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Abstract

This thesis comprises three essays on statistical learning theory for time series. In

the first chapter, joint with Christian Brownlees, we propose an alternative specifi-

cation of a dynamic conditional correlation model based on Bregman divergences

with an application to portfolio selection. The second chapter, also joint with

Christian Brownlees, deals with the problem of empirical risk minimization for

time series. The main result states that the performance of the empirical risk min-

imizer converges at a near optimal rate to the best performance attainable in a class

of recursive threshold forecasts induced by the self-exciting threshold autoregres-

sive moving average model. The third chapter derives performance guarantees for

forecasting dynamic quantiles in a multivariate setup under full misspecification.

The benefits of the methodology are illustrated in an application to Growth-at-

Risk forecasting.
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Resum

Aquesta tesi comprèn tres assajos sobre teoria de l’aprenentatge estadístic per a

sèries temporals. En el primer capítol, juntament amb Christian Brownlees, pro-

posem una especificació alternativa d’un model de correlacions condicionals di-

nàmiques basat en divergències de Bregman amb una aplicació a la selecció de

carteres. El segon capítol, també juntament amb Christian Brownlees, tracta el

problema de la minimització del risc empíric per a sèries temporals. El resultat

principal estableix que la capacitat predictiva del minimitzador del risc empíric

convergeix a una velocitat gairebé òptima al millor rendiment assolible en una

classe d’algoritmes predictius recursius amb llindars induïts pel model autoregres-

siu de mitjana mòbil amb llindar autoexcitador. El tercer capítol deriva garanties

per a la predicció de quantils dinàmics en una configuració multivariant sota espe-

cificació incorrecta. Els avantatges de la metodologia s’il·lustren en una aplicació

a la predicció del creixement en risc (Growth-at-Risk).
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Preface

The advances in computing and data availability over the last decades have

paved the way for machine learning (ML) to play an influential role in virtually

all areas of research. In Economics, we have seen the adoption of off-the-shelf

ML methods as well as some efforts to tune and adapt those to the particularities

of our discipline.1 While machine learning is concerned about automating the

process of learning from data, the goal of statistical learning theory is to formal-

ize it. The vast majority of contributions in statistical learning are centered around

the assumption that observations are independent of each other, although a large

number of datasets in economics and finance have a temporal dimension. While

econometricians are gradually incorporating more elements of statistical learn-

ing to their analyses, extensions that allow for dependent data are still relatively

unexplored. My PhD dissertation is devoted to this exploration.

The first chapter exemplifies how statistical learning theory can help econo-

metricians derive new methodologies. In joint work with Prof. Brownlees, we

explored the properties of Bregman divergences and their applications to dynamic

covariance modeling. We proposed a novel specification of the Dynamic Con-

ditional Correlation (DCC) model based on an alternative normalization of the

pseudo-correlation matrix called Projected DCC (Pro-DCC). Our modification

consists in projecting, rather than rescaling, the pseudo-correlation matrix onto

the set of correlation matrices in order to obtain a well defined conditional cor-
1See for instance Varian (2014); Mullainathan and Spiess (2017); Chernozhukov et al. (2018);

Athey et al. (2021)
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relation matrix. More specifically, we answer the question: given Q (positive

definite but not unit diagonal), what is the closest correlation matrix to Q? When

the discrepancy between matrices is measured with a Bregman divergence, this is

called a Bregman projection. An empirical application to the constituents of the

S&P 100 shows that the proposed methodology performs favorably to the standard

DCC in an out-of-sample asset allocation exercise.

The second and third chapters are focused on deriving guarantees for poten-

tially misspecified time series prediction algorithms. By taking a learning theory

perspective, the goal is to investigate the conditions under which these algorithms

are expected to perform adequately.

The second chapter, which is joint work with Prof. Brownlees, deals with the

properties of empirical risk minimization for time series. Empirical risk mini-

mization is a standard principle for choosing algorithms in learning theory. The

analysis is carried out in a general framework that covers different types of fore-

casting applications encountered in the literature. We are concerned with 1-step-

ahead prediction of a univariate time series belonging to a class of location-scale

parameter-driven processes. A class of recursive algorithms is available to fore-

cast the time series. The algorithms are recursive in the sense that the forecast

produced in a given period is a function of the lagged values of the forecast and of

the time series. The relationship between the generating mechanism of the time

series and the class of algorithms is not specified. Our main result establishes that

the algorithm chosen by empirical risk minimization achieves asymptotically the

optimal predictive performance that is attainable within the class of algorithms.

x
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In the third chapter, I study the problem of multivariate dynamic quantile fore-

casting from a learning theory perspective. Despite the fact that forecasting quan-

tiles is of obvious interest to economic agents, the theory in the dynamic quantile

modeling literature focuses on estimation under correct specification of the quan-

tile dynamics, and less attention is paid to forecasting under misspecification. I

address this gap by deriving an oracle inequality for a family of possibly misspec-

ified multivariate conditional autoregressive quantile models. The family includes

standard specifications for (nonlinear) quantile prediction proposed in the liter-

ature. This inequality is used to establish that the predictor that minimizes the

in-sample average check loss achieves the best out-of-sample performance within

its class at a near optimal rate, even when the model is fully misspecified. An

empirical application to backtesting global Growth-at-Risk shows that a combi-

nation of the generalized autoregressive conditionally heteroscedastic model and

the vector autoregression for Value-at-Risk performs best out-of-sample in terms

of the check loss.
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Chapter 1

PROJECTED DYNAMIC

CONDITIONAL CORRELATIONS

1.1 Introduction

Estimating and forecasting the time-varying covariance matrix of asset returns is

key for several applications in finance including asset allocation, risk management

and systemic risk measurement. Over the years, the GARCH-DCC methodology

of Engle (2002) has established itself as one of the leading paradigms in the lit-

erature due to its flexibility and ease of estimation (see also Engle and Sheppard,

2001). In a nutshell, the GARCH-DCC approach consists in modeling separately

the conditional variances and the conditional correlation matrix. The conditional

variances are modeled using GARCH whereas the conditional correlation matrix

is modeled using the Dynamic Conditional Correlation (DCC) model. Recent re-

1
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search in the literature that is based on GARCH-DCC includes Engle et al. (2019),

Brownlees and Engle (2017), De Nard et al. (2021) and Van Os and Van Dijk

(2021).

A key aspect of the DCC methodology is that the conditional correlation ma-

trix is modeled as a function of the so called pseudo-correlation matrix. The

pseudo-correlation matrix is a symmetric positive definite proxy of the conditional

correlation matrix that, crucially, is not guaranteed to be a proper correlation ma-

trix as it does not have a unit diagonal (almost surely). In order to obtain corre-

lations, the pseudo-correlation matrix has to be appropriately normalized, and the

standard strategy followed in the literature consists in rescaling this matrix (Engle,

2002; Tse and Tsui, 2002; Aielli, 2013). Engle (2009, Section 4.3) contains a dis-

cussion and a comparison of different rescaling approaches used in the literature.

Despite the fact that rescaling is natural and commonly employed, it is unclear

whether such an approach is in any sense optimal.

In this work we propose a modification of the standard DCC model based

on an alternative normalization procedure of the pseudo-correlation matrix. Our

modification consists in projecting the pseudo-correlation matrix onto the set of

correlation matrices rather than rescaling it. In other words, we cast the nor-

malization step of the pseudo-correlation matrix as a nearest-correlation matrix

problem, that is the problem of finding the closest correlation matrix to a given

pseudo-correlation matrix on the basis of an appropriate divergence function.

We begin this work by defining a class of projections for pseudo-correlation

matrices. To do so, we first introduce the notion of Bregman divergence for sym-

2
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metric positive definite matrices (Bregman, 1967; Banerjee et al., 2005a; Dhillon

and Tropp, 2007; Patton, 2020), which is used in this work to measure nearness

between two symmetric positive definite matrices. This family of divergences

constitutes a rich collection of divergence functions that includes many famil-

iar losses commonly encountered in the covariance estimation literature such as

the Stein and square Frobenius losses (Stein, 1986; Dey and Srinivasan, 1985;

Pourahmadi, 2013). In addition, this class of loss functions has been the focus of

attention in the financial econometrics literature in the context of ranking multi-

variate volatility models by their forecasting performance (Laurent et al., 2013;

Patton, 2020). In particular, the former paper establishes under mild assumptions

that consistent volatility forecast rankings using conditionally unbiased proxies

are obtained if and only if the loss function is of the Bregman type.

We define the projection of a pseudo-correlation matrix onto the set of cor-

relation matrices as the correlation matrix that minimizes the Bregman matrix

divergence with respect to that pseudo-correlation matrix. It is straightforward

to establish that such a projection exists and is unique. Within this broad class

of projections we focus in particular on the one implied by Stein’s loss, which

we name Stein’s projection. Stein’s loss is a natural loss function for covariance

matrices that is related to the multivariate Wishart log-density –or equivalently,

the zero mean multivariate Gaussian log-likelihood with respect to the covariance

parameter–, it is widely used (Ledoit and Wolf, 2018), and it guarantees to deliver

a positive definite projection. Moreover, we derive a closed form expression to

compute Stein projections in the two-dimensional case and an efficient iterative

3
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algorithm for the generic n-dimensional case.

We then introduce a novel DCC specification based on our pseudo-correlation

matrix projection called Projected DCC (Pro-DCC). Simply put, the Pro-DCC

corresponds to the classic DCC of Engle (2002) with the rescaling step of the

pseudo-correlation matrix replaced by our proposed projection. In order to esti-

mate the Pro-DCC we propose to follow the same multi-step procedure which is

used to estimate other DCC-type models.

A simulation study is carried out to assess the performance of our projection-

based methodology. We carry out two main exercises. In the first exercise we

simulate i.i.d. data from a multivariate Gaussian distribution with mean zero and

covariance parameter given by a correlation matrix. We then estimate the cor-

relation matrix of the simulated data by rescaling the sample covariance matrix

(i.e. the sample correlation matrix) and by projecting the sample covariance ma-

trix onto the set of correlation matrices using Stein’s projection. We find that the

projection-based approach performs better than rescaling in terms of correlation

estimation accuracy and that gains are larger in higher dimensional systems. In the

second exercise we compare the estimation accuracy of DCC and Pro-DCC under

misspecification, that is when the DGP differs from both models. In particular,

we consider a dynamic equicorrelation matrix model (Engle and Kelly, 2012) in

which the dynamic correlation evolves according to the cosine function, in the

spirit of one of the DGPs considered in the simulation exercise of Engle (2002).

We find that Pro-DCC outperforms standard DCC and that the gains increase with

the dimensionality of the system and degree of cross-sectional dependence.

4



“main” — 2023/6/14 — 22:04 — page 5 — #21

A Global Minimum Variance Portfolio (GMVP) exercise with the constituents

of the S&P 100 is used to measure the performance of Pro-DCC. The design of

the exercise is close in spirit to the one of De Nard et al. (2021). We compare Pro-

DCC to DCC, and we consider both the standard versions of these models as well

as versions that rely on nonlinear shrinkage (Ledoit and Wolf, 2020) for covari-

ance targeting. Results show that forecasts based on the standard and nonlinear

shrinkage variant of the Pro-DCC achieve the best out-of-sample performance.

For completeness, we also consider GMVPs with exposure constraints in order

to understand if the advantage of Pro-DCC is due to shrinkage (Jagannathan and

Ma, 2003; Fan et al., 2012). We find that adding 1-norm constraints substan-

tially improves performance for both the DCC and Pro-DCC, hence suggesting

that Pro-DCC performs favorably even after controlling for shrinkage.

This chapter is related to different strands of the literature. First, it is related to

the literature on multivariate volatility models and the DCC. Important contribu-

tions in this area, besides the one we have already mentioned, include Bollerslev

(1990) and Pakel et al. (2018). Classic surveys of the literature on multivariate

volatility modeling are Bauwens et al. (2006) and Silvennoinen and Teräsvirta

(2008). Second, it is related to the financial econometrics literature on large di-

mensional covariance estimation for asset allocation, which include the contribu-

tions of, among others, Hautsch et al. (2015), Hautsch and Voigt (2019), De Nard

et al. (2021). Last, it is related to the literature on matrix projections based on

Bregman divergences and the nearest-correlation matrix problem. Contributions

in this area include the work of Higham (2002), Dhillon and Tropp (2007) and

5
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Kulis et al. (2009).

The rest of the chapter is structured as follows. Section 1.2 introduces the

methodology. Section 1.3 contains the simulation study. Section 1.4 presents the

empirical application. Section 1.5 concludes the chapter. All proofs are collected

in section 1.6.

1.2 Methodology

In this Section we first concisely review the DCC model of Engle (2002) and we

then introduce the Pro-DCC model.

1.2.1 The DCC Model

Let rt “ pr1 t, . . . , rn tq
1 denote an n-dimensional vector of log returns observed

at time t, for t ranging from 1 to T . The key object of interest of this work is

the conditional covariance matrix of returns given past information, that is Σt “

Covt´1prtq. The GARCH-DCC framework is based on the following factorization

of the conditional covariance matrix

Σt “ DtRtDt ,

where Dt is a nˆn diagonal matrix of conditional volatilities (standard deviations)

and Rt is the n ˆ n conditional correlation matrix.

In the GARCH-DCC framework, the conditional volatility matrix Dt is typi-

cally modeled using some appropriate GARCH specification. Assuming, for in-

6
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stance, GJR-GARCH(1,1) dynamics we have that the i-th diagonal element of Dt,

which we denote by di t, is specified as

d2i t “ ωi ` ai r
2
i t´1 ` γi I´

t´1r
2
i t´1 ` bi d

2
i t´1 ,

where ωi, ai, γi and bi are the GJR-GARCH(1,1) coefficients satisfying ωi ą 0,

ai ą 0, bi ě 0 and ai ` γi{2 ` bi ă 1.

The conditional correlation matrix Rt is modeled using the DCC specifica-

tion. The DCC models the correlation process as a function of the so-called de-

volatilized returns that are defined as ϵt “ D´1
t rt. In the DCC model the condi-

tional correlation matrix is determined by the so-called pseudo-correlation matrix

Qt which evolves according to the equation

Qt “ p1 ´ α ´ βqC ` αϵt´1ϵ
1
t´1 ` βQt´1 , (1.1)

where α and β are scalar parameters that satisfy α ą 0, β ą 0, α ` β ă 1 and

C is an n ˆ n positive definite matrix. It is straightforward to see by recursive

substitution that

Qt “
1 ´ α ´ β

1 ´ β
C ` α

8
ÿ

i“0

βiϵt´1´iϵ
1
t´1´i . (1.2)

A crucial aspect of the DCC model on which we build upon in the next section

is that the pseudo-correlation matrix is not guaranteed to be a correlation ma-

trix. In particular, it is clear from (1.2) that Qt is symmetric positive definite but

(generally) not unit diagonal. Thus, an appropriate normalization step is required

to obtain a correlation matrix. The standard approach consists of rescaling the

7
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pseudo-correlation matrix, that is

Rt “ diagpQtq
´1{2Qt diagpQtq

´1{2 , (1.3)

where for an n ˆ n matrix A, the notation diagpAq denotes the n ˆ n diagonal

matrix with the diagonal of A.

The GARCH-DCC family of models is estimated using a multi-step procedure

motivated by a QML argument. The first step consists of estimating the condi-

tional standard deviation matrix Dt by estimating n univariate GARCH models.

Next, the C matrix is estimated by covariance targeting using the sample second

moment of the estimated standardized residuals, that is

pC “
1

T

T
ÿ

t“1

ϵ̂tϵ̂
1
t ,

where ϵ̂i t “ ri t{σ̂i t and σ̂i t is the estimated volatility of the first step. Last, the

DCC parameters are obtained by maximizing the (Gaussian) quasi log-likelihood

of the de-volatilized returns (see Engle, 2002, for details).

We remark that, albeit being intuitive, the estimation strategy put forward by

Engle (2002) has some consistency issues first noted by Aielli (2013). These have

motivated Aielli (2013) to introduce a “corrected” version of the model called

Corrected DCC (CDCC). However, empirically, this model is found to perform

similarly to the standard “uncorrected” DCC.

1.2.2 The Projected DCC Model

In this section we propose a novel DCC specification based on an alternative nor-

malization procedure. Rather than rescaling the pseudo-correlation matrix as in

8
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equation (1.3) we propose projecting it onto the space of correlation matrices. In

other words, we cast the problem of normalizing the pseudo-correlation matrix as

a nearest-correlation matrix problem, that is finding the closest correlation matrix

to a given pseudo-correlation matrix. In order to introduce our projection-based

model some additional machinery is required.

We begin by introducing the notion of Bregman divergence for real matrices.

Definition 1.2.1 (Bregman Divergence). Given a strictly convex and differentiable

function ϕ of Legendre type,1 we define the Bregman matrix divergence as

dϕpM1,M2q “ ϕpM1q ´ ϕpM2q ´ trp∇ϕpM2q
1
pM1 ´ M2qq ,

for any two real matrices M1 and M2.

Bregman divergences can be seen as the difference between the function ϕ

evaluated at M1 and its first-order Taylor approximation around M2. Bregman

divergences are a class of tractable divergences that enjoy a number of useful

properties and are popular in the Machine Learning literature (Cesa-Bianchi and

Lugosi, 2006). Bregman divergences are always positive, like distances, and are

zero only when their arguments coincide. Unlike distances, they are not neces-

sarily symmetric and they do not necessarily satisfy the triangle inequality. Fur-

thermore, they are always convex with respect to their first argument and satisfy a

generalized Pythagorean property (Dhillon and Tropp, 2007; Kulis et al., 2009).

Finally, Banerjee et al. (2005a) establishes the existence of a bijection between
1A function is of Legendre type if it is essentially smooth and essentially strictly convex

(Bauschke and Borwein, 1997).

9
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Bregman divergences and regular exponential families. In this chapter the dis-

crepancy between a correlation matrix R and a pseudo-correlation matrix Q is

measured by the divergence dϕpR,Qq.

Depending on the choice of the function ϕ, we obtain a number of well-known

loss functions for covariance matrices. If we set ϕpMq “ ´ ln detpMq then we

have Stein’s loss,

dϕpM1,M2q “ trpM1M
´1
2 q ´ ln detpM1M

´1
2 q ´ n , (1.4)

where lnp¨q denotes the natural logarithm. This divergence can also be interpreted

as the negative of the n-dimensional Wishart log-density (up to a constant) or,

equivalently, the zero mean multivariate Gaussian log-likelihood with respect to

the covariance parameter. If we set ϕpMq “ trpM logM ´ Mq then we have the

Von Neumann loss

dϕpM1,M2q “ trpM1 logM1 ´ M1 logM2 ´ M1 ` M2q , (1.5)

where logp¨q denotes the matrix logarithm.2 Finally, if we set ϕpMq “ }M}2F then

we have the squared Frobenius loss.

Let Sn` (Sn``) be the set of n-dimensional symmetric positive semidefinite

(positive definite) matrices. We use Bregman divergences to introduce the fol-

lowing general class of projections of symmetric positive definite matrices onto

2For symmetric positive definite matrices, the matrix logarithm is logQ “ U logΛU 1, where

UΛU 1 is the eigendecomposition of Q and logΛ involves taking the natural logarithm of the

eigenvalues.

10
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the set of correlation matrices –which is understood as the set of n-dimensional

symmetric positive definite matrices with unit diagonal.

Lemma 1.2.1. Let Q P Sn`` and let Cn denote the set of correlation matrices.

Furthermore, assume that ϕ is a closed convex proper function of Legendre type

and differentiable on intpdompϕqq “ Sn``. Define the Bregman projection

PϕpQq “ arg min
RPCn

dϕpR,Qq. (1.6)

Then we have that there exists a unique PϕpQq P Sn``.

A few remarks are in order. First, we emphasize that the projection depends

on the choice of the function ϕ. A natural choice that also turns out to be com-

putationally convenient is to define a projection based on Stein’s loss defined in

(1.4) and the Von Neumann loss defined in (1.5). We call these projections, re-

spectively, Stein’s projection and Von Neumann projection for short.

Second, we point out that existence and uniqueness of the Bregman projection

hold because piq Sn``XCn “ Cn ‰ H, piiq ϕ is Legendre and piiiq intpdompϕqq “

Sn``. The Stein and Von Neumann losses satisfy requirements piiq and piiiq, hence

it follows from Bauschke and Borwein (1997) that the projection exists in Sn`` and

is unique. However, the Frobenius loss does not satisfy property piiiq over the set

of positive semidefinite matrices. We remark that a Frobenius projection can be

uniquely defined, but it would not necessarily preserve positive definiteness.

Third, in the case of the Stein’s loss we have that the projection is related

to constrained maximum likelihood estimation (MLE) of the covariance of the

zero-mean multivariate Gaussian with unit diagonal. In particular, the constrained

11
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MLE would be given by argminRPCn dϕpQ,Rq where Q is the sample covariance

matrix. Note that in general this differs from Pearson’s sample correlation. In fact,

in Example 18.3 of Kendall and Stuart (1979) it is shown that the constrained

MLE for a bivariate Gaussian distribution is obtained by solving a cubic equation

– which in large samples has only one real solution. In higher dimensions, finding

such MLE is computationally burdensome. On the contrary, projecting the sample

covariance under Stein’s loss involves solving a convex problem (as opposed to

the MLE) and the solution is easily obtained with a much lower computational

burden.

Finally, we introduce the Pro-DCC(1,1), that is

Qt “ p1 ´ α ´ βqC ` αϵt´1ϵ
1
t´1 ` βQt´1 ,

Rt “ PϕpQtq .

In other words, the Pro-DCC replaces the rescaling equation of the DCC (1.3) with

a projection. We point out that the Pro-DCC depends on a choice of an appropriate

divergence function ϕ.

A number of comments are in order. First, we remark that the projection yields

the closest correlation matrix with respect to the loss induced by ϕ, which does

not automatically imply any optimality properties for the purposes of forecasting

or minimizing other relevant classes of losses such as the GMVP. Nevertheless,

Sections 1.3 and 1.4 –which provide both simulation and empirical evidence that

the projection performs favorably to standard rescaling– shed some light on this

point. Second, as discussed at the end of Section 2.1, the original formulation

12
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of the DCC model was criticized by Aielli (2013) and a corrected version of the

model was introduced. We remark that we do not use the Aielli correction in the

Pro-DCC methodology.

For large dimensional models, we propose estimating the model by compos-

ite likelihood as in Pakel et al. (2018). However, we note that for the Stein and

Von Neumann cases, projecting the pseudo-correlation of any 2 assets i and j is

not equal to the pi, jq entry of the projection of the entire matrix PϕpQtq. This is

because for these loss function the projection takes into account the full correla-

tion structure and not just the correlation between assets i and j. In practice, the

resulting composite likelihood estimates of the dynamic parameters do not vary

substantially from their full likelihood counterparts, so this is a minor concern.

Last, we remark that, as it is widely known, the sample correlation matrix

performs poorly when the concentration ratio n{T is large – see Lecture 4 in Stein

(1986). For that reason, we consider using a nonlinear shrinkage estimator to

rectify the in-sample bias of the sample correlation as in Ledoit and Wolf (2020).

Computing the Bregman Projection

In order to apply the Pro-DCC in practice it is key to be able to compute the

projections in a computationally cheap way. We derive a closed-form expression

for the projection in the 2 dimensional case for the Stein and von Neumann losses

and we provide an efficient algorithm for the computation of the projection in the

general n dimensional case for the Stein projection.

The following two lemmas derive the closed form of the projection.

13
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Lemma 1.2.2. Let Q be a 2 ˆ 2 symmetric positive definite matrix. Consider the

Bregman Projection of Q onto the set of correlation matrices under Stein’s Loss.

The unique minimizer of this problem is given by

ρ̂ “

$

’

’

’

&

’

’

’

%

1´
?

1`4k2s
2ks

ks ‰ 0

0 ks “ 0

, (1.7)

where ks “ ´
q12

detpQq
.

Lemma 1.2.3. Let Q be a 2 ˆ 2 symmetric positive definite matrix. Consider

the Bregman Projection of Q onto the set of correlation matrices under the Von

Neumann Divergence. Then, the unique minimizer of this problem is given by

ρ̂ “ tanhpkvq ,

where kv denotes the off-diagonal entry of logQ.3

It is important to emphasize that the optimal projection in these two cases

looks different from rescaling, thus implying that rescaling, at least as far as the

Stein and Von Neumann divergences are concerned, is not optimal.

In the n-dimensional case we can derive an algorithm. Computing the Breg-

man projection PϕpQq is equivalent to solving the following optimization problem

3Straightforward computations show that kv has the following analytical expression kv “

ψ1 lnλ1

1`ψ2
1

`
ψ2 lnλ2

1`ψ2
2

where

λi “
1

2

„

q11 ` q22 ` p´1qi´1
b

pq11 ´ q22q2 ` 4q212

ȷ

ψi “ ´2q12{

ˆ

q11 ´ q22 ` p´1qi
b

pq11 ´ q22q2 ` 4q212

˙

and i “ 1, 2.

14
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with n affine constraints (one for each diagonal element of R):

min
RPSn``

dϕpR,Qq subject to Rii “ 1 for all i “ 1, . . . , n. (1.8)

Rii stands for the ith diagonal element of the matrix R.

To solve this problem, we use Bregman’s cyclic projections method. Let Ci be

the set of n-dimensional symmetric positive definite matrices whose ith diagonal

element is unity. Clearly, the set of correlation matrices Cn “
Şn
i“1Ci. Breg-

man’s cyclic projections method is an iterative algorithm in which one projects

successively onto each basic constraint set Ci until the sequence of iterates con-

verges to the Bregman projection onto the intersection Cn. Theorem 1 establishes

that this algorithm is asymptotically valid. We refer to Dhillon and Tropp (2007)

and the references therein for a proof.

Theorem 1.2.1. Suppose

1. ϕ is a closed convex proper function of Legendre type such that

intpdompϕqq “ Sn``.

2. tCiu
n
i“1 are the sets of n-dimensional symmetric positive definite matrices

with unit ith diagonal entry.

3. the control mapping m : N Ñ t1, . . . , nu is a sequence that takes each

output value an infinite number of times.

For k “ 1, 2, . . ., define Pϕ,mpkqpR
pk´1qq as the Bregman projection of Rpk´1q onto

Cmpkq. Choose Rp0q “ Q P Sn``, and form a sequence of iterates via succes-

15
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sive Bregman projections Rpkq “ Pϕ,mpkqpR
pk´1qq. Then the sequence of iterates

tRpkqu converges in spectral norm to PϕpQq .

Lemma 1.2.4 establishes a closed-form formula for Pϕ,mpkqpR
pk´1qq and is a

special case of the derivation in Kulis et al. (2009) when ϕpMq “ ´ ln detpMq.

Lemma 1.2.4. Consider the setting in Theorem 1 and let ϕpMq “ ´ ln detpMq.

Then, for all i P t1, . . . , nu,

Pϕ,ipR
pk´1q

q “ Rpk´1q
` rR

pk´1q

ii s
´2

´

1 ´ R
pk´1q

ii

¯

Rpk´1qeie
1
iR

pk´1q ,

where ei denotes the ith canonical basis vector.

We concisely describe this procedure in Algorithm 1. We point out that the

algorithm has a complexity of Opn2q per iteration. We remark that Algorithm 1

is an iterative procedure that relies on a tolerance parameter to determine conver-

gence. In practice, in the empirical application and simulations we have found

that a tolerance value of 10´6 is sufficiently accurate.

1.2.3 Discussion

Projecting vs Rescaling a Pseudo-Correlation Matrix

In this section we show that the difference between rescaling and projecting can

be relevant enough in many cases.

We first consider the difference between rescaling and projecting in a bivariate

setting. We denote by q11, q22 the diagonal elements of the pseudo-correlation ma-

trix Q and denote by q12 its off-diagonal element. Simple algebra shows that when
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Algorithm 1 STEIN’S PROJECTION

Compute Stein’s projection of a symmetric positive definite matrix Q onto the set
of correlation matrices.

INPUT: A symmetric positive definite matrix Q.

INITIALIZATION

Set Rp0q “ Q.

ITERATE UNTIL CONVERGENCE

In the k-th iteration of the algorithm choose the i-th constraint as

i “ arg max
sPt1,...,nu

|1 ´ Rpk´1q
ss | ,

and update the projection according to the formula

Rpkq
“ Rpk´1q

`

”

R
pk´1q

ii

ı´2

p1 ´ R
pk´1q

ii qRpk´1qeie
1
iR

pk´1q ,

where ei is defined as the ith canonical basis vector.

COVERGENCE CRITERIA

If maxs |1 ´ R
pkq
ss | ă tolerance then stop.

OUTPUT: The projected correlation matrix Rpkq.

q11q22 “ 1, then the expression in equation (1.7) boils down to q12, which trivially

coincides with rescaling q12 by
?
q11q22. When q11q22 ‰ 1, this is generally not

true, as it is shown in Figure 1.1. In the top-left panel we give an example of a

combination of diagonal elements whose product is one, and observe that rescal-

ing and projecting are equivalent. If the product is greater than 1, the projected

correlation is below the rescaled one, and the difference increases as the product is

larger than 1. The reverse pattern occurs when the product between the diagonal

elements is lower than 1. We also note that the point at which the maximum differ-

ence occurs does not correspond to the same correlation level but is a function of

the product of the diagonal elements of Q. Note that in Figure 1.1 we report only

17
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positive correlations. An analogous pattern emerges when they are negative (if the

product of diagonal elements is greater than one, then the projected correlation is

above the rescaled one, and it is below otherwise).

Next, we illustrate the difference between rescaling and projecting in a large

dimensional setting. Assume that the n-dimensional pseudo-correlation matrix is

given by

Q “ Diagp1 ` ξ ` vq
1{2Rpκ1qDiagp1 ` ξ ` vq

1{2 ,

where κ1 P p0, 1q, ξ ą 0, Rpκ1q is an nˆ n matrix with Toeplitz structure, v is an

n-dimensional vector, and Diagp1`ξ`vq denotes the nˆn diagonal matrix with

diagonal given by 1 ` ξ ` v. In particular, we have that the pi, jq-th element of

Rpκ1q is κ|i´j|

1 . The v “ pv1, . . . , vnq1 vector has its i-th element equal to sinpxiq,

where x1 “ ε, xn “ 2π ´ ε, and xi`1 “ xi ` 2 ¨ π´ε
n´1

, for ε ą 0. In Figure 1.2 we

see that the difference – measured with the squared Frobenius norm divided by

n – between projecting and rescaling has an inverse-U shape with respect to the

magnitude of the correlations. Importantly, the figure also shows that differences

become more pronounced with the matrix dimension.

Projecting as Shrinking

This sub-section explores the relationship between projecting and shrinkage. The

main message is that there are some cases where the projection may be interpreted

as a methodology that shrinks the eigenvalues of a given pseudo-correlation matrix

compared to the rescaled version. However, this does not hold in general for

all possible pseudo-correlation matrices. Hence, interpreting the projection as
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shrinkage is not entirely straightforward. To see this, consider first the case where

n “ 2 with the Stein’s loss. From Laurent et al. (2013), we have that when

ϕpMq “ ´ ln detpMq, then

dϕpR,Qq “

n
ÿ

i,j“1

λi
µj

pv1
iujq

2
´

n
ÿ

i“1

ln
λi
µi

´ n , (1.9)

where λi, vi and µj, uj are the i and j-th eigenvalues/vectors of R and Q, respec-

tively. If ui “ vi for all i “ 1, 2, and since λ1 ` λ2 “ 2 with λ1 ą λ2 ą 0, then

we can re-parameterize the matrix nearness problem as a function of λ1:

min
RPCn

dϕpR,Qq ðñ min
λ1Pp0,2q

ˆ

1

µ1

´
1

µ2

˙

λ1 ´ lnλ1 ´ lnp2 ´ λ1q ,

with unique solution given by

λ1 “ 1 ´
1

g
`

c

1 `
1

g2
, g :“

1

µ2

´
1

µ1

,

which is to be compared against 2µ1{trpQq, i.e. the eigenvalue obtained via rescal-

ing. After some algebra, it can be shown that λ1 ă 2µ1{trpQq whenever trpQq ą

2, and viceversa. Therefore, even in this simplified scenario we can see that the

projection methodology may have an effect similar to shrinking the eigenvalues

of the rescaled Q, but it may as well have the opposite effect.

Clearly, the analysis becomes more complex when n ą 2 since normalizing Q

into a correlation matrix involves not just a change in the eigenspectrum but also

rotating the eigenvectors. Under the same setup of sub-section 1.2.3, Figure 1.3

illustrates the difference between projecting Q versus shrinking and rescaling Q

via the analytical nonlinear shrinkage formula of Ledoit and Wolf (2020) for dif-

ferent values of the concentration ratio n{T . The figure shows that the gap widens
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with the degree of dependence and the dimension –as in the previous sub-section–

as well as with the concentration ratio n{T , hence suggesting that projecting and

shrinking are essentially different operations.

Measurement Error

In the context of the DCC model, the observed pseudo-correlation matrix Q is es-

timated. It is natural to consider the impact of measurement error on the projection

methodology as opposed to rescaling. The analysis of this question is inspired by

Laurent et al. (2013). Let Q̃ denote the estimated value of Q, and denote R̃ and

P̃ the rescaled/projected Q̃. The structure of Bregman divergences allows us to

write the average discrepancy between rescaling and projecting as

ErdϕpR̃,Qq ´ dϕpP̃,Qqs “ ErϕpR̃q ´ ϕpP̃qs ´ E trp∇ϕpQqpP̃ ´ R̃qq .

It follows that the measurement error does not impact the proximity rankings of

R̃ and P̃ provided that this discrepancy is positive. Although it seems challeng-

ing to derive general conclusions for general Legendre functions ϕ, if we consider

ϕpMq “ ´ ln detpMq, then the proximity rankings are not affected by measure-

ment error whenever the trace of Q is large enough and the eigenvalues of R̃ are

more dispersed than those of P̃.

1.3 Simulation Study

In this section we carry out different Monte Carlo exercises to analyse the perfor-

mance of Stein’s projection and the Pro-DCC for correlation modeling.
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1.3.1 Static Correlations

In the Monte Carlo exercise of this section we study the performance of our pro-

posed projection in a static environment. We carry out a Monte Carlo exercise

designed as follows. We simulate T “ 500 i.i.d. random draws from an equicor-

relation process given by

r „ N p0,Rq, where R “ p1 ´ ρqI ` ριι1,

where ι is an n-dimensional vector of ones, ρ P p0, 1q and I is the n ˆ n identity

matrix. The focus of the exercise lies in the estimation of the population cor-

relation matrix R. We consider two competing estimators. The first candidate

estimator is Pearson’s sample correlation matrix, that is

R̂p1q
“ diagpSq

´1{2S diagpSq
´1{2 ,

where S denote the sample covariance matrix S “ 1
T

řT
t“1 rtr

1
t . The second es-

timator is the projected sample covariance matrix of the data, defined as R̂p2q “

PSTEINpSq .

In each replication, we compute the loss of both estimators with respect to the

true correlation matrix. The losses under consideration are the Frobenius and the

MAE. These are defined as follows:

LFrobpR̂,Rq “

c

1

n
trrpR̂ ´ Rq2s , (1.10)

LMAEpR̂,Rq “
1

n

ÿ

i,j

|R̂ij ´ Rij| . (1.11)

Note that we divide the squared Frobenius loss and the sum of absolute errors by n

to establish a fair comparison as the dimension increases. We estimate ErLs using
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the sample average of the losses obtained across 1’000 Monte Carlo replications,

and repeat the same exercise for different levels of the correlation parameter ρ as

well as the cross-sectional dimension n. In particular, we consider all combina-

tions of ρ in t0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9u and n in t10, 23, 36, 50u. We

remark that the concentration ratio is rather low (it only reaches a maximum of

0.1) since this exercise is based on the sample covariance, which is optimal un-

der fixed-n large-T asymptotics but performs poorly in finite samples when the

concentration ratio n{T is large. In unreported Monte Carlo exercises we have

also implemented the projection of the non-linear shrinkage estimator (Ledoit and

Wolf, 2020) of the covariance matrix onto the correlation set and compared them

to the sample correlation. The results were also favorable to our proposed method-

ology.

Figure 1.4 reports the excess loss of the sample correlation matrix with respect

to our proposed estimator. From this figure, it is clear that the gap between both

methods is positive and increases with the dimensionality of the correlation ma-

trix. We also observe that the gap is maximized at some intermediate value of the

ρ parameter between zero and one.

To conclude this sub-section, note that the results are congruent with our find-

ings from Section 1.2.3. The main message is that care must be taken in choos-

ing an appropriate way of normalizing a positive definite matrix to a correlation.

Rescaling is one (obvious) way of doing so, but it may not be necessarily optimal.

22



“main” — 2023/6/14 — 22:04 — page 23 — #39

1.3.2 Dynamic Correlations

In the Monte Carlo exercise of this section we study the performance of our pro-

posed projection in a dynamic environment. We carry out a Monte Carlo exercise

designed as follows. We consider a dynamic equicorrelation model where the

scalar correlation parameter is governed by a cosine wave, in the spirit of En-

gle and Kelly (2012) and one of the simulated DGPs considered in Engle (2002).

More precisely, we consider the DGP given by the equations

ϵt “ R
1{2
t zt, where zt „ N p0, Iq, for t “ 1, . . . , T ,

Rt “ p1 ´ ρtqI ` ρtιι
1 ,

ρt “ ρ ` 0.1 cosp2πt{200q .

In each replication, we draw T “ 11000 observations from the DGP described

above for different levels of the ambient dimension n “ 50, 100, 200 and ρ “

0.4, 0.5, 0.6, 0.7, 0.8.

To predict the sequence of matrices Rt, we consider the DCC and Pro-DCC

models. As customary, the parameters of the two specifications are estimated by

maximizing the Quasi Log-Likelihood of the data with respect to the correlation

matrix parameter, where the intercept matrix C is estimated by covariance target-

ing.

A few remarks are in order. In this exercise, we abstract from estimation of

dynamic volatilities since the DCC and Pro-DCC methodologies employ the same

univariate GARCH strategy to estimate the conditional volatilities. The exercise

thus focuses on the main source of the difference between both strategies, that is
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the correlation modeling step. Similar to the previous sub-section, we employ the

sample covariance for the covariance targeting step, but in unreported exercises

we have also implemented the non-linear shrinkage estimator and the results were

also favourable to our proposed methodology.

In order to evaluate the precision of the correlation forecasts with respect to the

true correlation process Rt we use again the Frobenius and MAE loss functions

given by equations (1.10) and (1.11). For each replication of the exercise we

compute the average losses across all the time periods t “ 1, . . . , T and we then

average again these across 1’000 replications of the Monte Carlo exercise.

The correlation plot in Figure 1.5 illustrates how the Pro-DCC correlation de-

livers a performance improvement over the DCC. In Figure 1.6 we report the

results of the exercise for different values of n and ρ. Overall, results show that

the Pro-DCC performs systematically better than rescaling and that the gains of

the projections are larger when the dimension of the system is larger and when

the degree of correlation is higher. These results are robust to the choice of the

amplitude and period of the cosine wave. We remark that here we have focused

on the positive range of the correlations to avoid issues related to the positive defi-

niteness of the equicorrelation matrix since the corresponding lower bound for the

ρt parameter varies with the dimension n.
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1.4 Empirical Application

In this Section we carry out an out-of-sample asset allocation exercise using the

constituents of the S&P 100 to assess the benefits of the Pro-DCC for forecasting.

The exercise design is close in spirit to the one in De Nard et al. (2021). An impor-

tant difference between the latter and this chapter is that we use publicly available

daily data from Alpha Vantage (closing stock prices adjusted for dividends and

splits) and that the focus is exclusively on the S&P 100. Hence, the investment

universe is fixed rather than time-varying and smaller than the one considered in

that paper.

