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Abstract

Resolution enhancement in modern optical metrology techniques has been possible
due to significant technological improvements. The accurate and precise control
of wavelength, bandwidth, and power of light sources; homogeneity, high-quality
composition materials and surface smoothness of optical elements; and highly sta-
ble nanopositioners and optomechanical components, allow more sensitive imaging
and sensing, in certain scenarios even beyond the standard diffraction limit. This
has motivated a more detailed study of the fundamental resolution limitations of
an optical system.

The chosen approach to address this problem is to consider optical imaging
as a parameter estimation problem. With this in mind, the theory of quantum
estimation and statistical inference provides the tools to determine the estimation
precision limits. Starting by considering the state of light as a quantum state that
carries information of interest; the Crámer-Rao lower bound provides a fundamen-
tal limit for the achievable precision. This lower bound is directly associated to
optical resolution in practical terms.

In this thesis, we present an overview of the useful tools of quantum estimation
theory that can be applied to optical metrology. We focus on the Crámer-Rao
lower bound, and provide methods to calculate it. Since the bound depends on
specific characteristics of the system, we explore three specific possibilities. First
we present with an example the validity regimes for different bounds; explicitly
in the frame of a quantum Lidar system. Second, we show the dependency of
the lower bound on the photonic model selection, showing a discrepancy between
two particular models. Third, we study the effects of lossy environments in the
informational content of the quantum state.

Additionally, we present the conditions that a measuring strategy must satisfy
to allow attainability of the fundamental limit. For specific scenarios of interest,
measurement methods based on the use of spatial modes of light allow to asymp-
totically attain the resolution limit. This has drawn attention to the information
carried by specific spatial modes, and has motivated the design of measurement
strategies based on probing or sensing using different sets of spatial modes. In
this thesis we include an overview of spatial modes of light, their generation and
detection, and their use for optical sensing. We present a method for optical beam
localization in the transverse plane using spatial mode information. Moreover,
we propose a technique to retrieve the full modal decomposition of an arbitrary
beam; which combined with the adequate set of modes allows to estimate certain
parameters of an optical state with the maximum precision possible.

Finally, motivated by the informational content of an optical beam that is not
easily accessible, we explore the use of artificial intelligence to extract information
about spatial features of an object from its diffraction pattern; without the need
of solving the inverse problem nor using a physical model of scattering.
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Resumen

Las mejoras de resolución en técnicas modernas de metroloǵıa óptica se deben al
significativo progreso tecnológico. El control preciso de la longitud de onda, ancho
de banda y potencia de las fuentes de luz; la homogeneidad, los componentes de
alta calidad y lisura superficial de los elementos ópticos; mas la alta estabilidad
de nanoposicionadores y componentes optomecánicos, permite imagenoloǵıa y de-
tección más sensible, en ciertos escenarios, incluso más allá del ĺımite de difracción
estándar. Esto ha motivado un estudio más detallado de los limites fundamentales
de un sistema óptico.

El enfoque elegido para dirigirse a este problema consiste en considerar la im-
agenoloǵıa óptica como un problema de estimación de parámetros. Con esto en
mente, la teoŕıa de estimación cuántica e inferencia estad́ıstica provee las her-
ramientas para determinar los ĺımites de precisión en la estimación. Comenzando
por considerar el estado de luz como un estado cuántico que porta información
de interés; el ĺımite inferior de Crámer-Rao provee un ĺımite fundamental para la
precisión alcanzable. En términos prácticos este ĺımite inferior está diréctamente
asociado con la resolución óptica.

En esta tesis, presentamos un resumen de las herramientas útiles de la teoŕıa
de estimación cuántica que pueden ser aplicadas a la metroloǵıa óptica. Nos enfo-
camos en el ĺımite inferior de Crámer-Rao y proveemos métodos para calcularlo.
Dado que el ĺımite depende de caracteŕısticas espećıficas del sistema, exploramos
tres posibilidades espećıficas. Primero, presentamos con un ejemplo los reǵımenes
de validez de diferentes ĺımites; expĺıcitamente en el marco de un sistema Lidar
cuántico. Segundo, mostramos la dependencia en ĺımite inferior de la selección
del modelo fotónico, mostrando una discrepancia entre dos modelos particulares.
Tercero, estudiamos los efectos de ambientes con pérdidas en el contenido de in-
formación de un estado cuántico.

Adicionalmente, presentamos las condiciones que una estrategia de medición
debe satisfacer para alncanzar el ĺımite fundamental. Para escenarios espećıficos de
interés, métodos de medición basados en el uso de modos espaciales de luz permiten
alcanzar asintóticamente el ĺımite de resolución. Esto ha atráıdo la atención hacia
la información que portan modos espećıficos, y ha motivado el diseño de estrategias
de medición basadas en sondeo y detección usando diferentes conjuntos de modos
espaciales. En esta tesis inclúımos un resumen sobre modos espaciales de luz, su
generación y detección, y su uso en detección óptica. Presentamos un método para
localización de haces de luz en el plano tranversal usando informacion de los modos
espaciales. Más aún, proponemos una técnica para recuperar la descomposición
modal completa de un haz arbitrario, lo cual combinado con el conjunto adecuado
de modos permite estimar ciertos parámetros de un estado óptico con la máxima
precisión posible.

Finalmente, motivados por la información contenida en haces ópticos que no
es fácilmente accesible, exploramos el uso de inteligencia artificial para extraer
información de caracteŕısticas espaciales de objetos, del patrón de difracción; sin
necesidad de resolver el problema inverso ni utilizar un modelo f́ısico de dispersión.
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Chapter 1

Introduction

Our ability to design new nanometric circuits, in applications that range from
the semiconductor industry to point-of-care testing devices for medicine, relies on
our capacity to image with substantial resolution at the nanoscale. To achieve
great imaging resolution one can make use of different techniques such as short
wavelength illumination (UV, EUV, X rays), fluorescent response of chemical com-
pounds added to the samples as markers, or scanning measurements either in the
near field or in the far field regime. In the former, the scattered light is sensed very
close to the sample where evanescent fields are still present, whereas far field mea-
surements are combined with phase retrieval algorithms or compared to extensive
simulations when a priori information of the sample is available. However, these
techniques show particular drawbacks and are not generally applicable in many
scenarios of interest.

Methods for spatial resolution enhancement

Direct imaging systems with no use of a priori information have optical resolution
bounded by the Rayleigh-Abbe criterion [1]. This criterion states that, due to
diffraction effects, the smallest spatial feature of an object that an imaging sys-
tem can resolve is approximately λ/2 for conventional techniques employing direct
intensity measurements, where λ is the wavelength of the illumination [2, 3].

When employing visible light the diffraction limit is of the order of hundreds of
nanometers, even for the shortest wavelengths and sophisticated optical systems.
This implies that, for direct imaging techniques, one way to improve the spatial
resolution is to decrease the wavelength of the illumination even beyond the visible
light regime, e.g. using extreme ultraviolet radiation (EUV) or X-rays [4]. How-
ever, in this wavelength domain the complexity of the imaging system grows. On
the one hand the equipment in the UV and X wavelength domains is cumbersome,
not only light sources are complex and require careful handling but also optical
manipulation is extremely sensitive and optical components are limited. On the
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other hand shorter wavelengths result in less sensitivity and shorter penetration
depths due to absorption. Moreover, certain physical parameters are not neces-
sarily unveiled at shorter wavelengths, such is the case of many optical transitions
of interest.

Besides the use of illumination at shorter wavelengths, another approach is to
use fluorescent responses to the probe or illumination beam. With the help of
fluorophores, fluorescent chemical compounds that emit light upon optical excita-
tion, super-resolved fluorescence microscopy (Nobel prize in Chemistry in 2014)
demonstrated that transverse resolution well below the wavelength of the illumi-
nation (super-resolution) can be achieved with visible and infrared light in some
particular cases. This set the basis for what is referred as Nanoscopy.

One of the most relevant techniques for Nanoscopy is Stimulated Emission De-
pletion (STED) microscopy [5, 6]. In this scheme a light beam is focused onto a
diffraction-limited spot illuminating the sample doped with fluorophores. At the
sample plane, a second beam is used to induce the fluorescent molecules located on
the outer part of the focus to undergo stimulated emission, forcing the transition
for those molecules onto the ground state. This results in an emitting spot that
is tighter than the diffraction-limited focal spot, which is is equivalent to narrow-
ing down the effective point spread function (PSF) of the optical system causing
resolution enhancement. Fluorescent techniques are however not generally appli-
cable and of no use in some cases such as imaging of inorganic materials in the
semiconductor sector since they have no natural fluorescent response nor is the
contamination with external markers allowed.

Resolution enhancement has also been achieved by measuring the light reflected
or transmitted by the objects of interest in a region very close to the object. In
the so called near-field regime, the evanescent fields with high spatial frequen-
cies are still present and can be measured [7, 8]. Furthermore, with the use of
engineered nanostructures (optical nanoantennas) the electromagnetic field can
be locally enhanced due to plasmonic resonance, making possible to obtain high
resolution images [9]. Moreover, if the interaction of the probe beam with the
sample is confined to a sub-diffraction spot using a narrow aperture, it is possi-
ble to resolve features as small as λ/10, or λ/20 when using a sharp tip [10, 11].
Near-field scanning microscopy techniques are a major improvement in imaging
resolution; however, the very low working distance combined with the need to im-
age large sample areas requires very long scanning times making it unsuitable in
many cases.

All the aforementioned techniques rely on measurements of the intensity of the
light, considering only the modulus of the electromagnetic field and completely
dismissing the complex nature of light. A powerful way to improve spatial res-
olution is to consider techniques that allow to use or extract information of the
phase of the field since it carries very relevant information. When enough informa-
tion about their geometry and physical parameters is available, the measurements
could be compared to a set of simulated predictions generated through extensive
and rigorous computation of the complete scattered field.
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To generate the set of simulated scattered fields, the light-matter interaction is
modelled as function of the parameters of the target and the complete complex field
is computed using diffraction theory. The set of parameters is then determined by
minimizing a distance between the measurement and the computed field, taking
the noise in the measurement into account [12, 13]. This is particularly relevant
for characterization or quality control of certain samples of interest in which an
approximate value of the parameters is known. It is important to notice that a
priori information about the sample is not always available and in many cases a
comparison to thorough simulation models can imply a great computational effort.

Intensity measurements of the scattered field do not necessarily prevent ex-
tracting information about its phase. Using coherent illumination it is possible
to transform phase changes into intensity changes without the need of high-power
lenses [14]. These techniques often employ interferometric measurements, which
require an independent reference light beam and make the system sensitive to ex-
ternal perturbations such as vibrations or temperature changes. This increases
the setup complexity due to the need of stabilization. Nevertheless, one can re-
construct a complex field by calculating the phase relationship between different
segments of the scattered field; this is, comparing intensity measurements (Fraun-
hoffer diffraction patterns) in which the illumination has been shifted with respect
to the object. This method is referred to as Ptychography, and its main differ-
ence with holography consists in the fact that there is no need of an independent
reference beam since interference occurs in the object itself [15, 16].

Given the diversity of novel imaging and non-imaging techniques for resolu-
tion enhancement in optical metrology, the standard and original definition and
conception of resolution associated to Abbe’s and Rayleygh’s criterion must be
modified [17].

Thesis goals and objectives

The aim of this project is to explore and develop novel techniques for optical
metrology that allow to surpass the standard resolution limit making possible to
extract sub-wavelength spatial information of an object using probe beams in the
visible spectral range.

In this context, naturally two question arise. First: “how far in terms of spatial
resolution is it possible to go in the optical domain?” One can address this question
as a parameter estimation problem in which spatial resolution is directly linked to
the estimation precision of spatial features as system’s parameters. In the frame of
quantum estimation theory, quantum mechanics and probability theory provide the
tools to determine precision bounds for parameter estimation, allowing to answer
this question and define the spatial resolution limit for a particular light-matter
interaction scheme. It is important to remark the fact that these results can be
obtained for any kind of experiments, even those that can be referred as classical.

This leads to the second question: “is it possible to find an experimental tech-
nique that allows to reach the limit?” After finding the precision bound and res-
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olution limit, to answer this question one needs to explore the conditions for at-
tainability of the limit; taking them into account one can tailor a measurement
strategy that fulfils them.

These two questions define the first goal of this thesis, namely to define the
fundamental limits of parameter estimation precision for a given light-matter in-
teraction using tools provided by quantum estimation theory [18], as well as de-
signing measurement techniques that allow to achieve or approach the limit. A
relevant application of these methods is the measurement of spatial features of
nanostructures in the semiconductor industry, where determining critical dimen-
sions is fundamental to verify and control the performance of the nanofabrication
process.

The second goal of this thesis is to design schemes based on the use of spatial
modes of light (modal methods) for optical metrology. The proposed technique
is based on probing using tailored beams as well as selective measurement of the
modal components of the field. We consider the measurement of mode projections
onto a certain set of spatial modes that carry particularly relevant information
about the parameters of interest of the target [19–21]. We refer to this technique
as Spatial Spectroscopy since it mimics in the spatial domain what conventional
spectroscopy methods do in the frequency domain employing many frequencies
(also refered to as hyperspectral imaging of wavefront sensing).

As a by-product, the proposed scheme also allows to determine the modal de-
composition (amplitude and phase) of any light field in an arbitrary basis. This
represents a major contribution since the determination of the phase is not straight-
forward with the currently available methods, since they require several measure-
ments in which the sample must be displaced with respect to the probe beam.

The third and final goal of this thesis is to explore new approaches for parameter
sensing in optical metrology. We consider the use of machine-learning-assisted
techniques for improvements in the estimation of spatial features of micro- and
nanoscopic objects.

The key objectives carried out in this thesis are the following:

• Ultimate resolution limits for a given light-matter interaction
Using the tools provided by quantum estimation theory and a model for
light-matter interaction, we determine the ultimate spatial resolution limits
defined as the fundamental precision bounds for the estimators of spatial
features of the object of interest.

• Lower bound applicability conditions
We aim to determine the applicability of the fundamental estimation preci-
sion bounds considering different scenarios, namely different parameters of
interest as well as the dependence of the bound with respect to the photonic-
state model selection.

• Attainability of the resolution limit
For a light-matter interaction model and a well defined estimation scheme, we
define the conditions that need to be satisfied for the limit to be attainable.
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• Effects of lossy environments on phase estimation protocols
We consider the effects of losses in quantum phase estimation by studying
the informational variation of quantum correlations.

• Spatial Spectroscopy
We develop a technique for optical metrology using spatial modes of light for
both probing and sensing. We evaluate the sensitivity of the technique and
compare it with the fundamental limit.

• Optimal measurements with spatial modes
We consider measurement techniques based on spatial modes that lead to
the saturation of the the precision bounds. We study the conditions that
the set of modes must satisfy for the measurement to be optimal, making
possible to extract the maximum amount of information when estimating
the parameters of a particular object.

• Explore computational techniques for sensing
We aim at unveiling spatial features of interest from a set of diffraction
patterns by using machine learning algorithms. In particular, we study the
use neural networks to determine spatial features of objects by looking at its
diffraction pattern.

Thesis outline

This thesis is presented as follows: following this introduction, Chapter 2 contains
the fundamental tools and concepts that allow to define the estimation precision
lower bounds as the ultimate resolution limits. With the bounds defined, the
applicability conditions are also presented in terms of the type and number of
parameters to be estimated, as well as the chosen photonic-state model. In these
lines, three particular situations are considered.

First, in Section 2.3 we present as an example the case of the estimation of
conjugated variables, namely time delay and Doppler shift (position and momen-
tum/velocity) of a target using a quantum lidar system, where the calculation of
an attainable precision estimation bound is not straightforward and the validity
of a commonly-used bound is proved not to apply.

Second, in Section 2.4 we evaluate the precision bounds for estimation of phases
considering two different photonic-state modes, namely N copies of a single photon
and a multimode coherent state with average photon number N . We demonstrate
a discrepancy between the two models although they have been used equivalently
in the literature. We present as an example the estimation of a phase acquired
by an optical beam in two cases: propagating through a dispersive medium and
reflecting by a cliff-like nanostructure.

Finally, in Section 2.5 we study the effects of lossy environments in the infor-
mational content of a quantum state by studying the quantum correlations of a
two-photon entangled state in presence of non-symmetric losses.
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In Chapter 3 we introduce the concept of spatial modes of light starting
from theory of electromagnetism and discuss some specific types of modes that
naturally arise from the choice of coordinates. In Section 3.2 we discuss techniques
for generation of spatial modes of light using laser beams, we focus attention on
beam shaping techniques relying on computer-generated holograms displayed in
liquid crystal spatial light modulators.

In Section 3.3 we propose a technique for optical metrology based on the use of
spatial modes of light for both sensing and probing. To measure the modal compo-
nents, we present an experimental scheme to retrieve the full modal decomposition
of a beam by individually measuring each one of its coefficients using homodyne
detection. In addition, we consider a different technique based on encoding modal
phase information into the beam of interest followed by a projection onto the Gaus-
sian (TEM00) mode. Finally, in Section 3.4 we apply the aforementioned results
for two-dimensional localization of optical beams in a transverse plane. We evalu-
ate the sensitivity of the technique in terms of the precision bounds as defined in
Chapter 2, and compare the obtained results to other measurement methods.

Combining the results from Chapter 2 and Chapter 3, Chapter 4 presents the
use of spatial modes for optimum parameter estimation. Starting from the most
fundamental point of view, Section 4.1 includes a description of differential resolu-
tion, i.e. the estimation of the separation of two incoherent optical point sources
using the tools provided by quantum estimation theory. Two main relevant results
are included in this section. First, for incoherent sources the separation between
the sources can be estimated with precision proportional to the number of pho-
tons detected, contrary to the standard resolution limit dictated by Rayleigh’s
diffraction limit. Second, using spatial mode projections one can achieve the ulti-
mate resolution surpassing the limit that can be achieved using direct imaging or
intensity measurements.

For a more general parameter estimation problem, in Section 4.2 we present
the conditions for modal methods to be optimal; which in particular are satisfied
for estimation of phases of quantum states of light or estimation of spatial features
of non-absorptive objects in optical metrology. Moreover, we include a method to
tailor spatial modes that lead to an optimal estimation and show as an example
the estimation of the height and sidewall angle of a cliff-like nanostructure using
the homodyne spatial mode analyzer introduced in Section 3.3.

Using a different formalism, in Chapter 5 we study resolution-enhanced sens-
ing using Machine-Learning-assisted laser diffraction analysis. Using Neural Net-
works, we present a method to estimate microscopic spatial features directly from
diffraction patterns without the need of solving the inverse problem. As an exam-
ple, we apply the technique to identification of model particle mixtures and retrieve
information about the size, shape and ratio concentration of two-component het-
erogeneous model particle mixtures.

Finally Chapter 6 contains the conclusions of this thesis as well as the pro-
posed work to be carried out in the future.
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Chapter 2

Fundamental precision
bounds in optical parameter
sensing using quantum
estimation theory

A quantum-mechanical approach to parameter estimation and statistical inference
allows to determine fundamental precision limits for estimation of the parameters
of a system. Furthermore, they allow to define the precision bounds and sensitivity
associated to a given measurement strategy [22,23].

This formalism has been applied to optical metrology since 1970 [18, 24]. It
considers optical metrology as a multi-parameter estimation problem in which one
aims at extracting information of the spatial and physical parameters of a target
of interest by investigating the effects that it has on the (classical or quantum)
state of the beam of light used for probing.

This approach became significantly relevant in the past years due the work of M.
Tsang and collaborators [25–27]. In their work, they showed that when measuring
adequately, it is possible to determine the distance between two incoherent sources
regardless how close they are to each other. Similar works have investigated the
limitations of these results [28–31]. These contributions lead to concluding that
Rayleigh’s criterion is an handicap of intensity measurements as imaging technique
(direct imaging) and might be overcome using specific measurement strategies.

Given the novel imaging and non-imaging techniques introduced in Chapter
1, a modern description of the resolution limit must be introduced. Using the
tools provided by quantum estimation theory it is possible to define a general
and fundamental estimation limits regardless the measurement strategy, which
allows to redefine the concept of resolution as well as design efficient measurement
strategies [32,33].
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In this chapter we introduce the formalism of quantum estimation theory that
leads to the definition of estimation precision bounds as well as their applicability
and attainability conditions.

2.1 Some concepts of probability and estimation
theories

The possible outcomes of a measurement used to determine a parameter θ of
a system define a random variable X(θ) with likelihood function or probability
distribution f(X, θ)1. We define the Score of X(θ) as the derivative with respect
to θ of the logarithmic likelihood2:

Score =
∂

∂θ
ln f(X; θ). (2.1)

Due to the fact that the probability density function must be normalized, the first
moment of the Score function is zero. However, the second moment or variance is
not, explicitly

F (θ) = E

[(
∂

∂θ
ln f(X; θ)

)2
]

=

∫ (
∂

∂θ
ln f(X; θ

)2

f(X; θ) dX. (2.2)

Here E[·] denotes the expectation value integrated over all the possible outcomes
of the measurement X(θ). The quantity in Eq. (2.2) is called Fisher Information
(FI) and it is non-negative quantity (0 ≤ F (θ) ≤ ∞) that acts as a measure of the
informational content on a random variable X about a certain parameter θ [34].
Note that if the likehood function is twice differentiable, the FI can be written as

F (θ) = −E
[
∂2

∂θ2
ln f(X; θ)

]
. (2.3)

Let θ̂ be an estimator of the parameter θ of the system3 defined as a generalized
measurement with expectation value associated to the measurement X(θ) as:

E[X(θ)] =

∫
θ̂ f(X; θ) dX. (2.4)

1f(X, θ) is considered to be normalized over all the possible outcomes of the measurement as∫
f(X, θ) dX = 1

2As the probability or likelihood function wants to be maximized it is convenient to use
the logarithm as it is a strictly increasing function; maximizing the logarithm is equivalent to
maximizing the likelihood function.

3For the case of optical metrology, the system is considered to be a sate of light imprinted
with information of the parameters of the object after interacting with it.
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The measurement X is said to be unbiased if

E[X(θ)] = θ, (2.5)

thus θ̂ is an unbiased estimator. Consider the following quantity

E
[
θ̂(X)− θ

]
=

∫ (
θ̂ − θ

)
f(X; θ) dX = 0. (2.6)

Using partial integration in the expression above and the fact that the probability
density must be normalized, one obtains∫ (

θ̂ − θ
)
f(X; θ)

∂ log f(X; θ)

∂θ
dX = 1. (2.7)

Squaring and rewriting the expression above, one has

1 =

[∫ [(
θ̂ − θ

)√
f
]
·
[√

f
∂ log f

∂θ

]
dX

]2

, (2.8)

where f = f(X; θ) is used to avoid notation. Making use of Cauchy-Schwarz
inequality, the expression above is transformed to

1 ≤
[∫ (

θ̂ − θ
)2

f(X; θ) dX

]
·

[∫ (
∂ log f

∂θ

)2

f(X; θ) dX

]
. (2.9)

Notice that the first term on the right hand side of the inequality corresponds to
the variance of the estimator i.e. E[(θ̂−θ)2], whereas the second term is the Fisher
Information as defined in Eq. (2.2). Thus, the inequality can be expressed as

V ar(θ̂) ≥ 1

F (θ)
. (2.10)

The expression in Eq. (2.10) is referred to as the Cràmer-Rao (CR) lower bound or
inequality [22]. It implies that one can determine a parameter θ using an unbiased

estimator θ̂ acting on the measurement outcomes X(θ) with precision4 limited by
the inverse of the Fisher information. For an optimal estimation of the parameter θ
one needs to use an estimator that approaches the lower bound given by expression
(2.10). Such an estimator is said to be efficient with a measure of the efficiency

(e(θ̂) ≤ 1) given by

e(θ̂) =
F (θ)−1

V ar(θ̂)
. (2.11)

4We define precision as the degree to which repeated measurements under unchanged condi-
tions show the same result. Precision is reciprocal to the variance.
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In analogy to the formalism above presented, for a set of n parameters θ ≡
(θ1, θ2, ..., θN ) one can define the Fisher Information Matrix (FIM) with elements

Fij(θ) = E

[(
∂

∂θi
ln f(X; θ)

)(
∂

∂θj
ln f(X; θ)

)]
(2.12)

or equivalently

Fij(θ) = −E
[
∂2 ln f(X, θ)

∂θi∂θj

]
. (2.13)

The FIM is a positive definite matrix that defines a Riemaniann metric, which
combined with results from differential geometry forms the basis of the Information
Geometry [35]. The Fisher information is also a metric used to calculate the
informational difference between measurements; it is the infinitesimal form of the
relative entropy:

gik(θ) =

∫
X

∂ log f(X; θ)

∂θi

∂ log f(X; θ)

∂θk
f(X; θ) dX. (2.14)

Naturally, making use of the FIM defined in Eq. (2.12), it follows that the

variance of any unbiased estimator θ̂i of the parameter θi is bounded from below
by the corresponding element of the inverse FIM as

V ar(θ̂i) ≥
(
F (θ)−1

)
ii
. (2.15)

To evaluate the sensitivity of the estimation of the parameters θ = (θ1, ..., θn)
from the random variable X(θ), we consider a Taylor expansion around the mean
value θ0 as

θ̂ = X(θ0) + (θ − θ0)
(∂X
∂θ

)∣∣∣
θ0
. (2.16)

Taking the first term on the right-hand side to the left, squaring and taking the
expectation value one has that the variance of the measurements distribution is

〈(θ̂ −X(θ0))2〉 = 〈(θ − θ0)2〉
(∂X
∂θ

)2

. (2.17)

We define the measurement variance 〈(∆X)2〉 ≡ 〈(θ̂ −X(θ0))2〉, then

〈(∆θ)2〉 =
〈(∆X)2〉(
∂X
∂θ

)2 . (2.18)

We are interested in the percentage error associated to the parameter estima-
tion, so that we define the error δ standard deviation divided by the mean value:

δθ =

√
〈(∆θ)2〉
〈θ〉

. (2.19)

Note that, from the CR lower bound in Eq. (2.15), it follows that

δθi ≥
√

[F−1]ii
〈θi〉

. (2.20)
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Quantum-mechanical approach to statistical inference and es-
timation theory

A quantum-mechanical formalism provides two important tools for metrology, a
rigorous description of the light-matter interaction scheme, and the probabilistic
description of the results of a given measurement. The latter can be treated
purely classically while in the former, quantum effects might be taken into account;
defining fundamental relations regardless the measurement strategy. The state of
the system is assumed to be characterized by a set of parameters θ = (θ1, ...., θn)
and it is then considered to belong to a quantum state family {ρθ|θ ∈ Θ}, further
referred as quantum model, where Θ is the space of parameters θ.

Formally, let us consider a system defined in the Hilbert space5 H such that
the state of the system ρ is described by a unit trace (Trρ = 1)6 and positive
semi-definite7 Hermitian8 operator also known as density matrix. It is possible
to estimate the true state of the system by performing a measurement M(θ) rep-
resented by a positive operator-valued measure (POVM) or probability operator
measure (POM), such that the outcomes frθ define a probability distribution as
introduced before.

For a given measurement M one can define an estimator θ̂ri associated to the
parameter θi of the system with respect to the r-th observation, such that the
error associated to the estimation is defined in terms of the covariance matrix as

Vij(θ̂) =
∑
r

(θi − θ̂ri )(θj − θ̂rj )frθ . (2.21)

Analogous to Eq. (2.5), the estimator θ̂ = (θ̂1, θ̂2, ..., θ̂n) is said to be unbiased if
the following expression is satisfied∑

r

θ̂ri f
r
θ = θi. (2.22)

For any unbiased estimator θ̂, the trace of the covariance matrix in Eq. (2.21) is the
sum of the mean square errors of the estimators with respect to their corresponding
parameters. Similar to Eq. (2.15), it follows that the covariance matrix is bounded
from bellow as

[V (θ̂)]ij ≥ [F (θ)]−1
ij , (2.23)

where Fij is the Classical Fisher Information Matrix given by

Fij =
∑
r

(
∂ log frθ
∂θi

)(
∂ log frθ
∂θj

)
frθ . (2.24)

5Linear space H with a defined inner product s.t. for ψ, φ ∈ H, and Ô a linear operator, then
(φ|Ôψ) = (Ô†φ|ψ) and TrÔ =

∑
j(φj , Ôψj) for {ψj} a basis of H.

6Equivalent to the normalization of the probability distribution.
7Ô is positive definite if ψ|Ôψ) ≥ 0 for all ψ nonzero.
8Ô is an Hermitian operator if Ô = Ô†
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Equation (2.23) is a more general matrix form of Eq. (2.15) the Crámer-Rao
inequality or Cràmer-Rao Lower Bound. It defines the precision in the measure-
ment of θ given the corresponding estimator θ̂; it must be understood in matrix
form implying that the matrix [V (θ̂) − F−1], is positive semidefinite9. The term
”classical” in the name of the quantity above, relates to the fact that it comes
from the standard probability theory, containing no quantum-mechanical effects
nor considerations besides the formalism hereby presented.

2.2 Quantum Estimation Theory

Using a quantum-mechanical formalism, one can obtain a generalization of the
concepts introduced in Section 2.1, with the aim of finding fundamental estima-
tion bounds for the parameters characterizing a system, that would apply to any
measurement strategy. More precisely, the goal is to obtain a quantum version of
the Crámer-Rao inequality, which requires a description of the Fisher information
in a quantum-mechanical scenario. [23, 36]

Let us start by considering a quantum state in density matrix representation
depending on a set of n parameters ρθ. Given the operator nature of the den-
sity matrix, the commutativity between operator has to be verified. Thus, the
quantum analogue of the FIM in Eq. (2.24) has to be defined in the frame of non-
commutative probability theory [37]. A general logarithmic derivative operator K
is defined such that it satisfies the following expression:

∂ρ

∂θi
=

1

2

(
ρKi +K†i ρ

)
. (2.25)

The Quantum version of the FIM, equivalent to equation (2.24) must be then
defined for a given logarithmic derivative operator K satisfying (2.25). Since even-

tually a measurement will be carried out, the accuracy of the estimator θ̂ is more
generally defined in terms of weight fields associated to each parameter as

Tr[GV ] =
∑
ij

GijV
ij . (2.26)

Here and in what follows, the dependency of the matrix on the estimator is no
longer explicitly written for the sake of simplifying notation (V (θ̂) = V ). The
matrix G ∈ Rn×n is a positive-definite matrix, containing weight fields in the
diagonal. A generalization of the Cràmer-Rao inequality, considering the weight
fields matrix G is

Tr[GV ] ≥ C, (2.27)

where Tr[A] refers to the trace of the matrix A, and C is a lower bound of the
Crámer-Rao type, also referred to as Crámer-Rao-like lower bound. In what fol-
lows, we refer as CR lower bound to the generalization in Eq. (2.27).

