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Abstract

This thesis comprises three essays on statistical learning theory for time series. In
the first chapter, joint with Christian Brownlees, we propose an alternative specifi-
cation of a dynamic conditional correlation model based on Bregman divergences
with an application to portfolio selection. The second chapter, also joint with
Christian Brownlees, deals with the problem of empirical risk minimization for
time series. The main result states that the performance of the empirical risk min-
imizer converges at a near optimal rate to the best performance attainable in a class
of recursive threshold forecasts induced by the self-exciting threshold autoregres-
sive moving average model. The third chapter derives performance guarantees for
forecasting dynamic quantiles in a multivariate setup under full misspecification.
The benefits of the methodology are illustrated in an application to Growth-at-

Risk forecasting.
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Resum

Aquesta tesi compren tres assajos sobre teoria de 1’aprenentatge estadistic per a
series temporals. En el primer capitol, juntament amb Christian Brownlees, pro-
posem una especificacié alternativa d’un model de correlacions condicionals di-
namiques basat en divergencies de Bregman amb una aplicaci6 a la seleccié de
carteres. El segon capitol, també juntament amb Christian Brownlees, tracta el
problema de la minimitzacié del risc empiric per a series temporals. El resultat
principal estableix que la capacitat predictiva del minimitzador del risc empiric
convergeix a una velocitat gairebé optima al millor rendiment assolible en una
classe d’algoritmes predictius recursius amb llindars induits pel model autoregres-
siu de mitjana mobil amb llindar autoexcitador. El tercer capitol deriva garanties
per a la predicci6 de quantils dinamics en una configuracié multivariant sota espe-
cificaci6 incorrecta. Els avantatges de la metodologia s’il-lustren en una aplicaci6

a la predicci6 del creixement en risc (Growth-at-Risk).
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Preface

The advances in computing and data availability over the last decades have
paved the way for machine learning (ML) to play an influential role in virtually
all areas of research. In Economics, we have seen the adoption of off-the-shelf
ML methods as well as some efforts to tune and adapt those to the particularities
of our discipline.! While machine learning is concerned about automating the
process of learning from data, the goal of statistical learning theory is to formal-
ize it. The vast majority of contributions in statistical learning are centered around
the assumption that observations are independent of each other, although a large
number of datasets in economics and finance have a temporal dimension. While
econometricians are gradually incorporating more elements of statistical learn-
ing to their analyses, extensions that allow for dependent data are still relatively
unexplored. My PhD dissertation is devoted to this exploration.

The first chapter exemplifies how statistical learning theory can help econo-
metricians derive new methodologies. In joint work with Prof. Brownlees, we
explored the properties of Bregman divergences and their applications to dynamic
covariance modeling. We proposed a novel specification of the Dynamic Con-
ditional Correlation (DCC) model based on an alternative normalization of the
pseudo-correlation matrix called Projected DCC (Pro-DCC). Our modification
consists in projecting, rather than rescaling, the pseudo-correlation matrix onto

the set of correlation matrices in order to obtain a well defined conditional cor-

I'See for instance Varian (2014); Mullainathan and Spiess (2017); Chernozhukov et al. (2018);

Athey et al. (2021)

1X



relation matrix. More specifically, we answer the question: given Q (positive

definite but not unit diagonal), what is the closest correlation matrix to Q? When
the discrepancy between matrices is measured with a Bregman divergence, this is
called a Bregman projection. An empirical application to the constituents of the
S&P 100 shows that the proposed methodology performs favorably to the standard
DCC in an out-of-sample asset allocation exercise.

The second and third chapters are focused on deriving guarantees for poten-
tially misspecified time series prediction algorithms. By taking a learning theory
perspective, the goal is to investigate the conditions under which these algorithms
are expected to perform adequately.

The second chapter, which is joint work with Prof. Brownlees, deals with the
properties of empirical risk minimization for time series. Empirical risk mini-
mization is a standard principle for choosing algorithms in learning theory. The
analysis is carried out in a general framework that covers different types of fore-
casting applications encountered in the literature. We are concerned with 1-step-
ahead prediction of a univariate time series belonging to a class of location-scale
parameter-driven processes. A class of recursive algorithms is available to fore-
cast the time series. The algorithms are recursive in the sense that the forecast
produced in a given period is a function of the lagged values of the forecast and of
the time series. The relationship between the generating mechanism of the time
series and the class of algorithms is not specified. Our main result establishes that
the algorithm chosen by empirical risk minimization achieves asymptotically the

optimal predictive performance that is attainable within the class of algorithms.



