
Chapter 4

From Adaptive to Generalized
Lifting

This chapter deepens in the adaptive lifting, characterizes the perfect reconstruction property,

and introduces the generalized lifting scheme.

While chapter 3 focuses on linear lifting and the optimization of filters in a linear function

setting, this chapter introduces and develops schemes that are essentially nonlinear. Section 4.1

is a detailed description of the adaptive lifting scheme required for the subsequent analysis of the

scheme key characteristics in section 4.2. The analysis permits the construction of lifting steps

with new criteria within the adaptive framework in section 4.3. The proposal in §4.3.1 is based

on a median decision function while the adaptive scheme in §4.3.2 relies on a variance-based

decision function.

Finally, the analysis in §4.2 leads to the generalization of the (adaptive) lifting scheme pre-

sented in section 4.4. The derivation of concrete generalized lifting steps and the description of

experiments and the obtained results is postponed to chapter 5.

4.1 Adaptive Lifting Description

The adaptive LS is a modification of the classical lifting proposed in [Pie01a]. In the description

below and for simplicity, it is assumed without loss of generality that the adaptive lifting step

is an ULS (like in figure 2.10). This is consistent with the description started in §2.2.6.

In the adaptive scheme, at each sample a lifting filter is chosen according to a decision

function D(x[n],y), which may be a scalar-valued, a vector-valued, or a set-valued function

of Rn. The decision D(x[n],y) depends on y, as in the space-varying lifting case, but it also

depends on the sample x[n] being modified by the ULS. The decoder knows the coefficient x′[n],

which is an updated version of x[n] through an unknown lifting filter. Coder and decoder have
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different information to take the same decision. A goal in adaptive lifting design is to find a

decision function and a set of filters that allow to recover the coder decision D(x[n],y) at the

decoder side, i.e.,

D(x[n],y) = D′(x′[n],y). (4.1)

This is the decision conservation condition. If the decision is recovered, then the decomposition

scheme may be reversible.

The decision function domain is the sample domain of the approximation signal X and a set

of k times the detail signal domain Y, since a set of k detail samples in a window around x[n]

is employed for the decision,

D : X × Yk → D

(x[n], y[n]) → d. (4.2)

Usually, X and Y are the real numbers R, e.g. (4.3), the integer numbers Z, or a finite set of

integers Zn. The function D(.) maps the input samples to the decision range, which is the real

positive numbers or the binary numbers. The result d is used to choose the update filter and the

addition operator that merges the update filter output with the sample x[n] (usually through a

linear combination).

The range of D may indicate whether there exists an edge at x[n] if D is the l1-norm of the

gradient

D : R × Rk → R+

(x[n], y[n]) →
∑

|yi − x|, (4.3)

or whether x[n] resides in a textured region or any other geometrical constraint. Depending on

the detected signal local characteristics, a suited lifting filter for these characteristics is chosen.

A relevant feature of the adaptive scheme is that it does not require any book-keeping to

enable PR at the decoder side despite the filter may vary at each location using non-causal

information. In this context, non-causal information is referred to information available at the

coder to perform the filtering but not available at the decoder side at the time of performing

the inverse filtering.

In [Pie01a], the proposed adaptive ULS employs two detail samples, i.e., k = 2 in expression

(4.2). The restriction to k = 2 is also satisfied in the classical 1-D lifting with the LeGall 5/3

filter. The approximate signal sample x′[n] is found through the update coefficients (αd, βd, and

γd) for the given decision,

x′[n] = αdx[n] + βdy[n− 1] + γdy[n]. (4.4)
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The sum of the filter coefficients is defined as

κd = αd + βd + γd.

Decision maps are restricted to be based on the gradient vector, noted

vT [n] = ( v[n] w[n] ) = ( x[n]− y[n− 1] y[n]− x[n] ),

in the following form

D(x[n], y[n− 1], y[n])[n] = d(v[n], w[n]),

where d : R × R → D. Observe that

v[n] + w[n] = y[n]− y[n− 1]

does not depend on x[n]. Therefore, if d(v[n], w[n]) depends only on v[n] + w[n], the scheme is

reduced to the non-adaptive case. The following auxiliary results are proved in [Pie01a].

Lemma 4.1 [Pie01a, Lem. 5.1] Consider a gradient-based decision map. In order to have

perfect reconstruction it is necessary that κd is constant on every subset D(c) ⊆ D given by

D(c) = {d(v, w) | v + w = c}, where c ∈ R is a constant.

Proof. Assume that for some c ∈ R there exist d1, d2 ∈ D(c) such that κd1 6= κd2 . Also, assume

that (vj , wj) is such that d(vj , wj) = dj for j = 1, 2. Let the signals xj , yj be such that

yj [n− 1] = q, xj [n] = q + vj , and yj [n] = q + vj + wj = q + c.

From (4.4), it is obtained

xj [n] = αdj
(q + vj) + βdj

q + γdj
(q + c)

= κdj
(q + vj)− (βdj

+ γdj
)(q + vj) + βdj

q + γdj
(q + c)

= κdj
q + κdj

vj − βdj
vj + γdj

wj .

