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Abstract

The increasing growth of wireless devices demanding high data-rate services burdens the
coexistence of wireless systems sharing the same resources in a given geographical area due
to the constantly increasing inter-system interference. Consequently, interference management
plays a fundamental role in easing the coexistence of various heterogeneous communication
services. Nevertheless, the classic interference management strategies, such as orthogonal
access schemes, precoding, and decoding, require a certain amount of side information to
successfully deal with interferences. Acquiring this side information originates the necessity
of inter-system coordination and cooperation, which is not practical given the heterogeneity of
coexisting communication services.

Opportunistic communications offer a potential solution to the problem of managing inter-
system interferences. The basic principle of opportunistic communications is to efficiently and
robustly exploit the available resources in a wireless network and to adapt the transmitted
signals to the network state occupancy in order to avoid inter-system interferences. Accord-
ingly, opportunistic communications rely on inferring which network resources are available
and can be safely exploited without inducing interference on the coexisting neighboring com-
munication nodes. Once the available network resources have been identified, it is possible to
tune conventional modulations to avoid interfering with the coexisting nodes. Nevertheless,
the most prominent opportunistic communications techniques consist in designing dedicated
scenario-aware precoding/decoding strategies to exploit the so-called null space, i.e., the set
of available network resources. Despite that, the classic solutions in the literature suffer from
two main drawbacks: the lack of robustness to sensing errors and the necessity of intra-system
coordination and cooperation.

This thesis deals with the design of a null space-based opportunistic communication scheme
facing the drawbacks exhibited by the existing methodologies under the cumbersome assump-
tion that the opportunistic nodes do not cooperate. For this purpose, a generalized sensing error
model is introduced that allows the design of solutions exhibiting minimum worst-case inter-
system interferences. This generalized error model is independent of the considered null-space
identification mechanism, being the proposed solutions of general interest. These solutions
respond to a maximum transmitting signal-to-interference ratio (SIR) criterion, which is opti-
mal under feedforward (i.e., non-cooperative) conditions. The proposed methodology permits
designing a family of orthonormal waveforms that spread the modulated symbols within the
sensed null space. This spreading is the key to minimizing the interference per network re-
source erroneously sensed as available. It is important to highlight that the proposed solutions
are invariant (i.e., unique) within the sensed null space, which permits safely removing the
until-now considered feedback link and still performing coherent waveform detection.
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Nevertheless, when the coordinated feedback link is removed, the waveform design relies
only on local sensing information, leading to an end-to-end null-space mismatch, i.e., the
opportunistic transmitting and receiving nodes can identify slightly different null spaces. As
a consequence, feedforward opportunistic communication suffers from detection energy loss
and self-induced inter-symbol interference, which can a priori severely degrade the system
performance. Even though the derived null-space opportunistic communication scheme is
robust to the null-space mismatch effects, the problem of enhanced opportunistic detection is
also studied in this thesis by leveraging the active subspace detection framework.

As the number of total network resources arbitrarily increases, the proposed solutions
tend to be linear combinations of complex exponentials, providing a frequency-domain in-
terpretation of the proposed opportunistic communication technique. It is worth noting that
frequency-domain spreading typically requires the use of pseudo-random sequences, meaning
that coherent opportunistic communication is possible when the employed pseudo-random se-
quences are shared between the transmitting and receiving nodes. Nevertheless, the technique
proposed in this thesis achieves the desired frequency-domain spreading using deterministic
signals that can be locally designed thanks to the invariance property. Moreover, this asymp-
totic behavior permits designing a cyclic prefix-based opportunistic transmission scheme able
to deal with the frequency-selectivity of the wireless channel in wideband regimes. In terms
of practical implementation, this thesis studies a variant of the time-division multiple-access
scheme that employs circulant pulse-shaping waveforms.

Finally, this thesis studies the impact of using multiple antennas in null space-based oppor-
tunistic communications. The performed analysis permits concluding that under symmetry
conditions, i.e., when the number of transmitting and receiving antennas is equal, the prop-
erties studied for the single-antenna case still hold. Despite its importance, this result is not
general enough because the communicating nodes will be usually equipped with a different
number of antennas. For this purpose, this thesis leverages the array manifold separation
theory framework to corroborate that using different array geometries has no impact on op-
portunistic communication and that the number of sensors translates into a transmitting SIR
improvement. In the context of wideband multi-antenna communications, the proposed strat-
egy asymptotically performs an antenna selection policy, prioritizing those antennas detecting
a more significant number of available network resources since they exhibit a better signal
spreading performance.
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Resum

El creixement incremental dels dispositius sense fils que requereixen serveis d’alta velocitat
de dades limita la coexistència de sistemes sense fils que comparteixen els mateixos recursos
en una àrea geogràfica donada a causa de la interferència entre sistemas, cada vegada més
important. En conseqüència, la gestió d’interferència exerceix un paper fonamental per a facilitar
la coexistència de diversos serveis de comunicació heterogenis. No obstant això, les estratègies
clàssiques de gestió d’interferència, com ara els esquemes d’accés ortogonal, la precodificació
i la descodificació, requereixen una certa quantitat d’informació lateral per tractar amb èxit
les interferències. Adquirir aquesta informació lateral origina la necessitat de coordinació i
cooperació entre sistemes, la qual cosa no és pràctic donada l’heterogeneïtat dels serveis de
comunicació coexistents.

Les comunicacions oportunistes ofereixen una solució potencial al problema de la gestió
de les interferències entre sistemes. El principi bàsic de les comunicacions oportunistes és
explotar de manera eficient i robusta els recursos disponibles en una xarxa sense fils i adap-
tar els senyals transmesos a l’estat de la xarxa per evitar interferències entre sistemes. Per
tant, les comunicacions oportunistes depenen de la inferència de quins recursos de xarxa estan
disponibles i poden ser explotats de manera segura sense induir interferència en els nodes de
comunicació coexistents. Una vegada que s’han identificat els recursos de xarxa disponibles, és
possible sintonitzar les modulacions convencionals per evitar interferir amb els nodes coexis-
tents. No obstant això, les tècniques de comunicació oportunistes més prominents consisteixen
en el disseny d’estratègies de precodificació/descodificació adaptades a l’escenari per explotar
l’anomenat espai nul, és a dir, el conjunt de recursos de xarxa disponibles. Malgrat això, les
solucions clàssiques en la literatura sofreixen dos inconvenients principals: la falta de robustesa
als errors de detecció i la necessitat de coordinació i cooperació intra-sistema.

Aquesta tesi tracta el disseny d’un esquema de comunicació oportunista basat en l’espai
nul que afronta els inconvenients exposats per les metodologies existents sota la suposició que
els nodes oportunistes no cooperen. Per a aquest propòsit, s’introdueix un model generalitzat
d’error de detecció que permet el disseny de solucions que exhibeixen interferències mínimes
entre sistemes en el cas pitjor. Aquest model generalitzat d’error és independent del mecan-
isme d’identificació de l’espai nul, sent les solucions proposades d’interès general. Aquestes
solucions responen a un criteri de máxima relació de senyal a interferència (SIR), que és òptim
en condicions de no cooperació. La metodologia proposada permet dissenyar una família de
formes d’ona ortonormals que realitzem un spreading dels símbols modulats dins de l’espai nul
detectat. Aquest spreading és la clau per minimitzar la interferència per recurs de xarxa que
erròniament es percep com a disponible. És important destacar que les solucions proposades
són invariants (és a dir, úniques) dins de l’espai nul inferit, cosa que permet eliminar de manera
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segura l’enllaç de retroalimentació considerat fins ara i, tot i així, realitzar una detecció coherent
de forma d’ona.

No obstant això, quan s’elimina l’enllaç de retroalimentació coordinat, el disseny de la
forma d’ona es basa únicament en la informació de l’estat de la xarxa detectada localment, el
que condueix a un desajustament d’espai nul d’extrem a extrem, és a dir, els nodes transmissor
i receptor oportunistes poden identificar espais nuls lleugerament diferents. Com a conseqüèn-
cia, la comunicació oportunista pateix una pèrdua d’energia en detecció i interferències entre
símbols autoinduïdes, que a priori poden degradar severament el rendiment del sistema. Tot i
que l’esquema de comunicació oportunista d’espai nul derivat és robust als efectes de desajus-
tament d’espai nul, el problema de la detecció oportunista millorada també s’estudia en aquesta
tesi mitjançant fent ús de tècniques de detecció de subespai actiu.

A mesura que el nombre total de recursos de xarxa augmenta arbitràriament, les solucions
proposades tendeixen a ser combinacions lineals d’exponencials complexes, proporcionant una
interpretació en el domini freqüencial de la tècnica de comunicació oportunista proposada. Val
la pena assenyalar que l’spreading en el domini freqüencial normalment requereix l’ús de se-
qüències pseudoaleatòries, el que significa que la comunicació oportunista coherent és possible
quan les seqüències pseudoaleatòries emprades es comparteixen entre els nodes transmissor i
receptor. No obstant això, la tècnica proposada en aquesta tesi aconsegueix l’spreading desitjat
en el domini freqüencial mitjançant senyals deterministes que es poden dissenyar localment
gràcies a la propietat d’invariància. A més, aquest comportament asimptòtic permet dissenyar
un esquema de transmissió oportunista basat en prefix cíclic capaç de tractar la selectivitat
freqüencial del canal sense fil en règims de banda ampla. En termes d’implementació pràctica,
aquesta tesi estudia una variant de l’esquema d’accés múltiple de la divisió de temps que empra
formes d’ona circulant amb forma de pols.

Finalment, aquesta tesi estudia l’impacte de l’ús de múltiples antenes en comunicacions
oportunistes basades en l’espai nul. L’anàlisi realitzada permet concloure que sota condicions
de simetria, és a dir, quan el nombre d’antenes de transmissió i recepció és igual, les propietats
estudiades per al cas d’una sola antena encara es mantenen. Malgrat la seva importància,
aquest resultat no és prou general perquè els nodes oportunistes normalment estaran equipats
amb un nombre diferent d’antenes. Per a aquest propòsit, aquesta tesi utilitza el marc de la
teoria de manifold separation per corroborar que l’ús de diferents geometries de les agrupacions
d’antenes no té cap impacte en la comunicació oportunista i que el nombre de sensors es
tradueix en una millora en termes de SIR. En el context de les comunicacions multiantena de
banda ampla, l’estratègia proposada realitza asimptòticament una política de selecció d’antenes,
donant prioritat a aquelles antenes que detecten un nombre més significatiu de recursos de xarxa
disponibles, ja que presenten un millor rendiment en termes d’spreading.
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Resumen

El crecimiento incremental de los dispositivos inalámbricos que requieren servicios de alta
velocidad de datos limita la coexistencia de sistemas inalámbricos que comparten los mismos
recursos en una área geográfica dada a causa de la interferencia entre sistemas, cada vez más
importante. En consecuencia, la gestión de interferencia ejerce un papel fundamental para
facilitar la coexistencia de varios servicios de comunicación heterogéneos. Sin embargo, las
estrategias clásicas de gestión de interferencia, como por ejemplo los esquemas de acceso ortog-
onal, la precodificación y la descodificación, requieren cierta cantidad de información lateral
para tratar con éxito las interferencias. Adquirir esta información lateral origina la necesidad
de coordinación y cooperación entre sistemas, lo cual no es práctico dada la heterogeneidad de
los servicios de comunicación coexistentes.

Las comunicaciones oportunistas ofrecen una solución potencial al problema de la gestión
de las interferencias entre sistemas. El principio básico de las comunicaciones oportunistas
es explotar de manera eficiente y robusta los recursos disponibles en una red inalámbrica y
adaptar las señales transmitidas al estado de la red para evitar interferencias entre sistemas.
Por lo tanto, las comunicaciones oportunistas dependen de la inferencia de qué recursos de
red están disponibles y pueden ser explotados de manera segura sin inducir interferencia en
los nodos de comunicación coexistentes. Una vez que se han identificado los recursos de red
disponibles, es posible sintonizar las modulaciones convencionales para evitar interferir con los
nodos coexistentes. Sin embargo, las técnicas de comunicación oportunistas más prominentes
consisten en el diseño de estrategias de precodificación/descodificación adaptadas al escenario
para explotar el llamado espacio nulo, es decir, el conjunto de recursos de red disponibles.
A pesar de esto, las soluciones clásicas en la literatura sufren dos inconvenientes principales:
la falta de robustez a los errores de detección y la necesidad de coordinación y cooperación
intra-sistema.

Esta tesis trata el diseño de un esquema de comunicación oportunista basado en el espacio
nulo que afronta los inconvenientes que sufren las metodologías existentes bajo la suposición
que los nodos oportunistas no cooperan. Para este propósito, se introduce un modelo gener-
alizado de error de detección que permite el diseño de soluciones que exhiben interferencias
mínimas entre sistemas en el caso peor. Este modelo generalizado de error es independiente del
mecanismo de identificación del espacio nulo, siente las soluciones propuestas de interés gen-
eral. Estas soluciones responden a un criterio de máxima relación de señal a interferencia (SIR),
que es óptimo en condiciones de no cooperación. La metodología propuesta permite diseñar
una familia de formas de onda ortonormales que realizan un spreading de los símbolos modula-
dos dentro del espacio nulo detectado. Este spreading es la clave para minimizar la interferencia
por recurso de red que erróneamente se percibe como disponible. Es importante destacar que
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las soluciones propuestas son invariantes (es decir, únicas) dentro del espacio nulo inferido,
cosa que permite eliminar de manera segura el enlace de retroalimentación considerado hasta
ahora y, aun así, realizar una detección coherente de forma de onda.

Sin embargo, cuando se elimina el enlace de retroalimentación coordinado, el diseño de la
forma de onda se basa únicamente en la información del estado de la red detectada localmente,
lo que conduce a un desajuste de espacio nulo de extremo a extremo, es decir, los nodos
transmisor y receptor oportunistas pueden identificar espacios nulos ligeramente diferentes.
Como consecuencia, la comunicación oportunista sufre una pérdida de energía en detección
e interferencias entre símbolos autoinducidas, que a priori pueden degradar severamente el
rendimiento del sistema. A pesar de que el esquema de comunicación oportunista de espacio
nulo derivado es robusto a los efectos de desajuste de espacio nulo, el problema de la detección
oportunista mejorada también se estudia en esta tesis mediante el uso de técnicas de detección
de subespacio activo.

A medida que el número total de recursos de red aumenta arbitrariamente, las soluciones
propuestas tienden a ser combinaciones lineales de exponenciales complejas, proporcionando
una interpretación en el dominio frecuencial de la técnica de comunicación oportunista prop-
uesta. Merece la pena señalar que el spreading en el dominio frecuencial normalmente requiere
el uso de secuencias pseudoaleatorias, lo que significa que la comunicación oportunista coher-
ente es posible cuando las secuencias pseudoaleatorias utilizadas se comparten entre los nodos
transmisor y receptor. Sin embargo, la técnica propuesta en esta tesis consigue el spreading
deseado en el dominio de frecuencia mediante señales deterministas que se pueden diseñar
localmente gracias a la propiedad de invariancia. Además, este comportamiento asintótico per-
mite diseñar un esquema de transmisión oportunista basado en prefijo cíclico capaz de tratar
la selectividad frecuencial del canal inalámbrico en regímenes de banda ancha. En términos de
implementación práctica, esta tesis estudia una variante del esquema de acceso múltiple de la
división de tiempo que emplea formas de ola circulante con forma de polvo.

Finalmente, esta tesis estudia el impacto del uso de múltiples antenas en comunicaciones
oportunistas basadas en el espacio nulo. El análisis realizado permite concluir que, bajo condi-
ciones de simetría, es decir, cuando el número de antenas de transmisión y recepción es igual,
las propiedades estudiadas para el caso de una sola antena todavía se mantienen. A pesar de su
importancia, este resultado no es bastante general porque los nodos oportunistas normalmente
estarán equipados con un número diferente de antenas. Para este propósito, esta tesis utiliza
el marco de la teoría de manifold separation para corroborar que el uso de diferentes geometrías
de las agrupaciones de antenas no tiene ningún impacto en la comunicación oportunista y que
el número de sensores se traduce en una mejora en términos de SIR. En el contexto de las co-
municaciones multiantena de banda ancha, la estrategia propuesta realiza asintóticamente una
política de selección de antenas, dando prioridad a aquellas antenas que detecten un número
más significativo de recursos de red disponibles, puesto que presentan un mejor rendimiento
en términos de spreading.
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Notation

a A scalar.

x(t) A random process.

X(ω) The Fourier Transform of x(t).

x A column vector.

X A matrix.

Im The m×m identity matrix.

0m×n All-zeros m× n matrix.

1m×n All-ones m× n matrix.

[x]m The m-th element of vector x.

[X]m,n The (m,n)-th entry of matrixX .

[X]m The m-th column of matrixX .

(·)T The transpose operator.

(·)∗ The complex conjugate operator.

(·)H The conjugate transpose (Hermitian) operator.

X−1 The inverse of matrixX .

X+ The Moore-Penrose pseudo-inverse of matrixX .

tr[X] The trace of matrixX .

det[X] The determinant of matrixX .
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rank[X] The rank of matrixX .

〈X〉 The span of matrixX .

‖X‖F The Frobenius norm of matrixX .

‖x‖p The Lp-norm of vector x.

⊗ The Kronecker tensor product.

� The Schur-Hadamard (element-wise) product.

x+ The function max(0, x).

loga The logarithm in base a.

log The natural logarithm.

sign(a) The sign of the scalar a.

mod K The modulo-K operation.

d·e The ceiling operator.

X A set or a subspace.

|X | The cardinality of the set X or the dimension of the subspace X .

X ∩ Y The intersection of X and Y .

X ⊂ Y X is a subset of Y .

X ⊆ Y X is a subset of or equal to Y .

X ⊕ Y The direct sum of X and Y .

R The set of real numbers.

R+ The set of positive real numbers.

C The set of complex numbers.

E The mathematical expectation.
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P(E) The probability of the random event E .

N (m,C) Gaussian distribution with meanm and covariance C.

NC(m,C) Complex Gaussian distribution with meanm and covariance C.

χ2
r Central Chi-square distribution with r degrees of freedom.
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Introduction

1.1 Scope

The unstoppable growth of wireless devices hinders the coexistence of different wireless sys-
tems sharing the same network resources. In this context, interference management plays
a fundamental role in alleviating inter-system interference and facilitating resource sharing
among the coexisting wireless systems. Accordingly, interference management has been one of
the leading research topics of the last decades. Although several strategies have been proposed,
ranging from orthogonal access schemes to precoding or decoding techniques, most rely on the
necessity of cooperation and coordination between the different involved network nodes.

When dealing with intra-system interference, i.e., the interference caused by the network
nodes belonging to the same wireless system, assuming that these nodes can share chan-
nel/network state information or other sorts of side information, such as their codebooks, to
design interference management schemes seems realistic. However, it is not always practical.
When two communication nodes want to set up a communication link, they are not initially
coordinated and cannot cooperate. One possibility is to deploy central nodes acting as sched-
ulers. These schedulers can assist the network nodes in setting up a communication link or help
these nodes to coordinate. This solution, however, can become inefficient when the number of
communication nodes grows exponentially.

From a more general perspective, dealing with inter-system interference, i.e. the interfer-
ence caused by nodes belonging to other wireless systems, would ideally require coordination
or cooperation between communication nodes belonging to different wireless systems, which
is not practical. In the case where the inter-system interference is caused by two subsystems of
the same wireless system, e.g., inter-cell interference in cellular communications, coordination
or cooperation between the scheduling nodes may suffice. However, this solution is not general
enough to deal with more recently studied scenarios, such as the massively connected Inter-
net of Things (IoT). In this sense, opportunistic communications is an interference management
strategy dealing with the design of transmission/detection schemes adapted to the particu-
lar network conditions to avoid inter-system interferences ideally. Accordingly, opportunistic
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communication techniques are generally based on a two-step procedure. First, network state
information from the wireless environment is obtained. Then, this information is exploited to
tune the transmission parameters of existing modulations, e.g., multi-carrier modulations, or
to design context-aware transmitting and detection strategies.

In spite of the potential advantages of opportunistic communications to facilitate the coex-
istence of interfering wireless systems, several technical challenges, which are addressed in this
dissertation, have been identified.

The design of opportunistic transmission schemes relies on sensing the wireless environ-
ment. The sensing process can be cast as a detection problem and, accordingly, suffers from
mainly two drawbacks: the estimation of the statistic and detection errors, in particular, miss-
detection and false-alarm errors. These drawbacks may lead to inaccurate detection of the
available network resources, meaning that some of the network resources occupied by other
wireless systems can be wrongly detected as available. Using these erroneous network resources
for opportunistic transmission may produce severe inter-system interferences, corrupting the
communication between network nodes of other wireless systems. The main challenge is over-
coming the difficulty of providing a general enough sensing error model to cast the robust
design of opportunistic transmission strategies.

It is conventionally assumed that the network nodes involved in opportunistic communi-
cation are coordinated or can cooperate. In this sense, the classical assumption is that the
opportunistic nodes share the same reference system for the network resources or, more gener-
ally, for the signal space. To be valid, this assumption requires that opportunistic nodes have
previously agreed on a common reference system, utilizing a handshake procedure or through
a centralized scheduling node. In decentralized networks, where the communication does not
rely on a scheduler, it is not reasonable to assume that opportunistic nodes share a common
reference system. It is worth noting that, in this case, opportunistic communication seems to
be inherently non-coherent, yielding a system performance loss. Here, the term coherent refers
to the knowledge of the transmitted pulse-shaping waveforms by the opportunistic receiver.
An identified research challenge consists in designing waveforms exhibiting self-calibration
properties so as to overcome the non-coherent condition in uncoordinated opportunistic com-
munication scenarios.

Regardless of the capacity of opportunistic nodes to agree on a common reference sys-
tem, if the sensing is locally performed, i.e., each opportunistic node bases the design of
its transmission/detection strategy on the local network state information only, opportunistic
communication also suffers from a performance loss due to end-to-end signal-space mismatch.
Conventionally, this mismatch is overcome through a coordinated feedback link. Nevertheless,
the feedback overheads required to agree on a common reference system and in a common
signal space may burden the system complexity and potentially increase the latency. In some
contexts, low-rate feedback strategies permit achieving performance similar to the full channel
state information case. However, in uncoordinated opportunistic communications, the design
of low-rate feedback strategies that allow agreeing on a signal space and a common reference
system is troublesome.

The abovementioned research challenges are addressed in this dissertation. The involved
research has resulted in the publications enumerated in Section 1.2. The contributions of this
thesis are briefly described in Section 1.3, altogether with the organization of this document.
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1.2 Publications

The research leading to this dissertation resulted in the following journal publications:

[J1] J. Borras and G. Vázquez, “Opportunistic transmission based on circulant-shaping TDMA”,
IEEE Communications Letters, 2022, (in preparation).

[J2] J. Borras and G. Vázquez, “Array-Geometry invariant iransmission in feedforward oppor-
tunistic communications”, IEEE Transactions on Signal Processing, 2022, (under review).

[J3] J. Borras and G. Vázquez, “Interference mitigation in feedforward opportunistic commu-
nications”, IEEE Transactions on Communications, 2022, (under second revision).

as well as the following publications in conference proceedings:

[C1] J. Borras and G. Vázquez, “Array-geometry invariant signaling in MISO feedforward
opportunistic communications”. In: 21st IEEE International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), Atlanta, GA, USA (virtual), May 2020.

[C2] J. Borras and G. Vázquez, “Interference mitigation in opportunistic transmission under
degrees-of-freedom sensing uncertainties ”. In: IEEE Global Communications Conference
(GLOBECOM), Waikoloa Village, HI, USA, December 2019.

[C3] J. Borras and G. Vázquez, “Distributed feedback-aided subspace concurrent opportunistic
communications”. In: 20th IEEE International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), Cannes, France, July 2019.

[C4] J. Borras and G. Vázquez, “Decentralized shaping for pilot generation and detection
in opportunistic communications”. In: IEEE International Conference on Communications
(ICC), Shanghai, China, May 2019.

[C5] J. Borras and G. Vázquez, “Uncoordinated space-frequency pilot design for multi-antenna
wideband opportunistic communications”. In: 19th IEEE International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, June 2018.

[C6] J. Borras, J. Font-Segura, J. Riba, and G. Vázquez, “Dimension Spreading for Coherent
Opportunistic Communications”. In: 2017 51st Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, CA, USA, October 2017.

In addition to these publications, the author has also contributed in the following poster pre-
sentations:

[P1] J. Borras and G. Vázquez, “MISO Opportunistic Communications in Noncooperative
Networks”. In: 2021 IEEE Communication Theory Workshop (CTW) – Virtual Event, Banff,
AB, Canada, June 2021.

[P2] J. Borras and G. Vázquez: “Distributed Shaping for Opportunistic Communications: Pilot
Design and Detection”. In: 2019 IEEE Communication Theory Workshop (CTW), Selfoss,
Iceland, May 2019.
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Other Contributions

Beyond the topic of this dissertation, the author has also contributed to the following works:

• J. Borras, F. Molina, R. López-Valcarce, J. Sala-Álvarez, and G. Vázquez, “Energy-Efficient
Analog Beamforming under Short Packets and Per-Antenna Power Constraints”, Signal
Processing (EURASIP), (under review).

• J. Borras, F. Molina, R. López-Valcarce, and J. Sala-Álvarez, “Energy-Efficient Analog
Beamforming with Short Packets in mmWave MIMO Systems”. In: 2020 54th Asilomar
Conference on Signals, Systems, and Computers – Virtual Event, Pacific Grove, CA, USA,
November 2020.

• F. Molina and J. Borras, “Low-Complexity Switching Network Design for Hybrid Pre-
coding in mmWave MIMO Systems”. In: 2019 European Signal Processing Conference
(EUSIPCO), A Coruña, Spain, September 2019.

1.3 Organization and Contributions

This thesis is structured into five chapters, corresponding to Chapters 2–6. From these chapters,
the original research contributions correspond to Chapters 3–5, as sketched in Figure 1.1. In the
sequel, a brief overview of each chapter is disclosed, altogether with the derived publications
and the relationship between each chapter.

Chapter 2 provides an overview of the problem of the coexistence of wireless systems and
emphasizes the fundamental role that interference management plays. With the exponential
growth of heterogeneous communication nodes coexisting in the same network, sharing the
network resources becomes a more cumbersome task. In this context, dealing with inter-
system interference is of paramount interest in guaranteeing coexistence and satisfying the
quality-of-service requirements. Network sharing can be tackled in the time, frequency, or
spatial domain. For the sake of generality, in this thesis, the different network resources are
referred to as Degrees of Freedom (DoF). Accordingly, the formal definition of DoF is also
provided in Chapter 2. In order to manage inter-system interferences, one possibility consists
in resorting to classical interference management techniques conventionally used in multi-
user networks. In this regard, techniques such as orthogonal access, Successive Interference
Cancelation (SIC), Dirty Paper Coding (DPC), or Interference Alignment (IA) are potential
solutions to dealing with inter-system interferences. Nevertheless, these solutions require
cooperation or coordination between network nodes of different wireless systems, which is
not a realistic assumption. These difficulties motivate studying opportunistic communication
strategies as an inter-system interference management strategy. Chapter 2 summarizes the most
relevant background literature on opportunistic communication schemes in both single- and
multi-antenna scenarios.

The case of single-antenna feedforward opportunistic communications, i.e., when the op-
portunistic nodes cannot cooperate and are not coordinated, is addressed in Chapter 3. This
chapter describes the fundamental drawbacks of the null space-based opportunistic communi-
cation strategies reviewed in Chapter 2: lack of robustness and lack of uniqueness. Null-space
opportunistic communication schemes rely on detecting the available network resources –or
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Chapter 2:
Interference Management

Feedforward
Opportunistic Communications

Chapter 3:
Single-Antenna

Systems

Chapter 4:
Asymptotic

Analysis

Chapter 5:
Multi-Antenna

Systems

Figure 1.1: Schematic overview of the topics covered in this dissertation.

DoF–. A cumbersome task in these approaches is providing a simple but general enough error
model to design robust transmission schemes. The first contribution of this chapter is to provide
a generalized model for the null-space sensing errors characterizing the subspace leakage. This
effect occurs when some DoF occupied by other wireless systems are erroneously detected as
available. Under this error model, we provide the optimum waveform design strategy in the
minimum worst-case inter-system interference sense. The robust solution is just the minimum-
norm waveform, which is equivalent to the Total Least-Squares (TLS) solution. The robust wave-
forms are rank-one waveforms able to spread the transmitted symbol within the sensed null
space, which is of paramount importance to decrease the inter-system interference density per
DoF and minimize the outage probability induced on other neighboring communication nodes.
Therefore, the proposed solutions respond to a maximum worst-case Signal-to-Interference
Ratio (SIR) criterion. Interestingly, each derived waveform is a specific column, appropriately
scaled, of the dimensionally-reduced orthogonal projector onto the sensed null space. Accord-
ingly, the waveforms are unique, thus, invariant, within the sensed null space. This property
guarantees the uniqueness of the solutions enabling coherent waveform detection under the
lack of cooperation or coordination. The robust transmitting waveforms derived in this chapter,
which are referred to as Minimum-Norm Total Least-Squares (MNTLS) waveforms, overcome the
two major drawbacks of the conventional null-space opportunistic communication strategies.
Nevertheless, when a null-space mismatch occurs, i.e., when the opportunistic transmitter and
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the opportunistic receiver detect slightly different null spaces, the system performance degrades
in the form of energy loss and self-induced inter-symbol interference. These effects are char-
acterized and shown not to have a relevant impact. Either way, opportunistic communication
performance can be improved when the opportunistic nodes prune their null spaces to exploit
only those commonly detected DoF. In this respect, two active subspace recovery algorithms
are proposed. The publications [C2], [C3], [C4], [C6], and [J3], as well as the poster presentation
[P2], have been derived from the contributions of this chapter.

The potential interest in exploiting larger bandwidths leads to a higher enough number of
total DoF, which naturally induces an asymptotic regime. In this regard, Chapter 4 studies the
asymptotic behavior of the MNTLS waveforms. In this scenario, the sensed null-space bases con-
verge to a column subset of the normalized Fourier matrix, admitting a characterization in the
frequency domain. This chapter also studies the particular case where the DoF sensed as avail-
able are consecutive. In this case, the set of transmitting waveforms behaves as a time-division
multiple-access scheme but employs special signaling, bringing to light the Circulant-Shaping
Time-Division Multiple-Access (CS-TDMA) scheme. Interestingly, the CS-TDMA modulation ex-
hibits a reduced Peak-to-Average Power Ratio (PAPR), which is of great interest for practical
implementation due to the increasing energy efficiency requirements. The last part of this
chapter studies an adaptation of the MNTLS waveforms to frequency-selective channels. Tak-
ing into account the asymptotic behavior of the null-space bases, a cyclic prefix-based strategy
is proposed in order to deal with the frequency-selective nature of wideband channels. In
contrast to other opportunistic communication strategies focused on frequency-selective chan-
nels, such as Vandermonde-Subspace Frequency-Division Multiplexing (VFDM), the proposed
strategy does not require estimating the interference-channel matrices to design an appropri-
ate precoding strategy. Even though the complexity of the waveforms design is not increased
with the inclusion of the cyclic prefix, the null-space sensing becomes more cumbersome, as it
now relies on a non-unitary sensing matrix. Nevertheless, this added difficulty can be relaxed
if the opportunistic nodes have additional side information on the signal structure employed
by the communication nodes of other wireless systems. In essence, adapting to frequency-
selective channels results in a set of non-orthogonal waveforms whose orthogonality is restored
at the receiving end when the cyclic prefix is removed. As in Orthogonal Frequency-Division
Multiplexing (OFDM), the proposed strategy only requires simple one-tap frequency-domain
equalizers to overcome the impact of the opportunistic channel. The contributions of this
chapter lead to the publications [J1] and [J3].

Chapter 5 provides the generalization of the proposed null-space opportunistic communi-
cation strategy to multi-antenna scenarios. A simple mathematical analysis reveals that the
space-time MNTLS waveforms can be designed as in the single-antenna case but now lying
in extended signal space. Accordingly, it seems reasonable to believe that the essential prop-
erties of DoF spreading and invariance still hold in this general scenario. Regarding the DoF
spreading, it is corroborated via numerical simulation. Mathematical analysis of the Signal-
to-Interference Density Ratio (SIDR) unveils the potential advantages of employing multiple
antennas to further mitigate undesired residual inter-system interferences. Nevertheless, veri-
fying that the invariance property still holds in the multi-antenna case is not straightforward.
Note that the use of antenna arrays with probably a different number of sensors prompts the
transmitting pulse-shaping waveforms and the receiving matched filters to lie in signal spaces
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of different dimensionality. Moreover, the impact of the physical structure of antenna arrays,
i.e., their geometry, is unclear. A thorough mathematical analysis based on the manifold sepa-
ration theory reveals that the space-time MNTLS waveforms are invariant to the antenna array
geometry. Nevertheless, the number of array sensors impacts opportunistic communication
since, as expected from the SIDR analysis, it provides an improved DoF spreading factor and
a potential diversity gain improving the detection performance. This result generalizes the
invariance property to multi-antenna scenarios. The last part of this chapter deals with ex-
tending the asymptotic analysis carried out in Chapter 4 to multi-antenna scenarios. Using the
asymptotic eigendecomposition of block-Toeplitz matrices, it is shown that the opportunistic
transmitter behaves as a set of mutually-orthogonal single-antenna transmitters. Accordingly,
the space-time null-space sensing becomes a per-antenna time-frequency null-space sensing;
thus, the waveform design strategy can be adapted to be performed on a per-antenna basis. In
this regard, each space-time MNTLS waveform asymptotically performs an antenna selection
policy, where the antennas with more time-frequency DoF availability are preferred. The pub-
lications [C1], [C5], and [J2], as well as the poster presentation [P1], have been derived from the
contributions of this chapter.

Finally, the conclusions of this dissertation are drawn in Chapter 6, together with a summary
of potential future research lines.
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Interference Management in Wireless Networks

2.1 Introduction

The increasing advents in wireless communication technologies, such as mobile communica-
tions, wireless Internet, vehicular communications, or the so-called Internet of Things (IoT),
lead to an exponential growth of communications nodes coexisting in the same geographical
area and sharing the physical-layer network resources [Pop20; CNY+21]. Each communication
technology is characterized by employing different coded-modulation schemes or by different
requirements, such as information rate, reliability, or latency. Wireless networks where different
communication systems coexist are usually known as heterogeneous networks.

As widely discussed in the literature (see, for instance, [EPT07; HEKA16; BPG+16; ZGH17;
SBL+18; NLP18; BMA+21]), these scenarios tend to be interference-limited. More specifically, the
Signal-to-Interference-plus-Noise Ratio (SINR) at the k-th receiving node, defined as

SINRk ≜ Sk∑
k′ ̸=k Sk′ +N

, (2.1)

where Sk is the received power at the k-th receiving node sent by the k-th transmitting node and
N is the noise power, arbitrarily decreases as the number of transmitter-receiver pairs coexisting
in a heterogeneous network grows.

It is worth noting that, in view of (2.1), dealing with inter-system interferences plays a funda-
mental role to satisfy the stringent Quality-of-Service (QoS) requirements of each transmitter-
receiver pair. The simplest and conventional strategy to combat inter-system interferences con-
sists in avoiding interference through orthogonalizing the signals sent by each transmitting node,
giving birth to the well-known Orthogonal Multiple-Access (OMA) schemes. Accordingly,
transmitter-receiver pairs exploit a disjoint fraction of the physical-layer network resources,
leading to interference-free transmissions. Even though OMA schemes have been extensively
used in cellular communications, they suffer mainly from three drawbacks: (i) the number
of transmitter-receiver pairs that can simultaneously coexist in the same wireless network is
limited by the number of physical-layer network resources, (ii) OMA schemes require full coop-
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eration between the coexisting nodes in order to perfectly avoid inter-system interferences, and
(iii) the information-theoretic analysis of multi-user networks reveals that OMA is generally a
suboptimal strategy [EK11]. Consequently, the need to mitigate rather than avoid interferences
has made interference management a major research line in the field of wireless communications
for a long time [VEG18].

This chapter aims to provide an extensive review of the interference management problem in
the context of single-hop1 interference networks. In particular, Sections 2.2 and 2.3 are devoted
to the (many-user) interference channel problem and the fundamental limits of cooperation,
respectively. Accordingly, these two sections can be skipped in the first reading, since the
specific context review of the problem addressed in this dissertation is given in Section 2.4. In
particular, Section 2.4 describes in a unified manner the state-of-the-art techniques in the context
of null space-based opportunistic communications and discusses the current limitations of these
techniques, which motivates the study of robust opportunistic communication schemes.

2.2 Interference Management in Communication Networks: Signal
Processing Strategies and Fundamental Limitations

Transmitter-receiver pairs sharing the same wireless network can adopt different signal pro-
cessing techniques to cope with inter-system interferences and satisfy their stringent QoS re-
quirements. These signal processing strategies can involve different dimensions of the spectrum
space, such as time, frequency, or space. For the sake of generality, we first introduce a generic
communication model based on the concept of Degrees of Freedom (DoF), which is extensively
used throughout this dissertation. Using this generalized model, we review the most significant
interference management techniques and their limitations in terms of channel capacity.

Nevertheless, this study suffers from two major drawbacks. On the one hand, the channel
capacity is the ultimate performance metric only when the transmission delay is not accounted
for. In the case of delay-sensitive communications, transmitted messages are of short length2
and the maximum attainable rate is far from the asymptotic capacity result [PPV10; Ers16]. On
the other hand, the study of the channel capacity does not reveal the maximum spatial density
of transmitter-receiver pairs that can simultaneously coexist in a given geographical area. For
these reasons, we resort to the concept of transmission capacity as an alternative performance
metric to assess the size of a communication network given an outage constraint.

2.2.1 A Generic Communication Model

Throughout this thesis, and for the sake of generality, the physical-layer resources of a wireless
network are referred to as Degrees of Freedom (DoF). Therefore, this concept deserves a short
elaboration before reviewing the different interference management approaches.

1Since this thesis is focused on single-hop communications, the literature review on interference management
techniques is constrained to single-hop interference networks. An extensive study of the operating regimes and
fundamental limits of multi-hop networks can be found in [ÖLT11].

2Applications involving short data packets are of significant interest nowadays under the umbrella of Ultra-
Reliable Low-Latency Communications (URLLC) [BDP18; SMA+19; PSN+19], which is an enabler of critical massive
machine-type communications [PDP+20].
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The idea or concept of DoF was introduced by C. E. Shannon [Sha48; Sha49]. In particular,
a geometric model for communication systems is provided in [Sha49] where, in essence, the
transmitted signals are described as elements of a vector space (referred to as signal space). In
this model, the number of DoF represents the dimension of the signal space. It is worth noting
that this geometric model permits describing the number of DoF as the number of independent
channel uses per second [Pop20].

In the sequel, we resort to the analysis performed in [Gal08] to provide a brief mathematical
yet intuitive discussion on which is the dimension of signal space.

Without loss of generality, let us consider a real function (signal) x(t) baseband-limited to
W . Through the sampling theorem (see, for instance, [Gal08, Chapter 4]), the signal x(t) can be
written in terms of the so-called sampling function as

x(t) =
∞∑

k=−∞
x(t)|t=k/(2W )sinc(2Wt− k) =

∞∑
k=−∞

x(kTs)sinc

(
t

Ts
− k

)
, with k ∈ Z, (2.2)

where sinc(t) = sin(πt)/(πt), meaning that the baseband-limited function x(t) can be specified
by its samples at intervals Ts = 1/(2W ). The set of sinc functions

{
sinc

(
t
Ts

− k
)}

k
define an

orthonormal basis, that is, these functions satisfy the condition

∫ +∞

−∞
sinc

(
t

Ts
− k

)
sinc

(
t

Ts
− k′

)
dt =

1 if k = k′

0 otherwise
, (2.3)

and, accordingly, we may say that (2.2) describes x(t) in terms of an orthonormal expansion.
A natural question is how many samples are needed to represent x(t) without losing infor-

mation. As discussed in [Sha49; Gal68; Gal08], a rule of thumb3 is that a function approximately
baseband-limited toW and approximately time-limited to [−T/2, T/2] can be specified by about
2TW real numbers as coefficients in an orthogonal expansion, if TW � 1. The rationale behind
the number 2TW is as follows. If the function is time-limited to [−T/2, T/2], and this function
can be specified by its samples taken at sampling rate 1/Ts = 2W [samples per second], then the
number of samples is T/Ts = 2TW .

Consequently, functions that are approximately baseband-limited to W and approximately
time-limited to [−T/2, T/2] have about

N ≈ 2WT real DoF (2.4)

when the time-bandwidth product is sufficiently large, i.e., TW � 1. It is worth noting that
the provided definition of DoF lacks precision since time-limited signals cannot be baseband-
limited, and baseband-limited signals cannot be time-limited. This is the reason why the
number of real DoF N in (2.4) is an approximation. A more precise orthogonal expansion
yet more challenging to study is composed of prolate spheroidal functions [SP61]. This class of
functions maximizes the energy concentration in a finite time-frequency region; thus, being the
closest approximation to time-limited and frequency-limited functions.

We shall now discuss why (2.4) indicates the number of dimensions of the signal space.
Since a function x(t) can be specified by about 2TW samples for TW � 1, these samples can

3A formal mathematical proof of this result is provided in [Sle76].
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be collected in a vector of N ≈ 2TW elements. Such a vector belongs to the N -dimensional
real vector space RN , where there are N orthogonal dimensions. Therefore, since the sampled
baseband-limited signals to W and time-limited to [−T/2, T/2] lie in RN , we can represent up
to N non-overlapping (i.e., non-interfering) signals. Therefore, N represents the maximum
number of memoryless channel uses available under these conditions.

According to the latter observation, it is worth noting that the number of DoF refers to the
pre-log factor of the channel capacity as the Signal-to-Noise Ratio (SNR) becomes arbitrarily
large. In other words, since the channel capacity (for the Gaussian channel), in nats per second,
admits the following expression C = W log(1+SNR) = d ·SE, with SE = 1

2 log(1+SNR) being
the spectral efficiency in nats per channel use and d the number of independent channel uses
per second, we have that

d = lim
SNR→∞

C

log SNR
=

2WT

T
, (2.5)

meaning that the number of real DoF indicates the number of independent memoryless channel
uses. Regarding d, this quantity is sometimes referred to as the DoF of the communication
channel or multiplexing gain. Therefore, T is known as the symbol duration, the channel use
duration, or the DoF duration [Pop20].

Thus far, the discussion has been focused on a specific orthonormal basis given by a set
of orthogonal sinc functions. Nevertheless, the concept of DoF can be further generalized.
As per [Gal08], a signal x(t) can be written in terms of a Karhunen-Loève expansion [CF67].
Accordingly, the decomposition in (2.2) admits the following generalization:

x(t) =

∞∑
k=−∞

x(t)|t=k/αu(αt− k) =

∞∑
k=−∞

x(k/α)uk(t), with k ∈ Z, (2.6)

where the set of basis functions {uk(t)}k satisfy the orthonormality condition, i.e.,

∫ +∞

−∞
uk(t)uk′(t)dt =

1 if k = k′

0 otherwise
. (2.7)

This generalization permits writing the sampled signal x ∈ RN , being N the number of real
DoF, as a linear combination of a signal-space basis, that is

x =
N−1∑
k=0

ukλk = Uλ, (2.8)

being uk ∈ RN the sampled version of the basis functions uk(t), λk = x(k/α) the coefficients
of the orthogonal expansion describing the sampled signal x, U = [u0, . . . ,uN−1] ∈ RN×N a
signal-space basis and λ = [λ0, . . . , λN−1]

T ∈ RN the coefficients vector.
The generic signal model given in (2.8) will be used in the sequel to describe the interference

network model and analyze different signal processing strategies for interference management
and their associated performance limitations.
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2.2.2 Fundamental Limits of Single-Hop Interference Networks

Interference management plays a fundamental role in multi-user networks to guarantee the
particular QoS requirement of each involved transmitter-receiver pair. The different interfer-
ence management strategies developed in the literature can be classified depending on their
complexity, the necessity of cooperation between transmitters or receivers, and, of course,
their performance in mitigating interferences. This subsection is devoted to summarizing the
main signal processing strategies for interference management and discussing their associated
performance limitations.

For this purpose, let us consider thatK transmitter-receiver pairs coexist in the same wireless
network. Using the generic signal model given in (2.8), the signal sent by the k-th transmitter
can be written as

sk = Ukλkak = ϕkak ∈ CN , (2.9)

where Uk ∈ CN×N is a basis of the N -dimensional signal space, being N ≈ TW the number of
complex DoF, λk is a vector with only one non-zero element indicating that the k-th transmitter
sends one symbol per dimension (or DoF), and ak stands for a zero-mean and unit-variance
symbol. From this point onwards, we assume that the symbols are independent and identically
distributed. Regarding (2.9), note that ϕk can be seen as the pulse-shaping filter employed by
the k-th transmitting node.

Before going deeper, some considerations on the signal-space basis Uk are of order. It is
worth noting that in synchronous interference networks, all nodes share the same signal-space
basis; thus Uk = U for all k. Since matrix U encompasses the sampled basis functions of an
orthonormal expansion of the sampled signals, note that UHU = UUH = IN . On the other
hand, in the case of asynchronous interference networks, assuming that each transmitter-receiver
pair is end-to-end synchronized, each of these pairs employs a different signal-space basis;
hence, Uk 6= Uk′ for k 6= k′. Accordingly, even though the relationship UH

k Uk = UkU
H
k = IN

holds, it occurs that UkU
H
k′ 6= IN . A more challenging scenario, which will be discussed later,

is that where each transmitter-receiver pair is not end-to-end synchronized.
The considerations above justify the generality of the transmitted signal model given in (2.9).

In order to keep the discussion as general as possible, the asynchronous interference network
case is considered below unless otherwise stated.

Under the assumption that each transmitter-receiver pair is synchronized and coordinated,
that is, the receiver knows the pulse-shaping filter employed by the transmitting node, the
received signal at the k-th receiving node after matched filtering is given by

yk = gkkϕ
H
k sk +

K−1∑
i=0
i ̸=k

gikϕ
H
k si +wk, (2.10)

where gik is the channel gain between the i-th transmitting node and the k-th receiver and
wk ∼ NC(0;σ

2IN ) is a circularly-symmetric additive white Gaussian noise. Regarding the
channel gain, note that gik = zik

√
r−αi
ik , where zik ∼ NC(0; 1) models the small-scale fading,

rik is the distance between the i-th transmitter and the k − th receiver, and αi is the path-loss
exponent modeling the power loss experienced by the signal sent by the i-th transmitter. For
the time being, the channel coefficients gik are assumed to be known, that is, deterministic.
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Using (2.9) and the associated discussion, the average SINR at the k-th receiving node reads as

SINRk =
‖λk‖2r−αk

kk

N0 +
∑

i ̸=k |λH
k U

H
k Uiλi|2r−αi

ik

=
Sk

N0 +
∑

i ̸=k Iik
=

SNRk

1 + INRk
, (2.11)

being N0 the power spectral density of the noise and INRk =
∑

i ̸=k Iik/N0 the Interference-to-
Noise Ratio (INR) at the k-th receiving node.

It is noteworthy that the relationship provided in (2.10) is the general equation of the K-user
Gaussian Interference Channel (IC) [CJ08], whose capacity region remains generally unknown,
even for the 2-user case, except for very particular cases. Nevertheless, several signal processing
strategies have been studied to combat the impact of the incoming interferences, and associated
inner or outer bounds on the capacity region have been established. In order to describe these
signal processing schemes and to get insights on the performance limitations, the discussion is
first focused on the 2-user case for the sake of simplicity.

For the time being, consider the 2-user Gaussian IC illustrated in Figure 4.1. The capacity
region of this channel C, defined as the set of rate pairs (R1, R2) satisfying

C = {(R1, R2) : R1 < log2(1 + SNR1), R2 < log2(1 + SNR2)} , (2.12)

remains unknown. Therefore, a wide variety of interference management strategies have been
studied to provide achievable (inner) bounds on the capacity region.

A simple strategy to deal with interferences is to orthogonalize the transmissions, i.e.,
each transmitter employs only a fraction of the signal space. The inner bound achieved by
orthogonalization and power control encompasses the set of rate pairs (R1, R2) such that [EK11]

R1 ≤ α log2

(
1 +

SNR1

α

)
,

R2 ≤ (1− α) log2

(
1 +

SNR2

1− α

)
,

(2.13)

being α ∈ [0, 1] the fraction of DoF or signal-space dimensions assigned to transmitter #1. This
interference management strategy is generally suboptimal. Even though it can be optimum in
some particular cases in terms of sum rate when a power control policy is used, it usually leads
to an unfair solution if the IC is not symmetric, i.e., SNR1 6= SNR2. Moreover, note that this
scheme requires synchronization and cooperation between the coexisting transmitters.

The most simple interference management technique is known as Treating Interference as
Noise (TIN) and consists in ignoring the incoming interference. This scheme does not require
cooperation between the two transmitters, whereas the receiving scheme is a matched filter on
the intended signal. Nevertheless, the required per-link QoS is compromised as the interference
becomes stronger. As discussed in [AV09; EK11], TIN provides an inner bound on the capacity
region of the 2-user Gaussian IC encompassing the rate pairs (R1, R2) satisfying

R1 ≤ log2

(
1 +

SNR1

1 + INR1

)
,

R2 ≤ log2

(
1 +

SNR2

1 + INR2

)
,

(2.14)

which hints at the poor performance of TIN when the interference is relevant. The opposite
interference management strategy to TIN consists in letting each receiver recover both the in-
tended signal and the interference signal, similar to the Multiuser Detector (MUD) [Ver98]
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Figure 2.1: The two-user (memoryless) Gaussian interference channel.

scheme developed for the Multiple-Access Channel (MAC). Nevertheless, in the IC case, the
recovery of the interference signal is not needed and each receiver has to design a strategy
to recover its intended signal that together with some interference signal minimizes the error
probability. This strategy is known as Simultaneous Non-Unique Decoding (SND). It is impor-
tant to highlight that SND requires each receiver to know the codebooks and the transmission
strategy employed by the interfering transmitter, arising the necessity of cooperation between
receivers. The use of SND provides another inner bound on the capacity region of the 2-user
Gaussian IC encompassing the rate pairs (R1, R2) satisfying

R2+R1 ≤ log2 (1 + SNR1) ,

R1+R2 ≤ log2 (1 + SNR2) ,

R1 +R2 ≤ min {log2 (1 + SNR1 + INR1) , log2 (1 + SNR2 + INR2)} .
(2.15)

It is interesting to note that this inner bound can be seen as the intersection of the capacity
region of the MAC composed of transmitter #1 and the two receivers and the capacity region
of the MAC composed of transmitter #2 and the two receiving nodes.

The complexity of SND can be an implementation drawback. A suboptimal strategy, which
is also studied in the context of the MAC, is the well-known Successive Interference Cancellation
(SIC) scheme. The SIC is a two-stage receiving scheme that first decodes the interference signal
while treating the useful signal as noise, and then the decoded interference is subtracted from
the received signal before decoding the useful signal.

Thus far, the basic interference management strategies for the 2-user Gaussian IC have been
discussed. As mentioned before, orthogonalizing the transmission is suboptimal in general.
Nevertheless, we may wonder whether the non-orthogonal techniques, that is TIN and SND,
can be optimal. In order to discuss the performance of these two schemes, we will focus
on two extreme cases. On the one hand, when INR2 ≥ SNR1 and INR1 ≥ SNR2, we say
that the interference network operates at the strong-interference regime. Under these conditions,
the capacity region of the 2-user Gaussian IC is known and achieved through SND [Car75].
When the interference becomes stronger such that the conditions SNR2 ≤ INR1/(1 + SNR1)

and SNR1 ≤ INR2/(1 + SNR2) hold, the operating regime turns to the so-called very strong-
interference regime. It is the only case where interference has no impact on the communication
performance as each transmitter-receiver pair can achieve the capacity of the point-to-point
Gaussian channel [Car75]. In this regime, this performance can be achieved through SIC.
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On the other hand, in the weak-interference regime defined by the conditions INR2 < SNR1

and INR1 < SNR2, the capacity region remains unknown. However, the sum capacity in the
weak-interference regime is known under certain conditions. As pointed out in [AV09], if the
following conditions hold √

INR1

SNR2
(1 + INR2) ≤ ρ2

√
1− ρ21,√

INR2

SNR1
(1 + INR1) ≤ ρ1

√
1− ρ22,

(2.16)

for some ρ1, ρ2 ∈ [0, 1], then the sum-capacity of the Gaussian IC is achieved through TIN and
given by

Csum = log2

(
1 +

SNR1

1 + INR1

)
+ log2

(
1 +

SNR2

1 + INR2

)
. (2.17)

Notwithstanding, both TIN and SND can only provide pessimistic inner bounds of the
capacity region in the general mixed-interference regime, which satisfies INR2 < SNR1 and
INR1 ≥ SNR2, or INR2 ≥ SNR1 and INR1 < SNR2 [ETW08]. Under these conditions, it
seems reasonable to think about a strategy that swings between TIN and SND. The latter is
exactly the purpose of rate splitting. This technique, which was proposed by Carleial in [Car78],
consists in splitting the message sent by each transmitter into two messages, known as private
and common messages. Therefore, the received signal at each receiver reads as

yk = sc1 + sp1 + sc2 + sp2 +wk, for k = 1, 2, (2.18)

where sck and spk, for k = 1, 2, refer to the common and private message sent by the k-
th transmitting node. The idea is that the k-th receiver first decodes through SIC only the
interference induced by the common signal sent by the interfering transmitter while treating all
other terms as noise. Then, this interference can be removed from the received signal and the
message sent by the intended transmitter, which is given by sk = sck + spk, is obtained through
TIN. Note that, if the interference cancellation scheme has succeeded, only the interference
induced by the private message spj , with j 6= k, is treated as noise. In the Gaussian IC with
Gaussian inputs, the design of the rate splitting scheme reduces to balancing the power devoted
to the common and the private messages.

Even though the rate splitting strategy dates back to 1978, it has recently gained considerable
momentum to efficiently exploit the available DoF with imperfect Channel State Information
(CSI), under an interference management strategy known as Rate-Splitting Multiple-Access
(RSMA) [CJH+16]. The primary motivation behind RSMA comes from noting that using multi-
ple antennas in Non-Orthogonal Multiple-Access (NOMA) leads to inefficient use of the avail-
able DoF since the spatial dimension is not fully exploited [MC20; CMS+21]. It is interesting
to note that, as per [CMSP20], RSMA provides a unified framework to study OMA, NOMA,
and Space-Division Multiple-Access (SDMA). Currently, RSMA is investigated as a potential
interference management strategy for next-generation wireless networks [MDC+22].

The rate splitting strategy plays a fundamental role in characterizing the rate region of the
IC. In particular, Han and Kobayashi improve the rate splitting strategy in [HK81] to derive the
best-known achievable scheme for the (discrete-memoryless) interference channel. This inner
bound has been also particularized for the 2-user Gaussian IC. Interestingly, Etkin, Tse, and
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Wang use in [ETW08] a simple Han-Kobayashi scheme and a genie-aided4 receiver to provide
an outer bound on the capacity region of the 2-user Gaussian IC that is achievable within one bit
per complex dimension. The latter means that for any rate pair (R1, R2) belonging to the proposed
outer bound, the rate pair (R1 − 1, R2 − 1) is achievable. A different proof of this important
result is also given in [TT07]. Since the outer bound given in [ETW08] is particularized for the
weak- and mixed-interference regimes, the general version given in [EK11] is provided for the
readers’ convenience. Accordingly, all rate pairs (R1, R2) satisfying

2R2+R1 ≤ log2 (1 + SNR1) ,

2R1+R2 ≤ log2 (1 + SNR2) ,

2R1 +R2 ≤ log2

(
1 +

SNR1

1 + INR2

)
+ log2 (1 + SNR2 + INR2) ,

2R1 +R2 ≤ log2

(
1 +

SNR2

1 + INR1

)
+ log2 (1 + SNR1 + INR1) ,

2R1 +R2 ≤ log2

(
1 +

SNR1 + INR1 + INR1INR2

1 + INR2

)
+ log2

(
1 +

SNR2 + INR2 + INR1INR2

1 + INR1

)
,

2R1 +R2 ≤ log2

(
1 +

SNR1

1 + INR2

)
+ log2 (1 + SNR1 + INR1)

+ log2

(
1 +

SNR2 + INR2 + INR1INR2

1 + INR1

)
,

R1 + 2R2 ≤ log2

(
1 +

SNR2

1 + INR1

)
+ log2 (1 + SNR2 + INR2)

+ log2

(
1 +

SNR1 + INR1 + INR1INR2

1 + INR2

)
,

(2.19)

are achievable within one bit per complex dimension. Nevertheless, the full characterization of
the Han-Kobayashi inner bound for the 2-user Gaussian IC is still an open problem.

In order to provide further insights into these techniques, the inner bounds provided by
OMA, TIN, and SND, as well as the outer bound described by (2.19) are depicted in Figure 2.2
for SNR1 = 15 dB, SNR2 = 10 dB, and varying INR1 and INR2.

