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Ítaca t'ha donat el bell viatge. 

Sense ella no hauries pas sortit cap a fer-lo. 

Res més no té que et pugui ja donar.  

I si la trobes pobra, no és que Ítaca t'hagi enganyat. 

Savi com bé t'has fet, amb tanta experiència, 

ja hauràs pogut comprendre què volen dir les Ítaques. 

Extracte d’“Ítaca” (1911) 

Konstantinos P. Kavafis 

 

Ítaca te ha dado un viaje hermoso. 

Sin ella no te habrías puesto en marcha. 

Pero no tiene ya más que ofrecerte. 

Y aunque la encuentres pobre, Ítaca no te ha engañado. 

Así, sabio como te has vuelto, con tanta experiencia, 

ya habrás comprendido el significado de las Ítacas. 

Extracto de “Ítaca” (1911) 

Konstantinos P. Kavafis 

 

Ithaka gave you the marvelous journey. 

Without her you wouldn't have set out. 

She has nothing left to give you now. 

And if you find her poor, Ithaka won’t have fooled you. 

Wise as you will have become, so full of experience, 

you’ll have understood by then what these Ithakas mean. 

Excerpt from “Ithaka” (1911) 

Konstantinos P. Kavafis 
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GLOSSARY 

Alternative splicing: Alternative splicing (AS) is the molecular process by which a 

gene can derive into multiple mRNA transcript isoforms that originate from the 

same locus. There have been characterized different mechanisms of AS, also called 

AS events. 

 

BarcUVa-Seq: The University of Barcelona and University of Virginia genotyping and 

RNA sequencing project is a collaboration between researchers in the University of 

Barcelona and the University of Virginia. In this project, there were collected colon 

tissue biopsies, blood samples and epidemiological information from up to 485 

healthy adults. 

 

e/sQTLs: Expression and splicing quantitative trait loci (e/sQTLs) refer to single 

nucleotide polymorphisms (SNPs) statistically associated with gene expression and 

alternative splicing profiles, respectively. 

 

Fine-mapping: Statistical fine-mapping is an approach to identify the causal gene(s) 

or variant(s) involved in a trait of interest and its variability. It assigns a probability 

for each gene or variant in a given locus to be the cause underlying an association 

signal. 

 

Gene expression: Gene expression is the process by which a DNA sequence is 

converted into the encoded molecule (mainly a protein or a non-coding RNA). The 

level of expression of a given gene is indicative of the level of activity of this gene in 

the cell. 

 

Genetic susceptibility: Increased likelihood of developing a particular disease or 

trait due to the presence of germline genetic variants. Also called genetic/inherited 

predisposition. 
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Genetically regulated gene expression: Gene expression which levels are 

influenced in a given direction by the alleles of genetic variants, such as SNPs. 

 

Genotype: Combination of possible alleles present at a specific locus, given by the 

pair of chromosomes. 

 

GTEx: The genotype-tissue expression project (GTEx) represents the largest atlas of 

human tissue gene expression to date. It includes samples from up to 49 different 

tissues and cell types that were collected from 838 post-mortem donors. 

 

GWAS: Genome-wide association studies (GWAS) are case-control epidemiologic 

studies that survey the entire genome for measuring association between single 

nucleotide polymorphisms (SNPs) and phenotypes, such as disease status. 

 

Linkage disequilibrium: Phenomenon according to which a nonrandom association 

exists between alleles at different loci, which appear associated in a population 

more often than by chance. 

 

mRNA: Messenger RNA (mRNA) is the direct product of the process of gene 

expression and a key intermediate molecule between a given DNA sequence and 

the protein that it encodes. 

 

Pleiotropy: the phenomenon by which one genetic variant appears associated with 

multiple phenotypes. 

 

RNA-Seq: RNA Sequencing (RNA-Seq) is a high throughput technique for assessing 

the transcriptome of a given biological sample. It produces sequencing reads to be 

mapped to a reference genome/transcriptome. It allows quantifying the levels of 
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RNA and assessing global gene expression as well as the expression of alternatively 

spliced transcripts. 

 

SNP: A single nucleotide polymorphism (SNP) is a type of germline genetic variation 

affecting one single DNA nucleotide, i.e. adenine (A), thymine (T), cytosine (C), or 

guanine (G). A common SNP occurs when the frequency of the variant is present in 

at least 1% of genetic sequences in a particular population. 

 

SNP-based heritability: The SNP-based heritability (h2SNP) can be defined as the 

proportion of phenotypic variance explained by a set of SNPs. These SNPs could be 

those included on a genotyping array, those sequenced from whole-genome/exome 

sequencing or imputed from reference SNP imputation panels. 

 

Transcript: A transcript is a RNA sequence generated from DNA during the process 

of transcription. There are different types of transcripts, which can be broadly 

classified according to their potential to be translated into proteins. 

 

Transcriptome: The transcriptome encompasses the entire collection of RNA 

molecules expressed from the genome. The human transcriptome contains 63,568 

RNA sequences (according to the annotations provided by GENCODE release 29). 

These include 22,705 (around 36%) protein-coding genes. 

 

TWAS: Transcriptome-wide association studies (TWAS) are case-control studies that 

test for the association between genetically predicted gene expression and a 

complex disease or trait of interest. They identify genes whose imputed expression 

in a particular tissue/cell of interest is up or downregulated in cases in comparison 

with controls. They do not profile gene expression, rather, they impute it from 

genotype data. 
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THESIS SUMMARY 

Title 

Molecular epidemiology study on genetically regulated gene expression in the 

colonic mucosa and its role in disease susceptibility. 

 

Introduction 

Gene expression is a key molecular process that is tightly regulated by a wide 

repertoire of molecular mechanisms. Most genes undergo alternative splicing (AS), 

a process that generates different transcript isoforms from a single locus. Genetic 

variants (i.e. SNPs) that regulate gene expression and AS are called expression and 

splicing quantitative trait loci (eQTLs and sQTLs), respectively, and can operate in a 

tissue-specific manner. 

Gene expression can be involved in disease etiology, and the analyses of genetically 

regulated gene expression can provide evidence of a causal relation. The statistical 

colocalization between eQTLs and risk SNPs allows linking gene expression in a 

specific tissue or cell type with disease risk. In addition, the eQTL summary statistics 

can be used to predict gene expression from genotype data. These gene expression 

prediction models are used in transcriptome-wide association studies (TWAS) to 

associate differential levels of predicted gene expression with disease status. 

In the case of colon tissue, there is a lack of an adequate representation of the 

transcriptome of the epithelial mucosa from biopsies of living individuals, which has 

limited the profiling of gene expression and its genetic regulation across the colon. 

Two major common chronic diseases affecting the colon are colorectal cancer (CRC) 

and inflammatory bowel disease (IBD). Genome-wide association studies (GWAS) 

have identified a total of 141 and 240 genetic risk variants related to them, 

respectively. Although some functional evidence has been provided, the 

mechanisms underlying genetic susceptibility for these and other colon-related 

diseases are not yet fully understood. 
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Hypotheses 

Colon gene expression and AS profiles derived from RNA sequencing of mucosal 

biopsies can provide good estimates of the colon tissue transcriptome. They may 

vary across the colon anatomy, and can be controlled by genetic variants (i.e. SNPs). 

In addition, an interactive web-based resource can facilitate researchers a quick and 

centralized exploration of colon gene expression-related data. Finally, genetically 

regulated gene expression in the colon can play a role in the susceptibility to 

complex traits and diseases, such as CRC or IBD, and candidate susceptibility genes 

for these diseases could be nominated. 

 

Objectives 

1. To provide reference transcriptome-wide gene expression and alternative 

splicing profiles of colon mucosal biopsies from healthy adults, as well as 

their differences across colon location and corresponding e/sQTLs. Also, to 

identify complex traits and diseases whose SNP-based heritability is enriched 

in the e/sQTLs identified, and propose candidate susceptibility genes for 

these phenotypes. 

2. To develop a web resource to explore normal colon transcriptomic profiles, 

e/sQTLs, gene expression prediction models, as well as to annotate SNPs with 

colon eQTLs. 

3. To propose candidate genes whose genetically regulated gene expression is 

associated with IBD, including genes in specific colon subsites that are 

expression markers of colon cell types, and genes that are enriched in 

relevant molecular pathways for IBD, such as therapy-related pathways. Also, 

to identify candidate susceptibility genes specific for the epithelial, 

immune/blood, mesenchymal and neural tissue categories. 
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Methods 

We included 445 individuals with tissue RNA-Seq and genome-wide genotyping 

data. RNA-Seq reads were aligned to the reference transcriptome with STAR. Gene 

expression was quantified with RSEM. AS events were profiled with SUPPA2 and 

LeafCutter. Genotyping was performed with the Illumina OncoArray BeadChip. 

Allelic dosages from about 40,000,000 SNPs were obtained after imputation with 

the Haplotype Reference Consortium panel. Differential gene expression was 

carried out with the edgeR R package. e/sQTLs were mapped with FastQTL. Models 

were adjusted for sex, age, colon location, sequencing batch, probabilistic 

estimation of expression residuals (PEER) factors, and genetic ancestry. Heritability 

enrichment and colocalization analyses were performed with LD-Score and 

fastENLOC software, respectively, using GWAS summary statistics data.  

The web application was developed with the R package Shiny. 

We generated gene expression prediction models using elastic net regression. 

Models were compiled for a total of 62 tissues and cell types, including the BarcUVa-

Seq, GTEx and CEDAR datasets. We performed single and multi-tissue TWAS 

following the S-PrediXcan and S-MultiXcan approaches, respectively. We used 

publicly available IBD, Crohn’s disease (CD) and ulcerative colitis (UC) GWAS 

summary statistics from about 60,000 individuals. For the gene enrichment analysis, 

signaling and regulatory pathways from the Pathway Interaction Database were 

used, and enrichment values were measured by hypergeometric tests. 

 

Main results 

We generated the BarcUVa-Seq dataset, which included colon biopsy gene 

expression and genome-wide genotypes from 445 healthy people. We described the 

gene expression and alternative splicing differences across colon subsites. We 

identified 11,739 eQTLs and 1,125 sQTLs. We found that part of the SNP-based 

heritability of diseases affecting colon tissue, such as CRC and IBD, but also of 
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diseases affecting other tissues, such as psychiatric conditions, can be partly 

explained by the identified QTLs. We provided candidate susceptibility genes for 

these phenotypes.  

The Colon Transcriptome Explorer (CoTrEx) 2.0 was hosted online at 

https://barcuvaseq.org/cotrex/. It is based on BarcUVa-Seq and GTEx colon data 

and features plots, tables, and customization options for exploring gene and 

transcript expression profiles, e/sQTLs, summary statistics of gene expression 

prediction models, and regulatory and coexpression networks.  

Finally, we identified 136, 116 and 88 novel candidate susceptibility genes for IBD, 

CD and UC, respectively, expressed across 62 tissues and cell types. We provided 39 

novel genes whose expression in the colon is associated with IBD status, including 

expression markers for specific colon cell types. Additionally, we identified 78 novel 

susceptibility genes whose expression was associated with IBD exclusively in 

immune (N=19), epithelial (N=25), mesenchymal (N=22) and neural (N=12) tissue 

categories. The associated genes were involved in relevant molecular pathways, 

including pathways related to the immune system, and pathways related to known 

IBD therapeutics, such as tumor necrosis factor signaling. 

 

Conclusions 

We provided a large characterization of gene expression and AS, and their genetic 

regulation, across colon subsites. The findings add biological insight into complex 

traits and diseases influenced by transcriptomic changes in the colonic mucosa. 

We provided the Colon Transcriptome Explorer 2.0 including large population-based 

normal colon gene expression resources. 

We proposed novel genes whose genetically regulated gene expression across 

tissues and cell types is associated with IBD status. These genes might be prioritized 

in further functional studies. 
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RESUM 

Títol 

Molecular epidemiology study on genetically regulated gene expression in the 

colonic mucosa and its role in disease susceptibility. 

 

Introducció 

L’expressió gènica és un procés molecular clau, estretament regulat per un ampli 

repertori de mecanismes moleculars. La majoria dels gens es sotmeten a un splicing 

alternatiu (AS), un procés que genera diferents isoformes a partir d’un sol locus. Les 

variants genètiques (i.e. SNPs) que regulen l’expressió gènica i l’AS es denominen 

loci  de trets quantitatius d’expressió i splicing (eQTL i sQTL), respectivament, i 

mostren especificitat de teixit.  

L’expressió gènica pot estar implicada en l’etiologia de les malalties, i les anàlisis de 

l’expressió gènica regulada genèticament poden proporcionar evidències d’una 

relació causal. La colocalització estadística entre SNPs de risc i els eQTL al llarg del 

genoma permet vincular l’expressió gènica en un tipus específic de teixit o cèl·lula 

amb el risc de malaltia. A més, els eQTLs poden explicar part de l'heretabilitat 

basada en SNPs de malalties complexes comunes. A més, les estadístiques 

d’associació resumides d'eQTLs es poden utilitzar per predir l'expressió gènica a 

partir de dades de genotips. Aquests models d’expressió gènica predits 

genèticament es poden utilitzar en estudis d’associació a tot el transcriptoma 

(TWAS) en els quals es comparen els nivells d’expressió gènica predits en el teixit 

d’interès entre casos i controls. 

En el cas del teixit del còlon, manca una representació adequada del transcriptoma 

de la mucosa epitelial a partir de biòpsies d’individus vius; cosa que ha limitat el 

perfilat de l’expressió gènica, i la seva regulació genètica, a tot el còlon. Pel que fa a 

les malalties cròniques habituals que afecten el còlon, els estudis d’associació al llarg 

del genoma (GWAS) han identificat 141 i 240 variants genètiques de risc 
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relacionades amb el càncer colorectal (CCR) i la malaltia inflamatòria intestinal (MII), 

respectivament. Tot i que s’han observat algunes evidències funcionals, els 

mecanismes subjacents a la susceptibilitat genètica per aquestes i altres malalties 

relacionades amb el còlon, encara no es comprenen en la seva totalitat. 

 

Hipòtesis 

L’expressió dels gens i els perfils de splicing alternatiu derivats de la seqüenciació 

de l’ARN de biòpsies de mucosa de còlon poden proporcionar bones estimacions del 

transcriptoma del teixit del còlon. Aquests poden variar segons l’anatomia del còlon 

i poden ser controlats per variants genètiques (i.e. SNP). A més, un recurs web 

interactiu pot facilitar als investigadors un accés i exploració ràpida i centralitzada 

de dades relacionades amb l’expressió gènica del còlon. Finalment, l’expressió 

gènica regulada genèticament al còlon pot jugar un paper en la susceptibilitat 

genètica a trets i malalties complexes, com ara CCR o MII, i es poden designar gens 

de susceptibilitat per a aquestes malalties. 

 

Objectius 

1. Proporcionar perfils de referència a nivell de transcriptoma complet, tant 

d’expressió genètica com de splicing alternatiu, de biòpsies de mucosa del 

còlon d’adults sans, així com les seves diferències entre distintes 

localitzacions al còlon, i els seus e/sQTLs corresponents. També, identificar 

trets i malalties complexes la heretabilitat basada en SNPs de les quals estiga 

enriquida per els e/sQTLs identificats, i proposar gens de susceptibilitat per 

a aquests fenotips. 

2. Desenvolupar un recurs web per explorar els perfils transcriptòmics del còlon 

sa, els seus e/sQTLs, i els seus models de predicció d’expressió genètica, així 

com per anotar SNPs de risc amb eQTLs de còlon. 
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3. Proposar gens l'expressió gènica regulada genèticament dels quals s'associï 

a MII, incloent gens a llocs específics del còlon que siguen marcadors 

d’expressió de cèl.lules, i gens que siguen enriquits a rutes moleculars 

rellevants per la MII, com rutes relacionades amb teràpies per MII. També, 

identificar gens de susceptibilitat específics per les categories de teixits 

epitelial, immune, mesenquimal i neural. 

 

Mètodes 

Es van incloure 445 individus amb dades de genotips i de RNA-Seq de teixit. Les 

seqüències de RNA es van alinear amb el transcriptoma de referència emprant 

STAR. L'expressió gènica es va quantificar amb RSEM. Es van quantificar els events 

de splicing alternatiu amb SUPPA2 i LeafCutter. El genotipat al llarg del genoma es 

va realitzar amb l'Illumina OncoArray BeadChip. Es van obtenir les dosis al·lèliques 

d’uns 40.000.000 SNPs després de la seua imputació amb el panell Haplotype 

Reference Consortium. L'expressió genètica diferencial es va dur a terme amb el 

paquet estadístic de R edgeR. Els e/sQTLs es van computar amb FastQTL. Els models 

es van ajustar per sexe, edat, localització del còlon, lot de seqüenciació, estimació 

probabilística dels factors residuals d’expressió (PEER) i ascendència genètica. Les 

anàlisis de colocalització i proporció de la variança de l’heretabilitat es van realitzar 

amb els programes fastENLOC i LD-Score, respectivament, utilitzant dades 

d’estadístiques resumides de GWAS. 

L'aplicació web es va desenvolupar amb el paquet R Shiny. 

Els models de predicció d’expressió genètica es van generar mitjançant regressió de 

tipus xarxa elàstica. En general, vam predir l’expressió de gens en 62 teixits i tipus 

de cèl·lules sanguínies utilitzant dades dels projectes BarcUVa-Seq, GTEx i CEDAR. 

Els TWAS per teixit i combinant varis teixits es van realitzar seguint els protocols S-

PrediXcan i S-MultiXcan, respectivament. Per aquests anàlisis, es van incloure dades 

d’estadístiques resumides de GWAS públiques de MII, colitis ulcerosa i malaltia de 
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Crohn d’uns 60.000 individus. Per als anàlisis d’enriquiment de gens es van utilitzar 

les rutes moleculars de senyalització i reguladores de la Pathway Interaction 

Database, i els valors d’enriquiment es van calcular amb tests hipergeomètrics. 

 

Resultats principals 

Es va generar el conjunt de dades “BarcUVa-Seq”, que inclou l’expressió gènica de 

biòpsies de còlon i genotips al llarg del genoma de 445 persones sanes. Vam 

descriure les diferències a nivell d'expressió gènica i de splicing alternatiu entre 

distintes localitzacions al llarg del còlon. Vam identificar 1,739 eQTLs i 1,125 sQTLs. 

Vam trobar que una proporció considerable de l’heretabilitat basada en SNPs de 

malalties que afecten el còlon es pot explicar pels QTLs identificats, com ara el 

càncer colorectal i la MII, però també de malalties que afecten altres teixits, com les 

afeccions psiquiàtriques. També, vam proporcionar gens de susceptibilitat per a 

aquests fenotips. 

Es va desenvolupar el “Colon Transcriptome Explorer” (CoTrEx) i la seva versió 

actualitzada 2.0. CoTrEx està disponible a https://barcuvaseq.org/cotrex/. Aquesta 

eina web es basa en dades de còlon dels projectes “BarcUVa-Seq” i “GTEx” i 

presenta gràfics, taules i opcions interactives per explorar perfils d’expressió de 

gens i trànscrits, e/sQTLs, models de predicció d’expressió genètica i xarxes 

reguladores i de coexpressió. 

Finalment, es van identificar 136, 116 and 88 nous gens de susceptibilitat per MII, 

malaltia de Crohn i colitis ulcerosa, respectivament. Es va proporcionar 39 nous gens 

de susceptibilitat l'expressió dels quals al còlon s'associa amb MII. Aquests gens 

inclouen marcadors d’expressió per a tipus específics de cèl·lules al còlon. Per altra 

banda, en la metaanàlisi de tots els resultats, vam trobar 186 nous gens de 

susceptibilitat. A més, es van identificar 78 nous gens de susceptibilitat l’expressió 

dels quals s’associa amb MII exclusivament en teixits immunes (N=19), epitelials 

(N=25), mesenquimals (N=22) i neuronals (N=12). Els gens associats participen en 
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vies moleculars rellevants, incloses vies relacionades amb teràpies conegudes de la 

MII, com la senyalització del factor de necrosi tumoral. 

 

Conclusions 

Es va proporcionar una exhaustiva caracterització de l’expressió gènica i el splicing 

alternatiu al llarg del còlon. Els resultats amplien els coneixements sobre trets i 

malalties complexes influenciades per canvis transcriptòmics al còlon. 

Es va desenvolupar el Colon Transcriptome Explorer 2.0 incloent dades d’expressió 

genètica al còlon. 

Es va proposar al voltant de dos-cents gens nous l'expressió gènica regulada 

genèticament dels quals, a una sèrie de teixits i tipus de cèl·lules, està associada a 

MII. Aquests gens s’haurien de prioritzar a estudis funcionals posteriors. 
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1. INTRODUCTION 

1.1. Gene expression: a key molecular process involved in disease etiology 

Gene expression represents a key complex molecular process that acts as an 

intermediary between the DNA and the functional molecules that carry out cellular 

functions. It is inferred from the number of transcripts quantified in a given 

cell/tissue at a given time, and reflects the amount of activity of the measured 

genes. Gene expression is dynamic and tightly regulated. While there are more than 

20,000 protein coding genes, not all are expressed in every cell, and there is a 

notable heterogeneity in gene expression across tissues (1). In addition, gene 

expression levels constitute a significant source of phenotypic diversity among 

individuals within populations and it can play a key role in disease susceptibility (2). 