In the third chapter, I study the problem of multivariate dynamic quantile fore-

casting from a learning theory perspective. Despite the fact that forecasting quan-
tiles is of obvious interest to economic agents, the theory in the dynamic quantile
modeling literature focuses on estimation under correct specification of the quan-
tile dynamics, and less attention is paid to forecasting under misspecification. 1
address this gap by deriving an oracle inequality for a family of possibly misspec-
ified multivariate conditional autoregressive quantile models. The family includes
standard specifications for (nonlinear) quantile prediction proposed in the liter-
ature. This inequality is used to establish that the predictor that minimizes the
in-sample average check loss achieves the best out-of-sample performance within
its class at a near optimal rate, even when the model is fully misspecified. An
empirical application to backtesting global Growth-at-Risk shows that a combi-
nation of the generalized autoregressive conditionally heteroscedastic model and
the vector autoregression for Value-at-Risk performs best out-of-sample in terms

of the check loss.
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Chapter 1

PROJECTED DYNAMIC

CONDITIONAL CORRELATIONS

1.1 Introduction

Estimating and forecasting the time-varying covariance matrix of asset returns is
key for several applications in finance including asset allocation, risk management
and systemic risk measurement. Over the years, the GARCH-DCC methodology
of Engle (2002) has established itself as one of the leading paradigms in the lit-
erature due to its flexibility and ease of estimation (see also Engle and Sheppard,
2001). In a nutshell, the GARCH-DCC approach consists in modeling separately
the conditional variances and the conditional correlation matrix. The conditional
variances are modeled using GARCH whereas the conditional correlation matrix

i1s modeled using the Dynamic Conditional Correlation (DCC) model. Recent re-



search in the literature that is based on GARCH-DCC includes Engle et al. (2019),

Brownlees and Engle (2017), De Nard et al. (2021) and Van Os and Van Dijk
(2021).

A key aspect of the DCC methodology is that the conditional correlation ma-
trix is modeled as a function of the so called pseudo-correlation matrix. The
pseudo-correlation matrix is a symmetric positive definite proxy of the conditional
correlation matrix that, crucially, is not guaranteed to be a proper correlation ma-
trix as it does not have a unit diagonal (almost surely). In order to obtain corre-
lations, the pseudo-correlation matrix has to be appropriately normalized, and the
standard strategy followed in the literature consists in rescaling this matrix (Engle,
2002; Tse and Tsui, 2002; Aielli, 2013). Engle (2009, Section 4.3) contains a dis-
cussion and a comparison of different rescaling approaches used in the literature.
Despite the fact that rescaling is natural and commonly employed, it is unclear
whether such an approach is in any sense optimal.

In this work we propose a modification of the standard DCC model based
on an alternative normalization procedure of the pseudo-correlation matrix. Our
modification consists in projecting the pseudo-correlation matrix onto the set of
correlation matrices rather than rescaling it. In other words, we cast the nor-
malization step of the pseudo-correlation matrix as a nearest-correlation matrix
problem, that is the problem of finding the closest correlation matrix to a given
pseudo-correlation matrix on the basis of an appropriate divergence function.

We begin this work by defining a class of projections for pseudo-correlation

matrices. To do so, we first introduce the notion of Bregman divergence for sym-



metric positive definite matrices (Bregman, 1967; Banerjee et al., 2005a; Dhillon

and Tropp, 2007; Patton, 2020), which is used in this work to measure nearness
between two symmetric positive definite matrices. This family of divergences
constitutes a rich collection of divergence functions that includes many famil-
iar losses commonly encountered in the covariance estimation literature such as
the Stein and square Frobenius losses (Stein, 1986; Dey and Srinivasan, 1985;
Pourahmadi, 2013). In addition, this class of loss functions has been the focus of
attention in the financial econometrics literature in the context of ranking multi-
variate volatility models by their forecasting performance (Laurent et al., 2013;
Patton, 2020). In particular, the former paper establishes under mild assumptions
that consistent volatility forecast rankings using conditionally unbiased proxies
are obtained if and only if the loss function is of the Bregman type.

