
A Data-Driven Approach to
Prescribe Web API Evolution

Rediana Koçi

UNIVERSITAT POLITÈCNICA DE CATALUNYA
October 2023

A Data-Driven Approach to
Prescribe Web API Evolution

Ph.D. Dissertation
Rediana Koçi

Thesis submitted: October, 2023
Main Ph.D. Supervisors: Prof. Xavier Franch

Prof. Petar Jovanovic
Universitat Politècnica de Catalunya, BarcelonaTech,
Spain

Thesis submitted: October, 2023
Main Ph.D. Supervisors: Prof. Xavier Franch

Prof. Petar Jovanovic
Universitat Politècnica de Catalunya, BarcelonaTech,
Spain

PhD Committee: Prof. Antonio Ruiz Cortés
University of Sevilla, Seville, Spain
Prof. Cesare Pautasso
Università della Svizzera Italiana (USI), Lugano,
Switzerland
Prof. Silverio Martínez-Fernández
Universitat Politècnica de Catalunya, BarcelonaTech,
Spain

PhD Series: Barcelona School of Informatics, Universitat Politècnica
de Catalunya, BarcelonaTech

© Copyright by Rediana Koçi. Author has obtained the right to include the published
and accepted articles in the thesis, with a condition that they are cited, DOI pointers
and/or copyright/credits are placed prominently in the references.

Abstract

In the last two decades, the use of web Application Programming Interfaces (APIs)
has grown exponentially, providing both consumers (software developers) and providers
(companies and institutions that expose their organizational data or services) with
numerous advantages and facilities. Web APIs allow developers to easily integrate
existing services or data into their applications, reducing the time and cost required to
build new software. At the same time, by making available their web APIs, providers
can increase their customer reach or create a new revenue stream by monetizing the
web API.

Even though consumers expect web APIs to be steady and well-established, web
APIs are prone to continuous changes, evolving several times through their lifecycle.
As the use of web APIs continues to grow, the need to evolve them to meet the
changing needs of consumers becomes more challenging. However, consumers do
not always welcome web API evolution, as the changes might be too frequent or not
relevant from their point of view. This discontentment becomes even stronger for
the fact that web APIs are exposed over the Internet, meaning that consumers may
be forced to upgrade to new web API versions (if providers decide to discontinue the
former ones). Knowing the impact changes have on consumers, providers have to
strike a balance between not imposing unexpected, frequent changes and providing
an up-to-date, maintainable, bug-free web API, that fulfills consumers’ needs.

The aim of this research work is to develop a semi-automatic method that en-
ables web API providers to prescribe changes based on their consumers’ behavior, as
recorded in web API usage logs. We take the position that web API evolution should
be mainly usage-based, i.e., the way consumers use web APIs should be one of the
main drivers of webAPI changes. We start with the exploration of webAPI evolution,
by seeing the process from the points of view of both providers and consumers. We
identify and classify the changes that often happen to web APIs, and investigate how
all these changes are reflected in various artifacts. Building on this classification, we
examine different types of usage logs, namely development and production logs, to

iii

understand consumers’ needs based on their behavior. We detect usage patterns that
indicate the presence of usability issues or needs for improvement in the web API
and suggest changes that should be implemented in future web API releases. Our
approach enables providers to make informed decisions based on usage patterns. By
adopting a usage-based approach, providers can ensure that their web APIs continue
to meet the evolving needs of their consumers.

Resumé

En les últimes dues dècades, l’ús d’Aplicacions de Programació d’Interfícies (APIs)
web ha crescut exponencialment, oferint nombroses avantatges i facilitats tant als
consumidors (desenvolupadors de programari) com als proveïdors (empreses i insti-
tucions que exposen les seves dades o serveis organitzatius). Les APIs web permeten
als desenvolupadors integrar fàcilment serveis o dades existents en les seves aplica-
cions, reduint el temps i el cost necessaris per construir nous programaris. Al mateix
temps, al posar a disposició la seva API web, els proveïdors poden augmentar el nom-
bre de clients de la seva marca o crear una nova font de guanys monetitzant la seva
API web.

Tot i que els consumidors esperen que les APIs web siguin estables i ben es-
tablertes, les APIs web són propenses a canvis contínues, evolucionant diverses ve-
gades al llarg del seu cicle de vida. A mesura que l’ús de les APIs web continua
creixent, la necessitat de fer-les evolucionar per satisfer les necessitats canviant dels
consumidors esdevé més desafiadora. No obstant això, els consumidors no sempre
acullen amb satisfacció l’evolució de les APIs web, ja que els canvis poden ser massa
freqüents o no rellevants des del seu punt de vista. Aquesta descontentament esdevé
encara més fort pel fet que les APIs web estan exposades a través d’Internet, el que
significa que els consumidors poden ser obligats a actualitzar-se a noves versions
de la API web (si els proveïdors decideixen discontinuar les antigues). Coneixent
l’impacte que els canvis tenen en els consumidors, els proveïdors han de trobar un
equilibri entre no imposar canvis inesperats i freqüents i proporcionar una API web
actualitzada, mantenible i sense errors, que satisfaci les necessitats dels consumidors.

L’objectiu d’aquest treball de recerca és desenvolupar un mètode semi-automàtic
que permeti als proveïdors de web API prescriure canvis basats en el comportament
dels seus consumidors, tal com es registra en els logs d’ús de la web API. Consid-
erem que l’evolució de la web API ha de ser principalment basada en l’ús, és a dir,
la manera com els consumidors utilitzen les web APIs ha de ser un dels principals
impulsors dels canvis en la web API. Comencem amb l’exploració de l’evolució de la

v

web API, veient el procés des dels punts de vista tant dels proveïdors com dels con-
sumidors de la API. Identifiquem i classifiquem els canvis que sovint es produeixen en
les web APIs, i investiguem com aquests canvis es reflecteixen en diversos artefactes.
Analitzem diferents tipus de logs d’ús, concretament els logs de desenvolupament i
producció, per entendre les necessitats dels consumidors basades en el seu compor-
tament. Identificant les necessitats dels consumidors, podem prescriure canvis que
s’haurien d’implementar en futures versions de la webAPI. El nostre enfocament per-
met als proveïdors prendre decisions informades basades en els patrons d’ús. Adop-
tant un enfocament basat en l’ús, els proveïdors poden garantir que les seves web
APIs continuïn satisfent les necessitats en evolució dels seus consumidors.

Acknowledgements

I am taking the opportunity to thank all the persons without whom this thesis would
not have been possible.

First, I want to thank my two advisors, Dr. Xavier Franch and Dr. Petar Jovanovic
for their constant guidance and support throughout my PhD. Thank you for all the
effort and time dedicated to our weeklymeetings, and the patience you demonstrated
during these years. I would also like to extend my gratitude to Dr. Alberto Abello.
Though not an advisor ’de jure’, he has been there since day one, and with his pa-
tience and prudence helped me overcome even the most challenging moments. I am
really grateful and honored to have been your PhD student. I cannot imagine my
PhD journey without the help and wisdom of each one of you.

Additionally, I would like to thank all themembers of the DTIM andGESSI groups
for the healthy and inspiring work environment. Thank you for all the shared expe-
riences, discussions, and suggestions, mainly during our lunch seminars, which have
been one of the most interesting and productive activities within the group.

I want to also thank all my friends, both here in Barcelona and abroad. To those
here, thanks for the unforgettable moments we have shared while exploring and
devouring this amazing city, which we’ve been lucky to call home for these years.
To my friends abroad, thank you for always managing to brighten my days with
your calls, messages, and a lot of funny memes even though miles away. I want to
especially thank Soti for being so considerate and patient during this long journey
of mine (ours :)), even when it was challenging for me to be the same.

Last but not least, I want to thank my family for always believing in me, and for
their constant support and encouragement in all my pursuits.

vii

List of Figures

1.1 Overview of the proposed methodology. 14
1.2 Overview of Chapter 2. 18
1.3 API artifacts. 18
1.4 Overview of Chapter 4. 20
1.5 Overview of Chapter 5. 21
1.6 Overview of Chapter 6. 21

2.1 API syntax in Controller and calls. 26
2.2 An URL to call an API. 34
2.3 API changes in API controller and API artifacts, Venn diagram. 42

3.1 Core Concepts and Relationships . 50
3.2 Framework . 55
3.3 True Positives and True Negatives . 58

4.1 The interaction between consumers, providers, and WAPIs 63
4.2 The development lifecycle of consumers’ application 67
4.3 Field extraction and session identification 68

5.1 Data pre-processing. 91

6.1 Directed graphlets with up to 4 nodes [79] 105
6.2 Main steps of the approach . 107
6.3 The set of patterns . 110

7.1 PatternLens in the full context of WAPI - consumers interaction . . . 139
7.2 PatternLens: Class Diagram . 140
7.3 PatternLens: Application Interface . 141
7.4 The pattern and the change it implies 142
7.5 The pattern as displayed in PatternLens 142

1

List of Tables

2.1 DHIS2 2.27 Changes from controller comparison. 36
2.2 DHIS2 2.27 JIRA feature classification. 39

3.1 Design and usage metrics . 53

4.1 Log formats of the two DHIS2’s deployments under study 70
4.2 Statistics for the defined sessions . 72
4.3 WAPI requests assigned to four applications installed in MSF andWIDP 74
4.4 Log entries from different users with the same IP address (proxy ad-

dress). 77
4.5 Log entries with wrong order because of coarse timestamp. 78
4.6 Issues’ mitigation for a better WAPI usage logging 78

5.1 API usability . 86
5.2 Confusion Matrix . 96
5.3 J48 Results . 96

6.1 Interviewed WAPI providers and consumers 121
6.2 Consumers’ Interviews’ Results . 122
6.3 Consumers’ answers’ categorization 123
6.4 Provider’s Interview Results . 126
6.5 Providers’ answers’ categorization . 127

A.1 Graphlets, the sequences they can generate, the spotted relationships
between two nodes, and the inferred patterns. 161

2

Contents

Abstract iii
List of Figures . 1
List of Tables . 2

1 Introduction 7
1 Motivation . 7
2 Background . 8

2.1 Web APIs . 9
2.2 Web APIs usage logs . 10
2.3 Use Cases . 11

3 State-of-the-art . 12
4 Thesis Objectives and Research Questions 14
5 Contributions . 15
6 Structure of the Thesis . 17

