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Abstract

Understanding the functional organization of molecular networks is an ongoing chal-
lenge. For this purpose, Spatial Analysis of Functional Enrichment (SAFE) frame-
work was proposed to uncover functional regions in a network by embedding it in
2-dimensions (2D) using the Spring embedding algorithm. However, biological net-
works often have a heterogeneous degree distribution, i.e., nodes in the network have
varying numbers of neighbours. In this case, the Spring embedding sometimes pro-
vides uninformative, densely packed embeddings best described as a ‘hairball’. On
the other hand, hyperbolic embeddings, such as the Coalescent embedding, maps
a network onto a disk, so that nodes of high topological importance (i.e., of high
node degree) are placed closer to the center of such disk. Additionally, these em-
bedding methods only capture node connectivity information (i.e., which nodes are
connected) but does not consider network structure (i.e., wiring or topology), which
captures complementary information. The state-of-the-art methods to capture net-
work structure are based on graphlets, which are small, connected, non-isomorphic,
induced sub-graphs (e.g., triangles, paths). To better capture the functional orga-
nization of networks with heterogeneous degree distributions, taking into account
different types of graphlet-based wiring patterns, in this work we introduce the
graphlet-based Spring (GraSpring) and the graphlet-based Coalescent (GraCoal)
embeddings. Furthermore, we extend the popular SAFE framework to take as input
these two newly proposed embedding methods and we use SAFE to evaluate their
performance on three types of molecular interaction networks (genetic interaction,
protein-protein interaction and co-expression) of various model organisms. We show
that the performance in terms of functional information uncovered by each of the
embedding algorithms varies depending on the type of network considered and also
the model organism considered. For instance, we show that GraCoals better capture
the functional and spatial organization of the genetic interaction networks of four
species (fruit fly, budding yeast, fission yeast and E. coli). Moreover, we discover
that GraCoals capture different topology-function relationships depending on the
species. We show that triangle-based GraCoals capture functional redundancy in
GI networks of species whose genome is characterised by high counts of duplicated
genes.
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Chapter 1

Introduction

1.1 Motivation

Systems biology is a discipline in biomedical sciences that studies complex biological
interactions on different levels, allowing the identification of patterns that decode
the complexity of the biological structure and the processes in the cell, tissues and
organ systems (Ideker et al., 2001; Kirschner, 2005). It is the opposite to “reduction-
ism” in biological research, which studies living phenomena at the lowest levels of
complexity (Ayala, 1987; Barabasi & Oltvai, 2004) (e.g., studying a single molecule).
However, it is evident that a particular biological process or function cannot be at-
tributed to an individual molecule. Instead, biological entities interact with each
other in complementary ways to produce a biological product (i.e., a particular phe-
notype). An important field in systems biology focuses on treating such a complex
system of interactions as a network, where the nodes in the network correspond to a
particular type of molecule, such as proteins, and the edges connecting them repre-
sent a type of interaction, such as the physical binding between the proteins in the
cell. In this regard, network biology has been a relevant research area for studying
the structure and dynamics of these complex interactions, allowing a better under-
standing of biological systems, such as the functional or structural properties of the
cell (Barabasi & Oltvai, 2004; Baryshnikova, 2016; Emmert-Streib & Glazko, 2011;
Ideker & Krogan, 2012; P. Wang, 2022).

In recent decades, advances in high-throughput technologies have increased the
availability of genomic, metabolomic, proteomic and transcriptomic data, providing
a valuable resource for the study of such complex biological systems in biology and
medicine (Barabasi & Oltvai, 2004; Cahan et al., 2014; Emmert-Streib & Glazko,
2011; Silverman et al., 2020). This massive increase in omics data can be attributed
primarily to biotechnological breakthroughs achieved in recent decades, including,
but not limited to mass spectrometry (Y. Ho et al., 2002), chromatin immunopre-
cipitation (Iyer et al., 2001) and yeast two-hybrid (Rual et al., 2005; Stelzl et al.,
2005). As molecular interaction data become more abundant, so does the complexity
of the system it represents (i.e, the dimensionality, where each additional measured
molecule adds a dimension to the data). Additionally, despite the biotechnologi-
cal breakthroughs, many interaction data is characterized by being incomplete and
prone to noise (Ning & Lo, 2010; Rajesh et al., 2021). Thus, a constant challenge in
network biology, is the need for new computational methods that are more efficient
and reliable for complex biological network processing and analysis. A common



technique for processing and analyzing the data, is through network embeddings,
which are methods for extracting a low-dimensional representation of the data (Nel-
son et al., 2019), while conserving the original similarity features in the data (Arsov
& Mirceva, 2019). These lower representations of the data can later be used for
downstream analysis such as for annotation of genes (Garcia-Diaz et al., 2020), or
for protein structure prediction (Dhingra et al., 2020).

1.2 Objectives

In this work, we extend popular network embedding methods such as the Spring
embedding and the Coalescent embedding by combining these methods with graphlet
topology. Additionaly, we improve and extend the Spatial Analysis of Functional
Enrichment (SAFE) framework (Baryshnikova, 2016) to include these new methods
and use SAFE to evaluate the performances of these graphlet based embeddings.
Lastly, we use these graphlet based embeddings with SAFE to explore the functional
organization of molecular interaction networks of model organisms to uncover new
biological insights.

1.3 Contributions

In this thesis we introduce new methods for embedding molecular networks based
on graphlets. We generalise the popular Spring embedding to graphlet-based Spring
embedding. In brief, we use the graphlet adjacency matrix of a network instead of
the standard adjacency matrix to embed the nodes in 2D using the Spring embed-
ding. We also generalise the popular Coalescent embedding to the graphlet-based
Coalescent (GraCoal) embedding. In brief, this method performs dimensionality
reduction on the matrix representation of a network such as the Laplacian matrix
to obtain an angular coordinate for each node in the network and computes a ra-
dial coordinate based on the degree of each node in the network. By extending this
method to graphlets, we perform dimensionality reduction on the graphlet Laplacian
matrix to obtain angular coordinates and compute the radial coordinate based on
the graphlet degree of the nodes. We extend the SAFE framework to also consider
graphlet-based Spring embedding and GraCoal embedding as additional embedding
methods. Lastly, because our GraCoal embedding is based on the eigendecompo-
sition of the Laplacian matrix of a particular graphlet, we also extend SAFE to
consider graphlet based Spectral embedding. We compare the three graphlet based
embeddings by annotating different types of molecular networks of various model
organisms with SAFE. We show that when using graphlet based embeddings with
SAFE, additional functional information can be captured as opposed to using SAFE
with standard adjacency matrix (i.e., not based on graphlet information). Because
graphlets capture different wiring patterns, we show for instance, that each GraCoal
embedding used in SAFE captures unique biological functions. This demonstrates
that GraCoal embeddings used in SAFE can be used in complementary ways to
uncover the functional information encoded by molecular networks.
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1.4 Thesis outline

The thesis is outlined as follows:

In Chapter 2 we present all the relevant concepts and definitions related to
molecular biology and network biology that are needed for the development of this
work.

In Chapter 3 we present the new methods developed during this work. In par-
ticular, we introduce the extend version of the Spring embedding used in SAFE (i.e.,
graphlet-based Spring embedding) and also the newly proposed GraCoal embedding.
Furthermore, we describe the modifications done to SAFE to further extend and im-
prove the framework, in particular to embed molecular networks using the newly
proposed graphlet based embeddings.

In Chapters 4-6, we evaluate the graphlet-based embeddings with SAFE on
three different molecular interaction network types for various model organisms.
We first present, in Chapter 4, the results for the genetic interaction (GI) net-
works of Drosophila melanogaster, Escherichia coli, Saccharomyces cerevisiae and
Schizosaccharomyces pombe and also for the genetic interaction similarity (GIS)
network of Saccharomyces cerevisiae. In Chapter 5 we present the results for the
PPI networks of Caenorhabditis elegans, Drosophila melanogaster, Escherichia coli,
Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Schizosaccharomyces
pombe. Lastly, we present, in Chapter 6, the results for the co-expression (COEX)
networks of Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, and
Saccharomyces cerevisiae.



Chapter 2

Background

In this chapter we introduce key concepts in molecular biology and network biology.
In brief, we present an overview of different types of molecular interaction networks
used in network biology as well as the main types of experimental methods that
allow to identify such interactions. Next, we define key concepts related to network
structural properties and provide an overview of the model networks most commonly
used in network biology that are particularly useful for understanding the global
structure of a network. We also go over higher order network representations such
as the graphlet adjacency matrix and the graphlet Laplacian matrix. Lastly, we
define the three network embedding algorithms used in this work (Spring embedding,
Coalescent embedding and Spectral embedding) and describe in detail the Spatial
Analysis of Functional Enrichment (SAFE) framework.

A well-established approach in systems biology is to analyze large scale omics
data by modeling them as networks, where molecules are represented as nodes that
are connected by an edge if they express any type of interaction. Nodes that are
connected by an edge are commonly referred to as “neighbors” in the network.
For instance, one of the most widely studied types of interactions in the cell are
the physical interactions that occur between proteins, which can be modeled as a
protein-protein interaction (PPI) network. To this end, network biology has facili-
tated the understanding of large and complex interactions that describe biological
systems, solving biological enigmas such as how and where these interactions occur
(Baryshnikova, 2016; Luck et al., 2019; Niu et al., 2012; Rizzolo et al., 2017; Vissi-
ennon et al., 2017; Yan et al., 2018; Youn et al., 2018). The massive increase in
available omics data can be attributed primarily to biotechnological breakthroughs
achieved in recent decades, including, but not limited to mass spectrometry (Y. Ho
et al., 2002), chromatin immunoprecipitation (Iyer et al., 2001) and yeast two-hybrid
(Rual et al., 2005; Stelzl et al., 2005). These methods have allowed for an increasing
availability of molecular interaction data in particular across model organisms, in-
cluding human (Huang et al., 2016; X. Li et al., 2010; Luck et al., 2020; Uetz et al.,
2000). A common task in network biology is to study the structural properties of a
network, providing valuable insights into the topology and geometry of the network
(Bianconi & Rahmede, 2017; Knabe, 2013; Vella et al., 2018; Wu et al., 2015). This
untangled information can later be used for downstream analysis, such as uncovering
associations between disease and RNA molecules (G. Li et al., 2017), or predicting
perturbation patterns in biological networks (Santolini & Barabési, 2018).



2.1 Molecular interaction networks

In recent decades, advances in high-throughput technologies have increased the avail-
ability of genomic, metabolomic, proteomic and transcriptomic data, providing a
valuable resource for the study of such complex biological systems in biology and
medicine (Barabasi & Oltvai, 2004; Cahan et al., 2014; Emmert-Streib & Glazko,
2011; Silverman et al., 2020).

In this section, we define the main types of molecular interaction networks used
in network biology. In particular, we define protein-protein interaction networks,
genetic interaction networks and co-expression networks. Furthermore, we discuss
different types of annotation data, which are commonly used in parallel with molec-
ular interaction networks.

2.1.1 Protein-protein interaction networks

Protein-protein interaction (PPI) networks represent the physical interactions be-
tween gene products (i.e., proteins). Most studies of PPI networks focus on the
direct physical bindings between proteins, such as an enzyme physically interacting
with another molecule to catalyze a specific reaction that occurs in a living cell
or organism. However, indirect interactions such as those involving proteins in the
same protein complex or level-2 interactions (i.e., proteins that share the same inter-
action neighbors) can also be used, and can be particularly useful for studying and
predicting protein complexes (Chua et al., 2008). In a PPI network, the proteins are
represented as nodes, and the links connecting pairs of nodes (i.e., edges) represent
the physical binding (or indirect interaction) of the proteins (Gligorijevi¢ & Przulj,
2015). When constructing a PPI network, the gene names/labels that encode each
particular protein product are often used over protein names/labels, which may
facilitate downstream analysis, for instance for comparison with other gene-based
molecular networks (e.g., genetic interaction or co-expression). Analysis of PPI net-
works have proved to be useful for various tasks such as protein function prediction,
protein complex prediction, drug discovery, uncovering disease mechanisms and un-
covering the relationships between the proteins within the cell (Athanasios et al.,
2017; Chua et al., 2008; Davis et al., 2015; Dobson et al., 2014; Piovesan et al., 2015;
Safari-Alighiarloo et al., 2014; Vazquez et al., 2003), and to study different biological
phenomena in the cell, such as gene regulation (Jiang et al., 2020; Mercatelli et al.,
2020; J. Wang et al., 2006), disease mechanisms (Chakraborty et al., 2014; Kuz-
manov & Emili, 2013; Safari-Alighiarloo et al., 2014) or signaling pathways (Giot
et al., 2003; S. Li et al., 2004). Some of the most widely used experimental methods
for detecting and identifying protein-protein interactions are the yeast two-hybrid
(Y2H) system (Ito et al., 2001; Ito et al., 2000; Rual et al., 2005; Simonis et al.,
2009; Van Criekinge & Beyaert, 1999) and techniques based on mass spectrometry
(Collins et al., 2007; Gavin et al., 2002; Krogan et al., 2006; Rigaut et al., 1999),
which we define in following sections.

2.1.2 Genetic interaction networks

Genetic interaction (GI) networks are a type of molecular interaction network that
model the interactions between genes in a cell (Costanzo et al., 2010; Costanzo
et al., 2016). In brief, two genes are said to genetically interact if a simultaneous
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mutation in both genes produces a phenotype that differs from the phenotype of each
individual mutated gene (Mani et al., 2008). Thus, in a GI network, the genes are
represented as nodes, and the links connecting pairs of nodes (i.e., edges) indicate
there is a genetic interaction between them. Typically, these types of interactions
are detected with experimental methods, such as genetic screens (Costanzo et al.,
2010; Costanzo et al., 2016; Lehner et al., 2006; Yan Tong & Boone, 2006) that
evaluate, if a particular phenotype in the cell varies significantly when two genes
are simultaneously mutated (i.e., a double mutant) with respect to the phenotype
of each mutated gene (Boucher & Jenna, 2013; Costanzo et al., 2010; Costanzo
et al., 2016). Genetic interactions are classified in two major categories: positive
genetic interactions and negative genetic interactions. Positive interactions occur
when the combined effect of two mutated genes (double mutant) result in a fitness
phenotype that is greater than the fitness phenotype of each individual mutation
(Baryshnikova et al., 2010; Boucher & Jenna, 2013; Kuzmin et al., 2018). On the
other hand, negative interactions occur when the combined effect of two or more
mutations result in a phenotype that is more severe than the phenotype of each
individual mutation (Baryshnikova et al., 2010; Boucher & Jenna, 2013; Kuzmin
et al., 2018). For instance, synthetic lethality is an extreme example of a negative
genetic interaction and occurs when two mutations, neither of which is lethal on its
own, combine and lead to an inviable double mutant phenotype (Bender & Pringle,
1991; Kuzmin et al., 2018; Novick & Botstein, 1985). Lastly, the genetic interaction
profiles of all the genes in a GI network are useful for constructing a similar type
of molecular interaction network, a genetic interaction similarity (GIS) network.
To construct a GIS network, the genetic interaction profiles of all the genes in the
GI network are compared to one another to evaluate how similar their interaction
patterns are. In a GIS network, two genes are connected by an edge if they share
similar interaction profiles. To this end, interaction profiles of pairs of genes are
compared by computing the Pearson correlation coefficient (PCC). Finally, gene
pairs with profile similarity of PCC>0.2 are connected in the newly constructed
GIS network. Larger values of the PCC threshold can be used to construct a more
stringent GIS network (Costanzo et al., 2010; Costanzo et al., 2016).

2.1.3 Co-expression networks

Co-expression (COEX) networks are a type of molecular interaction network that
model the interaction between genes based on their patterns of gene expression. In
a COEX network, each gene is represented by a node and two pairs of nodes are
connected by an edge if they are expressed simultaneously (Stuart et al., 2003). In
this regard, a gene is said to be expressed if the information it encodes (i.e., DNA)
is transcribed into an RNA molecule (i.e., a transcript), which later is translated
and processed into a functional protein. Typically, gene expression can be detected
using experimental methods such as RNA-seq (Z. Wang et al., 2009), which use deep
sequencing technology to measure the level of transcript in a sample to determine if
a particular gene is expressed. Thus, for constructing a COEX network, transcrip-
tomics data is typically used, such as microarrays or RNA-seq, providing expresion
values for all genes in a particular sample. Next, with the expression values from
different experimental conditions, a pair-wise similarity score is computed for all the
genes. For instance, a Pearson correlation coefficient (PCC) is usually used to con-
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struct a PCC matrix. For each gene, all other genes are ranked according to their
correlation values. Finally, a threshold can be applied to the ranks to keep only
the strongest correlation values. For instance, to build a highly reliable network,
keeping the top 1% is typically used (Obayashi et al., 2019).

2.1.4 Annotation data

As molecular interaction data continue to increase, so does the knowledge about
what characterizes each gene or protein in a cell, for instance which particular func-
tions they carry out or in which part of the cell they might be localized. In this
regard, molecular networks annotation data provides the necessary information that
relates the nodes in a molecular network (e.g. proteins or genes) to particular prop-
erties or features such as biological processes, molecular functions or biological path-
ways and are used to understand how the nodes in the network relate to each other.
To date, there exist multiple public databases that provide a valuable resource for
molecular annotation data, such as KEGG (Kanehisa et al., 2023) or GeneOntol-
ogy (Ashburner et al., 2000). The most common types of annotation data include
functional information, such as Gene Ontology (GO) terms (i.e., GO biological pro-
cesses, GO cellular components and GO molecular functions), metabolic pathways,
and protein domains, as well as contextual information, such as subcellular local-
ization and tissue expression patterns. Annotation data and molecular networks go
hand by hand when analysing molecular interaction networks, as annotations are
used to enrich molecular network models providing, for instance, biological insight
into the functional organization of the network. In summary, molecular networks
annotation data provides important information about the properties and functions
of entities in a molecular network and is used to understand the relationships and
processes within the network.

2.2 Experimental methods

Molecular interaction data has become a valuable resource for studying and under-
standing complex biological systems in the cell. The quantity and quality of these
data continues to increase as biotechnological breakthroughs are achieved and ex-
perimental costs become cheaper. In this section we review some of the widely used
experimental methods to detect molecular interactions.

2.2.1 Yeast 2-hybrid

The yeast two-hybrid (Y2H) system is a method for identifying PPIs in living cells
of the budding yeast, Saccharomyces cerevisiae (Uetz et al., 2000). The Y2H system
works by expressing two proteins, one as a bait and one as a prey. The bait protein
is fused to a DNA-binding domain and the prey protein is fused to an activation
domain. If the two proteins interact, they bring the DNA-binding and activation
domains into close proximity, leading to the activation of a reporter gene. The
reporter gene is usually a gene that confers an easy to appreciate phenotype, such
as fluorescence or growth in a medium (Briickner et al., 2009; Uetz et al., 2000).
The Y2H system has become one of the most widely used methods for identifying
protein-protein interactions. One advantage of the Y2H system is that it can be
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used to detect interactions between proteins that are not easily detectable using
other methods, such as interactions between intracellular proteins and membrane
associated proteins (Briickner et al., 2009).