If q is chosen in such a way that

κd1q + κd1v1 − βd1v1 + γdj
w1 = κd2q + κd2v2 − βd2v2 + γd2w2,

which is possible since it has been assumed that κd1 6= κd2 , then x′1[n] = x′2[n]. Since y1[n− 1] =

y2[n− 1] and y1[n] = y2[n], this implies that PR is not possible. �

Definition 4.1 (Injection) Let f be a function defined on a set A and taking values in a set

B. Then, f is said to be an injection (or injective map, or embedding) if, whenever f(x) = f(y),

it must be the case that x = y. Equivalently, x 6= y implies f(x) 6= f(y).
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Note that the proof of lemma 4.1 is based on the injection of the gradient-based decision

map. The PR condition on κd is established by assuring that whenever x′1[n] = x′2[n], it is not

possible that x1[n] = x2[n] (being y1[n − 1] = y2[n − 1] and y1[n] = y2[n]). In other words, the

value x[n] should be derived without ambiguity from the values of x′[n], y[n− 1], and y[n].

Assume now that the decision is given by the l1-norm of the gradient, i.e.,

d(v, w) = |v|+ |w|. (4.5)

In this case, the following lemma holds.

Lemma 4.2 [Pie01a, Lem. 6.1] If the decision is given by (4.5), then it is necessary that κd

is constant for all d ∈ D in order to have PR.

This result is derived from lemma 4.1. It states that κd has to be constant for every subset

D(c). If the decision is (4.5), then the subset D(c = 0) is the whole R+. In consequence, κd must

be constant for every decision d ∈ R+. Assume in the following κd = 1. Sufficient conditions on

the filter coefficients αd, βd, and γd that guarantee PR are found:

Proposition 4.1 [Pie01a, Prop. 7.1] PR is possible with previous assumptions in each of the

following two cases:

1. For αd > 0 and βd, γd non-increasing w.r.t. d.

2. For αd < 0 and βd, γd non-decreasing w.r.t. d.

Adaptive (update) lifting has some drawbacks. Firstly, x[n] is weighted with a real number,

requiring quantization and thus, the decision recovery becomes in practice more difficult than

stated. Also, in lossy compression this may be the cause of more difficulties to achieve PR.

Secondly, the described approach imposes severe constraints on the FIR filter coefficients. These

are the reasons that impel the analysis and extensions in section 4.2 and the generalization of

section 4.4.

4.2 Adaptive Lifting Analysis

This section proposes an original analysis for the adaptive lifting. The detailed analysis of lemma

4.2 perfect reconstruction condition leads in a natural way to the concept of generalized lifting

described in section 4.4.

To get an insight into the PR condition it is useful to study the adaptive lifting, noted a(.),

from the perspective of a mapping between sample spaces

a : X × Yk → X ′ × Yk,
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being k the number of samples of the filtering channel used for the adaptive lifting step. The

adaptive lifting function may vary on each (x,y) according to the decision function. The decision

conservation condition (4.1) is visualized in the following diagram:

X × Yk X ′ × Yk

D D′

-a

?

D

?
D′

-� Id

The diagram also aims to highlight that the decision function should obtain the same result

when applied on the domain X×Yk and on X ′×Yk, in the sense that a−1(a(x,y, D), D′) = (x,y).

For simplicity, in the following it is assumed that the adaptive lifting is a mapping between real

spaces,

a : R× Rk → R× Rk.

For the sake of clarity, let denote xn , x[n], yn , y[n], and yn−1 , y[n − 1]. The case

of study is the adaptive ULS with a gradient-based decision function (4.5), being xn ∈ R the

sample modified by the two neighbors yn and yn−1 that belong to the detail signal. Therefore,

k = 2 and the mapping is between 3-D real spaces

a : R× R2 → R× R2

(xn yn−1 yn) → (x′n yn−1 yn).

Figure 4.1 depicts a geometrical place with constant gradient. For a visual example of a 3-D

mapping reader is referred to figure 4.2.

The last k components are unaffected by a. The domain of a is the same as the decision

function D domain. If a is a linear transform (from R3 to R3), then it is completely characterized

by matrix

Ad =

 αd βd γd

0 1 0
0 0 1

 . (4.6)

Note that (4.6) is the identity matrix for the last k components. In this linear case, the input-

output relation is

( x′n yn−1 yn )T = Ad ( xn yn−1 yn )T .

The decision of the form (4.5) implies D : R3 → D = R+. Given a decision d ∈ R+, its

preimage is the geometrical place of R3 constituted by a set of four intersecting hyperplane

forming a rectangular cylinder (figure 4.1). Let denote such a set by D−1(d). Every decision d

triggers a choice of the lifting filter, which is the same for all points with equal gradient. For

the case of study, the decision d and the l1-norm of the gradient c, coincide. Let the image of
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1

Figure 4.1: Geometrical place of the points of constant l1-norm of the gradient.

every subset with constant gradient D−1(c) be analyzed. Expression (4.7) specifies the points

( xn yn−1 yn ) ∈ D−1(c):

D−1(c) ∼=


2xn − yn−1 − yn = c, for xn ≥ yn−1, yn,
yn−1 + yn − 2xn = c, for yn−1, yn ≥ xn,

yn−1 − yn = c, for yn−1 ≥ xn ≥ yn,
yn − yn−1 = c, for yn ≥ xn ≥ yn−1.

