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Abstract

The main goal of this dissertation is to develop new lattice-based cryptographic
schemes. Most of the cryptographic protocols that each and every one of us use on a
daily basis are only secure under the assumption that two mathematical problems,
namely the discrete logarithm on elliptic curves and the factorization of products
of two primes, are computationally hard. That is believed to be true for classical
computers, but quantumcomputerswouldbe able to solve theseproblemsmuchmore
efficiently, demolishing the foundations of plenty of cryptographic constructions.
This reveals the importance of post-quantum alternatives, cryptographic schemes
whose security relies on different problems intractable for both classical and quantum
computers. The most promising family of problems widely believed to be hard for
quantum computers are lattice-based problems.

We increase the supply of lattice-based tools providing new Zero-Knowledge
Proofs of Knowledge for the Ring LearningWith Errors (RLWE) problem, perhaps the
most popular lattice-based problem. Zero-knowledge proofs are protocols between a
prover and a verifier where the prover convinces the verifier of the validity of certain
statements without revealing any additional relevant information. Our proofs extend
the literature of Stern-based proofs, following the techniques presented by Jacques
Stern in 1994. His original idea involved a code-based problem, but it has been
reiteratedly improved and generalized to be used with lattices. We illustrate our
proposal defining a variant of the commitment scheme, a cryptographic primitive
that allows us to ensure somemessagewas already determined at some pointwithout
revealing it until a future time, defined by Benhamouda et al. in ESORICS 2015, and
proving in zero-knowledge the knowledge of a valid opening. Most importantly
we also show how to prove that the message committed in one commitment is a
linear combination, with some public coefficients, of the committed messages from
two other commitments, again without revealing any further information about
the messages. Finally, we also present a zero-knowledge proof analogous to the
previous one but for multiplicative relations, something much more involved that
allows us to prove any arithmetic circuit. We give first an interactive version of these
proofs and then show how to construct a non-interactive one.

We diligently prove that both the commitment and the companion Zero-
Knowledge Proofs of Knowledge are secure under the assumption of the hardness of
the underlying lattice problems. Furthermore, we specifically develop such proofs
so that the arising conditions can be directly used to compute parameters that satisfy
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them. This way we provide a general method to instantiate our commitment and
proofs with any desired security level. Thanks to this practical approach we have
been able to implement all the proposed schemes and benchmark the prototype im-
plementation with actually secure parameters, which allows us to obtain meaningful
results and compare its performance with the existing alternatives.

Moreover, provided that multiplication of polynomials in the quotient ring
Z𝑝[𝑥]/⟨𝑥𝑛 + 1⟩, with 𝑝 prime and 𝑛 a power of two, is the most basic operation when
working with ideal lattices we comprehensively study what are the necessary and
sufficient conditions needed for applying (a generalized version of) the Fast Fourier
Transform (FFT) to obtain an efficient multiplication algorithm in quotient rings
as Z𝑚[𝑥]/⟨𝑥𝑛 − 𝑎⟩ (where we consider any positive integer 𝑚 and generalize the
quotient), as we think it is of independent interest. We believe such a theoretical
analysis is fundamental to be able to determine when a given generalization can
also be applied to design an efficient multiplication algorithm when the FFT is not
defined for the ring we are considering. That is the case of the rings used for the
commitment and proofs described before, where only a partial FFT is available.
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Chapter 1

Introduction

We start this chapter with Section 1.1, briefly introducing all the concepts behind
this work, starting with cryptography itself from a historical point of view to be able
to define the paradigmatic ideas of public key cryptography and provable security, in
order to motivate the need of new post-quantum cryptographic constructions with
concrete security. Then, all the cryptographic primitives that we are going to use
through the dissertation are going to be formally defined in Section 1.2. Additionally,
Section 1.3 is going to be devoted to lattices as a mathematical object and the related
problems we can use as hardness assumptions for cryptographic constructions. In
this introductory chapter we also prove from the very beginning in Section 1.4 some
probability lemmas that are going to be useful for simplifying the proofs of security
of the cryptographic proposals we are going to latter present. Finally, in Section 1.5
we introduce the main contributions that we are going to present through Chapters 2
to 4.

1.1 Motivation

Humanity has been aiming to keep conversations private for centuries. This goal has
been so closely related to writing itself that we can even trace it back to clay tablets
with cuneiform writing from the ancient Mesopotamia. One of the first preserved
examples is the baked clay tablet now in the collection of the British Museum with
number BM 120960, transcribed and translated by Gadd and Thompson in [56]. It
was originally found in Tall ’Umar, at the city of Seleucia on the Tigris (current Iraq),
and has been dated around the seventeenth century BCE. This tablet is exceptionally
unique because it describes the first known recipe for glazed pottery, but, according
to Gadd and Thompson, does so with an “artificial obscurity of expression” by
means of “artifices of writing which amount to a form of cryptography”. The authors

1



2 1.1. Motivation

of [56] claim that this writing style was specifically intended to conceal the secrets of
the recipe because common words as verbs are written straightforwardly while the
relevant parts are elaborately “disguised”. The fact that the first civilization forwhich
we have evidence of written language also developed some kind of cryptography
exemplifies its ubiquity through history.

However, for a long time cryptography was just a matter of cryptographers
designing increasingly intricate methods to transform the plain messages, plaintexts,
into encrypted messages, ciphertexts, hoping no smarter cryptanalyst was able to hack
their techniques. Perhaps the most paradigmatic case is the successful effort from
Alan Turing and his team on Bletchley Park cracking the Nazi ciphertexts encrypted
with the Enigma machine during the World War II (Turing’s Treatise on the Enigma is
publicly available thanks to the Turing Digital Archive*).

Only during the second half of the last century, when computer science was
being born thanks to the formalization of Turing himself and his advisor Alonzo
Church, and notions such as computational complexity started to be taken into
serious consideration, modern cryptography was born embracing the provable security
paradigm. Applied mathematics intend to address real-life problems by means of
reducing them to abstract mathematical problems we already know how to solve.
That means the real-life problem is easier because anyone who knows how to solve
the abstract problem can also solve the real-life problem by translating it into the
former and applying the known method. On the contrary, cryptographers do not
want to show that some problems are easy but to ensure some other problems, as
decrypting a message or forging a digital signature without knowing the secret key,
are indeed really difficult to solve. To do so modern cryptography just follows the
reciprocal approach. Encryption and signature schemes are designed with some
mathematical problems in mind, involving the same kind of operations, so that
breaking its security implies being able to solve the abstract mathematical problem.

We reiterate this foundational idea to develop the discussion on its potential.
The point is not that if we knew how to solve a mathematical problem then we could
use it to break the security of the cryptographic scheme but we choose to give up
because such problem is really hard. If that was just the case we could never have
a certain reference for the security level, as there might be a different more clever
approach to break it without involving that problem. The good news is that schemes
are designed so that reductions work the other way around. If someone devised
an efficient method to break its security (forge a signature or decrypt a message
addressed to someone else), we know how we could use this method to solve the
original mathematical problem we believe to be really hard. That means that, under

*https://turingarchive.kings.cam.ac.uk/amtc/amt-c-30

https://turingarchive.kings.cam.ac.uk/amtc/amt-c-30


Chapter 1. Introduction 3

certain assumptions, namely the hardness of the underlying mathematical problems,
we can formally prove the security of the cryptographic schemes, defining the realm
of provable security “changing this ancient art into a science” [44].

We remark here that these proofs have the computational assumptions as
hypothesis, because actually proving the hardness of relevant problems seems a
difficult endeavor, exemplified by the fact that we cannot yet prove or disprove
the equality of P and NP computational classes (decisional problems, with yes or
no answers, that we can solve in polynomial time with a Turing Machine or a
Non-Deterministic Turing Machine respectively).

Nowadays, this has become a significantly more important matter, provided
that our entire lives have been digitalized and personal, professional or financial
interactions are conducted over the internet and secured with cryptography. As
we have already introduced, mentioning signature schemes, cryptography is much
more than concealing secrets through encryption. It also deals with text integrity,
authentication and anything communication related that involves some kind of (lack
of) trust. There are plenty of cryptographic primitives and each needs its formal
security models.

The public key cryptography paradigm, also called asymmetric cryptography,
involves the existence of a secret key with a related public key, so that the secret
key belongs to the user and is used for private operations such as decrypting or
signing while the public key can be used by anyone for encrypting or verifying a
signature. In this paradigm security is only computational. The only alternative to
obtain perfect security, from an information-theoretical point of view, is the one-time
pad [108], but requires exchanging non-reusable secrets as large as the messages.

The point is to design schemes so that the computational complexity of the attacks
escalates much worse than the computational complexity of the honest players. Of
course an adversary could always guess the secret key just trying every possible
combination of characters, but we can rule out this brute-force key recovery attack
ensuring the key space is large enough. We can do so if increasing the key size one
bit only adds a constant time to the honest encryption or decryption computations,
because this increase is perfectly admissible, while doubling the number of keys
implies doubling too the brute-force time as the attacker now has twice as many
keys to try.

In fact, it is sufficient if the honest computations (encryption and decryption using
the key) depend polynomially on the size of the keys. As we have been mentioning
the big step comes when this approach works not only against this particular attack
but against any attempt to break security (recovering or not the keys) because the
best known algorithms for solving the underlying mathematical problem (that we
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know establishes a lower bound on the time required to successfully misbehave)
also take an exponential (or at least superpolynomial) amount of time on the size of
the keys. Then we can use an argument equivalent to the above, as we are going to
latter formalize in Section 1.2.

The fact that in the previous example the malicious approach scales exponen-
tially worse than the honest executions means we can hopefully select reasonable
parameters that make any attack completely infeasible. Let us grasp how fast is
the exponential growth of powers of 2 that we obtain doubling the number of
keys with each additional bit. To get an idea of the magnitude of current standard
security levels such as 128 security bits, meaning a successful attack would need 2128

operations, we just have to mention that the current age of the universe in seconds is
less than 259 and according to the TOP500 list* the most powerful supercomputer
can now perform 260 floating point operations per second, which amount for a total
of 2119 if it started running at the Big Bang. That is, it would have not been enough
to break a cryptographic scheme with 128 security bits.

Most of the cryptographic standards currently in use rely on the hardness
of two well studied problems, the Discrete Logarithm (DLog) problem and prime
factorization, or related assumptions as Decisional Diffie-Hellman (DDH) [26] or
Rivest-Shamir-Adelman (RSA) [102]. Computing a discrete logarithm on certain
groups or factorizing products of large primes are difficult problems for which no
efficient algorithm is currently known, and this allows the existence of a myriad of
cryptographic applications. But, unfortunately, that statement is only true if we limit
ourselves to classical algorithms, excluding quantum algorithms.

Everyday computers work using binary logic, having a bit as the most basic
unit of information storing two possible states usually represented as a 0 or a 1.
However, taking advantage of the quantum nature of this universe, a completely
different model of computation called quantum computing can be built having qubits,
the quantum analogous of a bit, as basic units. Leveraging that quantum mechanics
allows a particle to be in superposition of different states a qubit is allowed to be in
a superposition of two basic states. Mathematically speaking a qubit is a unitary
linear combination of the two states with complex coefficients. When considering
more than one qubit (in a Hilbert space of 2𝑁 dimensions) this allows special states,
entangled states, that are not the product of individual classical states, and from this
emerge new possibilities for computation.

It is important to remark that these new operations that are possible with a
quantum computer do not add anything new in terms of computability. We say a
decisional problem is decidable if there exists an algorithm guaranteed to compute the

*https://top500.org

https://top500.org
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answer in a finite amount of steps. Every problem decidable with a Quantum Turing
Machine (the theoretical model for a quantum computer) is also decidable with a
classical Turing Machine (the theoretical model for classical computers). That is the
case because a quantum computer can be fully emulated with a classical computer.
This means that the Church-Turing thesis (the conjecture stating that any function
defined over the natural numbers can be computed by any effective method if and
only if it is computable by a Turing Machine, implying that it is the right model for
computation) also applies to quantum computation.

The relevant difference comes when we take into account the time-complexity
of the algorithms. The possibility of emulating the quantum computations with a
classical computer that we have already mentioned comes, as far as we know, at
the expense of an exponential slow down (i.e. requiring exponentially many more
computations). We already have examples of problems solvable in polynomial-time
(the amount of operations can be bounded as a polynomial evaluated on the size
of the input) with a quantum computer that have no known classical polynomial
algorithm. Unfortunately, two of these problems are precisely DLog and integer
factorization, because an efficient quantum algorithm for solving these two problems
was developed in 1994 by Peter Shor in [109], making most of the cryptographic
primitives we still use today quantum vulnerable.

There is a passionate discussion regarding the feasibility of Cryptographically
Relevant Quantum Computers, that is, quantum computers able to compromise the
security of cryptographic primitives based on problems related to the DLog and
integer factorization. Even if Shor’s algorithm is theoretically efficient we have had a
limited success actually building quantum computers able to implement it (it has
been recently used to factor 21 = 3 × 7 using 5 qubits [112]). It might be the case that
the problems regarding scalability involving the number of qubits, the propensity to
errors combined with the limited ability to correct them, or the difficulties that arise
from keeping the quantum computer running for a prolonged period of time (the
quantum states are very delicate and the probability of decoherence, the process from
which any disturbance collapses the quantum states into a classical state, increases
over time)make it infeasible to build a quantum computer that can be an actual threat
to the cryptographic security of the theoretically vulnerable schemes. However, it
is a very prolific research field, quantum computers with an increasing number of
qubits are presented each year and new methods are developed continuously, for
example combining the computational capabilities of a quantum computer and a
classical one so that a much less powerful quantum computer already provides an
advantage [112].

In any case this represents a colossal risk because even if we cannot precisely
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answer if or when a quantum computer will be able to solve these problems
we do know that the consequences could be chaotic unless we have substituted
these vulnerable schemes. Furthermore, this issue should be addressed at the
earliest convenience. That is the case because signature schemes based on the RSA
assumption will become untrustworthy whenever there is a quantum computer
that might have forged them, so we have to transition to a resistant scheme when a
powerful enough quantum computer becomes available, but encryption schemes
have to be replaced now because we expect the encrypted information to remain
private for a long period of time and some malicious entity could be collecting now
current communications so that they can decrypt them in the future. We can wait
for primitives ensuring the integrity of messages or operations, but we have to act
now regarding anything related with privacy.

There are to completely different alternatives to face this challenge. Quantum
Cryptography encompasses the methods that try to base the security of new schemes
on the quantum mechanical properties of nature. Quantum random generators and
quantum key distribution schemes have been proposed using the non-deterministic
nature of quantum states for the former and the properties of quantummeasurements
for the latter, as these properties allow two users to detect if a third party has
measured the individual photons (or whatever quantum particle is used) they have
been exchanging and therefore can share a key knowing no eavesdropper has been
involved.

The previous approach is then based on a completely different paradigm, and
requires specialized expensive hardware to be implemented. The alternative that
we follow through this dissertation, called Post-Quantum Cryptography, is to keep
the approach basing the security on the computational hardness of mathematical
problems but using alternative problems that are believed to be hard for both classical
and quantum computers. It might be the case that a quantum computer is more
efficient than a classical one, but we are fine if the difference between the number of
classical computations performed by the honest parties is still significantly smaller
than the infeasible amount of computation that would be required for a malicious
adversary in order to break the scheme.

There exist multiple alternative candidates, lattice-based, code-based, hash-based
and multivariate-based cryptography, each basing its security on a different family
of problems. Lattices are the most promising source of problems for post-quantum
cryptography (we are going to extensively discuss their advantages in Section 1.3).
The greatest effort to standardize post-quantum cryptographic primitives its being
conducted by the National Institute of Standards and Technology (NIST) from the
United States of America. A competition was launched in 2016 asking for public
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key encryption and digital signature proposals*, and from the many applications
submitted by teams from all around the globe, after three rounds of submissions
three of the four candidates that have been chosen to be standardized are lattice-
based proposals (the key encapsulation mechanism Kyber and the digital signatures
Dilithium and Falcon) and one is hash-based (the digital signature SPHINCS+).

Besides the existence of asymptotic formal proofs that guarantee that sufficiently
large key sizes would make the scheme secure against quantum computers we
also aspire, to the best of our knowledge, to obtain concrete security and try to
quantitatively bound the success probability of an adversary with a specific amount
of resources. We believe this is also important if we intend our research to be trusted
and yield to practical applications.

1.2 (Post-Quantum) Cryptography

As we have mentioned, cryptography goes far beyond encryption and signature
schemes. We introduce in this section all the primitives that we are going to use as
examples or to present our contributions. We also introduce here the notation we
are going to use regarding probabilistic algorithms.

Given an algorithm𝒜 we use 𝑎 ←𝒜 to denote that 𝑎 is the output of𝒜. If the
algorithm𝒜 is probabilistic and the output is not deterministically determined by
the input we might then use 𝑎 ←r 𝒜 to indicate that some randomness is involved.
Given a set 𝑋 we also use 𝑥 ←r 𝑋 to denote that 𝑥 is sampled uniformly at random
from 𝑋. Finally, given a probability distribution 𝐷 we analogously use 𝑑←r 𝐷 to
denote that 𝑑 is sampled following the distribution 𝐷.

The usual convention is to assume the time-complexity of an algorithm is
reasonable if the number of operations it needs to finish is bounded by a polynomial
on the size of its input. Given that we use probabilistic algorithms we want this
property to be true independently of the internal random coins. This class of
algorithms is usually known as Probabilistic Polynomial-Time (PPT). We generally
consider the possibility of these algorithms being quantum algorithms and not only
classical ones.

We want the success probability of adversaries trying to break the security of
our schemes to be insignificant. This can be formalized asymptotically with the
following two definitions.

Definition 1.1 (Negligible function).
A function 𝑓 is negligible if | 𝑓 (𝑛) | ∈O(

𝑛−𝑐
)
, ∀𝑐 ∈ Z>0.

We denote it writing 𝑓 ∈ negl(𝑛).
*https://csrc.nist.gov/projects/post-quantum-cryptography

https://csrc.nist.gov/projects/post-quantum-cryptography
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Definition 1.2 (Overwhelming function).
A function 𝑓 is overwhelming if | 𝑓 (𝑛) − 1 | ∈O(

𝑛−𝑐
)
, ∀𝑐 ∈ Z>0.

The level of security can then be controlled by the variable of these negligible
functions, usually known as security parameter. Through this dissertation 𝜆 is going
to be our security parameter in all security proofs.

We might sometimes want to bound the probabilities of the undesired events by
some given probability, usually 2−𝜆 (and not only asymptotically). If this bound is
specifically indicated we might also use the word negligible to refer to this specific
value because, in particular, 2−𝜆 is negligible in 𝜆.

1.2.1 Encryption Schemes

In this work we are going tomainly focus on other than encryption primitives, but we
start defining a public key encryption scheme because we are going to use them as
examples of applications of lattice-based cryptography, and we need this definition
to motivate the other primitives.

Through this sectionwe are going to always include all input and output elements
necessary to define the involved algorithms. However, in some cases some of these
inputs, for example the public parameters that define the length of the messages
in the considered message space, are unambiguously implicitly defined from the
context. We use a semicolon instead of a comma to separate this kind of parameters
that, in the following sections, we might later omit in order to simplify notation
when leaving them out does not introduce any possible ambiguity.

Definition 1.3 (Public Key Encryption Scheme). A public key encryption scheme,
designed to hide a message so that only the designated receiver can then read it,
consists on three efficient algorithms:

• Gen: the generator algorithm takes a security parameter 1𝜆 and outputs a pair
of keys, sk and pk, the secret and the public key respectively. It also defines the
message spaceℳ𝜆 and the ciphertext space 𝒞𝜆, via some public parameters pp.
These public parameters can be seen as part of the public key, but we prefer to
treat them separately.

(sk, pk; pp) ←r Gen
(
1𝜆

)
• Enc: the encryption algorithm takes as input a message 𝑚 ∈ ℳ𝜆, a public key

pk and the public parameters pp and produces a ciphertext 𝑐 ∈ 𝒞𝜆.

𝑐 ←r Enc
(
𝑚; pk, pp

)
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• Dec: the decryption algorithm takes as input a ciphertext 𝑐 and a secret key
sk, possibly together with the public key pk and the public parameters pp, and
outputs a message 𝑚′.

𝑚′← Dec
(
𝑐, sk; pk, pp

)
These algorithms should satisfy the following two properties:

• Correctness: knowing the private key the decryption algorithm should recover
the encrypted message.

(sk, pk; pp) ←r Gen(1𝜆)
𝑚 ∈ ℳ𝜆

𝑐 ←r Enc(𝑚; pk, pp)
𝑚′←r Dec (𝑐, sk; pk, pp)


=⇒ 𝑚′ = 𝑚.

In some occasions we might be content with this property happening except
with negligible probability, allowing the possibility of some errors if they
happen with sufficiently low probability.

Pr


𝑚′ ≠ 𝑚

���������
(sk, pk; pp) ←r Gen(1𝜆),

𝑚 ∈ ℳ𝜆 ,

𝑐 ←r Enc(𝑚; pk, pp),
𝑚′← Dec(𝑐, sk; pk, pp)


∈ negl(𝜆).

• Security: we also expect the encryption algorithm to hide the message 𝑚,
that should not be recoverable from the ciphertext 𝑐 and the public key pk
alone, without the secret key sk. Depending on how we formalize this notion,
rigorously defining what we want to prevent and specifying the capabilities
of the adversary, we might obtain different security definitions, involving the
security parameter 𝜆.

This definition ensures that, on the one hand, anyone can encrypt messages, as
the algorithms and the public key are, indeed, publicly known. On the other hand,
people knowing the secret key can recover, always or with overwhelming probability,
the secret message that is encrypted in the ciphertext.

The first intuition about the security of a public key encryption scheme tells us
that besides this we also need that the original message should not be efficiently
obtainable without knowing the secret key. Notice the key generator algorithm takes
1𝜆 as input because we measure this difficulty as the efficiency of the algorithms
with respect to the length of its input, and this way the input has length 𝜆. The same
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is going to apply for the adversary, so we can define its computational power as a
function of 𝜆 (notice also that the size of the output of a polynomial algorithm is
necessarily polynomial too). This can be formalized with the following definition.

Definition 1.4 (Public Key Encryption One Way Chosen Plaintext Attack Se-
cure – OW-CPA). A public key encryption scheme is said to be OW-CPA secure
if for all PPT adversaries𝒜 the following holds.

Pr

𝑚
′ = 𝑚

�������
(sk, pk; pp) ←r Gen(1𝜆),

𝑚 ←r ℳ𝜆 , 𝑐 ←r Enc(𝑚; pk, pp),
𝑚′←r 𝒜(𝑐, pk, pp, 1𝜆)

 ∈ negl(𝜆).

However, this is usually not enough. An encryption scheme that only modifies
the second half of the message may be OW-CPA secure if it is hard enough to recover
this second half, but reveals a lot of information about the message. For that reason
the following standard stronger security definition is usually considered.

Definition 1.5 (Public Key Encryption Indistinguishable Chosen Plaintext Attack
Secure – IND-CPA). A public key encryption scheme is said to be IND-CPA secure if
for all PPT adversaries (𝒜1 ,𝒜2) the following holds.���������Pr


𝑏𝒜 = 𝑏

���������
(sk, pk; pp) ←r Gen(1𝜆),

(𝑚0 , 𝑚1 , aux) ←r 𝒜1(pk, pp, 1𝜆),
𝑏 ←r {0, 1}, 𝑐 ←r Enc(𝑚𝑏 ; pk, pp),

𝑏𝒜 ←r 𝒜2(𝑐, pk, pp, aux, 1𝜆)


− 1/2

��������� ∈ negl(𝜆).

That is, the encryptions of two different messages should not be computationally
distinguishable (the advantage over a random guess has to be negligible), even if we
allow the adversary to choose those messages. Note that this definition implies that
the algorithm has to be probabilistic.

Observe we have defined two separated algorithms for the adversary, in order to
separate its two main tasks. However, an adversary trying to learn some information
from the encryption could always use their prior knowledge from the moment
selecting the two messages. For this reason we include an auxiliary variable aux that
stores any information𝒜1 considers that𝒜2 could use to guess the message.

Weprove security of an encryption schemeunder certain hypothesis (the hardness
of some computational problem) proving the existence of a reduction that implies
that a PPT algorithm breaking the security of the encryption could be used to
disprove the hypothesis. In particular, we are interested in public key encryption
schemes whose security is based in hypothesis believed to be true in a quantum
scenario. Some examples are going to be presented in Section 1.3.
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1.2.2 Commitment Schemes

Sometimes we want to hide some information not to restrict who should access it
but when should it become public. Just publishing it latter might not be an option if
the fact that the decision was already made in a prior moment is important.

Let us consider a simple scenario where a group of people votes to choose an
option among several possibilities. There is no privacy need and everyone agrees
to make their own decision public. However, disclosing their options one by one
would make the process unfair, because as more and more options are revealed
the following participants have more information and can choose to change their
mind in a strategic way (for example voting for their second preferred option if
they already consider their first option has a little chance of winning). That would
provide more control over the final outcome to the last participants, making the
process biased. Enumerating the options and raising hands has similar issues, this
time related with the order of the options. In a physical meeting this could be easily
solved by asking the participants to write down their option on a piece of paper,
so then each participant can reveal their own choice once all the other votes have
already been fixed.

Being able to obtain the same functionality with a cryptographic primitive is
a very versatile tool, but requires a different security model than encryption. For
example, imaging an IND-CPA secure public key encryption scheme (Gen,Enc,Dec)
that encrypts a single bit for a yes or no vote. A participant can sample a pair of keys
and public parameters (sk, pk; pp) ←r Gen(1𝜆), encrypt their option 𝑏 ∈ {0, 1} =ℳ𝜆

with 𝑐 ←r Enc(𝑏; pk, pp) and reveal 𝑐, because the IND-CPA property ensures no
adversary can correctly guess the value of 𝑏 as encryptions of 0 are indistinguishable
from encryptions of 1. However, without any further consideration, this would not be
enough to later convince others that their vote has already been fixed. Of course the
participant could reveal sk so that anyone can check 𝑏 ← Dec(𝑐, sk; pk, pp). But that
would be meaningless because, if the participant wishes to change their mind (and
choose the other option 𝑏), they can also sample new sk′ so that 𝑏 ← Dec(𝑐, sk′; pk, pp)
(and this is always possible because if sampling different keys we cannot efficiently
find one such that 𝑏 ← Dec(𝑐, sk′; pk, pp) then we would be able to know the value
of 𝑏 and break the security of the encryption scheme).

A cryptographic primitive that could solve these problems does not only need
to guarantee that it hides the secret. Whatever is disclosed should be bound to the
original message and no other, as the user wants to show that they have committed to
that value. The primitive we need for this scenario is called a commitment scheme.

Definition 1.6 (Commitment Scheme). A commitment scheme is a cryptographic
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primitive with two phases that allows one party to commit to a value that will only
be revealed to other parties showing an opening in the future. It consists on three
efficient algorithms:

• Gen: the generator algorithm takes as input the security parameter 1𝜆 and out-
puts a public key pk and the public parameters pp that define the commitment
and message spaces and the specifications of the other two algorithms.

(pk; pp) ←r Gen
(
1𝜆

)
• Com: the commitment algorithm takes as input a message 𝑚 and a public key

pk, together with the public parameters pp, and outputs both a commitment 𝑐
and an opening 𝑜.

(𝑐, 𝑜) ←r Com
(
𝑚; pk, pp

)
• Ver: the verification algorithm takes as input a commitment 𝑐, a message 𝑚, an

opening 𝑜 and the public key pk with the public parameters pp, and accepts or
rejects that opening.

Ver :
{(
𝑐, 𝑚, 𝑜; pk, pp

)}
→

{
accept, reject

}
These algorithms have to satisfy the following three properties:

• Correctness: if the commitment has been built correctly and the original
message and the opening are published then the verification algorithm always
accepts.

(pk; pp) ←r Gen
(
1𝜆

)
(𝑐, 𝑜) ←r Com (𝑚; pk, pp)

}
=⇒ accept← Ver(𝑐, 𝑚, 𝑜; pk, pp).

Analogously as before we might accept correctness except with negligible
probability for every message.

Pr

[
reject← Ver(𝑐, 𝑚, 𝑜; pk, pp)

����� (pk; pp) ←r Gen(1𝜆)
(𝑐, 𝑜) ←r Com(𝑚; pk, pp)

]
∈ negl(𝜆).

• Hiding: a well constructed commitment 𝑐 does not leak any relevant informa-
tion about the message 𝑚. This property can be perfect or only computational.

– Perfectly Hiding: it is perfectly hiding if this property is absolute and
unconditional, meaning that for any commitment to a message there
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exists a valid opening to any other message.

(pk; pp) ←r Gen(1𝜆)
(𝑐, 𝑜) ←r Com(𝑚; pk, pp)

}
=⇒ ∀𝑚′ ∃𝑜′ such that

accept← Ver(𝑐, 𝑚′, 𝑜′; pk, pp).

– Computationally Hiding: for any PPT adversary (𝒜1 ,𝒜2) the advantage
distinguishing two commitments, even if the messages are chosen by the
adversary themself, is negligible compared with a random guess.���������Pr


𝑏𝒜 = 𝑏

���������
(pk; pp) ←r Gen(1𝜆)

(𝑚0 , 𝑚1 , aux) ←r 𝒜1(pk, pp, 1𝜆)
𝑏 ←r {0, 1}, (𝑐, 𝑜) ←r Com(𝑚𝑏 ; pk, pp)

𝑏𝒜 ←r 𝒜2(𝑐, pk, pp, aux, 1𝜆)


− 1/2

��������� ∈ negl(𝜆).

• Binding: it should be infeasible for the sender to output a commitment that
can be opened to two different values. This property can again be perfect or
computational.

– Perfectly Binding: a commitment can only be opened to one message.

accept← Ver (𝑐, 𝑚, 𝑜; pk, pp)
accept← Ver (𝑐, 𝑚′, 𝑜′; pk, pp)

}
=⇒ 𝑚 = 𝑚′.

Wemight admit again the possibility of this property holding except with
negligible probability, in this case in the selection of the public key.

Pr

[
Ver (𝑐, 𝑚, 𝑜; pk, pp)
Ver (𝑐, 𝑚′, 𝑜′; pk, pp)

}
≠⇒ 𝑚 = 𝑚′

����� (pk; pp) ←r Gen(1𝜆)
]
∈ negl(𝜆).

– Computationally Binding: noPPTadversary𝒜 canoutput a commitment
𝑐 and two valid openings 𝑜 and 𝑜′ to two different messages 𝑚 ≠ 𝑚′

except with negligible probability.

Pr


Ver(𝑐, 𝑚, 𝑜; pk, pp),

Ver(𝑐, 𝑚′, 𝑜′; pk, pp),
𝑚 ≠ 𝑚′

������� (pk; pp) ←r Gen(1𝜆),
(𝑐, 𝑚, 𝑚′, 𝑜, 𝑜′) ←r 𝒜(pk, pp, 1𝜆)

 ∈ negl(𝜆).

Observe the hiding and binding properties cannot be both perfect for the same
scheme. In this work we are always going to consider computationally hiding
commitment schemes, either perfect or computationally binding.

We sometimes abuse notation to include the randomness of the commitment
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algorithm as another input, writing (𝑐, 𝑜) ← Com(𝑚, 𝑟; pk, pp) to denote that we have
used randomness 𝑟. Alternatively, if everything else is clear from the context, we
might further simplify the notation and just write 𝑐 ←r Com(𝑚). In some occasions
we also simply call opening to the pair of message and opening (𝑚, 𝑜).

We identify the possible outputs of the verification algorithm accept and reject
with true and false. Then we might say that “Ver(𝑐, 𝑚, 𝑜; pk, pp)” to indicate that the
output is accept (as we have done when describing the binding property), or write
“not Ver(𝑐, 𝑚, 𝑜; pk, pp)” to indicate that the output is reject. When someone has to

verify that the output is accepting we use the notation
?

Ver(𝑐, 𝑚, 𝑜; pk, pp).
This primitive allows the realization of many interesting protocols. It can be used

just as a way of preserving anonymity. For example, a commitment to the identity
of the author can be used as a pseudonym in a blindly reviewed literature context
so that only the winner has to reveal themself, and the same strategy can apply in
a call for tender. But it is far more useful for occasions where we need to ensure
that several participants that do not trust each other cannot make strategic decisions
because they have prior knowledge of the choices of the others. That would be the
case on a sealed bid auction, where all bids are sent in advance. Using a commitment
scheme would allow the highest bidder to reveal their offer (the organizer would
start descending from a maximum value until one of the participants opens their
commitment to the current value and wins the auction), while keeping the rest of
bids completely secret. As a classical example it is usually said that commitment
schemes allows one to play rock/paper/scissors over the internet (again none of
the players should know the rival’s option before choosing their own, and it can
be solved exchanging first a commitment to your option and then sharing valid
openings).

This last example seems just a game, but randomly choosing an option among
many participants that do not trust each other is an important building block of
multiparty computation. Two-party coin tossing involves two players trying to
decide a binary output (heads or tails with the coin metaphor) without trusting the
other participant’s coin. In the physical world this can be solved allowing both of
the participants to toss their own coin each, previously determining that we proceed
with one option if both coins have the same outcome (two heads or two tails) or
the other otherwise. This approach guarantees that, as long as one of the coins is
unbiased, both options have the same probability, so each participant has to trust
only their own coin. However, the procedure could be gamed if one sees the outcome
of the other first and changes their coin accordingly. To prevent that, commitment
schemes can be used again.

With more advanced protocols we constantly have to consider this kind of events.
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When we talk about the difficulty of a problem we refer to the difficulty of solving
a random instance of that problem, and that might need different elements to be
selected independently by different parties. An adversary knowing one of the
elements beforehand could use that information to maliciously choose their own
contribution so that the statement is no longer uniformly distributed and the problem
is no longer hard for such adversary. This type of issues can again be trivially solved
using commitments as a fundamental piece of interactive protocols.

1.2.3 Interactive Proof Systems

Beyond concealing information, cryptography offers solutions to verify that some
procedures have been conducted properly, providing evidence that can be validated
by everyone.

Consider a cloud provider that solves computationally expensive problems as
a service. It could be directly used if the user is able to verify that the answer
they receive solves indeed the initial problem. However, if verifying the fact that
the answer is indeed a solution is itself a computational task too expensive for the
constrained device of the final user, we need additional tools in order to avoid just
trusting the company.

Mathematically speaking we formalize this saying that a prover, usually denoted
by 𝒫, wants to convince a verifier, usually denoted by 𝒱, that some statement
𝑥 belongs to a formal language of strings 𝐿 (a set of strings over some alphabet,
encoding some class of statements that we call valid).

Definition 1.7 (Interactive Proof System). An Interactive Proof System is a two-party
protocol between a (potentially computationally unlimited) prover 𝒫 and a verifier
𝒱 where the prover tries to convince the verifier of the fact that 𝑥 ∈ 𝐿 sequentially
exchanging messages until the verifier makes a decision and accepts or rejects
depending on the conversation.

We denote this interactive proof by
〈
𝒫 ,𝒱

〉
and define the decision finally taken

by the verifier when the protocol is executed for some statement 𝑥 as
〈
𝒫 ,𝒱

〉
(𝑥) ∈

{accept, reject}.
It satisfies two properties:

• Completeness: if both the prover and the verifier follow the protocol for an
𝑥 ∈ 𝐿 then the verifier always accepts.

𝑥 ∈ 𝐿 =⇒
〈
𝒫 ,𝒱

〉
(𝑥) = accept.

• Soundness: if 𝑥 ∉ 𝐿 then the verifier rejects (except with some small probability
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𝜖, that we call the soundness error of the protocol).

Pr
[〈
𝒫 ,𝒱

〉
(𝑥) = accept

�� 𝑥 ∉ 𝐿
]
≤ 𝜖.

If we also allow completeness to hold except with some small probability then
the class of languages for which there exists an interactive proof system is the
computational class IP, which has theoretical interest on its own.

1.2.4 Zero-Knowledge Proofs

Interactive proofs can be useful not only if executing the protocol is faster than
verifying the statement. We can also add additional properties that ensure the prover
can take advantage of some secret information they use to verify that 𝑥 ∈ 𝐿 without
revealing such information. This way the prover can prove knowledge of some
secret, which can be used to authenticate a user asking them to prove knowledge
of the secret key related to a public key. More complex protocols can benefit from
this tool too, as the prover can convince the verifier that they have not misbehave
regarding the fact that some encrypted or committed value satisfies the requested
properties without revealing it.

We can formalize these ideas using the complexity class of NP problems, de-
cisional problems solvable in polynomial time with a non-deterministic Turing
Machine. These problems can also be characterized from the existence of certificates,
that is, for every 𝑥 ∈ 𝐿 there exists a polynomial certificate 𝑦 (another string whose
length is bounded by a polynomial applied to the length of 𝑥) so that a specific
polynomial algorithm that only depends on 𝐿 (usually characterized as a Turing
Machine) that takes as input 𝑥 and 𝑦 outputs accept, while no such 𝑦 exists if 𝑥 ∉ 𝐿.
This class of problems encompass all decisional problems that ask whether there
exists some mathematical object satisfying some properties, no matter how difficult
or easy is to find that object, if once we have found it verifying that it satisfies the
property can be done in polynomial time.

Equivalently we can define ℜ the binary relation where a statement 𝑥 is related to
a witness 𝑤 (another way of calling the certificate), with size polynomially bounded
by the size of 𝑥, if the previously defined polynomial algorithm outputs accept.
Then the NP language 𝐿 can be described as the set of 𝑥 for which there exists some
polynomial 𝑤 such that (𝑥, 𝑤) ∈ ℜ. We sometimes abuse notation identifying 𝐿with
ℜ and write 𝑥 ∈ ℜ to say that there exists a witness 𝑤 such that (𝑥, 𝑤) ∈ ℜ (and say 𝑥
is true), and write 𝑥 ∉ ℜ (and say 𝑥 is false) otherwise. ℜ is then a poly-time verifiable
polynomial binary relation.

Our goal is to prove the truthiness of some statement, the fact that 𝑥 ∈ ℜ, without
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revealing anything else, particularly any information about the 𝑤 that certifies
(𝑥, 𝑤) ∈ ℜ, besides what can be efficiently deduced from the fact that the statement
is indeed true. To do so we introduce the notion of Zero-Knowledge Proofs (of
Knowledge).

Definition 1.8 (Zero-KnowledgeProof). A (2𝜇+1)-move Honest-Verifier Zero-Knowledge
Proof is an interactive protocol between a prover 𝒫 and a verifier𝒱 in which, given
an 𝑥, 𝒫 tries to convince𝒱 that there exists a witness 𝑤 such that (𝑥, 𝑤) ∈ ℜ. We
use the notation ZKP

[
𝑤

��� (𝑥, 𝑤) ∈ ℜ ]
when we refer to a proof emphasizing the

relation ℜ and
〈
𝒫 ,𝒱

〉
when we have already defined the role of the prover and

the verifier. We might also mention the information each of the participants know
writing

〈
𝒫(𝑥, 𝑤),𝒱(𝑥)

〉
.

𝒫 and𝒱 engage in an interaction where 𝒫 starts sending an initial message 𝑎
consecutively answered by 𝒱 with a random challenge 𝑐𝑖 followed with another
response 𝑏𝑖 by 𝒫 for 𝑖 from 1 to 𝜇. Finally,𝒱 accepts or rejects the proof checking
the conversation

(
𝑥, 𝑎, {𝑐𝑖}𝜇𝑖=1 , {𝑏𝑖}

𝜇
𝑖=1

)
.

Analogously as before we denote the output of the interaction for a given
statement 𝑥 with

〈
𝒫 ,𝒱

〉
(𝑥). We ask that the protocol has the following three

properties:

• Completeness: if an honest prover 𝒫 knows a valid witness 𝑤 such that
(𝑥, 𝑤) ∈ ℜ and follows the protocol, then an honest verifier𝒱 always accepts
the conversation.

(𝑥, 𝑤) ∈ ℜ =⇒
〈
𝒫(𝑥, 𝑤),𝒱(𝑥)

〉
(𝑥) = accept.

• Soundness: an interactive proof
〈
𝒫 ,𝒱

〉
for relation ℜ is sound with soundness

error 𝜖(𝑥) if for every malicious prover 𝒫∗ and every statement 𝑥 ∉ ℜ we have

Pr
[〈
𝒫∗ ,𝒱

〉
(𝑥) = accept

]
≤ 𝜖(𝑥).

• Honest-Verifier Zero-Knowledge: there exists a polynomial-time simulator 𝒮
that takes as input a statement 𝑥, samples 𝜇 challenges {𝑐𝑖}𝑖 and outputs an
accepted conversation (𝑥, 𝑎, {𝑐𝑖}𝑖 , {𝑏𝑖}𝑖)with the same probability distribution
as conversations between honest 𝒫 and honest𝒱.

𝒮 (𝑥, {𝑐𝑖}𝑖) ∼
〈
𝒫(𝑥, 𝑤),𝒱(𝑥)

〉
.

We might also accept the fact that these two distributions are computationally
indistinguishable.
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Observe that only the fact that the protocol is executed in order prevents the
prover from cheating. If the challenges were known in advance computing a valid
conversation might be straightforward, provided we know there exists a simulator
doing precisely that. Moreover, the fact that simulated conversations follow the same
distribution as real conversations between an honest prover and an honest verifier
means that the conversations themselves do not reveal any information on its own, as
the simulator is able to compute them without knowing the secret witness. Several
transformations exist to ensure that the zero-knowledge property still holds against
a malicious verifier that deviates from the protocol. We just focus on Honest-Verifier
proofs because that is sufficient to latter obtain secure non-interactive proofs.

Some alternative definitions additionally require the protocol to be public-coin.
We define it separately but anyway consider only public-coin protocols.

Definition 1.9 (Public-Coin). An interactive protocol
〈
𝒫 ,𝒱

〉
is public-coin if all of

𝒱’s random choices are made public.

In this case we can assume the challenges from𝒱 are directly uniform samples
from some challenge spaces 𝑐𝑖 ←r 𝒞𝑖 . The structure of a public-coin Zero-Knowledge
Proof of Knowledge (ZKPoK) can be seen in the example Protocol 1.1.

With this structure the honest-verifier zero-knowledge property can be proven
showing how to simulate a conversation for each possible set of challenges {𝑐𝑖}𝑖 .

There are scenarios where the soundness definition from Definition 1.8 is not
enough, and we need a stronger one, ensuring that the prover not only can guarantee
that 𝑥 is valid but also knows a witness 𝑤 of (𝑥, 𝑤) ∈ ℜ. More formally we say that
there is an extractor that, given oracle access to a successful enough prover, can be
used to efficiently compute a witness with sufficient probability.

Definition 1.10 (Knowledge-Soundness as in [11]). An interactive proof
〈
𝒫 ,𝒱

〉
for relation ℜ is knowledge sound with knowledge error 𝜅(𝑥) if there exists a positive
polynomial 𝑝 and an algorithm ℰ with the following properties. The extractor ℰ,
given input 𝑥 and rewindable oracle access to a (potentially dishonest) prover 𝒫∗,
is expected to run in polynomial time in | 𝑥 | and outputs a witness 𝑤 such that
(𝑥, 𝑤) ∈ ℜ with probability

Pr
[
(𝑥, 𝑤) ∈ ℜ

��� 𝑤 ←r ℰ𝒫
∗(𝑥)

]
≥

Pr
[〈
𝒫∗ ,𝒱

〉
(𝑥) = accept

]
− 𝜅(𝑥)

𝑝(| 𝑥 |) .

A zero-knowledge proof with knowledge-soundness is called a ZKPoK.

That is the meaningful definition in scenarios like proving knowledge of the
DLog, where the relation is always satisfied and the interesting fact to prove is the
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Protocol 1.1 Public-Coin ZKPoK example
𝒫 (𝑥;𝑤) 𝒱 (𝑥)

𝑎 ←r 𝒫(𝑥, 𝑤)
1:

𝑎−−−−−−−−−−−→
𝑐1 ←r 𝒞1

2:
𝑐1←−−−−−−−−−−−

𝑏1 ←r 𝒫(𝑥, 𝑤, 𝑎, 𝑐1)
3:

𝑏1−−−−−−−−−−−→
...

...

𝑐𝑖 ←r 𝒞𝑖
2𝑖:

𝑐𝑖←−−−−−−−−−−−

𝑏𝑖 ←r 𝒫
(
𝑥, 𝑤, 𝑎, {𝑐 𝑗}𝑖𝑗=1 , {𝑏 𝑗}

𝑖−1
𝑗=1

)
2𝑖 + 1:

𝑏𝑖−−−−−−−−−−−→
...

...

𝑐𝜇 ←r 𝒞𝜇
2𝜇:

𝑐𝜇
←−−−−−−−−−−−

𝑏𝜇 ←r 𝒫
(
𝑥, 𝑤, 𝑎, {𝑐 𝑗}𝜇𝑗=1 , {𝑏 𝑗}

𝜇−1
𝑗=1

)
2𝜇 + 1:

𝑏𝜇
−−−−−−−−−−−→

𝒱
(
𝑥, 𝑎, {𝑐 𝑗}𝜇𝑗=1 , {𝑏 𝑗}

𝜇
𝑗=1

)
decides to accept or reject

knowledge of the witness. We however are interested in adapting the interactive
proof to a non-interactive scenario where the same proof can be shared by someone
different from the one that produced it, even if they do not know the witness, but in
any case the definition is relevant to this analysis because it implies the previous
soundness definition (if 𝜅 < 𝜖 then a prover with a success probability greater than
𝜖 can be used by the extractor to compute a witness with a positive probability, and
therefore 𝑥 is valid) and can usually be more directly proved.

More specific soundness properties are going to be latter defined in Section 3.4
when proving soundness of our protocols.

Whenever the soundness property holds only under certain computational
assumptions proofs are sometimes called arguments. We are going to equally use the
term proof.

In order to prove that the soundness and zero-knowledge properties hold one has
to be very careful with the notation used, as what we define is the protocol that has
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to be followed by honest provers and verifiers, but a malicious prover can arbitrary
deviate. For that matter when in a protocol an honest prover tries to convince a
verifier that they know some element 𝑎 satisfying some relations we denote by �̃� the
element disclosed by a possibly malicious prover, because �̃� might not satisfy the
same relations the honestly computed 𝑎 does. We can only use whatever relation is
actually verified by the verifier. An honest prover will always use �̃� = 𝑎.

Equivalently, to prove that the conversations between a prover and a verifier
do not reveal any relevant information we will show the existence of a simulator
that can output conversations indistinguishable from the real ones. If an original
conversation contains an element 𝑎, for the same reasons as before, we will call �̂� to
the element alleged to play the same role in the simulated conversation. This �̂� could
be computed differently, and we have to check that it follows the same distribution
as the original 𝑎.

In the particular case with 𝜇 = 1, i.e. only 3 moves, we can define special soundness
as the property meaning that a valid witness can be computed from 2 accepting
conversations, which directly implies soundness. Such a protocol with 3 moves and
special soundness is called a Σ-protocol. Provided that we have defined a more
general interactive ZKPoK we have to work with generalized versions of properties
usually defined for Σ-protocols.

The most direct use of an interactive ZKPoK is as authentication mechanism
working as an identification scheme. An instance of a difficult problem can be used
as a public key and only the one who generated it, knowing the solution, can use it
as a secret key and execute the protocol to convince anyone that they are who they
claim to be.

The main drawback of this approach for other scenarios is that it requires
interaction, because only the fact that the conversation has been produced in the
right order with the challenges selected by the verifier convinces the verifier of the
truthiness of the statement. Anyone else who does not necessarily trust the verifier
would then not have any reason to trust the proof (as it could be simulated).

To solve these issues when we need a universally verifiable proof the notion of
non-interactive proofs is then introduced. There are different approaches to obtain
this goal, but we focus on proofs that come from an interactive version where the
role of the verifier has been substituted by a random oracle 𝒪 (formally defined in
the following subsection), i.e. with the Fiat-Shamir transform [52].

Definition 1.11 (Non-Interactive Zero-Knowledge Proof of Knowledge). A Non-
Interactive Zero-Knowledge Proof of Knowledge (NIZKPoK), denoted as (𝒫 ,𝒱), allows
a prover 𝒫 to convince a verifier𝒱 that a certain statement 𝑥 is true because they
know some secret information, a witness 𝑤, that satisfies a given relation (𝑥, 𝑤) ∈ ℜ,
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while preserving confidentiality of such secret. Unlike the interactive variant each
participant executes their part on their own, 𝒫 takes 𝑥 and 𝑤 as input and produces
a proof Π←r 𝒫(𝑥, 𝑤), while𝒱 accepts or rejects the proof by looking at 𝑥 and Π.
We denote the response given by the verifier as𝒱(𝑥,Π). Every NIZKPoK system
must satisfy the following properties:

• Completeness: if an honest prover knows the witness, then an honest verifier
will always accept the proof provided that the protocol was followed.

• (Knowledge) Soundness: a protocol is said to be sound if no computationally
bounded (for example with a limited number of oracle queries) dishonest
adversary can produce a valid proof for a false statement (𝑥 ∉ ℜ), except with
negligible probability.

A protocol is said to have the stronger property of Knowledge-Soundness if there
is an extractor such that provided 𝒫∗ is an adversary that produces valid proofs
for a statement 𝑥 then the extractor is able to use it to obtain a valid witness
such that (𝑥, 𝑤) ∈ ℜwith a similar success probability.

• Zero-Knowledge: the proof itself should not reveal any additional information
about the witness besides the fact that it exists.

In this case we are going to extensibly discuss formal ways to achieve these
properties in Chapter 4. Particularly Definitions 4.4 and 4.5 formalize the concepts
of soundness and knowledge-soundness for NIZKPoKs that come from interactive
proofs, where we use the number of oracle calls as a measure of the computational
power of the adversary. As the transform and the particular details are going to be
introduced in this chapter we leave there these definitions.

1.2.5 Pseudorandomness

Pseudorandom generators, deterministic algorithms that expand short seeds into
apparently random longer bit sequences, are fundamental for cryptography. We
ask these pseudorandom sequences to be computationally indistinguishable from
truly random sequences by efficient algorithms, and then call them Cryptographically
Secure Pseudorandom Number Generators (CSPRNGs).

Definition 1.12 (Hash Function). A hash function is a function that maps a message
of arbitrary length to a fixed length hash or digest.

𝐻 : {0, 1}∗ ↦→ {0, 1}𝑠



22 1.2. (Post-Quantum) Cryptography

Weusuallywant hash functions to satisfy additional properties, as collision resistance,
preimage resistance or second preimage resistance (it should be computationally
infeasible to find twomessageswith the same image, compute a preimage or compute
an additional preimage of a known message hash).

In our implementation in Chapter 4, we use the SHA-3 family of hash functions.

Definition 1.13 (eXtendable Output Function). An eXtendable Output Function (XOF)
is a generalization of a hash function. While a hash function produces an output
of fixed length, an XOF can produce a digest of arbitrary length. Moreover, the
extension of the length of the output (requesting more digest bits) only costs the
generation of these extra bits. Abusing notation we can write the following.

XOF : ({0, 1}∗ , 𝑛) ↦→ {0, 1}𝑛

In Chapter 4 we use an XOF (SHAKE-128) this time to obtain an appropriate
length buffer to store the cryptographically secure pseudorandom bytes used to
sample an integer uniformly at random from a given interval.

Sometimes we need a perfect source of pseudorandomness to be able to formalize
the security proofs. This is modeled as a random oracle and the approach is called
the Random Oracle Model (ROM).

Definition 1.14 (Random Oracle). A random oracle is an ideal oracle 𝒪 that can be
queried with arbitrary messages and answers a uniformly random element from the
output domain if the message has not been queried before or returns the previous
answer otherwise.

AQuantum Random Oracle follows the same idea regarding quantum computation,
and for that matter queries are allowed to be a quantum superposition of different
messages, answering too with a quantum superposition of the classical answers.

We can use the ROM to define a simple commitment scheme, that we then use as
auxiliary commitment scheme to design ZKPoKs of more versatile commitments.
Let aGen, aCom and aVer be the following algorithms:

• aGen: on input a security parameter 1𝜆 output as a public key a random
oracle 𝒪 with {0, 1}𝜆 as output domain, and the security parameter 𝜆 as public
parameter.

(pk ≔ 𝒪; pp ≔ 𝜆) ←r aGen(1𝜆)

• aCom: given a message 𝑚 ∈ {0, 1}∗ sample a random bit string 𝑟 ←r {0, 1}𝜆

and query the random oracle with the concatenation of the message and the
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randomness 𝑚∥𝑟. The answer 𝑐 ← 𝒪(𝑚∥𝑟)would work as commitment and
the randomness as opening.

(𝑐 ≔ 𝒪(𝑚∥𝑟), 𝑜 ≔ 𝑟) ←r aCom(𝑚;𝒪 ,𝜆)

• aVer: given a commitment 𝑐, a message 𝑚 and an opening 𝑜 ≔ 𝑟, together with
the public key and the public parameters, the verifier checks if 𝑟

?∈ {0, 1}𝜆 and
if 𝑐 is the answer from the random oracle to the concatenation of the message
and the opening.

aVer(𝑐, 𝑚, 𝑟;𝒪 ,𝜆) outputs


accept if


𝑟

?∈ {0, 1}𝜆

𝑐
?← 𝒪(𝑚∥𝑟)

reject otherwise

This scheme is a well known construction, we can informally check that it satisfies
the properties needed to be a secure commitment scheme. Correctness property
holds by construction, because the random oracle always returns the same answer
when queried with the same message. It is computationally hiding because the
oracle answer of 𝑚∥𝑟 is independent of 𝑚∥𝑟′ if 𝑟 ≠ 𝑟′, and the randomness comes
from a sufficiently large space. It is also computationally binding, because the fact
that the answers from the oracle are uniformly distributed in an exponentially large
space makes it infeasible to find a collision.

1.3 Lattices

Lattice-based cryptography is currently a prolific research topic as it allows building
many cryptographic primitives from post-quantum assumptions, as lattice problems
arewidely believed to be computationally hard even for quantum computers. Besides
that, an important property of the lattice-problems used for cryptography is that
they enjoy worst-case to average-case reductions. That means we know how to solve
the most difficult instance of a lattice problem just being able to break with sufficient
probability a random instance of our cryptographic construction. This is important
because it implies that the hardness assumption works on average, and not only in
some special cases, which is a desirable but uncommon property.

Another reason explaining why the cryptographic community has great con-
fidence on lattice assumptions is the fact that lattices have long been used for
cryptographic purposes, being used as a tool for cryptanalysis against RSA schemes
before lattice-based cryptography itself was first proposed [43, 27].
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Lattices have also become a celebrated alternative because they permit the
realization of Fully Homomorphic Encryption (FHE), allowing anyone to perform
computations on encrypted data. However, sometimes we do not need such a strong
feature, and we are going to see how to prove in zero-knowledge that some element
is the result of applying an arithmetic circuit to some secret inputs, which might still
be useful for many applications.

In any case we describe in this section the basic notions we need to define the
lattice problems of interest and start discussing the main challenges we face when
trying to build ZKPoKs for such problems.

1.3.1 Notation

We usually follow the standard notation in which column vectors are denoted
by lower-case bold-faced roman letters, 𝒂 or 𝒃, and row vectors are denoted as
transposed column vectors 𝒂T. Unless it is specifically mentioned otherwise upper-
case bold-faced roman letters, 𝑴 or 𝑨, are going to represent matrices. We denote
the binary logarithm simply as log, and use ln for the natural logarithm. We denote
by ⌊𝑥⌋ the largest integer not greater than 𝑥 and by ⌊𝑥⌉ the closest integer to 𝑥, with
ties broken upwards.

Regarding lattices, we mostly follow the notation from [96]. Throughout the
rest of the dissertation we will mainly work over the quotient ring of polynomials
𝑅𝑞 = Z𝑞[𝑥]/⟨𝑥𝑛 + 1⟩, where 𝑛 is a power of two and 𝑞 is an odd prime. For the
sake of being able to define norms of polynomials and vectors of polynomials, we
choose {−⌊𝑞/2⌋ , . . . , ⌊𝑞/2⌋} as representatives for Z𝑞 . We denote the representative
of 𝑎 ∈ Z𝑞 as 𝑎 rem 𝑞 ∈ Z.

It is important to remark the need for unique representatives. Intermediate results
of operations in Z𝑞 can be computed using any equivalent integer from Z, as long
as we always use the same representatives for the final outcome. That is important
because even if we have a theoretical proof ensuring that some element follows a
uniform distribution in Z𝑞 , independent of any secret, a bad implementation could
be leaking relevant information if the representative does depend on the secret.

This way given a vector 𝒗 ∈ Z𝑛𝑞 we define the infinity norm as ∥𝒗∥∞ ≔

max1≤𝑖≤𝑛 | 𝑣𝑖 |, where 𝑣𝑖 are the coordinates of vector 𝒗 taking the mentioned ele-
ments as representatives. We identify a polynomial 𝑝 ∈ 𝑅𝑞 with the vector 𝒑 ∈ Z𝑛𝑞
that has its coefficients as elements, and define the norm of a polynomial as the norm
of the related vector ∥𝑝∥∞ ≔ ∥𝒑∥∞. The infinity norm of a vector of polynomials is
analogously defined. We denote the Hamming weight of a vector 𝒗, the number of
non-zero coordinates, as ∥𝒗∥H.

Lattice-based cryptography deals with noisy equations, where the noise terms
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come from an error distribution 𝜒. The tightest security guarantees are obtained
choosing these errors following Gaussian distributions.

The discrete Gaussian distribution of parameter 𝜎 over the integers, denoted as 𝐷𝜎,
assigns to 𝑥 ∈ Z a probability which is proportional to

𝜌𝜎(𝑥) = exp
(
−1

2𝑥
2/𝜎2

)
.

Sometimes we need to ensure that such errors are small enough, and for that
reason we truncate the distribution disregarding the tails so that the errors are
indeed bounded. We denote by 𝐷𝜎,𝐵 the truncated discrete Gaussian distribution over
Z obtained by sampling an element from a discrete Gaussian 𝐷𝜎 conditioned to be
in the interval [−𝐵, 𝐵), where the bound 𝐵 is usually going to be another power of
two. We define the interval like this for convenience, as it characterizes errors that
can be described with a fixed number of bits. We sometimes abuse notation writing
∥𝑝∥∞ ≤ 𝐵 while what we are going to check is whether all the coefficients from 𝑝

belong to the interval [−𝐵, 𝐵).

1.3.2 Basic Definitions

Definition 1.15 (Lattice). A lattice ℒ is a set of points in an 𝑛-dimensional space,
usually R𝑛 , with a periodic structure. That is, the following two conditions hold:

• It is an additive subgroup: 0 ∈ ℒ and ∀𝑥, 𝑦 ∈ ℒ we have −𝑥, 𝑥 + 𝑦 ∈ ℒ.

• It is discrete: ∀𝑥 ∈ ℒ there exists a neighborhood of 𝑥 in R𝑛 such that 𝑥 is the
only point of the lattice.

Usually a lattice is defined by a basis of vectors. An example of a 2-dimensional
lattice is presented in Figure 1.1.

Definition 1.16 (Generated lattice). Given 𝑘 linearly independent vectors 𝒃1 , . . . ,

𝒃𝑘 ∈ R𝑛 , the lattice generated by them is the set defined as follows.

ℒ (𝒃1 , . . . , 𝒃𝑘) ≔
{

𝑘∑
𝑖=1

𝑧𝑖𝒃𝑖

����� 𝑧𝑖 ∈ Z
}
=

{
𝑩𝒛

�� 𝒛 ∈ Z𝑘} = ℒ (𝑩) .

We have called 𝑩 to the matrix whose columns are vectors 𝒃𝑖 . We say 𝒃1 , . . . , 𝒃𝑘 form
a basis of the lattice ℒ (𝑩). We additionally say the lattice is full-rank if 𝑘 = 𝑛.

Definition 1.17 (Minimum 𝜆𝑖). We define the minimum 𝜆𝑖 (ℒ) as the radius of
the smallest hypersphere centered in the origin that contains at least 𝑖 linearly
independent points of the lattice ℒ.
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As an example we have drawn 𝜆2 for the previously presented lattice in Figure 1.2.

1.3.3 Fundamental Problems

Nowwe can define some of the problems whose hardness will be used as hypothesis
for our cryptographic constructions.

Definition 1.18 (Approximate Shortest Vector Problem – 𝛾9SVP). Given a basis 𝑩 of
a lattice ℒ (𝑩) the Approximate Shortest Vector Problem (𝛾9SVP) consists on finding a
non-zero vector 𝒗 ∈ ℒ (𝑩) such that ∥𝒗∥ ≤ 𝛾 · 𝜆1 (ℒ (𝑩)).

If 𝛾 = 1 it is called the Shortest Vector Problem (SVP). We represent the solution of
the SVP for the lattice generated by 𝑩 in Figure 1.3. The difficulty of this problem
depends on the approximating factor 𝛾. Our problems involve a 𝛾(𝑛) that is a
polynomial of the dimension of the lattice. It has been proven to be an NP-hard
problem in its exact version and also for some subpolynomial approximations [5].
The best algorithms for the approximated versions have exponential cost [57], and it
is believed that no successful PPT algorithm exists.

Definition 1.19 (Approximate Closest Vector Problem – 𝛾9CVP). Given a basis 𝑩 of a
latticeℒ (𝑩) and a target vector 𝒕 ∈ R𝑛 , theApproximate Closest Vector Problem (𝛾9CVP)
consists on finding a vector 𝒖 ∈ ℒ (𝑩) such that ∥𝒖 − 𝒕 ∥ ≤ 𝛾 min𝒘∈ℒ(𝑩) ∥𝒘 − 𝒕 ∥.

Analogously as before it is calledClosest Vector Problem (CVP) if the approximation
factor is 1. An example of a solution for a CVP can be found in Figure 1.4.

1.3.4 Lattice Basis Reduction

A lattice can be defined by different basis. Multiplying 𝑩 by a unimodular matrix𝑼
gives us another basis for the same lattice. In fact, all basis defining the same lattice
can be obtained this way.

Theorem 1.20.
ℒ(𝑩) = ℒ(𝑩′) if and only if there exist a unimodular matrix 𝑼 such that 𝑩′ = 𝑩𝑼 .

Proof. Assume 𝑩′ = 𝑩𝑼 . As𝑼 is unimodular its inverse𝑼−1 is unimodular too. In
particular, they are both integer matrices, and we also have 𝑩 = 𝑩′𝑼−1. Columns of
𝑩′ are integer combinations of columns of𝑩 (thereforeℒ(𝑩′) ⊂ ℒ(𝑩)) and columns of
𝑩 are integer combinations of columns of 𝑩′ (thereforeℒ(𝑩) ⊂ ℒ(𝑩′)). Consequently,
ℒ(𝑩) = ℒ(𝑩′).

Assume ℒ(𝑩) = ℒ(𝑩′). Then each column 𝒃′𝑖 of 𝑩
′ is a point of the lattice ℒ(𝑩),

generated by the columns of 𝑩. Then 𝒃′𝑖 = 𝑩𝒖 𝑖 , where 𝒖 𝑖 ∈ Z𝑘 are the corresponding
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Figure 1.1 Lattice generated by 𝑩

𝒃1𝒃1

𝒃2𝒃2

Figure 1.2 Minimum 𝜆2 for the lattice generated by 𝑩
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Figure 1.3 Solution of the SVP for the lattice generated by 𝑩

𝒃1𝒃1

𝒃2𝒃2

𝒂

Figure 1.4 Solution of the CVP for a lattice generated by 𝑩

𝒃1𝒃1

𝒃2𝒃2
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coefficients of the columns of 𝑩. We have 𝑩′ = 𝑩𝑼 where𝑼 is an integer matrix. And
by the same argument 𝑩 = 𝑩′𝑽 , where 𝑽 is another integer matrix. Combining the
two expressions we get 𝑩′ = 𝑩′𝑽𝑼 . Then 𝑩′ (𝑽𝑼 − Id) = 0. Since 𝑩′ is non-singular
𝑽𝑼 = Id and𝑼 is unimodular. □

Corollary 1.21. The lattice determinant of a full-rank lattice, defined as the absolute value
of the determinant of a basis, det (ℒ(𝑩)) ≔ |det(𝑩) |, is well-defined and a lattice invariant.

We can use this invariant to find bounds for 𝜆1. It is important to find invariants
as some problems over lattices are hard or easy depending on some properties of
the basis defining the lattice that is given as input. Informally, a basis is said to be
good if it has short highly orthogonal vectors, and bad if it has low orthogonality.

We can attempt to solve the CVP by just rounding the coordinates of a point
𝒕 , given in basis 𝑩, to get a lattice point 𝒖. As we can see in Figures 1.5 and 1.6
the space is then divided in regions that would go to the same lattice point, and
the fact that we are using the vectors from 𝑩 to define the coordinates means that
these regions are shaped into 𝑛-dimensional parallelepipeds defined by 𝑩. Given
a target 𝒕 the point 𝒖 that we obtain would be the lattice point in the center of the
parallelepiped containing 𝒕 , gray colored in the figures. This parallelepiped is called
the fundamental parallelepiped, and has volume detℒ(𝑩), independent of the basis.
Nevertheless, following this approach with a bad basis (as in Figure 1.5) yields worse
results than with a good basis (as in Figure 1.6). That is because all points in the gray
area would go to the same 𝒖 at its center when rounding their coordinates, but a
more skewed parallelepiped means that we are rounding to 𝒖 points that are much
further apart.

It is known that better results are obtained if before starting this procedure
the basis is orthogonalized and the space is divided into boxes. This approach is
followed by Babai’s Nearest Plane algorithm for solving the approximated CVP, but
we see in Figures 1.7 and 1.8 that the quality of the outcome heavily depends too on
the quality of the basis.

We can formalize this notion of good and bad basis. Some algorithms work well
with highly orthogonal basis, but have a very low probability of success (or can only
guarantee a worse approximation factor) if the basis has low orthogonality. We also
say that a highly orthogonal basis has a low orthogonality defect and vice versa.

Definition 1.22 (Orthogonality defect).
The orthogonality defect of a full-rank lattice basis 𝑩 is given by

𝛿(𝑩) ≔
∏𝑛

𝑖=1 ∥𝒃𝑖 ∥
det(𝑩) .
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Figure 1.5 Rounding for the CVP (bad basis)

𝒃1𝒃1
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Figure 1.6 Rounding for the CVP (good basis)

𝒃1𝒃1

𝒃2𝒃2 𝒕𝒕
𝒖𝒖



Chapter 1. Introduction 31

Figure 1.7 Gram-Smith Orthogonalization for the CVP (bad basis)
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Figure 1.8 Gram-Smith Orthogonalization for the CVP (good basis)
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It can also be normalized taking the 𝑛-root, giving 𝑛
√
𝛿(𝑩).

Nevertheless, transforming a bad basis into a good basis, with short orthogonal
vectors, is a difficult problem. In a two-dimensional lattice it can be done performing
Gaussian elimination. This can be generalized to an 𝑛-dimensional lattice as it
is done in the Lenstra-Lenstra-Lovasz (LLL) algorithm [73], performing Gaussian
elimination on the elements of the basis two by two. However, the obtained basis
has vectors whose length is still exponentially far from optimal.

This can be improved working with blocks of 𝑘 vectors, instead of pairs of vectors,
as it is done in the Blockwise Korkine-Zolotarev (BKZ) reduction [106]. However, this
algorithm has to find the shortest vector of a 𝑘-dimensional lattice as a subroutine,
which is again a hard problem even approximately (it is precisely the SVP on a
slightly smaller dimension, and the recursion saves some computations but is still
far from efficient).

The last improvements on finding algorithms able to obtain better basis focus
on this 𝑘-dimensional SVP, following two different approaches. Enumeration
techniques [54, 66, 58], as depicted in Figure 1.9, try to do an exhaustive search in
a region of space. We can choose this region so that it surely contains the shortest
vector, as it is done in Figure 1.9 where the whole hypersphere with radius the length
of the shortest vector of the basis is used. More efficient algorithms can be obtained
cleverly reducing its search space, leveraging this trade-off to achieve better efficiency
without decreasing so much its success probability. Sieving techniques [92, 122],
as depicted in Figure 1.10, sample random points of the lattice (colored blue in
Figure 1.10) using small random integer linear combinations of the vectors of the
basis and try to find pairs of them that are close (if two vectors are close its difference
is a short vector of the lattice). We have drawn in Figure 1.10 the shortest difference
among the randomly selected points. With these shorter vectors a new basis is
defined, and the procedure is repeated. In order to improve efficiency not all
differences are computed, the space is divided into several regions and only sampled
lattice points from the same region are compared. These regions can be delimited
by hyperplanes, cones centered at the origin, hyperspheres centered at randomly
chosen lattice points, etc. Different choices yield up to a great variety of algorithms
with different performance and computational cost (regarding time and space).

However, despite all these recent techniques and improvements their computa-
tional cost is still exponential in the lattice dimension 𝑛, and some of the algorithms
that have better asymptotic cost due to a smaller constant in the exponent also
have worse behavior for smaller dimensions, and the asymptotic improvement only
dominates for dimensions far above what it is used for cryptography.
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Figure 1.9 Enumeration

𝒃1𝒃1

𝒃2𝒃2

Figure 1.10 Sieving
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34 1.3. Lattices

1.3.5 Additional Definitions

In order to work with lattices in a computer it is preferable to work modulo a prime
𝑞. A 𝑞-ary lattice is an integer lattice for which whether a point 𝑥 belongs or not to
the lattice is determined by 𝑥 mod 𝑞.

Definition 1.23 (𝑞-ary lattices).
A lattice ℒ ⊂ R𝑛 is said to be 𝑞-ary if 𝑞Z𝑛 ⊆ ℒ ⊆ Z𝑛 , for an integer 𝑞.

Given a lattice we can also define its dual, which is again a lattice.

Definition 1.24 (Dual Lattice).
The dual lattice of ℒ ⊂ R𝑛 is a lattice ℒ∗ ≔

{
𝒘

�� ⟨𝒘 ,ℒ⟩ ⊆ Z}.
There are two usual ways of representing a 𝑞-ary lattice of dimension 𝑚 given a

full-rank matrix 𝑨 ∈ Z𝑚×𝑛𝑞 , with 𝑚 ≥ 𝑛. The first one is called the Λ𝑞 form.

Λ𝑞(𝑨) ≔
{
𝒚 ∈ Z𝑚

�� 𝒚 = 𝑨𝒛 mod 𝑞, 𝒛 ∈ Z𝑛
}
⊂ R𝑚 .

And the other is called the orthogonal Λ𝑞 form.

Λ⊥𝑞 (𝑨) ≔
{
𝒚 ∈ Z𝑚

�� 𝑨T𝒚 = 0 mod 𝑞
}
⊂ R𝑚 .

Proposition 1.25. Lattices Λ𝑞(𝑨) and Λ⊥𝑞 (𝑨) are dual of each other, up to normalization.

Proof. We can verify that Λ⊥𝑞 (𝑨) = 𝑞Λ𝑞(𝑨)∗ and that Λ𝑞(𝑨) = 𝑞Λ⊥𝑞 (𝑨)∗. Let us prove
the first equality seeing that a vector 𝒚 belonging to the first lattice also belongs to
the second and vice versa.

Λ⊥𝑞 (𝑨) ⊆ 𝑞Λ𝑞(𝑨)∗ : Λ⊥𝑞 (𝑨) ⊇ 𝑞Λ𝑞(𝑨)∗ :

𝒚 ∈ Λ⊥𝑞 (𝑨) ⊆ Z𝑚 𝒚 ∈ 𝑞Λ𝑞(𝑨)∗

𝒚T𝑨 = 0T mod 𝑞 𝒚 = 𝑞𝒚′, 𝒚′ ∈ Λ𝑞(𝑨)∗

𝒚T𝑨 = 𝑞𝒂T , 𝒂 ∈ Z𝑛 𝒚T𝑨 = 𝑞𝒚′T𝑨

(𝑞−1𝒚)T𝑨 = 𝒂T 𝒚T𝑨 = 𝑞𝒂T , 𝒂 ∈ Z𝑛

(𝑞−1𝒚)T(𝑨𝒛) = 𝒂T𝒛 ∈ Z, 𝒛 ∈ Z𝑛 𝒚T𝑨 = 0T mod 𝑞

(𝑞−1𝒚) ∈ Λ𝑞(𝑨)∗ 𝒚 ∈ Λ⊥𝑞 (𝑨)
𝒚 ∈ 𝑞Λ𝑞(𝑨)∗ =⇒ 𝑞Λ𝑞(𝑨)∗ ⊆ Λ⊥𝑞 (𝑨)
=⇒ Λ⊥𝑞 (𝑨) ⊆ 𝑞Λ𝑞(𝑨)∗

From the definition of the dual lattice it is easy to see that the dual of a dual lattice is
the original lattice itself (ℒ∗)∗ = ℒ (this can be proved finding a basis of the dual
lattice in terms of a basis of the original lattice) and that (𝑞ℒ)∗ = 𝑞−1ℒ∗ (direct
consequence of the definition).
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Applying these two properties to the first equality Λ⊥𝑞 (𝑨) = 𝑞Λ𝑞(𝑨)∗ we can get the
second one Λ𝑞(𝑨) = 𝑞Λ⊥𝑞 (𝑨)∗.

𝑞
(
Λ⊥𝑞 (𝑨)

)∗
= 𝑞

(
𝑞Λ𝑞(𝑨)∗

)∗
= 𝑞 · 𝑞−1

(
Λ𝑞(𝑨)∗

)∗
= Λ𝑞(𝑨). □

Proposition 1.26. Let 𝑨 ∈ Z𝑚×𝑛𝑞 be a full-rank matrix. Then Λ𝑞(𝑨) is a full-rank lattice of
dimension 𝑚 and determinant 𝑞𝑚−𝑛 .

Proof.

This can be proved quite straightforwardly manipulating the matrix that generates
the lattice, but the steps are somehow delicate because we have to choose at each
step if we consider the elements in Z or in Z𝑞 . To help describe the steps of the proof
we include visual representations of the matrices involved.

Elements from Λ𝑞(𝑨) are equivalent modulo 𝑞 to an integer linear combination of
the columns of 𝑨. We can describe this as an integer linear combination of the
columns of 𝑨 considered as vectors in Z𝑚 plus any vector of integers in Z𝑚 multiple
of 𝑞. We represent it as a matrix-vector product 𝑨 · Z𝑛 plus 𝑞Z𝑚 .

Provided that 𝑨 is a full-rank matrix it has 𝑛 independent rows. Without loss of
generality, reordering the rows of 𝑨 (which just means reordering the coordinates of
the lattice points), we can assume the first 𝑛 rows of 𝑨, that we are going to call 𝑨1,
are already independent as vectors of Z𝑛𝑞 .

𝑨𝑨𝑚

𝑛

· Z𝑛 + 𝑞Z𝑚 =

𝑨1𝑨1

𝑨2𝑨2
· Z𝑛 + 𝑞Z𝑚

We can then factor out the contribution of 𝑨1. Let 𝑨1
−1 be a representative of the

inverse matrix of 𝑨 in Z𝑛×𝑛𝑞 . This means that the product 𝑨1
−1𝑨1, when considered

in Z𝑛×𝑛 is going to be the identity matrix plus some multiple of 𝑞 matrix.
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We can safely ignore this second part because its contribution has been already taken
into account by the 𝑞Z𝑚 term.

Notice that, since 𝑨1 is non-singular, integer combinations of its columns can be any
integer vector of Z𝑛 . The final conclusion is that we can assume the first block of the
matrix is just an 𝑛 × 𝑛 identity matrix.

=

1

1

· · ·

𝑨2𝑨−1
1𝑨2𝑨−1
1

𝑨1𝑨1

· Z𝑛 + 𝑞Z𝑚 =

1

1

· · ·

· Z𝑛 + 𝑞Z𝑚

We can consider that the multiples of 𝑞 part is a linear integer combination of the
columns of a 𝑞 scalar matrix. Observe the leftmost 𝑛 columns with a 𝑞 in the first 𝑛
rows are integer linear combinations of the other columns, and can be omitted.

That is the case because the 𝑞’s and the zeroes in the first 𝑛 elements of any of these
columns can be obtained multiplying 𝑞 by the corresponding column from the first
𝑛 ones that has a 1 in the same position. The bottom 𝑚 − 𝑛 elements obtained
multiplying this column by 𝑞 would be non-zero, but, as all of them would be
multiples of 𝑞, we can subtract the linear integer combination of the rightmost 𝑚 − 𝑛
columns that equals to this 𝑚 − 𝑛 vector.

=

1

1

· · ·
𝑞

𝑞

· · ·

𝑛 + 𝑚

· Z𝑛+𝑚 =

1

1

· · ·

𝑞

𝑞

· · ·

𝑛 + 𝑚 − 𝑛

· Z𝑚
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We finally obtain that a 𝑞-ary lattice in its Λ form is generated by a full-rank lower
triangular matrix of dimension 𝑚, and we can directly compute its determinant
because it is the product of its diagonal, that is, det(Λ𝑞(𝑨)) = 𝑞𝑚−𝑛 . □

The fact that we have a deep understanding of this particular class of lattices
makes them suitable for our purposes. For example, as we have mentioned, there
are known results relating bounds for 𝜆1(ℒ)with det(ℒ), and in this case we have
seen that det(Λ𝑞(𝑨)) does only depend on the dimensions of 𝑨.

1.3.6 Lattice Problems and Cryptography

Short Integer Solution

Definition 1.27 (Short Integer Solution – SIS𝑛 𝑞 𝑚 𝛽). Let 𝑨 ∈ Z𝑛×𝑚𝑞 be a uniformly
random matrix. The Short Integer Solution (SIS) problem consists on finding a
non-zero vector 𝒙 ∈ Z𝑚 such that ∥𝒙∥ ≤ 𝛽 and 𝑨𝒙 = 0.

Observe we can see this as finding short vectors in the lattice Λ⊥𝑞 (𝑨T). The
problem is usually defined with the Euclidean norm ∥𝒙∥2, but can also be defined
with the infinity norm ∥𝒙∥∞, possibly adapting the bound, provided these two
norms are equivalent and ∥𝒙∥2 ≤

√
𝑚 ∥𝒙∥∞.

We can also define an inhomogeneous version of the previous problem.

Definition 1.28 (Inhomogeneous Short Integer Solution – ISIS𝑛 𝑞 𝑚 𝛽). Let 𝑨 ∈ Z𝑛×𝑚𝑞

be a uniformly random matrix and 𝒚 ∈ Z𝑛𝑞 a vector. The Inhomogeneous Short Integer
Solution (ISIS) problem consists on finding a vector 𝒙 ∈ Z𝑚 such that ∥𝒙∥ ≤ 𝛽 and
𝑨𝒙 = 𝒚.

Notice that finding two different solutions to the ISIS problem implies finding a
solution to the SIS problem, satisfying a slightly larger bound, given by the difference
of the solutions.

The main point to remark about this problem is that there exists a reduction from
any instance of the approximated SVP on any lattice ℒ ⊆ R𝑛 to a random instance
of the SIS problem on a Λ⊥𝑞 (𝑨) lattice, as was proven by Ajtai in [4] for a specific
polynomial approximation factor that has been later improved. This worse-case to
average case reduction we already mentioned significantly simplifies the task of
selecting secure public keys.

Recall we classify an algorithm as efficient when we can bound the number of
operations it takes until finishing with a polynomial evaluated at the size of its input.
Then, this bound is going to be determined by the running time of the worst-case
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instance of each input size. The fact that we can not find any polynomial bound
only means that some instances are going to be hard, but does not guarantee the
hardness of the others, not even on average. Only the existence of a reduction from
the worst case of another problem to a random instance of the one we use guarantees
a hardness level on average (under the assumption that the original problem was
hard on the worst-case, which is a much milder and reasonable assumption).

Learning With Errors

Definition 1.29 (Learning With Errors – LWE𝑛 𝑞 𝑚 𝜒). Let 𝑛, 𝑞 be integers (𝑞 usually
prime), 𝜒 a discrete probability distribution in Z (usually a discrete Gaussian
distribution) and 𝒔 a secret vector from Z𝑛𝑞 .

We denote ℒ𝒔 ,𝜒 the probability distribution over Z𝑛𝑞 × Z𝑞 obtained by choosing
𝒂 ∈ Z𝑛𝑞 uniformly at random, choosing 𝑒 ←r 𝜒 and considering it in Z𝑞 and finally
calculating (𝒂 , 𝑏 ≔ ⟨𝒂 , 𝒔⟩ + 𝑒) ∈ Z𝑛𝑞 × Z𝑞 . There are two variants of the Learning With
Errors (LWE) problem.

The Decisional Learning With Errors problem, Decisional-LWE𝑛 𝑞 𝜒, consists on
deciding if pairs (𝒂 , 𝑏) are samples of ℒ𝒔 ,𝜒 or come from the uniform distribution of
Z𝑛𝑞 × Z𝑞 .

The Search Learning With Errors problem, Search-LWE𝑛 𝑞 𝜒, consists on recovering
𝒔 from samples (𝒂 , 𝑏) obtained from ℒ𝒔 ,𝜒.

We generally consider a polynomial adversary has access to polynomially many
samples. If we restrict the problem to a fixed number of samples 𝑚 we denote it as
LWE𝑛 𝑞 𝑚 𝜒.

This problem, introduced by Regev in [101], is again as hard as the approximated
SVP [84], even if the secret 𝒔 is chosen component by component from the error
distribution 𝜒 [103]. Some of these reductions involve continuous error terms
over the reals, and not discrete Gaussians. We encourage any reader interested in
the non-trivial relations among the LWE variants when defined with continuous,
rounded or discrete Gaussians, to read the interesting discussions from [95, 59].

It is clear that we can reduce the decisional version to the search version. It is
also possible to reduce the search version to the decisional version [101, 94].

We can observe the direct relation of these problems with lattices. Considering
𝑚 samples from ℒ𝒔 ,𝜒 we can stack vectors 𝒂T

𝑖
as rows in a matrix 𝑨 and the problem

can be defined as solving a linear system of equations with noise (𝑨,𝑨𝒔 + 𝒆). If
we see 𝑨 as a matrix that defines Λ𝑞(𝑨) then the search-LWE problem becomes
recovering the coordinates of a lattice point in its Λ𝑞 form after adding some error 𝒆,
while the decisional-LWE problem is to distinguish uniformly random points in Z𝑚
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from perturbed lattice points.

Cryptographic Applications

As a first example we can see how a good basis with short vectors allows us to build
a trapdoor function. Let 𝑨 ∈ Z𝑚×𝑛𝑞 be a random matrix and 𝑻 ∈ Z𝑚×𝑚 a full rank
matrix such that all columns of 𝑻 have a small norm and 𝑨T𝑻 = 0. That is, 𝑻 is a
good basis of Λ⊥(𝑨).

Notice that we require 𝑻 to be full-rank and at the same time we impose that
𝑨 belongs to the cokernel of 𝑻 , which seems contradictory. However, this second
property works modulo 𝑞, and the first condition we need is 𝑻 to be full-rank over
the integers, where the lattice really lives.