9The matrix R ∈ Cn×n is positive semidefinite if: uT Ru ≥ 0, ∀ u ∈ Cn 6= 0.
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Note that the CR bound is not unique, it depends on the assumptions and prop-
erties of the quantum state, the model and selection of the logarithmic derivative
operator; as well as the weight fields matrix. Thus, the aim is to obtain the Most
Informative Cràmer-Rao (MICR) bound CMI defined as the maximum of all the

CR bounds for the estimator θ̂ [38]; namely

CMI := min
{
Tr[GV (θ̂)]

}
. (2.28)

Solving the minimization problem to find the CMI is in general cumbersome.
However, in some cases it is rather simple since there are several expressions that
have been proved under certain conditions to be tight and the most informative.

2.2.1 Towards finding the most informative precision bound

To find the MICR bound, several considerations are proposed, some related to
the Quantum version of the FIM10 defined in terms of the logaritmic derivative
operator K in equation (2.25). The hermiticity of the operators K and its com-
mutativity with the density matrix ρ define two particular logarthmic derivative
operators.

Right Logarithmic Derivative Operator bound

Consider a logarithmic derivative operator LR that commutes with the density
matrix, this is [LRi , ρ] = 0 for all i ∈ [1, n]. Equation (2.25) is reduced to

∂ρ

∂θi
= ρLRi . (2.29)

LRi is known as the Right Logarithmic Derivative (RLD) operator with respect to
the estimation of the parameter θi. The FIM defined in terms of LR is

[FQ]Rij = Tr
[
ρLRi (LRj )†

]
. (2.30)

From Eq. (2.27) it follows that the CR bound is [38]

CR = Tr
[
G Re

{
[FRQ ]−1

}
+ abs

[
G Im

{
[FRQ ]−1

}] ]
, (2.31)

where abs[A] = T diag(|a1|, |a2|, ..., |an|)T−1, and diag(|a1|, |a2|, ..., |an|) is the di-
agonal matrix with elements |ai|, and T a matrix satisfying

A = T diag(a1, a2, ..., an)T−1. (2.32)

10The direct computation of the FIM is introduced in Sec. 2.2.2
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Symmetric Logarithmic Derivative Operator bound

Consider now a Hermitian logarithmic derivative operator (LS = K = K†) that
does not commute with the density matrix. Eq. (2.25) reduces to

∂ρ

∂θi
=

1

2

(
ρLSi + LSi ρ

)
. (2.33)

LS is known as the Symmetric Logarithmic Derivative (SLD) operator. Using LS ,
the quantum FIM is

[FSQ ]ij =
1

2
Tr
[
ρ(LSi L

S
j + LSj L

S
i

]
= Re

{
Tr
[
ρLSi L

S
j

] }
. (2.34)

From the expression above, FSQ is a real valued matrix; thus, one can consider an
extension to the FIM beyond the SLD by considering

FQ = FSQ + iF̃Q, (2.35)

where FSQ = Re[FQ] and F̃Q = Im[FQ]. From Eq. (2.33) and (2.34), it is possible

to see that F̃Q results from the non-symmetric part of the SLD operator LS , thus

[F̃Q]ij =
i

2
Tr[ρ(LSi Lj − LSj LSi )]. (2.36)

Note that for a pure state ρ = |Ψ〉 〈Ψ| and Tr[ρ] = 1, the Quantum FIM (2.34)
is reduced to [36]

[FQ]ij = 4 Re
{〈∂Ψ

∂θi

∣∣∣ ∂Ψ

∂θj

〉
−
〈
∂Ψ

∂θi

∣∣∣Ψ〉〈Ψ
∣∣∣ ∂Ψ

∂θj

〉}
. (2.37)

The CR bound associated to the Symmetric Logarithmic Derivative Fisher Infor-
mation Matrix FSQ is

CS = Tr
[
G[FSQ ]−1

]
. (2.38)

In particular, if:

F̃Q = 0 or equivalently [Li, Lj ] = 0, (2.39)

the inverse of the quantum FIM FSQ is a lower bound [39,40]. In the case of a single
parameter, the CR bound can be asymptotically saturated [22,41]; this means that
the bound is attainable and it is the most informative. For the case of pure states,
this happens if [21, 42]:

Im〈∂iΨ|∂jΨ〉 = 0, (2.40)

for all i, j = 1...d, which is equivalent to

Im〈∂iΨ|∂jΨ〉 =⇒ 〈∂iΨ|∂jΨ〉 = 〈∂jΨ|∂iΨ〉. (2.41)
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The Coherent model bound

A quantum model {ρθ} such that all the eigenvalues of the matrix D ≡ [FSQ ]−1F̃Q

are ±i is said to be coherent. This condition is satisfied if |detFSQ | = |detF̃Q|.
For a two-parameter estimation problem, the RLD bound in Eq. (2.31) is a lower
bound and it can be estimated by means of the following expression [43,44]

CC = CS +

√
detG

detFSQ

∣∣Tr
{
ρ[LS1 , L

S
2 ]
}∣∣ (2.42)

For a pure state model this bound is shown to be the most informative [38].

Furthermore, if one writes the matrix D ≡ FSQ
−1
F̃Q in its spectral decomposition

form with eigenvalues αi, the following expression defines a bound

CM =
∑

αi∈{spec. of D}

2

1 + (1− |αi|2)1/2
(2.43)

CM is further refered as Matsumoto bound [39].

The Holevo bound

Consider the vector ~X = (X1, ..., Xn) with Xi linear Hermitian operators sat-
isfying Tr[ρXi] = 0 and Tr[∂iρX

j ] = δij [38]. The Holevo function is defined
as

hθ( ~X,G) = Tr
{
GReZθ[ ~X]

}
+ Tr abs

{√
G ImZθ[ ~X]

√
G
}
, (2.44)

with Zθ[ ~X] the n× n complex matrix with elements Xjk = Tr{ρXjXk} [45]. By
minimization of the Holevo function, the Holevo bound is defined as

CH = min{hθ( ~X,G)| ~X ∈ Xθ}. (2.45)

The precision of any locally unbiased estimator is bounded by the Holevo bound
as in equation (2.27). By definition CH ≥ Ci for any other bound (CS , CC). More
importantly, this bound is know to be asymptotically attained by an asymptotically
unbiased estimator with a collective POVM [46–49].

All the bounds presented above CR, CS , CC , CM and CH are bounds of the
Cràmer-Rao type. For a given quantum state model ρθ these bounds can be
computed, providing information about the fundamental limitations for estimating
the parameters that characterize a system; however, not all of them are tight
bounds.

2.2.2 Computation of the Quantum Fisher Information Ma-
trix

An important quantity to evaluate the CR lower bounds above mentioned is the
FIM. To give an expression for it, consider quantum state depending on the set of
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parameter θ in its density matrix representation ρθ. The state can be written as
its spectral decomposition; this is, a linear combination of eigenstates that span
its Hilbert space, explicitly

ρθ =
∑
k

pk|ϕk〉〈ϕk|, (2.46)

with pk and ϕk are the eigenvalues and eigenvectors of the density operator, re-
spectively. Notice that pk and |ϕk〉 depend on the set of parameters θ; however,
in order to avoid notation, we omit the explicit dependence. Using Eq. (2.46) in
Eq. (2.33), and assuming it to be differentiable one can see that equation (2.33)
has solutions

Li = 2
∑

pk+pl>0

1

pk + pl
〈ψk|

∂ρ

∂θi
|ψl〉 |ψk〉 〈ψl| (2.47)

which can also be written as as [36]:

[Li]kl =
1

pk

∂pk
∂θi

δkl +
2(pk − pl)
pk + pl

〈∂ψk
∂θi
|ψl〉. (2.48)

Thus, the Quantum FIM FQ reduces to [50,51]

[FQ]ij =
∑
m,n

2

pm + pn
〈ϕn|

∂ρ

∂θi
|ϕm〉〈ϕm|

∂ρ

∂θj
|ϕn〉, (2.49)

which for a one-dimensional model the FI is reduced to

FQ =
∑
m,n

2

pm + pn

∣∣∣∣〈ϕn|∂ρ∂θ |ϕm〉
∣∣∣∣2 . (2.50)

If the state is pure (ρ = 〈Ψ |Ψ〉) the spectral decomposition is straightforward and
the elements of the FIM matrix are [40]

[FQ]ij = 4 Re

[
〈∂Ψ

∂θi
| ∂Ψ

∂θj
〉 − 〈 ∂Ψ

∂θj
|Ψ〉〈Ψ|∂Ψ

∂θi
〉
]
, (2.51)

which in the single parameter estimation case it reads

FQ = 4 Re

{
〈∂Ψ

∂θ
|∂Ψ

∂θ
〉 −

∣∣∣∣〈Ψ|∂Ψ

∂θ
〉
∣∣∣∣2
}
. (2.52)

This procedure is useful when the spectral decomposition of the density matrix
is simple. Although this is not always simple, it can be achieved using computa-
tional methods.
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Lyapunov representation

An alternative solution to give an expression for the SLD operator comes by notic-
ing that Eq. (2.33) is a special form of Lyapunov equation, with a known solution
given by

Lij = 2

∫ ∞
0

Tr
[
e−ρs

∂ρ

∂θi
e−ρs

∂ρ

∂θj

]
ds. (2.53)

The main advantage of this representation is that it is basis independent; however
the required operations (exponentiation and integration) are in general not so
simple [52].

Safranek method

When the diagonalization of the density matrix is too costly or Lyapunov equation
for the SLD operator too difficult to solve due to the complexity of the exponenti-
ation and integration of the density operator; there exists a different method that
allows to give an expression of the Quantum FIM matrix without the need of the
previously mentioned operations [53]. The method is as follows:

• If ρ is invertible:
The Quantum FIM elements can be written as

[FQ]ij = 2vec(∂iρ)†M−1vec(∂jρ) (2.54)

and the SLD matrix elements as

vec[Li] = 2M−1vec [∂iρ] ; (2.55)

where M ≡ (ρ∗ ⊗ I + I ⊗ ρ) is an invertible matrix as a consequence of
ρ being invertible; vec[·] represents the vectorization of a matrix, defined
as the concatenation of the columns altogether in a column vector; ∂i is
the partial derivative with respect to θi, ρ

∗ is the complex conjugate of the
density matrix and the † symbol represents the usual the conjugate transpose
operator.

• If ρ is singular
It is possible to construct an auxiliary matrix ρν as:

ρν = (1− ν)ρ+
ν

dimH
I (2.56)

which is invertible by definition. The Fisher Information Matrix A is then
defined as

[FQ]ij = lim
ν→0

2vec(∂iρν)†M−1vec(∂jρν). (2.57)
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Fisher Information and statistical distance between quantum states

Since the FI gives a measure of the precision when characterizing a quantum state
through estimation of its parameters, it is also useful to measure the distance
between two states in the corresponding Hilbert space. Consider two quantum
states described by the density operators ρ1 and ρ2; both of them depending
on the n-dimensional sets of parameters {θ1} and {θ2}. A way to measure the
distinguishability between them is through the Bures distance [54]

d2
B(ρ1, ρ2) = 2

[
1−

√
UF (ρ1, ρ2)

]
, (2.58)

where UF (ρ1, ρ2) is the Uhlmann fidelity [55] defined as

UF (ρ1, ρ2) = Tr

[√√
ρ1ρ2
√
ρ1

]2

. (2.59)

The Bures distance allows to define a line element d2
B by the statistical distance be-

tween the state ρθ (determined by the parameters θ) and the state ρθ+dθ produced
by a differential change in the parameter θ, namely11

d2
B(ρθ, ρθ+dθ) =

∑
ij

gijdθidθj , (2.60)

with gµν the Bures metric measuring the distinguisability between two states in
the coordinate system of the parameters θ. The Bures metric and the Quantum
FIM are often related by

FQ ≈ 4g. (2.61)

However, in some cases the previous relation does not hold due to singularities
where the rank of the density matrix changes, a more general expression is given
by [56]

[FQ]ij(θ) = 4gij(θ)− 2
∑

pk(θ)=0

∂ijpk(θ), (2.62)

where pk(θ) is the k-th coefficient of the spectral decomposition of the density
matrix in Eq. (2.46) and the sum12 goes over all the k whose eigenvalue vanish at
the point θ in the parameter coordinate space.

Summary of QET formalism tools

Quantum estimation theory and statistical inference theory provide the tools to
define bounds that determine how precisely one can estimate the parameters of

11Without lose of generality only one parameter has been considered to avoid notation, however
the generalization is straightforward.

12Note that the argument of the sum is the Hessian matrix.
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a system. On the one hand, a quantum-mechanical description of the system
naturally leads to a fundamental limitation for its characterization. A way to
quantify this limitation is the study of the variation of the informational content of
the state with respect to the parameters; this leads to the Crámer-Rao inequality,
stating that the variance on the estimation of the parameters of the system is
bounded. In this section we have introduced several bounds and mechanisms to
calculate them.

On the other hand, when performing a measurement on the state or the sys-
tem, the probability distribution of the outcomes of the measurement has also
associated a bound for the estimation precision. With these two components, it
is of interest to find a measurement strategy whose bound is either equal or at
least asymptotically approaches the fundamental bound obtain by means of the
quantum-mechanical formalism in the frame of quantum estimation theory. If
this is not possible, by comparing the difference between the fundamental and
the experimentally-obtainable bounds it is also possible to indicate how efficient a
measurement strategy is.

In the following, in Section 2.3 we evaluate with an example the values of
different bounds presented in this section, showing their validity and applicability
as well as their attainability. In Section 2.4 we show that the lower bounds depend
on the quantum state model selection and in Section 2.5 we study the effects of
lossy environments in the informational content of a quantum state.

2.3 Comparisson between different lower bounds
The true bound for Quantum Lidar Systems

As introduced in the previous section, there exist several CR (CR-type) lower
bounds, and different methods to compute them. Some of them by means of com-
puting the FIM, and others by explicitly solving a minimization problem. To study
the differences between those bounds, as well as their validity and applicability,
we consider the particular case of quantum lidar system.

Figure 2.1: Operation principle of Lidar Systems. A pulse of light is reflected by a moving
target. The position and speed of the target are determined by the time taken for the pulse
to arrive to the sensor and its frequency shift.
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A lidar is an optical system used to determine the position at a given time and
the radial velocity of a moving target by measuring the Doppler shift of the reflected
light as shown in Fig. 2.1. In this section we illuminate the concepts introduced
in the previous section, by computing explicitly the CR-like lower bounds and
evaluating their validity in the frame of a quantum lidar system; when using a
quantum state of entangled photons for simultaneous estimation of the parameters
of interest. Two aspects are particularly interesting in this example. First, in the
frame of parameter estimation, the measured quantities (time delay and frequency
shift) and the parameters to estimate (position and radial velocity) are associated
to canonical conjugated variables; meaning that the estimation of the parameters
is coupled. Second, we take advantage of the quantum-mechanical formalism to
exploit the non-classical phenomena related to quantum correlations using pairs
of entangled photons.

Figure 2.2: Entangled photon pairs generation. a) Schematic Spontaneous Paramet-
ric Down Conversion (SPDC) process. b) From left to right: degenerate type I SPDC,
collinear type II SPDC, and noncollinear type II SPDC. Figure from Ref. [57].

Consider a lidar system in which the probing light waves are composed by
photon pairs generated by spontaneous parametric down-conversion (SPDC). The
signal and idler photons are considered to be entangled in frequency as shown in
Fig. 2.2 (a). The state of the SPDC photon pairs can be written as

Ψin(ts, ti) = N exp
[
−a2(ts + ti)

2 − b2(ts − ti)2 −iω0
sts − iω0

i ti
]
, (2.63)

where ts,i are time coordinates and ω0
s,i are the central frequencies of the signal and

idler photons, respectively. The normalization constant depends on the correlation
time of the photons and the coherent time of the pump field asN = 1/

√
2πσcohσcor.

The parameters a and b are associated to the temporal and frequency widths

of the photons as T =
√

1
16a2 + 1

16b2 and W =
√
a2 + b2. These parameters
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determine the quantum nature of the state as it can be factorized as product state
Ψ(ts, ti) = Φs(ts)Φi(ti) only if a = b. If that is not the case, then the state (2.63)
is said to be non-separable or entangled [58].

The idler photon travels for a time τi before detection whereas signal photon
interacts with the target located at a certain distance xs = cτs/2 moving at velocity
v. Due to the movement of the target, the scattered signal photon suffers a Doppler
shift δ. After the interaction the state is written as

Ψ(ts, ti) ∝ exp
{
−a2(ts − τs + ti − τi)2 − b2(ts − τs − ti + τi)

2 − iω0
s(ts − τs)

−iω0
i (ti − τi)− iδ(ts − τs

2 )
}
. (2.64)

Note that the state depends on the two unknown parameters associated to non-
commuting variables: the temporal delay τs and the Doppler shift δ containing
information of the position and velocity of the moving target.

The uncertainty relation for the two canonical conjugated variables in an stan-
dard Lidar system is given by the Arthurs-Kelly relation στσδ ≥ 1, [59, 60] where
στ and σδ correspond the respective RMS errors of the simultaneously measured
variables. The aim of this work is to find a quantum analogue using the state in
Eq. o(2.64) and a quantum-mechanical formalism.

2.3.1 Cràmer-Rao lower bounds

Using the concepts introduced in Section 2.2, given the particular characteristics of
the system under study defined by the quantum state (2.64); we compute explicitly
four bounds: the one based on the SLD operator CS , the coherent model bounds
CC and CM , and the Holevo bound CH .

CR bound based on SLD and FIM

Using the state (2.64) with its corresponding normalization constant ensuring
〈Ψ|Ψ〉 = 1. For the parameter vector θ = (θ1, θ2) = (δ, τs), the real and imaginary
parts of the FIM in Eq. (2.38) using Eq. (2.37) are:

FSQ =

(
4W 2 0

0 4T 2

)
and F̃Q =

(
0 2
−2 0

)
. (2.65)

Note that as [F̃Q]ij 6= 0 ∀ i, j the bound CS is not attainable. Without losing
generality, one can choose a weight field matrix G = diag[W 2, zT 2], with z > 0,
the Cràmer-Rao bound from Eq. (2.38) is reduced to

CS =
1 + z

4
. (2.66)

CR bound for coherent model

From Eq. (2.65) one can see that the conditions for the model to be coherent (i.e
|detFSQ | = |det F̃Q|) are satisfied only if TW = 1/2 since detFSQ = 16W 2T 2 and
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det
(
F̃Q

)
= 4. However, for the sake of comparison of the bounds we calculate

it form Eq. (2.42) using the same weight field matrix as before, explicitly, (valid
only for TW = 1/2) it becomes

CC =
1 + z

4
+

√
z

2
. (2.67)

CR bound by Matsumoto

Using a weight field matrix G = FSQ one can compute the Matsumoto bound

explicitly by diagonalizing matrix D = [FSQ ]−1F̃Q are α = ± i
2TW . The bound CM

from Eq. (2.43) is explicitly

CM =
2TW

2TW +
√

4T 2W 2 − 1
. (2.68)

Note that the eigenvalues of D are ±i if TW = 1/2, making the model to be
coherent thus CM = CC .

CR Holevo bound

By definition CH ≥ Ci for any other bound (CS , CC , CM ). More importantly,
this bound is know to be asymptotically attained by an asymptotically unbiased
estimator with a collective POVM [46–49]. The explicit computation of the Holevo
bound by means of the minimization of the Holevo function is reported in appendix
A. The result obtained is:

CH = 2WT
(

2WT −
√

4T 2W 2 − 1
)
. (2.69)

2.3.2 Minimum indeterminacy bound

It is of interest of this section to evaluate the precision bounds for estimation
of the parameters of a system. In this case, the advantages that the quantum
properties of the state provide with respect to the classical counterpart. A way
to quantify these advantages is by estimating the improvement that a quantum
system could allow in terms of estimation precision by comparing the fundamental
and attainable bounds from quantum estimation theory to the classical ones. We
study the quantum analogue of the Arthurs-Kelly relation [59] giving a lower bound
for the precision of the simultaneous measurement of a pair of conjugated variables.
The relation has the form

V (δ)V (τs) ≥ σi, (2.70)

where the left hand side of the inequality corresponds to the product of the diagonal
elements of the covariance matrix V from Eq. (2.21) and σi is the chosen bound
Ci.
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Figure 2.3: Uncertainty lower bound for the product of variances V (τs)V (δ) ≥ σi. The
blue line corresponds to the SLD CR bound, a valid bound however not generally at-
tainable. The orange line represents the Matsumoto bound σM which coincides with the
Holevo bound (most informative) σH . Note that for TW = 1/2 the Holevo CR bound
and the bound of the Coherent model bound σC coincide, even though this is not a valid
bound, we plot it in dashed yellow here for the sake of comparison.

To obtain the the optimum measurement we consider the minimization of the
product of variances using the Cràmer-Rao inequality (2.27); which can be written
as

g = Ci(z)−W 2V (τs)− zT 2V (δ) ≤ 0, (2.71)

for Ci ∈ {CS , CC , CM , CH} and G as above. Using the expression (B.26) for the
bound from Appendix B, equation (2.70) is reduced to

V (τs)V (δ) ≥ Ci(z0)
2

4(WT )2z0
. (2.72)

For z0 satisfying the minimization condition 2z0
dCi(z)
dz

∣∣∣
z=z0

= Ci(z0). When

substituted in Eq.(2.72) each of the expressions for Ci(z) presented in Section
2.3.1 will provide a different bound for the product V (τs)V (δ); however the Holevo
bound CH is known to be the most informative as CH ≥ Ci,∀ Ci.

The objective at this point is to compare these bounds to the Arthurs-Kelly
relation (2.70) to determine whether the Quantum Lidar offers any advantages
over the standard Lidar system.
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• Symmetric Logarithmic Derivative bond CS

V (τ)V (δ) ≥ 1

16T 2W 2
. (2.73)

• Coherent model bound CC (valid only for TW = 1/2)

V (τ)V (δ) ≥ (1 + 2TW )2

64T 2W 2
. (2.74)

• Holevo bund CH

V (τ)V (δ) ≥
(

2TW −
√

4T 2W 2 − 1
)2

. (2.75)

Note that the bound in (2.75) is equivalent when using the Matsumoto bound
CM in equation (2.68), hence σH = σM . Figure 2.3 shows how each of this
bounds behaves as a function of the product TW , which is related to the degree of
entanglement between the signal and idler photons as it determins the separability
of the two-photon quantum state in Eq. (2.64).

There are essentially two remarks to extract from this figure. First, for a
separable (non-entangled) state (TW = 1/2), the Holevo bound coincides with the
classical Arthurs-Kelly relation V (τs)V (δ) ≥ 1, as expected. Second, as TW →∞
the uncertainty in the product tends to zero. This means the uncertainty reduces
as the correlation between the photons increases.

2.4 Precision bound dependence with quantum
state model selection
Single photon Vs multimode coherent model

The results presented in Section 2.2 for the determination of estimation precision
bounds have been widely applied to metrology. In particular, for estimation of
phases of a quantum state, the CR lower bound given by the inverse FIM is at-
tainable and most informative. These results are often used for optical sensing
to determine the fundamental precision limit when estimating the characteristic
parameters of phase objects, imprinting phase changes to probe beams. In this
section, we demonstrate that the limit given by the Cámer-Rao lower bound de-
pends on the selection of the quantum state model. This corresponds to original
work that has been submitted to a peer reviewed journal as a research article
(Ref. [61]) of which the author of this dissertation is first author. By the time this
dissertation was written the article is under revision for publication.
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Multi-phase estimation bounds for to different photonic state models

Most of the works investigating the ultimate resolution limit dictated by the
quantum Cramér-Rao bound consider imaging of incoherent point-like sources
[26,30,62,63]. In most cases the theoretical analysis is made considering N copies of
a single-photon state, while experiments are done using intense or attenuated laser
sources [64]. This experimental scheme is based on the following arguments [65]:

”Considering thermal sources at optical frequencies, we divide the to-
tal emission time into short coherence time intervals τc, so that within
each interval the sources can be assumed weak, i.e., effectively emit-
ting at most one photon...it allows us to describe the quantum state ρ
of the optical field on the image plane as a mixture of a zero-photon
state ρ0 and a one-photon state ρ1 in each time interval (neglecting
contributions from higher photon numbers)”.

Another common assumption is that [66]

”the probability of more than one photon arriving at the image plane
is negligible”.

Moreover, in Ref. [62] the authors state that

”(...) although this ultimate resolution follows from the quantum Crámer-
Rao lower bound, the quantum nature of light plays no role”.

In most other situations one is interested in using coherent illumination for imaging
and optical metrology, then it is necessary to determine the ultimate resolution
limits for coherent illumination. This led us to consider in a more detailed way
the applicability of the above mentioned claims regarding the relevance of the
quantumness of the illumination from a metrology perspective.

In this section we study whether the use of a coherent multimode state with
average number of photons N and shape f(x) (where x can designate space or
frequency variable) leads to equivalent results than when considering N copies of a
single-photon state with the same shape f(x). This analysis is relevant either from
a fundamental or practical point of view, since it defines differences/similarities
between the two states directly from their quantum nature, and it allows us to
determine whether the Crámer-Rao lower bound using a single-photon model is
applicable for experiments using conventional (coherent multimode) laser illumi-
nation.

Consider the case of the estimation of the phase parameters characterizing
an optical beam; for instance the phase gained after propagation through a non
absorbing medium or after interacting with a phase object, i.e., an object that
introduces a phase shift ϕ(x, θi) to the illumination beam after interaction. It
is worth mentioning that for this phase shift, the variable (x) can represent any
degree of freedom of interest, for instance, frequency, time, spatial coordinates, or
even transverse momentum. In the following, without lose of generality we will
assume x to be the spatial variable.
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For this particular case of a pure state model, the CR lower bound is tight and
attainable, is given by the inverse FIM (2.38). In what follows, we present explicit
expressions of the FIM and CR precision bound for estimation of multi-phases
using 1) a multimode coherent state and 2) multiple copies of a single-photon
state.

2.4.1 Case I: Multimode coherent state with average photon
number N

We describe a multimode coherent state in terms of single mode states

|αi〉 = D(αi)|vac〉 = exp
(
αiâ
†
i − α

∗
i âi

)
|vac〉, (2.76)

where D(αi) is the displacement operator and the mode normalization 〈αi|αi〉 = 1

holds. The multimode coherent state with mean photon number N =
∑N
i=1 |αi|2

is given by

|α〉 = |α1〉...|αN 〉 = D(α1)...D(αN )|vac〉 (2.77)

= exp
(
α1a

†
1 − α∗1a1

)
... exp

(
αNa

†
N − α

∗
NaN

)
|vac〉

= exp
[
α1a

†
1 + ...+ αNa

†
N − α

∗
1a1 − ...− α∗NaN

]
|vac〉.

The inner products in Eq. (2.51) in this case take the form

〈∂iΨ|∂jΨ〉 =
∑
k

〈∂αk
∂θi
|∂αk
∂θj
〉+

∑
k 6=k′
〈∂αk
∂θi
|αk〉〈αk|

∂αk
∂θj
〉, (2.78)

and

〈Ψ|∂iΨ〉 =
∑
k

〈αk|
∂αk
∂θi
〉. (2.79)

The FIM of the multimode state can be written as the sum of the FIM of each
mode, namely

[FCohQ ]ij =
∑
k

[FSMQ ]kij , (2.80)

where
[FSMQ ]kij = 4〈∂iαk|∂jαk〉+ 4〈αk|∂iαk〉〈αk|∂jαk〉. (2.81)

For a coherent state, the derivative with respect to its phase parameters is
given by [67]:

|∂αk
∂θi
〉 = iαk

(
∂ϕk
∂θi

)
a†k|αk〉. (2.82)

Then the inner products in Eq. (2.81) become

〈∂αk
∂θi
|∂αk
∂θj
〉 = |αk|2

(
∂ϕk
∂θi

)(
∂ϕk
∂θj

)(
1 + |αk|2

)
, (2.83)
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and

〈αk|
∂αk
∂θi
〉 = i|αk|2

(
∂ϕk
∂θi

)
. (2.84)

Note that Eq. (2.83) satisfies the condition in Eq. (2.41). This leads to the FIM
elements of each single mode as

[FSMQ ]kij = 4|αk|2
(
∂αk
∂θi

)(
∂αk
∂θj

)
. (2.85)

Using Eq. (2.80) the total FIM is

[FCohQ ]ij = 4
∑
k

|αk|2
(
∂ϕk
∂θi

)(
∂ϕk
∂θj

)
. (2.86)

From the inner products in Eq. (2.83)-(2.84) we see that the condition (2.41) is
satisfied, then the FIM given by Eq. (2.86) is the most informative bound. For
the sake of comparison, promoting the summation to integration, we make use of
a normalized version of α(x), i.e., α(x) = N1/2ᾱ(x), such that the FI per photon
takes form

[FCohQ ]ij

N
= 4

∫
dx|ᾱ(x)|2

[
∂ϕ(x)

∂θi

] [
∂ϕ(x)

∂θj

]
. (2.87)

Note that the expression for the FIM elements in Eq. (2.87) can be derived al-
ternatively following a slightly different approach. The introduction of a spatially
dependent phase {ϕk} for each spatial coordinate (index k) is an unitary operation
that can be represented by the operator

U = exp
[
i
∑
k

ϕk(θ) a†kak

]
, (2.88)

so that the output quantum state is thus

|Φ(θ)〉 = U(θ)|α〉. (2.89)

The derivative of the quantum state with respect parameter θi is

|Φi〉 =

(
∂U

∂θi

)
|α〉 = i

∑
k

(
∂ϕk
∂θi

)
a†kak |α〉 (2.90)

hence

〈Φ|Φi〉 = i
∑
k

(
∂ϕk
∂θi

)
〈α|a†kak|α〉. (2.91)
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Similarly we can write

〈Φi|Φj〉 =
∑
k

∑
k′

(
∂ϕk
∂θi

)(
∂ϕk′

∂θj

)
〈α|a†kak a

†
k′ak′ |α〉

=
∑
k

(
∂ϕk
∂θi

)(
∂ϕk
∂θj

)
〈α|a†kak a

†
kak|α〉 (2.92)

+
∑
k 6=k′

(
∂ϕk
∂θi

)(
∂ϕk′

∂θj

)
〈α|a†kak|α〉〈a

†
k′ak′ |α〉

The elements of the QFIM are

Fij = 4〈Φi|Φj〉 − 4〈Φ|Φi〉 〈Φ|Φj〉

= 4
∑
k

(
∂ϕk
∂θi

)(
∂ϕk
∂θj

)
×
{
〈α|a†kak a

†
kak|α〉 −

[
〈α|a†kak|α〉

]2}
(2.93)

=
∑
k

(
∂ϕk
∂θi

)(
∂ϕk
∂θj

)
〈(∆Nk)

2〉

where Nk ≡ 〈a†kak〉 and the variance is 〈(∆Nk)
2〉 = 〈N2

k 〉 − 〈Nk〉2. Making use of

Eq. (2.93) and that 〈(∆Nk)
2

= |αk|2 for quantum coherent states, we obtain Eq.
(2.86).

