
Chapter 3

Linear Lifting Schemes: Interpolative
and Projection-based Lifting

3.1 Introduction

Despite of the amount of research effort dedicated to lifting filters optimization (cf. §2.3.2),

many works [Li05, Ger05, Hat05] keep on appearing that contribute ideas to improve existing

lifting schemes with new optimization criteria and algorithms. Certainly, there is room for con-

tributions, specially in space-varying, signal-dependant, and adaptive lifting. Even in the linear

setting, there are several ideas that have not been studied enough. This chapter aims to propose,

describe, analyze, and experimentally test linear LS.

The chapter is divided in two approaches, different but intimately related. The first one §3.2

is based on adaptive quadratic interpolation. The method follows the line of work established

by Muresan and Parks in [Mur04]. The main objective of [Mur04] is distant from the wavelet

domain. The goal is the interpolation of images for digital cameras with any rational degree of

zooming. Here, the principal idea of the work is taken up again and further developed in such

a way that it serves to create a variety of interpolative PLS. The second approach §3.3 is a

projection-based construction of lifting steps, which has some similarities to that of Deever and

Hemami [Dee03] in its initial development. The name projection-based refers to the interpretation

of the simplest prediction step arising from the approach. The optimal result minimizes the

projection error of the wavelet basis vector onto the subspace spanned by the scaling basis

vectors. New prediction and update lifting steps are derived using this method.

The interpolation-based approach is suited for the construction of space-varying schemes,

since it may be locally adaptive. The method searches a (local) optimal interpolation. Meanwhile,

the projection-based approach seems more suited for signal-class adapted lifting construction.

The filter is optimized for a certain class of images and then it is employed whenever an image

belonging to the class is coded.
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The advances and results arising from one scheme may be applied to the other one. This

is possible because in spite of the different point of departure of each approach, the underlying

mathematics are essentially the same for both cases. However, the information mainly flows

one-way: from the interpolation to the projection-based approach.

Experiments concerning linear lifting steps construction employing both approaches are elab-

orated and described in section 3.4. Finally, chapter summary and some conclusions are provided

in section 3.5.

Chapter Notation

The notation for this chapter slightly differs from the rest of the dissertation. Let l (∼= x′) and h

(∼= y′) be the scaling and wavelet coefficients, respectively. The notation stands for low-pass and

high-pass, and this is licit because the filters developed in this chapter are linear and despite

the fact they are not always strictly band-pass filters. This notation is consistent and makes the

exposition clearer. Next chapters address nonlinear LS and the notation introduced in chapter

2 is retaken. The multi-resolution decomposition is

x → (l, h) = (l(1), h(1)) → (l(2), h(2), h) → . . .→ (l(K), h(K), h(K−1), . . . , h). (3.1)

The decomposition has intermediate l and h subsignals not present in the previous multi-

resolution representation (3.1). These subsignals are the output of each of the L lifting steps

required for the wavelet decomposition. Lifting is defined as the algorithm with the following

steps. Super-indexes that indicate the resolution level are omitted for conciseness.

(a) Lazy wavelet transform of the input data x into two subsignals:

– An approximation or low-pass signal l0 formed by the even samples of x.

– A detail or high-pass signal h0 formed by the odd samples of x.

(b) Lifting steps, i = 1 . . . L.

– Prediction Pi of the detail signal with the li−1 samples,

hi[n] = hi−1[n]− Pi(li−1[n]).

– Update Ui of the approximation signal with the hi samples,

li[n] = li−1[n] + Ui(hi[n]).

(c) Output data: the transform coefficients lL and hL.
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The output signal lL = l(1) may be further decomposed. Since the filters are linear, a usual

representation of the steps is

hi[n] = hi−1[n]− pT
i li−1,

li[n] = li−1[n] + uT
i hi,

where li = li[n] and hi = hi[n] are column vectors containing an appropriate subset of the

subsignals centered at sample n. This chapter is dedicated to the optimization of p1, p2, u1,

and uL. Indexes are omitted for short when they are clear from the context.

3.1.1 Convex Optimization Theory

The theory of convex optimization is applied in this chapter. This theory provides a general

framework for solving many constrained optimization problems. The key mathematical refer-

ence on the subject is [Roc71]. Two excellent references from a practical implementation per-

spective with engineering applications are [Ber99] and [Boy04]. The main advantage of convex

optimization theory is that closed-form solutions can be found to many problems under some

mild conditions based on the application of the Karush-Kuhn-Tucker (KKT) conditions [Boy04,

p. 243]. In the case that a closed-form solution does not exist or may not be found, the solu-

tion to a convex optimization problem can always be calculated by applying efficient numerical

methods. Currently, there exists a wide range of algorithms and public software packages that

solve any kind of convex problem in an admissible period of time.

The rest of the section is a brief preliminary on convex optimization, which is useful for the

understanding of some mathematical developments throughout the chapter.

A set D is a convex set if the line segment between any two points in the set lies in the set.

This may be expressed mathematically as

αx1 + (1− α)x2 ∈ A, ∀x1,x2 ∈ D, ∀α ∈ [0, 1].

Similarly, a real-valued function f is a convex function if its domain D is a convex set and the

following inequality holds:

f (αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2), ∀x1,x2 ∈ D, ∀α ∈ [0, 1],

which means that the line segment between (x1, f(x1)) and (x2, f(x2)) lies above the graph of

f . A general expression of a constrained optimization problem is

minimize
x

f0(x)

subject to fi(x) ≤ 0,
hi(x) = 0,

1 ≤ i ≤ m,
1 ≤ i ≤ p,

(3.2)
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which consists in finding the infimum of the function f0(x) (which is called the objective function)

among all x that satisfy the conditions fi(x) ≤ 0, i = 1, . . . ,m, and hi(x) = 0, i = 1, . . . , p,

simultaneously.

The optimization variable is x. The inequality constraints and inequality constraint functions

are fi(x) ≤ 0 and fi(x), respectively. Finally, the equality constraints and equality constraint

functions are hi(x) = 0 and hi(x), respectively. The set of points for which the objective and all

the constraint functions are defined is called the domain of the optimization problem (3.2).

The problem (3.2) is a convex optimization problem if the objective function and the in-

equality constraint functions are convex, and if the equality constraint functions are affine, i.e.,

hi(x) = aT
i x+bi. This definition implies that the domain of the optimization problem is convex.

The optimal value f? of the problem is defined as

f? , inf {f0(x) : fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p} . (3.3)

The KKT conditions is a way that provides the convex optimization theory to obtain the opti-

mal solution. A previous requirement is to define the Lagrangian function L associated to the

problem,

L(x;λ,ν) , f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

νihi(x), (3.4)

where λ = (λ1 · · ·λm)T and ν = (ν1 · · · νp)
T are the Lagrange multipliers vectors. In the case

that all the functions are differentiable and under some other technical conditions, a set of

expressions have to be fulfilled by any optimal solution x? and optimal Lagrangian variables

(λ?,ν?). The expressions are the so-called KKT conditions:

hi(x?) = 0, i = 1, . . . , p,

fi(x?) ≤ 0, i = 1, . . . ,m,

λ?
i ≥ 0, i = 1, . . . ,m,

λ?
i fi(x?) = 0, i = 1, . . . ,m,

∇f0(x?) +
m∑

i=1

λ?
i∇fi(x?) +

p∑
i=1

ν?
i ∇hi(x?) = 0.

Some of the problems that appear in this chapter are formulated as quadratic programs, in

which the objective function is convex quadratic and all the equality and inequality constraint

functions are affine. KKT conditions are used to solve them, giving a closed-form solution. Some

other problems are reduced to linear programs, in which all functions fi, i = 0, . . . ,m, and

hi, i = 1, . . . , p, are affine and for which convex optimization provides simple and efficient

numerical algorithms to obtain a solution.
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3.2 Quadratic Image Interpolation Methods

This section presents an interpolation method based on adaptively determining the quadratic

signal class from the local image behavior. The interpolation method has the ability to interpolate

by any rational factor and to model properties of the image acquisition device or other external

constraints into the algorithm itself.

In [Mur04], a quadratic signal model is established and then the interpolation is found by

means of the optimal recovery theory [Mic76, Mur02]. Our study of this method has revealed

that the problem can be reformulated as the minimization of a quadratic function with linear

equality constraints. This insight provides us with all the resources and flexibility coming from

the convex optimization theory in order to solve the problem. Furthermore, the initial problem

statement may be modified in many ways and convex optimization theory still offers solutions.

For instance, equality and inequality constraints on the smoothness of the signal or on its lower

and upper bounds may be included.

The new found flexibility is employed in section 3.3 to design lifting steps with different

criteria from the usual vanishing moments or spectral considerations. However, an interpolative

PLS may be constructed directly. The interpolation values may be used as the prediction of the

detail samples. Also, the interpolation value may be a basis reference of the image underlying

probability density function for an optimized prediction. The prediction may be considered the

peak value of a mono-modal symmetrical distribution of the sample (cf. §5.1.2).

3.2.1 Quadratic Interpolation

The adaptive interpolation method is based on two steps. First, a set to which the signal belongs

or a signal model is determined. Second, the interpolation that best fits the model given the

local signal is found.

A quadratic signal class K is defined as

K = {x ∈ Rn : xTQx ≤ ε}.

The choice of a quadratic model is practical because it can be determined easily by a set of

training data and also, because an appropriate choice of matrix Q facilitates the derivation of

the optimal interpolation values.

The training data is taken from the local features of the image. Alternatively, it is taken

from images of the same type or from any image model. Assume that a training set of patches

S = {x1, . . . , xm} representative of the local data is given for estimating the local quadratic

signal class. Then, matrix Q defines an ellipsoid

xTQx ≤ ε (3.5)
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that must be representative of the training set S for some constant ε. In other words, Q must

be a matrix such that when an image patch y is similar to the vectors in S, then (3.5) holds for

y. Let matrix S be formed by arranging the image patches in S as columns

S = (x1 . . .xm),

and consider the equation relating the image patch y to the training set S using a column vector

c formed of m weights,

Sc = y.