Observing Figure 2.2, it is worth noting that cases (a) and (b) correspond to the weak-
interference regime, cases (c) and (d) exemplify the strong-interference regime, whereas cases
(e) and (f) correspond to the very strong-interference and mixed-interference regimes, respec-
tively. Focusing on the weak-interference regime, only the case depicted in Figure 2.2(a) satisfies
the conditions in (2.16); thus, TIN is sum-rate optimal. As the interference increases, orthog-
onalizing the transmissions provides better performance. Regarding the strong-interference
regime, the case depicted in Figure 2.2(c) corresponds to the boundary where SNR1 = INR2

and SNR2 = INR1. We may observe that OMA achieves the sum rate, even though it is not
the fairest point given the power imbalance between each link, that is, SNR1 6= SNR2. As the
interference becomes stronger, the gap between the capacity region, achieved by the SND strat-
egy, and the outer vanishes. In the very strong-interference regime, the outer bound described

4A genie is an entity that provides to each receiver side information about the interference leaked through the
cross channel.
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(a) INR1 = −5 dB and INR2 = 0 dB
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(b) INR1 = 3 dB and INR2 = 7 dB
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(c) INR1 = 10 dB and INR2 = 15 dB
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(d) INR1 = 15 dB and INR2 = 18 dB
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(e) INR1 = 25 dB and INR2 = 30 dB
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(f) INR1 = 12 dB and INR2 = 3 dB

Figure 2.2: Inner bounds achieved with OMA (blue), TIN (green), and SND (red), and outer
bound (2.19) in black on the capacity region of the 2-user Gaussian IC.
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in (2.19) coincides with the capacity region. Finally, in the mixed-interference regime, both
TIN and SND are outperformed by OMA in terms of sum rate. Nevertheless, in the symmetric
Gaussian IC, that is, when SNR1 = SNR2 and INR1 = INR2, it is known that OMA is only
optimal in two particular points: in the boundary of the optimality region of TIN and when
SNR1 = SNR2 = INR1 = INR2.

Thus far, we have reviewed four different interference management strategies for the 2-user
Gaussian IC. In contrast to orthogonal access, the other three techniques consider that the signals
sent by each transmitting node are superimposed, that is, share the same network resources –or
signal-space dimensions–. The two extreme cases, TIN and SND, consist in not decoding and
fully decoding inter-system interferences at each receiver, respectively. Rate splitting swings
between these two extreme cases and permits finding an outer bound of the capacity region
achievable within one bit per complex dimension. Despite the tremendous efforts, the capacity
region of this simple case remains unknown, emphasizing the difficulty of finding interference
management strategies that achieve the desired optimum performance.

The abovementioned techniques consider that each transmitter is not aware of the message
–or signal– sent by the other transmitter. A strategy to improve the system’s spectral efficiency
consists in letting the transmitters and receivers cooperate. Under this condition, the 2-user
Gaussian IC can be seen as a distributed or network Multiple-Input Multiple-Output (MIMO)
system [NWSS21]. Accordingly, a significant range of interference management strategies
studied for network MIMO systems can be adapted to the 2-user Gaussian IC.

If the transmitters can cooperate, a conventional and simple strategy to mitigate interferences
consists in employing a zero-forcing (ZF) precoder [SH07], such that the signal sent by each
transmitter is projected onto a low-dimensional subspace. This scheme, however, suffers a
performance penalty loss due to the reduction of effective DoF per user. Similar performance can
be achieved by using an interference-cancellation combiner at the receiver side. Interestingly,
when the transmitters share their messages before sending them, the 2-user Gaussian IC can be
seen as a 2× 2 MIMO Broadcast Channel (BC). As advocated in [CS03], the Dirty Paper Coding
(DPC) scheme proposed by Costa in [Cos83] is capacity-achieving in the MIMO-BC. DPC
consists in canceling the interference at the transmitter side beforehand without requiring side
information about interferences at the receiver side. A practical low-complexity implementation
of DPC is the Tomlinson-Harashima Precoding (THP) [Tom71; HM72].

Interference mitigation when the cooperation takes place at the receivers only has been
deeply investigated, from an information-theoretic viewpoint, in order to quantify the perfor-
mance improvement and determine the appropriate rate of the cooperative link. In this respect,
[WT11a] concludes that the per-user information rate does not unboundedly improve as the co-
operation rate increases; after a cooperation rate threshold, receiver cooperation only provides
a power gain that marginally improves the per-user information rate.

Extension to K-user Interference Networks

Up to this point, the discussion on interference management techniques and their limitations
has been focused on the 2-user Gaussian IC. Therefore, the reader may wonder how inter-
system interferences can be dealt with in the general K-user Gaussian IC. This general case
is not well-understood from an information-theoretic viewpoint. For instance, the definition
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of strong interference in the K-user case is not clear [EK11]. Nevertheless, several interference
management techniques have been proposed for the general case, altogether with the extension
of some of the strategies studied for the 2-user case. Regarding the latter case, a Han-Kobayashi
scheme for the K-user Gaussian IC is proposed in [BPT10], where each transmitter is able to
decode the combined interference.

Among the interference management strategies designed for the general K-user Gaussian
IC, Interference Alignment (IA) is optimal in terms of DoF, that is, can achieve the pre-log
factor of the channel capacity (sum rate) at the high-SNR regime. IA consists of a linear
precoding strategy capable of aligning interfering signals in time, space, or frequency into a
low-dimensional subspace at the receiver side [Jaf11; ZYJ+16]. IA was initially proposed in
[CJ08] to study the DoF region of the K-user symmetric Gaussian IC. The strategy proposed
therein dedicates half of the signal space at the receiver to align interferences, whereas the other
half is dedicated to interference-free transmissions. This strategy is known to be optimal in
terms of the DoF region. It is interesting to remark that, in the K-user Gaussian IC, the use
of improper signaling5 [JASA20] can bring benefits in the rate region achievable by IA even if
coded time-sharing is allowed [CJW10]. Nevertheless, at moderate-SNR regimes, IA offers only
a suboptimal achievable sum rate. Despite these promising results, one of the main drawbacks
of IA is the necessity of tight synchronization to avoid additional interferences introduced by
timing, and frequency offsets [EAPH13]. Recently, [LE21] proposes a spatial IA strategy where
the approximate alignment of incoming interferences is achieved by tuning the inter-element
spacing of the receiving antenna array, assuming that the spacing can be arbitrarily large.

In some cases, finding closed-form solutions that satisfy the IA conditions can be challeng-
ing. Therefore, iterative interference management algorithms based on IA [FGSB17; WL19],
Minimum Mean-Square Error (MMSE) [RR16], and maximum SINR [AR17] have been studied.
Despite providing suboptimal solutions, these iterative schemes enjoy practical implementation
and flexibility in being used in arbitrary interference networks.

All the approaches discussed so far are based on exploiting the knowledge about interfer-
ences to mitigate or cancel them. Recently, another research perspective consists in using the
knowledge about interferences to improve the system performance. This technique is known
as constructive interference precoding (CIP) or symbol-level precoding (SLP) [ACO15; LSK+20;
LLLS21]. CIP/SLP aims to exploit the known interferences at the transmitting node such that
these interferences become constructive interferences to the intended information symbol.

Interference Management without CSI at Transmitters

With the exception of TIN, a common characteristic of the discussed interference management
strategies is the necessity of instantaneous CSI at transmitters. While CSI at receivers can be
obtained through pilot-assisted channel estimation strategies, a coordinated feedback link is
needed to provide CSI to transmitters. Assuming that transmitters know the instantaneous
channel conditions is impractical for many reasons. First, if the wireless channel experience
fast time variations, the CSI acquired at the receiver may be outdated when communicated to

5Improper Gaussian Signaling (IGS) permits improving the achievable rates in some TIN-based MIMO scenarios
[ZZGG13; LAV16]. Recently, it has been shown that IGS performs better than conventional proper Gaussian Signaling
in the K-user MIMO IC with hardware impairments [SSS20].
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the transmitter. Second, communicating CSI to transmitters through a coordinated feedback
link may burden the system latency. And third, in heterogeneous networks where different
technologies coexist, assuming that all transmitters are aware of the channel conditions may be
impractical, especially when the number of coexisting transmitter-receiver pairs K is large.

In this respect, several works explore the interference management problem without CSI at
transmitters. Most of these studies are focused on the high-SNR regime. Under this asymp-
totic condition, the DoF region has been characterized in MIMO networks [HJSV12; VV12],
wideband systems [JLT18], and 2-tier networks [MCVA19], to name a few. Recall that in the
high-SNR regime with full CSI at transmitters, IA is DoF optimal. Nevertheless, providing CSI
to transmitters is one of the main drawbacks of IA since it arises the necessity of large feedback
overheads [HLDL11; EALH12]. This drawback can be overcome through Blind Interference
Alignment (BIA) [Jaf12; JV20], where the knowledge of channel coherence intervals only at
transmitters is needed to align interferences in some cases. A naive interference management
strategy under no CSI at transmitters is TIN. Even though we have seen that it is sum-rate opti-
mal only under strictly weak interferences, [GNAJ15] advocates that in K-user fully-connected
fully-asymmetric Gaussian IC, the achievable rate region through TIN is, under some condi-
tions, within a constant gap of the entire capacity region. If the interference network is not
fully-connected, the relatively new framework known as Topological Interference Management
(TIM) [Jaf14; DAA19] permits exploiting the knowledge of the network topology at transmitters
without CSI. [MJ13] reveals that, in certain network topologies, orthogonal access is optimal.
The TIM framework also permits studying the impact of removing transmitter or receiver co-
operation when CSI is not available at transmitters. In this regard, [VEG18] unveils that, under
certain conditions, linear cooperation does not improve the per-user DoF.

A recent result on distributed interference management without CSI at transmitters dis-
cusses a new strategy, known as the broadcast approach [ZTS21], in the context of the ℓ-state
interference channel. This strategy, which consists of a layered rate allocation adapted to each
of the possible ℓ channel states, achieves an average rate region whose with respect to the Han-
Kobayashi rate region decreases as the number of channel states increases while avoiding the
necessity of CSI at transmitters.

Dealing with Interferences in Uncoordinated Networks

We have seen the difficulty of dealing with interferences, especially in moderate-interference
regimes and non-asymptotic SNR and INR. Most of the discussed strategies require that non-
intended receivers (partially) decode the aggregated interference, meaning that codebooks and
modulation schemes employed by interfering transmitters have to be known beforehand. When
this information is not available, the general directive of interference management schemes
consists in designing a transmission strategy that reduces the impact of interferences.

Recalling (2.11), the instantaneous power of the interference generated by the i-th transmitter
on the k-th receiver after matched-filtering is given by

Iik =
∣∣zikλH

k U
H
k Uiλi

∣∣2 r−αi
ik . (2.20)

When the channel coefficient gik = zik

√
r−αi
ik becomes less significant, the performance of

the k-th receiving node tends to be interference-limited. If this receiver cannot decode the
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interference, one possibility to reduce its impact consists in orthogonalizing the transmissions.
Regarding (2.20), the latter implies that all transmitting nodes agree on a common signal-space
basis, that is Uk = Ui, and perform an orthogonal DoF allocation, i.e., λH

k λi = 0. This strategy,
however, is not optimal in terms of rate and requires coordination and synchronization at
transmitters. Another possibility that does not require synchronization focuses on designing
signal-space bases as disjoint as possible. This approach does not require all nodes to share the
same signal-space basis but, in turn, it requires the projection UH

k Ui to be as small as possible.
The major drawback of this approach is that transmitter cooperation is still necessary.

In uncoordinated networks, transmitters and receivers do not cooperate and, typically, only
the coordination between the nodes of the same transmitter-receiver pair is considered. Under
these conditions, interference will limit the network performance since it cannot be, a priori,
mitigated. In order to coexist in the same wireless network, it is possible to tune the transmission
scheme to control the provided interference. In this sense, the k-th transmitter can decide to use
more DoF –or signal-space dimensions– to spread the transmitted power and induce a persistent
low interference per complex dimension. On the contrary, this transmitter may select one DoF
and change its selection according to a pre-defined pseudo-random hopping pattern (previously
agreed with its intended receiver) to provide a sporadic strong interference.

In general, it is not possible to know a priori which of these two uncoordinated approaches
is preferable. Nevertheless, under some conditions, it is possible to quantify the successful
transmissions that each of these two schemes admits in a finite geographical area. For this
purpose, in the sequel, we introduce a metric known as transmission capacity. This metric is
derived from the outage probability. Unlike the rate region which focuses on the attainable
information rate, transmission capacity focuses on the QoS requirements that can be guaranteed.
Moreover, transmission capacity permits measuring the communication density in a finite
geographical area since it accounts for the physical dimensions of the wireless network.

2.2.3 Transmission Capacity and Spatial Communication Density

An important result in the context of the K-user Gaussian IC is that, in the high-SNR regime,
each transmitter-receiver pair can exploit half of its signal space without interference. This
asymptotic performance is achieved through IA. This interference management scheme requires
that all transmitting nodes cooperate to appropriately design the precoders that permit aligning
interferences. If these conditions hold, note that the achievable per-user DoF are independent
of the total number of transmitter-receiver pairs K.

In uncoordinated networks, where transmitters do not cooperate and receivers treat inter-
ference as noise, we have previously seen that the per-user information rate decreases as the
number of coexisting transmitter-receiver pairs increases. In this context, instead of the infor-
mation rate, it seems more reasonable to study the number of admissible transmitter-receiver
pairs such that each of them can guarantee a certain QoS requirement.

With the purpose of measuring if the QoS requirement of the k-th transmitter-receiver pair
is guaranteed, we resort to the outage probability Pout. Assume that the k-th transmitting node
employs a channel code with encoding rate Rk [bits/complex dimension]. The outage proba-
bility is defined as the probability that the per-user channel capacity (per complex dimension)
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Figure 2.3: Example of an uncoordinated heterogeneous network. The k-th transmitter-receiver
pair, represented by blue circles, is the one considered under study. For the sake of clarity, only
the interferences (dashed lines) leaked on the k-th receiving node are depicted.

is smaller than the employed encoding rate, that is,

Pout ≜ P {log2(1 + SINRk) < Rk} , (2.21)

where SINRk is the SINR at the k-th receiver. Note that (2.21) can be re-written as

Pout(βk) = P
{
SINRk < 2Rk − 1

}
= P {SINRk < βk} , (2.22)

being βk the QoS or SINR requirement of the k-th transmitter-receiver pair. Recalling (2.11),
SINRk depends on the number of interfering transmitters coexisting with the k-th transmitter-
receiver pair. Accordingly, if SINRk can be appropriately characterized, it is possible to deter-
mine the number of admissible transmissions such that (2.22) is satisfied.

Nevertheless, given the heterogeneity of communication nodes in uncoordinated networks,
in which different transmitter-receiver pairs can transmit at different rates and employ different
coded-modulation schemes, the analysis of the number of admissible transmissions is very
challenging. An alternative is studied in [WA12], where the stochastic geometry framework
[HAB+09] is exploited to analyze the spatial density of successful transmissions given an outage
constraint. This metric is known as transmission capacity.

In order to appropriately define the transmission capacity, and for the reader’s convenience,
we consider the uncoordinated heterogeneous network depicted in Figure 2.3. Without loss of
generality, the analysis is focused on the transmitter-receiver pair represented by blue circles.
A conventional assumption is that the locations of the interfering transmitters form a station-
ary two-dimensional Poisson point process P(λ), which is valid if the transmitting nodes are
independently and randomly distributed over the considered geographical area. Note that the
latter seems reasonable6 in uncoordinated networks. The Poisson point process is characterized
by the intensity λ, which measures the density of transmitters in the considered geographical
area. An example of a stationary Poisson point process is depicted in Figure 2.4.

6A generalized formulation can be found in [GAH11].
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Figure 2.4: Realization of a two-dimensional Poisson point process with intensity λ = 150
[nodes/units of area] within a circular geographic area of radius 1.

For the sake of simplicity, consider that the receiving node under study is located at the
center of the geographical area. Accordingly, the distance between the i-th transmitting node
(interferer) and the k-th receiving node (the one under study) rik is the modulus of the in-
terferer’s position Pi, that is, rik = |Pi|. Thus, recalling (2.20), the power of the aggregated
instantaneous interference received by the k-th receiving node is given by

Ik =
∑

Pi∈P(λ)

|zik|2
∣∣λH

k U
H
k Uiλi

∣∣2 r−αi
ik =

∑
Pi∈P(λ)

|zik|2Jikr−αi
ik , (2.23)

being Jik the power of the interference after matched-filtering without accounting for the
channel coefficient. Note that Ik in (2.23) is a random variable since it depends on the random
positions of the interferers, the nominal interference powers Jik, and the small-scale fading
coefficients. The Probability Density Function (PDF) and the Cumulative Distribution Function
(CDF) of Ik are denoted by fIk(x) and FIk(x), respectively.

Recalling the definition of the outage probability in (2.22) and assuming zik ∼ NC(0; 1), Pout
can be written as a function7 of the node density λ for a given βk, that is,

Pout(λ) = 1− P {SINRk > βk} = 1− P
{
|zkk|2 >

βk
Jkk

rαk
kk (Ik +N0)

}
(2.24)

= 1−
∫ +∞

0
e−βkr

αk
kk (x+N0)/JkkfIk(x)dx (2.25)

being Jkk =
∣∣λH

k U
H
k Ukλk

∣∣2. Using the expression of the outage probability as a function of the
node density λ we can now define the transmission capacity metric.

7A particular case of (2.25) is derived in [WAJ10].
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For a fixed outage probability constraint Pout(λ) = ε, the transmission capacity c(ε), as
coined in [WYAV05; WAJ10], is given by

c(ε) ≜ P−1
out(ε)(1− ε). (2.26)

Note that the first term P−1
out(ε) corresponds to the spatial density of transmissions (assuming

that all transmitters in the network are actively transmitting), whereas the second term (1− ε)

is the success probability. Accordingly, the transmission capacity measures the spatial density
of successful transmissions in the wireless network.

Unfortunately, the calculation of (2.26) requires knowing the PDF of Ik in (2.23), which
generally requires numerical methods. Despite that, the outage probability as a function of the
node density λ sometimes admits a closed-form expression. In these scenarios, it is assumed
that each interferer produces the same nominal interference, that is, Jik = I , and that all
interferers suffer the same pathloss conditions, that is αik = α. Even though these cases have
been thoroughly analyzed in the tutorials [WYAV05; WA12], we provide two of them as will be
used to discuss further insights on the transmission capacity c(ε).

One of the scenarios is the pathloss-only case, i.e. when the impact of small-scale fading
is not considered. This case is usually referred to as the baseline model. The transmission
capacity can only be written in a closed-form expression when α = 4. Under these conditions,
the transmission capacity c(ε) is given by

c(ε) =

√
2/π(1− ε)F−1

N ((1 + ε)/2)

πr2kk

√
sir

β
−

r4kk
inr

, (2.27)

where sir = Jk/I , inr = I/N0, and FN (·) is the CDF of a standard Gaussian random variable
N (0; 1). Another scenario of interest is the case of Rayleigh fading, where the outage probability
is explicitly a particular case of (2.25). In this case, the transmission capacity c(ε) for any possible
value of the pathloss exponent α is given by

c(ε) = (1− ε)
− log(1− ε)− β

sir·inrr
α
kk

πr2kk(β/sir)
2/α 2π

α

sin(2π/α). (2.28)

These two scenarios are compared in Figure 2.5 forα = 4, as it is the only case where the baseline
model admits a closed-form expression. Regarding the SINR threshold, the considered values
correspond to encoding rates of 1/2, 1, and 3/2 bits per complex dimension, respectively. As
expected, the transmission decreases when the encoding rate increases since a stringent SINR
is required for reliable communication. Another general conclusion that can be drawn from
Figure 2.5 is that fading decreases the transmission capacity in low-to-moderate outage prob-
abilities. If appropriately exploited, fading can provide diversity gain leading to an enhanced
SINR. Nevertheless, the mathematical rationale behind the transmission capacity formulation
assumes uncoordinated nodes that are simultaneously transmitting (similar to the ALOHA
mechanism); thus, diversity cannot be exploited under these considerations. Moreover, note
that the transmission capacity benefits from (partial) interference cancellation, yielding an in-
crease in the nominal SIR and a decrease in the nominal INR.

As per, e.g., [HAW08; VH12], the transmission capacity performance of a wireless network
can be improved when multiple antennas are used through beamforming and interference
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Figure 2.5: Transmission capacity c(ε) as a function of the outage probability ε for α = 4, rkk = 1,
different SINR requirements β and different (sir, inr) pairs. Red and blue lines stand for the
fading and the pathloss-only model, respectively, with (sir, inr) = (5, 25) dB. Orange and green
lines stand for the fading and the pathloss-only model, respectively, with (sir, inr) = (15, 15) dB.

cancellation. In the context of spectrum sharing, the analysis of the transmission capacity
reveals that opportunistic communication (i.e., the interweave8 paradigm of spectrum sharing)
is generally preferred in front of the underlay paradigm, in which all systems use concurrently
the same bandwidth subject to interference constraints [LAH11; LAH13].

Interestingly, the transmission capacity framework permits comparing two opposite unco-
ordinated transmission mechanisms: hopping and spreading. These two schemes have been used
in several practical scenarios to control interferences without transmitter cooperation.

The hopping mechanism is a transmission scheme that selects in a pseudo-random manner
the employed network resource, which permits exploiting diversity. An inherent advantage
of hopping strategies is their low probability of interception, which is of paramount impor-
tance in terms of secrecy. In terms of interference management, hopping schemes exhibit also
a low probability of interfering. It is worth noting that, at each channel use, the transmitter
changes the selected resource according to a pseudo-random pattern previously agreed with
its intended receiver. As the number of resource slots M increases, the probability that two
uncoordinated transmitters employ the same signal-space dimension decreases. If two trans-
mitters occupy the same dimension, a sporadic strong interference that lasts one channel use is
produced. Nevertheless, these events occur with low probability as M is sufficiently large, even
in large wireless networks. A representative hopping technique is Frequency-Hopping Spread
Spectrum (FHSS), which is used in short-range communication systems such as Bluetooth.

On the other hand, the spreading mechanism permits each user to exploit all the M resource
slots allocating to each slot approximately a fraction 1/M of the total transmitted power. Un-

8In [LAH11], the underlay and interweave paradigms are compared in terms of transmission capacity. Nev-
ertheless, the interweave paradigm is referred to as the overlay paradigm therein. As per [GJMS09], interweave
and overlay paradigms are different but sometimes considered as one paradigm in the literature. In this case, the
definition of the overlay paradigm provided in [LAH11] corresponds to the case of opportunistic communications.
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der these conditions, all coexisting nodes simultaneously exploit the same network resources,
meaning that each uncoordinated transmitter produces a persistent weak interference per re-
source slot. As the hopping mechanism, spreading strategies also exhibit a low probability of
interception since the transmitted signal is transmitted within all signal-space dimensions with
a power per dimension typically smaller than the noise floor. A classical spreading technique is
Direct-Sequence Spread Spectrum (DSSS), where transmitting nodes employ pseudo-random
sequences agreed beforehand with the intended receiver to produce noise-like signals.

The comparison of FHSS and DSSS in terms of transmission capacity has been studied in
[WYAV05] and surveyed in the sequel in order to get further insights.

Let us consider that the total normalized bandwidth has been divided into M sub-channels
of bandwidth 1/M each. Accordingly, being N0 the noise power spectral density, the noise
power per sub-channel is N0/M . Thus, it is straightforward to see that the noise level seen by
the receiving node operating under the DSSS scheme is M times larger than the noise level
for the FHSS case. The fundamental difference between FHSS and DSSS is in the strategy
to mitigate interferences. Since only one resource slot per channel use is used in FHSS, the
receiving node only sees interference from the transmitters exploiting the same resource slot
at the same time. Recall that the location of transmitting nodes in an uncoordinated network
can be modeled through a two-dimensional Poisson point process of density λ. Employing
FHSS, the set of possible transmitters is reduced. In fact, if the resource selection is assumed
to be equally likely, the interferers’ locations under FHSS can be modeled as a Poisson point
process with density λ/M . In the DSSS case, the spreading factor M reduces the interference per
resource slot, which permits reducing the QoS requirement β by a factor of M , meaning that
the minimum required QoS parameter is M times smaller in DSSS than in FHSS.

As per [WYAV05], taking into account the discussion above, the transmission capacity c(ε)

exhibited by FHSS and DSSS can be respectively upper-bounded by

cFH(ε) ≤ (1− ε)
M

π
ε

(
r−α
kk

β
sir− 1

inr

)2/α

+O
(
ε2
)

(2.29)

cDS(ε) ≤ (1− ε)
M2/α

π
ε

(
r−α
kk

β
sir− 1

inr

)2/α

+O
(
ε2
)

(2.30)

where, in both cases, O(ε2) is a second-order term that vanishes as ε → 0. Taking the quotient
of (2.29) and (2.30), that is,

cFH(ε)

cDS(ε)
= M1− 2

α , (2.31)

we note that, for any value of M , the transmission capacity performance exhibited by FHSS is
superior to that exhibited by DSSS if α > 2. In Figure 2.6, we depict the upper bounds on the
transmission capacity of FHSS and DHSS techniques as a function of the pathloss exponent α
for different spreading factors M . As already predicted, spreading techniques perform better
than hopping when the pathloss exponent α is smaller than 2. Conversely, hopping strategies
are preferred in terms of transmission capacity.

The transmission capacity metric reviewed thus far measures the spatial density of successful
transmissions in a specific geographical area. The basic communication scheme considered
throughout the discussion does not include the use of more sophisticated strategies, such
as interference cancellation [HAW08; VH12], scheduling [WAJ07], or power control [WA12].
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Figure 2.6: Upper bound on the transmission capacity c(ε) for FHSS and DSSS as a function of the
pathloss exponent α with sir = 5 dB, inr = 5 dB, β = 0 dB, rkk = 1, M = {8, 64}, and ε = 10−1.

These techniques permit improving the density of coexisting communication nodes, yet require
additional feedback overhead to fully exploit their potential.

2.3 The Limits of Network Cooperation

The interference management schemes reviewed so far require that the network nodes exchange
some sort of information to achieve their optimal operating regime. In this sense, even though it
is possible to design interference management strategies without CSI at transmitters, coopera-
tion between them is still needed to fully exploit their capabilities. Furthermore, a transmitting
node has to interact with its intended receiver to establish a coherent communication link. From
a mathematical perspective, the latter means that transmitters and receivers need to share the
signal space and the same signal-space basis. Therefore, cooperation and coordination play a
fundamental role in alleviating the interference between coexisting nodes [VEG18].

Coordination and cooperation generally require the existence of feedback links or exchang-
ing information beforehand between transmitters or receivers. In any case, achieving cooper-
ation and coordination consumes some DoF that cannot be used for information transmission.
Focusing on feedback, the required overheads to send CSI or other helpful information may
drastically affect the overall system performance. For this reason, some works deal with the
design of low-rate feedback schemes [LHNL+08], or smart feedback allocation [PLH18]. Even
though partial CSI can improve the system performance, in some cases, e.g., in multi-antenna
settings, a trade-off exists between system performance and feedback [CE13]. In the search for
low-rate feedback schemes, a technique called random beamforming takes advantage of the
inherent sparsity of millimeter-wave channels to schedule the transmissions [LSK16; LSS16];
however, its performance degrades when the number of coexisting nodes is low.

It is well known that cooperation can substantially improve system performance since the
interference produced by cooperating nodes can be totally suppressed. The latter is especially
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Figure 2.7: Illustration of the spectral efficiency under Statement 1 (2.32) and Statement 2 (2.33)
versus the transmitted powerP in logarithmic scale. These plots have been adapted from [LHA13].

significant in decentralized communication scenarios, such as device-to-device (D2D) networks
[WHC19]. Fully canceling interferences usually involves complex signal processing schemes.
Thus, when the interference is not a limiting factor (weak-interference regime) is reasonable to
use more simple strategies such as TIN. Nevertheless, as discussed in Section 2.2, TIN is only
sum-rate optimal when the interference is very weak and, therefore, the system performance
still benefits from cooperation under weak interferences [ZD17].

Despite the important role that network cooperation plays in the interference management
framework, the system performance does not unboundedly improve through cooperation. This
statement has been pointed out in Section 2.2, where it is mentioned that receiver cooperation
only improves the per-user rate up to a known limit [WT11a]. The same conclusion has been
found in [WT11b] for the case of transmitter cooperation.

A thorough analysis of the limits of cooperation is carried out in [LHA13]. Therein, two
models for the observation at an arbitrary receiver are proposed. On the one hand, if all network
nodes can cooperate, the observation at the n-th receiving node is modeled as

Statement 1: Yn =

K∑
k=1

√
PHnkXk + Zn, (2.32)

where P is the transmitted power, Hnk stands for the channel coefficient between the k-th
transmitter and the n-th receiver, Xk refers to the signal sent by the k-th transmitter, and Zn

models the observation noise. If all network nodes cooperate, the interferences can be canceled
out, and all the incoming signals can be perfectly decoded. According to this model, it seems
that the spectral efficiency should arbitrarily grow with the transmitted power. However, as
the number of network nodes increases, the model in (2.32) becomes unrealistic. Hence, it
seems more reasonable to consider that only some of the coexisting nodes cooperate. This case
requires including an interference term in the received signal model, which can be modeled as

Statement 2: Yn =

K∑
k=1

√
PHnkXk +

K̃∑
k=K+1

√
PHnkXk + Zn, (2.33)
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being K out of K̃ the number of cooperating transmitters. The K̃−K remaining network nodes
do not cooperate; thus, they will induce interferences that cannot be counteracted. Under these
conditions, increasing the transmitted power P does not unboundedly increase the spectral
efficiency, as illustrated in Figure 2.7. [LHA13] states that even if the number of cooperating
transmitters is arbitrarily increased, the spectral efficiency is always bounded due to the selective
nature of the wireless channels and the dynamics of wireless networks. Therefore, [LHA13]
concludes that an interference-limited network does not become a noise-limited one through
cooperation, thus invalidating (2.32) in large wireless networks.

Under certain conditions, it may be acceptable to assume that the communication nodes
within the same wireless system can cooperate and share the acquired CSI. Nevertheless, inter-
system cooperation between independent systems seems unrealistic and prohibitive in large
wireless networks. The fundamental question arising at this point is how to manage inter-
system interference if the coexisting systems do not cooperate and are not coordinated. This
problem is addressed by the opportunistic communication framework, which is reviewed next.

2.4 Opportunistic Communications

The last section of this chapter describes the concept of opportunistic communications and reviews
the most relevant state-of-the-art techniques.

In a broad sense, the concept of opportunistic communications refers to a family of transmis-
sion and reception techniques that exploit favorable channel or network conditions to transmit
and/or decode the signals of interest. Accordingly, opportunistic communications can ideally
avoid inter-system interferences even when the coexisting network nodes do not cooperate,
which permits drastically reducing the required signaling overhead to manage interferences.

Several examples of opportunistic communications can be found in the literature. For in-
stance, [VTL02] describes a multiuser scheduling technique, known as opportunistic beamform-
ing, which permits reducing the required feedback in point-to-point ergodic fading channels9.
In these scenarios, the transmitter cannot take advantage of the channel variations, yielding a
negligible multiuser diversity gain [Tse97]. The opportunistic beamforming strategy proposed
in [VTL02] uses dumb antennas to induce fluctuations in the channel response, creating artificial
channel variations. Then, all receiving nodes feed back a channel quality indicator (e.g., the
measured SINR), and only the node exhibiting the best channel is scheduled. Despite the sim-
plicity of this technique, [SYGM21] corroborates that opportunistic beamforming outperforms
space-time coding in terms of sum rate when the channel response exhibits a slow variation.
The major drawback of opportunistic beamforming is that the attainable performance degrades
when the number of potential receiving nodes is low. However, this drawback can be coun-
teracted by exploiting multiple antennas at each receiving node [SYGM21]. More recently,
opportunistic beamforming has been studied in the novel framework of intelligent reflecting
surfaces [NCD21].

It is worth noting that opportunistic beamforming is an opportunistic transmission strategy.
On the other side, several works have investigated the potential of placing the opportunistic

9The ergodic fading channel is the situation where the time scale of communication is much larger than that of
the channel fluctuations [TV05].
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strategy at the receiver and studying the benefits of dynamically varying the decoding capa-
bilities according to the network state. In this sense, the objective is to achieve a higher data
rate when the channel conditions are favorable; otherwise, the data rate is decreased to guaran-
tee the reliable communication. As an example, [KPV09] proposes an opportunistic decoding
scheme for the 2-user Gaussian IC problem under bursty interferences. Therein, the message
sent by each transmitter is divided into two sub-messages. One of them is always decoded by
the intended receiver, whereas the other sub-message is only decoded when there is no interfer-
ence. This strategy has been also studied in the context of multi-antenna systems [DWSGLA10],
multicarrier systems [MWD13], and the K-user IC [NKBJ18]. Another interesting opportunis-
tic decoding strategy is discussed in [YS20] for an interference network with states. Therein, a
decoding strategy, denoted as opportunistic TIN, based on SIC and opportunistically treating
interference as noise, is shown to be optimal under certain conditions.

The techniques surveyed thus far exploit the channel state to opportunistically transmit or
decode the signals of interest. Nevertheless, opportunistic communications can take advantage
not only of the channel state but also of the network state. In this sense, another classic example
of opportunistic communications is found in the context of cognitive communications under
the so-called interweave paradigm. It is worth mentioning that opportunistic communications
were the initial motivation of cognitive radio [MM99; Hay05]. Cognitive radios are wireless
communication devices that smartly exploit any sort of available side information, such as
the network activity, CSI, and the codebooks or messages employed by the coexisting nodes
[GJMS09]. As initially coined, a cognitive radio is able to monitor the spectral holes, i.e., those
portions of the spectrum that are not being used at a specific time and in a specific geographical
area, and exploit these spectral holes for opportunistic communication.

Besides the interweave approach, two more paradigms exist in the context of cognitive radio:
the underlay and the overlay paradigms. In the underlay case, the cognitive transmitter is aware
of the interference caused to the non-cognitive receivers. Accordingly, this paradigm permits
the coexistence of different wireless systems using the same frequency resources if the induced
interferences are below a known threshold such that the performance of the non-cognitive
systems is not significantly degraded. Typically, the objective of underlay cognitive nodes is
to maximize the achievable information rate subject to an interference temperature constraint
(see, e.g., [AAH16; AAH17]). In contrast to the underlay paradigm, the power transmitted by
the cognitive transmitter is not limited by an interference constraint in the overlay paradigm.
However, the cognitive transmitter has to allocate a fraction of its transmitted power to assist the
non-cognitive transmission as a relay, while the remaining power is allocated to the cognitive
message (see, for instance, [DGV16; DGV17]). For this purpose, the cognitive transmitter needs
to know the messages and codebooks employed by the non-cognitive systems and the channel
gains. The power allocation at the cognitive transmitter must satisfy a specific QoS requirement
at non-cognitive receivers.

More interestingly, the interweave communication paradigm can be generalized not only
to exploit the unused spectral holes but to exploit the set of unused physical-layer network
resources, signal-space dimensions, or DoF; this set is formally known as null space. In this
sense, recalling the generic communication model described in Section 2.2.1, an opportunistic
transmitting node can exploit only a column subset of the signal-space basisU ∈ CN×N . Letting
M < N be the number of available DoF, that is, the dimension of the null space, an opportunistic
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transmitter can exploit the so-called null-space basis denoted asUN ∈ CN×M without inducing
inter-system interference on the other network nodes. Taking into account thatUN is a column
subset of a unitary signal-space basisU , the null-space basis is left-unitary, that is,UH

NUN = IM .
Moreover, note that the external product UNU

H
N = PN equals the orthogonal projector onto

the null space.
This last property is of paramount importance as the orthogonal projector is a unique

representation of the null space. In this respect, let UN ,k ∈ CN×M and UN ,k′ ∈ CN×M be
two left-unitary matrices satisfying UH

N ,kUN ,k′ 6= IM . Whenever these two matrices span the
same subspace, that is, 〈UN ,k〉 = 〈UN ,k′〉, the orthogonal projector is unique regardless of the
considered null-space basis, that is, UN ,kU

H
N ,k = UN ,k′U

H
N ,k′ = PN . The non-uniqueness of

the null-space basis is not an important issue for the time being, as it is usually considered
that the opportunistic transmitter and its intended opportunistic receiver share the same null-
space basis. Notwithstanding, as discussed further in Section 2.4.3, this issue is a fundamental
assumption of this dissertation.

The family of opportunistic communication strategies exploiting the null space is typically
referred to as null-space opportunistic communications. Before getting down to the literature re-
view, it is interesting to emphasize that null-space communication strategies have been also
used in the context of Integrated Sensing and Communications (ISAC) [MKAC17] to permit
the coexistence of communication and radar waveforms, and in URLLC [EP18] to ideally avoid
the overlapping between broadband communication systems and latency-constrained trans-
missions. Beyond the systems’ coexistence scenarios, null-space strategies have also been used
in RSMA [KS22] to reduce the amount of interference treated as noise and ease the SIC stage,
and in the context of secure communications in the millimeter-wave band in the presence of
colluding eavesdroppers [DF20].

In the literature, different null-space opportunistic communication schemes can be found in
the context of single and multiple antennas, and under narrowband and wideband transmis-
sions. In Section 2.4.1, the most relevant null-space opportunistic communication strategies are
surveyed in a unified manner. As we will see, the identification of the null space is a critical
task that has been widely studied in the literature. The null-space identification or sensing
errors lead to the so-called subspace leakage problem, which is the primary source of undesired
induced inter-system interferences on the other coexisting network nodes. Accordingly, Section
2.4.2 briefly studies the impact of the subspace leakage problem on the systems’ coexistence,
which, together with the necessity of opportunistic-node coordination, is a fundamental limi-
tation of state-of-the-art null-space opportunistic communication strategies and the motivation
behind this dissertation.

2.4.1 Null Space-based Opportunistic Communications

As already discussed, interweave cognitive radio is a classic example of null-space opportunistic
communications. In this context, opportunistic nodes need to infer the spectral holes through
a spectrum sensing mechanism (see, for instance, [ALLP12; JLR12; RFSVV14; FSVR14; RVC15;
SAVVLV+16; AH17; TJGL18] and references therein). Then, in order to exploit the null space,
opportunistic nodes devise a resource allocation strategy or tune the transmission parameters
of multi-carrier modulations. Regarding resource allocation schemes, a complete survey can
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Figure 2.8: General system model for the null-space opportunistic communication problem.

be found in [TDAB16]. The use of multi-carrier modulations for opportunistic communications
is proposed in several works. For instance, Orthogonal Frequency-Division Multiple-Access
(OFDMA)-based opportunistic communications are studied in [XNHC14], where a game-
theoretic scheme is proposed to optimize the spectrum pool. Multi-Carrier Code-Division
Multiple-Access (MC-CDMA) is proposed as an opportunistic communication modulation,
where the null space is exploited to shape the transmitted signal to minimize inter-system
interferences. Similar to MC-CDMA, Transformed-Domain Communication System (TDCS)
[CNS+05; HBGL13; JHH+17] consists in designing a fundamental waveform based on the In-
verse Discrete Fourier Transform (IDFT) of a pseudo-random phase sequence modulated by a
spectral mask, which is obtained from applying hard thresholding on the estimated spectrum
of the wireless environment.

In the general sense, the null space-based opportunistic communications problem can be
studied through the general system model depicted in Figure 2.8. It is worth noting that
this model encompasses both single- and multi-antenna scenarios under both narrowband
and wideband transmissions. Therefore, this general system model can be used to study in
a unified manner the problem of null space-based opportunistic communications. Regarding
Figure 2.8, inner nodes refer to the opportunistic nodes, that is, those network nodes exploiting
the null space, whereas the other coexisting network nodes are denoted as outer nodes. This
notation is used throughout this dissertation. Moreover, note that the complex matrices H(q)

IO ,
for q = 1, . . . , Q, are the cross-interference channel matrices between the inner transmitting
node and each of the Q outer receiving nodes, whereas HII is the direct-link opportunistic
channel matrix. The sizes of these matrices depend on the particular problem setup and are
thus not indicated in this introductory discussion.

It is worth noticing that the cross-interference channels from the outer transmitting nodes,
which are not depicted for clarity of illustration, and the inner receiver are not considered in
Figure 2.8. The reason why these interference links are omitted is that the primary objective of
null-space opportunistic communications is to mitigate (ideally, avoid) the interference induced
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by the inner transmitter. On the other hand, the interference that outer transmitters can induce
on the inner receiver is not typically managed and, sometimes, is assumed to be negligible.

Despite the generality of the model depicted in Figure 2.8, the simplified system model
illustrated in Figure 2.9 will be considered in the subsequent technical discussion for ease of
exposition. Note that this simplified model admits two interpretations. On the one hand, it
corresponds to the particular case where the outer network is composed of only one receiving
node (Q = 1). From an information-theoretic perspective, this case would correspond to
the 2-user cognitive interference channel, as described in [CKCD13]. More interestingly, the
simplified model depicted in Figure 2.9 can be also interpreted as the stacking of the general
system model given in Figure 2.8, that is, the cross-interference channel matrix HIO is the
stacking of the Q interference channel matricesH(q)

IO from Figure 2.8.
Focusing on Figure 2.9, the primary goal of the inner transmitter is to design a transmission

scheme to avoid inducing interference on the outer receiver. Letting Φ andWout be the precod-
ing matrix to be designed by the inner transmitter and the combining matrix employed by the
outer receiver, respectively, the problem at hand can be mathematically written as

WH
outHOIΦ = 0. (2.34)

This interference-free condition can be satisfied when the inner precoding matrix Φ lies in
the null space of the cross-interference channel matrix HOI, which is the operating principle
of null-space precoding. In the context of multiple antennas, null-space precoding has been
widely studied. For instance, [ZL08] proposes projecting the inner channel onto the null space
of HOI. Other works, such as [ZWO09; ZDG12; WRF+13; AAH16; AAH17], propose different
beamforming design strategies under possibly partial CSI on the cross-interference channel
matrix. In the case of single-antenna opportunistic nodes, [CKCD13] proposes an IA-like
scheme denoted as Vandermonde-Subspace Frequency-Division Multiplexing (VFDM), which
exploits the null space induced by the channel memory when the outer-network nodes employ
a block transmission with guard intervals10. An extension of VFDM in the context of multi-

10Even though VFDM has been conventionally studied assuming that outer-network nodes employ Orthogonal
Frequency-Division Multiplexing (OFDM), VFDM is still valid when other block-transmission schemes with time re-
dundancy, such as Single-Carrier Frequency-Division Multiple-Access (SC-FDMA), Generalized Frequency-Division
Multiplexing (GFDM) [MMG+14], or Filter-Bank Multicarrier (FBMC) [ZLR12]
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user opportunistic communications, known as cognitive interference alignment, is studied in
[MDV13; MCDV13; YLL+16]. VFDM has also been studied in the context of multiple antennas
to permit the joint exploitation of the spatial-domain and frequency-domain DoF [LLM14a;
LLM14b; LFP+20]. As a last remark on VFDM, [FPM+20] discusses a variant of VFDM based on
the IDFT operation to limit the signal bandwidth, without limiting the interference mitigation
capabilities of the basic VFDM scheme, and enforce the coexistence of Long Term Evolution
(LTE) and New Radio (NR) transmissions.

Regarding (2.34), a more sophisticated strategy consists in designing the inner precoding
matrix Φ to lie in the null space of the matrix H̃OI = WH

outHOI. The latter is the operating
principle of the so-called Opportunistic Interference Alignment (OIA). This technique, which
was first in the context of multi-antenna opportunistic communications, is studied in [PFLD10]
under the assumption that both inner nodes have perfect CSI of the cross-interference channel
matrix and the direct channel matrices of both the inner and the outer channels. These cum-
bersome constraints are relaxed in [YHR+09; Yi10; TB13], where the null space of the matrix
H̃OI is inferred through a Model Order Selection (MOS) on a sample estimate autocorrelation
matrix of the observations acquired from the cross-interference channels. Nevertheless, the CSI
of the direct-link opportunistic channel matrix is still needed. Even though the inter-system
interference induced on the inner receiver is not nulled out in the initial approach, [Yi10; TB13]
describe a strategy to mitigate the interference leaked by outer-network transmitters under
the assumption that inner nodes can cooperate to agree on a reference system for the signal
space, that is, they agree on a common basis. The principle of OIA has been extended to the
multi-user opportunistic communication case in [AEKN10], and to space-time opportunistic
communications in [ASNS16]. As a final note on OIA, the interference draining technique
proposed in [PBS+14] relaxes the interference-free condition in (2.34) and guarantees that the
induced interference on the outer receiver does not worsen the demanded QoS.

It is interesting to note that null-space precoding schemes can be seen as a particular case of
OIA; nevertheless, the OIA approach tends to exploit a larger null space [PFLD10].

In general, a common assumption considered in both families of null-space opportunistic
communication strategies is that the null space can be perfectly identified. Under this consider-
ation, and recalling that the direct-link opportunistic channel is also assumed to be known at
both inner nodes, the design objective consists in designing a precoding matrix Φ̃ = ΦΓT and
an inner combining matrix ΓR such that

max
{ΓT,ΓR}

log2

(
det
[
IN + S−1/2

z ΓRHIIΦΓTSaΓ
H
T ΦHHH

II Γ
H
R S

−H/2
z

])
(2.35)

subject to tr
(
Φ̃HΦ̃Sa

)
≤ P (2.36)

where Sz is the noise-plus-interference covariance matrix, Sa stands for the transmit symbols
covariance matrix, and Φ is a precoding matrix satisfying the interference-free condition in
(2.34). This problem is usually simplified by assuming that the inner receiving node knows in
advance the interference-mitigation precoding matrix Φ. Under this assumption, the problem
reduces to a subspace-constrained rate maximization, where the equivalent direct-link oppor-
tunistic channel matrix is H̃II =HIIΦ, leading to the well-known water-filling power allocation
policy. In the particular case of VFDM, since the combining matrix is a normalized Fourier
matrix, i.e., ΓR = FN , the problem formulated in (2.36) reduces to the design of the codebook
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matrix, that is, the covariance matrix of the transmitted symbols, to maximize the information
rate over an equivalent direct-link opportunistic channel given by H̃II = ΓRHIIΦΓT. In those
cases where the inner receiver mitigates the inter-system interference leaked by outer-network
transmitters, the problem described in (2.36) can be adapted by replacing ΓR by ΨΓR, where the
interference-mitigation combining matrix Ψ satisfies the interference-free condition in (2.34).

The discussion above is based on the assumption of perfect knowledge of the null space,
which is typically considered in the context of null-space opportunistic communications. Nev-
ertheless, there are some exceptions. For instance, [Yi10] and [WRF+13] consider the existence
of null-space inference errors. In [Yi10], the problem is formulated assuming an imperfect
knowledge of the null space, yet these errors are not taken into account in the design problem.
Instead, the impact of null-space inference errors is analyzed when the design of opportunistic
precoding and combining matrices is based on a null-space estimate. In contrast, [WRF+13]
uses the expected impact of the cross-interference channel matrix estimation errors to limit
the amount of interference that can be induced on the outer receivers, adding an additional
constraint to the problem formulated in (2.36). Finally, [AAH16; AAH17] assume partial CSI of
the cross-interference channel and design a precoding strategy that maximizes the mismatch
between the opportunistic transmitted signal and the partially known covariance matrix of the
cross-interference channel.

It is worth noting that, in order to satisfy the design criterion given in (2.36), cooperation
between inner nodes is needed; this assumption is not unrealistic and typically considered
in general communication problems. Nevertheless, finding an interference-mitigation oppor-
tunistic precoding matrix Φ that satisfies the interference-free condition in (2.34) requires the
inner transmitting node to be aware of the cross-interference channel matrix HOI and/or the
outer combining matrix Wout. This side information can be conveyed through feedback from
the outer receiver to the inner transmitter. In this case, it is possible to perfectly mitigate the
undesired inter-system interferences. Under the assumption of channel reciprocity [VT03], a
more realistic possibility consists in estimating the matrix H̃OI; however, this approach also
requires the inner transmitter to be aware of the coded-modulation format employed by the
outer-network terminals.

If channel reciprocity holds, there exists another approach to infer the null space of the
matrix H̃OI without side information about the outer networks, hence avoiding the necessity
of cooperation between the outer receiver and the inner transmitter, and the knowledge of
side information on the coded-modulation formats employed by the outer-network terminals.
The inner transmitter can collect a set of observations from the cross-interference channel
and estimate the autocorrelation matrix. Note that the acquired observations will depend
on the outer combining matrix Wout and the cross-interference channel matrix HOI, thus the
same null space exploited by OIA can be inferred from the measured autocorrelation matrix.
This approach is the operating principle behind the so-called blind sensing techniques (see,
for instance, [AAT19]). Once a sample estimate of the observations’ autocorrelation matrix is
obtained, these techniques detect the available DoF through its eigendecomposition. Examples of
relevant blind detectors include, for instance, the maximum-to-minimum eigenvalue ratio test
[BDGH18] or model order selection [SS04] based sensing mechanisms [MGC15; FSRV15]. In
essence, these tests split the subspace into the so-called signal subspace, which encompasses the
occupied sensed DoF, and the null space, which contains the available sensed DoF.
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Recalling this last approach to infer the null space of the matrix H̃OI, the inner transmitter can
obtained a sensed null-space basis, denoted as ÛN . The interference-mitigation opportunistic
precoding matrix Φ is thus designed from the available null-space information encompassed
in ÛN . The classical null-space opportunistic communication schemes surveyed in this section
arbitrarily select K out of the M DoF spanned by the sensed null-space basis ÛN . Thus, in
general, the interference-mitigation opportunistic precoding matrix Φ = [ϕ0, . . . ,ϕK−1] can be
written as

ϕk = ÛNλk, for k = 0, . . . ,K − 1, (2.37)

with λk = [0Tm(k)−1 1 0
T
M−m(k)]

T . It is noteworthy that this blind null-space inference approach
can overestimate the null space. In other words, some of the DoF occupied by the outer-network
nodes can be erroneously detected as available. This effect is known as subspace leakage [SV15].
Thus, regarding (2.37), there exists the possibility that some of the wrongly available sensed
DoF are used for opportunistic transmission. If the latter occurs, the inner transmitter can
break the interference-free condition in (2.34), and harmfully interfere with the outer-network
communication. In the sequel, the impact of the inter-system interference induced by subspace
leakage under the classic null-space approach is studied, motivating the necessity of designing
robust opportunistic communication schemes.

2.4.2 The Impact of Uncertainty in Network State Information

For the sake of concreteness, the subsequent technical discussion will revolve around the null
space inferred from estimating the autocorrelation matrix of the observations acquired from
the cross-interference channel. Accordingly, from the eigendecomposition, let Û be the eigen-
vectors’ matrix of the sample estimate autocorrelation matrix. Using a subspace thresholding
criterion, such as model order selection, the eigenvectors’ matrix can be partitioned into

Û =
[
ÛS ÛN

]
, (2.38)

where ÛS ∈ CN×N−M spans the sensed occupied signal-space dimensions or DoF, and ÛN ∈
CN×M spans the considered available DoF, that is, the null space. As discussed above, the
partition in (2.38) suffers from the subspace leakage problem, and therefore the sensed null-
space basis ÛN can be written as

ÛN =
[
ŨN EN

]
, (2.39)

where ŨN ∈ CN×M−NE contains the correctly sensed available DoF, whereas EN ∈ CN×NE

models the sensing errors containing the critical NE occupied DoF wrongly sensed as available.
Recalling (2.37) and taking into account the null-space sensing error model given in (2.39),

each column of the interference-mitigation opportunistic precoding matrix ϕk is given by

ϕk = ÛNλk =
[
ŨN EN

]
λk, for k = 0, . . . ,K − 1, (2.40)

where λk = [0Tm(k)−1 1 0TM−m(k)]
T . In accordance with this model, note that the interference-

mitigation opportunistic precoding matrix Φ is composed of a subset of columns of the sensed
null-space basis ÛN .

37



In order to evaluate the impact of the imperfect network state information, or the subspace
leakage problem, we define the Signal-to-Interference Ratio (SIR) at the inner transmitter output
as the quotient between the opportunistic (non-interfering) signal power and the interference
level induced by the subspace leakage, that is,

SIR ≜ Opportunistic Non-Interfering Transmitted Power
Total Induced Inter-System Interference Level .

More formally, letting ST and IT be the average transmitted power and the average inter-system
interference power measured at the inner transmitter output, respectively, the SIR is given by

SIR =
ST − IT

IT
. (2.41)

Regarding (2.40), since each column of the interference-mitigation opportunistic precoding
matrix Φ corresponds to an eigenvector, the total average transmitted signal power is ST =∑

k ‖ϕk‖2/N = K/N . However, the calculation of the average induced inter-interference level
has some subtle details. To begin with, we must recall that the column selection can be arbitrary,
that is, without responding to any specific criterion. Hence, different choices lead to different
interferences. An appropriate manner to remove the column choice uncertainty is to average
the time-average inter-system interference level over different column choices. In this respect,
the time-average interference level induced by the k-th waveform is given by

ik =
1

N
‖ϕk‖21k, (2.42)

where 1k is the classical indicator function, defined as

1k =

1 if ϕk ∈ 〈EN 〉
0 otherwise

. (2.43)

Note that (2.43) takes one with probability NE/M . By taking the mathematical expectation of
(2.42), we will remove the uncertainty due to the arbitrary column selection criterion. Thus,

Ik =
1

N
E[ik] =

NE

MN
=

I

N
, (2.44)

leading to an average induced inter-system interference level of IT = K · I/N . Therefore, the
SIR as defined in (2.41) is given by

SIR =
K/N −K/N · I

K/N · I
=

1−NE/M

NE/M
. (2.45)

It is interesting to note that the quantity NE/M , which corresponds to the ratio between the
number of erroneously sensed DoF and the total number of available sensed DoF, measures the
inaccuracy of the employed subspace thresholding criterion.

We would like to emphasize that (2.45) corresponds to the average SIR, as the instantaneous
SIR offered by the classic null-space approach is unpredictable due to the arbitrary column
selection criterion. Among the different scenarios, a particular case of interest is the worst case.
For this purpose, let us consider that the inner transmitter exploitsK out ofM null-space DoF. In
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this respect, the worst case implies that NE ≤ K ≤ M , and that all the wrongly available sensed
DoFNE are selected. Under these critical conditions, it is straightforward to see that the average
inter-system interference power measured at the inner transmitter output is IT = NE/N , as the
NE wrongly available sensed DoF are used for opportunistic communication. Accordingly, the
worst-case SIR exhibited by classic null-space schemes is given by

SIRworst-case
T =

K/N −NE/N

NE/N
=

K/M −NE/M

NE/M
, for NE ≤ K ≤ M, (2.46)

where the dimension of the sensed null space M has been introduced in the second equality
for ease of interpretation. Regarding (2.46), we note that the SIR not only depends on the
inaccuracy of the employed subspace thresholding criterion NE/M but also depends on the
fraction of exploited null-space DoFK/M . As expected, under the worst-case condition, the SIR
exhibited by classic null-space schemes only approaches their average performance when the
null space is saturated, that is, when all M DoF sensed as available are used for opportunistic
communication. The average and worst-case SIR performance exhibited by classic null-space
schemes are illustrated in Figures 2.10 and 2.11. We can observe that, on average, the fraction
of the non-interfering opportunistic signal power is only slightly higher than the induced
interference level due to network state information uncertainties. Regarding the worst case,
the classic null-space approach exhibits poor performance if only a fraction of the null space is
exploited for opportunistic communication.

It is worth noting that saturating the null space can be optimal in terms of information
rate; nevertheless, this approach can be devastating for the outer-network nodes as these levels
of interference per DoF can induce outage on the outer receiving nodes and severely corrupt
outer-network communication. Furthermore, saturating the null space can be devastating in
multi-user opportunistic communications, as other potential inner nodes may not be able to
exploit the null space. The latter motivates the necessity of strategies robust to the subspace
leakage problem.

A straightforward approach to counteract the subspace leakage problem, and hence the
induced inter-system interferences, is to let all network nodes cooperate. Under the full coop-
eration assumption, interference may not be a limiting factor and the optimal communication
strategy is then the maximization of the information rate. Nevertheless, as discussed in Sec-
tion 2.3, an interference-limited scenario cannot turn into a noise-limited one even under full
cooperation. In the case of limited or partial cooperation, opportunistic nodes can know a
QoS requirement of the outer-network nodes, such as the maximum interference level sup-
ported by the outer-network terminals, and then maximize the opportunistic information rate
constraining the induced interference level.

The aforementioned approaches require cooperation between outer and inner network
nodes, which is not always feasible. A more realistic approach is to let the opportunistic
nodes cooperate only between them. In this case, the inner transmitting and receiving nodes
can reduce the subspace leakage problem by agreeing on a common null space. If the null-space
inference is locally done at each opportunistic node, the sensing uncertainties may be indepen-
dent, meaning that the errors made by the transmitter may be different from the sensing errors
made by the receiver. Therefore, agreeing on a common null space can reduce the number of
occupied DoF erroneously sensed as available NE . This approach is the operating principle of
the so-called cooperative sensing schemes (see, for instance, [CKB16; PRJV18; TJGL18]).
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Figure 2.10: SIRworst-case
T (2.46) and average SIRT (2.45)as a function of the sensing inaccuracy
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Nevertheless, dealing with the subspace leakage problem in non-cooperative opportunis-
tic communication scenarios is more cumbersome. Under these conditions, the interference-
mitigation precoder design can be only based on the locally sensed null space; thus, making
the abovementioned approaches useless. This scenario, which is the one considered in this
dissertation, is referred to as feedforward opportunistic communications and briefly discussed next.