1.1.1. Regulatory processes of gene expression 

Characterizing the regulatory architecture of transcriptome-wide gene expression is 

a key challenge. Regulation occurs at different levels that can be broadly classified 

into regulation of transcription initiation, regulation of messenger RNA (mRNA) 

processing, and post-transcriptional regulation. Each regulatory level involves a 

wide variety of interrelated complex molecular processes. First, the regulation of 

transcription initiation includes mechanisms related to chromatin accessibility, 

alternative transcription start sites or transcription factor binding. Secondly, 

regulation of mRNA processing includes mechanisms regarding mRNA splicing, RNA 

editing, nonsense-mediated decay and regulation by microRNA. Finally, post-

transcriptional regulation includes processes such as post-translational RNA 

modification and translation (3).  

1.1.1.1. Mechanisms of mRNA splicing 

The mRNA splicing is an essential gene expression regulatory mechanism whose 

primary function is the removal of non-coding introns. This process is carried out by 
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the spliceosome, a large ribonucleoprotein complex whose core components are 

highly conserved (3). The spliceosome requires the recognition of the splice sites, 

which are essential nucleotides that aid in the recognition of exons. Splice sites can 

be constitutive or alternative, depending on whether they are always (constitutive) 

or only sometimes (alternative) recognized and spliced into the mature mRNA (4). 

Alternative splicing (AS) is the process by which multiple mRNA transcript isoforms 

are generated due to the different selection of splice sites, which will ultimately 

result in different polypeptides that while originating from the same locus can be 

notably different (3). See Figure 1. Approximately 94% of human multi-exonic genes 

undergo AS, and 86% of these have a minor transcript isoform frequency of 15% or 

higher (5). The selection of a particular transcript isoform is often performed during 

the early stages of splice site recognition and spliceosome assembly (7). 

 

Figure 1. Overview of alternative splicing (AS). General schematic of AS, which is shown 
as an intermediate step between DNA transcription and protein translation. Reprinted 
from “Gene Splicing”, by BioRender.com (2021). Retrieved from 
https://app.biorender.com/biorender-templates. 
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AS events refer to the different mechanisms by which a gene can be alternatively 

spliced, generating variability in the exonic structure of mature mRNAs. The exon 

skipping event is the most common in humans, where a given exon is present in 

some transcripts but not others. Another common event occurring in nearly 75% of 

multi-exon genes is the intron retention event, where introns are spliced out in 

some transcripts but not others (6). Other highly relevant, well characterized AS 

events are alternative 5' (donor) and 3' (acceptor) splice sites, where the 5’/3’ splice 

sites differ among transcripts, and mutually exclusive exons, where two or more 

exons are retained (7). Also, it is important to note that a given transcript isoform 

can be the outcome of multiple simultaneous AS events (5). A scheme including the 

AS events mentioned above is shown in Figure 2. Other AS events include 

alternative first or last exons, where the first/last exon varies among transcripts, and 

alternative 5’ or 3’ UTR, where the 5’/3’ untranslated region of a transcript varies 

among transcripts. Events that are not included in the groups stated above are less 

characterized and often classified as complex AS events (7). 

 



36 

 

Figure 2. Constitutive and alternative splicing events. Scheme showing constitutive 
splicing events as well as the following AS events: alternative donor (5’) and acceptor (3’) 
splice sites, cassette exon (i.e. exon skipping), intron retention, and mutually exclusive 
exons. Light blue: constitutive sequence that always is included in the mature mRNA; 
mid/darker-blue: alternative sequence that can be either included or excluded in the 
mature mRNA. Adapted from Dvinge et al. (4). 

1.1.1.2. Genetic regulation of gene expression 

A significant proportion of gene expression variation is heritable (2). Genetic 

variants regulating gene expression can be local or distant, according to their 

relative position to the gene they regulate. Local variants are commonly defined to 

be located within 1 Mb of the transcription start site (TSS) of the regulated gene (8). 

An example of local regulation is the presence of a genetic variant within the gene 

promoter, which can decrease the binding affinity of the RNA polymerase, and 

consequently affects the expression levels of the target gene. On the other hand, an 

example of distal regulation is a genetic variant affecting the binding of regulatory 
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elements in sequences located in other chromosomes different to the chromosome 

where lies the gene of interest (2). 

The genetic variants regulating gene expression and splicing are referred to as 

expression and splicing quantitative trait loci (e/sQTL), respectively. Their mapping 

consists of deriving statistical associations between the alleles of genotyped single 

nucleotide polymorphisms (SNPs) and gene expression and AS, respectively, in a 

particular tissue or cell-type. If association exists in a given population, individuals 

with different genotypes would show different average values for the studied 

gene/AS event (9) (see eQTL mapping schematic in Figure 3). e/sQTL mapping has 

been possible thanks to advances in high-throughput sequencing technologies, 

which have allowed measuring quantitatively the gene expression and AS in a 

genome-wide manner, and also due to the implementation of sequencing projects 

involving a large number of individuals. In this sense, the Genotype-Tissue 

Expression (GTEx) project represents the largest atlas of human tissue gene 

expression to date, including samples from up to 49 different tissues and cell types 

collected from 838 post-mortem donors (8). 

 

Figure 3. Overview of eQTL mapping. eQTL mapping requires sequencing and genotyping 
of a large number of individuals in the tissues or cell types of interest. In this framework, 
statistical associations between SNP genotypes and gene expression levels of nearby genes 
are obtained. Adapted from Cano-Gamez et al. (10). 
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The generation of e/sQTL catalogs has enabled a detailed investigation of the 

genetic architecture of transcriptional variation in human tissues across different 

populations, sexes, age ranges and cellular conditions, among other variables. In 

general, gene expression and AS heterogeneity across tissues is consistent with the 

heterogeneity of e/sQTLs effects on them (8). There is a high degree of tissue 

similarity in terms of their regulation by e/sQTLs. In Figure 4 it is depicted a 

hierarchical clustering of tissues according to their e/sQTL effects, where the brain 

regions (in yellow) form a separate cluster. Also, testis, lymphoblastoid cell lines and 

whole blood are less related to other tissues. Splicing measures are more tissue 

specific than gene expression, but genetic effects on splicing tend to be highly 

shared, which is consistent with pairwise tissue-sharing patterns, as shown in Figure 

4. 

 

Figure 4. e/sQTL effect patterns across human tissues. Tissue clustering with pairwise 
Spearman correlation of eQTLs (left) and sQTLs (right) effect sizes. Adapted from the GTEx 
consortium (8). 

To explore gene expression and splicing patterns across tissues as well as e/sQTLs, 

there have been developed different publicly-accessible interactive online 

resources, such as the GTEx Transcript Browser (11). In this particular resource, the 

expression metrics of the transcript isoforms of a gene of interest can be retrieved, 
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and the gene expression-based tissue-relatedness patterns can be visualized. See 

an example of a gene shown in the GTEx Transcript Browser in Figure 5. 

 

Figure 5. Screenshot of the GTEx Transcript Browser. The transcript expression levels of 
the gene ACTN1 across tissues are visualized in a heatmap. It includes hierarchical clusters 
grouping similar tissues according to the expression of the transcripts across tissues. From 
(11). 

1.1.2. Approaches to link genetically regulated gene expression with disease 

susceptibility  

Characterizing the functional impact of human genetic variation and its influence in 

diseases is a main challenge in current biology. This is crucial in the case of common 

complex diseases, in which a modest fraction of the estimated heritability can be 

explained by multiple genetic variants (12). Genome-wide association studies 

(GWAS) have reported strong genotype-phenotype associations, but the functional 

role of these GWAS-identified genetic variants is not fully ascertained, specially for 

non-exonic SNPs, which are likely to influence processes such as transcriptional 

regulation, noncoding RNA function or epigenetic regulation (13).  

Gene expression and AS play an important role in mediating genetic susceptibility 

to disease, as evidenced by the significant enrichment of eQTLs and sQTLs in the 

SNP-based heritability estimation of complex traits and diseases (14). These SNP 
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enrichments prioritize disease-relevant tissues and cell types, where transcriptional 

regulation may play an important role in the development of traits/diseases (10). 

Strategies for prioritizing genes at GWAS loci include functional annotation, 

colocalization, and transcriptome-wide association studies (TWAS). 

1.1.2.1. Functional annotation 

The most straightforward approach for nominating candidate effector genes in 

GWAS-identified risk loci is to perform functional annotation (15). Functional 

annotation consists of overlapping risk SNPs with the SNPs participating in e/sQTLs 

(i.e. e/sSNPs). If GWAS-identified SNPs and a e/sSNPs lie at the same locus, or are 

correlated due to linkage disequilibrium (LD), it could be inferred that the risk SNP 

confers susceptibility to disease through the modulation of the gene expression or 

AS feature of the target gene, with a specific direction and effect as indicated by the 

e/sQTL statistics. A GWAS signal overlapping an eQTL signal is indicative of potential 

functional relevance of the risk SNP through the modulation of gene expression. 

This procedure is especially useful in loci where there are multiple genes near a 

GWAS signal (10). 

1.1.2.2. Colocalization 

About half of identified common genetic variants are estimated to have a role in the 

expression of at least one gene, which may cause false positive eQTL annotations 

that appear due to chance, driven by LD patterns (16). To tackle this limitation, the 

colocalization approach applies a formal statistical test that takes LD into account 

for the identification of statistical signals in a genetic locus that colocalize, i.e. share 

the same causal variant for both GWAS and e/sQTLs signals (10). See a schematic of 

colocalization in Figure 6. Numerous colocalization methods exist, with different 

assumptions and statistical approaches, including the popular COLOC (17) and 

ENLOC methods, which estimate the posterior probability that one (or more) causal 

variants are shared between two traits (e.g. between a GWAS SNP and an eSNP).  
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Figure 6. Overview of colocalization. Colocalization compares the GWAS and eQTL 
associations while modelling the LD patterns of the locus, to find if both signals are driven 
by the same causal variants. Adapted from Cano-Gamez et al. (10). 

 

The COLOC approach (17) assumes that there is at most one causal variant per trait 

(e.g. per GWAS signal) and applies a Bayesian framework to compute the odds of 

colocalization in a locus compared with the absence of association. According to this 

approach, colocalization appears in a locus  when the probability of association 

between the GWAS risk SNP and the eSNP due to a single colocalized SNP is higher 

than this association probability due to two independent colocalizing signals (10). 

On the other hand, the ENLOC (18) approach combines colocalization with SNP-

enrichment under the reasoning that as the majority of GWAS-identified risk SNPs 

are enriched in tissue-specific eQTLs, then most overlaps between the two traits will 

be driven by true colocalizations in the relevant tissue/cell type. Therefore, this 

method applies a Bayesian model that weighs the probability estimations by the 

tissue-specific SNP enrichment estimations. 
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1.1.2.3. Transcriptome-wide association 

Despite significant increases in GWAS sample sizes during the last years, they did 

not reach the plateau to capture the complete landscape of genetic variants that 

contribute to complex traits and diseases. This is notable in the case of variants with 

small effect sizes, which detection requires very large GWAS sample sizes. A novel 

strategy that permits finding new risk loci related to gene expression is the TWAS 

approach (10). 

A TWAS tests for association between gene expression and a complex trait/disease 

status comparing predicted (i.e. imputed) gene expression levels among cases and 

controls. More in detail, the prediction of the gene expression by statistical 

procedures can be performed thanks to the use of reference imputation panels, 

which consists of statistical associations between SNPs and observed gene 

expression levels obtained from sequencing projects in target tissues of interest. 

Applying these gene expression prediction models to GWAS-derived data (which is 

often publicly available for many complex traits and diseases) allows the imputation 

and comparison of predicted gene expression levels between cases and controls 

(19). This way, TWAS approach avoids sequencing the mRNA of multiple tissues and 

cell types from hundreds of thousands cases and controls, which would be 

unfeasible, especially for non-easily accessible tissues. See an overview of the TWAS 

approach in Figure 7. Additionally, the indirect TWAS testing approach using 

germline genetics data provides evidence of directional causality from gene 

expression to disease risk (19). 
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Figure 7. Overview of the transcription-wide association study (TWAS) approach. (A) 
TWAS uses SNP-gene association results in a tissue of interest (“eQTL map”) to train 
predictors, i.e. gene expression prediction models, which estimate the SNP weights (wi) on 
expression levels of nearby genes, accounting for LD. (B) Predictors are used to impute 
gene expression levels in individuals included in a GWAS study, whose genotype data is 
available. Finally, the imputed gene expression values are tested for association with the 
trait/disease, resulting in a set of genes whose expression positively or negatively 
influences the trait. Reprinted from Cano-Gamez et al. (10). 
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Different statistical approaches have been developed to implement TWAS. Some of 

them require individual-level genotypes, which are often not publicly accessible. 

Others, such as the Summary-PrediXcan (S-PrediXcan) approach (20), allows using 

GWAS summary statistics (i.e. association statistics between SNPs and a given 

trait/disease), facilitating the application of TWAS for many complex traits and 

diseases. Additional improvements of these methods, such as the S-MultiXcan 

approach, allow meta-analysing TWAS results across tissues (21), providing more 

powerful estimates given the notable sharing in genetic regulation of gene 

expression across tissues. The development of improved TWAS approaches that 

provide more accurate estimates is an ongoing active area of research, and new 

methodologies and model implementations are continuously being published.  

Finally, the limitations of the TWAS approach and its comparison with other 

methods have been assessed (22). Of note, a source of possible false positive results 

provided by the TWAS approach is the correlation of predicted expression between 

genes within a locus due to correlation between multiple eSNPs and the GWAS hit 

SNPs. To mitigate the biases that appear due to co-regulation between genes, the 

fine-mapping of causal gene sets (FOCUS) approach was developed, which directly 

models predicted expression correlations and uses this information to assign genes 

posterior probabilities of causality (23). This fine-mapping approach is of special 

relevance in loci where multiple TWAS signals appear. 

1.2. The human colon in health and disease 

1.2.1. Anatomy and main functions  

The colon, also known as large intestine or large bowel, is an organ of the digestive 

system located in the lower gastrointestinal tract. The main function of the colon is 

to reabsorb water, some nutrients and electrolytes from partially digested food, 

generating a solid waste (i.e. stool) (24). Its approximate length is 1.50 meters and 
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is composed of four regions, i.e. the cecum and ascending colon, the transverse 

colon, the descending colon, and the sigmoid colon (25) (see a colon schematic in 

Figure 8). Anatomically the colon can be also divided into a two-region model 

comprising the right and left colon. The right colon consists of the cecum, ascending 

colon, hepatic flexure and the right half of the transverse colon; and the left colon 

consists of the left half of the transverse colon, splenic flexure, descending colon, 

and sigmoid colon. Additional categories of colon anatomy include the proximal 

colon, which refers to the cecum, ascending and transverse colon; and the distal 

colon, which includes the descending and the sigmoid colon (26).  

The wall of the colon is composed of the following tissue layers: mucosa (including 

superficial mucosa, also known as epithelium, lamina propria and muscularis 

mucosa layers), submucosa, muscularis propria (including circular and longitudinal 

muscular layers), subserosa and serosa (see Figure 8).  
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Figure 8. The human colon anatomy. This figure illustrates the main anatomical parts of 
the human colon, i.e. cecum, ascending, traverse, descending and sigmoid colon; along 
with a cross-section depicting each layer of the colonic wall. Reprinted from Encyclopedia 
Britannica (27). 

The colon mucosa mainly consists of a single layer of epithelial cells, i.e. colonocytes, 

which are joined together by tight and adherens junctions and form a contiguous 

and selectively permeable membrane, which is crucial to ensure that the contents 

of the intestinal lumen are not drained (28). At the base of the mucosa lie the colonic 

crypts, which are invaginations that greatly increase the total surface area of the 

colonic epithelium, augmenting its potential to absorb water. Along with 

colonocytes, goblet cells are the major cell types of the colonic crypts. Goblet cells 

produce mucins, such as MUC2 mucin, and other large glycosylated proteins, which 

compose the outer and inner mucus layers (29) (see Figure 9). The mucus is a key 
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protective barrier, as it represents the first line of defense against bacteria (30). 

Additional cell types that compose the colonic mucosa include proliferative cells (i.e. 

stem cells), immune-related cells, such as Tuft cells, and enteroendocrine cells (29) 

(see Figure 9). 

 

Figure 9. Schematic of a colonic crypt. The major cell types that compose the colonic 
mucosa are depicted, as well as other key components such as the mucus and the 
microbiota. DC, dendritic cell. Reprinted from Allaire et al. (29). 

The colon mucosa is a key coordinator of mucosal immunity, and acts as a barrier to 

the external environment, integrating a variety of signals, including those from 

metabolites, microbiota and immune system (29). This selectively permeable 

barrier is dynamic and adapts to environmental perturbations, being able to 

respond appropriately to pathogens while remaining tolerant to innocuous agents 

like microbial metabolites and nutrients from food. Different interrelated molecular 
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mechanisms coordinate to maintain a homeostatic balance, which if disturbed can 

cause serious disease (31). 

1.2.2. Normal colon gene expression 

Normal colon refers to a non-diseased non-neoplastic colon, with absence of 

macroscopic lesions, such as polyps, observed at colonoscopy (32). The 

characterization of gene expression variability across anatomical locations of 

normal colon epithelium from biopsies of healthy individuals has initially been 

addressed using expression microarrays technology (33,34). Specifically, a total of 

154 genes were identified to be differentially expressed between the proximal and 

distal subsites, following a gradient of expression along the colon (33). Among them 

it outstands the family of homeobox genes, which were overexpressed in the 

proximal colon with respect to the distal colon. These genes encode transcription 

factors essential for controlling cell growth and differentiation, suggesting different 

regenerative processes of the epithelial cells according to colon location (34). Of 

note, expression microarrays do not provide estimates of AS events. 

The Colonomics project collected normal colon biopsies from 50 healthy individuals, 

along with 100 normal colon biopsies adjacent/paired to colorectal tumors, and 

reported 29,073 eQTLs (35). In addition, gene expression in normal colon was 

compared with that from tumors. The Colonomics Expression Browser was 

developed to facilitate the access to this data as well as for exploring and visualizing 

colon gene expression levels (36). A screenshot of the browser is shown in Figure 

10. Also, an eQTL Browser with this data is implemented, which includes plots and 

filtering and customization options (37). 
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Figure 10. Screenshot of the Colonomics gene expression browser. It shows the 
expression levels of the gene POLE. From (36).  
 

On the other hand, the last version of the GTEx project (8) provided RNA Sequencing 

(RNA-Seq)-based gene expression profiles of transverse (N=368) and sigmoid 

(N=318) colon, based on post-mortem donors, which cause of death was different 

from colon-related diseases. The sample collection of these data was not 

homogeneous between colon locations. In the case of transverse colon, it is based 

on tissue from the entire colonic wall, and, in the case of sigmoid, it lacks the mucosa 

layer, and it is mainly represented by muscularis mucosa (8). Therefore, the 

corresponding gene expression profiles are not comparable between colon 

locations, as reported elsewhere (38,39). This project identified a total of 11,687 

and 10,550 eQTLs as well as a total of 3,459 and 3,269 sQTLs for transverse and 

sigmoid colon, respectively (8). 

1.2.3. Common complex diseases affecting the colon 

Maintaining intestinal homeostasis is crucial for the normal functioning of the colon. 

The dysregulation of epithelial homeostasis, by factors such as infection, chemicals, 
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or genetics, can lead to chronic diseases. Two major colon-related diseases causing 

an important public health burden in developed countries are colorectal cancer 

(CRC) and inflammatory bowel disease (IBD) (40). 

1.2.3.1. Colorectal cancer 

CRC is the third most commonly diagnosed cancer worldwide and the second 

leading cause of cancer death globally (41). Its etiology is heterogeneous and differs 

by anatomical location and subtype. Approximately 60-65% of CRC cases are 

sporadic, i.e. occur in individuals without CRC family history or inherited risk-

increasing genetic mutations. CRC is largely attributable to modifiable 

environmental risk factors, such as obesity, physical inactivity, nutritionally poor 

diets and smoking habit, which makes it more prevalent in westernized countries 

(42). 

There have been described different CRC carcinogenic pathways, including the 

adenoma-carcinoma, the serrated and the inflammatory pathways. The most 

common is the adenoma-carcinoma pathway, in which there is a progressive 

accumulation of (epi)genetic alterations that drive the transformation of normal 

cells to a polyp, to an early adenoma, to a late adenoma and, finally, to a carcinoma. 

This process is depicted in Figure 11. Crucial genetic alterations are inactivating 

mutations in the tumor suppressor gene APC, which overactivates the Wnt/β-

catenin signaling pathway, that provokes cell proliferation. Subsequently the 

oncogene KRAS acquires mutations, promoting the growth of the adenoma. Also, 

the inactivation of the tumour suppressor gene TP53 contributes to the progression 

to CRC (42) (see Figure 11). Next, the serrated pathway is highlighted by the 

progression from normal cells to hyperplastic polyp, to sessile serrated adenoma 

and to CRC. It is characterised by mutations of the oncogene BRAF, the activation of 

the MAPK pathway, and CpG island methylator phenotype (CIMP) positivity (42). 