Vector y lies in the expansion of the columns of S. Therefore, y is similar to the vectors in

S when c has small energy,

‖c‖2 = cTc = yT (SST )−1y = yTQy ≤ ε,

where Q is the pseudo-inverse of the product matrix SST . In this sense, good interpolators of

y for the quadratic class determined by Q are spanned with the weighting vectors c of energy

bounded with some ε.

The training set has to be determined. One direct approach of selecting the elements in S
is based on the proximity of their locations to the position of the vector being modeled. In this

case, patches are generated from the local neighborhood. For example, in figure 3.1 the center

patch

x = (x(2,2) x(2,3) x(2,4) x(2,5) x(3,2) . . . x(5,5))
T

may be modeled by the quadratic signal class of the set

S =




x(0,0)

x(0,1)
...

x(3,3)

 , . . . ,


x(4,4)

x(4,5)
...

x(7,7)


 ,

where S is formed by choosing all the possible 4x4 image blocks in the 8x8 region of the figure.

3.2.2 Optimal Quadratic Interpolation

Once the high density class K has been determined, the optimal interpolation vector x can

be expressed as the solution of a convex optimization problem (3.2). We are looking for the

minimum energy vector c subject to the constraint that x is a linear combination of the selected

image patches. This statement can be formulated as

minimize
x,c

‖c‖2

subject to Sc = x.
(3.6)
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Figure 3.1: Local high density image used for selecting S to estimate the quadratic class for the
center 4x4 patch (dark pixels are part of the decimated image).

The optimal solution of (3.6) is x? = 0 and c? = 0. The information coming from the interpolated

signal should be included in the formulation to obtain meaningful solutions.

Previous knowledge about x is available since only some of its components have to be inter-

polated. Typically, if a decimation by two has been performed in both image directions, then

one of every four elements of x are already known. Also, it may be known that the original high

density signal has been averaged before the decimation. In both cases, a linear constraint on the

data is known and it may be added to the formulation (3.6). The linear constraint is denoted

by ATx = b. In the first case, the columns of matrix A are formed by vectors ei, being the one

located at the position of the known sample. The respective position of vector b has the value of

the sample. An illustrative example for the second case is the following. Assume that the pixel

value is the average of four high density neighbors, then there would be 1/4 at each of their

corresponding positions in a column of A. Whatever the linear constraints, they are included in

(3.6) to reach the formulation,

minimize
x,c

‖c‖2

subject to Sc = x,
ATx = b.

(3.7)

This formulation is mathematically equivalent to that of [Mur04] but the convex form allows an

easier interpretation and resolution, as well as the variety of alternative formulations provided

in §3.2.3 and the modification in order to design lifting steps explained in §3.3.

The solution of the problem (3.7) is

x? = SSTA(ATSSTA)−1b, (3.8)
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which is the least-square solution with the quadratic norm determined by SST and the linear

constraints ATx = b. The vector

c? = STA(ATSSTA)−1b = Ã(ÃT Ã)−1b (3.9)

that minimizes the expected energy of c corresponds to an orthogonal projection of 0 onto the

subspace S̄ spanned by Ã = STA.

The matrix SST is symmetric and positive definite. This fact makes the optimization problem

convex. In the example given by figure 3.1, matrix SST is

SST =




x(0,0)

x(0,1)
...

x(3,3)

 . . .


x(4,4)

x(4,5)
...

x(7,7)




(
x(0,0) x(0,1) · · · x(3,3)

)
...(

x(4,4) x(4,5) · · · x(7,7)

)


=


∑(4,4)

k=(0,0) x
2
k

∑
k xkxk+(0,1) · · ·

∑
k xkxk+(4,4)∑(4,5)

k=(0,1) xkxk−(0,1)

∑
k x

2
k · · ·

∑
k xkxk+(4,3)

...
...

. . .
...∑(7,7)

k=(4,4) xkxk−(4,4) · · · · · ·
∑

k x
T
k

 ∝ R̂,

which is proportional to an estimation of the local image auto-correlation. The proportionality

factor is not annoying because it appears in SST and in the inverse (ATSSTA)−1 of equation

(3.8), so it is canceled out.

The formulation is made “global” by interpreting the image signal as a discrete-random

process and taking the expectation in (3.8). In this case, the quadratic class is determined by

the correlation matrix R = E
[
SST

]
. The corresponding solution is

x? = RA(ATRA)−1b, (3.10)

which is the least-squares solution of the norm determined by R and the constraints ATx = b,

i.e., the solution of
minimize

x
xTR−1x

subject to ATx = b.

Note that R is an auto-correlation matrix, which is symmetric and positive definite and so

the optimization problem is still convex. There are many ways to extract an estimation of the

correlation matrix from the image data: the biased or unbiased estimators, with pre-windowing or

not, the auto-regressive parametric models, etc. The image data may even be a region segmented

from an image, the entire image, a whole image class, etc. The choice of the estimation method

and the signal data depends on the application at hand.

Local adapted and global interpolative predictions may be constructed with this common

formulation. Additional knowledge is easily included in the formulation thanks to its flexibility.
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In the next subsection, several alternative formulations that modify the original in different ways

are proposed.

Another consideration is that the proposed interpolation methods give solution vectors that

can be seen as new data patches, better in some sense than the originally used by the algorithm.

Therefore, these solution vectors may also be provided to a subsequent iteration of the algorithm,

thus improving initial results.

3.2.3 Alternative Formulations

The initial formulation (3.7) solution gives a good interpolation, which is optimal in the spec-

ified sense. However, the problem statement may be further refined including more available

knowledge, from the local data or from the given application. Knowledge is introduced in the

formulation by modifying the objective function or by adding new constraints to the existing

ones. Different alternative formulations are described in the following.

3.2.3.1 Signal Bound Constraint

The data from an image is expressed with a certain number of bits, lets say nbits bits. Then,

assume without loss of generality that the value of any component of x is low-bounded by 0

and up-bounded by 2nbits − 1. This is an additional constraint that is included in the problem

statement,

minimize
x,c

‖c‖2

subject to Sc = x,
ATx = b,
0 ≤ x ≤ (2nbits − 1) · 1,

(3.11)

where 0 (1) is the column vector of the size of x containing all zeros (ones). The symbol ≤
indicates elementwise inequality. Let us define the set

D = {x ∈ Rn | 0 ≤ x ≤ (2nbits − 1) · 1}.

Notice that (3.11) is a quadratic problem with inequality linear constraints and so, it has no

closed-form solution. Anyway, there exist efficient numerical algorithms and widespread software

packages that attain the optimal solution very fast. Nevertheless, if the optimal solution x? of

(3.11) resides in the bounded domain D, then this is the closed-form solution expressed by (3.10).

If the set of patches and linear equality constraints have been correctly chosen, then x? is almost

always in the hypercube D.
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3.2.3.2 Weighted Objective

Another refinement of (3.7) is the weighting of vector c in order to give more importance to the

local signal patches that are closer to x. Closer patches are supposed to be more alike than the

further ones. The formulation is

minimize
x,c

‖W̃c‖2

subject to Sc = x,
ATx = b,

where W̃ is a diagonal matrix with the weighting elements wii related to the distance of the

corresponding patch (in the column i of S) to the patch x. Let define W = W̃TW̃, then the

problem may be reformulated as

minimize
c

cTWc

subject to ATSc = b,

which is solved using the KKT conditions:

KKT conditions:
{

ATSc− b = 0
2Wc + STAµ = 0

∼=
(

ATS 0
2W STA

)(
c
µ

)
=
(

b
0

)
. (3.12)

Matrix on the RHS of expression (3.12) equivalence sign is invertible, so it is straightforward

to compute the optimal vectors c? and x?,

c? = W−1STA(ATSW−1STA)−1b, (3.13)

x? = SW−1STA(ATSW−1STA)−1b.

The solution (3.13) corresponds to the orthogonal projection of 0 onto the subspace spanned

by W̃−1STA. The initial projection subspace STA is modified according to the weight given to

each of the patches.

3.2.3.3 Energy Penalizing Objective

A possible modification of (3.7) is to limit vector x energy by introducing a penalizing factor

in the objective function. The two objectives are merged through a parameter γ that balances

their importance. The resulting formulation is

minimize
x,c

γ‖W̃c‖2 + (1− γ)‖x‖2

subject to Sc = x,
ATx = b,

(3.14)

which is equivalent to

minimize
x,c

(
cT xT

)( γW 0
0 (1− γ)I

)(
c
x

)
subject to

(
0 AT

S −I

)(
c
x

)
=
(

b
0

)
.

(3.15)
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The variables to minimize are c and x. All the constraints are linear with equality. KKT

conditions are established. If there are l linear constraints because of ATx = b and m local

patches in S, then the resulting linear system derived from the KKT conditions is
0l×m AT 0l×l 0l×n

S −In 0n×l 0n×n

2γW 0m×n 0m×l ST

0n×m 2(1− γ)In A −In


 c

x
µ

 =
(

b
0(2n+m)×1

)
,

where µ ∈ Rl+n. The system matrix is invertible if the chosen W is invertible. Then, the solution

reduces to

x? =


A(ATA)−1b, if γ = 0,
(I− F−1)A(AT (I− F−1)A)−1b, if 0 < γ < 1,
SW−1STA(ATSW−1STA)−1b, if γ = 1,

where F is introduced to make the expression clearer,

F =
1− γ

γ
SW−1ST + I.

Parameter γ balances the weight of each criterion. If γ = 0, then the solution is the least-

squares onto the linear subspace defined by the constraints ATx = b. On the other hand, the

energy of x has no relevance for γ = 1, and the solution reduces to (3.13). Intermediate solutions

are obtained for 0 < γ < 1.

3.2.3.4 Signal Regularizing Objective

An interesting refinement is to include a regularization factor as part of the objective function.

Let define the differential matrix D, which computes the differences between elements of x. Typ-

ically, rows of D are all zeros except a 1 and a -1 corresponding to positions of neighboring data,

i.e., neighboring samples in a 1-D signal or neighboring pixels in an image. The minimization of

the differences vector Dx energy leads to smooth interpolations. The new problem statement is

minimize
x,c

‖W̃c‖2 + δ‖Dx‖2

subject to Sc = x,
ATx = b.