We consider the n “ 86 constituents of the S&P 100 that have continuously

been trading between 2011-01-01 and 2019-06-30 (2’136 trading days). We trans-

form adjusted close price data into log-returns, namely ri t “ 100ˆlogpPi t{Pi t´1q

for i “ 1, . . . , n. The exercise consists in constructing the global minimum vari-

ance portfolio (GVMP) once a month on the basis of different covariance forecasts

and to then measure the accuracy of the different covariance forecasts on the ba-

sis of asset allocation metrics.4 It should be emphasized that despite the fact that

portfolio rebalancing occurs on a monthly basis, all models are estimated using

daily data. The GMVP is defined as rGMVP t “ w˚1

t rt where

w˚
t “ arg min

w1
tι“1

w1
tΣtwt ,

with ι denoting an n-dimensional vector of ones. As it is well known, the mini-

4We follow the common convention that 21 consecutive trading days constitute one “month”.
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mizer of this optimization problem is given by

w˚
t “

Σ´1
t ι

ι1Σ´1
t ι

. (1.12)

The GMVP has become a fairly standard metric to evaluate covariance forecasts.

In particular, the appeal of the GMVP lies in the fact that this asset allocation

strategy only depends on covariance forecasts and in particular it does not rely

on forecasts of the expected returns. As an additional exercise, we consider the

GMVP with exposure constraints. In the literature, it is generally documented that

adding exposure constraints improves the minimum-variance portfolio allocations

and has an interpretation in terms of shrinkage estimation (Jagannathan and Ma,

2003; Fan et al., 2012). The GMVP with 1-norm constraints is formulated as

w˚
t “ arg min

w1
tι“1,}wt}1ďγ

w1
tΣtwt, (1.13)

for some γ ą 0. We consider the well-known choices γ “ 1 (the no-short sale

portfolio) and γ “ 2 (the 150/50 portfolio, i.e. the portfolio that allows a maxi-

mum of 50% of short positions). In order to understand whether projections rep-

resent an improvement beyond shrinkage, we compute γt “
řn
i“1 |wi,t| for each t

for the portfolio based on the Projected DCC and add the portfolio constraints of

the standard DCC with exposure constraint γ “ γt.5

To compute the GMVP from the data, we train some suitable dynamic co-

variance model in-sample and compute one-step ahead covariance forecasts out-

of-sample on a rolling basis, keeping the parameters fixed to their in-sample es-

timates. The portfolio is updated every month to mitigate the costs of rebalanc-
5We thank one of the referees for the suggestion.
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ing. We note that in De Nard et al. (2021) the approach to forecasting is slightly

different, as they compute the average of k-step ahead forecasts for k ranging

from 1 to 21. However, in order to compute those forecasts, it is assumed that

ErRt`k|Fts “ ErQt`k|Fts, which is an approximation. In this work we refrain

from following this strategy and we focus on one-step ahead forecasts only in

order to make the comparison between DCC and Pro-DCC more transparent.

We consider different covariance forecasting strategies to construct the GMVP.

We entertain: DCC, the standard version of the DCC model; Pro-DCC, the Pro-

jected DCC model based on Stein’s projection; RiskMetrics, the RM2006 method-

ology of Zumbach (2007), and RollCov, Rolling sample covariance computed

with a window of six months. For the GARCH-DCC/Pro-DCC specifications, the

marginal distribution for each asset is assumed to be GARCH(1,1). For bench-

marking purposes, we also report metrics for the equal-weighted portfolio (“1/N”).

Moreover, since the dimensionality of the problem is fairly large, the DCC and

Pro-DCC models are implemented using standard covariance targeting as well as

covariance targeting based on the analytical nonlinear shrinkage (NLS) method-

ology from Ledoit and Wolf (2020). Also, DCC models are estimated using the

composite likelihood approach with contiguous pairs for the dynamic correlation

models as in Pakel et al. (2018), which significantly reduces the computational

burden of estimation. We evaluate the performance of these different forecasting

strategies using the following three out-of-sample performance measures: AV, the

annualized out-of-sample average of the GMVP returns; SD, the annualized out-

of-sample standard deviation of the GMVP returns, and Sharpe, the Sharpe ratio
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computed as AV / SD.6 For instance, the annualized volatility of the portfolio is

given by

SDGMVP “
?
252 ˆ

g

f

f

eτ´1

T`τ
ÿ

t“T`1

r2GMVP t ,

where τ is the length of the out-of-sample period and T is the length of the in-

sample period.

The resulting portfolio metrics are presented in Table 1.1 and results using

different split dates for the in-sample and out-of-sample periods can be found in

Tables 1.2 and 1.3. Results from tests of the difference in portfolio variances us-

ing HAC inference as in Ledoit and Wolf (2008) are shown in Tables 1.4, 1.5 and

1.6. The findings of the exercise can be summarised as follows. First, overall, we

have that Pro-DCC-NLS and Pro-DCC-SC outperform all other candidate estima-

tors in terms of both the standard deviation and the Sharpe ratio of the GMVP.

The (analytical) nonlinear shrinkage versions of all estimators considered in the

exercise present superior performance than doing no shrinkage. Second, the rel-

6Additionally, the following portfolio metrics are computed:

• Turnover: 1
npH´1q

řH
h“1 }ŵh`1 ´ ŵholdh }1, where H is the total number of months out-of-

sample, and wholdh is the weight vector right before the next monthly update, that is, taking

into account the price evolution of each asset during the month.

• Proportion of leverage: 1
nH

řH
h“1

řn
i“1 1twi,h ă 0u.

• Gamma: 1
H

řH
h“1

řn
i“1 |wi,h|.

• Maximum weight: maxi,h wi,h.

• Minimum weight: mini,h wi,h.
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ative ranking between models does not change when introducing the nonlinear

shrinkage methodology, which suggests that it uniformly improves performance

irrespective of the modeling choice for the time-varying covariance matrix. Third,

the empirical results show that the 1-norm constrained portfolios (denoted with γ

in Tables 1.1, 1.2 and 1.3) substantially improve performance for both the DCC

and Pro-DCC. In a nuthsell, these results suggest that projecting, rescaling and

shrinking are essentially different operations, and that the advantage of Pro-DCC

versus DCC persists even after controlling for shrinkage. Incidentally we note

that the equal-weighted portfolio (“1/N”) in this sample performs relatively well

in comparison to other studies – despite being the worst performing portfolio in

terms of standard deviation. However, it must be noted that for larger cross sec-

tions and/or periods of distress like the 2008 global financial crisis, the results

from the 1/N portfolio deteriorate significantly – see for example De Nard et al.

(2021) and Engle et al. (2019).

1.4.1 Alternative parameterization of the Global Minimum Vari-

ance Portfolio

We provide a new approach to analyze the weights given by the Global Minimum

Variance Portfolio. We define Kt :“ Σ´1
t and Ωt :“ R´1

t , and note that the nˆn

matrix of partial correlations can be written as

ϱt “ ´ diagpΩtq
´1{2Ωt diagpΩtq

´1{2 .
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Defining vi,t :“
?

Ωii,t

di,t
, after straightforward computations we have that

w˚
t “

Ktι

ι1Ktι
“

vt d ϱtvt
ι1pvt d ϱtvtq

, (1.14)

where vt “ pv1,t, . . . , vn,tq
1 and Ωii,t is the ith diagonal element of Ωt. This

means that the sign and magnitude of the GMVP weights depend on 3 factors:

1) di,t, the volatility of the ith asset, which always shrinks the exposure to 0.

2) si,t :“ 1?
Ωii,t

or in words, the “spillover” effect which is proportional to the

determinant of the conditional correlation matrix Rt given by all assets excluding

i. The higher the si,t, the stronger is the shrinkage towards 0. 3) ϱij,t: partial

correlation between assets i and j, which measures the direct effects between

assets i and j conditional on all other assets in the portfolio. Note that if the ith

asset is directly and strongly connected to the rest of the system, the weight is

likely to be negative (i.e. increased exposure in short position).

The parameterization allows us to deepen our understanding of the GMVP

weight vector. In Figure 1.7 we can visualize the alternative parameterization of

the weight vector for a given date. For instance, if we focus on asset number

20, we observe that the weight implied by the DCC model is larger than the one

implied by the Pro-DCC model (the actual weights on the given date are 7.5%

vs 1.8%, respectively). From the second column we learn that if all assets are

independent of each other, then the weight should be the lowest since this asset

is the most volatile at the given date. Both models convey that partial correlation

effects for this asset are on the lower end of the distribution, which makes the asset

more attractive than what is implied by the volatility alone. The main difference is
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thus explained by the third-to-last column (s), which captures the spillover effects

from the asset in question to the rest of the system. In other words, the Pro-DCC

model implies that asset 20 is indirectly connected to the remaining assets way

more strongly than what is implied by the DCC model, which explains why it has

a lower weight.

1.5 Conclusions

In this chapter we contribute to the DCC literature with a novel specification in-

spired by the literature on Bregman matrix projections and the nearest-correlation

matrix problem. We demonstrate the benefits of using our proposed methodology

with respect to the standard GARCH-DCC model in a simulated exercise. We also

carry out a global minimum variance portfolio exercise using a set of constituents

of the S&P 100. Results show that the standard and nonlinear shrinkage versions

of Pro-DCC outperform all other candidate estimators of the conditional covari-

ance matrix in terms of the standard deviation and Sharpe ratio of the GMVP.

1.6 Proofs

Proof of Lemma 1.2.1. The claim follows from Theorem 3.12piiiq in Bauschke

and Borwein (1997).
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Proof of Lemma 1.2.2. Let K “ Q´1. Consider the n “ 2 case:

R “

»

—

–

1 ρ

ρ 1

fi

ffi

fl

, Q “

»

—

–

q11 q12

q12 q22

fi

ffi

fl

and K “

»

—

–

k1 ks

ks k2

fi

ffi

fl

.

Therefore, trpRKq “ k1 ` 2ksρ ` k2, detpRKq “ pk1k2 ´ k2sqp1 ´ ρ2q, and our

minimization problem can be formulated as a univariate problem:

min
ρ
fpρq “ min

ρ
k1 ` 2ksρ ` k2 ´ lnpk1k2 ´ k2sq ´ lnp1 ´ ρ2q ´ 2.

Since the problem is convex and the domain of f is the open interval p´1, 1q, it

suffices to take the first order condition and solve for ρ, which yields the result in

(1.7).

Proof of Lemma 1.2.3. Let K “ logQ. In the bivariate case, we have that

trpR logRq ´ trpRKq “ lnp1 ´ ρ2q ` ρ ln

ˆ

1 ` ρ

1 ´ ρ

˙

´ 2kvρ ` const :“ fpρq,

which follows since the matrix logarithm of R is given by

logR “
1

2

»

—

–

1 ´1

1 1

fi

ffi

fl

»

—

–

lnp1 ` ρq 0

0 lnp1 ´ ρq

fi

ffi

fl

»

—

–

1 1

´1 1

fi

ffi

fl

.

Hence, the problem is equivalent to minimizing f with respect to ρ.7 Since the

problem is convex and the domain of f is the open interval p´1, 1q, it suffices to

take the first order condition and solve for ρ:

´2ρ̂

1 ´ ρ̂2
` ln

ˆ

1 ` ρ̂

1 ´ ρ̂

˙

` ρ̂
1 ´ ρ̂

1 ` ρ̂

2

p1 ´ ρ̂q2
´ 2kv “ 0.

7Note that we can ignore the terms trpRq and trpQq that appear in dϕpR,Qq as these do not

depend on ρ.
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Therefore,

ρ̂ “
e2kv ´ 1

e2kv ` 1
“ tanhpkvq.

To find an analytical expression for kv, let VΛV1 be the eigendecomposition of

Q, where V is orthonormal. It is easy to verify that the eigenvalues of Q are given

by

λi “
1

2

„

q11 ` q22 ` p´1q
i´1

b

pq11 ´ q22q2 ` 4q212

ȷ

,

where i “ 1, 2. Their corresponding eigenvectors are vi “ rvi1, vi2s
1, where

vi1 “ ´2q12{

ˆ

q11 ´ q22 ` p´1q
i
b

pq11 ´ q22q2 ` 4q212

˙

vi2 :“ ψivi2.

Imposing unit norm eigenvectors, we have that vi2 “ p1 ` ψ2
i q´1{2. Hence, it is

easy to see that the (2,1) entry of the K matrix is given by

kv “ plnλ1qv11v12 ` plnλ2qv21v22 “ plnλ1qψ1v
2
12 ` plnλ2qψ2v

2
22

“
ψ1 lnλ1
1 ` ψ2

1

`
ψ2 lnλ2
1 ` ψ2

2

.

Proof of Lemma 1.2.4. Let Rp0q “ Q. Note that

Pϕ,ipR
pk´1q

q “ arg min
RpkqPCi

dϕ
`

Rpkq,Rpk´1q
˘

.

The first order condition of the Lagrangian yields the following matrix update for

Rpkq:
$

’

’

’

&

’

’

’

%

∇ϕpRpkqq “ ∇ϕpRpk´1qq ` αeie
1
i

trpRpkqeie
1
iq “ 1

.
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When ϕp¨q “ ´ ln detp¨q, we have that ∇ϕpRpkqq “ ´rRpkqs´1, and the first

equation of the system becomes

Rpkq
“
`

rRpk´1q
s

´1
´ αeie

1
i

˘´1
.

Using Sherman-Morrison’s formula, we can re-write the first equation as

Rpkq
“ Rpk´1q

`
α

1 ´ αe1
iR

pk´1qei
Rpk´1qeie

1
iR

pk´1q.

Note that trpRpk´1qeie
1
iq “ e1

iR
pk´1qei “ R

pk´1q

ii . It follows that

trpRpk´1qeie
1
iR

pk´1qeie
1
iq “ pe1

iR
pk´1qeiq

2 “ rR
pk´1q

ii s2. Plugging the first equa-

tion in the second one and solving for α we get

tr

˜«

Rpk´1q
`

α

1 ´ αR
pk´1q

ii

Rpk´1qeie
1
iR

pk´1q

ff

eie
1
i

¸

“ 1,

so α “ rR
pk´1q

ii s´1 ´ 1. Replacing α in the first equation of the system yields the

desired result, since

α

1 ´ αR
pk´1q

ii

“
rR

pk´1q

ii s´1 ´ 1

1 ´ prR
pk´1q

ii s´1 ´ 1qR
pk´1q

ii

“ rR
pk´1q

ii s
´2

´ rR
pk´1q

ii s
´1

“ rR
pk´1q

ii s
´2

´

1 ´ R
pk´1q

ii

¯

.

1.7 Tables

Split Date: 2015-12-31

Table 1.1: Portfolio selection with all constituents in S&P 100. Performance

metrics for the out-of-sample period, which ranges from split date to 2019-06-
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AV SD Sharpe Turnover Leverage Gamma MaxWeight MinWeight

DCC-SC 7.880 12.489 0.631 0.065 0.493 2.945 0.680 -0.125

Pro-DCC-SC 10.228 11.918 0.858 0.093 0.488 2.935 0.439 -0.125

DCC-SC(γ “ γt) 7.833 12.478 0.628 0.293 0.490 2.897 0.679 -0.125

DCC-SC(γ “ 1) 7.880 11.989 0.657 0.019 0.019 1.001 0.911 -0.004

Pro-DCC-SC(γ “ 1) 9.133 11.427 0.799 0.028 0.019 1.001 0.592 -0.004

DCC-SC(γ “ 2) 8.975 12.133 0.740 0.081 0.447 2.000 0.678 -0.093

Pro-DCC-SC(γ “ 2) 11.245 11.676 0.963 0.036 0.451 2.000 0.441 -0.116

DCC-NLS 7.745 12.362 0.626 0.071 0.492 2.756 0.685 -0.097

Pro-DCC-NLS 10.139 11.823 0.858 0.050 0.490 2.733 0.432 -0.107

RiskMetrics 8.387 12.251 0.685 0.173 0.428 4.724 0.466 -0.418

RollCov 14.931 19.799 0.754 0.559 0.463 7.787 1.017 -0.795

1/N 10.440 12.426 0.840 0.016 0.000 1.000 0.012 0.012

30. AV: annualized average portfolio return. SD: annualized volatility of port-

folio returns. Sharpe: AV / SD. Turnover: 1
npH´1q

řH
h“1 }ŵh`1 ´ ŵholdh }1, where

H is the total number of months out-of-sample, and ŵholdh is the weight vector

right before the next monthly update, that is, taking into account the price evo-

lution of each asset during the month. Leverage: 1
nH

řH
h“1

řn
i“1 1twi,h ă 0u.

Gamma: 1
H

řH
h“1

řn
i“1 |wi,h|. Maximum weight: maxi,hwi,h. Minimum weight:

mini,hwi,h. The annualized volatility of the best portfolio is highlighted in bold-

face.
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Split Date: 2016-12-31

AV SD Sharpe Turnover Leverage Gamma MaxWeight MinWeight

DCC-SC 4.122 12.439 0.331 0.051 0.491 2.749 0.558 -0.107

Pro-DCC-SC 5.881 12.112 0.486 0.058 0.489 2.691 0.481 -0.104

DCC-SC(γ “ γt) 4.275 12.406 0.345 0.044 0.489 2.669 0.567 -0.107

DCC-SC(γ “ 1) 10.284 11.878 0.866 0.013 0.023 1.001 0.803 -0.004

Pro-DCC-SC(γ “ 1) 9.196 11.454 0.803 0.013 0.021 1.000 0.681 -0.003

DCC-SC(γ “ 2) 6.635 12.207 0.544 0.039 0.462 2.000 0.578 -0.087

Pro-DCC-SC(γ “ 2) 7.588 11.884 0.638 0.050 0.473 2.000 0.487 -0.099

DCC-NLS 4.295 12.348 0.348 0.038 0.494 2.627 0.567 -0.100

Pro-DCC-NLS 5.960 12.017 0.496 0.055 0.495 2.567 0.492 -0.092

RiskMetrics 1.229 12.100 0.102 0.125 0.416 4.329 0.388 -0.368

RollCov 1.591 15.945 0.100 0.253 0.455 7.048 0.815 -0.606

1/N 9.519 12.126 0.785 0.013 0.000 1.000 0.012 0.012

Table 1.2: Portfolio selection with all constituents in S&P 100. Performance

metrics for the out-of-sample period, which ranges from split date to 2019-06-

30. AV: annualized average portfolio return. SD: annualized volatility of port-

folio returns. Sharpe: AV / SD. Turnover: 1
npH´1q

řH
h“1 }ŵh`1 ´ ŵholdh }1, where

H is the total number of months out-of-sample, and ŵholdh is the weight vector

right before the next monthly update, that is, taking into account the price evo-

lution of each asset during the month. Leverage: 1
nH

řH
h“1

řn
i“1 1twi,h ă 0u.

Gamma: 1
H

řH
h“1

řn
i“1 |wi,h|. Maximum weight: maxi,hwi,h. Minimum weight:

mini,hwi,h. The annualized volatility of the best portfolio is highlighted in bold-

face.
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Split Date: 2017-12-31

AV SD Sharpe Turnover Leverage Gamma MaxWeight MinWeight

DCC-SC 0.186 14.672 0.013 0.069 0.499 2.606 0.392 -0.136

Pro-DCC-SC 2.198 14.443 0.152 0.064 0.500 2.483 0.336 -0.096

DCC-SC(γ “ γt) 0.165 14.623 0.011 0.136 0.493 2.468 0.388 -0.132

DCC-SC(γ “ 1) 1.858 13.755 0.135 0.015 0.026 1.001 0.599 -0.004

Pro-DCC-SC(γ “ 1) 2.111 13.442 0.157 0.043 0.023 1.001 0.503 -0.002

DCC-SC(γ “ 2) 1.065 14.427 0.074 0.065 0.466 2.000 0.414 -0.120

Pro-DCC-SC(γ “ 2) 3.095 14.172 0.218 0.072 0.467 2.000 0.342 -0.085

DCC-NLS 0.105 14.581 0.007 0.066 0.503 2.511 0.395 -0.129

Pro-DCC-NLS 2.019 14.350 0.141 0.052 0.499 2.384 0.337 -0.088

RiskMetrics -4.857 14.514 -0.335 0.159 0.426 4.776 0.386 -0.362

RollCov -9.864 18.875 -0.523 0.232 0.462 7.715 0.814 -0.569

1/N 4.461 14.745 0.303 0.016 0.000 1.000 0.012 0.012

Table 1.3: Portfolio selection with all constituents in S&P 100. Performance

metrics for the out-of-sample period, which ranges from split date to 2019-06-

30. AV: annualized average portfolio return. SD: annualized volatility of port-

folio returns. Sharpe: AV / SD. Turnover: 1
npH´1q

řH
h“1 }ŵh`1 ´ ŵholdh }1, where

H is the total number of months out-of-sample, and ŵholdh is the weight vector

right before the next monthly update, that is, taking into account the price evo-

lution of each asset during the month. Leverage: 1
nH

řH
h“1

řn
i“1 1twi,h ă 0u.

Gamma: 1
H

řH
h“1

řn
i“1 |wi,h|. Maximum weight: maxi,hwi,h. Minimum weight:

mini,hwi,h. The annualized volatility of the best portfolio is highlighted in bold-

face.
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DCC-SC

Pro-DCC-SC

DCC-SC(γ “ γt)

DCC-SC(γ “ 1)

Pro-DCC-SC(γ “ 1)

DCC-SC(γ “ 2)

Pro-DCC-SC(γ “ 2)

DCC-NLS

Pro-DCC-NLS

RiskMetrics

RollCov

1/N

D
C

C
-SC

–
-0.57*

-0.01
-0.5

-1.06***
-0.36***

-0.81***
-0.13***

-0.67**
-0.24

7.31***
-0.06

Pro-D
C

C
-SC

0.57*
–

0.56*
0.07

-0.49
0.22

-0.24**
0.44

-0.09**
0.33

7.88***
0.51

D
C

C
-SC

(γ
“
γ
t )

0.01
-0.56*

–
-0.49

-1.05***
-0.35***

-0.8***
-0.12***

-0.66**
-0.23

7.32***
-0.05

D
C

C
-SC

(γ
“

1)
0.5

-0.07
0.49

–
-0.56

0.14
-0.31

0.37
-0.17

0.26
7.81***

0.44

Pro-D
C

C
-SC

(γ
“

1)
1.06***

0.49
1.05***

0.56
–

0.71***
0.25

0.94***
0.4

0.82
8.37***

1**

D
C

C
-SC

(γ
“

2)
0.36***

-0.22
0.35***

-0.14
-0.71***

–
-0.46

0.23**
-0.31

0.12
7.67***

0.29

Pro-D
C

C
-SC

(γ
“

2)
0.81***

0.24**
0.8***

0.31
-0.25

0.46
–

0.69**
0.15**

0.58
8.12***

0.75**

D
C

C
-N

L
S

0.13***
-0.44

0.12***
-0.37

-0.94***
-0.23**

-0.69**
–

-0.54*
-0.11

7.44***
0.06

Pro-D
C

C
-N

L
S

0.67**
0.09**

0.66**
0.17

-0.4
0.31

-0.15**
0.54*

–
0.43

7.98***
0.6

R
iskM

etrics
0.24

-0.33
0.23

-0.26
-0.82

-0.12
-0.58

0.11
-0.43

–
7.55***

0.17

R
ollC

ov
-7.31***

-7.88***
-7.32***

-7.81***
-8.37***

-7.67***
-8.12***

-7.44***
-7.98***

-7.55***
–

-7.37***

1/N
0.06

-0.51
0.05

-0.44
-1**

-0.29
-0.75**

-0.06
-0.6

-0.17
7.37***

–

Table
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D
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DCC-SC

Pro-DCC-SC

DCC-SC(γ“γt)

DCC-SC(γ“1)

Pro-DCC-SC(γ“1)

DCC-SC(γ“2)
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1.8 Figures

Figure 1.1: Projecting versus rescaling a pseudo-correlation matrix. Red: correla-

tion computed using Stein’s projection – see equation (1.7) – as a function of the

rescaled correlation q12{
?
q11q22. Black: 45 degree line.
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Figure 1.2: Projecting versus rescaling an n-dimensional pseudo-correlation ma-

trix. The y-axis represents ||Rresc ´ Rproj||
2
2{n “ trppRresc ´ Rprojq

2q{n, where

Rresc “ diagpQq´1{2Q diagpQq´1{2, and Rproj “ PSTEINpQq. The pseudo-

correlation matrix is Q “ Diagp1 ` ξ ` vq1{2Rpκ1qDiagp1 ` ξ ` vq1{2, with

κ1 P p0, 1q, ξ “ 0.05, v is an n ˆ 1 vector with ith entry given by vi “ sinpxiq,

where xi`1 “ xi ` 2pπ ´ εq{pn ´ 1q, x1 “ ε, xn “ 2π ´ ε. The notation Rpκ1q

is used to denote a Toeplitz correlation matrix with parameter κ1, i.e. with first

row/column equal to 1, κ1, κ
2
1, . . . , κ

n´1
1 .
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Figure 1.3: Projecting versus shrinking and rescaling an n-dimensional pseudo-

correlation matrix. The y-axis represents ||Rs´r ´ Rproj||
2
2{n “ trppRs´r ´

Rprojq
2q{n, where Rs´r “ diagpQ̃q´1{2Q̃ diagpQ̃q´1{2, Rproj “ PSTEINpQq,

and Q̃ is obtained after applying the nonlinear shrinkage estimator of Ledoit

and Wolf (2020) to Q with bandwidth h “ T´1{3, where T is chosen to

match the desired concentration ratio n{T . The pseudo-correlation matrix is

Q “ Diagp1 ` ξ ` vq1{2Rpκ1qDiagp1 ` ξ ` vq1{2, with κ1 P p0, 1q, ξ “ 0.05,

v is an n ˆ 1 vector with ith entry given by vi “ sinpxiq, where xi`1 “

xi ` 2pπ ´ εq{pn ´ 1q, x1 “ ε, xn “ 2π ´ ε. The notation Rpκ1q is used to

denote a Toeplitz correlation matrix with parameter κ1, i.e. with first row/column

equal to 1, κ1, κ
2
1, . . . , κ

n´1
1 .
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Figure 1.4: Static simulation study: Sample correlation versus Stein’s projec-

tion of the sample covariance matrix onto the correlation set. The y-axis shows

ErLFrob,rescs ´ ErLFrob,projs and ErLMAE,rescs ´ ErLMAE,projs. For each Monte

Carlo replication, we draw T “ 500 observations from N p0,Rq, where R “

p1 ´ ρqI ` ριι1. Black, green, red and blue lines correspond to n “ 10, 23, 36, 50,

respectively.
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Figure 1.5: Dynamic simulation study: Top panel: Dynamic correlations for the

true DGP (black), versus the corresponding estimates from DCC (red) and Pro-

DCC (blue), where the true DGP is given by ρt “ ρ ` .1 cosp2πt{200q. Bottom

panel: cumulative sum of absolute error for each methodology (same color leg-

end), divided by the sum of absolute errors from the DCC model times 100.
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Figure 1.6: Dynamic simulation study: DCC’s rescaling (red) versus Pro-DCC’s

projection (blue) based on Stein’s loss for dimensions n “ 50, (bottom pair),

n “ 100 (middle pair) and n “ 200 (top pair). The y-axis shows the average

Frobenius (left panel) and MAE (left panel) losses across Monte Carlo simula-

tions, where each loss is computed as the average loss across t “ 1, . . . , T . The

x-axis shows the magnitude of the parameter ρ, which captures the level of cross-

sectional dependence of the process.

46



“main” — 2023/6/14 — 22:04 — page 47 — #63

Figure 1.7: Heatmap of GMVP at 2016-04-13. Column w shows the weights im-

plied by the model, which are contrasted to the weights under the assumption that

Σt is diagonal (second column). The column vol shows the conditional volatil-

ities for every asset. The column s is the vector that stacks the spillover effects

si,t :“ 1{
a

Ωii,t. The column pc shows the partial correlation effects, and for

every asset i they are computed as
ř

j‰i ϱij,t. Finally, the column vsc contains the

reciprocal of the vt vector, so vsci,t “ v´1
i,t . For the purposes of visualization, all

columns have been standardized.
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Chapter 2

EMPIRICAL RISK

MINIMIZATION FOR TIME

SERIES: NONPARAMETRIC

PERFORMANCE BOUNDS FOR

PREDICTION

2.1 Introduction

Empirical risk minimization is a standard principle for choosing algorithms in

learning theory (Vapnik and Chervonenkis, 1971; Devroye et al., 1996). Simply

put, empirical risk minimization consists of choosing the algorithm that minimizes
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the empirical risk, that is, the average “in-sample” predictive loss. One of the

goals of learning theory is to establish bounds on the expected “out-of-sample”

predictive loss of the algorithm that minimizes the empirical risk relative to the

optimal performance attainable in a given class of algorithms. A key feature of

learning theory is its nonparametric nature, in the sense that performance bounds

are typically obtained under the assumption that the generating mechanism of the

data is unknown. Despite the fact that empirical risk minimization is a general

principle and widely applicable, the majority of contributions in this area focus on

the analysis of i.i.d. data.

In this chapter we study empirical risk minimization for time series. Our anal-

ysis is carried out in a general framework that allows to study different types

of forecasting applications. We are concerned with 1-step-ahead prediction of

a univariate time series belonging to a class of location-scale parameter-driven

processes (Cox, 1981). The class of processes we entertain is fairly broad and

it includes linear state space and stochastic volatility models. A class of recur-

sive algorithms is available to predict the time series. The algorithms are recur-

sive in the sense that the forecast produced in a given period is a function of the

lagged values of the forecast and the time series. The class we consider is inspired

by threshold models (Tong, 1990) and it includes as special cases the prediction

formulae/filters of ARMA and GARCH models (as well as other specifications

popular in the financial econometrics literature). The prediction accuracy of the

forecasts is measured by a loss function in the Bregman class (Bregman, 1967;

Banerjee et al., 2005b; Laurent et al., 2013; Patton, 2020), which includes the
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loss functions typically used for the estimation of ARMA and GARCH models

(as well as other specifications popular in the financial econometrics literature).

Our analysis is nonparametric in the sense that the relationship between the data

generating mechanism of the time series and the class of algorithms is not speci-

fied.

The main result of this chapter consists of establishing an oracle inequality

that provides finite-sample guarantees on the predictive performance of empirical

risk minimization. The oracle inequality implies that empirical risk minimization

is consistent, in the sense that the algorithm chosen by empirical risk minimization

achieves asymptotically the optimal predictive performance that can be attained

within the class considered.

Our paper contributes to the large literature on forecasting and nonlinear time

series modeling. There are two main novel contributions that are worth emphasiz-

ing. First, our main theorem implies that the algorithm chosen by empirical risk

minimization achieves optimal predictive performance irrespective of whether

the class of algorithms contains the optimal forecast for the target time series

of interest. This is in contrast with quasi-maximum likelihood estimation the-

ory of ARMA/GARCH models (Ling and McAleer, 2003; Francq and Zakoïan,

2004; Straumann and Mikosch, 2006) that establishes results that are analogous

to the one established here but requires correct specification of the conditional

mean/variance equation. Second, our main theorem provides the rate at which the

performance of the algorithm chosen by empirical risk minimization converges

to the optimal performance (as a function of the number of “in-sample” obser-
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vations). Importantly this rate holds in finite samples as opposed to being only

asymptotically valid. Moreover, this rate is optimal in the sense that our theorem

recovers what is known as the classic rate of convergence of empirical risk min-

imization (Devroye et al., 1996). These two contributions significantly weaken

the conditions required for practitioners to apply optimal time series forecasting

methods.

A number of illustrations showcase that our framework covers a range of appli-

cations commonly encountered in time series analysis. We consider the problem

of forecasting data generated by an “AR(1) + noise” process, realized volatilities

generated by a stochastic volatility process and durations generated by a stochastic

volatility duration process (Ghysels et al., 2004). In these applications, provided

that appropriate regularity conditions are satisfied, we have that our main theorem

holds, implying that the algorithm chosen by empirical risk minimization achieves

optimal predictive performance.

The main result follows from five intermediate propositions. First, we estab-

lish existence of moments and strong mixing conditions of a joint process that

includes the time series and the algorithm. Importantly, the strong mixing coeffi-

cients are bounded by a function with geometric decay uniformly over the class

of algorithms. Second, we establish a general inequality that states that the per-

formance of empirical risk minimization can be controlled by the sum of two

quantities. The first is the supremum of an average of differences between con-

ditional and unconditional expectations and the second is the supremum of the

empirical process associated with the prediction loss of the algorithm. Finally, we
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bound these two terms using, respectively, an inequality from Ibragimov and a

concentration inequality for strong mixing processes.

The proposition that establishes existence of moments and strong mixing con-

ditions of the joint system that includes the time series and the algorithm contains

the main novel idea of this chapter. The result builds upon the literature on non-

linear time series models and Markov chains (Bougerol and Picard, 1992; Lanne

and Saikkonen, 2005; Francq and Zakoïan, 2006; Meitz and Saikkonen, 2008a;

Kristensen, 2009). The novelty with respect to the literature consists in using

Markov chain theory to establish moment and dependence properties of an algo-

rithm, as opposed to a model. More precisely, the strategy consists of embedding

the time series and the algorithm in what we name a companion Markov chain. We

then show that the companion Markov chain is V -geometric ergodic, which im-

plies existence of moments and strong mixing of the time series and the algorithm

(Meyn and Tweedie, 1993). The uniform bound on the strong mixing coefficients

is established using results by Roberts and Rosenthal (2004). This approach is

motivated by the fact that while it can be challenging to characterize the moment

and dependence properties of general nonlinear processes, a number of tools are

available to establish these properties for Markov nonlinear processes (Carrasco

and Chen, 2002). Importantly, the result does not hinge on the approximation

properties of the class of algorithms.

This chapter contributes to the literature on empirical risk minimization for

dependent data. Besides a number of notable contributions, this literature is not
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extensive.1 Two closely related contributions are Jiang and Tanner (2010) and

Brownlees and Guðmundsson (2021), which study empirical risk minimization for

regression. The class of algorithms considered in these papers depends on a finite

number of lags of the time series. In such a setting it is typically straightforward to

obtain the dependence properties of the joint system composed of the times series

and the algorithm. The strategy adopted in both papers consists of assuming that

the time series is strong mixing and then applying standard results for functions

of strong mixing processes to obtain that the joint process is also strong mixing.

Such an approach is not viable in the framework of this chapter. In our setup

forecasts depend on the entire past history of the time series. In this case standard

results for functions of strong mixing processes do not provide useful results. Last,

this chapter is related to McDonald et al. (2017), which studies risk properties

of prediction algorithms for time series. However, that paper does not establish

oracle inequalities for empirical risk minimization.

It is also important to remark that empirical risk minimization for time series

is related to M-estimation for dependent data (Gallant and White, 1988; Pötscher

and Prucha, 1997). There are two main differences with respect to this litera-

ture. First, the empirical risk minimization literature focuses on establishing a

different set of properties (i.e. finite-sample prediction performance guarantees)

in comparison to what is established in the M-estimation literature (i.e. consis-

1Nontrivial technical challenges arise with dependent data. Mendelson (2015) argues that some

of the standard tools used in learning theory cannot be applied beyond an i.i.d. and bounded data

setup.
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tency and asymptotic normality). Second, the M-estimation literature for depen-

dent data typically focuses on developing general theory on the basis of high-level

assumptions. For instance, Gallant and White (1988) rely, among other require-

ments, on uniform NED and dominance conditions on the objective function of

M-estimation. We remark that checking that these conditions hold is not always

straightforward. On the contrary, in this chapter we rely on primitive assumptions

to establish that conditions akin uniform NED and dominance hold.

The rest of the chapter is structured as follows. Section 2.2 introduces the

framework. Section 2.3 presents empirical risk minimization and the main re-

sult. Section 2.4 discusses a number of issues related to our framework. Section

2.5 contains applications. Section 2.6 contains a simulation study. Section 2.7

outlines the proof of the main result. Concluding remarks follow in Section 2.8.

Detailed proofs are in sections 2.9-2.14.

2.2 Basic Definitions and Assumptions

Data generating process. We are concerned with 1-step-ahead prediction of a

time series tYt, t ě 0u belonging to a family of parameter-driven processes (Cox,

1981). The process tYt, t ě 0u takes values in Y Ď R and is defined as Y0 “ y P

Y , and

Yt “ gy1pHtq ` gy2pHtqϵY t , t ě 1 , (2.1)

where tHt, t ě 0u is a hidden process, tϵY t, t ě 1u is an i.i.d. sequence of ran-

dom variables and gy1 and gy2 are Borel-measurable real functions. The process
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tHt, t ě 0u takes values in H “ intpYq and is defined as H0 “ h P H, and

Ht “ gh1pHt´1q ` gh2pHt´1qϵH t , t ě 1 , (2.2)

where tϵH t, t ě 1u is an i.i.d. sequence of random variables and gh1 and gh2 are

Borel-measurable real functions. We remark that in our framework, depending on

the application, the target time series tYt, t ě 0u may denote some appropriate

transformation of the data. For example, in volatility forecasting using stock re-

turns, where interest lies in predicting the 1-step-ahead scale of stock returns, the

time series tYt, t ě 0u may be defined as the squared return process.

The data generating process satisfies the following set of assumptions.

A.2.2.1 (Data generating process). (i) The functions gh1 and gh2 are bounded on

bounded subsets of R. There exist positive constants a and b such that |gh1phq| ď

a|h| ` op|h|q as |h| Ñ 8 and |gh2phq| ď b|h| ` op|h|q as |h| Ñ 8. The function

gh2 satisfies infh |gh2phq| ą 0.

(ii) The functions gy1 and gy2 are bounded on bounded subsets of R. There ex-

ist positive constants Cy1 and Cy2 such that |gy1phq| ď Cy1|h| and |gy2phq| ď

Cy2p1 _ |h|q. The function gy1 satisfies infh gy1phq ě 0 when Y “ R`. The func-

tion gy2 satisfies infh gy2phq ą 0.

(iii) The random process tpϵY t´1, ϵH tq
1, t ě 0u is i.i.d. and pϵY t´1, ϵH tq

1 has a

distribution that is absolutely continuous with respect to the Lebesgue measure

on R2 and is supported on pϵ,8q2 with ϵ “ ´8 when Y “ R and ϵ “ 0

when Y “ R`. The joint density ϕ of the random vector pϵY t´1, ϵH tq
1 satis-

fies ϕpϵY t´1, ϵH tq “ ϕY pϵY t´1qϕHpϵH tq, where ϕY and ϕH are densities that are
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bounded away from zero on compact subsets of pϵ,8q. The random variables ϵY t

and ϵH t satisfy Eϵ2rmH t ă 8, Eϵ2rmY t ă 8 for some rm ě 6. The random variable

ϵY t satisfies E plog ϵY tq
2rm ă 8 when Y “ R`.

(iv) The condition Epa ` b|ϵH t|q
2rm ă 1 holds.

A.2.2.1 is similar to standard assumptions used to establish geometric ergod-

icity of nonlinear time series models (Masry and Tjøstheim, 1995; Lanne and

Saikkonen, 2005; Meitz and Saikkonen, 2008a) and it allows for a fairly broad

class of parameter-driven processes. Note that the tYt, t ě 0u process can take

values on either Y “ R or Y “ R` (assumptions differ slightly depending on

the case). This allows us to cover different types of forecasting applications en-

countered in the literature. A.2.2.1piq is similar to Assumption 3.2 in Masry and

Tjøstheim (1995) and it implies that (2.2) is dominated asymptotically by a sta-

ble linear model. As Masry and Tjøstheim (1995) emphasize, such a requirement

is mild, since functions that grow everywhere faster than a stable linear model

are nonstationary. A.2.2.1piiq allows for a fair amount of flexibility in equation

(2.1). In particular, it requires |Yt| to be bounded from above by a linear func-

tion of |Ht|. A.2.2.1piiiq imposes conditions on the innovation processes. While

this assumption does not impose these innovations to have bounded support or

exponential tails (as it is customary in learning theory) this assumption requires a

relatively large number of moments for the innovations to exist. In particular, this

assumption rules out heavier tailed distributions that may be reasonable for finan-

cial applications. When Y “ R` we additionally require that 2rm moments of

log ϵY t exist. This guarantees that the moments of some of the loss functions con-
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sidered in this chapter are finite. The assumption is relatively mild as it allows, for

example, for distributions with density bounded from above in a neighborhood of

zero (e.g. the exponential) as well as certain distributions with unbounded density

(e.g. chi-square with one degree of freedom). We remark that similar conditions

are imposed in the analysis of Log-GARCH models (Francq et al., 2013). Finally,

the assumption states that the innovation processes are jointly i.i.d.. Again, this

assumption is somehow restrictive for some financial applications as it rules out,

in a stochastic volatility framework, the presence of leverage effects. A.2.2.1pivq

is a stability condition similar to the one assumed in Masry and Tjøstheim (1995)

or Lanne and Saikkonen (2005).

