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Abstract 
 

This PhD thesis explores how data science can be leveraged 

to learn from diverse cohorts and fuse information from 

heterogeneous data, aiming to advance understanding and improve 

prediction in healthcare settings. It covers a broad set of scenarios, 

namely: It evaluates Machine Learning's capabilities in enhancing 

disease phenotyping and clinical trial efficiency, the prediction of 

adverse perinatal outcomes in cross-cultural cohorts, the 

understanding of the impact of interventions on patient-centered 

outcomes, and also provides a technical contribution through a novel 

incremental Multiple Kernel Learning technique. The research 

illustrates the potential of data science when applied to complex 

cohorts and data, thereby offering innovative methodologies and 

insights for managing large clinical datasets. 
 

Keywords: Information Fusion, Heterogeneous Data, Data Science, 

Healthcare 
 

 

Resumen 
 

Esta tesis de doctoral explora cómo aprovechar la ciencia de 

datos para aprender de cohortes diversas y fusionar información de 

datos heterogéneos, con el objetivo de avanzar en la comprensión y 

mejorar las predicciones en entornos de atención médica. Cubre un 

amplio conjunto de escenarios, a saber: Evalúa las capacidades del 

aprendizaje automático para mejorar la fenotipado de enfermedades 

y la eficiencia de los ensayos clínicos, la predicción de eventos 

perinatales adversos en cohortes interculturales, la comprensión del 

impacto de intervenciones terapéuticas en el contexto vital del 

paciente, y también proporciona una contribución técnica a través de 

una nueva técnica de Aprendizaje de Múltiples Kernels de forma 

incremental. La investigación ilustra el potencial de la ciencia de 

datos cuando se aplica a cohortes y datos complejos, ofreciendo así 

metodologías e ideas innovadoras para gestionar grandes conjuntos 

de datos clínicos. 
 

Palabras clave: Fusión de Información, Datos Heterogéneos, 

Ciencia de Datos, Sistemas de Salud. 
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Introduction  
Context and motivation 

In this thesis we focus on open problems in areas of the 

healthcare system that could be very positively impacted by 

technological innovations based on information fusion and machine 

learning (ML).  

 

Healthcare systems worldwide are grappling with severe 

pressures, a struggle that is particularly pronounced in low and lower-

middle-income countries (1). These pressures predominantly arise 

from workforce deficiencies and budget constraints. Nonetheless, the 

vast amount of patient data that healthcare systems generate and 

collect during their functioning has been shown to be an underutilized 

resource with the potential to alleviate these pressures. These data, 

given the proper processing, could be leveraged to optimize and 

streamline many processes in the system. For instance, it may help 

clinicians in the decision-making process of diagnoses and treatment 

plans, ultimately standardizing care (2). However, the challenge lies 

in the integration of multiple data modalities such as imaging-derived 

features, clinical test biomarkers, and other descriptors of a patient’s 

status, which is not a straightforward process (3). Therefore, in this 

thesis, we aim to address this issue by presenting practical cases that 

apply information fusion and machine learning (ML) techniques 

based on patient data to improve healthcare outcomes. 

 

As a brief primer, information fusion in the context of this thesis 

refers to the process of integrating multiple data sources to produce 

information that is more comprehensive and useful than that provided 

by any individual data source. In our scenarios, this relates to 

confronting distinct clinical cohorts, harmonizing multimodal patient 

data, or incorporating information from different psychosocial 

aspects of a patient’s life. Moreover, ML refers to a broad set of 

potent algorithms and statistical models that extract patterns from 

vast amounts of data and may perform inferences on new cases. 

 

As per the clinical part, we focus on the fields of cardiovascular 

medicine, and fetal and pediatric medicine. The rationale for working 

in these fields is twofold. Firstly, cardiovascular medicine holds 

global significance as heart disease currently stands as the leading 

cause of mortality worldwide. The aging population and escalating 
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lifestyle-related risk factors, such as obesity and diabetes, accentuate 

its importance (4). Secondly, fetal and pediatric medicine provide an 

opportunity for early-life interventions, which could potentially 

prevent lifelong health complications and enhance quality of life (5). 

 

Within the defined fields, the specific areas of our contributions 

encompass the evidence generation process for therapies, preventive 

medicine, and value-based healthcare. We will now illustrate the 

motivation for our contributions in the three of them.  

 

First, the gold standard for evidence generation for therapies is 

randomized clinical trials (RCT). During an RCT, two groups are 

recruited where one of them receives either placebo or the current 

standard of care, and the other receives the therapy to be tested. The 

group sizes need to be sufficiently large to allow for statistical 

significance. This design causes trials to struggle with several 

aspects. For instance, patient recruitment requires stringent inclusion 

criteria, making the identification of appropriate candidates a 

laborious task, and associated risks to participants make participation 

unappealing. This is further compounded by high operational costs 

attributed to trained staff and data collection infrastructure. These 

factors limit the recruitment of large cohorts, thus making it hard to 

construct bespoke therapies for each patient phenotype. Instead, 

expert panels are compelled to generalize the observed heterogeneity 

into broader groups. This provides physicians with practical 

solutions, albeit potentially less individually tailored (6). General 

population data, if properly processed and understood, may hold the 

key to reduce the cost of trials by getting recycled, leading to a 

significantly smaller recruitment requirement (7). 

 

Regarding the second area, preventive medicine plays a crucial 

role in reducing avoidable deaths. This is particularly crucial when 

preventing adverse perinatal events. To that end, the identification of 

high-risk pregnancies can enable timely interventions to prevent fatal 

and avoidable outcomes for mothers and children. As previously 

reported by the World Health Organization (WHO), perinatal adverse 

events remain a critical yet elusive challenge in both high- and low-

income settings, where the latter further struggles with compounding 

factors such as undernutrition and limited access to healthcare (8). 

Integrating cohorts from both high- and low-income countries 

together with comprehensive descriptors from patients might give 
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insights into the etiologies and help identify actionable items to 

improve care. 

 

Lastly, regarding value-based healthcare – a care delivery model 

that shifts the focus from the traditional 'fee-for-service' model 

(where providers are paid based on the amount of healthcare services 

they deliver) to a 'fee-for-value' model (where providers are 

compensated based on the quality of patient outcomes and cost-

effectiveness) – integrating a multitude of patient perspectives is vital 

(9). A process that involves collecting extensive questionnaires about 

patients' psychosocial statuses can assist in quantifying the social 

impact of treatments and identify areas that either show pronounced 

improvement or face challenges. This holistic evaluation goes 

beyond traditional healthcare metrics, as it includes factors like social 

integration, mental wellbeing, and overall quality of life. By taking 

such a comprehensive approach, we can highlight the intricate 

relationship between healthcare delivery and the societal context in 

which it exists. 

 

Objectives and proposed approaches 

This thesis employs a diverse set of data science techniques—

classical statistical methods, supervised learning, and unsupervised 

learning—to solve the problems shown in the previous section. We 

define four primary objectives and briefly explain the implemented 

approach to attain it. 

 

Objective 1: Improve Clinical Trial Efficiency using General 

Population Data.  

We focus on the case of heart failure, where we sift through 

general population data with the aim of identifying individuals who 

exhibit cardiac function similar to that of trial participants. These 

individuals can act as a synthetic control arm, thereby reducing costs, 

workload, and patient risks in clinical trials. We critically choose 

Unsupervised Multiple Kernel Learning (uMKL), an unsupervised 

machine learning algorithm, to comprehend the phenotypic space of 

heart failure and perform comprehensive pairwise matching.  

 

Objective 2: Identify Small for Gestational Age (SGA) using ML in 

Different Cultural Cohorts.  
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We aim at classifying pregnancies into SGA or controls at a 

point in the pregnancy with no clear clinical assessment. To do so, 

we train extreme gradient boosting trees from maternal clinical data, 

fetal biometry, and blood flow measurements. This approach allows 

us to examine the predictive role of these descriptors across distinct 

populations, evaluating the model's transferability and 

generalizability. This comparison provides insights into population-

specific etiologies, indicating areas where model adjustments may be 

necessary.  

 

Objective 3: Assess the Social Impact of Clubfoot Treatment in India. 

We aim at obtaining a holistic understanding of families 

affected by clubfoot and devising approaches to measure the impact 

of treatment interventions. To do so, we make use of classical 

statistical methods, which validate the findings derived from 

questionnaires. This will allow us to identify challenges faced by 

families of children who have undergone clubfoot treatment. The 

outcomes will guide future research directions, including a long-term 

follow-up study to assess the broader impacts of the treatment beyond 

health outcomes. 

 

Objective 4: Enhance the scalability of Unsupervised Multiple 

Kernel Learning. 

To overcome dataset size limitations in uMKL, we propose 

the development of an incremental learning extension. This 

modification allows the model to integrate new observations without 

the need for batch mode retraining. 

 

The previous objectives deploy one or more of the three primary 

data science techniques. Supervised ML, used in Objective 2, 

facilitates the creation of decision support systems capable of 

detecting subclinical changes for early intervention. Unsupervised 

ML, utilized in Objectives 1 and 4, enables the model to 

independently explore patient data, uncovering hidden relationships 

and disease presentations. Classical statistical methods, fundamental 

to Objective 3, help quantify interpretable associations between 

variables and test for population differences. 
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Thesis outline 

The research conducted within this thesis is structured in self-

contained chapters formatted as research journal papers, and we list 

the remaining chapters below. 

 

Chapter 1: Exploring registry and trial data with Machine Learning. 

In this chapter we propose an ML framework that can play a role in 

streamlining Heart Failure clinical trials, a syndrome known for its 

heterogeneity, to enhance their efficiency.  

 

Chapter 2: Cross-cultural Machine Learning for predicting adverse 

perinatal outcomes. 

In this chapter we consider two distinct populations of pregnant 

women, one from Barcelona and one from Pakistan, to predict factors 

that can contribute to adverse perinatal events on time. 

 

Chapter 3: Assessing the Impact of Interventions of Club Foot India 

Initiative Trust on Patients and Their Families.  

This chapter will focus on the practical application of social and data 

science to assess the impact of the Ponseti treatment in clubfoot 

children provided by the non-governmental organization CURE 

India Initiative Trust.  

 

Chapter 4: Incremental Multiple Kernel Learning 

This final chapter provides a technical contribution that will address 

the lack of scalability of batch unsupervised Multiple Kernel 

Learning (uMKL).  

 

Conclusion: We present a summary of contributions from this thesis 

alongside limitations and future research directions. 
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1. EXPLORING REGISTRY AND TRIAL DATA 
WITH MACHINE LEARNING  

 

Abstract  

 

a) Background 
 

 Clinical trials are burdened by the need for large cohort 

numbers to demonstrate treatment effect and large and complex 

datasets commonly difficult to integrate and analyze. Machine 

learning (ML) can be used to unravel the complexity and improve 

handling of clinical trial data. We aim to demonstrate the capacity of 

ML in combining heterogeneous patient data to improve cohort 

phenotyping, fusing datasets to reinforce findings, and increasing the 

efficiency of running trials by ‘recycling’ existing data through 

advanced patient matching of patients from the general population to 

those in trials. 

 

b) Methods and results 
 

Subjects from the general population were included from the 

Atherosclerosis Risk in Communities (ARIC) study (n=2123), as 

well as patients presenting with heart failure with reduced ejection 

fraction from the Multicenter Automatic Defibrillator Implantation 

Trial - Cardiac Resynchronization Therapy (MADIT-CRT) (n=429), 

and those with preserved ejection fraction from the Treatment of 

Preserved Cardiac Function Heart Failure with an Aldosterone 

Antagonist (TOPCAT) trial (n=218). The main inclusion criteria for 

our analysis were the availability of echo data and 4- and 2- chamber 
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speckle-tracking analysis. Outcome was defined as death from any 

cause or heart failure hospitalization, whichever came first. ML input 

consisted of 12 segmental left ventricular (LV) strain curves, an LV 

volume curve, and a set of 16 demographic, medical history, and 

clinical parameters. The first step of the ML analysis consisted of 

obtaining the ML-derived space for the ARIC cohort, defining the 

spectrum of disease in the general population, since patients with 

similar data will be positioned close to each other in the ML-space. 

In the second step, TOPCAT and MADIT-CRT patients were 

‘projected’ into the ML-derived space using the identical input 

features, and clustering was performed to define phenogroups. 

Finally, a “synthetic control arm” was obtained by matching subjects 

from the general population with trial patients based on location in 

the ML-derived space. These selected ARIC patients were then 

compared with the trial ones based on clinical characteristics, as well 

as cardiac mechanics. 

The ML algorithm positioned ARIC subjects into a common 

space based on integrated clinical and whole cardiac cycle echo data. 

Feature maps of the ARIC ML-derived space showed subject 

separation based on physiologically sensible patterns, and in relation 

to differing clinical risk of outcome. The addition of heart failure 

patients confirmed the spectrum of disease defined in the general 

population and highlighted the high-risk regions, whereas clustering 

defined three clinically distinct patient phenotypes. Patient matching 

using unsupervised learning successfully produced patient pairs with 

similar cardiac mechanics and clinical characteristics, better than 
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when compared to patients selected using history of heart failure and 

ejection fraction.  

c) Conclusion 

The presented analysis serves as a proof-of-concept for an 

unsupervised ML approach in analyzing registry and trial datasets. 

ML can enhance the integration of patient data and improve disease 

phenotyping, fuse different patient cohorts to build trust towards 

findings, and potentially increase the efficiency of running clinical 

trials by advanced patient matching through the ‘recycling’ of 

existing patient datasets. 

 

1.1 Introduction 

 Current clinical trials offer the gold standard to measure the 

impact of healthcare interventions on patient populations. Generally, 

trials focus on a specific disease, where the aim is to collect detailed 

clinical information and integrate it to recognize patient phenotypes. 

A certain phenotype, selected based on specific inclusion/exclusion 

criteria, is then randomized into treatment and control arms, with as 

main goal the generation of novel medical insights (Figure 1, left). 

The clinical trial process is burdened by the need for large cohort 

numbers to demonstrate treatment effect and large and complex 

datasets that are commonly difficult to integrate and analyze, 

resulting in high running costs as well as inefficiencies in recruitment 

and data usage (10). It is also necessary to keep in mind that data 

monitoring in clinical trials is essential for meeting quality and 

ethical standards, as well as regulatory compliance. However, it can 

be a complex and costly process that poses a burden on trial staff and 
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participants, in addition to associated risks for the latter. The burden 

on trial participants can include additional procedures, stress, and 

inconvenience (11,12). Machine learning can help streamline many 

aspects of clinical trials (Figure 1, right)(13). Indeed, stakeholders 

such as the US Federal Drug Agency have been pushing towards the 

modernization of clinical trials, identifying an important role for 

computer modelling and in-silico methods - from models predicting 

product safety and efficiency, virtual physiological patients testing 

medical products, trial simulations revealing patient-therapy and 

disease interactions, to knowledge building tools aiding data 

mining(14,15). 

 

 

Figure 1 Clinical trial workflow and the potential targets of ML 

 We hypothesize that unsupervised ML can be used as a tool 

to unravel the complexity as well as improve handling of clinical trial 
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data. We aim to demonstrate the capacity of manifold learning 

(implemented through multiple kernel learning (MKL)) in 

integrating heterogeneous patient data from a general population 

registry cohort - combining demographic, comorbidity, imaging, and 

laboratory information- to improve patient phenotyping and enable 

direct patient comparisons(16,17). Furthermore, we will showcase 

the utility of ML in fusing registry and trial data to reinforce findings 

learned through data integration within the general population. 

Finally, similarly to propensity-score matching, we will demonstrate 

how ML could increase the efficiency of running trials by ‘recycling’ 

existing data through advanced patient matching of patients from 

general population cohorts to those in trials in order to create a 

synthetic control arm. 
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1.2 Materials and methods 

A general overview of the methodology is shown in Figure 2. 

A detailed description of the ML methodology (data selection, 

preprocessing steps, MKL, and the analysis of the ML-derived space) 

can be found in the Supplementary Materials. 

 

Figure 2 Overview of methodology 

4CH- 4-chamber; 2CH – 2-chamber; LV left ventricle, LVEF – LV ejection fraction; GLS – 

global longitudinal strain; LVEDVi - LV end-diastolic volume indexed to body surface area; 

LAVi - left atrial volume indexed to body surface area, LVMi – LV mass indexed to body 

surface area; MI – myocardial infarction; DM – diabetes mellitus; HF – heart failure; BP 

– blood pressure; BMI – body mass index; SBP – systolic blood pressure; HR – heart rate 

 

a) Patient Cohorts 

Three independent cohorts were included in the analysis. 

Patients from the general population were included from the 

Atherosclerosis Risk in Communities (ARIC) study (18,19), those 

presenting with heart failure with reduced ejection fraction (HFrEF) 

from the Multicenter Automatic Defibrillator Implantation Trial - 
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Cardiac Resynchronization Therapy (MADIT-CRT) trial (20,21), 

whereas, patients presenting with heart failure with preserved 

ejection fraction (HFpEF) from the Treatment of Preserved Cardiac 

Function Heart Failure with an Aldosterone Antagonist (TOPCAT) 

trial (22). The main inclusion criteria for our analysis were the 

availability of echo data and the 4- and 2- chamber speckle-tracking 

segmentations. ARIC data was obtained at visit 5, whereas data from 

TOPCAT and MADIT was obtained at randomization, i.e. prior to 

providing treatment to the treatment arm, thus we assume no 

difference between patients by treatment assignment. This resulted in 

4246 participants from the ARIC cohort with echocardiographic data 

available, from which we randomly selected half of them, resulting 

in 2123 participants included (35% of the cohort, average follow-up 

2.6 years). This selection was done to reduce computational costs. 

From MADIT-CRT, 429 patients were included (24% of the cohort, 

average follow-up 2 years), 218 patients from the TOPCAT trial (6% 

of the cohort, average follow-up 2.9 years). Outcome was defined as 

death from any cause or heart failure (HF) hospitalization, whichever 

came first, with the adjudication of endpoints previously described 

(19,20,23) (Figure 2, box 1). 

 

b) Echocardiographic Data 

Demographic data, medical history data, as well as blood 

pressure and ECG measurements were available in all cohorts. 

Echocardiographic data analysis was performed at the 

Echocardiography Reading Center (ERC; Brigham and Women’s 

Hospital, Boston, MA), as according to guidelines (24). Speckle 
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tracking (STE) deformation analysis was performed using the 

TomTec Arena software (v1.0, TomTec Imaging Systems, 

Unterschleissheim, Germany), with the endocardial border traced in 

the end‐systolic frame of the apical 4‐ and 2‐chamber views (4CH 

and 2 CH), and the segmental left ventricular (LV) longitudinal 

strains and a volume curve exported as text files. The analysis was 

approved by the institutional review board at each of the participating 

centers. 

Data available in all three cohorts was used as the ML 

algorithm input. This included the 4CH and 2CH strain curves (12 

LV segments), LV volume curves, and the available demographic, 

medical history, and clinical parameters (age, sex, race, history of 

myocardial infarction, diabetes, smoking, history of heart failure, 

blood pressure medications, body mass index (BMI), heart rate, 

systolic blood pressure (SBP), QRS width on the ECG, 4CH global 

longitudinal strain (4CH-GLS), LV end-diastolic volume indexed to 

body surface area (BSA) (LVEDVi), left atrial volume indexed to 

BSA (LAVi), and LV mass indexed to BSA (LVMi)). To allow for 

inter-subject comparisons due to inter-patient variability in heart rate, 

the strain curves were temporally aligned using diffeomorphic 

registration (25,26). Volume profiles were centered at zero and 

registered to a reference to match the cardiac cycle phase. Missing 

clinical parameters were imputed by using factor analysis of mixed 

data (imputeFAMD function in the missMDA package in R 4.2.1) 

(Figure 2, box 2). In summary, the combination of strain/volume 

curves and the clinical parameters comprised a total of 1485 data 

points for every subject. 
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c) Dimensionality Reduction and Clustering 

Unsupervised MKL (27)- implemented using MATLAB 

(R2022a, 2022, The MathWorks Inc., Natick, MA, USA) was then 

used to integrate the 1485 data points per subject and position them 

in a virtual space representation of their integrated clinical and echo 

characteristics. This concept is called dimensionality reduction and 

involves integrating and transforming heterogeneous patient data into 

a location within a common, low-dimensional representative space 

(referred to as ‘ML-derived space’ in the continuation of the text). 