2.2.2 Mass spectrometry

Mass spectrometry (MS) is an experimental method used to measure the mass and
abundance of proteins in a given sample (Glish & Vachet, 2003). To do this, it
ionizes the sample molecules (i.e, charging it positively or negatively) and then
analyzes the resulting ions by measuring the mass to charge ratio m/z. The m/z
ratio of each protein can then be used to computationally identify the proteins in the
sample by searching in large databases specific to the organism of interest (Richards
et al., 2021). A widely used MS based technique for identifying protein-protein
interactions is Crosslinking MS, which involves a chemical reagent (i.e., a cross-
linker) between two functional groups in a protein or a protein complex. The cross-
linker has a defined length, which allows for subsequent breaking of the cross-links
and analyzing the resulting peptides by mass spectrometry (O’Reilly & Rappsilber,
2018; Piersimoni et al., 2021).

2.2.3 Affinity purification

Affinity purification methods are used to isolate a protein of interest or group of
proteins from a given sample. To isolate the protein of interest (i.e., a target protein),
a ligand, covalently attached to a solid support (i.e., a resin or bead), binds with the
protein with high specificity (Kadonaga & Tjian, 1986). In brief, the sample with
the target protein is passed through the affinity resin or bead, such that only the
target protein is bound to it (i.e., to the ligand in the resin or bead). This allows
non-interesting proteins and other molecules to continue passing through the resin.
The resin may be washed to remove any particles or proteins that are not desired.
Finally, to separate and isolate the target protein from the resin, an elusion solution
might be used to break the binding of target and ligand in the resin (Kadonaga
& Tjian, 1986). To detect protein-protein interactions, the proteins isolated with
affinity purification are assessed with mass spectrometry for proper identification.

2.2.4 Tandem affinity purification (TAP)

Tandem Affinity Purification (TAP) is an extension of the affinity purification which
isolates a protein of interest (i.e., a target protein) or group of proteins from a given
sample (Puig et al., 2001). In a TAP, the target protein is sequentially bound to
two different ligands which are covalently attached to two solid supports (i.e., resin
or bead). The first step in a TAP is identical to the traditional affinity purification:
target protein is bound to the resin via the ligand and subsequently purified with
a washing step to remove any non-desired proteins or molecules. The second step
consists in purifying the target protein further by repeating the process through
a second resin with a different ligand which is also highly specific to the target
protein. The washing step is repeated to remove non-desired proteins and molecules
from the second resin and the target protein is eluted. These two rounds of binding
to different ligands make TAP a powerful and highly specific method for protein
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purification. Lastly, mass spectrometry is typically used on the purified protein for
proper identification.

2.2.5 Protein fragment complementation assay

Protein Fragment Complementation Assay (PCA) is a method used to study protein-
protein interactions in vitro (Galarneau et al., 2002; Remy et al., 2007; Remy &
Michnick, 1999). The intuition behind this method assumes that two fragments
of a target protein will interact and reform the full-length functional protein when
brought together in close proximity. The target protein is cleaved into two fragments,
each of which is expressed as a fusion protein with a different, easily identifiable and
measurable reporter protein, such as green fluorescent protein (GFP) or luciferase
(Chalfie, 1995). If there is no interaction, the two fragments remain separate and the
full-length functional protein is not reformed. On the other hand, when the interac-
tion of the two fragments occur, the full-length functional protein is reformed, which
exhibits the activity of the reporter protein (i.e., the fluoresence or luminiscence).

2.2.6 Synthetic genetic array (SGA)

Synthetic genetic array (SGA) is a high-throughput screening method for identify-
ing genetic interactions in yeast. It involves creating libraries of yeast strains that
each contain a deletion of a single gene, and then using these strains to systemati-
cally test all possible pairwise combinations of deleted genes to identify those that
exhibit synthetic growth defects when deleted together. Thus, it is based on the
concept of synthetic lethality, which is when two mutations that are individually
viable (i.e., non lethal) become lethal when combined. By systematically testing
pairs of mutants, SGA can be used to identify genetic interactions between genes,
and to uncover new functional connections within cellular pathways and networks
(Costanzo et al., 2010; Costanzo et al., 2016).

2.2.7 Microarrays

Microarrays are biotechnological tools used in molecular biology and genomics to
study gene expression and detect genetic variations (Cheung et al., 1999). Two
major types of microarrays are typically used, which are based either on DNA chips
(Stoughton, 2005) or gene chips (Johnston, 1998). They consist of a solid support,
usually a glass slide, coated with an array of microscopic spots of nucleic acid probes.
During a microarray experiment, a sample of labeled nucleic acids, typically cDNA
or RNA | is hybridized to the probes on the microarray. The hybridization signals are
then measured and used to quantify the expression level of the genes represented
by the probes. Microarrays can be used to study the expression of thousands of
genes simultaneously, making them a powerful tool for gene expression profiling and
functional genomics.

2.3 Network Analysis

Network analysis studies the patterns in connections (i.e., edges) and relationships
between the elements (i.e., nodes) in a network, providing insights into the global
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and local structure of the network. In network biology, studying the structure of
molecular interaction networks provides researchers valuable information to under-
stand the underlying processes that occur in complex biological systems. In this
section we review some of the most basic network descriptors, such as the size, di-
ameter and clustering coefficient. Next, we define four common centrality measures
used in network analysis to evaluate the importance of each node in the network.
Lastly, we define graphlets and graphlet based methods for network analysis.

2.3.1 Global network descriptors
2.3.1.1 Size

The size of a network refers to the total number of nodes and edges in the network.

2.3.1.2 Density

The density of a network is the number of edges as a percentage of the max possible
number of edges in the network. Real networks have low density

2.3.1.3 Shortest path lengths

The shortest path length is defined as the minimum number of edges along a path
that needs to be traversed between a pair of any given nodes in a network. This
measure provides a way of quantifying the distance or separation between nodes in
a network. The shortest path length between two nodes is commonly used to study
the structure and properties of networks. For instance, it can be used to analyze the
robustness of a network by measuring how quickly information can be transmitted
from one node to another, or to measure the average distance between all pairs
of nodes in the network, known as the characteristic path length. Shortest path
lengths can be calculated using algorithms such as Dijkstra’s algorithm (Dijkstra
et al., 2021) or Bellman-Ford algorithm (Bellman, 1958). The choice of algorithm
depends on the type of network being analyzed and the specific problem being
solved. In weighted networks, where each edge has an associated weight or cost, the
shortest path length is calculated as the sum of the weights along the shortest path.
In unweighted networks, where all edges have the same weight, the shortest path
length is simply the number of edges in the shortest path.

2.3.1.4 Diameter

The diameter of a network is a measure of its breadth, defined as the longest shortest
path between all pairs of nodes. It is measured as the number of edges along the
shortest path between any given two nodes. Real networks are small world, meaning
they have short diameter

2.3.1.5 Clustering coefficient

The clustering coefficient of a node in a network is a measure of the degree to which
the neighbors of the node are interconnected. It is defined as the ratio of the number
of actual connections between the neighbors of a node to the maximum number of
connections that could exist between the neighbors. Finally, the clustering coefficient
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of a network is the average of the clustering coefficient over all nodes in the network.
Real networks have large clustering coefficient.

2.3.1.6 Degree distribution

Degree distribution is a statistical property of a network that describes the distri-
bution of the number of connections (i.e., edges) that each node in the network has
(i.e., the degree of a node). It is typically represented as a histogram or a proba-
bility distribution function that shows the frequency or probability of nodes with a
given degree (number of connections). It provides insight into the overall structure
of the network and the way information or signals might propagate through it. For
instance, a network with a power-law degree distribution, where the majority of
the nodes in the network have one or very few connections and a small proportion
of nodes have a lot of connections (Broido & Clauset, 2019; Moreira et al., 2009).
These types of networks are said to have a scale-free structure and are characterized
by a high degree of heterogeneity and robustness (Moreira et al., 2009; B. Wang
et al., 2006). The power-law equation can be represented as:

P(k) o< k77

Where P(k) is the probability that a node has degree k, and ~y is the scaling
exponent. The value of v determines the shape of the degree distribution, with larger
values of v corresponding to more homogeneous distributions and smaller values of
v corresponding to more heterogeneous distributions. In scale-free networks, the
exponent of the power-law distribution usually falls in the range of 2 < v < 3
(Ravasz & Barabdsi, 2003).

Scale-free networks are commonly observed in many complex systems, including
the internet, social networks, biological networks, and technological networks, among
others. They are considered to be robust and resilient to the removal or failure of
nodes, as the hub nodes provide alternative paths for information or signals to flow
(Barabasi & Albert, 1999; Broido & Clauset, 2019; Moreira et al., 2009).

However, they are also vulnerable to targeted attacks on the hub nodes, as their
removal can have a significant impact on the structure and function of the network.
For instance, perturbing highly connected nodes in PPI networks is more likely to
impact cell viability (Jeong et al., 2001b). The scale-free structure of networks can
have important implications for the way information spreads, the way resources are
distributed, and the way the network functions as a whole. Thus, understanding
the scale-free structure of networks and how to manipulate it to achieve a desired
outcome is an important area of research in many fields, including physics, computer
science, biology, and sociology, among others.

2.3.2 Node centralities

Node centrality is a measure of the importance or significance of a node within a
network. Centrality measures provide a way to quantify the relative influence or
importance of nodes in a network, and can be used to identify essential nodes, such
as genes or proteins in complex biological systems.

There are several different centrality measures, each with a slightly different
interpretation and focus. In the following section we define two types of node cen-
tralities: based on connectivity, such as degree centrality and eigenvector centrality,
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and based on occurrence of paths in the network, such as betweenness centrality
and closeness centrality.

2.3.2.1 Degree centrality

The degree centrality of a node is simply the number of connections (edges) it has
to other nodes in the network. It thus considers highly connected nodes to be the
most important nodes in the network.

It can be represented mathematically as:

DC(u) = z": Ay
v=1

where DC'(u) is the degree centrality of node u, and A, , is the element of the
adjacency matrix that represents the connection between nodes u and v. The sum is
taken over all nodes v in the network, and the resulting value represents the number
of connections node u has to other nodes in the network.

2.3.2.2 Eigenvector centrality

The eigenvector centrality of a node is a measure of the influence of a node (i.e.,
how many connections the node has) but takes into account the influence of the
nodes it is connected to. Thus, a node that has a large degree centrality (i.e., is well
connected) will only have a large eigenvector centrality if the neighbors of the node
also have a large degree centrality. In this way, nodes with large eigenvector central-
ity are considered to be influential not only because of their direct connections, but
also because of their connections to other highly connected nodes. The eigenvector
centrality of node u is defined as the average of the centralities of the n neighbors:

EC(u) = % > EC(v)Ay,

where EC' is the eigenvector centrality of a node in the network, A is the adja-
cency matrix of the network, and A is the eigenvalue associated with A.

2.3.2.3 Betweenness centrality

The betweenness centrality of a node measures the extent to which the node lies on
the shortest paths between other nodes in the network. Nodes with high betweenness
centrality are often considered to be important bottlenecks or intermediaries in the
network. Formally, the betweenness centrality of a node is represented as:

BC(uw) =Y 210
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where BC(u) is the betweenness centrality of node u, V' is the set of all nodes in
the network, oy is the number of shortest paths from node s to node ¢, and o4 (u)
is the number of these shortest paths that pass through node u. The betweenness
centrality of a node is proportional to the fraction of all shortest paths in the network
that pass through the node.
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2.3.2.4 Closeness centrality

The closeness centrality of a node measures the inverse of the sum of the shortest
distances from the node to all other nodes in the network. Nodes with high closeness
centrality are considered to be well-connected and influential, as they are able to
reach many other nodes quickly. Thus, the closeness centrality is a measure of the
accessibility of a particular node to all other nodes in the network. Formally the
closeness centrality is represented as:

1
2y d(u,0)/n

where C'C'(u) is the closeness centrality of node i, n is the total number of nodes
in the network, d(u,v) is the distance between nodes u and v, and the sum is taken
over all nodes v in the network.

CC(u) =

2.3.3 Community structure

Community structure refers to the clustering of nodes in a network into groups or
modules based on their connectivity patterns. In a network with a strong community
structure, nodes within the same community are highly interconnected, while nodes
in different communities have relatively few connections (Favila & Halffter, 1997;
Girvan & Newman, 2002). Community structure is a common feature of many
complex networks, such as social networks, biological networks, and technological
networks. It is thought to reflect the underlying organization of the network and
to play a critical role in the network’s function and dynamics (Danon et al., 2005;
M. E. Newman, 2006). The detection of community structure in a network is a
central problem in network analysis, and there are many algorithms and techniques
for detecting communities based on different criteria, such as modularity, cliques, or
core-periphery structure (Ma et al., 2010; M. E. Newman, 2004; Sun et al., 2009).

Once detected, the community structure of a network can be used to study a
variety of questions related to the network’s organization and function, such as how
information spreads, how resources are distributed, and how the network evolves over
time. Thus, understanding the community structure of networks is an important
area of research in many fields, including physics, computer science, biology, and
sociology, among others.

2.3.4 Graphlets

A popular task in network science requires to quantify the network neighborhood
of a node (i.e., the local topology of the node). To this end, one of the widely
used measures for this purpose is the number of neighbors that each node has (i.e.,
the degree of a node). However, because it only considers the direct connections
of a node, the information recovered from this measurement is very limited. Thus,
graphlet-based methods have been proposed as state-of-the-art to quantify the local
topology around each node in a network. Graphlets, illustrated in Fig 2.1, are
defined as small, connected, non-isomorphic induced subgraphs in a graph, (Przulj
et al., 2004) and have been used, for instance, to predict protein function (Davis
et al., 2015) and to identify new cancer genes directly from their interaction patterns
(Milenkovié et al., 2010) in PPI networks.
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These powerful tools have been used not only for uncovering local structural
(topological) patterns and their relation to biological function, but also for char-
acterization and comparison of complex networks (Aparicio et al., 2017; Aparicio
et al., 2015; Cannoodt et al., 2018; Martin et al., 2017; Przulj, 2007; Sarajli¢ et al.,
2016). Through functional analysis, it has been demonstrated that graphlets can
capture the functional organization of biological networks (Dale, 2017; Hulovatyy et
al., 2015; Winterbach et al., 2013; Yaveroglu et al., 2014) and have also been gener-
alized to other applications, such as the graphlet Laplacian matrix, to demonstrate
that different graphlet topology can uncover different biological functions (Windels
et al., 2019).

Formally, we define graphlets as follows. Let G = (V| E) be a graph, where V
is the set of vertices and FE is the set of edges. A graphlet g is a subgraph of G,
defined as g = (V', E'), where V' C V and E’ C F such that the subgraph G[V’]
is connected. Additionally, graphlets are induced subgraphs, meaning they contain
all the vertices of the original graph that belong to the selected subset, as well as
all the edges that connect those vertices. Moreover, graphlets are characterized by
having orbits (See Figure 2.1), also called automorphism orbits, which are defined as
symmetry groups of nodes within a graphlet, and are used to characterize different
topological positions of a node in a graphlet (Yaveroglu et al., 2014). One particular
characteristic of the automorphism orbits of a graphlets, is such that swapping nodes
within the orbit preserves the structure of the graphlet (Przulj, 2007). Some widely
used graphlet-based measures include the graphlet degree vector (GDV), which can
provide valuable local topological information at the node level; and others, such
as the graphlet correlation matrix (GCM) and the graphlet correlation distance
(GCD), which provide valuable topological information at the entire network level.
We discuss these three widely used graphlet-based measures in the next sections of
the the thesis.

4 6 10 13 14
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Figure 2.1. An illustration of graphlets. All nine graphlets with up to four nodes
(Go-Gg). Nodes of different shades correspond to the different orbits within each graphlet.
Figure adapted from (Przulj et al., 2004).

2.3.5 Graphlet degree vector

The graphlet degree vector (GDV) is a measure that quantifies the local topology of
a node in a network. The GDV of a particular node is the vector of the number of
occurrences of each possible graphlet that is centered on that node (Milenkovie &
Przulj, 2008) (i.e. the number of times the node touches each particular graphlet).
Thus, it provides a compact summary of the local network structure around each
node, and can be used to compare the local topology of different nodes in a network.
For instance, by comparing the GDVs of different nodes, it is possible to identify
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nodes that have similar local topology and to group nodes into functional modules
or communities. The GDV approach has been used in several studies to analyze the
topology of biological networks, such as protein-protein interaction networks (Sara-
jli¢ et al., 2013; Sarajli¢ et al., 2016) and metabolic networks, and also generalized
to edge-based GDV instead of node GDV (Solava et al., 2012). It has been shown to
be effective in detecting meaningful structural modules and in identifying key nodes
in the network.

Let G = (V,E) be a graph, where V is the set of vertices and E is the set
of edges. Let g, = (g1, 9v2,---» Gux) be the Graphlet Degree Vector (GDV) of
node v, where g,; is the number of occurrences of the i-th type of graphlet in the
neighborhood of node v. Thus, the GDV of a node provides a representation of the
local neighborhood structure of around the node.

The calculation of GDVs typically requires the use of graphlet counting algo-
rithms, which can be computationally expensive for large networks. However, there
are several algorithms and methods available to reduce the computational complex-
ity and make GDV analysis feasible for large networks. For calculating the GDVs
of the nodes in a network, graphlet orbits, illustrated in Fig 2.1, are used to reduce
the number of graphlets that need to be considered for the computation (Hocevar
& Demsar, 2014).

2.3.6 Graphlet correlation matrix

The graphlet correlation matrix (GCM) is an 11 x 11 matrix that summarizes the
network topology with the Spearman’s correlations between eleven non-redundant
graphlet orbit counts over all nodes in the network (Yaveroglu et al., 2014). The
GCM,y, i.e., the (u,v)th element of the GCM matrix can be mathematically for-
mulated as follows:

Let GDVy = (Gu.0, Gus - Gux) be the Graphlet Degree Vector (GDV) of node
u, where g,; is the number of occurrences of the i-th type of graphlet orbit in the
neighborhood of vertex u. Then the GCM,, , is defined as:

GCM, , — S r 1 Guk ok
\/ZZ:I (gu,k)2 \/212:1 (gmk)Q

where GC'M,,,, is the (u,v)th element of the GCM, representing the similarity
between vertices u and v.

2.3.7 Graphlet correlation distance

The graphlet correlation distance (GCD) is a measure of the similarity between two
networks, based on the GCM (i.e., 11 x 11 matrix containing pairwise correlations
between the 11 non-redundant orbits over all nodes in a network). Thus, the GCD
between two networks (G; and G, is defined as the Euclidean distance between both
GCMs. This measure is used to quantify the global structural differences between
two networks. The smaller the GCD between any two networks, the more similar the
two networks are in terms of their graphlet profiles. The GCD is formally defined
as:

GOD(Gy,Gs) = |[GCM(Gy) — GOM(Gy)|l, (2.1)
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where G; and Gy are two networks, GDM(G) is the graphlet degree vector of
graph G and Go, and ||.||2 is the Euclidean norm. Note that this is done on the
upper triangle of the GCM matrices, as the diagonal is always 1, which indicates a
perfect correlation between the entries.

2.4 Model networks

In this thesis we describe the structure of real world molecular interaction networks
by performing model network fitting experiments to compare the real networks to
different types of random model networks commonly used in network biology. In
this section we define the eight random model networks used for this experiment.

2.4.1 ER

The Erdos—Renyi (ER) random graph model consists of a fixed set of nodes and a
fixed set of links (i.e., edges) that are equally likely to exist (i.e., all interactions
have the same probability) (Erdés & Rényi, 1959). To generate the ER networks,
we set the number of nodes and edge density to match those of the real networks,
and by randomly adding edges between uniformly chosen pairs of nodes (out of the
n(n — 1)/2 possible pairs of nodes) until a given density is reached.