Algorithms. A class of recursive algorithms indexed by θ P Θ Ă Rp and denoted

by tfθ t, t ě 0u is available to predict 1-step-ahead the time series tYt, t ě 0u. The

process tfθ t, t ě 0u takes values in F Ď R and is defined as fθ 0 “ f P F and

fθ t “

K
ÿ

k“1

pα0 k ` α1 kYt´1 ` β1 kfθ t´1q1t´1 k , t ě 1 , (2.3)

where θ “ pα0 1, . . . , α0K , α1 1, . . . , α1K , β1 1, . . . , β1Kq1 with K “ p{3, 1t k “

1tYtPYku and tY1, . . . ,YKu is a known partition of Y made of K sets referred

to as regimes. The partition is of the form tpr1, r2q, rr2, r3q, . . . , rrK ,8qu with

´8 “ r1 ă r2 ă ¨ ¨ ¨ ă rK ă 8 when Y “ R and trr1, r2q, rr2, r3q, . . . , rrK ,8qu

with 0 “ r1 ă r2 ă ¨ ¨ ¨ ă rK ă 8 when Y “ R`. The parameter vector θ is re-

ferred to as a prediction rule. We remark that the class of prediction algorithms in

(2.3) corresponds to the class of 1-step-ahead prediction formulae induced by the

self-exciting threshold autoregressive moving average model (SETARMA) (Tong,
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1990). It is also interesting to point out that the class of prediction algorithms in

(2.3) has analogies with regression trees. Like regression trees the prediction rules

in (2.3) rely on partitions to capture nonlinearities in the data and possibly enhance

predictive ability. As it is customary in the learning literature, we emphasize that

the relationship between Yt and fθ t is not specified and (2.3) is simply an algo-

rithm to predict Yt. Last, in section 2.11 we show that such a class of algorithms

may be interpreted as the solution of a sequential optimization problem in which

the forecaster aims at minimizing a forecast tracking error accuracy measure.

The class of algorithms satisfies the following set of assumptions.

A.2.2.2 (Algorithms). piq The set Θ Ă Rp with p “ 3K is nonempty and such that

Θ Ď rα0, α0sK ˆ rα1, α1s
K ˆ r0, β1s

K with ϵ ă α0 ă α0 ă 8, 0 ă α1 ă α1 ă 8

and β1 ă 1. piiq The number of regimes K satisfies K ă prm ´ 2q{3.

The process tfθ t, t ě 0u takes values in F “ R when Y “ R and F “

rα0,8q when Y “ R`. A.2.2.2piq is mild and imposes constraints on the class

of prediction rules Θ that are analogous to standard constraints imposed in the

analysis of quasi-maximum likelihood estimators of ARMA and GARCH models

(Francq and Zakoïan, 2010). We remark that when Y “ R the constraint β1 k P

r0, β1s may be relaxed to β1 k P r´β1, β1s at the expense of more tedious proofs.

A.2.2.2piiq states that the size of the class of prediction rules is bounded by a linear

function of the number of moments of ϵY t and ϵH t. We remark that the higher is

the dimensionality of Θ the higher the number of moments of the data that are

required to exist in order to learn the optimal forecasting algorithm from the data,
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and that in our setup the dimensionality of Θ is a linear functionK. When rm “ 6

then we can only allow for K “ 1 whereas when the tails of the innovations are

sub-Gaussian then K can be arbitrarily large.

Loss function. The prediction accuracy of the algorithm is measured by a loss

function that belongs to the Bregman class. Let ψ : S Ñ R be a strictly convex

and continuously differentiable function defined over a convex set S Ď R. Then,

the Bregman loss associated with ψ for predicting Yt with fθ t is defined as

LpYt, fθ tq “ ψpYtq ´ ψpfθ tq ´ ∇ψpfθ tqpYt ´ fθ tq . (2.4)

The Bregman class is a fairly large and tractable family of losses. In particular,

the log-likelihood of random variables in the regular exponential family can be

expressed as the (negative) sum of Bregman losses (up to a constant term) (Baner-

jee et al., 2005b). Thus, the Bregman class includes the standard loss functions

used for quasi-maximum likelihood estimation of time series models.

In this chapter we focus exclusively on losses that satisfy the following condi-

tion.

Condition 2.2.1 (Bregman). The loss L is such that (i) Yt P S a.s. for all t ě 0,

(ii) suptě1 supθPΘ EpLpYt, fθ tqqrm ă 8 and (iii) Lpfθ1 t, fθ2 tq ď Cψpfθ1 t ´ fθ2 tq
2

a.s. for all t ě 1, for any θ1, θ2 P Θ and for some positive constant Cψ.

Table 2.2 contains a number of Bregman losses that satisfy Condition 2.2.1

given A.2.2.1 and A.2.2.2. We remark that when Y “ R only the first two losses

are admissible whereas when Y “ R` all the losses in the table are allowed.
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The table contains both well known and lesser known loss functions.2 The ta-

ble includes the loss that corresponds to the log-likelihood of the Gaussian (with

known variance) with respect to the mean parameter, which is the classic square

loss. This loss function is typically used for maximum likelihood estimation of

ARMA models. The table also contains the loss associated with the log-likelihood

of the NEF-GHS (with known number of convolutions) with respect to the natural

parameter (Morris, 1982), which to the best of our knowledge is not extensively

used in the time series literature. Next, the table includes the loss associated with

the log-likelihood of the gamma (with known shape) with respect to the mean pa-

rameter, which in the volatility forecasting literature is known as the QLIKE loss

(Patton, 2011).3 We recall that by appropriately constraining the shape parameter,

the gamma distribution nests the exponential and chi-square distributions. This

loss function is typically used for maximum likelihood estimation of MEM (En-

gle and Gallo, 2006), ACD models (Engle and Russell, 1998) and GARCH mod-

els. Finally, the table includes the losses associated with the log-likelihoods of

the Poisson and negative binomial (with known number of failures) with respect

to the mean parameter.4 These loss functions are typically used for maximum

likelihood estimation of dynamic models for count data (Agosto et al., 2016). We

remark that our framework does not allow for tYt, t ě 0u to take values on a

2The random variables listed in Table 2.2 are all the random variables in the natural exponential

family with quadratic variance function and unbounded support (Morris, 1982).
3The standard definition of the QLIKE is LpYt, fθ tq “ Yt{fθ t ` log fθ t. This is equivalent to

our definition for optimization purposes with respect to θ.
4We follow the convention that 0 log 0 “ 0, hence dompψq “ R` in both cases.
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countable set. That said, these losses satisfy our regularity conditions and may be

used for empirical risk minimization. The analysis of empirical risk minimization

in this case can be carried out using the same strategy developed in this chapter,

but some of the proofs would differ.

S ψpuq Lpu, vq Log-likelihood

R u2 pu ´ vq2 Gaussian

R u tan´1puq ´ 1
2
logp1 ` u2q u rtan´1puq ´ tan´1pvqs ` 1

2
log 1`v2

1`u2
NEF-GHS

R`` ´ log u u
v

´ log u
v

´ 1 Gamma

R` u log u ´ u u log u
v

´ pu ´ vq Poisson

R` u log u
1`u

´ logp1 ` uq u log u
v

` p1 ` uq log 1`v
1`u

Negative Binomial

Table 2.1: Regular Bregman losses that satisfy Condition 2.2.1 given A.2.2.1 and

A.2.2.2. We recall that R` is the set tx P R : x ě 0u and R`` is the set

tx P R : x ą 0u.

Dominating process. We introduce a dominating process tdθ t, t ě 0u that plays

a key role in the theoretical analysis of this chapter. This process bounds the

absolute difference between the forecast processes associated with two different

prediction rules. The process tdθ t, t ě 0u takes values in D “ r1,8q and is

defined as dθ 0 “ d P D and

dθ t “ 1 ` |Yt´1| ` |fθ t´1| ` β1dθ t´1 , t ě 1 . (2.5)

As it is established in one of the intermediate results of this chapter, this pro-

cess has the property that for any δ P p0, 1s and for any θ, 9θ P Θ such that

}θ ´ 9θ}2 ď δ it holds that |fθ t ´ f 9θ t| ď δd 9θ t for all t ě 0. This property and
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the generalized triangular equality for Bregman losses imply that LpYt, fθ tq ď

LpYt, f 9θ tq ` δCψpd29θ t ` 2|Yt ´ f 9θ t|d 9θ tq for t ě 1.

2.3 Empirical Risk Minimization

We are interested in choosing a prediction rule θ from a sequence of “in-sample”

observations tY1, . . . , YT u to forecast 1-step-ahead a sequence of “out-of-sample”

observations tYT`1, . . . .YT`Mu. The number of out-of-sample observations is

M “ rγT s for some γ ą 0. The accuracy of a prediction rule θ is measured by

the out-of-sample 1-step-ahead conditional risk, which is defined as

Rpθq “ E

«

1

M

T`M
ÿ

t“T`1

LpYt, fθ tq

ˇ

ˇ

ˇ

ˇ

ˇ

YT , . . . , Y1

ff

. (2.6)

A natural strategy for choosing a prediction rule θ consists of picking the one that

minimizes the in-sample 1-step-ahead empirical risk. The empirical risk mini-

mizer (ERM) is defined as

θ̂ P argmin
θPΘ

RT pθq , where RT pθq “
1

T

T
ÿ

t“1

LpYt, fθ tq . (2.7)

If more than one prediction rule achieves the minimum we may pick one arbitrar-

ily. In (2.6) and (2.7) we remark that fθ 1 is computed using Y0 “ y and fθ 0 “ f

that are fixed, known and that do not depend on θ.5

One of the goals of learning theory is to establish a bound on the performance

of the ERM relative to the optimal risk that can be achieved within the class of
5The initial value Y0 can be a pre-sample observation assumed to be fixed or a fixed value set

at the outset of the analysis. Note that when Y0 is a pre-sample observation then the empirical risk

in (2.7) can be thought of as the analog of the conditional log-likelihood of θ given Y0.
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prediction rules considered. We measure the accuracy of the ERM on the basis of

the conditional out-of-sample risk, which is defined as

Rpθ̂q “ E

«

1

M

T`M
ÿ

t“T`1

LpYt, f̂tq

ˇ

ˇ

ˇ

ˇ

ˇ

YT , . . . , Y1

ff

, (2.8)

where f̂t “ fθ̂ t and f0 P F . The performance measure in (2.8) can be interpreted

as the out-of-sample conditional risk of the ERM obtained from the in-sample

observations. The following theorem establishes such a bound and is our main

result.

Theorem 2.3.1. Suppose A.2.2.1 and A.2.2.2 are satisfied. Then there exists a

constant σ2 such that, for all T sufficiently large, we have that

Rpθ̂q ď inf
θPΘ

Rpθq ` 2σ

c

p log T

T

holds at least with probability 1 ´ log´1 T ´ oplog´1 T q as T Ñ 8.

The inequality in Theorem 2.3.1 is commonly referred to as an oracle inequal-

ity, and it provides finite-sample guarantees on the performance of the ERM.6 The

constant σ2 is application-specific and may be interpreted as an upper bound for

the long run variance of the loss process. We define the constant precisely in

Proposition 2.7.5. The rate of convergence
a

log T {T is sometimes referred to

6We remark that it is possible to obtain explicit bounds for the minimum T and for the proba-

bility of the oracle inequality. Moreover, it is straightforward to see from the intermediate results

of this chapter that it is possible to sharpen the rate of the probability upper bound of the oracle

inequality as well as the absolute constant. However, we have not pursued this and we have solely

focused on recovering the “classic” rate of convergence
a

log T {T .
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as the classical rate of convergence of empirical risk minimization in the learning

literature for classification with i.i.d. data (Devroye et al., 1996, Ch. 12). The the-

orem implies that in our framework the ERM is consistent with respect to the class

of prediction rules Θ, meaning that |Rpθ̂q ´ infθPΘRpθq|
p

Ñ 0. In other words,

the ERM achieves asymptotically the optimal performance attainable within the

class of algorithms considered. It is important to emphasize that Theorem 2.3.1

is stronger than a consistency result for the prediction performance of the ERM

since it is non-asymptotic (it holds for each sufficiently large T ) and it provides

a specific rate of convergence for the performance of the ERM. Last, we empha-

size that the theorem does not require the existence of an optimal prediction rule

θ˚ “ argminθPΘRpθq.

2.4 Additional Discussion

Our analysis studies the properties of the ERM when the time series is generated

by a parameter-driven process. Clearly, an observation-driven process may be

entertained instead. In this case, the analysis of the performance of the ERM can

be carried out using the same strategy developed in this chapter. However, some

of the proofs will differ and we leave the analysis of this case for future research.

In particular, we acknowledge that establishing some of the intermediate results

required to establish Theorem 2.3.1 is more challenging in an observation-driven

setup.

The class of recursive algorithms we entertain is fairly flexible and builds upon
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the class of threshold models that have a well established tradition. We remark that

our results may be extended to alternative classes of recursive algorithms and do

not inherently depend on the functional form of the algorithmic class we consider

in this chapter. In particular, our analysis does not require the class of algorithms

to have special approximation properties or to include the optimal 1-step-ahead

forecast. What is key in our framework is that, loosely speaking, the algorithms

“forget the past sufficiently fast”.

In many applications h-step-ahead predictions for h ą 1 are of interest as

well. A natural strategy for h-step-ahead “direct forecasting” is to modify the loss

in (2.7) to be LpYt`h´1, fθ tq. We conjecture that empirical risk minimization in

this case is consistent and that this may be established using the proof strategy put

forward here.

Instead of comparing the performance of the ERM against the optimal risk

attainable in the class, one may wish to compare against the risk of the optimal

1-step-ahead forecast. For loss functions in the Bregman class the optimal 1-

step-ahead forecast is the conditional mean (assuming it exists) (Banerjee et al.,

2005b). Thus, the risk of the optimal 1-step-ahead forecast may be defined as

R˚
“ E

«

1

M

T`M
ÿ

t“T`1

LpYt, µtq

ˇ

ˇ

ˇ

ˇ

ˇ

YT , . . . , Y1

ff

,

where µt “ EpYt|Yt´1, . . . , Y1q for t ą 1. The performance of the ERM relative

to the risk of the optimal 1-step-ahead foreast may be expressed as

Rpθ̂q ´ R˚
“

”

inf
θPΘ

Rpθq ´ R˚
ı

`

”

Rpθ̂q ´ inf
θPΘ

Rpθq

ı

.

The first term is called the approximation error and the second term is called the
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estimation error (Devroye et al., 1996, Ch. 12). Notice that oracle inequalities

control the estimation error. The approximation error is typically difficult to con-

trol, especially in a data dependent setting. There are a number of contributions

that, in some sense, attempt to control the approximation error (Nelson, 1992). In

general, the analysis of the approximation error requires additional assumptions.

For this reason learning theory typically focuses on studying the estimation error,

as we do in this chapter.

Last, our main theorem establishes prediction performance guarantees for em-

pirical risk minimization trained using the in-sample observations. In practice it

is natural to update the empirical risk minimizer on the basis of newly available

out-of-sample observations on the basis of either a rolling or a recursive training

scheme. We remark that our theorem cannot be straightforwardly extended to es-

tablish bounds for these alternative training schemes and that we intend to explore

this issue in future research.

2.5 Applications

Forecasting an AR(1) plus noise. Consider forecasting the AR(1) plus noise

process

Yt “ Ht ` ϵY t ,

Ht “ µH ` ϱpHt´1 ´ µHq ` ϵH t ,

for t ě 1, where tϵY t, t ě 1u and tϵH t, t ě 1u are a joint i.i.d. sequence of

Gaussian random variables and ϱ P r0, 1q. The class of algorithms defined in
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(2.3) may be used for forecasting setting K “ 1, which corresponds to the 1-step-

ahead prediction formula of the ARMA(1,1). Prediction accuracy is measured by

the square loss. Then, A.2.2.1 and A.2.2.2 are satisfied and Theorem 2.3.1 holds.

Note that in this application the approximation error converges to zero when

T is large (when Θ is suitably chosen). In fact, the class of algorithms includes

the steady state Kalman filter, implying that the class includes a forecast process

that converges to the conditional mean of Yt given its past as t grows large.

Forecasting Volatility. Consider forecasting realized volatilities (Andersen et al.,

2003) generated by the nonlinear stochastic volatility process7

RVt “ σ2
t ϵRV t ,

σ2
t “ gh1pσ

2
t´1q ` gh2pσ2

t´1qϵσ2 t ,

for t ě 1, where tϵRV t, t ě 1u and tϵσ2 t, t ě 1u are a joint i.i.d. sequence of

gamma random variables and gy1 and gy2 are Borel-measurable real functions that

satisfy A.2.2.1.piq. We assume that ϵRV t is unit mean, which implies that RVt

is a conditionally unbiased proxy for the volatility σ2
t .8 The class of algorithms

defined in (2.3) may be used for forecasting setting K “ 1, which corresponds to
7We remark that the model considered in this application should be interpreted as a reduced

form approximation. The results obtained by Meddahi (2003) imply that a more flexible frame-

work than the one considered here is required to allow for the continuous-time stochastic volatility

models entertained in the realized volatility literature and we have not pursued this. Our frame-

work is consistent with the continuous-time stochastic volatility model with constant intra-daily

volatility used in Patton (2011).
8The realized volatility measurement error in the model is multiplicative. The analysis of this

section can also be carried out in the case of an additive measurement error.

68



“main” — 2023/6/14 — 22:04 — page 69 — #85

the 1-step-ahead prediction formula of the MEM(1,1) or ARMA(1,1). Prediction

accuracy is measured by the QLIKE or the square loss. Then, A.2.2.1 and A.2.2.2

are satisfied and Theorem 2.3.1 holds.

Theorem 2.3.1 implies that the ERM achieves the optimal performance for

realized volatility prediction. However, interest typically lies in forecasting the

latent volatility process tσ2
t , t ě 0u rather than its noisy measurement. Build-

ing upon (Hansen and Lunde, 2006; Patton, 2011) we establish further properties

of the ERM. We measure the accuracy of a prediction rule θ for predicting the

volatility process tσ2
t , t ě 0u using the out-of-sample 1-step-ahead conditional

risk

RVolpθq “ E

«

1

M

T`M
ÿ

t“T`1

Lpσ2
t , fθ tq

ˇ

ˇ

ˇ

ˇ

ˇ

RVT , . . . , RV1

ff

.

The loss in predicting the volatility process tσ2
t , t ě 0u satisfies

Lpσ2
t , fθ tq “ LpRVt, fθ tq`Lpσ2

t , RVtq´pσ2
t´RVtq∇ψpfθ tq`pσ2

t´RVtq∇ψpRVtq,

(2.9)

which follows from the generalized triangular equality for Bregman losses. In

(2.9) we have that the second and fourth terms do not depend on the algorithm

and the third term has a conditional expectation of zero given the past, because

of the independence between of ϵRV t and ϵσ2 t. The decomposition in (2.9) and

Theorem 2.3.1 imply that

ˇ

ˇ

ˇ
RVolpθ̂q ´ inf

θPΘ
RVolpθq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
Rpθ̂q ´ inf

θPΘ
Rpθq

ˇ

ˇ

ˇ

p
Ñ 0 .

Thus, the ERM based on the noisy realized volatility measure chooses an algo-

rithm with optimal performance for volatility forecasting within the class of algo-
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rithms.

Forecasting Durations. Consider forecasting durations generated by a modified

version of the stochastic volatility duration process of Ghysels et al. (2004)

dt “ ´
logr1 ´ Φpη1 tqs

c ` aGpb,ΦpFtqq

Ft “ ψFt´1 `
a

1 ´ ψ2 η2 t ,

where Φp¨q is the distribution of a standard normal and Gpb, ¨q is the quantile

function of the Gammapb, bq distribution and pa, c, ψq P R`` ˆ R`` ˆ r0, 1q are

parameters. We remark that the difference between the process defined above and

the model of Ghysels et al. (2004) lies in the c parameter, which is equal to zero

in that paper. It is straightforward to verify that this process can be cast as the

data generating process in (2.1)–(2.2).9 The class of algorithms defined in (2.3)

may be used for forecasting setting K “ 1, which corresponds to the 1-step-

ahead prediction formula of the ACD(1,1). Prediction accuracy is measured by

the Bregman loss associated with the gamma random variable. Then, A.2.2.1 and

A.2.2.2 are satisfied and Theorem 2.3.1 holds.

2.6 Simulation Study

We carry out a simulation study to assess numerically the performance of em-

pirical risk minimization. Consider the time series generated by the stochastic

9To see this simply note that ϵY t “ ´ logr1 ´ Φpη1 tqs, ϵH t “ expp
a

1 ´ ψ2 η2 tq,

Ht “ exppF2 tq, gh1phq “ 0, gh2phq “ exppψ log hq “ hψ , gy1phq “ 0, and gy2phq “

1{rc` aGpb,Φplogphqqqs.
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volatility process

rt “
a

σ2
t zt

log σ2
t “ ´1.0 ` 0.99plog σ2

t´1 ` 1.0q ` ηt ,

where zt „ N p0, 1q, ηt „ N p0, 0.1q and log σ2
0 “ ´1.0. In section 2.14 it is

verified that this data generating process satisfies A.2.2.1 for Yt “ r2t andHt “ σ2
t .

We predict Yt “ r2t using the 1-step-ahead GARCH(1,1) prediction rule

fθ t “ α0 ` α1r
2
t´1 ` β1fθ t´1 ,

where fθ 0 is set at the sample variance. The QLIKE loss measures prediction

accuracy.

We use simulations to compute a number of quantities related with this setup.

First, we estimate the p1´ 1{ log T q-th quantile of the distribution of Rpθ̂q, which

we denote RBsim. This is obtained by simulating S paths tY
psq

1 , . . . , Y
psq

T`Mu and

then computing for each path

Rpsq
pθ̂q “

1

M

T`M
ÿ

t“T`1

LpY
psq

t , f
psq

θ̂psq t
q ,

where θ̂psq is the emprirical risk minimizer computed from the first T observa-

tions of the s-th path. RBsim is then obtained as the p1 ´ 1{ log T q-th quantile of

the Rpsqpθ̂q draws. Second, we use simulations to estimate infθPΘRpθq. This is

obtained by simulating S paths and then minimizing the average predictive loss

across all paths, that is

Rmin “ min
θPΘ

#

1

SM

S
ÿ

s“1

T`M
ÿ

t“T`1

LpY
psq

t , f
psq

θ t q

+

. (2.10)
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Third, we compute a heuristic estimate of the risk bound implied by Theorem

2.3.1, which is given by

RBtheory “ Rmin ` σ̂

c

3 log T

T
,

where σ̂ is approximated by the long run variance of the loss process associated

with the θ that minimizes the expression in (2.10). It is important to emphasize

that this is a heuristic conservative choice of the value of the constant σ. We carry

out this simulation study for different values of T ranging from 25 to 1500 and

setting the value of M to 1000. The total number of replications is S “ 10000.

Figure 2.1 reports the results of the simulation exercise. The figure highlights a

Figure 2.1: Simulation Study

The figure reports (from top to bottom) the heuristic estimate of the risk bound of Theorem 2.3.1 (RBtheory), the estimate

of the p1 ´ 1{ log T q-th quantile of the distribution of Rpθ̂q (RBsim) and the estimate of the infθPΘRpθq (Rmin).

number of facts. First, the predictive performance of the empirical risk minimizer

converges to the optimal predictive performance attainable in the class. In partic-

ular, for T ě 200 the performance gap of the empirical risk minimizer is less than

20% relative to the optimal predictive performance attainable. Second, the heuris-

tic risk bound based on Theorem 2.3.1 holds uniformly over all T considered,
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albeit being fairly conservative.

2.7 Proof of Theorem 2.3.1

2.7.1 Companion Markov Chain

We begin by introducing a Markov chain associated with the process

tpYt, fθ tq
1, t ě 0u. We recall a number of notions from Markov chain theory.

Notation and definitions are based on Meyn and Tweedie (1993). The discrete-

time process tXt, t ě 0u is a time-homogeneous Markov chain with state space

X Ď Rd and equipped with a Borel σ-algebra BpX q if for each n P N there

exists an n-step transition probability kernel P n
X : X ˆ BpX q Ñ r0, 1s such that

P n
Xpx,Aq “ PpXt`n P A|Xt “ xq for all t P Z`. As customary, P 1

Xpx,Aq

is denoted by PXpx,Aq. We use πX : BpX q Ñ r0, 1s to denote the invariant

measure of the Markov chain (assuming it exists), that is, the probability measure

such that for each A P BpX q it holds that πXpAq “
ş

X πXpdxqPXpx,Aq.

Define the companion Markov chain tXθ t, t ě 0u that takes values in X “

H ˆ F ˆ D and is given by Xθ 0 “ x “ ph, f, dq1 P H ˆ F ˆ D and Xθ t “

pHt, fθ t, dθ tq
1, with

»

—

—

—

—

—

–

Ht

fθ t

dθ t

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

gh1pHt´1q ` gh2pHt´1qZ1 t

řK
k“1tα0 k ` α1 k rgy1pHt´1q ` gy2pHt´1qZ2 ts ` β1 kfθ t´1u1t´1 k

1 ` |gy1pHt´1q ` gy2pHt´1qZ2 t| ` |fθ t´1| ` β1dθ t´1

fi

ffi

ffi

ffi

ffi

ffi

fl

(2.11)
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for t ě 1, where 1t´1 k “ 1tgy1pHt´1q`gy2pHt´1qZ2 tPYku, Z1 t “ ϵH t and Z2 t “

ϵY t´1. We are interested in establishing that the companion Markov chain tXθ t, t ě

0u is VX-geometrically ergodic (Meyn and Tweedie, 1993; Meitz and Saikkonen,

2008a).

Definition 2.7.1 (VX-geometric ergodicity). A Markov chain tXt, t ě 0u is VX-

geometrically ergodic if there exists a real valued function VX : X Ñ r1,8q, a

probability measure πX on BpX q, and constants ρ ă 1 and Mx ă 8 (depending

on x) such that

sup
v:|v|ďVX

ˇ

ˇ

ˇ

ˇ

ż

X
P n
Xpx, dxnqvpxnq ´

ż

X
πXpdxnqvpxnq

ˇ

ˇ

ˇ

ˇ

ď ρnMx , (2.12)

for all x P X and all n ě 1.

A number of remarks are in order. First, the definition implicitly assumes

that the expectation of the function VX with respect to the measure πX exists.

Second, a Markov chain that is VX-geometric ergodic has convenient moment and

dependence properties. If we choose VX “ 1 then we have that (2.12) coincides

with the definition of geometric ergodicity, which implies β- and α-mixing. Last,

VX-geometric ergodicity implies that the unconditional expectation of vpXq exists

for any function v such that |v| ď VX .

The following lemma established VX-geometric ergodicity of tXθ t, t ě 0u.

Lemma 2.7.1. Suppose A.2.2.1 and A.2.2.2 are satisfied. Then tXθ t, t ě 0u is

VX-geometrically ergodic with VXpxq “ 1 ` }x}
2rm
1 .

The proof of this lemma and all subsequent results is postponed to sections

2.9 and 2.10. The proof of Lemma 2.7.1 is based on establishing that the Markov
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chain is irreducible, aperiodic and satisfies the so-called drift criterion. The claim

then follows from Theorem 15.0.1 of Meyn and Tweedie (1993), which is a classic

result that is routinely employed to establish stability of nonlinear time series

models.

The following lemma establishes that the constants ρ and Mx in Definition

2.7.1 can be chosen independently of θ in the case of geometric ergodicity (that

is, when VX “ 1).10

Lemma 2.7.2. Suppose A.2.2.1 and A.2.2.2 are satisfied. Then, there exist positive

constants ρ P p0, 1q and R ă 8 that do not depend on θ such that tXθ t, t ě 0u

satisfies

sup
v:|v|ď1

ˇ

ˇ

ˇ

ˇ

ż

X
P n
Xpx, dxnqvpxnq ´

ż

X
πXpdxnqvpxnq

ˇ

ˇ

ˇ

ˇ

ď RṼXpxqρn , (2.13)

for all x P X and all n ě 1, and ṼXpxq “ 1 ` }x}1.

The proof of Lemma 2.7.2 consists of an application of Theorem 12 of Roberts

and Rosenthal (2004). We remark that the MCMC literature has developed a num-

ber of results that allow to establish explicit geometric ergodicity convergence

rates (Rosenthal, 1995). The important implication of Lemma 2.7.2 is that the

dependence properties of the companion Markov chain tXθ t, t ě 0u can be char-

acterized independently of θ.

We use the properties of the companion Markov chain tXθ t, t ě 0u to estab-

lish the properties of the joint process tpYt, Xθ tq
1, t ě 0u. The following lemma

10We omit the subscript θ from x to simplify the notation, but the dependence on θ is understood.
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establishes the connection between the transition kernels of tXθ t, t ě 0u and

tpYt, Xθ tq
1, t ě 0u.

Lemma 2.7.3. Consider the Markov chain tpYt, Xθ tq
1, t ě 0u defined above. Let

πY |Xpdy|xtq denote the (invariant) conditional distribution of Yt given Xθ t “ xt.

Then, its n-step transition kernel is given by

P n
Y,Xppy, xq, dpyn, xnqq “ πY |Xpdyn|xnq

ż

H
P n´1
X px̃, dxnqPHph, dh1q, n ě 2,

(2.14)

where PH is the transition kernel of tHt, t ě 0u, and

x̃ “ x̃py, x, h1q “ ph1,
řK
k“1pα0 k ` α1 ky ` β1 kfq1tyPYku, 1 ` |y| ` |f | ` β1dq1.

The proof of the lemma builds upon the analysis of GARCH models of Meitz

and Saikkonen (2008a). The structure given by equations (2.1), (2.2), (2.3) and

(2.5) allows us to cast tpYt, Xθ tq
1, t ě 0u as a Markov chain with Dirac measure

as the initial distribution. We remark that the analysis of tXθ t, t ě 0u differs

depending on whether the process is studied in isolation or jointly with the process

tYt, t ě 0u. The random vectorXθ t depends on Yt´1. When the process tXθ t, t ě

0u is analyzed in the joint system tpYt, Xθ tq
1, t ě 0u we have that the 1-step-ahead

transition kernel of the process conditions on Yt´1. However, when tXθ t, t ě 0u is

analyzed in isolation we have that the 1-step-ahead transition kernel of the process

does not condition on Yt´1.

The following lemma establishes that tpYt, Xθ tq
1, t ě 0u inherits the moment

and dependence properties of the companion Markov chain tXθ t, t ě 0u.
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Lemma 2.7.4. Suppose A.2.2.1 and A.2.2.2 are satisfied. Then piq tpYt, Xθ tq
1, t ě

0u is VY,X-geometrically ergodic with VY,Xpy, xq “ 1 ` |y|2rm ` }x}
2rm
1 ; and piiq

there exist positive constants ρ P p0, 1q and R ă 8 that do not depend on θ such

that tpYt, Xθ tq
1, t ě 0u satisfies

sup
v:|v|ď1

∣∣∣∣ż
YˆX

rP n
Y,Xppy, xq, dpyn, xnqq ´ πY,Xpdpyn, xnqqsvpyn, xnq

∣∣∣∣ ď RṼXpx̌qρn,

for all py, xq1 P Y ˆ X and for all n ě 2, and x̌ “ ph, α0 ` α1|y| ` β1|f |, 1 `

|y| ` |f | ` β1dq1, where α0 “ |α0| _ |α0|.

Finally, we establish the moment and dependence properties of tpYt, Xθ tq
1, t ě

0u. We define the Lr norm of a random variable X as }X}Lr “ pE|X|rq
1{r for

any r P r1,8q. The α-mixing coefficients of the process tpYt, X
1
θ tq

1, t ě 0u are

defined as

αplq “ sup
sě1

sup
APFs

0 ,BPF8
s`l

|P pA X Bq ´ P pAqP pBq| ,

where Fk
j “ σ ptpYt, X

1
θ tq

1 : j ď t ď kuq.

Proposition 2.7.1. Suppose A.2.2.1 and A.2.2.2 are satisfied. Then, tpYt, X
1
θ tq

1, t ě

0u piq satisfies suptě1 }Yt}L2rm
ă 8, suptě1 }Ht}L2rm

ă 8,

suptě1 supθPΘ }fθ t}L2rm
ă 8, suptě1 supθPΘ }dθ t}L2rm

ă 8; piiq has α-mixing

coefficients that satisfy αplq ď expp´Cαl
rαq for some Cα ą 0 and rα ą 0 that

do not depend on θ; and piiiq its distribution converges to the invariant measure

πY,X , which admits 2rm moments.
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2.7.2 Establishing Performance Bounds for the ERM

We introduce a general inequality to bound the performance of the ERM.

Proposition 2.7.2. Let Rpθq “ ELpY G
1 , f

G
θ 1q, where tpY G

t , f
G
θ tq

1, t ě 0u is an

independent copy of tpYt, fθ tq
1, t ě 0u initialized at the stationary distribution.

Then, it holds that

Rpθ̂q ´ inf
θPΘ

Rpθq ď 2 sup
θPΘ

|Rpθq ´ Rpθq| ` 2 sup
θPΘ

|RT pθq ´ Rpθq| . (2.15)

It is important to emphasize that Proposition 2.7.2 is a general result that

only requires the “ghost” stationary loss process tLpY G
t , f

G
θ tq, t ě 0u to exist.

Note that the existence of the process is established in Proposition 2.7.1 and is a

consequence of the VY,X-geometric ergodicity of the process tpYt, X
1
θ tq

1, t ě 0u

(Lemma 2.7.4). We note that when the data is i.i.d. we have that Rpθq “ Rpθq and

the inequality in Proposition 2.7.2 corresponds to the classic inequality derived in

Vapnik and Chervonenkis (1974) (Devroye et al., 1996), which is routinely used

to derive bounds on the performance of the ERM.

In what follows we establish upper bounds for the two terms on the right hand

side of (2.15) that hold uniformly over Θ. Proposition 2.7.3 is based on a covering

argument similar to Jiang and Tanner (2010). Importantly, the proof of Proposition

2.7.3 relies on the properties of the dominating process tdθ t, t ě 0u.

Proposition 2.7.3. Suppose A.2.2.1 and A.2.2.2 are satisfied.

Let ET p¨q “ Ep¨|YT , . . . , Y1q. Then, for any ε P p0, 24Cds, any T ě 4CU{ε and
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any M ě 4CU{ε, we have

P
ˆ

sup
θPΘ

|RT pθq ´ Rpθq| ą
ε

2

˙

ď

ˆ

1 `
48CΘCd

ε

˙p

sup
θPΘ

”

P T
1

´

Uθ t,
ε

8

¯

` P T
1 pVθ t, Cdq

ı

,

where P t2
t1 pUt, εq “ P

´
ˇ

ˇ

ˇ

1
t2´t1`1

řt2
t“t1

Ut ´ EUt
ˇ

ˇ

ˇ
ą ε

¯

, and

P
ˆ

sup
θPΘ

|Rpθq ´ Rpθq| ą
ε

2

˙

ď

ˆ

1 `
48CΘCd

ε

˙p

sup
θPΘ

”

P T`M
T`1

´

ET Uθ t,
ε

8

¯

` P T`M
T`1 pET Vθ t, Cdq

ı

,

whereCΘ “ supθPΘ }θ}2,Cd “ Cψ supθ }d2θ t`2|Yt´fθ t|dθ t}L1 , Uθ t “ LpYt, fθ tq,

UG
θ t “ LpY G

t , f
G
θ tq, Vθ t “ Cψ pd2θ t ` 2|Yt ´ fθ t|dθ tq, and

CU “ 6 supθPΘ }UG
θ 1}L2

ř8

l“1 expp´Cαl
rαq1{2.

The first term of the inequality in (2.15) is the supremum of a difference be-

tween an average of conditional and unconditional expectations. Proposition 2.7.4

bounds this term using Proposition 2.7.3 and Ibragimov’s inequality (Davidson,

1994, Theorem 14.2).

Proposition 2.7.4. Suppose A.2.2.1 and A.2.2.2 are satisfied. Then, for all T

sufficiently large and for εT “ σ
a

p log T {T , it holds that

ˆ

1 `
48CΘCd
εT

˙p

sup
θPΘ

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

M

T`M
ÿ

t“T`1

ET Uθ t ´ EUθ t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
εT
8

¸

ď
1

log T
and

ˆ

1 `
48CΘCd
εT

˙p

sup
θPΘ

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

M

T`M
ÿ

t“T`1

ET Vθ t ´ EVθ t

ˇ

ˇ

ˇ

ˇ

ˇ

ą Cd

¸

ď o

ˆ

1

log T

˙

,

as T Ñ 8, where σ2 “ 16 rm
rm´2

C2
mp1 ` 2

ř8

l“1 exp p´Cαl
rαq

1´ 2
rm q and

Cm “ suptě1 supθPΘp}Uθ t}Lrm
_ }Vθ t}Lrm

q.
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The second term of the inequality in (2.15) is the supremum of the empirical

process associated with the prediction loss process. We bound this using Propo-

sition 2.7.3 and a concentration inequality for α-mixing processes. Proposition

2.7.5 is based on a Bernstein-type inequality for α-mixing sequences (Liebscher,

1996). The constant σ2 that appears in Proposition 2.7.4 is the proportionality

constant in Theorem 2.3.1. This may be interpreted as an upper bound on long

run variance associated with the loss process. It depends on the rm moment of the

loss process and the α-mixing coefficients. It is worth noting that in the i.i.d. case

the constant would be smaller and would reduce to σ2 “ 16 rm
rm´2

C2
m.

Proposition 2.7.5. Suppose A.2.2.1 and A.2.2.2 are satisfied. Then, for all T

sufficiently large and for εT “ σ
a

p log T {T , it holds that

ˆ

1 `
48CΘCd
εT

˙p

sup
θPΘ

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

Uθ t ´ EUθ t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
εT
8

¸

ď
1

log T
and

ˆ

1 `
48CΘCd
εT

˙p

sup
θPΘ

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

Vθ t ´ EVθ t

ˇ

ˇ

ˇ

ˇ

ˇ

ą Cd

¸

ď o

ˆ

1

log T

˙

,

as T Ñ 8, where σ is defined in Proposition 2.7.4.

It follows from Propositions 2.7.1, 2.7.3, 2.7.4 and 2.7.5 that, for all T suffi-

ciently large,

2 sup
θPΘ

|Rpθq ´ Rpθq| ` 2 sup
θPΘ

|RT pθq ´ Rpθq| ď 2σ

c

p log T

T

holds with high probability. This fact and Proposition 2.7.2 imply Theorem 2.3.1.
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2.8 Conclusions

Leo Breiman forcefully argued that there are two main philosophies to analyze

data (Breiman, 2001), the data modeling and the algorithmic modeling cultures.

The data modeling culture is based on assuming that the data is generated by a

(partially) known model whereas the algorithmic modeling culture pursues to be

agnostic about the data generating mechanism. It is fair to say that the majority of

research in the time series literature is typically carried out through the lens of the

data modeling culture, whereas the fraction of contributions from the algorithmic

modeling perspective is meager. In this work we take the algorithmic standpoint

and study the performance of empirical risk minimization to choose an algorithm

to forecast 1-step-ahead a time series. A key feature of the analysis is that the

relationship between the time series and the class of algorithms is not specified.