(4.7)

Each point ( xn yn−1 yn )T ofD−1(c) is mapped to ( x′n y′n−1 y′n )T with the transform

Ad. The transformed set of points, noted a(D−1(c)), is also formed by four intersecting plane,

which are specified by

a(D−1(c)) ∼=


2x′n − (2β + α)y′n−1 − (2γ + α)y′n = αc, for x′n ≥ y′n−1 − γc, y′n − βc,
(2β + α)y′n−1 + (2γ + α)y′n − 2x′n = αc, for y′n−1 + γc, y′n + βc ≥ x′n,

y′n−1 − y′n = c, for y′n−1 − γc ≥ x′n ≥ y′n + βc,
y′n − y′n−1 = c, for y′n − βc ≥ x′n ≥ y′n−1 + γc.

The analysis is clearer if the FIR filter is supposed to be symmetrical. Then, both coefficients

β and γ are equal. The expressions of the first two planes become 2x′n − y′n−1 − y′n = αc and

y′n−1 + y′n − 2x′n = αc, respectively.

The transform system has a plane of fixed points, (α− 1)xn + βyn−1 + γyn = 0, and all the

planes parallel to this one, (α − 1)xn + βyn−1 + γyn = c, are moved by Ad to another parallel

plane given by the expression (α− 1)xn + βyn−1 + γyn = αc.

To sum up, the transform acts on D−1(c) in the following fashion. If xn is between yn−1

and yn, then the output remains in the same plane, preserving the gradient c. Otherwise, xn is
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Figure 4.2: Example of a mapping from R3 to R3. Map of D−1(6) with the parameters
(αd βd γd) = (0.5 0.25 0.25).

outside the margins fixed by yn−1 and yn, and then the system modifies the value xn moving

it closer to the values yn−1 and yn. Figure 4.2 depicts the system behavior. The output set

a(D−1(c)) is a rectangular cylinder that coincides in two planes with D−1(c) and in the other

two planes with D−1(αc).

The preliminary analysis of the transform behavior when applied to a single constant-gradient

set serves to go up to the next step, which is the following analysis of the whole transform (i.e.,

the application between 3-D spaces) using coefficients respecting proposition 4.1.

If αd > 0, then βd and γd are non-increasing w.r.t. d, so the greater the gradient is, more

the shape of the transformed rectangular cylinder becomes elongated. Figure 4.3 visualizes this

evolution. If 1 > αd > 0, then 1 > βd, γd > 0, and with increasing d, the transform is more

similar to the identity. There is a certain d = dI for which Ad = I3. For d > dI , the shape of

the transformed rectangular cylinder continues the elongation. The key point is that βd and γd

are non-increasing, thus the output set shape for different gradients changes in such a way that

they never intersect. Therefore, the whole transform is injective, and thus, invertible.

In [Pie01a] also appears a binary decision function that toggles between two filters according

to the l1-norm of the gradient, D(v) ∈ {0, 1}. Injection is imposed easily to such a system, since

it is a particular case of the previous one. In addition, the challenge of deriving a simple decision

recovery function is met. The appropriate inverse filter at each location is straightforward to

find. In [Hei01], a binary decision is also employed and the framework is extended to k > 2,

considering 2-D structures and several bands for updating a sample.

In [Pie01b], various seminorms are combined in the same decision to take into account an

increased number of possible 2-D structures. The framework is developed around the concept

of seminorm. The decision is a threshold of a seminorm of the gradient vector. Lifting filter
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1

Figure 4.3: In gray, the sets D−1(c) for c = {1.6, 4, 6}, overlapped by the transformed sets
a(D−1(c)) (in black) using the PR condition αd > 0 and βd, γd non-increasing w.r.t. d. Visually,
the injection condition is verified.

coefficients and the threshold for the decision recovery are drawn from seminorm properties.

Different seminorms imply different filters and thresholds; the choice depends on the application

at hand. An analysis of this extended framework raises the same conclusion: PR comes from the

transform injection when viewed as a mapping from a R × Rk space to itself.

In brief, this analysis establishes that the essential property for the adaptive transform a(.)

to attain PR is to be injective. This requirement is demanded to the generalized lifting defined

in section 4.4.

Note that the proof of lemma 4.1 is based on the injective condition, since it shows that two

different points in the input space have the same output if the lemma condition is not fulfilled.

In practice, the necessary condition in the hypothesis of the lemma is sufficient, because the

input and output spaces are a bounded subset of Rk+1 and so, adaptive lifting with PR may

be obtained by finely tuning the variable κd and the values of αd, βd, and γd according to the

gradient.

Next section develops adaptive ULS within the described framework. The injection condi-

tion is imposed to both schemes and thus, PR is guaranteed. Their construction substantially

differs from previous adaptive ULS based on seminorms and their properties. Experiments are

performed to prove the usefulness of the proposals.
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4.3 Adaptive Lifting Steps Construction

Two different approaches for the adaptive ULS design are adopted in this section. The first one

guarantees PR with a median-based decision function. The scheme is similar to the so-called

hybrid filters [Pit90]. The second proposal is fully developed within the mapping between spaces

point of view acquired in the previous section. The decision function considers the geometrical

place in the 3-D space formed by the points with equal variance.

4.3.1 Median-based Decision Adaptive ULS

4.3.1.1 Scheme Description

A set of ULS filters and decision functions that enable PR are proposed in this section. An

interesting feature is that both, filter and decision are based on the same rank-order selection

function. The case of study is the median but proposition 4.2 guarantees PR for any rank-order

filter (ROF).

