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ABSTRACT

Modeling biological systems has always been challenging given the complexity of the
processes involved in them. Experts have been employing physiological models to ap-
proximate the dynamics of biological systems; however, these models are constrained

by the limitations of mathematical techniques that can only encompass part of the physical
phenomena behind a biological system. Mathematical physiological models of the human
glucose-insulin system are considered the gold standard of simulators in type 1 diabetes (T1D)
healthcare. Though accurate to a certain degree, these models are not capable of simulating
scenarios that could fully capture the real-life dynamics of a T1D patient. The underlying
cause for this phenomenon could be attributed to the numerous hidden factors that are ignored
during physiological modeling because of increasing model complexity or hurdles in their
representation.

This work was carried out with a focus on accurate model approximation in T1D. The
rationale is built on the hypothesis that generic function approximators such as deep neural
networks (DNNs) have the ability to learn all that from data that cannot be modeled mathemati-
cally. Since deep generative models (DGMs) are implemented using DNNs, they are capable
of learning the underlying probability distribution of a data set. This thesis presents several
methodologies based on data-driven models using DGMs for improved model approximation
in T1D. Firstly, a systematic review of data-driven models for predicting hypoglycemia is
conducted. After that, a methodology for data augmentation in a hypoglycemia classifier using
a generative adversarial network (GAN) is developed as part of this thesis. The next work in
this series focuses on the conditional synthesis of realistic BG profiles of T1D patients. Finally,
building on the work performed thus far, a T1D simulation environment is developed using a
sequence-to-sequence GAN (S2S GAN) that is capable of synthesizing realistic patients with
T1D.

The results obtained from these methods show the efficacy of DGMs for model formation
in T1D. It has been demonstrated through these results that a highly precise approximation of
the glucose-insulin system of patients with T1D can be obtained from data with the help of
DGMs. Moreover, these models have been shown to generate novel data that is statistically
similar to real data for all the standardized glycemic metrics. Furthermore, the causal synthesis
of realistic T1D data has been shown in the work presented in this thesis.

ix



RESUMEN

Modelar sistemas biológicos siempre ha sido un desafío dada la complejidad de los pro-
cesos involucrados en ellos. Actualmente, la implementación de modelos fisiológicos
es el estandar para aproximarse a la dinámica de los sistemas biológicos; sin embargo,

estos modelos están restringidos por las limitaciones de las técnicas matemáticas, que solo
pueden abarcar una parte de los fenómenos físicos detrás de un sistema biológico. Los modelos
fisiológicos matemáticos del sistema de glucosa-insulina humano se consideran el modelo de
referencia de los simuladores en el ambito del cuidado de la salud en la diabetes tipo 1 (T1D).
Aunque estos modelos son precisos hasta cierto punto, no son capaces de simular escenarios
que puedan capturar completamente la dinámica de la vida real de un paciente con T1D. La
causa subyacente de este fenómeno podría atribuirse a los numerosos factores ocultos que se
ignoran durante el modelado fisiológico debido a la creciente complejidad del modelo o los
obstáculos en su representación.

Este trabajo se ha llevado a cabo centrandose en una aproximación precisa del modelo
en T1D. La justificación se basa en la hipótesis de que los aproximadores de funciones
genéricas, como las redes neuronales profundas (DNN), tienen la capacidad de aprender
todo aquello de los datos que no se puede modelar matemáticamente. Dado que los modelos
generativos profundos (DGM) se basan en DNN, estos son capaces de aprender la distribución
de probabilidad subyacente de un conjunto de datos. Esta tesis presenta varias metodologías
basadas en modelos basados en datos que utilizan DGM para mejorar la aproximación del
modelo en T1D. En primer lugar, se realiza una revisión sistemática de los modelos basados en
datos para predecir la hipoglucemia. Posteriormente, como parte de esta tesis, se desarrolla una
metodología para aumentar una base de datos en un clasificador de hipoglucemia utilizando una
red generativa antagónica (GAN). A continuación, la tesis se centra en la síntesis condicional
de perfiles realistas de glucosa en sangre de pacientes con T1D usando redes generativas
condicionales. Finalmente, sobre la base del trabajo realizado hasta el momento, se desarrolla
un entorno de simulación de pacientes con T1D utilizando una GAN de secuencia a secuencia
(S2S GAN).

Los resultados obtenidos de estos métodos muestran la eficacia de los DGM para la
generacion de modelos en la T1D. Esta tesis demuestra que las DGM son capaces de obtener
una aproximación muy precisa del sistema glucosa-insulina de pacientes con T1D. Por otro
lado, se ha demostrado que estos modelos generan datos ineditos que son estadísticamente
similares a los datos reales para todas las métricas de glucemia estandar. Además, el trabajo
presentado en esta tesis ha demostrado la síntesis causal de datos realistas en pacientes con
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RESUM

Modelar sistemes biològics sempre ha estat un desafiament atesa la complexitat dels
processos involucrats en ells. Actualment, la implementació de models fisiològics és
l’estàndard per aproximar-se a la dinàmica dels sistemes biològics; aquests models,

però, estan restringits per les limitacions de les tècniques matemàtiques, que només poden
abastar una part dels fenòmens físics darrere d’un sistema biològic. Els models fisiològics
matemàtics del sistema de glucosa-insulina humà es consideren el model de referència dels
simuladors en la cura de la salut de la diabetis tipus 1 (T1D). Tot i que són necessaris fins a cert
punt, aquests models no són capaços de simular escenaris que puguin capturar completament la
dinàmica de la vida real d’un pacient amb T1D. La causa subjacent d’aquest fenomen podria
atribuir-se als nombrosos factors ocults que s’ignoren durant el modelatge fisiològic a causa de
la complexitat creixent del model o dels obstacles en la seva representació.

Aquest treball s’ha dut a terme centrant-se en una aproximació precisa del model a T1D. La
justificació es basa en la hipòtesi que els aproximadors de funcions genèriques, com les xarxes
neuronals profundes (DNN), tenen la capacitat d’aprendre tot allò de les dades que no es pot
modelar matemàticament. Com que els models generatius profunds (DGM) s’implementen
mitjançant DNN, aquests són capaços d’aprendre la distribució de probabilitat subjacent d’un
conjunt de dades. Aquesta tesi presenta diverses metodologies basades en models basats en
dades que fan servir DGM per millorar l’aproximació del model a T1D. En primer lloc, es fa
una revisió sistemàtica dels models basats en dades per predir la hipoglucèmia. Posteriorment,
com a part d’aquesta tesi, es desenvolupa una metodologia per a l’augment de dades en un
classificador d’hipoglucèmia utilitzant una xarxa generativa antagònica (GAN). El següent
treball se centra en la síntesi condicional de perfils realistes de glucosa a la sang de pacients
amb T1D usant xarxes generatives condicionals. Finalment, sobre la base del treball fet fins ara,
es desenvolupa un entorn de simulació de pacients amb T1D utilitzant una GAN de seqüència
a seqüència (S2S GAN).

Els resultats obtinguts d’aquests mètodes mostren l’eficàcia dels DGM per a la generació
de models a la T1D. Aquesta tesi demostra que les DGM són capaces d’aconseguir una
aproximació molt precisa del sistema glucosa-insulina de pacients amb T1D. D’altra banda,
s’ha demostrat que aquests models generen dades inèdites que són estadísticament similars a
les dades reals per a totes les mètriques de glucèmia estàndard. A més a més, el treball presentat
en aquesta tesi ha demostrat la síntesi causal de dades realistes en pacients amb T1D.
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1
INTRODUCTION

T his chapter presents an overview of the importance of models in diabetes healthcare

in section 1.1 followed by a discussion of conventional ways of modeling in type

1 diabetes (T1D) in Section 1.2. Section 1.3 provides a run-through of the various

advantages data-driven models offer with a focus on deep generative models. Section 1.4 talks

us through the main objectives of the thesis whereas section 1.5 gives us a structure of this

thesis.

1.1 The Importance of Modeling in Diabetes Mellitus

Diabetes mellitus (DM) is a global epidemic with over 422 million people suffering from it

globally and its prevalence increases with time (Lovic et al., 2020). The worldwide incidence

rate of DM has increased by 102% from 1990 to 2017 (Liu et al., 2020). Moreover, according

to the international diabetes federation, the number of people living with diabetes are predicted

to rise from 537 million in 2021 to 643 million by 2030 and 783 million by 2045. Figure 1.1

shows the yearly increase in the incidence rate of diabetes. DM is a diverse set of diseases that

1



CHAPTER 1. INTRODUCTION

influences the use of blood glucose (BG) in the body and is characterized by hyperglycemia

caused by the absolute or relative reduction in insulin action or production (Alam et al., 2014).

The chronic conditions in diabetes are termed as type 1 diabetes (T1D) and type 2 diabetes

(T2D), whereas those conditions that are potentially reversible are prediabetes and gestational

diabetes. T2D is the insufficient production of insulin by the pancreas or the inept response of

the cells to the insulin produced. T1D, on the other hand, is a disorder caused by the inability

of the human pancreas to produce insulin. It is an autoimmune disease in which the human

immune system attacks the islet cells in the pancreas leaving it permanently damaged. T1D is

also referred to as insulin-dependent diabetes because of the fact that people suffering from it

are forever dependent on insulin administration.

Figure 1.1: The ASIR of diabetes mellitus caused by SDI regions, from 1990 to 2017. (ASIR,
age-standardized incidence rate; SDI, socio-demographic index) (Liu et al., 2020).

2



CHAPTER 1. INTRODUCTION

Even though every type of diabetes is dangerous, T1D may be considered the most fatal.

If left unattended, T1D may lead to life-threatening comorbidities and serious complications.

People living with T1D lead stressful lives because of the efforts required to manage this

complex disease. It is estimated that a person living with T1D has to make about 180 more

decisions per day regarding their health as compared to someone without diabetes (Digitale

et al., 2019). Decisions like the choice of meal, physical activity, and insulin administration

make T1D one of the most complex diseases to manage. The need for improved therapeutic

regimens and treatments has always been there in T1D healthcare. Over the years, engineers

have aspired to come up with cutting-edge technologies that could help patients with T1D

manage their disease better. Technologies like automatic insulin delivery systems that harness

the control action of closed-loop controllers (Dovc and Battelino, 2020), insulin pumps, smart

pens, and mobile applications (Beck et al., 2019) have been making the lives of patients with

T1D easier.

The advancements in technology for a certain disease has often been complemented by

corresponding progress in the modeling of the disease (Nath et al., 2018). The reason for this

is the numerous advantages models of biological systems offer for technological purposes.

Of the many advantages they present, models help develop our understanding of the disease.

Moreover, they can be used to test and evaluate new treatments, therapies, and technologies

before they are tested on humans. Furthermore, they may aid the process of personalized

treatment in healthcare and enhance our ability to predict the outcome of a disease. Models also

help expose functions of complex biological systems (Harline et al., 2021). In addition to all

these advantages, the major contribution of biological models can be seen in the assembly of

simulation environments. Biological simulation environments are tools that strive to provide us

with a glimpse of real patients’ dynamics using a computer. All biological simulators employ

some kind of biological model in integration with certain other mechanisms to emulate the

behavior of a real-life biological phenomenon. The human glucose-insulin system is an example

3



CHAPTER 1. INTRODUCTION

of a complex biological system with a nested hierarchy of complex patterns and processes.

Over the years, scientists and engineers have developed several models of the glucose-insulin

system with the aim of accurate approximation of the system. These models of the human

glucose-insulin system have been utilized by several diabetes simulators (Man et al., 2014)

(Hovorka et al., 2004) (Bergman and Urquhart, 1971).

1.2 Models in Type 1 Diabetes

Traditionally, the modeling of biological systems has been carried out using mathematical

techniques. Mathematical physiological and pharmacokinetic models of biological systems

are pretty much considered the standard way of modeling in biology. Figure 1.2 depicts the

concept of mathematical modeling from the internal physiology of the biological system. While

mathematical models provide advantages in terms of model transparency and interpretability,

they are incapable of encompassing the entire physiology of biological systems. These models

strive for accurate approximation but suffer from phenomena that are either hidden or too

complex to model. In T1D, the aim of modeling is to emulate the glucose-insulin action in

patients precisely. However, as discussed above, mathematical models in T1D suffer from inac-

curacies because the domain knowledge that guides model development is in itself incomplete

(Engelhardt et al., 2016). The physiology of a human glucose-insulin system is affected by

numerous factors such as patients’ life choices and habits and other life disturbances such as

menstruation, depression, medication, etc. These factors define the trajectory of a patient’s

glycemic profile and are necessary to be taken into consideration in order to obtain realistic

models. With mathematical modeling, taking these factors into consideration is extremely

difficult as they increase the complexity of modeling immensely. Hence, these mathemati-

cal models suffer from inaccuracies that arise in them in the form of grey noise. This noise

directly influences the simulations based on the mathematical models, often giving birth to

wrongly simulated scenarios. The issues with mathematical models provide a justification for

4



CHAPTER 1. INTRODUCTION

the exploration of other modeling techniques that would improve the approximation of the

glucose-insulin system in patients with T1D and enable the creation of simulation environments

that are as closer to reality as possible. This research work has been conducted with this aim

in mind. The alternative route taken for model approximation in T1D is with the data-driven

models using generative deep learning.

Figure 1.2: The mathematical modeling approach that estimates the system’s physiology with a
set of equations and model parameters.

Mathematical

 Modeling

Input 
Data

Output 
Data

Input 
Data

Output 
Data

1.3 Data-driven Models

Data-driven modeling refers to a category of methodologies that involve the acquisition of

models from input and output data without the explicit incorporation of the underlying physical

principles governing the system. The idea of data-driven modeling could broadly be understood

5



CHAPTER 1. INTRODUCTION

from Figure 1.3. It can be observed from the figure that model approximation is done from the

input and output data and no attempt at interpreting the internal physiology of the biological

system is made. Hence, the most important resource in data-driven modeling is data. With

the advent of new technologies in diabetes, acquiring diabetes-related data has become much

easier. Continuous glucose monitors (CGM) are becoming part of the standard care for patients

with T1D in the first world countries and their use is increasing with each passing day. CGM

has made the acquisition of large quantities of BG data possible. Moreover, technologies

like smart insulin pens and connected mobile applications have enabled users to store their

insulin-related information in mobile applications and other connected devices. According

to a population-based study conducted from 1995 to 2017, among 96,547 participants, the

percentage of patients using insulin pump therapy increased from 1% in 1995 to 53% in 2017,

while the percentage of patients using CGM rose from 3% in 2006 to 38% in 2017 (van den

Boom et al., 2019). Furthermore, the use of CGM in clinical trials has increased as well,

making the acquisition of large quantities of BG data through clinical trials possible (Fox

et al., 2021). Moreover, carbohydrate information could be fed and stored by patients using

mobile applications, whereas additional related data, e.g. physical activity information could be

acquired using physical activity trackers like Fitbit, Apple watch, etc. With the availability of

multidimensional diabetes-related data, the notion of data-driven models in diabetes healthcare

has held pace over the last few years and its popularity is still on the rise.

Designers have utilized different statistical and machine learning techniques to harness the

power of data into useful models. Moreover, these models have been employed for different

purposes such as prediction, classification, regression, etc. Using generic function approxima-

tors like deep neural networks (DNNs) for model approximation is one such type of approach.

DNNs have the ability to learn complex underlying probability distributions from data. Accord-

ing to the universal approximation theorem, an artificial neural network with a single hidden

layer can learn any function given that it is sufficiently wide. Some studies have shown that

6



CHAPTER 1. INTRODUCTION

Figure 1.3: The data-driven modeling approach that involves learning a model from the input
and output data of a system

Data-
driven 

Modeling
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Data

Input 
Data
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Data

DNNs have the capability of surpassing mathematical models in terms of system approximation

provided that the training data is available in sufficient quantity (Nikzad et al., 2012) (Nalisnick

et al., 2018). In addition to the various tasks mentioned above that the data-driven models could

perform, if set up a particular way, they are also capable of generating new data instances. In

probability theory, such models are referred to as generative models. These models include

7



CHAPTER 1. INTRODUCTION

the distribution of the data itself by learning a joint probability distribution P(X,Y), or P(X) if

there are no labels. They are different than discriminative models, which learn a conditional

probability distribution P(X|Y) instead.

When DNNs are used for the task of learning a joint probability distribution and then

generating novel samples from the learned distribution, they are referred to as deep generative

models (DGMs). Over the past few years, the effectiveness of DGMs in producing realistic

data samples in different fields of life has been proven by various studies (Newton, 2019)

(Coutinho-Almeida et al., 2021) (Gonzalez-Abril et al., 2022). There are several types of DGM

architectures employed by designers for generating various types of data such as images, text,

music, etc. These architectures include generative adversarial networks (GANs), variational

autoencoders (VAEs), normalizing flows, diffusion models, etc. Each one of these models then

has several variants that can be used for the generation or conditional generation of novel data

samples. Since the research work presented in this thesis utilizes GANs and its variants, the

focus of the discussion will be GANs.

1.4 Objectives

Building on the rationale presented above, the major goal of this thesis could be written down

as:

"To enhance the current state-of-the-art models in T1D by endeavoring to attain a

comprehensive estimation of the glucose-insulin dynamics."

The principal objective can be divided into specific research objectives that are pursued by

this thesis.

• To assess the current state of data-driven models in T1D with a focus on hypoglycemia

prediction by considering the effects of prediction horizon, type of data, and type of

model.

8



CHAPTER 1. INTRODUCTION

• To demonstrate the efficacy of deep generative models by generating realistic BG data

for patients with T1D conditioned on the plasma insulin approximation of the patient.

• To condition the generation of BG values on more than one variable (i.e. insulin and

carbohydrates) and prove improved model approximation.

• To set up a T1D simulation environment with open-loop (OL) and closed-loop (CL)

therapies using a deep generative model.

