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1.1. Introduction 
 

We all agree that, over time, the world has become more complex, volatile, 

and uncertain. For instance, the pandemic of coronavirus disease 2019 

(COVID-19) represents this uncertainty very well (Rutter et al., 2020). In the 

early years, there were many questions about what will happen and the 

absolute magnitude of this crisis, especially because there was no reference 

case. Thus, in this context, making correct decisions became more 

complicated and challenging. Moreover, decision-making in times of 

COVID-19 had a significant impact. To give an insight, governments had to 

constantly decide on various issues, such as which population group should 

be first vaccinated, what vaccines to use and with how many doses and 

frequency, order a lockdown on a national level or on a regional one, which 

countries need to be considered as high coronavirus risk zones in order to 

require foreign tourists a negative COVID-19 test or proof of vaccination to 

enter, and how to distribute the subsidies. Also, the firms needed to make 

important decisions such as closing the company, selling online, repurposing 

the production line (to give an example, many businesses took advantage of 

the soaring demand for face masks), implementing homeworking, laying off 

part of the staff, reduce wages, decide to sell stock, and much more. 

Individuals also had to make critical decisions, among others, to move out of 

the city to save money, use private transport to prevent getting COVID-19, 

and avoid meeting friends and family.  

 

Therefore, it can be said that decision-making under uncertainty has taken an 

increasingly important role in today’s society.  

 

Decision-making can be defined as the process of identifying and choosing 

alternatives based on the values and preferences of the decision-maker. The 

origin of the decision-making theory in uncertain environments can be found 

in the publication of the seminal paper “Fuzzy sets. Information and Control” 

made by professor Lotfi Asker Zadeh (1965). This paper introduced the 

concept of fuzzy sets, which may be seen as a generalization of classical/crisp 

sets to deal with vagueness. Since its introduction in back 1965, fuzzy set 

theory has been rapidly developed and successfully applied in various fields 

(Merigó et al., 2015). Twenty-three years later, Ronald Robert Yager (1988) 

published the scientific article “On ordered weighted averaging aggregation 
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operators in multicriteria decisionmaking. IEEE Transactions on Systems, 

Man, and Cybernetics”, in which he presented one of the most popular 

aggregation operators, called the ordered weighted averaging (OWA) 

operator. The OWA operator provides a parametrized family of aggregation 

operators between the maximum and the minimum. This operator has proven 

to be a potent tool for decision-making problems under uncertainty, as they 

allow to consider the attitudinal character of the decision-maker. Since its 

introduction, many contributions have been made (Csiszar, 2021).  

 

The overall goal and motivation of this doctoral thesis is, to contribute to the 

decision-making under uncertainty literature by developing new aggregation 

functions as well as applications in the field of pensions.  

 

Through an extensive review of the literature, it has been found that there 

exist several extensions of the ordered weighted averaging adequacy 

coefficient (OWAAC) operator (Merigó & Gil-Lafuente, 2008, 2010), but 

none of these uses linguistic variables. However, in real-life, we can find 

some situations where the available information can only be assessed with 

linguistic variables. Nor is there an OWAAC operator which incorporates 

interval numbers. Therefore, it is necessary to provide new OWAAC 

operator formulations that use both linguistic and interval information. This 

doctoral thesis aims to fill these two gaps. 

 

One of the current topics that the whole world worries most about is the 

pension crisis caused mainly by demographic changes. For example, 

according to Eurostat (2023), the old-age dependency ratio of Spain has 

increased from 25.2% in 2011 to 30.5% in 2022. Pensions are subject to 

different uncertainties, including economic uncertainties (such as interest 

rates and labor participation) and pension policy uncertainties (like 

increasing the statutory retirement age and changing the contribution rates). 

This is why new algorithms for improving decision-making concerning 

pensions will be investigated in this doctoral thesis, thus providing practical 

solutions to the actual pension crisis. To do so, different mathematical 

methods for dealing with uncertainty will be used, including the OWA 

operator, the Hamming distance (Hamming, 1950), and the linguistic 

variables. 
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This doctoral thesis will offer governments, companies, and citizens 

alternative tools to improve their decision-making in real-life problems when 

a high degree of uncertainty and ambiguity is involved. This is why it is 

believed that the results of this thesis work will be very valuable to the 

development of science as well as society. 
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1.2. Objectives 
 

The main objectives of this doctoral thesis are the following five: 

 

1. Develop the state of the art of OWA aggregation operators through a 

bibliometric analysis. 

2. Review of the mathematical theories used for decision-making in 

uncertain environments. 

3. Analyze new extensions of the OWA operator. 

4. Analyze new applications of the OWA operator and its extensions in 

the field of pensions. 

5. Make scientific contributions through international publications. 

 

First objective. Develop the state of the art of OWA aggregation operators 

through a bibliometric analysis. 

 

In order to demonstrate the novelty of the research results of this doctoral 

thesis, a stat of the art will be carried out in the form of a paper. To do so, a 

bibliometric analysis of the OWA operator will be conducted using the Web 

of Science (WoS), one of the most powerful databases of research 

publications and citations in the world. This method allows to study and 

evaluate scientific publications quantitatively. This bibliometric analysis 

aims to show the 50 most prevailing papers, the 50 most productive authors, 

the 50 most productive institutions (e.g., colleges and universities), the 50 

most frequent countries, the 50 most common journals, the 50 most common 

applications, and some other interesting bibliometric indicators.  

 

Second objective. Review of the mathematical theories used for decision-

making in uncertain environments. 

 

The second objective of this thesis work is to conduct an extensive analysis 

of the different existing decision-making methods in uncertain environments. 

This includes the concepts of decision-making, interval numbers (Moore, 

1966), fuzzy sets, fuzzy numbers (Chang & Zadeh, 1972), fuzzy arithmetic, 

linguistic variables, intuitionistic fuzzy sets (IFS) (Atanassov, 1986), basic 

uncertain information (BUI) (Jin et al., 2018; Mesiar et al., 2018), similarity 

measures, and aggregation operators. Some of the similarity measures that 
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will be discussed are the Hamming distance and the adequacy coefficient 

from Kaufmann and Gil-Aluja (1986, 1987). Concerning the aggregation 

operators, a further review of the OWA operator presented by Yager and its 

most important extensions will be carried out. These extensions are the 

induced OWA (IOWA) operator (Yager & Filev, 1999), the heavy OWA 

(HOWA) operator (Yager, 2002), the generalized OWA (GOWA) operator 

(Yager, 2004), the Quasi-OWA operator (Fodor et al., 1995), the 

probabilistic OWA (POWA) operator (Merigó, 2012), the uncertain OWA 

(UOWA) operator (Xu & Da, 2002), the fuzzy OWA (FOWA) operator, the 

linguistic OWA (LOWA) operator (Bordogna & Pasi, 1995; Herrera et al., 

1995; Herrera & Martínez, 2000; Xu, 2004), the OWA distance (OWAD) 

operator (Merigó & Gil-Lafuente, 2007, 2010), the OWAAC operator, and 

the OWA index of maximum and minimum level (OWAIMAM) operator 

(Merigó & Gil-Lafuente, 2012). 

 

Third objective. Analyze new extensions of the OWA operator.  

 

Another objective of this thesis work is to investigate and create new 

extensions of the OWA operator. As it is well known, the OWA operator has 

many extensions. For example, the IOWA operator, which uses order-

inducing variables; the GOWA operator, which uses generalized means 

(Dyckhoff & Pedrycz, 1984); and many others. A very recent extension of 

the OWA operator is the OWAAC operator, which is based on the use of the 

adequacy coefficient. However, the OWAAC operator considers only precise 

numerical information, which is not always possible. That is why this 

doctoral thesis aims to develop new aggregations operators based on the use 

of linguistic variables and the adequacy coefficient in a single formulation. 

Similarly, this thesis work aspires to discuss the utilization of interval 

numbers in the OWAAC operator. 

 

Fourth objective. Analyze new applications of the OWA operator and its 

extensions in the field of pensions. 

 

The OWA operator has been successfully applied in a wide range of fields 

(Kacprzyk et al., 2019), mainly due to the flexibility that this operator offers. 

E.g., sales forecasting (Merigó et al., 2015), social choice and voting 

(Kacprzyk & Zadrożny, 2009), insurance (Casanovas et al., 2015, 2016), and 
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inflation calculations (Espinoza-Audelo et al., 2020; León-Castro et al., 

2020). Nonetheless, the OWA operator has not yet been applied in the field 

of pensions. Thus, the fourth objective of this doctoral thesis is to study new 

applications of OWA operators in the field of pensions and thereby provide 

solutions to the global pension crisis. For example, the use of the OWA 

operator in a decision-making problem about the selection of supplementary 

pension products in Spain will be studied. 

 

Fifth objective. Make scientific contributions through international 

publications. 

 

The fifth and last objective consists in sharing the research results and 

knowledge obtained during the elaboration of this doctoral thesis and thereby 

contribute to the betterment of society. In order to meet this goal, this 

research aims to write and publish papers in international journals and 

participate in several scientific conferences. Some key journals in the field of 

decision-making under uncertainty are the International Journal of 

Intelligent Systems, the Fuzzy Set and Systems, the Information Sciences, the 

IEEE Transactions on Fuzzy Systems, the Expert Systems with Applications, 

the Knowledge-Based Systems, and the Computers & Industrial Engineering. 

 

  



 8 

1.3. Methodology 
 

The methodological approach used in this doctoral thesis is mainly based on 

the idea of the fuzzy set theory introduced by Zadeh more than 50 years ago, 

the interval numbers, the linguistic variables, the Hamming distance, the 

adequacy coefficient presented by Kaufmann and Gil-Aluja, and the OWA 

operator developed by Yager. Below, a more detailed explanation of these 

methods is given. 

 

Fuzzy set theory 

 

The theory of fuzzy sets (also known as the theory of fuzzy subsets) is very 

useful for dealing with uncertainty, subjectivity, ambiguity, and vagueness. 

Fuzzy sets are seen as an extension of the classical notion of sets (known as 

crisp sets). A crisp set (also called classical set or ordinary set) is a collection 

of well-defined elements (or objects) out of some universal set. To know if 

an element belongs or not to the crisp set, it is used what is named 

“membership value”. Thus, for a crisp set, if an element is present in the crisp 

set, its membership value is equal to 1. Otherwise, if an element does not 

belong to the crisp set, its membership value equals 0. The fuzzy sets are also 

defined by their membership functions, but with the difference that their 

values can take any number between zero and one, thus enabling partial 

memberships. Therefore, crisp sets are employed when there is no 

uncertainty involved; meanwhile fuzzy sets are used when the environment 

is uncertain and a certain degree of flexibility is needed. 

 

Interval numbers 

 

The interval numbers (sometimes referred as confidence intervals), suggested 

by Moore almost six decades ago, is a practical technique for representing 

uncertain information. An interval number can be simply defined as a set of 

real numbers lying between two specific real numbers. Moreover, interval 

numbers can take various forms. 
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Linguistic variables 

 

Zadeh (1975a, 1975b, 1975c) defined a linguistic variable as a variable 

whose values are not numbers but words or phrases in a natural or synthetic 

language. For example, the linguistic variable “speed” can assume different 

linguistic values, such as “very slow”, “slow”, “normal”, “fast”, and “very 

fast”. Sometimes, there are situations where the information cannot be 

assessed precisely in a quantitative way due the presence of uncertainty and 

ambiguity. In such situations, using an approach based on linguistic variables 

for assessing the information may be more convenient. 

 

The Hamming distance 

 

The Hamming distance is a well-known method for calculating the difference 

between two elements, two sets, or two fuzzy sets. It is very useful for those 

situations where the decision-maker wants to calculate the distance between 

the available alternatives and the ideal result. Furthermore, 24 years later, the 

professors and researchers Merigó and Gil-Lafuente analyzed the use of the 

OWA operator in the Hamming distance, thus obtaining the OWAD operator. 

The main characteristic of this operator is that it allows to aggregate 

individual distances according to the attitudinal character of the decision-

maker. Besides the Hamming distance, in the literature, we can find other 

practical distance measures, such as the Euclidean distance, the Hausdorff 

distance (Huttenlocher et al., 1993), the Minkowski distance, and many 

others. 

 

The adequacy coefficient 

 

Similar to the Hamming distance, the adequacy coefficient is an index used 

for calculating the differences between two elements, two sets, or two fuzzy 

sets. The main characteristic of this coefficient is that it allows to neutralize 

the result when the comparison shows that the real element is higher than the 

ideal one. Furthermore, Merigó and Gil-Lafuente developed the OWAAC 

operator, which uses the adequacy coefficient and the OWA operator in the 

same formulation. 
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The OWA operator 

 

The OWA operator is an increasingly popular method (Blanco-Mesa et al., 

2019; Emrouznejad & Marra, 2014; He et al., 2017) used for information 

aggregation with the aim of obtaining a representative value. It provides a 

parameterized class of mean type aggregation operators that lies between the 

minimum and the maximum. The main advantage of this operator is the 

possibility to aggregate the information according to the attitudinal character 

of the decision-maker. Thus, it provides excellent flexibility to the decision-

maker, which is not possible when using other traditional methods. An 

interesting characteristic of this type of operator is that it includes the 

classical methods for decision-making into a single formulation. Some of 

these classical methods are the optimistic criterion, the pessimistic criterion, 

the Laplace criterion, and the Hurwicz criterion. Since its introduction, many 

authors have developed a wide range of extensions of this operator. Some of 

them are the IOWA operator, the Heavy OWA operator, the GOWA operator, 

the Quasi-OWA operator, the POWA operator, the UOWA operator, the 

FOWA operator, the LOWA operator, the OWAD operator, the OWAAC 

operator, and the OWAIMAM operator. 

  

  



 11 

1.4. Structure and content 
 

This doctoral thesis is divided into five chapters that treat in a complementary 

way the subject of study.  

 

The first chapter of this doctoral thesis starts with a general background 

introduction. Then, the objectives of the research project are exposed. Also, 

the methodology followed is briefly explained. This chapter ends with a 

detailed description of the structure of the doctoral thesis. 

 

The second chapter corresponds to the literature review and is divided into 

four parts. The first part contains the state of the art of the OWA operator, 

based on a bibliometric analysis which will be conducted using the WoS 

database. The second part studies some of the most important notions and 

mathematical tools regarding decision-making under uncertainty. This 

includes the concepts of decision-making, interval numbers, fuzzy sets, BUI, 

distance measures, and aggregation operators. The third part describes the 

OWA operator from Yager and its most important extensions and 

applications in detail. The fourth and last part of this chapter offers a general 

survey of pensions. 

 

The third chapter is the most important of this doctoral thesis as it provides 

the main contributions made to the field of decision-making under 

uncertainty. Specifically, it comprises all the published papers as well as the 

publishable ones at the time of presentation of this doctoral thesis. 

 

The fourth chapter summarizes the main conclusions of this doctoral thesis 

and discloses future research paths. 

 

The fifth chapter is the last of this doctoral thesis and contains the annexes. 

This chapter provides additional research. 
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Fig. 1.1 provides an overview of the structure of this doctoral thesis. 

 

 

Fig. 1.1. Thesis structure 

Source: Own elaboration 
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2.1. A bibliometric analysis of the OWA operator from 

1988 to 2021 
 

The following research paper was submitted to the Q1 journal Fuzzy Sets and 

Systems. For the year 2021, the Impact Factor is 4.462 and the CiteScore 7.1. 

 

The authors of this paper are Anton Figuerola Wischke (University of 

Barcelona), José María Merigó Lindahl (University of Technology Sydney), 

Anna Maria Gil Lafuente (University of Barcelona), and Sefa Boria Reverter 

(University of Barcelona). 

 

Abstract 

 

The ordered weighted averaging (OWA) operator was proposed by Yager 

back in 1988 and it constitutes a parameterized family of aggregation 

functions between the minimum and the maximum. The purpose of this paper 

is to perform a bibliometric analysis of this aggregation operator during the 

last 34 years through the Web of Science (WoS) Core Collection database 

and the Visualization of Similarities (VOS) viewer software. The results 

allow the assertion that the OWA operator is an increasingly popular 

aggregation operator. The results also show that Yager, as expected, is still 

the most influential and productive author. Other interesting findings are 

presented in order to provide a comprehensive and up-to-date analysis of the 

OWA operator literature. 

 

Keywords: Aggregation operator, bibliometric analysis, OWA operator, VOS 

viewer, Web of Science. 

 

1. Introduction 

 

Aggregation can be described as the process of combining multiple values 

into a single representative one, and an aggregation operator conducts this 

operation (Grabisch et al., 2009). The ordered weighted averaging (OWA) 

operator was presented by Yager (1988) and provides a parametrized class of 

aggregation operators, ranging from the minimum to the maximum. Since its 
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appearance, this operator has been applied to various problems (Kacprzyk et 

al., 2019). 

 

Likewise, the OWA has also been widely extended. Some well-known 

extensions are the induced OWA (IOWA) operator (Yager & Filev, 1999), 

the generalized OWA (GOWA) operator (Yager, 2004a), the quasi OWA 

(QOWA) operator (Fodor et al., 1995), the probabilistic OWA (POWA) 

operator (Merigó, 2012), the uncertain OWA (UOWA) operator (Xu & Da, 

2002b), the linguistic OWA (LOWA) operator (Herrera et al., 1995; Xu, 

2004a), and the OWA distance (OWAD) operator (Merigó & Gil-Lafuente, 

2010). 

 

The main objective of this paper is to provide an up-to-date state of the art of 

the OWA operator knowledge domain and to identify research trends. In 

order to achieve this, a bibliometric analysis of the OWA operator between 

the years 1988 and 2021 is developed, using the Web of Science (WoS) Core 

Collection database in conjunction with the Visualization of Similarities 

(VOS) viewer software. 

 

This paper is structured as follows. Section 2 reviews the followed 

methodology and data collection. Section 3 presents the obtained results. 

Primarily, the publication and citation structure, the major 

authors/institutions/countries/journals/research areas (both from a static and 

dynamic perspective), and the co-citation and co-occurrence networks. 

Finally, Section 4 summarizes the main conclusions and limitations. 

 

2. Methodology and data 

 

Bibliometric analysis is becoming more commonplace as it allows to analyze 

quantitatively large amounts of bibliographic information (Donthu et al., 

2021). Accordingly, bibliometric studies have been carried out in a large 

variety of fields, including economics (Bonilla et al., 2015; Wang et al., 

2022), blockchain (Guo et al., 2021), marketing (Kim et al., 2021), and 

tourism (Khanra et al., 2021). Also, in (He et al., 2017) the authors conducted 

an interesting bibliometric analysis of the OWA operator for the period of 

1988-2015, and in (Emrouznejad & Marra, 2014) during the years 1988-
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2014. Similarly, in (Blanco-Mesa et al., 2019) the researchers prepared a 

survey of aggregation operators as a whole. 

 

When conducting a bibliometric analysis, it is critical to choose the right 

bibliometric indicators (Joshi, 2014). This study considers different types of 

indicators, which are the number of documents published, the number of 

citations, and the h index, among others. The number of published documents 

and citations are used to evaluate the productivity and influence, respectively, 

while the h index unifies these two. The h index was proposed by Hirsch 

(2005) and can be interpreted as the number of documents that have h or more 

citations. 

 

Currently, there are several databases for conducting a bibliometric analysis, 

such as Scopus, PubMed, Web of Science (WoS), and Google Scholar. This 

study uses the WoS Core Collection to collect all the scientific data. As of 

the date of this study, the WoS is owned by the company Clarivate Analytics.  

 

The retrieval strategy was carried out as follows. The search topics were 

“OWA” and “ordered weighted averag*”. The asterisk (*) is used in order to 

represent any group of characters, including no character. For example, 

searching for “ordered weighted averag*” will find “ordered weighted 

averaging”, “ordered weighted average”, and more. The time range applied 

was 1988-2021. This search was conducted in October 2022 and a total of 

3,060 publications were found. However, this number reduces to 2,307 

publications, as only articles (2,289), review articles (14), letters (2), and 

notes (2) were considered. 

 

Additionally, the software VOS viewer was employed to provide a more 

comprehensive view of the bibliographic networks. Specifically, maps were 

drawn up in terms of co-citation and co-occurrence. Co-citation can be 

described as the frequency with which two documents are cited in 

conjunction (Small, 1973). With regard to the co-occurrence, the number of 

co-occurrences of two keywords is the number of documents in which both 

keywords appear jointly (Van Eck & Waltman, 2014). Furthermore, by using 

the VOS viewer, it is possible to detect the most cited 

references/authors/journals and the most frequent keywords within OWA 



 21 

publications. Lastly, indicate that in some cases, the VOS viewer thesaurus 

file was operated to perform data cleaning. 

 

3. Results 

 

Publication and citation structure 

 

The annual evolution of the number of documents published in OWA is 

exhibited in Fig. 2.1 The graph line shows a clear growing trend. 

Additionally, it can be seen that most of the documents have been published 

during the last decade. Also, a total of 221 documents published in OWA 

were reached during the peak year of 2019. While in the last year analyzed, 

i.e., 2021, 206 documents were recorded.  

 

 

 

Fig. 2.1. Evolution of the annual number of documents published in OWA 

Source: Own elaboration 

 

Another interesting issue is the citation structure in OWA within the WoS 

Core Collection, which is shown in Table 2.1. There is only one document 

that exceeds the 4,000 citations. Specifically, it is the letter “On ordered 

weighted averaging aggregation operators in multicriteria decisionmaking”, 

written by Yager in 1988 (Yager, 1988). Likewise, there are three documents 

with between 1,000 and 4,000 citations. Although most of the documents 

have between 0 and 25 citations, equivalent to almost 67% of the total. 
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Table 2.1. Citation structure in OWA 

 

TC TP % TP   TC TP % TP 

[4,000, +∞) 1 0.04%  ≥ 4,000 1 0.04% 

[1,000, 4,000) 3 0.13%  ≥ 1,000 4 0.17% 

[500, 1,000) 11 0.48%  ≥ 500 15 0.65% 

[400, 500) 11 0.48%  ≥ 400 26 1.13% 

[300, 400) 10 0.43%  ≥ 300 36 1.56% 

[200, 300) 37 1.65%  ≥ 200 73 3.21% 

[100, 200) 117 5.07%  ≥ 100 190 8.28% 

[50, 100) 242 10.49%  ≥ 50 432 18.76% 

[25, 50) 336 14.56%  ≥ 25 768 33.32% 

[0, 25) 1,539 66.68%   ≥ 0 2,307 100% 

Source: Own elaboration through WoS. Abbreviations: TC = Total citations; TP = Total 

publications; % TP = Percentage of total publications. 

 

The fifty most cited documents ranged from 242 to 4,902 citations, which 

can be seen in Table 2.2. This equates to an average of 555 cites per document 

and a median of 405. The most cited document is the already mentioned “On 

ordered weighted averaging aggregation operators in multicriteria 

decisionmaking” from Yager (1988) and published in the IEEE Transactions 

on Systems, Man, and Cybernetics journal in 1988. Specifically, it has been 

cited 4,902 times until October 2022, which is 3,178 times more than the 

second most cited document. Considering that this publication introduces the 

OWA operator for the first time, it is not surprising that it is the most cited 

document. 

 

The second most influential publication comprising the OWA topic was 

written by Xu (2007) and which is entitled “Intuitionistic fuzzy aggregation 

operators”. In this document, the author developed different types of 

aggregation operators for aggregating intuitionistic fuzzy information. One 

of them is the intuitionistic fuzzy OWA (IFOWA) operator, which extends 

the OWA operator by using intuitionistic fuzzy values. 

 

In the third position appears the document “Linguistic decision analysis: 

Steps for solving decision problems under linguistic information”, prepared 

by the authors Herrera and Herrera-Viedma (2000b). This document 

describes the steps to follow for addressing a multi-criteria decision-making 
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(MCDM) problem with linguistic information, including the analysis of the 

LOWA operator. 

 

Table 2.2. Top 50 most cited documents in OWA 

 
R Article Author Journal TC PY 

1 

On ordered weighted averaging 

aggregation operators in 

multicriteria decisionmaking 

(Yager, 1988) 

Yager, RR 

IEEE Transactions on 

Systems, Man, and 

Cybernetics 

4,902 1988 

2 
Intuitionistic fuzzy aggregation 

operators (Xu, 2007) 
Xu, ZS  

IEEE Transactions on 

Fuzzy Systems 
1,724 2007 

3 

Linguistic decision analysis: 

Steps for solving decision 

problems under linguistic 

information (Herrera & 

Herrera-Viedma, 2000b) 

Herrera, F; Herrera-

Viedma, E  

Fuzzy Sets and 

Systems 
1,175 2000 

4 

Hesitant fuzzy information 

aggregation in decision making 

(Xia & Xu, 2011) 

Xia, MM; Xu, ZS  

International Journal 

of Approximate 

Reasoning 

1,118 2011 

5 
Families of OWA operators 

(Yager, 1993) 
Yager, RR 

Fuzzy Sets and 

Systems 
905 1993 

6 

Quantifier guided aggregation 

using OWA operators (Yager, 

1998) 

Yager, RR 
International Journal 

of Intelligent Systems 
836 1996 

7 

Induced ordered weighted 

averaging operators (Yager & 

Filev, 1999) 

Yager, RR; Filev, 

DP 

IEEE Transactions on 

Systems, Man, and 

Cybernetics, Part B 

(Cybernetics) 

767 1999 

8 

A model based on linguistic 2-

tuples for dealing with 

multigranular hierarchical 

linguistic contexts in multi-

expert decision-making 

(Herrera & Martinez, 2001) 

Herrera, F; 

Martínez, L 

IEEE Transactions on 

Systems, Man, and 

Cybernetics, Part B 

(Cybernetics) 

694 2001 

9 

An overview of operators for 

aggregating information (Xu & 

Da, 2003) 

Xu, ZS; Da, QL  
International Journal 

of Intelligent Systems 
635 2003 

10 

Uncertain linguistic aggregation 

operators based approach to 

multiple attribute group 

decision making under 

uncertain linguistic 

environment (Xu, 2004b) 

Xu, ZS Information Sciences 629 2004 

11 

A fusion approach for 

managing multi-granularity 

linguistic term sets in decision 

making (Herrera et al., 2000) 

Herrera, F; Herrera-

Viedma, E; 

Martínez, L 

Fuzzy Sets and 

Systems 
613 2000 

12 

Integrating three representation 

models in fuzzy multipurpose 

decision making based on fuzzy 

preference relations (Chiclana 

et al., 1998) 

Chiclana, F; 

Herrera, F; Herrera-

Viedma, E 

Fuzzy Sets and 

Systems 
596 1998 

13 

An overview of methods for 

determining OWA weights (Xu, 

2005) 

Xu, ZS 
International Journal 

of Intelligent Systems 
566 2005 
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R Article Author Journal TC PY 

14 

A consensus model for 

multiperson decision making 

with different preference 

structures (Herrera-Viedma et 

al., 2002) 

Herrera-Viedma, E; 

Herrera, F; 

Chiclana, F 

IEEE Transactions on 

Systems, Man, and 

Cybernetics, Part A 

(Systems and 

Humans) 

533 2002 

15 

Some induced geometric 

aggregation operators with 

intuitionistic fuzzy information 

and their application to group 

decision making (Wei, 2010) 

Wei, GW 
Applied Soft 

Computing 
503 2010 

16 

A consensus model for group 

decision making with 

incomplete fuzzy preference 

relations (Herrera-Viedma, 

Alonso, et al., 2007) 

Herrera-Viedma, E; 

Alonso, S; 

Chiclana, F; 

Herrera, F 

IEEE Transactions on 

Fuzzy Systems 
497 2007 

17 
The weighted OWA operator 

(Torra, 1997) 
Torra, V 

International Journal 

of Intelligent Systems 
470 1997 

18 

A sequential selection process 

in group decision making with a 

linguistic assessment approach 

(Herrera et al., 1995) 

Herrera, F; Herrera-

Viedma, E; 

Verdegay, JL 

Information Sciences 468 1995 

19 
The power average operator 

(Yager, 2001) 
Yager, RR 

IEEE Transactions on 

Systems, Man, and 

Cybernetics, Part A 

(Systems and 

Humans) 

464 2001 

20 

Dynamic intuitionistic fuzzy 

multi-attribute decision making 

(Xu & Yager, 2008) 

Xu, ZS; Yager, RR 

International Journal 

of Approximate 

Reasoning 

455 2008 

21 

Group decision-making model 

with incomplete fuzzy 

preference relations based on 

additive consistency (Herrera-

Viedma, Chiclana, et al., 2007) 

Herrera-Viedma, E; 

Chiclana, F; 

Herrera, F; Alonso, 

S 

IEEE Transactions on 

Systems, Man, and 

Cybernetics, Part B 

(Cybernetics) 

454 2007 

22 

Application of fuzzy measures 

in multi-criteria evaluation in 

GIS (Jiang & Eastman, 2000) 

Jiang, H; Eastman, 

JR 

International Journal 

of Geographical 

Information Science 

433 2000 

23 
The uncertain OWA operator 

(Xu & Da, 2002b) 
Xu, ZS; Da, QL 

International Journal 

of Intelligent Systems 
424 2002 

24 

A new generalized Pythagorean 

fuzzy information aggregation 

using Einstein operations and 

its application to decision 

making (Garg, 2016) 

Garg, H 
International Journal 

of Intelligent Systems 
419 2016 

25 

On the issue of obtaining OWA 

operator weights (Filev & 

Yager, 1998) 

Filev, DP; Yager, 

RR 

Fuzzy Sets and 

Systems 
409 1998 

26 

A linguistic modeling of 

consensus in group decision 

making based on OWA 

operators (Bordogna et al., 

1997) 

Bordogna, G; 

Fedrizzi, M; Pasi, G 

IEEE Transactions on 

Systems, Man, and 

Cybernetics, Part A 

(Systems and 

Humans) 

405 1997 

27 

Generalized aggregation 

operators for intuitionistic fuzzy 

sets (Zhao et al., 2010) 

Zhao, H; Xu, ZS; 

Ni, MF; Liu, SS 

International Journal 

of Intelligent Systems 
389 2010 

28 

Induced uncertain linguistic 

OWA operators applied to 

group decision making (Xu, 

2006) 

Xu, ZS Information Fusion 368 2006 
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R Article Author Journal TC PY 

29 

The induced generalized OWA 

operator (Merigó & Gil-

Lafuente, 2009) 

Merigó, JM; Gil-

Lafuente, AM 
Information Sciences 361 2009 

30 

Consistency and consensus 

measures for linguistic 

preference relations based on 

distribution assessments (Zhang 

et al., 2014) 

Zhang, GQ; Dong, 

YC; Xu, YF 
Information Fusion 334 2014 

31 

An approach for combining 

linguistic and numerical 

information based on the 2-

tuple fuzzy linguistic 

representation model in 

decision-making (Herrera & 

Martínez, 2000) 

Herrera, F; 

Martínez, L 

International Journal 

of Uncertainty 

Fuzziness and 

Knowledge-Based 

Systems 

329 2000 

32 
Induced aggregation operators 

(Yager, 2003) 
Yager, RR 

Fuzzy Sets and 

Systems 
307 2003 

32 

Direct approach processes in 

group decision making using 

linguistic OWA operators 

(Herrera et al., 1996) 

Herrera, F; Herrera-

Viedma, E; 

Verdegay, JL 

Fuzzy Sets and 

Systems 
307 1996 

34 

OWA aggregation over a 

continuous interval argument 

with applications to decision 

making (Yager, 2004b) 

Yager, RR 

IEEE Transactions on 

Systems, Man, and 

Cybernetics, Part B 

(Cybernetics) 

306 2004 

35 

Ordered weighted averaging 

with fuzzy quantifiers: GIS-

based multicriteria evaluation 

for land-use suitability analysis 

(Malczewski, 2006) 

Malczewski, J 

International Journal 

of Applied Earth 

Observation and 

Geoinformation 

302 2006 

36 

Intuitionistic fuzzy Choquet 

integral operator for multi-

criteria decision making (Tan & 

Chen, 2010) 

Tan, CQ; Chen, XH 
Expert Systems with 

Applications 
300 2010 

37 

Some induced ordered weighted 

averaging operators and their 

use for solving group decision-

making problems based on 

fuzzy preference relations 

(Chiclana et al., 2007) 

Chiclana, F; 

Herrera-Viedma, E; 

Herrera, F; Alonso, 

S 

European Journal of 

Operational Research 
284 2007 

38 

A fuzzy envelope for hesitant 

fuzzy linguistic term set and its 

application to multicriteria 

decision making (H. B. Liu & 

Rodríguez, 2014) 

Liu, HB; Rodríguez, 

RM 
Information Sciences 279 2014 

38 

Some Hamacher aggregation 

operators based on the interval-

valued intuitionistic fuzzy 

numbers and their application to 

group decision making (P. D. 

Liu, 2014) 

Liu, PD 
IEEE Transactions on 

Fuzzy Systems 
279 2014 

40 

An adaptive consensus support 

model for group decision-

making problems in a 

multigranular fuzzy linguistic 

context (Mata et al., 2009) 

Mata, F; Martínez, 

L; Herrera-Viedma, 

E 

IEEE Transactions on 

Fuzzy Systems 
278 2009 

41 

An analytic approach for 

obtaining maximal entropy 

OWA operator weights (Fuller 

& Majlender, 2001) 

Fuller, R; 

Majlender, P 

Fuzzy Sets and 

Systems 
274 2001 
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R Article Author Journal TC PY 

42 

Integrating multi-criteria 

evaluation techniques with 

geographic information systems 

for landfill site selection: A case 

study using ordered weighted 

average (Gorsevski et al., 2012) 

Gorsevski, PV; 

Donevska, KR; 

Mitrovski, CD; 

Frizado, JP 

Waste Management 268 2012 

43 

Choice functions and 

mechanisms for linguistic 

preference relations (Herrera & 

Herrera-Viedma, 2000a) 

Herrera, F; Herrera-

Viedma, E 

European Journal of 

Operational Research 
261 2000 

44 

Power-geometric operators and 

their use in group decision 

making (Xu & Yager, 2010) 

Xu, ZS; Yager, RR 
IEEE Transactions on 

Fuzzy Systems 
256 2010 

45 

An overview of distance and 

similarity measures of 

intuitionistic fuzzy sets (Xu & 

Chen, 2008) 

Xu, ZS; Chen, J 

International Journal 

of Uncertainty 

Fuzziness and 

Knowledge-Based 

Systems 

255 2008 

45 

The ordered weighted 

geometric averaging operators 

(Xu & Da, 2002a) 

Xu, ZS; Da, QL 
International Journal 

of Intelligent Systems 
255 2002 

47 

EOWA and EOWG operators 

for aggregating linguistic labels 

based on linguistic preference 

relations (Xu, 2004a) 

Xu, ZS 

International Journal 

of Uncertainty 

Fuzziness and 

Knowledge-Based 

Systems 

247 2004 

48 

On generalized Bonferroni 

mean operators for multi-

criteria aggregation (Yager, 

2009) 

Yager, RR 

International Journal 

of Approximate 

Reasoning 

243 2009 

49 

Pythagorean fuzzy power 

aggregation operators in 

multiple attribute decision 

making (Wei & Lu, 2018) 

Wei, GW; Lu, M 
International Journal 

of Intelligent Systems 
242 2018 

49 

Analyzing consensus 

approaches in fuzzy group 

decision making: Advantages 

and drawbacks (Cabrerizo et al., 

2010) 

Cabrerizo, FJ; 

Moreno, JM; Pérez, 

IJ; Herrera-Viedma, 

E 

Soft Computing 242 2010 

49 
An approach to ordinal decision 

making (Yager, 1995) 
Yager, RR 

International Journal 

of Approximate 

Reasoning 

242 1995 

Source: Own elaboration through WoS. Abbreviations are available in Table 2.1 except 

for: R = Ranking; PY = Publication year. 

 

Leading authors in OWA 

 

Since Yager introduced the OWA operator, many authors and himself have 

made several significant contributions. Table 2.3 lists the top 50 authors with 

the most publications in OWA for the last 34 years. We can see that Yager 

followed by Merigó are by large the authors with the highest amount of 

published documents. Specifically, they contributed with 133 and 122 

publications, respectively. Additionally, they have the highest h index in the 



 27 

ranking too. It is also noteworthy the average cites per publication achieved 

by Herrera, with a value of 316.35. 

 

Table 2.3. Top 50 most productive authors in OWA 

 
R Author TP % TP TC Avg h ≥ 500 ≥ 100 ≥ 50 

1 Yager, RR 133 5.77% 14,002 105.28 45 4 22 40 

2 Merigó, JM 122 5.29% 5,111 41.89 39 0 14 33 

3 Xu, ZS 58 2.51% 10,080 173.79 37 5 25 31 

3 Mesiar, R 58 2.51% 986 17.00 18 0 1 5 

5 Zeng, SZ 45 1.95% 1,480 32.89 20 0 2 8 

6 Chen, HY 44 1.91% 1,541 35.02 24 0 3 9 

7 Liu, XW 40 1.73% 1,457 36.43 20 0 3 11 

8 Jin, LS 39 1.69% 400 10.26 11 0 0 0 

9 Herrera-Viedma, E 36 1.56% 7,877 218.81 30 4 22 29 

9 Wei, GW 36 1.56% 3,714 103.17 29 1 16 27 

11 Abdullah, S 34 1.47% 586 17.24 12 0 0 4 

11 Bustince, H 34 1.47% 990 29.12 14 0 2 8 

13 Liu, PD 32 1.39% 1,663 51.97 19 0 5 11 

14 Gil-Lafuente, AM 30 1.30% 1,499 49.97 17 0 4 8 

15 Chiclana, F 29 1.26% 4,122 142.14 22 2 12 20 

16 León-Castro, E 25 1.08% 296 11.84 9 0 0 0 

17 Herrera, F 23 1.00% 7,276 316.35 20 5 17 20 

18 Garg, H 22 0.95% 1,821 82.77 18 0 5 14 

19 Ibrahim, RW 20 0.87% 207 10.35 8 0 0 0 

19 Wang, JQ 20 0.87% 911 45.55 15 0 2 7 

21 Beliakov, G 19 0.82% 1,019 53.63 12 0 3 10 

21 Casanovas, M 19 0.82% 1,406 74.00 14 0 7 10 

21 Chen, XH 19 0.82% 1,264 66.53 14 0 4 9 

24 Akram, M 18 0.78% 473 26.28 13 0 0 2 

24 Dong, YC 18 0.78% 2,280 126.67 16 0 12 12 

24 Liu, JP 18 0.78% 491 27.28 13 0 1 2 

24 Ahn, BS 18 0.78% 436 24.22 13 0 0 2 

24 Martínez, L 18 0.78% 3,018 167.67 15 2 8 11 

29 Paternain, D 17 0.74% 181 10.65 6 0 0 2 

29 Calvo, T 17 0.74% 551 32.41 10 0 2 5 

31 Xu, YJ 16 0.69% 610 38.13 12 0 2 3 

31 Llamazares, B 16 0.69% 252 15.75 9 0 0 1 

31 Amin, GR 16 0.69% 361 22.56 11 0 0 3 

34 Zarghami, M 14 0.61% 296 21.14 10 0 0 2 

34 Blanco-Mesa, F 14 0.61% 223 15.93 8 0 0 1 

34 Alajlan, N 14 0.61% 258 18.43 10 0 0 1 

34 Aouf, MK 14 0.61% 82 5.86 6 0 0 0 

34 Torra, V 14 0.61% 846 60.43 10 0 2 3 

39 Su, WH 13 0.56% 475 36.54 10 0 1 2 

39 Chang, KH 13 0.56% 522 40.15 9 0 2 5 

39 Wan, SP 13 0.56% 569 43.77 11 0 2 4 

39 Cheng, CH 13 0.56% 390 30.00 9 0 1 3 

43 Xian, SD 12 0.52% 227 18.92 9 0 0 0 

43 Rahman, K 12 0.52% 168 14.00 8 0 0 0 

43 Wu, J 12 0.52% 718 59.83 11 0 3 6 

43 Bordogna, G 12 0.52% 564 47.00 6 0 1 1 

47 Li, WW 11 0.48% 46 4.18 4 0 0 0 
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R Author TP % TP TC Avg h ≥ 500 ≥ 100 ≥ 50 

47 Moshiri, B 11 0.48% 178 16.18 5 0 0 0 

47 Kacprzyk, J 11 0.48% 407 37.00 8 0 1 3 

47 Sadiq, R 11 0.48% 416 37.82 9 0 0 4 

47 Yi, PT 11 0.48% 53 4.82 4 0 0 0 

47 Aggarwal, M 11 0.48% 159 14.45 9 0 0 0 

47 Pei, Z 11 0.48% 317 28.82 8 0 1 2 

47 James, S 11 0.48% 385 35.00 7 0 1 4 

47 Hong, DH 11 0.48% 46 4.18 5 0 0 0 

47 Zhang, HY 11 0.48% 732 66.55 10 0 2 7 

47 Emrouznejad, A 11 0.48% 366 33.27 8 0 1 3 

Source: Own elaboration through WoS. Abbreviations are available in Tables 2.1 and 2.2 

except for: Avg = Average cites per publication; h = h index; ≥ 500, ≥ 100, ≥ 50 = Number 

of publications with equal or more than 500, 100, and 50 citations. 

 

Leading institutions in OWA 

 

Next, Table 2.4 lists the most productive institutions in OWA. Note that the 

institutions represent the affiliation of the author at the time of publication. 

Among the top 50 most productive institutions, 19 of them are from China 

and 7 from Spain. Despite this, Iona College from United States of America, 

occupies the first position in the ranking with 137 publications. This is 

explained by the fact that Yager was, and still is, professor at the Iona 

College. 

 

Table 2.4. Top 50 most productive institutions in OWA 

 
R Institution TP % TP TC Avg h ≥ 500 ≥ 100 ≥ 50 

1 Iona College 137 5.94% 14,328 104.58 46 4 23 41 

2 University of Barcelona 79 3.42% 4,146 52.48 33 0 13 28 

3 
Southeast University 

China 
73 3.16% 7,257 99.41 34 4 16 30 

4 
Slovak University of 

Technology Bratislava 
65 2.82% 1,300 20.00 20 0 3 7 

5 University of Granada 63 2.73% 9,839 156.17 38 5 28 37 

6 University of Chile 58 2.51% 1,147 19.78 20 0 1 6 

7 University of Tehran 46 1.99% 938 20.39 20 0 0 4 

8 Anhui University 45 1.95% 1,556 34.58 24 0 3 9 

9 
Nanjing Normal 

University 
43 1.86% 469 10.91 12 0 0 0 

10 
Public University of 

Navarre 
42 1.82% 1,054 25.10 15 0 2 8 

11 
Central South 

University 
37 1.60% 1,719 46.46 21 0 4 11 

11 
Abdul Wali Khan 

University Mardan 
37 1.60% 599 16.19 12 0 0 4 

11 
Shandong University of 

Finance Economics 
37 1.60% 1,758 47.51 20 0 5 11 

11 Sichuan University 37 1.60% 2,181 58.95 20 0 9 12 

15 Deakin University 30 1.30% 1,325 44.17 14 0 5 12 
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R Institution TP % TP TC Avg h ≥ 500 ≥ 100 ≥ 50 

15 
University of 

Manchester 
30 1.30% 1,100 36.67 17 0 2 7 

15 
Zhejiang Wanli 

University 
30 1.30% 791 26.37 16 0 1 3 

18 De Montfort University 28 1.21% 2,928 104.57 21 0 10 17 

18 
University of 

Technology Sydney 
28 1.21% 276 9.86 9 0 0 0 

20 Islamic Azad University 27 1.17% 621 23.00 13 0 1 5 

21 
Palacky University 

Olomouc 
26 1.13% 155 5.96 6 0 0 0 

21 
Sichuan Normal 

University 
26 1.13% 1,802 69.31 18 0 7 12 

21 
Zhejiang University of 

Finance Economics 
26 1.13% 645 24.81 16 0 0 4 

24 
Northeastern University 

China 
25 1.08% 358 14.32 9 0 0 2 

24 University of Jaen 25 1.08% 3,539 141.56 19 2 9 15 

24 University of Valladolid 25 1.08% 411 16.44 12 0 0 1 

27 
Thapar Institute of 

Engineering Technology 
24 1.04% 1,902 79.25 19 0 5 15 

27 University of Tabriz 24 1.04% 833 34.71 13 0 2 5 

29 
King Abdulaziz 

University 
23 1.00% 1,429 62.13 14 0 8 10 

29 King Saud University 23 1.00% 447 19.43 12 0 1 2 

29 Ningbo University 23 1.00% 791 34.39 14 0 1 5 

32 Ghent University 22 0.95% 632 28.73 10 0 1 5 

32 Hohai University 22 0.95% 923 41.95 13 0 4 5 

32 
Polish Academy of 

Sciences 
22 0.95% 556 25.27 10 0 1 4 

35 
National Centre for 

Scientific Research 
21 0.91% 267 12.71 9 0 0 0 

35 
Chinese Academy of 

Sciences 
21 0.91% 356 16.95 11 0 0 2 

35 
Chongqing University 

of Arts and Sciences 
21 0.91% 2,075 98.81 18 1 9 15 

35 
Egyptian Knowledge 

Bank 
21 0.91% 151 7.19 7 0 0 0 

35 University of Ostrava 21 0.91% 449 21.38 12 0 0 2 

35 University of Trento 21 0.91% 771 36.71 12 0 1 3 

41 
Army Engineering 

University of Pla 
20 0.87% 1,190 59.50 13 0 4 4 

41 Hazara University 20 0.87% 281 14.05 9 0 0 2 

41 
Udice French Research 

Universities 
20 0.87% 404 20.20 9 0 0 3 

41 University of Punjab 20 0.87% 494 24.70 14 0 0 2 

45 
Beijing Institute of 

Technology 
19 0.82% 341 17.95 11 0 0 1 

45 
North China Electric 

Power University 
19 0.82% 261 13.74 8 0 0 0 

45 University of Malaya 19 0.82% 199 10.47 8 0 0 0 

45 
Zhejiang Gongshang 

University 
19 0.82% 542 28.53 11 0 1 2 

49 Fuzhou University 18 0.78% 1,011 56.17 15 0 3 8 

49 University of Alcala 18 0.78% 481 26.72 8 0 2 5 

49 
Polytechnic University 

of Valencia 
18 0.78% 384 21.33 12 0 0 3 

Source: Own elaboration through WoS. Abbreviations are available in Tables 2.1, 2.2, and 

2.3. 
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Leading countries in OWA 

 

In Table 2.5, the most productive countries in OWA are highlighted. 

Nowadays, China is the leading contributor to the development of OWA 

research. In concrete terms, China has the largest number of publications, 

citations, and h index. However, the average cites per publication is lower 

compared to other countries, occupying the sixth place. The second country 

with the widest number of publications as well as citations is Spain, with a 

record of 341 and 18,621, respectively. The United States of America, which 

has a total of 268 publications, ranks third. 

 

Table 2.5. Top 50 most productive countries in OWA 

 
R Country TP % TP TC Avg h ≥ 500 ≥ 100 ≥ 50 

1 China 884 38.32% 37,101 41.97 97 6 91 193 

2 Spain 341 14.78% 18,621 54.61 67 5 48 88 

3 
United States 

of America 
268 11.62% 18,089 67.50 55 4 30 62 

4 Iran 149 6.46% 3,058 20.52 31 0 3 18 

5 India 111 4.81% 3,095 27.88 26 0 6 18 

5 Pakistan 111 4.81% 2,249 20.26 27 0 4 12 

7 England 93 4.03% 5,178 55.68 37 0 16 34 

8 Italy 91 3.94% 2,403 26.41 23 0 4 12 

9 Australia 76 3.29% 2,237 29.43 24 0 7 16 

10 Slovakia 73 3.16% 1,394 19.10 21 0 3 7 

11 Canada 72 3.12% 2,274 31.58 24 0 3 16 

12 Saudi Arabia 71 3.08% 2,105 29.65 21 0 9 12 

13 Chile 70 3.03% 1,204 17.20 20 0 1 6 

14 Taiwan 69 2.99% 2,330 33.77 28 0 6 15 

15 Poland 61 2.64% 1,469 24.08 21 0 3 8 

16 
Czech 

Republic 
57 2.47% 1,124 19.72 18 0 2 7 

17 Turkey 50 2.17% 1,198 23.96 15 0 4 8 

18 France 48 2.08% 1,156 24.08 19 0 1 8 

19 South Korea 45 1.95% 778 17.29 16 0 0 5 

20 Malaysia 43 1.86% 449 10.44 11 0 0 1 

21 Japan 38 1.65% 1,141 30.03 17 0 1 9 

22 Mexico 32 1.39% 304 9.50 9 0 0 0 

23 Belgium 31 1.34% 956 30.84 13 0 2 6 

24 Brazil 24 1.04% 522 21.75 10 0 1 4 

24 Colombia 24 1.04% 255 10.63 8 0 0 1 

26 Germany 23 1.00% 673 29.26 12 0 3 4 

27 Egypt 21 0.91% 151 7.19 7 0 0 0 

28 Finland 19 0.82% 532 28.00 10 0 1 3 

29 Greece 17 0.74% 305 17.94 9 0 1 2 

29 Oman 17 0.74% 569 33.47 11 0 2 3 

31 Netherlands 15 0.65% 471 31.40 10 0 2 4 

32 Austria 14 0.61% 737 52.64 11 0 3 4 
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R Country TP % TP TC Avg h ≥ 500 ≥ 100 ≥ 50 

33 Romania 12 0.52% 205 17.08 5 0 1 1 

33 Wales 12 0.52% 418 34.83 10 0 0 5 

35 Cuba 11 0.48% 89 8.09 4 0 0 1 

35 Hungary 11 0.48% 822 74.73 7 0 3 4 

37 Israel 10 0.43% 242 24.20 8 0 0 1 

37 Lithuania 10 0.43% 271 27.10 8 0 0 2 

39 Nigeria 9 0.39% 71 7.89 5 0 0 0 

39 Serbia 9 0.39% 69 7.67 5 0 0 0 

41 Algeria 8 0.35% 50 6.25 4 0 0 0 

41 Argentina 8 0.35% 69 8.63 7 0 0 0 

41 Portugal 8 0.35% 312 39.00 5 0 1 3 

41 Thailand 8 0.35% 110 13.75 6 0 0 0 

45 Ireland 7 0.30% 50 7.14 5 0 0 0 

46 Denmark 6 0.26% 79 13.17 5 0 0 0 

46 North Ireland 6 0.26% 120 20.00 5 0 0 0 

46 Singapore 6 0.26% 76 12.67 3 0 0 0 

49 Russia 5 0.22% 41 8.20 3 0 0 0 

49 South Africa 5 0.22% 56 11.20 4 0 0 0 

49 
United Arab 

Emirates 
5 0.22% 70 14.00 4 0 0 0 

Source: Own elaboration through WoS. Abbreviations are available in Tables 2.1, 2.2, and 

2.3. 

 

Leading journals in OWA 

 

Journals play a particularly important role in the dissemination and advance 

of science. Table 2.6 presents the top 50 journals with the most publications 

in OWA. The International Journal of Intelligent Systems is the one with 

most publications, with a record of 202 publications, which equals to an 

8.76% over the total. Currently, this prestigious journal is part of a 

partnership between two publishers, which are Wiley and Hindawi. The 

second most productive is the Journal of Intelligent & Fuzzy Systems, with a 

total of 131 publications and a 5.68% share. The publisher of this well-known 

journal is IOS Press. Nevertheless, the number of citations is well below the 

third most productive journal, which is Fuzzy Sets and Systems. This 

respected journal is published by Elsevier. 