2.4.3 Feedforward Opportunistic Communications

The abovementioned strategies to deal with the subspace leakage problem require cooperation
between the coexisting network nodes. Notwithstanding, assuming that inner and outer nodes
can cooperate may be too optimistic regardless of the fundamental limits of full cooperation
reviewed in Section 2.3. Furthermore, there are some scenarios where inner nodes do not
cooperate between them either. These scenarios are referred to as feedforward opportunistic
communications throughout this dissertation. An example of these scenarios is during the
opportunistic communication setup, also known as, access channels.

Under these cumbersome conditions, two major issues have to be addressed. On the one
hand, since the inner transmitter does not cooperate with the other network nodes, including the
intended inner receiver, the design of the interference-mitigation precoding matrix relies only
on locally sensed network state information. Therefore, without any a priori side information
or interaction with the coexisting nodes, the subspace leakage problem can induce severe inter-
system interferences, as discussed in Section 2.4.2. In this case, the opportunistic precoding
design scheme cannot be based on the information rate maximization, as the inter-system
interferences leaked on the outer receivers can corrupt the outer-network communication. In
terms of transmission capacity (see Section 2.2.3), a hybrid spreading-hopping technique that
can be adapted to different channel conditions would be preferable. Nevertheless, the latter
requires CSI to adapt the transmission scheme to the current network state. Since CSI is not
available at the inner transmitter in the feedforward case, a more appropriate design strategy
relies on the minimization of the induced inter-system interferences. Even though such a
strategy may not be optimal in terms of information rate, it guarantees a minimum induced
inter-system interference, which is beneficial in terms of systems coexistence.

On the other hand, since the inner transmitter does not interact with the inner receiver,
the latter is not aware of the signal space at the inner transmitter. Moreover, the inner nodes
may not share a common calibrated reference system for the signal space. In this sense,
even if the signal spaces at both inner nodes are the same, the lack of a common calibrated
reference system reveals that it is not possible to establish a coherent communication system
between the inner nodes, understanding the coherence condition as the a priori knowledge
of the transmitted pulse-shaping waveform by the receiving end. Accordingly, it may look
like non-coherent communications are inherent to feedforward opportunistic communications,
with the associated system performance degradations [GPV05a; GPV05b].

In conclusion, this brief introduction to the feedforward opportunistic communication prob-
lem addressed in this dissertation unveils the two major research challenges in this context: the
necessity of designing an opportunistic transmission-reception scheme robust to the subspace
leakage problem and the lack of interaction between inner nodes.
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The Case of Single-Channel Feedforward
Opportunistic Communications

3.1 Introduction

This chapter focuses on the waveform design problem in single-antenna feedforward oppor-
tunistic communications. In this cumbersome scenario, the opportunistic nodes do not cooper-
ate, and the information about the null space is locally sensed. The motivation of this chapter is
to explore the repercussion of removing the cooperation between opportunistic nodes. Never-
theless, as briefly pointed out at the end of the chapter, the provided solutions can also be used
in cooperative opportunistic communications to reduce the required feedback rate.1

3.1.1 Generalized Null Space-based Opportunistic Communication

The classical approaches in null space-based opportunistic communications discussed in Sec-
tion 2.4.1 consist in using a set of the null-space basis vectors as a precoding matrix. These
approaches achieve interference-free opportunistic communication under ideal operating con-
ditions, i.e., when the opportunistic nodes have perfect network state information. Nevertheless,
as discussed in Section 2.4.1, an imperfect knowledge of the network state information leads to
subspace leakage or partial subspace swap. This effect is especially typical in the wideband regime
due to its inherent low Signal-to-Noise Ratio (SNR).

Another important aspect is the null-space bases calibration. Imagine that an opportunistic
transmitter and an opportunistic receiver locally estimate the interference signals autocorrela-
tion matrix and that these terminals do not cooperate. Then, the null-space eigenvectors can be
found using an information-theoretic criterion [WK85], such as the Akaike Information Crite-
rion (AIC) or Minimum Description Length (MDL). Even though they can detect the same null
space, the eigenvectors are not unique when the multiplicity of null-space eigenvalues is larger

1Some of the results described in this chapter have been submitted for a possible publication to IEEE Transactions
on Communications [J3].
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than one with high probability. Therefore, the inferred null-space bases can be different at each
opportunistic node. This phenomenon may lead to a non-coherent communication scenario,
which translates to severe performance degradations at low-SNR regimes [GPV05a; GPV05b].
Under these conditions, the system performance can only improve through a coordinated feed-
back link.

In this chapter, we consider the existence of subspace leakage errors from the very begin-
ning. Accordingly, we incorporate null-space sensing errors into the waveform design problem
through a generalized error model independent of the employed null-space detection scheme.
As a result, the opportunistic waveforms derived in this chapter exhibit maximum worst-case
Signal-to-Interference Ratio (SIR) at the opportunistic transmitter output. It is shown that the
optimum waveforms are unique within the null space, meaning that no feedback overheads
are needed to achieve coherent detection. In this sense, the so-called invariance property is of
paramount importance to guarantee detectability in strict feedforward scenarios.

The opportunistic transmission technique described in this chapter can be seen as a gener-
alization of classic null-space solutions, constituting the major contribution of this dissertation.

Even though the derived solution is suitable in the cumbersome strict feedforward case, the
lack of inter-node cooperation brings to light the subspace mismatch problem. In other words, the
null spaces detected at each opportunistic terminal can be slightly different, leading to detection
performance losses. An enhanced detection scheme based on active subspace identification is
proposed to counteract the impact of subspace mismatch.

3.1.2 Chapter Organization

This chapter is organized as follows. In Section 3.2, we describe the mathematical formulation
of the waveform design problem in the feedforward opportunistic communication case. The
solution to this problem is given in Section 3.3, altogether with a technical discussion on
the robustness to the induced inter-system interference. Section 3.4 describes the invariance
property, which is fundamental for the detectability in non-cooperative scenarios, and the
impact of the lack of cooperation in the opportunistic system performance. A technique to
improve the opportunistic receiver is described in Section 3.5. Finally, the conclusions are
drawn in Section 3.6.

3.2 Problem Statement

Throughout this chapter, we consider the opportunistic communication scenario depicted in
Figure 3.1. A set of Q transmitter-receiver pairs exploits the wireless resources in a hetero-
geneous wireless network, transmitting at different rates and employing probably different
modulation and coding schemes. These nodes, which are referred to as outer nodes or terminals,
exploit a fraction of the total system Degrees of Freedom (DoF) N . Recalling Section 2.2.1, the
asymptotic total number of complex DoF is given by N ≈ TW , where T is the signals’ duration,
and W is the system bandwidth.

A new asynchronous transmitter-receiver pair, referred to as inner nodes or terminals, wants
to access the available DoF opportunistically. We assume that each inner node has to locally
identify the available DoF without cooperation between them and the outer-network nodes.
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Figure 3.1: The system model considered in this chapter. (TX/RX)O,q stands for the q-th outer
transmitter-receiver pair. TXI and RXI are the inner transmitting and receiving terminals, respec-
tively, transmitting through the inner channel HII. The interference channel between the q-th
outer-network pair and the inner node located at position r is denoted byH(q)

OI (r). Note that the
position of the inner transmitter and receiver is denoted by r = rT and r = rR, respectively. It is
assumed that all channels are unknown by the opportunistic inner transmitter TXI, whereas the
opportunistic inner receiver RXI only knows, at most, the inner channelHII.

The objective consists in designing N -sample discrete-time orthogonal waveforms that provide
minimum interferences to the outer-network terminals.

For the sake of clarity, we consider the feedforward opportunistic transmission of blocks of
K zero-mean and unit-variance independent symbols ak drawn from a given constellation C.
The received signal for an arbitrary block l is given by

yl[n] =

√
SR
K

K−1∑
k=0

ak[l]ϕk[n− lN ] + i[n] + w[n], for n = 0, . . . , N − 1, (3.1)

where ϕk[n] stands for the n-th sample of the k-th orthonormal waveform to be designed, SR is
the average received power, i[n] refers to an unstructured interference term andw[n] ∼ NC(0, σ

2
w)

denotes the receiver complex, one-sided, circularly-symmetric Gaussian thermal noise.
It is worth noting that we assume that the channel HII between the opportunistic nodes is

memoryless2. The adaptation of this problem to frequency-selective channels is discussed in
Chapter 4.

From (3.1), we can now distinguish two potential applications of the transmission scheme
derived in this chapter. If the symbols ak are a priori known by the inner receiving node, this
model refers to a training or sounding reference signal. Otherwise, in a general sense, this
model describes the problem of a generic linear modulation.

For notational purposes, we define the shaping transmission matrix as

Φ = [ϕ0 · · · ϕk · · · ϕK−1] ∈ CN×K , (3.2)

with ϕk = [ϕk[0], . . . , ϕk[N − 1]]T ∈ CN . Notice that the orthonormal pulses {ϕk}0≤k≤K−1 will
enjoy interference mitigation capabilities if they lie in the null space of the outer terminals,

2That is, the discrete duration of the symbols N is larger than the channel delay spread.
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which has to be locally inferred from the interference signals

x(r) =

Q∑
q=1

H
(q)
OI (r)sq + v(r), (3.3)

where r = [rx, ry, rz]
T denotes the positioning coordinates of an inner node, H(q)

OI (r) ∈ CN×N ′

stands for the interference channel between the q-th outer-network transmitter and the inner
node located at position r, with N ≥ N ′; sq ∈ CN ′ is the transmitted signal by the q-th
outer-network transmitting node; and v(r) ∼ NC(0N , σ2

vIN ) is the additive observation noise.
It is worth noting that opportunistic communications rely on detecting or learning the null

space from the observed interference signals in (3.3). This problem has been widely studied in
the literature, and it is out of the scope of this dissertation. Nevertheless, it is briefly sketched
next for the reader’s convenience.

Detecting or Inferring the Null Space

Traditionally, the null-space identification used to be based on feature detection and sensing
schemes (see, for instance, [FSVR14; AH17] and references therein). These approaches imply
the knowledge of the modulation formats used by the transmitters and receivers in the wireless
environment. When the inner nodes do not have any kind of a priori information about the
outer-network composition, the interference channels H(q)

OI (r), and the outer-network signals
sq, the null space can only be statistically inferred. For this purpose, each inner node needs
to obtain a set of observations from the interference channels, denoted as X (r). Then, the
eigendecomposition of a sample estimate of the aggregate interference signals autocorrelation
matrix can be obtained as

R̂xx(r) =
1

|X (r)|
∑

x(r)∈X (r)

x(r)xH(r) = Û(r)D̂(r)ÛH(r), (3.4)

where the unitary matrix Û(r) is the autocorrelation’s eigenmatrix and the diagonal matrix
D̂(r) contains the autocorrelation’s eigenvalues in non-increasing order. Given the noisy na-
ture of the interference signals in (3.3), note that R̂xx(r) = R̂s(r) + R̂n(r), where R̂s(r) is the
autocorrelation of the noise-free interference signal, and R̂n(r) ≈ σ2

vIN is the noise autocorre-
lation matrix. The objective of each inner node is to identify the M(r) = N −P (r) eigenvectors
from Û(r) that span the null space, being P (r) = rank

[
R̂s(r)

]
. In other words, the inner nodes

have to determine the order of the data model.
The specific problem of determining the dimension of the parameter vector is known as

Model Order Selection (MOS), which is cast as a composite hypothesis testing problem among
all the possible dimensions of the parameter vector.

A simple approach to deal with this problem is to identify the M(r) eigenvectors whose
associated eigenvalues are below a predetermined decision threshold, i.e., detect the signal
space dimensions with the lowest energy contribution. Nevertheless, the performance of this
energy detection approach is limited by SNR walls [TS08], and it degrades if the noise variance
is not accurately known a priori.

As widely studied, a more appropriate alternative to the simple energy detector consists
in using information-theoretic criteria. In this sense, the most commonly adopted statistic is

46



the MDL [Ris78], also known as the Bayesian Information Criterion (BIC) [Sch78]. The MDL
is a consistent model order estimator and returns the correct order in the infinite observations
regime. Another well-known criterion is the AIC [Aka74], which is inconsistent and typically
overestimates the model order. A review of the different MOS statistics can be found in [SS04].
The performance of MOS to determine the dimension of the signal subspace has been evaluated
under various criteria and in different frameworks (see, e.g., [ZWYR89; XK95; FGM02; LZ13;
FSRV15] and references therein). A more recent reference [MGC15] shows that information-
theoretic criteria outperform energy detection in the context of MOS. Since energy detection
(and its variants) are the optimal detectors under unknown signal models (see, e.g., [Kay98]),
these information-theoretic criteria can be optimal in some scenarios under the lack of side
information about the outer networks.

It is worth mentioning that the null-space detection strategies discussed so far are not unique
alternatives. Instead, any unitary matrix U(r) ∈ CN×N constructed using any additional a
priori information about the outer networks available at the inner nodes is also a valid DoF
basis. Moreover, in some situations, using a pseudo-random DoF basis can be interesting to
weaken the impact of systematic detection errors and further reduce the residual inter-system
interferences.

Either way, as it will be discussed later, the opportunistic transmission scheme designed in
this thesis is transparent or independent to the adopted null-space sensing scheme. Thus, from
this point onwards, we assume that using any of the discussed criteria, each inner node has
split the signal-space basis U(r) into

U(r) =
[
ÛS(r) ÛN (r)

]
, (3.5)

where ÛS(r) ∈ CN×P (r) spans the sensed signal subspace, which contains the sensed occupied
dimensions or DoF, and ÛN (r) ∈ CN×M(r) spans the sensed null space, which encompasses the
considered available DoF.

Mathematical Problem Formulation

In the sequel, for the sake of clarity, the discussion focuses on the transmitting waveforms design.
Therefore, from now on, we consider r = rT, i.e., the inner transmitting node coordinates, and
this dependency on rT is dropped when possible for ease of notation.

In order to avoid inter-system interferences, the opportunistic waveforms to be designed
have to be orthogonal to the sensed signal subspace, that is,

ÛH
S Φ = 0P×K , (3.6)

where Φ is the shaping transmission matrix defined in (3.2). It is worth noting that the design
condition in (3.6) is achieved by aligning the opportunistic waveforms with the sensed outer-
network null space N̂T =

〈
ÛN (rT)

〉
. Therefore, any waveform satisfying

ϕk = ÛNλk, for k = 0, . . . ,K − 1, (3.7)

where λk ∈ CM contains the linear combination coefficients specifying ϕk, is a candidate to
achieve interference-free transmissions in feedforward opportunistic communications. Note
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that the waveform model in (3.7) refers to the common model used by all null-space oppor-
tunistic communication schemes reviewed in Section 2.4.1.

A first approach to designing opportunistic waveforms with interference mitigation capabil-
ities consists in adopting the classic null-space solution. In this sense, all the classic null-space
approaches (see Section 2.4.1) arbitrarily select K columns from the null-space basis ÛN as
opportunistic transmission waveforms, letting λk = [0Tm(k)−1 1 0

T
M−m(k)]

T .
It is worth noting that the null-space waveforms satisfying (3.7) rely on the sensed null-

space basis. The classic null-space solution provides interference-free opportunistic waveforms
if and only if the M signal space dimensions encompassed in the sensed null-space basis ÛN
are actually non-occupied by outer-network nodes, i.e. when the null-space detection scheme
provides error-free outcomes. Nevertheless, in practice, the inference of the null-space basis
suffers from several sensing uncertainties:

(i) Detection errors. When the inner terminals do not have a priori side information on the
outer networks, the null-space inference relies on the estimation of the statistics, as the
observations autocorrelation matrix. Thus, the errors in estimating the statistics and the
impact of the subspace thresholding (or MOS) criterion induce false alarms and miss-
detection errors.

(ii) Time variability of the network state. The occupied DoF and the DoF occupancy may exhibit
time variations according to the node activity and the traffic or quality-of-service (QoS)
requirements. This thesis deals with the slow time-variant (quasi-static) network state
scenario, as the fast time variability of interference channels provides a natural diversity
and multiple-access multiplexing mechanism for interference mitigation. In this sense,
a quasi-static network state is critical because the sensing uncertainties can last for a
considerable time, and the DoF occupied by outer-network nodes may slightly vary within
the opportunistic transmission.

(iii) Local monitoring conditions. The inference of the null space relies on the set of observa-
tions (3.3) acquired at the position of the inner node. In this sense, large-scale fading
(shadowing) and small-scale fading may impact the sensed null space. Even though the
effects of fading may not be relevant in terms of sensing uncertainties under time division
duplex (TDD) transmissions, it is a source of subspace mismatch between inner nodes. The
problem of subspace mismatch, which is studied further in this chapter, may decrease
opportunistic communication performance.

When these sensing uncertainties are jointly taken into account, the problem of subspace
leakage, sketched in Figure 3.2, arises. Therefore, the necessity of formulating a null-space error
model arises to study robust waveform designs.

Characterizing the subspace leakage problem is challenging and highly depends on the
adopted null-space detection scheme. This is the reason why the classic references on null-
space precoding, both in single- and multi-antenna scenarios, typically do not incorporate the
subspace leakage problem into the waveform design problem3. Instead, some works tackle the

3To the best of the author’s knowledge, only the estimation errors of statistics, as the interference-signal covari-
ance matrix, or the estimation errors of the interference channel matrices are taken into account in some works to
set the maximum allowed interference in the context of underlay cognitive radio (see, e.g., [WRF+13]).
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Figure 3.2: Sketch of the “actual” signal subspace and null space at inner transmitting node
and the effects of subspace leakage. The sensed signal subspace and the sensed null space are
respectively given by ŜT = S̃ ⊕ SE and N̂T = Ñ ⊕ NE . S̃ and Ñ contain the correctly sensed
occupied DoF and correctly sensed available DoF, respectively. Note that the null-space DoF
encompassed in SE only incur a loss of transmit opportunities, whereas the signal-subspace DoF
encompassed in NE are a source of inter-system interferences.

waveform design problem assuming a perfect knowledge of the null space and then study the
impact of sensing errors on the system performance.

Contrary, this thesis proposes a generalized null-space error model that can be adopted in
robust designs for the null space-based opportunistic transmission schemes, regardless of the
null-space detection or sensing method. In Figure 3.2, we note that the sensed null space N̂T
is composed of some available DoF correctly sensed as available (represented by Ñ ) and some
occupied DoF erroneously detected as available (represented by NE ). Accordingly, the sensed
null-space basis ÛN admits the following formulation:

ÛN =
[
ŨN EN

]
, (3.8)

where EN ∈ CN×NE is a basis of the error subspace NE , whereas ŨN ∈ CN×(M−NE) spans the
available DoF correctly sensed as available and encompassed in Ñ . It is worth noting that since
the null-space inference scheme provides ÛN , the structure of the sensed null-space basis in
(3.8) is transparent to the inner node.

Taking into account the generalized null-space error model in (3.8), the null-space waveforms
in (3.7) read as

ϕk = ÛNλk =
[
ŨN EN

]
λk, for k = 0, . . . ,K − 1. (3.9)

Recall that the inner node is not aware of subspace leakage. Therefore, the classic null-space
solution, i.e., arbitrarily selecting columns of ÛN through λk = [0Tm(k)−1 1 0TM−m(k)]

T can
severely corrupt the outer-network communication when the dimensions or DoF encompassed
in the error matrix EN are used for opportunistic communication. The latter is a consequence
of aligning the opportunistic transmissions with the sensed null-space basis ÛN .

A naive solution to deal with the undesired inter-system interference consists in spreading
the opportunistic waveforms within the whole sensed null space. In other words, letting λk =

αk1M×1, whereαk is a scaling factor guaranteeing ‖ϕk‖ = 1. Although it may seem that just one
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waveform saturates the null space, we shall remark that the waveforms satisfying (3.9) are rank-
one, meaning that up to M orthogonal waveforms can be designed. Nevertheless, we note that
this naive solution is not feasible unless we modify the sensed null-space basis to guarantee the
waveform orthogonality. In this sense, we can perform a sequential dimensionality reduction
of the null space. For instance, the K opportunistic waveforms can be designed as

ϕk = αkÛ
[k]
N 1M×1, (3.10)

where Û [k]
N contains the eigenvectors associated with the M − k largest eigenvalues of matrix

Ω[k] = ÛN Û
H
N

(
IN −

k−1∑
i=0

ϕiϕ
H
i

)
. (3.11)

Note that the first term ÛN Û
H
N is the orthogonal projector onto the null space, which guarantees

the orthogonality to the sensed signal subspace. In contrast, the second term guarantees the
orthogonality between the K designed waveforms.

This naive solution spreads the K symbols sent by the inner transmitter within the sensed
null space keeping the orthogonality between them. Spreading the transmitted symbols also
means spreading the undesired inter-system interferences, which reduces the provided interfer-
ence per DoF. Therefore, this approach seems to deal with the severe inter-system interferences
that the classic null-space solution may provide. However, is the naive approach optimum? Is
this naive approach suitable in feedforward opportunistic communication scenarios?

In order to study the optimality of the signal spreading approach, we need to define a crite-
rion. Taking into account that the K transmitted symbols in (3.1) are statistically independent,
the impact of null-space sensing uncertainties or, more specifically, subspace leakage can be
measured in terms of the average total inter-system interference power as

IT (EN ; {λk}) ≜
1

N

K−1∑
k=0

∥∥EH
Nϕk

∥∥2
2
=

1

N

K−1∑
k=0

∥∥∥EH
N ÛNλk

∥∥∥2
2
. (3.12)

At this point, some considerations are of order. It is worth noting that the impact of both small-
scale and large-scale fadings is not considered in (3.12) since the average total inter-system
interference is measured at the inner transmitter output. Although (3.12) is thus a pessimistic
metric, it is also general enough to be adopted in a wide variety of scenarios.

Taking into account that the error matrix EN is unknown, the waveform design problem
can be formulated as the following min-max optimization problem:

{λk}0≤k≤K−1 = argmin
{λk}

max
EN

IT(EN ; {λk}), (3.13)

that is, the set of linear combination vectors {λk}0≤k≤K−1 that define the set of orthogonal
waveforms {ϕk}0≤k≤K−1 have to provide minimum worst-case average total inter-system in-
terference. It is worth noting that the latter is the best that can be done without any a priori
knowledge about the error matrixEN . The min-max optimization problem in (3.13) is ill-posed
and requires certain design constraints that will be introduced in Section 3.3.

In this sense, the solution to the waveform design problem in (3.13) is provided altogether
with a consistent technical discussion. We will see that the naive approach in (3.10)–(3.11) is not
optimum nor suitable for feedforward opportunistic communications, even though it is more
robust than the classic null-space solution.
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3.3 Generalized Null-Space Waveforms

This section discusses a general class of linear modulations that satisfy the min-max optimiza-
tion problem stated in (3.13). The provided result can be seen as a generalization of the classic
null-space approach. Moreover, even though the derived solution follows the interference
spreading approach as the naive solution in (3.10)–(3.11), the generalized null-space waveforms
are unique within the sensed null space. The latter property, which is studied in detail in
Section 3.4, is of paramount importance as it permits coherent opportunistic communication in
feedforward scenarios.

As claimed before, this optimization problem is ill-posed, and it can only be solved if the
degree of uncertainty assumed in the null-space error model (3.8) is constrained. The degree of
uncertainty is conventionally defined through the Schatten p-norm (see [AAH16] and references
therein). The definition of the Schatten norm can be found, for instance, in [Ber09, Proposition
9.2.3] and given next for the reader’s convenience:

Definition 3.1 (Schatten p-norm). LetA be a (complex)m×nmatrix andσi, for i = 1, . . . ,min(m,n),
be its i-th singular value. Then, the Schatten p-norm of matrixA is given by

‖A‖σp ≜


min(m,n)∑

i=1

σp
i (A)

1/p

if 1 ≤ p < ∞

σmax(A) if p = ∞

, (3.14)

where σmax(A) is the maximum singular value of matrixA. Several special cases of this family of norms
are the following: the Nuclear norm (p = 1), i.e., the sum of the singular values; the Frobenius norm
(p = 2); and the spectral norm (p = ∞), i.e., the maximum singular value. As per [Ber09, Proposition
9.2.4], for p, q ∈ [1,∞) with p ≤ q, the following property holds:

‖A‖σ∞ ≤ ‖A‖σq ≤ ‖A‖σp ≤ ‖A‖σ2 ≤ ‖A‖σ1. (3.15)

Recall that, in the problem at hand, we are looking for a constraint for the sensing error
matrix EN , which is a unitary basis of an NE-dimensional subspace of CN . Thus, the singular
values of EN are equal and normalized to one, implying that there is no dominant dimension.
In this case, an informative constraint is to upper-bound the error power through the Frobenius
norm (the Schatten 2-norm), i.e., ‖EN ‖2F ≤ ξ2, with ξ2 ∈ R+. It is worth noting that, since EN
is left-unitary, the following relationship holds

‖EN ‖2F = tr
[
EH

NEN
]
= rank [EN ] ≤ ξ2, (3.16)

meaning that constraining the Frobenius norm of the error matrix EN is equivalent to con-
straining its rank, and thus the maximum number of assumed erroneously sensed DoF.

Another essential aspect that must be considered is the orthogonality between the K wave-
forms in (3.1). In this thesis, the coefficients vectorλk is not constrained to have a predetermined
structure as in the classic null-space solution, and the sensed null-space basis is not ad-hoc re-
cursively updated as in the naive approach in (3.10)–(3.11).
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In this sense, we will further on let λk be a generic full vector, and thus the orthogonality
between waveforms can only be satisfied by a recursive procedure constrained by

λH
k λk′ = 0, for k, k′ = 0, . . . ,K − 1 with k 6= k′. (3.17)

This constraint is essential to avoid self-induced Inter-Symbol Interference (ISI) between the K

transmitted symbols.
The last aspect to discuss is the existence of a trivial solution. Recalling the optimization

problem in (3.13), it is clear that, irrespectively of the error matrix EN , the minimum induced
inter-system interference is achieved when the inner node does not transmit. Accordingly, a
non-trivial design constraint is required. Among other options, the linear predictor condition
[TK82; TKK82] is adopted, i.e.,

λH
k Û

H
N ek = αk, (3.18)

where αk ∈ R+ is a scaling factor that guarantees that the designed waveforms have unit norm,
and

ek ≜
[
0Tn(k)−1 1 0TN−n(k)

]T
(3.19)

is an N -length binary vector with only one non-zero element.
The constraint in (3.19) is commonly adopted in a wide variety of engineering problems, in

which the positionn(k) of the non-zero element is arbitrarily chosen. Conversely, in the problem
at hand, the position n(k) of the non-zero element can be optimized to satisfy a specific criterion
that will be discussed later.

At this point, we can formulate the optimization problem addressed in this thesis. Taking
into account the three abovementioned constraints in (3.16), (3.17) and (3.18), the min-max
problem in (3.13) becomes

{λk}0≤k≤K−1 = argmin
{λk},{ek}

{
max
EN

K−1∑
k=0

∥∥∥EH
N ÛNλk

∥∥∥2
2

}
(3.20)

s.t. ‖EN ‖2F ≤ ξ2 (3.21)
λH
k λk′ = 0, k 6= k′ (3.22)
λH
k Û

H
N ek = αk (3.23)

As advocated in Appendix 3.A, solving the maximization in (3.20) subject to the constraint in
(3.21), the objective function becomes

{λk}0≤k≤K−1 = argmin
{λk},{ek}

K−1∑
k=0

∥∥∥ÛNλk

∥∥∥2
2
. (3.24)

It is worth noting that the design of opportunistic waveforms minimizing the worst-case in-
duced inter-system interference reads as the Tufts-Kumaresan minimum-norm problem [TK82;
TKK82]. The minimum-norm solution is based on a linear prediction that provides an accu-
rate estimation of the involved parameters [PF87]. This is the reason why the minimum norm
method has been extensively used in the context of robust spectral analysis (see, e.g., [KT82])
and robust direction-of-arrival estimation with both uniform linear arrays [KT83] and arbitrary
arrays [LVT89], to name a few.
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Therefore, the solution to the waveform design problem stated in (3.20)–(3.23) enjoys the
properties of linear prediction filters. In terms robustness to sensing uncertainties, one interest-
ing property is the spectral behavior of the designed waveforms {ϕk}0≤k≤K−1. As intuitively
stated in [Kum83] for the specific case of linear prediction filters and formally studied in [Pak87]
for the general case of polynomials orthogonal with respect to a certain positive measure on the
unit circle, the zeros of the designed waveforms exhibit an asymptotic uniform distribution on
a circle of radius less than or equal to one. The latter suggests that the waveforms {ϕk}0≤k≤K−1

spread the transmitted energy among all DoF sensed as available; thus, the designed waveforms
minimize the induced inter-system interference per erroneous DoF.

Moreover, it is shown in [DD91] that the Tufts-Kumaresan minimum-norm is equivalent to
the Total Least-Squares (TLS) method, emphasizing that the designed waveforms are optimum
in the TLS sense. The waveform design problem is studied from a TLS perspective in Section
3.3.1, proving that the waveforms minimizing the worst-case inter-system interferences are, in
fact, the TLS solutions. For this reason, from this point onwards, the designed waveforms are
referred to as Minimum-Norm Total Least-Squares (MNTLS) waveforms.

Recalling the objective function given in (3.24) and the associated constraints (3.22)–(3.23),
the vectors {λk}0≤k≤K−1 defining the MNTLS waveforms {ϕk}0≤k≤K−1 can be found following
the Lagrange multipliers method, as elaborated in Appendix 3.A. In this appendix, it is shown
that the MNTLS waveforms rely on the orthogonal projector onto the sensed null space, i.e.,
P̂0 = ÛN Û

H
N . In particular, these waveforms can be sequentially found as

ϕk = γkP̂0

(
IN −

k−1∑
i=0

ϕiϕ
H
i

)
ek = γkP̂kek, (3.25)

where P̂k+1 = P̂k

(
IN − ϕkϕ

H
k

)
are the projection matrices onto a subspace of the sensed

complete null space. Note that a recursive dimensionality reduction is required to satisfy the

waveform orthogonality constraint. The term γk =
(
eTk P̂kek

)−1/2
, which is also derived in

Appendix 3.A, is a scaling factor such that ‖ϕk‖2 = 1.
In the abovementioned Appendix 3.A in a formal manner and in Appendix 3.B trying to

provide a physical interpretation, the optimization of the linear predictor condition in (3.19)
is discussed. As thoroughly analyzed in Section 3.3.2, the entries of the main diagonal of P̂k

are inversely proportional to the level of inter-system interference injected on outer-network
nodes. Thus, the linear predictor vector ek in (3.19) satisfying the minimum-norm condition
corresponds to the n(k)-th column of P̂k that has the largest diagonal element. Then,

n(k) = argmax
n∈{1,...,N}

eTk P̂kek = argmax
n∈{1,...,N}

[
P̂k

]
n(k),n(k)

. (3.26)

Despite being the mathematically optimal approach for minimum worst-case inter-system in-
terference, a particular case deserves our attention. When the main diagonal of P̂k is constant,
all columns exhibit the same performance in terms of worst-case inter-system interference. To
avoid complexity, especially at the inner receiver, we adopt a sequential column selection by
taking the first non-null element of the main diagonal of P̂k, that is,

n(k) = k + 1. (3.27)
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This case can be further generalized. When the dynamic margin of the main diagonal of P̂k,

∆
[
diag

(
P̂k

)]
≜
∣∣∣∣∣max

[
P̂k

]
nn

− min
[P̂k]nn

̸=0

[
P̂k

]
nn

∣∣∣∣∣ , (3.28)

is sufficiently small, the optimum approach in (3.26) incurs additional implementation complex-
ity, arising the necessity of a non-coherent detection scheme. In feedforward systems, where the
involved network nodes do not cooperate, it is preferable to decrease the processing complexity.
In this case, a trade-off between complexity and performance is identified. If the dynamic
margin in (3.28) is sufficiently small, all columns of the projector P̂k approximately impose the
same interference level. Thus, the distinction between columns does not significantly improve
the performance in terms of worst-case inter-system interferences, meaning that the additional
complexity is not justified. Therefore, for sufficiently small ϵ ∈ R+, we adopt the following
strategy for the design of the linear predictor vector ek in (3.19):

n(k) =


k + 1 if ∆

[
diag

(
P̂k

)]
< ϵ

argmax
n∈{1,...,N}

[
P̂k

]
n(k),n(k)

otherwise . (3.29)

The question that may arise at this point is under which conditions the sequential column
selection can be employed. The answer to this question is not immediate and depends explicitly
on the numerical evaluation of the diagonal elements of P̂k. For the sake of illustration, two
numerical examples are provided next. In Figure 3.3, we illustrate the diagonal elements of
P̂k when N = 64 DoF and the null space has dimension M = 32. We may observe that one
element predominates over the rest, where the dynamic margin is of ∆

[
diag

(
P̂k

)]
= 0.3155.

In this case, since there is no numerical ambiguity, the optimum design criterion of the linear
predictor vector in (3.29) should be adopted. Nevertheless, note that this choice has to be
reviewed at each recursion k, meaning that it may occur that the dynamic margin at recursion
k + 1 significantly diminishes. Then, the more efficient criterion in (3.27) can be adopted. In
Figure 3.4, we depict an example of the diagonal elements of P̂k when N = 512 DoF and the
null space has dimension M = 32. It is worth noting that, in this case, there are numerical
ambiguities, being the dynamic margin ∆

[
diag

(
P̂k

)]
= 0.0105. It seems reasonable to adopt

the efficient criterion in (3.27). This case is of paramount importance since it occurs when the
total number of DoF N is sufficiently large. When the latter holds, the null-space basis is a
column subset of the unitary Fourier matrix, as we will see in detail in Chapter 4. In current and
future communication scenarios, the total number of DoF N will be large enough such that the
efficient criterion (3.27) can be adopted in practice. Aside from reducing the design complexity
at the inner transmitter, the efficient criterion in (3.27) reduces the complexity of the receiving
scheme drastically, as discussed in Section 3.4.

Before discussing the properties of the MNTLS waveforms, it is interesting to note that
the waveform design scheme can be summarized in the following simple sequential algorithm
provided in Algorithm 1.

An important virtue of the proposed design scheme is its simplicity. Observing Algorithm
1, it is essential to highlight that the design of the MNTLS waveforms {ϕ}0≤k≤K−1 consists of
a sequential or recursive procedure that admits a closed-form solution. Conversely, the conven-
tional strategies in opportunistic communications, both in single- and multi-antenna scenarios
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Figure 3.3: Elements of the main diagonal of P̂k for N = 64 DoF and M = 32 DoF.
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Figure 3.4: Elements of the main diagonal of P̂k for N = 512 DoF and M = 32 DoF.
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Algorithm 1 Sequential Design of the Shaping Transmission Matrix Φ

Input: K, ÛN
Output: Φ

1: P̂0 = ÛN Û
H
N

2: for k = 0 until K − 1 do

3: Find ek=
[
0Tn(k)−1 1 0

T
N−n(k)

]T
with n(k)=


k + 1 if ∆

[
diag

(
P̂k

)]
<ϵ

argmax
n∈{1,...,N}

[
P̂k

]
n(k),n(k)

otherwise

4: ϕk = γkP̂kek with γk = (eTk P̂kek)
−1/2

5: P̂k+1 = P̂k

(
IN − ϕkϕ

H
k

)
6: Φ = [Φ ϕk]
7: end for

(see, e.g., [FdG+16; AAH16; LMP17; AAH17] and references therein), are commonly based on
iterative optimization procedures that generally do not yield a closed-form solution.

3.3.1 Equivalence of (3.25) with the TLS Solution

Thus far, we have seen that the waveform design problem under the minimum worst-case
inter-system interference criterion subject to a sensing uncertainty constraint can be cast as a
classic minimum-norm problem. Equivalently, we can leverage the TLS framework to tackle
the waveform design problem at hand (3.20)–(3.23).

The TLS [GL80; HV91; MH07] is a generalization of the ordinary Least-Squares (LS) problem.
While the LS criterion considers only errors in the so-called measurement model, the TLS
criterion considers the existence of errors in both the measurement model and the data model.
For the sake of clarity, the mathematical formulation of these criteria is given next.

Let us consider the problem of identifying the input x ∈ Cn of a linear system modeled
through matrix A ∈ Cm×n, with m ≥ n, given the system output y ∈ Cm. In this example, A
corresponds to the data model, whereasy is the measurement model. Assume that the measurement
is corrupted by an observation noise e, i.e., y = ỹ+e, being ỹ = Ax the noiseless system output.
Under these conditions, if the data model A is perfectly known, the LS framework provides a
solution to the following constrained optimization problem [HV91]:

min
ŷ∈Cm

‖y − ŷ‖2 (3.30)

subject to ŷ ∈ 〈A〉 (3.31)

Then, the LS estimate of the system input is any x̂ ∈ Cn satisfying Ax̂ = ŷ, where ŷ is
the best estimate in the minimum mean-square error (MMSE) sense of the noiseless output
ỹ. This simple example illustrates that the LS criterion provides solutions robust to errors in
the measurement model. Nevertheless, the LS solution requires the perfect knowledge of the
data model A, which may not be realistic. In this sense, the TLS framework generalizes the
LS criterion admitting errors in the data model, i.e., A = Ã + E, where Ã is the true data
model and E models the error in the data model. Therefore, the system equation for the TLS
problem is given by ỹ + e = (Ã +E)x. Under these new conditions, the TLS criterion solves
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the constrained optimization problem given by [HV91]

min[
Â ŷ

]
∈Cm×(n+1)

∥∥∥[ A y
]
−
[
Â ŷ

]∥∥∥
F

(3.32)

subject to ŷ ∈
〈
Â
〉

(3.33)

where the TLS estimate of the system input x̂ ∈ Cn satisfies Âx̂ = ŷ, where Â and ŷ are the best
approximations in the Frobenius norm sense of the data model and the measurement model,
respectively. It is clear that the TLS solution is more general and robust than the LS solution.
This is the reason why the TLS framework has been of relevant interest in several engineering
disciplines4, such as system identification [MWVH+05], adaptive filtering [FZCZ04], or spectral
analysis [RY87]. The formulation given in (3.32)–(3.33) is known as basic TLS formulation. In
some cases, the TLS problem lacks a unique solution; thus, the minimum-norm solution is
preferable for stability and minimum sensitivity reasons.

In addition to the robustness to modeling errors, the TLS solution exhibits uniqueness in
the vector space it lies in. These two properties are of paramount importance in the context
of feedforward opportunistic communications. On the one hand, since the modeling errors
refer to sensing errors, the MNTLS waveforms in (3.25) are robust to the worst-case induced
inter-system interference. On the other hand, since the waveforms (3.25) are unique within
the sensed null-space, the MNTLS waveforms are somehow self-calibrated, being independent
of the considered sensed null-space basis. As we will discuss in Section 3.4, this property is
fundamental to enabling coherent detection5 under feedforward conditions.

Once the interest in leveraging the TLS framework has been motivated, the waveform design
problem in (3.20)–(3.23) is formulated in the sequel using the TLS framework to corroborate
that the derived MNTLS waveforms (3.25) are equivalent to the TLS solutions of the problem.

Recalling (3.7), it is worth noting that all null-space waveforms satisfy

ÛH
S ϕk = 0(N−M)×1, (3.34)

where ÛS is the sensed signal-subspace basis, i.e., span the DoF sensed as occupied, with
rank

[
ÛS

]
= N −M . Equivalently, we can formulate the following problem:

P̂Sϕk = 0N×1, (3.35)

where P̂S = ÛSÛ
H
S plays the role of the assumed data model in the TLS framework. It is worth

noting that, even though it seems that the waveformϕk is not inducing interferences, the model
is in fact erroneous since

P̂S = PS − P̂E , (3.36)

where PS is the projector onto the true (error-free) signal subspace and P̂E = ENE
H
N is the

projector onto the subspace spanned by the occupied DoF erroneously sensed as available. In
the TLS framework, PS refers to the true data model, whereas P̂E corresponds to the error in
the data model. Accordingly, the complete signal model for the problem at hand is given by

P̂Sϕk =
(
PS − P̂E

)
ϕk = εk − εk = 0N×1, (3.37)

4A complete bibliographical survey of TLS method and its variants can be found in [Mar10].
5Herein, the coherent condition refers to the a priori knowledge of the transmitted shaping waveform by the

receiving end.
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where 0N×1 plays the role of the corrupted measurement, εk is the error-free measurement,
and −εk corresponds to the measurement error. Note that equation (3.37) is naive and purely
instrumental to identify the meaningful variables in the TLS framework.

For simplicity, in the sequel, we focus the discussion on the case k = 0 since the other K − 1

waveforms can be obtained by imposing an orthogonality constraint between waveforms.
Recalling (3.32), the objective is to minimize the impact of all modeling errors, which, in

the problem at hand, implies minimizing the induced inter-system interferences. Thus, the
waveform design problem can be cast as

min
ϕ0,ε0,P̂E

∥∥∥[ ε0 P̂E

]∥∥∥2
F

(3.38)

subject to P̂Sϕ0 = 0N×1 (3.39)
ϕH
0 ϕ0 = 1 (3.40)

rank
[
P̂E

]
= ‖P̂E‖2F ≤ ξ2, ξ2 > 0 (3.41)

i.e., the minimization of the Frobenius norm of the extended error matrix or perturbation matrix
subject to the data model in (3.37). Two additional constraints have been added. (3.40) is a
non-trivial design constraint, whereas (3.41) upper-bounds the maximum degree of assumed
uncertainty in the data model error.

Operating the cost function, note that∥∥∥[ ε0 P̂E

]∥∥∥2
F
= ‖ε0‖22 +

∥∥∥P̂E

∥∥∥2
F
≤ ‖ε0‖22 + ξ2, (3.42)

where the last inequality follows from the constraint (3.41). Therefore, ∀ξ2 > 0 and assuming
worst-case sensing uncertainties, we have that the problem at hand reads as

min
ϕ0,ε0,P̂E

‖ε0‖22 + ξ2 (3.43)

subject to P̂Sϕ0 = 0N×1 (3.44)
ϕH
0 ϕ0 = 1 (3.45)

It is worth noting that this problem leads to a very particular formulation of the classic TLS
for the following reasons:

(i) Since the assumed data matrix is P̂S and the corrupted observation vector is 0N×1, the rank
of the extended data matrix

[
P̂S 0N×1

]
is equal to the rank of the known data matrix.

Therefore, P̂S is itself a low-rank approximation of the extended data matrix, meaning
that P̂Sϕ0 = 0N×1 is an underdetermined consistent system.

(ii) The data-model measurement noise matrix or perturbation matrix P̂E has to be a rank-NE

idempotent matrix corresponding to the orthogonal projector onto 〈EN 〉. Accordingly, the
optimization problem in (3.43)–(3.45) requires an additional constraint on the structure of
P̂E to ensure that the minimizing P̂E is an orthogonal projector; otherwise, the problem
may be inconsistent. Nevertheless, constraining the structure of the perturbation matrix
may yield an unsolvable optimization problem.
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Alternatively, the TLS solution can be understood as an orthogonal L2 approximation or
regression. As per [HV91, Definition 2.5], the TLS problem admits the following interpretation:

min
y∈CN+1

‖Ty‖22 (3.46)

subject to yHy = 1 (3.47)

with T =
[
P̂S 0N×1

]
and y =

[
ϕT
0 −1

]T
. Note that the constraint in (3.47) is needed to

avoid the trivial solution. Further analyzing the cost function in (3.46) for our particular case,
we see that

‖Ty‖22 = ϕ
H
0 P̂Sϕ0, (3.48)

which follows from recalling that P̂S is Hermitian and idempotent. Therefore, by the Lagrange
multipliers method and conventional eigenanalysis, it is clear that ϕ0 is the eigenvector of P̂S
associated with the smallest eigenvalue. Since P̂S is an orthogonal projector, we have that

P̂S =
[
Û1 Û2

] [ IP 0P×M

0M×P 0M×M

] ÛH
1

ÛH
2

 , (3.49)

where P = rank
[
P̂S

]
and M = N − P . It is worth noting that, back in the problem at hand,

Û1 ∈ CN×P is a unitary basis of the sensed signal subspace, and Û2 ∈ CN×M is a unitary
basis of the sensed null space. Since the smallest eigenvalue has multiplicity M , this problem
admits an infinite number of solutions different from the trivial solution. For reasons of stability
and minimum sensitivity, it is convenient to select the solution with minimum norm [HV91;
DD91; VHZ93; MH07]. In particular, letting ϕ0 = Û2λ0, the waveform design problem can be
addressed as follows [HV91, Chapter 3]:

min
λ0∈CN

∥∥∥Û2λ0

∥∥∥2
2

(3.50)

subject to eTn Û2λ0 = 1 (3.51)

with en ≜
[
0Tn−1 1 0TN−n

]T . Following again the Lagrange multipliers method, the MNTLS
waveform ϕtls

0 = Û2λ
tls
0 leads to

ϕtls
0 =

Û2Û
H
2 en

eTn Û2ÛH
2 en

, (3.52)

where we shall note that Û2Û
H
2 is the orthogonal projector onto the sensed null space. For

convenience, a norm normalization of ϕtls
0 is preferable. This norm normalization can also be

achieved by modifying the constraint in (3.51) such that eTn Û2λ0 = α, where α ∈ R+ guarantees
the unit norm. Finally, note that, varying the vector en, there are N different options for
the non-trivial design constraint (3.51). Even though the cases n = 1 and n = N are typically
considered, the position of the non-zero entry can be modified for convenience. In our problem,
as discussed earlier, the position of the non-zero entry of en can be optimized to minimize the
induced inter-system interference.

Taking into account this discussion, we note that the waveforms given in (3.25) coincide with
the solutions of the TLS waveform design problem formulated above. This study justifies that
the designed waveforms are referred to as MNTLS waveforms. A fundamental consequence
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of this equivalence is that the MNTLS waveforms inherently exhibit the properties of the TLS
solution: robustness to modeling mismatch and uniqueness within the sensed null space.

Recalling (3.7), all null-space waveforms (including both the classic solution and the MNTLS
solution provided in this dissertation) follow the same general model. The fundamental dif-
ference between these two approaches lies in the construction of the coefficients vectors λk. In
particular, the vector λk derived in Appendix 3.A must provide the robustness to modeling
mismatch and the solution uniqueness.

From (3.25), note that the coefficients vector λk admits the following expression:

λk =Mken = ÛH
N︸︷︷︸

Rotation

(
IN −

k−1∑
k′=0

ϕk′ϕ
H
k′

)
︸ ︷︷ ︸

Projection︸ ︷︷ ︸
Mk

ek︸︷︷︸
Column Selection

, for k = 0, . . . ,K − 1, (3.53)

where the linear predictor vector ek can be found as in (3.29). In contrast to the classic null-
space solution, where the vector λk is a column selection on the sensed null-space basis ÛN , the
MNTLS approach given in (3.25) provides linear combination coefficients vectorsλk performing
a column selection through the vector ek on a transformation of the sensed null-space basis ÛN .
Note that the role of this transformation, represented through matrixMk in (3.53), is twofold:

(i) The rotation ÛH
N makes the projection matrix P̂0 = ÛN Û

H
N onto the sensed null space〈

ÛN

〉
appear. As will be discussed shortly, this projection matrix plays a fundamental

role to guarantee the solution’s uniqueness within the sensed null space.

(ii) The projection in (3.53) is sequentially reducing the dimensionality of the sensed null
space to guarantee the orthogonality between the K MNTLS waveforms.

Regarding (3.53), we shall note that a fundamental similitude between the classic null-space
solution given by λk = [0Tm(k)−1 1 0TM−m(k)]

T and the MNTLS approach given in (3.25) can be
established: both strategies are based on a column selection. Nevertheless, the matrix involved
in the column selection differs, which is the essential difference between these two null-space
strategies. In order to highlight the superiority of the MNTLS waveforms over the classic
null-space approaches reviewed in Section 2.4.1, different situations are studied next.

First, we consider the ideal scenario with no sensing uncertainties, i.e., the subspace leakage
problem is not present. Mathematically, this case corresponds to EN = 0N×NE

. Under these
ideal operating conditions, neither the classic solutions nor the MNTLS approach discussed
in this thesis induce inter-system interference on the outer-network nodes. Nevertheless, even
under these ideal conditions, the MNTLS approach is preferable due to its uniqueness within
the sensed null space. Suppose that the sensed null-space basis is obtained from a MOS on
the eigenmatrix of the observations’ autocorrelation matrix. This eigenmatrix is not unique,
with high probability, since the algebraic multiplicity of the associated eigenvalues equals the
dimension of the sensed null space. In fact, if ÛN is basis of the null space, then V̂N = ÛNQ is
also a basis of the null space, with Q ∈ CM×M is a right-unitary linear transformation matrix
(e.g. a rotation within the null space).

Consequently, classic null-space solutions are not unique since they rely on the sensed null-
space basis. Nevertheless, it is of paramount importance to note that the MNTLS approach
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given in (3.25) does not depend on the sensed null-space basis; it depends on the projector onto
the sensed null space, which is a unique representation of the spanned subspace. Thus, even
though the same subspace is exploited by classic solutions and the MNTLS approach, the latter
exploits the sensed null space more smartly than the former.

It has already been mentioned that the solution’s uniqueness enables coherent detection in
non-cooperative, i.e., feedforward, scenarios. We would like to point out that the solution’s
uniqueness is still of interest when the inner nodes cooperate. In distributed opportunistic
communications, the transmitting shaping filters and the receiving matched filters are locally
designed, i.e., the inner transmitter and receiver nodes rely on local observations from the
wireless environment. Therefore, the null spaces sensed at each inner node may differ slightly.
This aspect is studied in detail in Section 3.4. When the inner nodes can cooperate, they can
agree on a null space through cooperative feedback. Nevertheless, the solution’s uniqueness or
invariance permits reducing the required feedback overheads. Suppose the inner nodes find a
unique solution within the null space. In that case, subspace agreement can be achieved with
low-rate or even null feedback, avoiding agreeing on a common reference system for the signal
space. Otherwise, if the necessity of settling on a common reference system arises, the required
large feedback overheads may burden implementation complexity and latency.

Thus far, we have seen that even under ideal operating conditions with no sensing un-
certainties, the MNTLS waveforms proposed in this thesis outperform classic approaches in
terms of detectability. We now consider a more realistic case where subspace leakage occurs,
i.e., EN 6= 0N×NE

. Under these conditions, the classic null-space solution may provide severe
inter-system interferences when the DoF encompassed in the unknown sensing error matrixEN
are selected. The MNTLS waveforms given in (3.25) respond to the minimum worst-case inter-
system interference criterion described in detail in (3.20). As per (3.53), the optimum solution
consists in combining all the dimensions in ÛN , resorting to the dimension spreading principle.

The reader may wonder if the DoF or dimension spreading approach, which is the optimum
solution for minimum worst-case interference, exploits the sensed null space efficiently. Since
the classic null-space solution performs a column selection on the sensed null-space basis, it
exploits one DoF per opportunistic waveform. Conversely, the MNTLS waveforms require an
intelligent combination of all columns of the sensed null-space basis. Nevertheless, we shall
remark that the waveforms are still rank-one. Each MNTLS waveform exploits one DoF but first
performs a change of basis that guarantees the solution’s uniqueness.

In conclusion, the superiority of the MNTLS waveforms lies in the fundamental properties
inherent in the TLS solution: robustness to modeling mismatch and solution’s uniqueness.
While the former highlights the optimality in terms of minimum worst-case induced inter-
system interference, the latter enables coherent waveform detection in feedforward scenarios.
From this point onwards, the waveforms satisfying the uniqueness property are referred to as
invariant waveforms. The importance of the invariance property in the detectability performance
of the MNTLS waveforms is studied in Section 3.4.

3.3.2 Analysis of the Signal-to-Interference Ratio (SIR)

The MNTLS waveforms derived in this thesis and given in (3.25) are optimal in terms of
minimum worst-case inter-system interference. Consequently, the waveform design problem
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can also be interpreted as maximizing the worst-case Signal-to-Interference Ratio (SIR) at the
inner transmitter output, defined as

SIRT ≜ Opportunistic orthogonal component
Induced inter-system interferences . (3.54)

Let ST be the total average transmitted power that accounts for both the opportunistic
orthogonal component and the residual induced inter-system interferences and is given by

ST ≜ 1

N

K−1∑
k=0

‖ϕk‖2. (3.55)

Then, the SIRT defined in (3.54) can be written as

SIRT (EN ; {λk}) =
ST − IT (EN ; {λk})

IT (EN ; {λk})
, (3.56)

where IT (EN ; {λk}) is the residual average inter-system interference power defined in (3.12).
Since the interference power depends on both the null-space error matrix EN and the linear
combination coefficients that define the opportunistic waveforms λk, it is clear that the SIRT

also depends on these parameters.
Taking into account the discussion above, the waveform design problem formulated in

(3.20)–(3.23) is equivalent to

{λk}0≤k≤K−1 = argmax
{λk}

min
EN

SIRT (EN ; {λk}) , (3.57)

subject to the constraints (3.21), (3.22), and (3.23). To corroborate this equivalence, we can find
first the null-space error matrix EN providing the worst-case SIR in (3.56). Thus,

EN = argmin
EN

K−1∑
k=0

‖ϕk‖22

K−1∑
k=0

∥∥EH
Nϕk

∥∥2
2

(3.58)

s.t. ‖EN ‖2F ≤ ξ2 (3.59)

Note that the cost function SIRT (EN ; {λk}) + 1 has been considered in (3.58) for the sake of
simplicity. Using the Cauchy-Schwarz inequality in the cost function (3.58), we have that

K−1∑
k=0

‖ϕk‖22

K−1∑
k=0

∥∥EH
Nϕk

∥∥2
2

=
‖Φ‖2F∥∥EH
NΦ

∥∥2
F

≥ 1

‖EN ‖2F
≥ 1

ξ2
, (3.60)

where the last inequality follows from the constraint (3.59). Since we are seeking the null-space
error matrix EN that minimizes the SIR, we can consider the lower bound in (3.60). This
lower bound is achieved when the null-space error matrix EN is proportional to the shaping
transmission matrix Φ. This result coincides with the worst-case sensing error matrix obtained
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in the derivation of (3.25) in Appendix 3.A. Using the worst-case sensing error matrix in (3.57),
the design of the coefficients vectors {λk}0≤k≤K−1 reads as

{λk}0≤k≤K−1 = argmax
{λk},{ek}

(
K−1∑
k=0

∥∥∥ÛNλk

∥∥∥2
2

)−1

(3.61)

s.t. λH
k λk′ = 0, k 6= k′ (3.62)
λH
k Û

H
N ek = αk (3.63)

It is straightforward to see that (3.61)–(3.63) provides the same solution as (3.20)–(3.23), estab-
lishing the equivalence between the two different formulations of the problem at hand.

We shall note that the waveform design based on the transmitting SIR is the best that can
be done in feedforward opportunistic communications. In terms of opportunistic transmission
rate, the optimum receiver approach consists in maximizing the Signal-to-Interference-plus-
Noise Ratio (SINR). However, the latter cannot be considered in feedforward scenarios due to
the lack of coordination and cooperation between inner nodes.

The formulation of the waveform design problem as in (3.57) can also be deduced from the
optimality in the TLS sense of the opportunistic waveforms {ϕk}0≤k≤K−1 given in (3.25). As
per [Gol73; MH07], it is known that the TLS problem is equivalent to the minimization of the
Rayleigh quotient. More specifically, the problem formulated in (3.46)–(3.48) is equivalent to

min
ϕk

ϕH
k P̂Sϕk

ϕH
k ϕk

, (3.64)

for the k-th MNTLS waveform. It is clear that, in this particular formulation, the MNTLS
waveformϕk yields a Rayleigh quotient equal to 0. However, in order to measure the optimality
of ϕk in terms of interference mitigation, we can evaluate the Rayleigh quotient involving the
orthogonal projector onto the true signal subspace PS = P̂S + P̂E , which is given by

ρ
(
P̂S + P̂E ;ϕk

)
≜

∥∥∥(P̂S + P̂E

)
ϕk

∥∥∥2
2

‖ϕk‖2
. (3.65)

Recalling that ϕk = ÛNλk =
[
ŨN EN

]
λk, note that ‖ϕk‖22 = Sk + Ik(EN ), where Sk refers

to the opportunistic orthogonal component and Ik(EN ) is the interference leaked on the DoF
encompassed in EN . Thus,

ρ
(
P̂S + P̂E ;ϕk

)
=

∥∥∥P̂Eϕk

∥∥∥2
2

Sk + Ik(EN )
=

Ik(EN )

Sk + Ik(EN )
=

1

1 + SIRk (EN )
, (3.66)

with SIRk (EN ) = Sk/Ik(EN ) being the SIR, measured at the transmitter output, induced by
the MNTLS waveform ϕk. Since the MNTLS waveforms in (3.25) are optimum in the TLS
sense, and the TLS solution minimizes the Rayleigh quotient in (3.66), then, necessarily, these
waveforms maximize the attainable worst-case SIR. It is worth noting that (3.66) is just another
approach that vindicates the optimality of the MNTLS waveforms in the transmitted SIR sense.