The matrix 𝑨 is public and everybody can compute LWE samples 𝒃 = 𝑨𝒔 +
𝒆 mod 𝑞 with its own secret 𝒔. The LWE hardness assumption tells us that in
general it is difficult to recover 𝒔. However, using the good basis we could compute
𝑻T𝒃 = 𝑻T𝑨𝒔 + 𝑻T𝒆 = 𝑻T𝒆 ∈ Z𝑚𝑞 .

Usually we would be stuck here since we know that 𝑻 is invertible over the
integers but not over Z𝑞 . However, if elements of 𝑻 and 𝒆 are small enough then
the coefficients of 𝑻T𝒆 ∈ Z𝑚 would be much smaller than 𝑞, and therefore taking
the representatives we obtain the equality 𝑻T𝒃 rem 𝑞 = 𝑻T𝒆 ∈ Z𝑚 over the integers.
Once we have the equation over the integers we can invert 𝑻T, recover 𝒆 and finally
solve the overdetermined system of equations 𝑨𝒔 = 𝒃 − 𝒆 mod 𝑞.

It is possible to build more advanced public key cryptographic primitives using a
good basis as a secret key, but we can also directly use the secret of the LWE problem
as secret key.

Proposition 1.30. The following folklore encryption scheme is secure under the assumption
of the hardness of the decisional-LWE problem.

• Gen: the generator algorithm takes as input the security parameter 1𝜆 and defines the
public parameters pp ≔ (𝑛, 𝑞, 𝜒). It then chooses a matrix 𝑨 ←r Z𝑛×𝑛𝑞 , and small
vectors 𝒔 , 𝒆 ←r 𝜒𝑛 . The public key is pk ≔ (𝑨, 𝒚T ≔ 𝒔T𝑨 + 𝒆T) and the secret key is
sk ≔ 𝒔.

(sk ≔ 𝒔 , pk ≔ (𝑨, 𝒚T ≔ 𝒔T𝑨 + 𝒆T); pp ≔ (𝑛, 𝑞, 𝜒)) ←r Gen(1𝜆)

• Enc: in order to encrypt a single bit 𝑚 ∈ {0, 1} we sample 𝒓 , 𝒙 ←r 𝜒𝑛 , 𝑥′←r 𝜒 and
compute a vector of LWE samples 𝒂 ≔ 𝑨𝒓 + 𝒙 and an integer that hides the secret
message bit 𝑎 ≔ 𝒚T𝒓 + 𝑥′ + 𝑚 ⌊𝑞/2⌉ rem 𝑞.

𝑐 ≔ (𝒂 ≔ 𝑨𝒓 + 𝒙 , 𝑎 ≔ 𝒚T𝒓 + 𝑥′ + 𝑚 ⌊𝑞/2⌉ rem 𝑞) ←r Enc(𝑚; (𝑨, 𝒚T), pp)
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• Dec: the decryption method recovers the message computing 𝑎 − 𝒔T𝒂 rem 𝑞, as it
should be equal to 𝑚 ⌊𝑞/2⌉ plus some errors that only involve small elements. For that
matter it outputs 0 if the result is closer to 0 or 1 if it is closer to 𝑞/2 (taking into
account that we are working in Z𝑞).

Dec((𝒂 , 𝑎), 𝒔; pp) =


0 if
�� 𝑎 − 𝒔T𝒂 rem 𝑞

�� < 𝑞/4
1 otherwise

Since we are rounding elements from Z𝑞 to 0 or 𝑞/2 we denote this operation as ⌊·⌉𝑞/2
and write ⌊

𝑎 − 𝒔T𝒂
⌉
𝑞/2 ← Dec((𝒂 , 𝑎), 𝒔; pp).

Proof. Correctness follows if 𝜒 is bounded by a sufficiently small bound, since
𝑎−𝒔T𝒂 = (𝒔T𝑨+𝒆T)𝒓+𝑥′+𝑚 ⌊𝑞/2⌉−𝒔T(𝑨𝒓+𝒙) = 𝒆T𝒓+𝑥′−𝒔T𝒙+𝑚 ⌊𝑞/2⌉ ≈ 𝑚 ⌊𝑞/2⌉.
If the bound only holds except with a negligible probability we would then obtain a
scheme with correctness except with a negligible probability.

Security as defined in Definition 1.5 follows from the LWE hardness assumption.
We can prove it following the sequence of games approach, which we will further
formalize in Section 1.4. We consider a sequence of games starting from the IND-
CPA challenge and slightly modify it in each step in a way that we can ensure the
difference between the success probability of the adversary compared with success
probability of a random guess is not significantly different among two consecutive
games. We proceed this way until we end up with a game for which we can ensure
any adversary has exactly the same success probability than a random guess.

• Game 0: the adversary𝒜 plays the IND-CPA game and tries to guess which
message has been encrypted. We write every step of the encryption algorithm
because we are going to later modify that part of the game.

Pr


𝑏𝒜 = 𝑏

��������������

(𝒔 , (𝑨, 𝒚T); (𝑛, 𝑞, 𝜒)) ←r Gen(1𝜆),
(𝑚0 , 𝑚1 , aux) ←r 𝒜1((𝑨, 𝒚T), (𝑛, 𝑞, 𝜒), 1𝜆),

𝑏 ←r {0, 1},
𝒓 , 𝒙 ←r 𝜒𝑛 , 𝑥′←r 𝜒,

𝒂 ≔ 𝑨𝒓 + 𝒙 , 𝑎 ≔ 𝒚T𝒓 + 𝑥′ + 𝑚𝑏 ⌊𝑞/2⌉ rem 𝑞,

𝑏𝒜 ←r 𝒜2((𝒂 , 𝑎), (𝑨, 𝒚T), (𝑛, 𝑞, 𝜒), aux, 1𝜆)


• Game 1: we substitute the public key by a fake one that is just a uniformly

sampled matrix and vector pair (𝑨, 𝒚T) ←r Z𝑛×𝑛𝑞 × Z𝑛𝑞 . Let G̃en be a new
generator algorithm that executes the original Gen and just outputs the public
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parameters.

Pr


𝑏𝒜 = 𝑏

��������������

(𝑛, 𝑞, 𝜒) ←r G̃en(1𝜆), (𝑨, 𝒚T) ←r Z𝑛×𝑛𝑞 × Z𝑛𝑞 ,
(𝑚0 , 𝑚1 , aux) ←r 𝒜1((𝑨, 𝒚T), (𝑛, 𝑞, 𝜒), 1𝜆),

𝑏 ←r {0, 1},
𝒓 , 𝒙 ←r 𝜒𝑛 , 𝑥′←r 𝜒,

𝒂 ≔ 𝑨𝒓 + 𝒙 , 𝑎 ≔ 𝒚T𝒓 + 𝑥′ + 𝑚𝑏 ⌊𝑞/2⌉ rem 𝑞,

𝑏𝒜 ←r 𝒜2((𝒂 , 𝑎), (𝑨, 𝒚T), (𝑛, 𝑞, 𝜒), aux, 1𝜆)


The success probability of the adversary in game 1 is at negligible distance
from the success probability of the adversary in game 0. Otherwise, we could
use it to break the decisional LWE assumption for 𝑛 samples, as this adversary
would correctly guess 𝑏 with a significantly different probability when (𝑨T , 𝒚)
comes from a LWE distribution or when both elements are uniformly and
independently distributed, and we could use it to distinguish the two scenarios
with a probability greater than a random guess by a non-negligible amount.

• Game 2: the adversary𝒜 receives both a fake public key (𝑨, 𝒚T) ←r Z𝑛×𝑛𝑞 ×Z𝑛𝑞
and a partially fake encryption (𝒂 , 𝑎), where 𝒂 ←r Z𝑛𝑞 and 𝑎 ≔ 𝑎′ + 𝑚 ⌊𝑞/2⌉
rem 𝑞 with 𝑎′←r Z𝑞 .

Pr


𝑏𝒜 = 𝑏

��������������

(𝑛, 𝑞, 𝜒) ←r G̃en(1𝜆), (𝑨, 𝒚T) ←r Z𝑛×𝑛𝑞 × Z𝑛𝑞 ,
(𝑚0 , 𝑚1 , aux) ←r 𝒜1((𝑨, 𝒚T), (𝑛, 𝑞, 𝜒), 1𝜆),

𝑏 ←r {0, 1},
𝒂 ←r Z𝑛𝑞 , 𝑎

′←r Z𝑞 ,

𝑎 ≔ 𝑎′ + 𝑚𝑏 ⌊𝑞/2⌉ mod 𝑞,

𝑏𝒜 ←r 𝒜2((𝒂 , 𝑎), (𝑨, 𝒚T), (𝑛, 𝑞, 𝜒), aux, 1𝜆)


Notice that in game 2 the vector 𝒚 was already uniformly random, so the
element that plays the role of the encryption,(

𝑨

𝒚T

)
𝒓 +

(
𝒙

𝑥′

)
+

(
0

𝑚𝑏 ⌊𝑞/2⌉

)
rem 𝑞,

was constructed from 𝑛+1LWE samples, while in game 3 it involves a uniformly
random vector from Z𝑛+1,(

𝒂

𝑎′

)
+

(
0

𝑚𝑏 ⌊𝑞/2⌉

)
rem 𝑞.

Analogously as before, under the assumption that the LWE problem with 𝑛 + 1
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samples is hard, the difference between the success probability in games 2 and
3 is negligible.

• Game 3: the adversary𝒜 receives a fake (𝑨, 𝒚) ←r Z𝑛×𝑛𝑞 ×Z𝑛𝑞 and a completely
random fake encryption (𝒂 , 𝑎) ←r Z𝑛𝑞 × Z𝑞 .

Pr


𝑏𝒜 = 𝑏

������������

(𝑛, 𝑞, 𝜒) ←r G̃en(1𝜆), (𝑨, 𝒚T) ←r Z𝑛×𝑛𝑞 × Z𝑛𝑞 ,
(𝑚0 , 𝑚1 , aux) ←r 𝒜1((𝑨, 𝒚T), (𝑛, 𝑞, 𝜒), 1𝜆),

𝑏 ←r {0, 1},
𝒂 ←r Z𝑛𝑞 , 𝑎 ←r Z𝑞 ,

𝑏𝒜 ←r 𝒜2((𝒂 , 𝑎), (𝑨, 𝒚T), (𝑛, 𝑞, 𝜒), aux, 1𝜆)


It is immediate to check that the success probability of the adversary is the
same in games 2 and 3 since anything plus a uniformly random distribution
follows a uniformly random distribution, and therefore the adversary obtains
the same information.

Since, except for a negligible difference, the adversary has the same advantage
on game 0 than on game 3, where the inputs they get are completely independent of
𝑏, we can conclude that the presented encryption scheme has semantic security, that
is, is IND-CPA secure, as long as the Gen algorithm outputs parameters that make
the LWE problem hard. □

1.3.7 Ideal Lattices

The main downside of the LWE problem is that matrix 𝑨 has a size quadratic in
the dimension 𝑛, and this yields to a high communication cost for parameters that
make the problem difficult enough. The good news is that this cost can be reduced
to something linear in 𝑛 if we restrict ourselves to a particular class of lattices.

Fixed a vector 𝒇 = ( 𝑓0 , . . . , 𝑓𝑛−1)T ∈ Z𝑛 we define the transformation matrix 𝑭 as

0 · · · 0 − 𝑓0
. . . − 𝑓1

Id𝑛−1
...

. . . − 𝑓𝑛−1


.

Definition 1.31 (Ideal Lattice). An ideal lattice is a lattice ℒ(𝑨) generated by a block
matrix 𝑨 =

[
𝑨(1)

��. . .��𝑨(𝑚)] whose blocks 𝑨(𝑖) are constructed from a vector 𝒂(𝑖) ∈ Z𝑛
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and a transformation matrix 𝑭 in the following way.

𝑨(𝑖) =
[
𝒂(𝑖) , 𝑭𝒂(𝑖) , . . . , 𝑭𝑛−1𝒂(𝑖)

]
.

These lattices are called ideal lattices as they can be seen as principal ideals in
the polynomial ring 𝑅 = Z [𝑥] /⟨ 𝑓 (𝑥)⟩, where 𝑓 (𝑥) = 𝑥𝑛 + 𝑓𝑛−1𝑥

𝑛−1 + · · · + 𝑓0 ∈ Z [𝑥]
is the monic polynomial given by the vector of the transformation matrix. As
we said, we identify any other vector 𝒗 = (𝑣1 , 𝑣2 , . . . , 𝑣𝑛) ∈ Z𝑛 with a polynomial
𝑣 = 𝑣1 + 𝑣2𝑥 + · · · + 𝑣𝑛𝑥𝑛−1 ∈ 𝑅. It can be easily checked that, by construction,
multiplying two polynomials 𝑎 and 𝑏 in the ring 𝑅 is equivalent to multiply the
matrix 𝑨 constructed from the vector 𝒂 with the vector 𝒃. Then, vectors {𝒗 | 𝒗 = 𝑨𝒃}
are, when considered as polynomials, elements of the principal ideal ⟨𝑎⟩ ⊂ 𝑅.

We choose 𝑓 to be (1, 0, . . . , 0), so that 𝑓 (𝑥) = 𝑥𝑛 + 1, with 𝑛 a power of 2,
and work with the 𝑞-ary lattices 𝑅𝑞 = Z𝑞 [𝑥] /⟨𝑥𝑛 + 1⟩, as it gives us nice security
reductions [84].

Using this particular polynomial each block of the matrix 𝑨 is an anti-cyclic
integer matrix.

𝑨(𝑖) =

©«

𝑎1 −𝑎𝑛 −𝑎𝑛−1 · · · −𝑎2

𝑎2 𝑎1 −𝑎𝑛 · · · −𝑎3

𝑎3 𝑎2 𝑎1 · · · −𝑎4
...

...
...

. . .
...

𝑎𝑛 𝑎𝑛−1 𝑎𝑛−2 · · · 𝑎1

ª®®®®®®®¬
.

No algorithm is known to be able to take significant advantage of the structure in
ideal lattices of this family to efficiently solve the problems presented before when
restricted to their ideal cases [84].

Ring Short Integer Solution

Definition 1.32 (Ring Short Integer Solution – Ring9SIS𝑛 𝑞 𝑚 𝛽). Let 𝒂 = (𝑎1 , . . . ,

𝑎𝑚) ∈ 𝑅𝑚𝑞 be a uniformly random vector of polynomials. The Ring Short Integer
Solution (Ring-SIS) problem consists on finding a short not-zero vector of polynomials
𝒆 = (𝑒1 , . . . , 𝑒𝑚) ∈ 𝑅𝑚𝑞 such that ∥𝒆∥ ≤ 𝛽 and ⟨𝒂 , 𝒆⟩ = ∑𝑚

𝑖=1 𝑎𝑖𝑒𝑖 = 0.

Definition 1.33 (Ring Inhomogeneous Short Integer Solution – Ring9ISIS𝑛 𝑞 𝑚 𝛽). Let
𝒂 = (𝑎1 , . . . , 𝑎𝑚) ∈ 𝑅𝑚𝑞 be a uniformly random vector of polynomials and 𝑦 ∈ 𝑅𝑞 .
The Ring Inhomogeneous Short Integer Solution (Ring-ISIS) problem consists on finding
a short not-zero vector of polynomials 𝒆 = (𝑒1 , . . . , 𝑒𝑚) ∈ 𝑅𝑚𝑞 such that ∥𝒆∥ ≤ 𝛽 and
⟨𝒂 , 𝒆⟩ = ∑𝑚

𝑖=1 𝑎𝑖𝑒𝑖 = 𝑦.
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There are again efficient reductions from the ideal version of the SVP to Ring-
SIS [97].

Ring Learning With Errors

The LWE problem can also be particularized to a ring version, called Ring Learning
With Errors (RLWE) [84].

Definition 1.34 (Ring Learning With Errors – RLWE𝑛 𝑞 𝑚 𝜒). Let 𝑛, 𝑞 be integers (𝑞
usually prime), 𝜒 a discrete probability distribution in 𝑅 = Z[𝑥]/⟨𝑥𝑛 + 1⟩ (usually a
discrete Gaussian distribution) and 𝑠 a secret polynomial from 𝑅𝑞 .

The RLWE distributionℛ𝑠,𝜒 over 𝑅𝑞×𝑅𝑞 is sampled choosing 𝑎 ←r 𝑅𝑞 uniformly
at random, a small error term 𝑒 ←r 𝜒 from the noise distribution, and outputting
the pair of polynomials (𝑎, 𝑏 ≔ 𝑎 · 𝑠 + 𝑒) ∈ 𝑅𝑞 × 𝑅𝑞 .

Analogously to LWE, the goal of the decisional-RLWE problem will be to distin-
guish random linear equations, perturbed by a small amount of noise {(𝑎𝑖 , 𝑎𝑖 · 𝑠 +
𝑒𝑖)} ←r ℛ𝑠,𝜒, from truly uniform pairs {(𝑎𝑖 , 𝑢𝑖)} ←r 𝑅𝑞 × 𝑅𝑞 . The goal of the search-
RLWE problem will be to recover the secret 𝑠 ∈ 𝑅𝑞 from arbitrarily (or depending on
the version polynomially or finitely) many noisy products {(𝑎𝑖 , 𝑎𝑖 · 𝑠+ 𝑒𝑖)} ←r ℛ𝑠,𝜒. If
the number of available samples is limited to𝑚wedenote the problem asRLWEn q m 𝜒.
Usually the error distribution 𝜒 is a discrete Gaussian distribution on Z𝑛 , that is
𝜒 = 𝐷𝑛

𝜎 , for a given parameter 𝜎 (recall we identify vectors with polynomials, so
𝑒 ∈ 𝑅𝑞 sampled from 𝐷𝑛

𝜎 would just mean that we have its coefficients independently
sampled from a discrete Gaussian 𝐷𝜎 and then considered modulo 𝑞).

Certain instantiations of RLWE are supported by worst-case hardness theo-
rems [83], related to the ideal version of the SVP. Taking as error distribution a
Gaussian with parameter 𝜎 ≥ 𝜔(

√
log 𝑛), and for any ring, there exist a quantum

reduction from the 𝛾(𝑛)-SVP to the RLWE problem to within 𝛾(𝑛) = O(√
𝑛 · 𝑞/𝜎

)
.

Additionally, the RLWE problem becomes no easier to solve even if the secret 𝑠 is
chosen from the error distribution, rather than uniformly [83].

Additional variants of the LWE exist, as the Module Learning With Errors (MLWE)
problem, where the LWE problem is generalized over modules (problems are de-
scribed using matrices whose elements are polynomials), showed to be polynomially
equivalent to the RLWE problem in [7].

Cryptographic Applications of Ideal Lattices

Proposition 1.35. Lyubashevsky, Peikert and Regev proposed in [84] the following encryption
scheme based on the hardness of the RLWE problem.
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• Gen: the key generator algorithm takes the security parameter 1𝜆 as input and outputs
as public parameters a prime 𝑞, a power of two 𝑛 and a parameter 𝜎 so that the
RLWE𝑛 𝑞 𝐷𝑛

𝜎
problem is hard enough and errors are small with sufficient probability.

Then a RLWE sample is defined as a public key, with 𝑎 ←r 𝑅𝑞 obtained uniformly
at random, 𝑠, 𝑒 ←r 𝐷

𝑛
𝜎 small elements obtained from the error distribution and 𝑏

computed as 𝑏 ≔ 𝑎 · 𝑠 + 𝑒. The secret key is therefore the secret 𝑠.

(sk ≔ 𝑠, pk ≔ (𝑎, 𝑏 ≔ 𝑎 · 𝑠 + 𝑒); pp ≔ (𝑛, 𝑞, 𝜎)) ←r Gen(1𝜆)

• Enc: the encryption algorithm takes as input a message 𝑚 ∈ {0, 1}𝑛 encoded as a
polynomial in 𝑅𝑞 with 0 or 1 coefficients, a public key (𝑎, 𝑏), and the public parameters
pp. It chooses small random elements 𝑟, 𝑒𝑢 , 𝑒𝑣 ←r 𝐷

𝑛
𝜎 and computes the ciphertext

as two polynomials following the structure of RLWE samples, adding the escalated
message to the second one, (𝑢, 𝑣) ≔ (𝑎 · 𝑟 + 𝑒𝑢 , 𝑏 · 𝑟 + 𝑒𝑣 + ⌊𝑞/2⌉ 𝑚) ∈ 𝑅𝑞 × 𝑅𝑞 .

(𝑢 ≔ 𝑎 · 𝑟 + 𝑒𝑢 , 𝑣 ≔ 𝑏 · 𝑟 + 𝑒𝑣 + ⌊𝑞/2⌉ 𝑚) ←r Enc(𝑚; (𝑎, 𝑏), pp)

• Dec: the decryption algorithm takes as input a ciphertext (𝑢, 𝑣) and uses the secret
key 𝑠 to compute a noisy message 𝑣 − 𝑠 · 𝑢 that can then be rounded to the original
message.

⌊𝑣 − 𝑠 · 𝑢⌉𝑞/2 ← Dec((𝑢, 𝑣), 𝑠; pp)

The above cryptosystem is IND-CPA secure assuming the hardness of the decisional-
RLWE problem.

Proof. Correctness comes from the fact that 𝑎 and 𝑏 are not random independent
polynomials, which would make 𝑎 · 𝑟 + 𝑒𝑢 and 𝑏 · 𝑟 + 𝑒𝑣 two samples from ℛ𝑟,𝐷𝑛

𝜎
and

the message irrecoverable. Provided that (𝑎, 𝑏) is a RLWE sample and the secret is
the secret key we can remove the polynomials masking the message, except for some
small error terms.

𝑣 − 𝑠 · 𝑢 = 𝑏 · 𝑟 + 𝑒𝑣 +
⌊ 𝑞
2

⌉
𝑚 − 𝑠(𝑎 · 𝑟 + 𝑒𝑢)

= 𝑠 · 𝑎 · 𝑟 + 𝑒 · 𝑟 + 𝑒𝑣 +
⌊ 𝑞
2

⌉
𝑚 − 𝑠 · 𝑎 · 𝑟 − 𝑠 · 𝑒𝑢

= 𝑒 · 𝑟 + 𝑒𝑣 − 𝑠 · 𝑒𝑢 +
⌊ 𝑞
2

⌉
𝑚

≈
⌊ 𝑞
2

⌉
𝑚.

If 𝜎 is small enough that ∥𝑒 · 𝑟 + 𝑒𝑣 − 𝑠 · 𝑒𝑢 ∥∞ < 𝑞/4, except with negligible
probability, when we round we recover the original message, again except with
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negligible probability. As an alternative we can also use a bounded error distribution
so that the probability of a decryption error is identically zero.

In order to demonstrate that the scheme is IND-CPA secure in this case we are
going to prove it by contradiction. Assume𝒜 = (𝒜1 ,𝒜2) is a PPT adversary such
that the following quantity is non-negligible in 𝜆.���������Pr


𝑧𝒜 = 𝑧

���������
(𝑠, (𝑎, 𝑏); (𝑛, 𝑞, 𝜎)) ←r Gen

(
1𝜆

)
,

(𝑚0 , 𝑚1 , aux) ←r 𝒜1
(
(𝑎, 𝑏), (𝑛, 𝑞, 𝜎), 1𝜆

)
,

𝑧 ←r {0, 1} , (𝑢, 𝑣) ←r Enc (𝑚𝑧 ; (𝑎, 𝑏), (𝑛, 𝑞, 𝜎)) ,
𝑧𝒜 ←r 𝒜2

(
(𝑢, 𝑣) , (𝑎, 𝑏) , (𝑛, 𝑞, 𝜎), aux, 1𝜆

)

− 1/2

��������� ∉ negl(𝜆)

Let (𝑎1 , 𝑐1) , (𝑎2 , 𝑐2) ∈ 𝑅𝑞 × 𝑅𝑞 be two pairs that can be uniformly random pairs
or RLWE samples. If they are random polynomials then

���������Pr


𝑧𝒜 = 𝑧

���������
(𝑚0 , 𝑚1 , aux) ←r 𝒜1

(
(𝑎1 , 𝑎2) , (𝑛, 𝑞, 𝜎), 1𝜆

)
,

𝑧 ←r {0, 1} ,
𝑢 ≔ 𝑐1 , 𝑣 ≔ 𝑐2 + ⌊𝑞/2⌉ 𝑚𝑧 ,

𝑧𝒜 ←r 𝒜2
(
(𝑢, 𝑣), (𝑎1 , 𝑎2) , (𝑛, 𝑞, 𝜎), aux, 1𝜆

)

− 1/2

��������� = 0.

As the uniformly random element 𝑐2 completely masks the chosen message the
output 𝑧𝒜 is independent of 𝑧, and the probability of correctly guessing the bit is
exactly 1/2.

If (𝑎1 , 𝑐1) and (𝑎2 , 𝑐2) are real RLWE samples there are two possibilities. If
the difference with 1/2 is non-negligible we can use this adversary to solve the
decisional-RLWE with non-negligible probability, because the event 𝑧 = 𝑧𝒜 happens
with a significantly different probability in both scenarios. If the probability is at a
negligible distance from 1/2 it means that the adversary𝒜 worked well when the
public key (𝑎, 𝑏)was a real RLWE sample, but not when the elements (𝑎1 , 𝑎2) playing
the same role are two random independent polynomials, which also gives us a way
to distinguish random pairs from RLWE samples playing the same game this time
choosing 𝑎2 to be the element that can be a uniformly random polynomial or a RLWE
sample of the lattice generated by 𝑎1.

Notice that we do not know a priori which of those possibilities would be true,
but all of them would allow us to distinguish RLWE samples from random elements,
which contradicts the hardness assumption and concludes the proof. □

Observation 1.36. Notice the rounding step is an important part of the decryption
process. Someone wanting to prove that the decryption of a ciphertext is a given
value without revealing their own secret key cannot omit the rounding revealing
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𝑣 − 𝑠 · 𝑢 and proving in zero-knowledge the fact that is has been computed from a
secret 𝑠 that corresponds to their public key. Even if the ZKPoK would reveal no
information itself the error terms 𝑒 · 𝑟 + 𝑒𝑣 − 𝑠 · 𝑒𝑢 do depend on the secret key 𝑠 and
would partially leak the secret. Observe that these error terms also depend on 𝑒,
which has to remain secret too because knowing 𝑒 we could directly compute 𝑠 from
𝑎 and 𝑏. The fact that this additional non-linear rounding operation is an important
part of the decryption process makes the realization of correct decryption proofs (or
the generalization to threshold decryption) more cumbersome.

Besides encryption schemes the RLWE assumption can also be directly used
to design lattice based commitment schemes, again hiding a message by adding a
RLWE sample. Nevertheless, provided that one of the main contributions of this
dissertation is precisely a new lattice-based commitment scheme using the RLWE
problem as hardness assumption, we omit here that discussion and leave the details
for Chapter 3.

1.3.8 Zero-Knowledge Proofs of Knowledge with Lattices

As we have seen one particular characteristic of lattice-based cryptography is the
important role small norm elements play. Many ZKPoKs require to prove that some
random element satisfying some relation exists, and working with lattice-based
cryptography we usually need to prove that some random element satisfying some
relations exists and has small norm. In order to achieve this, several strategies have
been used in the literature, and we are going to discuss the most relevant two.

Consider an instance of the ISIS problem. Given a matrix 𝑨 ∈ Z𝑛×𝑚𝑞 and a vector
𝒚 ∈ Z𝑛𝑞 we want to prove knowledge of 𝒙 ∈ Z𝑚 such that 𝑨𝒙 = 𝒚 and ∥𝒙∥∞ ≤ 𝛽.

Let us present in Protocol 1.2 a first attempt following the structure of a standard
Σ-protocol, a 3-move interactive proof with special soundness, to see what issues
arise. To do so we sample another vector �̂� ∈ Z𝑚𝑞 to hide the original secret, ask for a
challenge and finally reveal a combination of this masking element and the secret,
mimicking the Schnorr protocol for the DLog problem [105].

However, this simple approach fails as a proof of knowledge for the ISIS problem.
From two accepted answers to different challenges we would get a vector (𝛼 −
𝛼′)−1(𝒛 − 𝒛′) that is a preimage of 𝒚, but it might not have a small norm. We could
try to ensure that the norm of 𝒛 is small, but to do so the masking element �̂� and the
challenge 𝛼 should also be small. Then 𝒛 would not be uniformly distributed, and
would reveal information about 𝒙. Besides that, if we ensure 𝒛 − 𝒛′ has a small norm
we would be proving knowledge of a short preimage of (𝛼 − 𝛼′)𝒚 instead of 𝒚, and
we could no longer bound the norm of the preimage when multiplying by (𝛼 − 𝛼′)−1.
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To solve at least some of these issues a more involved protocol is needed.

Protocol 1.2 Attempt of an ISIS protocol
𝒫(𝑨, 𝒚; 𝒙) 𝒱(𝑨, 𝒚)

1: �̂� ←r Z𝑚𝑞
2: �̂� = 𝑨�̂�

�̂�
−−−−−−−−−−−→

3: 𝛼←r Z𝑞
𝛼←−−−−−−−−−−−

4: 𝒛 = �̂� + 𝛼𝒙 𝒛−−−−−−−−−−−→
5: 𝑨𝒛

?
= �̂� + 𝛼𝒚

Fiat-Shamir with Aborts

In order to avoid some of these problems, the prover can just use a small masking
element even if adding it does not completely randomize the secret as would be
the case with a uniformly random masking element, ask for a small 𝛼, and abort
whenever they are going to reveal too much information. This strategy is called
rejection sampling.

Imagine a very simplified one dimensional example where | 𝛼𝑥 | is known to
be bounded by 𝑏 ∈ Z>0 and �̂�, intended to mask 𝛼𝑥, is sampled from a uniform
distribution [−𝑐, 𝑐] ⊂ Z (for some 𝑐 > 𝑏). Then, for a fixed 𝛼𝑥 the distribution of
𝑧 ≔ �̂�+𝛼𝑥 would be uniform in an interval of length 2𝑐 (with 2𝑐+ 1 elements) inside
[−𝑐 − 𝑏, 𝑐 + 𝑏]. The extreme cases being [−𝑐 − 𝑏, 𝑐 − 𝑏] and [−𝑐 + 𝑏, 𝑐 + 𝑏] if 𝛼𝑥 is −𝑏
or 𝑏 respectively.

The prover can abort if 𝑧 does not lie in [−𝑐+ 𝑏, 𝑐− 𝑏], the common elements of all
possible intervals (see Figure 1.11, the intersection is not empty because 𝑐 > 𝑏). This
way, conditioned to the fact that we have not aborted, 𝑧 is uniformly distributed in
the interval [−𝑐 + 𝑏, 𝑐 − 𝑏] (and it does not depend on 𝛼𝑥). Moreover, the probability
of aborting is constant, equal to 2𝑏/(2𝑐 + 1). Here we have a trade-off between the
probability of aborting and the bounds for 𝑧 we obtain from the extractor.

A similar strategy can be followed using discrete Gaussian error distributions
instead of uniform distributions.

Theorem 1.37 (Vadim Lyubashevsky [78]). Let 𝑉 be a subset of Z𝑙 in which all elements
have norms less than 𝑇, and let ℎ be a probability distribution over 𝑉 . We denote by 𝐷𝒗 ,𝜎

the discrete Gaussian distribution centered on 𝒗 (sampled as the usual discrete Gaussian
but adding 𝒗). Then, for any constant 𝑀, there exists a 𝜎 = Θ̃(𝑇) such that the output
distribution of the following algorithms𝒜 and ℱ are statistically close.
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Figure 1.11 Fiat-Shamir with aborts

−𝑐 − 𝑏 −𝑐 + 𝑏 −𝑏 𝑏 𝑐 − 𝑏 𝑐 + 𝑏

𝒜 : ℱ :

𝒗 ←r ℎ; 𝒛←r 𝐷
𝑙
𝒗 ,𝜎; 𝒗 ←r ℎ; 𝒛←r 𝐷

𝑙
𝜎;

output (𝒛, 𝒗) with probability: output (𝒛, 𝒗) with probability:

min

(
1
𝑀

exp

(
∥𝒗∥22 − 2 ⟨𝒛, 𝒗⟩

2𝜎2

)
, 1

)
1
𝑀

Moreover, the probability that𝒜 outputs something is exponentially close to 1/𝑀.

With these aborts the probability distribution of the answer is statistically close
to a probability distribution centered in the origin and non-dependent on the secret
multiplied by the challenge (as the 𝑧 from the one-dimensional example did not
depend on 𝛼𝑥). The expected number of iterations until there is no abort is a constant
𝑀, that depends on 𝜎, and this 𝜎 is going to determine the size of the witness we
would be able to extract (usually larger than the size of the secret element known by
the prover but hopefully small enough to be useful). Observe that we also still have
a constant (𝛼 − 𝛼′), but this is sufficient for some proofs [78].

Stern-Based Proofs

Many lattice-based ZKPoKs are based on the fruitful paper of Stern [116] for a
code-based identification scheme, presented a few years before the possibility of
using lattice problems to build cryptographic primitives was suggested by Ajtai [5].
In many ways lattice and code problems are very similar, and in some cases we can
find analogous problems just substituting a measure like Hamming weight with
the euclidean norm. This implies that code-based zero-knowledge protocols face
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similar problems, and solutions for one setting can usually be adapted to the other.
We provide here a brief introduction to the notation, definitions and problems from
coding theory necessary to follow Stern-based protocols.

The seminal identification protocol [116] proposed by Stern in 1990 was a ZKPoK
of a solution of an instance of the Syndrome Decoding Problem (SDP). The syndrome
works as a public key and the user can authenticate themself interacting with a
verifier and proving knowledge of a solution (a binary vector with small Hamming
weight). Let us introduce and define all these code concepts.

Definition 1.38 (Binary linear code).
A binary linear code, denoted 𝒞, is the kernel of a binary checkmatrix𝑯 ∈ F(𝑛−𝑘)×𝑛2 .

𝒞 ≔

{
𝒘 ∈ F𝑛2

��� 𝑯𝒘 = 0
}
.

It can also be defined as the image of a generator matrix 𝑮 ∈ F𝑛×𝑘2 .

𝒞 ≔

{
𝒘 ∈ F𝑛2

��� 𝒘 = 𝑮𝒙 , 𝒙 ∈ F𝑘2
}
.

Observation 1.39. Notice the similarities between a binary linear code and a 𝑞-ary
lattice given in its Λ⊥ or Λ form.

A classical problem in coding theory is to recover a codeword 𝒘 when all we
know is a perturbed version 𝒗 ≔ 𝒘 + 𝒆, where 𝒆 is some error with low Hamming
weight. The problem can be stated in terms of the check matrix.

𝑯𝒗 = 𝒚

𝑯(𝒘 + 𝒆) = 𝒚

𝑯𝒆 = 𝒚

That is, we have to find a low weight vector 𝒆 with the same syndrome 𝒚 than 𝒗, to
be able to recover 𝒘 = 𝒗 − 𝒆. If the restrictions on the weight of the error are strong
enough then the solution is unique, but finding it is a well studied hard problem [21],
analogous to the ISIS problem for lattices.

Definition 1.40 (Syndrome Decoding problem – SD). Given a binary matrix 𝑯 ∈
F
(𝑛−𝑘)×𝑛
2 , a binary vector 𝒚 ∈ F𝑛−𝑘2 and an integer 𝑤, the SDP consists on deciding

whether or not there exists a binary vector 𝒆 such that 𝑯𝒆 = 𝒚 and ∥𝒆∥H ≤ 𝑤.

If we choose a random 𝒆 of fixed small Hamming weight 𝑤 it can be used as a
secret key sk ≔ 𝒆, and its syndrome 𝒚 = 𝑯𝒆 can be published as a public key pk ≔ 𝒚



Chapter 1. Introduction 51

for an identification protocol. In order to identify themself the user only needs to
prove knowledge of a valid 𝒆.

Then, the zero-knowledge interactive identification scheme by Stern, that we
reproduce in Protocol 1.3, allows a prover to convince a verifier that given a parity
check matrix 𝑯 ∈ F(𝑛−𝑘)×𝑛2 and a syndrome 𝒚 ∈ F𝑛−𝑘2 , they know a binary vector
𝒆 ∈ F𝑛2 of small fixed Hamming weight ∥𝒆∥H = 𝑤 such that it has this syndrome
𝒚 = 𝑯𝒆.

The original Stern’s idea to hide the small vector 𝒆 was to use a masking vector
𝒙 ←r F

𝑛
2 , a masking syndrome 𝒚′ ∈ F𝑛−𝑘2 (an honest prover will compute 𝒚′ ≔ 𝑯𝒙)

and a permutation𝜋←r 𝔖𝑛 (we denote by𝔖𝑛 the symmetric group of 𝑛 elements, i.e.
the set of permutations of 𝑛 elements). Notice that 𝒙+ 𝒆 reveals no information about
𝒆, while 𝜋(𝒆) only reveals its Hamming weight, which is precisely the information
we want to disclose. Then the prover shows that the masking elements are properly
computed, the linear relation is satisfied and the Hamming weight is correct:

(a) the syndrome of 𝒙 is 𝒚′,

(b) the syndrome of 𝒙 + 𝒆 is 𝒚′ + 𝒚,

(c) the Hamming weight of 𝜋(𝒆) is 𝑤.

To do so they build three commitments, 𝑐1 ←r Com(𝜋, 𝒚′), 𝑐2 ←r Com(𝜋(𝒙)),
𝑐3 ←r Com(𝜋(𝒙 + 𝒆)), in such a way that opening each pair of commitments (as it
is detailed in Protocol 1.3 depending on the challenge given by the verifier) it is
possible to verify each of the properties. Opening 𝑐1 and 𝑐2 one could check (a),
opening 𝑐1 and 𝑐3 one could check (b) and finally opening 𝑐2 and 𝑐3 one could check
(c).

All the properties combined imply that there is an 𝒆 withHammingweight𝑤 and
syndrome 𝒚, and it can be extracted from valid openings to all three commitments.

However, a cheating prover could build commitments that satisfy two of the
three properties (a), (b) and (c). Let us show how each pair of properties on its own
can be satisfied with elements computed without knowing a valid 𝒆.

For example if a vector �̂� of arbitrary Hamming weight and 𝒚 syndrome is used
with 𝒙 ←r F

𝑛
2 and 𝒚′ = 𝑯𝒙 the properties (a) and (b) hold. If a vector �̂� with

Hamming weight 𝑤 and arbitrary syndrome is used, and 𝒚′ = 𝑯𝒙 with 𝒙 ←r F
𝑛
2 ,

properties (a) and (c) still hold. Finally, if we use a vector �̂� with Hamming weight 𝑤
and arbitrary syndrome and compute 𝒚′ = 𝑯(𝒙 + �̂�) − 𝒚 then properties (b) and (c)
hold.
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Protocol 1.3 Stern’s protocol
𝒫 (𝑯 , 𝒚; 𝒆) 𝒱 (𝑯 , 𝒚)

1: 𝜋←r 𝔖𝑛 , 𝒙 ←r F
𝑛
2

2: (𝑐1 , 𝑜1) ←r Com
(
𝜋,𝑯𝒙

)
3: (𝑐2 , 𝑜2) ←r Com

(
𝜋(𝒙)

)
4: (𝑐3 , 𝑜3) ←r Com

(
𝜋(𝒙 + 𝒆)

)
𝑐1 ,𝑐2 ,𝑐3−−−−−−−−−−−→

5: 𝑏 ←r {0, 1, 2}
𝑏←−−−−−−−−−−−

6: if 𝑏 = 0 then
7: 𝜋 = 𝜋
8: �̃� = 𝜋(𝒙)
9: �̃�1 = 𝑜1 , �̃�2 = 𝑜2
10: ans = (𝜋, �̃� , �̃�1 , �̃�2)
11: end if
12: if 𝑏 = 1 then
13: 𝜋 = 𝜋
14: �̃� = 𝜋(𝒙 + 𝒆)
15: �̃�1 = 𝑜1 , �̃�3 = 𝑜3
16: ans = (𝜋, �̃�, �̃�1 , �̃�3)
17: end if
18: if 𝑏 = 2 then
19: �̃� = 𝜋(𝒙)
20: �̃� = 𝜋(𝒙 + 𝒆)
21: �̃�2 = 𝑜2 , �̃�3 = 𝑜3
22: ans = (̃𝒙 , �̃�, �̃�2 , �̃�3)
23: end if ans−−−−−−−−−−−→
24: if 𝑏 = 0 then
25:

?
Ver

(
𝑐1 , (𝜋,𝑯𝜋−1(̃𝒙)), �̃�1

)
26:

?
Ver

(
𝑐2 , �̃� , �̃�2

)
27: end if
28: if 𝑏 = 1 then
29:

?
Ver

(
𝑐1 , (𝜋,𝑯𝜋−1(̃𝒛) − 𝒚), �̃�1

)
30:

?
Ver

(
𝑐3 , �̃�, �̃�3

)
31: end if
32: if 𝑏 = 2 then
33:

?
Ver

(
𝑐2 , �̃� , �̃�2

)
34:

?
Ver

(
𝑐3 , �̃�, �̃�3

)
35: ∥ �̃� − �̃�∥H

?
= 𝑤

36: end if
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We can see how the commitments could be computed in each case following this
strategy.

(a) & (b) Obtain �̂� ∈ F𝑛2 such that 𝑯�̂� = 𝒚, 𝒙 ←r F
𝑛
2 and 𝜋←r 𝔖𝑛 , then

𝑐1 ←r Com(𝜋,𝑯𝒙), 𝑐2 ←r Com(𝜋(𝒙)), 𝑐3 ←r Com(𝜋(𝒙 + �̂�)).

(a) & (c) Obtain �̂� ←r
{
𝒛 ∈ F𝑛2

�� ∥𝒛∥H = 𝑤
}
, 𝒙 ←r F

𝑛
2 and 𝜋←r 𝔖𝑛 , then

𝑐1 ←r Com(𝜋,𝑯𝒙), 𝑐2 ←r Com(𝜋(𝒙)), 𝑐3 ←r Com(𝜋(𝒙 + �̂�)).

(b) & (c) Obtain �̂� ←r
{
𝒛 ∈ F𝑛2

�� ∥𝒛∥H = 𝑤
}
, 𝒙 ←r F

𝑛
2 and 𝜋←r 𝔖𝑛 , then

𝑐1 ←r Com(𝜋,𝑯(𝒙 + �̂�) − 𝒚), 𝑐2 ←r Com(𝜋(𝒙)), 𝑐3 ←r Com(𝜋(𝒙 + �̂�)).

We know each of the three properties can be verified opening two commitments,
but for every pair of properties we have shown a strategy that would allow a
malicious prover to open these two pairs of commitments verifying the relations (it
would fail for the remaining pair of commitments related to the third condition).
This means there are adversaries with at least 2/3 cheating probability. We can
however prove this is the maximum success probability of a malicious adversary via
a generalization of the previously mentioned special soundness.

The 𝑘-Special Soundness property means that a prover able to answer 𝑘 challenges
is honest, as in this case a witness could be extracted. This particular protocol
is 3-special sound because from answers to all the challenges we could directly
reconstruct the witness, as properties (a), (b) and (c) specifically characterize a
witness and the response to each challenge verifies one of them (and the binding
property of the commitment used ensures that the opened elements for each of the
challenges are the same). It is not 2-special sound because we already know that a
malicious prover can perfectly prepare its initial messages to correctly answer (any)
two challenges. It can be seen that a 3-special sound protocol with 3 challenges is
sound with a soundness error of 2/3. To convince the verifier of the fact that the
prover is not cheating, the same protocol can be repeated as many times as the
verifier considers.

We are going to present more detailed and formal arguments of this kind of
soundness notion in Chapter 3 where we are introducing yet another soundness
definition that generalizes the concept of 𝑘-special soundness for (2𝜇 + 1)-moves
interactive protocols.

Many ideas have been later proposed to adapt this scheme to different purposes,
either a dual version with the generator matrix of the code, more efficient schemes
with a particular subset of codes, 𝑞-ary codes and lattices. As we present a further
improvement of the existing techniques in Chapter 3 we then devote Section 3.2 in
its entirety to detail the variants from which we specifically benefit.
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1.4 Probability Preliminaries

We have already mentioned in Section 1.2 the main strategies to prove a scheme
is secure, identifying the event that we want to avoid and ensuring the success
probability of any PPT adversary is as small as we want. If we are only interested
in proving security asymptotically we can disregard constant factors from the
definitions, but given that we wouldx like to faithfully compare our proposals with
other schemes we need to take these details into account.

For that reason we formalize here all the definitions and strategies that allow us
to ensure the security of our schemes, using statistical properties or computational
assumptions.

1.4.1 The Advantage of an Adversary

We have previously mentioned the concept of advantage of an adversary, measuring
the event that we want to avoid. For example, the advantage could just be the
probability of the undesired event.

Definition 1.41 (𝐴𝑑𝑣𝐾𝑅).
The advantage of an adversary𝒜 in a key recovery attack is defined as follows.

𝐴𝑑𝑣𝐾𝑅(𝒜) ≔ Pr
[
sk = sk𝒜

��� (sk, pk; pp) ←r Gen(1𝜆), sk𝒜 ←r 𝒜(pk, pp, 1𝜆)
]
.

In other occasions the advantage is not defined as the probability of some event,
because we are interested in the difference of the probabilities of two alternative
scenarios. That is what happens with the indistinguishability games we use to
prove that an encryption scheme is IND-CPA, a commitment is hiding or a ZKPoK
is zero-knowledge. The natural way of defining these properties is ensuring that
the adversary has a success probability that is not significantly better than a purely
random guess that succeeds with probability 1/2. We bound this distance to 1/2 in
absolute value because an adversary that almost always chooses the wrong answer
can be used to break the security, as we would only need to define another adversary
that simply does the contrary.

1.4.2 Advantage in an Indistinguishability Game

We have already mentioned all these indistinguishability properties, but we can
properly name the advantages here to see that all of them follow the same approach.

Recall that whenever we allow the adversary to define the two scenarios they
would later try to distinguish we divide it into two algorithms (𝒜1 ,𝒜2), so that the
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first sets the information that determines the scenarios and the second outputs the
bit with their guess (modeling with an auxiliary variable aux all the information the
adversary might have precomputed in the first phase).

Definition 1.42 (𝐴𝑑𝑣IND−CPA). Advantage of (𝒜1 ,𝒜2) in an IND-CPA attack against
an encryption scheme, compared with a random guess.

𝐴𝑑𝑣IND−CPA(𝒜) ≔

������������
Pr


𝑏𝒜 = 𝑏

������������

(sk, pk; pp) ←r Gen(1𝜆),
(𝑚0 , 𝑚1 , aux) ←r 𝒜1(pk, pp, 1𝜆),

𝑏 ←r {0, 1},
𝑐 ←r Enc(𝑚𝑏 ; pk, pp),

𝑏𝒜 ←r 𝒜2(𝑐, pk, pp, aux, 1𝜆)


− 1/2

������������
.

The same kind of advantage can be defined for commitment schemes.

Definition 1.43 (𝐴𝑑𝑣Com). Advantage of (𝒜1 ,𝒜2) in an attack against the com-
putational hiding property of a commitment scheme, compared with a random
guess.

𝐴𝑑𝑣Com(𝒜) ≔

������������
Pr


𝑏𝒜 = 𝑏

������������

(pk; pp) ←r Gen(1𝜆),
(𝑚0 , 𝑚1 , aux) ←r 𝒜1(pk, pp, 1𝜆),

𝑏 ←r {0, 1},
(𝑐, 𝑜) ←r Com(𝑚𝑏 ; pk, pp),
𝑏𝒜 ←r 𝒜2(𝑐, pk, pp, aux, 1𝜆)


− 1/2

������������
.

And also for the zero-knowledge property of a ZKPoK. Consider in this case
a challenger Cha that has oracle access to the prover 𝒫, the verifier 𝒱 and the
simulator 𝒮, and computes both a real transcript tr0 executing the protocol with
𝒫 and𝒱 and a simulated transcript tr1 with 𝒮. As usual all public information is
going to be contained in our model in some public parameters pp outputted by a
generator Gen that would define the statement 𝑥. Additionally, the generator also
outputs the witness 𝑤 we are going to use for the studied ZKPoK.

Definition 1.44 (𝐴𝑑𝑣ZK). Advantage of an adversary (𝒜1 ,𝒜2) in an attack against
the Zero-Knowledge property of a ZKPoK, compared with a random guess.

𝐴𝑑𝑣ZK(𝒜) ≔

������������
Pr


𝑏𝒜 = 𝑏

������������

(pp, 𝑤) ←r Gen(1𝜆),
tr0 ←r Cha𝒫 ,𝒱(pp, 𝑤),

tr1 ←r Cha𝒮(pp),
𝑏 ←r {0, 1},

𝑏𝒜 ←r 𝒜(tr𝑏 , pp, 1𝜆)


− 1/2

������������
.
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Generic Indistinguishability Game

In order to simplify the analysis and to be able to prove general propositions that
we could latter use with the previous definitions we define an additional generic
indistinguishability game, where all the relevant information is generated by a
generator Gen that outputs the public parameters pp. From this point let as also
assume that 1𝜆 is always part of the public parameters 𝑝𝑝, this way we can keep
formalities without adding it as supplementary input to every adversary.

The goal of the adversary 𝒜 (to simplify the proofs we now consider a single
algorithm, butwe keep inmind the possibility of allowing the adversary to participate
defining the game) is then to distinguish between two challengers, Cha0 and Cha1.
One of the challengers is selected at random and produces a challenge 𝑐 that 𝒜
analyzes to try to determine if it was produced by Cha0 or Cha1.

Definition 1.45 (𝐴𝑑𝑣IND). Advantage of (𝒜) in a generic indistinguishability game,
compared with a random guess.

𝐴𝑑𝑣IND(Cha0 ,Cha1)(𝒜) ≔

���������Pr


𝑏𝒜 = 𝑏

���������
pp←r Gen(1𝜆),
𝑏 ←r {0, 1},

𝑐 ←r Cha𝑏(pp),
𝑏𝒜 ←r 𝒜(𝑐, pp)


− 1/2

��������� .
Alternatively, we can also deal with the indistinguishability of two scenarios if

we ensure that the output of any adversary is essentially the same in both of them.
We can formalize this idea asking the adversary to output a bit 𝑏𝒜 ∈ {0, 1} and
comparing the probability of 𝑏𝒜 = 1 in both cases.

Definition 1.46 (Adv′IND). Alternative definition of the advantage of an adversary𝒜
in a generic indistinguishability game, comparing both scenarios.

Adv′
IND(Cha0 ,Cha1)

(𝒜) ≔

�������Pr

𝑏𝒜 = 1

�������
pp←r Gen(1𝜆),
𝑐 ←r Cha0(pp),
𝑏𝒜 ←r 𝒜(𝑐, pp)

 −Pr

𝑏𝒜 = 1

�������
pp←r Gen(1𝜆),
𝑐 ←r Cha1(pp),
𝑏𝒜 ←r 𝒜(𝑐, pp)


������� .

This definition also captures the notion of advantage against indistinguishability,
because we understand that an adversary is able to distinguish between the two
scenarios if the probability distribution of its output depends on the scenario. We
measure this dependency as the difference of probabilities for outputting 1, but
notice it is also the difference of probabilities of outputting 0.

Both Definitions 1.45 and 1.46 are useful, as there are propositions more naturally
defined with each of them. We can always choose which to use because they are
equivalent except for a constant, in this case Adv′IND = 2 AdvIND.
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Lemma 1.47 (Adv′IND = 2 AdvIND). The alternativedefinitionof the indistinguishability
advantage Adv′IND(Cha0 ,Cha1) is exactly twice the original advantage 𝐴𝑑𝑣IND(Cha0 ,Cha1).

Adv′
IND(Cha0 ,Cha1)

(𝒜) = 2 · Adv
IND(Cha0 ,Cha1)

(𝒜)

Proof. We can directly prove AdvIND = 1/2 Adv′IND using the law of total probability
applied to 𝑏, knowing that it would be 0 or 1 with probability 1/2.

Pr


𝑏𝒜 = 𝑏

���������
pp←r Gen(1𝜆),
𝑏 ←r {0, 1},

𝑐 ←r Cha𝑏(pp),
𝑏𝒜 ←r 𝒜(𝑐, pp)


=

=
1
2 Pr

𝑏𝒜 = 0

�������
pp←r Gen(1𝜆),
𝑐 ←r Cha0(pp),
𝑏𝒜 ←r 𝒜(𝑐, pp)

 +
1
2 Pr

𝑏𝒜 = 1

�������
pp←r Gen(1𝜆),
𝑐 ←r Cha1(pp),
𝑏𝒜 ←r 𝒜(𝑐, pp)


=

1
2
©«1 − Pr

𝑏𝒜 = 1

�������
pp←r Gen(1𝜆),
𝑐 ←r Cha0(pp),
𝑏𝒜 ←r 𝒜(𝑐, pp)


ª®®¬ +

1
2 Pr

𝑏𝒜 = 1

�������
pp←r Gen(1𝜆),
𝑐 ←r Cha1(pp),
𝑏𝒜 ←r 𝒜(𝑐, pp)


=

1
2 +

1
2
©«Pr

𝑏𝒜 = 1

�������
pp←r Gen(1𝜆),
𝑐 ←r Cha1(pp),
𝑏𝒜 ←r 𝒜(𝑐, pp)

 − Pr

𝑏𝒜 = 1

�������
pp←r Gen(1𝜆),
𝑐 ←r Cha0(pp),
𝑏𝒜 ←r 𝒜(𝑐, pp)


ª®®¬

From which we can immediately deduce what we wanted subtracting 1/2 on both
sides and taking the absolute value.

Adv
IND(Cha0 ,Cha1)

(𝒜) = 1
2 Adv′

IND(Cha0 ,Cha1)
(𝒜)

□

Computational Indistinguishability Game

The most usual strategy is to relate these probabilities (via reductions or sequences
of games) with a probability that (possibly under certain assumptions) is negligible
in the security parameter.

It might be the case that we precisely assume it is computationally hard to
distinguish the distributions (pp, 𝑐0) and (pp, 𝑐1), where 𝑐𝑏 ←r Cha𝑏 is the output
of the challenger in the 𝑏 case. For example the decisional RLWE𝑛 𝑞 𝑚 𝜒 assumption
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means precisely that the advantage of any PPT adversary is negligible in the security
parameter in a game where 𝑐0 ←r ℛ𝑚𝑠,𝜒 and 𝑐1 ←r 𝒰 , where 𝒰 is the uniform
distribution in the appropriate space (𝑅𝑚𝑞 )2.

Using the language of advantages of adversaries we can reformulate the
decisional-RLWE assumption. Let pp be the public parameters that contain all
the information regarding the specifications of the ring, the number of samples, the
secret element and noise distribution. We denote the dependence of the distributions
on these parameters as ℛpp and𝒰pp.

Definition 1.48 (Adv′RLWE).
Advantage of an adversary𝒜 against the decisional-RLWE problem.

Adv′RLWE(𝒜) ≔

�������Pr

𝑏𝒜 = 1

�������
pp←r Gen(1𝜆),
𝑟 ←r ℛpp ,

𝑏𝒜 ←r 𝒜(𝑟, pp)

 − Pr

𝑏𝒜 = 1

�������
pp←r Gen(1𝜆),
𝑟 ←r 𝒰pp ,

𝑏𝒜 ←r 𝒜(𝑟, pp)


������� .

Sometimes the reduction we need involves two similar games but with a different
nature. That is the case of the IND-CPA property of encryption schemes and
the hiding property of commitment schemes, that reflect the inability of efficient
adversaries for extracting any information about the messages from its impotence
distinguishing two encryptions or commitments to two messages (even if the
messages have been chosen by themselves), as it has been described inDefinitions 1.42
and 1.43.

The most common strategy in lattice-based cryptography is to mask the message
with a LWE/RLWE/MLWE sample. Without entering into details about how the
message is encoded for each application we can define an example abusing notation
and letting 𝑐 ≔ 𝑚 + 𝑟, with 𝑟 ←r ℛpp, be the output of some general primitive
Alg that we want to either prove IND-CPA secure or hiding. Security for this
simplified scheme would be based on the pseudorandomness of RLWE samples (in
the encryption scheme we have alreadymentioned in Section 1.3 that this is used two
consecutive times, but, for example, the commitment scheme [19] directly follows
the idea behind this simplified example).

Proposition 1.49 (Reduction to the advantage of decisional-RLWE). The advantage
against the indistinguishability of the previously defined example, compared with a random
guess, is bounded by the advantage of a similarly powerful adversary against the decisional-
RLWE, comparing the two scenarios.

𝐴𝑑𝑣Alg(𝒜) ≤ max
ℬ

{
Adv′RLWE(ℬ)

}
.
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Proof. We can prove it just manipulating the absolute values and the probabilities.

𝐴𝑑𝑣Alg(𝒜) =

=

��������������
Pr


𝑏𝒜 = 𝑏

��������������

pp←r Gen(1𝜆),(
𝑚0 , 𝑚1 ,

aux

)
←r 𝒜1(pp),

𝑏 ←r {0, 1},
𝑟 ←r ℛpp , 𝑐 ≔ 𝑚𝑏 + 𝑟,
𝑏𝒜 ←r 𝒜2(𝑐, aux, pp)


− 1/2

��������������
We can subtract and add the probability of guessing the scenario when 𝑟 ←r 𝒰pp,
and then apply the triangular inequality.

≤

��������������
Pr


𝑏𝒜 = 𝑏

��������������

pp←r Gen(1𝜆),(
𝑚0 , 𝑚1 ,

aux

)
←r 𝒜1(pp),

𝑏 ←r {0, 1},
𝑟 ←r ℛpp , 𝑐 ≔ 𝑚𝑏 + 𝑟,
𝑏𝒜 ←r 𝒜2(𝑐, aux, pp)


− Pr


𝑏𝒜 = 𝑏

��������������

pp←r Gen(1𝜆),(
𝑚0 , 𝑚1 ,

aux

)
←r 𝒜1(pp),

𝑏 ←r {0, 1},
𝑟 ←r 𝒰pp , 𝑐 ≔ 𝑚𝑏 + 𝑟,
𝑏𝒜 ←r 𝒜2(𝑐, aux, pp)



��������������

+

��������������
Pr


𝑏𝒜 = 𝑏

��������������

pp←r Gen(1𝜆),(
𝑚0 , 𝑚1 ,

aux

)
←r 𝒜1(pp),

𝑏 ←r {0, 1},
𝑟 ←r 𝒰pp , 𝑐 ≔ 𝑚𝑏 + 𝑟,
𝑏𝒜 ←r 𝒜2(𝑐, aux, pp)


− 1/2

��������������
Then we introduce a new adversary ℬ against the decisional-RLWE game. This
adversary, on input 𝑟, gets𝑚0 , 𝑚1 , aux from𝒜1, adds𝑚𝑏 + 𝑟, for a uniformly sampled
𝑏 ←r {0, 1}, computes 𝑏𝒜 ←r 𝒜2(𝑚𝑏 + 𝑟, aux) and returns 𝑏ℬ = 1 if 𝑏 = 𝑏𝒜 or 𝑏ℬ = 0
otherwise. The first term is precisely the advantage of this adversary against the
decisional-RLWE problem comparing both scenarios.

We can also ensure the second item is 0 because aux and 𝑐 are independent of 𝑏 given
that 𝑟 is uniformly random, so the probability of 𝑏𝒜 = 𝑏 is exactly 1/2.

=

�������Pr

𝑏ℬ = 1

�������
pp←r Gen(1𝜆),
𝑟 ←r ℛpp ,

𝑏ℬ ←r ℬ(𝑟, pp)

 − Pr

𝑏ℬ = 1

�������
pp←r Gen(1𝜆),
𝑟 ←r 𝒰pp ,

𝑏ℬ ←r ℬ(𝑟, pp)


������� + 0

= Adv′RLWE(ℬ)

□
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It should be noted that 𝒜 and ℬ are adversaries playing different games, and
their running times are not exactly the same. That would be irrelevant for an
asymptotic proof, as the reduction is polynomial, but if we wanted to bound the
advantage of any adversary that is guaranteed to end in a specific time 𝑡 then we
would get that for any𝒜 with running time bounded by this 𝑡 there is an adversary
ℬ with running time 𝑡′ for which

max
∥𝒜∥≤𝑡

{
𝐴𝑑𝑣Alg(𝒜)

}
≤ 2 max

∥ℬ∥≤𝑡′
{𝐴𝑑𝑣RLWE(ℬ)} ,

where 𝑡′ is slightly greater than 𝑡 because it includes a sum and a comparison (and
we are omitting the details about how the message is encoded, which could again
add a few more operations). Observe too that a factor 2 arises when using the
same kind of definition for the advantage Adv, as we were previously bounding Adv
against the Adv′ for the RLWE problem.

We can not go far beyond this, because Adv′RLWE(ℬ) is something we do not
know how to properly quantify. The hardness hypothesis just gives us an asymptotic
bound, not specific probabilities. In particular every polynomial adversary has a
running time bounded by a polynomial applied to the size of its input, but these
polynomials can be different. For each adversary and every constant 𝑐 there exists a
𝜆0 such that for every 𝜆 > 𝜆0 the advantage is smaller than 𝜆−𝑐 , but such 𝜆0 depends
on the adversary. We simply assume that, if some analysis (as the lattice estimator
fromAlbrecht et al. [8]) tells us that solving the problem takes 2𝜆 operations then that
would imply that any real adversary bounded to polynomially many 𝑡′ operations
would have a tiny advantage. We do not estimate any particular advantage for
adversaries with running time 𝑡′ < 2𝜆, as there is always a trade of between success
probability and running time, but it is hard to quantify. An adversary with twice the
running time might not exactly obtain a doubled success probability, so it makes no
sense to finely characterize the relation between 𝑡′ and the original 𝑡. For the same
reasons as above we might just ignore the factor 2.

Statistical Indistinguishability Game

The other main reason that prevents an adversary from distinguishing (pp, 𝑐0) and
(pp, 𝑐1) is far more simple and does not involve any computational problem. It is
hard to differentiate two distributions if they are too similar. In this case, as there
is no assumption involved, it does not matter if the adversary has an unbounded
computational power.

The only option a more powerful adversary would have to amplify its success
probability would be having access to multiple samples. Sometimes we assume the
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number of samples is polynomial and some other times a finite fixed number of
samples is determined by design of the scheme because the distributions depend on
a secret freshly obtained for each use.

The main notion we use to quantify this similarity among distributions is the
statistical distance. There are other alternatives, as the Rényi divergence, that can
be used for the same purpose and have been useful to determine more efficient
parameters for some lattice-based constructions, but this kind of considerations are
out of the scope of this dissertation [72, 16].

Definition 1.50 (Statistical Distance). The Statistical Distance (SD) between two
discrete probability distributions 𝒳 and 𝒴 defined over a countable support 𝒩 ,
denoted as Δ(𝒳 ,𝒴), is

Δ(𝒳 ,𝒴) ≔ 1
2

∑
𝑛∈𝒩

��𝒳(𝑛) − 𝒴(𝑛) ��.
We have denoted by 𝒳(𝑛) the probability of sampling 𝑛 when following the

distribution 𝒳. Equivalently for any event 𝐸 ⊆ 𝒩 we denote by 𝒳(𝐸) the probability
of sampling any element from 𝐸.

This distance is a useful tool because it allows us to prove that the probability of
an event is similar if two distributions have a small distance.

Proposition 1.51 (Probability preserving property of the SD).
Given an arbitrary event 𝐸 ⊆ 𝒩 we have that

𝒴(𝐸) ≥ 𝒳(𝐸) − Δ(𝒳 ,𝒴).

Proof. It can be directly deduced from the definition of the SD.

Δ(𝒳 ,𝒴) = 1
2

∑
𝑛∈𝒩

��𝒳(𝑛) − 𝒴(𝑛) ��
=

1
2

∑
𝑛∈𝐸

��𝒳(𝑛) − 𝒴(𝑛) �� + 1
2

∑
𝑛∈𝒩\𝐸

��𝒳(𝑛) − 𝒴(𝑛) ��
≥ 1

2

∑
𝑛∈𝐸

(
𝒳(𝑛) − 𝒴(𝑛)

)
+ 1

2

∑
𝑛∈𝒩\𝐸

(
𝒴(𝑛) − 𝒳(𝑛)

)
=

1
2

∑
𝑛∈𝐸

(
𝒳(𝑛) − 𝒴(𝑛)

)
+ 1

2

(
1 −

∑
𝑛∈𝐸
𝒴(𝑛) − 1 +

∑
𝑛∈𝐸
𝒳(𝑛)

)
= 𝒳(𝐸) − 𝒴(𝐸)

□
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This way we know that if 𝒴(𝐸) is bounded by 𝜀 we can also bound 𝒳(𝐸) ≤
𝜀 + Δ(𝒳 ,𝒴).

Corollary 1.52 (Probability difference). The probability difference of the same event with
two different probability distributions is bounded by its statistical distance.��𝒳(𝐸) − 𝒴(𝐸) �� ≤ Δ(𝒳 ,𝒴)

Proof. Immediately follows from the previous Proposition 1.51, because the argument
is symmetric, and we can proof both Δ(𝒳 ,𝒴) ≥ 𝒴(𝐸) − 𝒳(𝐸) and Δ(𝒳 ,𝒴) ≥
𝒳(𝐸) − 𝒴(𝐸). □

Another important and well-known property is that the statistical distance
between two distributions cannot ever increase if we apply the same (probabilistic)
function to both distributions. This implies that the distributions of the output of
any algorithm, when switching a sample from one distribution by a sample from a
different distribution, are at a distance not larger than the SD of the two distributions.

We can then compare the advantage of an adversary that has to distinguish
between two scenarios, Cha0 and Cha1, with the advantage of the same adversary
distinguishing the two scenarios when we alter the first, Cha′0 and Cha1. Let us
denote the first advantage as Adv′IND(Cha0 ,Cha1)(𝒜) and consequently call the second
advantage Adv′IND(Cha′0 ,Cha1)(𝒜).

Substituting 𝑐0 ←r Cha0 by 𝑐0 ←r Cha′0, where 𝐶0 and 𝐶′0 are the probability
distributions induced by the challengers Cha0 and Cha′0, we then have, heavily
simplifying notation keeping only the relevant differences, that�� Pr [𝑏𝒜 = 1 | Cha0] − Pr

[
𝑏𝒜 = 1

�� Cha′0
] �� ≤ Δ(𝐶0 , 𝐶

′
0).

Proposition 1.53 (Advantages and SD I). The difference of advantages, comparing both
scenarios, is bounded by the statistical distance if we change one of the challenges.

Adv′IND(Cha0 ,Cha1)(𝒜) ≤ Adv′IND(Cha′0 ,Cha1)(𝒜) + Δ(𝐶0 , 𝐶
′
0).
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Proof.

Adv′IND(Cha0 ,Cha1)(𝒜) =

=

��� Pr
[
𝑏𝒜 = 1

��Cha0
]
− Pr

[
𝑏𝒜 = 1

��Cha1
] ���

=

��� Pr
[
𝑏𝒜 = 1

��Cha0
]
− Pr

[
𝑏𝒜 = 1

��Cha′0
]
+Pr

[
𝑏𝒜 = 1

��Cha′0
]
− Pr

[
𝑏𝒜 = 1

��Cha1
] ���

≤
��� Pr

[
𝑏𝒜 = 1

��Cha0
]
−Pr

[
𝑏𝒜 = 1

��Cha′0
] ���+��� Pr

[
𝑏𝒜 = 1

��Cha′0
]
−Pr

[
𝑏𝒜 = 1

��Cha1
] ���

≤ Δ(𝐶0 , 𝐶
′
0) +

��� Pr
[
𝑏𝒜 = 1

��Cha′0
]
− Pr

[
𝑏𝒜 = 1

��Cha1
] ���

= Δ(𝐶0 , 𝐶
′
0) + Adv′IND(Cha′0 ,Cha1)(𝒜)

□

This argument cannot only be used when one of the scenarios changes, but
also when some distribution is used in both of them, and we want to compare the
advantage with the one the adversary would have if this distribution was altered in
both cases.

Proposition 1.54 (Advantages and SD II). The difference of advantages, compared with a
random guess, is bounded by the statistical distance if we substitute one distribution 𝐷 by an
alternative distribution 𝐷′ in both challenges.

𝐴𝑑𝑣IND(Cha0 ,Cha1)(𝒜) ≤ 𝐴𝑑𝑣IND(Cha′0 ,Cha′1)(𝒜) + Δ(𝐷, 𝐷
′).

Proof.

𝐴𝑑𝑣IND(Cha0 ,Cha1)(𝒜) =

=

��� Pr
[
𝑏𝒜 = 𝑏

�� Cha𝑏
]
− 1/2

���
=

��� Pr
[
𝑏𝒜 = 𝑏

�� Cha𝑏
]
− Pr

[
𝑏𝒜 = 𝑏

�� Cha′𝑏
]
+ Pr

[
𝑏𝒜 = 𝑏

�� Cha′𝑏
]
− 1/2

���
≤

��� Pr
[
𝑏𝒜 = 𝑏

�� Cha𝑏
]
− Pr

[
𝑏𝒜 = 𝑏

�� Cha′𝑏
] ��� + ��� Pr

[
𝑏𝒜 = 𝑏

�� Cha′𝑏
]
− 1/2

���
≤ Δ(𝐷, 𝐷′) + 𝐴𝑑𝑣IND(Cha′0 ,Cha′1)(𝒜) □

Notice so far we are being scarce on details about the distributions 𝐶0, 𝐶′0,𝐷 or𝐷′,
but all these distributions have to be defined with extreme care, paying attention to
the details of the game we are defining to be able to correctly compute the statistical
distances.

For example, perhaps surprisingly, we see that the difference of advantages is
always bounded by the statistical distance when we change one distribution no
matter if we are computing the advantage compared with a random guess 𝐴𝑑𝑣IND or
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the advantage comparing the two scenarios Adv′IND, even if the first is half the second.
What really happens is that distributions are defined on different probability spaces,
and there is no discrepancy if we take this fact into account.

From the second bound we can recover the first if we consider a case where
the second challenge does not depend on 𝐷 and therefore Cha′1 = Cha1, because
in that case Δ(𝐷, 𝐷′) = 1/2Δ(𝐶0 , 𝐶

′
0) (the 1/2 term appears because the scenario

0 only happens with probability 1/2, and we have to consider probabilities with
respect to the whole game). This matches the fact that Adv is half the Adv′. We
use one interpretation or the other for convenience, but always keep in mind the
corresponding probability space.

In general, we would be able to prove the security properties via a chain of
these arguments, possibly combining some computational ones with other with a
statistical nature. The number of statistical ones, for which we can precisely measure
the difference, are going to determine how close each pair of distributions have to be
to finally obtain the desired margin.

Particularly interesting is that we can directly apply Proposition 1.53 if the statis-
tical distance between 𝐶0 and 𝐶1 is smaller than 𝜀. The advantage of any adversary
would then be smaller than 𝜀, considering that we can bound Adv′IND(Cha0 ,Cha1) by
Δ(𝐶0 , 𝐶1) + Adv′IND(Cha1 ,Cha1), and the second term is just zero.

1.4.3 Dismissing Events with Negligible Probability

A common source of difficulties is that the different properties a scheme has to
satisfy might require different conditions that are challenging to piece together.

A common example in lattice-based schemes is the fact that we understand the
difficulty of the RLWE problem when the errors are sampled from discrete Gaussian
distributions, but many problems and scheme properties (such as correctness of an
encryption scheme or soundness in a ZKPoK) require the errors to be small. An
integer 𝑒 ∈ Z sampled from a discrete Gaussian 𝐷𝜎 is likely to be small (how small
depends on the 𝜎 parameter), but there is always a non-zero chance of getting a
result arbitrarily large.

There are two things we can do about this issue. First, we have to either accept
that the scheme would fail with small probability, or prove that it would remain
secure if we use instead a bounded discrete Gaussian 𝐷𝜎,𝐵. Second we have to
ensure that the probability of the tails is sufficiently small. We are going to focus
here on proving that bounded discrete Gaussians would work almost as well using
the propositions from the previous subsection, as long as the probability of the tails
is sufficiently small. Then, in the following subsection, we are going to deal with
that probability.
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Alternatively, in order to be able to guarantee the zero-knowledge property of the
Fiat-Shamir with aborts strategy we need for the rejection sampling Theorem 1.37
that the secret multiplied by the challenge belong to a bounded set. However, that
can only be guaranteed for discrete Gaussians except with some small probability,
so we would need the opposite argument, being able to use a distribution that is
only bounded except with some small probability when the property would require
a bounded distribution.

We are interested in studying what occurs with the adversary when the event
that happens with a small probability is some error being bounded. In general, we
can describe any condition we are interested in as a generic event that we can denote
as 𝐸. Let 𝐷𝐸 be the distribution conditioned to such event 𝐸.

𝐷𝐸(𝑥) ≔


1

1 − 𝐷
(
𝐸
)𝐷(𝑥) if 𝑥 ∈ 𝐸,

0 if 𝑥 ∉ 𝐸.

Proposition 1.55 (SD of the conditioned distribution). The statistical distance between
an original probability distribution and the conditioned distribution is precisely the probability
of not the event we are conditioning on.

Δ(𝐷, 𝐷𝐸) = 𝐷
(
𝐸
)

Proof.

Δ(𝐷, 𝐷𝐸) =
1
2

∑
𝑥∈𝒩

��𝐷(𝑥) − 𝐷𝐸(𝑥)
��

=
1
2

∑
𝑥∈𝐸

��𝐷(𝑥) − 𝐷𝐸(𝑥)
�� + 1

2

∑
𝑥∉𝐸

��𝐷(𝑥) − 𝐷𝐸(𝑥)
��

=
1
2

∑
𝑥∈𝐸

����� 𝐷
(
𝐸
)

1 − 𝐷
(
𝐸
)𝐷(𝑥) ����� + 1

2

∑
𝑥∉𝐸

��𝐷(𝑥) ��
= 1/2𝐷

(
𝐸
)
+ 1/2𝐷

(
𝐸
)

= 𝐷
(
𝐸
)

□

From this proposition we can deduce that the difference between the advantages
when we condition to some event is related to the probability of that event not
happening. Depending on whether we want that event to be considered in one
or the two scenarios we can more naturally write it using each of the alternative
definitions of the advantages.
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Proposition 1.56. The difference of advantages when we condition the distributions by an
event 𝐸 is bounded by the probability of this event not happening.���𝐴𝑑𝑣IND(Cha0 ,Cha1)(𝒜) − 𝐴𝑑𝑣IND(Cha0 |𝐸,Cha1 |𝐸)(𝒜)

��� ≤ Pr
[
𝐸
]
.��� Adv′IND(Cha0 ,Cha1)(𝒜) − Adv′IND(Cha0 |𝐸,Cha1)(𝒜)

��� ≤ Pr
[
𝐸
]
.

Proof. This proposition can be deduced from the relation between the advantage
and the statistical distances (Propositions 1.53 and 1.54) and the fact that the SD is
the probability of the event not happening (Proposition 1.55). □

As an immediate application we can use this to relate the advantages of condi-
tioned scenarios to the advantages of the original ones.

Corollary 1.57 (Advantages and negligible events I).

𝐴𝑑𝑣IND(Cha0 |𝐸,Cha1 |𝐸)(𝒜) ≤ 𝐴𝑑𝑣IND(Cha0 ,Cha1)(𝒜) + Pr
[
𝐸
]
.

Corollary 1.58 (Advantages and negligible events II).

Adv′IND(Cha0 |𝐸,Cha1)(𝒜) ≤ Adv′IND(Cha0 ,Cha1)(𝒜) + Pr
[
𝐸
]
.

Observe that, even if we always use the same notation for the event 𝐸, the
probability space where it is defined is important to measure its probability, and it is
not the same if we consider one game or another, as we mentioned before.

The inequalities would also work in the other direction, but directly studying the
probabilities we can obtain a more tight result.

Proposition 1.59 (Advantages and negligible events III). If we want to bound the
advantage of the original game by the advantage of the conditioned game then we can obtain
a tighter bound given by

𝐴𝑑𝑣IND(Cha0 ,Cha1)(𝒜) ≤ 𝐴𝑑𝑣IND(Cha0 |𝐸,Cha1)(𝒜) +
1
2 Pr

[
𝐸
]
,

𝐴𝑑𝑣IND(Cha0 ,Cha1)(𝒜) ≤ 𝐴𝑑𝑣IND(Cha0 |𝐸,Cha1 |𝐸)(𝒜) +
1
2 Pr

[
𝐸
]
.

Proof. Independently of whether the event affects the distribution of one or both
of the challenges we can prove the proposition, taking into account that the Pr

[
𝐸
]
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depends on the probability space.���Pr
[
𝑏𝒜 = 𝑏

]
− 1/2

��� =
=

���Pr
[
𝑏𝒜 = 𝑏

��� 𝐸] · Pr
[
𝐸
]
+ Pr

[
𝑏𝒜 = 𝑏

��� 𝐸] · Pr
[
𝐸
]
− 1/2

(
Pr

[
𝐸
]
+ Pr

[
𝐸
] ) ���

=

��� ( Pr
[
𝑏𝒜 = 𝑏

��� 𝐸] − 1/2
)
· Pr

[
𝐸
]
+

(
Pr

[
𝑏𝒜 = 𝑏

��� 𝐸] − 1/2
)
· Pr

[
𝐸
] ���

≤
���Pr

[
𝑏𝒜 = 𝑏

��� 𝐸] − 1/2
��� · Pr

[
𝐸
]
+

���Pr
[
𝑏𝒜 = 𝑏

��� 𝐸] − 1/2
��� · Pr

[
𝐸
]

≤
���Pr

[
𝑏𝒜 = 𝑏

��� 𝐸] − 1/2
��� + 1/2 Pr

[
𝐸
]

□

Observe that there are simple instances that achieve the equalitywhen considering
the other direction (bounding the conditioned advantage by the original one plus
the probability of the event not being true). Consider two challengers Cha0 and Cha1

that independently sample a uniformly random bit 𝑐0 , 𝑐1 ←r {0, 1}. For the sake of
simplicity let𝒜 be the adversary that takes 𝑐𝑏 as input and directly outputs it as its
guess. It is clear that the advantage of this particular adversary is identically zero,
because its outputs follow the same distribution in both scenarios.

Adv′
IND(Cha0 ,Cha1)

(𝒜) =
�����Pr

[
𝑏𝒜 = 1

����� 𝑐 ←r Cha0 ,

𝑏𝒜 ≔ 𝑐 ←𝒜(𝑐)

]
−Pr

[
𝑏𝒜 = 1

����� 𝑐 ←r Cha1 ,

𝑏𝒜 ≔ 𝑐 ←𝒜(𝑐)

] ����� = 0.

However, if we consider a different challenger Cha′0 that this time always outputs
0 the advantage of the same adversary would then be 1/2, because now it only
outputs 1 when the challenger is Cha1 and

��0 − 1/2
�� = 1/2.

Adv′
IND(Cha′0 ,Cha1)

(𝒜) =
�����Pr

[
𝑏𝒜 = 1

����� 𝑐 ≔ 0← Cha′0 ,
𝑏𝒜 ≔ 𝑐 ←𝒜(𝑐)

]
−Pr

[
𝑏𝒜 = 1

����� 𝑐 ←r Cha1 ,

𝑏𝒜 ≔ 𝑐 ←𝒜(𝑐)

] ����� = 1/2.

Notice we can see Cha′0 as a challenger that uses the uniform distribution 𝐶0

from Cha0 but conditioned to the event 𝐸 given by 𝑐0 = 0. The difference of the
advantages is precisely Pr

[
𝐸
]
= 1/2.

It is also interesting to analyze what happens when we define this same game
considering the advantage definition compared to a random guess, which is again



68 1.4. Probability Preliminaries

identically 0 because 𝑏𝒜 is independent of 𝑏.

Adv
IND(Cha0 ,Cha1)

(𝒜) =

���������Pr


𝑏𝒜 = 𝑏

���������
𝑐0 ←r Cha0 ,

𝑐1 ←r Cha1 ,

𝑏 ←r {0, 1},
𝑏𝒜 ≔ 𝑐𝑏 ←𝒜(𝑐𝑏)


− 1/2

��������� =
��1/2 − 1/2

�� = 0.

Now the advantage distinguishing Cha′0 and Cha1 would be 1/4, because the
adversary would always guess Cha′0 correctly and would also guess Cha1 half the
time, for a total success probability of 3/4 which is 1/4 above a random guess.

Adv
IND(Cha′0 ,Cha1)

(𝒜) =

���������Pr


𝑏𝒜 = 𝑏

���������
𝑐0 ≔ 0← Cha′0 ,
𝑐1 ←r Cha1 ,

𝑏 ←r {0, 1},
𝑏𝒜 ≔ 𝑐𝑏 ←𝒜(𝑐𝑏)


− 1/2

��������� =
��3/4 − 1/2

�� = 1/4.

We can consider again that this scenario is equivalent to the previous one but
conditioning 𝐶0 to be 0, so this time the advantage would be 1/2 Pr

[
𝐸
]
, which is

consistent with Adv(𝒜) = 1/2 Adv′(𝒜) as seen in Lemma 1.47. However, provided
that the output of Cha′0 does not have any effect if 𝑏 = 1 we can also see this game
as an instance of the previous one conditioned by the event 𝐸′ given by 𝑐0 = 0 or
𝑏 = 1. The probability of 𝐸′ is 3/4, so the advantage now would be equal to Pr

[
𝐸
′]
,

satisfying the equality.
These subtleties mean that we have to be very careful defining the events and

the probability spaces, so we can always use the tightest bound to obtain the best
reductions possible.

1.4.4 Multidimensional Gaussians

As we have been mentioning the hardness of lattice problems is well understood for
discrete Gaussians 𝐷𝜎, but the schemes need bounded distributions, as truncated
Gaussians 𝐷𝜎,𝐵. An important question is then how to bound the probability of
the tails, considering that we are usually sampling errors 𝒆 ∈ 𝑅𝑚𝑞 from truncated
multidimensional Gaussians 𝒆 ←r (𝐷𝑛

𝜎,𝐵)𝑚 . We then consider the distribution
𝒆 ←r 𝐷

𝑑
𝜎,𝐵 with 𝑑 ≔ 𝑛 · 𝑚.

Let Pr𝑒←r𝐷𝜎

[
| 𝑒 | > 𝐵

]
≤ 2−𝑎 , we can then discuss how likely is that a tuple of

independent samples is also bounded.
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We have that

Pr
𝑒←r𝐷𝜎

[
| 𝑒 | > 𝐵

]
≤ 2−𝑎 ,

Pr
𝑒←r𝐷𝜎

[
| 𝑒 | ≤ 𝐵

]
≥ 1 − 2−𝑎 .