6.1 Classification of changes in API evolution (RQ1) 18
6.2 Web API Change-Proneness Prediction (RQ2) 19
6.3 Improving Web API Usage Logging (RQ3) 19
6.4 A data-driven approach to measure the usability of web APIs

(RQ4) . 20
6.5 Web API evolution patterns: A usage-driven approach (RQ5). 20
6.6 PatternLens: Inferring evolutive patterns from web API us-

age logs (RQ5). 21

2 Classification of Changes in API Evolution 23
1 Introduction . 24
2 Related Work . 27

2.1 API evolution . 27
2.2 API usage . 28

3 Classification of changes . 29

3

Contents

3.1 Which are the changes that happen to APIs? 29
3.2 How are the changes that happen to APIs reflected in differ-

ent API artifacts? . 30
3.3 Which are the causes of the API changes? 32
3.4 How are the API changes reflected in the usage logs? 34

4 Use case: DHIS2 API . 35
4.1 Methodology - Exploring evolved APIs 35
4.2 DHIS2 use case. 35

5 Discussion . 41
6 Conclusion and future work . 44

3 Web API Change-Proneness Prediction 47
1 Introduction . 48
2 Background and Related Work . 49

2.1 Core Concepts and Relationships 49
2.2 Related Work . 50

3 Framework . 52
4 Evaluation . 56

4.1 Use Case . 56
4.2 Metrics Quantification . 56
4.3 Data Analysis . 57

5 Threats to Validity . 59
6 Conclusion . 60

4 Improving Web API Usage Logging 61
1 Introduction . 62
2 Related Work . 64
3 The potential of WAPI usage logs . 65
4 How does the logs format affect the pre-processing? 68
5 Case study . 70
6 Common WAPI logs issues . 74
7 Conclusion and future work . 79

5 A Data-Driven Approach to Measure the Usability of Web APIs 81
1 Introduction . 82
2 Related Work . 84
3 The proposed approach . 86

3.1 Measuring web API usability in web API logs 86

4

Contents

3.2 API usability aspects . 87
3.3 Usability issues detected in API usage logs 88

4 API log data pre-processing . 90
5 Case study design . 92

5.1 DHIS2 Web API . 92
5.2 Data pre-processing . 92
5.3 Data Analysis . 94

6 Discussion . 96
7 Conclusion and Future Work . 98

6 Web API Evolution Patterns: A Usage-Driven Approach 99
1 Introduction . 100
2 Background . 102

2.1 WAPI usage logs . 102
2.2 Process Mining . 104
2.3 Graphlets . 106

3 Approach . 106
4 Defining and detecting the WAPI behavioral patterns 109

4.1 Patterns Definition . 109
4.2 Metrics Generation . 111
4.3 Patterns Detection . 113

5 Evaluation . 118
5.1 Use case . 119
5.2 Data Analysis . 120
5.3 Feedback from Programmers 120

6 Discussion . 127
7 Related Work . 131
8 Conclusion and Future Work . 133

7 PatternLens: Inferring Evolutive Patterns fromWeb API Usage Logs 135
1 Introduction . 136
2 Background: Process Mining in the WAPI context 137
3 PatternLens overview . 138

3.1 Metrics calculator . 140
3.2 Patterns detector . 141

4 Onsite demonstration . 143
5 Future work . 143

5

Contents

8 Conclusions and Future Directions 145
1 Conclusions . 145
2 Future Directions . 147

Bibliography 148
Bibliography . 148

Appendices 159

A Appendix 1 161
1 Structural relationships derived from graphlets 161
2 Interviews . 163

6

Chapter 1

Introduction

1 Motivation

Since their first release over two decades ago (i.e., SOAP in 1998 [98] and REST in
2000 [28]), web APIs have been rapidly adopted by developers. Furthermore, the
availability and usage of web APIs have significantly increased in recent years. Ac-
cording to the RapidAPI 2022 annual report [74], more than 62.6% of developers relied
on APIs more in 2022 compared to 2021, with 69.2% expecting to rely on APIs even
more in 2023. Many companies and institutions have adopted API-driven strategies
to create new revenue streams and gain a competitive advantage by acceleratingmar-
ket entry. Businesses from several domains, like healthcare (e.g., openFDA, DHIS2),
transportation (e.g., Uber, Barcelona TMB), travel (e.g., Skyscanner, Amadeus), and
education (e.g., Moodle, Mendeley) are API-fying their activities and exposing their
data through APIs. Developers, in turn, have become increasingly reliant on web
APIs when building applications, which poses new challenges for web API providers,
particularly during web API evolution, as evolving and maintaining large web APIs
with numerous consumers becomes arduous.

Web APIs work as a contract between consumers’ applications and providers’
data, features, or services. Therefore, changes in these contracts can have a signifi-
cant impact on these applications, causing a chain of modifications that are hard to
manage. At the same time, providers are compelled to perform changes to keep their
web APIs updated with the last business requirements, changing technology, and
demanding consumers. As many real-world cases prove, the current evolution prac-
tices are unsuitable for data-intensive web APIs (i.e., smart APIs) [3]. These methods
are neither scalable nor time-efficient [75]. To tackle these issues, providers must

7

Chapter 1. Introduction

adopt efficient and effective evolution practices to manage their resources better and
develop improved future versions of their web APIs. With the number of web APIs
growing rapidly, and consumer interest following the same trend, the evolution pro-
cess of web APIs needs to evolve as well.

In order to help providers in better planning and deciding on the changes, we
introduce a data-driven usage-oriented approach that assists providers in analyzing
consumers’ implicit feedback, understanding their behavior, identifying their needs,
and anticipating changes that meet these needs. We propose the analysis of web
API usage logs, which data providers already own, but do not proactively use to in-
form their evolution practices. These log data contain all the traces of the interaction
between consumers and web APIs, e.g., the requests to web API endpoints, the pa-
rameters used in the requests, and the order in which endpoints are being called.
Hence, their analysis can detect the need for improvement or changes in the part of
webAPIs consumersmost struggle with or inefficiently use. For instance, if providers
identify repetitive calls to a specific endpoint returning client-side errors, they may
review the error message and make it more detailed, so consumers can understand
where the problem in their request is, and fix it before resubmitting other requests.
If providers detect endpoints that return large responses, they may consider adding
new parameters to that endpoint to better filter the data, or reducing the size of pag-
ination. These are two simple examples of how the information in the usage logs can
reveal several issues, the fixing of which could significantly improve the web API.

By adopting a usage-driven approach to web API evolution, providers can man-
age their resources more effectively, build improved versions of their web APIs, and
enhance the overall user experience for consumers. This way, evolution planning
will be more manageable for providers, and more fitting for consumers.

2 Background

In this section, we describe two main concepts we broadly refer to in the remainder
of the thesis. First, we give a general overview of web APIs, how theywork, how they
differ from traditional APIs and their life cycle. Second, we introduce the concept of
usage logs, as the main input of our approach. As chapter 4 is entirely dedicated to
web API usage logs, here we just introduce the main concept, needed to easily grasp
each chapter of the thesis. In the end, we introduce the web APIs we have taken into
the studies throughout our work in several papers.

8

2. Background

2.1 Web APIs

Web APIs are interfaces that allow different software to interact and communicate
with each other over the Internet. Applications can request and receive data or func-
tionality from other applications through these standardized interfaces. Thus, devel-
opers are increasingly relying on web APIs when creating their applications. They
can use webAPIs to retrieve data from a database, integrate with third-party services,
automate tasks, or build new applications on top of existing ones. For instance, using
Twitter web API, a developer can retrieve a user’s tweets, post a new tweet, or search
for tweets that contain a specific keyword.

Web API requests are typically sent using HTTP methods such as GET, POST,
PUT, and DELETE, which allow clients to retrieve data, submit new data, update
existing data, and delete data from the server, respectively.

While traditional APIs and web APIs are both used to enable communication
between different applications, there are some key differences between them. This
thesis focuses on the evolution of web APIs. As such, a comparison between the two
types is necessary to point out these differences.

Traditional APIs (often referred to as library APIs or local APIs) are programming
interfaces that serve as means of communication between two applications running
on the same machine or server. These APIs typically use language-specific inter-
faces and data structures of the programming language in which they are written.
Conversely, web APIs enable remote communication between applications running
on different servers or different locations. Web APIs, as already stated, use stan-
dard web protocols such as HTTP and HTTPS, and typically communicate using a
predefined set of data exchange formats such as JSON or XML.

The differences in theway these two types of APIs work give their respective con-
sumers and providers advantages and disadvantages. While traditional APIs evolve,
their consumers have more control over upgrading to the new versions. As long
as they have the API locally stored in their machines, they can somehow delay the
upgrade process. The opposite happens with web APIs. As consumers access them
remotely, if providers decide to perform some changes or disconnect some older ver-
sions of the web API, consumers are forced to upgrade to the changes to prevent their
applications frommisbehaving or crashing. Thus, the evolution of webAPIs becomes
more onerous for consumers, and therefore more challenging for their providers.

9

Chapter 1. Introduction

2.2 Web APIs usage logs

According to the 8th Lehman’s Law for software evolution, feedback is essential in
the software evolution process [49,50]. Gathering consumers’ feedback is a followed
practice by many web API providers, e.g., Twitter, Facebook, and Google, which reg-
ularly solicit feedback from their users using surveys, forums, issue trackers, and
social media. While these ways of communicating with users are certainly impor-
tant and such communication channels facilitate the interactions between providers
and consumers, analyzing this feedback from different sources can be challenging. It
involves sifting through a large volume of typically unstructured data from multiple
channels and does not ensure that all the consumers’ requests are regarded.

While the remote accessibility of web APIs poses new challenges and increases
the responsibility of web API providers, they can also benefit from this by observing
the behavior of their consumers. All requests sent to the web API endpoints can be
tracked by providers. In fact, web API usage is regularly monitored by providers to
ensure uninterrupted service and to generate several reports regarding web API traf-
fic. However, web API usage logs possess even greater potential. They contain all
the requests consumers send to web API, the parameters used, and the sequences of
these requests to fulfill certain functionality. Thus, they can be considered implicit
consumer feedback. In addition to being gathered and analyzed in a more transpar-
ent, centralized, and scalable way, these logs contain particular information that can
not be collected directly from consumers. By analyzing the sequences of all requests,
providers can identify potential areas for improvement in the endpoints, some of
which may not have been evident to consumers. In addition, analyzing usage logs
can reveal new web API usage scenarios that were not intentionally designed by
providers but are nonetheless being called by consumers.