At this point, and knowing that the MNTLS waveforms provide maximum worst-case
transmitted SIR, it is natural to wonder what is the operating SIR. We shall remark that the
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operating SIR is unknown to the inner transmitter since it depends on the unknown null-space
error matrix EN . Nonetheless, the characterization of this parameter is still of interest to
assess the performance of the MNTLS waveforms in terms of undesired residual inter-system
interferences.

The accurate analysis shown in Appendix 3.B unveils that the operating transmitted SIR
admits the following expression:

SIRT (EN ; {λk}) =
K

K−1∑
k=0

fk

(
P̂E

)
eTk P̂kek

− 1, (3.67)

where fk

(
P̂E

)
is a positive function of the orthogonal projector onto the subspace spanned by

the null-space error matrix, i.e. P̂E = ENE
H
N . This function, which is defined in Appendix 3.B,

sequentially changes in order to incorporate the dimensionality reduction of the sensed null
space implicit in the waveform design scheme described in Algorithm 1.

What it is interesting to note is that the maximum attainable SIR is achieved when the
waveform is the column of P̂k, appropriately scaled, containing its largest diagonal element.
This observation reveals that, under worst-case sensing uncertainties, the waveform design
procedure detailed in Algorithm 1 is the best solution in terms of interference mitigation.
Likewise, as per (3.67), if the dynamic margin of the main diagonal of the projector P̂k is
sufficiently small, the SIR will not change significantly regardless of the chosen column of P̂k.
Therefore, it could be interesting to reduce the complexity of the waveform design scheme by
adopting the criterion in (3.27).

Recalling the definition of the residual inter-system interference power IT (EN ; {λk}) given
in (3.12), it is worth noting that (3.67) is a pessimistic metric since it incorporates the aggregate
interference leaked on all DoF encompassed in EN . It would be interesting to propose a
metric quantifying the feasibility of the coexistence of the inner and outer networks. In this
sense, the performance of the opportunistic transmission can be more appropriately assessed
by measuring the ratio between the opportunistic orthogonal signal power and the interference
power induced on a single erroneous DoF. The interest of this metric is that it is more appropriate
for measuring the compatibility of the outer and inner networks in terms of the coexistence of
simultaneous transmissions, similar to the transmission capacity [WYAV05; WAJ10].

Accordingly, we consider a performance metric referred to as Signal-to-Interference Density
Ratio (SIDR), measured at the inner transmitter output, and defined as

SIDRT (EN ; {λk}) ≜
ST − IT (EN ; {λk})

1
NE

IT (EN ; {λk})
, (3.68)

where ST and IT (EN ; {λk}) are given in (3.55) and (3.12), respectively, and NE = rank [EN ] is
the number of erroneously sensed DoF. Even though it is not possible to analytically characterize
the SIDR, it is interesting to highlight that (3.68) admits a simple asymptotic approximation in
terms of relevant parameters for the inner system: the total number of system DoF N ; the sensed
network availability κ = M/N , i.e., the fraction of DoF sensed as available; and the inaccuracy
of the null-space sensing scheme η = NE/M , i.e., the fraction of erroneously sensed DoF with
respect to the dimension of the sensed null space. Appendix 3.C advocates that, for large
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Figure 3.5: Simulated SIDRT (3.68) (marks) and the theoretical model in (3.69) (lines) vs. the
fraction of DoF sensed as available κ, for different N and with η = 0.01 (blue) and η = 0.1 (red).

enough N , (3.68) can be asymptotically approximated by

SIDRT (EN ; {λk}) ≈ N · κ · (1− η) . (3.69)

This compact and straightforward expression reveals that the opportunistic transmission per-
formance in terms of coexistence compatibility when the MNTLS waveforms are used does not
asymptotically depend on the number of transmitted waveforms K. The latter holds whether
the opportunistic waveforms are normalized such that ‖ϕk‖ = 1.

In order to numerically assess the robustness of the MNTLS waveforms to inter-system
interferences and validate the tightness of the asymptotic approximation proposed in (3.69),
Figures 3.5 and 3.6 are provided. More specifically, we depict in Figure 3.5 the SIDR at the inner
transmitter output as a function of the sensed network availability κ, for different numbers of
system DoF N and sensing inaccuracies of η = 10−2 and η = 10−1. Regarding the number of
system DoF, a range of values between 210 and 215 is considered6. From Figure 3.5, we shall note
that the asymptotic approximation proposed in (3.69) accurately models the attainable SIDR.
It is also interesting to observe that the null-space sensing uncertainties are especially critical
at low κ. Nevertheless, as the dimension of the sensed null space grows, more dimensions are
involved in the opportunistic transmission, and hence the interference density per erroneously
sensed DoF diminishes. In any case, the MNTLS waveforms manifest magnificent performance
when the system bandwidth –and, therefore, the total system DoF N– is sufficiently large.
The impact of the null-space sensing accuracy is depicted in Figure 3.6. In this case, only the
theoretical model proposed in (3.69) is illustrated since the tightness of this model has already

6Recall that the number DoF is approximately given by WT , where W is the bandwidth, and T is the channel
use duration. Because of the demanding user requirements in current and future communication scenarios and the
solutions’ trend, we can assume a large W . Even though the symbol duration T is permanently reduced to enable
low-latency communications, the total number of system DoF is large. For instance, assuming a system bandwidth
of 100 MHz and a symbol duration of 50 µs, the number of DoF is approximately 5000.

65



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

Null-Space Sensing Inaccuracy η

Si
gn

al
-to

-In
te

rf
er

en
ce

D
en

si
ty

Ra
tio

[d
B]

N = 210 DoF N = 213 DoF
N = 211 DoF N = 214 DoF
N = 212 DoF N = 215 DoF

Figure 3.6: Theoretical model for the SIDRT (3.69) as a function the inaccuracy of the null-space
inference η, for different N and with κ = 0.1 (dashed) and κ = 0.5 (solid).

been validated in Figure 3.5. We may notice that the SIDR experiences a slight decrease for
increasing η. However, poor performances only occur when the value of the sensing accuracy
η becomes unrealistically large. This critical remark reveals the robustness of the derived
waveforms in (3.25) to induced inter-system interferences. This aspect will be discussed in
detail shortly.

Examining Figures 3.5 and 3.6, we may wonder if the values of the attainable SIDR are
pessimistic, especially in congested scenarios, i.e., low κ, and the total number of DoF N is
not sufficiently large. Recalling the definition of the inter-system interference given in (3.12),
since it does not account for the impact of fading, we note that the SIDR as defined in (3.68) is a
pessimistic metric. Therefore, if the path losses are considered, the impact of the undesired inter-
system interferences diminishes as the distance between the inner transmitter and the outer-
network nodes increases. We may think that the effects of these induced interferences might
only be critical at the nearest outer-network nodes. Nevertheless, before drawing premature
conclusions, it is essential to think carefully about how null-space sensing works.

Recall that the inner transmitter acquires a set of observations from the wireless environment,
given in (3.3). The smaller the distance between the inner transmitter and the outer-network
nodes, the higher the SNR of these observations. Consequently, the DoF encompassed in the
null-space error matrix EN correspond, with high probability, to some of the DoF occupied
by distant outer-network nodes; it is generally unlikely to erroneously sense as available a DoF
occupied by nearby outer-network nodes. In brief, the nearby outer nodes do not typically
suffer from induced residual inter-system interferences. In contrast, the interferences caused on
distant outer nodes are affected by the path losses that are not considered in the definition of the
SIDR. We can now conclude that the SIDR is a demanding and perhaps pessimistic performance
metric. Notwithstanding, the SIDR metric in (3.68) does not depend on each particular fading
environment; thus, it is general enough to be considered in a wide variety of opportunistic
communication scenarios. Moreover, maximizing the worst-case SIR at the inner transmitter
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output is the best that can be done under feedforward conditions.
At this point, the robustness of the MNTLS waveforms to the induced inter-system inter-

ference remains technically unjustified. It is clear that the derived waveforms in (3.25) exhibit
minimum worst-case interference. We have learned from Figure 3.6 that, for fixed and realistic
null-space relative sensing errors η, the SIDR significantly improves as the sensed network DoF
availability κ increases.

Therefore, we may think that the dimension of the sensed null space M plays an important
role in terms of interference mitigation. Recalling the interpretation of λk, for k = 0, . . . ,K − 1,
given in (3.53), we may note that most of the elements of λk are non-zero. The latter means that
λk combines the M dimensions or DoF sensed as available and encompassed in matrix ÛN .
This linear combination essentially means that the symbol transmitted through the waveform
ϕk is distributed within the sensed null space

〈
ÛN

〉
. Therefore, the opportunistic transmission

scheme based on MNTLS waveforms can be considered as a dimension spreading or DoF spreading
technique, being M the DoF or dimension spreading factor. As M increases, the per-DoF energy
decreases; thus, the induced residual interference power is maximally spread over the sensed
null space minimizing the interference density per DoF.

Regarding the per-DoF energy distribution, the dimension spreading is asymptotically uni-
form, as advocated in Appendix 3.D. This important property means that, asymptotically, the
MNTLS waveforms exhibit a maximally flat spectrum, breaking the structure of the induced
inter-system interferences. This property can also be justified as follows. Recalling the adopted
non-trivial design constraint in (3.23), we cannot overlook that the MNTLS waveforms in (3.25)
are, in fact, linear predictors. Therefore, as already discussed, the zeros of the MNTLS wave-
forms are asymptotically uniformly distributed in a circle of radius less than or equal to one
[Kum83; Pak87].

The DoF or dimension spreading property is of paramount importance to justify the ro-
bustness of the MNTLS waveforms (3.25) to the induced inter-system interferences. See next a
simple numerical example to illustrate this important property, where the dimension spreading
coincides with the spectral distribution for ease of understanding.

Numerical Toy-Example

Let us consider that the unitary inverse Fourier matrix given by

FH
N =

1√
N


1 1 1 1 · · · 1

1 ζ ζ2 ζ3 · · · ζN−1

1 ζ2 ζ4 ζ6 · · · ζ2(N−1)

...
...

...
... . . . ...

1 ζ(N−1) ζ2(N−1) ζ3(N−1) · · · ζ(N−1)2



∗

, (3.70)

where ζ = e−j2π/N is a primitive N -th root of the unity, is an optimum basis for the DoF
or signal space dimensions representation. Even though it may seem that this assumption
limits the validity of this example, we shall recall that the unitary inverse Fourier matrix is, in
fact, the optimum representation in several interesting scenarios. For instance, in those cases
where the outer-network nodes operate under Orthogonal Frequency-Division Multiple-Access
(OFDMA), which is used in several commercial communication systems, e.g. Wireless Fidelity
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(WiFi), Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T), and New
Radio (NR). Nonetheless, the use of unitary Fourier matrices is even more general. When the
number of total system DoF N ≈ WT is sufficiently large, the autocorrelation’s eigenmatrix
converges to the N -size unitary Fourier matrix [Gra06]. This case, which is of greatest interest
concerning practical implementation, is discussed in detail in Chapter 4.

For this simple example, we assume that the inner transmitter acquires a set of observations
from the wireless environment and, using the unitary inverse Fourier matrix in (3.70), decides
which frequency bins are available for opportunistic communication. Accordingly, the inner
transmitting node finds a basis of the sensed null space as

ÛN = FH
N S ∈ CN×M , (3.71)

where the N×M matrixS selects the columns ofFH
N associated with the frequency bins sensed

as available, i.e.

[S]ii =

1 if the i-th column of FH
N is sensed as available

0 otherwise
. (3.72)

This descriptive and simple numerical example aims to illustrate the dimension spreading
property. Since the sensed null-space basis is a column subset of the unitary inverse Fourier
matrix, the DoF can be read as frequency bins or subcarriers. Thus, the dimension spreading
property can be studied from the spectral behavior perspective. We assume N = 32 DoF, of
which 12 are occupied by the active outer-network nodes, corresponding to a DoF occupation of
3/8. This case is unrealistic, as the total number of system DoFN will be much larger in practice.
Nevertheless, as the distribution of the zeros is also numerically analyzed in this example, a
small value of N has been chosen to clarify the graphical representation. Moreover, for the sake
of simplicity, only the first MNTLS waveform is analyzed in this example.

Two different scenarios are considered, and both are depicted on the next page. On the
one hand, Figure 3.7 illustrates the dimension spreading property and zeros distribution in an
ideal case without subspace leakage. On the other hand, a simple case with subspace leakage,
involving only one occupied DoF erroneously sensed as available, is represented in Figure 3.8.

In both cases, the DoF (in this case, frequency bins) occupied by the outer-network nodes
are contained within the spectral mask plotted in dashed lines.

Regarding the ideal case depicted in Figure 3.7, we qualitatively compare the operational
difference between the MNTLS waveforms derived in this thesis and the classic null-space
solution. For clarity, the total system bandwidth has been normalized between 0 and 1. It is
worth noting that, whereas the latter solution fully exploits one DoF of the sensed null-space
basis, the former performs a change of basis that combines all DoF represented in the original
sensed null-space basis. Apart from keeping the orthogonality between waveforms, this change
of basis guarantees the solution’s invariance and distributes the transmitted energy among all
DoF sensed as available. Since the sensed null-space basis comprises complex exponentials, the
dimension spreading is uniform (cf. Appendix 3.D). However, this uniform per-DoF energy
distribution can only be guaranteed, in general, when N is sufficiently large.

Observing the Z-plane in Figure 3.7(b), we note that the zeros of the null-space waveform
are uniformly distributed on a circle of radius less than one. The latter follows by noting that the
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Figure 3.7: Sketch of the dimension spreading property for the subspace leakage-free case. The
PSD of the MNTLS waveforms is represented by the shadowed areas delimited by blue solid lines
with circle markers. The zeros corresponding to the classic null-space waveform are depicted
with red exes, whereas those corresponding to the MNTLS waveform are illustrated with blue
circles.
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Figure 3.8: Sketch of the dimension spreading property under the presence of subspace leakage.
The outer-system DoF occupation is the same as in Figure 3.7. In this case, however, one occupied
frequency bin has been erroneously sensed as available. The zeros corresponding to the classic
null-space waveform are depicted with red exes, whereas those corresponding to the MNTLS
waveform are illustrated with blue circles. The zero identified with “SL” highlights the impact of
subspace leakage on the distribution of the zeros.
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classic null-space waveform is, in this case, an orthogonal polynomial with complex-exponential
coefficients. Conversely, the MNTLS waveform zeros follow the zeros distribution of a linear
predictor filter. The signal-subspace zeros are located on the circle of radius equal to one. In
contrast, the so-called extraneous zeros, corresponding to the null space, are almost uniformly
distributed on a circle of radius less than one. Notwithstanding, this behavior can only be
observed when the sensed null-space basis is of the form of (3.70) because then the DoF can be
read as frequency bins. In general, when the DoF cannot be interpreted as frequency bins, and
taking into account that the MNTLS waveforms are orthogonal polynomials, their zeros will be
asymptotically uniformly distributed on a circle of radius less than or equal to one, as discussed
in [Pak87].

A simple example of subspace leakage is depicted in Figure 3.8. Note that one DoF occupied
by outer-network nodes is sensed as available. For the sake of a fair comparison, we assume
that the classic null-space waveform corresponds to the DoF erroneously sensed as available.
This illustrative example reveals the interest in dimension spreading to alleviate the impact of
induced inter-system interference. The classic null-space solution corrupts the outer-network
communication on the DoF erroneously sensed as available, producing a strong interference.
Conversely, the MNTLS waveform derived in this thesis does not put all eggs in one basket and
maximally spreads the transmitted power within the sensed null space; thus, the interference
density per erroneously sensed DoF is minimized. The latter is of paramount importance in
terms of reducing the outage induced on outer-network nodes.

Carefully looking at the occupied DoF sensed as available, we realize that the power trans-
mitted by the MNTLS waveform is µ = 10 log10(M) [dB] lower than the spectral peak produced
by the classic null-space waveform, where M is the dimension of the sensed null space. In this
simple example, since there are 20 actually available DoF,M = 21, meaning that the interference
produced by the classic null-space is µ ≈ 13.22 dB higher. It is worth noting that M plays the
role of the dimension spreading factor and reflects the superiority of the MNTLS waveform in
terms of reducing the undesired inter-system interference.

Finally, the zero distribution depicted in Figure 3.8(b) remains almost unchanged in com-
parison to Figure 3.7(b), except for the zero involved in the subspace leakage, denoted by “SL”,
which now becomes an extraneous zero since the associated DoF has been sensed as available.

SIDR Comparison of Classic Null-Space Approach and MNTLS

The previous numerical toy example has unveiled, from a qualitative viewpoint, the importance
of the DoF spreading capability that the MNTLS solutions enjoy. A formal comparison in terms
of SIDR between the MNTLS waveforms and the classic null-space approach is discussed next.

In Section 2.4.2, the performance of classic null-space strategies have been assessed in terms
of SIR. Nevertheless, we must recall that each waveform designed by these classic approaches is
directly a column of the sensed null-space basis, meaning that the SIDR exhibited by these classic
approaches equals the SIR. Therefore, using the expressions derived in Section 2.4.2, we can
compare the performance exhibited by the proposed MNTLS waveforms and the performance
exhibited by the classic null-space approaches.

For this purpose, recalling the expression for the average SIR offered by the classic null-
space approaches given in (2.45), the average SIDR is proportional to the SIDR of the MNTLS
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(3.69), N = 210 DoF (2.45)
(3.69), N = 211 DoF (2.46), K/M = 50%

(3.69), N = 212 DoF (2.46), K/M = 90%

Figure 3.9: SIDRT,MNTLS (3.69), SIDRT,NS (2.45), and SIDRworst-case
T,NS (2.46) as a function of the null-

space sensing inaccuracy NE/M for a network DoF availability of M/N = 25%.
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Figure 3.10: SIDRT,MNTLS (3.69), SIDRT,NS (2.45), and SIDRworst-case
T,NS (2.46) for N = 210 total system

DoF, network DoF availability of M/N = 25%, and different relative sensing errors NE/M , as a
function of the fraction of exploited null-space DoF K/M .
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solutions and satisfies
SIDRT,NS =

1−NE/M

NE/M
=

SIDRT,MNTLS
NE

, (3.73)

being SIDRT,MNTLS the asymptotic approximation given in (3.69). This relationship reveals that,
on average, the SIDR exhibited by the proposed MNTLS is NE times higher than the classic
null-space approaches. This performance gain is due to the DoF spreading property enjoyed by
the MNTLS waveforms. In this regard, since the inter-system interference is spread over all the
sensed null space, the impact per erroneously sensed as available DoF also decreases. Moreover,
comparing (3.69) and (3.73), we note that the SIDR exhibited by the proposed MNTLS grows
with the total number of DoF. The latter follows from noting that, under the same network DoF
occupancy conditions, increasing the total number of DoF also increases the number of available
ones, meaning that the spreading factor increases and can improve their interference-mitigation
capabilities.

It is interesting to note that the MNTLS waveforms are robust to worst-case null-space
sensing errors; thus, the asymptotic approximation of SIDRT,MNTLS is a worst case. Accordingly,
it can be of interest to include also the worst-case performance of the classic null-space schemes
in this comparison. Therefore, recalling (2.46), we note that the SIDR exhibited by the MNTLS
solutions and the average SIDR of the classic null-space approaches are related to the worst-case
performance of the classic approaches according to

0 ≤ SIDRworst-case
T,NS =

K/M −NE/M

NE/M
≤ SIDRT,NS =

1

NE
SIDRT,MNTLS, (3.74)

which is valid for NE ≤ K ≤ M . In view of (2.46), in contrast to SIDRMNW, SIDRworst-case
NS

depends on the fraction of exploited null-space DoF K/M . Again, the factor K/M highlights
the lack of robustness to sensing errors exhibited by classic null-space schemes.

In order to illustrate the improvement exhibited by the MNTLS waveforms with respect
to the worst-case and average performance offered by classic null-space schemes, a numerical
comparison is provided in Figures 3.9 and 3.10. These Figures reveal that, under worst-case
conditions, null-space schemes need to saturate the null space to achieve their average SIDR
performance and get a little closer to the SIDR performance exhibited by the MNTLS waveforms.
Otherwise, the performance gain exhibited by the latter is even more accentuated.

3.4 The Invariance Property and Detectability

Thus far, the discussion on generalized null space-based opportunistic communication has been
focused on the shaping transmission matrix Φ. At this point, it is natural to wonder how the
matched-filter receiving matrix can be designed under feedforward conditions. It is noteworthy
that, under the lack of coordination and cooperation between inner nodes, it may look like feed-
forward opportunistic communications are inherently non-coherent. Nevertheless, accounting
for the invariance of the MNTLS waveforms, this section demonstrates that coherent detection
is still feasible.

We first assume in Section 3.4.1 that both the inner transmitter and the inner receiver have
identified the same null space. Under these ideal operating conditions, the invariance property
exhibited by the MNTLS waveforms is self-calibrating the inner nodes, which enables coherent
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rT Positioning coordinates of the inner transmitter

rR Positioning coordinates of the inner receiver

ÛN (rT) ∈ CN×MT Null-space basis sensed at the inner transmitter

ÛN (rR) ∈ CN×MR Null-space basis sensed at the inner receiver

MT Number of DoF sensed as available at the inner transmitter

MR Number of DoF sensed as available at the inner receiver

N̂T =
〈
ÛN (rT)

〉
Sensed null space at the inner transmitter

N̂R =
〈
ÛN (rR)

〉
Sensed null space at the inner receiver

ϕk ∈ CN k-th shaping transmission waveform

ψk ∈ CN k-th matched-filter receiving waveform

Φ = [ϕ0 · · · ϕK−1] ∈ CN×K Shaping transmission matrix

Ψ = [ψ0 · · · ψK−1] ∈ CN×K Matched-filter receiving matrix

Table 3.1: Basic notation used throughout Section 3.4.

waveform detection. Nevertheless, in practice, the inner transmitter may identify as available
one or more DoF sensed as occupied by the inner receiver, and vice versa, giving rise to a
phenomenon known as subspace mismatch. Consequently, opportunistic communication suffers
from performance losses that are studied in Section 3.4.2.

Since this section deals with the analysis of the receiving scheme, notation regarding both
the inner transmitter and the inner receiver appear. Thus, for the reader’s convenience, the
basic notation7 used throughout this section is summarized in Table 3.1.

3.4.1 Generalized Null-Space Matched Filter Detection

Recalling the receiver signal model described in (3.1), note that it can be vectorized as

yl =

√
SR
K

K−1∑
k=0

ak[l]ϕ
(l)
k + i+w =

√
SRΦ

(l)al + i+w, (3.75)

where l indexes the arbitrary received block, ϕ(l)
k = [ϕk[0− lN ], . . . , ϕk[N − 1− lN ]]T is the

vectorization of the shaping transmission waveform at the l-th block; the vectorizations of the
interference and the noise is given by i = [i[0], . . . , i[N − 1]]T and w = [w[0], . . . , w[N − 1]]T ,
respectively; al =

[
a0[l], . . . , a(K−1)[l]

]T is the transmitted symbol vector; and the shaping trans-
7Additional notation will be defined as needed.
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mission matrix reads as Φ(l) =
[
ϕ
(l)
0 · · · ϕ(l)

K−1

]
. Without loss of generality, from now on we

will drop the block index l, which simplifies the notation.
Accordingly, letting Ψ = [ψ0 · · · ψK−1]CN×K be the matched-filter receiving matrix, the

sufficient statistic for symbols decoding are given by

z = ΨHy ∈ CK . (3.76)

Therefore, the aim of the inner receiving node consists in locally designing the matched-
filter receiving matrix Ψ exhibiting a small Frobenius distance with respect to the shaping
transmission matrix Φ, i.e.

‖Φ−Ψ‖F (3.77)

has to be minimum. Note that the condition in (3.77) is a requirement for coherent waveform
detection. The problem’s difficulty lies in the fact that the inner nodes are not coordinated and
do not cooperate. Therefore, the matrix Ψ has to be locally designed using only the sensed null
space at the receiver side. It is important to remark that the only information shared between
the inner nodes is the number of total system DoF N .

At this point, let us assume that the inner transmitter and the inner receiver have identified
the same null space, i.e., N̂T = N̂R, implying that MT = MR = M . Nevertheless, it is worth
noting that the sensed null-space bases at each inner node may differ, i.e., ÛN (rT) 6= ÛN (rR).

Recalling (3.25), notice that the MNTLS waveforms are obtained by performing a column
selection on the projector onto the sensed null space. As previously discussed, this property is of
paramount importance since the projectors are unique representations of the spanned subspace.
In other words, the projection matrix is always the same irrespective of the considered subspace
basis.

Back in the problem at hand, let ÛN (rT) ∈ CN×M and ÛN (rR) ∈ CN×M be the sensed
null-space basis at the inner transmitter and receiver. If N̂T = N̂R, then there exists a matrix
Q ∈ CM×M satisfyingQQH = IM such that ÛN (rT) = ÛN (rR)Q. Therefore, we shall note that

P̂0(rT) = ÛN (rT)Û
H
N (rT) = ÛN (rR)QQ

HÛH
N (rR) = P̂0(rR), (3.78)

i.e., even though the sensed null-space basis at the inner transmitter and receiver differ, both
nodes share the same orthogonal projector. It is worth noting that, although a sequential
dimensionality reduction is performed in Algorithm 1, an orthogonal projector is used at each
recursion. Thus, the condition in (3.78) is sequentially satisfied.

A direct consequence of the invariance property described in (3.78) is that the matched filters
for the K transmitted waveforms {ϕk}0≤k≤K−1 satisfy the design condition

ψk = ÛN (rR)λk(rR), for k = 0, . . . ,K − 1, (3.79)

and can be recursively designed as in Algorithm 1. Therefore, note that Φ = Ψ under ideal
operating conditions, yielding to a Frobenius distance (3.77) equal to zero. The receiving scheme
based on MNTLS waveforms is depicted in Figure 3.11, where the “Matched Filter Design” block
is implemented using Algorithm 1.

It is noteworthy that the invariance property has two major consequences:

(i) under ideal operating conditions, the opportunistic communication ideally does not suffer
from ISI, since ψH

k′ϕk = 0, for k 6= k′, and
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Figure 3.11: Modus operandi of the inner receiver in feedforward opportunistic communications.

(ii) the inner receiver obeys a minimum-distance detection criterion, i.e., a minimum squared
distance ‖ψk − ϕk‖2 is achieved despite the lack of interaction between inner nodes.

These two consequences imply that the inner receiver can reliably detect the transmitted infor-
mation in feedforward scenarios. As already discussed in Section 3.3.1, the invariance property
is a fundamental difference between the MNTLS waveforms given in (3.25) and the classic
null-space solution. Recalling that the latter selects columns of the sensed null-space basis as
shaping transmission waveforms, it is clear that full end-to-end coordination is necessary to
neutralize the effects of the end-to-end sensed null-space bases miscalibration and, thus, guar-
antee coherent waveform detection. Therefore, the classic null-space scheme is unsuitable for
opportunistic communication in feedforward scenarios.

3.4.2 The Problem of Inter-Node Subspace Mismatch

Previously, the design of the matched-filter receiving matrix has been discussed under ideal
operating conditions, i.e., when both the inner transmitter and the inner receiver have identified
the same null space. In practice, however, the null spaces sensed at each inner node differ, i.e.,
N̂T 6= N̂R. In the sequel, this phenomenon is referred to as subspace mismatch.

It is worth noting that the problem of subspace mismatch is inherent in feedforward oppor-
tunistic communications since the inner nodes do not cooperate, and the distributed design of
pulse-shaping waveforms and matched filters are based only on the locally sensed null space.
In this context, the reader may wonder if opportunistic communication is feasible.

In order to provide an accurate answer, let us consider the graphical representation illus-
trated in Figure 3.12. The blue and red circles represent the sensed null spaces at the inner
transmitting and receiving nodes, respectively. As we may observe, the sensed null spaces can
be decomposed into two subspaces: the common DoF, represented by N0, and the null-space
excess, represented by DT at the inner transmitter and by DR at the inner receiver. Mathemat-
ically, the DoF sensed as available at the same time at the inner transmitter and receiver span
the intersection of N̂T and N̂R, which hereinafter stands for effective null space.

Definition 3.2 (Effective Null Space). Let N̂T and N̂R be the null spaces sensed at the inner transmitting
and receiving nodes, being MT and MR their dimensions, respectively. The effective null space N0 is
defined as

N0 ≜ N̂T ∩ N̂T, (3.80)

whose dimension is, in general, M0 ≤ min{MT,MR}.
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Figure 3.12: Graphical representation of the relation between null spaces sensed at the inner
transmitting and receiving nodes. Note that N̂T = N0 ⊕DT and N̂R = N0 ⊕DR.

Therefore, taking into account Definition 3.2 and Figure 3.12, the sensed null spaces at the
inner transmitter and receiver can be decomposed as

N̂T = N0 ⊕DT, (3.81)
N̂R = N0 ⊕DR, (3.82)

since the null-space excesses DT and DR satisfy DT ∩ DR = ∅ and N0 ∩ DT = N0 ∩ DR = ∅.
Therefore, letting κT = dim [DT] and κR = dim [DR], note that the number of DoF sensed as
available at each inner node is given by

MT = M0 + κT, (3.83)
MR = M0 + κR. (3.84)

Taking into account the mathematical model for the subspace mismatch problem discussed
above, we can state that (single-hop) feedforward opportunistic communications are feasible if
and only if N0 6= ∅. Otherwise, the inner network suffers from the hidden node problem, which
can be counteracted through inner relay nodes, which is beyond the scope of this thesis.

A final comment on this mathematical model is of order. Recall Figure 3.1. Assuming
that the interference channels are statistically independent, note that the subspace leakage
errors at different inner nodes will be highly likely independent. The latter means that the
same occupied DoF will not be erroneously sensed as available by the inner transmitter and
receiver simultaneously. Therefore, the effective null space N0 does not contain occupied
DoF erroneously sensed as available with high probability. Under these conditions, it seems
reasonable to model the inter-node subspace mismatch problem using the same model as for
the subspace leakage errors described in (3.8). Nevertheless, for the sake of generality, the
subspace mismatch problem is studied through the following model:

ÛN (rT) =
[
UN0,T ∆T

]
, (3.85)

ÛN (rR) =
[
UN0,R ∆R

]
, (3.86)

where N0 =
〈
UN0,T

〉
=
〈
UN0,R

〉
, DT = 〈∆T〉, and DR = 〈∆R〉. This model will be used to

study the impact of subspace mismatch on the detectability performance, whereas the error
model described in (3.8) has been used to analyze the impact of sensing uncertainties on the
coexistence of the inner and outer networks.
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Observing (3.85)–(3.86), it is clear that the orthogonal projectors onto N̂T and onto N̂R, i.e.
P̂0(rT) = ÛN (rT)Û

H
N (rT) and P̂0(rR) = ÛN (rR)Û

H
N (rR), are not longer equal. Accordingly, the

shaping transmission matrix Φ and the matched-filter receiving matrix Ψ also differ. Under
these conditions, if Φ is designed through (3.26), the design of the receiving matrix Ψ may
require an iterative non-coherent waveform detection leading to an inefficient computationally
complex design scheme. On the contrary, if the design of Φ and Ψ relies on the sequential
column selection policy described in (3.27), the opportunistic communication still benefits from
the invariance property within the effective null space N0. Regarding the optimality of this
strategy, as discussed below (3.29), the sequential column selection policy becomes optimal as
the dynamic margin of the main diagonal of the orthogonal projectors decreases, which occurs
for practical values of N .

Impact of Subspace Mismatch on the Opportunistic Communication Performance

Once the mathematical model for the subspace mismatch has been discussed, we are now in a
position to study the impact of the subspace mismatch phenomenon on the detectability.

Recalling Figure 3.12, we can straightforwardly identify a performance loss in terms of
SNR degradation. More specifically, the energy transmitted through DT is lost since the inner
receiver does not perform detection on this subspace.

Moreover, another performance loss in terms of ISI is not as evident as the abovementioned
energy loss. Taking into account that the orthogonal projectors P̂0(rT) and P̂0(rR) slightly
differ as a consequence of the subspace mismatch, the recursive design scheme described in
Algorithm 1 may break the orthogonality between transmitted waveforms at the matched filter
output.

In the sequel, two performance metrics are defined to analyze the impact of subspace
mismatch on the detectability performance. From (3.76), note that the sufficient statistic for
symbols decoding read as

z = ΨHy =

√
SR
K

ΨHΦa+ΨH (i+w) = ΨHΦ︸ ︷︷ ︸
≜ Σ

ã+ υ, (3.87)

where ã =
√

SR/Ka ∈ CK contains the transmitted symbols scaled by the average received
power, and υ = ΨH (i+w) is the filtered interference-plus-noise term.

The matrix Σ ∈ CK×K encompasses the effects of the subspace mismatch phenomenon.
Observing (3.87), it is worth noting that Σ = IK under ideal operating conditions, i.e., in
the absence of subspace mismatch. Nevertheless, under realistic conditions, Σ is a generic
non-diagonal matrix with

[Σ]ij = ψ
H
i ϕj , for i, j = 0, . . . ,K − 1. (3.88)

The main diagonal of Σ, corresponding to the case i = j, measures the received energy after
matched filtering. Note that, in the absence of subspace mismatch, the main diagonal of Σ
is constant and equal to one. In the sequel, the subspace-mismatch energy loss is analyzed
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through the detection relative energy loss ratio ΓK , given by

ΓK ≜ ‖ΦHΦ‖2F
‖
(
ΨHΦ

)
� IK‖2F

=

K−1∑
k=0

‖ϕk‖2

K−1∑
k=0

‖ψH
k ϕk‖2

, (3.89)

where the numerator is, by definition, ‖ΦHΦ‖2F = K, and the denominator corresponds to
the squared Frobenius norm of a diagonal matrix containing the main diagonal of matrix Σ.
In contrast, the off-diagonal elements of Σ, i.e. the case i 6= j, measure the inter-waveform
interference, translating into ISI. As already discussed, this ISI is the consequence of the loss of
orthogonality between transmitted waveforms at the output of the matched filter. The impact
of the self-induced ISI is studied through the ISI-to-signal energy ratio ISRsm[K], defined as

ISRsm[K] ≜
‖
(
ΨHΦ

)
� (1K×K − IK) ‖2F

‖
(
ΨHΦ

)
� IK‖2F

=

K−1∑
k=0

K−1∑
k′=0
k′ ̸=k

‖ψH
k′ϕk‖2

K−1∑
k=0

‖ψH
k ϕk‖2

. (3.90)

Note that the matrix in the numerator in (3.90) is aK×K matrix with zeros in the main diagonal,
and the off-diagonal elements correspond to the off-diagonal entries of the matrix Σ, whereas
the denominator measured the useful energy after matched filtering. Under ideal operating
conditions, the numerator in (3.90) equals zero.

Plugging the expressions for {ϕk}0≤k≤K−1 and {ψk}0≤k≤K−1 provided by Algorithm 1, it
is worth noting that both (3.89) and (3.90) depend on diagonal and off-diagonal elements of the
projectors P̂k+1(rT) = P̂k(rT)

(
IN − ϕkϕ

H
k

)
and P̂k+1(rR) = P̂k(rR)

(
IN −ψkψ

H
k

)
, due to the

recursive nature of Algorithm 1. Therefore, the analysis of both performance metrics (3.89) and
(3.90) lack a closed-form expression, arising the necessity of a simulation-based analysis.

Nevertheless, the detection relative energy loss ratioΓk in (3.89) admits an asymptotic closed-
form characterization for the particular case K = 1. Especially, this particular case is of relevant
interest to predict the behavior of the performance metric in (3.89). Recalling Algorithm 1, it is
noteworthy that the dimensionality reduction required to guarantee the orthogonality between
waveforms only discards one dimension of the sensed null space at each recursion. Accordingly,
the performance metric in (3.89) can be fairly approximated by the detection relative energy loss
ratio for K = 1. Following this rationale, the latter is a tight approximation when the number
of transmitted waveforms K is small8.

The analysis reported in Appendix 3.E reveals that, for large N , (3.89) for K = 1 behaves as

Γ1 =
ϕH
0 ϕ0

|ψH
0 ϕ0|2

−−−−→
N→∞

1 +
κT
M0

+
κR
M0

+
κTκR
M2

0

= 1 + ρT + ρR + ρTρR, (3.91)

where the parameters ρT ≜ κT/M0 and ρR ≜ κR/M0 are referred to as normalized uncertainties
at the inner transmitter and the inner receiver, respectively.

8It is worth noting that small K means that the opportunistic communication is conservative, which seems
reasonable in feedforward scenarios, due to the non-cooperative nature.
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Figure 3.13: Energy Loss induced by inter-node null-space mismatch ΓK (3.89) in dB as a function
of the normalized uncertainty at the inner transmitter ρT, with N = 1024, M0 = N/8 and
ρR = {0.0625, 0.1562}, for different transmitted waveforms K. The closed-formed expression in
(3.91) has been plotted as reference.
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Figure 3.14: Contour plot of the asymptotic subspace-mismatch energy loss given in (3.91), in dB,
as a function of normalized uncertainties at inner transmitter and receiver, ρT and ρR, respectively.
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Figure 3.15: ISI-to-Signal Energy Ratio ISRsm[K] induced by inter-node null-space mismatch
(3.90) in dB as a function of the normalized uncertainty at the inner transmitter ρT, with N =
1024, M0 = N/8, and ρR = {0.0625, 0.1562} (solid and dashed lines, respectively), for different
transmitted waveforms K.
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Figure 3.16: Contour plot of the ISI-to-Signal Energy Ratio ISRsm[K] (3.90), in dB, as a function
of the normalized uncertainties at inner transmitter and receiver, ρT and ρR, respectively, and for
different transmitted waveforms K = {2, 16}.
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The detection relative energy loss ratio ΓK (3.89) is numerically evaluated in Figure 3.13,
where the asymptotic approximation given in (3.91) is also plotted as reference. First, we shall
observe that, as expected, (3.91) is a tight approximation for ΓK in (3.89), particularly when the
number of transmitted waveforms K is small. The latter is of paramount importance to validate
the prediction that ΓK exhibits an almost constant behavior with K and that the dependence on
the number of transmitted waveforms is irrelevant for small K. It is interesting to note that ΓK

is lower than 1.5 dB even when the dimension of the excess null space at the inner transmitter
DT is the 20% of M0 and the dimension of DR is 15.62% of the dimension of N0. Note that these
values of ρT and ρR are pessimistic and may signify either that the inner nodes are observing
relatively different environments or that the null-space sensing scheme can be improved.

The behavior of the asymptotic approximation in (3.91) for a broader range of ρR can be
observed in the contour plot depicted in Figure 3.14. It is interesting to note that the values of
the detection relative energy loss ratio range from 0.2 to 1.4 dB, even in cumbersome scenarios
with both ρT and ρR being approximately the 20% of M0.

Apropos of the self-induced ISI, the ISI-to-Signal Energy Ratio ISRsm[K] is numerically
characterized in Figure 3.15 as a function of the normalized uncertainty at the inner transmitter
ρT for different number of transmitted waveforms K and for ρR = {0.0625, 0.1562 }. In this
case, the impact of the recursive design scheme cannot be bypassed. Note that (3.90) depends
explicitly on off-diagonal elements of orthogonal projectors, which cannot be modeled even
in the asymptotic case. Therefore, it is not possible to find a theoretical approximated model
for the ISRsm[K]. As for the numerical evaluation of (3.89), the values of ρT and ρR leading
to higher ISRsm[K] are pessimistic. Even under these cumbersome conditions, the proposed
opportunistic communication scheme behaves fairly robustly to the ISI induced by the subspace
mismatch problem. Specifically, for practical values of K, we may observe from Figure 3.15 that
ISRsm[K] ∈ (−29,−17) dB, approximately, when ρT = 20% and ρR = 15.62%. The numerical
evaluation for a wider range of ρR is provided in the contour plot illustrated in Figure 3.16,
where the ISRsm[K] has been evaluated for K = {2, 16}.

To conclude, under the cumbersome conditions numerically evaluated in Figures 3.13 and
3.15, the MNTLS waveforms derived in this thesis exhibit a robust behavior to the subspace
mismatch problem. Nevertheless, as we will discuss in Section 3.5, better performance is
possible if the receiver is able to infer N0 and, thus, counteract the impact of ρR.

3.5 Enhanced Detection through Active Subspace Inference

The study carried out in the previous section reveals that the opportunistic communication
based on the MNTLS waveforms is robust to the impact of end-to-end subspace mismatch in
terms of both detection energy loss and self-induced ISI. Nevertheless, the received signal y in
(3.75) contains valuable side information on the effective null space N0 that the inner receiver
can exploit to improve the detection performance.

The last section of this chapter is devoted to analyzing an enhanced two-step design scheme
of the matched filters {ψk}0≤k≤K−1, such that:

(i) Step 1: using the sensed null-space basis at the receiver side ÛN (rR) and the received
signal y, the inner receiver prunes the sensed null space N̂R trying to discard those DoF
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Figure 3.17: Enhanced opportunistic receiving scheme based on MNTLS waveforms. The inner
receiver takes advantage of the side information on the effective null space N0 encompassed in
the received signal y to discard those DoF spanned by the excess matrix ∆R.

not belonging to the effective null space N0.

(ii) Step 2: the inner receiver leverages Algorithm 1 to design the enhanced matched filters
making use of a basis of the pruned sensed null space.

The enhanced receiving scheme is depicted in Figure 3.17. It is worth noting that the first step
consists in identifying which of the DoF encompassed in ÛN (rR) are active in the received
signal y; thus, this step can be seen as an active subspace detection9 problem. Once the inner
receiver has identified a basis of the inferred or recovered effective null space N0, the sequential
waveform design scheme described in Algorithm 1 can be used to design the improved matched
filters. It should be noted that using this procedure, we can guarantee that the matched filters
maximally counteract the impact of interferences from the wireless environment and that the
improved matched filters keep the invariance property.

Mathematically speaking, leveraging the enhanced receiving scheme illustrated in Figure
3.17, the inner receiver can counteract the impact of the subspace mismatch due to DR, meaning
that the normalized uncertainty at the inner receiverρR can be reduced. This effect is numerically
illustrated in Figure 3.18, where we compare the impact of subspace mismatch when ρR =

0.1562, which is the worst scenario considered in the previous section, and the ideal case where
the inner receiver can maximally reduce the normalized uncertainty, i.e., ρR = 0. Regarding
the detection relative energy loss ratio, observe that the use of the enhanced receiving scheme
leads to a decrease of 0.6 dB. Even though it may not seem much, the ISI-to-Signal Energy Ratio
depicted in Figure 3.18(b) experiences a decrease of approximately 4 dB when ρT = 0.1, leading
to an increased SINR and a reduced Bit Error Rate (BER).

A natural question that may arise at this point is where the side information on the effective
null-space N0 is. The answer to this question comes straightforwardly from looking at the
received signal and the sufficient statistic for symbols decoding given in (3.75) and (3.87),

9The problem of active subspace detection has been recently studied in the context of detection theory for
the union of subspaces [LB18]. In this scenario, the signal to be detected belongs to a union of low-dimensional
subspaces. The objective of the sensor/detector is to identify the subspace to which the received signal belongs.
In our case, the received signal y cannot be modeled through the union-of-subspaces signal model. As for the
dimension spreading property of the MNTLS waveforms, all dimensions of the sensed null space at the inner
transmitter are active in the received signal. Thus, the goal of the receiver consists in identifying which of the DoF
spanned by ÛN (rR) are active in the received signal. This problem can be seen as a subspace recovery problem.
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(a) Improvement in terms of detection relative energy loss ratio ΓK (3.89).
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(b) Improvement in terms of ISI-to-Signal Energy Ratio ISRsm[K] (3.90).

Figure 3.18: Comparison of the impact of subspace mismatch in both the detection relative energy
loss ratioΓK (3.89) and the ISI-to-Signal Energy Ratio ISRsm[K] (3.90) with ρR = 0.1562 and ρR = 0,
i.e., the ideal case where the inner receiver is able to perfectly counteract the subspace uncertainty.
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respectively. Recalling the subspace mismatch model given in (3.81)–(3.82), we have that

〈Φ〉 ⊆ N̂T = N0 ⊕DT, (3.92)
〈Ψ〉 ⊆ N̂R = N0 ⊕DR. (3.93)

Therefore, since the received signaly lies in N̂T, the inner receiver can only detect the information
transmitted through N0. Does it mean that opportunistic communication loses information?
Taking into account the dimension spreading behavior of the MNTLS waveforms, all transmitted
symbols are spread out within N̂T, meaning that a fraction of the per-symbol energy of all
transmitted symbols is transmitted through N0. Accordingly, the subspace mismatch does
not incur an information loss. Thus, the signal arrived at the inner receiver is itself the side
information necessary to try to infer or recover the effective null space N0.

Two methods for recovering the effective null space are discussed in the sequel. The first
method exploits the fact that the MNTLS waveforms are specific scaled columns of an orthogonal
projector. Unfortunately, this methodology is suitable only for the particular case K = 1; for
a generic K > 1, this strategy requires estimating several nuisance parameters. This problem
is circumvented by the second proposed method. Moreover, the latter admits a closed-form
implementation through a bank of energy detectors, whereas the first method requires an
iterative procedure that becomes computationally costly as N increases.

3.5.1 Structure-Aware Active Subspace Inference

Let us consider the vectorized signal model in (3.75). First, the discussion is focused on the
particular case K = 1. Under this assumption, note that (3.75) becomes

y =
√
SRa0ϕ0 + i+w, (3.94)

where, as in Section 3.4, the index of the arbitrary received block l has been dropped. Accord-
ingly, the sufficient statistic for symbol decoding leads to

z = ψH
0 y. (3.95)

The objective of the active subspace detection procedure consists in finding which DoF belong-
ing to N̂R are active in the received signal (3.94). For this purpose, and in order to minimize the
BER, the maximization of the power of the sufficient statistic (3.95) is considered.

Noting that the matched filter ψ0 is a scaled column, the enhanced matched filter ψ̃0 can be
constructed as

ψ̃0 = γ0P̂N0e0, (3.96)

where e0 is defined as in (3.19), γ0 is a scaling factor guaranteeing unit norm, and P̂N0 is the
orthogonal projector onto the inferred or recovered effective null space. Let P̂m(rR) be the
rank-one orthogonal projector onto the m-th dimension, for m = 1, . . . ,MR, of the sensed null
space at the receiver side. Thus, P̂N0 can be written as10

P̂N0 =

MR∑
m=1

P̂m(rR)µm, with P̂m(rR) = ûm(rR)û
H
m(rR), (3.97)

10In general, the sum of projection matrices is not a projector. Nevertheless, in this specific case, since each
P̂m(rR) projects onto orthogonal dimensions of the sensed null space at the receiver side, the sum of these rank-one
projectors is also a projector.
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where ûm(rR) is the m-th column of ÛN (rR) and µm ∈ {0, 1} determines if the m-th dimension
of N̂R belongs to the effective null space N0. Defining µ = [µ1, . . . , µm, . . . , µMR ]

T , and using
(3.96) and (3.97), the enhanced matched filter ψ̃0 can be compactly written as

ψ̃0 = γ0Πβ, (3.98)

with

Π =
[
P̂1(rR) · · · P̂m(rR) · · · P̂MR(rR)

]
∈ CN×NMR , (3.99)

β = µ⊗ e0 ∈ {0, 1}NMR . (3.100)

In view of (3.98)–(3.100), and recalling (3.95), the design of the enhanced matched filter can be
tackled as

β = max
β∈{0,1}NMR

E
[
ψ̃H

0 yy
Hψ̃0

]
= max

β∈{0,1}NMR
ψ̃H

0 Ryyψ̃0, (3.101)

where Ryy = E
[
yyH

]
is the autocorrelation matrix of the received signal. From (3.101), the

reader may recognize two different detection problems, that are jointly solved. On the one hand,
the inner receiver has to detect those dimensions of its sensed null space that are active in the
received signal y. On the other hand, the inner receiver has to decide which column of P̂N0

is the best matched filter for the transmitted waveform ϕ0. Interestingly, finding the vector β
solving (3.101) suffices to address both problems.

Taking into account the Boolean nature of β, it is worth noting that a combinatory problem
arises, unfeasible to tackle at large NMR. In the particular case where the dynamic margin of
P̂N0 is small enough, ψ̃0 corresponds to the first column of P̂N0 , appropriately scaled, additional
constraints can be incorporated in (3.101) to decrease the number of unknown parameters to
be found. In general, however, the linear model described in (3.98) is underdetermined, and β
is an s-sparse vector11, meaning that only s out of NMR components are non-zero. In order to
circumvent the underdetermined nature of (3.98) and take advantage of the inherent sparsity
of the vector β, it seems reasonable to tackle the design of β as

min
β∈Fβ

f(β) (3.102)

subject to g(y,β) ≤ η (3.103)

where Fβ is the feasible set of β, f(β) has to be a sparsity-promoting function, e.g. the L0-
norm, g(y,β) should measure the error between the input y and a reconstruction of the received
signal ŷ = γ0Πβ based on the inferred vector β, and η is the maximum allowed error. Recall
the vectorized model in (3.94). In order to improve the reconstruction ŷ, the inner receiver can
also estimate the data symbol a0 and the signal amplitude

√
SR, which are nuisance parameters

for the active subspace detection problem, such that ŷ = Ξ̂γ0Πβ with Ξ = a0
√
SR. As per

[RSV01], these nuisance parameters can be estimated by leveraging the Conditional Maximum
Likelihood (CML) framework.

Recalling (3.102)–(3.103), note that in this case the feasible set of β is Fβ = {0, 1}NMR , i.e.,
the set of NMR-length Boolean vectors. Therefore, one possibility is to make use of the Binary
Sparse Recovery (BSR) framework. Several approaches to the problem of BSR can be found in

11Assuming that the inner receiver can perfectly recover the effective null space, note that s = M0.
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the recent literature (see, e.g., [FK18; Fos18; FA19; CFR21; SP21]). From these works, [Fos18;
FK18] are outperformed by the polynomial optimization proposed in [FA19], [CFR21] is based
on a non-convex optimization problem assuming known the L0-norm of the solution, and
[SP21] is focused on a specific signal model different from the signal model considered herein
[cf. (3.94)]. Even though the approach discussed in [FA19] seems the most appropriate for the
problem at hand from the BSR framework, the exact recovery of the sparse vector β requires
a sufficiently small number of non-zero entries; a sufficiently large number of measurements,
i.e., the dimension of y; and a sufficiently high SNR.

An alternative formulation is proposed to circumvent the binary nature of the vector β to
be designed. Let the matrixB ∈ CN×MR be the unvectorization of β, given by

B = [µ1e0 · · · µme0 · · · µMRe0] . (3.104)

From this matrix, we can define the following variables:

b1 ≜ BT1N = [µ1 · · · µm · · · µMR ] ∈ CMR×1, (3.105)

b2 ≜ B1MR =
[
0n−1 M̂0 0N−n

]
∈ CN×1, (3.106)

with n = 1, . . . , N . Notice that (3.105) is an MR-element vector containing the sum of the N

rows of matrixB, whereas (3.106) is anN -element vector containing the sum of theMR columns
of matrix B. The parameter M̂0 refers to the dimension of the identified effective null space.
The rationale behind (3.106) is the following. Since the vector e0 selects one column from the
orthogonal projector onto the inferred effective null space P̂N0 , all entries of (3.106) are zero but
the one indicating the selected column. This entry, namely n, is equal to

[b2]n =

MR∑
k=1

µk = M̂0, (3.107)

which follows from noting that λk ∈ {0, 1}. This discussion is of paramount interest since it
reveals that, once the vector β satisfying (3.102)–(3.103) is obtained, the active dimensions can
be identified from (3.105), whereas the most suitable column to demodulate the received signal
y is found from (3.106).

In the sequel, we propose dropping the constraint on the feasible set of β, letting Fβ =

CNMR . This relaxation is of paramount importance because it permits addressing (3.102)–
(3.103) through the classic compressed sensing framework [EK12]. More specifically, β can be
found as

min
β∈CNMR

‖β‖0 (3.108)

subject to ‖y − ŷ‖22 ≤ η2 (3.109)

where ŷ is the reconstruction of the received signal y, as discussed on the previous page. Op-
timizing the L0-norm is an NP (non-convex) problem. A conventional approach to circumvent
this non-convexity consists in using the L1-norm in lieu of the L0-norm; this approach is known
as convex relaxation. Another possibility is to leverage a matching pursuit algorithm. The latter
are greedy algorithms that recover the signal iteratively, providing a sparse approximation in
polynomial complexity; thus, these greedy algorithms are, in general, more computationally
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efficient than the convex relaxation methods, also known as L1-based optimization. A third
approach to deal with the sparse recovery problem consists in using non-convex optimization
techniques, which exploit the statistical distribution of the signal. The main drawback of this
third approach is the computational inefficiency in high-dimensional problems. A complete
review of sparse recovery algorithms can be found in [MMN+18].

Once the β solving (3.108)–(3.109) is found, the matrix B in (3.104) can be constructed.
From this matrix, we can also find the vector b1 in (3.105), which is the statistic to infer the
effective null space. Note that, under the assumption β ∈ CNMR , b1 is not Boolean, requiring
a binarization. Therefore, the problem of identifying the effective null space from b1 hints at a
set of MR binary hypothesis testing problems. Accordingly,

∣∣∣[b̃1]
m

∣∣∣ =
1, if |[b1]m| ≥ γth

0, otherwise
, (3.110)

where the decision threshold γth can be set to keep the false-alarm probability of the active
subspace detection problem, i.e., the probability of detecting as active a dimension not belonging
to the effective null space as low as possible. In this case, we may say that γth has to be optimum
in the Neyman-Pearson sense [Kay98].

Finally, once the vector b1 has been binarized, the most suitable column of P̂N0 can be
found leveraging (3.106). Alternatively, we can leverage (3.110) to infer the dimensions of N̂R
belonging to the effective null space N0, and the column selection from P̂N0 (3.97) can be done
as in (3.29). Note that whenever the sequential column selection policy in (3.27) can be adopted
from the very beginning, the first column of P̂N0 is selected.

It is interesting to note that the problem formulated in (3.108)–(3.109) is based on the
single measurement vector (SMV) compressive signal model, i.e., a single received block y
is considered. The performance of the active subspace detection problem may benefit from
stacking l = 1, . . . , Q received blocks. In this sense, let ỹ ∈ CNQ be a collection of Q received
blocks, i.e.

ỹ =
[
yT1 · · · yTl · · · yTQ

]T
, (3.111)

and Π̃ ∈ CNQ×NMR be the vertical stacking of Q matrices Π (3.99), i.e.

Π̃ =

 Π
...
Π

 . (3.112)

Accordingly, the sparse recovery of β can be reformulated as

min
β∈CNMR

‖β‖0 (3.113)

subject to 1
Q‖ỹ − Π̃β‖22 ≤ η2 (3.114)

where the factor 1/Q in (3.114) guarantees that the same maximum allowed squared-error η2 as
in (3.109) can be used. Intuitively, including multiple received blocks can improve the perfor-
mance of the sparse recovery problem at expense of increasing the computational complexity
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due to the dimension increase observed in (3.113)–(3.114). Nonetheless, expanding theL2-norm
in the constraint, we note that

1

Q
‖ỹ − Π̃β‖22 =

1

Q

Q∑
l=1

‖yl −Πβ‖22, (3.115)

which is more computationally efficient. Note that (3.115) states that the squared-error con-
straint in (3.114) is equivalent to the cumulative squared-error of each received block.

At this point, we shall discuss the objective of relaxing the feasible set ofβ, lettingFβ = CNMR .
It is worth noting that dropping the constraint on the feasible set, the vector β solving (3.102)–
(3.103) is a generic sparse complex vector. Therefore, regardless of the algorithm considered
to circumvent the non-convexity of the L0-norm, β is adapted to minimize the power of the
residual in (3.109), avoiding the necessity of estimating nuisance parameters to obtain a more
accurate reconstruction ỹ of the observed received block.

A fundamental aspect to discuss is whether the recovery of the exact vector β is guaranteed.
In the literature on compressed sensing, several criteria have been proposed to assess if the
sensing or measurement matrix is suitable to recover the sparse vector, such as the spark [DE03],
the mutual coherence [DH01], and the restricted isometry property [CT05]. Note that, in the problem
at hand, the measurement matrix is Π, defined in (3.99). The analysis reported in Appendix
3.F reveals that the recovery of β cannot be guaranteed in general. This pessimistic conclusion
seems to limit the interest in the proposed active subspace detection scheme. Nevertheless, we
have to keep in mind that the objective is not the recovery of β, but the inference of the effective
null space N0. In this sense, the numerical analysis carried out in Section 3.5.3 illustrates that,
under specific conditions, the effective null space N0 can be identified.