2.4.2 Case II: N copies of a multimode single-photon state

Similarly to the previous section, here we present the explicit expression for the
FIM elements leading to the CR bound for multi-phase estimation. Consider a
single-photon state |Ψ0〉 with spatial shape f(x) given by

|Ψ0〉 =

∫
dx f(x) |x〉. (2.94)

The state of the photon is considered to gain a phase ϕ(x, θ) depending on the
n-dimensional parameter vector θ = θ1, θ2, ..., θn). The phase is assumed to be
caused by interaction with a phase object or propagating through a dispersive
medium. The outgoing state is

|Ψout〉 =

∫
dx f(x) ei ϕ(x,θ)|x〉. (2.95)

Here we assume that both quantum states satisfy the normalization condition
〈Ψi|Ψi〉 =

∫
dx|f(x)|2 = 1, with Ψi ∈ {Ψ0,Ψout}. The inner products in the FIM

elements in Eq. (2.51) are:

〈∂iΨout|∂jΨout〉 =

∫
dx|f(x)|2

(
∂ϕ

∂θi

)(
∂ϕ

∂θj

)
(2.96)
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and

〈Ψout|∂kΨout〉 =

∫
dx|f(x)|2

(
∂ϕ

∂θk

)
, (2.97)

where k, i, j ∈ {1, .., n} and ∂i denotes the partial derivative with respect to the
parameter θi. Note that Eq. (2.96) is symmetric under exchange of indexes i
and j. Therefore the quanutm state (2.95) satisfies the condition in Eq. (2.41).
Explicitly, the FIM elements of a single photon state take the form

[FSPQ ]ij = 4

∫
dx|f(x)|2

(
∂ϕ

∂θi

)(
∂ϕ

∂θj

)
(2.98)

−4

[∫
dx|f(x)|2

(
∂ϕ

∂θi

)][∫
dx|f(x)|2

(
∂ϕ

∂θj

)]
. (2.99)

For N independent copies of the single-photon state, we have [FQ]ij = N [FSPQ ]ij .
The expressions for the QFIM in Eqs. (2.86) and (2.99) allow to determine

whether a coherent multimode quantum state with mean photon number N is
equivalent (or nonequivalent) to N copies of a single-photon multimode quantum
state for optical phase estimation. Given the same spatial shape of the illumination
beam, i.e., f(x) ≡ α(x), the expressions for the QFIM in both cases are equal
(FSPi,j = FCohi,j ), if Ii = 0 holds for all i = 1 . . .M , where

Ii =

∫
dx|f(x)|2

[ ∂ϕ
∂θi

]
.

Note that this is the case if f(x) is a symmetric function, while the phase ϕ(x, θ)
introduced by the object is antisymmetric. This demonstrates that the equivalence,
or nonequivalence, of the QFIM calculated using the two types of quantum states
condidered above, depends on the symmetry on the spatial (or frequency) variable
x of both the illumination beam and the acquired phase. In what follows, for
the sake of illumination of this result and as a word of caution for experiments
using weak coherent light sources while use single-photon quantum states in the
corresponding theoretical analysis; we discuss some specific examples of parameter
estimation of phase objects to show the discrepancy between the CR lower bounds
for each case.

2.4.3 Examples of discrepancies between the precision bounds
for cases I and II

To show the discrepancy in the fundamental bounds for phase estimation when
using a single photons model or a multimode coherent state, we consider two cases
of relevance in optical metrology. In both cases, an optical beam gains a phase
whose characteristic parameters we want to estimate. The precision bounds for
the estimation of those parameters, is given by the inverse Fisher FIM as described
in Eq. (2.38); and depending on the symmetry of the phase, the FIM elements
might vary according to the photonic model of choice.
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Figure 2.4: Optical fiber as a dispersive medium with dispersion coefficients β2 and β3
for a light beam of bandwidh B.

Example 1. Estimation of the parameters of a dispersive medium

Consider a beam propagating through an optical fiber as sketched in figure 2.4.
The beam is considered to have a Gaussian spectral profile of the form

|f(Ω)|2 =
1

(πB2)
1/2

exp

(
−Ω2

B2

)
. (2.100)

Here Ω is the central frequency, B is the bandwidth and the normalization condi-
tion

∫
|f(Ω)|2 dΩ = 1 holds. For the sake of simplicity and without loss generality

we neglect the nonlinear effect in this analysis. After propagation through the
fiber, at a distance z beam gains a phase

ϕ(Ω) =
1

2
β2zΩ

2 +
1

6
β3zΩ

3, (2.101)

with β2,3 the second and third order dispersion coefficients. One can determine
the precision bounds for estimation of the dispersion coefficients by computing the
FIM elements; to do so, we consider the parameter vector in the following form:
θ = (θ1, θ2) = (β2, β3).

Multimode coherent state

From Eq. (2.87) one can directly compute the FIM elements by evaluating the
inner product integrals (2.83) and (2.84). We make use of integrals of the form:∫ ∞

−∞
dxxn exp

(
−ax2

)
=

(2k − 1)!

2kak

(π
a

)1/2

(2.102)

with n = 2k, k integer. The inner products reduce to:∫
dΩ|α(Ω)|2

[
∂ϕ(Ω)

∂β2

]2

=
1

(πB2)
1/2

∫
dΩ

(
1

2
Ω2z

)2

exp

(
−Ω2

B2

)
,

=
3z2B4

16
, (2.103)
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∫
dΩ|α(Ω)|2

[
∂ϕ(Ω)

∂β3

]2

=
1

(πB2)
1/2

∫
dΩ

(
1

6
Ω3z

)2

exp

(
−Ω2

B2

)
=

5z2B6

96
, (2.104)

∫
dΩ|α(Ω)|2

[
∂ϕ(Ω)

∂β2

]
=

1

(πB2)
1/2

∫
dΩ

(
1

2
Ω2z

)
exp

(
−Ω2

B2

)
=

zB2

4
, (2.105)

and

∫
dΩ|α(Ω)|2

[
∂ϕ(Ω)

∂β3

]
=

1

(πB2)
1/2

∫
dΩ

(
1

6
Ω3z

)
exp

(
−Ω2

B2

)
= 0. (2.106)

The FIM elements are:

[FCohQ ]11 = 4N
3z2B4

16
=

3z2B4N

4
, (2.107)[

FCohQ

]
22

= 4N
5z2B6

96
=

5z2B6N

24
, (2.108)[

FCohQ

]
12

= [FCohQ ]21 = 0. (2.109)

Single-photon state

Similarly, by comnputing the the inner product integrals in Eqs. (2.96) and (2.97)
in an analogous manner, the FIM elements in Eq. (2.99) for N copies of a single-
photon states can be written as

[FSPQ ]11 = 4N

[
3z2B4

16
− z2B4

16

]
=
z2B4N

2
, (2.110)

[
FSPQ

]
22

= 4N
5z2B6

96
=

5z2B6N

24
, (2.111)[

FSPQ
]
12

= [FSPQ ]21 = 0. (2.112)

Estimation errror

To evaluate the discrepancy between the two models more explicitly, we make use
of the relative error δθ as introduced in Eq. (2.19). Since the conditions for the CR
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bound CS in Eq. (2.38) to be tight are satisfied, the relative error in Eq. (2.20) is

δ2
θi =

〈(∆θi)2〉
θ2
i

=⇒ δθi ≥
1

θi

√
[FQ]−1

ii . (2.113)

Explicitly for θ = (θ1, θ2) = (β2, β3), the CR lower bound for each parameter is
reduced to

〈(∆β2)2〉 ≥ 1

[FQ]11(β2)2
and 〈(∆β3)2〉 ≥ 1

[FQ]22(β3)2
. (2.114)

Hence, the relative errors for a multimode coherent state from Eqs (2.107)-(2.109)
are explicitly:

δ2
β2
≥ 1

β2
2 [FCohQ ]11

=
1

β2
2

4

3z2B4N
(2.115)

so that the minimum mean number of photons needed to estimate β2 with relative
error δβ2 is given by

NCoh ≥ 4

3

1

z2B4β2
2

1

δ2
2

. (2.116)

On the other hand, the minimum number of single photons NSP required to
estimate the parameters with a relative error δ is obtain by substituting Eq. (2.110)
in Eq. (2.113), namely

δ2
β2
≥ 1

β2
2 [FSPQ ]11

=
1

β2
2

2

z2B4N
(2.117)

which leads to

NSP ≥ 2
1

z2B4β2
2

1

δ2
2

. (2.118)

Similarly, for the case of the estimation of β3, one has

δ2
β3
≥ 1

β2
3 [FCohQ ]22

=
24

5z2B6β2
3N

∴ NCoh ≥ 24

5z2B6β2
3

1

β2
3

(2.119)

For the single photon model,

δ2
β3
≥ 1

β2
3 [FSPQ ]22

=
24

5z2B6β2
3N

∴ NSP ≥ 24

5z2B6β2
3

1

β2
3

(2.120)

In this case, it is straightforward to note that for the estimation of the parameter
β3 the Cramér-Rao bound CS has the same value either for single-photon or for
multimode states. Figures 2.6a shows the discrepancy in the minimum number of
photons required to estimate the dispersion coefficient β2 with relative errors δβ2

,
when assuming the quantum state corresponding to N copies of a single photon
or a multimode coherent state with mean number of photons N. Similarly, figure
2.6b shows that for the estimation of the parameter β3 with relative error δβ3 , the
number of photons required using a multimode coherent state is equal to the single
photon model.
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Example 2. Estimation of the height and sidewall angle of a cliff-like
nano-structure

Consider an illumination beam with spatial profile f(x) such that

|f(x)|2 =
2√
πσ2

exp

{
−x

2

σ2

}
. (2.121)

The beam is reflected by a cliff-like nanostructure made of a highly reflective
material and the slope of the cliff-like structure is modeled as a hyperbolic tangent
Sigmoid function in the following way

S(x) =
h

2
(1 + tanhαx), (2.122)

such that after interaction with the structure, the optical beam acquires the phase

ϕ(x) = kh (1− tanhαx) , (2.123)

where h is the height of the cliff structure and α = 2 tanβ/h is the sidewall angle
parameter associated to the sidewall angle β as represented in Fig.2.5. In typical
nanostructures, the height is a fraction of the wavelength of the incident light
wave, and the sidewall angle is ideally close to 90◦ [68]. To estimate the precision
bounds given by the Crámer-Rao inequality we follow a similar procedure as the
one in the previous section.

Single photon state

Let us first consider the illumination beam consisting of N copies of single photons
so that the FIM elements are:

[FQ]11 = N [FSPQ ]11 = 4N

(
2

πσ2

)1/2
π2 − 6

9

(kh)2

α3
, (2.124)

[FQ]22 = N [FSPQ ]22 = 8k2N

[
1− 2

πσ2

1

α

]
− 4k2N ∼ 4k2N (2.125)

since ασ � 1 for β → 90◦, and

[FSPQ ]12 = N [FSPQ ]12 = 4N

(
2

πσ2

)1/2
k2h

α2
. (2.126)

Multimode coherent state

For a multimode coherent state the only difference is that

[FCohQ ]22 = 8k2N

[
1− 2

πσ2

1

α

]
∼ 8k2N. (2.127)
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Figure 2.5: Sketch of a Cliff-like nano-structure with sidewall angle β and height h. The
red dashed line corresponds to the mathematical model of the slope. The sidewall angle β
is related to the parameter α as α = 2/b = 2 tanβ/h.

Estimation error

Since the FIM is no longer diagonal, the elements of the inverse FIM [FQ]−1 must
be computed, namely for the single photon case[

F−1
Q

]
11

=
1

N

[FQ]22

[FQ]11[FQ]22 − ([FQ]12)2
(2.128)

[
F−1
Q

]
22

=
1

N

[FQ]11

[FQ]11[FQ]22 − ([FQ]12)2
(2.129)

and [
F−1
Q

]
12

=
[
F−1
Q

]
21

=
1

N

[FQ]12

[FQ]11[FQ]22 − ([FQ]12)2
(2.130)

Therefore, the minimum number of photons required to estimate α and h with
relative errors δα =

√
〈(∆α)2〉/α and δh =

√
〈(∆h)2〉/h as in Eqs.(2.19) and

(2.20) are

N ≥ [FQ]22

[FQ]11[FQ]22 − ([FQ]12)2

1

α2

1

δ2
α

(2.131)

and

N ≥ [FQ]11

[FQ]11[FQ]22 − ([FQ]12)2

1

h2

1

δ2
h

. (2.132)
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Approximation for cases experimentally relevant

Notice that the product of the diagonal elements of the FIM matrix is

[FSPQ ]11[FSPQ ]22 = 4A

(
2

π

)1/2
π2 − 6

9
k4h2 1

σα3
(2.133)

with A = 4 for a single-photon model and A = 8 for a multimode coherent state.
Then

([FSPQ ]12)2 =
32

π
k4h2 1

σα3

1

σα
. (2.134)

For angles close to 90◦, the product σα� 1 (the experimentally relevant case):

[FSPQ ]11[FSPQ ]22 � ([FSPQ ]12)2. (2.135)

Making use of this result, detFQ ≈ [FQ]11[FQ]22. Then, from Eq. (2.131) the
minimum number of photons required for estimation of α with relative error δα is

N ≥ 1

[FQ]11

1

α2δ2
α

=
9
√
π

4
√

2 (π2 − 6)

σα

(kh)2

1

δ2
α

. (2.136)

Similarly, from Eq. (2.132), the minimum number of photons required for the
estimation of the height h with relative error δh is

N ≥ 1

[FQ]22

1

h2δ2
h

(2.137)

From Eqs.(2.125) and (2.127) one can see the discrepancy between the single-
photon model and the multimode coherent state; substituting explicitly,

NCoh ≥ 1

8(kh)2

1

δ2
h

. (2.138)

NSP ≥=
1

4(kh)2

1

δ2
h

. (2.139)

Figure 2.6c shows the minimum number of photons required to estimate the side
wall angle α with a relative error of δα. Since the FI is the same for both coherent
multimode states with mean number of photons N and N copies of a single-photon
state, the CR bounds yield the same result, whereas for the estimation of the height
h, the FI is different for coherent multimode states with mean number of photons
N than the one of N copies of a single-photon state.This leads to a difference in
the number of photons required to estimate the height of the cliff-like structure,
as shown in Fig. 2.6d.
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Figure 2.6: Minimum number of photons required to estimate the parameter θ with
precision δθ according to the quatum Crámer-Rao bound. The parameters are the a)
second-order β2 and b) third-order β3 dispersion coefficients of a medium (B = 10nm
and z = 1m) and the c) sidewall angle parameter and d) height of a cliff-like structure
(h = 150nm and β = 88◦). Solid lines correspond to single photon model and dashed
lines correspond to multimode coherent state.
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2.5 The quantum discord:
A measure of deterioration of precision in quantum

phase estimation under the presence of loss

As introduced in Section 2.2, it is possible to define the estimation precision bounds
when characterizing quantum states. Moreover, when the parameters of interest
are encoded in the phase of the state (quantum phase estimation), one can define
conditions and protocols for the precision limits to be saturated, hence allowing
quantum phase estimation with ultimate precision. In this section, we consider the
effects of losses in quantum phase estimation protocols; in particular we study the
loss of informational content of a multi-photon quantum state in presence of loses
by looking at quantum correlation. The content of this section has been published
in a peer reviewed journal as a research article (Ref. [69]) of which the author of
this dissertation is second author.

Quantum correlations embedded in entangled states are a resource that fa-
cilitate the design of new protocols for parameter estimation. One paradigmatic
example of a state of this kind used for quantum-enhanced sensing is a N00N
state. This type of states allow to estimate an unknown phase with a resolution
that scales as 1/N , where N is the average number of photons. This is an im-
provement with respect to the scaling provided by coherent states, like the ones
generated by a laser beam, that goes as ∼ 1/

√
N .

Quantum correlations that go beyond those described by entanglement can
also offer a quantum advantage [70]. Henderson and Vedral [71] as well as Ollivier
and Zurek [72] introduced the concept of quantum discord to quantify these type
of correlations. They noticed that while there are two equivalent expressions for
the mutual information of two random variables that give the same result, their
generalizations for measuring the correlations between two quantum systems may
yield different results.

The original formulation of quantum discord is difficult to compute [73] even
for a simple, although relevant case of two-qubit systems [74–76]. This has led to
alternative formulations of the concept that still fulfill a set of conditions expected
for a good measure of quantum correlations [77] while being easier to compute in
certain scenarios of interest.

One of these alternatives is the geometric measure of quantum discord, or geo-
metric quantum discord (GQD), which is based on the assumption that a bipartite
quantum state ρAB has zero discord [78–81] if and only if there is a Von Neumann
measurement

{
ΠA
k

}
= |uk〉 〈uk| on the subspace A such that∑

k

(
ΠA
k ⊗ IB

)
ρ
(
ΠA
k ⊗ IB

)
= ρ. (2.140)

Here IB designates the identity operator in the subspace B. We restrict ourselves
to Von Neumann measurements [82,83], so all projectors ΠA

k are one-dimensional.
In this case we can write the projectors ΠA

k in terms of a set of vectors {|uk〉} that
is a basis in subspace A.
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This implies that zero-discord quantum states are of the form

ρ =
∑
k

pk |uk〉 〈uk| ⊗ ρBk , (2.141)

where ρBk are density matrices in subspace B and pk are positive real numbers
with

∑
k pk = 1. These states are often referred to as classical-quantum states

[84]. From the definition of classical-quantum states, it naturally follows that the
geometric quantum discord is the minimum distance (square norm in the Hilbert-
Schmidt space) between the quantum state ρ and the closest classical-quantum
state

∑
k

(
ΠA
k ⊗ IB

)
ρ
(
ΠA
k ⊗ IB

)
.

This definition for GQD might show some drawbacks [85] since it can increase
under local operations of the party B that is not measured. This undesirable effect
can be corrected [86] if one substitutes the density matrix ρ by ρ1/2, so that the
GQD is now the minimum distance (square norm in the Hilbert-Schmidt space)
between ρ1/2 and

∑
k

(
ΠA
k ⊗ IB

)
ρ1/2

(
ΠA
k ⊗ IB

)
. In what follows, this is the

definition of geometric quantum discord used in this text. One major advantage
of this expression is that it can be calculated in closed form for quantum bipartite
systems of dimension 2×D [86, 87].

Simultaneously as the previous correction of the geometric discord was re-
ported, Girolami, Tufarelli and Adesso [88] introduced the local quantum uncer-
tainty (LQU), a new formulation of quantum discord defined as follows: given a
specific Von Neumann measurement where each projector ΠA

k is assigned an eigen-
value λk (all λk are different), the LQU is the minimum over all possible ensembles{

ΠA
k

}
of the Wigner-Yanase Skew information, I [89]:

I = −1

2
Tr

{[
ρ1/2,M

]2}
. (2.142)

Here M =
(∑

k λkΠA
k

)
⊗IB and IB is the identity on subspace B. Again, as in the

case of the geometric quantum discord discussed above, one important advantage
of LQU is that it can be calculated in closed form for 2 × D quantum bipartite
systems.

For a given Von Neumann measurement
{

ΠA
k ⊗ IB

}
, one can define its quan-

tum uncertainty as Q =
∑
k Ik, where

Ik = −1

2
Tr

{[
ρ1/2,ΠA

k ⊗ IB
]2}

. (2.143)

It turns out that the GQD is the minimum of the quantum uncertainty Q over all
possible Von Neumann measurements. This introduces a revealing link between
the LQU and the GQD formulations of the quantum discord through the use of
similar expressions of the Wigner-Yanase Skew information [83]. In a given Von
Neumann measurement, characterized by a set of one-dimensional operators

{
ΠA
k

}
,

each one associated with a possible experimental outcome, the intrinsic statistical
error associated with the measurement has a quantum contribution. The Skew in-
formation, a measure of the non-commutativity between the quantum state ρ and

38



the set
{

ΠA
k ⊗ IB

}
, can be used to quantify this quantum uncertainty. In this con-

text, the local quantum uncertainty and the geometric discord can be understood
as the minimum quantum uncertainty that one can have among all possible Von
Neumann measurements. However, they differ in how they evaluate the quantum
uncertainty. The geometric discord considers the sum of the quantum uncertain-
ties associated with each outcome ΠA

k ⊗ IB , while the local quantum uncertainty
considers the quantum uncertainty associated to an operator that describes the
global measurement, M =

(∑
k λkΠA

k

)
⊗ IB , with λk the eigenvalues associated to

the possible outcomes of the measurement.
Both metrics for quantum discord considered above, namely the local quantum

uncertainty and the geometric quantum discord, fulfil similar requirements that
the original discord definition does, which make them good discord metrics [77,
88]. These discord quantifiers are non-negative and invariant under local unitary
transformations, furthermore they yield zero only for quantum-classical states and
the discord reduces to an entanglement monotone, which in the case of pure states
it is characterized by the marginal entropy of subsystem A.

As the geometric discord and the local quantum uncertainty can be both ex-
plained as the minimum quantum uncertainty that can be attained in a Von Neu-
mann measurement, in what follows we show that they are indeed the same discord
metric for the case of bipartite quantum systems whose dimension is 2 × D, al-
though this may not be true for systems with other dimensions. Moreover, we
take advantage of the fact that both measures can be evaluated in closed form, in
sharp contrast to other alternative formulations of quantum discord [70].

The relevance of this study for the scope of this thesis is to explore the Crámer-
Rao lower bound for multi-phase estimation precision when using quantum states
of light; in particular, states with non-classical correlations that can be explicitly
computed.

We show an example the case of N00N states for phase estimation in a lossy
environment. Since quantum systems experiencing losses are fragile, this often
leads to a worsening of the achievable estimation precision, thus reducing the
quantum advantage observed for the lossless case. In general it is possible to
consider several measures to characterize the effect of losses, but it is not clear in
principle which one is the most convenient or informative for each scenario.

As introduced in Section 2.2, for one-parameter estimation, the Cramér-Rao
bound given by the quantum FI in Eq. (2.38) is attainable [22], so it is a good
measure of the enhancement provided by a phase-estimation protocol making use
of a specific quantum state [39,43]. Remarkably, we demonstrate that the decrease
of quantum Fisher information under the presence of losses, with respect to the
ideal case with no losses, is precisely the geometric quantum discord. In this sense,
the quantum discord is more informative than negativity concerning the spatial
resolution achievable under the present of loss, as given by the quantum Fisher
information.
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2.5.1 Equivalence regimes for Local Quantum Uncertainty
and Geometric Quantum Discord

The quantum uncertainty Q defined in [83], whose minimum yields the GQD, can
be written as Q =

∑
j Ij where

Ij = −1

2
Tr

{[
ρ1/2,ΠA

j ⊗ IB
]2}

= Tr
[
ρ
(
ΠA
j

)2]− Tr
(
ρ1/2ΠA

j ρ
1/2ΠA

j

)
= TrB Vj , (2.144)

and Vj is defined as

Vj = 〈uj |ρ|uj〉 − 〈uj |ρ1/2|uj〉〈uj |ρ1/2|uj〉. (2.145)

If we make use of the resolution of the identity on subspace A, i.e.,
∑
i |ui〉〈ui| =

IA, we obtain that

Q =
∑
j

TrB Vj = 2
∑
j<k

TrB Vjk, (2.146)

where
Vjk = 〈uj |ρ1/2|uk〉〈uk|ρ1/2|uj〉, (2.147)

and Vjk = Vkj .
In a similar vein, the quantum uncertainty U defined in [88], whose minimum

yields the LQU, can be written as

U = TrB

∑
j

λ2
j 〈uj |ρ|uj〉 −

∑
j,k

λjλk〈uj |ρ1/2|uk〉〈uk|ρ1/2|uj〉


=

∑
j

λ2
jTrB Vj − 2

∑
jk

TrB λjλkVjk

=
∑
j<k

(λ2
j + λ2

k) TrBVjk − 2
∑
j<k

λjλkTrB Vjk

=
∑
j<k

(λj − λk)2TrB Vjk, (2.148)

where λj corresponds to the eigenvalue of the j-th projector constituting a von
Neumann measurement.

Equations (2.146) and (2.148) are valid for arbitrary dimensions of the Hilbert
spaces of the bipartite quantum states, and for any quantum state described by
density matrix ρ. For a Hilbert space with dimension 2 ×D the key observation
is that

〈u1|ρ|u1〉 − 〈u1|ρ1/2|u1〉〈u1|ρ1/2|u1〉
= 〈u1|ρ1/2|u2〉〈u2|ρ1/2|u1〉
= 〈u2|ρ|u2〉 − 〈u2|ρ1/2|u2〉〈u2|ρ1/2|u2〉. (2.149)
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so that V1 = V2 = V12. In this case,

U = (λ1 − λ2)2TrB V12 =
(λ1 − λ2)2

2
Q. (2.150)

Equation (2.150) shows that the quantum uncertainties Q and U are proportional
to each other, thus implying that the measures of quantum discord that derive
from them are indeed equivalent for bipartite systems of dimension 2×D.

2.5.2 Non-equivalence between LQU and GQD in systems
with arbitrary dimensions

In this section we want to demonstrate that in bipartite systems where the dimen-
sion of both subsystems is greater than 2, the LQU and GQD are not proportional
to each other. For the sake of simplicity, we restrict ourselves to comparing the
values of Q and U for pure states in Hilbert spaces of dimensions 2×D and 3×D.

We start by noticing that any pure bipartite quantum state can be written as
a Schmidt decomposition

|Ψ〉 =
∑
m

√
sm|αm〉|βm〉, (2.151)

where {αm} is a basis in subspace A, {βm} is a basis in subspace B and {sj}
are the Schmidt coefficients, with the normalization condition

∑
j sj = 1. We can

easily derive that

TrB Vjk =
[∑
m

sm
∣∣〈αm|uj〉∣∣2]× [∑

n

sn
∣∣〈αn|uk〉∣∣2]. (2.152)

In Ref. [86] it was demonstrated that for pure states the von Neumann mea-
surement that minimizes the quantum uncertainty Q corresponds to choosing
|ui〉 ≡ |αi〉. In this case TrB Vjk = sjsk so the geometric quantum discord for
pure states is DG = 2

∑
j<k sjsk. By making use of the normalization of the

quantum state we obtain that 2
∑
i<j sisj = 1−

∑
i s

2
i so the quantum discord for

pure states can also be written as DG = 1−
∑
i s

2
i , as reported in [86].

The expression of the quantum uncertainty U for pure states is

U =
∑
j<k

(λj − λk)2
[∑
m

sm
∣∣〈αm|uj〉∣∣2]× [∑

n

sn
∣∣〈αn|uk〉∣∣2]. (2.153)

We have performed extensive numerical simulations choosing many random von
Neumann bases {|ui〉} to calculate the range of possible values of the quantum
uncertainties Q and U . The von Neumann bases are obtained by choosing random
unitary transformations U of the bases {|αi〉} so that {|ui〉} = U {|αi〉}. For
2 × D and 3 × D quantum systems, one can choose the most general unitary
transformation as given in [90].
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Figure 2.7: All possible values of the Quantum uncertainties Q (left) and U (right) as
a function of the Schmidt coefficients s1 for fixed values of s2, as indicated in the plot.
(a) and (b) show results for 2×D systems, while (c)-(f) show results for 3×D systems
with λ1 = 4, λ2 = 3 and λ3 = 2. (c) and (d): Schmidt coefficient s2 = 0.2; (e) and (f):
Schmidt coefficient s2 = 0.5. The Schmidt coefficients are dimensionless.

Figure 1(a) shows all possible values of the quantum uncertainty Q obtained nu-
merically for a 2×D quantum system. The solid lines correspond to the minimum
value of Q, that is DG = 2s1(1−s1), and the maximum value, DG = 1−1/2 = 0.5
[86]. Fig. 1(b) shows all possible values of U for a 2 × D quantum system with
(λ1 − λ2)2/2 = 1. As expected from the results obtained in Section 2.5.1, Figs.
1(a) and (b) show the same results.

Figs. 1(c) to 1(f) correspond to a 3 × D system. The numerical simulations
hereby presented show that the minimum of U is attained for von Neumann mea-
surements where the three orthogonal measurement projectors ΠA

i (i = 1, 2, 3)
can be written as ΠA

i = |αp(i)〉〈αp(i)|, where p(i) designates the permutation
{1, 2, 3} −→ {p(1), p(2), p(3)} that yields the minimum value of U . We have six
possibilities corresponding to the six different ways we can associate one vector of
the set |ui〉 with one vector of the set |αi〉. The local quantum uncertainty is

LQU =
∑
j<k

(λj − λk)2sp(j)sp(k). (2.154)

The eigenvalue λi that we associate to each von Neumann state |αi〉 now matters.
This is in contrast to the case of Q, where there is no eigenvalues associated to
each outcome of a measurement and so all outcomes have the same weight.