Finally, the inflammation-associated carcinogenic pathway remains the less 

frequent and appears particularly in ulcerative colitis patients. Precursor genetic 
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alterations are not prevalent in this pathway, and mutations in APC and TP53 occur 

early and late in the development of carcinogenesis, respectively (42). 

 

Figure 11. Overview of colorectal cancer (CRC) development. Schematic depicting the key 
stages from healthy colon to CRC of the adenoma-carcinoma pathway. Adapted from “The 
Multi-Hit Model of Colorectal Cancer”, by BioRender.com (2021). Retrieved from 
https://app.biorender.com/biorender-templates. 

The germline genetic architecture of CRC has been addressed in GWAS, mostly 

based on subjects of European descent (43,44). CRC has a strong heritable basis, 

with an estimated SNP-based heritability of 29% (95% confidence interval [95% CI]: 

24%-35%) (44). Specifically, a total of 141 independent SNPs, genome-wide 

distributed, have been proposed to affect CRC risk (45). Most variants lie in non-

coding genomic regions influencing gene regulation and are enriched in active 

regulatory regions identified in colon tissue, such as enhancers (44). Also, 

substantial genetic susceptibility heterogeneity has been defined between proximal 

and distal colorectal tumors, specifically, 48 risk loci show tumor-location specificity 

(46).  

Candidate genes have been proposed at several GWAS-identified risk loci, mainly 

based on functional annotation and colocalization with colon and blood eQTLs, and 

other lines of evidence that incorporate epigenomics data (e.g. chromatin-

chromatin interaction and DNA accessibility data). In addition, a TWAS was 
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implemented for CRC, including the prediction of gene expression in the transverse 

colon of a total of 125,478 subjects (58,131 CRC cases). This study identified 25 

genes associated with CRC, which were located both within and outside GWAS-

identified CRC risk loci (47). The symbols and the distribution of these genes by 

chromosome are depicted in a Manhattan plot in Figure 12. 

 

Figure 12. Manhattan plot of the TWAS results for CRC. The blue and red lines represent 
a false discovery rate (FDR)–corrected significance level of P < 6.6 x 10–4 and a Bonferroni 
corrected threshold of P < 9.1 x 10–6, respectively. Reprinted from Guo et al. (47). 
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1.2.3.2. Inflammatory bowel disease 

IBD is a chronic inflammatory disease that affects the gastrointestinal tract. Its 

prevalence has been rising, becoming a global disease with a rapidly increasing 

incidence in newly westernized societies. Environmental risk factors include 

antibiotic usage and smoking (48). 

IBD is characterized by a dysregulated immune response, whose exacerbated effect 

causes serious damage of the intestinal epithelium. Although the complete 

landscape of molecular mechanisms that drive disease pathogenesis is not fully 

elucidated, molecular pathways that maintain the mucosal immunity homeostasis 

have been described as key pathways (49). Indeed, current IBD therapeutic agents 

are mostly limited to block the mediators of inflammation (50).  

Many Inflammatory molecules have been implicated in the IBD pathogenesis (51). 

Important players in the dysregulation of immune response in IBD are the Tumor 

Necrosis Factor (TNF) and the interleukins (IL), such as IL-12 and IL-23, whose 

overexpression contributes to the dysfunction of the adaptive immune system and 

the increased permeability of the intestinal mucosa. This mucosal impairment 

facilitates the infiltration of bacteria to deeper layers of the intestinal wall, causing 

the overactivation of inflammatory processes mediated by innate immune cells, 

such as neutrophils and activated macrophages. This process, in turn, causes the 

further release of pro-inflammatory cytokines, driving a cycle of inflammation and 

intestinal damage that ultimately leads to epithelial cell death (51) (see Figure 13). 
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Figure 13. Dysregulation of immune response in inflammatory bowel diseases (IBD). Key 
features of immune dysregulation that occur in IBD pathogenesis are depicted. Reprinted 
from “Immune Response in IBD”, by BioRender.com (2021). Retrieved from 
https://app.biorender.com/biorender-templates. 

IBD encompasses two similar disease subtypes, which are Crohn’s disease (CD) and 

ulcerative colitis (UC). Different characteristics and clinical manifestations 

differentiate these two subtypes, being CD more heterogeneous (40). For example, 

CD can comprise multiple separate areas of inflammation, and can damage all layers 

of the intestinal wall, forming deep perforations. In contrast, UC forms a continuous 

patch of inflammation, and damages the innermost lining of the intestinal wall (52). 

Regarding the disease localization, while UC is restricted to the colon and rectum, 

CD can affect any part of the gastrointestinal tract. Specifically, CD mainly affects 

the terminal ileum of the small intestine, and it affects the colon in only 25% of 

cases. Different features distinguish ileal from colonic CD, including 

pathophysiological and genetic factors. For example, there is higher neutrophil 
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activity in colonic than ileal CD. Understanding these disease location differences 

can translate into more individualised therapies (53). 

Genetic risk factors have been identified to be associated with IBD by GWAS that 

include nearly 60 thousand subjects, including 25 thousand IBD patients (54). These 

studies have identified a total of 241 independent risk SNPs. The estimation of the 

SNP-based heritability for IBD is 14% (95% CI: 12%-16%), 20% for CD (95% CI: 16%-

24%), and 13% for UC (95% CI: 10%-15%) (14,54). Putative effector genes associated 

with these variants have been proposed by eQTL evidence (54), as well as by gene 

expression network-based approaches in intestinal and immune cell types relevant 

for IBD (55,56). Many genetically regulated genes have been mapped to key 

molecular pathways that drive IBD, including cell-stress and integrity intestinal 

barrier-related pathways, in addition to immune related pathways (see Figure 14) 

(49). However, the complete picture of the molecular mechanisms of IBD 

susceptibility and the implicated genes are not completely ascertained.  

Finally, although there are some TWAS that include IBD (57–59), it has not been 

conducted a TWAS that focuses entirely on IBD and its two main subtypes, and that 

leverages the full potential of the datasets currently available from relevant tissues 

and immune cell types. 
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Figure 14. Molecular pathways driving IBD. This figure shows the key pathways that drive 
IBD and the risk genes that have been mapped to each of them (indicated at the bottom of 
each panel). Reprinted from Graham DB et al. (49). 
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2. HYPOTHESES 

Colon gene expression and AS profiles derived from RNA sequencing of mucosal 

biopsies may provide good estimates of the colon tissue transcriptome. The 

generation of these new data from more than 400 healthy living individuals may 

represent a large reference dataset of normal colon, given the sample size, 

specimen collection procedures and sequencing technology used.  

Gene expression and AS profiles may vary across the colon anatomy. The sample 

collection procedures of these newly generated data, in contrast to the currently 

available population-based colon gene expression data, may provide comparable 

profiles across the colon. 

Colon gene expression and AS can be controlled by cis-regulatory processes 

involving common germline genetic variation (i.e. SNPs) physically located closely to 

the corresponding gene. The association parameters between SNP genotypes and 

gene expression levels can be estimated. 

Genetically regulated gene expression in the colon may play a role in the genetic 

susceptibility to complex traits and diseases, including not only those directly 

affecting the colon, such as CRC or IBD, but also others indirectly related with it, 

such as those affected by molecular processes taking place in the framework of the 

gut-brain axis. In silico approaches such as QTL-heritability enrichment and 

colocalization could be employed to identify diseases in which the colon physiology 

is playing a role and to nominate candidate susceptibility genes for these diseases, 

respectively. 

An interactive web-based resource may facilitate researchers a quick and 

centralized access and exploration of population-based colon gene expression-

related data. 

Gene expression across tissues and cell subtypes can be predicted from genotype 

data in a large cohort of IBD cases and controls. Different levels of predicted gene 
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expression between IBD cases and controls can be measured and may reveal new 

candidate IBD susceptibility genes. These genes may be tissue-specific and different 

according to colon location and tissue category. Also, they may participate in 

pathways related to approved IBD therapies, such as tumor necrosis factor 

signaling. Also, candidate genes may not only provide functional insight in the 

molecular processes underlying disease pathogenesis, but also may guide further 

research on new targeted therapeutics.   
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3. OBJECTIVES 

1. To provide reference profiles for transcriptome-wide gene expression and 

alternative splicing of colon mucosal biopsies from healthy adults.  

1.1. To describe the differences of these profiles across colon anatomic 

subsites (ascending, transverse, and descending colon). 

1.2. To provide the associations of these profiles with SNPs (i.e. e/sQTLs). 

1.3. To identify complex traits and diseases whose SNP-based heritability 

is partly explained by the identified e/sQTLs, and propose candidate 

susceptibility genes for these phenotypes. 

2. To develop a web resource to explore population-based normal colon 

transcriptomic profiles, e/sQTLs, gene expression prediction models, as well 

as to annotate SNPs with colon eQTLs. 

3. To propose candidate genes whose genetically regulated gene expression in 

specific tissues and cell subtypes is associated with inflammatory bowel 

disease, Crohn’s disease, and ulcerative colitis status, separately.  

3.1. To identify candidate susceptibility genes in specific colon subsites, 

with emphasis on gene expression markers of specific cell types. 

3.2. To identify regulatory and signaling molecular pathways in which the 

candidate susceptibility genes are enriched, including IBD therapy-

related pathways. 

3.3. To find candidate susceptibility genes specific for the epithelial, 

immune/blood, mesenchymal and neural tissue categories. 
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4. MATERIALS AND METHODS AND RESULTS 

4.1. BarcUVa-Seq normal colon e/sQTLs. 

The first objective of the Thesis was “to provide reference profiles for 

transcriptome-wide gene expression and alternative splicing of colon mucosal 

biopsies from healthy adults, as well as their differences across colon location and 

corresponding e/sQTLs. Also, to identify complex traits and diseases whose SNP-

based heritability is enriched in the identified e/sQTLs, and propose candidate 

susceptibility genes for these phenotypes”. 

To address this objective, we developed the article entitled “Genetic Effects on 

Transcriptome Profiles in Colon Epithelium Provide Functional Insights for Genetic 

Risk Loci”. 

 

 

 



ORIGINAL RESEARCH

Genetic Effects on Transcriptome Profiles in Colon Epithelium
Provide Functional Insights for Genetic Risk Loci
Virginia Díez-Obrero,1,2,3,4 Christopher H. Dampier,5,6,7 Ferran Moratalla-Navarro,1,3,4

Matthew Devall,5,6 Sarah J. Plummer,5,6 Anna Díez-Villanueva,1,2,3 Ulrike Peters,8,9

Stephanie Bien,8,9 Jeroen R. Huyghe,8,9 Anshul Kundaje,10 Gemma Ibáñez-Sanz,1,2,3,11

Elisabeth Guinó,1,2,3 Mireia Obón-Santacana,1,2,3 Robert Carreras-Torres,1,2,3

Graham Casey,5,6 and Víctor Moreno1,2,3,4

1Oncology Data Analytics Program, Catalan Institute of Oncology, L’Hospitalet de Llobregat, Barcelona; 2Colorectal Cancer
Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research
Institute; 3Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain; 4Department of Clinical
Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain; 5Center for Public Health Genomics, University of
Virginia; 6Department of Public Health Sciences, University of Virginia; 7Department of Surgery, University of Virginia,
Charlottesville, Virginia; 8Epidemiology Department, University of Washington, Seattle, Washington; 9Public Health Sciences
Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; 10Department of Genetics, Stanford University,
Stanford, California; 11Gastroenterology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, Barcelona, Spain

Colon biopsies from  
superficial mucosa 

Gene expression and  
alternative splicing 

DNA genotyping eQTLs and sQTLs Blood samples 

Colon Transcriptome  
Explorer 

Enrichment at 
regulatory regions  

and trait and disease-
associated loci 

Differential expression  
between colon subsites 

…ACTGCATGCTACC… 

SUMMARY

We profiled gene expression and alternative splicing of non-
neoplastic colon from biopsy specimens from 445 healthy
individuals. We showed that single-nucleotide poly-
morphisms associated with these profiles are enriched in
disease-associated loci, including colorectal cancer and in-
flammatory bowel disease.

BACKGROUND & AIMS: The association of genetic variation
with tissue-specific gene expression and alternative splicing
guides functional characterization of complex trait-associated
loci and may suggest novel genes implicated in disease. Here,
our aims were as follows: (1) to generate reference profiles of
colon mucosa gene expression and alternative splicing and
compare them across colon subsites (ascending, transverse,
and descending), (2) to identify expression and splicing

quantitative trait loci (QTLs), (3) to find traits for which iden-
tified QTLs contribute to single-nucleotide polymorphism
(SNP)-based heritability, (4) to propose candidate effector
genes, and (5) to provide a web-based visualization resource.

METHODS: We collected colonic mucosal biopsy specimens
from 485 healthy adults and performed bulk RNA sequencing.
We performed genome-wide SNP genotyping from blood
leukocytes. Statistical approaches and bioinformatics software
were used for QTL identification and downstream analyses.

RESULTS: We provided a complete quantification of gene
expression and alternative splicing across colon subsites and
described their differences. We identified thousands of
expression and splicing QTLs and defined their enrichment at
genome-wide regulatory regions. We found that part of the
SNP-based heritability of diseases affecting colon tissue, such as
colorectal cancer and inflammatory bowel disease, but also of
diseases affecting other tissues, such as psychiatric conditions,



can be explained by the identified QTLs. We provided candidate
effector genes for multiple phenotypes. Finally, we provided the
Colon Transcriptome Explorer web application.

CONCLUSIONS: We provide a large characterization of gene
expression and splicing across colon subsites. Our findings
provide greater etiologic insight into complex traits and dis-
eases influenced by transcriptomic changes in colon tissue. (Cell
Mol Gastroenterol Hepatol 2021;12:181–197; https://doi.org/
10.1016/j.jcmgh.2021.02.003)

Keywords: Gene Expression; Alternative Splicing; QTLs; Colon.

Transcriptome-wide gene expression profiles of
normal colon tissue have been assessed in

population-based studies, using data sets with a range of
different characteristics, including variable colon anatomic
subsites, collection methods, sample sizes, sequencing
technologies, and data processing methods.1–8 A large public
transcriptome data set for non-neoplastic colon tissue from
the Genotype-Tissue Expression (GTEx) project included
samples collected from the transverse and sigmoid colon of
post-mortem subjects and included both mucosa and mus-
cularis propria.8 In most studies, the transcriptome is
assessed in terms of gene expression, however, a compre-
hensive characterization of alternative splicing (AS) has not
been performed in normal colon epithelial tissue derived
from living individuals.

AS is a post-transcriptional regulatory mechanism by
which multiple messenger RNA transcripts are produced
from a single locus, enabling enlargement of cellular func-
tions.9 More than 90% of human genes have the potential to
undergo AS.10 Common AS patterns include exon skipping,
alternative 5’ and 3’ splice sites, mutually exclusive exons,
intron retention, and alternative first or last exons.11 Based
on these predefined patterns and transcript expression
levels, different AS events and their relative abundances can
be identified for a given gene.12 In addition, by measuring
alternative excision of introns, novel and more complex
alternative splicing events can be identified.13 AS has been
assessed in multiple tissue types across several large cohorts,
including healthy8 and pathologic tissues,14–16 allowing the
association of particular AS events with phenotypes such as
age17 and cancer type.14–16 In colon tissue, AS events have
been measured in adenocarcinomas and paired adjacent
normal tissue and have been associated with colorectal
cancer (CRC) anatomic location18 and prognosis.18-20

Single-nucleotide polymorphisms (SNPs) have been
associated with gene expression (ie, expression quantitative
trait loci [eQTLs]) and AS (sQTLs), and increasingly are
identified in studies of both normal8,21-25 and malignant
tissues.26 Such associations can indicate the functional ef-
fects of SNPs at genetic risk loci, help prioritize SNPs and
genes for functional assays, serve as prognostic biomarkers,
and suggest disease mechanisms.10,26,27 In the case of
normal colon tissue, eQTL data sets have been generated,1–8

but there is no information about sQTLs derived from living
individuals.

In this study, we analyzed a novel RNA sequencing
(RNA-Seq) data set of normal colon tissue biopsy specimens
including colon anatomic subsites not investigated previ-
ously (ascending, transverse, and descending). Our data set
is representative of the transcriptome of colon epithelial
cells of living subjects because all biopsy specimens were
collected from mucosa at colonoscopy. This characteristic
makes it optimal for investigating the normal physiology
across the colon, and it is relevant not only for studying the
etiologic aspects of diseases affecting this tissue, such as
CRC, but also for diseases affecting other tissues, such as
those that imply epithelial–neuronal communication28 and
those affected by perturbations of intestinal permeability.29

The aims of this study were as follows: (1) to provide a
reference transcriptomic data set for normal colon epithe-
lium by profiling gene expression and AS, (2) to identify
SNPs associated with variation in gene expression and AS
(ie, QTLs), (3) to list traits for which identified QTLs
contribute to SNP-based heritability, (4) to prioritize
candidate effector genes, and (5) to provide a web-based
resource to visualize the expression profiles and QTLs.

Results
The University of Barcelona and University of Virginia

genotyping and RNA Sequencing Project: A Novel Reference
Data Set for Colon Tissue Transcriptome Analysis

The University of Barcelona and University of Virginia
genotyping and RNA sequencing project (BarcUVa-Seq)
cross-sectional study included 485 adult volunteers found to
have an endoscopically healthy colon (ie, a normal colon
without polyps or other lesions) from whom we collected
superficial colon biopsy specimens and blood samples. Bulk
RNA was isolated from biopsy samples and sequenced in
several batches. Subjects were genotyped using the Illumina
(San Diego, CA) OncoArray 500K beadchip,30 and genome-
wide SNPs were imputed. After filtering the data to select
for individuals with high-quality RNA-Seq and genotype
samples (see theMaterials andMethods section), we included
data from 445 individuals, among whom 283 were female
(64%). Biopsy specimens were obtained from sites along the
ascending (n ¼ 138; 31%), transverse (n ¼ 143; 32%), and
descending (n¼ 164; 37%) colon (Table 1). We profiled gene
expression and alternative splicing and identified cis-acting
eQTLs and sQTLs (see the Materials and Methods section).

Abbreviations used in this paper: AS, alternative splicing; BarcUVa-
Seq, University of Barcelona and University of Virginia genotyping and
RNA sequencing project; CoTrEx, colon transcriptome explorer; CRC,
colorectal cancer; eGene, eQTL gene; eQTL, expression quantitative
trait locus; eSNP, eQTL SNP; FDR, false-discovery rate; FWER, family-
wise error rate; GTEx, Genotype-Tissue Expression project; GWAS,
genome-wide association study; LD, linkage disequilibrium; MAF, mi-
nor allele frequency; PSI, percent splicing index; RBP, RNA-binding
proteins; RNA-Seq, RNA sequencing; sGene, sQTL gene; SNP, single-
nucleotide polymorphism; sSNP, sQTL SNP; sQTL, splicing quantita-
tive trait locus; TSS, transcription start site.
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Gene Expression and Alternative Splicing
Expression was analyzed based on GENCODE (E;BL-EBI,

Hinxton, UK) release 19 annotations.31 After filtering out
features with low or no expression, 21,281 genes and
104,769 transcripts remained (see the Materials and
Methods section). Gene and transcript abundances of in-
terest can be visualized online (see the Colon Transcriptome
Explorer [CoTrEx] section). We considered 13,243 AS
events in 6178 genes after applying filters (see AS events
annotations in Supplementary Table 1). We categorized AS
events as follows: alternative first exons (30%), exon skip-
ping (24%), alternative 3’ splice-site (12%), alternative 5’
splice-site (12%), intron retention (10%), alternative last
exons (10%), and mutually exclusive exons (1%) (Figure 1,
Table 2). Most genes had AS events from 1 or 2 categories,
and few had AS events from up to 6 categories. In addition,
as a complementary AS metric, we computed the abun-
dances of 269,586 alternatively excised introns that were
grouped in 73,313 clusters. Some introns (23%) were novel
and 77% were annotated in 15,912 genes. We filtered in-
trons by low expression or low complexity and considered
only 42,808 intron clusters annotated in 8953 genes for
sQTL analysis (see the Materials and Methods section).

Transcriptomic Profiles Differ Between Colon
Subsites

We aimed to identify genes and splicing features that
were expressed differentially across colon subsites, situ-
ating the transverse colon as an intermediate phenotype
(see the Materials and Methods section). Overall, 4430
genes were expressed differentially between ascending,
transverse, and descending subsites (family-wise error rate
[FWER], �0.05), with absolute log fold changes of up to 3.7
(Figure 2A). Hierarchical clustering of the top 30 genes with
the smallest FWER showed the transverse colon clustered
with descending colon (Figure 2B). Full differential gene
expression results are listed in Supplementary Table 2. Next,
we tested whether genes expressed differentially across
subsites were enriched for features in a wide array of
curated gene sets, signatures, functional pathways, and

ontologies. We found enrichment in a gene set associated
with normal colon tissue transformation into adenoma, in
pathways involved in drug metabolism, and in other bio-
logical processes such as antimicrobial humoral response.
Full enrichment results are listed in Supplementary Table 3.
For splicing, we found 236 genes with different relative
abundances of AS events (false-discovery rate [FDR], �0.05)
(Supplementary Tables 4 and 5) and 280 genes with
different relative abundances of excised introns between the
ascending and descending colon (FDR, �0.05)
(Supplementary Table 6).

