5. 

'()*+!"#/ = 2=)+!"# + *?+!"#/
&
 

Equation 5. 

The cell membrane is a very complex environment, containing physical links 

with extracellular components like glycocalyx and ECM components and with 

intracellular elements like cytoskeleton elements like actin or intracellular signaling 

proteins. For that reason, it is common to observe trajectories confined in some regions, 

with an MSD curve fitting Equation 6, where a1 and a2 are positive constants related to 

the geometry of the region and R is proportional to the size of the confinement region. 

Finally, trajectories with R=0 are defined as immobile92.  

'()*+!"#/ = @	41 − B+C-(&"!./0"#$/238 

Equation 6. 

Methods based on the mean-squared displacement are mostly limited to 

quantitative analysis of particles that exhibit a unique behavior over time. To detect 

switching from one behavior to another, with is very common in most biological 

systems, other approaches are necessary. One of these alternatives is to perform 

segmentation using other diffusion estimators as, for example, the moment scaling 

spectrum (MSS). For this analysis, the moments of order p of the distribution of 
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displacements are calculated according to Equation 7, where N is the number of 

trajectories, Tn is the duration of trajectory n, tlag is the time step, xn(t) is the position of 

the nth particle at time t, and p is the moment order97. 

〈|5|4〉(G) = 1
13 3 H55*+ + +!"#/ − 55(+)H

4
6%(0"#$

0*+

'

5*+
 

Equation 7. 

In contrast to MSD-based methods, which use only the second moment (x2 ∼ 

tlag with x position and tlag time step MSS utilizes higher-order moments91. This means 

that xp ∼ tlagγp, where the plot of the moment exponents γp versus p gives the MSS. The 

slope of the MSS, denoted as SMSS, indicates the motion type of the track segment, 

where SMSS = 0.5 represents pure diffusion, 0< SMSS		<0.5 represents restricted motion, 

and 0.5< SMSS	<1.0 represents directed motion97,98. 

With the trajectory information, it is also possible to extract other measures for 

understanding cell or protein behavior. In our case, we decided to explore deeply the 

dermal fibroblast behavior, due to their peculiarities. As seen in the introduction Section 

2 fibroblast migration is driven by cell polarization, which depends on extracellular 

signaling but also is influenced by extracellular matrix composition and organization. 

To understand better this behavior, we also calculated the distribution of the turning 

angle. As seen in Figure IV, the turning angle (gi) describes the propensity of a moving 

object to change direction at each step99. This quantity, used on sparse cells, is useful 

to understand if cells move randomly or if they temporarily follow a preferred direction. 

In relation to this measure, we also determine the motile persistence considering the 

end-to-end displacement divided by the total displacement. 
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Figure IV. Summary of other measures on individual trajectories.  

Top: schematic representation of sample trajectory consisting of N points pi= (xi, yi). 

Bottom: table summarizing other measures applied to trajectories assuming constant 

time interval Dt between successive frames. Adapted from ref.99. 

We also compute the instantaneous velocity as the displacement from one frame 

to the next divided by the time interval (Figure IV)99. This is also necessary to 

understand if cells move at different velocities while increasing the experimental time. 

With all the instantaneous velocities for the same trajectory, we can also get a mean 

instantaneous velocity for that trajectory. 

 

 

 

Quantification of collective cell migration  

In vitro wound healing assay is a widely used technique to assess drug testing 

effects on cell migration. Automated microscopes with incubation chambers have 

converted this technique into a reproducible and easy-to-perform procedure. This 

technique aims to quantify the collective cell migration kinetics to obtain quantitative 

value and statistically determine the effect of a concrete drug or therapy on cell 

Methods for Cell and Particle Tracking 9

Measure Definition
Total distance traveled dtot = ÂN�1

i=1 d(pi,pi+1)

Net distance traveled dnet = d(p1,pN)

Maximum distance traveled dmax = maxi d(p1,pi)

Total trajectory time ttot = (N �1)D t

Confinement ratio rcon = dnet/dtot

Instantaneous angle ai = arctan(yi+1 � yi)/(xi+1 � xi)