This section incorporates a signal and filter notation that permits a clearer exposition and a

better comprehension of the proposition below and its proof. The notation includes a “location”

index and extended vectors. For the signal vector, the notation is

yj = ( yj,1 . . . yj,k )T , ỹj = ( yj,1 . . . yj,k x )T , and ỹ′j = ( yj,1 . . . yj,k x′ )T ,

where subindex j refers to a window of signal y. For the filters, the notation is

hj = ( hj,1 . . . hj,k )T and h̃j = ( hj,1 . . . hj,k hj,k+1 )T ,

where filter j is applied to the j signal window. For the ULS case, when a signal window and

filter i are chosen, the update filter is linear being u = hi and the adaptive ULS reduces to

x′ = hi,k+1x+ uTyi = h̃T
i ỹi.

The proposal is inspired by the idea of the space-varying step described below, which has

similarities with the space-varying prediction proposed in [Cla97] (cf. §2.3.1). Initially, there

may be several prediction filters, each one having a different support: causal, anti-causal, both,

etc. Then, the predicted value is selected among the results obtained from the different filters.

A rank-order selection may be considered. For instance, the median is a reasonable choice, or,

depending on the kind of image or image region, the maximum, minimum, or mean of several

values are also possible choices. In a different context, the image coders CALIC [Wu97] and

LOCO-I [Wei00] rely on a related strategy to perform a prediction.

For the ULS case, the same idea is applicable. Assume a rank-order filter that selects as

updated value the L rank-order value, noted ROFL. Let ỹj be any detail sample window around
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x and h̃j any filter, with the (k+1)th component hj,k+1 = hk+1, ∀j ∈ [1, J ]. Consider the values

h̃T
j ỹj as inputs to a rank-order filter, i.e., x′ = ROF{h̃T

1 ỹ1, . . . , h̃T
J ỹJ}. The selected linear filter

may be recovered for any rank-order filter employed in the coder when the same filter is used

at the decoder because the rank-order of the elements {h̃T
1 ỹ1, . . . , h̃T

J ỹJ} is the same as the

rank-order of the elements {h̃T
1 ỹ′1, . . . , h̃

T
J ỹ′J}.

This fact is made evident by noticing that the order is maintained for any pair of linear filter

outputs among them. Assume h̃T
i ỹi ≥ h̃T

j ỹj and the output x′ = h̃T
l ỹl for any l ∈ [1, J ], then

h̃T
i ỹi ≥ h̃T

j ỹj ⇒ hT
i yi + hk+1x ≥ hT

j yj + hk+1x

⇒ hT
i yi + hk+1x

′ ≥ hT
j yj + hk+1x

′ ⇒ h̃T
i ỹ′i ≥ h̃T

j ỹ′j ,

so the rank order is preserved. Therefore, a space-varying ULS may be constructed using any

ROF and linear filters with the constraint that the coefficient for x should be the same for all

filters. This scheme is not truly adaptive, since the decision may be recovered without the use

of the value x′.

A scheme related to this space-varying ULS is constructed based on proposition 4.2, which

assures PR. The proposed scheme is truly adaptive in the sense that the value x′ is required

for the decision recovery. Indeed, the adaptive ULS output x′ may be the input x, which is not

possible in the previous space-varying ULS example if hk+1 6= 1. The trade-off is that the ROF

has only three inputs.

Proposition 4.2 Let ỹj, for j ∈ {1, 2}, be any detail sample window around x and h̃j any

filter, with equal (k + 1)th component, h1,k+1 = h2,k+1 > 0. Consider the products h̃T
1 ỹ1, h̃T

2 ỹ2

and x as inputs of a rank-order filter. The output of the ROF is the updated sample, i.e., x′ =

ROF{x, h̃T
1 ỹ1, h̃T

2 ỹ2}. Then, the decision recovery condition holds for any rank-order filter used

at the coder when the same filter is used at the decoder. The index of the rank-order filter output

as decision function implies PR.

Proof. First, it is proved that the order of the elements at the coder {x, h̃T
1 ỹ1, h̃T

2 ỹ2} is main-

tained at the decoder {x′, h̃T
1 ỹ′1, h̃

T
2 ỹ′2} if the output of the rank-order filter is x′ = x:

1. For h̃T
i ỹi ≥ h̃T

j ỹj then h̃T
i ỹ′i = h̃T

i ỹi ≥ h̃T
j ỹj = h̃T

j ỹ′j .

2. For h̃T
i ỹi ≥ x (the same demonstration holds for h̃T

i ỹi ≤ x ⇒ h̃T
i ỹ′i ≤ x′), then h̃T

i ỹ′i =

h̃T
i ỹi ≥ x = x′.

Therefore, the order is preserved in both cases for any rank-order filter. Assume now that

x′ = h̃T
1 ỹ1 (the same proof holds for x′ = h̃T

2 ỹ2). With 3 elements, there are three possible

rank-order filters: the minimum, the maximum, and the median. The proposition is proved for
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the median and the maximum, while the proof for the minimum is “symmetrical” to that of the

maximum.

1. ROF , median and h̃T
2 ỹ2 ≥ h̃T

1 ỹ1 ≥ x, so x′ = h̃T
1 ỹ1, as assumed. Then, it should be

proved that h̃T
2 ỹ′2 ≥ h̃T

1 ỹ′1 ≥ x′:

• h̃T
2 ỹ2 ≥ h̃T

1 ỹ1 ⇔ hT
2 y2+hk+1x ≥ hT

1 y1+hk+1x⇔ hT
2 y2+hk+1x

′ ≥ hT
1 y1+hk+1x

′ ⇔
h̃T

2 ỹ′2 ≥ h̃T
1 ỹ′1.