Then,

Pr
𝑒𝑖←r𝐷𝜎

[
| 𝑒𝑖 | ≤ 𝐵

�� ∀𝑖 ∈ {1, . . . , 𝑑}] ≥ (1 − 2−𝑎)𝑑 ,

Pr
𝒆←r𝐷

𝑑
𝜎

[
∥𝒆∥∞ > 𝐵

]
≤ 1 − (1 − 2−𝑎)𝑑 .

We would like to find the 𝑏 such that 1 − (1 − 2−𝑎)𝑑 = 2−𝑏 .

−𝑏 = log(1 − (1 − 2−𝑎)𝑑)
𝑏 = − log(1 − (1 − 2−𝑎)𝑑)

𝑏 = − log

(
1 −

𝑑∑
𝑖=0
(−1)𝑖

(
𝑑

𝑖

)
2−𝑎𝑖

)
𝑏 = − log

(
−

𝑑∑
𝑖=1
(−1)𝑖

(
𝑑

𝑖

)
2−𝑎𝑖

)
We expand the binomial power because it allows us to remove one of the steps

where rounding errors could be produced, subtracting something close to 1 from 1.
Observe inside the logarithm we are adding negative powers of 2 that decrease

really fast. If we keep only the first term we get a very reasonable approximation.

𝑏 ≈ − log(𝑑 · 2−𝑎) = 𝑎 − log(𝑑)

Depending on what we want to obtain it could be sufficient to get an inequality.
Observe that the approximation we have obtained is indeed a lower bound for 𝑏, and
therefore 2−(𝑎−log(𝑑)) ≥ 2−𝑏 , as it corresponds to bounding the probability of some of
the components being greater than 𝐵 by the addition of the probabilities for each of
them, computing

∑𝑑
𝑖=1 2−𝑎 = 2−(𝑎−log2(𝑑)) ≥ 2−𝑏 .

We can also obtain this bound profiting from the fact that the statistical distance
satisfies the triangular inequality. We could then build a chain of inequalities using
consecutive distributions that start from𝐷𝑑

𝜎 and end up with𝐷𝑑
𝜎,𝐵 by truncating each

time the tails from one dimension. Δ(𝐷𝑑
𝜎 , 𝐷

𝑑
𝜎,𝐵) ≤ 𝑑Δ(𝐷𝜎 , 𝐷𝜎,𝐵) ≤ 𝑑2−𝑎 = 2−(𝑎−log(𝑑)).

Proposition 1.60 (Multidimensional Gaussian tails).
If Pr𝑒←𝐷𝜎

[
|𝑒 | > 𝐵

]
≤ 2−𝑎 then Δ(𝐷𝑑

𝜎 , 𝐷
𝑑
𝜎,𝐵) ≤ 2−(𝑎−log(𝑑)).
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Observation 1.61. We have already proved this proposition from a probabilistic
point of view and applying properties of the statistical distance, but it is worth
mentioning that this result is equivalent to Bernoulli’s inequality (we will later
introduce it in Proposition 4.10).

We finally reproduce here the influential lemma from Lyubashevsky’s [77].

Lemma 1.62 (Lemma 4.4 from [77]).
For any 𝑘 > 0 we have that Pr

[
| 𝑧 | > 𝑘𝜎

�� 𝑧 ←r 𝐷𝜎
]
≤ 2 exp(−𝑘2/2).

Auxiliary Functions

To simplify coming proofs we make use of the recent propositions to define several
auxiliary functions practical for defining parameters and checking security properties.

We think this is a useful summary. In each of these propositions the relevant
points are the direction of the inequalities and whether the results that we obtain
are the smaller or the larger for which we can ensure the considered property.

Proposition 1.63 (boundedPr). The function boundedPr, defined as follows, outputs the
greater 𝑎 for which we can guarantee that the probability of a sample from 𝐷𝜎 not belonging
to [−𝐵, 𝐵] is lower or equal than 2−𝑎 .

boundedPr(𝜎, 𝐵) ≔ max
{
0, 𝐵

2

2𝜎2 log(𝑒) − 1
}
.

Proof. Directly comes from Lemma 1.62 (Lemma 4.4 in [77]). □

Proposition 1.64 (vecBoundedPrFromBoundedPr). The function vecBoundedPrFrom-
BoundedPr, defined as follows, outputs the greater 𝑏 for which we can ensure that the
sub-infinity norm of a vector of dimension 𝑑 not being bounded by a certain bound has a
probability smaller or equal to 2−𝑏 if a single sample has a probability smaller or equal to 2−𝑎

of not being within that bound.

vecBoundedPrFromBoundedPr(𝑎, 𝑑) ≔ max
{
𝑎 − log(𝑑), 0

}
.

Proof. Direct, iteratively applying the triangular inequality to bound the statistical
distance (using Proposition 1.60), as we have discussed before. We have only been
able to obtain inequalities, so the actual probability would be smaller, but this is
what we can guarantee. □

Proposition 1.65 (vecBoundedPrToBoundedPr). The function vecBoundedPrToBound-
edPr, defined as follows, outputs the smaller 𝑎 for which we can ensure that all independently
sampled elements of a vector of dimension 𝑑 satisfy some condition except with probability
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smaller or equal than 2−𝑏 if a single sample satisfies it except with probability smaller or
equal than 2−𝑎 .

vecBoundedPrToBoundedPr(𝑏, 𝑑) ≔ 𝑏 + log(𝑑).

Proof. Can be deduced too from Proposition 1.60. □

Proposition 1.66 (sigmaFromB). The function sigmaFromB outputs the greater parameter
𝜎 for which we can ensure that a sample from 𝐷𝜎 only surpasses the bound 𝐵 with a
probability smaller or equal than 2−𝑎 .

sigmaFromB(𝑎, 𝐵) ≔ 𝐵

√
log(𝑒)

2(𝑎 + 1) .

Proof. Can be deduced from Lemma 1.62 (Lemma 4.4 in [77]) again. □

Observation 1.67. With these auxiliary functions we have been considering a
symmetric scenario discussing whether samples belong or not to the interval [−𝐵, 𝐵].
However, to ensure the small elements can be characterized solely from the length
of its bit decomposition we require the interval to be [−2𝜅 , 2𝜅) for some 𝜅 ∈ Z≥0.

For that reason we just use 𝐵 = 2𝜅 − 1, as [−2𝜅 + 1, 2𝜅 − 1] ⊂ [−2𝜅 , 2𝜅). This
means the bounds that we use are not the tightest ones we could obtain, but the
tests we have conducted with real instantiations of the schemes that are going to
be presented in the following chapters show no perceptible difference on the final
parameters from using this much more simple symmetrical inequalities.

1.5 Contributions

The first contribution, presented in Chapter 2, is a complete analysis of the necessary
and sufficient conditions that we need to be able to efficiently multiply polynomials
in the particular quotient rings of interest for lattice-based cryptography, i.e. 𝑅𝑞 =
Z𝑞[𝑥]/⟨𝑥𝑛 + 1⟩ with 𝑞 an odd prime number and 𝑛 a power of two. Fast Fourier
multiplication is a well-known technique for efficient multiplication of polynomials,
but cannot always be used.

The Fast Fourier Transform (FFT) approach can be generalized to more general
situations,with the so-calledpartial FFTmultiplication algorithm, andweparticularly
study when partial FFT can be applied to general rings 𝑅𝑚 = Z[𝑥]/⟨𝑥𝑛 − 𝑎⟩ with 𝑚
and 𝑎 arbitrary positive integers. This techniques are extensively used in lattice-based
cryptographic implementations, but many of the conditions are vaguely defined in
the literature, or the algorithm is described only as a set of rules for a particular case
without any further explanation, so we believe a rigorous theoretical analysis as the
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one presented in Chapter 2 would be of interest for the lattice-based cryptographic
community. The results presented in this chapter are under review for publication
at the time of deposit of this dissertation, and a preprint version is available at [88].

The main contribution of this dissertation is split between Chapters 3 and 4. We
present new and more efficient Stern-based ZKPoKs, and apply them defining a
new lattice-based commitment scheme providing protocols to prove knowledge
of valid openings of given commitments and to prove that the openings of three
commitments satisfy linear or multiplicative relations.

The commitment scheme and the interactive proofs are presented in Chapter 3,
proving that the commitment and the proofs are secure provided a set of conditions
is satisfied. A previous version of the commitment and the interactive proofs were
presented at the 17th IMA International Conference on Cryptography and Coding,
celebrated in Oxford in 2019 [87].

Finally, in Chapter 4 we see how to transform the interactive proof into NIZKPoKs
via the Fiat-Shamir transform, and study its security. We implement both the
commitment and the NIZKPoKs, describe how to obtain optimal sets of secure
parameters and benchmark the performance of the prototype implementation. The
implementation has been a joint work with Sergi Rovira, and the details about it,
together with the NIZKPoKs and the security analysis of the instantiations are also
currently under review for publication. A preprint version is available at [89].



Chapter 2

Partial FFT Multiplication

One of the main advantages of lattice-based cryptography is that, computationally
speaking, every computation is fairly simple (perhaps excluding Gaussian sampling).
Regular lattices only require linear operations as matrix-vector products, with
polynomially large elements, and ideal-lattices only add polynomial products,
allowing evenmore efficient implementations. This makes some lattice constructions
good candidates for lightweight cryptography, designed to be executed in resource-
constrained hardware, for example with Internet of Things devices [71].

For this reason, having efficient multiplication algorithms for the quotient ring
of polynomials Z𝑚[𝑥]/⟨𝑥𝑛 − 𝑎⟩, with 𝑛 a power of 2 and 𝑚 a non necessarily prime
integer, is of great importance. The most efficient algorithm known involves the FFT
when 𝑚 is a prime (and then usually denoted as 𝑞) and 𝑎 is −1, such that 𝑥𝑛 + 1 fully
splits in linear factors modulo 𝑞. Through this chapter we systematize the existing
knowledge and meticulously study the necessary and/or sufficient conditions
required for the applicability of these multiplication algorithms. This work allows
us to unify the different approaches to the problem of efficiently computing the
product of two polynomials in these quotient rings and formally generalize existing
algorithms to partially splitting rings where 𝑥𝑛 + 1 does not fully split in linear
factors.

2.1 Introduction

Constructing efficient multiplication algorithms for polynomials with coefficients in
a ring 𝑅, through this chapter we denote by 𝑅 the arbitrary ring of the coefficients
(and not the ring of polynomials itself), has been an extensive research area. Given
two polynomials 𝑔(𝑥), ℎ(𝑥) ∈ 𝑅[𝑥] of degree bounded by 𝑛, 𝑔(𝑥) = ∑𝑛−1

𝑖=0 𝑔𝑖𝑥
𝑖 and

ℎ(𝑥) = ∑𝑛−1
𝑖=0 ℎ𝑖𝑥

𝑖 , computing its product in a naïve way (known as the schoolbook
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multiplication algorithm),

(𝑔 · ℎ)(𝑥) =
𝑛−1∑
𝑖=0

𝑛−1∑
𝑗=0

(
𝑔𝑖 · ℎ 𝑗

)
𝑥 𝑖+𝑗 ,

requires a quadratic number, 𝑛2, of multiplications of elements from the ring 𝑅.

𝑥6 𝑥5 𝑥4 𝑔3𝑥
3 + 𝑔2𝑥

2 + 𝑔1𝑥 + 𝑔0

𝑥6 𝑥5 𝑥4 × ℎ3𝑥
3 + ℎ2𝑥

2 + ℎ1𝑥 + ℎ0

𝑥6 𝑥5 𝑥4 𝑔3 · ℎ0𝑥
3 + 𝑔2 · ℎ0𝑥

2 + 𝑔1 · ℎ0𝑥 + 𝑔0 · ℎ0

𝑥6 𝑥5 𝑔3 · ℎ1𝑥
4 + 𝑔2 · ℎ1𝑥

3 + 𝑔1 · ℎ1𝑥
2 + 𝑔0 · ℎ1𝑥

𝑥6 𝑔3 · ℎ2𝑥
5 + 𝑔2 · ℎ2𝑥

4 + 𝑔1 · ℎ2𝑥
3 + 𝑔0 · ℎ2𝑥

2 𝑥

𝑔3 · ℎ3𝑥
6 + 𝑔2 · ℎ3𝑥

5 + 𝑔1 · ℎ3𝑥
4 + 𝑔0 · ℎ3𝑥

3 𝑥2 𝑥∑
i+j=6

𝑔𝑖ℎ 𝑗𝑥
6 +∑

i+j=5

𝑔𝑖ℎ 𝑗𝑥
5 +∑

i+j=4

𝑔𝑖ℎ 𝑗𝑥
4 +∑

i+j=3

𝑔𝑖ℎ 𝑗𝑥
3 +∑

i+j=2

𝑔𝑖ℎ 𝑗𝑥
2 +∑

i+j=1

𝑔𝑖ℎ 𝑗𝑥 + 𝑔0ℎ0

If we now want to work in a ring 𝑅[𝑥]/⟨ 𝑓 (𝑥)⟩ the schoolbook multiplication
algorithm would perform the same amount of operations taking into account that at
the end we might perform a reduction.

For the particular cases 𝑓 (𝑥) = 𝑥𝑛 ± 1 it is clear that the algorithm performs the
same number of operations, as we just need to multiply by ∓1 all 𝑖th coefficients
from 𝑛 to 2𝑛 − 2 and add them to their corresponding 𝑖 − 𝑛 column.

The goal of this chapter is to formalize and unify some concepts used to build
more efficient multiplication algorithms focusing on the ring 𝑅[𝑥] = Z𝑚[𝑥] and then
on its quotient Z𝑚[𝑥]/⟨𝑥𝑛 + 1⟩, with 𝑛 a power of 2 and 𝑚 non necessarily prime
(although sometimes we would also consider 𝑥𝑛 − 1 or in general 𝑥𝑛 − 𝑎).

We choose to study optimizations for this particular ring as it is widely used by
cryptographic constructions that base their security on ideal lattices [83], that can be
identified with ideals in Z𝑚[𝑥]/⟨𝑥𝑛 + 1⟩ (as we have seen in Section 1.3, restricting
ourselves to the particular case of a prime modulus, but lattice problems can also be
defined with non-prime modulus).

Most of the literature usually deals with this matter by providing a set of recipes
that can be applied for some specific particular rings (considering whether 𝑚 is
prime or not or how does 𝑥𝑛 − 𝑎 split modulo 𝑚), without specifying if the imposed
conditions in these recipes are necessary or only sufficient. This lack of detail
might make more difficult the applicability of such recipes. Through this chapter
we instead analyze what are the fundamental properties that allow us to obtain a
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computational speedup from a comprehensive and mathematical point of view, so
that the reader can apprehend these techniques and distinguish intrinsic properties
from superfluous conventions.

Therefore, the analysis presented in this chapter will help the reader to avoid
confusions when using multiplication algorithms for polynomials in quotient rings
as Z𝑚[𝑥]/⟨𝑥𝑛 + 1⟩.

Many of the ideas developed in this chapter are folklore when working on
other rings such as C[𝑥] or Z𝑞[𝑥]with 𝑞 a prime satisfying certain conditions, but
an exhaustive analysis might be very helpful to analyze when these ideas can be,
completely or partially, generalized to our ring of interest and why the required
conditions for the underlying ring are indeed necessary or just sufficient.

2.1.1 Polynomial Multiplication Related Work

Karatsuba Multiplication Algorithm

The first subquadratic multiplication algorithm was designed by Karatsuba in [67],
with a cost of O(

𝑛log 3) derived from a clever divide and conquer strategy. We
include it here as our approach uses Karatsuba’s algorithm as a subroutine.

Let 𝑔(𝑥) and ℎ(𝑥) be two polynomials of degree strictly smaller than 𝑛 (a power
of two). We can split these polynomials into upper and lower degree polynomials
as 𝑔(𝑥) = 𝑔𝑈 (𝑥)𝑥𝑛/2 + 𝑔𝐿(𝑥) and ℎ(𝑥) = ℎ𝑈 (𝑥)𝑥𝑛/2 + ℎ𝐿(𝑥)where 𝑔𝐿 , 𝑔𝑈 , ℎ𝐿 , ℎ𝑈 have
all degree smaller than 𝑛/2.

A naïve computation would be

𝑔(𝑥) · ℎ(𝑥) = (𝑔𝑈 (𝑥)𝑥𝑛/2 + 𝑔𝐿(𝑥))(ℎ𝑈 (𝑥)𝑥𝑛/2 + ℎ𝐿(𝑥))
= (𝑔𝑈 (𝑥) · ℎ𝑈 (𝑥)) 𝑥𝑛

+ (𝑔𝑈 (𝑥) · ℎ𝐿(𝑥) + 𝑔𝐿(𝑥) · ℎ𝑈 (𝑥)) 𝑥𝑛/2

+ 𝑔𝐿(𝑥) · ℎ𝐿(𝑥).

Thatwaywedivide the fullmultiplication into fourmultiplications of polynomials
of size 𝑛/2. One can see however that this does not improve the efficiency of the
computation. Let 𝑇(𝑛) be the number of operations required for computing the
product using this method. The recurrence obtained, 𝑇(𝑛) = 4𝑇(𝑛/2) +O(

𝑛
)
,

implies (via the Master Theorem for divide-and-conquer recurrences [20]) that
𝑇(𝑛) = O(

𝑛2) .
Karatsuba’s gifted idea was to notice that the crossed terms can be obtained from

the other terms and a single multiplication of 𝑛/2-polynomials. That is, we can write
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the term (𝑔𝑈 (𝑥) · ℎ𝐿(𝑥) + 𝑔𝐿(𝑥) · ℎ𝑈 (𝑥)) as

(𝑔𝐿(𝑥) + 𝑔𝑈 (𝑥))(ℎ𝐿(𝑥) + ℎ𝑈 (𝑥)) − (𝑔𝑈 (𝑥) · ℎ𝑈 (𝑥)) − (𝑔𝐿(𝑥) · ℎ𝐿(𝑥)) .

Notice how the recurrence now computes only 3 products of half size and a linear
amount of operations (𝑇(𝑛) = 3𝑇(𝑛/2) +O(

𝑛
)
), providing the desired sublinear

running time of 𝑇(𝑛) = O(
𝑛log 3) (solving again the recurrence with the Master

Theorem for divide-and-conquer recurrences [20]).

Algorithm 2.1 Karatsuba
Input: Two polynomials 𝑔(𝑥) and ℎ(𝑥) of degree bounded by 𝑛
Output: Product of 𝑔(𝑥) · ℎ(𝑥)

1: if n = 1 then return 𝑔 · ℎ

Split 𝑔(𝑥) and ℎ(𝑥) into 𝑔𝐿(𝑥), 𝑔𝑈 (𝑥), ℎ𝐿(𝑥), ℎ𝑈 (𝑥).
2: 𝑎(𝑥) ≔ Karatsuba(𝑔𝑈 (𝑥), ℎ𝑈 (𝑥))
3: 𝑏(𝑥) ≔ Karatsuba(𝑔𝐿(𝑥), ℎ𝐿(𝑥))
4: 𝑐(𝑥) ≔ Karatsuba(𝑔𝐿(𝑥) + 𝑔𝑈 (𝑥), ℎ𝐿(𝑥) + ℎ𝑈 (𝑥))
5: return 𝑎(𝑥)𝑥𝑛 + (𝑐(𝑥) − 𝑎(𝑥) − 𝑏(𝑥))𝑥𝑛/2 + 𝑏(𝑥)

Karatsuba Multiplication Algorithm mod 𝑓 (𝑥)

However, notice this is not the most natural way of writing this recursion when
working modulo 𝑥𝑛 ± 1 as all recursive calls work the same way but the last one,
where a reduction has to be performed.

Alternatively we can split 𝑔(𝑥) = 𝑔1(𝑥2)𝑥 + 𝑔0(𝑥2), with 𝑔0 containing the even
coefficients and 𝑔1 containing the odd ones. This allows us to think of 𝑔(𝑥) ∈ 𝑅[𝑥]
of degree smaller than 𝑛 as 𝑔(𝑥, 𝑦) = 𝑔0(𝑦) + 𝑔1(𝑦)𝑥 ∈ 𝑅[𝑥, 𝑦] of 𝑥-degree 1 and
𝑦-degree smaller than 𝑛/2. It is called Dual Karatsuba and the idea remains the same:

𝑔(𝑥) · ℎ(𝑥) = (𝑔1(𝑥2)𝑥 + 𝑔0(𝑥2))(ℎ1(𝑥2)𝑥 + ℎ0(𝑥2))

=

(
𝑔1(𝑥2) · ℎ1(𝑥2)

)
𝑥2

+
(
𝑔1(𝑥2) · ℎ0(𝑥2) + 𝑔0(𝑥2) · ℎ1(𝑥2)

)
𝑥

+ 𝑔0(𝑥2) · ℎ0(𝑥2)

And analogously as we did before we can write the second term with only one
additional multiplication.

(
𝑔1(𝑥2) · ℎ0(𝑥2) + 𝑔0(𝑥2) · ℎ1(𝑥2)

)
is((

𝑔1(𝑥2) + 𝑔0(𝑥2)
)
·
(
ℎ1(𝑥2) + ℎ0(𝑥2)

)
− 𝑔1(𝑥2) · ℎ1(𝑥2) − 𝑔0(𝑥2) · ℎ0(𝑥2)

)
.
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Now the reduction modulo 𝑥𝑛 ± 1 works at each level of the recursive algorithm,
as �̂�(𝑦) · ℎ̂(𝑦) (mod 𝑦𝑛/2 ± 1) is equivalent to �̂�(𝑥2) · ℎ̂(𝑥2) (mod 𝑥𝑛 ± 1) once we
change variables again. We obtain no computational advantage, but it allows us to
understand it from a different perspective.

Algorithm 2.2 Karatsuba (mod 𝑥𝑛 ± 1)
Input: Two polynomials 𝑔(𝑥) and ℎ(𝑥) of degree bounded by 𝑛
Output: Product of 𝑔(𝑥) · ℎ(𝑥)

1: if n = 1 then return 𝑔 · ℎ

Split 𝑔(𝑥) and ℎ(𝑥) into 𝑔0(𝑥), 𝑔1(𝑥), ℎ0(𝑥), ℎ1(𝑥).
2: 𝑎(𝑦) ≔ Karatsuba(𝑔1(𝑦), ℎ1(𝑦))
3: 𝑏(𝑦) ≔ Karatsuba(𝑔0(𝑦), ℎ0(𝑦))
4: 𝑐(𝑦) ≔ Karatsuba(𝑔0(𝑦) + 𝑔1(𝑦), ℎ0(𝑦) + ℎ1(𝑦))
5: return 𝑎(𝑥2)𝑥2 + (𝑐(𝑥2) − 𝑎(𝑥2) − 𝑏(𝑥2))𝑥 + 𝑏(𝑥2) (mod 𝑥𝑛 ± 1)

Notice 𝑔0(𝑦) + 𝑔1(𝑦) ≡ 𝑔(𝑥, 𝑦) mod 𝑥 − 1 and 𝑔0(𝑦) ≡ 𝑔(𝑥, 𝑦) mod 𝑥. These
ideas are considered in [22] in order to see all these tools as part of the same
framework.

Faster Multiplication Algorithms

Even faster algorithms can be obtained from more clever recurrences. For example
mapping the polynomials into a different domain in a recursive way where they
can be efficiently multiplied in linear time. If the recursion works computing two
transforms of half the size, 𝑇(𝑛) = 2𝑇(𝑛/2) +O(

𝑛
)
, then the final computational

complexity is O(
𝑛 log 𝑛

)
.

Through this work we are going to focus and systematically explore the multipli-
cation algorithms derived from the FFT paradigm, that is going to be extensively
described in the following sections. This approach is usually referred as Number
Theoretic Transformation (NTT) when working with finite fields.

The main idea of the FFT recurrence is attributed to Gauss and was fully
developed by Cooley and Tukey in its seminal work [42], considering the ring of
complex numbers.

Many variants have been developed since then, generalizing [42] to non-power of
two bounded degree polynomials or providing additional tricks and interpretations
fromwhichwebenefit, such as [53]. An extensive andmagnificentlywell documented
survey can be found in [22].

Most of the work has focused on the particular case of multiplications in
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Z𝑞[𝑥]/⟨𝑥𝑛 + 1⟩ when 𝑞 is prime and 𝑥𝑛 + 1 fully splits in linear factors. That has
been studied for a while, both from a software [79] and hardware [99] point of view.

We are particularly interested in the ideas presented in [86], as they specifically
discuss multiplications of polynomials in Z𝑞[𝑥]/⟨𝑥𝑛 + 1⟩ when 𝑥𝑛 + 1 does not fully
split in linear factors (a situation that happens in some lattice-based cryptographic
schemes such as some commitment schemes [17], and that is the case of the proposals
we are going to present in the following chapters) and the standard FFT can only be
partially applied. However, [86] only considers the case with a prime 𝑞 and briefly
describes the procedure.

This technique of partially applying an FFT is sometimes called incomplete
NTT [40] and usually interpreted like a Chinese Remainder Transform, as in [85] doing
Fast Chinese remaindering [121].

However, most of the literature only provides some sufficient conditions that
allow some particular implementation or specific abstraction of a fast multiplication
algorithm that are not directly generalizable.

In spite of that we present a more general framework for multiplications in
Z𝑚[𝑥]/⟨𝑥𝑛 + 1⟩ that would allow the reader to comprehend why some folklore as-
sumptions are indeed necessary andwhy some others are not, from amathematically
rigorous, yet accessible for readers not familiarized with algebraic constructions,
point of view.

2.1.2 Conventions

Since our goal is to work in 𝑅[𝑥]/⟨ 𝑓 (𝑥)⟩, with 𝑓 a monic polynomial, we choose as a
representative for 𝑔(𝑥) ∈ 𝑅[𝑥]/⟨ 𝑓 (𝑥)⟩ its remainder when divided by 𝑓 (𝑥), denoted
by 𝑔(𝑥) rem 𝑓 (𝑥).

We borrow most of our notation from [22], and present some new definitions
through Sections 2.3 and 2.4, that we believe are of independent interest.

2.2 Pointwise Product

The main idea behind any FFT multiplication technique is to compute the product
of two polynomials via the pointwise product of their evaluations on certain points
of the ring 𝑅.

It is straightforward by the definition of the product of polynomials that, given a
point 𝑥0 ∈ 𝑅, the evaluation of the product is equal to the product of the evaluations
(𝑔 · ℎ)(𝑥0) = 𝑔(𝑥0) · ℎ(𝑥0).

This way, we intend to compute enough evaluations (we denote this transform
as 𝑇), then we could perform a pointwise product (denoted by ⊙) of the evaluations
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and finally, if possible, interpolate back (𝑇−1) the polynomial.

(𝑅[𝑥])2 ⊙◦𝑇−−−→ 𝑅𝑘
𝑇−1
−−→ 𝑅[𝑥]

(𝑔(𝑥), ℎ(𝑥)) ↦→

©«
𝑔(𝑥0)
𝑔(𝑥1)
...

𝑔(𝑥𝑘−1)

ª®®®®®®¬
⊙

©«
ℎ(𝑥0)
ℎ(𝑥1)
...

ℎ(𝑥𝑘−1)

ª®®®®®®¬
↦→ (𝑔 · ℎ)(𝑥)

In the following sections we will explore what possibilities do we have for 𝑅, 𝑘
and 𝑥0 , 𝑥1 , . . . , 𝑥𝑘−1 so that 𝑇−1 is well-defined and both 𝑇 and 𝑇−1 are efficiently
computable. We are going to characterize the necessary and sufficient conditions
the evaluation points have to satisfy to be able to perform these operations.

2.2.1 General Invertibility of 𝑇

To deal with the invertibility of transform 𝑇 when applied to polynomials of degree
bounded by 𝑛 we notice it is a linear mapping and characterize it by its associated
matrix

𝑉 =

©«
1 𝑥0 𝑥0

2 · · · 𝑥0
𝑛−1

1 𝑥1 𝑥1
2 · · · 𝑥1

𝑛−1

...
...

...
. . .

...

1 𝑥𝑘−1 𝑥𝑘−1
2 · · · 𝑥𝑘−1

𝑛−1

ª®®®®®®¬
.

This special matrix is known as a Vandermonde matrix. If we choose 𝑘 = 𝑛 we
have a square Vandermonde matrix, and we can discuss its invertibility.

Since we are working with a general commutative ring with unity 𝑅, a matrix
is invertible if and only if its determinant is invertible [118]. The determinant of a
Vandermonde matrix is easy to compute and has the form

det(𝑉) =
∏

0≤𝑖< 𝑗<𝑛
(𝑥 𝑗 − 𝑥𝑖).

Now if 𝑅 is a field it is just sufficient to choose 𝑛 different evaluation points
𝑥0 , . . . , 𝑥𝑛−1.

If 𝑅 is only a commutative ring then it is a necessary and sufficient condition to
choose points such that their differences are invertible in 𝑅.

Condition 1 (Points with invertible differences). We say a set of points satisfies
Condition 1 if the difference of every pair is invertible in 𝑅.
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Remark 2.1. Choosing 𝑛 evaluation points with invertible differences in 𝑅 is a
necessary and sufficient condition for the transform 𝑇 to be invertible in 𝑅[𝑥].

Notice howwe are talking about transforming and anti-transforming polynomials
of a certain degree. Given two polynomials 𝑔(𝑥) and ℎ(𝑥) of degrees 𝑛 and 𝑛′, since
we want to recover the polynomial 𝑔(𝑥) · ℎ(𝑥), we would have to think them as
polynomials of degree smaller or equal than 𝑛 + 𝑛′ and use (𝑛 + 𝑛′ + 1) × (𝑛 + 𝑛′ + 1)
Vandermonde matrices.

2.2.2 Pointwise Product of Evaluations Modulo 𝑓 (𝑥)

Given 𝑎 ∈ 𝑅* we can always consider polynomials in 𝑅[𝑥]/⟨𝑥𝑛 − 𝑎⟩ as polynomials
in 𝑅[𝑥] with degree strictly bounded by 𝑛 (using the canonical representative rem),
compute, as we said before, their product as a polynomial in 𝑅[𝑥]with degree strictly
bounded by 2𝑛 via a 2𝑛-transform and then applying rem 𝑥𝑛 − 𝑎 again to obtain
the representative with degree smaller than 𝑛.

The main issue we face when trying to use the pointwise product of evaluations
technique to compute the product of two polynomials modulo 𝑓 (𝑥) is that evaluation
is not well-defined in general as it depends on the representative we choose from
the class of equivalence modulo 𝑓 (𝑥).

In general, for an arbitrary 𝑥0, it is not the same to compute the product
(𝑔(𝑥) rem 𝑓 (𝑥))(𝑥0) · (ℎ(𝑥) rem 𝑓 (𝑥))(𝑥0) than (𝑔(𝑥) · ℎ(𝑥) rem 𝑓 (𝑥))(𝑥0).

For this reason we have to choose specific points where evaluation is compatible
with the congruence classes. If 𝛼 is such that for any two equivalent polynomials
𝑔(𝑥) ≡ �̂�(𝑥) (mod 𝑓 (𝑥)) we obtain 𝑔(𝛼) = �̂�(𝛼) then we necessarily have 𝑓 (𝛼) = 0
and 𝛼 has to be a root of 𝑓 (𝑥).

*One can see that in the special cases 𝑎 = ±1 we have that the product in 𝑅[𝑥]/⟨𝑥𝑛 − 1⟩ and
𝑅[𝑥]/⟨𝑥𝑛 + 1⟩ is usually described in the literature as a cyclic/anti-cyclic convolution (denoted by ∗).

(𝑔 · ℎ)(𝑥) (rem 𝑥𝑛 − 1) = 𝑔(𝑥) · ℎ(𝑥) (rem 𝑥𝑛 − 1)

=

(
𝑛−1∑
𝑖=0

𝑔𝑖𝑥
𝑖

) ©«
𝑛−1∑
𝑗=0

ℎ 𝑗𝑥
𝑗ª®¬ (rem 𝑥𝑛 − 1)

=

𝑛−1∑
𝑘=0

©«
∑
𝑖 , 𝑗

𝑖+𝑗≡𝑘
mod 𝑛

𝑔𝑖 · ℎ 𝑗

ª®®®®®®¬
𝑥𝑘

= (𝑔 ∗ ℎ)(𝑥)

This intuition might be of independent interest as a convolution product in the regular domain is a
pointwise product in the transformed domain.
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Let 𝛼 be a root of 𝑓 (𝑥). Then 𝑔(𝑥) ≡ �̂�(𝑥) (mod 𝑓 (𝑥)) implies 𝑔(𝛼) = �̂�(𝛼) and
therefore

(𝑔(𝑥) rem 𝑓 (𝑥))(𝛼) · (ℎ(𝑥) rem 𝑓 (𝑥))(𝛼) = (𝑔(𝑥) · ℎ(𝑥) rem 𝑓 (𝑥))(𝛼).

In conclusion, for the particular case with 𝑓 (𝑥) = 𝑥𝑛 − 𝑎, where 𝑎 ∈ 𝑅, 𝛼 has to
be an 𝑛th root of 𝑎. By choosing 𝛼0 , . . . , 𝛼𝑛−1 different 𝑛th roots of 𝑎 with invertible
differences we would be able to directly recover 𝑔(𝑥) · ℎ(𝑥) rem𝑥𝑛 − 𝑎 from the
pointwise product of their evaluations in 𝛼0 , . . . , 𝛼𝑛−1.

This reduces the number of computations needed, since only 𝑛 evaluation points
are required (we directly recover the canonical representative 𝑔(𝑥) · ℎ(𝑥) rem 𝑥𝑛 − 𝑎,
which has a degree bounded by 𝑛), and no further reduction is needed.

Condition 2 (Roots of 𝑓 (𝑥) as points). We say a set of points in 𝑅 for a polynomial in
𝑅[𝑥]/⟨ 𝑓 (𝑥)⟩ satisfies Condition 2 if they are roots of 𝑓 (𝑥).

Remark 2.2. Choosing 𝑛th roots of 𝑎 as evaluation points is a necessary and sufficient
condition for the evaluations of polynomials in 𝑅[𝑥]/⟨𝑥𝑛 − 𝑎⟩ to be well-defined. We
are going to consider this case.

So far Conditions 1 and 2 are necessary and sufficient conditions to use the
pointwise product of evaluations as a technique to compute the product of two
polynomials in 𝑅[𝑥]/⟨𝑥𝑛 − 𝑎⟩. The next step is to study when can this be computed
efficiently.

2.3 Efficient Transforms

In this sectionweare going todefine efficient transformandanti-transformalgorithms
from a theoretical and asymptotic point of view. Additional implementation tricks
or approaches (for example, whether the recurrences are solved in an iterative or
recursive way) could have an important impact to save up space or computations,
but are out of the scope of this dissertation.

2.3.1 Efficient Evaluation of 𝑇

Once we have seen the requirements for the pointwise product of evaluations to work
under each possible concerned circumstances we have to discuss how to efficiently
apply them.

Computing each of the 𝑛 evaluations individuallywould requireO(
𝑛
)
operations,

for a total of O(
𝑛2) . The Fast Fourier approach outperforms that computing the 𝑛

evaluations at the same time by means of a divide-and-conquer recursive strategy.
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If we call 𝑥𝑖 to one of the evaluation points, and we decompose the polynomial
𝑔(𝑥) into two polynomials 𝑔0(𝑥) and 𝑔1(𝑥) of half the size with even and odd
coefficients respectively, as in Dual Karatsuba, we can write

𝑔(𝑥𝑖) = 𝑔0(𝑥2
𝑖 ) + 𝑥𝑖 · 𝑔1(𝑥2

𝑖 ).

With this recursion we reduce a single polynomial evaluation of degree bounded
by 𝑛 to two polynomial evaluations of degree bounded by 𝑛/2, a product in 𝑅 and
an addition in 𝑅. Directly doing this would not save us any cost, as it would still
take O(

𝑛
)
per evaluation.

The main idea is to choose the evaluation points
{
𝑥0 , 𝑥1 , . . . , 𝑥𝑛−1

}
so that the set

containing their squares
{
𝑦

�� 𝑦 = 𝑥𝑖
2} contains only 𝑛/2 elements (therefore we could

reuse the evaluations of 𝑔0 and 𝑔1 on the squares). We would like that to be true
recursively, so we introduce the following definition, already satisfying Condition 2.

Definition 2.3 (Twofold set of 𝑛th roots). An indexed set 𝛼0 , . . . , 𝛼𝑛−1 ∈ 𝑅 (properly
reindexed if required) of 𝑛th roots of an element 𝑎 ∈ 𝑅, with 𝑛 a power of 2, is said
to be a twofold set of 𝑛th roots if 𝑖 ≡ 𝑗 (mod 2log(𝑛)−𝑘) implies 𝛼𝑖2

𝑘
= 𝛼 𝑗2

𝑘 for 𝑘 from 0
to log(𝑛).

We can visually represent it as a full binary tree like in Figure 2.1. Observe the
evaluation points, leafs in the tree, appear in bit-reversed order.

Figure 2.1 Twofold set of 8th roots

𝑎

𝛼 0

𝛼 00

𝛼 000 𝛼 100

𝛼 10

𝛼 010 𝛼 110

𝛼 1

𝛼 01

𝛼 001 𝛼 101

𝛼 11

𝛼 011 𝛼 111

Remark 2.4. Given 𝛼0 , . . . , 𝛼𝑛−1 a twofold set of 𝑛th roots of 𝑎 ∈ 𝑅 then the set
{𝛼0

2 , . . . , 𝛼𝑛/2−1
2} is a twofold set of 𝑛/2th roots of 𝑎.

Choosing as evaluation points a twofold set of roots 𝛼0 , . . . , 𝛼𝑛−1 we have that
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for every 0 ≤ 𝑖 < 𝑛/2 the equality 𝛼𝑖2 = 𝛼𝑖+𝑛/2
2 holds, and we can write

𝑔(𝛼𝑖) = 𝑔0(𝛼𝑖2) + 𝛼𝑖 · 𝑔1(𝛼𝑖2),
𝑔(𝛼𝑖+𝑛/2) = 𝑔0(𝛼𝑖2) + 𝛼𝑖+𝑛/2 · 𝑔1(𝛼𝑖2).

We can use this property to present our first general description of a FFT
Algorithm 2.3.

Algorithm 2.3 FFT
Input: A polynomial 𝑔(𝑥) of degree bounded by 𝑛 and a twofold set 𝛼0 , . . . , 𝛼𝑛−1

of 𝑛th roots of 𝑎
Output: Evaluations of 𝑔(𝑥) at 𝛼0 , . . . , 𝛼𝑛−1

1: if n = 1 then return 𝑔

Split 𝑔(𝑥) into 𝑔0(𝑥) and 𝑔1(𝑥).
2: 𝒚0 ≔ FFT(𝑔0(𝑥), 𝛼0

2 , . . . , 𝛼𝑛/2−1
2)

3: 𝒚1 ≔ FFT(𝑔1(𝑥), 𝛼0
2 , . . . , 𝛼𝑛/2−1

2)
4: return

(
𝒚0 + 𝒚1 ⊙ (𝛼0 , . . . , 𝛼𝑛/2−1)

)
∥
(
𝒚0 + 𝒚1 ⊙ (𝛼𝑛/2 , . . . , 𝛼𝑛−1)

)
Analyzing its computational cost now we find that computing the 𝑛-FFT takes

as much time as computing two 𝑛/2-FFT plus a linear amount of products and
additions in 𝑅 (𝑇(𝑛) = 2𝑇(𝑛/2) +O(

𝑛
)
). Using again [20] we end up with a total

cost O(
𝑛 log 𝑛

)
. Observe that now this is the total cost of the whole transform and

not per evaluation as it was the case before.

Condition 3 (Twofold set of roots).
We say a set of points satisfies Condition 3 if it is a twofold set.

Remark 2.5. Choosing the evaluation points as a twofold set of 𝑛th roots of 𝑎 ∈ 𝑅 is a
sufficient condition for the existence of an efficient FFT.

Observe that, by definition, Condition 3 implies Condition 2. However, we prefer
to treat it separately as it is sufficient for an efficient implementation but unnecessary
for a general pointwise product method.

As a way to simplify subsequent propositions dealing with the indexes of twofold
sets we are going to use the following notation. For any 𝑖 ∈ {0, 1, . . . , 𝑛 − 1} let
𝚤 = 𝑖 + 𝑛/2 rem 𝑛. Analogously with 𝑗 and 𝚥.
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2.3.2 Efficient Evaluation of 𝑇−1

In order to obtain an efficient multiplication algorithm we need not only an efficient
transform algorithm but also an efficient anti-transform algorithm.

Notice beforehand that, the same way we saw in Remark 2.4 that Condition 3 is
preserved when squaring the evaluation points we should check if the same holds
with Condition 1. To do so we first require the following Lemma 2.6.

Lemma 2.6.
Let 𝛼0 , . . . , 𝛼𝑛−1 be a twofold set of 𝑛th roots of 𝑎 with invertible differences.
Then 𝛼𝚤 = −𝛼𝑖 .

Proof. Since the set satisfies Condition 3 we know 𝛼𝑖2 = 𝛼𝚤
2. That is

0 = 𝛼𝑖
2 − 𝛼𝚤

2 = (𝛼𝑖 − 𝛼𝚤)(𝛼𝑖 + 𝛼𝚤).

Using that the elements have invertible differences we obtain 𝛼𝑖 + 𝛼𝚤 = 0. □

Proposition 2.7 (Squares of a set satisfying Conditions 1 to 3 also satisfy Conditions 1
to 3). Let 𝛼0 , . . . , 𝛼𝑛−1 be a twofold set of 𝑛th roots of 𝑎 with invertible differences.

Then the set 𝛼0
2 , . . . , 𝛼𝑛/2−1

2 is a twofold set of 𝑛/2th roots of 𝑎 with invertible differences.

Proof. From the definition of a twofold set it directly follows that the set of squares
𝛼0

2 , . . . , 𝛼𝑛/2−1
2 is a twofold set of 𝑛/2th roots of 𝑎.

We only need to check if the differences among the squares are still invertible.

𝛼𝑖
2 − 𝛼 𝑗

2 = (𝛼𝑖 − 𝛼 𝑗)(𝛼𝑖 + 𝛼 𝑗) = (𝛼𝑖 − 𝛼 𝑗)(𝛼𝑖 − 𝛼 𝚥).

Using Lemma 2.6 we have seen the differences among the squares are products of
differences among original elements, invertible by hypothesis, implying the squares
also satisfy the conditions. □

After these preliminaries one can define the anti-transform from a constructive
point of view by reversing the transform algorithm or explicitating the inverse of the
transform matrix. However, to get a deeper insight we are going to describe it using
the language of Lagrange interpolation.

Given an indexed set of points {𝛼𝑖}𝑛−1
𝑖=0 with invertible differences and the

evaluations of a polynomial in such points {𝑔(𝛼𝑖)}𝑛−1
𝑖=0 we can recover the original

polynomial 𝑔(𝑥) using Lagrange polynomials 𝑙
{𝛼 𝑗}𝑛−1

𝑗=0
𝑖

(𝑥) as

𝑔(𝑥) =
𝑛−1∑
𝑖=0

𝑔(𝛼𝑖)𝑙
{𝛼 𝑗}𝑛−1

𝑗=0
𝑖

(𝑥), 𝑙
{𝛼 𝑗}𝑛−1

𝑗=0
𝑖

(𝑥) =
𝑛−1∏
𝑗=0
𝑗≠𝑖

𝑥 − 𝛼 𝑗
𝛼𝑖 − 𝛼 𝑗

.
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Notice the Lagrange polynomials are well-defined because we ensure the evalua-
tion points have invertible differences.

The key point is to observe that, due to the particular requirements of our set of
evaluation points, that is Conditions 1 to 3, our Lagrange polynomials factorize in a
special way.

Using Lemma 2.6 we can see how the Lagrange polynomial splits.

𝑙
{𝛼 𝑗}𝑛−1

𝑗=0
𝑖

(𝑥) =
𝑛−1∏
𝑗=0
𝑗≠𝑖

𝑥 − 𝛼 𝑗
𝛼𝑖 − 𝛼 𝑗

=
𝑥 − 𝛼𝚤
𝛼𝑖 − 𝛼𝚤

𝑛/2−1∏
𝑗=0
𝑗.𝑖

(mod 𝑛/2)

(
𝑥 − 𝛼 𝑗
𝛼𝑖 − 𝛼 𝑗

) (
𝑥 − 𝛼 𝚥
𝛼𝑖 − 𝛼 𝚥

)

=
𝑥 − 𝛼𝚤
𝛼𝑖 − 𝛼𝚤

𝑛/2−1∏
𝑗=0
𝑗.𝑖

(mod 𝑛/2)

𝑥2 − 𝛼 𝑗2

𝛼𝑖2 − 𝛼 𝑗2

= 𝑙
{𝛼𝑖 ,𝛼𝚤}
𝑖

(𝑥)𝑙
{𝛼 𝑗2}

𝑛/2−1
𝑗=0

𝑖 rem 𝑛/2(𝑥
2).

It is crucial to note that with a twofold set 𝑙
{𝛼 𝑗2}

𝑛/2−1
𝑗=0

𝚤 rem 𝑛/2(𝑥) = 𝑙
{𝛼 𝑗2}

𝑛/2−1
𝑗=0

𝑖 rem 𝑛/2(𝑥).
Then we can write

𝑔(𝑥) =
𝑛−1∑
𝑖=0

𝑔(𝛼𝑖)𝑙
{𝛼 𝑗}𝑛−1

𝑗=0
𝑖

(𝑥)

=

𝑛−1∑
𝑖=0

𝑔(𝛼𝑖)𝑙{𝛼𝑖 ,𝛼𝚤}𝑖
(𝑥)𝑙

{𝛼 𝑗2}
𝑛/2−1
𝑗=0

𝑖 rem 𝑛/2(𝑥)

=

𝑛/2−1∑
𝑖=0

(
𝑔(𝛼𝑖)𝑙{𝛼𝑖 ,𝛼𝚤}𝑖

(𝑥) + 𝑔(𝛼𝚤)𝑙{𝛼𝑖 ,𝛼𝚤}𝚤
(𝑥)

)
𝑙
{𝛼 𝑗2}

𝑛/2−1
𝑗=0

𝑖
(𝑥2).

Once we have this decomposition the advantage of this language is that it
allows us to interpret it. We were considering 𝑔(𝑥) as 𝑔0(𝑥2) + 𝑥𝑔1(𝑥2). Polynomials

𝑙
{𝛼 𝑗2}

𝑛/2−1
𝑗=0

𝑖
(𝑥)wouldhelpus interpolate 𝑔0(𝑥) and 𝑔1(𝑥) ifwehad their images {𝑔0(𝛼𝑖2)}

and {𝑔1(𝛼𝑖2)}.
However, the images we have are {𝑔(𝛼𝑖)}. But then 𝑙{𝛼𝑖 ,𝛼𝚤}𝑖

(𝑥) and 𝑙{𝛼𝑖 ,𝛼𝚤}
𝚤

(𝑥) are
precisely the polynomials that interpolate 𝑔0(𝛼𝑖2) + 𝑥𝑔1(𝛼𝑖2) (a polynomial of degree
1 that has the desired evaluations as coefficients) from 𝑔(𝛼𝑖) and 𝑔(𝛼𝚤).
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As we are going to use it later lets explicitate

𝑔(𝛼𝑖)𝑙{𝛼𝑖 ,𝛼𝚤}𝑖
(𝑥) + 𝑔(𝛼𝚤)𝑙{𝛼𝑖 ,𝛼𝚤}𝚤

(𝑥) = 𝛼𝑖

(
𝑔(𝛼𝑖) + 𝑔(𝛼𝚤)

𝛼𝑖 − 𝛼𝚤

)
+ 𝑥

(
𝑔(𝛼𝑖) − 𝑔(𝛼𝚤)

𝛼𝑖 − 𝛼𝚤

)
.

This can be used to build an efficient interpolation algorithm. From the 𝑛
evaluations of a polynomial 𝑔 of degree bounded by 𝑛 at points {𝛼𝑖}𝑛−1

𝑖=0 we can
recover the evaluations of polynomials 𝑔0 and 𝑔1 at points {𝛼𝑖2}𝑛/2−1

𝑖=0 (this is done
with interpolations of polynomials of degree bounded by 2, so each requires a
constant time, and we need a total of O(

𝑛
)
operations).

Then we use them to interpolate 𝑔0 and 𝑔1, each of them polynomials of degree
bounded by 𝑛/2 defined in 𝑅[𝑥]/

〈
𝑥𝑛/2 − 𝑎

〉
. That is 𝑇(𝑛) = 2𝑇(𝑛/2) +O(

𝑛
)
, and we

end up again achieving 𝑇(𝑛) = O(
𝑛 log 𝑛

)
.

Algorithm 2.4 IFFT
Input: A vector of evaluations 𝒚 of size 𝑛 and a twofold set 𝛼0 , . . . , 𝛼𝑛−1 of 𝑛th
roots of 𝑎 with invertible differences
Output: Coefficients of a polynomial 𝑔(𝑥) interpolating 𝒚 at 𝛼0 , . . . , 𝛼𝑛−1

1: if n = 1 then return 𝑦

2: for 𝑖 ∈ 0, . . . , 𝑛/2 − 1 do

3: 𝒚0[𝑖] ≔ 𝛼𝑖

(
𝒚[𝑖] + 𝒚[𝑖 + 𝑛/2]

𝛼𝑖 − 𝛼𝑖+𝑛/2

)
4: 𝒚1[𝑖] ≔

(
𝒚[𝑖] − 𝒚[𝑖 + 𝑛/2]

𝛼𝑖 − 𝛼𝑖+𝑛/2

)
5: end for
6: 𝑔0(𝑥) ≔ IFFT(𝒚0 , 𝛼0

2 , . . . , 𝛼𝑛/2−1
2)

7: 𝑔1(𝑥) ≔ IFFT(𝒚1 , 𝛼0
2 , . . . , 𝛼𝑛/2−1

2)
8: return 𝑔0(𝑥2) + 𝑥𝑔1(𝑥2)

2.3.3 Efficient Multiplication Algorithm in 𝑅[𝑥]/⟨𝑥𝑛 − 𝑎⟩

Combining both Algorithms 2.3 and 2.4 we describe in Algorithm 2.5 an efficient
multiplication algorithm in 𝑅[𝑥]/⟨𝑥𝑛 − 𝑎⟩.

Thereby our work is to study the existence of sets of evaluation points satisfying
Conditions 1 to 3 and how to find them in our desired 𝑅.
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Algorithm 2.5 Efficient FFT Multiplication
Input: Two polynomials 𝑔(𝑥), ℎ(𝑥) of degree bounded by 𝑛
Auxiliary: A twofold set 𝛼0 , . . . , 𝛼𝑛−1 of 𝑛th roots of 𝑎 with invertible differences
Output: The product (𝑔 · ℎ)(𝑥) of 𝑔(𝑥) and ℎ(𝑥) in 𝑅[𝑥]/⟨𝑥𝑛 − 𝑎⟩

1: 𝒈 ≔ FFT(𝑔(𝑥), 𝛼0 , . . . , 𝛼𝑛−1)
2: 𝒉 ≔ FFT(ℎ(𝑥), 𝛼0 , . . . , 𝛼𝑛−1)
3: 𝒇 ≔ 𝒈 ⊙ 𝒉

4: 𝑓 (𝑥) ≔ IFFT( 𝒇 , 𝛼0 , . . . , 𝛼𝑛−1)
5: return 𝑓 (𝑥)

2.4 Characterization of suitable sets of evaluation points in
the ring Z𝑚[𝑥]/⟨𝑥𝑛 − 𝑎⟩

In this section we focus on Z𝑚 and study the relations among the given conditions to
see that these are precisely the required notions and provide necessary and sufficient
conditions for the existence of proper evaluation sets.

We can start certifying that Conditions 1 to 3 are indeed independent in general.

Proposition 2.8 (Condition 3 does not imply Condition 1 in Z𝑚 if 𝑚 is not a power of
a prime). Let 𝛼0 , . . . , 𝛼𝑛−1 be a twofold set of 𝑛th roots of 𝑎 in Z𝑚 , where 𝑚 is not a power
of a prime. There is a twofold set of 𝑛th roots of 𝑎 in Z𝑚 without invertible differences.

Proof. Decomposing 𝑚 = 𝑝𝑞 with 𝑝 and 𝑞 coprime proper factors we can always
construct another twofold set defining 𝛼′

𝑖
≡ 𝛼𝑖 (mod 𝑝) but 𝛼′

𝑖
≡ 𝛼0 (mod 𝑞). It

would be a twofold set, but none of their differences would be invertible. □

When the modulus is a power of a prime 𝑝𝑒 invertibility comes from being
different modulo 𝑝, which is not implied in general by being different modulo 𝑝𝑒 .
We have first to further characterize 𝑛th roots in Z𝑝𝑒 , when 𝑝 is prime, to address
this particular case.

Theorem 2.9 (Hensel’s lemma as in Theorem 2.23 from [93]). Suppose that 𝑓 (𝑥) is
a polynomial with integral coefficients. If 𝑓 (𝑥0) ≡ 0 (mod 𝑝𝑒) and 𝑓 ′(𝑥0) . 0 (mod 𝑝),
then there is a unique 𝑡 (mod 𝑝) such that 𝑓 (𝑥0 + 𝑡𝑝𝑒) ≡ 0 (mod 𝑝𝑒+1).

In our case we are particularly interested in 𝑓 (𝑥) = 𝑥𝑛 − 𝑎, with 𝑛 a power of 2,
so 𝑓 ′(𝑥) = 𝑛𝑥𝑛−1. Since our solutions are 𝑛th roots of 𝑎 (when considered modulo
𝑝𝑒 and therefore also modulo 𝑝) 𝑛𝑥0

𝑛−1 . 0 (mod 𝑝) as long as 𝑝 ≠ 2 and 𝑎 ≠ 0.

Corollary 2.10. There is a one to one correspondence of 𝑛th roots in Z𝑝𝑒 and in Z𝑝 , where 𝑝
is an odd prime.
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Proof.
On the one hand we can see each root in Z𝑝𝑒 as a root in Z𝑝 by applying rem 𝑝.
On the other hand one just needs to apply Theorem 2.9 iteratively 𝑒 − 1 times

from Z𝑝 to Z𝑝𝑒 . □

In particular this directly implies the order of 𝑛th roots of 1, as elements of the
group, is preserved, given that powers of a root are uniquely lifted to powers of the
lifted root.

Remark 2.11. We omit here the case 𝑝 = 2 as in the following sections we are going to
see that other conditions forbid this particular case.

Proposition 2.12 (Condition 2 implies Condition 1 in Z𝑚 if 𝑚 is a power of an odd
prime). Let 𝑚 = 𝑝𝑒 , with 𝑝 an odd prime, and let 𝛼0 , . . . , 𝛼𝑛−1 be 𝑛 different 𝑛th roots of 𝑎
in Z𝑝𝑒 . Then 𝛼𝑖 − 𝛼 𝑗 is invertible in Z𝑝𝑒 for all 𝑖 ≠ 𝑗.

Proof. Every 𝛼𝑖 is a root of 𝑓 (𝑥) = 𝑥𝑛 − 𝑎 when considered modulo 𝑝. By the
previous corollary we have 𝛼𝑖 . 𝛼 𝑗 (mod 𝑝𝑒) implies 𝛼𝑖 . 𝛼 𝑗 (mod 𝑝). Therefore,
gcd(𝛼𝑖 − 𝛼 𝑗 , 𝑝) = 1, as we wanted. □

Proposition 2.13 (Condition 3 implies Condition 1 in Z𝑚 if 𝑚 is a power of an odd
prime). Let 𝑚 = 𝑝𝑒 , with 𝑝 an odd prime, and let 𝛼0 , . . . , 𝛼𝑛−1 be a twofold set of 𝑛th roots
of 𝑎 in Z𝑝𝑒 . Then 𝛼𝑖 − 𝛼 𝑗 is invertible in Z𝑝𝑒 for all 𝑖 ≠ 𝑗.

Proof. Condition 3 implies Condition 2 and Condition 2 implies Condition 1. □

Working with an arbitrary modulus 𝑚, that has 𝑚 = 𝑝1
𝑒1𝑝2

𝑒2 . . . 𝑝𝑘
𝑒𝑘 as its prime

decomposition, we can completely determine any 𝑑 ∈ Z𝑚 , via the Chinese Remainder
Theorem (CRT), from 𝑑(𝑖) such that

𝑑(1) ≡ 𝑑 (mod 𝑝1
𝑒1),

𝑑(2) ≡ 𝑑 (mod 𝑝2
𝑒2),

...

𝑑(𝑘) ≡ 𝑑 (mod 𝑝𝑘
𝑒𝑘 ).

Using this representation we can prove the following theorem.

Theorem 2.14 (Conditions 1 and 2 hold if and only if Condition 2 holds modulo
every 𝑝 𝑗

𝑒 𝑗 ). Let 𝛼0 , . . . , 𝛼𝑛−1 ∈ Z𝑚 be a set of different 𝑛th roots of 𝑎 ∈ Z𝑚 , and let
𝑚 = 𝑝1

𝑒1𝑝2
𝑒2 . . . 𝑝𝑘

𝑒𝑘 be the prime decomposition of an odd module 𝑚.
The differences among these elements are invertible modulo 𝑚 if and only if all the

elements are still different when considered modulo any of the 𝑝 𝑗 𝑒 𝑗 .
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Proof. Follows the same ideas as the previous propositions, since an element is
invertible if and only if it is invertible modulo all the coprime factors of a factorization
of its modulus, we have seen (Corollary 2.10) that such roots are different modulo
𝑝 𝑗
𝑒 𝑗 if and only if they are different modulo 𝑝 𝑗 , and therefore have invertible

differences. □

The same way we can see how other implications are not true in general either.

Proposition 2.15 (Conditions 1 and 2 do not imply Condition 3 in Z𝑚 if 𝑚 is not a
power of a prime). Not every 𝑛-set of 𝑛th roots of 𝑎 ∈ Z𝑚 with invertible differences is a
twofold set of 𝑛th roots. It is not the case in general, not even for roots of unity.

Proof. Consider the set {12, 14, 18, 21} ⊂ Z65, of 4th roots of unity, and let us also
compute its squares.

124 ≡ 1 (mod 65), 122 ≡ 14 (mod 65),
144 ≡ 1 (mod 65), 142 ≡ 1 (mod 65),
184 ≡ 1 (mod 65), 182 ≡ 64 (mod 65),
214 ≡ 1 (mod 65), 212 ≡ 51 (mod 65).

Even if all of them are indeed 4th roots of unity, and the set of their differences
{2, 3, 4, 6, 7, 9} only contains invertible elements modulo 65, we have seen it is not a
twofold set because all the squares are different modulo 65. □

Observe that the evaluation points from the example are indeed, after some
reorderings, a twofold set of 𝑛th roots of unity in Z5 and in Z13, but the reorderings
are different.

122 ≡ 182 (mod 5), 122 ≡ 142 (mod 13),
142 ≡ 212 (mod 5), 182 ≡ 212 (mod 13).

Once again the proposition does hold if we work modulo a power of an odd
prime. To prove it we require a couple of lemmas that show the important role of
roots of unity and allow us to focus on them, with the goal of better understanding
these orderings.

Lemma 2.16 (Conditions 1 and 2 imply the evaluation points are invertible). Let
𝛼0 , . . . , 𝛼𝑛−1 be different 𝑛th roots of 𝑎 in Z𝑚 such that 𝛼𝑖 − 𝛼 𝑗 is invertible in Z𝑚 for
all 𝑖 ≠ 𝑗. Then 𝛼𝑖 is invertible in Z𝑚 for all 𝑖.

Proof. Choose two indices 𝑖 and 𝑗 and let 𝑑 be a square-free common divisor of 𝛼𝑖 and
𝑚. Since 𝛼𝑖 𝑛 ≡ 𝑎 (mod 𝑚) and 𝛼 𝑗 𝑛 ≡ 𝑎 (mod 𝑚)we have that𝑚 |𝛼𝑖 𝑛 −𝛼 𝑗 𝑛 , implying
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that 𝑑 |𝛼 𝑗 (here we have to use that 𝑑 is square free). We would finally get 𝑑 |𝛼𝑖 − 𝛼 𝑗 ,
but we know gcd(𝛼𝑖 − 𝛼 𝑗 , 𝑚) = 1 and therefore 𝑑 = 1, proving gcd(𝛼𝑖 , 𝑚) = 1 for
all 𝑖. □

Remark 2.17. If roots of 𝑎 are invertible it directly follows that 𝑎 itself has to be
invertible. We will impose it when required, since this argument implies it is a
necessary condition for the existence of the inverse transform 𝑇−1.

Lemma 2.18 (Roots of 𝑎 and roots of 1). Let 𝑎 ∈ Z𝑚 . The following two statements
are equivalent:

(i) The set 𝛼0 , . . . , 𝛼𝑛−1 ∈ Z𝑚 satisfies Conditions 1 and 2.

(ii) The set 𝛼0 , . . . , 𝛼𝑛−1 ∈ Z𝑚 can be constructed from an invertible 𝑛th root of 𝑎,
let us denote it 𝛼, and 𝑛 different 𝑛th roots of unity 𝜔0 , . . . , 𝜔𝑛−1 with invertible
differences in Z𝑚 such that 𝛼𝑖 = 𝛼𝜔𝑖 .

Proof. Let us prove both implications:

• (i) =⇒ (ii)

Let 𝛼0 , . . . , 𝛼𝑛−1 be the roots satisfying the conditions.

We can define 𝛼 ≔ 𝛼0 (invertible by Lemma 2.16) and 𝜔𝑖 ≔ 𝛼𝑖 · 𝛼0
−1. We can

check 𝜔𝑖 are roots of unity, and their differences are invertible

(𝜔𝑖 − 𝜔 𝑗)−1
=

(
𝛼𝑖
𝛼0
−

𝛼 𝑗
𝛼0

)−1
= 𝛼0 · (𝛼𝑖 − 𝛼 𝑗)−1.

• (ii) =⇒ (i)

Let 𝛼, 𝜔0 , . . . , 𝜔𝑛−1 be a set of roots satisfying the conditions.

Define now 𝛼𝑖 ≔ 𝛼 · 𝜔𝑖 . Again, by construction, all 𝛼𝑖 are 𝑛th roots of 𝑎 and
their differences are invertible since

(𝛼𝑖 − 𝛼 𝑗)−1
= (𝛼 · 𝜔𝑖 − 𝛼 · 𝜔 𝑗)−1

= 𝛼−1(𝜔𝑖 − 𝜔 𝑗)−1.

□

This motivates the definition of a sufficient condition that, as we are going to see,
will be necessary when 𝑚 is a power of an odd prime.

Definition 2.19 ((𝛼, 𝜔)-set). Let 𝛼 be any 𝑛th root of an invertible 𝑎 ∈ 𝑅 and 𝜔 an
𝑛th root of unity in 𝑅 of order 𝑛 whose powers have invertible differences. Then the
set defined as 𝛼𝑖 = 𝛼𝜔𝑖 is said to be an (𝛼, 𝜔)-set.
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Condition 4 ((𝛼, 𝜔)-set). We say a set of evaluation points satisfies Condition 4 if
(after some reordering) it is an (𝛼, 𝜔)-set for some 𝛼, 𝜔 ∈ 𝑅.

Remark 2.20. Let 𝑚 = 𝑝1
𝑒1𝑝2

𝑒2 . . . 𝑝𝑘
𝑒𝑘 be the prime decomposition of the module 𝑚.

An 𝑛th root of unity 𝜔 ∈ Z𝑚 can be determined from 𝜔(𝑖) ≡ 𝜔 (mod 𝑝
𝑒𝑖
𝑖
) and the

order of 𝜔 is just the least common multiple of the orders of 𝜔(𝑖) in Z𝑝𝑒𝑖
𝑖
. Since we

choose 𝑛 to be a power of 2 and all the orders of each 𝜔(𝑖) divide 𝑛 the least common
multiple is just going to be the maximum of the orders. Then, for 𝜔 to be an 𝑛th root
of unity of order 𝑛 it is only necessary that one of these 𝜔(𝑗) has order 𝑛. However,
as we also need to impose invertibility of the differences of its powers then every
𝜔(𝑖) has to have order 𝑛 in Z

𝑝
𝑒𝑖
𝑖
.

Proposition 2.21 (Condition 4 implies Conditions 1 to 3). An (𝛼, 𝜔)-set in Z𝑚 is a
twofold set of 𝑛th roots of 𝑎 with invertible differences.

Proof. Let 𝛼𝑖 ≔ 𝛼𝜔𝑖 and let 𝑚 = 𝑝1
𝑒1𝑝2

𝑒2 . . . 𝑝𝑘
𝑒𝑘 be the prime decomposition of 𝑚.

We can start checking Condition 1. From the proof of Lemma 2.18 we know an
(𝛼, 𝜔)-set of 𝑛th roots satisfies Condition 1 if 𝛼 is invertible and 𝜔𝑖 −𝜔 𝑗 are invertible
too.

Since 𝑎 is invertible in Z𝑚 then 𝛼 as an 𝑛th root of 𝑎 has to be invertible too.
Otherwise, if 𝛼 ≡ 0 (mod 𝑝 𝑗) for some 𝑗 then 𝑎 ≡ 0 (mod 𝑝 𝑗) for the same 𝑗 and it
would not be invertible either, contradicting the statement.

The second condition is ensured from the definition. Therefore, every difference
is invertible modulo 𝑚.

Condition 2 follows from the construction of an (𝛼, 𝜔)-set.
Finally, for Condition 3, let 𝑖 ≡ 𝑗 (mod 2log(𝑛)−𝑘) and, without loss of generality,

assume 𝑖 ≥ 𝑗 and therefore 𝑖 = 𝑗 + 𝑐 · 2log(𝑛)−𝑘 for some non-negative integer 𝑐. Then

𝛼2𝑘
𝑖 = (𝛼0𝜔

𝑖)2
𝑘

= 𝛼2𝑘
0 𝜔(𝑗+𝑐·2

log(𝑛)−𝑘 )·2𝑘 = 𝛼2𝑘
0 𝜔 𝑗·2𝑘+𝑐·𝑛 = (𝛼0𝜔

𝑗)2
𝑘

= 𝛼2𝑘
𝑗 .

□

This condition is quite convenient, for example it allows us to explicitly describe
the transform from its Vandermonde matrix, as we mentioned before, in a compact
way given that (𝑉)𝑖 𝑗 = (𝛼𝜔𝑖)𝑗 and (𝑉−1)𝑖 𝑗 = 1/𝑛(𝛼−1𝜔−𝑗)𝑖 . Notice that the inverse
matrix looks like 1/𝑛 times the transpose of the evaluation matrix of an (𝛼−1 , 𝜔−1)-set.
If we were working in Z𝑚[𝑥]/⟨𝑥𝑛 − 1⟩ with 𝛼 = 1, the transpose would be irrelevant
as the matrix would be symmetric and the same efficient recursive evaluation
techniques from the direct transform would work directly for its inverse.
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However, even if Condition 4 implies Conditions 1 to 3, the converse is not true in
general, as we are going to see. Besides that, we can see it holds for some particular
cases, when 𝑚 is a power of a prime.

Proposition 2.22 (Conditions 1 and 2 do imply Condition 4 in Z𝑚 if 𝑚 is a power of
an odd prime). Let 𝛼0 , . . . , 𝛼𝑛−1 be a set of 𝑛th roots of 𝑎 with invertible differences in Z𝑝𝑒 ,
with 𝑝 an odd prime. This is (except reordering) an (𝛼, 𝜔)-set of 𝑛th roots of 𝑎 in Z𝑝𝑒 .

Proof. From Lemma 2.18 we deduce the existence of an invertible 𝛼 and 𝜔0 , . . . , 𝜔𝑛−1

with invertible differences such that 𝛼𝑖 = 𝛼 · 𝜔𝑖 .
Given that Z𝑝 is a field its multiplicative group is a cyclic group of order 𝑝 − 1.

Then the set of 𝑛th roots of unity in Z𝑝 is also a group, and as a subgroup of a cyclic
group it is also cyclic.

It is also known that 𝑥𝑛 − 1 has at most 𝑛 solutions modulo 𝑝 (Theorem 2.6
from [93]), therefore the 𝑛 roots 𝜔𝑖 rem 𝑝 (all different since 𝛼𝜔𝑖 rem 𝑝 are lifted
to different points in Z𝑝𝑒 ) form the whole cyclic group of roots of unity and in
consequence are generated by one of them.

As there is a one to one correspondence among 𝑛th roots in Z𝑝 and in Z𝑝𝑒 the
original 𝜔𝑖 ∈ Z𝑝𝑒 are generated too by one 𝜔 of order 𝑛. That is, there exists a
permutation 𝜋 such that 𝜔𝜋(𝑖) = 𝜔𝑖 .

After this reordering defined by 𝜋 the set 𝛼𝜋(0) , 𝛼𝜋(1) , . . . , 𝛼𝜋(𝑛−1) is an (𝛼, 𝜔)-set.
□

Proposition 2.23 (Conditions 1 and 2 do imply Condition 3 in Z𝑚 if 𝑚 is a power of
an odd prime). Let 𝛼0 , . . . , 𝛼𝑛−1 be a set of 𝑛th roots of 𝑎 with invertible differences in Z𝑝𝑒 ,
with 𝑝 an odd prime. This is (except reordering) a twofold-set of 𝑛th roots of 𝑎 in Z𝑝𝑒 .

Proof. Direct as we know by Proposition 2.22 that Conditions 1 and 2 imply Con-
dition 4 in Z𝑚 if 𝑚 is a power of an odd prime and Condition 4 always implies
Condition 3, as seen in Proposition 2.21. □

This new condition seems the right choice, and the FFT is usually introduced from
constructions equivalent to this definition, but we should study first if restricting to
this particular family of sets of evaluation points reduces the options for computing
an FFT multiplication when 𝑚 is not a power of an odd prime.

Once again Conditions 1 and 2 being true modulo every 𝑝 𝑗 𝑒 𝑗 should imply that
Condition 4 holds modulo every 𝑝 𝑗 𝑒 𝑗 , but the permutations might be different.

There are cases where these permutations allow Condition 3 to be true while
Condition 4 is not.

Theorem 2.24 (Conditions 1 to 3 do not imply Condition 4 in general, but imply the
existence of a set satisfying Condition 4). Let 𝛼0 , . . . , 𝛼𝑛−1 be a twofold set of 𝑛th roots
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of 𝑎 with invertible differences in Z𝑚 , where 𝑚 is odd and not a power of a prime and 𝑛 is
a power of two greater than 22. Then 𝑎 has an inverse in Z𝑚 , there is both a twofold set
𝛼′0 , . . . , 𝛼

′
𝑛−1 of 𝑛th roots of 𝑎 in Z𝑚 with invertible differences not satisfying Condition 4

and a set 𝛼′′
𝑖
= 𝛼𝜔𝑖 where 𝛼 is an 𝑛th root of 𝑎 and 𝜔 is a root of unity of order 𝑛 with all

its powers having invertible differences, that is, an (𝛼, 𝜔)-set.

Proof. Following Lemma 2.16 we get 𝑎 is invertible.
Let 𝑚 = 𝑝1

𝑒1𝑝2
𝑒2 . . . 𝑝𝑘

𝑒𝑘 be the prime decomposition of 𝑚.
There is a unique (except reordering) twofold set of 𝑛th roots of 𝑎 with invertible

differences in Z𝑝 𝑗 𝑒𝑗 . This is the case since the values of each of the roots of 𝑎 modulo
𝑝 𝑗
𝑒 𝑗 are completely determined, being the unique elements lifted to Z𝑝 𝑗 𝑒𝑗 from the

unique 𝑛 roots of 𝑎 in Z𝑝 𝑗 . By Proposition 2.22 it satisfies Condition 4. The only
thing we could choose is the respective order they have.

This order is irrelevant in Z𝑝 𝑗 𝑒𝑗 but becomes important when considering Z𝑚 as
once we fix an order modulo 𝑝1

𝑒1 the different respective orders for the remaining
𝑝 𝑗
𝑒 𝑗 would produce different elements in Z𝑚 .
From the twofold set definition we got a tree structure in Figure 2.1 and a specific

notation for the points (a bit decomposition of the index). The twofold structure is
only preserved by the tree structure, so the only possible reorderings are those that
come from swapping the left and right children of a node. That is, choosing 𝑏𝑖−1 . . . 𝑏0

(an internal node), and mapping 𝛼𝑏log(𝑛)−1 ...𝑏𝑖+1𝑏𝑖𝑏𝑖−1 ...𝑏0 to 𝛼
𝑏log(𝑛)−1 ...𝑏𝑖+1𝑏𝑖𝑏𝑖−1 ...𝑏0

, for all
𝑏log(𝑛)−1 , . . . , 𝑏𝑖+1, still preserves this structure.

For example, choosing nodes 𝛼1 and 𝛼10 we obtain a different ordering like in
Figure 2.2.

Figure 2.2 Twofold set of 8th roots swapping left and right descendants of 𝛼1 and 𝛼10

𝑎

𝛼 0

𝛼 00

𝛼 000 𝛼 100

𝛼 10

𝛼 110 𝛼 010

𝛼 1

𝛼 11

𝛼 011 𝛼 111

𝛼 01

𝛼 001 𝛼 101

This means that, given a twofold set of 𝑛th roots, there are exactly 2𝑛−1 possible
reorderings (since the tree has exactly 𝑛 − 1 inner nodes, and we can swap or not



94 2.4. Characterization of Suitable Sets of Evaluation Points

each of them).
When odd 𝑚 is not a power of a prime once we fix the order of the roots modulo

𝑝1
𝑒1 each possible reordering of the roots modulo 𝑝 𝑗 𝑒 𝑗 for the remaining 𝑗 produces

a new twofold set with invertible differences, for a total of 2(𝑘−1)(𝑛−1) possibilities.
On the other hand, we can count the number of (𝛼, 𝜔)-sets. To do so it is

important to notice that (𝛼, 𝜔) and a different pair (𝛽, 𝜉) can generate the same set
(just in a different order). If that is the case let 𝜋 ∈ 𝔖𝑛 be the permutation such
that 𝛽𝑖 = 𝛼𝜋(𝑖). Let 𝑐 = 𝜋(0), then 𝛽 = 𝛽0 = 𝛼𝜋(0) = 𝛼𝜔𝑐 . Let 𝑑 = 𝜋(1) − 𝜋(0), then
𝜉 = 𝛽1/𝛽0 = 𝛼𝜋(1)/𝛼𝜋(0) = (𝛼𝜔𝜋(1))/(𝛼𝜔𝜋(0)) = 𝜔𝜋(1)−𝜋(0) = 𝜔𝑑.

This allows us to completely characterize permutation 𝜋 as

𝛽𝑖 = 𝛽𝜉𝑖 = 𝛼𝜔𝑐(𝜔𝑑)𝑖 = 𝛼𝜔𝑐+𝑑𝑖 = 𝛼𝑐+𝑑𝑖 .

For 𝜋 to be a permutation 𝑑 has to be invertible modulo 𝑛, so it has to be odd.
That is everything required as any pair of 𝑐 ∈ Z𝑛 and odd 𝑑 ∈ Z𝑛 would produce

a new set of generators (𝛼𝜔𝑐 , 𝜔𝑑) for the same set. That is, each (𝛼, 𝜔)-set with
invertible differences can be constructed from 𝑛2/2 different pairs of roots of 𝑎 and 1
(we have 𝑛 options for 𝑐 and 𝑛/2 options for 𝑑).

As a result, from the existence of a twofold set with invertible differences and
previous propositions we know there are 𝑛 possible 𝛼(𝑗) roots of 𝑎 in Z𝑝 𝑗 𝑒𝑗 and 𝑛/2
possible 𝜔(𝑗) roots of unity in Z𝑝 𝑗 𝑒𝑗 of order 𝑛 that, when combined via the CRT,
would define an (𝛼′′, 𝜔′′)-set with invertible differences. That is a total of 𝑛2𝑘/2𝑘 pairs
of generators, and since every set is defined by 𝑛2/2 pairs we would have 𝑛2(𝑘−1)/2(𝑘−1)

unique sets.
However, if 𝑛 > 22 then 2(𝑘−1)(𝑛−1) > 𝑛2(𝑘−1)/2(𝑘−1) and therefore some of the

2(𝑘−1)(𝑛−1) sets {𝛼′
𝑖
}
𝑖
satisfying Conditions 1 to 3 would not satisfy Condition 4.

□

This important theorem ensures that, even if Condition 4 is not necessary to
design an efficient FFT multiplication algorithm, as it is sometimes indirectly taken
for granted in the literature, we can safely assume it when working in Z𝑚[𝑥] as it
adds no additional restrictions on 𝑚 to the necessary Conditions 1 to 3. Only having
done this analysis we can safely use (𝛼, 𝜔)-sets when convenient without loosing
any generality.

2.4.1 Existence and Construction of Suitable Roots in Z𝑚

Once we have established the necessary and sufficient conditions for the transform
to be useful to efficiently compute the product of two polynomials modulo 𝑥𝑛 − 𝑎
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we are left with the task of studying whether such points exist in our desired ring
and how to find them.

As we have seen in Theorem 2.24 the existence of suitable points satisfying
Conditions 1 to 3 implies the existence of an (𝛼, 𝜔)-set satisfying Condition 4. For
convenience, we are going to characterize when such set of points exists and how to
find one.

Remark 2.25. When 𝑅 = C we just have to choose 𝜔 = 𝑒
𝑖2𝜋
𝑛 and 𝛼 = 𝑛

√
𝑎 (for example

𝛼 = 1 if 𝑎 = 1 or 𝛼 = 𝑒
𝑖𝜋
𝑛 if 𝑎 = −1). This choice is the standard Fourier Transform,

and it is usually introduced directly in the literature.

Now we can consider the case 𝑅 = Z𝑚 .
On the one hand, finding a primitive 𝑛th root of unity 𝜔 in Z𝑚 , that is, an 𝑛th

root of unity of order 𝑛, such that all its powers have invertible differences, implies
finding a primitive 𝑛th root of unity 𝜔(𝑖) in every Z𝑝𝑖 𝑒𝑖 and then reconstruct 𝜔 using
the CRT.

That way we have reduced the problem of finding a primitive 𝑛th root of unity
in Z𝑚 for an arbitrary 𝑚 to finding a primitive 𝑛th root of unity in Z𝑝𝑒 .

The proof of Theorem 2.9 in [93] explicitly tells us how to lift a solution 𝑥𝑒

modulo 𝑝𝑒 to a solution 𝑥𝑒+1 modulo 𝑝𝑒+1. It can be computed recursively using
𝑥𝑒+1 ≡ 𝑥𝑒 − 𝑓 (𝑥𝑒) 𝑓 ′(𝑥1) (mod 𝑝𝑒+1) where 𝑓 ′(𝑥1) denotes the inverse of 𝑓 ′(𝑥1) when
considering it in Z𝑝 . Recall 𝑓 (𝑥)was 𝑥𝑛 − 𝑎 and therefore 𝑓 ′(𝑥) = 𝑛𝑥𝑛−1.

The only step of this computation that is not immediate is to compute 𝑓 ′(𝑥1).
Since we are sure 𝑓 ′(𝑥1) is not 0 modulo 𝑝 we can use the Extended Euclidean
algorithm to compute integers 𝑟 and 𝑠 so that 𝑓 ′(𝑥1)𝑟 + 𝑝𝑠 = gcd( 𝑓 ′(𝑥1), 𝑝) = 1, and
𝑟 would be the desired 𝑓 ′(𝑥1).

We finally want to analyze under which conditions on 𝑝 and 𝑛 do primitive 𝑛th
roots of unity exist in Z𝑝 and how to find them. We obtain necessary conditions
from Fermat’s Little Theorem 2.26.

Theorem 2.26 (Fermat’s Little Theorem as in Theorem 2.7 from [93]).
Let 𝑝 be a prime. If 𝑝 ∤ 𝑥0 then

𝑥0
𝑝−1 ≡ 1 (mod 𝑝).

Corollary 2.27. If Z𝑝 contains an 𝑛th root of unity of order 𝑛 then 𝑛 | 𝑝 − 1.

Proof. Let 𝑥0 be an 𝑛th root of unity of order 𝑛 in Z𝑝 . By Theorem 2.26 we have
𝑥0
𝑝−1 ≡ 1 (mod 𝑝) and therefore its order divides 𝑝−1, that is, 𝑛 | 𝑝−1 or 𝑝 = 𝑘𝑛+1

for an integer 𝑘. □
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Remark 2.28. Taking advantage of this condition, in the particular case 𝑓 (𝑥) = 𝑥𝑛 ± 1,
the calculation of 𝑓 ′(𝑥1), with 𝑥1 an 𝑛th root of ∓1 modulo 𝑝, can now be computed
explicitly as 𝑓 ′(𝑥1) = ±𝑥1(𝑝 − 1)/𝑛, as can be easily checked computing 𝑓 ′(𝑥1) · 𝑓 ′(𝑥1)
and getting (±𝑥1(𝑝 − 1)/𝑛)(𝑛𝑥1

𝑛−1) ≡ 1 (mod 𝑝).

Remark 2.29. This necessary condition rules out all the additional considerations we
were having about 𝑛 . 0 (mod 𝑝𝑖), for example ensuring 𝑚 has to be odd. Observe
that in Algorithm 2.4 we have to compute a quotient with 𝛼𝑖 − 𝛼𝚤 , that is, 2𝛼𝑖 in the
denominator. Requesting Conditions 1 to 3 always implies that twice the unity of
the ring has to be invertible (via Lemmas 2.6 and 2.16).

Corollary 2.30. Z𝑝 contains 𝑛th roots of unity of order 𝑛 if and only if 𝑛 | 𝑝 − 1.

Proof. We have already seen one implication, let us consider now Z𝑝 with 𝑛 | 𝑝 − 1.
We know the multiplicative group Z∗𝑝 is cyclic. Let 𝑔 be a generator, it has order 𝑝 − 1
and since 𝑛 | 𝑝 − 1 we can choose 𝜔 ≔ 𝑔(𝑝−1)/𝑛 . By construction, it would be an 𝑛th
root of unity of order 𝑛. □

Remark 2.31. Notice that, by Dirichlet’s theorem on arithmetic progressions, there
are infinitely many primes of this form.

Now we can start computing 𝛼 (mod 𝑝 𝑗) and 𝜔 (mod 𝑝 𝑗). Observe the previous
proof of the latest corollary is not directly constructive, as it needs a known generator.
Anyway, choosing 𝑢𝑗 a quadratic nonresidue in Z𝑝 𝑗 we can let 𝜔(𝑗) ≡ 𝑢

(𝑝 𝑗−1)/𝑛
𝑗

∈ Z𝑝 𝑗
and then lift it to Z𝑝 𝑗 𝑒𝑗 using again the constructive proof of Theorem 2.9.

Notice first that there is no known deterministic polynomial-time algorithm able
to find a quadratic nonresidue (see [15]). Nevertheless, checking if a uniformly
random element 𝑢𝑗 from Z∗𝑝 𝑗 is a quadratic nonresidue can be done computing

the Legendre symbol
(
𝑢𝑗
𝑝 𝑗

)
≡ 𝑢𝑗 (𝑝 𝑗−1)/2, as it is −1 if and only if 𝑢𝑗 is a quadratic

nonresidue modulo 𝑝 (see Theorem 3.1 from [93]). This procedure has a success
probability of almost one half.