Note that the maximum value ofQ for pure states is independent of the Schmidt
coefficients si, and it is 1/2 for 2 × D systems and 2/3 for 3 × D. On the other
hand, Figs. 1(d) and (f) show that the maximum value of U for 3 × D systems
may change for different values of the Schmidt coefficients- As a conclusion, such
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value does not depend only on the dimensions of the subsystems, which is the case
of the quantum uncertainty Q.

Figure 2 shows how, for two specific set of values of the eigenvalues λi, the
correspondence between vectors |ui〉 and |αi〉 that give the minimum of quantum
uncertainty U varies for different values of s1 and s2. Each color in the figures
stands for a different value of the minimum of U . Fig. 2(a) shows that for the
case with eigenvalues λ1 = 2, λ2 = 4 and λ3 = 1, when comparing the minimum
of U obtained for each value of s1 and s2, up to six different results are obtained.
These six minimum values of U can be obtained making use of the six possible
permutations in Eq. (13). In Fig. 2(b) we consider the case with eigenvalues
λ1 = 4, λ2 = 3 and λ3 = 2. Now one can obtain up to three different minima of U
when considering all possible Schmidt coefficients.

2.5.3 Geometric quantum discord of NOON states under
the presence of loss

To demonstrate the usefulness of the equivalence between GQD and LQU, we
consider the relevant case of N00N states for phase estimation,

|Ψ〉AB =
1√
2

(
|N〉A |0〉B + exp(iNϕ) |0〉A |N〉B

)
, (2.155)

where ϕ is the phase per photon introduced in one of the modes (subsystems A
or B), and N is the non-zero number of photons in either of the modes. N00N
states can be used to estimate an unknown phase ϕ with a precision that scales
as 1/N [91]. Compared with protocols that make use of coherent states, that
provide a precision that scales as 1/

√
N , N00N states are an important example

of quantum-enhanced phase estimation.
We consider the case where there are losses only in subsystem B (non-symmetric

losses). The reason for this is that in this scenario the quantum state is a 2×(N+1)
system, which allows us to calculate the quantum discord in a straightforward way.
As shown in Figure 2.9, we can model such losses by considering that photons trav-
elling in subsystem B traverse a fictitious beam splitter (BS) with reflection coef-
ficient r (photons moving from subsystem B to subsystem C) and a transmission
coefficient t (photons that continue in subsystem B) [92]. The overall quantum
state after the BS is

|Ψ〉ABC =
1√
2

[
|N〉A |0〉B |0〉C (2.156)

+

N∑
n=0

√(
N

n

)
tnrN−n exp(inϕ) |0〉A |n〉B |N − n〉C

]
,

with two accessible states for subsystem A ({0, N}) and N + 1 for subsystem B
({0, ..., N}).
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Figure 2.8: Comparison of the values of the minimum of the quantum uncertainty U
obtained for different Schmidt coefficients s1 and s2. (a) The eigenvalues associated to
the Von Neumann measurement are λ1 = 2, λ2 = 4 and λ3 = 1; (b) The eigenvalues
associated to the Von Neumann measurement are λ1 = 4, λ2 = 3 and λ3 = 2. Each
color designates a given value of the minimum of U . In (a) the value of the minimum
of U , for all possible coefficients s1 and s2, can yield up to six different results. In (b)
one finds only three different values of the minimum of U . The Schmidt coefficients are
dimensionless.

The density matrix that describes subsystem AB is obtained calculating the
partial trace of the state given by Eq. (2.156) with respect to subsystem C. In
this way,

ρAB =
1

2

(
|N〉A |0〉B + tN exp(iNϕ) |0〉A |N〉B

)
×
(
〈N |A 〈0|B + t∗N exp(−iNϕ) 〈0|A 〈N |B

)
+

1

2

N−1∑
n=0

(
N

n

)
|t|2n|r|2(N−n) |0〉A |n〉B 〈0|A 〈n|B . (2.157)

The fact that the dimension of the quantum state of subsystems AB is 2 × D
with D = N + 1 allows us to readily calculate the Local Quantum Uncertainty, or
equivalently the Geometric Quantum Discord.

Calculation of the quantum Fisher information

The quantum Fisher Information FQ associated to the quantum state given by
Eq. (2.157) can be calculated by making use of the spectral decomposition of the
state: ρAB =

∑
i λi(ϕ) |λi(ϕ)〉AB 〈λi(ϕ)|AB . Here λi(ϕ) are the eigenvalues of the

decomposition and |λi(ϕ)〉AB are the corresponding eigenvectors. It can be easily
demonstrated that all eigenvalues show no dependence on the value of ϕ and that
there are two eigenvectors with a non-zero ϕ -dependence:

|λ1〉 = N
[
|N〉A|0〉B + tNeiNϕ|0〉A|N〉B

]
, (2.158)
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Figure 2.9: We consider the case of a simple 2 ×D quantum system with D = N + 1:
A bipartite N00N state ρAB with non-symmetric losses. Photon losses are considered
in subsystem B, where a fictitious beam splitter with reflectivity r and transmissivity t
models the system losses. Subsystem A has only two accessible states {0, N} whereas
subsystem B has D = N + 1 accessible states {0, ..., N} given by the combination term in
Eq. (2.156).

with λ1 =
(
1 + |t|2N

)
/2, and

|λ2〉 = N
[
−t∗N |N〉A|0〉B + eiNϕ|0〉A|N〉B

]
(2.159)

with λ2 = 0. The normalization constant isN = (1+|t|2N )−1/2. In this case [92,93]
the quantum Fisher information reads FQ = λ1F1 with

F1 = 4

[〈
∂λ1

∂ϕ

∣∣∣∣∂λ1

∂ϕ

〉
−
∣∣∣∣〈λ1

∣∣∣∣∂λ1

∂ϕ

〉∣∣∣∣2
]
, (2.160)

which yields the simple expression

FQ = N2 2|t|2N

1 + |t|2N
. (2.161)

Note that for the ideal lossless case, we obtain the well-known result FQ = N2.

Calculation of LQU and GQD

Given that LQU and geometric quantum discord are equivalent discord measures
for 2×(N+1) quantum systems, in what follows we will refer to them as geometric
quantum discord DG for the sake of simplicity. According to Ref. [88], the LQU
of 2 × (N + 1) bipartite quantum systems is DG = 1 − λmax where λmax is the
greatest eigenvalue of the 3× 3 symmetric matrix WAB ,

(WAB)ij = Tr
(
ρ1/2(σi ⊗ 1)ρ1/2(σj ⊗ 1)

)
. (2.162)

Here σi designates the three Pauli matrices. We obtain that the greater eigenvalue
of the matrix W , considering the quantum state ρAB described by Eq. (2.157), is
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Figure 2.10: Quantum Fisher Information for the N00N state with losses in one subsys-
tem as a function of Geometric Quantum Discord DG (left) and Negativity (right).

λmax = (1 − |t|2N )/(1 + |t|2N ). Therefore the corresponding geometric quantum
discord is

DG =
2|t|2N

1 + |t|2N
. (2.163)

We can thus write a very simple relationship between the quantum Fisher infor-
mation with and without loss

F loss
Q = DG × F lossless

Q . (2.164)

where F loss
Q designates the quantum Fisher information of the N00N state in a

lossy environment and F lossless
Q is the quantum Fisher information of the ideal

(no losses) N00N state. Remarkably, we have found that the geometric quantum
discord (and so the Local quantum uncertainty) quantifies the loss of quantum
Fisher information due to losses. Fig. 2.10(a) shows the linear relationship between
Fisher information and DG for a N00N state with N = 10. It turns out that the
geometric quantum discord is the decrease of quantum Fisher information of a
N00N state due to non-symmetric losses.

The quantum state given by Eq. (2.157) is always entangled. This can be
demonstrated calculating the negativity, that is an entanglement monotone [94].
Fig. 2.10(b) shows the Quantum Fisher Information as a function of negativity.
For high degree of entanglement (low losses and thus negativity close to 1) the
Fisher information is a quasi-linear function the negativity of the quantum state.
However, for low values of entanglement (high losses and low values of negativity)
the relationship between quantum Fisher information and negativity is no longer
lineal, contrary to the case of the geometric quantum discord.

We have demonstrated that the geometric quantum discord introduced in [86]
and the local quantum uncertainty [88] are equivalent measures of discord for
2×D quantum bipartite systems. As an example of the relevance of the geomet-
ric quantum discord (and local quantum uncertainty) for quantum estimation of
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quantum phases we have considered N00N states in non-symmetric lossy environ-
ments. Since these states are 2 × (N + 1) bipartite quantum systems, LQU and
GQD are equivalent measures of quantum discord. Furthermore, we have shown
that the geometric quantum discord faithfully quantifies the decrease of quantum
Fisher information due to losses, a good indicator of the quantum enhancement
provided by N00N states for phase estimation.
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Chapter 3

Optical sensing with spatial
modes of light

Modal measurements methods have shown to be an efficient strategy to surpass
the standard diffraction limit [26,63,95]. The idea comes from the fact that direct
imaging techniques, consisting on intensity measurements of the complete field
reflected o transmitted by an object, lead to resolution limitations. Hence, the use
of spatial modes aims at sensing selectively light that contains relevant information
about the object’s features and neglect other field contributions. In the case of
direct imaging techniques, those contributions still present in the detected field
might lead to diffraction effects affecting the estimation of the object’s parameters.

Using spatial mode selective sensing, we aim at defining measurement strategies
consisting on mapping the effects of light-matter interaction over spatial modes of
light. In general, such a technique is reduced to measuring the coefficients of the
modal decomposition of the optical beam after interaction with the sample. Since
those coefficients are imprinted with the physical characteristics of the target, this
allows to directly estimate the spatial features of interest from the mode weights.
Although this technique seems to be straightforward, for it to be accurate, it is
often needed to measure the coefficients of a very large number of modes depending
on the selected set of modes, which can be technically cumbersome.

In this chapter we introduce the concept of spatial modes of light and present
some standard examples of modal basis frequently used due to their symmetries.
We introduce techniques used to experimentally generate spatial modes of light,
focusing specifically on the use of phase-only Spatial Light Modulators (SLM). In
Section 3.2 we present the use of spatial modes for optical metrology and sensing,
introducing the concept of Spatial Spectroscopy. Similar approaches are also refered
to in the literature as wavefront sensing of hyperspectral imaging. We propose
schemes for determining the modal decomposition of an optical beam; due to
the limitations and implementation challenges of these techniques we propose a
method to extract information about the modal decomposition without the need
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of complete modal projections but by sensing the field imprinted with a specific
phase information. In Section 3.3 we present as an example the two-dimensional
localization of an optical beam in a transverse plane using optical vortex field
phase projection in the sensing scheme.

3.1 What are spatial modes of light?

To define spatial modes of light, we start from the basis of the theory of electro-
magnetism, in which Maxwell’s equations describe the dynamics of electromagnetic
fields. In absence of sources, the dynamics of the field in a homogeneous medium
is described by the wave equation

∇2U(r, t) +
1

c2
∂2

∂t2
U(r, t) = 0, (3.1)

where c is the speed of light satisfying c2µε = 1, with µ and ε the magnetic
permeability and electric permitivity of the propagation medium. U(r, t) is either
the electric or magnetic field assumed to be time harmonic. Throughout this
work, we assume linearly-polarized monochromatic fields of the form U(r, t) =
U(r) exp(iωt). Under this assumption, the wave equation Eq. (3.1) is reduced to
the scalar Helmholtz equation

∇2U(r) + k2U(r) = 0, (3.2)

where k = ω/c = 2π/λ is the wave number, ω the frequency and λ the wavelength
of the time-harmonic field whose temporal dependence exp(iωt) has been neglected
to simplify the notation.

Assuming homogeneous and isotropic media, the wave vector is predominantly
parallel to the electromagnetic energy flux [96]. Without losing generality let us
assume the wave vector along the z axis, which defines the electromagnetic wave
propagation direction. The vector k satisfies k2

x + k2
y + k2

z = ω2n2/c2, with n the
refractive index of the medium.

In this conditions, one can separate Helmholtz equation in its transverse and
longitudinal parts

∇2
TU(r) +

∂2

∂z2
U(r) + k2U(r) = 0. (3.3)

Assuming separation of variables [97], the solution of the z dependence component
is of the form exp(−ikz), such that the field is

U(r) = U(rT ) exp(−ikz), (3.4)

where rT is the coordinate in the transverse plane. Under the paraxial approxima-
tion, one assumes that the field varies slowly along the propagation direction z, as
compared to the variations in the transverse plane, such that

∂2

∂z2
U(r)� k

∂

∂z
U(r) and

∂2

∂z2
U(r)� ∇2

TU(r). (3.5)
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This leads to the paraxial Helmholtz equation

∇2
TU(r)− 2ik

∂

∂z
U(r) = 0. (3.6)

A general solution of the paraxial Helmholtz equation in terms of the radial
coordinate ρ =

√
x2 + y2 has the form

UG(ρ, z) = A
w0

w(z)
exp

{
− ρ2

w2(z)

}
exp

{
−ikz − ik ρ2

2R(z)
+ iζ(z)

}
, (3.7)

which corresponds to a field with paraboidal wavefront profile of amplitude A and
radius of curvature R(z). The spotsize w(z) is the distance to the optical axis
from a point in the transverse plane such that the amplitude of the field falls to
1/e of its peak value. The beam waist w0 is the narrowest spotsize considered to
be reached at z = 0. The wavefront is nearly flat along a distance zR known as
Rayleyg’s range and ζ(z) is a phase acquired through propagation known as Gouy
phase. The beam parameters are explicitly given by:

w(z) = wo

√
1 + (

z

zR
)2 Beam radius

w0 = w(0) =

√
λzR
π

Beam waist

zR =
πw2

0n

λ
Rayleigh range

R(z) = z
[
1 + (

zR
z

)2
]

Radius of curvature

ξ(z) = arctan

(
z

zR

)
Gouy phase

(3.8)

Furthermore, a solution to the paraxial Helmholtz equation (3.6) can be written as
a combination of elements of an orthonormal basis of functions {Um(r)}, further
referred as modes, such that

U(r) =
∑
m

αmUm(r). (3.9)

The modes satisfy the orthonormality condition∫
Um(r)U∗n(r) = δm,n′ . (3.10)

The complex coefficients of the modal decomposition of the field (3.9) αm are given
by

αm =

∫
U(r)U∗m(r)dr. (3.11)
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Note that the Gaussian solution in Eq. (3.7) contains a phase factor that de-
pends only on the propagation distance z, such that at any plane z0 the phase
is independent of the transverse coordinate. Moreover, the decomposition in Eq.
(3.9) and the normalization condition (3.10) allow decompositions into modes with
transverse-coordinates-dependent phases, such that combined with complex coef-
ficients are solutions to the paraxial Helmholtz equation.

The paraxial regime defines a general set of modes referred to as Transverse
Electromagnetic modes (TEM) in which no electric nor magnetic field is present

in the direction of propagation (k̂ = ~k/|k|). Collimated1 beams generated by
lasers with cylindrical symmetry have spatial profile resulting of a combination
of a Gaussian contribution as in Eq. (3.7) and a circularly-symmetric Laguerre
polynomial. Some other laser systems have instead Cartesian symmetry due to
partially reflective windows, this results in spatial profiles with the same Gaussian
contribution and a Cartesian-symmetric Hermite polynomials. These two sets
of transverse modes can be made to form an orthonormal set of modes further
described in what follows.

3.1.1 Hermite-Gauss modes

A solution in Cartesian (x,y) coordinates to the scalar Helmholtz equation under
the paraxial approximation Eq. (3.6) are the Hermite-Gaussian (HGn,m) modes,
given by

HGn,m(ρ, z) =
Cmn
w(z)

Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
exp [i(n+m+ 1)ζ(z)]

× exp

(
− ρ2

w2(z)

)
exp

(
−ikρ2

2R(z)

)
exp(−ikz) (3.12)

where Cmn is the normalization constant satisfying orthonormality condition in
Eq. (3.10)

Cmn =

√
2−(n+m−1)

πn!m!
(3.13)

Hn, Hm are the corresponding Hermite polynomials of order n and m, respectively.
Some examples of HGnm modes are shown in Fig. 3.1.

3.1.2 Laguerre-Gauss modes

Similarly as in Cartesian coordinates, by writing the paraxial Helmholtz equation
(Eq. (3.6)) in polar coordinates one obtains the Laguerre-Gauss (LGlp) basis of

1A collimated beam consists of an electromagnetic wave that is considered to approximately
not diverge within a moderate propagation distance, typically the Rayleigh range for Gaussian
beams.
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Figure 3.1: Hermite-Gauss HGmn modes of order m,n = 0, 1,

modes given by

LGl,p(ρ, ϕ, z) =
CLGlp
w(z)

(√
2ρ

w(z)

)|l|
L|l|p

(
2ρ2

w2(z)

)
exp

(
− ρ2

w2(z)

)
× exp[iζ(z)]) exp

(
− ikρ2

2R(z)

)
exp(−ilϕ) (3.14)

with Lsp(r) the Laguerre polynomial, and Clp the normalization constant is

CLGlp =

(
2p!

π(p+ |l|)!

)1/2

. (3.15)

The Laguerre-Gaussian modes with l 6= 0 contains an azimuthally varying phase
factor exp(ilϕ) with a phase singularity at the optical axis rho = 0, such that
for the field to be defined, the amplitude must vanish at ρ = 0. This leads to a
doughnut-shaped intensity profile. The profile of the mode LGlp contains p + 1
radial nodes and l discontinuities in the azimuthal direction. Some examples of
LGlp modes are shown in Fig.3.2.

3.1.3 Azimuthal p-modes

From the solution to the paraxial Helmholtz equation and the decomposition in
TEM modes, one can see that, in polar coordinates (r, ϕ), an arbitrary beam
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Figure 3.2: Laguerre-Gauss LGpl modes of order p, l = 0, 1,

of light with complex amplitude f(r, ϕ) can be expressed as a sum of radially-
dependent amplitudes and radially-independent phases as:

f(r, ϕ) =
∑
p

ap(r) exp
(
ipϕ
)
. (3.16)

This can be interpreted as a modal decomposition in modes with amplitude ap(r)
and phase pϕ; in what follows, we refer to these modes as p-modes. Using this
decomposition there are two parameters of particular interest, namely

βp ∼
∫
rdrap(r), (3.17)

Pp = 2π

∫
rdr |ap(r)|2. (3.18)

The latter being the weight of the p−th mode so that the total power of the optical
beam is

P =

∞∑
p=−∞

Pp. (3.19)

In principle, the radial integral βp can be zero even though the weight of mode p
(i.e. Pp) is different from zero. However it has been noticed that it is difficult to
find a realistic example for such a case [98].
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3.2 Generation of spatial modes of light
Beam shaping using computer-generated holograms

and spatial light modulators

Spatially structuring light beams has been realised by means of diffractive optical
elements (DOE) that induce spatial variations to the optical path-length of the
beam across its transverse section leading to amplitude and phase modulations
[99]. Designing and engineering the corresponding optical element results in the
generation of engineered structured beam profiles. Although arbitrary amplitude
and phase modulations are often of interest, we particularily care for methods to
generate spiral beams with circular symmetry as the LGpl modes introduced in
the previous section.

An example of DOE used for the generation of such beams are spiral phase
plates (SPP) (see Fig. 3.3a), transparent materials with homogeneous refractive
index and height varying azimuthally, resulting on a phase dislocation [100]. Other
approach for beam shaping is based on the phase shifts that arise with local polar-
ization of the field is transformed, for instance in inhomogeneous anisotropic media.
This phenomena has led to the development of q-plates, liquid-crystal-based bire-
fringent plates with retardation and optical axis unevenly oriented according to a
distribution with topological charge q [101,102]. These devices have shown to con-
vert spin to orbital angular momentum, resulting on the generation of an helical
vortex with helicity controlled by the input beam polarization [103] (see Fig.3.3b).

Another relevant type of diffractive elements for beam shaping are computer-
generated holograms (CGH) [104]. The working principle starts from considering
the intensity pattern of a desired structured beam with specific phase profile (in-
cluding singularities as in the case of vortex beams) combined with a reference
plane wave. Initially, these interference patterns were recorded by exposure of a
photographic film plate, after development of the film, the resulting device is what
initially has been referred to as hologram. A first key relevant point of holograms
is that they record both amplitude and phase information of the interference field
in form of an intensity pattern (see Fig.3.3c). A second point, relevant for the
success of holograms, is the fact that they can be computed computationally by
means of inverse scattering and printed in optical filters [105]. When illuminated
with a plane wave, the spatially-designed transmittance, proportional to the in-
tensity distribution of the interference pattern, induces changes over the field such

(a) Spiral Phase Plate (b) Q-plate (c) Fork hologram

Figure 3.3: Diffractive optical elements (DOE) used for beam shaping
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Figure 3.4: Liquid-crystal on Silicon Spatial Light Modulator (LCOS-SLM). Figure from
Hamamatsu LCOS-SLM product web page.

that the intensity profile after interaction is the desired one.
Computer-generated holograms obtained big attention with the development of

Liquid-Crystal on Silicon (LCoS) Spatial Light Modulators (SLM). These devices
work due to fact that liquid crystals (LC) respond mechanically to electric (or
magnetic) fields. When a sufficiently strong field is applied, the LC molecules tend
to align with the electric field [106].

SLM are pixelated displays consisting on a transparent two-dimensional array
of electrode cells filled with LC that can be controlled individually. Depending
on the magnitude of the applied voltage in each electrode, the LC molecules re-
order within the pixel, effectively resulting in a change of refractive index of the
medium, and hence the transmittance function. There are two types of SLM,
working on transmission or reflection. The difference between them is that in the
latter, instead of two transparent electrode deposited on a glass substrates, one is
replaced by a complementary metal–oxide–semiconductor (CMOS) chip plate, in
which pixel electrodes are arranged in two dimensions (see Fig.3.4) [107]. These
devices allow to display CGHs as gray-scale 8-bits images, allowing to control light
digitally [108, 109]. CGH in LCoS-SLM allow to generate complex fields by ef-
fectively varying the diffraction efficiency with phase modulations [110–112] or by
transferring phase modulations onto amplitude modulations using polarizing op-
tics [113]. In what follows, we present the methods for structuring light beams
using LCoS-SLM.

3.2.1 Two-steps amplitude and phase modulation

An arbitrarily shaped light beam can be generated using two SLM and polarization
optics as shown in Fig. 3.5 [113]. Consider a linearly polarized light beam of spatial
profile u0(x) propagating along the z direction. With the use of a half-wave plate
(HWP) the polarization state of the beam is rotated 45o so that it has equal
components of magnitude A0/

√
2 in the horizontal (H) and vertical (V ) direction.
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Figure 3.5: Two-step arbitrary amplitude and phase modulation of a beam with spatial
profile u0(x). Using two spatial light modulators (SLMs) with transmissivity (or reflec-
tivity) τ and polarization optics, an arbitrary complex field u(x) = Ψ(x) exp{iΦ(x)} is
generated by imprinting the phases ϕ1(x) and ϕ2(x), respectively with the SLMs.

The beam reflected (or transmitted) by a fist spatial light modulator SLM1 with
reflectivity (or transmissivity) τ = 1, imprints a phase ϕ1(x) to the horizontal
component of the beam in the following way

u(x) =
1√
2
u0(x)(eiϕ1(x)H + V ), (3.20)

With the use of a linear polarizer (LP) and a WHP, the polarization state is set
to horizontal and the amplitude of the beam becomes A0(exp(iφ1(x)) + 1)/2. A
second spatial light modulator SLM2 imprints a phase ϕ2(x) so that the resulting
beam is:

u(x) =
1

2
u0(x)(eiϕ1(x) + 1) eiϕ2(x)

= u0(x) cos
(ϕ1

2

)
exp

{
i
(ϕ1(x) + 2ϕ2(x)

2

)}
. (3.21)

Hence, after the second SLM the amplitude and phase of the beam can be engi-
neered by selecting the appropiate phases ϕ1 and ϕ2. To generate abeam with
amplitude ψ(x) and phase φ(x),

u(x) = ψ(x) exp{iφ(x)}, (3.22)

the field must gain the following phases after passing through the SLM,

ϕ1(x) = 2 arccos
ψ(x)

u0(x)
, (3.23)

ϕ2(x) =
φ(x)− ϕ1(x)

2
. (3.24)

Tailoring light beams with this method has been proposed for generation and
steering of photonic nanojets (PNJ) when probing micro-scale dielectric lenses
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[114]. A handicap of this technique is the fact that SLM are not fully efficient.
Due to the pixelated structure of the display, light sees the surface of the SLM as
a two-dimensional diffraction grating. Moreover, the spacing between the pixels is
not completely negligible, so that a small, but significant component of the beam
remains undiffracted by the CGH. Depending on the device, and the wavelenght of
the light beam, this can represent between a 5% and a 20% of the power. Although
for some applications this effect might be relevant, for beam shaping could be a
drawback.

Moreover, SLM can generate pixelated 8-bit and 10-bit phase-maps (such as
ϕ1(x) and ϕ2(x) above) with an arbitrary phase distribution of values discretized
in steps of 2π rad/255 ≈ 24.6 mrad (≈1.4◦) and 2π rad/1023 ≈ 6.1 mrad (≈ 0.35◦)
respectively. The actual performance depends on the model of the SLM and on the
operating wavelength. For example, the 8-bit Hamamatsu LCOS-SLM X13138-07
admits the band of wavelengths from 620 to 1100 nm with 80% light utilization
efficiency at 633 nm, resulting in phase steps of approximately 52.7 mrad (≈3◦).

3.2.2 One-step amplitude and phase modulation

Complex fields can also be generated using a single phase-only CGH. The method
consists on two main principles. The first one is to add a digital blazed grating
to the CGH such that the zeroth and the first diffraction orders are spatially
separated by an angle proportional to the spatial frequency of the grating (inverse
to the period) [110]. The second principle consists on varying the depth of the
phase distribution on the CGH as a bias function in such a way that the light
that is not diffracted by the hologram into the first order, goes to the zeroth
order. These two principles combined allow to effectively tailor the amplitude
distribution of either the zeroth or the first diffraction orders [111]. A schematic
representation of the phase modulation is presented in figure 3.6. The performance
of this technique for complex field generation compromises the relative intensity
of the high-order diffraction field contributions that share the spatial frequency
domain of the encoded field [112].

Suppose one wants to generate an arbitrary field as in Eq. (3.22). Without
losing generality assume that the amplitude ψ(x) and phase φ(x) take values in
the intervals [0, 1] and [−π, π] respectively. A CGH displayed on a phase-only SLM
corresponds to a DOE with transmission function

Th(x) = exp[iη(ψ(x), φ(x))]. (3.25)

Where η(ψ(x), φ(x)) is the actual hologram modulation depending on the ampli-
tude and phase of the desired field. The keypoint of this technique is to express
Eq. (3.25) in terms of its Fourier series in the phase domain as

Th(x) =
∑

cq exp(iqφ), (3.26)
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Figure 3.6: Amplitude and phase modulation through modulation depth variations using
a single computer generated hologram (CGH).

where

cq =
1

2π

∫ π

−π
exp[iη(ψ, φ)] exp[−iqφ]dφ. (3.27)

The explicit dependence (x) of the amplitude ψ and phase φ is not included to avoid
notation. After integration of Eq. (3.27), cq explicitly depend on the amplitude
ψ(x). Thus, keeping the first term of the expansion in Eq. (3.26), one sees that
c1 = αψ(x). Note that the maximum value of the integral (3.27) is 2π, thus the
maximum value of α is 1, which limits the efficiency of the CGH.

Consider the phase modulation given by

η(ψ, φ) = f(ψ) sin(φ). (3.28)

Substituting in the Fourier expansion in Eq. (3.26), one gets

Th(x) =

∞∑
m=−∞

Jm[f(ψ)] exp(imφ). (3.29)

Where Jm denotes the Bessel function of integer order m according to the Ja-
cobi–Anger identity [115]:

exp
(
iz sinϕ

)
=

∞∑
m=−∞

Jm(z) exp
[
imϕ

]
, (3.30)
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or similarly

exp
(
iz cosϕ

)
=

∞∑
m=−∞

im Jm(z) exp
[
imϕ

]
. (3.31)

From the expanssion it follows that

cq = Jq[f(ψ)], (3.32)

which implies

c1 = J1[f(ψ)] = αψ. (3.33)

The value of α is such that the maximum value for Eq. (3.33) to hold is for
α ≈ 0.5819, which corresponds to the maximum value of the first Bessel function
J1(x). This is valid for every value of the amplitude ψ in the interval [0, 1] by taking
the appropriate value of f(ψ) in the domain [0, x1], where x1 ≈ 1.84. The function
f(ψ) can be computed by numerically inverting Eq. (3.33). It is important to note
that this CGH can be implemented with phase modulation in a reduced domain
[−f0π, f0π], with f0 ≈ 0.586, thus, the phase range necessary for the SLM to cover
is ∆φ = 2f0π ∼ 1.17π.

3.3 Spatial spectroscopy. Using spatial modes for
metrology and sensing.

In this section we explore the use of spatial modes in optical metrology either for de-
tection of spatial mode components as introduced in Section 3.1 (spatial mode de-
multiplexing, wavefront reconstruction or hyperspectral imaging) or probing with
specific spatial modes generated using computer-generated holograms displayed on
liquid crystal spatial light modulators as presented in Section 3.2.