 

It should be also emphasized that the Information Fusion journal from 

Elsevier, is the one with the highest impact factor (IF), also referred to as 

journal impact factor (JIF). Recall that the IF is a scientometric index 

calculated by Clarivate Analytics, and it reflects the number of times an 

average paper in a journal has been cited during a specific year or period. 
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Table 2.6. Top 50 most productive journals in OWA 

 
R Journal TP % TP TC Avg h IF 2021 IF 5Y 

1 
International Journal of 

Intelligent Systems 
202 8.76% 8,970 44.41 43 8.993 8.926 

2 
Journal of Intelligent & Fuzzy 

Systems 
131 5.68% 2,938 22.43 28 1.737 1.664 

3 Fuzzy Sets and Systems 93 4.03% 7,791 83.77 35 4.462 3.581 

4 Information Sciences 83 3.60% 6,217 74.90 38 8.233 7.299 

5 
IEEE Transactions on Fuzzy 

Systems 
71 3.08% 6,004 84.56 36 12.253 11.637 

6 

International Journal of 

Uncertainty Fuzziness and 

Knowledge-Based Systems 

65 2.82% 2,065 31.77 22 1.027 1.234 

7 
Expert Systems with 

Applications 
61 2.64% 3,749 61.46 34 8.665 8.093 

8 Soft Computing 51 2.21% 1,448 28.39 18 3.732 3.524 

9 Knowledge-Based Systems 47 2.04% 2,171 46.19 25 8.139 8.153 

10 
Computers & Industrial 

Engineering 
45 1.95% 2,178 48.40 26 7.18 6.876 

11 Applied Soft Computing 41 1.78% 2,523 61.54 26 8.263 7.595 

12 
International Journal of Fuzzy 

Systems 
33 1.43% 1,110 33.64 16 4.085 3.718 

13 
European Journal of 

Operational Research 
29 1.26% 1,998 68.90 18 6.363 6.598 

13 
International Journal of 

Approximate Reasoning 
29 1.26% 3,082 106.28 19 4.452 3.544 

15 
Group Decision and 

Negotiation 
25 1.08% 1,174 46.96 17 2.928 2.527 

16 
International Journal of 

General Systems 
22 0.95% 816 37.09 12 2.435 2.088 

17 Symmetry-Basel 21 0.91% 177 8.43 9 2.94 2.834 

18 

International Journal of 

Computational Intelligence 

Systems 

20 0.87% 812 40.60 12 2.259 2.244 

18 
Mathematical Problems in 

Engineering 
20 0.87% 202 10.10 7 1.43 1.393 

20 Information Fusion 18 0.78% 1,958 108.78 16 17.564 16.58 

20 Mathematics 18 0.78% 166 9.22 6 2.592 2.542 

22 
Technological and Economic 

Development of Economy 
17 0.74% 433 25.47 11 5.656 4.502 

23 

IEEE Transactions on 

Systems, Man, and 

Cybernetics, Part B: 

Cybernetics 

16 0.69% 2,788 174.25 14 6.22a 6.184a 

24 
Applied Mathematical 

Modelling 
15 0.65% 837 55.80 14 5.336 4.522 

24 

International Journal of 

Information Technology & 

Decision Making 

15 0.65% 451 30.07 9 3.508 2.956 

26 

Economic Computation and 

Economic Cybernetics 

Studies and Research 

14 0.61% 169 12.07 8 0.899 0.997 

26 Granular Computing 14 0.61% 276 19.71 9 -  -  

26 IEEE Access 14 0.61% 198 14.14 8 3.476 3.758 

26 Sustainability 14 0.61% 158 11.29 8 3.889 4.089 

30 
Iranian Journal of Fuzzy 

Systems 
13 0.56% 307 23.62 6 2.006 1.866 
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R Journal TP % TP TC Avg h IF 2021 IF 5Y 

31 
Annals of Operations 

Research 
12 0.52% 147 12.25 8 4.82 4.46 

31 Cybernetics and Systems 12 0.52% 294 24.50 9 1.859 1.832 

31 
Fuzzy Optimization and 

Decision Making 
12 0.52% 385 32.08 8 5.274 4.614 

34 

International Journal of 

Knowledge-Based and 

Intelligent Engineering 

Systems 

11 0.48% 226 20.55 6  - -  

34 

International Journal of 

Machine Learning and 

Cybernetics 

11 0.48% 130 11.82 8 4.377 3.764 

34 Kybernetes 11 0.48% 143 13.00 7 2.352 2.158 

37 
Water Resources 

Management 
10 0.43% 129 12.90 7 4.426 4.415 

38 Applied Intelligence 9 0.39% 152 16.89 6 5.019 4.76 

38 Ecological Indicators 9 0.39% 208 23.11 6 6.263 6.643 

38 
Journal of Applied 

Mathematics 
9 0.39% 85 9.44 4 0.72 0.735 

38 
Journal of Systems 

Engineering and Electronics 
9 0.39% 183 20.33 7 1.363 1.369 

42 
Arabian Journal for Science 

and Engineering 
8 0.35% 316 39.50 5 2.807 2.621 

42 
Engineering Applications of 

Artificial Intelligence 
8 0.35% 134 16.75 6 7.802 6.694 

42 Informatica 8 0.35% 63 7.88 5 3.429 2.553 

42 Land Use Policy 8 0.35% 338 42.25 7 6.189 6.158 

46 

IEEE Transactions on 

Systems, Man, and 

Cybernetics, Part A: Systems 

and Humans 

7 0.30% 1,813 259.00 7 2.183b 2.44b 

46 

International Journal of 

Advanced Manufacturing 

Technology 

7 0.30% 77 11.00 6 3.563 3.471 

46 Scientia Iranica 7 0.30% 164 23.43 6 1.416 1.387 

49 
Computational & Applied 

Mathematics 
6 0.26% 123 20.50 4 2.998 2.408 

49 

Journal of Ambient 

Intelligence and Humanized 

Computing 

6 0.26% 184 30.67 4 3.662 3.718 

49 Journal of Cleaner Production 6 0.26% 186 31.00 6 11.072 11.016 

49 
Journal of Environmental 

Management 
6 0.26% 264 44.00 5 8.91 8.549 

49 Journal of Intelligent Systems 6 0.26% 56 9.33 4 -  -  

49 Natural Hazards 6 0.26% 288 48.00 5 3.158 3.685 

49 
Neural Computing & 

Applications 
6 0.26% 105 17.50 5 5.102 5.13 

Source: Own elaboration through WoS. Abbreviations are available in Tables 2.1, 2.2, and 

2.3 except for: IF 2021 = 2021 impact factor; IF 5Y = 5-year impact factor. Footnotes: a = 

Latest available year 2014; b = Latest available year 2012. 

 

Leading research areas in OWA 

 

In order to get an enhanced understanding of the OWA research areas, Table 

2.7 lists the top 50. It can clearly be seen that Computer Science is leading 
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the ranking of the most productive research areas. Similarly, the OWA 

operator plays a key role in other fields such as Engineering and 

Mathematics. 

 

Table 2.7. Top 50 most productive research areas in OWA 

 
R Research area TP TC Avg h 

1 Computer Science 1,450 71,881 49.57 123 

2 Engineering 463 23,241 50.20 70 

3 Mathematics 354 11,880 33.56 52 

4 Operations Research Management Science 201 8,584 42.71 52 

5 Business Economics 141 4,947 35.09 39 

6 Environmental Sciences Ecology 124 3,053 24.62 31 

7 Science Technology Other Topics 101 1,961 19.42 24 

8 Automation Control Systems 98 5,272 53.80 31 

9 Water Resources 47 1,172 24.94 19 

10 Geology 36 1,315 36.53 17 

11 Telecommunications 35 597 17.06 13 

12 Social Sciences Other Topics 30 1,219 40.63 18 

13 Energy Fuels 27 1,313 48.63 19 

14 Remote Sensing 21 677 32.24 12 

15 Agriculture 20 398 19.90 10 

16 Physics 18 218 12.11 6 

17 Geography 17 932 54.82 10 

17 Materials Science 17 140 8.24 5 

17 Mechanics 17 1,009 59.35 15 

20 Physical Geography 16 751 46.94 10 

21 Meteorology Atmospheric Sciences 15 560 37.33 10 

22 Imaging Science Photographic Technology 13 156 12.00 7 

23 Chemistry 12 59 4.92 5 

23 Forestry 12 219 18.25 7 

23 Information Science Library Science 12 867 72.25 8 

23 Mathematical Computational Biology 12 93 7.75 5 

27 Biodiversity Conservation 10 219 21.90 7 

27 Instruments Instrumentation 10 124 12.40 6 

29 Mathematical Methods in Social Sciences 9 223 24.78 5 

29 Neurosciences Neurology 9 139 15.44 5 

29 Public Environmental Occupational Health 9 276 30.67 7 

32 Construction Building Technology 8 70 8.75 4 

33 Robotics 7 10 1.43 2 

33 Thermodynamics 7 420 60.00 5 

35 Geochemistry Geophysics 6 87 14.50 4 

35 Marine Freshwater Biology 6 71 11.83 4 

35 Transportation 6 210 35.00 3 

38 Biochemistry Molecular Biology 5 26 5.20 4 

38 
Radiology Nuclear Medicine Medical 

Imaging 
5 60 12.00 3 

40 Education Educational Research 4 31 7.75 2 

40 Life Sciences Biomedicine Other Topics 4 57 14.25 3 

42 Biotechnology Applied Microbiology 3 17 5.67 2 

42 Health Care Sciences Services 3 25 8.33 3 

42 Medical Informatics 3 40 13.33 3 

42 Oceanography 3 41 13.67 3 
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R Research area TP TC Avg h 

42 Psychology 3 155 51.67 2 

47 Dentistry Oral Surgery Medicine 2 4 2.00 1 

47 Evolutionary Biology 2 33 16.50 1 

47 International Relations 2 33 16.50 2 

47 Linguistics 2 2 1.00 1 

47 Nuclear Science Technology 2 74 37.00 2 

47 Otorhinolaryngology 2 5 2.50 2 

47 Pharmacology Pharmacy 2 13 6.50 2 

47 Plant Sciences 2 6 3.00 1 

47 Public Administration 2 46 23.00 2 

47 Urban Studies 2 25 12.50 2 

Source: Own elaboration through WoS. Abbreviations are available in Tables 2.1, 2.2, and 

2.3. 

 

Temporal evolution of the most productive authors, institutions, 

countries, journals, and research areas in OWA 

 

Next, Tables 2.8, 2.9, 2.10, 2.11, and 2.12 display the evolution of the most 

productive authors, institutions, countries, journals, and research areas in 

OWA through the last three decades. Starting with the results of the authors, 

during the periods of 1992-2001 and 2002-2011, Yager was the most 

productive with 30 and 38 publications, respectively. Nevertheless, during 

the period of 2012-2021, it was Merigó with 93 publications. 

 

If we analyze the most productive institutions through time, as is apparent, 

the Iona College, represented primarily by Yager, was the leading institution 

during the past three decades. Additionally, during the period of 1992-2001, 

the University of Granada was the second institution, basically explained by 

the professors Herrera, Herrera-Viedma, and Verdegay. Nonetheless, during 

the period of 2002-2011, the Southeast University China has managed to 

establish itself as the second most productive institution, mainly driven by 

the researchers X. W. Liu and Z. S. Xu. However, during the period of 2012-

2021, the University of Chile took the second place, which came from the 

contributions made by Merigó. 

 

Likewise, during the past decades, China has experienced a significant 

growth in academic research productivity in OWA. Spain and the United 

States of America, on the other hand, have remained almost constant over the 

past 30 years. 
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Table 2.8. Productivity evolution of the authors over the last three decades 

 

R 
1992-2001      

R 
2002-2011     

Author TP TC  Author TP TC 

1 Yager, RR 30 4,933  1 Yager, RR 38 3,269 

2 Herrera, F 10 4,647  2 Xu, ZS 32 9,263 

3 Herrera-viedma, E 9 3,713  3 Merigó, JM 27 2,310 

4 Filev, DP 7 1,626  4 Liu, XW 20 777 

5 Mitchell, HB 6 194  5 Herrera-Viedma, E 18 3,115 

5 Torra, V 6 634           

R 
2012-2021          

Author TP TC      

1 Merigó, JM 93 2,428      

2 Yager, RR 61 826      

3 Mesiar, R 45 605      

4 Zeng, SZ 44 1,296      

5 Chen, HY 40 1,208           

Source: Own elaboration through WoS. Abbreviations are available in Tables 2.1 and 2.2. 
 

Table 2.9. Productivity evolution of the institutions over the last three 

decades 

 

R 
1992-2001      

R 
2002-2011     

Institution TP TC  Institution TP TC 

1 Iona College  30 4,933  1 Iona College  39 3,575 

2 University of Granada  12 4,856  2 
Southeast University 

China 
36 5,897 

3 Elta Elect Ind Ltd  5 123  3 University of Barcelona 28 2,671 

3 
University of the 

Balearic Islands 
5 96  4 University of Granada 22 3,373 

3 
Rovira i Virgili 

University 
5 546   5 

Slovak University of 

Technology Bratislava 
13 526 

R 
2012-2021          

Institution TP TC      

1 Iona College  66 884      

2 University of Chile 57 1,147      

3 
Slovak University of 

Technology Bratislava 
51 759      

3 University of Barcelona 51 1,475      

5 
Nanjing Normal 

University 
43 469           

Source: Own elaboration through WoS. Abbreviations are available in Tables 2.1 and 2.2. 
 

Moreover, the Fuzzy Sets and Systems journal has been progressively losing 

weight. In contrast, the International Journal of Intelligent Systems has 

managed to consolidate its position. Both journals are placed in the Q1 

quartile (2021). Also outstanding is the number of documents successfully 

published by the Journal of Intelligent & Fuzzy Systems during the period of 

2012-2021. 
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Table 2.10. Productivity evolution of the countries over the last three decades 

 

R 
1992-2001      

R 
2002-2011     

Country TP TC  Country TP TC 

1 United States of America 39 5,511  1 China 126 14,981 

2 Spain 31 5,728  2 Spain 86 7,358 

3 Belgium 7 359  3 United States of America 81 4,927 

3 Israel 7 203  4 Iran 33 972 

5 Italy 4 479  5 Taiwan 29 1,214 

5 Japan 4 97           

R 
2012-2021          

Country TP TC      

1 China 755 22,048      

2 Spain 224 5,535      

3 United States of America 144 2,713      

4 Iran 116 2,086      

5 Pakistan 110 2,190           

Source: Own elaboration through WoS. Abbreviations are available in Tables 2.1 and 2.2. 
 

Table 2.11. Productivity evolution of the journals over the last three decades 

 

R 
1992-2001      

R 
2002-2011     

Journal TP TC  Journal TP TC 

1 Fuzzy Sets and Systems 19 4,783  1 
International Journal of 

Intelligent Systems 
43 3,832 

2 
International Journal of 

Intelligent Systems 
15 1,615  2 Fuzzy Sets and Systems 37 2,437 

3 

International Journal of 

Uncertainty Fuzziness 

and Knowledge-Based 

Systems 

14 557  3 
Expert Systems with 

Applications 
30 2,152 

4 
International Journal of 

Approximate Reasoning 
8 570  4 Information Sciences 26 3,203 

5 
European Journal of 

Operational Research 
4 361  5 

IEEE Transactions on 

Fuzzy Systems 
19 3,570 

5 
IEEE Transactions on 

Fuzzy Systems 
4 412      

5 Information Sciences 4 820      

5 
International Journal of 

General Systems 
4 235           

R 
2012-2021          

Journal TP TC      

1 
International Journal of 

Intelligent Systems 
144 3,523      

2 
Journal of Intelligent & 

Fuzzy Systems 
129 2,877      

3 Information Sciences 53 2,194      

4 
IEEE Transactions on 

Fuzzy Systems 
48 2,022      

5 
Knowledge-Based 

Systems 
40 1,761           

Source: Own elaboration through WoS. Abbreviations are available in Tables 2.1 and 2.2. 
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With regard to the research fields, Computer Science, Engineering, 

Mathematics, and Operations Research Management Science have always 

been the most popular. Although the research area of Environmental Sciences 

Ecology has become more relevant in the last decade of the study. 

 

Table 2.12. Productivity evolution of the research areas over the last three 

decades 

 

R 
1992-2001      

R 
2002-2011     

Research area TP TC  Research area TP TC 

1 Computer Science 82 
12,20

5 
 1 Computer Science 362 27,811 

2 Mathematics 25 4,858  2 Engineering 119 8,630 

3 Engineering 10 822  3 Mathematics 78 3,274 

4 Business Economics 7 518  4 
Operations Research 

Management Science 
76 4,673 

5 Agriculture 4 119  5 
Automation Control 

Systems 
32 1,948 

5 
Operations Research 

Management Science 
4 361           

R 
2012-2021          

Research area TP TC      

1 Computer Science 1,002 
26,91

7 
     

2 Engineering 332 8,847      

3 Mathematics 251 3,746      

4 
Operations Research 

Management Science 
121 3,548      

5 
Environmental Sciences 

Ecology 
115 2,694           

Source: Own elaboration through WoS. Abbreviations are available in Tables 2.1 and 2.2. 
 

Analysis with VOS viewer 

 

With the VOS viewer software, it is possible to obtain the citation and co-

citation of cited references, author, and journals, as well as the occurrence 

and co-occurrence of keywords. Table 2.13 presents the most cited references 

among OWA publications. First, we have the document “On ordered 

weighted averaging aggregation operators in multicriteria decisionmaking”, 

written by Yager (1988). Second, we find the document “Fuzzy sets”, 

authoring Zadeh (1965). Third, we get the document “Families of OWA 

operators”, from Yager (1993). 
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Table 2.13. Top 20 citing references of OWA 

 

R Cited reference (only first author) Citations TLS PY 

1 Yager RR, IEEE T Syst Man Cyb, V18, P183 1587 1535 1988 

2 Zadeh LA, Inform Control, V8, P338 547 544 1965 

3 Yager RR, Fuzzy Set Syst, V59, P125 473 470 1993 

4 Atanassov KT, Fuzzy Set Syst, V20, P87 410 410 1986 

5 Yager RR, IEEE T Syst Man Cy B, V29, P141 404 403 1999 

6 Xu ZS, Int J Intell Syst, V20, P843 294 292 2005 

7 
Yager RR, The Ordered Weighted Averaging 

Operators 
283 282 1997 

8 Xu ZS, Int J Intell Syst, V18, P953 267 267 2003 

9 Zadeh LA, Inform Sciences, V8, P199 256 256 1975 

10 Xu ZS, IEEE T Fuzzy Syst, V15, P1179 242 242 2007 

11 Beliakov G, Aggregation Functions 232 232 2007 

12 Filev DP, Fuzzy Set Syst, V94, P157 229 228 1998 

13 Yagger RR, Fuzzy Optim Decis Ma, V3, P93 224 224 2004 

14 Merigó JM, Inform Sciences, V179, P729 221 221 2009 

15 Xu ZS, Int J Gen Syst, V35, P417 219 219 2006 

16 Zadeh LA, Comput Math Appl, V9, P149 211 211 1983 

17 Herrera F, IEEE T Fuzzy Syst, V8, P746 189 188 2000 

18 Fuller R, Fuzzy Set Syst, V124, P53 185 185 2001 

19 Herrera F, Fuzzy Set Syst, V115, P67 175 175 2000 

20 Yager RR, Fuzzy Set Syst, V137, P59 161 160 2003 

Source: Own elaboration through VOS viewer. Abbreviations are available in Tables 2.1 

and 2.2 except for: TLS = Total link strength. 
 

The originality of the OWA operator has drawn the attention of many 

researcher from all over the world. Fig. 2.2 displays the co-citation network 

of cited authors among OWA publications. To do so, a minimum of 60 

citations of an author are contemplated. Note that only the first author of a 

cited document is considered in the co-citation analysis of cited authors. Each 

node or circle constitutes an author, and the size of the node is proportional 

to the number of citations. Likewise, the lines represent the strongest co-

citation relations between authors. Also, clusters are differentiated by colors. 

As can be seen, the biggest nodes correspond to the researchers Yager, Z. S. 

Xu, Merigó, Wei, Herrera, and Zadeh, respectively. 
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Fig. 2.2. Co-citation network of cited authors 

Source: Own elaboration through VOS viewer 

 

Similarly, Fig. 2.3 visualizes the co-citation network of cited journals among 

OWA publications, taking into account a minimum of 130 citations of a 

journal. In this case, each node represents a journal. The bigger the node, the 

higher the number of citations received by the journal. The major co-citation 

links between journals are illustrated with lines. The color of the node 

indicates the cluster. It can be seen that the largest nodes are those from Fuzzy 

Sets and Systems, International Journal of Intelligent Systems, and 

Information Sciences. Further, these last two journals are likely to be strongly 

related, as they are placed very close to each other. 
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Fig. 2.3. Co-citation network of cited journals 

Source: Own elaboration through VOS viewer 

 

Next, Fig. 2.4 presents the co-occurrence network of keywords, while 

considering a threshold of 20 occurrences of a keyword. Each node represents 

a keyword. The node size reflects the keyword frequency (the higher the 

frequency, the larger the node). The node color indicates the cluster to which 

keywords belong. The lines denote the strongest co-occurrence links. We can 

observe five different clusters and that the most frequent keywords are 

“OWA operators”, “aggregation operators”, “model”, and “group decision-

making”, respectively. 
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Fig. 2.4. Co-occurrence network of keywords 

Source: Own elaboration through VOS viewer 

 

4. Conclusions 

 

This paper presented a very comprehensive bibliometric analysis of the 

OWA operator from 1988 to 2021 based on the WoS Core Collection 

database and also the VOS viewer software. One of the main conclusions is 

that there is a growing interest in the OWA operator. This is reflected in the 

fact that the number of publications has increased significantly since 1988. 

 

Another finding is that Yager is the most prolific and influential author 

regarding the OWA operator. He also has written the most cited document, 

which is the “On ordered weighted averaging aggregation operators in 

multicriteria decisionmaking”, where the OWA operator is introduced for the 

very first time. Additionally, he represents the Iona College, which is the 

leading institution in OWA. Moreover, in the analysis of the journals with 

most publications as well as citations, the distinguished International Journal 
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of Intelligent Systems heads the ranking. Likewise, based on the obtained 

results, we can confirm that China has the largest number of publications and 

citations. Besides, it is noteworthy that Computer Science is by far the 

preferred research area. 

 

Furthermore, some conclusions can be drawn from the citation and co-

citation analysis of cited references, authors, and journals, as well as 

occurrence and co-occurrence of keywords. For example, that among OWA 

publications, the most cited reference is the “On ordered weighted averaging 

aggregation operators in multicriteria decisionmaking”, the most cited 

author is Yager, the most cited journal is the Fuzzy Sets and Systems, and the 

most frequent keyword is “OWA operators”. 

 

This research has also some limitations. One of these limitations is the use of 

only WoS Core Collection database. Thus, future research should include 

additional databases like Elsevier's Scopus. Another restriction is the 

selection of solely articles, review articles, letters, and notes, disregarding 

other types of documents, such as proceeding papers. A limitation is also the 

fact that through time some authors may change the institution to which they 

belong. 

 

5. References 

 

Blanco-Mesa, F., León-Castro, E., & Merigó, J. M. (2019). A bibliometric 

analysis of aggregation operators. Applied Soft Computing, 81, 105488. 

https://doi.org/10.1016/j.asoc.2019.105488 

Bonilla, C. A., Merigó, J. M., & Torres-Abad, C. (2015). Economics in Latin 

America: A bibliometric analysis. Scientometrics, 105(2), 1239–1252. 

https://doi.org/10.1007/s11192-015-1747-7 

Bordogna, G., Fedrizzi, M., & Pasi, G. (1997). A linguistic modeling of 

consensus in group decision making based on OWA operators. IEEE 

Transactions on Systems, Man, and Cybernetics, Part A: Systems and 

Humans, 27(1), 126–133. https://doi.org/10.1109/3468.553232 

Cabrerizo, F. J., Moreno, J. M., Pérez, I. J., & Herrera-Viedma, E. (2010). 

Analyzing consensus approaches in fuzzy group decision making: 

Advantages and drawbacks. Soft Computing, 14(5), 451–463. 

https://doi.org/10.1007/s00500-009-0453-x 



 44 

Chiclana, F., Herrera, F., & Herrera-Viedma, E. (1998). Integrating three 

representation models in fuzzy multipurpose decision making based on 

fuzzy preference relations. Fuzzy Sets and Systems, 97(1), 33–48. 

https://doi.org/10.1016/S0165-0114(96)00339-9 

Chiclana, F., Herrera-Viedma, E., Herrera, F., & Alonso, S. (2007). Some 

induced ordered weighted averaging operators and their use for solving 

group decision-making problems based on fuzzy preference relations. 

European Journal of Operational Research, 182(1), 383–399. 

https://doi.org/10.1016/j.ejor.2006.08.032 

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). 

How to conduct a bibliometric analysis: An overview and guidelines. 

Journal of Business Research, 133, 285–296. 

https://doi.org/10.1016/j.jbusres.2021.04.070 

Emrouznejad, A., & Marra, M. (2014). Ordered weighted averaging 

operators 1988-2014: A citation-based literature survey. International 

Journal of Intelligent Systems, 29(11), 994–1014. 

https://doi.org/10.1002/int.21673 

Filev, D. P., & Yager, R. R. (1998). On the issue of obtaining OWA operator 

weights. Fuzzy Sets and Systems, 94(2), 157–169. 

https://doi.org/10.1016/S0165-0114(96)00254-0 

Fodor, J., Marichal, J. L., & Roubens, M. (1995). Characterization of the 

ordered weighted averaging operators. IEEE Transactions on Fuzzy 

Systems, 3(2), 236–240. https://doi.org/10.1109/91.388176 

Fuller, R., & Majlender, P. (2001). An analytic approach for obtaining 

maximal entropy OWA operator weights. Fuzzy Sets and Systems, 

124(1), 53–57. https://doi.org/10.1016/S0165-0114(01)00007-0 

Garg, H. (2016). A new generalized Pythagorean fuzzy information 

aggregation using Einstein operations and its application to decision 

making. International Journal of Intelligent Systems, 31(9), 886–920. 

https://doi.org/10.1002/int.21809 

Gorsevski, P. V., Donevska, K. R., Mitrovski, C. D., & Frizado, J. P. (2012). 

Integrating multi-criteria evaluation techniques with geographic 

information systems for landfill site selection: A case study using 

ordered weighted average. Waste Management, 32(2), 287–296. 

https://doi.org/10.1016/j.wasman.2011.09.023 



 45 

Grabisch, M., Marichal, J. L., Mesiar, R., & Pap, E. (2009). Aggregation 

functions. Cambridge University Press. 

https://doi.org/10.1017/cbo9781139644150 

Guo, Y. M., Huang, Z. L., Guo, J., Guo, X. R., Li, H., Liu, M. Y., Ezzeddine, 

S., & Nkeli, M. J. (2021). A bibliometric analysis and visualization of 

blockchain. Future Generation Computer Systems, 116, 316–332. 

https://doi.org/10.1016/j.future.2020.10.023 

He, X., Wu, Y., Yu, D., & Merigó, J. M. (2017). Exploring the ordered 

weighted averaging operator knowledge domain: A bibliometric 

analysis. International Journal of Intelligent Systems, 32(11), 1151–

1166. https://doi.org/10.1002/int.21894 

Herrera, F., & Herrera-Viedma, E. (2000a). Choice functions and 

mechanisms for linguistic preference relations. European Journal of 

Operational Research, 120(1), 144–161. https://doi.org/10.1016/S0377-

2217(98)00383-X 

Herrera, F., & Herrera-Viedma, E. (2000b). Linguistic decision analysis: 

Steps for solving decision problems under linguistic information. Fuzzy 

Sets and Systems, 115(1), 67–82. https://doi.org/10.1016/S0165-

0114(99)00024-X 

Herrera, F., Herrera-Viedma, E., & Martı́nez, L. (2000). A fusion approach 

for managing multi-granularity linguistic term sets in decision making. 

Fuzzy Sets and Systems, 114(1), 43–58. https://doi.org/10.1016/S0165-

0114(98)00093-1 

Herrera, F., Herrera-Viedma, E., & Verdegay, J. L. (1995). A sequential 

selection process in group decision making with a linguistic assessment 

approach. Information Sciences, 85(4), 223–239. 

https://doi.org/10.1016/0020-0255(95)00025-K 

Herrera, F., Herrera-Viedma, E., & Verdegay, J. L. (1996). Direct approach 

processes in group decision making using linguistic OWA operators. 

Fuzzy Sets and Systems, 79(2), 175–190. https://doi.org/10.1016/0165-

0114(95)00162-X 

Herrera, F., & Martínez, L. (2000). An approach for combining linguistic and 

numerical information based on the 2-tuple fuzzy linguistic 

representation model in decision-making. International Journal of 

Uncertainty, Fuzziness and Knowledge-Based Systems, 08(5), 539–562. 

https://doi.org/10.1142/S0218488500000381 



 46 

Herrera, F., & Martinez, L. (2001). A model based on linguistic 2-tuples for 

dealing with multigranular hierarchical linguistic contexts in multi-

expert decision-making. IEEE Transactions on Systems, Man and 

Cybernetics, Part B: Cybernetics, 31(2), 227–234. 

https://doi.org/10.1109/3477.915345 

Herrera-Viedma, E., Alonso, S., Chiclana, F., & Herrera, F. (2007). A 

consensus model for group decision making with incomplete fuzzy 

preference relations. IEEE Transactions on Fuzzy Systems, 15(5), 863–

877. https://doi.org/10.1109/TFUZZ.2006.889952 

Herrera-Viedma, E., Chiclana, F., Herrera, F., & Alonso, S. (2007). Group 

decision-making model with incomplete fuzzy preference relations 

based on additive consistency. IEEE Transactions on Systems, Man and 

Cybernetics, Part B: Cybernetics, 37(1), 176–189. 

https://doi.org/10.1109/TSMCB.2006.875872 

Herrera-Viedma, E., Herrera, F., & Chiclana, F. (2002). A consensus model 

for multiperson decision making with different preference structures. 

IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems 

and Humans, 32(3), 394–402. 

https://doi.org/10.1109/TSMCA.2002.802821 

Hirsch, J. E. (2005). An index to quantify an individual’s scientific research 

output. Proceedings of the National Academy of Sciences, 102(46), 

16569–16572. https://doi.org/10.1073/pnas.0507655102 

Jiang, H., & Eastman, J. R. (2000). Application of fuzzy measures in multi-

criteria evaluation in GIS. International Journal of Geographical 

Information Science, 14(2), 173–184. 

https://doi.org/10.1080/136588100240903 

Joshi, M. A. (2014). Bibliometric indicators for evaluating the quality of 

scientific publications. The Journal of Contemporary Dental Practice, 

15(2), 258–262. https://doi.org/10.5005/jp-journals-10024-1525 

Kacprzyk, J., Yager, R. R., & Merigó, J. M. (2019). Towards human-centric 

aggregation via ordered weighted aggregation operators and linguistic 

data summaries: A new perspective on Zadeh’s inspirations. IEEE 

Computational Intelligence Magazine, 14(1), 16–30. 

https://doi.org/10.1109/MCI.2018.2881641 

Khanra, S., Dhir, A., Kaur, P., & Mäntymäki, M. (2021). Bibliometric 

analysis and literature review of ecotourism: Toward sustainable 



 47 

development. Tourism Management Perspectives, 37, 100777. 

https://doi.org/10.1016/j.tmp.2020.100777 

Kim, J., Kang, S., & Lee, K. H. (2021). Evolution of digital marketing 

communication: Bibliometric analysis and network visualization from 

key articles. Journal of Business Research, 130, 552–563. 

https://doi.org/10.1016/j.jbusres.2019.09.043 

Liu, H. B., & Rodríguez, R. M. (2014). A fuzzy envelope for hesitant fuzzy 

linguistic term set and its application to multicriteria decision making. 

Information Sciences, 258, 220–238. 

https://doi.org/10.1016/j.ins.2013.07.027 

Liu, P. D. (2014). Some Hamacher aggregation operators based on the 

interval-valued intuitionistic fuzzy numbers and their application to 

group decision making. IEEE Transactions on Fuzzy Systems, 22(1), 83–

97. https://doi.org/10.1109/TFUZZ.2013.2248736 

Malczewski, J. (2006). Ordered weighted averaging with fuzzy quantifiers: 

GIS-based multicriteria evaluation for land-use suitability analysis. 

International Journal of Applied Earth Observation and 

Geoinformation, 8(4), 270–277. 

https://doi.org/10.1016/j.jag.2006.01.003 

Mata, F., Martínez, L., & Herrera-Viedma, E. (2009). An adaptive consensus 

support model for group decision-making problems in a multigranular 

fuzzy linguistic context. IEEE Transactions on Fuzzy Systems, 17(2), 

279–290. https://doi.org/10.1109/TFUZZ.2009.2013457 

Merigó, J. M. (2012). Probabilities in the OWA operator. Expert Systems 

with Applications, 39(13), 11456–11467. 

https://doi.org/10.1016/j.eswa.2012.04.010 

Merigó, J. M., & Gil-Lafuente, A. M. (2009). The induced generalized OWA 

operator. Information Sciences, 179(6), 729–741. 

https://doi.org/10.1016/j.ins.2008.11.013 

Merigó, J. M., & Gil-Lafuente, A. M. (2010). New decision-making 

techniques and their application in the selection of financial products. 

Information Sciences, 180(11), 2085–2094. 

https://doi.org/10.1016/j.ins.2010.01.028 

Small, H. (1973). Co-citation in the scientific literature: A new measure of 

the relationship between two documents. Journal of the American 

Society for Information Science, 24(4), 265–269. 

https://doi.org/10.1002/asi.4630240406 



 48 

Tan, C. Q., & Chen, X. H. (2010). Intuitionistic fuzzy Choquet integral 

operator for multi-criteria decision making. Expert Systems with 

Applications, 37(1), 149–157. 

https://doi.org/10.1016/j.eswa.2009.05.005 

Torra, V. (1997). The weighted OWA operator. International Journal of 

Intelligent Systems, 12(2), 153–166. 

https://doi.org/10.1002/(SICI)1098-111X(199702)12:2<153::AID-

INT3>3.0.CO;2-P 

Van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks. In 

Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring scholarly 

impact: Methods and practice (pp. 285–320). Springer. 

https://doi.org/10.1007/978-3-319-10377-8_13 

Wang, J., Zhou, Y., & Cooke, F. L. (2022). Low-carbon economy and policy 

implications: A systematic review and bibliometric analysis. 

Environmental Science and Pollution Research, 29(43), 65432–65451. 

https://doi.org/10.1007/s11356-022-20381-0 

Wei, G. W. (2010). Some induced geometric aggregation operators with 

intuitionistic fuzzy information and their application to group decision 

making. Applied Soft Computing, 10(2), 423–431. 

https://doi.org/10.1016/j.asoc.2009.08.009 

Wei, G. W., & Lu, M. (2018). Pythagorean fuzzy power aggregation 

operators in multiple attribute decision making. International Journal of 

Intelligent Systems, 33(1), 169–186. https://doi.org/10.1002/int.21946 

Xia, M. M., & Xu, Z. S. (2011). Hesitant fuzzy information aggregation in 

decision making. International Journal of Approximate Reasoning, 

52(3), 395–407. https://doi.org/10.1016/j.ijar.2010.09.002 

Xu, Z. S. (2004a). EOWA and EOWG operators for aggregating linguistic 

labels based on linguistic preference relations. International Journal of 

Uncertainty, Fuzziness and Knowlege-Based Systems, 12(6), 791–810. 

https://doi.org/10.1142/S0218488504003211 

Xu, Z. S. (2004b). Uncertain linguistic aggregation operators based approach 

to multiple attribute group decision making under uncertain linguistic 

environment. Information Sciences, 168(1–4), 171–184. 

https://doi.org/10.1016/j.ins.2004.02.003 

Xu, Z. S. (2005). An overview of methods for determining OWA weights. 

International Journal of Intelligent Systems, 20(8), 843–865. 

https://doi.org/10.1002/int.20097 



 49 

Xu, Z. S. (2006). Induced uncertain linguistic OWA operators applied to 

group decision making. Information Fusion, 7(2), 231–238. 

https://doi.org/https://doi.org/10.1016/j.inffus.2004.06.005 

Xu, Z. S. (2007). Intuitionistic fuzzy aggregation operators. IEEE 

Transactions on Fuzzy Systems, 15(6), 1179–1187. 

https://doi.org/10.1109/TFUZZ.2006.890678 

Xu, Z. S., & Chen, J. (2008). An overview of distance and similarity 

measures of intuitionistic fuzzy sets. International Journal of 

Uncertainty, Fuzziness and Knowledge-Based Systems, 16(4), 529–555. 

https://doi.org/10.1142/S0218488508005406 

Xu, Z. S., & Da, Q. L. (2002a). The ordered weighted geometric averaging 

operators. International Journal of Intelligent Systems, 17(7), 709–716. 

https://doi.org/10.1002/int.10045 

Xu, Z. S., & Da, Q. L. (2002b). The uncertain OWA operator. International 

Journal of Intelligent Systems, 17(6), 569–575. 

https://doi.org/10.1002/int.10038 

Xu, Z. S., & Da, Q. L. (2003). An overview of operators for aggregating 

information. International Journal of Intelligent Systems, 18(9), 953–

969. https://doi.org/10.1002/int.10127 

Xu, Z. S., & Yager, R. R. (2008). Dynamic intuitionistic fuzzy multi-attribute 

decision making. International Journal of Approximate Reasoning, 

48(1), 246–262. https://doi.org/10.1016/j.ijar.2007.08.008 

Xu, Z. S., & Yager, R. R. (2010). Power-geometric operators and their use in 

group decision making. IEEE Transactions on Fuzzy Systems, 18(1), 94–

105. https://doi.org/10.1109/TFUZZ.2009.2036907 

Yager, R. R. (1988). On ordered weighted averaging aggregation operators 

in multicriteria decisionmaking. IEEE Transactions on Systems, Man, 

and Cybernetics, 18(1), 183–190. https://doi.org/10.1109/21.87068 

Yager, R. R. (1993). Families of OWA operators. Fuzzy Sets and Systems, 

59(2), 125–148. https://doi.org/10.1016/0165-0114(93)90194-M 

Yager, R. R. (1995). An approach to ordinal decision making. International 

Journal of Approximate Reasoning, 12(3), 237–261. 

https://doi.org/https://doi.org/10.1016/0888-613X(94)00035-2 

Yager, R. R. (1998). Quantifier guided aggregation using OWA operators. 

International Journal of Intelligent Systems, 11(1), 49–73. 

https://doi.org/10.1002/(SICI)1098-111X(199601)11:1<49::AID-

INT3>3.0.CO;2-Z 



 50 

Yager, R. R. (2001). The power average operator. IEEE Transactions on 

Systems, Man, and Cybernetics, Part A: Systems and Humans, 31(6), 

724–731. https://doi.org/10.1109/3468.983429 

Yager, R. R. (2003). Induced aggregation operators. Fuzzy Sets and Systems, 

137(1 SPEC.), 59–69. https://doi.org/10.1016/S0165-0114(02)00432-3 

Yager, R. R. (2004a). Generalized OWA aggregation operators. Fuzzy 

Optimization and Decision Making, 3(1), 93–107. 

https://doi.org/10.1023/B:FODM.0000013074.68765.97 

Yager, R. R. (2004b). OWA aggregation over a continuous interval argument 

with applications to decision making. IEEE Transactions on Systems, 

Man and Cybernetics, Part B: Cybernetics, 34(5), 1952–1963. 

https://doi.org/10.1109/TSMCB.2004.831154 

Yager, R. R. (2009). On generalized Bonferroni mean operators for multi-

criteria aggregation. International Journal of Approximate Reasoning, 

50(8), 1279–1286. 

https://doi.org/https://doi.org/10.1016/j.ijar.2009.06.004 

Yager, R. R., & Filev, D. P. (1999). Induced ordered weighted averaging 

operators. IEEE Transactions on Systems, Man, and Cybernetics, Part 

B: Cybernetics, 29(2), 141–150. https://doi.org/10.1109/3477.752789 

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. 

https://doi.org/10.1016/S0019-9958(65)90241-X 

Zhang, G. Q., Dong, Y. C., & Xu, Y. F. (2014). Consistency and consensus 

measures for linguistic preference relations based on distribution 

assessments. Information Fusion, 17, 46–55. 

https://doi.org/10.1016/j.inffus.2012.01.006 

Zhao, H., Xu, Z. S., Ni, M. F., & Liu, S. S. (2010). Generalized aggregation 

operators for intuitionistic fuzzy sets. International Journal of 

Intelligent Systems, 25(1), 1–30. https://doi.org/10.1002/int.20386 

 

  



 51 

2.2. Mathematical methods under uncertainty 
 

2.2.1. Decision-making 

 

Decision-making can be defined as the process of identifying and evaluating 

a set of alternatives and choosing the best one. 

 

Decision-making can be done under three different condition (Riabacke, 

2006): certainty, risk, and uncertainty. Below, a generic explanation is 

provided for each of these states. 

 

• Decision-making under certainty: When the decision-maker is fully 

informed and thus knows for sure the outcome of each alternative. 

• Decision-making under risk: When the decision-maker does not know 

what the exact outcomes of each alternative will be. However, he/she 

knows the probabilities. 

• Decision-making under uncertainty: A decision under uncertainty 

occurs when the probabilities associated with the outcomes of each 

alternative are completely unknown by the decision-maker. 

 

2.2.2. Interval numbers 

 

2.2.2.1. Defining interval numbers 

 

The origin of the interval numbers, also known as confidence intervals, is 

found in the work “Interval analysis” (Moore, 1966). Suppose a magnitude 

whose exact value 𝑥 is unknown; however, it is known that it is greater than 

or equal to 𝑎1, and lower than or equal to 𝑎2. So, it is assumed that the value 

of the magnitude belongs to the segment [𝑎1, 𝑎2], called “interval number”. 

The formal definition of an interval number is as follows: 

 

𝐴 = [𝑎1, 𝑎2] = {𝑥 ∈ 𝑅: 𝑎1 ≤ 𝑥 ≤ 𝑎2}. (2.1) 

 

Although the closed interval is the most common one, it is possible to 

consider other types of intervals (Kaufmann & Gil-Aluja, 1990): 
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• The right half-open interval and defined as [𝑎1, 𝑎2) = [𝑎1, 𝑎2[ =

{𝑥 ∈ 𝑅: 𝑎1 ≤ 𝑥 < 𝑎2}. 

• The left half-open interval and defined as (𝑎1, 𝑎2] = ]𝑎1, 𝑎2] =

{𝑥 ∈ 𝑅: 𝑎1 < 𝑥 ≤ 𝑎2}. 

• The open interval and defined as (𝑎1, 𝑎2) = ]𝑎1, 𝑎2[ = {𝑥 ∈ 𝑅: 𝑎1 <

𝑥 < 𝑎2}. 

 

Also, it is possible to represent an uncertain value of a magnitude through 

confidence triplets and confidence quadruples: 

 

• A confidence triplet [𝑎1, 𝑎2, 𝑎3] is formed by three values, where 𝑎1 

is the lower limit, 𝑎3 is the upper limit, and 𝑎2 corresponds to the 

maximum presumption, i.e., maximum probability. 

• A confidence quadruple [𝑎1, 𝑎2, 𝑎3, 𝑎4] is formed by four values, 

where 𝑎1 is the lower limit, 𝑎4 is the upper limit, and the subinterval 

[𝑎2, 𝑎3] corresponds to the maximum presumption. 

 

2.2.2.2. Operations on interval numbers 

 

Consider the interval numbers 𝐴 = [𝑎1, 𝑎2] ⊂ 𝑅, 𝐵 = [𝑏1, 𝑏2] ⊂ 𝑅, and 𝐶 =

[𝑐1, 𝑐2] ⊂ 𝑅 for the following basic operations. 

 

Addition of two interval numbers 

 

The addition of the interval numbers 𝐴 and 𝐵 results in: 

 

𝐴(+)𝐵 = [𝑎1, 𝑎2](+)[𝑏1, 𝑏2] = [𝑎1 + 𝑏1, 𝑎2 + 𝑏2]. (2.2) 

 

The properties are the following three: 

 

• Commutative. The sum is always the same regardless of the order in 

which the interval numbers are added., i.e., 𝐴(+)𝐵 = 𝐵(+)𝐴. 

• Associative. The sum is always the same regardless of the way in 

which the interval numbers are grouped., i.e., (𝐴(+)𝐵)(+)𝐶 =

𝐴(+)(𝐵(+)𝐶). 
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• Identity. The sum of zero and any number is always the number, i.e., 

𝐴(+)0 = 0(+)𝐴 = 𝐴. 

 

Subtraction of two interval numbers 

 

The subtraction of the interval numbers 𝐴 and 𝐵 results in: 

 

𝐴(−)𝐵 = [𝑎1, 𝑎2](−)[𝑏1, 𝑏2] = [𝑎1 − 𝑏2, 𝑎2 − 𝑏1]. (2.3) 

 

As is evident, the properties of commutative and associative are not 

applicable to the subtraction. 

 

Multiplication of two interval numbers 

 

The multiplication of the interval numbers 𝐴 and 𝐵 results in: 

 

𝐴(·)𝐵 = [𝑎1, 𝑎2](·)[𝑏1, 𝑏2]

= [𝑀𝑖𝑛(𝑎1 · 𝑏1, 𝑎1 · 𝑏2, 𝑎2 · 𝑏1, 𝑎2 · 𝑏2),

𝑀𝑎𝑥(𝑎1 · 𝑏1, 𝑎1 · 𝑏2, 𝑎2 · 𝑏1, 𝑎2 · 𝑏2)]. 

(2.4) 

 

The properties are the following three: 

 

• Commutative. The product is always the same regardless of the order 

in which the interval numbers are multiplied., i.e., 𝐴(·)𝐵 = 𝐵(·)𝐴. 

• Associative. The product is always the same regardless of the way in 

which the interval numbers are multiplied., i.e., (𝐴(·)𝐵)(·)𝐶 =

𝐴(·)(𝐵(·)𝐶). 

• Identity. The product of one and any number is always the number, 

i.e., 𝐴(·)1 = 1(·)𝐴 = 𝐴. 

 

Division of two interval numbers 

 

The division of the interval numbers 𝐴 and 𝐵 results in: 

 

𝐴(∶)𝐵 = [𝑎1, 𝑎2](∶)[𝑏1, 𝑏2]

= [𝑀𝑖𝑛 (
𝑎1
𝑏1
,
𝑎1
𝑏2
,
𝑎2
𝑏1
,
𝑎2
𝑏2
) ,𝑀𝑎𝑥 (

𝑎1
𝑏1
,
𝑎1
𝑏2
,
𝑎2
𝑏1
,
𝑎2
𝑏2
)] . 

(2.5) 
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Particular case of interval numbers in 𝑹+ 

 

For the multiplication, we have: 

 

𝐴(·)𝐵 = [𝑎1, 𝑎2](·)[𝑏1, 𝑏2] = [𝑎1 · 𝑏1, 𝑎2 · 𝑏2]. (2.6) 

 

For the division, we have: 

 

𝐴(∶)𝐵 = [𝑎1, 𝑎2](∶)[𝑏1, 𝑏2] = [
𝑎1
𝑏2
,
𝑎2
𝑏1
] . (2.7) 

 

For the addition and subtraction there is no change. 

 

Other operations on interval numbers in 𝑹 

 

Minimization: 

 

𝐴(∧)𝐵 = [𝑎1, 𝑎2](∧)[𝑏1, 𝑏2] = [𝑀𝑖𝑛(𝑎1, 𝑏1),𝑀𝑖𝑛(𝑎2, 𝑏2)]

= [𝑎1 ∧ 𝑏1, 𝑎2 ∧ 𝑏2]. 
(2.8) 

 

Maximization: 

 

𝐴(∨)𝐵 = [𝑎1, 𝑎2](∨)[𝑏1, 𝑏2] = [𝑀𝑎𝑥(𝑎1, 𝑏1),𝑀𝑎𝑥(𝑎2, 𝑏2)]

= [𝑎1 ∨ 𝑏1, 𝑎2 ∨ 𝑏2]. 
(2.9) 

 

There are five mathematical properties, which are: 

 

• Commutative {
𝐴(∧)𝐵 = 𝐵(∧)𝐴
𝐴(∨)𝐵 = 𝐵(∨)𝐴

. (2.10) 

• Associative {
(𝐴(∧)𝐵)(∧)𝐶 = 𝐴(∧)(𝐵(∧)𝐶)
(𝐴(∨)𝐵)(∨)𝐶 = 𝐴(∨)(𝐵(∨)𝐶)

. (2.11) 

• Idempotent {
𝐴(∧)𝐴 = 𝐴
𝐴(∨)𝐴 = 𝐴

. (2.12) 

• Absorption {
𝐴(∧)(𝐴(∨)𝐵) = 𝐴
𝐴(∨)(𝐴(∧)𝐵) = 𝐴

. (2.13) 
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• Distributive {
𝐴(∨)(𝐵(∧)𝐶) = (𝐴(∨)𝐵)(∧)(𝐴(∨)𝐶)

𝐴(∧)(𝐵(∨)𝐶) = (𝐴(∧)𝐵)(∨)(𝐴(∧)𝐶)
. (2.14) 

 

2.2.3. Fuzzy set theory 

 

2.2.3.1. Classical sets 

 

Before entering into the description of the fuzzy set theory, it is worth to 

review some basic but necessary terminologies with regard to classical set 

theory.  

 

Universal set 

 

A universal set 𝑋, or universe of discourse, is a nonempty set that contains 

all the possible elements 𝑥 of concern in a particular context. The 

membership function (or characteristic function) of the universal set 𝑋, 

written as 𝜇𝑋(𝑥), is defined as: 

 

𝜇𝑋(𝑥) = 1 ∀𝑥 ∈ 𝑋. (2.15) 

 

Empty set 

 

An empty set ∅ is described as a set that has no elements. The membership 

function of the empty set ∅, written as 𝜇∅(𝑥), is defined as: 

 

𝜇∅(𝑥) = 0 ∀𝑥 ∈ 𝑋. (2.16) 

 

Classical set 

 

A classical set 𝐴, also referred as crisp set or ordinary set, can be described 

as a collection of well-defined elements 𝑥 from a universal set 𝑋. So, it has 

precise boundaries. In this case, the membership function can take two 

different values which are 1 or 0. Thus, the membership is considered to be 

binary. If an element 𝑥 of the universal set 𝑋 belongs to the set 𝐴, then the 

membership value (or degree of membership) is 1. Otherwise, if an element 

𝑥 of the universal set 𝑋 does not belong to the set 𝐴, then the membership 
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value is 0. Hence, the membership function of the set 𝐴 ⊆ 𝑋 is 𝜇𝐴: 𝑋 → {0,1} 

defined as: 

 

𝜇𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴

. (2.17) 

 

For example, consider the universal set 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} and the classical 

set 𝐴 = {𝑎, 𝑑, 𝑓}. It can be written as: 

 

 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 

𝑋 = 1 1 1 1 1 1 

 

 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 

𝐴 = 1 0 0 1 0 1 

 

2.2.3.2. Fuzzy sets 

 

The fuzzy set theory (also known as fuzzy subset theory) was introduced by 

Zadeh (1965) as an extension of the classical notion of sets. Later, Bellman 

and Zadeh (1970) surveyed for the first time fuzzy set theory within multi-

criteria decision-making (MCDM). The fuzzy set theory has proven to be a 

powerful mathematical tool for dealing with uncertainty, imprecision, 

vagueness, and ambiguity in several fields (Dubois & Prade, 

1980; Zimmermann, 1987). A fuzzy set can be defined as follows. 

 

Definition. If 𝑋 is a universal set with a collection of elements represented 

by 𝑥, then a fuzzy set �̃� of 𝑋 is a set of ordered pairs defined as: 

 

�̃� = {(𝑥, 𝜇�̃�(𝑥))|𝑥 ∈ 𝑋}, (2.18) 

 

where 𝜇�̃�(𝑥) is the membership function of 𝑥 in �̃� that takes values in the 

closed interval [0,1]. 

 

Thus, the main difference between a fuzzy set and a classical set is that the 

fuzzy set allows to consider elements with partial degree of membership. In 

fact, classical sets are special cases of fuzzy sets where 𝜇�̃�(𝑥) is only 1 or 0. 
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For example, consider the same universal set as the previous example, i.e., 

𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, and a fuzzy set �̃� whose elements have the following 

membership values:  

 

 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 

�̃� = 1 0.4 0.6 1 0 1 

 

Fig. 2.5 compares with Venn diagrams the classical set 𝐴 and the fuzzy set �̃� 

from the previous examples. For the fuzzy set �̃� it can be seen that 𝑎, 𝑑, and 

𝑓 take full membership, 𝑏 and 𝑐 take partial membership, and 𝑒 take non-

membership. 

 

 

 

Fig. 2.5. Boundary region of the classical set and the fuzzy set 

Source: Own elaboration 

 

2.2.3.3. Fuzzy numbers 

 

The concept of fuzzy numbers was first introduced by Chang and Zadeh 

(1972) in order to deal with imprecise numerical quantities in a practical way. 

Thus, fuzzy numbers are used for uncertainty modelling. A fuzzy number is 

defined as follows. 

 

Definition. A fuzzy number �̃� is a fuzzy set of a universe of discourse that is 

both normal and convex. 

 

Normality implies that ∃𝑥 ∈ 𝑅, 𝜇�̃�(𝑥) = 1. Convexity means that for all 

𝑥1, 𝑥2 ∈ 𝑅 and 𝜆 ∈ [0,1], 𝜇�̃�(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ 𝑚𝑖𝑛(𝜇�̃�(𝑥1), 𝜇�̃�(𝑥2)). 
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A comparison between a normalized fuzzy number and a non-normalized 

fuzzy number (or subnormalized fuzzy number) is shown in Fig. 2.6 and Fig. 

2.7. 

 

 

 

Fig. 2.6. Normalized fuzzy number 

Source: Own elaboration 

 

 

 

Fig. 2.7. Non-normalized fuzzy number 

Source: Own elaboration 

 

There exist different types of fuzzy numbers, such as triangular fuzzy 

numbers, trapezoidal fuzzy numbers, interval-valued fuzzy numbers, 

intuitionistic fuzzy numbers, generalized fuzzy numbers, and more. 
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The membership function of a triangular fuzzy number �̃� = (𝑎, 𝑏, 𝑐) can be 

written as follows: 

 

𝜇�̃�(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 ≤ 𝑥 ≤ 𝑐

0, 𝑥 ≥ 𝑐

. (2.19) 

 

A triangular fuzzy number can be graphically represented as in Fig. 2.8. 

 

 
 

Fig. 2.8. Graphical representation of a triangular fuzzy number 

Source: Own elaboration 

 

The membership function of a trapezoidal fuzzy number �̃� = (𝑎, 𝑏, 𝑐, 𝑑) can 

be written as follows: 

 

𝜇�̃�(𝑥) =

{
  
 

  
 

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

1, 𝑏 ≤ 𝑥 ≤ 𝑐
𝑑 − 𝑥

𝑑 − 𝑐
, 𝑐 ≤ 𝑥 ≤ 𝑑

0, 𝑥 ≥ 𝑑

. (2.20) 
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A trapezoidal fuzzy number can be graphically represented as in Fig. 2.9. 

 

 

 

Fig. 2.9. Graphical representation of a trapezoidal fuzzy number 

Source: Own elaboration 

 

2.2.3.4. Fuzzy arithmetic 

 

The four basic arithmetic operations are addition, subtraction, multiplication, 

and division. There are predominantly two approaches for implementing 

fuzzy arithmetic operations on fuzzy numbers (Fayek & Lourenzutti, 2018), 

which are: the 𝛼-cut (or 𝛼-level) approach and the Zadeh’s extension 

principle approach (Zadeh, 1965). 

 

Fuzzy arithmetic based on 𝜶-cuts   

 

Given two fuzzy numbers �̃� and �̃�, the following operations in 𝑅 can be 

defined in terms of 𝛼-cuts. 