We define the projection of a pseudo-correlation matrix onto the set of cor-
relation matrices as the correlation matrix that minimizes the Bregman matrix
divergence with respect to that pseudo-correlation matrix. It is straightforward
to establish that such a projection exists and is unique. Within this broad class
of projections we focus in particular on the one implied by Stein’s loss, which
we name Stein’s projection. Stein’s loss is a natural loss function for covariance
matrices that is related to the multivariate Wishart log-density —or equivalently,
the zero mean multivariate Gaussian log-likelihood with respect to the covariance
parameter—, it is widely used (Ledoit and Wolf, 2018), and it guarantees to deliver
a positive definite projection. Moreover, we derive a closed form expression to

compute Stein projections in the two-dimensional case and an efficient iterative



algorithm for the generic n-dimensional case.

We then introduce a novel DCC specification based on our pseudo-correlation
matrix projection called Projected DCC (Pro-DCC). Simply put, the Pro-DCC
corresponds to the classic DCC of Engle (2002) with the rescaling step of the
pseudo-correlation matrix replaced by our proposed projection. In order to esti-
mate the Pro-DCC we propose to follow the same multi-step procedure which is
used to estimate other DCC-type models.

A simulation study is carried out to assess the performance of our projection-
based methodology. We carry out two main exercises. In the first exercise we
simulate 1.1.d. data from a multivariate Gaussian distribution with mean zero and
covariance parameter given by a correlation matrix. We then estimate the cor-
relation matrix of the simulated data by rescaling the sample covariance matrix
(i.e. the sample correlation matrix) and by projecting the sample covariance ma-
trix onto the set of correlation matrices using Stein’s projection. We find that the
projection-based approach performs better than rescaling in terms of correlation
estimation accuracy and that gains are larger in higher dimensional systems. In the
second exercise we compare the estimation accuracy of DCC and Pro-DCC under
misspecification, that is when the DGP differs from both models. In particular,
we consider a dynamic equicorrelation matrix model (Engle and Kelly, 2012) in
which the dynamic correlation evolves according to the cosine function, in the
spirit of one of the DGPs considered in the simulation exercise of Engle (2002).
We find that Pro-DCC outperforms standard DCC and that the gains increase with

the dimensionality of the system and degree of cross-sectional dependence.



A Global Minimum Variance Portfolio (GMVP) exercise with the constituents

of the S&P 100 is used to measure the performance of Pro-DCC. The design of
the exercise is close in spirit to the one of De Nard et al. (2021). We compare Pro-
DCC to DCC, and we consider both the standard versions of these models as well
as versions that rely on nonlinear shrinkage (Ledoit and Wolf, 2020) for covari-
ance targeting. Results show that forecasts based on the standard and nonlinear
shrinkage variant of the Pro-DCC achieve the best out-of-sample performance.
For completeness, we also consider GMVPs with exposure constraints in order
to understand if the advantage of Pro-DCC is due to shrinkage (Jagannathan and
Ma, 2003; Fan et al., 2012). We find that adding 1-norm constraints substan-
tially improves performance for both the DCC and Pro-DCC, hence suggesting
that Pro-DCC performs favorably even after controlling for shrinkage.

This chapter is related to different strands of the literature. First, it is related to
the literature on multivariate volatility models and the DCC. Important contribu-
tions in this area, besides the one we have already mentioned, include Bollerslev
(1990) and Pakel et al. (2018). Classic surveys of the literature on multivariate
volatility modeling are Bauwens et al. (2006) and Silvennoinen and Terdsvirta
(2008). Second, it is related to the financial econometrics literature on large di-
mensional covariance estimation for asset allocation, which include the contribu-
tions of, among others, Hautsch et al. (2015), Hautsch and Voigt (2019), De Nard
et al. (2021). Last, it is related to the literature on matrix projections based on
Bregman divergences and the nearest-correlation matrix problem. Contributions

in this area include the work of Higham (2002), Dhillon and Tropp (2007) and



Kulis et al. (2009).