Identification of eQTLs and sQTLs
We identified 11,739 eQTLs (Q value � 0.05) including

11,427 unique SNPs (eSNPs) associated with the expression
of 11,739 genes (eGenes) (Supplementary Table 7). Most
eSNPs were associated with a single eGene, but we found
eSNPs associated with up to 6 eGenes. Neither the location
of the eSNPs relative to the gene transcription start site
(TSS) nor the allele frequency were associated with the
eSNP effect (Figure 3). eQTLs can be explored on the CoTrEx
web application (see the Colon Transcriptome Explorer
section). Full eQTL summary statistics are publicly available
(see the Data availability statement). In addition, we per-
formed eQTL interaction analysis for colon subsites
(ascending vs descending) and found 26 eQTLs with a Q
value of 0.05 or less (Supplementary Table 8). The eQTL
rs6684275-RIMKLA showed an inverse association in the
ascending colon compared with the descending colon
(Figure 4).

Next, we mapped 1125 sQTLs (Q value � 0.05) including
1122 unique SNPs (sSNPs) associated with 1125 genes
(sGenes) (Supplementary Table 9). The proportions of AS
categories among SNP-associated AS events were similar to
those found for total AS events (Table 2). Although we found
82% of sGenes among eGenes, only 8% of sGenes shared the
same genetic variants with eGenes (6%) or harbored vari-
ants in high linkage disequilibrium (LD R2 > 0.8) with
eSNPs (2%) (Figure 5A). In addition, we identified an
additional set of 1062 sQTLs (Q value � 0.05) of 1058
sSNPs associated with clusters of excised introns in 1062
genes (Supplementary Table 10) and observed that 40% of
these sGenes were in common with sGenes associated with
AS events. sQTLs can be explored on the CoTrEx web
application (see Colon Transcriptome Explorer section), and
full summary statistics are publicly available (see Data
availability statement).

Replication and Meta-Analysis With GTEx
We performed replication and meta-analyses using data

from the GTEx project v8.8 For replication analysis, we used
samples from the sigmoid and transverse colon (n ¼ 318
and n ¼ 368, respectively). For the replication of eQTLs, we
downloaded the list of GTEx eQTLs (see the Materials and
Methods section). For the replication of sQTLs we used
GTEx transcript expression data for computing AS events as
well as SNPs for computing sQTLs using the same approach
considered for BarcUVa-Seq data (Supplementary Tables 11

Table 1.BarcUVa-Seq Data Set Descriptive

Total individuals, N 445

Sex, n (%)
Female 283 (63.6)
Male 162 (36.4)

Age, y, means ± SD 60 ± 7.44

Colon anatomic location overall
and stratified by sex, n (%)

Ascending (right) 138 (31.0)
Female 86 (62.3)
Male 52 (37.7)

Transverse 143 (32.1)
Female 90 (62.9)
Male 53 (37.1)

Descending (left) 164 (36.9)
Female 107 (65.2)
Male 57 (34.8)
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and 12). We explored the P value distributions between
BarcUVa-Seq and GTEx colon data sets and computed the p1

statistic32 (Figure 6). For eQTLs, a higher replication value
(p1 ¼ 0.76) was obtained for GTEx transverse colon than for
sigmoid colon (p1 ¼ 0.56). For sQTLs the same replication
statistic was obtained for both GTEx colon tissue data sets
(p1 ¼ 0.67).

We performed a meta-analysis of BarcUVa-Seq eQTLs
with the full GTEx v8 data set (n ¼ 49 tissues) using a
multivariate adaptive shrinkage approach.33 Hierarchical
clustering of pairwise correlations on the resulting effect
sizes showed that BarcUVa-Seq eQTLs from colonic mucosa
clustered with GTEx eQTLs from transverse colon and ter-
minal ileum (Figure 7A). The correlations between BarcUVa-
Seq eQTL effect sizes and all GTEx tissues showed that
transverse colon, terminal ileum, stomach, minor salivary

gland, and kidney cortex are the GTEx tissues with highest
correlation (r > 0.7) (Figure 7B).

Annotation and Functional Enrichment Analyses
We observed eSNPs and sSNPs distributed in patterns

similar to each other across the following genomic regions:
introns, intergenic regions, upstream and downstream gene
regions, 3’ and 5’ untranslated regions and splice regions
(including donor and acceptor variants). Intronic variants
were the most common from both types of SNPs. Intergenic
and upstream regions harbored higher proportions of eSNPs
than sSNPs, and splice and untranslated regions harbored
higher proportions of sSNPs than eSNPs (Figure 5B).
Functional consequences also were assessed: most SNPs
were not classified, but a small proportion of SNPs were

Figure 1. Alternative splicing events. (A) Scheme of gene and alternatively spliced transcripts structure in 7 AS categories:
alternative first exons (AF), exon skipping (SE), alternative 3’ splice-site (A3), alternative 5’ splice-site (A5), intron retention (RI),
alternative last exons (AL), and mutually exclusive exons (MX). Constitutive exons (ie, those maintained in all processed
transcripts after splicing) are shown in gray. Exons in red or gold alternatively are present in processed transcripts after
splicing. Dashed line indicates different splicing processing for a gene. (B) Frequency of AS events and genes by AS category.
One gene can be processed according to different AS categories.

Table 2.Description of AS Events and Genes by AS category

Event category Total AS events, n (%) Total genes, n (%) AS events associated with sSNPs, n (%)

SE 3235 (24.43) 2542 (41.20) 316 (28.1)

AF 4023 (30.38) 2146 (34.78) 253 (22.5)

A3 1627 (12.29) 1378 (22.33) 140 (12.4)

A5 1579 (11.92) 1344 (21.78) 148 (13.2)

RI 1327 (10.02) 1022 (16.56) 126 (11.2)

AL 1292 (9.76) 785 (12.72) 259 (11.5)

MX 160 (1.21) 148 (2.40) 12 (1.1)

Overall 13,243 (100.00) 6170 (100.00) 1125 (100.0)

NOTE. A given gene can have AS events from up to 6 categories.
AF, alternative first exons; AL, alternative last exon; A3, alternative 3’ splice-site; A5, alternative 5’ splice-site; RI, intron
retention; MX, mutually exclusive exons; SE, exon skipping.
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classified as nonsense, start loss, frameshift, canonical splice
site, missense, or synonymous variants (Supplementary
Table 13).

Next, we performed enrichment analysis at regulatory
regions (open chromatin regions, active enhancers, super-
enhancers, and transcription factor binding sites) using data
derived from colon cell lines as well as from normal and

cancerous colon tissue. We found significant enrichment (P
value � .05) in all types of regulatory regions for both
eSNPs and sSNPs. In addition, we looked for enrichment in
target sites distributed across the genome of 170 RNA-
binding proteins (RBPs). The top 20 RBPs with the lowest
P values for eSNP enrichment are included in Figure 8A. Of
those RBPs, 15 also were among the top 20 RBPs most

Figure 2. Differential gene expression profiles across colon anatomic subsites. (A) Volcano plot showing the distribution
of gene log fold changes and statistical significance. Points above the horizontal dashed line represent genes considered
significantly differentially expressed (FWER � 0.05). Points in red and blue color represent genes over (red) and underex-
pressed (blue) following a consistent trend from ascending to descending colon (ie, overexpressed in transverse relative to
ascending colon and overexpressed in descending relative to transverse). (B) Heatmap showing the expression profiles of the
top 30 differentially expressed genes across colon subsites ranked by FWER-adjusted P values. Hierarchical clustering shows
the similarity between genes (rows) and samples (columns) based on Euclidean distances.

Figure 3. eQTLs features. (A) Distribution of distances between eSNPs location and corresponding eGenes TSS. (B) Distri-
bution of absolute beta values (slope associated with the nominal P value of association) of eQTLs and eSNPs minor allele
frequencies (MAF). These variables were not correlated (r ¼ 0.14).

2021 Genetic Effects on Colon Transcriptome 185



enriched for sSNPs. In both cases, the heterogeneous nu-
clear ribonucleoprotein C was the RBP with the most sig-
nificant enrichment. The RBPs with highest enrichment
values for sSNPs are included in Figure 8B. We observed
sSNPs enriched at binding sites of spliceosome constituents
such as the splicing factor U2 small nuclear RNA auxiliary
factor 1. Full enrichment results are listed in Supplementary
Table 14.

Phenotype Heritability Enrichment and
Colocalization Analyses

To quantify the ability of BarcUVa-Seq QTLs to explain a
phenotype’s genetic risk loci, we analyzed eSNPs/sSNPs in
the context of their potential contribution to total SNP-based

heritability estimates of multiple complex traits. SNP-based
heritability is the heritability of traits captured by SNPs in a
SNP array in the context of a genome-wide association study
(GWAS). We performed SNP-based heritability enrichment
tests in 63 complex diseases and traits that we considered a
priori to influence or be influenced by colon homeostasis.
We observed that eSNPs were enriched in the SNP-based
heritability estimation of 20 diseases or traits after Bon-
ferroni adjustment (P value � 8 � 10-4) and 31 diseases or
traits at an unadjusted P value � .01. SNP-heritability en-
richments for 33 traits and diseases are included in
Figure 9A, and full results are listed in Supplementary
Table 15. BarcUVa-Seq eSNPs explained 17% of the total
SNP-based heritability of CRC (P value ¼ 9 � 10-8), which
accounts for 10% of the phenotype (based on a recent
GWAS study34). Interestingly, eSNPs also were enriched in
the SNP-based heritability estimation of
psychiatric–neuronal disease, such as schizophrenia, bipolar
disorder, and multisite chronic pain. BarcUVa-Seq sSNPs
were enriched in the SNP-based heritability estimation of 10
diseases and traits at a P value � .01, but no enrichments
were statistically significant after Bonferroni adjustment
(Figure 9B shows 33 representative traits or diseases,
Supplementary Table 15 has the full list of results).
BarcUVa-Seq sSNPs explained 3% of the total SNP herita-
bility of ulcerative colitis (P value ¼ .02), which accounts for
13% of the phenotype (Figure 9B).

Subsequently, to nominate candidate genes at GWAS-
identified genetic risk loci, we performed colocalization
analyses for the complex traits and diseases that passed
Bonferroni correction for SNP-based heritability analysis for
BarcUVa-Seq eSNPs. The regional colocalization probability
is used as a proxy for the gene’s causality, that is, to quantify
the probability that an eQTL and a GWAS signal share the
same causal variant.35 In the case of CRC, we identified 13
genes with regional colocalization probability greater than

Figure 4. Example of eQTLs interacting with colon sub-
site. Distribution of expression level (inverse normal trans-
formed trimmed means of M values) of RIMKLA by rs6684275
genotype and colon subsite.

Figure 5. Colocalization among sSNPs and eSNPs and genomic region annotation. (A) Percentages of colocalization
patterns among sSNPs and eSNPs in common genes according to measures of LD R2. (B) Percentages of eSNPs and sSNPs
at specific genomic regions, note that the plot is gapped between 15% and 30% and rescaled between 30% and 60% to show
the differences in the categories with the lowest representation. UTR, untranslated region.
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Figure 6. Replication anal-
ysis of eQTLs/sQTLs with
GTEx v8 colon data. The
value of the p1 statistic is
shown. The distribution of P
values is shown for (A)
transverse colon eQTLs, (B)
sigmoid colon eQTLs, (C)
transverse colon sQTLs, and
(D) sigmoid colon sQTLs.

Figure 7. Meta-analysis with GTEx v8 tissues. (A) Clustering of BarcUVa-Seq and GTEx v8 tissues based on pairwise
Spearman correlation of eQTL effect sizes derived from mashr meta-analysis. We only considered significant (FDR � 0.05) and
active (local false sign rate [LFSR] � 0.05) eQTLs. (B) Spearman correlation of eQTL effect sizes between BarcUVa-Seq and
GTEx v8 tissues. eQTL effect sizes were derived from mashr meta-analysis. We only considered significant (FDR � 0.05)
and active (LFSR � 0.05) eQTLs.
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Figure 8. Enrichment of eSNPs/sSNPs in binding sites across the genome of RBPs. (A) The top 20 RBP with the lowest
enrichment P values for eSNPs. (B) The top 20 RBPs with the highest enrichment values for sSNPs (P value < .05).

Figure 9. BarcUVa-Seq QTL enrichment results for total SNP heritability of 33 complex traits and diseases related to
colon tissue. (A) Proportion of total SNP heritability explained by eSNPs is shown on the x axis, along with error bars. The size
of the points indicates the percentage of the total SNP heritability out of the total heritability of the phenotype. (B) Proportion of
total SNP heritability explained by sSNPs is shown on the x axis, along with error bars. The size of the points indicates the
percentage of the total SNP heritability out of the total heritability of the phenotype.
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0.9, including known risk genes such as COLCA1 and
COLCA2,6 as well as other less-well-described genes such as
ANKRD36. In the case of inflammatory bowel disease, we
identified 6 genes with a regional colocalization probability
greater than 0.9, such as IRF8 and RGS14 (Figure 10). Full
results are available in the Supplementary Data.

Colon Transcriptome Explorer
Gene and transcript abundances for the BarcUVa-Seq

data set, as well as eQTLs/sQTLs, have been loaded into
the web-based visualization resource CoTrEx. This tool fa-
cilitates searches for genes and transcripts of interest for
their visualization in customizable plots, such as a strip
chart, heatmap, and principal component analysis (PCA)
plots. The interactive application includes different options
for filtering and coloring the data by covariates. Figure 11
shows an example in the Expression tab. CoTrEx is freely
available online at http://barcuvaseq.org/cotrex.

Discussion
In the present study we analyzed a large data set (Bar-

cUVa-Seq) comprising germline SNPs and transcriptome
profiles from mucosal biopsy specimens of ascending,
transverse, and descending colon collected from 445
healthy living individuals. Differential expression patterns
were identified across colon subsites. We profiled 11,739
eQTLs comprising 11,427 unique SNPs associated with the
expression of 11,739 genes. In addition, we identified
13,243 AS events from 7 distinct AS categories and identi-
fied 1125 AS events in 1125 genes associated with 1122
unique SNPs (sQTLs). These eQTLs/sQTLs frequently were
intronic and enriched in regulatory regions. We showed
how these are useful for annotation of GWAS-identified risk
loci and prioritization of candidate effector genes. Moreover,
we replicated and meta-analyzed our QTLs with GTEx v8
data. Finally, we built an interactive web resource to explore
the expression profiles and QTLs of the BarcUVa-Seq data
set.

In contrast to BarcUVa-Seq, the GTEx project provided
RNA-Seq data on sigmoid and transverse colon tissue from
post-mortem subjects and extracted RNA from full-
thickness and muscularis-only sections.8,36 Our novel
BarcUVa-Seq data set overcomes some of the limitations of
the GTEx colon data sets. BarcUVa-Seq samples were
collected as superficial mucosal biopsy specimens in living
subjects undergoing colonoscopy, which provide an optimal
representation of the normal physiology of the colon
epithelium. Moreover, they included subsites of the large
intestine not assessed previously. Together with the
enrichment of colon epithelial cells in superficial biopsy
specimens, inclusion of ascending, transverse, and
descending colon samples make BarcUVa-Seq a unique co-
lon transcriptome data set.

Next-generation RNA-Seq data provide estimates of AS.
Although long-read sequencing technologies can provide
transcriptomic profiles with full-length isoform information,
such technologies have lower base-level fidelity and are less
feasible in large population-based studies at their current

cost.11 In this study we used 2 complementary methods to
provide a comprehensive profile of AS. The frequencies of
genes with specific AS patterns that we identified in colon
tissue are similar to those described in other tissues, where
genes with exon skipping events were the most frequent.17

Predicting AS events helps generate hypotheses about spe-
cific molecular mechanisms involved in post-transcriptional
modifications. In contrast to profiling individual transcripts
to characterize the transcriptome, AS events group tran-
scripts with similar structure. However, the profiles of an-
notated AS events are sensitive to the choice of transcript
annotations,11 and other measures of AS, such as clusters of
excised introns, complement the characterization of AS
events.13

Regarding colon location, transcriptomic differences be-
tween subsites in normal colon have been described pre-
viously,37 including gene expression differences in genes
from the cytochrome P450 family. In addition, different AS
events have been identified between CRC tumors located in
the ascending and descending colon.38 Indeed, tumor dis-
tribution across the colon has been associated with differ-
ential mutation and immune profiles, prognosis, and
treatment response.39,40 In this study, we identified a subset
of genes expressed differentially between colon subsites
that are involved in molecular pathways related to lipid,
xenobiotic, and drug metabolism, and a subset of genes
involved in antimicrobial response. We observed that the
gene expression profile of transverse colon tissue was more
similar to the descending than to the ascending colon, which
was unexpected based on embryologic origin and adult
blood supply. Differential gene expression across the colon
may reflect differences in cell type composition because we
find gene markers of different cell types of the colon
epithelium shown by single-cell RNA-Seq studies.41-43 For
instance, using our data, we confirmed that goblet cell
markers defined elsewhere,41 such as MUC2 and TFF3, are
overexpressed in descending colon (Supplementary
Table 2), which supports previous findings that have
shown that goblet cell content increases caudally from du-
odenum to distal colon.44 Differential expression also may
be influenced by differential exposure owing to variability in
luminal content along the length of the colon, including
microbial communities.43

We identified eQTLs and sQTLs assumed to participate
in the transcriptional regulation of colon epithelium via cis
mechanisms. These had strong replication in the transverse
colon from GTEx v8 and were more similar to tissues with a
high proportion of mucosa (eg, terminal ileum, stomach, and
salivary gland) than others from GTEx v8, showing the
robustness of BarcUVa-Seq data. The lower replication value
in sigmoid colon may be owing to the higher proportion of
muscularis in this tissue.8,36 We found fewer sGenes than
eGenes, partly because the number of genes that showed
splicing variability was lower than genes with expression
variability. In addition, we had lower power to detect
expression for transcripts than for genes at our depth of
coverage. We found similar distributions of eSNPs/sSNPs
around gene TSSs, as well as across estimated effect sizes,
genomic locations, and functional consequences. We
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observed a high proportion of sGenes among eGenes, as
reported elsewhere.24,25 Although they can colocalize,
eQTLs and sQTLs usually are independent.27 sQTLs add
information to eQTLs as they associate SNPs with changes in
relative use of specific sets of transcripts sharing a common
structure and post-transcriptional mechanism.

In this study, we showed that regulation of gene
expression and AS is associated with tissue-specific epige-
netic variations, including chromatin remodeling and his-
tone modifications.45 The dysregulation of these features
has been associated with initiation and progression of dis-
eases such as CRC.45,46 We showed that normal colon
eSNPs/sSNPs are present at many important regulatory
regions marked by epigenetic signatures, such as open
chromatin and proximal enhancers of both normal and
malignant colon tissue. In addition, we identified specific
RBPs and transcription factors as potential regulators of AS
in normal colon.

We provide a comprehensive profile of AS for normal
tissue along colon subsites in living subjects. We described
differential gene expression and splicing between the
ascending and descending normal colon, which involved
genes of immune response and drug metabolism. We
expanded the number of colon QTLs and assessed eQTL
interaction with colon subsites. In addition, we observed
that colon eQTLs/sQTLs contributed to the SNP-based her-
itability of brain-related traits and disease, supporting a
model of epithelial–neuronal communication along the
gut–brain axis.28 Thus, our QTL catalog may be of potential
interest for researchers investigating traits and diseases

that do not primarily affect the colon, but other organs. It is
important to note that these results could reflect a common
regulation of expression between tissues. In addition,
colocalization alludes to potential molecular mechanisms
associated with risk loci, but may not prove to be directly
causal.

Overall, our findings provide evidence of the regulation
of gene expression and alternative splicing in the colon as
potential underlying mechanisms of genetic risk loci and
should serve as a rich resource for the research community.

Methods
Sample Collection

Subjects included in the study (n ¼ 445; 64% females)
had a mean age of 60 years, were almost all of European
ancestry, and received an indication for colonoscopy after a
positive fecal immunochemical test result (hemoglobin
level, >20 mg Hb/g) or by direct referral by their medical
doctor. Subjects had no lesions at colonoscopy and no his-
tory of polyps or CRC. Non-neoplastic colon mucosa biopsy
specimens were obtained endoscopically from the
ascending (n ¼ 138; 31%), transverse (n ¼ 143; 32%), and
descending (n ¼ 164; 37%) colon (Table 1). Peripheral
blood samples also were collected. Informed consent was
obtained from all participants. The corresponding study
protocol was approved by the Bellvitge University Hospital
Ethics Committee (PR073/11 and PR286/15) and followed
national and international directives on ethics and data
protection. More information about the BarcUVa-Seq project

Figure 10. The top eQTLs of the genes with the highest regional colocalization probability for CRC and inflammatory
bowel disease. (A) Expression level (inverse normal transformed trimmed means of M values [TMMs]) of COLCA2 by genotype
of the eSNP rs11213820. (B) Expression level (inverse normal transformed TMMs) of IRF8 by genotype of the eSNP
rs16940186.
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can be accessed online at https://barcuvaseq.org. All au-
thors had access to the study data and reviewed and
approved the final manuscript.