1.5 Thesis Structure

This thesis is organized into four main chapters. After this introductory chapter, Chapter 2

provides a comprehensive compilation of the articles on which this thesis is founded. Chapter 3

critically analyzes the key contributions, challenges, and constraints that are inherent to the

research presented in these articles. In particular, this chapter offers an in-depth evaluation of

the research questions that have been addressed, the methodologies employed, and the results

obtained. Finally, Chapter 4 provides a conclusive discussion of the future research avenues

that are emerging from the current work, and highlights their potential implications for the

field.

9
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2
DATA-DRIVEN MODELS FOR TYPE 1 DIABETES USING

GENERATIVE DEEP LEARNING

T his chapter consists of four sections. Section 2.1 presents a review paper on the latest

trends and challenges in using machine learning for hypoglycemia prediction. Sec-

tion 2.2 consists of a paper wherein realistic blood glucose profiles are synthesized

using conditional generative adversarial networks. Section 2.3 comprises a manuscript that lays

out a framework for the development of T1D simulator using DGMs.

• 2.1 Machine learning techniques for hypoglycemia prediction: trends and challenges

• 2.2 Conditional synthesis of blood glucose profiles for T1D patients using deep

generative models

• 2.3 Generative deep learning for the development of a type 1 diabetes simulator
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2.1 Machine learning techniques for hypoglycemia

prediction: trends and challenges

In this publication, we have performed a systematic review of the state-of-the-art of machine

learning models in hypoglycemia prediction.
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Abstract: (1) Background: the use of machine learning techniques for the purpose of anticipating
hypoglycemia has increased considerably in the past few years. Hypoglycemia is the drop in blood
glucose below critical levels in diabetic patients. This may cause loss of cognitive ability, seizures,
and in extreme cases, death. In almost half of all the severe cases, hypoglycemia arrives unannounced
and is essentially asymptomatic. The inability of a diabetic patient to anticipate and intervene the
occurrence of a hypoglycemic event often results in crisis. Hence, the prediction of hypoglycemia
is a vital step in improving the life quality of a diabetic patient. The objective of this paper is to
review work performed in the domain of hypoglycemia prediction by using machine learning and
also to explore the latest trends and challenges that the researchers face in this area; (2) Methods:
literature obtained from PubMed and Google Scholar was reviewed. Manuscripts from the last five
years were searched for this purpose. A total of 903 papers were initially selected of which 57 papers
were eventually shortlisted for detailed review; (3) Results: a thorough dissection of the shortlisted
manuscripts provided an interesting split between the works based on two categories: hypoglycemia
prediction and hypoglycemia detection. The entire review was carried out keeping this categorical
distinction in perspective while providing a thorough overview of the machine learning approaches
used to anticipate hypoglycemia, the type of training data, and the prediction horizon.

Keywords: hypoglycemia; machine learning; prediction; detection; artificial intelligence; decision
support system (DSS)

1. Introduction

Hypoglycemia is the drop in blood glucose (BG) below critical levels [1]. The BG level
at which hypoglycemia occurs, however, has long been a topic of much debate in medical
circles [2]. The most accepted definition is that when the BG level drops below 70 mg/dL
or 3.9 mmol/L, hypoglycemia is diagnosed [3]. It is one of the most lethal conditions that
may arise most commonly in type 1 diabetics (T1D) followed by type 2 diabetics (T2D).
Hypoglycemia may lead to loss of consciousness, confusion, seizures, and in extreme cases,
death [4]. The symptoms of hypoglycemia, however, may vary for different individuals
based on several factors. For a symptom to be associated with hypoglycemia, it is important
that it satisfies Whipple’s triad [5]. This essentially means that the symptom is consistent
with hypoglycemia, the blood glucose level is below the normal range, and the symptom is
relieved when the plasma glucose level is increased to normal or above. The symptoms
of hypoglycemia are eventually connected to neuronal glucose deprivation, which in
layman terms means glucose deprivation of the human nervous system and brain [6].
These symptoms could then be categorized into neurogenic symptoms caused by glucose
deprivation of the autonomic nervous system and the neuroglycopenic symptoms caused
by the glucose deprivation of the central nervous system. Based on the level of BG, the
symptoms of hypoglycemia can be categorized as mild, moderate, and extreme. It is in
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the extreme form that hypoglycemia is most lethal. In most cases, however, hypoglycemia
does not have any symptoms at all and occurs silently. The silent arrival of hypoglycemia
is one of the causes of distress for its sufferers. Along with the physical discomforts that
hypoglycemia brings, the mental torments are a major reason for the diabetics to despise
its existence. The insecurity and fear of hypoglycemia causes the life quality of diabetics to
degrade immensely [7]. The main cause of hypoglycemia is the reduction in blood glucose
levels because of an overdose of insulin or a low intake of food/carbohydrates [8]. The
reduction in BG that is caused by insulin or any other form of drugs is known as iatrogenic
hypoglycemia [9]. Hypoglycemia may occur because of multiple other reasons, i.e., kidney
failure, liver complications, hyperthyroidism, starvation, and the consumption of certain
drugs including alcohol. Hypoglycemia may be classified into multiple groups based on
factors, i.e., the agent of cause, the time of the day it occurs, the age of the individual, the
severity of the glycemic event, and the connection to another condition in the body [10].

Based on the time of occurrence, hypoglycemia is commonly characterized into day-
time hypoglycemia, postprandial hypoglycemia [11], and nocturnal hypoglycemia [10].
Daytime hypoglycemia typically means the hypoglycemic event that occurs during the day.
Postprandial hypoglycemia refers to the hypoglycemic event after the patient has eaten.
It could also be referred to as reactive hypoglycemia, whereas nocturnal hypoglycemia
means the hypoglycemic event occurs during the night when the patient is sleeping. Each
type of hypoglycemia has its own associated risks. Patients run the risk of postprandial
hypoglycemia when they misestimate the amount of carbohydrates (CHO) consumed in
each meal. Varying insulin sensitivity is also a major factor in misanalysing the amount
of bolus insulin needed and might lead to postprandial hypoglycemia [12]. Nocturnal
hypoglycemia, on the other hand, is a much bigger problem than any other form of hypo-
glycemia. The reason is that nocturnal hypoglycemia occurs when the patient is sleeping
and is virtually incapable of defending him-/herself against the glycemic event. The fact
that over half of all the extreme hypoglycemic episodes occur during sleep add to the
severity of this type of hypoglycemia.

Since hypoglycemia is a combination of various symptoms when blood glucose drops
below 70 mg/dL and sometimes it is entirely asymptomatic, diagnosing it is very hard
and it is near impossible for a human to predict its occurrence in advance. In the case
of a hypoglycemic event, the initial treatment could be consuming 15 to 20 g of fast
acting carbohydrates [2], and even though the consumption of glucose seems like the
only solution to overcome an ailment that is caused by the deficiency of glucose, it takes
10–15 min for the human body to process glucose [4]. This means that the patient has
already experienced mental and physical trauma before returning to a normal glycemic
state. Moreover, clinical evidence and observational data show that the recommended
glycated haemoglobin (HbA)targets are not met in the majority of T1D patients [13]. A
more appropriate approach is to manage the blood glucose in such way that hypoglycemia
is prevented.

There has been an immense surge in the use of technologies for diabetes management.
Glucose monitoring systems have been one of the trending topics in biomedicine [14].
Multiple glucose monitoring devices are available these days that provide periodic or
flash updates of the patient’s glucose levels. Some commercially available devices include
Medtronic CGM, Abbott FreeStyle Libre, and Dexcom CGM systems [15,16]. These devices
contain a continuous glucose monitoring (CGM) sensor along with a portable monitor
that displays glucose levels and in some cases provides alarms of adverse glycemic events.
The CGM sensors measure glucose dynamically and have a tiny filament inserted beneath
the skin. These sensors remain in contact with the interstitial fluid with the help of an
enzymatic electrode. Such electrodes use enzymes to cause reduction–oxidation reactions
and then measure the amount of current or voltage produced by the movement of electrons,
which is often concentration dependant [15]. The latest commercially available CGM
sensors such as the FreeStyle Libre by Abbot give a BG value reading with a sampling time
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of 1 s and has a lifespan of 14 days after its first use, during which it does not need to be
calibrated. This makes the process of testing BG less painful.

These monitoring devices are sometimes used in coordination with an insulin pump
to form the sensor-augmented pump (SaP) therapy [17]. The SaP forms an important
component of a closed-loop artificial pancreas (AP) system. Such systems have been
worked upon for many years [18]. A closed-loop AP system has three main components, a
CGM, an insulin pump, and control algorithm that controls the insulin dose. In other cases,
the glucose monitoring systems, when used in coordination with an artificially intelligent
decision-making module that gives suggestions about insulin and carbohydrate intake
to the patients, form a decision support system (DSS). The DSS has proven to be an apt
therapy for multiple daily injections (MDI) users, which is the most common method of
insulin treatment for diabetic patients.

Machine learning (ML) has emerged as one of the major fields of artificial intelligence
(AI) in recent times, and its impact on healthcare has been huge [19,20]. The concept of ML
has its roots in computer science, statistics, and optimization. With a focus on enabling the
computer to train itself without being explicitly programmed, ML gives a computer the
power to predict outcomes up to a certain level of accuracy. In many medical scenarios
knowledge of an adverse event beforehand could prevent an emergency and in many cases
save lives. The quality of ML to predict the future makes it a great tool to anticipate such
events [21]. Hypoglycemia, being one of such events, may also be anticipated using ML.
The uncertainty associated with the occurrence of a hypoglycemic event looms on the
horizon for T1Ds, making their lives ever so miserable. Biomedical engineers, therefore,
want to come up with efficient predicting models in order to reduce the uncertainty and
improve the life quality of diabetics. This is the reason that there has been an exponential
increase in research work focused on ML techniques to predict adverse glycemic events in
general and hypoglycemia in particular [22]. It is still too early to say that most such works
are truly ready to be made commercially available for the public use; however, encouraging
results have been seen in several of these works. It is known that ML techniques feed
on large amounts of data in order for their prediction to be accurate. Moreover, the data
need to be diverse and free of any corruption and irregularities [23]. To have such data
for any biomedical application is a hard task because of the involvement of many such
constraints that affect the quality of the data being acquired. Medical data are renowned for
being complex and disordered. The limitations associated with sensors, noncompliance of
patients to the study protocols, faults in the study protocols, and unwillingness of patients
to undergo the study are some of the factors that affect the quality of data available for
the training of ML algorithms. It is for this reason that biomedical data require a lot of
pre-processing and filtration before being ready to be fitted with an ML model.

The Aim of Hypoglycemia Prediction

Experts have tried to identify hypoglycemia based on different characteristics but most
of the times, hypoglycemia is asymptomatic and is often unrecognized. This is one reason
hypoglycemia can prove deadly. The absence of signs and prior indicators may cause the
patients to act undesirably in the wake of a hypoglycemic event and consequently move
themselves into disaster. Though the occurrence of hypoglycemia is hard to determine, it is
often observed in patients who take insulin regularly [24]. Of the patients who take insulin,
type 1 diabetics are three times more likely to experience hypoglycemia as compared to
type 2 diabetics [25].

In many cases even when a hypoglycemic is recognized by the patient, it is often
too late to prevent it. Hence, taking carbohydrates/glucose when a hypoglycemic event
is taking place will not help the cause. It is therefore necessary to have a mechanism
that could inform the patient in advance about the occurrence of a hypoglycemic event
in the future. The aim of such a system should be to correctly forecast a hypoglycemic
event in the future and then inform/warn the patient about it. A prediction system like
this could be efficiently embedded in a decision support system (DSS). A DSS could then
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guide the patient about the steps and measures to be taken to prevent the predicted event
from happening.

This review focuses on the performance and potential of several such works. The
works that are reviewed here are explicitly focused on ML techniques for hypoglycemia
prediction/detection in T1Ds. Tables 1 and 2 shows the entire collection of manuscripts
reviewed. It could be observed from these tables that the majority of the works done in
the domain of hypoglycemia prediction/detection were published in 2019 and 2020. This
is proof of a rising trend in the use of ML models for hypoglycemia prediction/detection.
It is important to mention here that throughout this review, the ML frameworks are not
discussed explicitly. No effort in establishing a ranking criterion has been made. The
reason for this is that a large variety of ML frameworks are used in the literature and also,
the factors defining the frameworks are diverse. Since no two studies used a common
framework for ML modelling, comparing research works based on their frameworks was a
hard task. Another reason of refraining from any sort of quantitative comparison was to
keep the review as impartial as possible and let the readers establish an understanding of
the work done in the field of ML-based prediction of hypoglycemia.

The methodology of the entire review process is discussed in the next section. Results
obtained from the review are discussed in the section after that. A thorough analysis of the
reviewed manuscripts is done in the results section based on a distinction between studies
aimed at hypoglycemia detection and prediction, the data used to train the ML models,
the type of ML models used, and the prediction/forecasting horizon. A discussion about
the entire review is presented in the succeeding section followed by a conclusion of the
presented work.
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Table 1. Summary of reviewed manuscripts addressing hypoglycemia detection: ML model used to perform the detection, type of data (ToD) used to train the ML model, the size of the
cohort, recording duration (RD), age of population (AoP), gender of the participants in study, treatment method (TM).

Ref Year ML Model ToD Cohort RD AoP Gender TM

[26] 2019 cTAKES clinical notes 395 and 460 notes - - - -

[27] 2017 LDA a BG, breath samples 56 1 bag each CH n, ADO p, ADU q F r: 55.36%,
M s: 44.64% -

[28] 2018 PLSR b, ANN d temp, IR c, Z 20 2 days ADU - -

[29] 2018 CNN e EHR 500 records 95,246 sentences - - -

[30] 2019 LSVM f, LR g, RF h Secure messages 3000 messages - - - -

[31] 2020 XGBoost EHR 17,658 4 years ADU F: 47%
M: 53% MDI

[32] 2016 SVM i HR, temp, GSR 1 2 months ADU M: 100% IP u

[33] 2018 RF, MLP t BG, PA 93 4 months CH, ADO, ADU F: 46.2%
M:53.7% IP

[34] 2016 DT j ECG, breath data, accelerometer 5 260 h - - IP

[35] 2016 DL k ECG 15 10 h CH - MDI

[36] 2019 DL EHR 500 records - - - -

[37] 2015 - EEG 15 - CH, ADO, ADU - -

[38] 2019 KNN l camera, BG 14 850 samples/subjects ADU - -
a LDA: Linear Discriminant Analysis; b PLSR: Partial Least Square Regression; c IR: Infra-Red; d ANN: Artificial Neural Network; e CNN: Convolutional Neural Network; f LSVM: Linear Support Vector
Machine; g LR: Logistic Regression; h RF: Random Forest; i SVM: Support Vector Machine; j DT: Decision Tree; k DL: Deep Learning; l KNN: K-Nearest Neighbor; n CH: Children; p ADO: Adolescents; q ADU:
Adults; r F: Female; s M: Male; t MLP: Multilayer Perceptron.
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Table 2. Summary of reviewed manuscripts addressing hypoglycemia prediction: ML model used to perform the detection, prediction horizon (PH) in minutes, the size of the cohort,
recording duration (RD), type of data (ToD) used to train the ML model, treatment method (TM), age of population (AoP), gender of the participants in study.

Ref Year ML Model PH (min)
Cohort

Size RD ToD TM AoP Gender

[39] 2019 LDA 35 463 4721 nights BG, Insulin IP ADU F: 58% M: 42%

[40] 2019 DT, RF 30 55 244 exercise sessions HR, BG IP ADU F: 60% M: 40%

[41] 2020 MLP, SVM 360 10 12 weeks HR, BG, CHO MDI ADU F:80% M:20%

[42] 2016 Extreme ML NN 360 16 4.09 days ECG - CH -

[43] 2019 RF, SVM, KNN, LR 30 104 113 days BG MDI ADU F: 60% M: 40%

[44] 2017 k-mean clustering 540 34 10 days BG - ADU -

[45] 2020 RMRF a - 127 2525 nights BG, PA, Insulin, CHO - - -

[46] 2019 Ensemble of commonly
used ML models 30 104 Between 2014 and 2015 1 (BG) - - -

[47] 2020 RF 360 9800 1 mil nights BG IP ADU F: 51% M: 49%

[48] 2020 SVR b 360 124 22,804 nights BG, Insulin IP ADO, ADU F: 60% M: 40%

[49] 2016 stochastic models 60, 240, 360
34 150 days

BG MDI CH, ADU -
179 476 days

[50] 2019 ANN 30 N/A 1 Week BG - - -

[51] 2018 ANN 30, 60 6 8 weeks Insulin, BG, PA, CHO IP ADU -

[52] 2020 LR, RF 0–15, 15–30,
30–45, 45–60 112 90 days BG, Insulin, CHO IP ADO, ADU F: 39.2% M: 60.7%

[53] 2019 ANN, SVM, AB c, GNB d 240 10
10 Several months BG, PA, Insulin, CHO MDI ADU -

[54] 2017 CART 15 33 72 to 96 h BG - - -

[55] 2020 MLR, LASSO 420
100 162,000 traces

BG, CHO - ADU -
218 2 months

[56] 2020 MDP e 210 NIDDK repository 6 Treatment points BG, Insulin, CHO - ADU -
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Table 2. Cont.