• h̃T
1 ỹ1 ≥ x ⇔ hk+1h̃T

1 ỹ1 ≥ hk+1x, being hk+1 > 0. Adding hT
1 y1 on both sides:

hT
1 y1 + hk+1h̃T

1 ỹ1 ≥ hT
1 y1 + hk+1x, which is equivalent to say h̃T

1 ỹ′1 ≥ x′.

2. ROF , maximum and h̃T
1 ỹ1 ≥ h̃T

2 and h̃T
1 ỹ1 ≥ x, so x′ = h̃T

1 ỹ1. Then, it should be proved

that h̃T
1 ỹ′1 ≥ h̃T

2 ỹ′2 and h̃T
1 ỹ′1 ≥ x′:

• h̃T
1 ỹ1 ≥ h̃T

2 ỹ2 ⇔ hT
1 y1+hk+1x ≥ hT

2 y2+hk+1x⇔ hT
1 y1+hk+1x

′ ≥ hT
2 y2+hk+1x

′ ⇔
h̃T

1 ỹ′1 ≥ h̃T
2 ỹ′2.

• h̃T
1 ỹ1 ≥ x ⇔ hk+1h̃T

1 ỹ1 ≥ hk+1x, being hk+1 > 0. Adding hT
1 y1 on both sides:

hT
1 y1 + hk+1h̃T

1 ỹ1 ≥ hT
1 y1 + hk+1x, which is equivalent to say h̃T

1 ỹ′1 ≥ x′.

�

Assume that a ROFL is used as ULS. Then, the decision function indicates which linear

filter h̃j for j ∈ {0, 1, 2} has been used to update, being u = hj . The decision function output

is the index of the filter chosen by the ROFL, noted index(ROFL). If the decoder employs the

same ROFL, proposition 4.2 guarantees that the index of the selected filter by the ROFL is the

same. Being the linear filter known, its inversion is straightforward in order to recover x:

x =
x′ − hT

j yj

hk+1
.

Therefore, the resulting scheme is PR. Next diagram pretends to clarify this point.

R× Rk R× Rk

{0, 1, 2} {0, 1, 2}

-ROF

?

index(ROF )

?

index(ROF )

-�Id

4.3.1.2 Experiments

To assess the usefulness of the ROF-based adaptive ULS, the signal of figure 4.4 is decomposed

in 4 resolution levels. This signal has homogenous, linear, and quadratic regions, representing
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a first approximation of an image model. Additive gaussian noise with different power is added

to the signal. The fixed average update filter h̃ = ( 1/3 1/3 1/3 )T [Pie01a] is employed for

comparison. The adaptive ULS is the median of the input sample, the linear filter output with

h̃, and the linear filter output with a delayed version of the filter h̃. The ULS is followed by the

linear PLS with p = ( 1/2 1/2 )T .

The weighted first-order entropy is measured from the resulting decomposition. Weighted

first-order entropy [Cal98] is defined as the entropy of each band weighted according to the

number of samples belonging to the band. Figure 4.5 depicts the weighted entropy as a function

of the SNR. The graph is the mean of 200 trials. The adaptive scheme consistently improves the

non-adaptive case. This is due to the smoothing effect of the rank-order selection: a filter may

cross an edge or any other structure, thus giving a transformed coefficient value appreciably

different from the original one or the coefficient obtained through a linear filter that does not

cross the edge. The median discards these extreme values, providing a smoother approximation

signal.

Another comparison is given using filters of different sizes, in the spirit of [Cla97]. The

fixed update and the subsequent fixed prediction are the same as in the precedent experiment.

Meanwhile, the input of the median are the centered linear filters

h̃0 = 1, h̃1 =
(

1/3 1/3 1/3
)T , and h̃2 =

(
1/5 1/5 1/5 1/5 1/5

)T
.

The results are visualized in figure 4.6. They are worse than in the previous case, specially

for low SNR, and this is because the h̃2 filter support is too large, allowing the noise to affect

the result and filtering through edges and different kind of regions. However, the adaptive case

remains better than the non-adaptive when the SNR increases up to 10 dB.

4.3.2 Variance-based Decision Adaptive ULS

4.3.2.1 Scheme Description

The local variance of the signal is considered in this section in order to construct a new adaptive

ULS. Variance is interesting as decision function in the following sense: if its value is low, then

the signal is locally homogeneous, and in this case, a low-pass filter as ULS is a reasonable option,

since the approximation signal becomes smooth and useful for the subsequent prediction. On

the other hand, if the variance is high, then it may be assumed that the signal has a local

structure, like a texture or an edge, so performing a low-pass filter would redound to a blurring

of the approximation signal, damaging the structure without a clear benefit for the prediction.