The rest of the chapter is structured as follows. Section 1.2 introduces the
methodology. Section 1.3 contains the simulation study. Section 1.4 presents the
empirical application. Section 1.5 concludes the chapter. All proofs are collected

in section 1.6.

1.2 Methodology

In this Section we first concisely review the DCC model of Engle (2002) and we

then introduce the Pro-DCC model.

1.2.1 The DCC Model

Let r, = (r14,...,7,:) denote an n-dimensional vector of log returns observed
at time ¢, for ¢ ranging from 1 to 7. The key object of interest of this work is
the conditional covariance matrix of returns given past information, that is 33; =
Cov;_1(r;). The GARCH-DCC framework is based on the following factorization

of the conditional covariance matrix
¥Xy=D;R;,D,,

where D, is a n xn diagonal matrix of conditional volatilities (standard deviations)
and R, is the n x n conditional correlation matrix.
In the GARCH-DCC framework, the conditional volatility matrix D, is typi-

cally modeled using some appropriate GARCH specification. Assuming, for in-



stance, GJR-GARCH(1,1) dynamics we have that the ¢-th diagonal element of Dy,

which we denote by d;, is specified as
2
dzt Wi +a;r zt 1+’yl]1t lrzt 1+bdzt17

where w;, a;, ; and b; are the GIR-GARCH(1,1) coefficients satisfying w; > 0,
a; > 0,b; = 0and a; + v;/2 + b; < 1.

The conditional correlation matrix R, is modeled using the DCC specifica-
tion. The DCC models the correlation process as a function of the so-called de-
volatilized returns that are defined as ¢, = D, Ly, In the DCC model the condi-
tional correlation matrix is determined by the so-called pseudo-correlation matrix

Q: which evolves according to the equation

Q=010-a—-p)C+aeg_16_; +BQi1, (1.1)

where a and f are scalar parameters that satisfy « > 0, § > 0, « + 8 < 1 and
C is an n x n positive definite matrix. It is straightforward to see by recursive

substitution that

l—a-p

Q= —— 3 C+a256t“et“. (1.2)

A crucial aspect of the DCC model on which we build upon in the next section
is that the pseudo-correlation matrix is not guaranteed to be a correlation ma-
trix. In particular, it is clear from (1.2) that QQ; is symmetric positive definite but
(generally) not unit diagonal. Thus, an appropriate normalization step is required

to obtain a correlation matrix. The standard approach consists of rescaling the



pseudo-correlation matrix, that is

R, = diag(Q,) "' Q, diag(Q,)~/*, (1.3)

where for an n x n matrix A, the notation diag(A) denotes the n x n diagonal
matrix with the diagonal of A.

The GARCH-DCC family of models is estimated using a multi-step procedure
motivated by a QML argument. The first step consists of estimating the condi-
tional standard deviation matrix D, by estimating n univariate GARCH models.
Next, the C matrix is estimated by covariance targeting using the sample second

moment of the estimated standardized residuals, that is

where €;; = r;,/0;; and &;, is the estimated volatility of the first step. Last, the
DCC parameters are obtained by maximizing the (Gaussian) quasi log-likelihood
of the de-volatilized returns (see Engle, 2002, for details).

We remark that, albeit being intuitive, the estimation strategy put forward by
Engle (2002) has some consistency issues first noted by Aielli (2013). These have
motivated Aielli (2013) to introduce a “corrected” version of the model called
Corrected DCC (CDCC). However, empirically, this model is found to perform

similarly to the standard “uncorrected” DCC.

1.2.2 The Projected DCC Model

In this section we propose a novel DCC specification based on an alternative nor-

malization procedure. Rather than rescaling the pseudo-correlation matrix as in

8



equation (1.3) we propose projecting it onto the space of correlation matrices. In

other words, we cast the problem of normalizing the pseudo-correlation matrix as
a nearest-correlation matrix problem, that is finding the closest correlation matrix
to a given pseudo-correlation matrix. In order to introduce our projection-based
model some additional machinery is required.

We begin by introducing the notion of Bregman divergence for real matrices.