RNA-Seq Library Preparation and Sequencing
RNA was extracted from frozen tissue using the mirVana

kit (Thermo Fisher Scientific, Waltham, MA) after homoge-
nization using the Minilys bead mill (Bertin Instruments,
Montigny le Bretonneux, France). The RNA was DNAse
treated and concentrated using the RNA Clean and
Concentrator-5 kit (Zymo Research, Irvine, CA). Quantifica-
tion of total RNA was executed using a Qubit Fluorometer
(Invitrogen, Walthan, MA). An Agilent (Santa Clara, CA)
2100 Bioanalyzer or TapeStation was used to assess quality.
For library preparation, the Illumina TruSeq Stranded Total
RNA Library Prep Gold kit was used. Libraries were tagged
with unique adapter indexes. Final libraries were validated
on the Agilent 2100 Bioanalyzer, quantified via quantitative

polymerase chain reaction, pooled at equimolar ratios,
diluted, denatured, and loaded onto an Illumina HiSeq 2500
(high-output mode), for batches 1–7, or a NovaSeq 6000, for
batch 8, instruments using a paired-end flowcell.

RNA-Seq Data Processing
Low-quality bases, sequencing adapters, and ribosomal

RNA of raw sequences were trimmed from RNA-Seq reads
using BBTools suite (Joint Genome Institute, Berkeley,
CA).47 FastQC (Babraham Bioinformatics, Cambridge, UK)48

was used for quality control. Trimmed reads were aligned
against human transcriptome using the Genome Reference
Consortium human reference 37 assembly (GRCh37/hg19)
with the Spliced Transcripts Alignment to a Reference
(STAR, Cold Spring Harbor Laboratory, Cold Spring Harbor,
NY) software in 2-pass mode49 using GENCODE (EMBL-EBI,
Hnxton, UK) release 19 annotations, which include a total of
57,952 genes and 196,667 transcripts.31 We only included

Figure 11. Overview of the expression tab of CoTrEx. As an example, the transcript expression values and relative abun-
dances of the TP53 gene are shown, along with different display options.
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samples with a depth of coverage greater than 10 million
mappable paired-end reads, a multimapping rate lower than
15%, and a unique mapping rate greater than 80%. The
mean library size was 32M (SD, 8.5M). Gene and transcript
expression were quantified with RSEM (University of Wis-
consin-Madison, Madison, WI).50 Genes and transcripts with
fewer than 6 and 3 counts, respectively, in less than 10% of
the samples were considered not expressed and filtered out.
Trimmed mean of M values were computed from counts to
correct for library size and RNA composition.

Genotype Data Processing
Genotyping of approximately 400,000 SNPs was per-

formed with the Illumina OncoArray BeadChip.30 We only
included samples with a genotyping rate greater than 95%.
The following aspects also were assessed before imputation:
duplication and relatedness greater than 0.8, missing rate
per SNP greater than 0.1, missing rate per sample greater
than 0.1, sex concordance (genetic and reported sex), het-
erozygosity: means ± 4 SD and Hardy–Weinberg disequi-
librium P value less than 1 x 10-4. We obtained allelic
dosages from 39,117,105 and 1,228,035 SNPs for auto-
somes and chromosome X, respectively, using SHAPEIT
(University of Oxford, Oxford, UK)51 for phasing and Mini-
mac 3 (University of Michigan, Ann Arbor, MI)53 for impu-
tation with The Haplotype Reference Consortium panel on
the Michigan Imputation Server.52 SNPs with an imputation
quality of R2 less than 0.7 or minor allele frequency (MAF)
less than 1% were excluded, resulting in 6,804,675 and
183,788 SNPs for autosomes and chromosome X, respec-
tively. Allelic dosages were used for subsequent QTL ana-
lyses. SNP IDs were annotated using dbSNP version 142.53

Principal components of genetic data were obtained with
PLINK 1.9 (Complete Genomics, Mountain View, CA).54 We
checked that both genotype and RNA-Seq samples had been
labeled correctly and belonged to the same individual using
Picard Tools CheckFingerprint (Broad Institute, Cambridge,
MA).

Alternative Splicing Profiling
For quantifying AS, we used 2 complementary methods

that provide the relative abundance (ie, percent splicing
index [PSI]) of specific AS features. Seven types of AS events
were determined based on GENCODE version 19 annota-
tions with SUPPA2 (Catalan Institution for Research and
Advanced Studies, Barcelona, Spain).12 In this case, the PSI
reflects the proportion of transcripts of a given gene
showing a specific AS event (ie, inclusion transcripts) of the
total transcripts of the gene.11 This metric was calculated
with SUPPA2 for each AS event by dividing the expression
levels of the inclusion transcripts by the total expression
levels of all transcripts of the gene. We kept AS events in
which the median PSI for all samples was between 0.05 and
0.95 (see AS events annotations in Supplementary Table 1).
As a complementary approach, we used LeafCutter (Stan-
ford University, Stanford, CA)13 following the analysis pro-
cedure described elsewhere8 to compute the relative
abundance of alternatively excised introns.

Differential Gene Expression and Splicing
Analysis

Differential gene expression analysis was performed
using a quasi-likelihood F-test implemented in the R pack-
age edgeR (Garvan Institute of Medical Research, Parkville,
Australia).55 Ward’s minimum variance method with
Euclidean distances was used for hierarchical clustering. For
differential splicing analysis, normalized PSI values of AS
events were fitted in a linear model adjusted for sex, age,
and sequencing batch using the R package limma (Univer-
sity of Melbourne, Parkville, Australia).56 The function
diffSplice was used to perform an F test to find the differ-
ences between AS event log-fold-changes of a gene and yield
a single gene-level P value. T tests for individual AS events
also were performed with diffSplice. Differential use of
excised introns was performed with LeafCutter,13 adjusting
for sex, age, and sequencing batch. Functional enrichment
analysis was performed with FUMA gen2func (University
Amsterdam, Amsterdam, The Netherlands)57 using differ-
entially expressed genes with FWER of 0.05 or less. FWER
values were estimated for correcting for multiple testing
using a Bonferroni correction.

eQTL/sQTL Mapping
We mapped QTLs within 1 Mb of the TSSs for given

genes and assumed QTLs influenced expression of nearby
genes via cis mechanisms. For QTL identification we used
FastQTL (University of Geneva Medical School, Geneva,
Switzerland) version 2.0.58 We applied an inverse normal
transformation on gene trimmed means of M values and
PSI values, which mitigates the effect of outliers and
normalizes the expression distribution across samples. We
adjusted the models for age, sex, sequencing batch, tissue
anatomic location, genetic ancestry (2 principal compo-
nents), and probabilistic estimation of expression re-
siduals factors,59 which capture the effects of unknown
confounding variables. We chose the number of probabi-
listic estimation of expression residuals factors that
maximized the discovery of eGenes/sGenes. FDR (Storey
and Tibshirani procedure) was computed with R package
qvalue (Princeton University, Princeton, NJ).60 For colon
subsite eQTL interaction analysis we used the FastQTL
version 2.0 interaction mode.57

Replication and Meta-Analysis With GTEx Data
For replication analysis, we estimated p1

33 with the R
package qvalue.60 This statistic reflects the proportion of
true positives among BarcUVa-Seq QTLs that also were
detected by the corresponding QTL analysis in GTEx v8.
Following a common approach described elsewhere,8 we
only included associations involving the SNP with the
lowest P value for each gene to avoid including many SNPs
in LD. For meta-analysis, full GTEx v8 eQTL summary
statistics (n ¼ 49 tissues) were downloaded from the
Google Cloud Platform (Mountain View, CA) under gtex-
resources. We used a multivariate adaptive shrinkage
approach using the R package mashr (University of Chi-
cago, Chicago, IL)33 following the same analytic pipeline
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described elsewhere.8 Effect size estimates and local false
sign rate output by mashr were used as metrics of QTL
magnitude and activity, respectively. A local false sign rate
less than 0.05 was used as a threshold for significant QTL
activity.

Annotation and Functional Enrichment Analysis
For the annotation of genomic regions and classifica-

tion of variants according to their functional consequence
we used the ENSEMBL Variant Effect Predictor (EMBL-
EBI, Hinxton, UK).61 We used the –pick flag to extract a
single annotation per variant following an ordered set of
criteria to prioritize annotations. For functional enrich-
ment analysis in regulatory regions distributed across the
genome (Supplementary Table 14), we compiled a list of
publicly available regions relevant for colon tissue from
different studies (ie, active enhancers,46 variant enhancer
loci,46 open chromatin sites,34,46 superenhancers,62 and
transcription factor binding sites63). Regions from multi-
ple samples of the same assay type were joined. In addi-
tion, we downloaded RNA binding protein sites, including
splicing factor binding sites, from CLIPdb (Tsinghua Uni-
versity, Beijing, China).64 We used GREGOR (University of
Michigan, Ann Arbor, MI),65 which defines enrichment
(fold change) as the ratio between the number of observed
vs expected SNPs overlapping the regulatory regions. This
approach accounts for the number of LD proxies, gene
proximity, and MAF.

Phenotype Heritability Enrichment and
Colocalization Analyses

For the SNP-based heritability enrichment analysis
(partitioned heritability analysis) of eSNPs/sSNPs among
disease-/trait-associated loci, we applied linkage disequi-
librium score regression using the software LD SCore
(Broad Institute of MIT, Cambridge, MA)66 with baselineLD
model. A list with the GWAS summary statistics used for this
analysis and related information can be found in
Supplementary Table 15. Total SNP heritability for the
tested phenotypes was estimated in observed scale for
continuous traits and in liability scale for binary traits, using
LD score regression from a total of 1,217,312 SNPs with a
MAF greater than 0.05 in HapMap phase 3 populations
(NHGRI, Bethesda, MD).66 Under the null hypothesis of all
SNPs contributing equally to the total SNP-based heritabil-
ity, we would expect that the 1122 sSNPs and 11,427 eSNPs
identified in this study explain approximately 0.09% and
0.94%, respectively, of estimated total SNP heritability.
Population prevalence and lifetime risk in the case of CRC
was curated from the literature. For colocalization we used
the fastENLOC (University of Michigan)35 approach. We
computed Z-score–derived posterior inclusion probabilities
for GWAS summary statistics with TORUS (University of
Michigan)67 and assigned LD blocks to each locus using the
references defined elsewhere.68 We performed multi-SNP
fine-mapping analysis of eQTLs with DAP-G (University of
Michigan).69

Web Application
The web-based visualization resource CoTrEx was

developed with the RStudio platform Shiny (Boston, MA)70

using open-source software.

Data Availability
The RNA-Seq and SNP data that support the findings of

this study as well as the sample covariates are available
from the European Genome-phenome Archive under
accession number EGAS00001004891. Complete summary
statistics (including all FastQTL nominal pass results) for all
QTLs identified in this study are available from the Digital
Repository of the University of Barcelona at http://hdl.
handle.net/2445/172697. Top-QTLs per gene are available
in Supplementary Tables 7, 9, 10, 11, and 13.
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4.2. The Colon Transcriptome Explorer (CoTrEx) 2.0. 

The second objective of the Thesis was “to develop a web resource to explore 

population-based normal colon transcriptome profiles, e/sQTLs, gene expression 

prediction models, as well as to annotate SNPs with eQTLs”. 

To address this objective, we developed the article entitled “The Colon 

Transcriptome Explorer (CoTrEx) 2.0, a reference resource for exploring population-

based normal colon gene expression”. 



 

Application Note / Short Communication / Brief Report 1 

The Colon Transcriptome Explorer (CoTrEx) 2.0: a reference 2 

web-based resource for exploring population-based normal co- 3 

lon gene expression 4 

Virginia Díez-Obrero 1,2,3,4, Ferran Moratalla-Navarro 1,3,4, Christopher Heaton Dampier 5,6, Matthew Devall 5,6, Rob- 5 
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pitalet de Llobregat, Barcelona, Spain. 10 

3 Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain. 11 
4 Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain. 12 
5 Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA. 13 
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 15 
* Correspondence: v.moreno@iconcologia.net; Tel.: +34 932 607 434 16 

Abstract: Gene expression data is key for the functional annotation of single nucleotide polymor- 17 
phisms (SNPs) identified in genome-wide association studies (GWAS). Expression and splicing 18 
quantitative trait loci (e/sQTLs) in normal colon tissue, such as those from the University of Barce- 19 
lona and University of Virginia RNA sequencing project (BarcUVa-Seq) and the Genotype-Tissue 20 
Expression project (GTEx), are required to gain biological insight of colon-related diseases risk loci. 21 
Moreover, transcriptome-wide association studies (TWAS) rely on reference gene expression impu- 22 
tation panels in the tissue of interest to nominate susceptibility genes. Also, it is of high interest to 23 
study the relationships between genes in a network framework. For facilitating these analyses, we 24 
have updated and expanded the scope of the Colon Transcriptome Explorer (CoTrEx) to the version 25 
2.0. This web-based resource provides exhaustive visualization and analysis of transcriptome-wide 26 
gene expression profiles of normal colon tissue from BarcUVa-Seq and GTEx. In addition to the 27 
integration of new datasets, CoTrEx 2.0 provides additional e/sQTLs sets, as well as gene expression 28 
prediction models and regulatory and co-expression networks. It is freely available at https://barcu- 29 
vaseq.org/cotrex/. Overall, it is of high interest for researchers aiming to investigate the genetic sus- 30 
ceptibility to colon-related complex traits and diseases. 31 

Keywords: RNA-Seq; bioinformatics; web application; gene expression; alternative splicing; visual- 32 
ization; molecular epidemiology 33 
 34 

1. Introduction 35 

Datasets of both blood DNA genotyping and RNA sequencing (RNA-Seq) of biopsy 36 
samples from a large number of healthy individuals are valuable resources for studies in 37 
molecular epidemiology. For example, they provide expression and splicing quantitative 38 
trait loci (e/sQTLs) for the annotation of genome-wide association studies (GWAS)-iden- 39 
tified risk single nucleotide polymorphisms (SNPs) and gene expression prediction 40 
models for transcriptome-wide association studies (TWAS). In this sense, the University 41 
of Barcelona and University of Virginia genotyping and sequencing project (BarcUVa- 42 
Seq) provided gene expression and alternative splicing profiles of normal (i.e. non-neo- 43 
plastic, without lessons) colon biopsies from ascending (N=138), transverse (N=143) and 44 
descending (N=164) subsites. The expression profiles and their association statistics with 45 
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germline genetic variants, i.e. e/sQTLs, were recently reported and included in the initial 46 
version of the Colon Transcriptome Explorer (CoTrEx) [1]. Additionally, the Genotype- 47 
Tissue Expression (GTEx) project provided normal colon e/sQTLs from transverse 48 
(N=368) and sigmoid (N=318) colon samples from corpses [2]. Although the gene expres- 49 
sion and related information is provided as supplementary material or deposited in pub- 50 
lic online repositories, it is often difficult and time consuming for researchers to access 51 
the data and analyze and visualize their gene of interest, especially for non-bioinformati- 52 
cians.  53 

In this article we present the CoTrEx 2.0, an interactive web resource that facilitates 54 
the exhaustive visualization and analysis of normal colon gene expression and alterna- 55 
tive splicing data from BarcUVa-Seq and GTEx projects. This version, in addition to in- 56 
corporating GTEx colon datasets and new customization options, provides additional 57 
e/sQTL sets, a SNP annotation tool, prediction models statistics for gene expression im- 58 
putation, and regulatory and gene co-expression networks. 59 

2. Description of CoTrEx 2.0 60 
CoTrEx 2.0 is a web-based resource that includes normal colon gene expression data 61 

from BarcUVa-Seq and GTEx projects (see schema in Figure 1). Its main components are 62 
divided in the “Expression”, “QTLs”, “Prediction models”, and “Networks” tabs. 63 

On the “Expression” tab, users can search for a gene of interest, select one or more 64 
associated transcripts and visualize their expression in multiple ways. On the left panel, 65 
the following options are available: i) filter the input data by sex, age and colon anatomic 66 
location, ii) select specific visualization features (e.g. heatmap, PCA plot), and iii) group 67 
transcripts by relative abundance according to a selected expression threshold (i.e. if 0.05 68 
is selected, the lowest expressed 5% of transcripts is grouped in a single category labeled 69 
“Other transcripts”). On the main panel, a customizable stripchart and a barplot are dis- 70 
played. For example, points in the stripchart can be colored by covariates of interest, and 71 
transcript expression can be hidden to show only the expression of selected genes. Anno- 72 
tation by covariate is also available for heatmaps and PCA plots. 73 

On the “QTLs” tab, users can explore lists of significant colon e/sQTLs, including 74 
summary statistics and customizable plots showing the distribution of gene expres- 75 
sion/percent splicing index by SNP genotype. Users can also search for association statis- 76 
tics for SNPs of interest by selecting the “Annotate SNPs” option. The “Prediction models” 77 
tab includes elastic net-based gene expression prediction models for the entire colon and 78 
by colon subsite. Descriptive statistics of the prediction models and the SNP weights can 79 
be obtained for a gene of interest. 80 

On the “Networks” tab, by selecting the “Regulatory network” option, users can ex- 81 
plore gene interactions between TFs and regulated target genes in a network. Arrows are 82 
directed from TFs to target genes (either TFs or non-TFs). It is possible to explore first and 83 
second order step neighbors by selecting the corresponding option. Descriptive and top- 84 
ological network parameters are provided in tables, including the mutual information 85 
(MI) values for each interaction, which indicate the strength of an interaction. The 86 
weighted correlation network analysis (WGCNA) approach [3] was used for exploring 87 
patterns of correlated gene expression in a gene co-expression network framework. This 88 
method makes groups of highly interconnected genes called modules. A total of 20 mod- 89 
ules with a mean of 777 highly correlated genes per module were defined, each of them 90 
labelled with a color name. The gene-module assignments can be downloaded, and hier- 91 
archical clusters of all modules can be explored. 92 

 93 



FOR PEER REVIEW 3 of 5 
 

 

 94 

 95 
Figure 1. CoTrEx 2.0 schematic. 96 

3. Discussion 97 
We have updated and expanded the scope of CoTrEx to the newest version 2.0, in- 98 

cluding new data and functionalities. This version includes gene expression and alterna- 99 
tive splicing-related data from the GTEx v8 transverse and sigmoid colon. In this version, 100 
the genes and transcripts visualized on the Expression tab can be filtered or colored ac- 101 
cording to the individuals’ age and sex. Also, the expression statistics associated with the 102 
selected samples can be retrieved. Transcripts can be grouped by relative abundance and 103 
hierarchical clustering can be observed in a heatmap. These features are not provided by 104 
the GTEx Transcript Browser [4]. In addition, we provide a SNP annotation tool on the 105 
QTLs tab where users can provide a list of SNPs of interest to explore associations with 106 
genes located up to 1Mb of distance. In contrast, the GTEx eQTL Calculator [5] requires 107 
that the users provide the gene ID in addition to the SNP of interest. This is not convenient 108 
in cases where the user wants to explore SNP-gene associations of all genes nearby a SNP 109 
of interest. Also, the gene expression prediction models can be downloaded from the Pre- 110 
diction models tab, which are useful for investigators interested in performing TWAS and 111 
nominating candidate susceptibility genes for a phenotype of interest. A list of complex 112 
traits and diseases for which the gene expression prediction models provided in CoTrEx 113 
2.0 are relevant for TWAS is provided elsewhere [1]. Future developments of CoTrEx 2.0 114 
would include additional QTL sets generated, such as regulatory QTLs, associated with 115 
changes in interactions between genes.  116 

In conclusion, CoTrEx 2.0 facilitates a quick and centralized access to explore and 117 
analyze the most up to date reference gene expression and splicing profiles for non-neo- 118 
plastic human colon tissue, and their associations with germline genetic variants, which 119 
facilitates the understanding of the transcriptomic basis of this tissue. Finally, the CoTrEx 120 
2.0 is a valuable resource for researchers interested in annotating risk loci identified in 121 
colon-related GWAS, in performing TWAS for colon-related diseases, and in unraveling 122 
the mechanisms underlying inherited susceptibility to colon-related diseases. 123 

4. Materials and Methods 124 
CoTrEx 2.0 was built with the R platform Shiny [6]. Gene and transcript expression 125 

counts and e/sQTLs of GTEx v8 sigmoid and transverse colon were obtained from the 126 
database of Genotypes and Phenotypes (dbGaP) at http://www.ncbi.nlm.nih.gov/gap 127 
through dbGaP accession number phs000424.v8.p2. Genes with at least 6 counts in more 128 
than 20% of the samples were provided. Expression counts were transformed to trimmed 129 
mean of M-values (TMMs). Gene expression prediction models of GTEx v8 were obtained 130 
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from elsewhere [1,7] (see data availability statement). Gene expression prediction models 131 
of BarcUVa-Seq were generated for the whole sample size and for subsets of the data ac- 132 
cording to the anatomic location where the biopsies were collected (ascending, transverse 133 
and descending colon). The elastic net-based models were generated following the Pre- 134 
dictDB pipeline, which was the one used for GTEx v8 data [7]. Following this pipeline, we 135 
considered significant gene models those with a predictive performance P < 0.05 and R2 > 136 
0.1. Gene expression data was adjusted for sex, sequencing batch, probabilistic estimation 137 
of expression residuals [PEER] factors [8] and genetic ancestry (2 principal components).  138 

The BC3net R package [9] was used to generate weighted directed gene regulatory 139 
networks between 2,195 transcription factors (TFs) and 8,785 target genes. TFs were cho- 140 
sen according to three GO annotations: GO:0045449 “regulation of transcription”, 141 
GO:0001071 “Nucleic acid binding transcription factor activity”, and GO:0140110 “tran- 142 
scription regulator activity”. A total of 1,000 bootstraps were run to get a robust final net- 143 
work. Finally, the weighted correlation network analysis (WGCNA) was performed with 144 
the WGCNA R package [3]. A soft thresholding of 6 was selected to approximate to scale 145 
free topology.  146 
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4.3. Transcription-Wide Association Study for Inflammatory Bowel Disease. 