Thus far, the discussion is focused on the particular case K = 1, i.e., the transmitted block
is composed of a single symbol. We have seen that using a thresholding criterion to binarize
the inferred vector β, we can tackle the active subspace detection and the matched filter design
jointly. For a generic K > 1, however, the latter approach is not possible as the design of
the matched-filter receiving matrix involves a sequential procedure. Taking into account this
consideration, is it worthwhile to solve the non-convex problem stated in (3.113)–(3.114)?

Exploiting the structure of the MNTLS waveforms is not appropriate for detecting the ef-
fective null space N0; this approach lacks a closed-form expression requiring approximations
to circumvent the non-convexity inherent in sparse optimization problems. A more general
active subspace detection scheme is proposed in the following subsection. In contrast to the
structure-aware approach discussed above, the more general strategy separates the active sub-
space inference and the design of the matched-filter receiving matrix. Consequently, a closed-
form solution for the active subspace detection problem is found, which can be efficiently
implemented through a bank of energy detectors.

3.5.2 Energy-based Effective Null Space Inference

Previously, an attempt has been made to jointly detect the effective null space N0 and select
the appropriate column of the projector onto the inferred N0 to demodulate the received sig-
nal. However, the problem faces a cumbersome sparse optimization problem, whose solution
involves approximations or greedy algorithms incurring a possible inefficiency in terms of com-
putational complexity, especially for large N . In any case, the solution proposed in the previous
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subsection is only valid for K = 1, as the proposed problem formulation cannot circumvent the
recursive nature of Algorithm 1.

In the sequel, the problems of detecting the effective null space and designing the matched-
filter receiving matrix are tackled separately. As already discussed on the previous page, this
divide and conquer approach is the only possibility to efficiently circumvent the recursive nature
of Algorithm 1. It is worth noting that the inner receiver knows how to design the matched
filters for a given null-space basis; thus, efforts have to be made to identify a basis of the effective
null space to decrease the impact of the subspace mismatch. At the end of this subsection, we
will see that, interestingly, the general case admits an efficient closed-form solution.

For notational purposes, let us write the shaping transmission matrix as

Φ = [ϕ0, . . . ,ϕK−1] = ÛN (rT) [λ0(rT), . . . ,λK−1(rT)] = ÛN (rT)ΛT. (3.116)

Accordingly, the matched-filter receiving matrix can be written as

Ψ = [ψ0, . . . ,ψK−1] = ÛN (rR)ΛR. (3.117)

Recalling the vectorized signal model described in (3.75), we note that the relevant information
at the received side is given by

νl = P̂0(rR)y =

√
SR
K

[
UN0,T 0

]
ΛTa+ n, (3.118)

which follows from noting that, since N̂T 6= N̂R under the existence of inter-node subspace
mismatch, and thatn = P̂0(rR)(i+w) is the relevant interference-plus-noise term. It should be
emphasized that all interferences laying outside the sensed null space at the inner receiver N̂R
will be canceled out by the matched-filter receiving matrix relying on the MNTLS waveforms.
In (3.118), we have dropped the received block index, as in Section 3.4. As for (3.85), the matrix
UN0,T spans the effective null spaceN0. The relevant information modeled in (3.118) emphasizes
that only the amount of signal energy transmitted through the effective null space is detected
by the inner receiver; thus, the energy transmitted through the excess null space at the inner
transmitter DT is not represented in the relevant information model.

Note that, regardless of the existence of subspace mismatch, the invariance property holds
within the effective null space N0. Therefore, recalling (3.86), the relevant information in (3.118)
admits, without loss of generality, the following interpretation:

νl =

√
SR
K

[
UN0,R ∆R

] ΛN0,R

0

a+ n = ÛN (rR)θ + n, (3.119)

i.e., if the inner receiver is able to identify which of the dimensions of N̂R do not belong to the
effective null spaceN0, only the coefficients defining the enhanced matched filters, encompassed
in matrix ΛN0,R, have to be designed. As per (3.119), note that the coefficients vector θ satisfies

|[θ]m| =

Cm if and only if ûm(rR) ∈ N0

0 otherwise
, for m = 1, . . . ,MR, (3.120)
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where Cm ∈ R+ and ûm(rR) refers to the m-th column of ÛN (rR). It is interesting to emphasize
that the coefficients vector θ encompasses the information of the linear combinations ΛN0,R
defining the K matched filters, the data symbols a, and the signal amplitude.

Observing the model described in (3.119), it is worth noting that the objective of the inner
receiver consists in identifying the coefficients vector θ. This problem can be cast as a subspace
recovery problem, i.e., identify which dimensions of N̂R are active in the received signal y.
As discussed in [YV15b; LYV18] (and references therein), this problem can be formulated as
a classical (noisy) sparse recovery problem. In contrast to the problem formulated in (3.108)–
(3.109), in this case, we leverage a specific optimization principle known as Basis Pursuit
Denoising (BPDN), also known as Least Absolute Shrinkage and Selection Operator (LASSO) in
statistics. The use of this methodology will be justified afterward. Therefore, the BPDN/LASSO
problem can be formulated as an L1-regularized least-squares optimization problem, whose
Lagrangian form [MMN+18; HTW19] is given by

θ = argmin
θ

{
‖y − ÛN (rR)θ‖22 + γ‖θ‖1

}
, (3.121)

where γ is the regularization parameter. At this point, some considerations are of order. Note
that the measurement matrix in (3.121) is ÛN (rR), which is left-unitary. Therefore, the problem
formulated in (3.121) has two relevant properties:

(i) The measurement matrix ÛN (rR) meets the mutual incoherence condition, i.e.

µ
(
ÛN (rR)

)
= max

m ̸=n
m,n=1,...,MR

∣∣ûH
m(rR)ûn(rR)

∣∣
‖ûm(rR)‖2 ‖ûn(rR)‖2

= 0, (3.122)

providing recovery guarantees of the sparse signal θ. Moreover, as per [YV15a; YV15b],
the mutual incoherence is a sufficient condition for the subspace recovery problem.

(ii) As emphasized in [HTW19] solving the LASSO problem involves a cyclic coordinate
descent algorithm. Nevertheless, as also reported therein, if the measurement matrix is
an orthogonal basis, then the L1-regularized least-squares problem in (3.121) admits a
non-iterative closed-form solution given by

[θ]m = Sγ

(
ûH
my
)
=


ûH
my − γ if ûH

my > γ

0 if |ûH
my| ≤ γ

ûH
my + γ if ûH

my < −γ

, for m = 1, . . . ,MR, (3.123)

where Sγ(x) = sign(x)(|x| − γ)+ is a soft-thresholding function [FR13; HTW19].

These two properties justify using the BPDN/LASSO framework to address the aforemen-
tioned subspace recovery problem. Conversely, in the previous subsection, since the measure-
ment matrix does not provide any measurement guarantee and the problem does not admit a
closed-form solution, choosing the strategy to solve (3.108)–(3.109) depends on the computa-
tional capacity of the inner nodes and the desired accuracy level; thus, the discussion has not
been focused on any particular methodology.

A direct consequence of the closed-form solution provided in (3.123) is that the active
subspace detector is Nondata-Aided (NDA) since side information on the signal amplitude, the
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Figure 3.19: Implementation of (3.123) as a bank of energy detectors (3.124)–(3.125).

data symbols, or the linear combination coefficients matrix ΛN0,R are not needed. Accordingly,
no nuisance parameters have to be estimated.

Carefully observing (3.123), it is noteworthy that this NDA active subspace detector hints at
a set of MR binary hypothesis testing problems, where the null and alternative hypotheses are
given by

H(m)
0 :

∣∣ûH
my
∣∣ ≤ γ (3.124)

H(m)
1 :

∣∣ûH
my
∣∣ > γ (3.125)

for m = 1, . . . ,MR. Note that these binary hypothesis testing problems can be tackled as a bank
of classic energy detectors [Kay98]. This observation is of paramount importance since an NDA
active subspace detector enjoying subspace recovery guarantees can be tackled by a simple
per-DoF energy detector as illustrated in Figure 3.19, avoiding the implementation of complex
greedy algorithms or convex approximations as in (3.108)–(3.109). From (3.123), note that the
decision is based on a single sample per DoF; thus, the detection problem may suffer from the
randomness introduced by the noise and the unknown information symbols. However, this
randomness can be counteracted when the receiver uses l = 1, . . . , Q received blocks.

As a final note, notice that by implementing an active subspace detector to infer N0, the
inner receiver may counteract the impact of subspace mismatch due to DR. A natural question
that may arise is how to counteract the subspace mismatch at the transmitter side. The inner
transmitter may exploit the response message sent by the inner receiver and infer N0 leveraging
the per-DoF energy detection-based active subspace detector illustrated in Figure 3.19 under
TDD conditions. This approach does not require additional side information, even though it
may improve detection performance. This problem was briefly studied by the author in [BV19]
for the particular case K = 1 leveraging the strategy discussed in Section 3.5.1. Concluding,
we should emphasize that both inner nodes can counteract the impact of subspace mismatch
in a single bidirectional round, meaning that once the inner transmitter has identified N0, the
opportunistic communication performance is (near) optimal.

3.5.3 Simulation Analysis

In this subsection, the active subspace detection schemes previously discussed are numerically
evaluated. A total of N = 1024 system DoF is considered. Under subspace mismatch, the
inner transmitter and the inner receiver sense different null spaces. For this evaluation, we
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have considered that the effective null space N0 has dimension M0 = 128 DoF. After sensing the
wireless environment, the inner transmitter detects 192 available DoF, whereas the inner receiver
senses 256 available DoF. Therefore, the normalized uncertainties at the inner transmitter and the
inner receiver are ρT = 0.5 and ρR = 1. It is worth noting that these values are very pessimistic
and probably unrealistic. They define a challenging scenario to validate the robustness of
the active subspace detection schemes discussed in this section. In order to evaluate the
performance of these schemes, we define the following metrics:

• Probability of Detection PD:
PD ≜ P

{
Ĥ(m)

1

∣∣∣H(m)
1

}
, (3.126)

i.e., the probability of detecting as active a DoF belonging to the effective null space N0.

• Probability of False-Alarm PFA:

PFA ≜ P
{
Ĥ(m)

1

∣∣∣H(m)
0

}
, (3.127)

i.e., the probability of detecting as active a DoF not belonging to N0.

In the sequel, the transmission of K waveforms carrying 16-QAM symbols through a channel
that remains constant during the transmission is considered. Moreover, the performance of
both schemes described is analyzed when Q ≥ 1 data blocks are taken into account.

The Particular Case K = 1

First, we consider an opportunistic communication scenario involving only a single waveform.
Even though it is the most simple case, it is useful enough to compare the performance of both
active subspace detection schemes discussed in this section.

Regarding the structure-aware active subspace inference scheme described in Section 3.5.1,
note that there are several options to deal with the non-convexity of the sparse optimization
problem described in (3.108)–(3.109) or, equivalently, in (3.113)–(3.114). Among the differ-
ent alternatives, the use of a greedy algorithm is considered. Greedy algorithms offer a fair
complexity-performance trade-off and even outperform convex relaxation-based optimization
schemes in some cases [EK12, Chapter 8]. In particular, the well-known Orthogonal Matching
Pursuit (OMP) algorithm [Tro04; TG07; CW11] is chosen. Even though the OMP has two main
drawbacks when applied to large-scale data –computation and storage costs and the number of
required iterations– it can outperform its variations that deal with these two drawbacks [EK12,
Chapter 8]. The OMP has basically two stopping criteria. A natural option to limit the number
of iterations is the sparsity level of the vector to be recovered. Nevertheless, the sparsity level
is usually unknown and has to be estimated. In the problem at hand, the sparsity level is
exactly the dimension of the effective null space, which is unknown. Another typical stopping
criterion, which is considered herein, is based on upper-bounding the residual error, i.e., (3.109)
or, equivalently, (3.114).

Another aspect that has to be discussed is the selection of the threshold for each active
subspace detection strategy. In order to set the threshold in (3.110), the output of the OMP
algorithm has been analyzed. Since the objective consists in determining if the m-th dimension
is active, the thresholding step in (3.110) has been tackled as the detection of an unknown
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(a) Eb/N0 = 0 dB.
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Figure 3.20: Comparison of the Receiver Operating Characteristics of Method 1 and Method 2,
corresponding to the active subspace detection schemes described in Sections 3.5.1 and 3.5.2,
respectively, for different Eb/N0.
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constant in Gaussian noise [Kay98, Chapter 3]. On the other hand, the active subspace detection
strategy in (3.121) has been tackled as a classical energy detection. For the sake of simplicity, the
decision threshold in (3.123) or, equivalently, in (3.124)–(3.125), has been set as the square-root
of the decision threshold for an energy detection problem under the Gaussian assumption12
[VV07]. As per [Kay98, Chapter 5], γ =

√
Q−1

χ2
2L
(PFA)σ2

n, where Q−1
χ2
2L
(·) is the tail probability of

a central Chi-square distribution with 2L degrees of freedom and σ2
n is the noise variance.

Figure 3.20 compares the Receiver Operating Characteristics (ROC) of the two active sub-
space detection schemes discussed in this section for different bit energy-to-noise ratio Eb/N0.
Note that Method 1 and Method 2 refer to the active subspace detection schemes described in
Sections 3.5.1 and 3.5.2, respectively. It is worth noting that, for a given number of received
blocks Q, Method 2 outperforms Method 1 regardless of the operating Eb/N0. Nevertheless,
we can observe that Method 1 exhibits a faster growth in PD. A possible reason behind this
observation lies in how each method obtains the test statistic for the active subspace detection
problem. While Method 2 requires only a matched filtering stage using the sensed null-space
basis at the inner receiver, Method 1 requires a greedy algorithm that can be computation-
ally costly and inefficient in terms of storage for large-scale data. The test statistic employed
by Method 1 contains inherent information on some nuisance parameters, i.e., since the test
statistic is iteratively adapted to the received signal, the test statistic encompasses the scaling
introduced by the signal amplitude and the information symbol. On the contrary, Method 2
treats the signal per DoF as a random variable without requiring the estimation of nuisance
parameters.

In conclusion, we note that, despite its simplicity, Method 2 exhibits a better performance
in terms of subspace recovery. The main reason behind this fact lies in its proven optimality
in terms of mutual incoherence, which is a sufficient but not necessary condition to guarantee
the recovery of a subspace. Therefore, since Method 1 is more computationally complex and
is outperformed by Method 2, it will not be studied for the general case K > 1. Moreover, we
shall recall that, in the general case, Method 1 requires incorporating the recursive nature of
the waveform design scheme in Algorithm 1, becoming more computationally challenging.

The General Case K > 1

In the sequel, we numerically analyze the general case where opportunistic communication
involves K > 1 waveforms, which is more attractive and realistic. Note that, for K = 1,
Method 2 suffers from the subspace-mismatch energy loss. However, this energy loss can be
counteracted thanks to the SNR gain introduced by transmitting K > 1 waveforms, which
justifies the interest of this general case. The analysis described below aims to corroborate that,
under mild operating conditions, the effective null space N0 can be almost perfectly identified.

For this purpose, we consider the opportunistic transmission of K = {1, 2, 4} waveforms
(equivalently, information symbols). As for the previous case, the Gaussian assumptions is
considered; hence, the decisions threshold is set to γ =

√
Q−1

χ2
2L
(PFA)σ2

n. In this case, however,

12Even though the test statistic will not be Gaussian distributed with high probability for K = 1 and Q = 1, it
will converge to a Gaussian variable as K or Q increase, which occurs with high probability at low-SNR and may
occur at high-SNR for relatively small values of K and Q if the data has not constant modulus. Accordingly, the
Gaussian assumption has been considered in all simulations for ease of discussion.
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Figure 3.21: Receiver Operating Characteristics for active subspace detection with ρT = 0.5 and
ρR = 1, for different waveforms K and Eb/N0.
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Figure 3.22: Probability of Detection (PD) vs. Eb/N0 for active subspace detection with ρT = 0.5
and ρR = 1, for different waveforms K and false-alarm rates.
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Figure 3.23: ROC for active subspace detection with ρT = 0.5, ρR = 1, and Eb/N0 = 0 dB for
different waveforms K and received blocks Q.

the Gaussian assumption holds almost surely for K > 1 since the information symbols are
drawn from a 16-QAM constellation [VV07].

First, we study the case where the inner receiver performs the active subspace detection
using only one received block, i.e., Q = 1. Note that this case corresponds to the use of one
sample per dimension. Figures 3.21 and 3.22 evaluate the ROC and the probability of detection PD

versus the Eb/N0, respectively, for Method 2, corresponding to (3.121)–(3.123) or, equivalently,
to (3.124)–(3.125). Under challenging conditions, i.e., a low operating false-alarm rate PFA and
low operating Eb/N0, the proposed active subspace detection scheme improves with K, as
K introduces an SNR gain. In fact, the expected SNR improvement is 10 log10(K) dB. This
improvement is more clearly emphasized in Figure 3.22. For instance, with PFA = 10−1, note
that a probability of detection of PD = 0.95 is achieved at Eb/N0 ≈ 3 dB when K = 2 waveforms
are transmitted, whereas an Eb/N0 = 0 dB is required if K = 4 waveforms are used.

It is worth noting that, for K = 1, the model is not accurate since the Gaussian assumption
does not hold, which motivates the study for Q > 1. Moreover, the randomness introduced by
the information symbols and the noise can be averaged out in this more general case.

In Figures 3.23 and 3.24 we compare the detection performance when the inner receiver uses
Q = {1, 2} to infer the effective null spaceN0. Regarding the ROC of the proposed methodology
depicted in Figure 3.23, we may observe that, even at low-SNR regimes, it is possible to achieve a
probability of detection higher than 0.9whenK = 1waveforms are transmitted, and the receiver
accounts for Q = 2 received data blocks. However, it is worth noting that this improvement
incurs an increased latency since the inner receiving node has to wait for the reception of Q
data blocks before solving the hypothesis test.

The impact of considering Q = {1, 2} received blocks is also illustrated in Figure 3.24,
where the probability of detection is depicted versus the operating Eb/N0. We can appreciate
the peculiar behavior of PD for K = 1 and Q = 1. Nevertheless, as the number of received
blocks Q increases, PD tends to have a more stable behavior as for the cases when K > 1.
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Figure 3.24: PD vs. Eb/N0 for active subspace detection with ρT = 0.5, ρR = 1 and PFA = 0.01 for
different waveforms K and received blocks Q.

When more than one waveform is involved in opportunistic communication, the use of multiple
received blocks reinforces the Gaussian assumption and provides an additional increase in SNR.
The Gaussian assumption is fundamental to decreasing the complexity of the active subspace
detection scheme proposed in Section 3.5.2. Suppose the inner receiver had to estimate the
underlying statistical distribution of the received data. In that case, the advantages of the closed-
form energy detection-based active subspace detector could be shadowed by the complexity
inherent to the statistical distribution inference.

This discussion leads to a trade-off between detection performance, complexity, and latency.
In most cases, using the energy-based active subspace detector (Method 2) under the Gaussian
assumption is practical even if Q = 1 for the realistic case K > 1. This method admits a closed-
form implementation, becoming a simple solution from a computational complexity view, and
permits working at a low false-alarm rate13 PFA even at the low-SNR regime.

3.6 Conclusions

This chapter has dealt with the design of minimum-interference waveforms for feedforward
opportunistic communications. In this respect, the solutions to the constrained minimization
problem on the worst-case inter-system interference level have a closed-form solution; thus,
they can be recursively designed. The solution to this optimization problem has been shown to
be an appropriately scaled column of the orthogonal projector onto the sensed null space. Nev-
ertheless, a recursive dimensionality reduction is required to keep the orthogonality between
the designed waveforms.

Two main properties of the designed waveforms have been discussed in this chapter. On
13Note that false-alarm events can be more critical than miss-detection errors since the impact of the latter can be

counteracted by the inner transmitter performs the active subspace identification scheme. Conversely, if the inner
receiver discarded some DoF laying in N0, opportunistic communication would suffer from an energy loss.
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the one hand, it has been shown that these waveforms minimize the total residual inter-system
interference by spreading the transmitted symbols over the whole sensed null space. Asymp-
totically, this spreading has been proven to be uniform; thus, the same amount of energy is
asymptotically allocated at each dimension of the sensed null space basis. The latter is of
paramount importance in reducing the interference density per DoF. On the other hand, it
has been demonstrated that the proposed waveforms are invariant to linear transformations of
the sense null space basis (e.g., rotations), meaning that the proposed waveforms are unique
within the sensed null space. This property permits the inner receiver to design the matched
filters without cooperating nor being coordinated with the inner transmitter, which is crucial
in feedforward scenarios. These two properties can be seen as improvements with respect to
classic null-space waveforms; hence, the waveforms proposed in this chapter are referred to as
MNTLS waveforms.

Even though the inner nodes can design the pulse-shaping and matched filters without
coordination or cooperation, opportunistic communication may suffer from inter-node subspace
mismatch. This chapter has also analyzed the impact of this subspace mismatch, highlighting
the robustness of the MNTLS waveforms. Nevertheless, an enhanced detection scheme has
been proposed to improve opportunistic communication performance. It has been illustrated
that the system performance can improve if the inner receiver performs an active subspace
detection scheme to counteract the impact of the subspace mismatch on the detectability. In
this respect, two different active subspace detection schemes have been studied. Whereas
one of them requires solving a non-convex sparsity-based optimization problem, the other
one admits a closed-form solution that can be implemented through a bank of classic energy
detectors. The performance of both active subspace detection strategies has been assessed
through numerical simulations, which reveal that the energy detection-based strategy exhibits
a robust performance in challenging low-Eb/N0 regimes and a better detection performance
than the sparsity-based alternative.

98



Appendix 3.A Proof of (3.25)

The waveform design problem addressed in this work can be tackled as in (3.20), i.e.,

{λk}0≤k≤K−1 = argmin
{λk},{ek}

{
max
EN

K−1∑
k=0

∥∥∥EH
N ÛNλk

∥∥∥2
2

}
(3.128)

s.t. ‖EN ‖2F ≤ ξ2 (3.129)
λH
k λk′ = 0, k 6= k′ (3.130)
λH
k Û

H
N ek = αk (3.131)

Therefore, we first address the maximization with respect to EN . Since only the constraint
(3.129) involves the null-space error matrix, the Lagrangian associated with the maximization
step is given by

L (EN , µ) =

K−1∑
k=0

∥∥EH
Nϕk

∥∥2
2
− µ

(
‖EN ‖2F − ξ2

)
, (3.132)

where µ is the Lagrange multiplier. This quadratic problem is solved by

K−1∑
k=0

ϕkϕ
H
k EN = µEN . (3.133)

Thus, the worst-case null-space error matrix EN is given by

EN = Φ = [ϕ0 ϕ1 ...ϕK−1] , (3.134)

i.e., the worst-case EN is a rank-K matrix equal to the shaping transmission matrix Φ defined
in (3.2). Note that this is indeed the worst-case scenario in which the uncertainty fully focuses
on the DoF exploited by the inner transmitter. Taking into account this pessimistic case, the
minimization with respect to {λk}, {ek} yields

{λk}0≤k≤K−1 = argmin
{λk},{ek}

K−1∑
k=0

∥∥∥ÛNλk

∥∥∥2
2

(3.135)

s.t. λH
k λk′ = 0, k 6= k′ (3.136)
λH
k Û

H
N ek = αk (3.137)

Note that this constrained minimization problem corresponds to the classic minimum-norm
optimization problem (see, e.g., [KT82; KT83; DD91]). The constraints (3.136) and (3.137)
have been characterized in (3.17) and (3.18)–(3.19), respectively. Letting {ηkk′} and {γk} be the
Lagrange multipliers, the Lagrangian associated with (3.135)–(3.137) is given by

L ({λk} , {γk} , {ηkk′}) =
K−1∑
k=0

λH
k λk −

K−1∑
k′=0

K−1∑
k=k′+1

ηkk′λ
H
k λk′ −

K−1∑
k=0

γk

[
λH
k Û

H
N ek − αk

]
. (3.138)

Taking the gradient of (3.138) with respect to λk and equating to zero, the λk minimizing the
worst-case inter-system interference is given by

λk = γkÛ
H
N ek +

k−1∑
k′=0

ηkk′λk′ . (3.139)
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We now have to find the Lagrange multipliers. Substituting (3.139) into (3.136), we get for k′ ≤ k

λH
k λi = γ∗ke

T
k ÛNλi +

k−1∑
k′=0

η∗ik′λ
H
k′λi

(a)
= γ∗ke

T
k ÛNλk′ + η∗kk′ = 0, (3.140)

where (a) is a consequence of the orthogonality constraint in (3.136), i.e., the k-th waveform has
to be orthogonal with the k − 1 waveforms previously designed. Isolating η∗kk′ , we have that

η∗kk′ = −γ∗ke
T
k ÛNλk′ . (3.141)

Plugging (3.141) into (3.139), we get

λk = γk

[
ÛH

N ek −
k−1∑
k′=0

λk′

(
eTk ÛNλk′

)∗]
= γk

[
ÛH

N ek −
k−1∑
k′=0

λk′λ
H
k′Û

H
N ek

]
. (3.142)

Note that (3.142) is the λk defining the MNTLS waveforms. Thus, using (3.142) into the null-
space waveform model in (3.7) and recalling that P̂0 = ÛN Û

H
N , the MNTLS waveforms are

given by

ϕk = γkP̂0

[
IN −

k−1∑
k′=0

ϕk′ϕ
H
k′

]
ek = γkP̂kek. (3.143)

It is worth noting that (3.143) is based on a column selection on the orthogonal projector P̂k.
We have yet to determine the Lagrange multiplier γk. Substituting (3.143) into the constraint
(3.137), we obtain γk = αk

(
eTk P̂kek

)−1
. As discussed in Section 3.3, αk can be any real number.

Since we want ϕk to be unit norm, note that αk =
(
eTk P̂kek

)1/2
. Then,

γk =
(
eTk P̂kek

)−1/2
. (3.144)

The final step of this waveform design procedure is to optimize the linear prediction vector to
minimize the induced inter-system interference. Plugging (3.144) into (3.143), the column of P̂k

meeting the minimum-norm condition in (3.135) is the one including the maximum diagonal
element of P̂k, i.e.,

n(k) = argmax
n∈{1,...,N}

eTk P̂kek = argmax
n∈{1,...,N}

[
P̂k

]
n(k),n(k)

. (3.145)

Taking into account (3.143), (3.144), and (3.145), the shaping transmission matrixΦ = [ϕ0 ϕ1 ...ϕK−1]

can be sequentially designed as in Algorithm 1.
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Appendix 3.B Derivation of the Attainable Worst-Case SIR

It is worth noting that (3.60) lower-bounds the SIR, which is very pessimistic. In order to find
the operating SIR, let us consider the cost function in (3.58)

K−1∑
k=0

‖ϕk‖2

K−1∑
k=0

‖EH
Nϕk‖2

= SIRT (EN ; {λk}) + 1
(a)
=

K
K−1∑
k=0

ϕH
k P̂Eϕk

, (3.146)

where (a) follows from recalling that ‖ϕk‖2 = 1, for k = 0, . . . ,K − 1. Using the definition of
ϕk given in (3.25), we have that

(SIRT (EN ; {λk}) + 1)−1 =
1

K

K−1∑
k=0

eTk P̂kP̂E P̂kek

eTk P̂kek
=

1

K

K−1∑
k=0

(SIRk (EN ) + 1)−1, (3.147)

which reveals that (SIRT (EN ; {λk}) + 1)−1 is the harmonic mean of {(SIRk (EN ) + 1)}0≤k≤K−1,
being SIRk (EN ) the SIR exhibited by the k-th MNTLS waveform. Recalling from Appendix
3.A that

P̂k = P̂0

(
IN −

k−1∑
i=0

ϕiϕ
H
i

)
, (3.148)

(3.147) becomes

(SIRT (EN ; {λk}) + 1)−1 =

1

K

K−1∑
k=0

eTk P̂0

(
IN −

k−1∑
i=0

ϕiϕ
H
i

)
P̂E P̂0

(
IN −

k−1∑
i=0

ϕiϕ
H
i

)
ek

eTk P̂kek
.

(3.149)

The denominator of (3.149) can be identified as the n(k)-th diagonal element of matrix P̂k.
Expanding the numerator, we get

eTk P̂0P̂E P̂0ek − 2eTk P̂0P̂E P̂0

k−1∑
i=0

ϕiϕ
H
i ek + e

T
k P̂0

k−1∑
i=0

ϕiϕ
H
i P̂E P̂0

k−1∑
i=0

ϕiϕ
H
i ek. (3.150)

Recalling that P̂0 = ÛN Û
H
N and P̂E = ENE

H
N , and noting that EN is encompassed in ÛN , we

have that P̂0P̂E = P̂E . Thus, (3.150) reads as[
P̂E

]
n(k),n(k)︸ ︷︷ ︸

n(k)-th diagonal element of P̂E

− 2eTk P̂E

k−1∑
i=0

ϕiϕ
H
i ek + e

T
k

k−1∑
i=0

ϕiϕ
H
i P̂E

k−1∑
i=0

ϕiϕ
H
i ek︸ ︷︷ ︸

Second-order term

≜ fk

(
P̂E

)
,

(3.151)
which, for simplicity, has been denoted as fk

(
P̂E

)
, i.e., a function that depends on the projector

〈EN 〉 and on the recursion index k. Finally, using (3.151) in (3.149), we have that

SIRT (EN ; {λk}) =
K

K−1∑
k=0

fk

(
P̂E

)
eTk P̂kek

− 1, (3.152)

which concludes the proof.
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Appendix 3.C Asymptotics of the Signal-to-Interference Density
Ratio (SIDR)

Since all designed waveforms ϕk have been normalized such that ‖ϕk‖2 = 1, the average
transmitted power ST defined in (3.55) is given by

ST =
1

N

K−1∑
k=0

‖ϕk‖2 =
K

N
. (3.153)

Taking into account (3.25), and the definition of the projectors P̂k and P̂E , the statistically average
interference power is given by

IT =
1

N

K−1∑
k=0

‖EH
Nϕk‖2 =

1

N

K−1∑
k=0

eTk P̂kP̂E P̂kek

eTk P̂kek
. (3.154)

Regarding the numerator in (3.154), we have that

eTk P̂kP̂E P̂kek = eTk P̂0

(
IN −

k−1∑
i=0

ϕiϕ
H
i

)
P̂E P̂0

(
IN −

k−1∑
i=0

ϕiϕ
H
i

)
ek (3.155)

= eTk P̂0P̂E P̂0ek (3.156)

− 2eTk P̂0P̂E P̂0

k−1∑
i=0

ϕiϕ
H
i ek + e

T
k P̂0

k−1∑
i=0

ϕiϕ
H
i P̂E P̂0

k−1∑
i=0

ϕiϕ
H
i ek (3.157)

We recognize two important terms. First, (3.156), which leads to eTk P̂0P̂E P̂0ek = eTk P̂Eek since
EN is a subset of columns of ÛN . This term corresponds to a certain diagonal element of
P̂E . Second, (3.157), which is further on denoted as δ

(1)
k , is a second-order term that contains

combinations of off-diagonal elements of projectors P̂E and P̂0. Regarding to the denominator
in (3.154), note that it is a certain diagonal element of projector P̂k, that reads as

eTk P̂kek = eTk P̂0ek − eTk
k−1∑
i=0

ϕiϕ
H
i ek = eTk P̂0ek + δ

(2)
k , (3.158)

where δ
(2)
k is also a second-order term containing combinations of off-diagonal elements of

projector P̂0. Substitute (3.156), (3.157) and (3.158) into (3.154). Then, plugging the resulting
expression and (3.153) into the definition of SIDR in (3.68), we have that

SIDRT (EN ; {λk}) =
ST − IT

1
NE

IT
=

K −
K−1∑
k=0

(
eTk P̂Eek + δ

(1)
k

eTk P̂0ek + δ
(2)
k

)
1

NE

K−1∑
k=0

(
eTk P̂Eek + δ

(1)
k

eTk P̂0ek + δ
(2)
k

) . (3.159)

As per [BS16], off-diagonal elements of spectral projectors become asymptotically irrelevant
in comparison with the diagonal elements. A numerical example of this property is depicted in
Figure 3.25. Thus, as N → ∞ and M = rank

[
ÛN

]
� 1, both second-order terms δ

(1)
k and δ

(2)
k

can be neglected. Furthermore, taking into account the asymptotic eigendecomposition of an
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(a) N = 128, M = N/8 (b) N = 128, M = N/2

(c) N = 512, M = N/8 (d) N = 512, M = N/2

Figure 3.25: Magnitude of the entries of the projector onto an M -dimensional subspace of CN .

autocorrelation matrix [Gra06], the main diagonal of projectors P̂0 and P̂E are asymptotically
constant and equal to M/N and NE/N , respectively.

Thus, the SIDR in (3.68) can be asymptotically approximated as

SIDRT (EN ; {λk}) ≈

K −
K−1∑
k=0

eTk P̂Eek

eTk P̂0ek

1

NE

K−1∑
k=0

eTk P̂Eek

eTk P̂0ek

=
K −KNE

M
1

NE
KNE

M

= M −NE . (3.160)

Finally, (3.160) can be rewritten as

SIDRT (EN ; {λk}) ≈ N · M
N

·
(
1− NE

M

)
= N · κ · (1− η), (3.161)

yielding (3.69), which concludes the proof.
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Appendix 3.D The Per-DoF Energy Distribution

Each MNTLS waveform is given byϕk = ÛNλk, where λk is the linear combination coefficients
vector minimizing the worst-case induced inter-system interferences. In order to measure the
energy allocated to each DoF spanning the sensed null space

〈
ÛN

〉
, we can inspect the main

diagonal of the matrix
Γk = ÛH

N ϕkϕ
H
k ÛN = λkλ

H
k . (3.162)

Recall the expression of λk found in (3.142) (Appendix 3.A). Since it depends on the optimum
linear combination coefficients vectors defining the k − 1 waveforms previously defined, the
analysis of the per-DoF energy distribution would benefit from a simplification. Therefore, we
can simplify (3.142) by inspection leading to

λk = γk

[
ÛH

N ek −
k−1∑
k′=0

λk′λ
H
k′Û

H
N ek

]
= γkÛ

H
N

[
ek −

k−1∑
k′=0

βkk′ek′

]
, (3.163)

where βkk′ is a function of γi, for 0 ≤ i ≤ k′ − 1, γk′ ,
[
P̂0

]
kk′

, and
[
P̂0

]
ik′

, for 0 ≤ i ≤ k′ − 1.
As an example, we provide next the detailed derivation for k = 2. Particularizing the left-hand
side of (3.163) for k = 2, we have that

λ2 = γ2

[
ÛH

N e2 − λ0λ
H
0 Û

H
N e2 − λ1λ

H
1 Û

H
N e2

]
, (3.164)

where we can easily find that λ0 = γ0Û
H
N e0 and λ1 = γ1Û

H
N

[
e1 − γ20e

T
0 P̂0e1e0

]
. Note that we

can define β10 = γ20e
T
0 P̂0e1. Therefore,

λ2 = γ2

[
ÛH

N e2 − γ20Û
H
N e0e

T
0 P̂0e2 − γ21Û

H
N (e1−β10e0)

(
eT1 −β∗

10e
T
0

)
P̂0e2

]
. (3.165)

Operating (3.165), let us define β
′
20 = γ20e

T
0 P̂0e2 and β

′
21 =

[
eT1 P̂0e2 − β10e

T
0 P̂0e2

]
, yielding

λ2 = γ2

[
ÛH

N e2 − ÛH
N e0β

′
20 − γ21Û

H
N (e1−β10e0)β

′
21

]
=

γ2Û
H
N

[
e2 −

(
β

′
20 + γ21β10β

′
21

)
e0 − γ21β

′
21e1

] (3.166)

with β20 =
(
β

′
20 + γ21β10β

′
21

)
and β21 = γ21β

′
21.

This example has been included just to illustrate the difficulty of providing a closed-form
expression for the scalar parameters βkk′ in (3.163). Moreover, this example also justifies the
necessity of simplifying the expression of λk to analyze the per-DoF energy distribution.

Plugging (3.163) in (3.162), the main diagonal of matrix Γk reads as

[Γk]ii = |γk|2
[[
ÛH

N eke
T
k ÛN

]
ii
+

k−1∑
k′=0

β2
k′

[
ÛH

N ek′e
T
k′ÛN

]
ii

]
, (3.167)

since diag
[
eke

T
k′
]
= 0N×1 for k 6= k′. Recalling that ek only has a unique non-zero element and

equal to one at position n(k), it is straighforward to verify that ÛH
N ek is the n(k)-th column of

matrix ÛH
N , which is referred to as un(k).
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Noting that
[
un(k)u

H
n(k)

]
ii
=
∣∣∣[un(k)

]
i

∣∣∣2 and
[
un(k′)u

H
n(k′)

]
ii
=
∣∣∣[un(k′)

]
i

∣∣∣2, (3.167) leads to

[Γk]ii = |γk|2
[∣∣∣[un(k)

]
i

∣∣∣2 + k−1∑
k′=0

β2
k′

∣∣∣[un(k′)

]
i

∣∣∣2] . (3.168)

Generally, the columns of the matrix ÛH
N do not have constant modulus elements, meaning that∣∣∣[un(k)

]
i

∣∣∣ 6= ∣∣∣[un(k)

]
j

∣∣∣ for i 6= j. Consequently, the k-th MNTLS waveform does not uniformly
distribute the energy within the sensed null space.

Nevertheless, there is a particularly interesting case that deserves our attention. As N → ∞,
the eigenmatrix of an autocorrelation matrix behaves as a unitary Fourier matrix [Gra06]. Since
a basis of the sensed null space can be asymptotically modeled by a Vandermonde matrix with
complex exponential elements, the asymptotic behavior of the eigenvectors unveils that

diag [Γk] −−−−→
N→∞

|γk|2
[
1 +

k−1∑
k′=0

β2
k′

]
1N×1, (3.169)

meaning that the MNTLS waveforms derived in this thesis asymptotically behave as a uniform
DoF spreading strategy.
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Appendix 3.E Proof of (3.91)

Leveraging Algorithm 1 with the sensed null-space bases at the inner transmitter and the inner
receiver given by (3.85) and (3.86), respectively, the shaping transmission waveform and the
matched filter are given by

ϕ0 = (eT0 P̂0,Te0)
−1/2P̂0,Te0, (3.170)

ψ0 = (eT0 P̂0,Re0)
−1/2P̂0,Re0, (3.171)

being P̂0,T = ÛN (rT)Û
H
N (rT) and P̂0,R = ÛN (rR)Û

H
N (rR) the orthogonal projectors onto N̂T

and N̂R, respectively. Therefore, the detection relative energy loss ratio (3.89) for K = 1 yields

Γ1 =
ϕH
0 ϕ0

|ψH
0 ϕ0|2

=
eT0 P̂0,Re0e

T
0 P̂0,Te0

(eT0 P̂0,RP̂0,Te0)2
. (3.172)

It is worth noting that, accounting for the inter-node subspace mismatch model described in
(3.81)–(3.82), the orthogonal projectors P̂0,T and P̂0,R admit the following decomposition:

P̂0,T = PN0 + PDT , (3.173)
P̂0,R = PN0 + PDR , (3.174)

which follows from noting that PN0 = UN0,TU
H
N0,T = UN0,RU

H
N0,R, since UN0,T and UN0,R are

different bases of the effective null space N0. Note that PDT = ∆T∆
H
T and PDR = ∆R∆

H
R .

Hence, (3.172) yields

Γ1 =
eT0 (PN0 + PDR)e0e

T
0 (PN0 + PDT)e0

(eT0 PN0e0)
2

. (3.175)

It is straightforward to see that (3.175) depends on the diagonal elements of PN0 , PDT , and
PDR , which nothing can be said a priori. Nevertheless, if we take into account that the sensed
null-space bases asymptotically converge to a column subset of the normalized Fourier matrix
[Gra06], the main diagonal of the orthogonal projectors in (3.173)–(3.174) is asymptotically
constant and equal to [PN0 ]nn = M0/N , [PET ]nn = κT/N , and [PER ]nn = κR/N . Defining the
normalized uncertainties at the inner transmitter and at the inner receiver as ρT ≜ κT/M0 and
ρR ≜ κR/M0, (3.175) leads to

Γ1 −−−−→
N→∞

(M0 + κR)(M0 + κT)

M2
0

= 1 + ρT + ρR + ρTρR, (3.176)

which completes the proof.
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Appendix 3.F Analysis of the Sparse Optimization in (3.108)–(3.109)

3.F.1 Conditions to Guarantee the Recovery of Sparse Signals

Let us consider the following signal model

y = Ωx+ ε, (3.177)

where y ∈ Cn is the observation vector; Ω ∈ Cn×m, with usually n � m, is the measurement
or sensing matrix; x ∈ Cm is a k-sparse signal, meaning that only k out of m entries are non-
zero; and ε ∈ Cn is the measurement noise. The objective in compressed sensing consists in
recovering the k-sparse signal x given the observation y and the measurement matrix Ω.

A fundamental problem in compressed sensing consists in assessing the recovery guarantees
of the sparse signal x. In the literature, several criteria have been studied for this purpose (see,
e.g., [EK12; FR13]), which mainly assess the suitability of the designed measurement matrix Ω

for recovering the sparse signal x. In the sequel, we review some of these criteria that will be
used afterward to assess the recovery guarantees for the sparse problem at hand (3.108)–(3.109).

One of the most important criteria for guaranteeing the recovery of sparse signals is the
so-called null-space property [CDD09]. The null space of the measurement matrix Ω is defined
as

N (Ω) ≜ {x : Ωx = 0}. (3.178)

It is said that the measurement matrix Ω satisfies the null-space property of order k if there
exists a constant Ξ > 0 such that, for all x ∈ N (Ω),

‖xI‖2 ≤ Ξ
‖xI‖1√

k
, (3.179)

for any set of indices I satisfying |I| ≤ k. Note thatxI means that only the indices encompassed
in I are non-zero. This property guarantees that any vector belonging to N (Ω) is not too
compressible in addition to vectors that are sparse [EK12], meaning that the sparse recovery algorithm
do not confuse the sparse vector with a vector laying in N (Ω). The null-space property (3.179)
is a necessary and sufficient condition to guarantee the recovery of sparse signals using convex
relaxations. The spark [DE03] is one option to characterize the null-space property. The spark
of a matrix Ω is the smallest number of columns from Ω that are linearly dependent. As per
[DE03], the sparse recovery problem has a unique sparsest solution x satisfying

spark[Ω] > 2‖x‖0 = 2k, (3.180)

where k is the number of non-zero elements of x. Unfortunately, the computation of the spark
or the null-space property is complex [TP14]. Moreover, even though the null-space property
is a necessary and sufficient condition for recovering the sparse vector x, it does not account for
the presence of noise in the observations.

A more computationally efficient criterion to assess the recovery guarantees of k-sparse
signals is the mutual coherence [DH01; MZ93], sometimes referred to as coherence. The mutual
coherence of a matrix Ω is defined as

µ (Ω) = max
i ̸=j

i,j=1,...,m

∣∣ωH
i ωj

∣∣
‖ωi‖2 ‖ωj‖2

, (3.181)
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i.e., the largest absolute value of the inner products between two distinct columns ωi and ωj of
matrix Ω. Regarding (3.181), a lower bound on the mutual coherence is provided in [Wel74],
known as Welch bound. Thus,

µ (Ω) ∈
[√

m− n

n(m− 1)
, 1

]
, (3.182)

where n and m are the numbers of rows and columns of the matrix Ω, respectively. An
interesting result concerning the mutual coherence is that a k-sparse signal can be exactly
recovered with noisy observations if it meets the mutual incoherent property of the noiseless
case [CWX10], i.e.

µ (Ω) <
1

2k − 1
; (3.183)

however, it is a sharp condition. Moreover, as per [DE03], the mutual coherence and the spark
are related as follows:

spark[Ω] ≥ 1 + µ−1 (Ω) . (3.184)

In the context of subspace recovery, the mutual incoherence property is a sufficient condition
to guarantee the inference of the subspace.

The last recovery guarantee criterion we are reviewing is the so-called Restricted Isometry
Property (RIP). As originally defined in [CT05], matrix Ω obeys the RIP with a restricted
isometry constant δk ∈ (0, 1) if

(1− δk) ‖x‖22 ≤ ‖Ωx‖22 ≤ (1 + δk) ‖x‖22 , (3.185)

for all k-sparse vectors and a sufficiently small δk for large enough k. This property (3.185)
requires that every column set with cardinality less than or equal to k behaves as an orthonormal
system. The RIP has been also used to study the stability of the sparse optimization problem
and to verify the null-space property [EK12].

3.F.2 Recovery Guarantees for (3.108)–(3.109)

Once we have reviewed some of the criteria to assess the recovery guarantees of sparse signals,
we analyze the sparse recovery guarantees for the sparse optimization problem stated in (3.108)–
(3.109).

Taking into account the relationship between the spark and the mutual coherence, we begin
studying the mutual coherence of the measurement matrix Π defined in (3.99). Recalling the
definition of Π, we note that it is a block matrix where each block is a rank-one orthogonal
projector onto one dimension of the sensed null space at the inner receiver. Since the MR
dimensions of N̂R are orthogonal, it follows that

P̂m(rR)P̂n(rR), for m 6= n. (3.186)

Thus, we have that
µ (Π) = max

m=1,...,MR
µ
(
P̂m(rR)

)
. (3.187)

A priori, nothing can be said. However, as N → ∞, the sensed null-space basis at the inner
receiver converges to a column subset of the normalized Fourier matrix FN [Gra06]. Therefore,
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since all entries of P̂m(rR), for m = 1, . . . ,MR, are combinations of complex exponentials, we
have that

‖p̂m,i(rR)‖2 = 1/N for i = 1, . . . , N, (3.188)

where p̂m,i(rR) denotes the i-th column of P̂m(rR). Regarding the inner product in the numer-
ator of (3.181), since the orthogonal projector is Hermitian and idempotent, the absolute value
of the inner product between two distinct columns i and j, with i, j = 1, . . . , N , equals the
absolute value of the ij-th entry of the orthogonal projector. Thus,∣∣p̂Hm,i(rR)p̂m,j(rR)

∣∣ = 1/N, (3.189)

meaning that
µ (Π) = 1. (3.190)

Recalling to (3.183), and since the vector β is an M0-sparse vector, note that the measurement
matrix Π does not satisfy the sharp condition. Taking into account (3.180) and (3.184), nothing
can be said on the spark.

Finally, we study the RIP (3.185). Using the measurement vectorΠ and theM0-sparse vector
β, we have that

(1− δM0) ‖β‖
2
2 ≤ ‖Πβ‖22 ≤ (1 + δM0) ‖β‖

2
2 . (3.191)

Recall that vectorβ is structured as in (3.100), but the binary nature ofβ has been relaxed to avoid
the binary sparse recovery framework and the necessity of estimating nuisance parameters.
Thus, we can write β as

β = µ̃⊗ e0 ∈ CNMR , (3.192)

with µ̃ ∈ CMR . Therefore, we have that

‖β‖22 = β
Hβ = (µ̃⊗ e0)H (µ̃⊗ e0) =

(
µ̃Hµ̃

)
⊗
(
eT0 e0

)
= ‖µ̃‖22 . (3.193)

As nothing can be said about the measurement matrix for finite N , we consider again the
asymptotic behavior of the sensed null-space basis. Hence,

‖Πβ‖2 = βHΠHΠβ (3.194)

=
[
µ̃∗
1e

T
0 · · · µ̃∗

MR
eT0
]  P̂1(rR) 0

. . .
0 P̂MR(rR)


 µ̃1e0

...
µ̃MRe0

 =
1

N
‖µ̃‖22 .(3.195)

Plugging (3.193) and (3.195) into (3.191), note that

1

1− δM0

≥ N ≥ 1

1 + δM0

. (3.196)

While the lower bound always holds, the upper bound is not satisfied for sufficiently small δM0 .
If M0 decreases, larger values of δM0 are admissible to guarantee the recovery of β under the
RIP. However, the required value of δM0 depends on the considered strategy to solve the sparse
optimization problem. For instance, the well-known orthogonal matching pursuit (OMP) [Tro04;
TG07; CW11] can recover k-sparse vectors with δk+1 < (

√
k − 1)−1 [WS12]. In the problem at

hand, the exact recovery of β requires extremely small (impractical) values of M0.
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Asymptotic Study: Frequency Domain and
Frequency-Selective Channels

4.1 Introduction

This chapter studies the asymptotic behavior of the MNTLS waveforms, which is of rele-
vant interest for practical implementations. Interestingly, as the number of total DoF N in-
creases [YXXL19; BJA21; WBV21], the MNTLS waveforms converge to linear combinations
of column subsets of the normalized N -size Fourier matrix. The similarities with Orthogonal
Frequency-Division Multiple-access (OFDMA) implementation open the possibility of adapting
the MNTLS waveforms in the cumbersome frequency-selective channels. The solution stands
out for its simplicity compared to other null space-based opportunistic transmission schemes
specifically developed in frequency-selective environments.

This chapter is organized as follows. A literature review on null-space opportunistic com-
munications in frequency-selective channels is provided in Section 4.2. Section 4.3 studies the
asymptotic behavior of the MNTLS waveforms. When the sensed as available DoF are consecu-
tive, a particular case arises giving birth to the Circulant-Shaping Time-Division Multiple-Access
(CS-TDMA) scheme, which is discussed in Section 4.4. The problem of opportunistic transmis-
sion through frequency-selective channels is analyzed in Section 4.5. Finally, this chapter is
concluded in Section 4.6.

4.2 Null Space-based Opportunistic Precoding in
Frequency-Selective Channels

In the context of null-space opportunistic communications under frequency-selective channels,
Vandermonde-Subspace Frequency-Division Multiplexing (VFDM) is an interference alignment-
like strategy that enables ideally interference-free opportunistic communication exploiting the
null space induced by the channel memory. VFDM has been well-studied [CKCD13], improved
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Figure 4.1: The two-user cognitive interference channel model adapted from [CKCD13]. In this
context, all involved channels are frequency selective, i.e., (Lh + 1)-length vectors, being Lh the
channel memory.

[LFP+20], and considered in recent technical works to enable the coexistence of Long Term Evo-
lution (LTE) and New Radio (NR) systems [FPM+20]. Nevertheless, some relevant weaknesses
motivate investigating other potential alternatives. Before starting the technical discussion, it is
interesting to review the VFDM modulation in detail to outline the main differences concerning
what is proposed in this chapter.

For the sake of simplicity, this literature review is based on the simple 2-user cognitive
interference channel [CKCD13] depicted in Figure 4.1. The extension to multi-user scenarios
can be found in [MDV13] and references therein.

VFDM modulation is a null space-based opportunistic transmission strategy aiming at
nulling the inter-system interference caused by the inner transmitter on the outer receiver,
provided through channel hIO. Therefore, the outer-system information rate will not be limited
by the interference leaked by inner nodes. In contrast, the inner system is subject to inter-
system interference imposed by the outer transmitter through channel hOI. For this purpose,
the inner system exploits the frequency selectivity and the guard symbols (e.g., the cyclic prefix)
employed by the outer system’s block-transmission modulation (e.g., OFDM).

More formally, let sI be the symbol vector sent by the inner transmitter and Φ the inner
precoding matrix to be designed. The signal sent by the inner transmitter is given by

xI = ΦsI. (4.1)

In order to avoid inducing interferences on the outer-network receiver, the inner precoding
matrix must guarantee that xI lies on the outer-receiver null space. Therefore, in mathematical
terms, the objective of the inner transmitter consists in designing a precoding matrixΦ satisfying

FNHIOΦsI = 0, (4.2)

where FN is the N -size Fourier matrix used by the outer receiver as a combining matrix and
HIO ∈ CN×(N+Lh) is a Toeplitz matrix containing the coefficients of the channel hIO, that is,

HIO =


hIO[Lh] · · · hIO[0] 0 · · · 0

0
. . . . . . . . . . . . ...

... . . . . . . . . . . . . 0

0 · · · 0 hIO[Lh] · · · hIO[0]

 . (4.3)
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It is worth noting that (4.2) is satisfied when the precoding matrix lies in the null space ofHIO,
whose dimensionality is equal to Lh, i.e., the channel memory. Thus, the precoding matrix Φ

is an (N + Lh)× Lh complex matrix. As per [CKCD13], the precoding matrix Φ can be found,
for instance, through the singular value decomposition of (4.3). Note that the available DoF for
opportunistic communication depends on the channel memory.

Regarding the inner receiver, the conventional receiving strategy for OFDM modulation
is used, that is, cyclic prefix removal and Discrete Fourier Transform (DFT). Thus, the signal
model at the inner receiver reads as

yI = FN (HIIΦsI + i+ n) = FNHIIΦsI + z, (4.4)

where HII is the Toeplitz matrix similar to (4.3) but containing the coefficients of the inner
channel hII, i is the inter-system interference induced by the outer-network transmitter, and
n ∼ NC(0N×1, σ

2
nIN ) is the additive noise.

Regarding (4.4), note that the inner receiver suffers from the inter-system interference caused
by the outer transmitter since the employed receiving strategy cannot counteract them. More-
over, the designed precoding matrix Φ can avoid inducing inter-system interferences on the
outer-network receiver, but cannot combat the frequency selectivity of the inner channel hII.
Thus, additional transmit processing is required. In particular, for a given precoding matrix Φ

satisfying (4.2), the inner transmitter has to design a codebook matrix SI = E
[
sIs

H
I
]
, that is, the

covariance of the transmitted information symbols sI, satisfying

max
SI

1

N + Lh
log2

(
det
[
IN + S−1/2

z FNHIIΦSIΦ
HHH

II F
H
N S

−H/2
z

])
(4.5)

subject to tr
(
ΦHΦSI

)
≤ (N + Lh)PI (4.6)

where Sz = E
[
zzH

]
is the interference-plus-noise covariance matrix and PI is a power con-

straint. The approach considered in [CKCD13] consists in designing a matrix SI to leverage the
water-filling solution, which is known to be capacity-achieving.

It is worth noting that, in addition to the interference channel matrixHIO, the inner transmit-
ter requires knowing the inner channel matrix HII and the interference-plus-noise covariance
matrix Sz . In order to acquire this side information, the inner nodes must cooperate. Even
though channel estimation has been used in the related literature (see, for instance, [CKCD13;
LFP+20]), robust designs for the VFDM precoding matrix have not been proposed in the sense of
minimizing the inter-system interference caused by the inner transmitter on the outer receiver.
Apart from the required side information at the inner transmitter, we must recall that the inner
receiver cannot mitigate the inter-system interference caused by the outer transmitter.

4.3 Asymptotic Analysis of the MNTLS Waveforms

This section discusses the asymptotic behavior of the MNTLS waveforms derived in Chapter
3. Without loss of generality, the whole discussion is focused on the inner transmitting node.
Regarding the matched-filtering waveforms, their asymptotic characterization follows the same
rationale as for the transmitting pulse-shaping waveforms case.
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Let us begin reviewing that these waveforms obey the following model:

ϕk = γkP̂kek = γkP̂0

(
IN −

k−1∑
i=0

ϕiϕ
H
i

)
ek, (4.7)

where P̂0 = ÛN Û
H
N denotes the orthogonal projector onto the sensed null space. As discussed

in Chapter 3, the sensed null-space basis ÛN is a column subset of the eigenmatrix of a sample
estimate observations’ autocorrelation matrix. If the estimate is accurate enough, it converges
to the exact autocorrelation matrix of the observations, which is a Toeplitz matrix.

A well-known consequence of the Szegö’s Limit Theorem is that asymptotically, as N → ∞,
Toeplitz matrices behave as circulant matrices [Gra06]. Accordingly, as the number of system
DoFN arbitrarily grows, the autocorrelation matrix tends to be circulant. Interestingly, circulant
matrices have a very particular eigendecomposition given by

Rxx −−−−→
N→∞

FH
N ΛFFN , (4.8)

where ΛF is a diagonal matrix containing the signal power spectral density distribution, and
FN is the N -size unitary Fourier matrix given by

FN =
1√
N


1 1 1 1 · · · 1

1 ζ ζ2 ζ3 · · · ζN−1

1 ζ2 ζ4 ζ6 · · · ζ2(N−1)

...
...

...
... . . . ...

1 ζ(N−1) ζ2(N−1) ζ3(N−1) · · · ζ(N−1)2

 , (4.9)

being ζ = e−j2π/N a primitiveN -th root of the unity. A direct consequence of this decomposition
is the sensed null-space basis1 is asymptotically composed of a column subset ofFH

N . Therefore,
the orthogonal projector P̂0 can be asymptotically written as

P̂0 =
∑

m∈IN

fmf
H
m , (4.10)

with fm the m-th column of FH and IN the set of integers indexing the available frequency
bins, which is given by

IN ≜
{
m : fm ∈

〈
ÛN

〉}
. (4.11)

It is worth noting that, asymptotically, the projector P̂0 in (4.10) is a circulant matrix, with
constant diagonal elements equal to M/N . Recall that M is the number of DoF sensed as
available. Since the projector exhibits this particular structure, it is interesting to observe how
the MNTLS waveforms behave. Recalling that the ϕ0 is the first column, appropriately scaled,
of P̂0, it is straightforward to see that the n-th element of ϕ0 is given by

ϕ0[n] =
1√
MN

∑
∀m∈IN

ej
2π
N

nm, (4.12)

1For the sake of simplicity, the sensed null-space basis is assumed to be a column subset of the autocorrelation’s
eigenmatrix. Nevertheless, the discussed results in this Chapter apply in general. Note that a basis of the null space
can always be written as a rotation of another basis; thus, any basis can be written as a rotation of the null-space
eigenmatrix. Therefore, even though the basis can be different, the projector is unique.
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for n = 0, . . . , N − 1. After simple mathematical manipulations, we note that ϕ0[n] admits the
following vectorization

ϕ0 = γ0

fmmin �
∑

∀m∈IN

fm−mmin

 , (4.13)

with γ0 a scaling factor such that ‖ϕ0‖ = 1 and fm−mmin ∈ CN a Vandermonde vector whose
n-th element is given by

[fm−mmin ]n = N−1/2 exp (j2π(m−mmin)n/N) , for n = 0, . . . , N − 1. (4.14)

Unfortunately, the case k = 0 is the single one admitting a simple expression. For k = 1, . . . ,K−
1, the remaining waveforms have to be derived from Algorithm 1 (Chapter 3).