Provided that we know 𝑛 | 𝑝 𝑗 − 1 is a condition for the existence of appropriate
roots, we can ensure 𝜔(𝑗) ≔ 𝑢𝑗

(𝑝 𝑗−1)/𝑛 is well-defined. Its 𝑛th power is 𝜔(𝑗)𝑛 = 𝑢𝑗
𝑝 𝑗−1 =

1 (applying this time Theorem 2.26).
The only thing we have left is to check all its powers have invertible differences. If

it was not the case then 𝜔(𝑗) would have order 𝑘 with 𝑘 < 𝑛. This cannot be possible
because since we already know 𝜔(𝑗)

𝑛 = 1 then it would imply 𝑘 |𝑛, and if 𝑘 was a
power of 2 strictly smaller than 𝑛 we would get a contradiction as, by construction,
−1 = 𝑢

(𝑝 𝑗−1)/2
𝑗

= 𝜔(𝑗)
𝑛/2 =

(
𝜔(𝑗)

𝑘
)𝑛/(2𝑘)

= 1𝑛/(2𝑘) = 1.
This ensures our final 𝜔, obtained using the CRT with all the 𝜔(𝑗) lifted to Z𝑝 𝑗 𝑒𝑗 ,

meets the required conditions.
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For computing 𝛼 we might have different approaches. If 𝑎 = 1 the trivial solution
𝛼 = 1 works perfectly fine for our purposes. Similarly, if 𝑎 = −1 we can follow
an analogous procedure, noticing that as 𝑛th roots of −1 are 2𝑛th roots of 1 the
condition is now that 2𝑛 | 𝑝 𝑗 −1, and let 𝛼(𝑗) ≡ 𝑢𝑗 (𝑝 𝑗−1)/2𝑛 (mod 𝑝 𝑗), once again lifting
them and computing the final 𝛼 from its CRT representation.

If 𝑎 ≠ ±1 then our alternative would be to make use of the general Tonelli–Shanks
Algorithm [107] for computing square roots.

Algorithm 2.6 Tonelli–Shanks from ([107])
Input: An odd prime 𝑝, a quadratic residue 𝑎 ∈ Z𝑝 and a nonresidue 𝑢 ∈ Z𝑝
Output: An element 𝛼 ∈ Z𝑝 square root of 𝑎

1: Let 𝑣 and 𝑠 be such that 𝑝 − 1 = 𝑣2𝑠 and 𝑣 is odd.
2: Let

𝑘 ← 𝑠

𝑐 ← 𝑢𝑣

𝑡 ← 𝑎𝑣

𝑟 ← 𝑎
𝑣+1

2

3: while 𝑡 ≠ 0 and 𝑡 ≠ 1 do
4: Find least 𝑖, 0 < 𝑖 < 𝑘, such that 𝑡2𝑖 = 1
5: Let 𝑑← 𝑐2𝑘−𝑖−1 and set

𝑘 ← 𝑖

𝑐 ← 𝑑2

𝑡 ← 𝑡𝑑2

𝑟 ← 𝑟𝑑

6: end while
7: if 𝑡 = 0 then return 𝛼 = 0
8: if 𝑡 = 1 then return 𝛼 = 𝑟

This algorithm allows us to efficiently compute a square root of a quadratic
residue in Z𝑝 . Note this algorithm uses again as an auxiliary element a quadratic
nonresidue. Iteratively applying it we can use 𝛼(𝑗)

𝑛/2𝑖 (mod 𝑝 𝑗), the 2𝑖th root of 𝑎,
to compute its square root 𝛼(𝑗)𝑛/2

𝑖+1 , until we finally reach 𝛼(𝑗), from which we can
recover 𝛼.
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Coming back again to the case 𝑥𝑛 + 1, we describe every step to compute (𝛼, 𝜔)
in Algorithm 2.7.

Algorithm 2.7 Computation of 𝛼 and 𝜔

Input: A power of two 𝑛 and a modulus 𝑚 (with known factorization)
Output: Suitable (𝛼, 𝜔) roots of −1 and 1
Let 𝑚 = 𝑝1

𝑒1𝑝2
𝑒2 . . . 𝑝𝑘

𝑒𝑘 be the prime decomposition of 𝑚.
1: Ensure 2𝑛 | 𝑝 𝑗 − 1 for every prime and abort otherwise.
2: for 𝑗 ∈ 1, . . . , 𝑘 do

⊲ obtain a quadratic nonresidue in Z𝑝 𝑗 ⊳

3: 𝑡𝑒𝑠𝑡𝑠 ≔ False ⊲ whether a candidate is a nonresidue

4: while not 𝑡𝑒𝑠𝑡𝑠 do
5: 𝑢𝑗 ←r Z𝑝 𝑗 ⊲ choose a nonresidue candidate

6: if 𝑢(𝑝 𝑗−1)/2
𝑗

≡ −1 (mod 𝑝 𝑗) then
7: 𝑡𝑒𝑠𝑡𝑠 ≔ True ⊲ it is a nonresidue

8: end while
⊲ compute 𝛼 and 𝜔 (mod 𝑝 𝑗

𝑒 𝑗 ) ⊳
9: 𝛼(𝑗) ≔ 𝑢

(𝑝−1)/2𝑛
𝑗

⊲ compute 𝛼 (mod 𝑝 𝑗)
10: 𝜔(𝑗) ≔ 𝑢

(𝑝−1)/𝑛
𝑗

⊲ compute 𝜔 (mod 𝑝 𝑗)
11: 𝑐, aux← ExtEuclides(𝑛𝛼2𝑛−1

(𝑗) , 𝑝 𝑗) ⊲ compute 𝑓 ′(𝛼(𝑗))
12: 𝑑, aux← ExtEuclides(𝑛𝜔𝑛−1

(𝑗) , 𝑝 𝑗) ⊲ compute 𝑓 ′(𝜔(𝑗))
13: for 𝑒 ∈ 2, . . . , 𝑒 𝑗 do ⊲ apply Hensel Lemma

14: 𝛼(𝑗) ← 𝛼(𝑗) − (𝛼𝑛(𝑗) + 1)𝑐 rem 𝑝 𝑗
𝑒 ⊲ lift from 𝑝 𝑗 𝑒−1 to 𝑝 𝑗

𝑒

15: 𝜔(𝑗) ← 𝜔(𝑗) − (𝜔𝑛
(𝑗) − 1)𝑑 rem 𝑝 𝑗

𝑒 ⊲ lift from 𝑝 𝑗 𝑒−1 to 𝑝 𝑗
𝑒

16: end for
17: end for
18: Reconstruct 𝛼 from (𝛼(1) , . . . , 𝛼(𝑘)) ⊲ via the CRT

19: Reconstruct 𝜔 from (𝜔(1) , . . . , 𝜔(𝑘)) ⊲ via the CRT

20: return (𝛼, 𝜔)
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2.5 FFT Generalizations

As we have seen in Section 2.4 we only have suitable evaluation points in the ring
Z𝑚[𝑥]/⟨𝑥𝑛 + 1⟩ if 𝑚 = 𝑝1

𝑒1𝑝2
𝑒2 . . . 𝑝𝑘

𝑒𝑘 is such that every 𝑝𝑖 ≡ 1 (mod 2𝑛).
These congruences are deeply related to the factorization of 𝑥𝑛 + 1 (irreducible

in Z[𝑥]) when considered modulo 𝑚. This has been described in [86], where Theo-
rem 2.32 is presented.

Theorem 2.32 (Corollary 1.2 in [86]). Let 𝑛 ≥ 𝑑 > 1 be powers of 2 and 𝑝 ≡ 2𝑑 + 1
(mod 4𝑑) be a prime. Then the polynomial 𝑥𝑛 + 1 factors as

𝑥𝑛 + 1 ≡
𝑑−1∏
𝑗=0

(
𝑥𝑛/𝑑 − 𝛼 𝑗

)
(mod 𝑝)

for distinct 𝛼 𝑗 ∈ Z∗𝑝 , where 𝑥𝑛/𝑑 − 𝛼 𝑗 are irreducible in Z𝑝[𝑥].

Theorem 2.32 can also be generalized to a not necessarily prime modulus 𝑚
taking advantage of the results discussed in the previous sections.

Theorem 2.33 (Generalization of Theorem 2.32 to a not necessarily prime modulus
𝑚). Let 𝑛 ≥ 𝑑 > 1 be powers of 2, 𝑚 = 𝑝1

𝑒1𝑝2
𝑒2 . . . 𝑝𝑘

𝑒𝑘 the prime decomposition of 𝑚 such
that 𝑝𝑖 ≡ 2𝑑 + 1 (mod 4𝑑). Then the polynomial 𝑥𝑛 + 1 factors as

𝑥𝑛 + 1 ≡
𝑑−1∏
𝑗=0

(
𝑥𝑛/𝑑 − 𝛼 𝑗

)
(mod 𝑚)

for distinct 𝛼 𝑗 ∈ Z∗𝑚 .

Proof. Notice first 𝑝𝑖 ≡ 2𝑑 + 1 (mod 4𝑑) implies 𝑝𝑖 ≡ 1 (mod 2𝑑), therefore by the
results discussed in Section 2.4.1 we know there exists a twofold set of 𝑑th roots of −1
with invertible differences 𝛼0 , . . . , 𝛼𝑑−1. From Lemma 2.16 we know each 𝛼𝑖 ∈ Z∗𝑚 .
We also know from Lemma 2.6 that

𝑑−1∏
𝑗=0

(
𝑥𝑛/𝑑 − 𝛼 𝑗

)
≡
𝑑/2−1∏
𝑗=0

(
𝑥𝑛/𝑑 − 𝛼 𝑗

) (
𝑥𝑛/𝑑 − 𝛼 𝚥

)
≡
𝑑/2−1∏
𝑗=0

(
𝑥2𝑛/𝑑 − 𝛼 𝑗

2
)
.

Given that squaring preserves the initial properties (as seen in Proposition 2.7),

iteratively applying the same idea we finally get
𝑑−1∏
𝑗=0

(
𝑥𝑛/𝑑 − 𝛼 𝑗

)
≡ 𝑥𝑛 + 1 (mod 𝑚)

as desired. □
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This implies that, under the necessary conditions for an FFT multiplication
algorithm, 𝑥𝑛 + 1 fully splits in linear factors when considered modulo 𝑚. However,
sometimes this is not the case, and we are enforced to use modulus that specifically
require 𝑥𝑛 + 1 to split in a smaller number of factors.

That is the case of some cryptographic constructions that use Theorem 2.32
from [86] (or similar versions) to guarantee the invertibility of particular subsets of
elements in Z𝑚[𝑥]/⟨𝑥𝑛 + 1⟩, as it is going to happen with the commitment scheme
that we are going to propose in the following chapter.

The condition 𝑝𝑖 ≡ 2𝑑 + 1 (mod 4𝑑) implies that there are 𝑑th roots of −1 in Z𝑚 ,
but no 2𝑑th roots of −1. Therefore, if 𝑑 < 𝑛 no suitable evaluation points exist.

However, having only 𝑑th roots of −1 does not prevent us from finding a
reasonably efficient multiplication algorithm. We cannot complete the recursion
strategy, but we can still partially use it.

To do so we just need to apply a technique called 𝑛/𝑑-degree striding (as described
in [22]), mapping our polynomials to a more convenient ring, defining an auxiliary
new variable 𝑦 = 𝑥𝑛/𝑑. We can always consider 𝑅[𝑥]/⟨𝑥𝑛 + 1⟩ as a subring of
𝑅[𝑥, 𝑦]/

〈
𝑥𝑛/𝑑 − 𝑦, 𝑥𝑛 + 1

〉
, and observe we can also describe this second ring as

𝑅[𝑥][𝑦]/
〈
𝑥𝑛/𝑑 − 𝑦, 𝑦𝑑 + 1

〉
.

With this simple change of variables we can now represent our original poly-
nomial as a polynomial in 𝑦 with 𝑦-degree bounded by 𝑑 that has as coefficients
polynomials in 𝑅[𝑥] of 𝑥-degree bounded by 𝑛/𝑑. As a polynomial in 𝑦 it satisfies
all required conditions as we are only considering modulus 𝑦𝑑 + 1 and the new ring
𝑅′ = 𝑅[𝑥] does contain 𝑑 evaluation points 𝛼0 , . . . , 𝛼𝑑−1 satisfying Conditions 1 to 3.

With these 𝑑th roots of −1 we can efficiently use 𝑔(𝑥, 𝑦) and ℎ(𝑥, 𝑦) to compute
evaluations {𝑔(𝑥, 𝛼𝑖)} and {ℎ(𝑥, 𝛼𝑖)}, do a pointwise product in 𝑅[𝑥] (using an
auxiliarymultiplication algorithm, such as (Dual)Karatsuba) and invert the transform
to recover the product (𝑔 · ℎ)(𝑥, 𝑦) that directly gives us the desired solution
substituting again 𝑦 with 𝑥𝑛/𝑑.

Observe that, the samewaywe have to choose an 𝛼 that is a 𝑑th root of−1 to make
the evaluation compatible with the quotient

〈
𝑦𝑑 + 1

〉
the other quotient

〈
𝑥𝑛/𝑑 − 𝑦

〉
implies that when computing the evaluation of the variable 𝑦 at 𝛼 we obtain as a
result a polynomial in 𝑅[𝑥]/

〈
𝑥𝑛/𝑑 − 𝛼

〉
, which is then only defined modulo 𝑥𝑛/𝑑 − 𝛼.

This is an artifact of the technique due to the additional variable introduced that has
no impact in the final result, but helps us keep these 𝑥-polynomials bounded when
computing their products.

The running time for both the transform and the anti-transform is nowO(
𝑛 log 𝑑

)
,

added to the 𝑑 products of polynomials of degree 𝑛/𝑑 that require O
(
(𝑛/𝑑)log 3

)
operations each, for a total of O

(
𝑛 log 𝑑 + 𝑑(𝑛/𝑑)log 3

)
.
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From an abstract point of view, we could directly apply Algorithm 2.5, as it
was described for a general ring 𝑅, and therefore we could use it just taking into
account to which ring each element belongs. However, for the sake of readability,
we explicitate this generalization in Algorithm 2.8.

Algorithm 2.8 Generalized Efficient FFT Multiplication
Input: Two polynomials 𝑔(𝑥), ℎ(𝑥) of degree bounded by 𝑛
Auxiliary: A twofold set 𝛼0 , . . . , 𝛼𝑑−1 of 𝑑th roots of−1with invertible differences
Output: The product (𝑔 · ℎ)(𝑥) of 𝑔(𝑥) and ℎ(𝑥) in Z𝑚[𝑥]/⟨𝑥𝑛 + 1⟩

1: �̂�(𝑦) ≔ 𝑔(𝑥) rem 𝑥𝑛/𝑑 − 𝑦 ⊲ polynomial in (Z𝑚[𝑥]) [𝑦]
2: ℎ̂(𝑦) ≔ ℎ(𝑥) rem 𝑥𝑛/𝑑 − 𝑦 ⊲ polynomial in (Z𝑚[𝑥]) [𝑦]
3: 𝒈 ≔ FFT(�̂�(𝑦), 𝛼0 , . . . , 𝛼𝑑−1) ⊲ vector of polynomials in Z𝑚[𝑥]
4: 𝒉 ≔ FFT(ℎ̂(𝑦), 𝛼0 , . . . , 𝛼𝑑−1) ⊲ vector of polynomials in Z𝑚[𝑥]

Define 𝒇 a vector of polynomials in Z𝑚[𝑥] of size 𝑑.
5: for 𝑖 ∈ 0, . . . , 𝑑 − 1 do
6: 𝒇 [𝑖] ≔ Karatsuba(𝒈[𝑖], 𝒉[𝑖]) rem 𝑥𝑛/𝑑 − 𝛼𝑖

7: end for
8: �̂� (𝑦) ≔ IFFT( 𝒇 , 𝛼0 , . . . , 𝛼𝑑−1)
9: 𝑓 (𝑥) ≔ �̂� (𝑦) rem 𝑦 − 𝑥𝑛/𝑑

10: return 𝑓 (𝑥)

2.5.1 Fast Chinese Remaindering

As we mentioned in the introduction, this particular issue of partially splitting rings,
where we cannot directly apply the original full FFT to the initial polynomials, has
been studied in [86] for rings with prime modulus from a different point of view,
considering FFT-like algorithms for efficiently applying the CRT [85, 121].

Recall the evaluation 𝑔(𝛼) of any polynomial in 𝛼 is equivalent to computing
its remainder after dividing by 𝑥 − 𝛼 (this is known as the Polynomial Remainder
Theorem). The main idea of these CRT approaches is to consider evaluations at
𝛼𝑖 as representatives for 𝑔(𝑥) (mod 𝑥 − 𝛼𝑖), sufficient for determining 𝑔(𝑥) via
the CRT since 𝑥𝑛 + 1 ≡ ∏𝑛−1

𝑗=0
(
𝑥 − 𝛼 𝑗

)
(mod 𝑚) (as we know from Theorems 2.32

and 2.33). The same kind of recursions apply, given that both 𝑔(𝑥) rem 𝑥 − 𝛼𝑖 and
𝑔(𝑥) rem 𝑥 − 𝛼𝚤 can be computed from 𝑔(𝑥) (mod 𝑥2−𝛼𝑖2) (in an equivalentmanner
to what we saw in Section 2.3).

We can see the vector whose components are these evaluations as the CRT
representation of the polynomial. Pointwise multiplication of these vectors of
evaluations for two polynomials 𝑔(𝑥) and ℎ(𝑥) is just a multiplication in the CRT
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domain, and the interpolation consists of recovering the polynomial coefficients
from the CRT representations.

It is essentially a different interpretation of the same idea. It allows the same
analysis as the CRT representation over a set of factors can be computed even if
𝑥𝑛 − 𝑎 does not fully split.

The important point is that this argument works even if 𝑑 ≠ 𝑛, and we could
use it to represent any polynomial with 𝑑 remainders (rem 𝑥𝑛/𝑑 − 𝛼𝑖), compute the
pointwise products among polynomials of degree bounded by 𝑛/𝑑 and then recover
back the product polynomial modulo 𝑥𝑛 − 𝑎.

Given a twofold set 𝛼0 , . . . , 𝛼𝑑−1 of 𝑑th roots of −1 with invertible differences,
what we do in Algorithm 2.8 is precisely computing the reminders (rem 𝑥𝑛/𝑑 − 𝛼𝑖)
that determine the original polynomials via the CRT.

However, we believe our previous presentation is stillmore direct and informative,
since the generalization to a not necessarily prime modulus in a partially splitting
ring, not explored in [86], came completely for free, while the interpretation using
the CRT requires a much more technically involved analysis when the ring is not
a Principal Ideal Domain, or not even a Unique Factorization Domain. In order
to verify the hypothesis of the theorem one should check whether some ideals are
comaximal to be able to ensure that every mapping is indeed an isomorphism.

Theorem 2.34 (CRT for Z𝑚[𝑥]/⟨𝑥𝑛 − 𝑎⟩). Let 𝑥𝑛 − 𝑎 = ∏𝑑−1
𝑖=0 (𝑥𝑛/𝑑 − 𝛼𝑖) where {𝛼𝑖}𝑖 are

a twofold set of 𝑑th roots of 𝑎 with differences invertible in Z𝑚 , then

Z𝑚[𝑥]/⟨𝑥𝑛 − 𝑎⟩ � Z𝑚[𝑥]/
〈
𝑥𝑛/𝑑 − 𝛼0

〉
× · · · × Z𝑚[𝑥]/

〈
𝑥𝑛/𝑑 − 𝛼𝑑−1

〉
.

Proof. For convenience, we are going to label the 𝑑 roots as 𝛼𝑏log(𝑑)−1 ...𝑏0 as we did in
Figure 2.1.

From an argument analogous to Theorem 2.33 we know that we can write
𝑥𝑛/2

𝑘 − 𝛼𝑏𝑘−1 ...𝑏0 = (𝑥𝑛/2
𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0)(𝑥𝑛/2

𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0).
We have to prove that Z𝑚[𝑥]

/ 〈
𝑥𝑛/2

𝑘 − 𝛼𝑏𝑘−1 ...𝑏0

〉
is isomorphic to

Z𝑚[𝑥]
/ 〈

𝑥𝑛/2
𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0

〉
× Z𝑚[𝑥]

/ 〈
𝑥𝑛/2

𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0

〉
.

We can define a map from Z𝑚[𝑥] to

Z𝑚[𝑥]
/ 〈

𝑥𝑛/2
𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0

〉
× Z𝑚[𝑥]

/ 〈
𝑥𝑛/2

𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0

〉
by computing rem, and the kernel would be〈

𝑥𝑛/2
𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0

〉 ⋂ 〈
𝑥𝑛/2

𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0

〉
.
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That is, the map is also well-defined from

Z𝑚[𝑥]
/ 〈

𝑥𝑛/2
𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0

〉 ⋂ 〈
𝑥𝑛/2

𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0

〉
.

So far this discussion has been completely general. However, for these particular
polynomials we have〈

𝑥𝑛/2
𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0

〉
+

〈
𝑥𝑛/2

𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0

〉
� Z𝑚[𝑥].

This is the case since

(𝑥𝑛/2𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0) − (𝑥𝑛/2
𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0) = 𝛼1𝑏𝑘−1 ...𝑏0 − 𝛼0𝑏𝑘−1 ...𝑏0 ,

which is invertible in Z𝑚 (as every difference of roots is invertible), implying

1 ∈
〈
𝑥𝑛/2

𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0

〉
+

〈
𝑥𝑛/2

𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0

〉
.

We can explicitly write this saying there are two polynomials 𝑔(𝑥) and ℎ(𝑥) such
that

(𝑥𝑛/2𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0)𝑔(𝑥) + (𝑥𝑛/2
𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0)ℎ(𝑥) = 1.

On the one hand this implies that themap is surjective. From the previous identity
we know any pair of polynomials (𝑎(𝑥), 𝑏(𝑥)) has a preimage 𝑏(𝑥)𝑔(𝑥)(𝑥𝑛/2𝑘+1 −
𝛼0𝑏𝑘−1 ...𝑏0) + 𝑎(𝑥)ℎ(𝑥)(𝑥𝑛/2

𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0).

On the other hand this implies〈
𝑥𝑛/2

𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0

〉 ⋂ 〈
𝑥𝑛/2

𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0

〉
=

〈
𝑥𝑛/2

𝑘 − 𝛼𝑏𝑘−1 ...𝑏0

〉
.

The right-hand side is directly a subset of the left-hand side. To see the other
inclusion we can check that for any

𝑎(𝑥) ∈
〈
𝑥𝑛/2

𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0

〉 ⋂ 〈
𝑥𝑛/2

𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0

〉
,

that is, there are polynomials 𝑏(𝑥) and 𝑐(𝑥) such that

𝑎(𝑥) = 𝑏(𝑥)(𝑥𝑛/2𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0) = 𝑐(𝑥)(𝑥𝑛/2𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0),
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it is also true that

𝑎(𝑥) = 𝑎(𝑥) · 1

= 𝑎(𝑥)(𝑥𝑛/2𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0)𝑔(𝑥) + 𝑎(𝑥)(𝑥𝑛/2
𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0)ℎ(𝑥)

= 𝑐(𝑥)(𝑥𝑛/2𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0)(𝑥𝑛/2
𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0)𝑔(𝑥)

+𝑏(𝑥)(𝑥𝑛/2𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0)(𝑥𝑛/2
𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0)ℎ(𝑥)

= (𝑐(𝑥)𝑔(𝑥) + 𝑏(𝑥)ℎ(𝑥))(𝑥𝑛/2𝑘 − 𝛼𝑏𝑘−1 ...𝑏0),

and therefore 𝑎(𝑥) ∈
〈
𝑥𝑛/2

𝑘 − 𝛼𝑏𝑘−1 ...𝑏0

〉
.

Summing up, the desired mapping is an isomorphism.
The main issue here is that the CRT is usually defined for principal ideal domains

or at least unique factorization domains. If it is not the case, such as with our
construction, we have to specifically check these additional properties, such as〈
𝑥𝑛/2

𝑘+1 − 𝛼0𝑏𝑘−1 ...𝑏0

〉
and

〈
𝑥𝑛/2

𝑘+1 − 𝛼1𝑏𝑘−1 ...𝑏0

〉
being comaximal. □

We then have a polynomial 𝑔(𝑥) ∈ Z𝑚[𝑥]/⟨𝑥𝑛 − 𝑎⟩ and a twofold set of 𝑑th roots
of 𝑎 with invertible differences {𝛼𝑏log(𝑑)−1𝑏log(𝑑)−2 ...𝑏0}.

Our goal is to efficiently compute all 𝑔𝑏log(𝑑)−1 ...𝑏0(𝑥) = 𝑔(𝑥) (rem 𝑥𝑛/𝑑−𝛼𝑏log(𝑑)−1 ...𝑏0).
To do so we start computing 𝑔0(𝑥) = 𝑔(𝑥) (rem 𝑥𝑛/2 − 𝛼0) and 𝑔1(𝑥) = 𝑔(𝑥)

(rem 𝑥𝑛/2 − 𝛼1).
Then we notice 𝑔0𝑏0(𝑥) = 𝑔(𝑥) (rem 𝑥𝑛/4 − 𝛼0𝑏0) = 𝑔𝑏0(𝑥) (rem 𝑥𝑛/4 − 𝛼0𝑏0) and

𝑔1𝑏0(𝑥) = 𝑔(𝑥) (rem 𝑥𝑛/4 − 𝛼1𝑏0) = 𝑔𝑏0(𝑥) (rem 𝑥𝑛/4 − 𝛼1𝑏0).
In general, we can recursively compute 𝑔𝑏𝑖𝑏𝑖−1 ...𝑏0(𝑥) = 𝑔(𝑥) (rem 𝑥𝑛/2

𝑖+1 −
𝛼𝑏𝑖𝑏𝑖−1 ...𝑏0) = 𝑔𝑏𝑖−1 ...𝑏0(𝑥) (rem 𝑥𝑛/2

𝑖+1 − 𝛼𝑏𝑖𝑏𝑖−1 ...𝑏0). Therefore, at the 𝑖th level, comput-
ing each remainder takes O(

𝑛/2𝑖
)
operations and has to be done O(

2𝑖
)
times, for a

total cost of O(
𝑛
)
.

Observe computing 𝑔𝑏𝑖−1 ...𝑏0(𝑥) (rem 𝑥𝑛/2
𝑖+1 − 𝛼0𝑏𝑖−1 ...𝑏0) is done taking the lower

coefficients of 𝑔𝑏𝑖−1 ...𝑏0(𝑥) and adding the higher coefficients multiplied by 𝛼0𝑏𝑖−1 ...𝑏0 .
The same way, since 𝛼1𝑏𝑖−1 ...𝑏0 = −𝛼0𝑏𝑖−1 ...𝑏0 we have that 𝑔𝑏𝑖−1 ...𝑏0(𝑥) (rem 𝑥𝑛/2

𝑖+1 −
𝛼1𝑏𝑖−1 ...𝑏0) is computed taking the lower coefficients of 𝑔𝑏𝑖−1 ...𝑏0(𝑥) and subtracting the
higher coefficients multiplied by 𝛼0𝑏𝑖−1 ...𝑏0 .

Notice the multiplications are the same (and could be reused), and the only
difference is that we add or subtract depending on the case.

The number of levels is log(𝑑), and we end up with O(
𝑛 log(𝑑)

)
operations

to compute the CRT representation of 𝑔(𝑥) taking modulus over the 𝑑 different
polynomials of degree 𝑛/𝑑.
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Algorithm 2.9 FFT (CRT)
Input: A polynomial 𝑔(𝑥) of degree bounded by 𝑛 and a twofold set 𝛼0 , . . . , 𝛼𝑑−1

of 𝑑th roots of 𝑎 with invertible differences
Output: Remainders of 𝑔(𝑥)when divided by 𝑥𝑛/𝑑 − 𝛼0 , . . . , 𝑥

𝑛/𝑑 − 𝛼𝑑−1

1: if 𝑟 = 1 then return 𝑔

2: {𝑔𝑏log(𝑑)−2 ...𝑏0} ≔ FFT(𝑔, 𝛼0
2 , . . . , 𝛼𝑑/2−1

2)
3: for 𝑏log(𝑑)−2 . . . 𝑏0 ∈ {0, 1}log(𝑑)−1 do

Split 𝑔𝑏log(𝑑)−2 ...𝑏0 into 𝑔𝐿𝑏log(𝑑)−2 ...𝑏0
and 𝑔𝐻

𝑏log(𝑑)−2 ...𝑏0

4: 𝑔0𝑏log(𝑑)−2 ...𝑏0 ≔ 𝑔𝐿
𝑏log(𝑑)−2 ...𝑏0

+ 𝑔𝐻
𝑏log(𝑑)−2 ...𝑏0

· 𝛼0𝑏log(𝑑)−2 ...𝑏0

5: 𝑔1𝑏log(𝑑)−2 ...𝑏0 ≔ 𝑔𝐿
𝑏log(𝑑)−2 ...𝑏0

− 𝑔𝐻
𝑏log(𝑑)−2 ...𝑏0

· 𝛼0𝑏log(𝑑)−2 ...𝑏0

6: end for
7: return {𝑔𝑏log(𝑑)−1𝑏log(𝑑)−2 ...𝑏0}

At this point we could use Karatsuba’s algorithm to multiply them, that is, a cost
of O

(
𝑑(𝑛/𝑑)log(3)

)
.

Then we have to invert these operations. To do so we could follow the same
ideas inverting the operations at each level. In order to recover the lower part of
𝑔𝑏𝑖−1 ...𝑏0(𝑥)we add 𝑔0𝑏𝑖−1 ...𝑏0(𝑥) + 𝑔1𝑏𝑖−1 ...𝑏0(𝑥) and divide by two (that is, multiply each
coefficient by 2−1). To recover the upper part we now subtract them computing
𝑔0𝑏𝑖−1 ...𝑏0(𝑥) − 𝑔1𝑏𝑖−1 ...𝑏0(𝑥) and multiply each coefficient by 2−1(𝛼0𝑏𝑖−1 ...𝑏0)

−1. The cost
of these operations is again O(

𝑛 log(𝑑)
)
.

As we have to divide by 2 at each level one could just skip this step and divide
by 𝑑 at the end.

Algorithm 2.10 IFFT (CRT)
Input: A CRT representation 𝑔0 . . . 𝑔𝑑−1 of a polynomial 𝑔(𝑥) of degree bounded
by 𝑛, and a twofold set 𝛼0 , . . . , 𝛼𝑑−1 of 𝑑th roots of 𝑎 with invertible differences
Output: The polynomial 𝑔(𝑥)

1: if 𝑑 = 2 then return 2−1
(
(𝑔0 + 𝑔1) + 𝑥𝑛/2(𝑔0 + 𝑔1) · 𝛼0

−1
)

2: for 𝑏log(𝑑)−2 . . . 𝑏0 ∈ {0, 1}log(𝑑)−1 do

3:
𝑔𝑏log(𝑑)−2 ...𝑏0 ≔ 2−1(𝑔0𝑏log(𝑑)−2 ...𝑏0 + 𝑔1𝑏log(𝑑)−2 ...𝑏0)+

𝑥𝑛/𝑑2−1(𝑔0𝑏log(𝑑)−2 ...𝑏0 − 𝑔1𝑏log(𝑑)−2 ...𝑏0) · 𝛼0𝑏log(𝑑)−2 ...𝑏0
−1

4: end for
5: return IFFT({𝑔𝑏log(𝑑)−2 ...𝑏0}, 𝛼0

2 , . . . , 𝛼𝑑/2−1
2)

This alternative interpretation has then same properties and can also be used to
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design the same efficient multiplication algorithms. We reiterate here that we believe
the previous presentation was more insightful, provided that some conditions, as
the requirement for 𝑚 to be odd, only appear as artifacts of the CRT construction.

2.6 Conclusions

The main result can be summarized in the following way, in order to design an
efficient multiplication algorithm in Z𝑚[𝑥]/⟨𝑥𝑛 − 𝑎⟩ via an FFT, the necessary and
sufficient condition is to have a set of 𝑛 different 𝑛th roots of 𝑎 (Condition 2, so that
multiplication is compatible with congruence classes) with invertible differences
(Condition 1, so that the inverse transform is defined) such that its recursive squares
are equal two by two (Condition 3, so that the computation can be efficiently done
recursively).

This characterization is similar but not equivalent to the usual characterization
with roots of unity (Condition 4), which is sufficient but not necessary. Despite
that, we have proven in Theorem 2.24 that restricting to sets satisfying Condition 4
does not decrease the applicability of these efficient multiplication algorithms as
the defined (𝛼, 𝜔)-sets exist if and only if the necessary and sufficient sets satisfying
Conditions 1 to 3 exist.

As intermediate result we have also proven that these properties are indeed
independent in the general case, and we do believe that this analysis might help to
clarify whether some considerations and conditions usually stated in the folklore
are fundamental considerations about the algebraic structure or just conventions for
a particular instantiation on a particular setting (as it is the case with roots of unity).

This framework is also a general introduction to FFT multiplication from a
rigorous mathematical point of view while still keeping it readable for an audience
not familiarized with more advanced algebraic considerations.

For example our analysis directly generalizes, as we have seen in Section 2.5,
to a ring where 𝑥𝑛 − 𝑎 does not fully split and Z𝑚 is not a field, while alternative
interpretations are much more delicate to work with.



Chapter 3

Commitment scheme and
companion ZKPoKs

This chapter and the following constitute the core contribution of this dissertation.
Now thatwe havemotivated the need of newpost-quantum cryptographic primitives,
explained the power of ZKPoKs and carefully analyzed the properties of the quotient
rings of polynomials that allow efficient operations, we already have all the tools to
develop improved ZKPoKs for lattice constructions.

Rather than presenting a bare proof of knowledge of the secret that characterizes
a RLWE distribution we define a lattice-based commitment scheme and design inter-
active proofs of knowledge for several statements, including linear andmultiplicative
relations among committed elements. This work is going to be continued in the next
chapter with the implementation of non-interactive versions of these proofs.

3.1 Introduction

The goal of this chapter is to design new ways of proving linear and multiplicative
relations between elements hidden in lattice-based structures, without revealing
any additional information about the elements themselves. This kind of proofs play
an important role in many applications, from authentication protocols to electronic
voting, and can be used as building blocks formore complex cryptographic primitives.

We choose to apply these new techniques to a commitment scheme and the
relations between committed elements because the simple structure of the scheme
allows us to explain what are the advantages and disadvantages of our methods
and at the same time we provide a very flexible primitive with actual utility to
solve a great variety of problems. In fact, the general strategy of proving statements
about committed elements in zero-knowledge, called commit-and-prove, is an active
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research field on its own, and we further increase its lattice-based branch.
We focus on improving the applications of the seminal code-based Stern proto-

col [116, 117] (mentioned in Section 1.3.8) to the lattice setting. It provides the most
efficient ZKPoK for code-based cryptography [114], but we use its ideas to deal with
the lattice-based RLWE problem as underlying hardness assumption. We increase
the efficiency of existing proofs and show how to obtain exact ZKPoKs convincing a
verifier that the prover knows a valid opening for a commitment. Then we use this
opening proof as the foundation for the relation proofs, showing that committed
messages satisfy linear or multiplicative relations.

3.1.1 Lattice-Based Zero-Knowledge Proofs Related Work

In this chapter we specially benefit from the adaptation of Stern’s protocol to lattices
from Ling et al. [76], the modification of Cayrel et al. [38] for reducing the soundness
error increasing the number of rounds and the proposals of Jain et al. [64] and Xie et
al. [124] for proving linear and multiplicative relations, that we further improve.

It is also important to mention the contribution of Benhamouda et al. [19],
who generalized the commitment idea of [124] without using Stern’s approach.
We still use Stern-based techniques for the proofs but borrow the notation and
structure from [19], as it is the more natural adaptation of [64] to the lattice scenario.
They instead use Fiat-Shamir with aborts (the alternative technique we have also
briefly discussed in Section 1.3.8). This decision implies relaxing the definition
of commitment for their construction, because they are forced to admit as valid a
set of openings larger than the set of openings an honest prover could get when
committing to an element (the prover obtain an opening satisfying a relation ℜ but
is only able to prove a milder relation ℜ′). In particular, even if the prover samples
the noise terms from a bounded error distribution with bound 𝐵 the verifier is only
convinced of the fact that it is bounded by a significantly larger 𝐵′ ≫ 𝐵.

This has an impact on the restrictions the parameters have to satisfy. On the
one hand, we have already seen in Section 1.3 the importance of the fact that the
noise terms are small, which is extensively used in security proofs of lattice-based
cryptography (in our case and in [19] it is used to prove that the commitment
is binding). On the other hand, the error parameter has to be sufficiently large
so that the underlying RLWE problem is hard enough. If from the same noise
distribution bounded by 𝐵 we are only able to prove knowledge of an error term
bounded by 𝐵′ ≫ 𝐵 then we might be forced to use this less tight bound to prove the
remaining properties, obtaining worse results due to that gap. On the contrary, our
proposal increases the literature of exact zero-knowledge proofs, providing ZKPoKs
of committed elements without any soundness slack. This allows us to tightly choose
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all parameters as we do not have to take into account any error growth.
This trade-off between efficiency and the soundness gap is a constant in the related

literature. Bootle et al. [28] presented some succinct zero-knowledge arguments with
an extreme soundness slack. In this case, a prover knowing a certain bound on the
error term can only convince a verifier that they are able to extract an error which is
exponentially larger.

Nevertheless, several improvements have been made on rejection sampling
techniques for proving relations among committed elements. First, Baum et al. [17]
greatly improved the efficiencyof this approachusing theMLWEproblemashardness
assumption and changing the structure of the commitment, so the minimum size
of the proofs is greatly reduced, though the binding property is ensured only
computationally instead of statistically. While [17] already had an efficient proof
for linear relations, the recent work of Attema et al. [14] provides new proofs for
multiplicative relations for this commitment scheme. It has also been modified to
provide even more efficient opening proofs in [119].

Some proposals as [29] or [51] try to circumvent the issues that arise from the
relaxed definition of the commitment verifying additional conditions to obtain
exact lattice-based proofs. A very prolific research path is the use of a relaxed
commitment scheme with companion rejection sampling ZKPoKs as a subroutine
of a more complex protocol that then obtains efficient exact proofs. As relaxed
commitment scheme these applications use [17] (with small modifications). That is
the case of [126, 50, 82, 80]. Exact lattice-based ZKPoKs are therefore an active field
of research.

On the other hand, Stern-based techniques have been applied to prove knowledge
of several relations (including multiplications) when committing (using lattices) to
exponentially large integers using a polynomially large modulus 𝑞, as it was done by
Libert et al. in [74], and to prove matrix-vector relations [75] again by Libert et al. The
first has been outperformed by Kuchta et al. in [70] and also in [81] by Lyubashevsky
et al., using the rejection sampling scenario. A general technique useful to reduce
the soundness error of Stern-based protocols was presented in [24], greatly reducing
the proof sizes at the expense of significantly increasing the computational cost.

3.1.2 Our Contribution

The main contribution of this chapter is an improvement over the first two Stern-
based ZKPoKs for linear and multiplicative relations from [64, 124]. Our ideas
on proving multiplicative relations can be easily adapted to any scenario where
messages are encoded as RLWE samples.

Regarding the commitment itself we follow the notation from the proposal of
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Benhamouda et al. [19], explicitly defining two separated ideal lattices, one for
encoding the message and another one for obtaining the RLWE sample that allows
us to hide the message.

We get rid of the relaxations and limitations that were necessary in Benhamouda
et al. commitment scheme without needing the quadratic logarithm of 𝑞 overhead
from Xie et al. for the proofs. For the opening and the linear relation cases we
apply standard techniques to improve the original Stern protocol, increasing the
number of moves to get a smaller soundness error. We also add some original
modifications to carefully reduce some constants in the communication cost. For the
multiplicative relation we construct a new efficient proof. We achieve this by asking
the verifier for two challenges in order to relate the committed messages and get
soundness. Honest-verifier zero-knowledge is obtained as we explicitly provide a
perfect simulator for each protocol.

Many applications demand to evaluate arbitrary arithmetic circuits on secret
elements. FHE could be a solution (which can be achieved with lattices by means of
the Gentry et al. scheme [60], and the many subsequent FHE schemes that have been
later proposed). Working with small circuits an alternative could be to apply our
proofs for linear and multiplicative relations to prove knowledge of valid evaluations
of the gates. The first lattice-basedAttributed Based Signature scheme for unbounded
circuits [47] uses this strategy with the ZKPoKs from [124]. Directly replacing their
construction with our proposal greatly improves the efficiency of the signature
scheme.

Our proposal is a 5-move protocol with a soundness error slightly above 1/2. It
allows us to prove exact knowledge of the secret inside a RLWE sample, that is, the
secret is a polynomial in 𝑅𝑞 = Z𝑞[𝑥]/⟨𝑥𝑛 + 1⟩. The proposed commitment scheme
is perfectly binding with overwhelming probability over the choice of the public
key and computationally hiding under the RLWE assumption, widely believed to be
post-quantum (as we have discussed in Section 1.3).

As we mentioned in Section 1.5, this chapter is extensively based on a previous
version of this proposal that has been published in [87]. It has been however
significantly improved since then. The more complete version included here
has a tighter security analysis providing specific values, while [87] (or [19]) only
proved some properties asymptotically. The more detailed analysis conducted here
significantly helps the implementation and performance analysis we are going to
present in the following chapter.

The soundness proof has also been completely revamped so that it satisfies the
standard definitions. We have adapted the conditions on the ring 𝑅𝑞 so that the
efficient multiplication algorithm discussed in Chapter 2 can be used. Besides the
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computational advantage this additionally provides us with the potential trade-offs
that arise from choosing 𝑑, the number of polynomials 𝑥𝑛 + 1 splits when considered
modulo 𝑞 (in [87] this was fixed to 2 as in [19]). All security proofs have been updated
to take it into account.

Furthermore, many secondary propositions necessary to ensure the security of
the commitment that were omitted in [87] due to space restrictions of the publication
are formally proved in this chapter.

3.1.3 Structure of the Chapter

The organization of this chapter is as follows. In Section 3.1 we have introduced
the topic and the context of this work. Then in Section 3.2 we review the historic
iterations and improvements of Stern-based protocols to have a deeper knowledge
of the kind of techniques we can apply and fully contextualize the improvements we
will introduce.

After these preliminaries we present the commitment in Section 3.3, along with
the interactive proofs in Section 3.4. A proof of knowledge of a valid opening is
designed and proven secure in Section 3.4.1, and analogously we then give proofs of
a linear relation and a multiplicative relation in Sections 3.4.2 and 3.4.3, respectively.
We finally end the chapter with some conclusions in Section 3.5.

Moreover, in Appendix 3.A we specify the differences between the proposal from
this chapter and the version published in [87].

3.2 Stern-Based Schemes

Although we have already mentioned many Stern-based protocols in Section 3.1.1,
we think it is interesting to start the chapter with a historical journey revisiting the
main advances in this family of protocols. This way we can specially remark the
ideas from which we explicitly benefit or that we further improve.

The original identification scheme by Stern, the one we have introduced in
Section 1.3.8, was a 3-move protocol with a soundness error of 2/3, but he also
presented alternative variants with 5-moves and identity based versions [116]. One
of the 5-move variants reduced the computational complexity and the other reduced
the soundness error to almost 1/2. However, the size of the proof increased, and
it turned out to be less efficient for practical cases. Numerous additional variants
have been published since then, addressing the lack of efficiency that comes from
the 2/3 soundness error and the size of the keys, and providing new features and
applications (different signature schemes, commitment schemes, possibility of using
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integers module 𝑞 as secrets instead of only using bits, applications to lattice-based
cryptography, etc.). We describe some of them in the following paragraphs.

The first new scheme that claimed to improve the original protocol was due to
Véron in 1997 [120], where he presented a dual version of the original Stern protocol.
Given a generator matrix 𝑮 ∈ F𝑛×𝑘2 and given a perturbed codeword 𝒕 ∈ F𝑛2 , he
wanted to prove knowledge of a secret 𝒙 ∈ F𝑘2 and a low Hamming weight error
term 𝒆 ∈ F𝑛2 such that 𝒕 = 𝑮𝒙 + 𝒆. He claimed that it was more efficient than the
original Stern protocol, however it was not zero-knowledge. His proof was flawed
because the simulation implicitly assumed that two elements were independently
and uniformly random distributed. It was true that the elements were uniformly
random distributed, but they were not independent. Therefore, the joint distribution
of the protocol was different from the distribution of the simulator, and information
about the secret could be extracted (as was later pointed out by Jain et al. in [64], who
correctly used a generator matrix to build a sound zero-knowledge proof).

We mention here this failed proposal because it is not a single anecdote, as
some subsequent articles with new identification schemes, signatures and plaintext
knowledge proofs have been based on [120] and inherited the same lack of zero-
knowledge [33, 3, 91] (the issue was noticed by the authors of [91] and fixed in [63]).
Even worse is the case of [48], where besides implementing the unsecure scheme
from [120] without noticing it, they also insecurely implement other two secure
schemes [116, 38] (we will latter discus the last one [38]). In the interactive version of
these protocols the verifier asks the prover three possible challenges, but to determine
the challenge in a non-interactive way they hash the previous conversation and then
map pairs of bits 00, 01 and 10 to the different challenges (following the Fiat-Shamir
paradigm). However, if the pair of bits from the hash is 11 they then assign one of
the three challenges following a predetermined order in a cyclic way. This makes
the challenges not independent, lowering the security and preventing a direct ROM
sound proof. Other proposals also fail to obtain secure LWE-based identification
schemes, as it is the case of [111], because they state the errors are sampled from a
discrete Gaussian distribution and at the same time assume the errors have fixed
Hamming weight (completely confusing the lattice and code assumptions), getting
unsound proofs and unrealizable simulators for the zero-knowledge property.

Once again we remark the need of complete formal proofs of security to avoid
this kind of mistakes.

In 2007, Gaborit and Girault [55] provided the first step towards a practical
scheme, noticing that the use of quasi-cyclic linear codes (codes whose parity check
matrix is built as a concatenation of an identity matrix and a circulant matrix) could
considerably reduce the size of the keys preserving security, analogous to what
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we can do using ideal lattices instead of arbitrary 𝑞-ary lattices, as the SDP is still
believed to be hard for this particular family of codes.

Their approach was first implemented in 2008 by Cayrel et al. in [35], remarking
the fact that only simple operations as matrix-vector products are needed and
therefore it is perfectly suitable for low-resource devices. Furthermore, they also
show how to turn the original identification scheme into a signature scheme, using
the Fiat-Shamir transform. They do not enter into detail albeit from the numbers
they provide it seems they assume no security loss from the transform.

The first application to lattice cryptography was due to Kawachi et al. in [68],
where they used an instance of the ISIS problem instead of the SDP. When we think
about ISIS instances, 𝒚 = 𝑨𝒙 ∈ Z𝑛𝑞 , we usually choose the small term 𝒙 ∈ Z𝑚𝑞 from a
Gaussian distribution. In this case 𝒙 is selected to have half of its components equal
to 0 and the other half equal to 1. Then they only need to check its Hamming weight,
in a direct translation of what was done using codes.

The dimensions of the matrix 𝑨 ∈ Z𝑛×𝑚𝑞 are chosen so that this special ISIS
problem has more than one solution and another small 𝒙′ satisfying the equation
exists. Security is then proved with the following reasoning, the protocol is zero-
knowledge, therefore it is also witness indistinguishable (if the statement has more
than one witness the verifier cannot distinguish which one is being used by the
prover) and extracting two solutions (it is possible to efficiently extract two different
solutions because of the witness indistinguishability property) we would have
𝑨(𝒙 − 𝒙′) = 0, a solution to the SIS problem.

This scheme is also interesting because it exemplifies the versatility of Stern-based
protocols extending the original proposal to allow anonymous identification. Using
𝑁 public keys 𝒚𝑖 , and increasing 𝑁 times the proof size, the prover is able to prove
knowledge of one of the secret keys without revealing to which one of the public
keys it corresponds. The main idea involves user 𝑖 using a standard basis vector 𝒗 𝑖 ,
with zeroes everywhere except at index 𝑖 where there is a 1, so that they can use it
to vanish all the other public keys except their own with a matrix-vector product
where the matrix has the public keys as columns and the vector is the 𝑖th standard
basis vector 𝑨𝒙 = [𝒚1 | . . . |𝒚𝑁 ]𝒗 𝑖 = 𝒚𝑖 . Of course these standard basis vectors can
also be described as binary vectors with Hamming weight equal to 1, and therefore
the same proof techniques can be applied to hide which public key are they using in
the anonymous identification scheme permuting the vector 𝒗 𝑖 to hide the position of
the 1 while still ensuring it has Hamming weight 1.

A major improvement was done by Cayrel, Véron and El Yousfi when they
efficiently used 5 moves to reduce the soundness error to almost 1/2 in [38]. In this
case the new strategy does decrease the total proof size for practical parameters.
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Using 𝑞-ary codes instead of binary codes and an additional challenge 𝛼 ←r F𝑞

they can combine two of the commitments and only need to check two properties to
verify that 𝒕 = 𝑯𝒆 ∈ F𝑛−𝑘𝑞 with 𝒆 ∈ F𝑛𝑞 having a fixed low Hamming weight 𝑤.

(a) The syndrome of 𝒙 + 𝛼𝒆 is 𝒚 + 𝛼𝒕 .

(b) The Hamming weight of Π(𝒆) is 𝑤, for some Hamming weight preserving
application Π.

If these two properties are true for two different 𝛼 a valid witness could be
extracted (here we omit the details here). This implies that the soundness error is
approximately 1/2. In this case the scheme efficiently cuts back the communication
cost as it reduces the number of repetitions necessary to achieve thedesired soundness
without significantly increasing the size of a single repetition.

A permutation is not enough to completely hide a 𝑞-ary wordwith lowHamming
weight, since it would still reveal each of the symbols, and they need to design
a natural generalization. Let 𝜸 ∈ F𝑛𝑞∗ be a vector of non-zero integers modulo 𝑞,
and 𝜋 ∈ 𝔖𝑛 a permutation. They define the application Π𝜸,𝜋 : F𝑛𝑞 → F𝑛𝑞 that
permutes the coordinates with 𝜋 and then multiplies the result component-wise by
𝜸. This application completely randomizes vectors of known Hamming weights, is
compatible with addition and multiplication by integers and preserves Hamming
weights.

The prover starts choosing a masking element 𝒙 ←r F𝑛𝑞 , and computes a masking
syndrome 𝒚 ≔ 𝑯𝒙 ∈ F𝑛−𝑘𝑞 . They also sample uniformly random 𝜋 ←r 𝔖𝑛 and
𝜸 ←r F

𝑛
𝑞∗ . Next, they build only two commitments: 𝑐1 ←r Com(𝜋, 𝜸, 𝒚), 𝑐2 ←r

Com(Π𝜋,𝜸(𝒙),Π𝜋,𝜸(𝒆)).
The verifier chooses its integer challenge 𝛼←r F𝑛𝑞 and the prover computes and

sends 𝒈 ≔ Π𝜋,𝜸(𝒙 + 𝛼𝒆).
Finally, the verifier chooses to verify one of these two properties.

(a) The syndrome of Π−1
𝜋,𝜸(𝒈) is 𝒚 + 𝛼𝒕 .

(b) 𝒈 is constructed from Π𝜋,𝜸(𝒙) and 𝛼Π𝜋,𝜸(𝒆) such that Π𝜋,𝜸(𝒆) has Hamming
weight 𝑤.

Both properties combined imply the original properties, as the same 𝒈 is used
and was sent before the verifier chose which one should be verified. We are going to
considerably benefit from this idea in our own construction.

It is interesting to notice that reducing the soundness error does not always
yield to better efficiency, as was point out by Hu et al. in [62], who noticed that the
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approach from [38] is less efficient when 𝑞 = 3 or 𝑞 = 4, and showed that for these
two particular cases the 3-move and 2/3 soundness error protocol is superior.

This last proposal was soon ported to the lattice setting by Cayrel et al. in [36],
combining the ideas from both [38] and [68]. That is, even if working with lattice
problems as the ISIS they still relay on fixed Hamming weight binary vectors.

The next significant improvement was due to Ling et al. in [76], showing how
the original Stern protocol could be run several times in parallel to prove that a
solution has small infinity norm (and not only small Hamming weight). This, for the
first time, allowed proving knowledge of a general solution of a lattice problem, in
this case the ISIS problem. We recall here that previous lattice proposals have been
restricted to binary secrets or low-hamming weight secrets, and therefore needed
to rely on the witness indistinguishability and the existence of other solutions to
get a solution to the SIS problem. The main idea of [76] is to decompose the secret
in binary (with sign), 𝒆 =

∑
𝑗 2𝑗𝒆 𝑗 ∈ Z𝑚𝑞 , and run the protocol in parallel for each

𝒆 𝑗 ∈ {−1, 0, 1}𝑚 . An ad-hoc basis could be used, but we prefer to keep notation
simple and decompose the elements in binary assuming that the bound is a power
of 2.

In the original protocol the secret can be randomized with a permutation since
it has fixed weight. Here, each 𝒆 𝑗 has only −1, 0, 1, but the amount of each digit
reveals information about the secret. Therefore, the vectors have to be extended
tripling its size, adding blocks of −1’s, 0’s and 1’s at the end, so that they have the
same number of each digit, and only then are permuted. With one of the challenges
the permutation is removed and only the first third is considered, but the secret is
masked with a masking 𝒙. In other challenges the masking element is removed, but
the secret is extended and permuted and therefore reveals no information. As an
application they present an Identity-based identification scheme.

We also use this idea for our proposal, further optimizing it to avoid using −1 as
part of the decomposition, reducing the expansion factor from 3 to 2.

Many proposals have beenmade applying these techniques to instantiate different
primitives, as the Identity Based identification schemes of El Yousfi et al. in [49],
Yang et al. in [125] and Song et al. in [113], or the Batch Identification scheme by
Silva et al. [110].

The signature scheme that arises from transforming the identification protocol
into a non-interactive proof of the secret key associated with a public key can also be
naturally adapted to build threshold ring signatures, where 𝑡 out of 𝑁 signers have
to participate without revealing the specific 𝑡 subset of participants, again hiding
the identity of the participating subset by means of a permutation of a vector of size
𝑁 and Hamming weight 𝑡 (using a strategy similar to the anonymous identification
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of [68]). This approach is used by Aguilar-Melchor et al. in [2], Cayrel et al. in [37, 34],
Bettaieb and Schrek in [23] and Branco and Mateus in [31].

Even more exotic signature schemes have been built using Stern-based protocols,
as the undeniable signature scheme by Aguilar-Melchor et al. in [1], the blind
signature [25] by Blazy et al., the group signature [6] by Alamélou et al. or the
designated verifier signature [61] by Hongbin and Yan.

We end this section revisiting with more detail the commitment schemes with
Stern-based ZKPoKs for linear and multiplicative relations among committed
elements. The first proposal in this direction was [64], due to Jain et al.

The authors of [64] built a commitment scheme from the Learning Parity with
Noise (LPN) problem. This problem states that given 𝑨 ∈ F𝑘×𝑙2 a binary matrix, it is
hard to distinguish 𝑨𝒙 ⊕ 𝒆 from 𝒖, where 𝒙 ∈ F𝑙2 and 𝒖 ∈ F𝑘2 are uniformly random
binary vectors and 𝒆 ∈ F𝑘2 is a low-weight binary vector. It can be seen as a binary
version of the decisional LWE problem. In this paper they use a version where the
error distribution only outputs fixed weight errors, and call it xLPN. Security is
preserved as LPN can be reduced to xLPN.

Then, the commitment to a message 𝒎 ∈ F𝑛2 is 𝑨(𝒓 | |𝒎) ⊕ 𝒆, where 𝒓 ∈ F𝑙−𝑛2 is a
random binary vector and 𝒆 ∈ F𝑘2 is again a random low-weight error. The most
relevant feature of this commitment scheme is that it allows the committer to prove
that they know a valid opening of a commitment, or that the hidden messages of
different commitments satisfy any bitwise relation. To do this kind of proofs they
present a dual version of the Stern protocol from [116], this time with the proper
masking elements to achieve the zero-knowledge property that was not obtained in
the dual version of [120].

Linear relations are proven by running in parallel three executions of the knowl-
edge of opening protocol modifying the elements masking the messages so that they
also satisfy the same linear relation. This simple strategy is going to be used too
by [124, 19, 17] and us.

In order to prove any bitwise relation, 𝒎3 = 𝒎1 ◦ 𝒎2, they first extend the
messages to a size four times larger. For each index 𝑗 in messages𝒎1 and𝒎2 we have
a pair of bits (𝒎1[𝑗],𝒎2[𝑗]). They append at the end three additional pairs flipping
the first, the second or both bits

(
𝒎1[𝑗],𝒎2[𝑗]

)
,
(
𝒎1[𝑗],𝒎2[𝑗]

)
,
(
𝒎1[𝑗],𝒎2[𝑗]

)
. We

call �̃�1 , �̃�2 to this extended versions and define �̃�3 = �̃�1 ◦ �̃�2. Notice that since
each possible pair of bits appears the same amount of times once we permute these
messages the result does not reveal anything about the original ones. Following the
same strategy as the original Stern protocol some answers reveal the permutation
but keep the messages masked, while some others prove 𝜋(�̃�3) = 𝜋(�̃�1) ◦ 𝜋(�̃�2),
and only a combination of all the three answers gives us soundness.
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Notice the strategy is always the same, we expand the secrets so that we are able
to completely randomize them in different ways (permuting or adding masking
elements) that still preserve some properties, allowing us to remove one of the
randomization elements to reveal that one property holds while the other kind of
randomization hides everything else.

The previous scheme only allowed commitments to binarymessages, but its ideas
were soon adapted to the lattice setting by Xie et al. in [124]. This article transforms
the commitment scheme of [64] into a lattice proposal using a dual version of the
techniques from [76] (presenting new ideas since it is not a trivial translation).

Observe the RLWE problem is the right choice for this kind of constructions,
even if the proofs are slightly more cumbersome, as it admits any message 𝑚 ∈ 𝑅𝑞
as a secret, treating the small error 𝑒 ←r 𝜒 separately. This is not the case with the
ISIS problem, where the only secret is restricted to have small norm, preventing us
from computing arbitrary operations with the messages preserving this condition.

The most difficult part is proving multiplicative relations. Authors first present
a simple inefficient version directly following the ideas of [64]. In order to be able
to randomize the secrets they extend them with a 𝑞2 overhead so that each pair
(𝑎, 𝑏) ∈ Z𝑞 × Z𝑞 appears the same number of times.

They can reduce the overhead to 4 first decomposing the secrets in binary and
then using the same idea as before. However, this requires repeating the proof
log(𝑞)2 times, as we have decomposed each message in log(𝑞) binary messages, and
we have tomultiply them. The binary decomposition is never disclosed, because only
a commitment to each binary message has to be published, so a linear relation has to
be used to show that these commitments to binary vectors are indeed commitments
to a binary decomposition of the original committed message.

Binding property is obtained as two valid openings would imply the existence of
a lattice vector shorter than the shortest lattice vector.

Notice here that a binary decomposition was feasible when we were talking
about the error term since it is bounded and needs only a small overhead. A
binary decomposition for products of unbounded polynomials requires this log(𝑞)2

overhead. Our greatest contribution is going to be a newly designed proof that
allows us to avoid such overhead.

This prolific area has recently been mostly replaced by Fiat-Shamir with aborts
proposals, but we however think that it is still interesting to see how far can we
optimize the original Stern’s idea. In order to make faithful comparisons it is also
important to be committed to strict formal proofs of security that can be quantitatively
used to securely instantiate the lattice-based schemes belonging to this family, so
that the current performance of this alternative can be properly evaluated.
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3.3 Lattice-Based Commitment Scheme

Now we can define our proposal for a lattice-based commitment scheme. Any
message 𝑚 ∈ 𝑅𝑞 can be encoded as the coordinates of a point in an ideal lattice
defined by 𝒂 ∈ 𝑅𝑘𝑞 . To hide this lattice point 𝒂𝑚 ∈ ℒ(𝒂)we add a RLWE sample from
another lattice 𝒃𝑟 + 𝒆, where 𝒃 ∈ 𝑅𝑘𝑞 defines this other lattice ℒ(𝒃), the randomness
𝑟 ←r 𝑅𝑞 is chosen uniformly at random and the error term 𝒆 ←r 𝜒𝑘 is chosen from
the appropriate bounded discrete Gaussian distribution.

This structure 𝒂𝑚 + 𝒃𝑟 + 𝒆 is used by Benhamouda et al. in [19], and it is very
similar to the one proposed by Xie et al. in [124]. We however define a different set of
conditions designed to guarantee security and be able to latter design the companion
ZKPoKs of valid openings, linear and multiplicative relations.

The degree of the polynomial 𝑛 = 2𝜅 is a power of two, usually choosing 𝜅 = 9 or
𝜅 = 10. The modulus 𝑞 is a prime number such that 𝑞 ≡ 2𝑑 + 1 mod 4𝑑 for another
power of two 𝑑 smaller than 𝑛 (so that we can apply the efficient multiplication
algorithm discussed in Chapter 2). Integer 𝑘 would be the multiplicative overhead
(the length of 𝒂 as a vector of polynomials). And finally, as error distribution 𝜒 we
would use a bounded discrete Gaussian distribution 𝐷𝜎,𝐵 of parameter 𝜎 and bound
yet another power of two 𝐵. That is, the probability of each coefficient would be
proportional to that of a Gaussian distribution of standard deviation 𝜎 conditioned
to be in [−𝐵, 𝐵), as defined in Section 1.3.1. Recall we abuse notation and just write
∥𝒆∥∞ ≤ 𝐵.

Remember a commitment scheme is defined by a tuple of three algorithms Gen,
Com and Ver, as defined in Definition 1.6. While the commitment algorithm Com
we present in this chapter is formally the same as the one that was introduced
in [19] the verification Ver algorithm is much simpler and satisfies the standard
definitions, as our proofs of openings and relations do not require any relaxation
(the set of valid openings is exactly the set of openings obtained following the
commitment algorithm, which was not the case in [19]). Even if the commitment key
(𝒂 , 𝒃) ←r (𝑅𝑘𝑞)

2 is equivalent and follows again a uniform distribution in (𝑅𝑘𝑞)
2 the

public parameters pp ≔ (𝑛, 𝑞, 𝑑, 𝑘, 𝜎, 𝐵) are defined in a different manner and have
to satisfy less strict properties, so the key generation algorithm Gen is also different.
For that reason the following proposal shares structure with [19], but is a different
construction as a commitment scheme.

3.3.1 The Commitment Scheme

The following is a secure lattice-based commitment scheme under the assumption
that the decisional-RLWE is hard if the parameters are properly chosen. We define it
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here and prove its security in Section 3.3.2.

• Gen: the generator algorithm takes a security parameter 1𝜆 and outputs public
parameters pp ≔ (𝑛, 𝑞, 𝑑, 𝑘, 𝜎, 𝐵), a public key pk ≔ (𝒂 , 𝒃) ∈ (𝑅𝑘𝑞)

2, where
𝑅𝑞 = Z𝑞 [𝑥] /⟨𝑥𝑛 + 1⟩ and the noise distribution 𝜒 is defined as 𝐷𝑛

𝜎,𝐵.

(pk ≔ (𝒂 , 𝒃); pp ≔ (𝑛, 𝑞, 𝑑, 𝑘, 𝜎, 𝐵)) ←r Gen
(
1𝜆

)
• Com: the commitment algorithm takes as input public parameters pp ≔

(𝑛, 𝑞, 𝑑, 𝑘, 𝜎, 𝐵), a message 𝑚 ∈ 𝑅𝑞 and a public key pk ≔ (𝒂 , 𝒃) ∈ (𝑅𝑘𝑞)
2, and

produces a commitment 𝒄 ≔ 𝒂𝑚 + 𝒃𝑟 + 𝒆 and an opening 𝑜 ≔ (𝑟, 𝒆), where
𝑟 ←r 𝑅𝑞 and 𝒆 ←r 𝜒𝑘 .

(𝒄 ≔ 𝒂𝑚 + 𝒃𝑟 + 𝒆 , 𝑜 ≔ (𝑟, 𝒆)) ←r Com (𝑚; pk ≔ (𝒂 , 𝒃), pp)

• Ver: the verification algorithm takes as input public parameters pp ≔ (𝑛, 𝑞,
𝑑, 𝑘, 𝜎, 𝐵), a commitment 𝒄 ∈ 𝑅𝑘𝑞 , a message 𝑚 ∈ 𝑅𝑞 , an opening 𝑜 ≔ (𝑟, 𝒆)
with 𝑟 ∈ 𝑅𝑞 and 𝒆 ∈ 𝑅𝑘𝑞 , and a public key pk ≔ (𝒂 , 𝒃) ∈ (𝑅𝑘𝑞)

2, and accepts if

𝒄
?
= 𝒂𝑚 + 𝒃𝑟 + 𝒆 and ∥𝒆∥∞

?
≤ 𝐵, or rejects otherwise.

Ver :
{
(𝒄, 𝑚, 𝑜; pk, pp)

}
→

{
accept, reject

}
3.3.2 Security Proofs of the Commitment Scheme

Now we can see what conditions are sufficient for the commitment we have just
described in Section 3.3.1 to be secure.

Proposition 3.1 (Security of the commitment scheme). Provided that Gen outputs
public parameters pp ≔ (𝑛, 𝑞, 𝑑, 𝑘, 𝜎, 𝐵) satisfying the following conditions the previously
defined commitment scheme is secure, i.e., satisfies the standard notions of correctness,
binding, and hiding.

• 𝑞 ≡ 2𝑑 + 1 (mod 4𝑑), (3.1)

• 𝑘 ≥
𝜆 + 2𝑛 log(𝑞)

𝑛(log(𝑞)/𝑑 − log(4𝐵 − 1)) , (3.2)

• 𝑑 <
log(𝑞)

log(4𝐵 − 1) , (3.3)

• bitsec(RLWE𝑛 𝑞 𝑘 𝐷𝑛
𝜎
) ≥ 𝜆, (3.4)

• (𝐵 − 1)2
2𝜎2 log(𝑒) − log(𝑛 · 𝑘) ≥ 𝜆 + 1. (3.5)
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Proof. We can check that all standard properties are verified, the commitment has
correctness, it is perfectly binding except with negligible probability in the generation
of the public key, and it is computationally hiding under the assumption that the
decisional-RLWE is a hard problem.

• Correctness: if everybody is honest the verifier accepts the opening.

It immediately follows by the definitions of Com and Ver. The structure
validated by the verifier (a lattice point with the message as coordinates 𝒂𝑚
plus a RLWE sample 𝒃𝑟 + 𝒆) is exactly the same used to build the commitment
in the first place, and the additional condition on the norm of the noise term 𝒆

is ensured by the fact that we are already using as error distribution a truncated
discrete Gaussian so that this condition is always satisfied.

Notice that, as we are going to see when discussing the hiding property, the 𝜎

parameter is going to be chosen so that the probability of the tails from 𝐷𝑛
𝜎

is negligible in the security parameter 𝜆, so one could alternatively use non-
truncated discrete Gaussians at the expense of having correctness except with
negligible probability. We prefer to define the scheme with perfect correctness
and deal with the bounded tails when studying the hiding property because it
makes the analysis slightly simpler.

• Binding: a commitment can only be correctly opened to one message.

We can guarantee it similarly than [19], using a counting argument to ensure
that no two valid openings exist for a single commitment except with a very
small probability in the sampling of the commitment key. Provided that our
commitment definition does not need any kind of relaxation we are able to
provide a simpler proof with tighter bounds. The argument is also generalized
to the fact that 𝑥𝑛 + 1 could factorize into 𝑑 irreducible polynomials, for 𝑑 any
power of two smaller or equal than 𝑛, instead of only considering the case
𝑑 = 2. We also directly bound the undesired probability by a specific 2−𝜆,
rather than proving that it is asymptotically negligible in 𝑛, which helps the
subsequent work of finding suitable parameters for a particular target security
level.

The binding property proof of [19] relies on the algebraic structure of 𝑅𝑞 =

Z𝑞 [𝑥] /⟨𝑥𝑛 + 1⟩. This structure heavily depends on the modulus 𝑞, as it has an
impact on the factorization of 𝑥𝑛 + 1, which is irreducible over the integers but
splits into two irreducible polynomials of degree 𝑛/2 when 𝑞 ≡ 3 (mod 8) [115].

However, as wewant to take advantage of the efficient multiplication algorithm
described in Chapter 2 we have to use a different condition on the modulus.
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We have seen that
𝑞 ≡ 2𝑑 + 1 (mod 4𝑑) (eq. (3.1))

implies via Theorem 2.32 that 𝑥𝑛 + 1 splits into 𝑑 polynomials
∏𝑑−1

𝑗=0

(
𝑥𝑛/𝑑 − 𝛼 𝑗

)
where each 𝑥𝑛/𝑑 − 𝛼 𝑗 is irreducible modulo 𝑞.

We can similarly use this alternative attribute to prove the binding property
for our construction. Furthermore, we want to prove that, with overwhelming
probability over the choice of 𝒂 , 𝒃 ∈ 𝑅𝑘𝑞 , we have that

accept← Ver (𝒄, 𝑚′, 𝑜′; pk, pp)
accept← Ver (𝒄, 𝑚′′, 𝑜′′; pk, pp)

}
=⇒ 𝑚′ = 𝑚′′.

Two accepted openings to the same commitment would be

𝒄 = 𝒂𝑚′ + 𝒃𝑟′ + 𝒆′,

𝒄 = 𝒂𝑚′′ + 𝒃𝑟′′ + 𝒆′′.

We have that 𝒂(𝑚′ − 𝑚′′) + 𝒃(𝑟′ − 𝑟′′) + (𝒆′ − 𝒆′′) = 0, and we can rename the
differences and write 𝒂𝑚 + 𝒃𝑟 + 𝒆, where 𝑚 ≠ 0 if 𝑚′ ≠ 𝑚′′ and the elements
from 𝒆 belong to the interval [−2𝐵 + 1, 2𝐵 − 1] if ∥𝒆′∥∞ , ∥𝒆′′∥∞ ≤ 𝐵. However,
we are going to see that, with overwhelming probability over the choice of 𝒂
and 𝒃, and provided that 𝑞 ≡ 2𝑑 + 1 (mod 4𝑑), 𝑑 is small enough and 𝑘 is large
enough, there are no 𝑚, 𝑟 ∈ 𝑅𝑞 and 𝒆 ∈ 𝑅𝑘𝑞 such that 𝒂𝑚 + 𝒃𝑟 + 𝒆 = 0 holds, 𝒆
is small and 𝑚 ≠ 0.

For fixed 𝑚, 𝑟 and 𝒆 we count the proportion of pairs (𝒂 , 𝒃) for which the
equality holds. Then, in order to estimate the overall probability of choosing a
pair (𝒂 , 𝒃) such that there exists a solution, we use a union bound adding up
all previous probabilities for any possible triplet (𝑚, 𝑟, 𝒆). We finally see that it
is negligible if parameters are carefully selected.

As we said, if we consider fixed 𝑚, 𝑟 and 𝒆, for each 𝒃 we have 𝒂𝑚 = −𝒃𝑟 − 𝒆.
In each of the 𝑘 components 𝑎𝑖𝑚 = −𝑏𝑖𝑟 − 𝑒𝑖 . 𝑞 ≡ 2𝑑 + 1 (mod 4𝑑) implies that
𝑥𝑛 + 1 splits into 𝑑 irreducible polynomials 𝑝1(𝑥), 𝑝2(𝑥), . . . , 𝑝𝑑(𝑥) of degree
𝑛/𝑑. We know that 𝑚 . 0 mod 𝑥𝑛 + 1, therefore, 𝑚 . 0 mod 𝑝 𝑗(𝑥) for some
𝑗 ∈ {1, . . . , 𝑑}.

For this case we know that choosing different 𝑎𝑖 we have that 𝑎𝑖𝑚 takes at
least 𝑞𝑛/𝑑 different values (mod 𝑝 𝑗(𝑥)). There are 𝑞𝑛/𝑑 equivalence classes
(mod 𝑝 𝑗(𝑥)) and only one of them is −𝑏𝑖𝑟 − 𝑒𝑖 (mod 𝑝 𝑗(𝑥)), therefore at most



122 3.3. Lattice-Based Commitment Scheme

1/𝑞𝑛/𝑑 of the possible 𝑎𝑖 hold the equation. As this is independently true
for each 𝑖, we have that the probability of (𝒂 , 𝒃) to fit the equation for these
particular 𝑚, 𝑟 and 𝒆 is at most 1/𝑞𝑛𝑘/𝑑.

If we want to consider the possibility that there exists a solution, we can bound
the total probability with a union bound. There are less than 𝑞𝑛 possible 𝑚, 𝑞𝑛

possible 𝑟 and (4𝐵 − 1)𝑛𝑘 possible 𝒆. Therefore, if (𝒂 , 𝒃) ←r (𝑅𝑘𝑞)
2 and we want

to impose that the commitment is binding except with a probability smaller
than 2−𝜆 we have

Pr
(𝒂 ,𝒃)

∃𝑚, 𝑟, 𝒆
��������

𝒂𝑚 + 𝒃𝑟 + 𝒆 = 0
𝒆 ∈ [−2𝐵 + 1, 2𝐵 − 1]𝑘

𝑚 ≠ 0

 ≤
𝑞2𝑛(4𝐵 − 1)𝑛𝑘

𝑞𝑛𝑘/𝑑
≤ 2−𝜆.

Taking logarithms, the condition that has to be satisfied is

𝑛(2 log(𝑞) + 𝑘(log(4𝐵 − 1) − log(𝑞)/𝑑)) ≤ −𝜆.

If we ensure (log(4𝐵 − 1) − log(𝑞)/𝑑) is negative then we only need to choose

𝑘 ≥
𝜆 + 2𝑛 log(𝑞)

𝑛(log(𝑞)/𝑑 − log(4𝐵 − 1)) . (eq. (3.2))

Notice here the first condition just imposes the maximum value of 𝑑 we can
still use, preserving the binding property,

𝑑 <
log(𝑞)

log(4𝐵 − 1) . (eq. (3.3))

There is an important trade-off in the result of Theorem 2.32, the more
factors the faster the multiplication of ring elements can be implemented
(the optimum is achieved when 𝑥𝑛 + 1 splits into linear factors, and we can
apply FFT multiplication), but achieving the binding property becomes harder.
Considering that, we might end up with a larger commitment size or, if 𝑑 is too
large, we might end up not being able to find a secure set of parameters at all.

The smaller the error bound 𝐵 gets the more options we have for this trade-off.
As larger bounds also increase the size of the proof, our goal would be to find
the smaller bound 𝐵 that still ensures the hiding property.

• Hiding: a well constructed commitment 𝒄 does not leak any relevant informa-
tion about the message 𝑚.
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It is computationally hiding as 𝒃𝑟 + 𝒆 are 𝑘 RLWE samples, indistinguish-
able from independent uniformly random polynomials under the decisional
RLWE𝑛 𝑞 𝑘 𝐷𝑛

𝜎 𝐵
assumption. Any adversary able to break the hiding property

would then also be able to solve the RLWE𝑛 𝑞 𝑘 𝐷𝑛
𝜎 𝐵

problem (as seen in Propo-
sition 1.49). Notice that we choose parameters so that the probability that
𝒆 ←r 𝐷𝑛𝑘

𝜎 has ∥𝒆∥∞ > 𝐵 is negligible and then original and conditioned
probability distributions are statistically indistinguishable.

First of all we have to check that the underlying computational problem is
hard enough. We denote by bitsec(RLWE𝑛 𝑞 𝑘 𝜒) the number of security bits, i.e.
2bitsec(RLWE𝑛 𝑞 𝑘 𝜒) would be a lower bound on the number of operations required
to solve the problem. One can then study the asymptotic behavior, as we know
the currently most efficient algorithms for the usual instantiations of the RLWE
problem are still exponential, and just ensure that 𝑞 and 𝜒 are chosen so that
the usual reductions can be applied to get bitsec(RLWE𝑛 𝑞 𝑘 𝜒) ∈ Ω(𝜆).

For practical purposes the asymptotics are not enough because we do care
about the constant factors that might determine if the scheme can or cannot be
broken in practice. For that reason we directly estimate bitsec using Albrecht
et al. Lattice Estimator* [8].

Let us take a moment to discuss how the noise terms are treated. On the one
hand, regarding the hiding property, we are concerned with the indistinguisha-
bility of RLWE samples from uniform polynomials and, as we have seen in
Section 1.3.7, we mainly have reductions from the decisional-RLWE problem to
presumably hard lattice problems when the noise distribution 𝜒 is a Gaussian,
and discrete Gaussians are the most well-studied noise distributions. On the
other hand, regarding both correctness and binding, we can see that is not
enough. The verification algorithm usually boils down to check that the com-
mitment was correctly computed using the revealed randomness 𝑟 and 𝒆. We
then found two issues that arise from the noisy nature of the lattice problems.
A correctly computed commitment would imply that the error term was sampled
from 𝜒𝑘 , but any vector of polynomials 𝒗 ∈ 𝑅𝑘𝑞 could be, even if with a very
small probability, a sample from 𝜒𝑘 . Nevertheless, the fact that 𝒆 was small
played an essential role when we proved that the equation 𝒄 = 𝒂𝑚 + 𝒃𝑟 + 𝒆

had a unique solution for 𝑚, implying the binding property (without this
restriction finding multiple openings would be trivial just isolating 𝒆). The
only possibility we have to check it was correctly computed is to verify some
condition on 𝒆 that is fulfilled with overwhelming probability when 𝒆 does

* Commit f9f4b3c69d5be6df2c16243e8b1faa80703f020c from github.com/malb/lattice-estimator

github.com/malb/lattice-estimator
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come from a discrete Gaussian and, at the same time, ensures a unique solution
exists so that the binding property holds. This checkable property is just a
bound on the infinity norm ∥𝒆∥∞ ≤ 𝐵, as we have seen.

What we have left is to ensure that the decisional-RLWE problem remains
hard even if we use a slightly different noise distribution because we condition
the infinity norms to be bounded by 𝐵. As we have seen in Proposition 1.53
indistinguishability is almost preserved if we substitute one distribution, just
increasing the bound on the advantage by the SD. We have also seen in
Proposition 1.55 that the SD when we condition to an event is the probability
of that event not happening, and how to bound probabilities and distances
between truncated or not multivariate discrete Gaussians in Propositions 1.63
and 1.64.

We can particularize the definition of the advantage of an adversary against the
hiding property, the ability they would have distinguishing two commitments
to two different messages chosen by themself. More formally

Adv
hid
(𝒜) =

����������������
Pr


𝑏𝒜 = 𝑏

����������������

((𝒂 , 𝒃); pp ≔ (𝑛, 𝑞, 𝑑, 𝑘, 𝜎, 𝐵)) ←r Gen(1𝜆)
(𝑚0 , 𝑚1 , aux) ←r 𝒜1((𝒂 , 𝒃), pp, 1𝜆),

𝑏 ←r {0, 1},
𝑟 ←r 𝑅𝑞 , 𝒆 ←r 𝐷

𝑛𝑘
𝜎,𝐵

𝒄 = 𝒂𝑚𝑏 + 𝒃𝑟 + 𝒆

𝑏𝒜 ←r 𝒜2(𝒄, (𝒂 , 𝒃), pp, aux, 1𝜆)


− 1/2

����������������
and we can apply Corollary 1.57 to relate it to the probability of the truncated
Gaussian tails and the RLWE problem with a standard non-truncated discrete
Gaussian distribution

≤ Pr
[
∥𝒆∥∞ > 𝐵

�� 𝒆 ←r 𝐷
𝑛𝑘
𝜎

]

+

����������������
Pr


𝑏𝒜 = 𝑏

����������������

((𝒂 , 𝒃); pp ≔ (𝑛, 𝑞, 𝑑, 𝑘, 𝜎, 𝐵)) ←r Gen(1𝜆)
(𝑚0 , 𝑚1 , aux) ←r 𝒜1((𝒂 , 𝒃), pp, 1𝜆),

𝑏 ←r {0, 1},
𝑟 ←r 𝑅𝑞 , 𝒆 ←r 𝐷

𝑛𝑘
𝜎

𝒄 = 𝒂𝑚𝑏 + 𝒃𝑟 + 𝒆

𝑏𝒜 ←r 𝒜2(𝒄, (𝒂 , 𝒃), pp, aux, 1𝜆)


− 1/2

����������������
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which we know by Proposition 1.49 that is equivalent to the advantage of a
similarly powerful (performs the same plus a constant number of operations)
adversary ℬ against the decisional RLWE𝑛 𝑞 𝑘 𝐷𝑛

𝜎
problem

≤ Pr
[
∥𝒆∥∞ > 𝐵

�� 𝒆 ←r 𝐷
𝑛𝑘
𝜎

]
+max
ℬ

{
𝐴𝑑𝑣RLWE𝑛 𝑞 𝑘 𝐷𝑛𝜎

(ℬ)
}
.

Observe we cannot apply here the usual strategy of bounding each of the
two terms by some 𝜖/2 so that the total advantage is bounded by 𝜖, because
we cannot really be such precise for the second term. The assumption is
computational, we can either prove only asymptotic claims (the advantage
𝐴𝑑𝑣RLWE𝑛 𝑞 𝑘 𝐷𝑛𝜎

for polynomial adversaries is negligible in 𝜆 for sufficiently
large parameters, but the actual constants depend on the polynomial that
bounds the running time of the adversary) or make it so solving it with
overwhelming probability takes 2𝜆 operations and expect that there is no
strange trade-off between computations and success probability, and therefore
any algorithm with a running time significantly lower than 2𝜆 would only
achieve a sufficiently small success probability. The first part is simpler, as it
is inherently a probability condition, and can be directly addressed to ensure
it is below a certain threshold 2−𝜆. This approach is not entirely satisfactory,
but it is the best we can do to mix computational assumptions with statistical
statements.

We follow the second procedure ensuring maxℬ
{
𝐴𝑑𝑣RLWE𝑛 𝑞 𝑘 𝐷𝑛𝜎

(ℬ)
}
is insignif-

icant by imposing
bitsec(RLWE𝑛 𝑞 𝑘 𝐷𝑛

𝜎
) ≥ 𝜆, (eq. (3.4))

and using the auxiliary functions that were discussed in Section 1.4.4 to find
sufficient conditions for bounding the tail probability

Pr
[
∥𝒆∥∞ ≤ 𝐵

��� 𝒆 ←r 𝐷
𝑛𝑘
𝜎

]
≥ 1 − 2−𝜆. (eq. (3.5’))

We explicitly defined vecBoundedPrFromBoundedPr in Proposition 1.64 so that
if we find 𝑎 such that Pr

[
𝑒 ∉ [−𝐵, 𝐵)

�� 𝑒 ←r 𝐷𝜎
]
≤ 2−𝑎 then

− log
(
Pr

[
∥𝒆∥∞ > 𝐵

��� 𝒆 ←r 𝐷
𝑛𝑘
𝜎

] )
≥ vecBoundedPrFromBoundedPr (𝑎, 𝑛𝑘) ,

therefore it would be sufficient to ensure that

vecBoundedPrFromBoundedPr (𝑎, 𝑛 · 𝑘) ≥ 𝜆.
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We precisely defined boundedPr in Proposition 1.63 so that

log
(
Pr

[
| 𝑒 | > 𝐵

��� 𝑒 ←r 𝐷𝜎
] )
≤ −boundedPr(𝜎, 𝐵).