Ref Year ML Model PH (min)
Cohort

Size RD ToD TM AoP Gender

[57] 2019 ARIMA, RF, SVM 15 25 14 days BG IP ADU F: 44% M: 56%

[58] 2020 KKR f 30 11 7–50 days BG IP ADU -

[59] 2019 GE g, SVM, ANN

60 100 14 days

BG, Insulin, CHO, PA IP ADU -240 10 6 weeks

360 6 8 weeks

[60] 2019 RF, SVM, ANN 120 6 8 weeks Insulin, BG, PA, CHO IP ADU -

[61] 2020 KNN 10,080 70 15 weeks BG, insulin, CHO MDI - -

[62] 2019 GRU h 45 40 4 days BG - - -

[63] 2017 DL 30 25 N/A BG - CH, ADO -

[64] 2020 RNN i 30
10 360 days

Insulin, BG, PA, CHO IP - -
6 8 weeks

[36] 2019 RNN 30 124 27,466 days BG, Insulin IP ADU -

[65] 2020 DRL j The meal
duration

10
10 6 months BG, CHO MDI ADO, ADU -

[66] 2019 XGBT q The meal
duration 100 2 months BG, Insulin, CHO - ADU -

[67] 2019 KNN The meal
duration 100 4 days BG, Insulin, CHO - ADU -

[68] 2019 SVM The meal
duration 10 BG, Insulin, CHO IP ADU F:20%, M: 80%

[69] 2016 Combination of
NH predictors

360
34 150 days

BG MDI CH, ADU -
179 476 days

[70] 2016 ACL k 1440 28
100 BG, PA, Insulin, CHO - CH, ADO, ADU -

[71] 2019 10 Different ML Methods 30 6 8 weeks Insulin, BG, PA IP ADU -
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Table 2. Cont.

Ref Year ML Model PH (min)
Cohort

Size RD ToD TM AoP Gender

[72] 2020 RF, GBT The meal
duration 100 162 meal conditions BG, Insulin, CHO - - -

[73] 2019 DRL N/A 10
10 30 days CGM, CHO - ADO, ADU -

[74] 2019 DL 30, 60

10 6 months

BG, Insulin, CHO IP ADO, ADU -6 8 weeks

10 180 days

[75] 2020 ARM r, RF, LGBM l,
FCNNs m,GCNN n

30, 60
141 9083 days

BG - - -
30 30 days

[76] 2018 ANN 30 12 1 year BG IP ADU F: 50%, M: 50%

[77] 2017 GP o, RF, KNN, GE 30 10 N/A BG, insulin, CHO - - -

[78] 2020 DL 30, 60 10
10 6 months BG, Insulin, CHO, PA ADU -

[79] 2019 RF, SVM 15 25 14 days BG MDI ADU F: 44%, M: 56%

[80] 2017 LSTM p 30, 60, 90 106 7 days BG Both - -
a RMRF: Repeated Measures Random Forest; b SVR: Support Vector Regression; c AB: Adaboost; d GNB: Gaussian Naïve Bayes; e MDP: Markov Decision Process; f KKR: Kernel Ridge Regression; g GE:
Grammatical Evolution; h GRU: Gradient Recurrent Unit; i RNN: Recurrent Neural Network; q XGBT: Extreme Gradient Boosted Tree; k ACL: Actor Critic Learning; l LGBM: Light Gradient Boosting; m FCNN:
Fully-convolutional Neural Networks; n GCNN: Gradually Connected Neural Networks; o GP: Genetic Programming; p LSTM: Long Short-term Memory; q ARM: Autoregressive Model.
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2. Materials and Methods

This paper looks at the broader horizon of the work done in the domain of ML for
hypoglycemia prediction. The searched manuscripts were obtained by combining the
results of multiple individual searches to form a pool of 900 manuscripts. PubMed and
Google Scholar were used for the selection of manuscripts. PubMed was selected because
it is the premier source of published research in biomedicine and life sciences available on
the internet. Google scholar was selected for manuscript searching to enlarge the search
area. English articles of the past five years were considered in this review. We excluded
studies that involved type 2 diabetes or were review articles.

Manuscripts were searched through the advanced searching options in PubMed. The
search was carried out by first combining the keywords ‘machine learning’ and ‘hypo-
glycemia’ with the help of an ‘AND’ logical operator to search all the fields provided in
PubMed advanced search option. This search yielded a total of 41 manuscripts. Later,
keywords ‘artificial intelligence’ and ‘hypoglycemia’ were searched together for all the
fields, which yielded a total of 47 manuscripts. ‘Machine learning’ was also searched
together with ‘blood glucose prediction’, yielding a total of 119 manuscripts. The keywords
‘hypoglycemia’ and ‘machine learning’ were then searched together with a series of other
keywords by using the same logical operator to obtain the following results: prediction
(23), detection (10), hypoglycemic event (15), and adverse glycemic event (4). The keyword
‘hypoglycemia’ was then solely searched with other keywords using the logical opera-
tor yielding the following results: support vector machine (9), random forest (15), deep
learning (8), ANN (6), supervised learning (21), and clustering (82). In google scholar,
keywords ‘machine learning’, and ‘hypoglycemia’ were searched. This search was carried
out to expand the pool of the total shortlisted manuscripts. A total of 500 manuscripts
were searched using google scholar. All these individual searches were then combined
together to form a grand pool of 900 manuscripts. Here, it is important to understand
that the majority of the manuscript searched in both google scholar and PubMed were
similar because both platforms provide distinct methods of article searching. A thorough
review of the selected manuscript pool was performed. Moreover, the bibliographies of
the selected manuscripts were looked into for a detailed analysis of the manuscripts cited
in these works. The shortlisted manuscripts were then scrutinized to obtained the final
collection of 57 papers by using the methodology given in Figure 1.
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3. Results

Results were obtained from the 57 shortlisted papers after a comprehensive analysis
of the attributes that were found to be most impactful in deciding the quality of the work.
The details of all the reviewed manuscripts are given in Tables 1 and 2. The results section
is based on the following categories:

• The prediction and detection of hypoglycemia
• Type of data
• ML models
• Prediction horizon (PH)

3.1. The Prediction and Detection of Hypoglycemia

The first major classification of the manuscripts reviewed was done on the basis of
where in time the ML models look for the occurrence of a hypoglycemic event. Hypo-
glycemia prediction essentially means forecasting the future hypoglycemic events. On the
other hand, the detection of hypoglycemia only means detecting whether a hypoglycemic
event has occurred at the present time or not. Many ML-based systems are just detection
models. They do not look into the future to forecast the occurrence of an event. Even
though this review primarily focuses on discussing the prediction models, the importance
of detection models cannot be undermined. Automatic real-time detection of hypoglycemia
may be crucial in many scenarios. In this section, works whose aim was to recognize or
estimate the occurrence of a hypoglycemic event in the present have been identified. The
purpose of doing so was to narrow down the review towards the works that were only
focused on hypoglycemia prediction in the sections ahead. It is important to take into
consideration that in order to have an ML algorithm that forecasts future events we must
have time series data. In the context of this review, this is equivalent to saying that in order
to predict the occurrence of a hypoglycemic event at a specific time in the future, the data
used to train the ML models need to contain the BG, insulin, CHO or some other form of
time series data.

From this, it can be deduced that works that do not use time series data do not try
to predict the occurrence of hypoglycemia in the future but most often than not try to
detect hypoglycemia in the present. The details of such works are given in Table 1. Phys-
iological parameters of an electrocardiogram (ECG) were used to detect hypoglycemia
by Ling et al. [42], Ranvier et al. [34], and San et al. [35]. Multiple systems used text and
language processing for the detection of hypoglycemia. For instance, hypoglycemia was de-
tected from electronic health records (EHRs) in the investigations proposed by Jin et al. [29],
Ruan et al. [31], and Jin Li et al. [34]. Chen et al. [30] employed patient secure messages
for automatic detection of hypoglycemia while Zhou et al. [26] aimed at detecting hypo-
glycemia by processing the text of clinical notes of patients. Temperature, near infra-red,
and bio impedance sensors were employed in their system for the detection of BG trends
during the occurrence of a hypoglycemic event by Tronstad et al. [28]. Marling et al. [32]
used heart rate (HR), temperature, and galvanic skin response (GSR), and Juhl et al. [37]
utilized electroencephalogram (EEG) data to perform hypoglycemia detection.

3.2. Type of Data: What Are the Current Models Trained on?

ML engineering primarily involves fitting ML models to a large amount of data in
order to locate patterns and classify them into different label groups. For an ML model
to work efficiently, a large quantity of good relevant data is required, which means that
the data used to train ML models should be accurate, complete, and valid. However, in
biomedical applications, the availability of good data for ML designers is rare, the reason
being different natural and technical constraints involved in the process of data collection.

ML models for hypoglycemia prediction/detection may be trained on several types
of data. The manuscripts we have reviewed used 12 different types of data to train ML
models. These data include BG, insulin, carbohydrates (CHO), ECG, EHRs, HR, breath
samples, temperature, clinical notes, secret messages, GSR, and EEG. Figure 2 shows the
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distribution of the number of manuscripts for each type of data. It must be kept in mind
that by data we mean the acquired data in their original form and not the extracted features.
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3.2.1. Blood Glucose (BG) Data

As one might think, the most relevant data while predicting events based on BG levels
would be the BG values itself. Based on the profile of an individual’s BG levels an ML
system could be trained to predict the future BG values. This approach was used by the
majority of the works that have been reviewed. Approximately 77% of the total manuscripts
reviewed use BG data to train ML models for hypoglycemia prediction. It is, however,
important to mention that not all of these models were trained on actual clinical data. Actual
clinical data come from clinical trials. These trials are overseen by a clinical trial protocol
that describes the terms and conditions under which the study is ought to be conducted.
Some of these works use BG data from diabetes patient simulators. Diabetes simulators
are platforms that are used to emulate certain physiological characteristics of a diabetic
patient and allow the user to perform experiments by controlling different parameters
related to insulin dosing strategies for diabetes patients. Diabetes simulators are often
preferred in pre-clinical trials to evaluate the performance of new diabetes management
systems/strategies. Some of the famous diabetes simulators include the UVA/PADOVA
simulator and Hovorka model, etc. Of the works based on BG data reported in this review,
13.63% use simulated BG data from different diabetes patient simulators, while 68.18%
use actual clinical data, whereas 18% of the manuscripts use both real and simulated
patient data.

Moreover, of the works that use BG for hypoglycemia detection, some make use
of sole BG data while others use BG plus a combination of different types of data such
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as insulin, CHO, and PA data, etc. The distribution of different BG data combinations
may be observed in Figure 2. About 36.36% of the manuscripts used BG data alone for
hypoglycemia prediction; 6.82% of manuscripts predicted hypoglycemia by using BG
combined with insulin data, and an equal amount of research work used BG combined
with CHO. A total of 22.73% works used BG combined with insulin, CHO, and PA data. A
total of 15.91% studies used BG, insulin, CHO, and PA data in conjunction while 11.36%
studies made use of BG in combination with other sources of data, e.g., HR and ECG, etc.

3.2.2. Only BG

The details of the works that trained ML models only on BG data are given in Table 2.
Most of these models are time series forecasting models and involve BG data that have
certain timestamps associated with the actual BG values. Nocturnal hypoglycemia predic-
tion was targeted in studies such as Kriukova et al. [44], Vu et al. [47], Sampath et al. [69],
and Tkachenko et al. [49]. Seo et al. [43] proposed the prediction of postprandial hypo-
glycemia by training ML models with BG data while Jung et al. [54] predicted day-time
hypoglycemia using similar data. Quan et al. [50], Dong et al. [62], and Mhaskar et al. [63]
used neural networks trained on BG data for hypoglycemia prediction. On the other hand,
Rodriguez et al. [57] used three different ML models trained on BG data from 25 patients.
A KRR-based system was presented by Marcus et al. [58] while Seo et al. [46] proposed
another model to predict hypoglycemia that used BG values.

3.2.3. BG Combined with Other Types of Data

From Figure 2 it is evident that of the manuscripts which use BG data for training,
a portion use the combination of BG and insulin data. Jensen et al. [39] and Mosquera-
Lopez et al. [48] proposed models that predicted nocturnal hypoglycemia from BG and
insulin together. These systems showed moderate performance in terms of sensitivity and
specificity. A recurrent neural network (RNN) was trained by Mosquera et al. [81] using
BG and insulin data for adverse glycemic event prediction. This system was reported to be
more than 90% accurate in predicting hypoglycemic events.

Some studies trained ML models on BG along with CHO values. The quantity of such
studies is very low since the CHO data are often very inconsistent and not a lot of ML
designers like to work with them. CHO, however, is an important feature to consider in
insulin prediction models. Insulin bolus calculation was performed by Zhu et al. [65] and
Giulia Noaro et al. [55]. Both of these works employed BG and CHO data. Zhu et al. [73]
presented a system based on DRL. This study displayed an improved control of single
hormone and dual hormone insulin delivery.

Other works such as Dave et al. [52], Shifrin et al. [56], and Cappon et al. [66] used BG
along with insulin and CHO for prediction purposes. Aiello et al. [67] and Oviedo et al. [53]
both aimed at postprandial hypoglycemia prediction by utilizing BG data combined with
insulin and CHO data. Noaro et al. [72] proposed an insulin bolus calculator while
Vehi et al. [59] proposed a hypoglycemia prediction and prevention system that employed
BG, insulin, and CHO data for ML model training. A DSS that provides weekly insulin
dosage recommendations for type1 diabetics was proposed by Tyler et al. [61].

There are certain works that along with BG, insulin and CHO made use of addi-
tional data e.g., physical activity (PA) data and HR etc. Nocturnal hypoglycemia was
predicted from BG, insulin, CHO and PA data by Calhoun et al. [45], Bertachi et al. [51],
Bertachi et al. [41] and Güemes et al. [60]. Glucose value forecasting is performed by
Li et al. [78], Mayo et al. [71], Zhu et al. [64] and Daskalaki et al. [70] through the utilization
of such a combination of data.

Certain works have also used BG data in combination with other data such as breath
samples and camera samples, etc. Reddy et al. [40] predicted hypoglycemia at the start of an
aerobic exercise. Hypoglycemia was predicted from breath samples using ML techniques
by Siegel et al. [27]. Vahedi et al. [33] predicted BG levels from BG and PA while BG levels
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were estimated from PPG signals using the mobile phone camera of a patient and the BG
data in a study proposed by Zhang et al. [38].

3.2.4. Other Types of Data

We are aware that the beauty of ML lies in formalizing non-linear relationships
between different data(s) and outcomes. Researchers have hence tried to predict hypo-
glycemia by training ML models using multiple types of other data. Of the works that
we have reviewed, 22.81% are based on data other than BG as shown in Figure 2. These
data include the EHR, ECG, GSR, EEG, clinical notes, secret messages, breath samples, and
body temperature. The individual percentages of works based on these data are as follows:
EHR 5%, ECG 5%, HR 5%, breath samples 3.5%, body temperature 3.5%, clinical notes 2%,
secret messages 2%, GSR 2%, EEG, 2%.

3.3. Machine Learning Models

ML designers have a variety of ML algorithms at their disposal while implementing
new designs. The choice of an ML algorithm is guided by multiple factors, i.e., the type of
data used to train the model, the number of features, and most importantly, the quantity
of data available [82]. The literature reviewed here shows that a total of 34 unique ML
algorithms have been used as can be observed in Tables 1 and 2. These algorithms have
been categorized into six major families of ML algorithms as shown in Figure 3. The most
common of these families is the ANNs followed by the DTs, kernels, and others. If we
talk about the most famous individual ML models, RF has been the choice of designers
followed by SVM.
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The majority of the studies have utilized the self-learning capabilities of ANN. These
studies have employed multiple variants of ANN such as RNN, DL, CNN, MLPs, etc.
ANNs were used by Bertachi et al. [41], Vahedi et al. [33], Zhu et al. [64], Mosquera-
Lopez et al. [81], San et al. [35], Jin et al. [36], Mhaskar et al. [63], Li et al. [74], Li et al. [78],
Bertachi et al. [51], Güemes et al. [60], Oviedo et al. [53], Vehi et al. [59], Quan et al. [50], and
Amar et al. [75]. Unlike other ML models, ANNs extract their own features from the inputs
based on their hidden parameters. ANNs were used together with a reinforcement learning
algorithm in studies presented by Zhu, Li, Kuang, et al. [65], and Zhu, Li, Herrero, et al. [73].

DTs are predictive models that predict the outcome for a set of input features after
testing the features through several tree branches. DTs too have multiple variants that were
utilized in the studies cited in this review. The most famous variant of DT is RF. Because of
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characteristics such as robustness to noise, handling of missing values and robustness to out-
liers, RF has been chosen by many ML designers for this application. RF creates a large num-
ber of decision trees and then outputs the mode of all the decision trees. This approach fixes
the over-fitting problem of decision trees. Seo et al. [43], Güemes et al. [60], Vahedi et al. [33],
G Noaro et al. [72], Vu et al. [47], Reddy et al. [40], Chen et al. [30], Dave et al. [52],
Calhoun et al. [45], Amar et al. [75], Hidalgo et al. [77], and Rodriguez et al. [79] have all
used RF for predicting/detecting hypoglycemia. Ruan et al. [31] and Cappon et al. [66]
used the XGboost algorithm. XGboost is the gradient-boosted variant of DT and is
aimed at enhancing the performance of decisions trees. Common DTs were employed by
Ranvier et al. [34] and Reddy et al. [40].

Kernel-based SVM is the second most common choice of ML algorithms for designers
working towards the goal of hypoglycemia detection/prediction. This is an indicator
of the fact that SVM works well for such problems where the data-sets are relatively
small. SVM is a binary linear classifier that maps feature points in space, creating different
categories [83]. These categories are separated by a gap as wide as possible. When a
test point is brought to the model, SVM maps it to one of the various categories and
then assigns it a label. Marling et al. [32], Mosquera-Lopez et al. [48], Seo et al. [43],
Güemes et al. [60], Oviedo et al. [68], Vehi et al. [59], Chen et al. [30], Bertachi et al. [41],
and Rodriguez et al. [79] have all used SVM.

Regression techniques in ML predict the result of a continuous output variable. In the
case of LR, however, the output is often a discrete label. The various types of regression
used by studies in this review are LR, GE, and MLR. Studies proposed by Chen et al. [30],
Dave et al. [52], and Seo et al. [43] use LR. LR fits a logistic function to data and outputs
the probability of one or more classes. KNN is another ML approach that was used in
several studies, such as Tyler et al. [61], Zhang et al. [36], Aiello et al. [67], Seo et al. [43], and
Hidalgo et al. [77]. KNN looks for the closest examples in the feature space and then assigns
them a label. Jensen et al. [39] and Siegel et al. [27] used LDA for prediction purposes. LDA
is often used for the purpose of dimensionality reduction in classification problems.