As before, the expression can be redefined in a more useful way to derive the KKT conditions.

The constraints are the same as (3.15), while the objective function is(
cT xT

)( W 0
0 δDTD

)(
c
x

)
.

Therefore, the linear equations system
0l×m AT 0l×l 0l×n

S −In 0n×l 0n×n

2W 0m×n 0m×l ST

0n×m 2δDTD A −In


 c

x
µ

 =
(

b
0(2n+m)×1

)
(3.16)
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has to be solved. The system has a unique solution if W and DTD are invertible matrices. W

is a weight matrix chosen to be full rank. However, DTD is singular as defined because any

constant vector belongs to the kernel of the matrix (since it is the product of two differential

matrices). It may be made full rank by diagonal loading or by adding a constant row to D.

The latter option has the advantage to introduce the energy weighting factor of (3.14) in the

formulation. More or less weight is given to the energy criterion depending on the value of the

constant row. Whatever the choice, the optimal solution is

x? = M(I− F−1M)A(ATM(I− F−1M)A)−1b, (3.17)

where M = (DTD)−1. In general, F is an invertible matrix and it is defined as

F = δSW−1ST + M.

3.2.3.5 l1-norm Objective

Other norms than the Euclidean may be considered. The l1-norm may be used to force the

components of a vector to sum up to a constant by minimizing the absolute value of the difference

between the components sum and the constant. For instance, if the elements of vector c are forced

to sum up as close as possible to one, then it is assured that the energy of the solution is similar

to that of the patches, which is certainly a desired property in the case of stationary signals.

The problem statement reduces to

minimize
x,c

|1Tc− 1| minimize
x

|1TS#x− 1|

subject to ATx = b, ∼= subject to ATx = b,
Sc = x,

where S# = (STS)−1ST . The function seems difficult to optimize, but the problem may be put

as the equivalent linear program

minimize
x,t

t

subject to 1TS#x− 1 ≤ t,
1TS#x− 1 ≥ t,
ATx = b.

The problem is reduced to a linear program: it has a linear objective function and linear

constraints. A linear program is efficiently solved by many numerical methods, as for example,

the simplex method. Linear programs are simple problems within the convex optimization theory.

The use of l1-norms may be mixed with the previously proposed refinements for the quadratic

case as long as the added objectives are l1-norms. The resulting programs are also linear and

thus, easily solvable.
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3.3 Projection-based Lifting

This section takes up again the formulation (3.7) adding linear equality constraints due to the

wavelet coefficients inner product in order to create lifting steps. The formulation may be used

for the construction of local adapted as well as global interpolative predictions. Remarkably, the

same formulation introducing the new linear equality constraints permits the construction of

PLS §3.3.2 that are not the first one and also ULS §3.3.3. Therefore, this common formulation is

able to deal with three different problems: interpolation and prediction and update lifting steps

design. Experiments in §3.4 provide results for the obtained lifting steps.

3.3.1 Wavelet Linear Constraint

The linear constraint on the data may have a different meaning than the ones established in the

previous section. It has been assumed that the constraint refers to the specific value of a sample

or the average of several high density neighbors in order to perform an interpolation.

Assume now that the given data is the wavelet decomposition of a signal. Transformed

coefficients are the inner products of wavelet (or scaling) basis vectors wi with the input signal.

With this notation, coefficients h[n] and l[n] arise from the product h[n] = wT
h[n]x and l[n] =

wT
l[n]x, respectively. Then, the linear constraint ATx = b on the data is constructed in the

following way. Columns in matrix A are formed by the wavelet transform basis vectors wi and

the independent term b is formed by the transformed coefficients themselves. Therefore, the

formulation
minimize

x,c
‖c‖2

subject to Sc = x,
ATx = b,

may also be applied if a set of patches S is available. Indeed, the solution is already known from

previous section. The global formulation solution is x? = RA(ATRA)−1b (3.10).

The linear constraint allows an alternative way of estimating the signal auto-correlation

through the use of the wavelet transform coefficients. Let A be a local wavelet basis and ATx = t,

being t a vector containing the transformed coefficients l and h. Then, the inverse of A exists,

which is the matrix formed of the synthesis wavelet basis vectors. Therefore, the auto-correlation

can be expressed as

R = E[xxT ] = E[A−T ttTA−1] = A−T E[ttT ]A−1 = A−TRtA−1,

being Rt the wavelet transform correlation matrix. Thus, using the available transform coef-

ficients, an estimation of Rt may be obtained. This estimation may be directly used in some

of the presented solutions as in (3.10) because of the equality Rt = ATRA. Also, the need of

computing an inverse matrix twice is avoided.
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Now, the goal is to predict (update) a wavelet (scaling) coefficient. These coefficients have

been already filtered, so somehow the goal is to improve or refine the lifting steps. First, the

prediction case is analyzed in §3.3.2, and afterwards the update case in §3.3.3.

3.3.2 Linear Prediction Steps Construction

A coefficient h[n] is predicted using a set of scaling samples, which are denoted with some

notation abuse by l[n]. For the sake of exposition clarity, index n is sometimes omitted in

vectors l[n] and h[n]. The linear constraint independent term vector is b = l and the system

matrix A = Wl, where the notation W indicates that the matrix columns are wavelet basis

vectors.

Using the established notation, a wavelet coefficient is expressed by h1[n] = wT
h1[n]x and it

is predicted with a linear filter such that ĥ1[n] = pT
2 b. The second prediction step p2 aims at

obtaining a predicted value h2[n],

h2[n] = h1[n]− ĥ1[n] = h1[n]− P2(l1[n]) = h1[n]− pT
2 l1,

that improves the initial detail samples properties in order to compress them. A key observation

is that the coefficients l1[n] constitute a low-resolution signal version that may be interpolated

using any of the derivations of section §3.2. Therefore, an optimal interpolation x? (which is an

estimation of x) is used to estimate h1[n] through the inner product with the known wavelet

basis vector wh1[n]. Thus, the estimated coefficient is

ĥ1[n] = wT
h1[n]x

?. (3.18)

The optimal linear prediction filter p2 arises from developing (3.18) using the expression of x?

if a closed-form solution exists. In the case of (3.10), such a development is simply

ĥ1[n] = wT
h1[n]x

? = wT
h1[n]RA(ATRA)−1b = pT

2 b, (3.19)

and so, the underlying second prediction is

p?
2 = (ATRA)−1ATRwh1[n]. (3.20)

Interestingly, the optimal prediction filter (3.20) obtained with the use of the optimal inter-

polation solution (3.7) is the same as the one given by the minimum MSE p2 filter of (3.21) up

to the exact choice of matrix R. The MMSE filter minimizes the energy of the second prediction

step h2[n] = h1[n]− ĥ1[n],

p?
2 = arg min

p2

f0(p2) = E[(h1[n]− ĥ1[n])2]. (3.21)
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The following derivation proves that both optimal prediction filters coincide. First, the ob-

jective function is developed,

f0(p2) = E[(h1[n]− ĥ1[n])2] = E[(wT
h1[n]x− pT

2 b)2]

= E[wT
h1[n]xxTwh1[n] − 2wT

h1[n]xbTp2 + pT
2 bbTp2],

and differentiated with respect to p2,

∇p2f0 = E[−2wT
h1[n]xbT + 2pT

2 bbT ]

= E[−2wT
h1[n]xxTA + 2pT

2 AxxTA]

= −2wT
h1[n]E[xxT ]A + 2pT

2 AE[xxT ]A

= −2wT
h1[n]RA + 2pT

2 ATRA,

Finally, imposing the partial derivative to equal zero, the optimal prediction filter is found:

∇p2f0(p?
2) = 0 ⇒ wT

h1[n]RA = p?T
2 ATRA

⇒ p?
2 = (ATRA)−1ATRwh1[n]. (3.22)

Once the optimal filter is found, the predicted value is

ĥ1[n] = p?T
2 b = wT

h1[n]RA(ATRA)−1b,

which is the wavelet coefficient of the optimal interpolation vector (3.10) on the wh1[n] basis

and it is the same expression as equation (3.19). This refinement of the initial PLS produces

a coefficient h2[n] = h1[n] − p?T
2 b with lower expected energy. As discussed in §2.1.3, energy

minimization is a useful criterion for image compression since wavelet-based image coders like

SPIHT and EBCOT owe their performance to the efficient coding of quasi-zero energy wavelet

coefficient sets.

Note that p?
2 is the filter that minimizes the error of predicting a wavelet basis with the

other bases and using the quadratic norm given by the correlation matrix,

p?
2 = arg min

p2

‖Ap2 −wh1[n]‖R = arg min
p2

(Ap2 −wh1[n])
TR(Ap2 −wh1[n]).

This construction is only a particular case of the approach. It has been assumed the solution

(3.10), but others described in the previous section including more available knowledge may be

used to improve results or to construct local adaptive prediction filters.

Alternatively, a coefficient h[n] may be predicted using a set of scaling samples l[n] plus a

set of its causal wavelet coefficients, denoted by hc[n]. Causality is imposed in order to allow

synchronization between coder and decoder. Such a technique already appears in [Sai96b] with

lossless compression results comparable to transforms with larger support. Including samples
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of the detail channel in the prediction loop implies that the synthesis filters are IIR and not

necessarily with linear phase. In the reversible integer-to-integer case quantization occurs in

many places and quantization errors flow into feedback paths. In consequence, quantization

errors may accumulate indefinitely. [Ada00] shows that these type of transforms show worse

performance in lossy compression, but their results improve as the bit-rate increases.

The prediction with feedback is introduced in the interpolative setting conveniently ordering

the matrix and vector components: the linear constraint independent term vector becomes bT =

(lT hcT ) and the system matrix becomes A = (Wl Whc).