Definition 1.2.1 (Bregman Divergence). Given a strictly convex and differentiable

function ¢ of Legendre type,' we define the Bregman matrix divergence as
dy(My, My) = $(M1) — ¢(My) — tr(Vo(My) (M — My)) ,
for any two real matrices My and M.

Bregman divergences can be seen as the difference between the function ¢
evaluated at M, and its first-order Taylor approximation around M,. Bregman
divergences are a class of tractable divergences that enjoy a number of useful
properties and are popular in the Machine Learning literature (Cesa-Bianchi and
Lugosi, 2006). Bregman divergences are always positive, like distances, and are
zero only when their arguments coincide. Unlike distances, they are not neces-
sarily symmetric and they do not necessarily satisfy the triangle inequality. Fur-
thermore, they are always convex with respect to their first argument and satisfy a
generalized Pythagorean property (Dhillon and Tropp, 2007; Kulis et al., 2009).

Finally, Banerjee et al. (2005a) establishes the existence of a bijection between

'A function is of Legendre type if it is essentially smooth and essentially strictly convex

(Bauschke and Borwein, 1997).



Bregman divergences and regular exponential families. In this chapter the dis-

crepancy between a correlation matrix R and a pseudo-correlation matrix Q is
measured by the divergence dy(R, Q).

Depending on the choice of the function ¢, we obtain a number of well-known
loss functions for covariance matrices. If we set (M) = — Indet(M) then we

have Stein’s loss,
d¢(M1, MQ) = tI‘(MlMgl) —In det(MlMgl) —-—n, (14)

where In(-) denotes the natural logarithm. This divergence can also be interpreted
as the negative of the n-dimensional Wishart log-density (up to a constant) or,
equivalently, the zero mean multivariate Gaussian log-likelihood with respect to
the covariance parameter. If we set (M) = tr(Mlog M — M) then we have the

Von Neumann loss
d¢(M1, Mg) = tr(Ml IOg Ml — Ml lOg M2 — M1 + MQ) y (15)

where log(-) denotes the matrix logarithm.? Finally, if we set (M) = | M||% then
we have the squared Frobenius loss.

Let S (S7 ) be the set of n-dimensional symmetric positive semidefinite
(positive definite) matrices. We use Bregman divergences to introduce the fol-

lowing general class of projections of symmetric positive definite matrices onto

For symmetric positive definite matrices, the matrix logarithm is log Q = Ulog AU’, where
UAU'’ is the eigendecomposition of Q and log A involves taking the natural logarithm of the

eigenvalues.
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the set of correlation matrices —which 1s understood as the set of n-dimensional

symmetric positive definite matrices with unit diagonal.

Lemma 1.2.1. Let Q € S%, and let C" denote the set of correlation matrices.
Furthermore, assume that ¢ is a closed convex proper function of Legendre type

and differentiable on int(dom(¢)) = S" |. Define the Bregman projection

Py(Q) = arg min ds(R, Q). (1.6)
Then we have that there exists a unique P,(Q) € S’} ..

A few remarks are in order. First, we emphasize that the projection depends
on the choice of the function ¢. A natural choice that also turns out to be com-
putationally convenient is to define a projection based on Stein’s loss defined in
(1.4) and the Von Neumann loss defined in (1.5). We call these projections, re-
spectively, Stein’s projection and Von Neumann projection for short.

Second, we point out that existence and uniqueness of the Bregman projection
hold because (i) ST, NnC" = C" # (), (ii) ¢ is Legendre and (74¢) int(dom(¢)) =
S% ,. The Stein and Von Neumann losses satisfy requirements (¢7) and (i77), hence
it follows from Bauschke and Borwein (1997) that the projection exists in S’} , and
is unique. However, the Frobenius loss does not satisfy property (iii) over the set
of positive semidefinite matrices. We remark that a Frobenius projection can be
uniquely defined, but it would not necessarily preserve positive definiteness.