2.4.2 ERDD

The ER-DD is the Generalized random graph model and an extension of the ER
model. In the ER-DD, the node degree distribution matches that of an input data
(i.e., a real network) (M. E. J. Newman, 2010). To generate ER-DD networks, we
assign connection capacities (stubs, corresponding to the degree of a node) to the
nodes of the network, and then add edges between nodes that have available stubs
uniformly at random while reducing the available stubs of the newly connected nodes
after each edge addition. The number of nodes and the degree distributions in these
model networks match those of the data networks

2.4.3 GEO

The geometric random graph model (GEO) consists of randomly placing points
(i.e., nodes) in a k-dimensional space and connecting them by a link if the distance
between them is below a certain threshold (Penrose, 2003). We generate GEO net-
works by distributing the set of nodes in three-dimensional space and connecting
them by edges if the Euclidean distances between them are lower than or equal to
threshold r. This value is set so that we obtain a given edge density. The number
of nodes and edge density are set to match those of the real networks.
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24.4 GEOGD

The GEOGD model is the GEO model with gene duplication, where the dispersion
of nodes is no longer uniformly random, but according to duplication and divergence
rules which mimics the gene duplication and mutation process in biology (Przulj et
al., 2009). To generate a GEO-GD model network, we start from a seed network
(i.e., two nodes connected by an edge) to which the duplication and mutation pro-
cess is applied. First, a parent node is chosen at random and duplicated, and then
the child node is randomly placed at a distance smaller than or equal to 2r (r is the
same as in the GEO model). This process repeats itself until the required number
of nodes matches that of the input data. The last step creates the edges with the
same rules as in the GEO model until the edge density matches the input data.

2.4.5 NPSO

The Nonuniform Popularity-Similarity Optimization (nPSO) model simulates how
random geometric graphs grow in the hyperbolic space with modular organization
(also termed communities) (Muscoloni & Cannistraci, 2018). It is an extension of
the PSO model, where the similarity between nodes is represented by the hyperbolic
distance between them (i.e., the closer two nodes are in space according to the
angular coordinates, the more likely they are to be connected by an edge). Similarly,
the popularity of the nodes is represented by the radial coordinate in the hyperbolic
plane, where nodes with larger degree are positioned closer to the center of the
circle. To generate nPSO model networks, we set the number of nodes and number
of communities to match those of the input data.

2.4.6 SF

The Barabasi-Albert scale-free model (SF) is based on the preferential attachment
principle and it is characterized by having a scale-free degree distribution (Barabdsi
& Albert, 1999). To generate a SF network, we start from a seed network (i.e., two
nodes connected by an edge), and nodes are subsequently added and attached to
existing nodes of the network with a probability proportional to their node degrees.
This is repeated until the desired number of nodes is reached.

2.4.7 SFGD

The SFGD is the scale-free model with gene duplication and divergence. Similar to
the GEO-GD model, the SF-GD mimics the gene duplication and divergence pro-
cesses in biology (Vazquez et al., 2001). The initial process is the same as in the SF
model, starting with a single edge, which is grown through iterative duplication and
divergence events. In brief, for each iteration, a parent node is randomly selected
and duplicated into a child node. The newly produced node is connected to all the
neighbors of the parent node as well as the parent node with probability p. For the
divergence process, a single connection is removed with probability q between all
the shared neighbors of the parent node and the newly duplicated node. Parameter
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q is set to match the edge density of the input data.

2.4.8 STICKY

The stickiness-index based (STICKY) model assigns a higher probability of interac-
tion between two nodes the higher their degrees are (Przulj & Higham, 2006). To
generate a STICKY network, we start with n disconnected nodes and we randomly
assign stickiness index values which are proportional to the node degrees of the in-
put data. The probability of connecting two nodes is equal to the product of their
stickiness indexes.

2.5 Higher order network representations

2.5.1 Graphlet adjacency matrix

To formally introduce graphlet adjacency, we first define the the adjacency matrix
of a graph. Let G be a graph with the set of vertices V' and the set of edges
E, G = (V,E). Two vertices, u and v, are adjacent (i.e., neighbors) if they are
connected by and edge (u,v) € E in the graph. The adjacency matrix of G is
a symmetric n x n matrix, A (where n is the total number of nodes in G) that
indicates whether pairs of nodes are adjacent or not in the graph: A(u,v) = 1 if
(u,v) € E; 0 otherwise. The node degree represents the number of connections of a
node, which is also the size of the neighborhood of said node. The degree matrix of
G is the diagonal matrix, D, where D(u, u) corresponds to the degree of node u;
0 otherwise (off diagonal elements are equal to 0). Finally, the graphlet adjacency
matrix is an extension of the adjacency matrix that captures node connectivity
patterns beyond simple direct node connectivity (Windels et al., 2019). It is defined
as:

WO if
Ay = § ol T 22)
0 otherwise,
where c¥  is equal to the number of times the nodes u and v simultaneously touch

graphlet k and 6} is a scaling constant equal to the number of nodes in graphlet k
minus 1. Similar to the adjacency matrix of a graph, the graphlet adjacency matrix
represents the relationship information of the set of nodes with respect to graphlet
k. The graphlet degree matrix of G for graphlet k is the diagonal matrix Dy, where
Dy (u,u) is the graphlet degree k of node u. The graphlet degree matrix contains
on the diagonal, for each node u the number of times u touches graphlet k, with all
non-diagonal elements being zero.

2.5.2 Graphlet Laplacian matrix

The graphlet Laplacian is a matrix representation of a graph that encodes infor-
mation about the connectivity and node importance of a graph (i.e., connectivity).
First we describe how the traditional graph Laplacian is defined: Let G be a graph
with the set of vertices V' and the set of edges E, G = (V, E). Then, the Laplacian
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matrix of G, L is defined as L = D — A. Where A represents the adjacency matrix
of the graph and D the degree matrix of the graph (formerly defined in section
2.5.1). It represents the global structure of a graph because it captures the adja-
cency relationship of the nodes as well as their importance in the network. Finally,
the graphlet Laplacian matrix of a graph is an extension of the Laplacian matrix,
generalized to graphlets. Hence, graphlet Laplacians, also capture the relationship
information between the nodes, as well as how many connections they have with
respect to a given graphlet (Windels et al., 2019). The graphlet Laplacian of a given
graphlet k is defined as L = D, — A;,. Where A, and Dy, are the graphlet adjacency
and graphlet degree matrices with respect to graphlet k, respectively. The graphlet
Laplacian has several important properties, such as being positive semidefinite and
having real, non-negative eigenvalues. These properties make the graphlet Lapla-
cian a useful tool for graph analysis and for characterizing graph structures such as
communities, centrality, and connectivity.

In practical applications, these graphlet-based matrix representations (i.e., graphlet
adjacency and graphlet Laplacian) are usually normalised (e.g., to achieve a more
balanced graphlet-based spectral clustering (Windels et al., 2019)). The symmetri-
cally normalised graphlet adjacency matrix for a given graphlet k, :4;, is defined as:
A = D,i/ 2AkD,i/ 2, Analogously, the symmetrically normalised graphlet Laplacian,

Zk is defined as: Z/k = Di/zﬁkD,lg/Q.

2.5.3 K-path Laplacians

The k-path Laplacian is a generalization of the graph Laplacian. It is a matrix
of a graph that captures the connectivity of the nodes (i.e., the node degrees) but
also takes into account paths or hops of up to length k& between each pair of nodes
(Estrada, 2012; Estrada et al., 2017). The entries of the k-path Laplacian matrix
can be defined as:

-1 if d(u,v) =k
LWy = { degp(u) if u=v (2.3)
0 otherwise

2.5.4 Vicus

Vicus matrix, V', is an alternative to the graph Laplacian and k-path Laplacian
matrices of a graph that captures the local neighborhood structure of the graph
based on network label diffusion (B. Wang et al., 2017). This label diffusion can be
defined as P = B(), where () is a nxd matrix that assigns the n nodes of a network
G to one of the d possible labels (in the case of labeled nodes), B is an nxn diffusion
matrix. Lastly, P is the reconstructed matrix nxd that is used for predicting labels
for unlabeled nodes. To give Vicus its ‘local’ interpretation, the label diffusion
process determining B is constrained to diffuse information of each node only to
its direct neighbourhood (see next paragraph). Under given assumptions we define
the Vicus matrix as £V = (I — BT)(I — B). Next it was shown that @ can be
learned as the eigenvectors of LY. As () captures the local connectivity between
nodes that is implied by the ‘localized’ diffusion matrix B and can be computed as
the eigenvectors of £V, Vicus is interpreted as a Laplacian matrix.
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Lastly, it shares many of the basic properties of the standard Laplacian matrix:

1. Tt is symmetric and positive semi-definite

2. The smallest eigenvalue is 0 and the corresponding eigenvector is the constant
1

3. It has n non-negative real valued eigenvalues 0 = Ay < Ay < A3 < \,.

4. The multiplicity of the smallest eigenvalue (i.e., 0) of the Vicus matrix V
equals the number of connected components in the graph.

2.6 Network embedding

Due to the complexity of the data, a growing trend in modern network analysis is
to transform the network into a vector-based representation rather than to analyse
the network directly, a process referred to as network embedding (Cai et al., 2018;
Nelson et al., 2019). In brief, these methods extract a low-dimensional representation
of the data while conserving the original similarity features in the data (Arsov &
Mirceva, 2019). In this way, nodes that are in the same network neighbourhood
have a similar vectorial representation. Often, this is interpreted as learning a low-
dimensional embedding space, in which nodes in similar network neighbourhoods
are embedded nearby in the space (i.e., have a similar position). What distinguishes
different embedding algorithms, then, is the notion of what it means for two nodes to
be in each others’ network neighbourhood. For instance, spectral embedding learns
an embedding space so that nodes that cluster in the network, i.e., that tend to
share neighbours, are embedded nearby in space (Belkin & Niyogi, 2003). Spring
embedding, on the other hand, imagines that all edges in the network are springs
and places the nodes in a (euclidean) space so that the forces exerted by the springs
on the nodes are in equilibrium (Kamada, Kawai, et al., 1989). Formally, a network
embedding (also called representation learning) learns a vectorial representation of
each element in the network (i.e., nodes) that captures the structure and semantics
of the network (M. M. Li et al., 2022). Given a network G(V, E), with V' nodes
and F edges, and its corresponding adjacency matrix, the goal is to learn a function
V — R? that maps each node to a d—dimensional (d < |V|) vector that captures
its structural properties (M. M. Li et al., 2022).

To date, several embedding algorithms have been proposed, facilitating tasks
such as classification, clustering, prediction and visualization across various fields
including, biology, economy and social sciences (Cai et al., 2018; Chen et al., 2018;
Grover & Leskovec, 2016; Gutiérrez-Gomez & Delvenne, 2019; Kulmanov et al.,
2018; G. Li et al., 2017; Perozzi et al., 2014; Zong et al., 2017). Classical embedding
approaches include Principal Component Analysis (PCA) and Multi-Dimensional
Scaling (MDS). PCA is used to analyze the structure of a data matrix via dimen-
sionality reduction that preserves most of the variance in the original data by per-
forming eigendecomposition of the covariance matrix. The resulting eigenvectors,
or “principal components” can be more easily visualized and analyzed, for instance
in a 2-dimensional (2D) plot. Similarly, MDS is used to analyze the similarity of a
set of objects by performing dimensionality reduction on a distance matrix of the
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objects from the set and attempting to map the objects in a geometric space by
conserving the original distances between them (Borg & Groenen, 1997).

Force-directed algorithm, or Spring embedding, is a widely used method for vi-
sualization of complex networks. It works as a physical system where nodes act
as charged particles that repel each other and edges as springs that keep every-
thing together (Kobourov, 2012). In this way, between each pair of disconnected
nodes there are repulsive forces inversely proportional to the distance between them,
while for connected nodes, there are attractive forces. Other state-of-the-art embed-
ding algorithms include: DeepWalk, which uses random walks to uncover the latent
representation of a network by treating the walks as if they were sentences, and
was originally used for classification of social networks (Perozzi et al., 2014); and
Node2vec, which also uses random walks to explore the neighborhood of each node
in a network and maximizes the likelihood to preserve these neighborhoods (Grover
& Leskovec, 2016).

Other embeddings such as the Coalescent embedding map a network in a hy-
perbolic space by inferring the angular coordinates of the hyperbolic model and
assigning a radius to each node (Muscoloni et al., 2017). In this method, the angu-
lar distances between nodes represent the similarity between them, while the radius
represents how densely connected they are in the network (nodes of smaller radius,
i.e., those that are more central in the embedding, have more connections in the
network than the peripheral ones). One of the main findings in this study is that
Coalescent embedding can significantly improve the community detection in com-
plex networks (Muscoloni et al., 2017). A community is defined as a group of nodes
or a region in a network that has densely connected nodes that are sparsely con-
nected with the rest of the network. Community detection can provide additional
biological insight, for instance to uncover functional molecular modules in biological
networks (Yang et al., 2016).

In the following sections we explain in more detail the three main embedding
methods used for the development of this work: Spring embedding, Coalescent em-
bedding and Spectral embedding.

2.6.1 Spring embedding

Spring embedding is a type of force-directed layout algorithms, which model an input
graph as a system of attractive and repulsive forces. Spring embedding imagines
that all edges in the network are springs and places the nodes in a space so that the
forces exerted by the springs on the nodes are in equilibrium (Kamada, Kawai, et al.,
1989). The goal is to minimize a cost function that represents the total energy of
the system, which depends on the length of edges and the distance between nodes.
The resulting layout aims to provide a clear, readable representation of the graph
structure, by spreading nodes out evenly, minimizing edge crossings and highlighting
dense clusters or communities in the graph. Some limitations of Spring embedding
is that it relies heavily on node connectivity and it is non-deterministic. When
applied to biological networks, spring embedding is likely to produce uninformative,
close-knit network embeddings resembling “hairball” (Blésius et al., 2021). This
is because many biological networks, including PPI (Jeong et al., 2001a) and GI
networks (Tong et al., 2004), are scale-free (defined in section 2.3.3.1).In scale-
free networks, the few high-degree nodes (i.e., nodes with many neighbours, known
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as ‘hubs’) connect to many low-degree nodes (Ravasz & Barabdsi, 2003). Spring
embedding does not manage to spread the hub-nodes in the (Euclidean) embedding
space, as they are pulled together by the many ‘springs’ connecting them to their
shared low-degree neighbors (Blésius et al., 2021).

2.6.2 Coalescent embedding

Due to the complexity of many real world data, a proper embedding representation
is crucial for uncovering the latent geometry of complex networks, such as the Eu-
clidean space, which has dominated many areas in science for data representation
and visualization (Clauset et al., 2009; Cross et al., 2006; M. E. Newman, 2004;
Zachary, 1977). More recently, the hyperbolic space has become a highly relevant
space for network embedding representation (Cannistraci & Muscoloni, 2018; Mus-
coloni et al., 2017; Watts & Strogatz, 1998). In the hyperbolic space the data or
network is usually represented in a hyperbolic disk where each data point or node
in the network is assigned a radial coordinate and an angular coordinate. The ra-
dial coordinate of the nodes characterizes their hierarchy in the network, whereas
the angular distance in the disk between the nodes represent their similarity in the
network. In this way, the nodes of high topological importance (for instance highly
connected nodes) are usually placed towards the center of the disk, and less im-
portant nodes (with fewer connections) are placed towards the periphery of such
disk. In addition, the hyperbolic space has been shown to have more capacity than
the FEuclidean space, as its volume grows exponentially with the radius. Finally,
hyperbolic geometry is better suited to embed data with tree-likeness or underlying
hierarchical /heterogeneous structure (Adamic & Glance, 2005).

To date, several studies that make use of hyperbolic space have been proposed
for representing the latent geometry behind complex network topologies (Alanis-
Lobato et al., 2016a, 2016b; Bianconi & Rahmede, 2017; Garcia-Pérez et al., 2019;
Krioukov et al., 2010; Song & Wang, 2019). In this work we chose on focusing
on Coalescent embedding (Muscoloni et al., 2017), which we generalise to graphlet
based Coalescent (GraCoal) embedding (discussed in Chapter 3). In brief, Coales-
cent embedding maps a network onto a disk, assigning an angle and a radius to
each node rather than a Euclidean coordinate. One of our motivations for focusing
on hyperbolic embeddings, such as Coalescent embedding, is that the scale-freeness
of many biological networks stems from an underlying latent hyperbolic geometry,
which hyperbolic embeddings can uncover (Boguna et al., 2009). (Boguna et al.,
2009). Additionally, Coalescent embedding (CE) in particular, was shown to detect
successfully communities in many real world networks (Muscoloni et al., 2017).

Given a graph as input, the CE algorithm can be summarized as follows:

1. Perform dimensionality reduction on the graph, which can be done by us-
ing one of the following approaches: Minimum curvilinearity (MCE) (Cannistraci
et al., 2013; Cannistraci et al., 2010); Isomap (ISO) (Tenenbaum et al., 2000); Non-
centered minimum curvilinearity (ncMCE) (Cannistraci et al., 2013); Noncentered
Isomap (ncISO) (Cannistraci et al., 2013); Laplacian eigenmaps (LE) (Belkin &
Niyogi, 2001, 2003). For MCE, the first dimension is used; for ISO, the 1st and 2nd
dimensions are used; for ncMCE, the 2nd dimension is used; finally, for ncISO and
LE, the 2nd and 3rd dimensions are used.

2. Determine angular coordinates: The vectors obtained from the dimensionality

27



reduction are used as coordinates that correspond to every node in the network,
which are transformed into angular coordinates. The vectors corresponding to the
1st and 2nd dimensions for ISO, and 2nd and 3rd dimensions for ncISO and LE
algorithms (and which are commonly used as Cartesian coordinates), are converted
to polar coordinates. For MCE and mcMCE, Cartesian to polar conversion is not
applied because the vectors obtained by these dimensionality reduction techniques
are already given as angles. Next, the angular vector obtained previously by either
method is used for circular adjustment (CA) and equidistant adjustment (EA). First,
CA sets the angular coordinates vector in the range (0, 27), followed by EA, which
reorganizes the coordinates equidistantly along the circle according to their original
order learned by the dimensionality reduction.

3. Assign radial coordinates: For computing the radius, Coalescent embedding
explicitly assumes that the degree distribution follows a power a power law: P(d) ~
d*. So first, coalescent embedding fits a power-law to the degree distribution (i.e.,
estimates \). Then, the nodes are sorted in descending order according to their
degree. Finally, the radial coordinate of the i*" node, r;, is calculated as:

o = Bin(i) + (1 - B)in(N), (2.4)

where 7 is the rank of the node, N the number of nodes in the network and § =

/(0 —1).

2.6.3 Graphlet Spectral embedding

Spectral embedding learns an embedding space such that nodes that share many
neighbors in the network, are embedded close in space (Ng et al., 2001). It makes
use of the Laplacian matrix of a graph to perform dimensionality reduction and sub-
sequently use the vector coordinates corresponding to the second and third smallest
eigenvalues to embed the graph in 2 dimensions (2D). More recently, the Laplacian
matrix was generalized to the graphlet Laplacian and Spectral embedding was ap-
plied to capture functional information from the underlying networks, showing that
different graphlets can uncover different biological functions (Windels et al., 2019).