3.3.3 Linear Update Steps Construction

The approach offers considerable design flexibility. The same type of construction is applied to

the ULS. It has been proved that solution (3.10) leads to the solution of the problem (3.21). This

last expression is properly modified to derive useful ULS. The new objective functions consider

the l2-norm of the gradient (in §3.3.3.1 and §3.3.3.2) and the detail signal energy (in §3.3.3.3)

in order to obtain linear ULS applicable to a set of images sharing similar statistics.

The gradient as optimization criterion is not found in literature. It only appears in some works

to construct space-varying predictions [Li02, Ger06], updates [Abh03a], and in the adaptive

lifting framework for the construction of ULS (e.g, [Pie01a]).

The idea behind the gradient criterion is to obtain a smooth approximate signal that leads

to a better prediction performance in the subsequent resolution level. The goal is related to

the usual running average preserving ULS. Also, it should be pointed out that the objective of

the ULS in [Pie01a] or in [Abh03a] is the opposite: to preserve salient image structures at the

lower resolution level (while low-pass filtering the homogeneous regions). These schemes amount

to lower resolution image representations with more significant information, but this does not

necessarily imply better compression.

The objective function in §3.3.3.2 is the gradient l2-norm of the approximation signal l1
samples. Meanwhile, the objective in §3.3.3.1 is a simplified version, because it only considers

the gradient with the neighbors l0. The consequence of this simplification is twofold: the resulting

design is simpler and it allows the same interpretation relying on the optimal interpolation as

in the (3.19) PLS. Thus, the different interpolation types in §3.2 as well as the local adaptive

techniques may be introduced in this first ULS design. The third objective function (in §3.3.3.3)

aims to design an ULS with the same goal as the prediction steps, i.e., the energy minimization.

In this sense, both lifting steps work in the same direction.

Provided that a coefficient l[n] is updated by means of a set of detail signal samples (which

are denoted by vector h[n]), the linear constraint system matrix is A = Wh and the independent
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term vector is b = h.

3.3.3.1 First Linear ULS Design

In the first design, the objective function is set to be the l2-norm of the substraction between

the updated coefficient l1[n],

l1[n] = l0[n] + l̃1[n] = l0[n] + uT
1 b,

and the set I of the neighboring scaling coefficients. Coefficient l0[n] is updated with the quantity

l̃1[n] = uT
1 b. The goal is to find the optimal u?

1 such that

u?
1 = arg min

u1

f0(u1),

with

f0(u1) = E

[∑
i∈I

(l0[i]− (l0[n] + l̃1[n]))2
]
. (3.23)

The assumption is that the objective function leads to smooth approximate signals that help

the prediction to perform better in the next resolution level. The objective function (3.23) is

developed,

f0(u1) =
∑
i∈I

E
[
(l0[i]− (l0[n] + l̃1[n]))2

]
=

∑
i∈I

E
[
(wT

l0[i]x−wT
l0[n]x− uT

1 b)2
]

=
∑
i∈I

E
[
wT

l0[i]xxTwl0[i] + wT
l0[n]xxTwl0[n] + uT

1 bbTu1

−2wT
l0[n]xxTwl0[i] + 2wT

l0[n]xbTu1 − 2wT
l0[i]xbTu1

]
,

and differentiated with respect to u1. Then, linear constraints are introduced and the definition

of correlation matrix used,

∇u1f0 =
∑
i∈I

E
[
2uT

1 bbT + 2wT
l0[n]xbT − 2wT

l0[i]xbT
]

= 2
∑
i∈I

E
[
uT

1 ATxxTA + wT
l0[n]xxTA−wT

l0[i]xxTA
]

= 2
∑
i∈I

uT
1 ATRA + wT

l0[n]RA−wT
l0[i]RA,

and finally the derivative equalled to zero

∇u1f0(u?
1) = 0 ⇒ |I|uT

1 ATRA = −|I|wT
l0[n]RA +

∑
i∈I

wT
l0[i]RA.
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Let denote the mean of the neighboring approximate signal basis vectors as

wI =
1
|I|
∑
i∈I

wl0[i].

Then, the optimal update filter minimizing the local gradient is

u?
1 = (ATRA)−1ATR(wI −wl0[n]), (3.24)

and the optimally updated coefficient is

l1[n] = l0[n] + l̃1[n] = l0[n] + u?T
1 b = l0[n] + (wI −wl0[n])

TRA(ATRA)−1b. (3.25)

Interestingly, if wI = 0, then (3.25) computes the minimum l2-norm of the gradient of l1[n]

w.r.t. the zero vector, which is equivalent to minimize the energy. In this case, the optimal

update reduces to the optimal prediction of (3.22). Again, the interpretation relying on the

optimal interpolation of x is possible:

l1[n] = l0[n] + u?T
1 b = l0[n] + (wI −wl0[n])

Tx?,

since it allows the use of additional knowledge for the design. Therefore, interpolation methods

that fit into the PLS goals are equivalently useful for the construction of new ULS.

A related design is developed in the next section. Note that the proposal is not restricted to

the construction of first updates u1. It is also a design for intermediate or final ULS.

3.3.3.2 Second Linear ULS Design

An additional consideration on the set of approximate signal neighbors I may be included in

the previous gradient-minimization design. As each sample in I is also updated, it is interesting

to consider the minimization of the gradient of l[n] + l̃[n] with respect to the updated samples

l[i]+ l̃[i], i ∈ I, through a still unknown update filter. To this goal, the objective function (3.23)

is modified in order to find the optimal update with this criterion. The objective function is

f0(u1) = E

[∑
i∈I

(l1[i]− l1[n])2
]

= E

[∑
i∈I

((l0[i] + l̃1[i])− (l0[n] + l̃1[n]))2
]
.

Taking into account that the updated coefficient basis vector is

wl1[i] = wl0[i] + Al0[i]u1,

being Al0[i] the constraint matrix relative to the position of sample l0[i] and A = Al0[n], the

objective function results

f0(u1)= E

[∑
i∈I

(wT
l0[i]x + uT

1 AT
l0[i]x−wT

l0[n]x− uT
1 ATx)2

]
,
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which is expanded to

f0(u1) =
∑
i∈I

E
[
wT

l0[i]xxTwl0[i] + uT
1 AT

l0[i]xxTAl0[i]u1 + 2wT
l0[i]xxTAl0[i]u1

+wT
l0[n]xxTwl0[n] + uT

1 ATxxTAu1 − 2wT
l0[n]xxTwl0[i] − 2wT

l0[n]xxTAl0[i]u1

+2wT
l0[n]xxTAu1 − 2wT

l0[i]xxTAu1 − 2uT
1 AT

l0[i]xxTAu1

]
,

and introducing the definition of R,

f0(u1) =
∑
i∈I

E
[
wT

l0[i]Rwl0[i] + uT
1 AT

l0[i]RAl0[i]u1 + 2wT
l0[i]RAl0[i]u1

+wT
l0[n]Rwl0[n] + uT

1 ATRAu1 − 2wT
l0[n]Rwl0[i] − 2wT

l0[n]RAl0[i]u1

+2wT
l0[n]RAu1 − 2wT

l0[i]RAu1 − 2uT
1 AT

l0[i]RAu1

]
.

Differentiating this expression w.r.t. u1 leads to

∇u1f0 = 2
∑
i∈I

[
uT

1 AT
l0[i]RAl0[i] + wT

l0[i]RAl0[i] + uT
1 ATRA

−wT
l0[n]RAl0[i] + wT

l0[n]RA−wT
l0[i]RA− 2uT

1 AT
l0[i]RA

]
.

Equalling the expression to zero and denoting the mean of the different products of the basis

vectors and matrices as

AI =
1
|I|
∑
i∈I

Al0[i],

RI =
1
|I|
∑
i∈I

AT
l0[i]RAl0[i],

bI =
1
|I|
∑
i∈I

AT
l0[i]Rwl0[i],

then, the optimal solution is described by

u?
1 =

(
ATR(A− 2AI) + RI

)−1
(
ATR(wI −wl0[n]) + AT

IRwl0[n] − bI
)
. (3.26)

This expression of awkward appearance is simple to compute in practice, since the only

difference w.r.t. (3.24) are the additional terms concerning the neighbors basis vectors means,

which are known and fixed if the previous prediction step is a fixed classical PLS.

3.3.3.3 Third Linear ULS Design

A third type of ULS construction is proposed. The PLS is assumed to be the same linear filter

through all resolution levels. The objective function is set to be the prediction error energy of

the next resolution level. Thus, the prediction filter is employed to determine the basis vectors as
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well as the subsequent prediction error. The ULS is assumed to be the last of the decomposition.

The updated samples l(1)
L [n] are split into even l(1)L [2n] and odd l(1)L [2n+1] samples that become

the new approximation l
(2)
0 [n] = l

(1)
L [2n] and detail h(2)

0 [n] = l
(1)
L [2n + 1] signals, respectively.

For simplicity, L is set to 1 in the following. In the next resolution level, the odd samples are

predicted by the even ones and the ULS design aims to minimize the energy of this prediction.

It is also assumed that the same update filter is used for even and odd samples. Therefore, the

objective function is

f0(u1) = E
[
(l1[2n+ 1]− pT

1 l1[2n])2
]

= E
[
(l0[2n+ 1] + l̃1[2n+ 1]− pT

1 (l0[2n] + l̃1[2n]))2
]
.

The prediction filter length determines the number of even samples l1[2i] employed by the

prediction. These samples appear in the column vector l1[2n] as

l1[2n] =


...

l1[2n]
l1[2n+ 2]

...

 .

Respecting this notation, the objective function results in

f0(u1)= E


wT

l0[2n+1]x + uT
1 AT

l0[2n+1]x− pT
1




...
wT

l0[2n]

wT
l0[2n+2]

...

x +


...

uT
1 AT

l0[2n]

uT
1 AT

l0[2n+2]
...

x




2
 .

Employing the prediction filter taps

pT
1 = ( . . . p1,i−1 p1,i p1,i+1 . . . )

the expression is set in a summation form

f0(u1)= E

(wT
l0[2n+1]x + uT

1 AT
l0[2n+1]x−

∑
i

p1,iwT
l0[2(n+i)]x−

∑
i

p1,iuT
1 AT

l0[2(n+i)]x

)2
 .