Let us start by consider an arbitrary field of interest characterized by a set of
parameters {θi}. In the frame of optical metrology, the field could be associated
to a probe beam scattered by an object with specific spatial features of interest.
As pointed out in Eq. (3.9), the field can be decomposed as a linear combination
of spatial mode components {γi(x)} as

U(r; θ) =

∞∑
i=−∞

Γi(θ) γi(x), (3.34)

where Ci(θ) are the complex decomposition coefficients that depend on the set of
parameters θ = (θ1, θ2, ..., θn) and can be computed as:

Γi(θ) =

∫
U(r; θ) γ∗i (r) dr. (3.35)

It is of interest of this section, to address techniques to measure the modal compo-
nents of the field (3.34). Note that, since the complex coefficients carry information
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of the parameters, one can select an adequate set of modes so that sensing some of
the components might be sufficient to determine the parameters of interest. Two
considerations are relevant for a convenient selection of the set of modes:

• The accurate experimental realization of the spatial modes must be feasible

• The number of modes carrying the most of the information about the pa-
rameters must be countable and as small as possible

Concerning the first consideration, a convenient set of spatial modes with cylin-
drical symmetry that has received a lot of attention in the last two decades is
the Laguerre-Gauss (LG) basis [116]. These modes have been used for imaging
purposes [117–120]. Furthermore, these modes can be realised using laser beams
and CGH in LCoS-SLMS as described in Section 3.2.

By measuring combinations of different modes one can also have access to the
phase of the coefficients. For instance, this has been done to estimate the size and
orientation of an object (opening angle). With the amplitude of the coefficients one
can determine the aperture angle, whilst by measuring the phase one has access
to its orientation [119]. The decomposition of a beam has also been measured
using other basis of functions as the Hermite-Gaussian basis [63,95] or some other
engineered basis [121].

Regarding the second consideration, in general the field expansion is a super-
position of an infinite (or at least very large) number of modes. To measure all
the coefficients of a large number of modes is neither easy nor ideal. Previous
knowledge about what are the most relevant modes would simplify the measure-
ment. Determining only those mode coefficients could be sufficient to estimate the
desired parameters [122].

To measure the amplitude and phase of such modes experimentally, Delaubert
et al. [19,20] considered a homodyne detection scheme to measure the displacement
and tilt of a Gaussian beam. In this particular case, the beam can be seen as
a sum of an on-axis Gaussian beam (TEM00) plus an Hermite-Gaussian mode
of order one (TEM10) whose amplitude and phase contains information on the
displacement and tilt parameters. By combining the tilted and displaced beam
with a local oscillator beam with the TEM10 mode shape, they estimated the two
parameters of interest. In their experiments there are two particular aspects that
it is not evident how, if possible, can be applied to more general scenarios:

• First, even though there are two parameters to be estimated (displacement
and tilt), the spatial mode associated to both parameters turns out to be the
same. This is not the case in general.

• Second, the values of both parameters were determined by the real (displace-
ment) and imaginary (tilt) parts of the TEM10 coefficient. Therefore varying
the phase of the local oscillator they could estimate independently the two
parameters. It is not obvious that this scheme applies generally.
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Figure 3.7: Optical metrology through spatial mode sensing using a homodyne spatial
mode analyzer. A probe beam with spatial distribution Ψ0(x) illuminates an object char-
acterized by n parameters θ = (θ1, θ2, ..., θn). The spatial shape of the scattered beam can
be decomposed as Ψ(x,∆θ) =

∑n
i=0 Γi(∆θ)γi(x, θ0). Here ∆θ = θ − θ0, with θ0 a value

of reference of the parameters close to θ, the unknown spatial feature imprinted in the
probe beam after interaction with the object. The beam is combined with a local oscillator
holding a single spatial mode γl(x, θ0) of the particular set of modes. The signals at the
output ports of the beamsplitter are subtracted in a standard homodyne detection scheme.
By varying the phase of the local oscillator one can retrieve the real and imaginary parts
of the coefficients Γ(∆θ) and determine the system’s parameters θ.

In the following, we generalize these results to implement a homodyne spatial mode
analyzer. The general concept is shown in figure 3.7, in which combining the signal
beam with a local oscillator holding different engineered spatial modes, one could
determine the parameters of interest optimally. This technique in what we call
Spatial Spectroscopy. In the standard (time domain) spectroscopy one illuminate
the sample of interests with light containing many appropriate wavelengths (fre-
quencies) components across the spectrum (hyperspectral imaging might consider
a hundred or more wavelengths). In spatial spectroscopy one chooses several engi-
neered spatial modes to extract particular information about the structure of the
object. The results hereby presented have been presented have been published in a
conference proceedings publication of which the author of this dissertation is first
author [123].

3.3.1 Homodyne spatial mode analyzer

To measure the coefficients in Eq. (3.35) of the modal decomposition in Eq. (3.34)
we consider a homodyne spatial mode analyzer as schematized in figure 3.8 [63,
95]. With the help of a beamsplitter, the beam of interest is combined with
a local oscillator holding the spatial mode γi. The two output signals of the
beamsplitter are subtracted from each other in a standard homodyne detection
scheme. The so called differential signal contains the mode component of the
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Figure 3.8: Homodyne spatial mode analyzer. A probe beam with linear polarization state
(p) illuminates a sample using a microscope objective (MO). The reflected (transmitted)
beam is combined with a local oscillator (LO) mode generated with a spatial light modu-
lator (SLM) using a beam splitter (BS). The output signals are subtracted in a standard
homodyne detection scheme.

probe beam corresponding to the local oscillator mode [19,20,122,124,125].
Without losing generality, let us consider a quantum-mechanical formulation

to describe the working principle of the proposed technique. Needless to say, the
formalism applies classically as well. Let us express the positive frequency electric
field operator of the local oscillator holding the spatial mode γl(x) in the following
way

Ê+
l (x) = i

√
~ω

2ε0cT
âl γl(x). (3.36)

Here ~ω/2ε0cT is the intensity of a single photon, T the integration time of the
detector, âj are the annihilation field operators of the electromagnetic modes.
Similarly, the operator defining the probe beam in state (3.34) is

Ê+
a (x) = i

√
~ω

2ε0cT

∑
j

cj âjγj(x). (3.37)

The average homodyne differential signal when setting the mode γl(x) in the local
oscillator is

〈Ŝ〉 =
~ω
ε0cT

√
N NLO [ Im{Γl} cos ∆ϕ− Re{Γl} sin ∆ϕ] , (3.38)

where ∆ϕ = ϕl(x) − ϕLO is the phase difference between the two inputs of the
beam splitter. N and NLO are the number of photons collected by the detector

62



in the time T from the signal beam and the local oscillator, respectively. The
variance of the differential signal is defined by

V ar(Ŝ) = 〈Ŝ2〉 − 〈S〉2 =

(
~ω

2ε0cT

)2

(N |Γl|2 +NLO). (3.39)

Considering the number of photons in the local oscillator to be much larger than
the number of photons of the scattered beam ( NLO � N) the signal to noise
ratio (SNR) is approximately

√
N |Γl|. Note that by varying the phase difference

ϕLO and measuring at the critical values (0, π/2, π, 3π/2, 2π) one can determine
the component of the field in the mode of the local oscillator since the complex
coefficients Γl are retrieved. By selecting different modes, one at a time, one can
determine the full (amplitude and phase) modal decomposition of the field from
Eq. (3.34).

3.3.2 Encoding phase information of azimuthal modes

We consider an optical beam that passes through a phase-only SLM encoding a
CGH as in Eqs.(3.25) and (3.28) from Section 3.2. Explicitly, let us consider a
transmission function of the form [126]

T0(x, y) = exp
[
iα0 sin

(
pϕ− 2π

Λ
x

)]
= exp

[
iα sin

(
pϕ− 2π

Λ
r cosϕ

)]
(3.40)

where α0 is the amplitude of the modulation, p is an integer associated to the
winding number of the azimuthal mode, Λ is the period of the digital blazed
grating as introduced in Section 3.2.2. A different type of transmission function
to generate vortex beams is considered in Appendix C where a comparison to the
results discussed in this section are included. For a phase hologram with global
phase kβ and modulation depth kα one has

T (x, y) = exp
[
ikδ + ikα sin

(
pϕ− 2π

Λ
r cosϕ

)]
= exp

(
ikδ
)∑

m

Jm(kα) exp
[
im
(
pϕ− 2π

Λ
r cosϕ

)]
(3.41)

We have made use of the Jacobi-Anger expansion (3.30). Let us consider a 2f
imaging system with focal length f after the hologram as shown in figure 3.9. For
an input beam U0(r, ϕ) the field at the Fourier plane after the Fourier lens, using
with cylindrical coordinates (ρ, θ), is

U(ρ, θ) =
i exp(2ikf)

λf

∫
rdr dϕU0(r, ϕ)T (r, ϕ) exp

[
i
kρ

f
r cos(θ − ϕ)

]
. (3.42)

Considering the transmission function is as in Eq. (3.40) we get

U(ρ, θ) = iqf

∫
rdr dϕU0(r, ϕ)T (r, ϕ) exp

[
i
kρ

f
r cos(θ − ϕ)

]
(3.43)

= iqf
∑
m

tm

∫
rdr dϕU0(r, ϕ) exp

[
impϕ

]
exp

[
i
kρm
f

r cos(θm − ϕ)
]
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where qf = exp(2ikf)
λf and we have used the coordinates of the m-th diffraction

order (ρm, θm) [126–128]

ρ2
m = ρ2 +

(mλf
Λ

)2

∓ 2mλρf

Λ
cos θ (3.44)

and

tan θm =
ρ sin θ

ρ cos θ ∓mλf
Λ

. (3.45)

The ∓ signs corresponds to positive and negative diffraction orders m, respectively.
From Eqs. (3.44) and (3.45) we have

ρm sin θm = ρ sin θ (3.46)

and

ρm cos θm = ρ cos θ ∓mλf

Λ
(3.47)

To verify the equivalence of the coordinates in Eqs. (3.44) and (3.45) according to
Eqs.(3.46) and (3.47), we have

kρm
f

r cos(θm − ϕ) =
kρm
f

r
[

cos θm cosϕ+ sin θm sinϕ
]

=
kρm
f

r
[cosϕ

ρm

(
ρ cos θ −mλf

Λ

)
+ sinϕ

ρ sin θ

ρm

]
=
kρ

f
r cos

(
ϕ− θ

)
−m2π

Λ
r cosϕ, (3.48)

which shows that the equivalence holds in Eq. (3.44).

Determination of the coefficients at the Fourier plane origin

Consider an arbitrary input beam

U0(ρ, ϕ) = A0(ρ) exp(ilϕ) (3.49)

The field in the Fourier plane after the 2f system is

U(ρ, ϕ) =
∑

Um(ρm, ϕm) (3.50)

where

Um(ρm, θm) = tmqf

∫
rdr dϕA0(r) exp

[
impϕ

]
exp

[
i
kρm
f

r cos(θm − ϕ)
]

= itmqf

∫
rdr dϕA0(r) exp

[
i(l +mp)ϕ

]∑
n

in Jn

(kρm
f

r
)

exp
[
in(θm − ϕ)

]
= is+1 2π tmqf

∫
rdr A0(r)Js

(kρm
f

r
)

exp
[
isθm

]
(3.51)
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with s = l + mp. Note that the field (3.51) corresponds to a vortex beam with
topological charge s = l + mp. For the sake of simplicity, we restrict to the case
m > 0. If we express the input beam (3.49) as a decomposition of azimuthal modes

U0(ρ, ϕ) =
∑
l

al(r) exp
(
ilϕ
)
. (3.52)

Substituting explicitly qf , the field of the m-th diffraction order is:

Um(ρm, θm) =
2π itm exp(2ikf)

λf

∫
rdr al(r) exp

[
i
kρm
f

r cos(θm − ϕ)
]
, (3.53)

where the integration over the angular variable has been carried out. At ρm = 0
we have

Um(ρm = 0) =
2π itm exp(2ikf)

λf

∫
rdr ap(r) (3.54)

Note that when measuring the intensity at ρm = 0 we obtain

|Um(ρm = 0)|2 =
( 2π

λf

)2

|tm|2
∣∣∣ ∫ rdr ap(r)

∣∣∣2 (3.55)

The complex coefficients of interest are

βm =
1

λf

∫
rdr am(r). (3.56)

In principle, the radial integral βm can be zero even though the weight of mode
m, i.e., Pm, is different from zero. However it has been noticed that it is difficult
to find a realistic example of when this is the case [98].

Projection onto the Gaussian mode

To measure coefficients of the azimuthal mode decomposition (3.52), we project
the field Um(ρm, θm) into the (TEM00) Gaussian mode

V0(ρm) =
1√
πw2

1

exp
[
− ρ2

m

2w2
1

]
, (3.57)

which can be done by coupling into a single-mode fiber with the help of the appro-
priate optical system (see Fig. 3.9). The power detected after projection (propa-
gation through the fiber) is

Pd = |γmp|2|tm|2P0, (3.58)

where

γmp = 4π2 qf
i1−mp√
πw2

1

∫
r dr

∫
ρm dρm amp(r) J0

(kρm
f

r
)

exp
[
− ρ2

m

2w2
1

]
. (3.59)
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Figure 3.9: Experimental scheme for projection of the the m−th diffraction order
Um(ρm, θm) of an input beam U0(ρ, θ) after passing through an SLM with transfer func-
tion T (r, ϕ) encoding information of an azimuthal mode.

Using the identity∫
xdxJ0(αx) exp

[
− γ2x2

]
=

1

2γ2
exp

[
− α2

4γ2

]
, (3.60)

substituting qf and excluding the overall and constant phase factor exp(2ikf)
i1−mp since the measurable quantity is in fact |γmp|2, the projection γmp becomes

γmp =
(2π)2

λf

w2
1√
πw2

1

∫
r dr amp(r) exp

[
−
( 2π

λf

)2

w2
1

r2

2

]
. (3.61)

3.4 Measurement of the position of a Gaussian
beam using spatial mode projections

Delaubert et al. [19, 20] considered a homodyne detection scheme to measure the
displacement and tilt of a Gaussian light beam. They restricted their attention to
the case of displacements along a line, in which the beam can be seen as a sum
of an on-axis Gaussian beam (TEM00) plus an Hermite-Gaussian mode of order
one (TEM10). The amplitude and phase of the mode projection into the mode
TEM10 contains information on the displacement and tilt parameters.

In this section, we aim at going further from Delaubert’s results, this is, to
localize the beam in the transverse plane by encoding modal information in the
phase of the beam, not relying in the fact that only one mode contains the desired
information.
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We start by considering a Gaussian beam with waist w0 displaced from ~ρ =
(ρ cosϕ, ρ sinϕ) to ~ρ′ = (ρ cosϕ − dx, ρ sinϕ − dy). Using polar coordinates the
beam can be written as:

Ψ(ρ, ϕ) =

(
2

πw2
0

)1/4

exp

{
−|~ρ′|2

w2
0

}
(3.62)

with |~ρ′| = (ρ2 + d2
x + d2

y − 2ρdx cosϕ − 2ρdy sinϕ)1/2. In order to estimate the
position (ρ, ϕ) in the transverse plane of a Gaussian light beam, we consider the
use of Laguerre-Gauss spatial modes, that can be written as

LGm(ρ, ϕ) = AmUm(ρ) exp (imϕ) . (3.63)

Am is a coefficient related to the power carried by the spatial mode, Um describes
the radial dependence of the spatial shape and m is the winding number that
describes the characteristic azimuthal dependence of the spatial shape of the mode.
Projecting the light beam described by equation (3.62) onto the LG(ρ, ϕ) modes
(3.63), one can determine the position of the beam by measuring the amplitude (or
the phase) of the coefficients of the LG mode components if the beam is displaced
radially (or azimuthally).

Furthermore, it is possible to measure the orientation of an object irrespective
of its shape by measuring the phase ϕm of the Laguerre-Gauss ( LGm) component
of the light scattered by the object. The function f(ρ, ϕ) designates the spatial
shape of the light scattered from the object. The coefficients Cm of the mode
decomposition are

Cm =

∫ ∞
0

ρdρ

∫ 2π

0

dϕf(ρ, ϕ)Um(ρ) exp (−imϕ) (3.64)

A change of orientation ϕ0 of the object is reflected in a corresponding change
of the spatial shape of the scattered beam that now is f(ρ, ϕ − ϕ0). The new
coefficient C ′m is

C ′m =

∫ ∞
0

ρdρ

∫ 2π

0

dϕ f(ρ, ϕ− ϕ0)Um(ρ) exp (−imϕ)

=

∫ ∞
0

ρdρ

∫ 2π−ϕ0

−ϕ0

dϕ f(ρ, ϕ)Um(ρ) exp (−imϕ− imϕ0)

= Cm exp (−imϕ0) (3.65)

In other words, the modulus of the coefficient Cm remains unchanged when the
object changes its orientation, while its phase changes as mϕ0. This result allows
us to differentiate, by mere inspection of the phase of a coefficient of the mode
expansion, between two objects of identical shape but being oriented differently.
One can make use or two or more modes with different values of m, and confirm the
expected m dependence of the phase measured, to check that the phase observed
in coming from a change of orientation indeed. In this section we combine the two
results mentioned above for two-dimensional localization of an optical beam along
a transverse plane.
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3.4.1 Measurement of the beam displacement

Consider a Gaussian beam displaced a distance d =
√
d2
x + d2

y in the transverse

plane, in the direction ϕ0 = arctan(dy/dx) with respect to the horizontal axis. We
can write the field of the beam as

U(r, ϕ) =

√
P0

πw2
0

exp
[
− r2

2w2
0

]
exp

[rd cos(ϕ− ϕ0)

w2
0

]
exp

[
− d2

2w2
0

]
. (3.66)

Using

exp
[rd cos(ϕ− ϕ0)

w2
0

]
=
∑
l

Il

( rd
w2

0

)
exp

[
il(ϕ− ϕ0)

]
, (3.67)

where Il is the first-order modified Bessel functions or order l, the field is reduced
to

U(r, ϕ) =

√
P0

πw2
0

exp
[
− d2

2w2
0

]
×
∑
l

exp
[
− r2

2w2
0

]
Il

( rd
w2

0

)
exp

(
− ilϕ0

)
exp

(
ilϕ
)
. (3.68)

For dx = dy = 0, using the decomposition in Eq. (3.16) we have U0(r, ϕ) =√
P0 a0(r), which corresponds to a single term for p = 0

a0(r) =
1√
πw2

0

exp
[
− r2

2w2
0

]
. (3.69)

Consider the first diffraction order m = 1 and the projection onto the Gaussian
mode in Eq. (3.57), from Eq. (3.61) we obtain

γ0 =
(2π)2

λf

1√
πw2

0

w2
1√
πw2

1

∫
r dr exp

(
− r2

2w2
0

)
exp

[
−
( 2π

λf

)2

w2
1

r2

2

]
. (3.70)

Note that if the waist of the Gaussian projection mode in Eq. (3.57) is

w1 = w′0 =
λf

2π

1

w0
, (3.71)

we obtain

γ0 =
2π

λf

π[w′0]2√
π[w′0]2

w2
1√
πw2

1

=
2π

λf
w0w

′
0 = 1 (3.72)

The power detected is Pd = |t1|2P0, as expected for this case. We notice that the
important parameter to determine is γp for an arbitrary beam U(r, ϕ), explicitly

γp =
(2π)2

λf

w1√
π

∫
r dr ap(r) exp

[
− 1

2

( 2π

λf

)2

w2
1 r

2
]
, (3.73)
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Figure 3.10: Radially-dependent amplitudes a0(ρ) and a1(ρ) of the azimuthal mode de-
composition of a Gaussian beam of waist w0 displaced a distance d.

where the radially-dependent amplitudes of the decomposition ap(r) as shown in
figure 3.10 are given by

ap(r) =
1

2π

∫
dϕ U(r, ϕ) exp(−ipϕ). (3.74)

Since the total power of the beam is P0 =
∑
l Pp = 2π P0

∑
p

∫
rdr|ap(r)|2, we

should have

2π
∑
p

∫
r dr |ap(r)|2 = 1. (3.75)

Note that for non-zero displacements, the radially-dependent amplitude func-
tion ap(r) in Eq. (3.74) reduces to

ap(r) =
1√
πw2

0

exp
[
− r2

2w2
0

]
Ip

( rd
w2

0

)
exp

[
− d2

2w2
0

]
exp

(
− ipϕ0

)
. (3.76)

In Figure 3.10 we show the functions a0 and a1 for the case in which the displace-
ment is d < 0.1w0.

We are specially interested the small displacement regime, in particular, for
rd/w2

0 �
√
p+ 1 the following identity follows

Ip

( rd
w2

0

)
=

1

Γ(p+ 1)

( rd

2w2
0

)p
. (3.77)

The parameter of interest γp in this case is

γp =
(2π)2

λf

w1

πw0
exp

{
− d2

2w2
0

}
exp{−ipϕ0}Ωp(d), (3.78)
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Figure 3.11: Power in the first diffraction order (m = 1) detected (as % of P0|t1|2). The
probe is a Gaussian beam with waist w0 displaced a distance d that passes through a SLM
with transfer function Tp(r, ϕ). The beam is then projected onto a Gaussian mode with
beam waist w1 = w′0 = λf

2π
1
w0

, w1 =
√

2w′0 and w1 = w′0/
√

2.

where

Ωp(d) =
1

Γ(p+ 1)

∫ ∞
0

rdr exp
[
− r2

2w2
0

] ( rd

2w2
0

)p
exp

[
− 1

2

( 2π

λf

)2

w2
1 r

2
]
.

(3.79)

For the cases of interest p = 0 and p = 1, using Eq. (3.78) we have

γ0 =
(2π)2

λf

w1

πw0
exp

{
− d2

2w2
0

}
Ω0(d), (3.80)

and

γ1 =
(2π)2

λf

w1

πw0
exp

{
− d2

2w2
0

}
exp{−iϕ0}Ω1(d). (3.81)

We show in Fig. 3.11 the behaviour of |γ0|2 and |γ1|2 as function of d/w0 for three
values of the beam waist w1 of the projection mode. In Fig. 3.12 we see that the
maximum values of |γp| depend on the Gaussian projection mode waist w1 and the
azimuthal charge p; |γ0|2 is maximal for w1 = w′0 whereas |γ1|2 is for w1 = w′0/

√
2.

Solving the integral in Eq. (3.79) for p = 1, using Eq. (3.81) and Γ(n) = (n−1)!,
one can see that

γ1(d) =
π
√

2π

λf

w1[
1 + (2π)2 w2

1 w
2
0/(λf)2

] 3
2

d exp

{
− d2

2w2
0

}
exp{−iϕ0}. (3.82)

Note that for the case w1 = w′0 = λf/(2πw0) we get

γ1(d) =

√
π

4w0
d exp

{
− d2

2w2
0

}
exp{−iϕ0} (3.83)
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Figure 3.12: Coefficients |γ0|2 and |γ1|2 (normalized by P0|t1|2) for a beam displacement
d/w0 = 0.1 as function of the waist of the Gaussian mode projection w1. The power of
the mode p = 0 is maximum at w1 = w′0 (dotted line), however the mode p = 1 has its
maximum at w1 = w′0/

√
2 (dashed line).

which corresponds to the red curve in the right panel of Fig. 3.11. Note that
although this value of the projection mode waist maximizes |γ0|2, there exist other
values of w1, in particular w1 < w′0 that reach higher values for |γ1|2. Furthermore,
measuring the projection, with a given waist value w1, one can determine the value
of the displacement d of the Gaussian beam.

3.4.2 Localization in the transverse plane

To fully localize the optical beam by determining its position with respect to a
reference axis it is necessary to determine both the distance to the axis and the
direction of the displacement. We hereby propose a technique to estimate the dis-
placement direction by extracting phase information from the p−mode projection.

We consider the same experimental configuration as before shown in Fig. 3.9.
The beam interacts with the SLM at a given plane in which the coordinates trans-
verse to the beam propagation are (r, ϕ). The SLM is divided in two zones, from
r = 0 to r = R we encode the digital blazed grating only, corresponding to a
transfer function with p = 0 (see Eq. (3.41)) and a constant phase δ. From r = R
to r = ∞ we encode the phase −ipϕ together with the grating. The resulting
holograms are included in figure 3.13. The coefficients γp from Eq. (3.78) are then
modified due to the two regions of integration. Similarly, we define the measurable
quantities

γR0 =
(2π)2

λf

w1√
π

∫ R

0

r dr a0(r) exp
[
− 1

2

( 2π

λf

)2

w2
1 r

2
]

(3.84)

and

γRp =
(2π)2

λf

w1√
π

∫ ∞
R

r dr ap(r) exp
[
− 1

2

( 2π

λf

)2

w2
1 r

2
]
. (3.85)
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(a) Digital blazed grating (b) p = 1 (c) Resulting hologram

Figure 3.13: Combination of holograms including the digital blazed grating (a), the az-
imuthal mode o (b) and the combination of both up to a certain radius R (c) for localiza-
tion of the beam in the transverse plane.

The detected signal after projection to the Gaussian mode is Sp(δ)/P0 |t1|2,
explicitly

Sp(δ) = |t1|2 P0

∣∣∣ exp(iδ) γR0 (d) + exp(−ipϕ0)γRp (d)
∣∣∣2. (3.86)

Choosing the phases at the SLM to be δ ∈ {0, π/2, π, 3π/2}, we can estimate the
diplacement direction ϕ0 as

ϕ0 =
1

p
tan−1 S(3π/2)− S(π/2)

S(0)− S(π)
. (3.87)

Furthermore, by selecting the value for R at which |γR0 | matches |γR1 |, and
varying the phase δ in the SLM, Eq. (3.86) for the mode p = 1 reduces to

S1(δ) = 2P0 |t1|2 |γR0,1|2
[
1 + cos(pϕ0 + δ)

]
, (3.88)

which is maximum for δ = −pϕ0 and has minima for mod(δ + pϕ0, 2π) = π.
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Figure 3.14: Measured signal as percentage of input power corresponding to the sections
ρ < R (p = 0) and ρ > R (p = 1) as function of R in number pixels of the SLM
(Hamamatsu X13138-07 with pixel size of 12.5µm). The probe is a Gaussian beam with
waist w0 = 1mm displaced a distance d = 0.1w0. The power of each section shows similar
values for R ∼ 17 pixels∼ 212.5µm.
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Figure 3.15: Detected signal S1(δ) normalized by |t1|2P0 as percentage of the input power
when varying the SLM phase δ. Left panel: Signal for R = 17 SLM pixels. Central
panel: for R 6= 17 pixels the amplitudes of αR0 (d) and αR1 (d) unbalance and the amplitude
of the oscillation changes, decreasing the visibility so the signal never vanishes. Right
panel:Signal for different displacement directions ϕ0, each curve has maxima in δ =
mod (−pϕ0, 2π). All cases consider a displacement of d = 0.1w0.

Hence, one can estimate the phase ϕ0 associated to the direction of the beam
displacement. Figure 3.14 shows the measurable quantities |γR0 |2 and |γR1 |2 that
lead to the estimation of ϕ0 when choosing R accordingly. Moreover, Figure 3.15
show the detected signals Sp when varying the SLM phase δ. The middle panel
of figure 3.15 show that for values of R different to the optimal one in which
|γR0 | = |γR1 |, when varying the phase δ the curve does not reach a zero if mod(δ +
pϕ0, 2π) = π. Figure 3.16 shows the visibility (Smax1 − Smin1 )/(Smax1 + Smin1 )
attained for different values of the beam displacement using different radius R.

3.4.3 Sensitivity and comparison with other methods

To evaluate the capabilities of this technique, we make use of the concepts in-
troduced in Section 2.1 to describe the minimum error of the estimation of the
beam displacement, and we compare with the standard technique using quadrant
detectors.

Coherent multimode state of average number of photons N

Considering the displaced beam in Eq. (3.68) as a coherent beam

|αi〉 = D(αi)|vac〉 = exp
(
αiâ
†
i − α

∗
i âi

)
|vac〉, (3.89)

where D(αi) is the displacement operator and in the spatial domain we have

α(x) = N1/2 1

(πw2
0)1/4

exp
[
− (x− d)2

2w2
0

]
. (3.90)
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Figure 3.16: Signal visibility as function of the beam displacement d when projecting onto
the mode p = 0 for r < R and p = 1 for r > R, with R = 17 pixels.

In the transverse wavenumber domain we have

α(q) = N1/2 1√
2π

1

(πw2
0)1/4

∫
dx exp

[
− (x− d)2

2w2
0

− iqx
]

=
N1/2

√
2π

1

(πw2
0)1/4

√
2πw2

0 exp
(
− q2w2

0

2

)
exp

(
− iqd

)
= N1/2

(w2
0

π

)1/4

exp
(
− q2w2

0

2

)
exp

(
− iqd

)
. (3.91)

The last term in the expression above relates the displacement d as a phase in the
wavenumber space ϕ(d) = −qd. In this domain, the Quantum Fisher information
associated to the estimation of the (phase) parameter d, for a multimode coherent
state is

FCoherentQ = 4N

∫
dq|α(q)|2

[∂ϕ(q)

∂d

]2
(3.92)

so we have

FCohQ = 4N
(w2

0

π

)1/2
∫

dq q2 exp
(
− q2w2

0

)
= 4N

(w2
0

π

)1/2 1

2

√
π

w6
0

2N

w2
0

. (3.93)

The Cramer-Rao inequality σ2
d ≥ F

−1
Q implies

σQCRd =
w0√
2N

. (3.94)
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N copies of a single photon

On the other hand, if one considers the field in Eq. (3.68) corresponding to N
copies of the single photon state

|Ψ〉 =

∫
dxU0(x, d) |x〉 =

∫
dqΨ(q, d) |q〉 , (3.95)

where Ψ(q, d) is the Fourier transform of U0(x, d) so that the displacement d in
the space domain becomes a phase in the spatial frequency domain. The Fisher
Information per photon is

F spQ = 4

∫
dq|Ψ(q)|2

(
∂ϕ

∂d

)2

− 4

[∫
dq|Ψ(q)|2

(
∂ϕ

∂d

)]2

. (3.96)

Since ∂ϕ(d)/∂d = −q, the second term in the expression above vanishes due to
the antisymmetric nature of the argument, then we get

F spQ = 4

∫
dq|Ψ(q)|2

(
∂ϕ

∂d

)2

=
N

2w2
0

, (3.97)

which is equal to the quantum Fisher Information in Eq. (3.93) corresponding to
the coherent multimode case, therefore

σQCRd = σspd = σcohd =
w0√
2N

(3.98)

The Classical Crámer-Rao bound

Considering a direct measurement of the intensity of the light beam in Eq. (3.68),
the detection probability distribution is

P (x|d) =
1√
πw2

0

∫ ∞
−∞

exp
{
− (x− d)2

w2
0

}
, (3.99)

the Classical Fisher Information [129] is then given by

FC(d) = −
∫

dxP (x|d) ∂2
d logP (x|d) =

2N

w2
0

, (3.100)

where the displacement is assumed to be along the x direction and N is the
total number of detected photons of energy ~ω in the integration time Td is
N = P0Td/~ω. The classical CR bound is

σCCRd =
w0√
2N

, (3.101)
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which is equal to the Quantum bound in Eq. (3.98) implying that the use of the
intensity distribution of the Gaussian beam can provide an optimum measurement.
Indeed it can be demonstrated [129] that the estimator

d̂ =
1

N

∑
i

xi (3.102)

is optimum for measuring the position of the Gausssian beam.