We distinguish two types of logs: (i) development logs, and (ii) production logs.
Development logs are generated at design time, while developers build and test their
applications. By analyzing these logs, we can identify usability issues (e.g., issues
with clarity, memorability, and helpfulness) consumers face when they integrate the
web API into their applications. We cover their analysis in Chapter 5. Production
logs are generated during application runtime, while applications are being used by
end users. By analyzing these logs, we can identify usage patterns (i.e., relationships
between endpoints inferred from frequent sequences of calls), which characterize
consumers’ behavior and might be indications for change or improvement. We cover
their analysis in Chapter 6.

10

2. Background

2.3 Use Cases

To exemplify our approaches, we analyzed usage logs of two main web APIs, (i)
District Health Information System web API (DHIS2), and (ii) Facultat d’Informàtica
de Barcelona web API (FIB).

DHIS2 is an open-source, web-based platform serving as a health management
information system. It is developed and maintained by the software development
group within the Health Information Systems Programme at the University of Oslo
(UiO), Department of Informatics. DHIS2 platform is used worldwide in more than
100 countries by various institutions and NGOs for data entry, data quality checks,
and reporting. It has an open REST WAPI, used by more than 60 native applications
(consumers). For the analysis, we use logs from two different DHIS2 instances: (1) the
World Health Organization (WHO), in their Integrated Data Platform (WIDP), which
is used by several WHO departments for routine disease surveillance and country
reporting; (2) Médecins Sans Fontières (MSF), used for field data collection and as a
central repository for medical data.

DHIS2WAPI resources (e.g., data, documents, functionality) are exposed through
WAPI endpoints (e.g., api/dataValueSets). Using these endpoints, consumers
can access and manipulate data stored in the instance of DHIS2, data related to dis-
ease cases (e.g., where a disease or infection spread, number or cases), organiza-
tion units collecting the data (e.g., hospitals), etc. Consumers can interact with the
WAPI using HTTP methods: call a GET request to retrieve a resource, a POST re-
quest to create one, PUT to update a resource, and DELETE to remove it, e.g., GET

api/events, POST api/dataSets/ID/version.
The FIB WAPI was developed by the inLab research laboratory at the Polytech-

nic University of Catalonia (UPC). It provides a set of endpoints for extracting data
about departments, courses, exams, room reservations, etc. It is a read-only WAPI,
meaning that consumers can only retrieve the data using GET requests, e.g., GET

v2/assignatures, GET /v2/lectures. It is built under REST architec-
ture and is mainly being used by the FIB website, monitoring systems, school news
screens, and several applications created for academic purposes.

Even though the number of web APIs we take in the study is limited to two, the
web APIs we have chosen are from different domains (health and education) and of
different types. The DHIS2 web API is publicly available and can be used by anyone,
whereas the FIB web API is private and requires UPC account credentials for access.
Our aim was to demonstrate that our approach can be applied to a variety of APIs,
regardless of their type or domain.

11

Chapter 1. Introduction

3 State-of-the-art

Even though web API evolution has gained considerable attention, most of the avail-
able works analyze this process from the consumers’ perspective. Thus, their most
targeted objective is to settle the issues faced by consumers when upgrading to the
new web API versions and to smooth this process (the upgrade process) as much as
possible. While their contribution is invaluable and the developed tools and meth-
ods greatly improve consumers’ migration to the new releases, they mostly suggest
post-evolution practices. We refer to post-evolution practices as actions providers
(should) take to make consumers’ upgrade process easier and more straightforward
after they have designed and implemented the changes. However, as Abelló et al.
state in their work, “the core problem in web API evolution is to determine what,
how, and when to evolve" [3].

Lübke et al. focused on API evolution strategies and introduced a set of patterns
by mining real-world API documentation and conducting workshops with practi-
tioners [54]. These patterns consist of defining API descriptions, introducing ver-
sion identifiers, using semantic versioning, and also practices regarding the life-
time of older APIs when new ones are provided. Serbout and Pautasso also fo-
cused their work on identifying the current versioning practices used by web API
providers to ease compatibility checking andmaintainability for both consumers and
providers [81]. Espinha et al. discourage frequent changes and highly recommend
the application of blackout tests: disconnecting for short times the old versions that
are planned to be removed so that consumers will be reminded of the upcoming
changes [27]. Sohan et al. suggest the use of semantic versioning, improvement
of documentation, and the use of effective communication channels to inform con-
sumers about the changes [82]. In the same line stand the findings of Lamothe et al.
in their systematic literature review of API evolution [47]. As they observed, the ma-
jority of the proposed tools and techniques aim to improve API usage, provide usage
recommendations, help with migration, reduce API misuse, and create improved API
documentation. Interestingly, they identified the mastering of feedback systems in
API evolution as the least explored topic.

The importance of consumer feedback has been often tackled, but the current
methods of gathering and analyzing this feedback are not effective, lack scalability,
and have several limitations. Rauf et al. presented surveys, controlled experiments,
and usability as the most used methods in evaluating API usability [75]. As the au-
thors showed, there is a need for more automated, scalable, and time-efficient meth-
ods. Zhang et al. studied different ways followed by API designers to gather user

12

3. State-of-the-art

feedback [102]. They found out that often API designers refer to informal channels
to get users’ feedback. Theymentioned bug reports, emails, and online discussions as
the primarily used way to identify usability issues reported by users. However, API
designers participating in the study showed a strong interest in understanding users’
mental models from low-level log data but expressed the lack of tools and difficulty
in analyzing these data, considering their enormous volume.

Mathijssen et al. performed a systematic literature review on different API man-
agement practices applied by providers [60]. They showed that providers were log-
ging the access to their API and monitoring the API usage, but with the aim of pro-
viding performance statistics or traffic metrics, and not using them as input for the
API evolution planning. Ivanchikj et al. used web (REST) API logs to feed their
RESTalk Miner tool [36]. This tool employs RESTalk, a domain-specific language,
to create visual representations of API conversations [37, 69]. While it does have
pattern-searching capabilities, its primary purpose is to facilitate the visualization of
these conversations. Macvean et al. assessed the usability of web APIs by analyz-
ing the data from Google API Explorer to identify APIs [56]. The metric they used
to measure API usability was API request error rate (client-side erroneous requests
(4XX) per total requests to the API). Although their results were still preliminary and,
as they stated, early in nature, the methodology used seems promising and opens a
lot of areas for future research.

While the importance of consumer feedback in web API evolution is acknowl-
edged [3,32,46,47], gathering and efficiently analyzing it remains an open issue. Our
approach contributes to this identified gap. We propose analyzing the consumers’
implicit feedback, represented in web API usage logs. Hence, we suggest leveraging
some valuable data providers already own, but do not use to their full potential. To
this aim, first, we observe the evolution process from both consumers’ and providers’
perspectives. Secondly, we show the importance and the potential of the web API
usage logs, as the main input of our approach. Then, we thoroughly analyze the
usage logs, applying different techniques (i.e., statistical analysis, process mining),
to detect different patterns, whose occurrence might indicate the need for potential
changes. This way, providers can use more practical and scalable methods to plan
the changes they will implement. Moreover, evolution will better meet consumers’
needs and requirements, as their usage was the main driver of the changes.

13

Chapter 1. Introduction

4 Thesis Objectives and Research Questions

The goal of this research work is to propose a semi-automatic data-driven approach
for web API providers to prescribe web API changes by studying their consumers’
behavior, imprinted in web API usage logs. Figure 1.1 depicts the main steps of our
methodology.

Analyze production logs
and propose changes

related to applications and
web API interaction

Analyze development logs
and propose changes

related to web API usability

Gather
evolution

information

Evaluate usage
relevance in

change-proneness
prediction

Pre-process
web API

usage logs

Fig. 1.1: Overview of the proposed methodology.

We will approach our goal by answering the following research questions. Each
question corresponds to one step in the introduced methodology (Figure 1.1).

• RQ1: Which are the changes that happen to web APIs when they evolve?

– RQ1.1: How are the changes that happen to web APIs reflected in differ-
ent web API artifacts?

– RQ1.2: Which are the causes of the web API changes?

– RQ1.3: To what extent are the web API changes reflected in the usage
logs?

• RQ2: To what extent can we predict the change-proneness of web API end-
points?

– RQ2.1: Which metrics can be used for the change-proneness analysis of
web API endpoints?

– RQ2.2: To what extent can usage metrics improve the change-proneness
prediction of web API endpoints?

– RQ2.3: Which characteristics help to determine the web API endpoints
that are more likely to change?

• RQ3: How can web API usage logging be improved?

14

5. Contributions

– RQ3.1: What are the advantages of proactively analyzing web API usage
logs?

– RQ3.2: Which are the main impediments to using web API usage logs
regarding consumers’ behavior?

• RQ4: WhichwebAPI usability changes can be anticipated based on developers’
behavior in the web API usage development logs?

– RQ4.1: Which are the usability sub-attributes that mostly influence the
API consumers’ experience?

– RQ4.2: Can we find issues impacting these usability sub-attributes by
analyzing the web API usage logs?

– RQ4.3: Can the usability issues found in the web API usage logs be mea-
sured in a meaningful way from the API consumers’ point of view?

• RQ5: Which web API changes can be anticipated based on applications’ be-
havior?

– RQ5.1: In which ways can endpoints be related to each other to indicate
the need for change based on how consumers call them?

– RQ5.2: What information can we extract from usage logs, that can help
in detecting the defined relationships between endpoints?

– RQ5.3: How can we detect the occurrence of the patterns in the usage
logs?

– RQ5.4: To what extent can we propose changes based on the patterns
found in the usage logs?

5 Contributions

The contributions of this research work are fourfold. They are related to the method-
ology steps introduced in Figure 1.1, and derive from answering the above-mentioned
research questions:

• Classify the changes at the interface level that typically happen to web APIs when
they evolve. To have a complete set of changes, we analyze different artifacts
used by providers during their web API evolution, as well as artifacts used by
them to communicate the implemented changes. It proved to us that most of
the studied artifacts contained incomplete information, lacking the majority

15

Chapter 1. Introduction

of the newly introduced changes. Due to their incompleteness, we extracted
the set of changes from the web API controller code by comparing consecutive
versions, which we then considered as the ground truth.