Our main result implies that the algorithm chosen by empirical risk minimiza-

tion achieves asymptotically the optimal predictive performance that is attainable

within the class. The algorithmic modeling culture paves the way for the devel-

opment of new forecasting strategies for time series applications. Using the tools

introduced in the nonlinear time series literature it is possible to develop general

nonparametric theory to study algorithmic forecasting strategies from primitive

assumptions.
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2.9 Proofs of Sections 2.3 and 2.7

To simplify the analysis and without loss of generality we assume that Θ “

rα0, α0s
K ˆrα1, α1s

K ˆr0, β1sK . To simplify notation we writeWθ t “ pYt, Xθ tq
1.

Proof of Theorem 2.3.1. The claim follows from Propositions 2.7.1, 2.7.2, 2.7.3,

2.7.4 and 2.7.5.

Proof of Lemma 2.7.1. We apply Lemmas 2.10.1, 2.10.2 and 2.10.3 together with

Theorem 15.0.1 of Meyn and Tweedie (1993) to obtain that tXθ t, t ě 0u is qX-

geometrically ergodic with qXpxq “ 1 ` pκ1 9xq2rm , where 9x “ p|h|, |f |, |d|q1, and

the vector κ P p0, 1q3 is defined in Lemma 2.10.1. Moreover, it is easy to see

that Lemma 2.10.3 still holds with qXpxq replaced with qXpxq{κ2rm , where κ is

the minimum of the components of κ. The claim follows by noting that VXpxq “

1 ` }x}
2rm
1 ď qXpxq{κ2rm .

Proof of Lemma 2.7.2. The claim of the Lemma follows from an application of

Theorem 12 by Roberts and Rosenthal (2004). Define q̃Xpxq “ 1`κ̃h|h|`κ̃f |f |`

κ̃d|d| “ 1 ` κ̃1 9x where κ̃ P p0, 1q3 as well as the set S̃2 ϵ “

!

x P X : κ̃1 9x ď M̃
)

.

By arguments analogous to those used to claim that S2 ϵ defined in Lemma 2.10.1

is small we can show that we can choose a κ̃ such that for any x P S̃2 ϵ and any

A P BpX q it holds that P 2
Xpx,Aq ě c̃˚φ̃pAq, where c̃˚ P p0, 1q and φ̃pAq “

µLebpA X D̃q is Lebesgue measure restricted to an open rectangular region D̃,

which is the analogue of D defined in Lemma 2.10.1. As we remark in the proof

of Lemma 2.10.1 c̃˚ and D̃ do not depend on θ.
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It is easily verified that q̃Xpxq satisfies the drift criterion by the same arguments

as in Lemma 2.10.3, and that q̃Xpxq ď ṼXpxq. Define λ´1 “ 1´ γ̃1 ` γ̃2{p2`M̃q,

where γ̃1 and γ̃2 are analogous to γ1 and γ2 in Lemma 2.10.3 and do not depend

on θ, and M̃ “ infxPSc
2 ϵ
q̃Xpxq. The proof strategy of Theorem 12 by Roberts and

Rosenthal (2004) is based on a coupling argument. To this end we use tXG
θ t, t ě

0u to denote an independent copy of the Markov chain tXθ t, t ě 0u started at the

stationary distribution, namely XG
θ 0 „ πX . We define B “ maxt1, λ2p1 ´ c̃˚qRu,

where the constant R is computed in Lemma 2.13.2. We distinguish two cases.

Note that in both cases we are applying Lemma 2.13.2.

piq Suppose that λ´1 ă 1. Then the assumptions of Proposition 11 and Theorem

12 by Roberts and Rosenthal (2004) are satisfied, thus applying the theorem we

have that for any j P t1, . . . , nu,

sup
v:|v|ď1

ˇ

ˇ

ˇ

ˇ

ż

X
rP n

Xpx, dx1q ´ πXpdx1qs vpx1q

ˇ

ˇ

ˇ

ˇ

ď p1 ´ c̃˚q
j

` λ´nB
j´1

2

`

q̃Xpxq ` Eq̃XpXG
θ tq

˘

holds for all x P X and all n ě 1. Let V “ 1 ` }HG
t }L1 ` supθPΘ }fGθ t}L1 `

supθPΘ }dGθ t}L1 . Obviously, V ě Eq̃XpXG
θ tq. Furthermore, V ă 8 by Lemma

2.7.1 and Proposition 2.7.1piq. Set j “ trnu for sufficiently small r ą 0 so that

the bound converges to zero at a geometric rate. We now have that (2.13) holds

with ρ “ p1 ´ c̃˚qr _ pλ´1Brq ă 1 and R “ 2V (note that q̃X ě 1). The result

follows since ρ and R do not depend on θ.

piiq In the case λ´1 ě 1, we can find an enlargement of S̃2 ϵ for which the re-

sult in piq still holds (Roberts and Rosenthal, 2004). We choose M 1 such that
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2 ` M 1 ą γ̃2{γ̃1. Note that S̃ 1
2 ϵ “ tx P X : κ̃1 9x ď M 1u is still a small set by

the same arguments used in the proof of Part II of Lemma 2.10.1. Consequently,

P 2
Xpx,Aq ě c̃1

˚φ̃
1pAq for all x P S̃ 1

2 ϵ, where c̃1
˚ is possibly smaller than c̃˚ but

strictly positive (and independent of θ), φ̃1pAq “ µLebpA X D̃1q, and D̃1 is analo-

gous to D̃ in part piq. Clearly, λ1´1 “ 1 ´ γ̃1 `
γ̃2

2`M 1 ă 1. The claim holds by the

same arguments as in piq with λ and c̃˚ replaced by λ1 and c̃1
˚.

Proof of Lemma 2.7.3. For all n ě 2 we write

P n
W pw, dwnq “ πY |Xpdyn|xnqPpdxn|wq

“ πY |Xpdyn|xnq

ż

H
Ppdxn|w, h1qPHph, dh1q ,

where the last equality follows because the Ht component of Wθ t is a Markov

chain of its own. Define f̃θ “ fθ 1 “
ř

ktα0k ` α1ky ` β1fu1tyPYku, and

d̃ “ d1 “ 1 ` |y| ` |f | ` β1d. Note that by the i.i.d. assumption on the in-

novations Z1 t and Z2 t we have that the Xθ t component of tWθ t, t ě 0u has

a 2-step transition mechanism which is entirely similar to the 1-step transition

mechanism of the companion Markov chain defined in (2.11) with initial value

given by x̃pw, h1q. We denote P̃ n
Xppw, h1q, dxnq “ Ppdxn|w, h1q. Note that

P̃ 2
Xppw, h1q, dx2q “ P 1

Xpx̃, dx2q where x̃ “ x̃pw, h1q “ ph1, f̃θ, d̃q. We have

P̃ 3
Xppw, h1q, dx3q “

ş

X PXpx̃, dx2qPXpx2, dx3q “ P 2
Xpx̃, dx3q. By induction,

P̃ n
Xppw, h1q, dxnq “ P n´1

X px̃, dxnq, and the result follows.

Proof of Lemma 2.7.4. piq First, tXθ t, t ě 0u viewed as a separate Markov chain
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is VX-geometrically ergodic by Lemma 2.7.1. We begin by showing that

EY |X pVY,XpWθ tq|Xθ t “ xq ”

ż

Y
VY,Xpy, xqπY |Xpdy|xq ă C ¨ VXpxq . (2.16)

For all x P X , by Assumption A.2.2.1piiq we have that

EY |X pVY,XpWθ tq|Xθ t “ xq

“ VXpxq ` EY |X

`

|gy1phq ` gy2phqϵY t|
2rm

˘

ď VXpxq ` 22rm´1
|gy1phq|

2rm ` 22rm´1
|gy2phq|

2rmEY |Xp|ϵY t|
2rmq

ď VXpxq ` C}x}
2rm
1 ď C ¨ VXpxq ,

where the constant 0 ă C ă 8 may change from line to line. To satisfy the

definition of VY,X-geometric ergodicity, we must have that E pVY,XpYt, Xθ tqq ă

8, where the expectation is taken with respect to the invariant measure πY,X . By

(2.16) we have that

E pVY,XpWθ tqq “

ż

X
πXpdxq

ż

Y
VY,Xpy, xqπY |Xpdy|xq

ď

ż

X
πXpdxqC ¨ VXpxq ă 8,

as expected. For any w “ py, xq1 P Y ˆ X and all n ě 2 we have that

sup
v:|v|ďVY,X

∣∣∣∣ż
YˆX

“

P n
Y,Xpw, dwnq ´ πY,Xpdwnq

‰

vpwnq

∣∣∣∣
“ sup

v:|v|ďVY,X

∣∣∣∣ż
X

ˆ
ż

H
P n´1
X px̃, dxnqPHph, dh1q ´ πXpdxnq

˙
ż

Y
πY |Xpdyn|xnqvpyn, xnq

∣∣∣∣
ď C sup

v1:|v1|ďVX

∣∣∣∣ż
H

ˆ
ż

X

“

P n´1
X px̃, dxnq ´ πXpdxnq

‰

v1
pxnq

˙

PHph, dh1q

∣∣∣∣
ď C

ż

H
sup

v1:|v1|ďVX

∣∣∣∣ż
X

“

P n´1
X px̃, dxnq ´ πXpdxnq

‰

v1
pxnq

∣∣∣∣PHph, dh1q

ď CRθρ
n´1
θ E pVXpx̃q|H0 “ hq , (2.17)
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where Rθ ă 8, ρθ ă 1. The equality follows by Lemma 2.7.3, the first inequality

is a consequence of (2.16) and the last inequality is implied by the drift criterion

that we have used in the proof of Lemma 2.7.1. Furthermore, A.2.2.1piq, piiiq,

pivq and (2.19) imply

E pVXpx̃q|H0 “ hq ď 1 ` 32rm´1
´

E
`

|H1|
2rm |H0 “ h

˘

` |f̃θ|
2rm ` |d̃|

2rm
¯

ă 1 ` C ¨

$

’

’

’

&

’

’

’

%

|f̃θ|
2rm ` |d̃|2rm ` |h|2rm , |h| ą Mϵ

1 ` |f̃θ|
2rm ` |d̃|2rm , |h| ď Mϵ

ă CVXpx̌q ,

where 1 ă C ă 8 may change from line to line and the choice of ϵ is such that

Epa ` bϵ|ϵH t| ` ϵq2rm ă 1 (A.2.2.1pivq).

piiq Repeating the same arguments as in piq with 2rm “ 1 and with supv:|v|ď1

instead of supv:|v|ďVY,X
, we can use Lemma 2.7.2 in the last inequality of (2.17)

instead of the standard drift criterion to obtain constants ρ P p0, 1q and R ă 8

that do not depend on θ. The proof is completed by noting that we can redefine R

to absorb Cρ´1.

Proof of Proposition 2.7.1. piq By the same arguments used to arrive at (2.19),

which rely on A.2.2.1, take the L2rm-norm on both sides of (2.19) and apply

Minkowski’s inequality to get

}Ht}L2rm
ď }a ` bϵ|ϵH t| ` ϵ}L2rm
looooooooooomooooooooooon

ϱϵă1

}Ht´1}L2rm
` }gϵhp1 ` |ϵH t|q1t|Ht´1|ďMϵu}L2rm

ď ϱϵ}Ht´1}L2rm
` Cϵ,
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where Cϵ ă 8, and we have used that |Ht´1|
2rm1t|Ht´1|ąMϵu ď |Ht´1|

2rm . Thus,

suptě1 }Ht}L2rm
ď |h| ` Cϵ

1´ϱϵ
ă 8. A.2.2.1 implies that there exists CϵY ă 8

such that

sup
tě1

}Yt}L2rm
ď sup

tě1

“

}gy1pHtq}L2rm
` }gy2pHtq}L2rm

}ϵY t}L2rm

‰

ď Cy1 sup
tě1

}Ht}L2rm
` Cy2 sup

tě1
}Ht}L2rm

CϵY ă 8.

Furthermore, since α1 k ą 0, we have

}fθ t}L2rm
ď α0 ` α1}Yt´1}L2rm

` β1}fθ t´1}L2rm
,

where α0 “ |α0| _ |α0|. Therefore,

sup
tě1

sup
θPΘ

}fθ t}L2rm
ď sup

θPΘ
|fθ 0| `

α0 ` α1 suptě1 }Yt´1}L2rm

1 ´ β1

ă 8.

Finally, we have

sup
tě1

sup
θPΘ

}dθ t}L2rm
ď 1 `

suptě1 }Yt´1}L2rm
` suptě1 supθPΘ }fθ t´1}L2rm

1 ´ β1

ă 8.

piiq It is enough to show that tWθ t, t ě 0u is geometrically β-mixing, since

αplq ď βplq, where βplq “ suptPZ
1
2
sup

řI
i“1

řJ
j“1 |PpAi X Bjq ´ PpAiqPpBjq| ,

and the supremum is taken over all pairs of finite partitions tA1, . . . , AIu and

tB1, . . . , BJu of Ω such that Ai P σtWθ s : s ď tu, i “ 1, . . . , I , and Bj P

σtWθ s : s ě t` lu, j “ 1, . . . , J . Let δwpAq “ 1tw P Au for any A P BpY ˆX q.

By Proposition 4 in Liebscher (2005), tWθ t, t ě 0u is β-mixing with geometri-

cally decaying mixing numbers if paq
ş

YˆX VXpx0qδy,xpdw0q “ VXpxq ă 8, and

pbq tWθ t, t ě 0u is Q-geometrically ergodic in the sense of Liebscher (2005) with
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Qpwq “ VXpxq. Condition paq holds for all w P Y ˆ X . For condition pbq, we

first need to show that
ş

YˆX VXpxnqπY,Xpdwnq ă 8. This follows from

ż

YˆX
VXpxnqπY,Xpdwnq “

ż

X
VXpxnqπXpdxnq

ż

Y
πY |Xpdyn|xnq ă 8,

where the last inequality follows from the VX-geometric ergodicity of tXθ t, t ě

0u. As for the remaining part of condition pbq, notice that from Lemma 2.7.4piiq

we have that
›

›P l
Y,Xpw, ¨q ´ πY,X

›

›

TV
ď RṼXpx̌qρl ^ 1, where

›

›P l
Y,Xpw, ¨q ´ πY,X

›

›

TV
“ sup

v:|v|ď1

∣∣∣∣ż
YˆX

“

P l
Y,X pw, dwlq ´ πY,Xpdwlq

‰

vpwlq

∣∣∣∣ ,
which completes the proof of condition pbq. It remains to be shown that the rate

of decay does not depend on θ. For any probability measure τ on Y ˆ X , define

ξlpτq “
ş

YˆX

›

›P l
Y,Xpw, ¨q ´ πY,X

›

›

TV
¨ τpdwq. By virtue of part piiq of Lemma

2.7.4 we compute that ξlpπY,Xq ď RV̌ ρl, where

V̌ “ 2 ` }HG
1 }L1 ` p1 ` α1q}Y G

1 }L1 ` p1 ` β1q sup
θPΘ

}fGθ 1}L1 ` β1 sup
θPΘ

}dGθ 1}L1 ,

and ξlpδy,xq “
›

›P l
Y,Xpw, ¨q ´ πY,X

›

›

TV
ď RṼXpx̌qρl ^ 1. Now, by Proposition 3

in Liebscher (2005) we have that for any w P Y ˆ X , and m “ tl{2u, βplq ď

3ξmpδy,xq ` ξmpπY,Xq ď R
´

V̌ ` 3ṼXpx̌q

¯

ρm ^ 1. It is not difficult to verify that

αplq ď βplq ď exp p´Cαl
rαq ^ 1 for all l ě 1. The choice of Cα and rα depends

on R, V̌ , ρ and ṼXpx̌q. Note that the rate of decay of the uniform bound for the

α-mixing coefficients does not depend on θ (Lemma 2.7.2). The claim follows by

redefining R and noting that ṼX ě 1.

piiiq The existence of the stationary distribution with 2rm moments of tpYt, X
1
θ tq

1, t ě
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0u follows by its VY,X-geometric ergodicity, which is established in Lemma 2.7.4.

Proof of Proposition 2.7.2. We begin by noting that tLpY G
t , f

G
θ tq

1, t ě 0u is a sta-

tionary process. Define Rpθ̂q “ ELpY G
1 , f

G
θ̂ 1

q. The properties of infimum and

supremum and the definition of empirical risk minimizer (i.e. RT pθq ě RT pθ̂q for

all θ P Θ) imply

Rpθ̂q ´ inf
θPΘ

Rpθq “ Rpθ̂q ´ Rpθ̂q ` Rpθ̂q ´ inf
θPΘ

“

Rpθq ` Rpθq ´ Rpθq
‰

ď

”

Rpθ̂q ´ Rpθ̂q

ı

`

”

Rpθ̂q ´ inf
θPΘ

Rpθq

ı

´ inf
θPΘ

“

Rpθq ´ Rpθq
‰

ď 2 sup
θPΘ

|Rpθq ´ Rpθq| ` 2 sup
θPΘ

|RT pθq ´ Rpθq| ,

where the last inequality follows from Lemma 8.2 in Devroye et al. (1996).

Proof of Proposition 2.7.3. Let Uθ t “ LpYt, fθ tq and UG
θ t “ LpY G

t , f
G
θ tq. Adding

and subtracting EUθ t, we have

P
ˆ

sup
θPΘ

ˇ

ˇRT pθq ´ Rpθq
ˇ

ˇ ą
ε

2

˙

ď P

˜

sup
θPΘ

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

pUθ t ´ EUθ tq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

4

¸

` P

˜

sup
θPΘ

1

T

T
ÿ

t“1

|EUθ t ´ EUG
θ 1| ą

ε

4

¸

.

Recall that tWθ t, t ě 0u is initialized at the Dirac measure. Furthermore,

tWθ t, t ě 0u and tWG
θ t, t ě 0u have the same transition kernel, so EUθ t “

EpUθ t|Wθ 0 “ wq “ EpUG
θ t|W

G
θ 0 “ wq. Since EUθ t ´ EUG

θ t is not random,

|EUθ t ´ EUG
θ t| “ |EpUG

θ t|W
G
θ 0 “ wq ´ EUG

θ t| ď 6 expp´Cαt
rαq

1{2 sup
θPΘ

}UG
θ t}L2 ,
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which follows from Ibragimov’s inequality and Proposition 1piiq. We have

P
´

supθPΘ
1
T

řT
t“1 |EUθ t ´ EUG

θ 1| ą ε
4

¯

ď P
`

CU

T
ą ε

4

˘

, where CU ă 8 by

Proposition 1piiq and piiiq.11 This implies that

P

˜

sup
θPΘ

1

T

T
ÿ

t“1

|EUθ t ´ EUG
θ 1| ą

ε

4

¸

“ 0

for all T ě 4CU{ε.

Let Θi “ tθ P Rp : }θ ´ θi}2 ď δu with θi P Θ for i “ 1, . . . , Nδ denote a

δ-covering of Θ for some δ P p0, 1s. Then, we have that for all T ě 4CU{ε,

P
ˆ

sup
θPΘ

ˇ

ˇRT pθq ´ Rpθq
ˇ

ˇ ą
ε

2

˙

ď

Nδ
ÿ

i“1

P

˜

sup
θPΘi

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

pUθ t ´ EUθ tq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

4

¸

ď

Nδ
ÿ

i“1

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

pUi t ´ EUi tq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

8

¸

`

Nδ
ÿ

i“1

P

˜

sup
θPΘi

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

pUθ t ´ EUθ tq ´

˜

1

T

T
ÿ

t“1

Ui t ´ EUi t

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

8

¸

,

where Ui t “ Uθi t. Lemma 2.13.3 establishes that piq for each θ P Θi we have

|Uθ t ´ Ui t| ď δVi t “ δCψpd2θi t ` 2|Yt ´ fθi t|dθi tq and piiq there exists a positive

constant Cd (that does not depend on i and t) such that for all δ P p0, 1s we have

11By Condition 2.2.1piiiq, supθPΘ }UGθ 1}L2 ď 2Cψ
`

}Y G1 }L4 ` supθPΘ }fGθ 1}L4

˘

. By Propo-

sition 2.7.1piiiq, }Y Gt }L4
ă 8 and by the same arguments as in the proof of Proposition 1piq, we

have }fGθ t}L4
ď α0 `α1}Y Gt´1}L4 `β1}fGθ t´1}L4 , but by stationarity, we have supθPΘ }fGθ 1}L4 ď

α0`α1}Y G
1 }L2

1´β1

ă 8.
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that suptě1 EVi t ď Cd. Set δ “ ε{p24Cdq. Then, for all ε ă 24Cd, we get

P

˜

sup
θPΘi

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

pUθ t ´ Ui tq ´ EpUθ t ´ Ui tq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

8

¸

ď P

˜

1

T

T
ÿ

t“1

pVi t ` EVi tq ą
ε

8δ

¸

“ P

˜

1

T

T
ÿ

t“1

pVi t ´ EVi tq ą
ε

8δ
´

2

T

T
ÿ

t“1

EVi t

¸

ď P

˜

1

T

T
ÿ

t“1

pVi t ´ EVi tq ą Cd

¸

holds. The claim follows after noting thatNδ ď p1 ` 2CΘ{δqp “ p1 ` 48CΘCd{εq
p.12

It is straightforward to check that the same covering argument applies to the sec-

ond part of the claim with Uθ t and Vθ t replaced by ET Uθ t and ET Vθ t, respec-

tively. This is because |ET Uθ t ´ ET Uθi t| ď ET |Uθ t ´ Uθi t| ď δ ET Vθi t by

Jensen’s inequality and the order-preserving property of the conditional expecta-

tion.

Proof of Proposition 2.7.4. By Markov’s inequality, for any ε ą 0, we have

sup
θPΘ

P T`M
T`1 pET Uθ t, εq ď

supθPΘ E
ˇ

ˇ

ˇ

1
M

řT`M
t“T`1pET Uθ t ´ EUθ tq

ˇ

ˇ

ˇ

p

εp
. (2.18)

By Ibragimov’s inequality, we have that for rm ą p ě 1,

sup
θPΘ

}ET Uθ t ´ EUθ t}Lp

ď 2p21{p
` 1qαplq1{p´1{rm sup

tě1
sup
θPΘ

}Uθ t}Lrm
, l “ t ´ T ,

where suptě1 supΘ }Uθ t}Lrm
ă 8, which exists by Proposition 2.7.1. Conse-

quently, and because of the exponential decay of the strong mixing coefficients,
12The detailed computations of this inequality are shown in 2.12.
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the numerator in (2.18) is bounded above by C{T p for some C ă 8, where we

have used that M “ rγT s. Let εT “ σ
b

p log T
T

. It follows that

ˆ

1 `
48CΘCd
εT

˙p

sup
θPΘ

P T`M
T`1

´

ET Uθ t,
εT
8

¯

ď
C

T pε2pT
“ O

`

log´p T
˘

.

Finally, since Vθ t is also strong mixing with exponentially decaying coefficients

and suptě1 supθPΘ }Vθ t}Lrm
ă 8, the result follows by repeating the same argu-

ments.

Proof of Proposition 2.7.5. Let rUθ t “ Uθ t ´ EUθ t and rVθ t “ Vθ t ´ EVθ t. The

analysis of the sequences trUθ t, t ě 0u and trVθ t, t ě 0u is analogous. Here we

focus on trUθ t, t ě 0u. To simplify notation we omit the subscript θ in the notation

of the sequence trUθ t, t ě 0u.

Let
řT
t“1

rUt “
řT
t“1 U

1
t `

řT
t“1 U

2
t where U 1

t “ Ut1tUtďbT u ´ E
`

Ut1tUtďbT u

˘

and U2
t “ Ut1tUtąbT u ´ E

`

Ut1tUtąbT u

˘

. We then have that

P

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

rUt

ˇ

ˇ

ˇ

ˇ

ˇ

ą
εT
8

¸

ď P

˜ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U 1
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
16

¸

` P

˜ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
16

¸

.

Define MT “ tT
1
2

´
p`1

2prm´1q log´ 1
2 T u and bT “ CbT

p`1
2prm´1q pp log T q

´
p´1

2prm´1q where

Cb is a positive constant to be chosen in what follows. The sequence tU 1
tu
T
t“1 has

the same mixing properties of trUtu
T
t“1 and }U 1

t}L8
ď bT . Then for all T sufficiently

large and p ă rm ´ 2 the conditions of Theorem 2.1 in Liebscher (1996) are
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satisfied since MT P t1, . . . , T u and 4MT bT ď TεT {16. Then, we have

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U 1
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
16

¸

ď 4 exp

˜

´
Tε2T

16384
MT

sup0ďtďT´1 Ep
řpt`MT q^T
s“t`1 U 1

sq
2 ` 128

3
MT bT εT

¸

` 4
T

MT

exp p´CαM
rα
T q .

Let γtplq “ |CovpU 1
t , U

1
t`lq| for l “ 0, . . . , T´1. LetCm “ suptě1 supθPΘ }Ut}Lrm

.

Noting that LpYt, fθ tq ě 0, Davydov’s inequality implies that

γtplq ď 2
rm

rm ´ 2
21´ 2

rmαplq1´ 2
rm }U 1

t}Lrm
}U 1

t`l}Lrm
ď 16

rm
rm ´ 2

C2
mαplq1´ 2

rm ,

for l “ 0, . . . , T ´ 1, and we use the fact that for any r we have }U 1
t}Lr ď

2}Ut}Lr . Thus, we have sup0ďtďT´1 Ep
řpt`MT q^T
s“t`1 U 1

tq
2 ď MT16

rm
rm´2

C2
mp1 `

2
ř8

l“1 exp p´Cαl
rαq

1´ 2
rm q “ MTσ

2. Then, for all T sufficiently large, after

some algebra it holds that

ˆ

1 `
48CΘCd
εT

˙p

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U 1
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
16

¸

“ oplog´1 T q .

Let Cm “ suptě1 supθPΘp}Uθ t}Lrm
_ }Vθ t}Lrm

q ă 8 by Proposition 2.7.1. We

note that for all T sufficiently large,

ˆ

1 `
48CΘCd
εT

˙p

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
16

¸

paq

ď

ˆ

1 `
48CΘCd
εT

˙p
16

TεT
E

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ

1 `
48CΘCd
εT

˙p
32

εT
sup
tě1

E
ˇ

ˇUt1tUtąbT u

ˇ

ˇ

pbq

ď

ˆ

1 `
48CΘCd
εT

˙p
32

εT

Crm
m

brm´1
T

ď p1 ` 48CΘCdq
p 32

εp`1
T

Crm
m

brm´1
T

pcq

ď log´1 T ,
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where paq follows from Markov’s inequality pbq from the inequality Ep|X1t|X|ąbu|q ď

Ep|X|rq{br´1 for any random variableX wih finite r-th moment and positive con-

stant b, and pcq from a sufficiently large choice of the constant Cb. The sequence

Ṽθ t can be analysed using the same strategy (using the same choice of MT and bT

used for ŨT ).

2.10 Irreducibility, Aperiodicity, Drift Criterion

Before we proceed, we establish upper bounds on |Ht|, |fθ t| and dθ t. By A.2.2.1piq

we have that for any ϵ ą 0 there exists some 1 ă Mϵ ă 8 such that |Ht| ď

pa ` bϵ|Z1 t| ` ϵq|Ht´1| for all |Ht´1| ą Mϵ, where bϵ :“ b ` ϵ. The same as-

sumption also implies that when |Ht´1| ď Mϵ we have |Ht| ď |gh1pHt´1q| `

|gh2pHt´1q| |Z1 t| ď gϵhp1 ` |Z1 t|q, where gϵh “ sup |gh1phq| _ sup |gh2phq| ă 8

and the supremums are taken with respect to h P r´Mϵ,Mϵs XH. Hence we have

that

|Ht| ď pa ` bϵ|Z1 t| ` ϵq|Ht´1|1t|Ht´1|ąMϵu ` gϵhp1 ` |Z1 t|q1t|Ht´1|ďMϵu .

(2.19)

By A.2.2.2piq we have |fθ t| ď α0 ` α1|gy1pHt´1q| ` α1|gy2pHt´1q| |Z2 t| `

β1|fθ t´1|, where α0 “ |α0| _ |α0|. Furthermore, it follows from A.2.2.1piq and

piiq that

|fθ t| ď

$

’

’

’

&

’

’

’

%

α1Cyp1 ` ϵ ` |Z2 t|q |Ht´1| ` β1|fθ t´1| |Ht´1| ą Mϵ

α0 ` α1g
ϵ
yp1 ` |Z2 t|q ` β1|fθ t´1| |Ht´1| ď Mϵ

, (2.20)
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where Cy “ Cy1 _Cy2, gϵy “ sup |gy1phq| _ sup |gy2phq| ă 8 and the supremums

are taken with respect to h P r´Mϵ,Mϵs. We note that Mϵ can be redefined if

necessary in order to “remove” the constant α0 from the bound when |Ht´1| ą Mϵ.

Lastly, using analogous arguments we have

dθ t ď

$

’

’

’

&

’

’

’

%

Cyp1 ` ϵ ` |Z2 t|q |Ht´1| ` |fθ t´1| ` β1|dθ t´1| , |Ht´1| ą Mϵ

1 ` gϵyp1 ` |Z2 t|q ` |fθ t´1| ` β1|dθ t´1| , |Ht´1| ď Mϵ

(2.21)

where again Mϵ may be redefined if necessary in order to “remove” the constant

1 from the bound when |Ht´1| ą Mϵ.

Second, we introduce a partition of the state space X . Let κ “ pκh, κf , κdq
1 P

p0, 1q3 where the specific choice of this vector will be determined in what follows.

We define the sets

S2 ϵ “ tph, f, dq P X : κh|h| ` κf |f | ` κd|d| ď Mu and S1 ϵ “ X zS2 ϵ,

(2.22)

where M is a positive constant (note that in general M ‰ Mϵ).

Third, let ρz ϵ “ a ` bϵ|Z1 t| ` ϵ, Cϵ
y,z “ Cyp1 ` ϵ ` |Z2 t|q and define the matrix

CϵpZtq “

»

—

—

—

—

—

–

ρz ϵ 0 0

α1C
ϵ
y,z β1 ` ϵ 0

Cϵ
y,z 1 β1 ` ϵ

fi

ffi

ffi

ffi

ffi

ffi

fl

.

A.2.2.1piiiq implies that E pCϵpZtq
b2rmq exists.

Finally, we set ϵ ą 0 in a way such that Epa` bϵ|Z1 t| ` ϵq2rm ă 1 and β1 ` ϵ ă 1.

A.2.2.1pivq and A.2.2.2 imply that an ϵ that satisfies these constraints exists. For

95



“main” — 2023/6/14 — 22:04 — page 96 — #112

this particular choice of ϵ, we have that the spectral radius of E pCϵpZtq
b2rmq is

less than one. Such a choice of ϵ will be assumed throughout.

Lemma 2.10.1 (Irreducibility). Consider the setting of Proposition 2.7.1. There

exists an open rectangular region D Ă X that does not depend on θ or x such

that the Markov chain tXθ t, t ě 0u is φ-irreducible with φpAq “ µLebpA X Dq

for any A P BpX q.

Proof. We follow the strategy of Lanne and Saikkonen (2005) and Meitz and

Saikkonen (2008a). It suffices to show the following three intermediate results.

I. For any x P S1 ϵ there exists an n P Z` such that P n
Xpx, S2 ϵq ą 0.

II. For any A P BpX q it holds that infxPS2 ϵ P
2
Xpx,A X Dq ě c˚µLebpA X Dq,

where D is an open rectangular region to be specified in what follows and c˚

is a positive scalar. Both D and c˚ do not depend on θ or x.

III. For any x P S1 ϵ there exists an n P Z` such that for any A P BpX q it holds

that P n`2
X px,A X Dq ą 0 whenever µLebpA X Dq ą 0.

I. Define the event Ωn “ tω P Ω : |Z1 t| ď E|Z1 t| and |Z2 t| ď E|Z2 t| , t “ 1, . . . , nu

for an arbitrary n and note that PpΩnq ą 0. Define the auxiliary vector 9Xθ t “

p|Ht|, |fθ t|, dθ tq
1. To establish part I we show that for any κ P p0, 1q3 and for each

t “ 1, . . . , n we have that when Xθ t´1 P S1 ϵ the inequality

´

κ1 9Xθ t

¯2rm
ď
`

κb2rm
˘1 E

`

CϵpZtq
b2rm

˘

9Xb2rm
θ t´1 (2.23)
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holds given Ωn. We distinguish the cases piq |Ht´1| ą Mϵ and piiq |Ht´1| ď Mϵ.

piq From (2.19), (2.20) and (2.21) we have that

´

κ1 9Xθ t

¯2rm
ď

´

κ1CϵpZtq 9Xθ t´1

¯2rm
“
`

κb2rm
˘1
CϵpZtq

b2rm 9Xb2rm
θ t´1 , (2.24)

where the last equality follows from properties of Kronecker products. By adding

and subtracting E pCϵpZtq
b2rmq in (2.24) we obtain

´

κ1 9Xθ t

¯2rm
ď
`

κb2rm
˘1 E

`

CϵpZtq
b2rm

˘

9Xb2rm
θ t´1

`
`

κb2rm
˘1 ␣

CϵpZtq
b2rm ´ E

`

CϵpZtq
b2rm

˘(

9Xb2rm
θ t´1 . (2.25)

The random elements of the matrix CϵpZtq
b2rm are of the form Cpa ` bϵ|Z1 t| `

ϵqj1p1` ϵ` |Z2 t|q
j2 for j1, j2 ě 0 such that j1 ` j2 ď 2rm, where C denotes some

positive constant (that depends on ϵ). Conditionally on Ωn, it follows from the

independence between Z1 t and Z2 t as well as Jensen’s inequality that the random

elements are bounded from above by their expectations. This establishes that the

bound in (2.23) holds in case piq.

piiq From (2.19), (2.20) and (2.21) we can write

´

κ1 9Xθ t

¯2rm
ď
`

Cz ϵ ` κ1
fBfθ t´1

˘2rm
,

where Cz ϵ “ κhHz ϵ ` κf pα0 ` α1Y z ϵq ` κdp1 ` Y z ϵq, Hz ϵ “ gϵhp1 ` |Z1 t|q,

Y z ϵ “ gϵyp1 ` |Z2 t|q, κf “ pκf , κdq
1, fθ t´1 “ p|fθ t´1|, |dθ t´1|q

1 and B is a 2 ˆ 2

lower triangular matrix with B11 “ B22 “ β1 and B21 “ 1. On the event Ωn, it is

straightforward to verify that Cz ϵ ď
›

›Cz ϵ

›

›

L1
. Combining conditions Xθ t´1 P S1 ϵ

and |Ht´1| ď Mϵ we have κ1
f fθ t´1 ą M ´ κh|Ht´1| ě M ´ κhMϵ. Thus, we

can choose M large enough such that ϵ pM ´ κhMϵq ą
›

›Cz ϵ

›

›

L2rm
ě

›

›Cz ϵ

›

›

L1
.

97



“main” — 2023/6/14 — 22:04 — page 98 — #114

Note that this choice of M is independent of t. Such a choice of M is kept fixed

throughtout our derivations.13 Then, conditionally on Ωn and whenever Xθ t´1 P

S1 ϵ, we have

`

Cz ϵ ` κ1
fBfθ t´1

˘2rm
ď

´

›

›Cz ϵ

›

›

L2rm
` κ1

fBfθ t´1

¯2rm
ď
`

κ1
fBϵfθ t´1

˘2rm
,

where Bϵ “ B ` ϵI . We note that κ1
fBϵfθ t´1 “ κ1CϵpZtq :Xθ t´1, where :Xθ t´1 “

`

0, f 1
θ t´1

˘1, and we have that

´

κ1CϵpZtq :Xθ t´1

¯2rm
ď pκb2rmq

1E
`

CϵpZtq
b2rm

˘

9Xb2rm
θ t´1 , (2.26)

where we use the definition of :Xθ t´1. This establishes that the bound in (2.23)

holds in case piiq. By Lemma A.2. of Ling and McAleer (2003) we can choose

κ P p0, 1q3 such that the vector v “ pI ´ E pCϵpZtq
b2rmqq

1
κb2rm has positive

components.14 In particular, we remark that the vector v does not depend on θ.

We use v to denote the minimum of the components of v. Thus from (2.23) it

follows that

´

κ1 9Xθ t

¯2rm

ď

´

κ1 9Xθ t´1

¯2rm
´ v1 9Xb2rm

t´1 “

´

κ1 9Xθ t´1

¯2rm

˜

1 ´
v1 9Xb2rm

θ t´1

pκb2rmq
1 9Xb2rm

θ t´1

¸

ď p1 ´ vq

´

κ1 9Xθ t´1

¯2rm
, (2.27)

where v P p0, 1q. By repeated application of (2.27) starting from Xθ 0 “ x P S1 ϵ

we have
´

κ1 9Xθ n

¯2rm
ď p1 ´ vqn pκ1 9xq

2rm . Since v P p0, 1q we have that for

13We remark that A.2.2.1 implies that
›

›Cz ϵ
›

›

L2rm
exists.

14Recall that the matrix E
`

CϵpZtq
b2rm

˘

has a spectral radius that is strictly less than unity.

As noted by Lanne and Saikkonen (2005), the given proof makes clear that it means no loss of

generality to assume that the components of κ are bounded by unity.
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any x P S1ϵ there exists a sufficiently large n such that the right hand side of the

inequality is smaller than M2rm . Thus, we have that Xθ n P S2 ϵ with positive

probability.

II. First we write P 2
Xpx,A X Dq “ Ep Ep1tXθ 2PAXDu|H1, Xθ 0q | Xθ 0 “ x q, for

any x P S2 ϵ, A P BpX q, D Ă X such that D is an open rectangular region (to be

specified in what follows). Let h1 ě sup|h|ăM{κh
gh1phq. The result is obtained by

showing the following intermediate results. piq infh1Prh1,h1`1s Ep1tXθ 2PAXDu|H1 “

h1, Xθ 0 “ xq ě c1µLebpAXDq, where c1 is a positive scalar that does not depend

on θ or x. piiq P 2
Xpx,A X Dq ě c2 infh1Prh1,h1`1s Ep1tXθ 2PAXDu|H1 “ h1, Xθ 0 “

xq, where c2 is a positive scalar that does not depend on θ or x.

piq Set Z2 1 “ sup|h|ăM{κh
pR ´ gy1phqq{gy2phq and

Z2 2 “ suph1Prh1,h1`1s pR ´ gy1ph1qq{gy2ph1q, where R ą
β1M{κf´α0

α1
_ rK _

sup|h|ăM{κh
gy1phq _ suph1Prh1,h1`1s gy1ph1q, and note that Z2 1 and Z2 2 do not

depend on x, h1 or θ. Then it holds that

inf
h1Prh1,h1`1s

Ep1tXθ 2PAXDu|H1 “ h1, Xθ 0 “ xq

ě inf
h1Prh1,h1`1s

ż 8

0

ż 8

Z2 1

ż 8

Z2 2

1tXθ 2PAXDuϕHpZ1 2qϕY pZ2 1qϕY pZ2 2qdZ1 2dZ2 1dZ2 2 .

Over the integration range of the right hand side a number of properties hold.

First, we have that gy1phq ` gy2phqZ2 1 ą R and gy1ph1q ` gy2ph1qZ2 2 ą R, and

fθ 1 ą 0. Furthermore, we have that the map between Xθ 2 and pZ1 2, Z2 2, Z2 1q1 is

linear and is given by

Xθ 2 “ c ` G

„

Z1 2 Z2 2 Z2 1

ȷ1

, (2.28)
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where the expression for the vector c “ pch, cf , cdq
1 and the 3 ˆ 3 block-diagonal

matrix G are given in (2.34) and (2.35). Furthermore, G is invertible uniformly

over S2 ϵ, Θ and rh1, h1 ` 1s. In fact, we have that detG P rGl, Gus, and it is clear

that Gl ą 0 by A.2.2.1 and A.2.2.2.15 Define Z1 2pXθ 2q “
H2´ch
gh2ph1q

, and

Z2 2pXθ 2q “
gh2ph1qgy2phqrα1K ` β1qpfθ 2 ´ cf q ´ α1Kβ1Kpdθ 2 ´ cdqs

detG

Z2 1pXθ 2q “
gh2ph1qgy2ph1qrα1Kpdθ 2 ´ cdq ´ pfθ 2 ´ cf qs

detG
.