First, this expression is expanded. Then, the definition of R is used. Afterwards, the resulting

expression is differentiated w.r.t. the vector u1, reaching the expression

∇u1f0(u1) = 2uT
1 AT

l0[2n+1]RAl0[2n+1] + 2wT
l0[2n+1]RAl0[2n+1]

+ 2
∑

i

∑
k

p1,ip1,kuT
1 AT

l0[2(n+i)]RAl0[2(n+k)] − 2
∑

i

p1,iwT
l0[2(n+i)]RAl0[2n+1]

+ 2
∑

i

∑
k

p1,ip1,kwT
l0[2(n+i)]RAl0[2(n+k)] − 2

∑
i

p1,iwT
l0[2n+1]RAl0[2(n+i)]

− 4
∑

i

p1,iuT
1 AT

l0[2(n+i)]RAl0[2n+1].
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Finally, it is equalled to zero and the optimal filter is derived. Being the notation similar to the

precedent design,

A = Al0[2n+1],

wp =
∑

i

p1,iwl0[2(n+i)],

Ap =
∑

i

p1,iAl0[2(n+i)],

the optimal update filter is expressed as

u?
1 =

(
ATR

(
A− 2Ap

)
+ AT

p RAp

)−1 (
A−Ap

)T R
(
wp −wl0[2n+1]

)
. (3.27)

The final expression (3.27) is similar to the filter (3.26) obtained in the previous design.

However, the optimal filter emerging from this design differs from the previous one even in the

simple case that it has two taps and the prediction is p1 = ( 1/2 1/2 )T . For larger supports,

the difference is more remarkable. These facts are analyzed in the experiments section.

3.4 Experiments

This section explains several experiments to prove practical applications of the developed frame-

work. Some considerations concerning the interpolation methods are reported in §3.4.2. The

formulation derived for the linear lifting filters is employed in two ways. First, as a tool to an-

alyze existing filters optimality in §3.4.3. The basis example is the LeGall 5/3 wavelet, but the

same approach is possible for any wavelet filter factorized into lifting steps. Second in §3.4.4, the

formulation is used to enhance LS by improving lifting steps and adding new ones according to

image or image class statistics. The new decompositions are applied to signal coding and image

compression.

An estimation or a model of the auto-correlation matrix R is required in the global opti-

mization approaches. Images are assumed to be an auto-regressive process of first-order (AR-1)

or second-order (AR-2) in most of the experiments. The auto-regressive model is specified in

§3.4.1. The explicit auto-correlation matrix construction is also provided.

3.4.1 Auto-regressive Image Model

An auto-regressive model is a linear modeling of a discrete process based on the assumption

that each value of the process depends only on a weighted sum of the previous values plus noise.

Mathematically, an AR-m model for the output x[n] is

x[n] =
m∑

i=1

aix[n− i] + η[n],
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Image Class Natural Synthetic Texture Mammo. SST MOC
Mean 0.9701 0.9434 0.8569 0.9564 0.9953 0.9936

Std. dev. 0.0710 0.0686 0.1105 0.0479 0.0015 0.0074

Table 3.1: Mean value and standard deviation of the ρ parameter for each image class.

Image Class Natural Synthetic Texture Mammo. SST MOC
a1 1.0688 0.8958 0.6671 0.9374 1.1583 0.7993
a2 -0.0993 0.0676 0.2410 0.0198 -0.1637 0.1949

Table 3.2: AR-2 parameters mean value for each image class.

where ai for 1 ≤ i ≤ m are the auto-regressive parameters and η is the noise. In the AR-1

case, parameter a1 is usually denoted by ρ and it is called auto-correlation coefficient or AR-1

parameter.

The auto-regressive parameters may be estimated from the image data through the Yule-

Walker equations or the least squares method, among other techniques. The estimation may

be done for a whole image class, for a specific image, or even for a region or line in an image.

Furthermore, the AR parameters may be tuned according to the statistics of each filtering

direction. The parameter estimation scope determines the resulting filter range of applicability.

In the AR-1 case, matrix R is completely determined by parameter ρ. The mean and standard

deviation of ρ for each image class is shown in table 3.1. Appendix A describes the corpus of

images employed in the experimental part. Once ρ is obtained, matrix entries are [R]i,j = ρ|i−j|,

for 0 ≤ i, j ≤ n− 1 and |ρ| < 1. The AR-1 parameter is in the range 0.95 < ρ < 1 for all classes

of images except for the textures class that it is ρ ' 0.86.

In the AR-2 case, matrix R is determined by the second-order parameters a1 and a2. The

estimated AR-2 parameters for various image classes are found in table 3.2. Matrix R is a

Toeplitz matrix and so, it is completely specified by its first row. Element [R]1,1 is set to 1 and

[R]1,2 = a1
1−a2

. The recursion equation

[R]1,j = a1[R]1,j−1 + a2[R]1,j−2,

for j > 2 gives the rest of the row elements.

3.4.2 Interpolation Methods

This part §3.4.2 is devoted to a qualitative assessment of the proposed interpolation methods.

Three reasons impel to a non-exhaustive experimental setting. First, the power of these type

of interpolation is partly known. The approach is constructed on the work [Mur04], which suc-

cessfully apply a local adaptive interpolation equivalent to the optimal solution given by (3.8).
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Figure 3.2: 2-D grid with a 4-band sampling.

Second, since the dissertation addresses the lifting scheme, the emphasis is put on the new lift-

ing designs performance in §3.4.3 and §3.4.4. The third reason is a practical one. The proposed

quadratic interpolation formulation is very rich and offers many different variants. The number

of experiments to test all the possible variants is huge because they should contemplate the

points in the list below, which also explain the basic setting for the qualitative assessment.

• The method is able to construct 1-D separable or directly 2-D interpolations. In the latter

case, the strategy is to split the input image in four bands as shows figure 3.2. Once the

samples are partitioned in the so-called L, H1, H2, and H3 bands, the H3 samples are first

interpolated using the other three bands, which are included as linear constraints. Then,

the H2 samples are interpolated using the L and H1 ones as reference and linear constraints.

Finally, the H1 band is interpolated with L band samples, leading to an approximation

signal, and the three detail signals formed by the three bands of prediction errors. This

is a simple way to the interpolate employing much of the available information and the

one used to obtain the results given below to assess the methods performance. Other

strategies may be considered. Alternatives are the use of a quincunx grid or the prediction

error feedback in the interpolation of the H1 and H2 bands.

• As stated, the formulation accepts local and global settings.

– Global means that the same quadratic class is selected for the whole image. In this

case, the image model should be chosen.

– For the local adaptive interpolation, the local patches size and support have to be

selected. In the experiments below, the choice is 4x4 and 8x8, respectively (like in

figure 3.1). Furthermore, an initial interpolation is required. Different choices exist

to this goal, being the bi-linear and the bi-cubic interpolations the preferred ones.

Finally, the patches may be extracted from other similar images or images from the

same class.

• The interpolation method output may be re-introduced in the algorithm as an initial inter-

polation. The number of iterations may affect the final result and it should be determined.
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The experiments below do not iterate if nothing else is stated. Usually, one or two itera-

tions improve the initial results, but the performance tends to decrease in the subsequent

iterations.

• Six interpolation methods are articulated in section 3.2, each of which may behave differ-

ently on each image class.

• In addition, some of the methods are parameter-dependant:

– The signal regularized and the energy penalizing approaches balance two different

objective functions according to a parameter (defined as γ and δ, respectively) that

have to be specified.

– The weighting objective matrix W in (3.13) should be defined by the application or

the image at hand. The distance weighting depends on the image type, e.g., a textured

image with a repeated pattern requires different weights than a highly non-stationary

image.

Clearly, the casuistry is important, but a general trend may be drawn. The interpolation

given by (3.8) has a better global behavior than the others; it outperforms the other methods

and it reduces the 5/3 wavelet detail signal energy from 5% to 20% for natural, synthetic, and

sea surface temperature (SST) images. The results are poorer for the mammography and the

textures.

The weighted objective interpolation (3.13) attains very similar results to the (3.8), being

better is some cases. For instance, the interpolation error energy is around 3% smaller for the

texture image set.

The signal bound constraint (3.11) may be useful for images with a considerable amount of

high-frequency content, as the synthetic and SST classes. Some interpolation coefficients outside

the bounds appear for these kind of images, and thus, the method rectifies them. However, there

is no energy reduction and certainly a computational cost increase w.r.t. (3.8).

The signal regularized solution (3.17) performs very well with small values of δ that give

a lower weight to the regularizing factor w.r.t. the c vector l2-norm objective. Interestingly, in

the 1-D case and with a difference matrix D relating all the neighboring samples, the objective

factor ‖Dx‖2 coincides with xTR−1x being R the auto-correlation matrix of an AR-1 process

with ρ → 1. Therefore, the signal regularized method may be seen as an interpolation mixing

local signal knowledge with an image model.

The inclusion of the energy penalizing factor in the formulation did not prove to be useful

for the available images set because it damages the final result. Maybe, this factor could be

considered for highly-varying images like SAR images in order to avoid the apparition of extreme

values.
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PSNR Bi-cubic A - 1 it. A - 2 it. B - 1 it. B - 2 it. C - 1 it.
Baboon 22.447 22.459 22.395 22.468 22.433 22.522
Barbara 24.647 24.084 23.653 24.253 23.905 24.756
Cheryl 35.299 35.414 35.361 35.433 35.438 33.940
Farm 22.439 22.658 22.736 22.647 22.737 21.416
Girl 34.355 34.538 34.610 34.518 34.586 33.072
Lena 33.973 34.255 34.385 34.226 34.349 32.147

Peppers 32.020 31.724 31.776 31.881 31.839 30.962

Table 3.3: Interpolation PSNR from down-sampled images using the bi-cubic, the basic quadratic
interpolation of (3.8) (column noted by A) and the distance weighted objective (B) with 1 and 2
iterations, and the regularized signal objective (C) with 1 iteration.