• Show the relevance of usage in web API change-proneness prediction. We take
the position that web API evolution should be driven by how consumers use
web APIs. Thus, to prove our approach, we included usage-related metrics in
change-proneness prediction models. To date, change-proneness was mostly
analyzed based on designmetrics and previous changes in the artifacts. Our ex-
periments showed that incorporating usage metrics into the prediction model
not only improved accuracy but also enabled early prediction of changes that
providers implement at later stages. By considering both design and usagemet-
rics, API providers can make proactive decisions, ensuring that their changes
align with user expectations.

• Unveil the potential as well as the main impediments of proactively using web
API usage logs in the context of web API evolution. Web API usage logs contain
invaluable information regarding consumers’ behavior, needs, and difficulties,
albeit requiring tedious pre-processing. To leverage this potential, we propose
several purpose-driven analyses that can be applied to these logs. Furthermore,
driven by the analysis requirements, we identify potential issues related to the
format and the logging of these data and provide suggestions for mitigating
them.

• Provide a systematic, data-driven method to measure the usability of web APIs
based on web API usage logs. We conducted an empirical study to measure
web API usability by monitoring and analyzing web API usage logs. For each
usability attribute extracted from the literature review, we defined a set of in-
dicators and their respective metrics. We built a classification model to predict
consumers’ error rate per endpoint, based on the defined metrics. Our model
was able to predict the class of the endpoints (endpoints with high or low us-
ability) with an accuracy of 72.25%.

• Provide a set of usage patterns, whose occurrence in the web API usage logs may
indicate the need for future change. We propose a process mining-based method
to anticipate changes in web APIs, by analyzing the behavior of web API con-
sumers and identifying their needs in the web API usage logs. We start by
defining a set of usage patterns, each of which represents a specific consumer
behavior, and indicates the need for a change in web API. The detected in-

16

6. Structure of the Thesis

stances of the patterns in the two web APIs we took in the study, proved to be
significant for the consumers and the providers of the studied web APIs.

6 Structure of the Thesis

This research work is structured in five main chapters of this document (i.e., Chap-
ter 2 - Chapter 7). Each chapter is self-contained, corresponding to an individual
research paper, thus it can be read in isolation. Even though the terminology used
has been clearly defined in each particular chapter, it is worth mentioning that for
the concept of web API, we interchangeably use web API or the acronym WAPI.

The papers included in this thesis are listed below. Chapter 2 is based on Paper 1,
Chapter 3 is based on Paper 2, Chapter 4 is based on Paper 3, Chapter 5 is based on
Paper 4, Chapter 6 is based on Paper 5, Chapter 7 is based on Paper 6, and Appendix
A is based on Paper 5.

P1. Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. "Classifi-
cation of changes in API evolution." In: 2019 IEEE 23rd International Enter-
prise Distributed Object Computing Conference (EDOC), pp. 243-249. IEEE, 2019
[Short paper].

P2. Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. "Web API
Change-Proneness Prediction." [Submitted].

P3. Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. "Improving
Web API Usage Logging." In: Research Challenges in Information Science: 15th
International Conference, RCIS 2021, Limassol, Cyprus, May 11–14, 2021, Pro-
ceedings, pp. 623-629. Cham: Springer International Publishing, 2021 [Poster
paper].

P4. Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. "A data-
driven approach to measure the usability of web APIs." In: 2020 46th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), pp. 64-
71. IEEE, 2020.

P5. Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. "Web API
evolution patterns: A usage-driven approach." Journal of Systems and Software
(2023): 111609.

P6. Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. "PatternLens:
Inferring evolutive patterns from web API usage logs." In: Intelligent Informa-
tion Systems: CAiSE Forum 2021, Melbourne, VIC, Australia, June 28–July 2,

17

Chapter 1. Introduction

2021, Proceedings, pp. 146-153. Cham: Springer International Publishing, 2021
[Demo paper].

6.1 Classification of changes in API evolution (RQ1)

Following the issues pointed out in the introduction and the identifying gap in the
State of the Art, we saw it reasonable and necessary to start our research work by
observing the web API evolution process from the planning, on the providers’ side,
to the changes adaptation on consumers’ side. Figure 1.2 depicts the main steps we
followed. We perform an exploratory analysis of web API evolution, including the
identification of commonly implemented changes, their documentation, and con-
sumers’ compliance with the changes. We identify and classify the set of possible
changes frequently happening on web APIs. In the subsequent sections, we aim to
identify the need for these changes, by considering the defined set of changes as the
ground truth. The analyzed artifacts are illustrated in Figure 1.3.

Analyze how the
changes reflect in the

API usage logs

Extract the API
changes

Analyze the changes in
different artifacts

Identify the reasons of
the changes

1

Fig. 1.2: Overview of Chapter 2.

Release notes – the main source of
information when web API consumers

upgrade to new versions

Issue tracker – systems that help web
API providers track all the changes

they make to their web APIs

API Documentation – the main source
of information when web API

consumers integrate with an web API

Versioning systems - important tools

used by web API providers
while developing and evolving their

web APIs

1

Fig. 1.3: API artifacts.

18

6. Structure of the Thesis

6.2 Web API Change-Proneness Prediction (RQ2)

Next, we analyze the relevance of consumers’ behavior (stored in web API usage
logs), in change-proneness prediction. Typically, change-proneness is associated
with design characteristics and the history of changes in the artifacts. However,
providers implement changes for several other reasons, including consumers’ feed-
back. While gathering, processing, and analyzing consumers’ explicit feedback can
be time-consuming, implicit feedback in the form of usage logs remains largely un-
explored. These logs offer a more systematic means of gathering and analyzing feed-
back. Consequently, we propose a methodology for predicting the change-proneness
of web API endpoints, taking into account not only design and change history but
also their usage. We introduce a set of metrics covering the above-mentioned charac-
teristics and evaluate our approach on a real-world web API. Our preliminary find-
ings indicate that incorporating usage metrics into the prediction model not only
improves accuracy but also enables early prediction of changes that providers imple-
ment at later stages. By considering both design and usagemetrics, API providers can
make proactive decisions, ensuring that their changes align with user expectations.

6.3 Improving Web API Usage Logging (RQ3)

As usage logs represent the main input of our approach, we specifically stop on their
potential for evolution purposes, and how useful and helpful they can be if fully and
properly analyzed. We start by making a distinction between two types of logs (as
already mentioned in Section 2.2), namely development and production logs. Even
though the same format, these logs can be used to uncover different issues in web
APIs as they are generated at different moments of consumers’ application lifecycle.
We suggest several methods that can be applied to each of them (e.g., process min-
ing), mention purpose-driven analyses (e.g., to analyze the usability of web API, to
understand consumers’ needs, to detect usage patterns), and also introduce the main
issues and challenges related to the format of these logs. As these logs are not logged
for these kinds of analyses or to target these goals or purposes, they lack some de-
tails and/or features. Figure 1.4 shows the two main challenges in web API usage
logs pre-processing: (i) field extraction, and (ii) session identification. We suggest
how to overcome these challenges in their preparation and pre-processing, and also
suggest some practical guidelines on how to better log this information.

19

Chapter 1. Introduction

1

Data fusion
Data

cleaning

Data
structuring

Data
generalization

Field Extraction

Session Identification

Fig. 1.4: Overview of Chapter 4.

6.4 A data-driven approach to measure the usability of web
APIs (RQ4)

After classifying and exploring usage logs, we start analyzing them. The goal is to
analyze the usability of web APIs and investigate how the main usability issues can
be foreseen by reading between the usage log lines (entries). We review the current
state of the art in web API usability, and for the gathered usability attributes, we
define indicators that could be quantified with the available information in the web
API usage logs. For instance, for the clarity usability sub-attribute, we define the
similarity of web API elements’ names as an indicator of clarity and quantify it in
the average similarity and maximum similarity metrics. Assuming that a web API
endpoint that suffers from poor clarity will have a high error rate (erroneous request
per all requests), we detect that endpoints, whose path elements’ names have a high
similarity, have also a high error rate, thus lacking clarity. Figure 1.5 depicts the main
steps we followed in defining the usability attributes, indicators, and metrics.

6.5 WebAPI evolutionpatterns: Ausage-driven approach (RQ5).

We define a set of web API behavioral patterns, whose occurrences in the usage
logs indicate the need for changes. To detect the instances of the defined patterns,
we introduce several metrics following process mining techniques. To show the ap-
plicability of our approach, we apply it to usage logs from two different web APIs.
Moreover, to show the significance of the detected patterns, we interview the con-
sumers and the providers of the studied web APIs. Figure 1.6 depicts the main steps
we followed to detect the patterns and suggest the changes they implied.

20

6. Structure of the Thesis

Literature Review (LR) for
API Usability Assessment

Filter out works that
focus on API

implementation code

Consolidate the
information into

indicators

Extend current state of
the art with additional
rules for sub-attributes

Adapt the information
for web APIs

Fig. 1.5: Overview of Chapter 5.

6.6 PatternLens: Inferring evolutive patterns from web API
usage logs (RQ5).

To exemplify the approach introduced in Chapter 6, we build PatternLens, a tool
that takes as input the web API usage logs, detects the occurrences of the patterns
(pre-defined in the tool), and introduces them to providers, along with the suggested
changes. Providers can accept or reject the suggested patterns,

Define the set of
Patterns

Detect instances of
patterns in the logs

Suggest Changes

Generate the Metrics

Fig. 1.6: Overview of Chapter 6.

21

Chapter 1. Introduction

22

Chapter 2

Classification of Changes in
API Evolution

The paper has been published as a short paper in the Proceedings of the IEEE 23rd
International Enterprise Distributed Object Computing Conference (EDOC).
DOI: http://dx.doi.org/10.1109/EDOC.2019.00037

Abstract

Applications typically communicate with each other, accessing and exposing data and
features by using Application Programming Interfaces (APIs). Even though API con-
sumers expect APIs to be steady and well established, APIs are prone to continuous
changes, experiencing different evolutive phases through their lifecycle. These changes
are of different types, caused by different needs, and are affecting consumers in different
ways. In this paper, we identify and classify the changes that often happen to APIs, and
investigate how all these changes are reflected in the documentation, release notes, issue
tracker, and API usage logs. The analysis of each step of a change, from its implemen-
tation to the impact that it has on API consumers, will help us to have a bigger picture
of API evolution. Thus, we review the current state of the art in API evolution and, as
a result, we define a classification framework considering both the changes that may
occur to APIs and the reasons behind them. In addition, we exemplify the framework
using a software platform offering aWeb API, called District Health Information System
(DHIS2), used collaboratively by several departments of the World Health Organization
(WHO).