 

Addition of two fuzzy numbers: 

 

�̃�(+)�̃� ⇔ ∀𝛼 ∈ [0,1], (2.21) 

𝐴𝛼(+)𝐵𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼](+)[𝑏1
𝛼 , 𝑏2

𝛼] = [𝑎1
𝛼 + 𝑏1

𝛼 , 𝑎2
𝛼 + 𝑏2

𝛼]. 
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Subtraction of two fuzzy numbers: 

 

�̃�(−)�̃� ⇔ ∀𝛼 ∈ [0,1], (2.22) 

𝐴𝛼(−)𝐵𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼](−)[𝑏1
𝛼 , 𝑏2

𝛼] = [𝑎1
𝛼 − 𝑏1

𝛼 , 𝑎2
𝛼 − 𝑏2

𝛼]. 

 

Multiplication of two fuzzy numbers: 

 

�̃�(·)�̃� ⇔ ∀𝛼 ∈ [0,1], (2.23) 

𝐴𝛼(·)𝐵𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼](·)[𝑏1
𝛼 , 𝑏2

𝛼] = [
𝑀𝑖𝑛(𝑎1

𝛼 · 𝑏1
𝛼 , 𝑎1

𝛼 · 𝑏2
𝛼 , 𝑎2

𝛼 · 𝑏1
𝛼 , 𝑎2

𝛼 · 𝑏2
𝛼),

𝑀𝑎𝑥(𝑎1
𝛼 · 𝑏1

𝛼 , 𝑎1
𝛼 · 𝑏2

𝛼 , 𝑎2
𝛼 · 𝑏1

𝛼 , 𝑎2
𝛼 · 𝑏2

𝛼)
]. 

 

Division of two fuzzy numbers: 

 

�̃�(∶)�̃� ⇔ ∀𝛼 ∈ [0,1], (2.24) 

𝐴𝛼(∶)𝐵𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼](∶)[𝑏1
𝛼 , 𝑏2

𝛼] = 𝐴𝛼(·)[𝐵𝛼]−1 = [𝑎1
𝛼 , 𝑎2

𝛼](·)[𝑏1
𝛼 , 𝑏2

𝛼]−1. 

 

Fuzzy arithmetic based on the extension principle 

 

Using the extension principle, the same operations, i.e., {+,−,×,÷}, can be 

accomplished as shown below.  

 

Addition of two fuzzy numbers: 

 

𝜇�̃�(+)�̃�(𝑧) = ∨
𝑧=𝑥+𝑦

(𝜇�̃�(𝑥) ∧ 𝜇�̃�(𝑦)) . (2.25) 

 

Subtraction of two fuzzy numbers: 

 

𝜇�̃�(−)�̃�(𝑧) = ∨
𝑧=𝑥−𝑦

(𝜇�̃�(𝑥) ∧ 𝜇�̃�(𝑦)) . (2.26) 

 

Multiplication of two fuzzy numbers: 

 

𝜇�̃�(·)�̃�(𝑧) = ∨
𝑧=𝑥·𝑦

(𝜇�̃�(𝑥) ∧ 𝜇�̃�(𝑦)) . (2.27) 
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Division of two fuzzy numbers: 

 

𝜇�̃�(∶)�̃�(𝑧) = ∨
𝑧=𝑥∶𝑦

(𝜇�̃�(𝑥) ∧ 𝜇�̃�(𝑦)) . (2.28) 

 

2.2.3.5. Linguistic variables 

 

A linguistic variable is a variable whose values are words or sentences in a 

natural or artificial language (Zadeh, 1975a, 1975b, 1975c).  

 

Formally, a linguistic variable can be defined as a quintuple 

(𝑁, 𝑇(𝑁), 𝑈, 𝐺,𝑀), where 𝑁 is the name of the variable, 𝑇(𝑁) is the set of 

linguistic terms (or labels) which can be a value of the variable, 𝑈 is the 

universe of discourse, 𝐺 is a syntactic rule (a grammar) that produces the 

linguistic terms in 𝑇(𝑁), and 𝑀 is a semantic rule that maps to each linguistic 

term its meaning, which is a fuzzy set on 𝑈. 

 

 

 

Fig. 2.10. Triangular and partially trapezoidal membership functions 

representing the terms of the linguistic variable “speed” 

Source: Own elaboration 

 

An example of a linguistic variable is given in Fig. 2.10. In this example, 

“speed” is the linguistic variable with a universe of discourse 𝑈 = [0,180], 

i.e., a range between 0 and 180 km/h. The linguistic terms of the linguistic 
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variable are “very slow”, “slow”, “medium”, “fast”, and “very fast”. Each of 

these linguistic terms is assigned one of the fuzzy numbers (whose 

membership functions have triangular and partially trapezoidal shapes) 

through a semantic rule. 

 

The membership function of each term can be defined as follows: 

 

𝜇𝑣𝑒𝑟𝑦 𝑠𝑙𝑜𝑤(𝑥) = {
1, 0 ≤ 𝑥 ≤ 20

60 − 𝑥

40
, 20 ≤ 𝑥 ≤ 60

, 

𝜇𝑠𝑙𝑜𝑤(𝑥) = {

𝑥 − 20

40
, 20 ≤ 𝑥 ≤ 60

100 − 𝑥

40
, 60 ≤ 𝑥 ≤ 100

, 

𝜇𝑚𝑒𝑑𝑖𝑢𝑚(𝑥) = {

𝑥 − 60

40
, 60 ≤ 𝑥 ≤ 100

140 − 𝑥

40
, 100 ≤ 𝑥 ≤ 140

, 

𝜇𝑓𝑎𝑠𝑡(𝑥) = {

𝑥 − 100

40
, 100 ≤ 𝑥 ≤ 140

180 − 𝑥

40
, 140 ≤ 𝑥 ≤ 180

, 

𝜇𝑣𝑒𝑟𝑦 𝑓𝑎𝑠𝑡(𝑥) = {
𝑥 − 140

40
, 140 ≤ 𝑥 ≤ 180

1, 180 ≤ 𝑥 ≤ 200
. 

 

For example, a car whose speed is 110 km/h is considered to be more 

“medium” and less “fast”, as the degree of membership is 0.75 for the first 

term and 0.25 for the second one. This relation can be seen in Fig. 2.11. 
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Fig. 2.11. Membership values for the terms “medium” and “fast” 

Source: Own elaboration 

 

2.2.3.6. Intuitionistic fuzzy sets 

 

Atanassov (1986) introduced the concept of intuitionistic fuzzy set (IFS), 

which can be seen as a generalization of Zadeh’s fuzzy set. Fuzzy sets only 

consider the membership of an element to a certain set. By contrast, IFSs 

contemplate the membership and the non-membership of an element to a 

certain set. 

 

Definition. An IFS �̃� in 𝑋 is defined as: 

 

�̃� = {(𝑥, 𝜇�̃�(𝑥), 𝑣�̃�(𝑥))|𝑥 ∈ 𝑋}, (2.29) 

 

where  𝜇�̃�(𝑥): 𝑋 → [0,1] and 𝑣�̃�(𝑥): 𝑋 → [0,1], with the condition 0 ≤

𝜇�̃�(𝑥) + 𝑣�̃�(𝑥) ≤ 1 for every 𝑥 ∈ 𝑋. 𝜇�̃�(𝑥) and 𝑣�̃�(𝑥) denote, respectively, 

the degree of membership and non-membership of 𝑥 to �̃�. 

 

2.2.4. Basic uncertain information 

 

The basic uncertain information (BUI) (Jin et al., 2018; Mesiar et al., 2018) 

is a concept recently introduced that allows to generalize a wide range of 

uncertain information.  
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Definition. A BUI is as real pair �̃� =< 𝑥; 𝑐 >, where 𝑥(𝑥 ∈ [0,1]) is the 

input value and 𝑐(𝑐 ∈ [0,1]) the certainty degree of 𝑥.  

 

Each BUI can be transformed into a closed interval [𝑎, 𝑏], where 𝑎 = 𝑐𝑥 and 

𝑏 = 𝑐𝑥 + 1 − 𝑐. 

 

2.2.5. The concept of distance 

 

2.2.5.1. Distance measures 

 

In the literature we can find different distance or similarity measures: The 

Hamming distance (Hamming, 1950), the Euclidean distance, the Minkowski 

distance, the Hausdorff distance (Huttenlocher et al., 1993), the Chebyshev 

distance, and more. Among them, some of the most popular are the Hamming 

distance and the Euclidean distance, which can be defined as follows.  

 

For two sets 𝑋 = {𝑥1, … , 𝑥𝑛} and 𝑌 = {𝑦1, … , 𝑦𝑛}, we have. 

 

The Hamming distance (also called Manhattan, taxicab, or city-block 

distance): 

 

𝑑𝐻(𝑋, 𝑌) =∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

. (2.30) 

 

The normalized Hamming distance: 

 

𝑑𝑁𝐻(𝑋, 𝑌) =
1

𝑛
∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

. (2.31) 

 

The Euclidean distance: 

 

𝑑𝐸(𝑋, 𝑌) = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

. (2.32) 
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The normalized Euclidean distance: 

 

𝑑𝑁𝐸(𝑋, 𝑌) = √
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

. (2.33) 

 

The Minkowski distance is a distance measure that generalizes a wide range 

of other distance measures such as the Hamming distance and Euclidean 

distance. For two sets 𝑋 = {𝑥1, … , 𝑥𝑛} and 𝑌 = {𝑦1, … , 𝑦𝑛}, and an order 

parameter 𝜆 such that 𝜆 ∈ (−∞,∞), the Minkowski distance is defined as 

follows. 

 

The Minkowski distance: 

 

𝑑𝑀𝐾 = (∑|𝑥𝑖 − 𝑦𝑖|
𝜆

𝑛

𝑖=1

)

1
𝜆⁄

. (2.34) 

 

Note that if 𝜆 = 1 we obtain the standard Hamming distance, and if 𝜆 = 2 

we obtain the standard Euclidean distance. 

 

The normalized Minkowski distance: 

 

𝑑𝑁𝑀𝐾 =
1

𝑛
(∑|𝑥𝑖 − 𝑦𝑖|

𝜆

𝑛

𝑖=1

)

1
𝜆⁄

. (2.35) 

 

Similarly, when 𝜆 = 1 the normalized Hamming distance is found, and when 

𝜆 = 2, the normalized Minkowski distance is equivalent to the normalized 

Euclidean distance. 

 

The Hausdorff distance is a measure commonly used for image matching 

(Sim et al., 1999; Zhao et al., 2005). This distance can be defined as 

 

𝐻(𝑋, 𝑌) = 𝑚𝑎𝑥(ℎ(𝑋, 𝑌), ℎ(𝑌, 𝑋)), (2.36) 
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ℎ(𝑋, 𝑌) = 𝑚𝑎𝑥
𝑥∈𝑋

(𝑚𝑖𝑛
𝑦∈𝑌

(𝑑𝐸(𝑥, 𝑦))) , (2.37) 

 

ℎ(𝑌, 𝑋) = 𝑚𝑎𝑥
𝑦∈𝑌

(𝑚𝑖𝑛
𝑥∈𝑋

(𝑑𝐸(𝑦, 𝑥))) , (2.38) 

 

where ℎ(𝑋, 𝑌) is referred as the direct Hausdorff distance from 𝑋 to 𝑌, and 

𝑑𝐸(𝑥, 𝑦) is the Euclidean distance between 𝑥 and 𝑦. 

 

2.2.5.2. The adequacy coefficient 

 

The adequacy coefficient (Kaufmann & Gil-Aluja, 1986, 1987) is an index 

used for calculating the differences between two elements, two sets, two 

fuzzy subsets, etc. The main advantage of the adequacy coefficient is that it 

neutralizes the result when the real element is higher than the ideal one. This 

characteristic differentiates it from the Hamming distance. 

 

The adequacy coefficient can be defined in the following way. 

 

Definition. Let 𝑥 and 𝑦 be two real numbers such that 𝑥, 𝑦 ∈ [0,1]. Then, the 

adequacy coefficient between 𝑥 and 𝑦 is obtained by applying the following 

formula: 

 

AC(𝑥, 𝑦) = [1 ∧ (1 − 𝑥 + 𝑦)]. (2.39) 

 

Note that the symbol ∧ indicates the lesser of the (1 − 𝑥 + 𝑦) value and 1. 

 

Furthermore, for two sets 𝑋 = {𝑥1, … , 𝑥𝑛} and 𝑌 = {𝑦1, … , 𝑦𝑛}, the weighted 

adequacy coefficient (WAC) can be defined as follows. 

 

Definition. A WAC of dimension 𝑛 is a mapping WAC: [0,1]𝑛 × [0,1]𝑛 →

[0,1] that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑖 ∈

[0,1] and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, such that: 

 

WAC(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛, 𝑦𝑛〉) =∑𝑤𝑖

𝑛

𝑖=1

[1 ∧ (1 − 𝑥𝑖 + 𝑦𝑖)], (2.40) 
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where 𝑥𝑖 and 𝑦𝑖 are the 𝑖th arguments of the sets 𝑋 and 𝑌. 

 

Observe that the normalized adequacy coefficient is obtained when 𝑤𝑖 =

1 𝑛⁄ . 

 

2.2.6. Aggregation operators 

 

Aggregation can be formally defined as the process of combining several 

values into a single representative value. Aggregation operators (also called 

aggregation functions) perform this operation (Grabisch et al., 2009). Two 

very common aggregation operator are the arithmetic mean (also referred as 

average) and the weighted mean. 

 

Another important and increasingly popular aggregation operator is the 

OWA operator from Yager (1988). Since its introduction, several authors 

developed a range of interesting extensions and applications, which will be 

reviewed in the following sections. 
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2.3. The OWA operator 
 

2.3.1. Yager’s OWA operator 

 

The ordered weighted averaging (OWA) operator was introduced by Yager 

(1988) and it is an aggregation function that provides a parameterized family 

of aggregation operators between the minimum and the maximum.  

 

The OWA operator can be defined as follows. 

 

Definition. An OWA operator of dimension 𝑛 is a mapping OWA:𝑅𝑛 → 𝑅 

that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

OWA(𝑎1, … , 𝑎𝑛) =∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

, (2.41) 

 

where 𝑏𝑗 is the 𝑗th largest element of the arguments 𝑎1, … , 𝑎𝑛, that is 

(𝑏1, … , 𝑏𝑛) is (𝑎1, … , 𝑎𝑛) reordered from largest to smallest. 

 

Note that it is possible to distinguish between the descending OWA (DOWA) 

operator and the ascending OWA (AOWA) operator (Yager, 1992). The 

weights of these operators are related by 𝑤𝑗 = 𝑤𝑛−𝑗+1
∗ , where 𝑤𝑗 is the 𝑗th 

weight of the DOWA (or OWA) operator and 𝑤𝑛−𝑗+1
∗  is the 𝑗th weight of the 

AOWA operator. 

 

An interesting property of the OWA operator is that it includes the classical 

methods for decision-making as particular cases. This can be achieved 

through choosing different manifestations of the weighting vector 𝑊.  The 

optimistic criterion or maximax criterion selects the most favorable result of 

each alternative, that is 𝑤1 = 1 and 𝑤𝑗 = 0 for ∀ 𝑗 ≠ 1. The pessimistic 

criterion or maximin criterion selects the most unfavorable result of each 

alternative, that is 𝑤𝑗 = 0 and 𝑤𝑛 = 1 for ∀ 𝑗 ≠ 𝑛. The Laplace criterion is 

obtained when 𝑤𝑗 = 1/𝑛 for ∀ 𝑗, so it is assumed that all alternatives have 

equal probability to occur. The Hurwicz criterion is found when 𝑤1 = 𝛼, 
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𝑤𝑛 = 1 − 𝛼 and 𝑤𝑗 = 0 for ∀ 𝑗 ≠ 1, 𝑛, so it takes into account both the best 

and the worst alternative. 

 

The OWA operator is a mean operator that satisfies the properties of 

monotonicity, commutativity (sometimes referred to as symmetry), 

boundedness, and idempotency. These properties are expressed with the 

following theorems. 

 

Theorem. Monotonicity. Let 𝐹 be the OWA operator. If 𝑎𝑖 ≥ �̂�𝑖 for all 𝑖, 

then, 𝐹(𝑎1, … , 𝑎𝑛) ≥ 𝐹(�̂�1, … , �̂�𝑛). 

 

Theorem. Commutativity. In the sense that the initial indexing of the 

arguments does not meter. So, if 𝐹 is the OWA operator, then, 

𝐹(𝑎1, … , 𝑎𝑛) = 𝐹(�̂�1, … , �̂�𝑛), where (�̂�1, … , �̂�𝑛) is any permutation of 

(𝑎1, … , 𝑎𝑛). 

 

Theorem. Boundedness. Since the aggregation is delimited. Let 𝐹 be the 

OWA operator. Then, 𝑀𝑖𝑛{𝑎𝑖} ≤ 𝐹(𝑎1, … , 𝑎𝑛) ≤ 𝑀𝑎𝑥{𝑎𝑖}. 

 

Theorem. Idempotency. Let 𝐹 be the OWA operator. If 𝑎𝑖 = 𝑎 for all 𝑖, then, 

𝐹(𝑎1, … , 𝑎𝑛) = 𝑎. 

 

Another noteworthy aspect is the measures for characterizing the weighting 

vector 𝑊 and the type of aggregation it performs. The four characterizing 

measures introduced by Yager are: The attitudinal character measure (Yager, 

1988), the dispersion measure (Yager, 1988), the balance operator (Yager, 

1996), and the divergence of 𝑊 (Yager, 2002). 

 

The first measure refers to the attitudinal character (degree of or-ness) 

associated with a weighting vector and is denoted as 𝛼(𝑊) or also as AC(𝑊). 

It can be defined as follows: 

 

𝛼(𝑊) =∑𝑤𝑗 (
𝑛 − 𝑗

𝑛 − 1
)

𝑛

𝑗=1

. (2.42) 
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As we can see, 𝛼(𝑊) ∈ [0,1]. The closer 𝛼(𝑊) is to 1, the higher the level 

of preference for larger values in the aggregation. 

 

The second measure is the measure of dispersion or entropy and is denoted 

as H(𝑊) or also as Disp(𝑊). Its definition is as follows: 

 

H(𝑊) = −∑𝑤𝑗 ln(𝑤𝑗)

𝑛

𝑗=1

. (2.43) 

 

It can be shown that H(𝑊) has a value between 0 and the natural logarithm 

of 𝑛. That is H(𝑊) ∈ [0, ln(𝑛)]. 

 

The third, is the balance operator Bal(𝑊), which measures the degree of 

favoritism towards higher values (optimistic values) or lower values 

(pessimistic values). Its formula is as follows: 

 

Bal(𝑊) =∑𝑤𝑗 (
𝑛 + 1 − 2𝑗

𝑛 − 1
)

𝑛

𝑗=1

. (2.44) 

 

The balance operator can range from −1 to 1, that is Bal(𝑊) ∈ [−1,1]. For 

values of Bal(𝑊) close to −1 the aggregation emphasizes the lower values. 

For values of Bal(𝑊) close to 1 the aggregation emphasizes the higher 

values.  

 

The fourth, is the measure of divergence Div(𝑊). It measures the divergence 

of the weights against the degree of or-ness measure. It can be defined by 

using the following expression: 

 

Div(𝑊) =∑𝑤𝑗 (
𝑛 − 𝑗

𝑛 − 1
− 𝛼(𝑊))

2𝑛

𝑗=1

. (2.45) 

 

In the Table 2.14, we can see when the special cases of the pessimistic, 

Laplace and optimistic criterion are met according to the measure outcome. 
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Table 2.14. Particular cases of measures for characterizing a weighting 

vector 

 

Measure 
Criterion 

Pessimistic Laplace Optimistic 

𝛼(W) 0 0.5 1 

H(W) 0 ln(𝑛) 0 

Bal(W) −1 0 1 

Div(W) 0 
𝑛 + 1

12(𝑛 − 1)
 0 

 

Furthermore, the OWA operator has been used in a vast range of areas 

(Kacprzyk et al., 2019). This operator is commonly used in decision-making 

situations. Moreover, the OWA operator has been applied in the fields of 

computer science, engineering, business, and economics, among others. 

 

Example. In the following, an illustrative example is provided of the OWA 

operator in a decision-making problem regarding the selection of a car. 

Suppose that a woman called Kathrin is considering buying a new car and 

she is hesitating between five options, which are the following ones: 

 

• 𝐴1: Audi Q5 Sportback Advanced 45 TFSI quattro S tronic. 

• 𝐴2: BMW X4 xDrive 20i. 

• 𝐴3: Range Rover Evoque P160. 

• 𝐴4: Mercedes-Benz GLC 200 4MATIC Coupé. 

• 𝐴5: Porsche Macan. 

 

She considers five different characteristics in order to assess individually 

each alternative. These characteristics are the following ones: 

 

• 𝐶1: Price. 

• 𝐶2: Safety. 

• 𝐶3: Power. 

• 𝐶4: Consumption. 

• 𝐶5: Emissions. 
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After collecting some data, she is able to conduct the assessments for each 

car. Table 2.15 shows numerically these valuations. 

 

Table 2.15. Individual assessments 

 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝐴1 2 3 5 3 3 

𝐴2 4 2 2 4 4 

𝐴3 5 4 1 5 5 

𝐴4 3 5 3 2 2 

𝐴5 1 1 4 1 1 

 

Next, Kathrin aggregates the information by using the OWA operator and the 

AOWA operator. To do so, she considers the following weighting vector 

𝑊 = (0.3,0.3,0.2,0.1,0.1). The results are shown in Table 2.16 and the order 

of preferences in Table 2.17. Note that AM means arithmetic mean and ≻ 

“preferred to”. 

 

Table 2.16. Aggregated results 

 

 Min Max AM OWA AOWA 

𝐴1 2 5 3.2 3.5 2.9 

𝐴2 2 4 3.2 3.6 2.8 

𝐴3 1 5 4 4.5 3.5 

𝐴4 2 5 3 3.4 2.6 

𝐴5 1 4 1.6 1.9 1.3 

 

Table 2.17. Ordering of the results 

 
Operator Ordering 

Min 𝐴1 = 𝐴2 = 𝐴4 ≻ 𝐴3 = 𝐴5 

Max 𝐴1 = 𝐴3 = 𝐴4 ≻ 𝐴2 = 𝐴5 

AM 𝐴3 ≻ 𝐴1 = 𝐴2 ≻ 𝐴4 ≻ 𝐴5 

OWA 𝐴3 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴5 

AOWA 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4 ≻ 𝐴5 

 

In Table 2.17 we can see that depending on the aggregation operator used the 

ordering can vary substantially. 
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2.3.2. Extensions 

 

2.3.2.1. The IOWA operator 

 

One appealing extension of the OWA operator is the induced OWA (IOWA) 

operator developed by Yager and Filev (1999). In this operator, the step of 

reordering the input arguments is carried out using order-inducing variables. 

This allows to consider other factors in the reordering step and not only to 

the degree of optimism and pessimism. The IOWA operator can be defined 

as follows. 

 

Definition. An IOWA operator of dimension 𝑛 is a function IOWA:𝑅𝑛 ×

𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 =

(𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

IOWA(⟨𝑢1, 𝑎1⟩, … , ⟨𝑢𝑛, 𝑎𝑛⟩) =∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

, (2.46) 

 

where 𝑏𝑗 is the 𝑎𝑖 value of the IOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩ having the 𝑗th largest 𝑢𝑖 

value. 𝑢𝑖 is referred as the order-inducing variable and 𝑎𝑖 as the argument 

variable. 

 

The IOWA operator satisfies the same properties than the OWA operator, 

i.e., monotonicity, commutativity, boundedness, and idempotency. 

 

2.3.2.2. The HOWA operator 

 

Another common extension of the OWA operator is the heavy OWA 

(HOWA) operator (Yager, 2002). The key feature of this operator is that the 

sum of the weights is allowed to be between 1 and 𝑛 instead of being 

restricted to sum up to 1. The HOWA operator can be defined as follows. 
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Definition. A HOWA operator of dimension 𝑛 is a mapping HOWA: 𝑅𝑛 →

𝑅 that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] 

and 1 ≤ ∑ 𝑤𝑗
𝑛
𝑗=1 ≤ 𝑛, such that: 

 

HOWA(𝑎1, … , 𝑎𝑛) =∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

, (2.47) 

 

where 𝑏𝑗 is the 𝑗th largest of the 𝑎𝑖. 

 

Note that the HOWA operator is a monotonic and commutative function, 

however it is not bounded by the minimum and the maximum. In this case, it 

is bounded by the minimum and the total operator, i.e., the sum of all the 

arguments.  

 

2.3.2.3. The GOWA operator 

 

The generalized OWA (GOWA) operator was introduced by Yager (2004) 

and it combines the OWA operator with generalized means (Dyckhoff & 

Pedrycz, 1984). The GOWA operator can be defined as follows. 

 

Definition. A GOWA operator of dimension 𝑛 is a mapping GOWA:𝑅𝑛 → 𝑅 

that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

GOWA(𝑎1, … , 𝑎𝑛) = (∑𝑤𝑗𝑏𝑗
𝜆

𝑛

𝑗=1

)

1
𝜆⁄

, (2.48) 

 

where 𝜆 is a parameter such that 𝜆 ∈ (−∞,∞) and 𝑏𝑗 is the 𝑗th largest of the 

argument variable 𝑎𝑖.  

 

The GOWA operator is monotonic, commutative, idempotent, and limited by 

the minimum and the maximum. 
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Depending on the value that we give to the parameter 𝜆, it is possible to 

obtain a wide range of particular cases of the GOWA operator. If 𝜆 = −1, 

we obtain the ordered weighted harmonic averaging (OWHA) operator 

(Yager, 2004); if 𝜆 = 0, the ordered weighted geometric (OWG) operator 

(Chiclana et al., 2000, 2002); if 𝜆 = 1, the OWA operator; and if 𝜆 = 2, the 

ordered weighted quadratic averaging (OWQA) operator (Yager, 2004). 

 

2.3.2.4. The Quasi-OWA operator 

 

Another interesting generalization of the OWA operator is the Quasi-OWA 

operator, presented by Fodor et al. (1995). By using quasi-arithmetic means 

(Kolmogorov, 1930; Nagumo, 1930), the Quasi-OWA operator provides a 

more general formulation, including a wide range of particular cases that are 

not considered in the GOWA operator. The Quasi-OWA operator can be 

defined as follows. 

 

Definition. A Quasi-OWA operator of dimension 𝑛 is a mapping Quasi −

OWA: 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 

𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

Quasi − OWA(𝑎1, … , 𝑎𝑛) = 𝑔−1(∑𝑤𝑗𝑔(𝑏𝑗

𝑛

𝑗=1

)) , (2.49) 

 

where 𝑏𝑗 is the 𝑗th largest of the 𝑎𝑖 and 𝑔(𝑏) is a strictly continuous 

monotonic function.  

 

Note that if 𝑔(𝑏) = 𝑏 we get the OWA operator and if 𝑔(𝑏) = 𝑏𝜆 the GOWA 

operator. Also, similar to the OWA operator, the Quasi-OWA operator is 

commutative, monotonic, bounded, and idempotent. 

 

2.3.2.5. The POWA operator 

 

The probabilistic aggregation (PA) operator is an aggregation function where 

the aggregation process is done according to the probability associated to 

each argument. A PA operator is defined as follows. 
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Definition. A PA operator of dimension 𝑛 is a function PA: 𝑅𝑛 → 𝑅 such 

that: 

 

PA(𝑎1, … , 𝑎𝑛) =∑𝑣𝑖𝑎𝑖

𝑛

𝑖=1

, (2.50) 

 

where 𝑎𝑖 is the 𝑖th argument variable and each argument 𝑎𝑖 has associated 

probability 𝑣𝑖 with ∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 𝑣𝑖 ∈ [0,1]. 

 

The probabilistic OWA (POWA) operator introduced by Merigó (2012), is 

an aggregation function that unifies the probability and the OWA operator in 

the same formulation and according to the degree of importance of these two 

concepts in the aggregation process. Therefore, it provides a unified 

framework between decision-making problems under risk with the use of 

probabilities and under uncertainty with the use of OWA operators. The 

POWA operator can be defined as follows. 

 

Definition. A POWA operator of dimension 𝑛 is a function POWA: 𝑅𝑛 → 𝑅 

that has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 = (𝑤1, … , 𝑤𝑛) 

with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

POWA(𝑎1, … , 𝑎𝑛) =∑𝑣𝑗𝑏𝑗

𝑛

𝑗=1

= 𝛽∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

+ (1 − 𝛽)∑𝑣𝑖𝑎𝑖

𝑛

𝑖=1

, (2.51) 

 

where 𝑏𝑗 is the 𝑗th largest of the 𝑎𝑖, each argument 𝑎𝑖 has associated 

probability 𝑣𝑖 with ∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 𝑣𝑖 ∈ [0,1], 𝑣𝑗 = 𝛽𝑤𝑗 + (1 − 𝛽)𝑣𝑗 with 

𝛽 ∈ [0,1], and 𝑣𝑗 is the probability 𝑣𝑖 ordered according to 𝑏𝑗, that is, 

according to the 𝑗th largest of 𝑎𝑖. 

 

Note that if the parameter 𝛽 is equal to 1, we obtain the normal OWA 

operator, and if 𝛽 is equal to 0, we get the PA operator. Then, by taking into 

consideration the last two equations, the POWA operator can be formulated 

alternatively as POWA = 𝛽(OWA) + (1 − 𝛽)PA.  
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Also, the POWA operator shares the properties of the OWA operator: 

monotonicity, commutativity, boundedness, and idempotency. 

 

2.3.2.6. The UOWA operator 

 

The uncertain OWA (UOWA) operator was developed by Xu and Da (2002) 

as an extension of the OWA operator for uncertain environments where the 

available information can be assessed with confidence intervals. These 

confidence intervals can take different forms. For example, confidence 

triplets, confidence quadruples, and so on. The UOWA operator can be 

defined as follows. 

 

Definition. Let Ω be the set of confidence intervals. An UOWA operator of 

dimension 𝑛 is a function UOWA:Ω𝑛 → Ω that has associated a weighting 

vector 𝑊 of dimension 𝑛 𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , 

in which: 

 

UOWA(�̃�1, … , �̃�𝑛) =∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

, (2.52) 

 

where 𝑏𝑗 is the 𝑗th largest of the �̃�𝑖, and �̃�𝑖 is the argument variable 

represented in the form of confidence intervals. 

 

Furthermore, the UOWA operator is commutative, monotonic, bounded, and 

idempotent. 

 

2.3.2.7. The FOWA operator 

 

The fuzzy OWA (FOWA) operator can be described as an extension of the 

OWA operator that uses uncertain information represented in the form of 

fuzzy numbers (Chang & Zadeh, 1972). Furthermore, the FOWA operator 

provides a parametrized family of aggregation operators, among others, the 

fuzzy minimum, the fuzzy maximum, and the fuzzy average criteria. The 

FOWA operator can be defined as follows. 

 



 81 

Definition. Let Ψ be the set of fuzzy numbers. A FOWA operator of 

dimension 𝑛 is a function FOWA:Ψ𝑛 → Ψ that has associated a weighting 

vector 𝑊 of dimension 𝑛 𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , 

in which: 

 

FOWA(�̃�1, … , �̃�𝑛) =∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

, (2.53) 

 

where 𝑏𝑗 is the 𝑗th largest of the �̃�𝑖, and �̃�𝑖 is the argument variable 

represented in the form of fuzzy numbers. 

 

Note that the purpose of the FOWA operator is the same that the UOWA 

operator, i.e., analyze vague or imprecise information when it is not possible 

to do it with exact numbers. However, for dealing with this type of 

information, the FOWA operator uses fuzzy numbers instead of confidence 

intervals. 

 

Moreover, the FOWA operator is monotonic, commutative, idempotent, and 

bounded by the minimum and the maximum. 

 

2.3.2.8. The LOWA operator 

 

Sometimes, it is not possible to analyze the available information with 

numerical values. When this occurs, a more suitable approach may be the use 

of linguistic values by means of linguistic variables (Zadeh, 1975a, 1975b, 

1975c). 

 

In the literature we can find different linguistic models for decision-making 

that use the OWA operator. The first ones were presented in (Bordogna & 

Pasi, 1995; Herrera et al., 1995). However, the main problem of these 

classical linguistic models is the loss of information when operations are 

performed and therefore produce biased results. To address this problem, 

additional linguistic models were proposed. Notable among these are the 

ones presented by Herrera and Martínez (2000) and Xu (2004a, 2004b). 
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On the one hand, the approach from Herrera and Martínez (2000) uses means 

of 2-tuples, (𝑠, 𝛼), to represent the linguistic information. The 2-tuples are 

formed by a linguistic term, 𝑠, and a number, 𝛼, representing the value of the 

symbolic translation. 

 

Definition. (Herrera & Martínez, 2000) “Let 𝛽 be the result of an aggregation 

of the indexes of a set of labels assessed in the linguistic label set 𝑆 =

{𝑠0, 𝑠1, … , 𝑠𝑔}, i.e., the result of a symbolic aggregation operation. 𝛽 ∈ [0, 𝑔], 

being 𝑔 + 1 the cardinality of 𝑆. Let 𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝛽) and 𝛼 = 𝛽 − 𝑖 be two 

values such that 𝑖 ∈ [0, 𝑔] and 𝛼 ∈ [−0.5, 0.5), then 𝛼 is called a symbolic 

translation.” 

 

Definition. The 2-tuple that expresses the equivalent information to 𝛽 is 

found with the following function: 

 

∆: [0, 𝑔] → 𝑆 × [−0.5, 0.5),

∆(𝛽) = (𝑠𝑖 , 𝛽), 𝑤𝑖𝑡ℎ {
𝑠𝑖 𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝛽)

𝛼 = 𝛽 − 𝑖 𝛼 ∈ [−0.5, 0.5),

(2.54) 

 

where round is the usual round operation, 𝑠𝑖 has the closest index label to 𝛽, 

and 𝛼 is the symbolic translation value. 

 

Let 𝑋 = {(𝑠1, 𝛼1), … , (𝑠𝑛, 𝛼𝑛)} be a set of 2-tuples. Then, taking into account 

the previous concepts, the 2-tuple OWA (2-TOWA) operator can be defined 

as follows. 

 

Definition. A 2-TOWA operator of dimension 𝑛 is a mapping 2 −

TOWA: 𝑆𝑛 × 𝑅𝑛 → 𝑆 that has associated a weighting vector 𝑊 =

(𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

2 − TOWA((𝑠1, 𝛼1), … , (𝑠𝑛, 𝛼𝑛)) = ∆(∑𝑤𝑗𝛽𝑗
∗

𝑛

𝑗=1

) , (2.55) 

 

where 𝛽𝑗
∗ is the 𝑗th largest of the 𝛽𝑗. 
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On the other hand, the method from Xu (2004a, 2004b) basically extends a 

discrete term set 𝑆 to a continuous linguistic term set 𝑆̅ = {𝑠𝛼|𝑠1 <

𝑠𝛼 ≤𝑠𝑡 , 𝛼 ∈ [1, 𝑡]}. In the case that 𝑠𝛼 ∈ 𝑆, then 𝑠𝛼 is called original linguistic 

term. But if 𝑠𝛼 ∉ 𝑆, then 𝑠𝛼 is called virtual linguistic term. An example of a 

discrete linguistic term set can be seen in Fig. 2.12, where {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5} 

are the original linguistic terms. Conversely, e.g., 𝑠4.2 is a virtual linguistic 

term set. Usually, the original linguistic terms are used to conduct the initial 

assessments, while the virtual linguistic terms appear in operations. 

 

𝑆 = {𝑠1 = 𝑣𝑒𝑟𝑦 𝑠𝑙𝑜𝑤; 𝑠2 = 𝑠𝑙𝑜𝑤; 𝑠3 = 𝑚𝑒𝑑𝑖𝑢𝑚; 𝑠4 = 𝑓𝑎𝑠𝑡; 𝑠5 = 𝑣𝑒𝑟𝑦 𝑓𝑎𝑠𝑡} 

 

𝑣𝑒𝑟𝑦 𝑠𝑙𝑜𝑤 𝑠𝑙𝑜𝑤 𝑚𝑒𝑑𝑖𝑢𝑚 𝑓𝑎𝑠𝑡 𝑣𝑒𝑟𝑦 𝑓𝑎𝑠𝑡 
          

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 

 

Fig. 2.12. Discrete linguistic term set 

Source: Own elaboration 

 

Note that this method considers that the linguistic term set is uniformly and 

symmetrically distributed. 

 

In keeping with the method from Xu (2004a, 2004b), a formal definition of 

the linguistic OWA (LOWA) operator, also called extended OWA (EOWA) 

operator, would be the following one. 

 

Definition. A LOWA operator of dimension 𝑛 is a mapping LOWA: 𝑆𝑛 → 𝑅 

that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

LOWA(𝑠𝛼1 , … , 𝑠𝛼𝑛) =∑𝑤𝑗𝑠𝛽𝑗

𝑛

𝑗=1

, (2.56) 

 

where 𝑠𝛽𝑗  is the 𝑗th largest of the 𝑠𝛼𝑖.  
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2.3.2.9. The OWAD operator 

 

The ordered weighted averaging distance (OWAD) operator (Merigó & Gil-

Lafuente, 2007, 2010) is an aggregation operator that integrates the OWA 

operator with the Hamming distance measure (Hamming, 1950). 

 

For two sets 𝑋 = {𝑥1, … , 𝑥𝑛} and 𝑌 = {𝑦1, … , 𝑦𝑛}, the OWAD operator can 

be defined as follows. 

 

Definition. An OWAD operator of dimension 𝑛 is a function 

OWAD: [0,1]𝑛 × [0,1]𝑛 → [0,1] that has associated a weighting vector 𝑊 of 

dimension 𝑛 𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

OWAD(𝑋, 𝑌) =∑𝑤𝑗𝐷𝑗

𝑛

𝑗=1

, (2.57) 

 

where 𝐷𝑗 is the 𝑗th largest individual distance of the |𝑥𝑖 − 𝑦𝑖| and 𝑥𝑖 , 𝑦𝑖 ∈

[0,1] are the 𝑖th arguments of the sets 𝑋 and 𝑌. 

 

The OWAD operator satisfies the same properties as the OWA operator, i.e., 

monotonicity, commutativity, boundedness, and idempotency. But, in 

addition, the OWAD operator also accomplishes the conditions of 

nonnegativity and reflexivity. These last two properties can be demonstrated 

with the following theorems. 

 

Theorem. Nonnegativity. Let 𝐹 be the OWAD operator. Then, 𝐹(|𝑎1 −

𝑏1|, … , |𝑎𝑛 − 𝑏𝑛|) ≥ 0. 

 

Theorem. Reflexivity. Let 𝐹 be the OWAD operator. If 𝐴 = 𝐵, then, 

𝐹(|𝑎1 − 𝑏1|, … , |𝑎𝑛 − 𝑏𝑛|) = 0. 

 

2.3.2.10. The OWAAC operator 

 

The researchers Merigó and Gil-Lafuente (2008, 2010) presented the ordered 

weighted averaging adequacy coefficient (OWAAC) operator, which uses 

the adequacy coefficient (Kaufmann & Gil-Aluja, 1986, 1987) and the OWA 
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operator in the same formulation. This operator is used for comparing two 

sets in a more complete way, as it neutralizes the result when one or more 

elements of a set are greater than the elements of the other set. 

 

For two sets 𝑋 = {𝑥1, … , 𝑥𝑛} and 𝑌 = {𝑦1, … , 𝑦𝑛}, the OWAAC operator is 

defined as follows. 

 

Definition. An OWAAC operator of dimension 𝑛 is a mapping 

OWAAC: [0,1]𝑛 × [0,1]𝑛 → [0,1] that has associated a weighting vector 

𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

OWAAC(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛, 𝑦𝑛〉) =∑𝑤𝑗

𝑛

𝑗=1

𝐾𝑗, (2.58) 

 

where 𝐾𝑗 is the 𝑗th largest of the [1 ∧ (1 − 𝑥𝑖 + 𝑦𝑖)], and 𝑥𝑖 and 𝑦𝑖 are the 

𝑖th arguments of the sets 𝑋 and 𝑌. 

 

Like the OWAD operator, the OWAAC operator is commutative, monotonic, 

bounded, idempotent, nonnegative, and reflexive. 

 

2.3.2.11. The OWAIMAM operator 

 

Merigó and Gil-Lafuente (2012) first introduced the ordered weighted 

averaging index of maximum and minimum level (OWAIMAM) operator. 

The particularity of this operator is that it utilizes in the same formulation the 

Hamming distance, the adequacy coefficient, and the OWA operator. 

 

For two sets 𝑋 = {𝑥1, … , 𝑥𝑛} and 𝑌 = {𝑦1, … , 𝑦𝑛}, the OWAIMAM operator 

is defined as follows. 
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Definition. An OWAIMAM operator of dimension 𝑛 is a mapping 

OWAIMAM: [0,1]𝑛 × [0,1]𝑛 → [0,1] that has associated a weighting 

vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

OWAIMAM(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛, 𝑦𝑛〉) =∑𝑤𝑗

𝑛

𝑗=1

𝐾𝑗, (2.59) 

 

where 𝐾𝑗 is the 𝑗th largest of all the |𝑥𝑖 − 𝑦𝑖| and the [0 ∨ (𝑥𝑖 − 𝑦𝑖)], and 𝑥𝑖 

and 𝑦𝑖 are the 𝑖th arguments of the sets 𝑋 and 𝑌. The symbol ∨ indicates the 

greater of the (𝑥𝑖 − 𝑦𝑖) value and 0. 

 

Note also that the OWAIMAM is a commutative, monotonic, bounded, and 

idempotent aggregation function. 
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2.4. Overview of pensions 
 

2.4.1. Theoretical foundation 

 

2.4.1.1. Current situation 

 

The main goal of pension systems (also referred as retirement income 

systems) is to ensure an adequate retirement income for all elderly people, 

while maintaining sound financial prospects. However, the acceleration of 

population aging and the adverse economic conditions imply a serious 

challenge for the pension systems (Mercer, 2022; Organization for Economic 

Cooperation and Development [OECD], 2021). To address this issue, certain 

reforms have been carried out over the past years, such as raising the 

retirement age. However, these measures are not enough. 

 

2.4.1.2. Types of pension systems 

 

Over the years, several approaches have been presented to classify pension 

systems. First, the World Bank (1994) recommended a three-pillar 

classification. This three-pillar classification can be summarized as follows: 

 

• Pillar 1: Mandatory and publicly managed. 

• Pillar 2: Mandatory and privately managed. 

• Pillar 3: Voluntary. 

 

However, a few years later, the same international institution introduced a 

new approach to classify pension systems (World Bank, 2008) based on the 

following five pillars: 

 

• Pillar 0: Non-contributory and financed by the state.  

• Pillar 1: Mandatory with contributions linked to earnings. 

• Pillar 2: Mandatory defined contribution plan. 

• Pillar 3: Voluntary. 

• Pillar 4: Non-financial. 
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The OECD (2021) used a different approach based on a three-tier taxonomy, 

outlined in the following bullet points: 

 

• Tier 1: Mandatory, non-earnings-related, and provided by the public 

sector. 

• Tier 2: Mandatory, earnings-related, and provided by either the public 

or private sector. 

• Tier 3: Voluntary, earnings-related, and provided by the private 

sector. 

 

The Mercer CFA Institute Global Pension Index compares the pension 

systems of various countries worldwide. This comparison is based on three 

sub-indices: adequacy, sustainability, and integrity. According to the 2022 

results of this index (Mercer, 2022), Iceland, Netherlands, and Denmark are 

considered the countries with the best pension systems. By contrast, the 

pension systems of Indonesia, Turkey, India, Argentina, Philippines, and 

Thailand are the ones with major weaknesses and gaps. 

 

2.4.1.3. Public plan and private plan 

 

Public pension plans refer to the Social Security and similar systems, where 

pension benefit payments are administered by the general government (i.e., 

central, state, or local government as well as other public-sector bodies) 

(Kumar, 2014; Yermo, 2002). In private pension plans, pension benefit 

payments are administered by an institution other than the general 

government. Specifically, these plans are administered by employers who 

function as the plan sponsor, pension entities, or private sector providers 

(Kumar, 2014; Yermo, 2002). 

 

2.4.1.4. Defined benefit plan and defined contribution plan 

 

On the one hand, defined benefit (DB) pension plans provide a predetermined 

retirement income based on the number of years of service and the salary 

history. On the other hand, in defined contribution (DC) pension plans, the 

retirement income depends on the amount of contributions as well as 

investment returns. Also, in DC pension plans, the financial and longevity 
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risk is borne by the member, which does not occur with DB pension plans 

(Yermo, 2002). 

 

2.4.2. Bibliometric analysis 

 

2.4.2.1. Introduction 

 

In order to quantitatively analyze the scientific literature on pensions and 

retirement, a bibliometric analysis is conducted. Specifically, the annual 

evolution of the number of published documents is examined. Also, the most 

influential publications are assessed. Lastly, authors, institutions, countries, 

journals, and research areas are investigated regarding productivity. 

 

2.4.2.2. Methodology 

 

In this study, the database Web of Science (WoS) Core Collection is used; 

however, other sources of information exist. The variant words selected were 

‘retirement*’ or ‘pension*’. The period of the search was from 1990 to 2022. 

Only articles and review articles were contemplated, obtaining a total of 

37,504 publications. This investigation was performed in January 2023. 

 

2.4.2.3. Results 

 

Publication and citation structure 

 

Fig. 2.13 presents the number of annual publications on retirement/pension. 

A high productivity growth can be observed over the years of the period 

studied. This reflects the increasing concern about pensions in society. The 

maximum is reached in the year 2021, with a volume of 3,447 annual 

publications. 
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Fig. 2.13. Annual trend of publications related to retirement/pension 

Source: Own elaboration 

 

Table 2.18 shows the ten publications on retirement/pension with a higher 

number of citations. A general remark is that all these publications have 

reached more than 1,000 citations. 

 

Table 2.18. Top 10 most influential publications with retirement/pension 

 

R Article Author/s PY TC 

1 

The size and burden of mental disorders and 

other disorders of the brain in Europe 2010 

(Wittchen et al., 2011) 

Wittchen, HU 

et al. 
2011 2,245 

2 

Econometric methods for fractional response 

variables with an application to 401(k) plan 

participation rates (Papke & Wooldridge, 

1996) 

Papke, LE; 

Wooldridge, 

JM 

1996 1,985 

3 

Long-term cognitive impairment and 

functional disability among survivors of 

severe sepsis (Iwashyna et al., 2010) 

Iwashyna, TJ 

et al. 
2010 1,411 

4 
Social jetlag: Misalignment of biological and 

social time (Wittmann et al., 2006) 

Wittmann, M 

et al. 
2006 1,331 

5 

Long-term impact of overweight and obesity 

in childhood and adolescence on morbidity 

and premature mortality in adulthood: 

Systematic review (Reilly & Kelly, 2011) 

Reilly, JJ; 

Kelly, J 
2011 1,329 

6 

Prevalence of dementia in the United States: 

The aging, demographics, and memory study 

(Plassman et al., 2007) 

Plassman, BL 

et al. 
2007 1,194 
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R Article Author/s PY TC 

7 

The China Syndrome: Local labor market 

effects of import competition in the United 

States (Autor et al., 2013) 

Autor, DH et 

al.  
2013 1,184 

8 

The economic importance of financial 

literacy: Theory and evidence (Lusardi & 

Mitchell, 2014) 

Lusardi, A; 

Mitchell, OS 
2014 1,175 

9 

Global, regional, and national disability-

adjusted life-years (DALYs) for 359 diseases 

and injuries and healthy life expectancy 

(HALE) for 195 countries and territories, 

1990-2017: A systematic analysis for the 

Global Burden of Disease Study 2017 (Kyu 

et al., 2018) 

Kyu, HH et al. 2018 1,129 

10 

Effect of exposure to natural environment on 

health inequalities: An observational 

population study (Mitchell & Popham, 2008) 

Mitchell, R; 

Popham, F 
2008 1,092 

Source: Own elaboration through WoS. Abbreviations: R = Ranking; PY = Publication 

year; TC = Total citations. 

 

Leading authors 

 

Table 2.19 lists the ten authors with a higher volume of publications related 

to retirement/pension. Alexanderson ranks first with a total of 173 

publications. She is affiliated with the Karolinska Institute in Sweden. Langa 

and Vahtera rank second and third, respectively. 

 

Table 2.19. Top 10 most productive authors on retirement/pension 

 

R Author TP 

1 Alexanderson K 173 

2 Langa KM 148 

3 Vahtera J 117 

4 Kivimaki M 114 

5 Henkens K 101 

6 Glymour MM 94 

7 Mittendorfer-Rutz E 90 

7 Pentti J 90 

9 Stephan Y 85 

10 Sutin AR 81 

Source: Own elaboration through WoS. Abbreviations: R = Ranking; TP = Total 

publications. 
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Leading institutions 

 

The leading institutions in terms of scientific productivity are presented in 

Table 2.20. As can be seen, the University of London leads the ranking with 

1,090 publications. The University of California and the University of 

Michigan occupy second and third places, respectively. Also, it is remarkable 

that 6 of the ten most productive institutions are American. 

 

Table 2.20. Top 10 most productive institutions on retirement/pension 

 

R Institution TP 

1 University of London 1,090 

2 University of California 963 

3 University of Michigan 843 

4 Harvard University 686 

5 Karolinska Institute 668 

6 State University System of Florida 564 

7 University College London 500 

8 University of North Carolina 474 

9 National Bureau of Economic Research 465 

10 University of Helsinki 436 

Source: Own elaboration through WoS. Abbreviations: R = Ranking; TP = Total 

publications. 

 

Leading countries 

 

Fig. 2.14 illustrates the foremost productive countries in retirement/pension. 

The United States of America (USA) is clearly dominant, with more than 

13,000 articles and review articles published. It is followed in second and 

third position by England and Germany, respectively. 
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Fig. 2.14. Top 10 most productive countries on retirement/pension 

Source: Own elaboration through WoS 

 

Leading journals 

 

The ten journals with the most publications on retirement/pension can be 

found in Table 2.21. The leading journal is Journals of Gerontology, Series 

B: Psychological Sciences and Social Sciences, with 517 publications. The 

International Journal of Environmental Research and Public Health ranked 

the second greatest producer, followed by the Ageing & Society. 

 

Table 2.21. Top 10 most productive journals on retirement/pension 

 

R Journal TP 

1 
Journals of Gerontology, Series B: Psychological Sciences and Social 

Sciences 
517 

2 International Journal of Environmental Research and Public Health 381 

3 Ageing & Society 377 

4 Journal of Pension Economics and Finance 352 

5 BMC Public Health 332 

6 PLOS ONE 307 

7 The Gerontologist 285 

8 Insurance: Mathematics and Economics 253 

9 Social Science and Medicine 239 

10 Research on Aging 228 

Source: Own elaboration through WoS. Abbreviations: R = Ranking; TP = Total 

publications. 
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Leading fields 

 

As shown in Fig. 2.15, “Business Economics” is the predominant research 

area, with a total of 10,632 publications that included the word 

retirement/pension and its different forms. “Geriatrics Gerontology” 

occupies the second position with 4,979 publications, followed by “Public 

Environmental Occupational Health” with 4,193. 

 

 

 

Fig. 2.15. Top 10 research areas with most publications on 

retirement/pension 

Source: Own elaboration through WoS 
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3. Research contributions 
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3.1. The linguistic OWA adequacy coefficient operator 

and its application to decision-making 
 

The following research paper will be submitted to the Expert Systems with 

Applications Q1 journal. According to Journal Citation Reports (JCR), 

published by Clarivate Analytics, the Impact Factor in 2021 is 8.665. Also, 

based on the Scopus database, the 2021 CiteScore metric of the journal is 

12.2. 

 

The authors of this paper are Anton Figuerola Wischke (University of 

Barcelona), Anna Maria Gil Lafuente (University of Barcelona), Finn Erling 

Kydland (University of California – Santa Barbara), and José María Merigó 

Lindahl (University of Technology Sydney). 

 

Abstract 

 

This article presents the linguistic adequacy coefficient (LAC), a new index 

for calculating the difference between two linguistic variables. It is similar to 

the linguistic Hamming distance with the distinction that it establishes a 

threshold from which the result is always the same. Furthermore, the 

linguistic ordered weighted averaging adequacy coefficient (LOWAAC) 

operator is introduced, which is an enhanced aggregation function that 

utilizes linguistic information and the LAC in the OWA operator. Moreover, 

the LOWAAC operator is extended by using order-inducing variables in the 

reordering step of the linguistic arguments, thus obtaining a new operator 

called induced LOWAAC (ILOWAAC). Additionally, the LOWAAC and 

ILOWAAC operators are both generalized by employing generalized means, 

thus attaining the generalized LOWAAC (GLOWAAC) operator and the 

generalized ILOWAAC (GILOWAAC) operator, respectively. Likewise, the 

LOWAAC and ILOWAAC operators can also be generalized with the use of 

quasi-arithmetic means, getting, in this case, the Quasi-LOWAAC operator 

and the Quasi-ILOWAAC operator, respectively. These new aggregation 

operators are helpful when the decision-maker needs to compare a range of 

alternatives with an ideal, but without giving any reward or penalty if the 

ideal levels are surpassed. This comparison especially applies to situations of 

great uncertainty, where the information available cannot be assessed by 
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means of exact numbers. However, it is possible to employ linguistic 

assessments. Finally, the article develops an application of the proposed 

approach in a multi-expert decision-making (MEDM) problem regarding the 

selection of human resources in a football club. 

 

Keywords: Adequacy coefficient, decision-making, human resource 

management, linguistic aggregation operator, OWA operator. 