We observe that the constraints Z2 1pXθ 2q ą Z1 2 and Z2 2pXθ 2q ą Z2 2 impose

upper and lower bounds on dθ 2 which are linear functions of fθ 2 with positive

slopes. In fact, from A.2.2.2 we have that the minimum discrepancy between

slopes is given by infθPΘ
α1K`β1

α1Kβ1K
´ 1

α1K
“ infθPΘ

α1K`β1´β1K

α1Kβ1K
“ 1

β1
ą 0. It

follows that the intersection of images of the map defined in (2.28) with respect

to θ P Θ, x P S2 ϵ and h1 P rh1, h1 ` 1s contains the following set16

tXθ 2 P X : H2 ą H2, fθ 2 ą f
2
, d2pfθ 2q ă dθ 2 ă d2pfθ 2qu . (2.29)

We remark that A.2.2.2 implies that such a set is non-empty and it contains sets of

positive Lebesgue measure. Thus, we can pick D as an open rectangular region in

the intersection of (2.29) and S1 ϵ. Clearly, D does not depend on θ, x or h1. Next,

by the change of variable theorem we obtain that

inf
h1Prh1,h1`1s

ż 8

0

ż 8

Z2 1

ż 8

Z2 2

1tXθ 2PAXDuϕHpZ1 2qϕY pZ2 1qϕY pZ2 2qdZ1 2dZ2 1dZ2 2

ě inf
xPS2 ϵ

h1Prh1,h1`1s

θPΘ
Xθ 2PAXD

detG´1ϕHpZ1 2pXθ 2qqϕY pZ2 1pXθ 2qqϕY pZ2 2pXθ 2qq

ż

AXD

dXθ 2.

15See (2.36) and (2.37) for the expression for Gl and Gu.
16See (2.38), (2.39),(2.40) and (2.41) for the expressions for H2, f

2
, d2pfθ 2q and d2pfθ 2q.
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The boundedness conditions on gh2, gy1, gy2, ϕH and ϕY imply that

inf
xPS2 ϵ

h1Prh1,h1`1s

θPΘ
Xθ 2PAXD

detG´1ϕHpZ1 2pXθ 2qqϕY pZ2 1pXθ 2qqϕY pZ2 2pXθ 2qq ě c1
ą 0 ,

where c1 does not depend on θ, x or h1. The claim of part piq then follows.

piiq We have that

P 2
Xpx,A X Dq ě

ż 8

0

Ep1tXθ 2PAXDu|H1 “ h1, Xθ 0 “ xqϕHpZ1 1qdZ1 1

ě inf
h1Prh1,h1`1s

Ep1tXθ 2PAXDu|H1 “ h1, Xθ 0 “ xq

ˆ

ż h1`1

h1

1

gh2phq
ϕH

ˆ

h1 ´ gh1phq

gh2phq

˙

dh1 ,

where the last inequality follows by the choice of h1, and gh2phq is strictly positive

by assumption. Moreover, the boundedness conditions on gh1, gh2, and ϕH imply

that inf |h|ăM{κh gh2phq´1ϕH pgh2phq´1ph1 ´ gh1phqqq ě c1 ą 0, where we empha-

size that c1 does not depend on x or θ. This concludes the second part. Combining

parts piq and piiq, the result in II holds with c˚ “ c1c2 ą 0.

III. The Chapman-Kolmogorov equations imply that for any x P S1 ϵ it holds that

P n`2
X px,A X Dq ě

ş

S2 ϵ
P n
Xpx, dxnqP 2

Xpxn, A X Dq

ě c˚µLebpA X DqP n
Xpx, S2 ϵq ą 0,

where the last two inequalities follow from Parts I and II (for a sufficiently large

n).

Lemma 2.10.2 (Aperiodicity). Consider the setting of Lemma 2.7.1. Then, the

Markov chain tXθ t, t ě 0u is aperiodic.
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Proof of Lemma 2.10.2. It follows from Proposition A1.1 in Chan (1990), that to

establish aperiodicity it suffices to show that that for each x P D there exists an

n P Z` such that P n`2
X px,Dq ą 0 and P n`3

X px,Dq ą 0, where D is a small set.

We divide the proof in three parts. In part piq we show that the set D defined in

Lemma 2.10.1 is a small set. In part piiq we show that for each x P D there exists

an n such that P n`2
X px,Dq ą 0. In part piiiq we show that for the same x and

same n defined in part piiq it holds that P n`3
X px,Dq ą 0.

piq We note that by repeating the arguments in Part II of Lemma 2.10.1 with S2 ϵ

replaced by D we have that for any A P BpX q there exist c1
˚ ą 0 and an open

rectangular region D1 such that infxPD P
2
Xpx,A X D1q ě c1

˚µLebpA X D1q.

piiq It follows from Parts I and II of Lemma 2.10.1 that for any x P D there exists

an n such that P n
Xpx, S2 ϵq ą 0 and for any x P S2 ϵ we have that P 2

Xpx,Dq ą 0.

The claim is implied by the Chapman-Kolmogorov equation.

piiiq Note that in the proof of Lemma 2.10.1 we can choose an M and M 1 with

M ą M 1 such that P n
Xpx, S2 ϵq ą 0 and P n`1

X px, S1
2 ϵq ą 0 where S 1

2 ϵ “ tph, f, dq1 P

X : κh|h| ` κf |f | ` κd|d| ď M 1u. It is straightforward to see in the proof of

Lemma 2.10.1 that M can be chosen as any sufficiently large constant. Further-

more, we have that infxPS1
2 ϵ
P 2
Xpx,Dq ě infxPS2 ϵ P

2
Xpx,Dq ě c˚µLebpDq ą 0.

The Chapman-Kolmogorov equation gives the claim as

P n`3
X px,Dq ě

ż

S1
2 ϵ

P n`1
X px, dxn`1qP

2
Xpxn`1, Dq ě c˚µLebpDqP n`1

X px, S1
2 ϵq ą 0.

Lemma 2.10.3. Consider the setting of Lemma 2.7.1. Then, the Markov chain
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tXθ t, t ě 0u satisfies E pqXpXθ tq|Xθ t´1 “ xq ď p1 ´ γ1qqXpxq ` γ21txPCu for

some γ1 ą 0 and γ2 ă 8 where C is a small set. Furthermore, γ1, γ2 and C do

not depend on θ.

Proof of Lemma 2.10.3. Set C equal to S2 ϵ and note that Part II in the proof of

Lemma 2.10.1 establishes that S2 ϵ is a small set that does not depend on θ. When

x P S1 ϵ, we distinguish two cases: piq |h| ą Mϵ or piiq |h| ď Mϵ.

Case piq. From (2.24) we have that

ExpqXpXθ tqq ´ 1 ď Ex pκ1CϵpZtq 9xq
2rm

“
`

κb2rm
˘1 E

`

CϵpZtq
b2rm

˘

9xb2rm .

(2.30)

Following steps analogous to the ones used to go from (2.23) to (2.27) we have

that

Ex pqXpXθ tq|Xθ t´1 “ xq ď 1 ` pκ1 9xq
2rm ´ v1 9xb2rm ď p1 ´ γ1qqXpxq ,

where γ1 P p0, 1q and does not depend θ.

Case piiq. From Part I of Lemma 2.10.1 (case piiq) it follows that Ex pqXpXθ tqq ´

1 ď Ex
`

Cz ϵ ` κ1
fBf

˘2rm . We observe that

Ex
`

Cz ϵ ` κ1
fBf

˘2rm
“

ˆ

´

Ex
`

Cz ϵ ` κ1
fBf

˘2rm
¯

1
2rm

˙2rm

ď

´

›

›Cz ϵ

›

›

L2rm
` κ1

fBf
¯2rm

,

and note that the assumptions on the innovations imply that
›

›Cz ϵ

›

›

L2rm
exists.

Using steps analogous to those used to get to (2.26) we have that

´

›

›Cz ϵ

›

›

L2rm
` κ1

fBf
¯2rm

ď Ex pκ1CϵpZtq:xq
2rm

ď pκb2rmq
1E

`

CϵpZtq
b2rm

˘

9xb2rm .
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The claim of case piiq then follows using the same steps of case piq after equa-

tion (2.30). When x P S2 ϵ it follows from A.2.2.1 and the definition of S2 ϵ that

supxPS2 ϵ
θPΘ

E pqXpXθ tq|Xθ t´1 “ xq ď γ2 ă 8, where we have used the fact the

expectation exists and it is bounded over Θ for every x P S2 ϵ provided that Z1 t

and Z2 t have 2rm moments. Since p1´γ1qqXpxq is positive the claim holds when

x P S2 ϵ.

2.11 Recursive prediction as a solution of a sequen-

tial optimization problem.

The class of algorithms defined in (2.3) was introduced without any justification

other than its close connection to standard models used in the literature. In this

section we show that this class of algorithms may be motivated as the solution of a

sequential optimization problem. The analysis is inspired by the research by Creal

et al. (2013) and Harvey (2013) on GAS/DCS models and by Gijbels et al. (1999);

Harvey and Chakravarty (2008) on the relation between nonparametric estimators

and time series models.17

Let tft, t ě 0u be defined as f0 “ f P F and

ft “ arg min
fPintpSq

Qtpfq , (2.31)

17The 1-step-ahead prediction formula implied by GAS/DCS models is sometimes motivated

as the approximate solution of a local estimation problem based on a generic (and sufficiently

regular) likelihood function. The class of algorithms we introduce for 1-step-ahead prediction can

be interpreted as the exact solution of a local estimation problem based on a Bregman loss.
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where Qt is the tracking error function defined as

Qtpfq “ w1Lpf̄ , fq ` w2LpYt´1, fq ` w3Lpft´1, fq ,

whereL denotes a loss in the Bregman family and pw1, w2, w3q “ w P ∆3 with ∆3

denoting the 3-dimensional simplex. The tracking error is a convex combination

of the divergences with respect to the constant f̄ , the previous observation and the

previous forecast. If f0 “ f̄ ,18 it is straightforward to verify that

Qtpfq9

t´1
ÿ

i“0

k
´xt ´ xt´i

h

¯

L pYt´i´1, fq ` λLpf̄ , fq , (2.32)

where txt, t ě 0u is a deterministic sequence defined as xt “ t for each t ě 0,

kpuq “ exppuq1tuď0u, h “ 1{ lnpw3q and λ “ w´1
2 ´

řt
i“1w

i´1
3 . Thus, the

tracking error can equivalently be thought of as the objective function of a local

constant regression plus a regularization term that penalizes deviations from the

constant f̄ . The solution of this optimization problem is

ft “ w1f̄ ` w2Yt´1 ` w3ft´1 , (2.33)

which coincides with the class of algorithms in (2.3) provided that θ “ pα0, α1, β1q1

with α0 “ w1f̄ , α1 “ w2 and β1 “ w3. Note that empirical risk minimization may

be interpreted as choosing the set of weights w and the constant f̄ in the objective

function Qt that minimize the in-sample empirical prediction loss.

18We remark that the choice f0 “ f̄ is made only for expository purposes, as it simplifies the

notation in (2.32). This would imply that the initial value for the forecast process is determined by

empirical risk minimization, which we do not cover in our framework.
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2.12 Detailed Computations of Lemma B.1/Part II

Over the integration range described in Part II of Lemma B.1 and conditionally

on H1, we have that Xθ 2 “ c ` GrZ1 2, Z2 2, Z2 1s1, where c “ pch, cf , cdq
1,

c “

»

—

—

—

—

—

–

gh1ph1q

α0Kp1 ` β1Kq ` β2
1Kf ` α1Kgy1ph1q ` α1Kβ1Kgy1phq

p1 ` α0K ` β1Kf ` β1 ` β1fq ` β
2

1d ` gy1ph1q ` pα1K ` β1qgy1phq

fi

ffi

ffi

ffi

ffi

ffi

fl

,

(2.34)

G “

»

—

—

—

—

—

–

gh2ph1q 0 0

0 α1Kgy2ph1q α1Kβ1Kgy2phq

0 gy2ph1q pα1K ` β1qgy2phq

fi

ffi

ffi

ffi

ffi

ffi

fl

. (2.35)

Moreover, we have that detG P rGl, Gus, where

Gl “ α2
1 inf

xPS2 ϵ
h1Prh1,h1`1s

gh2ph1qgy2phqgy2ph1q (2.36)

Gu “ α1pα1 ` β1q sup
xPS2 ϵ

h1Prh1,h1`1s

gh2ph1qgy2phqgy2ph1q . (2.37)

The set described in (2.29) is determined by the following quantities:

H2 “ sup ch (2.38)

f
2

“ sup cf ` Z2 2 supG22 ` Z2 1 supG23 (2.39)

d2pfθ 2q “
1

α1

fθ 2 ` sup

„

cd ´
1

α1K

ˆ

cf ´
detG

gh2ph1qgy2ph1q
Z2 1

˙ȷ

(2.40)

d2pfθ 2q “

ˆ

1

α1

`
1

β1

˙

fθ 2 `

inf

„

cd ´
1

α1Kβ1K

ˆ

pα1K ` β1qcf ´
detG

gh2ph1qgy2phq
Z2 2

˙ȷ

, (2.41)

and sup and inf are taken with respect to θ P Θ, x P S2 ϵ, and h1 P rh1, h1 ` 1s.
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2.13 Auxiliary Results

Lemma 2.13.1. Suppose A.2.2.1 and A.2.2.2 hold. Then,

(I) If Y “ R`, all losses listed in Table 2.2 satisfy Condition 2.2.1.

(II) If Y “ R, only the losses in Table 2.2 with S “ R satisfy Condition 2.2.1.

Proof.

Condition 2.2.1piq. It is obvious that Condition 2.2.1piq holds when Y “ R`. If

Y “ R, the losses with S Ď R` do not satisfy the condition because by A.2.2.1piq,

piiq, and piiiq we have

PpY1 ă 0q

ě

ż ´1

´2

ż 1

0

1

gy2ph1q
ϕY

ˆ

y1 ´ gy1ph1q

gy2ph1q

˙

1

gh2phq
ϕH

ˆ

h1 ´ gh1phq

gh2phq

˙

dy1dh1

ě inf
y1Pr´2,´1s

h1Pr0,1s

1

gy2ph1q
ϕY

ˆ

y1 ´ gy1ph1q

gy2ph1q

˙

1

gh2phq
ϕH

ˆ

h1 ´ gh1phq

gh2phq

˙

ą 0.

Condition 2.2.1piiq. The case ψpuq “ u2 is obvious. For the case ψpuq “

´ logpuq, we can write Lpfθ1 t, fθ2 tq “
fθ1 t

fθ2 t
´ log

fθ1 t

fθ2 t
´ 1 ď 1

2α0
2 pfθ1 t ´ fθ2 tq

2 ,

which follows by A.2.2.2 and Taylor’s Remainder formula. By the same argu-

ments, cases ψpuq “ u log u ´ u, ψpuq “ u log u
1`u

´ logp1 ` uq and ψpuq “

u tan´1puq ´ 1
2
logp1 ` u2q hold with Cψ “ 1

2α0
, Cψ “ 1

2α0p1`α0q
and Cψ “ 1

2
,

respectively.

Condition 2.2.1piiiq. It is understood that Yt P S a.s. for this part of the proof.

(a) ψpuq “ u2: We have }LpYt, fθ tq}Lrm
“ }Yt ´ fθ t}L2rm

ď }Yt}L2rm
`

}fθ t}L2rm
. The claim follows after taking the supremum over Θ on both sides
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of the inequality and Proposition 2.7.1.

(b) ψpuq “ u tan´1puq ´ 1
2
logp1 ` u2q: We have }LpYt, fθ tq}Lrm

ď p1{2 `

πq}Yt}Lrm
` p1{2q}fθ t}Lrm

, since the range of tan´1puq is p´π{2, π{2q and

logp1 ` u2q ď |u|. The result follows by taking the supremum on both sides

and Proposition 2.7.1.

(c) ψpuq “ ´ logpuq: We have }LpYt, fθ tq}Lrm
ď α´1

0 }Yt}Lrm
` } log Yt}Lrm

`

} log fθ t}Lrm
` 1 by A.2.2.2. Note that } log Yt}Lrm

ď } log Yt ¨ 1tYtď1u}Lrm
`

}Yt}Lrm
, where }Yt}Lrm

ă 8 by Proposition 2.7.1. Now,

›

›log Yt ¨ 1tYtď1u

›

›

Lrm

A.2.2.1piiq

ď
›

›log gy2pHtq ¨ 1tYtď1u

›

›

Lrm
`
›

›log ϵY t ¨ 1tYtď1u

›

›

Lrm

ď }log gy2pHtq}Lrm
` }log ϵY t}Lrm

,

where }log ϵY t}Lrm
ă 8 by A.2.2.1piiiq and

}log gy2pHtq}Lrm
ď log

´

inf
h
gy2phq

¯´1

` Cy2}Ht}Lrm
ă 8

by A.2.2.1piiq and Proposition 2.7.1, where infh gy2phq ď 1 without loss of

generality. Similarly, for every θ P Θ we can write }log fθ t}Lrm
ď logα´1

0 `

›

›log fθ t1tfθ tą1u

›

›

Lrm
ď logα´1

0 ` }fθ t}Lrm
, where we have assumed α0 ď 1

without loss of generality. The claim follows after taking the supremum over

Θ on both sides of the inequality and Proposition 2.7.1.

(d) ψpuq “ u logpuq ´ u: We have }LpYt, fθ tq}Lrm
ď }Yt}L2rm

p} log Yt}L2rm
`

} log fθ t}L2rm
`1q`}fθ t}Lrm

, and the claim follows by the arguments applied

in case pcq.
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(e) ψpuq “ u log u
1`u

´ logp1`uq: We have }LpYt, fθ tq}Lrm
ď Ytp} log Yt}Lrm

`

} log fθ t}Lrm
q ` }p1` YtqpYt ` fθ tq}Lrm

, and the claim follows by arguments

similar to those used in case pdq.

Lemma 2.13.2. Consider the setup given in the proof of Lemma 2.7.2. Let

qXpx, xGq “
q̃Xpxq ` q̃XpxGq

2
, and R “ p1 ´ c̃˚q

´2γ̃2p2 ´ γ̃1q .

Then,

ż

X

ż

X
qXpx2, x

G
2 q

“

P 2
Xpx, dx2q ´ c̃˚φpdx2q

‰ “

P 2
XpxG, dxG2 q ´ c̃˚φpdxG2 q

‰

ď Rp1 ´ c̃˚q
2

for all px, xGq P S̃2 ϵ ˆ S̃2 ϵ.

Proof. We note that c̃˚ is a strictly positive constant that does not depend on x2

nor xG2 . Hence by the symmetry of qX we may focus on bounding

ż

X

ż

X
q̃Xpx2q

“

P 2
Xpx, dx2q ´ c̃˚φpdx2q

‰ “

P 2
XpxG, dxG2 q ´ c̃˚φpdxG2 q

‰

. (2.42)

Using the fact that tXG
t , t ě 0u is an independent copy of tXt, t ě 0u, we can

re-write (2.42) as

ż

X
q̃Xpx2q

“

P 2
Xpx, dx2q ´ c̃˚φpdx2q

‰

ż

X

“

P 2
XpxG, dxG2 q ´ c̃˚φpdxG2 q

‰

ď

ż

X
q̃Xpx2q

“

P 2
Xpx, dx2q ´ c̃˚φpdx2q

‰

ď Epq̃XpX2q|X0 “ xq ,
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where we use c̃˚ ą 0, φp¨q ě 0, P 2
Xpx, ¨q ě c̃˚φp¨q, and

ş

X P
2
Xpx, dx2q “ 1. We

now write

Epq̃XpX2q|X0 “ xq ď p1 ´ γ̃1qEpq̃XpX1q|X0 “ xq ` γ̃2Ep1tX1PS̃2 ϵu|X0 “ xq

ď p1 ´ γ̃1qγ̃2 ` γ̃2 “ γ̃2p2 ´ γ̃1q ,

which follows by the law of iterated expectations and by repeated application of

the drift criterion, where the last inequality uses x P S̃2 ϵ. Applying the same

arguments for the second term, the claim follows.

Lemma 2.13.3. Consider the same setup of Theorem 2.3.1. Let Θi “ tθ P Rp :

}θ ´ θi}2 ď δu with Θi P Θ for i “ 1, . . . , Nδ denote a δ-covering of the set Θ for

any δ P p0, 1s. Define the function Uθ t “ LpYt, fθ tq and let Ui t “ Uθi t.

Then piq we have that supθPΘi
|Uθ t ´Ui t| ď δVi t “ Cψδpd

2
i t ` 2|Yt ´ fi t|di tq

a.s. , where Cψ is a positive constant, fi t “ fθi t and di t “ 1 ` |Yt´1| ` |fi t´1| `

β1di t´1, with di 0 “ 1 and piiq there exists a positive constant Cd ă 8 (that does

not depend on i or δ) such that EVi t ď δCd.

Proof. piq Using the generalized triangular equality for Bregman losses we get

|Uθ t ´Ui t| ď Lpfi t, fθ tq ` |pYt ´ fi tqp∇ψpfθ tq ´∇ψpfi tqq|, which holds almost

surely when ψpYtq “ ´ logpYtq, since by Condition 2.2.1piiiq we have that Yt ą 0

holds almost surely. It follows from the identity |∇ψpfθ tq´∇ψpfi tq||fθ t´fi t| “

Lpfθ t, fi tq ` Lpfi t, fθ tq and Condition 2.2.1piiq that |∇ψpfθ tq ´ ∇ψpfi tq|
a.s.
ď

2Cψ|fθ t ´ fi t|. This inequality and Condition 2.2.1piiq imply that

|Uθ t ´ Ui t|
a.s.
ď Cψ

“

pfθ t ´ fi tq
2

` 2|Yt ´ fi t| ¨ |fθ t ´ fi t|
‰

. (2.43)
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Set di 0 “ 1 and note that δdi 0 ą |fθ 0 ´ fi 0| “ 0, and by induction for all t ě 1,

we have

|fθ t ´ fi t| ď

K
ÿ

k“1

t|α0 k ´ α0 ki| ` |pα1 k ´ α1 kiqYt´1|

` |β1 kpfθ t´1 ´ fi t´1q ` pβ1 k ´ β1 kiqfi t´1|u1t´1 k

ď δ ` δ|Yt´1| ` δ|fi t´1| ` β1|fθ t´1 ´ fi t´1| ď δdi t . (2.44)

The result in piq follows by combining (2.43) and (2.44) and noting that δ P p0, 1s.

piiq It suffices to show that suptě1 }Yt}L2 , suptě1 supθPΘ }fθ t}L2 , and

suptě1 supθPΘ }dθ t}L2 exist, which holds by Proposition 2.7.1.

Definition 2.13.1 (Covering and packing.). Consider the metric space pRp, } ¨ }2q.

piq The δ-covering number of Θ is

Nδ “ mintcardpΘ̃q : @θ P Θ Dθ̃ P Θ̃ s.t. }θ ´ θ̃}2 ď δu .

piiq The δ-packing number of Θ is

Mδ “ maxtcardpΘ̌q : }θ̌1 ´ θ̌2}2 ą δ @θ̌1, θ̌2 P Θ̌ Ă Θu .

Lemma 2.13.4. Consider the metric space pRp, } ¨ }2q, and suppose A.2.2.2 holds.

Then, for any δ ą 0, we have Nδ ď
`

1 `
2CΘ

δ

˘p
, where CΘ “ supθPΘ }θ}2.

Proof. Consider a maximal δ-packing tθiu
Mδ
i“1 of size Mδ. Since it is a packing,

the balls tθ P Rp : }θ ´ θi}2 ď δ{2u, i “ 1, . . . ,Mδ are disjoint. Each of these

balls is contained in tθ P Rp : }θ}2 ď CΘ ` δ{2u. Thus,

Mδ
ď

i“1

tθ P Rp : }θ ´ θi} ď δ{2u Ď tθ P Rp : }θ}2 ď CΘ ` δ{2u .
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It follows that

Mδvol ptθ P Rp : }θ} ď δ{2uq ď vol ptθ P Rp : }θ}2 ď CΘ ` δ{2uq

Mδpδ{2q
pvolpBq ď pCΘ ` pδ{2qq

pvolpBq ,

where volp¨q denotes volume and B is the unit ball. The result follows by noting

that Nδ ď Mδ.

2.14 Proofs of Applications

Forecasting an AR(1) plus noise with an ARMA(1,1). Note that we can write model

as (2.1) and (2.2), where gy1phq “ h, gy2phq “ 1, gh1phq “ µHp1 ´ ϱq `

ϱh, gh2phq “ 1. Assumptions for gy1 and gy2 are satisfied with Cy1 “ 1 and

Cy2 “ 1. Set a “ |ϱ|. Then,

|gh1phq| ´ a|h| ď |µH | ¨ |1 ´ ϱ| ` |ϱ| ¨ |h| ´ a|h| “ |µH | ¨ |1 ´ ϱ| “ op|h|q.

Set b P p0, 1q such that Epa ` b|ϵH t|q
2rm ă 1. For that choice, we can always

write that |gh2phq| ´ b|h| ď 1 “ op|h|q. Hence the assumptions for gh1 and gh2 are

satisfied as well.

First we show that the optimal forecaster is the conditional mean µt “ Et´1pYtq,

where Etp¨q “ Ep¨|Yt, . . . , Y1q. Since Et´1pfθ tq “ fθ t, we have that for all

t “ T ` 1, . . . , T ` M ,

ET rLpYt, fθ tq ´ LpYt, µtqs “ ET rEt´1rLpYt, fθ tq ´ LpYt, µtqss

“ ET rLpµt, fθ tqs ě 0 , (2.45)

112



“main” — 2023/6/14 — 22:04 — page 113 — #129

where the last inequality holds with equality if and only if fθ t “ µt by properties

of Bregman divergences. Second, note that for this DGP we can compute its

conditional mean µt and (unconditional) error variance Pt via the Kalman filter.

Since H0 “ µH , this amounts to setting µ1 “ µH , P1 “ σ2
H , and for t ě 2 we

have

µt “ µHp1 ´ ϱq ` Kt´1Yt´1 ` pϱ ´ Kt´1qµt´1 , Pt “
ϱ2

1
σ2
Y

` 1
Pt´1

` σ2
H ,

where Kt “ ϱ Pt

Pt`σ2
Y

is the Kalman gain, and the recursion for the error variance

is known as the Ricatti equation. It is well known that the Kalman filter has a

steady-state solution if there exists a time-invariant error variance that satisfies the

Ricatti equation. If such a solution exists, we can set Pt “ Pt´1, thereby obtaining

the algebraic Riccati equation P ´ ϱ2P `
pϱP q2

P`σ2
Y

´ σ2
H “ 0 , P ě 0 , which is

uniquely solved by

P “
1

2

ˆ

σ2
H ´ p1 ´ ϱ2qσ2

Y `

b

σ4
H ` p1 ´ ϱ2q2σ4

Y ` 2σ2
Hσ

2
Y p1 ` ϱ2q

˙

. (2.46)

Note that in fact, P ě σ2
H , which accomodates the case where H0 has an initial

distribution with zero variance. Therefore, the steady-state Kalman gain is K “

ϱ P
P`σ2

Y

. At the steady state, the filter is time-invariant, which naturally has the

form of (2.3) with K “ 1, fθ 0 “ EpYtq and θ “ pµHp1 ´ ϱq, K, ϱ´Kq1. Finally,

we check that the restrictions given by A.2.2.2 are satisfied for suitable choices of

the parameter bounds. The restriction for the intercept is trivially satisfied for any

choice of α0 and α0 that contains the intercept. The restriction for α1 1 implies that

α1 ď K ď α1. The lower bound is satisfied for any α1 P p0, ϱσ2
H{pσ2

H ` σ2
Y qs,

and the upper bound holds for any α1 ě ϱ (e.g. α1 “ 1). The restriction for β1 1
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implies that 0 ď ϱσ2
Y {pP ` σ2

Y q ď β1, which holds for any ϱ P r0, 1q and any

β1 P rϱσ2
Y {pP ` σ2

Y q, 1q.

Forecasting a stochastic volatility model with a GARCH(1,1). Set gy1 ” 0,

gy2phq ” h and gh1 ” 0, and gh2phq ” exptµH ` ϱplog h ´ µHqu. The functions

gy1, gy2 and gh1 trivially satisfy A.2.2.1piq and A.2.2.1piiq with e.g. Cy1 “ 1,

Cy2 “ 1 and a “ 0. To see that gh2phq ” exptµH ` ϱplog h ´ µHqu satisfies

A.2.2.1piiq, note that for any b ą 0, we have that gh2phq ´ bh ď exptµHp1 ´

ϱquhϱ “ ophq as h Ñ 8 since ϱ P p0, 1q.

Define ϵY t “ z2t and ϵH t “ eηt . Then, ϵY t follows a chi-square distribution

with one degree of freedom and ϵH t follows a log-normal distribution. Clearly,

ϵH t and ϵY t are independent and are both supported on p0,8q as required by

A.2.2.1piiiq with ϵ “ 0. It is well known that Eϵ2rmH t “ expp2 ¨ r2mq ă 8 and

Eϵ2rmY t “ 22rmΓp2rm ` 1{2q{
?
π ă 8. Furthermore, the cumulant generating

function of log ϵY t is given by

Klog ϵY pλq “ logEeλ log ϵY t “ logEϵλY t “ λ log 2 ` log Γ

ˆ

λ `
1

2

˙

´
1

2
log π,

and the cumulants are given by κ1 “ log 2 ` Ψp1{2q and κn “ Ψpn´1qp1{2q

for n ě 2, where Ψpnq denotes the n-th derivative of the digamma function Ψ.

Since all cumulants of log ϵY t exist, it follows that all moments of log ϵY t exist

as well. Therefore, A.2.2.1piiiq is satisfied. If 0 ă b ă e´rm , then we have that

Epah ` b|ϵH t|q
2rmq “ b2rmEpϵ2rmH t q ă 1, which proves that A.2.2.1pivq holds.

Recursive prediction as a solution of a sequential optimization problem. The first
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order condition of the optimization problem given in (2.31) can be written as

0 “ ´∇2
fψpfq

“

w1pf̄ ´ fq ` w2pYt´1 ´ fq ` w3pft´1 ´ fq
‰

,

which is uniquely solved by (2.33). Clearly, ft P F . The second derivative of the

objective function evaluated at ft

∇2
fQtpfq

ˇ

ˇ

f“ft
“ ´∇3

fψpfqpft ´ fq
ˇ

ˇ

f“ft
` ∇2

fψpfq
ˇ

ˇ

f“ft
“ ∇2

fψpftq

is strictly positive by the strict convexity of ψ (we are implicitly assuming that

the third derivative exists), which verifies that this is a local minimum. Moreover,

note that ∇fQtpfq “ ´∇2
fψpfqpft ´ fq is positive whenever f ą ft and negative

whenever f ă ft for all f P intpSq. This verifies that the solution is a global

minimum. Finally, note that by recursive substitution in (2.33) we have that

ft “ w1f̄
t
ÿ

i“1

wi´1
3 ` w2

t
ÿ

i“1

wi´1
3 Yt´i ` wt3f0

“

˜

1 ´ wt3 ´ w2

t
ÿ

i“1

wi´1
3

¸

f̄ ` w2

t
ÿ

i“1

wi´1
3 Yt´i ` wt3f̄ ,

“

˜

1 ´ w2

t
ÿ

i“1

wi´1
3

¸

f̄ ` w2

t
ÿ

i“1

wi´1
3 Yt´i ,

since f0 “ f̄ . Note that this corresponds to the first order condition for a minimum

of (2.32), since by simple algebra we have that (2.32) is equal to w´1
2 Q̃tpfq, where

Q̃tpfq “ w2

t
ÿ

i“1

wi´1
3 LpYt´i, fq `

˜

1 ´ w2

t
ÿ

i“1

wi´1
3

¸

Lpf̄ , fq .
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Chapter 3

AN ORACLE INEQUALITY FOR

MULTIVARIATE DYNAMIC

QUANTILE FORECASTING

3.1 Introduction

Forecasting conditional quantiles of time series has a large number of applica-

tions in economics and finance. A recent popular example is the computation

of Growth-at-Risk forecasts, i.e. the 5% quantile of the distribution of real gross

domestic product growth given past information. Among the different methodolo-

gies proposed to forecast quantiles, the Conditional Autoregressive Value-at-Risk

(CAViaR) of Engle and Manganelli (2004) stands out as one of the leading ap-

proaches in the literature due to its flexibility, parsimony and relative ease of esti-
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mation. Moreover, the CAViaR methodology is semi-parametric in the sense that

it imposes mild assumptions on the data generating process (DGP) (White, Kim,

and Manganelli, 2015). Despite the fact that forecasting quantiles is of obvious

interest to economic agents, the theory in those papers is tailored to estimation

under correct specification of the quantile dynamics, and less attention is paid to

forecasting under misspecification.

This chapter establishes theoretical performance guarantees for out-of-sample

forecasting with a multivariate version of the CAViaR model. In practical terms,

the class of forecasts is equivalent to the one-lag version of the vector autoregres-

sive model for Value-at-Risk (VAR for VaR or VFV) of White et al. (2015) with

a single quantile. The guarantees are obtained by deriving an oracle inequality,

i.e. a probabilistic bound that relates the performance of an estimator to that of an

ideal estimator that has best performance in the class, also known as the “oracle”

(Donoho and Johnstone, 1994; Candes, 2006). The oracle inequality implies that

the VFV that minimizes the in-sample average check loss achieves the oracle’s

out-of-sample performance in terms of the check loss at a near optimal rate, even

when the model is fully misspecified. The chapter allows for full misspecification

in that it suffices to make nonparametric assumptions on the DGP, such as exis-

tence of a certain number of moments of the innovations and stable dynamics on

the time series. This result translates into optimal out-of-sample quantile forecast-

ing if the researcher believes that the class contains the true conditional quantile

of the time series.

An important reason to adopt a nonparametric perspective in the analysis of
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the performance of this class of dynamic quantile forecasts is that it is in gen-

eral quite challenging to find a realistic data generating process that justifies this

methodology. The theoretical framework in Engle and Manganelli (2004) oper-

ates under an additive error structure assumption where the quantile of interest of

the error is zero.1 For example, if the error is asymmetric Laplace distributed, the

CAViaR estimated via regression quantiles is a maximum likelihood estimator.

Nevertheless, this type of additive error DGP seems unrealistic for financial and

macroeconomic time series. Yet, CAViaR forecasting yields satisfactory results in

those applications, suggesting that it is robust to misspecification.

The theoretical framework of this chapter builds upon the literature on statisti-

cal learning theory. This framework has at least three important highlights. First,

the main result holds without assuming identification nor correct specification of

the quantile dynamics, which are critical assumptions in the CAViaR literature

(Engle and Manganelli, 2004; White et al., 2015). Second, the result holds in fi-

nite samples with high probability, as opposed to being asymptotic, and it provides

a specific rate of convergence for the predictive performance. Third, the theory

allows to derive transparent constraints on the parameter space where the class of

forecasts is stable. In contrast, (White et al., 2015) assume the existence of some

set over which the VFV is stable.
1As pointed out by the authors, the symmetric absolute value and asymmetric absolute value

CAViaR also arise naturally from a GARCH process with i.i.d. errors where the standard deviation

(rather than the variance) is modeled symmetrically or asymmetrically. However, in that paper the

theoretical framework does not use a multiplicative error DGP.
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The proof of the main result can be broken down in three main steps. The first

step is to establish existence of moments and strong mixing conditions for the loss

and a “dominating process” which is similar in spirit to the domination conditions

often used to obtain uniform laws of large numbers (Andrews, 1987; Pötscher and

Prucha, 1989). This is accomplished through Markov chain theory (Meyn and

Tweedie, 1993, Ch. 15). The novelty of the approach consists of proving that

a Markov chain whose components are the DGP, the forecast, and the dominat-

ing process is V -geometrically ergodic (Liebscher, 2005; Meitz and Saikkonen,

2008a). Importantly, the strong mixing coefficients are bounded by a function

with geometric decay uniformly over the parameter space, which is established

using results by Roberts and Rosenthal (2004). The second step is to establish

a general inequality that states that the performance of the VFV that minimizes

the in-sample average check loss can be controlled by the sum of piq the supre-

mum of an average of differences between conditional and unconditional expected

losses and piiq the supremum of the empirical process associated with the predic-

tion loss. In the third step, suitable bounds are derived for these two terms using,

respectively, an inequality from Ibragimov (1962) and a concentration inequality

for strong mixing processes (Liebscher, 1996).

The merits of the methodology are illustrated in an empirical contribution to

the recent Growth-at-Risk (GaR) literature popularized by Adrian, Boyarchenko,

and Giannone (2019). An out-of-sample GaR forecasting exercise shows that the

past of GDP growth seems to be the key driver of the time variation in the con-

ditional distribution of GDP growth, see also Brownlees and Souza (2021) and
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Catania, Luati, and Vallarino (2021). Furthermore, the results of the exercise sug-

gest that a combination of generalized autoregressive conditionally heteroskedas-

tic forecasts (GARCH) and VFV performs best out-of-sample. The combination

exploits the dynamics on the quantiles of the standardized residuals from the AR-

GARCH procedure. Although asymmetries in the conditional volatility of GDP

growth do not appear to play an important role, the empirical results of this work

suggest that other types of asymmetries do still matter for the quantiles.

This chapter is mainly related to three strands of the literature which share

more in common than it may appear at first sight.

Dynamic Quantile Models. In a time series context, quantile regression ap-

proaches need to be adapted to account for the dependence induced by the time-

ordering of the data. A natural extension is the quantile autoregressive approach

developed by Koenker and Xiao (2006) and, as pointed out above, one of the most

successful dynamic quantile models is the CAViaR specification by Engle and

Manganelli (2004). When considering multiple quantiles of a random variable, a

drawback of these approaches is the lack of an internal mechanism that avoids the

quantile crossing problem. This drawback can be addressed ex-post, see Cher-

nozhukov, Fernández-Val, and Galichon (2010), or ex-ante, see Gouriéroux and

Jasiak (2008). Important contributions to the dynamic quantile literature also in-

clude White, Kim, and Manganelli (2015); Chavleishvili and Manganelli (2019);

Catania and Luati (2019); Catania, Luati, and Mikkelsen (2022). Empirical illus-

trations as well as novel CAViaR specifications are presented in Kuester, Mittnik,
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and Paolella (2006); Bao, Lee, and Saltoglu (2006) for financial data and Huang,

Yu, Fabozzi, and Fukushima (2009) for oil price data.

The theory in the CAViaR literature is developed under the general framework

of M-estimation for dependent data. For example, the assumptions of White et al.

(2015) – which are tailored to the goals of estimation and inference – provide an

interesting benchmark to compare against the assumptions of the current chapter.

Overall, their assumptions can be regarded as semi-parametric in the sense that the

innovation distribution may be misspecified. However, a key assumption in that

paper is that there exists a unique parameter that characterizes the dynamics of the

true conditional quantile of the data, i.e. identification and correct specification. In

contrast, in the framework of this chapter, identification and correct specification

assumptions are not required.

Quasi-maximum likelihood. The oracle inequality derived in this chapter can

be regarded as a prediction analog of the consistency of quasi-maximum like-

lihood estimators. Results of this type date back to Akaike (1973) and White

(1982), which studied the properties of maximum likelihood estimation for mis-

specified models. The main lesson from those papers is that under mild assump-

tions, the (quasi-) maximum likelihood estimator (strongly) converges to the min-

imizer of the Kullback-Leibler Information Criterion (KLIC), which measures the

discrepancy between the density of the true DGP vs the pseudo-true density (the

Gaussian being the classical choice). As put by White (1982), the KLIC can be

interpreted as a measure of our ignorance about the true structure of the DGP.

122



“main” — 2023/6/14 — 22:04 — page 123 — #139

Extensions of this type of result to M-estimators with dependent data appeared al-

most simultaneously in the econometrics literature (Domowitz and White, 1982;

White and Domowitz, 1984).