PSNR Bi-cubic A - 1 it. A - 2 it. B - 1 it. B - 2 it. C - 1 it.
Baboon 22.356 23.810 23.695 23.717 23.745 23.595
Barbara 24.296 25.653 25.741 25.610 25.753 25.831
Cheryl 32.736 34.161 34.819 34.091 34.759 33.620
Farm 20.539 22.265 22.490 22.176 22.486 21.963
Girl 31.693 33.232 34.034 33.147 33.936 32.762
Lena 30.606 32.107 33.058 32.049 32.960 31.583

Peppers 29.875 31.105 31.573 31.149 31.648 30.775

Table 3.4: Interpolation PSNR from the averaged and down-sampled images using the bi-cubic,
the basic quadratic interpolation (A) and the distance weighted objective (B) with 1 and 2 itera-
tions, and the regularized signal objective (C) with 1 iteration.

3.4.2.1 Interpolation Methods PSNR Performance

The interpolation methods are further assessed with the ensuing experiment. The bi-cubic in-

terpolation serves as benchmark and the comparison criterion is the PSNR, defined as

PSNR = 10 log10

(
2552

MSE

)
.

Table 3.3 shows some results concerning the natural images with 512x512 pixels of appendix A.

Images are down-sampled by a factor of 2 without anti-aliasing filter, and then the down-sampled

image is re-interpolated using different methods and number of iterations. Their performance

tend to be quite similar to that of the bi-cubic interpolation. Certainly, there are many inter-

polation methods that outperform these ones, but the interest of the proposed methods resides

in the inclusion of additional low-pass filtering constraints and in their application to lifting

design. Following variation of the experiment resembles more to the lifting setting. Table 3.4

shows the results for the case that each pixel is the average of four high-density pixels before

the down-sampling. Performance in terms of PSNR is better than the bi-cubic interpolation.

In addition of the PSNR performance, the resulting interpolated images are less blurry and
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sharper around the existing edges if the adequate set of parameters is selected.

However, the interpolation goal for this dissertation is the lifting steps construction. The

assumption that from a good interpolation arises good PLS as well as good first design ULS

is made. Another important aspect is the derivation of closed-form LS, which is a desirable

property in most of the applications due to its significantly lower computational cost. Following

sections deal with lifting steps performance.

3.4.3 Optimality Analysis

The LeGall 5/3 wavelet introduced in §2.2.4 is analyzed through the point of view given by the

optimal lifting steps derived in section 3.3.

The LeGall 5/3 low-pass or scaling basis vectors have the form

wl1[n] = ( . . . 0 −1/8 2/8 6/8 2/8 −1/8 0 . . . )T ,

being equal to the 0 vector except for the locations from 2n − 2 to 2n + 2. Meanwhile, the

high-pass or wavelet basis vectors have the form

wh1[n] = ( . . . 0 0 −1/2 1 −1/2 0 0 . . . )T ,

being the 0 vector except for the positions 2n, 2n+ 1, and 2n+ 2. The prediction lifting filter is

p1 = ( 1/2 1/2 )T and the update lifting filter is u1 = ( 1/4 1/4 )T . In the following, such

filters are denoted by pLG and uLG, respectively.

The optimality of uLG is studied in §3.4.3.2 according to the three ULS designs and the AR

image model. The ULS are derived for the prediction pLG. For fair comparison, the proposed ULS

employ two neighbors as the uLG filter. Therefore, in practice the application simply reduces to

propose a coefficient different from 1/4 for the update filter (since it is symmetric). The proposals

attain noticeable improvements even in this simple case. Also, several considerations on pLG

are formulated in §3.4.3.1. Finally, second PLS according to expression (3.20) are presented in

§3.4.3.3 assuming the initial pLG and uLG. These PLS are optimized for each image class. Some

of the resulting basis vectors are given. Results are compared to those of two other known 5/11

transforms.

Notice that the type of analysis described in the following may be applied to any existing

transform via lifting scheme.

3.4.3.1 First Prediction Step Study

One of the simplest applications of the stated linear lifting framework design is the prediction

of h0[n] with the samples l0[n] and l0[n+ 1]. Which is the best way of doing such a prediction?
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Figure 3.3: Optimal prediction filter as function of the AR-1 parameter using 2-taps and the
design (3.20).

Intuitively, the answer is p1 = pLG, or at most, a linear combination of l0[n] and l0[n+ 1] with

coefficients summing up to one. Spectral considerations and vanishing moments also point to the

LeGall 5/3 prediction as the best choice. However, the proposed prediction (3.20) gives different

answers depending on the auto-correlation matrix R.

Basis vectors wl0[n], wh0[n], and wl0[n+1] are composed of zeros except one 1 at the position

2n, 2n + 1, and 2n + 2, respectively. These vectors are plugged into (3.20) and the optimal p1

is derived assuming an AR-1 image model. The prediction filter depends on the parameter ρ

as figure 3.3 shows. When ρ → 1, the optimal prediction tends to the intuitive pLG. Data is

highly correlated and so, its projection onto the vectors wl0[n] and wl0[n+1] is informative about

the projection onto wh0[n], i.e., about the value of h0[n]. The construction respects symmetry,

leading to p1 = pLG. There is no correlation among data when ρ = 0, i.e., when R = I. In this

case, there is no information in l0[n] and l0[n + 1] about h0[n], and the expression (3.20) says

that any attempt to predict the value h0[n] amounts to an MSE increase: in mean, the residual

has higher energy. Intermediate coefficient values appear for 0 < ρ < 1.

Despite these results differ from the usual pLG, the answer given by the proposal is mathe-

matically consistent according to the image model. Therefore, a possible approach weakness is

found in the image model determined by R. An AR-1 model may be suited for many image ap-

plications as its wide use in image processing confirms, but certainly not for all. As an example,

the predictor arising from the texture images case ρ ' 0.86 is p1 = ( 0.494 0.494 )T , which

leads to systematically worse results compared to pLG despite the coefficients are very similar.

A more suitable image model seems to be the AR-2. A signal generated with an AR-2 model

resembles to an image row or column much more than an AR-1 process insofar as the AR-2

parameters sum approximately to one. Figure 3.4 relates the optimal linear PLS (3.20) with the
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Figure 3.4: Level sets of the optimal prediction coefficient minus 0.5 as a function of the AR-2
parameters using 2-taps and the linear PLS design (3.20).

second-order auto-regressive parameters. The figure shows six level sets of the optimal prediction

coefficient with respect to the a1 and a2 parameters. The function is the absolute value of the

optimal prediction coefficient for the given parameters minus 1/2. Thus, the resulting filter is

similar to pLG in the dark areas and it is different in the light areas. Note that the gray-scale is

not uniform w.r.t. the function value.

As it can be observed from the figure, the optimal PLS based on the AR-2 model is almost

equal to pLG for most part of the parameters. Indeed, prediction coefficients are 1/2 for the set

a1 + a2 ' 1. The set a1 + a2 = 1 is relevant because an AR-2 model with these parameters

preserves the sample mean expected value.

3.4.3.2 Update Step Study

Assuming an AR-1 process and the initial prediction pLG, the three linear ULS of §3.3.3 lead to

coefficients depending on ρ as depicted in figure 3.5. The second and the third designs lead to

similar coefficients for all the range. Meanwhile, the ULS coefficient arising from the first design

is smaller for all the interval. Asymptotically (ρ → 1), the second ULS design output doubles

the coefficients of first and third ones. The update filter coefficients are considerably below the

1/4 reference for the three designs and the usual ρ found in practice (like the ones in table 3.1).

This fact agrees with the common observation that in some cases the uLG omission increases

compression performance, being the ULS included in the decomposition process because of the

multi-resolution properties improvement. The issue of the ULS employment can be approached

from the perspective given by the proposed linear ULS designs: the ULS is useful, but the correct

choice is an update coefficient quite smaller than 1/4 (as the three ULS indicate for the usual ρ
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Figure 3.5: Update filter as function of the AR-1 parameter for the three ULS designs. The
update is a two-tap symmetrical filter and so, it is depicted only one coefficient. The first considered
prediction is the pLG.

values).

The optimal ULS for each of the three designs are also derived assuming a second-order auto-

regressive model. For a subset of the AR-2 parameters, the resulting optimal update coefficients

coincide with uLG, but not for other possible values. Figures 3.6 highlight this fact. For the

three cases, each figure relates the optimal update coefficient according to the given criterion

w.r.t. the AR-2 parameters. Six level sets of the update coefficient are depicted as a function

of a1 and a2. From the figure, it is concluded that uLG is far from being optimal in the sense

of (3.26), (3.24), and (3.27) for many possible image AR-2 parameters. To position a practical

reference, the three circles in figure 3.6b depict the mean AR-2 parameters of the synthetic,

mammography, and SST image classes.

3.4.3.3 Second Prediction Step Study

The LeGall 5/3 wavelet properties may be improved by means of a second PLS. The high-pass

filter support is increased to 11 taps if the PLS uses the samples

l1[n] = ( l1[n− 1] l1[n] l1[n+ 1] l1[n+ 2] )T .

The inclusion of more approximation signal samples in the second PLS is possible, but it does

not assure a performance improvement, since the high-pass filter becomes very lengthy.

The 5/11-a transform via lifting in table 3.5 is proposed in [Cal98], being

p2 = ( −1/16 1/16 1/16 −1/16 )T .