 

1. Introduction 

 

Aggregation is the process of combining several numerical or linguistic 

values into a single representative value, and an aggregation operator (also 

called aggregation function) performs this operation (Beliakov et al., 2016; 

Grabisch et al., 2009). Yager first introduced the ordered weighted averaging 

(OWA) operator in (Yager, 1988). It is an increasingly popular aggregation 

operator that has been applied successfully to various fields (Csiszar, 2021; 

Shu, 2022; Yager et al., 2011), primarily due to its effectiveness in modeling 

the bipolar (pessimism/optimism) preference. Observing some of the most 

recent publications, the OWA operator has been utilized for customer 

classification (Pons-Vives et al., 2022) and risk assessment (Cables et al., 

2022; Garg et al., 2022), among others. 

 

In the existing literature, we can find a lot of interesting extensions of the 

OWA operator. One of them is the induced OWA (IOWA) operator from 

Yager and Filev (1999), where the reordering process of the input arguments 

uses order-inducing variables, rather than based upon the values of the 

arguments. Another extension is the generalized OWA (GOWA) operator 

presented by Yager (2004), and which uses generalized means (Dyckhoff & 

Pedrycz, 1984). Moreover, the OWA operator has been further generalized 

by incorporating quasi-arithmetic means (Kolmogorov, 1930; Nagumo, 

1930). This form of aggregation is called Quasi-OWA operator (Fodor et al., 

1995). 

 

Furthermore, the OWA operator has been studied by deploying the adequacy 

coefficient similarity measure developed by Kaufmann and Gil-Aluja (1986, 

1987), obtaining the OWA adequacy coefficient (OWAAC) operator 

(Merigó & Gil-Lafuente, 2008, 2010). The OWAAC operator, developed by 
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Merigó and Gil-Lafuente, compares an ideal set with a real one. But, unlike 

the OWA distance (OWAD) operator (Merigó & Gil-Lafuente, 2010), it does 

not penalize the result when the ideal levels are surpassed. Since its 

introduction, further contributions have been made to this operator. See, e.g., 

Ref. (Figuerola-Wischke et al., 2022). 

 

Nonetheless, we can find some situations where the available information 

cannot be assessed with precise numerical values. When this occurs, it is 

necessary to apply a different approach, such as the utilization of linguistic 

assessments (Zadeh, 1975a, 1975b, 1975c). In (Herrera et al., 1995), Herrera 

et al. proposed one of the first linguistic version of the OWA operator, called 

linguistic OWA (LOWA) operator. From then on, different authors have 

suggested interesting developments (Herrera et al., 2009; Xu, 2008), 

highlighting the contributions made by Herrera and Martínez (2000) and Xu 

(2004a). However, presently there is not a linguistic aggregation function 

based on the idea of the OWAAC operator. 

 

Therefore, the aim of this article is to create a linguistic version of the 

adequacy coefficient, called the linguistic adequacy coefficient (LAC). The 

LAC is a new index used to calculate the distance between two linguistic 

variables with certain distinctive features. Through the LAC, it is possible to 

develop two novel operators: the linguistic weighted adequacy coefficient 

(LWAC) operator, and the linguistic OWAAC (LOWAAC) operator. 

 

These new operators are for situations where a high level of uncertainty is 

present, and the available information is only assessable with words. In 

addition, these operators are practical when comparing a real set with an ideal 

one. This comparison especially applies when the ideal set does not take the 

form of a Boolean set and the decision-maker does not want to reward or 

penalize the result when one or more elements of the real set exceed the ideal 

ones. It only penalizes the result when the element in question, belonging to 

the real set, is lower than the ideal one. This feature differentiates it from 

other well-known methods, such as the LOWA distance (LOWAD) operator 

(Merigó & Casanovas, 2010), which uses the Hamming distance (Hamming, 

1950), the linguistic variables, and the OWA operator, all together in a single 

formulation. 
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Also, this article extends the LOWAAC operator by adding order-inducing 

variables, thereby attaining the induced LOWAAC (ILOWAAC) operator. 

Moreover, the LOWAAC operator, and the ILOWAAC operator, are 

generalized by using generalized means. Therefore, generating the 

generalized LOWAAC (GLOWAAC) operator and the generalized 

ILOWAAC (GILOWAAC) operator. Further generalizations of the 

LOWAAC and ILOWAAC operators are also introduced, specifically by 

integrating quasi-arithmetic means. They are named Quasi-LOWAAC 

operator and Quasi-ILOWAAC operator, respectively.  

 

Furthermore, an application of the new approach in a human resources multi-

expert decision-making (MEDM) problem is conducted. The exercise 

focuses on the selection of the most suitable football player. The complex 

undertaking of recruiting the right players is essential to the success of any 

football club (Taylor et al., 2008). Additionally, by including a comparative 

analysis utilizing classical techniques, the effectiveness of the LOWAAC 

operator and its variations has been demonstrated.  

 

This article is organized as follows. Section 2 briefly reviews some basic but 

necessary concepts. Section 3 explains the linguistic approach used in this 

work. Section 4 presents the LAC index and the LWAC operator. Section 5 

defines the LOWAAC operator. Section 6 formulates some extensions of the 

LOWAAC operator. Section 7 develops an illustrative example applying the 

new method in the context of human resources. Section 8 performs a 

comparative analysis. Finally, Section 9 summarizes the article’s main 

conclusions and identifies directions for future research. 

 

2. Preliminaries 

 

The following section comprises a concise review of the OWA operator, the 

IOWA operator, the GOWA operator, the Quasi-OWA operator, the LOWA 

operator, the adequacy coefficient, and the OWAAC operator. 
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The OWA operator 

 

The OWA operator from Yager (1988) provides a parameterized class of 

mean type aggregation operators that lies between the minimum and the 

maximum. The OWA operator can be defined as follows. 

 

Definition 1. An OWA operator of dimension 𝑛 is a mapping OWA:𝑅𝑛 → 𝑅 

that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

OWA(𝑎1, … , 𝑎𝑛) =∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

, (1) 

 

where 𝑏𝑗 is the 𝑗th largest element of the arguments 𝑎1, … , 𝑎𝑛, i.e., 

(𝑏1, … , 𝑏𝑛) is (𝑎1, … , 𝑎𝑛) reordered from largest to smallest. 

 

The IOWA operator 

 

One of the most important extensions of the OWA operator is the IOWA 

operator (Yager & Filev, 1999). The main difference is that the reordering 

process uses order-inducing variables. Because of this particularity, a 

substantial advantage of this extension is that it can contemplate the complex 

attitudes of the decision-maker. The definition of an IOWA operator is as 

follows. 

 

Definition 2. An IOWA operator of dimension 𝑛 is a mapping 

IOWA: 𝑅𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 =

(𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

IOWA(⟨𝑢1, 𝑎1⟩, … , ⟨𝑢𝑛, 𝑎𝑛⟩) =∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

, (2) 

 

where 𝑏𝑗 is the 𝑎𝑖 value of the IOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩ having the 𝑗th largest 𝑢𝑖 

value, 𝑢𝑖 is referred as the order-inducing variable, and 𝑎𝑖 as the argument 

variable. 
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The GOWA operator 

 

The GOWA operator, introduced by Yager (2004), combines the OWA 

operator with generalized means (Dyckhoff & Pedrycz, 1984). The GOWA 

operator can be defined as follows. 

 

Definition 3. A GOWA operator of dimension 𝑛 is a mapping GOWA: 𝑅𝑛 →

𝑅 that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] 

and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

GOWA(𝑎1, … , 𝑎𝑛) = (∑𝑤𝑗𝑏𝑗
𝜆

𝑛

𝑗=1

)

1
𝜆⁄

, (3) 

 

where 𝜆 is a parameter such that 𝜆 ∈ (−∞,∞) and 𝑏𝑗 is the 𝑗th largest of the 

argument variable 𝑎𝑖. 

 

The Quasi-OWA operator 

 

Another interesting generalization of the OWA operator is the Quasi-OWA 

operator, presented in (Fodor et al., 1995). Through the use of quasi-

arithmetic means (Kolmogorov, 1930; Nagumo, 1930), the Quasi-OWA 

operator provides a more general formulation, encompassing a wide range of 

particular cases that are not considered in the GOWA operator. The Quasi-

OWA operator can be defined as follows. 

 

Definition 4. A Quasi-OWA operator of dimension 𝑛 is a mapping Quasi −

OWA: 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 

𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

Quasi − OWA(𝑎1, … , 𝑎𝑛) = 𝑔−1 (∑𝑤𝑗𝑔(𝑏𝑗

𝑛

𝑗=1

)) , (4) 
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where 𝑏𝑗 is the 𝑗th largest of the argument variable 𝑎𝑖 and 𝑔(𝑏) is a strictly 

continuous monotonic function.  

 

Note that if 𝑔(𝑏) = 𝑏, we get the OWA operator and if 𝑔(𝑏) = 𝑏𝜆, the 

GOWA operator. 

 

The LOWA operator 

 

Sometimes, it is not feasible to analyze the available information with exact 

numerical values. When this occurs, a suitable solution may be employing 

linguistic values by means of linguistic variables (Zadeh, 1975a, 1975b, 

1975c). Among the literature, various types of OWA operators that allow to 

combine linguistic information can be found (Herrera et al., 2009; Xu, 2008). 

One of them is the LOWA operator from Xu (2004a), which can be defined 

as follows. 

 

Definition 5. Let 𝑆 be a discrete linguistic term set, and 𝑆̅ a continuous 

linguistic term set. Then, a LOWA operator of dimension 𝑛 is a mapping 

LOWA: 𝑆𝑛 → 𝑆̅ that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), 

with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

LOWA(𝑠𝛼1 , … , 𝑠𝛼𝑛) =∑𝑤𝑗𝑠𝛽𝑗

𝑛

𝑗=1

, (5) 

 

where 𝑠𝛽𝑗  is the 𝑗th greatest of the linguistic argument variable 𝑠𝛼𝑖.  

 

The adequacy coefficient 

 

Distance measures, such as the adequacy coefficient (Kaufmann & Gil-Aluja, 

1986, 1987), are widely used in decision-making. The adequacy coefficient 

is mathematically defined as follows. 

 

Definition 6. The adequacy coefficient between two real numbers 𝑥 ∈ [0,1] 

and 𝑦 ∈ [0,1] is obtained with the following formula: 

 

AC(𝑥, 𝑦) = [1 ∧ (1 − 𝑥 + 𝑦)]. (6) 
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Regarding the mathematical symbol ∧, it is used to indicate the lesser of the 

(1 − 𝑥 + 𝑦) value and 1. Also, note that the adequacy coefficient is similar 

to the Hamming distance (Hamming, 1950) and the Euclidean distance, 

however, with the advantage that it neutralizes the result when 𝑥 < 𝑦. 

 

For two sets 𝑋 = {𝑥1, … , 𝑥𝑛} and 𝑌 = {𝑦1, … , 𝑦𝑛}, the weighted adequacy 

coefficient (WAC) is defined as follows. 

 

Definition 7. A WAC of dimension 𝑛 is a mapping WAC: [0,1]𝑛 × [0,1]𝑛 →

[0,1] that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑖 ∈

[0,1] and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, such that: 

 

WAC(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛, 𝑦𝑛〉) =∑𝑤𝑖

𝑛

𝑖=1

AC(𝑥𝑖 , 𝑦𝑖), (7) 

 

where AC(𝑥𝑖 , 𝑦𝑖) is the adequacy coefficient between 𝑥𝑖 and 𝑦𝑖, with 𝑥𝑖 and 

𝑦𝑖 as the 𝑖th arguments of the sets 𝑋 and 𝑌. 

 

The OWAAC operator 

 

Often, when using similarity measures with the OWA operator, an ideal set 

is established. It is then compared with different alternatives to rank them 

according to their closeness. Such is the case of the OWAD operator. 

Nevertheless, in some situations, utilizing this operator can be inappropriate. 

 

Usually, this is the case when one or more characteristics of an alternative 

have higher values than the ones of the ideal. In this case, the OWAD 

operator would penalize the result, which is inconsistent (on the assumption 

that greater values are preferred). E.g., within a personnel selection process, 

if a candidate presents higher skills than the required ones, he/she should not 

be penalized. 

 

Some reader may have noticed that the problem mentioned in the previous 

paragraph would not occur if the ideal set is fixed at the maximum. However, 

following such criteria could also lead to inconsistent results. One 
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explanation is that, within a given alternative, a high value in a characteristic 

may compensate for a low value in another attribute. For more detailed 

information in this regard, see Ref. (Figuerola-Wischke et al., 2022).  

 

The OWAAC operator (Merigó & Gil-Lafuente, 2008, 2010) provides a 

practical solution to this limitation by using the adequacy coefficient. For two 

sets 𝑋 = {𝑥1, … , 𝑥𝑛} and 𝑌 = {𝑦1, … , 𝑦𝑛} (in practice, 𝑋 being the ideal set 

and 𝑌 the real or alternative set), the OWAAC operator can be defined as 

follows. 

 

Definition 8. An OWAAC operator of dimension 𝑛 is a mapping 

OWAAC: [0,1]𝑛 × [0,1]𝑛 → [0,1] that has associated a weighting vector 

𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

OWAAC(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛, 𝑦𝑛〉) =∑𝑤𝑗

𝑛

𝑗=1

AC(𝑥𝑗 , 𝑦𝑗), (8) 

 

where AC(𝑥𝑗 , 𝑦𝑗) is the 𝑗th largest AC(𝑥𝑖 , 𝑦𝑖) value of the OWAAC pair 

(𝑥𝑖 , 𝑦𝑖) and AC(𝑥𝑖 , 𝑦𝑖) is the adequacy coefficient between 𝑥𝑖 and 𝑦𝑖. 

 

3. The linguistic approach 

 

To correctly use the LOWAAC operator and its different manifestations, we 

first need to define the linguistic term set (also called linguistic label set). The 

linguistic approach adopts symmetrically and uniformly distributed linguistic 

term sets.  

 

Definition 9. Let 𝑆 = {𝑠0, 𝑠𝛿 , 𝑠2𝛿 , 𝑠3𝛿 , … , 𝑠1} be a finite and totally ordered 

discrete linguistic term set with at least two elements, that is |𝑆| > 1,  and a 

parameter 𝛿 calculated as 𝛿 =
1

|𝑆|−1
. |𝑆| refers to the cardinality value of the 

linguistic term set 𝑆. Alternatively, it can be written as 𝑛(𝑆).  
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Furthermore, the following characteristics are stated: 

 

• The set is ordered: 𝑠𝑖 < 𝑠𝑗 ⇔ 𝑖 < 𝑗. 

• The negation operator: 𝑁𝑒𝑔(𝑠𝑖) = 𝑠𝑗 such that 𝑗 = 1 − 𝑖. 

• The maximum operator is 𝑠1. 

• The minimum operator is 𝑠0. 

 

E.g., a linguistic set of five terms could be presented as follows (Fig. 3.1): 

 

𝑆 = {𝑠0 = 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑝𝑜𝑜𝑟; 𝑠0.25 = 𝑝𝑜𝑜𝑟; 𝑠0.5 = 𝑓𝑎𝑖𝑟; 𝑠0.75 = 𝑔𝑜𝑜𝑑; 𝑠1
= 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑔𝑜𝑜𝑑} 

 

𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑝𝑜𝑜𝑟 𝑝𝑜𝑜𝑟 𝑓𝑎𝑖𝑟 𝑔𝑜𝑜𝑑 𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑔𝑜𝑜𝑑 

          

𝑠0 𝑠0.25 𝑠0.5 𝑠0.75 𝑠1 

 

Fig. 3.1. Five term linguistic set 

Source: Own elaboration 

 

Moreover, the cardinal value of the linguistic term set 𝑆 should be small 

enough so as not to impose useless precision on the decision-maker and rich 

enough to allow discrimination of the assessments in a limited number of 

grades (Bordogna et al., 1997). 

 

Also, when the operations are carried out, the idea of (Xu, 2004b) is followed 

because it allows the preservation of all the information. Specifically, the 

discrete linguistic term set 𝑆 is extended to a continuous linguistic term set 

𝑆̅ = {𝑠𝑖|𝑠0 < 𝑠𝑖 ≤ 𝑠1, 𝑖 ∈ [0,1]}. Thus, if 𝑠𝑖 ∈ 𝑆, then 𝑠𝑖 is called the original 

linguistic term. Otherwise, 𝑠𝑖 is called the virtual linguistic term. As can be 

inferred, the original linguistic terms are used to assess the alternatives, and 

the virtual linguistic terms appear in the operations (Xu, 2005). 

 

4. The linguistic adequacy coefficient 

 

Within real-life decision-making, there are some situations where the 

Hamming distance combined with linguistic variables may not be helpful, 

rather the contrary. That is because it penalizes the result when it either does 
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not reach the required level of a characteristic or if it exceeds it. As mentioned 

previously, in human resources, e.g., if a candidate for a job has a higher level 

for an attribute than the required one, it makes no sense that the individual 

gets penalized for it. It only makes sense if the candidate performs to a lower 

standard than required. 

 

In such situations, a very suitable alternative may be the use of the LAC 

presented in this article, as it only penalizes the result when the real level of 

a characteristic is lower than the required one. With the LAC, when the result 

exceeds the required level, there is no penalty nor reward. The LAC is 

formally defined as follows. 

 

Definition 10. Let 𝑠𝑥 and 𝑠𝑦 be two linguistic variables, with 𝑥, 𝑦 ∈ [0,1]. 

Then, the LAC between 𝑠𝑥 and 𝑠𝑦 is obtained with the following formula: 

 

LAC(𝑠𝑥 , 𝑠𝑦) = [𝑠1 ∧ (𝑠1 − 𝑠𝑥 + 𝑠𝑦)]. (9) 

 

Recall that the mathematical symbol ∧ is used to denote the lower of the 𝑠1 

value and the (𝑠1 − 𝑠𝑥 + 𝑠𝑦) resulting value. Alternatively, the notation 

Min{𝑠1, (𝑠1 − 𝑠𝑥 + 𝑠𝑦) } could be used. 

 

For two linguistic sets 𝑋 = {𝑠𝑥1 , … , 𝑠𝑥𝑛} and 𝑌 = {𝑠𝑦1 , … , 𝑠𝑦𝑛}, the LWAC is 

defined as follows. 

 

Definition 11. A LWAC of dimension 𝑛 is a mapping LWAC: [𝑠0, 𝑠1]
𝑛 ×

[𝑠0, 𝑠1]
𝑛 → [𝑠0, 𝑠1] that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), 

with 𝑤𝑖 ∈ [0,1] and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, such that: 

 

LWAC(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) =∑𝑤𝑖

𝑛

𝑖=1

LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖), (10) 

 

where LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖) is the LAC between 𝑠𝑥𝑖  and 𝑠𝑦𝑖, with 𝑠𝑥𝑖  and 𝑠𝑦𝑖 as the 

𝑖th linguistic arguments of the linguistic sets 𝑋 and 𝑌. 
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It can be deduced that, when 𝑤𝑖 = 1 𝑛⁄ , ∀𝑖, the linguistic normalized 

adequacy coefficient (LNAC) is obtained. 

 

5. The LOWAAC operator 

 

The LOWAAC operator is a linguistic aggregation operator that uses the 

LAC and the OWA operator in the same formulation. This new operator is 

helpful when decision-making under uncertainty for ranking alternatives and 

then selecting the optimal one. It is mainly useful when the decision-maker 

needs to compare the linguistic evaluations of the characteristics of each 

alternative with the desired ones, and he/she does not want to penalize the 

result when the desired levels are surpassed, but he/she wants to apply a 

penalization when not meet. This mechanism differentiates the LOWAAC 

operator from other more common, such as the LOWAD. For two linguistic 

sets 𝑋 = {𝑠𝑥1 , … , 𝑠𝑥𝑛} and 𝑌 = {𝑠𝑦1 , … , 𝑠𝑦𝑛}, the LOWAAC operator is 

defined as follows. 

 

Definition 12. A LOWAAC operator of dimension 𝑛 is a mapping 

LOWAAC: [𝑠0, 𝑠1]
𝑛 × [𝑠0, 𝑠1]

𝑛 → [𝑠0, 𝑠1] that has associated a weighting 

vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

LOWAAC(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) =∑𝑤𝑗

𝑛

𝑗=1

LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗) , (11) 

 

where LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗) is the 𝑗th largest LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖) value of the LOWAAC 

pair (𝑠𝑥𝑖 , 𝑠𝑦𝑖). 

 

Example 1. Assume two linguistic sets 𝑋 = {𝑠0.6, 𝑠0.6, 𝑠0.3, 𝑠0.8} and 𝑌 =

{𝑠0.8, 𝑠0.4, 𝑠0.6, 𝑠0.7}. If the weighting vector is 𝑊 = (0.4,0.3,0.2,0.1), then 

the LOWAAC operator can be calculated as follows: 

 

LOWAAC = 0.4 × [𝑠1 ∧ (𝑠1 − 𝑠0.6 + 𝑠0.8)] + 0.3 × [𝑠1 ∧ (𝑠1 − 𝑠0.3 + 𝑠0.6)]

+ 0.2 × [𝑠1 ∧ (𝑠1 − 𝑠0.8 + 𝑠0.7)]

+ 0.1 × [𝑠1 ∧ (𝑠1 − 𝑠0.6 + 𝑠0.4)] = 𝑠0.96. 
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Furthermore, a distinction can be drawn between the descending LOWAAC 

(DLOWAAC) operator and the ascending LOWAAC (ALOWAAC) 

operator. The weights of these two operators are connected by 𝑤𝑗 = 𝑤𝑛−𝑗+1
∗ , 

where 𝑤𝑗 is the 𝑗th weight of the DLOWAAC (or just LOWAAC) operator 

and 𝑤𝑛−𝑗+1
∗  is the 𝑗th weight of the ALOWAAC operator. 

 

Additionally, the LOWAAC operator is commutative, monotonic, bounded, 

idempotent, and reflexive. The following theorems and proofs explain these 

mathematical properties attributed to the LOWAAC operator: 

 

Theorem 1. Commutativity. Suppose that 𝑓 is the LOWAAC operator, then: 

𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) = 𝑓(〈𝑠𝑧1 , 𝑠𝑔1〉, … , 〈𝑠𝑧𝑛 , 𝑠𝑔𝑛〉), where 

(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) is any permutation of the arguments 

(〈𝑠𝑧1 , 𝑠𝑔1〉, … , 〈𝑠𝑧𝑛 , 𝑠𝑔𝑛〉). 

 

Proof. Let 

 

𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) =∑𝑤𝑗LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗)

𝑛

𝑗=1

, 

𝑓(〈𝑠𝑧1 , 𝑠𝑔1〉, … , 〈𝑠𝑧𝑛 , 𝑠𝑔𝑛〉) =∑𝑤𝑗LAC (𝑠𝑧𝑗 , 𝑠𝑔𝑗)

𝑛

𝑗=1

. 

 

Since (〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) is any permutation of the arguments 

(〈𝑠𝑧1 , 𝑠𝑔1〉, … , 〈𝑠𝑧𝑛 , 𝑠𝑔𝑛〉), we have LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗) = LAC (𝑠𝑧𝑗 , 𝑠𝑔𝑗), ∀𝑗, and 

hence 𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) = 𝑓(〈𝑠𝑧1 , 𝑠𝑔1〉, … , 〈𝑠𝑧𝑛 , 𝑠𝑔𝑛〉). 

 

Theorem 2. Monotonicity. Suppose that 𝑓 is the LOWAAC operator. If 

LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖) ≥ LAC(𝑠𝑧𝑖 , 𝑠𝑔𝑖), ∀𝑖, then: 𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) ≥

𝑓(〈𝑠𝑧1 , 𝑠𝑔1〉, … , 〈𝑠𝑧𝑛 , 𝑠𝑔𝑛〉). 
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Proof. Let 

 

𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) =∑𝑤𝑗LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗)

𝑛

𝑗=1

, 

𝑓(〈𝑠𝑧1 , 𝑠𝑔1〉, … , 〈𝑠𝑧𝑛 , 𝑠𝑔𝑛〉) =∑𝑤𝑗LAC (𝑠𝑧𝑗 , 𝑠𝑔𝑗)

𝑛

𝑗=1

. 

 

Since LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖) ≥ LAC(𝑠𝑧𝑖 , 𝑠𝑔𝑖), ∀𝑖, it follows that LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗) ≥

LAC (𝑠𝑧𝑗 , 𝑠𝑔𝑗), and then 𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) ≥

𝑓(〈𝑠𝑧1 , 𝑠𝑔1〉, … , 〈𝑠𝑧𝑛 , 𝑠𝑔𝑛〉). 

 

Theorem 3. Boundedness. Suppose that 𝑓 is the LOWAAC operator, then: 

Max{LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖)} ≥ 𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) ≥ Min{LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖)}. 

 

Proof. Let Max{LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖)} = 𝑠𝑧 and Min{LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖)} = 𝑠𝑔, then 

 

𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) =∑𝑤𝑗LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗) ≤∑𝑤𝑗𝑠𝑧 = 𝑠𝑧∑𝑤𝑗

𝑛

𝑗=1

𝑛

𝑗=1

𝑛

𝑗=1

, 

𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) =∑𝑤𝑗LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗) ≥∑𝑤𝑗𝑠𝑔 = 𝑠𝑔∑𝑤𝑗

𝑛

𝑗=1

𝑛

𝑗=1

𝑛

𝑗=1

. 

 

Since ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , we get 𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) ≤ 𝑠𝑧 and 

𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) ≥ 𝑠𝑔, and therefore Max{LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖)} ≥

𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) ≥ Min{LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖)}. 

 

Theorem 4. Idempotency. Suppose that 𝑓 is the LOWAAC operator. If 

LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖) = LAC(𝑠𝑥 , 𝑠𝑦), ∀𝑖, then: 𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) =

LAC(𝑠𝑥 , 𝑠𝑦). 
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Proof. As [𝑠1 ∧ (𝑠1 − 𝑠𝑥𝑖 + 𝑠𝑦𝑖)] = [𝑠1 ∧ (𝑠1 − 𝑠𝑥 + 𝑠𝑦)], ∀𝑖, we have 

 

𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) =∑𝑤𝑗LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗)

𝑛

𝑗=1

=∑𝑤𝑗

𝑛

𝑗=1

[𝑠1 ∧ (𝑠1 − 𝑠𝑥 + 𝑠𝑦)]

= [𝑠1 ∧ (𝑠1 − 𝑠𝑥 + 𝑠𝑦)]∑𝑤𝑗

𝑛

𝑗=1

. 

 

Since ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , we get 𝑓(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) = LAC(𝑠𝑥 , 𝑠𝑦). 

 

Theorem 5. Reflexivity. Suppose that 𝑓 is the LOWAAC operator, then: 

𝑓(〈𝑠𝑥1 , 𝑠𝑥1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑥𝑛〉) = 𝑠1. 

 

Proof. Let 

 

𝑓(〈𝑠𝑥1 , 𝑠𝑥1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑥𝑛〉) =∑𝑤𝑗LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗)

𝑛

𝑗=1

. 

 

Since [𝑠1 ∧ (𝑠1 − 𝑠𝑥𝑖 + 𝑠𝑥𝑖)] = 𝑠1, ∀𝑖, we get 𝑓(〈𝑠𝑥1 , 𝑠𝑥1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑥𝑛〉) =

𝑠1. 

 

Another noteworthy aspect is the characterizing measures related to the 

weighting vector 𝑊 of the LOWAAC operator and the type of aggregation 

performed. Below are briefly stated the measures of attitudinal character 

(Yager, 1988), entropy of dispersion (Yager, 1988), balance operator (Yager, 

1996), and divergence of 𝑊 (Yager, 2002). 

 

The attitudinal character measure, also referred as the degree of orness, is 

defined as follows: 

 

α(𝑊) =∑𝑤𝑗 (
𝑛 − 𝑗

𝑛 − 1
)

𝑛

𝑗=1

. (12) 
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The measure of entropy of dispersion is defined as follows: 

 

H(𝑊) = −∑𝑤𝑗 ln(𝑤𝑗)

𝑛

𝑗=1

. (13) 

 

The balance operator characterizing measure is defined as follows: 

 

Bal(𝑊) =∑𝑤𝑗 (
𝑛 + 1 − 2𝑗

𝑛 − 1
)

𝑛

𝑗=1

. (14) 

 

And the divergence of 𝑊 is defined as follows: 

 

Div(𝑊) =∑𝑤𝑗 (
𝑛 − 𝑗

𝑛 − 1
− 𝛼(𝑊))

2𝑛

𝑗=1

. (15) 

 

6. Families and extensions of the LOWAAC operator 

 

The following section first formulates a few particular families of the 

LOWAAC operator. Then, some new extensions of the LOWAAC operator 

are defined: the ILOWAAC operator, the GLOWAAC operator, the 

GILOWAAC operator, the Quasi-LOWAAC operator, and the Quasi-

ILOWAAC operator.  

 

Families of the LOWAAC operator  

 

Locating different families of the LOWAAC operator is done by choosing 

different manifestations of the weighting vector 𝑊. Some families of the 

LOWAAC operator are: 

 

• The linguistic maximum adequacy coefficient (Max-LAC), which is 

found when 𝑤1 = 1 and 𝑤𝑗 = 0, ∀𝑗 ≠ 1. 

• The linguistic minimum adequacy coefficient (Min-LAC), which is 

found when 𝑤𝑛 = 1 and 𝑤𝑗 = 0, ∀𝑗 ≠ 𝑛. 
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• The LNAC, which is found when 𝑤𝑗 = 1 𝑛⁄ , ∀𝑗. 

• The Median-LOWAAC, which is found when 𝑤(𝑛+1) 2⁄ = 1 and 𝑤𝑗 =

0, ∀𝑗 ≠ (𝑛 + 1) 2⁄ , provided the dimension of 𝑊 is odd. In the case 

where 𝑛 is even, the Median-LOWAAC is found when 𝑤𝑛 2⁄ =

𝑤(𝑛 2⁄ )+1 = 0.5 and 𝑤𝑗 = 0, ∀𝑗 ≠ 𝑛 2⁄ , (𝑛 2⁄ ) + 1. 

• The Hurwicz-LOWAAC, which is found when 𝑤1 = 𝛼, 𝑤𝑛 = 1 − 𝛼, 

and 𝑤𝑗 = 0, ∀𝑗 ≠ 1, 𝑛. 

• The Olympic-LOWAAC, which is found when 𝑤1 = 𝑤𝑛 = 0 and 

𝑤𝑗 = 1 (𝑛 − 2)⁄ , ∀𝑗 ≠ 1, 𝑛. 

• Lastly, the Step-LOWAAC, which is found when 𝑤𝑘 = 1 and 𝑤𝑗 =

0, ∀𝑗 ≠ 𝑘. 

 

The ILOWAAC operator 

 

Defined as an extension of the LOWAAC operator, the ILOWAAC operator 

uses order-inducing variables to dictate the aggregation order of the linguistic 

arguments. This results in a broader formulation of the reordering process 

that allows the representation of more complex situations. For two linguistic 

sets 𝑋 = {𝑠𝑥1 , … , 𝑠𝑥𝑛} and 𝑌 = {𝑠𝑦1 , … , 𝑠𝑦𝑛}, the ILOWAAC operator is 

mathematically defined as follows. 

 

Definition 13. An ILOWAAC operator of dimension 𝑛 is a mapping 

ILOWAAC: 𝑅𝑛 × [𝑠0, 𝑠1]
𝑛 × [𝑠0, 𝑠1]

𝑛 → [𝑠0, 𝑠1] that has associated a 

weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such 

that: 

 

ILOWAAC(〈𝑢1, 𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑢𝑛, 𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) =∑𝑤𝑗

𝑛

𝑗=1

LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗) , (16) 

 

where LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗) is the LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖) value of the ILOWAAC triplet 

〈𝑢𝑖 , 𝑠𝑥𝑖 , 𝑠𝑦𝑖〉 having the 𝑗th largest 𝑢𝑖 and 𝑢𝑖 is the order-inducing variable. 

 

Example 2. Assume two linguistic sets 𝑋 = {𝑠0.6, 𝑠0.6, 𝑠0.3, 𝑠0.8} and 𝑌 =

{𝑠0.8, 𝑠0.4, 𝑠0.6, 𝑠0.7}. If the weighting vector is 𝑊 = (0.4,0.3,0.2,0.1) and the 
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order-inducing variables are 𝑈 = (9,7,3,6), then the ILOWAAC operator 

can be calculated as follows: 

 

ILOWAAC = 0.4 × [𝑠1 ∧ (𝑠1 − 𝑠0.6 + 𝑠0.8)]

+ 0.3 × [𝑠1 ∧ (𝑠1 − 𝑠0.6 + 𝑠0.4)]

+ 0.2 × [𝑠1 ∧ (𝑠1 − 𝑠0.8 + 𝑠0.7)]

+ 0.1 × [𝑠1 ∧ (𝑠1 − 𝑠0.3 + 𝑠0.6)] = 𝑠0.92. 

 

The GLOWAAC operator 

 

The GLOWAAC operator is a new mathematical function that generalizes 

the LOWAAC operator and the generalized mean. For two linguistic sets 𝑋 =

{𝑠𝑥1 , … , 𝑠𝑥𝑛} and 𝑌 = {𝑠𝑦1 , … , 𝑠𝑦𝑛}, the GLOWAAC operator is defined as 

follows. 

 

Definition 14. A GLOWAAC operator of dimension 𝑛 is a mapping 

GLOWAAC: [𝑠0, 𝑠1]
𝑛 × [𝑠0, 𝑠1]

𝑛 → [𝑠0, 𝑠1] that has associated a weighting 

vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

GLOWAAC(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) = (∑𝑤𝑗

𝑛

𝑗=1

(LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗))
𝜆

)

1
𝜆⁄

, (17) 

 

where LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗) is the 𝑗th largest LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖) value of the GLOWAAC 

pair (𝑠𝑥𝑖 , 𝑠𝑦𝑖) and 𝜆 is a parameter such that 𝜆 ∈ (−∞,∞). 

 

Example 3. Assume two linguistic sets 𝑋 = {𝑠0.6, 𝑠0.6, 𝑠0.3, 𝑠0.8} and 𝑌 =

{𝑠0.8, 𝑠0.4, 𝑠0.6, 𝑠0.7}. If the weighting vector is 𝑊 = (0.4,0.3,0.2,0.1) and the 

parameter 𝜆 is equal to 4, then the GLOWAAC operator can be calculated as 

follows: 

 

GLOWAAC = (0.4 × [𝑠1 ∧ (𝑠1 − 𝑠0.6 + 𝑠0.8)]
4

+ 0.3 × [𝑠1 ∧ (𝑠1 − 𝑠0.3 + 𝑠0.6)]
4

+ 0.2 × [𝑠1 ∧ (𝑠1 − 𝑠0.8 + 𝑠0.7)]
4

+ 0.1 × [𝑠1 ∧ (𝑠1 − 𝑠0.6 + 𝑠0.4)]
4)
1
4⁄ = 𝑠0.97. 
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One can observe that, based on the value assigned to the parameter 𝜆, a wide 

range of particular cases of the GLOWAAC operator are possible. Some 

particular cases of the GLOWAAC operator are: 

 

• The linguistic ordered weighted harmonic averaging adequacy 

coefficient (LOWHAAC) operator, which is obtained when 𝜆 = −1. 

• The linguistic ordered weighted geometric adequacy coefficient 

(LOWGAC) operator, which is obtained when 𝜆 = 0. 

• The original LOWAAC operator, which is obtained when 𝜆 = 1. 

• Lastly, the linguistic ordered weighted quadratic averaging adequacy 

coefficient (LOWQAAC) operator, which is obtained when 𝜆 = 2. 

 

The GILOWAAC operator 

 

The GILOWAAC operator is basically an extension of the GLOWAAC 

operator in which the process of reordering depends on the order-inducing 

variables. For two linguistic sets 𝑋 = {𝑠𝑥1 , … , 𝑠𝑥𝑛} and 𝑌 = {𝑠𝑦1 , … , 𝑠𝑦𝑛}, the 

GILOWAAC operator is defined as follows. 

 

Definition 15. A GILOWAAC operator of dimension 𝑛 is a mapping 

GILOWAAC: 𝑅𝑛 × [𝑠0, 𝑠1]
𝑛 × [𝑠0, 𝑠1]

𝑛 → [𝑠0, 𝑠1] that has associated a 

weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such 

that: 

 

GILOWAAC(〈𝑢1, 𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑢𝑛, 𝑠𝑥𝑛 , 𝑠𝑦𝑛〉)

= (∑𝑤𝑗

𝑛

𝑗=1

(LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗))
𝜆

)

1
𝜆⁄

, (18)
 

 

where LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗) is the LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖) value of the GILOWAAC triplet 

〈𝑢𝑖 , 𝑠𝑥𝑖 , 𝑠𝑦𝑖〉 having the 𝑗th largest 𝑢𝑖, 𝑢𝑖 is the order-inducing variable, and 𝜆 

is a parameter such that 𝜆 ∈ (−∞,∞). 

 

Note that when 𝜆 approaches 1, the ILOWAAC operator is obtained. 
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The Quasi-LOWAAC operator 

 

The Quasi-LOWAAC operator is a greater generalization of the LOWAAC 

operator that uses quasi-arithmetic means. For two linguistic sets 𝑋 =

{𝑠𝑥1 , … , 𝑠𝑥𝑛} and 𝑌 = {𝑠𝑦1 , … , 𝑠𝑦𝑛}, the Quasi-LOWAAC operator is defined 

as follows. 

 

Definition 16. A Quasi-LOWAAC operator of dimension 𝑛 is a mapping 

Quasi − LOWAAC: [𝑠0, 𝑠1]
𝑛 × [𝑠0, 𝑠1]

𝑛 → [𝑠0, 𝑠1] that has associated a 

weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such 

that: 

 

Quasi − LOWAAC(〈𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑠𝑥𝑛 , 𝑠𝑦𝑛〉)

= 𝑔−1(∑𝑤𝑗

𝑛

𝑗=1

𝑔 (LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗))) , (19)
 

 

where LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗) is the 𝑗th largest LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖) value of the Quasi-

LOWAAC pair (𝑠𝑥𝑖 , 𝑠𝑦𝑖) and 𝑔 is a strictly continuous monotonic function. 

 

The Quasi-ILOWAAC operator 

 

The Quasi-ILOWAAC operator is described as an extension of the Quasi-

LOWAAC operator that employs order-inducing variables. For two linguistic 

sets 𝑋 = {𝑠𝑥1 , … , 𝑠𝑥𝑛} and 𝑌 = {𝑠𝑦1 , … , 𝑠𝑦𝑛}, the Quasi-ILOWAAC operator 

is mathematically defined as follows. 
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Definition 17. A Quasi-ILOWAAC operator of dimension 𝑛 is a mapping 

Quasi − ILOWAAC: 𝑅𝑛 × [𝑠0, 𝑠1]
𝑛 × [𝑠0, 𝑠1]

𝑛 → [𝑠0, 𝑠1] that has associated 

a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such 

that: 

 

Quasi − ILOWAAC(〈𝑢1, 𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑢𝑛, 𝑠𝑥𝑛 , 𝑠𝑦𝑛〉)

= 𝑔−1(∑𝑤𝑗

𝑛

𝑗=1

𝑔 (LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗))) , (20)
 

 

where LAC (𝑠𝑥𝑗 , 𝑠𝑦𝑗) is the LAC(𝑠𝑥𝑖 , 𝑠𝑦𝑖) value of the Quasi-ILOWAAC 

triplet 〈𝑢𝑖 , 𝑠𝑥𝑖 , 𝑠𝑦𝑖〉 having the 𝑗th largest 𝑢𝑖, 𝑢𝑖 is the order-inducing variable, 

and 𝑔 is a strictly continuous monotonic function. 

 

7. Illustrative example 

 

In this section, a conducted illustrative example showcases how to use this 

new approach within the football industry’s human resource management. 

Note that many other decision-making applications could apply the 

LOWAAC operator and its variants, e.g., selection of investments, marketing 

decision-making, consumer decision-making, and more. 

 

Suppose that a football club needs to sign a new defensive midfielder and 

there are six potential candidates to occupy this position. Let 𝑋 =

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} be the set of the six candidates. Assume that the 

management of the football club has assembled a high-quality group of three 

experts, so that they provide an evaluation of the candidates according to nine 

different key skills, which are: 𝑐1 = 𝑏𝑎𝑙𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑐2 = 𝑝𝑎𝑠𝑠𝑖𝑛𝑔, 𝑐3 =

𝑠ℎ𝑜𝑜𝑡𝑖𝑛𝑔, 𝑐4 = ℎ𝑒𝑎𝑑𝑖𝑛𝑔, 𝑐5 = 𝑑𝑟𝑖𝑏𝑏𝑙𝑖𝑛𝑔, 𝑐6 = 𝑡𝑎𝑐𝑘𝑙𝑖𝑛𝑔, 𝑐7 =

𝑔𝑎𝑚𝑒 𝑖𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑐𝑒, 𝑐8 = 𝑠𝑝𝑒𝑒𝑑, and 𝑐9 = 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ. Also, consider that 

the group of experts use the following linguist term set 𝑆 to independently 

evaluate the candidates: 
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𝑆 = {𝑠0 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑙𝑦 𝑝𝑜𝑜𝑟; 𝑠0.1 = 𝑣𝑒𝑟𝑦 𝑝𝑜𝑜𝑟; 𝑠0.2 = 𝑝𝑜𝑜𝑟; 𝑠0.3
= 𝑟𝑎𝑡ℎ𝑒𝑟 𝑝𝑜𝑜𝑟; 𝑠0.4 = 𝑓𝑎𝑖𝑟𝑙𝑦 𝑝𝑜𝑜𝑟; 𝑠0.5 = 𝑚𝑒𝑑𝑖𝑢𝑚; 𝑠0.6
= 𝑓𝑎𝑖𝑟𝑙𝑦 𝑔𝑜𝑜𝑑; 𝑠0.7 = 𝑟𝑎𝑡ℎ𝑒𝑟 𝑔𝑜𝑜𝑑; 𝑠0.8 = 𝑔𝑜𝑜𝑑; 𝑠0.9
= 𝑣𝑒𝑟𝑦 𝑔𝑜𝑜𝑑; 𝑠1 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑙𝑦 𝑔𝑜𝑜𝑑}. 

 

The group of experts, jointly with the management team of the football club, 

agree to establish the required levels of each characteristic of the ideal 

defensive midfielder player 𝐼, as shown in Table 3.1. Next, each expert 

individually assesses the real levels of each attribute for all the candidates 

contemplated for the position. Presented in Tables 3.2-3.4 are the results. 

Afterwards, the evaluations provided by the three experts are unified into a 

collective matrix using the linguistic averaging (LA) operator (see Table 3.5), 

as they are considered equally important. 

 

Table 3.1. Assessments of the ideal candidate 

 

 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 

𝐼 𝑠0.8 𝑠0.8 𝑠0.6 𝑠0.5 𝑠0.7 𝑠0.9 𝑠0.8 𝑠0.6 𝑠0.8 

 

Table 3.2. Assessments of the real candidates by Expert 1 

 

 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 

𝑥1 𝑠0.6 𝑠0.7 𝑠0.7 𝑠0.4 𝑠0.7 𝑠0.8 𝑠0.6 𝑠0.9 𝑠0.7 

𝑥2 𝑠0.8 𝑠0.8 𝑠0.8 𝑠0.3 𝑠0.6 𝑠0.6 𝑠0.8 𝑠0.5 𝑠0.6 

𝑥3 𝑠0.7 𝑠0.7 𝑠0.7 𝑠0.6 𝑠0.6 𝑠0.7 𝑠0.6 𝑠0.7 𝑠0.9 

𝑥4 𝑠0.6 𝑠0.6 𝑠0.7 𝑠0.8 𝑠0.5 𝑠0.9 𝑠0.5 𝑠0.7 𝑠0.8 

𝑥5 𝑠0.9 𝑠0.9 𝑠0.8 𝑠0.4 𝑠0.5 𝑠0.6 𝑠0.9 𝑠0.6 𝑠0.8 

𝑥6 𝑠0.6 𝑠0.6 𝑠0.6 𝑠0.8 𝑠0.6 𝑠0.9 𝑠0.4 𝑠0.7 𝑠0.9 
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Table 3.3. Assessments of the real candidates by Expert 2 

 

 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 

𝑥1 𝑠0.7 𝑠0.7 𝑠0.7 𝑠0.3 𝑠0.7 𝑠0.9 𝑠0.8 𝑠0.9 𝑠0.8 

𝑥2 𝑠0.9 𝑠0.9 𝑠0.8 𝑠0.3 𝑠0.7 𝑠0.7 𝑠0.8 𝑠0.6 𝑠0.6 

𝑥3 𝑠0.7 𝑠0.7 𝑠0.6 𝑠0.7 𝑠0.6 𝑠0.8 𝑠0.5 𝑠0.7 𝑠0.8 

𝑥4 𝑠0.6 𝑠0.6 𝑠0.6 𝑠0.6 𝑠0.6 𝑠0.7 𝑠0.4 𝑠0.8 𝑠0.9 

𝑥5 𝑠0.9 𝑠0.9 𝑠0.9 𝑠0.4 𝑠0.6 𝑠0.7 𝑠0.9 𝑠0.5 𝑠0.7 

𝑥6 𝑠0.5 𝑠0.5 𝑠0.6 𝑠0.9 𝑠0.5 𝑠0.9 𝑠0.5 𝑠0.6 𝑠0.9 

 

Table 3.4. Assessments of the real candidates by Expert 3 

 

 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 

𝑥1 𝑠0.5 𝑠0.5 𝑠0.6 𝑠0.4 𝑠0.6 𝑠0.8 𝑠0.3 𝑠0.8 𝑠0.7 

𝑥2 𝑠0.8 𝑠0.9 𝑠0.7 𝑠0.4 𝑠0.7 𝑠0.5 𝑠0.9 𝑠0.4 𝑠0.5 

𝑥3 𝑠0.6 𝑠0.6 𝑠0.6 𝑠0.5 𝑠0.6 𝑠0.7 𝑠0.7 𝑠0.7 𝑠0.8 

𝑥4 𝑠0.5 𝑠0.6 𝑠0.5 𝑠0.7 𝑠0.5 𝑠0.9 𝑠0.5 𝑠0.7 𝑠0.9 

𝑥5 𝑠0.9 𝑠0.8 𝑠0.9 𝑠0.3 𝑠0.6 𝑠0.6 𝑠1 𝑠0.6 𝑠0.7 

𝑥6 𝑠0.6 𝑠0.6 𝑠0.7 𝑠0.8 𝑠0.5 𝑠1 𝑠0.2 𝑠0.6 𝑠0.9 

 

Table 3.5. Collective assessments of the real candidates 

 

 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 

𝑥1 𝑠0.6 𝑠0.633 𝑠0.667 𝑠0.367 𝑠0.667 𝑠0.833 𝑠0.567 𝑠0.867 𝑠0.733 

𝑥2 𝑠0.833 𝑠0.867 𝑠0.767 𝑠0.333 𝑠0.667 𝑠0.6 𝑠0.833 𝑠0.5 𝑠0.567 

𝑥3 𝑠0.667 𝑠0.667 𝑠0.633 𝑠0.6 𝑠0.6 𝑠0.733 𝑠0.6 𝑠0.7 𝑠0.833 

𝑥4 𝑠0.567 𝑠0.6 𝑠0.6 𝑠0.7 𝑠0.533 𝑠0.833 𝑠0.467 𝑠0.733 𝑠0.867 

𝑥5 𝑠0.9 𝑠0.867 𝑠0.867 𝑠0.367 𝑠0.567 𝑠0.633 𝑠0.933 𝑠0.567 𝑠0.733 

𝑥6 𝑠0.567 𝑠0.567 𝑠0.633 𝑠0.833 𝑠0.533 𝑠0.933 𝑠0.367 𝑠0.633 𝑠0.9 

 

Now, assume that the three experts agree on using the weighting vector 𝑊 =

(0.2,0.15,0.15,0.15,0.15,0.075,0.05,0.05,0.025), the order-inducing vector 

𝑈 = (9,9,7,6,8,10,9,7,9), and a parameter 𝜆 = 2. With this information, the 

group of specialists perform the aggregations by using the LWAC, 

LOWAAC, ALOWAAC, ILOWAAC, and LOWQAAC operators. The 

results are shown in Table 3.6, wherein the closer the candidate is to 𝑠1, the 

better. 
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Table 3.6. Aggregated results of the LACs 

 

 LWAC LOWAAC ALOWAAC ILOWAAC LOWQAAC 

𝑥1 𝑠0.892 𝑠0.941 𝑠0.862 𝑠0.881 𝑠0.943 

𝑥2 𝑠0.937 𝑠0.96 𝑠0.86 𝑠0.893 𝑠0.963 

𝑥3 𝑠0.916 𝑠0.955 𝑠0.88 𝑠0.889 𝑠0.957 

𝑥4 𝑠0.877 𝑠0.948 𝑠0.833 𝑠0.859 𝑠0.951 

𝑥5 𝑠0.937 𝑠0.97 𝑠0.892 𝑠0.922 𝑠0.972 

𝑥6 𝑠0.872 𝑠0.953 𝑠0.818 𝑠0.853 𝑠0.959 

 

In Table 3.7, we can see that depending on the linguistic aggregation operator 

used, the ranking of the candidates may change. With the LWAC operator, 

the best candidate for the defensive midfielder position is 𝑥2 together with 

𝑥5, while the less preferred is 𝑥6. With the LOWAAC and LOWQAAC 

operators, the best football player is 𝑥5, by contrast, the worst one is 𝑥1. With 

the ALOWAAC and ILOWAAC operators, the best candidate to sign is 𝑥5 

and the poorest one is 𝑥6. 

 

Table 3.7. Ordering of the candidates 

 

 Ordering 

LWAC 𝑥2 = 𝑥5 ≻ 𝑥3 ≻ 𝑥1 ≻ 𝑥4 ≻ 𝑥6 

LOWAAC 𝑥5 ≻ 𝑥2 ≻ 𝑥3 ≻ 𝑥6 ≻ 𝑥4 ≻ 𝑥1 

ALOWAAC 𝑥5 ≻ 𝑥3 ≻ 𝑥1 ≻ 𝑥2 ≻ 𝑥4 ≻ 𝑥6 

ILOWAAC 𝑥5 ≻ 𝑥2 ≻ 𝑥3 ≻ 𝑥1 ≻ 𝑥4 ≻ 𝑥6 

LOWQAAC 𝑥5 ≻ 𝑥2 ≻ 𝑥6 ≻ 𝑥3 ≻ 𝑥4 ≻ 𝑥1 

 

8. Comparison analysis 

 

The following section compares the presented aggregation operators in this 

article with existing ones. For this comparison, the linguistic weighted 

Hamming distance (LWHD) operator, the LOWAD operator, the ascending 

LOWAD (ALOWAD) operator, the induced LOWAD (LIOWAD) operator 

(Cheng & Zeng, 2012; Zeng et al., 2013), and the linguistic ordered weighted 

quadratic averaging distance (LOWQAD) operator, are calculated using the 

same input information as in Section 7 (see Table 3.8). Presented in Table 
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3.9 are the order of the candidates according to these operators. Observe that, 

in this case, the lower the value of the subscript, the better the candidate is. 

 

Table 3.8. Aggregated results of the Hamming distances 

 

 LWHD LOWAD ALOWAD LIOWAD LOWQAD 

𝑥1 𝑠0.132 𝑠0.176 𝑠0.098 𝑠0.136 𝑠0.19 

𝑥2 𝑠0.107 𝑠0.169 𝑠0.082 𝑠0.135 𝑠0.191 

𝑥3 𝑠0.11 𝑠0.135 𝑠0.087 𝑠0.125 𝑠0.143 

𝑥4 𝑠0.162 𝑠0.203 𝑠0.11 𝑠0.163 𝑠0.22 

𝑥5 𝑠0.14 𝑠0.168 𝑠0.098 𝑠0.137 𝑠0.185 

𝑥6 𝑠0.19 𝑠0.243 𝑠0.113 𝑠0.181 𝑠0.275 

 

Table 3.9. Ordering of the candidates 

 

 Ordering 

LWHD 𝑥2 ≻ 𝑥3 ≻ 𝑥1 ≻ 𝑥5 ≻ 𝑥4 ≻ 𝑥6 

LOWAD 𝑥3 ≻ 𝑥5 ≻ 𝑥2 ≻ 𝑥1 ≻ 𝑥4 ≻ 𝑥6 

ALOWAD 𝑥2 ≻ 𝑥3 ≻ 𝑥1 ≻ 𝑥5 ≻ 𝑥4 ≻ 𝑥6 

LIOWAD 𝑥3 ≻ 𝑥2 ≻ 𝑥1 ≻ 𝑥5 ≻ 𝑥4 ≻ 𝑥6 

LOWQAD 𝑥3 ≻ 𝑥5 ≻ 𝑥1 ≻ 𝑥2 ≻ 𝑥4 ≻ 𝑥6 

 

It can be seen that the results differ from the ones obtained with the 

LOWAAC operator and its extensions. E.g., for the LOWQAAC operator, 

the best choice is 𝑥5. However, for the LOWQAD operator, the preferred 

option is 𝑥3. By employing classical distance models, the outcomes may be 

inconsistent. For instance, candidate 𝑥5 is penalized for being too good at ball 

control, which makes no sense. 

 

9. Conclusions 

 

In this article, the LAC, a new deviation measure, has been introduced. 

Furthermore, based on the LAC and the well-known OWA operator, the 

LOWAAC operator has been proposed as an original linguistic aggregation 

operator for ranking a finite set of alternatives in complex decision-making 

problems. 
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On top of this, this article has also presented some extensions and 

generalizations of the LOWAAC operator. Firstly, the ILOWAAC operator, 

an extension of the LOWAAC operator that uses order-inducing variables in 

the reordering step. Secondly, the GLOWAAC operator, a generalization of 

the LOWAAC operator that incorporates generalized means. Thirdly, the 

GILOWAAC operator, a generalization of the LOWAAC operator that 

utilizes order-inducing variables and generalized means. Fourthly, the Quasi-

LOWAAC operator, which further generalizes the LOWAAC operator by 

employing quasi-arithmetic means. Last but not least, the Quasi-ILOWAAC 

operator, which is an extension of the Quasi-LOWAAC operator that embeds 

order-inducing variables. 