23

http://dx.doi.org/10.1109/EDOC.2019.00037

Chapter 2. Classification of Changes in API Evolution

1 Introduction

Nowadays, Application Programming Interfaces (APIs) are being broadly used [17].
The main reason for this success is that APIs provide advantages to both their con-
sumers (software developers) and their producers (companies and institutions that
expose their organizational data). Software developers that use APIs do not have to
start from scratchwhen coding their applications. By outsourcing some functionality
to the API, they can speed up their work by focusing on other requirements. On the
other hand, by making available their API, organizations can increase the customer
reach of their brand or can create a new revenue stream by monetizing the API.

In an ideal world, the cooperation between API producers and consumers could
be described as follows: API producers develop a stable API, providing very detailed
and helpful documentation, so consumers use it without difficulties, while further im-
provements of the API do not affect them. In practice, the opposite usually happens:
APIs are prone to continuous changes, often backward incompatible and supported
by poor documentation. All of this has a negative impact on consumers [22, 26, 53].
Facing a lot of difficulties when upgrading to new versions, or even having a bad
experience with how the evolution process happens and is communicated to them,
consumers see the evolution as a set of painful changes, rather than a necessary phase
bringing them benefits.

API producers have their own reasons when performing evolutive actions, being
forced to make changes to their APIs in order to add new features, make them sim-
pler, improve their maintainability, fix bugs, optimize their performance, or improve
their security [15, 22, 101]. According to Semantic Version1 scheme, which uses a
sequence of three digits (Major.Minor.Patch) to control the versions, when produc-
ers perform backward compatible bug fixes, they launch a new Patch version, when
they perform backward compatible changes they launch a new Minor version, and
when they perform non-backward compatible changes, they launch a newMajor ver-
sion. The two first kinds of changes, for Patch and Minor versions, are non-breaking
changes. They will not prevent existing consumers’ applications from functioning
after the upgrade, while consumers can optionally learn and modify their code to
benefit from new features and improvements. Conversely, the last changes, intro-
duced in Major versions, are breaking changes. After upgrading to Major versions,
consumers are required to modify their code to comply with the new API version.
Thus, API producers should avoid these kinds of changes as much as possible.

The cost of adapting to the new changes depends on the type of changes and on
1https://semver.org

24

1. Introduction

the usage of the changed API elements: how much are the changed elements used
and how do the changes directly affect the API calls? The upgrade burden can be
reduced by supporting each release with more detailed documentation (e.g., release
and upgrade notes).

Our main objective is to give an overall view of how an API change is reflected
not only in its implementation but in four artifacts, namely release notes, API doc-
umentation, issue tracker, and versioning system. We first identify and classify the
changes that often happen to APIs, by analyzing the API controller. The syntax of
API, that consumers use in the calls, is implemented in the controller code. It han-
dles the request/response to and from API, so every change made to it will impact
the consumers. Then, we analyze the artifacts, to see where and how API produc-
ers explicitly introduce them. We refer to API documentation and release notes as
two main sources of information for API consumers when they integrate with an
API or upgrade to a new version of it [2, 95]. On the other hand, we take into study
the issue tracker and the versioning system as two important tools used by API pro-
ducers while developing and evolving APIs [13, 35]. We evaluate the impact these
changes have on consumers by analyzing the API log files, as they contain the calls
that consumersmake to the API. This waywe avoid analyzing the code of consumers’
applications, which often is not available.

We review the current state of the art in API evolution and, as a result, we define
a classification framework considering changes that may occur to APIs, the causes
behind them, and the impact they have on API consumers. In addition, we apply our
framework to a real-world use case. Analyzing the complete API evolution lifecycle,
from raising the issue, through its implementation, and documentation, publishing
it in the release notes, and finally analyzing its usage through API calls, helped us to
better understand the impact that this process has on the API consumers. Through-
out this paper, we focus on the Web API (API over the Internet), and for the sake
of simplicity, we refer to them as API. We introduce and further use the following
concepts:

• API producers - those who build, develop and expose the API.

• API consumers - those who develop applications that rely on and consume the
API.

• API change - a change in API declaration level.

• API controller - handlers of incoming/outgoing HTTP request/response.

• API artifacts - sources where API producers explicitly introduce information

25

Chapter 2. Classification of Changes in API Evolution

…

https://play.dhis2.org/api/reports/gTQgEaerFHD/data.html?date=2013-01-01

1

1

2

2

Cases 1 and 2 show that the API controller contains the specifications of API elements (names, hierarchies,

etc.), that consumers need in order to make calls to API.

Fig. 2.1: API syntax in Controller and calls.

about API evolution, like release notes, documentation, issue tracker, and ver-
sioning systems.

Our study is driven by the following research questions:

• RQ1: Which are the changes that happen to APIs when they evolve?

• RQ2: How are the changes that happen to APIs reflected in different API arti-
facts?

• RQ3: Which are the causes of the API changes?

• RQ4: To what extent are the API changes reflected in the usage logs?

In summary, this paper makes the following contributions:

• Identifies changes that can happen to APIs.

• Classifies the API changes depending on their causes.

• Analyzes how these changes are reflected in documentation, release notes, is-
sue tracker, and log files.

Outline. Section 2 gives an overview of the state of the art of API evolution. In
section 3, we present the classifications derived from a literature review. In section

26

2. Related Work

4, we describe our methodology and apply it to a real-world use case. Section 5
discusses our findings, while section 6 concludes the paper and discusses futurework.

2 Related Work

We analyze the related work mainly focusing on two research lines, API evolution,
and API usage.

2.1 API evolution

The evolution of APIs has gained considerable attention from researchers recently
covering different aspects of this cumbersome process [22, 53, 82, 97, 100]. Studies
have been conducted to identify the changes that occur to APIs from older to newer
versions [22,97]. Wang et al. [97] gave a catalog of changes that happen to APIs and
consumers’ reactions but did not provide any suggestions on why they happen or
how to deal with them. Dig and Johnson [22] manually identified the changes in five
Java APIs. Based on the impact these changes have on API consumers, they classified
them as Non-Breaking API Changes and Breaking API Changes. More than 80% of
the breaking changes were refactorings, thus they suggested refactoring-based mi-
gration tools for applications’ updates. Li et al. [53] made similar recommendations.
After analyzing the changes in five web APIs, they gave suggestions for designing
migration tools to better help the migration of clients.

A lot of effort is put into analyzing the impact that API changes have on con-
sumers’ applications. Robbes et al. [76] assessed the impact of API deprecation on
a Smalltalk ecosystem in terms of frequency, magnitude, duration, adaptation, and
consistency of the ripple effect (adaption to API deprecation). Espinha et al. [26, 27]
in their exploratory studies interviewed API consumers to share their struggles and
experiences during API evolution. They measured the impact of evolution on the
client side by analyzing how much code had been changed. The study showed that
the lack of an industry standard and high frequency of changes has led to a decrease
in the satisfaction of Web APIs consumers. Thus, they recommended not changing
the APIs too often and performing blackout tests (shutdown of the older versions of
API in a short time frame).

Most of the above works pay attention to the consumer’s side, leaving aside the
API producer’s side. However, the latter also face challenges and difficulties in man-
aging and evolving API. Xavier et al. [101] made a survey to reveal the reasons why
producers break APIs. Brito et al. [15] did a reason-based classification of changes in

27

Chapter 2. Classification of Changes in API Evolution

the APIs of 400 libraries. In both of the above-mentioned studies, they asked directly
the API developers that made each change, about their motivation to change the API.
The reasons given were the need to: implement new features, fix bugs, simplify the
API, improve maintainability, and refactor (to improve the internal code). For each
motivation, they gave the changes that API producers performed in order to achieve
the desired results, but only Java libraries were analyzed in both of these two sur-
veys. Web APIs compared to library APIs, present different challenges, not only for
consumers but also for their producers (e.g., API traffic).

Contrary to our work, which gives an overall view of all aspects of API when
changes are performed, the mentioned research works are focused on a specific as-
pect of API. They do manual monitoring of the changes or interviews with API pro-
ducers and consumers, to give a summary of changes that happen to APIs from one
version to another, and a set of good practices to make migration less painful. How-
ever, most of these approaches do not consider the way APIs are consumed. Indeed,
the information revealed from the usage of APIs will help us to better understand the
impact that changes have on consumers.

2.2 API usage

Different studies exist in analyzing API usage, i.e. the ways consumers use the API.
Ed-douibi et al. [24] analyzed the API calls to present an example-driven discov-
ery process that generates model-based OpenAPI specifications for REST Web APIs.
With their findings, they aimed to help developers in speeding up the process of
interacting with the API. Zhong et al. [103] developed an API usage mining frame-
work and a tool called MAPO for mining API usage patterns automatically from code
snippets. Their goal was to help programmers understand API usages and write API
client code more effectively. Wu et al. [100] analyzed and classified API changes and
usages together, but they did not focus on the API call but on the client programs.
They provided suggestions for developers and researchers to reduce the impact of
API evolution through language mechanisms and design strategies.

From our point of view, analyzing consumers’ application code can be an unre-
alistic approach. Considering that the code is not always available, using it as input
is not always possible. Moreover, the detected patterns cannot be generalized for all
the consumers’ applications of the APIs in the study. Each of them might have its
own way to use the API, in the form of different sequences of calls. Thus, we aim
to investigate the impact of the evolutive actions by analyzing consumers’ behavior
from the API usage logs files. These files contain the calls of API consumers to the
API. Combining knowledge of API evolution and its impact on API usage will be

28

3. Classification of changes

beneficial in understanding the overall API evolution process.

3 Classification of changes

During their lifecycle, APIs experience several evolutive iterations. Throughout these
phases, API producers perform different changes, which sometimes make the release
of new versions of the API necessary. It is important and effective to look at and ana-
lyze the history of these changes in order to assist and anticipate the further evolution
of APIs.

3.1 Which are the changes that happen to APIs?

By seeing the evolution process from the points of view of both API producers and
consumers, we can apply different classifications to these changes.

From the consumers’ point of view, referring to the compatibility of the new
version with the previous ones, API changes can be divided into two types: breaking
changes and not breaking changes [22]. Next, breaking changes can be classified as
changes that affect the behavior of the API (pre and post-conditions, changes in API
response) or the syntax of the API.