Directional change gi = ai �ai�1

Instantaneous speed vi = d(pi,pi+1)/Dt

Mean curvilinear speed v̄ = 1
N�1 ÂN�1

i=1 vi

Mean straight-line speed vlin = dnet/ttot

Linearity of forward progression rlin = vlin/v̄

Mean squared displacement MSD(n) = 1
N�n

ÂN�n

i=1 d
2(pi,pi+n)

Table 2: Quantitative tracking measures commonly found in the literature. The drawing (top)
shows a sample trajectory consisting of N points pi = (xi,yi) and the table (bottom) defines
the measures. The example is given for the 2D+t case but the measures can be extended
straightforwardly to 3D+t. A constant frame rate is assumed with a time interval of D t seconds
between successive frames. The distance d(pi,p j) between any two points pi and p j is
usually taken to be the Euclidean norm kpi �p jk.

a reference point), directional change (turning angle) (Soll, 1995; Beltman
et al., 2009), and the autocorrelation of the latter, which is indicative of
directional persistence and process memory.

4.2 Diffusivity Measures

A more sophisticated measure computable from a trajectory is the mean
squared displacement (MSD). It is a function of time lag (see Table 2)
and enables one to characterize the mode of motion of the corresponding
object by inspection of the resulting MSD-time curve (Qian et al., 1991;
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migration46. Hundreds of time-series images must be processed to calculate the 

remaining gap area in each frame, which is the wound area. This analysis is a time-

consuming process100 that can be done using different public or custom software based 

on different processes. Some of these software tools are based on automated image 

segmentation101. We created a custom script adapting the algorithm described in Ref. 

102. In Figure V-A, time-lapse images of a scratch assay taken at different times with an 

automated microscope are shown together with the mask transformation performed by 

our custom script (Figure V-B) to automatically measure the free area of the field of 

view. 

 

Figure V. Scratch assay experiments analysis and quantification.  

A) Time series phase contrast images from the same field of view or wound region 
obtained with an automated microscope with an incubation chamber. Scale bar =250m. 

B) Resulting masks obtained from the processing of images shown in panel A. White 
areas represent free cell zones and are used for the script to measure wounds or free 

areas. The black line in the middle of the first wound zone is automatically fitted 
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equidistant from the wound edges for linear edge velocity calculation (Cr). C) Free 
area versus time plot with data obtained from the analysis shown in the B panel. In blue 

are plotted wound-free areas at different times showing a negative sigmoid shape. In 
red we can see the adjusted Richard’s equation. Richard’s fit main equation and max 

slope equation are shown. Own source. 

Independently of the image processing method applied, free areas by time can 

be used to calculate some measures related to the migration kinetics. A multitude of 

quantification methods had been described to quantify collective cell migration; some 

of the most common ones are based on wound width or area change46. These methods 

use different metrics, like the percentage difference in the wound width at different time 

points103, the wound at specific times104, and the slope based on different fits. 

Wound healing experiments can display a non-linear tendency, with a sigmoidal 

shape that can be locally approximated as a linear behavior. For those reasons and to 

simplify the process, some authors proposed a linear fit between the 5th and 12th hours, 

coinciding with the maximum slope of the sigmoid curve105. Other functions, such as 

the Richard’s function (non-symmetrical sigmoid) have been also proposed106 (Figure 

V-C). In Richard’s equation (Figure V-C) A represents the wound area, ΔT is the time 

between consecutive frames, and α, n, t0 are the coefficients obtained from minimizing 

an objective function of the sum of squared errors between the experimental Areas vs. 

time plot. In this equation, the maximum slope of the fitted equation corresponds to the 

maximum cell migration rate and can be evaluated with the bottom equation in Figure 

V-C and represented in the plot with a golden line. 

The slope of the Area vs time curve can be converted into a rate assuming that 

the wound length is constant and thus obtaining the width of the gap107. Considering 

the migration rate is calculated for one of the two edges of the wound and combining 

all together, we obtain Equation 8 where m is the maximum slope and l is the length of 
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the field of view, represented for the black line in the middle of the wound in Figure V-

B. 