 

In decision-making, these operators offer significant advantages over more 

traditional methods in specific situations. One of them is that they are 

advantageous for calculating the differences between a set of alternatives and 

an ideal, while considering a threshold from which the results are always the 

same. Another interesting advantage is their capacity to assess uncertain 

problems in which the available information is not representable with 

numerical values, but it is possible to use linguistic values. Also, these 

operators allow to consider the attitudinal character of the decision-maker 

when the information is fused, thus providing greater flexibility. 

 

To help illustrate this new approach, an example of a MEDM problem 

regarding the selection of a football player has also been developed. 

Additionally, the illustrative example has been further developed with a 

comparative analysis between the new approach and some existing methods, 

where we can observe that the outcomes are different. 

 

In the future, we intend to create further extensions of the LOWAAC 

operator. E.g., with the use of basic uncertain information (BUI) (Jin et al., 

2018; Mesiar et al., 2018). We also expect to analyze the utilization of 

unbalanced linguistic information in the LOWAAC operator. Lastly, we look 

to study different applications of the LOWAAC operator in decision-making 

problems under uncertainty, such as international market selection for firms. 
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Abstract 

 

This article introduces the uncertain ordered weighted averaging adequacy 

coefficient (UOWAAC) operator. This novel operator uses the ordered 

weighted averaging (OWA) operator, the adequacy coefficient, and the 

interval numbers in a single formulation. This article also extends the 

UOWAAC operator by using order-inducing variables in the reordering 

process of the input arguments. This new extension is called the uncertain 

induced ordered weighted averaging adequacy coefficient (UIOWAAC) 

operator. The article also presents an application of the new approach in a 

multi-criteria group decision-making (MCGDM) problem about 

international expansion. In addition, a comparative analysis is conducted 

with the purpose of demonstrating the superiority of the UOWAAC and 

UIOWAAC aggregation operators in specific situations. Likewise, the use of 

basic uncertain information (BUI) is discussed. The results show the 

usefulness of these new aggregation operators in real-life decision-making 

problems under uncertainty, particularly when the decision-maker wants to 

compare different alternatives with an ideal but without giving any penalty 

or reward in the case that the ideal levels are exceeded. 

 

Keywords: Adequacy coefficient, aggregation operator, business decision-

making, interval number, uncertainty, OWA operator. 
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1. Introduction 

 

Aggregation operators (also referred as aggregation functions) are commonly 

used in decision-making procedures in order to combine several sources of 

information into a single result. An increasingly popular aggregation operator 

(Blanco-Mesa et al., 2019) is the ordered weighted averaging (OWA), which 

was first presented by Yager (1988). This operator provides a parameterized 

family of aggregation operators between the minimum and the maximum. 

Since its introduction, several applications have been studied, including sales 

forecasting (Linares-Mustarós et al., 2015; Merigó et al., 2015), portfolio 

selection (Laengle et al., 2015), retirement planning (Figuerola-Wischke et 

al., 2021), government transparency (Perez-Arellano et al., 2020), 

agricultural product prices (León-Castro et al., 2021), and many others 

(Kacprzyk et al., 2019). 

 

In the literature we can find a wide range of aggregation operators that extend 

the OWA operator. Some of the most important are the induced OWA 

(IOWA) (Yager & Filev, 1999) and the IOWA in the expression of weighted 

averaging (WA) functions (Jin et al., 2021), the generalized OWA (GOWA) 

(Yager, 2004), the quasi OWA (QOWA) (Fodor et al., 1995), the 

probabilistic OWA (POWA) (Merigó, 2012), the linguistic OWA (LOWA) 

(Herrera et al., 1995; Herrera & Martínez, 2000; Xu, 2004), the fuzzy OWA 

(FOWA) (Chen & Chen, 2003), the uncertain OWA (UOWA) (Xu & Da, 

2002), and the OWA distance (OWAD) (Merigó & Gil-Lafuente, 2010). 

Also, recently, Jin, Mesiar, and Yager (2019) proposed an OWA weight 

allocation method to deal with convex partially ordered sets (posets). 

 

Furthermore, another extension that received much attention is the OWA 

adequacy coefficient (OWAAC) operator (Merigó & Gil-Lafuente, 2008, 

2010), which as its name indicates, uses the OWA operator with the adequacy 

coefficient (Kaufmann & Gil-Aluja, 1986, 1987) in a single formulation. This 

operator is mainly used to compare an ideal set with a real one, but in contrast 

to other operators, such as the OWAD, it does not penalize the result when 

the ideal levels are exceeded. However, this aggregation operator only 

considers exact numbers, which is not always possible, especially when the 
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environment is highly uncertain and complex. In this case, an adequate 

alternative may be the use of interval numbers (Moore, 1966). 

 

Thus, the aim of this article is to develop a new extension of the OWAAC 

operator for situations with a high degree of uncertainty. To do so, interval 

numbers are used instead of exact numbers. It is called the uncertain ordered 

weighted averaging adequacy coefficient (UOWAAC) operator. Moreover, 

the UOWAAC operator is extended by using order-inducing variables. As a 

result, the uncertain induced ordered weighted averaging adequacy 

coefficient (UIOWAAC) operator is obtained. Lastly, another objective of 

this article is to demonstrate the utility of these new aggregation operators in 

real-world situations. To achieve this, the applicability of these novel 

operators in a multi-criteria group decision-making (MCGDM) problem 

regarding the international expansion of a business is studied. 

 

This article is arranged as follows. Section 2 conducts a review of the OWA 

operator, the interval numbers, the UOWA operator, the adequacy 

coefficient, and the OWAAC operator. Section 3 presents the UOWAAC 

operator, analyze its properties, and discuss its families. Section 4 extends 

the UOWAAC operator through order-inducing variables. Section 5 provides 

an illustrative example of the new approach in order to demonstrate its 

practicability. Section 6 presents a comparison of the developed aggregation 

operators with the existing ones. Section 7 summarizes the main conclusions 

of the article and indicates opportunities for future research. 

 

2. Some preliminary concepts 

 

The following section briefly reviews some basic but necessary concepts, 

which are the OWA operator, the interval numbers, the UOWA operator, the 

adequacy coefficient, and the OWAAC operator. 

 

The OWA operator 

 

The OWA operator is an aggregation operator introduced by Yager (1988) 

and it provides a parameterized family of aggregation operators that include 

among others the minimum, the maximum, and the arithmetic mean decision 

criteria. A fundamental characteristic of this operator is found in the 



 135 

reordering step of the input arguments in which it is carried out in a 

descending way. This operator can be defined as follows. 

 

Definition 1. An OWA operator of dimension 𝑛 is a mapping OWA:𝑅𝑛 → 𝑅 

that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

OWA(𝑎1, … , 𝑎𝑛) =∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

, (1) 

 

where 𝑏𝑗 is the 𝑗th largest element of the arguments 𝑎1, … , 𝑎𝑛. 

 

Additionally, the OWA operator is commutative, monotonic, bounded, and 

idempotent. 

 

Interval numbers 

 

In decision-making, uncertainty is often an unavoidable problem. A practical 

way for handling uncertainty is through the use of interval numbers (Moore, 

1966). An interval number can be described as an ordered pair of real 

numbers or also as a set of the real line 𝑅. Mathematically it is defined as 

follows. 

 

Definition 2. Let �̃� be an interval number. Then �̃� = [𝑎𝐿 , 𝑎𝑈] with 𝑎𝐿 , 𝑎𝑈 ∈

𝑅 and 𝑎𝐿 ≤ 𝑎𝑈. In the particular case 𝑎𝐿 = 𝑎𝑈, one can see that �̃� is reduced 

to a real number, which is known as degenerate interval number. 

 

The UOWA operator 

 

The UOWA operator was developed by Xu and Da (2002) and it is an 

extension of the OWA operator for uncertain environments where the 

available information can only be assessed with the use of interval numbers. 

This aggregation function can be defined as follows. 
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Definition 3. Let Ω be a set of interval numbers. An UOWA operator of 

dimension 𝑛 is a mapping UOWA:Ω𝑛 → Ω that has associated a weighting 

vector 𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

UOWA(�̃�1, … , �̃�𝑛) =∑𝑤𝑗�̃�𝑗

𝑛

𝑗=1

, (2) 

 

where �̃�𝑗 is the 𝑗th largest of the �̃�𝑖, and �̃�𝑖 is the argument variable 

represented in the form of interval numbers. 

 

The UOWA operator satisfies the mathematical properties of commutativity, 

monotonicity, boundedness, and idempotency. 

 

The adequacy coefficient 

 

The adequacy coefficient (Kaufmann & Gil-Aluja, 1986, 1987) is an index 

used for calculating the differences between two real numbers in a more 

effective manner. It can be defined as follows. 

 

Definition 4. Let 𝑥 and 𝑦 be two real numbers such that 𝑥, 𝑦 ∈ [0,1]. Then, 

the adequacy coefficient between 𝑥 and 𝑦 is obtained by applying the 

following formula: 

 

AC(𝑥, 𝑦) = [1 ∧ (1 − 𝑥 + 𝑦)]. (3) 

 

Note that the symbol ∧ is used to indicate the lower value between 1 and 

(1 − 𝑥 + 𝑦). 

 

Also, it is noteworthy that the adequacy coefficient is similar to the Hamming 

distance (Hamming, 1950) but with the difference that it neutralizes the result 

when 𝑥 < 𝑦. 

 

The OWAAC operator 

 

In (Merigó & Gil-Lafuente, 2008, 2010), the authors presented the OWAAC 

operator, which uses the adequacy coefficient and the OWA operator in the 
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same formulation. This operator is used for complex comparisons between 

two sets, normally between an ideal set (𝑋) and a real one (𝑌). 

 

For two sets 𝑋 = {𝑥1, … , 𝑥𝑛} and 𝑌 = {𝑦1, … , 𝑦𝑛}, the OWAAC operator is 

defined as follows. 

 

Definition 5. An OWAAC operator of dimension 𝑛 is a mapping 

OWAAC: [0,1]𝑛 × [0,1]𝑛 → [0,1] that has associated a weighting vector 

𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

OWAAC(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛, 𝑦𝑛〉) =∑𝑤𝑗

𝑛

𝑗=1

𝐾𝑗, (4) 

 

where 𝐾𝑗 is the 𝑗th largest of the [1 ∧ (1 − 𝑥𝑖 + 𝑦𝑖)], and 𝑥𝑖 and 𝑦𝑖 are the 

𝑖th arguments of the sets 𝑋 and 𝑌. 

 

The OWAAC operator is commutative, monotonic, bounded, idempotent, 

nonnegative and reflexive. 

 

Remark. Some readers may think that an ideal set should always have the 

highest level in all characteristics. But in the real world, this is not true, in 

some situations, if the ideal set is fixed at the maximum, when performing 

the comparison, the decision-maker could erroneously exclude the most 

convenient option. One reason is that a high value in a characteristic may 

compensate for a low value in another characteristic and consequently obtain 

an inconsistent result. 

 

For example, imagine that a Spanish cellar wants to offer guided tours for 

international tourists and therefore needs to hire a professional who can speak 

English (𝐶1) and German (𝐶2), and also who has a general knowledge of wine 

culture (𝐶3). Suppose that there are two candidates, 𝑌1 and 𝑌2. Assume that 

the candidates are evaluated for each competence as follows: 𝑌1 =

{𝐶1 = 1, 𝐶2 = 0.3, 𝐶3 = 0.8} and 𝑌2 = {𝐶1 = 0.7, 𝐶2 = 0.6, 𝐶3 = 0.7}, 

where 0 is the worst evaluation and 1 the best. 
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If the cellar assumes that the ideal candidate should have the maximum level 

in all three competences, i.e., 𝑋 = {𝐶1 = 1, 𝐶2 = 1, 𝐶3 = 1}, then, using the 

OWAAC operator with 𝑊 = {𝑤1 = 1 3⁄ , 𝑤2 = 1 3⁄ ,𝑤3 = 1 3⁄ }, the best 

candidate would be 𝑌1. 

 

By contrast, if the cellar establishes the optimal levels of the ideal worker as 

𝑋 = {𝐶1 = 0.6, 𝐶2 = 0.6, 𝐶3 = 0.6}, then, the hired worker would be 𝑌2, 

which makes more sense. Candidate 𝑌2 may not be perfect in a specific skill 

however meets all the requirements. On the other hand, candidate 𝑌1 is 

excellent in English but at the same time incapable to do a proper tour in 

German. Thus, if the hired candidate is 𝑌1, the cellar probably will have to 

seek for an additional employee. 

 

3. The UOWAAC operator 

 

The following section first defines the UOWAAC operator, then, analyzes its 

properties, and lastly, studies its different families. 

 

Definition of the UOWAAC operator 

 

The UOWAAC operator can be described as an extension of the OWAAC 

operator that uses interval numbers instead of exact numbers. This new 

operator is very complete as it offers numerous advantages over traditional 

aggregation operators. For example, by using interval numbers the decision-

maker is able to deal with uncertainty. Likewise, as it is built under the OWA 

operator, it allows to consider the attitudinal character of the decision-maker 

when the information is fused. Furthermore, through the adequacy 

coefficient, this operator can be used for comparing a set of available 

alternatives with an ideal, while at the same time establish a threshold from 

which the results are always the same. Hence, it only penalizes when the 

optimal levels are not reached. 

 

Definition 6. Let �̃� and �̃� be two interval numbers. An uncertain adequacy 

coefficient (UAC) is a similarity measure, such that: 

 

UAC(�̃�, �̃�) =
1

2
([1 ∧ (1 − 𝑥𝐿 + 𝑦𝐿)] + [1 ∧ (1 − 𝑥𝑈 + 𝑦𝑈)]), (5) 
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where 𝑥𝐿 , 𝑥𝑈 ∈ [0,1] are the lower and upper values of the interval number 

�̃�, and 𝑦𝐿 , 𝑦𝑈 ∈ [0,1] are the lower and upper values of the interval number 

�̃�. 

 

Let �̃� = (�̃�1, … , �̃�𝑛) and �̃� = (�̃�1, … , �̃�𝑛) be two sets of interval numbers, 

then, the uncertain weighted adequacy coefficient (UWAC) operator and the 

UOWAAC operators can be defined respectively as follows. 

 

Definition 7. Let Ω be a set of interval numbers. An UWAC operator of 

dimension 𝑛 is a mapping UWAC:Ω𝑛 × Ω𝑛 → 𝑅 that has associated a 

weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑖 ∈ [0,1] and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 , in 

which: 

 

UWAC(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) =∑𝑤𝑖UAC(�̃�𝑖 , �̃�𝑖)

𝑛

𝑖=1

, (6) 

 

where �̃�𝑖 and �̃�𝑖 are the 𝑖th arguments of the sets �̃� and �̃�, and UAC(�̃�𝑖 , �̃�𝑖) is 

the adequacy coefficient between �̃�𝑖 = [𝑥𝑖
𝐿 , 𝑥𝑖

𝑈] and �̃�𝑖 = [𝑦𝑖
𝐿 , 𝑦𝑖

𝑈], with 0 ≤

𝑥𝑖
𝐿 ≤ 𝑥𝑖

𝑈 ≤ 1 and 0 ≤ 𝑦𝑖
𝐿 ≤ 𝑦𝑖

𝑈 ≤ 1. 

 

Definition 8. Let Ω be a set of interval numbers. An UOWAAC operator of 

dimension 𝑛 is a mapping UOWAAC: Ω𝑛 × Ω𝑛 → 𝑅 that has associated a 

weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in 

which: 

 

UOWAAC(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) =∑𝑤𝑗UAC(�̃�𝑗 , �̃�𝑗)

𝑛

𝑗=1

, (7) 

 

where UAC(�̃�𝑗 , �̃�𝑗) is the 𝑗th largest UAC(�̃�𝑖 , �̃�𝑖) value of the UOWAAC pair 

〈�̃�𝑖 , �̃�𝑖〉, and UAC(�̃�𝑖 , �̃�𝑖) is the adequacy coefficient between �̃�𝑖 = [𝑥𝑖
𝐿 , 𝑥𝑖

𝑈] 

and �̃�𝑖 = [𝑦𝑖
𝐿 , 𝑦𝑖

𝑈], with 0 ≤ 𝑥𝑖
𝐿 ≤ 𝑥𝑖

𝑈 ≤ 1 and 0 ≤ 𝑦𝑖
𝐿 ≤ 𝑦𝑖

𝑈 ≤ 1. 

 

Note that for the previous definitions �̃� represents the ideal set in the 

comparison, thus, a higher UOWAAC value is preferred. 
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Next, a simple example will be carried out in order to correctly understand 

how to calculate the UOWAAC operator. 

 

Example 1. Assume two sets of interval numbers �̃� = (�̃�1, �̃�2, �̃�3, �̃�4) =

([0.7,0.8], [0.6,0.7], [0.8,0.9], [0.5,0.7]) and �̃� = (�̃�1, �̃�2, �̃�3, �̃�4) =

([0.4,0.6], [0.5,0.9], [0.7,0.9], [0.8,0.9]). If the weighting vector is 𝑊 =

(𝑤1, 𝑤2, 𝑤3, 𝑤4) = (0.5,0.3,0.1,0.1), then, the UOWAAC operator is 

obtained as follows. 

 

First, it is necessary to calculate the UAC for each pair of interval numbers 

using Eq. (5): 

 

UAC(�̃�1, �̃�1) =
1

2
([1 ∧ (1 − 0.7 + 0.4)] + [1 ∧ (1 − 0.8 + 0.6)]) = 0.75. 

 

Following the same procedure, the remaining outcomes are achieved: 

 

UAC(�̃�2, �̃�2) = 0.95, UAC(�̃�3, �̃�3) = 0.95, and UAC(�̃�4, �̃�4) = 1. 

 

Next, with Eq. (7) the aggregation is performed: 

 

UOWAAC(�̃�, �̃�) = 0.5 × 1 + 0.3 × 0.95 + 0.1 × 0.95 + 0.1 × 0.75

= 0.955. 

 

From a generalized perspective of the reordering step, it is possible to 

discriminate between the descending UOWAAC (UDOWAAC) operator and 

the ascending UOWAAC (UAOWAAC) operator. Specifically, the weights 

of both operators are related by 𝑤𝑗 = 𝑤𝑛−𝑗+1
∗ , where 𝑤𝑗 is the 𝑗th weight of 

the UDOWAAC (or UOWAAC) operator and 𝑤𝑛−𝑗+1
∗  the 𝑗th weight of the 

UAOWAAC operator. 

 

Properties of the UOWAAC operator 

 

The UOWAAC operator is commutative, monotonic, bounded, idempotent, 

nonnegative, and reflexive. These properties can be proven with the 

following theorems: 
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Theorem 1. Commutativity. Assume 𝑓 is the UOWAAC operator. Then: 

 

𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) = 𝑓(〈�̃�1
∗, �̃�1

∗〉, … , 〈�̃�𝑛
∗ , �̃�𝑛

∗〉), (8) 

 

where (〈�̃�1
∗, �̃�1

∗〉, … , 〈�̃�𝑛
∗ , �̃�𝑛

∗〉) is any permutation of (〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉). 

 

Proof. Let 

 

𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) =∑𝑤𝑗UAC(�̃�𝑗 , �̃�𝑗)

𝑛

𝑗=1

, 

𝑓(〈�̃�1
∗, �̃�1

∗〉, … , 〈�̃�𝑛
∗ , �̃�𝑛

∗〉) =∑𝑤𝑗UAC(�̃�𝑗
∗, �̃�𝑗

∗)

𝑛

𝑗=1

. 

 

As (〈�̃�1
∗, �̃�1

∗〉, … , 〈�̃�𝑛
∗ , �̃�𝑛

∗〉) is any permutation of (〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉), we 

have UAC(�̃�𝑗 , �̃�𝑗) = UAC(�̃�𝑗
∗, �̃�𝑗

∗), for all 𝑗, and as a result: 

 

𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) = 𝑓(〈�̃�1
∗, �̃�1

∗〉, … , 〈�̃�𝑛
∗ , �̃�𝑛

∗〉). 

 

Theorem 2. Monotonicity. Assume 𝑓 is the UOWAAC operator. If 

UAC(�̃�𝑖 , �̃�𝑖) ≥ UAC(�̃�𝑖
∗, �̃�𝑖

∗), for all 𝑖, then: 

 

𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) ≥ 𝑓(〈�̃�1
∗, �̃�1

∗〉, … , 〈�̃�𝑛
∗ , �̃�𝑛

∗〉). (9) 

 

Proof. Let  

 

𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) =∑𝑤𝑗UAC(�̃�𝑗 , �̃�𝑗)

𝑛

𝑗=1

, 

𝑓(〈�̃�1
∗, �̃�1

∗〉, … , 〈�̃�𝑛
∗ , �̃�𝑛

∗〉) =∑𝑤𝑗UAC(�̃�𝑗
∗, �̃�𝑗

∗)

𝑛

𝑗=1

. 
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Since UAC(�̃�𝑖 , �̃�𝑖) ≥ UAC(�̃�𝑖
∗, �̃�𝑖

∗), for all 𝑖, it follows that UAC(�̃�𝑗 , �̃�𝑗) ≥

UAC(�̃�𝑗
∗, �̃�𝑗

∗). Therefore: 

 

𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) ≥ 𝑓(〈�̃�1
∗, �̃�1

∗〉, … , 〈�̃�𝑛
∗ , �̃�𝑛

∗〉). 

 

Theorem 3. Boundedness. Assume 𝑓 is the UOWAAC operator. Then: 

 

Min{UAC(�̃�𝑖 , �̃�𝑖)} ≤ 𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) ≤ Max{UAC(�̃�𝑖 , �̃�𝑖)}. (10) 

 

Proof. Consider Min{UAC(�̃�𝑖 , �̃�𝑖)} = 𝑧 and Max{UAC(�̃�𝑖 , �̃�𝑖)} = 𝑔. 

Subsequently: 

 

𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) =∑𝑤𝑗UAC(�̃�𝑗 , �̃�𝑗)

𝑛

𝑗=1

≥∑𝑤𝑗

𝑛

𝑗=1

𝑧 = 𝑧∑𝑤𝑗

𝑛

𝑗=1

 

𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) =∑𝑤𝑗UAC(�̃�𝑗 , �̃�𝑗)

𝑛

𝑗=1

≤∑𝑤𝑗

𝑛

𝑗=1

𝑔 = 𝑔∑𝑤𝑗

𝑛

𝑗=1

. 

 

As ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, we get: 

 

𝑧 ≤ 𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) ≤ 𝑔. 

 

Consequently, we can confirm that the UOWAAC operator is bounded. 

 

Theorem 4. Idempotency. Assume 𝑓 is the UOWAAC operator. If 

UAC(�̃�𝑖 , �̃�𝑖) = UAC(�̃�, �̃�), for all 𝑖, then: 

 

𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) = UAC(�̃�, �̃�). (11) 

 

Proof. Since 
1

2
([1 ∧ (1 − 𝑥𝑖

𝐿 + 𝑦𝑖
𝐿)] + [1 ∧ (1 − 𝑥𝑖

𝑈 + 𝑦𝑖
𝑈)]) =

1

2
([1 ∧ (1 −

𝑥𝐿 + 𝑦𝐿)] + [1 ∧ (1 − 𝑥𝑈 + 𝑦𝑈)]), for all 𝑖, we have: 

 



 143 

𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) =∑𝑤𝑗UAC(�̃�𝑗 , �̃�𝑗)

𝑛

𝑗=1

=∑𝑤𝑗

𝑛

𝑗=1

1

2
([1 ∧ (1 − 𝑥𝐿 + 𝑦𝐿)] + [1 ∧ (1 − 𝑥𝑈 + 𝑦𝑈)])

=
1

2
([1 ∧ (1 − 𝑥𝐿 + 𝑦𝐿)] + [1 ∧ (1 − 𝑥𝑈 + 𝑦𝑈)])∑𝑤𝑗

𝑛

𝑗=1

. 

 

Knowing that ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, we obtain: 

 

𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) =
1

2
([1 ∧ (1 − 𝑥𝐿 + 𝑦𝐿)] + [1 ∧ (1 − 𝑥𝑈 + 𝑦𝑈)])

= UAC(�̃�, �̃�). 

 

Theorem 5. Nonnegativity. Assume 𝑓 is the UOWAAC operator. Then: 

 

𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) ≥ 0. (12) 

 

Proof. Since 0 ≤ 𝑥𝑖
𝐿 ≤ 𝑥𝑖

𝑈 ≤ 1 and 0 ≤ 𝑦𝑖
𝐿 ≤ 𝑦𝑖

𝑈 ≤ 1, the aggregated value 

will be always positive. 

 

Theorem 6. Reflexivity. Assume 𝑓 is the UOWAAC operator. Then: 

 

𝑓(〈�̃�1, �̃�1〉, … , 〈�̃�𝑛, �̃�𝑛〉) = 1. (13) 

 

Proof. Since �̃�𝑖 = �̃�𝑖, for all 𝑖, we have: 

 

1

2
([1 ∧ (1 − 𝑥𝑖

𝐿 + 𝑥𝑖
𝐿)] + [1 ∧ (1 − 𝑥𝑖

𝑈 + 𝑥𝑖
𝑈)]) = 1. 

 

Thus, we can say that the UOWAAC operator is reflexive. 

 

Additionally, an interesting issue to consider is the measures for 

characterizing the weighting vector 𝑊 of the UOWAAC operator. In the 

following, the measures of attitudinal character (Yager, 1988), entropy of 
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dispersion (Yager, 1988), balance operator (Yager, 1996), and divergence of 

𝑊 (Yager, 2002) are shortly analyzed. 

 

The first measure is the attitudinal character or degree of orness, and it can 

be defined as follows: 

 

α(𝑊) =∑𝑤𝑗 (
𝑛 − 𝑗

𝑛 − 1
)

𝑛

𝑗=1

. (14) 

 

The second measure is the entropy of dispersion and it shows the amount of 

information being used. It can be defined as follows: 

 

H(𝑊) = −∑𝑤𝑗 ln(𝑤𝑗)

𝑛

𝑗=1

. (15) 

 

The balance operator is another interesting measure which evaluates the 

tendency to the minimum or to the maximum. It can be defined as follows: 

 

Bal(𝑊) =∑𝑤𝑗 (
𝑛 + 1 − 2𝑗

𝑛 − 1
)

𝑛

𝑗=1

. (16) 

 

Lastly, the divergence of 𝑊 is a measure that quantifies the divergence of the 

weights against the attitudinal character measure. It can be defined as 

follows: 

 

Div(𝑊) =∑𝑤𝑗 (
𝑛 − 𝑗

𝑛 − 1
− 𝛼(𝑊))

2𝑛

𝑗=1

. (17) 

 

Families of the UOWAAC operator 

 

One appealing aspect of the UOWAAC operator is that it includes a wide 

range of particular cases, which can be found by using different 

manifestations of the weighting vector 𝑊. Some interesting particular cases 

of this operator are the following: 
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• The minimum UAC (Min-UAC) is found when 𝑤𝑛 = 1 and 𝑤𝑗 = 0, 

for all 𝑗 ≠ 𝑛. It corresponds to the pessimistic criteria. 

• The maximum UAC (Max-UAC) is found when 𝑤1 = 1 and 𝑤𝑗 = 0, 

for all 𝑗 ≠ 1. It corresponds to the optimistic criteria. 

• The median UAC (Med-UAC). If 𝑛 is an odd number, then, the Med-

UAC is obtained when 𝑤(𝑛+1)/2 = 1 and 𝑤𝑗 = 0, for all 𝑗 ≠

(𝑛 + 1)/2. If 𝑛 is an even number, then, the Med-UAC is obtained 

when 𝑤𝑛/2 = 𝑤(𝑛/2)+1 = 0.5 and 𝑤𝑗 = 0, for all 𝑗 ≠ 𝑛/2, (𝑛/2) + 1. 

• The normalized UAC (UNAC) is found when 𝑤𝑗 = 1/𝑛, for all 𝑗. It 

corresponds to the Laplace criteria. 

• The Hurwicz-UOWAAC is found when 𝑤1 = 𝛼, 𝑤𝑛 = (1 − 𝛼), and 

𝑤𝑗 = 0, for all 𝑗 ≠ 1, 𝑛. 

• The Olympic-UOWAAC is found when 𝑤1 = 𝑤𝑛 = 0 and 𝑤𝑗 =

1/(𝑛 − 2), for all 𝑗 ≠ 1, 𝑛. 

• The Step-UOWAAC is found when 𝑤𝑘 = 1 and 𝑤𝑗 = 0, for all 𝑗 ≠ 𝑘. 

 

4. The UIOWAAC operator 

 

The following section studies the UIOWAAC operator, which can be 

described as an extension of the UOWAAC operator that uses order-inducing 

variables in the reordering step of the argument variables. Thus, the 

reordering process does not depend on the values of the argument variables. 

This feature is very useful as it allows to represent more complex situations. 

 

Let �̃� = (�̃�1, … , �̃�𝑛) and �̃� = (�̃�1, … , �̃�𝑛) be two sets of interval numbers, 

then, the UIOWAAC operator can be defined as follows. 

 

Definition 9. Let Ω be a set of interval numbers. An UIOWAAC operator of 

dimension 𝑛 is a mapping UIOWAAC: 𝑅𝑛 × Ω𝑛 × Ω𝑛 → 𝑅 that has associated 

a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in 

which: 

 

UIOWAAC(〈𝑢1, �̃�1, �̃�1〉, … , 〈𝑢𝑛, �̃�𝑛, �̃�𝑛〉) =∑𝑤𝑗UAC(�̃�𝑗 , �̃�𝑗)

𝑛

𝑗=1

, (18) 
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where UAC(�̃�𝑗 , �̃�𝑗) is the UAC(�̃�𝑖 , �̃�𝑖) value of the UIOWAAC triplet 

〈𝑢𝑖 , �̃�𝑖 , �̃�𝑖〉 having the 𝑗th largest 𝑢𝑖 value, 𝑢𝑖 is the order-inducing variable, 

and UAC(�̃�𝑖 , �̃�𝑖) is the adequacy coefficient between �̃�𝑖 = [𝑥𝑖
𝐿 , 𝑥𝑖

𝑈] and �̃�𝑖 =

[𝑦𝑖
𝐿 , 𝑦𝑖

𝑈], with 0 ≤ 𝑥𝑖
𝐿 ≤ 𝑥𝑖

𝑈 ≤ 1 and 0 ≤ 𝑦𝑖
𝐿 ≤ 𝑦𝑖

𝑈 ≤ 1. 

 

Like the UOWAAC operator, the UIOWAAC operator is commutative, 

monotonic, bounded, idempotent, nonnegative, and reflexive. The theorems 

and proofs of the mathematical properties of this operator are omitted as they 

are quite similar to the ones of the UOWAAC operator and thereby repetitive. 

 

In order to understand numerically the UIOWAAC operator, a simple 

example is presented below. 

 

Example 2. Assume two sets of interval numbers �̃� = (�̃�1, �̃�2, �̃�3, �̃�4) =

([0.7,0.8], [0.6,0.7], [0.8,0.9], [0.5,0.7]) and �̃� = (�̃�1, �̃�2, �̃�3, �̃�4) =

([0.4,0.6], [0.5,0.9], [0.7,0.9], [0.8,0.9]). If the weighting vector is 𝑊 =

(𝑤1, 𝑤2, 𝑤3, 𝑤4) = (0.5,0.3,0.1,0.1) and the inducing vector 𝑈 =

(𝑢1, 𝑢2, 𝑢3, 𝑢4) = (9,7,3,5), then, the UIOWAAC operator is obtained as 

follows. 

 

As in Example 1, first of all the UAC for each pair of interval numbers needs 

to be calculated. By doing this, the following values are obtained: 

 

UAC(�̃�1, �̃�1) = 0.75, UAC(�̃�2, �̃�2) = 0.95, UAC(�̃�3, �̃�3) = 0.95, and 

UAC(�̃�4, �̃�4) = 1. 

 

Afterwards, with Eq. (18) the aggregation is carried out: 

 

UIOWAAC(�̃�, �̃�) = 0.5 × 0.75 + 0.3 × 0.95 + 0.1 × 1 + 0.1 × 0.95

= 0.855. 

 

5. Applications of the UOWAAC operator 

 

The following section presents an illustrative example of the new approach 

in a MCGDM problem regarding the international expansion of a company. 
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Nevertheless, other applications could be developed, for example in sport 

management, human resources, asset management, and many others. 

 

Suppose that a company based in Germany and devoted to the production of 

car components wants to expand internationally in order to increase revenue 

potential. Therefore, three experts are requested by the company for choosing 

the most appropriate country to expand in among five options, which are: 

 

• 𝐴1: France. 

• 𝐴2: Italy. 

• 𝐴3: Portugal. 

• 𝐴4: Romania. 

• 𝐴5: Spain. 

 

Also, the company considers five different characteristics as key for the 

assessments, which are: 

 

• 𝐶1: Customer base. 

• 𝐶2: Regulatory environment. 

• 𝐶3: Economic performance. 

• 𝐶4: Skilled labor force. 

• 𝐶5: Competitive landscape. 

 

First, the interval numbers of the ideal set 𝐼 are defined by the company as it 

is shown in Table 3.10. Then, each expert evaluates the characteristics of the 

candidate countries one by one and based on a scale from 0 to 1, where 0 is 

the worst result and 1 the best. The individual evaluations can be seen in 

Tables 3.11, 3.12, and 3.13. 

 

In order to obtain a unified payoff matrix, the company aggregates the 

assessments conducted by the three experts. As the company assumes that 

the evaluations of each expert are not equally important, the uncertain 

weighted average (UWA) with 𝑊 = (0.4,0.4,0.2) is used to build this 

matrix. The results are presented in Table 3.14. 
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Next, in order to rank the countries according to the collective assessments, 

the company decides to use the UNAC, UWAC, UOWAAC, UAOWAAC, 

and UIOWAAC aggregation operators. To do so, the company has agreed to 

use the weighting vector 𝑊 = (0.4,0.2,0.2,0.1,0.1) and order-inducing 

vector 𝑈 = (10,5,6,7,8). The aggregated results are shown in Table 3.15. It 

should be taken into account that the preferred alternative will be the one 

with the highest value. 

 

Table 3.10. Ideal country 

 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝐼 [0.9,1] [0.7,0.8] [0.7,0.8] [0.8,0.9] [0.8,0.9] 

 

Table 3.11. Assessments of Expert 1 

 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝐴1 [0.7,0.8] [0.8,0.9] [0.8,0.9] [0.9,1] [0.35,0.45] 

𝐴2 [0.6,0.7] [0.45,0.55] [0.7,0.8] [0.85,0.95] [0.5,0.6] 

𝐴3 [0.35,0.45] [0.6,0.7] [0.45,0.5] [0.7,0.8] [0.9,1] 

𝐴4 [0.5,0.6] [0.5,0.6] [0.5,0.6] [0.6,0.7] [0.8,0.9] 

𝐴5 [0.8,0.9] [0.85,1] [0.6,0.7] [0.8,0.9] [0.25,0.35] 

 

Table 3.12. Assessments of Expert 2 

 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝐴1 [0.75,0.85] [0.7,0.9] [0.8,0.95] [0.8,0.95] [0.35,0.45] 

𝐴2 [0.75,0.85] [0.5,0.65] [0.7,0.8] [0.8,0.95] [0.4,0.55] 

𝐴3 [0.4,0.5] [0.6,0.75] [0.6,0.7] [0.7,0.85] [0.85,1] 

𝐴4 [0.6,0.65] [0.5,0.65] [0.5,0.65] [0.6,0.75] [0.8,0.95] 

𝐴5 [0.75,0.9] [0.7,0.9] [0.65,0.75] [0.8,0.95] [0.3,0.45] 

 

Table 3.13. Assessments of Expert 3 

 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝐴1 [0.75,0.9] [0.7,0.8] [0.85,0.9] [0.8,1] [0.25,0.4] 

𝐴2 [0.65,0.8] [0.65,0.7] [0.7,0.8] [0.7,0.85] [0.3,0.45] 

𝐴3 [0.3,0.4] [0.65,0.75] [0.6,0.7] [0.75,0.9] [0.75,0.95] 

𝐴4 [0.45,0.65] [0.6,0.7] [0.6,0.7] [0.7,0.8] [0.7,0.85] 

𝐴5 [0.8,1] [0.7,0.85] [0.7,0.75] [0.7,0.85] [0.2,0.4] 



 149 

 

Table 3.14. Collective results 

 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝐴1 [0.73,0.84] [0.74,0.88] [0.81,0.92] [0.84,0.98] [0.33,0.44] 

𝐴2 [0.67,0.78] [0.51,0.62] [0.7,0.8] [0.8,0.93] [0.42,0.55] 

𝐴3 [0.36,0.46] [0.61,0.73] [0.54,0.62] [0.71,0.84] [0.85,0.99] 

𝐴4 [0.53,0.63] [0.52,0.64] [0.52,0.64] [0.62,0.74] [0.78,0.91] 

𝐴5 [0.78,0.92] [0.76,0.93] [0.64,0.73] [0.78,0.91] [0.26,0.4] 

 

Table 3.15. Aggregated results 

 

 UNAC UWAC UOWAAC UAOWAAC UIOWAAC 

𝐴1 0.874 0.888 0.937 0.781 0.841 

𝐴2 0.845 0.837 0.904 0.772 0.819 

𝐴3 0.827 0.727 0.898 0.727 0.744 

𝐴4 0.822 0.766 0.874 0.766 0.782 

𝐴5 0.861 0.894 0.923 0.758 0.848 

 

Table 3.16. Ordering of the countries 

 

 Ordering 

UNAC 𝐴1 ≻ 𝐴5 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴4 

UWAC 𝐴5 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4 ≻ 𝐴3 

UOWAAC 𝐴1 ≻ 𝐴5 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴4 

UAOWAAC 𝐴1 ≻ 𝐴2 ≻ 𝐴4 ≻ 𝐴5 ≻ 𝐴3 

UIOWAAC 𝐴5 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4 ≻ 𝐴3 

 

As we can see in Table 3.16, depending on the aggregation operator used, the 

order of preference may be different. For example, with the UNAC operator, 

the UOWAAC operator, and the UAOWAAC operator, the best country to 

expand in is France. However, with the UWAC operator and the UIOWAAC 

operator, the best country to expand in is Spain. This allows the decision-

maker to get a more complete view of the problem and thereby make better 

decisions. 

 

Uncertainty is a major factor that affects the decision-making of companies 

on international expansion (Sniazhko, 2019). In particular, this uncertainty 

arises when the information considered in the analysis is incomplete, 
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imprecise, or vague. In this context, the aggregation operators adopted in this 

practical example provide an effective solution for dealing with uncertainty 

associated to business internationalization. 

 

6. Comparative analysis 

 

The purpose of this section is to perform a comparative study of the presented 

aggregation operators with existing aggregation operators. Other 

uncertainties are also contemplated. 

 

Existing aggregation operators 

 

In concrete situations the UOWAAC operator and its families are more 

appropriate than others based on the Hamming distance. To prove this point, 

a comparative analysis between these two approaches is studied. To do so, 

the uncertain normalized distance (UND), the uncertain weighted distance 

(UWD), the uncertain ordered weighted averaging distance (UOWAD) 

(Merigó et al., 2009), the ascending UOWAD (UAOWAD), and the induced 

UOWAD (UIOWAD) (Zeng et al., 2013) operators are calculated, 

considering the same information used in the international expansion 

MCGDM problem. The comparison results are presented in Table 3.17. Note 

that the outcomes of the UNAC, UWAC, UOWAAC, UAOWAAC, and 

UIOWAAC operators are taken from the example conducted in Section 5. 

 

Table 3.17. Comparison with established aggregation operators 

 

 Ordering  Ordering 

UNAC 𝐴1 ≻ 𝐴5 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴4 UND 𝐴2 ≻ 𝐴5 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴3 

UWAC 𝐴5 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4 ≻ 𝐴3 UWD 𝐴5 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4 ≻ 𝐴3 

UOWAAC 𝐴1 ≻ 𝐴5 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴4 UOWAD 𝐴2 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴5 ≻ 𝐴3 

UAOWAAC 𝐴1 ≻ 𝐴2 ≻ 𝐴4 ≻ 𝐴5 ≻ 𝐴3 UAOWAD 𝐴2 ≻ 𝐴5 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴3 

UIOWAAC 𝐴5 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4 ≻ 𝐴3 UIOWAD 𝐴5 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴3 

We can see that the order of preference given by the UOWAAC operator 

differs from the UOWAD one. The same happens with the other compared 

aggregation operators, except for the UWAC against the UWD. Obviously, 

if a candidate country presents better results than the ideal country, it makes 

no sense to penalize as it happens with the aggregation operators that are built 



 151 

under the Hamming distance. Thus, by using the UOWAAC operators as well 

as its families and extensions, the decision-maker only penalizes when the 

level of the ideal country is not attained, but he/she neither penalizes nor 

rewards when the level of the ideal country is exceeded. 

 

Basic uncertain information 

 

So far, the illustrative example assumed that the assessments are represented 

directly by interval numbers. However, the experts could also use basic 

uncertain information (BUI) (Jin et al., 2018; Mesiar et al., 2018) for the 

evaluations and afterwards transform it into interval numbers. 

 

BUI is a quite recent concept that was introduced to generalize a wide variety 

of uncertainties. Specifically, it allows to consider the level of certainty that 

the decision-maker has on the input data. A BUI is a real pair �̃� =< 𝑥; 𝑐 >, 

where 𝑥(𝑥 ∈ [0,1]) is the input value and 𝑐(𝑐 ∈ [0,1]) the certainty degree 

of 𝑥. A BUI can be transformed into a closed interval [𝑎, 𝑏], where 𝑎 = 𝑐𝑥 

and 𝑏 = 𝑐𝑥 + 1 − 𝑐. 

 

In order to enrich this paper, the same example as in Section 5 will be 

conducted but, in this case, considering BUI assessments. By using BUI, the 

experts are able to exhibit the amount of confidence that they have in their 

own assessments. The BUI pair matrix of each expert can be seen in Tables 

3.18, 3.19, and 3.20. Likewise, the aggregated results and the ranking of the 

alternatives can be seen in Tables 3.21 and 3.22. Take into account that the 

weighting vectors and inducing vector used are the same as in Section 5. 

 

Table 3.18. BUI pairs of Expert 1 

 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝐴1 < 0.75; 0.8 > < 0.85; 0.8 > < 0.85; 0.8 > < 0.95; 0.8 > < 0.4; 0.8 > 

𝐴2 < 0.65; 0.8 > < 0.5; 0.8 > < 0.75; 0.8 > < 0.9; 0.8 > < 0.55; 0.8 > 

𝐴3 < 0.4; 0.9 > < 0.65; 0.9 > < 0.48; 0.9 > < 0.75; 0.9 > < 0.95; 0.9 > 

𝐴4 < 0.55; 0.7 > < 0.55; 0.7 > < 0.55; 0.7 > < 0.65; 0.7 > < 0.85; 0.7 > 

𝐴5 < 0.85; 0.9 > < 0.93; 0.9 > < 0.65; 0.9 > < 0.85; 0.9 > < 0.3; 0.9 > 
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Table 3.19. BUI pairs of Expert 2 

 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝐴1 < 0.8; 0.7 > < 0.8; 0.95 > < 0.88; 0.75 > < 0.88; 0.8 > < 0.4; 0.7 > 

𝐴2 < 0.8; 0.7 > < 0.58; 0.95 > < 0.75; 0.75 > < 0.88; 0.8 > < 0.48; 0.7 > 

𝐴3 < 0.45; 0.7 > < 0.68; 0.95 > < 0.65; 0.75 > < 0.78; 0.8 > < 0.93; 0.7 > 

𝐴4 < 0.63; 0.7 > < 0.58; 0.95 > < 0.58; 0.75 > < 0.68; 0.8 > < 0.88; 0.7 > 

𝐴5 < 0.83; 0.7 > < 0.8; 0.95 > < 0.7; 0.75 > < 0.88; 0.8 > < 0.38; 0.7 > 

 

Table 3.20. BUI pairs of Expert 3 

 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝐴1 < 0.83; 0.95 > < 0.75; 0.65 > < 0.88; 0.95 > < 0.9; 0.95 > < 0.33; 0.95 > 

𝐴2 < 0.73; 0.85 > < 0.68; 0.6 > < 0.75; 0.85 > < 0.78; 0.85 > < 0.38; 0.85 > 

𝐴3 < 0.35; 0.85 > < 0.7; 0.6 > < 0.65; 0.85 > < 0.83; 0.85 > < 0.85; 0.85 > 

𝐴4 < 0.55; 0.85 > < 0.65; 0.6 > < 0.65; 0.85 > < 0.75; 0.85 > < 0.78; 0.85 > 

𝐴5 < 0.9; 0.85 > < 0.78; 0.6 > < 0.73; 0.85 > < 0.78; 0.85 > < 0.3; 0.85 > 

 

Table 3.21. Aggregated results 

 

 
BUI- 

UNAC 

BUI- 

UWAC 

BUI- 

UOWAAC 

BUI- 

UAOWAAC 

BUI- 

UIOWAAC 

𝐴1 0.859 0.861 0.926 0.772 0.816 

𝐴2 0.810 0.796 0.863 0.748 0.779 

𝐴3 0.807 0.717 0.873 0.715 0.732 

𝐴4 0.784 0.737 0.824 0.734 0.743 

𝐴5 0.838 0.860 0.903 0.745 0.815 

 

Table 3.22. Ordering of the countries 

 

 Ordering 

BUI-UNAC 𝐴1 ≻ 𝐴5 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴4 

BUI-UWAC 𝐴1 ≻ 𝐴5 ≻ 𝐴2 ≻ 𝐴4 ≻ 𝐴3 

BUI-UOWAAC 𝐴1 ≻ 𝐴5 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4 

BUI-UAOWAAC 𝐴1 ≻ 𝐴2 ≻ 𝐴5 ≻ 𝐴4 ≻ 𝐴3 

BUI-UIOWAAC 𝐴1 ≻ 𝐴5 ≻ 𝐴2 ≻ 𝐴4 ≻ 𝐴3 

 

Within each operator, the optimal choice is the alternative with the highest 

aggregated result. Stated another way, the best option is the one with the 

closest aggregated result to 1. In all cases it is 𝐴1, i.e., France. Conversely, 
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𝐴3 and 𝐴4, i.e., Portugal and Romania, are the less preferred options for the 

company. 

 

7. Conclusions 

 

The UOWAAC operator is a new aggregation operator that uses the adequacy 

coefficient, the interval numbers, and the OWA operator in the same 

formulation. As a result, this comprehensive operator presents several 

advantages. First, it provides a parametrized family of aggregation operators 

that includes among others the Min-UAC, the Max-UAC, the Med-UAC, the 

UNAC, the Hurwicz-UOWAAC, the Olympic-UOWAAC, and the Step-

UOWAAC. Second, it can aggregate the information according to the 

attitudinal character of the decision-maker. Third, it is practical for dealing 

with uncertainty, especially when the information cannot be represented with 

exact numbers, but it is possible to use interval numbers. Fourth, it can be 

used to compare an ideal with the available alternatives while establishing a 

threshold from which the results are always the same. 

 

Moreover, the UIOWAAC operator is an extension of the UOWAAC 

operator. The core difference between these two operators is that the 

UIOWAAC operator uses order-inducing variables, thus allowing the 

decision-maker to deal with more complex reordering processes of the 

available information. 

 

An illustrative example of the new approach has been presented in a 

MCGDM problem regarding the selection of the most suitable country for 

international business expansion. The adopted aggregation operators permit 

to consider the judgements of the experts in the form of interval numbers. 

Moreover, they overcome the limitations of some traditional comparison 

methods. The numerical results show that depending on the type of 

aggregation operator used the preference order of the candidate countries 

may change. 

 

For future research, the proposed operators can be applied to other interesting 

fields, such as personnel selection, sport management, selection of financial 

products, and risk management. Also, we suggest investigating new 

extensions of the UOWAAC operator and the UIOWAAC operator, for 
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example, by including generalized means, quasi arithmetic means, or 

probabilities. 
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Abstract 

 

The public pension system crisis, arising mainly from the changing 

demographic, has hit different countries worldwide. For governments and 

citizens, it is very important to have reliable information regarding pensions 

in order to make decisions with a maximum degree of effectiveness and to 

ensure a decent income in retirement. This study presents a new method for 

optimizing forecasts of the average pension by using the ordered weighted 

averaging (OWA) operator, the induced ordered weighted averaging (IOWA) 

operator, the generalized ordered weighted averaging (GOWA) operator, the 

induced generalized ordered weighted averaging (IGOWA) operator, and 

particular forms of the probabilistic ordered weighted averaging (POWA) 

operator and the quasi-arithmetic ordered weighted averaging (Quasi-OWA) 

operator. It also accounts for inflation or deflation, providing a more realistic 

assessment of the average pension. The main advantage of this approach is 

the possibility to include the attitudinal character of experts or decision-

makers into the calculation. The study also presents an illustrative example 

of how to forecast the real average pension for all autonomous communities 

of Spain by using this new approach. 

 

Keywords: Decision-making, forecasting, aggregation operator, OWA 

operator, average pension, COVID-19. 
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1. Introduction 

 

As stated in Chapter 3 of the European Pillar of Social Rights (European 

Commission [EC], 2017), “everyone in old age has the right to resources that 

ensure living in dignity” (p. 58). But can governments ensure it? The 

continuous increase in life expectancy and the low rates of fertility implies a 

declining ratio of workers to pensioners. Consequently, countries find it very 

difficult to guarantee the long-term financial sustainability of their pension 

systems. Japan is the most affected country by these demographic changes: 

in 2019 there were 47 older dependents per 100 in the working-age 

population (World Bank, 2019). Despite reforms in some countries, for 

example Spain is increasing gradually the statutory retirement age from 65 

to 67 by the year 2027 (España, Cortes Generales, 2011), they are not enough 

to solve the problem. Also, many of these reforms lead to a reduction in the 

level of individual public pension income. Additional factors that have a 

significant influence on the sustainability of public pension systems are those 

related to the economic growth and employment, among others 

(Organization for Economic Cooperation and Development [OECD], 2019, 

2020). 

 

Especially in the current situation, it is important for governments to have 

reliable and accurate pension forecasts in realistic terms in order to conduct 

the best pension policy decision-making. Also, it is important for citizens, so 

that they can plan properly their retirement and therefore reduce the risk of 

poverty when they retire. 

 

The aim of this paper is to optimize average pensions forecasts. To 

accomplish this, a new method called the ordered weighted averaging real 

average pension (OWARAP) is presented. This new method is built under 

the ordered weighted averaging (OWA) operator (Yager, 1988) and it 

includes the consumer price index (CPI) to adjust average pensions forecasts 

for inflation. The OWA operator introduced by Yager is an increasing 

popular aggregation method (Blanco-Mesa et al., 2019; Emrouznejad & 

Marra, 2014; He et al., 2017) that aggregates the information underestimating 

or overestimating it according to the attitudinal character of the decision-

maker. The advantage of using the OWA operator is the possibility to add in 

a more flexible way the opinion that the decision-maker has about future 
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scenarios. Thus, this operator is extremely helpful when dealing with 

uncertain environments. 

 

This paper also considers other extensions of the OWA operator to optimize 

pensions forecasts. These extensions are the induced ordered weighted 

averaging (IOWA) operator (Yager & Filev, 1999), the generalized ordered 

weighted averaging (GOWA) operator (Yager, 2004), the induced 

generalized ordered weighted averaging (IGOWA) operator (Merigó & Gil-

Lafuente, 2009), and families of the probabilistic ordered weighted averaging 

(POWA) operator (Merigó, 2012). The main characteristic of the IOWA 

operator is that the reordering of the arguments is carried out by another 

variable that Yager and Filev called order-inducing variable. The main 

characteristic of the GOWA operator is the addition of a parameter 

controlling the power to which the argument values are raised. The IGOWA 

operator was introduced by Merigó and Gil-Lafuente and combines the main 

characteristics of the IOWA and the GOWA operator, so it uses generalized 

means and order-inducing variables. The main feature of the POWA operator 

is the possibility of unifying the attitudinal character and the probabilistic 

information under the same formulation. 

 

Throughout the literature we can find a large variety of forecasting models 

that incorporate the family of OWA operators. Among them: Merigó et al. 

(2015) apply the OWA and the unified aggregation operator (UAO) for sales 

forecasting. Cheng et al. (2013) propose a forecasting model that 

incorporates OWA and adaptive network-based fuzzy inference systems 

(ANFIS) and which is utilized for predicting stock prices. Huang and Cheng 

(2008) developed an OWA based time series model to predict air quality. 

Flores-Sosa et al. (2020) estimates exchange rates by unifying the IOWA 

operator with linear regression in a single formulation. 

 

The remaining of this paper is organized as follows. Section 2 briefly reviews 

basic preliminaries regarding aggregation operators. Section 3 introduces the 

OWARAP operator. Section 4 studies some new extensions of the OWARAP 

operator. Section 5 proposes an algorithm to calculate the real average 

pension, develops an illustrative example, and compares the new approach 

with traditional methods. Section 6 discusses the applicability of aggregation 
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operators to address the COVID-19 impacts on pensions. Section 7 

summarizes the finding and conclusions of the study. 

 

2. Preliminaries 

 

This section briefly defines the concept of aggregation and aggregation 

operator and reviews the OWA operator, the IOWA operator, the GOWA 

operator, and the IGOWA operator. 

 

Aggregation is the process of combining several numerical values into a 

single representative value, and an aggregation operator (also called 

aggregation function) performs this operation (Grabisch et al., 2009). 