The 5/11-a is a (4,2) transform: it has 4 analysis vanishing moments (and the 2 synthesis
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Figure 3.6: Level sets of the optimal update coefficient minus 0.25 in function of the AR-2
parameters for (a) the first linear ULS design, (b) the second linear ULS design (circles indicate
the mean parameters of the synthetic, mammography, and SST image classes), and (c) the third
linear ULS design.
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Filter Name Lifting Steps

h1[n] = h0[n]−
⌈

1
2 l0[n] + 1

2 l0[n+ 1]
⌋

5/11-a l1[n] = l0[n] +
⌈

1
4h1[n− 1] + 1

4h1[n]
⌋

h2[n] = h1[n]−
⌈
− 1

16 l1[n− 1] + 1
16 l1[n] + 1

16 l1[n+ 1]− 1
16 l1[n+ 2]

⌋
h1[n] = h0[n]−

⌈
1
2 l0[n] + 1

2 l0[n+ 1]
⌋

5/11-b l1[n] = l0[n] +
⌈

1
4h1[n− 1] + 1

4h1[n]
⌋

h2[n] = h1[n]−
⌈
− 1

32 l1[n− 1] + 1
32 l1[n] + 1

32 l1[n+ 1]− 1
32 l1[n+ 2]

⌋
Table 3.5: Lifting steps for the 5/11-a and 5/11-b transforms.

vanishing moments coming from the 5/3 structure). The 5/11-b transform in table 3.5 is proposed

in [Ada99], which is designed considering several criteria (cf. §2.3.1). The filter coefficients are

one-half w.r.t. the 5/11-a, being

p2 = ( −1/32 1/32 1/32 −1/32 )T .

The 5/11-b is a (2,2) transform, but it attains better results than the 5/11-a for images with

high-frequency content.

The linear PLS (3.20) for an AR-1 model is applied to the LeGall 5/3 wavelet to obtain a

second prediction and the corresponding 5/11 transform. Figure 3.7 depicts p2 as a function of

ρ. As a reference, the horizontal grids in the graph depict the values -1/16, -1/32, 1/32, and

1/16 (which are the coefficients of the 5/11-a and 5/11-b second prediction). The graph confirms

that values close to 1/16 are suitable for smoother images, and the coefficients may decrease (in

absolute value) when there is more high-frequency content, i.e., when ρ moves away from one.

Another counter-intuitive effect due to the chosen image model is that prediction coefficients

do not sum up to zero for small ρ values. Figure 3.7 shows this effect through the dashed line

that depicts
∑

i p2,i.

The scheme is applied to some image classes. The optimal second prediction steps p?
2 using

the ρ of natural, textures, and SST images are

p?
2,natural = ( −0.05960 0.05966 0.05966 −0.05960 )T ,

p?
2,texutre = ( −0.05832 0.05852 0.05852 −0.05832 )T ,

p?
2,SST = ( −0.05969 0.05970 0.05970 −0.05969 )T ,

which are close to the 5/11-a because their ρ are close to one. The corresponding underlying

wavelet basis vectors are given in table 3.6.

Lifting steps have been analyzed by means of the developed framework. The following section

employs the optimal steps arising from the framework in order to check their coding performance.
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Figure 3.7: Second prediction filter p2 as function of the AR-1 parameter, being p1 = pLG

and u1 = uLG. The horizontal grid lines depict the coefficients of the 5/11-a and 5/11-b second
prediction filter. The dashed line depicts the sum of the filter coefficients:

∑
i p2,i.

n wh2[n]

0 0.97017
±1 -0.54474
±2 -0.00001
±3 0.05216
±4 0.01490
±5 -0.00745

(a)

n wh2[n]

0 0.97074
±1 -0.54387
±2 -0.00005
±3 0.05106
±4 0.01458
±5 -0.00729

(b)

n wh2[n]

0 0.97015
±1 -0.54477
±2 0
±3 0.05223
±4 0.01492
±5 -0.00746

(c)

Table 3.6: Underlying basis vectors applying the optimal second prediction step to the LeGall
5/3 wavelet, computed with the ρ for (a) natural, (b) texture, and (c) SST image classes.

3.4.4 Improved Linear Lifting Steps Performance

Despite the LS steps developed in this chapter allow the construction of 2-D non-separable

filters, all the following experiments except one are restricted to 1-D separable decompositions.

The transforms are integer-to-integer applied to lossless (image) compression.

3.4.4.1 ULS with AR-1 Signal Test

In the first experiment, the input signal is synthetic data generated to check the proposal perfor-

mance for the assumed image model. An AR-1 process containing 512 samples is decomposed in

three resolution levels using pLG followed by uLG or one of the three designed ULS. These four

transforms are compared by computing the gradient l2-norm of l(1)
1 and the h(2)

1 signal mean

energy, which are the second and third ULS objective functions. Figures 3.8 and 3.9 show the



Chapter 3. Linear Lifting Schemes: Interpolative and Projection-based Lifting 75

0 0.2 0.4 0.6 0.8 1
0.96

0.98

1

1.02

1.04

1.06

1.08

AR−1 parameter

 G
ra

di
en

t l
2−

no
rm

 (
re

la
tiv

e 
to

 L
eG

al
l 5

/3
)

First ULS design
Second ULS design
Third ULS design

1

Figure 3.8: Relative gradient of l1 for the optimal ULS w.r.t. LeGall 5/3.
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Figure 3.9: Relative energy of h(2)
1 for the optimal ULS w.r.t. LeGall 5/3.

mean results for 1000 trials. The relative gradient and energy of the three ULS w.r.t. the LeGall

5/3 wavelet are depicted.

Second and third design are almost equal and outperform LeGall 5/3 in terms of energy

and gradient for all ρ except for ρ ' 0.27; value for which the three design coefficients coincide.

The first design shows worse performances, in particular for the case of small ρ. However, this

design has more flexibility and may incorporate additional knowledge that leads to a better

image model.

The given results are obtained with an additive white gaussian noise of a standard deviation

equal to 50. The relative gradient and energy are weak functions of the AR process noise variance.

The weighted entropy has also been computed, but it is a function sensitive to the noise variance.

However, a qualitative conclusion may be drawn: entropy is higher for the LeGall 5/3 w.r.t. the



Chapter 3. Linear Lifting Schemes: Interpolative and Projection-based Lifting 76

o x o x

x

o x x

x o x o

o x o

o

x

o

x

o x o x o

o

(a)

2 2

2

1 o 1

2 x 1 x

x 1 x 2

2

2 2

(b)

Figure 3.10: (a) A rectangular grid divided into two quincunx grids (marked ‘o’ and ‘x’). (b)
PLS support on quincunx grid. Pixel at site ‘o’ is predicted with pixels at sites ‘1’ (if a 4-tap filter
is used) and also with pixels at sites ‘2’ (if a 12-tap filter is employed). Pixels at sites ‘x’ perform
the 4-tap prediction at the next resolution level.

second and third design for ρ near 1. On the contrary, LeGall 5/3 attains better entropies for ρ

close to 0.

3.4.4.2 ULS on a Quincunx Grid with AR Data

This second experiment contributes a lifting construction example of a non-separable wavelet on

a quincunx grid. A 2-D rectangular grid may be down-sampled into two quincunx grids (figure

3.10a), which become the approximation and detail signals.

The derivation of ULS on the quincunx lattice within the developed framework is more

involving than the 1-D separable case. The underlying basis vectors are two dimensional and their

support is larger than the 1-D case. The 2-D basis must be mapped into 1-D vectors to match the

linear LS setting. Also, the number of neighboring samples employed for the filtering is greater.

These facts complicate the implementation, especially for large filter supports. Therefore, this

experiment is restricted to small supports: the prediction of a pixel at site ‘o’ employs the

first ring of neighbors, which are the ones indicated in figure 3.10b with a ‘1’. The considered

prediction filter coefficient is 1/4 for the four neighbors. This filter is known as the second-order

Neville filter [Kov00]. The subsequent 4-tap ULS vanishing 2 moments uses the coefficient 1/8,

i.e., the update filter is

unv = ( uN uE uS uW )T = ( 1/8 1/8 1/8 1/8 )T ,

following the notation of figure 3.11a. Larger prediction supports may been considered (e.g.,

[Kov00]). For instance, the sites marked ‘2’ in the figure 3.10b may be included in the PLS, like

in the fourth-order Neville filter.

The third ULS design leads to minimize the subsequent prediction error energy. Thus, it is

preferred that the ULS is immediately followed by the PLS of the next resolution level instead
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Figure 3.11: (a) Support and notation for the 4-tap ULS on the quincunx grid. (b) Typical
geometry of a 2-D auto-regressive neighborhood. Four pixels are used for generating the pixel at
site ‘o’.

of the filtering in the horizontal/vertical direction as it happens in the 1-D separable case. The

two-band quincunx grid permits this. The neighbors employed in next resolution PLS are marked

with a cross in figure 3.10b. The linear constraint matrix for each of these four coefficients is

plugged into equation 3.27 to obtain the optimal ULS. The filters have the restriction uN = uS

and uE = uW by the directional symmetry of the construction and by the auto-correlation

matrix structure.

As in the previous experiment, the input signal is synthetic data generated according to an

auto-regressive model. Four neighboring pixels are considered for the predictive model as figure

3.11b shows. The constraint
∑4

i=1 ai = 1 is imposed. Images with 512x512 pixels are generated.

A 3-level quincunx decomposition is computed using the 4-tap prediction with coefficient 1/4 and

the optimal ULS. For comparison, images are also decomposed with the second-order Neville

filter. The comparison criterion is again the h(2)
1 signal mean energy. The decomposition is

performed by means of a modified version of the Matlabr LISQ toolbox [Zee02].

In contrast with the 1-D case, the non-separable optimal third ULS design does not perform

consistently better than the reference filter. The result depends on the AR signal orientation. If

the signal has a dominant horizontal feature (a1 ≈ 1 and a2, a3, a4 ≈ 0), the update filter is

u = ( −0.4645 −0.9435 −0.4645 −0.9435 )T ,

which is very different from unv and it remarkably reduces the h(2)
1 energy around a 99%. The

same behavior appears when the dominant direction is the vertical, but interchanging the filter

coefficient values. Results worsen when the dominant direction moves away the horizontal or

vertical directions. The worst results appear when the dominant direction is 45o (e.g., a1, a3 =

1/2 and a2, a4 = 0). In this case, the third ULS design increase the second-order Neville h(2)
1

energy around a 15%. The update filter turns out to be

u = ( 0.3418 0.3474 0.3418 0.3474 )T ,

that is, the design points out a filter with equal-valued coefficients like unv, but this value is

significantly higher, and it damages the final performance compared to unv. Maybe the approach
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Rate (bpp) 5/3 wavelet AR-1 model
Synthetic 3.832 3.508

SST 3.252 3.123
Mammography 2.349 2.358

Table 3.7: Compression results with JPEG2000 using the standard LeGall 5/3 wavelet and the
proposed optimal update with the AR-1 model for the synthetic, mammography, and SST image
classes. Results are given in bits per pixel.

should also contemplate a constraint on the filter coefficients or other considerations in order to

avoid this drawback.