Combining it with the previous inequality we find that it is sufficient to ask for

vecBoundedPrFromBoundedPr (boundedPr(𝜎, 𝐵 − 1), 𝑛 · 𝑘) ≥ 𝜆,

as it implies eq. (3.5’).

Recall that we use 𝐵 − 1 as the event we want to consider is given by the error
terms belonging to [−𝐵, 𝐵), which is ensured if they belong to [−(𝐵 − 1), 𝐵 − 1].
A more tight analysis of this probability would not significantly change the
final parameters.

Expanding this last expression what we get is

(𝐵 − 1)2
2𝜎2 log(𝑒) − log(𝑛 · 𝑘) ≥ 𝜆 + 1, (eq. (3.5))

that is what we asked in the first place. □

We have defined a commitment that is perfectly binding with overwhelming
probability over the sampling of the public key. In the following section we are
going to see that some steps of the proofs for the soundness properties, and some
computations conducted by the verifier of the ZKPoKs that we are going to present,
rely on the perfectly binding property of the commitment. We can safely assume that
the involved public keys define a binding commitment because the contrary only
happens with negligible probability, bellow the 2−𝜆 threshold we have established.
Any adversary with a success probability significantly greater than the soundness
error would still obtain a success probability sufficiently above that error if only
public keys defining binding commitments are used, because we are conditioning
to an event that happens except with a probability lower than 2−𝜆, and the success
probability could only decrease by such amount (and recall the standard soundness
definition does not request the success probability of the extractor to be exactly the
same of the advantage of the adversary, it only has to be proportional).

In practice, we might even ensure that some condition implied by the binding
property holds, discarding the pair of keys in the overwhelmingly unlikely event
it did not hold. In that case a rigorous analysis would then need to reevaluate the
hiding property, as we would again be considered a distribution slightly different
from ℛ𝑠,𝜒, because we would be substituting the distribution that samples the 𝒂

and 𝒃 vectors of polynomials from the public key. Once again we could see that
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the success probability of any adversary could only be incremented at most by 2−𝜆.
This distribution is only used once, at the time of the key generation, unlike the
error sampling from a truncated Gaussian that is used every time a commitment is
computed. In any case, if one wants to meticulously bound all terms that come from
statistical discussions by 2−𝜆, it would always be possible to rewrite the conditions
ensuring that the commitment is binding except with a probability smaller than
2−(𝜆+1) and analogously ensuring that the probability of the truncated tails of the
discrete Gaussian is again below 2−(𝜆+1), so that both bounds add up to 2−𝜆.

3.4 Interactive Zero-Knowledge Proofs of Knowledge

A commitment scheme is a fairly simple primitive that can be easily instantiated
from even more basic primitives such as one-way functions. The potential of the
proposed scheme arises from the fact that its usefulness as a building block for more
complex protocols can be broadened with several ZKPoKs.

The opening ZKPoK that we are going to introduce in Section 3.4.1 allows a
prover 𝒫 to convince a verifier 𝒱 of the fact that they know a valid opening for
a given commitment without revealing any information about the opening itself
during the interactive protocol

〈
𝒫 ,𝒱

〉
.

This kind of proof is interesting because showing the commitments are well-
formed is usually the first step of more intricate protocols that then manipulate the
commitments or work with the committed values (for example using commit-and-
proof strategies). It is also relevant because it serves as foundation for the other two
ZKPoKs presented in Sections 3.4.2 and 3.4.3. In these two the prover is able to
demonstrate knowledge of valid openings of three commitments to three messages
𝑚1 , 𝑚2 , 𝑚3 ∈ 𝑅𝑞 satisfying 𝑚3 = 𝜆1𝑚1 + 𝜆2𝑚2 for given 𝜆1 ,𝜆2 ∈ 𝑅𝑞 or 𝑚3 = 𝑚1 · 𝑚2

respectively, again without revealing any additional information.
Notice that our commitment scheme is not homomorphic, that is, the sum of two

commitments does not always form a valid commitment to the sum of the committed
values because the norm of the added noise terms might exceed the bound. This is
even more true for a linear combination of two commitments as the error term of
the sum would also be a linear combination of the original error terms, losing any
control on its bound. Nevertheless, one can always build a third commitment to this
linear combination sampling fresh randomness and prove the linear relation holds
using the corresponding ZKPoK. Even more delicate is the product case, but we can
still manage to do the same, build a fresh commitment to the product and prove that
the relation is satisfied, taking care of the crossed terms that would appear when
multiplying the secret messages while masked.



128 3.4. Interactive Zero-Knowledge Proofs of Knowledge

3.4.1 Knowledge of a Valid Opening

We first propose an Interactive Honest-Verifier Zero-Knowledge Proof of Knowledge
of a valid opening for the commitment presented before. The difficult part is to prove
that the error term is small enough, for which we adapt Stern-based protocols to this
particular RLWE based commitment. The main idea is to prove that coefficients of
𝒆 are small by proving they have a binary decomposition with the desired limited
length. While the SDP and the ISIS problem are very similar, in order to prove
that the commitment has been constructed with a RLWE sample we need several
auxiliary elements. What we obtain is a 5-move protocol with a soundness error of
(𝑞 + 1)/2𝑞, really close to 1/2 as 𝑞 is usually a large prime.

Let 𝒂 ≔ (𝑎1 , . . . , 𝑎𝑘), 𝒃 ≔ (𝑏1 , . . . , 𝑏𝑘) ∈ 𝑅𝑘𝑞 , a message 𝑚 ∈ 𝑅𝑞 , a random element
𝑟 in 𝑅𝑞 and noise 𝒆 ∈ 𝑅𝑘𝑞 a vector of polynomials with norm smaller than 𝐵. We want
to prove knowledge of a valid opening for the commitment 𝒄 ≔ 𝒂𝑚 + 𝒃𝑟 + 𝒆.

Notice the first task we encounter characterizing the shortness of 𝒆 by the length
of its binary decomposition is to fix how to define this binary decomposition giving
that we use

{
−⌊𝑞/2⌋ , . . . , ⌊𝑞/2⌋

}
as representatives for Z𝑞 . To avoid any nuisance

with negative numbers, a vector of polynomials 𝒆 ∈ 𝑅𝑘𝑞 with small coefficients, all of
them in the interval [−𝐵, 𝐵), can be transformed into another vector of non-negative
small coefficients by adding 𝐵 to each of its coefficients. Let B be the vector of 𝑘
polynomials from 𝑅𝑘𝑞 that has all its coefficients equal to the bound 𝐵, so 𝒆 + 𝑩 has
all its coefficients positive.

Then we can decompose 𝒆 + 𝑩 into log(𝐵) + 1 binary vectors of size 𝑛𝑘, with
𝑘 blocks of 𝑛 bits, that represent the 𝑗th bits of the binary decomposition of the
coefficients of each of the polynomials. We would like to be able to randomize them
to hide all information but the fact that the norm of the original polynomials is
bounded by 𝐵. To do so we first extend each vector doubling its size and adding one
block of 0 followed by one block of 1 so that they have the same number of each.
That way permuting vectors would completely hide any information (as it was done
in the original Stern protocol with fixed Hamming weight vectors).

We denote by expand the function that takes as input a vector of polynomials
𝒆 with all its coefficients in [−𝐵, 𝐵) and outputs log(𝐵) + 1 vectors 𝒆′

𝑗
following the

previously described procedure.
We denote by 𝔅𝑛 ⊂ {0, 1}2𝑛 the set of binary strings of length 2𝑛 with exactly 𝑛

zeroes and 𝑛 ones, so that correctly computed 𝒆′
𝑗
belong to 𝔅𝑛𝑘 .

This extension is an adaptation of the idea from Ling et al. in [76] to the dual ring
setting (we shift the error to only have 0’s and 1’s, while their protocol also included
−1’s, this way we only have a factor two overhead instead of a factor three).

Then we also need to define an auxiliary function that allows us to go back from
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vectors to polynomials. Let 𝜙 be the function that takes as input a long vector of size
2𝑛𝑘 from Z2𝑛𝑘

𝑞 , discards the second half, divides it in 𝑘 blocks and outputs a vector
of 𝑘 polynomials in 𝑅𝑘𝑞 that has as coefficients the elements from each of the blocks.

That way if {𝒆′
𝑗
} 𝑗 ← expand(𝒆) then 𝒆 = 𝜙(∑log(𝐵)

𝑗=0 2𝑗𝒆′
𝑗
) − 𝑩.

With this notation we can define an interactive protocol to prove knowledge of a
valid opening for commitment 𝒄. The complex structure of the commitment scheme
requires more subtle details than the original Stern proposal, but the underlying
intuition is the same. We want to prove knowledge of some elements 𝑚, 𝑟, {𝒆′

𝑗
} 𝑗 , of

some masking elements 𝜋 ∈ 𝔖2𝑛𝑘 , 𝜇, 𝜌 ∈ 𝑅𝑞 , 𝒇 ∈ Z2𝑛𝑘
𝑞 and of a vector of polynomials

𝒚 ∈ 𝑅𝑘𝑞 such that:

(a) 𝜋 𝑗(𝒆′𝑗) ∈ 𝔅𝑛𝑘 ,

(b) 𝒚 = 𝒂𝜇 + 𝒃𝜌 + 𝒇 ,

(c) 𝒚 + 𝒄 = 𝒂(𝜇 + 𝑚) + 𝒃(𝜌 + 𝑟) + ( 𝒇 + 𝒆), where 𝒆 = 𝜙(∑𝑗 2𝑗𝒆′𝑗) − 𝑩.

All three properties imply knowledge of a valid opening for the commitment.
However, provided that the masking elements are chosen uniformly at random, just
from any two of them no information about the opening could be obtained, as the
masking elements hide the opening elements and permutations 𝜋 𝑗 completely hide
the information about each 𝒆′

𝑗
(in an analogous way as the original Stern protocol).

In order to improve efficiency we can add one more round where we ask the verifier
for an additional challenge 𝛼 ∈ Z𝑞 and then prove only these two properties:

(a) 𝜋 𝑗(𝒆′𝑗) ∈ 𝔅𝑛𝑘 ,

(b’) 𝒚 + 𝛼𝒄 = 𝒂(𝜇 + 𝛼𝑚) + 𝒃(𝜌 + 𝛼𝑟) + ( 𝒇 + 𝛼𝒆), where 𝒆 = 𝜙(∑𝑗 2𝑗𝒆′𝑗) − 𝑩.

To prove these properties we follow the general commit-and-choose strategy where
the prover starts committing to the relevant elements and then the verifier chooses
which or how these commitments should be opened. As these elements were
committed in the first round (using an auxiliary commitment scheme) before 𝛼

was chosen we can ensure with high probability that property (b’) implies both
properties (b) and (c). This is an adaptation of the idea used in [38] and allows us to
reduce the soundness error from 2/3 to almost 1/2.

With this intuition inmindwe can provide our Protocol 3.1 for proving knowledge
of valid openings. Let (aCom, aVer) denote an auxiliary commitment scheme (one
could of course use the same commitment scheme we are analyzing, but since we do
not need any special property nor the existence of companion ZKPoKs we might as
well use a simpler and more efficient construction).
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The prover 𝒫 chooses log(𝐵)+1 permutations 𝜋0 , . . . ,𝜋log(𝐵) ←r 𝔖2𝑛𝑘 , log(𝐵)+1
random vectors 𝒇 0 , . . . , 𝒇 log(𝐵) ←r Z2𝑛𝑘

𝑞 and 2 random polynomials 𝜇, 𝜌←r 𝑅𝑞 .
The polynomials 𝜇, 𝜌 will be used to mask 𝑚 and 𝑟 respectively, while the

permutations 𝜋 𝑗 and the vectors 𝒇 𝑗 will be used to mask the expanded error terms
{𝒆′

𝑗
} 𝑗 ← expand(𝒆) (the previously introduced 𝒇 would be 𝜙(∑𝑗 2𝑗 𝒇 𝑗)). If the

verifier chooses to remove the masking vectors 𝒇 𝑗 we could show that the shortness
property (a) holds, while removing the permutations we would be able to show that
the commitment had the proper structure (b’).

The prover 𝒫 starts computing the following commitments,

𝑐1 ←r aCom
(
{𝜋 𝑗} 𝑗 , 𝒂𝜇 + 𝒃𝜌 + 𝜙(∑𝑗 2𝑗 𝒇 𝑗)

)
,

𝑐2 ←r aCom
(
{𝜋 𝑗( 𝒇 𝑗)} 𝑗 , {𝜋 𝑗(𝒆′𝑗)} 𝑗

)
.

The prover sends these commitments to the verifier. The verifier𝒱 chooses an
integer 𝛼 ∈ Z𝑞 and sends it to the prover as first challenge. Then the prover computes

𝒈 𝑗 ≔ 𝜋 𝑗( 𝒇 𝑗 + 𝛼𝒆′𝑗).

The prover sends {𝒈 𝑗} 𝑗 to the verifier. The verifier𝒱 continues choosing a random
bit 𝑏 ←r {0, 1} and sends it to the prover. Based on this second challenge the prover
opens the first or the second commitment.

Observe that we have called 𝜋 to the first elements committed in 𝑐1, but a
malicious prover could claim that something different is the committed value when
presenting an opening. Provided that the auxiliary commitment is secure, it would
be discovered by the verifier when it fails the auxiliary commitment verification. As
we cannot assume the prover would be honest and to point out that subtlety, as we
said, we are going to denote by 𝜋 the element that 𝒫 discloses if the protocol says it
should be 𝜋, as it cannot be assumed 𝜋 = 𝜋, and analogously for any other element.

Case 𝑏 = 0.
– 𝒫 reveals {𝜋 𝑗 ≔ 𝜋 𝑗} 𝑗 , �̃� ≔ 𝒂𝜇 + 𝒃𝜌 + 𝜙(∑𝑗 2𝑗 𝒇 𝑗), �̃� ≔ 𝜌 + 𝛼𝑟 and the opening
of 𝑐1 to ({𝜋 𝑗} 𝑗 , �̃�).

–𝒱 checks 𝑐1. They also compute 𝒛 ≔ �̃� + 𝛼(𝒄 + 𝑩) − 𝒃 �̃� − 𝜙(∑𝑗 2𝑗𝜋−1
𝑗
(𝒈 𝑗)) and

check that 𝒛
?∈ ℒ(𝒂), i.e., that there exists a 𝑡 ∈ 𝑅𝑞 such that 𝒛 = 𝒂𝑡.

Case 𝑏 = 1.
– 𝒫 reveals {�̃�′𝑗 ≔ 𝜋 𝑗(𝒆′𝑗)} 𝑗 and the opening of 𝑐2 to ({𝒈 𝑗 − 𝛼�̃�′𝑗} 𝑗 , {�̃�

′
𝑗} 𝑗).

–𝒱 checks 𝑐2 and that each �̃�′𝑗 belongs to 𝔅𝑛𝑘 .
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ZKP
[
𝑚, 𝑟, 𝒆

��� 𝒄 = 𝒂𝑚 + 𝒃𝑟 + 𝒆 , ∥𝒆∥∞ ≤ 𝐵
]

(3.6)

Protocol 3.1 Knowledge of a Valid Opening
𝒫 ((𝒂 , 𝒃), 𝒄;𝑚, 𝑟, 𝒆) 𝒱 ((𝒂 , 𝒃), 𝒄)

1: 𝒆′0 , . . . , 𝒆
′
log(𝐵) ← expand(𝒆)

2: 𝜋0 , . . . ,𝜋log(𝐵) ←r 𝔖2𝑛𝑘
3: 𝒇 0 , . . . , 𝒇 log(𝐵) ←r Z2𝑛𝑘

𝑞

4: 𝜇, 𝜌←r 𝑅𝑞
5: (𝑐1 , 𝑜1) ←r aCom

(
{𝜋 𝑗} 𝑗 , 𝒂𝜇 + 𝒃𝜌 + 𝜙(∑𝑗 2𝑗 𝒇 𝑗)

)
6: (𝑐2 , 𝑜2) ←r aCom

(
{𝜋 𝑗( 𝒇 𝑗)} 𝑗 , {𝜋 𝑗(𝒆′𝑗)} 𝑗

)
𝑐1 ,𝑐2−−−−−−−−−−−→

7: 𝛼←r Z𝑞
𝛼←−−−−−−−−−−−

8: for 𝑗 ∈ 0, . . . , log(𝐵) do
9: 𝒈 𝑗 ≔ 𝜋 𝑗( 𝒇 𝑗 + 𝛼𝒆′

𝑗
)

{𝒈 𝑗} 𝑗
−−−−−−−−−−−→

10: 𝑏 ←r {0, 1}
𝑏←−−−−−−−−−−−

11: if 𝑏 = 0 then
12: for 𝑗 ∈ 0, . . . , log(𝐵) do
13: 𝜋 𝑗 ≔ 𝜋 𝑗

14: �̃� ≔ 𝒂𝜇 + 𝒃𝜌 + 𝜙(∑𝑗 2𝑗 𝒇 𝑗)
15: �̃� ≔ 𝜌 + 𝛼𝑟
16: �̃� ≔ 𝑜1
17: ans ≔ ({𝜋 𝑗} 𝑗 , �̃�, �̃� , �̃�)
18: if 𝑏 = 1 then
19: for 𝑗 ∈ 0, . . . , log(𝐵) do
20: �̃�′𝑗 ≔ 𝜋 𝑗(𝒆′𝑗)
21: �̃� ≔ 𝑜2
22: ans ≔ ({�̃�′𝑗} 𝑗 , �̃�)

ans−−−−−−−−−−−→
23: if 𝑏 = 0 then
24:

?
aVer

(
𝑐1 , ({𝜋 𝑗} 𝑗 , �̃�), �̃�

)
25: 𝒛 ≔ �̃� + 𝛼(𝒄 + 𝑩) − 𝒃 �̃� − 𝜙(∑𝑗 2𝑗𝜋−1

𝑗
(𝒈 𝑗))

?∈ ℒ(𝒂)
26: if 𝑏 = 1 then
27:

?
aVer

(
𝑐2 , ({𝒈 𝑗 − 𝛼�̃�′𝑗} 𝑗 , {�̃�

′
𝑗} 𝑗), �̃�

)
28: for 𝑗 ∈ 0, . . . , log(𝐵) do

29: �̃�′𝑗
?∈ 𝔅𝑛𝑘
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Completeness

If 𝒫 knows a valid witness and both the prover and the verifier correctly follow
the protocol then the verifier always accepts at the end, as all relations hold by
construction.

The commitment verifications come from the correctness of the auxiliary commit-
ment scheme and the fact that the 𝒈 𝑗 were correctly computed using the previously
committed 𝒇𝒋 and 𝒆′

𝑗
(the fact that this 𝒈 𝑗 have been sent before the second challenge is

received implies that the same elements have to be used to prove all properties). The
vector 𝒛 does belong to ℒ(𝒂) as it is equal to 𝒂(𝜇+ 𝛼𝑚) if the prover has followed the
protocol (this is only possible because 𝒆 is small and therefore 𝜙(∑𝑗 2𝑗𝒆′𝑗)−𝑩 = 𝒆 and
cancels out the error terms). Finally, 𝒆′

𝑗
∈ 𝔅𝑛𝑘 if the original 𝒆 had all its coefficients

in [−𝐵, 𝐵) and the 𝒆′
𝑗
have been computed using expand.

Unlike Fiat-Shamir with aborts ZKPoKs here we have standard completeness as
an honest prover will always succeed responding and there is no abort probability.

Soundness

Observe with each of the challenges 𝑏 = 1 or 𝑏 = 0 we check statements related to
the conditions (a) and (b’).

If a (possiblymalicious) prover𝒫∗ is able to provide accepted answers to 𝛿 rounds
of interaction with an honest verifier𝒱 with probability ((𝑞 + 1)/2𝑞)𝛿 + 𝜖, were 𝜖 is
non-negligible, then they are able to efficiently extract a witness with probability
proportional to 𝜖.

Recall the definition of soundness for an interactive protocol between a prover
and a verifier

〈
𝒫 ,𝒱

〉
given in Definition 1.8. We want that for any 𝑥 ∉ ℜ the success

probability of any malicious prover 𝒫∗ should be small as

Pr
[〈
𝒫∗ ,𝒱

〉
(𝑥) = accept

]
≤ 𝜖(𝑥).

That is the goal of our proofs, as we want to convince the verifier of the validity
of the statements, but we can also ensure that we could extract a witness using the
knowledge-soundness Definition 1.10, that can be seen to imply soundness.

In many occasions, soundness is then proved via showing Knowledge-Soundness
because the proof satisfies yet another property, called special soundness, from
which we need the multiple-moves version.

Definition 3.2 ((𝑘1 , . . . , 𝑘𝜇)-Special Soundness as in [10]). A (2𝜇+1)-move public-coin
protocol is (𝑘1 , . . . , 𝑘𝜇)-special sound if there is an efficient algorithm that on input
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∏𝜇
𝑗=1 𝑘 𝑗 accepting transcripts{

(𝑥, 𝑎, {𝑐𝑖1 ,...,𝑖 𝑗 }
𝜇
𝑗=1 , {𝑏𝑖1 ,...,𝑖 𝑗 }

𝜇
𝑗=1)

}
𝑖 𝑗∈{1,...,𝑘 𝑗} ∀𝑗∈{1,...,𝜇}

,

such that 𝑐𝑖1 ,...,𝑖 𝑗−1 ,𝑖 𝑗 ≠ 𝑐𝑖1 ,...,𝑖 𝑗−1 ,𝑖
′
𝑗
when 𝑖

𝑗
≠ 𝑖′

𝑗
, outputs awitness𝑤 such that (𝑥, 𝑤) ∈ ℜ.

Observe this definition is a fine-graded generalization of the usual 𝑘-special
soundness for 3-move protocols where one just needs 𝑘 transcripts (𝑎, 𝑐 𝑗 , 𝑏 𝑗) with
𝑐 𝑗 ≠ 𝑐 𝑗′. Nevertheless, when working with multiple-move protocols asking just for
a number of transcripts does not fully capture the structure of the proof, as the
possibilities branch out with each different challenge and the tree structure of the
relevant conversations plays a relevant role if one wants to obtain tight proofs (see
Figure 1 of [11] for a nice visualization of the tree structure).

Our proposal has been designed so that a single iteration of our opening protocol
is (2, 2)-special sound, as we just need four transcripts with 𝛼 and 𝛼′ as the first
challenge and both 𝑏 = 0 and 𝑏 = 1 as the second for each of them.

Proposition 3.3 ((2, 2)-Special Soundness of the Opening Protocol 3.1). The opening
protocol described in Protocol 3.1 satisfies the definition of (2, 2)-Special Soundness.

Proof. If we can find commitments 𝑐1, 𝑐2, two 𝛼, 𝛼′ and 𝒈 𝑗 , 𝒈
′
𝑗
that induce accepted

answers for both 𝑏 = 0 and 𝑏 = 1 then we can extract a valid witness.
Define Δ𝛼 = 𝛼 − 𝛼′ ≠ 0. On the one hand, the binding property of 𝑐1, 𝑐2 ensures

that openings to 𝜋 𝑗 , �̃� and �̃�′𝑗 are fixed (for the sake of simplifying the proof let
us assume here that the auxiliary commitment is perfectly binding, what happens
otherwise is going to be later discussed).

𝒛 = �̃� + 𝛼(𝒄 + 𝑩) − 𝒃 �̃� − 𝜙(∑𝑗 2𝑗𝜋−1
𝑗
(𝒈 𝑗))

𝒛′ = �̃� + 𝛼′(𝒄 + 𝑩) − 𝒃 �̃�′ − 𝜙(∑𝑗 2𝑗𝜋−1
𝑗
(𝒈′

𝑗
))

Δ𝛼𝒄 = (𝒛 − 𝒛′) + 𝒃(̃𝑠 − �̃�′) + 𝜙(∑𝑗 2𝑗𝜋−1
𝑗
(𝒈 𝑗 − 𝒈′

𝑗
)) − Δ𝛼𝑩

𝒄 = Δ−1
𝛼 (𝒛 − 𝒛′) + 𝒃(Δ−1

𝛼 (̃𝑠 − �̃�′)) + 𝜙(∑𝑗 2𝑗𝜋−1
𝑗
(Δ−1

𝛼 (𝒈 𝑗 − 𝒈′
𝑗
))) − 𝑩

On the other hand, the claimed commitment to 𝜋 𝑗( 𝒇 𝑗) is now opened to both 𝒈 𝑗 −𝛼�̃�
′
𝑗

and 𝒈′
𝑗
− 𝛼′̃𝒆′𝑗 , so the binding property of the auxiliary commitment scheme now

ensures an equality.

𝒈 𝑗 − 𝛼�̃�′𝑗 = 𝒈′𝑗 − 𝛼′̃𝒆′𝑗

�̃�′𝑗 = Δ−1
𝛼 (𝒈 𝑗 − 𝒈′𝑗)

So we can substitute it in the previous expression.

𝒄 = Δ−1
𝛼 (𝒛 − 𝒛′) + 𝒃(Δ−1

𝛼 (̃𝑠 − �̃�′)) + 𝜙(∑𝑗 2𝑗𝜋−1
𝑗
(̃𝒆′𝑗)) − 𝑩
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We know Δ−1
𝛼 (𝒛 − 𝒛′) ∈ ℒ(𝒂) because 𝒛, 𝒛′ ∈ ℒ(𝒂), but it is still left to detail how

to check if a point 𝒛 belongs to ℒ(𝒂), the ideal lattice defined by 𝒂, and how to
recover its coordinates (the polynomial 𝑡 ∈ 𝑅𝑞 such that the vector of polynomials is
𝒂𝑡). In order to efficiently do so, we use one property of the commitment key that
has not been mentioned yet, but that can be deduced from the binding property of
the commitment scheme.

Lemma 3.4. If (𝒂 , 𝒃) ∈ 𝑅𝑘𝑞 × 𝑅𝑘𝑞 defines a commitment key for a perfectly binding
commitment scheme in a ring 𝑅𝑞 = Z𝑞[𝑥]/⟨𝑥𝑛 + 1⟩ such that 𝑥𝑛 + 1 splits in 𝑑

irreducible 𝑝 𝑗(𝑥)modulo 𝑞 for 𝑗 ∈ {1, . . . , 𝑑}, then there exist 𝑑 indexes 𝑖 𝑗 such that
the component 𝑎𝑖 𝑗 ∈ 𝑅𝑞 is invertible modulo 𝑝 𝑗(𝑥).

Proof. This can be directly proved by contradiction. Assume it is not the case and for
some 𝑗 ∈ {1, . . . , 𝑑} we have that 𝑎𝑖 ≡ 0 modulo 𝑝 𝑗(𝑥) for all 𝑖 ∈ {1, . . . , 𝑘}.

Then we can define 𝑚0 such that 𝑚0 ≡ 0 mod 𝑝 𝑗′(𝑥) for all 𝑗′ ≠ 𝑗 and 𝑚0 ≡ 1
mod 𝑝 𝑗(𝑥). By construction 𝑚0 ≠ 0 but 𝒂𝑚0 = 0 and, therefore, we could open any
commitment to any message 𝑚 to a different message 𝑚 + 𝑚0, breaking the binding
property of the commitment scheme. □

We explicitly check this condition (and abort if it is not satisfied) in the key
generation protocol, but it will hold except with negligible probability if the used set
of parameters is secure. We also output the specific indexes 𝑖 𝑗 and the inverses 𝑎𝑖 𝑗−1

mod 𝑝 𝑗 as auxiliary parameters during the key generation protocol (even if omitted
during the text, it is implicit that participants receiving the public key (𝒂 , 𝒃) also get
these auxiliary elements precomputed).

With that property inmind nowwe can see that, provided a vector of polynomials
𝒛 ∈ 𝑅𝑘𝑞 if there exists a polynomial 𝑡 such that 𝒛 = 𝒂 ·𝑡 this 𝑡 should verify that 𝑧𝑖 𝑗 ≡ 𝑎𝑖 𝑗 𝑡
mod 𝑝 𝑗(𝑥), and we could completely determine it from 𝑡 ≡ 𝑎𝑖 𝑗−1𝑧𝑖 𝑗 mod 𝑝 𝑗(𝑥).

Since we have already restricted the possible candidates for 𝑡 to one single
polynomial, we would just need to check that for every 𝑖 ∈ {1, . . . , 𝑘} and every
𝑗 ∈ {1, . . . , 𝑑} it holds that 𝑧𝑖 ≡ 𝑎𝑖𝑎𝑖 𝑗−1𝑧𝑖 𝑗 mod 𝑝 𝑗(𝑥). Using again the invertibility

of the 𝑎𝑖 𝑗 , to verify 𝒛
?∈ ℒ(𝒂) it is sufficient to just check 𝑎𝑖 𝑗 𝑧𝑖

?≡ 𝑎𝑖𝑧𝑖 𝑗 mod 𝑝 𝑗(𝑥),
without ever explicitly computing the 𝑡.

Only the extractor needs to use these auxiliary public parameters to compute the
involved 𝑡 and 𝑡′ from 𝒛 and 𝒛′. Then it could finally write

𝒄 = 𝒂Δ−1
𝛼 (𝑡 − 𝑡′) + 𝒃(Δ−1

𝛼 (̃𝑠 − �̃�′)) + 𝜙(∑𝑗 2𝑗𝜋−1
𝑗
(̃𝒆′𝑗)) − 𝑩.

As these elements come fromaccepted answerswe know that �̃�′𝑗 ∈ 𝔅𝑛𝑘 ⊂ {0, 1}2𝑛𝑘

and therefore 𝜙(∑𝑗 2𝑗𝜋−1
𝑗
(̃𝒆′𝑗)) − 𝑩 has norm smaller than 𝐵.
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Then (Δ−1
𝛼 (̃𝑡 − �̃�′),Δ−1

𝛼 (̃𝑠 − �̃�′), 𝜙(
∑
𝑗 2𝑗𝜋−1

𝑗
(̃𝒆′𝑗)) − 𝑩) is a valid opening. □

Observe the definition is only rigorously satisfied if the auxiliary commitment
is perfectly binding, as we have explicitly used that two openings to the same
commitment must be equal. Nevertheless, it is still possible to take advantage of
the property if we instead use a computationally binding commitment. In that
case, if we have used rewindable access to a prover 𝒫∗ to obtain the 4 accepting
conversations with the requested structure with a non-negligible probability, the
commitment openings would still be unique with overwhelming probability, and we
could still use the previous strategy to extract a valid witness. Recall the definition
does not ask the extractor success probability to be exactly the difference between
the success probability of 𝒫∗ and 𝜅, as we are satisfied with it being decreased only
in a polynomial amount (and a computationally binding commitment would only
decrease it negligibly).

We have mentioned the possibility of using rewindable access to a prover to
get the accepting conversations, but to see how (2, 2)-Special Soundness implies
Knowledge-Soundness it remains to specify how to efficiently obtain such tree of
conversations. A general tight efficient extractor was first defined in [10] and [11]
proves (Theorem 3 in their paper) that a (𝑘1 , . . . , 𝑘𝜇)-special sound protocol is
knowledge sound with knowledge error

𝜅 = 1 −
𝜇∏
𝑗=1

��𝒞𝑗 �� − 𝑘 𝑗 + 1��𝒞𝑗 �� . (3.7)

That means a single repetition of the opening interactive protocol would be
knowledge sound with knowledge error

𝜅 = 1 −
𝑞 − 2 + 1

𝑞
· 2 − 2 + 1

2 = 1 −
𝑞 − 1
2𝑞 =

𝑞 + 1
2𝑞 .

It corresponds to the probability of correctly guessing at least one of the challenges,
which is a usual property of this kind of protocols.

Of course such bound on the cheating probability is unreasonable for any
meaningful practical case. The general strategy is to repeat the same protocol 𝛿
independent times, significantly reducing the bound on the cheating probability
to something as low as we are comfortable with. It is however significantly more
involved to extract the useful accepting conversations from 𝛿 parallel repetitions of
a (𝑘1 , . . . , 𝑘𝜇)-special sound protocol (we specifically need to avoid exploring the
whole possible execution tree as the complexity would then increase exponentially
in the number of repetitions).
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Fortunately, the really novel contribution of [11] (presented in their Theorem 4)
is that the parallel repetition of a (𝑘1 , . . . , 𝑘𝜇)-special sound protocol 𝛿 times is
knowledge soundwith knowledge error 𝜅𝛿 (when the 𝛿 parallel repetitions effectively
reduce the knowledge error from 𝜅 to 𝜅𝛿 they call it a strong parallel repetition result).
Moreover, the extractor would only require a number of rewinds proportional to∏𝜇

𝑖=1 𝑘𝑖 (proportional to 4 in the opening protocol).
It is interesting to just mention how [11] achieves its results. Their main

contribution is a novel extractor for a 𝑘-special sound Σ-protocol (that is, with
just three moves), that can then be naturally generalized to multi-round protocols,
parallel repetitions, or both at the same time. This new extractor can be analyzed
using a more fine-graded measure of the quality of the prover than just its expected
success probability, given by the minimum expected probability of the prover when
some challenges have been removed from the challenge set. This new definition
comes naturally from the fact that, to be able to extract a witness from a 𝑘-special
sound protocol, we might try to sequentially obtain different accepting conversations
with challenges different from the ones for which we have already obtained a valid
conversation, therefore we are only interested in the success probability when the
prover is challenged with a new challenge (removing the previous challenges from
the challenge set), captured by this new notion.

It allows them to easily define the extractor in a recursive way, aborting if the first
attempt fails and recursively extracting (𝑘 − 1) accepting conversations excluding
the previous challenge for which we already have a valid conversation.

Their approach then fails and aborts in the first step with probability 1 − 𝜖,
and only continues with probability 𝜖 (the success probability of the prover). This
allows the extractor to have O(

1/𝜖
)
attempts to obtain the next (𝑘 − 1) accepting

conversations while keeping the expected running time constant (it is proportional
to 1/𝜖 with probability 𝜖 or constant otherwise). With that strategy, the success
probability is proportional to 𝜖 − 𝜅, as required by the standard definition, while
keeping constant the expected number of prover rewinds.

Furthermore, they also provide clever bounds for the success probability of
the extractor applied to the parallel repetitions. Instead of ensuring that we can
use one of the repetitions to extract a witness and focusing on it, or trying every
𝑖 ∈ {1, . . . , 𝛿} but bounding its probability with the probability of a single 𝑖, they
show the probability of being successful on at least one of the repetitions. This allows
them to obtain an efficient extractor while obtaining a strong parallel repetition
result, effectively reducing a knowledge-soundness error 𝜅 to 𝜅𝛿.

Using it we are able to ensure that the opening protocol satisfies Knowledge-
Soundness and therefore soundness as introduced in Definitions 1.8 and 1.10.
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Zero-Knowledge

In order to prove the protocol satisfies the honest verifier zero-knowledge property
we are going to show the existence of a simulator 𝒮 that, given a pair of challenges
(𝛼, 𝑏), outputs a conversation following the same distribution as the ones one would
obtain from honest provers and verifiers.

This ensures that only the fact that the protocol was followed in order convinced
the verifier that the prover knows the witness (as seen in the soundness property),
but the conversation itself does not reveal any additional information about the secret
because someone can indeed produce similar (computationally indistinguishable)
transcripts using the simulator without any knowledge of the secret.

We introduce here notation �̂� to refer to the simulated element that plays the role
of some element 𝑎 so that we can then use both notations to prove that distributions
involving �̂� are identically distributed to those involving the honestly computed 𝑎.

Case 𝑏 = 0.

�̂� , �̂� ←r 𝑅𝑞 , �̂� 𝑗 ←r Z
2𝑛𝑘
𝑞 , 𝜋 𝑗 ←r 𝔖2𝑛𝑘

𝑐1 ←r aCom({𝜋 𝑗} 𝑗 , 𝒂 �̂� + 𝒃 �̂� + 𝜙(∑𝑗 2𝑗𝜋−1
𝑗
(�̂� 𝑗)) − 𝛼(𝒄 + 𝑩))

𝒮 reveals { �̂� 𝑗} 𝑗 , {𝜋 𝑗 = 𝜋 𝑗} 𝑗 , �̃� = 𝒂 �̂� + 𝒃 �̂� + 𝜙(∑𝑗 2𝑗𝜋−1
𝑗
(�̂� 𝑗)) − 𝛼𝒄, �̃� = �̂�.

Indistinguishable from a real conversation with the same 𝜋 𝑗 = 𝜋 𝑗 and where
𝜇 = �̂� − 𝛼𝑚, 𝜌 = �̂� − 𝛼𝑟 and 𝒇 𝑗 = 𝜋−1

𝑗
(�̂� 𝑗) − 𝛼𝒆′

𝑗
.

𝒈 𝑗 = 𝜋 𝑗( 𝒇 𝑗 + 𝛼𝒆′𝑗)

= 𝜋 𝑗(𝜋−1
𝑗 (�̂� 𝑗)) + 𝜋 𝑗(𝛼𝒆

′
𝑗 − 𝛼𝒆′𝑗)

= �̂� 𝑗

𝒂𝜇 + 𝒃𝜌 + 𝜙(∑𝑗 2𝑗 𝒇 𝑗) = 𝒂(̂𝑡 − 𝛼𝑚) + 𝒃(̂𝑠 − 𝛼𝑟) + 𝜙(∑𝑗 2𝑗(𝜋−1
𝑗
(�̂� 𝑗) − 𝛼𝒆′

𝑗
))

= 𝒂 �̂� + 𝒃 �̂� + 𝜙(∑𝑗 2𝑗𝜋−1
𝑗
(�̂� 𝑗)) − 𝛼(𝒂𝑚 + 𝒃𝑟 + 𝜙(∑𝑗 2𝑗𝒆′𝑗))

= 𝒂 �̂� + 𝒃 �̂� + 𝜙(∑𝑗 2𝑗𝜋−1
𝑗
(�̂� 𝑗)) − 𝛼(𝒄 + 𝑩)

Case 𝑏 = 1.

�̂�′𝑗 ←r 𝔅𝑛𝑘 , �̂� 𝑗 ←r Z
2𝑛𝑘
𝑞 , 𝜋 𝑗 ←r 𝔖2𝑛𝑘

𝑐2 ←r aCom({𝜋 𝑗( �̂� 𝑗)} 𝑗 , {𝜋 𝑗 (̂𝒆
′
𝑗)} 𝑗)

�̂� 𝑗 = 𝜋 𝑗( �̂� 𝑗 + 𝛼�̂�′𝑗)
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𝒮 reveals { �̂� 𝑗} 𝑗 , {�̃�
′
𝑗 = 𝜋 𝑗 (̂𝒆′𝑗)} 𝑗 . Equivalent to an honest conversation were 𝜋 𝑗 is

such that 𝜋 𝑗(𝒆′𝑗) = 𝜋 𝑗 (̂𝒆′𝑗) and 𝒇 𝑗 = 𝜋−1
𝑗
(𝜋 𝑗( �̂� 𝑗)).

𝒈 𝑗 = 𝜋 𝑗( 𝒇 𝑗 + 𝛼𝒆′𝑗)

= 𝜋 𝑗(𝜋−1
𝑗 (𝜋 𝑗( �̂� 𝑗))) + 𝛼𝜋 𝑗 (̂𝒆′𝑗)

= 𝜋 𝑗( �̂� 𝑗 + 𝛼�̂�′𝑗)

= �̂� 𝑗

Notice that in both cases simulated conversations follow the same distribution as
honest conversations. All omitted commitments can be computed as commitments to
0, whichmakes them indistinguishable from honestly computed commitments by the
hiding property of the auxiliary commitment scheme. The elements𝜋 𝑗 , 𝜇, 𝜌, 𝒇 𝑗 or just
𝜋 𝑗 , 𝒇 𝑗 in the first or the second case would follow precisely a uniform distribution as
they would do in a real conversation (the permutation of uniformly random elements
or the addition to uniformly random elements follows a uniform distribution and
the fact that 𝜋 𝑗(𝒆′𝑗) has to be 𝜋 𝑗 (̂𝒆′𝑗) is no restriction because 𝜋 𝑗 and �̂�′𝑗 are uniformly
distributed again).

3.4.2 Knowledge of a Linear Relation

The feasibility of proving that different committed elements are related is the most
important feature of the presented commitment scheme, as then it can be used as
building block for more complex cryptographic applications.

The linear structure of the commitment scheme aides the design of a linear
relation proof. Given a secure public key 𝒂 , 𝒃 ∈ 𝑅𝑘𝑞 and valid commitments
𝒄1 , 𝒄2 , 𝒄3 ∈ 𝑅𝑘𝑞 with their respective openings to three messages𝑚1 , 𝑚2 , 𝑚3 ∈ 𝑅𝑞 such
that 𝑚3 = 𝜆1𝑚1 + 𝜆2𝑚2 for known 𝜆1 ,𝜆2 ∈ 𝑅𝑞 , the prover would like to convince
the verifier of the fact that they not only know such valid openings but that the
committed values 𝑚𝑖 indeed satisfy the linear relation.

From now on, in this subsection and the next, index 𝑖 will belong to {1, 2, 3}.
The goal of the prover would then be to prove knowledge of 𝑚1 , 𝑚2 , 𝑚3 ∈ 𝑅𝑞 ,
𝑟1 , 𝑟2 , 𝑟3 ∈ 𝑅𝑞 and 𝒆1 , 𝒆2 , 𝒆3 ∈ 𝑅𝑘𝑞 so that 𝒄𝑖 = 𝒂𝑚𝑖 + 𝒃𝑟𝑖 + 𝒆 𝑖 , ensuring that the error
terms have coefficients with norm bounded by 𝐵 and that the committed values
satisfy the linear relation with coefficients 𝜆1 and 𝜆2.

The main strategy consists on repeating three times in parallel the ZKPoK of a
valid opening, for each of the three commitments. Then, an additional verification is
added to check the linear relation.

The shortness of the error terms is not compatible with linear transformations, so



Chapter 3. Commitment scheme and companion ZKPoKs 139

it has to be proven independently decomposing again {𝒆′
𝑖 𝑗
} 𝑗 ← expand(𝒆 𝑖) so that

𝒄𝑖 = 𝒂𝑚𝑖 + 𝒃𝑟𝑖 + 𝜙(∑𝑗 2𝑗𝒆′𝑖 𝑗) − 𝑩.

To demonstrate that the committed messages satisfy the linear relation we just
have to choose the message masking elements holding the same linear relation. 𝜇3 is
computed as 𝜆1𝜇1 + 𝜆2𝜇2, and in case 𝑏 = 0 the verifier just needs to check whether
𝒛3 = 𝜆1𝒛1 + 𝜆2𝒛2. Provided 𝒛 𝑖 = 𝒂(𝜇𝑖 + 𝛼𝑚𝑖) and the challenge 𝛼 has been chosen
by the verifier when the 𝜇𝑖 already form part of one of the auxiliary commitments
we are going to be able to deduce that this implies the linear relation holds for the
committed messages.

The full interaction between an honest prover 𝒫 and a verifier𝒱 is completely
specified in Protocol 3.2.

Completeness

Completeness comes from the completeness property of the opening protocol, as
most of the computations are completely equivalent. The only new verification we
should review is the linearity verification 𝒛3

?
= 𝜆1𝒛1 + 𝜆2𝒛2.

From the completeness analysis of the opening protocol we already know that if
the proverwas honest 𝒛 𝑖 = 𝒂(𝜇𝑖+𝛼𝑚𝑖). If the statement is true then𝑚3 = 𝜆1𝑚1+𝜆2𝑚2,
and if the prover has followed the protocol then 𝜇3 = 𝜆1𝜇1 + 𝜆2𝜇2. Combining both
we get that the verification should pass, and the linear protocol is also complete.

Soundness

If a (possibly malicious) prover 𝒫∗ is able to provide accepted answers to 𝛿 rounds
of interaction with an honest verifier𝒱 with probability ((𝑞 + 1)/2𝑞)𝛿 + 𝜖, where 𝜖 is
non-negligible, then they are able to efficiently extract a witness.

We can extend the (2, 2)-special soundness from the opening protocol to the
linear proof. Applying the same arguments from four valid conversations with
challenges 𝛼 ≠ 𝛼′ and 𝑏 = 0 and 𝑏 = 1 for both cases we could obtain three valid
openings {

(Δ−1
𝛼 (̃𝑡𝑖 − �̃�′𝑖),Δ

−1
𝛼 (̃𝑠𝑖 − �̃�′𝑖), 𝜙(

∑
𝑗 2𝑗𝜋−1

𝑖 𝑗
(̃𝒆′𝑖 𝑗)) − 𝑩)

}
𝑖
.
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ZKP
[
𝑚𝑖 , 𝑟𝑖 , 𝒆 𝑖

��� 𝒄𝑖 = 𝒂𝑚𝑖 + 𝒃𝑟𝑖 + 𝒆 𝑖 , ∥𝒆 𝑖 ∥∞ ≤ 𝐵, 𝑚3 = 𝜆1𝑚1 + 𝜆2𝑚2
]

(3.8)

Protocol 3.2 Knowledge of a Linear Relation
𝒫 ((𝒂 , 𝒃), {𝒄𝑖}𝑖 , (𝜆1 ,𝜆2); {𝑚𝑖 , 𝑟𝑖 , 𝒆 𝑖}𝑖) 𝒱 ((𝒂 , 𝒃), {𝒄𝑖}𝑖 , (𝜆1 ,𝜆2))

1: for 𝑖 ∈ 1, 2, 3 do
2: {𝒆′

𝑖 𝑗
} 𝑗 ← expand(𝒆′

𝑖
)

3: 𝜋𝑖0 , . . . ,𝜋𝑖 log(𝐵) ←r 𝔖2𝑛𝑘
4: 𝒇 𝑖0 , . . . , 𝒇 𝑖 log(𝐵) ←r Z2𝑛𝑘

𝑞

5: 𝜇1 , 𝜇2 , 𝜌1 , 𝜌2 , 𝜌3 ←r 𝑅𝑞
6: 𝜇3 ≔ 𝜆1𝜇1 + 𝜆2𝜇2
7: (𝑐1 , 𝑜1) ←r aCom

(
{𝜋𝑖 𝑗}𝑖 , 𝑗 , {𝒂𝜇𝑖 + 𝒃𝜌𝑖 + 𝜙(∑𝑗 2𝑗 𝒇 𝑖 𝑗)}𝑖

)
8: (𝑐2 , 𝑜2) ←r aCom

(
{𝜋𝑖 𝑗( 𝒇 𝑖 𝑗)}𝑖 , 𝑗 , {𝜋𝑖 𝑗(𝒆′𝑖 𝑗)}𝑖 , 𝑗

)
𝑐1 ,𝑐2−−−−−−−−−−−→

9: 𝛼←r Z𝑞
𝛼←−−−−−−−−−−−

10: for 𝑖 ∈ 1, 2, 3 do
11: for 𝑗 ∈ 0, . . . , log(𝐵) do
12: 𝒈 𝑖 𝑗 ≔ 𝜋𝑖 𝑗( 𝒇 𝑖 𝑗 + 𝛼𝒆′

𝑖 𝑗
)

{𝒈 𝑖 𝑗 }𝑖 , 𝑗
−−−−−−−−−−−→

13: 𝑏 ←r {0, 1}
𝑏←−−−−−−−−−−−

14: if 𝑏 = 0 then
15: for 𝑖 ∈ 1, 2, 3 do
16: �̃�𝑖 ≔ 𝒂𝜇𝑖 + 𝒃𝜌𝑖 + 𝜙(∑𝑗 2𝑗 𝒇 𝑖 𝑗)
17: �̃�𝑖 ≔ 𝜌𝑖 + 𝛼𝑟𝑖
18: for 𝑗 ∈ 0, . . . , log(𝐵) do
19: 𝜋𝑖 𝑗 ≔ 𝜋𝑖 𝑗

20: �̃� ≔ 𝑜1
21: ans ≔ ({𝜋𝑖 𝑗}𝑖 , 𝑗 , {�̃�𝑖}𝑖 , {̃𝑠𝑖}𝑖 , �̃�)
22: if 𝑏 = 1 then
23: for 𝑖 ∈ 1, 2, 3 do
24: for 𝑗 ∈ 0, . . . , log(𝐵) do
25: �̃�′𝑖 𝑗 ≔ 𝜋𝑖 𝑗(𝒆′𝑖 𝑗)

26: �̃� ≔ 𝑜2
27: ans ≔ ({�̃�′𝑖 𝑗}𝑖 , 𝑗 , �̃�)

ans−−−−−−−−−−−→
28: if 𝑏 = 0 then
29:

?
aVer

(
𝑐1 , ({𝜋𝑖 𝑗}𝑖 , 𝑗 , {�̃�𝑖}𝑖), �̃�

)
30: for 𝑖 ∈ 1, 2, 3 do
31: 𝒛𝑖 ≔ �̃�𝑖 + 𝛼(𝒄𝑖 + 𝑩) − 𝒃 �̃�𝑖 − 𝜙(∑𝑗 2𝑗𝜋−1

𝑖 𝑗
(𝒈 𝑖 𝑗))

?∈ ℒ(𝒂)

32: 𝒛3
?
= 𝜆1𝒛1 + 𝜆2𝒛2

33: if 𝑏 = 1 then
34:

?
aVer

(
𝑐2 , ({𝒈 𝑖 𝑗 − 𝛼�̃�′𝑖 𝑗}𝑖 , 𝑗 , {�̃�

′
𝑖 𝑗}𝑖 , 𝑗), �̃�

)
35: for 𝑖 ∈ 1, 2, 3 do
36: for 𝑗 ∈ 0, . . . , log(𝐵) do

37: �̃�′𝑖 𝑗
?∈ 𝔅𝑛𝑘
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We have to be aware that in general linearity of some lattice points 𝒛 𝑖 ∈ ℒ(𝒂)
does not always imply that the same relation holds for some coordinates of these
points 𝑡𝑖 such that 𝒛 𝑖 = 𝒂𝑡𝑖 . That is the case because 𝑅𝑞 is not an integral domain.
Nevertheless, this property holds whenever 𝒂 is part of the public key of a binding
commitment. We can prove it using a similar argument than the one we saw before
with Lemma 3.4.

Proposition 3.5 (Linearity of lattice points implies linearity of its coordinates if the
commitment is binding). If (𝒂 , 𝒃) ∈ 𝑅𝑘𝑞 × 𝑅𝑘𝑞 defines a commitment key for a perfectly
binding commitment scheme in a ring 𝑅𝑞 = Z𝑞[𝑥]/⟨𝑥𝑛 + 1⟩ then 𝒛3 = 𝜆1𝒛1 + 𝜆2𝒛2 for
𝒛 𝑖 = 𝒂𝑡𝑖 ∈ 𝑅𝑘𝑞 implies 𝑡3 = 𝜆1𝑡1 + 𝜆2𝑡2 ∈ 𝑅𝑞 .

Proof. Assume by contradiction the statement is false and 𝒛3 = 𝜆1𝒛1 + 𝜆2𝒛2 but
𝑡3 ≠ 𝜆1𝑡1 + 𝜆2𝑡2.

Then we could define 𝑚0 = 𝑡3 − 𝜆1𝑡1 − 𝜆2𝑡2. By assumption, we know 𝑚0 ≠ 0,
but 𝒂𝑚0 = 𝒂𝑡3 − 𝜆1𝒂𝑡1 − 𝜆2𝒂𝑡2 = 𝒛3 − 𝜆1𝒛1 − 𝜆2𝒛2 = 0.

This implies we could open any commitment to a message 𝑚 ∈ 𝑅𝑞 to a different
value 𝑚 + 𝑚0, contradicting the perfectly binding property of the commitment
scheme. Our first assumption could not be correct, and the statement is therefore
true. □

From the linear relation that the verifier would check if 𝑏 = 0 involving the 𝒛 𝑖 or
the 𝒛′

𝑖
we can therefore obtain that �̃�3 = 𝜆1̃𝑡1 +𝜆2̃𝑡2 and similarly that �̃�′3 = 𝜆1̃𝑡

′
1 +𝜆2̃𝑡

′
2.

As a result, we have that the required linear relation holds

Δ−1
𝛼 (̃𝑡3 − �̃�′3) = 𝜆1Δ

−1
𝛼 (̃𝑡1 − �̃�′1) + 𝜆2Δ

−1
𝛼 (̃𝑡2 − �̃�′2).

That means a single repetition of the linear interactive protocol would be
knowledge sound with knowledge error 𝜅 = (𝑞 + 1)/2𝑞. We could again repeat it 𝛿
times to reduce this knowledge error to 𝜅𝛿.

Zero-Knowledge

The same simulator for Protocol 3.1 works repeated 3 times in parallel, with the
only exception that in case 𝑏 = 0 we randomly choose �̂�1 , �̂�2 ←r 𝑅𝑞 but �̂�3 would be
computed as �̂�3 = 𝜆1̂𝑡1 + 𝜆2̂𝑡2.

This would be indistinguishable from a real conversation where 𝜇𝑖 = �̂�𝑖 + 𝛼𝑚𝑖

and this last condition ensures that 𝜇3 would be 𝜆1𝜇1 + 𝜆2𝜇2 as it would have been
in a real conversation between an honest prover and a verifier.
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3.4.3 Knowledge of a Multiplicative Relation

In this subsection we present the main contribution of this chapter, an efficient proof
of knowledge of a multiplicative relation. That is, index 𝑖 belongs again to {1, 2, 3},
and we have 𝒄𝑖 = 𝒂𝑚𝑖 + 𝒃𝑟𝑖 + 𝒆 𝑖 three valid commitments where 𝑚3 = 𝑚1 · 𝑚2. We
want to prove knowledge of valid openings for the commitments 𝒄𝑖 satisfying this
relation.

If we mask the messages (𝑚1 + 𝜇1) and (𝑚2 + 𝜇2) with random 𝜇1 , 𝜇2 ←r 𝑅𝑞 ,
as we did before (let us omit the 𝛼 challenge for the moment), and then multiply
them, some crossed terms appear: (𝑚1 + 𝜇1)(𝑚2 + 𝜇2) = 𝑚3 + (𝑚1𝜇2 + 𝑚2𝜇1) + 𝜇1𝜇2.
Following the notation from [19] we define 𝑚+ ≔ 𝑚1𝜇2 + 𝑚2𝜇1 and 𝑚× ≔ 𝜇1𝜇2.

In order to be able to verify the multiplicative relation we also have to prove
knowledge of honestly computed𝑚+ and𝑚×, once againmasking themwith random
polynomials 𝜇+ and 𝜇×.

If we want to get 𝑚3 = 𝑚1 · 𝑚2 we then have to prove a relation between masked
elements and masking polynomials involving two challenges 𝛼, 𝛽←r Z𝑞 chosen by
the verifier (now we need to use a different challenge for the third commitment as it
plays a different role in the product verification). In [19] the authors use a challenge
to prove the relation, while [38] introduces the challenge to reduce the soundness
error of each round as we did in Section 3.4.1. The particular requirements of our
proofs, where we try to achieve both goals at the same time, imply that we need
a much more involved analysis in order to prove the soundness of this strategy.
As we have mentioned, this efficient interactive protocol to prove knowledge of a
valid opening for commitments 𝒄𝑖 holding the multiplicative relation is what gives a
special value to the commitment design.

The prover 𝒫 starts expanding the error terms {𝒆′
𝑖 𝑗
} 𝑗 ← expand(𝒆 𝑖). Then

𝒫 chooses 3(log(𝐵) + 1) permutations 𝜋𝑖0 , . . . ,𝜋𝑖 log(𝐵) ←r 𝔖2𝑛𝑘 and 3(log(𝐵) + 1)
random vectors 𝒇 𝑖0 , . . . , 𝒇 𝑖 log(𝐵) ←r Z2𝑛𝑘

𝑞 that will be used to mask these errors.

To hide the messages and the randomness, 𝒫 also samples 6 random polynomials
𝜇1 , 𝜇2 , 𝜇3 , 𝜌1 , 𝜌2 , 𝜌3 ←r 𝑅𝑞 . Next, 𝒫 computes the crossed terms 𝑚× ≔ 𝜇1𝜇2 and
𝑚+ ≔ 𝜇1𝑚2+𝜇2𝑚1. Then they choose 2 additional randompolynomials𝜇× , 𝜇+ ←r 𝑅𝑞

that will be used to hide these crossed terms while verifying they have been correctly
computed.
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Ultimately, 𝒫 computes the following commitments,

𝑐1 ←r aCom
(
{𝜋𝑖 𝑗}𝑖 , 𝑗 , {𝒂𝜇𝑖 + 𝒃𝜌𝑖 + 𝜙(∑𝑗 2𝑗 𝒇 𝑖 𝑗)}𝑖

)
,

𝑐2 ←r aCom
(
𝜇3 , 𝜇× , 𝜇+

)
,

𝑐3 ←r aCom
(
{𝜋𝑖 𝑗( 𝒇 𝑖 𝑗)}𝑖 , 𝑗 , {𝜋𝑖 𝑗(𝒆′𝑖 𝑗)}𝑖 , 𝑗

)
,

𝑐4 ←r aCom
(
𝜇× + 𝑚× , 𝜇+ + 𝑚+

)
.

Observe besides the usual two commitments regarding the structure and the
shortness of the noise terms we now have two additional commitments involving the
masked crossed terms and themasking elements relevant for the product verification.

The prover sends these commitments to the verifier. The verifier𝒱 chooses a
pair of integers, (𝛼, 𝛽) ←r Z2

𝑞 , and sends it to the prover.
Let us define the following auxiliary constants to simplify notation,

𝛿𝑖 ≔


𝛼, for 𝑖 ∈ {1, 2},
𝛽, for 𝑖 ∈ {3}.

This way we can use the generic challenge 𝛿𝑖 when working with any of the three
commitments without making any distinction.

Now 𝒫 computes and sends the usual vectors of polynomials 𝒈 𝑖 𝑗 , with the
error terms hidden with both 𝒇 𝑖 𝑗 and 𝜋𝑖 𝑗 , together with an additional commitment
involving both the challenges and the multiplicative masking elements, that will be
of paramount importance to prove the product relation.

𝒈 𝑖 𝑗 = 𝜋𝑖 𝑗( 𝒇 𝑖 𝑗 + 𝛿𝑖𝒆′𝑖 𝑗),

𝑐5 ←r aCom
(
(𝛽𝜇×) + 𝛼(𝛽𝜇+) + 𝛼2(𝜇3)

)
.

The verifier𝒱 chooses a bit 𝑏 ←r {0, 1} and sends it as second challenge.
Case 𝑏 = 0.
– 𝒫 reveals {𝜋𝑖 𝑗 ≔ 𝜋𝑖 𝑗}𝑖 , 𝑗 , {�̃�𝑖 ≔ 𝒂𝜇𝑖 + 𝒃𝜌𝑖 + 𝜙(∑𝑗 2𝑗 𝒇 𝑖 𝑗)}𝑖 , �̃�× ≔ 𝜇× + 𝑚×, �̃�+ ≔
𝜇+ + 𝑚+ and {̃𝑠𝑖 ≔ 𝜌𝑖 + 𝛿𝑖𝑟𝑖}𝑖 . The prover could also compute �̃�𝑖 ≔ 𝜇𝑖 + 𝛿𝑖𝑚𝑖 ,
but does not send these polynomials as the verifier can compute them as the
coordinates of 𝒛 𝑖 ≔ �̃�𝑖 + 𝛿𝑖(𝒄𝑖 + 𝑩) − 𝒃 �̃�𝑖 − 𝜙(∑𝑗 2𝑗𝜋−1

𝑖 𝑗
(𝒈 𝑖 𝑗)) ∈ ℒ(𝒂). Then 𝒫

sends openings of commitments 𝑐1 to ({𝜋𝑖 𝑗}𝑖 , 𝑗 , {�̃�𝑖}𝑖), 𝑐4 to (̃𝑡× , �̃�+) and 𝑐5 to
𝛽𝑡× + 𝛼𝛽𝑡+ + 𝛼2̃𝑡3 − 𝛽𝑡1̃𝑡2.

–𝒱 checks that �̃�𝑖 + 𝛿𝑖(𝒄𝑖 +𝑩) − 𝒃 �̃�𝑖 − 𝜙(
∑
𝑗 2𝑗𝜋−1

𝑖 𝑗
(𝒈 𝑖 𝑗)) ∈ ℒ(𝒂) and writes them

as 𝒂 �̃�𝑖 . Then𝒱 checks 𝑐1, 𝑐4 and 𝑐5.
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Case 𝑏 = 1.
– 𝒫 reveals {�̃�′𝑖 𝑗 ≔ 𝜋𝑖 𝑗(𝒆′𝑖 𝑗)}𝑖 , 𝑗 , �̃�3 ≔ 𝜇3, �̃�× ≔ 𝜇×, �̃�+ ≔ 𝜇+ and openings
of commitments 𝑐2 to (�̃�3 , �̃�× , �̃�+), 𝑐3 to ({𝒈 𝑖 𝑗 − 𝛿𝑖 �̃�

′
𝑖 𝑗}𝑖 , 𝑗 , {�̃�

′
𝑖 𝑗}𝑖 , 𝑗) and 𝑐5 to

(𝛽�̃�×) + 𝛼(𝛽�̃�+) + 𝛼2(�̃�3).
–𝒱 checks 𝑐2, 𝑐3, 𝑐5 and that each �̃�′𝑖 𝑗 belongs to 𝔅𝑛𝑘 .

Themultiplicative relationProtocol 3.3 can also be seen as threeparallel executions
of Protocol 3.1, this time taking into account the crossed terms and the multiplicative
relation.

The distinctive part of this protocol is that the fifth commitment can be opened
using either the crossedmasking elements𝜇3, 𝜇+ and𝜇× thatwere already committed
in 𝑐2 or using themasked crossed elements 𝜇×+𝑚× and 𝜇++𝑚+ that were committed
in 𝑐4 together with the masked messages 𝑡𝑖 = 𝜇𝑖 + 𝛿𝑖𝑚𝑖 .

The fact that 𝑐2 and 𝑐4 were committed before the challenges from the verifier
were chosen will allow us to verify that the prover has not cheated with the crossed
terms and as a consequence the verifier will be convinced of 𝑚3 = 𝑚1 · 𝑚2, as we are
going to see when proving soundness.

Completeness

Completeness is again mostly inherited from the opening protocol. The new
commitment 𝑐2 is directly opened to the committed values and the verification
passes if the auxiliary commitment has correctness. The same happens with the
new commitment 𝑐4, as �̃�× and �̃�+ are how the honest prover denotes 𝜇× + 𝑚× and
𝜇+ + 𝑚+.

Only commitment 𝑐5 requires our full attention. If 𝑏 = 1 it is open to a polynomial
computed in the same way 𝒫 did when creating it. However, if 𝑏 = 0 the proposed
computation is different, and we need to check that the result is indeed the same,
provided that the prover responses have been computed following the protocol.

Recall the �̃�𝑖 such that 𝒛 𝑖 = 𝒂 �̃�𝑖 are unique and efficiently computable if the
commitment key (𝒂 , 𝒃) defines a perfectly binding commitment (and this happens
with overwhelming probability).

𝛽𝑡× + 𝛼𝛽𝑡+ + 𝛼2̃𝑡3 − 𝛽𝑡1̃𝑡2 =

= 𝛽(𝜇× + 𝑚×) + 𝛼𝛽(𝜇+ + 𝑚+) + 𝛼2(𝜇3 + 𝛽𝑚3) − 𝛽(𝜇1 + 𝛼𝑚1)(𝜇2 + 𝛼𝑚2)
= 𝛽(𝜇× + 𝑚× − 𝜇1𝜇2) + 𝛼𝛽(𝜇+ + 𝑚+ − 𝜇1𝑚2 − 𝜇2𝑚1) + 𝛼2(𝜇3 + 𝛽(𝑚3 − 𝑚1𝑚2))

= (𝛽𝜇×) + 𝛼(𝛽𝜇+) + 𝛼2(𝜇3)
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ZKP
[
𝑚𝑖 , 𝑟𝑖 , 𝒆 𝑖

��� 𝒄𝑖 = 𝒂𝑚𝑖 + 𝒃𝑟𝑖 + 𝒆 𝑖 , ∥𝒆 𝑖 ∥∞ ≤ 𝐵, 𝑚3 = 𝑚1 · 𝑚2
]

(3.9)

Protocol 3.3 Knowledge of a Multiplicative Relation
𝒫 ((𝒂 , 𝒃), 𝒄𝑖 ;𝑚𝑖 , 𝑟𝑖 , 𝒆 𝑖) 𝒱 ((𝒂 , 𝒃), 𝒄𝑖)

1: for 𝑖 ∈ 1, 2, 3 do
2: {𝒆′

𝑖 𝑗
} 𝑗 ← expand(𝒆 𝑖)

3: 𝜋𝑖0 , . . . ,𝜋𝑖 log(𝐵) ←r 𝔖2𝑛𝑘
4: 𝒇 𝑖0 , . . . , 𝒇 𝑖 log(𝐵) ←r Z2𝑛𝑘

𝑞

5: 𝜇𝑖 , 𝜌𝑖 ←r 𝑅𝑞

6: 𝑚× ≔ 𝜇1𝜇2 , 𝑚+ ≔ 𝜇1𝑚2 + 𝜇2𝑚1
7: 𝜇× , 𝜇+ ←r 𝑅𝑞
8: (𝑐1 , 𝑜1) ←r aCom

(
{𝜋𝑖 𝑗}𝑖 , 𝑗 , {𝒂𝜇𝑖 + 𝒃𝜌𝑖 + 𝜙(∑𝑗 2𝑗 𝒇 𝑖 𝑗)}𝑖

)
9: (𝑐2 , 𝑜2) ←r aCom

(
𝜇3 , 𝜇× , 𝜇+

)
10: (𝑐3 , 𝑜3) ←r aCom

(
{𝜋𝑖 𝑗( 𝒇 𝑖 𝑗)}𝑖 , 𝑗 , {𝜋𝑖 𝑗(𝒆′𝑖 𝑗)}𝑖 , 𝑗

)
11: (𝑐4 , 𝑜4) ←r aCom

(
𝜇× + 𝑚× , 𝜇+ + 𝑚+

)
𝑐1 ,𝑐2 ,𝑐3 ,𝑐4−−−−−−−−−−−→

12: 𝛼, 𝛽←r Z𝑞
𝛿1≔𝛼, 𝛿2≔𝛼, 𝛿3≔𝛽
←−−−−−−−−−−−−−−−−−−−

13: (𝑐5 , 𝑜5) ←r aCom
(
(𝛽𝜇×) + 𝛼(𝛽𝜇+) + 𝛼2(𝜇3)

)
14: for 𝑖 ∈ 1, 2, 3 and 𝑗 ∈ 0, . . . , log(𝐵) do
15: 𝒈 𝑖 𝑗 ≔ 𝜋𝑖 𝑗( 𝒇 𝑖 𝑗 + 𝛿𝑖𝒆′𝑖 𝑗)

𝑐5 ,{𝒈 𝑖 𝑗 }𝑖 , 𝑗
−−−−−−−−−−−→

16: 𝑏 ←r {0, 1}
𝑏←−−−−−−−−−−−

17: if 𝑏 = 0 then
18: for 𝑖 ∈ 1, 2, 3 do
19: �̃�𝑖 ≔ 𝒂𝜇𝑖 + 𝒃𝜌𝑖 + 𝜙(∑𝑗 2𝑗 𝒇 𝑖 𝑗)
20: for 𝑗 ∈ 0, . . . , log(𝐵) do
21: 𝜋𝑖 𝑗 ≔ 𝜋𝑖 𝑗

22: �̃�× ≔ 𝜇× + 𝑚× , �̃�+ ≔ 𝜇+ + 𝑚+ , �̃�𝑖 ≔ 𝜌𝑖 + 𝛿𝑖𝑟𝑖 , �̃�1 ≔ 𝑜1 , �̃�4 ≔ 𝑜4 , �̃�5 ≔ 𝑜5
23: ans ≔ ({𝜋𝑖 𝑗}𝑖 , 𝑗 , {�̃�𝑖}𝑖 , �̃�× , �̃�+ , {̃𝑠𝑖}𝑖 , �̃�1 , �̃�4 , �̃�5)
24: if 𝑏 = 1 then
25: for 𝑖 ∈ 1, 2, 3 and 𝑗 ∈ 0, . . . , log(𝐵) do
26: �̃�′𝑖 𝑗 ≔ 𝜋𝑖 𝑗(𝒆′𝑖 𝑗)

27: �̃�3 ≔ 𝜇3 , �̃�× ≔ 𝜇× , �̃�+ ≔ 𝜇+ , �̃�2 ≔ 𝑜2 , �̃�3 ≔ 𝑜3 , �̃�5 ≔ 𝑜5
28: ans ≔ ({�̃�′𝑖 𝑗}𝑖 , 𝑗 , �̃�3 , �̃�× , �̃�+ , �̃�2 , �̃�3 , �̃�5)

ans−−−−−−−−−−−→
29: if 𝑏 = 0 then
30:

?
aVer

(
𝑐1 , ({𝜋𝑖 𝑗}𝑖 , 𝑗 , {�̃�𝑖}𝑖), �̃�1

)
31:

?
aVer

(
𝑐4 , (̃𝑡× , �̃�+), �̃�4

)
32: for 𝑖 ∈ 1, 2, 3 do
33: 𝒛𝑖 ≔ �̃�𝑖 + 𝛿𝑖(𝒄𝑖 + 𝑩) − 𝒃 �̃�𝑖 − 𝜙(∑𝑗 2𝑗𝜋−1

𝑖 𝑗
(𝒈 𝑖 𝑗))

?∈ ℒ(𝒂)

34: Let �̃�𝑖 ∈ 𝑅𝑞 s.t. 𝒛𝑖 = 𝒂 �̃�𝑖 ,
?

aVer
(
𝑐5 , 𝛽𝑡× + 𝛼𝛽𝑡+ + 𝛼2̃𝑡3 − 𝛽𝑡1̃𝑡2 , �̃�5

)
35: if 𝑏 = 1 then
36:

?
aVer

(
𝑐2 , (�̃�3 , �̃�× , �̃�+), �̃�2

)
37:

?
aVer

(
𝑐3 , ({𝒈 𝑖 𝑗 − 𝛼�̃�′𝑖 𝑗}𝑖 , 𝑗 , {�̃�

′
𝑖 𝑗}𝑖 , 𝑗), �̃�3

)
38:

?
aVer

(
𝑐5 , (𝛽�̃�×) + 𝛼(𝛽�̃�+) + 𝛼2(�̃�3), �̃�5

)
39: for 𝑖 ∈ 1, 2, 3 and 𝑗 ∈ 0, . . . , log(𝐵) do

40: �̃�′𝑖 𝑗
?∈ 𝔅𝑛𝑘
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Soundness

If a (possibly malicious) prover 𝒫∗ is able to provide accepted answers to 𝛿 rounds
of interaction with an honest verifier𝒱 with probability

(
(𝑞2 + 3𝑞 − 2)/(2𝑞2)

)𝛿 + 𝜖,
where 𝜖 is non-negligible, then they are able to efficiently extract a witness.

Themultiplicative protocol is more interesting than the previous ones, as we need
six pairs (𝛽, 𝛼1), (𝛽, 𝛼2), (𝛽, 𝛼3) and (𝛽′, 𝛼′1), (𝛽′, 𝛼

′
2), (𝛽′, 𝛼′3), with all 𝛼𝑖 different and

all 𝛼′
𝑖
different too, for which there are accepting transcripts for both 𝑏 = 0 and 𝑏 = 1.

This structure is that of a (2, 3, 2)-special sound 7-move protocol, considering 𝛽 as
the first challenge, 𝛼 as the second and 𝑏 as the third. Of course, our 5-move protocol
can be artificially transformed into a 7-move protocol just sending 𝛽 as first challenge,
waiting for an empty response from the prover, sending 𝛼 as a second challenge and
finally 𝑏 as a third one. Since these two protocols are by all means equivalent any
property that we can deduce when interpreting it as a (2, 3, 2)-special sound 7-move
interactive protocol would also be true for our 5-move multiplicative protocol (this
is only done for the sake of simplifying the proof, in any real instantiation both 𝛼

and 𝛽 could be sent at the same time).
In order to be able to refer to each of the transcripts we are going to use a

notation enumerating all 6 pairs of conversations with a superscript. Let the
six first challenge pairs be (𝛼(1) , 𝛽(1)), (𝛼(2) , 𝛽(2)), (𝛼(3) , 𝛽(3)), (𝛼(4) , 𝛽(4)), (𝛼(5) , 𝛽(5)),
(𝛼(6) , 𝛽(6)), with all 𝛼(𝑙) different for 𝑙 ∈ {1, 2, 3}, all 𝛼(𝑙) different for 𝑙 ∈ {4, 5, 6} and
𝛽(1) = 𝛽(2) = 𝛽(3) ≠ 𝛽(4) = 𝛽(5) = 𝛽(6).

The binding property of all auxiliary commitments ensures that openings to
the same elements are equal. Therefore, we have fixed 𝜋𝑖 𝑗 , �̃�𝑖 , �̃�3, �̃�×, �̃�+, �̃�′𝑖 𝑗 , �̃�×
and �̃�+, and there is no need to introduce superscripts for these elements (once
again this is always true if the auxiliary commitment scheme is perfectly binding or
reduces the success probability of the extractor by a negligible amount if it is only
computationally binding).

For each pair (𝛼(𝑙) , 𝛽(𝑙))we have 𝒈 (𝑙)
𝑖 𝑗

that do depend on the challenge. This is also

the case for the �̃�(𝑙)
𝑖

We know that 𝒛(𝑙)
𝑖

≔ �̃�𝑖 + 𝛿(𝑙)
𝑖
(𝒄𝑖 + 𝑩) − 𝒃𝑖 �̃�

(𝑙)
𝑖
− 𝜙(∑𝑗 2𝑗𝜋−1

𝑖 𝑗
(𝒈 (𝑙)

𝑖 𝑗
)) ∈ ℒ(𝒂) and call

�̃�
(𝑙)
𝑖

to its uniquely defined coordinates. Let 𝑙 and 𝑙′ in {1, 2, 3, 4, 5, 6} such that
Δ𝛿𝑖 ≔ 𝛿(𝑙)

𝑖
− 𝛿(𝑙

′)
𝑖

≠ 0. Then we will be able to compute valid openings of 𝒄𝑖 .

𝒂 �̃�(𝑙)
𝑖

= �̃�𝑖 + 𝛿(𝑙)
𝑖
(𝒄𝑖 + 𝑩) − 𝒃 �̃�(𝑙)

𝑖
− 𝜙

(∑
𝑗 2𝑗𝜋−1

𝑖 𝑗

(
𝒈 (𝑙)
𝑖 𝑗

))
𝒂 �̃�(𝑙

′)
𝑖

= �̃�𝑖 + 𝛿(𝑙
′)
𝑖
(𝒄𝑖 + 𝑩) − 𝒃 �̃�(𝑙

′)
𝑖
− 𝜙

(∑
𝑗 2𝑗𝜋−1

𝑖 𝑗

(
𝒈 (𝑙
′)
𝑖 𝑗

))
Δ𝛿𝑖 𝒄𝑖 = 𝒂

(̃
𝑡
(𝑙)
𝑖
− �̃�(𝑙

′)
𝑖

)
+ 𝒃

(̃
𝑠
(𝑙)
𝑖
− �̃�(𝑙

′)
𝑖

)
+ 𝜙

(∑
𝑗 2𝑗𝜋−1

𝑖 𝑗

(
𝒈 (𝑙)
𝑖 𝑗
− 𝒈 (𝑙

′)
𝑖 𝑗

))
− Δ𝛿𝑖𝑩
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𝒄𝑖 = 𝒂
(
Δ−1
𝛿𝑖

(̃
𝑡
(𝑙)
𝑖
− �̃�(𝑙

′)
𝑖

))
+ 𝒃

(
Δ−1
𝛿𝑖

(̃
𝑠
(𝑙)
𝑖
− �̃�(𝑙

′)
𝑖

))
+ 𝜙

(∑
𝑗 2𝑗𝜋−1

𝑖 𝑗

(
Δ−1
𝛿𝑖

(
𝒈 (𝑙)
𝑖 𝑗
− 𝒈 (𝑙

′)
𝑖 𝑗

)))
− 𝑩

As we did with the opening proof we can use that the opening to �̃� 𝑖 𝑗 is unique to
relate the 𝒈 𝑖 𝑗 to the permuted extended errors �̃� 𝑖 𝑗

𝒈 (𝑙)
𝑖 𝑗
− 𝛿(𝑙)

𝑖
�̃�′𝑖 𝑗 = 𝒈 (𝑙

′)
𝑖 𝑗
− 𝛿(𝑙

′)
𝑖

�̃�′𝑖 𝑗

�̃�′𝑖 𝑗 = Δ−1
𝛿𝑖

(
𝒈 (𝑙)
𝑖 𝑗
− 𝒈 (𝑙

′)
𝑖 𝑗

)
and replace them in the previous equation to obtain a valid opening.

𝒄𝑖 = 𝒂
(
Δ−1
𝛿𝑖

(̃
𝑡
(𝑙)
𝑖
− �̃�(𝑙

′)
𝑖

))
+ 𝒃

(
Δ−1
𝛿𝑖

(̃
𝑠
(𝑙)
𝑖
− �̃�(𝑙

′)
𝑖

))
+ 𝜙

(∑
𝑗 2𝑗𝜋−1

𝑖 𝑗

(̃
𝒆′𝑖 𝑗

))
− 𝑩.

As these elements come from accepted answers we know that �̃�′𝑖 𝑗 ∈ 𝔅𝑛𝑘 ⊂
{0, 1}2𝑛𝑘 and therefore 𝜙(∑𝑗 2𝑗𝜋−1

𝑖 𝑗
(̃𝒆′𝑖 𝑗)) − 𝑩 has norm smaller than 𝐵. This implies

that (Δ−1
𝛿𝑖
(̃𝑡(𝑙)
𝑖
− �̃�(𝑙

′)
𝑖
),Δ−1

𝛿𝑖
(̃𝑠(𝑙)
𝑖
− �̃�(𝑙

′)
𝑖
), 𝜙(∑𝑗 2𝑗𝜋−1

𝑖 𝑗
(̃𝒆′𝑖 𝑗)) − 𝑩) are valid openings.

The same way we introduced notation for elements a possible malicious prover
discloses or elements the simulator outputs we now use 𝑎 to denote the extracted
element we intend to prove plays the role of 𝑎.

We know that the opened messages do not depend on (𝑙) and (𝑙′), because
the commitment scheme is perfectly binding. Therefore, we can call them (𝑚 𝑖 ≔

Δ−1
𝛿𝑖
(̃𝑡(𝑙)
𝑖
−̃𝑡(𝑙

′)
𝑖
), 𝑟(𝑙)

𝑖
≔ Δ−1

𝛿𝑖
(̃𝑠(𝑙)
𝑖
−�̃�(𝑙

′)
𝑖
), 𝒆 𝑖 ≔ 𝜙(∑𝑗 2𝑗𝜋−1

𝑖 𝑗
(̃𝒆′𝑖 𝑗))−𝑩)without any superscript

on the message.
It only remains to prove that 𝑚3 = 𝑚1 · 𝑚2. To do so, we have committed to the

crossed terms masking elements in 𝑐5, and we have seen in the completeness section
that the alternative opening involving the �̃�𝑖 (and therefore the messages 𝑚𝑖) works
if 𝑚3 = 𝑚1 · 𝑚2. To prove the other direction, the fact that if both openings for each
of the 6 pairs of transcripts are valid then 𝑚3 = 𝑚1 · 𝑚2, we use the usual technique
ensuring that everything else was determined before the challenges were chosen
and that the statement holds for different challenges.

From the elements involved in the openings of 𝑐5 only �̃�(𝑙)1 , �̃�(𝑙)2 and �̃�(𝑙)3 might
depend on (𝑙) (and were not determined before the challenges were chosen). We can
define 𝜇(𝑙)

𝑖
≔ �̃�
(𝑙)
𝑖
− 𝛿(𝑙)

𝑖
𝑚 𝑖 and 𝜌(𝑙)

𝑖
≔ �̃�

(𝑙)
𝑖
− 𝛿(𝑙)

𝑖
𝑟
(𝑙)
𝑖
, and study their dependency on 𝑙.

Claim 3.6. These newly defined 𝜇(𝑙)
𝑖

do not depend on 𝑙, as we have 𝜇(𝑙)
𝑖

= 𝜇(𝑙
′)
𝑖

for any pair
𝑙 and 𝑙′.

Proof. Assume that we have 𝑙 and 𝑙′ such that 𝜇(𝑙)
𝑖

≠ 𝜇(𝑙
′)
𝑖

.



148 3.4. Interactive Zero-Knowledge Proofs of Knowledge

We could rewrite the expression of 𝒂 �̃�(𝑙)
𝑖

in terms of these new variables.

𝒂 �̃�(𝑙)
𝑖

= �̃�𝑖 + 𝛿(𝑙)
𝑖
(𝒄𝑖 + 𝑩) − 𝒃 �̃�(𝑙)

𝑖
− 𝜙

(∑
𝑗 2𝑗𝜋−1

𝑖 𝑗

(
𝒈 (𝑙)
𝑖 𝑗

))
𝒂

(
𝜇(𝑙)
𝑖
+ 𝛿(𝑙)

𝑖
𝑚 𝑖

)
= �̃�𝑖 + 𝛿(𝑙)

𝑖

(
𝒂𝑚 𝑖 + 𝒃𝑟(𝑙)

𝑖
+ 𝜙

(∑
𝑗 2𝑗𝜋−1

𝑖 𝑗

(̃
𝒆′𝑖 𝑗

)))
− 𝒃

(
𝜌(𝑙)
𝑖
+ 𝛿(𝑙)

𝑖
𝑟
(𝑙)
𝑖

)
− 𝜙

(∑
𝑗 2𝑗𝜋−1

𝑖 𝑗

(
𝒈 (𝑙)
𝑖 𝑗

))
𝒂𝜇(𝑙)

𝑖
+ 𝒃𝜌(𝑙)

𝑖
= �̃�𝑖 − 𝜙

(∑
𝑗 2𝑗𝜋−1

𝑖 𝑗

(
𝒈 (𝑙)
𝑖 𝑗
− 𝛿(𝑙)

𝑖
�̃�′𝑖 𝑗

))
Notice that 𝒈 (𝑙)

𝑖 𝑗
− 𝛿(𝑙)

𝑖
�̃�′𝑖 𝑗 is open to �̃� 𝑖 𝑗 , that was committed before 𝛼(𝑙) and 𝛽(𝑙) were

chosen and therefore does not depend on 𝑙,

𝒂𝜇(𝑙)
𝑖
+ 𝒃�̃�(𝑙)

𝑖
= �̃�𝑖 − 𝜙

(∑
𝑗 2𝑗𝜋−1

𝑖 𝑗

(
�̃� 𝑖 𝑗

))
.