The axes of this ML-derived space (denoted as Dimensions 1, 2, 3, 

etc.) represent the distinct dimensions of the patient data - each 

dimension captures a specific aspect of the input data characteristics 

(for example, a particular dimension of the ML-derived space may 

distinguish patients based on factors such as age, gender, or reduced 

4CH-GLS). Therefore, patients are positioned based on their 

integrated characteristics, but blinded in relation to their original 

cohort or heart failure status. Patients with similar echo and clinical 

characteristics will be positioned closer together, whereas those with 

opposing characteristics further apart.  

The first step of our methodology consisted of obtaining the 

ML-derived space on the ARIC population, thus defining the 

spectrum of normalcy and disease in the general population (Figure 

2, box 3). The analysis of this ML-derived space was performed 

through feature maps and regression analysis (Figure 2, box 4). 

Feature maps imply color-coding the ML-derived space for specific 

patient characteristics (e.g., age, QRS width, 4CH-GLS) and creating 
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endpoint heatmaps (kernel density maps used to define high risk 

regions), whereas regression analysis (multiscale kernel regression) 

enabled the estimation of average deformation and volume profiles 

in different points within the space (points were placed geodetically, 

i.e., following the shape of the space).  

Once the general population characteristics were explored, 

the TOPCAT and MADIT-CRT patients were ‘projected’ into the 

ML-derived space using identical input features (Figure 2, box 5). 

‘Projecting’ implies the addition of new subjects to a ML-derived 

space already created with ARIC data without retraining with the new 

information. The ML-derived space was now once again explored 

(through feature maps and regression analysis), and additionally, K-

means clustering was performed (28) to group subjects into 

phenogroups with similar characteristics. The number of clusters was 

predetermined to be 3 (the number of expected clinical categories), 

and the average volume and deformation profiles, clinical 

characteristics, and cluster-wise event rates were reported for each of 

the resulting clusters (Figure 2, box 6). 

d) Synthetic Controls 

Finally, the last step of the analysis matched subjects from the 

general population to trial patients, creating a potential synthetic 

control arm (Figure 2, box 7). To achieve this, we compared two 

matching approaches for each TOPCAT and MADIT patient: ML 

matching and threshold-based matching. On the one hand, ML 

matching involved identifying the nearest ARIC subject in the ML-

derived space. On the other hand, threshold-based matching selected 

the closest ARIC patient based on history of HF and ejection fraction 
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(EF). Both approaches were implemented using sampling without 

replacement – meaning that a single ARIC patient will only be 

matched to a single trial patient. 

 

d) Statistical Analysis 

When assessing the differences in variables between groups 

we proceed as follows: binary variables were analyzed by calculating 

relative frequencies within each group, followed by Chi-square tests 

to evaluate statistical significance. Continuous variables were 

subjected to a Kolmogorov-Smirnov test to determine their 

distribution. For normally distributed variables, the mean, standard 

deviation, and an ANOVA test were performed. Conversely, non-

normally distributed variables were analyzed using median, first and 

third quartiles, and a Kruskal-Wallis test. 

1.3 Results 

The baseline clinical and echo characteristics, as well as the 

outcomes are shown in Table 1. 

 

Table 1 Clinical and echo characteristics of the cohorts 

 
ARIC  

(n=2123) 

TOPCAT  

(n=218) 

MADIT-CRT  

(n=429) 

Outcome, n (%) 122 (5.75%) 29 (27.62%) 109 (25.41%) 

Age, years (IQR) 74.88 (71.5 to 

79.4) 

71.19 (62.29 to 

78.26) 

65 (57 to 71.25) 

Female sex, n (%) 1221 (57.51%) 115 (52.75%) 104 (24.24%) 

Caucasian, n (%) 1751 (82.48%) 169 (77.52%) 391 (91.14%) 

BMI, kg/m2 (IQR) 27.23 (24.51 to 

30.48) 

30.37 (26.57 to 

34.93) 

28 (25.08 to 30.7) 

Diabetes, n (%) 601 (28.31%) 64 (29.36%) 120 (27.97%) 
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MKL positioned ARIC subjects into a common space based 

on integrated clinical and whole cardiac cycle echo data (Figure 3A). 

Feature maps showed Dim 1 separated patients based on sex, BMI, 

heart rate and LVEDVi and LAVi, whereas Dim 2 separated patients 

based on a gradient of systolic impairment (4CH-GLS and EF) 

(Figure 3B). Regression demonstrated distinct cardiac mechanic 

patterns defined within Dim 2 – ranging from normal 4CH-GLS 

values (Figure 3C, orange), a pattern of intraventricular 

dyssynchrony in the form of a septal flash and lateral basal wall 

Current smoker, n (%) 132 (6.22%) 27 (12.39%) 56 (13.05%) 

Myocardial infarction, n 

(%) 

23 (1.08%) 56 (25.69%) 182 (42.42%) 

Prior heart failure, n (%) 21 (0.99%) 132 (60.55%) 157 (36.6%) 

Blood pressure 

medication, n (%) 

1508 (71.03%) 166 (76.15%) 411 (95.8%) 

Systolic blood pressure, 

mmHg (IQR) 

129 (119 to 140) 126.71 ± 15.23 120 (108 to 132) 

Heart rate, n (%) 61 (55 to 67) 66 (60 to 74) 63 (56 to 70) 

QRS width, ms (IQR) 90 (84 to 100) 92.5 (84 to 108) 158 (142 to 170) 

LVMi, g/m2 (IQR) 74.61 (65.07 to 

87.28) 

99.36 (82.59 to 

119.36) 

104.63 (93.05 to 

116.28) 

LVEDVi, ml/m2 (IQR) 42.42 (36.69 to 

49.4) 

47.19 (37.89 to 

55.18) 

120.01 (108.01 to 

137.91) 

LAVi, ml/m2 (IQR) 24.39 (20.15 to 

29.33) 

29.04 (21.7 to 

35.09) 

45.5 (39.76 to 

52.62) 

LVEF, % (IQR) 66 (62.3 to 69.4) 60 (55 to 65) 25 (20 to 28) 

4CH-GLS, % (IQR) -18.87 (-20.27 to 

-17.33) 

-17.18 ± 3.11 -9.45 (-11.08 to -

7.78) 

IQR – interquartile range; BMI – body mass index; LVMi – LV mass indexed to body 

surface area; LVEDVi - LV end-diastolic volume indexed to body surface area; LAVi - 

left atrial volume indexed to body surface area, LVEF – LV ejection fraction;  4CH- 4-

chamber;  GLS – global longitudinal strain. 
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stretching (Figure 3C, green), and overall reduced 4CH-GLS (Figure 

3C, red). Endpoint heatmaps defined the lower region of Dim 2 (in 

the continuation of the text referred to as the ‘ARIC tail’) to be at 

higher risk of primary outcome (Figure 3D).  
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Figure 3 Analysis of the ARIC based ML-derived space 

A) Three-dimensional representation of the ARIC -based ML-derived space. The axes represent the first three dimensions of variability of the integrated clinical and whole-

cardiac cycle data (i.e., each dimension of the space separates patients based on certain differences in input data). Patients with similar characteristics are positioned closer 

together, whereas those with different characteristics further apart. Two-dimensional views of the same ML space are shown on the right, with color-coded frames to relate to 

the three-dimensional space (e.g., the two-dimensional view of the ARIC population shown in the blue frame is the arial view of the three-dimensional space). B) Feature maps 

of the space are shown together with color coded frames that help relate to the 3-dimensional space in A). The feature maps show the separation of patients based on 

characteristics across the first three dimensions. C) By using regression methods, we can identify and directly compare the average deformation profiles in different parts of the 

ML-derived space. Points are positioned across Dimension 2 geodesically, i.e., following the shape of the patient population. The average deformation curves of the 6 LV 

segments in the 4-chamber view are shown on the right. The x-axis represents the normalized cardiac cycle from aortic valve opening to mitral valve closing (0-100%), and the 

y-axis represents the % for strain. These deformation curves are color-coded corresponding to the same-colored points in the ML-derived space (i.e., red curves describe the 

average strain of the region marked with the red point). The analysis captures different cardiac mechanic patterns within the population and explains the basis upon which 

Dimension 2 separates patients. The blue arrow marks a regional deformation abnormality in the region marked by the blue point, potentially related to ischemic disease. The 

green arrows show a pattern of septal flash and stretching of the lateral wall in early systole, and contraction of the lateral wall and stretching of the septal wall in late systole. 

Finally, the peak longitudinal strain values show a gradient across Dimension 2, as is best seen in the septal apical segment, confirming the finding of Dimension 2 encoding 

strain gradient as visualized in B). D) An outcome heat map shows the lower parts of Dimension 2 (‘ARIC tail’) as a region with a higher percentage of outcomes. A more 

detailed explanation of the methodology can be found in the Supplement.
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After defining the spectrum of changes within the ARIC 

population, HFrEF patients were added to the ML-derived space, 

projecting in the mid region of the first three dimensions, whereas the 

HFpEF patients projected in between the ARIC and MADIT-CRT 

cohorts (Figure 4A). With the addition of HF patients, the new feature 

maps upheld the distribution of patient characteristics, accentuated 

gradients of LV enlargement and dysfunction, defined a clear region 

of QRS prolongation in the central region, and highlighted the lower 

dimension of Dim2 (i.e., ‘ARIC tail’) as a high-risk region (Figure 

4B and C).  
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Figure 4 Analysis of the fused cohort ML-derived space 

A) ARIC-based ML-derived space after projection of the TOPCAT and MADIT-CRT cohorts. The 2-dimensional views visualize the separation of the three patient 

groups, although, expectedly, with a considerable overlap in bordering regions. B) The feature maps of the fused cohorts validate the findings in Figure 3B. C) The outcome 

heatmap shows a better-defined high-risk region after the addition of ‘high-outcome’ HF patients overlapping with the one seen in Figure 3D. 
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K-means clustering defined three patient phenotypes within 

the combined cohort (Figure 5, Table 2).  

Table 2 Clinical and echo characteristics of the three ML-derived 

clusters  
 

Cluster 1  

(n=1355) 

Cluster 2  

(n=859) 

Cluster 3  

(n=443) 
P-value 

ARIC, n (%) 1297 (95.72%) 736 (85.68%) 90 (20.32%) <0.001 

TOPCAT, n (%) 46 (3.39%) 40 (4.66%) 19 (4.29%) 0.307 

MADIT, n (%) 12 (0.89%) 83 (9.66%) 334 (75.4%) <0.001 

Outcome, n (%) 72 (5.31%) 70 (8.15%) 118 (26.64%) <0.001 

Age, years 75.32 ± 5.38 74.61 ± 7.05 66.54 ± 11.53 <0.001 

Female sex, n (%) 808 (59.63%) 456 (53.08%) 123 (27.77%) <0.001 

Caucasian, n (%) 1125 (83.03%) 712 (82.89%) 391 (88.26%) 0.022 

BMI, kg/m2 27.65 ± 5.01 28.37 ± 5.17 28.36 ± 5.12 <0.001 

Diabetes, n (%) 350 (25.83%) 271 (31.55%) 129 (29.12%) 0.013 

Current smoker, n (%) 87 (6.42%) 62 (7.22%) 50 (11.29%) 0.003 

Myocardial infarction, n 

(%) 
29 (2.14%) 45 (5.24%) 157 (35.44%) <0.001 

Prior heart failure, n (%) 41 (3.03%) 57 (6.64%) 144 (32.51%) <0.001 

Blood pressure 

medication, n (%) 
942 (69.52%) 648 (75.44%) 410 (92.55%) <0.001 

Systolic blood pressure, 

mmHg 
129.29 ± 17.57 130.48 ± 16.67 122.15 ± 19.15 <0.001 

Heart rate, per minute 59.51 ± 8.66 65.46 ± 10.79 65.29 ± 11.53 <0.001 

QRS width, ms 93.92 ± 18.08 102.97 ± 27.78 146.98 ± 32.11 <0.001 

LVMi, g/m2 76.49 ± 18.02 82.93 ± 20.71 106.73 ± 23.52 <0.001 

LVEDVi, ml/m2 43.97 ± 11.5 51.14 ± 24.46 110.92 ± 44.99 <0.001 

LAVi, ml/m2 (IQR) 25.5 ± 7.58 26.8 ± 9.39 44.85 ± 12.13 <0.001 

LVEF, % 66.36 ± 6.23 60.63 ± 13.03 31.29 ± 16.12 <0.001 

4CH GLS, % -19.68 ± 1.81 -16.94 ± 2.52 -10.05 ± 3.22 <0.001 

IQR – interquartile range; BMI – body mass index; LVMi – LV mass indexed to body 

surface area; LVEDVi - LV end-diastolic volume indexed to body surface area; LAVi - 

left atrial volume indexed to body surface area, LVEF – LV ejection fraction;  4CH- 4-

chamber;  GLS – global longitudinal strain. 
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Cluster 1 (Figure 5, blue) consisted of a majority of ARIC 

subjects, 3% of TOPCAT patients, and less than 1% of MADIT-CRT 

patients. These patients were predominantly female, with non-

remodeled ventricles, low BMI, and preserved LVEF and 4CH-GLS. 

We observed an overall low number of outcomes and a low risk 

profile. Cluster 2 (Figure 5, yellow) was also dominantly ARIC in 

population, with a similarly low part of TOPCAT, but a higher 

percentage of MADIT-CRT patients. The patients in this group 

showed a slight increase in comorbidities in comparison to Cluster 1 

(e.g., higher BMI, higher percentage of prior HF and diabetes, and 

higher average heart rate) and a reduced 4CH-GLS despite a 

preserved LVEF. Cluster 3 (Figure 5, red) included a majority of 

MADIT-CRT patients, however with a high percentage of general 

population ARIC subjects. These patients were smokers, with a 

medical history of myocardial infarction and HF, well-regulated 

arterial hypertension, and remodeled LV with enlarged LA. They had 

overall decreased global LV function, resulting in a high risk of 

outcome. The ARIC outliers within this ‘ARIC tail’ had higher age 

and reduced longitudinal strain, potentially representing a subgroup 

of HF.  
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Figure 5 Clustering and further experiments within the ML-derived space 

A) A 2-dimensional view of the ML-derived space shown in Figure 4 after K-means 

clustering. The cluster membership and event rate are shown for each of the three clusters. 

B) The average deformation of the 6 LV segments seen in the 4-chamber view shows clear 

differences in myocardial deformation within the clusters. 

Finally, upon matching each HF trial patient with an ARIC 

counterpart, we assessed the similarity in strain, volume, and clinical 

and demographic variables (Figures 6 and 7 and Supplementary 

Tables 1 and 2). Our findings indicate that the ML matching approach 

yielded a selection of ARIC patients with much higher overlap in 

regard to cardiac mechanics and similar clinical profile than just 

looking at history of HF and EF. We identify ARIC patients with 

similar risk profiles to trial participants, yet, due to a sparse high-risk 

population in the ARIC subset, our matching approach results in a 

lower mortality rate than seen in the trial groups.
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Figure 6 TOPCAT ML-based patient matching based on clinical characteristics and cardiac mechanics 
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A) 2-dimensional space from Figure 4. TOPCAT patients are shown in green, whereas ‘ML-matched ARIC patients’ are shown in blue and ‘Threshold-matched ARIC patients’ 

are shown in red. The comparison of clinical characteristics between these two patient groups is shown in Table S1. B) Distribution of distances for each feature for both 

matching approaches. Lower values indicate a larger similarity to the trial patients. A bar above each distribution displays the statistical significance of the difference between 

both distance distributions. As it can be observed, the volume/strain profiles show a much better overlap when using the ML based matching than the threshold based, 

signifying good cardiac mechanic-based matching using the ML 
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Figure 7 MADIT ML-based patient matching based on clinical characteristics and cardiac mechanics 
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A) 2-dimensional space from Figure 4. MADIT patients are shown in green, whereas ‘ML-matched ARIC patients’ are shown in blue and ‘Threshold-matched ARIC patients’ 

are shown in red. The comparison of clinical characteristics between these two patient groups is shown in Table S2. B) Distribution of distances for each feature for both 

matching approaches. Lower values indicate a larger similarity to the trial patients. A bar above each distribution displays the statistical significance of the difference between 

both distance distributions. As it can be observed, the volume/strain profiles show a much better overlap when using the ML based matching than the threshold based, 

signifying good cardiac- mechanic based matching using the ML. 
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1.4 Discussion 

Our research demonstrates the capacity of unsupervised ML 

for analyzing large patient datasets, integrating diverse data types, 

and defining phenotypes associated with increased clinical risk 

(Figure 7). Besides providing insight in diverse phenotypes in the 

cohorts analyzed, this methodology can substantially improve the 

efficiency of clinical trials through one-to-one patient matching, 

reducing bias and expenses. Future work can enhance the ML-

derived space resolution and explore real-world applications in 

clinical trials. 

Unsupervised ML shows potential as a valuable data analysis 

tool to tackle the challenge of analyzing large patient datasets. It 

harnesses the capability to fuse data from heterogeneous sources 

(e.g., demographic characteristics, laboratory biomarkers, imaging) 

and reduce its dimensionality to create a low dimensional space that 

captures the salient characteristics of the cohort enabling direct 

comparisons between patients based on their integrated data 

conglomerate, exploration of physiologically sensible patterns (16), 

or evaluation of therapy response (17). The ability to integrate data 

types and capture data patterns can therefore enable the fusion of 

datasets with similar data profiles to directly compare different 

populations based on a desired input. Combining general population 

cohorts with clinical trials enables the projection of ‘high outcome’ 

patients into a ‘low outcome’ population to define 

phenotypes/regions related to increased clinical risk. In our example, 

the addition of HF patients to the ARIC population defined a region 

initially signaling intraventricular conduction abnormalities as the 
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region grouping the majority of HFrEF patients, hence, the ARIC 

population in this ‘neighborhood’ was recognized as a specific 

phenotype with corroborated risks (Figure 5A). Furthermore, the 

fusion of trial datasets can help define a spectrum of disease. In our 

example, HFpEF, which is generally recognized as a heterogeneous 

clinical syndrome, can be seen distributed across the three 

phenoclusters, resonating the clinical challenge in predicting risk in 

these patients. Although participant selection is led by strict 

predefined inclusion and exclusion criteria, trials inevitably recruit 

patients that fall into different parts of the disease spectrum, 

potentially leading to challenges in the interpretation of results (29). 

Therefore, sub-phenotyping a diagnosis/cohort that is perceived 

homogeneous is of high clinical interest. 

Finally, the proposed methodology bears the potential to increase 

the efficiency of running clinical trials. One-to-one matching of 

patients based on cardiac mechanics could be used to replace a 

percentage of the control arm with in-silico patients, resulting in a 

reduction of expenses and ‘recycling’ of general population clinical 

data.  

Limitations of the materials used are adjacent to general 

limitations – data quality, cohort size, and the number of outcomes. 

As for methodological limitations, the most important relates to the 

fact that the currently used implementation of MKL has a high 

computational cost for big datasets (>1000 observations); thus, 

limiting the amount of patients used for training the representation. 

This could be addressed using online learning or Nyström 

approximation techniques (30,31). Lastly, when using this approach, 
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one should bear in mind that the digital control database should be 

updated regularly to avoid confounders that affect large sections of 

the population i.e. the coronavirus epidemic, consequentially 

modifying the baseline event rate. 

Future work will focus on how to enable integration of more 

complex datasets and data formats (e.g., unprocessed medical 

images, information from multiple cardiac beats, integration of 

exercise stress data) leading to increased ‘resolution’ of the ML-

derived space, enabling more complex patient phenotyping through 

feature maps, regression analysis and clustering. ML matching could 

be tested to improve current propensity score matching techniques by 

integrating it into a real-world scenario to find controls for ongoing 

clinical trials. This would ultimately result in a high-quality win ratio 

(32) that allows for more accurate evaluation of the efficacy of a trial. 

 

1.5 Conclusion 

The presented analysis serves as a proof-of-concept for an 

unsupervised ML approach in analyzing registry and trial datasets. 