Thus, here we recall our formal definition of graphlet Spectral embedding, which
embeds nodes nearby in space if they frequently simultaneously touch a given
graphlet (Windels et al., 2019). Formally, given an unweighted network H with
n nodes, we find a low dimensional embedding, Y = [y1,...,yn] € R“" such that if
nodes v and v are frequently graphlet-adjacent with respect to graphlet Gg, then
y(u) and y(v) are close in the d-dimensional space by solving:

n n
minimize E E AGk (U7 U)Yu - Yu2
Y
u=1 v=1

subject to : YD1 =0and YD, YT =1,

(2.5)

where Agy is the graphlet-based adjacency matrix of G for graphlet Gy, Dy, is the
graphlet-based degree matrix of G for graphlet Gy. The columns of Y are found as
the generalized eigenvectors associated with the 2nd to (d+1)" smallest generalized
eigenvalues solving Y L = Y Dy, where is the diagonal matrix with the generalized
eigenvalues along its diagonal.
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2.7 SAFE

Despite the abundance of biological network data, our knowledge of the functional
organization of these networks remains incomplete. For instance, for the model
organisms C. elegans and S. pombe, we find that the experimentally validated
biological-process annotations in the Gene Ontology (GO) database cover only 14%
and 15% of their genes (Ashburner et al., 2000). This illustrates the need for auto-
mated functional annotation algorithms for biological networks. A state-of-the-art
network-based functional annotation algorithm is SAFE: Spatial Analysis of Func-
tional Enrichment (Baryshnikova, 2016). Given a biological network and a set of
node annotations, SAFE uncovers local network neighbourhoods where node anno-
tations are over-represented or enriched. The annotations enriched in the same net-
work neighbourhood are automatically aggregated into computationally generated
domains, describing the general function of different local network neighbourhoods.
SAFE provides an intuitive visualisation of the domains by placing the network in
a 2D plane using Spring embedding and overlaying the network embedding with
the different uncovered functional domains. This way, SAFE effectively creates a
functional map of the cell that is powerful yet intuitive to biologists, enabling the
study of the functional organization of the network at hand. As such, SAFE is
widely used to study biological networks. Originally, SAFE was introduced to study
the functional organization of the yeast GI network, and uncovered that cellular
function is organised in hierarchical functional modules (Costanzo et al., 2016). Ho
et al. applied SAFE on PPI data to show how protein abundance levels in the cell
are dependent on the cellular functions they are involved in (B. Ho et al., 2018).
For instance, high-abundance proteins were specifically over- represented biological
processes related to morphogenesis and ribosome biogenesis, while low-abundance
proteins were associated with DNA replication and repair, mitosis, and RNA pro-
cessing. To validate their human proximity-dependent biotinylation PPI data, which
detects PPIs in intact cells, Youn et al. applied SAFE and manage to recover the
spatial organization of the human cell into cellular compartments (Youn et al., 2018).

The SAFE framework consists of 4 algorithmic steps.

In step 1, SAFE takes as an input an unweighted and undirected network H,
and a set of node annotations of interest M to produce a 2D embedding F of this
network.

In step 2, the local neighbourhood of each node is determined. SAFE does so
taking both information from the embedding space into account, as well as informa-
tion directly from the network. First, SAFE computes the pairwise shortest path
distance between all nodes in the network. To take into account information from
the embedding space, each edge between a pair of nodes in the network is weighted
by their Euclidean distance in the embedding space. Then, SAFE considers the
local neighbourhood of each node to be all nodes that are at a weighted shortest
path distance (WSPD) less than a given threshold «.

In step 3, SAFE computes for the local neighbourhood of each individual node,
the node annotations that occur more than expected by chance using a hyper-
geometric test, applying the Benjamini and Hochberg correction for multiple hy-
pothesis testing (Benjamini & Hochberg, 1995).

In step 4, the annotations that are enriched in overlapping local neighbourhoods
are aggregated into more descriptive groups. To do so, first, the attributes that are
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enriched in fewer than J local neighbourhoods are discarded (default: 5=10). Then,
agglomerative clustering with average linkage is applied on the remaining attributes,
based on their Jaccard similarity in terms of the local neighbourhoods in which they
are enriched. From this hierarchical clustering, clusters of annotations are extracted,
cutting the tree at 7% of its height (default: v=75%). The resulting clusters of
annotations are referred to as functional domains. For each functional domain,
the five most repeated words occurring in the annotations names are reported an
aggregated description for the domain.
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Chapter 3

New methods: embedding omics
networks for new biological
insights

In this chapter we first explain how we extend the Spring embedding algorithm and
generalise it to graphlet-based Spring embedding. Next we explain how we extend
the Coalescent embedding algorithm and generalise it to graphlet-based Coalescent
(GraCoal) embedding. Finally, we briefly go over the modifications done to extend
the SAFE pipeline to consider these newly graphlet-based embeddings, as well as
the already established graphled-based Spectral embedding.

3.1 Graphlet based Spring embedding

We recall from section 2.6.1 how Spring embedding acts as a system of attractive
and repulsive forces where it imagines that all edges in a network work as springs
that attract connecting nodes to each other until the system reaches equilibrium
(Kamada, Kawai, et al., 1989).

In particular, we focus on the Fruchterman-Reingold force-directed algorithm
(Fruchterman & Reingold, 1991), which is the one that the SAFE framework uses.
In this particular force-directed algorithm, all nodes in the network are assumed to
repel each other by a repulsive force, while an attractive force pulls together pairs
of nodes that are connected in the network. These repulsive and attractive forces
between nodes and edges can be formally defined as follows:

Repulsive force F'r between two nodes v and v:

k‘2

Xy — Xy

:Fruv:_

Attractive force F'a between two nodes u and v connected by an edge:
2
Xy — X

FuU:
@ K

Where k is a global hyperparameter that determines the strength of the repulsive

and attractive forces and |x, — x,| is the distance in embedding space between nodes
uw and v (Fruchterman & Reingold, 1991).
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Having defined the attractive forces determined by the edges, and repulsive forces
determined by the nodes, the following steps are repeated in the spring embedding
algorithm until reaching equilibrium:

1. Calculate the repulsive forces between all pairs of nodes.
2. Calculate the attractive forces between all pairs of connected nodes.

3. Update the positions of all nodes based on the combined effect of the repulsive
and attractive forces.

4. Limit the total displacement of the nodes by the temperature T', which is a
global parameter that regulates the step size of node movement.

To reach equilibrium, the goal is to minimize a cost function that represents the
total energy of the system, which depends on the length of edges and the distance
between nodes. The resulting layout aims to provide a clear, readable representation
of the graph structure, by spreading nodes out evenly, minimizing edge crossings
and highlighting dense clusters or communities in the graph. The Spring embedding
used in SAFE, typically receives as input the adjacency matrix of a given network G,
which if is unweighted, sets the length of all edges in the network to 1 by default. We
apply the Spring embedding to the graphlet adjacency matrix, formerly defined in
section 2.5.4. Specifically, we use the symmetrically normalised graphlet adjacency
matrix for a given graphlet k, Ak, which is defined as: Ak = D1 2Ale/z. In this
way, because the edge weights between nodes in a particular graphlet adjacency
matrix represent how well connected they are with respect to a given graphlet, we
can obtain a different layout for each graphlet based adjacency matrix. We do
this for all up to 4-node graphlets (Ay to Ag) when using the Spring embedding as
opposed to using the Spring embedding with only the traditional adjacency matrix
of the same network. For instance, a pair of nodes that simultaneously touch many
times the four node clique (i.e., they have a large in magnitud edge weight) might
end up embedded close in space when applying graphlet based Spring embedding to
Ag, but not when applying graphletd based Spring embedding to A3, which is based
on the four node path graphlet.

3.2 Graphlet based Coalescent embedding

Coalescent embedding maps a given network onto a hyperbolic circle, by assigning
similar angles to nodes that are in the same network neighborhood (i.e., nodes that
tend to form clusters in the network). Nodes with higher topological importance
(e.g., have a higher degree), are embedded near the circle’s centre (Muscoloni et al.,
2017). After having formally defined the Coalescent embedding algorithm in section
2.6.2, in this section we present an overview of the newly proposed graphlet-based
Coalescent embedding (GraCoal) approach.

1. For a given network and graphlet, we embed the given network into 2D space
using graphlet spectral embedding (see Section: Graphlet spectral embedding).

2. We map the node Cartesian coordinates to an angular coordinate. This step
is identical to step 2 in coalescent embedding.
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3. We determine a radial coordinate for each node applying the following formula:
ri = In(i), (3.1)
where ¢ is the rank of the node based on its graphlet degree.

Note that our formula to determine the radius of a node (equation 3.1) is a sim-

plified version of the equation applied in standard Coalescent embedding (equation
2.4). We do this because the graphlet degree distributions for our real networks
do not all follow a power-law. In Figures 3.1-3.4 we show the graphlet degree dis-
tributions for the budding yeast GIS, GI, PPI and COEX networks, respectively.
Fitting a power-law to graphlet node degree distributions lead to larger than usual
values of the power-law exponent A, which usually ranges between 2 and 3 (Ravasz
& Barabadsi, 2003). This leads to large radial coordinates, pushing the nodes to the
periphery of the hyperbolic space, as shown in Figure 3.5.
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Figure 3.1. Node graphlet degree distributions for all up to 4-node graphlets (Go-Gg)
for the Budding yeast genetic interaction similarity (GIS) network. Graphlet Gg is the
only graphlet that appears to have a scale-free node graphlet degree distribution.
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Figure 3.2. Node graphlet degree distributions for all up to 4-node graphlets (Go-Gg)
for the Budding yeast genetic interaction similarity (GI) network. None of the graphlets
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appear to have a scale-free node graphlet degree distribution.
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Figure 3.3. Node graphlet degree distributions for all up to 4-node graphlets (Go-Gg)
for the Budding yeast protein-protein interaction (PPI) network. None of the graphlets
appear to have a scale-free node graphlet degree distribution.
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Figure 3.4. Node graphlet degree distributions for all up to 4-node graphlets (Go-Gg) for
the yeast co-expression (COEX) network. Graphlet Gg is the only graphlet that appears
to have a scale-free degree distribution.

Figure 3.5. When using the Coalescent embedding, large values of A lead to large
radial coordinates, placing the nodes towards the periphery of the embedding space. We
show the Coalescent embedding (left) and the corresponding enrichment landscape (right),
visualized with SAFE when using Equation (3) (main document) with a large value of A.
The node importance in terms of graphlet degree (i.e., how well connected with respect
to a given graphlet) is lost when applying this algorithm directly on graphlets.
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3.3 Extension of SAFE

The SAFE framework takes as input a network and a set of annotations of the given
network (Baryshnikova, 2016). Typically, a network is provided in edgelist format,
which is, a two column file for unweighted networks where each row represents
an interaction between a particular node (first column) and another node (second
column). For weighted networks, a third column may be present, which contains
the interaction magnitude of the two nodes. For instance, a GI network may be
represented by a three column edgelist, where for each row, the first column contains
the label of a particular gene, the second column the label of a gene that genetically
interacts with the gene in the first column, and the third row the genetic interaction
score of this interaction. We extended this step in the SAFE framework to optionally
include a third input file: a graphlet adjacency matrix, in edgelist format. Similar to
the edgelist previously described, the graphlet adjacency edgelist contains, for each
row a gene in the first column, a different gene in the second column and in the third
column, instead of an interaction score such as in a GI network, the number of times
the two nodes touch a particular graphlet, previously symmetrically normalised.

We recall from section 2.7 that SAFE framework consists of 4 main algorithmic
steps. Below we review the steps that we made modifications to in order to further
extend and provide more functionality to the framework.

In step 1, a given network is embedded in a 2D space by applying the Spring
embedding algorithm. For this step, we extended its functionality so the user can
choose whether to use the default Spring on a the input network, or if a partic-
ular graphlet adjacency matrix (in edgelist format) is available, specify between
‘GraSpring’, ‘GraCoal’ and ‘Spectral’.

In step 2, the local neighborhood of each node is determined. SAFE does so
taking both information from the embedding space into account, as well as informa-
tion directly from the network. First, SAFE computes the pairwise shortest path
distance between all nodes in the network. To take into account information from
the embedding space, each edge between a pair of nodes in the network is weighted
by their Euclidean distance in the embedding space. Then, SAFE considers the
local neighbourhood of each node to be all nodes that are at a weighted shortest
path distance (WSPD) less than a given threshold a. To facilitate the downstream
analysis of graphlet-based embeddings, we modified the way the local neighborhood
of a node is computed. In brief, we fix the average neighborhood size to a user
specified parameter, N.S (neighborhood size) to avoid large discrepancies in average
neighborhood sizes when using different graphlet-based embeddings. In this regard,
before evaluating the performance of the different graphlet based embeddings, we
choose an optimal NS based on the enrichment results obtained with SAFE and
fix this value to allow for a comparison across our methods. We run SAFE with
different values of this new user specified hyperparameter with the three embedding
algorithms and compare the percentages of genes enriched in at least one annota-
tion and percentages of annotations enriched with respect to different neighborhood
sizes. In brief, we discover that setting the N.S to values above 50 provides no
additional enrichment results in terms of annotations when using SAFE with the
different graphlet-based embeddings (Fig 3.6).

Lastly, in addition to the three output files produced by the SAFE framework,
we added further relevant data as output files. This is particularly useful for when
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having to run the framework over multiple networks and/or graphlet adjacencies.
SAFE now stores all node embedding coordinates for each run as a two column
file where each row represents a node and the two columns represent the X and Y
Cartesian coordinates. An output file named attribute2enrichedgenes containing, for
each enriched annotation, a list of gene indices for which the annotation is enriched
in the neighborhood. All the WSPD are also saved to an output file. Finally, we
also save the plot corresponding to the embedding, as opposed to only the plot with
the functional domains.
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Figure 3.6. SAFE enrichment statistics with respect to neighborhood size, Part 1. We
show the percentages of genes enriched in at least one GO-BP (left) and percentages of
enriched GO-BP (right) for different neighborhood sizes used in SAFE (x-axis) for the GI
network of E. coli (top) and Fruit fly (bottom).
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Figure 3.6. SAFE enrichment statistics with respect to neighborhood size, Part 2. We
show the percentages of genes enriched in at least one GO-BP (left) and percentages of
enriched GO-BP (right) for different neighborhood sizes used in SAFE (x-axis) for the GI
network of Fission yeast (top) and Budding yeast (bottom).
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Chapter 4

Application 1: Analysis of GI
networks

In this chapter we evaluate the performance of the graphlet-based embeddings (i.e.,
GraCoal, GraSpring and graphlet based Spectral) with the Spatial Analysis of Func-
tional Enrichment (SAFE) framework on the GI networks of the following species:
Drosophila melanogaster, Escherichia coli, Saccharomyces cerevisiae and Schizosac-
charomyces pombe, which throughout the text we will refer to as fruit fly, E. coli,
budding yeast and fission yeast, respectively. We present the GI network statistics
in Table 4.1. For more information on how we built these molecular networks please
refer to section A.1 in Appendix A. Moreover, we focus mainly on analysing results
based on Gene Ontology Biological Processes (GO-BP), as is one of the most com-
plete set of annotations. For detailed results corresponding to our other annotations
(e.g., GO molecular functions and GO cellular components), please refer to section
A.2 in Appendix.

GI
Nodes Edges Density
Budding yeast 5,842 447,747 0.03

E. colz 3,973 169,594 0.02
Fission yeast 3,077 52,402 0.008
Fruit fly 3,159 10,687 0.002

Table 4.1. GI molecular network data statistics. For each species (row), we report the
number of nodes, the number of edges and the density of the corresponding GI network
(columns 1-3).

In general, we find that GraCoal embeddings outperform both GraSpring embed-
dings and graphlet based Spectral embeddings on every GI network. Additionally,
some GraCoals lead to better enrichments than others, and thus, we perform a de-
tailed investigation of the topology-function relationship captured by the different
GraCoal embeddings. When providing specific examples, we focus mainly on the
budding yeast GI network, as it is the most complete and best annotated GI net-
work. Moreover, we choose to study GI networks in this section over GIS networks,
as the latter is only available for budding yeast, which would excessively limit the
scope of our study in terms of species coverage.
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4.1 Results for GraCoal with SAFE

GraCoal best uncovers the functional organization of the cell

In this section, we evaluate: (1) how well GraCoal embeddings capture the functional
organization of genetic interaction networks and (2) which higher-order topologies
(i.e., graphlets) capture the most function. In both experiments, we apply SAFE-
based enrichment analysis to quantify how well a given embedding captures the
functional organization of a given network. An annotation (e.g., GO-BP) is enriched
if it is over-represented in the local neighborhood of at least one gene. Similarly, a
gene is enriched if it has at least one annotation enriched in its local neighborhood.
As our conclusions are the same for both experiments, whether we focus on gene
enrichment or annotation enrichment, we focus on gene enrichment.

To evaluate how well GraCoals capture the functional organization of our GI
networks, we compare against GraSpring embedding (as GraSpring for graphlet
Gy corresponds to standard Spring embedding, used in the original SAFE) and
Graphlet Spectral embedding (as it underlies our GraCoal embeddings). At this
stage, we want to evaluate which of these embedding methods is best in general,
regardless of the chosen graphlet-based topology. Therefore, we consider for each
embedding method the union of the enriched genes across the different types of un-
derlying graphlet adjacencies (i.e, Ag, to Ag,). We show the results in Figure 4.1.
We observe that for all four of our species, GraCoal outperforms both GraSpring
and graphlet Spectral embedding. In particular, we find GraCoal captures the func-
tional organization of the fruit fly and budding yeast (% enriched genes 90.3 and
71.4) exceptionally well, greatly outperforming GraSpring embedding (% enriched
genes 61.3 and 42.6) and Graphlet Spectral embedding (% enriched genes 76.72 and
61.13). GraCoal also outperforms GraSpring and graphlet Spectral embedding in
fruit fly, budding yeast and fission yeast GI networks when we consider the two
alternative annotation types that describe the spatial organization of the cell (GO
cellular components) and the function of the cell (GO molecular functions) (see
Appendix A.2). Lastly, GraCoal embedding also best capture the functional and
spatial organization of our GIS network, achieving the best enrichment scores for
all three annotation types, both in terms of gene enrichment as well as annotation
enrichment (Appendix Figures A.6, A.9 and A.16).
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Figure 4.1. SAFE GO-BP enrichment analysis for GI networks. For the GI
networks of our four species (x-axis), we show the percentage of enriched genes (y-axis)
and percentage of enriched annotations for each of the embedding algorithms considered
(legend). In the case of GraSpring, we show the average across ten randomised runs and
the standard deviation (error-bars).

GraCoal embeddings spread the nodes more evenly in the
embedding space

To explain why GraCoals best capture the functional organization of GI networks,
we use SAFE’s functionality to visualise the GO-BP enrichment landscapes for our
three different types of graphlet based embeddings. In general, we observe that
when using GraCoal embeddings, the nodes are spread much more evenly than when
using graphlet-based Spring or graphlet-based Spectral embeddings, regardless of the
graphlet adjacency used. For Spring embedding, this is expected, as the budding
yeast GI network is scale-free, which is known to lead to dense, entangled Spring
embeddings (Blésius et al., 2021). As a consequence, the functional domains based
on GraCoal embeddings are also much more spread out and discernible than those
based on GraSpring embedding and Spectral embedding.

Below we compare the 2D network embedding layouts (left) and functional land-
scapes (right) produced by SAFE of the three graphlet based embeddings for the
Budding yeast GI network. To have a baseline comparison, we show the embeddings
corresponding to the normal graphlet adjacency in Figure 4.2 (i.e., Ag,). Next, to
compare the embeddings corresponding to both a densely connected graphlet and
a long path, we show, in Figures 4.3 and 4.4, the embeddings based on graphlet
adjacency Ag, (i.e., the three-node clique), and graphlet adjacency Ag, (i.e., the
four-node path), respectively.