From the producers’ point of view, changes can be classified based on the causes
of these changes (e.g., to add new features, to simplify the API), the changed API
elements (e.g., changes in attributes, methods, or classes) or the actions performed on
them (e.g., moving elements, adding new ones, or refactoring). These classifications
point out which parts of APIs are more stable and which ones are more change prone
during their lifecycle. Brito et al. [15] used two first classifications in their work. They
referred to changes in different API elements (types, methods, and fields) and the
causes of the changes. Sohan et al. [82] classified the change patterns based on the
action performed on the API element (Add[APIElements], Remove[APIElements],
Change[APIElements], etc.).

In this paper, we focus on the changes that affect the syntax of the API (i.e., dec-
laration level). Consumers interact with a system’s components using their API, i.e.,
the interface of the component. Thus, they are directly impacted by changes that
affect their syntax. To detect these kinds of changes, we suggest the comparison of
the API controller of two consecutive versions. The only drawback of this option is
that the API controller is available only for open-source projects. However, consider-
ing that the information provided from other sources (release notes, documentation,
issue tracker, etc.) can be incomplete or inaccurate, from a consumer point of view,

29

Chapter 2. Classification of Changes in API Evolution

this is the only way to have the full set of changes that can be considered as ground
truth. We look for changes that can be performed on API elements as follows:

• API endpoints are URLs to access API resources (data, functionality). API pro-
ducers expose resources by providing endpoints to access them. They can dis-
connect endpoints (remove), add new ones, rename, or even replace an existing
endpoint with a new one.

• Parameters are used to refine resources. They can be path parameters (part
of the request body separated by "/", different resources can be accessed for
a given value) or query parameters (part of the request body after ’?’ in a
key=value form). Parameters can be required or optional. New parameters
can be added to resources, existing ones can be removed, renamed, or change
from optional to required, and vice versa.

• Parameters value. We can pass value from a predefined set of values to some pa-
rameters (e.g., parameter timePeriod can have value from {week, month, year}).
If not defined in the call, then the default value is passed to them. Both the set
of possible values and the default one can change.

• Request methods represent the action we make to the resource, like GET, POST,
DELETE, UPDATE, etc. While evolving their APIs, producers can support or
unsupport methods for a specific resource.

• Changes in authority levels. To interact with specific resources, users should
have the required authority level. The set of authority levels for a resource can
change by adding new ones, removing, or just changing the needed authority.

This classification guides us in tracking the changes, helping in channeling our in-
vestigations for each API element.

3.2 How are the changes that happen to APIs reflected in dif-
ferent API artifacts?

While performing different changes on the API, API producers make use of different
tools and have different practices in publishing, tracking, storing, and communicat-
ing these changes to consumers. As in API evolution, there are no standards in any
of these activities, there is no easy way to extract the changes from them. It highly
depends on the project conventions and producers’ way of coding and documenting.

30

3. Classification of changes

We refer overall to four different API artifacts, namely release notes, API docu-
mentation, issue tracker, and versioning systems, to see how evolution is reflected in
them and to what extent they document the changes.

• Release notes are documents that accompany the release of new software
versions. These notes are used to communicate to software consumers the
changes that happened to the newly issued version, such as the fixed bugs, the
added features, improvements and extensions of existing features, and other
changes that affect the API consumers’ applications. Usually, these notes are
manually written. Even though they play a crucial role in the upgrade process,
there are no standard rules in writing them. Abebe et al. [2] made an empirical
study to analyze the content and structure of different release notes and noted
that most of them contained only a limited number of changes (from 6% to
26% of all the new issues). They listed different factors on which release notes’
writers base their decision to select the issues, like issue type, issue priority,
number of modified files, number of comments in the issue tracker, size of issue
description, number of days to address the issue, experience of issue reporter,
etc [2]. As we can see, sometimes the likelihood of an issue being in the release
notes depends on factors with no relevance for the consumers (e.g., length of
issue title, reporter experience).

• API Documentation has a technical nature. Its primary role is to instruct
users on how to use and integrate with the API. They provide detailed infor-
mation about API elements, such as endpoints, resources, fields, types, and
parameters, often showing examples [95]. API documentation is usually man-
ually written, and sometimes this process is not synchronized with the new
version releases. All these results in outdated documentation, which means
that API changes are not timely reflected in it [104]. Actually, obsoleteness in
documentation is one of the most important concerns of API consumers when
they upgrade to new API versions [26, 27, 90]. Uddin and Robillard [90] sug-
gest not expecting all the changes to be present in the documentation. They
pointed out the importance of changes that break the backward compatibility
to be especially documented.

• Issue tracker systems are tools that help teams and organizations record, keep
track, andmanage issues like bugs, features, and requests. They serve as a com-
munication means between different actors of a project like managers, devel-
opers, and customers. Bertram et al. [13] in their study conducted interviews
with developers who used an issue tracker. They considered the comments

31

Chapter 2. Classification of Changes in API Evolution

section as one of the most valuable parts of issue trackers. These comments,
made in form of discussions between developers and everyone interested in
that issue, are plenty of valuable information. When the reason for the issue
opening is not specified in the description, referring to comments can give a
better understanding of it.

Developers open issues in the system when they create a new feature, improve
an existing one, or fix a bug in their software. Customers can also report bugs
or make requests for new features. When opening a new issue, different fields
have to be filled: a short description, type of issue (bug, feature, improvemen-
t/enhancement), the version/s the issue is related to, component/s affected,
severity, etc. Sometimes different fields are skipped or not properly filled, of-
ten by non-technical users of the systems [7,13]. This makes it difficult to later
query information about the issues related to a specific version or component.
This means that even if we query from the issue tracker systems all the issues
related to API (information under Component field), for a specific version,
the list generated can be incomplete, and will not provide us all the changes
performed for that version. Besides this, issue tracker systems are not always
accessible. They are open only in the case of open-source APIs.

• Versioning systems. The history logs of versioning systems contain informa-
tion for every change in the repository. Developers can associate comments to
their commits on versioning systems to explain what they did in the API. These
comments can vary from simple and short descriptions to more detailed ones.
It depends on the developers’ style of coding and also project regulation. Hat-
tori and Lanza [35] used a set of keywords to classify the changes performed
based on words used in comments. For example, if the comments contained
words (or parts of words) like clean%, integrat%,migrat%, or polish%, they clas-
sified the changes as maintenance activities, or management related. If the
comments contained words like implement%, add%, creat%, start%, or includ%,
they classified them as development activities or forward engineering. Similar
to the issue tracker, versioning systems can be accessed only for open-source
API.

3.3 Which are the causes of the API changes?

When performing evolutive actions, API producers are driven by different reasons,
e.g., to add new features, to fix bugs, to simplify the API, to improve maintainability,
or to improve the security of the API [15,22,101]. The identification of the causes of

32

3. Classification of changes

the changes completes the big picture of the evolution of API.
Brito et al. [15] in their empirical study classified the breaking changes based on

API producers’ reasons to make these changes. According to their work, to add new
features, producers move classes between packages, rename methods and perform
changes in the parameter list. To simplify the API, to make it easier to use and with
fewer elements, they remove classes, add final modifiers and perform changes in the
parameter list. They usually move methods, rename methods, and move classes in
order to improve the maintainability of APIs.

Changes and causes have a many-to-many relationship. When API producers ap-
ply changes in their APIs, even though driven by different reasons, the set of changes
can be the same. This is even more true in bug fixing because bugs can have different
natures (e.g., logical errors, compilation errors, functional errors, or calculation prob-
lems). Changes done in order to fix a compilation error can be different from those
done in errors caused by faulty calculations. Moreover, classifying all the changes in
new features, bug fixes, simplifications, and maintainability improvements can result
in a too-coarse-grained classification. Every new feature is related to a specific com-
ponent of API, so this classification can go finer. In our work, we classify the changes
based on API’s aspects they affect. This will permit us to observe also trends in API
changes: which aspects of APIs are more prone to change during the API lifecycle.
We adopted the usability taxonomy developed by Mosqueira-Rey et al. [64] to clas-
sify changes based on the target usability aspect of the API they aim to change (i.e.,
to improve or add functionalities), as follows:

• Know-ability - changes that aim to improve the ability of API to be easily un-
derstood and learned by consumers.

• Operability - changes that aim to enrich the API with new features and func-
tionalities, fulfilling the needs of different users.

• Efficiency - changes that aim to improve the performance of the API and its
consumers in terms of effort and time spent in interacting with the API re-
sources.

• Robustness - changes that aim to increase the capacity of the API to prevent
errors from its consumers or third parties.

• Safety - changes that aim to increase the safety, security, privacy, and confi-
dentiality of API resources and API consumers.

• Subjective satisfaction - changes that aim to improve the aesthetic of the sys-
tem and increase the interest of consumers in using it.

33

Chapter 2. Classification of Changes in API Evolution

3.4 How are the API changes reflected in the usage logs?

API consumers access APIs via HTTP requests, in the form of a URL. These access
logs can be obtained by monitoring the API traffic on either the server side (provider)
or the consumer side. A log file contains different log entries. Each log entry repre-
sents a call to an API endpoint. An API call contains a lot of useful information about
the protocol consumers used, the hostname of the API, base paths, relative paths, and
query parameters, as in Fig. 2.2.

https://play.dhis2.org/api/dataElements?query=Anorexia

Protocol Host Base path Relative path Query

Fig. 2.2: An URL to call an API.

We can refer to the access logs as traces that consumers leave after using the API.
If the information in these traces is analyzed in the proper way, it can reveal useful
knowledge. They show which API endpoints the consumer has accessed, in which
order, and with which parameters to filter the response.

Almost every part of the API call can be prone to change when the API evolves.
Some providers choose to specify the version of the API in the URL, as part of the base
path. Thus, when consumers have to upgrade to a new release, they should change
the URL of every call they have made to the API in their applications. The relative
paths are also prone to change. In theAPI call, the relative path is theAPI resource the
consumers want to access. API providers can change the name of a resource, and its
parameter list, move them up or down in the API elements hierarchy, can deprecate
or even delete them. Consumers’ effort to update with the changes in resources
depends on how much they use them and of course on the type of changes. The
query part of the call, in the form of key-value, contains parameters of the resource.
Sometimes these parameters are optional, and consumers use them when they want
to apply specific filters to the resources or to reduce the response size. Parameters can
also be mandatory: consumers should include them in the call to access the desired
resource. Thus, changes in the level of the parameters also affect the consumers. As
described above, when the syntax of API changes, consumers have to make changes
to the API calls. But, they may need to update their applications even when API
changes impact only the behavior of the API and not the syntax. These changes in
behavior can be related to the pre-condition, post-condition, or response of the API.
Even though not directly, these changes can also appear in the usage logs, affecting
the time to respond to the request, the size of the object returned, etc.