4.3.1 Comparison with Other Frequency-Domain Spreading Techniques

Regarding (4.12), it is interesting to note that the MNTLS waveforms asymptotically behave as
an in-band spread spectrum strategy, i.e., the transmitted power is asymptotically uniformly
distributed within all DoF (asymptotically, frequency bins) belonging to the sensed null space.

Frequency-domain spreading techniques have been studied in the literature as potential
candidates for opportunistic communications-based interference mitigation. It is evident that,
when the outer networks admit a certain amount of interference, conventional spread spectrum
techniques such as Direct-Sequence Spread-Spectrum (DSSS) or Frequency-Hopping Spread-
Spectrum (FHSS) are potential solutions for permitting the coexistence of several uncoordinated
systems [WWX+20]. It is worth noting that spread spectrum strategies enable communication
exploiting the same frequency band (i.e., the same signal-space dimensions) without coor-
dination. In addition, spread spectrum schemes also offer a low probability of interception,
improving the security of communication [ZZY+15]. Nevertheless, additional signal processing
is required to attain optimum performance.

In the context of opportunistic communications, spread-spectrum modulations can benefit
from spectrum sensing, i.e., instead of spreading the transmitted signal over the whole system
bandwidth, nulling beforehand those frequency bins already sensed as occupied. In this
sense, two important spread-spectrum schemes in the context of opportunistic communications
are Multi-Carrier Code-Division Multiple-Access (MC-CDMA) [HP97] and Transform-Domain
Communication Systems (TDCS) [HBGL13]. The fundamental waveforms of these modulations
are respectively given by

ϕmccdma[n] = λ
1√
N

∑
∀m∈IN

z[m]ej
2π
N

nm, (4.15)

ϕtdcs[n] = µ
1√
N

∑
∀m∈IN

ejθ[m]ej
2π
N

nm, (4.16)

where λ and µ are scaling factors that guarantee unit waveform energy, IN represents the set
of available frequency bins as defined in (4.11), z[m] is a pseudo-noise sequence, and θ[m] is a
pseudo-random phase sequence. It is worth noting that nulling the frequency bins sensed as
occupied is equivalent to limiting the summation in (4.15) and (4.16) to those frequency bins
sensed as available.
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Figure 4.2: Power Spectral Density of the asymptotic MNTLS waveform (4.12) and the fundamen-
tal waveforms of MC-CDMA (4.15) and TDCS (4.16).

In order to compare these techniques with the asymptotic MNTLS waveform, the power
spectral density of (4.12), MC-CDMA, and TDCS are depicted in Figure 4.2. Assuming the
same spectral availability, we note that the three techniques exhibit the same spectral behavior.
Regarding the time-domain waveforms, (4.12) is depicted in Figure 4.3, where a realization of
each (4.15) and (4.16) is depicted in Figure 4.4.

Before comparing MC-CDMA and TDCS with the asymptotic waveform given in (4.12),
emphasizing the differences between MC-CDMA and TDCS can be of interest. Looking at
(4.15) and (4.16), we can realize that these two waveforms are extremely similar. In fact, the only
difference between these two waveforms is the pseudo-random sequence. MC-CDMA employs
a pseudo-noise sequence to perform signal spreading and provide multiple-access capabilities.
Conversely, TDCS uses a pseudo-random phase sequence, which does not limit the value of the
pseudo-random components to {−1, 1}. The pseudo-random phase sequence also produces a
noise-like signal and maximally spread spectrum within the frequency bins of interest.

Observing Figures 4.2, 4.3, and 4.4, quite a few similarities between the three techniques can
be immediately deduced. Regarding the Power Spectral Density (PSD), the three modulations
spread the transmitted waveform within all frequency bins of interest. As already stated, the
three techniques exhibit exactly the same spectral behavior: a perfect dimension spreading.
The principal difference between these three modulations can be found in the time domain.
Whereas MC-CDMA and TDCS exhibit a noise-like behavior, the MNTLS waveform has a peaky
time-domain response. Even though the Peak-to-Average Power Ratio (PAPR) can be an issue
in all three schemes, PAPR reduction techniques have been widely studied in the context of
MC-CDMA, and thus they can be possibly adapted to TDCS. Regarding the MNTLS waveforms,
noting the similarities of (4.12) with the OFDMA modulation, a good guess is that the PAPR of
(4.12) can be similar to that of OFDMA. Since different PAPR reduction techniques can be found
in the literature for the OFDMA scheme, a possibility consists in adapting these techniques to
(4.12) or using this framework to design more appropriate PAPR reduction schemes.

116



0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
−0.4

−0.2

0

0.2

0.4

0.6

Time Sample n

Re
al

Pa
rt

Figure 4.3: Time-domain k-th MNTLS waveform ϕk.
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Figure 4.4: One realization of the fundamental waveforms of the MC-CDMA ϕmccdma[n] (in red)
and TDCS ϕtdcs[n] (in blue) schemes.
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From a system coexistence perspective, one is interested in avoiding the use of frequency bins
sensed as occupied and minimizing the impact on those occupied frequency bins erroneously
sensed as available. The latter is achieved with the dimension spreading behavior exhibited by
the three modulations. Suppose they have a similar performance in terms of system coexistence.
In that case, a natural question that may arise at this point is which one can be more convenient
or more useful for opportunistic communication.

In order to answer this question, let us focus on inner transmission. First, it is interesting to
note that the fundamental waveforms of TDCS and MC-CDMA are based on pseudo-random
sequences. Therefore, these sequences have to be shared between the inner transmitter and the
inner receiver in order to guarantee coherent waveform detection. The latter requires some sort
of handshake before opportunistic transmission. In contrast, the asymptotic MNTLS waveform
(4.12) is based on the orthogonal projector. Therefore, the possible difference between the sensed
null-space bases is absorbed by the projector, giving way to deterministic signaling without the
need for coordination or cooperation. The latter is of paramount importance to guarantee
coherent waveform detection under challenging feedforward conditions. Nevertheless, the
price to pay is its peakiness and a PAPR similar to that of OFDMA.

Another significant difference between (4.12) and MC-CDMA and TDCS is the consid-
ered multiplexing domain. The two latter exploit pseudo-random sequences to provide the
multi-access capability. Therefore, using different pseudo-noise sequences (in MC-CDMA) and
pseudo-random phase sequences (in TDCS), these modulations are able to accommodate si-
multaneous transmissions without, ideally, inter-waveform interference. However, designing
orthogonal sequences is a cumbersome task, and the conventional approach employs pseudo-
random sequences that are approximately uncorrelated [Gol05]. In order to perfectly mitigate
inter-waveform interference, an additional interference cancellation strategy, such as Successive
Interference Cancellation (SIC), is needed at the receiver side. Conversely, a set of K MNTLS
waveforms achieve orthogonality in the time domain, forming a time-multiplexing strategy.
Under ideal operating conditions, that is, when there is no end-to-end null-space mismatch, a
set of K orthogonal waveforms can be locally designed at each inner node without the need for
coordination. If the null spaces sensed at each inner node differ, the induced inter-waveform
interference has only a little impact and can be efficiently counteracted as per Section 3.5.

4.4 Circulant-Shaping Time-Division Multiple-Access (CS-TDMA)

When the system bandwidth is large enough, the frequency bins sensed as available can be
consecutive, as exemplified in Figure 4.5. This may occur, for instance, when opportunistic
communication occurs in high-frequency bands (see, for instance, [BJA21; CHW+21]). Under
these conditions, the asymptotic MNTLS waveforms exhibit a particular mathematical behavior
that can be of relevant interest for efficient implementation.

For the time being, it is assumed that the quotient between the total system DoF N and the
number of DoF sensed as available M is an integer. Although this assumption may limit the
validity of the result, it may occur when the outer-network communication follows standardized
channelization since the total system bandwidth is divided into a certain number of sub-
channels. Even though this assumption is necessary to develop the mathematical framework,
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Figure 4.5: Example where the M frequency bins sensed as available are consecutive. Note that
filled circles represent the occupied frequency bins.

a practical, reliable approximation for the general case where N/M is not an integer will be
provided afterward.

Under the abovementioned assumptions, the set of frequency bins sensed as available IN
defined in (4.11) becomes

IN = {m0, . . . ,m0 +M − 1}, (4.17)

and, therefore, the asymptotic MNTLS waveform given in (4.12) can be written in terms of the
Dirichlet kernel as

ϕ0[n] =
1√
MN

ej
2π
N

nm0

M−1∑
m=0

ej
2π
N

nm =
1√
MN

sin
(
M πn

N

)
sin
(
πn
N

) ej
π[(M−1)+2m0]n

N . (4.18)

The last equation reveals that the first MNTLS waveform asymptotically behaves as a periodic
(discrete) sinc function under the consecutive available bins assumption. In the general asymp-
totic case discussed in Section 4.3, the remaining K − 1 waveforms cannot be written as simple
as (4.12) since the recursive nature of the design scheme described in Algorithm 1 (Chapter 3)
cannot be overcome. Nevertheless, in the particular case studied in this section, the asymptotic
behavior of all the K MNTLS waveforms admits a tractable characterization.

Recalling the methodology described in Algorithm 1, the second MNTLS waveform, that is,
k = 1, corresponds to the column of the orthogonal projector P̂1 = P̂0 − ϕ0ϕ

H
0 , appropriately

scaled, that contains the maximum diagonal element. Since the orthogonal projector P̂0 =

ÛN Û
H
N has a constant diagonal equal to M/N , only the matrix ϕ0ϕ

H
0 deserves our attention.

Using (4.18), it is straightforward to see that the diagonal of the matrix ϕ0ϕ
H
0 can be written in

terms of the Féjer kernel as

ϕ0[n]ϕ
∗
0[n] =

1

MN

(
sin
(
M πn

N

)
sin
(
πn
N

) )2

. (4.19)

Therefore, the waveformϕ1 is found at the column n = 0, . . . , N −1 of the orthogonal projector
P̂1 where (4.19) is minimum. For the reader’s convenience, equation (4.19) is illustrated in
Figure 4.6. A simple mathematical analysis reveals that (4.19) is equal to zero at n = kN/M ,
for any integer k, if and only if the quotient N/M is an integer. Interestingly, it is worth noting
that the remaining N − 1 elements of the column n = kN/M os the matrix ϕ0ϕ

H
0 satisfy the

following property:

ϕ0[n]ϕ
∗
0[kN/M ] ∝

sin
(
M πn

N

)
sin
(
πn
N

) sin (kπ)

sin
(
kπ
M

) = 0. (4.20)
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Figure 4.6: Illustration of (4.19) with N = 64, and M = 2 (blue), M = 4 (red), and M = 8 (green).

Accordingly, the waveform ϕ1 corresponds to the column N/M of the orthogonal projector
P̂0, appropriately scaled. This result can be further generalized and, thus, under the initial
assumptions, the k-th waveform ϕk is just the (kN/M)-th column of the orthogonal projector
P̂0 with a scaling factor equal to 1/

√
MN so as to guarantee unit norm.

More interestingly, it must be recalled that the orthogonal projector P̂0 is a circulant matrix
under asymptotic conditions. Thus, it is worth noting that

ϕk

[(
n+ k

N

M

)
mod N

]
= ϕ0[n], for n = 0, . . . , N − 1, (4.21)

meaning that, once the first waveform ϕ0 has been identified, the remaining K − 1 waveforms
to be designed can be found as

ϕk = Πk N
M
ϕ0, for k = 1, . . . ,K − 1, (4.22)

being Πq a permutation matrix given by

Πq =
[
[IN ]q+1:N [IN ]1:q

]
, (4.23)

where [IN ]q:r is a column subset of the identity matrix containing the columns from q to r.
In conclusion, (4.22) reveals that the waveforms ϕk, for k = 1, . . . ,K − 1, are permutations

of the first waveform ϕ0. Since these permutations introduce a circular time-shift, the linear
modulation composed of waveforms {ϕk}0≤k≤K−1 exhibits similar behavior to that of the
Time-Division Multiple-Access (TDMA). Accordingly, in this particular case, the derived linear
modulation is referred to as Circulant-Shaping Time-Division Multiple-Access (CS-TDMA). It is
noteworthy that, under the assumption of consecutive available frequency bins, it is possible
to design the set of orthonormal waveforms {ϕk}0≤k≤K−1 avoiding the use of the recursive
algorithm described in Chapter 3. Thus, in simple structured scenarios, the design complexity of
{ϕk}0≤k≤K−1 reduces to circular time-shifts. However, in more general and complex scenarios,
it is not possible to avoid the recursive nature of Algorithm 1, as discussed in Section 4.3.
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Figure 4.7: Example of a CS-TDMA modulation composed of K = 4 waveforms with N = 2048
and M = 128.

An example of K = 4 CS-TDMA waveforms is depicted in Figure 4.7. Observing this
figure, it is worth noting that these waveforms concentrate most of their energy in a short
time interval, unveiling their short effective duration. This observation characterizes the time-
division multiple-access capability of this modulation format. Regarding the frequency-domain
behavior, the CS-TDMA waveforms preserve the dimension spreading property illustrated in
Section 4.3. Even though it may seem that these waveforms inefficiently use the available
resources, it is worth remembering that each waveform spans only one DoF on an invariant
null-space basis composed of certain columns of P̂0, leading to a high-SNR regime. Therefore,
the CS-TDMA modulation is optimal in terms of finally exploited DoF.

The main apparent drawback of the CS-TDMA modulation is that end-to-end subspace
mismatch errors induce that the parameter m0 and the number of DoF sensed as available at
each inner node may differ. These differences yield frequency synchronization errors and loss
of orthogonality between CS-TDMA waveforms. Even though these errors can be counteracted
through synchronization schemes, it is possible to neutralize them by leveraging the active
subspace detection methodology discussed in Section 3.5.

Observing Figure 4.7, it is worth noting that the involved signals are peaky in the time
domain. From an information-theoretic viewpoint, time-domain signals exhibiting a maximally
flat frequency response can be capacity-achieving in some multipath channels when the system
bandwidth is arbitrarily large [PTN07; Por07], i.e., the so-called wideband regime [Ver02].
Nevertheless, in terms of practical implementation, peaky signals have a large peak-to-average
power ratio (PAPR), which worsens the energy efficiency performance of the communication.
In order to assess the PAPR performance of the efficient CS-TDMA modulation, Figure 4.8
illustrates the complementary Cumulative Distribution Function (CDF) of the PAPR exhibited
by the CS-TDMA modulation and the asymptotic MNTLS waveforms discussed in Section 4.3.
As a reference, the PAPR performance of OFDMA has been included. For the sake of a fair
comparison, the native version of the three modulation formats is considered without any
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Figure 4.8: Complementary CDF of the minimum PAPR when QPSK symbols are transmitted
with a different number of waveforms K. Dashed lines refer to the CS-TDMA modulation format
(4.22), dotted lines stand for the asymptotic MNTLS waveform (Section 4.3), and solid lines are
for OFDMA.

sort of PAPR reduction technique. Moreover, for the CS-TDMA and the asymptotic MNTLS
waveforms case, it is assumed that K = M in order to exploit the same DoF as OFDMA. From
Figure 4.8, we can observe that, under the general asymptotic conditions discussed in Section
4.3, the MNTLS waveforms exhibit a better PAPR performance than OFDMA. Nevertheless, it
is interesting to note that CS-TDMA has a much smaller PAPR in probability than the other
two techniques. The reason is that this modulation is a circulant version of the native TDMA
scheme, which exhibits a good PAPR.

In summary, the PAPR exhibited by the MNTLS waveforms (both in the general case and
under CS-TDMA conditions) is asymptotically better than the PAPR of the well-known OFDMA
scheme. Nevertheless, the numerical simulation depicted in Figure 4.8 does not consider a PAPR
reduction technique, which is a common practice in OFDM(A)-based communication systems
(see, for instance, [XWG+18]). Therefore, the PAPR of the MNTLS waveforms can be further
improved by utilizing a PAPR reduction precoder.

4.4.1 Suboptimal CS-TDMA Approximation

Despite the potential implementation advantages of the CS-TDMA modulation, the entire dis-
cussion is based on the assumption that the quotient N/M is an integer. In the sequel, an
approximation of the CS-TDMA scheme is discussed for the case where N/M is not an integer
but M � N . It is worth noting that this case corresponds to a complex scenario since M � N

essentially means that only a small number of DoF are available for opportunistic communi-
cation. Conversely, as the DoF availability increases, the scenario becomes favorable since it
is possible to sacrifice some DoF sensed as available to guarantee that the quotient N/M is an
integer. In this sense, the following methodology reveals that an efficient suboptimal CS-TDMA
approximation can be found in congested wireless environments.
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Algorithm 2 Suboptimal CS-TDMA Approximation
Input: K, N , M , ϕ0

Output: {ϕk}1≤k≤K−1

1: Find the least common multiple of N and M : N ′ = lcm(N,M)

2: Interpolate ϕ0 to get a sampled waveform with N ′ samples, namely ϕ̃0

3: for k = 1 until K − 1 do
4: Find the N ′-sample waveform ϕ̃k as ϕ̃k = Π

kN′
M

ϕ̃0

5: Decimate ϕ̃k to obtain the N -sample waveform ϕk

6: end for

The efficient implementation of the baseline CS-TDMA modulation comes from noting that,
once the first waveform ϕ0 has been found, the remaining K − 1 waveforms can be found as
permutations of ϕ0, that is,

ϕk = Πk N
M
ϕ0, for k = 1, . . . ,K − 1. (4.24)

Nevertheless, this methodology can only be used when the quotient N/M is an integer. An
approximated solution for the general case where N/M is not an integer is as follows. Suppose
it is possible to find a high-dimensional complex space of N ′ dimensions such that the quotient
N ′/M is an integer. Then, the efficient design strategy described by (4.24) can be applied to
find a set of CS-TDMA waveforms laying in an M -dimensional subspace of the N ′-dimensional
complex space CN ′ . Finally, the transmit waveforms are found by projecting the obtained
solutions in CN ′ onto an M -dimensional subspace of CN , which can be done by decimating the
solutions. The proposal is summarized in Algorithm 2.

Even though the solutions provided by Algorithm 2 are not optimal, since the operating
conditions do not satisfy the aforementioned CS-TDMA assumptions, it permits avoiding the
recursive nature of the waveform design scheme described in Algorithm 1 (Chapter 3) nec-
essary in the general asymptotic case described in Section 4.3. The latter permits efficient
implementation of the MNTLS waveforms.

Figure 4.9 depicts the comparison between the waveforms obtained according to the pro-
cedure described in Algorithm 2 and the corresponding scaled columns of the orthogonal
projector P̂0. Despite providing a reliable approximation of the columns of P̂0, observing the
zero-crossings, it can be deduced that the suboptimal waveforms are not orthogonal. The latter
is better emphasized in Figure 4.10, which illustrates the scalar product between the K = 4

designed suboptimal waveforms.
The loss of orthogonality illustrated in Figure 4.10 leads to Inter-Symbol Interference (ISI)

that may degrade the performance of opportunistic communication. In order to numerically
evaluate the impact of the self-induced ISI, the Self ISI-to-Signal Ratio (SISR), defined as

SISR ≜
‖
(
ΦHΦ

)
� (1K×K − IK) ‖2F

‖ (ΦHΦ)� IK‖2F
, (4.25)

where Φ is the shaping transmission matrix containing the K waveforms designed according
to Algorithm 2, is depicted in Figure 4.11. For the sake of generality, the quotient N/M has been
rewritten as

N

M
= Z + δ, (4.26)
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Figure 4.9: Magnitude of the suboptimal CS-TDMA approximation waveforms (lines) and the
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Figure 4.10: Squared scalar product [dB] between the four waveforms designed according to
Algorithm 2.
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Figure 4.11: SISR [dB] as a function of the relative excess δ/Z with N = 1024, for different whole
parts Z and transmitted waveforms K.

where Z is an integer referring to the whole part of the quotient, whereas δ refers to the
fractional part, and the SISR has been depicted with respect to the ratio δ/Z. It is noteworthy
that, as expected, the impact of the self-induced ISI is negligible when the quotient N/M can
be well-approximated by an integer, i.e., when δ/Z → 0 and when δ/Z → 1. As the whole
part Z increases, it becomes more evident that Z � δ, validating the approximation N/M ≈ Z.
The latter translates into a severe degradation of the self-induced ISI. Regarding the number of
transmitted waveforms K, note that the SISR decreases when more waveforms are transmitted.
This observation validates the observation discussed in Chapter 3, stating that the number of
waveforms plays the role of an SNR gain. Hence, as K increases, the useful signal becomes
more dominant than the induced ISI, which helps to reduce the SISR.

Observing Figure 4.11, it is worth noting that the self-induced ISI becomes negligible as the
whole part Z becomes larger. The latter corresponds to the case where N is significantly larger
than M , that is, M � N . Conversely, when the whole part Z becomes smaller, the self-induced
ISI degrades the opportunistic communication performance. This situation, however, occurs
when the N and M differ by less than a magnitude order. For a fixed N , the latter means that
M is sufficiently large that it becomes reasonable to sacrifice a fraction of the DoF sensed as
available such that the quotient N/(αM), with 0 < α < 1, is an integer. Under these conditions,
the suboptimal approximation becomes unnecessary, and the inner nodes can resort to the
baseline CS-TDMA with M ′ = αM .

4.4.2 Extension of the CS-TDMA Modulation

At the beginning of this section, it is stated that the CS-TDMA modulation requires that the
quotient between the number of system DoF N and the number of DoF sensed as available M

has to be an integer. In this respect, the baseline CS-TDMA can be extended to the case where,
for any integer β, the quotient N/(βM) is still an integer. In spite of being of practical interest,
this extension is only discussed herein for the sake of completeness, as it requires end-to-end
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Figure 4.12: Example where among the M ′ consecutive frequency bins sensed as available, only
the M = M ′/β bins represented by empty circles (separated by β = 2) are exploited for oppor-
tunistic communication.

coordination between inner nodes and, thus, is beyond this dissertation’s scope.
Assume that, after setting up the opportunistic communication link, the inner nodes have

agreed on an integer β satisfying
N

βM
= Z, (4.27)

where Z is an integer. The integer β plays the role of a DoF hopping factor, indicating the distance
between two DoF sensed as available that will be exploited as exemplified in Figure 4.12.

It is worth noting that the assumption above requires that the number of consecutive fre-
quency bins detected as available be sufficiently large such that the resulting DoF spreading
factor guarantee the desired SIDR. The DoF hopping pattern can be, for instance, related to the
channel’s coherence bandwidth, meaning that the discussed CS-TDMA extension can be seen
as a mechanism to combat the frequency-selective nature of the inner channel.

In mathematical terms, the first waveform can be still written in terms of the Dirichlet kernel
as in (4.18). Specifically, the exact expression can be found by substitutingN/β in (4.18), yielding

ϕ0[n] =

√
β

MN

sin
(
Mβ πn

N

)
sin
(
βπn
N

) ej
βπ[(M−1)+2m0]n

N . (4.28)

Incorporating the DoF hopping factor β into (4.18) still permits finding the remaining K − 1

waveforms as permutations of the first waveform ϕ0. Nevertheless, in this case, the k-th
waveform is given by the column n = kN/(βM) of the orthogonal projector onto the sensed
null space P̂0, which accounts for only the M ′/β frequency bins that will be exploited for
opportunistic communication. Accordingly, note that the k-th extended CS-TDMA waveform
is given by

ϕk = Πk N
βM
ϕ0, for k = 1, . . . ,K − 1. (4.29)

Notably, the DoF hopping factor can be seen as an undersampling factor of the sensed null
space, introducing aliasing in the time domain, as illustrated in Figure 4.13. Nevertheless,
this phenomenon does not prevent the inner nodes from finding M ′/β orthogonal waveforms
obeying the criterion provided in (4.29).

This extension of the CS-TDMA modulation format has additional advantages with respect
to the baseline CS-TDMA scheme. For instance, if the DoF hopping factor is set according to
the channel coherence bandwidth, the proposed extension can exploit any potential frequency
diversity induced by the channel. Moreover, after two channel uses, it is possible to implement
a frequency-domain interleaver, breaking any potential correlation between the transmitted
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Figure 4.13: The first waveform of the extended CS-TDMA with N = 2048, M = 64, and β = 8.

codewords. In the time domain, note that the DoF hopping factor virtually decreases the
number of total system DoF, i.e., N ′ = N/β, which improves the time-multiplexing capability.

Finally, yet importantly, if the inner nodes not only agree on a DoF hopping factor β but also
on a reference starting frequency bin m0 [cf. (4.17)], it is possible to implement a multi-band
frequency hopping scheme. The latter is of paramount importance as this new scheme enjoys
the low probability of interception property natively exhibited by spread spectrum systems
and, as discussed in Chapter 2.2.3, a better transmission capacity than spreading schemes.

4.5 Opportunistic Transmission in Frequency-Selective Channels

Thus far in this thesis, the inner channel has been assumed to be frequency-flat fading. This
assumption has permitted studying the properties of the MNTLS waveforms, derived in Chapter
3, leaving aside the impact of the channel. In practice, however, the wireless channel in
wideband scenarios tends to be frequency-selective.

Before going into details, it is interesting to revisit the concept of available DoF in the context
of frequency-selective channels. When an inner node acquires a set of observations to sense the
wireless environment, these observations experience a frequency-selective fading. Under these
conditions, a DoF (asymptotically, a frequency bin) occupied by an outer-network node may
be perceived as available by the inner node due to the frequency-selective nature of the wireless
channel. For the sake of clarity, an example of this situation is provided in Figure 4.14. Note
that the sensed DoF occupation is illustrated in Figure 4.14(a), where the magnitude of the
outer-to-inner channel frequency response is depicted in Figure 4.14(b).

It is worth noting that when the magnitude of the channel frequency response is poor, the
inner terminal will perceive, with high probability, the associated frequency bin as available,
even if it is occupied by outer-network terminals. This situation is not critical in Time Division
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(b) Outer-Inner channel frequency response.

Figure 4.14: Example of DoF sensing under frequency-selective fading conditions. Note that the
inner node bases the sensing on the observation of the occupancy pattern depicted in (a), modu-
lated by the unknown outer-network signals, through the interference channel whose frequency
response (magnitude) is illustrated in (b).

Duplex (TDD)2 transmissions, where channel reciprocity holds [VT03]. In essence, channel
reciprocity means that the outgoing channel matrix is the transpose conjugate of the incoming
channel matrix. Accordingly, the inter-system interference imposed by the inner terminal on
that DoF perceived as available due to a poor channel frequency response is mitigated by
the channel itself. Thus, the frequency-selective nature is somehow providing more transmit
opportunities to the inner nodes, that is, the number of available DoF is virtually larger under
frequency-selective fading conditions.

In order to study the adaptation of the MNTLS waveforms to frequency-selective channels,
we consider in the sequel the scenario depicted in Figure 4.15, which consists in the opportunistic
transmission of a K-symbol vector a ∈ CK through a frequency-selective channel, being HII
the (N + Lh)×N channel convolution matrix and Lh the channel memory.

a ΓTΦ
HII

(ΓRΨ)H z

Figure 4.15: Opportunistic communication in frequency-selective channels.

In the cumbersome frequency-selective channel scenario, the design of null-space precoding
and combining matrices is not enough to opportunistically transmit the information symbols
reliably. In fact, the use of the shaping transmission matrix Φ ∈ CN×K and the matched-
filtering matrix Ψ ∈ CN×K helps in minimizing the inter-system interference imposed on the
outer-network nodes. Nevertheless, additional processing at the inner transmitter and the inner
receiver is needed to combat the frequency-selective nature of the channel.

A conventional strategy to design precoding and combining matrices for frequency-selective
channels relies on Singular Value Decomposition (SVD) processing. In this respect, the channel
convolution matrixHII admits the following SVD decomposition:

HII = ŨHΣ̃H Ṽ
H
H ∈ C(N+Lh)×N , (4.30)

being Lh the channel memory, ŨH ∈ C(N+Lh)×(N+Lh) and ṼH ∈ CN×N the left and right
singular vectors, respectively, and Σ̃H ∈ C(N+Lh)×N is a block matrix where the N ×N upper-
block ΣH is diagonal, containing the singular values, and the Lh × N lower-block is a zeros

2The TDD assumption is conventional in the context of opportunistic communications since most unlicensed
and decentralized communication systems operate under this duplexing mode (see, e.g., [ARS16; SKDI16; XGL18]).
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matrix. Taking into account the structure of matrix Σ̃H , (4.30) can be compactly written as

HII = UHΣHV
H
H , (4.31)

where UH ∈ C(N+Lh)×N encompasses the left singular vectors associated with the N singular
values and VH = ṼH . Bearing this in mind, the ideal precoding matrix ΓT and combining
matrix ΓR can be found from the singular vectors matrices VH andUH , respectively, altogether
with a power allocation policy (at the transmitter) or with a equalization scheme (at the receiver)
to appropriately exploit or counteract the eigenchannels.

In opportunistic communications, it is fundamental to recall that the primary objective
consists in mitigating the undesired inter-system interference leaked on the outer network.
Therefore, the design of the opportunistic transmission strategy in frequency-selective channels
has to simultaneously satisfy the following design condition

ΨHΓH
R HIIΓTΦa ∝ a (4.32)

while guaranteeing a minimum worst-case inter-system interference (3.12), that is,

min
Φ

max
EN

1

N

∥∥EH
NΓTΦ

∥∥2
F , (4.33)

subject to the design constraints discussed in Section 3.3, for a given ΓT. It is worth noting
that the additional precoding matrix ΓT has been included, in order to guarantee that the
inter-system interference measured at the inner transmitter output is minimum.

Another possibility would consist in designing the covariance matrix (codebook matrix) of
the information symbols to maximize the opportunistic transmission rate for given precoding
and combining matrices, as in the VFDM scheme described in Section 4.2. Accordingly, letting
Sa = E

[
aaH

]
, the inner node has to design a codebook matrix Sa satisfying

max
Sa

1

N
log2

(
det
[
IK + S−1/2

z ΨHΓH
R HIIΓTΦSaΦ

HΓH
T H

H
II ΓRΨS

−H/2
z

])
, (4.34)

subject to a transmit power constraint, being Sz the interference-plus-noise covariance matrix
at symbol level. In this approach, the shaping transmission matrix Φ and the matched-filtering
matrix Ψ can be designed as discussed in Chapter 3, whereas the additional precoding and
combining matrices ΓT and ΓR can be based on the right and left singular vector matrices of
the channel HII. The major difference with respect to the VFDM scheme is that inter-system
interferences seen by the inner receiver can be mitigated through Ψ.

Both of the discussed strategies satisfy the minimum worst-case inter-system interference
condition since the inner transmitter uniquely maps the information symbols onto the sensed
null space at its location. Moreover, the use of additional precoding permits dealing with the
frequency-selective nature of the channel. Nevertheless, the design of the additional processing
matrices ΓT and ΓR requires full Channel State Information (CSI) at both the inner transmitter
and the inner receiver, which is impractical under challenging feedforward conditions. Accord-
ingly, a strategy that does not require full CSI at both inner nodes is preferred.

Recalling (4.12), we note that, asymptotically, the MNTLS waveforms behave as a linear
combination of sinusoids, similar to OFDMA. This observation brings to light the possibility of
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incorporating a Cyclic Prefix (CP) at the transmitter side to deal with the frequency-selective
nature of the inner channel.

From this point onwards, we consider that a classic CP is added to the transmitted signal
x̃ = Φa, such that

x =

 x̃CP

x̃

 , (4.35)

where x̃CP contains a copy of the lastNCP samples of theN -length signal x̃, satisfyingNCP ≥ Lh.
Nevertheless, extending the transmitted signal with a classic CP can break the orthogonality to
those DoF sensed as occupied, providing undesired inter-system interference. In order to avoid
these interferences, the null-space sensing has to be modified to account for the use of the CP.

In this sense, when the inner transmitting node employs a classic CP, the minimum worst-
case inter-system interference condition can only be guaranteed if all outer-network nodes
employ a block transmission with guard symbols (such as CP). Under this assumption, the
additional samples will be removed by the outer-network receivers, and then the opportunistic
signals satisfy the minimum worst-case inter-system interference condition within the effec-
tive signal space. Nevertheless, this additional information requires inter-system cooperation,
which is not considered in this thesis.

Another possibility is as follows. Under asymptotic conditions, it is known that the eigen-
matrix of the observations’ autocorrelation matrix is the normalized Fourier matrix. Therefore,
a sensing basis under these conditions is U = FH

N . In order to take into account the impact of
using a classic CP of length NCP, the inner nodes can design a non-orthogonal sensing basis of
size (NCP +N)×N given by

W =

 UCP

U

 , (4.36)

whereUCP contains the lastNCP rows ofU . Note that this extension does not increase the rank of
the sensing basis. It is interesting to note that sensing the wireless environment with the sensing
matrix provided in (4.36) permits finding those DoF that, regardless of the cyclic extension, keep
the orthogonality with the outer networks. Even though sensing with a non-orthogonal basis
is tougher, the described approach guarantees the orthogonality between those DoF sensed as
occupied and the cyclic-extended inner transmitted signal. The described methodology is only
needed at the transmitter side, as the inner receiver will remove the CP before.

Therefore, focusing on the inner transmitter, let us now assume that the sensed null-space
basis reads as

ŴN =

 ÛN ,CP

ÛN

 ∈ C(NCP+N)×M , (4.37)

being M the number of DoF sensed as available, such that the shaping transmission matrix can
be designed following the minimum worst-case inter-system interference criterion leading to

Φ̃ = ŴNΛ =

 ÛN ,CP

ÛN

Λ =

 ΦCP

Φ

 ∈ C(NCP+N)×K , (4.38)

where matrix Λ contains the linear combination coefficients that define the orthogonal wave-
forms encompassed in the sub-matrix Φ = ÛNΛ. These linear combination coefficients are
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designed so as to satisfy the minimum worst-case inter-system interference criterion described
in Chapter 3. In order to leverage this design criterion, the inner transmitter can remove3 the
first NCP rows of ŴN and using Algorithm 1 (Section 3.3).

Analyzing (4.38), it is worth noting that the extended shaping transmission matrix Φ̃ is no
longer unitary; thus, the opportunistic transmission strategy based on (4.38) produces a self-
induced ISI. Nevertheless, removing the cyclic extension, the effective waveforms are orthogonal
and the self-induced ISI is canceled out.

Using the shaping transmission matrix defined in (4.38), note that the cyclically extended
transmitted signal is given by

x = Φ̃a, (4.39)

being a the K symbols to be transmitted. The use of a CP at the transmitter and removing it
at the receiver side induces a circular convolution, meaning that the signal at the inner receiver
input, after removing the CP [TV05, Chapter 3], is given by

ỹ =HII,cx̃+w + i =HII,cΦa+w + i, (4.40)

where w ∼ NC(0N×1, σ
2IN ) is the thermal noise and i stands for the possible interferences,

andHII,c is the circulant channel matrix, given by

HII,c =



hII[0] 0 · · · 0 · · · hII[1]
... hII[0] · · ·

... · · ·
...

hII[Lh]
... · · · 0 · · · hII[Lh]

0 hII[Lh] · · · hII[0] · · · 0
... 0 · · ·

... · · ·
...

0
... · · ·

... · · · 0

0 0 · · · hII[Lh] · · · hII[0]


∈ CN×N . (4.41)

It is well-known that circulant matrices are factorized by normalized Fourier matrices. Accord-
ingly, (4.41) can be written as

HII,c = F
H
N ΣhFN . (4.42)

Recalling that Φ = ÛNΛ, note that (4.40) can be written as

ỹ = FH
N ΣhFN ÛNΛa+w + i. (4.43)

Taking into account the discussion above (4.36), we note that the normalized Fourier matrix can
indeed be written in terms of the sensing basis U as UH = FN . Therefore, it is straightforward
to see that, without loss of generality, (4.43) can be written as

ỹ = U

[
ΣS,h 0

0 ΣN ,h

] 0(N−M)×M

IM

Λa+w + i (4.44)

= U

 0(N−M)×M

ΣN ,h

Λa+w + i, (4.45)

3Note that the use of the non-orthonormal sensing basis W in (4.36) is purely instrumental to determine which
of the system DoF are perceived as available when the inner transmitter employs a CP-based signal extension. In
practice, once matrix ŴN in (4.37) has been determined, only the last N rows are needed to design the MNTLS
waveforms.
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where M is the dimension of the sensed null space by the inner transmitting node, which is
assumed at this point to be equal4 to the dimension of the sensed null space at the inner receiver.
The first reading of (4.45) reveals that the CP-based opportunistic transmission scheme proposed
in this section (4.37)–(4.38) steers the information through the eigenchannels corresponding to the
sensed null space by the inner transmitting node. The latter is of paramount importance since,
as expected, minimizes the inter-system interference imposed on the outer-network nodes.
As discussed earlier, this transmission scheme is based on a set of non-orthogonal MNTLS
waveforms such that they become orthogonal after removing the cyclic extension. However, as
per (4.45), the orthogonality between waveforms is preserved at the receiver side if the inner
receiving node is able to counteract the impact of the sensed null-space eigenchannels.

Carefully observing (4.45), it is straightforward to see that a simple frequency-domain
one-tap null-space channel equalizer suffices to neutralize the null-space eigenchannels. It is
worth noting that the latter is similar to the required one-tap equalizer required by the OFDM
modulation to deal with the frequency-selective nature of the wireless channel. The latter is
due to the transmission scheme proposed in this chapter being also based on the classic CP
employed by the OFDM modulation.

At this point, it is important to emphasize that the design of the channel equalization
scheme is beyond the scope of this thesis. In this respect, several equalization techniques can
be adopted (see, e.g., [PS08]). In the sequel, we adopt for the sake of simplicity the zero-forcing
criterion. In spite of not being optimal from a statistical viewpoint, this equalization criterion
is simple enough to show that it is possible to adapt the MNTLS waveforms presented in this
dissertation to frequency-selective channels. Under this consideration, the frequency-domain
one-tap null-space channel equalizer matrix is given by

G = ÛNΣ−1
N ,hÛ

H
N , (4.46)

where Σ−1
N ,h is a diagonal matrix containing the inverse of the non-zero noise-subspace eigen-

channels. Thus, the relevant information at the equalizer output reads as

ν̃ = Gỹ = ÛNΛa+Gw = Φa+ ñ, (4.47)

where ñ ∼ NC

(
0, σ2UNΣ−1

N ,hU
H
N

)
is the equalized noise. Finally, letting Ψ be the matched-

filter matrix designed by the inner receiver according to the minimum worst-case inter-system
interference criterion, note that the sufficient statistic for symbol decoding z ∈ CK is given by

z = ΨH ν̃ = γa+Ψñ, (4.48)

being γ < 1 an energy loss factor due to the CP insertion. Regarding to the noise at symbol level,
note that n = ΨHGw ∼ NC(0;σ

2ΛHS−1
N ,hΛ), with SN ,h = ΣN ,hΣ

H
N ,h being the power spectral

density matrix of the noise-subspace channel. The overall opportunistic receiver strategy is
depicted in Figure 4.16.

It is interesting to note that, in contrast to OFDMA, the opportunistic transmission scheme
based on the classic CP described in this section performs time multiplexing. Nevertheless,
the CP-based MNTLS modulation admits a straightforward extension enabling time-frequency
multiplexing. If the null-space basis is not entirely exploited, that is, only a portion of the

4Otherwise, it is possible to leverage the enhanced null-space detection scheme described in Section 3.5.
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Figure 4.16: Opportunistic receiving scheme in frequency-selective channels.

sensed null space is used, then time multiplexing can be performed within this reduced null
space. The remaining null-space DoF (i.e., in the asymptotic case under analysis, frequency
bins) form an orthogonal complement of the previously exploited null-space region and also
admits time multiplexing. Therefore, it is possible to multiplex the opportunistic signals in both
time and frequency domains. The major drawback of performing time-frequency multiplexing
is that when the null space is partitioned, the dimension of each portion is smaller than the total
DoF sensed as available, which decreases the dimension spreading factor and, accordingly, the
capacity of spreading the inter-system interferences.

As a final note on the adaptation of the MNTLS waveforms in frequency-selective channels, it
is worth noting that the whole discussion has been based on the use of a sub-optimal equalization
criterion. The purpose of adopting this criterion has been to prove that the adaptation to
frequency-selective channels exists and can be simply implemented. The latter motivates the
adoption of conventional techniques to achieve improved performance. In this sense, when
CSI is available at the inner transmitter, it is possible to design a null-space-constrained capacity-
achieving scheme by adopting a water-filling power allocation policy. In practice, the system
inputs (information symbols to be transmitted) are drawn from a finite-size constellation; thus, it
can be of interest to adopt a constellation-constrained power allocation policy (see, e.g., [LTV06;
LTV08; OG15; HUL21] and references therein).

4.5.1 Comparison with VFDM

Among the opportunistic communication strategies discussed in Section 2.4.1, VFDM has been
specifically designed to take advantage of the frequency-selective nature of interference chan-
nels and deal with the frequency-selective nature of the inner channel. In order to perfectly
mitigate the undesired inter-system interferences, the VFDM transmitting node requires a per-
fect knowledge of the interference channel matrix to exploit the null space induced by the
channel memory. Additionally, this technique also requires that all outer-network nodes em-
ploy a block transmission with guard intervals, such as OFDM. These requisites suffice to
avoid the inter-system interferences provided by the inner transmitter. Then, to deal with the
frequency-selective nature of the inner channel, VFDM is based on designing the codebook
exploiting the SVD of the inner channel matrix. It is noteworthy that the latter requires the
inner transmitting and receiving nodes to cooperate, bringing to light the necessity of feedback
to share the channel coefficients. Another significant drawback of the basic VFDM strategy is
that the inner receiver cannot cancel out the interferences from the outer networks.

Conversely, the opportunistic transmission strategy discussed in this section does not require
perfect CSI at the inner transmitter nor cooperation between inner nodes to deal with the
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frequency-selective nature of the inner channel while avoiding the undesired inter-system
interferences to/from the outer networks. In this case, both the inner transmitter and the inner
receiver need to locally detect the available DoF by exploiting a set of sampled observations
from the wireless environment. The difficulty of the sensing step lies in the fact that the sensing
bases are non-unitary. Of course, the sensing simplifies if the inner nodes have additional
side information on the transmission format employed by the outer-network nodes. Once the
available DoF have been identified at each system end, a CP-based modulation is proposed. As
for the OFDM modulation, using a CP induces a circulant channel meaning that the impact of
the channel fading can be counteracted by utilizing a simple one-tap equalizer.

In conclusion, the CP-based opportunistic transmission strategy proposed in this section
permits dealing with the frequency-selective nature of the opportunistic channel more simply
than VFDM, that is, without requiring perfect CSI nor coordination or cooperation between
inner nodes. Nevertheless, since VFDM employs a water-filling power allocation policy at
the inner transmitter, it can achieve higher spectral efficiencies than the proposed strategy at
the expense of additional complexity and feedback overheads. The spectral efficiency of the
proposed CP-based modulation can be improved, for instance, once the inner receiver identifies
the effective null space, as the DoF with a poorer channel response will be systematically
nulled by the active subspace detection strategy discussed in Section 3.5. Another possibility
when the null-space eigenchannels are known at the inner transmitter consists in designing a
(constrained) capacity-achieving power allocation policy.

4.6 Conclusions

This chapter has dealt with the asymptotic characterization of the MNTLS waveforms derived
in Chapter 3. Through the asymptotic eigendecomposition of Toeplitz matrices, it has been
found that the proposed waveforms converge to a linear combination of the normalized Fourier
matrix. Thus, the MNTLS waveforms asymptotically admit a comparison to other frequency-
domain spreading-based modulations classically employed in opportunistic communications,
such as MC-CDMA and TDCS. Even though the modulation proposed in this dissertation
exhibits similar spectral behavior to that of MC-CDMA and TDCS, the former does not require
a beforehand consensus of the employed pseudo-random sequences since the waveforms can
be locally and uniquely determined as a consequence of the invariance property.

The particular case where the frequency bins sensed as available are consecutive has been
analyzed in detail. This chapter has also shown that it is possible to efficiently design the
set of orthogonal waveforms under certain system conditions, overcoming the necessity of
the sequential design scheme studied in Chapter 3. When the imposed conditions do not
hold, a suboptimal approximation has been provided, exhibiting insignificant performance
degradations in congested scenarios. A study of the properties of the CS-TDMA has been
reported, emphasizing the TDMA capability based on circulant time shifts and a significantly
improved PAPR performance with respect to conventional OFDMA.

Finally, since the MNTLS waveforms asymptotically depend on the normalized Fourier
matrix, a straightforward adaptation to frequency-selective channels has been provided using a
classic CP. The use of this CP generally hinders the sensing stage since it is based on a structured
non-orthogonal sensing basis accounting for the CP insertion. Despite the proposed CP-based
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modulation format having a similar implementation to OFDMA, it has been highlighted that
the former naturally performs time-multiplexing. The CP-based opportunistic transmission
scheme has been compared to VFDM, a null-space opportunistic strategy designed to exploit
the null space induced by the channel memory and combat the frequency-selective nature of
the inner channel. It has been pointed out that while VFDM maximizes the spectral efficiency
of opportunistic communication, full CSI is required at the inner transmitter, suggesting the
necessity of end-to-end coordination.
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The Case of Multi-Channel Feedforward
Opportunistic Communications

5.1 Introduction

The use of multiple antennas may render several advantages in opportunistic communications,
as surveyed in Chapter 2. Multi-antenna opportunistic nodes enjoy an increased number of
potentially available DoF, which may improve the spectral efficiency of opportunistic commu-
nication and have a relevant impact from an interference management viewpoint. In this sense,
using multiple antennas can enhance the capability of inner nodes to mitigate undesired inter-
system interferences and provide additional signal-space dimensions for enabling multi-user
opportunistic communication [SF11; XWGJ16].

Accordingly, this last chapter1 extends the results of Chapter 3 and Chapter 4 to the case
where both the inner transmitter and the inner receiver are equipped with LT and LR antennas,
respectively. In this chapter, it is assumed that the antenna arrays have arbitrary and possibly
different geometries for the sake of generality. Herein, the term arbitrary geometry means that
antenna arrays can be either uniform or non-uniform with 1D, 2D, or 3D structures. Note that
considering arbitrary arrays differs from the Uniform Linear Array (ULA) assumption, which
has been conventionally used in the literature as reported in [LW19]. Moreover, the arbitrary
geometry assumption also includes the case of uncalibrated (unstructured) antenna arrays.

5.1.1 Space-Time Degrees of Freedom

Before getting down to the multi-antenna case, we shall revisit the concept of Degrees of
Freedom (DoF) involving space-time signals. As discussed in Chapter 2, the number (real) DoF
for the single-antenna case can be found through the Interpolation Theorem and refers to the
number of coefficients of an orthogonal expansion needed to describe a band-limited signal of

1Some of the results described in this chapter have been submitted for possible publication to IEEE Transactions
on Signal Processing [J2].
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Reference Involved Parameters Number of Spatial DoF
[BF89] Radius R, Wavelength λ 8π2R2/λ2

[PBT05] Effective Area A, Angular Spread |Ω| A|Ω|
[KSAJ07] Radius R, Wavelength λ (deπR/λe+ 1)2

Table 5.1: Number of spatial DoF for a spherical array of radius R.

finite duration uniquely. Asymptotically, the number of real DoF is given by the well-known
time-bandwidth product, i.e.,

N ≈ 2TW, (5.1)

where W and T refer to the system bandwidth and the duration of the signal, respectively. The
quantity given in (5.1) is also known as Nyquist number [Fra17].

Regarding the multi-antenna case, several works can be found in the literature trying to
determine the number of spatial DoF in the case of narrowband transmissions, i.e., letting
W → 0. Through a rigorous analysis of the electromagnetic properties of scattered fields in
the far-field, [BF89] states that the dimension of a scattered field radiated from a sphere of
radius R is proportional to the surface (area) of the sphere and inversely proportional to the
squared wavelength. This important finding reveals that the number of spatial DoF does not
depend on the volume of the enclosing sphere but on its area. Lately, [PBT05] establishes an
analogy between Shannon’s result for the time-frequency domain (5.1) and the spatial-angular
domain leveraging antenna theory. In essence, the number of spatial DoF found therein for
non-polarized antenna arrays is given by the product of the effective area of the aperture and
the angular spread (in solid angle). Solving the general wave equation, [KSAJ07] corroborates
the quadratic growth rate of the spatial DoF found in [BF89] but with a different slope. A
summary of the aforementioned results is provided in Table 5.1 for the reader’s convenience.

Regardless of the considered approach, in order to fully exploit the spatial domain, the
required number of antennas to be placed coincides with the number of spatial DoF. The latter
follows simply from the Sampling Theorem [PBT05]. Given an antenna array of a limited
size, the maximum number of spatial DoF is proportional to the effective size of the array.
Therefore, using a number of antennas less than the number of spatial DoF leads to spatial
aliasing (grating lobes). Otherwise, the spatial domain is oversampled, and there is no need to
place more antennas than the number of spatial DoF. Nevertheless, the placed antennas must
be uncorrelated to fully exploit the potential diversity or multiplexing offered by the spatial
domain. In this sense, the correlation between array elements is considered in [MSA08], which
provides the concept of effective spatial DoF, i.e., the multiplexing gain of a Multiple-Input
Multiple-Output (MIMO) system when the array elements are correlated. The effective spatial
DoF are also studied from an electromagnetic perspective in [YHC+22].

Determining the number of DoF in wideband multi-antenna scenarios is cumbersome since
the frequency and spatial dimensions are coupled. A first attempt can be found in [PBT05],
where Poon, Brodersen, and Tse stated that the total number of real DoF in wideband multi-
antenna channels is given by the product of the spatial DoF and the time-frequency DoF, i.e.,
η ≈ 2TWA|Ω|. A more recent approach can be found in [Fra15] and further analyzed in [Fra17],
which extends the approach discussed in [BF89] to the case of wideband transmissions, making
use of Landau’s eigenvalue theorem [Lan75] and the information cut-sets theory. The main
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result discussed in [Fra15] states that the number of space-time DoF is given by the product
of the time-frequency DoF and the space-wavenumber DoF. Accordingly, for 2D scenarios, i.e.,
when the array can be enclosed in a circular domain of radius R, the number of real space-time
DoF is asymptotically given by

η ≈ 2TW
2πR

Λ
, (5.2)

where Λ = c/W is the wavelength bandwidth, being c the propagation speed. Note that (5.2)
relies on (5.1) and the perimeter of the circle normalized by an interval of wavelengths. When
the array can be enclosed on a sphere of radius R, i.e., in 3D scenarios, the number of real
space-time DoF is given by

η ≈ 2TW · 4πR2 4

3Λ2
, (5.3)

where, as concluded in [BF89], the number of space-wavenumber DoF depends on the surface
of the sphere and is inversely proportional to the squared wavelength.

Considering these results, it is possible to design antenna arrays to fully exploit the space-
wavenumber DoF given by (5.2) or (5.3). For instance, a simple greedy algorithm is described in
[MSA08] to design linear and square arrays so as to maximize the effective spatial DoF. Therein,
it is illustrated that optimal configurations in terms of maximum effective DoF are generally
non-uniform.

As a final note on the number of space-time DoF, it is worth mentioning that the abovemen-
tioned results hold under the far-field assumption, i.e., when the radiated signals are observed
beyond the Fraunhofer distance [Han88] and do not account for the polarization of the array. As
discussed in [PBT05], polarization can double the spatial DoF. In the near-field, the classic plane
wave assumption is no longer valid, i.e., the curvature of the wavefront cannot be approximated
as planar over the entire antenna array. Accordingly, the waveform model must be based on
spherical waves. As studied in the recent literature (see, for instance, [FMMS15; YHC+22]), the
number of spatial DoF increases in the near-field, leading to a large multiplexing capability. For
the narrowband case, [KMM17] determines that the number of spatial DoF at the near-field is
approximately 1.18 times the number of spatial DoF in the far-field.

5.1.2 Chapter Organization

This chapter is organized as follows. The Minimum-Norm Total Least-Squares (MNTLS) wave-
forms for multi-antenna opportunistic communications are provided in Section 5.2. This section
also studies the properties of the MNTLS waveforms in multi-antenna channels: the Signal-
to-Interference Density Ratio (SIDR) and the fundamental invariance property. Regarding the
latter, it is shown that it can be straightforwardly extended in the symmetric case, i.e., when
LT = LR. Nevertheless, nothing can be said a priori for general asymmetric MIMO channels.
The latter motivates a more thorough general case study, which is provided in Section 5.3. Using
the so-called manifold separation theory, we prove that the time-domain invariance is preserved
in asymmetric MIMO scenarios. The properties of the MNTLS waveforms and the theoret-
ical array-geometry invariance are numerically characterized in Section 5.4. The asymptotic
analysis of the MNTLS waveforms provided in Section 5.5 reveals that, in the limit, the trans-
mission strategy performs an antenna selection policy. As well as the adaption of the solution
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Figure 5.1: The system model for the multi-channel feedforward opportunistic communications
problem. An inner transmitter-receiver pair, which are equipped with arbitrary antenna arrays
of LT and LR sensors, respectively, tries to coexist with Q outer transmitter-receiver pairs. Unless
otherwise stated, it is assumed that LT 6= LR. For this purpose, the inner nodes exploit the
interference channels H(q)

OI (r) to infer the space-time null space and ideally avoid interfering the
outer transmissions when communicating through the inner channel HII. It is assumed that
all channels are unknown by the opportunistic inner transmitter TXI, whereas the opportunistic
inner receiver RXI only knows, at most, the inner channelHII.

in multi-antenna frequency-selective channels and the multi-channel version of the CS-TDMA
transmission scheme. The conclusions of this chapter are drawn in Section 5.6.

5.2 Multi-Antenna General Null-Space Solution

This section extends the MNTLS waveforms described in Chapter 3 to multi-antenna scenarios.
For this purpose, we consider the system model depicted in Figure 5.1, where a pair of inner
multi-antenna terminals try to set up a communication link by exploiting the locally available
space-time DoF to minimize the impact on the coexisting outer-network terminals. Throughout
the whole chapter, we assume that the transmitting and receiving arrays are appropriately
configured to exploit all the spatial DoF [cf. (5.2) and (5.3)]. Thus, being LT and LR the number
of transmitting and receiving antennas and N the asymptotic number of time-frequency DoF,
which is equal at each inner node, the total number of space-time DoF, regardless the existence
of antenna correlation, at each inner nodes is given by

ηt = NLT, (5.4)
ηr = NLR. (5.5)

The objective of the inner transmitting node consists in designing a set of space-time oppor-
tunistic waveforms {ϕk}0≤k≤K−1, with ϕk ∈ CNLT , orthogonal to the sensed space-time signal
subspace, i.e, orthogonal to the occupied space-time signal-space dimensions or DoF. It is worth

140



noting that the column-vector stacked space-time waveforms ϕk can be written as

ϕk = vec ([ϕk[0], . . . ,ϕk[N − 1]]) , (5.6)

withϕk[n] ∈ CLT being the beamvector at the n-th discrete time instant. Accordingly, the multi-
antenna opportunistic transmission of a block of K zero-mean and unit variance statistically
independent symbols ak drawn from a known constellation C is modeled as

xq[n] =

√
ST
K

K−1∑
k=0

ak[q]ϕk[n− qN ] ∈ CLT , (5.7)

forn = 0, . . . , N−1, where q indexes the transmitted block andST is the average transmitted sig-
nal power. Therefore, the associated discrete-time received signal for the arbitrary transmitted
block xq[n] is given by

yq[n] =

√
ST
K

K−1∑
k=0

ak[q]HII[n− qN ]ϕk[n− qN ] + i[n] + v[n] ∈ CLR , (5.8)

where HII[n] ∈ CLR×LT is the MIMO inner channel matrix, i[n] ∈ CLR is an unstructured
interference term, and v[n] ∈ CLR is the spatial noise component, distributed according to
v[n] ∼ NC(0, σ

2
vILR). The noise component is also assumed to be uncorrelated in the time

domain. For the time being, the frequency selective nature of the MIMO inner channel is
omitted, as it will be discussed further in this chapter (Section 5.5). The inner transmitting node
has to design the set of orthonormal space-time opportunistic waveforms {ϕk}0≤k≤K−1 using
the local-only sensing information and without cooperating with the inner receiver or the other
outer-network nodes.