Moreover, as a measure of how well the nodes are spread in the space, we compute
the average distance between each pair of nodes in the embedding space for all
graphlet based embeddings. In Table 4.2, we report the average Fuclidean distance
between all nodes when using the three graphlet based embeddings in SAFE over
all GI networks. We observe that the average distance between nodes when using
GraCoal embedding, is 2.11 to 3.56 times larger than when using GraSpring, and
475 to 2,850 times larger than when using graphlet based Spectral.
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Figure 4.2. Functional landscape of the Budding yeast GI network for different types
of network embedding based on graphlet adjacency Ag,. We use SAFE to annotate the
Budding yeast GI network with GO-BP for (A) GraCoal embedding, (B) Spring embedding
and (C) Spectral embedding. For each type of network embedding, we show the network
embedding on the left and the SAFE enrichment domains highlighted in colour on the
right.
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Figure 4.3. Functional landscape of the Budding yeast GI network for different types
of network embedding based on graphlet adjacency EGQ. We use SAFE to annotate the
Budding yeast GI network with GO-BP for (A) GraCoal embedding, (B) Spring embedding
and (C) Spectral embedding. For each type of network embedding, we show the network
embedding on the left and the SAFE enrichment domains highlighted in colour on the
right.
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Figure 4.4. Functional landscape of the Budding yeast GI network for different types
of network embedding based on graphlet adjacency KGS. We use SAFE to annotate the
Budding yeast GI network with GO-BP for (A) GraCoal embedding, (B) Spring embedding
and (C) Spectral embedding. For each type of network embedding, we show the network
embedding on the left and the SAFE enrichment domains highlighted in colour on the
right.

GraCoal GraSpring Spectral
Budding yeast 0.57 (std=0.00) 0.16 (std=0.03) 0.08 (std=0.05)
E. coli 0.57 (std=0.00) 0.27 (std=0.04) 0.12 (std=0.03)
Fission yeast  0.57 (std=0.00) 0.21 (std=0.05) 0.02 (std=0.02)
Fruit fly  0.56 (std=0.00) 0.22 (std=0.03) 0.02 (std=0.01)

Table 4.2. Average Fuclidean distance between nodes in graphlet based embeddings.
For each of our GI molecular networks (rows), we report the average Euclidean distance
between all pairs of nodes across all graphlet adjacencies (i.e., Ag, - Agy) for GraCoal,
GraSpring and graphlet based Spectral embeddings (columns 1-3).
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GraCoal embeddings uncover complementary biological in-
formation

After having shown that GraCoal embeddings work best for the GI molecular net-
works when using SAFE, we then investigate which topologies (i.e., graphlets) cap-
ture the most function in GI networks by comparing our results between the different
GraCoals. We present our results in Figure 4.5 and observe that for the two species
where GraCoals capture the most function, i.e., fruit fly and budding yeast, there
are clear top performing GraCoals. For budding yeast for instance, the top per-
forming GraCoals, GraCoals 367 achieve between 42.0% and 45.2% enriched genes,
which is distinctly better then to the low performing GraCoals, GraCoaly 453,
which achieve between 17.4% and 34.9% enriched genes. Additionally, we observe
that the top performing GraCoals are not the same across species, as those for
fruit fly (GraCoaly;346) are clearly distinct of those for budding yeast (Ag,,.,)-
Notably, GraCoals based uniquely on triangles, GraCoal, 7, perform particularly
well in budding yeast but not in fruit fly. Conversely, GraCoals void of triangles,
GraCoalg 1 3.4 perform particularly well in fruit fly but not in yeast. For Fission
yeast, the best performing GraCoals (GraCoalsysg) largely follow those for Bud-
ding yeast, although the differences in performance between the different GraCoals
is less pronounced. For E. coli, there are no clear best GraCoals. In all, these results
imply that the same GraCoals capture different topology-function relationships in
GI networks depending on the species.
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Figure 4.5. SAFE GO-BP enrichment analysis comparing GraCoals in GI
networks. For the GI networks of our four species (legend), we show, on the y-axis, the
percentage of enriched genes (top) and the percentage of enriched annotations (bottom)
for each of the different GraCoal embeddings (x-axis).

Next, for each species, we focus on identifying what characterizes each particular
GraCoal (i.e., Ag,-Ag,) from a biological perspective. To this end, we explore in
more detail the functional information uncovered by the GraCoal embeddings when
used in SAFE. We do this at the annotation level (i.e., identifying particular GO-
BPs that are characteristic of each GraCoal) and at the functional domain level (i.e.,
identifying particular functional domains that are characteristic of each GraCoal).

First, we identify the uniquely enriched annotations for each GraCoal (i.e., an-
notations enriched in a particular GraCoal that are not enriched in any of the other
GraCoals). For the budding yeast, we find that on average, 22 GO-BPs are uniquely
enriched for each particular GraCoal. This is in line with the literature, as differ-
ent graphlet adjacencies are known to capture complementary topology-function
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relationships in molecular networks (Windels et al., 2019).

We observe that each GraCoal embedding not only uncovers biological infor-
mation that is not uncovered by the other GraCoal embeddings, but that there is
some degree of functional similarity in the information uncovered. For instance,
five of the ten largest GO-BP enriched for GraCoals; are related to nuclease activ-
ity. This implies some larger function being uniquely captured by each GraCoal.
To further asses that this is the case, we evaluate the biological relevance of the
uniquely enriched annotations (i.e., GO-BPs) for a particular GraCoal, by comput-
ing the semantic similarity of each pair of annotations in the set of annotations. We
define the semantic similarity (SS) as the inverse of the semantic distance between
a given pair of GO terms, where the semantic distance is the minimum number of
connecting branches between the pair of GO terms in the ontology directed acyclic
graph (DAG) (Dessimoz & Skunca, 2017; Rada et al., 1989). Finally, we rank the
uniquely enriched annotations according to their size, defined as the total number
of neighborhoods they are enriched in, as a measure of how well they are cap-
tured by each particular GraCoal. In table (Table 4.3 we report for the budding
yeast, the number of uniquely enriched annotations (column 1), the mean SS for
the uniquely enriched annotations (column 2) as well as the mean SS for the top 10
largest uniquely enriched annotations (column 3) for each GraCoal used in SAFE.
Finally, in column 5, we report the names of the top 10 uniquely enriched annota-
tions and their corresponding size in terms of enriched neighborhoods (column 4).
The lowest and maximum average SS for the sets of uniquely enriched annotations
for the budding yeast GI network are 0.15 (Std=0.06) and 0.29 (Std=0.05) for Ag,
and EGS, respectively. In general, when evaluating the top 10 enriched annotations,
we observe a larger degree of functional similarity between the annotations, which
ranges from 0.21 (Std=0.04) to 0.33 (Std=0.05) for the budding yeast (Ag,, and
ZGQ, respectively). For the summary of uniquely enriched annotations for our other
GI networks please refer to Tables A.3 to A.5 in Appendix A.
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Ecl Total annotations Mean SS Mean SS Top 10 EN

Annotation

193
193

192
~ 118
Ag, 17 021 (Std = 0.05)  0.28 (Std = 0.05) |}
95
88
85

82
72

protein localization to mitochondrion
establishment of protein localization to mitochon-
drion

mitochondrial transport

ribosome disassembly

protein insertion into membrane

RNA methylation

protein insertion into mitochondrial membrane
establishment of protein localization to mitochon-
drial membrane

regulation of DNA double-strand break processing
tRNA methylation

176
174
161

Ag, 25 0.15 (Std = 0.06)  0.21 (Std = 0.04)
112
111
103

91
72

70

nuclear pore localization

tRNA gene clustering

positive regulation of attachment of spindle micro-
tubules to kinetochore

attachment of spindle microtubules to kinetochore
involved in meiotic chromosome segregation
monopolar spindle attachment to meiosis I kineto-
chore

spliceosomal complex assembly

DNA unwinding involved in DNA replication
positive regulation of chromosome segregation
positive regulation of DNA-templated transcrip-
tion, initiation

Ul snRNA 3’-end processing

Table 4.3. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 1. We
report, for the budding yeast GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. ZGO to EGS (column 1). In column 4, we report the mean SS for the
top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column

5).
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Total annotations Mean SS Mean SS Top 10 EN | Annotation
270 | double-strand break repair via nonhomologous end
joining
232 | positive regulation of DNA metabolic process
231 | regulation of reproductive process
~ 195 | endonucleolytic cleavage in I'TS1 upstream of 5.8S
A, 46 0.17 (Std = 0.04) 0.3 (Std = 0.05) rRNA from tricistronic TRNA transcript
194 | regulation of nuclease activity
190 | regulation of deoxyribonuclease activity
173 | regulation of endodeoxyribonuclease activity
166 | regulation of transcription by RNA polymerase I
161 | positive regulation of deoxyribonuclease activity
161 | positive regulation of nuclease activity
182 | retrograde vesicle-mediated transport Golgi to en-
doplasmic reticulum
165 | protein methylation
165 | protein alkylation
~ 157 | peptidyl-lysine methylation
Ag, 21 0.19 (Std = 0.04)  0.25 (Std = 0.06) 154 | replication fork arrest
146 | Golgi organization
140 | mitotic DNA damage checkpoint signaling
128 | mitotic intra-S DNA damage checkpoint signaling
124 | histone H3-K79 methylation
120 | organophosphate biosynthetic process
145 | resolution of meiotic recombination intermediates
93 | positive regulation of cell cycle process
90 | positive regulation of cell cycle
Z@ 7 0.29 (Std = 0.05)  0.29 (Std = 0.06) 33 | cellular component disassembly
28 | transition metal ion transport
13 | phosphatidylcholine biosynthetic process
13 | phosphatidylcholine metabolic process
200 | response to cell cycle checkpoint signaling
200 | cellular response to biotic stimulus
196 | response to biotic stimulus
192 | cellular response to endogenous stimulus
gGr 35 0.20 (Std = 0.05)  0.30 (Std = 0.05) 192 | response to cr}dogcrlous stimulus
5 74 | vacuole organization
74 | regulation of signal transduction
74 | regulation of signaling
70 | regulation of intracellular signal transduction
70 | vacuole fusion, non-autophagic

Table 4.3. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 2. We
report, for the Budding yeast GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. KGO to ZGS (column 1). In column 4, we report the mean SS for the
top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column

5).
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Total annotations Mean SS Mean SS Top 10 EN | Annotation
Ag, 1 Na Na 101 | ribosomal small subunit export from nucleus
184 | leading strand elongation
152 | regulation of cellular response to stress
131 | regulation of response to stress
100 | resolution of recombination intermediates
~ 95 | reproduction
A 13 0.25 (Std = 0.06)  0.27 (Std = 0.05) 87 | regulation of response to endoplasmic reticulum
stress
85 | protein targeting to membrane
83 | regulation of endoplasmic reticulum unfolded pro-
tein response
65 | response to unfolded protein
34 | organic hydroxy compound metabolic process
239 | transcription by RNA polymerase II
159 | cellular chemical homeostasis
151 | regulation of cellular component organization
139 | regulation of microtubule-based process
Ang 34 0.17 (Std = 0.04)  0.22 (Std = 0.03) 126 ubiquitin—dependen‘F ERAD pathway
116 | autophagy of peroxisome
114 | chromosome organization involved in meiotic cell
cycle
111 | regulation of microtubule cytoskeleton organiza-
tion
110 | sphingolipid metabolic process
110 | chemical homeostasis

Table 4.3. Summary of uniquely enriched GO-BPs for Gracoal embeddings, Part 3. We
report, for the Budding yeast GI network, the number of uniquely enriched GO-BPs and
the mean semantic similarity (SS) between the uniquely enriched annotations (GO-BPs)
(columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. KGO to ggs (column 1). In column 4, we report the mean SS for the
top ten largest enriched annotations (column 6), i.e., ranking them in descending order
according to the number of neighborhoods that the annotations are enriched in (column
5).

Thus far, we have shown that GraCoal embeddings outperform GraSpring em-
beddings and Graphlet Spectral embedding in capturing the functional organization
of genetic interaction networks. Additionally, we have shown that different GraCoals
capture different topology-function relationships when applied to different GI net-
works (i.e., for different species). Lastly, we observed that triangle based graphlets
or graphlets void of triangles tend to perform very well depending on the species of
the GI network being looked at. In light of these observations, in the next section we
perform topological analysis to explain why some GraCoals work better depending
on the species and we explore in more detail the functional information uncovered
at the functional domain level.

The topology-function relationships captured by GraCoals

We observed that triangle-based GraCoals (GraCoalsy 7) or GraCoals void of trian-
gles (GraCoalsg 1 3.4) tend to best capture the functional organization of GI networks
depending on the species. Here, we investigate when triangle based GraCoals work
best. For ease of readability we focus on GraCoaly, although the same conclusion
can be reached based on GraCoals;. In our analysis, we first characterise the organi-
zational principles of our GI networks by comparing their topology (wiring) to that
of model networks (see Section 2.4: Model networks and section A.5 in Appendix A)
and then relate the organizational principles of the GI network to our enrichment
results.
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Our model-fitting results for our GI networks are presented in Figure A.44 in Ap-
pendix section A.5. We observe that all four GI networks have non-random topology,
as they can be distinguished from ER networks (least significant p-value 1.0E-6, see
Table A.21 in Appendix A), implying they are functionally organised. Additionally,
we observe that the topologies of the GI networks for budding yeast, fission yeast
and E. coli are almost indistinguishable from Scale-Free Gene Duplication (SF-GD)
networks (Figure A.45 in Appendix A). Firstly, the scale-freeness of these networks
is in line with the literature, as GI networks are known to be scale-free (Tong et al.,
2004). Secondly, this result implies that numerous gene-duplication events along
the DNA have influenced these GI networks’ topologies. This is consistent with the
literature in case of budding yeast, as its genome has undergone a whole genome
duplication event (Kellis et al., 2004). Similarly, for E. coli, 60% of its genes have
been reported to have at least one paralogous gene (i.e., a homologous gene that
has diverged within one species due to gene duplication events) (Blattner et al.,
1997; Bratlie et al., 2010; Patterson, 1988). Thus, to enable further investigation,
we determine for each species a set of gene-paralogs.

Gene-paralog assessment

After having shown that the SFGD network model is the best fit for the GI molecular
networks, we first identify the sets of gene-paralogs. In brief, for each species,
we collect the corresponding proteome from Ensembl (Cunningham et al., 2022)
and compute the pairwise sequence alignments between all proteins using BlastP
(Altschul et al., 1990) using the procedure and thresholds outlined in Pearson, 2013.
We consider pairs of genes with a percentage of sequence identity of at least 85%,
an E-value equal to or less than 0.001 and a bit score of at least 50 as paralogous
genes. For details on the gene-paralogs per species and network, see Table A.24 in
Appendix A.

Genes enriched in E. coli, Fission yeast and Budding yeast GI networks
cover more paralogous genes than the Fruit fly GI network

Below, we report the total number of genes that have at least one GO-BP enriched
in the neighborhood (i.e., “Enriched genes” in Table 4.4) and the number of genes
that are enriched and are paralogous (i.e., “Paralogs” in Table 4.4). For the fruit fly
GI network, we observe that even when obtaining the largest percentages of genes
enriched, the number of paralogous genes covered are relatively low. In particular,
for GraCoal, we observe a large difference between the number of paralogs enriched
in budding yeast with respect to the number of paralogs enriched in fruit fly.

We find that the budding yeast, E. coli and fission yeast have close to three
times more paralogous genes in their GI network than fruit fly (see Table A.24 in
Appendix A), whose GI network topology can be distinguished from SF-GD (p-value
9.63E-7); although even for fruit fly it is still the best-fitted model network.

When relating GI topology to our enrichment results, we immediately observe
that our topological findings correlate with our GO-BP enrichment results, as the tri-
angle based GraCoals, GraCoal, achieve among the best GO-BP enrichment scores
in budding yeast, fission yeast and E. coli (GI networks indistinguishable from SF-
GD) but poor scores in fruit fly (GI network distinguishable from SF-GD). This ob-
servation could imply that, in GI networks, GraCoalsy capture GO-BPs that involve
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functional paralogous genes in species with many duplicated genes in their genome.
We further validate this hypothesis by showing that the genes enriched based on
GraCoalsy for budding yeast, fission yeast and E. coli cover relatively more paralo-
gous gene pairs than for fly (Table 4.4). Moreover, for budding yeast, fission yeast
and E. coli, the genes enriched based on GraCoalss cover more paralogous genes
than any other GraCoal embedding (except for GraCoalg in E. coli).

Budding yeast E. coli Fission yeast Fruit fly
Enriched Genes Paralogs Enriched Genes Paralogs Enriched Genes Paralogs Enriched Genes Paralogs
KGO 1,189 10.09 1,234 23.26 567 17.64 2,061 7.13
gcl 1,476 11.04 1,191 26.87 445 16.85 2,121 6.51
.Zgz 2,640 21.74 1,258 25.51 709 26.23 1,066 8.92
EGS 2,551 18.35 1,188 25.67 752 19.28 2,211 7.92
/704 1,017 6.19 978 26.48 222 4.50 1,879 10.27
EGS 1,759 16.09 1,223 26.49 549 20.22 1,036 7.24
gcs 2,454 17.36 1,174 30.66 833 19.93 1,923 7.28
.ZG7 2,509 20.65 1,220 25.49 708 22.46 944 7.31
gcg 2,036 14.00 835 14.73 406 16.26 421 10.22

Table 4.4. Statistics for paralogous genes enriched using SAFE with GraCoal embed-
dings. For each of the four GI networks (Budding yeast, E. coli, Fission yeast and Fruit
fly), we show the number of enriched genes when using SAFE with GraCoal embeddings
(i.e., genes that have at least one annotation enriched in their neighborhood) and the
percentages of genes enriched that are paralogs.