Aggregation operators have been applied to a wide range of fields such as 

social choice and voting (Kacprzyk & Zadrożny, 2009), portfolio selection 

(Laengle et al., 2015, 2017), inflation calculations (Espinoza-Audelo et al., 

2020; León-Castro et al., 2020), retirement planning (Figuerola-Wischke et 

al., 2021), and many others (Kacprzyk et al., 2019). The most common 

aggregation operators are the arithmetic average (simple average), the 

weighted average, and the OWA. 

 

The OWA operator from Yager (1988) provides a parameterized class of 

mean type aggregation operators that lies between the minimum and the 

maximum. The OWA operator can be defined as follows. 

 

Definition 1. An OWA operator of dimension 𝑛 is a function 𝐹: 𝑅𝑛 → 𝑅 that 

has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 = (𝑤1, … , 𝑤𝑛) with 

𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

OWA(𝑎1, … , 𝑎𝑛) =∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

, (1) 

 

where 𝑏𝑗 is the 𝑗th largest element of the arguments 𝑎1, … , 𝑎𝑛, that is 

(𝑏1, … , 𝑏𝑛) is (𝑎1, … , 𝑎𝑛) reordered from largest to smallest. 

 

An interesting characteristic of this type of operator is that it includes the 

classical methods for decision-making into a single formulation. This can be 
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achieved through choosing different manifestations of the weighting vector 

𝑊. The optimistic criterion or maximax criterion selects the most favorable 

result of each alternative, that is 𝑤1 = 1 and 𝑤𝑗 = 0 for ∀ 𝑗 ≠ 1. The 

pessimistic criterion or maximin criterion selects the most unfavorable result 

of each alternative, that is 𝑤𝑗 = 0 and 𝑤𝑛 = 1 for ∀ 𝑗 ≠ 𝑛. The Laplace 

criterion is obtained when 𝑤𝑗 = 1/𝑛 for ∀ 𝑗, so it is assumed that all 

alternatives have equal probability to occur. The Hurwicz criterion is found 

when 𝑤1 = 𝛼, 𝑤𝑛 = 1 − 𝛼, and 𝑤𝑗 = 0 for ∀ 𝑗 ≠ 1, 𝑛, so it takes into 

account both the best and the worst alternative. 

 

Note that if the reordering process is carried out from smallest to largest, we 

get the ascending ordered weighted averaging (AOWA) operator (Yager, 

1992). 

 

One appealing extension of the OWA operator is the IOWA operator 

developed by Yager and Filev (1999). In this operator, the step of reordering 

is carried out using order-inducing variables. This allows to consider other 

factors in the reordering process and not only to the degree of optimism. It 

can be defined as follows. 

 

Definition 2. An IOWA operator of dimension 𝑛 is a function 𝐹: 𝑅𝑛 × 𝑅𝑛 →

𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 = (𝑤1, … , 𝑤𝑛) 

with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

IOWA(⟨𝑢1, 𝑎1⟩, … , ⟨𝑢𝑛, 𝑎𝑛⟩) =∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

, (2) 

 

where 𝑏𝑗 is the 𝑎𝑖 value of the IOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩ having the 𝑗th largest 𝑢𝑖 

value. 𝑢𝑖 is referred as the order-inducing variable and 𝑎𝑖 as the argument 

variable. 

 

Another interesting extension is the GOWA operator. The GOWA operator 

was introduced by Yager (2004) and it combines the OWA operator with 

generalized means (Dyckhoff & Pedrycz, 1984). This operator is defined as 

follows. 
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Definition 3. A GOWA operator of dimension 𝑛 is a function 𝐹: 𝑅𝑛 → 𝑅 that 

has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 = (𝑤1, … , 𝑤𝑛) with 

𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

GOWA(𝑎1, … , 𝑎𝑛) = (∑𝑤𝑗𝑏𝑗
𝜆

𝑛

𝑗=1

)

1
𝜆⁄

, (3) 

 

where 𝜆 is a parameter such that 𝜆 ∈ (−∞,+∞) and 𝑏𝑗 is the 𝑗th largest of 

the argument variable 𝑎𝑖.  

 

Note that if 𝜆 = −1 we obtain the ordered weighted harmonic averaging 

(OWHA) operator (Yager, 2004), if 𝜆 = 0 the ordered weighted geometric 

(OWG) operator (Chiclana et al., 2000, 2002), if 𝜆 = 1 the OWA operator, 

and if 𝜆 = 2 the ordered weighted quadratic averaging (OWQA) operator 

(Yager, 2004). 

 

Merigó and Gil-Lafuente (2009) introduced the IGOWA operator. This 

operator uses the main characteristics of the IOWA operator and the GOWA 

operator. The IGOWA operator is defined as follows. 

 

Definition 4. An IGOWA operator of dimension 𝑛 is a function 

𝐹: 𝑅𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 

𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

IGOWA(⟨𝑢1, 𝑎1⟩, … , ⟨𝑢𝑛, 𝑎𝑛⟩) = (∑𝑤𝑗𝑏𝑗
𝜆

𝑛

𝑗=1

)

1
𝜆⁄

, (4) 

 

where 𝑏𝑗 is the 𝑎𝑖 value of the IGOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩ having the 𝑗th largest 𝑢𝑖 

value. 𝑢𝑖 is referred as the order-inducing variable, 𝑎𝑖 as the argument 

variable, and 𝜆 is a parameter such that 𝜆 ∈ (−∞,+∞). 

 

All the above-mentioned operators satisfy the conditions of monotonicity, 

commutativity, boundedness, and idempotency. For a detailed proof consult 

(Merigó & Gil-Lafuente, 2009; Yager, 1988, 2004; Yager & Filev, 1999). 
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3. The ordered weighted averaging real average pension 

 

In this section the OWARAP operator, the induced ordered weighted 

averaging real average pension (IOWARAP) operator, and the 

generalizations of these two are presented. 

 

The OWARAP operator 

 

The OWARAP operator is a new aggregation function that measures the 

future average pension adjusted for price changes and which is built under 

the family of the OWA operator. This operator provides a parametrized 

family of aggregation operators between the minimum and the maximum real 

average pension. 

 

An important feature of the OWARAP operator is its possibility of unifying 

different opinions of a set of experts or decision-makers into a collective 

result without losing any information. Another interesting advantage is the 

capability to consider a wide range of situations and alternatives, thus 

providing a better understanding of the problem. 

 

Most countries publish information regarding pensions in current prices. 

However, people can obtain a true picture of the average pension by using 

the OWARAP operator. In this sense, citizens, governments, and companies 

can know if there will be a purchasing power reduction in the retirement 

income, thus improving the quality and effectiveness of decision-making. 

The OWARAP operator can be defined as follows. 

 

Definition 5. An OWARAP operator of dimension 𝑛 is a function 𝐹: 𝑅𝑛 →

𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 = (𝑤1, … , 𝑤𝑛) 

with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

OWARAP(𝑝1, … , 𝑝𝑛) = (
100

𝐶𝑃𝐼
)∑𝑤𝑗𝑃𝑗

𝑛

𝑗=1

, (5) 
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where 𝑃𝑗 is the 𝑗th largest element of a set of nominal average pensions 

𝑝1, … , 𝑝𝑛 (referred as arguments) and 𝐶𝑃𝐼 is the consumer price index. 

 

Example 1. Assume the following collection of nominal pensions (𝑝1 =

920, 𝑝2 = 890, 𝑝3 = 950, 𝑝4 = 980) and weighting vector 𝑊 =

(0.40,0.25,0.25,0.10). If we assume that 𝐶𝑃𝐼 = 105, then the aggregation 

process is solved as follows: 

 

(
100

105
) × (0.40 × 980 + 0.25 × 950 + 0.25 × 920 + 0.10 × 890)

= 903.33. 

 

The OWARAP operator is a mean operator that satisfies the properties of 

monotonicity, commutativity, and boundedness. These properties are 

expressed in the following theorems: 

 

Theorem 1. Monotonicity. Let 𝐹 be the OWARAP operator. If 𝑝𝑖 ≥ �̂�𝑖 for 

all 𝑖, then, 𝐹(𝑝1, … , 𝑝𝑛) ≥ 𝐹(�̂�1, … , �̂�𝑛). 

 

Theorem 2. Commutativity (symmetry). In the sense that the initial indexing 

of the arguments does not meter. So, if 𝐹 is the OWARAP operator, then, 

𝐹(𝑝1, … , 𝑝𝑛) = 𝐹(�̂�1, … , �̂�𝑛), where (�̂�1, … , �̂�𝑛) is any permutation of 

(𝑝1, … , 𝑝𝑛). 

 

Theorem 3. Boundedness. Since the aggregation is delimited. Let 𝐹 be the 

OWARAP operator. Then, (
100

𝐶𝑃𝐼
)𝑀𝑖𝑛{𝑝𝑖} ≤ 𝐹(𝑝1, … , 𝑝𝑛) ≤ (

100

𝐶𝑃𝐼
)𝑀𝑎𝑥{𝑝𝑖}. 

 

Another noteworthy aspect is the measures for characterizing the weighting 

vector and the type of aggregation it performs. This work focuses on four 

characterizing features introduced by Yager: the alpha value of 𝑊 (degree of 

or-ness measure) (Yager, 1988), the dispersion measure (Yager, 1988), the 

balance operator (Yager, 1996), and the divergence of 𝑊 (Yager, 2002). 
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The first measure (degree of or-ness) refers to the attitudinal character 

associated with a weighting vector and it is denoted as α(𝑊) or also as 

AC(𝑊) (Yager & Alajlan, 2014). It can be defined as follows: 

 

α(𝑊) =∑ 𝑤𝑗 (
𝑛 − 𝑗

𝑛 − 1
)

𝑛

𝑗=1
. (6) 

 

As we can see, α(𝑊) ∈ [0,1]. The closer α(𝑊) is to 1, the higher the level 

of preference for larger values in the aggregation. 

 

The second measure is the measure of dispersion or entropy and it is denoted 

as H(𝑊) or also as Disp(𝑊) (Yager & Alajlan, 2014). Its definition is as 

follows: 

 

H(𝑊) = −∑ 𝑤𝑗 ln(𝑤𝑗)
𝑛

𝑗=1
. (7) 

 

It can be shown that H(𝑊) has a value between 0 and the natural logarithm 

of 𝑛. That is H(𝑊) ∈ [0, ln(𝑛)]. 

 

The third, is the balance operator Bal(𝑊), which measures the degree of 

favoritism towards higher values (optimistic values) or lower values 

(pessimistic values). Its formula is as follows: 

 

Bal(𝑊) =∑ 𝑤𝑗 (
𝑛 + 1 − 2𝑗

𝑛 − 1
)

𝑛

𝑗=1
. (8) 

 

The balance operator can range from −1 to 1, that is Bal(𝑊) ∈ [−1,1]. For 

values of Bal(𝑊) close to −1 the aggregation emphasizes the lower values. 

For values of Bal(𝑊) close to 1 the aggregation emphasizes the higher 

values. 
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The fourth, is the measure of divergence Div(𝑊). It measures the divergence 

of the weights against the degree of or-ness measure. It can be defined by 

using the following expression: 

 

Div(𝑊) =∑ 𝑤𝑗 (
𝑛 − 𝑗

𝑛 − 1
− 𝛼(𝑊))

2𝑛

𝑗=1
. (9) 

 

In Table 3.23, we can see when the special cases of the pessimistic, Laplace, 

and optimistic criterion are met according to the measure outcome. 

 

Table 3.23. Particular cases of measures for characterizing a weighting 

vector 

 

Measure 
Criterion 

Pessimistic Laplace Optimistic 

α(W) 0 0.5 1 

H(W) 0 ln(𝑛) 0 

Bal(W) −1 0 1 

Div(W) 0 
𝑛 + 1

12(𝑛 − 1)
 0 

 

The IOWARAP operator 

 

A new extension of the OWARAP operator is developed by using order-

inducing variables, called the IOWARAP operator. It can be defined as 

follows. 

 

Definition 6. An IOWARAP operator of dimension 𝑛 is a function 

𝐹: 𝑅𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 

𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

IOWARAP(⟨𝑢1, 𝑝1⟩, … , ⟨𝑢𝑛, 𝑝𝑛⟩) = (
100

𝐶𝑃𝐼
)∑𝑤𝑗𝑃𝑗

𝑛

𝑗=1

, (10) 

 

where 𝑃𝑗 is the 𝑝𝑖 value of the IOWARAP pair ⟨𝑢𝑖 , 𝑝𝑖⟩ having the 𝑗th largest 

𝑢𝑖 value. 𝑢𝑖 is referred as the order-inducing variable and 𝑝𝑖 as the nominal 

average pension variable. 𝐶𝑃𝐼 is the consumer price index. 
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Hence, the main difference between the OWARAP operator and the 

IOWARAP operator resides in the process of reordering the set of values 𝑝 =

(𝑝1, … , 𝑝𝑛). In the case of the OWARAP, the reordering is made based on 

the magnitude of the values to be aggregated. By contrast, the reordering step 

of the IOWARAP depends upon the values of their associated order-inducing 

variables. 

 

Example 2. Assume we have the following four IOWARAP pairs ⟨𝑢𝑖 , 𝑝𝑖⟩: 

⟨7,920⟩, ⟨3,890⟩, ⟨9,950⟩, ⟨5,980⟩. Assume that the weighting vector is 

𝑊 = (0.40,0.25,0.25,0.10) and 𝐶𝑃𝐼 = 105. We get the following 

calculation result: 

 

(
100

105
) × (0.40 × 950 + 0.25 × 920 + 0.25 × 980 + 0.10 × 890)

= 899.05. 

 

Generalized aggregation operators 

 

By using generalized means in the OWARAP operator we obtain the 

generalized ordered weighted averaging real average pension (GOWARAP) 

operator. The analyst can obtain a wide range of particular cases of the 

GOWARAP operator by using different values of the parameter lambda. Its 

definition would be the following. 

 

Definition 7. A GOWARAP operator of dimension 𝑛 is a function 𝐹: 𝑅𝑛 →

𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 = (𝑤1, … , 𝑤𝑛) 

with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

GOWARAP(𝑝1, … , 𝑝𝑛) = (
100

𝐶𝑃𝐼
)(∑𝑤𝑗𝑃𝑗

𝜆

𝑛

𝑗=1

)

1
𝜆⁄

, (11) 

 

where 𝜆 is a parameter such that 𝜆 ∈ (−∞,+∞), 𝑃𝑗 is the 𝑗th largest of the 

nominal average pension variable 𝑝𝑖, and 𝐶𝑃𝐼 is the consumer price index. 
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By analyzing the parameter 𝜆, we can see that when 𝜆 = −1 the ordered 

weighted harmonic averaging real average pension (OWHARAP) operator is 

obtained. If 𝜆 = 0 we form the ordered weighted geometric real average 

pension (OWGRAP) operator. With 𝜆 = 1 we obtain the OWARAP 

operator. When 𝜆 = 2 we form the ordered weighted quadratic averaging real 

average pension (OWQARAP) operator. 

 

Note that when 𝜆 = −∞ and 𝑤𝑛 ≠ 0 we get the smallest argument adjusted 

for inflation as the aggregated value, that is (100 𝐶𝑃𝐼⁄ )𝑃𝑛. However, if 𝜆 =

−∞ and 𝑤1 = 1 (that is 𝑤𝑗 = 0 for all 𝑗 ≠ 1) we get the largest argument of 

the collection 𝑝𝑖 adjusted for inflation, which is (100 𝐶𝑃𝐼⁄ )𝑃1. In the case 

where 𝜆 = +∞ and 𝑤1 ≠ 0 we get the largest argument adjusted for inflation 

as the value of the resulting aggregation, that is (100 𝐶𝑃𝐼⁄ )𝑃1. Otherwise, 

when 𝜆 = +∞ and 𝑤𝑛 = 1 (that is 𝑤𝑗 = 0 for ∀ 𝑗 ≠ 𝑛), we obtain the 

smallest argument adjusted for inflation, which is (100 𝐶𝑃𝐼⁄ )𝑃𝑛. 

 

Other families of the GOWARAP operator could be developed by choosing 

different values of the parameter 𝜆 and weighting vector 𝑊. 

 

Example 3. Consider the same collection of arguments, weighting vector, 

and 𝐶𝑃𝐼 as in Example 1. If we assume 𝜆 = −1, then, the aggregation result 

is: 

 

(
100

105
) × (0.40 × 980−1 + 0.25 × 950−1 + 0.25 × 920−1

+ 0.10 × 890−1)
1
−1⁄ = 902.37. 

 

Using generalized means and order-inducing variables we obtain the induced 

generalized ordered weighted averaging real average pension (IGOWARAP) 

operator. Its definition is as follows. 
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Definition 8. An IGOWARAP operator of dimension 𝑛 is a function 

𝐹: 𝑅𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 

𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

IGOWARAP(⟨𝑢1, 𝑝1⟩, … , ⟨𝑢𝑛, 𝑝𝑛⟩) = (
100

𝐶𝑃𝐼
)(∑𝑤𝑗𝑃𝑗

𝜆

𝑛

𝑗=1

)

1
𝜆⁄

, (12) 

 

where 𝑃𝑗 is the 𝑝𝑖 value of the IGOWARAP pair ⟨𝑢𝑖 , 𝑝𝑖⟩ having the 𝑗th largest 

𝑢𝑖 value. 𝑢𝑖 is referred as the order-inducing variable, 𝑝𝑖 as the nominal 

average pension variable, 𝜆 is a parameter such that 𝜆 ∊ (−∞,+∞), and 𝐶𝑃𝐼 

is the consumer price index. 

 

Example 4. If we take the IOWARAP pairs from Example 2 and a lambda 

equal to -1, then, we get the following aggregation result: 

 

(
100

105
) × (0.40 × 950−1 + 0.25 × 920−1 + 0.25 × 980−1

+ 0.10 × 890−1)
1
−1⁄ = 898.26. 

 

4. Some other extensions of the OWARAP operator 

 

In this section the use of probability in the OWARAP operator is analyzed. 

To do so, the POWA operator and the probabilistic induced ordered weighted 

averaging (PIOWA) operator are used. Also, the particular generalization of 

the quasi-arithmetic ordered weighted averaging (Quasi-OWA) operator is 

studied. 

The probabilistic aggregation (PA) operator is an aggregation function where 

the aggregation process is done according to the probability associated to 

each argument. A PA operator is defined as follows. 

 

Definition 9. A PA operator of dimension 𝑛 is a function 𝐹: 𝑅𝑛 → 𝑅 such 

that: 

 

PA(𝑎1, … , 𝑎𝑛) =∑𝑣𝑖𝑎𝑖

𝑛

𝑖=1

, (13) 
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where 𝑎𝑖 is the 𝑖th argument variable and each argument 𝑎𝑖 has associated 

probability 𝑣𝑖 with ∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 𝑣𝑖 ∈ [0,1]. 

 

The POWA operator introduced by Merigó (2012), is an aggregation function 

that unifies the probability and the OWA operator (attitudinal character) in 

the same formulation and according to the degree of importance of these two 

concepts in the aggregation process. Therefore, it provides a unified 

framework between decision-making problems under uncertainty and under 

risk. The POWA operator can be defined as follows. 

 

Definition 10. A POWA operator of dimension 𝑛 is a function 𝐹: 𝑅𝑛 → 𝑅 

that has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 = (𝑤1, … , 𝑤𝑛) 

with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

POWA(𝑎1, … , 𝑎𝑛) =∑𝑣𝑗𝑏𝑗

𝑛

𝑗=1

= 𝛽∑ 𝑤𝑗𝑏𝑗 + (1 − 𝛽)∑ 𝑣𝑖𝑎𝑖
𝑛

𝑖=1

𝑛

𝑗=1
, (14) 

 

where 𝑏𝑗 is the 𝑗th largest of the 𝑎𝑖, each argument 𝑎𝑖 has associated 

probability 𝑣𝑖 with ∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 𝑣𝑖 ∈ [0,1], 𝑣𝑗 = 𝛽𝑤𝑗 + (1 − 𝛽)𝑣𝑗 with 

𝛽 ∈ [0,1], and 𝑣𝑗 is the probability 𝑣𝑖 ordered according to 𝑏𝑗, that is, 

according to the 𝑗th largest of 𝑎𝑖. 

 

Note that if the parameter 𝛽 is equal to 1, we obtain the normal OWA 

operator, and if 𝛽 is equal to 0, we get the PA operator. Then, by taking into 

consideration equation 1 and 13, the POWA operator can be formulated 

alternatively as POWA = 𝛽(OWA) + (1 − 𝛽)PA. 

 

If the reordering process is carried out whit order-inducing variables, rather 

than based on the magnitude of the arguments, we get the PIOWA operator. 

This operator can be defined as follows. 
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Definition 11. A PIOWA operator of dimension 𝑛 is a function 

𝐹: 𝑅𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 

𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

PIOWA(⟨𝑢1, 𝑎1⟩, … , ⟨𝑢𝑛, 𝑎𝑛⟩) =∑𝑣𝑗𝑏𝑗

𝑛

𝑗=1

= 𝛽∑𝑤𝑗𝑏𝑗 + (1 − 𝛽)

𝑛

𝑗=1

∑𝑣𝑖𝑎𝑖

𝑛

𝑖=1

, (15)

 

 

where 𝑏𝑗 is the 𝑎𝑖 value of the PIOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩ having the 𝑗th largest 𝑢𝑖 

value. 𝑢𝑖 is referred as the order-inducing variable and 𝑎𝑖 has associated 

probability 𝑣𝑖 with ∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 𝑣𝑖 ∈ [0,1], 𝑣𝑗 = 𝛽𝑤𝑗 + (1 − 𝛽)𝑣𝑗 with 

𝛽 ∈ [0,1], and 𝑣𝑗 is the probability 𝑣𝑖 ordered according to 𝑏𝑗, that is, 

according to the 𝑗th largest of 𝑢𝑖. 

 

An interesting generalization of the OWA operator is the Quasi-OWA 

operator, presented by Fodor et al. (1995). By using quasi-arithmetic means, 

the Quasi-OWA operator provides a more general formulation, including a 

wide range of particular cases that are not considered in the GOWA operator. 

The Quasi-OWA operator can be defined as follows. 

 

Definition 12. A Quasi-OWA operator of dimension 𝑛 is a function 𝐹: 𝑅𝑛 →

𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 = (𝑤1, … , 𝑤𝑛) 

with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

Quasi − OWA(𝑎1, … , 𝑎𝑛) = 𝑔−1 (∑𝑤𝑗𝑔(𝑏𝑗

𝑛

𝑗=1

)) , (16) 

 

where 𝑏𝑗 is the 𝑗th largest of the 𝑎𝑖 and 𝑔(𝑏) is a strictly continuous 

monotonic function.  

 

Note that if 𝑔(𝑏) = 𝑏 we get the OWA operator and if 𝑔(𝑏) = 𝑏𝜆 the GOWA 

operator. 
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By adding probabilities, the Quasi-OWA operator can be extended to a quasi-

arithmetic probabilistic ordered weighted averaging (Quasi-POWA) 

operator, which can be defined as follows. 

 

Definition 13. A Quasi-POWA operator of dimension 𝑛 is a function 

𝐹: 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 =

(𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

Quasi − POWA(𝑎1, … , 𝑎𝑛) = 𝑔−1 (∑𝑣𝑗𝑔(𝑏𝑗

𝑛

𝑗=1

)) , (17) 

 

where 𝑏𝑗 is the 𝑗th largest of the 𝑎𝑖, each argument 𝑎𝑖 has associated 

probability 𝑣𝑖 with ∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 𝑣𝑖 ∈ [0,1], 𝑣𝑗 = 𝛽𝑤𝑗 + (1 − 𝛽)𝑣𝑗 with 

𝛽 ∈ [0,1], and 𝑣𝑗 is the probability 𝑣𝑖 ordered according to 𝑏𝑗, that is, 

according to the 𝑗th largest of 𝑎𝑖, and 𝑔(𝑏) is a strictly continuous monotonic 

function. 

 

Another interesting operator is the quasi-arithmetic probabilistic induced 

ordered weighted averaging (Quasi-PIOWA). It is an extension of the Quasi-

POWA operator that uses order-inducing variables in the reordering step. It 

is defined as follows. 

 

Definition 14. A Quasi-PIOWA operator of dimension 𝑛 is a function 

𝐹: 𝑅𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 

𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

Quasi − PIOWA(⟨𝑢1, 𝑎1⟩, … , ⟨𝑢𝑛, 𝑎𝑛⟩) = 𝑔−1 (∑𝑣𝑗𝑔(𝑏𝑗)

𝑛

𝑗=1

) , (18) 

 

where 𝑏𝑗 is the 𝑎𝑖 value of the Quasi-PIOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩ having the 𝑗th 

largest 𝑢𝑖 value. 𝑢𝑖 is referred as the order-inducing variable and 𝑎𝑖 has 

associated probability 𝑣𝑖 with ∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 𝑣𝑖 ∈ [0,1], 𝑣𝑗 = 𝛽𝑤𝑗 +

(1 − 𝛽)𝑣𝑗 with 𝛽 ∈ [0,1], and 𝑣𝑗 is the probability 𝑣𝑖 ordered according to 
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𝑏𝑗, that is, according to the 𝑗th largest of 𝑢𝑖, and 𝑔(𝑏) is a strictly continuous 

monotonic function. 

 

The probabilistic ordered weighted averaging real average pension 

(POWARAP) operator is an extension of the OWARAP operator that 

includes the probability in the aggregation process. To do so, it is assigned a 

probability of occurrence to the different values of the average pension of 

each scenario. So, this operator provides a parametrized family of 

aggregation operators between the probabilistic minimum and probabilistic 

maximum average pension. The POWARAP operator can be defined as 

follows. 

 

Definition 15. A POWARAP operator of dimension 𝑛 is a function 𝐹: 𝑅𝑛 →

𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 = (𝑤1, … , 𝑤𝑛) 

with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

POWARAP(𝑝1, … , 𝑝𝑛) = (
100

𝐶𝑃𝐼
)(∑𝑣𝑗𝑃𝑗

𝑛

𝑗=1

)

= (
100

𝐶𝑃𝐼
)(𝛽∑𝑤𝑗𝑃𝑗 + (1 − 𝛽)

𝑛

𝑗=1

∑𝑣𝑖𝑝𝑖

𝑛

𝑖=1

) , (19)

 

 

where 𝑃𝑗 is the 𝑗th largest value of a set of nominal average pensions 𝑝𝑖. Each 

𝑝𝑖 has associated probability 𝑣𝑖 with ∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 𝑣𝑖 ∈ [0,1], 𝑣𝑗 = 𝛽𝑤𝑗 +

(1 − 𝛽)𝑣𝑗 with 𝛽 ∈ [0,1], and 𝑣𝑗 is the probability 𝑣𝑖 ordered according to 

𝑃𝑗, that is, according to the 𝑗th largest of 𝑝𝑖. 𝐶𝑃𝐼 is the consumer price index. 

 

Example 5. Suppose we have the following vector of arguments (𝑝1 =

920, 𝑝2 = 890, 𝑝3 = 950, 𝑝4 = 980), weighting vector 𝑊 =

(0.40,0.25,0.25,0.10), and probabilistic vector 𝑉 = (0.4,0.10,0.40,0.10). If 

we assume that the weighting vector 𝑊 has a degree of importance of 30% 

and a 𝐶𝑃𝐼 of 105 points, then, the POWARAP aggregation can be calculated 

as follows: 

 

𝑣1 = 0.30 × 0.40 + 0.70 × 0.10 = 0.19. 
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𝑣2 = 0.30 × 0.25 + 0.70 × 0.40 = 0.355. 

𝑣3 = 0.30 × 0.25 + 0.70 × 0.40 = 0.355. 

𝑣4 = 0.30 × 0.10 + 0.70 × 0.10 = 0.10. 

 

POWARAP = (
100

105
)

× (0.19 × 980 + 0.355 × 950 + 0.355 × 920

+ 0.10 × 890) = 894.33. 

 

Alternatively, it can be calculated as follows: 

 

POWARAP = (
100

105
) (0.30

× (0.40 × 980 + 0.25 × 950 + 0.25 × 920 + 0.10 × 890)

+ 0.70 × (0.40 × 920 + 0.10 × 890 + 0.40 × 950

+ 0.10 × 980)) = 894.33. 

 

If we use order-inducing variables in the reordering step we form the 

probabilistic induced ordered weighted averaging real average pension 

(PIOWARAP) extension, which can be defined as follows. 

 

Definition 16. A PIOWARAP operator of dimension 𝑛 is a function 

𝐹: 𝑅𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 

𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

PIOWARAP(⟨𝑢1, 𝑝1⟩, … , ⟨𝑢𝑛, 𝑝𝑛⟩) = (
100

𝐶𝑃𝐼
)(∑𝑣𝑗𝑃𝑗

𝑛

𝑗=1

)

= (
100

𝐶𝑃𝐼
)(𝛽∑𝑤𝑗𝑃𝑗 + (1 − 𝛽)

𝑛

𝑗=1

∑𝑣𝑖𝑝𝑖

𝑛

𝑖=1

) , (20)

 

 

where 𝑃𝑗 is the 𝑝𝑖 value of the PIOWARAP pair ⟨𝑢𝑖 , 𝑝𝑖⟩ having the 𝑗th largest 

𝑢𝑖 value. 𝑢𝑖 is referred as the order-inducing variable and 𝑝𝑖 as the nominal 

average pension variable. 𝑝𝑖 has associated probability 𝑣𝑖 with ∑ 𝑣𝑖 = 1𝑛
𝑖=1  

and 𝑣𝑖 ∈ [0,1], 𝑣𝑗 = 𝛽𝑤𝑗 + (1 − 𝛽)𝑣𝑗 with 𝛽 ∈ [0,1], and 𝑣𝑗 is the 
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probability 𝑣𝑖 ordered according to 𝑃𝑗, that is, according to the 𝑗th largest of 

𝑢𝑖. 𝐶𝑃𝐼 is the consumer price index. 

 

The quasi-arithmetic probabilistic ordered weighted averaging real average 

pension (Quasi-POWARAP) operator is an extension of the POWARAP 

operator that uses quasi-arithmetic means. It is defined as follows. 

 

Definition 17. A Quasi-POWARAP operator of dimension 𝑛 is a function 

𝐹: 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 =

(𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

Quasi − POWARAP(𝑝1, … , 𝑝𝑛) = (
100

𝐶𝑃𝐼
)(𝑔−1(∑𝑣𝑗𝑔(𝑃𝑗

𝑛

𝑗=1

))) , (21) 

 

where 𝑃𝑗 is the 𝑗th largest value of a set of nominal average pensions 𝑝𝑖. Each 

𝑝𝑖 has associated probability 𝑣𝑖 with ∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 𝑣𝑖 ∈ [0,1], 𝑣𝑗 = 𝛽𝑤𝑗 +

(1 − 𝛽)𝑣𝑗 with 𝛽 ∈ [0,1], and 𝑣𝑗 is the probability 𝑣𝑖 ordered according to 

𝑃𝑗, that is, according to the 𝑗th largest of 𝑝𝑖, and 𝑔(𝑏) is a strictly continuous 

monotonic function. 𝐶𝑃𝐼 is the consumer price index. 

 

The quasi-arithmetic probabilistic induced ordered weighted averaging real 

average pension (Quasi-PIOWARAP) operator is an aggregation operator 

that unifies the PIOWARAP operator with the Quasi-OWA operator. This 

operator is defined as follows. 

 

Definition 18. A Quasi-PIOWARAP operator of dimension 𝑛 is a function 

𝐹: 𝑅𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 

𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

Quasi − PIOWARAP(⟨𝑢1, 𝑝1⟩, … , ⟨𝑢𝑛, 𝑝𝑛⟩)

= (
100

𝐶𝑃𝐼
)(𝑔−1(∑𝑣𝑗𝑔(𝑃𝑗)

𝑛

𝑗=1

)) , (22)
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where 𝑃𝑗 is the 𝑝𝑖 value of the Quasi-PIOWARAP pair ⟨𝑢𝑖 , 𝑝𝑖⟩ having the 𝑗th 

largest 𝑢𝑖 value. 𝑢𝑖 is referred as the order-inducing variable and 𝑝𝑖 as the 

nominal average pension variable. 𝑝𝑖 has associated probability 𝑣𝑖 with 

∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 𝑣𝑖 ∈ [0,1], 𝑣𝑗 = 𝛽𝑤𝑗 + (1 − 𝛽)𝑣𝑗 with 𝛽 ∈ [0,1], and 𝑣𝑗 is 

the probability 𝑣𝑖 ordered according to 𝑃𝑗, that is, according to the 𝑗th largest 

of 𝑢𝑖, and 𝑔(𝑏) is a strictly continuous monotonic function. 𝐶𝑃𝐼 is the 

consumer price index. 

 

5. Real average pensions forecasting with OWARAP operators 

 

Proposed methodology 

 

In contrast to traditional forecasting methodologies, the OWARAP operator 

and its extensions provide greater flexibility allowing to underestimate or 

overestimate the information according to the opinion and knowledge of one 

or more experts (multi-expert). Thus, they enable to optimize pension 

forecasts in complex environments and consequently help governments to 

improve its assessments of policy decisions. This new formulation and 

measurement can be applied to any country and region. 

 

In order to forecast the real average pension through the use of the OWARAP 

operator and its extensions, it is proposed the following algorithm: 

 

Step 1. Data collection. The first step consists in gathering data regarding the 

average pension in current prices. 

 

Step 2. Scenario-based forecasting. This step consists in generate forecasts 

of the average pension in current prices for the different scenarios that may 

occur in the future 𝑆 = (𝑆1, … , 𝑆𝑛). These forecasts shall be referred as the 

argument variables 𝑝 = (𝑝1, … , 𝑝𝑛). 

 

Step 3. Reordering of the arguments. That is building the vector 𝑃𝑑 =

(𝑃1, … , 𝑃𝑛) for each expert 𝑑. For the OWARAP, GOWARAP, POWARAP, 

and Quasi-POWARAP operators, the reordering process is based on the 

values of the arguments. By contrast, for the IOWARAP, IGOWARAP, 

PIOWARAP, and Quasi-PIOWARAP operators, the reordering step is 
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carried out using the order-inducing variables vector 𝑈𝑑 = (𝑢1, … , 𝑢𝑛) which 

the experts must have determined previously. 

 

Step 4. Definition of the weighting weights and aggregation parameters. In 

this step each expert shall determine its weighting vector 𝑊𝑑 = (𝑤1, … , 𝑤𝑛) 

according to their attitudinal character. Additionally, for the probabilistic 

operators, experts shall define the probability vector 𝑉𝑑 = (𝑣1, … , 𝑣𝑛) and the 

parameter 𝛽. 

 

Step 5. Sub-aggregation. Forecasts calculated in Step 2 and reordered in Step 

3 are individually aggregated for each expert based on their weighting vector 

and probability vector determined in Step 4. This is done using the OWA, 

IOWA, GOWA, IGOWA, POWA, PIOWA, Quasi-POWA, and Quasi-

PIOWA operators. 

 

Step 6. Final aggregation. All the results obtained in Step 5 are aggregated 

into a single outcome. To do so, the most suitable aggregation function shall 

be used according to the degree of importance that is given to the assessments 

made by each expert. 

 

Step 7. Inflation adjustment. Finally, the effect of price inflation or deflation 

is removed from the results obtained in Step 6, thereby getting the OWARAP 

and its extensions. This is done by dividing the data by the corresponding 

𝐶𝑃𝐼 and multiplying by 100. 

 

Illustrative example 

 

In the following section an illustrative multi-person example is presented. 

This example will calculate the OWARAP and the extensions IOWARAP, 

GOWARAP, IGOWARAP, POWARAP, and PIOWARAP for all the 

regions of Spain for the year 2023. Also, it will consider only contributory 

retirement pensions. The following explains the main steps necessary to 

calculate the future average pension in real terms using the OWARAP 

operator and its extensions. 

 

Step 1. First, we collect historical monthly data regarding the average 

pension and the CPI. Our data was gathered from the National Social Security 
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Institute (INSS is its acronym in Spanish) and the National Statistics Institute 

(INE is its acronym in Spanish). The most recent data available at date of 

preparation of this study is December 2020. 

 

Step 2. Once we have collected all the data, we generate the estimations of 

the current average pension for three different scenarios. The first scenario 

𝑆1 contemplates economic growth, the second scenario 𝑆2 assumes the 

economy will remain unchanged, and the third scenario 𝑆3 considers an 

economic downturn. Table 3.24 shows the values for each situation. For 

comparative purposes, in the same table we add the results of applying some 

of the classical decision approaches, which are the optimistic criterion, the 

pessimistic criterion, and the Laplace criterion, referred as OC, PC, and LC, 

respectively. Also, with the OWA and AOWA operators. 

 

Step 3. Afterwards, we proceed to reorder the pension estimates obtained in 

the previous step. In order to determine the inducing vector a group of three 

experts is selected. To do this, the experts assess each scenario on a scale of 

1 to 10. The different vectors are as follows: 

 

• Expert 1. 𝑈1 = (6,9,7). 

• Expert 2. 𝑈2 = (5,7,9). 

• Expert 3. 𝑈3 = (5,8,7). 

 

Step 4. We continue with the construction of the weighting vector 𝑊 and 

probability vector 𝑉. Note that the experts are considering subjective 

probabilities. On these, we place a level of importance of 35% and 65%, 

respectively. That is a parameter 𝛽 equal to 0.35. The weighting and 

probability vectors are as follows: 

 

• Expert 1. 𝑊1 = (0.20,0.40,0.40) and 𝑉1 = (0.30,0.50,0.20). 

• Expert 2. 𝑊2 = (0.15,0.30,0.55) and 𝑉2 = (0.30,0.35,0.35). 

• Expert 3. 𝑊3 = (0.25,0.30,0.45) and 𝑉3 = (0.30,0.40,0.30). 

 

Step 5. Through the OWA operator, the IOWA operator, the OWHA 

operator, the OWQA operator, the induced ordered weighted harmonic 

averaging (IOWHA) operator, the induced ordered weighted quadratic 

averaging (OWQA) operator, the POWA operator, and the PIOWA operator 
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we add the estimations of the different scenarios according to the opinion and 

knowledge of the experts (Tables 3.25, 3.26, and 3.27). 

 

Step 6. Next, we fuse the aggregated results of the experts into a single 

outcome (see Table 3.28). To do so, we use the arithmetic mean because we 

consider the assessments of each expert equally important. However, if we 

believe that the judgements of each expert are not equally relevant, we could 

employ the OWA operator, the IOWA operator, and many more. 

 

Step 7. Finally, we perform the inflation adjustment to obtain the OWARAP, 

IOWARAP, OWHARAP, OWQARAP, induced ordered weighted harmonic 

averaging real average pension (IOWHARAP), induced ordered weighted 

quadratic averaging real average pension (IOWQARAP), POWARAP, and 

PIOWARAP operators. The CPIs employed and the final aggregated results 

can be seen in Tables 3.29 and 3.30, respectively.  

 

Table 3.24. Spain’s nominal average pensions 2023 scenario forecasts by 

region and aggregated results (values in euro) 

 

Region  S1 S2 S3 OC PC LC OWA AOWA 

Andalusia 1,173 1,118 1,062 1,173 1,062 1,118 1,103 1,132 

Aragon 1,369 1,304 1,239 1,369 1,239 1,304 1,287 1,321 

Balearic Islands 1,207 1,150 1,092 1,207 1,092 1,150 1,134 1,165 

Basque Country 1,597 1,521 1,445 1,597 1,445 1,521 1,501 1,541 

Canary Islands 1,206 1,148 1,091 1,206 1,091 1,148 1,133 1,163 

Cantabria 1,392 1,326 1,260 1,392 1,260 1,326 1,308 1,343 

Castile and Leon 1,295 1,234 1,172 1,295 1,172 1,234 1,217 1,250 

Castile La Mancha 1,211 1,153 1,095 1,211 1,095 1,153 1,138 1,168 

Catalonia 1,327 1,264 1,201 1,327 1,201 1,264 1,247 1,281 

Ceuta 1,407 1,340 1,273 1,407 1,273 1,340 1,322 1,358 

Community of Navarre 1,478 1,407 1,337 1,478 1,337 1,407 1,388 1,426 

Community of Madrid 1,518 1,445 1,373 1,518 1,373 1,445 1,426 1,465 

Extremadura 1,079 1,027 976 1,079 976 1,027 1,014 1,041 

Galicia 1,102 1,050 997 1,102 997 1,050 1,036 1,064 

La Rioja 1,252 1,192 1,133 1,252 1,133 1,192 1,176 1,208 

Melilla 1,366 1,301 1,236 1,366 1,236 1,301 1,283 1,318 

Principality of Asturias 1,563 1,489 1,414 1,563 1,414 1,489 1,469 1,509 

Region of Murcia 1,162 1,106 1,051 1,162 1,051 1,106 1,092 1,121 

Valencian Community 1,195 1,138 1,081 1,195 1,081 1,138 1,123 1,153 

 

  



 181 

Table 3.25. Expert 1 aggregated results of the 2023 nominal average 

pensions of Spain’s regions (values in euro) 

 

Region  OWA1 IOWA1 OWHA1 OWQA1 IOWHA1 IOWQA1 POWA1 PIOWA1 

Andalusia 1,106 1,118 1,105 1,107 1,115 1,119 1,117 1,121 

Aragon 1,291 1,304 1,289 1,292 1,301 1,305 1,304 1,308 

Balearic Islands 1,138 1,150 1,136 1,139 1,147 1,151 1,149 1,153 

Basque Country 1,506 1,521 1,504 1,507 1,518 1,523 1,521 1,526 

Canary Islands 1,137 1,148 1,135 1,137 1,146 1,149 1,148 1,152 

Cantabria 1,313 1,326 1,311 1,313 1,323 1,327 1,325 1,330 

Castile and Leon 1,221 1,234 1,220 1,222 1,231 1,235 1,233 1,238 

Castile La Mancha 1,142 1,153 1,140 1,142 1,151 1,154 1,153 1,157 

Catalonia 1,252 1,264 1,250 1,253 1,262 1,266 1,264 1,268 

Ceuta 1,327 1,340 1,325 1,328 1,338 1,342 1,340 1,345 

Community of Navarre 1,393 1,407 1,391 1,394 1,404 1,409 1,407 1,412 

Community of Madrid 1,431 1,445 1,429 1,432 1,443 1,447 1,445 1,450 

Extremadura 1,017 1,027 1,016 1,018 1,025 1,028 1,027 1,031 

Galicia 1,039 1,050 1,038 1,040 1,048 1,051 1,050 1,053 

La Rioja 1,180 1,192 1,179 1,181 1,190 1,193 1,192 1,196 

Melilla 1,288 1,301 1,286 1,288 1,298 1,302 1,300 1,305 

Principality of Asturias 1,474 1,489 1,472 1,475 1,486 1,490 1,488 1,494 

Region of Murcia 1,095 1,106 1,094 1,096 1,104 1,108 1,106 1,110 

Valencian Community 1,126 1,138 1,125 1,127 1,135 1,139 1,137 1,141 

 

Table 3.26. Expert 2 aggregated results of the 2023 nominal average 

pensions of Spain’s regions (values in euro) 

 

Region  OWA2 IOWA2 OWHA2 OWQA2 IOWHA2 IOWQA2 POWA2 PIOWA2 

Andalusia 1,095 1,140 1,094 1,096 1,138 1,141 1,108 1,124 

Aragon 1,278 1,330 1,276 1,279 1,328 1,331 1,293 1,311 

Balearic Islands 1,127 1,173 1,125 1,127 1,171 1,173 1,140 1,156 

Basque Country 1,491 1,551 1,489 1,492 1,549 1,552 1,508 1,529 

Canary Islands 1,125 1,171 1,124 1,126 1,170 1,172 1,138 1,154 

Cantabria 1,299 1,352 1,298 1,300 1,351 1,353 1,314 1,333 

Castile and Leon 1,209 1,258 1,207 1,210 1,257 1,259 1,223 1,240 

Castile La Mancha 1,130 1,176 1,128 1,131 1,175 1,177 1,143 1,159 

Catalonia 1,239 1,290 1,237 1,240 1,288 1,290 1,253 1,271 

Ceuta 1,313 1,367 1,312 1,314 1,365 1,368 1,329 1,348 

Community of Navarre 1,379 1,435 1,377 1,380 1,433 1,436 1,395 1,415 

Community of Madrid 1,416 1,474 1,415 1,417 1,472 1,475 1,433 1,453 

Extremadura 1,007 1,048 1,006 1,008 1,047 1,049 1,019 1,033 

Galicia 1,029 1,071 1,027 1,030 1,069 1,072 1,041 1,055 

La Rioja 1,168 1,216 1,167 1,169 1,214 1,217 1,182 1,199 

Melilla 1,275 1,327 1,273 1,275 1,325 1,327 1,289 1,308 

Principality of Asturias 1,459 1,519 1,457 1,460 1,516 1,519 1,476 1,497 

Region of Murcia 1,084 1,129 1,083 1,085 1,127 1,129 1,097 1,112 

Valencian Community 1,115 1,161 1,113 1,116 1,159 1,161 1,128 1,144 
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Table 3.27. Expert 3 aggregated results of the 2023 nominal average 

pensions of Spain’s regions (values in euro) 

 

Region  OWA3 IOWA3 OWHA3 OWQA3 IOWHA3 IOWQA3 POWA3 PIOWA3 

Andalusia 1,106 1,126 1,105 1,107 1,124 1,127 1,114 1,121 

Aragon 1,291 1,314 1,289 1,292 1,311 1,315 1,299 1,307 

Balearic Islands 1,138 1,158 1,136 1,139 1,156 1,159 1,146 1,153 

Basque Country 1,506 1,532 1,503 1,507 1,530 1,534 1,516 1,525 

Canary Islands 1,137 1,157 1,135 1,138 1,155 1,158 1,144 1,151 

Cantabria 1,313 1,336 1,310 1,314 1,333 1,337 1,321 1,329 

Castile and Leon 1,221 1,243 1,219 1,222 1,241 1,244 1,229 1,237 

Castile La Mancha 1,142 1,162 1,140 1,143 1,160 1,163 1,149 1,156 

Catalonia 1,252 1,274 1,250 1,253 1,271 1,275 1,260 1,268 

Ceuta 1,327 1,350 1,325 1,328 1,348 1,352 1,336 1,344 

Community of Navarre 1,393 1,418 1,391 1,394 1,415 1,419 1,402 1,411 

Community of Madrid 1,431 1,456 1,429 1,432 1,454 1,458 1,440 1,449 

Extremadura 1,017 1,035 1,016 1,018 1,033 1,036 1,024 1,030 

Galicia 1,039 1,058 1,038 1,040 1,056 1,059 1,046 1,053 

La Rioja 1,180 1,201 1,178 1,181 1,199 1,202 1,188 1,195 

Melilla 1,288 1,310 1,285 1,289 1,308 1,311 1,296 1,304 

Principality of Asturias 1,474 1,500 1,471 1,475 1,497 1,501 1,484 1,493 

Region of Murcia 1,095 1,115 1,094 1,096 1,113 1,116 1,103 1,109 

Valencian Community 1,126 1,146 1,125 1,127 1,144 1,147 1,134 1,141 

 

Table 3.28. Absolute aggregated results of the 2023 nominal average 

pensions of Spain’s regions (values in euro) 

 

Region  OWA IOWA OWHA OWQA IOWHA IOWQA POWA PIOWA 

Andalusia 1,103 1,128 1,101 1,104 1,126 1,129 1,113 1,122 

Aragon 1,287 1,316 1,285 1,287 1,314 1,317 1,299 1,309 

Balearic Islands 1,134 1,160 1,133 1,135 1,158 1,161 1,145 1,154 

Basque Country 1,501 1,535 1,498 1,502 1,532 1,536 1,515 1,527 

Canary Islands 1,133 1,159 1,131 1,134 1,157 1,160 1,143 1,152 

Cantabria 1,308 1,338 1,306 1,309 1,336 1,339 1,320 1,331 

Castile and Leon 1,217 1,245 1,215 1,218 1,243 1,246 1,229 1,238 

Castile La Mancha 1,138 1,164 1,136 1,139 1,162 1,165 1,148 1,157 

Catalonia 1,247 1,276 1,246 1,248 1,274 1,277 1,259 1,269 

Ceuta 1,322 1,353 1,320 1,323 1,350 1,354 1,335 1,345 

Community of Navarre 1,388 1,420 1,386 1,390 1,418 1,421 1,401 1,413 

Community of Madrid 1,426 1,459 1,424 1,427 1,456 1,460 1,439 1,451 

Extremadura 1,014 1,037 1,012 1,015 1,035 1,038 1,023 1,031 

Galicia 1,036 1,059 1,034 1,037 1,058 1,060 1,046 1,054 

La Rioja 1,176 1,203 1,175 1,177 1,201 1,204 1,187 1,197 

Melilla 1,283 1,312 1,281 1,284 1,310 1,314 1,295 1,305 

Principality of Asturias 1,469 1,502 1,467 1,470 1,500 1,504 1,483 1,494 

Region of Murcia 1,092 1,117 1,090 1,093 1,115 1,118 1,102 1,111 

Valencian Community 1,123 1,148 1,121 1,123 1,146 1,149 1,133 1,142 
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Table 3.29. Estimations of the 2023 CPIs of Spain’s regions 

 

Region  CPI 

Andalusia 108 

Aragon 107 

Balearic Islands 108 

Basque Country 108 

Canary Islands 108 

Cantabria 108 

Castile and Leon 108 

Castile La Mancha 108 

Catalonia 108 

Ceuta 106 

Community of Navarre 108 

Community of Madrid 108 

Extremadura 107 

Galicia 108 

La Rioja 108 

Melilla 107 

Principality of Asturias 107 

Region of Murcia 107 

Valencian Community 107 

 

Table 3.30. Absolute aggregated results of the 2023 real average pensions of 

Spain’s regions (values in euro) 

 

Region  
OWA-

RAP 

IOWA-

RAP 

OWHA-

RAP 

OWQA-

RAP 

IOWHA-

RAP 

IOWQA-

RAP 

POWA-

RAP 

PIOWA-

RAP 

Andalusia 1,026 1,049 1,024 1,026 1,047 1,050 1,035 1,043 

Aragon 1,198 1,225 1,196 1,199 1,223 1,226 1,209 1,219 

Balearic Islands 1,055 1,079 1,053 1,056 1,077 1,080 1,065 1,073 

Basque Country 1,387 1,419 1,385 1,389 1,417 1,420 1,400 1,412 

Canary Islands 1,049 1,073 1,048 1,050 1,071 1,074 1,059 1,067 

Cantabria 1,214 1,242 1,212 1,215 1,239 1,243 1,225 1,235 

Castile and Leon 1,128 1,154 1,127 1,129 1,152 1,155 1,139 1,148 

Castile La Mancha 1,057 1,081 1,055 1,058 1,079 1,082 1,067 1,075 

Catalonia 1,153 1,179 1,151 1,153 1,177 1,180 1,163 1,173 

Ceuta 1,249 1,277 1,247 1,250 1,275 1,278 1,261 1,270 

Community of Navarre 1,290 1,320 1,289 1,291 1,318 1,321 1,303 1,313 

Community of Madrid 1,323 1,353 1,321 1,324 1,351 1,354 1,335 1,346 

Extremadura 945 966 943 945 965 967 953 961 

Galicia 962 984 960 962 982 984 971 978 

La Rioja 1,094 1,119 1,093 1,095 1,117 1,120 1,104 1,113 

Melilla 1,205 1,232 1,203 1,206 1,230 1,233 1,216 1,226 

Principality of Asturias 1,373 1,405 1,371 1,374 1,402 1,406 1,386 1,397 

Region of Murcia 1,022 1,046 1,021 1,023 1,044 1,047 1,032 1,040 

Valencian Community 1,045 1,068 1,043 1,045 1,067 1,069 1,054 1,063 
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In Tables 3.25, 3.26, and 3.27 we can see different scenarios of the estimated 

nominal average pension of Spain’s regions based on the attitudinal character 

of each expert. Note that depending on the weights and order-inducing 

variables that the expert chooses for the aggregation, the average pension can 

change considerably. Table 3.28 unifies the results obtained by the group of 

experts into a single outcome, which afterwards is expressed in real prices in 

Table 3.30. With all this information, the decision-maker gain a better 

understanding of the pension development and can make better decision. 

 

As may be seen, different results are obtained depending on the type of 

aggregation operator used. For example, in the Community of Madrid the 

real average pension for the year 2023 ranges from 1,321 euro to 1,354 euro. 

We can also see that the lowest estimations are obtained with the OWHARAP 

operator and the highest with the IOWQARAP operator. Moreover, the 

operators that include order-inducing variables in the reordering step produce 

greater forecasts. This can be summarized as follows (from less to more): 

 

OWHARAP ≺ OWARAP ≺ OWQARAP ≺ POWARAP ≺ PIOWARAP

≺ IOWHARAP ≺ IOWARAP ≺ IOWQARAP 

 

As can be seen, inflation is an important element to consider when analyzing 

the pension adequacy. For example, the estimated average pension of 

Catalonia in current prices (OWA) stands at 1,247 euro, however, if we use 

constant prices (OWARAP) the average pension decreases dramatically to 

1,153 euro. Therefore, by using the OWARAP operator and its extensions, 

people and governments are able to better understand old-age pension 

changes and thereby improve their decision-making process. 

 

Finally, other scenarios with different assumptions could be considered. For 

example, one can develop a set of scenarios based on different pension 

revaluation rates that the government may impose in the future. 

 

Comparison of forecasting methods 

 

In the following, a comparison between the OWARAP operator and some 

traditional forecasting methods is conducted. To do so, the real average 

pension of Spain at a national level is estimated for December 2020 using the 
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OWARAP operator, Linear Trend (LT), Double Moving Average (DMA), 

and Holt’s Exponential Smoothing (HES) (Holt, 2004) forecasting methods. 