It is important to consider that ML models can be evaluated with a range of different
performance metrics. It is, therefore, impossible to present a quantitative performance
comparison of the reviewed literature since the performance metrics differ for different
works. Sensitivity and specificity have been the researchers most favorite performance
metric with 47% of the studies using it, followed by root mean square error (RMSE), in
21% of the research works reviewed. Accuracy was used as a performance metric in a
total of 13% of the manuscripts, similar to the area under the ROC curve (AUC). The mean
absolute percentage error and blood glucose risk index were each used to evaluate 3.3% of
the total manuscripts.

3.4. Prediction Horizon: How Far Are the Current Systems Forecast in the Future?

In ML analysis of time series data, PH or forecasting horizon is the amount of time
the user has before the occurrence of a predicted event. In biomedical applications, ideally,
the PH should be large enough to give the patient apt time to take preventive measures
and prevent an adverse event from happening. In the case of hypoglycemia, if the ML
algorithm predicts the occurrence of a possible hypoglycemic event 30 min from the time
of prediction, the user only has 30 min to take necessary actions in order to prevent the
predicted hypoglycemic event from happening. In the mentioned case, whether the PH
of 30 min is enough time or not is a debate that is dependent on various factors such as
the severity of the hypoglycemic event, effectiveness of medications, and the amount of
CHO consumption. The PH defined in a particular approach has two important effects
on the achieved predictions: the time a patient has to respond and the error associated
with estimations increase together. Therefore, it is extremely important to find a balance
between the error we are willing to take and the requirements of our approach. There
are a total of 14 different PHs reported in the literature reviewed with the PH of 30 min
being the most common, followed by PH values of 6 h, 60 min, and 15 min. The PH values
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are categorized based on short-term, medium-term, and long-term predictions. The PH
categories based on their frequency of usage are provided in Figure 4. The details about all
the PHs reported in the literature are given in Table 3.
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Prediction Type Manuscript Prediction Horizon (PH)

Shor-Term Prediction

[52,54,57,79] 15 min

[40,43,46,50–52,58,63,64,71,74–78,80,81] 30 min

[39] 35 min

[52,62] 45 min

[49,51,52,59,74,75,78,80] 60 min

Medium-Term Prediction

[80] 90 min

[60] 120 min

[56] 210 min

[49,53,68] 240 min

Long-Term Prediction

[41,42,47–49,69] 360 min

[55] 420 min

[44] 540 min

[61] 1 Week

[66,67,72] Meal Duration

4. Discussion

After an organized analysis of high quality research work in PubMed and Google
Scholar, we pinned down manuscripts with an aim of providing a thorough overview of
the work done in the field of ML for predicting hypoglycemia. The review demonstrates
that the use of ML models for the prediction of hypoglycemia has increased considerably
over the last five years. It was observed that not all the manuscripts reviewed focused
on predicting hypoglycemia. Some of the works only focused on the detection of the
glycemic event. Technically, detection of an event could be referred to as description. It is
important to understand that hypoglycemia prediction is BG level prediction in essence.
Hypoglycemia is but a condition labelled on the predicted BG value graph. That is precisely
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the reason why some of the works that we have reviewed are BG level prediction models
and do not talk about hypoglycemia prediction explicitly. These works, however, do
provide a framework for the prediction of hypoglycemia.

A correlation between the type of data used for training the ML model and the nature
of output (description/prediction) suggests that ML time series prediction is only possible
with time series data such as BG, insulin, and CHO, while detection could be performed
using other types of data such as breath samples, EEG, PPG, etc. Data acquisition in
biomedical applications suffers from multiple constraints such as hardware limitations,
restricted clinical environments, failure of patients to comply with study protocols, and
obstacles in the way of large biomedical data collection. These barriers compel ML de-
signers to work with the available imperfect data and look for solutions. The issue of
imperfect data may be tackled through different strategies. The missing values problem
is often addressed by using some kind of interpolation or imputation method. Prediction
of missing values based on other values is also a technique that has been used to address
this problem. Different types of regression or classification models can be used to predict
missing values. Deep learning-based imputation is often preferred because of its accuracy.
In various studies a certain range of missing values is selected to perform interpolation.
Any gap in the data that exceeds that limit of missing values is then termed missing data
and no interpolation is done. Frameworks based on conditional probability such as the
theory of belief function, evidence theory or linear belief functions can be used to address
the problem of incomplete data or missing data.

In this review, the assessment of data used in training exhibits a slanted picture with
BG data dominating most of the reviewed studies. It has been observed that studies
that use data other than BG are almost all targeted at detecting hypoglycemia. There are
claims by some works of predicting hypoglycemia while using data other than BG, but
a thorough inspection revealed that the targeted PH was either too small to be classified
as real prediction or it does not exist at all. It is also worth mentioning here that many
works reported an issue with the acquired data in terms of size or completeness. The need
for data that are both large in size and good in quality is ultimate. It is known that ML
models map complex nonlinear relationships in physiological data to perform prediction
or description. To perform this nonlinear mapping, the required data have to be complete
and relevant. In particular, BG value detection and prediction feed on data obtained from
various types of sensors, i.e., CGM and HR sensors, etc. Two of the most common issues
with CGM sensors is the sensor delay and sensor malfunctions. Sensor delay in CGM is
the inherited 10-min discrepancies, while sensor malfunctions are those periods in which
no BG value is recorded. The quality of these sensors is one area that needs to be improved
in future.

An in-depth analysis of ML models presented a broader picture of the preferred
techniques for the purpose of hypoglycemia prediction. It is understood that the quality
and quantity of data affect the choice of the ML model. Since the data in this case suffer
from various issues, the choice of ML model should be made such that it makes up for the
deficiencies in the data. Models such as SVM are preferred because of their ability to handle
a relatively small amount of data with greater efficiency. ML models are also chosen based
on the level of complexity. Simpler models such as RF and KNN are preferred because they
give good results most of the time and are easier to implement. Moreover, the reason that
the majority of the works use RF and SVM is that these algorithms provide a higher level of
versatility in terms of the type of problem they are used for. On the other hand, ANNs are
data hungry and in the case of hypoglycemia prediction it is observed that efforts are made
to train the network on large datasets. DL is an area that has not been used extensively
for hypoglycemia prediction and can be explored more in future. Gradient-boosted tree
algorithms such as XGB are nowadays preferred by designers for time series analysis if the
time series problem is a supervised learning problem. The use of multiple gradient-boosted
algorithms can be observed in the review. The quest for improved results is analogous to
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training different ML models. Designers, therefore, have trained various other models in
the work reviewed.

It is understood from the review that, for a hypoglycemia DSS, the most important
trait to have is to warn the patient about a hypoglycemic episode well before it happens.
Early detection helps the patient cope with the hypoglycemic event in a better way. PH
is a term closely associated with time series data forecasting. How far does an ML-based
prediction model see into the future is a thing to consider before passing any verdict about
the quality of the model. The length of a PH correlates with the amount of data an ML
model is trained on. Ranging from a PH length of 15 min to 1 week, designers have tried to
predict hypoglycemia in different future time frames. The race for a longer PH is always
on but the desirable choice of PH mostly depends on the nature and type of application.

5. Conclusions

ML for the prediction of hypoglycemia has been trending topic among biomedical
data engineers. Our review demonstrates the potential impact such predictive models
could have in the field of diabetes healthcare. A highly efficient hypoglycemia predictor
may prove life-changing for T1Ds. The timely prediction of a hypoglycemic episode
can immensely improve the life quality of T1D patients and on top of that, save their
lives. There has been a stark increase in the amount of research work done in the area of
hypoglycemia prediction using ML. This is evident from the increasing number of studies
published in this domain during the past five years as depicted by this review. Though ML
models appear to be the right choice for figuring out the nonlinear relationships between
different types of physiological data and the occurrence of hypoglycemia, there is still
room for improvement. This review gives an insight into the challenges faced by the
designers while dealing with imperfect data for hypoglycemia prediction and detection.
The results obtained from this review provide an overview of the go-to ML models for
researchers while predicting/detecting hypoglycemia. Discussion of the PH portrays a
picture regarding how far the current systems predict hypoglycemia in the future. It is
concluded that ML for hypoglycemia prediction holds considerable potential. Research
in this domain must continue and more directions should be explored. Researchers are
advised to further explore this domain by training different ML models on various types of
sensor data. In the context of hypoglycemia prediction, it is paramount to come up with
new strategies to train ML models with more data. ML engineers could use a two-phase
training approach by first training the ML models with a huge amount of data (populational
models, similar patients, virtual patients, generated data, etc.) and then training the ML
models with more specific data such as cohort data, real time data, etc. Creativity in feature
engineering and techniques for the acquisition of healthy datasets are areas that need
to be worked on for the realization of accurate ML-based hypoglycemia predictors. The
incorporation of such ML models in DSS should be ensured and made available for the
benefit of patients.
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2.2 Conditional synthesis of blood glucose profiles for T1D

patients using deep generative models

This publication is focused on the generation of realistic BG profiles of T1D patients using

a CGAN. The generated BG values are conditioned on the plasma insulin values of the T1D

patient. The generated BG profiles are then statistically compared to the real profiles.
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Abstract: Mathematical modeling of the glucose–insulin system forms the core of simulators in the
field of glucose metabolism. The complexity of human biological systems makes it a challenging
task for the physiological models to encompass the entirety of such systems. Even though mod-
ern diabetes simulators perform a respectable task of simulating the glucose–insulin action, they
are unable to estimate various phenomena affecting the glycemic profile of an individual such as
glycemic disturbances and patient behavior. This research work presents a potential solution to
this problem by proposing a method for the generation of blood glucose values conditioned on
plasma insulin approximation of type 1 diabetes patients using a pixel-to-pixel generative adversarial
network. Two type-1 diabetes cohorts comprising 29 and 6 patients, respectively, are used to train the
generative model. This study shows that the generated blood glucose values are statistically similar
to the real blood glucose values, mimicking the time-in-range results for each of the standard blood
glucose ranges in type 1 diabetes management and obtaining similar means and variability outcomes.
Furthermore, the causal relationship between the plasma insulin values and the generated blood
glucose conforms to the same relationship observed in real patients. These results herald the aptness
of deep generative models for the generation of virtual patients with diabetes.

Keywords: deep generative models; conditional data synthesis; type 1 diabetes simulators; blood
glucose data generation

MSC: 68T07

1. Introduction

Biomedical simulation is at the heart of modern medical research. Any biomedical
phenomena that can be simulated has the liberty to be subjected to the hit and trial approach
of the scientific method, which is impossible to apply on living beings [1]. Similarly, type
1 diabetes (T1D) simulators have been the reason for many groundbreaking discoveries
in diabetes research [2,3]. However, the conventional biomedical simulators are based on
physiological mathematical models that do not cover the entirety of human physiology.
Hence, the scenarios simulated by these simulators are far from perfect [4]. Keeping in view
the challenges in the path of a model that should describe the complete physiology of the
human body, the realization of such a digital twin seems very unlikely in the near future [5].
Even though the advancement in computing technology and power, the availability of large
data storage devices, low-cost smart devices, and the ease of data acquisition provides us
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with a glimmer of hope, there is still a long way to go in the path of achieving a perfect
physiological description of the human body [6].

Current diabetes simulators suffer from the same fate. They try to mimic the mecha-
nism of a human pancreas using mathematical modeling and control algorithms [7]. Most
of the current diabetes simulators employ a mathematical model of the glucose–insulin
system. A typical glucose–insulin model contains sub compartments such as the glucose
model, the insulin delivery model, the gastro-intestinal tract, muscle and adipose tissue,
and the liver model. However, it is important to note that in a real human being the BG
profile is affected by many more biological systems and processes than just these. Some-
times, the real biological systems are so complex that it is impossible to approximate them
mathematically. Additionally, there are certain hidden biological phenomena occurring
that affect the BG profile of a human being and hence cannot be approximated at all. A
generalization over all those systems that are not modeled or cannot be modelled in a T1D
simulator leads to an intrinsic error that is evident in the simulated scenario [8,9].

The majority of the existing diabetes simulators also lack support for scenarios such as
exercise (most types of it), illness, menstrual cycles, sleep disorders, depression, etc. Having
said that, there have been efforts from scientists/engineers to incorporate disturbances
such as physical activities and patient behaviors in the existing simulators [10,11]. It is
understood that patient behavior affects the glycemic profile of a diabetic patient immensely.
Lifestyle choices and routine habits may cause the glycemic profile of a diabetic to go from
good to worse and vice versa [12]. Eating habits, alcohol consumption, missed meals, and
non-compliance with the doctor’s instructions may prove decisive in achieving control
of diabetes for a patient [13]. An ideal diabetes simulator should provide support for
the simulation of such scenarios in order to capture the complete essence of the effects of
diabetes on a person.

Regardless of the modeling issues, the conventional T1D simulators are still an ef-
fective way to simulate diabetes scenarios for in silico experiments. However, there is
great room for improvement in these simulators and, consequently, the possibility of get-
ting closer to a real patient with T1D. An ideal biomedical simulation task demands the
simulator produce phenomena that fulfills certain performance criteria just like the real
human body would. In addition, realistic simulators must have mechanisms that include a
certain level of randomness to mimic the biological stochasticity of real-life phenomena.
Though it is understood that the simulated scenarios of a T1D simulator must be reusable,
understandable, and reproducible, a T1D simulator in no way should be completely deter-
ministic. All this points to the need of such a T1D simulator that encompasses the true and
whole physiology of the human glucose–insulin model, is capable of simulating customized
scenarios, and produces unique outcomes. Figure 1 shows two ways of approximating
the biological systems/processes of the human body in order to be incorporated into a
simulator. It can be seen from the figure that the framing of a biological system could
be done either by physiological modeling or by learning the distribution of data these
biological systems produce. It could be understood intuitively that the compound effect
of all the disturbances on the glucose–insulin system of a person is reflected in the data
acquired from the system. When investigated for its probability distribution, this data
contains the collective features of all the processes and disturbances that influence the
glycemic profile of a person. The idea is to learn this underlying probability distribution of
the data and then generate novel samples of data using the learned distribution.
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Data-driven generic function approximators such as deep neural networks (DNNs)
have the ability to learn from data the underlying behaviors without deriving from first
principle [14]. DNNs have been extensively used for the prediction, detection, and clas-
sification of adverse glycemic events in T1D management [15,16]. With sufficient good
quality data, DNNs have the ability to perform better than conventional physiological mod-
els [17,18]. Models that can synthesize the observed data are known as generative models.
Generative models learn the joint probability distribution of data, unlike discriminative
models that learn the conditional probability distribution of data instead. When DNNs are
used for this purpose, they are termed as deep generative models (DGMs). DGMs have
the ability to learn from a complex distribution and then generate new samples from the
learned distribution. Such deep learning models could be well suited for biomedical data
simulation tasks because, firstly, they can learn almost all the characteristics of a cohort of
patients given that there is sufficient data, and secondly, they can produce unique samples
from the learned distribution that are statistically similar to original data [19]. One of the
most successful techniques capable of generating synthetic data based on a training in
real scenarios is the generative adversarial network (GAN), which in recent years have
demonstrated its value in biomedical data generation [20,21]. A particular type of GAN is
known as conditional GAN (CGAN). CGAN differs in its functionality from a common
GAN in such a way that an input label can control the generated data. CGANs have been
used extensively in image translation, i.e., converting one type of image in to another type
of image. It is equivalent to saying that one type of image is used as an input label to
produce the targeted output. The image-to-image translation task is often referred to as
pixel-to-pixel translation and the CGAN used for it is known as a pixel-to-pixel (Pix2Pix)
GAN [22]. This paper proposes a strategy for the generation of realistic BG profiles of
T1D patients conditioned on input insulin values using a Pix2Pix GAN. Furthermore, this
work also discusses the possibility of a DGM that may be trained for the generation of T1D
scenarios and can emulate a real T1D patient. The reason GAN is preferred over other
types of DGMs in the proposed work is the fact that it is explicitly set up to optimize the
generative task. Other DGMs, such as variational autoencoders, flow-based models, and
diffusion models, are all set up to model the latent variable and are avoided here because
of the problems related to latent variable approximation.

The major contributions of this work are as follows:

• A GAN has been used for the conditional generation of realistic BG values for the first
time.

• The rationale for the development of a GAN-based diabetes patient simulator is given.

The rest of the paper is structured as follows: Section 2 explains deep generative
models in detail along with its various types. Section 3 elaborates the methodology of
the proposed work, with Section 4 dwelling in on the implementation and results of the
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proposed research work. Discussion about the proposed methodology, implementation,
and results is presented in Section 5. Section 6 concludes the paper with various suggestions
for future work.

2. Deep Generative Models

Deep generative models have been used extensively to generate synthetic data for
numerous sorts of applications over the past few years [23,24]. Though the most famous
of these applications are the ones that involve facial image generation [25] and are under
scrutiny for various reasons [26,27], the generative ability of these models could be har-
nessed positively in a variety of other ways. The DeepMind’s rain predictor is one such
example out of the many practical applications of deep generative models [28]. The aim of
a DGM is to approximate a complex and high dimensional probability distribution using
neural networks [29]. It does so by training a generative neural network in such a way that
the obtained generator model learns to transform a tractable probability distribution Z in
to a complex probability distribution X. Since DGM is an ill-posed problem, it is almost
impossible to uniquely identify the probability distribution of a finite set of samples and
hence the generation accuracy of a DGM is highly dependent on the hyper-parameters
involved in the design of the model. There are several types of DGMs being used by
researchers. None could be said to have any advantage or disadvantage over the other but
that each one performs better than others under certain defined circumstances. The most
common types of DGMs are the generative adversarial networks (GANs), the variational
auto-encoders, the Bayesian networks, and the normalizing flows. Since our system uses a
variant of GAN, our main focus of explanation is this methodology.