Statistical learning theory for time series. The theory of M-estimation is able

to provide useful answers to the problems of estimation and inference, but is less

suitable to study the question of prediction. But seeing CAViaR as a “learning”

algorithm instead of a model may prove useful. In fact, a vast literature – under

the rubric of statistical learning theory – is devoted to study the prediction proper-

ties of learning algorithms. This literature is interested in a number of questions,

and this chapter is concerned with the following two: piq to find conditions for

consistency of learning processes, i.e. uniform convergence of a class of forecasts

(Vapnik and Chervonenkis, 1971), and piiq to determine the rate of convergence

of the learning process (Vapnik, 1999).

An interesting feature in the learning literature is that the relationship between

algorithm and data need not be specified. However, most results coming from the

statistical learning literature rely on a number of assumptions that do not apply to

the CAViaR models mentioned above, where data (and corresponding loss func-

tion) is non-i.i.d., unbounded, and prediction algorithms may depend on the entire

past of the data. Although several efforts have been made in that literature to ex-

tend their results to time series forecasting applications, none of those provides

oracle inequalities for out-of-sample forecasts based on the models cited above,

nor their multivariate extensions.
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This paper is not the first to use the framework of statistical learning theory

in time series econometrics. Examples of this include Jiang and Tanner (2010),

which studies the properties of empirical risk minimization for time series bi-

nary choice, Kock and Callot (2015), which establishes oracle inequalities for

high-dimensional vector autoregressions, Brownlees and Guðmundsson (2021),

which analyzes the performance of empirical risk minimization for linear regres-

sion with dependent data and Brownlees and Llorens-Terrazas (2021), which es-

tablishes similar results for a class of recursive threshold models that include as

special cases the forecasts induced by ARMA(1,1) and GARCH(1,1) models. Fi-

nally, note that the framework can also be adapted to deal with policy decisions

such as the allocation of treatments to individuals based on covariates (Manski,

2004; Kitagawa and Tetenov, 2018), which has recently been adapted to deal with

multivariate time series (Kitagawa, Wang, and Xu, 2022).

Outline of the paper. The rest of this chapter is structured as follows. Sec-

tion 3.2 lays out the notation and presents the class of forecasts and the estima-

tion procedure. Section 3.3 introduces the theoretical framework under which the

main result is derived, and section 3.4 highlights the main steps followed to prove

the claim. Section 3.5 contains the empirical application to Growth-at-Risk, and

section 3.6 concludes. All proofs and additional tables are gathered in sections

3.8-3.14.
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3.2 Methodology

Notation. For an n ˆ 1 real vector x, }x}r “ p
řn
i“1 |xi|

rq
1{r, where r ě 1,

and x´i “ px1, . . . , xi´1, xi`1, . . . , xnq1, i.e. x´i denotes removal of the ith entry

of x, i “ 1, . . . , n. For an m ˆ n real matrix A, ~A~1 “ max1ďjďn

řm
i“1 |ai j|,

i.e. the maximum absolute column sum of the matrix, and if A is square, Abr “

A b ¨ ¨ ¨ b A, i.e. the Kronecker product taken r times. The notation vecpAq

represents a long vector that stacks the columns of the matrix A from left to right.

For a random variable X , let }X}Lr “ pE |X|rq
1{r, where r ě 1, and }X}L8

“

infta : Prp|X| ą aq “ 0u for r “ 8. For two real numbers a and b, denote

a ^ b “ minta, bu and a _ b “ maxta, bu. In this chapter, Ip¨q denotes the

indicator function, while I is used for the identity matrix. For a time series tXtu,

where t is a non-negative integer, let Etp¨q “ Ep¨|Xt´1, . . . , X1q. For real x, the

notation txu is used to denote the largest integer lower than or equal to x, and rxs

denotes the smallest integer greater than or equal to x.

3.2.1 Definition of the class of forecasts

The main goal of this chapter is out-of-sample conditional quantile forecasting of

a multivariate time series tYtu taking values in RN . In the sequel, the focus is on

one-step-ahead forecasting, but the results apply to multi-step ahead forecasting

as well (see sections 3.11 and 3.12). More specifically, for some τi P r0, 1s and

i “ 1, . . . , N , let qτii t denote the conditional τi-quantile of Yi t given information up

to time t´ 1. That is, qτii t is implicitly defined as PrpYi t ď qτii t|Yt´1, . . . , Y1q “ τi.
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The following class of recursive forecasts indexed by θ P Θω ˆΘA ˆΘB ˆΘλ “

Θ Ă Rp is available to the forecaster, and can be written in matrix notation as

fθ t “ ω ` AsλpYt´1q ` Bfθ t´1 , (3.1)

where fθ t P RN , θ “ pω1, vecpAq1, vecpBq1, λ1q1, ω P Θω Ă Rpω , vecpAq P ΘA Ă

RpA , vecpBq P ΘB Ă RpB , λ P Θλ Ă Rpλ , p “ pω ` pA ` pB ` pλ and sλp¨q is

shorthand for sp¨, λq, where s : RN
ˆRpλ Ñ RN .2 The precise assumptions on

the parameters and the function sλ are spelled out in what follows. In practice, the

forecaster chooses a fixed value fθ 1 to start the recursion.

For example, a simple bivariate version of the above relates the conditional

quantile forecasts of both random variables according to a vector autoregressive

structure (VAR)3

fθ 1 t “ X 1
tβ1 ` b11fθ 1 t´1 ` b12fθ 2 t´1 ,

fθ 2 t “ X 1
tβ2 ` b21fθ 1 t´1 ` b22fθ 2 t´1 ,

where Xt represents predictors belonging to the information set up to t´1, which

typically includes lagged values of Yi t (White et al., 2015).

A number of remarks are in order. First, note that sλ need not be differentiable

as a function of λ. Second, the assumptions are general enough to accommodate
2To keep the theoretical analysis as simple as possible, the function sλ is assumed to be dif-

ferentiable, but the theoretical framework can accommodate arbitrarily good approximations to

popularly used non-differentiable functions such as the absolute value.
3This example follows the terminology used in White et al. (2015). Arguably, the forecasting

equations look more similar to the forecasts induced by a vector autoregressive moving average

(VARMA).
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multivariate versions of the symmetric and asymmetric absolute value specifica-

tions of Engle and Manganelli (2004).4 Third, a distinguishing feature with re-

spect to the CAViaR literature is that the relationship between Yt and fθ t is not

specified. In particular, qτt :“ pqτ11 t, . . . , q
τN
N tq

1 need not be equal to fθ t. Fourth, the

class can only handle a single quantile for each variable, although the quantiles

may differ for each variable.5

3.2.2 Loss function

The focus of this chapter is on forecasting under the check loss

ρτ puq “ upτ ´ Ipu ă 0qq , τ P r0, 1s .

The check loss (also known as tick loss) can be interpreted as an asymmetric

generalization of the absolute error. Setting τ “ 1{2 leads to the absolute error

scaled by 1/2. This allows the forecaster to incorporate the relative costs of under

vs over-prediction.6 It is well known that this loss function elicits the τ -quantile

of a random variable. Technically, the forecasting problem in this chapter (and in

the CAViaR literature) is formulated as forecasting Yt on the basis of the check

loss, even though the end goal is to forecast the unobservable qτt . The question

of evaluating quantile forecasts is a different and interesting problem, but it falls

4Section 3.7 provides a list of examples of data transformations allowed by A.3.3.2.
5The extension to multiple quantiles for each variable is possible but at the expense of more

tedious proofs.
6Similar results to those derived in this chapter also apply to asymmetric least squares Newey

and Powell (1987).
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out of the scope of this chapter. The interested reader can refer to Engle and

Manganelli (2004); Giacomini and Komunjer (2005); Komunjer (2013) for more

details. It should be noted that the check loss is commonly used to assess the

accuracy of quantile forecasts (Giacomini and Komunjer, 2005).

Note that standard asymptotic results for (Q)MLE require that the log-likelihood

be twice differentiable, which is not the case with the check loss. Extension of the

results to nonsmooth objective functions is of course feasible, and the intuition is

that smoothness of the objective function can be replaced by smoothness of the

limit if certain remainder terms are small. However, a proper formalization of

this intuition requires proofs that are somewhat technical and lengthy (Newey and

McFadden, 1994, Sec. 7.4). In contrast, the present paper does not need to deal

with such technicalities since the results hold without requiring differentiability

of the loss function.

3.2.3 Estimation

As usual in the CAViaR literature, the parameter θ in (3.1) is unknown to the

forecaster and needs to be estimated from the data. Let τ “ pτ1, . . . , τNq1 P

r0, 1sN . The estimation problem is formulated as7

θ̂T,τ P argmin
Θ
RT pθ, τq , RT pθ, τq “

1

T

T
ÿ

t“1

ltpθ, τq , (3.2)

7In practice, the forecaster needs to choose a suitable initial value fθ 1 to initiate the recursion,

which is computed using Y0 “ y and fθ 0 “ f that are fixed, known and do not depend on θ. A

typical choice is the unconditional quantiles of Yt.
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and

ltpθ, τq “
1

N

N
ÿ

i“1

ρτipYi t ´ fθ i tq. (3.3)

Note that as in most quantile estimation problems, θ̂T,τ need not be unique, and

in that case one may choose θ̂T,τ arbitrarily among the set of candidate minimiz-

ers of the criterion. Problem (3.2) is a special case of an extremum estimator, or

M-estimator. While the theory of M-estimation is (obviously) focused on estima-

tion and inference, this chapter is concerned with deriving theoretical guarantees

for one-step-ahead out-of-sample forecasting with θ̂T,τ . An important remark is

that unlike in classical parametric statistics, θ P Θ is not indexing the family of

distributions that generate tYtu. Instead, it only indexes the class of forecasts.

3.3 Theory

As it is clear from section 3.2, fθ t need not represent the true conditional quantiles

of Yt. Nevertheless, the main result in this section states that fθ t achieves the

optimal performance within its class in the check loss sense at a near optimal rate.

3.3.1 Framework

Conditional risk. This section starts by formally defining the notion of perfor-

mance. Let M “ rγT s for some γ ą 0. The conditional risk of θ̂T,τ is defined

as

Rpθ̂T,τ , τq :“ E

«

1

M

T`M
ÿ

t“T`1

ltpθ̂T,τ , τq

ˇ

ˇ

ˇ

ˇ

ˇ

YT , . . . , Y1

ff

. (3.4)
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It is important to remark that Rpθ̂T,τ , τq is a natural metric of out-of-sample per-

formance for time series forecasting: it measures the expected average loss in

one-step-ahead out-of-sample forecasting using θ̂T,τ given a sample path of in-

sample observations.

Note that if the data is independent and identically distributed, it is simpler to

define performance by taking an independent copy of the in-sample data, since the

dynamics do not play any role for future forecasting, but this is not satisfactory in

time series applications (Kuznetsov and Mohri, 2015). Naturally, Rpθ̂T,τ , τq is a

random variable.

Dominating process. A key step in the proof of the main result is to find a

process tdθ tu such that }θ ´ 9θ}1 ď δ implies that }fθ t ´ f 9θ t}1 ď δd 9θ t for every

pair θ, 9θ P Θ and every t ě 1. The dominating process in question is given by the

following recursion

dθ t “ 1 ` Cs
`

1 ` A
˘

}Yt´1}1 ` }fθ t´1}1 ` Bdθ t´1 ` ϵd t , (3.5)

where dθ 0 ě 1, Cs and A are positive finite constants, and tϵd tu is an i.i.d. se-

quence of non-negative random variables. It follows that

ˇ

ˇ

ˇ
ltpθ, τq ´ ltp 9θ, τq

ˇ

ˇ

ˇ
ď

1

N
δd 9θ t (3.6)

holds for all t ě 1. The construction of the dominating process is closely related

to the smoothness conditions used to turn pointwise laws of large numbers (LLNs)
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into uniform LLNs over compact sets.8

Oracle inequality. An oracle inequality is a probabilistic bound that relates the

performance of an estimator to that of an ideal estimator that has best performance

in the class, also known as the “oracle” (Donoho and Johnstone, 1994; Candes,

2006). Following Lecué and Mendelson (2016), the M-estimator θ̂T,τ satisfies an

oracle inequality if the following bound

Rpθ̂T,τ , τq ď inf
Θ
Rpθ, τq ` rT pN, pq

holds with high probability, where rT pN, pq is a term which converges to zero

at a rate that depends on the sample size T , size of the cross-section N , and the

complexity of the class of forecasts (quantified by p). Notice that the term does

not depend on τ , suggesting that the result holds uniformly over all τ P r0, 1sN .

The following condition is key to establish an oracle inequality for the class

of forecasts considered in this chapter.

Condition 3.3.1 (Moments and mixing). The following conditions are satisfied by

tltpθ, τqu and tdθ tu, which are given by (3.2) and (3.5):

(i) θ P Θ Ď Rp, where Θ is compact.

8For instance, A3 in Andrews (1987) requires that

lim
δÑ0

sup
Tě1

1

T

T
ÿ

t“1

E sup
θPBp 9θ,δq

|ltpθ, τq ´ ltp 9θ, τq| “ 0 ,

where Bp 9θ, δq “ tθ P Θ : ϱp 9θ, θq ď δu and ϱ can be any metric defined on Θ. It is easy to see that

inequality (3.6) together with a suitable uniform moment requirement on dθ t are enough to verify

the smoothness condition A3.
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(ii) For every θ P Θ and τ P r0, 1sN , the processes tltpθ, τqu and tdθ tu are

α-mixing with α-mixing coefficients such that αpmq ď expp´Cαm
rαq for some

Cα ą 0 and rα ą 0 that do not depend on θ.9

(iii) There exists CL ă 8 such that supτPr0,1sN suptě1 supΘ }ltpθ, τq}Lk
ď CL and

suptě1 supΘ }dθ t}Lk
ď CL, for some k ą p ` 2.

(iv) There exists a stationary process tlGt pθ, τqu with supΘ }lG1 pθ, τq}Lk
ă 8 such

that supΘ

ř8

t“1 |E ltpθ, τq ´ E lG1 pθ, τq| ď C0 for all t ě 1, where C0 ă 8.

(v) The (conditional and unconditional) distribution of Yt is supported on Y Ď

RN , where Y has positive Lebesgue measure in RN .

Condition 3.3.1 deserves some discussion.

The first thing to note is that Condition 3.3.1 can be verified for a large class of

parameter-driven DGP’s (Cox, 1981). For instance, A.3.3.1, A.3.3.2 and A.3.3.3

imply Condition 3.3.1. This is established in this chapter by application of Markov

chain theory. The approach consists of deriving V -geometric ergodicity (Lieb-

scher, 2005; Meitz and Saikkonen, 2008a) of the Markov chain given by the DGP,

fθ t and dθ t, which in turn implies the mixing and moment properties described in

Condition 3.3.1. Section 3.9 contains a full derivation of these results.

Condition 3.3.1piq is a standard compactness requirement on the parameter

space. Condition 3.3.1piiq is a strong mixing assumption (Doukhan, 1994). Al-

though strong mixing assumptions are not the most general type of condition, they

9See Definition 3.9.1 for a formal definition of αpmq. tXtu is said to be strongly mixing or

α-mixing, if αpmq Ñ 0 as m Ñ 8. While the α-mixing coefficients of tltpθ, τqu and tdθ tu could

be different, the condition means that they have a common upper bound.
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are still satisfied by a large number of models such as “stable” Markov chains with

absolutely continuous innovations. An interesting example is the class of hidden

Markov models given by (3.7) and (3.8). Condition 3.3.1piiiq is a moment re-

quirement on the loss and the dominating process, which involves Yt, fθ t and

dθ t. The requirement k ą p ` 2 follows from the choice of the proof techniques

used to derive concentration inequalities for the terms on the right-hand side of

(3.9). Condition 3.3.1pivq requires that the first moment of the loss process, whose

forecast is initialized at a fixed value fθ 1, converges to its stationary counterpart,

which is assumed to exist. For example, A.3.3.1, and A.3.3.2 below are enough to

satisfy this requirement. Condition 3.3.1pvq ensures that the distribution of Yt is

sufficiently well-behaved. In particular, it rules out that Yt might only take values

in some lower-dimensional subspace of RN .

The assumptions in Engle and Manganelli (2004) and White et al. (2015) pro-

vide a reasonable benchmark to establish a comparison with Condition 3.3.1. In

that literature, it is assumed that there exists θ0,τ P Θ such that fθ0,τ t “ qτt , while

in this chapter this is not required. The CAViaR literature assumes (inter alia)

that the loss process satisfies a uniform law of large numbers (ULLN). Instead,

Condition 3.3.1 can be seen as a sufficient condition to obtain the assumed ULLN

from the CAViaR literature. Furthermore, Condition 3.3.1 is sufficient to establish

a rate of convergence. In summary, Condition 3.3.1 is easier to verify and tailored

to the goal of this chapter – which is out-of-sample forecasting.
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3.3.2 Assumptions

This sub-section gives a list of sufficient conditions under which Condition 3.3.1

holds.

Data generating process. Suppose that the data generating mechanism is given

by the following hidden Markov model

Yt “ gy1pHtq ` gy2pHtqϵY t (3.7)

Ht “ gh1pHt´1q ` gh2pHt´1qϵH t , (3.8)

where Yt takes values in Y Ď RN and Ht takes values in H Ď Rph; gy1, gy2, gh1

and gh2 are Borel-measurable functions, and tϵY tu and tϵH tu are jointly i.i.d. se-

quences of random vectors supported in Y and H, respectively. The process is

initialized at H0 “ h0 P H, i.e. h0 is a fixed initial value. To simplify notation,

take Y “ RN and H “ Rph .

A.3.3.1. The process given by equations (3.7) and (3.8) satisfies the following:

(i) The functions gh1 and gh2 are bounded on bounded subsets of Rph . Moreover,

}gh1phq}1 ď a}h}1`op}h}1q and ~gh2phq~1 ď b}h}1`op}h}1q as }h}1 Ñ 8. The

function gh2phq is non-singular for all h P Rph , and infhPRph | detpgh2phqq| ą 0.

(ii) The functions gy1 and gy2 are bounded on bounded subsets of Rph . Moreover,

}gy1phq}1 ď Cy}h}1 and ~gy2phq~1 ď Cy}h}1 for some Cy ă 8. The function

gy2phq is non-singular for all h P Rph , and infhPRph | detpgy2phqq| ą 0.

(iii) The random process tpϵ1
Y t´1, ϵ

1
H tq

1u is i.i.d. and pϵ1
Y t´1, ϵ

1
H tq

1 has a distribu-

tion that is absolutely continuous with respect to the Lebesgue measure on RN`ph ,
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and is supported on RN`ph . The joint density ϕ of the random vector pϵ1
Y t´1, ϵ

1
H tq

1

satisfies ϕpϵY t´1, ϵH tq “ ϕY pϵY t´1qϕHpϵH tq, where ϕY and ϕH are densities that

are bounded away from zero on compact subsets of RN and Rph , respectively.

The random variables ϵY t and ϵH t satisfy }}ϵY t}1}Lk
ă 8 and }}ϵH t}1}Lk

ă 8

(resp.) for some k ą p ` 2.

(iv) Epa ` b}ϵH t}1qk ă 1.

Class of forecasts

A.3.3.2. The class of forecasts given by (3.1) satisfies the following:

(i) ~B~1 ď B ă 1.

(ii) detpAq ‰ 0 and ~A~1 ď A ă 8.

(iii) For each h P Rph , there exists some z P RN such that det
´

Bs̃λph,zq

Bz

¯

‰ 0,

where s̃λph, zq :“ sλpgy1phq ` gy2phqzq.

(iv) There exists some Cs ă 8 such that }sλpuq}1 ď Cs}u}1 and }sλpuq ´

s 9λpuq}1 ď Cs}u}1}λ ´ 9λ}1 for every u, where Cs does not depend on λ nor 9λ.

(v) θ “ pω1, vecpAq1, vecpBq1, λ1q1 P Θ Ď Rp, where Θ is compact.

(vi) There exists Df Ď RN such that sλ is a diffeomorphism in Df .

Dominating process

A.3.3.3. The dominating process given by (3.5) satisfies the following: (i) tϵd tu

is an i.i.d. sequence of random variables with absolutely continuous distributions

w.r.t. Lebesgue measure on R and (ii) ϵd t is supported in r0, 1s for all t ě 1, with

density ϕd that is bounded away from zero on compact subsets of r0, 1s.
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Remarks. A.3.3.1 is a multivariate extension of standard assumptions used to

establish geometric ergodicity of nonlinear time series models (Masry and Tjøs-

theim, 1995; Lu and Jiang, 2001; Lanne and Saikkonen, 2005; Meitz and Saikko-

nen, 2008a) and it allows for a fairly broad class of parameter-driven processes.

A.3.3.1(i) is similar to Assumption 3.2 in Masry and Tjøstheim (1995) and it im-

plies that (3.8) is dominated asymptotically by a stable linear model. As Masry

and Tjøstheim (1995) emphasize, such a requirement is mild, since functions that

grow everywhere faster than a stable linear model are nonstationary. A.3.3.1(ii)

allows for a fair amount of flexibility in equation (3.7). In particular, it requires

}Yt}1 to be bounded from above by a linear function of }Ht}1. A.3.3.1(iii) imposes

conditions on the random variables ϵH t and ϵY t that are analogous to standard

conditions used in the literature. A.3.3.1(iv) is a stability condition analogous to

the one assumed in Masry and Tjøstheim (1995) or Lanne and Saikkonen (2005).

A.3.3.2(i) is a stability condition for fθ t and dθ t. Intuitively, this assump-

tion ensures that the forecasts have a sufficiently “fading memory” (Pötscher and

Prucha, 1997). Note that A.3.3.2(i) implies that the spectral radius of B is strictly

less than unity. A.3.3.2(ii) requires A to be non-singular, so Θ must avoid the re-

gion of the parameter space where detpAq “ 0. For instance, we may require that

| detpAq| ě A ą 0. The upper boundA can be chosen arbitrarily by the forecaster,

although higher values of A have the effect of slowing down the geometric decay

rate of the strong mixing coefficients. A.3.3.2(iii), A.3.3.2(iv) and A.3.3.2(vi) are

relatively mild and allow for a broad class of transformations sλ that include as

special cases differentiable approximations to symmetric and asymmetric absolute
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values (see section 3.7 for examples of sλ that satisfy A.3.3.2).

A.3.3.3 is an auxiliary assumption that is useful to simplify the proof of irre-

ducibility and aperiodicity of the “companion Markov chain” defined in (2.11).

More specifically, the assumption permits the use of proof techniques similar in

spirit to Meitz and Saikkonen (2008b, Lemma 2) and Meyn and Tweedie (1993,

Ch. 7).

Condition 3.3.1 leads to an oracle inequality for the class of forecasts intro-

duced in (3.1), with out-of-sample performance defined as in equation (3.4).

Theorem 3.3.1. Suppose Condition 3.3.1 holds. Then, there exists a positive con-

stant σ (uniformly over τ ) such that, for all T sufficiently large, it holds that

Rpθ̂T , τq ď inf
Θ
Rpθ, τq ` 2σ

c

p log T

NT

with probability at least 1 ´ log´1 T ´ oplog´1 T q.

Some remarks are in order. First, if the forecaster believes that there exists

θ0,τ P Θ such that fθ0,τ t “ qτt , then we have the analogous result of the consis-

tency of CAViaR for out-of-sample forecasting in finite samples and with a rate

of convergence. Second, if there is no θ P Θ such that fθ t “ qτt , Theorem 3.3.1

still provides finite-sample performance guarantees for out-of-sample forecasting

in the check loss sense.

The constant σ2 is application-specific and may be interpreted as an upper

bound for the long run variance of the loss process. See Proposition 3.4.3 for a

precise definition of σ2. The rate of convergence
a

log T {T is sometimes referred
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to as the classical rate of convergence of empirical risk minimization in the learn-

ing literature for classification with i.i.d. data (Devroye et al., 1996, Ch. 12). With

fixed N , the theorem implies that the M-estimator is consistent with respect to

the class of forecasts indexed by Θ, meaning that |Rpθ̂T,τ , τq ´ infΘRpθ, τq|
p

Ñ 0

as T Ñ 8. In other words, the M-estimator achieves asymptotically the optimal

forecasting performance attainable within the class of algorithms considered.

One can interpret NT as the “effective” sample size, i.e. the number of time

series multiplied by the sample size for each series. However, it should be noted

that the proof techniques employed in this chapter do not allow p nor N to diverge

to infinity. This limits the extent to which Theorem 3.3.1 can be regarded as a

“high-dimensional” result, in the sense that it cannot be used to draw conclusions

about specifications for which p Ñ 8 as N Ñ 8. Still, it is a useful result for

specifications that rely on “commonalities” on the parameters such as composite

likelihood (Pakel, Shephard, and Sheppard, 2011), where p is fixed and the per-

formance of θ̂T,τ can improve by pooling information across series. An example

of such a procedure is used in the empirical section.

It is important to emphasize that Theorem 3.3.1 is stronger than a consistency

result for the prediction performance of the M-estimator since it is non-asymptotic

(it holds for each sufficiently large T ) and it provides a specific rate of convergence

for the performance of the M-estimator. As will be noted in section 3.4, oracle in-

equalities can be proved with techniques similar to those used to obtain ULLNs,

or “uniform convergence over a class of functions” (Vapnik and Chervonenkis,

1971). However, the oracle inequality stated in this chapter is stronger than a
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ULLN, since it also provides information about the rate at which the performance

of the forecast is approaching its optimal level (Vapnik, 1999). Lastly, we empha-

size that the existence of an optimal prediction rule θ0,τ “ argminΘRpθ, τq is not

required by the theorem.

3.3.3 Additional Discussion

This paper provides a list of sufficient conditions which involve a data generating

process given by a hidden Markov model. Clearly, an observation-driven process

may be entertained instead. In this case, the analysis of the performance of the

M-estimator can be carried out using the same strategy developed in this chapter.

However, the Markov chain analysis would differ and the analysis of this case is

left for future research.

The theoretical framework of this chapter does not require the class of algo-

rithms to have special approximation properties or to include the optimal forecast

associated with the data generating process and the loss function. What is key

in the framework is that, loosely speaking, forecasts forget the past exponentially

fast.

Instead of comparing the performance of the M-estimator against the optimal

risk attainable in the class, one may wish to compare against the risk of the optimal

1-step-ahead forecast. For the check loss, the optimal 1-step-ahead forecast is the

conditional quantile (assuming it exists) (Giacomini and Komunjer, 2005). Thus,
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the risk of the optimal 1-step-ahead forecast may be defined as

R˚
pτq “ E

«

1

M

1

N

T`M
ÿ

t“T`1

N
ÿ

i“1

ρτipYi t ´ qτii tq

ˇ

ˇ

ˇ

ˇ

ˇ

YT , . . . , Y1

ff

.

The performance of the M-estimator relative to the risk of the optimal 1-step-

ahead forecast may be expressed as

Rpθ̂T,τ , τq ´ R˚
pτq “

”

inf
Θ
Rpθ, τq ´ R˚

pτq

ı

`

”

Rpθ̂T,τ , τq ´ inf
Θ
Rpθ, τq

ı

.

The first term is called the approximation error and the second term is called the

estimation error (Devroye et al., 1996, Ch. 12). Notice that oracle inequalities

control the estimation error. The approximation error is typically difficult to con-

trol, especially in a time series setting. There are a number of contributions that,

in some sense, attempt to control the approximation error (Nelson, 1992). In gen-

eral, the analysis of the approximation error requires additional assumptions. For

this reason learning theory typically focuses on studying the estimation error, as

it is done in this chapter.

The focus of this chapter is on quantile forecasting, and as such the theory

is derived for the check loss function. Notwithstanding, inspection of the proof

strategy reveals that similar results can be derived for other loss functions, so long

as they satisfy dominance requirements akin to (3.6) above. This is the case for the

(asymmetric) least squares criterion proposed by Newey and Powell (1987), that

is, ϱτipuq “ u2|τi ´ Ipu ă 0q|. Note that with ltpθ, τq “ 1
N

řN
i“1 ϱτipYi t ´ fθ i tq,

it holds that

|ltpθ, τq ´ ltp 9θ, τq| ď
1

N
}fθ t ´ f 9θ t}

2
2

`
2

N

N
ÿ

i“1

|Yi t ´ f 9θ i t||fθ i t ´ f 9θ i t| ,
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and it is not difficult to verify that a dominating process dθ t analogous to (3.5) can

be derived so that }θ ´ 9θ}2 ď δ implies that }fθ t ´ f 9θ t}2 ď δd 9θ t for every pair

θ, 9θ P Θ. However, notation and proofs do require modifications which are not

pursued here.

The check loss elicits marginal quantile forecasts, but one may also be inter-

ested in extending the setup to multivariate quantiles. For example, the framework

can also accommodate the notion of geometric quantiles introduced by Chaudhuri

(1996). By letting τ P tx P RN : }x}2 ď 1u instead of r0, 1sN , a geometric

τ -quantile is obtained by minimizing the criterion in (3.2) with10

ltpθ, τq “ }Yt ´ fθ t}2 ` τ 1
pYt ´ fθ tq, }τ}2 ď 1.

3.4 Sketch of proof of Theorem 3.3.1

This section explains the main steps to derive the proof of Theorem 3.3.1, which

are broken down in four propositions. Proofs can be found in section 3.8.

Step 1: Basic inequality. The first step consists of noting that the discrepancy

between Rpθ̂T , τq and infΘRpθ, τq – also known as “regret” in the learning liter-

ature – can be upper bounded by two key terms.

Proposition 3.4.1. Let Rpθ, τq “ E lGt pθ, τq, where tlGt pθ, τqu is the process de-

10Note that for every pair θ, 9θ P Θ, if }θ´ 9θ}2 ď δ, then |ltpθ, τq ´ ltp 9θ, τq| ď 2}fθ t ´ f 9θ t}2 ď

2δd 9θ t, where dθ t is a dominating process but defined with ℓ2-norms instead of ℓ1.
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fined in Condition 3.3.1. Then,

Rpθ̂T,τ , τq ´ inf
Θ
Rpθ, τq

ď 2 sup
Θ

|RT pθ, τq ´ Rpθ, τq| ` 2 sup
Θ

|Rpθ, τq ´ Rpθ, τq| . (3.9)

It is important to emphasize that Proposition 3.4.1 is a general result that only

requires the “ghost” stationary loss process tlGt pθ, τqu to exist. Note that when the

data is i.i.d.,Rpθ, τq “ Rpθ, τq and the inequality in Proposition 3.4.1 corresponds

to the classic inequality derived in Vapnik and Chervonenkis (1974) (Devroye

et al., 1996), which is routinely used to derive bounds on the performance of

empirical risk minimization.

Step 2: Covering. The second step is summarized in the following.

Proposition 3.4.2. Suppose Condition 3.3.1 is satisfied. Then, for any ε ą 0, any

T ě 4C0ε
´1, and any M ě 4C0ε

´1, it holds that

Pr

ˆ

sup
Θ

|RT pθ, τq ´ Rpθ, τq| ą
ε

2

˙

ď

ˆ

1 `
48CΘCd
Nε

˙p

sup
Θ

”

P T
1

´

ltpθ, τq,
ε

8

¯

` P T
1 pdθ t, Cdq

ı

,

and

Pr

ˆ

sup
Θ

|Rpθ, τq ´ Rpθ, τq| ą
ε

2

˙

ď

ˆ

1 `
48CΘCd
Nε

˙p

sup
Θ

”

P T`M
T`1

´

ET ltpθ, τq,
ε

8

¯

` P T`M
T`1 pET dθ t, Cdq

ı

,

where P b
apUt, εq “ Pr

´
ˇ

ˇ

ˇ

1
b´a`1

řb
t“arUt ´ EUts

ˇ

ˇ

ˇ
ą ε

¯

, CΘ “ supΘ }θ}1

and Cd “ suptě1 supΘ }dθ t}L1 .
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Proposition 3.4.2 relies on a “covering argument” which has appeared in the

literature to establish uniform laws of large numbers (Amemiya, 1985; Davidson,

1994) and in empirical risk minimization for time series (Jiang and Tanner, 2010).

Step 3: Concentration inequality (part I). The third step uses a slight modifi-

cation of a well known concentration inequality for sums of α-mixing processes

(Liebscher, 1996). Proposition 3.4.3 formalizes the result.

Proposition 3.4.3. Suppose Condition 3.3.1 is satisfied. Then, for all T suffi-

ciently large and for εT “ σ
b

p log T
NT

, it holds that

ˆ

1 `
48CΘCd
NεT

˙p

sup
Θ

Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

rltpθ, τq ´ E ltpθ, τqs

ˇ

ˇ

ˇ

ˇ

ˇ

ą
εT
8

¸

ď
1

log T
and

ˆ

1 `
48CΘCd
NεT

˙p

sup
Θ

Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

rdθ t ´ E dθ ts

ˇ

ˇ

ˇ

ˇ

ˇ

ą Cd

¸

ď o

ˆ

1

log T

˙

as T Ñ 8, where σ2 “ 16 k
k´2

C2
L

´

1 ` 2
ř8

m“1 exp p´Cαm
rαq

1´ 2
k

¯

.

Step 4: Concentration inequality (part II). The fourth step – summarized in

Proposition 3.4.4 – uses a well known result by Ibragimov (1962) that establishes

a bound on the Lp-norm of the discrepancy between conditional and unconditional

expectations of α-mixing processes.

Proposition 3.4.4. Suppose Condition 3.3.1 is satisfied. Then, for all T suffi-

ciently large and for εT “ σ
b

p log T
NT

, it holds that

ˆ

1 `
48CΘCd
NεT

˙p

sup
Θ

Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

M

T`M
ÿ

t“T`1

rET ltpθ, τq ´ E ltpθ, τqs

ˇ

ˇ

ˇ

ˇ

ˇ

ą
εT
8

¸

ď
1

log T
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and

ˆ

1 `
48CΘCd
NεT

˙p

sup
Θ

Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

M

T`M
ÿ

t“T`1

rET dθ t ´ E dθ ts

ˇ

ˇ

ˇ

ˇ

ˇ

ą Cd

¸

ď o

ˆ

1

log T

˙

as T Ñ 8, where σ2 is defined in Proposition 3.4.3.

It follows from Propositions 3.4.2, 3.4.3 and 3.4.4 that, for all T sufficiently large,

2 sup
Θ

|Rpθ, τq ´ Rpθ, τq| ` 2 sup
Θ

|RT pθ, τq ´ Rpθ, τq| ď 2σ

c

p log T

NT

holds with high probability. This fact and Proposition 3.4.1 imply Theorem 3.3.1.

Proof of Theorem 3.3.1. Follows from Condition 3.3.1 and Propositions 3.4.1, 3.4.2,

3.4.3 and 3.4.4.

3.5 Application to backtesting global Growth-at-Risk

The International Monetary Fund (IMF) has recently popularized a risk measure

for GDP growth called Growth-at-Risk (GaR), which is the worst-case scenario

GDP growth at a given coverage level and is the analog of the classic Value-at-

Risk (VaR) used in risk management. Several institutions such as the IMF or

the European Central Bank publish GaR for major world economies on a routine

basis. One of the appealing features of quantile regression is that it allows direct

linkage of downside risk predictors to the quantiles of GDP growth.

This application explores the use of the multivariate CAViaR class defined in

the theoretical framework of this chapter. The CAViaR class is closely related to
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the quantile regression techniques put forward by Adrian et al. (2019). A key dif-

ference is the recursive nature of the CAViaR forecasts, which rely on the entire

past of GDP growth – similarly to GARCH models. In fact, GARCH forecasts

that use no information other than the past of GDP growth exhibit better perfor-

mance than quantile regressions that use external information such as the national

financial conditions index (NFCI) (Brownlees and Souza, 2021). This suggests

that – quite remarkably – the (entire) past of GDP growth seems to be the key

driver of the time variation in the conditional distribution of GDP growth. The

present paper also investigates the “synergies” between GARCH and CAViaR.

Description of the exercise. The data consists of a balanced panel of GDP

growth rates for 24 OECD countries that spans from 1961Q1 to 2019Q1. The

sample comprises all countries for which GDP data are available since at least

1973Q1 to match some of the predictors used in the quantile regression analysis.

GDP growth rates are defined as the quarterly percentage change in seasonally

adjusted real GDP and are obtained from the OECD database.

The specifications considered in the exercise can be classified in three broad

types. First, a class of GARCH(1,1) models is entertained, estimated via the

pooled GARCH procedure proposed by (Pakel, Shephard, and Sheppard, 2011).

The pooled GARCH procedure relies on a specification where the dynamic param-

eters of the GARCH recursion are common for all countries and are estimated via

composite (quasi) maximum likelihood, while the intercept parameter is country-

specific and estimated via variance targeting. This is done because in relatively
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short time series such as GDP growth, it is challenging to obtain stable parameter

estimates (Brownlees et al., 2011). Results are reported for both GARCH models

estimated on GDP growth – labeled as GARCH in Table 3.1 – and on the residuals

of an AR(1) – labeled as AR-GARCH.

Second, a number of quantile regression models (QR) are implemented fol-

lowing Adrian et al. (2019). Quantile regression requires specifying a set of down-

side risk predictors. The list of variables includes country-specific variables such

as the national financial conditions index (NFCI), credit-to-GDP gap and growth

(CG and CR), term spread (TS), housing prices (HP), the World Uncertainty Index

(WUI), and economic policy uncertainty (EPU), as well as global predictors such

as the global real activity factor (GF), stock variance (SV), credit spread (CS), and

the geopolitical risk index (GPR). The details on the data availability, construction

and imputation can be found in Brownlees and Souza (2021).

Third, a number of special cases of (3.1) are implemented, labeled as pooled

VFV in Table 3.1. All pooled VFV specifications take the form

fθ i t “ ωi ` αsλpYi t´1q ` βfθ i t´1, i “ 1, . . . , N,

where sλpuq “ bp
a

1 ` pu{bq2 ´ 1q |τ ´ Ipu ă 0q|, τ P r0, 1s, b P rb, bs, b ą 0

and λ “ pτ, bq1. Note that sλpuq is an arbitrarily good approximation of |u||τ ´

Ipu ă 0q| as b Ñ 0`, which corresponds to the symmetric absolute value (Sym)

and asymmetric slope (Asym) specifications introduced by Engle and Manganelli

(2004) if τ “ 1{2 and τ ‰ 1{2, respectively. In the asymmetric specification, τ is

set to 0.05. See Example 3.7.3 for a verification of A.3.3.2 for this choice of the
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function sλ. The restrictions on the parameters α, β are naturally deduced from

A.3.3.2.11

The pooled VFV specifications impose that the dynamic parameters α and β

are common for all countries and are estimated with the procedure described in

equation (3.2). This procedure is analogous to the composite likelihood approach

mentioned above – but with the check loss instead of the Gaussian (quasi) likeli-

hood. Results are reported for VFV specifications estimated on piq GDP growth,

labeled as VFV in Table 3.1; piiq the residuals of an AR(1) (VFV-AR); and piiiq

on the standardized residuals of the pooled GARCH, both on GDP growth and on

the AR(1) residuals (GARCH-VFV and AR-GARCH-VFV, respectively).

Recursive estimation is carried out for all specifications under consideration

for each quarter from 1973Q1 to 2016Q4 and out-of-sample forecasts are com-

puted starting from 1983Q4. Starting the forecasting exercise from 1983Q4 im-

plies that the out-of-sample period is based on approximately 75% of the available

data.

Marginal GaR forecasts are evaluated using the check loss over the out-of-

11Estimating the parameters in practice is a challenging optimization problem and convergence

issues may arise even with small p. This is addressed in two ways which lead to a very fast

and scalable implementation: piq replace ρτ puq in the objective function with its differentiable

approximation bp
a

1 ` pu{bq2 ´ 1q |τ ´ Ipu ă 0q| with τ “ τ and b “ 10´4, and piiq set

ωi “ fip1 ´ βq, where fi is the sample τ -quantile of the i-th country’s in-sample observations.

It turns out that the in-sample objective is very close compared to RT pθ̂T,τ , τq, which can be

obtained via more computationally intensive optimizers.
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sample period, that is,

Check “
1

M

T`M
ÿ

t“T`1

N
ÿ

i“1

ρτ pYi t ´ fθ i tq.