ML can enhance the integration of patient data and improve disease 

phenotyping, fuse different patient cohorts to build trust towards 

findings, and potentially increase the efficiency of running clinical 

trials through advanced matching of patients from the general 

population to those in trial control arms. 
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1.6 Supplementary Material 

Table S 1 Clinical and echo characteristics of the TOPCAT matched general 

population controls, the matched ARICs, and the EF and HF history selected 

ARICs 

 
TOPCAT 

(n=218) 

ML Matched 

ARICs 

(n=218) 

Threshold 

Matched ARICs 

(n=218) 

P-value1 

TOPCAT vs 

ML 

P-value2 

TOPCAT vs 

Thr 

Outcome, n (%) 52 (23.85%) 22 (10.09%) 20 (9.17%) <0.001 <0.001 

Age, years 71.19 (62.29 

to 78.26) 

75.12 (71.43 to 

80.36) 

75.78 (72.01 to 

80.06) 

<0.001 <0.001 

Female sex, n (%) 115 (52.75%) 98 (44.95%) 106 (48.62%) 0.103 0.389 

Caucasian, n (%) 169 (77.52%) 178 (81.65%) 175 (80.28%) 0.285 0.481 

BMI, kg/m2 30.37 (26.57 

to 34.93) 

26.92 (24.45 to 

29.97) 

28.16 ± 5.16 <0.001 <0.001 

Diabetes, n (%) 64 (29.36%) 66 (30.28%) 73 (33.49%) 0.834 0.353 

Current smoker, n 

(%) 

27 (12.39%) 16 (7.34%) 10 (4.59%) 0.077 0.003 

Myocardial 

infarction, n (%) 

56 (25.69%) 3 (1.38%) 4 (1.83%) <0.001 <0.001 

Prior heart failure, 

n (%) 

132 (60.55%) 3 (1.38%) 16 (7.34%) <0.001 <0.001 

Blood pressure 

medication, n (%) 

166 (76.15%) 166 (76.15%) 173 (79.36%) 1 0.420 

Systolic blood 

pressure, mmHg 

126.71 ± 

15.23 

131.4 ± 18.55 130.84 ± 19.02 0.004 0.0126 

Heart rate, per 

minute 

66 (60 to 74) 62 (57 to 68) 61 (55 to 66) <0.001 <0.001 

QRS width, ms 92.5 (84 to 

108) 

92 (84 to 102) 95.07 (86 to 108) 0.262 0.436 

LVMi, g/m2 99.36 (82.59 

to 119.36) 

78.36 (67.13 to 

89.24) 

81.27 (69.25 to 

97.73) 

<0.001 <0.001 

LVEDVi, ml/m2 47.19 (37.89 

to 55.18) 

43.63 (37.59 to 

50.41) 

45.52 (38.16 to 

55) 

0.007 0.651 

LAVi, ml/m2 

(IQR) 

29.04 (21.7 to 

35.09) 

25.45 (20.83 to 

31.36) 

26.22 (20.95 to 

31.92) 

0.002 0.003 

LVEF, % 60 (55 to 65) 64.45 (60.7 to 

67.7) 

57.45 (55.3 to 

61.7) 

<0.001 0.662 

4CH GLS, % -17.18 ± 3.11 -16.85 ± 2.2 -17.28 ± 2.44 0.204 0.692 
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IQR – interquartile range; BMI – body mass index; LVMi – LV mass indexed to body 

surface area; LVEDVi - LV end-diastolic volume indexed to body surface area; LAVi - 

left atrial volume indexed to body surface area, LVEF – LV ejection fraction;  4CH- 4-

chamber;  GLS – global longitudinal strain. 

 

Table S 2 Clinical and echo characteristics of the MADIT matched general 

population controls, the matched ARICs, and the EF and HF history selected 

ARICs. 

 
MADIT 

(n=429) 

ML Matched 

ARICs (n=429) 

Threshold 

Matched ARICs 

(n=429) 

P-value1 

MADIT vs 

ML 

P-value2 

MADIT vs 

Thr 

Outcome, n (%) 80 (18.65%) 47 (10.96%) 34 (7.93%) 0.0015 <0.001 

Age, years 65 (57 to 

71.25) 

75.34 (71.61 to 

80.43) 

75.79 (71.69 to 

80.37) 

<0.001 <0.001 

Female sex, n (%) 104 (24.24%) 181 (42.19%) 265 (61.77%) <0.001 <0.001 

Caucasian, n (%) 391 (91.14%) 350 (81.59%) 359 (83.68%) <0.001 <0.001 

BMI, kg/m2 28 (25.08 to 

30.7) 

27.78 (24.58 to 

31.05) 

27.43 (24.44 to 

30.88) 

0.595 0.272 

Diabetes, n (%) 120 (27.97%) 136 (31.7%) 133 (31%) 0.232 0.330 

Current smoker, n 

(%) 

56 (13.05%) 33 (7.69%) 24 (5.59%) 0.010 <0.001 

Myocardial 

infarction, n (%) 

182 (42.42%) 7 (1.63%) 5 (1.17%) <0.001 <0.001 

Prior heart failure, 

n (%) 

157 (36.6%) 10 (2.33%) 16 (3.73%) <0.001 <0.001 

Blood pressure 

medication, n (%) 

411 (95.8%) 327 (76.22%) 325 (75.76%) <0.001 <0.001 

Systolic blood 

pressure, mmHg 

120 (108 to 

132) 

131 (119 to 

143) 

130 (117 to 141) <0.001 <0.001 

Heart rate, per 

minute 

63 (56 to 70) 63 (57 to 71) 61 (55 to 66.07) 0.261 0.012 

QRS width, ms 158 (142 to 

170) 

92 (86 to 105) 90 (84 to 100) <0.001 <0.001 

LVMi, g/m2 106.82 ± 

19.55 

85.67 ± 23.68 80.2 ± 20.83 <0.001 <0.001 

LVEDVi, ml/m2 120.01 

(108.01 to 

137.91) 

44.65 (37.01 to 

52.24) 

41.91 (36.04 to 

49.49) 

<0.001 <0.001 

LAVi, ml/m2 

(IQR) 

45.5 (39.76 to 

52.62) 

25.13 (20.12 to 

32.47) 

25.79 (20.89 to 

31.11) 

<0.001 <0.001 
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LVEF, % 25 (20 to 28) 62.6 (59.1 to 

66.6) 

68.8 (57.4 to 

74.73) 

<0.001 <0.001 

4CH GLS, % -9.45 (-11.08 

to -7.78) 

-16.33 (-17.43 

to -14.99) 

-18.76 (-20.55 to -

17.09) 

<0.001 <0.001 

IQR – interquartile range; BMI – body mass index; LVMi – LV mass indexed to body 

surface area; LVEDVi - LV end-diastolic volume indexed to body surface area; LAVi - 

left atrial volume indexed to body surface area, LVEF – LV ejection fraction;  4CH- 4-

chamber;  GLS – global longitudinal strain. 
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2. CROSS-CULTURAL MACHINE LEARNING 
FROM ULTRASOUND AND CLINICAL 
CHARACTERISTICS FOR PREDICTING 
ADVERSE PERINATAL OUTCOMES 

 

Abstract  

 

a) Background 

The occurrence of adverse perinatal outcomes remains a 

global critical challenge in both high- and low-income settings. 

Current practice provides no effective prevention or therapy, and 

predictive methods have shown limited performance. In this study we 

analyze two distinct cohorts of pregnant women at increased risk of 

adverse perinatal outcome and implement machine learning models 

to improve its prediction and discern their differential characteristics. 

 

b) Methods 
We considered two distinct patient cohorts to train and 

validate XGBoost classifier models to predict adverse perinatal 

outcomes from a comprehensive set of maternal and fetal 

characteristics including socio-demographic information, current 

pregnancy information, past pregnancy histories for the mothers, 

fetal biometry, and feto-placental Doppler measurements. The 

patient data were sourced from the IMPACT study in Barcelona, 

Spain, and the FeDoC study in a peri-urban settlement of Karachi, 

Pakistan. The data included pregnancies in the third trimester (>28 

weeks). The models were trained on varying subsets of these features 

to evaluate the impact of different combinations on predictive ability. 

We also investigated the generalization of these models across the 
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two cohorts. Model performance metrics were evaluated, and 

interpretability was assessed using SHAP values, which quantify the 

impact of each feature on the model predictions. 

c) Findings 
Within the IMPACT dataset, biometrics stood out as a 

primary predictive variable set, with its combination with Doppler 

indices achieving the highest prediction accuracy.  

Conversely, the FeDoC data revealed a higher information 

content in maternal clinical data over biometrics and Doppler, with 

the combination of clinical and Doppler data proving to be the best 

(with a marginal effect of biometrics).  

Transfer learning scenarios indicated a consistent trend of 

biometrics as the most predictive, especially when paired with 

Doppler data. We present ROCs and SHAP values in Figure 1. 

SHAP values identified the features exerting the most 

influence on model decisions, which exhibited distinct behaviors in 

within-dataset and transfer scenarios. The correlation between 

feature values and SGA decision remained consistent across 

scenarios.  

relied heavily on biometrics and blood flow measurements along with 

the number of previous pregnancies.  

Predictions of alternate outcomes had poor performance. 

d) Interpretation 
Our study obtained predictability results of around 80% AUC 

in high-income settings and around 70% AUC in low-income 

settings. The disparities between the cohorts highlight the role of 

demographic, socioeconomic, and healthcare factors in high-risk 

pregnancies. The differential predictability is attributed to different 
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etiologies for SGA in the populations, with high-income cohorts 

leaning more on hemodynamic factors and low-income cohorts 

highlighting maternal undernutrition. The study showcases the 

potential of machine learning research in adverse perinatal event 

prediction, potentially enabling healthcare providers to identify and 

intervene in high-risk pregnancies, especially in regions with 

restricted healthcare resources.
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2.1 Introduction 

Despite a 53% global reduction in mortality among children 

under five, slow progress has been made in decreasing stillbirths and 

newborn deaths (33). These outcomes constitute a large proportion 

of deaths in children under five and include many infants who are 

classified as small for gestational age (SGA) - those born weighing 

below the 10th percentile (34). Apart from having a higher risk of 

perinatal mortality, SGA infants are at a higher risk of perinatal 

morbidity, such as poor neurodevelopment and increased 

cardiovascular problems as they grow (35,36). SGA fetuses may have 

varying associated risk factors, including placental abnormalities or 

insuficiency, maternal cardiovascular problems, malnutrition or 

protein deficits, iron deficiency and anemia (36). 

Timely recognition with a comprehensive care pathway could 

prevent 75% of deaths among children under five (37). This care 

should span the prenatal, intrapartum, and postnatal period for both 

mother and child. This challenge is present worldwide but gets 

exacerbated in Low- or Middle-Income Countries (LMICs), like 

Pakistan, due to its limited healthcare resources. In consequence, 

Pakistan has been rated by UNICEF as the “riskiest place” for the 

birth of a child (8,38,39). 

Several factors and biomarkers are known to have certain 

predictive value at the time of identifying at-risk pregnancies, such 

as socio-demographic information, current pregnancy health 

indicators, or past pregnancy histories (40). In addition, the fetal heart 

is known to adapt to adverse intrauterine environments, leading to 

compensatory mechanisms like cardiac remodeling and blood-flow 
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redistribution across fetal vessels (41). Thus, besides its capacity to 

detect fetal anomalies (such as congenital heart disease), B-mode and 

Doppler echocardiography on the feto-placental anatomy and 

circulation has shown potential in predicting fetal growth restriction 

and neonatal mortality (42,43). Even with the known predictive 

power of these variables, our capacity to identify “at risk” fetuses 

exhibiting at-risk sub-clinical features is limited, emphasizing the 

need for technologically advanced solutions (44). 

Emerging technologies such as Machine Learning (ML) hold 

the potential to revolutionize various fields. Its capacity to integrate 

and interpret large volumes of data, encompassing many samples and 

characteristics, is especially promising. This ability could be 

instrumental in identifying high-risk fetuses, thereby improving 

healthcare delivery and services, particularly in Low-and-Middle-

Income Countries (LMICs). (17,45). Our primary objective was to 

develop machine learning models that can leverage comprehensive 

data collected to identify SGA fetuses from high-risk cohorts. 

Providing caregivers in resource-constrained settings with such 

advanced technologies would catalyze pregnancy risk stratification 

thus allowing timely interventions (46). 

 

2.2 Methods 

a) Study setting and participants 
The first of the two studies included in this work, the 

IMPACT study (ClinicalTrials.gov Identifier: NCT03166332) is an 

randomized controlled clinical trial that took place at the Hospital 

Clinic of Barcelona (Spain) from 2017 to 2020. The 1221 participants 

were pregnant women, over 18 years old, who were at a high risk of 
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having a growth-restricted fetus according to the Royal College of 

Obstetrics and Gynecology (RCOG) Guidelines (47). These women 

were randomly allocated to three arms of intervention: a 

Mediterranean diet, a mindfulness-based stress reduction program 

(MBSR), or no intervention. Details are described elsewhere (48). 

The FeDoC (Fetal Doppler Consortium) study is a 

prospective observational cohort study that took place in Ibrahim 

Hyderi, Karachi, Pakistan in 2018 (ClinicalTrials.gov Identifier: 

NCT03398551). The rationale and detailed study procedures have 

been described earlier (49). Participants included 694 pregnant 

women between 22-34 weeks of gestation. Both cohorts underwent 

standardized ultrasound studies during the study period.  

 

b) Data selection and processing 

Pregnancies with available data on feto-placental ultrasound 

at third trimester were included in this study. The data variables 

included in this study were those that were present in both cohorts 

and corresponding to pregnancies post 28 weeks. They comprised a 

total of five distinct categories: maternal socio-demographic 

information, past pregnancy history, current pregnancy health 

indicators, feto-placental Doppler and fetal biometry. Pulsatility 

indices for the umbilical artery and middle-cerebral artery were 

extracted from focused Doppler pulsed-wave acquisitions. Cerebro-

placental ratio was calculated by dividing Middle Cerebral Artery PI 

by Umbilical Artery PI. Additionally, fetal biometry was obtained 

from routine ultrasound examination including biparietal diameter, 

head circumference, abdominal circumference, and femur length. 
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These measurements were acquired thrice and averaged.  A 

comprehensive list is included in Table S3. 

Observations missing continuous variables were removed 

from the analyses and those containing missing entries for binary 

variables were set to 0, as a conservative stance. Finally, to 

harmonize FeDoC and IMPACT datasets, high risk behaviors 

(smoking, sniffing/chewing tobacco, chewing betel nut, alcohol 

consumption, and drug use), education level and employment status 

variables were mapped. Details on the data harmonization are 

included in the supplementary material. 

 

c) Outcomes and reference standards 
The IMPACT and FeDoC studies primarily investigated 

SGA. FeDoC additionally assessed stillbirth or early neonatal 

mortality. These studies had secondary outcomes encompassing a 

wide array of adverse perinatal outcomes (APO), which included 

conditions such as preeclampsia, severe FGR, metabolic acidosis (in 

IMPACT), prematurity, birth asphyxia, neonatal sepsis, and low birth 

weight. 

For this analysis, we focused our effort on the prediction of 

pregnancies labeled as SGA, defined as birthweight below the 10th 

centile according to the INTERGROWTH-21 standard (50). 

However, in Barcelona, we also identified SGA using a local Spanish 

standard developed in 2007 (51), which is tailored to regional 

characteristics. The differences when using differing methodologies 

are included in the supplement.  

Preterm birth was defined as delivery prior to 37 weeks 

gestation (52). 
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d) Statistical analysis 

Differences between the characteristics of the two studies 

were evaluated using a T-test or Mann-Whitney U test for continuous 

variables, depending on the normality of the data. The chi-squared 

test was used for binary variables. 

 

e) Predictive models 
To identify the most predictive factors for SGA, several 

supervised gradient-boosted ensemble models were developed using 

the XGBoost Python implementation (53). The models were 

initialized using a class-weighting strategy to account for class 

imbalance and used binary cross entropy as a measure of 

performance. They were trained using a version of repeated cross-

validation. For this, in each of a total of 10 iterations, the two cohorts 

were partitioned as 70 train/30 test stratified by the interrogated 

outcome. Model training was done following Bayesian optimization 

for hyper-parameter tuning, coupled with 5-fold cross-validation. 

Area Under the Receiver Operating Characteristic Curve (AUROC) 

was used as performance metric of the cross-validation setting. It is 

worth mentioning that no feature selection strategy was 

implemented, but Lasso and Ridge regularization were implemented 

during model’s training, which effectively penalize the model for 

using irrelevant or redundant features, thus reducing overfitting, and 

improving model’s generalization.  

Given the limited number of studies and the class-imbalance 

scenario, model’s stability and performance was assessed through the 

average sensitivity, specificity, positive predictive value, negative 
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predictive value (obtained at a 10% false-positive rate), and AUROC 

over the 10 iterations with their corresponding standard deviations. 

However, for further interpretation of results, we report the best 

model (out of 10 iterations) as we assume it to be the one that has 

best captured the underlying data patterns and relationships with the 

interrogated outcome. The best models were further interpreted using 

Shapley Additive Explanations (SHAP package for Python), to 

understand the contribution and influence of each variable on the 

model's predictions.  

Given the different risk factors of SGA, we explored the 

training of the models with differing sets of relevant features, and 

their combinations, to analyze the differential power they brought to 

the prediction. Namely, the sets used were: 

- Set 1: Clinical data (socio-demographics, ongoing pregnancy 

health indicators, and past pregnancy histories), to assess 

maternal characteristics. 

- Set 2: Fetal biometry, to evaluate fetal size.  

- Set 3: Feto-placental Doppler measurements, to assess 

(placenta-induced) fetal hemodynamic changes. 

- Set 4: Clinical data + biometry. 

- Set 5: Clinical data + Doppler. 

- Set 6: Biometry + Doppler. 

- Set 7: Clinical data + biometry + Doppler. 

Finally, we investigated the generalization of these models 

across the two cohorts.  

We also explored the predictive ability of these data for 

predicting low birthweight (defined as below 2.5kg (54), to assess 
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potential problems with GA estimation), preterm births, and 

stillbirths or neonatal deaths (only present in FEDOC).  