Third, in the case of the Stein’s loss we have that the projection is related
to constrained maximum likelihood estimation (MLE) of the covariance of the

zero-mean multivariate Gaussian with unit diagonal. In particular, the constrained

11



MLE would be given by arg mingecr dy(Q, R) where Q is the sample covariance

matrix. Note that in general this differs from Pearson’s sample correlation. In fact,
in Example 18.3 of Kendall and Stuart (1979) it is shown that the constrained
MLE for a bivariate Gaussian distribution is obtained by solving a cubic equation
— which in large samples has only one real solution. In higher dimensions, finding
such MLE is computationally burdensome. On the contrary, projecting the sample
covariance under Stein’s loss involves solving a convex problem (as opposed to
the MLE) and the solution is easily obtained with a much lower computational
burden.

Finally, we introduce the Pro-DCC(1,1), that is

Q = (1-a—-p)C+ag16_q+ Qi1

R, = P4(Q).

In other words, the Pro-DCC replaces the rescaling equation of the DCC (1.3) with
a projection. We point out that the Pro-DCC depends on a choice of an appropriate
divergence function ¢.

A number of comments are in order. First, we remark that the projection yields
the closest correlation matrix with respect to the loss induced by ¢, which does
not automatically imply any optimality properties for the purposes of forecasting
or minimizing other relevant classes of losses such as the GMVP. Nevertheless,
Sections 1.3 and 1.4 —which provide both simulation and empirical evidence that
the projection performs favorably to standard rescaling— shed some light on this

point. Second, as discussed at the end of Section 2.1, the original formulation

12



of the DCC model was criticized by Aielli (2013) and a corrected version of the

model was introduced. We remark that we do not use the Aielli correction in the
Pro-DCC methodology.

For large dimensional models, we propose estimating the model by compos-
ite likelihood as in Pakel et al. (2018). However, we note that for the Stein and
Von Neumann cases, projecting the pseudo-correlation of any 2 assets ¢ and j is
not equal to the (¢, j) entry of the projection of the entire matrix Py(Q;). This is
because for these loss function the projection takes into account the full correla-
tion structure and not just the correlation between assets 7 and j. In practice, the
resulting composite likelihood estimates of the dynamic parameters do not vary
substantially from their full likelihood counterparts, so this is a minor concern.

Last, we remark that, as it is widely known, the sample correlation matrix
performs poorly when the concentration ratio n/T is large — see Lecture 4 in Stein
(1986). For that reason, we consider using a nonlinear shrinkage estimator to

rectify the in-sample bias of the sample correlation as in Ledoit and Wolf (2020).

Computing the Bregman Projection

In order to apply the Pro-DCC in practice it is key to be able to compute the
projections in a computationally cheap way. We derive a closed-form expression
for the projection in the 2 dimensional case for the Stein and von Neumann losses
and we provide an efficient algorithm for the computation of the projection in the
general n dimensional case for the Stein projection.

The following two lemmas derive the closed form of the projection.

13



Lemma 1.2.2. Let Q be a 2 x 2 symmetric positive definite matrix. Consider the

Bregman Projection of Q onto the set of correlation matrices under Stein’s Loss.
The unique minimizer of this problem is given by

1—+/1+4k2

—g— ks #0

p= | 7 (1.7)
0 ks =0

q12

where k, = — Q)"

Lemma 1.2.3. Let Q be a 2 x 2 symmetric positive definite matrix. Consider
the Bregman Projection of Q onto the set of correlation matrices under the Von

Neumann Divergence. Then, the unique minimizer of this problem is given by
p = tanh(k,) ,
where k, denotes the off-diagonal entry of log Q.

It is important to emphasize that the optimal projection in these two cases
looks different from rescaling, thus implying that rescaling, at least as far as the
Stein and Von Neumann divergences are concerned, is not optimal.

In the n-dimensional case we can derive an algorithm. Computing the Breg-

man projection P, (Q) is equivalent to solving the following optimization problem

3Straightforward computations show that &, has the following analytical expression k, =

P1In g + P2 In A

1507 1702 where

g

1 .
3 [QU + g22 + (—1)1_1\/(%1 —q22)? + 4q%2]

i = —2q12/ (6111 — @22 + (—1)i\/(Q11 —q22)% + 46]%2)
andi =1, 2.
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with n affine constraints (one for each diagonal element of R):

min dy(R, Q) subjectto R;; = 1 foralli =1,...,n. (1.8)

ReS

R,; stands for the i"* diagonal element of the matrix R.