34

4. Use case: DHIS2 API

4 Use case: DHIS2 API

4.1 Methodology - Exploring evolved APIs

In our work, we study APIs evolution and aim to build our concepts on changes that
happen to them by exploring different aspects in existing literature as well as the
data from our use case.

First of all, we identify the changes by comparing two consecutive versions of
API. Then we analyze different API artifacts, to see to what extent are the changes
documented in them. We do this step manually, and for the sake of completeness,
we refer to different sources. With the information provided in these artifacts, we
classify the changes based on their causes. At the same time, we analyze the API
usage logs to see the impact that these API changes have on consumers. In the end,
to better conceptualize the cause-effect relationship of the changes in the evolution
process, we combine the two classifications, the type of changes, and their causes to
find correlations between them and the effect they have on API consumers (detected
in the logs). This conjunction emphasizes the impact each class of changes has on
the consumers’ side, providing us clues on changes that can be identified from the
logs.

4.2 DHIS2 use case.

We applied our approach to the API of DHIS22, which is an open-source, web-based
health management information system, used by more than 60 native applications.
It has a strong and open API, built under the REST architectural style. We took on
study version 2.27 of the API, released on 01.06.2017, and analyzed the usage logs
from 11.06.2016 to 29.11.2018 in the WHO installation.

4.2.1 Which are the changes that happen to APIs?

We compared the API controller code of versions 2.26 and 2.27 in order to get the
whole set of changes between them. It handles the incoming HTTP requests and
sends responses back to the caller. As we were interested in changes that affect the
API syntax, this level of comparison provided the desired set of changes. We used
Beyond Compare3, a software that provides a comparison of directories and different
file formats (e.g., text, mp3, image).

2https://www.dhis2.org/about
3https://www.scootersoftware.com

35

Chapter 2. Classification of Changes in API Evolution

Table 2.1: DHIS2 2.27 Changes from controller comparison.

Type of change Occurrence
New parameter 19
New endpoint 10

Remove Endpoint 5
New authority 2

Change authority 1
Support Request Method 1

Total 38

Overall, we found 38 changes introduced in the new API release, belonging to six
different types of changes (Table 2.1).

• There were 19 new parameters that were added to the existing endpoints.
These parameters provided pagination, ordering, and filtering of the informa-
tion returned by endpoints.

• We found 10 new endpoints introduced in the new version. They provided
new features to the API, like the possibility to send notifications (sendNo-

tifications), to validate the new password (validatePassword) etc.

• 5 endpoints were deleted from the 2.27 version. API producers claimed to have
removed not used endpoints or endpoints whose functionality was already re-
placed in the previous versions.

• 2 new authorities were added in order to access two existing endpoints.

• The authority needed to POST to predictor/run endpoint changed from
F_PREDICTOR_ADD’ to ’F_PREDICTOR_RUN’.

• For systemID endpoint, the POSTmethod was supported in the new version.

4.2.2 How are the changes that happen to APIs reflected in different API
artifacts?

• Release notes: We analyzed the release notes for the release of version 2.27
of the DHIS2 system. The release notes were organized into different sections,
each of which covers changes and updates for different aspects of the systems,

36

4. Use case: DHIS2 API

e.g., Analytic Features, Tracker Features, General Features, Server Admin Fea-
tures, and Web API Features. Under each item in the release notes, they pro-
vided additional information in the form of demo examples, screenshots, links
to issues raised in the issue tracker system (JIRA), and links to documentation,
with more detailed information and explanations.

We analyzed the Web API Features section of the release notes4. Every item
was presented in the form of a title and a short description, for example:

“Min-max data element values: A new endpoint for setting and retrieving min-
max data element values is introduced at /api/minMaxDataElements."

The description is not too detailed and lacks an explanation of how to use the
new endpoint, its attributes, etc. Beside this, only six changes were introduced
in the release notes.

• API Documentation: In order to see how changes are reflected in the API
documentation, we compared the documentation of versions 2.26 and 2.27.
We noted that the documentation sometimes was not updated. We found fea-
tures of older versions to appear for the first time in the latest documentation.
For example, verifyPassword is an endpoint that is used to verify the old
password when the user wants to renew it. Even though this was live in ver-
sion 2.255, it was documented for the first time in 2.27 documentation. There
were also changes not yet documented like the removal of ProgramStage-

DataElements endpoint. It has completely disappeared in version 2.27, and
this was documented nowhere6. On the other hand, we saw that changes that
appeared in the documentation were explained in detail. For example, for the
new endpoint deletedObjects, a whole paragraph was added in the doc-
umentation, describing how it works, and giving examples of calls to the new
endpoint.

• Issue tracker: DHIS2 uses JIRA as issue tracker system. We extracted all
the issues of the 2.27 release from it. We filtered the issues based on issue
type (Bug, Feature, Design, Epic, Test, User Story), fixVersion (all releases), and
Component (Application components, API components, Test, Documentation,
Frontend, Backend). JIRA provides more fields that we could manipulate, i.e.,
labels, description, etc., but knowing that these fields contain not structured
information, we preferred not to fully rely on them at the extraction moment.

4https://www.dhis2.org/downloads
5https://github.com/dhis2
6https://jira.dhis2.org/browse/DHIS2-1939

37

Chapter 2. Classification of Changes in API Evolution

We queried the issues with the following constraints: Issue type = ‘Bugs’ or
‘Feature’, fixVersion = 2.27, Component like API* (i.e., issues related to changes
in API component level).

Even though the extracted information was more detailed, it was not too well
organized since issues are manually opened by developers. Sometimes, they
were not linked to the right version (fixVersion may be null), or even
though the issue was related to API, the Component field was not filled prop-
erly, thus resulting in an incomplete list. Moreover, not all issues opened in
JIRA were related to changes in API syntax.

• Versioning systems. We referred to Github commits’ history, to find informa-
tion about changes in the API. We used ’Compare view’, a Github feature that
gives the possibility to compare the repository across branches, commits, time,
etc. But, this feature provides a comparison for the 250 most recent commits.
We were interested only in API controller changes (at the level of API elements
accessible for consumers), while the code repository consists of the whole API
code (classes, methods, and functions not directly related to consumers). So
we excluded this artifact from our analysis.

4.2.3 Which are the causes of the API changes?

From the four API artifacts in the study, we referred to the issue tracker to find the
causes of the changes. Since only a small number of changes appeared in release
notes, API documentation, and commits at versioning systems often did not have
comments or they were too short (for some of the commits related to bugs fixes,
in the comment we could find the issue ID of the issue opened at JIRA), the only
possibility left was issue tracker.

We found more complete information in JIRA. The reasons were explained in
the description of the issues or in the comments discussion. We checked every issue
manually. As all project contributors (with or without technical background) can
open issues at JIRA, the language used by them was not standard, thus making it dif-
ficult to create a unified set of causes. Anyway, during our work, we noted that there
were some words, related to specific components of API, that were extensively used
when these components were extended with new features or functionality. Thus,
this phase can be further automated, but this is out of the scope of this paper. If we
would rely on JIRA issue types, we would have a very coarse-grained classification
of reasons: bug fixes and features. For bug fixes, the reason is clear enough: a bug
somewhere in API causes an error, so API providers perform changes to fix it. For the

38

4. Use case: DHIS2 API

features, the classification can be more detailed. Even though in JIRA, all these issues
had the type "Feature", some of them were improvements or extensions of existing
features. We used the usability taxonomy of Mosqueira-Rey et al. [64] and were able
to fit every change in this classification, as in Table 2.2.

Table 2.2: DHIS2 2.27 JIRA feature classification.

API improved aspect 2.27 Release
Operability 26
Robustness 11
Efficiency 9
Knowability 6

Safety 8
Subjective Satisfaction 3

Total 63

Most of the issues in JIRA were related to the operability, robustness, and effi-
ciency of the API.

As we can see, the changes extracted from JIRA are more than those identified
from the controller comparison. This is because, in JIRA, issues are not always related
to changes in the syntax of API. Besides this, when trying to match the changes from
the API controller with the ones from JIRA, we noted inconsistencies between the
two lists. Some of the changes in the API had their respective issues at JIRA, but
opened as related to a different version or not related to API.

4.2.4 How are the API changes reflected in the usage logs?

We analyzed the Apache server logs of the DHIS2 system. The log format was well
defined: "%h %t %r %ąs %b", where:

• %h is the client’s IP address;

• %t request time;

• %r request line, which contains the method used by the client, the resource
requested, and the protocol used;

• %ąs the status code that the server sends back to the client;

• %b the size of the object returned to the client.

39

Chapter 2. Classification of Changes in API Evolution

Here is an example of how an API call looks:

http://.../api/dataElements.json?query=Anorexia

Its corresponding entry in the log files:

147.83.72.200 [19/Mar/2019:10:21:22 +0100]
"GET /api/dataElements.json?query=Anorexia
HTTP/1.1" 200 175

The response given by the API:

{"dataElements":[
{ "id":"HZYmbTohiAE",

"displayName":"Anorexia "},
{ "id":"Iedo09xfnkH",

"displayName":"Anorexia(after)"}] }

We checked how the already-done changes gathered from the first two steps, were
reflected in the API calls. From 38 changes extracted from the API controller, only
10 of them were adapted from the API consumers, so we found traces of only 10
changes in the logs. Actually, all these changes should appear in the logs, but as
DHIS2 supports four last versions of the API, its consumers delay the upgrade pro-
cess. From these 10 changes (3 new endpoints and 7 new parameters), six of them
were documented in at least one of the artifacts. Nevertheless, we cannot extrapo-
late, from these few data about the type of change or being it documented or not, the
fact whether consumers use it or not.

In version 2.27 a new featurewas presented as follows (found in the release notes):
“Min-max data element values: API endpoint for getting/setting min-max val-

ues.”7

The new feature appeared in the release notes and also in the documentation
of version 2.27. To our surprise, all the calls made to the new endpoint minMax-

DataElements got a 404 status code: client-side error. This can be an indicator
that consumers do not refer to the documentation or that the documentation is not
enough clear and lacks useful examples. We saw that this was common with the new
endpoints (e.g., also with ProgramIndicatorGroup, a new endpoint introduced
in the 2.27 version): it took time for consumers to properly use them.