 

2.3 Results 

A total of 746 women were included from the IMPACT trial 

and 520 from the FeDoC study. We show the characteristics of the 

included cohorts in Table 2.  
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Table 2 Maternal and perinatal characteristics of the study populations 

Variables IMPACT (n=746) FeDoC (n=520) p-value 

Current pregnancy Health Indicators     

    Maternal Age (years) 37.41 ( 34.47 to 40.50) 28.00 ( 23.00 to 30.00) <0.001 

    Maternal Height (cm) 163.53 (±6.30) 154.83 (±5.67) <0.001 

    Maternal Weight  (kg) 72.80 ( 65.72 to 81.70) 57.50 ( 51.20 to 65.83) <0.001 

    Maternal Body mass index (kg/m2) 27.08 ( 24.80 to 30.32) 23.99 ( 21.82 to 27.34) <0.001 

    Maternal Systolic Blood Pressure at the time of visit (mmHg) 108.00 ( 100.25 to 115.00) 107.00 ( 99.00 to 114.25) 0.0162 

    Maternal Diastolic Blood Pressure at the time of visit(mmHg) 71.00 ( 66.00 to 77.00) 70.00 ( 64.00 to 75.00) 0.0018 

    Maternal Hemoglobin Level (g/dL) 11.70 ( 11.10 to 12.30) 9.08 ( 8.07 to 10.05) <0.001 

    Antenatal Care Access 746 (100.00%) 372 (71.54%) <0.001 

Morbidities    

    Preeclampsia 83 (11.13%) 29 (5.58%) 0.0009 

    Eclampsia 1 (0.13%) 1 (0.19%) 1* 

    Gestational Diabetes Mellitus 67 (8.98%) 11 (2.12%) <0.001 

    Anemia or Iron Deficiency 295 (39.54%) 234 (45.00%) 0.0603 

    Fever or Antibiotic Use 64 (8.58%) 167 (32.12%) <0.001 

    Pregnancy-related Bleeding 34 (4.56%) 25 (4.81%) 0.9425 

Maternal Socio-Demographics     

    Work Status     

        Unemployed  50 (6.70%) 507 (97.50%) <0.001 

        Self-Employed 55 (7.37%) 7 (1.35%) <0.001 

        Private/Student/Other Employment 641 (85.92%) 6 (1.15%) <0.001 
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    Education level     

        No or Primary Education Level 27 (3.62%) 397 (76.35%) <0.001 

        Secondary or Technology Education Level 219 (29.36%) 117 (22.50%) 0.0067 

        University Education Level 500 (67.02%) 6 (1.15%) <0.001 

    Risk related habits      

        No Health Risk Habits 437 (58.58%) 257 (49.42%) 0.0033 

        Stopped Risk Habits After Pregnancy Confirmation 256 (34.32%) 9 (1.73%) <0.001 

        Continued Risk Habits During Pregnancy 53 (7.10%) 254 (48.85%) <0.001 

Past pregnancy histories     

    History of Normal Previous Pregnancies 464 (62.20%) 424 (81.54%) <0.001 

    History of Previous Preterm Births 36 (4.83%) 156 (30.00%) <0.001 

    History of Previous Fetal Deaths 304 (40.75%) 108 (20.77%) <0.001 

 

Fetal growth 
    

    Gestational Age at US (weeks) 33.30 ( 32.40 to 34.10) 31.21 ( 30.43 to 32.57) <0.001 

    Gestational Age at clinical data collection (weeks)  35.00 ( 34.00 to 36.00) 31.14 ( 30.43 to 32.57) <0.001 

    Estimated Fetal Weight percentile  46.28 ( 24.27 to 70.29) 34.64 ( 15.06 to 65.40) <0.001 

    Head Circumference (cm) 30.30 ( 29.30 to 31.20) 28.65 ( 27.95 to 29.76) <0.001 

    Abdominal Circumference (cm) 29.20 ( 28.00 to 30.50) 27.52 ( 26.54 to 28.96) <0.001 

    Biparietal Diameter (cm) 8.30 ( 8.00 to 8.60) 8.01 ( 7.77 to 8.30) <0.001 

    Femur Length (cm) 6.30 ( 6.10 to 6.50) 6.13 ( 5.88 to 6.40) <0.001 

    Estimated Fetal Weight (g) 2109.56 ( 1886.45 to 2340.53) 1786.91 ( 1630.30 to 2078.55) <0.001 
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Feto-placental Blood Flow Measurements     

    Middle Cerebral Artery Pulsatility Index 1.89 ( 1.68 to 2.13) 1.85 ( 1.58 to 2.15) 0.0911 

    Umbilical Artery Pulsatility Index 0.94 ( 0.84 to 1.06) 1.11 ( 0.98 to 1.25) <0.001 

    Cerebro-Placental Ratio 2.00 ( 1.71 to 2.35) 1.67 ( 1.38 to 2.01) <0.001 

Outcomes or Interventions     

    Small for Gestational Age (IG21) 78 (10.46%) 87 (16.73%) 0.0011 

    Neonatal Death  0 (0.00%) 33 (6.35%) <0.001 

    Preterm 24 (3.22%) 141 (27.12%) <0.001 

    C-section 242 (32.44%) 93 (17.88%) <0.001 

Values are reported as mean and standard deviation for normally distributed continuous variables and as median and IQR for non-normally 

distributed continuous variables. Binary variables are presented as counts and percentages. Risk related habits encompass alcohol consumption and 

drug use. *Yates correction produced a p-value of 1. 
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In Table 3 we show the mean and standard deviation, 

resulting from 10 launches, when training with each feature set and 

with each combination of within-dataset and transfer scenarios. 

Within the IMPACT dataset, biometrics stood out as a primary 

predictive variable set, with its combination with Doppler indices 

achieving the highest prediction accuracy. Conversely, the FeDoC 

data revealed a higher information content in maternal clinical data 

over biometrics and Doppler, with the combination of clinical and 

Doppler data proving to be the best (with a marginal effect of 

biometrics). Transfer learning scenarios indicated a consistent trend 

of biometrics as the most predictive, especially when paired with 

Doppler data. We present ROCs and SHAP values in Figure 8. 

Table 3 SGA prediction AUCs for the different sets of features 

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 

 Clinical Biometrics Doppler 
Clinical 

Biometrics 

Clinical 

Doppler 

Biometrics 

Doppler 

Clinical 

Biometrics 

Doppler 

IMPACT 

– IMPACT 
59.4 ± 5.3 78.7 ± 2.0 65.8 ± 4.7 75.0 ± 3.4 67.4 ± 5.8 80.3 ± 3.0 80.3 ± 2.4 

FeDoC – 

 FEDOC 
69.9 ± 3.9 68.5 ± 2.8 68.2 ± 5.0 70.6 ± 4.9 73.0 ± 4.0 69.4 ± 3.4 73.1 ± 3.6 

IMPACT 

– FEDOC 
56.3 ± 5.9 67.3 ± 5.5 61.3 ± 3.8 64.3 ± 6.1 63.6 ± 4.6 70.3 ± 4.5 71.0 ± 6.5 

FeDoC –  

IMPACT 
58.0 ± 6.2 70.1 ± 4.4 64.0 ± 4.7 68.8 ± 4.9 64.4 ± 3.3 76.8 ± 3.5 68.4 ± 6.7 

 

SHAP values identified the features exerting the most 

influence on model decisions, which exhibited distinct behaviors in 

within-dataset and transfer scenarios. The correlation between 

feature values and SGA decision remained consistent across 
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scenarios. Specifically, fetal biometry, MCA PI, CPR, maternal 

height and weight, previous pregnancies, and previous preterm 

pregnancies were negatively correlated, whereas gestational age at 

ultrasound visit, UA PI, and maternal hemoglobin levels were 

positively correlated with SGA classification. 

When trained and tested within the IMPACT dataset, the 

model deemed the gestational age at ultrasound visit and biometric 

measurements of the fetus as the most salient features, followed by 

Doppler measurements (CPR and MCA), maternal weight and 

hemoglobin levels. However, when the IMPACT-trained model was 

tested on the FeDoC dataset, the gestational age at ultrasound 

emerged as the most significant feature, alongside biometric 

measurements of abdominal circumference, biparietal diameter, and 

femur length. The model also attributed importance to Doppler 

measures and maternal weight in its predictions. 

In contrast, when trained and tested within the FeDoC dataset, 

the model prioritized CPR and UA PI as the most significant features, 

additionally considering maternal height, fetal head circumference, 

history of previous normal pregnancies and preterm births. Yet, when 

this FEDOC-trained model was tested within the IMPACT dataset, it 

relied heavily on biometrics and blood flow measurements along with 

the number of previous pregnancies.  

 

We add a detailed report of the results interrogating alternate 

outcomes in the supplement. In a nutshell, low birthweight had 

moderate to good predictions both within-dataset and in transfer 

learning cases. Prediction of preterm deliveries had a moderate 
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performance within IMPACT but fell to random chance if we 

excluded those due to C-section. The rest of outcome predictions had 

poor performance. 
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Figure 8 Performance metrics and feature interpretation of the models trained. 

In the first row, we show ROCs trained on every feature set and tested within and across datasets. Below, we reported the SHAP values corresponding to the 

model with best performance using the full feature set. Sn, Sensitivity; HC, Head Circumference; AC, Abdominal Circumference; FL, Femur Length; BPD, 

BiParietal Diameter; GA_US, Gestational Age at Ultrasound scan; UA PI, Umbilical Artery Pulsatility Index; MCA PI, Middle Cerebral Artery Pulsatility 

Index; CPR, Cerebro-Placental Ratio. 
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2.4 Discussion 

This study, to our knowledge, is pioneering in the use and 

comparison of ML models trained on an array of materno-fetal 

features to predict SGA fetuses. Moreover, we investigate their 

predictive performance in both a high-risk high-income population 

and a LMIC setting, investigating potential different causes for 

increased risk as well as evaluating transferability of ML-models 

across these two settings.  

The disparities observed across the cohorts underline the 

influence of demographic, socioeconomic, and healthcare factors on 

high-risk pregnancies and maternal health outcomes. Understanding 

these differential baseline characteristics is crucial when interpreting 

and applying research findings across diverse settings and 

populations.  

When training/testing in a similar setting, we obtained 

predictability results for SGA in the order of 80% AUC in IMPACT, 

which is comparable, or even slightly superior to current clinical 

practice while in FEDOC, we obtain values in the order of 70% AUC.  

Two factors might contribute to the different performance, 

first, the etiologies for SGA and pregnancy factors that lead to it, can 

be different in the populations. For example, based on the results 

obtained, SGA in both cohorts could be attributed to different disease 

processes. Namely, in Barcelona, most cases appear to be associated 

to hemodynamic factors (likely due to placental insufficiency), given 

that when models trained on IMPACT, they mostly rely on fetal 

Doppler to forecast SGA. However, in FEDOC, the information gain 

from clinical (maternal) data is more relevant, pointing to risk factors 
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linked to maternal undernutrition, as models trained on FeDoC 

weighted maternal characteristics more heavily. Secondly, a factor 

that might contribute to the different performance in both setting is 

related to the difference in GA at scan. By design, the GA at scan for 

the IMPACT study was 2 weeks later as compared to FeDoC 

(resulting in a mean GA of 33.3 vs 31.21 weeks). Especially when 

late SGA is involved, its prediction is known to improve with later 

GAs. From our analysis of the subgroup of GA 31-33 weeks (see S8), 

where there is the most overlap between the two cohorts, we observe 

a very similar AUC for IMPACT with a slight reduction in FeDoC 

(potentially attributed to the reduction in sample size), supporting the 

hypothesis of differences in dominant etiologies. For the transfer use 

of the models, from IMPACT to FeDoC there is little change in 

predictive power, while there seems to be a slight improvement in 

prediction in the transfer from FeDoC to IMPACT likely because 

there is a better GA match between the two, making the models more 

generalizable amongst the etiologies.  

Another interesting aspect is the value of fetal biometry for 

the prediction of SGA. While it would seem straightforward that fetal 

size at scan should contribute to predicting fetal weight at birth, as is 

confirmed in IMPACT, in FeDoC it seems to contribute little on top 

of clinical information. This again might be related to two factors. 

First that SGA is more related to high (maternal) clinical risk rather 

than true placental disease. Here it might be that the traditional 

biometric markers, combining bone sizes and abdominal 

circumference, might not fully capture the effect of for example 

maternal malnutrition or other pregnancy problems. Secondly, the 
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estimation of the GA at scan might be too inaccurate for biometry to 

truly reflect fetal growth. In FEDOC, as compared to IMPACT, the 

estimation of GA is much more challenging given lack of accurate 

information of the last menstrual cycle nor first trimester ultrasound. 

When comparing our work to existing bibliography, results 

can vary greatly depending on the characteristics of the study 

populations, parameters included, or standards used to define SGA. 

For instance, the GA at data collection, origin, and size of the cohort 

as well as the complexity of ML models used to make the predictions 

and the variables collected to train them. The predictive ability of 

several features in our work were also of importance in previous 

studies (55–57). However, none of them focused on comparing high 

income and LMIC settings.  

Among the limitations of our study, the comparison of two 

distinct cohorts to evaluate feature importance for SGA prediction 

may compromise accuracy due to intrinsically different decision 

boundaries. Moreover, the prediction of outcomes such as preterm 

pregnancies and perinatal death was constrained by class imbalance 

across both cohorts and varied rates of occurrence, indicating our 

cohorts might lack the necessary power to substantiate the predictive 

potential of these data.  

In future research, larger datasets would help capture more 

preterm and perinatal death events, potentially providing insights into 

their predictability, which we were not able to assess. Also, 

longitudinal models that follow the growth of the fetus over time 

could be key to understand the gestation process and improve the 

prediction of SGA (58). 



 

 51 

In summary, this paper assesses the predictability of SGA in 

developed and low-resource scenarios, analyzes the transferability of 

the models across them, and interprets model decisions considering 

specific input variables. Our findings allow for new insights into the 

pathophysiological role of the different descriptors from their use in 

the ML model and provides models for SGA prediction, to be 

validated in larger independent cohorts, thus, showcasing the use of 

ML to tackle heterogeneous information and cohorts, ultimately 

showing the potential of ML research in adverse perinatal event 

prediction. We recognize the complexity of perinatal mortality as a 

systemic issue compounded by multiple factors that resists 

straightforward solutions. However, given the pressing need to 

reduce disparities to improve global maternal and child health—

especially in regions with restricted healthcare resources such as 

Pakistan—our findings can be seen as progress. They could equip 

caregivers with decision-support tools to identify and intervene in 

high-risk pregnancies, potentially restoring conditions to normalcy 

on time.  
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2.5 Supplementary Material 

Table S 3 Features used for model training with their corresponding data 

type and imputation method. 

Feature category Feature name Data type Number 

missing 

Ongoing 

pregnancy health 

indicators 

Antenatal care Binary - 

High blood 

pressure 

Binary 13 

Convulsions Binary 4 

Bleeding Binary - 

Gestational 

Diabetes Mellitus 

Binary 4 

Anemia or Iron 

Deficiency 

Binary 2 

Maternal 

Hemoglobin 

Continuous 44 

Fever or 

antibiotics 

Binary - 

Maternal Weight Continuous 5 

Maternal Height Continuous - 

Systolic BP Continuous 33 

Diastolic BP Continuous 33 
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Gestational age at 

US 

Continuous - 

 Gestational age 

(measures) 

Continuous -  

Fetal blood flow 

measurements 

Umbilical artery 

PI 

Continuous - 

Mid cerebral 

artery PI 

Continuous - 

Cerebroplacental 

ratio 

Continuous - 

Fetal size and 

development 

metrics 

Head 

circumference 

Continuous - 

Abdominal 

circumference 

Continuous - 

Biparietal 

diameter 

Continuous - 

Femur Length Continuous - 

Gestational age Continuous - 

Past pregnancy 

histories 

Previously 

pregnant 

Binary - 

Previous preterm Binary - 

Previous fetal 

death 

Binary - 

Age 

 

Continuous - 
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Maternal socio-

demographic 

information 

Education level 

 

Binary (one 

hot encoded 

into 

categories) 

- 

Work status 

 

Binary - 

Risk habits Binary - 

Outcomes SGA Binary  

Preterm Binary 2 

Neonatal death Binary 2 

C-section Binary 2 

Birth Weight < 2.5 

kg 

Binary 38 

 

Data processing 

In the FeDoC dataset, smoking, sniffing/chewing tobacco, 

and chewing betel nut were recoded into values of 0, 1, and 2, 

representing non-usage, cessation, and ongoing usage respectively. 

Likewise, in the IMPACT dataset, habits like alcohol consumption, 

drug use, and smoking were recoded into the same values. Each 

patient’s risk score was then calculated as the maximum value among 

these risk scores. The education data from FeDoC was restructured 

into categories: 'no/primary' for 0-6 years of education, 

'secondary/technology' for 7-12 years, and 'university' for more than 

12 years, to correspond with the categories of the IMPACT survey. 

Similarly, FEDOC's employment categories, which originally 
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included 'Does not work', 'Private Job', 'Other work', 'Self-employed', 

'Employed', 'Midwife', and 'Student', were simplified to align with 

those of IMPACT, namely 'Unemployed', 'Private/Other/Student', 

and ‘Self-employed’. 
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Methodology diagram 

 

Figure S 1 Schematic of the methodology followed in this work. 
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Results for other Outcomes (C-section, preterm, lbw, etc) 
Table S 4 AUCs for prediction of alternative outcomes and all feature sets 

  SGA (Intergrowth) Birthweight < 2.5 kg Preterm C-section 

Preterm  

(excluding C-section) 

Stillbirth &  

neonatal death 

IMPACT 

vs 

IMPACT 

Set1 59.4 ± 5.3 69.2 ± 8.8 75.5 ± 6.3 65.2 ± 2.9 57.5 ± 7.7 – 

Set2 78.7 ± 2.0 74.5 ± 3.8 56.5 ± 4.5 55.2 ± 3.7 45.4 ± 17.1 – 

Set3 65.8 ± 4.7 70.1 ± 6.6 63.5 ± 10.2 48.7 ± 2.6 55.6 ± 7.0 – 

Set4 75.0 ± 3.4 76.7 ± 4.7 73.7 ± 8.0 65.2 ± 3.0 52.7 ± 11.5 – 

Set5 67.4 ± 5.8 70.8 ± 5.7 79.5 ± 7.4 63.4 ± 2.4 48.9 ± 10.6 – 

Set6 80.3 ± 3.0 78.1 ± 3.3 59.8 ± 9.6 52.1 ± 3.3 60.1 ± 10.5 – 

Set7 80.3 ± 2.4 80.6 ± 4.1 75.1 ± 7.5 64.8 ± 2.2 50.6 ± 14.4 – 

FEDOC 

vs 

FEDOC 

Set1 69.9 ± 3.9 65.0 ± 5.1 57.4 ± 4.7 63.0 ± 5.2 59.5 ± 3.5 46.6 ± 9.8 

Set2 68.5 ± 2.8 62.5 ± 3.9 55.2 ± 4.8 49.1 ± 2.7 50.5 ± 3.6 49.7 ± 8.3 

Set3 68.2 ± 5.0 66.8 ± 4.3 58.1 ± 3.6 48.6 ± 4.6 55.0 ± 4.7 46.8 ± 6.8 

Set4 70.6 ± 4.9 66.8 ± 4.2 57.7 ± 3.4 62.5 ± 5.3 59.5 ± 3.8 50.6 ± 9.9 

Set5 73.0 ± 4.0 70.8 ± 3.9 58.2 ± 4.2 63.0 ± 4.8 63.6 ± 2.6 45.8 ± 7.0 

Set6 69.4 ± 3.4 67.2 ± 5.8 59.0 ± 3.9 46.4 ± 4.8 55.5 ± 3.4 46.5 ± 6.9 

Set7 73.1 ± 3.6 70.2 ± 5.3 59.8 ± 4.1 61.4 ± 3.7 61.0 ± 3.9 46.0 ± 9.6 

IMPACT 

vs 

FEDOC 

Set1 56.3 ± 5.9 56.8 ± 6.7 50.4 ± 5.8 52.3 ± 5.0 48.3 ± 5.4 – 

Set2 67.3 ± 5.5 62.0 ± 5.3 47.0 ± 3.5 50.3 ± 5.0 50.4 ± 4.1 – 

Set3 61.3 ± 3.8 69.5 ± 5.2 54.8 ± 3.6 52.1 ± 4.3 57.2 ± 4.5 – 

Set4 64.3 ± 6.1 61.2 ± 5.0 50.2 ± 3.9 50.1 ± 8.1 48.0 ± 5.6 – 

Set5 63.6 ± 4.6 67.7 ± 7.5 53.2 ± 4.3 57.3 ± 5.2 55.4 ± 7.2 – 

Set6 70.3 ± 4.5 71.2 ± 5.1 53.6 ± 4.5 54.5 ± 2.6 56.7 ± 4.5 – 

Set7 71.0 ± 6.5 69.3 ± 5.5 53.2 ± 5.4 54.1 ± 6.0 55.4 ± 5.1 – 
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FEDOC 

vs 

IMPACT 

Set1 58.0 ± 6.2 59.2 ± 5.6 49.6 ± 6.9 56.8 ± 6.5 41.0 ± 16.4 – 

Set2 70.1 ± 4.4 63.4 ± 10.9 51.1 ± 8.3 53.3 ± 2.9 44.6 ± 18.0 – 

Set3 64.0 ± 4.7 73.2 ± 6.5 58.5 ± 13.3 50.2 ± 1.9 66.1 ± 19.9 – 

Set4 68.8 ± 4.9 58.2 ± 5.0 53.4 ± 5.7 56.5 ± 3.9 41.7 ± 18.0 – 

Set5 64.4 ± 3.3 66.8 ± 7.1 52.3 ± 10.1 57.4 ± 4.4 51.3 ± 24.4 – 

Set6 76.8 ± 3.5 74.9 ± 5.8 56.7 ± 12.3 52.6 ± 4.5 67.5 ± 16.3 – 

Set7 68.4 ± 6.7 71.9 ± 8.0 61.4 ± 11.6 56.6 ± 3.4 46.6 ± 20.6 – 
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Table S 5 Comprehensive performance metrics for low birthweight (<2.5kg) prediction across all feature sets 