2.1. Generative Adversarial Network

GANs are a type of DGM that use two competing models in a zero-sum game, trying
to optimize the loss function [30]. These models are a discriminator model (D) and a
generator model (G). The function of D is to tell real data from the data generated by G,
while G keeps on improving its generated output in order to fool D. Both D and G are
DNNs trained to outperform each other. D is trained on real data and hence can classify
real data from fake data. G, on the other hand, is trained using the feedback from D. The
training of D is an act of minimizing a negative log likelihood loss whereas G uses two
types of losses, the adversarial loss from D and the L1 loss from the similarity between the
generated and real data. Once G learns the probability distribution of the real data set well
enough, it can create infinite samples that are statistically similar to the real data and fool
the discriminator.

2.2. Conditional Generative Adversarial Networks

CGAN is a variant of GAN that takes labeled data to train the discriminator instead
of solo data. Where in a simple GAN the generation of data is not in our control and G
generates new samples from the latent space Z that are unknown to us, in a CGAN the
generation of new samples can be controlled with the help of data labels. Data samples
along with their labels are fed to D for training purpose. Data labels are also used to
condition Z in order to generate outputs that are similar to the data associated with the
label. CGAN has been used effectively in text-to-image GAN architectures [31]. These
models generate images according to the textual description provided by the user. The
labels are provided as an embedded layer to the neural network during training. While
generating new samples, the label information is added to Z so that the output is dependent
on the label.

The operation of a CGAN may serve the purpose of a diabetes virtual patient sim-
ulator aptly. First, it can draw random samples from a random latent space and convert
them into realistic glucose values. Secondly, it can also condition the generation of these
glucose values on any of the other data such as insulin, carbohydrates, physical activity, etc.
The generation of BG values that are conditioned on input insulin values mean that the
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generated values are insulin dependent and will follow the underlying distribution of the
insulin profile provided to the model as input.

2.3. Image Translation Using Conditional Generative Adversarial Networks

A variant of CGAN, known as the Pix2Pix architecture, is implemented in this research
work. Part of the reason why we opted for a Pix2Pix architecture was to capture not only the
data distribution but also its internal representations in a structured way from the portrayal
of the BG and insulin time-series in image form. The Pix2Pix GAN performs the task of
translating one type of image into another type of image. The generator in a Pix2Pix GAN
learns to map an input image to an output image. To carry out this task, the input image
is taken as a label to the target image. Pairs of input image and target image are used to
train the discriminator. Additionally, the generator latent space is conditioned on the input
label image as well in order to generate the images of our choice. Once trained, G is used to
generate new images that are similar to real images. Each time the trained G is fed with
a new input/label image, it will produce an output/target from the latent space. Hence,
it is synonymous to say that unique target images will be generated using unique inputs.
Fundamentally, the mechanism of generation in the proposed methodology is a translation
task from one type of data to another type of data. In our model, having the generation of
BG values respond to the input insulin labels gives us the liberty to generate BG scenarios
of our choice. Moreover, along with the quantity of input insulin, the generated BG values
are also affected by how the insulin samples interact with each other, hence preserving the
temporal characteristics of the data.

For synthetic BG value generation, the insulin data are used as input, whereas the
BG values are used as output data. The numerical data is first converted into images to
prepare it for training. The conversion of data from numerical form to a graphical form is
carried out using the HSV color map. After the formation of the image data set, training of
the model is performed. This can be observed in Figure 2. Once, the generator learns the
underlying probability distribution of the real data set, it can produce unique BG images
when provided with unique insulin images.
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3. Methodology

The proposed system uses a Pix2Pix GAN together with a series of various other
techniques to achieve the task of virtual patient generation. The proposed system consists
of four main parts that are also its main operations. In the order of operation, these parts
are:

• Numerical data to graphical data conversion;
• Pix2Pix GAN Training;
• Data generation using a trained Pix2Pix generator;
• Graphical data to numerical data conversion.

3.1. Experimental Data Sets

The proposed model is put to test in order to generate data that are statistically similar
to two distinct data sets from separate studies. The first data set contains 29 patients on
insulin pump therapy provided by the Hospital Clínic de Barcelona [32]. All the patients
included in this data set wore Medtronic’s MiniMed 640G insulin pumps. This data set
contains a cumulative sum of 1169 days of insulin and BG data. By insulin data, here, we
mean the plasma insulin approximation obtained using the Hovorka plasma insulin model
of the total insulin injected to the patient [33]. The second data set used to train the Pix2Pix
GAN is the Ohio T1DM data set [34]. We used data from the first 6 patients of this data set
that consists of 264 days of BG and plasma insulin data. These Ohio T1DM data set patients
were on insulin pump therapy as well and wore Medtronic 530G or 630G insulin pumps.

3.2. Model Architecture

A Pix2Pix GAN is implemented using the Keras deep-learning framework in Python.
As discussed already, a Pix2Pix GAN is a type of CGAN that conditions the generation
of target images on some sort of label images. In our case, the generated/target images
were that of BG and the input labels were insulin. It helps understanding the phenomena
better if the insulin images are imagined as inputs while the glucose images as output.
The implementation of Pix2Pix GAN involves expert designing of the generator and
discriminator model and the strict optimization of the system. Deciding the specifications
of G and D is the most important step in moving towards the implementation of a GAN.
We have used the same architecture as presented by [22] with some modifications to the
model layers and hyper-parameters. The D model is a DNN that performs the binary
classification task of classifying images as real or fake. The images are provided to D as
input and output pair as shown in Figure 2. The D model receives an insulin-BG image pair
and classify them as real or fake. However, the D model used in the proposed model is a
special type of model known as the patchGAN discriminator. Figure 3 shows the formation
of the D model. The patchGAN D works on the concept of the effective receptive field
of the model. It essentially means that the discriminator neural network only classifies a
portion of the input image and do not take the entire image for the classification purpose.
In the end, the outcomes of all such decisions are convoluted to obtain the one combined
output. The benefit of such an approach is that different sizes of images could be classified
with the help of such a model. Moreover, in our application, the patchGAN discriminator
learns about the relationship between a particular segment of insulin image and a particular
segment of BG image. This in effect means that our model does not only learn the general
relationship between the 6 h chunks but also approximates the relationships between the
samples falling inside these 6 h chunks.

Since for our model the input is a 72 × 1 dimension image, the kernel (filter) size is also
kept as one-dimensional (1D). Here, it is important to consider that the convolutional layer
used is still a two-dimensional (2D) layer and not 1D. The concept of padding has been
employed in order to keep the spatial dimensions of the layer’s outputs same as the inputs.
Leaky rectified linear unit (Leaky ReLU) is used as the activation function at each layer. A
total of six 2D convolutional layers are used in D. The training pair of plasma insulin image
and BG image are concatenated and labeled as 1 for the real image pair before feeding
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them to the Pix2Pix model for training. For the generated images, the plasma insulin and
generated BG images are concatenated and labeled as 0. Concatenation is performed in
order to have both types of images in the batch when the model weights are updated and
the mapping between the images is learned.
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Figure 3. The patchGAN discriminator model that performs classification between real and generated
BG images.

On the other hand, the G model, as shown in Figure 4, is comparatively more complex.
This model is based on an encoder–decoder architecture which consists of two blocks of
CNNs that are standardized for the purpose of replication: the encoder block and the
decoder block. Both of these blocks are connected with the help of a bottleneck convo-
lutional layer. Moreover, a slight modification is made to the conventional design of the
encoder-decoder model by forming connections between layers of same size in both of these
blocks [35]. This modification is usually referred to as the U-net configuration and is the
reason why the generator in our designed Pix2Pix model is referred to as a U-Net generator.
This design has been proven to facilitate the learning of minute details in an image [35]
and can support the algorithm in learning transitions between colors for time-dependent
characteristics of the insulin and BG time-series.
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3.3. Translation between Numerical and Image Information

Since the GAN used in this work is a convolutional neural network-based image to
image translator, the data used to train this model are image data. For this particular
purpose, numerical data from the actual diabetes patient cohort are first converted into
images. Conversion to image data is carried out through the HSV color map as shown in
Figure 5. Six hours of insulin/BG data are converted into one HSV image using MATLAB.
A duration of six hours is selected in order to completely approximate the effect of insulin
and meals in the output BG profile. Each pixel in the HSV image represents the magnitude
of the insulin/BG value in the actual 1D array. Six hours of data mean that there are
72 pixels in the obtained image since the sample time in the actual time-series is 5 min. The
proposed system uses plasma insulin and glucose data for training and hence, only these
two sets of data are converted into images.
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The HSV color map is chosen for image generation because of its simpler parametric
composition. The HSV color scale is inspired by how the human eye perceives colors [36].
We see the same colors as those depicted by an RGB scale but do not comprehend them as
a mixture of red, blue, and green. Instead, the human eye comprehends a color in terms of
its saturation, tone, and brightness/darkness levels. The HSV color scale represents these
parameters as the hue, the saturation, and the value (of brightness). The hue of the color is
the color itself. The saturation of the color defines how saturated the quantity of color is,
whereas the value of a color describes the brightness/darkness of a color.

It is important to note that even though its three channels, i.e., H, S, and V, represent
the definition of a color on an HSV scale, it is still possible to depict any color correctly by
using just the H parameter while keeping the S and V parameters constant (greater than
0). We have leveraged this property of the HSV scale by using just the H parameter for
color portrayal while keeping the S and V parameters at a constant value of 1. This has
made the translation from time-series data to color images a 1D-to-1D data translation in
essence. Figure 5 shows an HSV cone. The H parameter represents the circumference of the
circular plane in the cone. Each of its 360 degrees represents one color. The S parameter
is represented by the radius of this plane, whereas the V parameter lies on the plane
that connects the flat circular plane to the apex. To increase the saturation of a particular
hue/color, we move away from the axis of the cone on the S parameter. On the other hand,
increasing the V parameter takes us towards the lighter colors. Since, each color in the HSV
color map can be represented by a single numerical value, i.e., the H parameter, it is easier
to map an insulin/BG value to a pixel in the obtained image. The H parameter encodes each
color as one of the 360 degrees of a circular plan. Since each color in the pallet is represented
by one degree, there are a total of 360 colors on the H scale. The numerical time-series is
transformed into its graphical representation by choosing one of these 360 colors for one
magnitude value. Since for both insulin and BG time-series the possible values do not
exceed the range of 360, transformation into images is a straightforward affair.
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Furthermore, a translation mechanism is employed in order to translate the images
back into numerical values. Since the output of the trained model is in image form, this
translation mechanism is used to obtain the final BG time-series. As shown in Figure 6,
while translating the generated images into BG values, the images are first given as an input
to a µ-law expander in order to increase the dynamic range of colors. There are several
reasons for the low dynamic range of colors in the generated images. One reason is the
bottleneck layer in the U-Net generator model where significant image details maybe lost.
Decrease in the dynamic range might be considered somewhat similar to a logarithmic
compression process where the amplitudes are brought more or less to the same level and
the dynamic range is compressed. The expander reverses this process and increases the
difference between the smallest and largest values of the signal. After passing through
a µ-law expander, the images are translated into BG values by using a pixel-to-BG scale.
According to the pixel-to-BG scale, one pixel value is translated to one BG value. Since the
HSV color map has 360 degrees representing 360 colors and the BG scale of 40–400 mg/dL
too has 360 BG values, each color value can be mapped to each BG value. After the pixels
are translated in to BG values, the resultant time-series is passed through a low-pass filter
for further smoothing. A BG time-series is obtained at the output of the low-pass filter.
Figure 6 demonstrates the conversion of generated BG images into numerical values using
the translation mechanism discussed above.
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is translated into blood glucose time-series.

3.4. Model Training and Data Generation

The proposed Pix2Pix generator is trained using an entire batch of paired images, i.e.,
the insulin and BG pairs. Each input insulin image corresponds to one target BG image. The
total number of steps required to complete the training depends on the number of images
in the data set multiplied by the number of epochs. Since there are 29 patients in the first
data set, the Pix2Pix GAN was trained 29 times by excluding data from one patient during
each training instance. This way, a total of 29 models were obtained. Similarly, for the Ohio
data set, the model was trained 6 times for 6 patients in order to obtain 6 separate models.
The training task of the proposed GAN architecture involves optimizing for two types of
loss functions, the discriminator loss and the generator loss. The model weights for both
the discriminator and generator model are updated after training on each individual image.
The model is trained for 50 epochs because an empirical testing phase has pointed out this
value as a common framework where the models achieved the convergence. The trained
models are then used to generate data for each patient individually. The training process
could be understood by looking at Figure 2. Once the generator is able to generate fake
images that are real enough to fool the discriminator completely, the generator weights stop
updating because the discriminator adversarial loss becomes zero. For an optimally trained
GAN model the discriminator must demonstrate theoretically equal loss values for both
real data and generated data. This means that the discriminator is unable to distinguish
between real and fake images. In other words, the generator is producing images that are
plausible enough to be considered real. This is when a generator model is considered to
be fully trained and its weights should not be updated further. A fully trained generator
model is then used to generate new fake images that are considerably similar to the real
images. Figure 7 shows three sample images that have been generated by our generator
along with the corresponding real BG data. Each generated image represents 6 h of BG
data.
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At least 4 weeks of data is generated for each patient in order to achieve the optimal
amount of data required for reporting the glycemic performance parameters such as times
in ranges and coefficient of variation (CV) etc. [37]. The generated BG data is then analyzed
for various clinical parameters and times in standardized ranges of BG levels. These ranges
are classified into three groups, namely the time below range (TBR), the time in range
(TIR), and the time above range (TAR). Other metrics such as mean, CV, and maximum and
minimum values of BG are also calculated for each patient. Means of all these parameters for
the generated cohort are then compared against the means of the actual cohort. Moreover,
the p-values from the Wilcoxon rank sum test are computed for each of these metrics of the
generated data set against the metrics of the real data set. The 25% and 75% quartiles are
computed for each metric as well and given as such.

4. Results

Tables 1 and 2 contain all the results for both data sets. Table 1 shows the times in
standardized ranges of BG levels, mean, CV, minimum and maximum values, and their
corresponding p-values for the 29 patients real and generated cohorts. It could be clearly
understood from the table that p-values depict strong statistical similarity between the
two cohorts. In other words, the generated cohort and the real cohort display statistical
significance since all the p-values qualify the 0.05 threshold of hypothesis confirmation.
Similarly, Table 2 shows the results for the Ohio T1D data set. It could be observed for
this data set, too, that the p-values for all the parameters qualify the null hypothesis of the
two-sample test except for the p-value of the maximum value.

The inter quartile ranges (IQ) for the Ohio data set hints at space for improvement.
The reason for this is understood to be the lesser quantity of data. Just like it has been a
trend with DNNs, an increase in the amount of training data improves the performance of
the model.

Figures 8 and 9 present a graphical comparison of the generated data against the real
data for both experimental data sets in terms of the standardized ranges of BG levels. The
bar graphs show the mean values with the p-values that show statistical similarities are
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written on top of the quantities in comparison. It can be seen that the generated data sets
are significantly similar in terms of both the means of data and the statistical p-values. This
graph also provides us an insight on the standard deviations of the two data sets.

Table 1. A comparison of generated cohort and real cohort: Medtronic’s MiniMed 640G data set
(29 patients).

Ranges Real Cohort Generated Cohort p-Values

Below 54 (mg/dL) 1.26(0.16–1.03) 0.90 (0.34–1.15) 0.32
54 to 69 (mg/dL) 3.14 (1.41–4.03 3.41 (2.43–4.56) 0.15

70 to 140 (mg/dL) 38.72 (29.32–46.81) 42.40 (37.98–47.99) 0.35
70 to 180 (mg/dL) 62.68(55.64–69.45 63.39 (56.91–70.71) 0.99

180 to 250 (mg/dL) 24.70 (17.52–30.46) 22.46 (18.34–27.51) 0.39
Above 250 (mg/dL) 8.94 (3.43–11.75) 8.25 (4.31–11.21) 0.85

Mean CGM (mg/dL) 159.46 (148.06–173.86) 157.64 (147.76–169.16) 0.86
CV (Percentage) 35.96 (32.89–39.05) 38.56 (35.85–41.88) 0.12

Maximum CGM (mg/dL) 373.03 (358–400) 389.27 (387.93–400) 0.06
Minimum CGM (mg/dL) 43.86 (40–43) 46.21 (40.00–50.20) 0.25

Table 2. A comparison of generated cohort and real cohort: Ohio T1D data set (6 patients).

Ranges Real Cohort Generated Cohort p-Values

Below 54 (mg/dL) 0.63 (0.19–0.81) 0.63 (0.06–0.84) 0.55
54 to 69 (mg/dL) 2.20(1.45–2.43) 2.18(0.08–3.64) 0.82

70 to 140 (mg/dL) 34.52(32.07–40.77) 45.24(26.33–63.36) 0.48
70 to 180 (mg/dL) 55.91(50.98–61.97) 55.65(34.92–74.06) 0.94

180 to 250 (mg/dL) 24.45(20.23–28.49) 28.34(15.94–38.83) 0.99
Above 250 (mg/dL) 7.66(4.75–10.25) 12.65(4.65–18.52) 0.94

Mean CGM (mg/dL) 146.53(133.25–156.02) 158.63(127.73–190.56) 0.99
CV (Percentage) 49.28(43.60–56.20) 40.44(34.47–45.89) 0.31

Maximum CGM (mg/dL) 395.67(397.75–400.00) 340.43(331.15–347.81) 0.004
Minimum CGM (mg/dL) 41.00 (40–40) 51.55 (40.08–62.53) 0.12
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5. Discussion

The proposed system demonstrated that, first, our Pix2Pix GAN learned from the
distributions of BG profiles of diabetic patients labeled with plasma insulin estimation and,
second, that it is able to generate new BG values conditioned on plasma insulin values. The
generated BG values showed statistical similarity with the original data set. Since the model
was trained and tested with two different data sets, the results for both data sets confirmed
the effectiveness of our method. However, it is important to note that the approximation
was better for the 29 patients’ data set as compared to the 6 patients’ data set, confirming
that the amount of data used for training is a significant performance constraint. The need
for more data, though paradoxical when it comes to data generation, is also evident from
the theory of GANs [38].