Given this performance disparity, the proposed quincunx ULS may be employed in practice

in a space-varying setting which determines the dominant signal direction triggering the use of

the proposed ULS in the favorable cases and the Neville filter otherwise.

3.4.4.3 Local Adaptive ULS

This experiment is described in [Sol06a]. An AR-2 model is used to determine the local image

behavior. A line-wise space-varying update filter is constructed by estimating the AR-2 para-

meters for each line in the image using the filter given by (3.26). To assess the performance, the

energy of the coarser level detail coefficients h(2)
1 is computed. For the set of natural images, the

energy is up to 25% smaller for the space-varying optimal update step w.r.t. uLG.

3.4.4.4 Image Class Optimal ULS Test

This fourth experiment (also appeared in [Sol06a]) derives filters applicable to a more global

setting. The AR-1 parameter is estimated for three image classes. Therefore, the model is useful

for a whole corpus of images instead of being local. Synthetic, mammography, and SST images

are used. Each corpus contains 15 images. The correlation matrix is determined by the AR-1

parameter (in table 3.1), and it is plugged into equation (3.24) in order to obtain an update

filter used for all the images in a class. Image compression is performed with a four resolution

level decomposition within the JPEG2000 coder environment. Numerical results appear in table

3.7 compared to the LeGall 5/3 wavelet. The proposal compression results improve those of

the LeGall 5/3 for the synthetic and SST image classes, but results slightly worsen for the

mammography class. The latter case is analyzed in the next experiment.
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Figure 3.12: A mammography image histogram.

3.4.4.5 A Refinement for Mammography

The optimal ULS (3.24) results in experiment of §3.4.4.4 are worse for the mammography image

class w.r.t. the LeGall 5/3 wavelet. The reason may be found in the formation of this kind of

images. Clearly, there are two differentiated regions: an homogenous dark one containing the

background and a light heterogeneous foreground. Figure 3.12 is the histogram of a mammog-

raphy. There is an accumulation of light pixels between the 100 and 200 gray level due to the

foreground. Background pixels are found at the smaller values, typically less than 50. Most part

of background pixels accumulate around the 0 gray level (which is difficult to distinguish in the

histogram figure).

Background and foreground have distinct auto-correlation and AR parameters. The mean

of both AR parameters is not optimal for any of the two regions. A more accurate approach for

this class should contemplate an AR model or derive an auto-correlation matrix for each of the

regions separately. Thus, an image segmentation is required.

The histogram inspection suggests the following segmentation algorithm. As the gray level

almost characterizes the two regions, a binary image is formed by thresholding at the gray level

T = 50. The resulting binary image has two differentiated regions with some pixels placed in

the wrong part. A morphological opening with a disk of radius 5 as the structuring element

corrects the misplaced pixels. Two distinguished and connected regions constitute the final

segmentation. Figure 3.13 shows the initial image and the segmentation. This threshold plus

opening segmentation algorithm is simple and obtains crude results compared to many other

techniques, but the output is good enough for the experiment purposes.

Using the segmented binary image as a mask, the auto-correlation matrix is directly esti-

mated for each region, as well as the AR-2 parameters. Then, the optimal ULS are derived.
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(a) (b)

Figure 3.13: (a) A mammography and (b) the segmentation in background and foreground.

Both auto-correlation matrices lead to similar update coefficients. For instance, the third design

coefficient for the background using the AR-2 auto-correlation matrix is 0.12584 and the coeffi-

cient using the direct estimation of R is 0.12053. Second and third designs attain very similar

coefficients, while the first design coefficient tends to be one half of them. This was proved in the

analysis of §3.4.3 for the AR-1 case when ρ→ 0. With the direct correlation estimation, second

linear ULS background coefficient is 0.13209 and the foreground coefficient is 0.02430. Mean-

while, for the third design the background coefficient is 0.12053 and the foreground coefficient

is 0.02456.

In view of these results, dyadic coefficients are used for the mammography coding: 1/8 =

0.1250 for the background and 1/32 = 0.03125 for the foreground. Therefore, the background

and foreground filters are ub = ( 1/8 1/8 )T and uf = ( 1/32 1/32 )T , respectively.

Once the coefficients are determined, the image decomposition does not require any mask.

The prediction is followed by a space-varying ULS that depends on the next approximation

coefficient value. If this coefficient is greater than the threshold T , it means that the region is

foreground an the uf filter is employed. Otherwise, the region is considered to be background

and the optimal filter for the background ub is used:

l1[n] =

{
l0[n] + uT

f h1[n], if l0[n+ 1] > T,

l0[n] + uT
b h1[n], otherwise,

The decoder has to take into account this coding modification in order to be synchronized w.r.t.

the coder and to decide the filter according to the same data.

Image compression is again performed with a four resolution level decomposition within the

JPEG2000 coder environment. The mean results for the 15 mammography decreases from 2.358

bpp to 2.336 bpp.
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Rate (bpp) 5/3 wavelet 5/11-a 5/11-b Opt. P AR-1 Opt. P AR-2
Synthetic 3.832 4.044 4.011 4.036 4.027

SST 3.252 3.317 3.288 3.312 3.329
Mammography 2.349 2.349 2.348 2.349 2.347

Table 3.8: Compression results with JPEG2000 using the standard LeGall 5/3 wavelet, the 5/11-
a, the 5/11-b, and the optimal second prediction according to the AR-1 and AR-2 models for the
synthetic, mammography, and SST image classes.

3.4.4.6 Optimal Second PLS Test

Second prediction optimal design is tested using the AR-1 and AR-2 models for each image

class. Results are given in table 3.8 for 4 resolution level decompositions.

In all cases, the optimized second prediction is a filter with coefficients in between the 5/11-a

and the 5/11-b ones. This is due to the image model and the estimated parameters (table 3.1

and 3.2). Both models attain similar results. The performance tends to be better for the 5/11-b,

which would arise in the optimized prediction setting for smaller ρ than the estimated ones.

Furthermore, the 5/3 wavelet performs significantly better.

These results coincide with the findings in [Ada00]: in lossless compression the 5/3 transform

yields to better results than the 5/11 transforms for images with relatively greater amount of

high-frequency content, often by a considerable gap. The 5/3 wavelet implies ρ ≈ 0.27 in the

AR-1 model, which is far from the estimated parameters.

The 5/11 transforms outperform the 5/3 in lossy compression and in lossless compression for

natural imagery [Ada00]. This observation is consistent with our experiment using the 512x512

natural images. They are decomposed in 4 resolution levels and compressed with EBCOT.

Results appear in table 3.9. The optimized second prediction for the image class (columns “O.P.

AR-1” and “O.P. AR-2”) yields to similar results for both models, and almost equal to those of

the 5/11-a.

The model may be computed for each image. The rates attained by the AR-1 model are given

in the column headed by “AR-1 Im.”. Results are also similar to the 5/11-a transform because

0.9 ≤ ρ < 1. Further adaptation may be conceived. For instance, the optimal second prediction

may be computed for each resolution level in the image. In this case, the mean rate is 4.633

bpp with the AR-1 model. Even more, images may be partitioned and the optimal prediction

estimated for each part, like in the works [BB03, Hat04, Hat05] that use a quadtree structure

to convey the partition. Book-keeping may be required depending on the estimation procedure.

The trend is that performance improves when the model is better matched to the data.
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Rate (bpp) 5/3 wav. 5/11-a 5/11-b O.P. AR-1 O.P. AR-2 AR-1 Im.
Baboon 6.109 6.092 6.091 6.093 6.092 6.093
Barbara 4.776 4.691 4.723 4.691 4.685 4.691
Cheryl 2.442 2.414 2.425 2.415 2.415 2.415
Farm 6.426 6.402 6.407 6.403 6.403 6.402
Girl 3.956 3.938 3.937 3.936 3.937 3.935
Lena 4.314 4.284 4.285 4.280 4.284 4.281

Peppers 4.625 4.627 4.617 4.626 4.632 4.626
Mean 4.664 4.635 4.641 4.635 4.635 4.635

Table 3.9: Compression results with JPEG2000 using the standard LeGall 5/3 wavelet, the 5/11-
a, the 5/11-b, and the optimal second prediction according to the AR-1 and AR-2 models for a
set of seven natural images of 512x512 pixels.

3.5 Chapter Summary and Conclusions

This chapter develops a linear framework employed to derive new lifting steps. The point of

departure is a quadratic interpolation method from which several alternatives are given. The

conclusion regarding the proposed methods is that their performance in terms of PSNR is around

1.5 dB better than the bi-cubic interpolation when the image being interpolated has been low-

pass filtered before the down-sampling. However, the final result depends on the appropriate

choice of the interpolation method and its parameters to the image at hand.

In a natural way, the initial interpolation formulation is used for the LS design by adding

an extra set of linear equality constraints. This permits the design of PLS minimizing the detail

signal energy and the design of ULS with approximation signal gradient criteria. Indeed, the

given optimal interpolation obtained with any of the precedent methods may be applied to create

new PLS and ULS.

The framework is also employed for an optimality analysis of the LeGall 5/3 wavelet accord-

ing to the established criteria. The main conclusion is that there are image classes for which

this commonly used wavelet is not optimal. The compression results within the JPEG2000 en-

vironment confirm this observation. Also in this case, a correct choice of the image model and

parameters is required to obtain the best results.

Finally, the lifting design framework flexibility is demonstrated with the variety of described

experiments. Different image models are used to derive lifting steps on quincunx grid, space-

varying ULS, first and second PLS, line-wise adaptive ULS, and the two ULS for the mammog-

raphy.

This chapter concludes the research contribution made in the linear lifting scheme. Chapter

4 and 5 address the lifting scheme design and optimization from a nonlinear perspective.