 
 AUC Train AUC Test Sn Sp PPV NPV 

Impact 

vs 

Impact 

Set1 74.6 ± 3.0 69.2 ± 8.8 30.7 ± 12.4 91.0 ± 2.0 17.8 ± 4.7 95.2 ± 0.7 
Set2 78.5 ± 1.2 74.5 ± 3.8 36.4 ± 9.8 90.4 ± 0.7 20.0 ± 4.3 95.5 ± 0.7 
Set3 70.9 ± 2.6 70.1 ± 6.6 28.6 ± 12.4 90.8 ± 1.1 16.5 ± 5.5 95.0 ± 0.8 
Set4 81.4 ± 2.5 76.7 ± 4.7 37.9 ± 10.1 90.3 ± 0.7 20.3 ± 4.3 95.6 ± 0.6 
Set5 75.5 ± 3.1 70.8 ± 5.7 43.6 ± 8.7 90.6 ± 0.8 23.5 ± 3.9 96.0 ± 0.6 
Set6 81.4 ± 1.6 78.1 ± 3.3 39.3 ± 13.3 90.5 ± 0.8 21.4 ± 6.4 95.7 ± 0.9 
Set7 83.0 ± 2.0 80.6 ± 4.1 47.9 ± 9.0 90.2 ± 0.8 24.5 ± 4.2 96.3 ± 0.6 

FEDOC 

vs 

FEDOC 

Set1 69.3 ± 2.3 65.0 ± 5.1 21.4 ± 6.6 90.4 ± 0.6 33.8 ± 6.5 82.9 ± 1.2 
Set2 65.4 ± 2.5 62.5 ± 3.9 10.4 ± 7.4 93.6 ± 4.2 nan ± nan 81.5 ± 1.2 
Set3 70.5 ± 2.0 66.8 ± 4.3 26.8 ± 7.0 90.8 ± 1.0 40.5 ± 7.6 84.0 ± 1.3 
Set4 70.8 ± 2.4 66.8 ± 4.2 20.7 ± 4.5 90.5 ± 0.6 33.8 ± 5.3 82.8 ± 0.8 
Set5 74.1 ± 2.1 70.8 ± 3.9 27.9 ± 5.5 90.5 ± 0.5 40.7 ± 3.7 84.1 ± 1.0 
Set6 70.8 ± 1.8 67.2 ± 5.8 28.2 ± 7.9 91.2 ± 1.2 42.3 ± 6.4 84.3 ± 1.4 
Set7 75.1 ± 2.2 70.2 ± 5.3 26.8 ± 8.6 90.3 ± 1.5 38.7 ± 6.9 83.9 ± 1.5 

Impact 

vs 

FEDOC 

Set1 74.6 ± 3.0 56.8 ± 6.7 13.9 ± 10.4 91.1 ± 1.4 23.4 ± 13.9 81.7 ± 1.7 
Set2 78.5 ± 1.2 62.0 ± 5.3 16.1 ± 10.3 91.3 ± 2.7 26.1 ± 12.8 82.1 ± 1.6 
Set3 70.9 ± 2.6 69.5 ± 5.2 25.7 ± 12.5 91.5 ± 2.9 nan ± nan 83.9 ± 2.0 
Set4 81.4 ± 2.5 61.2 ± 5.0 16.1 ± 9.5 91.2 ± 0.7 28.2 ± 13.5 82.1 ± 1.7 
Set5 75.5 ± 3.1 67.7 ± 7.5 17.1 ± 9.2 90.6 ± 0.8 28.4 ± 8.8 82.2 ± 1.6 
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Set6 81.4 ± 1.6 71.2 ± 5.1 30.4 ± 8.2 90.3 ± 0.9 42.0 ± 7.4 84.6 ± 1.5 
Set7 83.0 ± 2.0 69.3 ± 5.5 26.1 ± 11.1 90.6 ± 0.7 37.8 ± 11.1 83.8 ± 2.0 

FEDOC 

vs 

Impact 

Set1 69.3 ± 2.3 59.2 ± 5.6 20.7 ± 9.3 90.9 ± 1.1 13.0 ± 5.5 94.5 ± 0.6 
Set2 65.4 ± 2.5 63.4 ± 10.9 22.1 ± 10.4 91.2 ± 1.2 14.3 ± 6.1 94.6 ± 0.7 
Set3 70.5 ± 2.0 73.2 ± 6.5 38.6 ± 9.1 90.4 ± 0.6 20.8 ± 3.9 95.7 ± 0.6 
Set4 70.8 ± 2.4 58.2 ± 5.0 15.0 ± 8.1 91.3 ± 1.4 10.4 ± 6.2 94.2 ± 0.5 
Set5 74.1 ± 2.1 66.8 ± 7.1 35.0 ± 13.0 91.3 ± 1.2 21.1 ± 7.3 95.5 ± 0.9 
Set6 70.8 ± 1.8 74.9 ± 5.8 41.4 ± 11.4 90.7 ± 0.9 22.6 ± 4.6 95.9 ± 0.7 
Set7 75.1 ± 2.2 71.9 ± 8.0 43.6 ± 11.3 90.4 ± 0.4 23.0 ± 4.9 96.0 ± 0.8 
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Table S 6 Comprehensive performance metrics for preterm prediction across all feature sets 

 
 AUC Train AUC Test Sn Sp PPV NPV 

Impact 

vs 

Impact 

Set1 77.9 ± 4.6 75.5 ± 6.3 37.2 ± 15.9 91.0 ± 1.3 11.6 ± 4.6 97.8 ± 0.5 
Set2 63.8 ± 5.6 56.5 ± 4.5 4.3 ± 6.6 92.0 ± 2.0 1.5 ± 2.3 96.8 ± 0.2 
Set3 65.6 ± 4.8 63.5 ± 10.2 18.6 ± 15.7 91.2 ± 2.4 5.6 ± 4.7 97.2 ± 0.5 
Set4 75.3 ± 4.6 73.7 ± 8.0 30.0 ± 18.6 91.5 ± 2.9 nan ± nan 97.6 ± 0.6 
Set5 76.4 ± 3.7 79.5 ± 7.4 45.7 ± 21.0 90.8 ± 0.7 13.4 ± 5.2 98.1 ± 0.7 
Set6 66.4 ± 5.7 59.8 ± 9.6 14.3 ± 11.1 92.3 ± 1.7 5.3 ± 3.6 97.1 ± 0.3 
Set7 75.3 ± 3.2 75.1 ± 7.5 30.0 ± 19.6 91.0 ± 1.0 9.2 ± 5.2 97.6 ± 0.7 

FEDOC 

vs 

FEDOC 

Set1 60.1 ± 2.9 57.4 ± 4.7 14.0 ± 5.7 90.9 ± 1.9 35.7 ± 8.0 74.2 ± 1.2 
Set2 59.6 ± 2.5 55.2 ± 4.8 11.4 ± 6.8 92.7 ± 3.7 nan ± nan 74.0 ± 0.9 
Set3 61.8 ± 1.1 58.1 ± 3.6 19.5 ± 7.5 91.0 ± 2.9 45.9 ± 12.1 75.5 ± 1.5 
Set4 61.7 ± 3.2 57.7 ± 3.4 15.0 ± 4.1 90.5 ± 0.8 36.3 ± 6.3 74.3 ± 0.9 
Set5 63.2 ± 2.3 58.2 ± 4.2 16.9 ± 5.3 90.8 ± 0.7 39.5 ± 8.5 74.8 ± 1.2 
Set6 62.6 ± 1.9 59.0 ± 3.9 15.0 ± 6.2 91.4 ± 3.0 nan ± nan 74.5 ± 1.1 
Set7 63.6 ± 2.1 59.8 ± 4.1 14.5 ± 5.6 90.5 ± 0.7 34.9 ± 8.8 74.2 ± 1.3 

Impact 

vs 

FEDOC 

Set1 77.9 ± 4.6 50.4 ± 5.8 12.1 ± 4.8 90.6 ± 0.5 31.1 ± 8.7 73.7 ± 1.1 
Set2 63.8 ± 5.6 47.0 ± 3.5 7.4 ± 3.8 91.0 ± 1.1 22.4 ± 8.4 72.7 ± 0.8 
Set3 65.6 ± 4.8 54.8 ± 3.6 12.9 ± 4.8 91.1 ± 0.9 33.8 ± 8.4 74.0 ± 1.1 
Set4 75.3 ± 4.6 50.2 ± 3.9 9.8 ± 5.1 92.0 ± 2.9 27.8 ± 13.4 73.4 ± 0.9 
Set5 76.4 ± 3.7 53.2 ± 4.3 14.3 ± 6.5 90.7 ± 1.0 34.1 ± 9.9 74.2 ± 1.4 
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Set6 66.4 ± 5.7 53.6 ± 4.5 11.9 ± 6.8 91.1 ± 2.8 28.7 ± 13.5 73.7 ± 1.3 
Set7 75.3 ± 3.2 53.2 ± 5.4 13.8 ± 4.9 90.6 ± 0.5 34.1 ± 7.9 74.1 ± 1.1 

FEDOC 

vs 

Impact 

Set1 60.1 ± 2.9 49.6 ± 6.9 4.3 ± 6.6 93.2 ± 3.1 1.6 ± 2.5 96.8 ± 0.2 
Set2 59.6 ± 2.5 51.1 ± 8.3 7.2 ± 7.2 92.7 ± 3.0 nan ± nan 96.9 ± 0.3 
Set3 61.8 ± 1.1 58.5 ± 13.3 27.2 ± 13.5 91.4 ± 1.3 9.4 ± 5.0 97.5 ± 0.4 
Set4 61.7 ± 3.2 53.4 ± 5.7 11.4 ± 12.5 92.4 ± 2.8 3.6 ± 3.8 97.0 ± 0.3 
Set5 63.2 ± 2.3 52.3 ± 10.1 20.0 ± 13.1 91.8 ± 2.3 6.7 ± 3.7 97.3 ± 0.4 
Set6 62.6 ± 1.9 56.7 ± 12.3 18.6 ± 15.7 93.4 ± 3.1 nan ± nan 97.3 ± 0.5 
Set7 63.6 ± 2.1 61.4 ± 11.6 24.3 ± 21.2 92.0 ± 2.2 7.2 ± 6.1 97.4 ± 0.7 
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Table S 7 Comprehensive performance metrics for preterm excluding C-sections prediction across all feature sets 

 
 AUC Train AUC Test Sn Sp PPV NPV 

Impact 

vs 

Impact 

Set1 74.1 ± 6.7 57.5 ± 7.7 6.7 ± 13.3 94.5 ± 3.0 0.9 ± 1.7 98.7 ± 0.2 
Set2 65.5 ± 5.3 45.4 ± 17.1 10.0 ± 15.3 91.1 ± 1.7 1.3 ± 2.1 98.7 ± 0.2 
Set3 79.0 ± 6.1 55.6 ± 7.0 10.0 ± 15.3 91.6 ± 2.3 1.4 ± 2.1 98.7 ± 0.2 
Set4 69.9 ± 9.1 52.7 ± 11.5 20.0 ± 26.7 92.8 ± 2.9 2.7 ± 3.6 98.8 ± 0.4 
Set5 78.7 ± 7.9 48.9 ± 10.6 0.0 ± 0.0 95.0 ± 3.0 nan ± nan 98.6 ± 0.1 
Set6 76.0 ± 5.8 60.1 ± 10.5 10.0 ± 15.3 92.8 ± 3.0 1.4 ± 2.2 98.7 ± 0.2 
Set7 76.4 ± 5.5 50.6 ± 14.4 13.3 ± 22.1 93.4 ± 3.1 2.3 ± 3.7 98.8 ± 0.3 

FEDOC 

vs 

FEDOC 

Set1 64.2 ± 3.6 59.5 ± 3.5 16.7 ± 6.8 90.6 ± 0.9 31.4 ± 7.7 80.2 ± 1.3 
Set2 56.2 ± 2.1 50.5 ± 3.6 10.0 ± 5.8 91.8 ± 2.9 nan ± nan 79.2 ± 1.0 
Set3 59.5 ± 3.4 55.0 ± 4.7 18.2 ± 5.0 90.7 ± 0.6 33.9 ± 7.4 80.5 ± 1.0 
Set4 64.7 ± 3.1 59.5 ± 3.8 17.3 ± 6.4 90.6 ± 0.4 31.9 ± 9.5 80.4 ± 1.2 
Set5 65.8 ± 2.5 63.6 ± 2.6 18.2 ± 6.8 90.6 ± 0.7 33.1 ± 8.4 80.5 ± 1.3 
Set6 58.8 ± 3.0 55.5 ± 3.4 14.2 ± 6.2 90.3 ± 0.6 27.5 ± 8.9 79.7 ± 1.3 
Set7 65.1 ± 2.1 61.0 ± 3.9 20.3 ± 9.9 90.7 ± 0.9 34.9 ± 11.5 81.0 ± 1.9 

Impact 

vs 

FEDOC 

Set1 74.1 ± 6.7 48.3 ± 5.4 10.6 ± 6.1 91.3 ± 3.0 nan ± nan 79.2 ± 0.9 
Set2 65.5 ± 5.3 50.4 ± 4.1 5.5 ± 3.0 92.7 ± 2.7 15.6 ± 9.6 78.5 ± 0.6 
Set3 79.0 ± 6.1 57.2 ± 4.5 13.3 ± 9.6 90.9 ± 1.4 24.7 ± 15.5 79.7 ± 1.7 
Set4 69.9 ± 9.1 48.0 ± 5.6 7.6 ± 4.4 90.8 ± 0.9 17.3 ± 9.2 78.6 ± 0.8 
Set5 78.7 ± 7.9 55.4 ± 7.2 14.2 ± 7.9 92.0 ± 2.8 nan ± nan 80.0 ± 1.3 
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Set6 76.0 ± 5.8 56.7 ± 4.5 11.5 ± 7.5 91.6 ± 2.1 25.1 ± 10.7 79.5 ± 1.3 
Set7 76.4 ± 5.5 55.4 ± 5.1 12.7 ± 6.2 91.4 ± 2.5 28.9 ± 11.9 79.6 ± 1.1 

FEDOC 

vs 

Impact 

Set1 64.2 ± 3.6 41.0 ± 16.4 10.0 ± 15.3 95.5 ± 3.6 nan ± nan 98.7 ± 0.2 
Set2 56.2 ± 2.1 44.6 ± 18.0 6.7 ± 13.3 94.2 ± 3.0 nan ± nan 98.7 ± 0.2 
Set3 59.5 ± 3.4 66.1 ± 19.9 20.0 ± 26.7 90.8 ± 1.7 2.5 ± 3.3 98.8 ± 0.4 
Set4 64.7 ± 3.1 41.7 ± 18.0 10.0 ± 15.3 94.6 ± 2.4 1.9 ± 3.1 98.7 ± 0.2 
Set5 65.8 ± 2.5 51.3 ± 24.4 30.0 ± 34.8 93.2 ± 2.8 6.1 ± 6.9 99.0 ± 0.5 
Set6 58.8 ± 3.0 67.5 ± 16.3 23.3 ± 26.0 90.7 ± 1.0 3.4 ± 4.0 98.8 ± 0.4 
Set7 65.1 ± 2.1 46.6 ± 20.6 23.3 ± 26.0 95.9 ± 3.2 5.5 ± 6.5 98.9 ± 0.4 

 

Table S 8 AUCs for stillbirth and neonatal death prediction across all feature sets in FEDOC 

 
 Stillbirth & neonatal death 

FEDOC 

vs 

FEDOC 

Set1 46.6 ± 9.8 

Set2 49.7 ± 8.3 
Set3 46.8 ± 6.8 
Set4 50.6 ± 9.9 
Set5 45.8 ± 7.0 
Set6 46.5 ± 6.9 
Set7 46.0 ± 9.6 
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Table S 9 Comprehensive performance metrics for C-section prediction across all feature sets 

 
 AUC Train AUC Test Sn Sp PPV NPV 

Impact 

vs 

Impact 

Set1 65.3 ± 1.9 65.2 ± 2.9 25.2 ± 5.2 90.1 ± 0.5 54.7 ± 5.7 71.4 ± 1.5 
Set2 57.5 ± 3.2 55.2 ± 3.7 13.3 ± 2.9 90.2 ± 0.2 39.2 ± 4.9 68.3 ± 0.7 
Set3 51.8 ± 2.5 48.7 ± 2.6 3.6 ± 4.7 96.1 ± 4.8 nan ± nan 67.3 ± 0.4 
Set4 65.6 ± 1.9 65.2 ± 3.0 25.6 ± 7.7 90.3 ± 0.5 55.0 ± 6.2 71.6 ± 2.2 
Set5 64.3 ± 2.0 63.4 ± 2.4 20.4 ± 6.6 90.2 ± 0.4 48.8 ± 9.5 70.2 ± 1.8 
Set6 55.9 ± 2.1 52.1 ± 3.3 9.7 ± 2.9 90.6 ± 0.7 32.5 ± 5.5 67.5 ± 0.6 
Set7 65.1 ± 1.5 64.8 ± 2.2 25.2 ± 5.9 90.4 ± 0.4 55.0 ± 6.0 71.4 ± 1.7 

FEDOC 

vs 

FEDOC 

Set1 67.2 ± 3.1 63.0 ± 5.2 25.4 ± 10.3 90.7 ± 0.4 35.8 ± 10.9 84.8 ± 1.8 
Set2 54.7 ± 3.3 49.1 ± 2.7 8.9 ± 4.9 92.1 ± 3.3 nan ± nan 82.2 ± 0.6 
Set3 51.8 ± 2.8 48.6 ± 4.6 3.6 ± 4.5 95.1 ± 4.9 nan ± nan 81.9 ± 0.5 
Set4 66.1 ± 2.8 62.5 ± 5.3 22.5 ± 8.7 90.8 ± 0.5 33.6 ± 9.6 84.3 ± 1.5 
Set5 66.0 ± 4.0 63.0 ± 4.8 21.4 ± 9.8 91.2 ± 0.9 32.0 ± 12.8 84.2 ± 1.6 
Set6 52.3 ± 2.7 46.4 ± 4.8 2.9 ± 4.2 94.6 ± 4.4 nan ± nan 81.7 ± 0.6 
Set7 65.2 ± 3.8 61.4 ± 3.7 22.9 ± 10.4 90.8 ± 1.0 34.2 ± 11.9 84.4 ± 1.9 

Impact 

vs 

FEDOC 

Set1 65.3 ± 1.9 52.3 ± 5.0 15.0 ± 7.5 91.0 ± 1.4 25.2 ± 8.1 83.1 ± 1.1 
Set2 57.5 ± 3.2 50.3 ± 5.0 10.0 ± 3.9 91.1 ± 1.0 19.3 ± 5.9 82.2 ± 0.6 
Set3 51.8 ± 2.5 52.1 ± 4.3 5.0 ± 6.6 95.9 ± 5.0 nan ± nan 82.2 ± 0.5 
Set4 65.6 ± 1.9 50.1 ± 8.1 10.7 ± 6.8 91.2 ± 1.0 19.9 ± 10.9 82.4 ± 1.1 
Set5 64.3 ± 2.0 57.3 ± 5.2 12.9 ± 5.6 91.3 ± 1.6 24.4 ± 9.9 82.8 ± 1.0 
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Set6 55.9 ± 2.1 54.5 ± 2.6 9.6 ± 6.6 91.3 ± 1.3 18.5 ± 11.5 82.2 ± 1.1 
Set7 65.1 ± 1.5 54.1 ± 6.0 14.3 ± 7.7 91.8 ± 1.4 26.2 ± 9.1 83.1 ± 1.2 

FEDOC 

vs 

Impact 

Set1 67.2 ± 3.1 56.8 ± 6.5 14.8 ± 4.1 90.3 ± 0.4 41.8 ± 7.7 68.7 ± 1.1 
Set2 54.7 ± 3.3 53.3 ± 2.9 11.4 ± 7.0 92.4 ± 3.7 nan ± nan 68.4 ± 1.2 
Set3 51.8 ± 2.8 50.2 ± 1.9 5.5 ± 6.0 95.3 ± 4.7 nan ± nan 67.6 ± 0.6 
Set4 66.1 ± 2.8 56.5 ± 3.9 13.4 ± 2.7 90.3 ± 1.3 40.0 ± 4.4 68.3 ± 0.6 
Set5 66.0 ± 4.0 57.4 ± 4.4 14.2 ± 2.5 89.9 ± 0.6 40.3 ± 4.8 68.4 ± 0.6 
Set6 52.3 ± 2.7 52.6 ± 4.5 6.7 ± 6.3 94.2 ± 4.8 nan ± nan 67.6 ± 0.8 
Set7 65.2 ± 3.8 56.6 ± 3.4 13.3 ± 3.7 90.3 ± 0.3 39.1 ± 7.4 68.3 ± 0.9 

 



 

 67 

Discussion of the prediction of alternate outcomes 

For low birthweight, IMPACT's results indicate slight 

prediction improvements when including clinical data and 

biometrics, rendering the full feature set superior. On the other hand, 

in FEDOC, Doppler indices are the most predictive, especially when 

combined with biometrics. In transfer learning contexts, combining 

Doppler and biometrics is most effective. For preterm births, 

IMPACT's results had moderate discriminative ability and point to 

clinical data as most predictive, with improvement when adding 

Doppler indices. Conversely, FeDoC data yielded poor predictions 

regardless of feature sets. Transfer learning was poor when predicting 

in FeDoC and slightly better when predicting in IMPACT. C-section 

predictions were primarily driven by clinical data, but differences in 

this feature set among cohorts rendered transfer learning predictions 

poor. When focusing on preterm births not due to C-sections, the 

performance was also very poor. Finally, predictions for stillbirth and 

neonatal death were equivalent to random chance, indicating the 

limitations of the datasets used in this study 
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Results considering Gestational Ages of 31-33 weeks  

Table S 10 Comprehensive performance metrics for SGA prediction across 

all feature sets 

 

Discussion of local scales and Intergrowth-21 

As previously reported, Intergrowth-21st standard may fail to 

detect at-risk SGA infants (birthweight < 10 centile), which may be 

especially true for western populations comprised by ethnic groups 

with larger maternal size (59,60). In the case of IMPACT, the 

proportion of SGA cases using the Intergrowth-21st scale was 10.5% 

vs. 15.7% when using the local scale. Indeed, the SGA cases detected 

by both the local standard and Intergrowth-21st are the ones that are 

at higher risk, whereas those only detected by the local standard are 

somehow those cases lying in the grey zone.  