For completeness, Table 3.1 also reports Coverage and Length, which are defined

as

Cov “
1

MN

T`M
ÿ

t“T`1

N
ÿ

i“1

I
´

Yi t ą fθ̂T,τ i t

¯

,

and

Len “
1

MN

T`M
ÿ

t“T`1

N
ÿ

i“1

´

Q̂0.99pYiq ´ fθ̂T,τ i t

¯

,

where Q̂0.99pYiq denotes the unconditional 99% empirical quantile of the ith series

estimated on the entire sample. All else being equal, GaR forecasts with a smaller

length are typically preferred.

The results of the exercise can be summarized as follows. First, the VFV spec-

ifications on the standardized residuals of (AR-) GARCH perform best out-of-

sample. The approach exploits non-obvious dynamics of the standardized residu-

als of the GARCH procedure. The dynamics are not obvious in the sense that they

are not captured by inspection of the autocorrelation function of the standardized

residuals nor their absolute values or squares. In addition, empirical support in

favor of AR-GARCH-CAViaR methodologies has been documented in Kuester

et al. (2006), which use more than 30 years of daily return data on the NASDAQ

Composite Index. Panel Diebold-Mariano tests statistics of superior predictive

ability based on the check loss are reported in Table 3.14.

Second, a comparison between GARCH versus the VFV reveals that the GARCH

specification outperforms the VFV in terms of the check loss, whereas the VFV
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Table 3.1: 95% GaR Marginal Forecast Evaluation

Method Specification Cov Len Check

Benchmark Historical 94.41 5.42 0.14

Pooled GARCH GARCH 93.28 5.17 4.56

Pooled GARCH AR-GARCH 93.06 5.08 11.51

Pooled VFV Sym 93.53 5.28 ´0.53

Pooled VFV Asym 94.82 5.37 8.50

Pooled VFV AR-VFV Sym 93.94 5.20 11.52

Pooled VFV AR-VFV Asym 95.36 5.40 2.91

Pooled GARCH-VFV GARCH-VFV Sym 93.09 5.18 4.54

Pooled GARCH-VFV GARCH-VFV Asym 94.07 5.24 12.59

Pooled GARCH-VFV AR-GARCH-VFV Sym 92.99 5.09 12.77

Pooled GARCH-VFV AR-GARCH-VFV Asym 93.43 5.13 12.49

QR NFCI 92.77 5.17 3.85

QR NFCI + TS 91.13 5.08 ´0.13

QR NFCI + TS + GF 90.72 5.09 ´1.23

QR Full 89.39 5.15 ´19.18

Cov: Average empirical coverage; Len: average empirical length; Check: first

row: average check loss of the historical benchmark; remaining rows: percentage

improvement in average check loss relative to historical benchmark.

specification provides better out-of-sample coverage. This is perhaps surprising

in the sense that the VFV specification is designed to minimize the check loss
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function. This suggests that the approach to GaR forecasting using conditional

volatility is particularly useful in this dataset. Another possible explanation may

be that the GARCH specification benefits more from exploiting “commonalities”

in conditional variance with respect to the VFV specification, which exploits com-

monalities in conditional quantiles.

Third, asymmetries in conditional volatility of GDP growth do not play an

important role, but they still matter for the quantiles. The results from the spec-

ifications Pooled VFV (Sym) vs Pooled VFV (Asym) in Table 3.1 suggest that

negative growth rates have more predictive power for conditional quantiles than

positive ones in the check loss sense. However, the narrative changes when the

VFV specifications are run on the residuals of AR or AR-GARCH. This is perhaps

not surprising since the relevant asymmetries are found at the zero growth level.

To sum up, these forecasting results suggest that using the entire past of GDP

growth provides a benchmark that is easy to implement and hard to beat even by

cross-sectional quantile regression approaches based on external information such

as the NFCI.

3.6 Concluding Remarks

This paper establishes theoretical guarantees for out-of-sample multivariate dy-

namic quantile forecasts. A key feature of the analysis is that the relationship

between the data generating process and the class of algorithms is not specified.

The main result implies that the predictor that minimizes the in-sample average
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check loss achieves asymptotically the optimal predictive performance that is at-

tainable within the class, even when it is fully misspecified.

To put it differently, this chapter shows that the conditional quasi-maximum

likelihood estimator achieves the oracle’s out-of-sample predictive performance

within the class of VAR for VaR specifications considered here. A crucial condi-

tion to obtain this type of result is that the data and the forecast forget their past

sufficiently fast and that enough moments exist. The paper also gives a set of

primitive assumptions that are sufficient to validate this condition.

This work exemplifies how to combine the tools of statistical learning the-

ory and nonlinear time series to obtain performance guarantees for time series

forecasting. Following the “algorithmic modeling” culture fostered by Breiman

(2001), this chapter hopefully paves the way for the development of new forecast-

ing strategies for time series applications with minimal assumptions on how the

data is generated.

3.7 Data transformations allowed by A.3.3.2

Example 3.7.1. Suppose that N “ 1 and let sλpuq “ spuq “
?
1 ` u2 ´ 1.

Proof of validity of A.3.3.2 for Example 3.7.1. By the chain rule, for every h P

Rph ,

Bs̃λph, zq

Bz
“

rgy1phq ` gy2phqzsgy2phq
a

1 ` rgy1phq ` gy2phqzs2
,

which can only be zero when the numerator is zero. If gy2phq ‰ 0 (which holds by

A.3.3.1(ii)), A.3.3.2(iii) holds for any z ‰ ´rgy2phqs´1gy1phq. A.3.3.2(iv) holds
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withCs “ 1, since
?
1 ` u2´1 ď |u| for all u P R. Furthermore, A.3.3.2(vi) holds

(for example) by letting Df “ r0,8q, since in Df the inverse of spuq is s´1pvq “

a

p1 ` vq2 ´ 1 for all v ě 0. The same arguments generalize to the multivariate

case with every component of the vector function sλ defined as above.

Example 3.7.2. Suppose thatN “ 1 and consider the example sλpuq “ sbpuq|τ´

Ipu ă 0q|, where sbpuq “ b2p
a

1 ` pu{bq2 ´ 1q and λ “ pτ, bq1 P r0, 1s ˆ rb, bs,

b ą 0, and 1 ă b ă 8. The function sb is also known as the Pseudo-Huber loss

function.

Proof of validity of A.3.3.2 for Example 3.7.2. By the chain rule, for every h P

Rph and b P R`,

Bs̃λph, zq

Bz
“ rτIpu ě 0q ` p1 ´ τqIpu ă 0qs

u
a

1 ` pu{bq2
gy2phq,

where u “ gy1phq ` gy2phqz. Note that Bs̃λph, zq{Bz can only be zero when the

numerator is zero. If gy2phq ‰ 0 (which holds by A.3.3.1(ii)), A.3.3.2(iii) holds

for any z ‰ ´rgy2phqs´1gy1phq. A.3.3.2(iv) holds with Cs “ b. To see this, write

|sλpuq| ď |sbpuq| “ b|
?
b2 ` u2 ´ b| “ bp

?
b2 ` u2 ´ bq ď bpb ` |u| ´ bq ď b|u|,

which verifies the first part of A.3.3.2(iv). The second part of A.3.3.2(iv) can be

verified as follows. First, note that for all b ą 0,

ˇ

ˇ

ˇ

ˇ

Bsbpuq

Bb

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

2b
´

a

1 ` pu{bq2 ´ 1
¯

´
u2

b
a

1 ` pu{bq2

ˇ

ˇ

ˇ

ˇ

ˇ

ď |u|,

which implies that sbpuq is |u|-Lipschitz w.r.t. b by the mean value theorem. Now,

note that ||τ ´ Ipu ă 0q| ´ | 9τ ´ Ipu ă 0q|| ď |τ´ 9τ| by the inequality ||x|´|y|| ď
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|x ´ y|. Then,

|sλpuq ´ s 9λpuq|

“ |rsbpuq ´ s9bpuqs |τ ´ Ipu ă 0q| ´ s9bpuq r| 9τ ´ Ipu ă 0q| ´ |τ ´ Ipu ă 0q|s|

ď |u||b ´ 9b| ` b|u||τ ´ 9τ|

ď b|u|

´

|b ´ 9b| ` |τ ´ 9τ|

¯

“ b|u|}λ ´ 9λ}1 ,

which holds since 1 ă b ă 8. This verifies the second part of A.3.3.2(iv). To ver-

ify A.3.3.2(vi), let Df “ r0,8q and note that in Df the inverse of sλpuq (w.r.t. u)

is

s´1
λ pvq “ b

c

´

1 `
v

τb2

¯2

´ 1 , v ě 0,

which is differentiable w.r.t. v. The same arguments generalize to the multivariate

case with every component of the vector function sλ defined as above.

Example 3.7.3. Consider again Example 3.7.2 but with sbpuq “ bp
a

1 ` pu{bq2´

1q, and let 0 ă b ă 1. It is easy to see that limbÓ0 sλpuq “ |u||τ ´ Ipu ă 0q|.

Proof of validity of A.3.3.2 for Example 3.7.3. By the chain rule, for every h P

Rph and b P R`,

Bs̃λph, zq

Bz
“ rτIpu ě 0q ` p1 ´ τqIpu ă 0qs

u
?
u2 ` b2

gy2phq,

where u “ gy1phq ` gy2phqz. Again, Bs̃λph, zq{Bz can only be zero when the

numerator is zero. If gy2phq ‰ 0 (which holds by A.3.3.1(ii)), A.3.3.2(iii) holds

for any z ‰ ´rgy2phqs´1gy1phq. A.3.3.2(iv) holds with Cs “ b´1. To see this,
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write

|sλpuq| ď |sbpuq| “ |
?
b2 ` u2 ´ b| “

?
b2 ` u2 ´ b ď b ` |u| ´ b “ |u| ď b´1

|u|,

which verifies the first part of A.3.3.2(iv). The second part of A.3.3.2(iv) can be

verified as follows. First, note that for all b ě b ą 0,

ˇ

ˇ

ˇ

ˇ

Bsbpuq

Bb

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

b
?
b2 ` u2

´ 1

ˇ

ˇ

ˇ

ˇ

ď b´1
|u|,

which implies that sbpuq is pb´1
|u|q-Lipschitz w.r.t. b by the mean value theorem.

Again, recall that ||τ ´ Ipu ă 0q| ´ | 9τ ´ Ipu ă 0q|| ď |τ ´ 9τ| by the reverse

triangular inequality. Then,

|sλpuq ´ s 9λpuq|

“ |rsbpuq ´ s9bpuqs |τ ´ Ipu ă 0q| ´ s9bpuq r| 9τ ´ Ipu ă 0q| ´ |τ ´ Ipu ă 0q|s|

ď b´1
|u||b ´ 9b| ` b´1

|u||τ ´ 9τ|

ď b´1
|u|

´

|b ´ 9b| ` |τ ´ 9τ|

¯

“ b´1
|u|}λ ´ 9λ}1 .

This verifies the second part of A.3.3.2(iv). To verify A.3.3.2(vi), let Df “ r0,8q

and note that in Df the inverse of sλpuq (w.r.t. u) is

s´1
λ pvq “ b

c

´

1 `
v

τb

¯2

´ 1 , v ě 0,

which is differentiable w.r.t. v. The same arguments generalize to the multivariate

case with every component of the vector function sλ defined as above.

Example 3.7.4. Suppose N “ 1 and consider smooth transitions of the form

sλpuq “ r1 ` aGpuqssbpuq, λ “ pa, bq1,
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where G : R Ñ p0, 1q is differentiable with G1puq ą 0, a P r0, as, a ă 8, and

sbpuq is defined in Example 3.7.3.

Proof of validity of A.3.3.2 for Example 3.7.4. By the chain and product rules, for

every h P Rph and b P R`,

Bs̃λph, zq

Bz
“

„

aG1
puqsbpuq ` r1 ` aGpuqs

u
?
u2 ` b2

ȷ

gy2phq,

where u “ gy1phq `gy2phqz. Note that if gy2phq ‰ 0 (which holds by A.3.3.1(ii)),

then Bs̃λph, zq{Bz can only be zero if the first term is zero. Note that for every

h P Rph , there is always some z P R such that the first term is not zero, which

verifies A.3.3.2(iii). A.3.3.2(iv) holds with Cs “ b´1
p1 ` aq. To see this, write

|sλpuq| “ |1 ` aGpuq||sbpuq| ď p1 ` aq|sbpuq| ď b´1
p1 ` aq|u|,

which verifies the first part of A.3.3.2(iv). The second part of A.3.3.2(iv) can be

verified using the fact that |Bsbpuq{Bb| ď b´1
|u| and the mean value theorem, and

noting that |1 ` aGpuq ´ 1 ´ 9aGpuq| “ Gpuq|a ´ 9a| ď |a ´ 9a|. Combining both

results leads to

|sλpuq ´ s 9λpuq| “ |r1 ` aGpuqsrsbpuq ´ s9bpuqs ` s9bpuqGpuqpa ´ 9aq|

ď b´1
p1 ` aq|u||b ´ 9b| ` b´1

|u||a ´ 9a| ď Cs|u|}λ ´ 9λ}1 ,

as expected. This verifies the second part of A.3.3.2(iv). A.3.3.2(vi) is verified by

noting that for all u P Df “ p0,8q, we have that

Bsλpuq

Bu
“ aG1

puqsbpuq ` r1 ` aGpuqs
u

?
u2 ` b2

ą 0,

hence s´1
λ exists and is differentiable.
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Remark. Note that for lower quantiles, it may be more interesting to consider

sλpuq “ r1 ´ aGpuqssbpuq

instead. The proof of the validity of A.3.3.2 above holds with a ă 1 and letting

Df “ p´8, 0q instead of p0,8q.

Example 3.7.5. Let sλpuq “ gτpuqsbpuq, where λ “ pτ, bq1,

gτpuq “
a

τ2 ` p1 ´ τq2

ˆ

1

1 ´ τ
Ipu ą 0q `

1

τ
Ipu ď 0q

˙

,

and τ P rτ, τs, τ ą 0, τ ă 1, which corresponds to the “improved CAViaR”

of Huang et al. (2009) but with the absolute value replaced by its differentiable

approximation sbpuq defined in Example 3.7.3.

Proof of validity of A.3.3.2 for Example 3.7.5. By the chain rule, for every h P

Rph and b P R`,

Bs̃λph, zq

Bz
“ gτpuq

u
?
u2 ` b2

gy2phq,

where u “ gy1phq ` gy2phqz. Again, Bs̃λph, zq{Bz can only be zero when the

numerator is zero. If gy2phq ‰ 0 (which holds by A.3.3.1(ii)), A.3.3.2(iii) holds

for any z ‰ ´rgy2phqs´1gy1phq. A.3.3.2(iv) holds with Cs “ b´1C0 τ, where

C0 τ “ max

"

τ´1
a

τ2 ` p1 ´ τq2, p1 ´ τq
´1

b

τ2 ` p1 ´ τq2

*

.

To see this, note that |gτpuq| ď C0 τ. Then, |sλpuq| ď C0 τ|sbpuq| ď b´1C0 τ|u|,

where the last inequality follows from the same arguments used in Example 3.7.3.

This verifies the first part of A.3.3.2(iv). The second part is verified as follows.
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First, let ∆τgpτ, uq :“ gpτ, uq ´ gp 9τ, uq for every pair τ, 9τ P rτ, τs, u P R and any

function g, and define

g1pτq “
a

τ2 ` p1 ´ τq2

ˆ

1

1 ´ τ
´

1

τ

˙

and g2pτq “

a

τ2 ` p1 ´ τq2

τ
.

Observe that gτpuq “ Ipu ą 0qg1pτq ` g2pτq. Then,

|∆τgτpuq| “ |Ipu ą 0q∆τg1pτq ` ∆τg2pτq| ď |∆τg1pτq| ` |∆τg2pτq|.

Notice that for all τ P rτ, τs,
ˇ

ˇ

ˇ

ˇ

Bg1pτq

Bτ

ˇ

ˇ

ˇ

ˇ

ď max

#

3τ2 ´ 3τ ` 1

τ2
a

2τ2 ´ 2τ ` 1p1 ´ τq2
,

3τ2 ´ 3τ ` 1

τ2
?
2τ2 ´ 2τ ` 1p1 ´ τq2

+

:“ C1 τ ă 8
ˇ

ˇ

ˇ

ˇ

Bg2pτq

Bτ

ˇ

ˇ

ˇ

ˇ

ď
1 ´ τ

τ2
a

2τ2 ´ 2τ ` 1
:“ C2 τ ă 8,

and let Cτ “ C0 τ _ C1 τ _ C2 τ. Thus, by the mean value theorem it holds that

|∆τgτpuq| ď C1 τ|τ ´ 9τ| ` C2 τ|τ ´ 9τ| ď Cτ|τ ´ 9τ|.

Recall from Example 3.7.3 that sbpuq is pb´1
|u|q-Lipschitz w.r.t. b by the mean

value theorem. Then,

|sλpuq ´ s 9λpuq| “ |rsbpuq ´ s9bpuqs gτpuq ´ s9bpuq∆τgτpuq|

ď b´1Cτ|u||b ´ 9b| ` b´1Cτ|u||τ ´ 9τ|

“ b´1Cτ|u|}λ ´ 9λ}1 ,

as expected. This verifies the second part of A.3.3.2(iv). To verify A.3.3.2(iv), let

Df “ p´8, 0q and note that in Df the inverse of sλpuq (w.r.t. u) is

s´1
λ pvq “ b

d

ˆ

1 `
v

bg2pτq

˙2

´ 1, v ě 0,
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which is differentiable w.r.t. v. The same arguments generalize to the multivariate

case with every component of the vector function sλ defined as above.

3.8 Proofs of Propositions 1-4

Proof of Proposition 3.4.1. Define Rpθ̂T,τ , τq “ ElG1 pθ̂T,τ , τq. By the proper-

ties of infimum and supremum and the definition of empirical risk minimizer

(i.e. RT pθ, τq ě RT pθ̂T,τ , τq for all θ P Θ), we have that

Rpθ̂T,τ , τq ´ inf
Θ
Rpθ, τq

“ Rpθ̂T,τ , τq ´ Rpθ̂T,τ , τq ` Rpθ̂T,τ , τq ´ inf
Θ

“

Rpθ, τq ` Rpθ, τq ´ Rpθ, τq
‰

ď

”

Rpθ̂T,τ , τq ´ Rpθ̂T,τ , τq

ı

`

”

Rpθ̂T,τ , τq ´ inf
Θ
Rpθ, τq

ı

´ inf
Θ

“

Rpθ, τq ´ Rpθ, τq
‰

ď 2 sup
Θ

|Rpθ, τq ´ Rpθ, τq| `

”

Rpθ̂T,τ , τq ´ inf
Θ
Rpθ, τq

ı

ď 2 sup
Θ

|Rpθ, τq ´ Rpθ, τq| ` 2 sup
Θ

|RT pθ, τq ´ Rpθ, τq| ,

where the last inequality follows by Lemma 8.2 in Devroye, Györfi, and Lugosi

(1996).

Proof of Proposition 3.4.2. Adding and subtracting E ltpθ, τq, we have

Pr

ˆ

sup
θPΘ

ˇ

ˇRT pθ, τq ´ Rpθ, τq
ˇ

ˇ ą
ε

2

˙

ď Pr

˜

sup
θPΘ

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

pltpθ, τq ´ E ltpθ, τqq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

4

¸

` Pr

˜

sup
θPΘ

1

T

T
ÿ

t“1

|E ltpθ, τq ´ E lGt pθ, τq| ą
ε

4

¸

.
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But by Condition 3.3.1(iv), we have that

Pr

˜

sup
θPΘ

1

T

T
ÿ

t“1

|E ltpθ, τq ´ E lGt pθ, τq| ą
ε

4

¸

ď Pr

ˆ

C0

T
ą
ε

4

˙

,

so Pr
´

supθPΘ
1
T

řT
t“1 |E ltpθ, τq ´ E lGt pθ, τq| ą ε

4

¯

“ 0 for all T ě 4C0ε
´1.

The next step is based on a covering argument similar in spirit to Jiang and Tanner

(2010, Prop. 2). Let tΘju
Nδ
j“1, where Θj “ tθ : }θ ´ θj}1 ď δ, θj P Θu be a

δ-covering of Θ and Nδ is the covering number. The choice of δ ą 0 will be

determined in what follows. By the union bound it follows that

Pr

˜

sup
θPΘ

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

pltpθ, τq ´ E ltpθ, τqq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

4

¸

ď

Nδ
ÿ

j“1

Pr

˜

sup
θPΘj

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

pltpθ, τq ´ E ltpθ, τqq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

4

¸

.

Add and subtract ltpθj, τq ´ E ltpθj, τq, use the fact that if |a` b| ą ε, then either

|a| ą ε{2 or |b| ą ε{2, and again by the union bound we can write

Pr

˜

sup
θPΘj

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

ltpθ, τq ´ E ltpθ, τq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

4

¸

ď Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

ltpθj, τq ´ E ltpθj, τq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

8

¸

` Pr

˜

sup
θPΘj

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

rltpθ, τq ´ ltpθj, τqs ´ Erltpθ, τq ´ ltpθj, τqs

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

8

¸

.

Now, by (3.6) we have that |ltpθ, τq ´ ltpθj, τq| ď δ
N
dθj t, which is proven in

Lemma 3.10.2. By the triangular inequality, the second term is bounded above by

Pr

˜

sup
θPΘj

1

T

T
ÿ

t“1

|ltpθ, τq ´ ltpθj, τq| ` |Erltpθ, τq ´ ltpθj, τqs| ą
ε

8

¸

ď Pr

˜

1

T

T
ÿ

t“1

dθj t ` E dθj t ą
Nε

8δ

¸

.
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Furthermore, by Condition 3.3.1(iii) we have suptě1 supΘ Epdθj tq ď Cd for some

Cd ă 8 that does not depend on j nor t, by choosing δ “ Nε{p24Cdq it follows

that

Pr

˜

1

T

T
ÿ

t“1

dθj t ` E dθj t ą 3Cd

¸

“ Pr

˜

1

T

T
ÿ

t“1

dθj t ´ E dθj t ą 3Cd ´ 2E dθj t

¸

ď Pr

˜

1

T

T
ÿ

t“1

dθj t ´ E dθj t ą Cd

¸

.

Finally, the claim follows by noting that

Nδ ď

ˆ

1 `
2CΘ

δ

˙p

“

ˆ

1 `
48CΘCd
Nε

˙p

.

The same covering argument applies to the second part of the claim with ltpθ, τq

and dθ t replaced by ET ltpθ, τq and ET dθ t, respectively. This is because

|ET ltpθ, τq ´ ET ltpθj, τq| ď ET |ltpθ, τq ´ ltpθj, τq| ď
δ

N
ET dθj t

by Jensen’s inequality and the order-preserving property of the conditional ex-

pectation.

Proof of Proposition 3.4.3. Let rUθ t “ ltpθ, τq ´ E ltpθ, τq and rVθ t “ dθ t ´ E dθ t.

To simplify notation, the subscript θ in trUθ tu is omitted. Define

MT “ tT
1
2

´
p`1

2pk´1q log´ 1
2 T u, and bT “ CbT

p`1
2pk´1q plog T q

´
p´1

2pk´1q ,

where Cb is a positive constant to be chosen in what follows. Let rUt “ U 1
t `

U2
t where U 1

t “ ltpθ, τqIpltpθ, τq ď bT q ´ E pltpθ, τqIpltpθ, τq ď bT qq and U2
t “

ltpθ, τqIpltpθ, τq ą bT q ´ E pltpθ, τqIpltpθ, τq ą bT qq. Then,

Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

rUt

ˇ

ˇ

ˇ

ˇ

ˇ

ą
εT
8

¸

ď Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U 1
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
16

¸

` Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
16

¸

.
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The sequence tU 1
tu has the same mixing properties as trUtu and }U 1

t}L8
ă bT

since ltpθ, τq ě 0. Then for all T sufficiently large and p ă k ´ 2 the condi-

tions of Theorem 2.1 in Liebscher (1996) are satisfied since MT P t1, . . . , T u and

TεT {16 ą 4MT bT . By application of that theorem and noting that tltpθ, τqu is

non-negative,

Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U 1
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
16

¸

ď 4 exp

˜

´
Tε2T

16384
MT

sup0ďtďT´1 Ep
řpt`MT q^T
s“t`1 U 1

sq
2 ` 128

3
MT bT εT

¸

` 4
T

MT

exp p´CαM
rα
T q .

Let γtpmq “ |CovpU 1
t , U

1
t`mq| for m “ 0, . . . , T ´ 1. Then,

sup
0ďtďT´1

Ep

pt`MT q^T
ÿ

s“t`1

U 1
sq

2
ď MT sup

tě1
pγtp0q ` 2

8
ÿ

m“1

γtpmqq.

Noting that ltpθ, τq ě 0 and k ě 2, Davydov’s inequality (Bosq, 1998, Corollary

1.1) implies

γtpmq ď 2
k

k ´ 2
21´2{kαpmq

1´2{k
}U 1

t}Lk
}U 1

t`m}Lk

for m “ 0, . . . , T ´ 1. Also note that for any k ą 1 we have }U 1
t}Lk

ď 2CL by

Jensen’s inequality, and the last inequality holds by Condition 3.3.1(iii). Thus,

sup
0ďtďT´1

E

˜

pt`MT q^T
ÿ

s“t`1

U 1
s

¸2

ď MT16
k

k ´ 2
C2
L

˜

1 ` 2
8
ÿ

m“1

exp p´Cαm
rαq

1´ 2
k

¸

:“ MTσ
2,

where the sum converges by Condition 3.3.1(ii). Then, for all T sufficiently large,

161



“main” — 2023/6/14 — 22:04 — page 162 — #178

since p, k ą 1 are such that p ă k ´ 2, it holds that
ˆ

1 `
48CΘCd
NεT

˙p

Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U 1
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
16

¸

“ oplog´1 T q .

Furthermore,
ˆ

1 `
48CΘCd
NεT

˙p

Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
16

¸

paq

ď

ˆ

1 `
48CΘCd
NεT

˙p
16

TεT
E

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ

1 `
48CΘCd
NεT

˙p
32

εT
sup
tě1

E rltpθ, τqIpltpθ, τq ą bT qs

pbq

ď

ˆ

1 `
48CΘCd
NεT

˙p
32

εT

Ck
L

bk´1
T

pcq

ď log´1 T ,

where paq follows from Markov’s inequality pbq because Ep|X|Ip|X| ą bqq ď

Ep|X|rq{br´1 for any random variable X with finite r-th moment and positive

constant b and Condition 3.3.1(iii), and pcq from a sufficiently large choice of the

constant Cb, for sufficiently large T and noting that N , p and k are fixed. The

sequence tṼθ tu can be analysed using the same strategy (using the exact same

choice of MT and bT used for Ũt).

Proof of Proposition 3.4.4. By Proposition 3.4.2, we have that

Pr

ˆ

sup
Θ

ˇ

ˇRpθ, τq ´ Rpθ, τq
ˇ

ˇ ą
ε

2

˙

ď

ˆ

1 `
48CΘCd

ε

˙p

sup
Θ

!

P T`M
T`1

´

ET ltpθ, τq,
ε

8

¯

` P T`M
T`1 pET dθ t, Cdq

)

.

By Markov’s inequality,

sup
Θ

Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

M

T`M
ÿ

t“T`1

ET ltpθ, τq ´ E ltpθ, τq

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

¸

ď

supΘ E
ˇ

ˇ

ˇ

1
M

řT`M
t“T`1 ET ltpθ, τq ´ E ltpθ, τq

ˇ

ˇ

ˇ

p

εp
.
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By Ibragimov’s inequality (Davidson, 1994, Theorem 14.2), we have that for k ą

p ě 1,

sup
Θ

}ET ltpθ, τq ´ E ltpθ, τq}Lp

ď 2p21{p
` 1qαpmq

1{p´1{k sup
Θ

}ltpθ, τq}Lk
, m “ t ´ T ,

where suptě1 supΘ }ltpθ, τq}Lk
ď CL ă 8 by Condition 3.3.1(iii). Consequently,

and by Condition 3.3.1(ii),

sup
Θ

E

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

T`M
ÿ

t“T`1

ET ltpθ, τq ´ E ltpθ, τq

ˇ

ˇ

ˇ

ˇ

ˇ

p

ď
C

γpT p
, C ă 8,

where we have used that M “ rγT s. Let εT “ σ
b

p log T
NT

. It follows that

ˆ

1 `
48CΘCd
NεT

˙p

sup
Θ
P T`M
T`1

´

ET ltpθ, τq,
εT
8

¯

ď
C

γpNpT pε2pT
“ O

`

log´p T
˘

.

for some C ă 8. By Condition 3.3.1(ii) and 3.3.1(iii), tdθ tu is also α-mixing

with exponentially decaying coefficients and suptě1 supΘ }dθ t}Lk
ă 8. The same

arguments as above lead to the bound

ˆ

1 `
48CΘCd
NεT

˙p

sup
Θ
P T`M
T`1 pET dθ t, Cdq ď

C

γpNpT pεpT
“ oplog´p T q

for all T sufficiently large.

3.9 Verification of Condition 3.3.1

This section starts by recalling a number of notions from Markov chain theory.

Notation and definitions are based on Meyn and Tweedie (1993). The discrete-

time process tXtu is a time-homogeneous Markov chain with state space X Ď Rpx
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and equipped with a Borel σ-algebra BpX q if for each n P N there exists an n-

step transition probability kernel P n
X : X ˆ BpX q Ñ r0, 1s such that P n

Xpx,Aq “

PrpXt`n P A|Xt “ xq for all t P Z`. As customary, P 1
Xpx,Aq is denoted by

PXpx,Aq. Let πX : BpX q Ñ r0, 1s denote the invariant measure of the Markov

chain (assuming it exists), that is, the probability measure such that for each A P

BpX q it holds that πXpAq “
ş

X πXpdxqPXpx,Aq.

3.9.1 Companion Markov chain

Let Xt “ pX 1
1 t, X

1
2 t, X3 tq

1 be defined as X0 “ x P X , and
»

—

—

—

—

—

–

X1 t

X2 t

X3 t

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

gh1pX1 t´1q ` gh2pX1 t´1qZ1 t

ω ` As̃λpX1 t´1, Z2 tq ` BX2 t´1

1 ` Cs
`

1 ` A
˘

}Ỹ pX1 t´1, Z2 tq}1 ` }X2 t´1}1 ` BX3 t´1 ` Z3 t

fi

ffi

ffi

ffi

ffi

ffi

fl

,

(3.10)

where

s̃λpX1 t´1, Z2 tq “ sλpỸ pX1 t´1, Z2 tqq

Ỹ pX1 t´1, Z2 tq “ gy1pX1 t´1q ` gy2pX1 t´1qZ2 t,

and Z1 t “ ϵH t, Z2 t “ ϵY t´1, and Z3 t “ ϵd t. The state space of the companion

Markov chain is X :“ Rph ˆRN
ˆr1,8q Ă Rpx , where px “ ph ` N ` 1.

3.9.2 V-geometric ergodicity

The concept of V -geometric ergodicity used in this chapter is the same as in Meitz

and Saikkonen (2008a) and Definition 2.7.1. Note that this is stronger than Q-
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geometric ergodicity (Liebscher, 2005). Verification of Condition 3.3.1 begins by

establishing the V -geometric ergodicity of the companion Markov chain tXtu.

The proof follows by Lemmas 3.9.1 and 3.9.2 (Meyn and Tweedie, 1993).

Lemma 3.9.1 (Irreducibility and Aperiodicity ofXt.). LetXt be the Markov chain

defined in (3.10). Then, Xt is irreducible and aperiodic.

Proof. Start by noting that Xt in (3.10) can be cast as a nonlinear state space

model NSS(F ) (Meyn and Tweedie, 1993), i.e. Xt “ F pXt´1, pZ
1
1 t, Z

1
2 t, Z3 tq

1q

with F defined in an obvious way.12 For the chain to be irreducible we first need

that the controllability matrix has full rank. More specifically, the rank condition

states that for each initial value x P X Ď Rpx , there exists some n P Z` and a

sequence Z˚ “ pZ˚
1 , . . . , Z

˚
nq P

Śn
i“1pR

ph ˆRN
ˆR`q such that rankCn

x pZ˚q “

px (Meyn and Tweedie, 1993, Eq. 7.13). The controllability matrix for n “ 1 is

defined as the derivative of the transition function with respect to the vector of

innovations, i.e.

C1
xpZ˚

q “
BF

BZ 1
“

»

—

—

—

—

—

–

gh2px1q 0 0

0 ABs̃λpx1,Z2q

BZ2
0

0 ‚ 1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

By A.3.3.1(i), A.3.3.2(ii) and A.3.3.2(iii), we have that for every x P X we can

find a Z˚ P Rph ˆRN
ˆR` such that

detpC1
xpZ˚

qq “ detpgh2px1qq detpAq det

ˆ

Bs̃λpx1, Z2q

BZ2

˙

‰ 0 .

12Note that in our derivation it is only required that F be differentiable with respect to Z and

not the states or the parameters.
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The claim follows after finding a globally attracting state (Meyn and Tweedie,

1993; Meitz and Saikkonen, 2008b). To do this, the first step is to find a fixed point

of the map. It is enough to do this for a choice of Z. Let Z˚
1 “ gh2px

˚
1q´1rx˚

1 ´

gh1px
˚
1qs, for an arbitrary x˚

1 P Rph . Note that Z1 exists by A.3.3.1(i). Choose

Z “ Z˚ “ pZ˚1

1 , 0
1, 0q. Then, x˚

1 is a fixed point for the first component of the

map (F1).

x˚
2 “ pI ´ Bq

´1
rω ` Asλpgy1px

˚
1qqs

is a fixed point for the second component of the map (F2), and by A.3.3.2(i) it is

clear that x˚
2 P RN . Finally, given x˚

1 and x˚
2 , we have that

x˚
3 “

1 ` Csp1 ` Aq}Ỹ px˚
1 , 0q}1 ` }x˚

2}1

1 ´ B

is a fixed point for the third component of the map (F3), where x˚
3 P r1,8q. It

follows that x˚ “ px˚1

1 , x
˚1

2 , x
˚
3q1 is a fixed point of the map F . Next, one needs

to show that the fixed point is attainable for a choice of shock sequence. But

this is also accomplished by setting the shocks to zero and noting that X1 t Ñ x˚
1

as t Ñ 8, and the same conclusion holds for X2 t and X3 t. It follows that the

companion Markov chain is both irreducible and aperiodic.

Lemma 3.9.2 (Drift Criterion for Xt). Let Xt be the Markov chain defined in

(3.10). Then,

EpVXpXtq|Xt´1 “ xq ď p1 ´ γ1qVXpxq ` γ2Ipx P Sq,

where VXpxq “ 1 ` }x}k1, γ1 ą 0, γ2 ă 8 and S is a compact set.
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Proof. First, sinceXt is a T-chain, it follows that every compact set is small (Meyn

and Tweedie, 1993). Let qXpxq “ 1`pκ1 9xqk where κ “ pκ1, κ2, κ3q
1 P

Ś3
i“1p0, 1q

and 9x “ p}x1}1, }x2}1, |x3|q
1. Note that VXpxq ď qXpxq{κk, where κ denotes the

minimum of the components of κ. Thus, it suffices to show that the drift criterion

holds with qXpxq with the compact set S2 ϵ defined below (Lanne and Saikkonen,

2005, Appendix A). By A.3.3.1(i), for every ϵ ą 0 there exists M 1
ϵ ă 8 such that

}gh1px1q ` gh2px1qZ1 t}1 ď pa ` bϵ}Z1 t}1 ` ϵq }x1}1 (3.11)

holds for all }x1}1 ą M 1
ϵ, where bϵ “ b ` ϵ. In particular, ϵ ą 0 is chosen small

enough such that Epa ` bϵ}Z1 t}1 ` ϵqk ă 1 and B ` ϵ ă 1. Such a choice is

possible by A.3.3.1(iv) and A.3.3.2(i), respectively.

Now, let S2 ϵ “ tx P X : κ1 9x ď Mϵu, which is compact, and S1 ϵ “ X zS2 ϵ.13

The proof proceeds by analyzing the cases }x1}1 ą M 1
ϵ and }x1}1 ď M 1

ϵ sepa-

rately.14

Case }x1}1 ą M 1
ϵ. By A.3.3.2(iv) and A.3.3.1(ii),

}ω ` As̃px1, Z2 tq ` Bx2}1

ď }ω}1 ` ~A~1CsCyp1 ` }Z2 t}1q}x1}1 ` ~B~1}x2}1 .

Note that M 1
ϵ may be enlarged if necessary so that

}ω}1 ` ~A~1CsCyp1 ` }Z2 t}1q}x1}1 ` ~B~1}x2}1

ď ACsCyp1 ` ϵ ` }Z2 t}1q}x1}1 ` B}x2}1 ,

13Note thatMϵ is larger thanM 1
ϵ. In particular,Mϵ “ }Cz ϵ}Lk

{ϵ`M 1
ϵ withCz ϵ defined below.

14Note that the conclusions in both cases hold for any choice of κ P
Ś3

i“1p0, 1q.
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where A ă 8 is a uniform upper bound for ~A~1 over Θ by A.3.3.2(v). Also

note that ~B~1 ď B ă 1 by A.3.3.2(i). Similarly,

1 ` Cs
`

1 ` A
˘

}gy1px1q ` gy2px1qZ2 t}1 ` }x2}1 ` B|x3| ` Z3 t

ď 2 ` Cs
`

1 ` A
˘

}gy1px1q ` gy2px1qZ2 t}1 ` }x2}1 ` B|x3|

ď Cs
`

1 ` A
˘

Cyp1 ` ϵ ` }Z2 t}1q}x1}1 ` }x2}1 ` B|x3| ,

where the first inequality uses A.3.3.3(ii). Let ρZ ϵ “ a ` bϵ}Z1 t}1 ` ϵ, and

Cϵ
y Z “ Cyp1 ` ϵ ` }Z2 t}1q. It follows that15

1 ` pκ1 9Xtq
k

ď pκ1CϵpZtq 9Xt´1q
k ,

where the 3 ˆ 3 matrix CϵpZtq is defined as

CϵpZtq “

»

—

—

—

—

—

–

ρZ ϵ 0 0

ACsC
ϵ
y Z B ` ϵ 0

Cs
`

1 ` A
˘

Cϵ
y Z 1 B ` ϵ

fi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that for the chosen ϵ, the spectral radius of E
`

CϵpZtq
bk
˘

is strictly less than

one. By properties of Kronecker products, it holds that

EpqXpXtq|Xt´1 “ xq ď pκbk
q

1 E
`

CϵpZtq
bk
˘

9xbk . (3.12)

Case }x1}1 ď M 1
ϵ. Note that by A.3.3.1(i),

}gh1px1q ` gh2px1qZ1 t}1 ď gϵh p1 ` }Z1 t}1q
looooooomooooooon

C1

, (3.13)

15Note that M 1
ϵ can be enlarged if necessary to absorb the constant 1.
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where gϵh :“ supM 1
ϵ

}gh1px1q}1 _ supM 1
ϵ

~gh2px1q~1 and supM 1
ϵ

is the supremum

over the set tx1 P Rph : }x1}1 ď M 1
ϵu. Moreover,

}ω ` As̃px1, Z2 tq ` Bx2}1 ď }ω}1 ` A gϵy p1 ` }Z2 t}1q
loooooooooooooomoooooooooooooon

C2

` B}x2}1

and

1 ` Cs
`

1 ` A
˘

}gy1px1q ` gy2px1qZ2 t}1 ` }x2}1 ` B|x3| ` Z3 t

ď 2 ` Cs
`

1 ` A
˘

gϵy p1 ` }Z2 t}1q ` }x2}1
loooooooooooooooooooooooomoooooooooooooooooooooooon

C3

` B|x3|

where gϵy “ supM 1
ϵ

}gy1px1q}1_supM 1
ϵ

~gy2px1q~1. From the previous inequalities

one obtains

E pqXpXtq|Xt´1 “ xq ď E
`

Cz ϵ ` κ2B}x2}1 ` κ3}x2}1 ` κ3B}x3}1
˘k

ď
`

}Cz ϵ}Lk
` κ1

´1B 9x´1

˘k
,

where Cz ϵ “ C1 ` C2 ` C3 ` C4, where C4 ă 8 is a constant that absorbs the

1 in qX and B is a 2 ˆ 2 lower triangular matrix with diagonal entries B11 “

B22 “ B and off-diagonal entry B21 “ 1. The first inequality uses the fact that

κ P
Ś3

i“1p0, 1q, and the second uses Minkowski’s inequality.