Instead, if there is no update, the original sample value flows to the following resolution level

and so does the structure to which it belongs, obtaining a more meaningful lower resolution

image.
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Figure 4.4: Test signal.
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Figure 4.5: Comparison of the non-adaptive and the median adaptive ULS using a delayed linear
filter.
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Figure 4.6: Comparison of the non-adaptive and the median adaptive ULS using linear filters of
different sizes.
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Two detail samples are used for the construction of the variance-based adaptive ULS, i.e.,

k = 2. The ULS depends on an approximation sample xn, and its two detail sample neighbors

yn−1 and yn. The mean of this three samples is

m =
xn + yn−1 + yn

3
,

and the variance at sample n (omitting the division by 3) is

σ2
n = (xn −m)2 + (yn−1 −m)2 + (yn −m)2. (4.8)

The decision at n depends on σ2
n. According to the previous discussion, if the local variance

exceeds a certain threshold T , σ2
n > T , then the updated value is equal to the original, x′n =

xn. If it does not exceed the threshold, σ2
n ≤ T , then the updated value is a function x′n =

f(xn, yn−1, yn) that decreases the variance or that smooths the approximation signal. At the

decoder side, the variance has to be checked. Then, it has to be decided if a smoothing function

has been applied or not at the coder in order to recover the original sample value. If it is always

recovered, the scheme is PR. In the following, a PR scheme employing the variance as decision

function is described. The proposed function f is a mapping with geometrical considerations.

The diagram summarizes this scheme:

R× R2 R× R2

R+ R+

-f

?
σ2

n

?
σ
′2
n

-�

Developing the expression of the local variance (4.8), one gets

σ2
n =

2
3
(x2

n + y2
n−1 + y2

n − xnyn−1 − xnyn − yn−1yn). (4.9)

The analysis of section 4.1 for the l1-norm decision case is repeated in a similar way for the

local variance decision based on equation (4.9). The geometrical place of the 3-D space points of

the same variance is an ellipsoidal cylinder with a common axis, which is the line xn = yn−1 = yn.

This line is the set of the points with variance equal to zero. For each cylinder a decision is made

to map it into the output space. Decisions are made with the goal of mapping different cylinders

without intersections into the output space, i.e., fulfilling the injection condition. Ideally, each

cylinder containing the points with σ2
n ≤ T should be projected to a cylinder with smaller

variance σ
′2
n ≤ σ2

n. However, LS imposes an insurmountable constraint that invalidates this kind

of projection: only the component x may be modified. In consequence, a map to another cylinder

with smaller variance is not possible, since all the components may vary. A modification of this

variance-based decision is proposed below.
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Suppose the initial variance is σ2
n and that it is desired to map any point with this variance σ2

n

to a smaller variance point σ′2n = sσ2
n, being s ∈ [0, 1] a variance reduction factor. The updated

values x′n that attain the variance σ′2n are

x′n =
yn−1 + yn

2
± 1

2

√
∆c,

where

∆c = 3
(
2sσ2

n − (yn−1 − yn)2
)
,

which has no real solution when ∆c < 0. The reduction factor s determines the existence of a

solution: if s ≥ smin = (yn−1−yn)2

2σ2
n

, then ∆c ≥ 0. The reduction factor fixes the new local variance,

but its possible value is restricted depending on the relation between the detail samples yn−1

and yn and the variance σ2
n,a through the value of smin. In order to consider this restriction,

the reduction factor s is imposed to be a function v(.) of the maximum reduction smin. It is

feasible to perfectly reconstruct xn from x′n and the detail samples if the function v(.) fulfills

the following three conditions:

1. v(.) is defined in the interval [0, 1].

2. ∀x ∈ [0, 1) : v(x) > x.

3. The equation v(x) = kx has no more than one solution for any k.

The first condition is due to the domain of s and smin. The second one arises from the fact that

s cannot be smaller than smin, since smin is the minimum reduction factor with real solution.

Finally, the original value x is recovered solving the equation v(x) = kx, so x is uniquely decoded

if the equation has one and only one solution. There are two simple functions that meet these

three conditions, which are the following linear and quadratic functions:

1. s = v1(smin) = (1− λ)smin + λ, for λ ∈ [0, 1].

2. s = v2(smin) = (λ− 1)s2min + 2(1− λ)smin + λ, for λ ∈ [0, 1].

Once established these preliminaries, an algorithm to perform the variance-based adaptive

ULS is described in table 4.1. The algorithm inputs are xn, yn−1, yn, and the threshold T .

The output is the updated coefficient x′n. The subindex c denotes coding: σ2
c is the coding side

local variance. The corresponding decoding algorithm is described in table 4.2. The decoding

algorithm inputs are x′n, yn−1, yn, and the threshold T . The output is xn,d, which coincides with

xn. The subindex d denotes decoding parameters.
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Variance-based adaptive ULS coding algorithm:

1. Compute:

• σ2
c = 2

3(x2
n + y2

n−1 + y2
n − xnyn−1 − xnyn − yn−1yn)

• If σ2
c ≥ T , then x′n = xn. End algorithm.

2. Compute:

• smin = (yn−1−yn)2

2σ2
c

• α = yn−1+yn

2

3. Obtain the variance reduction factor through s = v(smin).

4. Compute:

• ∆c = 3
(
2sσ2

c − (yn−1 − yn)2
)

5. Obtain the output:

• If xn ≥ α, then x′n = α+ 1
2

√
∆c.

• If xn ≤ α, then x′n = α− 1
2

√
∆c.

Table 4.1: Variance-based adaptive ULS coding algorithm.

4.3.2.2 Experiments

The experimental setting of §4.3.1 is repeated for the variance-based adaptive ULS in order

to assess its usefulness. The test signal, range of SNR, number of trials, number of resolution

levels, etcetera, are the same. The employed function v(.) is the linear one, with λ = 0.2. In

this case, solving the equation v(smin,d) = ksmin,d in the point 2.3 of the decoding algorithm is

straightforward:

smin =
λ

k + λ− 1
.