In Figure S2, we show the comparison of both standards, 

which reveals a non-linear relation. On the right, we depict the 

difference between scales assessed at different GAs for individuals 

with the same weight. The observed differences reinforce the need 

for caution when applying the Intergrowth-21st tool to populations 

different from those on which it was trained.  
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Figure S 2 Comparison of INTERGROWTH-21 and Barcelona's Local Scale 

Despite the previously observed differences, and for the sake 

of comparison and generalization of a model trained on one cohort to 

the other, in the manuscript we report models’ performance in 

detecting SGA encoded using the Intergrowth-21st scale in both 

cohorts. Below, a comparison of model’s performance across all 

experiments. As observed, model’s performance is superior when 

using the Intergrowth-21st scale in IMPACT, likely since it’s easier 

for the model to predict these higher-risk cases. In the assessment of 

model generalizability to the unseen cohort (IMPACT – FeDoC 

| FeDoC – IMPACT), the models trained at detecting SGA as 

encoded with the Intergrowth-21st scale in both cohorts 

systematically outperform those trained at detecting SGA cases 

encoded using different scales (Intergrowth-21st in FeDoC and 

Barcelona scale in IMPACT).  

 

 

Table S 11 AUCs for SGA prediction across all feature sets using different 

scales 

D
ifferen

ce 
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  SGA (Intergr. -BCN st.) SGA (Intergrowth) 

IMPACT 

– 

IMPACT 

Set1 65.7 ± 4.0 59.4 ± 5.3 

Set2 74.8 ± 4.5 78.7 ± 2.0 

Set3 63.1 ± 4.2 65.8 ± 4.7 

Set4 77.6 ± 2.7 75.0 ± 3.4 

Set5 67.9 ± 5.1 67.4 ± 5.8 

Set6 75.5 ± 5.5 80.3 ± 3.0 

Set7 77.0 ± 5.4 80.3 ± 2.4 

IMPACT 

– 

FEDOC 

Set1 51.0 ± 6.7 56.3 ± 5.9 

Set2 62.9 ± 5.8 67.3 ± 5.5 

Set3 60.9 ± 4.1 61.3 ± 3.8 

Set4 57.4 ± 6.4 64.3 ± 6.1 

Set5 58.8 ± 4.3 63.6 ± 4.6 

Set6 69.3 ± 5.0 70.3 ± 4.5 

Set7 66.3 ± 4.2 71.0 ± 6.5 

FEDOC 

- 

IMPACT 

Set1 54.3 ± 8.0 58.0 ± 6.2 

Set2 66.2 ± 5.4 70.1 ± 4.4 

Set3 59.8 ± 6.4 64.0 ± 4.7 

Set4 62.8 ± 4.8 68.8 ± 4.9 

Set5 59.0 ± 3.5 64.4 ± 3.3 

Set6 69.4 ± 5.4 76.8 ± 3.5 

Set7 63.8 ± 4.3 68.4 ± 6.7 
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Discussion of baseline characteristics 

 

 

Figure S 3 Visual comparison of baseline characteristics between the 

IMPACT and FEDOC 

We have noted that the cohort from Pakistan is comparatively 

smaller in size. This is evident across all materno-fetal attributes, as 

the Pakistani women were recorded as being shorter and lighter in 

weight. No significant distinction was observed in blood pressure 

levels. The average length of pregnancies among Pakistani women 

was also shorter, with the mean gestational age at birth being 

markedly less than that of the Barcelona cohort. 

Clear social disparities were detected in areas such as 

accessibility to antenatal care, education level, and employment 

status. Specifically, a third of the Pakistani women lacked access to 

antenatal care services, their education level was markedly lower, and 

a majority were unemployed. This contrasts sharply with the highly 
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educated and near-full employment status within the Barcelona 

cohort. 

A higher proportion of women from Barcelona halted risk-

associated habits upon confirmation of their pregnancy, whereas 

approximately half of the Pakistani women continued these habits 

during pregnancy. Additionally, the Barcelona cohort exhibited a 

higher representation of nulliparous women, compared to the 

Pakistani group, where such women were virtually absent. 

Hemoglobin levels were markedly lower in the Pakistani 

group, falling within the range of anemia. This could be due to 

undernutrition and, given the amount of parous women in this group, 

suboptimal recovery from a previous pregnancy, among other 

multiple causes. 
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3. ASSESSING THE IMPACT OF 
INTERVENTIONS OF CLUB FOOT INDIA 
INITIATIVE TRUST ON PATIENTS AND THEIR 
FAMILIES 

 

Abstract 

 

3.1 Introduction 

Clubfoot, a musculoskeletal deformity present at birth, affects 

a substantial number of infants worldwide. This condition, which 

causes one or both feet to turn severely inward, necessitates early 

treatment to restore the child's quality of life. Left untreated, it poses 

significant risks, including difficulty walking and long-term 

disability. The exact cause of clubfoot is still unknown, but genetics 

and environmental factors are considered major contributors. 

 

The standard treatment for clubfoot, known as the Ponseti 

method, is non-surgical and involves two phases: the corrective and 

maintenance phase (61). The corrective phase includes plaster 

casting with weekly changes for 4-6 weeks, followed by an 

evaluation for a tenotomy. The maintenance phase involves the 

replacement of the plaster cast with a brace to be worn almost 

constantly over a three-month span, and then during sleep for up to 

five years. This cost-effective and non-invasive approach has 

revolutionized the treatment of clubfoot, especially in low and 

middle-income countries (LMICs) where access to surgical 

interventions may be limited (62–64). 
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However, despite the availability of this effective treatment, 

access remains a significant barrier in many LMICs. Financial 

difficulties often prevent families from seeking help, and those who 

receive care face other long-term obstacles beyond the financial real 

(65–68). In this context, the role of non-governmental organizations 

(NGOs) becomes crucial.  

 

One such NGO is CURE International, and specifically, the 

Cure India Initiative Trust (CIIT), which has been instrumental in 

addressing these challenges. Started in 2009, CIIT not only provides 

no-cost treatment for children with clubfoot but also works 

extensively on other aspects of care. This includes deploying social 

workers who aid in various areas such as vaccination, water usage, 

maternal literacy, and more, ultimately aiming to improve outcomes 

beyond just the clinical perspective (69). 

 

This broader approach aligns with the concept of value-based 

healthcare, which has gained prominence as it optimizes 

interventions and focuses on the patient's perspective to identify 

those interventions that bring the most value throughout the patient's 

journey. Understanding the impact beyond clinical outcomes is 

essential, and to this end, monitoring patient-reported outcomes and 

measurements (PROMs) is key (9). However, it is vital to adapt these 

PROMs to the specificities of the pathology and the sociocultural 

context. 
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In the specific case of clubfoot in India, considering the social 

stigma that families with affected members may experience, the 

impact on parents' and children's quality of life, and other social and 

economic aspects, is especially important (65). These factors are 

particularly pronounced in families of lower socioeconomic status. A 

holistic evaluation, integrating a multitude of patient perspectives 

and extensive questionnaires about patients' psychosocial statuses, 

can assist in quantifying the social impact of treatments, identifying 

areas that show pronounced improvement or face challenges. 

 

Yet, there is currently no comprehensive framework that 

accounts for all the social metrics for measuring the impact an 

investment has from a social or environmental standpoint. Current 

frameworks do not measure negative impacts, which are essential for 

determining the success of an investment. The existing metrics used 

to measure social impact are incomplete, expensive, lack community 

involvement, and are ineffective in determining resource allocation. 

A holistic approach involving community voice and real-time data 

across various metrics can provide greater insight, ensure high-value 

healthcare, and make a true community impact.  

 

Institutions such as the International Consortium for Health 

Outcomes Measurement (ICHOM) have been pioneering in 

establishing gold standards for these PROMs, with validated 

questionnaires for various pathologies. The need for such 

comprehensive evaluation is particularly highlighted by the clubfoot 

situation in India, and organizations like CURE International and 
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CIIT are leading the way in transforming healthcare delivery by 

addressing these challenges holistically. 

In this paper we present the results and discussion obtained 

from running a composite of questionnaires to clubfoot and control 

families in the states of Gujarat and Maharashtra. This corresponds 

to the baseline characteristics of the cohorts we plan on following up 

in order to quantitatively and holistically assess the impact of 

clubfoot treatment. 

 

3.2 Methods 

a) Questionnaire selection 

In this paper, we employed a multi-faceted methodological 

approach. Central to this approach was the use of the International 

Consortium for Health Outcomes Measurement (ICHOM) patient-

centered outcomes. As there were no specific questionnaires for 

clubfoot, we used those for congenital heart disease and congenital 

upper limb conditions given the similarity (70,71). The perspectives 

of social workers regarding culturally sensitive considerations further 

enriched our comprehensive approach to analysis. 
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Figure 9 Correspondence between dimensions from the ICHOM framework 

and questionnaires used in this work 

The design of our composite of questionnaires was based on 

various dimensions derived from ICHOM’s patient-centered 

outcomes, as can be seen in Figure 9, as well as social worker 

preferences and familiarity with the instruments. We also placed an 

emphasis on the initiative's most significant impacts as reported by 

social workers and ensured a culturally sensitive adaptation for our 

target population.  

In shaping our study, we aligned the ICHOM domains with 

validated questionnaires that social workers felt comfortable 

administering. We emphasized areas such as discrimination and 

stigma due to their profound influence on patients with clubfoot and 

their families. Our chosen questionnaires included the WHO-QoL 

Bref questionnaire (72), the Socioeconomic Status (SES) Udai 

Pareek revised Scale (73), and the DISC-12 questionnaire for the 

Discrimination and Stigma Scale (74), adapted for general health 

issues. We also integrated additional questions from the Lancaster 

General Hospital questionnaire for assessing Quality of life in 
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children who underwent cardiac surgery to evaluate the financial 

burden and effects on parents' work productivity due to their child's 

condition. 

We involved social workers in several sessions to foster their 

understanding of the project and its underlying motivations, ensuring 

their vested interest in the research. Together, we refined the 

questionnaire's content, using their insights to shape the final design. 

This process entailed modifying, eliminating, and adding questions 

based on their input. Notably, we expanded the list of material 

possessions in the SES to include two-wheelers and four-wheelers 

and introduced rented housing as an option. We also adjusted or 

removed questions pertaining to sexual relations and intimacy. 

To ensure translation accuracy and sensitivity, we initially 

tasked social workers with translating the questionnaire. This was 

followed by a back-translation to check for any alterations in 

meaning. Collaborating with the entire team was crucial to ensure the 

correct interpretation of concepts and prevent any loss of meaning 

during translation. 

For data collection was conducted using Google Forms due to 

its user-friendly interface, device adaptability, and standardization 

capabilities. The questionnaire was administered by social workers 

to families with whom they had established a trustful relationship 

through repeated clinic visits. This strategy aimed to prevent 

premature alienation of the families. We chose not to administer the 

questionnaire to children under three years old, given their limited 

capacity to contribute meaningfully to our research focus. 
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Collecting patient-reported outcomes was paramount in our 

methodology. This approach enriched our comprehensive 

understanding of the patient experience and added credence to our 

findings. The resulting data will not only validate our research but 

also establish a benchmark for future studies, providing a measure for 

evaluating the effectiveness of new strategies. 

During the recruitment phase, we actively sought families 

from both states who were affiliated with the program. To adjust for 

potential confounding of environmental variables, the control groups 

were obtained through proximity matching. This means that the 

control groups were recruited from neighbors of the same 

communities as the families with a child suffering from clubfoot. The 

controls were meticulously selected to match as closely as possible 

with the target group. This ensured that the comparative analysis 

remained consistent and reliable. 

To gain insight into the progression of families dealing with 

clubfoot through our program, we needed to overcome the limitation 

of having data from only a single time point. To tackle this, we 

grouped the clubfoot families based on the their time enrolled in the 

program. This resulted in three distinct subgroups: the 'Early' group 

(0 to 100 days), the 'Middle' group (100 to 500 days), and the 'Late' 

group (enrolled for more than 500 days). 

b) Statistical analysis 

Differences between the characteristics of the two groups 

were evaluated using a T-test or Mann-Whitney U test for continuous 

variables, depending on the normality of the data. The chi-squared 

test was used for binary variables. 
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3.3 Results 

In this study, we gathered data from a total of 896 families 

who completed the entire set of questionnaires, this corresponded to 

tuples of parent-child responses. Out of these, 404 families were from 

Maharashtra, from which 210 families were affected by clubfoot, and 

the remaining 194 were matched control families. In Gujarat, we 

interviewed 492 participants in total, where 242 families were 

affected with clubfoot, and the remaining 250 families were our 

controls. In Table 4, we present the characteristics and scores across 

various areas of the multiple questionnaires.
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Table 4 Characteristics of the whole cohort of study participants 

Variables 
Control 

Clubfoot (n=452) p-value 
(n=444) 

Demographics    

    Parent age (years) 31.58 ± 5.26 31.15 ± 5.28 0.231 

    Parent sex (female) 248 (55.86%) 169 (37.39%) p<0.001 

    Child age (years) 3.19 (1.6 to 5.12) 2.56 (1.1 to 4.16) p<0.001 

     Child sex (female) 207 (46.62%) 145 (32.08%) p<0.001 

    Age of enrollment (days) None 56 (19 to 214.5)  

    Time in the program (days) None 763.5 (132.5 to 1262)  

WHO QoL-BREF 
   

    Physical health Parent 16 (13.33 to 16.67) 14 (12 to 16) p<0.001 

    Physical health Child 16 (16 to 18.67) 16 (13.33 to 16) p<0.001 

    Psychological Parent 15 (12.5 to 16) 13 (11.5 to 14.5) p<0.001 

    Psychological Child 15.43 (13.71 to 17.14) 14.29 (12 to 16) p<0.001 

    Social relationships Parent 15.67 (14 to 16.67) 14 (12.67 to 16) p<0.001 

    Social relationships Child 16 (14.67 to 18.67) 16 (13.33 to 17) p<0.001 

    Environment Parent 15 (13 to 16) 13.5 (11.5 to 14.5) p<0.001 

    Environment Child 0 (0 to 0.05) 0 (0 to 0.22) p<0.001 
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DISC-12    

    Unfair treatment Parent 0 (0 to 0) 0 (0 to 0.5) p<0.001 

    Unfair treatment Child 0 (0 to 2) 0.5 (0 to 1.5) 0.329 

    Stopping self Parent 1.33 (0 to 2.75) 1.5 (0.67 to 2) 0.604 

    Stopping self Child 0 (0 to 0) 0 (0 to 0.18) p<0.001 

    Overcoming stigma Parent 0 (0 to 0) 0 (0 to 0) 0.250 

    Overcoming stigma Child 2 (0 to 2) 1 (0 to 2) 0.011 

    Positive treatment Parent 1.83 (0.33 to 2.83) 1.67 (1 to 2) 0.700 

    Positive treatment Child 
   

Udai Pareek SES scale classes    

    Lower class 75 (16.89%) 101 (22.35%) 0.039 

    Lower-middle class 206 (46.4%) 217 (48.01%) 0.628 

    Middle class 89 (20.05%) 92 (20.35%) 0.908 

    Upper-middle class 74 (16.67%) 41 (9.07%) p<0.001 

    Upper class 0 (0%) 1 (0.22%) 0.321 

Udai Pareek SES scale domains    

Occupation 3 (1 to 5) 1 (1 to 5) 0.016 

Education 5 (3 to 6) 4 (2 to 5) p<0.001 

Land 0 (0 to 0) 0 (0 to 1) 0.002 

Social Participation 4 (0.9%) 0 (0%) 0.043 
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Housing 3 (3 to 3) 3 (2 to 3) p<0.001 

Farm Power 1 (1 to 1) 1 (1 to 1) p<0.001 

Material Possessions 6.5 (3 to 18) 6 (3 to 13) 0.047 

More than 5 family members 310 (69.82%) 273 (60.4%) 0.003 

 

 
Table 5 Characteristics of Gujarat participants 

Variables 
Control 

Clubfoot (n=242) p-value 
(n=250) 

Demographics 
   

    Parent age (years) 31.66 ± 5.29 30.45 ± 5.17 0.012 

    Parent sex (female) 139 (55.6%) 85 (35.12%) p<0.001 

    Child age (years) 2.9 (1.58 to 4.77) 2.2 (0.83 to 3.51) p<0.001 

     Child sex (female) 98 (39.2%) 80 (33.06%) 0.156 

    Age of enrollment (days) None 41 (18 to 131)  

    Time in the program (days) None 544.5 (136 to 1225)  

WHO QoL-BREF 
   

    Physical health Parent 15.43 (13.71 to 16.57) 14.86 (12.86 to 16) 0.001 

    Physical health Child 16 (14.67 to 16.67) 14 (12 to 15.83) p<0.001 
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    Psychological Parent 16 (16 to 17.33) 16 (14.67 to 17.33) 0.01 

    Psychological Child 15 (13 to 16) 13 (12 to 15) p<0.001 

    Social relationships Parent 15.6 ± 2.02 14.24 ± 2.22 p<0.001 

    Social relationships Child 15.33 (14 to 16.67) 14 (12.67 to 15.33) p<0.001 

    Environment Parent 16 (16 to 18.67) 16 (14.67 to 17.33) 0.065 

    Environment Child 14.75 (13.5 to 16) 13.5 (12.5 to 14.5) p<0.001 

DISC-12 
   

    Unfair treatment Parent 0 (0 to 0) 0 (0 to 0.17) p<0.001 

    Unfair treatment Child 0 (0 to 0) 0 (0 to 0.5) p<0.001 

    Stopping self Parent 0 (0 to 0.75) 0 (0 to 1) 0.172 

    Stopping self Child 0.5 (0 to 2.62) 1.25 (0 to 2.25) 0.054 

    Overcoming stigma Parent 0 (0 to 0) 0 (0 to 0.09) p<0.001 

    Overcoming stigma Child 0 (0 to 0) 0 (0 to 0) 0.005 

    Positive treatment Parent 0 (0 to 2) 0 (0 to 1) 0.444 

    Positive treatment Child 1 (0 to 2.67) 1.83 (0.63 to 2.38) 0.091 

Udai Pareek SES scale classes 
   

    Lower class 13 (5.2%) 13 (5.37%) 0.932 

    Lower-middle class 85 (34%) 111 (45.87%) 0.007 

    Middle class 78 (31.2%) 77 (31.82%) 0.882 

    Upper-middle class 74 (29.6%) 40 (16.53%) 0.001 
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    Upper class 0 (0%) 1 (0.41%) 0.309 