J7 =
|-|
2	K	L 

Equation 8.  

Another useful measure we can obtain from wound healing assays is the time necessary 

to reduce one-half of the initial area t1/2gap. That information can be useful to compare 

wound healing assay experiments with different initial gaps.  The t1/2gap can be obtained 

graphically by setting y = b/2 and solving for x like seen in Figure V-C or calculated 

with Equation 9  

++/&#"4 =
MNO+OBL	PBQ	R9CB
2	K	|(LSQC|  

Equation 9. 

 

In vivo wound healing rate determination 

The first reported skin cicatrization studies were performed in the 1910s. Carrel 

and Hartmann108 performed an extensive study on men and guinea pig wounds and 

observed a greater healing rate at the beginning of the wound. These data were used by 

Du Noüy109 to determine one of the first wound-healing equations. In this equation 

(Equation 10), ST is the wound area at a certain time, S0 is the initial area, K is the 

healing coefficient and T is the time in days. It was observed that the exponential decay 

equation fits well for most of the wounds except at the end part when wounds were 

smaller than 0.4 cm2. 

(6 = (8C(96 

Equation 10. 



 

107 

In the following decades, several authors tested the equations proposed by Du 

Noüy in animal models110 and with human ulcers111. Other authors opted to improve 

the published models to get a better fit also at the end of the wound or find a better 

reproducibility among the different etiologies of ulcers. In Equation 11, Wallenstein 

and Harold112 introduced a variation from sigmoid Gompertz’s function with an error 

component to accommodate the variability between patients and a constant value for a 

better fit113. 

T%(+) = C
:8.<=>+(?&

'()* +.-./ 0@A
+ U%(+) 

Equation 11. 

Cukjati and colleagues114 tested three models, a linear model, and an 

exponential decay model, and introduced what they called a delayed exponential model 

(Equation 12). That delayed exponential model was the one that fits better for pressure 

ulcers. In that equation Sd is the wound surface area, S0 is the initial fitted area, T is the 

delay, and is the delayed exponential healing rate.  

(B =	 V
(8; + ≤ Y

(8C(C1(0(6); + > Y 

Equation 12.  

Lately, Cukjati and colleagues86 improved their delayed exponential model by 

integrating the perimeter of a circle in the equation and tested a more complex model 

based on a double exponential decay with four parameters or creating a rational four-

parameters model. Other authors chose models based on other parameters such as the 

linear healing of the wound edge115 or the wound width and length116.  

While more sophisticated and complex mathematical models appeared, their 

increasing number of parameters and complexity implies that a better background in 

mathematics was necessary to apply them and make also necessary the use of 
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mathematical programs to resolve it. That could be the reason why none of those 

models reached widespread acceptance among clinicians. In fact, 200 years later since 

the first model112, the efficacy of treatments is mainly determined as a comparison of 

completely healed wounds versus not completely healed wounds on a chosen day or 

comparing the mean days necessary for the complete healing. Considering that the 

mentioned models demonstrate an effect of the initial wound area (S0) the approaches 

used by clinicians cannot be used to predict the chance of healing or to project the total 

healing time111. On the other hand, only a few attempts of using some of the described 

mathematical models for the prediction of wound evolution have been reported87. 
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Appendix 3. 

Microscopy techniques 

 

 Reflection interference contrast microscopy (RICM) 

This optical microscopy technique was first used in 1961 on oil films and in 

1964 it was applied for the first time to study animal cells. This technique uses reflected 

light to get topological information about the sample. The light is transmitted through 

the objective to a sample containing, e.g., cells attached to a glass surface. Rays 

reflected from the cell basal membrane and those reflected from the glass interfere, 

creating a characteristic pattern of fringes that can be captured for the camera. This 

pattern contains the information needed to determine the distance of the object from the 

glass surface, looking dark gray those cell zones more closely attached to the glass and 

light gray those cell parts with a higher distance from the glass69. This technique is very 

useful to visualize adhesion structures like focal adhesions but also to get a clear image 

of the cell contour in the absence of a phase contrast objective. 