Projection onto p−modes

The signal (number of photons) detected after projecting onto the Gaussian beam
of width w1 the beam reflected (or transmitted) by the SLM is

Np
d = |γp|2N (3.103)

We can calculate
∂Np

d

∂d
= 2N |γp|

∂|γp|
∂d

(3.104)

so that the variance σ2
d of the estimation of the distance d is

σ2
d =

〈(∆Np
d )2〉(

∂Np
d /∂d

)2 =
1

4N

(∂|γp|
∂d

)−2

. (3.105)

Here we have used 〈(∆Nd)2〉 = Nd, which is valid for coherent beams or long
detection times. Therefore the error in the estimation of the distance d is

σpd =
1

2
√
N

(∂|γp|
∂d

)−1

(3.106)

For p = 1, using Eq. (3.82) we have(∂|γ1|
∂d

)−1

=
λf

π
√

2π

1

w1

[
1 +

(2π w0

λf

)2

w2
1

] 3
2 w2

0

(w2
0 − d2)

exp

{
d2

2w2
0

}
. (3.107)

Note that Eq. (3.107) has a minimum as function of w1 for

w1 = w′1 =
1√
2

λf

2πw0
=
w′0√

2
. (3.108)

For this value of the projection Gaussian beam waist, the error is

σSLMd =
3

2

√
3

π

w0√
2N

w2
0

(w2
0 − d2)

exp

{
d2

2w2
0

}
. (3.109)

In the limit (d→ 0),

σSLMd

∣∣∣
min

=
3

2

√
3

π

w0√
2N

= 1.46,
w0√
2N

= 1.46 σCRd (3.110)

corresponding to a estimation efficiency (σCRd /σSLMd ) of 68% [122]. We write Eq.
(3.110) in this way for easier future comparison with the sensitivity that can be
achieved with a quadrant detector.
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Figure 3.17: Error as function of the Gaussian beam projection waist w1

Comparison with a quadrant detector

Let us compare this result with the sensitivity of a quadrant detector. The signal
is

Nquad
d =

N√
πw2

0

{∫ 0

−∞
dx exp

[
− (x− d)2

w2
0

]
−
∫ ∞

0

dx exp
[
− (x− d)2

w2
0

]}
=

N√
πw2

0

∣∣∣{ ∫ −d
−∞

dy exp
[
− y2

w2
0

]
−
∫ ∞
−d

dy exp
[
− y2

w2
0

]}∣∣∣
=

N√
πw2

0

{√
πw2

0 Erf
( d

w0

)}
= N Erf

( d

w0

)
. (3.111)

The variance of the signal is
〈(∆Nd)2〉 = N (3.112)

The derivative of the signal is

∂Nquad
d

∂d
=

2N√
πw2

0

exp
(
− d2

w2
0

)
(3.113)

The variance σ2
d of the estimation of the distance d is

σ2
d =

1

4N
πw2

0 exp

(
2d2

w2
0

)
(3.114)
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Figure 3.18: Flux rate as percentage of the input power (left) and measurement error
(right) normalized by the quantum Crámer-Rao lower bound as function of the displace-
ment d when projecting onto the p = 1 mode (blue) and when using a quadrant detector
(yellow).

The error in the estimation of the distance d when using a quadrant detector is

σquadd =
1

2
√
N

√
πw2

0 exp
( d

w0

)
(3.115)

Note that when d→ 0 it corresponds to 80% efficiency [122]

σquadd→0 =

√
π

2

w0√
2N

= 1.25σCRd (3.116)

Key expressions for comparison using a SLM and a quadrant detector

• The power measured:
Nslm
d = P0 |t1|2|γ1|2 (3.117)

Nquad
d = P0 Erf

( d

w0

)
(3.118)

• The errors associated to the two measurements:

σslmd =
1

2
√
N

1

|t1|

(∂|γp|
∂d

)−1

(3.119)

σquadd =
1

2
√
N

√
πw2

0 exp
[( d

w0

)2]
(3.120)

If we compare the expressions for d→ 0:

σslmd = 1.46
w0√
2N

> σquadd = 1.25
w0√
2N

> σqcrd =
w0√
2N

. (3.121)
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Chapter 4

Modal methods for optimum
parameter estimation

Quantum estimation theory and its application to optical metrology have been
very well known and studied for about fifty years [18]. However, in the past few
years the interest re-emerged leading to evaluation of the maximum resolution
achievable in diverse imaging systems [25,130–132].

Through the quantum Crámer-Rao lower bound one can realistically determine
the improvements in resolution when proposing novel techniques, as well as to
quantify the obtained improvement. Given that the CR limit depends on the light-
matter interaction and the quantum state of the illumination beam, it depends on
the physical properties of the light; some classical properties such as spatial and
temporal mode, wavelength, polarization, spatial shape, power; or some quantum-
related properties such as degree of coherence, squeezing, entanglement, to name
some. These properties influence the fundamental estimation precision limit and
they can be exploited to obtain better resolution.

A measurement strategy that saturates the CR bound defines the ultimate
resolution limit. Such a measurement strategy exists if the system fulfills certain
conditions, then the measurement is referred to as optimal [21]. For an optimal
measurement the quantum and classical CR bounds are equal and the ultimate
resolution is attainable.

Modal measurements methods have shown to be efficient as strategy for pa-
rameter estimation [26, 63, 95]. The aim of this chapter is to present measuring
strategies based on spatial modes of light and evaluate the set of modes that al-
low to perform an optimal measurement and achieve the ultimate resolution. We
start by considering the problem of determining the distance between two point
sources since it sets the basis for optical resolution. For a more general imaging
scenario, we define the conditions for a modal measurement strategy to be optimal
and we apply the results to an example relevant for the semiconductor industry,
the estimation of the height and sidewall angle of cliff-like nanostructure.
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4.1 Differential resolution: estimation of the sep-
aration between two point sources

Due to the progress in optical microscopy and the significant improvements in
terms of resolution that modern techniques can achieve, it is relevant to investigate
the fundamental limitations. Most of the so called super-resolution microscopy
techniques that are able to surpass the diffraction limit (∼ λ/2) consist on intensity
measurements in the far field that effectively locate optical point sources. This
concept, sets the basics for the study of the resolution limitations of imaging
systems. In this section we elaborate the fundamental concept of resolution in
terms of the ability to estimate the distance between two point sources.

Although the Abbe-Rayleigh criterion has been the standard measure of reso-
lution in many imaging scenarios, the formalism is found to be heuristic and not
general enough [1, 3]. Instead, using the classical and quantum theory of electro-
magnetic fields, together the tools presented in Sections 2.1 and 2.2, it is possible to
derive the fundamental limits for estimation of the distance between point sources.
This defines a modern description of Rayleigh’s criterion [32].

A thorough description of the problem from the perspective of quantum metrol-
ogy allows to determine the fundamental quantum limit to the precision of lo-
cating two weak thermal sources. Surprisingly, this formalism shows that, for
incoherent sources, the fundamental precision limit given by the quantum CR
bound is inversely proportional to the number of photons. This result implies that
Rayleigh’s curse can be beaten, in contrast to what happens with coherent optical
sources [25,26].

4.1.1 Lower bounds for differential resolution

Following up Rayleigh’s premises, consider two dim (incoherent) thermal source
so that the number of photons arriving at the image plane for each short coher-
ence time interval is smaller than 1. The quantum state in its density matrix
representation can be written as

ρ = (1− ε)ρ0 + ερ1 +O(ε2). (4.1)

ρ0 and ρ1 are the states with zero and one detected photons respectively. The zero
photons state is just the Kronecker product of the vacuum with itself whereas the
diffraction limited one-photon state can be written as

ρ1 =
1

2
(|Ψ+〉 〈Ψ+|+ |Ψ−〉 〈Ψ−|) , (4.2)

where Ψ+ and Ψ− are the states of the photons emitted by the sources located
at x+ = d/2 and x− = −d/2, respectively. We neglect the O(ε2) term since it is
assumed to be considerably small. Since the sources are incoherent1, if a photon

1In general, the spatial modes excited by two sources are not orthogonal
∫

Ψ1(x)Ψ∗2(x)dx 6= 0,
specially for sub-wavelength separated sources. For incoherent sources, we assume the orthogo-
nality of the modes.
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is detected, the probability distribution of the photon in the position x at the
detector (image) plane is

f(x) =
1

2

(
|Ψ+(x)|2 + |Ψ−(x)|2

)
. (4.3)

Note that f(x) corresponds to intensity measurements at the image plane (direct
imaging) and it is equivalent to the likehood function in Section 2.1. Assuming that
the only parameter to be estimated is the separation (θ = d) between the sources
located at x+ = d/2 and x− = −d/2 respectively, to compute the quantum FI we
make use of the point spread function (PSF) Ψ(x) of the imaging system, so that
Ψs(x) = Ψ(x − xs) is the spatial distribution in the image plane of the photon
state emitted by the source s. At the image plane the state of the phton is given
by

|Ψ〉 =

∫
|x〉〈x|Ψ〉dx =

∫
Ψ(x)|x〉dx. (4.4)

Let us assume a Gaussian PSF of the form

Ψ(x) =
1

(2πσ2)1/4
exp

(
− x2

4σ2

)
, (4.5)

where σ = λ/2πNA is the width of the distribution andNA the numerical aperture
of the optical system. The classical FI in Eq. (2.24) for a single parameter becomes

FC(θ) = N

∫
1

f(x)

[∂f(x)

∂θ

]2
dx (4.6)

Here N = Mε and M being the number of intervals in which the photons were de-
tected. Explicitly, the intensity distribution in Eq. (4.3) considering the adequate
normalization becomes

f(x) =
1

2

1√
2πσ2

[
exp

(
− (x− d/2)2

2σ2

)
+ exp

(
− (x+ d/2)2

2σ2

)]
(4.7)

Figure 4.1a shows that the classical Fisher information vanishes as the distance
between the incoherent sources goes to zero. From the CR bound in Eq. (2.10) it
follows that for direct imaging, as the distance decreases, the estimation is highly
undetermined.

To find the quatum FI we make use of Eq. (2.50) and the spectral decomposi-
tion of the state (4.2) [26]. The quantum FI ends up being

FQ = N

∫ ∞
−∞

(∂Ψ(x)

∂x

)2

dx =
N√
2πσ2

∫ ∞
−∞

x2

4σ4
exp

(
− x2

2σ2

)
=

N

4σ2
. (4.8)

From Eq. (2.38) the CR lower bound for estimation of the distance between the
incoherent sources is

CS =
1

FQ
=

4σ2

N
. (4.9)
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Figure 4.1: Fisher Information and Crámer-Rao lower bound for the estimation of the
distance between two incoherent point sources (differential resolution).

The great relevance of this result relies on the fact that the estimation precision
bound is constant, independent of the distance between the sources, and it is
inversely proportional to the number of photons used. This means that for an
arbitrarily large number of photons and an unbiased estimator, one could asymp-
totically estimate the distance between two incoherent point sources with any
desired precision using an optimal measurement strategy.

Although we are only considering the case of incoherent sources, in general
the state of the photons at the image plane could be written in its density matrix
representation as a sum of the coherent and the incoherent parts, namely

ρ̂ = (1− p)ρ̂i + pρ̂c, (4.10)

where p is a probability parameter related to the degree of coherence. In Ref. [133]
it is shown that for any degree of coherence p > 0, Rayleigh’s curse resurges.

4.1.2 Asymptotic attainability using spatial modes

Assuming a Gaussian PSF, the photon distribution of each incoherent point source
in the image plane can be decomposed in Hermite-Gauss functions as [122]

Ψ(x) =

∞∑
n=0

cn(d)HGn(x), (4.11)

where HGn(x) is the Hermite-Gauss mode (see Section 3.1) of order n and the
corresponding coefficients are given by:

cn(d) =

∫ ∞
−∞

Ψ(x)HGn(x)dx =
dn√
n!

1

(4σ)n
exp

(
− d2

32σ2

)
. (4.12)
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Figure 4.2: HG Coefficient dependence on the normalized distance d/σ

Figure (4.2) shows the dependence of the mode coefficients as function of the
dimensionless variable d/σ, showing that for small values of d the most significant
mode components are n = 0, 1. Let us assume that d/σ is small so it is valid
to consider the infinite sum (4.11) up to m terms, as the high order coefficients
become negligible. Consider the contribution of the first m modes; without losing
generality, let us assume m to be an even number, the state is then approximated
by

Ψ(x) ≈
m∑
n=0

cn(d)HGn(x). (4.13)

Figure (4.3) shows the values of d/σ for which the approximation (4.13) holds for
different values of m, this is, values of d/σ for which the state is still close to the
normalization, namely

m∑
n=0

|cn(d)|2 ≈ 1. (4.14)

The coefficients cn(d) in the expansion (4.11), given by expression (4.12) have the
same parity than the index n with respect to the position inversion d→ −d. The
states of each one of the sources is obtained by directly substituting expression
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Figure 4.3: Verification of normalization condition validity. Solid lines correspond to the
coefficients of the Hermite-Gauss decomposition and dashed lines correspond to the sum
of the square coefficients, showing that for d/σ < 1 the decomposition up to the mode
n = 2 is sufficient.

(4.13) in the state (4.4) and it is convenient to write them as:

|Ψ+〉 =

m/2∑
n=0

c2n(d) |Ψ2n〉+

m/2−1∑
n=0

c2n+1 |ψ2n+1〉 (4.15)

and

|Ψ−〉 =

m/2∑
n=0

c2n(d) |ψ2n〉 −
m/2−1∑
n=0

c2n+1 |ψ2n+1〉 , (4.16)

where the basis vectors {|ψn〉} are given by the Hermite-Gauss orthonormal func-
tions

|ψn〉 =

∫
HGn(x) |x〉 dx, (4.17)

and the coefficients cn(d) are given by equation (4.12). For small distance between
the sources, it is sufficient to take a finite number of modes. As shown in figure
4.3, for d < σ it is sufficient to consider the first three modes (m = 2). The state
can be considered approximately normalized and it reduces to

ρ̂i =
1

2

[
c20 |ψ0〉 〈ψ0|+ c0c2 |ψ0〉 〈ψ2|+ c21 |ψ1〉 〈ψ1|+ c0c2 |ψ2〉 〈ψ0|+ c22 |ψ2〉 〈ψ2|

]
.

(4.18)
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which can be written in matrix form as:

ρ̂i =
1

2

 c20 0 c0c2
0 c21 0
c0c2 0 c22

 .
As introduced in Section 2.2, if the density matrix is non-singular, the FI can
be obtained in a simple way if one expresses the density matrix in its spectral
decomposition, this means, in terms of its eigenvectors as in equations (2.46) and
(2.49). Performing the spectral decomposition one obtains:

ρ̂i =
∑
i

Pi |ϕi〉 〈ϕi| = c21 |ϕ1〉 〈ϕ1|+ (c20 + c22) |ϕ2〉 〈ϕ2| , (4.19)

where the eigenvalues are P0 = 0, P1 = c21 and P2 = c20 + c22, and the normalized
eigenvectors are:

|ϕ0〉 =
1√

c20 + c22
[−c2 |ψ0〉+ c0 |ψ2〉], (4.20)

|ϕ1〉 = |ψ1〉 , (4.21)

|ϕ2〉 =
1√

c20 + c22
[c0 |ψ0〉+ c2 |ψ2〉]. (4.22)

Using the spectral decomposition of the density matrix (4.19), the FI for the single
parameter is given by equation (2.50). Explicitly, the derivative of the density
matrix with respect to the parameter is

Γ =
dρ̂

dθ
=

 2c0
dc0
dθ 0 c0

dc2
dθ + c2

dc0
dθ

0 2c1
dc1
dθ 0

c0
dc2
dθ + c2

dc0
dθ 0 2c2

dc2
dθ

 =

 Γ0 0 Γ02

0 Γ1 0
Γ02 0 Γ2

 . (4.23)

Substituting explicitly in (2.50), the FI is.

FQ =
Γ2
1

c21
+

(
c20Γ0 + 2c0Γ02c2 + c22Γ2

)2
(c20 + c22)3

+
2
(
c20Γ02 + c0c2(Γ2 − Γ0)− Γ02c

2
2

)2
(c20 + c22)3

(4.24)

Substituting explicitly the elements of the matrix Γ and taking the limit d→ 0
we see that FQ → N/4σ2, equivalent to Eq. (4.8).

To measure the mode components of the field at the image plane, two methods
are mainly used; Spatial-mode Demultiplexing (SPADE) and Superlocalization by
Image Inversion Interferometry SILVER. SPADE consists of a selective measure-
ment of the number of photons per mode of the field, which could be for instance
expressed in terms of the Hermite-Gauss basis {|ψq〉}. In order to measure indepen-
dently the number of photons per mode, the image plane field could be coupled to
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Figure 4.4: Fisher Information and Crámer-Rao lower bound for differential resolution
sensing with Hermite-Gauss spatial modes.

a multimode optical fiber, such that the longitudinal propagation constant of each
mode is different. Each mode can be focused onto different spots along the optical
axis by using a grating coupler and a lens [26], and thus measured independently.

SILVER insted, uses pixel arrays2 in the two outputs of a Mach-Zehnder inter-
ferometer that separates the field in its symmetric and antisymmetric components
with respect to spatial inversion.

Note that both techniques rely in the fact that the measurements can be per-
formed in a projective manner through a POVM of the form |ψn〉 〈ψn|. As dis-
cussed in chapter 3, this is not a simple task.

Assuming the mode components are measured, the probability of detecting a
photon in the n−th mode is

fn =
1

2

(
| 〈ψn|Ψ+〉|2 + | 〈ψn|Ψ−〉|2

)
= |cn|2. (4.25)

The classical FI as in Eq. (4.6), usin explicitly Eqs.(4.15) and (4.16) is

FC =

m∑
n=0

fn

( ∂
∂d

ln fn

)2

' N

4σ2
, (4.26)

which is equal to the Quantum FI in Eq. (4.8) and does not suffer from Rayleigh’s
curse. This means that if one employs a measuring strategy to detect the co-
efficients of the modal decomposition in the Hermite-Gauss basis, as the ones
described above, one can determine the distance between two incoherent point
sources with the maximum precision possible regardless the distance between them.

2For a given distance between the sources, the Fisher Information can be better approached
by increasing the number of pixels in the array [27].
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4.2 Optimal measurements based on modal meth-
ods

The interest of this section is to study measurement strategies based on modal
methods that are optimal and allow to estimate the parameters of interest with
ultimate resolution, this is, with the maximum estimation precision allowed by the
quantum CR bound.

The state of the system |Ψθ〉 can be expressed as a decomposition in an ar-
bitrary set of orthonormal functions {|ul〉} with complex coefficients Cl that are
functions of the n parameters of the system (see Section 3.3), namely

|Ψθ〉 =
∑
l

Cl(θ) |ul〉 . (4.27)

In general both the amplitude and phase of the complex coefficients depend on
the parameters of the system as Cl(θ) = Al(θ) exp{iϕl(θ)}. When projecting the
state onto the mode |ul〉, the probability of measuring the state in the l-th mode
is A2

l , thus the FIM in Eq. (2.24) is reduced to

[FC ]ik =
∑
l

1

A2
l

∂iA
2
l ∂kA

2
l = 4

∑
l

∂iAl∂kAl. (4.28)

Additionally, since the state is considered to be pure, the QFIM from Eq. (2.37)
is reduced to

[FQ]ik = 4
{∑

l

∂iAl∂kAm −
∑
l,m

AlAm∂kϕl∂kϕm

+
∑
l

[
A2
l ∂iϕl∂kϕl + i

(
∂iAl∂kϕl − ∂kAl∂iϕl

)]}
.

(4.29)

Note that if the phases of each one of the coefficients of the decomposition are
independent of the parameters (∂jϕl = 0, ∀ {j, l}) the classical FIM FC is equal
to the quantum FIM FQ,

[F ]ik = [FQ]ik = 4
∑
l

∂iAl∂kAl. (4.30)

This result implies that if one can express the state as a sum of spatial modes with
coefficients independent of the system’s parameters (i.e. Cl(θ) = Al(θ) exp{iϕl},
∀ l), sensing through a projective measurment onto those spatial modes is optimal,
it allows to attain the fundamental precision bound. As relevant as this result
is, finding such basis of modes is technically cumbersome and its experimental
implementation is not always feasible.

Moreover, if it happens that for a given basis modes {ui} the information of the
system’s parameters is carried only by the phase of the coefficients of the modal
decomposition in Eq. (4.27), (i.e. Cl(θ) = Al exp{iϕl(θ)}, ∀ l) the optimality
condition in Eq. (2.40) is satisfied; so that the Crámer-Rao bound associated to
the QFIM is tight and attainable.
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4.2.1 Tailoring an optimal mode decomposition

We consider the state of a single photon depending on n parameters θ = (θ1, ..., θn)
of the form

|Ψθ〉 =

∫
dxΨ(x, θ) â†(x) |vac〉 (4.31)

where â† is the field operator of the mode of the illumination beam and |vac〉 is
the electromagnetic vacuum state, and Ψ(x, θ) is the spatial profile of the photon.
Assume the conditions (2.39) and (2.41) are satisfied, so that the bound CS is
attainable. The state can be expanded around a point in the parameter space θ0,

|Ψθ〉 ≈ |Ψθ0〉+

n∑
i=1

∆θi |∂iΨ〉. (4.32)

Here ∆θi = θi − θi0 and |∂iΨ〉 corresponds to the derivative with respect to the
i-th element of the parameter vector θi evaluated in θ0

|∂iΨ〉 =

∫
dx

∂Ψ(x, θ)

∂θi

∣∣
θ0
a†(x) |vac〉. (4.33)

Consider the set of modes {|ωi〉} spanning the space orthogonal to Ψθ defined as
|ωi〉 = |∂iΨ〉+〈∂iΨ|Ψ0〉 |Ψ0〉 as defined in Eq. (4.33). To generate an orthonormal
set of modes {|vi〉} we make use of the Gramm-Schmidt process. Using |ω0〉 = |Ψ0〉
and |v1〉 = |ω1〉, the vectors for i > 1 are given by:

|vi〉 = |ωi〉 −
i−1∑
j=1

〈vj |ωi〉
〈vj |vj〉

|vj〉 . (4.34)

We define the normalized vectors |γi〉 holding |vi〉 = Ni |γi〉, with N2
i = 〈vi |vi〉

such that 〈γi| γj〉 = δij . From Eqs. (4.34) and (4.33) it follows that:

|∂iΨ〉 = Ni |γi〉 − 〈∂iΨ |Ψ0〉 |Ψ0〉+

i−1∑
j=1

〈γj |ωi〉|γj〉. (4.35)

Using Eqs. (4.32) and (4.35) one can express |Ψθ〉 as the decomposition in terms
of the orthonormal set of spatial modes {|γi}〉:

|Ψθ〉 = Γ0(θ) |Ψ0〉+

n∑
i=1

Γi(θ) |γi〉 . (4.36)

At this point it is important to note the following: on the one hand, we note that
from Eq. (4.36) the coefficients Γj directly depend on the parameters of interest;
however, it is not direct that by measuring the coefficients one can estimate the
parameters by comparing to the values obtained when solving the expressions in
Eqs. (4.32) and (4.35). This is because a re-normalization of the state due to
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the Taylor expansion in Eq. (4.32) is required. On the other hand, it is proven
that a modal measurement based on projection onto the modes γj is optimal [21].
Note that an optical projection onto the modes {γi} relies on the feasibility of
the spatial mode realisation and the accuracy of the initial guess θ0, which is not
generally the case due to technical limitations of the equipment and the fact that
a priori information about the sample is not always available. Assuming that it is
indeed possible to perform the optical projection, the probabilities of detecting a
photon in the mode γi(x) are given by

Pi = |〈Ψθ|γi(θ0)〉|2. (4.37)

It is relevant to see that using full-field measuring techniques as Ptychography
or interferometry, in which both the amplitude and the phase of the field are
measured; the projections in Eq. (4.37) can be performed computationally, leading
to optimal estimation of the parameters; either by comparing the value of the
projection to the expected value given the refence parameter, or by varying the
initial guess parameters θ0 to maximize or minimize the projections.

Two parameter case

Considering a two-parameter estimation problem, this is, a state characterized by
θ = (θ1, θ2). Using Taylor expansion in Eq. (4.32), the state can be written as

|Ψθ〉 ≈ |Ψ0〉+ ∆θ1 |∂1Ψ〉+ ∆θ2 |∂2Ψ〉 . (4.38)

The set of vectors |ωk〉 orthogonal to |Ψ0〉 are

|ω1〉 = |∂1Ψ〉+ 〈∂1Ψ |Ψ0〉 |Ψ0〉 (4.39)

|ω2〉 = |∂2Ψ〉+ 〈∂2Ψ |Ψ0〉 |Ψ0〉 . (4.40)

Using the Gram-Schmidt orthogonalization process, we have:

|v1〉 = |ω1〉 (4.41)

|v2〉 = |ω2〉 −
〈v1 |ω2〉
〈v1 |v1〉

|v1〉 = |ω2〉 −
〈ω1 |ω2〉
〈ω1 |ω1〉

|ω1〉 . (4.42)

Using the normalization constants, it follows that

N1 |γ1〉 = |∂1Ψ〉+ 〈∂1Ψ |Ψ0〉 |Ψ0〉 (4.43)

N2 |γ2〉 = |∂2Ψ〉+ 〈∂2Ψ |Ψ0〉 |Ψ0〉 −
〈ω1 |ω2〉
N1

|γ1〉 . (4.44)

The normalization constants Nk are explicitly:

N2
1 = 〈v1 |v1〉 = 〈ω1 |ω1〉

= 〈∂1Ψ |∂1Ψ〉+ 〈∂1Ψ |Ψ0〉2 + 〈Ψ0 |∂1Ψ〉2 + |〈Ψ0 |∂1Ψ〉 |2 (4.45)
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and

N2
2 = 〈v2 |v2〉 =

[
〈ω2| −

N∗12

N1
〈ω1|

][
|ω2〉 −

N∗12

N1
|ω1〉

]
= 〈ω2 |ω2〉 −

N12

N2
1

〈ω2 |ω1〉 −
N∗12

N2
1

〈ω1 |ω2〉+
|N12|2

N2
1

= 〈ω2 |ω2〉 −
|N12|2

N2
1

. (4.46)

Where

〈ω2 |ω2〉 = 〈∂2Ψ |∂2Ψ〉+ 〈∂2Ψ |Ψ0〉2 + 〈Ψ0 |∂2Ψ〉2 + |〈Ψ0 |∂2Ψ〉 |2 (4.47)

and N12 = 〈ω1 |ω2〉, explicitly

N12 = 〈∂1Ψ |∂2Ψ〉+ 2 Re{〈∂1Ψ |Ψ0〉 〈∂2Ψ |Ψ0〉}+ 〈Ψ0 |∂1Ψ〉 〈∂2Ψ |Ψ0〉 . (4.48)

4.2.2 Example. Height and sidewall angle estimation of a
cliff-like nanostructure

Consider a cliff-like nostructure of height h and sidewall angle α as shown in figure
2.5 in Section 2.4. Due to the fabrication process the sharpness of the structure
suffers of rounding effects and lose of sharpness. The actual transverse section of
the object’s surface can be modeled by a differentiable function

f(x) =
h

2
(1 + tanhαx). (4.49)

The center of the slope is assumed to be at x = 0 and the side wall angle β is such
that f ′(x)|x=0

= tanβ, and α = 2/b. We consider the estimation of the parameters
θ1 = α and θ2 = h. Assuming that the object is probed with a Gaussian beam of
width w0 = λ/πNA consisting of M independent photons. λ is the wavelength of
the illumination and NA the effective numerical aperture of the optical system.