On the other side of the problem, the inner receiving node has to design a detection scheme
for the MNTLS transmitted waveforms. Letting yq ∈ CNLR be the stacking of the received signal
(5.8) for n = 0, . . . , N − 1, the sufficient statistic for symbol decoding zq ∈ CK for the arbitrary
transmitted block q is given by

zq = ΨHyq, (5.9)

where Ψ ∈ CNLR×K is the receiver processing matrix defined as

Ψ ≜ [ψ0 · · · ψk · · · ψK−1] , (5.10)

being ψk the matched filter for the k-th transmitted waveform ϕk. The inner receiver does
not cooperate and is not coordinated with the inner transmitter or the outer-network nodes,
meaning that the design of the matrixΨ relies only on the null-space inference locally performed
by the receiving node.

We have learned in Chapter 3 that the MNTLS matched filters {ψk}0≤k≤K−1 can be designed
with the same recursive procedure employed by the inner transmitter to design the MNTLS
pulse-shaping waveforms, thanks to the fundamental invariance property of the proposed so-
lutions. The robustness of the MNTLS waveforms to inter-node subspace mismatch justifies the
generality of the proposed scheme. In multi-antenna feedforward opportunistic communica-
tions, two distinct scenarios have to be studied. On the one hand, the particular case where the
number of transmitting antennas equals the number of receiving antennas, i.e., LT = LR. In this
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case, it is straightforward to see that the same rationale discussed in Chapter 3 is still valid. On
the other hand, the most general asymmetric MIMO case where the antenna arrays employed
by the inner transmitter and the inner receiver have different compositions, i.e., LT 6= LR. Even
though the MNTLS pulse-shaping waveforms and matched-filter receivers can be locally de-
signed as in Chapter 3, it is unclear whether the fundamental invariance property holds in this
general case.

The design of the transmitting waveforms {ϕk}0≤k≤K−1 and matched filters {ψk}0≤k≤K−1 is
addressed in the sequel. Section 5.2.1 discusses the local design of the transmitting waveforms
based on the MNTLS principle described in Chapter 3. Moreover, the performance in terms of
SIDR is characterized, as well. Section 5.2.2 deals with analyzing the fundamental invariance
property in multi-antenna opportunistic communications.

5.2.1 Multi-Channel Generalized Null-Space Transmitting Waveforms

In order to ideally avoid providing inter-system interferences, the inner transmitting node
has to infer the space-time null space. As per [Fra17], the DoF information can be obtained
through spectral factorization of the received wavefield. Accordingly, assuming that the inner
transmitter does not have side information about the outer networks, the null space can be
sensed from a sample estimate of the autocorrelation matrix. For this purpose, the inner
transmitter needs a set of space-time sampled observations X from the surrounding wireless
environment. These observations can be obtained by stacking N per-antenna observations, i.e.,
an arbitrary observations x ∈ CNLT belonging to X is given by

x =

 x[0]
...

x[N − 1]

 , (5.11)

where x[n] ∈ CLT contains the samples obtained at each array element at time instant n.
Therefore, a sample estimate of the space-time autocorrelation matrix can be found as

R̂xx =
1

|X |
∑
x∈X

xxH = UDUH ∈ CNLT×NLT . (5.12)

It is worth noting that the space-time autocorrelation matrix captures both the time-frequency
and the space-wavenumber DoF. Thus, through model order selection, the inner transmitter
can find the sensed null-space basis composed of the eigenvectors associated with the least sig-
nificant eigenmodes. Taking into account the detection errors and the time-varying conditions
of the network state, the sensed null-space basis ÛN is given by

ÛN =
[
ŨN EN

]
∈ CNLT×MT , (5.13)

being ŨN andEN the matrices spanning the correctly detected available DoF and the occupied
DoF wrongly sensed as available, respectively, and MT the total number of available sensed
space-time DoF at the inner transmitting node. Therefore, the space-time generalized null-
space transmitting waveforms obeying

ϕk = ÛNλk, (5.14)

142



with λk the linear combination coefficients defining the k-th waveform, can mitigate (ideally
avoid) inter-system interferences imposed on outer-network nodes. As in Chapter 3, these
waveforms belong to the family of null-space precoding techniques, and thus the choice of λk

is critical to managing the residual interferences caused by the sensing uncertainties.
In view of the sensing uncertainties reflected on the unknown sensing error matrix EN , it

seems reasonable to adopt the minimum worst-case inter-system interference criterion described
in Chapter 3 to design the space-time MNTLS transmitting waveforms {ϕk}0≤k≤K−1. It is
worth noting that the waveform design problem in multi-antenna feedforward opportunistic
communications is just the extension of the problem posed in Chapter 3 to an environment with
higher dimensionality.

Taking into account the discussion above and recalling the definition of the inter-system
interference average power (3.12), the design of the linear combination coefficients vectors
defining the set of linear modulations {ϕk}0≤k≤K−1 can be found as

{λk}0≤k≤K−1 = argmin
{λk},{ek}

{
max
EN

K−1∑
k=0

∥∥∥EH
N ÛNλk

∥∥∥2} (5.15)

subject to (a) ‖EN ‖2F ≤ ξ2; (b) λH
k λk′ = 0, k 6= k′; (c) λH

k Û
H
N ek = αk (5.16)

where the constraints (5.16) upper-bound the degree of uncertainty assumed in the sensing
model in (5.13), guarantee the orthogonality between designed space-time waveforms, and
avoid the trivial solution, respectively. Thus, as per Appendix 3.A, the set of space-time MNTLS
transmitting waveforms can be found as

ϕk =
(
eTk P̂kek

)−1/2
P̂kek, (5.17)

where P̂k+1 = P̂k

(
INLT − ϕkϕ

H
k

)
is the orthogonal projector onto (a subset of) the sensed noise

subspace, being P̂0 = ÛN Û
H
N the orthogonal projector onto the whole space-time null space

sensed at the inner transmitter, and ek ≜
[
0Tn(k)−1 1 0TNLT−n(k)

]T
. As discussed in Chapter 3,

the vector ek can be optimized to minimize the inter-system interference power as

n(k) = argmax
n(k)∈{1,...,NLT}

[
P̂k

]
n(k),n(k)

. (5.18)

It is worth noting that the design of the space-time MNTLS transmitting waveforms can be
tackled sequentially using Algorithm 1 (Chapter 3), revealing its efficient implementation.
Since the set of waveforms {ϕk}0≤k≤K−1 satisfying (5.17) depends on the orthogonal projector
P̂k, it seems reasonable to think that the properties discussed in Chapter 3 still hold in the multi-
channel case. Specifically, from the inner transmitter viewpoint, the properties revealing the
capability exhibited by the designed space-time waveforms to coexist with outer networks are
the spectral behavior and the SIDR. These two properties, which will be numerically illustrated
in Section 5.4, characterize the coexistence capability of the designed linear modulation scheme.
In the sequel, we analyze the impact of using multiple antennas on the SIDR.

Analysis of the Signal-to-Interference Density Ratio (SIDR)

The SIDR metric defined in Chapter 3 permits quantitatively evaluating the capability of man-
aging the residual inter-system interferences exhibited by the space-time MNTLS waveforms.
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Recalling (3.68), the SIDR measured at the inner transmitter output reads as

SIDRT (EN ; {λk}) =
ST − IT (EN ; {λk})

1
NE

IT (EN ; {λk})
, (5.19)

where ST and IT (EN ; {λk}) are the total average transmitted power and the aggregate average
inter-system interference power, andNE is the number of occupied space-time DoF erroneously
sensed as available. In order to highlight the potential advantages of using multiple transmit
antennas, an asymptotic analysis of (5.19) is provided in Appendix 5.B. Specifically, as N → ∞,
the SIDR at the inner transmitter output can be approximated by

SIDRT (EN ; {λk}) ≈ NLT · M

NLT
·
(
1− NE

M

)
= NLT · κ ·

(
1− ϵ

κ

)
, (5.20)

where κ refers to the fraction of the space-time DoF sensed as available by the inner transmitting
node with respect to the total number of space-time DoF NLT, whereas ϵ stands for the relative
sensing errors made by the inner transmitter with respect to NLT. Hence, note that 0 ≤ ϵ ≤ κ.
As discussed in Appendix 5.B, it should be noted that (5.20) is valid whenever the inner
transmitter activates all the LT antennas. Nevertheless, several differences with respect to the
single-channel case deserve our attention and are discussed next.

In spite of the simplicity of the approximation provided in (5.20), the SIDR heavily depends
on each particular scenario. Note that both M and NE have a non-trivial dependence on the
number of independent transmitting antennas LT. Focusing on M , note that equals the sum of
the per-antenna available DoF Mℓ if the LT transmitting antennas are statistically independent.
In our case, the antennas should be statistically independent in order to span all the system
space-time DoF; however, the LT antennas may be generally correlated. Considering that each
antenna can be subject to different sensing conditions, we note that, generally, Mℓ 6= Mℓ′ .
Accordingly, it is straightforward to see that M grows with LT slower than the number of total
system space-time DoF NLT. This observation unveils that κ ≤ Mℓ/N , with equality when
the transmitting antennas are maximally correlated or when Mℓ = Mℓ′ for all ℓ 6= ℓ′. It is
worth noting that the relative sensed space-time DoF is upper-bounded by the single-channel
case. Thus, what is the advantage of using multiple antennas? The advantage of employing
antenna arrays is only recognized in absolute terms since increasing the number of antennas
may lead to a higher DoF spreading coefficient M . Increasing the DoF spreading coefficient
implies that the power per DoF diminishes, yielding a lower interference density per DoF.
Conversely, the advantage of using multiple antennas on the relative sensing errors ϵ can be
appreciated in relative terms since, following the same rationale as for M , the parameter ϵ is
also upper-bounded by the single-channel case.

5.2.2 The Invariance Property and Multi-Channel Receiving Scheme

Thus far, the capability of managing inter-system interferences exhibited by the space-time
MNTLS waveforms has been discussed. At this point, we have to examine the fundamental
invariance property, which guarantees coherent waveform detection without any coordination
or cooperation between inner nodes.

Recalling the single-channel case, the invariance property follows from the uniqueness of
orthogonal projectors. It is worth noting that this argument is valid whenever the sensed
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null spaces at each inner node are subspaces of the same ambient vector space, i.e., CN for
the single-channel case. Nevertheless, three different scenarios must be considered in multi-
channel opportunistic communications. For the sake of simplicity, we assume that the number
of time-frequency DoF N is the same at each inner node.

The first scenario to be analyzed is where the transmitting and receiving arrays have the
same structure or architecture (e.g., ULA) and have the same number of elements, i.e., LT = LR.
This particular case is just a trivial extension of the single-channel case and, as studied by
the author in [BV18], the invariance property can be straightforwardly shown by accounting
for the uniqueness of orthogonal projectors. Imagine now that the number of transmitting
and receiving antennas is still the same, but the antenna arrays at each system end have
different geometry (for instance an LT-element ULA and an LR-element planar array, with
LT = LR). Under ideal operating conditions, i.e., when inter-node subspace mismatch is not
present, the number of sensed available space-time DoF is the same at each inner node. Since
LT = LR = L, the null spaces sensed at each inner node are equal N̂T = N̂R despite that
the different array geometries naturally induce that the sensed null-space bases at the inner
transmitter and receiver differ. Accordingly, there exists a right-unitary linear transformation
Q ∈ CM×M such that ÛN (rT) = ÛN (rR)Q, where ÛN (rT) ∈ CNL×M and ÛN (rR) ∈ CNL×M

are the sensed null-space basis at the inner transmitter and receiver, respectively, and M is the
dimension of the sensed null space. Under these conditions, we note that

P̂0(rT ) = ÛN (rT)Û
H
N (rT) = ÛN (rR)QQ

HÛH
N (rR) = P̂0(rR), (5.21)

meaning that the uniqueness of orthogonal projectors is still a valid argument to prove the
invariance property of the space-time MNTLS waveforms. This statement reveals that the array
geometry does not play an important role if the number of antennas at each system end is equal
and the sensed null-space sensed at the inner transmitter and receiver are equal.

In the two scenarios discussed above, the invariance property holds in the space-time null
space, meaning that the matched filters for the K transmitted waveforms can be designed
through the recursive design scheme described in Algorithm 1, as in the single-channel case.
Nevertheless, the most general and sophisticated scenario is the completely asymmetric MIMO
scenario, i.e., when LT 6= LR, regardless of the considered array geometries. In this general
case, the rotational invariance property of orthogonal projectors does not justify the optimality
of (5.15)–(5.16) to design the matched filters {ψk}0≤k≤K−1. A sophisticated analysis of this
general case is elaborated in the following section, unveiling that, despite the array-geometry
asymmetries, (5.15)–(5.16) is still the optimum design strategy for the opportunistic receiving
scheme under ideal operating conditions.

5.3 The Impact of the Array Geometry

This section deals with analyzing the asymmetric MIMO scenario in feedforward opportunistic
communications. For the purpose of characterizing the impact of different array geometries,
we first describe a physical model for the space-time DoF. Then, using the manifold separation
theory, which is briefly reviewed in Appendix 5.A, we show that the fundamental invariance
property is preserved in asymmetric MIMO opportunistic channels. This theoretical result is
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accompanied by a simulation analysis in Section 5.4 corroborating that the space-time MNTLS
waveforms are invariant to the antenna array geometry.

5.3.1 Physical Model

In order to mitigate inter-system interferences, the inner nodes need to sense the wireless
environment and decide which of the space-time DoF are presumably available for opportunistic
communication. This problem can be addressed through conventional eigenanalysis of a sample
estimate of the autocorrelation matrix. It is worth noting that the geometry of the antenna
array is embedded in the eigenvectors’ matrix but does not appear explicitly. Even though
the eigenvectors’ matrix suffices for designing the space-time MNTLS waveforms, the array
geometry must expressly appear on the null-space basis to characterize its impact.

Let us assume that an inner node equipped with an L-element array knows the array
geometry, i.e., the array is perfectly calibrated and is aware of the transmission parameters of
the outer-network nodes. Under these assumptions, the wideband snapshots observed from
the far-field at time instant n by the inner node can be modeled as the sum of monochromatic
plane waves [Van02], i.e.,

zn =
P∑

p=1

∑
ω∈Wp

b[ω]⊗ (sp[ω]�αn,p[ω]) + v ∈ CNL (5.22)

where P is the number of propagation direction including the line-of-sight path and the multi-
path reflections; Wp ⊂ (−W/2,W/2] is the spectral support of the p-th path, beingW the system
bandwidth; αn,p[ω] refers to the per-antenna time-domain contribution; v ∈ NC(0, σ

2
vINL) is

the observation noise; b[ω] is the frequency-bin vector given by

b[ω] ≜


1

ejω

...
ejω(N−1)

 ∈ CN , (5.23)

where ω = 2πf is the angular frequency; and sp[ω] refers to the array steering vector defined as

sp[ω] ≜


1

ejk
T
ω,pr1

...
ejk

T
ω,prL−1

 ∈ CL, (5.24)

being rℓ ≜ [xℓ, yℓ, zℓ]
T the cartesian coordinates of the ℓ-th array sensor with respect to the phase-

reference element, and κω,p is the wavenumber vector corresponding to the p-th propagation
path and to the wavelength λω associated with frequency ω. Letting {θp ∈ [−π/2, π/2]}1≤p≤P

and {φp ∈ [−π, π]}1≤p≤P be the elevation and azimuth angles, respectively, κω,p is given by

κω,p ≜
2π

λω

 sin(θp) cos(φp)

sin(θp) sin(φp)

cos(θp)

 . (5.25)
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Under the unrealistic assumption that the inner node has a perfect knowledge of the propagation
conditions and the structure of the outer networks, (5.22)–(5.25) can be used to construct a null-
space basis where the array geometry appears explicitly through the steering vector in (5.24).

In order to circumvent this unrealistic assumption, the inner node can design an ad-hoc DoF
sensing basis that spans the whole space-time ambient space and can be further used to sense
the wireless environment and determine the null space. For this purpose, let us define the
frequency-bin matrixB ∈ CN×N as

B ≜ [b[ω0] · · · b[ωn] · · · b[ωN−1]] , (5.26)

being b[ωn] the frequency-bin vector defined in (5.23), and the array steering matrixS[ω] ∈ CL×L

at a given frequency ω as
S[ω] ≜ [s0[ω] · · · sℓ[ω] · · · sL−1[ω]] , (5.27)

where sℓ[ω] is the steering vector given in (5.24). With the aim of spanning the whole NL-
dimensional ambient space-time signal space, the inner node has to find a set of N frequency
bins

Ω = {ωn : |ωn| < W/2}0≤n≤N−1 , (5.28)

and a set of L elevation-azimuth angle pairs

Θ = {(θℓ, φℓ) : |θℓ| < π/2, |φℓ| < π}0≤ℓ≤L−1 , (5.29)

such that both the frequency-bin matrix B defined in (5.26) and the array steering matrix S[ω]
given in (5.27) are full-rank matrices. Accordingly, a basis spanning the NL space-time DoF
that explicitly depends on the array geometry can be found as

M(Θ,Ω) = [M [ω0] · · ·M [ωn] · · ·M [ωN−1]] ∈ CNL×NL, (5.30)

being M [ωn] ≜ b[ωn] ⊗ S[ωn] ∈ CNL×L. It is worth noting that the full-rank condition is
necessary to span the whole NL-dimensional ambient signal space, and, thus the sets Ω and Θ

have to be iterated until the condition is satisfied.
The basis of the whole NL-dimensional ambient signal space provided in (5.30) can be used

to sense the wireless environment and design the space-time MNTLS waveforms. Nevertheless,
we should remark that (5.30) is not a unitary basis, which may hinder the sensing process since
the statistical independence between space-time DoF is not guaranteed.

As per [SM00], any unitary basis of the NL-dimensional ambient signal space is expressed
in the canonical coordinate system. Thus, if the L antennas are uncorrelated2, the canonical
coordinate system guarantees statistical independence between DoF under Gaussian conditions.
Thus, a unitary basis of the ambient space-time signal space can be found applying a canonical
transformation [SM00] on (5.30).

2As per [MSA08], under certain conditions, the inter-element spacing should be larger than half wavelength so
as to guarantee that the antennas are uncorrelated, and, thus, all of the spatial DoF can be exploited. Grating lobes
appear in the radiation pattern when all inter-element spacings of an antenna array are larger than a half wavelength.
It is interesting to note that, in this dissertation, this scenario is also contemplated through the full-rank constraint
imposed on (5.30).
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Figure 5.2: Given a non-orthonormal basis {v1,v2,v3} of the linear subspace V , with principal
anglesα12, α13, α23 6= π/2, the canonical transformationT finds the orthonormal basis {v′1,v′2,v′3},
with α′

12 = α′
13 = α′

23 = π/2, of the same subspace V .

Definition 5.1 (Canonical Transformation). Let us consider a linear applicationT on a linear subspace
V such that

T : V → V
V 7→ V ′ = TV

(5.31)

with T =
(
V V H

)−1/2 the matrix of the linear application T . Given a non-orthonormal basis V of a
subspace V , the transformation T provides an orthonormal (unitary) basis V ′ of the same subspace V .
This linear application T , sketched in Figure 5.2, is known as canonical transformation.

Through a canonical transformation, it is possible to obtain a unitary basis of the NL-
dimensional ambient signal space. In this sense, two different cases are identified. If the
frequency-bin matrix is a Fourier matrix, i.e., it is composed of N uniformly separated consec-
utive frequencies, it is straightforward to see that

M(Θ,Ω)HM(Θ,Ω) =

 M [ω0]
HM [ω0] 0L×L

. . .
0L×L M [ωN−1]

HM [ωN−1]

 , (5.32)

i.e., the inner product of the non-unitary basis M(Θ,Ω) is a block-diagonal matrix with L× L

blocks M [ωn]
HM [ωn]. In this particular case, a unitary basis can be obtained by means of a

per-frequency canonical transformation, i.e., T [ωn] =
(
M [ωn]M [ωn]

H
)−1/2, such that a unitary

basis of the NL-dimensional ambient signal space can be found as

U = [T [ω0]M [ω0] · · ·T [ωn]M [ωn] · · ·T [ωN−1]M [ωN−1]] =

[U [ω0] · · ·U [ωn] · · ·U [ωN−1]] ∈ CNL×NL.
(5.33)

On the other hand, dropping the constraint on the set of frequency binsΩdefining the frequency-
bin matrixB, a unitary basis of the NL-dimensional ambient signal space is given by

U = TM(Θ,Ω) ∈ CNL×NL, (5.34)

being T =
(
M(Θ,Ω)M(Θ,Ω)H

)−1/2 a full canonical transformation.
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At this point, some comments are of order. First, note that the unitary basisU is not unique
and highly depends on the particular choice of the set of frequencies Ω and the set of elevation-
azimuth angle pairs Θ. Despite this non-uniqueness, the design of the space-time MNTLS
waveforms relies on the orthogonal projector onto the null space, meaning that the solution is
unique regardless of the chosen basis. Second, the discussion on the unitary basis has been
included for the sake of completeness, as it can guarantee the statistical independence between
space-time DoF, leading to a sensing performance improvement. Nevertheless, the unitary
basis obtained as in (5.33) or (5.34) exhibits a non-trivial dependence on the array geometry,
which hinders the analysis. Therefore, in the sequel, it is assumed that the basis considered
for designing the space-time MNTLS waveforms is non-unitary and composed of a subset of
columns of (5.30). Since these waveforms do not rely on a particular null-space basis, the drawn
conclusions hold irrespectively of the considered null-space basis.

5.3.2 Problem Statement

The main objective of this section is to prove that the fundamental invariance property is
preserved in asymmetric MIMO opportunistic channels, revealing that the space-time MNTLS
waveforms (5.17) are invariant to the antenna array geometry.

For this purpose, we consider an inner transmitter-receiver pair where each node is equipped
with an arbitrary antenna array of LT and LR antennas, respectively. Without loss of generality,
we consider the transmission of a single symbol, and, thus, only one space-time MNTLS wave-
form and matched filter are involved. It is worth noting that, since all waveforms {ϕk}0≤k≤K−1

and matched filters {ψk}0≤k≤K−1 rely on orthogonal projectors, the conclusions hold for all
waveforms and matched filters satisfying (5.15)–(5.16). In order that the waveform ϕ0 and the
matched filterψ0 explicitly rely on the transmitting and receiving array geometries, we consider
that they have been locally designed using a non-unitary null-space basis composed of a subset
of columns of M(ΘT,ΩT) and M(ΘR,ΩR), respectively. Accordingly, let M̂N ,T and M̂N ,R be
the sensed null-space bases at the inner transmitter and the inner receiver, respectively. As
elaborated in Appendix 5.C, the space-time MNTLS waveform is given by

ϕ0 = M̂N ,TλT = γM̂N ,TM̂
+
N ,Te0, (5.35)

and, analogously, the space-time MNTLS matched filter is given by

ψ0 = M̂N ,RλR = ρM̂N ,RM̂
+
N ,Re0, (5.36)

where γ and ρ are scaling parameters guaranteeing unit norm, and M̂N ,TM̂
+
N ,T and M̂N ,RM̂

+
N ,R

are the orthogonal projectors onto the sensed null space at each system end N̂T =
〈
M̂N ,T

〉
and

N̂R =
〈
M̂N ,R

〉
, respectively.

Regarding the MIMO inner channel HII[n], the multipath (or multi-ray) model (cf. [TV05,
Chapter 7]) is considered. Thus, letting ϑ

(i)
T =

(
θ
(i)
T , φ

(i)
T

)
and ϑ

(i)
R =

(
θ
(i)
R , φ

(i)
R

)
the i-th

elevation-azimuth angle pair of departure and the i-th elevation-azimuth angle pair of arrival,
and αi the channel gain associated with the i-th path, the Npath MIMO inner channel matrix at
frequency ων is given by

HII[ων ] =
1√

NpathLTLR

Npath−1∑
i=0

αisR[ων , ϑ
(i)
R ]sHT [ων , ϑ

(i)
T ] ∈ CLR×LT , (5.37)
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being sR[ων , ϑ
(i)
R ] ∈ CLR and sHT [ων , ϑ

(i)
T ] ∈ CLT the steering vectors associated with the receiving

and transmitting arrays and pointing to the i-th angle pair of arrival and the i-th angle pair of
departure, respectively. Note that, for the sake of clarity, the frequency-selective nature of the
channel is omitted, and it will be studied in Section 5.5. Assuming αi = 1, for i = 0, . . . , Npath,
the time-domain inner MIMO channel matrix reads as

HII[n]=
1

N
√
NpathLTLR

N−1∑
ν=0

Npath−1∑
i=0

sR[ων , ϑ
(i)
R ]sHT [ων , ϑ

(i)
T ]ej

2πνn
N . (5.38)

Letting a0 be the transmitted zero-mean and unit-variance symbol and defining the MIMO
response matrix, for n = 0, . . . , N − 1, as

H̃II ≜

 HII[0] 0
. . .

0 HII[N − 1]

 ∈ CNLR×NLT , (5.39)

the space-time received signal y ∈ CNLR under the far-field assumption reads as

y = a0H̃IIϕ0 + υ, (5.40)

where υ ∼ NC(0, σ
2INLR) is a noise-plus-interference term. Thus, the sufficient statistic for

symbol decoding at the inner receiver is given by

z = ψH
0 y = a0ψ

H
0 H̃IIϕ0 +ψ

H
0 υ. (5.41)

It is worth noting that (5.41) encompasses in a single equation the transmitting waveformϕ0 and
the matched filter ψ0. As per (5.35)–(5.36), both ϕ0 and ψ0 depend on the orthogonal projector
onto the sensed space-time null-space. Since the orthogonal projector can be written as in
(5.35)–(5.36), it is possible to rewrite (5.41) such that the geometries of both the transmitting and
receiving arrays appear explicitly. In the following subsection, an expression for the statistic
z is proposed such that it directly depends on the steering matrices of the transmitting and
receiving array. Then, a thorough analysis based on the manifold separation theory shows
that the statistic z depends only on the effective spatial DoF irrespectively of the considered
transmitting and receiving array geometries.

5.3.3 Analysis of the Array-Geometry Invariance

In order to evaluate the impact of the array geometry on the opportunistic transmission, we
have to analyze if the sufficient statistic for symbol decoding, i.e.,

z = a0ψ
H
0 H̃IIϕ0 + υ̃, (5.42)

where υ̃ is the filtered noise, depends on the geometry of the transmitting and receiving arrays.
Recalling (5.35)–(5.36), we note that both the transmitted waveform ϕ0 and the matched filter
ψ0 rely on the orthogonal projector onto the sensed space-time null space. For the analysis’
purpose, it would be preferable to be able to study the impact of the spatial DoF alone, i.e.,
leaving the time-frequency DoF out of the picture.
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The study of (5.35)–(5.36) performed in Appendix 5.D reveals that the transmitted waveform
ϕ0 and the matched filter ψ0 are composed of N blocks of length LT and LR, respectively, i.e.,

ϕ0 =



ϕ0[0]
...

ϕ0[n]
...

ϕ0[N − 1]


and ψ0 =



ψ0[0]
...

ψ0[n]
...

ψ0[N − 1]


, (5.43)

where each block ϕ0[n] ∈ CLT and ψ0[n] ∈ CLR corresponds to the transmitting and receiving
beamvector, respectively, at a given time instant n.

Plugging (5.43) into (5.42) and recalling the definition of the MIMO response matrix H̃II
given in (5.39), the statistic z can be written as

z =

N−1∑
n=0

a0ψ0[n]
HHII[n]ϕ0[n] + υ̃, (5.44)

which emphasizes that the study can be done at a given time instant. The latter is of paramount
importance to relegate to the background the time domain. More interestingly, Appendix 5.D
also unveils that (5.44) admits a compact expression where the channel steering vectors and the
steering matrices of the transmitting and receiving arrays appear explicitly. Accordingly, (5.44)
can be written as

z =
a0

N
√
NpathLTLR

N−1∑
n=0

N−1∑
ν=0

Npath−1∑
i=0

βH
nν,RM

H
R [ων ]sR[ων , ϑ

(i)
R ]sHT [ων , ϑ

(i)
T ]MT[ων ]βnν,T+υ̃, (5.45)

whereMT[ων ] ∈ CLT×LT andMR[ων ] ∈ CLR×LR stand for the steering matrices at frequency ων

of the transmitting and receiving arrays, respectively, and the vectors βnν,T and βnν,R read as

[βnν,T]ℓ ≜
{

0, if ((θℓ, φℓ);ων) /∈ 〈M̂N ,T〉
ηnν [M

+
T [ων ]ẽT,0]ℓ, otherwise

, for ℓ = 1, . . . , LT (5.46)

and

[βnν,R]ℓ ≜
{

0, if ((θℓ, φℓ);ων) /∈ 〈M̂N ,R〉
µnν [M

+
R [ων ]ẽR,0]ℓ, otherwise

, for ℓ = 1, . . . , LR, (5.47)

where the boolean vectors ẽT,0 and ẽR,0 of length LT and LR, respectively, are appropriately
defined in Appendix 5.D.

It is worth noting that (5.45) reveals that the analysis of the impact of the array geometry can
be done not only at each time instant individually but also can be done per each propagation
path. Therefore, for ease of discussion and without loss of generality, we assume Npath = 1,
which corresponds to the line-of-sight component. Note that the general case Npath > 1

is straightforward, but does not provide any additional insights on the impact of the array
geometry. Accordingly, in the sequel, (5.45) is simplified as

z =
a0

N
√
LTLR

N−1∑
n=0

N−1∑
ν=0

βH
nν,RM

H
R [ων ]sR[ων ]s

H
T [ων ]MT[ων ]βnν,T + υ̃, (5.48)

151



where sT[ων ] and sR[ων ] stand for the steering vectors associated with the transmitting and
receiving arrays, respectively, corresponding to the line-of-sight component.

Observing the simplified expression for the sufficient statistic given in (5.48), we note that
z depends on the inner products of steering vectors. The array steering vector depends si-
multaneously on the array geometry, including its physical structure and non-idealities (e.g.,
calibration errors), and on the wavefield or direction ϑ = (θ, φ). Clearly, the statistic z exhibits
a dependence on the latter, as it encompasses the channel or propagation conditions; however,
does it mean that z also depends on the array geometry?

To proceed with the analysis, we would ideally need to decompose the array steering
vector into two independent terms: a term depending only on the array geometry and a term
depending only on the wavefield. This decomposition is provided by the so-called manifold
separation theory (MST). According to the MST, the steering vector of an L-element antenna
array pointing the direction (θ, φ) at a given frequency ω, i.e,

aω(θ, φ) =
[
ejk

T
ωr0 · · · ejkT

ωrℓ · · · ejkT
ωrL−1

]T
, (5.49)

being rℓ is the ℓ-th sensor positioning vector with respect to the phase reference point, admits
an exact factorization given by

aω(θ, φ) = Gωd(θ, φ), (5.50)

where matrix Gω is known as array sampling matrix and provides a description of the array
geometry only, whereas the so-called coefficient vector d(θ, φ) provides a description of the
wavefield at direction (θ, φ) and is independent of the physical array. The rationale behind
this decomposition follows from the wavefield modeling introduced in [DD94a] and briefly
described in Appendix 5.A. In mathematical terms, the coefficient vector is a function defined
on a Hilbert space H, i.e., d(θ, φ) ∈ H, while the array sampling matrix maps the functions
defined on H onto the L-dimensional complex space CL, i.e., Gν : H → CL. Accordingly,
d(θ, φ) has an infinite number of elements, whereas Gω is composed of an infinite number of
L-element columns, as sketched in Figure 5.3.

As per the related literature, (5.50) provides an orthogonal series expansion of the array
steering vector. Specifically, as reported in [DD94a], the expansion is given in terms of Fourier
series when the steering vector depends only on the elevation angle θ and, in general, in terms
of spherical harmonics. The reader is referred to Appendix 5.A for further details.

Through the decomposition given in (5.50), it is possible to analyze whether the statistic (5.48)
depends on the geometry of transmitting and receiving arrays. Accordingly, as elaborated in
Appendix 5.E, using the MST in (5.48), we have that

z =
a0

N
√
LTLR

N−1∑
n=0

N−1∑
ν=0

ηnνµnν ẽ
T
R,0Gν,RΠDRd (θR, φR)d

H (θT, φT)ΠDTG
H
ν,TẽT,0 + υ̃, (5.51)

where ηnν , µnν , ẽR,0, and ẽT,0 are given in (5.46)–(5.47);Gν,T andGν,R are the sampling matrices
of the transmitting and receiving arrays, respectively; d (θT, φT) and d (θR, φR) refer to the
coefficient vectors of the channel steering vectors sT[ων ] and sR[ων ], respectively; and ΠDT and
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Gν = · · ·

∞

L : H → CL

Figure 5.3: Sketch of the array sampling matrix Gν at frequency ων . Since it represents the
mapping of functions defined on a Hilbert space H onto the L-dimensional complex space CL,
it has an infinite number of L-element columns. However, only a finite number of columns (or
modes) are relevant.

ΠDR are the following projection matrices

ΠDT = DT
(
DH

T DT
)−1

DH
T , (5.52)

ΠDR = DR
(
DH

R DR
)−1

DH
R , (5.53)

being DT and DR the matrices containing the LT and LR coefficient vectors of the steering
matricesMT[ων ] andMR[ων ], and given by

DT ≜
[
d
(
θ0,T, φ0,T

)
· · · d

(
θLT−1,T, φLT−1,T

)]
, (5.54)

DR ≜
[
d
(
θ0,R, φ0,R

)
· · · d

(
θLR−1,R, φLR−1,R

)]
. (5.55)

It is worth noting that, as per (5.46)–(5.47), the inner transmitted signal is not present when
((θℓ, φℓ);ων) /∈ 〈M̂N ,T〉, and the inner receiver does not detect whenever ((θℓ, φℓ);ων) /∈ 〈M̂N ,R〉.
Accordingly, without loss of generality, we may consider that the scaling coefficients ηnν and
µnν are zero if these situations occur.

As discussed in Appendix 5.E, we shall observe that all terms involved in (5.51) except
ẽTR,0Gν,R and GH

ν,TẽT,0 are clearly independent of the geometry of transmitting and receiving
arrays. Regarding the doubtful terms, further analysis is of order.

Let us begin with the termGH
ν,TẽT,0. As detailed in Appendix 5.D, ẽT,0 is anLT-length binary

vector with a single non-zero element at position n(0) mod LT, where n(0) = 1, . . . , NLT indi-
cates the column of the projector M̂N ,TM̂

+
N ,T corresponding to the transmitted waveform ϕ0.

Accordingly, the termGH
ν,TẽT,0 corresponds to the transpose conjugate of the row n(0) mod LT

of the transmitting array sampling matrixGν,T.
Analyzing the structure of the sampling matrix Gν,T (see Figure 5.3), we realize that each

column describes the behavior of a particular excitation mode on the array sensors, i.e., the
columns provide the characterization of the array geometry, accounting for the physical struc-
ture and the possible non-idealities. Conversely, it is worth noting that each row describes the
excitation modes at a particular array element. As discussed in Appendix 5.A, even though
the matrix Gν,T has an infinite number of columns, only a finite number of columns (modes)
are significant, given that the number of spatial DoF is limited by the minimum sphere enclos-
ing the antenna array. Accordingly, we may say that the term GH

ν,TẽT,0 is independent of the
transmitting array geometry, and only depends on the effective spatial DoF.
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Following the same rationale as forGH
ν,TẽT,0, we note that the term ẽTR,0Gν,R corresponds to

the n(0) mod LR row of the receiving array sampling matrixGν,R, and, thus, this term depends
only on the effective spatial DoF that can be resolved by the receiving array. Therefore, under
the far-field assumption, the sufficient statistic for symbol decoding (5.51) benefits from the
additional spatial DoF introduced by the transmitting and receiving antenna arrays in terms of
a potential diversity gain regardless of the geometry of the transmitting and receiving arrays.
The additional DoF due to the spatial dimension at each system end increases the dimension
spreading factor, decreasing the per-DoF interference. Concluding, it can be said the time-
domain invariance property studied in Chapter 3 is preserved, and the result derived in this
section implies a generalization of the fundamental invariance property.

5.3.4 Technical Discussion on the Array-Geometry Invariance

At this point, a brief discussion of the array-geometry invariance property is afforded. On the
one hand, a physical interpretation of the abstract result derived so far is provided. On the
other hand, since a far-field scenario has been considered throughout this section, the validity
of this result in near-field scenarios is discussed.

Physical Interpretation

The array-geometry invariance is the major result of this chapter. Despite the proof being
based on the MST framework, the array-geometry invariance admits an intuitive physical inter-
pretation. For the sake of simplicity, let us consider ideal operating conditions, i.e., subspace
mismatch is not present. The MIMO response matrix can be understood as concatenating
a Multiple-Input Single-Output channel (MISO) and a Single-Input Multiple-Output channel
(SIMO). Accordingly, the MIMO response matrix defined in (5.39) can be seen as a double
mapping from a mathematical viewpoint.

First, the transmitted signal lying in a subspace of the NLT-dimensional complex space
CNLT is mapped into the N -dimensional complex space CN , i.e., the channel itself absorbs the
spatial DoF mapping a space-time signal into a time-domain signal. Since the channel absorbs
the spatial domain, it seems reasonable to think that the structure of the transmitting array
has no impact on communication performance. Nevertheless, the channel is also mapping
this time-domain signal into a space-time signal lying in a subspace of the NLR-dimensional
complex space CNLR . In this case, the channel introduces the spatial domain again.

At the receiving node, the matched filterψ0 is responsible for mapping this space-time signal
into a time-domain signal. Therefore, after all these mappings, the impact of the transmitting
and receiving arrays has been absorbed. The contribution of the spatial domain is reflected in
the fact that the transmit and receive dimensions have been virtually increased, resulting in a
higher DoF spreading factor. In opportunistic communications, this spreading factor plays a
fundamental role in decreasing the interference density imposed on outer-network nodes.

In conclusion, the number of spatial DoF impacts opportunistic communication perfor-
mance, but how these spatial DoF are physically structured does not. It is worth noting that this
conclusion can also be understood by recalling that in multi-antenna communication systems if
the appropriate transmission/detection strategy is employed, it is possible to obtain a diversity
or multiplexing gain related to the number of antennas, irrespective of the array geometry.
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On the Generality of the Analysis

Throughout this section, it is considered that opportunistic communication occurs in the far
field. Despite being conventionally assumed in multi-antenna scenarios, it can be of relevant
interest to analyze the problem in the near field. A current research trend in the digital
communications community consists in exploiting higher frequency bands, e.g., millimeter-
wave bands [WKK+18], or terahertz bands [CHW+21]. As the carrier frequency increases, the
Fraunhofer distance [Bal15] diminishes, translating the communication into the near field. In
spite of being a disadvantage, as discussed in Section 5.1.1, the near field offers additional
space-time DoF that can also be exploited to increase the transmit opportunities. However,
does the array-geometry invariance property hold in the near field?

The MST theory has been used in this section to show the array-geometry invariance prop-
erty. The decomposition provided by the MST exists only in the far-field. Nevertheless, when
operating in the near field, the array steering vectors, also known as array manifold vectors, can
be written as an orthogonal expansion leading to a basis known as spherical near-field antenna
measurements [Han88; CH17]. This expansion results in a decomposition similar to that of the
MST; hence, a similar analysis can be carried out. Another approach to studying the array-
geometry invariance property consists in letting the number of array sensors be arbitrarily large
but confined into a finite sphere, corresponding to a holographic array [Dar20]. However, the
number of spatial DoF does not scale linearly with the number of sensors, as the number of
spatial DoF is constrained by the minimum sphere enclosing the antenna array [PMS20a]. As
studied in [PMS20b; PSM22], the propagating wavefield can always be written in plane waves,
even in the near-field, which follows from noting that a spherical wave can be written as the
summation of an infinite number of plane waves. This approach is known as Fourier plane-wave
series expansion. Thus, the decomposition provided by the MST framework can be applied to
each of the involved plane waves.

In conclusion, although the plane-wave model has been considered, two approaches have
been identified for studying this problem under the more general spherical wave assumption.
On the one hand, the spherical near-field antenna measurements approach can be used to
decompose the steering vector similarly to the decomposition provided by the MST framework.
On the other hand, we can let the number of array sensors be arbitrarily large and use the
Fourier plane-wave series expansion in the context of holographic MIMO communications.

5.4 Simulation Analysis

This Section is intended to illustrate the interference mitigation properties of the space-time
MNTLS waveforms described in Section 5.2 and numerically corroborate the theoretical array-
geometry invariance property derived in Section 5.3.

5.4.1 Interference Mitigation Capabilities: Spectral Behavior and SIDR

In Section 5.2, we have seen that the MNTLS waveforms are linear combinations of all elements
encompassed in the null-space basis sensed by the inner transmitting node. As discussed
for the single-channel case in Chapter 3, the residual inter-system interference imposed on
outer-network nodes is spread over the whole sensed null space. Therefore, spectral behavior
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Figure 5.4: Normalized PSD at each elevation angle θ of the designed space-time MNTLS wave-
form with a 16-element ULA and N = 256 time-frequency DoF.

provides a qualitative justification of the robustness of the space-time MNTLS transmitting
waveforms to undesired inter-system interferences. In order to illustrate the spectral behavior,
some numerical examples are discussed in the sequel.

First, we consider a wideband 16-element ULA with elements spaced λu/2, being λu the
wavelength at the highest frequency considered. The wideband array is modeled according to
the Tapped-Delay Line (TDL) model [Van02], i.e., each array element is attached to a TDL of
N coefficients, meaning that the wideband array can resolve N frequency bins. For the sake of
clarity, the observed bandwidth has been normalized between 0 and 1. Figure 5.4 illustrates the
Power Spectral Density (PSD) for the simple example described in Table 5.2.

θ = −66◦ θ = −54◦ θ = 6◦ θ = 42◦

Occupied Bandwidth [0.1, 0.4] [0.4, 0.7] [0.6, 0.9] [0.05, 0.25] ∪ [0.7, 0.85]

Table 5.2: Occupied bandwidth at each elevation angle θ for the numerical example with a 16-
element ULA attached to a TDL of N = 256 coefficients.