The third objective of this Thesis was “to propose candidate genes whose genetically 

regulated gene expression is associated with IBD, including genes in specific colon 

subsites; with emphasis on gene expression markers of colon cell types, and gene 

enrichment in IBD therapy-related molecular pathways. Also, identify candidate 

susceptibility genes specific for the epithelial, immune/blood, mesenchymal and 

neural tissue categories”. 

To address this objective we developed the article entitled “Transcriptome-wide 

association study for inflammatory bowel disease reveals novel candidate 

susceptibility genes in specific colon subsites and tissue categories”. 
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Abstract

Background and Aims: Genome-wide association studies [GWAS] for inflammatory bowel 
disease [IBD] have identified 240 risk variants. However, the benefit of understanding the genetic 
architecture of IBD remains to be exploited. Transcriptome-wide association studies [TWAS] 
associate gene expression with genetic susceptibility to disease, providing functional insight into 
risk loci. In this study, we integrate relevant datasets for IBD and perform a TWAS to nominate 
novel genes implicated in IBD genetic susceptibility.
Methods: We applied elastic net regression to generate gene expression prediction models for 
the University of Barcelona and University of Virginia RNA sequencing project [BarcUVa-Seq] and 
correlated expression and disease association research [CEDAR] datasets. Together with Genotype-
Tissue Expression project [GTEx] data, and GWAS results from about 60  000 individuals, we 
employed Summary-PrediXcan and Summary-MultiXcan for single and joint analyses of TWAS 
results, respectively.
Results: BarcUVa-Seq TWAS revealed 39 novel genes whose expression in the colon is associated 
with IBD genetic susceptibility. They included expression markers for specific colon cell types. 
TWAS meta-analysis including all tissues/cell types provided 186 novel candidate susceptibility 
genes. Additionally, we identified 78 novel susceptibility genes whose expression is associated 
with IBD exclusively in immune (N = 19), epithelial (N = 25), mesenchymal (N = 22) and neural 
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(N  =  12) tissue categories. Associated genes were involved in relevant molecular pathways, 
including pathways related to known IBD therapeutics, such as tumour necrosis factor signalling.
Conclusion: These findings provide insight into tissue-specific molecular processes underlying 
IBD genetic susceptibility. Associated genes could be candidate targets for new therapeutics and 
should be prioritized in functional studies.
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1.  Introduction

Inflammatory bowel disease [IBD] is a chronic inflammatory dis-
order of the gastrointestinal tract that encompasses two main disease 
subtypes, namely Crohn’s disease [CD] and ulcerative colitis [UC]. 
IBD is caused by immune dysregulation and aberrant inflammatory 
responses to gut microbiota that result in tissue damage. Clinical 
manifestations of CD are more heterogeneous than those of UC. UC 
is restricted to the large intestine, whereas CD can affect any part 
of the gastrointestinal tract and involves the colon in only 25% of 
cases.1,2

Germline genetic variants have been associated with IBD suscep-
tibility. The largest genome-wide association study [GWAS] for IBD 
identified 240 independent risk single nucleotide polymorphisms 
[SNPs].3 Some of them have been functionally characterized and 
found to affect established mechanisms of IBD pathogenesis, 
including impaired autophagy, interleukin [IL]-17/IL-23 axis/type 3 
innate lymphoid cells, and failure to suppress aberrant immune re-
sponses.4 GWAS SNPs have also been associated with genes whose 
encoded proteins participate in pathways targeted by approved IBD 
therapies such as infliximab and adalimumab, which are monoclonal 
antibodies that modulate tumour necrosis factor [TNF] signalling.3 
Despite these successes the mechanisms by which GWAS-identified 
genetic variants, especially non-coding variants, confer susceptibility 
are not yet fully understood.2

The hypothesis that risk SNPs modify expression of nearby genes 
and influence development of disease is supported by recent work 

in multiple tissues.2 One recently published study5 presented a large 
gene expression dataset from normal colon tissue and showed strong 
evidence that genetically regulated gene expression in the colon is 
involved in IBD genetic susceptibility. Another study6 related genetic 
risk variants to gene expression in circulating immune cells to iden-
tify IBD susceptibility genes.

Sequencing RNA from multiple tissues/cell types of thousands of 
subjects with and without IBD to associate gene expression with dis-
ease is costly and not feasible for some tissues. In addition, this ap-
proach cannot distinguish whether altered gene expression is a cause 
rather than a consequence of disease. A solution to these limitations 
is provided by the transcriptome-wide association study [TWAS] 
statistical approach, which permits prediction of gene expression 
from genetic data, and thereby enables imputation of gene expres-
sion for subjects included in GWAS. TWAS uses reference imput-
ation panels (i.e. predictive models generated from population-based 
germline genotype and tissue-specific gene expression data) to asso-
ciate genetically regulated gene expression with traits and diseases. 
The TWAS approach provides biological context for interpreting 
disease risk loci by nominating candidate susceptibility genes not 
only at GWAS risk regions but also at other potential regions that 
current GWAS have not been powered to detect.7

Previous TWAS for IBD8–10 reported candidate susceptibility 
genes based on prior versions of the Genotype-Tissue Expression 
project [GTEx],11 and the only study that analysed the latest ver-
sion (v8) of GTEx9 did not provide results for CD. The University 
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of Barcelona and University of Virginia RNA sequencing project 
[BarcUVa-Seq]5 recently provided a gene expression dataset of colon 
biopsies across colon subsites. Another source of relevant data for 
autoimmune diseases is the array-derived correlated expression and 
disease association research [CEDAR]6 dataset, which includes gene 
expression data of circulating immune cell types. To the best of our 
knowledge, no published study has utilized these reference panels 
to perform a joint TWAS (i.e. a TWAS meta-analysis that com-
bines TWAS results of individual tissues for increasing the statistical 
power to find associations) across tissues to strengthen the evidence 
for genes involved in IBD susceptibility.

In this study, we perform an integrative TWAS analysis to iden-
tify novel candidate susceptibility genes whose expression influ-
ences IBD pathogenesis. This study includes reference datasets of 
tissues and blood cell types relevant to IBD and leverages GWAS 
results for IBD from a dataset including about 25 000 cases and 
35  000 controls.3 We nominate genes whose expression in more 
than 60 tissues and cell types, including specific colon anatomical 
subsites (ascending, transverse and descending colon), is associated 
with IBD and its subtypes (CD and UC). Finally, we assess asso-
ciations specific for epithelial, immune, mesenchymal and neural 
tissue categories.

2.  Materials and Methods

2.1.  GWAS summary statistics
We downloaded publicly available IBD, UC and CD GWAS sum-
mary statistics from a large study including about 60 000 subjects.3 
We performed liftover of SNP coordinates to the GRCh38 genome 
reference using Crossmap.12 Reference SNP cluster IDs [rsIDs] were 
annotated according to dbSNP v151 to match IDs from reference 
panels.

2.2.  BarcUVa-Seq data processing
BarcUVa-Seq data5 include genome-wide genotypes and gene expres-
sion from ascending (n = 138), transverse (n = 143) and descending 
(n = 164) colon. Expression data were processed as described else-
where.5 The GENCODE v26 gene model13 was used to facilitate 
integration with GTEx v8 data. Genotypes were imputed with the 
TOPMed (version r2) reference panel on the Michigan Imputation 
Server.14 SNPs were filtered by minor allele frequency [MAF] 0.01 
and imputation quality (i.e. R2) 0.8. For each panel, we assessed 
population heterogeneity using 2318 ancestry-informative marker 
SNPs with the plink pca method.15

2.3.  CEDAR data processing
CEDAR data6 were obtained from the Array Express repository 
under accession numbers E-MTAB-6666 and E-MTAB-6667 for 
genotypes and expression data, respectively. The data include gene 
expression from terminal ileum, transverse colon, rectum, platelets, 
CD15+ granulocytes, CD19+ B lymphocytes, CD8+ T lymphocytes, 
CD4+ T lymphocytes and CD14+ monocytes. Corresponding sample 
sizes are provided in Supplementary Table 1. Expression arrays were 
processed with the iluminaio R package.16 Expression variability be-
tween samples was assessed with graphical visualization of expres-
sion values in box plots to ensure that no extreme outliers appeared 
in the dataset. Quantile normalization was performed. Gene annota-
tion was harmonized to GENCODE v26 annotations13 to facilitate 
integration with GTEx v8 data. Genotypes were imputed with the 
Haplotype Reference Consortium panel on the Michigan Imputation 
Server,14 and lifted over to the GRCh38 genome reference with 

Crossmap.12 We filtered SNPs by MAF 0.01 and imputation quality 
(i.e. R2) 0.8. For each panel, we assessed population heterogeneity 
using 2318 ancestry-informative marker SNPs with the plink pca 
method.15

2.4.  Gene expression prediction models
We downloaded GTEx v8 elastic net regularized regression-based 
imputation panels (N  =  49 tissues/cell types) from PredictDB.11,17 
We generated gene expression prediction models using gastrointes-
tinal tissue and blood cell gene expression data from BarcUVa-Seq 
(ascending, transverse and descending and ‘any’ colon, where ‘any’ 
includes all three subsites) and CEDAR (terminal ileum, transverse 
colon, rectum, platelets, CD15+ granulocytes, CD19+ B lymphocytes, 
CD8+ T lymphocytes, CD4+ T lymphocytes and CD14+ monocytes) 
datasets, using elastic net regularized regression. CEDAR gene ex-
pression was adjusted by sex, age and sequencing batch. BarcUVa-
Seq gene expression was adjusted for sex, sequencing batch, 
probabilistic estimation of expression residuals [PEER] factors18 
and genetic ancestry (two principal components). To be consist with 
the PredictDB pipeline followed by the GTEx team for generating 
the GTEx v8 models,11,17 we considered significant gene models as 
those with a predictive performance p < 0.05 and R2 > 0.1. Summary 
statistics and SNP weights of BarcUVa-Seq prediction models were 
loaded into the Colon Transcriptome Explorer [CoTrEx] 2.0 web 
resource.19 Altogether, we compiled a total of 62 reference imput-
ation panels of expression prediction models with a median of 4848 
significant genes per panel (ranging from 1003 to 10  013 genes) 
(Supplementary Table 1). As expected, the number of significant 
prediction models increased with the sample size of the imputation 
panels.

2.5.  Transcriptome-wide association analyses
The TWAS approach, in a first step, predicts gene expression from 
genotype data of subjects from whom gene expression has not been 
measured. This is achieved thanks to tissue-specific gene expression 
prediction models, i.e. reference imputation panels (see previous 
subsection ‘Gene expression prediction models’). Next, the inferred 
gene expression is tested for association with a particular phenotype 
(e.g. IBD). The Summary-PrediXcan (S-PrediXcan) method20 used in 
this study combines the last two steps into one, and therefore does 
not need individual-level genotype data; instead, it uses the sum-
mary parameters of the statistical association between SNPs and the 
phenotype of interest, commonly referred to as ‘summary statistics’ 
(see 2.1. Methods sub-section on the summary statistics we used). 
Along with GWAS summary statistics, it uses the SNP expression 
weights to impute the expression of a given gene; and uses the vari-
ance and covariances of the included SNPs to correct for linkage 
disequilibrium (LD) biases.20 Specifically, S-PrediXcan computes a 
Z-score (Wald statistic) as a measure of the association between pre-
dicted gene expression and a phenotype. The main analytical expres-
sion used is as follows:

Zg ≈
∑

l ∈ Modelg

ωlg
σ̂l

σ̂g

β̂l

se
Ä
β̂l

ä

where ωlg is the weight of SNP l in the prediction of the expression of 

gene g; β̂l is the GWAS coefficients for SNP l; se
Ä
β̂l

ä
 is the standard 

error of β̂, σ̂l is the estimated variance of SNP l, and σ̂g is the es-
timated variance of the predicted expression of gene g.20 We con-
sidered as significant those genes that passed Bonferroni correction 
(0.05/total number of genes).
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On the other hand, we used Summary-MultiXcan (S-MultiXcan)21 
for the joint analysis of TWAS results across multiple tissues. Briefly, 
MultiXcan consists of fitting a linear regression of the phenotype 
on predicted expression from multiple tissue models jointly.21 On 
a similar basis to the S-PrediXcan approach explained above, the 
MultiXcan framework was extended to be used with GWAS sum-
mary statistics. Specifically, S-MultiXcan combines single-tissue 
S-PrediXcan results, along with LD information from a reference 
panel for the estimation of their joint effect across tissues on the 
phenotype.21 We considered as significant only those genes that 
passed Bonferroni correction and that had a p-value ≤ 10–4 in the 
panel with lowest p, as advised elsewhere,21 to minimize errors due 
to LD mismatches.

The categorization of expression panels as epithelial, immune/
blood, mesenchymal and neural categories was based on their histo-
logical origin (for CEDAR and BarcUVa-Seq datasets), and on their 
classification above the third quartile of the corresponding categories 
established by Breschi et al.22 (for GTEx v8 datasets).

2.6.  Gene annotation
Gene symbols were annotated according to the HUGO Gene 
Nomenclature Committee.23 Genes were annotated as novel if they did 
not appear in the GWAS catalogue genes for IBD,24 were not indicated 
in large GWAS previously published elsewhere,3,25 or did not appear in 
the TWAS-hub resource for IBD.8 Genes were annotated at GWAS loci 
if their transcription start sites were within 1 Mb of any of the top 240 
SNPs identified by IBD GWAS.3 In the case of significant genes predicted 
using BarcUVa-Seq colon panels, we annotated the cells for which genes 
were expression markers according to a study by Smillie et al. that char-
acterized the colon transcriptome at single-cell resolution.26

2.7.  Fine-mapping
In the context of a TWAS, the fine-mapping approach aims to priori-
tize candidate genes with higher likelihood of being causal for the as-
sociation. This is especially important for TWAS-associated loci with 
multiple genes, where the correlation of expression between genes 
tend to be high and which might bias the results, in a similar manner 
as LD does with GWAS-identified SNPs. To address this topic, prob-
abilistic fine-mapping was performed using the fine-mapping of causal 
gene sets [FOCUS] approach.27 FOCUS provides fine-mapping at each 
of the TWAS-identified loci by integrating GWAS summary statistic 
data, the SNP expression weights for each tissue and LD-related statis-
tics among all SNPs in each locus. Specifically, it applies a probabilistic 
framework to assign to every gene in a given TWAS-associated locus 
a posterior probability [PIP] that indicates the likelihood of a given 
gene to explain the observed TWAS association signal.27 We used 
the FOCUS software with default parameters and provided FOCUS 
with genes passing Bonferroni correction in TWAS analyses, and con-
sidered as probably causal those genes included in a credible set with 
a nominal confidence of 90% and with a PIP > 0.5.

2.8.  Pathway enrichment analysis
We included signalling and regulatory pathways from the Pathway 
Interaction Database28 in pathway enrichment analysis. Enrichment 
was measured by hypergeometric tests. We only reported pathways 
that had an enrichment q value <0.05 [false discovery rate computed 
with the Benjamini–Hochberg method].

2.9.  Data availability statement
The data underlying this article were derived from sources in the 
public domain. IBD, CD and UC summary statistics are available 

at ftp://ftp.sanger.ac.uk/pub/project/humgen/summary_statistics/
human/2016-11-07/; GTEx v8-derived gene expression prediction 
models are available in Zenodo, at https://dx.doi.org/10.5281/
zenodo.3519321; BarcUVa-Seq-derived prediction models are 
available in the Colon Transcriptome Explorer version 2.0, at 
https://barcuvaseq.org/cotrex/; and CEDAR data were obtained 
from the Array Express repository, under accession numbers 
E-MTAB-6666 and E-MTAB-6667 for genotypes and expression 
data, respectively.

3.  Results

3.1.  Transcriptome-wide associations
We evaluated associations between genetically regulated gene ex-
pression and IBD, CD and UC status, separately for each tissue/blood 
cell type. In the TWAS for IBD we found significant association for 
a median of 62 genes per tissue/cell type [ranging from ten to 124]. 
As expected, the number of significant associations increased with 
the sample size of the imputation panel. Also, we found fewer as-
sociated genes in the tissues/blood cell types of the CEDAR dataset, 
which was based on expression arrays to profile gene expression, 
than in the BarcUVa-Seq and GTEx datasets, which were based on 
RNA-seq. We found CD4+, CD14+ and CD19+ cells, rectum tissue, 
and BarcUVa-Seq transverse colon tissue among the tissues/cell types 
with the highest percentage of genes significantly associated with 
IBD. A summary of TWAS results for the three IBD phenotypes is 
provided in Supplementary Table 2. Complete TWAS results in all 
tissues and cell types for IBD, CD and UC phenotypes are provided 
in Supplementary Data 1.

3.2.  BarcUVa-Seq colon TWAS
TWAS results generated with BarcUVa-Seq-derived panels [as-
cending, transverse, descending and any colon] are summarized in 
Table 1 and shown in Figure 1. We found 124 unique candidate sus-
ceptibility genes, including 39 that were novel (i.e. not reported in 
other large association studies see Methods]). Among the 81 and 57 
genes associated with CD and UC, respectively, we found 26 shared 
genes, and 55 and 31 genes specific for each disease subtype, re-
spectively. CD-specific genes included Liver Enriched Antimicrobial 
Peptide 2 [LEAP2], and Ubiquitin D [UBD], both novel and specific 
for descending colon. UC-specific genes included Tripartite Motif 
Containing 31 [TRIM31], which was specific to ascending colon, 
and Abhydrolase Domain Containing 11 [ABHD11], which was spe-
cific to descending colon. We provide complete annotated results for 
BarcUVa-Seq candidate susceptibility genes in Supplementary Data 2.

To identify cell types within the colon likely to mediate genetic 
susceptibility to IBD, we intersected lists of candidate susceptibility 
genes from BarcUVa-Seq TWAS with lists of expression marker genes 
of specific cell types derived from colon single cell RNA sequencing 
[scRNA-Seq] profiles.26 We found 33 candidate susceptibility genes 
were markers for a total of 28 cell types across colon subsites [Figure 
2A] and IBD phenotypes [Figure 2B]. Cell types were categorized into 
epithelial, fibroblast, endothelial, myeloid, T cell and B cell types [see 
Methods for annotation details]. The candidate susceptibility genes 
identified in ascending and transverse colon TWAS and in the TWAS 
for UC were more frequently markers of specific cell types than suscep-
tibility genes identified in descending colon TWAS and in the TWAS 
for CD, respectively [see Figure 2]. Among these findings, we found ten 
novel candidate susceptibility cell marker genes, which are described 
in Table 2. These included two fibroblast markers, three markers of 
myeloid cell types [e.g. inflammatory monocyte], four markers of epi-
thelial cell types [such as M cell, goblet cell and enterocyte] and two 
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markers of T cells. All participate in immune-related pathways except 
for CLDN4, which participates in epithelial tight junction mainten-
ance. Complete cell type annotation of BarcUVa-Seq-derived candi-
date susceptibility genes is provided in Supplementary Table 3.

To further support our findings, we sought overlap between 
candidate susceptibility genes described in this section and IBD-
associated genes reported in other studies from IBD patient-derived 
colon biopsies. We found that seven of the 38 significantly associated 

genes identified in BarcUVa-Seq colon TWAS for UC were reported 
as differentially expressed between biopsies from treatment-naïve 
UC patients [n = 14] and healthy biopsy samples [n = 16].29 These 
included genes at 1q23.3 [FCGR3B], 6p21.32 [HLA-DRB1, HLA-
DQB1, TAP2 and HLA-DOB], 6p21.33 [MICB] and 6p22.1 
[TRIM40] loci. Importantly, directions of effect were concordant 
across studies [i.e. TWAS and differential expression] for five of 
seven genes [all except HLA-DOB and MICB].