The state of the photons is |Ψ0〉 with Ψ0(x) =
(
2/πw2

0

)1/4
exp
{
−x2/w2

0

}
the

Gaussian distribution. The phase added to the probe after the interaction with
the object is ϕ(x; θ) = kh(1 − tanhαx), so that the state of a scattered photon
from Eq. (4.31), has spatial distribution

Ψ(x; θ) = Ψ0(x) exp
{
ikh
(
1− tanhαx

)}
. (4.50)

The derivatives in Eq. (4.33) with respect to θ1 = h and θ2 = α are explicitly

|∂1Ψ〉 = |∂hΨ〉 = ik

∫
Ψ(x; θ0) (1− tanhα0x) |x〉dx. (4.51)

|∂2Ψ〉 = |∂αΨ〉 = −ikh0

∫
Ψ(x; θ0)x sech2α0 x |x〉dx. (4.52)
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The corresponding inner products are

〈Ψ0| ∂hΨ〉 = ikN2
0

∫ ∞
−∞

(1− tanhα0x)e
− 2x2

ω2
0 dx = ik, (4.53)

〈Ψ0| ∂αΨ〉 = −ikh0N
2
0

∫ ∞
−∞

xsech2α0x e
− 2x2

ω2
0 dx = 0, (4.54)

〈∂hΨ| ∂hΨ〉 = N2
0 k

2

∫ ∞
−∞

(
1 + tanh2 α0x

)
e

2x2

ω2
0 dx

= 2k2 −N2
0 k

2 2

α0
= 2k2 −

(
2

π

)1/2
2k2

α0w0
∼ 2k2,

(4.55)

〈∂αΨ| ∂αΨ〉 = N2
0 k

2h2
0

∫ ∞
−∞

x2sech4α0xe
− 2x2

ω2
0 dx

= N2
0 k

2h2
0

π2 − 6

9α3
0

,

(4.56)

〈∂hΨ| ∂αΨ〉 = N2
0 k

2h0

∫ ∞
−∞

xsech2α0x tanhα0x e
2x2

ω2
0 dx

=
N2

0 k
2h0

α2
0

,

(4.57)

where N0 =
(
2/πw2

0

)1/4
such that the normalization condition 〈Ψ |Ψ〉 = 1 holds

and we make use of the conditions w0α0 � 1, which is in most experiments the
relevant case. In equation (4.56) the relation tanh2θ+sech2θ = 1 and the following
integrals have ben used ∫ ∞

−∞
tanhα0x e

− 2x2

ω2
0 dx = 0 (4.58)

and ∫ ∞
−∞

sech2α0x e
− 2x2

ω2
0 dx '

∫ ∞
−∞

sech2α0xdx =
2

α0
. (4.59)

Similarly, in equation (4.57) we have used∫ ∞
−∞

x sech2α0x e
− 2x2

ω2
0 dx = 0. (4.60)
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Figure 4.5: Homodyne differential signal as a function of the phase difference for the
two-parameter estimation of the spatial features of a cliff-like nanostructure. The local
oscillator holds the spatial mode γ1 = γα (blue curve) or γ2 = γh (red curve). The
projection state parameters are β0 = 85◦, h0 = 150nm and the true state parameters
differ from the true parameter by 10%, ∆θi = θi/10. The signal is normalized by the
single photon intensity is A0 = ~ω

ε0cT
. N,NLO are the number of photons of the probe and

LO beam, respectively detected within the integration time T of the photodetector.

Substituting these inner products explicitly in Eqs.(4.45) to (4.48) one gets

Nhα = 〈∂1Ψ |∂2Ψ〉 = N2
0

k2h0

α2
0

, (4.61)

Nh = k

[
1−

(
2

π

)1/2
2

α0w0

]1/2

∼ k, (4.62)

Nα =
N0kh0

3α
3/2
0

[
π2 − 6−

(
2

π

) 1
2 9

α0w0

]1/2

∼ N0kh0

3

√
π2 − 6

α3
0

, (4.63)

where it has been used that 〈ω2 |ω2〉 = 〈Ψ2|Ψ2〉, since 〈Ψ2|Ψ0〉 = 0 and the
experimentally relevant condition w0α0 � 1 has been taken into account. The
projection states |γ1〉 and |γ2〉 from Eqs. (4.43) and (4.44) are

|γ1〉 =
1

Nh
|ω1〉 =

1

Nh
[|∂1Ψ〉+ 〈∂1Ψ |Ψ0〉 |Ψ0〉] (4.64)

|γ2〉 =
1

Nα

[
|∂2Ψ〉+N20 |Ψ0〉 −

Nhα
Nh
|γ1〉

]
. (4.65)
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Substituting explicitly the inner products, the modes are

|γ1〉 = −i
∫

Ψ(x; θ0) tanhα0x |x〉 dx (4.66)

|γ2〉 =
3

N0kh0

√
α3

0

π2 − 6

∫
Ψ(x, θ0)

[
N2

0h
2
0

α2
0

tanhα0x− ikh0 x sech2α0x

]
|x〉 dx.

(4.67)

Measuring the state in this basis is known to satisfy F = FQ, leading to the
optimal estimation of α and h. This can be done by means of optical projection
using the homodyne spatial mode analyzer introduced in the previous section.
Since the coefficients are real, the homodyne detection signal from Eq. (3.38)
when combining the scattered beam with each one of the modes γl is directly
proportional to Γl modulated by the sine of the phase difference. Namely, when
varying the phase of the local oscillator, the amplitude of the measured signal is
maximal and proportional to the coefficient Γl when the phase difference is π/2,
and zero when it is multiple of π. These result is plotted in in Figure 4.5 for
the cases in which the local oscillator holds the mode γ1 (blue curve) and γ2 (red
curve).

Comparison with one-dimensional models

If one is interested exclusively in the estimation of either the height or the side wall
angle, the problem is reduced to a single parameter estimation. In each case, the
optimal mode is given by Eq. (4.39) and the derivative vectors (4.51) and (4.52).
For the estimation of the height (θ = h), assuming α = α0, one has

|γh〉 = ik

∫
dxΨ0(x)

[
1− tanh(α0x)

]
|x〉. (4.68)

Where Ψ0(x) = Ψ(x, θ0) = Ψ(x, h0), with Ψ(x) as in Eq. (4.50). Projecting the
state of the probing light wave (either optically of computationally after full-field
measurements) as in Eq. (4.37) one gets

〈γh|Ψ〉 = i

∫
dx|Ψ0(x)|2 tanh(α0x) exp(iϕ− iϕ0)

= i

∫
dx|Ψ0(x)|2 tanh(α0x) exp

[
ik∆h(1− tanh(α0x)

] (4.69)

where ∆h = h−h0. If we expand this expression to second order in ∆h, we obtain

〈γh|Ψ〉 = k∆h+ i (k∆h)2. (4.70)

Here we have made use of the Taylor expansion of the exponential term in Eq.
4.69) and the fact that

∫
dx|Ψ(x, h0)|2 tanh2(α0x) ∼ 1 when σα0 � 1. Finally,
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Figure 4.6: Two parameter estimation model comparison with respect to the one dimen-
sional case. Real and imaginary parts of the projections 〈γ0 |Ψh〉 (left) and 〈γ1 |Ψh〉 (right)
as function of the normalized error δh = ∆h/h0 for h0 = 150 nm and α0 corresponding
to a sidewall angle β0 = 89◦; considering ∆α = 0. Dashed line corresponds to the one
dimensional model.

we can write the mode projection as

〈γh|Ψ〉 = kh0
∆h

h0
+ i (kh0)2

(∆h

h0

)2

. (4.71)

Moreover, projecting on to the initial guess state Ψ0, one gets

〈γ0|Ψ〉 =

∫
dx|Ψ0(x)|2 exp

{
ik∆h

[
1− tanh(α0x)

]}
(4.72)

Once again, we expand this expression bow to second order in ∆h:

〈γ0|Ψ〉 =

∫
dx|Ψ0(x)|2

{
1 + ik∆h

[
1− tanh(α0x)

]
− (k∆h)2

2

[
1− tanh(α0x)

]2}
(4.73)

If we use again the relative thickness variation ∆h/h0, we can write

〈γ0|Ψ〉 = 1− (kh0)2
(∆h

h0

)2

+ ikh0
∆h

h0
(4.74)

Summarizing, the mode projections of interest are

〈γ0|Ψ〉 = 1− (kh0)2
(∆h

h0

)2

+ ikh0
∆h

h0
(4.75)

and

〈γh|Ψ〉 = kh0
∆h

h0
+ i (kh0)2

(∆h

h0

)2

. (4.76)
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Note that the equations above coincide with the two-dimensional case when taking
∆α = 0. This result is shown in Figure 4.6. Thus, from the detection probabilities
in Eq. (4.37), to second order in ∆h it follows that

P0 + P1 = 1− 2(kh0)2
(∆h

h0

)2

+ (kh0)2
(∆h

h0

)2

+ (kh0)2
(∆h

h0

)2

= 1. (4.77)

If one considers now the single-parameter estimation problem for the determi-
nation of the sidewall angle (θ = α), assuming h = h0), we have

|γα〉 = −kh0
i

N1/2

∫
dxΨ0(x)x sech2(α0x) |x〉 (4.78)

where

N = (kh0)2

∫
dx|Ψ0(x)|2x2 sech4(α0x) = (kh0)2 1

α3
0

( 2

πσ2

)1/2 π2 − 6

9
. (4.79)

We want to estimate small deviations from α0, i.e., α = α0 + ∆α. Using the
approximation to second order in ∆α

〈γ0 |Ψ〉 =

∫
dx |Ψ(x)|2 exp

{
iϕ(x, α)− iϕ(x, α0)

}
=

∫
dx |f(x)|2 exp

{
ikh0 [tanh(α0x)− tanh(αx)]

}
=

∫
dx |f(x)|2 exp

{
− i∆αkh0 x sech2(α0x)

− i (∆α)2

2
kh0 x

2 tanh(α0x) sech2(α0x)
}
.

(4.80)

Using A = −kh0x sech2 α0x and B = kh0 x
2 tanhα0x sech(α0x), the Taylor

expansion for the exponential term is

exp
[
iA∆α+ i

B

2
(∆α)2

]
=
[
1− 1

2
A2(∆α)2

]
+ i
[
A∆α+

B

2
(∆α)2

]
(4.81)

we obtain

〈γ0|Ψ〉 = 1− 1

2
N (∆α)2 (4.82)

and

〈γα|Ψ〉 = N1/2 ∆α− (kh0)2

N1/2

(∆α)2

2

∫
dx|Ψ0(x)|2x3 sech4(α0x) tanh(α0x) (4.83)

To first order in ∆α we have

〈γα|Ψ〉 = N1/2∆α =

(
2

π

)1/4 (π2 − 6

9

)1/2 kh0√
σα0

∆α

α0
(4.84)
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Figure 4.7: Two parameter estimation model comparison with respect to the one dimen-
sional case. Values of the projection 〈γ0 |Ψα〉 (left) and 〈γ1 |Ψα〉 (right) as function of
the normalized error δb = ∆b/b0, with b = 2/α, the horizontal projection of the slope with
h0 = 150 nm and α0 corresponding to a sidewall angle β0 = 89◦; considering ∆h = 0.
Dashed line corresponds to the one dimensional model.

Similar as in Eq. (4.77), up to second order in ∆α:

P0 + P1 = 1−N (∆α)2 +N (∆α)2 = 1. (4.85)

Note that the equations above coincide with the two-dimensional case when taking
∆h = 0. This result is shown in Figure 4.7.

The extension of the results to the two-parameter estimation problem are shown
in Figures 4.8-4.10. It is relevant to point out that the selection of the order
of the parameters (θ1, θ2) is in general arbitrary and can be chosen according
to convenience of the computation of Eqs. (4.43) and (4.44) together with the
inner products in Eqs. (4.45) - (4.48). For instance, inverting the order of the
parameters, θ1 = α and θ2 = h; using the expressions in Eq. (4.39) and (4.40),
together with the inner products 4.53) - (4.57), one gets

Nα |γ1〉 = |∂αΨ〉 = −ikh0

∫
Ψ(x, θ0)x sech2 α0x |x〉dx, (4.86)

and

Nh |γ2〉 = |∂hΨ〉+ ik |Ψ0〉 −
N2

0 k
2h0

N2
1α

2
0

|∂αΨ〉

= ik

∫
Ψ(x; θ0)

[
Nαh
N2
α

h0 x sech2 α0x− tanhα0x

]
|x〉dx.

(4.87)

Although the modes γ1 and γ2 are different, the obtained results are equivalent
and the behaviour observed in figures 4.8-4.10 holds for the inversion of the order
of parameters.
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Figure 4.8: Projection to |Ψ0〉

Figure 4.9: Projection to |γ1〉

Figure 4.10: Projection to |γ2〉
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Chapter 5

Computational methods for
resolution-enhanced sensing

In the core of this thesis, it is of interest to explore measuring protocols to measure
spatial features of objects by extracting relevant information beyond the spatial
resolution limit given by diffraction. In the previous chapters we have explored the
advantages of sensing with spatial modes of light and retrieving information carried
by the phase of the optical beam. However, a different approach can be taken.
Exploiting the considerable computational advances in terms of both software and
hardware, modern computational methods allow to rigorously solve scattering and
diffraction problems with extremely high accuracy. Moreover, it is possible to
take further advantage of the advances in computational methods. Namely, the
development of artificial intelligence (AI) algorithms, specifically Machine Learning
(ML) and Neural Networks (NN), allow the access to otherwise apparently hidden
information by recognizing patterns from data sets. The content of this chapter
has been published in a peer reviewed journal as a research article (Ref. [134]) of
which the author of this dissertation is first author.

When using ML algorithms for imaging purposes, NN are able to classify im-
ages, recognize specific features of interest and categorize them. In this chapter, we
put forward and demonstrate with model particles a smart laser-diffraction anal-
ysis technique aimed at particle mixture identification. In contrast to commonly-
used laser diffraction schemes—in which a large number of detectors are needed—
our ML-assisted protocol makes use of a single far-field diffraction pattern con-
tained within a small angle (∼ 0.26◦) around the light propagation axis. It re-
trieves all information from the diffraction pattern generated by the whole array
of particles, which simplifies considerably its implementation in comparison with
alternative schemes. The method does not make use of any physical model of scat-
tering to help in the particle characterization, which usually adds computational
complexity to the identification process.
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5.1 Laser Diffraction analysis for optical metrol-
ogy

Particle characterization techniques have long played a fundamental role in many
different branches of science and technology. In biology, they assist in schemes
for the detection of bacteria [135] and viruses [136]. They are important in the
pharmaceutical [137,138], food processing [139,140], and the semiconductor indus-
tries [141]. Particularly important are applications aimed at environmental moni-
toring and protection [142,143]. Some potential applications include the detection
of microplastics in marine waters [144], and the characterization of airborne parti-
cles, given that their size is strongly correlated with pulmonary toxicity [145,146]
leading to respiratory illnesses.

Remarkably, more than 75% of all materials processed in the industry are in
particulate form. These particles may be contained in substances in any of the
three known phases (solid, liquid, or gaseous) and can be divided into three broad
groups: natural, industrially processed from natural products, and completely
synthetic particles [147]. In general, one can identify two important reasons for
industries routinely employing particle characterization [148]: better understand-
ing of products and processes, and better control of product quality. While the
former allows for the optimization of the manufacturing processes, the latter can
translate into a potentially important economic benefit.

During the past two decades, several light scattering technologies used for par-
ticle characterization have matured and even become a key part of industrial pro-
duction lines [149]. These techniques may be classified into three main categories:
static light scattering (SLS), dynamic light scattering (DLS), and scattering track-
ing analysis (STA). In the first class, the measured scattering signal results from
the light-particle interaction at various spatial locations, whereas in the second and
third, the recorded signal results from the monitoring of light-particle interaction
as a function of time.

Different techniques aim, or are better suited, for particles in different size
classes. Particle dimension ranges from very small, such as viruses (20–100 nm)
[150], to larger ensembles such as bacteria colonies of 1–2 mm dimension, with
a number of possible shapes [135]. For instance, while dynamic light scattering
techniques can resolve particles deep in the submicron region [151], static methods
work best in the range of hundreds of µm to mm [152, 153]. Here we aim at this
regime of size particles, with the smaller particles considered being tens of microns
in size.

Static light scattering, also known as laser diffraction (LD) analysis has become
the most widely used technique for extracting information about the particle size
distribution of an unknown sample [154]. This technique is based both on Mie
light scattering theory, and on far-field Fraunhofer diffraction. In LD analysis,
the light intensity vs scattering angle is related to the dimensions of the particles
participating in the scattering process, with other variables, such as wavelength,
kept constant. Thus, information about particle size is extracted from the angular
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intensity variation of laser light scattered from a given sample: larger particles
scatter light at smaller angles, while smaller particles scatter at wider angles [148].
It is worth pointing out that while for Fraunhofer diffraction the particle size anal-
ysis is somewhat straightforward, the Mie scattering approach requires knowledge
of the real and imaginary parts of the sample’s refractive index [147].

Commercial LD instruments have been used extensively in the industry due
to their high precision and reliability. Important drawbacks include their limited
portability and their inability to fully discern among different particle shapes. In
particular, given that LD is based on the precise detection at different scattering
angles, typical instruments require in the region of 16 to 32 detectors positioned at
different angles with respect to the main optical axis (see, for instance, Figure 4 of
Ref. [149]). Unfortunately, increasing the number of detectors does not necessarily
lead to a better resolution [152] and thus, finding the optimum number and location
of detectors for a particular application becomes a crucial task. Most LD schemes
are based upon the assumption that particles, although different in size, are always
spherical; this poses a problem if the goal is to identify samples containing particles
with different shapes [155,156].

Although it is well known that particle shape influences the properties and
behavior of substances, for example affecting material strength and deformation
mechanisms [157] as well as the compaction/flux of powders [158], it remains chal-
lenging to determine it experimentally. Some studies have used LD for the devel-
opment of sensors to obtain particle shape information for online process control
and monitoring, however, these have only achieved limited success [159,160]. Many
different measures have been suggested for the characterization of particle shape,
involving roundness and angularity (sharpness) [161,162]. More rigorously, exten-
sions of the Mie theory for arbitrarily-shaped particles can be approached numer-
ically; however, applying such numerical solutions to mixtures of many particles
would be computationally very costly [163,164].

Neural network (NN) algorithms have been applied for particle characterization
allowing for the estimation of relevant parameters such as particle size and con-
centration. In addition, they have also been shown to outperform ill-conditioned
inverse scattering problems in Mie theory by reducing significantly the required
computational time [165]. In this sense, Machine Learning (ML) techniques are
known to be powerful for pattern recognition in large data sets, providing reli-
able parameter estimation. The standard procedure is to train NNs with either
experimental or synthetic data spanning the parameter range of interest, and sub-
sequently estimate the desired parameters by using measurements as input to the
trained NN [166]. The key point is that NNs make use of their self-learning capa-
bilities to enhance the performance of optical systems in terms of reliability and
resolution without the need to increase their complexity. ML techniques have been
applied for particle shape characterization by recognizing the morphology of parti-
cle aggregation, ref. [167] or by defining the boundaries of each particle from direct
imaging measurements [168]. Interestingly, neural networks have been shown to
significantly improve the detection of spatial features in out-of-the-lab technologies
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such as mobile-phone-based microscopes [169]. These features combined undoubt-
edly facilitate the deployment of machine-learning-assisted methods in industrial
settings.

5.2 Identification of model particle mixtures us-
ing artificial intelligence

In this section, we provide the first steps towards “smart” laser diffraction analysis
of heterogeneous mixtures [170]. This technique makes use of a trained artificial
NN to identify spatial features of heterogeneous mixtures of microscopic objects.
Our analysis relies on monitoring the far-field diffraction pattern produced by laser
light impinging on two-dimensional arrays of model particles which, for the sake
of simplicity and generality, are simulated with the help of a DMD. We would like
to point out that, although these model particles are not real three-dimensional
objects, they exhibit certain advantages [171, 172]. In particular, given their two-
dimensional nature, they reasonably fulfill the theoretical pre-assumptions for
Fraunhofer diffraction, and by excluding other possible effects derived from real
three-dimensional particles help focus our attention on the advantages of using
smart technologies, i.e., those based on pre-programmed rules or patterns learned
during a training stage, for laser diffraction analysis.

The technique hereby proposed, in which relevant sample information is reli-
ably extracted from a single and static far-field diffraction pattern, offers two main
advantages over typical LD devices. Firstly, it allows for efficient particle identifi-
cation by detecting the signal within a small angle (∼ 0.26◦) with respect to the
light propagation axis, thus effectively reducing the number of detectors needed
for its implementation, as is also the case in recent micro- and nano-particle iden-
tification proposals that make use of ML algorithms [165,173–177].

Secondly, our technique permits the identification of particle shapes in two-
component heterogeneous mixtures resolving the shapes of the particles that make
up the mixture, as opposed to currently available techniques in which only the par-
ticle size can be obtained [170,178]. In addition, this proposed technique allows
for the determination of the predominance (or balance) between particle geome-
tries. These features might be relevant for monitoring particle contamination in
industrial manufacturing processes [179].

To generate a large set of different particle mixture configurations, we create
objects of different geometries and sizes using a DMD consisting of a 6.57 mm ×
3.69 mm chip containing a grid of square mirrors of 7.63µm per side. The mirrors
can be selectively rotated ±12◦ in an “on” or “off” configuration such that when
illuminated, the DMD reflects light selectively.

The DMD is illuminated with a 405 nm wavelength collimated beam of 2.46
mm diameter. The beam size is set to be smaller than the DMD window to avoid
diffraction effects caused by the borders of the chip. Each object in the mixture
corresponds to a contiguous array of mirrors in the “on” configuration that reflects
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Figure 5.1: Experimental setup for ML-assisted laser diffraction analysis. A 405 nm
laser beam, spatially filtered with two lenses (L1 and L2) and a pinhole (P), is expanded
with a telescope system (L3 and L4) to illuminate a Digital Micromirror Device (DMD).
The power of the illumination beam can be controlled using a Half-wave Plate (HWP)
followed by a Linear Polarizer (LP). The light reflected by the DMD passes through a
Fourier transform lens (L5), and the diffraction pattern is collected by a CCD camera at
the focal plane of the Fourier lens L5. The power of the signal after L5 was measured
using a beam splitter (BS) and a power meter (PM).

a part of the beam. The objects are randomly positioned on the DMD plane
assuring no overlap between particles. Due to the periodicity of the mirror grid, a
mesh of diffraction order beams is produced. A single diffraction order is selected
to be transmitted through a Fourier transform lens, and the diffraction pattern
is collected with a CCD camera, as shown in Figure 5.1. Note that due to the
dimensions of the beam, the model particle images, and the focal length of the
Fourier lens L5 (200 mm), the DMD diffraction orders are naturally separated
with propagation, so that no additional spatial filtering is required to isolate a
single diffraction order. The collected diffraction patterns are stored as bitmaps,
scaling the intensity values monitored with the CCD camera to 8-bits, associating
the maximum intensity (saturated detector) to 255 gray-scale values.

We consider mixtures of microscopic particles. The aim is to retrieve infor-
mation such as their size, geometry (shape), and concentration. To demonstrate
in principle the effectiveness of the method, in this work we consider only three
geometries, namely: squares, triangles, and circles. However, our results seem to
indicate that one can consider two-dimensional arbitrarily shaped objects in more
general scenarios, given that the different shapes to be identified produce a spatial
far-field pattern which is sufficiently distinguishable. These mixtures are analyzed
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Table 5.1: Beam power as a function of the illuminated area in the DMD.

Number of Pixels Power [µW]

≤500 200

501–1000 100

1001–1500 50

1501–3000 25

≥3001 15

following the steps shown as a flowchart in Figure 5.3 a.
To demonstrate that we can successfully retrieve the sought-after information

about the microscopic objects, we carry out two different experiments. The first
experiment (Experiment #1) aims at recognizing sets of microscopic objects that
have the same shape but different characteristic lengths; in this case: 11, 15, 21, or
25 times the DMD mirror length (7.63 µm). The total number of particles varies
from one to five.

The second experiment (Experiment #2) considers mixtures containing two
types (out of the three available geometries) of microscopic objects. In this exper-
iment, the size of the particles is kept constant (15 micromirrors), while the total
number of objects ranges from 2 to 10. All possible combinations n1 +n2 = N are
considered, where n1 and n2 are the number of sources belonging to geometries 1
and 2, respectively. The dataset for each experiment is created by randomly assign-
ing the position of the objects, avoiding any overlap between them, and registering
their corresponding far-field diffraction pattern. One hundred diffraction patterns
were considered for each category. Given the total number of combinations of
size, shape, and number of objects, Experiment #1 contains 6000 experimental
diffraction patterns, while Experiment #2 includes 19,200 patterns.

Due to the quadratic scaling of the illuminated area with the increase of the
particles’ characteristic length, the intensity of the diffraction pattern increases
accordingly. Thus, in order to avoid saturation of the detector, and incomparable
powers of the stored diffraction patterns, the power of the initial illumination
beam was selected according to the total illuminated area; more precisely, the
total number of pixels in the “on” configuration, which varied from 66 pixels
(corresponding to a triangle of 11 pixels per side) up to an almost fifty times
larger illuminated area of 3125 pixels (corresponding to five squares of 25 pixels
per side). Table 5.1 summarizes the power of the illuminating beam for each case.

Because the illumination beam has a Gaussian profile, the power reflected
by the DMD strongly depends on the distribution of the particles; the particles
closer to the center of the beam will reflect more intense light than particles far
from the center. Tailored illumination with uniform intensity profile such as top-
hat beams would prevent this from happening, however, this requires alternative
beam shaping equipment. To take these variations into account, we make sure
that, in each case, the collected images had the same mean total power. To do
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so, the exposure time of each measurement was selected such that no pixel of
the CCD camera recorded an intensity larger than 250 (gray-scale), being 255 the
saturation value, additionally the integrated signal of all pixels yield the same value
for all measurements. A general description of the data collection methodology is
summarized in the pseudo-code shown in Algorithm 1.

Algorithm 1: Pseudo-code of experimental data collection.

for Select Illumination beam power do
for Select geometry category do

for Select total number of particles N do
Compute total number of Pixels
Set initial exposure time
if Total number of pixels ∈ pixel interval then

for i = 1 : 100 do
Generate source plane with non-overlapping particles
Project source plane in the DMD
Collect diffraction pattern
Verify image saturation
while Image is underexposed or saturated do

end
Update exposure time
Collect diffraction pattern
Verify image saturation
Measure signal power
Save diffraction pattern

end

end

end

end

end

Examples of the collected diffraction pattern intensities experimentally mea-
sured [IE(x)] are shown in Figure 5.2 and compared with the corresponding the-
oretical predictions [IT (x)], generated using a far field FFT-based algorithm that
describes the scattering process. Here x = (x, y) designates the transverse co-
ordinate on the measuring plane. To evaluate the degree of similarity between
experiment and theory, we make use of the overlap parameter [180]

Ω =

[∫
I

1/2
E (x)I

1/2
T (x) dx

]2
[∫
IE(x) dx

] [∫
IT (x) dx

] , (5.1)

where Ω = 1 corresponds to a perfect overlap between the theoretical prediction
and the experimental measurement. Note that in all of the cases that we have
evaluated, the overlap parameter is Ω ≥ 0.9.
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Figure 5.2: Comparison between simulated and measured diffraction patterns. (a,d,g)
show examples of the objects generated with the Digital Micromirror Device (DMD).
(b,e,h) are the theoretically predicted diffraction patterns created by the objects depicted
in the leftmost column. (c,f,i) are the experimentally measured diffraction pattern. Note
that the images are normalized, so that the integrated signal over the detection area adds
up to unity. In all cases, the overlap parameter Ω is found to be larger than 0.9.
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5.2.1 Machine learning architecture and data processing

All the algorithms used in our protocol are based on multi-layer feed-forward
networks [181]. Hidden layers feature neurons that perform operations on the data
using synaptic weights and a nonlinear activation function, the so-called sigmoid
function. The output layer comprises softmax neurons that provide a probability
distribution over predicted output classes [182,183]. To build accurate and reliable
neural networks, a crucial step is to determine an appropriate feature vector that
may capture the information encoded in the diffraction patterns. Figure 5.3b shows
the image pre-processing method carried out to build the feature vector. We first
crop the diffraction pattern to a 400× 400 pixel image, retaining only the central
portion of the monochromatic high-resolution original images (1280× 1024 pixels,
normalized to 8 bits) obtained with a CCD camera (Thorlabs DCU224C). After
this step, to reduce the data dimensions, we perform a down-sampling process
that averages small clusters of 80 by 80 pixels, resulting in a 5-by-5 pixel image.
It is worth mentioning that we have tested our algorithms with a larger set of
features (pixels) without observing a significant efficiency improvement, as shown
in Figure 5.4. The values of identification accuracy that correspond to each one
of the feature matrix dimensions are: 78.41 ± 1.94, 94.12 ± 0.75, 94.24 ± 0.65,
94.48 ± 0.41, 94.45 ± 0.32, 94.55 ± 0.2, 94.6 ± 0.12 and 94.77 ± 0.1 (all values
correspond to accuracy percentage). Finally, we rearrange the resulting intensity
distribution as a column vector, with the total measured intensity included as a
26th element of the resulting feature vector V1, depicted by the red rectangle in
Figure 5.3c.

Our neural networks undergo two stages, namely training, and testing. We
train the classification networks using the scaled conjugate gradient back-propagation
algorithm [184], while the performance is evaluated through the cross-entropy
[185, 186]. We devote 70% of the dataset to training, 15% to validation, and
15% to testing, as is standard in ML protocols [187,188]. In all cases, the training
of the neural networks was carried out with balanced data, that is, the training
dataset contains the same number of observations for each one of the classes. It
is worth mentioning that the testing data was excluded from the training phase,
thus providing an unbiased evaluation of the algorithm’s overall accuracy. A limit
of 1000 epochs was set for each network training stage. Both training and testing
stages were performed with MATLAB 2019a which runs on a computer with an
Intel Core i7-4710MQ CPU (@2.50 GHz) and 32 GB of RAM. After the training
stage, our networks can make predictions of the shape, size, and the number of
microscopic objects in a given sample using as input the diffraction pattern and
the total intensity, as shown in Figure 5.3c. In what follows, we provide a thorough
description of the steps followed in each experiment.

In Experiment #1, we implement three neural networks connected in series,
each one of them performing a specific prediction of the features of the initial
field. The first neural network identifies the shape of the objects. It is trained by
using a concatenation of the total intensity (signal power) and the down-sampled
representation of the diffraction pattern, i.e., the feature vector V1 [see Figure
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5.3b]. The second network, identifying the object size, makes use of the prediction
of the first network to create the feature vector V2 = V1 + geometry (shape),
whereas the third network extracts the object number from the feature vector
V3 = V2 + size. Figure 5.3c summarizes the structure of the neural networks
and the predicted classes. The core feature-vector V1 is initially introduced in the
network that identifies the shape. Then, its output acts as input for the second
network, in conjunction with the core feature vector. Once the object size has
been determined, the third neural network predicts the number of objects using
as input the core feature-vector, as well as the outputs of the first and second
networks.