The generality of the spectral behavior property can be further corroborated when a more
complex array is considered. In particular, the non-uniform planar array with 16 isotropic
elements depicted in Figure 5.7(b) is considered, where each element is attached to a TDL of
N = 256 coefficients. The scenario parameters are summarized in Table 5.3. In Figure 5.5, the
PSD at each azimuthal direction φ is depicted for two cuts at different elevation direction θ.

`````````````̀Elevation θ
Azimuth φ −78◦ −18◦ 6◦ 66◦

90◦ - - [0.4, 0.7] [0.05, 0.25]∪[0.7, 0.85]
30◦ [0.1, 0.4] [0.6, 0.9] - -

Table 5.3: Occupied bandwidth at each azimuth-elevation angle pair for the numerical example
with a 16-element non-uniform planar array attached to a TDL of N = 256 coefficients.
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(a) Cut at θ = 90◦

(b) Cut at θ = 30◦

Figure 5.5: Different cuts in the elevation direction θ of the normalized PSD at each azimuthal
direction φ of the space-time MNTLS waveform with a non-uniform planar array and N = 256
time-frequency DoF.
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Figure 5.6: Simulated SIDRT (markers) and the asymptotic approximation (5.20) (lines) with
N = 2048 time-frequency DoF, and for ϵ = {1%, 5%} (black, red), and for different independent
antennas LT.

Observing the examples depicted in Figures 5.4 and 5.5, note that the space-time MNTLS
waveforms cancel their contributions to those frequency-angle pairs sensed as occupied while
trying to exploit the sensed as available frequency-angle pairs uniformly. It is worth pointing
out that the power distribution is almost uniform along the frequency axis. However, regarding
the angle domain, we note that providing a uniform distribution is more challenging due to the
finite size of the considered arrays. The angular power distribution is expected to become more
uniform as the array size increases.

As already concluded in Chapter 3 for the single-channel case, this DoF spreading does
not translate into a null-space exploitation inefficiency. Since each waveform in {ϕk}0≤k≤K−1

is rank-one, only one effective space-time DoF is exploited. The point is that the space-time
MNTLS waveforms perform a change of basis so as to spread the unwanted residual inter-
system interferences over the whole sensed space-time null space, minimizing the interference
density per erroneous space-time DoF.

In terms of uncoordinated access, space-time DoF spreading is the best that can be done
when the inner transmitter is not aware of the position of the inner receiver. The latter is exactly
the same rationale behind the random beamforming scheme3 [LSK16; LSS16]. Interestingly, in
Time Division Duplex (TDD) scenarios, the enhanced detection strategies described in Section
3.5 (Chapter 3) can be exploited by the inner transmitting node to prune the space-time sensed
null space and steer the opportunistic transmission towards the effective space-time null space.

The basic examples discussed thus far permit illustrating the interference mitigation capa-
bility of the space-time MNTLS waveforms in a qualitative manner. In order to evaluate this

3Random beamforming is a technique aiming at reducing the required feedback to schedule the best receiving
node. Specifically, the transmitting node blindly (randomly) sends a set of orthogonal beams. Then, the receiving
nodes feed back the measured SINR, and the transmitter allocates the user exhibiting the highest SINR to each
orthogonal beam.
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capability from a quantitative viewpoint, the advantage of using multiple transmitting antennas
on the SIDR is numerically illustrated in Figure 5.6, where the SIDR is depicted as a function of
the sensed DoF availability κ for different sensing sensitivities ϵ and for different independent
(active) antennas LT. The conclusions from Figure 5.6 are twofold. First, this numerical simu-
lation reveals the tightness of the proposed asymptotic approximation in (5.20). Even though
several numbers of transmitted waveforms K have been considered, the plot only accounts for
the case K = 1 since, as foreseen by (5.20), the SIDR is independent of K. Second, this figure
also unveils the advantage of using multiple antennas to improve the coexistence compatibility
of the inner system with the other outer systems. In particular, even though the advantage of
using antenna arrays cannot be appreciated on the sensed DoF availability κ, it can be noted
that doubling LT introduces a 3 dB-gain on the SIDR.

5.4.2 Array-Geometry Invariance

Section 5.3 discusses the impact of the antenna array geometry from a theoretical perspective.
In the sequel, this property is numerically illustrated. It is worth noting that the interest of
this property is that the time-domain invariance discussed in Chapter 3 is preserved regardless
of the use of antenna arrays. For the sake of illustration, a MISO opportunistic transmission
is considered. Even though this is the most simple asymmetric MIMO case, it is of relevant
interest to appropriately illustrate the array-geometry invariance property.

Before discussing the numerical results, it can be helpful to provide the expression of the
time-domain signal observed by the inner receiving node. Particularizing (5.40) for LR = 1 and
taking into account the discussion elaborated in Appendix 5.E, the time-domain received signal
is given by

y[n]=
a0

N
√
LT

N−1∑
ν=0

dH (θR, φR)ΠDTG
H
ν,TẽT,0 + υ[n], (5.56)

whered (θR, φR) stands for the steering vector pointing the inner receiving node. This simulation
analysis aims at illustrating that (5.56) is invariant to the considered transmitting array geometry.
For the sake of simplicity, only the line-of-sight path is analyzed. If multipath propagation is
considered, the inner receiver will observe the superposition of signals similar to (5.56).

In order to provide a complete simulation analysis, this array-geometry invariance property
is evaluated in 1D, 2D, and 3D antenna arrays. In particular, let us consider the antenna arrays
depicted in Figure 5.7, being λu the wavelength at the highest frequency considered. In the
sequel, we consider that the transmitting array is composed of LT = 4 sensors, each of them
attached to a tapped-delay line of N = 32 taps, which corresponds to the number of time-
frequency DoF. The procedure performed to evaluate the array-geometry invariance property
is the same regardless of the considered scenario (1D, 2D, or 3D arrays), and it is described next.

For the purpose of testing the array-geometry invariance, four space-time MNTLS transmit-
ting waveforms are designed in each scenario, where the LT = 4 sensors are randomly chosen
from the arrays modeled in Figure 5.7. Then, a non-unitary basis of the whole space-time
NLT-dimensional ambient signal space is constructed according to (5.30). Regarding (5.56), it
is worth noting that the received signal depends on the projections of d (θR, φR) onto the set
of coefficient vectors of the transmitting array, i.e., dH (θR, φR)ΠDT . Since these vectors are
independent of the array geometry, its impact on the received signal (5.56) is not of interest.
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Figure 5.7: Arrays employed for the evaluation of the array-geometry invariance property.
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Figure 5.8: Magnitude of the noiseless opportunistic received signal y[n] (5.56) when different
transmitting array geometries are used in the 1D scenario depicted in Figure 5.7(a).
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Figure 5.9: Magnitude of the noiseless opportunistic received signal y[n] (5.56) when different
transmitting array geometries are used in the 2D scenario depicted in Figure 5.7(b).
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Figure 5.10: Magnitude of the noiseless opportunistic received signal y[n] (5.56) when different
transmitting array geometries are used in the 3D scenario depicted in Figure 5.7(c).
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Accordingly, in order not to visualize this effect, the same set of LT elevation-azimuth angle
pairs Θ is considered in each realization.

In each of the four experiments, the same simulation conditions are considered. In particular,
a space-time DoF availability of M/(NLT) = 3/4 is assumed, and it is of paramount importance
to guarantee that the same span is considered in each realization. After this sensing part,
four waveforms satisfying (5.35) are designed and transmitted through a MISO channel. In all
simulations, we assume that the inner receiving node is located at θR = 30◦ with respect to the
transmitting array broadside for the linear array case, whereas for the planar and volumetric
arrays the location of the receiving node is assumed to be θR = 30◦ and φR = 60◦.

The noiseless time-domain received signal is depicted in Figures 5.8, 5.9, and 5.10 for the
1D, 2D, and 3D scenarios, respectively. Observing these figures, we immediately notice that
the four plots in each scenario are extremely similar, irrespective of the chosen sensors, i.e., the
array geometry. Nevertheless, we may observe that some points differ slightly. One reason
for these small differences is the unavoidable numerical stability issues. On the other hand,
grating lobes will appear in some cases where the minimum inter-element spacing is larger
than d/λu > 1/2. These effects are the primary source of the differences observed between
different plots in each scenario. Despite these little differences, we may observe that the shape
of the noiseless received signal’s magnitude is kept, highlighting the array-geometry invariance
property exhibited by the space-time MNTLS waveforms.

5.5 Asymptotic Analysis

The last section of this chapter studies the asymptotic behavior of the space-time MNTLS
waveforms, extending the analysis performed in Chapter 4.

First of all, the asymptotic behavior of the space-time observations’ autocorrelation matrix
is provided. Under wide sense stationary conditions, the exact autocorrelation matrix of the
space-time observations described in (5.11) has a block-Toeplitz structure, i.e.

Rxx = E
[
xxH

]
=


R[0] R[−1] · · · R[−N + 1]

R[1] R[0] · · · R[−N + 2]
...

... . . . ...
R[N − 1] R[N − 2] · · · R[0]

 ∈ CNL×NL. (5.57)

Each blockR[m] ∈ CL×L is the matrix-valued spatial autocorrelation function given by

R[m] = E
[
x[n]xH [n−m]

]
, (5.58)

where x[n] ∈ CL is the observed snapshot at time instant n. It is well-known that, as N → ∞,
an NL ×NL block-Toeplitz matrix composed of N ×N blocks of size L × L is asymptotically
equivalent to a block-circulant matrix composed ofN×N blocks of sizeL×L [Tee07; RVVLV+11;
GGC12; RSV+15], i.e.,

lim
N→∞

‖Rxx −CNL×NL‖F√
N

= 0, (5.59)

where CNL×NL is a block-circulant matrix with the same block structure asRxx. Accordingly,
under these asymptotic conditions, the eigenmatrix Q of Rxx asymptotically converge to the
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eigenmatrix of an NL×NL block-circulant matrix, i.e.,

Q −−−−→
N→∞

FH
N ⊗ IL, (5.60)

beingFN the normalizedN -size Fourier matrix. For the reader’s convenience, a simple example
with N = 5 and L = 3 of the block-Fourier matrix FH

N ⊗ IL is illustrated in Figure 5.11.
The particular structure introduced by the Kronecker product in (5.60) can be further ex-

ploited. Note that permuting the columns of the eigenmatrix Q does not modify its span.
Therefore, if Q is a basis of the whole space-time NL-dimensional ambient signal space, any
matrix constructed as a column permutation ofQ is also a valid basis.

Accordingly, the multi-antenna inner node can design an asymptotic space-time sensing
basis given by the horizontal stacking of L matrices of size NL × N . Each of these matrices
corresponds to the sensing basis at each sensor. Mathematically, the space-time sensing basis
reads as

U = [U0 U1 · · · UL−1] , (5.61)

where each block Uℓ ∈ CNL×N , for ℓ = 0, . . . L− 1, is given by

Uℓ = F
H
N ⊗ [IL]ℓ, (5.62)

with [IL]ℓ standing for the ℓ-th column of IL. An example of the space-time sensing basis
described in (5.61) is depicted in Figure 5.12, for the case N = 5 and L = 3.

A direct consequence of (5.61)–(5.62) is that the wireless environment can be individually
sensed at each sensor of the array using the matrix FH

N as a sensing basis, i.e., the same
asymptotic sensing basis as in the single-channel case. Then, the space-time null-space basis
can be constructed using (5.62), leading to

ÛN =
[
ÛN ,0 ÛN ,1 · · · ÛN ,L−1

]
, (5.63)

being ÛN ,ℓ, for ℓ = 0, . . . , L−1, the per-antenna sensed null-space bases. It is worth noting that
the dimensions of the sensed null space at each sensor can differ, as each sensor may be subject
to different sensing conditions. The block structure observed in both (5.61) and (5.63) is also
preserved in the orthogonal projector onto

〈
ÛN

〉
, which is given by

P̂0 = ÛN Û
H
N =

L−1∑
ℓ=0

ÛN ,ℓÛ
H
N ,ℓ. (5.64)

Interestingly, the positions of the zeros imposed by the Kronecker product in (5.62) is kept
in the sensed space-time null-space basis (5.63) and in the orthogonal projector P̂0. It is
straightforward to verify that this structure is maintained in the asymptotic space-time MNTLS
waveforms, regardless of the recursive nature of the design algorithm.

The latter is of paramount importance since it reveals that, asymptotically, the space-time
MNTLS waveforms describe a space-time multiplexing scheme, such that each waveform per-
forms an antenna selection policy. Accordingly, the Kℓ waveforms designed using the Mℓ

time-frequency DoF sensed as available at the ℓ-th antenna only activate this specific antenna.
Therefore, asymptotically, the space-time waveforms can be designed on a per-antenna ba-
sis, meaning that each antenna can design its associated time-domain waveforms, and these
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Figure 5.11: Example of a normalized block-Fourier matrix FH
N ⊗ IL with N = 5 and L = 3.

Figure 5.12: Example the structured space-time sensing basis (5.61) with N = 5 and L = 3.
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waveforms can be converted to space-time signals using the Kronecker product as in (5.62). Fur-
thermore, recalling that the space-time waveforms are structured in N blocks of size L, in the
asymptotic case, each block only has a single non-zero element corresponding to the coefficient
associated with one antenna. This particular structure is exemplified on the next page, where
the asymptotic behavior of the space-time shaping transmission matrix Φ is illustrated in Figure
5.13, and the transmit beamvectors at each time instant are depicted in 5.14, with N = 5 and
L = 3. Note that the values of N and L are kept small for the sake of illustration. In particular,
a shaping transmission matrix with K = 3 waveforms is depicted in Figure 5.13. Each of these
waveforms corresponds to the first waveform designed at each of the three antennas. In order
to better illustrate the antenna selection property, the transmit beamvector at each time instant
derived from each waveform in Φ is drawn in Figure 5.14.

The antenna selection property asymptotically exhibited by the space-time MNTLS wave-
forms opens up the opportunity to incorporate more properties into the designed waveforms.
Specifically, deciding which antennas are active for each transmission permits tuning not only
the number of transmit antennas but also the geometry of the array. Even though the antenna
array geometry has no impact on the opportunistic communication performance, tuning the
geometry can be of paramount interest to improve the opportunistic communication perfor-
mance. For instance, array tuning enables the design of space-time codes [PNG03] or adjusting
the diversity-multiplexing trade-off [TVZ04] to satisfy the traffic or quality-of-service require-
ments of the inner receiving node.

From an opportunistic communication perspective, the particular structure exhibited by
the asymptotic space-time MNTLS waveforms permits a straightforward adaptation of the
CS-TDMA scheme. If the conditions described in Section 4.4 hold only at some antennas, a
per-antenna CS-TDMA scheme can be implemented in the corresponding antennas. However,
if all antennas satisfy the conditions, the extension leads to a full multi-antenna CS-TDMA
scheme, defining an efficient space-time waveform multiplexing strategy.

Regarding the extension of the opportunistic transmission scheme in frequency-selective
channels, it is discussed next for the sake of completeness.

5.5.1 Adaptation to Multi-Antenna Frequency-Selective Channels

Throughout this chapter, the frequency-selective nature of wideband multi-antenna channels
has been omitted. As the system bandwidth increases, it becomes reasonable to adopt the
asymptotic behavior of the space-time MNTLS waveforms studied in this section. Accordingly,
the adaption of these waveforms to frequency-selective channels is discussed next.

As previously considered in Chapter 4, a CP-based multi-antenna opportunistic transmis-
sion scheme is adopted. The latter requires defining a structured non-orthogonal sensing basis
for each array sensor. Letting V = FH

N , where FN is the normalized N -size Fourier matrix, the
structured non-orthogonal sensing basis at the ℓ-th antenna is given by

Wℓ =

 VCP

V

⊗ [IL]ℓ , (5.65)

where VCP is a wide matrix containing the last NCP ≥ Lh rows of V , being Lh the channel
memory, and [IL]ℓ stands for the ℓ-th column of the identity matrix. After the per-antenna
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Figure 5.13: Shaping transmission matrix composed of K = 3 waveforms corresponding to the
first waveform at each of the three antennas.

Figure 5.14: Transmit beamvector from each waveform in the shaping transmission matrix de-
picted in Figure 5.13.
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sensing, the inner transmitter obtains a set of L null-space bases of the form

W̃N ,ℓ =

 V (ℓ)
N ,CP

VN ,ℓ

⊗ [IL]ℓ ∈ C(N+NCP)L×Mℓ , (5.66)

being Mℓ the number of DoF sensed as available at the ℓ-th sensor, such that the shaping
transmission matrix at each antenna is given by

Φ̃ℓ = W̃N ,ℓΛℓ =

 ΦCP,ℓ

Φℓ

 =

 V (ℓ)
N ,CP

VN ,ℓ

⊗ [IL]ℓ

Λℓ ∈ C(NCP+N)L×Kℓ , (5.67)

where Kℓ is the number of waveforms designed at the ℓ-th antenna, satisfying Kℓ ≤ Mℓ and
Kℓ ≤ K. Note that the case Kℓ = K reduces to the single-channel case analyzed in Chapter 4.
As per (5.67), note that the cyclically extended waveforms ϕ̃(ℓ)

k = W̃N ,ℓλ
(ℓ)
k are not orthogonal

due to the insertion of the CP. Nevertheless, by removing the cyclic extensions the orthogonality
between waveforms is restored.

A direct consequence of the study carried on in this section is that the multi-antenna
opportunistic transmission can be tackled as a set of L orthogonal single-channel transmissions.
Therefore, the signal received by the inner receiving node, after removing the CP, reads as

y =

√
ST
K

K−1∑
k=0

ak

L−1∑
ℓ=0

H
(ℓ)
II,cϕ

(ℓ)
k +w, (5.68)

where H(ℓ)
II,c ∈ CN×N is the circulant inner channel matrix between the ℓ-th antenna and the

inner receiver, which can be decomposed as H(ℓ)
II,c = FH

N Σh,ℓFN , being Σh,ℓ a diagonal matrix
containing the channel frequency response at the ℓ-th antenna; ϕ(ℓ)

k ∈ CN is the time-domain
opportunistic waveform at the ℓ-th antenna; ak is the k-th transmitted symbol; and w ∼
NC(0, σ

2IN ) is the interference-plus-noise term.
Recalling that the structure induced by the Kronecker product in (5.62) translates into an

antenna selection policy, each transmitted waveform only activates one antenna. Accordingly,
the summation for ℓ in (5.68) has a single non-null element. Therefore, (5.68) can be further
simplified as

y =

√
ST
K

K−1∑
k=0

akH
(ℓ[k])
II,c ϕ

(ℓ)
k +w =

√
ST
K

K−1∑
k=0

akF
H
N Σh,ℓ[k]FNϕ

(ℓ)
k +w (5.69)

where ℓ[k] indexes the antenna activated by the k-th waveform. From (5.67), it is straightforward
to see that ϕ(ℓ)

k is given by
ϕ
(ℓ)
k = VN ,ℓλ

(ℓ)
k , (5.70)

being λ(ℓ)
k the k-th column of Λℓ. Therefore, (5.69) can be written as

y =

√
ST
K

K−1∑
k=0

akF
H
N

 0(N−Mℓ[k])×Mℓ[k]

ΣN ,h,ℓ[k]

λ(ℓ[k])
k +w, (5.71)
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denoting Mℓ[k] the dimension of the null space at the antenna selected by the k-th waveform.
At this point, we can see that with a few notational differences, (5.71) has a similar structure to
the received signal in the single-channel case discussed in Chapter 4. Thus, the same receiving
structure can be implemented on a per antenna basis. In this sense, considering the sub-optimal
zero-forcing criterion, the frequency-domain one-tap equalizer at the ℓ-th antenna is given by

Gℓ = V̂N ,ℓΣ
−1
N ,h,ℓV̂

H
N ,ℓ. (5.72)

In conclusion, the frequency-selective nature of the channel can be counteracted in the multi-
antenna case with an extension of the CP-based opportunistic transmission scheme described
in Chapter 4. However, the proposed strategy defines a space-time multiplexing scheme in this
multi-channel case. Nevertheless, as previously discussed in Chapter 4, space-time-frequency
multiplexing is possible by appropriately dividing the per-antenna null space into smaller
regions at the expense of decreasing the attainable SIDR.

5.6 Conclusions

This chapter has studied the problem of multi-channel feedforward opportunistic communica-
tions. From the inner transmitting node perspective, the space-time MNTLS waveforms keep
the dimensions spreading property, which is fundamental to guarantee a minimum inter-system
interference level per erroneous space-time DoF. In this respect, the analysis of the SIDR metric
in multi-antenna scenarios has unveiled the impact of using multiple antennas to increase the
dimension further spreading factor.

From an end-to-end opportunistic communication, the fundamental invariance property,
which guarantees coherent waveform detection under cumbersome feedforward conditions,
has been studied. In particular, the impact of the geometries of transmitting and receiving
arrays has been analyzed. When the number of sensors at each system end is equal, the
rationale provided in Chapter 3 for the single-antenna case has been straightforwardly extended
to multi-channel scenarios. Nevertheless, a more involved discussion has been provided in
the more general case where the number of sensors at each system end differs. Specifically,
the array manifold separation theory has been used to demonstrate that the opportunistic
communication performance is independent of the transmitting and receiving array geometries
and only depends on the number of space-time DoF in terms of a potential diversity gain and
a larger dimension spreading factor.

Finally, the asymptotic behavior of the space-time MNTLS waveforms has been analyzed.
Using the asymptotic eigenanalysis of block-Toeplitz matrices, it has been proven that the pro-
posed opportunistic transmission scheme tends to asymptotically perform an antenna selection
policy, behaving similarly to a set of orthogonal single-antenna transmitters. This result has
been of paramount importance to extrapolate the CS-TDMA modulation studied in Chapter 4
to multi-antenna opportunistic scenarios and to define a CP-based modulation to operate in
multi-antenna frequency-selective channels.
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Appendix 5.A On Wavefield Modeling and Manifold Separation

The most significant result of this chapter is based on the manifold separation theory (MST).
MST is described through a formalism of array processing called wavefield modeling [DD94a;
DD94b; DD94c]. In essence, this formalism states that the signal-only part of the array output can
be written in terms of a sampling operator on the received wavefield, leading to an orthonormal
expansion of the array steering vector. Accordingly, the steering vector can be decomposed
into an array-only dependent matrix and a wavefield-only dependent vector. This Appendix
provides a brief review based on [DD94a; DD94b; DD94c] of the rationale behind this theory.

x y

z

θ

φ

Ψ(t, r1)

Ψ(t, rk)

Ψ(t, rK)

Figure 5.15: K far-field non-polarized narrowband sources (black squares) impinge a volumetric
array with an arbitrary geometry composed of L isotropic and uncoupled sensors (circled exes).
The phase-reference element is placed at the origin. The vector rk refers to the spherical coordi-
nates of the sources, i.e., rk = (Rk, θk, φk)

T , being Rk, θk, and φk the distance with respect to the
phase-reference element, the elevation, and the azimuth, respectively.

Without loss of generality, let us consider the scenario depicted in Figure 5.15, where
K far-field non-polarized4 narrowband sources impinge a volumetric array composed of L

isotropic5 and uncoupled sensors. Each propagating wavefield6 Ψk(t, r) has a Fourier integral
representation given by

Ψk(t, r) =

∫
Φk(ω, r)e

jωtdω, (5.73)

where Φk(ω, r) are the Fourier components. Taking into account the far-field assumption, the
4The manifold separation expansion can be generalized to the case of polarized antenna arrays at the expense of

notational complexity [CRK12; CK14; Fri18]. For ease of discussion, the case of non-polarized arrays is considered
in this Appendix.

5The directivity pattern of the sensors can be straightforwardly incorporated in the array model [DD94a].
6As per [DD94a], each Ψk(t, r) propagates according to the wave equations. Thus, each Fourier component

Φk(ω, r) meets the source-free Helmholtz equation.
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Fourier components of the propagating wavefield admit the following expression:

Φk(ω, r) =

∫
M

ρ(ω, µ)ejκr
T
k µ̂dµ, (5.74)

where M describes the manifold of possible angles of arrival, i.e.,

M =

{φ : φ ∈ [0, 2π)} in 2D scenarios
{(θ, φ) : θ ∈ [0, π], φ ∈ [0, 2π)} in 3D scenarios

. (5.75)

Note that a 2D scenario refers to the case of linear arrays or when the sources impinging the array
are located on the xy-plane according to the coordinates depicted in Figure 5.15. Otherwise,
the problem is contextualized in a 3D scenario. Regarding (5.74), µ is a point on the manifold
M, ρ(ω, µ) is an angular distribution of the Fourier component denoted as the radiation density
in the direction µ, κ = ω/c is the wavenumber, being c the propagation speed, and µ̂ is a unit
vector pointing the direction µ. The exponent in (5.74), i.e., jκrTk µ̂ is given by

jκrTk µ̂ = κT
ω,kr̃k =

2π

λω

[
sin(θk) cos(φk), sin(θk) sin(φk), cos(θk)

]T  xk
yk
zk

 , (5.76)

i.e., the scalar product of the wavenumber vector κω,k and the cartesian coordinates vector of
the k-th source r̃k. Note that λω is the wavelength at frequency ω. As per [DD94a], the Fourier
component of the propagating wavefield in (5.74) admits an orthogonal decomposition in the
Hilbert space H given by

Φk(ω, r) =
∞∑

n=−∞
dn,k(ω)hn(rk), (5.77)

being {hn(rk)} the elements of an orthogonal basis in H. The plane waves ejκr
T
k µ̂ solve the

Helmholtz equation, the radiation density ρ(ω, µ) can be a complex function defined on the
space of functions that are absolute-square Lebesgue integrable over the manifold M, i.e.,
L2(M). Accordingly, the radiation density ρ(ω, µ) can also be written in terms of an orthogonal
expansion in the space L2(M) given by

ρ(ω, µ) =
∞∑

n=−∞
dn,k(ω)fn(µ), (5.78)

where {fn(µ)} are the elements of an orthogonal basis in L2(M). Note that fn(µ) and hn(rk)

are related as
hn(rk) =

∫
M

fn(µ)e
jκrT

k µ̂dµ, (5.79)

and the coefficients of the orthogonal expansions in (5.77) and (5.78) are given by

dn,k(ω) =

∫
M

ρ(ω, µ)f∗
n(µ)dµ =

∫
Rm

Φk(ω, r)h
∗
n(rk)dr, (5.80)

where m = 2 in 2D scenarios and m = 3 in 3D scenarios. Thus far, the discussion has not been
focused on any particular choice for the bases of the orthogonal expansions. As discussed in
[DD94a], noting that the manifold M represents a unit circle in 2D and a unit sphere in 3D, an
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Figure 5.16: Examples of the Bessel function and the spherical Bessel function of the first kind,
Jn(x) and jn(x), respectively, for orders n = −1, 0, 1.

adequate orthogonal expansion for the radiation density is given in terms of the Fourier basis
in 2D and in terms of the spherical harmonics in 3D, i.e.,

fn(µ) =

(2π)−1/2e−jnφ in 2D scenarios
Ylp(θ, φ) in 3D scenarios

, (5.81)

being Yln(θ, φ), for l = 0, 1, . . . ,∞ and p = −l, . . . , l, the spherical harmonic functions [Mül06],
which can be written as a single index n = l(l + 1) + p. Accordingly, using the relation (5.79),
the corresponding orthogonal basis set {hn(rk)} in H is given by

hn(rk) =


√
2π(j)nJn(κr)e

−jnφ in 2D scenarios
4π(j)ljl(κr)Ylp(θ, φ) in 3D scenarios

, (5.82)

where Jn(x) and jl(x), with n = −∞, . . . ,−1, 0, 1, . . . ,∞ and l = 0, 1, . . . ,∞, are the Bessel
functions of the first kind and the spherical Bessel functions of the first kind, respectively.
In view of (5.78) and (5.81), it is worth noting that the coefficients an(ω) of the orthonormal
expansion are Fourier coefficients in 2D and spherical harmonic coefficients in 3D. Both the
Bessel and the spherical Bessel functions of the first kind are illustrated in Figure 5.16.

Thus far, an orthonormal expansion of the propagating wavefield has been provided. Let
us now focus on the array response vector, i.e., the array steering vector. An antenna array or a
sensor array can be interpreted as a sampler of the spatial domain; the input is the impinging
wavefield, and the output is the steering vector. Let yk ∈ CL be the array output for the k-th
impinging wavefield. Neglecting the noise, the array output is given by [DD94a]

y = G [Φk(ω, r)] = G

[ ∞∑
n=−∞

dn,k(ω)hn(rk)

]
= Gdk (5.83)

where G[·] denotes the sampling operation, and G and d are the so-called sampling matrix and
coefficient vector, respectively. In view of the previous discussion on the orthogonal expansion
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of the propagating wavefield, it is worth noting that the array output can be written in terms
of an orthonormal expansion. The sampling matrix is a property of the antenna array, which
physically describes the array, accounting for the array architecture and its non-idealities (e.g.,
calibration errors). On the contrary, the coefficient vector exclusively describes the impinging
wavefield, being independent of the antenna array. Note that the dependence on the frequency
ω has been dropped in (5.83) for simplicity of notation. Accordingly, from a mathematical
viewpoint, the coefficient vector can be seen as a function defined on a Hilbert space, whereas
the sampling matrix is just a mapping of the functions defined on a Hilbert space onto vectors
belonging to the L-dimensional complex space CL. That is,

G : H → CL, (5.84)

meaning that matrix G has an infinite number of columns and L rows. It is interesting to
note that (5.83) reveals that the output of the antenna array can be written as the product of
an array-only dependent matrix and a wavefield-only dependent vector. Likewise, since the
steering vector s(µ) ∈ CL of the corresponding array is the array response to a unit-magnitude
plane wave arriving from direction µ, the steering vector s(µ) can be decomposed as

s(µ) = Gdµ, (5.85)

where aµ is the coefficient vector corresponding to a unit-magnitude plane wave arriving from
direction µ.

5.A.1 Beyond the Theoretical Foundations of Wavefield Modeling

Even though it was not formally justified, the separability of the array manifold first appeared
in [DDW93] as a coherent wideband array processing technique for arrays with arbitrary ge-
ometry. The principal motivation of the wavefield model is to ease the use of efficient array
processing methods developed for the case of uniform linear arrays (ULA) in more general cases
where the array may have an arbitrary geometry. For instance, root-MUSIC (see, e.g., [RH89])
is an efficient direction-finding technique developed for ULA. The last condition implies that
the steering matrix, i.e., the matrix encompassing the array steering vectors, is a Vandermonde
matrix with complex exponential entries. The steering matrix has only a Vandermonde struc-
ture in the ULA case. However, the Vandermonde structure is broken if the array suffers from
calibration issues, malfunctioning sensors, or when the array has another topology. An attempt
to adapt root-MUSIC consists in mapping the real array was mapped into a linear virtual array
[Fri93]. However, this mapping (and other mapping techniques) produces mapping errors. For
this reason, the wavefield model formally derived in [DD94a] has been used for coherent wide-
band array processing [DD94b], direction-finding [BRK07; RG09; Fri18; PLL+19], polarization
estimation [CRK12], or beamforming [CK14].

In the abovementioned applications, a fundamental problem is to find the orthogonal de-
composition of the array steering vectors described in (5.85). Since the Hilbert space H is an
infinite-dimensional space, the coefficient vector has an infinite number of elements and the
sampling matrix has infinite columns. Both the coefficient vector and the sampling matrix
have to be estimated from measurements when the array geometry is unknown. Moreover, in
practical applications, using the true sampling matrix and coefficient vector is not realistic. Al-
together, the truncation and the estimation lead to modeling errors [DD94a; BRK07]. Focusing
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only on the truncation, it is of relevant interest in practical applications to define the truncated
sampling matrix and the coefficient vector such that the array steering vector pointing direction
µ ∈ M can be written as

s(µ) = G̃d̃µ + ϵ(m), (5.86)

where ϵ(m) is the modeling error due to truncating the sampling matrix and the coefficient
vector. Recalling (5.83), the truncation can be defined as

ϵ(m) = s(µ)−G

 m−1
2∑

n=−m−1
2

dn,µ(ω)hn(r)

 (5.87)

The thorough study conducted in [DD94a] reveals that the mean-square truncation error (5.87)
in 2D scenarios is upper-bounded by

E{‖ϵ(m)‖2} ≤ 2L2
∞∑

n=m+1

J2
n(κRmin), (5.88)

where L is the number of array elements, m is the cut-off mode, κ = 2π/λ is the wavenumber,
and Rmin is the radius of the smallest circle enclosing the array. In the case, of 3D scenarios,
E{‖ϵ(m)‖2} reads as

E{‖ϵ(m)‖2} ≤ L2
∞∑

l=m+1

(2l + 1)j2l (κRmin), (5.89)

where Rmin is now the radius of the smallest sphere enclosing the array. These two upper-
bounds (5.88) and (5.89) are illustrated in Figure 5.17. For 2D scenarios, a 5-element ULA with
half-wavelength element separation is considered, whereas we have used a 16-element planar
array with sensors distributed within a square of dimensions 2λ × 2λ for the 3D case. As per
[DD94a], it is noted that beyond a threshold given by κRmin, the upper-bounds in (5.88) and
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(5.89) exhibit a superexponential decay, i.e., a decay faster than the exponential function, for
n → ∞. As widely studied in the literature (see, e.g., [DD94a; BRK07; CRK10]), the cut-off
mode means that the sampling matrix can be safely approximated by around 2dγ2e+1 columns
in 2D scenarios and by around 2dγ3e2 + 4dγ3e columns in 3D scenarios, where γ2 and γ3 refer
to the threshold beyond which the error exhibits the superexponential decay.

The abovementioned quantities are of relevant interest from an information-theoretic view-
point. As per [Han88], the maximum number of independent modes in 2D scenarios is 2η + 1,
whereas in 3D scenarios only 2η(η+2) spherical modes are independent. Here, η is the number
of relevant modes of the radiated field and is given by η = dκRmine+ ε, where ε depends on the
considered truncation accuracy. In principle, the radiated field may have an infinite number of
propagating modes. Nevertheless, under the assumption that all modes have amplitudes of the
same magnitude order at the limit, i.e., at a distance equal to Rmin, only κRmin modes strongly
contribute to the radiated field. Therefore, the quantities 2η + 1 and 2η(η + 2) represent the
sufficient number of samples to accurately represent the wavefield in the near-field region with
a given accuracy ε.
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Appendix 5.B Asymptotic Analysis of the Multi-Channel SIDR

The SIDR, as defined in (5.19), reads as

SIDRT (EN ; {λk}) =
ST − IT (EN ; {λk})

1
NE

IT (EN ; {λk})
. (5.90)

Recalling that {ϕk}0≤k≤K−1 constitutes a class of orthonormal modulations, we have that the
total average transmitted power is given by

ST =
1

N

K−1∑
k=0

‖ϕk‖2 =
K

N
. (5.91)

Regarding the inter-system interference term IT (EN ; {λk}), the calculation is more involved.
To begin with, recall that the average inter-system interference power, given in (5.15), is defined
as

IT (EN ; {λk}) =
1

N

K−1∑
k=0

∥∥∥EH
N ÛNλk

∥∥∥2 = 1

N

K−1∑
k=0

eTk P̂kPE P̂kek

eTk P̂kek
, (5.92)

being PE = ENE
H
N the projector onto the subspace spanned by the occupied space-time DoF

erroneously sensed as available. Following the same rationale as in Appendix 3.C, (5.92) can be
written as

IT (EN ; {λk}) =
1

N

K−1∑
k=0

eTkPEek + δ
(1)
k

eTk P̂0ek + δ
(2)
k

, (5.93)

where δ
(1)
k and δ

(2)
k are second-order terms involving off-diagonal elements of projectors PE

and P̂0 and, thus, are asymptotically irrelevant as in Appendix 3.C (cf. [BS16]). Under these
conditions, we only need to characterize the diagonal elements of the projection matrices PE
and P̂0 in the multi-channel case.

For the latter purpose, it can be helpful to study the asymptotic behavior of the eigenvectors’
matrix of the space-time autocorrelation matrix given in (5.12). As discussed in detail in Section
5.5, the eigenmatrix U of the space-time autocorrelation matrix asymptotically converges to
[Tee07; RVVLV+11; GGC12; RSV+15]

U −−−−→
N→∞

1√
N
FH
N ⊗ ILT , (5.94)

with FN being the N -size Fourier matrix. Equivalently, (5.94) can be written as

U = [U0 U1 · · · ULT−1] , (5.95)

where each block Uℓ ∈ CNLT×N , for ℓ = 0, . . . LT − 1, is given by

Uℓ = F
H
N ⊗ [ILT ]ℓ, (5.96)

with [ILT ]ℓ is the ℓ-th column of ILT . Taking into account these observations, note that sensing
can be done in a per-antenna fashion. Thus, a sensed basis of the space-time null space admits
the following expression:

ÛN =
[
ÛN ,0 ÛN ,1 · · · ÛN ,LT−1

]
, (5.97)
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where ÛN ,ℓ, for ℓ = 0, . . . , LT − 1, is the sensed null-space at the ℓ-th sensor.
From (5.97), it is worth noting that the projector P̂0 can be written as

P̂0 = ÛN Û
H
N =

LT−1∑
ℓ=0

ÛN ,ℓÛ
H
N ,ℓ =

LT−1∑
ℓ=0

P̃0,ℓ ⊗Ξℓ, (5.98)

where P̃0,ℓ ∈ CN×N is the projection matrix onto the Mℓ-dimensional null space sensed at the
ℓ-th sensor and Ξℓ is a square LT × LT matrix with all zeros except the ℓ-th diagonal element,
which is equal to one. Note that P̃0,ℓ is the outer product of a subset of columns of the matrix
FH
N /

√
N . Analogously, the projector PE reads as

PE = ENE
H
N =

LT−1∑
ℓ=0

EN ,ℓE
H
N ,ℓ =

LT−1∑
ℓ=0

P̃E,ℓ ⊗Ξℓ, (5.99)

being EN ,ℓ, for ℓ = 0, . . . , LT − 1, the per-antenna sensing error matrix and P̃E,ℓ ∈ CN×N

is the projection matrix onto the NE [ℓ]-dimensional subspace encompassing the per-antenna
erroneously available sensed frequency bins.

Taking into consideration (5.98) and (5.99), we note that: (i) the main diagonal of P̃0,ℓ ∈
CN×N is constant and equal to Mℓ/N , (ii) the main diagonal of P̃E,ℓ ∈ CN×N is constant and
equal to NE [ℓ]/N , and (iii) both P̂0 and PE do not have a constant diagonal since, in general,
Mℓ 6= Mℓ′ nor NE [ℓ] 6= NE [ℓ

′], for ℓ 6= ℓ′. These last observations make the analysis of the
inter-system interference term non-trivial.

At this point of the analysis, we consider that, despite Mℓ 6= Mℓ′ for ℓ 6= ℓ′, L̃T out of LT
diagonal entries of P̂0 are similar, that is,

M0

N
≈ M1

N
≈ · · · ≈

M
L̃T−1

N
>

M
L̃T

N
≥ · · · ≥ MLT−1

N
, (5.100)

where we have assumed, without loss of generality, that M0 ≥ · · · ≥ MLT . Under (5.100), the
selected columns of the orthogonal projectors can be chosen to be consecutive in each block of
L̃T, as discussed in Chapter 3 for the single-antenna case.

For the sake of simplicity, let us assume that the number of transmitted MNTLS space-time
waveforms K is proportional to L̃T, i.e., K = µL̃T with µ a non-zero integer. The generality
of this assumption will be discussed afterward. Under this assumption, and recalling the
sequential waveform design strategy discussed in Chapter 3, the SIDR for the multi-channel
case given in (5.19) can be asymptotically approximated by

SIDRT (EN ; {λk}) ≈

K − K

L̃T

L̃T−1∑
ℓ=0

NE [ℓ]

Mℓ

1

ÑE

K

L̃T

L̃T−1∑
ℓ=0

NE [ℓ]

Mℓ

. (5.101)

At this point, some comments are of order. On the one hand, since (5.101) follows from (5.100),
note that the inner transmitting node only activates L̃T; thus NE in (5.19) has been replaced by
ÑE in (5.101), which can be written as

ÑE =

L̃T−1∑
ℓ=0

NE [ℓ]. (5.102)
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On the other hand, recalling (5.100), since NE [ℓ] and Mℓ are related we may say that

NE [0]

N
≈ · · · ≈ NE [L̃T − 1]

N
>

NE [L̃T]

N
≥ · · · ≥ NE [LT − 1]

N
. (5.103)

Therefore, taking into account (5.103), (5.101) leads to

SIDRT (EN ; {λk}) ≈
K −K

NE [ℓ]

Mℓ

1

NE
K

NE [ℓ]

Mℓ

= ÑE
Mℓ −NE [ℓ]

NE [ℓ]
, (5.104)

where ÑE is given in (5.102). Let M̃ be the total number of space-time DoF sensed as available
across the L̃T active antennas at the inner transmitter, i.e.,

M̃ ≜
L̃T−1∑
ℓ=0

Mℓ. (5.105)

Thus, (5.104) reads as

SIDRT (EN ; {λk}) ≈ ÑE
Mℓ −NE [ℓ]

NE [ℓ]
= NL̃T · M̃

NL̃T
· ÑE

M̃
·
(
κℓ
ϵℓ

− 1

)
, (5.106)

being κℓ = Mℓ/N and ϵℓ = NE [ℓ]/N . Noting that

ÑE

M̃

κℓ
ϵℓ

≈ L̃TNE [ℓ]/N

L̃TMℓ/N
= 1, (5.107)

and defining κ ≜ M̃/(NL̃T) and ϵ ≜ ÑE/(NL̃T), we finally have that

SIDRT (EN ; {λk}) ≈ NL̃T · M̃

NL̃T
·

(
1− ÑE

M̃

)
= NL̃T · κ ·

(
1− ϵ

κ

)
, (5.108)

which completes the proof. For ease of discussion, the case L̃T = LT is studied in Section 5.2,
which corresponds to the case where the inner transmitter activates all antennas.

A final comment is of order. It is worth noting that the whole proof has been based on the
assumption that K ∝ L̃T. However, it is straightforward to see that the proof is still valid when
K < L̃T, but replacing L̃T by L̃′

T < L̃T indicating the number of active antennas. Moreover, if
K > L̃T but these quantities are not proportional, the proof is still valid assuming that K is the
virtual number of active antennas. The latter includes the single-antennas case, that is, L̃T = 1.
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Appendix 5.C Proof of (5.35)

This Appendix provides the derivation of the space-time MNTLS waveforms when non-unitary
sensing basis are considered. Without loss of generality, this proof is focused on the transmitted
waveform since the proof for the matched filter is analogous.

Let us consider that the inner transmitting node uses the non-unitary sensing basisMT(Θ,Ω)

defined in (5.30). After performing the space-time null-space sensing, the inner transmitter
detects as available a set of angle-frequency tuples ((θℓ, φℓ);ων), and encompassed in matrix

M̂N ,T =
[
M̃N ,T EN ,T

]
, (5.109)

where M̃N ,T encompassed those available space-time DoF correctly identified and EN ,T con-
tains those occupied space-time DoF erroneously sensed as available. For the sake of simplicity,
only the design for the first null-space waveform is detailed. The remaining K − 1 waveforms
can be recursively found as discussed in Appendix 3.A. Therefore, particularizing the min-max
problem (5.15) for k = 0, we get

λ0,T = argmin
λ0,T,e0,T

{
max
EN ,T

∥∥∥EH
N ,TM̂Nλ0

∥∥∥2} (5.110)

subject to (a)
∥∥EN ,T

∥∥2
F ≤ ξ2; (b) λH

0 M̂
H
N ,Te0 = α0 (5.111)

Solving the maximization problem in (5.110) through the Lagrange multipliers method, the
worst-case null-space sensing error matrix is given by

EN ,T = ξ2ϕ0ϕ
H
0 . (5.112)

Plugging (5.112) into (5.110), the linear combination vector λ0 can be found through the follow-
ing minimization problem

λ0,T = argmin
λ0,T

‖M̂N ,Tλ0,T‖2 s.t. λH
0,TM̂

H
N ,Te0,T = α0, (5.113)

which, through the Lagrange multipliers method, leads to

λ0,T = µ
(
M̂H

N ,TM̂N ,T

)−1
M̂H

N ,Te0 = µM̂+
N ,Te0,T, (5.114)

being µ the Lagrange multiplier. Using the constraint (c) in (5.111), the unit-norm space-time
MNTLS waveform reads as

ϕ0 =
M̂N ,TM̂

+
N ,Te0,T√

eT0,,TM̂N ,TM̂
+
N ,Te0,T

= γM̂N ,TM̂
+
N ,Te0,T. (5.115)

Finally, the linear predictor vector can be optimized to satisfy the minimum-norm condition as

e0,T = argmax
n∈{0,...,NL−1}

[
M̂N ,TM̂

+
N ,T

]
nn

, (5.116)

which completes the proof.
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Appendix 5.D Proof of (5.45)

In order to show that the sufficient statistic for symbol decoding z (5.42) can be written as in
(5.45), the proof is split into two parts. First, it is shown that the transmitting waveform ϕ0 and
the matched filter ψ0 admit the block-structured given in (5.43). Then, using this result, we
prove (5.45).

5.D.1 Analysis of the Structure of ϕ0 and ψ0

For simplicity of notation, the proof is focused on showing that the term P̂0e0, where P̂0 is
the orthogonal projector onto the space-time null space and e0 is an NL-length binary vector
with a single non-zero entry, is structured in N blocks of length L. Then, this general result
is particularized at the inner transmitter and the inner receiver to provide the block structure
given in (5.43).

Recalling (5.30), the non-unitary basis of the whole space-time NL-dimensional ambient
space is reads as

M(Θ,Ω) = [M [ω0] · · ·M [ωn] · · ·M [ωN−1]] , (5.117)

whereM [ωn] ≜ b[ωn]⊗ S[ωn]. By inspection, it is worth noting that (5.117) can be written as

M(Θ,Ω) =
M [ω0] · · · M [ωN−1]

M [ω0] · · · M [ωN−1]
... · · ·

...
M [ω0] · · · M [ωN−1]

�


1L×L [b[ω0]]0 · · · 1L×L [b[ωN−1]]0
1L×L [b[ω0]]1 · · · 1L×L [b[ωN−1]]1

... · · ·
...

1L×L [b[ω0]]N−1 · · · 1L×L [b[ωN−1]]N−1

 .
(5.118)

Note that the Θ and Ω can be arbitrary angle pairs and frequencies set as far as M(Θ,Ω) is a
full-rank matrix. For the sake of simplicity, it is subsequently assumed that the frequencies in
Ω are consecutive and uniformly spaced.

After the space-time null-space sensing, the non-unitary basis of the sensed null space is
composed of a column subset of (5.118). Accordingly,

M̂N =


M̂N [ω0] [b[ω0]]0 M̂N [ω1] [b[ω1]]0 · · · M̂N [ωN−1] [b[ωN−1]]0
M̂N [ω0] [b[ω0]]1 M̂N [ω1] [b[ω1]]1 · · · M̂N [ωN−1] [b[ωN−1]]1

...
... · · ·

...
M̂N [ω0] [b[ω0]]N−1 M̂N [ω1] [b[ω1]]N−1 · · · M̂N [ωN−1] [b[ωN−1]]N−1

 , (5.119)

where M̂N [ω] ∈ CL×M(ω) is a non-unitary sensed basis of the spatial null space at frequency
ω. The orthogonal projector onto the sensed null space is given by P̂0 = M̂NM̂

+
N . Thus far,

we have seen that M̂N is block-structured. Now, the Moore-Penrose pseudo-inverse M̂+
N has

to be studied. Since M̂+
N =

(
M̂H

N M̂N

)−1
M̂H

N , we need to analyze the inner product. From
(5.119), and recalling that the frequencies in Ω are consecutive and uniformly spaced, it is
straightforward to see that

M̂H
N M̂N =


M̂H

N [ω0]M̂N [ω0] ‖b[ω0]‖2 0
. . .

0 M̂H
N [ωN−1]M̂N [ωN−1] ‖b[ωN−1]‖2

 . (5.120)
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At this point, we shall remark that if all directions are sensed as occupied at a given frequency,
the associated block M̂H

N [ωn]M̂N [ωn] ‖b[ωn]‖2 will be removed from (5.120). The latter applies
to all the following discussion. Using (5.119)–(5.120), M̂+

N yields

M̂+
N =


M̂+

N [ω0]
[b[ω0]]

∗
0

∥b[ω0]∥2
· · · M̂+

N [ω0]
[b[ω0]]

∗
N−1

∥b[ω0]∥2
... . . . ...

M̂+
N [ωN−1]

[b[ωN−1]]
∗
0

∥b[ωN−1]∥2
· · · M̂+

N [ωN−1]
[b[ωN−1]]

∗
N−1

∥b[ωN−1]∥2

 , (5.121)

being
M̂+

N [ων ] =
(
M̂H

N [ων ]M̂N [ων ]
)−1

M̂H
N [ων ]. (5.122)

Recalling that P̂0 = M̂NM̂
+
N , using (5.119) and (5.121), the orthogonal projector P̂0 reads as

P̂0 =

 P̂0[0, 0] · · · P̂0[0, N − 1]
... · · ·

...
P̂0[N − 1, 0] · · · P̂0[N − 1, N − 1]

 . (5.123)

Note that (5.123) is an NL×NL block-structured matrix with L× L blocks given by

P̂0[m,n] =

N−1∑
ν=0

M̂N [ων ]M̂
+
N [ων ]βmn[ων ], (5.124)

where M̂+
N [ων ] is provided in (5.122) and βmn is defined as

βmn[ων ] ≜
[b[ων ]m[b[ων ]

∗
n

‖b[ων ]‖2
. (5.125)

Thus far, the block structure of the projector P̂0 has been proven. Now, we deal with
the block structure of the term P̂0e0. As per Appendix 5.C, the NL-length binary vector e0
selects the column of the orthogonal projector P̂0 containing the maximum diagonal element.
Recalling (5.123), we realize that the role of the binary vector e0 is twofold. First, this vector has
to select in which of the diagonal blocks P̂0[n, n], for n = 0, . . . , N − 1 contains the maximum
value of the main diagonal of P̂0. Then, once the corresponding block has been identified, the
vector e0 points to the position within the block of the main diagonal element. Accordingly,
without loss of generality, the binary vector e0 admits the following expression:

e0 = ζ0 ⊗ ẽ0, (5.126)

i.e., e0 can be written as the Kronecker product of two binary vectors ζ0 and ẽ0. The N -length
binary vector ζ0 selects the block index n = 0, . . . , N − 1 encompassing the maximum diagonal
element of P̂0. The L-length binary vector ẽ0 selects which of the L diagonal entries of the
selected block is the maximum. In the sequel, it is considered that the single non-zero element
of the N -length binary vector ζ0 is at position n⋆. Letting n(0) ∈ {0, . . . , NL − 1} be the single
non-zero entry of the NL-length binary vector e0 in (5.126), it is straightforward to see that the
unique non-null element of the L-length binary vector ẽ0 is found at position n(0) mod L.
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At this point, we can use the discussion above to provide the block structure of the trans-
mitting waveform ϕ0 and the matched filter ψ0. Let P̂0,T ∈ CNLT×NLT and P̂0,R ∈ CNLR×NLR

be the orthogonal projectors onto the null space sensed by the inner transmitter and the inner
receiver. Noting that both projectors have the block structure described in (5.123), ϕ0 and ψ0

read as

ϕ0 = γP̂0,Te0,T = γ

 P̂0,T[0, n⋆]ẽ0,T
...

P̂0,T[N − 1, n⋆]ẽ0T

 =

 ϕ0[0]
...

ϕ0[N − 1]

 , (5.127)

ψ0 = ρP̂0,Re0,R = ρ

 P̂0,R[0, n⋆]ẽ0,R
...

P̂0,R[N − 1, n⋆]ẽ0R

 =

 ψ0[0]
...

ψ0[N − 1]

 , (5.128)

where P̂0,T[n, n⋆] ∈ CLT×LT , P̂0,T[n, n⋆] ∈ CLR×LR , the LT-length binary vector ẽ0,T has its single
non-zero entry at position n(0) mod LT, and the LR-length binary vector ẽ0,R has its single
non-zero entry at position n(0) mod LR.

5.D.2 Analysis of (5.45)

Recalling (5.39), the MIMO response matrix is given by

H̃II ≜

 HII[0] 0
. . .

0 HII[N − 1]

 ∈ CNLR×NLT . (5.129)

Thus, using (5.127)–(5.128), the sufficient statistic for symbol decoding z can be written as

z = a0ψ
H
0 H̃IIϕ0 + υ̃ =

N−1∑
n=0

a0ψ
H
0 [n]HII[n]ϕ0[n] + υ̃, (5.130)

where υ̃ is the filtered noise. Plugging

HII[n]=
1

N
√
NpathLTLR

N−1∑
ν=0

Npath−1∑
i=0

sR[ων , ϑ
(i)
R ]sHT [ων , ϑ

(i)
T ]ej

2πνn
N . (5.131)

into (5.130), we get

z =
a0

N
√
NpathLTLR

N−1∑
n=0

N−1∑
ν=0

Npath−1∑
i=0

ψH
0 [n]sR[ων , ϑ

(i)
R ]sHT [ων , ϑ

(i)
T ]ϕ0[n]e

j 2πνn
N + υ̃. (5.132)

Now, recalling (5.124), (5.127), and (5.128), note that ϕ0[n] and ψ0[n] are given by

ϕ0[n] = γ
N−1∑
ν=0

M̂N ,T[ων ]M̂
+
N ,T[ων ]βnn⋆,T[ων ]ẽT, (5.133)

ψ0[n] = ρ
N−1∑
ν=0

M̂N ,R[ων ]M̂
+
N ,R[ων ]βnn⋆,R[ων ]ẽR. (5.134)
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It is worth noting that both (5.133) and (5.134) rely on the sensed null-space steering matrices
M̂N ,T[ων ] and M̂N ,R[ων ]. For convenience, it is preferable that the full steering matrices M̂T[ων ]

and M̂R[ων ] appear in the expression for sufficient statistic for symbol decoding. Defining the
vectors βnν,T ∈ CLT and βnν,R ∈ CLR , satisfying

[βnν,T]ℓ ≜
{

0, if ((θℓ, φℓ);ων) /∈ 〈M̂N ,T〉
ηnν [M

+
T [ων ]ẽT,0]ℓ, otherwise

, for ℓ = 1, . . . , LT (5.135)

and

[βnν,R]ℓ ≜
{

0, if ((θℓ, φℓ);ων) /∈ 〈M̂N ,R〉
µnν [M

+
R [ων ]ẽR,0]ℓ, otherwise

, for ℓ = 1, . . . , LR, (5.136)

i.e., selecting only those angles-frequency tuples belonging to the sensed null spaces at each
inner node, (5.133)–(5.134) can be generalized as

ϕ0[n] =
N−1∑
ν=0

M̂T[ων ]βnν,T, (5.137)

ψ0[n] =
N−1∑
ν=0

M̂R[ων ]βnν,R, (5.138)

with
ηnν ≜ γβnn⋆,T[ων ]e

j πνn
N , (5.139)

and
µnν ≜ ρβnn⋆,R[ων ]e

j−πνn
N , (5.140)

where now the full per-frequency steering matrices M̂T[ων ] and M̂R[ων ] appear explicitly in
the expressions for the transmitting waveform and the matched filter. Finally, substituting
(5.137)–(5.138) into (5.132), we get (5.45), i.e.,

z =
a0

N
√

NpathLTLR

N−1∑
n=0

N−1∑
ν=0

Npath−1∑
i=0

βH
nν,RM

H
R [ων ]sR[ων , ϑ

(i)
R ]sHT [ων , ϑ

(i)
T ]MT[ων ]βnν,T + υ̃,

(5.141)
which completes the proof.
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Appendix 5.E Proof of (5.51)

Recalling (5.48), the sufficient statistic for symbol decoding reads as

z =
a0

N
√
LTLR

N−1∑
n=0

N−1∑
ν=0

βH
nν,RM

H
R [ων ]sR[ων ]s

H
T [ων ]MT[ων ]βnν,T + υ̃. (5.142)

Note that each summand in (5.142) is just the product of two scalars: βH
nν,RM

H
R [ων ]sR[ων ] and

sHT [ων ]MT[ων ]βnν,T, which depend on steering vectors, and, thus on the array geometry.
Let us begin with the transmitting array geometry, i.e., the scalar sHT [ων ]MT[ων ]βnν,T. Using

the orthogonal expansion given by the MST (5.50), sT[ων ] andMT[ων ] can be written as

sT[ων ] = Gν,Td (θT, φT) , (5.143)
MT[ων ] = Gν,TDT, (5.144)

with Gν,T the sampling matrix of the transmitting array, d (θT, φT) the coefficient vector of the
channel steering vector associated with the transmitting array, andDT a matrix containing the
LT coefficient vectors of the steering matrixMT[ων ], which is defined as

DT ≜
[
d
(
θ0,T, φ0,T

)
· · · d

(
θLT−1,T, φLT−1,T

)]
. (5.145)

Taking into account that Gν,T is an orthonormal expansion basis in the Hilbert space H, note
that

dH (θT, φT)G
H
ν,TGν,TDT = dH (θT, φT)DT (5.146)

does not depend on the transmitting array geometry. Regarding the vector βnν,T, we must recall
that this vector depends on the Moore-Penrose pseudo-inverse of MT[ων ]. Thus, plugging
(5.144) into

M+
T [ων ] =

(
MH

T [ων ]MT[ων ]
)−1

MH
T [ων ], (5.147)

we have that

M+
T [ων ] =

(
DH

T G
H
ν,TGν,TDT

)−1
DH

T G
H
ν,T =

(
DH

T DT
)−1

DH
T G

H
ν,T. (5.148)

Hence, the scalar sHT [ων ]MT[ων ]βnν,T reads as

sHT [ων ]MT[ων ]βnν,T = ηnνd
H (θT, φT)DT

(
DH

T DT
)−1

DH
T G

H
ν,TẽT,0 (5.149)

= ηnνd
H (θT, φT)ΠDTG

H
ν,TẽT,0, (5.150)

with
ΠDT =DT

(
DH

T DT
)−1

DH
T . (5.151)

Focusing now on the scalar βH
nν,RM

H
R [ων ]sR[ων ] and leveraging the orthogonal expansion in

(5.50), note that

sR[ων ] = Gν,Rd (θR, φR) , (5.152)
MR[ων ] = Gν,RDR, (5.153)

183



where Gν,R the sampling matrix of the receiving array, d (θR, φR) the coefficient vector of the
channel steering vector associated with the receiving array, andDR a matrix containing the LR
coefficient vectors of the steering matrixMR[ων ], given by

DR ≜
[
d
(
θ0,R, φ0,R

)
· · · d

(
θLR−1,R, φLR−1,R

)]
. (5.154)

Recalling that the vector βnν,R relies on the Moore-Penrose pseudo-inverse of MR[ων ], we can
use (5.153) to write

M+
R [ων ] =

(
DH

R G
H
ν,RGν,RDR

)−1
DH

R G
H
ν,R =

(
DH

R DR
)−1

DH
R G

H
ν,R. (5.155)

Substituting (5.152), (5.153), and (5.155) into βH
nν,RM

H
R [ων ]sR[ων ] and following the same ratio-

nale as for the scalar sHT [ων ]MT[ων ]βnν,T, we have that

βH
nν,RM

H
R [ων ]sR[ων ] = µnν ẽ

T
R,0Gν,RDR

(
DH

R DR
)−1

DH
T d (θT, φT) (5.156)

= µnν ẽ
T
R,0Gν,RΠDRd (θR, φR) , (5.157)

with
ΠDR =DR

(
DH

R DR
)−1

DH
R . (5.158)

Finally, plugging (5.150) and (5.157) into (5.142), we obtain

z =
a0

N
√
LTLR

N−1∑
n=0

N−1∑
ν=0

ηnνµnν ẽ
T
R,0Gν,RΠDRd (θR, φR)d

H (θT, φT)ΠDTG
H
ν,TẽT,0 + υ̃, (5.159)

which completes the proof.
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Conclusions and Future Work

6.1 Conclusions

This thesis has dealt with the design of transmission strategies in both single- and multi-antenna
feedforward opportunistic communication scenarios. In order to mitigate the so-called inter-
system interferences, which is the primary objective of opportunistic communications, the null
space of the surrounding wireless environment has been exploited. The null space contains
those network resources –or DoF– left unused by the other coexisting communication nodes.

The problem of null space-based opportunistic communications is not new, and, as surveyed
in Chapter 2, several null-space transmission strategies can be found in the literature. In
summary, all the classic null-space schemes use the columns of a basis of the sensed null-
space as precoding vectors. Despite avoiding inter-system interferences under ideal operating
conditions, these schemes suffer mainly from two drawbacks. On the one hand, it should be
noted that the opportunistic nodes identify the null space through a sensing scheme, which
can be cast as a detection problem. Accordingly, the sensing step may suffer from classic
detection errors, i.e., missed detection, false alarm, and poor monitoring conditions. When
these uncertainties are taken into account, some DoF occupied by other neighboring nodes may
be erroneously sensed as available. Since the classic null-space strategies do not account for
the existence of these uncertainties, severe inter-system interferences can be provided to those
occupied DoF erroneously sensed as available, which may corrupt the communication of the
neighboring network nodes. On the other hand, the sensed null-space basis is typically obtained
from the noise eigenvectors of the measured observations’ autocorrelation matrix. The noise
eigenvectors are associated with eigenvalues having multiplicity larger than ones, meaning
that the eigenvectors are not unique. Therefore, the classic null-space precoding solutions
are not unique. This ambiguity requires coordination and cooperation between inner nodes
in order to guarantee coherent waveform detection, which may burden the implementation
complexity due to large feedback overheads. In summary, the main disadvantages of classic
null-space precoding strategies are the lack of robustness to sensing errors and the lack of
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solution uniqueness.
The case of single-antenna opportunistic communication under feedforward conditions has

been studied in Chapter 3. In order to deal with the abovementioned sensing uncertainties,
a generalized sensing error model has been introduced, which is independent of the consid-
ered sensing mechanism and captures the critical subspace leakage problem. Leveraging this
model, the per-local waveform design strategy has been tackled to satisfy a minimum worst-
case inter-system interference criterion. Accordingly, the provided waveforms maximize the
SIR at the transmitter output. In this sense, it has been unveiled that the proposed waveforms
practice a dimension spreading, i.e., the derived solutions spread the transmitted signal within
the sensed null space. The latter is of paramount interest to maximally reduce the provided
inter-system interference level per DoF. Interestingly, the derived waveforms are proportional
to certain columns of orthogonal projectors onto a subset of the sensed null space. This is a
fundamental observation since the orthogonal projector is an invariant (i.e., unique) represen-
tation of the subspace. Therefore, the proposed solutions exhibit the fundamental invariance
property, which is preferable in feedforward opportunistic communications. Since the oppor-
tunistic nodes do not cooperate, invariant solutions enable coherent waveform detection since
the waveforms locally designed at each system end are ideally the same regardless of the con-
sidered sensed null-space basis. This property guarantees that the opportunistic nodes are
self-calibrated, avoiding feedback overheads. Unfortunately, the locality of the sensing may
lead to an end-to-end null-space mismatch. It has been argued that subspace mismatch incurs
a performance loss in terms of energy loss and self-induced ISI. Even though the robustness of
the proposed waveforms to the subspace mismatch has been illustrated, two enhanced detec-
tion schemes based on active subspace detection have been presented to counteract the impact
of subspace mismatch. Interestingly, one of them admits a closed-form solution that can be
efficiently implemented using a bank of per-DoF classic energy detectors.

In Chapter 4, we have studied the asymptotic behavior of the solutions derived in Chapter
3, which can be of practical interest in view of the expected large bandwidths in the forthcom-
ing communication trends. It has been shown that, as the number of system DoF arbitrarily
increases, the opportunistic waveforms become linear combinations of Vandermonde vectors.
Accordingly, the proposed waveforms can be asymptotically seen as a frequency-domain spread-
ing mechanism. In this respect, the asymptotic waveforms exhibit similar spectral behavior as
TDCS and MC-CDMA, which leverage pseudo-random sequences to spread the transmitted
signal within the sensed null space. Conversely, the asymptotic waveforms constitute a de-
terministic spreading mechanism since they rely on columns of the orthogonal projector. The
interesting particular case where the available DoF are consecutive has been studied. It has
been shown that, under certain operating conditions, the asymptotic opportunistic waveforms
derived in Chapter 3 behave as a TDMA-like scheme employing circulant pulse-shaping, thus
named Circulant-Shaping TDMA (CS-TDMA). Despite the tight assumptions behind this modu-
lation format, a suboptimal approximation has been proposed for the general case, which avoids
the sequential waveform design scheme described in Chapter 3 and enjoys implementation ef-
ficiency. At the end of the chapter, an extension of the proposed opportunistic transmission
scheme to the frequency-selective channel case has been explored. Taking into account the simi-
larity of the asymptotic waveforms with the OFDMA modulation, a CP-based strategy has been
proposed to combat the frequency-selective nature of the opportunistic channel, characteristic
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of wideband scenarios. In contrast to other null-space opportunistic techniques focused on
frequency-selective channels, such as VFDM, the proposed CP-based strategy does not require
CSI at the opportunistic transmitter, avoiding any sort of feedback overheads. Nevertheless, the
price to pay is a suboptimal spectral efficiency compared to VFDM and a cumbersome sensing
stage using non-unitary sensing bases.

The last technical chapter of this thesis has studied the generalization of the results derived
from Chapters 3 and 4 in the case of multi-antenna feedforward opportunistic communications.
A straightforward mathematical analysis of the problem at hand has revealed that the important
dimension spreading property holds regardless of the use of antenna arrays. In this sense,
the impact of using multiple antennas has been emphasized from the SIDR perspective, as
increasing the number of antennas permits enlarging the DoF spreading factor and, thus, further
minimizing the inter-system interference density. Nevertheless, the critical invariance property
has only been easily proven in symmetric multi-antenna scenarios, i.e., when the opportunistic
transmitter and receiver have the same number of antennas. In a more general sense, when
the multi-antenna opportunistic communication is asymmetric, a more involved mathematical
analysis is required. In Chapter 5, leveraging the manifold separation theory framework, it has
been shown that opportunistic communication is independent of the geometry of transmitting
and receiving arrays, and only depends on the number of sensors, as previously advocated by
the SIDR analysis. This result has been shown to be of paramount importance, as it reveals that
the space-time opportunistic waveforms are self-calibrated, irrespective of the possible array
calibration errors. Even though the array-geometry invariance has been proven under far-field
conditions, it has been argued that the result can be extrapolated to the near-field case through
different orthogonal expansions of the array manifold. Finally, the asymptotic analysis of the
space-time opportunistic waveforms has disclosed that an antenna selection policy is performed
by each waveform, meaning that the opportunistic multi-antenna transmitter asymptotically
behaves as a set of orthogonal single-antenna transmitters. This observation has been used
to extend the CP-based opportunistic transmission discussed in Chapter 4 to multi-antenna
frequency-selective channels.

6.2 Future Work

Upon completing this thesis, the following topics have been identified as potential future
research lines.

6.2.1 Multi-user Opportunistic Communication

This thesis has focused on the case of single-user (point-to-point) opportunistic communica-
tions. In multi-user environments, an access protocol or mechanism is generally required. In this
sense, the straightforward TDD/TDMA approach permits using the opportunistic transmis-
sion scheme proposed in this thesis to guarantee the coexistence of multiple inner transmitter-
receiver pairs. Under these conditions, intra-system interference, i.e., the interference between
inner transmitter-receiver pairs, can be practically avoided using a conventional multiple-access
scheme. Nevertheless, this approach requires a certain degree of inter-node cooperation.
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Suppose one inner transmitter-receiver pair exploits only a number of K < M waveforms
that satisfy its traffic requirements and achieve the specified SIDR. Therefore, there are still
M −K DoF left unused, being M the total number of null-space DoF. Consequently, a potential
research line involves studying multi-user strategies to exploit the remaining unused DoF
efficiently. These strategies may require the use of more advanced signal processing techniques
at the inner receivers, and the fact that the waveforms ϕk are orthogonal can play an essential
role in decreasing the receiver complexity. Of course, suppose low-rate feedback cooperation
is allowed between inner transmitters or receivers. In that case, it is possible to design non-
orthogonal multi-user opportunistic communication schemes, giving birth to a complexity-
performance trade-off.

6.2.2 Outage Analysis and Transmission Capacity

In order to study the impact of sensing uncertainties, the SIDR has been defined in this thesis.
As discussed earlier, the SIDR is a pessimistic metric as it measures the interference per DoF at
the inner transmitter output without accounting for the propagation conditions.

The transmission capacity [WAJ10] is a performance metric that measures the spatial density
of successful transmissions given an outage probability constraint. This framework has been
extensively used to assess the performance of distributed networks [VH12; LAH11; LAH13],
as it accounts for the spatial distribution of the communication nodes and the propagation
conditions. In this sense, another potential research line would be characterizing the statis-
tics of the interference imposed by the inner transmitter on the outer-network nodes. This
characterization permits studying the outage probability induced by the sensing uncertainties.
Specifically, letting κ and η be the sensed DoF availability and the sensing inaccuracy of the
sensing mechanism employed by the inner transmitting node, respectively, this research line
would pursue the characterization of the outage probability as

Pout = f(κ, η, α, γouter), (6.1)

where α is the path-loss exponent and γouter is the QoS requirement of the outer-network node.
Therefore, characterizing the transmission capacity using the proposed outage probability ex-
pression can be of relevant interest to define the possible operating regimes of the opportunistic
transmission scheme derived in this thesis and to dimension the coexistence capability in the
multi-user opportunistic communication scenario.

6.2.3 Orthogonal Time-Frequency Space Modulation

Orthogonal Time-Frequency Space (OTFS) is a novel modulation format that deals with both
the time-selectivity and the frequency-selectivity of the wireless channel. For this purpose,
OTFS modulates the information symbols in the Doppler-delay grid rather than in the time-
frequency grid as conventional modulations such as OFDM. One of the main problems in the
OTFS framework is the design of appropriate pulse-shaping filters to exploit the Doppler-delay
characteristics of the channel. It is known that pulses that simultaneously practice frequency-
domain and time-domain spreading are suitable for this modulation format.

A novel waveform design strategy has been proposed in this thesis able to spread the signal
in the frequency domain so as to minimize the inter-system interference density per erroneous
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DoF. A potential research line would consist in adapting the waveform design scheme to exploit
the two-dimensional Doppler-delay domain rather than the time-frequency DoF. The use of
orthogonal projectors can be of relevant interest to provide a finite response in the Doppler-
delay domain while spreading the signals in a two-dimensional time-frequency domain. It
can be seen as a generalization of the waveform design scheme to the case where the domain
of interest is two-dimensional instead of one-dimensional. A more cumbersome case would
involve the use of multiple antennas in an OTFS-like system.

6.2.4 Holographic Multiple-Input Multiple-Output

The appearance of massive MIMO was a turning point in multi-antenna systems since this
technique can provide a substantial increase in spectral efficiency and the number of commu-
nication nodes served simultaneously. The main problem with simultaneously increasing the
number of array elements and moving the communications to higher frequency bands is that
the far-field assumption of the antennas becomes no longer valid.

Recently, the case of having an arbitrarily large number of antennas in a confined (finite)
region of space has been gaining considerable momentum. This case is known as Holographic
MIMO. The potential of this technique lies in the fact that an array of antennas can be approx-
imated by a radiating surface, which allows exploiting the increased spatial DoF offered by
near-field communications. Holographic MIMO enables expressing the spherical waves as an
infinite sum of plane waves, characteristic of the far field. It thus permits the use of the already
developed array processing techniques in the near-field.

In this sense, a potential research topic would be the adaptation of the space-time oppor-
tunistic waveforms studied in Chapter 5 in the near-field context through the use of holographic
surfaces. In principle, the array-geometry invariance property would be maintained since the
decomposition of a spherical wave into a sum of plane waves allows reproducing the math-
ematical analysis developed in Chapter 5. However, it would be interesting to study how to
exploit the DoF gain provided by the near-field and improve spatial multiplexing to allow the
coexistence of simultaneous opportunistic links.
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