The threshold is set to T = 20. Results are shown for a broad set of SNR in figure 4.7. To fix

a comparison reference, the previous non-adaptive case with h̃ = ( 1/3 1/3 1/3 )T is also

depicted. Results of the variance-based adaptive ULS clearly improve those of the fixed update.

A sensible choice appears in this scheme with the threshold T . Needless to say, the best value

is signal-dependant. However, qualitative indications may be given in order to choose a good

threshold. T should be great enough to permit the variance reduction in nearly homogenous

regions and small enough to let structures be unaffected by the filtering; thus, T depends on

how “homogeneous” and how “salient” the structures are, i.e., it depends on the kind of signal.

Values between 3 and 50 work correctly. Employing the test signal of figure 4.4, the threshold

giving the least weighted entropy as a function of the SNR among the set T ∈ [1, 400] is depicted
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Variance-based adaptive ULS decoding algorithm:

1. Compute:

• σ2
d = 2

3(x′2n + y2
n−1 + y2

n − x′nyn−1 − x′nyn − yn−1yn)

• If σ2
d ≥ T , then xn,d = x′n. End algorithm.

2. Recover smin:

2.1. Compute:

• c1 = (yn−1−yn)2

2

• k = σ2
d

c1

2.2. Deal with limit cases:

• If σ2
d = 0, then xn,d = yn−1 = yn. End algorithm.

• If σ2
d 6= 0 and c1 = 0, then smin,d = 0. Goto to 3.

2.3. Compute smin,d:

• Solve the equation v(smin,d) = ksmin,d.

3. Obtain the variance reduction factor with s = v(smin,d).

4. Recover the variance at the coder:

• σ2
c = σ2

d
s

5. Compute ∆c:

• ∆c = 3
(
2sσ2

c − (yn−1 − yn)2
)

6. Obtain the output:

• Compute α = yn−1+yn

2

• If x′n ≥ α, then xn,d = α+ 1
2

√
∆c.

• If x′n ≤ α, then xn,d = α− 1
2

√
∆c.

Table 4.2: Variance-based adaptive ULS decoding algorithm.
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in figure 4.8. Specifically in this toy example, it is observed that there are intervals of T for which

the weighted entropy does not sensibly vary (cf. figure 4.9). The reason is that no new structures

are filtered within this interval. A gap appears when a new edge or structure is filtered.

4.4 Generalized Lifting

This section presents a generalization of the lifting scheme (illustrated in figure 4.10) as stated

in [Sol04a]. The proposed scheme is similar to the classical lifting except that the sums after

the prediction and the update steps are embedded in a more general framework, extending the

adaptive lifting idea of §4.1. For instance, in the classical lifting the prediction is viewed as a

filter that generates a predicted value that is used to modify y[n] through a subtraction. In

the generalized lifting (GL) scheme the prediction is viewed as a function that maps y[n] to

y′[n] taking into account values from the approximation signal x. The restriction of modifying

y[n] only through a sum has been removed and so, the scheme allows more complex, possibly

adaptive or nonlinear modifications. The same generalization can be done for the ULS:

y′[n] = P (y[n],x[n]),

x′[n] = U(x[n],y′[n]).

Furthermore, in order to have a reversible scheme, generalized prediction and update cannot

be chosen arbitrarily. The restriction to be imposed on a generalized step to attain reversibility is

the injection, as it has been analyzed in §4.2. The following is a formal definition of a generalized

lifting step (GLS).

Let A be the set of functions a from R× Rk to itself

a ∈ A ⇔ a : R× Rk → R× Rk

such that

(z′1[n] z′2[n− n1] . . . z′2[n− nk]) = a(z1[n] z2[n− n1] . . . z2[n− nk]).

Here, samples are denoted by z in order to maintain the same definition for both lifting steps.

For the prediction (update) step, it is assumed that z1[n] = y[n] and z2[n] = x[n] (z1[n] = x[n]

and z2[n] = y[n]).

Let A0 be the subset of A containing all functions that do not modify z2[n], that is, for

which the restriction to Rk is the identity:

A0 = {a ⊆ A | a|Rk→Rk = Ik}.

In the sequel, a GLS is considered a function of A in order to highlight its dependency to

k+ 1 samples. However, a lifting step can only modify z1[n], so it is a function belonging to the
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Figure 4.7: Comparison of the non-adaptive and the variance-based adaptive ULS. Weighted
entropy is depicted as a function of the SNR with the threshold T = 20.
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Figure 4.8: Threshold T value minimizing the weighted entropy of the decomposed test signal
for the range of SNR from 0 to 25 dB.
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Figure 4.9: Weighted entropy for the 4 resolution level decomposition of the test signal with SNR
= 12 dB as a function of the threshold value.
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Figure 4.10: Generalized lifting scheme.

subset A0. At the same time, if a reversible scheme is desired, the GLS should be an injective

function of A0. The same statements apply to the generalized prediction and update steps. As

result, a GLS is defined as an injective function of A0.

The GL has several interesting properties. They are detailed in the ensuing points:

• Depending on the point of view, the same lifting step can be considered a nonlinear or an

adaptive filter. The GL scheme gives a connection between nonlinear and adaptive lifting

filters: they are seen as applications between real spaces.

• The GL gives an insight on the kind of decision function required to reach reversibility.

Concretely, mathematically complex concepts for reversibility have been reduced to the

simple injective condition.