Since, we used a variant of GAN that performs the task of image translation, the
numerical data was transformed into graphical data in order to be used with the GAN. This
strategy proved efficient for our cause because fundamentally, graphical data are a depiction
of numerical data and the transformation was a number-to-number transformation in
essence, i.e., the translation task of numerical values to images and then back to numerical
values; however, this needs to be carried out with utmost care as slight neglect may lead
to information loss and induction of errors. For instance, the expander parameters in the
proposed model needs to be selected after rigorous testing or it could induce errors in the
measurements. Keeping this in mind, the translation task could well be coupled with a
correction factor of some sort to correct for the induced errors. Having said that, there can
never be complete compensation for all sorts of losses and errors. Furthermore, the Pix2Pix
GAN used in the proposed study learns from an original distribution as well as trains a loss
function. This approach makes it possible for it to be used in any sort of image-to-image
translation task without the need of designing a customized loss function. Additionally,
this GAN is found to be efficient at pushing the output color distribution closer to the
input color distribution [22]. Furthermore, the patchGAN discriminator used in our model
encourages greater color diversity, which makes it a suitable choice of discriminator for the
problem of translating a particular type of heat map into another type.

Since the aim of this work is to move towards a working environment that could
simulate scenarios mimicking T1D patients, the correction factors used in the translation
task should be evaluated thoroughly for all possible errors and documented accordingly.
Furthermore, the translation algorithm should be tested for multiple cohorts and any errors
should be quantified. In case of the proposed work, the same translation algorithm worked
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equally good for both the data sets. In future, the generation of BG can be conditioned on
various other types of data such as carbohydrates or physical activity data. In order to
enable such DGMs to be able to approximate the whole of the human glucose–insulin mech-
anism, they must be trained on a large amount of versatile data. The proposed methodology
may prove advantageous when a variety of data is used for glucose conditioning. In the
current form, another column of pixel data may be sufficient for a new type of data to be
added to the input image. Pix2Pix GAN’s adaptability to various types and sizes of images
makes it suitable for such kind of a problem where the formation of images may change
because of the addition or removal of data.

From the clinical perspective, the proposed methodology shows promise in the cre-
ation of simulation environments that could be used for the development and testing of
new treatment methodologies in T1D management. One of the strengths of conventional
T1D simulators is the control of various phenomena affecting the glycemic profile, such
as the amount and type of meal and insulin, among other factors. These simulators are
also capable of reproducing results for a particular combination of the affecting factors.
All of this points towards the approximation of causal relationships between these factors
and the generation of BG time-series. One way to approximate causal relationships is
through recurrence. Introducing snippets of recurring relationships to a CGAN enables it
to generate data that depicts a causal relationship to the data it is conditioned on. Once
an understanding of the causality is established, generative models could be utilized to
generate data in future and hence provide predictions. The predictions, when tested experi-
mentally, may give us a deeper understanding of the biological system at hand and help us
devise treatments that are effective in real life.

6. Conclusions

Existing T1D simulators are based on physiological models and fail to provide an
all-inclusive synthetic T1D patient platform for researchers to work with in the field. Data-
driven models have the capability to learn those underlying characteristics of the human
body from data that are hard to represent through physiological models. This research work
proposed a Pix2Pix GAN model for the generation of BG values conditioned on plasma
insulin approximation of T1D patients. The glucose data generated by the proposed system
are realistic enough to be used as an alternative to real data. The BG data generated by
our model could also be added to real data in order to improve the effectiveness of certain
other data driven models, i.e., predictive models or classification models. In future, the
generation of BG values could be conditioned on other types of data, such as carbohydrates
or physical activity data, for more realistic results.
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Abstract

Type 1 diabetes (T1D) simulators employ mathematical physiologi-
cal models of the glucose-insulin system. Used in the development
and refinement of new treatments for diabetes, these simulators fail
at encompassing the entire physiology of the glucose-insulin system
because of the imprecise approximation of the physiological mod-
els. We present a simulation environment based on a conditional
sequence-to-sequence deep generative model that performs the task
of causally synthesizing virtual T1D patients. The generated patients
display statistical similarity to the real patients when evaluated for
time-in-range results for each of the standard blood glucose ranges
in T1D management along with means and variability outcomes.
When tested for causality, authentic causal links are identified between
the insulin, carbohydrates, and blood glucose of the virtual patients.
The trained generative model demonstrates behaviors that are closer
to reality as compared to conventional T1D simulators when sub-
jected to closed-loop insulin therapy using a state-of-the-art controller.

Keywords: virtual type 1 diabetes patients, type 1 diabetes simulators,
causal blood glucose data synthesis, deep generative models
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2 Generative deep learning for the development of a type 1 diabetes simulator

1 Introduction

The terms modeling and simulation (M&S) go hand in hand. Though defined
differently by different researchers depending mostly on the field of study, the
majority of these definitions are some variant of the interpretation presented
by Kaizer et al. [1] which states that a model is a “representation of a system,
entity, phenomenon, or process” whereas a simulation is “the imitation of a
behavior of a system, entity, phenomenon or process through the exercise or
use of a model”. The purpose of M&S is the emulation and approximation of
physical phenomena that cannot be directly observed, for the purpose of better
understanding. It is the process of explaining how an object of interest behaves
in an environment. Biomedical simulation tasks may employ some model(s)
of a biological system to emulate the physics underlying biological organs in
coordination with certain other mechanisms to form a complete simulation
environment.

The majority of biomedical simulators use mathematical physiological or
pharmacokinetic models to simulate biological phenomena [2]. Such simulators
hold significance in the development and testing of new treatments and thera-
peutic strategies for different diseases because they offer a cheap alternative to
patient and animal testing both in terms of time and money. Moreover, they
can quickly help identify parts of the device design that may not be effective
and prevent the development of adverse circumstances because they are easy
to interpret [3]. Though efficient to some extent in the task of approximating
phenomena resulting from biological organs, the physiological models do not
capture the entirety of a biological process because of various elements that are
simply not possible to model [4]. These elements may be certain unmeasured
variables affecting the outcomes of a process or external influencing factors
such as the patient lifestyle choices, routine habits, and environmental factors
[5]. Consequently, an intrinsic error is induced in the approximation of phys-
iological models in the form of a non-random grey noise that compromises
the effectiveness of these models in an unavoidable fashion. Since, a model is
a combination of various parts such as compartments, failure to approximate
the real scenarios is often unexplained in terms of error-inducing components
[6]. Similarly, in the case of an accurate approximation, the reason for success
may not be measured deterministically either.

Existing type 1 diabetes (T1D) simulators employ physiological models of
the glucose-insulin system for the purpose of generating glycemic scenarios
emulating real-life T1D patients [7] [8] [9]. Integration of such physiological
models with open-loop (OL) or closed-loop (CL) control methodologies enables
the creation of simulation environments that imitate the glucose-insulin rela-
tionship of T1D patients. These simulators have made the development and
testing of several treatment methodologies possible for T1D patients [10].
However, as discussed already, the physiological descriptions of the glucose-
insulin system are far from perfect and the T1D simulators based on these
models suffer from the induced inaccuracies of the mathematical descriptions.
Having no provision regarding patients’ life choices and habits or other life
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disturbances such as menstruation, depression, medication, etc, these simula-
tors often crumble in scenarios that require higher precision into the real-life
factors affecting diabetics. This forms the basis of the rationale for the explo-
ration of approximation techniques that will take a wholesome picture of the
factors affecting the glycemic trends of a T1D patient into account. Such an
approximation technique needs to take external factors like exercise, illness,
menstrual cycles, sleep disorders, depression, and medication into considera-
tion. Furthermore, the existing T1D simulators have little support for patient
behavior such as eating habits, alcohol consumption, and lifestyle choices.
These factors have a significant impact on the glycemic profile of a person
and having these disturbances included in a simulator will ensure the simu-
lation of highly accurate scenarios. It is understood that modeling each one
of these disturbances individually is an impossible task; however, the effect of
these disturbances can be approximated from the data they generate. The pro-
posed methodology leverages the concept of modeling from data using generic
function approximators.

Generic function approximators have been proven to learn complex non-
linear relationships from data. According to the universal approximation
theorem, an artificial neural network (ANN) with a hidden layer is capable of
learning almost any function given that it is sufficiently wide [11] [12]. This
means that a neural network designed to learn the probability distribution
of data may learn any complex distribution provided that the network is apt
enough and the data is available in sufficient quantity. Moreover, given the
data is available in sufficient quantity deep neural networks (DNNs) are capa-
ble of surpassing mathematical models in terms of better approximation of
systems [13] [14]. Deep generative models (DGMs) are DNNs that are capable
of learning the underlying probability distribution of data and then generat-
ing novel samples from the learned distribution. The effectiveness of DGMs
in approximating distributions accurately has been demonstrated by several
recent studies in various areas of research including biomedical applications
[15] [16] [17] [18].

With reference to probability theory, deep learning models are often divided
into the following categories: the generative models, the discriminative models,
and the composite models [19]. Discriminative models learn the conditional
probability distribution from data whereas generative models learn the com-
bined probability distribution from data. Composite models on the other hand
are a combination of discriminative models and generative models. DGMs are
a type of composite model. Evidently, the data obtained from the human
glucose-insulin system depicts a complex underlying probability distribution
and DGMs are one of the most suitable methodologies for learning this type
of distribution. Starting from the restricted Boltzmann machines the field of
DGMs has evolved quite a bit and there are now several types of DGMs avail-
able that can perform the task of unsupervised learning of the hidden features
in a particular data set [20] [21]. The performance quality of these models
is context dependent such that none could be deemed superior to the other
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4 Generative deep learning for the development of a type 1 diabetes simulator

and vice versa. Some of the most trendy DGMs include variational autoen-
coders, generative adversarial networks (GAN), normalizing flows, diffusion
models, and autoregressive models. In this work, we have employed a GAN
for the task of conditional BG generation. GAN is chosen over other types of
DGMs because it has been specifically set up to optimize the generation tasks.
Other DGMs, such as variational autoencoders, flow-based models, and diffu-
sion models, are all set up to model the latent variable and are avoided here
because of the problems related to latent variable approximation [22] [23].

This research work proposes a strategy of utilizing DGMs for the task of
simulating T1D patients’ profiles by learning glycemic trends in the form of
glucose-insulin and glucose-carbs relationships from the data. The proposed
methodology employs a conditional generative adversarial network (CGAN)
for the generation of BG values conditioned on the plasma insulin approxi-
mation (PI) and the carbohydrate rate of appearance (RA) of T1D patients.
We have demonstrated through a multi-therapeutic validation approach that
the generated BG values exhibit a dependency on the input PI and RA val-
ues which is consistent with the glycemic relationships of real T1D patients.
Moreover, the generated BG values depict the input insulin and carbohydrates
taking effect in the glycemic profile over time. This is achieved by building
on the idea of shifted input/output pairs to approximate the glucose-insulin
model of a cohort of T1D patients. These properties show the appropriacy
of our methodology for the purpose of simulating T1D patients and devising
treatment regimens based on OL and CL therapies. The main contributions
of this work are:

• The first-of-its-kind AI-based T1D simulator with open-loop and closed-loop
insulin therapies

• Causal generation of BG values using DGMs
• Generation of realistic T1D patients conditioned on insulin and carbohy-
drates values

We have tried to include as many details as possible about the tools and
data set used in the study, problem formulation, and results based on the
benchmarks of robustness for AI in healthcare proposed by Diana Mincu and
Subhrajit Roy [24]. The rest of the paper is focused on explaining the method-
ology to generate causal data using DGMs, the results containing the statistical
similarity tests and causality analysis, and the discussion about the limitations
and possibilities of this work. Section no. 2 unfolds the proposed methodology
of setting up a CGAN for the generation of BG values that are realistic and
causally dependent on inputs. Section no. 3 throws light on the results while
section no. 4 discusses the results in light of the T1D simulation tasks. Section
5 concludes the paper with suggestions and possible future work directions.
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2 Methodology

This section dwells on the approaches, techniques, and models required to
devise the proposed methodology. The section starts by first explaining the
proposed GAN model that constitutes the major portion of the proposed
methodology and after that describes the training of this model for the task
of learning causal relationships between BG, insulin, and carbohydrates data
of T1D patients. The conditional generation of BG data for the synthesis of
virtual T1D patients using the trained models is demonstrated at the end of
the section.

2.1 Sequence-to-Sequence Generative Adversarial
Network

This study proposes the use of CGAN, which is a type of GAN, for the gener-
ation of BG samples [25]. A CGAN conditions the generated samples on some
other type of input. The conditions are provided as labels to the GAN. Such a
setup could also be imagined as a translational model where one form of data
(labels) is translated into another form of data (generated samples). When
slightly altered, such a model can be transformed into a sequence-to-sequence
(S2S) or a pixel-to-pixel (P2P) model [26]. For an S2S model, the CGAN is
required to translate an input vector into an output vector. For a P2P model,
the CGAN deals with image pixel data. The proposed methodology uses the
S2S approach to condition the output array of BG values on the input arrays of
insulin and carbohydrates. Figure 1 shows the S2S GAN architecture utilized
in the proposed methodology for the generation of T1D patients.

As mentioned above, GAN is a hybrid deep architecture constituted of two
DNNs working in a zero-sum game to achieve optimization. These DNNs are
the discriminator (D) model and the generator (G) model. The D model in
our proposed architecture is presented in Figure 2. Just as the name suggests,
the D model discriminates between two sets of samples such as the real and
generated samples. This model is trained on real samples from the data set and
fake samples generated by the generator. For classification purposes, the real
samples are labeled as ’1’ whereas the fake samples as ’0’. As seen in Figure 2,
the D model is constituted of five 1D convolutional layers of different sizes. 1D
convolutional layers are chosen in order to learn the temporal characteristics
of the time-dependent data. The input to the D model is a concatenated
signal of one sample of PI, one sample of RA, and 18 samples of BG. This
combination of signals serves as the input/output configuration required for
the S2S GAN. The PI and RA are the input pair whereas BG is the output.
The classification task of the D model is to distinguish between the real and
synthetic configurations of these three signals. On the other hand, the G model
tries to learn the underlying probability of the real data set based on the
feedback it receives from the D model. Figure 3 displays the architecture of the
G model in our S2S GAN. It takes a three-signal formation of PI, RA, and the
latent space (Z) samples as input that are passed through a dense layer before
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6 Generative deep learning for the development of a type 1 diabetes simulator

being reshaped and concatenated. Z is chosen to be a normal distribution. The
G model is constituted of a total of four 1D transpose convolutional layers. For
the G model, the PI and RA are obtained from the real data and condition
the transformation of Z into BG values. Both D and G are trained using the
Wasserstein loss scheme. The losses for both D and G are averaged over a
mini-batch of data. The complete S2S model is trained using paired data with
one PI and one RA value mapped to 18 BG values in each pair.

Fig. 1: S2S model used for the generation of blood glucose values conditioned
on insulin and carbohydrates. (PI:Plasma Insulin Approximation, RA: Carbo-
hydrates Rate of Appearance, BG: Blood Glucose, Z: Latent Space).

2.1.1 Experimental Data Set

We used data from 27 patients on insulin pump therapy of the Hospital
Cĺınic de Barcelona T1D data set [27]. The data used in our implementation
contained the BG profiles of each patient along with the insulin and carbo-
hydrates information. Basal and bolus insulin values were first converted into
the patient’s PI approximation using Hovorka’s insulin pharmacokinetic model
[7]. On the other hand, carbohydrate values that were given in grams in the
original data set were depicted as the RA using the mixed meal libraries from
Ernesto et al [28]. RA of meals that fitted the meal description based on the
time of the day the meal was taken and the number of grams of the meal was
chosen to represent a particular meal. In the end, the time series obtained from
carbohydrates was a combination of the carbohydrates RA of all the meals
taken by the patient in a particular time frame.
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The inputs and outputs were introduced as pairs to the GAN model. This
essentially means that for one input pair there were a total of 18 values of
output BG. The shift was achieved using the ’roll’ function in python. The
training data was normalized before being subjected to training which was
achieved using the MinMaxScaler in scikit-learn. This shifted normalized pair
data was then used to train the S2S GAN model.

2.2 Training With Recurring Data

Our proposed S2S model was trained on PI, RA, and BG values from a T1D
patient cohort. To introduce causality between the inputs and the outputs, a
shift of 90 minutes was introduced between the PI/RA pair and BG values.
This was done in order to completely capture the effect of insulin and carbo-
hydrates taking place in the BG profile of a T1D patient. Since the sampling
rate of the signals was 5 minutes, to introduce a shift of 90 minutes, the shifted
pairs were formed by mapping one PI/RA pair value to 18 future BG values.
The recurring pairs of data acted as snapshots of the cause-and-effect relation-
ship between them. The entire data set was first converted into groups of 1
PI/RA pair and 18 BG values. A visualization of the shifted pairs of insulin,
carbohydrates, and BG can be seen in Figure 4. The batch size was kept at
1 because smaller batch sizes are often associated with training stability and
lower generalization error. This enabled the model to learn the causal rela-
tionships among the data trickling through each recurrent sample of data. The
S2S GAN model was then trained with the shifted samples for a total of 50
epochs because empirical testing suggested this as the optimal value for all the
models to achieve convergence. Since the batch size was chosen to be 1, the
time taken in training for one epoch directly depended on the total number
of samples included in the training data. A leave-one-out scheme was used to
train the S2S GAN for the entire cohort. Since there were 27 patients in the
cohort, the S2S model was trained 27 times excluding 1 patient each time. A
total of 27 trained models were obtained at the end. Each trained model was
then used to generate a new T1D patient.