In Experiment #2, we follow a similar strategy. We first implement a neural
network that determines the combined-geometry (shape) class—i.e., the two shapes
of the objects which make up the mixture—by using the feature vector, comprising
the down-sampled diffraction pattern and the total measured intensity. With the
geometry-class identified and the core feature-vector, we then determine the total
number of objects. Finally, by making use of the core feature-vector, as well as
the outputs of the first and second networks, we predict the dominant shape. Note
that the last network has been divided into two cases: odd and even number of
objects. This is due to the fact that when the number of objects is even, we need to
define three output classes depending on the concentration ratio, namely (1) larger
number of the first geometry, (2) larger number of the second geometry, (3) equal
number of model particles of both geometries. For an odd number of objects, there
are only two classes. Also note that the class labeled as Geometry-1 (Geometry-2)
in Figure 5.3 refers to the first (second) object-shape in each of classes 1, 2, and
3. It is important to note that in both experiments, all of the data which serves
as input to the neural network (both for training and for evaluation), is obtained
experimentally through far-field diffraction.

5.2.2 Experimental results

We have performed a blind test of our neural networks on the remaining 15% of
the collected data. We obtain an overall >90% identification accuracy in every
stage of the experiments. Table 5.2 summarizes the results of each experiment
(see Figure 5.5 for details on the network success rate for each task), including the
overall accuracy, the number of hidden layers, and the number of neurons in each
layer.

In Experiment #1, featuring collections of one single type (shape) of particle,
the first NN can identify the shape of the model particles with a 99% accuracy
using a single hidden layer with 5 neurons. The second NN for the determination
of particle size showed the same performance, with the same architecture. For the
case of the particle number, the architecture of the NN involves two hidden layers
with 20 and 5 neurons, respectively, resulting in a 93% identification accuracy.

We remark that in experiment #1 which involves collections of a single type of
particle, each one randomly positioned, we can obtain information about particle
shape, size, and total number from inputting a single diffraction pattern to our
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Table 5.2: Overall accuracy, number of hidden layers, and number of neurons in each
layer for the neural networks implemented in the described experiments.

Experiment Neural Network Accuracy Number of Hidden Layers Number of Neurons by Layer

1
Geometry 99% 1 5
Object Size 99% 1 5
Object Number 93% 2 Layer 1 = 20; Layer 2 = 5

2

Geometry 94% 2 Layer 1 = 30; Layer 2 = 20
Object Number 92% 2 Layer 1 = 80; Layer 2 = 50
Dominant geometry (even) 95% 2 Layer 1 = 30; Layer 2 = 20
Dominant geometry (odd) 98% 2 Layer 1 = 30; Layer 2 = 20
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Figure 5.5: Confusion matrices summarizing the performance of machine-learning algo-
rithms for particle mixture identification. The top row shows the confusion matrices con-
taining information about the correct and incorrect predictions for (a) geometry (shape),
(b) model particle characteristic size, and (c) number of objects of the Experiment #1.
The bottom row presents the confusion matrices for (d) geometry (shape), (e) number of
model particles, and (f,g) dominant geometry (shape) of the Experiment #2. (f,g) ma-
trices correspond to the case in which the number of objects is even and odd, respectively.
In all cases, the diagonal elements of the matrices represent successful recognition, i.e.,
true-positives and true-negatives, whereas off-diagonal elements represent failed attempts,
false-negatives, and false-positives.
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Table 5.3: Computation time for test and training of the neural networks used in each
experiment.

Experiment Neural Network Training [s] Test [s]

1
Geometry 2.308× 10−1 ± 2.7× 10−3 7.1× 10−3 ± 6.7× 10−7

Object Size 2.491× 10−1 ± 4.7× 10−3 7× 10−3 ± 5.2× 10−7

Object Number 3.905× 10−1 ± 9.9× 10−3 7.2× 10−3 ± 2× 10−7

2

Geometry 4.7212 ± 7.471× 10−1 1.2× 10−2 ± 1.4× 10−6

Object Number 1.57444× 101 ± 4.6636 1.82× 10−2 ± 2.4× 10−6

Dominant geometry (even) 1.045 ± 6.1× 10−2 2.7× 10−5 ± 9.9× 10−10

Dominant geometry (odd) 9.513× 101 ± 6.5× 10−2 2.1× 10−5 ± 2.7× 10−9

three cascaded NNs, in contrast to other schemes which analyze each particle on
a one-by-one basis [159,160].

For experiment #2, featuring heterogeneous mixtures of two types (shapes)
of particles, our NN uses two hidden layers. The shape of the particles was re-
trieved with 94% accuracy using 30 and 20 neurons, respectively; while for the
total number of model particles, 80 and 50 neurons were needed for an identifica-
tion accuracy of 92%. Finally, two layers with 30 and 20 neurons were required to
determine the dominant shape obtaining 95% accuracy for the even total number
of particles and 98% for the odd number of particles.

We measured the execution time in both training and test stages to quantify
the computational cost in terms of the processing time. Table 5.3 shows a com-
parison of the execution time for all the proposed neural networks. Note that, in
general, while our algorithms require less than 30 s to be trained, the test time is
significantly less than that of the training, around a few tens of milliseconds.

It is worth mentioning that although the data preparation and processing can
be considerably time-consuming, once the training phase has been completed, our
neural network can process newly-acquired data (prepared in the same format as
used for training) in timescales of milliseconds.

We have demonstrated an optical technique for particle mixture identifica-
tion, with potential applications in research and industry, based on machine-
learning-assisted laser diffraction analysis. The technique proposed facilitates a
fast and accurate identification of the particle’s shape, size, and total number in
the case of collections of a single particle type (shape). Likewise, it leads to fast
and accurate identification of the geometry of constituent particles, particle size,
and dominant geometry in the case of binary non-heterogeneous mixtures. We
have verified that the method works detecting arrays of randomly located model
particles generated with the help of a DMD. It is worth pointing out that ma-
chine learning and deep learning algorithms have been used to improve optical
microscopy [169,189–191]. Interestingly, by using neural networks as classifiers or
feature extractors, in some cases trained with synthetic data and tested in real
measurements, these types of techniques have shown to be effective for impurity
recognition in semiconductors [192,193].

In our work, by making use of a digital micromirror device, we have simulated
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mixtures of particles of different sizes and geometries with a different total num-
ber of model particles. By analyzing the resulting far-field diffraction pattern, our
neural network algorithm can extract the spatial features of the mixtures. Re-
lying on a total of 24,900 diffraction patterns and a 70/15/15 ratio for training,
validation, and testing data, respectively, the identification performance remained
above 90%. Because of its reliability and ease of implementation, our technique
may be of great importance for different scientific and technological disciplines, as
it establishes a new route towards the development of novel smart identification
devices for sample classification and particle contamination monitoring.
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Chapter 6

Summary and conclusions

Modern imaging and optical metrology techniques have led to resolution improve-
ments beyond the standard diffraction limit. This has motivated a more de-
tailed and robust description of resolution that can be addressed from a quantum-
mechanical point of view. Quantum estimation and statistical inference theory
provide the tools to determine the estimation precision limit by means of the
Crámer-Rao lower bound, which has two direct implications. On the one hand the
quantum Crámer-Rao bound gives a fundamental limit for estimation precision
that one can aim to for a given light-matter interaction. On the other hand, the
so called classical Crámer-Rao lower bound states the maximum precision that a
certain measuring strategy allows. These results derive in a modern description of
Rayleigh’s resolution criterion as well as a quantitative evaluation of the sensitivity
of the measuring technique that can be compared to the fundamental limit.

Depending on quantum state model and the number of parameters to be es-
timated, several methods to compute the Crámer-Rao lower bound are reported
in the literature. In this thesis we explicitly compute and evaluate the validity
of different bounds for a particular case. We consider the estimation of the time
delay and frequency shift induced to a state of light after interacting with a moving
target when using pairs of entangled photons in a quantum Lidar system. We show
that the different bounds and their validity depend on the degree of entanglement.

Apart from the characteristics of the system and the parameters of interest, the
quantum state model selection is also relevant for the estimation limit. We show
a discrepancy for parameter estimation between two particular photonic models,
namely N copies of a single photon and a multimode coherent state with average
number of photons N.

Furthermore, in this thesis we explore the effects of noisy environments on
the informational content of quantum states. In particular, we study quantum
correlations beyond entanglement for quantum phase estimation. We consider
N00N states and calculate the local quantum uncertainty and quantum discord,
which quantifies the decrease of the informational content when losses are present.

Once the fundamental Crámer-Rao lower bound for a particular parameter
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estimation is given, one can compare the attainable estimation precision for a given
measurement strategy to the fundamental limit. This not only allows to quantify
the resolution enhancement of the measurement strategy, but also allows to design
or optimize measurement strategies that allow to attain or asymptotically approach
the lower bound. We show this discrepancy using two examples, the estimation
of the propagation parameters of an optical fiber as a dispersive medium, and the
estimation of the spatial features of a nanostructure; both inducing phase changes
to the optical field.

Modal methods have shown to be effective to optimally attain the lower bound.
In this thesis we propose a method to retrieve the full amplitude and phase modal
decomposition of an arbitrary beam using a homodyne spatial mode analyzer. The
operation principle of this technique is the combination of two fields using a bal-
anced beam splitter, namely the optical field of interest with the field of a local
oscillator holding a single mode. The output signals of the beam splitter ar sub-
stracted in a standard homodyne detection scheme such that by varying the phase
of the local oscillator mode, the complex coefficients of the modal decomposition
can be retrieved.

Additionally, without the need of interferometric methods nor complex mode
projections, we propose a technique to extract modal information by encoding
azimuthal phases to optical beams using spatial light modulators, followed by
projection onto a Gaussian mode. We apply this technique to the two-dimensional
localization of an optical beam in the transverse plane. We perform a sensitivity
analysis and compare the results with the fundamental lower bound as well as with
other methods currently used.

Since modal methods have shown to be optimal in some particular cases, we
present a method to compute a basis of modes that allow an optimal estimation
of the parameters. We include as an example the estimation of the height and
sidewall angle of a cliff-like nanostructure, relevant in the semiconductor industry.

Finally, motivated by the information carried by optical beams that is not
easily accessible, we explore the possibility of extracting information about spatial
features of microscopic objects by using machine learning algorithms combined
with laser diffraction analysis. We show that machine learning algorithms are able
to identify spatial features of microscopic objects from their diffraction patterns
without the need of solving the inverse problem nor the use of extensive scattering
theory.

Future work

Although the majority of the results in this thesis are theoretical; at the heart of
this research project we aim at direct applications in metrology. The main interest
of this research is to establish and evaluate feasible methods for highly sensitive
metrology. We aim at imaging and non-imaging techniques based on spatial mode
projections that allow to resolve and measure nanoscopic spatial features of ob-
jects with sub-wavelength resolution. Using the theoretical results and simulations
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Figure 6.1: Experimental implementation of a homodyne spatial mode analyzer.

presented in this thesis, we hereby propose the foreseen follow up research to be
carried out in the near future in terms of experimental implementation of spatial
mode sensing.

We expect to carry out the experimental implementation of the methods pre-
sented in Sections 3.3 and 3.4. The setup resented in figure 3.9 is expected to
be used in two scenarios. First, to experimentally demonstrate the results of
Section 3.4.1 for two-dimensional beam localization in the transverse plane using
azimuthal mode phase encoding. Second, this method is intended to be used for
measurements of orientation of objects following an equivalent procedure.

Moreover, the homodyne spatial mode analyzer (see figure 6.1) is intended to
be used for optimal phase estimation using the optimal modes presented in Section
4.2. In particular, for optimal estimation of spatial features of phase objects. We
expect to use cliff-like nanostructures as well as diffraction grating in which the
characteristic parameters are the height, period, critical dimension (width at half
height) and sidewall angles.
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Finally, in collaboration with groups at TU Delft, VSL and ASML Research, we
expect to perform computational spatial mode projections for super-resolution op-
tical metrology. Using measured data of the complex field (amplitude and phase)
obtained by phase retrieval methods using pthychography, we intend to compu-
tationally project onto the basis of spatial modes that allow optimal estimation;
leading to saturation of the Crámer-Rao lower bound.
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Appendix A

Explicit computation of the
Holevo bound for a quantum
Lidar system

Although the computation of the Holevo bound is not straightforward in general,
we can apply the same procedure used by Bradshaw et. al. in [194].

It is first needed to find an orthonormal basis of vectors {|e0〉, |e1〉, |e2〉} in
which we can decompose the sate |Ψ0〉 and its derivatives with respect to the
parameters (θ = (θ1, θ2)) |Ψ1〉 ≡ 〈∂1Ψ| and |Ψ2〉 ≡ 〈∂2Ψ|. To do so, we redefine
the variables as dimensionless variables τ → τ

T and δ → δ
W . Since the Holevo

CR bound is asymptotically attainable with an adaptive measurement scheme, we
evaluate at (τ, δ)→ 0. The state and its derivatives are expressed in terms of the
orthonormal basis as:

|Ψ0〉 = |e0〉, (A.1)

|Ψ1〉 =
√

WT
2

cosh r|e1〉+
√

WT
2

sinh r|e2〉, (A.2)

|Ψ2〉 = iωosT |eo〉+ i
√

WT
2

cosh r|e1〉 − i
√

WT
2

sinh r|e2〉. (A.3)

Here r is such that cosh 2r = 2WT . Using the expressions above; the conditions
Tr[ρXi] = 0 and Tr[∂iρX

j ] = δij , are explicitly:

Re{cosh r 〈e0|X1 |e1〉+ sinh r 〈e0|X1 |e2〉} = 1√
cosh 2r

, (A.4)

Re{cosh r 〈e0|X2 |e1〉+ sinh r 〈e0|X2 |e2〉} = 0, (A.5)

Re{i cosh r 〈e0|X1 |e1〉 − i sinh r 〈e0|X1 |e2〉} = 0, (A.6)

Re{i cosh r 〈e0|X2 |e1〉 − i sinh r 〈e0|X2 |e2〉} = 1√
cosh 2r

. (A.7)
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Splitting the matrix elements in its real and imaginary parts as:

〈e0|X1 |e1〉 = t1 + ij1, (A.8)

〈e0|X1 |e2〉 = s1 + ik1, (A.9)

〈e0|X2 |e1〉 = t2 + ij2, (A.10)

〈e0|X2 |e2〉 = s2 + ik2; (A.11)

one can rewrite the conditions (A.4-A.7) as:

t2 = −s2 tanh r, (A.12)

j1 = k1 tanh r, (A.13)

t1 = sech r√
cosh 2r

− s1 tanh r, (A.14)

j2 = − sech r√
cosh 2r

+ k2 tanh r. (A.15)

Using the definition in Section 2.2.1, the elements of the matrix Z[ ~X] are written
as:

Z11 =|〈e0|X1 |e1〉|2 + |〈e0|X1 |e2〉|2, (A.16)

Z12 = 〈e0|X1 |e1〉 〈e1|X2 |e0〉+ 〈e0|X1 |e2〉 〈e2|X2 |e0〉 , (A.17)

Z21 = 〈e0|X2 |e1〉 〈e1|X1 |e0〉+ 〈e0|X2 |e2〉 〈e2|X1 |e0〉 , (A.18)

Z22 =|〈e0|X2 |e1〉|2 + |〈e0|X2 |e2〉|2. (A.19)

Considering the weight matrix G = diag[1, z] (z > 0), the Holevo function h[ ~X]
becomes:

h = f + 2|g|
√
z, (A.20)

where f and g are functions that depend on (s1, k2, k1, s2) as

f =t21 + j2
1 + s2

1 + k2
1 + z(t22 + j2

2 + s2
2 + k2

2) =

= (s2
1 + k2

1 + zk2
2 + zs2

2)(1 + tanh2 r),

+ (1 + z) sech2 r
cosh 2r − 2(s1 + zk2) sech r tanh r√

cosh 2r
.

(A.21)

g =− j1t2 − k1s2 + j2t1 + k2s1 =

= (k2s1 − k1s2)(1− tanh2 r)− sech2 r
cosh 2r

+ sech r tanh r√
cosh 2r

(s1 + k2)

(A.22)

The Holevo function h[ ~X] needs to minimize to find the Holevo CR bound. To
do so, we use the Karush-Kuhn-Tucker (KKT) conditions as described in Appendix
B.1. Two different cases are considered, g < 0 and g > 0. The KKT conditions
are

• If g < 0:
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−∇h = λ∇g,

g < 0,

λ ≥ 0,

gλ = 0.

(A.23)

The potential minimum corresponds to:
s∗1
k∗2
k∗1
s∗2

 =


− sinh r√

cosh 2r
4z+4z cosh 2r+4z

3
2 cosh 2r+4z

3
2

4z−4z cosh2 2r

− sinh r√
cosh 2r

4z+4z cosh 2r+4
√
z cosh 2r+4

√
z

4z−4z cosh2 2r

0
0

 . (A.24)

Substituting this solution in the expression for g (A.22), one has:

g = − sech2 r

cosh 2r

(
1− (1 +

√
z)2√
z

2 sinh2 r + 1

4 sinh2 r

)
> 0. (A.25)

Which has no solution; then there is no valid solution for g < 0.

• If g ≥ 0: 
−∇h = −λ∇g,

g > 0,

λ ≥ 0,

gλ = 0.

(A.26)

Two cases fulfill the condition gλ = 0, namely:

– λ = 0: 
s∗1
k∗2
k∗1
s∗2

=



1−
√
z

sinh r
√

cosh 2r√
z−1

sinh r
√
z
√

cosh 2r

0
0


. (A.27)

The function g becomes:

g = − sech2 r

cosh 2r

(
1 + coth2 r

(1−
√
z)2

√
z

)
< 0 (A.28)

Which is again not a valid solution.

– g = 0:
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The variables s∗2 and k∗1 are equal to zero and s∗1, k
∗
2 are the solution of

the system:
g = k∗2s

∗
1(1− tanh2 r)− sech2 r

cosh 2r + sech r tanh r√
cosh 2r

(s∗1 + k∗2) = 0,

s∗1 = − sinh r√
2WT

4z+2λz−4λ
√
z+λ2−4z3/2+8TWz−8TWz3/2+4TWλz
4z−4λ

√
z+λ2−16T 2W 2z

,

k∗2 = − sinh r√
2WT

2λ+4z−4λ
√
z+λ2−4

√
z+4TWλ+8TWz−8TW

√
z

4z−4λ
√
z+λ2−16T 2W 2z

.

(A.29)

The solution for λ > 0, is obtained numerically.

We are particularly interested in the solution for γ(z = 1) (see Appendix B).
It is possible to find the analytic solution for the system in (A.29) corresponding
to λ = 4 cosh re±r, which implies

s∗1 = k∗2 =
∓e±r√
cosh 2r

. (A.30)

From this two possible solutions for (s∗1, k
∗
2 , k
∗
1 , s
∗
2) we take the one that minimizes

h[ ~X] = f + 2g.
Finally, the Holevo bound after reversing the transformation for dimensionless

units is
W 2V (τ) + T 2V (δ) ≥ cosh 2r e−2r, (A.31)

which can also be written as:

W 2V (τ) + T 2V (δ) ≥ 2WT
(

2WT −
√

4T 2W 2 − 1
)
. (A.32)
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Appendix B

Minimization of the bound
for simultaneous
measurement in a Lidar
system

The goal in this section is to find the minimum of the function

f = V ar(τ)V ar(δ), (B.1)

under a set of inequalities of the form

gi(zi) = γ(zi)−W 2V ar(τ)− ziT 2V ar(δ) ≤ 0, (B.2)

for zi ∈ (0,∞) corresponding to a weight in the extimation of τs, G = diag(1, zi)
and the function γ(z) corresponds to one of the bounds Ci(z) introduced in Section
2.3.1. To avoid notation, let us define the normalized variables

V1 =
V ar(τ)

T 2
, V2 =

V ar(δ)

W 2
. (B.3)

A set of inequalities, further described in (B.2), defines the area of points (V1, V2)
shown in Figure B.1 where the minimum can be located, depending on the value
of the entanglement parameter TW .
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Figure B.1: Values of the s (V1, V2) allowed by the Holevo CR bound for estimation of
time delay and Doppler shift using a quantum lidar system for two different values of
TW : TW = 0.6 (left) and TW = 2 (right). The gradient of colors represents the value
of the product V1V2, lighter for higher values. The lines V1, V2 = 1

4T2W2 correspond with
the vertical and horizontal asymptotes of the sections.

The values in the boundary 1 of this area are given by:

V ′1 =
1

(WT )2

(
γ(z)− z dγ(z)

dz

)
, (B.4)

V ′2 =
1

(WT )2

dγ(z)

dz
. (B.5)

B.1 The Karush-Kuhn-Tucker conditions

To find the values (V1, V2) that solve the minimization problem, we make use of
the Karush-Kuhn-Tucker conditions defined as follow. The Karush-Kuhn-Tucker
(KKT) conditions are necessary conditions that set the solution for a constrained
optimization nonlinear problem. They generalize the method of Lagrange multipli-
ers to a problem in which the constraints can be inequalities as well as equalities.
The aim is to optimize a function f(x) (called the objective function) subject to
both inequality and constant constraints of the form

gi(x) ≤ 0 (B.6)

hj(x) = 0, (B.7)

where i = 1, ...,m and j = 1, .., n. The optimization variable is x.
We assume all the functions f(x), gi(x) and hj(x) are continuously differen-

tiable at a point x∗. This point x∗ is a minimum if there exist constants λi and

1For each bound γ(z) = Ci an area (and boundary) is defined; however, when using the Holevo
bound CH the area is maximal and the boundary is lower than any other bound, meaning that
the areas for the other bounds are contained in the one described by the Holevo bound.
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µj such that the following conditions are satisfied.

−∇f(x∗) =

m∑
i=1

λi∇gi(x∗) +

l∑
j=1

µj∇hj(x∗) (B.8)

gi(x
∗) ≤ 0 ∀i (B.9)

hj(x
∗) = 0 ∀j (B.10)

λi ≥ 0 ∀i (B.11)

λigi(x
∗) = 0 ∀i (B.12)

Additionally, if are looking for a maximum instead, condition (B.8) is replaced by:

∇f(x∗) =

m∑
i=1

λi∇gi(x∗) +

l∑
j=1

µj∇hj(x∗). (B.13)

The KKT conditions (B.8)-(B.13) are then reduced to:

∇f +
∑N
i=1 λi∇gi = 0, (B.14)

gi ≤ 0 i = 1...N, (B.15)

λi ≥ 0 i = 1...N, (B.16)

λigi = 0 i = 1...N. (B.17)

From Eq. (B.14) we have

V1 =
V ar(τ)

T 2
=
∑
i

ziλi (B.18)

V2 =
V ar(δ)

W 2
=
∑
i

λi (B.19)

From Eq. (B.16) we see that all parameters λi should be zero or positive. From
Eq. (B.17) we have that if λi 6= 0 we should fulfill gi = 0 so that

γi
(WT )2

=
∑
j

zjλj + zi
∑
j

λj . (B.20)

The points in the interior of the area allowed correspond to gi < 0 and do not
fulfill the KKT conditions. The solution to the minimization problem must be on
the boundary. All points (V ′1 , V

′
2) on the boundary fulfill a single inequality for a

given value of z that we designate as z0. This is shown in Figure B.2.
If this point fulfills the KKT conditions only one value of λi can be different

from 0. This is:

λ0
i =

1

(WT )2

γ(z0)

2z0
. (B.21)
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(a) z0 = 1

(b) z0 = 2

Figure B.2: Value of the function g(z)

(WT )2
for the Karush-Kuhn-Tucker minimization prob-

lem at two points in the boundary (V1
′(z0), V2

′(z0)) as a function of z for TW = 0.6. The
figure on top corresponds to the point in the boundary with z0 = 1. Below, we have the
same but for the point corresponding to z0 = 2. It seen that g(z)

(WT )2
= 0 only happens for

z = z0.
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Therefore, using (B.18) and (B.19), we know the points in the boundary that fulfill
KKT are:

V ′′1 =
V ar(τ)

T 2
=

1

(WT )2

γ(z0)

2
(B.22)

V ′′2 =
V ar(δ)

W 2
=

1

(WT )2

γ(z0)

2z0
. (B.23)

To find the value z0 we compare the expressions for (V ′1 , V
′
2) and (V ′′1 , V

′′
2 ). The

minimum will be reached for a z0 such that

2z0
dγ(z)

dz

∣∣∣∣
z=z0

= γ(z0). (B.24)

In that case, the minimum of the product will be

fmin = (V ar(τ)V ar(δ))min =
γ2(z0)

4(WT )2z0
, (B.25)

Then, the bound for the simultaneous measurement in equation 2.70 for each Ci

is

σi =
Ci(z0)2

4(WT )2z0
. (B.26)
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Appendix C

Phase step hologram for
vortex beams

To compare the results with other works [19, 122], we consider a transmission
function of the following form:

Tπ(ϕ) = exp
[
iα sin

(
Θπ(ϕ)− 2π

Λ
r cosϕ

)]
=

∑
m

tm exp
[
imΘπ(ϕ)− im2π

Λ
r cos(θ − ϕ)

]
, (C.1)

where Θπ(ϕ) is the piecewise function corresponding to dividing the SLM display
in two halves, with 0 phase in one side and π phase in the other one, namely

Θπ(ϕ) =

{
0 if − π

2 < ϕ < π
2

π if π
2 < ϕ < 3π

2 .
(C.2)

Substituting in Eq. (3.42), from Eq. (3.50) it follows that

Um(ρm, θm) =
exp(2ikf)

λf
tm
∑
l,s

is+1 exp
[
isθm

]
Is

∫
rdr al(r)Js

(kρ
f
r
)

(C.3)
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where Is is the angular integral

Is =

∫ 3π
2

−π
2

dϕ exp
{[
i(l − s)ϕ+ imθπ(ϕ)

]}
=

∫ π
2

−π
2

dϕ exp
{[
i(l − s)ϕ

]}
+

∫ 3π
2

π
2

dϕ exp
{[
i(l − s)ϕ+ imπ

]}
=

1

i(l − s) exp
{[
i(l − s)ϕ

]}∣∣∣π2
−π

2

+
exp[imπ]

i(l − s) exp
{[
i(l − s)ϕ

]}∣∣∣ 3π2
π
2

=
1

i(l − s) exp
{[
i(l − s)ϕ

]}∣∣∣π2
−π

2

+
exp[imπ]

i(l − s) exp{[i(l − s)π]} exp
{[
i(l − s)ϕ

]}∣∣∣π2
−π

2

=
2

(l − s) sin
(

(l − s)π
2

)[
1 + exp[imπ] exp{[i(l − s)π]}

]
. (C.4)

We see that for the first diffraction order m = 1 (and any |m| odd),

Is = π sinc
(

(l − s)π
2

)[
1− exp{[i(l − s)π]}

]
. (C.5)

In particular for an incoming Gaussian beam, U0 = a0(r)→ l ≡ 0, Is vahishes for
s not odd

Is = π sinc
(sπ

2

)[
1− exp{[−isπ]}

]
= 2πsinc

(sπ
2

)
. (C.6)

Figure C.1a shows the values of the integral Is. Note that Is is nonzero for s
odd and the principal contributions to the field Um are for s = −1, 1. Explicitly,
plugging Eq. (C.6) back in Eq. (C.3),

Um(ρm, θm) = 2π qf tm
∑
sodd

is+1 exp[isθm] sinc
[sπ

2

] ∫
rdr al(r)Js

(kρ
f
r
)
, (C.7)

where qf = exp(2ikf)/λf . Making use of the identity J−s(z) = (−1)sJs(z) we get

Um(ρm, θm) =
4π

λf
tm

∑
sodd>0

is+1 cos [sθm] sinc
[sπ

2

] ∫
rdr al(r)Js

(kρm
f

r
)
. (C.8)

Consider an incoming Gaussian beam:

U0(r, ϕ) = a0(r) =
1√
πw2

0

exp

{[
− r2

2w2
0

]}
. (C.9)

The field of the first diffraction order (m = 1) after the 2f system in Eq. (C.8),
using (ρ1, θ1) = (ρ, θ) reduces to:

U1(ρ, θ) =
4π

λf

t1√
πw2

0

∑
sodd>0

is+1 cos [sθ] sinc
[sπ

2

] ∫
rdr exp

{[
− r2

2w2
0

]}
Js

(kρ
f
r
)
.

(C.10)
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Figure C.1: Values of the angular (a) and radial (b) integrals corresponding to the differ-
ent components s contributing to the field Um(ρm, θm) after the 2f system.

Figure C.1b shows the radial integrals with index s in Eq. (C.10) as function
of the diffraction order radial coordinate ρ. Note that the first component s = 1
dominates strongly.

It is common in literature (see Refs. [19,122]) to assume, using a similar method,
to generate a TEM10 mode, with the form:

UTEMmn
= EmnHm

( x
w

)
exp

{[ x2

2w2

]}
Hn

( y
w

)
exp

{[ y2

2w2

]}
, (C.11)

where Emn is a constant normalization factor and Hj is the j−th order Hermite
polynomial. The TEM10 mode is

UTEM10
(x, y) = E10

2x

w
exp

{[
− (x2 + y2)

2w2

]}
, (C.12)

where x = ρ cos θ and y = ρ sin θ. Figure C.2 shows the intensity profile of the
field in Eq. (C.10) considering 50 terms of the sum over s (a) compared to the first
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Figure C.2: Intensity profile comparison for generation of the TEM01 mode (a) the sum
of 50 mode contributions, (b) the first mode s = 1 and (c) the TEM10 mode with waist
w′0 = λf/2πw0.

127



Figure C.3: Intensity profiles along the horizontal line y = 0 of the image plane after the
2f system.

term s = 1 (b) and the TEM01 desired mode (c). The transverse intensity profiles
are compared in Fig. C.3. Furthermore, we can compare the spatial profiles of
the field with respect to each other by computing the fidelity. For two normalized
fields U1(x, y) and U2(x, y), such that

∫
|Ui(x, y)|2 dxdy = 1, the fidelity is:

F (U1, U2) =

∫
U1(x, y)U∗2 (x, y) dxdy. (C.13)

Comparing the field TEM10 to the field in Eq. (C.10), considering the single first
term and the sum of the even contributions up to s = 50 we see that the fidelity
between them is:

F (TEM10,Σ
50
1 Um) = 0.815

F (TEM10,Σ
1
1Um) = 0.887

F (Σ50
1 Um,Σ

1
1Um) = 0.918.
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