Since the right-hand side does not depend on 𝑙 nor 𝑙′ from two equations we get

𝒂
(
𝜇(𝑙)
𝑖
− 𝜇(𝑙

′)
𝑖

)
+ 𝒃

(
𝜌(𝑙)
𝑖
− 𝜌(𝑙

′)
𝑖

)
= 0.

We can again use that (𝒂 , 𝒃) define a perfectly binding commitment scheme. Any
valid commitment 𝒄 = 𝒂𝑚+𝒃𝑟+ 𝒆 could be opened to (𝑚+𝜇(𝑙)

𝑖
−𝜇(𝑙

′)
𝑖
, 𝑟+𝜌(𝑙)

𝑖
−𝜌(𝑙

′)
𝑖
, 𝒆),

and that would break the binding property if 𝜇(𝑙)
𝑖

≠ 𝜇(𝑙
′)
𝑖

.

Therefore, 𝜇𝑖 does not depend on (𝑙), and we can omit the superscript. □

We can also define𝑚× ≔ �̃�×− �̃�×,𝑚+ ≔ �̃�+− �̃�+. This time there is no dependence
with 𝑙 as the elements were previously committed. With all these discussions now
we are ready to prove the relation 𝑚3 = 𝑚1 · 𝑚2.

From the two openings of the 𝑐5 commitment scheme in each pair of conversations
with the same initial challenges (𝛼(𝑙) , 𝛽(𝑙))we get the following equation

𝛼(𝑙)
2(�̃�3) + 𝛼(𝑙)(𝛽(𝑙)�̃�+) + (𝛽(𝑙)�̃�×) = 𝛽(𝑙)̃𝑡× + 𝛼(𝑙)𝛽(𝑙)̃𝑡+ + 𝛼(𝑙)

2̃
𝑡
(𝑙)
3 − 𝛽(𝑙)̃𝑡(𝑙)1 �̃�

(𝑙)
2 .

We can expand the right-hand side to see how the dependency on 𝑙 only appears
in the challenges 𝛼(𝑙) and 𝛽(𝑙) and get

𝛽(𝑙)(�̃�× + 𝑚×) + 𝛼(𝑙)𝛽(𝑙)(�̃�+ + 𝑚+) + 𝛼(𝑙)
2(𝜇3 + 𝛽(𝑙)𝑚3) − 𝛽(𝑙)(𝜇1 + 𝛼(𝑙)𝑚1)(𝜇2 + 𝛼(𝑙)𝑚2).

From the equivalence between the left-hand side and the expanded version of the
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right-hand side, reordering the elements, we can finally get the following expression

𝛼(𝑙)
2(�̃�3 − 𝜇3 + 𝛽(𝑙)(𝑚1𝑚2 − 𝑚3))

+𝛼(𝑙)(𝛽(𝑙)(𝜇1𝑚2 + 𝜇2𝑚1 − 𝑚+))
+(𝛽(𝑙)(𝜇1𝜇2 − 𝑚×)) = 0.

If we restrict ourselves to the cases with equal 𝛽 we can see this expression as a
two degree polynomial in 𝛼 (the coefficients were committed before the challenges
were chosen), that is equal to 0 for three evaluations 𝛼(1) , 𝛼(2) , 𝛼(3) or 𝛼(4) , 𝛼(5) , 𝛼(6).
This implies that it is the 0 polynomial and that all its coefficients are 0, providing us
with the equalities �̃�3 −𝜇3 + 𝛽(𝑙)(𝑚1𝑚2 −𝑚3) = 0. Given that this equality is satisfied
by two different 𝛽(𝑙) ≠ 𝛽(𝑙

′), we have that (𝛽(𝑙) − 𝛽(𝑙
′))(𝑚1𝑚2 − 𝑚3) = 0 and finally

𝑚3 = 𝑚1𝑚2 as we wanted to prove. The relation holds for the extracted witness.

Thatmeans, using eq. (3.7), that a single repetition of the interactivemultiplicative
protocol would be knowledge sound with knowledge error

𝜅 = 1 −
𝑞 − 2 + 1

𝑞
·
𝑞 − 3 + 1

𝑞
· 2 − 2 + 1

2 =
𝑞2 + 3𝑞 − 2

2𝑞2 ,

that canbe reduced to𝜅𝛿 with 𝛿 parallel repetitions. In this case the extractor from [11]
would require 12 rewinds, because we are considering it as a (2, 3, 2)-special-sound
protocol.

Zero-Knowledge

Zero-knowledge can be proved again explicitly describing a simulator𝒮 that outputs
conversations indistinguishable from honest ones without any knowledge of the
witness. The multiplicative protocol is much more complex than the previous ones,
but we have included sufficiently many masking elements to make it possible.

Case 𝑏 = 0.

�̂�𝑖 , �̂�𝑖 ←r 𝑅𝑞 , �̂�× , �̂�+ ←r 𝑅𝑞

�̂� 𝑖 𝑗 ←r Z
2𝑛𝑘
𝑞 , 𝜋𝑖 𝑗 ←r 𝔖2𝑛𝑘

𝑐1 ←r aCom
(
{𝜋𝑖 𝑗}𝑖 , 𝑗 , {𝒂 �̂�𝑖 + 𝒃 �̂�𝑖 + 𝜙(∑𝑗 2𝑗𝜋−1

𝑖 𝑗
(�̂� 𝑖 𝑗)) − 𝛿𝑖(𝒄𝑖 + 𝑩)}𝑖

)
𝑐4 ←r aCom

(̂
𝑡× , �̂�+

)
𝑐5 ←r aCom

(
𝛽𝑡× + 𝛼𝛽𝑡+ + 𝛼2̂𝑡3 − 𝛽𝑡1̂𝑡2

)
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𝒮 reveals { �̂� 𝑖 𝑗}𝑖 , 𝑗 , {𝜋𝑖 𝑗 = 𝜋𝑖 𝑗}𝑖 , 𝑗 , {�̃�𝑖 = 𝒂 �̂�𝑖 + 𝒃 �̂�𝑖 + 𝜙(∑𝑗 2𝑗𝜋−1
𝑖 𝑗
(�̂� 𝑖 𝑗)) − 𝛿𝑖(𝒄𝑖 + 𝑩)}𝑖 ,

�̃�×, �̃�+, {̃𝑠𝑖}𝑖 .

Indistinguishable from a real conversation with the same 𝜋𝑖 𝑗 = 𝜋𝑖 𝑗 and where
𝜇𝑖 = �̂�𝑖 − 𝛿𝑖𝑚𝑖 , 𝜇× = �̂�× − 𝑚×, 𝜇+ = �̂�+ − 𝑚+, 𝜌𝑖 = �̂�𝑖 − 𝛿𝑖𝑟𝑖 and 𝒇 𝑖 𝑗 = 𝜋−1

𝑖 𝑗
(�̂� 𝑖 𝑗) − 𝛿𝑖𝒆′𝑖 𝑗 .

We can check every element would then be the one outputted by the simulator.

𝒈 𝑖 𝑗 = 𝜋𝑖 𝑗( 𝒇 𝑖 𝑗 + 𝛿𝑖𝒆′𝑖 𝑗)

= 𝜋𝑖 𝑗(𝜋−1
𝑖 𝑗 (�̂� 𝑖 𝑗))

= �̂� 𝑖 𝑗

𝜋𝑖 𝑗 = 𝜋𝑖 𝑗

𝒂𝜇𝑖 + 𝒃𝜌𝑖 + 𝜙(∑𝑗 2𝑗 𝒇 𝑖 𝑗) =

= 𝒂(̂𝑡𝑖 − 𝛿𝑖𝑚𝑖) + 𝒃(̂𝑠𝑖 − 𝛿𝑖𝑟𝑖) + 𝜙(∑𝑗 2𝑗(𝜋−1
𝑖 𝑗
(�̂� 𝑖 𝑗) − 𝛿𝑖𝒆′𝑖 𝑗))

= 𝒂 �̂�𝑖 + 𝒃 �̂�𝑖 + 𝜙(∑𝑗 2𝑗𝜋−1
𝑖 𝑗
(�̂� 𝑖 𝑗)) − 𝛿𝑖(𝒂𝑚𝑖 + 𝒃𝑟𝑖 + 𝜙(∑𝑗 2𝑗𝒆′𝑖 𝑗))

= 𝒂 �̂�𝑖 + 𝒃 �̂�𝑖 + 𝜙(∑𝑗 2𝑗𝜋−1
𝑖 𝑗
(�̂� 𝑖 𝑗)) − 𝛿𝑖(𝒄𝑖 + 𝑩)

�̃�× = 𝜇× + 𝑚×
= �̂�×

�̃�+ = 𝜇+ + 𝑚+
= �̂�+

�̃�𝑖 = 𝜌𝑖 + 𝛿𝑖𝑟𝑖

= �̂�𝑖

Case 𝑏 = 1.

�̂�3 ,�̂�× , �̂�+ ←r 𝑅𝑞 , �̂�′𝑖 𝑗 ←r 𝔅𝑛𝑘

�̂� 𝑖 𝑗 ←r Z
2𝑛𝑘
𝑞 , 𝜋𝑖 𝑗 ←r 𝔖2𝑛𝑘

𝑐2 ←r aCom(�̂�3 , �̂�× , �̂�+)

𝑐3 ←r aCom({𝜋𝑖 𝑗( �̂� 𝑖 𝑗)}𝑖 , 𝑗 , {𝜋𝑖 𝑗 (̂𝒆
′
𝑖 𝑗)}𝑖 , 𝑗)

𝑐5 ←r aCom(𝛽�̂�× + 𝛼𝛽�̂�+ + 𝛼2�̂�3)

�̂� 𝑖 𝑗 = 𝜋𝑖 𝑗( �̂� 𝑖 𝑗 + 𝛿𝑖 �̂�
′
𝑖 𝑗)
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𝒮 reveals { �̂� 𝑖 𝑗}𝑖 , 𝑗 , {�̃�
′
𝑖 𝑗 = 𝜋𝑖 𝑗 (̂𝒆′𝑖 𝑗)}𝑖 , 𝑗 , �̃�3 = �̂�3, �̃�× = �̂�×, �̃�+ = �̂�+.

Equivalent to an honest conversation with equal 𝜇3 = �̂�3 , 𝜇× = �̂�× , 𝜇+ = �̂�+ and
were 𝜋𝑖 𝑗 is such that 𝜋𝑖 𝑗(𝒆′𝑖 𝑗) = 𝜋𝑖 𝑗 (̂𝒆′𝑖 𝑗) and 𝒇 𝑖 𝑗 = 𝜋−1

𝑖 𝑗
(𝜋𝑖 𝑗( �̂� 𝑖 𝑗)). In this case the only

elements not immediate are the 𝒈 𝑖 𝑗 .

𝒈 𝑖 𝑗 = 𝜋𝑖 𝑗( 𝒇 𝑖 𝑗 + 𝛿𝑖𝒆′𝑖 𝑗)

= 𝜋𝑖 𝑗(𝜋−1
𝑖 𝑗 (𝜋𝑖 𝑗( �̂� 𝑖 𝑗))) + 𝛿𝑖𝜋𝑖 𝑗 (̂𝒆′𝑖 𝑗)

= 𝜋𝑖 𝑗( �̂� 𝑖 𝑗 + 𝛿𝑖 �̂�
′
𝑖 𝑗)

= �̂� 𝑖 𝑗

Notice again that simulated conversations follow the proper distributions, as
they are equivalent to honest conversations where the elements follow the expected
distributions.

3.5 Conclusions

To sum up, we have proposed a new protocol for proving linear and multiplicative
relations between secret elements hidden inside RLWE samples. The direct applica-
tions are new zero-knowledge proofs for proving knowledge of the evaluations of
arithmetic circuits with committed inputs.

Jain et al. [64] commitment scheme was the first proposal of this kind, based
on the LPN problem, that is, their commitment scheme only allowed to commit to
{0, 1}𝑛 messages. Xie et al. [124] proposed exact Stern-based proofs for lattice-based
commitments, but they had a factor log(𝑞)2 overhead to the messages. We are able to
build exact proofs with a constant factor overhead, thus further improving efficiency.
Besides that, our scheme is compatible with the techniques that reduce the soundness
error to 1/2, and as a consequence it requires fewer repetitions to achieve the same
confidence level. Several constructions using Xie et al. zero-knowledge proofs
for relations between committed messages (as the lattice-based Attributed Based
Signature scheme for unbounded circuits [47]) could benefit from this improvement
directly replacing their proofs with our proposal.

Our scheme can be directly compared to the one proposed by Benhamouda et
al. [19]. While their proofs do not require repetitions our proposal achieves the same
security level with smaller commitments, as we do not generalize the definition of
opening of the commitment. It is also more robust and easy to implement, as in
our protocol the prover is always able to answer with a valid response, without
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any abort probability. Finally, we require a significantly smaller modulus 𝑞 for
our construction to be sound. This implies that our schemes can still be used as a
building block in larger protocols where it would be much less efficient (or even
unfeasible) to increase the modulus 𝑞 for the whole protocol. That could be the case
for electronic voting, where heavy ZKPoKs could be performed on some servers, but
votes have to be encrypted using resource constrained voting devices. More detailed
comparisons and cost analysis, along with the differences between this version and
the proposal published in [87] can be found in Appendix 3.A.

We think that these properties represent a major improvement on constructions
based on Stern’s protocol and might be useful in applications that heavily require
this kind of proofs. We also think that our ideas are flexible enough to be applied as
building blocks for other different constructions besides commitment schemes.



Appendices 3

3.A Differences with the Published Version

As we have already mentioned the commitment scheme and the interactive ZKPoKs
introduced in this chapter were previously presented in the 17th IMA International
Conference on Cryptography and Coding, celebrated in Oxford in 2019 [87]. Never-
theless, this chapter has significant differences with the version published in [87], as
we have complemented its asymptotic security proofs with concrete security estima-
tions. Besides that, we have also further improved some demonstrations justifying
missing details and obtaining more tight results. The fundamental differences are
going to be described in this appendix.

The original version in [87] established some asymptotic conditions on the
parameters using the same kind of bounds used in [19] for the Benhamouda et
al. commitment scheme. This way, looking at the theoretical inequalities that the
parameters have to satisfy it was possible to directly compare both constructions
without actually calculating the secure parameters. The comparison is well detailed
in [87], showing that we obtain a smaller commitment size for the same 𝑛 and
𝑞 (because our scheme requires a smaller overhead 𝑘), and most importantly it
can be instantiated with a much smaller 𝑞. Conversely, [19] obtains smaller proof
sizes, mostly because they do not need to repeat the protocols to obtain negligible
soundness (although the fact that the running time of their proofs depends on the
secret would require an overhead to prevent side-channel timing attacks). It is also
interesting the theoretical comparison with the scheme from Xie et al. [124], provided
that we reduce the size of the proofs by a factor log2(𝑞) given that we do not need
to binary decompose the messages, and also reduce the number of repetitions by
reducing the soundness error from 2/3 to almost 1/2.

However, these conditions on the parameters, that allow theoretical comparisons
and work for proving asymptotic security, are sometimes far from tight and not that
useful when it comes to searching the most efficient possible secure set of parameters.
For that matter, the security proofs have been revamped. To do so we have removed
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some constants, introduced new ones, and replaced some conditions with others
that play the same role but allow a tighter analysis.

It is important to emphasize that this is one of the main challenges when
instantiating real world cryptographic protocols from a theoretic proposal. Proving
security from a theoretical point of view requires asymptotic proofs, as its goal
is ensuring that undesired events occur with as low probability as we desire
provided some parameters are large enough. These proofs guarantee the existence
of parameters for any security level (under certain hypothesis), but do not inform of
the particular parameters given that they might not explicitly describe how large
these parameters should be, and have to be generic enough to work with any set of
parameters.

Claiming a specific security level𝜆 is something different, as the constants hidden
in the asymptotic relations play a really important role, and we have been able to
tailor some inequalities to the specific set of parameters we would like to work with.

Both [87, 19] use 𝜎 ∈ O
(
𝑛3/4

)
as error parameter, but this is not useful for

instantiating the commitment. On the one hand, fixing a particular relation 𝜎 = 𝑐 ·𝑛3/4

might require absurdly large 𝑛 for the properties to hold for some 𝑐, or, on the other
hand, it might produce far from tight inequalities. Explicitly computing how large 𝑛
has to be, or how tight are the proofs, is not straightforward in general.

Asymptotic relations are defined for functions, but, in order to study the best 𝜎 for
a given 𝑛, a different analysis is required. It is also relevant to notice that the original
proofs used as an assumption the hardness of the underlying RLWE problem, but
did not discuss how the relations among the parameters affect this hardness. This
again has to be specifically consider when instantiating the commitment.

For these reasons some constrains and the proofs from this chapter differ from
its counterparts in [87]. Let us list the main differences.

Remove intermediate constant 𝜸. Consequently, we no longer make use of the
intermediate constant 𝛾 controlling the relation between 𝑞 and 𝑛, imposing 𝑞 ≥ 𝑛𝛾.
The original version [87] inherited it from [19], and it was useful to compare both
schemes from a theoretical point of view, but not for choosing parameters. We have
instead explicitly checked the relations between 𝑞 and 𝑛 for each security property.

Decoupling of noise bound from 𝒏 introducing new bound 𝑩. Both [19]
and [87] bounded the error term by 𝑛, so that 𝜎 could be asymptotically defined with
respect to 𝑛 and security proofs would then be more straightforward. As we have
mentioned, choosing specific parameters requires computing actual probabilities,
and not its asymptotic behavior. Doing so we found out that it is possible to choose
much tighter bounds on the error terms preserving all the other properties. For that
matter, we have introduced from the very beginning a new parameter 𝐵, intended
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to be a much tighter upper bound to the norm of the error term. In the following
chapter we are going to see that this was indeed a right presumption, because we
can obtain secure sets with 𝐵 ≪ 𝑛.

Alternative constraint of the modulus 𝒒. Besides redoing the proofs for security
considerations, we also change another condition, regarding the modulus 𝑞, to allow
further optimizations. To improve the efficiency of polynomial multiplications, we
use the partial FFT approach that has been described in Chapter 2.

For this reason we have imposed 𝑞 ≡ 2𝑑 + 1 mod 4𝑑 so that 𝑥𝑛 + 1 factorizes
into 𝑑 irreducible polynomials in Z𝑞[𝑥]. Notice that when 𝑑 = 2, which is the most
efficient case as we will discuss, this translates into 𝑞 ≡ 5 mod 8, while the original
proposals [19, 87] required 𝑞 ≡ 3 mod 8, which also ensure by a different theorem
that 𝑥𝑛 + 1 factorizes into two different irreducible polynomials of degree 𝑛/2 in
Z𝑞[𝑥].

Missing details. Notice that the original soundness proof from [87] implicitly
assumes that given 𝒛 ∈ ℒ(𝒂) one can compute 𝑡 ∈ 𝑅𝑞 such that 𝒛 = 𝒂𝑡. This
might not be true for any lattice, but we have formally showed in Section 3.4.1 that
it is true if 𝒂 is the first vector of polynomials from the public key (𝒂 , 𝒃) of the
commitment scheme under the conditions that imply the binding property of the
commitment. Something analogous happens in Section 3.4.2 about the fact that
the linearity of some 𝒛 𝑖 ∈ ℒ(𝒂) implies the linearity of the coordinates 𝑡𝑖 ∈ 𝑅𝑞 such
that 𝒛 𝑖 = 𝒂𝑡𝑖 , which was not explicitly proven in [87]. The fact that (𝒂 , 𝒃) defines a
binding commitment is once again used in Section 3.4.3 to prove soundness of the
multiplicative relation. This was proved differently in [87], only obtaining soundness
except with a negligible probability on the sampling of the public keys (slightly
different to the negligible probability of the commitment not being binding).

Standard soundness. To be able to prove soundness, the published version [87]
used the notion of 𝑘-special soundness that we informally defined in Section 1.2.4
(see [87] for the formal definition). This property states that awitness can be extracted
from 𝑘 accepting conversations with different challenges. Notice that this does not
immediate provide knowledge-soundness, as one has to build the extractor that
efficiently gets these 𝑘 conversations.

We could say, as it is done in [87], that 𝑞 + 2 transcripts, with different pairs of
challenges in Z𝑞 × {0, 1}, ensure by the pigeonhole principle the existence of the four
transcripts that we really need (with 𝛼 as the first challenge in two of them, 𝛼′ ≠ 𝛼

in the other two, and both 𝑏 = 0 and 𝑏 = 1 for each first challenge), but it seems an
overkill. That is because the 𝑘-special-soundness definition from [87] does not fully
capture the nature of multi-round protocols.

Many proposals in the literature do not even analyze how the extractor would
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work. As it was mentioned in [87] the size of the potential execution tree considering
all possible challenges would be of the order of 𝑞𝛿. The [87] soundness proof already
partially addressed this issue, providing an efficient witness extractor sufficient to
ensure soundness of the interactive protocol.

In [87] we managed to prove that, provided oracle access to a malicious prover
that produces accepting conversations with probability 𝜖 ≥ ((𝑞 + 1)/2𝑞)𝛿, let us call
𝜅 = (𝑞 + 1)/2𝑞, there exists an efficient extractor that outputs a valid witness with
probability 2(𝜖 − 𝜅𝛿)3/27. It was sufficient to prove soundness of the interactive
proof for which it is sufficient to see that a witness can be extracted with positive
probability, but it does not satisfy the standard notion of knowledge-soundness with
knowledge error 𝜅𝛿, that would require the probability to be proportional to (𝜖−𝜅𝛿),
while that proof only achieves a relaxed version where we have a cubic loss in the
success probability. The standard definition also asks for an extractor that, given
oracle access to any successful enough malicious prover, outputs a witness with
sufficient probability. The proof from [87] proves the existence of such an extractor
that works with each prover, but that extractor could be different each time. That is
because that proof shows that it is sufficient to focus on a single individual thread
of the 𝛿 repetitions, however the index of that thread could be different for each
prover. This could be naïvely addressed, and the extractor can be made universal
by choosing that index at random (at the expense of dividing by 𝛿 the guaranteed
success probability), or trying it for every index (at the expense of increasing its
computational cost by a factor 𝛿).

This proposed extractor would work in a running time just proportional to 𝑞 (or
to 𝛿𝑞 to comply with the standard definition as we have seen). Once a useful node
in the execution tree (an initial message for which the prover can correctly answer to
sufficiently many challenges) is found, all the 𝑞 + 2 transcripts have to be obtained
rewinding the prover. That is still a significant work regarding that, as we have said,
only 4 of them are really relevant, given that the witness can be obtained from 4
transcripts.

We have further improved this analysis in Section 3.4.1, using the (𝑘1 , . . . , 𝑘𝜇)-
Special Soundness from Definition 3.2, because it is much more suitable for protocols
with more than 3 moves, as it is our case. Using it we have been able to prove that
the protocols satisfy the standard definition of knowledge-soundness, without the
relaxations to the definition that were necessary in [87].



Chapter 4

Commitment and NIZKPoKs
Implementation

In this chapterwe continue thework from the previous one. We explain how to obtain
Non-Interactive Zero-Knowledge Proofs of Knowledge for the same statements, valid
openings and linear or multiplicative relations among committed elements. Then,
we prove them secure and showcase an implementation of both the commitment and
the proofs. We develop a procedure to obtain optimal secure sets of parameters and
evaluate the performance of the scheme showing both the size of the commitments
and the proofs, and the running time of all the defined algorithms.

4.1 Introduction

The aim of this chapter is to analyze the practical performance of the commitment
scheme and the proofs defined in the previous chapter. We believe it is important
to bridge the gap between theoretical proposals and actual implementations, at
least providing a working prototype so that we can fully address the most relevant
practical issues that might arise in a real use case.

In order to make the analysis as complete as possible, we have decided to
implement non-interactive variants of the ZKPoKs presented so far. First of all, the
benchmarks we can perform with our implementation of a non-interactive proof will
more closely resemble a real scenario than a simulated interactive protocol running
both parties in a single computer, estimating or omitting the communication delays.
We will then obtain more meaningful results following this approach. Secondly,
non-interactive proofs can be universally verifiable, meaning that the same proof
computed once can be verified by any verifier without requesting the prover to do
any additional computation, so it is relevant to analyze this scenario too.
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4.1.1 Structure of the Chapter

The non-interactive versions can be obtained in the ROM from the interactive
protocols applying the Fiat-Shamir transform, substituting the random challenges
by pseudorandom elements computed from the previous messages. We first devote
Section 4.2 to introduce the modifications needed to get the NIZKPoKs versions and
include the pseudocode that would be used for the implementations.

Then in Section 4.3 we formally prove knowledge-soundness, zero-knowledge
and completeness for the non-interactive variants. While zero-knowledge and com-
pleteness are almost directly inherited from the interactive versions the soundness
property requires a much more involved discussion. The notion of soundness itself
is of a different nature when dealing with non-interactive proofs.

In order to be able to apply known security reductions we start in Section 4.3.1
with a technical proof showing that we can assume, without loss of generality, that
all challenges from an interactive proof with multiple moves come from the same
challenge set. Recall it is not our case, as first challenges are integers from 𝒞1 ≔ Z𝑞

and second challenges are bits from 𝒞2 ≔ {0, 1}, so we have to see how can we
assume that challenges are just random seeds from a single challenge set 𝒮 from
which the integers and bits are then obtained via pseudorandom functions.

Once we have a single challenge set, we formally obtain provable soundness
applying existing Fiat-Shamir theorems considering both the ROM and the Quantum
Random Oracle Model (QROM) in Section 4.3.2. We furthermore see in Section 4.3.3
what conditions should we impose if instead of provable security we settle choosing
parameters so that the current best known attack strategy is still essentially unsuc-
cessful. The probability of these attacks is bounded in this section, while the design
of the explicit attacks is sketched here and later included in Appendix 4.A.

Finally, Sections 4.3.4 and 4.3.5 address the zero-knowledge and completeness
properties so that we have a full security proof.

The implementation of the commitment scheme and the proofs has been a joint
work with Sergi Rovira, it is available in a public GitHub repository [90], and the
details about the implementation design paired with explanations about how to deal
with the main computational tasks are included in Section 4.4.

As important as the security proofs and the actual implementation is the in-
stantiation of the scheme, given in Section 4.5. By that we mean the process of
finding a secure set of parameters as efficient as possible from which we can define
a specific instance of the commitment scheme and the companion proofs. It is not
a direct task considering that this kind of schemes have many conditions on the
parameters (as the ones already defined in Chapter 3 and the new ones we are going
to introduce in Section 4.3), that make the parameter space difficult to visualize. It
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is even harder considering that for some of the conditions we do not even have an
explicit expression, and we are limited to use a black box approach as we do when
evaluating the difficulty of the RLWE problem using the Lattice Estimator tool from
Albrecht et al. [8].

We remark here that asymptotic analyses might fail for this task, because the
intermingled relations might impose that secure sets of parameters only exist for
parameters in a given interval (we are going to see that is what happens with the
modulus 𝑞 for a given 𝑛, as we are only able to find secure sets with 𝑞 above and
below certain thresholds). For example, any property that holds provided that 𝑞 is
sufficiently large could imply that no secure instantiations exist because it might be
the case that 𝑞 has to be such large that some other condition cannot be satisfied. For
this reason we need tight analyses on the security conditions and robust strategies
to find the best parameter sets (the script we have used to find these parameters is
again uploaded to the GitHub repository [90] and also included in Appendix 4.B).

Ultimately, we present in Section 4.6multiple benchmarks regarding both running
time and size of the commitment, opening, linear and multiplicative zero-knowledge
proofs. Thanks to the fact that we have meticulously studied the security conditions
and instantiation procedure we can be confident that the presented plots provide
insightful information about the efficiency of Stern-based lattice-based NIZKPoKs.
Moreover, we also include several tables with a selected number of parameter
sets to provide specific results showcasing the best sets regarding size of both the
commitment and the proofs, running time of each algorithm and commitment
size to message size ratio. We believe these extensive benchmarks are much more
comprehensive than what could be extrapolated from a table with only two or three
example parameter sets. Additional results for non-practical sets of parameters are
also included in Appendix 4.C for completeness.

4.2 Non-Interactive Zero-Knowledge Proofs of Knowledge

In this section, we describe the implementation approach and the small modifications
we have introduced while adapting the interactive protocols from Chapter 3 into
non-interactive proof systems. Moreover, in Section 4.2.1 we have included the full
description of each of the proofs and verifications, taking into account the tools that
we have used to instantiate them.

Transform the Interactive protocols into Non-Interactive ones. We have
transformed, via Fiat-Shamir, the original Interactive-ZKPoKs into NIZKPoKs,
computing the challenges from a CSPRNG seeded with the previous elements from
the conversation. To make the non-interactive version knowledge sound with a
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negligible soundness error, the number of repetitions of the protocols, denoted
by 𝛿𝑂𝐿 in the opening and linear proofs and by 𝛿𝑀 in the multiplicative one, has
to be increased. In particular, we have to explicitly work with parallel repetitions
and denote the dependency on the iteration index, something we have omitted till
now, because it is of paramount importance that the challenges depend on previous
elements from all the parallel repetitions.

Split the key generation algorithm. The standard theoretic definition of
cryptographic primitives usually assumes the generator Gen to take as input just
the security parameter in unary 1𝜆. A commitment scheme was defined that way in
Definition 1.6, and we followed that approach in Section 3.3.1. However, the public
parameters pp that define the sizes, lattice dimension, modulus or noise distribution
play a different role than the public key pk ≔ (𝒂 , 𝒃) ∈ 𝑅𝑘𝑞 .

From a practical point of view these are two different tasks. Choosing a set of
parameters pp usually involves more decisions than just the security level defined by
1𝜆. It is often the case that one can fiddle with the parameters preserving the security
level to obtain different trade-offs. We are going to show in Section 4.5 that we are
free to choose the (𝜆, 𝑛, 𝑞, 𝑑) that better fit our needs, and the rest of the parameters
can be computed so that performance of both the commitment and the proofs is
optimized. A parameter generator script is available in the GitHub repository [90],
and the relevant part of the code is included in Appendix 4.B.

Nevertheless, the final user typically uses a precomputed set of parameters and
just generates the key. For that reason we define a specific key generator KeyGen
algorithm that already takes the set of parameters as input and outputs the public
key (including the related auxiliary elements discussed before).

pk←r KeyGen(1𝜆 , pp)

This approach does not compromise security because the properties that the param-
eters have to satisfy in order to ensure it are publicly verifiable and do not depend
on the specific procedure that has been used to obtain them.

On the contrary, the actual public key (𝒂 , 𝒃) could be adversarially generated to
break the security, as the reductions assume it has been obtained from a uniform
distribution. For that matter its generation is defined as a separated algorithm,
allowing the final users to reuse the pp but resample the pk as many times as they
want rerunning KeyGen, so that they trust the keys have been honestly generated.

Permutation encoding. In order to save space the prover does not encode the
permutation itself but a seed fromwhich it is pseudorandomly defined. Furthermore,
we choose to define just one master seed for every iteration from which all the other
seeds for this iteration are derived, using SHAKE-128 as XOF. The procedure used
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to expand the random seed into a pseudorandomly uniform permutation follows
the Fisher-Yates algorithm and is going to be detailed in Section 4.4.2.

Auxiliary commitment instantiation. To instantiate the auxiliary commitment
scheme we have chosen to follow the approach presented in Section 1.2.5, using
SHA3-256 as a hash function modeled as a random oracle, computing aCom(𝑚, 𝑜) as
SHA3-256(𝑚∥𝑜), with 𝑜 ←r {0, 1}𝜆

′
, where 𝜆′ ≔ 8 · ⌈𝜆/8⌉ for convenience, so that

the opening has an integer number of bytes.

4.2.1 Pseudocode

Before detailing the protocols, we require extra notation and auxiliary functions. Let
Hash and XOF be a hash function and an extendable output function, respectively, as
defined in Definitions 1.12 and 1.13. Let 𝜋𝜏 be a function that takes as input a vector
of integers and permutes its elements using a pseudorandom permutation derived
from the seed 𝜏 ∈ {0, 1}8⌈𝜆/8⌉ .

Wewill call 𝜏𝑖 ∈ {0, 1}8⌈𝜆/8⌉ themaster seed for the 𝑖th iteration of the 𝛿 repetitions
and expand it into log(𝐵) + 1 seeds 𝜏𝑖 𝑗 ∈ {0, 1}8⌈𝜆/8⌉ using XOF.

We denote by PRN a function that takes as input a seed and outputs vectors of 𝛿
pseudorandom integers from Z𝑞 (or 2𝛿 integers in the multiplicative case where we
need twice as many challenges). Analogously, we denote by PRB a function that
takes as input a seed and outputs 𝛿 pseudorandom bits.

We include here the pseudocode for the NIZKPoKs, even if it heavily replicates
the interactive versions, to have them as a reference for a reader interested in
understanding the code published in the repository [90] or developing its own
implementation of a similar proof. The structure is however different from the
interactive versions, as we now have separated algorithms for the prover 𝒫 creating
the whole proof on its own and for 𝒱 verifying its validity without the need of
any interaction. In order to facilitate the comparisons with the interactive versions
we have kept right aligned the pseudorandom deterministic computation of the
challenges via a XOF and a pseudorandom generator (but it is only a visual choice
and these steps are still computed by the prover). We have also make explicit how
the permutations are also computed pseudorandomly from a seed that has to be
sampled by 𝒫. Finally, we have used a hash function as auxiliary commitment, and
we explicitly include when the openings should be sampled.

Algorithms 4.1, 4.3 and 4.4 and Algorithms 4.2, 4.5 and 4.6 respectively show the
tasks of 𝒫 and𝒱 to create and verify NIZKPoKs of a valid opening to commitment
𝒄 with public key (𝒂 , 𝒃), a linear or a multiplicative relation (that is, the committed
messages 𝑚1, 𝑚2 and 𝑚3 from commitments 𝒄1, 𝒄2 and 𝒄3 either satisfy 𝑚3 =

𝜆1𝑚1 + 𝜆2𝑚2 for given 𝜆1 ,𝜆2 ∈ 𝑅𝑞 or 𝑚3 = 𝑚1 · 𝑚2).
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Algorithm 4.1 Non-Interactive Proof of a Valid Opening
1: {𝒆′

𝑗
} 𝑗 ← expand(𝒆)

2: for 𝑖 ∈ 1, . . . , 𝛿𝑂𝐿 do
3: 𝜏𝑖 ← {0, 1}8⌈𝜆/8⌉
4: {𝜏𝑖 𝑗} 𝑗 ← XOF(𝜏𝑖)
5: { 𝒇 𝑖 𝑗} 𝑗 ←r Z2𝑛𝑘

𝑞

6: 𝜇𝑖 , 𝜌𝑖 ←r 𝑅𝑞

7: 𝑜1𝑖 , 𝑜2𝑖 ←r {0, 1}8⌈𝜆/8⌉
8: 𝒚𝑖 ≔ 𝒂𝜇𝑖 + 𝒃𝜌𝑖 + 𝜙(∑𝑗 2𝑗 𝒇 𝑖 𝑗)
9: 𝑐1𝑖 ← Hash(𝜏𝑖 ∥𝒚𝑖 ∥𝑜1𝑖)
10: 𝑐2𝑖 ← Hash({𝜋𝜏𝑖 𝑗 ( 𝒇 𝑖 𝑗)} 𝑗 ∥{𝜋𝜏𝑖 𝑗 (𝒆′𝑗)} 𝑗 ∥𝑜2𝑖)

11: seed1 ← XOF(𝒂∥𝒃∥𝒄∥{𝑐1𝑖 , 𝑐2𝑖}𝑖)
12: {𝛼𝑖}𝑖 ← PRN(seed1)
13: for 𝑖 ∈ 1, . . . , 𝛿𝑂𝐿 do
14: for 𝑗 ∈ 0, . . . , log(𝐵) do
15: 𝒈 𝑖 𝑗 ≔ 𝜋𝜏𝑖 𝑗 ( 𝒇 𝑖 𝑗 + 𝛼𝑖𝒆′𝑗)

16: seed2 ← XOF(𝒂∥𝒃∥𝒄∥seed1∥{𝒈 𝑖 𝑗}𝑖 𝑗)
17: {𝑏𝑖}𝑖 ← PRB(seed2)
18: for 𝑖 ∈ 1, . . . , 𝛿𝑂𝐿 do
19: if 𝑏𝑖 = 0 then
20: 𝑠𝑖 ≔ 𝜌𝑖 + 𝛼𝑖𝑟
21: else if 𝑏𝑖 = 1 then
22: for 𝑗 ∈ 0, . . . , log(𝐵) do
23: �̃�′𝑖 𝑗 ≔ 𝜋𝜏𝑖 𝑗 (𝒆′𝑗)
24: return {𝑐𝑖1 , 𝑐𝑖2}𝑖 ,{𝒈 𝑖 𝑗}𝑖 𝑗 ,

{
(𝜏𝑖 , 𝒚𝑖 , 𝑠𝑖 , 𝑜1𝑖)

}
𝑖 s.t. 𝑏𝑖=0,

{
({�̃�′𝑖 𝑗} 𝑗 , 𝑜2𝑖)

}
𝑖 s.t. 𝑏𝑖=1

Algorithm 4.2 Non-Interactive Verification of a Valid Opening
1: seed1 ← XOF(𝒂∥𝒃∥𝒄∥{𝑐1𝑖 , 𝑐2𝑖}𝑖)
2: seed2 ← XOF(𝒂∥𝒃∥𝒄∥seed1∥{𝒈 𝑖 𝑗}𝑖 𝑗)
3: {𝛼𝑖}𝑖 ← PRN(seed1), {𝑏𝑖}𝑖 ← PRB(seed2)
4: for 𝑖 ∈ 1, . . . , 𝛿𝑂𝐿 do
5: if 𝑏𝑖 = 0 then
6: {𝜏𝑖 𝑗} 𝑗 ← XOF(𝜏𝑖)
7: 𝑐1𝑖

?
= Hash(𝜏𝑖 ∥𝒚𝑖 ∥𝑜1𝑖)

8: 𝒛 𝑖 ≔ 𝒚𝑖 + 𝛼𝑖(𝒄 + B) − 𝒃𝑠𝑖 − 𝜙(∑𝑗 2𝑗𝜋−1
𝜏𝑖 𝑗 (𝒈 𝑖 𝑗))

9: 𝒛 𝑖
?∈ ℒ(𝒂)

10: else if 𝑏𝑖 = 1 then
11: 𝑐2𝑖

?
= Hash

(
{𝒈 𝑖 𝑗 − 𝛼𝑖 �̃�

′
𝑖 𝑗} 𝑗 ∥{�̃�

′
𝑖 𝑗} 𝑗 ∥𝑜2𝑖

)
12: for 𝑗 ∈ 0, . . . , log(𝐵) do

13: �̃�′𝑖 𝑗
?∈ 𝔅𝑛𝑘
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Algorithm 4.3 Non-Interactive Proof of a Linear Relation
1: for ℎ ∈ 1, 2, 3 do
2: {𝒆′

ℎ 𝑗
} 𝑗 ← expand(𝒆ℎ)

3: for 𝑖 ∈ 1, . . . , 𝛿𝑂𝐿 do
4: for ℎ ∈ 1, 2, 3 do
5: 𝜏ℎ𝑖 ← {0, 1}8⌈𝜆/8⌉
6: {𝜏ℎ𝑖𝑗} 𝑗 ← XOF(𝜏ℎ𝑖)
7: { 𝒇 ℎ𝑖𝑗} 𝑗 ←r Z2𝑛𝑘

𝑞

8: 𝜇1𝑖 , 𝜇2𝑖 , {𝜌ℎ𝑖}ℎ ←r 𝑅𝑞
9: 𝜇3𝑖 ≔ 𝜆1𝜇1𝑖 + 𝜆2𝜇2𝑖
10: 𝑜1𝑖 , 𝑜2𝑖 ←r {0, 1}8⌈𝜆/8⌉
11: for ℎ ∈ 1, 2, 3 do
12: 𝒚ℎ𝑖 ≔ 𝒂𝜇ℎ𝑖 + 𝒃𝜌ℎ𝑖 + 𝜙(∑𝑗 2𝑗 𝒇 ℎ𝑖𝑗)
13: 𝑐1𝑖 ← Hash({𝜏ℎ𝑖}ℎ ∥{𝒚ℎ𝑖}ℎ ∥𝑜1𝑖)
14: 𝑐2𝑖 ← Hash({𝜋𝜏ℎ𝑖𝑗 ( 𝒇 ℎ𝑖𝑗)}ℎ 𝑗 ∥{𝜋𝜏ℎ𝑖𝑗 (𝒆′ℎ 𝑗)}ℎ 𝑗 ∥𝑜2𝑖)

15: seed1 ← XOF(𝒂∥𝒃∥{𝒄ℎ}ℎ ∥𝜆1∥𝜆2∥{𝑐1𝑖 , 𝑐2𝑖}𝑖)
16: {𝛼𝑖}𝑖 ← PRN (seed1)

17: for 𝑖 ∈ 1, . . . , 𝛿𝑂𝐿 do
18: for ℎ ∈ 1, 2, 3 do
19: for 𝑗 ∈ 0, . . . , log(𝐵) do
20: 𝒈 ℎ𝑖𝑗 ≔ 𝜋𝜏ℎ𝑖𝑗 ( 𝒇 ℎ𝑖𝑗 + 𝛼𝑖𝒆′ℎ 𝑗)

21: seed2 ← XOF
(
𝒂∥𝒃∥{𝒄ℎ}ℎ ∥𝜆1∥𝜆2∥seed1∥{𝒈 ℎ𝑖𝑗}ℎ𝑖𝑗

)
22: {𝑏𝑖}𝑖 ← PRB(seed2)

23: for 𝑖 ∈ 1, . . . , 𝛿𝑂𝐿 do
24: if 𝑏𝑖 = 0 then
25: for ℎ ∈ 1, 2, 3 do
26: 𝑠ℎ𝑖 ≔ 𝜌ℎ𝑖 + 𝛼𝑖𝑟ℎ𝑖

27: else if 𝑏𝑖 = 1 then
28: for ℎ ∈ 1, 2, 3 do
29: for 𝑗 ∈ 0, . . . , log(𝐵) do
30: �̃�′ℎ𝑖𝑗 ≔ 𝜋𝜏ℎ𝑖𝑗 (𝒆′ℎ 𝑗)
31: return {𝑐1𝑖 , 𝑐2𝑖}𝑖 ,{𝒈 ℎ𝑖𝑗}ℎ𝑖𝑗 ,{

{𝜏ℎ𝑖}ℎ , {𝒚ℎ𝑖}ℎ , {𝑠ℎ𝑖}ℎ , 𝑜1𝑖

}
𝑖 s.t. 𝑏𝑖=0

,
{
{�̃�′ℎ𝑖𝑗}ℎ 𝑗 , 𝑜2𝑖

}
𝑖 s.t. 𝑏𝑖=1
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Algorithm 4.4 Non-Interactive Proof of a Multiplicative Relation
1: for ℎ ∈ 1, 2, 3 do
2: {𝒆′

ℎ 𝑗
} 𝑗 ← expand(𝒆ℎ)

3: for 𝑖 ∈ 1, . . . , 𝛿𝑀 do
4: for ℎ ∈ 1, 2, 3 do
5: 𝜏ℎ𝑖 ← {0, 1}8⌈𝜆/8⌉
6: {𝜏ℎ𝑖𝑗} 𝑗 ← XOF(𝜏ℎ𝑖)
7: { 𝒇 ℎ𝑖𝑗} 𝑗 ←r Z2𝑛𝑘

𝑞

8: 𝜇ℎ𝑖 , 𝜌ℎ𝑖 ←r 𝑅𝑞
9: 𝒚ℎ𝑖 ≔ 𝒂𝜇ℎ𝑖 + 𝒃𝜌ℎ𝑖 + 𝜙(∑𝑗 2𝑗 𝒇 ℎ𝑖𝑗)
10: 𝜇×𝑖 , 𝜇+𝑖 ←r 𝑅𝑞
11: 𝑚×𝑖 ≔ 𝜇1𝑖𝜇2𝑖 , 𝑚+𝑖 ≔ 𝜇1𝑖𝑚2 + 𝜇2𝑖𝑚1
12: 𝑜1𝑖 , 𝑜2𝑖 , 𝑜3𝑖 , 𝑜4𝑖 , 𝑜5𝑖 ←r {0, 1}8⌈𝜆/8⌉
13: 𝑐1𝑖 ← Hash({𝜏ℎ𝑖}ℎ ∥{𝒚ℎ𝑖}ℎ ∥𝑜1𝑖)
14: 𝑐2𝑖 ← Hash(𝜇3𝑖 ∥𝜇×𝑖 ∥𝜇+𝑖 ∥𝑜2𝑖)
15: 𝑐3𝑖 ← Hash({𝜋𝜏ℎ𝑖𝑗 ( 𝒇 ℎ𝑖𝑗)}ℎ 𝑗 ∥{𝜋𝜏ℎ𝑖𝑗 (𝒆′ℎ 𝑗)}ℎ 𝑗 ∥𝑜3𝑖)
16: 𝑐4𝑖 ← Hash(𝜇×𝑖 + 𝑚×𝑖 ∥𝜇+𝑖 + 𝑚+𝑖 ∥𝑜4𝑖)

17: seed1 ← XOF(𝒂∥𝒃∥{𝒄ℎ}ℎ ∥{𝑐1𝑖 , 𝑐2𝑖 , 𝑐3𝑖 , 𝑐4𝑖}𝑖)
18: {𝛼𝑖 , 𝛽𝑖}𝑖 ← PRN(seed1)

19: for 𝑖 ∈ 1, . . . , 𝛿𝑀 do
20: 𝛾1𝑖 ≔ 𝛼𝑖 , 𝛾2𝑖 ≔ 𝛼𝑖 , 𝛾3𝑖 ≔ 𝛽𝑖
21: 𝑐𝑖5 ← Hash(𝛽𝜇×𝑖 + 𝛼𝑖𝛽𝑖𝜇+𝑖 + 𝛼𝑖2𝜇3𝑖 ∥𝑜𝑖5)
22: for ℎ ∈ 1, 2, 3 do
23: for 𝑗 ∈ 0, . . . , log(𝐵) do
24: 𝒈 ℎ𝑖𝑗 ≔ 𝜋𝜏ℎ𝑖𝑗 ( 𝒇 ℎ𝑖𝑗 + 𝛾ℎ𝑖𝒆′ℎ 𝑗)

25: seed2 ← XOF
(
𝒂∥𝒃∥{𝒄ℎ}ℎ ∥seed1∥{𝑐5𝑖}𝑖 ∥{𝒈 ℎ𝑖𝑗}ℎ𝑖𝑗

)
26: {𝑏𝑖}𝑖 ← PRB(seed2)

27: for 𝑖 ∈ 1, . . . , 𝛿𝑀 do
28: if 𝑏𝑖 = 0 then
29: 𝑡×𝑖 ≔ 𝜇×𝑖 + 𝑚×𝑖 , 𝑡+𝑖 ≔ 𝜇+𝑖 + 𝑚+𝑖
30: for ℎ ∈ 1, 2, 3 do
31: 𝑠ℎ𝑖 ≔ 𝜌ℎ𝑖 + 𝛾ℎ𝑖𝑟ℎ

32: else if 𝑏𝑖 = 1 then
33: for ℎ ∈ 1, 2, 3 do
34: for 𝑗 ∈ 0, . . . , log(𝐵) do
35: �̃�′ℎ𝑖𝑗 ≔ 𝜋𝜏ℎ𝑖𝑗 (𝒆′ℎ 𝑗)
36: return {𝑐1𝑖 , 𝑐2𝑖 , 𝑐3𝑖 , 𝑐4𝑖 , 𝑐5𝑖}𝑖 , {𝒈 ℎ𝑖𝑗}ℎ𝑖𝑗 ,{

({𝜏ℎ𝑖}ℎ , {𝒚ℎ𝑖}ℎ , 𝑡×𝑖 , 𝑡+𝑖 , {𝑠ℎ𝑖}ℎ , 𝑜1𝑖 , 𝑜4𝑖 , 𝑜5𝑖)
}
𝑖 s.t. 𝑏𝑖=0{

({�̃�′ℎ𝑖𝑗}ℎ 𝑗 , 𝜇3𝑖 , 𝜇×𝑖 , 𝜇+𝑖 , 𝑜2𝑖 , 𝑜3𝑖 , 𝑜5𝑖)
}
𝑖 s.t. 𝑏𝑖=1
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Algorithm 4.5 Non-Interactive Verification of a Linear Relation
1: seed1 ← XOF(𝒂∥𝒃∥{𝒄ℎ}ℎ ∥𝜆1∥𝜆2∥{𝑐1𝑖 , 𝑐2𝑖}𝑖)
2: seed2 ← XOF

(
𝒂∥𝒃∥{𝒄ℎ}ℎ ∥𝜆1∥𝜆2∥seed1∥{𝒈 ℎ𝑖𝑗}ℎ𝑖𝑗

)
3: {𝛼𝑖}𝑖 ← PRN(seed1), {𝑏𝑖}𝑖 ← PRB(seed2)
4: for 𝑖 ∈ 1, . . . , 𝛿𝑂𝐿 do
5: if 𝑏𝑖 = 0 then
6: for ℎ ∈ 1, 2, 3 do
7: {𝜏ℎ𝑖𝑗} 𝑗 ← XOF(𝜏ℎ𝑖)
8: 𝒛ℎ𝑖 ≔ 𝒚ℎ𝑖 + 𝛼𝑖(𝒄ℎ + B) − 𝒃𝑠ℎ𝑖 − 𝜙(∑𝑗 2𝑗𝜋−1

𝜏ℎ𝑖𝑗 (𝒈 ℎ𝑖𝑗))
9: 𝒛ℎ𝑖

?∈ ℒ(𝒂)
10: 𝑐1𝑖

?
= Hash

(
{𝜏ℎ𝑖}ℎ ∥{𝒚ℎ𝑖}ℎ ∥𝑜1𝑖

)
11: 𝒛3𝑖

?
= 𝜆1𝒛1𝑖 + 𝜆2𝒛2𝑖

12: else if 𝑏𝑖 = 1 then
13: 𝑐2𝑖

?
= Hash({𝒈 ℎ𝑖𝑗 − 𝛼𝑖 �̃�

′
ℎ𝑖𝑗}ℎ 𝑗 ∥{�̃�

′
ℎ𝑖𝑗}ℎ 𝑗 ∥𝑜2𝑖)

14: for ℎ ∈ 1, 2, 3 do
15: for 𝑗 ∈ 0, . . . , log(𝐵) do

16: �̃�′ℎ𝑖𝑗
?∈ 𝔅𝑛𝑘

Algorithm 4.6 Non-Interactive Verification of a Multiplicative Relation
1: seed1 ← XOF(𝒂∥𝒃∥{𝒄ℎ}ℎ ∥{𝑐1𝑖 , 𝑐2𝑖 , 𝑐3𝑖 , 𝑐4𝑖}𝑖)
2: seed2 ← XOF

(
𝒂∥𝒃∥{𝒄ℎ}ℎ ∥seed1∥{𝑐5𝑖}𝑖 ∥{𝒈 ℎ𝑖𝑗}ℎ𝑖𝑗

)
3: {𝛼𝑖 , 𝛽𝑖}𝑖 ← PRN (seed1) , {𝑏𝑖}𝑖 ← PRB(seed2)
4: for 𝑖 ∈ 1, . . . , 𝛿𝑀 do
5: 𝛾1𝑖 ≔ 𝛼𝑖 , 𝛾2𝑖 ≔ 𝛼𝑖 , 𝛾3𝑖 ≔ 𝛽𝑖
6: if 𝑏𝑖 = 0 then
7: for ℎ ∈ 1, 2, 3 do
8: 𝒛ℎ𝑖 ≔ 𝒚ℎ𝑖 + 𝛾ℎ𝑖(𝒄ℎ + B) − 𝒃𝑠ℎ𝑖 − 𝜙(∑𝑗 2𝑗𝜋−1

𝜏ℎ𝑖𝑗 (𝒈 ℎ𝑖𝑗))
9: 𝒛ℎ𝑖

?∈ ℒ(𝒂)
10: Let 𝑡ℎ𝑖 ∈ 𝑅𝑞 s.t. 𝒛ℎ𝑖 = 𝒂𝑡ℎ𝑖

11: 𝑐1𝑖
?
= Hash({𝜏ℎ𝑖}ℎ ∥{𝒚ℎ𝑖}ℎ ∥𝑜1𝑖)

12: 𝑐4𝑖
?
= Hash(𝑡×𝑖 ∥𝑡+𝑖 ∥𝑜4𝑖)

13: 𝑐5𝑖
?
= Hash(𝛽𝑖𝑡×𝑖 + 𝛼𝑖𝛽𝑖𝑡+𝑖 + 𝛼𝑖2𝑡3𝑖 − 𝛽𝑖𝑡1𝑖𝑡2𝑖 ∥𝑜5𝑖)

14: else if 𝑏𝑖 = 1 then
15: 𝑐2𝑖

?
= Hash(𝜇3𝑖 ∥𝜇×𝑖 ∥𝜇+𝑖 ∥𝑜2𝑖)

16: 𝑐3𝑖
?
= Hash({𝒈 ℎ𝑖𝑗 − 𝛾ℎ𝑖 �̃�

′
ℎ𝑖𝑗}ℎ 𝑗 ∥{�̃�

′
ℎ𝑖𝑗}ℎ 𝑗 ∥𝑜3𝑖)

17: 𝑐5𝑖
?
= Hash(𝛽𝑖𝜇×𝑖 + 𝛼𝑖𝛽𝑖𝜇+𝑖 + 𝛼𝑖2𝜇3𝑖 ∥𝑜5𝑖)

18: for ℎ ∈ 1, 2, 3 do
19: for 𝑗 ∈ 0, . . . , log(𝐵) do

20: �̃�′ℎ𝑖𝑗
?∈ 𝔅𝑛𝑘
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4.3 Non-Interactive Security Proofs

In this section we analyze and prove the security properties of the NIZKPoKs. The
conditions defined in Chapter 3 for their interactive counterparts are inherited, but
the (knowledge) soundness needs to be carefully revisited because of the different
nature of this property when dealing with non-interactive proof systems.

We were able to bound the knowledge error for a single interaction of the
opening and linear protocols with 𝜅𝑂𝐿 = (𝑞 + 1)/2𝑞, and also for the multiplicative
protocol with 𝜅𝑀 = (𝑞2 + 3𝑞 − 2)/2𝑞2. As we also know the knowledge error of
our specific protocols enjoys strong parallel repetition and decreases as 𝜅𝛿 with 𝛿

parallel repetitions, in order to target a security level 𝜆 we just need to ensure that
the respective 𝜅𝛿 ≤ 2−𝜆.

•
(
𝑞 + 1
2𝑞

)𝛿𝑂𝐿
≤ 2−𝜆. (4.1)

•
(
𝑞2 + 3𝑞 − 2

2𝑞2

)𝛿𝑀
≤ 2−𝜆. (4.2)

However, we can not obtain these unconditional hard bounds on the success
probability of an adversary when dealing with NIZKPoKs that come from applying
the Fiat-Shamir transform to an interactiveZKPoK. The intuition behind the transform
tells us that the challenge obtained via a hash function, modeled as a random oracle,
is as unpredictable as the challenge an honest verifier would send in the interactive
version. The formal security proofs, using variants of the Forking Lemma [98],
rewind the adversary and reprogram the oracle to obtain several proofs from which
the witness can be extracted. Nevertheless, it is not equivalent to the interactive
version, because a malicious prover failing during the interaction is immediately
discovered, but a prover failing to produce a valid non-interactive proof can just
try again to increase its success probability as many times as they want. For that
matter it is only possible to obtain a similar result bounding the success probability
of adversaries with a function that depends on the number of oracle queries 𝑄. It is
what we obtain from the formal proofs (the extractor has to guess which query to
reprogram), and takes into account the computational power of the attacker because
new (or more expensive) attempts increase the success probability but require new
oracle queries.

The security of the Fiat-Shamir transform and the soundness of the derived
non-interactive proof systems have been extensively studied for Σ-protocols (recall,
only 3 rounds and negligible soundness error with a single iteration). The case we
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are interested in, with multiple moves and many parallel repetitions is much more
delicate.

Furthermore, the same way we are considering post-quantum assumptions to
build schemes that are secure against quantum capable adversaries we might also
work with the QROM, allowing the adversary to submit oracle queries in quantum
superposition.

In any case the existing security proofs for multiple rounds usually consider for
simplicity that all challenges belong to the same space, and therefore there is only
a single oracle. That is not the case with our protocols, as the first challenges are
integer and the second ones are bits. However, provided that in the non-interactive
version the challenges are computed using a pseudorandom generator seeded with
the output of a XOF that takes as input the previous elements we can also interpret
each NIZKPoK as the transform of an alternative interactive version of the protocols
where the verifier always challenges with just a random seed from 𝒮 ⊆ {0, 1}∗. The
challenges from the original version are now computed by the prover on its own
using the pseudorandom generator with these seeds. We call this a single challenge
set variant, as opposed to the original multiple challenge sets version. There exist
detailed proofs of the soundness preservation of Fiat-Shamir for the single challenge
set scenario while the interactive soundness is easier to analyze in the multiple
challenge sets case. We explain this more deeply in Section 4.3.1 and formally show
that the soundness is preserved too for this alternative variant (a result we believe is
of independent interest), provided that the seed space 𝒮 is large enough.

•
��𝒮 �� ≥ 2𝜆𝑞𝛿. (4.3)

After these preliminaries we devote Section 4.3.2 to ensure that the Fiat-Shamir
transform allows us to satisfy the standard notion of soundness if 𝛿 is large enough.
The conditions imposed by the security reduction imply a large overhead. Fiat-
Shamir ensures soundness and knowledge-soundness are preserved but with a
security loss of O(

𝑄2𝜇) or O(
𝑄𝜇

)
depending on whether we consider it in the

QROM or in the plain ROM respectively, where 𝑄 is the number of oracle queries
made by the adversary and 2𝜇 + 1 is the number of moves. To get provable security,
one should increase 𝛿𝑂𝐿 and 𝛿𝑀 up to the order of 3𝜆 or 5𝜆 so that 𝜅𝛿 ≈ 2−3𝜆 or
𝜅𝛿 ≈ 2−5𝜆 to compensate for the respective ROM or QROM security loss.

This upper bound on the security loss is so large that it is usually considered
that, while tight in general (as seen with some pathologic examples [13]), it is an
overkill for practical protocols. For that reason, some proposals assume it is actually
milder (and sometimes it is completely disregarded) for practical protocols [39]. On
the one hand, we believe that is a risky move from a practical point of view, as
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someone implementing such proposals could significantly overestimate its security.
On the other hand, even if the proposal is only a theoretical study and no unsecure
instantiation is going to be used in the wild we still think the study would be
considerably incomplete without addressing the actual security loss, as comparisons
with other proposals would then turn spurious because estimated sizes and running
times might be largely underestimated without the overhead needed to compensate
for such security loss.

In order to take care of these issues, besides providing the theoretical analysis,
we also follow a heuristic approach and study the existing attack strategies. We
explicitly show how our scheme would be vulnerable to a certain extent to one of
them, and provide the additional condition on the number of repetitions necessary
to compensate it and still ensure that the success probability of the attack is below
the targeted 2−𝜆 threshold in Section 4.3.3. This new condition turns out to be much
milder than the overhead necessary for provable security.

• (2𝜆 − 1) log
(

2𝜆 − 1
𝛿(1 − 𝑞−1)

)
+ (𝛿 − 2𝜆 + 1) log

(
𝛿 − 2𝜆 + 1

𝛿𝑞−1

)
≥ 2𝜆. (4.4)

Finally, in Sections 4.3.4 and 4.3.5 we briefly discuss zero-knowledge and com-
pleteness of the non-interactive proof systems.

4.3.1 Multiple vs. Single Challenge Set

Notice that our notion of a public-coin interactive protocol assumes that in each
move the challenge is uniformly drawn from a possibly different challenge set 𝒞𝑖 .
Some articles proving security of the Fiat-Shamir transform, as [13] or [45], assume
for convenience that all challenges are drawn from a single universal challenge set 𝒞.
In [13] the authors mention that the proof of their main result (which unfortunately
does not apply to our protocols) could be rewritten to admit arbitrary challenge
sets. We think that a detailed general proof of why this assumption of having a
single challenge set can be taken without any loss of generality in the ROM is of
independent interest, and it allows us to use any transformation regardless of their
challenge sets convention without any extra work.

Theorem 4.1 (Single vs. Multiple Challenge sets). Any public-coin (2𝜇 + 1)-move
Honest Verifier Zero-Knowledge Proof of Knowledge between a prover 𝒫 and a verifier𝒱,
where challenge 𝑐𝑖 in the 𝑖th round is uniformly sampled by 𝒱 from a challenge set 𝒞𝑖 ,
can be transformed (in the ROM) into another public-coin (2𝜇 + 1)-move Honest Verifier
Zero-Knowledge Proof of Knowledge between another prover 𝒫′ and another verifier 𝒱′

where every challenge 𝑠𝑖 is uniformly sampled from a sufficiently large single challenge set 𝒮
preserving completeness, zero-knowledge, soundness and knowledge-soundness.
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That new protocol is defined in the following way. 𝒫′ computes its initial commitment 𝑎
as 𝒫 would do and sends it to𝒱′. In each round 𝑖 the verifier𝒱′ samples a seed uniformly
at random from the challenge set 𝑠𝑖 ←r 𝒮, and the prover 𝒫′ then calls a random oracle 𝒪𝑖
that outputs uniformly random elements 𝑐𝑖 from 𝒞𝑖 if the seed had not been called before
or the previous response otherwise. Then 𝒫′ answers 𝑏𝑖 in the same way 𝒫 would do if
challenged with that 𝑐𝑖 . Finally,𝒱′ checks the verifying equations as𝒱 would do with the
challenges 𝑐𝑖 ← 𝒪𝑖(𝑠𝑖).

Proof. It is clear that completeness is directly inherited from the original protocol.
Honest verifier zero-knowledge is also preserved, as one can compute the 𝑐𝑖 calling
the oracles with the 𝑠𝑖 and then use the original simulator. Provided that the oracles
output uniformly random 𝑐𝑖 and after that point everything is computed in the same
manner, the simulated conversations would again follow the same distributions as
the ones between honest 𝒫′ and𝒱′.

The only properties that require a dedicated meticulous analysis are soundness
and knowledge-soundness. Let 𝒫◦ be a malicious prover against the single challenge
set protocol with access to 𝜇 oracles {𝒪𝑖}𝜇𝑖=1 and a success probability 𝜖. We can also
construct a prover 𝒫∗ against the multiple challenge protocol, interacting with 𝒫◦

providing its challenges and simulating their oracle queries. We will refer to 𝑠𝑖 as
the inner challenges and the corresponding 𝑐𝑖 ← 𝒪𝑖(𝑠𝑖) as the outer challenges. It is
possible following the next procedure.
𝒫∗ starts running 𝒫◦ to produce the first commitment 𝑎. Whenever 𝒫◦ calls

oracle 𝒪𝑖 with an 𝑠 ∈ 𝒮 then 𝒫∗ samples 𝑐 ←r 𝒞𝑖 uniformly at random if 𝑠 was
never queried before or returns the previously sampled or programmed element.
To compute the 𝑠𝑖 ∈ 𝒮 inner challenge seeds prover 𝒫∗ gets challenges 𝑐𝑖 from the
verifier and outputs with some probability 𝑝(𝑐𝑖)

𝑖
a uniformly random seed from the

ones that have already been queried to the oracle 𝒪𝑖 and had been answered with
the outer challenge 𝑐𝑖 or otherwise 𝒫∗ chooses a uniformly random seed from the
ones that have not been asked by 𝒫◦ to the oracle 𝒪𝑖 and program its simulated
oracle to subsequently answer 𝑐𝑖 to that seed 𝑠𝑖 .

We are going to define some disjoint partitions of 𝒮, useful to define these
probabilities and prove the desired properties. Let𝒮𝑐

𝑖
⊆ 𝒮 be the subset of seeds that

have been oracle called by 𝒫◦ to 𝒪𝑖 and have received 𝑐 as answer. Let 𝒮¬𝑐
𝑖
⊆ 𝒮 be

the subset of seeds that have been oracle called by 𝒫◦ and have received an answer
different from 𝑐. And finally, let 𝒮∅

𝑖
⊆ 𝒮 be the subset of seeds that have not been

queried yet. That way at any time we have 𝒮 = 𝒮𝑐
𝑖
⊔ 𝒮¬𝑐

𝑖
⊔ 𝒮∅

𝑖
for every 𝑖 and 𝑐.

If we fix 𝑝(𝑐𝑖)
𝑖

≔ (
��𝒮𝑐𝑖

𝑖

�� · | 𝒞𝑖 |)/|𝒮 | then the success probability of 𝒫∗ would be that
of 𝒫◦. Intuitively the expected number of seeds that would be mapped to 𝑐𝑖 would
be | 𝒮 | /| 𝒞𝑖 |, and we already have

��𝒮𝑐
𝑖

�� many, so this seems the right guess for that
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probability, and we are going to confirm that it indeed works. Observe this is always
a viable strategy if |𝑆 | is large enough. On the one hand if 𝒮𝑐

𝑖
= ∅ then 𝑝(𝑐)

𝑖
= 0, and

we never have to sample from an empty set. On the other hand we can ensure that
𝑝
(𝑐)
𝑖
≤ 1 if | 𝒮 | ≥ 𝑄𝑖 | 𝒞𝑖 | where 𝑄𝑖 is the number of oracle queries to oracle 𝒪𝑖 and

therefore is an upper bound of
��𝒮𝑐

𝑖

��. This also guarantees that 𝒮∅
𝑖
≠ ∅ either.

Reduction protocol 4.7 Multiple from single challenge set adversary.*

𝒫◦ 𝒫∗ 𝒱

𝒪(·)
←−−−−−−→

𝑎−−−−−−−−→
𝑎−−−−−−−−→

𝑐1 ←r 𝒞1
𝑐1←−−−−−−−−

𝑠1 ←r 𝒮𝑐1
1 wp 𝑝(𝑐1)

1

𝑠1 ←r 𝒮∅1
let 𝒪1(𝑐1) = 𝑠1

o/w

𝑠1←−−−−−−−−
𝒪(·)

←−−−−−−→
𝑏1−−−−−−−−→

𝑏1−−−−−−−−→
...

𝑏𝜇
−−−−−−−−→

𝑏𝜇
−−−−−−−−→

𝑐𝜇 ←r 𝒞𝜇
𝑐𝜇

←−−−−−−−−
𝑠𝜇 ←r 𝒮

𝑐𝜇
𝜇 wp 𝑝(𝑐𝜇)𝜇

𝑠𝜇 ←r 𝒮∅𝜇
let 𝒪𝜇(𝑐𝜇) = 𝑠𝜇

o/w

𝑠𝜇
←−−−−−−−−
𝒪(·)

←−−−−−−→
𝑏𝜇

−−−−−−−−→
𝑏𝜇

−−−−−−−−→



Chapter 4. Commitment and NIZKPoKs Implementation 171

To prove that the success probability is the same, we need to check that the
challenges 𝑠𝑖 and the oracle answers simulated by 𝒫∗ follow the same distribution
as the ones 𝒫◦ would receive interacting with an honest verifier and truly random
oracles.

Let us analyze the probability of providing 𝒫◦ with a given 𝑠 as the 𝑖th inner
challenge. Either this 𝑠 has been submitted before to 𝒪𝑖 by 𝒫◦ or not. In the first
case, let us denote by 𝑐 the answer 𝒫∗ gave it. The probability of choosing such 𝑠 is
the probability of the 𝑖th outer challenge being 𝑐 multiplied by the probability 𝑝(𝑐)

𝑖

of choosing 𝑠 among the 𝒮𝑐
𝑖
already queried seeds that output 𝑐 multiplied again by

the probability of getting that particular seed when sampling uniformly from that
set.

Pr
[
𝑠𝑖 = 𝑠

�� 𝑠 ∈ 𝒮𝑐𝑖 ] = Pr
[
𝑐𝑖 = 𝑐

]
· 𝑝(𝑐)

𝑖
· Pr

[
𝑠𝑖 = 𝑠

�� 𝑠𝑖 ←r 𝒮𝑐𝑖
]

=
1
| 𝒞𝑖 |
·
��𝒮𝑐

𝑖

�� · | 𝒞𝑖 |
| 𝒮 | · 1��𝒮𝑐

𝑖

�� = 1
| 𝒮 |

On the other hand, if 𝑠 was not submitted before, i.e. 𝑠 ∈ 𝒮∅
𝑖
, for each possible

challenge 𝑐 its probability is now 1 − 𝑝(𝑐)
𝑖

multiplied by the probability of choosing
that 𝑠 from 𝒮∅

𝑖
.

Pr
[
𝑠𝑖 = 𝑠

�� 𝑠 ∈ 𝒮∅𝑖 ]
=

∑
𝑐∈𝒞𝑖

Pr
[
𝑐𝑖 = 𝑐

]
·
(
1 − 𝑝(𝑐)

𝑖

)
· Pr

[
𝑠𝑖 = 𝑠

�� 𝑠𝑖 ←r 𝒮∅𝑖
]

=
∑
𝑐∈𝒞𝑖

1
| 𝒞𝑖 |
·
| 𝒮 | −

��𝒮𝑐
𝑖

�� · | 𝒞𝑖 |
| 𝒮 | · 1��𝒮∅

𝑖

��
=

1
| 𝒮 | ·

| 𝒮 | −∑
𝑐∈𝒞𝑖

��𝒮𝑐
𝑖

����𝒮∅
𝑖

�� =
1
| 𝒮 | ·

��𝒮∅
𝑖

����𝒮∅
𝑖

�� = 1
| 𝒮 |

Then, as every 𝑠 has the same probability, 𝒫◦ receives challenges uniformly
distributed in 𝒮 the same way they would have if they were interacting with a real
honest verifier.

Regarding its calls to the oracle, every query with an 𝑠 that has not been set
as inner challenge is answered as usual, sampling a uniform 𝑐. Every 𝑠𝑖 that they
have received as inner challenge has already a defined answered 𝑐𝑖 . Nevertheless,
provided that this 𝑐𝑖 has been sent by an honest verifier it also follows a uniformly
random distribution as an oracle call would do.

As we have granted that the interaction 𝒫∗ has with 𝒫◦ follows the same
distribution as the interaction with a verifier and 𝜇 random oracles then the success

*The usual abbreviations wp and o/w are used for “with probability” and “otherwise”.
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probability is exactly the same, as we wanted to prove. That implies that the
soundness error of the new single-oracle protocol is at most equal to the one from
the multi-challenge protocol, because any success probability of the former can also
be realized with the latter.

Knowledge-soundness preservation comes from the same transformation, as we
can again use the constructed 𝒫∗ with the original extractor to obtain a witness with
the same probability. □

We can use this proof to ensure the security of a version with a single challenge
set, which allows us to continue the proof using the literature that builds their
theorems under this assumption. Although the reduction might seem artificial it is
not far from the real world, as our own implementation internally uses some seeds
to generate the pseudorandom challenges, precisely as described (and therefore can
be interpreted as having different challenge sets or a single one just depending on
whether we consider as challenge the seed or the corresponding pseudorandom
output). This general proof is also easier to apply than redoing the proof of the
Fiat-Shamir transform security or redefining (𝑘1 , . . . , 𝑘𝜇)-special soundness.

4.3.2 The Fiat-Shamir Transform

With the last modification, we can see that our protocols satisfy the definition of a
Public-Coin Interactive Proof (PCIP) system as defined in [45], essentially our definition
of an interactive proof of knowledge assuming every challenge is sampled from the
same set. Now we know this can be assumed without loss of generality we can
formally introduce the Fiat-Shamir transform.

Definition 4.2 (Fiat-Shamir transform for general PCIP adapted from [45]). The
Fiat-Shamir transform for general PCIP, given by ⟨𝒫 ,𝒱⟩, defines a non-interactive
proof system where the proof Π for a statement 𝑥 is generated by a prover 𝒫𝐻FS
by computing the prover messages 𝑎 and {𝑏𝑖}𝜇𝑖=1 of the transcript of an interactive
protocol with challenges deterministically obtained from the previous elements,
𝑐1 ≔ 𝐻(0, 𝑥, 𝑎) and 𝑐𝑖 ≔ 𝐻(𝑖 − 1, 𝑥, 𝑐𝑖−1 , 𝑏𝑖−1) for 𝑖 > 1, where 𝐻 is a hash function
with the appropriate domain. The verifier 𝒱𝐻

FS accepts Π ≔ (𝑥, 𝑎, {𝑏𝑖}𝜇𝑖=1) if the
transcript obtained when computing the challenges is accepting (we denote by
𝒱𝐻

FS(𝑥,Π) the output of verifier𝒱
𝐻
FS when presented with a proof Π for a statement

𝑥).

Remark 4.3. Their original definition does not include the statement 𝑥 in the 𝑐𝑖
challenges with 𝑖 > 1, as it is already implicit because each hash takes as input the
previous challenge and the first does have 𝑥 as part of its input. Nevertheless, as they
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mention, “any additional strings can be included in the argument when computing
𝑐𝑖 using 𝐻, without influencing the security properties of the non-interactive proof
system in a detrimental way”. We add the statement so that this transform, once we
include 𝑥, also corresponds to the alternative definition proposed in [12].

The model assumes that𝐻 behaves as a (Quantum) RandomOracle, and our goal
is to prove soundness in that setting. For that reason, in the following definitions
and proofs we use

(
𝒱𝒪FS ,𝒱

𝒪
FS

)
even if we implement

(
𝒱𝐻

FS ,𝒱
𝐻
FS

)
. We first recall that

the soundness of non-interactive proof systems can not be directly addressed as
before. The success probability of an adversary might unavoidably grow by just
trying again if they fail at the first attempt. For that reason, we can only bound its
probability when restricting the number of oracle queries 𝑄, ensuring it only grows
polynomially with it.

Definition 4.4 (Soundness of a non-interactive proof system (𝒫𝐻FS ,𝒱
𝐻
FS), adapted

from [46]). We say that a non-interactive proof system (𝒫𝐻FS ,𝒱
𝐻
FS) is sound if there

exists a negligible function 𝜂(𝜆) and a constant 𝑒 such that for any (quantum)
adversary𝒜 making at most 𝑄 queries to a uniformly random 𝒪 and any 𝜆 ∈ N:

Pr
𝒪

[
𝒱𝒪FS(𝑥,Π) = accept ∧ 𝑥 ∉ ℜ

��� (𝑥,Π) ←r 𝒜𝒪
]
≤ 𝑄𝑒𝜂(𝜆).

Notice the dependency on 𝜆 is implicit. It works as the security parameter that
defines the specifications of the proof system

(
𝒫𝒪FS ,𝒱

𝒪
FS

)
, in particular in our case it

has an important impact on the number of repetitions.
We can prove our protocols are sound in the QROM using the recent result

from [45] that ensures the existence of a quantum algorithm ℬ such that

Pr
[
𝑥 = 𝑥◦ ∧ 𝑣 = accept

��� (𝑥, 𝑣) ←r
〈
ℬ𝒜 ,𝒱

〉]
≥

≥ 𝜇!
(2𝑄 + 𝜇 + 1)2𝜇

Pr
𝒪

[
𝑥 = 𝑥◦ ∧𝒱𝒪FS(𝑥,Π) = accept

��� (𝑥,Π) ←r 𝒜𝒪
]
− 𝜖𝑥◦ ,

where the additive error term 𝜖𝑥◦ is equal to 𝜇!/| 𝒞 | when summed over all 𝑥◦, and
can be made arbitrarily small. Following the notation from [45], (𝑥, 𝑣) ←r

〈
ℬ𝒜 ,𝒱

〉
means that ℬ𝒜 first outputs a statement 𝑥 and then interacts with 𝒱 so that
𝑣 ←r

〈
ℬ𝒜 ,𝒱

〉
(𝑥).

As [45] mentions, this implies soundness preservation as long as the challenge
space 𝒞 has size superpolynomial in the security parameter, since 𝜇 is constant and
𝑄 is polynomial in the security parameter. That makes 𝜖𝑥◦ negligible, and we can
also aim to make the bound on the success probability of the interactive version 𝜅𝛿

negligible in 𝜆 by choosing large enough 𝛿. There we have the negligible function
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required by the definition. Then, provided that 𝜇 is constant, (2𝑄 + 𝜇+ 1)2𝜇/(𝜇!) can
be bounded by some power of 𝑄.

In order to target a provable security level onewould just need to choose | 𝒞 | and 𝛿

large enough so that the 𝜅𝛿+𝜇!/| 𝒞 | compensates the (2𝑄+𝜇+1)2𝜇/(𝜇!) security loss.
One could achieve a soundness error smaller than 2−𝜆 choosing both 𝛿 ≈ log(| 𝒞 |) ≈
5𝜆, as we can always assume 𝑄 < 2𝜆 and get (𝜅𝛿 + 𝜇!/| 𝒞 |)(2𝑄 + 𝜇 + 1)2𝜇/(𝜇!) ≲ 2−𝜆,
increasing the proofs by a factor of 5.

This O(
𝑄2𝜇) security loss is tight in general, as discussed in [45]. The 2 in the

exponent comes from the fact that we are considering the QROM, the quantum
version of the ROM, and have to account for Grover-search attacks.

Similar proofs in the plain ROM exist with a security loss of just (𝑄 + 1)𝜇, as
informally claimed in [13]. In this importantwork they show that formany interactive
proofs, mainly those with (𝑘1 , . . . , 𝑘𝜇)-special soundness, one can prove a better
bound on the security loss of only O(

𝜇𝑄
)
, linear instead of exponential in the

number of rounds. However, that is not the case of the considered schemes, as the
parallel repetition of a (𝑘1 , . . . , 𝑘𝜇)-special sound protocol is not (𝑘1 , . . . , 𝑘𝜇)-special
sound itself.

Besides soundness, one can similarly prove knowledge-soundness because it is
also preserved by Fiat-Shamir.

Definition 4.5 (Knowledge-Soundness of a non-interactive proof system as in [46]).
The non-interactive proof system (𝒫𝒪FS ,𝒱

𝒪
FS) is a computational proof of knowledge if

there exists a polynomial-time algorithm ℰ, a polynomial 𝑝(𝜆), constants 𝑑, 𝑒 ≥ 0 and
a negligible function 𝜂(𝜆), such that for any (quantum) polynomial-time algorithm
𝒜 making at most 𝑄 oracle queries, any 𝜆 ∈ N and any statement 𝑥 we have

Pr
[
(𝑥, 𝑤) ∈ ℜ

��� 𝑤 ←r ℰ𝒜(𝑥)
]
≥ 1
𝑄𝑒𝑝(𝜆) Pr

𝐻

[
𝒱𝐻

FS(𝑥,Π)
��� Π←r 𝒜𝐻

] 𝑑
− 𝜂(𝜆).

It can be similarly defined for adaptive adversaries allowing𝒜 to choose 𝑥
As [45] mentions in their Corollary 15, the proof of knowledge property is

preserved (at the expanse of the 𝑄−2𝜇 security loss) in the QROM because any
dishonest prover against the Fiat-Shamir version with success probability 𝜖 can
be used to get a dishonest prover against the interactive protocol with a success
probability of 𝜖 · (2𝑄 + 1)−2𝜇, that can be used to extract a witness.

So far we have not mentioned any difference between the opening, linear or
multiplicative proofs. For the opening and the linear proofs we know the interactive
protocols

〈
𝒫 ,𝒱

〉
are sound with soundness error as small as we want. Soundness

is preserved if we modify them to get
〈
𝒫′,𝒱′

〉
, single challenge versions. And

finally soundness is also preserved with a O(
𝑄−2𝜇) security loss when we apply the
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Fiat-Shamir transform to get the non-interactive proof system
(
𝒫′𝐻FS ,𝒱

′𝐻
FS

)
.

Diagram 4.1 Soundness diagram of the opening and linear relation NIZKPoKs

Multiple sets Single set Non-interactive〈
𝒫 ,𝒱

〉 〈
𝒫′,𝒱′

〉 (
𝒫′𝐻FS ,𝒱

′𝐻
FS

)
𝑄−4

The multiplicative relation proof needs more attention. We proved that the
interactive protocol

〈
𝒫 ,𝒱

〉
defined in Protocol 3.3 was sound because we could

interpret it as a 7-move protocol with (2, 3, 2)-special soundness (let us denote it
by

〈
𝒫 ,𝒱

〉
). However, the number of moves is important if we want to turn them

into the single challenge versions, because now
〈
𝒫′,𝒱′

〉
is no longer the same as〈

𝒫′,𝒱′
〉
(there would be a different number of oracles). And these differences

would matter because the security loss of a 7-move protocol would be even bigger
than the one of a 5-move protocol.

For these reasons even if we start proving soundness from
〈
𝒫 ,𝒱

〉
, the proof

defined by Algorithms 4.4 and 4.6 is
(
𝒫′𝐻FS ,𝒱

′𝐻
FS

)
, and it receives its soundness via

the 5-moves versions.

Diagram 4.2 Soundness diagram of the multiplicative relation NIZKPoK

Multiple sets Single set Non-interactive〈
𝒫 ,𝒱

〉
5-move

〈
𝒫′,𝒱′

〉
5-move

(
𝒫′𝐻FS ,𝒱

′𝐻
FS

)
from 5-move

〈
𝒫 ,𝒱

〉
7-move

〈
𝒫′,𝒱′

〉
7-move

(
𝒫′𝐻FS ,𝒱

′𝐻
FS

)
from 7-move

𝑄−4

/ /

𝑄−6

The same applies to knowledge-soundness because we have seen that these
sequence of transformations also preserves it.

4.3.3 Known Attacks

We have seen so far how the schemes can be instantiated achieving provable security.
The large number of parallel repetitions needed to make the interactive protocol have
a knowledge error so small that it compensates the security loss of the Fiat-Shamir
transform in the QROM (or even in the ROM) would make it far from practical.
Notwithstanding that overhead is the only option we are aware of for obtaining
provable security, we also want this work to be comparable with existing proposals.
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And it is usually the case that the proposed parameters do not consider entirely the
Fiat-Shamir security reduction.

Quoting from [13]:

If one wants to rely on the proven security reduction, one needs to choose a large
security parameter for Π, in order to compensate for the order 𝑄𝜇 security loss,
effecting its efficiency; alternatively, one has to give up on proven security and
simply assume that the security loss is much milder than what the general bound
suggests. Often, the security loss is simply ignored.