Next, we explain why GraCoals best captures GO-BP involving paralogous genes.
First, we show that paralogous genes are statistically significantly more likely to
genetically interact than non-paralogous genes (using a hypergeometric test, least
significant p-value 2.02E-2 over all four species). This observation is consistent with
the literature, as one of the key drivers for the retention of duplicated genes in the
genome is functional redundancy (Kuzmin et al., 2020), in which case duplicated
genes are also likely to genetically interact and interact with the same genes. Conse-
quently, paralogous genes should tend to form triangles in the GI network, in which
two nodes are the two paralogs and a third is a shared neighbour. We confirm this
by showing in Figure 4.6 that duplicated genes occur on statistically significantly
more triangles, i.e., graphlet Go, than randomly selected pairs from the network (i.e.,
the background) (Table 4.5). Moreover, we assess if gene-paralog pairs share simi-
lar wiring patterns by computing the graphlet degree vector similarity (GDV-sim)
between all ‘gene to paralog’ pairs in the network and comparing it to randomly
chosen pairs. We perform a one-sided Mann-Whitney-U test to see if gene-paralog
pairs have a larger GDV similarity with respect to the background. Below we show
that paralogous pairs of genes have statistically larger GDV similarities with re-
spect to randomly chosen pairs of genes from any of the GI networks (Figure 4.7,
left panels and Table 4.5). As a consequence of having more similar wiring patterns
than random, we also show how paralogous pairs are closer in embedding space
than random (Figure 4.7, right panels). Thus, we also perform a one-sided MWU
test to evaluate if paralogous pairs have statistically shorter distances (i.e., shortest
weighted path lengths) than random pairs. We do this for all four GI networks and
in every case the distances for paralogous pairs is statistically shorter with respect
to randomly chosen pairs (Table 4.5). In all, these findings explain why GO-BP
involving paralogs tend to be enriched using SAFE.
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Figure 4.6. Triangle count distribution for pairs of paralogous genes. For each of our
GI molecular networks, we show the triangle count distribution for all pairs of paralogous
genes (i.e., blue ‘gene2paralog’) and the triangle count distribution for random pairs of

genes in the network (i.e., orange ‘random2random’).
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Figure 4.7. GDV similarity and shortest weighted path lengths. On the left panels
we show the GDV similarity distribution between all pairs of paralogous genes (i.e., blue
‘gene2paralog’) and the GDV similarity distribution for random pairs of genes in the
network (i.e., orange ‘random2random’). P-values corresponding to the one-sided MWU
test between these two distributions is statistically significant (p<0.05) in every case. On
the right panels we show the distribution of the shortest weighted path lengths between
all pairs of paralogous genes (blue) and the distribution of shortest weighted path lengths
between random pairs (orange). P-values are also statistically significant in every case
(p<0.05). From top to bottom: results for the Budding yeast, E. coli, Fission yeast and
Fruit fly GI networks.
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Triangle counts GDV-sim SWPL

Budding yeast 1.78E-23 4.90E-32  2.79E-21
E. colz 3.77E-07 1.27E-10  7.29E-07
Fission yeast 0.001 7.38E-05  6.72E-15
Fruit fly 0.16 0.002 6.53E-10

Table 4.5. MWU p-values. We show the resulting p-values after comparing different
distributions by performing a one-sided MWU test. Column “Triangle counts” shows
the p-values for a one-sided MWU test to compare triangle counts in the network for
paralogous pairs vs random pairs of nodes to see if the paralogous pairs participate in
statistically significant more triangles than random. Column ‘GDV-sim’ shows p-values
for one-sided MWU test to see if the GDV similarity is statistically larger in between
paralogous pairs than random pairs. Finally, ‘SWPL’ shows p-values for one-sided MWU
test to see if paralogous pairs of nodes are statistically closer in space than random pairs.

In summary, we find that when the genome of a species contains many duplicated
genes, this is reflected in the topology of their GI networks, as paralogs tend to
interact and share many of their neighbours in the network, leading to dense patches
of triangles in the GI networks. This topology is well captured by GraCoaly (i.e.,
GraCoal based on the triangle shaped graphlet), leading to high percentages of GO-
BP enrichments, driven by the high enrichment of GO-BPs that including paralogous
genes.

Biological insights of GraCoals at a functional domain level

Lastly, we aim to give insight into the biological function captured by our GraCoals
across species, and in particular when using GraCoaly. To this end, we identify
the most characteristic functional domains in each species, i.e., the domains that
could not be captured by any of the other GraCoals. To quantify this, we measure
the uniqueness of all functional domains obtained with SAFE. To do this, we first
compute the Jaccard similarity index (JI) (Jaccard, 1912; Tanimoto, 1958), which
is defined as the size of the intersection between two sets of elements divided by the
size of the union of the two sets of elements. We compute this between the sets of
enriched annotations of each functional domain in a particular GraCoal and the sets
of enriched annotations of every other functional domain in the other GraCoal em-
beddings. Next, for each functional domain, we keep the maximum JI, as this value
represents the maximum overlap to any other functional domain in the other Gra-
Coal embeddings and thus, reflects how unique to a particular GraCoal a functional
domain is. Additionally, we compute the paralog ratio for each functional domain,
which we define as follows: for a given functional domain, the paralog ratio is the
number of paralogs that are annotated by the enriched annotations in the functional
domain over the total number of genes annotated by the enriched annotations in the
functional domain. In this way, we can evaluate how well a given functional domain
is capturing biological information that involves paralogs.

In Table 4.6 for budding yeast, and Tables A.12 to A.14 in Appendix A for F.
coli, fission yeast and fruit fly, respectively, we summarize, the number of functional
domains (column 1) and the mean paralog ratio (column 2), over each GraCoal
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embedding (i.e., ZGO—EGS). Furthermore, we report the top three most characteristic
functional domains for the GI molecular networks (column 5) according to the lowest
maximum JI (column 4) and the corresponding paralog ratio.

Firstly, we observe that for fruit fly, budding yeast and fission yeast, many do-
mains are highly characteristic to a particular GraCoal, with many domains (7, 14
and 5, respectively) being completely unique, scoring a maximum JI of 0. This is in
line with our earlier results, as we observed big discrepancies in gene enrichment per-
formance between different GraCoals for these species, indicating we capture strong
topology-function relationships. Secondly, we observe that for budding yeast, fission
yeast and E. coli, the top three most characteristic domains of GraCoal, show on
average the highest paralog ratios of all GraCoals (except in E. coli, where GraCoal,
is just behind GraCoalg in this regard). This is in line with our previous observation
that GraCoal, tends to capture GO-BP involving paralogs. Lastly, we can also find
literature support that the paralogs combined in our domains are functional. For
instance, if we focus on the ‘secretion, cell, exocytosis, export’” domain uncovered
by GraCoals in budding yeast. This domain has the largest paralog ratio measured
for all domains in budding yeast (0.43) and is strongly characteristic of GraCoal,
(JI=0.12). This domain is composed of GO-BPs such as ‘export from cell’, ‘secretion
by cell’; ‘secretion” and ‘exocytosis’, which are all vesicle traffic related functions.
Previous studies suggest that gene duplication events enabled the expansion and di-
versification of the vesicle traffic pathway (Purkanti & Thattai, 2022). The authors
show that gene duplications allowed for the formation of paralogous modules. As
paralogs can be differentially expressed or regulated, or can have different interac-
tion partners, paralogous modules contribute to the robustness and versatility of the
vesicle traffic pathway. We can make similar observations for the ‘cell wall chitin
biosynthetic process’ domain, the most characteristic domain of GraCoalg (J1=0.0,
paralog ratio 0.43). A key element of the biosynthetic process is the ‘exomer’ protein
complex, a heterotetrameric complex assembled at the trans-Golgi network, that is
required for the delivery of a distinct set of proteins to the plasma membrane. Its
cargo adaptors consist of two Chsb proteins and two out of four paralogous proteins:
Bud7, Bchl, Bch2 and Chs6. The paralogs part of the exomer complex determine
which proteins it can transport (Anton et al., 2018). For instance, transport of
Chs3 is completely dependent on the presence of Chs6 in the exomer. So, in the
chitin biosynthetic process, gene duplication enabled different specialisations of the
exomer to transport different proteins, which is captured by GraCoalg.

In conclusion, we have shown that triangle based GraCoals capture functional
redundancy and functional specialisation in GI networks of species whose GI network
is characterised by many paralogs.
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ﬁg, Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI | Domain description

g(;” 10 0.16 (std=0.08) 0.32 0.00 cytokinesis, cytoskeleton, septin, organi-
zation, histone

A‘(;U 10 0.16 (std=0.08) 0.15 0.07 regulation, attachment, spindle, micro-
tubules, kinetochore

Z(,v(, 10 0.16 (std=0.08) 0.07 0.13 metabolic, process, glycolipid, liposaccha-
ride

AZ(;, 15 0.15 (std=0.06) 0.25 0.00 process, amino, acid, biosynthetic, glu-
tamine

EGJ 15 0.15 (std=0.06) 0.11 0.05 histone, methylation, lysine, H3, K4

/TG‘ 15 0.15 (std=0.06) 0.06 0.13 acetylation, peptidyl, lysine, modification,
internal

ng 15 0.20 (std=0.09) 0.26 0.00 growth, in, filamentous, conjugation, with

g(;2 15 0.20 (std=0.09) 0.17 0.00 biosynthetic, process, purine, ribonu-
cleotide, nucleotide

AZGZ 15 0.20 (std=0.09) 0.43 0.12 secretion, cell, exocytosis, export, by

:lcq 15 0.16 (std=0.07) 0.25 0.00 purine, containing, compound, metabolic,
process

:’ng 15 0.16 (std=0.07) 0.16 0.00 electron, transport, chain, aerobic, respi-
ratory

/~l(;3 15 0.16 (std=0.07) 0.18 0.02 receptor, recycling, protein, import, per-
oxisome

A}h 11 0.19 (std=0.12) 0.24 0.00 transition, metal, ion, transport

;4‘/(;4 11 0.19 (std=0.12) 0.22 0.00 phosphatidylcholine, process, metabolic,
biosynthetic

Ag, 11 0.19 (std=0.12) 0.26 0.08 transport, retrograde, endosome, Golgi,
endosomal

ZGB 11 0.18 (std=0.19) 0.15 0.00 transmembrane,  transport,  hexose,
monosaccharide, small

Ag, 11 0.18 (std=0.19) 0.13 0.00 regulation, heterochromatin, assembly,
negative, organization

/Nlc, 11 0.18 (std=0.19) 0.17 0.04 positive, regulation, process, cellular, bio-
logical

:’Tgr_ 10 0.18 (std=0.19) 0.18 0.00 rRNA, RNA, splicing, transesterification,
LSU

/~1(;G 10 0.18 (std=0.19) 0.12 0.57 rRNA, processing, SSU, RNA, endonucle-
olytic

g(?g 10 0.18 (std=0.19) 0.14 0.62 catabolic, process, dependent, macro-
molecule, protein

g@ 16 0.18 (std=0.19) 0.15 0.00 cellular, response, stimulus, abiotic, os-
motic

g@ 16 0.18 (std=0.19) 0.08 0.08 mRNA, cleavage, polyadenylation, pro-
cessing, response

A, 16 0.18 (std=0.19) 0.26 0.44 rRNA, SSU, processing, endonucleolytic,
cleavage

Ay 10 0.22 (std=0.06) 0.43 0.00 actin, cytoskeleton, organization, fila-
ment, based

ZGX 10 0.22 (std=0.06) 0.21 0.00 membrane, cell, wall, chitin, process

/IGX 10 0.22 (std=0.06) 0.21 0.12 response, compound, organonitrogen,
ERAD, pathway

Table 4.6. Summary of most unique functional domains for Gracoal embeddings. We
report for the budding yeast GI network, for each GraCoal embedding used with SAFE
(column 1), i.e., based on graphlet adjacencies for up to four node graphlets (Ag,-Acy),
the number of functional domains (column 2) the mean paralog ratio (column 3) and the
top three most characteristic functional domains (column 6). Lastly, for each functional
domain we report the paralog ratio (column 4) and the maximum Jaccard similarity index
(JI) (column 5).

4.2 Results for GraSpring with SAFE

In this section we present our results for the different GraSpring embeddings over
the GI networks. Because of Spring embedding’s non-deterministic nature, all of
our results for GraSpring embeddings are based on the average results over 10 inde-
pendent runs.
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GraSpring uncovers the functional organization of the cell

In this section, we evaluate: (1) how well GraSpring embeddings capture the func-
tional organization of genetic interaction networks and (2) which higher-order topolo-
gies (i.e., graphlets) capture the most function. In both experiments, we apply
SAFE-based enrichment analysis to quantify how well a given embedding captures
the functional organization of a given network.

To evaluate how well GraSpring capture the functional organization of our GI
networks, we compare against Spring embedding (as GraSpring for graphlet Gy,
which corresponds to standard Spring embedding, used in the original SAFE), Gra-
Coal embedding and graphlet Spectral embedding (as it underlies our GraCoal em-
beddings). In Figure 4.1 we show the union of the enriched genes and the union
of the enriched GO-BPs across the different types of underlying graphlet adjacen-
cies (i.e., Ag, to Ag,). When comparing the three graphlet based embeddings, we
have already established that GraCoal embeddings outperform both GraSpring and
graphlet Spectral embeddings when uncovering the functional organization of GI
networks using SAFE. Additionally, GraSpring embeddings are outperformed most
of the time by graphlet Spectral embeddings as well. For instance, for the fruit fly
GI network, the union of genes enriched in GO-BPs in terms of percentage (Figure
4.1, left), from highest to lowest (i.e., best to worst) are 90.3%, 76.72% and 61.3%
for GraCoal, graphlet Spectral and GraSpring, respectively. Similarly, for budding
yeast, these values are 71.4%, 61.13% and 42.6% for GraCoal, graphlet Spectral and
GraSpring, respectively. This is also the case when considering a different anno-
tation type such as GO-CC, except for the union of enriched GO-CCs for E. coli,
where GraSpring outperforms both GraCoal and graphlet Spectral (Figure A.10).
Finally, for our third annotation type, GO-MF, GraSpring is outperformed again by
the other two graphlet based embeddings, except for the E. coli GI network, where
GraSpring works best both in terms of the union of genes enriched in GO-MF and
the union of enriched GO-MF's.

GraSpring embeddings uncover complementary biological in-
formation

Similar to GraCoal embeddings, we can use GraSpring embeddings to uncover bi-
ological information in complementary ways. Even when obtaining the lowest per-
centages of genes enriched and the lowest percentages of annotations enriched with
respect to GraCoals and graphlet Spectrals across all species and annotations types,
we still recover information across all GraSprings in each GI network. In Figure
4.8 we show the percentages of genes enriched (top) and percentages of GO-BPs
enriched (bottom) for all GraSpring embeddings (i.c., Ag, to Ag,) across our four
GI networks. We observe the largest percentages of both genes and annotations en-
riched in the fruit fly GI network, which is consistent with the previous results with
GraCoal embeddings. On the opposite side, we obtain the lowest percentages of
genes enriched and lowest percentages of annotations enriched for the fission yeast
and F. coli GI networks, respectively. Interestingly, the second best enrichments
in terms of genes are achieved by the budding yeast and E. coli, even though the
latter is clearly the worst in terms of enriched GO-BPs. For GO-CC and GO-MF
we present similar results in Figures A.12 and A.19 in Appendix A.
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Figure 4.8. SAFE GO-BP enrichment analysis comparing Graspring in GI
networks. For the GI networks of our four species (legend), we show, on the y-axis, the
percentage of enriched genes (top) and percentage of enriched annotations (bottom) for
each of the different Graspring embeddings (x-axis).

Next, we investigate which topologies capture the most function in GI networks
between different GraSpring embeddings. We observe that in terms of percentages of
genes enriched, the top performing GraSprings for fruit fly, GraSpringg 1 45, achieve
between 38.3% and 47.2%, while the low performing, GraSpringss¢,s achieve be-
tween 18.4% and 36.1%. This is also consistent for the percentages of enriched
GO-BPs (except for GraSprings). Similarly, for budding yeast, even though the dif-
ferences between the percentages of genes enriched are not as noticeable than for the
fruit fly, we can also distinguish between top and low performing GraSprings. The
top performing GraSprings, GraSpringg 1 257.s, achieve between 25.1% and 32% and
the low performing, GraSprings 46 achieve between 21.5% and 24.8%. This is con-
sistent for percentages of GO-BPs enriched (Figure 4.8, bottom). Next, for E. coli,
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the top performing GraSprings, GraSpringo 1,25, achieve between 26.2% and 29.7%,
while the low performing, GraSprings s67s, achieve between 22.3% and 25.8%. For
percentages of enriched GO-BPs the differences are almost negligible, achieving be-
tween 13.8% and 16.1% across all GraSprings. For fission yeast, we observe two
clear top performing GraSprings, GraSprings s in terms of genes enriched, achiev-
ing 17.7% and 18.3%, respectively, while the lowest, GraSpringoi4567s achieve
between 7.3% and 16.2%. In terms of enriched GO-BPs, these results are some-
what consistent, as GraSpringss are amongst the top performing, even though
GraSpringg is clearly the best. In all, when comparing between species, the re-
sults for top and low performing GraSprings are not always the same, though some
overlap exist, which is consistent with our previous results for GraCoal embeddings
across the GI networks. This implies that the same GraSprings capture different
topology-function relationships in the GI networks, depending on the species.

Additionally, for each species, we focus on identifying what characterizes each
particular GraSpring (i.e., Ag,-Ag,) from a biological perspective, just as we did
previously for our GraCoal embeddings. To this end, in table 4.7 we present the same
format as previously presented for GraCoals: we report for the budding yeast, the
number of uniquely enriched annotations (column 1), the mean SS for the uniquely
enriched annotations (column 2) as well as the mean SS for the top 10 largest
uniquely enriched annotations (column 3) for each GraCoal used in SAFE. Finally,
in column 5, we report the names of the top 10 uniquely enriched annotations and
their corresponding size in terms of enriched neighborhoods (column 4).

In brief, we first identify the uniquely enriched annotations for each GraSpring
(i.e., annotations enriched in a particular GraSpring that are not enriched in any
of the other GraSprings). For the budding yeast, we find that on average, 29 GO-
BPs are uniquely enriched for each particular GraSpring (Table 4.7), which is more
than we can uncover with GraCoals (Table 4.3). Similar to our GraCoal embed-
ding findings, we observe that each GraSpring embedding (except for GraSpring,,
uncovers biological information that is not uncovered by the other GraSpring em-
beddings, which is again in line with the literature, as different graphlet adjacencies
are known to capture complementary topology-function relationships in molecular
networks (Windels et al., 2019). Aditionally, there is some degree of functional sim-
ilarity in the information uncovered, as shown by the mean semantic similarity of
the set of enriched annotations that each GraSpring uncovers (Table 4.7, column 2).
Finally, we rank the uniquely enriched annotations according to their size, defined
as the total number of neighborhoods they are enriched in, as a measure of how
well they are captured by each particular GraSpring. The lowest and maximum
average SS for the sets of uniquely enriched annotations for the budding yeast GI
network are 0.11 (Std=0.02) and 0.62 (Std=0.01) for Aq, and Ag,, respectively.
Finally, when evaluating the top 10 enriched annotations when possible, we observe
a larger degree of functional similarity between the annotations, which ranges from
0.23 (Std=0.05) to 0.62 (Std=0.01) for the budding yeast (Ag,, and Ag,, respec-
tively). Moreover, the average size of the uniquely enriched GO-BPs uncovered by
GraSprings is 149.8 (std=84.1), while the average size of the uniquely enriched GO-
BPs for GraCoals is 129.7 (std=54.9). This implies that the biological information
that is uniquely captured by the different GraSpring embeddings tends to be more
generic than the biological information that is uniquely captured by the different
GraCoals in budding yeast. For the summary of uniquely enriched annotations for
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our other GI networks please refer to Tables A.6 to A.8 in Appendix A.

g(; Total annotations Mean SS Mean SS Top 10 EN | Annotation

Ag, 1 1.00 (std=nan) 1.00 (std=nan)  172.0 | protein insertion into ER membrane

Ac, 8 0.26 (std=0.06)  0.26 (std=0.06)  152.0 | gene conversion

Aa, 8 0.26 (std=0.06)  0.26 (std=0.06) 91.0 | maturation of 5.8S rRNA from tricistronic rRNA
transcript (SSU-TRNA, 5.85 rRNA, LSU-rRNA)

Ag, 8 0.26 (std=0.06)  0.26 (std=0.06) 86.0 | maturation of 5.85 rRNA

Ac, 8 0.26 (std=0.06)  0.26 (std=0.06) 67.0 | lipid droplet organization

Ag, 8 0.26 (std=0.06)  0.26 (std=0.06) 44.0 | thioester biosynthetic process

.Zg, 8 0.26 (std=0.06) 0.26 (std=0.06) 44.0 | acyl-CoA biosynthetic process

Ac, 8 0.26 (std=0.06)  0.26 (std=0.06) 44.0 | acetyl-CoA biosynthetic process

Ag, 8 0.26 (std=0.06)  0.26 (std=0.06) 33.0 | nuclear mRNA surveillance

.ZGZ 92 0.14 (std=0.02) 0.23 (std=0.05) 258.0 | regulation of microtubule cytoskeleton organiza-
tion