Also, data until December 2017 is included in the training set. Table 3.31 

shows the outcomes and the corresponding absolute values of the forecast 

errors. Results show that the OWARAP operator offers potentially better 

performance in comparison with the traditional methods. 

 

Table 3.31. Evaluation of forecasting methods 

 

Indicator Real value OWARAP LT 
2-month 

DMA 

3-month 

DMA 
HES 

Real average pension 1,118 1,123 1,107 989 901 1,064 

Absolute error 0 5 11 129 217 54 

 

6. The COVID-19 crisis on pensions: applicability of the OWA 

operators 

 

The outbreak of the coronavirus (COVID-19) pandemic has caused an 

economic downturn across the world. Some international organizations, such 

as the OECD (2020) and the International Monetary Fund (IMF) (Feher & de 

Bidegain, 2020), warn about the impact of the pandemic on the future of 

pensions. Prior to the COVID-19, pension systems were already facing 

financial sustainability problems, mainly driven by the ageing of the 

population. 

 

This crisis has entailed high levels of unemployment, which leads to a 

reduction of government revenues from contributions and consequently 

makes public pension systems more unsustainable. Moreover, the declining 

employment among elderly people, makes it more difficult for them to find 

a new job because of age discrimination. Consequently, it is more likely that 

this population group retire early, leading to lower pension benefits. 

Therefore, policy makers should adopt new strategies. However, the 

uncertainty associated to the length of the current economic crisis and the 

real impact on pensions in the long-term, makes it more difficult for policy 

makers to choose and implement the best policy response. 

 

In this complex environment, OWA operators can be very useful when 

generating forecasts of pension indicators, because they use the attitudinal 
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character of the decision-maker. Since the COVID-19 outbreak, the 

pessimistic attitude towards future public pensions has further increased, and 

by using the OWA weights the decision-maker is able to reflect it. This 

method can be also helpful for assessing pension policy responses 

alternatives. Likewise, to address the problem POWA operators can be very 

useful as well, given that they allow to consider probabilistic information 

with the OWA operator. 

 

7. Conclusions 

 

The aim of this study is to provide a new tool to improve the quality of 

pension information. In view of the present and future situation, it is 

necessary and extremely important to provide recurrent, accurate, 

representative, and useful data on pension adequacy for governments and 

citizens of a country. With this information, governments are able to improve 

significantly its policy decisions and people can plan properly their 

retirement, in an attempt to prevent old-age poverty. 

 

This paper proposes a new method to optimize forecasts of the average 

pension using the OWA operator, the IOWA operator, the GOWA operator, 

and the IGOWA operator. Moreover, an inflation adjustment is added in 

order to provide a more realistic value of the average pension. The main 

advantage of using this method is the possibility to aggregate different 

estimations according to the attitudinal character of the decision-maker 

without losing information. As a result, forecasts are more representative and 

accurate. The POWA operator is also used, which shows to be very useful 

for situations where we find probabilistic information, and at the same time, 

we need to consider the attitudinal character. 

 

The study also develops an illustrative example regarding the calculations of 

the projected real average pension of Spain at a regional level by using the 

OWARAP operator, the IOWARAP operator, the GOWARAP operator, the 

IGOWARAP operator, the POWARAP operator, and the PIOWARAP 

operator. This allows to aggregate different scenarios according to the 

expectations and knowledge of a selected group of experts. The information 

given by these operators provide a more comprehensive analysis that helps 

the decision-maker to deal with uncertainty. 
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In future works we aim to analyze the use of the OWARAP operator in other 

countries, like United States or Canada. Moreover, we expect to apply this 

new method into other pension indicators, such as the aggregate replacement 

ratio for pensions. Lastly, we suggest the use of other extensions of the OWA 

operator in the field of pensions, such as the uncertain ordered weighted 

averaging (UOWA) operator (Xu & Da, 2002). 
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Barcelona) and Anna Maria Gil Lafuente (University of Barcelona). 

 

Abstract 

 

The issue of pensions has become increasingly topical. This paper presents 

the ordered weighted averaging real average pension (OWARAP) operator. 

The OWARAP operator is based on the ordered weighted averaging (OWA) 

operator and measures the future average retirement benefit adjusted for 

inflation. Moreover, this work extends the OWARAP operator by using 

order-inducing variables, generalized means, and probabilities. This paper 

ends by analyzing the applicability of the OWARAP operator and its 

extensions in forecasting the real average Social Security benefits for retired 

workers in each state of the United States (U.S.). The results demonstrate the 

usefulness of the proposed approach in retirement decision-making.  

 

Keywords: Aggregation operator, forecasting, inflation, OWA operator, 

retirement benefit, Social Security. 

 

1. Introduction 

 

The continuous growth in life expectancy, partly driven by an improvement 

in healthcare systems, and the low fertility rates imply an increase in the old-

age dependency ratio (that is, the number of elderly people compared to those 

at working age). Consequently, retirement systems become more 

unsustainable (Organization for Economic Cooperation and Development 

[OECD], 2019; Peris-Ortiz et al., 2020), which also has a negative impact on 
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the retirement income adequacy. For example, in 1990, life expectancy at age 

65 was 18.9 years for women and 15.1 years for men in the United States 

(U.S.) (OECD, 2023b). Thirty years later, in 2020, life expectancy at age 65 

increased considerably to 19.8 years for women and 17.0 years for men. Also, 

by looking at the fertility rates for the same country, one can see that the 

fertility rate declined from 2.08 children per woman in 1990 to 1.64 in 2020 

(OECD, 2023a). However, these demographic changes are not the only ones 

that adversely affect the financial health of retirement systems and, 

consequently, the adequacy levels. There are other factors related to 

economic growth, the labor market, and the design of the retirement system 

(OECD, 2019; Peris-Ortiz et al., 2020), among others.  

 

In this complex context, it is very important that citizens are provided with 

sufficient and recurrent retirement information (Basiglio & Oggero, 2020). 

For instance, individuals need to be aware of their future retirement income 

as accurately as possible and in real prices (Bongini & Cucinelli, 2019; 

O’Neill et al., 2017) so that they can properly plan their retirement and avoid 

a reduction in purchasing power. Likewise, governments need access to 

precise and helpful information on the future trend of public retirement 

benefits and other related indicators to conduct effective policy decision-

making and thereby reduce the risk of poverty among older people. 

 

With the purpose of helping individuals to have an adequate amount of 

savings for their retirement, and also governments to make good decisions, 

this paper presents the ordered weighted averaging real average pension 

(OWARAP) operator. The OWARAP operator can be seen as an optimized 

retirement index. It is built under the ordered weighted averaging (OWA) 

operator from Yager (1988) while considering the effect of inflation. The 

OWA operator is an increasingly popular aggregation operator used for 

unifying numerical information according to the attitudinal character of the 

decision-maker (Blanco-Mesa et al., 2019; Emrouznejad & Marra, 2014; He 

et al., 2017). Thus, this approach allows to overestimate or underestimate the 

real average retirement benefit according to the opinion of the decision-

maker, which is very useful for dealing with demographic, economic, and 

pension policy uncertainties. 
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Moreover, different extensions of the OWARAP operator are considered, 

which are the induced OWARAP (IOWARAP) operator, the generalized 

OWARAP (GOWARAP) operator, and the probabilistic OWARAP 

(POWARAP) operator. The IOWARAP operator uses order-inducing 

variables; the GOWARAP operator generalized means (Dyckhoff & 

Pedrycz, 1984); and the POWARAP operator probabilistic information. This 

allows the decision-maker to contemplate a diverse range of aggregation 

operators and adopt the one that best suits with his/her needs and preferences. 

 

In the literature, we can find different authors that apply the OWA operator 

and extensions of this operator in economic indicators, including exchange 

rates (Flores-Sosa et al., 2020; León-Castro et al., 2016, 2018), inflation rates 

(Espinoza-Audelo et al., 2020; León-Castro et al., 2020), and prosperity 

(Amin & Siddiq, 2019). However, they have not yet been applied to the 

average retirement benefit. Therefore, the study’s novelty consists of using 

the characteristics of the OWA operator to forecast the average retirement 

benefit adjusted for inflation. 

 

This paper is organized as follows. Section 2 briefly reviews some basic but 

necessary concepts. Section 3 explains the mathematical approach used in 

this work. Section 4 develops a numerical example of the proposed approach, 

which consists in forecasting the real average Social Security retirement 

benefit of each state of the U.S. Lastly, Section 5 summarizes the main 

conclusions of the paper and makes some general recommendations for 

future research. 

 

2. Preliminaries 

 

The following section briefly reviews the OWA operator, the induced OWA 

(IOWA) operator, the generalized OWA (GOWA) operator, and the 

probabilistic OWA (POWA) operator. 

 

The OWA operator 

 

The OWA operator was presented by Yager (1988) and it provides a 

parameterized class of mean type aggregation operators that lies between the 

minimum and the maximum. This operator has been successfully applied in 
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a large variety of fields (Kacprzyk et al., 2019). The OWA operator can be 

defined as follows. 

 

Definition 1. An OWA operator of dimension 𝑛 is a mapping OWA:𝑅𝑛 → 𝑅 

that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and 

∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

OWA(𝑎1, … , 𝑎𝑛) =∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

, (1) 

 

where 𝑏𝑗 is the 𝑗th largest element of the arguments 𝑎1, … , 𝑎𝑛, namely 

(𝑏1, … , 𝑏𝑛) is (𝑎1, … , 𝑎𝑛) reordered in a descending way. 

 

The parameterization is carried out by choosing different formations of the 

weighting vector 𝑊. For example, if 𝑤𝑗 = 1 𝑛⁄ , for all 𝑗, the Laplace criteria 

(also knowns as arithmetic mean) is formed. Furthermore, another aspect 

worth highlighting is that when the reordering process is conducted in an 

ascending manner, then we get the ascending OWA (AOWA) operator 

(Yager, 1992). 

 

The IOWA operator 

 

A remarkable extension of the OWA operator is the IOWA operator (Yager 

& Filev, 1999). The main difference between this operator and the classical 

OWA operator is that the reordering step is carried out with order-inducing 

variables. This is why a major advantage of the IOWA operator is that it can 

consider the complex attitudes of the decision-maker. This operator can be 

defined as follows. 

 

Definition 2. An IOWA operator of dimension 𝑛 is a mapping 

IOWA: 𝑅𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 =

(𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

IOWA(⟨𝑢1, 𝑎1⟩, … , ⟨𝑢𝑛, 𝑎𝑛⟩) =∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

, (2) 
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where 𝑏𝑗 is the 𝑎𝑖 value of the IOWA pair ⟨𝑢𝑖 , 𝑎𝑖⟩ having the 𝑗th largest 𝑢𝑖 

value, 𝑢𝑖 is referred as the order-inducing variable, and 𝑎𝑖 is the argument 

variable. 

 

The GOWA operator 

 

The GOWA operator was introduced by Yager (2004), combining the OWA 

operator with generalized means (Dyckhoff & Pedrycz, 1984). Specifically, 

this operator incorporates a parameter that allows control of the power to 

which the argument values are raised in the aggregation. The GOWA 

operator can be defined as follows. 

 

Definition 3. A GOWA operator of dimension 𝑛 is a mapping GOWA: 𝑅𝑛 →

𝑅 that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛), with 𝑤𝑗 ∈ [0,1] 

and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

GOWA(𝑎1, … , 𝑎𝑛) = (∑𝑤𝑗𝑏𝑗
𝜆

𝑛

𝑗=1

)

1
𝜆⁄

, (3) 

 

where 𝜆 is a parameter such that 𝜆 ∈ (−∞,∞) and 𝑏𝑗 is the 𝑗th largest of the 

argument variable 𝑎𝑖. 

 

Note that: if 𝜆 = −1, the ordered weighted harmonic averaging (OWHA) 

operator (Yager, 2004) is found; if 𝜆 = 0, the ordered weighted geometric 

(OWG) operator (Chiclana et al., 2000, 2002); if 𝜆 = 1, the ordinary OWA 

operator; and if 𝜆 = 2, the ordered weighted quadratic averaging (OWQA) 

operator (Yager, 2004). 

 

The POWA operator 

 

The POWA operator was introduced by Merigó (2012). It is an aggregation 

function that unifies the probability and the OWA operator (attitudinal 

character) in the same formulation and according to the degree of importance 

of these two concepts in the aggregation process. Therefore, it provides a 
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unified framework between decision-making problems under risk and 

uncertainty. The POWA operator can be defined as follows. 

 

Definition 4. A POWA operator of dimension 𝑛 is a mapping POWA: 𝑅𝑛 →

𝑅 that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] 

and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

POWA(𝑎1, … , 𝑎𝑛) =∑𝑣𝑗𝑏𝑗

𝑛

𝑗=1

= 𝛽∑𝑤𝑗𝑏𝑗 + (1 − 𝛽)

𝑛

𝑗=1

∑𝑣𝑖𝑎𝑖

𝑛

𝑖=1

, (4) 

 

where 𝑏𝑗 is the 𝑗th largest of the argument 𝑎𝑖, each argument 𝑎𝑖 has 

associated probability 𝑣𝑖 with ∑ 𝑣𝑖 = 1𝑛
𝑖=1  and 𝑣𝑖 ∈ [0,1], 𝑣𝑗 = 𝛽𝑤𝑗 +

(1 − 𝛽)𝑣𝑗 with 𝛽 ∈ [0,1], and 𝑣𝑗 is the probability 𝑣𝑖 ordered according to 

𝑏𝑗, that is, based on the 𝑗th largest of the argument 𝑎𝑖. 

 

3. OWA operators in the real average pension benefit 

 

In this section, the OWARAP operator and some of its extensions and 

generalizations will be defined and analyzed. 

 

The OWARAP operator 

 

The OWARAP operator is an aggregation operator based on Yager’s OWA 

operator. In particular, it aggregates the information of a set of nominal 

average retirement benefits and another one with inflations while considering 

the attitude, judgment, or knowledge of the decision-maker. This feature 

makes the OWARAP operator an attractive method for forecasting the real 

average retirement benefit under uncertainty, as the decision-maker is 

capable of overestimating or underestimating the projections. Also, by 

making inflation adjustments, individuals are able to control if their 

retirement benefits will or will not grow in the future at the same pace as 

inflation does. This operator is defined as follows. 
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Definition 5.1. An OWARAP operator of dimension 𝑛 is a mapping 

OWARAP: 𝑅𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 =

(𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

OWARAP(〈𝐶𝑃𝐼1, 𝑝1〉, … , 〈𝐶𝑃𝐼𝑛, 𝑝𝑛〉) =∑𝑤𝑗𝑃𝑗

𝑛

𝑗=1

, (5.1) 

 

where 𝑃𝑗 is the 𝑗th largest of the (
100

𝐶𝑃𝐼𝑖
) 𝑝𝑖,  𝑝𝑖 is the 𝑖th argument of a set of 

nominal average retirement benefits, and 𝐶𝑃𝐼𝑖 is the 𝑖th argument of a set of 

consumer price indices. 

 

Note that Definition 5.1 contemplates different 𝐶𝑃𝐼 input values in the 

aggregation. However, if the decision-maker wants to consider a single 𝐶𝑃𝐼 

input value, then the mathematical expression of the OWARAP operator can 

be rewritten as follows. 

 

Definition 5.2. An OWARAP operator of dimension 𝑛 is a mapping 

OWARAP: 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 = (𝑤1, … , 𝑤𝑛) 

with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

OWARAP(𝑝1, … , 𝑝𝑛) = (
100

𝐶𝑃𝐼
)∑𝑤𝑗𝑃𝑗

𝑛

𝑗=1

, (5.2) 

 

where 𝑃𝑗 is the 𝑗th largest argument of a set of nominal average retirement 

benefits 𝑝1, … , 𝑝𝑛 and 𝐶𝑃𝐼 is the consumer price index. 

 

Henceforth, the study assumes that several scenarios for the CPI may be 

possible. 

 

Example 1. Consider the following set of nominal retirement benefits (𝑝1 =

1,300, 𝑝2 = 1,250, 𝑝3 = 1,350, 𝑝4 = 1,400) and weighting vector (𝑤1 =

0.4, 𝑤2 = 0.3, 𝑤3 = 0.2, 𝑤4 = 0.1). If the collection of consumer prices 

indices is (𝐶𝑃𝐼1 = 190, 𝐶𝑃𝐼2 = 180, 𝐶𝑃𝐼3 = 200, 𝐶𝑃𝐼4 = 210), then, the 
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aggregation process through the OWARAP operator, that is, Eq. (5.1), is 

solved as follows: 

 

0.4 ×
100

180
× 1,250 + 0.3 ×

100

190
× 1,300 + 0.2 ×

100

200
× 1,350

+ 0.1 ×
100

210
× 1,400 = 684.7. 

 

The OWARAP operator is a mean operator that satisfies the properties of 

monotonicity, commutativity (also referred to as symmetry or anonymity), 

boundedness, and idempotency (also called agreement or unanimity). These 

properties are explained below with their corresponding theorems. Take into 

account that most of the proofs are omitted as they are considered trivial and 

repetitive. 

 

Theorem 1. Monotonicity. It states that when an argument increases, the 

final aggregation remains equal or increases, but in no case decreases. Let 𝐹 

be the OWARAP operator. If (
100

𝐶𝑃𝐼𝑖
) 𝑝𝑖 ≥ (

100

𝐶𝑃𝐼̂ 𝑖
) �̂�𝑖, for all 𝑖, then, 

𝐹(〈𝐶𝑃𝐼1, 𝑝1〉, … , 〈𝐶𝑃𝐼𝑛, 𝑝𝑛〉) ≥ 𝐹(〈𝐶𝑃𝐼̂ 1, �̂�1〉, … , 〈𝐶𝑃𝐼̂ 𝑛, �̂�𝑛〉). 

 

Theorem 2. Commutativity. Meaning that the initial indexing of the 

arguments is completely irrelevant. So, if 𝐹 is the OWARAP operator, then, 

𝐹(〈𝐶𝑃𝐼1, 𝑝1〉, … , 〈𝐶𝑃𝐼𝑛, 𝑝𝑛〉) = 𝐹(〈𝐶𝑃𝐼̂ 1, �̂�1〉, … , 〈𝐶𝑃𝐼̂ 𝑛, �̂�𝑛〉), where 

(〈𝐶𝑃𝐼̂ 1, �̂�1〉, … , 〈𝐶𝑃𝐼̂ 𝑛, �̂�𝑛〉) is any permutation of (〈𝐶𝑃𝐼1, 𝑝1〉, … , 〈𝐶𝑃𝐼𝑛, 𝑝𝑛〉). 

 

Theorem 3. Boundedness. In the sense that the aggregation is delimited. Let 

𝐹 be the OWARAP operator. Then, 𝑀𝑖𝑛 {(
100

𝐶𝑃𝐼𝑖
) 𝑝𝑖} ≤

𝐹(〈𝐶𝑃𝐼1, 𝑝1〉, … , 〈𝐶𝑃𝐼𝑛, 𝑝𝑛〉) ≤ 𝑀𝑎𝑥 {(
100

𝐶𝑃𝐼𝑖
) 𝑝𝑖}. 

 

Theorem 4. Idempotency. It signifies that if all the input arguments are the 

same, then the aggregated output should match with them. Let 𝐹 be the 

OWARAP operator. If (
100

𝐶𝑃𝐼𝑖
) 𝑝𝑖 = (

100

𝐶𝑃𝐼
) 𝑝, for all 𝑖, then, 

𝐹(〈𝐶𝑃𝐼1, 𝑝1〉, … , 〈𝐶𝑃𝐼𝑛, 𝑝𝑛〉) = (
100

𝐶𝑃𝐼
) 𝑝. 
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Proof. Since 𝑝𝑖 = 𝑝 and 𝐶𝑃𝐼𝑖 = 𝐶𝑃𝐼, for all 𝑖, we have 

 

𝐹(〈𝐶𝑃𝐼1, 𝑝1〉, … , 〈𝐶𝑃𝐼𝑛, 𝑝𝑛〉) =∑𝑤𝑗𝑃𝑗

𝑛

𝑗=1

=∑𝑤𝑗 (
100

𝐶𝑃𝐼
) 𝑝

𝑛

𝑗=1

= (
100

𝐶𝑃𝐼
) 𝑝∑𝑤𝑗

𝑛

𝑗=1

. 

 

Since ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, we get 

 

𝐹(〈𝐶𝑃𝐼1, 𝑝1〉, … , 〈𝐶𝑃𝐼𝑛, 𝑝𝑛〉) = (
100

𝐶𝑃𝐼
) 𝑝. 

 

This operation can be carried out multiple times without changing the result, 

therefore, it can be stated that the OWARAP operator is idempotent. 

 

Furthermore, to determine the values of the weighting vector 𝑊 of the 

OWARAP operator, it is possible to use the well-known characterizing 

measures presented by Yager and Alajlan. These measures are the degree of 

orness (Yager, 1988), the entropy of dispersion (Yager, 1988), the balance 

operator (Yager, 1996), the divergence (Yager, 2002), and the focus (Yager 

& Alajlan, 2014). 

 

The degree of orness measure, also referred to as the attitudinal character, 

can be defined as follows: 

 

α(𝑊) =∑𝑤𝑗 (
𝑛 − 𝑗

𝑛 − 1
)

𝑛

𝑗=1

. (6) 

 

The entropy of dispersion measure can be defined as follows: 

 

H(𝑊) = −∑𝑤𝑗 ln(𝑤𝑗)

𝑛

𝑗=1

. (7) 
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The balance operator measure can be defined as follows: 

 

Bal(𝑊) =∑𝑤𝑗 (
𝑛 + 1 − 2𝑗

𝑛 − 1
)

𝑛

𝑗=1

. (8) 

 

The divergence measure can be defined as follows: 

 

Div(𝑊) =∑𝑤𝑗 (
𝑛 − 𝑗

𝑛 − 1
− α(𝑊))

2𝑛

𝑗=1

. (9) 

 

And the focus measure can be defined as follows: 

 

Focus(𝑊) = 1 −
2

𝑛
∑𝑤𝑗|𝑚 − 𝑗|

𝑛

𝑗=1

, (10) 

 

where 𝑚 = 𝑛(1 − α(𝑊)) + α(𝑊). 

  

Families of the OWARAP operator 

 

Different families of the OWARAP operator can be obtained by choosing 

different manifestations of the weighting vector 𝑊. In the following, some 

of these families are presented. 

 

• When 𝑤1 = 1 and 𝑤𝑗 = 0, for all 𝑗 ≠ 1, the maximum OWARAP 

operator is found, which corresponds to the optimistic decision 

criterion. 

• When 𝑤𝑛 = 1 and 𝑤𝑗 = 0, for all 𝑗 ≠ 𝑛, the minimum OWARAP 

operator is found, which corresponds to the pessimistic decision 

criterion. 

• If 𝑛 is an odd number, then, when 𝑤(𝑛+1) 2⁄ = 1 and 𝑤𝑗 = 0, for all 

𝑗 ≠ (𝑛 + 1) 2⁄ , the median OWARAP operator is formed. Otherwise, 

in the case that 𝑛 is even, the median OWARAP operator is obtained 

when 𝑤𝑛 2⁄ = 𝑤(𝑛 2⁄ )+1 = 0.5 and 𝑤𝑗 = 0, for all 𝑗 ≠ 𝑛 2⁄ , (𝑛 2⁄ ) +

1. 
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• When 𝑤𝑗 = 1 𝑛⁄ , for all 𝑗, the normalized OWARAP operator is 

found, which corresponds to the Laplace decision criterion, that is, the 

arithmetic mean. 

• When 𝑤1 = 𝛼, 𝑤𝑛 = 1 − 𝛼, and 𝑤𝑗 = 0, for all 𝑗 ≠ 1, 𝑛, the Hurwicz 

OWARAP operator is found. 

• When 𝑤1 = 𝑤𝑛 = 0 and 𝑤𝑗 = 1 (𝑛 − 2)⁄ , for all 𝑗 ≠ 1, 𝑛, the 

Olympic OWARAP operator is found. 

• When 𝑤𝑘 = 1 and 𝑤𝑗 = 0, for all 𝑗 ≠ 𝑘, the step OWARAP operator 

is found. 

 

Extensions and generalizations of the OWARAP operator 

 

An interesting extension of the OWARAP operator is the IOWARAP 

operator, which uses order-inducing variables in the process of reordering the 

set of values (〈𝐶𝑃𝐼1, 𝑝1〉, … , 〈𝐶𝑃𝐼𝑛, 𝑝𝑛〉). Thus, the reordering step does not 

depend on the values of the arguments 𝑝𝑖 and 𝐶𝑃𝐼𝑖. This is why the main 

advantage of this extension is the possibility to consider more complex 

attitudes of the decision-maker. The IOWARAP operator is defined as 

follows. 

 

Definition 6. An IOWARAP operator of dimension 𝑛 is a mapping 

IOWARAP: 𝑅𝑛 × 𝑅𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 =

(𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

IOWARAP(⟨𝑢1, 𝐶𝑃𝐼1, 𝑝1⟩, … , ⟨𝑢𝑛, 𝐶𝑃𝐼𝑛, 𝑝𝑛⟩) =∑𝑤𝑗𝑃𝑗

𝑛

𝑗=1

, (11) 

 

where 𝑃𝑗 is the (
100

𝐶𝑃𝐼𝑖
) 𝑝𝑖 value of the IOWARAP triplet 〈𝑢𝑖 , 𝐶𝑃𝐼𝑖 , 𝑝𝑖〉 having 

the 𝑗th largest 𝑢𝑖 value. 𝑢𝑖 is referred as the order-inducing variable, 𝑝𝑖 as the 

nominal average retirement benefit variable, and 𝐶𝑃𝐼𝑖 as the consumer price 

index variable. 

 

Moreover, by using generalized means in the OWARAP operator, the 

GOWARAP operator is obtained. Specifically, it adds a parameter 

controlling the power to which the argument values are raised. Thus, this 
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operator comprises an extensive range of aggregation operators, including 

the OWARAP operator and its particular cases, among others. The 

GOWARAP operator is defined as follows. 

 

Definition 7. A GOWARAP operator of dimension 𝑛 is a mapping 

GOWARAP: 𝑅𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 =

(𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

GOWARAP(⟨𝐶𝑃𝐼1, 𝑝1⟩, … , ⟨𝐶𝑃𝐼𝑛, 𝑝𝑛⟩) = (∑𝑤𝑗𝑃𝑗
𝜆

𝑛

𝑗=1

)

1
𝜆⁄

, (12) 

 

where 𝑃𝑗 is the 𝑗th largest of the (
100

𝐶𝑃𝐼𝑖
) 𝑝𝑖 and 𝜆 is a parameter such that 𝜆 ∈

(−∞,+∞). 𝑝𝑖 is the nominal average retirement benefit variable and 𝐶𝑃𝐼𝑖 

the consumer price index variable. 

 

By giving different values to the parameter 𝜆, it is possible to obtain 

particular cases of the GOWARAP operator, among which the following are 

noteworthy: 

 

• When 𝜆 = −1, the harmonic OWARAP (OWHARAP) operator is 

formed. 

• When 𝜆 = 0, the geometric OWARAP (OWGRAP) operator is 

formed. 

• When 𝜆 = 1, the OWARAP operator is formed. 

• When 𝜆 = 2, the quadratic OWARAP (OWQARAP) operator is 

formed. 

 

Likewise, by analyzing the weighting vector 𝑊 and the parameter 𝜆 jointly, 

it can be summarized that: 

 

• When 𝜆 = −∞ and 𝑤𝑛 ≠ 0, the smallest (100 𝐶𝑃𝐼𝑖⁄ )𝑝𝑖 value of the 

collection is obtained, which is 𝑃𝑛.  

• When 𝜆 = −∞ and 𝑤1 = 1, that is, 𝑤𝑗 = 0, for all 𝑗 ≠ 1, the largest 

(100 𝐶𝑃𝐼𝑖⁄ )𝑝𝑖 value of the collection is achieved, which is 𝑃1. 
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• When 𝜆 = ∞ and 𝑤1 ≠ 0, the largest (100 𝐶𝑃𝐼𝑖⁄ )𝑝𝑖 value of the 

collection is obtained, which is 𝑃1. 

• When 𝜆 = ∞ and 𝑤𝑛 = 1, that is, 𝑤𝑗 = 0, for all 𝑗 ≠ 𝑛, the smallest 

(100 𝐶𝑃𝐼𝑖⁄ )𝑝𝑖 value of the collection is achieved, which is 𝑃𝑛. 

 

Another appealing aggregation operator is the POWARAP operator, which 

unifies the probability and the OWARAP operator into a single formulation. 

Hence, it adds more information to the final outcome. With this operator, it 

is possible to overestimate or underestimate the probabilities based on the 

attitudinal character of the decision-maker. The POWARAP operator is 

defined as follows. 

 

Definition 8. A POWARAP operator of dimension 𝑛 is a mapping 

POWARAP: 𝑅𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 =

(𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

POWARAP(⟨𝐶𝑃𝐼1, 𝑝1⟩, … , ⟨𝐶𝑃𝐼𝑛, 𝑝𝑛⟩) =∑𝑣𝑗𝑃𝑗

𝑛

𝑗=1

= 𝛽∑𝑤𝑗𝑃𝑗

𝑛

𝑗=1

+ (1 − 𝛽)∑𝑣𝑖 (
100

𝐶𝑃𝐼𝑖
) 𝑝𝑖

𝑛

𝑖=1

, (13)

 

 

where 𝑃𝑗 is the 𝑗th largest of the (
100

𝐶𝑃𝐼𝑖
) 𝑝𝑖, 𝑝𝑖 is referred as the nominal 

average retirement benefit variable, and 𝐶𝑃𝐼𝑖 is the consumer price index 

variable. Each (
100

𝐶𝑃𝐼𝑖
) 𝑝𝑖 has associated probability 𝑣𝑖 with ∑ 𝑣𝑖 = 1𝑛

𝑖=1  and 

𝑣𝑖 ∈ [0,1], 𝑣𝑗 = 𝛽𝑤𝑗 + (1 − 𝛽)𝑣𝑗 with 𝛽 ∈ [0,1], and 𝑣𝑗 is the probability 𝑣𝑖 

ordered according to 𝑃𝑗, that is, based on the 𝑗th largest of the (
100

𝐶𝑃𝐼𝑖
) 𝑝𝑖. 

 

Observe that with the parameter 𝛽, the decision-maker can represent the 

degree of importance that the OWARAP operator and the probability have in 

the aggregation process. For example, if the parameter 𝛽 is equal to 1, the 

OWARAP operator is obtained, which means that the decision-maker does 

not consider probabilistic information. Conversely, if 𝛽 is equal to 0, the 
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expected value is gotten, meaning that full importance is given to the 

probability. 

 

4. Forecasting the U.S. real average Social Security retirement 

benefit 

 

Retirement income in the U.S. is based upon three pillars (Kintzel, 2017): 

Social Security, employer-sponsored plans, and personal savings. The 

following section focuses solely on the first one. However, it is worth to 

briefly review each of them in order to get a general idea of the U.S. 

retirement system. 

 

The Old-Age, Survivors, and Disability Insurance (OASDI), or simply 

known as Social Security, is a program run by the federal government of the 

U.S., more specifically the Social Security Administration (SSA). It is 

financed through payroll taxes on employers, employees, and self-employed. 

Social Security provides different types of benefits, although the largest part 

is dedicated to the payment of retirement benefits to retired workers. 

Moreover, OASDI benefits are annually adjusted for inflation based on the 

CPI for urban wage earners and clerical workers (CPI-W) not seasonally 

adjusted (NSA) (SAA, 2021). This is known as cost-of-living adjustment 

(COLA). 

 

We can distinguish between two types of employer-sponsored plans. On the 

one hand, there are defined benefit (DB) plans. On the other hand, there are 

defined contribution (DC) plans, where the most popular type is the 401(k). 

Furthermore, over the last decades, there has been a significant shift from DB 

to DC plans (Altman & Kingson, 2021; Rauh et al., 2020). However, DC 

plans are less secure than DB ones because the investment risk is placed on 

the individuals. 

 

Additionally, workers can also individually save for their retirement. One 

common way of doing this is through an Individual Retirement Account 

(IRA), which can be simply described as an investment account with tax 

advantages. 
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In the following, an illustrative example of the explained approach is 

developed for forecasting the December 2025 real average Social Security 

retirement benefit paid to a retired worker in each state of the U.S. Moreover, 

a multi-expert analysis will be adopted to provide a more representative view 

of the problem. This numerical example is divided into five explanatory steps 

and the assessment of the final results. 

 

Step 1. First, historical data regarding the number of Social Security 

beneficiaries and the amount of Social Security benefits paid to retired 

workers in the U.S. by state is collected. Afterward, the amount of benefits 

is divided by the number of beneficiaries in order to obtain the average 

benefit. These data were extracted from the SSA database; however, with the 

limitation that only annual data as value at end of period, that is, December, 

was available. Similarly, historical COLA data was retrieved from the same 

source. 

 

Data about the CPI for all urban consumers (CPI-U) NSA with base period 

1982-1984 was also gathered, but in this case, from the U.S. Bureau of Labor 

Statistics (BLS). Note that to calculate the average benefits in real terms, the 

CPI-U is used instead of the CPI-W. The CPI for the elderly (CPI-E) is not 

used either. The nominal and real average benefits for December 2021 (latest 

available data) can be seen in Table 3.32. 

 

Step 2. Once all the data has been collected, three experts (𝑒1, 𝑒2, 𝑒3) are 

asked to provide their individual estimations of the COLA and CPI-U NSA 

development for the years 2023 to 2025. Table 3.33 shows this information. 

 

Step 3. Then, the nominal average Social Security benefits for retired 

workers can be forecasted through the application of a simple linear 

regression with the COLA as the independent variable. For each state the 

coefficient of determination (R2) is greater than 0.9, meaning that the model 

has a highly good fit. Three different forecast scenarios (𝑆1, 𝑆2, 𝑆3) are 

obtained based on the inputs provided by the experts (see Table 3.34). 

 

Step 4. Next, the weighting vector 𝑊, inducing vector 𝑈, and probabilistic 

vector 𝑉 are defined as follows: 𝑊 = (0.7,0.2,0.1), 𝑈 = (7,9,8), and 𝑉 =
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(0.2,0.5,0.3). Note that subjective probabilities are considered. Likewise, the 

parameter 𝛽 is determined as follows: 𝛽 = 0.5. 

 

Step 5. Lastly, the forecast scenarios calculated in Step 3 are aggregated into 

a single outcome. To do so, the OWARAP operator, the AOWARAP 

operator, the IOWARAP operator, the OWHARAP operator, the 

OWQARAP operator, and the POWARAP operator are used. Table 3.35 

presents the final results. 

 

Table 3.32. December 2021 nominal and real average Social Security 

benefits for retired worker (benefits in dollars) 

 

 State 
Total 

beneficiaries 

Total benefits 

(thousands) 

Avg. benefits 

(nominal) 

Avg. benefits 

(real) 

NR 

Connecticut 532,298 975,916 1,833 658 

Maine 258,610 405,736 1,569 563 

Massachusetts 939,694 1,625,073 1,729 620 

New Hampshire 236,601 426,404 1,802 646 

New Jersey 1,244,222 2,283,490 1,835 658 

New York 2,684,406 4,583,696 1,708 612 

Pennsylvania 2,088,154 3,591,417 1,720 617 

Rhode Island 167,529 286,073 1,708 612 

Vermont 116,636 197,566 1,694 608 

MR 

Illinois 1,676,914 2,828,644 1,687 605 

Indiana 987,268 1,694,505 1,716 616 

Iowa 503,615 840,728 1,669 599 

Kansas 422,971 728,195 1,722 618 

Michigan 1,600,554 2,795,609 1,747 626 

Minnesota 829,789 1,444,723 1,741 624 

Missouri 936,580 1,525,269 1,629 584 

Nebraska 270,312 453,226 1,677 601 

North Dakota 105,753 170,049 1,608 577 

Ohio 1,689,343 2,740,915 1,622 582 

South Dakota 146,407 234,267 1,600 574 

Wisconsin 976,275 1,662,791 1,703 611 

SR 

Alabama 760,698 1,233,110 1,621 581 

Arkansas 468,117 732,407 1,565 561 

Delaware 175,408 317,406 1,810 649 

District of 

Columbia 
60,292 99,154 1,645 590 

Florida 3,720,938 6,132,177 1,648 591 

Georgia 1,359,691 2,206,254 1,623 582 

Kentucky 647,855 1,019,674 1,574 565 

Louisiana 583,793 899,530 1,541 553 

Maryland 777,516 1,379,246 1,774 636 

Mississippi 446,981 688,320 1,540 552 
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 State 
Total 

beneficiaries 

Total benefits 

(thousands) 

Avg. benefits 

(nominal) 

Avg. benefits 

(real) 

North Carolina 1,611,146 2,674,043 1,660 595 

Oklahoma 561,018 908,245 1,619 581 

South Carolina 883,812 1,482,113 1,677 601 

Tennessee 1,044,660 1,717,632 1,644 590 

Texas 3,149,545 5,124,554 1,627 584 

Virginia 1,174,814 2,018,548 1,718 616 

West Virginia 302,162 487,226 1,612 578 

WR 

Alaska 81,718 130,347 1,595 572 

Arizona 1,105,267 1,874,684 1,696 608 

California 4,636,107 7,534,273 1,625 583 

Colorado 709,963 1,200,924 1,692 607 

Hawaii 230,841 382,062 1,655 594 

Idaho 282,455 461,090 1,632 586 

Montana 189,757 299,295 1,577 566 

Nevada 438,116 706,383 1,612 578 

New Mexico 326,068 510,837 1,567 562 

Oregon 695,077 1,156,068 1,663 597 

Utah 319,644 549,683 1,720 617 

Washington 1,068,554 1,872,199 1,752 628 

Wyoming 91,386 154,964 1,696 608 

Abbreviations: NR = Northeast Region; MR = Midwest Region; SR = South Region; WR 

= West Region; Avg. = Average. 

 

Table 3.33. COLA and CPI-U NSA determined by each expert 

 

Indicator 𝑒1 𝑒2 𝑒3 

COLA 2023 1.9 3.1 3.6 

COLA 2024 1.8 2.0 2.5 

COLA 2025 1.8 2.5 3.1 

CPI-U NSA Dec-2025 315.729 322.914 328.287 

 

Table 3.34. December 2025 scenario forecasts of the nominal and real 

average Social Security benefits for retired worker (values in dollars) 

 

 State 
Nominal values Real values 

𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3 

NR 

Connecticut 2,199 2,245 2,281 696.5 695.3 694.7 

Maine 1,888 1,927 1,958 597.9 596.9 596.4 

Massachusetts 2,085 2,128 2,162 660.3 659.1 658.6 

New Hampshire 2,185 2,230 2,266 691.9 690.7 690.2 

New Jersey 2,201 2,247 2,283 697.0 695.9 695.4 

New York 2,034 2,077 2,110 644.3 643.3 642.9 

Pennsylvania 2,062 2,106 2,139 653.2 652.1 651.6 

Rhode Island 2,056 2,099 2,132 651.2 650.0 649.5 

Vermont 2,041 2,084 2,117 646.4 645.2 644.7 
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 State 
Nominal values Real values 

𝑆1 𝑆2 𝑆3 𝑆1 𝑆2 𝑆3 

MR 

Illinois 2,008 2,050 2,082 635.9 634.8 634.3 

Indiana 2,051 2,095 2,129 649.7 648.8 648.4 

Iowa 2,000 2,042 2,074 633.6 632.4 631.8 

Kansas 2,066 2,108 2,141 654.2 652.9 652.3 

Michigan 2,088 2,133 2,168 661.2 660.5 660.3 

Minnesota 2,109 2,153 2,188 667.9 666.9 666.5 

Missouri 1,951 1,992 2,024 617.8 616.8 616.5 

Nebraska 2,016 2,058 2,090 638.6 637.3 636.7 

North Dakota 1,934 1,973 2,003 612.5 611.0 610.2 

Ohio 1,930 1,971 2,003 611.2 610.4 610.1 

South Dakota 1,934 1,975 2,006 612.7 611.6 611.1 

Wisconsin 2,040 2,083 2,117 646.3 645.2 644.8 

SR 

Alabama 1,956 1,997 2,029 619.5 618.5 618.1 

Arkansas 1,883 1,923 1,954 596.5 595.6 595.2 

Delaware 2,184 2,230 2,266 691.7 690.6 690.2 

District of Columbia 2,029 2,071 2,103 642.8 641.4 640.7 

Florida 1,973 2,014 2,047 624.8 623.8 623.4 

Georgia 1,955 1,998 2,031 619.4 618.7 618.5 

Kentucky 1,891 1,931 1,962 598.8 597.9 597.6 

Louisiana 1,843 1,882 1,912 583.9 582.8 582.4 

Maryland 2,148 2,192 2,226 680.2 678.8 678.2 

Mississippi 1,857 1,896 1,927 588.1 587.2 586.8 

North Carolina 2,004 2,047 2,081 634.9 634.1 633.8 

Oklahoma 1,946 1,986 2,017 616.2 615.0 614.4 

South Carolina 2,029 2,072 2,105 642.6 641.6 641.2 

Tennessee 1,985 2,027 2,060 628.6 627.8 627.6 

Texas 1,952 1,993 2,024 618.3 617.1 616.6 

Virginia 2,084 2,128 2,162 660.1 659.0 658.5 

West Virginia 1,923 1,962 1,993 609.0 607.6 606.9 

WR 

Alaska 1,905 1,943 1,973 603.2 601.8 601.1 

Arizona 2,035 2,078 2,112 644.6 643.6 643.3 

California 1,936 1,977 2,009 613.2 612.3 611.9 

Colorado 2,043 2,086 2,120 647.1 646.1 645.7 

Hawaii 1,987 2,029 2,061 629.2 628.2 627.8 

Idaho 1,960 2,002 2,035 620.9 620.0 619.8 

Montana 1,885 1,924 1,955 596.9 595.9 595.5 

Nevada 1,920 1,962 1,993 608.2 607.4 607.2 

New Mexico 1,879 1,918 1,948 595.1 594.0 593.5 

Oregon 1,987 2,029 2,061 629.4 628.3 627.8 

Utah 2,069 2,112 2,145 655.3 654.0 653.3 

Washington 2,104 2,148 2,181 666.3 665.0 664.5 

Wyoming 2,037 2,079 2,111 645.2 643.7 643.0 

Abbreviations: NR = Northeast Region; MR = Midwest Region; SR = South Region; WR 

= West Region. 
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Table 3.35. December 2025 aggregated results of the of the real average 

Social Security benefits for retired worker (values in dollars) 

 

 State 
OWA-

RAP 

AOWA-

RAP 

IOWA-

RAP 

OWHA-

RAP 

OWQA-

RAP 

POWA-

RAP 

NR 

Connecticut 696.1 695.0 695.3 696.1 696.1 695.7 

Maine 597.6 596.7 596.9 597.6 597.6 597.3 

Massachusetts 659.9 658.8 659.1 659.9 659.9 659.5 

New Hampshire 691.5 690.5 690.7 691.5 691.5 691.1 

New Jersey 696.6 695.7 695.9 696.6 696.6 696.3 

New York 643.9 643.1 643.3 643.9 643.9 643.6 

Pennsylvania 652.8 651.9 652.1 652.8 652.8 652.5 

Rhode Island 650.8 649.8 650.0 650.8 650.8 650.5 

Vermont 646.0 645.0 645.2 646.0 646.0 645.6 

MR 

Illinois 635.5 634.5 634.8 635.5 635.5 635.2 

Indiana 649.4 648.6 648.8 649.4 649.4 649.1 

Iowa 633.2 632.1 632.4 633.2 633.2 632.8 

Kansas 653.8 652.6 652.9 653.8 653.8 653.4 

Michigan 661.0 660.4 660.5 661.0 661.0 660.8 

Minnesota 667.6 666.7 666.9 667.6 667.6 667.3 

Missouri 617.5 616.7 616.9 617.5 617.5 617.2 

Nebraska 638.1 637.0 637.3 638.1 638.1 637.8 

North Dakota 612.0 610.6 611.0 612.0 612.0 611.5 

Ohio 610.9 610.3 610.4 610.9 610.9 610.7 

South Dakota 612.3 611.4 611.6 612.3 612.3 612.0 

Wisconsin 645.9 645.0 645.2 645.9 645.9 645.6 

SR 

Alabama 619.1 618.3 618.5 619.1 619.1 618.9 

Arkansas 596.2 595.4 595.6 596.2 596.2 595.9 

Delaware 691.4 690.4 690.7 691.4 691.4 691.0 

District of Columbia 642.3 641.0 641.4 642.3 642.3 641.9 

Florida 624.5 623.6 623.8 624.5 624.5 624.2 

Georgia 619.1 618.6 618.7 619.1 619.1 619.0 

Kentucky 598.5 597.8 597.9 598.5 598.5 598.3 

Louisiana 583.5 582.6 582.8 583.5 583.5 583.2 

Maryland 679.7 678.5 678.8 679.7 679.7 679.3 

Mississippi 587.8 587.0 587.2 587.8 587.8 587.5 

North Carolina 634.6 634.0 634.1 634.6 634.6 634.4 

Oklahoma 615.8 614.7 615.0 615.8 615.8 615.4 

South Carolina 642.2 641.4 641.6 642.2 642.2 642.0 

Tennessee 628.3 627.7 627.8 628.3 628.3 628.1 

Texas 617.9 616.9 617.1 617.9 617.9 617.5 

Virginia 659.7 658.7 659.0 659.7 659.7 659.4 

West Virginia 608.5 607.3 607.6 608.5 608.5 608.1 

WR 

Alaska 602.7 601.4 601.8 602.7 602.7 602.3 

Arizona 644.2 643.5 643.6 644.2 644.2 644.0 

California 612.9 612.1 612.3 612.9 612.9 612.6 

Colorado 646.7 645.9 646.1 646.7 646.7 646.4 

Hawaii 628.9 628.0 628.2 628.9 628.9 628.6 

Idaho 620.6 619.9 620.1 620.6 620.6 620.3 



 210 

 State 
OWA-

RAP 

AOWA-

RAP 

IOWA-

RAP 

OWHA-

RAP 

OWQA-

RAP 

POWA-

RAP 

Montana 596.6 595.7 595.9 596.6 596.6 596.3 

Nevada 608.0 607.3 607.5 608.0 608.0 607.7 

New Mexico 594.7 593.7 594.0 594.7 594.7 594.4 

Oregon 629.0 628.1 628.3 629.0 629.0 628.7 

Utah 654.8 653.7 654.0 654.8 654.8 654.4 

Washington 665.8 664.8 665.1 665.8 665.8 665.5 

Wyoming 644.7 643.3 643.7 644.6 644.7 644.2 

Abbreviations: NR = Northeast Region; MR = Midwest Region; SR = South Region; WR 

= West Region. 

 

Table 3.36. Comparison between nominal and real growth 

 

 State 

Nominal values Real values 

Dec-2021 
Dec-2025 

IOWA 
Growth Dec-2021 

Dec-2025 

IOWA-

RAP 

Growth 

NR 

Connecticut 1,833 2,248 23% 658 695 6% 

Maine 1,569 1,930 23% 563 597 6% 

Massachusetts 1,729 2,131 23% 620 659 6% 

New Hampshire 1,802 2,233 24% 646 691 7% 

New Jersey 1,835 2,250 23% 658 696 6% 

New York 1,708 2,080 22% 612 643 5% 

Pennsylvania 1,720 2,108 23% 617 652 6% 

Rhode Island 1,708 2,101 23% 612 650 6% 

Vermont 1,694 2,086 23% 608 645 6% 

MR 

Illinois 1,687 2,052 22% 605 635 5% 

Indiana 1,716 2,097 22% 616 649 5% 

Iowa 1,669 2,044 22% 599 632 6% 

Kansas 1,722 2,111 23% 618 653 6% 

Michigan 1,747 2,135 22% 626 661 5% 

Minnesota 1,741 2,156 24% 624 667 7% 

Missouri 1,629 1,994 22% 584 617 6% 

Nebraska 1,677 2,060 23% 601 637 6% 

North Dakota 1,608 1,975 23% 577 611 6% 

Ohio 1,622 1,973 22% 582 610 5% 

South Dakota 1,600 1,977 24% 574 612 7% 

Wisconsin 1,703 2,086 22% 611 645 6% 

SR 

Alabama 1,621 1,999 23% 581 619 6% 

Arkansas 1,565 1,925 23% 561 596 6% 

Delaware 1,810 2,233 23% 649 691 6% 

District of Columbia 1,645 2,073 26% 590 641 9% 

Florida 1,648 2,017 22% 591 624 6% 

Georgia 1,623 2,000 23% 582 619 6% 

Kentucky 1,574 1,933 23% 565 598 6% 

Louisiana 1,541 1,884 22% 553 583 5% 

Maryland 1,774 2,194 24% 636 679 7% 

Mississippi 1,540 1,898 23% 552 587 6% 
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 State 

Nominal values Real values 

Dec-2021 
Dec-2025 

IOWA 
Growth Dec-2021 

Dec-2025 

IOWA-

RAP 

Growth 

North Carolina 1,660 2,050 24% 595 634 7% 

Oklahoma 1,619 1,988 23% 581 615 6% 

South Carolina 1,677 2,074 24% 601 642 7% 

Tennessee 1,644 2,030 23% 590 628 6% 

Texas 1,627 1,995 23% 584 617 6% 

Virginia 1,718 2,130 24% 616 659 7% 

West Virginia 1,612 1,964 22% 578 608 5% 

WR 

Alaska 1,595 1,945 22% 572 602 5% 

Arizona 1,696 2,081 23% 608 644 6% 

California 1,625 1,979 22% 583 612 5% 

Colorado 1,692 2,089 23% 607 646 6% 

Hawaii 1,655 2,031 23% 594 628 6% 

Idaho 1,632 2,004 23% 586 620 6% 

Montana 1,577 1,926 22% 566 596 5% 

Nevada 1,612 1,964 22% 578 607 5% 

New Mexico 1,567 1,920 23% 562 594 6% 

Oregon 1,663 2,031 22% 597 628 5% 

Utah 1,720 2,114 23% 617 654 6% 

Washington 1,752 2,150 23% 628 665 6% 

Wyoming 1,696 2,081 23% 608 644 6% 

Abbreviations: NR = Northeast Region; MR = Midwest Region; SR = South Region; WR 

= West Region. 

 

In Table 3.35, we can see that New Jersey, Connecticut, and New Hampshire 

are the three states of the U.S. with the highest results. By contrast, Louisiana, 

Mississippi, and New Mexico have obtained the lowest amounts. Moreover, 

the differences between these states are quite significant. For example, the 

gap between New Jersey and Louisiana is 113.1 dollars for the OWARAP 

operator. 

 

Likewise, if we look at the results on a regional level, we observe that, on 

average, the Northeast Region has the highest estimated real average Social 

Security benefit for retired workers, compared to the South Region, which 

has the smallest one. 

 

Furthermore, it is interesting to analyze the effect of the inflation adjustment 

on the outcomes. For example, by looking at Table 3.36, we can see that in 

North Carolina, the average Social Security benefit for retired workers in real 

prices (based on the IOWARAP operator) is expected to increase by 7%. 

However, if we conduct the same calculations without considering inflation, 
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then it is estimated to increase by 24%. In this case, the real growth is not in 

line with the current growth, which translates to a considerable loss in the 

purchasing power of the future beneficiaries of this state. This demonstrates 

the importance of having information regarding retirement benefits in real 

prices. 

 

5. Conclusions 

 

The OWARAP operator is an aggregation operator used for calculating the 

future average retirement benefit adjusted for inflation. The OWARAP 

operator is based on the OWA operator. Thus, it provides a parametrized 

family of aggregation operators between the minimum and the maximum real 

average retirement benefit. The OWARAP operator can be extended by using 

order-inducing variables, generalized means, and also probabilities. In the 

first case, the IOWARAP operator is obtained; in the second case, the 

GOWARAP operator; and in the last case, the POWARAP operator. 

 

This paper also develops a multi-expert analysis of the use of the OWARAP 

operator and its extensions in calculating the future average Social Security 

benefit adjusted for inflation of a retired worker in each state of the U.S. This 

analysis shows that with the use of these new operators, it is possible to 

underestimate or overestimate the results according to the attitudinal 

character of the analyst as well as its preferences. Furthermore, it 

demonstrates the importance of removing the effect of price inflation in order 

to obtain a true picture of the future average Social Security benefits for 

retired workers. By using the new approach, individuals can plan their 

retirement more properly and thereby maintain their standard of living. 

 

In order to continue developing this idea, in future research, it is proposed to 

study further extensions of the OWARAP, IOWARAP, GOWARAP, and 

POWARAP operators. Also, apply these aggregation operators in other 

countries, such as France or Canada. Lastly, it is suggested to develop new 

algorithms for forecasting retirement indicators. 
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of the following research paper was written and published in Spanish. 

 

The authors of this paper are Anton Figuerola Wischke (University of 

Barcelona), Anna Maria Gil Lafuente (University of Barcelona), and José 

María Merigó Lindahl (University of Technology Sydney). 

 

Abstract 

 

The unfavorable development of the demographic and economic variables 

has a negative impact on the sustainability of the public pension system of 

Spain and consequently on the pension adequacy. Therefore, it encourages 

workers to invest in alternative savings products in order to supplement the 

state pension and thereby ensure an adequate retirement income. This study 

suggests different methods that may help citizens to choose the most suitable 

product for supplementing the state pension when they retire. These methods 

are based on the use of the linguistic ordered weighted averaging (LOWA) 

operator, the induced linguistic ordered weighted averaging (ILOWA) 

operator, the linguistic ordered weighted averaging distance (LOWAD) 

operator and the linguistic induced ordered weighted averaging distance 

(LIOWAD) operator. At the end of the work, an illustrative example will be 

developed using the LOWA, ILOWA, LOWAD and LIOWAD aggregation 

operators for retirement financial planning. The results show the usefulness 

of this type of linguistic aggregation operators in retirement decision-making. 
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operators, Hamming distance, pension systems. 