• The GL inherits from adaptive LS the capacity to expand a signal through one of several

wavelet bases and recover the basis of expansion only from the transform coefficients

without any book-keeping, which is not possible in a linear decomposition scheme.

• The GL also allows the construction of adaptive non-separable 2-D transforms.

The last two properties in the list above are illustrated with a single example. The 2-D

non-separable property comes from the sample re-ordering of figure 4.11. Two sets of 2-D basis

vectors are depicted in figure 4.12. The first basis is the canonical and the second the separable

2-D Haar. This example constructs a system that selects one of four possible 2-D bases. The

scheme uses an adaptive ULS with a thresholded gradient-based decision function (4.5) taken

up again from [Pie01b]. The sample filtering dependencies are modified as figure 4.13 shows.

Both ULS employ y0 and y1. They are followed by the LeGall 5/3 prediction. The transformed

coefficients are the two approximate samples x′0 and x′1 and the two detail samples y′0 and y′1.

If the l1-norm of the gradient is below a threshold T , then the decision is binarized to d = 0

and the update filter is ( α0 β0 β0 ) = ( 1/3 1/3 1/3 ). Alternatively, if the gradient is
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Figure 4.11: 1-D signal and the corresponding 2-D signal notation.
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Figure 4.12: Two examples of 2-D basis vectors: canonical basis and the non-normalized 2-D
Haar basis.

equal or greater than T , then the decision is 1 and the filter is ( α1 β1 β1 ) = ( 1 0 0 ). The

selected decision function and filters imply that the underlying decomposition basis commutates

among four bases according to the decision at n = 0 (the value of d0) and at n = 1 (d1). Figure

4.14 shows the basis vectors depending on d0 and d1.

The structure in figure 4.13 is reversible because each step is reversible. The structure itself

imposes a constrain on the transformed coefficients that makes possible to deduce the expansion

basis and the original data from them, which is generally not possible. For instance, if the thresold

is T = 2, then the coefficients ( x′0 y′0 x′1 y′1 ) = ( 4/3 3 −7/6 −1/6 ) may only arise

from the original data ( x0 y0 x1 y1 ) = ( 1 1 2 3 ), being the decision d0 = 0 and

d1 = 1.

4.4.1 Discrete Generalized Lifting

Generalized lifting in its continuous form is hardly useful for compression because quantization

implies a critical trade-off between global injection and bit-rate. Discrete generalized lifting is a

proposed solution to the quantization problem.

The GL scheme as presented so far assumes that the values taken by x and y are real

numbers. In many applications related to compression, the values of x and y are quantized

before transmission. In this case, it is the mapping Q(a(z1[n] z2[n − n1] . . . z2[n − nk])), where

Q(·) represents the quantization, that should be an injective function of the set A0.
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Figure 4.13: Modified lifting sample dependencies using an adaptive ULS and a fixed PLS.
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Figure 4.14: Example set of adaptive basis vectors.
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Figure 4.15: Discrete mapping from the Z255 × Z2
255 space to itself. The lifting step is reversible

if the mapping from each column Ci,j (Ci∈Z2
255

) to itself is bijective.

Several reversible schemes that include quantization may be found. However, most of the

resulting decompositions are not suitable for compression. Quantization destroys the injective

condition. A possible solution is to consider the discrete version of the generalized LS. To this

goal, the values taken by x and y and the generalized step outputs x′ and y′ are assumed to

be integers. In this case, no quantization is necessary after a lifting step and the only issue is to

design a discrete injective mapping.

Despite the injective condition is applicable in the discrete case, a bijective condition arises

in a natural way because the input and output spaces have the same size, so mappings have to

be one-to-one in order to have all the elements in each space related.

Consider now the following framework for discrete gray-scale images where each pixel is

represented by 8 bits. Without loss of generality, sample values are assumed to range from -128

to 127. Let Z255 be the set of integers that belong to the interval [−128, 127]. The discrete

generalized update and prediction are functions from the Z255 × Zk
255 space to itself that can

only modify the first component. The statements made in the real case are also valid for the

discrete case. In particular, reversibility is obtained if the mappings

(z′1[n] z′2[n− n1] . . . z′2[n− nk]) = a(z1[n] z2[n− n1] . . . z2[n− nk])

are bijective.

For z2[n− n1], . . . , z2[n− nk] fixed, the set of all possible values of z1[n] describes a column

in the Z255 × Zk
255 space. Let such a column be denoted by Ci∈Zk

255
:

Ci∈Zk
255

= {z1[n], z2[n− n1] = i1, . . . , z2[n− nk] = ik}. (4.10)

As the generalized update and prediction may only modify the component z1[n], they map

each column Ci∈Zk
255

to itself. In order to have a reversible scheme, the mapping of Z255 × Zk
255
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to itself should be bijective for all columns. Figure 4.15 illustrates the case k = 2. To simplify

the notation, column Ci∈Z2
255

is denoted by Ci,j .

Once the previous definitions have been stated, the critical problem is to design useful GLS

for specific applications, or what is the same, choose an appropriate mapping between the huge

amount of possibilities. For instance, the number of bijective mappings of a column to itself is

equal to the factorial of 256. The choice or design is crucial and may depend on many factors,

such as compression performance to a given image or class of images, computational cost, or

memory requirements. The following chapter proposes and analyzes some discrete generalized

prediction §5.1 and update §5.2 steps.