Ac, 92 0.14 (std=0.02)  0.23 (std=0.05)  254.0 | regulation of microtubule-based process

Ag, 92 0.14 (std=0.02)  0.23 (std=0.05)  210.0 | sno(s)RNA metabolic process

gc; 92 0.14 (std=0.02) 0.23 (std=0.05) 203.0 | mitotic spindle checkpoint signaling

Ac, 92 0.14 (std=0.02) ~ 0.23 (std=0.05)  203.0 | spindle checkpoint signaling

Ag, 92 0.14 (std=0.02)  0.23 (std=0.05)  199.0 | sno(s)RNA processing

A, 92 0.14 (std=0.02)  0.23 (std=0.05)  194.0 | DNA conformation change

Ac, 92 0.14 (std=0.02)  0.23 (std=0.05)  185.0 | regulation of exit from mitosis

Ac, 92 0.14 (std=0.02)  0.23 (std=0.05)  178.0 | chromosome segregation

.ZGQ 92 0.14 (std=0.02)  0.23 (std=0.05)  169.0 | establishment of mitotic spindle localization

Ac, 17 0.23 (std=0.06)  0.25 (std=0.05)  333.0 | cellular process

Ac, 17 0.23 (std=0.06)  0.25 (std=0.05)  299.0 | regulation of telomere maintenance

Ac, 17 0.23 (std=0.06)  0.25 (std=0.05)  220.0 | ribophagy

Ac, 17 0.23 (std=0.06)  0.25 (std=0.05)  189.0 | positive regulation of glucose metabolic process

Ac, 17 0.23 (std=0.06)  0.25 (std=0.05)  189.0 | positive regulation of cellular carbohydrate
metabolic process

A, 17 0.23 (std=0.06)  0.25 (std=0.05)  169.0 | regulation of cell cycle G2/M phase transition

A, 17 0.23 (std=0.06)  0.25 (std=0.05)  169.0 | regulation of G2/M transition of mitotic cell cycle

Ac, 17 0.23 (std=0.06)  0.25 (std=0.05)  139.0 | lipid translocation

Ac, 17 0.23 (std=0.06)  0.25 (std=0.05)  122.0 | regulation of membrane lipid distribution

A, 17 0.23 (std=0.06)  0.25 (std=0.05)  111.0 | DNA double-strand break processing

A, 3 0.62 (std=0.01)  0.62 (std=0.01)  163.0 | nucleotide-excision repair

Ac, 3 0.62 (std=0.01)  0.62 (std=0.01) 72.0 | protein maturation

ZGE 3 0.62 (std=0.01) 0.62 (std=0.01) 44.0 | protein processing

Table 4.7. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part 1.
We report, for the Budding yeast GI network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. /TGO to ﬁgs (column 1). In column 4, we report the mean SS for the top ten
largest enriched annotations (column 6), i.e., ranking them in descending order according
to the number of neighborhoods that the annotations are enriched in (column 5).
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EGI Total annotations Mean SS Mean SS Top 10 EN | Annotation

Ag, 13 0.52 (std=0.04)  0.54 (std=0.04) 43.0 | phytosteroid metabolic process

Ac, 13 0.52 (std=0.04)  0.54 (std=0.04) 43.0 | ergosterol metabolic process

Ag, 13 0.52 (std=0.04)  0.54 (std=0.04) 43.0 | cellular alcohol metabolic process

Ag, 13 0.52 (std=0.04)  0.54 (std=0.04) 39.0 | secondary alcohol metabolic process

Ac, 13 0.52 (std=0.04)  0.54 (std=0.04) 28.0 | cellular alcohol biosynthetic process

Ag, 13 0.52 (std=0.04)  0.54 (std=0.04) 28.0 | cellular lipid biosynthetic process

ZGS 13 0.52 (std=0.04)  0.54 (std=0.04) 28.0 | phytosteroid biosynthetic process

Ac, 13 0.52 (std=0.04)  0.54 (std=0.04) 28.0 | ergosterol biosynthetic process

Ag, 13 0.52 (std=0.04)  0.54 (std=0.04) 24.0 | secondary alcohol biosynthetic process

Ag, 13 0.52 (std=0.04)  0.54 (std=0.04) 18.0 | sterol biosynthetic process

A, 15 0.26 (std=0.05)  0.27 (std=0.05)  228.0 | mRNA polyadenylation

g@, 15 0.26 (std=0.05) 0.27 (std=0.05) 210.0 | pre-mRNA cleavage required for polyadenylation

Ac, 15 0.26 (std=0.05)  0.27 (std=0.05)  207.0 | RNA polyadenylation

Z& 15 0.26 (std=0.05) 0.27 (std=0.05) 206.0 | mRNA cleavage involved in mRNA processing

Aa, 15 0.26 (std=0.05)  0.27 (std=0.05)  203.0 | mRNA cleavage

A, 15 0.26 (std=0.05)  0.27 (std=0.05)  181.0 | protein lipidation

Z@ 15 0.26 (std=0.05)  0.27 (std=0.05)  155.0 | carbohydrate derivative biosynthetic process

Ac, 15 0.26 (std=0.05)  0.27 (std=0.05)  108.0 | organonitrogen compound catabolic process

A, 15 0.26 (std=0.05)  0.27 (std=0.05) 86.0 | protein-containing complex localization

g@ 15 0.26 (std=0.05)  0.27 (std=0.05) 47.0 | endonucleolytic cleavage in ITS1 to separate SSU-
rRNA from 5.85 rRNA and LSU-rRNA from
tricistronic TRNA transcript (SSU-rRNA, 5.8S
rRNA, LSU-TRNA)

Acy 120 0.11 (std=0.02)  0.28 (std=0.04)  263.0 | protein modification by small protein conjugation

Ag, 120 0.11 (std=0.02)  0.28 (std=0.04)  254.0 | protein acetylation

Ac, 120 0.11 (std=0.02) ~ 0.28 (std=0.04)  234.0 | actin cytoskeleton organization

Acy 120 0.11 (std=0.02)  0.28 (std=0.04)  231.0 | protein acylation

Ag, 120 0.11 (std=0.02)  0.28 (std=0.04)  229.0 | tubulin complex assembly

Ac, 120 0.11 (std=0.02)  0.28 (std=0.04)  228.0 | protein ubiquitination

Ag, 120 0.11 (std=0.02)  0.28 (std=0.04)  225.0 | protein methylation

ZGB 120 0.11 (std=0.02)  0.28 (std=0.04)  225.0 | protein alkylation

Ac, 120 0.11 (std=0.02)  0.28 (std=0.04)  222.0 | negative regulation of cellular protein metabolic
process

Acy 120 0.11 (std=0.02)  0.28 (std=0.04)  221.0 | mitotic DNA damage checkpoint signaling

Table 4.7. Summary of uniquely enriched GO-BPs for GraSpring embeddings, Part 2.
We report, for the Budding yeast GI network, the number of uniquely enriched GO-BPs
and the mean semantic similarity (SS) between the uniquely enriched annotations (GO-
BPs) (columns 2 and 3) for GraCoals based on all graphlet adjacencies for up to four node
graphlets, i.e. Ag, to Agg (column 1). In column 4, we report the mean SS for the top ten
largest enriched annotations (column 6), i.e., ranking them in descending order according
to the number of neighborhoods that the annotations are enriched in (column 5).

Genes enriched in E. coli, Fission yeast and Budding yeast GI networks
cover more paralogous genes than the Fruit fly GI network

In our analysis of GraCoal embeddings for the GI networks in the previous sec-
tion, we discussed how GraCoals, in particular GraCoaly 75 (i.e., based on triangle
topology), lead to higher enrichments because of the presence of paralogs in the
networks. Below we report gene enrichment and paralog enrichment statistics for
the GI networks in the same format as before: total number of genes that have
at least one GO-BP enriched in the neighborhood (i.e., “Enriched genes” in Table
4.8) and the number of genes that are enriched and are paralogs (i.e., “Paralogs” in
Table 4.8). Our observations for the fruit fly are consistent with previous results as
it achieves the lowest percentages of paralogs enriched across all GraSprings, which
is easily explained by the fact that it has the least amount of paralogs in the GI
network. On the other hand, the percentages of paralogs enriched for the budding
yeast, F. coli and fission yeast tend to be higher in GraSprings corresponding to
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the triangle topology. For instance, for budding yeast and fission yeast, GraSprings
and GraSpring; achieve the highest and second highest, respectively, percentages of
enriched paralogs. For E. coli, even though the percentages of enriched paralogs are
very close in all GraSprings, GraSpring, achieves the highgest value. This further
validates our previous observations that when there are lots of duplicated genes (i.e.,
paralogs) in a given GI network, the enrichments tend to be the best when based
on triangle topology (e.g., 112, A; or 118). Finally, we observe that these results
for GraSprings based on triangle topology, GraSpring, 7 s are of lower performance
than the ones for GraCoals s, except for GraSprings for E. coli, which further
validates that GraCoals are a better approach for uncovering biological information
from GI networks that contain many paralogs.

Budding yeast E. coli Fission yeast Fruit fly
Enriched Genes Paralogs Enriched Genes Paralogs Enriched Genes Paralogs Enriched Genes Paralogs
AGO 1,652 11.38 1,206 22.69 402 6.47 1,575 7.68
12((;1 1,610 12.52 1,170 22.60 342 9.36 1,282 7.18
Ag, 1,643 18.32 1,108 27.41 517 10.67 1,101 7.81
gcg 1,378 14.13 1,092 26.74 586 9.41 1,103 7.71
Z(M 1,299 11.55 1,049 25.93 255 5.88 1,185 6.67
AGS 1,513 13.66 1,095 26.12 388 3.09 834 7.31
IZGU 1,622 16.46 1,059 27.20 505 9.31 1,299 7.39
Ac, 1,693 18.19 1,011 21.27 471 9.55 1,031 7.76
/Tcx 1,791 13.70 911 15.30 491 8.76 576 8.33

Table 4.8. Statistics for paralogous genes enriched using SAFE with GraSpring embed-
dings. For each of the four GI networks (Budding yeast, E. coli, Fission yeast and Fruit
fly), we show the number of enriched genes when using SAFE with GraSpring embeddings
(i.e., genes that have at least one annotation enriched in their neighborhood) and the
percentages of genes enriched that are paralogs.

Biological insights of GraSprings at a functional domain level

Lastly, we aim to give insight into the biological function captured by our GraSpring
embeddings across species at a functional domain level just as we did for our GraCoal
embeddings in previous sections. To this end, we identify the most characteristic
functional domains in each species, i.e., the domains that could not be captured
by any of the other GraSprings. In brief, we measure the uniqueness of all func-
tional domains obtained with SAFE by computing the Jaccard similarity index (JI)
between the sets of enriched annotations of each functional domain in a particular
GraSpring and the sets of enriched annotations of every other functional domain
in the other GraSpring embeddings. For each domain, we report the maximum JI,
which represents the maximum overlap to any other functional domain in the other
GraSpring embeddings, and thus reflects how unique the functional domain is to its
corresponding GraSpring. Finally, we also report the paralog ratio, which we al-
ready defined, as a way to evaluate how well a given functional domain is capturing
biological information that involves paralogs.

In Table 4.9 for budding yeast, and Tables A.15 to A.17 in Appendix A for F.
coli, fission yeast and fruit fly, respectively, we summarize, the number of functional
domains (column 1) and the mean paralog ratio (column 2), over each GraSpring
embedding (i.e., ggo—ggg). Furthermore, we report the top three most characteristic
functional domains for the GI molecular networks (column 5) according to the lowest
maximum JI (column 4) and the corresponding paralog ratio.

64



Our first observation is that across all of our GI networks, there are less do-
mains that are highly characteristic to a particular GraSpring. For instance, for
budding yeast (Table 4.9), only 5 functional domains are completely unique with a
Max JI of 0, while for GraCoals for budding yeast, a total of 14 unique functional
domains could be achieved (Table 4.6). Secondly, on average, fewer functional do-
mains can be achieved with GraSprings with respect to GraCoals. This means that
GraCoals, with budding yeast at least, uncover biological information at a functional
domain level that is more functionally organised (i.e., more functional domains than
with GraSprings) and that is less redundant (i.e., there is less overlap between the
functional domains of each GraSpring), in addition to uncovering more functional
information overall (as seen by the overall enrichments in Figure 4.1).

In general, we observe lower paralog ratios in GraSprings when compared to Gra-
Coals. For instance, the lowest and highest average paralog ratio previously reported
for our GraCoals for the budding yeast is 0.15 (std=0.06) and 0.22 (std=0.06), re-
spectively. On the other hand, with GraSprings we obtain paralog ratios than range
from 0.12 (std=0.07) and 0.20 (std=0.06). Additionally, the largest paralog ra-
tio obtained from the top three most characteristic functional domains across all
GraSprings, the largest value we obtain is 0.32 with a Max JI of 0.0. Interestingly,
this functional domain is uncovered by GraSprings, which is consistent with our
previous results that indicate that triangle topology is the best for capturing bio-
logical function that involves paralogs. Similarly, the most characteristic functional
domain of GraSprings, with a Max JI of 0.0, also has one of the highest paralog
ratios (0.22).

In conclusion, we have shown that information captured by GraSprings is less
functionally organised and thus leads to fewer functional domains uncovered with
SAFE. As a consequence, there is more overlap between the different GraSprings, as
shown by the maximum JIs in table 4.9. Finally, even when performing worse than
GraCoals, GraSprings corresponding to triangle topology, for instance GraSprings s,
still uncover biological functions that involve many paralogs, as shown by their
paralog ratios.
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ﬁg, Num functional domains Mean paralog ratio Domain paralog ratio Domain max JI | Domain description

g(;” 12 0.19 (std=0.05) 0.09 0.09 process, metabolic, biosynthetic, mem-
brane, lipid

1’4'("0 12 0.19 (std=0.05) 0.20 0.12 lipid, process, metabolic, cellular, biosyn-
thetic

Z(,v(, 12 0.19 (std=0.05) 0.23 0.18 aerobic, respiration, generation, precur-
sor, metabolites

AZ(;, 16 0.16 (std=0.06) 0.23 0.17 biosynthetic, process, CoA, thioester,
acetyl

Ag, 16 0.16 (std=0.06) 0.09 0.24 DNA, regulation, replication, heterochro-
matin, assembly

,:lc‘ 16 0.16 (std=0.06) 0.21 0.27 capping, RNA, 7, methylguanosine, actin

ng 14 0.15 (std=0.09) 0.32 0.00 regulation, kinase, activity, protein, G1

g(;2 14 0.15 (std=0.09) 0.03 0.01 regulation, mitotic, negative, sister, chro-
matid

Ag, 14 0.15 (std=0.09) 0.19 0.01 regulation, cell, communication, signal,
transduction

ZG;; 7 0.17 (std=0.05) 0.22 0.00 pH, regulation, monovalent, inorganic,
cation

ZGK 7 0.17 (std=0.05) 0.13 0.41 process, catabolic, protein, G2, M

/~1(;3 7 0.17 (std=0.05) 0.14 0.53 regulation, process, positive, metabolic,
cellular

g(;k 7 0.20 (std=0.06) 0.08 0.19 DNA, maintenance, repair, checkpoint,
signaling

g(,q 7 0.20 (std=0.06) 0.24 0.39 regulation, assembly, positive, complex,
organization

g@ 7 0.20 (std=0.06) 0.24 0.41 catabolic, process, protein, dependent,
macromolecule

;4‘/("5 11 0.14 (std=0.07) 0.16 0.32 protein, process, transport, localization,
Golgi

Ag, 11 0.14 (std=0.07) 0.15 0.33 process, regulation, DNA, protein,
metabolic

ZGB 11 0.14 (std=0.07) 0.08 0.40 membrane, protein, tethering, processing,
organelle

Ag, 11 0.14 (std=0.06) 0.19 0.00 process, biosynthetic, metabolic, alcohol,
cellular

/Nlcﬁ 11 0.14 (std=0.06) 0.08 0.33 fusion, vesicle, Golgi, membrane, medi-
ated

:’Tgr_ 11 0.14 (std=0.06) 0.20 0.53 regulation, process, protein, assembly,
transcription

/~1(;7 10 0.15 (std=0.06) 0.08 0.08 rRNA, endonucleolytic, cleavage, SSU, 5’

A, 10 0.15 (std=0.06) 0.14 0.12 regulation, signaling, positive, TORCI,
TOR

Ag, 10 0.15 (std=0.06) 0.04 0.50 mitochondrion, organization

Ag, 13 0.12 (std=0.07) 0.22 0.00 process, purine, ribonucleotide,
metabolic, biosynthetic

ZCX 13 0.12 (std=0.07) 0.01 0.00 regulation, actin, filament, negative, de-
polymerization

;{Gg 13 0.12 (std=0.07) 0.14 0.09 response, process, stimulus, cellular,
biosynthetic

Table 4.9. Summary of most unique functional domains for GraSpring embeddings. We
report for the budding yeast GI network, for each GraSpring embedding used with SAFE
(column 1), i.e., based on graphlet adjacencies for up to four node graphlets (Ag,-Acy),
the number of functional domains (column 2) the mean paralog ratio (column 3) and the
top three most characteristic functional domains (column 6). Lastly, for each functional
domain we report the paralog ratio (column 4) and the maximum Jaccard similarity index
(JI) (column 5).

4.3 Results for graphlet Spectral with SAFE

In this section we present our results for the different graphlet Spectral embeddings
over the GI networks.

Graphlet Spectral uncovers the functional organization of the
cell

In this section, we evaluate: (1) how well graphlet Spectral embeddings capture the
functional organization of genetic interaction networks and (2) which higher-order
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topologies (i.e., graphlets) capture the most function. In both experiments, we apply
SAFE-based enrichment analysis to quantify how well a given embedding captures
the functional organization of a given network.

To evaluate how well graphlet Spectral capture the functional organization of
our GI networks, we compare against Spectral embedding (as graphlet Spectral for
graphlet G, which corresponds to standard Spectral embedding), GraCoal embed-
ding and Graspring embedding. In Figure 4.1 we show the union of the enriched
genes and the union of the enriched GO-BPs across the different types of underlying
graphlet adjacencies (i.e., Ag, to Ag,). When comparing the three graphlet based
embeddings, we have already established that GraCoal embeddings outperform both
GraSpring and graphlet Spectral embeddings when uncovering the functional orga-
nization of GI networks using SAFE. However, graphlet Spectral embeddings out-
performs GraSprings most of the time, both in terms of genes enriched and GO-BPs
enriched. For instance, for the fruit fly GI network, the union of genes enriched in
GO-BPs in terms of percentage (Figure 4.1, left), from highest to lowest (i.e., best to
worst) are 90.3%, 76.72% and 61.3% for GraCoal, graphlet Spectral and GraSpring,
respectively. Similarly, for budding yeast, these values are 71.4%, 61.13% and 42.6%
for GraCoal, graphlet Spectral and GraSpring, respectively. This is also the case
when considering a different annotation type such as GO-CC, except for the union
of enriched GO-CCs for E. coli, where GraSpring outperforms both GraCoal and
graphlet Spectral (Figure A.10). Finally, for our third annotation type, GO-MF,
graphlet Spectral embeddings outperform again GraSpring embeddings, except for
the E. coli GI network, where GraSpring works best both in terms of the union
of genes enriched in GO-MF and the union of enriched GO-MFs (Figure A.17 in
Appendix A).