Table 1. Summary of candidate susceptibility genes whose genetically regulated expression in the colon is associated with IBD

Phenotype [n unique genes] Colon subsite Genes [site-specific] Novel genes Expression markers of cell types

IBD [86] Ascending 39 [6] 5 11
Transverse 43 [6] 10 14
Descending 37 [8] 6 8
All colon 62 [16] 11 22

CD [81] Ascending 35 [10] 7 8
Transverse 30 [7] 9 5
Descending 36 [13] 7 6
All colon 49 [14] 9 12

UC [57] Ascending 25 [6] 5 10
Transverse 28 [6] 8 9
Descending 21 [5] 3 6
All colon 38 [12] 9 12

Overall unique elements 124 39 33

GSDMB

GSDMA

HLA-DRB1
HLA-DQA1

PDE4B

HLA-DQB2
HLA-DRB1

HLA-DQA2

GSDMB

PDLIM4SBK1

HLA-DQB1

HLA-DQA1

Significant; reportedSignificant; not reportedNot significantSignificant; reportedSignificant; not reportedNot significantSignificant; reportedSignificant; not reportedNot significant
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Figure 1. Volcano plots showing a summary of TWAS for IBD in [A] ascending, [B] transverse and [C] descending colon. Positive effect size indicates that 
higher gene expression is associated with higher IBD risk. Coloured points indicate genes passing Bonferroni correction [ascending n = 39, transverse n = 43, 
descending n = 37]. Darker blue indicates novelty [not previously reported genes]. The top ten genes with strongest evidence [lowest p] are labelled.
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Finally, to test for consistency of results across datasets from 
lower intestinal tissues, we correlated the predicted effect of the 
TWAS associations between tissues [see Figure 3]. As expected, we 
found the lowest correlations for the CEDAR dataset, which might 
be due to the technology used for assessing gene expression [ar-
rays] in contrast to RNA-Seq, used by GTEx and BarcUVa-Seq. 
We found high correlations between BarcUVa-Seq-derived effects 
[all sites] and GTEx transverse colon-derived effects [r  ≥  0.75 
in all three IBD phenotypes]. A  lower correlation of results with 
GTEx sigmoid colon might be due to the higher component of 
muscularis tissue than of epithelial tissue present in the samples 
of this dataset.22

3.3.  Joint analyses of TWAS results
To gain more power for discovery we performed a meta-analysis 
of all TWAS results obtained separately for IBD, CD and UC [sum-
marized in Table 3]. In these joint analyses, we combined the TWAS 
results of all tissues/cell types [see Methods] and found 466, 395 and 
290 significant genes for IBD, CD and UC risk, respectively, com-
prising 596 unique candidate susceptibility genes. These findings in-
cluded 186 novel genes (i.e. not reported in other large association 
studies [see Methods]). Overall, we found candidate susceptibility 
genes nearby (i.e. with the gene Transcription Start Site [TSS] within 
1 Mb of) 106 of the 240 top SNPs reported in IBD GWAS.3 The 
Manhattan plot for IBD TWAS is shown in Figure 4. The most signifi-
cant association is with Endosome Associated Trafficking Regulator 
1 [ENTR1] [p = 8.27 × 10–61]. We found 85 unique signalling and 
regulatory pathways significantly enriched in significantly associated 

genes [Supplementary Table 4]. Among these pathways we found 
IL-12, IL-23, integrins and TNF-related pathways, which have high 
therapeutic relevance for IBD. Novel genes in these therapeutic path-
ways are summarized in Table 4.

We next performed fine-mapping of significantly associated genes 
to prioritize those with high probability of explaining the association 
signal in loci where multiple genes were identified. We found 50, 44 
and 31 fine-mapped genes for IBD, CD and UC, respectively, com-
prising a total of 47 unique genes. Of these, we identified six novel 
genes [Supplementary Table 5], including five protein coding genes 
and one long non-coding RNA gene. These include genes that par-
ticipate in the complement immune response.

3.4.  Category-specific joint analyses
Next, to identify genes that participate in IBD susceptibility-related 
molecular mechanisms exclusively in specific tissue categories, we 
performed joint analyses combining different sets of TWAS results 
[see Methods] into epithelial [n = 18], immune/blood [n = 14], mes-
enchymal [n = 11] and neural [n = 15] categories based on histo-
logical and transcriptional characteristics [details in Methods and 
Supplementary Table 1]. Most significant genes found in these ana-
lyses had been previously identified in the joint analyses with all 
TWAS results [described in the previous section], but these tissue-
category stratified joint analyses reported 93, 101 and 66 additional 
significant genes for IBD, CD and UC, respectively. Some of these 
genes were specific to IBD subtype and tissue category [see Table 
5]. For example, we identified 26 genes specific to CD and the im-
mune/blood category, which represented 11.9% of the total signifi-
cant genes found in that analysis. In contrast, we found eight genes 
[5.2%] specific to UC and the immune/blood category [Table 5; 
Supplementary Figure 1]. A total of 78 category-specific genes (im-
mune [N = 19], epithelial [N = 25], mesenchymal [N = 22] and neural 
[N = 12]) were not previously described by other studies [description 
given in Supplementary Table 6]. For example, we found that Aph-1 
Homolog A, Gamma-Secretase Subunit [APH1A] underexpression 
in neural tissues was associated with IBD [p = 2.41E-06]. This gene 
participates in presenilin action in Notch and Wnt signalling, and in 
syndecan-3-mediated signalling events, among others.28

In addition, we investigated gene pathway enrichment among 
category-specific IBD-associated genes. We identified 31 additional 
significantly enriched pathways not found in the pathway analysis of 
genes from the main TWAS meta-analysis described in the previous 
section [results in Supplementary Table 4]. Full results for all TWAS 
joint analyses [main and category-specific meta-analyses of TWAS 
results] are provided in Supplementary Data 3.
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Figure 3. Replication of TWAS results in lower intestinal tissues. Correlation of the predicted effect of gene expression across tissues identified in TWAS for [A] 
IBD, [B] CD and [C] UC. Hierarchical clustering of tissues is shown. Correlation values are indicated by the colour scale.

Table 3. Summary of significant candidate susceptibility genes 
identified in the joint analyses of TWAS results across all tissues/
cell types

Disease subtype Genes Genes at 
GWAS loci

Novel 
genes

Fine-mapped 
genes

IBD 466 388 136 50
CD 395 32 116 44
UC 290 27 88 31
Unique elements 596 440 186 47

Genes: significant genes passing Bonferroni correction and with lowest in-
dividual p ≤ 1E-4; GWAS loci: within 1 Mb of any top SNP found at corres-
ponding GWAS; Novel: not reported in other large genome-wide association 
studies [see Methods]; Fine-mapped: genes included in fine-mapping credible 
sets and with >50% probability of being causal in their given signal.
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4.  Discussion

In this study, we identified candidate genes that may modulate the 
inherited risk of IBD and could eventually be exploited as novel 
therapeutic targets. We integrated transcriptomic and genetic in-
formation to predict gene expression in 59 957 genotyped subjects, 
including 25  042 with IBD, and discovered new associations be-
tween gene expression and IBD status. Additional insight into colon 
subsite-specific mechanisms was provided by site-specific expression 
prediction models trained on the recently published BarcUVa-Seq 
expression quantitative trait locus dataset. To gain new insights into 
the mechanisms underlying IBD, we performed a large, multi-dataset 
TWAS,21 including predictive models for colon epithelium-enriched 
tissues and blood cell types of high relevance for IBD.

There are notable advantages of TWAS over other traditionally 
used approaches [such as GWAS and differential gene expression 
analysis] for nominating candidate genes that participate in disease 
pathogenesis. On the one hand, GWAS just identify risk SNPs and, 
except some obvious cases where an SNP lies in coding regions, this 
approach does not provide the candidate downstream functional 

effects of the SNP on the phenotype/disease. On the other hand, dif-
ferential gene expression analysis using observational rather than 
predicted gene expression measures does not provide causal infer-
ence. In this sense, the genetic variants that regulate gene expression 
are not affected by the disease, and therefore the direction of the 
effect, from gene expression to the disease, and not the opposite, can 
be made for the TWAS-identified genes.

TWAS based on expression models trained on BarcUVa-Seq as-
cending, transverse and descending colon allowed comparison of 
IBD-associated genetically regulated gene expression across dif-
ferent colon subsites. We identified susceptibility genes specific for 
colon subsites and IBD subtype. The strongest association signal 
[p = 1.33 × 10–104] involved Phosphodiesterase 4B [PDE4B], whose 
expression was associated with IBD only in ascending colon. PDE4B 
is a candidate therapeutic target for paediatric-onset IBD,30 and 
expression of PDE4B was associated with UC in patient-derived 
colon biopsies.29 The TSS of PDE4B is located over 1  Mb from 
any top GWAS SNP, and the gene has not previously been associ-
ated with IBD susceptibility. Another novel gene involved in genetic 

Table 4. Summary of novel genes involved in signalling pathways of high therapeutic relevance for IBD

Gene 
symbol

Gene name Locus GWAS SNP TWAS P Mean Z Pathway Drug 
name[s]

HLA-A Major Histocompatibility 
Complex, Class I, A

6p22.1 rs10826797 [3.99E-13] 1.05E-06 1.72 IL12-mediated 
signalling events

Ustekinumab

MAP4K4 Mitogen-Activated Pro-
tein Kinase Kinase Kinase 
Kinase 4

2q11.2 rs13001325 [2.51E-23] 8.82E-07 −1.09 TNF receptor 
signalling pathway

Infliximab, 
adalimumab

TRAF2 TNF Receptor Associated 
Factor 2

9q34.3 rs10781499 [4.00E-56] 1.78E-19 −2.44 TNF receptor 
signalling pathway

Infliximab, 
adalimumab

COL11A2 Collagen Type XI Alpha 
2 Chain

6p21.32 rs6927022 [5.00E-133] 4.94E-06 1.05 Beta1 integrin cell 
surface interactions

Vedolizumab

GWAS SNP refers to the SNP identified by GWAS3 with lowest p value among those located up to 1 Mb from the TSS of the associated gene. Pathway refers to 
a signalling pathway in which the gene is significantly enriched [q value < 0.05] and which is related to the drug indicated.
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Figure 4. Manhattan plot of TWAS joint analysis for IBD. Each point represents a gene. Genes significantly associated are coloured. Novel genes with p < 1E-16 
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susceptibility to IBD is UBD, whose expression in descending colon 
was significantly associated with CD status. UBD is an expression 
marker for the microfold [M] cell, a type of colon epithelial cell as-
sociated with colon inflammation in UC-derived colon biopsies.26 
UBD has also been reported to be upregulated in patient-derived 
colon biopsies29 and may be a target for anti-TNF-α treatment.31 
As these examples demonstrate, the candidate susceptibility genes 
identified in this study could be promising therapeutic targets for 
IBD treatment. Expression levels of two other genes, TRIM31 and 
Claudin 4 [CLDN4], were associated with IBD status for the first 
time. TRIM31 is an expression marker of colon goblet and entero-
cyte cells and was significant only in the ascending colon TWAS for 
UC and in the joint analysis of TWAS results of epithelial tissues, 
suggesting tissue type specificity. TRIM31 downregulation has been 
linked to bacterial invasion.32 CLDN4 is involved in the control 
of colon epithelial barrier function, including the maintenance of 
tight junction integrity. These examples highlight new directions for 
emerging treatment approaches.

BarcUVa-Seq TWAS revealed 39 novel IBD candidate suscepti-
bility genes, including expression markers of 28 cell types found in 
the colon.26 This finding allowed us to link IBD risk SNPs to colon-
specific cell types that may affect genetic susceptibility. The risk SNP 
rs12568930 at 1p36.12 was associated with WNT2B+ Fos-lo 2 cells 
[a subtype of colon inflammatory fibroblasts] through the expression 
of Wnt Family Member 4 [WNT4]. The mechanisms of intestinal 
fibrosis in IBD are poorly understood, which impedes the develop-
ment of anti-fibrotic therapies.33

Next, we meta-analysed TWAS results in joint analyses that com-
bine single-tissue results to increase the statistical power to identify 
associations [see Methods], given the shared patterns of genetically 
regulated expression across human tissues. The advantages of this 
integrative approach have been described elsewhere.21 Joint analysis 
of all TWAS results showed 596 genes whose genetically regulated 
expression might be involved in IBD genetic susceptibility, including 
186 genes that were not previously reported in other large associ-
ation studies [Table 3]. Our meta-analysis highlighted ENTR1 as an 
important susceptibility gene. This gene encodes a protein involved 
in presentation of TNF receptors on the cell surface, and the modula-
tion of TNF-induced apoptosis.34 We also reported other novel genes 
encoding proteins that play important roles in TNF signalling. For 

example, TNF Receptor Associated Factor 2 [TRAF2],35 involved in 
TNF signalling, may be targeted by anti-TNF IBD therapeutics.

Finally, we performed joint analyses of single-tissue TWAS results 
by histological category to identify associations specific to particular 
tissue types, which may point to specific molecular mechanisms 
underlying IBD genetic risk and may give insight into potential 
targeted therapies. These category-specific analyses identified add-
itional susceptibility genes, allowed us to link risk SNPs to specific 
tissue types, and provided insight into tissue-type specific mechan-
isms, as revealed by pathway enrichment analysis.

An important limitation of the TWAS approach is the possi-
bility of spurious correlation between IBD causal SNPs and SNPs 
regulating gene expression of nearby genes, which could drive non-
causal associations, as reported elsewhere.36 This affects especially 
the human major histocompatibility complex [MHC] region, which 
features high LD between SNPs and includes several immune-related 
genes, such as human leukocyte antigen [HLA] genes. Indeed, the 
mean of significantly associated genes per locus in IBD joint analysis 
was three genes, whereas 6p21.33 [MHC-related] and 3p21.31 were 
associated with 52 and 56 genes, respectively. The high number of 
associations motivated fine-mapping of these loci. Our fine-mapping 
approach modelled correlation among significant signals and as-
signed a probability to explain the observed association signal for 
every gene in a given locus at a nominal confidence of 90%.27 The 
number of significant signals per locus was reduced after considering 
only fine-mapped genes. In particular, the 6p21.33 locus retained 
two probable causal genes out of 52 significantly associated genes.

Among significantly associated genes with strong evidence for 
causality after the fine mapping of other loci, we found six genes 
not previously reported. These included the Programmed Cell Death 
1 Ligand 2 [PDCD1LG2] gene at 9p24.1, which has been linked 
to immunosuppression by inhibition of T-cell proliferation37 as well 
as the Complement C6 and C7 genes [C6, C7] at 5p13.1, which 
are also involved in immunoregulatory processes. In addition, we 
found a long non-coding RNA [Lnc-ATXN2L-1], a type of molecule 
that remains understudied and is considered a promising topic of 
research.38

In comparison with other published TWAS studies for IBD,8–10 
this study provided more robust statistical associations. This is due 
to the use of a large number of gene expression datasets, including 

Table 5. Summary of TWAS joint analyses combining results of specific tissues/cell types

Phenotype Analysis Tissues/cell 
types

Significant genes [not found in joint  
analysis of all TWAS]

Category-specific gene [% of  
significant genes]

Novel category- 
specific genes

IBD All 61 466 — —
Immune/blood 14 239 [32] 19 [8.0%] 6
Epithelial 18 271 [33] 25 [9.2%] 9
Mesenchymal 11 252 [33] 23 [9.1%] 13
Neural 15 230 [15] 9 [3.9%] 3

CD All 61 395 — —
Immune/blood 14 218 [38] 26 [11.9%] 11
Epithelial 18 231 [31] 23 [10.0%] 11
Mesenchymal 11 220 [31] 16 [6.8%] 10
Neural 15 200 [25] 17 [8.5%] 8

UC All 61 290 - -
Immune/blood 14 154 [17] 8 [5.2%] 2
Epithelial 18 175 [25] 17 [9.7%] 8
Mesenchymal 11 154 [19] 12 [7.8%] 5
Neural 15 151 [21] 16 [10.6%] 2

Unique 
elements

— — — — 78
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some of high relevance to IBD, not previously included in other 
TWAS [i.e. BarcUVa-Seq, CEDAR], meta-analyses including TWAS 
of many tissues/cell types, and fine-mapping of significant association 
signals. Many of the significant associations we observed have been 
identified by other large association studies, including GWAS3,24 and 
TWAS for IBD,8 and other studies based on patient biopsy samples26 
[see Table 3], but our analysis still discovered novel associations.

Our results may guide other investigators to prioritize potential 
genes of interest for further functional studies. Indeed, the candi-
date genes we proposed would require extensive validation in an 
experimental setting, through, for example, the use of engineered 
organoid models, or CRISPR screens, which was beyond the scope 
of this study. We supported the robustness of our results by strong 
statistical significance and by showing overlap with genes described 
by other high-impact studies. Also, associated genes were enriched in 
relevant pathways for IBD, mostly immune-related, which might be 
potential therapeutic targets.
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Supplementary Materials 

Supplementary Figure 1. Distribution of the number of significant genes identified in 

different TWAS joint analyses and their intersections, for (A) CD and (B) UC.

Supplementary Tables are provided online, available at 

https://academic.oup.com/ecco-jcc/advance-article-abstract/doi/10.1093/ecco-

jcc/jjab131/6324884 (large tables).
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5. DISCUSSION 

This section includes an individual discussion for each of the objectives of the Thesis, 

achieved in the studies provided in section 4. Finally, a global discussion integrating 

all objectives is included. 

5.1. Discussion of Objective 1 

The first objective of this Thesis was to provide reference profiles for transcriptome-

wide gene expression and alternative splicing of colon mucosal biopsies from 

healthy adults, as well as their differences across colon location and corresponding 

e/sQTLs; also, to identify complex traits and diseases whose SNP-based heritability 

is enriched in the identified e/sQTLs, and propose candidate susceptibility genes for 

these phenotypes. To achieve this objective, a comprehensive study was carried out 

and published in the Cellular and Molecular Gastroenterology and Hepatology 

(CMGH) journal as an original article entitled “Genetic Effects on Transcriptome 

Profiles in Colon Epithelium Provide Functional Insights for Genetic Risk Loci”. 

In this study, we generated a new dataset from 445 healthy individuals consisting of 

gene expression bulk RNA-Seq data and germline genotypes. We compared gene 

expression and AS profiles across ascending, transverse and descending colon 

subsites. We provided e/sQTLs, performed replication and meta-analysis with GTEx 

data, and assessed their enrichment in genome-wide regulatory regions and in the 

SNP-based heritability of common complex traits and diseases. Finally, we provided 

candidate susceptibility genes for 20 complex traits/diseases by colocalization 

analysis, whose expression in the colon contributes to their risk.  

It is important to highlight that generating a good-quality dataset for molecular 

epidemiological research is challenging. Recruiting hundreds of healthy individuals 

to donate blood and colon tissue samples requires generous volunteers willing to 

altruistically contribute to research. Also, to design and implement a sample 

collection protocol is not straightforward and implies the coordinated work of many 
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professionals, such as gastroenterologists, biobank managers, laboratory 

technicians, staff from sequencing facilities and data analysts. The whole circuit 

must be properly orchestrated, and each step is important to achieve good quality 

samples that are homogeneous across individuals. Despite the challenges of this 

process, we successfully recruited nearly five hundred people and obtained good 

quality data, for both genotype and RNA-Seq data from 445 individuals. We named 

this project “University of Barcelona and University of Virginia RNA sequencing 

project” (BarcUVa-Seq), a name that also reflects the complexity that implies the 

coordination of research teams from different international institutions. 

The characterization of the transcriptome from normal colon tissue made by the 

GTEx project presented some limitations that made it incomplete and partially 

inadequate. Samples were collected heterogeneously for transverse and sigmoid 

colon from postmortem donors. These included not only the mucosa but also 

deeper layers of the colonic wall, e.g. the sigmoid tissue was enriched in muscular 

tissue (8). In contrast, BarcUVa-Seq samples were representative from the colonic 

mucosa of healthy individuals and were collected homogeneously from ascending, 

transverse and descending colon locations. This characteristic, in contrast to GTEx 

data, allowed us to report gene expression and AS differences across ascending, 

transverse and descending colon locations.  

Regarding the novel differential expression results, we found more than four 

thousand genes whose expression linearly increases/decreases across the colon 

track. This implies a great advance in the knowledge of this topic and a better-

defined picture of the colon transcriptome, in comparison to what was known from 

other studies, which reported only around one hundred genes differentially 

expressed between proximal and distal colon (33). Our results go in line with the 

fact that there are different molecular environments across the colon. For example, 

along the colon there is a progressive increase in pH, and different cell-type 

composition, and microbiome and related metabolites abundances (60). In addition, 
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we found that transverse colon gene expression profiles were more similar to those 

from descending than to those from ascending colon. This does not go in line with 

the embryological origin and blood supply of the colon, shared between ascending 

and transverse colon (61). This finding points to the need for further molecular 

analysis involving gene expression across colon subsites that give insights to the 

molecular processes driving these differences. 

Then, we generated reference catalogs of normal colon e/sQTLs. The relationship 

between these two types of QTLs have been assessed in other studies (62,63). 

Although the molecular mechanisms underlying the genetic regulation of both gene 

expression and splicing are different, different types of QTLs can colocalize. In our 

study, we identified that most (~90%) e/sQTLs are independent of each other, 

suggesting different regulatory mechanisms implied, as reported by similar studies. 

We hypothesized that mechanisms exclusive to sQTL imply SNPs overlapping splice 

sites, and this was reflected in our results by a higher representation of sSNPs in 

these sites, as well as by sSNPs being significantly enriched in the binding sites of 

splice factors. Also, similarly to other studies (8,62), we found e/sQTLs in non-coding 

regions, enriched in regulatory sites such as enhancers. Our moderated replication 

of e/sQTLs with those e/sQTLs from GTEx sigmoid colon tissue reflected the 

different cell type composition of the samples between datasets. Indeed, we 

followed the GTEx analytical procedures (8) to analyze RNA-Seq data and compute 

e/sQTLs to ensure that lower replication estimates are due to biological rather than 

analytical factors. 