Disregarding additional security losses is called the 𝜖𝛿-heuristic, as one directly
assumes the soundness error exponentially decreases with parallel repetitions
without considering any possible attacks [65].

However, even if assuming the security loss is milder than the worst case
scenario, we should still consider which is the best known attack. For example,
the post-quantum signature scheme [39], which has a structure very similar to the
one considered through this dissertation as it is based too on a 𝑞2-identification
scheme (a (2, 2)-special sound protocol with | 𝒞1 | = 𝑞 and | 𝒞2 | = 2), was successfully
attacked in [65]. We remark that the existence of these attacks only implies that larger
parameters should be chosen. We can ensure that the Fiat-Shamir transform is not
inherently broken because if we sufficiently increase these parameters (number of
repetitions and challenge space size) we could obtain provable security. Regarding
the studied protocols, as far as we are concerned, the best known attack is the general
strategy presented in [12] against the parallel repetition of (𝑘1 , . . . , 𝑘𝜇)-special
sound protocols that satisfy an additional property they call (𝑙1 , . . . , 𝑙𝜇)-special
unsoundness (sometimes (𝑙1 , . . . , 𝑙𝜇)-out-of-(| 𝒞1 | , . . . ,

��𝒞𝜇 ��)-special unsoundness)
with 𝑁 responses per round. Let us formally introduce that concept, show that the
studied protocols satisfy the definition and reanalyze accordingly the security of the
non-interactive proofs.

Definition 4.6 ((𝑙1 , . . . , 𝑙𝜇)-special unsoundness with 𝑁 potential responses per
round as in [13]). We say that a public-coin interactive proof

〈
𝒫 ,𝒱

〉
has (𝑙1 , . . . , 𝑙𝜇)-

special unsoundness if there exists a dishonest prover𝒜 such that when interacting
with𝒱 on input 𝑥 the following holds:

• 𝒜 starts in active mode, meaning that at every round after𝒜’s message there
exists a subset Γ𝑖 ⊆ 𝒞𝑖 of size 𝑙𝑖 such that if the challenge 𝑐𝑖 ∈ Γ𝑖 then 𝒜
switches to passive mode.

• If 𝒜 switches to passive mode then it remains in passive mode and the final
conversation is accepting.
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Besides that, we say that it has (𝑙1 , . . . , 𝑙𝜇)-special unsoundness with 𝑁 potential
responses per round if during the active mode 𝒜 can efficiently produce 𝑁 distinct
messages with the previously mentioned property.

As it is said in [13], many (𝑘1 , . . . , 𝑘𝜇)-special sound protocols are also (𝑘1 −
1, . . . , 𝑘𝜇 − 1)-special unsound. In our case it is indeed possible to design an
adversary𝒜 against the interactive version of the opening protocol that shows it is
(1, 1)-special unsound.

In the first round 𝒜 just needs to guess Γ1 ≔ {�̃�} ⊆ Z𝑞 and prepare both
commitments so that they would be able to pass every verification if the challenge 𝛼

turns out to be �̃�. 𝒜 can do so making up {𝒆′
𝑗
} 𝑗 ←r 𝔅𝑛𝑘 (so that the 𝜋𝜏𝑗 (𝒆′𝑗)

?∈ 𝔅𝑛𝑘

verifications checks out), and also making up 𝒛 ←r ℒ(𝒂) and preparing the first
commitment choosing 𝒚 ≔ 𝒛 − (�̃�(𝒄 + B) − 𝒃𝑠 − 𝜙(∑𝑗 2𝑗( 𝒇 𝑗 + �̃�𝒆′

𝑗
)))with a random

𝑠 ∈ 𝑅𝑞 so that everything checks if 𝛼 turns out to be �̃� (as then �̃� would be 𝒛, and
therefore it would belong to ℒ(𝒂)). If the guess is right they can switch to passive
mode and satisfactorily answer with the made up 𝑠 or {𝒆′

𝑗
} 𝑗 . Observe they have

many options for 𝒛, 𝑠 or {𝒆′
𝑗
} 𝑗 , so this attack has the many responses per round

property.
If the guess was wrong, the adversary could still try to guess the second

challenge. If they guess that Γ2 ≔ {1} then they only need to answer with the
usual 𝒈 𝑗 = 𝜋𝜏𝑗 ( 𝒇 𝑗 + 𝛼𝒆′

𝑗
), and then they would be able to satisfactorily answer if the

challenge is indeed 𝑏 = 1 with the made up 𝒆′
𝑗
. However, in this case they would

only have one possibility. Therefore, to be able to have many responses per round
the adversary should guess Γ2 ≔ {0} and prepare the 𝒈 𝑗 so that the 𝑏 = 0 checks are
satisfied. They can just randomly sample 𝒈 𝑗 for 𝑗 ≥ 1 and then solve for 𝒈0 so that
𝒛 = 𝒚 + 𝛼(𝒄 + B) − 𝒃𝑠 − 𝜙(∑𝑗 2𝑗𝜋𝜏𝑗

−1(𝒈 𝑗)), and they can satisfactorily answer if the
challenge is 𝑏 = 0. The freedom of choosing 𝒈 𝑗 for 𝑗 ≥ 1 now guarantees the many
responses per round property.

A complete description of the active and passive modes of such an adversary is
given in Appendix 4.A. The opening protocol is therefore (1, 1)-special unsoundwith
Ω

(
𝑞𝑛𝑘

)
responses per round. Then, we can see that there exists an attack exploiting

the parallel repetition structure of our non-interactive proof.

Theorem 4.7 (𝛿-fold parallel repetition attack, Theorem 5 from [12]). Let
〈
𝒫 ,𝒱

〉
be

a (2𝜇 + 1)-move public-coin interactive proof with challenge spaces 𝒞1 , . . . , 𝒞𝜇. Suppose〈
𝒫 ,𝒱

〉
has (𝑙1 , . . . , 𝑙𝜇)-special unsoundness with 𝑁 responses per round. Let

〈
𝒫𝛿 ,𝒱𝛿

〉
be the 𝛿-fold parallel repetition of

〈
𝒫 ,𝒱

〉
. Let 𝑚1 , . . . , 𝑚𝜇 ∈ N such that

∑𝜇
𝑖=1 𝑚𝑖 = 𝛿.

Let 𝑄 = 𝜇𝑄′ for 𝑄′ ∈ N with 𝑄′
∑𝜇
𝑖=1

(
𝑙𝑖/ | 𝒞𝑖 |

)𝑚𝑖 < 1/4 and 𝑄′ ≤ 𝑁 . There is a 𝑄-
query dishonest prover 𝒫∗ against the Fiat-Shamir transform of

〈
𝒫𝛿 ,𝒱𝛿

〉
so that for every
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statement 𝑥

Pr
[
𝒱𝛿𝒪

FS (𝑥,𝒫
∗ 𝒪) = accept

]
≥ 1

2

(
𝑄

𝜇

)𝜇 𝜇∏
𝑖=1

(
𝑙𝑖/ | 𝒞𝑖 |

)𝑚𝑖 .

The theorem from [12] provides a lower bound on the attacker success probability
because they want to emphasize that the security loss isΩ

(
𝑄𝜇

)
. However, in order

to choose parameters so that the scheme is secure against this attack what we want
is an upper bound. Let us describe the attack strategy and find that upper bound.

The idea is the following. Choosing 𝑚1 , . . . , 𝑚𝜇 ∈ N such that
∑𝜇
𝑖=1 𝑚𝑖 = 𝛿,

the attacker tries to guess the challenges, because if 𝑐𝑖 ∈ Γ𝑖 for some parallel
executions then they would be able to change into passive mode for these repetitions
and continue answering till the end. Their goal is to get at least

∑𝑖
𝑗=1 𝑚 𝑗 parallel

executions in passive mode before moving to the next round, so that they end with a
complete fake proof provided that this strategy ensures all 𝛿 parallel executions are in
passivemode before the final answer. If not sufficientlymany new guesses are correct
in a given round to move to the next they just resample new messages to get fresh
challenges. To get into account the fact that the adversary is computationally limited
and only queries the oracle 𝑄 times it is designed to abort after 𝑄/𝜇 unsuccessful
attempts per round. See [12] for a full description.

We need to upper bound the success probability of the attack and select the
number of repetitions in a way that ensures this upper bound is smaller than 2−𝜆.
Let us first analyze the involved probability distributions and recap some useful
probability propositions.

Definition 4.8 (Binomial Distribution). The binomial distribution of parameters 𝑛 and
𝑝, denoted Bin(𝑛, 𝑝), is the discrete probability distribution that counts the number of
successes in 𝑛 independent experiments, each of them having two possible outcomes,
success with probability 𝑝 or failure with probability 1 − 𝑝.

Considering the attack, at the 𝑖th round there are 𝛿 − 𝑚′
𝑖−1 parallel protocols

in active mode (we denote by 𝑚′
𝑖−1 ≥

∑
𝑗<𝑖 𝑚 𝑗 , with 𝑚′0 = 0, the number of parallel

repetitions already in passive mode after the (𝑖 − 1)th round), and each of them
turns into passive mode with probability 𝑙𝑖/ | 𝒞𝑖 | (the probability of 𝑐 ∈ Γ𝑖 if 𝑐 ←r 𝒞𝑖).
The number of protocol repetitions that turn into passive mode follows a binomial
distribution of parameters 𝛿 − 𝑚′

𝑖−1 and 𝑙𝑖/ | 𝒞𝑖 |.

Definition 4.9 (Geometric Distribution). The geometric distribution of parameter
𝑝, denoted Geo(𝑝), is the discrete probability distribution that counts the number
of trials until the first success (including the successful one) when sequentially
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conducting independent experiments, each of them having two possible outcomes,
success with probability 𝑝 or failure with probability 1 − 𝑝.

The attacker advances a round of the protocol if the number of parallel repetitions
in passive mode is greater or equal than

∑
𝑗≤𝑖 𝑚 𝑗 , meaning that we require at least

(∑𝑗≤𝑖 𝑚 𝑗) − 𝑚′𝑖−1 new parallel repetitions turning into passive mode. Let us say that
happens with probability 𝑝𝑖 (it is the probability of a certain binomial distribution
surpassing a certain threshold). If that is not the case then they compute a different
message and tries again. If no limit was imposed, the number of trials until it
continues to the next round would follow a geometric distribution of parameter 𝑝𝑖 .

Particularizing that to our current protocol, let

𝑋 ∼ Bin
(
𝛿, 𝑞−1)

be the probability distribution that models the number of parallel repetitions in
which the adversary would be able to correctly answer in passive mode after the
first challenge. They continue if that number is at least 𝑚1 (recall that 𝑚1 , 𝑚2 ∈ Z≥0

are any two non-negative integers such that 𝑚1 + 𝑚2 = 𝛿). The number of attempts
until that would happen would follow a distribution

𝑌 ∼ Geo
(
Pr

[
𝑋 ≥ 𝑚1

] )
,

and therefore the adversary that aborts if they cannot continue after 𝑄/𝜇 tries
advances to the second round with probability Pr

[
𝑌 ≤ 𝑄/2

]
.

Provided that 𝑚′1 repetitions are already in passive mode, which happens with
probability Pr

[
𝑋 = 𝑚′1

�� 𝑋 ≥ 𝑚1
]
, the adversary can only fake the proof if it guesses

the remaining 𝛿 − 𝑚′1 challenges.
For that reason, we analogously define

𝑊𝑚 ∼ Bin
(
𝛿 − 𝑚, 1/2

)
and 𝑍𝑚 ∼ Geo

(
Pr

[
𝑊𝑚 = 𝛿 − 𝑚

] )
,

as we might need to consider the case 𝑚′1 = 𝑚 for any 𝑚1 ≤ 𝑚 ≤ 𝛿. These two
distributions model the number of correctly guessed challenges and the number of
trials until all remaining challenges are guessed. The adversary successfully fakes a
proof if 𝑍𝑚 ≤ 𝑄/𝜇.

In conclusion, the adversary success probability is

𝜖 = Pr
[
𝑌 ≤ 𝑄/2

] (
𝛿∑

𝑚=𝑚1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]

Pr
[
𝑍𝑚 ≤ 𝑄/2

] )
.
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Before we start, let us recall some useful probability propositions. We might
indicate that we are using them placing a reference in a parenthesis next to where
the property has been used.

Proposition 4.10 (Bernoulli’s inequality).
For every integer 𝑟 ≥ 1 and every real number 𝑥 > −1 we have (1 + 𝑥)𝑟 ≥ 1 + 𝑟𝑥.

Corollary 4.11. Let 𝐴 ∼ Geo(𝑝), then Pr
[
𝐴 ≤ 𝑘

]
≤ 𝑘𝑝.

Proof. That is the case because Pr
[
𝐴 ≤ 𝑘

]
= 1−(1−𝑝)𝑘

(Prop. 4.10)
≤ 1−(1− 𝑘𝑝) = 𝑘𝑝. □

Proposition 4.12 (Chernoff bound for the binomial distribution).
Let 𝐴 ∼ Bin(𝑛, 𝑝), then

Pr
[
𝐴 ≥ 𝑘

]
≤ exp

(
−𝑛

(
𝑛 − 𝑘
𝑛

ln
(
𝑛 − 𝑘
𝑛(1 − 𝑝)

)
+ 𝑘
𝑛

ln
(
𝑘

𝑛𝑝

)))
.

Proof. Theorem 1 from [9]. □

We can use these tools to bound the attack success probability. Observe that
the adversary can choose 𝑚1 and 𝑚2, as long as 𝑚1 + 𝑚2 = 𝛿, to obtain different
strategies. However, if 𝑚1 is too large, obtaining enough challenges in Γ1 might be
too difficult, and they would not be able to continue to the second round except with
too small probability. We therefore study three separated cases.

Case Pr
[
𝑋 ≥ 𝑚1

]
≤ 2−(2𝜆−1).

If 𝑚1 is so large that Pr
[
𝑋 ≥ 𝑚1

]
≤ 2−(2𝜆−1) then

𝜖 ≤ Pr
[
𝑌 ≤ 𝑄/2

] (Cor. 4.11)
≤ 𝑄/2 Pr

[
𝑋 ≥ 𝑚1

]
≤ 𝑄2−2𝜆 (𝑄<2𝜆)

< 2−𝜆.

Case 2−(2𝜆−1) < Pr
[
𝑋 ≥ 𝑚1

]
≤ 2−(𝜆−1).

If 𝑚1 is not that large but still implies that 2−(2𝜆−1) < Pr
[
𝑋 ≥ 𝑚1

]
≤ 2−(𝜆−1) we

can nevertheless use Corollary 4.11 with Pr
[
𝑌 ≤ 𝑄/2

]
to get a non-trivial bound

Pr
[
𝑌 ≤ 𝑄/2

]
≤ 𝑄/2 Pr

[
𝑋 ≥ 𝑚1

]
, but we still have to consider what happens in the

second round.
Observe that the probability of a success in the second round, once they have

already passed the first round, is the sum of Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]

Pr
[
𝑍𝑚 ≤ 𝑄/2

]
.

We can guarantee the first probability is small if 𝑚 is large enough, and we can only
guarantee the second is small if 𝑚 is small enough. For that matter, we have to split
the summation.
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On the one hand,

Pr
[
𝑌 ≤ 𝑄/2

] 𝛿−2𝜆∑
𝑚=𝑚1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]

Pr
[
𝑍𝑚 ≤ 𝑄/2

]
≤

≤ 𝑄/2 Pr
[
𝑋 ≥ 𝑚1

] 𝛿−2𝜆∑
𝑚=𝑚1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]
𝑄/2 Pr

[
𝑊𝑚 = 𝛿 − 𝑚

]
(Cor. 4.11)

= 𝑄22−2 Pr
[
𝑋 ≥ 𝑚1

] 𝛿−2𝜆∑
𝑚=𝑚1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]
2−(𝛿−𝑚)

≤ 𝑄22−2(𝜆+1) Pr
[
𝑋 ≥ 𝑚1

] 𝛿−2𝜆∑
𝑚=𝑚1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]

(2−(𝛿−𝑚) ≤ 2−2𝜆)

= 𝑄22−2(𝜆+1) Pr
[
𝑋 ≥ 𝑚1

]
Pr

[
𝑋 ≤ 𝛿 − 2𝜆

�� 𝑋 ≥ 𝑚1
]

≤ 𝑄22−2(𝜆+1) Pr
[
𝑋 ≥ 𝑚1

]
≤ 𝑄22−2(𝜆+1)2−(𝜆−1)

< 2−(𝜆+1). (𝑄 < 2𝜆)

On the other hand,

Pr
[
𝑌 ≤ 𝑄/2

] 𝛿∑
𝑚=𝛿−2𝜆+1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]

Pr
[
𝑍𝑚 ≤ 𝑄/2

]
≤

≤ 𝑄/2 Pr
[
𝑋 ≥ 𝑚1

] 𝛿∑
𝑚=𝛿−2𝜆+1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]

Pr
[
𝑍𝑚 ≤ 𝑄/2

]
(Cor. 4.11)

≤ 𝑄/2 Pr
[
𝑋 ≥ 𝑚1

] 𝛿∑
𝑚=𝛿−2𝜆+1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]

= 𝑄/2 Pr
[
𝑋 ≥ 𝑚1

] Pr
[
𝑋 ≥ 𝛿 − 2𝜆 + 1

]
Pr

[
𝑋 ≥ 𝑚1

]
< 2𝜆−1 Pr

[
𝑋 ≥ 𝛿 − 2𝜆 + 1

]
(𝑄 < 2𝜆)

≤ 2−(𝜆+1). (provided 𝛿 is large enough)

What we need is to choose 𝛿 so that Pr
[
𝑋 ≥ 𝛿 − 2𝜆 + 1

]
≤ 2−2𝜆. It is always

possible if 𝛿 is large enough, as it represents the probability of succeeding in all but
a constant number of experiments. We would later find a sufficient condition using
Proposition 4.12.

Notice we are splitting the summation considering 𝑚1 ≤ 𝛿 − 2𝜆. If that is not the
case the first would be an empty sum, and we could even remove some terms from
the second sum. In any case, it is clear that, provided 𝛿 satisfies the requirement,
𝜖 < 2−(𝜆+1) + 2−(𝜆+1) = 2−𝜆.

We can finally analyze the case where we cannot take advantage of the adversary
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aborting with some non-negligible probability without concluding the first round
and therefore not even attacking the second round.

Case 2−(𝜆−1) < Pr
[
𝑋 ≥ 𝑚1

]
.

We just have to follow a similar approach, splitting again the summation. We start
bounding the first part,

Pr
[
𝑌 ≤ 𝑄/2

] 𝛿−2𝜆∑
𝑚=𝑚1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]

Pr
[
𝑍𝑚 ≤ 𝑄/2

]
≤

≤
𝛿−2𝜆∑
𝑚=𝑚1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]

Pr
[
𝑍𝑚 ≤ 𝑄/2

]
≤

𝛿−2𝜆∑
𝑚=𝑚1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]
𝑄/2 Pr

[
𝑊𝑚 = 𝛿 − 𝑚

]
(Cor. 4.11)

=

𝛿−2𝜆∑
𝑚=𝑚1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]
𝑄2−(𝛿−𝑚+1)

≤ 𝑄2−(2𝜆+1)
𝛿−2𝜆∑
𝑚=𝑚1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]

(2−(𝛿−𝑚+1) ≤ 2−(2𝜆+1))

= 𝑄2−(2𝜆+1) Pr
[
𝑋 ≤ 𝛿 − 2𝜆

�� 𝑋 ≥ 𝑚1
]

≤ 𝑄2−(2𝜆+1)

< 2−(𝜆+1). (𝑄 < 2𝜆)

And bound again the second part,

Pr
[
𝑌 ≤ 𝑄/2

] 𝛿∑
𝑚=𝛿−2𝜆+1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]

Pr
[
𝑍𝑚 ≤ 𝑄/2

]
≤

≤
𝛿∑

𝑚=𝛿−2𝜆+1
Pr

[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]

Pr
[
𝑍𝑚 ≤ 𝑄/2

]
≤

𝛿∑
𝑚=𝛿−2𝜆+1

Pr
[
𝑋 = 𝑚

�� 𝑋 ≥ 𝑚1
]

=
Pr

[
𝑋 ≥ 𝛿 − 2𝜆 + 1

]
Pr

[
𝑋 ≥ 𝑚1

]
<

Pr
[
𝑋 ≥ 𝛿 − 2𝜆 + 1

]
2−(𝜆−1)

≤ 2−(𝜆+1). (provided 𝛿 is large enough)

Once again the only condition is that we wave to choose 𝛿 large enough so that
Pr

[
𝑋 ≥ 𝛿 − 2𝜆 + 1

]
≤ 2−2𝜆 and therefore 𝜖 < 2−(𝜆+1) + 2−(𝜆+1) = 2−𝜆.
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It only remains to obtain a sufficient condition for Pr
[
𝑋 ≥ 𝛿 − 2𝜆 + 1

]
≤ 2−2𝜆,

using Proposition 4.12.

Pr
[
𝑋 ≥ 𝛿 − 2𝜆 + 1

]
≤

≤ exp
(
−𝛿

(
2𝜆 − 1

𝛿
ln

(
2𝜆 − 1

𝛿(1 − 𝑞−1)

)
+ 𝛿 − 2𝜆 + 1

𝛿
ln

(
𝛿 − 2𝜆 + 1

𝛿𝑞−1

)))
.

It would be sufficient to ensure that this expression can be upper bounded by
2−2𝜆. Taking (base 2) logarithms (and replacing natural logarithms with binary
logarithms) the final condition would be

(2𝜆 − 1) log
(

2𝜆 − 1
𝛿(1 − 𝑞−1)

)
+ (𝛿 − 2𝜆 + 1) log

(
𝛿 − 2𝜆 + 1

𝛿𝑞−1

)
≥ 2𝜆. (eq. (4.4))

Provided that it is not a difficult computation, we can just try increasing 𝛿,
starting from the minimum value determined by eq. (4.1), until we find the first one
that satisfies the condition.

Observe that the success probability of the attack could be slightly improved
by tweaking some design decisions (for example, the fact that the 𝑄 maximum
number of queries is equally split among both rounds), but that would not have
any meaningful impact. On the other hand, some assumptions are ostensibly
conservative. When considering the hardness of the RLWE problems, we wanted to
ensure that known attacks need more than 2𝜆 operations to be minimally successful.
Here, however, we are bounding by 2𝜆 just the number of oracle calls, not the number
of total operations, that would be much greater. By analyzing the expected running
time, one could then bound it by 2𝜆 and get stricter upper bounds for 𝑄.

One can see that an equivalent analysis applies to the linear relation protocol.
It is also (1, 1)-special unsound, and an adversary can be constructed by repeating
the same strategy three times in parallel, just defining 𝒛3 ≔ 𝜆1𝒛1 + 𝜆2𝒛2 (it is also
completely detailed in Appendix 4.A). Therefore, the same kind of attack applies
with the same success, and the conditions for the parameters also apply to the linear
case.

It is more difficult to assess the security of the multiplicative relation protocol.
Recall that the (2, 3, 2)-special soundness is that of a 7-move protocol. However,
although in the interactive version the protocol it is equivalent whether the verifier
sends 𝛼 and 𝛽 sequentially or at the same time, we have already discussed that is not
the case in the non-interactive version after applying Fiat-Shamir, as both challenges
come from the same hash in the 5-move version and would require two different
hashes if transforming the 7-move version.

It is possible to prove that the multiplicative interactive proof is (1, 1)-out-of-



184 4.3. Non-Interactive Security Proofs

(𝑞2 , 2)-unsound, following a similar strategy than the one used with the linear
protocol. Nonetheless, the success probability would be lower, as the first challenge
set is now Z2

𝑞 and guessing pairs of integers is harder than guessing a single integer.
However, there is also a partial attack with the same success probability as the one
against the opening and linear protocols because a malicious adversary𝒜 knowing
valid openings to two commitments 𝒄1 = 𝒂𝑚1 + 𝒃𝑟1 + 𝒆1 and 𝒄2 = 𝒂𝑚2 + 𝒃𝑟2 + 𝒆2

could fake a multiplicative proof with an arbitrary 𝒄3 ∈ 𝑅𝑘𝑞 just guessing 𝛽. They
would choose Γ1 ≔ {(𝛼, �̃�) | 𝛼 ∈ Z𝑞} and proceed as an honest prover with regard to
𝒄1 and 𝒄2 and as the adversary against the opening protocol with regard to 𝒄3. To
make everything satisfy the checks if the challenge 𝛽 turns out to be �̃� they just need
to choose 𝒛3 = 𝒂(𝜇3 + �̃�𝑚1𝑚2) (with minor additional changes on how the other
commitments are computed if the guess turns out to be wrong).

In the end (𝑞, 1)-out-of-(𝑞2 , 2)-special unsoundness is by all means equivalent to
the (1, 1)-out-of-(𝑞, 2)-special unsoundness (the analysis on the success probability
only depends on 𝑙1/ | 𝒞1 | and 𝑙2/ | 𝒞2 |, and these two are equal for both scenarios),
and the same condition on the parameters given by eq. (4.4) would apply for the
multiplicative NIZKPoK.

4.3.4 Zero-Knowledge

The interactive version of the protocol is honest-verifier zero-knowledge because
there exists a simulator that taking the challenges as input outputs conversations
computationally indistinguishable from real conversations between an honest prover
and an honest verifier.

Provided that the conversation itself is then indistinguishable from something
that can be computed by an algorithm that does not know the witness, we can ensure
no relevant information is leaked, because anything that can be computed from the
conversation could also be efficiently computed using the simulator.

Finally, in the ROM, as we assume challenges in the Fiat-Shamir transformed
version follow a uniform distribution, the non-interactive proof would be in that
sense equivalent to the interactive conversation, and we can ensure again that no
information is leaked. We use CSPRNGs, so the zero-knowledge property is only
computational.

4.3.5 Completeness

As it was the case for the ZKPoKs from the previous chapter all three NIZKPoKs are
complete by design.

We have mentioned that Fiat-Shamir with aborts based proofs do not enjoy
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standard completeness with one execution because there is a significant probability
of aborting before sending an accepting final response. In the non-interactive
scenario completeness would be obtained starting again from the beginning until a
valid proof is produced.

The NIZKPoK version of our protocols uses rejection sampling for sampling
uniformly random integers in Z𝑞 . But, unlike the Fiat-Shamir with aborts strategy,
the rejection probability does not depend on any secret information, so we can just
sample againwithout restarting thewhole procedure or compromising completeness
(more details in Section 4.4).

4.4 Implementation

In this section we explain in detail the choices that we have made in our implemen-
tation. What we present here is merely a prototype, only intended for academic
purposes and not ready for production. There is no user interface to define amessage,
output or read a commitment, an opening or a proof (everything is kept in memory).

What we do include in the GitHub repository [90] are the core algorithms. The
functions that output the public keys, generate a commitment with its opening and
verify suchopening. Furthermore,we include the functions that generate the opening,
linear and multiplicative proofs and the ones that verify them. Together with these
algorithms, we also include some tests that produce random commitments and
proof statements in order to check that every opening generated by the commitment
algorithm is validated by the opening verification, and that every proof is also valid.
Besides that, these tests also benchmark all the algorithms, logging the running time
in milliseconds and the number of processor cycles.

We have not taken into account memory management or possible side-channel
attacks (for example we have not tried to make our implementation constant
time), because that would be out of the scope of this research. Commitment
public keys are generated from a uniformly random distribution (conditioned to the
properties satisfied by binding keys), but depending on the trustmodel of a particular
application (𝒂 , 𝒃) might need to be generated using multi-party computation or
deterministically computed using a pseudorandom procedure that convinces the
participants that nobody has a trapdoor.

Nevertheless, we do have implemented our constructions taking in mind the
sizes of actually secure parameters (not only toy examples). We also have decided to
always use CSPRNGs with sufficiently large seeds. We do so because we want to
properly measure the performance of the algorithms, and these functions turn out
to consume a significant amount of the total running time. A cryptographic scheme
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is as weak as the weakest of its parts, and transitioning from theoretically uniform
distributions to pseudorandom ones is a delicate step worth of being carried out in
detail.

To illustrate the importance of this last step we borrow a real example from a
different field of cryptography. The wallets in the Ethereum blockchain are protected
from brute force attacks because their secret keys are large enough. However,
many users and projects have been recently exploited (loosing crypto assets valued
hundreds of millions of USD) because in order to get an address with some custom
starting characters (a so-called vanity address) they used an open-source software
called profanity that internally generated the private keys deterministically from
a random seed obtained from the C++ built in random generator of only 32 bits,
allowing very efficient brute force attacks [104]. We believe examples like this
strongly support the need of rigorous analysis as we do in this work.

4.4.1 Language and Libraries of the Implementation

All the main algorithms are implemented in C. Only the script used to generate the
parameters (as described in the next Section 4.5) is implemented using sagemath,
because the Lattice Estimator we use is written in this language, and the script
that sequentially runs the tests is written in python for its flexibility. We have
chosen C as our principal language mainly because of its efficiency. It also allows to
improve the efficiency of some computations by working on a reasonably low level.
Furthermore, there are plenty of well established and robust libraries, from which
we take advantage of the following.

The goal of this implementation is to study the performance of the proposed
techniques on a different variety of scenarios. For that reason, even if our restraints
do not require a specially large modulus 𝑞 we have chosen to work with arbitrary
large integers anyway, so we can study how the scheme scales with larger 𝑞 and
allows us to compare it with alternatives that do have such constraints. To do so we
use the GNUMultiple Precision arithmetic library (GMP v6.2.1).

We also make heavy use of the Fast Library for Number Theory (FLINT v2.9.0)
to work with polynomials in a quotient ring such as 𝑅𝑞 . Our implementation uses it
for any polynomial operation except for products, where we have implemented the
faster algorithms described in Chapter 2.

As we have been discussing, random sources and pseudorandom functions are
critical for the security of the implementation, and we use the standard OpenSSL
library (v3.0.2) for random sampling, hashing (SHA-256) and XOF (SHAKE-128).

One of the main drawbacks of Stern’s approach is that the non-negligible
soundness error requires multiple repetitions to obtain soundness. Nevertheless, we
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can take advantage of the parallel repetition structure to parallelize the execution
and speed up the protocols. We use OpenMP for that, and the parallelization level
has a considerable impact on the final performance.

4.4.2 Main Computational Tasks

The two main computational tasks that we require to implement our schemes are
sampling (from a discrete Gaussian distribution, uniformly random integers in Z𝑞
and uniformly random permutations) and multiplying in a truncated polynomial
ring. In the following subsections, we will give an overview of the approach that we
have followed to instantiate such tasks in our implementation.

Discrete Gaussian Sampling

We want our schemes to be as flexible as possible, to study the different possible
trade-offs. For this reason, we have chosen to instantiate discrete Gaussian sampling
using the Discrete Ziggurat (DZ) algorithm [32]. We have implemented the procedure
from scratch, and it can work with multi-precision arithmetic. This algorithm works
covering the probability density function with rectangles of similar size. Then,
to sample an element, one of the rectangles is selected uniformly at random, and
afterwards a rejection sampling procedure is used to either obtain one of the values
inside the rectangle or start again, so that the final probability distribution is that of
a truncated discrete Gaussian. The number of rectangles used allows us to have a
trade-off between computational speed and memory usage, as a more fine-graded
rectangle partition implies faster sampling but needs more memory for allocating
the rectangle coordinates. When we have no restriction on memory consumption,
DZ achieves a performance close to the fastest known algorithm for this task [69].
Using DZ has another advantage, it allows us to directly sample from a bounded
discrete Gaussian distribution. The details of DZ are out of scope of this work, and
we refer the interested reader to the original paper.

Uniform Sampling

Even if computationally simpler than Gaussian sampling, the implemented algo-
rithms make heavy use of uniform sampling of integers in Z𝑞 , and this task ends up
being more computationally expensive.

Our implementationmakes use of theRAND_priv_bytes function fromOpenSSL as
a source of randomness. To sample from Z𝑞 we have to do rejection sampling. We can
sample ⌈log28(𝑞)⌉ bytes to get an integer uniformly distributed in [0, 28⌈log28 (𝑞)⌉ − 1],
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and then reduce it modulo 2⌈log(𝑞)⌉ to get an integer 𝑠 uniformly distributed in
[0, 2⌈log(𝑞)⌉ − 1]. We keep 𝑠 if 𝑠 < 𝑞, and otherwise we discard it and start again.

The intermediate reductionmodulo a power of 2 guarantees a reasonable rejection
rate smaller than 1/2, which is really worthy as reducing modulo a power of two can
be done at a low level and is computationally cheap, so this approach turns out to be
a faster option than similar alternatives which require reductions modulo 𝑞.

If we have to sample multiple integers, for example to sample vectors of polyno-
mials in Z𝑞[𝑥]/⟨𝑥𝑛 + 1⟩, in order to amortize the cost of calling the RAND_priv_bytes
function we first populate a buffer of pseudorandom bytes and use them sequentially,
only refreshing the buffer with new randomness when there are less than ⌈log28(𝑞)⌉
bytes left.

To deterministically sample integers from Z𝑞 using a seed we use the same
approach, replacing RAND_priv_bytes with an XOF as SHAKE-128, initialized with
both the seed and a counter that keeps track of how many times we have already
refreshed the buffer. The previously defined PRN, the function that takes as input a
given seed and outputs the desired number of pseudorandom integers modulo 𝑞, is
implemented following this procedure.

We also need to uniformly sample multiple permutations from the set of permu-
tations of 2𝑛𝑘 elements. A permutation is encoded as a product of 2𝑛𝑘 transpositions
(1, 𝑖1)(2, 𝑖2) . . . (2𝑛𝑘 − 1, 𝑖2𝑛𝑘−1)(2𝑛𝑘, 𝑖2𝑛𝑘) where (𝑗 , 𝑖 𝑗) is such that 𝑖 𝑗 ≥ 𝑗. That way,
sampling 2𝑛𝑘 indexes uniformly in the respective intervals, 𝑖 𝑗 ←r [𝑗 , 2𝑛𝑘], deter-
mines a permutation uniformly distributed in the set of permutations of 2𝑛𝑘 elements
𝔖2𝑛𝑘 (i.e. following the Fisher-Yates algorithm).

We can deterministically compute such pseudorandom indexes from a seed
similarly than before. Sampling from an interval [𝑗 , 2𝑛𝑘] is equivalent to sampling
from [0, 2𝑛𝑘 − 𝑗] and then adding 𝑗. However, for this case, where indexes to be
sampled are much smaller, we alternate the order of the rejection and the modular
reduction to reduce the rejection rate. To sample an integer uniformly from [0, 2𝑛𝑘− 𝑗]
wecan also sample an integer uniformly from [0, 𝑚(2𝑛𝑘− 𝑗+1)−1] for any𝑚 ∈ Z>0 and
then reduce it modulo 2𝑛𝑘− 𝑗+1. The greatermultiple of (2𝑛𝑘− 𝑗+1) smaller or equal
than 28⌈log28 (2𝑛𝑘−𝑗+1)⌉ is 28⌈log28 (2𝑛𝑘−𝑗+1)⌉−(28⌈log28 (2𝑛𝑘−𝑗+1)⌉ rem (2𝑛𝑘− 𝑗+1)). We start
sampling 𝑠 ←r [0, 28⌈log28 (2𝑛𝑘−𝑗+1)⌉ −1]. Then if 𝑠 < 28⌈log28 (2𝑛𝑘−𝑗+1)⌉ −(28⌈log28 (2𝑛𝑘−𝑗+1)⌉

rem (2𝑛𝑘 − 𝑗 + 1)) we reduce 𝑠 modulo 2𝑛𝑘 − 𝑗 + 1 and add 𝑗, or reject it and repeat
otherwise.

We denote by 𝜋𝜏 the permutation obtained following this procedure from a seed
𝜏 ∈ {0, 1}8⌈𝜆/8⌉ .

This approach greatly reduces the rejection rate and improves the efficiency of
the algorithm. It was not the case for the Z𝑞 sampler because in that case the modular
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reduction over 𝑞 would cost more than the modular reduction over a power of two,
and the benefit obtained from the reduced rejection rate would not compensate
that. Now we are in a different scenario, provided that 2𝑛𝑘 is much smaller than 𝑞
and modular reductions are much more efficient when we do not have to deal with
arbitrary large integers.

Multiplication in a Truncated Polynomial Ring

The dominant computational task we do with the elements of the scheme is com-
puting the product of polynomials, as it is much more costly than additions and
multiplications by a scalar. For that reason we have devoted the entirety of Chapter 2
to explain when and how to efficiently compute such products using partial FFT.

Most of the other computations we have to do, as sampling uniformly ran-
dom polynomials, adding them and verifying equalities, can also be done in the
transformed domain, so in our implementation almost every polynomial is directly
represented in the transformed domain and never anti-transformed back. From
a mathematical point of view it is completely equivalent, as the polynomial in
the transformed domain still represents the same mathematical object. From a
computational point of view directly working in the transformed domain, where
products are cheaper, saves a lot of computations.

The (𝛼, 𝜔) roots of−1 and 1 that define an (𝛼, 𝜔)-set as described inDefinition 2.19
are computed by the testing program when 𝑞, 𝑛 and 𝑑 are known, and the main
algorithms consider them as part of the public parameters pp.

There is a full research area devoted to efficient low level implementations of this
kind of lattice operations involving partial FFT [18]. We provide a much simpler
implementation without considering such level of detail, and compute the last step
using the implementation of Karatsuba’s algorithm provided by FLINT.

4.5 Instantiation

In this section we explain how to obtain secure sets of parameters to instantiate
our commitment scheme. Defining the security theoretically, i.e. with asymptotic
proofs, requires a different analysis than the one necessary for claiming a specific
level of security for a particular set of parameters. Besides that, finding the best set
of parameters that fulfills these particular conditions is not direct either.

Analyzing the security for concrete parameters, we have established a set of re-
strictions, eqs. (3.1) to (3.5) and (4.1) to (4.4), that ensure that the commitment scheme
and the companion NIZKPoKs would enjoy a certain security under established
hypothesis.
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However, finding a set of parameters that fulfills all these conditions might not
be direct. It is even harder to find the best set of parameters. On the one hand it
depends on what is the final purpose, as we might prefer a smaller commitment
size, smaller NIZKPoKs sizes, faster implementations, lower overhead between the
commitment and the message sizes. . . and we might have additional restrictions,
again on the size of certain parameters or in any other characteristic.

One has to consider that decreasing one parameter that reduces the commitment
sizemight reduce the available space for other parameters, as reducing one parameter
might end up making another condition more restrictive, forcing us to increase
other parameters. In the end that could (possibly) yield to a worse global outcome
regarding commitment (or proofs) size (or running time).

To obtain our results, we have chosen to carefully study the selection of parameters
and define a specific procedure that ends up in an optimal outcome for this particular
scheme. Our strategy consists on finding an order such that when the previous
parameters are fixed we can find an optimum value for the next one, where optimum
means that, conditioned on the previously fixed parameters, it is the value that
minimizes size and number of operations of both the commitments and proofs
while still satisfying the relations and, most importantly, it makes the conditions for
the remaining parameters as loose as possible (i.e. it does not further restrict the
available search space more than it is strictly necessary).

For this particular commitment scheme 𝜆, 𝑛 and 𝑞 are design parameters that
we can freely select depending on the level of security (𝜆), message space (𝑛,𝑞), or
additional properties that we desire. The power of 2 denoted by 𝑑 that determines
the number of irreducible factors 𝑥𝑛 + 1 splits into when considered modulo 𝑞 is
directly determined by 𝑞 as the only 𝑑 that satisfies eq. (3.1). In fact, one should first
choose 𝑑 in order to find a suitable 𝑞, so we include it in the set of four parameters
characterizing a commitment instantiation set of parameters (𝜆, 𝑛, 𝑞, 𝑑). Given this
tuple of four parameters we can see that the rest can then be defined in an optimal
way.

In order to ease the explanation, we are going to present the procedure from the
last to the first parameter.

If we had already fixed (𝜆, 𝑛, 𝑞, 𝑑, 𝛿𝑂𝐿 , 𝛿𝑀 , 𝐵, 𝑘) satisfying eqs. (3.1) to (3.3)
and (4.1) to (4.4) then 𝜎 would be upper bounded by the condition from eq. (3.5).

𝜎 ≤ (𝐵 − 1)

√
log(𝑒)

2(𝜆 + log(𝑛𝑘) + 1) . (from eq. (3.5))

Observe the right-hand side corresponds to sigmaFromB(𝜆 + log(𝑛𝑘), 𝐵 − 1)
as defined in Section 1.4. We proved in Proposition 1.66 that it corresponds
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to the largest value of 𝜎 such that we can ensure | 𝑒 | ≤ 𝐵 − 1 except with a
probability smaller than 2−(𝜆+log(𝑛𝑘)) if 𝑒 ←r 𝐷𝜎. Furthermore, 𝜆 + log(𝑛𝑘) =
vecBoundedPrToBoundedPr(𝜆, 𝑛𝑘), and we precisely know from Proposition 1.65
that 2−(𝜆+log(𝑛𝑘)) is the greatest probability we can allow for an event with a single
sample if we want to ensure it only happens with probability at most 2−𝜆 when we
consider 𝑛𝑘 samples. That is, it is themaximumboundon theprobability of | 𝑒 | > 𝐵−1
with 𝑒 ←r 𝐷𝜎 that implies Pr

[
𝒆 ∉ [−(𝐵 − 1), . . . , 𝐵 − 1]𝑛𝑘 | 𝒆 ←r 𝐷

𝑛𝑘
𝜎

]
≤ 2−𝜆. And

that is what we wanted because we need ∥𝒆∥∞ ≤ 𝐵 except with 2−𝜆, and this bound
is the maximum value of 𝜎 for which we can guarantee it. The previous inequality is
therefore equivalent to

𝜎 ≤ sigmaFromB(vecBoundedPrToBoundedPr(𝜆, 𝑛𝑘), 𝐵 − 1).

Considering all the other elements are already fixed, the size of the commitments
and the proofs would already be determined. As long as we keep satisfying eq. (3.5)
the only impact different 𝜎 values would have would be on the hardness of the
underlying RLWE problem. We use Albrecht et al.’s Lattice Estimator [8] as a black
box to compute an estimation, albeit it is only reasonable to assume that greater
errors would yield to a harder problem, that is, bitsec should be increasing in 𝜎.
Consequently, our best candidate would be precisely the value that reaches this
upper bound.

The only other remaining condition is precisely eq. (3.4), imposing a minimum
level of estimated hardness. Then there are two options, either the 𝜎 that comes
from the bound derived from eq. (3.5) satisfies eq. (3.4), and we choose it, or it does
not, and we can conclude that no 𝜎 exists so that we can add it to the previous
(𝜆, 𝑛, 𝑞, 𝑑, 𝛿𝑂𝐿 , 𝛿𝑀 , 𝐵, 𝑘) to get set of parameters we can ensure is secure. The final
result is then, if possible, the greater 𝜎 satisfying eq. (3.5).

bestSigma(𝜆, 𝑛, 𝑞, 𝐵, 𝑘) ≔


(𝐵 − 1)

√
log(𝑒)

2(𝜆+log(𝑛𝑘)+1)
if bitsec(RLWE𝑛 𝑞 𝑘 𝐷𝑛

𝜎
) ≥ 𝜆

with 𝜎 ≔ (𝐵 − 1)
√

log(𝑒)
2(𝜆+log(𝑛𝑘)+1) ,

⊥ otherwise.

Something similar happens with 𝑘 if we assume (𝜆, 𝑛, 𝑞, 𝑑, 𝛿𝑂𝐿 , 𝛿𝑀 , 𝐵) fixed
satisfying eqs. (3.1), (3.3) and (4.1) to (4.4). The condition defined by eq. (3.2)
establishes a lower bound, and it is the best candidate because a smaller 𝑘 implies
smaller commitments and proofs and a larger 𝑘 would reduce the available search
space for 𝜎 satisfying the remaining conditions defined by eqs. (3.4) and (3.5) (now it
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is clear the hardness is decreasing in 𝑘, and the upper bound on 𝜎 is also decreasing
in 𝑘). Then we can safely choose this lower bound as our candidate for 𝑘.

bestK(𝜆, 𝑛, 𝑞, 𝑑, 𝐵) ≔
⌈

𝜆 + 2𝑛 log(𝑞)
𝑛

(
log(𝑞)/𝑑 − log(4𝐵 − 1)

) ⌉ .
Regarding 𝐵, fixing (𝜆, 𝑛, 𝑞, 𝑑, 𝛿𝑂𝐿 , 𝛿𝑀) satisfying eqs. (3.1) and (4.1) to (4.4),

the size (and running time) of the proofs would be smaller the smaller its size.
Regarding 𝑘 a larger 𝐵 would make the lower bound for 𝑘 derived from eq. (3.2)
greater, effectively reducing the available search space, so smaller 𝐵 would be
preferable for this subject. However, the condition imposed by eq. (3.5) is stricter
with smaller 𝐵, therefore if 𝐵 is too small it might be the case that, even with
the less restrictive 𝑘 defined by bestK there is no large enough 𝜎 satisfying the
remaining conditions eqs. (3.4) and (3.5) that makes the underlying RLWE problem
sufficiently hard. Parameter 𝑘 has an impact on the size and running time of both
the commitment and the proof algorithms, while more options for 𝜎 would only
provide more security. Notwithstanding a harder underlying problem is always
desirable we define our procedure prioritizing performance (in this case parameter
𝑘), because we want to obtain the best instantiation for a target security level and
if what we preferred was a harder problem we could have just chosen a greater 𝜆
from the beginning. For that matter we simply ensure 𝐵 is the minimum power of 2
so that the scheme can be securely instantiated. In this case we cannot explicitate a
formula for 𝐵, and we can just implicitly define it.

bestB(𝜆, 𝑛, 𝑞, 𝑑)≔


min
{
2𝑒

�� 𝑒 ∈ Z>0 , ∃𝑘, 𝜎 s.t. eqs. (3.2) to (3.5) hold
}

if defined,

⊥ otherwise.

In order to compute it, we just need to test increasing powers of 2 verifying if
with 𝑘𝑒 ≔ bestK(𝜆, 𝑛, 𝑞, 𝑑, 2𝑒)we have 𝜎𝑒 ≔ bestSigma(𝜆, 𝑛, 𝑞, 2𝑒 , 𝑘𝑒) different from
⊥. Provided that eq. (3.3) imposes an upper bound to 𝐵, we can use it to stop the
search because if we reach the bound then we know that no suitable parameter set
exists with such (𝜆, 𝑛, 𝑞, 𝑑, 𝛿𝑂𝐿 , 𝛿𝑀).

Once we have fixed a specific tuple of (𝜆, 𝑛, 𝑞, 𝑑)we notice that, provided 𝛿𝑂𝐿 and
𝛿𝑀 only appear in eqs. (4.1) to (4.4), respectively, and these equations only involve 𝜆
and 𝑞, choosing them would not restrict the search space for the rest of parameters.
Regarding 𝛿𝑂𝐿 and 𝛿𝑀 specifically, as they denote the number of repetitions to
achieve soundness, the minimum value that satisfies eqs. (4.1), (4.2) and (4.4) will
produce the shorter proofs. Then we can directly start with the minimum values
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satisfying eqs. (4.1) and (4.2),

deltaOLinitialCandidate(𝜆, 𝑞) ≔
⌈

𝜆

log(2𝑞) − log(𝑞 + 1)

⌉
,

deltaMinitialCandidate(𝜆, 𝑞) ≔
⌈

𝜆

log(2𝑞2) − log(𝑞2 + 3𝑞 − 2)

⌉
,

and keep increasing them until 𝛿𝑂𝐿 and 𝛿𝑀 satisfy eq. (4.4).
The size of the seeds used to compute the challenges can be directly computed

as 8⌈(𝜆 + 𝛿 log(𝑞))/8⌉ to satisfy eq. (4.3).
Notice these two parameters are not entangled with the others and could be

chosen at any other moment, but for the rest we have a clear order defined by
(𝜆, 𝑛, 𝑞, 𝑑) → 𝐵→ 𝑘 → 𝜎.

For the first initial elements (𝜆, 𝑛, 𝑞, 𝑑) we just need to check that 𝑛 is a power of
2, that 𝑑 ≤ 𝑛 is another power of 2 and that 𝑞 is a prime satisfying eq. (3.1).

We use the Miller-Rabin primality test [100] as implemented by Zhiming Wang
in [123]. Of course a non-probabilistic primality test could also be used.

See Appendix 4.B for the complete script in sagemath implementing this proce-
dure and the GitHub repository [90] for the command line executable version in
generate_params.sage.

4.6 Results

In this final section we present the sizes of the commitment, the NIZKPoKs of
a valid opening, a linear and a multiplicative relation, and the running time for
the keygen, commit, verifier, proveropening, verifieropening, proverlinear, verifierlinear,
provermultiplicative and verifiermultiplicative implemented algorithms for some sets of
parameters of interest.

The performance values presented in this section and inAppendix 4.C correspond
to the average of 100 executions of each algorithm, compiled with gcc (version 11.3.0
and -O3 -march=native flags) using an Intel® Core™ i7-8700 CPU (6 cores and 12
threads) running at 3.20 GHz with Ubuntu 22.04.1 LTS and 16 GB of RAM.

We have chosen to represent sets of parameters with 𝜆 = 100 security bits, lattice
dimension 𝑛 ∈ {512, 1024}, and 𝑑 = 2. For each modulus bit size 𝑏 we have chosen
four 𝑞 modules such that 2𝑏 < 𝑞 < 2𝑏+1 (equally spaced in the log scale). There is
a huge range of sizes for which secure sets of parameters exist, but not all of them
are equally efficient. We are interested in showing the whole picture and not only
a few examples, but, as expected, after some size of the modulus 𝑞 both sizes and
running times for the commitment and the NIZKPoKs just increase beyond what
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can be practically benchmarked. For that reason we truncate the plots when the
multiplicative NIZKPoK would take more than 512 MB (it is an arbitrary limit, but it
allows us to see how the scheme scales when we surpass the practical sizes while
still being able to plot everything in a reasonable scale). Finally, for each of these
(𝜆, 𝑛, 𝑞, 𝑑) the optimal set of parameters has been computed following Section 4.5.

This is not an exhaustive list of parameters, not only because we omit parameter
sets with greater 𝑞 but because even sets with the same ⌈log(𝑞)⌉ might still behave
differently. We believe however that we show enough results to get a comprehensive
understanding of the benchmarks. Furthermore, in Appendix 4.C we extend these
results to 𝑑 = 4, which is the only other possibility for which secure sets of parameters
exist (but we will see that 𝑑 = 2 is, by all means, the best choice). Even if we do not
test the running times of parameter sets when the size of the multiplicative proof
would exceed 512 MBwe also include in Appendix 4.C the size analysis of additional
sets of parameters, and explain why there is no possible trade-off that would provide
better results.

4.6.1 Sizes and Running Times

We start plotting in Figure 4.1 the size of the commitment in kB with the best set of
parameters against the size of the modulus, for both 𝑛 = 512 and 𝑛 = 1024, together
with the hardness of the underlying RLWE problem.

Figure 4.1 Commitment sizes
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(a) 𝜆 = 100, 𝑛 = 512, 𝑑 = 2

10 15 20 25 30 35 40
log(q)

0

8

16

24

32

40

48

56

64

kB

comm. size RLWE hardness bits

0

100

R
LW

E
 h

ar
dn

es
s

(b) 𝜆 = 100, 𝑛 = 1024, 𝑑 = 2

It is interesting to see a zigzag pattern in the 𝑛 = 512 figure that we can
easily understand looking at the RLWE hardness data. The discrete nature of the
parameters, for example the power of two bound 𝐵 of the noise terms, means that
even if we target 2100 as RLWE hardness the problem might not be hard enough for
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𝐵/2 but 𝐵 already induces a 𝜎 that achieves a much greater bitsec. This margin allows
increasing 𝑞 without having to increment 𝐵, because, even if the hardness decreases
when the ratio of 𝜎/𝑞 does, it might still be greater than 2100. The intermingled
restrictions from the security conditions imply that, while 𝐵 can remain constant,
albeit choosing a greater 𝑞 implies using greater integers, the minimum dimension
of the vectors 𝑘 decreases and the commitment sizes can be smaller. This happens
up to the point when the security would decrease below the 2100 level, which forces
us to use the next power of 2 for 𝐵 and that modifies all the relations ending up with
the jumps visible in Figure 4.1.

While the smaller size is achieved with 𝑛 = 512 the commitments with 𝑛 = 1024
start with a much harder RLWE problem, and that grants the existence of a much
wider range of still reasonable sizes, given that the jumps start for much greater 𝑞
and the zigzag pattern is much less prominent.

This non-smooth behavior, a consequence of the numerous non-linear restrictions
on the parameters, forces the final user to do a thorough study of the available
parameters for this kind of schemes, like the one we are presenting in this section,
because even starting with very similar 𝑞 we could end up defining two instances
with very different performance.

We then plot the running times of the key generation, the commitment, and the
verification of an opening in Figure 4.2.

Figure 4.2 Commitment times
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(a) 𝜆 = 100, 𝑛 = 512, 𝑑 = 2
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(b) 𝜆 = 100, 𝑛 = 1024, 𝑑 = 2

The times are highly correlated with the sizes, and the jumps are even more
significant. We see that key generation and verification are extremely fast, and
committing can also be done very efficiently.

The NIZKPoKs sizes are plotted in Figure 4.3 and their running times are plotted



196 4.6. Results

in Figure 4.4. Proofs of linear and multiplicative relations take almost the same space
and have the same running time. In both cases, it is roughly three times the amount
required for the proof of knowledge of a valid opening.

Using the proposed NIZKPoK, we can prove knowledge of an opening under
a second, and enjoy an even faster verification of the proofs, slightly above half
the time required for generating the proof. We see however that, in this case, the
performance escalates worse with larger 𝑞 than the commitment time. That is the
case because now an increase in 𝐵 not only affects the rest of parameters but also
the size and running time themselves, as the bit decomposition of the errors implies
that both grow with log(𝐵).

Figure 4.3 NIZKPoKs sizes

10 15 20
log(q)

0

64

128

192

256

320

384

448

512

M
B

op. zkp lin. zkp mult. zkp

(a) 𝜆 = 100, 𝑛 = 512, 𝑑 = 2
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(b) 𝜆 = 100, 𝑛 = 1024, 𝑑 = 2

4.6.2 Most Efficient Secure Sets of Parameters

In what follows we present several secure sets of parameters that we choose to
highlight because they are optimum regarding size, time or commitment to message
ratio. We introduce them in Table 4.1, show their commitment and proof sizes in
Table 4.2 and their associated running times for each protocol in Table 4.3. For each
of these criteria, we have picked the best with 𝑛 = 512 and the best with 𝑛 = 1024,
highlighting in boldface the best value for each 𝑛. Some sets are optimal regarding
many different aspects, while others only stand out in one table and not in the others.

Wewant to remark that Table 4.1 contains only one set of parameters with 𝑛 = 512
because this set is the best option regarding the ratio 𝑘 between the commitment
and the message size as well as size and running time of every protocol. It is not the
case with 𝑛 = 1024, where different sets are better for different characteristics. We



Chapter 4. Commitment and NIZKPoKs Implementation 197

Figure 4.4 NIZKPoKs times
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(a) 𝜆 = 100, 𝑛 = 512, 𝑑 = 2
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(b) 𝜆 = 100, 𝑛 = 1024, 𝑑 = 2

Table 4.1 Best parameters with 𝑛 = 512 and 𝑛 = 1024

𝑛 𝑞 𝑑 𝜆 𝑘 𝜎 𝐵 𝛿𝑂𝐿 𝛿𝑀

512 16381 2 100 14 0.55 8 221 221
1024 1048573 2 100 8 0.55 8 213 213
1024 11863253 2 100 7 0.55 8 211 211
1024 16777213 2 100 7 0.55 8 210 210
1024 67108837 2 100 7 0.55 8 209 209
1024 1073741789 2 100 6 0.55 8 208 208
1024 1276901389 2 100 6 0.55 8 208 208
1024 1518500213 2 100 6 0.55 8 208 208
1024 1805811253 2 100 6 0.55 8 208 208

present in boldface the 𝑘 that are optimal for each 𝑛.
It is noticeable that all the modulus 𝑞 are smaller than 232, so arbitrary-precision

arithmetic is not essential for these sets of parameters. While decomposing the errors
into bits seems a great overhead, it is not that expensive provided that the bound 𝐵
can be as small as just 8.

Then in Table 4.2 we show the commitment and proof sizes of the previous sets
of parameters, again highlighting in boldface the best cases for each 𝑛.

We see that the commitment sizes that we can obtain are completely practical.
There are 12 kB commitments when 𝑛 = 512 and around 20 kB commitments when
𝑛 = 1024. Doing our own study of possible secure parameters for the commitment
scheme by Benhamouda et al. [19] (with which we share the main commitment
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Table 4.2 Sizes of the best parameters

𝑛 𝑞 com. size op. size lin. size mult. size

512 16381 12 kB 23.34 MB 69.99 MB 70.48 MB
1024 1048573 20 kB 36.47 MB 109.38 MB 110.70 MB
1024 11863253 21 kB 37.83 MB 113.45 MB 115.02 MB
1024 16777213 21 kB 37.65 MB 112.91 MB 114.48 MB
1024 67108837 22 kB 40.53 MB 121.56 MB 123.24 MB
1024 1073741789 22 kB 39.85 MB 119.53 MB 121.46 MB
1024 1276901389 23 kB 41.16 MB 123.46 MB 125.45 MB
1024 1518500213 23 kB 41.16 MB 123.46 MB 125.45 MB
1024 1805811253 23 kB 41.16 MB 123.46 MB 125.45 MB

structure) we obtained commitment sizes around 800 kB (to get this value we studied
their commitment as is, but some particular decisions they made seem specifically
designed to get theoretical asymptotic proofs and not efficient implementations).
That is the case because our commitment can be instantiatedwith 𝑛 = 512 or 𝑛 = 1024
and reasonable modulus size 𝑞, while their scheme needs at least 𝑛 = 4096 and
𝑞 > 285 to get the same security level 2100. Even the improved variant of Benhamouda
et al. commitment scheme presented in [17], changing both the underlying problem
and the structure, still has a greater commitment size of 54.5 kB. Our 𝑛 = 512
version has the same order of magnitude than the commitment scheme by Baum et
al. presented in [17], that requires 8.1-9 kB, depending on the version.

On the other hand, proof sizes are quite large. The opening proof size with
𝑛 = 512 is of the order of 23 MB, and almost a 60% more when 𝑛 = 1024. The
respective opening proof size is tripled for relation proofs. This is the main drawback
of Stern-based proofs, as the commitments from [19, 17] have proofs with a size
comparable to that of the commitments.

We finally present all protocol times, in milliseconds, in Table 4.3. Again, we
highlight with boldface the optimum results.

Execution time is definitely the main asset of this scheme, as we already obtain
very fast committing and verifying time and almost practical proving and proof
verifying times regarding that we have only developed a prototype implementation
that could benefit from higher parallelization and further optimizations. It is
interesting to notice that regarding running time, there is not much difference
between 𝑛 = 512 and 𝑛 = 1024.

The running time performance and size efficiency might vary a lot between
different approaches. For example, the post-quantum SNARK introduced in [30]
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Table 4.3 Running time of the best parameters (in milliseconds)

𝑛 𝑞 com. ver. key. 𝒫𝑜𝑝 𝒱𝑜𝑝 𝒫𝑙𝑖𝑛 𝒱𝑙𝑖𝑛 𝒫𝑚𝑢𝑙𝑡 𝒱𝑚𝑢𝑙𝑡
512 16381 46 2 3 742 380 2228 1146 2154 1149
1024 1048573 53 3 6 877 478 2627 1426 2595 1453
1024 11863253 46 3 6 783 416 2365 1251 2315 1266
1024 16777213 47 3 6 765 413 2286 1243 2250 1260
1024 67108837 46 3 6 810 462 2462 1371 2394 1383
1024 1073741789 41 3 8 748 437 2244 1275 2202 1298
1024 1276901389 42 4 9 781 434 2348 1301 2318 1326
1024 1518500213 41 4 9 770 435 2302 1307 2286 1326
1024 1805811253 42 4 8 764 434 2290 1306 2255 1326

that uses the Aurora framework, based on entirely different assumptions that we are
going to omit here, produces proofs of knowledge of a RLWE sample of only 70 kB.
but takes around 40 s.

It is important to notice that while we can obtain the smallest commitment size
for secure instantiations with 𝑛 = 512 the ratio between the size of the commitment
and the size of the committed message can be much smaller, 𝑘 = 6, if we choose
𝑛 = 1024, and even if the sizes increase the running times are still reasonable.

This alone proves the value of the approach from [87]. Even if the commitment
itself has the same structure as the one from [19] the latter imposes

𝑘 >
18⌊log(𝑞)/log(𝑛)⌋

3⌊log(𝑞)/log(𝑛)⌋ − 16
,

with the additional restriction of ⌊log(𝑞)/log(𝑛)⌋ > 6. While asymptotically their
bound is 𝑘 > 6 for the minimal possible 𝑞 ∼ 270 when 𝑛 = 1024 one would start with
𝑘 ≥ 26, and even increasing 𝑞 ∼ 2100 one would still have 𝑘 ≥ 13.

In the previous graphs and tables the verifier times measure the time required
to verify the total 𝛿𝑂𝐿 or 𝛿𝑀 parallel verifications from which, on average, half of
them correspond to 𝑏𝑖 = 0 challenges and half of them to 𝑏𝑖 = 1 challenges. It is
relevant to point out that the second case is much faster than the first. We provide a
general implementation where these challenges 𝑏𝑖 are chosen pseudorandomly ap-
proximating a uniform distribution over {0, 1}. However, a specific implementation
for a particular set of parameters where the specific running-time ratio between the
two options can be computed could be optimized drawing the challenges from a
non-uniform distribution, choosing more frequently the faster option 𝑏 = 1. That
would require an increase in the number of rounds to preserve the security level, but
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it could produce a significant net benefit (the details of this strategy, called thrifty
zero-knowledge, are well described in [41]).

4.7 Conclusions

The main conclusion we would like to remark is that in order to assess the actual
efficiency of a lattice-based commitment scheme one needs to conduct a thorough
study and address every detail, because these small issues have a great impact on the
final performance. Only now that we have a clear understanding of the benefits and
the drawbacks of the studied strategies and know where are the main bottlenecks
we can propose future research paths to further improve these schemes.

The first version of the commitment scheme and the companion ZKPoKs pub-
lished in [87] already proved that the log(𝑞) overhead of the existing proofs could be
avoided (because we do not need to decompose in bits the committed messages 𝑚),
and reduced the soundness error from 2/3 to 1/2.

However, we need to carefully analyze the constants to see if the second improve-
ment is worthy. We already improve the soundness proofs from [87] in Chapter 3 so
that we can explicitly analyze these constants. If we target𝜆 = 100 as a security level a
3-move protocol with soundness error of 2/3 would require 𝛿 > 200/(log(3)−1) ≈ 342
repetitions, so that once we compensate the 𝑄 < 2100 security loss of the Fiat-Shamir
transform we still have a bound on the cheating probability of (2/3)𝛿 · 𝑄 < 2−100.

In the interactive version the cost of going from a 3-move protocol to a 5-move
protocol was the increased interaction implying a higher communication time. This
problem vanishes with the non-interactive version, but we have to take into account
the greater security loss with the Fiat-Shamir transform. If we need provable security
then the 𝛿 ≈ 300 we have seen in Section 4.3.2 is not so far from the one we would
obtain with a 2/3 soundness error (and we should carefully study the exact size
of the conversation to see if it compensates). Choosing to consider only the best
attacks as we have done in Section 4.3.3 we have later seen in Section 4.6 that the
number of repetitions we obtain is as low as 𝛿 = 208. On the one hand we see that,
for the specific case of the studied schemes, the price we pay for increasing the
number of moves from 3 to 5 is just an additional 8 repetitions. We can say that
reducing the soundness error at the expanse of increasing the rounds is really a
significant improvement. On the other hand, we have to remark that the security
loss of the Fiat-Shamir transform, even if only considered heuristically, has a great
impact. As we have mentioned, assuming the number of oracle queries 𝑄 < 2100 is
a conservative estimate, but getting a lower upper bound would require a deeper
analysis on the complexity of the attacks.
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We also have to mention that good estimations on the hardness of the underlying
RLWE problem are something that have a great impact too. There is still an ongoing
effort improving attacks to the RLWE problem that we need to take into account
to renovate the constants. The Lattice Estimator from Albrecht et al. is actively
maintained with updates that refine the estimations, and while instantiating our
protocols we have had to update our sets of parameters several times because the
newer versions deemed the previous sets insecure. Each increase in the constant 𝐵
has implied a greater size of the proofs.

We however believe this is the only honest way of ensuring a certain level of
security. There are many proposed schemes that choose to draw only binary errors
(or ternary {−1, 0, 1} errors) from non-Gaussian distributions, but then do not
enjoy the same reductions to problems already believed to be hard (as discussed
in Section 1.3). We think having both the theoretical reductions and up-to-date
practical estimations are both important. Regarding the second, we consider it is
of particular interest the fact that we have uploaded to the GitHub repository [90]
the complete script we have used to obtain the secure parameters with the Lattice
Estimator as a module, so anyone could easily run it again in the future with an
updated version of the estimator to get up-to-date secure sets.

Combining these two factors, a rigorous analysis of the security of the Fiat-Shamir
transform and a rigorous analysis of the hardness of the underlying problem we get
that the minimum sizes we obtain for the NIZKPoKs are still not practical, in spite of
the significant improvements we have achieved with respect to existing Stern-based
proofs.

Once we have seen that the overhead needed to obtain secure NIZKPoKs makes
the sizes too big for practical use we could consider again the applicability to
interactive cases. While non-interactive proofs seem preferable because a single
proof is universally verifiable there are some scenarios where we are just interested
into convincing a single verifier, and we might even want that the verifier is not
able to convince a third person, as might be the case with e-voting. For non-critical
infrastructure using identifications schemes, where multiple failed attempts can
be easily detected, it might even be feasible to settle for looser soundness errors as
2−80, taking into account that this bound is statistical, still targeting 𝜆 = 100 for the
computational properties as the hardness of the RLWE problem.

Throughout this chapter, we have been balancing two clashing outcomes regard-
ing the error size. The hiding property of the commitment scheme benefits from
larger errors that increase the hardness of the underlying RLWE problem, but we
had to bound them in order to be able to define the correctness of the commitment
and the soundness of the ZKPoKs, getting greater sizes the higher the bound has to
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be.
In order to enforce hiding, we have used that the probability of the tails is small

enough so that the statistical distance between the two distributions (truncated and
not) is again small. Besides that, there is an alternative similar strategy that allows us
to relate the probability of an undesired event (breaking the hiding property) when
we replace a distribution using the Rényi divergence of the two distributions instead
of their statistical distance. It would require a specific analysis, more involved than
the one with the statistical distance, but it would lead to bounds that might allow
increasing the 𝜎 parameter without increasing the bound 𝐵 (or to reduce the bound
𝐵 without decreasing 𝜎) and still preserve the hiding property. We propose it as
possible future research path.

Albeit the running times of the implemented algorithms are already competitive
(at least the key generation, committing and opening verifying algorithms), this is
the aspect with more room for improvement. Given the academic nature of our
work we choose to work with arbitrarily large integers to be able to have a broader
picture as possible, but a practical implementation could just be tailored for modulus
with less than 32 bit size (or the native integer size of the given machine), which
would lead to a significant speed up. Hardware specific implementations could also
introduce a higher level of parallelization, and we would expect that to lead to huge
performance gains as well (as we have obtained with the modest parallelization
already implemented).

We also want to remark that, provided that additions and multiplications
are compatible with the partial FFT, one can choose to define as message spaces
the quotients of 𝑅𝑞 over each of the factors 𝑝1(𝑥), 𝑝2(𝑥), . . . , 𝑝𝑑(𝑥) of 𝑥𝑛 + 1, and
compute commitments and proofs to 𝑑 polynomials of degree 𝑛/𝑑 (directly from the
transformed domain) in parallel. Furthermore, it would be even more interesting to
explore how the binding proof would improve if we just restrict the message space
to 𝑅𝑞/⟨𝑝1(𝑥)⟩ and encode a message 𝑚 ∈ 𝑅𝑞/⟨𝑝1(𝑥)⟩ as the polynomial 𝑚′ ∈ 𝑅𝑞 such
that 𝑚 ≡ 𝑚′ mod 𝑝𝑖(𝑥) for 𝑖 from 1 to 𝑑, that way ensuring that the difference of
encodings of different messages is different modulo each 𝑝𝑖(𝑥). Our current proof
specifically uses that the difference of two different messages is different modulo at
least one of the 𝑝𝑖(𝑥), but the binding property could be enforced more easily if this
difference is not 0 modulo each of the factors of 𝑥𝑛 + 1.

This strategy might provide an interesting trade-off between the message space
size and the commitments and proofs sizes and efficiency. It is out of the scope of
this work as it greatly deviates from the scheme we have proposed, but should be
considered for applications where the message space can be smaller than 𝑅𝑞 .

Finally, an additional research path would be to redesign these ZKPoKs to base
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their security in the MLWE problem instead of the RLWE problem, provided that the
most succinct lattice-based commitments and ZKPoKs to date are based on the first,
and it would be interesting to analyze how practical are Stern-based techniques when
dealing with the MLWE problem the same way we have done in this dissertation
with the RLWE case.

Wewould have liked to compare in detail the performance of our schemewith the
existing alternative proposals, such as the commitments schemes from Benhamouda
et al. [19] and Baum et al. [17], or the many ZKPoKs for proving knowledge of the
secret in a RLWE sample we have mentioned in Section 3.1.1. However, none of
these proposals provide analysis as detailed as the ones we have presented through
both Chapters 3 and 4, and the fact that either their analysis is only asymptotic (as it
is the case of [19]), the underlying assumption is different (as it is the case of [17]), or
proofs are of a different nature (as it is the case of several of the more efficient proofs
mentioned in Section 3.1.1 that simply allow proving knowledge of a RLWE sample
with noise restricted to binary or ternary distributions) prevents us from directly
obtaining fair comparisons.

In any case we have provided an efficient and flexible implementation of both
a lattice-based commitment scheme and NIZKPoKs of valid opening, linear and
multiplicative relations. We have extensively discussed its tight security proofs so
that secure sets of parameters could be selected. Even if the performance is not
superior to existing alternatives we consider the analysis is valuable on its own as
we have shown that Stern-based techniques had great room for improvement but
still are at disadvantage with Fiat-Shamir with aborts alternatives. This conclusion
could not have been obtained without the significant work done to bridge the gap
between theoretical asymptotic proofs and tight conditions with explicit constants
that really allow such comparisons once we are able to obtain quantitative results, as
the ones presented in this chapter.
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4.A Special Unsoundness Adversaries

In Section 4.3.3 wementioned that (𝑘1 , . . . , 𝑘𝜇)-special sound protocols are frequently
vulnerable to one kind of attack that decreases the security of the Fiat-Shamir
transform and forces us to do more parallel repetitions to get the desired security.

We have already hinted how such an attack would work, but for the sake of
completeness we now fully specify in this appendix the unsoundness attacks against
the opening and the multiplicative relation protocols (the linear one directly follows
from the attack on the opening). From the description of the attacks it can then be
seen that there seems no direct way to further prove greater unsoundness following
this strategy exists, so it is reasonable to select parameters under the assumption
that this is the most efficient attack.

Whenever the adversary is in active mode we specify which is its current guess
following the notation from [12] and then, after receiving the challenge, we describe
how they would continue if the guess was right and can switch to passive mode or
how they could try to guess the second challenge to have an additional chance.

As [12] points out many (𝑘1 , . . . , 𝑘𝜇)-special sound protocols are also (𝑘1 −
1, . . . , 𝑘𝜇 − 1)-special unsound. The following adversary 𝒜, described through
Protocols 4.A.1 to 4.A.4, proves a single repetition of the opening protocol is (1, 1)-
special unsound, as we claimed before.

The reader can check that, whenever the adversary enters in passive mode, the
resulting conversation would always be accepting.

204
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Protocol 4.A.1 Unsoundness Adversary (Γ1 ≔ {�̃�})
𝒜 𝒱

1: �̃�←r Z𝑞

2: 𝜏← {0, 1}8⌈𝜆/8⌉ , {𝜏𝑗} 𝑗 ← XOF(𝜏)
3: { 𝒇 𝑗} 𝑗 ←r Z2𝑛𝑘

𝑞

4: 𝑜1 , 𝑜2 ←r {0, 1}8⌈𝜆/8⌉
5: {𝒆′

𝑗
} 𝑗 ←r 𝔅𝑛𝑘

6: 𝒛←r ℒ(𝒂)
7: 𝑠 ←r 𝑅𝑞
8: 𝑐1 ← Hash(𝜏∥𝒛 − (�̃�(𝒄 + B) − 𝒃𝑠 − 𝜙(∑𝑗 2𝑗( 𝒇 𝑗 + �̃�𝒆′

𝑗
)))∥𝑜1)

9: 𝑐2 ← Hash({𝜋𝜏𝑗 ( 𝒇 𝑗)} 𝑗 ∥{𝜋𝜏𝑗 (𝒆′𝑗)} 𝑗 ∥𝑜2)

10:
𝑐1 ,𝑐2−−−→

11: 𝛼←r Z𝑞

If 𝛼 = �̃� then𝒜 can switch to passive mode and produce an accepting conversa-
tion following the next strategy.

Protocol 4.A.2 Unsoundness Adversary (passive mode if 𝛼 = �̃�)

12:
𝛼=�̃�←−−−

13: for 𝑗 ∈ 0, . . . , log(𝐵) do
14: 𝒈 𝑗 ≔ 𝜋𝜏𝑗 ( 𝒇 𝑗 + 𝛼𝒆′

𝑗
)

15:
{𝒈 𝑗 } 𝑗
−−−→

16: 𝑏 ←r {0, 1}
17:

𝑏←−−
18: if 𝑏 = 0 then
19: 𝒚 ≔ 𝒛 − (�̃�(𝒄 + B) − 𝒃𝑠 − 𝜙(∑𝑗 2𝑗( 𝒇 𝑗 + �̃�𝒆′

𝑗
)))

20: ans ≔ (𝜏, 𝒚, 𝑠 , 𝑜1)
21: else if 𝑏 = 1 then
22: for 𝑗 ∈ 0, . . . , log(𝐵) do
23: �̃�′𝑗 ≔ 𝜋𝜏𝑗 (𝒆′𝑗)
24: ans ≔ ({�̃�′𝑗} 𝑗 , 𝑜2)
25:

ans−−→
26: if 𝑏 = 0 then
27: {𝜏𝑗} 𝑗 ← XOF(𝜏)
28: 𝑐1

?
= Hash(𝜏∥𝒚∥𝑜1)

29: �̃� ≔ 𝒚 + 𝛼(𝒄 + B) − 𝒃𝑠 − 𝜙(∑𝑗 2𝑗𝜋𝜏𝑗
−1(𝒈 𝑗))

30: �̃�
?∈ ℒ(𝒂)

31: else if 𝑏 = 1 then
32: 𝑐2

?
= Hash

(
{𝒈 𝑗 − 𝛼�̃�′𝑗} 𝑗 ∥{�̃�

′
𝑗} 𝑗 ∥𝑜2

)
33: for 𝑗 ∈ 0, . . . , log(𝐵) do

34: �̃�′𝑗
?∈ 𝔅𝑛𝑘
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If 𝛼 ≠ �̃� the adversary can continue in active mode and still try to guess the
second challenge. Consider the guess 𝑏 = 0.

Protocol 4.A.3 Unsoundness Adversary (𝛼 ∉ Γ1 and Γ2 ≔ {0})

12:
𝛼≠�̃�←−−−

13: for 𝑗 ∈ 1, . . . , log(𝐵) do
14: 𝒈 𝑗 ←r Z2𝑛𝑘

𝑞

15: 𝒈′0 ←r Z𝑛𝑘𝑞

16: 𝒈0 ≔ 𝜋𝜏0((𝛼 − �̃�)(𝒄 + 𝑩) + 𝜙( 𝒇 0 + �̃�𝒆′0 +
∑log(𝐵)
𝑗=1 2𝑗( 𝒇 𝑗 + �̃�𝒆′

𝑗
− 𝜋𝜏𝑗

−1(𝒈 𝑗)))∥𝒈′0)

17:
{𝒈 𝑗 } 𝑗
−−−→

18: 𝑏 ←r {0, 1}
If the guess was right it can again switch to passive mode and produce an accepting
conversation.
19:

𝑏=0←−−
20: 𝒚 ≔ 𝒛 − (�̃�(𝒄 + B) − 𝒃𝑠 − 𝜙(∑𝑗 2𝑗( 𝒇 𝑗 + �̃�𝒆′

𝑗
)))

21: ans ≔ (𝜏, 𝒚, 𝑠 , 𝑜1)
22:

ans−−→
23: {𝜏𝑗} 𝑗 ← XOF(𝜏)
24: 𝑐1

?
= Hash(𝜏∥𝒚∥𝑜1)

25: �̃� ≔ 𝒚 + 𝛼(𝒄 + B) − 𝒃𝑠 − 𝜙(∑𝑗 2𝑗𝜋𝜏𝑗
−1(𝒈 𝑗))

26: �̃�
?∈ ℒ(𝒂)

Alternatively they could also guess 𝑏 = 1.

Protocol 4.A.4 Unsoundness Adversary (𝛼 ∉ Γ1 and Γ2 ≔ {1})

12:
𝛼≠�̃�←−−−

13: for 𝑗 ∈ 0, . . . , log(𝐵) do
14: 𝒈 𝑗 ≔ 𝜋𝜏𝑗 ( 𝒇 𝑗 + 𝛼𝒆′

𝑗
)

15:
{𝒈 𝑗 } 𝑗
−−−→

16: 𝑏 ←r {0, 1}
And once again proceed producing an accepting conversation if the guess was
correct.
17:

𝑏=1←−−
18: for 𝑗 ∈ 0, . . . , log(𝐵) do
19: �̃�′𝑗 ≔ 𝜋𝜏𝑗 (𝒆′𝑗)
20: ans ≔ ({�̃�′𝑗} 𝑗 , 𝑜2)
21:

ans−−→
22: 𝑐2

?
= Hash

(
{𝒈 𝑗 − 𝛼�̃�′𝑗} 𝑗 ∥{�̃�

′
𝑗} 𝑗 ∥𝑜2

)
23: for 𝑗 ∈ 0, . . . , log(𝐵) do

24: �̃�′𝑗
?∈ 𝔅𝑛𝑘
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Notice both in situations described in Protocols 4.A.1 and 4.A.3 the adversary
can produce many different responses by just resampling the different uniformly
random elements, still preserving the properties of Γ1 and Γ2 respectively. The
opening protocol is therefore (1, 1)-special unsound with Ω

(
𝑞𝑛𝑘

)
responses per

round. Regarding Protocol 4.A.4 there are no many responses possible, but the
adversary could just always guess 𝑏 = 0 and use Protocol 4.A.3, as it is sufficient to
define a successful strategy.

It is more difficult to assess the security of the multiplicative relation protocol.
Recall that the (2, 3, 2)-special soundness is that of a 7-move protocol, but we have
alreadydiscussed that the transformationworks betterwith the 5-move interpretation.
Furthermore, in the 7-move second scenario an attack as the one proposed in [12]
would not be applicable, because it would not satisfy the with 𝑁 responses per round
property. The attack exploits the fact that by choosing different prover responses it
is possible to get different challenges for one round preserving the partial success
obtained in the previous rounds. As there is no response between 𝛽 and 𝛼 the
second would be deterministically determined by the first and the hash function.
For that matter, we first just prove that the 5-move interactive version is (1, 1)-special
unsound.

Protocol 4.A.5 Unsoundness Adversary mult. (Γ1 ≔ {(�̃�, �̃�)})
𝒜 𝒱

1: �̃�, �̃�←r Z𝑞
2: �̃�1 ≔ �̃�, �̃�2 ≔ �̃�, �̃�3 ≔ �̃�
3: 𝑚1 , 𝑚2 ←r 𝑅𝑞 , 𝑚3 ≔ 𝑚1 · 𝑚2
4: for ℎ ∈ 1, 2, 3 do
5: 𝜏ℎ ← {0, 1}8⌈𝜆/8⌉ , {𝜏ℎ 𝑗} 𝑗 ← XOF(𝜏ℎ)
6: { 𝒇 ℎ 𝑗} 𝑗 ←r Z2𝑛𝑘

𝑞

7: {𝒆′
ℎ 𝑗
} 𝑗 ←r 𝔅𝑛𝑘

8: 𝜇ℎ , 𝑠ℎ ←r 𝑅𝑞
9: 𝒛ℎ ≔ 𝒂(𝜇ℎ + �̃�ℎ𝑚ℎ)
10: 𝜇× , 𝜇+ ←r 𝑅𝑞
11: 𝑚× ≔ 𝜇1𝜇2 , 𝑚+ ≔ 𝜇1𝑚2 + 𝜇2𝑚1

12: 𝑜1 , 𝑜2 , 𝑜3 , 𝑜4 ←r {0, 1}8⌈𝜆/8⌉
13: 𝑐1 ← Hash({𝜏}ℎ ∥{𝒛ℎ − (�̃�ℎ(𝒄ℎ + B) − 𝒃𝑠ℎ − 𝜙(∑𝑗 2𝑗( 𝒇 ℎ 𝑗 + �̃�ℎ𝒆′ℎ 𝑗)))}ℎ ∥𝑜1)
14: 𝑐2 ← Hash(𝜇3∥𝜇×∥𝜇+∥𝑜2)
15: 𝑐3 ← Hash({𝜋𝜏ℎ 𝑗 ( 𝒇 ℎ 𝑗)}ℎ 𝑗 ∥{𝜋𝜏ℎ 𝑗 (𝒆′ℎ 𝑗)}ℎ 𝑗 ∥𝑜3)
16: 𝑐4 ← Hash(𝜇× + 𝑚×∥𝜇+ + 𝑚+∥𝑜4)
17:

𝑐1 ,𝑐2 ,𝑐3 ,𝑐4−−−−−−−→
18: 𝛼, 𝛽←r Z𝑞
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If the guess was correct then the adversary can turn into passive mode and keep
answering till the protocol finishes producing an accepting conversation.