 

JEL Code: C44, D81, J32. 

 

1. Introduction 

 

The Spanish public pension system is becoming less and less sustainable 

(Hernández de Cos, 2021; Hernández de Cos et al., 2018). This is due to 

multiple factors. One of the most important factors is the demographic. In 

Spain, the dependency ratio (i.e., population aged 65 years and older as a 

proportion of the population aged 15 to 64) has strikingly increased over the 

time. According to the Eurostat (2021), the dependency ratio in Spain 

increased from 24.1% in 2009 to 29.7% in 2020. 

 

The labor market situation is another factor that impacts on the sustainability 

of the public pension system. Indeed, the current economic crisis caused by 

the COVID-19 pandemic has entailed significant job losses. Specifically, 

when the unemployment rate increases, the Social Security’s income used to 

pay pension benefits is reduced. According to the Instituto Nacional de 

Estadística (INE, 2021), the unemployment rate in Spain raised from 13.8% 

in the fourth quarter of 2019 to 16.1% in the fourth quarter of 2020. 

 

In this context, the adequacy level of state pensions is not guaranteed. That 

is why many citizens seek to supplement their state pension with private 

savings products and thus avoid a significant loss in their purchasing power 

at the time of retirement. Currently there are a wide range of products to 

invest in for retirement, such as the systematic individual savings plan 

(known as PIAS) or the unit linked. 

 

The aim of this work is to show alternative mathematical tools to improve 

decision-making processes with regard to the selection of retirement products 

for supplementing the state pension and thereby guarantee an adequate level 

of income during old age. In particular, these tools are based on the use of 

the ordered weighted averaging (OWA) operator (Yager, 1988) and the 

linguistic variables. 
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The OWA operator is one of the most popular aggregation functions for 

aggregating numerical information. Since its appearance, several authors 

have developed new extensions. Some prominent extensions are the induced 

ordered weighted averaging (IOWA) (Yager & Filev, 1999) and the linguistic 

ordered weighted averaging (LOWA) (Herrera et al., 1995). The IOWA 

operator is characterized by using order-inducing variables. The LOWA 

operator is very useful for those situations where the available information 

cannot be assessed with numerical values. Moreover, Xu (2006b) developed 

the induced linguistic ordered weighted averaging (ILOWA) operator, which 

extends the LOWA operator by using order-inducing variables in the 

reordering step of the linguistic arguments. 

 

The authors Merigó and Gil-Lafuente (2010) developed a new approach for 

selecting financial products based on the use of the OWA operator and the 

ordered weighted averaging distance (OWAD) and the ordered weighted 

averaging adequacy coefficient (OWAAC) extensions. The OWAD operator 

uses the OWA operator in the Hamming distance (Hamming, 1950). 

 

The linguistic ordered weighted averaging distance (LOWAD) operator was 

introduced in (Merigó & Casanovas, 2010) and it is an extension of the 

OWAD operator that uses linguistic variables. The LOWAD operator is very 

useful for those situations where the available information is uncertain and 

cannot be represented by numerical variables. Furthermore, if we use order-

inducing variables in the reordering step, the linguistic induced ordered 

weighted averaging distance (LIOWAD) operator (Cheng & Zeng, 2012; 

Zeng et al., 2013) is obtained. 

 

The current paper is structured as follows. First, the basic definitions of the 

OWA, LOWA, ILOWA, LOWAD, and LIOWAD operators are reviewed. 

Second, the steps of the proposed algorithm for the selection of savings 

products for supplementing the state retirement pension are described in 

detail. Third, an illustrative example of the application of the proposed 

algorithm is given. Finally, the main conclusions of the work are 

summarized. 
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2. Methodology 

 

The following section reviews the main characteristics of the theory of the 

OWA, LOWA, ILOWA, LOWAD, and LIOWAD aggregation operators. 

 

The OWA operator 

 

The OWA operator was proposed by Yager (1988) and it provides a 

parameterized family of aggregation operators. The OWA operator has been 

successfully applied to various fields, including economics and business 

management (Kacprzyk et al., 2019). The OWA operator can be defined as 

follows. 

 

Definition 1. An OWA operator of dimension 𝑛 is a function OWA:𝑅𝑛 → 𝑅 

that has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 =

(𝑤1, 𝑤2, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

OWA(𝑎1, 𝑎2, … , 𝑎𝑛) =∑𝑤𝑗𝑏𝑗

𝑛

𝑗=1

, (1) 

 

where 𝑏𝑗 is the 𝑗th largest element of the arguments 𝑎1, 𝑎2, … , 𝑎𝑛, that is 

(𝑏1, 𝑏2, … , 𝑏𝑛) is (𝑎1, 𝑎2, … , 𝑎𝑛) reordered from largest to smallest. 

 

Note that if the reordering step of the arguments is carried out in an ascending 

way, rather than in a descending one, the ascending ordered weighted 

averaging (AOWA) operator is obtained, which was introduced in (Yager, 

1992). Moreover, the OWA and AOWA operators are related through 𝑤𝑗 =

𝑤𝑛+1−𝑗
∗ , where 𝑤𝑗 is the 𝑗th weight of the OWA operator and 𝑤𝑛+1−𝑗

∗  the 𝑗th 

weight of the AOWA operator.  

 

Example 1. Consider the following collection of arguments: 𝑎1 = 6, 𝑎2 =

4, 𝑎3 = 9. If the weighting vector is 𝑊 = (0.2,0.3,0.5), then, the OWA 

operator can be calculated as follows: 

 

OWA = 0.2 × 9 + 0.3 × 6 + 0.5 × 4 = 5.6. 
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The OWA operator is monotonic, commutative (symmetrical), idempotent, 

and bounded. These properties can be expressed in the following manner: 

 

• Monotonicity. For any OWA operator, if 𝑎𝑖 ≥ �̂�𝑖 for all 𝑖, then, 

OWA(𝑎1, 𝑎2, … , 𝑎𝑛) ≥ OWA(�̂�1, �̂�2, … , �̂�𝑛). 

• Commutativity (symmetry). In the sense that the same result is 

obtained for any permutation of the arguments. I.e., 

OWA(𝑎1, 𝑎2, … , 𝑎𝑛) = OWA(�̂�1, �̂�2, … , �̂�𝑛), where (�̂�1, �̂�2, … , �̂�𝑛) is 

any permutation of (𝑎1, 𝑎2, … , 𝑎𝑛). 

• Boundedness. In the sense that the OWA operator is delimited 

between the maximum and the minimum. I.e., Min{𝑎𝑖} ≤

OWA(𝑎1, 𝑎2, … , 𝑎𝑛) ≤ Max{𝑎𝑖}. 

• Idempotency. For any OWA operator, if 𝑎𝑖 = 𝑎 for all 𝑖, then, 

OWA(𝑎1, 𝑎2, … , 𝑎𝑛) = 𝑎. 

 

The OWA operator includes the classical decision-making methods. When 

𝑤1 = 1 and 𝑤𝑗 = 0 for all 𝑗 ≠ 1, the optimistic criterion is found. When 

𝑤𝑛 = 1 and 𝑤𝑗 = 0 for all 𝑗 ≠ 𝑛, the pessimistic criterion is found. The 

Laplace criterion, which is based on the arithmetic mean, is found when 𝑤𝑗 =

1 𝑛⁄  for all 𝑗. Finally, the Hurwicz criterion is obtained when 𝑤1 = 𝛼, 𝑤𝑛 =

1 − 𝛼, and 𝑤𝑗 = 0 for all 𝑗 ≠ 1, 𝑛. 

 

Another aspect worth discussing is the measures for characterizing the 

weighting vector 𝑊 and the type of aggregation it performs (Yager, 1988, 

1996, 2002). The most significant are the attitudinal character, the dispersion 

measure, the balance operator, and the divergence measure. 

 

The first measure mentioned above was introduced in (Yager, 1988) and it 

refers to the attitudinal character of the decision-maker. This measure can be 

defined as follows: 

 

α(𝑊) =∑𝑤𝑗 (
𝑛 − 𝑗

𝑛 − 1
)

𝑛

𝑗=1

. (2) 
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The second measure is the dispersion or entropy of the vector 𝑊 (Yager, 

1988) and it is defined as follows: 

 

H(𝑊) = −∑𝑤𝑗 ln(𝑤𝑗)

𝑛

𝑗=1

. (3) 

 

The balance operator is the third measure, and it was introduced in (Yager, 

1996). The balance operator is used for measuring the degree of favoritism 

towards optimistic or pessimistic values, and it is defined as: 

 

Bal(𝑊) =∑𝑤𝑗 (
𝑛 + 1 − 2𝑗

𝑛 − 1
)

𝑛

𝑗=1

. (4) 

 

The fourth measure was introduced in (Yager, 2002) and it refers to the 

degree of divergence of the vector 𝑊. This measure can be defined in the 

following way: 

 

Div(𝑊) =∑𝑤𝑗 (
𝑛 − 𝑗

𝑛 − 1
− α(𝑊))

2𝑛

𝑗=1

. (5) 

 

The LOWA operator 

 

The first linguistic version of the OWA operator was presented by Herrera et 

al. (1995). Since then, several authors have developed new models (Herrera 

& Herrera-Viedma, 1997; Martínez & Herrera, 2000; Merigó et al., 2012; 

Merigó & Gil-Lafuente, 2008; Xu, 2004a, 2004b, 2006a, 2006b). The present 

work focuses on the one from Xu (2004a, 2004b). The LOWA operator is an 

extension of the OWA operator that uses linguistic variables for assessing the 

information. This operator is also known as extended ordered weighted 

averaging (EOWA). The LOWA operator can be defined in the following 

manner. 
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Definition 2. A LOWA operator of dimension 𝑛 is a function LOWA: 𝑆𝑛 →

𝑆 that has associated a weighting vector 𝑊 of dimension 𝑛 𝑊 =

(𝑤1, 𝑤2, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗
𝑛
𝑗=1 = 1, such that: 

 

 

LOWA(𝑠𝛼1 , 𝑠𝛼2 , … , 𝑠𝛼𝑛) =∑𝑤𝑗𝑠𝛽𝑗

𝑛

𝑗=1

, (6) 

 

where 𝑠𝛽𝑗  is the 𝑗th largest element of the 𝑠𝛼𝑖. 

 

Example 2. Consider the following linguistic term set with three labels: 𝑠1 =

bad, 𝑠2 = medium, 𝑠3 = good. If the collection of linguistic arguments is 

𝑆 = (𝑠2, 𝑠2, 𝑠3) and the weighting vector 𝑊 = (0.2,0.3,0.5), then, the 

LOWA operator can be calculated as follows: 

 

LOWA = 0.2 × 𝑠3 + 0.3 × 𝑠2 + 0.5 × 𝑠2 = 𝑠2.2. 

 

The monotonic, commutative, bounded, and idempotent properties are also 

applicable to the LOWA operator. 

 

The ILOWA operator 

 

An interesting extension of the LOWA operator is the ILOWA operator (Xu, 

2006b). The main difference between the ILOWA operator and the LOWA 

operator is that the reordering of the 𝑠𝛼𝑖 is carried out through the so-called 

order-inducing variables 𝑢𝑖. Thus, the reordering of the arguments does not 

depend on their values. 

 

Definition 3. An ILOWA operator of dimension 𝑛 is a function 

ILOWA: 𝑅𝑛 × 𝑆𝑛 → 𝑆 that has associated a weighting vector 𝑊 of dimension 

𝑛 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

  

ILOWA(〈𝑢1, 𝑠𝛼1〉, 〈𝑢2, 𝑠𝛼2〉, … , 〈𝑢𝑛, 𝑠𝛼𝑛〉) =∑𝑤𝑗𝑠𝛽𝑗

𝑛

𝑗=1

, (7) 
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where 𝑠𝛽𝑗  is the 𝑠𝛼𝑖 value of the ILOWA pair 〈𝑢𝑖 , 𝑠𝛼𝑖〉 having the 𝑗th largest 

𝑢𝑖, 𝑢𝑖 is the order-inducing variable, and 𝑠𝛼𝑖 is the linguistic argument 

variable. 

 

Example 3. Consider the same linguistic term set as in the Example 2. Also, 

consider the following collection of linguistic arguments with their respective 

order-inducing variables 〈𝑢𝑖 , 𝑠𝛼𝑖〉: 〈4, 𝑠2〉, 〈9, 𝑠2〉, and 〈6, 𝑠3〉. If the weighting 

vector is 𝑊 = (0.2,0.3,0.5), then, the ILOWA operator can be calculated as: 

 

ILOWA = 0.2 × 𝑠2 + 0.3 × 𝑠3 + 0.5 × 𝑠2 = 𝑠2.3. 

 

Like the LOWA operator, the ILOWA operator is monotonic, commutative, 

bounded, and idempotent. 

 

The Hamming distance 

 

The Hamming distance 𝑑𝐻 (Hamming, 1950) is a very popular technique 

used for calculating the differences between two elements, two sets, or two 

fuzzy sets, among others. 

 

Definition 4. Consider two sets 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛}. 

Then, in the discrete scope, the Hamming distance of dimension 𝑛 is defined 

as follows: 

 

𝑑𝐻(𝑋, 𝑌) =∑|𝑥𝑗 − 𝑦𝑗|

𝑛

𝑗=1

. (8) 

 

Furthermore, if weights are used for aggregating the differences, the 

weighted Hamming distance 𝑑𝑊𝐻 is obtained, which is defined as follows. 
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Definition 5. A weighted Hamming distance of dimension 𝑛 is a function 

𝑑𝑊𝐻: 𝑅
𝑛 × 𝑅𝑛 → 𝑅 that has associated a weighting vector 𝑊 of dimension 𝑛 

𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

𝑑𝑊𝐻(𝑋, 𝑌) =∑𝑤𝑗|𝑥𝑗 − 𝑦𝑗|

𝑛

𝑗=1

, (9) 

 

where 𝑥𝑗 and 𝑦𝑗 are the 𝑗th arguments of the sets 𝑋 and 𝑌, respectively. 

 

Note that if 𝑤𝑗 = 1 𝑛⁄  for all 𝑗, the normalized Hamming distance 𝑑𝑁𝐻 is 

obtained. 

 

The LOWAD operator 

 

The LOWAD operator (Merigó & Casanovas, 2010) is an aggregation 

operator that uses linguistic variables in the Hamming distance. The main 

advantage of this operator is that it provides a more complete view of the 

decision-making problem. For two sets 𝑋 = {𝑠𝑥1 , 𝑠𝑥2 , … , 𝑠𝑥𝑛} and 𝑌 =

{𝑠𝑦1 , 𝑠𝑦2 , … , 𝑠𝑦𝑛}, the LOWAD operator can be defined as follows. 

 

Definition 6. A LOWAD operator of dimension 𝑛 is a function 

LOWAD: 𝑆𝑛 × 𝑆𝑛 → 𝑆 that has associated a weighting vector 𝑊 of 

dimension 𝑛 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in 

which: 

 

LOWAD(𝑋, 𝑌) =∑𝑤𝑗𝑠𝛽𝑗

𝑛

𝑗=1

, (10) 

 

where 𝑠𝛽𝑗  is the 𝑗th largest of the |𝑠𝑥𝑖 − 𝑠𝑦𝑖|, and |𝑠𝑥𝑖 − 𝑠𝑦𝑖| is the argument 

variable represented in the form of an individual linguistic distance. 

 

Note that it is also possible to distinguish between descending and ascending 

orders of the linguistic arguments. The first case corresponds to the LOWAD 

operator, and the second one to the ascending linguistic ordered weighted 
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averaging distance (ALOWAD) operator. Moreover, the weighting vectors 

of the LOWAD and ALOWAD operators are symmetric to each other. 

Specifically, the weights of these operators are related by 𝑤𝑗 = 𝑤𝑛−𝑗+1
∗ , 

where 𝑤𝑗 is the 𝑗th weight of the LOWAD operator and 𝑤𝑛−𝑗+1
∗  is the 𝑗th 

weight of the ALOWAD operator. 

 

The LOWAD operator is monotonic, commutative, bounded, idempotent, 

reflexive, and nonnegative. These properties can be explained as follows: 

 

• Monotonicity. For any LOWAD operator, if |𝑠𝑥𝑖 − 𝑠𝑦𝑖| ≥ |𝑠𝑧𝑖 − 𝑠𝑔𝑖| 

for all 𝑖, then, LOWAD(𝑋, 𝑌) ≥ LOWAD(𝑍, 𝐺). 

• Commutativity (symmetry). In the sense that the same result is 

obtained for any permutation of the arguments. I.e., LOWAD(𝑋, 𝑌) =

LOWAD(𝑍, 𝐺), where (𝑍, 𝐺) is any permutation of (𝑋, 𝑌). 

• Boundedness. In the sense that the LOWAD operator is delimited 

between the maximum and minimum. I.e., Min{ |𝑠𝑥𝑖 − 𝑠𝑦𝑖|} ≤

LOWAD(𝑋, 𝑌) ≤ Max{ |𝑠𝑥𝑖 − 𝑠𝑦𝑖|}. 

• Idempotency. For any LOWAD operator, if |𝑠𝑥𝑖 − 𝑠𝑦𝑖| = 𝑠𝛼 for all 𝑖, 

then, LOWAD(𝑋, 𝑌) = 𝑠𝛼. 

• Reflexivity. The LOWAD operator is reflexive because 

LOWAD(𝑋, 𝑋) = 𝑠0. 

• Nonnegativity. The LOWAD operator is nonnegative because 

LOWAD(𝑋, 𝑌) ≥ 𝑠0. 

 

The LIOWAD operator 

 

The LIOWAD operator (Cheng & Zeng, 2012; Zeng et al., 2013) is a distance 

operator similar to the LOWAD but with the difference that the reordering 

step is carried out with order-inducing variables. For two sets 𝑋 =

{𝑠𝑥1 , 𝑠𝑥2 , … , 𝑠𝑥𝑛} and 𝑌 = {𝑠𝑦1 , 𝑠𝑦2 , … , 𝑠𝑦𝑛}, the LIOWAD operator can be 

defined as follows. 

 

  



 227 

Definition 7. A LIOWAD operator of dimension 𝑛 is a function 

LIOWAD: 𝑅𝑛 × 𝑆𝑛 × 𝑆𝑛 → 𝑆 that has associated a weighting vector 𝑊 of 

dimension 𝑛 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in 

which: 

 

LIOWAD(〈𝑢1, 𝑠𝑥1 , 𝑠𝑦1〉, … , 〈𝑢𝑛, 𝑠𝑥𝑛 , 𝑠𝑦𝑛〉) =∑𝑤𝑗𝑠𝛽𝑗

𝑛

𝑗=1

, (11) 

 

where 𝑠𝛽𝑗  is the |𝑠𝑥𝑖 − 𝑠𝑦𝑖| value of the LIOWAD triplet 〈𝑢𝑖 , 𝑠𝑥𝑖 , 𝑠𝑦𝑖〉 with the 

𝑗th largest 𝑢𝑖, 𝑢𝑖 is the order-inducing variable, and |𝑠𝑥𝑖 − 𝑠𝑦𝑖| is the 

argument variable represented in the form of an individual linguistic distance. 

 

Example 4. Given the same the same linguistic term set as in the Example 2, 

consider the following two collection of linguistic arguments: 𝑋 =

{𝑠𝑥1 , 𝑠𝑥2 , 𝑠𝑥3} = {𝑠2, 𝑠2, 𝑠3}  and 𝑌 = {𝑠𝑦1 , 𝑠𝑦2 , 𝑠𝑦3} = {𝑠3, 𝑠1, 𝑠1}. If the vector 

with the order-inducing variables is 𝑈 = (4,9,6), and the weighting vector is 

𝑊 = (0.2,0.3,0.5), then, the LIOWAD operator can be calculated as follows: 

 

LIOWAD = 0.2 × |𝑠2 − 𝑠1| + 0.3 × |𝑠3 − 𝑠1| + 0.5 × |𝑠2 − 𝑠3| = 𝑠1.3. 

 

Similar to the LOWAD operator, the LIOWAD operator is monotonic, 

commutative, bounded, idempotent, reflexive, and nonnegative. 

 

3. Proposed algorithm 

 

The following section explains in detail the steps to follow in order to select 

the most appropriate product for supplementing the state pension for 

retirement by using the previously defined linguistic aggregation operators. 

 

LOWA and ILOWA algorithm 

 

The first option is based on applying the LOWA operator and the ILOWA 

operator. 
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Step 1. Determine the different possible alternatives 𝐴𝑘 for supplementing 

the public old-age pension. Through this, the set 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚} is 

obtained. 

 

Step 2. The expert has to determine the factors, singularities, or 

characteristics 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} to be considered in the analysis and 

assessment. The expert should consider different characteristics in order to 

know which supplementary product is the most convenient, such as the age 

and the risk that the decision-maker is willing to take. 

 

Step 3. The expert needs to define the set of linguistic labels 𝑆, and then 

individually assess the characteristics for each alternative. 

 

Step 4. The expert has to establish the values of the weighting vector 𝑊 =

(𝑤1, 𝑤2, … , 𝑤𝑛) as well as the inducing-variables vector 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑛). 

 

Step 5. Carry out the aggregation of the assessment results obtained in Step 

3. To do so, the LOWA operator and the ILOWA operator are used. 

 

LOWAD and LIOWAD algorithm 

 

The second option consists of using the Hamming distance through the 

LOWAD operator and the LIOWAD operator. 

 

Step 1. Determine the different possible alternatives 𝐴𝑘 for supplementing 

the public old-age pension. Through this, the set 𝐴 = {𝐴1, 𝐴2, … , 𝐴𝑚} is 

obtained. 

 

Step 2. The expert has to determine the factors, singularities, or 

characteristics 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑛} to be considered in the analysis and 

assessment. The expert should consider different characteristics in order to 

know which supplementary product is the most convenient, such as the age 

and the risk that the decision-maker is willing to take. 

 

Step 3. The expert needs to define the set of linguistic labels 𝑆, and then 

individually assess the characteristics for each alternative. 
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Step 4. The expert needs to define the ideal set 𝐼 = {𝑠𝐼1 , 𝑠𝐼2 , … , 𝑠𝐼𝑛}. Also, the 

expert has to calculate the Hamming distances between the ideal set and the 

different alternatives 𝐴𝑘 considered. 

 

Step 5. The expert has to establish the values of the weighting vector 𝑊 =

(𝑤1, 𝑤2, … , 𝑤𝑛) as well as the inducing-variables vector 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑛). 

 

Step 6. Carry out the aggregation of the distances obtained in Step 4. To do 

so, the LOWAD operator and the LIOWAD operator are used. 

 

4. Illustrative example 

 

The following section develops an illustrative example in a decision-making 

problem concerning the selection of retirement savings instruments through 

the utilization of the LOWA, ILOWA, LOWAD, and LIOWAD linguistic 

aggregation operators. 

 

Suppose that a 38-year-old person and resident in Spain, contacts with a 

financial expert for advice on which savings product for supplementing the 

public retirement pension is best to invest in. 

 

Implementation of the LOWA and ILOWA algorithm 

 

Step 1. Suppose that the expert considers the following alternatives: 

 

• 𝐴1 = individual pension plan (also known as PPI). 

• 𝐴2 = insured pension plan (also known as PPA). 

• 𝐴3 = investment fund. 

• 𝐴4 = systematic individual savings plan (also known as PIAS). 

• 𝐴5 = unit linked. 

• 𝐴6 = reverse mortgage. 
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Step 2. Also, the expert considers the following characteristics as key for the 

analysis: 

 

• 𝐶1 = profile. 

• 𝐶2 = tax advantages. 

• 𝐶3 = liquidity. 

• 𝐶4 = commissions. 

• 𝐶5 = contribution limit. 

 

Step 3. Additionally, assume that the following set with three linguistic terms 

is defined: 𝑆 = {𝑠1 = bad, 𝑠2 = regular, 𝑠3 = good}. Then, suppose that the 

expert individually evaluates the products for each of the above-mentioned 

characteristics 𝐶𝑖, thus obtaining the results shown in Table 3.37. 

 

For example, individual pension plans and insured pension plans allow to 

reduce the taxable base of the personal income tax. However, both are also 

characterized for having very low liquidity. Furthermore, since 2021 

contributions are subject to a limit of 2,000 euros per annum. 

 

Table 3.37. Initial assessments matrix 

 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝐴1 𝑠3 𝑠3 𝑠1 𝑠2 𝑠1 

𝐴2 𝑠2 𝑠3 𝑠1 𝑠2 𝑠1 

𝐴3 𝑠3 𝑠1 𝑠3 𝑠2 𝑠3 

𝐴4 𝑠3 𝑠3 𝑠2 𝑠2 𝑠2 

𝐴5 𝑠3 𝑠1 𝑠3 𝑠2 𝑠3 

𝐴6 𝑠1 𝑠3 𝑠1 𝑠1 𝑠3 

 

Step 4. Consider that the expert decides to use the following weighting vector 

for the aggregation: 𝑊 = (𝑤1 = 0.3, 𝑤2 = 0.3, 𝑤3 = 0.2, 𝑤4 = 0.1, 𝑤5 =

0.1). For the ILOWA operator, the expert decides to use the following order-

inducing variables vector: 𝑈 = (𝑢1 = 9, 𝑢2 = 6, 𝑢3 = 7, 𝑢4 = 5, 𝑢5 = 8). 

 

Step 5. Finally, assume that the expert uses the LOWA and ILOWA 

operators in order to aggregate the linguistic assessments and thereby obtain 

a single representative value for each alternative. In order to obtain a more 

complete picture of the situation, the expert also calculates the linguistic 
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weighted averaging (LWA) operator. As can be deduced from the name, the 

LWA operator is obtained by applying the weighted average. The aggregated 

results are shown in Table 3.38. 

 

Table 3.38. LWA, LOWA, and ILOWA aggregated results 

 

 LWA LOWA ILOWA 

𝐴1 𝑠2.3 𝑠2.4 𝑠1.9 
𝐴2 𝑠2 𝑠2.1 𝑠1.6 

𝐴3 𝑠2.3 𝑠2.7 𝑠2.7 

𝐴4 𝑠2.6 𝑠2.6 𝑠2.4 

𝐴5 𝑠2.3 𝑠2.7 𝑠2.7 

𝐴6 𝑠1.8 𝑠2.2 𝑠1.8 

 

Implementation of the LOWAD and LIOWAD algorithm 

 

Step 1. Consider the same set of alternatives as in the LOWA and ILOWA 

algorithm illustrative example. 

 

Step 2. Consider the same set of characteristics as in the LOWA and ILOWA 

algorithm illustrative example. 

 

Step 3. Consider the same set of linguistic terms and individual assessments 

as in the LOWA and ILOWA algorithm illustrative example. 

 

Step 4. Suppose that the expert defines the ideal product 𝐼 =

{𝑠3, 𝑠3, 𝑠3, 𝑠3, 𝑠3} in order to be able to calculate the Hamming distances. 

Table 3.39 shows the results of the distances between the ideal product and 

the different alternatives considered. 

 

Table 3.39. Hamming distances matrix 

 

 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝑑𝐻(𝐼, 𝐴1) 𝑠0 𝑠0 𝑠2 𝑠1 𝑠2 

𝑑𝐻(𝐼, 𝐴2) 𝑠1 𝑠0 𝑠2 𝑠1 𝑠2 

𝑑𝐻(𝐼, 𝐴3) 𝑠0 𝑠2 𝑠0 𝑠1 𝑠0 

𝑑𝐻(𝐼, 𝐴4) 𝑠0 𝑠0 𝑠1 𝑠1 𝑠1 

𝑑𝐻(𝐼, 𝐴5) 𝑠0 𝑠2 𝑠0 𝑠1 𝑠0 

𝑑𝐻(𝐼, 𝐴6) 𝑠2 𝑠0 𝑠2 𝑠2 𝑠0 
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Step 5. Consider that the expert decides to use the same weighting vector and 

order-inducing variables as in the LOWA and ILOWA algorithm illustrative 

example. 

 

Step 6. Lastly, assume that the expert employs the ALOWAD, LOWAD, and 

LIOWAD operators in order to aggregate the distances and thereby produce 

a single representative value for each alternative. The aggregated results are 

shown in Table 3.40. 

 

Table 3.40. ALOWAD, LOWAD, and LIOWAD aggregated results 

 

 ALOWAD LOWAD LIOWAD 

𝐴1 𝑠0.6 𝑠1.4 𝑠1.1 

𝐴2 𝑠0.9 𝑠1.5 𝑠1.4 

𝐴3 𝑠0.3 𝑠0.9 𝑠0.3 

𝐴4 𝑠0.4 𝑠0.8 𝑠0.6 

𝐴5 𝑠0.3 𝑠0.9 𝑠0.3 

𝐴6 𝑠0.8 𝑠1.6 𝑠1.2 

 

Table 3.41 displays the order of preference for the different alternatives 

according to the linguistic aggregation operator that has been used. Note that 

for the LWA, LOWA, and ILOWA operators it is preferable to obtain a high 

result; by contrast, for the distance operators a low result is much preferable. 

In this table, we can see that the least attractive options for the customer are 

signing up for an insured pension plan or a reverse mortgage. Instead, the 

most interesting and preferred alternatives for the customer are buying an 

investment fund, a unit linked, or a systematic individual savings plan. 

 

Table 3.41. Ordering of the results obtained with the operators 

 

Operator Ordering 

LWA 𝐴4 ≻ 𝐴1 = 𝐴3 = 𝐴5 ≻ 𝐴2 ≻ 𝐴6 

LOWA 𝐴3 = 𝐴5 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴6 ≻ 𝐴2 

ILOWA 𝐴3 = 𝐴5 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴6 ≻ 𝐴2 

ALOWAD 𝐴3 = 𝐴5 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴6 ≻ 𝐴2 

LOWAD 𝐴4 ≻ 𝐴3 = 𝐴5 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴6 

LIOWAD 𝐴3 = 𝐴5 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴6 ≻ 𝐴2 
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5. Conclusions 

 

In this paper the use of the LOWA, ILOWA, LOWAD, and LIOWAD 

operators for the optimization of decision-making regarding pensions has 

been studied. The main advantage of these operators is that they allow to 

aggregate linguistic information taking into account the attitudinal character 

of the decision-maker. Furthermore, linguistic aggregation operators can be 

very useful in those situations where the available information is uncertain 

and cannot be evaluated with exact numerical values. 

 

An illustrative example has also been developed by using linguistic 

aggregation operators to select the most convenient savings product for 

supplementing the state retirement pension of a given individual. The results 

demonstrate the usefulness of the LOWA and ILOWA algorithm as well as 

the LOWAD and LIOWAD algorithm, since they allow the decision-maker 

to aggregate heterogeneous and ambiguous information and according to 

his/her degree of optimism and pessimism. Specifically, the application of 

these algorithms enhances the process of decision-making related to saving 

for retirement and thereby avoid a reduction in the purchasing power at the 

time of retirement. 

 

As future research lines, other types of aggregation functions should be used 

in the field of supplementary pensions, such as the linguistic generalized 

ordered weighted averaging (LGOWA) operator (Merigó & Gil-Lafuente, 

2008) and its extensions. 
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4.1. Main conclusions 
 

All aspects of life revolve around making decisions. From the very basic, 

such as choosing each morning what clothes to wear, to the most 

transcendental, as might be deciding what bachelor’s degree to study. Also, 

to a greater or lesser extent, all decisions are subject to different types of 

uncertainties. In recent decades, significant theoretical advances have taken 

place in the field of decision-making under uncertainty. Moreover, a large 

variety of applications. However, there are still outstanding literature gaps. 

In the present doctoral thesis, some of these missing pieces have been 

successfully addressed. 

 

Each of the five objectives set at the beginning of this doctoral thesis has been 

successfully achieved. 

 

The first objective, i.e., to develop the state of the art of OWA aggregation 

operators through a bibliometric analysis, was accomplished through an 

extensive analysis of the scientific production and impact regarding the 

OWA operator during the last 34 years (from 1988 to 2021). The data was 

obtained through the WoS Core Collection database. Additionally, the VOS 

viewer software was used to build bibliometric networks. The key 

conclusions drawn are the following: 

 

• The most cited document in OWA is “On ordered weighted averaging 

aggregation operators in multicriteria decisionmaking”, written by 

Yager and published in 1988 by the IEEE Transactions on Systems, 

Man, and Cybernetics scientific journal. 

• Yager is the most productive and influential author in OWA. 

• The Iona College, located in the United States of America, is the 

leading institution in OWA production. Noteworthy is the high 

number of Chinese institutions in the top 50 most productive 

institutions in OWA. 

• China is, by far, the country that has the largest number of published 

and cited documents in OWA. 

• The most productive journal in OWA is the International Journal of 

Intelligent Systems, currently a Wiley-Hindawi journal. In particular, 
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this journal has managed to publish more than 200 documents related 

to OWA. 

• Computer science is the leading research area in OWA. 

 

A review of the mathematical theories used for decision-making in uncertain 

environments was the second objective of this thesis work. The concept of 

decision-making, the theory of confidence intervals, the theory of fuzzy sets 

(including classical sets, fuzzy sets, fuzzy arithmetic, linguistic variables, and 

intuitionistic fuzzy sets), the recent idea of BUI, the similarity measures, and 

above all, the aggregation operators were looked. This served as a basis for 

all the investigations carried out in this doctoral thesis. 

 

Also, in a complementary manner, a study of the current knowledge about 

pensions was provided. On the one hand, an overview of the main theoretical 

concepts was undertaken. On the other hand, a bibliometric analysis for the 

period 1990-2022 was conducted using the WoS Core Collection data source. 

 

The third objective set was to analyze new extensions of the OWA operator. 

This objective was fulfilled with the presentation of the UOWAAC operator 

and the LOWAAC operator. The first one is an extension of the OWA 

operator that uses the adequacy coefficient with interval numbers. The 

second one is an extension of the OWA operator that uses the adequacy 

coefficient, but this time with linguistic variables. These novel operators 

address gaps in the field of decision-making under uncertainty. In particular, 

when the decision-maker wants to calculate the differences between a set of 

alternatives and an ideal while considering a threshold from which the results 

are always the same and where the available information cannot be assessed 

with exact numerical values. With some illustrative and comparative 

examples, the usefulness and superiority of the UOWAAC and LOWAAC 

operators are properly demonstrated. Additionally, the UOWAAC is 

extended by employing order-inducing variables. Likewise, the LOWAAC 

is extended by integrating order-inducing variables, generalized means, and 

quasi-arithmetic means.  

 

The fourth objective was to analyze new applications of the OWA operator 

and its extensions in the field of pensions, which was also achieved. Pension 

plans are experiencing significant demographic and economic pressures. 
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Within this context, it is extremely important to make sound decisions. 

Therefore, three different works have been conducted. Based on the 

application of the LOWA, ILOWA, LOWAD, and LIOWAD aggregation 

operators, the first study consisted of designing a new algorithm for selecting 

the optimal savings product for supplementing the public pension among a 

pool of potential alternatives. Another study utilized the OWA operator and 

some of its extensions with an inflation adjustment mechanism for 

forecasting Spanish pensions in real terms. Similarly, a third work also used 

OWA operators and some of its extensions while considering the effect of 

inflation, but in this case, to forecast U.S. pensions. The results of all these 

investigations show that the OWA operator is an effective tool for pension 

decision-making processes. Accordingly, this compendium of studies seeks 

to impact the lives of current and future retirees positively. 

 

If we look at the fifth and last objective, i.e., make scientific contributions 

through international publications, it can be concluded that it has been 

completed. Six research articles have been written, of which three were 

already published in scientific journals or book series indexed in the WoS 

database. “The Uncertain ordered weighted averaging adequacy coefficient 

operator” has been published in the International Journal of Approximate 

Reasoning, which to date is classified as a Q1 journal. The “OWA operators 

in pensions” work has been published in the well-known book series Studies 

in Computational Intelligence. The “Decision-making methods for 

retirement financial planning” has been published in the emerging journal 

Cuadernos del CIMBAGE. At the time of writing this doctoral thesis, two of 

the three remaining research articles were sent to leading journals and are 

under review. The “A bibliometric analysis of the OWA operator from 1988 

to 2021” study has been sent to the reputed Fuzzy Sets and Systems journal. 

The “Forecasting retirement benefits in the United States using OWA 

operators” work has been submitted to the Technological and Economic 

Development of Economy journal, which to date is categorized as a Q1 

journal. Furthermore, the “The linguistic OWA adequacy coefficient 

operator and its application to decision-making” work will be submitted to 

the Expert Systems with Applications journal, which to date is classified as a 

Q1 journal. Moreover, with the publication of this doctoral thesis in the 

digital repository of the University of Barcelona. 
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Also, one additional research contribution has been made, called “Risk 

assessment: An approach based on basic uncertain information”. This 

contribution was presented at the II International Congress on Accounting 

and Business Research and published as a book chapter. The major objective 

of this work is to provide a tool that allows considering the amount of 

certainty of the risk assessments provided by an expert or group of experts 

when comparing a range of identified risks within a given organization. To 

this end, the use of BUI together with the UOWA operator is proposed. The 

results have direct implications on the risk prioritization outcome and, 

consequently, in the achievement of an organization’s objectives. 
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4.2. Future research lines 
 

Bearing in mind the limitations of the OWA bibliometric study, a first 

recommendation for future work is to perform a complete bibliometric 

analysis of the OWA operator using not only WoS but also Elsevier’s Scopus, 

Google Scholar, Microsoft Academic, and Dimensions, among others. 

Furthermore, conducting comparative work between all these data sources 

would be very interesting to reveal the strengths and weaknesses. Likewise, 

consider other types of documents, such as proceeding papers. 

 

Moreover, to gain additional empirical evidence, future research lines should 

replicate for other countries the analysis conducted in the research papers 

“OWA operators in pensions” and “Forecasting public pensions in the United 

States using OWA operators”. Some of these countries could be Canada or 

France. 

 

Similarly, it is necessary to investigate the use of the OWA operator in other 

retirement-related indices, such as the old-age dependency ratio or the 

pension replacement ratio. In this regard, there are opportunities for future 

studies. 

 

Additionally, future research could examine new applications of the 

UOWAAC and LOWAAC operators, such as insurance pricing or equipment 

acquisition for businesses. Also, future research could address the 

development of additional extensions of the LOWAAC operator, e.g., with 

BUI, and the UOWAAC operator, e.g., with quasi-arithmetic means. 

 

As verified in this doctoral thesis, there are many tools for decision-making 

under uncertainty and with a vast range of potential applications. Also, 

exploring new tools is workable. 

 

 

 

 



 243 
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In this section, other research contributions are provided. 
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5.1. Risk assessment: An approach based on basic 

uncertain information 
 

The following research article was presented at the II International Congress 

on Accounting and Business Research, which was held in Barcelona (Spain) 

from 13 to 14 October 2022. The article was published in a book titled 

Economia, Empresa, Contabilidad y Sociedad (volume 3), whit ISIN 978-84-

19282-57-6. 

 

The authors of this paper are Anton Figuerola Wischke (University of 

Barcelona), Sefa Boria Reverter (University of Barcelona), and Anna Maria 

Gil Lafuente (University of Barcelona). 

 

Abstract 

 

An appropriate risk management is necessary more than ever to assure the 

accomplishment of the objectives of any organization. This study proposes a 

novel risk assessment and prioritization approach based on the use of basic 

uncertain information (BUI). This approach allows to consider the reliability 

of the risk assessments provided by an expert or group of experts when 

comparing a range of identified risks. Furthermore, the use of the uncertain 

ordered weighted averaging (UOWA) operator is considered. The study ends 

with an illustrative example. The results show the possibility of use of BUI 

and the UOWA operator to assess and prioritize risks in a more complete 

way. 

 

Keywords: Basic uncertain information (BUI), certainty, enterprise risk 

management (ERM), risk assessment, uncertain ordered weighted averaging 

(UOWA) operator. 

 

1. Research purpose 

 

Many organizations are facing an increasingly uncertain environment. For 

example, the arrival of the coronavirus pandemic (COVID-19) has forced 

many companies to a digital transformation and as a consequence new types 
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of threatening risks have quickly emerged, but also new opportunities. In this 

context, enterprise risk management (ERM) has become more important. 

 

Risk assessment is a key process within ERM, which consists in assessing 

the severity of each identified risk. Normally, two measures are used to assess 

the severity of a risk, which are likelihood and impact (Hunziker, 2019). 

Likelihood can be defined as the possibility or probability of a risk event 

occurring. Impact refers to the effects of this risk event occurring. 

Nonetheless, it is possible to consider additional measures when assessing a 

risk, for example velocity, also referred as speed of onset. Moreover, it is 

possible to broke down one measure into different dimensions. For example, 

impact can be disaggregated into financial impact and reputational impact.  

 

Furthermore, some types of risk are assessed based solely on the judgement 

of an expert or group of experts. This is usually the case when it is difficult 

to obtain data. In this context, the expert may exhibit only some amount of 

certainty in his/her judgments. The purpose of this study is to reflect the 

certainty degree given by the expert in their risk assessments. To achieve this, 

basic uncertain information (BUI) (Jin et al., 2018; Mesiar et al., 2018) is 

employed. This allows to improve the process of comparison and 

prioritization of risks, which is key to implement optimal risk responses. 

 

Likewise, the uncertain ordered weighted averaging (UOWA) operator (Z. S. 

Xu & Da, 2002) is used to aggregate the different assessments, as it offers 

many advantages. For example, it allows to consider the attitudinal character 

of the decision-maker when the aggregation is carried out. Also, it includes 

all the classical decision criteria, which are the optimistic criteria, the 

pessimistic criteria, the Laplace criteria, and the Hurwicz criteria. 

 

The rest of this paper is organized as follows. Section 2 provides a briefly 

literature review. Section 3 explains the applied methodology. Section 4 

presents an illustrative example of the new risk assessment approach. Finally, 

the main conclusions of the study are summarized in Section 5. 
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2. State of art 

 

The next section reviews the main existing literature of ERM, BUI, and the 

UOWA operator, respectively. 

 

ERM has emerged in the early 1990s as a concept and as a management 

function within organizations (Dickinson, 2001). An effective ERM 

implementation may reduce risk exposure and improve performance (Florio 

& Leoni, 2017; Shad et al., 2019). At the present, the Committee of 

Sponsoring Organizations of the Treadway Commission (COSO, 2017) and 

the International Organization for Standardization (ISO, 2018) provide two 

of the most popular ERM frameworks implemented by organizations 

(Hunziker, 2019). 

 

BUI is a recently introduced concept that can handle different types of 

uncertainties. Since its introduction, BUI has been studied and applied by 

several authors (Chen et al., 2022; Figuerola-Wischke et al., 2022; Jin et al., 

2020, 2021, 2022; Li et al., 2022; Tao et al., 2020; Y. Xu et al., 2022; Yang 

et al., 2020). However, it has not yet been used to assess risks within ERM. 

 

The UOWA operator is an extension of the OWA operator (Yager, 1988) that 

uses interval numbers instead of singletons. OWA operators are one of the 

most popular methods for aggregating data (Blanco-Mesa et al., 2019; Shu, 

2022). In the literature, there are a few studies that apply the OWA operator 

and its extensions to ERM (Blanco-Mesa et al., 2018; Tian et al., 2018). 

 

3. Methodology 

 

This section encompasses the detailed definitions of BUI and the UOWA 

operator. 

 

BUI is a newly introduced concept that allows to represent and generalize 

different types of uncertain information. A BUI can be defined as follows. 

 

Definition 1. A BUI is a real pair �̃� =< 𝑥; 𝑐 >, where 𝑥(𝑥 ∈ [0,1]) is the 

input value and 𝑐(𝑐 ∈ [0,1]) the certainty degree of 𝑥.  
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Following this definition, 𝑐 = 1 specifys full certainty over 𝑥. Conversely, 

𝑐 = 0 indicates full uncertainty over 𝑥, meaning that 𝑥 could take any value 

between 0 and 1.  

 

Likewise, a BUI can be transformed into a closed interval [𝑎, 𝑏]. To do this, 

different techniques exist. This study implements the one proposed in (Jin et 

al., 2018; Mesiar et al., 2018), where 𝑎 = 𝑐𝑥 and 𝑏 = 𝑐𝑥 + 1 − 𝑐. 

Nevertheless, if 𝑐 = 1, the interval number would be degenerated to a real 

crisp number. 

 

The UOWA operator is an aggregation function that uses uncertain 

information in the form of interval numbers. This operator can be defined as 

follows. 

 

Definition 2. Let Ω be a set of interval numbers. An UOWA operator of 

dimension 𝑛 is a mapping UOWA:Ω𝑛 → Ω that has associated a weighting 

vector 𝑊 = (𝑤1, … , 𝑤𝑛) with 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 , in which: 

 

UOWA(�̃�1, … , �̃�𝑛) =∑𝑤𝑗�̃�𝑗

𝑛

𝑗=1

, (1) 

 

where �̃�𝑗 is the 𝑗th largest of the �̃�𝑖, and �̃�𝑖 is the argument variable 

represented in the form of interval numbers. 

 

Moreover, the UOWA operator satisfies the mathematical properties of 

commutativity, monotonicity, boundedness, and idempotency. 

 

Additionally, from a generalized perspective of the reordering step, it is 

possible to discriminate between the descending UOWA (UDOWA) operator 

and the ascending UOWA (UAOWA) operator. Specifically, the weights of 

both operators are related by 𝑤𝑗 = 𝑤𝑛−𝑗+1
∗ , where 𝑤𝑗 is the 𝑗th weight of the 

UDOWA (or simply UOWA) operator and 𝑤𝑛−𝑗+1
∗  the 𝑗th weight of the 

UAOWA operator. 
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Also, an interesting particular type of the UOWA operator is the uncertain 

weighted average (UWA) operator, which is obtained when the ordered 

position of �̃�𝑖 is the same as the ordered position of �̃�𝑗. 

 

4. Illustrative example 
 

The following section presents an illustrative example of a multi-expert risk 

assessment problem through the use of BUI and the UOWA operator. 

 

Consider the following four risks of a given organization:  

 

• 𝑦1: Business interruption because of IT failure. 

• 𝑦2: Wrong interpretation of advertising campaigns. 

• 𝑦3: Non-compliance with data protection regulations. 

• 𝑦4: Inaccurate financial statements. 

 

Next, three experts assess the likelihood and the impact of each identified 

with the corresponding certainties. To assess the likelihood (𝑥1), the experts 

use the scale shown in Table 5.1. The impact (𝑥4) is analyzed based on two 

aspects, which are financial (𝑥2) and reputational (𝑥3). The assessments and 

certainties provided by each expert, i.e., BUI pairs, are summarized in Table 

5.2. 

 

Afterwards, the assessment values are normalized (see Table 5.3) using the 

following mathematical formula: 

 

𝑥′ =
𝑥 −min(𝑥)

max(𝑥) − min(𝑥)
. (2) 

 

Once the assessment values are normalized, the normalized BUI pairs are 

transformed into closed interval numbers. The results are presented in Tables 

5.4-5.6, respectively. 

 

Then, the UWA operator is used to aggregate these interval numbers into a 

unified payoff matrix. As expert 1 and 2 are considered to be more important, 

the weights used for the aggregation are: 𝑊 = (𝑤1 = 0.4, 𝑤2 = 0.4, 𝑤3 =

0.2). The output is displayed in Table 5.7. 
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Lastly, the UWA and UOWA operators are utilized to aggregate the financial 

and reputational impacts. To do so, the following weighting vector is 

adopted: 𝑊 = (𝑤1 = 0.65,𝑤2 = 0.35). 

 

Table 5.1. Likelihood and impact scale equivalences 

 

Rating 𝑥1 𝑥2 𝑥3 

1 <10% <50K Very low impact on stakeholders 

2 10%-30% 50K-100K Low impact on stakeholders 

3 30%-60% 100K-500K Medium impact on stakeholders 

4 60%-90% 500K-1,000K High impact on stakeholders 

5 >90% >1,000K Very high impact on stakeholders 

 

Table 5.2. Initial BUI assessments of the experts 

 

 Expert 1 Expert 2 Expert 3 

 𝑥1 𝑥2 𝑥3 𝑥1 𝑥2 𝑥3 𝑥1 𝑥2 𝑥3 

𝑦1 〈2; 0.6〉 〈2; 0.8〉 〈3; 0.8〉 〈2; 0.7〉 〈3; 0.6〉 〈3; 0.7〉 〈1; 0.6〉 〈3; 0.6〉 〈4; 0.8〉 

𝑦2 〈2; 0.7〉 〈3; 0.8〉 〈4; 0.8〉 〈2; 0.7〉 〈4; 0.6〉 〈4; 0.8〉 〈1; 0.7〉 〈3; 0.8〉 〈4; 0.7〉 

𝑦3 〈2; 0.6〉 〈2; 0.7〉 〈5; 0.8〉 〈3; 0.6〉 〈3; 0.6〉 〈4; 0.7〉 〈2; 0.8〉 〈3; 0.7〉 〈4; 0.7〉 

𝑦4 〈3; 0.7〉 〈2; 0.7〉 〈3; 0.7〉 〈2; 0.6〉 〈2; 0.8〉 〈2; 0.7〉 〈2; 0.7〉 〈2; 0.9〉 〈3; 0.6〉 

 

Table 5.3. Normalized BUI assessments of the experts 

 

 Expert 1 Expert 2 Expert 3 

 𝑥1 𝑥2 𝑥3 𝑥1 𝑥2 𝑥3 𝑥1 𝑥2 𝑥3 

𝑦1 〈0.25; 0.6〉 〈0.25; 0.8〉 〈0.5; 0.8〉 〈0.25; 0.7〉 〈0.5; 0.6〉 〈0.5; 0.7〉 〈0; 0.6〉 〈0.5; 0.6〉 〈0.75; 0.8〉 

𝑦2 〈0.25; 0.7〉 〈0.5; 0.8〉 〈0.75; 0.8〉 〈0.25; 0.7〉 〈0.75; 0.6〉 〈0.75; 0.8〉 〈0; 0.7〉 〈0.5; 0.8〉 〈0.75; 0.7〉 

𝑦3 〈0.25; 0.6〉 〈0.25; 0.7〉 〈1; 0.8〉 〈0.5; 0.6〉 〈0.5; 0.6〉 〈0.75; 0.7〉 〈0.25; 0.8〉 〈0.5; 0.7〉 〈0.75; 0.7〉 

𝑦4 〈0.5; 0.7〉 〈0.25; 0.7〉 〈0.5; 0.7〉 〈0.25; 0.6〉 〈0.25; 0.8〉 〈0.25; 0.7〉 〈0.25; 0.7〉 〈0.25; 0.9〉 〈0.5; 0.6〉 

 

Table 5.4. Transformed BUI assessments of the expert 1 

 

 𝑥1 𝑥2 𝑥3 

𝑦1 [0.15,0.55] [0.2,0.4] [0.4,0.6] 

𝑦2 [0.175,0.475] [0.4,0.6] [0.6,0.8] 

𝑦3 [0.15,0.55] [0.175,0.475] [0.8,1] 

𝑦4 [0.35,0.65] [0.175,0.475] [0.35,0.65] 
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Table 5.5. Transformed BUI assessments of the expert 2 

 

 𝑥1 𝑥2 𝑥3 

𝑦1 [0.175,0.475] [0.3,0.7] [0.35,0.65] 

𝑦2 [0.175,0.475] [0.45,0.85] [0.6,0.8] 

𝑦3 [0.3,0.7] [0.3,0.7] [0.525,0.825] 

𝑦4 [0.15,0.55] [0.2,0.4] [0.175,0.475] 

 

Table 5.6. Transformed BUI assessments of the expert 3 

 

 𝑥1 𝑥2 𝑥3 

𝑦1 [0,0.4] [0.3,0.7] [0.6,0.8] 

𝑦2 [0,0.3] [0.4,0.6] [0.525,0.825] 

𝑦3 [0.2,0.4] [0.35,0.65] [0.525,0.825] 

𝑦4 [0.175,0.475] [0.225,0.325] [0.3,0.7] 

 

Table 5.7. Collective assessments 

 

 𝑥1 𝑥2 𝑥3 

𝑦1 [0.13,0.49] [0.26,0.58] [0.42,0.66] 

𝑦2 [0.14,0.44] [0.42,0.7] [0.585,0.805] 

𝑦3 [0.22,0.58] [0.26,0.6] [0.635,0.895] 

𝑦4 [0.235,0.575] [0.195,0.415] [0.27,0.59] 

 

Table 5.8. Final results and aggregation of the impact dimensions 

 

 
𝑥1 

𝑥4 

 UWA UOWA 

𝑦1 [0.13,0.49] [0.316,0.608] [0.364,0.632] 

𝑦2 [0.14,0.44] [0.4778,0.7368] [0.5273,0.7683] 

𝑦3 [0.22,0.58] [0.3913,0.7033] [0.5038,0.7918] 

𝑦4 [0.235,0.575] [0.2213,0.4763] [0.2438,0.5288] 

 

In Table 5.8, we can see the final results. The higher the value, the greater 

the estimated severity. Thus, the two risks with a higher possibility of 

occurrence are 𝑦3 and 𝑦4. Likewise, the two risks with a higher overall impact 

are 𝑦2 and 𝑦3. Moreover, the confidence in the assessments of the experts is 

reflected through the length of the interval numbers. 
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5. Results and conclusions 

 

This paper presented a new approach for assessing the risks of an 

organization and prioritize them in order to more efficiently allocate its 

resources and successfully achieve its objectives. For doing so, BUI is used 

in combination with the UOWA operator. This allows to consider the 

certainty of the experts with their assessments and fuse the information in a 

more flexible way. As a result, an additional useful indicator is established 

for the risk analysis. 
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