Moreover, we identified complex traits and diseases whose SNP-based heritability 

is enriched by the identified e/sQTLs. As expected, we found strong evidence for 

colon-related diseases such as CRC and IBD, but also for complex traits/diseases not 

directly affecting the colon, such as behavioral traits and psychiatric diseases. This 

finding corroborated our hypothesis of finding diseases affected by molecular 

processes taking place in the framework of the gut-brain axis (depicted in Figure 
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15). A key component of the gut-brain axis is the vagus nerve, which is proposed to 

be responsible for transferring signaling molecules between the colon and the brain 

(64). These molecules include hormones that are produced by enteroendocrine cells 

in the colonic mucosa, as well as molecules produced in response to signaling 

processes derived from the communication with the microbiota (see Figure 15). 

Overall, this finding suggests that genetic regulation of colon gene expression plays 

a role not only in the colon, but in the systemic physiology. 

 

Figure 15. The gut-brain axis and cell type composition of the colon mucosa. The main 
components of the gut-brain axis, as well as different cell types that are part of the colon 
mucosa are shown. Reprinted from “Gut-Brain Axis”, by BioRender.com (2021). Retrieved 
from https://app.biorender.com/biorender-templates. 

In addition, in the study we proposed candidate susceptibility genes for the 

traits/diseases that showed strong evidence of having its SNP-based heritability 

influenced by eQTLs. For this purpose, we used colocalization analysis and reported 

as candidate genes those that showed high probability of colocalization with GWAS-

identified risk SNPs. In the case of CRC we leveraged the data provided in a large 
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GWAS study, including about 35,000 CRC cases (43), and identified a total of 32 

candidate susceptibility genes, including LAMC1, TRIM28 and SMAD9, which 

participate in integrin cell surface, p53 and BMP receptor signaling pathways, 

respectively (65). 

We are aware of the limitations of our study. One aspect is that we provide 

estimates of AS events based on short-read RNA-Seq data, which are not adequate 

nor intended to provide good resolution profiles of AS features. In contrast, 

improved technologies such as long-read and high-coverage RNA-Seq (66) would be 

better suited for this analysis, but due to the costs of this technology, it is not 

feasible yet to be scaled to the level of an epidemiological study including hundreds 

of individuals. Also, a wide variety of computational methods have been developed 

to quantify AS (63), such as the two complementary approaches that we used in our 

study (67,68). In addition, recent studies provided an improved statistical approach 

that showed improved estimates of AS and sQTLs across tissues of the GTEx dataset 

(69).  

On the other hand, our transcriptome profiling is based on bulk RNA-Seq, which 

consists of the sequencing of RNA from a mixture of cell types that compose the 

colon mucosal tissue (70). Gene expression differences measured in bulk tissue 

transcriptomes may reflect changes in cellular composition rather than changes in 

the expression of genes in individual cells. One approach that could be implemented 

to tackle this limitation is computational deconvolution of bulk RNA-Seq, which 

provides an enrichment score of specific cell types and tissues. This score can be 

either included as a covariate for adjustment in the eQTL mapping, or as an 

outcome, to generate cell-type associated eQTLs (71). Another solution of this 

limitation is provided by the single-cell (sc) RNA-Seq sequencing technology, which 

significantly improves the resolution and could be employed to derive cell-type 

colon specific e/sQTLs. This technology applied to eQTL mapping is a promising path 
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of research in the field, as it can provide cell-specific molecular mechanisms of 

disease susceptibility (72). 

Finally, it is important to remark that the uniqueness of BarcUVa-Seq data supports 

the high relevance of the results we obtained from its analysis as well as its potential 

utility to be used in further analysis. In this sense, we expect that this data 

represents a rich and valuable resource for the scientific community interested in 

investigating the human colon gene expression. Potential examples of use are 

exemplified by already published studies (73,74) that compare gene expression and 

AS profiles between normal colon and diseased colon derived samples, such as 

inflamed or neoplastic colon tissue. 
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5.2. Discussion of Objective 2 

The second objective of this Thesis was to develop a web resource to explore 

population-based normal colon transcriptome profiles, e/sQTLs, gene expression 

prediction models, as well as to annotate SNPs with eQTLs. To achieve this objective, 

the Colon Transcriptome Explorer (CoTrEx) was developed, updated to the 2.0 

version, and hosted online at https://barcuvaseq.org/cotrex/ to be publicly 

accessible. This work is entitled “The Colon Transcriptome Explorer (CoTrEx) 2.0, a 

reference resource for exploring population-based normal colon gene expression” 

and it is prepared for submission. 

In this study, we provided an online interactive application that provides RNA-Seq-

based gene expression data from the BarcUVa-Seq and GTEx colon tissues. It 

provides four main functionalities summarized in the Expression, QTLs, Prediction 

models and Networks tabs. Briefly, the Expression tab provides custom visualization 

of gene and transcript expression levels, as well as their related summary expression 

statistics. The QTLs tab provides e/sQTLs catalogs, its visualization, and a QTL 

annotation tool to annotate SNPs of interest. The Prediction models tab provides 

elastic-net based genetic gene expression prediction models, including summary 

statistics and SNP weights for each gene. Finally, the Networks tab provides 

relationships between genes based on regulatory and gene co-expression networks.  

The relevance and potential usefulness of CoTrEx 2.0 are notable. It might be useful 

for researchers investigating 1) the transcriptomic basis of the colon, 2) the genetic 

regulatory processes affecting gene expression and AS in the colon, 3) the functional 

relevance of SNPs identified in GWAS, and 4) the molecular processes underlying 

susceptibility to colon-related traits/diseases. In relation to this last point, CoTrEx 

2.0 provides genetic gene expression prediction models, a key input data to perform 

TWAS and nominate candidate effector genes associated with susceptibility to 

complex traits/diseases. 
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CoTrEx 2.0 presents many advantages in comparison with other similar resources. 

It is user-friendly and provides a quick and centralized access to highly requested 

gene expression-related data. Also, it includes the most updated version and largest 

data publicly available for colon tissue, i.e. from BarcUVa-Seq and GTEx version 8. 

These aspects make it a reference resource and differentiates it from other 

resources providing similar data and utilities. For example, the GTEx Transcript 

Browser (11) does not provide a custom visualization of transcript abundances. Also, 

it lacks the option for transcript grouping and data filtering, as well as additional 

visualization parameters that can be set in CoTrEx 2.0. Similarly, other GTEx online 

resources such as the GTEx eQTL Dashboard (75) or the GTEx eQTL Calculator (76) 

are not as comprehensive as CoTrEx 2.0 in terms of visualization capabilities. For 

example, a notable disadvantage of the GTEx eQTL Calculator is that it requires that 

users provide the gene ID in addition to the SNP of interest. This is not convenient 

in cases where the user wants to explore all SNP-gene associations of all genes 

nearby a SNP of interest. 

Of note, although the original version of the CoTrEx was presented in the CMGH 

paper describing the BarcUVa-Seq dataset, it was substantially improved 

afterwards, which motivated us to describe it as an independent publication. The 

main features implemented in CoTrEx 2.0 include the incorporation of GTEx colon 

gene expression data, the incorporation of additional e/sQTL sets and the SNP 

annotation tool into the QTLs tab, the development of the Networks tab, as well as 

extra customization options implemented throughout the application. 

Finally, future developments of CoTrEx would include additional features. For 

example, the incorporation of more QTL sets, such as regulatory QTLs (rQTLs) and 

eQTLs interacting with specific exposures. Also, a multi-gene query option would 

provide the visualization of the expression of multiple genes in annotated 

heatmaps, reflecting expression patterns by a covariate of interest such as colon 

location. In addition, the implementation of formal statistical tests to analyze the 
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data could be added in further releases of the resource, facilitating researchers to 

perform differential gene expression analysis by covariates of interest.  
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5.3. Discussion of Objective 3 

The third objective of this Thesis was to propose candidate genes whose genetically 

regulated gene expression is associated with IBD, including genes in specific colon 

subsites that are expression markers of colon cell types, and genes that are enriched 

in relevant molecular pathways for IBD, such as therapy-related ones. Also, to 

identify candidate susceptibility genes specific for the epithelial, immune/blood, 

mesenchymal and neural tissue categories. To achieve this objective, a 

comprehensive study was carried out and accepted for publication in the Journal of 

Crohn's & Colitis (JCC) as an original article entitled “Transcriptome-wide association 

study for inflammatory bowel disease reveals novel candidate susceptibility genes 

in specific colon subsites and tissue categories”. 

In this study, we imputed gene expression across a large set of tissues and cell types 

in a cohort of about 60,000 subjects, including around 25,000 IBD cases (54), and 

performed a comprehensive TWAS to nominate candidate susceptibility genes for 

IBD, CD and UC, respectively. Also, we combined TWAS results of histologically 

similar tissues and suggested susceptibility genes that could act in a tissue/cell-type 

specific manner. In addition, in the case of colon tissue, we identified candidate 

genes that could potentially point to colon subsite and cell-type specific molecular 

mechanisms of IBD susceptibility. This was achieved by using information derived 

from single-cell RNA-Seq data (56) to indicate the cell types whose expression 

markers overlap with the candidate susceptibility genes identified in the TWAS. 

Moreover, to further increase the association evidence of the proposed candidate 

genes, we carried out statistical fine-mapping (23) and indicated those with 

strongest evidence. 

We identified genes that participate in key molecular pathways for IBD 

pathogenesis (49), including genes that maintain the intestinal barrier integrity, 

genes involved in the innate and adaptive immune system, genes related to 

interactions with the microbiome, and genes acting in other key pathways such as 
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autophagy and fibrosis. This highlights the relevance of known pathways driving IBD 

and expands the number of genes involved in their dysregulation during IBD 

pathogenesis. Some of these genes and pathways have a higher relevance in 

particular tissues. To highlight this aspect, in the study we specified the candidate 

genes found at each tissue and cell type, as well as by tissue-type category. For 

example, we found stronger associations in the colon for genes participating in the 

maintenance of epithelial tight junctions. Also, we found genes specifically in neural 

tissues that could be related to neuroimmune mechanisms. In this sense, this study 

would support the role of the enteric nervous system in the complex interplay of 

molecular pathways driving IBD, as described elsewhere (77). 

Moreover, we found genes that participated in signaling and regulatory molecular 

pathways targeted by commonly used IBD therapeutics, such as monoclonal 

antibodies that modulate the immune response. There was previous evidence that 

GWAS-identified risk SNPs were related to therapeutically relevant pathways, such 

as tumor necrosis factor (TNF) signaling, and interleukin and autophagy-related 

pathways (54). In our study we expanded the knowledge on candidate susceptibility 

genes involved in these processes, including genes such as HLA-A, MAP4K4, TRAF2 

and COL11A2, which might be potential targets or modulators of therapeutic 

agents. 

To provide further evidence of association, we compared our results with those 

based on observational data. We overlapped the identified candidate susceptibility 

genes for UC in the colon with genes differentially expressed between colon 

biopsies of UC patients and controls (78). We found a slightly moderate replication 

(around 20%) and a high concordance of direction of the effect. This low rate of 

concordance between predicted-based vs observational-based differential 

expression results was expected. This could be explained as observational data is 

based on smallest sample sizes (n=15 in this case) and therefore has lower statistical 

power; also, gene expression dysregulation processes caused by IBD status can 
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confound and bias the results, also known as reverse causation. In contrast, TWAS-

based candidate susceptibility genes are not biased by the effect of disease, as they 

are predicted from blood DNA genotypes (which cannot be altered by disease), and 

therefore, the directionality of the effect can be established, from susceptibility 

genes to disease, but not vice versa. In this sense, it is also notable that the 

imputation panels in which TWAS is based should be from healthy normal tissue, 

instead of inflamed tissue from patients, which is often used and might bias the 

results.  

In comparison with previous TWAS for IBD (57–59), we carried out a large, detailed, 

and complete study; including the most up to date genetic gene expression 

prediction models applied in a public large GWAS study. We included novel 

tissues/cells (55) not previously assessed in this framework and of high relevance 

for IBD, such as tissue across colon subsites and immune blood cells. Our approach 

provided not only novelty and comprehensiveness, but also more robust results 

because of an increased statistical power due to sample size and meta-analysis. 

Importantly, most of our results replicated with those provided in other large-scale 

genome/transcriptome-wide studies, supporting their robustness. To facilitate the 

comparison with other studies as well as the integration of our results in further 

studies, we highlighted the novel results and provided the complete association and 

statistical parameters for all genes and tissues as supplemental data. 

We are aware that the comparison of TWAS results across tissues and cell types to 

nominate potentially more relevant genes is challenging. This is partially because 

associations between genetically regulated gene expression and IBD risk were 

strongly dependent on the sample size of the used datasets, showing a positive 

correlation between the number of identified genes and the sample size of the 

reference prediction panels. Therefore, conscious of this limitation, we compared 

TWAS results across tissues according to the correlation of the association effect 

sizes of significant genes, and we found higher homogeneity across tissues and cell 
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types within each disease subtype (CD and UC) than between them. Understanding 

the cell-specific role of disease-associated variants is crucial and an active area of 

research (59). Also, we found a higher number of significant genes for CD than for 

UC, which might be related to the higher estimated SNP-based heritability observed 

for CD than for UC. 

Finally, regarding the implication of the results, these can be of high relevance for 

other researchers interested in 1) investigating the molecular processes driving IBD 

and their differences according to disease subtype (CD and UC) and tissue/cell type, 

2) identifying potential candidate therapeutic targets, and 3) the development of 

predictive risk models based on predicted gene expression. 
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5.4. Global discussion 

Exponential advances in the development of sequencing technologies during the 

last two decades have provided a feasible generation of large omics datasets. These 

advances, along with those in the fields of bioinformatics and biostatistics providing 

robust inferences and interpretations of these datasets, have promoted a paradigm 

shift in the study of life sciences and have provided advances in Medicine (79). More 

in detail, large scale genome-wide association analyses such as GWAS, and its 

functional interpretation and translation to targeted therapies, is a field that is 

gaining momentum (80).  

In this up-to-date framework, we have carried out studies that give insights into the 

regulatory effects on colon gene expression and its role in providing susceptibility 

to colon-related diseases such as CRC and IBD. In addition, we used bioinformatic 

tools to develop a web-based interactive resource to help other investigators to 

easily benefit from the large colon gene expression-related data we and other 

researchers provide.  

Altogether, we lay the foundations for important discoveries coming from the 

exploitation of the benefits provided by our investigations. For example, the genetic 

gene expression prediction models provided in CoTrEx 2.0 might be used to perform 

TWAS for a wide range of complex traits and diseases, which, similarly to what we 

evidenced in our TWAS for IBD, might point to strong candidate susceptibility genes 

in relevant signaling pathways and cell types. One promising application of our colon 

eQTL reference data and imputation panels is their use to give more insight into the 

biology underlying autoimmune diseases, such as rheumatoid or celiac disease. 

These diseases are influenced by altered permeability of the colon mucosa, thus 

nominating related genes can be useful for specific drug design. 

We are aware that the architecture of transcriptional variation is complex, and that 

there are some limitations inherent to the statistical approaches used to link 

genetically predicted gene expression with disease. In this regard, to address LD-
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related issues we performed colocalization rather than functional annotation; and 

to address the issue of correlation between genes we used fine mapping. Although 

these approaches mitigate LD linkage, they are subjected to biases due to other 

genetic phenomena such as epistasis, genotype environment interaction, and 

pleiotropy. For example, overlapping eQTL and GWAS signals can be linked by LD, 

or can colocalize through any of these two scenarios: 1) causality, i.e. a single-causal 

SNP affecting the trait by modulating the expression of a gene; or 2) pleiotropy, i.e. 

a single-causal SNP with independent effects on trait and gene expression (10) (see 

Figure 16). Identifying a causal rather than a pleiotropic effect is an expanding area 

of research, and there have been developing tools based on Mendelian 

randomization approaches that address this topic (81).  

 

Figure 16. Linkage, causality, and pleiotropy effects on colocalization. Colocalization 
addresses linkage but can be driven either by true causality or by pleiotropy. Adapted from 
(10). 

Large scale genome-wide association analyses have resulted in great advances in 

the field, including the understanding of disease biology and the development of 

targeted therapies. Despite hints of success, many doubts have been recently raised 

about the utility of GWAS (82,83) under the reasoning that everything points to 

nothing. As GWAS studies continuously provide additional variants associated with 

disease, in the end, every DNA region active in a tissue would be involved in a 
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common disease, and all expressed genes in a tissue can be implicated. Therefore, 

scientists raising this concern claim that it will become indefensible that there’s a 

simple biological interpretation for each gene associated with disease. They 

articulate that instead of increasing sample size and the efforts to carry out larger 

GWAS studies, research might be focused on understanding biochemical networks 

and the connections between the molecules participating in them (82). However, 

both strategies are complementary and will provide a broader understanding of 

disease etiology. 

Then, it is important to remark that undesired research practices that bias and 

override findings are extended and often overlooked (84). A concerning topic that 

stands out is the lack of reproducibility. For example, a study pointed out that most 

(more than 70%) researchers have failed to reproduce another scientist's 

experiments, and more than half have failed to reproduce their own (85). 

Addressing the aspects that contribute to these research practices is crucial, as 

improving the reliability of research will increase the credibility of the published 

scientific literature and accelerate discoveries (84). Specifically, in the field of 

bioinformatics, some aspects must be considered. For example, analyses can be run 

with different algorithms and statistical methods that are equally valid. The 

selection of the one that either has the friendliest user interface or gives the most 

interesting results might bias the research findings. Also, analyses may require the 

subjective selection of a priori parameters, whose different selection will likely 

generate different results. Moreover, some analyses can become deprecated 

because of advances in the databases/reference sets. Therefore, the selection of 

the correct genome build and the adequate database is key, as well as investigating 

their limitations, including their lack of corrections or updates to annotations (79). 

Finally, regarding the future directions of this field, the coordinated interplay of 

researchers from different disciplines will result in the successful identification of 

disease-associated loci, as well as its translation to meaningful discoveries that 
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provide clinical solutions, such as drugs and risk prediction tools (80). A summary of 

the key players that will drive these advances is summarized in Figure 17. Functional 

fine-mapping approaches, in addition to those that we used in our studies, such as 

clustered regularly interspaced short palindromic repeats (CRISPR) screens and 

massively parallel reporter assays (MPRA) may serve as in vitro validation tools of 

the candidate susceptibility genes. Another essential component driving advances 

in the field are scRNA-Seq-derived approaches, which are still in their first stages of 

development, but represent a promising technology. Also, advances in approaches 

to provide adequate cellular models represent another hot topic that is rapidly 

expanding, including organ-on-a-chip, and engineered organoid cultures (see Figure 

17). 

 

Figure 17. Approaches for translating disease associated risk loci into targeted 
therapeutics. Making sense of GWAS-identified risk loci would require the orchestrated 
conjunction of key cross-disciplinary areas of development. Thanks to these combined 
efforts, significant advancements will take place for the translation of knowledge to novel 
clinical solutions. Reprinted from Lichou & Trynka (80). 

Overall, our results might aid other researchers to generate novel hypotheses that 

guide future investigations on the molecular basis of complex traits and diseases. 
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Specially for those affected by gene expression changes in the colon. Also, the work 

included in this Thesis will pave the way for future developments on risk prediction 

approaches and targeted therapies in IBD and CRC. 
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6. CONCLUSIONS 

1. We have generated reference profiles of gene expression and alternative 

splicing of normal colon tissue based on a sample size of 445 healthy 

individuals.  

2. We have found 4,430 genes differentially expressed across ascending, 

transverse and descending colon subsites. 

3. We have reported 11,739 eQTLs and 1,125 sQTLs in normal colon tissue. 

About 50% of the SNPs involved in these QTLs were intronic. Also, they were 

enriched in regulatory regions, suggesting additional functional relevance in 

the colon. 

4. We have identified 20 complex traits and diseases whose SNP-based 

heritability estimation is significantly enriched in the eQTLs identified, and 

we have proposed candidate susceptibility genes for these phenotypes. 

5. We have provided insight into the genes and molecular processes underlying 

disease susceptibility. These genes should be prioritized in functional studies 

and could be targets for new therapeutics.  

6. The Colon Transcriptome Explorer 2.0, an interactive web-based resource, 

was built and hosted online at https://barcuvaseq.org/cotrex/. This 

application is of interest for visualizing gene and transcript expression levels 

in the colon, as well as exploring SNP-expression associations and annotating 

SNPs with colon eQTLs. 

7. We identified 136, 116 and 88 novel candidate susceptibility genes for IBD, 

CD and UC, respectively. We described in detail the novel genes that were 

identified in the colon (N=39) as well as those identified in immune (N=19), 

epithelial (N=25), mesenchymal (N=22) and neural (N=12) tissue categories. 
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8. The candidate genes we proposed for IBD participate in regulatory and 

signaling pathways mostly related to the immune system, as well as in other 

key pathways, such as the maintenance of the colon mucosa integrity and 

pathways related to IBD therapeutics. 
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