To solve this problem, we use Bregman’s cyclic projections method. Let C; be
the set of n-dimensional symmetric positive definite matrices whose ‘" diagonal
element is unity. Clearly, the set of correlation matrices C" = (), C;. Breg-
man’s cyclic projections method is an iterative algorithm in which one projects
successively onto each basic constraint set C; until the sequence of iterates con-
verges to the Bregman projection onto the intersection C". Theorem 1 establishes
that this algorithm is asymptotically valid. We refer to Dhillon and Tropp (2007)

and the references therein for a proof.
Theorem 1.2.1. Suppose

1. @ is a closed convex proper function of Legendre type such that

int(dom(¢)) = S% .

2. {C;}_, are the sets of n-dimensional symmetric positive definite matrices

with unit i'" diagonal entry.

3. the control mapping m : N — {1,... n} is a sequence that takes each

output value an infinite number of times.

Fork =1,2,..., define Py ) (R¥*~V) as the Bregman projection of R*~Y onto

Chuk)- Choose RO = Qe ST ., and form a sequence of iterates via succes-
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sive Bregman projections R®®) = P¢7m(k)(R(k_1)). Then the sequence of iterates

{R®)} converges in spectral norm to P,(Q) .

Lemma 1.2.4 establishes a closed-form formula for P¢,m(k)(R(k_1)) and is a

special case of the derivation in Kulis ez al. (2009) when ¢p(M) = — Indet(M).

Lemma 1.2.4. Consider the setting in Theorem 1 and let (M) = — Indet(M).

Then, forall i € {1,...,n},
Py (RED) = RE-D 4 [RIFD]2 (1 - R(.?“‘”) Rl RE-D
where e; denotes the it" canonical basis vector:

We concisely describe this procedure in Algorithm 1. We point out that the
algorithm has a complexity of O(n?) per iteration. We remark that Algorithm 1
is an iterative procedure that relies on a tolerance parameter to determine conver-
gence. In practice, in the empirical application and simulations we have found

that a tolerance value of 107 is sufficiently accurate.

1.2.3 Discussion
Projecting vs Rescaling a Pseudo-Correlation Matrix

In this section we show that the difference between rescaling and projecting can
be relevant enough in many cases.

We first consider the difference between rescaling and projecting in a bivariate
setting. We denote by ¢11, 22 the diagonal elements of the pseudo-correlation ma-

trix Q and denote by ¢, its off-diagonal element. Simple algebra shows that when
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Algorithm 1 STEIN’S PROJECTION

Compute Stein’s projection of a symmetric positive definite matrix Q onto the set
of correlation matrices.

INPUT: A symmetric positive definite matrix Q.

INITIALIZATION

Set RO = Q.

ITERATE UNTIL CONVERGENCE

In the k-th iteration of the algorithm choose the i-th constraint as

i=arg max |1 —RED|,
se{l,...,n} 58

and update the projection according to the formula

R® - R 4 [Rgf‘”]_Q (1 - REDREDe,e/RED

(%

where e; is defined as the i*" canonical basis vector.

COVERGENCE CRITERIA
If maxg |1 — Rg§)| < tolerance then stop.

OUTPUT: The projected correlation matrix R*),

q11q22 = 1, then the expression in equation (1.7) boils down to q;5, which trivially
coincides with rescaling ¢i2 by /q11q22. When q11g22 # 1, this is generally not
true, as it is shown in Figure 1.1. In the top-left panel we give an example of a
combination of diagonal elements whose product is one, and observe that rescal-
ing and projecting are equivalent. If the product is greater than 1, the projected
correlation is below the rescaled one, and the difference increases as the product is
larger than 1. The reverse pattern occurs when the product between the diagonal
elements is lower than 1. We also note that the point at which the maximum differ-
ence occurs does not correspond to the same correlation level but is a function of

the product of the diagonal elements of Q. Note that in Figure 1.1 we report only
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positive correlations. An analogous pattern emerges when they are negative (if the

product of diagonal elements is greater than one, then the projected correlation is
above the rescaled one, and it is below otherwise).

Next, we illustrate the difference between rescaling and projecting in a large
dimensional setting. Assume that the n-dimensional pseudo-correlation matrix i