Note that κ1}x1}1 ` κ1
´1 9x´1 ą Mϵ is true whenever x P S1 ϵ. Choose Mϵ “

}Cz ϵ}Lk

ϵ
` M 1

ϵ. Since, κ1}x1}1 ă }x1}1 ď M 1
ϵ, it follows that

M 1
ϵ ` κ1

´1 9x´1 ą κ1}x1}1 ` κ1
´1 9x´1 ą

}Cz ϵ}Lk

ϵ
` M 1

ϵ ,

so ϵκ1
´1 9x´1 ą }Cz ϵ}Lk

. Thus, }Cz ϵ}Lk
` κ1

´1B 9x´1 ă κ1
´1pB ` ϵIq 9x´1 :“

κ1
´1Bϵ 9x´1. Notice that Bϵ is the 2 ˆ 2 lower diagonal block of CϵpZtq, so one
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can write

κ1
´1Bϵ 9x´1 ď κ1CϵpZtq 9x .

Again by properties of the Kronecker product it follows that the bound in (3.12)

also holds in this case. Therefore, in both cases }x1}1 ą M 1
ϵ and }x1}1 ď M 1

ϵ

we obtain the same bound for any κ P
Śn

i“1p0, 1q whenever x P S1 ϵ. Thus,

by Lemma A.2. of Ling and McAleer (2003) it follows that we can choose κ P

Śn
i“1p0, 1q such that v “ pI´E

`

CϵpZtq
bk
˘

q1κbk has positive components.16 One

can now conclude that for all x P S1 ϵ, it holds that

E pqXpXtq|Xt´1 “ xq ď p1 ´ γ1qpκbk
q

1 9xbk ,

where γ1 P p0, 1q is the minimum of the components of v.

On the other hand, it follows from A.3.3.1, A.3.3.2 and A.3.3.3 that

sup
xPS2 ϵ
θPΘ

EpqXpXtq|Xt´1 “ xq ď γ2 ă 8, x P S2 ϵ ,

where the expectation exists and it is bounded over Θ for every x P S2 ϵ provided

that }Z1 t}1 and }Z2 t}1 have k moments. Since p1´γ1qqXpxq is positive, the claim

holds when x P S2 ϵ, which completes the proof.

Lemma 3.9.3. Suppose A.3.3.1, A.3.3.2 and A.3.3.3 are satisfied. Then, there

exist positive constants ρ P p0, 1q and R ă 8 that do not depend on θ such that

16Recall that E
`

CϵpZtq
bk

˘

has a spectral radius strictly less than 1. As noted by Lanne and

Saikkonen (2005), inspection of the proof of Lemma A.2. in Ling and McAleer (2003) reveals that

it means no loss of generality to assume that the components of κ are bounded by unity.
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tXtu satisfies

sup
v:|v|ď1

ˇ

ˇ

ˇ

ˇ

ż

X
P n
Xpx, dxnqvpxnq ´

ż

X
πXpdxnqvpxnq

ˇ

ˇ

ˇ

ˇ

ď RṼXpxqρn ,

for all x P X and all n ě 1, and ṼXpxq “ 1 ` }x}1.

Proof. The claim follows by invoking Theorem 12 in Roberts and Rosenthal

(2004), which allows us to analyze the geometric ergodicity constants R and ρ

explicitly. The theorem holds under the following conditions: piq that there exists

C Ď X , such that C is “small” (Meyn and Tweedie, 1993, Ch. 5) and piiq that

there exists h : X ˆ X Ñ r1,8q such that the following bivariate drift condition

E
“

hpXn, X
G
n q|Xn´1 “ x,XG

n´1 “ xG
‰

:“

ż

X

ż

X
hpxn, x

G
n qP pxn´1, dxnqP pxGn´1, dx

G
n q

ď α´1hpx, xGq

holds for all px, xGq R C ˆ C and for some α ą 1, where tXG
t u is an indepen-

dent copy of tXtu initialized at the stationary distribution and E is the expecta-

tion under the product measure. Choose hpx, xGq “ 1
2
pq̃Xpxq ` q̃XpxGqq, where

q̃Xpxq “ 1 ` κ1 9x.

Condition piq holds by choosing C “ S2 ϵ in Lemma 3.9.2. This is a con-

sequence of the fact that for T -chains such as tXtu, every compact set is small

(Meyn and Tweedie, 1993). Verification of Condition piiq proceeds by cases.

Case α´1 ă 1. Proposition 11 in Roberts and Rosenthal (2004) establishes that

the univariate drift condition in Lemma 3.9.2 (with k “ 1) implies the bivariate
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drift with the same C and α´1 “ 1´ γ̃1 ` γ̃2{p1` M̃q, where M̃ “ infxPCc q̃Xpxq

and γ̃1 and γ̃2 are analogous to γ1 and γ2 in Lemma 3.9.2 but with k “ 1. Inspec-

tion of the proof of Lemma 3.9.2 reveals that γ1 and γ2 (as well as γ̃1 and γ̃2) do

not depend on θ.

Case α´1 ą 1. One can find an enlargement of S2 ϵ for which the result in case

α´1 ă 1 still holds. More specifically, enlarge Mϵ such that 2 ` Mϵ ą
γ̃2
γ̃1

. Note

that for such an enlargement all arguments used to obtain the univariate drift are

still valid.

Thus, in both cases conditions piq and piiq of Theorem 12 cited above hold and

this implies that

1

2
sup
v:|v|ď1

ˇ

ˇ

ˇ

ˇ

ż

X
rP n

Xpx, dxnq ´ πXpdxnqsvpxnq

ˇ

ˇ

ˇ

ˇ

ď p1 ´ ϵ˚q
j

` α´nβj´1E
“

hpX0, X
G
0 q
‰

holds for all x P X , all n ě 1 and for any integer 1 ď j ď n, where ν and ϵ˚ are

defined in Lemma 3.9.4.Furthermore, define

β “ max

„

1, αp1 ´ ϵ˚q sup
CˆC

Rhpx, xGq

ȷ

,

where

Rhpx, xGq “

ż

X

ż

X

hpx1, x
G
1 q

p1 ´ ϵ˚q2
pPXpx, dx1q ´ ϵ˚νpdx1qqpPXpxG, dxG1 q ´ ϵ˚νpdxG1 qq.

It follows that there exists Ř ă 8 that does not depend on θ such that supCˆC Rh ď

Ř. This is verified in the same way as in Lemma 2.13.2. Furthermore, that
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ϵ˚ can be chosen so that it does not depend on θ is true by Lemma 3.9.4. It

follows that β “ maxr1, αp1 ´ ϵ˚qŘs exists and does not depend on θ. Fi-

nally, E
“

hpX0, X
G
0 q
‰

can be upper bounded by a finite constant that does not

depend on θ. Noting that tXtu is initialized at a fixed value x P X , we have

E
“

hpX0, X
G
0 q
‰

“ 1
2

`

q̃Xpxq ` E q̃XpXG
0 q
˘

, and E q̃XpXG
0 q ď E ṼXpXG

0 q ď V

where

V “ 1 ` }}XG
1 0}1}L1 ` sup

Θ
}}XG

2 0}1}L1 ` sup
Θ

}XG
3 0}L1 .

The finiteness of }}XG
1 0}1}L1 follows from the VX-geometric ergodicity of tXtu.

Moreover, by A.3.3.1 and A.3.3.2,

}}XG
2 0}1}L1 ď

ω ` CsCyAp1 ` }}Z2 0}1}L1q}}XG
1 0}1}L1

1 ´ B

which holds by stationarity. Since the upper bound is finite and independent of θ,

we have that supΘ }}XG
2 0}}L1 ă 8. By analogous steps and by A.3.3.1, A.3.3.2

and A.3.3.3 one obtains that

sup
Θ

}XG
3 0}L1 ď

2 ` CsCyp1 ` Aqp1 ` }}Z2 0}1}L1q}}XG
1 0}1}L1

1 ´ B
ă 8.

Therefore, V ă 8. Set j “ trnu for sufficiently small r ą 0 such that the

bound converges to zero at a geometric rate. Thus, the claim holds with ρ “

p1 ´ ϵ˚qr{2 _ pα´1β
r
q ă 1 and R “ 4V for all n ě r´1, and R “ 4V ρ´1{r and

any ρ P p0, 1q for all 1 ď n ă r´1. The proof is complete since ρ and R do not

depend on θ.

The proof of Lemma 3.9.3 is based on an application of Theorem 12 of Roberts

and Rosenthal (2004). The MCMC literature has developed a number of results
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that allow to establish explicit geometric ergodicity convergence rates (Rosenthal,

1995). The important implication of Lemma 3.9.3 is that the dependence proper-

ties of the companion Markov chain tXtu can be characterized independently of

θ.

Lemma 3.9.4 (“Irreducibility constant” independent of θ.). Consider the setup of

the proof of Lemma 3.9.3. Let ν denote the Lebesgue measure in X restricted to

the set D P X , where D is any compact subset of H ˆ Df ˆ r1,8q. Then, there

exists ϵ˚ ą 0 (independent of θ) such that

PXpx,Aq ě ϵ˚νpAq for all x P C, A P BpX q.

Proof. For all A P BpX q and for all t,

PXpx,Aq “

ż

H

ż

Y

ż 1

0

IpXt P AqϕHpZ1qϕY pZ2qϕdpZ3qdZ1dZ2dZ3.

Note that for all x P C and all Xt P D, the inverse map of (3.10) (with respect to

Z) can be written explicitly as

Z1pXt, xq “ gh2px1q
´1

pX1 t ´ gh1px1qq

Z2pXt, xq “ gy2px1q
´1

`

s´1
λ

`

A´1
pX2 t ´ ω ´ Bx2q

˘

´ gy1px1q
˘

Z3pXt, xq “ X3 t ´ 1 ´ Csp1 ` Aq}gy1px1q ` gy2px1qZ2pXt, xq}1 ´ }x2}1 ´ Bx3,

which exists by A.3.3.1, A.3.3.2 and A.3.3.3. Hence the map is a diffeomorphism

in the restriction A XD. Changing variables in the restriction, one obtains

PXpx,Aq ě

ż

AXD

|JpXt, xq|ϕHpZ1pXt, xqqϕY pZ2pXt, xqqϕdpZ3pXt, xqqdXt,
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where JpXt, xq “ detrBZpXt, xq{BX 1
ts. By A.3.3.1, A.3.3.2 and A.3.3.3, the

densities ϕH , ϕY and ϕd are bounded away from zero on bounded subsets of their

domains, and the same holds for JpXt, xq. Therefore, the following exists

ϵ˚ “ inf
xPC
θPΘ

XtPAXD

|JpXt, xq|ϕHpZ1pXt, xqqϕY pZ2pXt, xqqϕdpZ3pXt, xqq ą 0,

and it follows that PXpx,Aq ě ϵ˚

ş

AXD
dXt “ ϵ˚νpAq, which completes the

proof.

The next step of the analysis consists of using the properties of the com-

panion Markov chain tXtu to establish the properties of Wt “ tpY 1
t , S

1
tq

1u “

tpY 1
t , H

1
t, f

1
θ t, dθ tq

1u.17 The following lemma establishes the connection between

the transition kernels of tXtu and tWtu.

Lemma 3.9.5. Consider the Markov chain tWtu. Let πY |Spdy|sq denote the (in-

variant) conditional distribution of Yt given St “ s. Then, its n-step transition

kernel is given by

P n
W pw, dwnq “ πY |Spdyn|snq

ż 1

0

ż

H
P n´1
X px̃, dsnqPHph, dh1qPrpdϵd 1q, n ě 2,

where PH is the transition kernel of tHtu, and

x̃ “ x̃pw, h1, ϵd 1q “ ph1, ω`Asλpyq`Bf, 1`Cs
`

1 ` A
˘

}y}1`}f}1`Bd`ϵd 1q
1.

Proof. For all n ě 2 it holds that

P n
W pw, dwnq “ πY |Spdyn|snqPrpdsn|wq

“ πY |Spdyn|snq

ż 1

0

ż

H
Prpdsn|w, h1, ϵd 1qPHph, dh1qPrpdϵd 1q ,

17The subscript θ is omitted from St and Wt to simplify the notation, but the dependence on θ

is understood.
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where the last equality is true because the Ht component of Wt is a Markov

chain of its own. Note that by A.3.3.1(iii) and A.3.3.3(i) the innovations ϵH t,

ϵY t and ϵd t are i.i.d., which leads to the observation that St has an n-step tran-

sition mechanism which is identical to the pn ´ 1q-step transition mechanism

of the companion Markov chain defined in (3.10) with initial value given by

x̃ “ x̃pw, h1, ϵd 1q (Meitz and Saikkonen, 2008a, cf. Assumption 1pbq). Thus,

Prpdsn|w, h1, ϵd 1q “ P n´1
X px̃, dsnq, which completes the proof.

The proof of the lemma builds upon the analysis of GARCH models of Meitz

and Saikkonen (2008a). The structure given by equations (3.1), (3.5), (3.7) and

(3.8) admits casting tWtu as a Markov chain.

The following lemma establishes that tWtu inherits the moment and depen-

dence properties of the companion Markov chain tXtu.

Lemma 3.9.6. Suppose A.3.3.1, A.3.3.2 and A.3.3.3 are satisfied. Then piq tWtu

is VW -geometrically ergodic with VW pwq “ 1 ` }y}k1 ` }s}k1; and piiq there exist

positive constants ρ P p0, 1q and R ă 8 that do not depend on θ such that tWtu

satisfies

sup
v:|v|ď1

∣∣∣∣ż
YˆX

rP n
W pw, dwnq ´ πW pdwnqsvpwnq

∣∣∣∣ ď RṼXpšqρn,

for all w P Y ˆ X and for all n ě 2, and

š “ ph, ω ` ACs}y}1 ` B}f}1, 2 ` Cs
`

1 ` A
˘

}y}1 ` }f}1 ` Bdq
1.

Proof. piq This proof is an adaptation of Meitz and Saikkonen (2008a, Proposition

1). First, tXtu is VX-geometrically ergodic by Lemmas 3.9.1 and 3.9.2. The next
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step is to show that for all s P X , EpVW pWtq|St “ sq ď C VXpsq. To see this,

note that by A.3.3.1 one can write

EpVW pWtq|St “ sq “ 1 ` }s}k1 ` E }Yt}
k
1

“ VXpsq ` E }gy1phq ` gy2phqϵY t}
k
1

ď VXpsq ` E p}gy1phq}1 ` ~gy2phq~1}ϵY t}1q
k

ď VXpsq ` 2k´1 E
`

}gy1phq}
k
1 ` ~gy2phq~

k
1}ϵY t}

k
1

˘

ď VXpsq ` 2k´1Ck
y }h}

k
1

`

1 ` E }ϵY t}
k
1

˘

“ VXpsq ` C}h}
k
1 ď VXpsq ` C}s}k1 ď C VXpsq ,

where C is a generic positive constant that may change from line to line. To

satisfy VW -geometric ergodicity we must have that
ş

YˆX VW pWtqπW pdwtq ă 8.

This holds by the previous inequality, since

ż

YˆX
VW pWtqπW pdwtq “

ż

X
πSpdstq

ż

Y
VW pWtqπY |Spdyt|stq

ď C

ż

X
πXpdstqVXpstq ă 8,
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and note that πS “ πX . Now, for any w P Y ˆ X and all n ě 2,

sup
v:|v|ďVW

ˇ

ˇ

ˇ

ˇ

ż

YˆX
rPnW pw, dwnq ´ πW pdwnqsvpwnq

ˇ

ˇ

ˇ

ˇ

“ sup
v:|v|ďVW

ˇ

ˇ

ˇ

ˇ

ż

X

ż

Y

„

πY |Spdyn|snq

ż 1

0

ż

H
Pn´1
X px̃, dsnqPHph, dh1qPrpdϵd 1q ´ πW pdwnq

ȷ

vpwnq

ˇ

ˇ

ˇ

ˇ

“ sup
v:|v|ďVW

ˇ

ˇ

ˇ

ˇ

ż

X

ˆ
ż 1

0

ż

H
Pn´1
X px̃, dsnqPHph, dh1qPrpdϵd 1q ´ πSpdsnq

˙
ż

Y
πY |Spdyn|snqvpwnq

ˇ

ˇ

ˇ

ˇ

ď C sup
v1:|v1|ďVX

ˇ

ˇ

ˇ

ˇ

ż

X

ˆ
ż 1

0

ż

H
Pn´1
X px̃, dsnqPHph, dh1qPrpdϵd 1q ´ πSpdsnq

˙

v1psnq

ˇ

ˇ

ˇ

ˇ

“ C sup
v1:|v1|ďVX

ˇ

ˇ

ˇ

ˇ

ż 1

0

ż

H
PHph, dh1qPrpdϵd 1q

ż

X

“

Pn´1
X px̃, dsnq ´ πSpdsnq

‰

v1psnq

ˇ

ˇ

ˇ

ˇ

ď C

ż 1

0

ż

H
PHph, dh1qPrpdϵd 1q sup

v1:|v1|ďVX

ˇ

ˇ

ˇ

ˇ

ż

X

“

Pn´1
X px̃, dsnq ´ πSpdsnq

‰

v1psnq

ˇ

ˇ

ˇ

ˇ

ď C

ż 1

0

ż

H
PHph, dh1qPrpdϵd 1qRθVXpx̃qρn´1

θ ,

where the first equality is true by Lemma 3.9.5, the second uses the fact that

πW pdwnq “ πY |Spdyn|snqπSpdsnq, the first inequality uses EpvpWtq|St “ sq ď

C VXpsq for all v such that |v| ď VW , the third equality follows by simple rear-

rengement and changing the order of integration, the second inequality uses the

convexity of the supremum, and the last inequality is implied by the drift criterion

used in the proof of Lemma 3.9.2 (note that πS “ πX), where the θ subscript in

the constants Rθ ă 8 and ρθ ă 1 is used to emphasize that they may depend on

θ. Now,

ż 1

0

ż

H
PHph, dh1qPrpdϵd 1qVXpx̃q

“ EpVXpStq|Wt´1 “ wq

“ 1 ` Erp}Ht}1 ` }fθ t}1 ` dθ tq
k
|Wt´1 “ ws

ď 1 ` 3k´1
`

Er}Ht}
k
1|Wt´1 “ ws ` Er}fθ t}

k
1|Wt´1 “ ws ` Erdkθ t|Wt´1 “ ws

˘

.
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Notice that by the same arguments and notation as in the proof of Lemma 3.9.2

(which hold by A.3.3.1),

Er}Ht}
k
1|Wt´1 “ ws ď

$

’

’

’

&

’

’

’

%

Erpah ` bϵh}Z1 t}1 ` ϵqks}h}k1 }h}1 ą M 1
ϵ

pgϵhqk Erp1 ` }Z1 t}1qks }h}1 ď M 1
ϵ

ď C}h}
k
1

for some C ă 8, and recall that ϵ ą 0 is such that Erpah ` bϵh}Z1 t}1 ` ϵqks ă 1.

Also note that

Er}fθ t}
k
1|Wt´1 “ ws “ }ω ` Asλpyq ` Bf}

k
1 ď pω ` ACs}y}1 ` B}f}1q

k

where ω ă 8 by the compactness of Θ. Similarly,

Erdkθ t|Wt´1 “ ws “ Erp1 ` Csp1 ` Aq}y}1 ` }f}1 ` Bd ` ϵd tq
k
|Wt´1 “ ws

ď p2 ` Csp1 ` Aq}y}1 ` }f}1 ` Bdq
k.

Putting it all together, one may redefine Rθ ă 8 to absorb the constants and ρ´1
θ

so that

sup
v:|v|ďVW

ˇ

ˇ

ˇ

ˇ

ż

YˆX
rP n

W pw, dwnq ´ πW pdwnqsvpwnq

ˇ

ˇ

ˇ

ˇ

ď RθVXpšqρnθ ,

which proves part piq.

piiq By the same arguments as in part piq with k “ 1 and with supv:|v|ď1 instead

of supv:|v|ďVW
, one can use Lemma 3.9.3 in the previous derivation instead of the

standard drift criterion to obtain constants ρ P p0, 1q and R ă 8 that do not

depend on θ.
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Finally, the moment and dependence properties of tWtu are established.

Definition 3.9.1. For a process tXtu, its α-mixing coefficients are defined by

αpmq “

$

’

’

’

&

’

’

’

%

1{4 m “ 0

supsě1 supAPFs
0 ,BPF8

s`m
|Pr pA X Bq ´ Pr pAqPr pBq| m ě 1

where F s
0 and F8

s`m denote the σ-algebras generated by tXt : 0 ď t ď su and

tXt : s ` m ď t ď 8u respectively.

Proposition 3.9.1. Suppose A.3.3.1, A.3.3.2 and A.3.3.3 are satisfied. Then, the

process tWtu piq satisfies suptě1 }}Yt}1}Lk
ă 8, suptě1 }}Ht}1}Lk

ă 8,

suptě1 supΘ }}fθ t}1}Lk
ă 8 and suptě1 supΘ }dθ t}Lk

ă 8; and piiq has α-

mixing coefficients that satisfy αpmq ď exp p´Cαm
rαq for some Cα ą 0 and

rα ą 0 that do not depend on θ; and piiiq its distribution converges to the invari-

ant measure πW , which admits k moments.

Proof. piq By the same arguments used to arrive at (3.11) and (3.13), which rely

on A.3.3.1(i) and A.3.3.1(iii), we have that there exists ϵ ą 0 such that for all

t ě 1,

}Ht}1 ď pa ` bϵ}ϵH t}1 ` ϵq}Ht´1}1Ip}Ht´1}1 ą M 1
ϵq ` C1,

where C1 ă 8. Taking the Lk-norm on both sides, we get

}}Ht}1}Lk
ď }a ` bϵ}ϵH t}1 ` ϵ}Lk
looooooooooomooooooooooon

ϱϵă1

}}Ht´1}1}Lk
` C1,
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where we have used A.3.3.1(iv) and }Ht´1}1Ip}Ht´1}1 ą M 1
ϵq ď }Ht´1}1. Thus,

suptě1 }}Ht}1}Lk
ď }H0}1 ` C1

1´ϱϵ
ă 8, where H0 “ h P Rph . By A.3.3.1(ii) and

A.3.3.1(iii), we have that there exists CϵY ă 8 such that

sup
tě1

}}Yt}1}Lk
ď Cy sup

tě1
r}}Ht}1}Lk

` }}Ht}1}Lk
CϵY s ă 8.

Moreover, by A.3.3.2 it holds that

}}fθ t}1}Lk
ď ω ` CsA sup

tě1
}}Yt´1}1}Lk

` B }}fθ t´1}1}Lk

where ω ă 8 by A.3.3.2. Therefore,

sup
tě1

sup
Θ

}}fθ t}1}Lk
ď }f}1 `

ω ` CsA suptě1 }}Yt´1}1}Lk

1 ´ B
ă 8

where it is recalled that fθ 0 “ f P RN , A ă 8 and B ă 1 by A.3.3.2. Similarly,

by A.3.3.2 and A.3.3.3, we have

}dθ t}Lk
ď 2 ` Cs

`

1 ` A
˘

sup
tě1

}}Yt´1}1}Lk
` sup

tě1
sup
Θ

}}fθ t´1}1}Lk
` B}dθ t´1}Lk

.

Thus, for any dθ 0 “ d P r1,8q,

sup
Θ

}dθ t}Lk

ď d `
2 ` Cs

`

1 ` A
˘

suptě1 }}Yt´1}1}Lk
` suptě1 supΘ }}fθ t´1}1}Lk

1 ´ B
ă 8 .

piiq It is enough to show that tWtu “ tpY 1
t , S

1
tq

1u is geometrically β-mixing,

since αplq ď βplq, where

βplq “ sup
tě0

1

2
sup

I
ÿ

i“1

J
ÿ

j“1

|PrpAi X Bjq ´ PrpAiqPrpBjq| ,
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and the supremum is taken over all pairs of finite partitions tA1, . . . ,AIu and

tB1, . . . ,BJu of Ω such that Ai P σtWt1 : 0 ď t1 ď tu, i “ 1, . . . , I , and

Bj P σtWt1 : t1 ě t ` lu, j “ 1, . . . , J . Let δwpAq “ 1tw P Au for any

A P BpY ˆ X q. By Proposition 4 in Liebscher (2005), tWtu is β-mixing with

geometrically decaying mixing numbers if paq
ş

YˆX VXps0qδwpdw0q “ VXpsq ă

8, and pbq tWtu is Q-geometrically ergodic in the sense of Liebscher (2005) with

Qpwq “ VXpsq. Condition paq holds for all w “ py1, s1q1 P Y ˆ X . For condition

pbq, we first need to show that
ş

YˆX VXpsnqπW pdwnq ă 8. This follows from

ż

YˆX
VXpsnqπW pdwnq “

ż

X
VXpsnqπXpdsnq

ż

Y
πY |Spdyn|snq ă 8,

where the last inequality follows from the VX-geometric ergodicity of tXtu. As

for the remaining part of condition pbq, notice that from Lemma 3.9.6piiq we have

that
›

›P l
W pw, ¨q ´ πW

›

›

TV
ď RṼXpšqρl ^ 1, where

›

›P l
W pw, ¨q ´ πW

›

›

TV
“

1

2
sup
v:|v|ď1

∣∣∣∣ż
YˆX

“

P l
W pw, dwlq ´ πW pdwlq

‰

vpwlq

∣∣∣∣ ,
which completes the proof of condition pbq. It remains to be shown that the rate

of decay does not depend on θ. For any probability measure τ on Y ˆ X , define

ξlpτq “
ş

YˆX

›

›P l
W pw, ¨q ´ πW

›

›

TV
¨ τpdwq. By virtue of part piiq of Lemma 3.9.6

we compute that ξlpπW q ď RV̌ ρl, where

V̌ “ 2 ` }}HG
1 }1}L1 ` p1 ` 2AqCs}}Y G

1 }1}L1 ` p1 ` Bq sup
θPΘ

}}fGθ 1}1}L1

` β1 sup
θPΘ

}dGθ 1}L1 ,
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and ξlpδwq “
›

›P l
W pw, ¨q ´ πW

›

›

TV
ď RṼXpšqρl ^ 1. Now, by Proposition 3 in

Liebscher (2005) we have that for any w P Y ˆ X , and m “ tl{2u, βplq ď

3ξmpδwq ` ξmpπW q ď R
´

V̌ ` 3ṼXpšq
¯

ρm ^ 1. It is not difficult to verify that

αplq ď βplq ď exp p´Cαl
rαq ^ 1 for all l ě 1. The choice of Cα and rα depends

on R, V̌ , ρ and ṼXpšq. Note that the rate of decay of the uniform bound for the

α-mixing coefficients does not depend on θ (Lemma 3.9.3). The claim follows by

redefining R and noting that ṼX ě 1.

piiiq The existence of the stationary distribution with k moments of tpYt, S
1
tq

1u

follows from its VW -geometric ergodicity, which is established in Lemma 3.9.6.

The verification of Condition 3.3.1 concludes with the following result.

Lemma 3.9.7. Suppose Proposition 3.9.1 holds. Then, Condition 3.3.1 holds.

Proof. Condition 3.3.1(i) is verified by finding a suitable compact set Θ Ă Rp

compatible with A.3.3.2(i) and A.3.3.2(ii). For example, let Θ “ Θω ˆ ΘA ˆ

ΘB ˆ Θλ, where

Θω “ tω P Rpω : }ω}1 ď ω ă 8u ,

ΘA “ tvecpAq P RpA : 0 ă A ď | detpAq|,~A~1 ď Au ,

ΘB “ tvecpBq P RpB : ~B~1 ď Bu ,

Θλ “ tλ P Rpλ : }λ}1 ď λ ă 8u ,

and p “ pω ` pA ` pB ` pλ. Note that Θω, ΘA, ΘB, and Θλ are compact and

nonempty.18 Condition 3.3.1(ii) holds because ltpθ, τq “ 1
N

řN
i“1 ρτipYi t ´ fθ i tq

18The fact that ΘA is compact and nonempty is verified in section 3.13.
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and dθ t are both measurable functions of Wt, which is α-mixing with coefficients

that satisfy αpmq ď expp´Cαm
rαq for some Cα and rα ą 0 that do not depend

on θ by Proposition 3.9.1. To verify Condition 3.3.1(iii), note that by (3.3), one

can write

ltpθ, τq ď
1

N

N
ÿ

i“1

|Yi t| `
1

N

N
ÿ

i“1

|fθ i t| “
1

N
}Yt}1 `

1

N
}fθ t}1 .

Thus, for all t ě 1,

}ltpθ, τq}Lk
ď

1

N
}}Yt}1 ` }fθ t}1}Lk

ď
1

N
}}Yt}1}Lk

`
1

N
}}fθ t}1}Lk

,

but by Proposition 3.9.1, suptě1 }}Yt}1}Lk
ă 8, suptě1 supΘ }}fθ t}1}Lk

ă 8 and

suptě1 supΘ }dθ t}Lk
ă 8, which completes the proof.

3.10 Dominating process

Lemma 3.10.1. Suppose A.3.3.1, A.3.3.2 and A.3.3.3 hold. Then, for all t ě 1,

we have }fθ t ´ f 9θ t}1 ď δd 9θ t, where δ ą 0.

Proof. Let aθ t :“ 1 ` Cs
`

1 ` A
˘

}Yt}1 ` }fθ t}1, where the constants Cs ă 8

and A ă 8 are given in A.3.3.2. By (3.1), A.3.3.2(i), A.3.3.2(ii) and A.3.3.2(iv)

and adding and subtracting pAs 9λpYt´1q ` Bf 9θ t´1q, it holds that19 }θ ´ 9θ}1 ď δ

19Note that

}AsλpYt´1q ´ 9As 9λpYt´1q}1 ď ~A~1}sλpYt´1q ´ s 9λpYt´1q}1 ` ~A´ 9A~1}s 9λpYt´1q}1

ď δCs
`

1 `A
˘

}Yt´1}1.
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implies that

}fθ t ´ f 9θ t}1

“ }ω ´ 9ω ` AsλpYt´1q ´ 9As 9λpYt´1q ` Bpfθ t´1 ´ f 9θ t´1q ´ p 9B ´ Bqf 9θ t´1}1

ď δa 9θ t´1 ` B}fθ t´1 ´ f 9θ t´1}1

by the triangular inequality and properties of the ℓ1-norm.20

Note that for t “ 1, }fθ 1 ´ f 9θ 1}1 “ 0 ď δ ¨ 1 ď δd 9θ 0, and by induction for all

t ą 1,

}fθ t ´ f 9θ t}1 ď δ
`

a 9θ t´1 ` Bd 9θ t´1 ` ϵd t
˘

“ δd 9θ t,

where the last inequality holds because ϵd t is non-negative.

Lemma 3.10.2. Suppose Lemma 3.10.1 holds. Then, the inequality in (3.6) is

satisfied.

Proof of Lemma 3.10.2. First, by (3.3) one can write

ˇ

ˇ

ˇ
ltpθ, τq ´ ltp 9θ, τq

ˇ

ˇ

ˇ
ď

1

N

N
ÿ

i“1

|ρτipYi t ´ fθ i tq ´ ρτipYi t ´ f 9θ i tq|

ď
1

N

N
ÿ

i“1

|f 9θ i t ´ fθ i t| “
1

N
}fθ t ´ f 9θ t}1 ď

1

N
δd 9θ t ,

where the second line follows by noting that for all i “ 1, . . . , N , ρτi is pτi _ p1´

τiqq-Lipschitz with τi P r0, 1s (so maxi“1,...,Ntτi _ p1 ´ τiqu ď 1) and by Lemma

3.10.1.
20In particular, that for any mˆn matrix A and n-vector x, it holds that }Ax}1 ď ~A~1 ¨ }x}1.
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3.11 Multi-step ahead direct forecasts

For finite h ě 1, the direct forecast strategy is based on equation (3.1) but modi-

fying the loss function to be

lt,hpθ, τq “
1

N

N
ÿ

i“1

ρτipYi t`h´1 ´ fθ i tq, for 1 ď t ď T ´ h ` 1.

In other words, we compute

θ̂hT,τ P argmin
θPΘ

1

T ´ h ` 1

T´h`1
ÿ

t“1

lt,hpθ, τq.

It is clear that lt,hpθ, τq is a measurable transformation of Wt “ pY 1
t , H

1
t, f

1
θ t, dθ tq

1

and Wt`h, and hence it also satisfies Condition 3.3.1.

3.12 Multi-step ahead iterated forecasts

For finite h ě 1, consider the following h-step ahead forecast strategy:

fθ t`1|t “ fθ t`1 “ ω ` AsλpYtq ` Bfθ t

fθ t`2|t “ ω ` Asλpfθ t`1|tq ` Bfθ t`1|t “ ω ` Asλpfθ t`1q ` Bfθ t`1

fθ t`3|t “ ω ` Asλpfθ t`2|tq ` Bfθ t`2|t

...

fθ t`h|t “ ω ` Asλpfθ t`h´1|tq ` Bfθ t`h´1|t.

Let Wt “ pY 1
t , H

1
t, f

1
θ t, dθ tq

1. Suppose that tWtu is α-mixing with mixing coeffi-

cients αW pmq. From the above, it follows that there exists a measurable transfor-
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mation g such that

Vt`h “

»

—

–

Yt`h

fθ t`h|t

fi

ffi

fl

“ gpWt`h,Wtq.

Thus, tVtu is also α-mixing by Davidson (1994, Theorem 14.1), with αV pmq ď

αW pm ´ hq for m ě h. Thus, the loss function defined as

lt,hpθ, τq :“
1

N

N
ÿ

i“1

ρτipYi t ´ fθ i t|t´hq, for t ě h

is also α-mixing with coefficients αV pmq ď αW pm ´ hq for m ě h. It still needs

to be shown that Condition 3.3.1(iii) holds. To see this, write

|lt,hpθ, τq| ď
1

N
}Yt}1 `

1

N
}fθ t|t´h}1.

By Proposition 3.9.1, suptě1 }}Yt}1}Lk
ă 8, and

sup
tě1

sup
Θ

}}fθ t}1}Lk
ď
ω ` CsA suptě1 }}Yt}1}Lk

1 ´ B
:“ C0 ă 8.

Thus, by A.3.3.2,

sup
tě1

sup
Θ

}}fθ t`1|t}1}Lk

ď ω ` ACs sup
tě1

}}Yt}1}Lk
` B sup

tě1
sup
Θ

}}fθ t}1}Lk
:“ C1 ă 8,

sup
tě1

sup
Θ

}}fθ t`2|t}1}Lk
ď ω `

`

ACs ` B
˘

C1 :“ C2 ă 8,

...

sup
tě1

sup
Θ

}}fθ t`h|t}1}Lk
ď ω `

`

ACs ` B
˘

Ch´1 :“ Ch ă 8.

By combining the results above, it follows that suptě1 supΘ }lt,hpθ, τq}Lk
ă 8,

as expected. This shows that Condition 3.3.1 is also satisfied for h-step ahead

iterated forecasting.
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3.13 Auxiliary Results

Lemma 3.13.1 (ΘA is compact and nonempty.). Consider the setup of the proof

of Lemma 3.9.7. Then, there exist positive and finite constants A and A such that

ΘA is compact and nonempty.

Proof. Recall that

ΘA “ tvecpAq P Rp2A : ~A~1 ď Au X tvecpAq P Rp2A : | detpAq| ě Au.

First, it is shown that ΘA is closed. For any sequence tAk, k “ 1, 2, . . .u with

limit A and Ak P ΘA, the following inequalities

| detpAq| “ lim
kÑ8

| detpAkq| ě A,

~A~1 “ lim
kÑ8

~Ak~1 ď A

hold by the continuous mapping theorem. Therefore, ΘA is closed. Furthermore,

ΘA is bounded for any finite A. To see that the bounds can be chosen so that ΘA

is nonempty, let A “ 2 and A “ 1{2. Then, the identity matrix I P ΘA.
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3.14 Additional Tables

Table 3.2: 95% GaR Marginal Forecast Evaluation: OECD Countries

Benchmark AR-GARCH VFV-A AR-GARCH-VFV-A

Country Cov Len CL Cov Len CL Cov Len CL Cov Len CL

AUS 99.24 5.06 0.10 96.21 4.36 21.03 98.48 4.79 7.28 94.70 4.38 21.36

AUT 96.97 4.17 0.09 93.94 3.83 ´1.65 95.45 4.11 ´0.40 94.70 3.87 4.54

BEL 96.21 2.80 0.09 93.94 2.47 8.63 96.21 2.77 ´1.53 93.18 2.66 ´0.14

CAN 95.45 3.72 0.09 89.39 3.21 17.78 97.73 3.65 16.82 90.91 3.23 20.86

CHE 98.48 5.10 0.09 95.45 4.42 29.23 99.24 4.94 10.06 95.45 4.43 29.64

DEU 96.21 4.78 0.13 95.45 4.71 3.29 96.21 4.78 ´5.16 94.70 4.60 10.74

DNK 93.94 4.41 0.12 93.18 4.32 ´0.26 96.21 4.55 4.22 93.18 4.38 ´31.73

ESP 90.15 5.18 0.10 92.42 4.91 26.51 93.94 5.19 10.17 94.70 5.08 24.92

FIN 94.70 6.40 0.16 93.18 6.00 5.28 94.70 6.43 ´4.79 93.94 6.14 3.42

FRA 93.18 3.80 0.06 93.94 3.84 13.34 92.42 3.74 7.67 95.45 3.89 24.37

GBR 97.73 5.35 0.10 93.94 4.79 9.45 96.97 5.13 21.13 95.45 4.76 26.04

GRC 96.21 12.39 0.26 91.67 10.71 18.42 96.21 12.13 2.82 89.39 11.13 3.96

IRL 87.12 7.09 0.22 91.67 8.01 14.88 91.67 7.55 11.32 91.67 8.04 10.17

ISL 88.64 7.68 0.28 92.42 8.12 6.63 93.94 8.52 7.67 92.42 8.20 4.96

ITA 90.91 3.73 0.09 93.18 3.59 30.98 93.94 3.74 28.67 89.39 3.46 9.23

JPN 87.12 4.61 0.15 88.64 4.83 9.30 85.61 4.70 12.92 90.15 5.03 11.46

KOR 97.73 9.09 0.22 94.70 7.88 9.35 97.73 8.62 3.19 93.94 8.23 5.36

LUX 91.67 4.85 0.18 87.12 4.50 ´16.99 90.91 5.06 ´25.66 86.36 4.77 ´33.96

MEX 93.18 4.17 0.21 93.18 4.03 16.15 96.21 4.78 6.44 91.67 4.50 8.37

NLD 99.24 6.09 0.13 95.45 5.30 15.80 97.73 5.79 4.15 95.45 5.37 16.26

NOR 91.67 4.87 0.15 88.64 4.79 ´9.81 95.45 5.54 ´11.63 90.15 5.15 ´13.58

PRT 94.70 5.49 0.11 93.94 4.91 7.28 96.97 5.46 5.83 95.45 5.00 6.97

SWE 97.73 5.79 0.13 96.21 5.46 6.95 96.97 5.65 3.57 96.21 5.44 9.95

USA 97.73 3.37 0.09 94.70 2.85 20.12 97.73 3.23 8.99 94.70 2.89 24.74

Cov: Average empirical coverage; Len: average empirical length; CL: average check loss (for the Benchmark block) and

percentage improvement in average check loss relative to historical benchmark (for the remaining blocks).
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1.20

1.34
3.76
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4.02
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–
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3.04

4.47
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–
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4.03
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