Udai Pareek SES scale domains 
   

Occupation 4 (1 to 5) 3 (1 to 5) 0.051 

Education 4.5 (3 to 6) 3 (2 to 5) p<0.001 

Land 0 (0 to 1) 0 (0 to 1) 0.060 

Social Participation 1 (0.4%) 0 (0%) 0.324 

Housing 3 (3 to 3) 3 (2 to 3) p<0.001 

Farm Power 1 (1 to 1) 1 (1 to 2) p<0.001 

Material Possessions 13 (7 to 18) 12 (7 to 18) 0.014 

More than 5 family members 166 (66.4%) 140 (57.85%) 0.050 

 

 
Table 6 Characteristics of Maharashtra participants 

Variables 
Control 

Clubfoot (n=210) p-value 
(n=194) 

Demographics 
   

    Parent age (years) 31.48 ± 5.24 31.96 ± 5.3 0.366 

    Parent sex (female) 109 (56.19%) 84 (40%) p<0.001 

    Child age (years) 3.71 (1.77 to 5.82) 2.92 (1.62 to 5.25) 0.112 

     Child sex (female) 109 (56.19%) 65 (30.95%) 0.001 
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    Age of enrollment (days) None 89.5 (24 to 375)  

    Time in the program (days) None 839 (129 to 1451)  

WHO QoL-BREF 
   

    Physical health Parent 14.57 (12.57 to 17.14) 14.29 (12 to 16.29) 0.150 

    Physical health Child 15.33 (12.67 to 17.33) 14 (11.33 to 16) p<0.001 

    Psychological Parent 16 (13.33 to 18.67) 16 (12 to 16) p<0.001 

    Psychological Child 13.79 ± 3.27 12.56 ± 2.79 p<0.001 

    Social relationships Parent 14.86 (13.71 to 17.14) 14.29 (12 to 16.57) 0.010 

    Social relationships Child 16 (13.33 to 17.33) 14.67 (12 to 16.67) p<0.001 

    Environment Parent 16 (14.33 to 17.67) 16 (12 to 16) p<0.001 

    Environment Child 15 (12 to 16) 13 (10.5 to 14.5) p<0.001 

DISC-12 
   

    Unfair treatment Parent 0 (0 to 0.05) 0 (0 to 0.32) 0.007 

    Unfair treatment Child 0 (0 to 0) 0 (0 to 0.46) 0.032 

    Stopping self Parent 1 (0 to 2) 1 (0 to 2) 0.060 

    Stopping self Child 2 (0.63 to 3) 1.67 (1 to 2) 0.166 

    Overcoming stigma Parent 0 (0 to 0.08) 0 (0 to 0.33) 0.043 

    Overcoming stigma Child 0 (0 to 0) 0 (0 to 0) 0.873 

    Positive treatment Parent 2 (0 to 2) 1 (0 to 2) 0.013 

    Positive treatment Child 2 (0.75 to 3) 1.67 (1.17 to 2) 0.048 
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Udai Pareek SES scale classes 
   

    Lower class 62 (31.96%) 88 (41.9%) 0.039 

    Lower-middle class 121 (62.37%) 106 (50.48%) 0.016 

    Middle class 11 (5.67%) 15 (7.14%) 0.547 

    Upper-middle class 0 (0%) 1 (0.48%) 0.336 

    Upper class 0 (0%) 0 (0%) - 

Udai Pareek SES scale domains 
   

Occupation 1 (1 to 5) 1 (1 to 4) 0.178 

Education 5 (4 to 6) 4 (3 to 5) p<0.001 

Land 0 (0 to 0) 0 (0 to 1) 0.007 

Social Participation 3 (1.55%) 0 (0%) 0.072 

Housing 3 (2 to 4) 3 (2 to 3) p<0.001 

Farm Power 1 (1 to 1) 1 (1 to 1) 0.008 

Material Possessions 1 (0 to 3) 3 (0 to 3) 0.329 

More than 5 family members 144 (74.23%) 133 (63.33%) 0.022 
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Figure 10 Quality of Life by Maternal Education level 

 

 
Figure 11 Quality of life of clubfoot affected families by time enrolled in the 

program 

Early corresponds to the period between 0 and 100 days, Middle corresponds 

to the period over 100 days and below 500 days, and Late corresponds to 500 

days and above 
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We illustrate the distributions corresponding to the scores of 

the Udai Pareek SES scale in Figure 12. The matching process 

appears to have been more effective in Maharashtra, as in Gujarat we 

observe a skew towards lower values for the clubfoot families. 

Conversely, the control families display a higher SES score.  

 

Figure 12 Udai Pareek SES scores 

 

We also acknowledge that the domain of Overcoming stigma 

in DISC-12 was extremely sparse, containing the largest amount of 

non-answered questions out of every area. Making it hard to make 

assessments. 
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Figure 13 Responses to the LGH Questionnaire stratified by Socio-economic class 
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Figure 14 Responses to the LGH Questionnaire by time enrolled in the program 
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3.4 Discussion 

To begin with, regarding the differences between states, we 

observed that Gujarat families tend to have lower levels of education 

(Table 5), this demographic potentially representing a group with 

high vulnerability. In contrast, the state of Maharashtra exhibits 

higher levels of education but suffers from a lower overall 

socioeconomic status (Table 6). 

 

Moreover, statistical analysis revealed significant differences 

in the Quality of Life (QoL) of children with clubfoot and their 

parents when compared to controls across all dimensions of the 

questionnaire (Table 4). These differences were particularly marked 

in the child's environment score in Gujarat (Table 5), in the parents' 

physical health and in psychological scores for both parents and 

children in both states (Table 5, Table 6). The most profound 

differences were observed in the psychological domain, implying the 

adverse psychological impact of clubfoot on affected families. 

 

The data reveals a direct correlation between maternal 

education and QoL (Figure 10), with lower education levels generally 

observed in families with a clubfoot child. The correlation is 

especially pronounced within the psychological domain, reinforcing 

the idea of the significant mental health burden associated with 

having a child with clubfoot. 

 

Despite the significant challenges these families face, there 

was a noticeable sense of positive discrimination towards families 
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with a clubfoot child in both states (Table 4). This might be tied to 

the gratitude these families feel towards the program and the benefits 

they derive from it. In both Maharashtra and Gujarat, higher scores 

were noted in the domain concerning overcoming stigma, with a 

higher difference in Maharashtra, although these differences were not 

statistically significant (Table 5, Table 6, and supplementary Figures 

4 and 5).  

 

The supplementary questions provided further insight into the 

factors contributing to the lower QoL in clubfoot families 

(Supplementary Figure 6). Approximately 55% of children with 

clubfoot required additional treatments or counselling for emotional, 

behavioral, and/or developmental problems, in stark contrast to only 

about 18% of the control group. Furthermore, around 45% of these 

children had limitations due to their health and more changing 

medical needs compared to controls. 

 

An additional strain on these families is evident in the statistic 

that more than 50% of the families with a clubfoot child have more 

than one child with special health needs. Some families have as many 

as five dependants with various health problems. This situation has 

had a tangible impact on the family structure and economics, with 

more than 50% of the families with a clubfoot child reporting that an 

adult had to stop working or reduce their work hours to care for the 

child with special health needs. The demands of care are significant, 

with over half of these families spending more than six hours a week 

on health-related care for their child and 30% spending more than 11 
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hours weekly. This increased time commitment to care further 

compounds the financial difficulties faced by these families, with 

around 60% of them experiencing difficulty paying bills due to their 

child's healthcare needs (Supplementary Figure 6). 

 

A deeper analysis of these results, taking into account the 

socioeconomic status (SES) of the clubfoot families, further 

illuminates the issue (Figure 13). Children from middle and upper-

middle-class families were more likely to receive treatment than 

those from lower SES families, perhaps due to lower access to 

healthcare. Over 70% of children from higher SES families received 

counselling or treatment for emotional, behavioral, and/or 

developmental problems. This percentage is almost double that of 

children from lower SES backgrounds. Additionally, families with 

lower SES tended to have more children with special healthcare 

needs, and a higher percentage had to stop working or reduce their 

work hours to accommodate their child's needs. Interestingly, lower 

middle and middle-class families reported the most financial 

difficulties due to their children's healthcare issues (Figure 13). 

 

When we analyze these findings by state, the results vary 

(Figure 13). In Gujarat, the influence of SES on the clubfoot families 

appears more pronounced. There is a higher percentage of children 

with additional healthcare needs in Gujarat, and a higher perception 

of the child’s disability level compared to other children of their age 

in lower SES families. While families in Maharashtra tend to allocate 

more healthcare intervention time in middle and upper-middle 
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classes, families from lower SES in Gujarat spend more time 

providing care. Additionally, a higher percentage of adults in Gujarat 

had to reduce their work hours or stop working entirely due to their 

child's health needs, irrespective of SES. However, in Maharashtra, 

this trend was most evident in lower SES families. In general, 

families in Gujarat faced greater difficulties in paying bills due to 

their children's healthcare needs. 

 

When we factor in the duration of a family's enrolment in the 

program, categorized as early, middle, late, we find an interesting 

correlation (Figure 14). Families in the early stages of the program, 

and those in the late stages, reported lower perceived disability, likely 

due to the children's younger age and the intervention's beneficial 

effects, respectively. Long-term enrolment in the program was also 

associated with a reduction in the time spent providing care for their 

children’s needs and a decrease in the need for treatment and 

counselling for developmental, emotional, and behavioral conditions. 

Despite these improvements, there wasn't a similar reduction in the 

financial burdens such as job adjustments or difficulties paying bills. 

However, the combined effects of less time dedicated to childcare 

and decreased perceived disability indicate the positive impact of 

CURE India’s intervention on the families' overall wellbeing. 

 

3.5 Limitations and Future work 

The limitations of this study stem from several factors. 

Primarily, the social vulnerability of the families involved introduces 

a response dependency when gauging the perception of the child's 
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care. Additionally, the availability of only cross-sectional data limits 

the measurement of the patient's evolution due to time constraints 

with data collection. Despite this, participants can be segmented into 

different stages of the health cycle. 

Further complications arise from the questionnaires, which 

were limited due to the counselors' familiarity with the questions. To 

facilitate counselors' focus on social impact factors, the questions 

were modified. However, these changes necessitated adaptation to 

contextual and cultural cues for the population to which the 

questionnaires were administered. 

The role of the counselors is crucial in this context. Their 

expertise is required to build trust and rapport with families, ensuring 

both the accuracy of responses and the families' return for continued 

treatment. 

Another limitation lies in the timing of questionnaire 

administration. These were given after successful intervention, 

creating a dearth of ground truth when comparing to unsuccessful 

interventions. Furthermore, there was no proper baseline set, with a 

specific period from enrollment to questionnaire administration, as 

would typically occur in a prospective trial. 

 

3.6 Conclusions 

The paradigm of value-based healthcare (VBHC) emphasizes 

patient-centered outcomes, advocating for a broader, more 

encompassing perspective that includes patient-reported outcomes 

for a more sustainable, high-value care approach. This principle is 

intertwined with the importance of recognizing local contextual 
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challenges, where geographical differences within the same country 

can yield varied results in healthcare programs, necessitating tailored 

solutions to enhance accessibility and adherence. 

 

Meanwhile, the sustainability of health outcomes is 

underpinned by ongoing patient participation in these programs, and 

while a single time point may provide promising results, continuity 

in assessing outcome domains throughout the health cycle is pivotal. 

This comes to the fore in the efficacy of interventions, especially 

amongst vulnerable segments. Interventions have shown tangible 

improvements in the quality of life of the patients and their families. 

Nevertheless, disparities persist between the patient population and 

control groups, and while there is a clear trend towards improved 

outcomes over time, the financial burden on families, particularly 

those in lower socioeconomic and educational brackets, remains a 

significant challenge. 

 

Moreover, interventions have elicited a positive treatment 

bias, with clubfoot patients experiencing better outcomes in positive 

discrimination dimensions due to the extended support from social 

workers. Their roles extend beyond mere treatment, helping families 

navigate the healthcare system and educating them about vital health 

practices like vaccinations and safe water usage. 

 

Cultural considerations in the development of questionnaires 

are crucial, requiring real-world adaptation and buy-in from 

communities and counselors to ensure the appropriate 
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implementation of the study. In essence, this multifaceted approach, 

merging patient-centered VBHC, adaptable learning, sustainable 

health outcome tracking, culturally conscious questionnaire design, 

and targeted support for vulnerable segments, promises a more 

effective, inclusive, and equitable healthcare landscape in our future 

follow-up studies. 

 

Considering these findings, it is crucial to acknowledge the 

importance of measuring beyond just clinical outcomes in Low- and 

Middle-Income Countries (LMIC). While clinical markers are key to 

assessing health progress, they do not capture the entirety of a 

patient's wellbeing or the socio-economic impact of health 

interventions. By including factors such as financial stability, social 

support, and education, we get a more holistic view of health and can 

thus better allocate resources for optimal benefit. This approach 

promotes high-value care by identifying high-impact investments, 

pinpointing risk populations, and discovering potential areas for 

intervention. 

 

This expanded measurement strategy also fosters 

collaborative learning between different regions and communities. 

By sharing success stories and learning from challenges, regions can 

borrow and adapt effective practices to their local context. This kind 

of collaboration is pivotal in crafting tailor-made strategies that truly 

respond to the needs and realities of specific populations. 

 

Furthermore, it is instrumental in offering a clear measure of 

impact for the vulnerable populations caught between clinical 



 

 101 

outcomes. For instance, though clinical improvement might be noted, 

it is necessary to identify if the patient still suffers due to ancillary 

burdens such as transportation costs, time off work, or stigma from 

the disease. A comprehensive analysis such as this is fundamental to 

illustrate the full picture of the patient's journey, thereby leading to 

better-targeted and more impactful interventions. 

 

Ultimately, this broader perspective of health outcomes is not 

just necessary for better patient care; it is also crucial for funding and 

sustainability. It enables NGOs to demonstrate a wider societal 

impact of their interventions, moving beyond solely medical gains. 

This broader societal value proposition could be more appealing to 

potential funders, who are increasingly interested in supporting 

projects that deliver comprehensive benefits to communities. 

Consequently, such an analytical approach would contribute to 

securing financial resources that sustain NGOs' activities, leading to 

healthier communities in the long run.  
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3.7 Supplementary Material 

a) DISC-12 score distribution 
 

 
Figure S 4 Gujarat DISC 12 distributions for each of the four domains 

 
Figure S 5 Maharashtra DISC 12 distributions for each of the four domai
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Figure S 6 Responses to the LGH Questionnaire by Clubfoot or Control 
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4. INCREMENTAL MULTIPLE KERNEL 
LEARNING  

 

Abstract 

 

Unsupervised learning algorithms are becoming increasingly 

important in the big data era due to their ability to extract knowledge 

from large amounts of unlabeled data. Most existing unsupervised 

learning algorithms that allow for data fusion using kernel methods 

suffer from slow learning speeds due to high computational costs. To 

overcome this limitation, we propose a novel unsupervised learning 

method called incremental Multiple Kernel Learning for 

Dimensionality Reduction (iMKL-DR). This algorithm builds upon 

unsupervised MKL, and thus can also fuse information from multiple 

sources with different dimensionality. Our proposed method can 

learn the underlying data representation from heterogeneous sources 

without presupposing any prior knowledge about the data. 

Experimental results show that our approach can obtain embeddings 

on par with its batch alternative while reporting smaller computation 

times. 
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4.1 Introduction 

Multi-modal representation learning is growing in 

importance. Many algorithms are focused on the problem of 

integrating heterogeneous data to obtain a unified representation that 

can leverage the information captured by the different modalities of 

acquisition. This is particularly crucial in healthcare or biomedical 

context, where data collected from a single individual presents an 

intrinsic heterogeneity due to the source itself (imaging, biomarkers, 

cell counts, gene expressions, demographics, etc.), making it difficult 

to unify all these descriptors in a simpler representation. 

There are many types of algorithms that aim at tackling the problem 

of representation learning with heterogeneous data, but we focus on 

the field of kernel methods, as they provide an interesting trade-off 

between performance and dataset size. In comparison, deep learning 

architectures, albeit being the most common in practice as they can 

capture extremely complex patterns, they require vast amounts of 

observations to train. These dataset sizes might not be available in 

certain biomedical settings, as healthcare data is expensive to obtain.  

Kernel methods leverage the use of a kernel matrix to represent the 

pairwise similarities between observations, using a kernel function. 

This approach holds the advantage of mapping the original high-

dimensional input data into a new, potentially infinite-dimensional, 

feature space. This transformed space, often referred to as a 'kernel 

space,' is designed to make the data more separable, making complex 

patterns more visible. In essence, kernel methods aim to learn a 
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kernel matrix that captures the similarities between instances, such as 

patients in a medical context, as accurately as possible compared to 

the original input data. From this, they then derive a lower-

dimensional representation that emphasizes the most significant 

characteristics of the data. In equation 1, we illustrate how a kernel 

matrix can be computed using one of the most common kernel 

functions, known as radial basis or Gaussian. 

Equation 1 

𝑲
𝒎(𝒙{𝒎,𝒊},𝒙{𝒎,𝒋})

= 𝐞𝐱𝐩 ( −
||𝒙{𝒎,𝒊} − 𝒙{𝒎,𝒋}||

𝟐

𝟐 𝒎
𝟐 ) 

 

An already established algorithm in this scenario is multiple kernel 

learning, for which many formulations exist. This holds true 

especially in the supervised case, where formulations allow for the 

training with a vast number of kernels and instances (75–77).  

In this chapter we aim at improving the formulation used in Chapter 

1, by Lin et al (27), which as all batch unsupervised MKL 

formulations suffer from poor scalability and are thus unable to train 

with very big datasets.. In a nutshell, this occurs due to the 

quadratically increase in computational cost due to the nature of the 

kernel matrix which represents each observation of a dataset as a row 

and column of a square matrix. 

Nonetheless, we acknowledge two implementations that aim 

at resolving this issue, namely, TUMK-ELM and fMKL-DR (78,79). 

TUMK-ELM is capable of learning at very high speeds, but it 
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presupposes clusters within the input data, which might hinder the 

detection of transitions that can occur during disease worsening from 

normalcy. On the other hand, fMKL-DR, which builds on top of 

MKL-DR, implements matrix chain multiplication ordering to 

achieve a slightly faster convergence to the solution, but the 

limitation when dealing with a very large number of data 

observations remains.  

In this last chapter, we want to add an additional tool to the 

unsupervised repertoire that does not have the shortcomings of 

current implementations. For this reason, we propose a rather simple 

formulation that builds on top of previous work by Li and colleagues 

(80). Our proposed solution addresses the scalability issue by 

innovatively applying an iterative retraining method to unsupervised 

Multiple Kernel Learning (MKL). The central idea here is to 

incrementally introduce small data batches at each iteration, which 

enables MKL to handle larger datasets effectively. This iterative, 

incremental process also allows the model to learn from new 

datapoints and adapt to progressively larger data volumes, where 

previously a full batch retraining would have been necessary. 

We named our approach incremental Multiple Kernel Learning for 

Dimensionality Reduction (iMKL-DR in short). The key 

contributions from our work are: 

• Heterogeneous data fusion. Profiting from data 

kernelization, our algorithm can merge data with different 

dimensionality, and typology without any label information. 
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•  Scalability. Our approach presents a reduction in 

computational costs, potentially allowing for training with 

more instances. 