Total internal reflection fluorescence microscopy 

Total internal reflection fluorescence (TIRF) is a microscopy technique used 

with fluorescent samples to selectively excite fluorophores close to the glass-cell 

interface. When the light encounters the interface of two transparent materials with 

different refractive indexes light is partially reflected and partially diffracted. With a 

certain angle of laser beam incident qT at the interphase called critical angle qc, (Figure 
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VI-A) the light is completely reflected in a phenomenon called total internal reflection. 

Under this phenomenon, a portion of the energy from the incident light is converted to 

an electromagnetic field called an evanescence wave with the same wavelength as the 

incident light117. That evanescence wave decays exponentially while increasing the 

penetration depth, exciting only the fluorophores within the 100-200nm region above 

the glass. In fact, that technology reduces the background noise by 2000 folds compared 

with epifluorescence, improves the signal-to-noise ratio, and significantly reduces cell 

exposure to light118. As shown in representative images in Figure VI-B comparing 

epifluorescence illumination (left) versus TIRF (right), yellow arrows mark zones 

where epifluorescence images have blurred parts around the nucleus, where cells are 

higher. In TIRF images the blurring zone disappeared and the protein distribution in 

the basal cell membrane is clearly visible. 
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Figure VI. TIRF microscopy scheme and comparative of epifluorescence and 

TIRF images. 

A) TIRF microscopy scheme sowing the excitation, the reflection angle, and the 

evanescent wave. Adapted from Ref. 119. B) Comparative images of the same field of 
view with epifluorescence illumination (left) and with TIRF (right). The top images 

(green) show dermal fibroblast with integrin a5 immunostained. The bottom images 

(red) show dermal fibroblasts with VEGFR-1 immunostained. Yellow arrows indicate 
blurred zones in higher cell parts due to background fluorescence in epifluorescence. 

Scale bar= 15µm. Own source  
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Single particle tracking 

Single particle tracking (SPT) is a technique for the observation of individual 

molecule dynamics in living cells. Also known as single-molecule tracking (SMT), it 

was developed in the mid-1980s by Brabander and colleagues with the use of gold 

nanoparticles to visualize the surface of a living cell. In 1993, it was used to visualize 

individual fluorescent molecules or organic dyes. The main problem at the beginning 

was that the fast photobleaching of organic dyes restrict the detection to a few 

seconds120. That problem was lately overcome by substituting organic dyes with 

semiconductor nanocrystals known as quantum dots (QDs) that allow the detection of 

fluorophores for long periods (even minutes). With the use of half-antibodies fragments 

(hAb) conjugated with QD (for detailed protocol see Appendix I) we can use biological 

affinity to label a subpopulation of the protein of interest, to capture their dynamics. 

Using TIRF illumination at a high temporal resolution (up to 40 kHz), a time-lapse 

movie is performed with excellent spatial localization precision (1-10 nm)120. To 

capture the localization of each labeled protein, it is necessary to illuminate the sample 

with a laser and to acquire videos with a fast camera. After image acquisition, several 

steps of digital computing processing are necessary to detect each spot, get the centroid 

of each diffraction pattern, and connect the coordinates of the same spot across 

consecutive frames into trajectories68 (Figure VII-A). The resulting trajectories can be 

later analyzed to get different parameters such as their type of motion, mean-squared 

displacement (Figure VII-B), mean diffusion, etc. (See Appendix 2 for detailed 

equations).   
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Figure VII. Schematic representation of the single particle tracking steps and posterior 

trajectory analysis. 

a) Single particles are detected for each frame in a time-lapse movie. The raw images 
are computationally analyzed to get the coordinates of each spot in each frame. Then, 

fluorescence peaks are reduced to their centroid to achieve a subpixel localization. 
Localizations considered from the same fluorophore are connected in successive 

frames to get particle tracks. b) Representation of the single-particle trajectories 
analysis. Left: Examples of two trajectories of free-diffusing (A) and confined (B) 

particles are shown. Right: The corresponding mean-squared displacement vs lag time 

plot for the same particles68. 
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