Protocol 4.A.6 Unsoundness Adversary mult. (passive mode if (𝛼, 𝛽) = (�̃�, �̃�))

19:
(𝛼,𝛽)=(�̃�,�̃�)
←−−−−−−−−

20: 𝑜5 ←r {0, 1}8⌈𝜆/8⌉
21: 𝑐5 ← Hash(𝛽𝜇× + 𝛼𝛽𝜇+ + 𝛼2𝜇3∥𝑜5)
22: for ℎ ∈ 1, 2, 3 do
23: for 𝑗 ∈ 0, . . . , log(𝐵) do
24: 𝒈 ℎ 𝑗 ≔ 𝜋𝜏ℎ 𝑗 ( 𝒇 ℎ 𝑗 + 𝛾ℎ𝒆′ℎ 𝑗)

25:
𝑐5 ,{𝒈 ℎ 𝑗 }ℎ 𝑗
−−−−−−−→

26: 𝑏 ←r {0, 1}
27:

𝑏←−−
28: if 𝑏 = 0 then
29: 𝑡× ≔ 𝜇× + 𝑚× , 𝑡+ ≔ 𝜇+ + 𝑚+
30: for ℎ ∈ 1, 2, 3 do
31: 𝒚ℎ ≔ 𝒛ℎ − (�̃�ℎ(𝒄ℎ + B) − 𝒃𝑠ℎ − 𝜙(∑𝑗 2𝑗( 𝒇 ℎ 𝑗 + �̃�ℎ𝒆′ℎ 𝑗)))
32: ans ≔ ({𝜏ℎ}ℎ , {𝒚ℎ}ℎ , 𝑡× , 𝑡+ , {𝑠ℎ}ℎ , 𝑜1 , 𝑜4 , 𝑜5)
33: else if 𝑏 = 1 then
34: for ℎ ∈ 1, 2, 3 do
35: for 𝑗 ∈ 0, . . . , log(𝐵) do
36: �̃�′ℎ 𝑗 ≔ 𝜋𝜏𝑗 (𝒆′ℎ 𝑗)
37: ans ≔ ({�̃�′ℎ 𝑗}ℎ 𝑗 , 𝜇3 , 𝜇× , 𝜇+ , 𝑜2 , 𝑜3 , 𝑜5)
38:

ans−−→
39: 𝛾1 ≔ 𝛼, 𝛾2 ≔ 𝛼, 𝛾3 ≔ 𝛽
40: if 𝑏 = 0 then
41: for ℎ ∈ 1, 2, 3 do
42: {𝜏ℎ 𝑗} 𝑗 ← XOF(𝜏ℎ)
43: �̃�ℎ ≔ 𝒚ℎ + 𝛾ℎ(𝒄ℎ + B) − 𝒃𝑠ℎ − 𝜙(∑𝑗 2𝑗𝜋𝜏ℎ 𝑗

−1(𝒈 ℎ 𝑗))

44: �̃�ℎ
?∈ ℒ(𝒂): Let 𝑡ℎ ∈ 𝑅𝑞 s.t. �̃�ℎ = 𝒂𝑡ℎ

45: 𝑐1
?
= Hash({𝜏ℎ}ℎ ∥{𝒚ℎ}ℎ ∥𝑜1)

46: 𝑐4
?
= Hash(𝑡×∥𝑡+∥𝑜4)

47: 𝑐5
?
= Hash(𝛽𝑡× + 𝛼𝛽𝑡+ + 𝛼2𝑡3 − 𝛽𝑡1𝑡2∥𝑜5)

48: else if 𝑏 = 1 then
49: 𝑐2

?
= Hash(𝜇3∥𝜇×∥𝜇+∥𝑜2)

50: 𝑐3
?
= Hash({𝒈 ℎ 𝑗 − 𝛾ℎ �̃�

′
ℎ 𝑗}ℎ 𝑗 ∥{�̃�

′
ℎ 𝑗}ℎ 𝑗 ∥𝑜3)

51: 𝑐5
?
= Hash(𝛽𝜇× + 𝛼𝛽𝜇+ + 𝛼2𝜇3∥𝑜5)

52: for ℎ ∈ 1, 2, 3 do
53: for 𝑗 ∈ 0, . . . , log(𝐵) do

54: �̃�′ℎ 𝑗
?∈ 𝔅𝑛𝑘

If that is not the case then the prover can continue in active mode trying to guess
the second challenge.
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Protocol 4.A.7 Unsoundness Adversary mult. ((𝛼, 𝛽) ∉ Γ1 and Γ2 ≔ {0})

19:
(𝛼,𝛽)≠(�̃�,�̃�)
←−−−−−−−−

20: 𝛾1 ≔ 𝛼, 𝛾2 ≔ 𝛼, 𝛾3 ≔ 𝛽
21: 𝑡× ≔ 𝜇× + 𝑚× , 𝑡+ ≔ 𝜇+ + 𝑚+
22: 𝑜5 ←r {0, 1}8⌈𝜆/8⌉
23: 𝑐5 ← Hash(𝛽𝑡× + 𝛼𝛽𝑡+ + 𝛼2(𝜇3 + �̃�𝑚1𝑚2) − 𝛽(𝜇1 + �̃�𝑚1)(𝜇2 + �̃�𝑚2)∥𝑜5)
24: for ℎ ∈ 1, 2, 3 do
25: for 𝑗 ∈ 1, . . . , log(𝐵) do
26: 𝒈 ℎ 𝑗 ←r Z2𝑛𝑘

𝑞

27: 𝒈′
ℎ0 ←r Z𝑛𝑘𝑞

28: 𝒈 ℎ0 ≔𝜋𝜏ℎ0 ((𝛾ℎ − �̃�ℎ)(𝒄ℎ + 𝑩) + 𝜙( 𝒇 ℎ0 + �̃�ℎ𝒆
′
ℎ0 +

log(𝐵)∑
𝑗=1

2𝑗( 𝒇 ℎ 𝑗 + �̃�ℎ𝒆
′
ℎ 𝑗
− 𝜋−1

𝜏ℎ 𝑗 (𝒈 ℎ 𝑗)))∥𝒈
′
ℎ0)

29:
𝑐5 ,{𝒈 ℎ 𝑗 }ℎ 𝑗
−−−−−−−→

30: 𝑏 ←r {0, 1}

If the guess was right it can again switch to passive mode and produce an accepting
conversation.

31:
𝑏=0←−−

32: for ℎ ∈ 1, 2, 3 do
33: 𝒚ℎ ≔ 𝒛ℎ − (�̃�ℎ(𝒄ℎ + B) − 𝒃𝑠ℎ − 𝜙(∑𝑗 2𝑗( 𝒇 ℎ 𝑗 + �̃�ℎ𝒆′ℎ 𝑗)))
34: ans ≔ ({𝜏ℎ}ℎ , {𝒚ℎ}ℎ , 𝑡× , 𝑡+ , {𝑠ℎ}ℎ , 𝑜1 , 𝑜4 , 𝑜5)
35:

ans−−→
36: for ℎ ∈ 1, 2, 3 do
37: {𝜏ℎ 𝑗} 𝑗 ← XOF(𝜏ℎ)
38: �̃�ℎ ≔ 𝒚ℎ + 𝛾ℎ(𝒄ℎ + B) − 𝒃𝑠ℎ − 𝜙(∑𝑗 2𝑗𝜋𝜏ℎ 𝑗

−1(𝒈 ℎ 𝑗))

39: �̃�ℎ
?∈ ℒ(𝒂): Let 𝑡ℎ ∈ 𝑅𝑞 s.t. �̃�ℎ = 𝒂𝑡ℎ

40: 𝑐1
?
= Hash({𝜏ℎ}ℎ ∥{𝒚ℎ}ℎ ∥𝑜1)

41: 𝑐4
?
= Hash(𝑡×∥𝑡+∥𝑜4)

42: 𝑐5
?
= Hash(𝛽𝑡× + 𝛼𝛽𝑡+ + 𝛼2𝑡3 − 𝛽𝑡1𝑡2∥𝑜5)

Observe now it is possible to produce different answers (O(
2𝜆

)
many) just by

resampling the opening randomness of the commitment (it was not possible with
the attack to the opening or linear protocols). Then choosing Γ2 ≔ {0} we do have
sufficiently many responses per round.

Alternatively they could also guess 𝑏 = 1.
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Protocol 4.A.8 Unsoundness Adversary mult. ((𝛼, 𝛽) ∉ Γ1 and Γ2 ≔ {1})

19:
(𝛼,𝛽)≠(�̃�,�̃�)
←−−−−−−−−

20: 𝑜5 ←r {0, 1}8⌈𝜆/8⌉
21: 𝑐5 ← Hash(𝛽𝜇× + 𝛼𝛽𝜇+ + 𝛼2𝜇3∥𝑜5)
22: 𝛾1 ≔ 𝛼, 𝛾2 ≔ 𝛼, 𝛾3 ≔ 𝛽
23: for ℎ ∈ 1, 2, 3 do
24: for 𝑗 ∈ 0, . . . , log(𝐵) do
25: 𝒈 ℎ 𝑗 ≔ 𝜋𝜏ℎ 𝑗 ( 𝒇 ℎ 𝑗 + 𝛾ℎ𝒆′ℎ 𝑗)

26:
𝑐5 ,{𝒈 ℎ 𝑗 }ℎ 𝑗
−−−−−−−→

27: 𝑏 ←r {0, 1}

Andonce again proceed producing an accepting conversation if the guesswas correct.

28:
𝑏=1←−−

29: for ℎ ∈ 1, 2, 3 do
30: for 𝑗 ∈ 0, . . . , log(𝐵) do
31: �̃�′ℎ 𝑗 ≔ 𝜋𝜏ℎ 𝑗 (𝒆′ℎ 𝑗)
32: ans ≔ ({�̃�′ℎ 𝑗}ℎ 𝑗 , 𝜇3 , 𝜇× , 𝜇+ , 𝑜2 , 𝑜3 , 𝑜5)
33:

ans−−→
34: 𝛾1 ≔ 𝛼, 𝛾2 ≔ 𝛼, 𝛾3 ≔ 𝛽

35: 𝑐2
?
= Hash(𝜇3∥𝜇×∥𝜇+∥𝑜2)

36: 𝑐3
?
= Hash({𝒈 ℎ 𝑗 − 𝛾ℎ �̃�

′
ℎ 𝑗}ℎ 𝑗 ∥{�̃�

′
ℎ 𝑗}ℎ 𝑗 ∥𝑜3)

37: 𝑐5
?
= Hash(𝛽𝜇× + 𝛼𝛽𝜇+ + 𝛼2𝜇3∥𝑜5)

38: for ℎ ∈ 1, 2, 3 do
39: for 𝑗 ∈ 0, . . . , log(𝐵) do

40: �̃�′ℎ 𝑗
?∈ 𝔅𝑛𝑘

So far the proposed attackswork for arbitrary statements and the adversary needs
no additional secret information. The restriction obtained for the multiplicative
version would be looser than the previous one because 𝑙1/ | 𝒞1 | = 𝑞−2, and therefore
the adversary success probability would be smaller. Nevertheless, we can find yet
another attack with the previous success probability if the adversary only fakes part
of the proof.

Notice that the multiplicative protocol aims to prove two different facts, knowl-
edge of three valid openings to 𝑚1 , 𝑚2 , 𝑚3 and, additionally, a special relation
between the committed messages as 𝑚3 = 𝑚1 · 𝑚2. If the adversary does indeed
know a valid opening to the initial pair of commitments they then can only fake
the part related to the third commitment with a higher success probability, that is
again the probability of successfully attacking the opening protocol. That is because
for this particular scenario the protocol has (𝑞, 1)-out-of-(𝑞2 , 2)-special unsoundness
(which is by all means equivalent to the (1, 1)-out-of-(𝑞, 2)-special unsoundness).
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Protocol 4.A.9 Unsoundness Adv. mult. special case (Γ1 ≔ {(𝛼, �̃�)|𝛼 ∈ Z𝑞})
Let 𝑚1 , 𝑚2 ∈ 𝑅𝑞 and 𝒄3 ∈ 𝑅𝑘𝑞
𝑟1 , 𝑟2 ←r 𝑅𝑞 , 𝒆1 , 𝒆2 ←r

(
𝐷𝑛

𝜎,𝐵

) 𝑘
𝒄1 ≔ 𝒂𝑚1 + 𝒃𝑟1 + 𝒆1
𝒄2 ≔ 𝒂𝑚2 + 𝒃𝑟2 + 𝒆2

𝒜({𝒄ℎ}ℎ , 𝑚1 , 𝑚2 , 𝑟1 , 𝑟2 , 𝒆1 , 𝒆2) 𝒱({𝒄ℎ}ℎ)
1: �̃�←r Z𝑞
2: {𝒆′1𝑗} 𝑗 ← expand(𝒆1)
3: {𝒆′2𝑗} 𝑗 ← expand(𝒆2)
4: {𝒆′3𝑗} 𝑗 ←r 𝔅𝑛𝑘

5: for ℎ ∈ 1, 2, 3 do
6: 𝜏ℎ ← {0, 1}8⌈𝜆/8⌉ , {𝜏ℎ 𝑗} 𝑗 ← XOF(𝜏ℎ)
7: { 𝒇 ℎ 𝑗} 𝑗 ←r Z2𝑛𝑘

𝑞

8: 𝜇ℎ ←r 𝑅𝑞

9: 𝜌1 , 𝜌2 ←r 𝑅𝑞
10: 𝑠3 ←r 𝑅𝑞

11: 𝒛3 ≔ 𝒂(𝜇3 + �̃�𝑚1𝑚2)
12: 𝒚1 ≔ 𝒂𝜇1 + 𝒃𝜌1 + 𝜙(∑𝑗 2𝑗 𝒇 1𝑗)
13: 𝒚2 ≔ 𝒂𝜇2 + 𝒃𝜌2 + 𝜙(∑𝑗 2𝑗 𝒇 2𝑗)
14: 𝒚3 ≔ 𝒛3 − (�̃�(𝒄3 + B) − 𝒃𝑠3 − 𝜙(∑𝑗 2𝑗( 𝒇 3𝑗 + �̃�𝒆′3𝑗)))
15: 𝜇× , 𝜇+ ←r 𝑅𝑞
16: 𝑚× ≔ 𝜇1𝜇2 , 𝑚+ ≔ 𝜇1𝑚2 + 𝜇2𝑚1

17: 𝑜1 , 𝑜2 , 𝑜3 , 𝑜4 ←r {0, 1}8⌈𝜆/8⌉
18: 𝑐1 ← Hash({𝜏}ℎ ∥{𝒚ℎ}ℎ ∥𝑜1)
19: 𝑐2 ← Hash(𝜇3∥𝜇×∥𝜇+∥𝑜2)
20: 𝑐3 ← Hash({𝜋𝜏ℎ 𝑗 ( 𝒇 ℎ 𝑗)}ℎ 𝑗 ∥{𝜋𝜏ℎ 𝑗 (𝒆′ℎ 𝑗)}ℎ 𝑗 ∥𝑜3)
21: 𝑐4 ← Hash(𝜇× + 𝑚×∥𝜇+ + 𝑚+∥𝑜4)
22:

𝑐1 ,𝑐2 ,𝑐3 ,𝑐4−−−−−−−→
23: 𝛼, 𝛽←r Z𝑞

If the �̃� guesswas lucky then the adversary can turn to passivemode and correctly
respond till the end of the protocol.
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Protocol 4.A.10 Unsoundness Adv. mult. special case (passive mode if 𝛽 = �̃�)

24:
(𝛼,𝛽=�̃�)
←−−−−−

25: 𝑜5 ←r {0, 1}8⌈𝜆/8⌉
26: 𝑐5 ← Hash(𝛽𝜇× + 𝛼𝛽𝜇+ + 𝛼2𝜇3∥𝑜5)
27: 𝛾1 ≔ 𝛼, 𝛾2 ≔ 𝛼, 𝛾3 ≔ 𝛽
28: for ℎ ∈ 1, 2, 3 do
29: for 𝑗 ∈ 0, . . . , log(𝐵) do
30: 𝒈 ℎ 𝑗 ≔ 𝜋𝜏ℎ 𝑗 ( 𝒇 ℎ 𝑗 + 𝛾ℎ𝒆′ℎ 𝑗)

31:
𝑐5 ,{𝒈 ℎ 𝑗 }ℎ 𝑗
−−−−−−−→

32: 𝑏 ←r {0, 1}
33:

𝑏←−−
34: if 𝑏 = 0 then
35: 𝑡× ≔ 𝜇× + 𝑚× , 𝑡+ ≔ 𝜇+ + 𝑚+
36: 𝑠1 ≔ 𝜌1 + 𝛼𝑟1
37: 𝑠2 ≔ 𝜌2 + 𝛼𝑟2
38: ans ≔ ({𝜏ℎ}ℎ , {𝒚ℎ}ℎ , 𝑡× , 𝑡+ , {𝑠ℎ}ℎ , 𝑜1 , 𝑜4 , 𝑜5)
39: else if 𝑏 = 1 then
40: for ℎ ∈ 1, 2, 3 do
41: for 𝑗 ∈ 0, . . . , log(𝐵) do
42: �̃�′ℎ 𝑗 ≔ 𝜋𝜏𝑗 (𝒆′ℎ 𝑗)
43: ans ≔ ({�̃�′ℎ 𝑗}ℎ 𝑗 , 𝜇3 , 𝜇× , 𝜇+ , 𝑜2 , 𝑜3 , 𝑜5)
44:

ans−−→
45: 𝛾1 ≔ 𝛼, 𝛾2 ≔ 𝛼, 𝛾3 ≔ 𝛽
46: if 𝑏 = 0 then
47: for ℎ ∈ 1, 2, 3 do
48: {𝜏ℎ 𝑗} 𝑗 ← XOF(𝜏ℎ)
49: �̃�ℎ ≔ 𝒚ℎ + 𝛾ℎ(𝒄ℎ + B) − 𝒃𝑠ℎ − 𝜙(∑𝑗 2𝑗𝜋𝜏ℎ 𝑗

−1(𝒈 ℎ 𝑗))

50: �̃�ℎ
?∈ ℒ(𝒂): Let 𝑡ℎ ∈ 𝑅𝑞 s.t. �̃�ℎ = 𝒂𝑡ℎ

51: 𝑐1
?
= Hash({𝜏ℎ}ℎ ∥{𝒚ℎ}ℎ ∥𝑜1)

52: 𝑐4
?
= Hash(𝑡×∥𝑡+∥𝑜4)

53: 𝑐5
?
= Hash(𝛽𝑡× + 𝛼𝛽𝑡+ + 𝛼2𝑡3 − 𝛽𝑡1𝑡2∥𝑜5)

54: else if 𝑏 = 1 then
55: 𝑐2

?
= Hash(𝜇3∥𝜇×∥𝜇+∥𝑜2)

56: 𝑐3
?
= Hash({𝒈 ℎ 𝑗 − 𝛾ℎ �̃�

′
ℎ 𝑗}ℎ 𝑗 ∥{�̃�

′
ℎ 𝑗}ℎ 𝑗 ∥𝑜3)

57: 𝑐5
?
= Hash(𝛽𝜇× + 𝛼𝛽𝜇+ + 𝛼2𝜇3∥𝑜5)

58: for ℎ ∈ 1, 2, 3 do
59: for 𝑗 ∈ 0, . . . , log(𝐵) do

60: �̃�′ℎ 𝑗
?∈ 𝔅𝑛𝑘
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If the guess was unlucky the adversary can still try to guess the next challenge.

Protocol 4.A.11 Unsoundness Adv. mult. special case ((𝛼, 𝛽) ∉ Γ1 and Γ2 ≔ {0})

24:
(𝛼,𝛽≠�̃�)
←−−−−−

25: 𝛾1 ≔ 𝛼, 𝛾2 ≔ 𝛼, 𝛾3 ≔ 𝛽
26: 𝑡× ≔ 𝜇× + 𝑚× , 𝑡+ ≔ 𝜇+ + 𝑚+
27: 𝑜5 ←r {0, 1}8⌈𝜆/8⌉
28: 𝑐5 ← Hash(𝛽𝑡× + 𝛼𝛽𝑡+ + 𝛼2(𝜇3 + �̃�𝑚1𝑚2) − 𝛽(𝜇1 + 𝛼𝑚1)(𝜇2 + 𝛼𝑚2)∥𝑜5)
29: for ℎ ∈ 1, 2 do
30: for 𝑗 ∈ 0, . . . , log(𝐵) do
31: 𝒈 ℎ 𝑗 ≔ 𝜋𝜏ℎ 𝑗 ( 𝒇 ℎ 𝑗 + 𝛼𝒆′

ℎ 𝑗
)

32: for 𝑗 ∈ 1, . . . , log(𝐵) do
33: 𝒈3𝑗 ←r Z2𝑛𝑘

𝑞

34: 𝒈′30 ←r Z𝑛𝑘𝑞

35: 𝒈30 ≔𝜋𝜏30 ((𝛽 − �̃�)(𝒄3 + 𝑩) + 𝜙( 𝒇 30 + �̃�𝒆′30 +
log(𝐵)∑
𝑗=1

2𝑗( 𝒇 3𝑗 + �̃�𝒆′3𝑗 − 𝜋
−1
𝜏3𝑗 (𝒈3𝑗)))∥𝒈′30)

36:
𝑐5 ,{𝒈 ℎ 𝑗 }ℎ 𝑗
−−−−−−−→

37: 𝑏 ←r {0, 1}

If the guess was right it can again switch to passive mode and produce an accepting
conversation.

38:
𝑏=0←−−

39: 𝑠1 ≔ 𝜌1 + 𝛼𝑟1
40: 𝑠2 ≔ 𝜌2 + 𝛼𝑟2
41: 𝒚1 ≔ 𝒂𝜇1 + 𝒃𝜌1 + 𝜙(∑𝑗 2𝑗 𝒇 1𝑗)
42: 𝒚2 ≔ 𝒂𝜇2 + 𝒃𝜌2 + 𝜙(∑𝑗 2𝑗 𝒇 2𝑗)
43: 𝒚3 ≔ 𝒛3 − (�̃�3(𝒄3 + B) − 𝒃𝑠3 − 𝜙(∑𝑗 2𝑗( 𝒇 3𝑗 + �̃�𝒆′3𝑗)))
44: ans ≔ ({𝜏ℎ}ℎ , {𝒚ℎ}ℎ , 𝑡× , 𝑡+ , {𝑠ℎ}ℎ , 𝑜1 , 𝑜4 , 𝑜5)
45:

ans−−→
46: for ℎ ∈ 1, 2, 3 do
47: {𝜏ℎ 𝑗} 𝑗 ← XOF(𝜏ℎ)
48: �̃�ℎ ≔ 𝒚ℎ + 𝛾ℎ(𝒄ℎ + B) − 𝒃𝑠ℎ − 𝜙(∑𝑗 2𝑗𝜋𝜏ℎ 𝑗

−1(𝒈 ℎ 𝑗))

49: �̃�ℎ
?∈ ℒ(𝒂): Let 𝑡ℎ ∈ 𝑅𝑞 s.t. �̃�ℎ = 𝒂𝑡ℎ

50: 𝑐1
?
= Hash({𝜏ℎ}ℎ ∥{𝒚ℎ}ℎ ∥𝑜1)

51: 𝑐4
?
= Hash(𝑡×∥𝑡+∥𝑜4)

52: 𝑐5
?
= Hash(𝛽𝑡× + 𝛼𝛽𝑡+ + 𝛼2𝑡3 − 𝛽𝑡1𝑡2∥𝑜5)
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Protocol 4.A.12 Unsoundness Adv. mult. special case ((𝛼, 𝛽) ∉ Γ1 and Γ2 ≔ {1})

24:
(𝛼,𝛽)≠(�̃�,�̃�)
←−−−−−−−−

25: 𝑜5 ←r {0, 1}8⌈𝜆/8⌉
26: 𝑐5 ← Hash(𝛽𝜇× + 𝛼𝛽𝜇+ + 𝛼2𝜇3∥𝑜5)
27: 𝛾1 ≔ 𝛼, 𝛾2 ≔ 𝛼, 𝛾3 ≔ 𝛽
28: for ℎ ∈ 1, 2, 3 do
29: for 𝑗 ∈ 0, . . . , log(𝐵) do
30: 𝒈 ℎ 𝑗 ≔ 𝜋𝜏ℎ 𝑗 ( 𝒇 ℎ 𝑗 + 𝛾ℎ𝒆′ℎ 𝑗)

31:
𝑐5 ,{𝒈 ℎ 𝑗 }ℎ 𝑗
−−−−−−−→

32: 𝑏 ←r {0, 1}

Andonce again proceed producing an accepting conversation if the guesswas correct.

33:
𝑏=1←−−

34: for ℎ ∈ 1, 2, 3 do
35: for 𝑗 ∈ 0, . . . , log(𝐵) do
36: �̃�′ℎ 𝑗 ≔ 𝜋𝜏ℎ 𝑗 (𝒆′ℎ 𝑗)
37: ans ≔ ({�̃�′ℎ 𝑗}ℎ 𝑗 , 𝜇3 , 𝜇× , 𝜇+ , 𝑜2 , 𝑜3 , 𝑜5)
38:

ans−−→
39: 𝛾1 ≔ 𝛼, 𝛾2 ≔ 𝛼, 𝛾3 ≔ 𝛽

40: 𝑐2
?
= Hash(𝜇3∥𝜇×∥𝜇+∥𝑜2)

41: 𝑐3
?
= Hash({𝒈 ℎ 𝑗 − 𝛾ℎ �̃�

′
ℎ 𝑗}ℎ 𝑗 ∥{�̃�

′
ℎ 𝑗}ℎ 𝑗 ∥𝑜3)

42: 𝑐5
?
= Hash(𝛽𝜇× + 𝛼𝛽𝜇+ + 𝛼2𝜇3∥𝑜5)

43: for ℎ ∈ 1, 2, 3 do
44: for 𝑗 ∈ 0, . . . , log(𝐵) do

45: �̃�′ℎ 𝑗
?∈ 𝔅𝑛𝑘

Observe that the analysis on the success probability only depends on 𝑙1/ | 𝒞1 | and
𝑙2/ | 𝒞2 |, and these two are equal for a (𝑞, 1)-out-of-(𝑞2 , 2)-special unsoundness attack
as they were for a (1, 1)-out-of-(𝑞, 2)-special unsoundness attack, so we get again the
same condition for the number of repetitions.
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4.B Script for Finding Parameters

The prototype implementation of the commitment scheme and the companion
NIZKPoKs publicly available in [90] contains several thousand lines of code. We
have developed it, to the best of our knowledge, trying to write code as readable
and well-documented as possible. Provided that most of the tasks of the linear
and multiplicative protocols are shared with the opening proof we have structured
everything following a modular design, so each small computation is enclosed in its
own function that can be later reused.

Nevertheless, a detailed description of each of the functions would be overly
extensive to include it in this dissertation. On the contrary, the optimal parameter
search script is succinct enough to meticulously describe it here.

The following lines of code, Appendix 4.B, are the contents of the sagemath
script from the generate_params.sage file in the GitHub repository [90]. Though
lines 1 − 7 the required libraries (as the Lattice Estimator [8]) are imported, and a
binary logarithm function with sufficient precision is defined using sage’s internal
functions.

From lines 10 − 25 the script verifies that the input parameters 𝑛, 𝑞 and 𝑑

introduced by the user when calling the script satisfy the necessary conditions. That
is, 𝑛 should be a power of 2, 𝑞 has to be a prime number, 𝑑 should be another power
of 2 smaller or equal than 𝑛, and finally we should have 𝑞 ≡ 2𝑑 + 1 (mod 4𝑑). If any
of these conditions fails then the script aborts showing a descriptive error message.

Then, from lines 28 − 40 auxiliary functions as vecBoundedPrToBoundedPr,
sigmaFromB or bitsec are defined, following the descriptions from Section 1.4.

Following this, in lines 65−101, we just implement the functions bestK, bestSigma
and bestB, as defined in Section 4.5. The other two remaining functions bestDeltaOL
and bestDeltaM directly compute deltaOLinitialCandidate and deltaMinitialCandidate as
defined in Section 4.5 and increases them one by one until they satisfy eq. (4.4).

Finally, following the procedure defined in Section 4.5, a full secure set of
parameters (𝜆, 𝑛, 𝑞, 𝑑, 𝑘, 𝜎, 𝐵, 𝛿𝑂𝐿 , 𝛿𝑀) is computed. These values are printed to the
console and saved to a file.

The only interesting trick that we use is to define several security levels from 0
to 2 for the bitsec auxiliary function. In level 0 only the most basic attacks against
the LWE problem are considered, we then include estimations with more involved
attacks with level 1 and finally use all possible optimizations with level 2. With this
strategy we can only trust that the scheme is secure if it achieves 𝜆 bits of security
when bitsec is called with level 2. However, the lower levels help us to discard what
possible parameters are insecure without the need of the computationally heavy
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tests used by [8] when we want to consider optimized attacks. Only when it has
surpassed the test with one level we continue to the following, achieving a great
speed-up in the parameter computation process.

Listing 4.1 Optimal parameter search script

1 from l a t t i c eE s t ima t o r . es t imator import * # t o e s t i m a t e t h e
RLWE ha rdn e s s

2 import csv # t o w r i t e t h e p a r a m e t e r s i n t o a c sv f i l e
3 import mi l l e r_ rab in # t o c h e c k i f an i n t e g e r i s pr ime
4 from sage . func t ions . log import logb # t o compute b i n a r y

l o g a r i t h m s o f l a r g e i n t e g e r s
5
6 def log2 ( x ) :
7 return numerical_approx ( logb ( x , 2 ) )
8
9

10 # INPUT PARAMETERS TESTS
11 i f not ( n and ( not ( n & (n − 1) ) ) ) :
12 print ( "n␣=␣ { 0 : d } ␣ i s ␣not␣a␣power␣ of ␣2 " . format ( n ) )
13 return
14
15 i f not mi l l e r_ rab in . mi l l e r_ rab in ( in t ( q ) ) :
16 print ( "q␣=␣ { 0 : d } ␣ i s ␣not␣a␣prime␣number " . format ( q ) )
17 return
18
19 i f not ( ( d and ( not (d & (d − 1) ) ) ) and n>=d and d>1) :
20 print ( "d␣=␣ { 0 : d } ␣ i s ␣not␣a␣power␣ of ␣2␣such␣ tha t ␣n␣>=␣d␣>␣

1 " . format (d ) )
21 return
22
23 i f ( q − (2*d+1) ) %(4*d) :
24 print ( "q␣=␣ { 0 : d } ␣ i s ␣not␣ equiva lent ␣ to ␣2d+1␣mod␣4d␣ for ␣d

= {1 :d } " . format ( q , d ) )
25 return
26
27 # AUXILIARY FUNCTIONS
28 def vecBoundedPrToBoundedPr ( b , d ) :
29 # ou tpu t s a such t h a t some ev en t happens a t l e a s t once
30 # in d samp l e s wi th a p r o b a b i l i t y o f a t most 2^−b
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31 # i f t h e p r o b a b i l i t y o f a s i n g l e sample i s a t most 2^−a
32 return b + log2 (d )
33
34 def sigmaFromB ( a , B ) :
35 # ou tpu t s s igma such t h a t a sample from D_sigma
36 # has a b s o l u t e v a l u e g r e a t e r than B
37 # with a p r o b a b i l i t y l ower or e q u a l t o 2^−a
38 return B*math . sq r t ( log2 (math . e ) / (2* ( a+1) ) )
39
40 def b i t s e c ( params , es t imateLevel =1) :
41 # e s t i m a t e s t h e h a r dn e s s o f a RLWE prob l em
42 i f es t imateLevel == 0 :
43 t ry : x = LWE. primal_usvp ( params )
44 except : x = { ’ rop ’ : f l o a t ( ’ i n f ’ ) }
45 t ry : y = LWE. dual ( params )
46 except : y = { ’ rop ’ : f l o a t ( ’ i n f ’ ) }
47 i f math . i s i n f (min ( x [ ’ rop ’ ] , y [ ’ rop ’ ] ) ) :
48 return 0
49 b i t s = log2 (min ( x [ ’ rop ’ ] , y [ ’ rop ’ ] ) )
50 e l i f es t imateLevel == 1 :
51 t ry : x = LWE. primal_usvp ( params )
52 except : x = { ’ rop ’ : f l o a t ( ’ i n f ’ ) }
53 t ry : y = LWE. dual_hybrid ( params , mitm_optimization=

True )
54 except : y = { ’ rop ’ : f l o a t ( ’ i n f ’ ) }
55 t ry : z = LWE. primal_bdd ( params , red_shape_model=" gsa

" )
56 except : z = { ’ rop ’ : f l o a t ( ’ i n f ’ ) }
57 i f math . i s i n f (min ( x [ ’ rop ’ ] , y [ ’ rop ’ ] , z [ ’ rop ’ ] ) ) :
58 return 0
59 b i t s = log2 (min ( x [ ’ rop ’ ] , y [ ’ rop ’ ] , z [ ’ rop ’ ] ) )
60 e lse :
61 t ry : x = LWE. es t imate ( params )
62 except : x = { ’ Error ’ : { ’ rop ’ : f l o a t ( ’ i n f ’ ) } }
63 i f math . i s i n f (min ( [ x [ y ] [ ’ rop ’ ] for y in x ] ) ) :
64 return 0
65 b i t s = log2 (min ( [ x [ y ] [ ’ rop ’ ] for y in x ] ) )
66 return b i t s
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67
68 # FUNCTIONS COMPUTING OPTIMAL PARAMETERS
69 def bestDeltaOL ( lamb , q ) :
70 de l t a = c e i l ( lamb/( logb (2*q/(q+1) , 2 ) ) )
71 while not ( ( 2 * lamb − 1) * log2 ( ( 2 * lamb − 1) /( de l t a *(1−1/q )

) ) + ( de l t a − 2* lamb + 1) * log2 ( q * ( del ta −2* lamb+1)/
de l t a ) >= 2* lamb ) :

72 de l t a += 1
73 return de l t a
74
75 def bestDeltaM ( lamb , q ) :
76 de l t a = c e i l ( lamb/( logb (2*q*q/(q*q+3*q−2) , 2 ) ) )
77 while not ( ( 2 * lamb − 1) * log2 ( ( 2 * lamb − 1) /( de l t a *(1−1/q )

) ) + ( de l t a − 2* lamb + 1) * log2 ( q * ( del ta −2* lamb+1)/
de l t a ) >= 2* lamb ) :

78 de l t a += 1
79 return de l t a
80
81 def bestK ( lamb , n , q , d , B ) :
82 return c e i l ( ( lamb+2*n* log2 ( q ) ) /(n* ( log2 ( q )/d − log2 (4*B

−1) ) ) )
83
84 def bestSigma ( lamb , n , q , d , B , k , es t imateLevel =1) :
85 sigma = sigmaFromB ( a=vecBoundedPrToBoundedPr ( b=lamb , d=k*

n ) ,B=(B−1) )
86 # we t r u n c a t e i t t o two d e c i m a l s
87 sigma = f l o a t ( f l o o r ( sigma *100) /100)
88 params = LWE. Parameters (n=n , q=q , Xs=ND.UniformMod(q ) ,Xe

=ND. DiscreteGaussian ( sigma ) ,m=k*n )
89 b i t s = b i t s e c ( params , es t imateLevel )
90 i f b i t s >= lamb : return sigma
91 e lse : return None
92
93 def bestB ( lamb , n , q , d , es t imateLevel =1 ,minB=2) :
94 B = minB
95 sigma = None
96 while ( sigma i s None) and (d < log2 ( q ) /( log2 (4*B−1) ) ) :
97 k = bestK ( lamb , n , q , d , B )



Chapter 4. Commitment and NIZKPoKs Implementation 219

98 sigma = bestSigma ( lamb , n , q , d , B , k , es t imateLevel )
99 i f sigma i s None :
100 B *= 2
101 i f not (d < log2 ( q ) /( log2 (4*B−1) ) ) :
102 return None
103 e lse :
104 return B
105
106 # COMPUTING THE PARAMETERS
107 B = 2
108 for l e v e l in range ( 3 ) :
109 B = bestB ( lamb , n , q , d , es t imateLevel= leve l , minB=B)
110 i f B i s None :
111 print ( "\nNot␣found " )
112 break
113
114 i f B i s not None :
115 k = bestK ( lamb , n , q , d , B )
116 sigma = bestSigma ( lamb , n , q , d , B , k , es t imateLevel =2)
117 deltaOL = bestDeltaOL ( lamb , q )
118 deltaM = bestDeltaM ( lamb , q )
119 print ( [ lamb , n , q , d , k , sigma , B , deltaOL , deltaM ] )
120 with open ( args . output , ’ a ’ ) as c s v f i l e :
121 csvwr i te r = csv . wr i t e r ( c s v f i l e )
122 csvwr i te r . writerow ( [ lamb , n , q , d , k , sigma , B , deltaOL ,

deltaM ] )
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4.C Additional Results

We have chosen to only present in Section 4.6 results from a selected subset of param-
eters, to keep the analysis concise. The mere existence of worse sets of parameters
has no special theoretical interest, neither practical consequences. Nevertheless, we
can still extract some insights that are relevant enough to devote this last appendix
to these additional parameters.

As we have already said, in order to get meaningful plots, we have only bench-
marked the algorithms with sets that produce multiplicative NIZKPoKs of at most
512 MB, because after some point the sizes blow up. Albeit that, we have also
computed secure sets of parameters for larger 𝑞’s. Given that the sizes only depend
on ⌈𝑞⌉ for these additional sets of parameters we have only tried one 2𝑏 < 𝑞 < 2𝑏+1

for each 𝑏 ∈ N (notice some restrictions are related to 𝑞 itself and not its bit-size, so
this is again not an exhaustive search).

We observe that, for a fixed 𝑛, we can find secure sets of parameters for many
moduli 𝑞, but only until some size, fromwhich no secure set of parameters satisfying
the desired constraints seems to exist. Provided that we compute the hardness of the
problem using the Lattice Estimator as a black box, we can only explain it pointing
out that the log of the optimum 𝐵 seems to grow faster than linearly in the log of 𝑞
to preserve the hardness of the underlying problem, up until a point where eq. (3.3)
cannot be honored. This is important because in theoretical proposals it is usual to
say that some condition will be fulfilled for sufficiently large modulus, but it can
be the case that, when considering all conditions at the same time, no secure set of
parameters with such large modulus exists satisfying all of them.

We show the sizes defined by all these additional parameters in Figure 4.C.1,
again truncating the y-axis because some sets are only secure with absurdly large 𝑘,
which would imply much greater sizes. These additional sets are only interesting
to see the general picture of the parameter space, not because any of these are of
practical interest.

We have not stopped searching for additional parameters at the first 𝑞 such that
no secure set existed, because we cannot ensure that no more secure sets exist for
even larger 𝑞’s. We have, however, discarded the existence of additional secure
sets of parameters that would yield to smaller commitment sizes than the ones
presented in Table 4.2. From eq. (3.2) we can see that 𝑘 ≥ 4, and this allows us to
define a lower bound on the sizes of the commitments that we would obtain before
explicitly computing them. We have tested different 𝑞 up to the point when this lower
bound (not tight at all) is already greater than the commitments we have obtained in
Table 4.2 and stopped there. No additional secure sets have been found. We have
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also used a similar approach to discard the existence of better sets of parameters
with 𝑛 = 256 (for which no secure set has been found either) or 𝑛 > 1024 (for which
secure sets can be found but with greater commitment sizes).

Besides these additional parameters regarding 𝑛 and 𝑞 we also explore here the
existing trade-off regarding parameter 𝑑. The product of polynomials computation
using the partial FFT multiplication algorithm is more efficient the higher the
𝑑, but we can see that secure sets of parameters only exists with 𝑑 = 4 (besides
the already explored 𝑑 = 2). The more restrictive conditions imply a greater 𝑘
that ends up producing not only even greater sizes but also slower times (see
Figure 4.C.2). Therefore, this trade-off is not actually useful for this scheme because
of the restrictions implied by the current design of the binding property.

To ease comparisons with other schemes we present in Table 4.C.1 a version of
Table 4.3 detailing the performance of the protocols in millions of processor cycles.

Figure 4.C.1 Additional commitment and NIZKPoKs sizes
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Figure 4.C.2 Commitment and NIZKPoKs sizes and times for 𝑑 = 4
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Table 4.C.1 Running time of the best parameters (in mill. of processor cycles)

𝑛 𝑞 com. ver. key. 𝒫𝑜𝑝 𝒱𝑜𝑝 𝒫𝑙𝑖𝑛 𝒱𝑙𝑖𝑛 𝒫𝑚𝑢𝑙𝑡 𝒱𝑚𝑢𝑙𝑡
512 16381 147.37 6.96 9.47 2368.29 1212.89 2817.98 3658.69 2580.35 3668.70
1024 1048573 168.67 8.86 19.12 2800.07 1525.85 2930.43 428.74 3988.30 342.63
1024 11863253 148.36 8.22 19.89 2499.80 1327.29 3254.21 3992.30 3094.35 4042.38
1024 16777213 148.51 8.25 19.36 2443.48 1318.44 3000.48 3966.21 2886.83 3980.50
1024 67108837 148.04 8.47 19.10 2587.04 1474.27 3564.68 423.43 3347.62 247.97
1024 1073741789 131.37 10.55 25.29 2386.08 1393.49 2868.73 3982.53 2734.25 4098.82
1024 1276901389 132.52 11.38 27.13 2492.12 1386.63 3199.94 3852.37 3102.74 3286.20
1024 1518500213 132.37 11.36 27.24 2457.95 1386.97 3053.65 3870.64 3002.06 3243.41
1024 1805811253 133.07 11.37 26.91 2439.11 1384.01 3016.04 3868.50 2903.86 3374.66
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CRT Chinese Remainder Theorem. 88, 94–98, 101, 102, 104, 106

CSPRNG Cryptographically Secure Pseudorandom Number Generator. 21, 159, 184, 185

CVP Closest Vector Problem. 26, 29

DDH Decisional Diffie-Hellman. 4

DLog Discrete Logarithm. 4, 5, 18, 47

DZ Discrete Ziggurat. 187

FFT Fast Fourier Transform. 71, 73, 77, 78, 83, 92, 94, 100, 101, 106, 122, 155, 189, 202,
221

FHE Fully Homomorphic Encryption. 24, 110

ISIS Inhomogeneous Short Integer Solution. 37, 47, 50, 113, 115, 117, 128

LLL Lenstra-Lenstra-Lovasz. 32

LPN Learning Parity with Noise. 116, 151

LWE Learning With Errors. 38–42, 44, 58, 112, 116, 215

MLWE Module Learning With Errors. 44, 58, 109, 203

NIZKPoK Non-Interactive Zero-Knowledge Proof of Knowledge. 20, 21, 72, 158, 159, 161,
166, 167, 184, 185, 189, 190, 193–196, 201, 203, 215, 220

NTT Number Theoretic Transformation. 77

PCIP Public-Coin Interactive Proof . 172

223



224 Acronyms

PPT Probabilistic Polynomial-Time. 7, 10, 13, 26, 46, 54, 58

QROM Quantum Random Oracle Model. 158, 167, 173–175

Ring-ISIS Ring Inhomogeneous Short Integer Solution. 43

Ring-SIS Ring Short Integer Solution. 43, 44

RLWE Ring Learning With Errors. 44–47, 58, 60, 64, 107–110, 117, 118, 120, 123, 124,
128, 151, 154, 159, 183, 191, 192, 194, 195, 199, 201, 203

ROM Random Oracle Model. 22, 112, 158, 167, 168, 174, 175, 184

RSA Rivest-Shamir-Adelman. 4, 6, 23

SD Statistical Distance. 61–63, 65, 66, 124

SDP Syndrome Decoding Problem. 50, 113, 128

SIS Short Integer Solution. 37, 113, 115

SVP Shortest Vector Problem. 26, 32, 37, 38, 44

XOF eXtendable Output Function. 22, 160, 161, 186, 188

ZKPoK Zero-Knowledge Proof of Knowledge. 18, 20, 22, 24, 47, 49, 50, 54, 55, 64, 72,
107–110, 116, 118, 126, 127, 129, 132, 138, 152, 153, 157, 166, 184, 200–203



Bibliography

[1] Carlos Aguilar Melchor, Slim Bettaieb, Philippe Gaborit, and Julien Schrek. A
code-based undeniable signature scheme. In Martĳn Stam, editor, 14th IMA
International Conference on Cryptography and Coding, volume 8308 of LNCS, pages
99–119, Oxford, UK, December 17–19, 2013. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-45239-0_7.

[2] Carlos Aguilar Melchor, Pierre-Louis Cayrel, Philippe Gaborit, and Fabien
Laguillaumie. A new efficient threshold ring signature scheme based on
coding theory. IEEE Transactions on Information Theory, 57(7):4833–4842, 2011.
doi:10.1109/TIT.2011.2145950.

[3] Carlos Aguilar Melchor, Philippe Gaborit, and Julien Schrek. A new zero-
knowledge code based identification scheme with reduced communication.
In 2011 IEEE Information Theory Workshop, pages 648–652, 2011. doi:10.1109/
ITW.2011.6089577.

[4] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract).
In 28th ACM STOC, pages 99–108, Philadephia, PA, USA, May 22–24, 1996.
ACM Press. doi:10.1145/237814.237838.

[5] Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized
reductions (extended abstract). In 30th ACM STOC, pages 10–19, Dallas, TX,
USA, May 23–26, 1998. ACM Press. doi:10.1145/276698.276705.

[6] Quentin Alamélou, Olivier Blazy, Stéphane Cauchie, and Philippe Gaborit. A
practical group signature scheme based on rank metric. In Sylvain Duquesne
and Svetla Petkova-Nikova, editors, Arithmetic of Finite Fields, pages 258–275,
Cham, 2016. Springer International Publishing. doi:10.1007/978-3-319-5
5227-9_18.

[7] Martin R. Albrecht and Amit Deo. Large modulus ring-LWE ≥ module-LWE.
In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I,

225

https://doi.org/10.1007/978-3-642-45239-0_7
https://doi.org/10.1109/TIT.2011.2145950
https://doi.org/10.1109/ITW.2011.6089577
https://doi.org/10.1109/ITW.2011.6089577
https://doi.org/10.1145/237814.237838
https://doi.org/10.1145/276698.276705
https://doi.org/10.1007/978-3-319-55227-9_18
https://doi.org/10.1007/978-3-319-55227-9_18


226 BIBLIOGRAPHY

volume 10624 of LNCS, pages 267–296, Hong Kong, China, December 3–7,
2017. Springer, Heidelberg, Germany. doi:10.1007/978-3-319-70694-8_10.

[8] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.
doi:10.1515/jmc-2015-0016.

[9] Richard Arratia and Louis Gordon. Tutorial on large deviations for the
binomial distribution. Bulletin of mathematical biology, 51(1):125–131, 1989.
doi:10.1007/BF02458840.

[10] Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed 𝛴-protocol
theory for lattices. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 549–579, Virtual Event, August 16–20,
2021. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-84245-1_19.

[11] ThomasAttema and Serge Fehr. Parallel repetition of (𝑘1 , . . . , 𝑘𝜇)-special-sound
multi-round interactive proofs. In Yevgeniy Dodis and Thomas Shrimpton,
editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 415–443, Santa
Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany. doi:
10.1007/978-3-031-15802-5_15.

[12] Thomas Attema, Serge Fehr, andMichael Klooß. Fiat-shamir transformation of
multi-round interactive proofs. Cryptology ePrint Archive, Report 2021/1377,
2021. https://eprint.iacr.org/2021/1377.

[13] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation
of multi-round interactive proofs. In Eike Kiltz and Vinod Vaikuntanathan,
editors, TCC 2022, Part I, volume 13747 of LNCS, pages 113–142, Chicago, IL,
USA, November 7–10, 2022. Springer, Heidelberg, Germany. doi:10.1007/97
8-3-031-22318-1_5.

[14] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical product
proofs for lattice commitments. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 470–499, Santa
Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany. doi:
10.1007/978-3-030-56880-1_17.

[15] Eric Bach and Jeffrey Outlaw Shallit. Algorithmic number theory. Foundations
of computing. MIT Press, Cambridge, MA, 1996.

[16] Shi Bai, Tancrède Lepoint, Adeline Roux-Langlois, Amin Sakzad, Damien
Stehlé, and Ron Steinfeld. Improved security proofs in lattice-based cryptogra-

https://doi.org/10.1007/978-3-319-70694-8_10
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1007/BF02458840
https://doi.org/10.1007/978-3-030-84245-1_19
https://doi.org/10.1007/978-3-031-15802-5_15
https://doi.org/10.1007/978-3-031-15802-5_15
https://eprint.iacr.org/2021/1377
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-030-56880-1_17


BIBLIOGRAPHY 227

phy: Using the Rényi divergence rather than the statistical distance. Journal of
Cryptology, 31(2):610–640, April 2018. doi:10.1007/s00145-017-9265-9.

[17] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert. More efficient commitments from structured lattice assumptions.
In Dario Catalano and Roberto De Prisco, editors, SCN 18, volume 11035 of
LNCS, pages 368–385, Amalfi, Italy, September 5–7, 2018. Springer, Heidelberg,
Germany. doi:10.1007/978-3-319-98113-0_20.

[18] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and
Shang-Yi Yang. Neon NTT: Faster dilithium, kyber, and saber on cortex-A72
and apple M1. IACR TCHES, 2022(1):221–244, 2022. doi:10.46586/tches.v
2022.i1.221-244.

[19] Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof
Pietrzak. Efficient zero-knowledge proofs for commitments from learning
with errors over rings. In Günther Pernul, Peter Y. A. Ryan, and Edgar R.
Weippl, editors, ESORICS 2015, Part I, volume 9326 of LNCS, pages 305–
325, Vienna, Austria, September 21–25, 2015. Springer, Heidelberg, Germany.
doi:10.1007/978-3-319-24174-6_16.

[20] Jon Louis Bentley, Dorothea Haken, and James B. Saxe. A general method for
solvingdivide-and-conquer recurrences. SIGACT News, 12(3):36–44, September
1980. doi:10.1145/1008861.1008865.

[21] ElwynR. Berlekamp, Robert J.McEliece, andHenk vanTilborg. On the inherent
intractability of certain coding problems (corresp.). IEEE Transactions on
Information Theory, 24(3):384–386, May 1978. doi:10.1109/TIT.1978.1055873.

[22] Daniel J Bernstein. Multidigit multiplication for mathematicians. https:
//cr.yp.to/papers/m3.pdf.

[23] Slim Bettaieb and Julien Schrek. Improved lattice-based threshold ring sig-
nature scheme. In Philippe Gaborit, editor, Post-Quantum Cryptography - 5th
International Workshop, PQCrypto 2013, pages 34–51, Limoges, France, June 4–7,
2013. Springer, Heidelberg, Germany. doi:10.1007/978-3-642-38616-9_3.

[24] Ward Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy signature
schemes. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part III, volume 12107 of LNCS, pages 183–211, Zagreb, Croatia, May 10–14,
2020. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-45727-3_7.

https://doi.org/10.1007/s00145-017-9265-9
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.46586/tches.v2022.i1.221-244
https://doi.org/10.46586/tches.v2022.i1.221-244
https://doi.org/10.1007/978-3-319-24174-6_16
https://doi.org/10.1145/1008861.1008865
https://doi.org/10.1109/TIT.1978.1055873
https://cr.yp.to/papers/m3.pdf
https://cr.yp.to/papers/m3.pdf
https://doi.org/10.1007/978-3-642-38616-9_3
https://doi.org/10.1007/978-3-030-45727-3_7


228 BIBLIOGRAPHY

[25] Olivier Blazy, Philippe Gaborit, and Dang Truong Mac. A correction to a
code-based blind signature scheme. In Antonia Wachter-Zeh, Hannes Bartz,
and Gianluigi Liva, editors, Code-Based Cryptography, pages 84–94, Cham, 2022.
Springer International Publishing. doi:10.1007/978-3-030-98365-9_5.

[26] Dan Boneh. The decision Diffie-Hellman problem. In Third Algorithmic
Number Theory Symposium (ANTS), volume 1423 of LNCS. Springer, Heidelberg,
Germany, 1998. Invited paper. doi:10.1007/BFb0054851.

[27] Dan Boneh, Glenn Durfee, and Yair Frankel. An attack on RSA given a
small fraction of the private key bits. In Kazuo Ohta and Dingyi Pei, editors,
ASIACRYPT’98, volume 1514 of LNCS, pages 25–34, Beĳing, China, October 18–
22, 1998. Springer, Heidelberg, Germany. doi:10.1007/3-540-49649-1_3.

[28] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor
Seiler. A non-PCP approach to succinct quantum-safe zero-knowledge. In
Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 441–469, Santa Barbara, CA, USA, August 17–21,
2020. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-56880-1_16.

[29] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic tech-
niques for short(er) exact lattice-based zero-knowledge proofs. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692
of LNCS, pages 176–202, Santa Barbara, CA, USA, August 18–22, 2019. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-26948-7_7.

[30] Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner.
Efficient post-quantum SNARKs for RSIS and RLWE and their applications
to privacy. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum
Cryptography - 11th International Conference, PQCrypto 2020, pages 247–267,
Paris, France, April 15–17, 2020. Springer, Heidelberg, Germany. doi:10.100
7/978-3-030-44223-1_14.

[31] Pedro Branco and Paulo Mateus. A code-based linkable ring signature scheme.
In Joonsang Baek, Willy Susilo, and Jongkil Kim, editors, ProvSec 2018, volume
11192 of LNCS, pages 203–219, Jeju, South Korea, October 25–28, 2018. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-01446-9_12.

[32] Johannes Buchmann, Daniel Cabarcas, Florian Göpfert, Andreas Hülsing, and
Patrick Weiden. Discrete ziggurat: A time-memory trade-off for sampling
from a Gaussian distribution over the integers. In Tanja Lange, Kristin Lauter,
and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS, pages 402–417,

https://doi.org/10.1007/978-3-030-98365-9_5
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/3-540-49649-1_3
https://doi.org/10.1007/978-3-030-56880-1_16
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-44223-1_14
https://doi.org/10.1007/978-3-030-44223-1_14
https://doi.org/10.1007/978-3-030-01446-9_12


BIBLIOGRAPHY 229

Burnaby, BC, Canada, August 14–16, 2014. Springer, Heidelberg, Germany.
doi:10.1007/978-3-662-43414-7_20.

[33] Pierre-Louis Cayrel and Sidi Mohamed El Yousfi Alaoui. Dual construction of
stern-based signature scheme. Zenodo, March 2010. doi:10.5281/zenodo.1
072826.

[34] Pierre-Louis Cayrel, Sidi Mohamed El Yousfi Alaoui, Gerhrad Hoffmann,
and Pascal Véron. An improved threshold ring signature scheme based
on error correcting codes. In Ferruh Özbudak and Francisco Rodríguez-
Henríquez, editors, Arithmetic of Finite Fields, pages 45–63, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg. doi:10.1007/978-3-642-31662-3_4.

[35] Pierre-Louis Cayrel, Philippe Gaborit, and Emmanuel Prouff. Secure imple-
mentation of the stern authentication and signature schemes for low-resource
devices. In Gilles Grimaud and François-Xavier Standaert, editors, Smart Card
Research and Advanced Applications, pages 191–205, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. doi:10.1007/978-3-540-85893-5_14.

[36] Pierre-Louis Cayrel, Richard Lindner, Markus Rückert, and Rosemberg Silva.
Improved zero-knowledge identification with lattices. In Swee-Huay Heng
and Kaoru Kurosawa, editors, ProvSec 2010, volume 6402 of LNCS, pages
1–17, Malacca, Malaysia, October 13–15, 2010. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-16280-0_1.

[37] Pierre-Louis Cayrel, Richard Lindner, Markus Rückert, and Rosemberg Silva.
A lattice-based threshold ring signature scheme. In Michel Abdalla and Paulo
S. L. M. Barreto, editors, LATINCRYPT 2010, volume 6212 of LNCS, pages
255–272, Puebla, Mexico, August 8–11, 2010. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-14712-8_16.

[38] Pierre-Louis Cayrel, Pascal Véron, and Sidi Mohamed El Yousfi Alaoui. A
zero-knowledge identification scheme based on the q-ary syndrome decoding
problem. In Alex Biryukov, Guang Gong, and Douglas R. Stinson, editors,
SAC 2010, volume 6544 of LNCS, pages 171–186, Waterloo, Ontario, Canada,
August 12–13, 2011. Springer, Heidelberg, Germany. doi:10.1007/978-3-6
42-19574-7_12.

[39] Ming-Shing Chen, Andreas Hülsing, Joost Rĳneveld, Simona Samardjiska, and
Peter Schwabe. From 5-pass MQ-based identification to MQ-based signatures.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II,

https://doi.org/10.1007/978-3-662-43414-7_20
https://doi.org/10.5281/zenodo.1072826
https://doi.org/10.5281/zenodo.1072826
https://doi.org/10.1007/978-3-642-31662-3_4
https://doi.org/10.1007/978-3-540-85893-5_14
https://doi.org/10.1007/978-3-642-16280-0_1
https://doi.org/10.1007/978-3-642-14712-8_16
https://doi.org/10.1007/978-3-642-19574-7_12
https://doi.org/10.1007/978-3-642-19574-7_12


230 BIBLIOGRAPHY

volume 10032 of LNCS, pages 135–165, Hanoi, Vietnam, December 4–8, 2016.
Springer, Heidelberg, Germany. doi:10.1007/978-3-662-53890-6_5.

[40] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication for NTT-
unfriendly rings. IACR TCHES, 2021(2):159–188, 2021. doi:10.46586/tches
.v2021.i2.159-188.

[41] Simon Cogliani, Houda Ferradi, Rémi Géraud, and David Naccache. Thrifty
zero-knowledge. In Feng Bao, Liqun Chen, Robert H. Deng, and GuojunWang,
editors, Information Security Practice and Experience, pages 344–353, Cham, 2016.
Springer International Publishing. doi:10.1007/978-3-319-49151-6_24.

[42] James W. Cooley and JohnW. Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of computation, 19(90):297–301, 1965.
doi:10.2307/2003354.

[43] Don Coppersmith. Finding a small root of a univariate modular equation.
In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages
155–165, Zaragoza, Spain, May 12–16, 1996. Springer, Heidelberg, Germany.
doi:10.1007/3-540-68339-9_14.

[44] Whitfield Diffie andMartin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976. doi:10.1109/TIT.19
76.1055638.

[45] Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-reprogram
technique 2.0: Multi-round Fiat-Shamir and more. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of
LNCS, pages 602–631, Santa Barbara, CA, USA, August 17–21, 2020. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-56877-1_21.

[46] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security
of the Fiat-Shamir transformation in the quantum random-oracle model. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II,
volume 11693 of LNCS, pages 356–383, Santa Barbara, CA, USA, August 18–22,
2019. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-26951-7_13.

[47] Ali El Kaafarani and Shuichi Katsumata. Attribute-based signatures for
unbounded circuits in the ROM and efficient instantiations from lattices. In
Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770
of LNCS, pages 89–119, Rio de Janeiro, Brazil, March 25–29, 2018. Springer,
Heidelberg, Germany. doi:10.1007/978-3-319-76581-5_4.

https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.46586/tches.v2021.i2.159-188
https://doi.org/10.46586/tches.v2021.i2.159-188
https://doi.org/10.1007/978-3-319-49151-6_24
https://doi.org/10.2307/2003354
https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-26951-7_13
https://doi.org/10.1007/978-3-319-76581-5_4


BIBLIOGRAPHY 231

[48] Sidi Mohamed El Yousfi Alaoui, Pierre-Louis Cayrel, Rachid El Bansarkhani,
and Gerhard Hoffmann. Code-based identification and signature schemes
in software. In Alfredo Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar
Weippl, and Lida Xu, editors, Security Engineering and Intelligence Informatics,
pages 122–136, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-40588-4_9.

[49] Sidi Mohamed El Yousfi Alaoui, Pierre-Louis Cayrel, andMeziani Mohammed.
Improved identity-based identification and signature schemes using quasi-
dyadic goppa codes. In Tai-hoon Kim, Hojjat Adeli, Rosslin John Robles, and
Maricel Balitanas, editors, Information Security and Assurance, pages 146–155,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. doi:10.1007/978-3-6
42-23141-4_14.

[50] Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical exact
proofs from lattices: New techniques to exploit fully-splitting rings. In Shiho
Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492
of LNCS, pages 259–288, Daejeon, South Korea, December 7–11, 2020. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-64834-3_9.

[51] Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. Lattice-
based zero-knowledge proofs: New techniques for shorter and faster con-
structions and applications. In Alexandra Boldyreva and Daniele Miccian-
cio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 115–146,
Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-26948-7_5.

[52] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194, Santa Barbara, CA, USA,
August 1987. Springer, Heidelberg, Germany. doi:10.1007/3-540-47721-7
_12.

[53] Charles M. Fiduccia. Polynomial evaluation via the division algorithm. the fast
fourier transform revisited. In Proceedings of the Fourth Annual ACM Symposium
on Theory of Computing, STOC ’72, pages 88–93, New York, NY, USA, 1972.
Association for Computing Machinery. doi:10.1145/800152.804900.

[54] Ulrich Fincke and Michael Pohst. Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis. Mathematics of
computation, 44(170):463–471, 1985. doi:10.2307/2007966.

https://doi.org/10.1007/978-3-642-40588-4_9
https://doi.org/10.1007/978-3-642-40588-4_9
https://doi.org/10.1007/978-3-642-23141-4_14
https://doi.org/10.1007/978-3-642-23141-4_14
https://doi.org/10.1007/978-3-030-64834-3_9
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/800152.804900
https://doi.org/10.2307/2007966


232 BIBLIOGRAPHY

[55] Philippe Gaborit and Marc Girault. Lightweight code-based identification and
signature. In 2007 IEEE International Symposium on Information Theory, pages
191–195, June 2007. doi:10.1109/ISIT.2007.4557225.

[56] Cyril J. Gadd and R. Campbell Thompson. A middle-babylonian chemical
text. IRAQ, 3(1):87–96, 1936. doi:10.2307/4241587.

[57] Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within
Mordell’s inequality. In Richard E. Ladner and Cynthia Dwork, editors, 40th
ACM STOC, pages 207–216, Victoria, BC, Canada, May 17–20, 2008. ACM
Press. doi:10.1145/1374376.1374408.

[58] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration
using extreme pruning. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 257–278, French Riviera, May 30 – June 3, 2010. Springer,
Heidelberg, Germany. doi:10.1007/978-3-642-13190-5_13.

[59] Nicholas Genise, Daniele Micciancio, Chris Peikert, and Michael Walter.
Improved discrete gaussian and subgaussian analysis for lattice cryptography.
In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas,
editors, PKC 2020, Part I, volume 12110 of LNCS, pages 623–651, Edinburgh,
UK, May 4–7, 2020. Springer, Heidelberg, Germany. doi:10.1007/978-3-030
-45374-9_21.

[60] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 75–92, Santa Barbara, CA, USA, August 18–22, 2013.
Springer, Heidelberg, Germany. doi:10.1007/978-3-642-40041-4_5.

[61] WangHongbin and Ren Yan. Code-based designated verifier signature scheme.
In 2013 Fourth International Conference on Emerging Intelligent Data and Web
Technologies, pages 550–554, 2013. doi:10.1109/EIDWT.2013.99.

[62] Rong Hu, Kirill Morozov, and Tsuyoshi Takagi. On zero-knowledge identifica-
tion based on q-ary syndrome decoding. In 2013 Eighth Asia Joint Conference
on Information Security, pages 12–18, 2013. doi:10.1109/ASIAJCIS.2013.10.

[63] Rong Hu, Kirill Morozov, and Tsuyoshi Takagi. Proof of plaintext knowledge
for code-based public-key encryption revisited. In Kefei Chen, Qi Xie, Weidong
Qiu, Ninghui Li, and Wen-Guey Tzeng, editors, ASIACCS 13, pages 535–540,
Hangzhou, China, May 8–10, 2013. ACM Press. doi:10.1145/2484313.2484
385.

https://doi.org/10.1109/ISIT.2007.4557225
https://doi.org/10.2307/4241587
https://doi.org/10.1145/1374376.1374408
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-030-45374-9_21
https://doi.org/10.1007/978-3-030-45374-9_21
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1109/EIDWT.2013.99
https://doi.org/10.1109/ASIAJCIS.2013.10
https://doi.org/10.1145/2484313.2484385
https://doi.org/10.1145/2484313.2484385


BIBLIOGRAPHY 233

[64] Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Com-
mitments and efficient zero-knowledge proofs from learning parity with
noise. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume
7658 of LNCS, pages 663–680, Beĳing, China, December 2–6, 2012. Springer,
Heidelberg, Germany. doi:10.1007/978-3-642-34961-4_40.

[65] Daniel Kales and Greg Zaverucha. An attack on some signature schemes
constructed from five-pass identification schemes. In Stephan Krenn, Haya
Shulman, and Serge Vaudenay, editors, CANS 20, volume 12579 of LNCS,
pages 3–22, Vienna, Austria, December 14–16, 2020. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-65411-5_1.

[66] Ravi Kannan. Improved algorithms for integer programming and related
lattice problems. In 15th ACM STOC, pages 193–206, Boston, MA, USA,
April 25–27, 1983. ACM Press. doi:10.1145/800061.808749.

[67] Anatolii Karatsuba. Multiplication of multidigit numbers on automata. In
Soviet physics doklady, volume 7, pages 595–596, 1963.

[68] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure
identification schemes based on the worst-case hardness of lattice problems. In
Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 372–389,
Melbourne, Australia, December 7–11, 2008. Springer, Heidelberg, Germany.
doi:10.1007/978-3-540-89255-7_23.

[69] Donald E. Knuth and Andrew Chi-Chih Yao. Algorithms and Complexity: New
Directions and Recent Results, chapter “The complexity of nonuniform random
number generation”. Academic Press, Orlando, USA, 1976.

[70] Veronika Kuchta, Amin Sakzad, Ron Steinfeld, and Joseph K. Liu. Lattice-
based zero-knowledge arguments for additive and multiplicative relations.
Designs, Codes, and Cryptography, 89(5):925–963, 2021. doi:10.1007/s10623-0
21-00851-1.

[71] Adarsh Kumar, Carlo Ottaviani, Sukhpal Singh Gill, and Rajkumar Buyya.
Securing the future internet of things with post-quantum cryptography. SE-
CURITY AND PRIVACY, 5(2):e200, 2022. doi:10.1002/spy2.200.

[72] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More efficient
multilinear maps from ideal lattices. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 239–256,
Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-55220-5_14.

https://doi.org/10.1007/978-3-642-34961-4_40
https://doi.org/10.1007/978-3-030-65411-5_1
https://doi.org/10.1145/800061.808749
https://doi.org/10.1007/978-3-540-89255-7_23
https://doi.org/10.1007/s10623-021-00851-1
https://doi.org/10.1007/s10623-021-00851-1
https://doi.org/10.1002/spy2.200
https://doi.org/10.1007/978-3-642-55220-5_14


234 BIBLIOGRAPHY

[73] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261(4):515–534,
1982. doi:10.1007/BF01457454.

[74] Benoît Libert, SanLing, KhoaNguyen, andHuaxiongWang. Lattice-based zero-
knowledge arguments for integer relations. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
700–732, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg,
Germany. doi:10.1007/978-3-319-96881-0_24.

[75] Benoît Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong
Wang. Zero-knowledge arguments for matrix-vector relations and lattice-
based group encryption. Theoretical Computer Science, 759:72 – 97, 2019.
doi:10.1016/j.tcs.2019.01.003.

[76] San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved
zero-knowledge proofs of knowledge for the ISIS problem, and applications.
In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778
of LNCS, pages 107–124, Nara, Japan, February 26 – March 1, 2013. Springer,
Heidelberg, Germany. doi:10.1007/978-3-642-36362-7_8.

[77] Vadim Lyubashevsky. Lattice signatures without trapdoors. Cryptology ePrint
Archive, Report 2011/537, 2011. https://eprint.iacr.org/2011/537.

[78] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 738–755, Cambridge, UK, April 15–19, 2012. Springer,
Heidelberg, Germany. doi:10.1007/978-3-642-29011-4_43.

[79] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen.
SWIFFT: Amodest proposal for FFT hashing. In KaisaNyberg, editor, FSE 2008,
volume 5086 of LNCS, pages 54–72, Lausanne, Switzerland, February 10–13,
2008. Springer, Heidelberg, Germany. doi:10.1007/978-3-540-71039-4_4.

[80] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-
based zero-knowledge proofs and applications: Shorter, simpler, andmore gen-
eral. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II,
volume 13508 of LNCS, pages 71–101, Santa Barbara, CA, USA, August 15–18,
2022. Springer, Heidelberg, Germany. doi:10.1007/978-3-031-15979-4_3.

[81] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
lattice-based zero-knowledge proofs for integer relations. In Jay Ligatti,

https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/978-3-319-96881-0_24
https://doi.org/10.1016/j.tcs.2019.01.003
https://doi.org/10.1007/978-3-642-36362-7_8
https://eprint.iacr.org/2011/537
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-540-71039-4_4
https://doi.org/10.1007/978-3-031-15979-4_3


BIBLIOGRAPHY 235

Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020,
pages 1051–1070, Virtual Event, USA, November 9–13, 2020. ACM Press.
doi:10.1145/3372297.3417894.

[82] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter lattice-
based zero-knowledge proofs via one-time commitments. In Juan Garay,
editor, PKC 2021, Part I, volume 12710 of LNCS, pages 215–241, Virtual Event,
May 10–13, 2021. Springer, Heidelberg, Germany. doi:10.1007/978-3-030
-75245-3_9.

[83] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 1–23, French Riviera, May 30 – June 3, 2010.
Springer, Heidelberg, Germany. doi:10.1007/978-3-642-13190-5_1.

[84] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. J. ACM, 60(6):43:1–43:35, November 2013.
doi:10.1145/2535925.

[85] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume7881 ofLNCS, pages 35–54, Athens, Greece,May 26–
30, 2013. Springer, Heidelberg, Germany. doi:10.1007/978-3-642-38348-9
_3.

[86] Vadim Lyubashevsky and Gregor Seiler. Short, invertible elements in partially
splitting cyclotomic rings and applications to lattice-based zero-knowledge
proofs. In Jesper Buus Nielsen and Vincent Rĳmen, editors, EUROCRYPT 2018,
Part I, volume 10820 of LNCS, pages 204–224, Tel Aviv, Israel, April 29 – May 3,
2018. Springer, Heidelberg, Germany. doi:10.1007/978-3-319-78381-9_8.

[87] Ramiro Martínez and Paz Morillo. RLWE-based zero-knowledge proofs for
linear and multiplicative relations. In Martin Albrecht, editor, 17th IMA
International Conference on Cryptography and Coding, volume 11929 of LNCS,
pages 252–277, Oxford, UK, December 16–18, 2019. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-35199-1_13.

[88] Ramiro Martínez and Paz Morillo. Revisiting fast fourier multiplication
algorithms on quotient rings, 2023. doi:10.48550/arXiv.2304.08860.

[89] Ramiro Martínez, Paz Morillo, and Sergi Rovira. Implementation and perfor-
mance of a RLWE-based commitment scheme and ZKPoK for its linear and

https://doi.org/10.1145/3372297.3417894
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1145/2535925
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-319-78381-9_8
https://doi.org/10.1007/978-3-030-35199-1_13
https://doi.org/10.48550/arXiv.2304.08860


236 BIBLIOGRAPHY

multiplicative relations. Cryptology ePrint Archive, Report 2023/1026, 2023.
https://eprint.iacr.org/2023/1026.

[90] Ramiro Martínez and Sergi Rovira. RLWE-commitment. GitHub repository,
2023. https://github.com/rammmiro/RLWE-Commitment.

[91] Kirill Morozov and Tsuyoshi Takagi. Zero-knowledge protocols for the
McEliece encryption. In Willy Susilo, Yi Mu, and Jennifer Seberry, editors,
ACISP 12, volume 7372 of LNCS, pages 180–193, Wollongong, NSW, Australia,
July 9–11, 2012. Springer, Heidelberg, Germany. doi:10.1007/978-3-642-3
1448-3_14.

[92] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector
problem are practical. Journal of Mathematical Cryptology, 2(2):181–207, 2008.
doi:10.1515/JMC.2008.009.

[93] Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery. An Introduction
to the theory of numbers. John Wiley, 5th edition, 1991.

[94] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In Michael Mitzenmacher, editor, 41st ACM
STOC, pages 333–342, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.
doi:10.1145/1536414.1536461.

[95] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In
Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 80–97, Santa
Barbara, CA, USA, August 15–19, 2010. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-14623-7_5.

[96] Chris Peikert. A decade of lattice cryptography. Foundations and Trends® in
Theoretical Computer Science, 10(4):283–424, 2016. doi:10.1561/0400000074.

[97] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-
case assumptions on cyclic lattices. In Shai Halevi and Tal Rabin, editors,
TCC 2006, volume 3876 ofLNCS, pages 145–166, NewYork,NY,USA,March 4–7,
2006. Springer, Heidelberg, Germany. doi:10.1007/11681878_8.

[98] David Pointcheval and Jacques Stern. Security proofs for signature schemes.
In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages
387–398, Zaragoza, Spain, May 12–16, 1996. Springer, Heidelberg, Germany.
doi:10.1007/3-540-68339-9_33.

https://eprint.iacr.org/2023/1026
https://github.com/rammmiro/RLWE-Commitment
https://doi.org/10.1007/978-3-642-31448-3_14
https://doi.org/10.1007/978-3-642-31448-3_14
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1561/0400000074
https://doi.org/10.1007/11681878_8
https://doi.org/10.1007/3-540-68339-9_33


BIBLIOGRAPHY 237

[99] Thomas Pöppelmann and Tim Güneysu. Towards efficient arithmetic for
lattice-based cryptography on reconfigurable hardware. In Alejandro Hevia
and Gregory Neven, editors, LATINCRYPT 2012, volume 7533 of LNCS, pages
139–158, Santiago, Chile, October 7–10, 2012. Springer, Heidelberg, Germany.
doi:10.1007/978-3-642-33481-8_8.

[100] Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of
Number Theory, 12(1):128–138, 1980. doi:10.1016/0022-314X(80)90084-0.

[101] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM Press.
doi:10.1145/1060590.1060603.

[102] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communications
of the Association for Computing Machinery, 21(2):120–126, February 1978. doi:
10.1145/359340.359342.

[103] Eduard Sanou Gozalo. Post-quantum cryptography: lattice-based encryption.
Master’s thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.hand
le.net/2117/93068.

[104] Jason Scharfman. Decentralized Finance (DeFi) Fraud and Hacks: Part 2, pages
97–110. Springer International Publishing, Cham, 2023. doi:10.1007/978-3
-031-23679-2_7.

[105] Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–252,
Santa Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.
doi:10.1007/0-387-34805-0_22.

[106] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Mathematical program-
ming, 66(1-3):181–199, 1994. doi:10.1007/BF01581144.

[107] Daniel Shanks. Five number-theoretic algorithms. In R. S. D. Thomas and
Hugh C. Williams, editors, Proceedings of the Second Manitoba Conference on
Numerical Mathematics (Winnipeg), pages 51–70, 1973.

[108] Claude E. Shannon. Communication theory of secrecy systems. Bell Systems
Technical Journal, 28(4):656–715, 1949. doi:10.1002/j.1538-7305.1949.tb0
0928.x.

https://doi.org/10.1007/978-3-642-33481-8_8
https://doi.org/10.1016/0022-314X(80)90084-0
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
http://hdl.handle.net/2117/93068
http://hdl.handle.net/2117/93068
https://doi.org/10.1007/978-3-031-23679-2_7
https://doi.org/10.1007/978-3-031-23679-2_7
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/BF01581144
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x


238 BIBLIOGRAPHY

[109] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th FOCS, pages 124–134, Santa Fe, NM, USA, November 20–22,
1994. IEEE Computer Society Press. doi:10.1109/SFCS.1994.365700.

[110] Rosemberg Silva, Pierre-Louis Cayrel, and Richard Lindner. A lattice-based
batch identification scheme. In 2011 IEEE Information Theory Workshop, pages
215–219, October 2011. doi:10.1109/ITW.2011.6089381.

[111] Rosemberg Silva, Antonio C. de A. Campello, and Ricardo Dahab. Lwe-
based identification schemes. In 2011 IEEE Information Theory Workshop, pages
292–296, 2011. doi:10.1109/ITW.2011.6089439.

[112] Unathi Skosana and Mark Tame. Demonstration of Shor’s factoring algorithm
for 𝑛 = 21 on IBM quantum processors. Scientific Reports, 11(1):16599, August
2021. doi:10.1038/s41598-021-95973-w.

[113] Bo Song and Yiming Zhao. Provably secure identity-based identification
and signature schemes with parallel-PVR. In Kwok-Yan Lam, Chi-Hung Chi,
and Sihan Qing, editors, ICICS 16, volume 9977 of LNCS, pages 227–238,
Singapore, November 29 – December 2, 2016. Springer, Heidelberg, Germany.
doi:10.1007/978-3-319-50011-9_18.

[114] Yongcheng Song, Jiang Zhang, Xinyi Huang, Wei Wu, and Haining Yang.
Statistical zero-knowledge and analysis of rank-metric zero-knowledge proofs
of knowledge. Theoretical Computer Science, 952:113731, 2023. doi:10.1016/j.
tcs.2023.113731.

[115] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient
public key encryption based on ideal lattices. In Mitsuru Matsui, editor,
ASIACRYPT 2009, volume 5912 of LNCS, pages 617–635, Tokyo, Japan, Decem-
ber 6–10, 2009. Springer, Heidelberg, Germany. doi:10.1007/978-3-642-1
0366-7_36.

[116] Jacques Stern. A new identification scheme based on syndrome decoding. In
Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 13–21,
Santa Barbara, CA, USA, August 22–26, 1994. Springer, Heidelberg, Germany.
doi:10.1007/3-540-48329-2_2.

[117] Jacques Stern. A new paradigm for public key identification. IEEE Transactions
on Information Theory, 42(6):1757–1768, Nov 1996. doi:10.1109/18.556672.

[118] Gilbert Strang. Introduction to linear algebra. Cambridge Press, Wellesley, 5th
edition, 2016.

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/ITW.2011.6089381
https://doi.org/10.1109/ITW.2011.6089439
https://doi.org/10.1038/s41598-021-95973-w
https://doi.org/10.1007/978-3-319-50011-9_18
https://doi.org/10.1016/j.tcs.2023.113731
https://doi.org/10.1016/j.tcs.2023.113731
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1109/18.556672


BIBLIOGRAPHY 239

[119] Yang Tao, Xi Wang, and Rui Zhang. Short zero-knowledge proof of knowledge
for lattice-based commitment. In Jintai Ding and Jean-Pierre Tillich, editors,
Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020, pages
268–283, Paris, France, April 15–17, 2020. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-44223-1_15.

[120] Pascal Véron. Improved identification schemes based on error-correcting codes.
Applicable Algebra in Engineering, Communication and Computing, 8(1):57–69, Jan
1997. doi:10.1007/s002000050053.

[121] Joachim Von zur Gathen and Jürgen Gerhard. Modern Computer Algebra,
volume 53. Cambridge University Press, 3rd edition, 2013. doi:10.1017/CB
O9781139856065.

[122] Xiaoyun Wang, Mingjie Liu, Chengliang Tian, and Jingguo Bi. Improved
Nguyen-Vidick heuristic sieve algorithm for shortest vector problem (keynote
talk). In Bruce S. N. Cheung, Lucas Chi Kwong Hui, Ravi S. Sandhu, and
DuncanS.Wong, editors,ASIACCS 11, pages 1–9,HongKong, China,March22–
24, 2011. ACM Press. doi:10.1145/1966913.1966915.

[123] Zhiming Wang. Miller-Rabin. GitHub repository, 2019. https://github.com
/zmwangx/miller-rabin.

[124] Xiang Xie, Rui Xue, andMinqianWang. Zero knowledge proofs from ring-LWE.
In Michel Abdalla, Cristina Nita-Rotaru, and Ricardo Dahab, editors, CANS
13, volume 8257 of LNCS, pages 57–73, Paraty, Brazil, November 20–22, 2013.
Springer, Heidelberg, Germany. doi:10.1007/978-3-319-02937-5_4.

[125] Guomin Yang, Chik How Tan, Yi Mu, Willy Susilo, and Duncan S. Wong.
Identity based identification from algebraic coding theory. Theoretical Computer
Science, 520:51–61, 2014. doi:10.1016/j.tcs.2013.09.008.

[126] Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and
William Whyte. Efficient lattice-based zero-knowledge arguments with stan-
dard soundness: Construction and applications. In Alexandra Boldyreva and
DanieleMicciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages
147–175, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-26948-7_6.

https://doi.org/10.1007/978-3-030-44223-1_15
https://doi.org/10.1007/s002000050053
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1017/CBO9781139856065
https://doi.org/10.1145/1966913.1966915
https://github.com/zmwangx/miller-rabin
https://github.com/zmwangx/miller-rabin
https://doi.org/10.1007/978-3-319-02937-5_4
https://doi.org/10.1016/j.tcs.2013.09.008
https://doi.org/10.1007/978-3-030-26948-7_6

	Introduction
	Motivation
	(Post-Quantum) Cryptography
	Encryption Schemes
	Commitment Schemes
	Interactive Proof Systems
	Zero-Knowledge Proofs
	Pseudorandomness

	Lattices
	Notation
	Basic Definitions
	Fundamental Problems
	Lattice Basis Reduction
	Additional Definitions
	Lattice Problems and Cryptography
	Ideal Lattices
	Zero-Knowledge Proofs of Knowledge with Lattices

	Probability Preliminaries
	The Advantage of an Adversary
	Advantage in an Indistinguishability Game
	Dismissing Events with Negligible Probability
	Multidimensional Gaussians

	Contributions

	Partial FFT Multiplication
	Introduction
	Polynomial Multiplication Related Work
	Conventions

	Pointwise Product
	General Invertibility of T
	Pointwise Product of Evaluations Modulo f(x)

	Efficient Transforms
	Efficient Evaluation of T
	Efficient Evaluation of T⁻¹
	Efficient Multiplication Algorithm in R[x]/<xⁿ-a>

	Characterization of suitable sets of evaluation points in the ring ℤₘ[x]/<xⁿ-a>
	Existence and Construction of Suitable Roots in ℤₘ

	FFT Generalizations
	Fast Chinese Remaindering

	Conclusions

	Commitment scheme and companion ZKPoKs
	Introduction
	Lattice-Based Zero-Knowledge Proofs Related Work
	Our Contribution
	Structure of the Chapter

	Stern-Based Schemes
	Lattice-Based Commitment Scheme
	The Commitment Scheme
	Security Proofs of the Commitment Scheme

	Interactive Zero-Knowledge Proofs of Knowledge
	Knowledge of a Valid Opening
	Knowledge of a Linear Relation
	Knowledge of a Multiplicative Relation

	Conclusions

	Appendices 3
	Differences with the Published Version

	Commitment and NIZKPoKs Implementation
	Introduction
	Structure of the Chapter

	Non-Interactive Zero-Knowledge Proofs of Knowledge
	Pseudocode

	Non-Interactive Security Proofs
	Multiple vs. Single Challenge Set
	The Fiat-Shamir Transform
	Known Attacks
	Zero-Knowledge
	Completeness

	Implementation
	Language and Libraries of the Implementation
	Main Computational Tasks

	Instantiation
	Results
	Sizes and Running Times
	Most Efficient Secure Sets of Parameters

	Conclusions

	Appendices 4
	Special Unsoundness Adversaries
	Script for Finding Parameters
	Additional Results

	Acronyms
	Bibliography