2.3 Synthesis of Virtual T1D Patients

The trained models were then used to generate novel BG samples when pro-
vided with unseen PI and RA values from T1D patients. During generation,
1 sample of input PI and RA each produced 18 samples of BG. For a series
of insulin and carbohydrate values, the outputs were shifted by one sample
for every input pair and then averaged to compute a recurrent output that
depicted a causal relationship between the input and the output. This phe-
nomenon can be understood by looking at Figure 5. With the help of this
generation technique, a virtual patient was generated for every real patient,
utilizing the real patient’s PI and RA information. A total of 27 virtual T1D
patients were generated.
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8 Generative deep learning for the development of a type 1 diabetes simulator

Fig. 2: Graphical depiction of the discriminator model. (PI: Plasma Insulin
Approximation, RA: Carbohydrates Rate of Appearance, BG: Blood Glucose)

Fig. 3: Graphical depiction of the generator model. (PI: Plasma Insulin
Approximation, RA: Carbohydrates Rate of Appearance, Z: Latent Space).

2.3.1 Latent Space Exploration

Since we know from the generation operation of GAN, ”which draws a sample
from a random number space and then transforms it into the value of choice”,
latent space is a parameter of great importance in our model. The choice
of latent space was a normal distribution in our implementation. As evident
from the literature, the quality of generated data of GAN depends on the

CHAPTER 2. DATA-DRIVEN MODELS FOR TYPE 1 DIABETES USING GENERATIVE
DEEP LEARNING

57



Generative deep learning for the development of a type 1 diabetes simulator 9

Fig. 4: The shifted plasma insulin approximation/carbohydrates rate of
appearance and blood glucose pairs used to train the S2S GAN: each input
sample pair of insulin and carbohydrates corresponds to 18 output samples of
blood glucose. (PI:Plasma Insulin Approximation, RA: Carbohydrates Rate of
Appearance, BG: Blood Glucose).

dimensions of the latent space [29] [30]. Even though there are no standards for
latent space dimensions, a size of 100 or 512 is preferred in image generation
tasks. For our application, it was observed that latent dimensions significantly
smaller than 100 produced plausible results. Moreover, the exploration of latent
space was performed during the inference phase when novel BG profiles were
generated for each patient. The selection of the model along with the latent
space configuration is an important parameter in our methodology since we
strive for the generation of BG samples that are as close to the real samples as
possible. The latent space exploration was done using vector arithmetic. Along
with generating realistic samples, varying effects of latent space exploration
were observed. It was observed during this exploration that the variability of
the generated BG profile could be controlled by changing the magnitude of the
random samples acquired from the latent space. Larger magnitudes tended to
produce outputs with a higher coefficient of variation (CV) and vice-versa. It
is important to mention here that all the virtual patients were generated using
the same latent space configuration.

2.4 The Simulation Environment

The simulation environment shown in Figure 6 was set up for the evaluation of
OL and CL insulin delivery strategies in patients with T1D. This also served as
the validation phase for the trained DGM. The evaluation was done by observ-
ing the glycemic outcomes of the generated virtual patients. These glycemic
outcomes include time-in-range results for each of the standard blood glucose
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10 Generative deep learning for the development of a type 1 diabetes simulator

Fig. 5: The phenomena of recurrence in the generated blood glucose samples:
each output blood glucose stream is shifted 1 sample for every input sample
pair. (PI:Plasma Insulin Approximation, RA: Carbohydrates Rate of Appear-
ance, BG: Blood Glucose).

ranges (<54 mg/dL, 54-69 mg/dL, 70-140 mg/dL, 70-180 mg/dL, 180-250
mg/dL, >250 mg/dL) in T1D management along with means and variability
outcomes [31]. In the proposed work, the main reason to opt for two insulin
delivery therapies was to check the practicality of the proposed methodology
and to further validate the approximation of the trained DGM in terms of
causality and exactness. In the future, such therapies could be employed in the
proposed simulation environment for the sole purpose of validating the ther-
apy. The T1D patients in the cohort used in this study administered insulin
to their bodies using insulin pumps under an OL therapy. The insulin values
from these patients, when provided as input to the proposed generative model,
produced BG values with outcomes similar to the real patients.

Afterward, a CL insulin delivery strategy was adopted. During this strat-
egy, the generated BG data was subjected to a state-of-the-art controller to
emulate the closed-loop behavior of a human pancreas. The controller’s control
action focused on increasing the time-in-range of the generated BG by adjust-
ing the insulin delivery to the generative model. The CL insulin delivery part
of the controller proposed by Beneyto et.al [32] was utilized for this purpose.
The feedback control action of the controller is composed of two loops, i.e. an
insulin feedback loop which is also referred to as the inner loop comprising of
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Fig. 6: Simulation environment to evaluate the closed-loop and open-loop
insulin delivery systems in virtual T1D subjects. (IOB: Insulin on Board, Gref:
Reference Blood Glucose, GrefS: Adjusted Blood Glucose, CGM: Continuous
Glucose Monitor, γ: Insulin Feedback Gain Parameter, RA: Carbohydrates
Rate of Appearance, PI: Plasma Insulin Approximation).

a proportional-derivative (PD) controller and an outer safety loop with insulin
on board constraints and a sliding mode reference conditioning. Three insulin
signals constitute the inner control loop of the controller: the basal insulin pro-
file of the patient, the super bolus, and the PD control action. Basal profiles
from the actual patients were used in this loop. The outer safety loop is defined
to compute the conditions under which the reference glucose Gref needs to
be changed. This is done in order to cease insulin infusion to keep the insulin
on board (IOB) bounded i.e., IOB ∈ [0, IOB], where IOB is the maximum
allowed IOB. Correction factor and carbohydrate ratio parameters from the
actual patient cohort were used during patient synthesis under CL therapy.

Since the generated BG data is conditioned on both insulin and carbohy-
drate values, the trained generative model has to have an input for insulin and
carbohydrates each in order to generate new BG samples. In the CL therapy
case, the carbohydrate data is taken from the actual cohort of patients such
as the quantity of meals in carbohydrates units taken by a patient in real life
being translated in the RA using the meal library referenced in the methodol-
ogy section. This is done in order to generate comparable profiles under both
OL and CL therapies using the same meal information. Moreover, the insulin
input of the generative model is fed by the CL controller. Because the input
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12 Generative deep learning for the development of a type 1 diabetes simulator

insulin and the generated BG depict a causal relationship, altering the amount
of insulin alters the output BG values.

To illustrate the dependence of generated BG profiles on the input PI and
RA, Figure 7 shows a total of 2 days of BG data for four different patients.
It is clear from these plots that the generated BG values take on trajectories
guided by the input insulin and carbohydrate values. Similar relationships are
observed in the BG data of real-life patients. These results make our proposed
model unique in terms of the lifelike behaviors of the generated BG values.

Fig. 7: Two days each of generated blood glucose data of Patient 6, 15, 23,
and 26 conditioned on plasma insulin approximation and carbohydrates rate
of appearance under open-loop therapy.

3 Results

The results section has been divided into two subsections. The first subsection
is dedicated to the results of statistical tests performed to check the statisti-
cal similarity of the generated data to the real data. The second subsection
contains results about the causal relationships between the input and output
data.
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3.1 Statistical Similarity

A total of 4 weeks of BG data was generated for each patient under both OL
and CL therapies for the purpose of attaining the optimal amount of data
required to report glycemic outcomes [33]. After computing the glycemic out-
comes for each patient in both real and generated cohorts, the medians of
these values along with the inter-quartile ranges (IQR) were computed for
both cohorts. It was observed that the medians of both data sets were compa-
rable for each of the glycemic outcomes. The Wilcoxon signed-rank test was
used to evaluate statistical similarity by assuming that both the real and gen-
erated glycemic outcomes came from the same population of patients. Based
on the rejection hypothesis, all the glycemic outcomes qualified the test by
demonstrating P-values of 0.05 or more. Table no. 1 presents the results for the
generated and real patients along with their P-scores under OL therapy. The
obtained statistical scores demonstrated that the glycemic outcomes such as
BG time in standardized ranges, mean, CV, maximum value (max), minimum
value (min), and standard deviation (STD) all showed significant statistical
similarity to those of the real T1D patients. These results confirm the accu-
rate approximation of the T1D cohort by the generative model since the same
insulin and carbohydrate inputs yielded almost similar BG outcomes.

Glycemic metrics Real patients Generated patients P-Values
(open-loop therapy) (open-loop therapy)

% time CGM < 54 0.43 (0.13 - 0.90 ) 0.40 (0.0 - 2.89) 0.25
% time CGM 54-69 2.39 (1.24 - 3.65 ) 2.45 (0.43 - 5.67 ) 0.50
% time CGM 70-140 40.57 (30.07 - 45.68 ) 42.80 (30.32 - 54.94 ) 0.98
% time CGM 70-180 64.02 (55.08 - 68.87 ) 67.28 (52.85 - 75.70 ) 0.74
% time CGM 180-250 24.28 (18.79 - 30.08 ) 19.89 (11.59 - 29.57 ) 0.63
% time CGM > 250 6.41 (3.45 - 11.43 ) 7.19 (1.93 - 13.29 ) 0.39

Mean CGM 157.06 (148.66 - 172.32 ) 154.20 (127.92 - 178.52 ) 0.85
STD 56.57 (50.20 - 64.49 ) 61.49 (49.07 - 70.48 ) 0.34
% CV 35.53 (32.94 - 39.03 ) 38.58 (31.81 - 42.60 ) 0.22
Max 400 (359.50 - 400.00 ) 400 (398.87 - 400.00 ) 0.12
Min 40.00 (40.00 - 44.50 ) 41.75 (40.0 - 55.02 ) 0.12

Table 1: Statistical comparison of the glycemic metrics of real patients against
the generated patients: standard BG ranges in T1D management, average BG
(Mean), standard deviation (STD), coefficient of variation (CV), maximum
(Max), minimum (Min).

During the CL therapy, the PD controller provided insulin as input to the
generative model while the carbohydrate data used was from real patients.
The glycemic outcomes from the CL therapy in terms of the medians and
IQR of all the metrics for each generated patient are presented in table 2. As
per the discussion above, the control action of the controller was designed to
increase the percentage time in the 70-180 mg/dL range of generated BG pro-
files. The glycemic outcomes showed that the proposed model behaved in a
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Glycemic metrics Generated patients (closed-loop therapy)

% time CGM < 54 0.79 (0.07 - 1.88 )
% time CGM 54-69 1.85 (0.57 - 4.23 )
% time CGM 70-140 35.46 (21.47 - 49.84 )
% time CGM 70-180 74.67 (57.03 - 80.70 )
% time CGM 180-250 13.99 (8.30 - 32.37 )
% time CGM > 250 5.31 (2.45 - 9.29 )

Mean CGM 155.13 (143.21 - 173.41 )
CV 35.60 (31.92 - 41.01 )
STD 58.11 (47.18 - 62.62 )
Max 400.00 (400.00 - 400.00 )
Min 40.00 (40.00 - 47.20 )

Table 2: Glycemic outcomes of the generated patients under closed-loop
insulin therapy: standard BG ranges in T1D management, average BG (Mean),
standard deviation (STD), coefficient of variation (CV), maximum (Max), min-
imum (Min).

way similar way to real T1D patients by demonstrating TIR results that were
closer to real scenarios. Furthermore, it has been observed in T1D patients
that tight glycemic control is often the reason for the occurrence of iatro-
genic hypoglycemia [34]. A similar phenomenon was observed in our generated
patients under CL therapy with an increase in the percentage time in the level
2 hypoglycemia.

3.2 Causality Analysis

In the context of a simulation environment, the model is expected to respond
to the effects of certain inputs in a causal manner. The causal relationship
between the inputs and outputs of a model is the basis for validating real-life
phenomena using a simulation environment. There are several ways to test for
causality in systems. Two of the more famous causality tests are the Granger
causality test and convergent cross mapping (CCM). The Granger causality
test has been used extensively by researchers for causality analysis in a variety
of applications. The intuition behind this test is that if variable X causes
variable Y in a system, there should be a model of such a system that improves
the prediction of Y after the inclusion of X. This means that X should be
separable from the rest of the system’s variables. This is, however, a limitation
of the Granger test since in many systems that have interacting variables, the
information of a variable may not separable from other variables. This poses
a problem when causality is checked using the Ganger causality test in highly
complex dynamical systems such as the human glucose-insulin system. CCM,
on the other hand, is a causality testing methodology that identifies causalities
in a system whose variables are inseparable. In addition, CCM can quantify
weak to moderate causalities that other causality tests may miss. In the past,
several studies have utilized CCM for causal analysis in nonlinear systems [35]
[36]. A recent study by Hoda et al. demonstrated the use of CCM for the
causality analysis in T1D [37].
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Fig. 8: The cross map skills for the effect of insulin on the generated blood
glucose profiles of all 27 patients as a function of time series length.

We have used both the Granger causality test and CCM to demonstrate
that the BG profiles generated using our proposed model are causally depen-
dent on input insulin and carbohydrate values. The results of both these tests
are provided in Table 3 and 4. For the Granger causality test, it could be upheld
from the p-values in Table 3 that there exists an intervention for both insulin
and carbohydrates in the generated BG values. On the other hand, as the name
suggests, CCM checks for two parameters while establishing causality between
two quantities i.e. cross-mapping and convergence. Cross-mapping is measured
using the correlation strength whereas convergence is checked by observing the
cross map skill against the increasing amount of data. Even though a stronger
correlation suggests stronger causation, a relationship is only deemed causal if
the correlation converges as the amount of data increases. The causal strengths
for individual patients are given in Table 4, whereas the convergence is shown
for all the patients in Figure 8 and 9. It could be observed from these figures
that for both insulin and carbohydrates the cross map skill converges as the
amount of data increases. This confirms the existence of a causal relationship
between the generated BG and insulin and carbohydrates. Figure 10 shows the
average causal strength of insulin and carbohydrates on the generated BG val-
ues obtained using CCM and the average P-values obtained using the Granger
causality test.
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Fig. 9: The cross map skills for the effect of carbohydrates on the generated
blood glucose profiles of all 27 patients as a function of time series length.

Fig. 10: The average causal effect of carbohydrates and insulin on the gener-
ated blood glucose profiles of all 27 patients.

4 Discussion

The aptness of the proposed methodology for the purpose of generating
glycemic trends similar to real-life T1D patients has been demonstrated by
the results. Approximating the human glucose-insulin system is understood
to be the hardest part of a diabetes simulator. Formerly, the techniques used
for these approximations were heavily based on mathematical physiological
models. Apart from the advantages they offer, these models suffer from short-
comings that may lead to inaccurate approximation. In DGMs, we have a
solution for this problem. The ability of DGMs to learn from the distribution
of data obtained from a system gives it a significant advantage over the phys-
iological models in a way that it can encompass almost all the characteristics
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Patient Carbohydrates → BG Insulin → BG

P1 0.00960 0.00001
P2 0.04060 0.00000
P3 0.04140 0.00000
P4 0.00170 0.00000
P5 0.00010 0.00002
P6 0.08220 0.00000
P7 0.03210 0.00000
P8 0.00000 0.00005
P9 0.01260 0.00000
P10 0.00050 0.00001
P11 0.00000 0.00000
P12 0.00060 0.00004
P13 0.00090 0.00000
P14 0.00170 0.00000
P15 0.00000 0.00000
P16 0.00010 0.00000
P17 0.01670 0.00000
P18 0.01690 0.00000
P19 0.00000 0.00000
P20 0.03680 0.00000
P21 0.00070 0.00000
P22 0.00140 0.00005
P23 0.00840 0.00000
P24 0.00000 0.00000
P25 0.00000 0.00000
P26 0.03470 0.00000
P27 0.00280 0.00000

Average 0.00170 0.00001

Table 3: P-values obtained using Granger causality test considering the alter-
native hypothesis is true.

of the system including the minor behaviors. This makes a wholesome approx-
imation of the system possible. Moreover, since the proposed methodology not
only generates T1D patients that are similar to a cohort of real patients but
can also demonstrate the behaviors of insulin, carbohydrates, and BG rela-
tionships found in real patients, the generated patients can be used in various
simulation scenarios. In addition, the causality between insulin, carbohydrates,
and glucose generation is shown by generating BG values in the future, which
fulfills the benchmark of prediction in simulation environments.

Even though the generated BG profiles are tested for similarity in glycemic
outcomes using statistical tests, the generative model is put under further
scrutiny using a CL controller to imitate a CL insulin therapy setup. This was
done in order to further validate the causal generation of BG values by observ-
ing whether the generated BG values demonstrated the same response behavior
to the CL therapy as that observed in real patients. Since it was not possible
to validate the CL glycemic outcomes for the real patients’ cohort used in this
study because the patients were under OL insulin therapy, the only alterna-
tive way we had was to observe the glycemic outcomes for general trends and
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Patient Carbohydrates → BG Insulin → BG

P1 0.19 0.20
P2 0.25 0.20
P3 0.20 0.55
P4 0.41 0.62
P5 0.18 0.19
P6 0.32 0.31
P7 0.25 0.24
P8 0.39 0.35
P9 0.38 0.37
P10 0.24 0.33
P11 0.55 0.57
P12 0.40 0.39
P13 0.44 0.44
P14 0.72 0.57
P15 0.33 0.41
P16 0.24 0.33
P17 0.41 0.43
P18 0.12 0.27
P19 0.28 0.31
P20 0.24 0.30
P21 0.42 0.44
P22 0.33 0.31
P23 0.34 0.32
P24 0.36 0.37
P25 0.24 0.35
P26 0.24 0.34
P27 0.53 0.46

Average 0.33 0.37

Table 4: Causality strength values for each patient obtained using CCM.

response behaviors seen under CL therapy patients. It was observed under the
CL therapy that the proposed simulator exhibits similar glycemic outcomes as
observed in real-life patients under CL therapy [38]. This is in contrast to what
is observed in conventional physiological T1D simulators where the glycemic
outcomes of patients under CL are unrealistically optimistic. According to the
literature, tight glycemic control has often been associated with the occurrence
of hypoglycemia and this behavior was noted in the generated patients under
CL insulin therapy.