• Non-presumptive dimensionality reduction. The spectrum 

capturing disease progression, which ranges from normalcy 

to disease, is not a discrete process but a grey area between 

both (25). This makes diagnosis of complex syndromes 

challenging, since clinicians need to integrate plenty of data 

from a single individual and compare it to similar ones. This 

renders algorithms that assume separated clusters in the data 

(like TUMK-ELM) suboptimal in these cases. In contrast, 

iMKL-DR could improve the clinical decision process by 

presenting the clinicians with an agnostic, continuous and yet 

informative representation of the individual status in 

comparison to others. 

We compared the resulting embedding quality in both a 

benchmark dataset and a clinical dataset. First, a hypertrophic 

cardiomyopathy dataset (26), second, a dataset of manuscript digits 

from which multimodal features have been extracted (81). 

We organized this chapter as follows: First, in the methods section, 

we describe in detail the formulation on which iMKL-DR is based 

and an in-depth data description and preparation. Next, in the results 

section, we provide the results obtained in the datasets mentioned, 

elaborate on the insights provided by our approach, and compare 

them with classical MKL-DR. Lastly, we present the discussion, 

conclusions and future work. 
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4.2 Methods 

a) iMKL-DR Formulation 

This section describes the steps of our proposed iMKL-DR 

algorithm. The process starts by setting up the "seed" space, followed 

by running a batch MKL algorithm, and ends with the incremental 

addition of new observations to the learnt space. The key principle of 

iMKL-DR lies in iteratively integrating new information from new 

samples into the seed space, leading to a model that can be 

dynamically updated and does not require a full batch retraining 

when a new set of observations is acquired. We provide an overview 

in Algorithm 1 and Figure 15. 
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Algorithm 1: Incremental Multiple Kernel Learning (iMKL-DR) 

 
Input: Kernel Matrices for the seed and growth data 

Output: Space of reduced dimensions containing the previous and new samples 

1 
Initialization: Select a set of initial data to form the "seed" space. Kernelize the multiple features and input them to the batch MKL algorithm. 

Set bandwidths for the kernel computation and global affinity matrix to the square root of the number of observations. 

2 
Batch MKL-DR: Process the kernelized data to produce the reduced-dimension output space, projection matrix A, Similarity Matrix SWB, and 

feature weights vector betas. 

3 Projection: Project new observations to the seed space using the previously obtained A matrix and betas vector. 

4 
Neighborhood Detection: Identify the samples from the seed space whose neighborhood has been modified by the new samples. The number of 

nearest neighbors (NNs) for each observation in the seed space is a parameter that can be adjusted. 

5 SWB Update: Update the Similarity Matrix SWB based on the changed neighborhoods, following the method proposed by Li and colleagues. 

6 Betas Update: Update betas using the second optimization procedure in batch MKL-DR. 

7 
Final Output Space and Projection Matrix Calculation: Use the updated SWB and betas to produce a final projection matrix A and output 

space that incorporate the new samples and their information. 

8 Iteration: Repeat Steps 3 to 7 for each batch of new observations. 
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Figure 15 iMKL overview 
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I. Pre-processing and Seed Space Initialization 

The first step in our approach involves selecting a set of initial 

data that will generate the "seed" space. This seed space will later be 

expanded upon with new observations. The multiple features of this 

seed data are kernelized and fed into the batch MKL algorithm.  

The primary parameters to be determined are the number of nearest 

neighbors that regularize the variance for the feature kernels and the 

global affinity matrix. Empirically, assigning them to the square root 

of the number of observations has yielded satisfactory results, as per 

existing literature (16). Running the batch MKL block using the 

kernels obtained from the seed data then yields an output space of 

reduced dimensions, a projection matrix A, a Similarity Matrix SWB, 

and the weight vector betas for different features.  

To provide a brief description of the batch MKL algorithm, once all 

features are kernelized, the goal is to optimize a projection matrix A 

and a feature weight vector betas using a two-step optimization 

strategy. This first step can be solved by a generalized eigenvalue 

problem framing it as a trace ratio problem, which yields an explicit 

solution using two auxiliary similarity matrices SWA and SWB.  

The newly obtained similarity Matrix SWB serves a crucial role, as 

we make a correspondence to the matrix Q in the incremental 

algorithm described by Housen Li et al. We provide a further 

explanation of Li’s algorithm in section III. 
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After obtaining the projection matrix A, a convex optimization 

problem is set to solve the feature weight values to be stored in the 

vector betas. The batch algorithm would now be finished as 

observations can be mapped to a low dimensional space using the 

obtained A and betas. 

II. Projection 

New observations are first added to the model by projecting 

them. This projection of new data points to the seed space is done 

using the previously derived projection matrix A and feature weights, 

as shown in equation 2. 

Equation 2  

𝐹 = ∑ 𝛽𝑚𝐾𝑚

𝑚

∙ 𝐴 

At this stage, no new information from the new samples has 

been incorporated into the model; they have simply been positioned 

within the existing seed space. 

III. Neighborhood Detection and Matrix Update 

The algorithm then proceeds to assess the impact of the newly 

introduced observations. This is accomplished by identifying the 

samples in the seed space whose neighborhoods have been modified 

by the new observations. The number of nearest neighbors (NNs) for 

each observation in the seed space is an adjustable parameter. 
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The next step involves updating the Similarity Matrix SWB 

based on the detected changes in neighborhoods using the method 

proposed by Li et al (80).  

Li’s algorithm is composed of two sub-steps that we explain 

as follows. First, to allow for the identification of those samples 

whose neighborhoods have been changed by newly coming ones, a 

pairwise similarity matrix is obtained using a distance metric between 

the seed and incoming samples. This metric is generalizable to 

different spectral embedding formulations. In our case, we define it 

as the Euclidean distance between points in the embedding once we 

project the newly coming samples. Secondly, once these 

neighborhoods have been defined, we can refine the predicted 

coordinates using an orthogonal iteration method on the SWB matrix 

obtained from batch MKL. 

IV. Betas Update and Final Output 

Once the SWB matrix is updated, the weight vector betas is 

updated through the second optimization procedure in batch MKL. 

With the updated SWB and betas, a final A matrix and output space 

are computed. These new elements incorporate the information from 

the new samples. 

V. Iteration 

This process is iterative, and the cycle repeats, adding new 

samples each time. The result from one iteration can be used as the 
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seed for the next cycle, allowing for continual updating and 

improvement of the model.  

b) Data description and preparation 

Regarding dataset selection, we used the Multimodal Digits 

dataset to have an open and easily accessible benchmark dataset for 

peers to replicate our results, and the Hypertensive dataset to have a 

medium sized and easily separable dataset, with complex clinical 

descriptors.  

I. Multimodal Digits 

This dataset consists of 2000 observations of digits from "0" to 

"9" (200 observations for each digit) extracted from Dutch utility 

maps. There are six feature modalities for each digit: 

• 76 Fourier coefficients of the character shapes. 

• 216 profile correlations. 

• 64 Karhunen-Love coefficients. 

• 240-pixel averages in 2 x 3 windows; 

• 47 Zernike moments. 

• 6 morphological features. 

When analyzing this dataset, we computed a kernel matrix for 

each feature type using a radial basis function. This dataset is open 

and free to use by others, it can be accessed at 

https://archive.ics.uci.edu/ml/datasets/Multiple+Features. 
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II. Hypertensive dataset 

This dataset resulted from echocardiography studies from 189 

clinically managed patients with hypertension and 97 healthy 

individuals without hypertension. Strain traces of the left ventricle 

and atrium were obtained using speckle-tracking analysis. Aortic and 

mitral blood pool pulsed-wave Doppler and mitral annular tissue 

pulsed-wave Doppler velocity profiles were obtained. These whole–

cardiac cycle deformation and velocity curves were used as input, 

resulting in 11 highly dimensional features.  

c) Experiments and evaluation metrics 

To assess the performance of iMKL-DR, we launched the 

same two experiments with each dataset. First, to test whether new 

observations were correctly positioned in the grown space, we trained 

a seed space with a subset of each class and grew the space with the 

remaining ones. Secondly, to assess the performance when adding 

unseen classes, we trained on a subset of classes and added the rest. 

Regarding the parameter settings, we established the number 

of observations that will be added at each growth iteration to 15 for 

the digits dataset and to 5 for the hypertensive dataset. Regarding the 

neighborhood sizes when detecting incoming samples, we set it to 15 

neighbors for the digits dataset and to 5 for the hypertensive dataset. 

We've also conducted a comprehensive exploration of the parameter 

space for the digits dataset, as detailed in the results’ Section a)III. 

This extensive analysis includes evaluating the sensitivity of our 

model to varying parameters. Specifically, we have examined the 
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influence of the number of neighbors considered when projecting 

new patient data, along with the effect of alterations in the size of the 

seed space. 

Evaluating the embeddings produced by unsupervised 

manifold learning approaches can be difficult, as there are no ground 

truth labels. In our setting, this problem gets further compounded by 

the multimodal nature of the data, making it hard to naively 

implement most of the current metrics. To keep the evaluation of our 

technique clear, we used a rather simple methodology by visualizing 

the embeddings to make qualitative assessments of grouping of 

classes in different dimensions.  

4.3 Results 

a) Multimodal Digits 

To allow for comparisons, we would like to first add a 

visualization of the space obtained from batch MKL using all 

observations. This is illustrated in Figure 16. 
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Figure 16 Batch MKL Output space for the Digits dataset 

The space obtained with the batch approach displays the 

characteristic shape of Laplacian Eigenmaps, positioning the 

different digit classes along elongated branches. The separability 

appears to be good and observations within the same class are 

clustered together. 

I. Multi-class growth Experiments 

We present the result of our experiment where the seed space 

is initially trained with varying quantities of observations—50, 150, 

and 190—from each of the 200-digit observations of each digit class. 

Following this, we then expanded the seed space using the residual 
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observations—150, 50, and 10, respectively. The visual 

representation of these results can be seen in Figures 17 through 20. 

 

Figure 17 Output Space trained on the first observation of each digit and 

grown with the remaining 199 observations. The neighborhood size used was 

5. 

 

Figure 18 Output Space trained on the first 10 observations of each digit and 

grown with the remaining 190 observations. The neighborhood size used was 

5. 
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Figure 19 Output Space trained on the first 100 observations of each digit 

and grown with the remaining 100 observations. The neighborhood size used 

was 3. 

 

Figure 20 Output Space trained on the first 150 observations of each digit 

and grown with the remaining 50 observations. The neighborhood size used 

was 3. 

Our incremental method consistently demonstrates good 

performance across all experiments. Remarkably, it properly 
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positions new samples, resulting in a space that clusters together 

observations from the same class and separates different ones.  

This approach maintains its effectiveness even under 

conditions of significantly constrained initial data sets, where the 

seed spaces were exceedingly small, comprised of merely 10 

observations - with one observation representing one of the 10 digits.  

II. Class Addition Experiments 

Our study presents the outcomes of various training strategies 

on the seed space, specifically using 5-, 7-, and 9-digit classes, and 

subsequently expanding the space with the remaining 5, 3, and 1 digit 

classes respectively. In Figures 21, 23, and 25, we display the results 

obtained from employing a batch MKL-DR training approach on all 

200 observations of the initial five digits (ranging from 0 to 4). 

Following this, we employed our suggested incremental MKL-DR 

(iMKL-DR) approach to expand the seed space with the remaining 

digits (5 to 9). The displayed results thus reflect the comparative 
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effectiveness of our training and expansion methods in Figures 22, 

24, 26. 

 

Figure 21 Output Space of MKL-DR trained on the 200 observations of the 

first 5 digits 

 

Figure 22 Output Space trained on the first 5 digits and grown with the 

remaining 5 digits 
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Figure 23 Output Space of MKL-DR trained on the 200 observations of the 

first 7 digits 

 

Figure 24 Output Space trained on the first 7 digits and grown with the 

remaining 3 digits 
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Figure 25 Output Space of MKL-DR trained on the 200 observations of the 

first 9 digits 

 

 

Figure 26 Output Space trained on the first 9 digits and grown with the 

remaining digit 

Consistent with the batch MKL space on the full dataset, our 

findings indicate that when training is conducted using smaller 



 

 126 

subsets of data, containing only a few classes, the observations from 

different digit classes are arranged in the same branching pattern.  

In contrast, our incremental approach yields distributions that are 

more dispersed, appearing more like lobes rather than branches. 

Nonetheless, our method still manages to preserve both the 

separability between classes and the cohesion within each class. 

Therefore, in the context of this dataset, we can assert that our 

incremental methodology is properly integrating unseen classes into 

the existing embedding. Thus, our algorithm effectively 

accommodates new information, successfully maintaining the crucial 

attributes of class distinction and intra-class unity. 
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III. Sensitivity analysis for the seed and neighborhood size  

 

 

Figure 27 Effect of Neighborhood size using a seed space trained on 1 observation of each digit. 

Top Left: KNN value of 1; Top Right: KNN value of 50; Bottom: KNN of 150 
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Figure 28 Effect of Neighborhood size using a seed space trained on 50 observations of each digit. 

Top Left: KNN value of 1; Top Right: KNN value of 50; Bottom: KNN of 150 
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Figure 29 Effect of Neighborhood size using a seed space trained on 100 observations of each digit. 

Top Left: KNN value of 1; Top Right: KNN value of 50; Bottom: KNN of 150 
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Figure 30 Effect of Neighborhood size using a seed space trained on 150 observations of each digit. 

Top Left: KNN value of 1; Top Right: KNN value of 50; Bottom: KNN of 150 
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This last study reveals important relationships between the 

size of the initial group of observations, known as the seed space, and 

the neighborhood size when using an incremental extension to 

unsupervised multiple kernel learning (MKL). We visualize the 

results in Figures 27, 28, 29, 30. 

When the seed space is small (10 observations), there is a lot of 

flexibility in choosing the neighborhood size. Both very large and 

small neighborhoods can be used without impacting the overall 

structure of the space, suggesting the method is stable when the seed 

space is small. However, as the seed space grows, careful selection 

of the neighborhood size becomes necessary. Larger seed spaces 

require the use of smaller neighborhoods. The trend continues to the 

point where, if the seed space is significantly large, very small 

neighborhoods must be used. If this adjustment is not made, the space 

collapses and observations from different classes begin to mix, which 

is not desirable. This mixing likely occurs because batch MKL tends 

to create very separate clusters, and the incremental MKL has trouble 

adjusting the positions of a large number of distinct observations 

when new ones are added. 

The results highlight the balance needed when using incremental 

MKL. It is crucial to carefully adjust the parameters of seed space 

size and neighborhood size to get optimal embeddings, as these 

factors heavily influence each other. More research may help us 

understand these dynamics better and potentially develop a way to 

automatically or adaptively set these parameters. 
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- Hypertensive dataset 

In the same way as before, we first provide the results of running 

batch MKL on the full dataset to allow for comparisons. The 

visualization corresponds to Figure 31. 

 

Figure 31 Batch MKL Output space for the Hypertensive dataset 

We observe a clear separation between classes and a defined 

spectrum between disease and normalcy. The hypertense patients 

display a broader spectrum while the controls are concentrated in a 

corner.  

I. Multi-class growth Experiments 
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Figure 32 Output Space trained on the first 5 observations of each class and 

grown with the remaining ones 

 
Figure 33 Output Space trained on the first 30 observations of each class and 

grown with the remaining ones 
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Figure 34 Output Space trained on the first 85 observations of each class and 

grown with the remaining ones 

We observe a subtle separation between classes regardless of 

the size of the seed space in Figures 32, 33, 34. Training with 5 

observations from each class resulted in the worst separability, while 

training with 85 observations of each class had the best 

discriminative ability. There is still a spectrum from normalcy to 

disease, but it is much less defined than in the space obtained with 

batch MKL. 

 

II. Class Addition Experiments 



 

 135 

 

Figure 35 Output space obtained training the seed with hypertensives and 

growing with controls 

 

 

Figure 36 Output space obtained training the seed with controls and growing 

with hypertense patients 

Our results vary noticeably when applying different strategies 

in the seed space training process, as shown in Figures 35 and 36. 
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Initially, we trained the seed space using one class, then expanded it 

with the other. 

Specifically, when we started with hypertensive subjects for 

training and subsequently introduced control subjects, the 

distinctions between the two groups were not evident. In this 

scenario, the controls ended up closely intermingled within the 

hypertensive population, thereby failing to delineate clear divisions 

between the two groups. 

In contrast, using control subjects for initial training and then 

expanding the seed space with hypertensive subjects yielded a 

somewhat different outcome. The generated embedding in this case 

showed some level of separation between the two classes. However, 

it is important to note that this separation was not as good as the one 

obtained from the batch approach. In the context of this dataset, the 

iMKL-DR results were inferior compared to the batch results. 

 

4.5 Discussion 

To our knowledge, this is the first work to provide a purely 

incremental extension of unsupervised MKL-DR. The results 

obtained show promise for accommodating larger datasets to the 

unsupervised MKL scenario. Mainly due to their capacity to 

iteratively add an increasing number of observations and position 

them correctly by similarity. 

Nonetheless, we observed that it is crucial to assess the a 

priori similarity between the existing seed space and the new samples 

that will be used to grow it. This was especially crucial in the clinical 

dataset where training on one class and adding the complementary 
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one yielded poor performance, most probably due to missing 

“anchor” points to which newly coming samples could latch on to. In 

essence, if the newly coming samples differ greatly to the ones in the 

seed space, there is a risk for the incremental approach to fall in a bad 

solution and collapse all points in an undesired region of the 

embedding. 

We acknowledge that our work represents a somewhat 

preliminary exploration into incrementally extending unsupervised 

multiple kernel learning for dimensionality reduction. As such, there 

are several limitations that provide opportunities for future work. 

First, more extensive validation is needed to fully evaluate the 

proposed approach. Specifically, it should be tested on a diverse array 

of datasets and compared against other state-of-the-art 

dimensionality reduction techniques on relevant metrics. This will 

provide a more comprehensive understanding of when and how the 

proposed approach is most beneficial. 

Second, applying a broad battery of quantitative measures could 

reveal further insights into the trade-offs made during dimensionality 

reduction. Key metrics to consider include those that quantify 

information loss, preservation of local data structure, and 

computational cost analyses. 

Lastly, if possible, fMKL could be implemented to reach even 

faster training speeds when training the seed space. This would 

provide a faster formulation of the algorithm. 
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5. Conclusions 

This thesis has successfully employed information fusion 

techniques to address critical problems in healthcare and clinical 

research. The four projects completed demonstrate the versatility of 

classical statistics, supervised learning, and unsupervised learning in 

extracting insights from complex medical data. 

Regarding the improvement of efficiency in the clinical trial setting, 

unsupervised MKL effectively learned latent representations from 

heterogeneous population data. This technique shows promise for 

creating synthetic control arms in clinical trials, pending 

improvements in computational scalability. The ML-derived 

selection of controls currently provides reasonably accurate matches, 

but continued continuous updating would be needed to account for 

population shifts over time. 

When dealing with the prediction of SGA pregnancies, we 

successfully leveraged gradient boosting models to predict SGA 

across the two distinct cohorts of Barcelona and Karachi. The 

comparative analysis revealed differing predictive capacities of 

features like maternal factors, biometry, and Doppler measurements 

between populations. This indicates a need to adjust models to the 

specific cohort when transferring algorithms across geographies. 

Larger sample sizes are also required to improve detection of rare 

outcomes like preterm birth. 

Social and data science methods were able to provide insights 

into the differences between clubfoot and control families in India. 
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While illuminating, the study was limited by its cross-sectional 

nature as opposed to a study with longitudinal data collection, which 

hindered the possibility of strong causal explanations. We were also 

aware of potential response biases in the clubfoot affected families. 

Nonetheless, we were able to create and deploy refined, culturally 

adapted questionnaires, which we are confident will provide rich 

insights into patient outcomes when we use them prospectively. All 

in all, the work validates the holistic assessment of patients to 

understand intervention effects. 

Finally, our technical contribution proposed modifications to 

increase the scalability of unsupervised multiple kernel learning. This 

incremental learning approach shows initial promise in 

accommodating larger datasets. Further validation on diverse 

datasets is needed to fully demonstrate its advantages over existing 

techniques. 

In conclusion, this thesis has shown the potential of data 

science methodologies to extract insights from complex medical 

data. While limitations exist, the projects demonstrate a promising 

line of research for these techniques in critical healthcare applications 

pending refinements in cohort size, model validation, and 

questionnaire designs. 
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