Graphlet Spectral embeddings uncover complementary bio-
logical information

Similar to GraCoal embeddings and GraSpring embeddings, we can use graphlet
Spectral embeddings to uncover biological information in complementary ways. In
Figure 4.9 we show the percentages of genes enriched (top) and percentages of GO-
BPs enriched (bottom) for all graphlet Spectral embeddings (i.c., Ag, to Ag, ) across
our four GI networks. We observe the same pattern as with GraCoals or GraSprings,
that is, the largest percentages of both genes enriched and annotations enriched are
obtained for the fruit fly GI network. On the other hand, the lowest percentages of
genes enriched and lowest percentages of annotations enriched when using graphlet
Spectral embeddings are obtained for the fission yeast, although E. coli is not far
behind in terms of enriched annotations. Interestingly, the second best enrichments
in terms of genes are achieved by E. coli, and by the budding yeast in terms of
annotations enriched. For GO-CC and GO-MF we present similar results in Figures
A.13 and A.20 in Appendix A.

Next, we investigate which topologies capture the most function in GI net-
works between different graphlet Spectral embeddings. We observe that in terms
of percentages of genes enriched, the top performing graphlet Spectrals for fruit
fly, Spectraly 3.6, achieve between 40.3% and 49.6%, while the low performing,
Spectrals s 75 achieve between 6.2% and 24.1%. This is also consistent for the per-
centages of enriched GO-BPs. For the second best in terms of genes enriched, E.
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coli, the top performing graphlet Spectrals, Spectralyss all achieve around 24%,
while the low performing graphlet Spectrals all achieve less than 20 with Spectrals
performing the worst at 6.8%. Similarly, for budding yeast, only Spectrals achieves
more than 20% (24.3%), while the lowest, Spectraly, achieves only 2%. This is con-
sistent for enriched annotations, with Spectrals and Spectral, performing the best
and worst, respectively. Finally, for fission yeast, the enrichments over all species
are in general very low. However, we observe that Spectraly is clearly the top per-
forming both in terms of genes enriched (16.8%) and annotations enriched (18.3%).
On the other hand, Spectrals 375 are the worst performers, achieving between 1.7%
and 2.5% enriched genes and between 3.7% and 6.8% enriched annotations. In all,
when comparing between species, the results for top and low performing graphlet
Spectrals are not always the same, though some overlap exist, which is consistent
with our previous results for GraCoal embeddings and GraSpring embeddings across
the GI networks. This implies that the same graphlet Spectrals capture different
topology-function relationships in the GI networks, depending on the species.
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Figure 4.9. SAFE GO-BP enrichment analysis comparing graphlet based
Spectral in GI networks. For the GI networks of our four species (legend), we show,
on the y-axis, the percentage of enriched genes (top) and the percentage of enriched
annotations (top) for each of the different Spectral embeddings (x-axis).

Additionally, for each species, we focus on identifying what characterizes each
particular graphlet Spectral (i.e., Ag,-Ags) from a biological perspective, just as we
did previously for our GraCoal embeddings and GraSpring embeddings. To this end,
in table 4.10 we present the same format as previously presented for GraCoals: we
report for the budding yeast, the number of uniquely enriched annotations (column
1), the mean SS for the uniquely enriched annotations (column 2) as well as the
mean SS for the top 10 largest uniquely enriched annotations (column 3) for each
graphlet Spectral used in SAFE. Finally, in column 5, we report the names of the top
10 uniquely enriched annotations and their corresponding size in terms of enriched
neighborhoods (column 4).

In brief, we first identify the uniquely enriched annotations for each graphlet
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Spectral (i.e., annotations enriched in a particular graphlet Spectral that are not
enriched in any of the other graphlet Spectrals). For the budding yeast, we find that
on average, 18 GO-BPs are uniquely enriched for each particular graphlet Spectral
(Table 4.10), which is less than we can uncover with GraCoals (average 22 GO-BPs,
Table 4.3) or GraSprings (average 29 GO-BPs, Table 4.7. We observe uniquely
enriched GO-BPs in every graphlet Spectral except for Spectraly, which is consistent
with previous results for the other graphlet based embeddings, i.e., different graphlet
adjacencies are known to capture complementary topology-function relationships in
molecular networks (Windels et al., 2019). Interestingly, GraSpring, is the only
GraSpring that could not uncover any uniquely enriched GO-BPs in the budding
yeast GI. For our other species, GraSpring, also fails to uncover unique information
for the fission yeast. This could indicate that these graphlet based embeddings are
not suitable for uncovering unique information from the star topology.

Additionally, the mean semantic similarities reported also indicate some degree
of functional similarity in the information uncovered by each graphlet Spectral (Ta-
ble 4.10, column 2). For instance, the lowest and maximum average SS for the
sets of uniquely enriched annotations of graphlet Spectrals for the budding yeast
GI network are 0.14 (Std=0.03) and 0.63 (Std=0.01) for Ag, and Ag,, respectively.
Finally, when evaluating the top 10 enriched annotations when possible, we ob-
serve a larger degree of functional similarity between the annotations, which ranges
from 0.24 (Std=0.05) to 0.63 (Std=0.01) for the budding yeast (Spectralys, and
Spectralg, respectively). Next, we rank the uniquely enriched annotations accord-
ing to their size, defined as the total number of neighborhoods they are enriched in,
as a measure of how well they are captured by each particular graphlet Spectral.
The average size of the uniquely enriched GO-BPs uncovered by graphlet Spectrals
is 38.6 (std=29.6), while the average size of the uniquely enriched GO-BPs for Gra-
Coals and GraSprings are 129.7 (std=54.9 and 149 (std=84.1), respectively. This
implies that the biological information that is uniquely captured by the different
graphlet Spectral embeddings could correspond to more specific biological functions
as opposed to what is uncovered by both GraCoals and GraSprings. to be more
generic than the biological information that is uniquely captured by the different
GraCoals in budding yeast. For the summary of uniquely enriched annotations for
our other GI networks please refer to Tables A.9 to A.11 in Appendix A.
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gcl Total annotations Mean SS Mean SS Top 10 EN | Annotation

Ag, 44 0.17 (std=0.05)  0.24 (std=0.06)  86.0 | negative regulation of biological process

Ag, 44 0.17 (std=0.05)  0.24 (std=0.06)  82.0 | negative regulation of macromolecule metabolic
process

Ag, 44 0.17 (std=0.05)  0.24 (std=0.06)  74.0 | cytoplasm to vacuole transport by the Cvt path-
way

Ac, 44 0.17 (std=0.05)  0.24 (std=0.06)  70.0 | negative regulation of metabolic process

EGO 44 0.17 (std=0.05)  0.24 (std=0.06)  50.0 | maintenance of DNA trinucleotide repeats

Ag, 44 0.17 (std=0.05)  0.24 (std=0.06)  44.0 | organelle organization

Aq, 44 0.17 (std=0.05)  0.24 (std=0.06)  39.0 | septin ring organization

Ac, 44 0.17 (std=0.05)  0.24 (std=0.06)  37.0 | deoxyribonucleoside triphosphate biosynthetic
process

Ecn 44 0.17 (std=0.05)  0.24 (std=0.06)  36.0 | positive regulation of RNA polymerase II tran-
scription preinitiation complex assembly

ZGU 44 0.17 (std=0.05)  0.24 (std=0.06)  36.0 | positive regulation of transcription initiation from
RNA polymerase II promoter

Ag, 8 0.38 (std=0.06)  0.38 (std=0.06)  14.0 | homeostatic process

Ag, 8 0.38 (std=0.06)  0.38 (std=0.06)  13.0 | cellular homeostasis

Aa, 8 0.38 (std=0.06)  0.38 (std=0.06)  13.0 | chemical homeostasis

Ag, 8 0.38 (std=0.06)  0.38 (std=0.06)  11.0 | negative regulation of chromosome organization

ggl 8 0.38 (std=0.06)  0.38 (std=0.06) 10.0 | regulation of chromosome separation

Ecl 8 0.38 (std=0.06) 0.38 (std=0.06) 10.0 | regulation of mitotic sister chromatid separation

Ecl 8 0.38 (std=0.06)  0.38 (std=0.06) 10.0 | regulation of sister chromatid segregation

Ag, 8 0.38 (std=0.06)  0.38 (std=0.06)  10.0 | regulation of chromosome segregation

Ag, 9 0.34 (std=0.05)  0.34 (std=0.05)  15.0 | autophagy of nucleus

Ac, 9 0.34 (std=0.05)  0.34 (std=0.05)  14.0 | autophagy of mitochondrion

Ag, 9 0.34 (std=0.05)  0.34 (std=0.05)  14.0 | mitochondrion disassembly

ZGZ 9 0.34 (std=0.05)  0.34 (std=0.05) 14.0 | piecemeal microautophagy of the nucleus

Ag, 9 0.34 (std=0.05)  0.34 (std=0.05)  12.0 | organelle disassembly

Ecg 9 0.34 (std=0.05)  0.34 (std=0.05) 11.0 | RNA splicing, via transesterification reactions

Ag, 9 0.34 (std=0.05)  0.34 (std=0.05)  11.0 | RNA splicing, via transesterification reactions
with bulged adenosine as nucleophile

Ac, 9 0.34 (std=0.05)  0.34 (std=0.05)  11.0 | mRNA splicing, via spliceosome

Ag, 9 0.34 (std=0.05)  0.34 (std=0.05)  10.0 | autophagosome organization

Ag, 76 0.14 (std=0.03)  0.33 (std=0.05)  61.0 | chromatin assembly

Aa, 76 0.14 (std=0.03)  0.33 (std=0.05)  56.0 | positive regulation of macromolecule metabolic
process

Ac, 76 0.14 (std=0.03)  0.33 (std=0.05)  56.0 | positive regulation of biosynthetic process

Ecz 76 0.14 (std=0.03)  0.33 (std=0.05)  56.0 | positive regulation of cellular biosynthetic process

Z(,vx 76 0.14 (std=0.03)  0.33 (std=0.05)  54.0 | regulation of gene expression, epigenetic

Table 4.10. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,

Part 1. We report, for the Budding yeast GI network, the number of uniquely enriched
GO-BPs and the mean semantic similarity (SS) between the uniquely enriched annotations
(GO-BPs) (columns 2 and 3) for graphlet Spectral embeddings based on all graphlet
adjacencies for up to four node graphlets, i.e. ZGO to gcs (column 1). In column 4, we
report the mean SS for the top ten largest enriched annotations (column 6), i.e., ranking
them in descending order according to the number of neighborhoods that the annotations
are enriched in (column 5).
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EGI Total annotations Mean SS Mean SS Top 10 EN | Annotation

Ag, 76 0.14 (std=0.03)  0.33 (std=0.05) 54.0 | heterochromatin assembly

.ZGS 76 0.14 (std=0.03) 0.33 (std=0.05) 54.0 | negative regulation of gene expression, epigenetic

Ag, 76 0.14 (std=0.03)  0.33 (std=0.05) 54.0 | heterochromatin organization

Ag, 76 0.14 (std=0.03)  0.33 (std=0.05) 53.0 | mitochondrion organization

AVG3 76 0.14 (std=0.03) 0.33 (std=0.05) 45.0 | positive regulation of biological process

A, 10 0.24 (std=0.05)  0.24 (std=0.05) 56.0 | RNA biosynthetic process

Ac, 10 0.24 (std=0.05)  0.24 (std=0.05) 31.0 | translational initiation

AVG; 10 0.24 (std=0.05) 0.24 (std=0.05) 30.0 | mannosyl-inositol phosphorylceramide metabolic
process

Ac, 10 0.24 (std=0.05)  0.24 (std=0.05) 28.0 | sister chromatid cohesion

ng 10 0.24 (std=0.05)  0.24 (std=0.05) 27.0 | post-Golgi vesicle-mediated transport

Ac, 10 0.24 (std=0.05)  0.24 (std=0.05) 24.0 | rDNA heterochromatin assembly

Ac, 10 0.24 (std=0.05)  0.24 (std=0.05) 24.0 | facultative heterochromatin assembly

ZGE 10 0.24 (std=0.05)  0.24 (std=0.05) 20.0 | ribonucleoprotein complex disassembly

.ZG; 10 0.24 (std=0.05)  0.24 (std=0.05) 20.0 | spliceosomal complex disassembly

Ac, 10 0.24 (std=0.05)  0.24 (std=0.05) 15.0 | cellular component disassembly

ZGG 7 0.35 (std=0.05)  0.35 (std=0.05) 61.0 | RNA phosphodiester bond hydrolysis

.ZGG 7 0.35 (std=0.05) 0.35 (std=0.05) 44.0 | nucleic acid phosphodiester bond hydrolysis

Ac, 7 0.35 (std=0.05)  0.35 (std=0.05) 38.0 | positive regulation of nucleobase-containing com-

pound metabolic process

Ag 7 0.35 (std=0.05)  0.35 (std=0.05) 37.0 | cleavage involved in TRNA processing
Ac, 7 0.35 (std=0.05)  0.35 (std=0.05) 34.0 | monocarboxylic acid metabolic process
Ag, 7 0.35 (std=0.05)  0.35 (std=0.05) 30.0 | nuclear transport

Ag, 7 0.35 (std=0.05)  0.35 (std=0.05) 30.0 | nucleocytoplasmic transport

Ac, 4 0.62 (std=0.01)  0.62 (std=0.01)  123.0 | NAD metabolic process

Ac, 4 0.62 (std=0.01)  0.62 (std=0.01)  121.0 | NADH metabolic process

Ag, 4 0.62 (std=0.01)  0.62 (std=0.01)  117.0 | NADH oxidation

Ac, 4 0.62 (std=0.01)  0.62 (std=0.01) 47.0 | late nucleophagy

Ac, 5 0.63 (std=0.00)  0.63 (std=0.00)  124.0 | ion transport

ch 5 0.63 (std=0.00)  0.63 (std=0.00) 13.0 | pyridoxine metabolic process

Ac, 5 0.63 (std=0.00)  0.63 (std=0.00) 13.0 | vitamin B6 metabolic process

Ac, 5 0.63 (std=0.00)  0.63 (std=0.00) 13.0 | pyridoxine biosynthetic process

Ag, 5 0.63 (std=0.00)  0.63 (std=0.00) 13.0 | vitamin B6 biosynthetic process

Table 4.10. Summary of uniquely enriched GO-BPs for graphlet Spectral embeddings,
Part 2. We report, for the Budding yeast GI network, the number of uniquely enriched
GO-BPs and the mean semantic similarity (SS) between the uniquely enriched annotations
(GO-BPs) (columns 2 and 3) for graphlet Spectral embeddings based on all graphlet
adjacencies for up to four node graphlets, i.e. Ag, to Ags (column 1). In column 4, we
report the mean SS for the top ten largest enriched annotations (column 6), i.e., ranking
them in descending order according to the number of neighborhoods that the annotations
are enriched in (column 5).

Genes enriched in E. coli, Fission yeast and Budding yeast GI networks
cover more paralogous genes than the Fruit fly GI network

In our analysis of GraCoal embeddings for the GI networks, we discussed how Gra-
Coals, in particular GraCoaly 75 (i.e., based on triangle topology), lead to higher en-
richments because of the presence of paralogs in the networks. Here we assess if this
is also the case for graphlet Spectral embeddings. Below we report gene enrichment
and paralog enrichment statistics for the GI networks in the same format as before:
total number of genes that have at least one GO-BP enriched in the neighborhood
(i.e., “Enriched genes” in Table 4.11) and the number of genes that are enriched
and are paralogs (i.e., “Paralogs” in Table 4.11). In general, our observations for
the fruit fly are consistent with previous results as it achieves low percentages of
paralogs enriched across all graphlet Spectrals. Graphlet Spectrals corresponding
to triangle topology (i.e., Spectrals7s) in general perform really well, achieving the
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best paralog enrichments for budding yeast and E. coli. For fission yeast, Spectrals
achieves the highest percentage of enriched paralogs, while Spectral; s achieve both
0%, which can be easily explained by an extremely low count of enriched genes in
these two embeddings (55 and 40 enriched genes, respectively). This is consistent
with previous results both for GraSpring embeddings and GraCoal embeddings on
GI networks. We observe that when there are lots of duplicated genes (i.e., par-
alogs) in a given GI network, the enrichments tend to be the best when based on
triangle topology (e.g., ;1/2, 117 or Zg). Finally, we observe that these results for
graphlet Spectral embeddings based on triangle topology, Spectrals 7 s are of lower
performance than the ones for GraCoals 7 s, which further validates that GraCoals
are a better approach for uncovering biological information from GI networks that
contain many paralogs.

Budding yeast E. coli Fission yeast Fruit fly
Enriched Genes Paralogs Enriched Genes Paralogs Enriched Genes Paralogs Enriched Genes Paralogs
/TG[, 896 14.51 964 22.32 233 6.30 1,373 6.18
ggl 339 9.59 792 23.99 266 6.77 1,592 5.99
g@ 664 16.96 724 28.97 106 11.89 821 6.58
.ZG3 1,438 12.52 969 21.28 81 1.23 1,361 7.27
KGA 140 0.71 949 22.13 494 10.12 1,388 4.10
.ZGS 546 4.21 802 24.55 343 11.08 798 9.27
ZGG 1,016 11.12 710 22.96 212 4.72 1,296 6.64
g& 843 18.03 692 24.11 55 0.00 T 6.82
ZGS 577 20.10 300 19.00 40 0.00 179 2.79

Table 4.11. Statistics for paralogous genes enriched using SAFE with graphlet Spectral
embeddings. For each of the four GI networks (Budding yeast, E. coli, Fission yeast and
Fruit fly), we show the number of enriched genes when using SAFE with graphlet Spectral
embeddings (i.e., genes that have at least one annotation enriched in their neighborhood)
and the percentages of genes enriched that are paralogs.

Biological insights of graphlet Spectral embeddings at a func-
tional domain level

Lastly, we aim to give insight into the biological function captured by our graphlet
Spectral embeddings across species at a functional domain level just as we did for
our GraCoal embeddings and GraSpring embeddings in previous sections. To this
end, we identify the most characteristic functional domains in each species across all
graphlet Spectrals, i.e., the domains that could not be captured by any of the other
graphlet Spectrals. In brief, we measure the uniqueness of all functional domains
obtained with SAFE by computing the Jaccard similarity index (JI) between the sets
of enriched annotations of each functional domain in a particular graphlet Spectral
embedding and the sets of enriched annotations of every other functional domain in
the other graphlet Spectral embeddings. For each domain, we report the maximum
JI, which represents the maximum overlap to any other functional domain in the
other graphlet Spectral embeddings, and thus reflects how unique the functional
domain. Finally, we also report the paralog ratio, which we already defined, as a way
to evaluate how well a given functional domain is capturing biological information
that involves paralogs.

In Table 4.12 for budding yeast, and Tables A.18 to A.20 in Appendix A for E.
coli, fission yeast and fruit fly, respectively, we summarize, the number of functional
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domains (column 1) and the mean paralog ratio (column 2), over each graphlet
Spectral embedding (i.e., XGO—;{Gg). Furthermore, we report the top three most
characteristic functional domains for the GI molecular networks (column 5) accord-
ing to the lowest maximum JI (column 4) and the corresponding paralog ratio. Our
first observation is that we obtain more unique functional domains (i.e., Max JI =
0.0) for budding yeast when using graphlet Spectrals than using GraSprings or Gra-
Coals. For instance, for budding yeast we obtain 17 completely unique functional
domains while with GraSpring or GraCoal we obtain 5 and 14 completely unique
functional domains, respectively. Moreover, on average, we obtain 6.22 functional
domains for each graphlet Spectral on budding yeast, while this number is almost
twice as many when using GraCoal (average