The proposed methodology shows promise in setting up a T1D simulation
environment for the generation of novel cohorts of patients, validation of treat-
ment methodologies, and the formation of new therapies. Considering that the
BG generation is caused by the input insulin and carbohydrate values, the
generation of BG data with glycemic responses of our choice may be made
possible with the help of this simulator. Moreover, by exploring and quanti-
fying the latent space configurations the generation of cohorts with desirable
characteristics may be ensured. The proposed system may also provide us the
leverage to augment data for specific T1D patients in order to obtain more
data in lesser time or reduced cost. This is important because the acquisition
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of diabetes-related data suffers from the issue of intrapatient variability since
the condition of a patient’s disease keeps varying with time. Hence, classifi-
cation/prediction techniques based on data often fail to work efficiently when
trained on T1D data collected over a long period of time.

By introducing improved CL control strategies like carbohydrate recom-
mendation, the glycemic outcomes of the generated BG profiles may even
further be improved and used in devising various other treatments. Further-
more, the approximation of the DGM may also be improved by conditioning
the generation of BG data on more variables such as physical activity, stress,
etc. A proficient CL control system along with an accurate T1D patient gener-
ation model may make the in-silico trials of different treatment methodologies
as close to real scenarios as possible. Moreover, BG profiles generated by a
model with a high level of approximation accuracy will be as challenging to the
techniques/models based on data to learn from as the BG profiles from real
patients. This will ensure the development of more robust models possible. It
will also allow designers and practitioners to be more creative having the con-
fidence that the simulated scenarios will stay closer to real scenarios and won’t
diverge towards the unattainable. Furthermore, the proposed methodology
enables us to replicate any cohort. This allows the creation of individualized
treatments possible. The intrinsic random nature of the generated data with
the proposed model allows the generation of patients with different BG pro-
files and similar glycemic characteristics. Also, altering the latent space allows
the generation of patient cohorts that may have similar glycemic characteris-
tics but different variability outcomes. In the future, the authors of this work
are confident to produce the cohorts of choice at will in order to challenge the
control system techniques so that they are more robust for real-life scenarios.

As evident from the theory of DNNs, the larger the quantity of training
data the better the approximation. Since they are based on DNNs, the same
is observed for DGMs. However, it is important to realize that there is no
optimal amount of data when it comes to training DNNs to achieve realistic
outcomes. In the proposed methodology, realistic BG generation was made pos-
sible using 1120 days of data from 27 T1D patients. Nonetheless, it was learned
empirically that increasing the amount of training data resulted in a better
approximation of the data set. This has also been proven by our prior works on
the generation of BG profiles using DGMs [39] [15]. As the glycemic behaviors
of T1D patients vary greatly over the course of their lives, in a particular time
phase the generation of data replicating a patient’s physiology will address the
issue of scarce data. In long term, the approximation of a patient’s glucose-
insulin system, however, will suffer from glycemic variability. This could pose
a problem for insilico longitudinal trials. Current evidence shows that DGMs
are capable of learning the underlying distribution of any sort of data and are
robust to mistaken confidence errors. This suggests that the proposed method
could be utilized equally well for any sort of cohort. As patients from a single
cohort often exhibit similar characteristics, it is understood that training the
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proposed DGM on data from a single T1D cohort led to a good approxima-
tion of the cohort. We believe that heterogeneous training data such as data
from various different cohorts or radically different patients may affect the
approximation adversely. This essentially means that for a DGM-based T1D
simulator to replicate the outcomes of a particular cohort of patients, it is best
to train it on data from the specific cohort. However, for a more diverse simu-
lator, the training should be performed on data from a diverse set of cohorts.
This would, however, mean that the approximation of a particular cohort in
the set of cohorts might not be as good.

5 Conclusion

To conclude, this research study presents the very first AI-based T1D simula-
tion environment based on the distribution approximation capability of deep
generative models. The proposed simulator employs a sequence-to-sequence
generative adversarial network for the generation of synthetic Type 1 dia-
betes patients and shows realistic results under both open-loop and closed-loop
therapies. The generated data display causal relationships between the input
insulin and carbohydrate values and the output blood glucose values. More-
over, the data is generated for 90 minutes in the future for each input which
introduces predictability in the simulation environment. In the future, the gen-
eration of blood glucose data may be conditioned on physical activity and
stress, etc. for improved approximations. Moreover, improved control therapies
could be integrated with the proposed generative model for the testing and
development of new therapeutic strategies in the field of artificial pancreas.
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3
DISCUSSION

T he works presented in this thesis revolve around modeling in T1D using data from

patients with T1D. This task is achieved by leveraging the distribution learning

capability of deep generative models (DGMs). The thesis comprises three main

publications that are presented as a compendium and one coauthored publication investigating

ML models’ potential to learn glucose-insulin dynamics from data obtained from T1D patients.

The advances in diabetes technology have made the acquisition of diabetes-related data in

large quantities possible, which in turn has prompted a significant shift toward data-driven

modeling. Data-driven models are becoming a thing of choice for engineers because of the

several advantages they offer over conventional mathematical models. The research work

conducted in this compendium of publications has cashed in on the benefits of data-driven

models and shown its advantages over other methods.

The first publication in the compendium is a systematic review of the state-of-the-art

data-driven models for the task of hypoglycemia prediction. Evidently, the high complexity

of glycemic trends has led to the extensive use of data-driven models in recent years for the

prediction of adverse glycemic events (Gadaleta et al., 2019) (Contreras and Vehi, 2018).
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Hypoglycemia is an adversity experienced by patients with T1D, caused by a decrease in

blood glucose (BG) below a certain level and characterized by dizziness, reduction in cognitive

ability, shaking, sweating, and in extreme cases, death. The inability of patients to act while

experiencing a hypoglycemic episode leads to the fear of hypoglycemia and significantly

reduces the life quality of patients (Przezak et al., 2022). All these factors make the accurate

prediction of hypoglycemia extremely important. The findings of this review put forward a

comprehensive picture of the trends and challenges associated with data-driven modeling for

hypoglycemia prediction. It was identified from the results of the review that the availability

of suitable data is a major performance constraint in data-driven models. Apart from the

insufficiency of desirable instances for training supervised learning models, clinical data suffers

from issues like missing values, and time-dependent variations that induce bias in the models.

To counter the problem of data availability, an exploration of the data synthesis techniques was

carried out. Due to their ability to generate realistic data, DGMs were pinned down as potential

tools for data synthesis. Further empirical evidence showed the aptness of DGMs for T1D data

and T1D model approximation. The following sections provide an elaborate discussion of the

use of DGMs for modeling purposes in T1D.

3.1 Deep Generative Models for Modeling in T1D

DGMs have demonstrated their effectiveness in efficiently learning complex probability dis-

tributions from data and generating novel instances of data based on the learned distributions.

This makes them a suitable tool for approximating the probability distribution of a highly com-

plex data distribution like the human BG profile. This hypothesis is tested in the publications

presented in this compendium. A data augmentation strategy is devised using generative adver-

sarial networks to enhance the performance of a hypoglycemia prediction model in (Noguer

et al., 2022). The results of this publication show that by augmenting personalized BG profiles

of T1D patients with data from GANs, the classification accuracy of the prediction model

76



CHAPTER 3. DISCUSSION

improves. It is also observed during this study that the model performance stops improving

after a specific amount of data is added to the data set, whereas, this amount of data varies

for distinct data sets. Data set augmentation presents an apt solution for solving problems

with incomplete and insufficient data. Moreover, assuming any rate of improvement at all, the

generated data from GANs may completely replace real data to be used in data-driven models

in the future. This provides a potential solution for issues like data privacy and security.

The next publication in this compendium is an extension of the earlier work and introduces

conditional variables for the generation of BG values using a conditional GAN (CGAN)

(Mujahid et al., 2022). This paper puts forward a methodology based on a type of CGAN known

as the pixel-to-pixel (P2P) GAN that performs the task of image-to-image translation. The

idea is to generate novel BG images by providing input insulin images. The generated images

are then converted into numerical BG values using a sophisticated translation mechanism.

Nonetheless, great emphasis should be put on the accuracy of the translation mechanism

employed in a methodology like this, since, a flawed translation mechanism may lead to errors

and biases that can compromise the accuracy of the generative model. A novel translation

mechanism is proposed in this study that has been shown to work efficiently on two distinct

data sets. The results of this work confirmed the suitability of DGMs for the generation of

diabetes-related data that is conditioned on other variables. The results also validated that not

only does the DGM learn the underlying probability distributions of the BG and insulin data but

it is also capable of learning the relationship between the two unique probability distributions.

The translation quality of the CGANs provides the basis for the hypothesis of learning the

dynamic relationships between inputs and outputs of a glucose-insulin system. Moreover, it

was also hypothesized from this work that increasing the number of conditional variables may

improve the approximation of the system and lead to more realistic scenarios. This hypothesis

was tested in the final work presented in this compendium.

Modeling from data comes with its own challenges. DNNs have been shown to have a
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strong correlation between their performance and the amount of data available for training. The

data-hungry nature of DNNs presents a potential paradox when it comes to the task of data

synthesis using DGMs, as it is necessary to have a sufficient quantity of data in the first place

to obtain an acceptable approximation of the system. However, the question of what constitutes

sufficient data is ambiguous and lacks a definitive answer. Literature states that the quantity of

data required to learn varies depending on the specific application and the nature of the data

itself. Moreover, the quality of the data is a critical factor in determining the performance of

DNN models. It was observed empirically during the course of this work that increasing the

amount of data resulted in a better approximation of the data set. It was also learned during

the course of this research that homogeneous data from one cohort might be easier for the

DGM to learn from. As the variability in the data increases, the learning capability of the

DGMs decreases. While heterogeneous data sets may represent an efficient means of increasing

the amount of training data available, it is essential that sufficient instances of each cohort

be present to improve the model’s learning capability. For a comprehensive approximation

of the glucose-insulin system, the proposed models need to be trained on a large amount of

versatile data. If the aim of the task is to approximate a populational model, a balanced data

set of the entire population with every individual sufficiently represented should be used for

training; however, in the case of a personalized model approximation, data representative of

a particular patient should be used. It is important to consider that since diabetes-related is

acquired over a period of time, it is susceptible to variations in time, and using such a data

set for training a DGM may affect the performance of the generative model adversely. The

longitudinal variability of diabetes-related data, however, provides the rationale for the use of

DGMs to generate data with desired characteristics.

As reported in the literature, there are several other challenges associated with DGMs (Chen,

2021). GANs, for one, suffer from mode collapse, which is the problem of generating the same

instances each time. Moreover, the performance of GANs is also affected by the failure to
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converge. One or both of these problems were encountered during the implementation of the

models presented in this thesis. Different strategies were adopted to tackle these problems.

Wasserstein loss was used in the implementation of these GANs in order to tackle the problem of

instability and non-convergence. Furthermore, the conditional generation of BG data addressed

the problem of mode collapse. In addition, different normalization techniques accompanied by

hyperparameter exploration were performed in order to achieve the best possible results.

It is understood that the majority of the trendy GANs are designed to generate visual and

aural data and hence, the evaluation measures they use are perceptive (Borji, 2022). This

essentially means that anything that appears good is good enough. However, in our application,

the quality of the data cannot be based solely on perceptual metrics. Hence, the validation

of our proposed methodologies is carried out in two phases, namely numerical validation,

which is based on statistical methods, and clinical validation, which is based on identifying

the physiological relationships embedded in the generated data. In numerical validation, the

idea is to check the statistical similarity of generated data against the real data by testing a

statistical hypothesis using some kind of paired statistical test, whereas, in clinical validation, the

plausibility of the input/output relationship is checked against the real data. In both validation

phases, the results confirmed that the generated instances were realistic and plausible.

3.2 T1D Simulations Using Deep Generative Models

The final work in this compendium provides a framework for setting up a T1D simulation

environment using DGMs. Building on the work conducted previously, the translation of one

variable to another variable is replaced by the translation of two variables (carbohydrates and

insulin) into one variable (BG). This task is achieved by using a conditional sequence-to-

sequence (S2S) GAN that is trained on insulin, carbohydrates, and BG data from a cohort

of 27 patients with T1D. The trained model is then integrated with a state-of-the-art closed-

loop (CL) controller to establish a simulation environment capable of emulating both open-
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loop (OL) and CL insulin therapies. The results demonstrate that the proposed simulation

environment produces more realistic outcomes when compared to traditional mathematical

models, highlighting the potential of DGM-based simulations for T1D research.

In the context of a simulation environment, the model is expected to respond to the effects of

certain inputs in a causal manner. This research work took upon the task of inculcating causality

in the S2S model for realistic BG data generation. The simulation environment presented

in this thesis utilizes the idea of recurrence by introducing shifted input/output pairs to the

generative model in order to approximate the glucose-insulin dynamics of a cohort of T1D

patients. Since the output BG values are caused by input insulin and carbohydrate values,

desired glycemic responses can be obtained by using this methodology. This was confirmed by

comparing the OL and CL outcomes of the model with real-life clinical outcomes of patients

under similar therapies. It was observed that the model responses under OL and CL therapies

closely resembled the real-life responses of patients with T1D. This implies that the model can

facilitate the generation of highly realistic scenarios, thus affording designers greater freedom

to execute their modeling tasks with enhanced creativity. Furthermore, these models possess

the capacity to simulate complex scenarios, which may aid in the development of robust CL

methodologies for use in automated insulin delivery systems. Even though the CL methodology

employed in this work was solely based on CL insulin delivery, given that the model takes

both insulin and carbohydrate as inputs, other sophisticated CL strategies like carbohydrate

recommendation could be assessed using this model.

The proposed methodology also gives us the ability to replicate any cohort and devise

individualized treatments. Building on the idea of individualized treatments, the proposed

DGM-based techniques could be used in forming complete digital twins of patients with T1D.

These digital twins could then be incorporated into educational platforms and recommendation

systems to inform the patients better and enable them to make smart decisions about their

condition. By enabling the patients to observe how their glycemic profile reacts to various
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conditioning variables and giving them the liberty to control these variables ensures trust and

eliminates the fear of unknown adversities in the patients.

The stochastic nature of the generative models also enables us to generate distinct BG

profiles with similar glycemic trends and outcomes, hence, allowing the synthesis of a cohort of

patients with similar characteristics. These models may also facilitate the generation of patients

with similar glycemic profiles but different variability outcomes. This trait was investigated

during the latent space exploration of the GANs used in this research work. The ability to

control the variability of the generated glycemic profiles may be significant in testing various

control therapies. The preceding discussion suggests the aptness of DGM-based T1D simulators

for synthesizing novel cohorts of our choice, validation of treatment methodologies, and the

formation of new therapies. Furthermore, empirical evidence suggests that the approximation

of DGM models in T1D may further be improved by improving the amount and quality of data

used to train these models and incorporating other conditioning variables. On top of that, the

advancements in model architecture and hardware resources only suggest promising things in

the future.
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4
CONCLUSIONS

T his thesis aims to investigate data-driven models in the context of T1D, with a par-

ticular focus on their utility in synthesizing realistic T1D data and scenarios. To this

end, a simulation environment has been established leveraging the aforementioned

models, and the effectiveness of such simulators is demonstrated.

4.1 Contributions

The primary contributions of this research endeavor are outlined as follows:

• Literature review and analysis of data-driven models: A literature review of the

state-of-the-art of data-driven models for the prediction of hypoglycemia is conducted.

This review provides an analysis of data-driven models with regard to the data used for

training, the prediction horizon, and the type of model itself.

• Conditional synthesis of BG values: A P2P and an S2S GAN architecture is proposed

for the synthesis of realistic BG samples using plasma insulin approximation and carbo-

hydrates rate of appearance as the conditioning variables. A part of this work also yielded
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a translation mechanism for the conversion of generated images into numerical BG time

series.

• Causal generation of BG values: A novel training scheme is proposed in which the

training data is provided as shifted pairs of input insulin/carbohydrates and output BG

values. A shift of 90 minutes is introduced between the pairs so that the effect of insulin

and carbohydrates taking place in the output BG values can be captured. This enabled

the trained model to respond causally to the input values. The causality was then tested

using multiple causality tests.

• T1D simulation environment: A simulation environment based on generative models

for the generation of T1D patients is presented for the first time. The models are coupled

with a state-of-the-art CL controller to develop a simulator with OL and CL insulin

therapies. The results showed that simulated scenarios mimicked real T1D patients under

both OL and CL therapies.

• Generation of realistic T1D patients: A cohort of realistic virtual T1D patients is

synthesized using the T1D simulation environment proposed in this work. The results

showed that generated T1D patients were statistically similar to the real BG values.

Moreover, it was noted visually that the generated BG values took on trajectories defined

by the input insulin and carbohydrate values.

4.2 Future Work

Researchers may take on one of the following directions as future work in the context of the

research work presented in this thesis.

• Incorporating more conditional variables in the conditional DGMs to further improve the

approximation of the T1D models. For instance, variables such as physical activity, stress,
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and external factors like weather, etc. may pave the way for more realistic synthesized

scenarios.

• The techniques proposed in this thesis could be utilized for creating personalized treat-

ment regimens and with sufficient data and conditioning variables, the models could be

trained to imitate a particular patient, hence, setting the scene for a digital twin.

• Textual information could also be used as a conditional variable for the generation of

diabetes-related data conditioned on text prompts. This could enable the user to generate

data with the desired characteristics written in the text. Such models could enable the

translation of clinical study protocols in a cohort that fulfills the criteria defined in a

given protocol.

• The proposed models could be incorporated into a web-based application for real-time

simulation of patients’ glycemic profiles. An interactive GUI will enable patients to

monitor and predict the effects of their lifestyles and behaviors on their glycemic profiles.

Such applications could be used to educate patients with T1D and be integrated into other

educational approaches, such as serious games.
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