In the 2.27 version, a new query parameter was added to analytics endpoint,
hideEmptyColumns (found in API documentation). This parameter, when true,
excludes from the response the columns which contain only null values. If we look at

7https://www.dhis2.org/downloads

40

5. Discussion

the calls to the analytics endpoint, without and with this parameter specified, we can
see that the object size returned in the second case is significantly reduced. The same
effect had the use of new parameters that provided pagination (paging), optimizing
the API response to clients’ requests.

On the other hand, having the set of changes that happenmore often to APIs, and
knowing how these changes appear in the logs, we can try to identify the need for
these changes. We can monitor the consumers’ behavior through the logs, and see
where different change patterns can be applied. This can be very useful in automating
the API evolution process.

5 Discussion

Within this work, we presented an overview of API evolution. We performed a man-
ual analysis of the API controller and four API artifacts, in order to identify and clas-
sify changes that happen to APIs and to investigate their impact on API consumers.

RQ1. We considered as ground truth the set of changes extracted from the API
controller comparison. We want to note again, that accessing the API controller is
only possible for open-source APIs, but considering the incompleteness of the other
artifacts, it is the only one that can provide the whole set of changes.

Half of the changes introduced in the new release were new parameters. Param-
eters are usually used to filter the information of API resources. Thus, these addi-
tions can be explained as a way to provide new functionalities without splitting and
rearranging the existing endpoints, avoiding this way breaking changes. The sec-
ond most present change was the addition of new endpoints, a backward-compatible
change as well. This can explain somehow the fact that most consumers had not
been upgraded to the latest version of API. The creation of new elements (endpoints,
parameters, etc.) is not a breaking change, hence consumers delay the upgrade pro-
cess until they need the new features, the fixed bugs, or until the API producers stop
supporting the old versions of API.

RQ2. After analyzing different artifacts of API, we saw that less than 50% of the
changes were documented in them. From 38 changes extracted from the controller,
only 17 of them were documented in at least one of the other artifacts (release notes,
documentation, issue tracker). Approximately 5% of the changes (2 out of 38) were
reflected on all the artifacts. Both of them were new endpoints. Even though it is
highly recommended for breaking changes to be documented [26,27,82], the addition
of new elements is also seen by API producers as important to be documented. This
way, API consumers can learn about these new elements and how to use them.

41

Chapter 2. Classification of Changes in API Evolution

Venn diagram, in Figure 2.3, shows a comparison between API controller and API
artifacts, in terms of the number of changes. We want to note that changes that were
in release notes, and not in the API controller, were changes already implemented
in previous versions or changes not related to API syntax. For example, two new
endpoints lockExceptions and email, were already implemented in version
2.26, yet appeared as new ones in 2.27 release notes. The same happened with the
issue tracker. Changes that were in JIRA and not in the API controller were changes
not related to API syntax or changes already implemented, but miss-classified in JIRA
as related to the 2.27 version.

API Controller (38)
Issue Tracker (63)

API Documentation
(10)

Release Notes
(6)

16

9

2

Fig. 2.3: API changes in API controller and API artifacts, Venn diagram.

The versioning system does not appear in the diagram, because as it is a code
repository, changes extracted from it are the same as changes from the API controller.

We choose to take in study release notes, API documentation, issue tracker, and
versioning system, as a representative set of sources from which we would be able
to observe the API evolution. Nevertheless, we do not exclude the existence of other
artifacts, like changelogs, migration guides, mailing lists of consumers of API, API
official web page, etc. As mentioned before, how these artifacts are maintained or
used depends on the project conventions. For the DHIS2 project, these four selected
were the more complete and used ones.

During the analysis, we noted a lack of standard language used in describing

42

5. Discussion

changes in different artifacts. This complicated the matching process of the infor-
mation from them. It would be very helpful if these artifacts would be more linked
and synchronized with each other. Actually, there is a standard way of relating ver-
sioning system commits to issues as an issue tracker, but we saw that DHIS2 is not
always using it. We saw that entries in the release notes of the DHIS2 system some-
times were followed by links addressing the API documentation section related to
the change or to the issue opened at JIRA. Issues at JIRA sometimes included links
to documentation also. If these standards would be the norm, it would be easier for
API consumers to track the changes in these artifacts.

RQ3. In previous studies [15, 101], interviews were conducted with API produc-
ers, in order to get their intention for every change. Even though this would be the
most straightforward way, this information can be found also in API artifacts, where
API providers provide hints about the causes of the changes they perform. We saw
that they tend to give such information in the issue tracker system (i.e., issue descrip-
tion, comments section). Their interactive and collaborative nature, mostly in discus-
sion in the comments section, makes these tools useful not only for API producers
while evolving the API, but also for API consumers, giving them the possibility to
get more clues about the changes.

RQ4. We analyzed the impact of the changes on the consumers’ side, by looking
at the API usage logs. We extracted the API log files from the server and examined
them based on the changes extracted previously from the controller. Even though
we had the set of changes, we were not able to see how all of them were reflected in
the API calls. DHIS2 supports the four last versions of the API, and few consumers
did the upgrade to the new releases, thus benefiting from the newly introduced fea-
tures. 10 changes out of 38 were adopted by consumers. These 10 changes were 3
new endpoints and 7 new parameters. Overall, more than 75% of the new changes
preserve the backward compatibility of API. Until API providers support the previ-
ous versions, consumers will not feel the urge to upgrade, unless they really need
the new features or the critical bugs fixed.

Threats to validity. In terms of work validity, the main threat to external valid-
ity is that we take into the study only oneAPI. Moreover, we focus only on syntactical
changes in API. Future work needs to be carried out to increase the data set in order
to obtain more generalizable results.

Themain threat to internal validity is related to the amount of manual work done.
To alleviate this threat, we analyzed each change in different API artifacts.

43

Chapter 2. Classification of Changes in API Evolution

6 Conclusion and future work

After reviewing the state of the art, we applied a use case on API evolution. We
investigated how this process is documented and reflected in different API artifacts
and highlighted some problematic aspects of them. We identified the changes that
are usually performed on API, and classified them based on their types and causes.
We investigated how these changes are reflected in the API calls, and how the type
of change and its cause can affect the consumers.

RQ1. We found 38 changes between version 2.26 and 2.27 of DHIS2. We classified
them into six different types of change: new parameters, new endpoints, remove
endpoints, new authority, change authority, and support request method. More than
75% of them were non-breaking changes (addition of new parameters or endpoints,
respectively 19 and 10).

RQ2. In order to see towhat extent were these changes documented, we analyzed
four different API artifacts (namely release notes, issue tracker, documentation, and
versioning system). Less than 50% of the changes were documented in at least one
of the artifacts in the study.

RQ3. We used a well-known classification of API usability to classify changes
based on the target usability aspect of the API they aim to change. Most of the
changes were the addition of new features, thus enriching the API with new func-
tionalities and increasing its operability. Changes were also performed in order to
make the API more robust and to increase its performance, in terms of effort and
time spent in consuming the API.

RQ4. Few consumers of DHIS2’s API were upgraded to the latest release. As
DHIS2 support the last four versions of API, they postpone the upgrade until they
need the new features. From the adopted changes, we noted that consumers had
difficulties in learning to use new endpoints, as the calls to them first resulted in
404 errors (client-side errors). On the other hand, the use of new parameters, in
some cases decreased the size of the returned object. Actually, this is expected, as
parameters are mostly used to filter the data.

In our future work, we will expand the analysis, by adding other use cases, to
obtain more generalizable results. We will focus not only on changes in API syntax
but also on changes in API behavior. By getting insights about how the changes are
reflected in API usage logs, our next goal is to further scrutinize the logs in order
to find the patterns and anticipate evolutive changes. Our work in analyzing the
API evolution and how it is handled from both sides, producers, and consumers, is a
necessary step in understanding and further automating the API evolution process,

44

6. Conclusion and future work

which is essential for efficient and consistent API provisioning.

45

Chapter 2. Classification of Changes in API Evolution

46

Chapter 3

Web API Change-Proneness
Prediction

Abstract

Change-proneness of software artifacts has been mainly related to the design character-
istics and their previous history of changes. While these two aspects are essential and
contribute significantly to the prediction, they leave out a critical factor: how the arti-
facts are used. In the context of web APIs, consumers represent one of the main drivers
of the change. Therefore, we propose a methodology for predicting the change-proneness
of web API endpoint interfaces, taking into account not only design and change history
but also their usage. Since the evolution of web APIs is and should be usage-driven, the
way consumers use an API affects the future changes implemented by providers. Con-
sequently, consumers’ usage behavior contains essential information that contributes to
identifying endpoints that are more prone to change. By considering the reasons behind
changes, we introduce a set of metrics comprising design and usage aspects to be used as
variables in prediction. We perform an initial evaluation using a real-world web API to
demonstrate the approach’s usefulness. We quantify the introduced metrics using web
API documentation, code, and usage logs to build a classifier able to predict with 82%
accuracy if an endpoint will change based on its design, history of changes, and usage
characteristics.

47

Chapter 3. Web API Change-Proneness Prediction

1 Introduction

Web application programming interfaces (webAPIs) undergomultiple iterations through-
out their lifecycle, starting from the planning and design phases to their continuous
releases. This iterative process is due to the fact that web API providers need to in-
troduce various changes to their APIs for different reasons, including the evolution
of the requirements set by the organizations that own the data or services, advance-
ments in technology, competition-driven changes, and consumer demands. Providers
must consider all these aspects when planning their new web API releases.

Indeed, consumers continuously provide explicit feedback (e.g., bug reports, and
new feature requests) through various channels provided by the web API providers,
including forums, tracking systems, emails, and feedback forms. Gathering, process-
ing and effectively using this feedback, which originates from different sources, can
be challenging. Providers have confirmed that they spend a significant time han-
dling consumer requests and their bug reports [68]. Frequently, these requests are
duplicated, lack relevance, contain errors, or are misclassified. Web API developers,
under pressure to meet their key performance indicators (KPIs) (e.g., documentation
completeness, release frequency), may prioritize other factors above the feedback
provided by consumers. In fact, one of the key challenges identified by Lamothe
et al. in their systematic review of API evolution literature is the need to exploit
the feedback systems involved in API evolution [46]. Authors suggest focusing on
these feedback systems (Lehman’s 8th Law [49]), which now remain unexplored and
present an impediment in API evolution. While web API providers understand the
impact of changes on their consumers and the importance of considering consumers’
needs when planning the changes [27,53,82], there is a clear opportunity to harness
web API usage for creating more effective feedback loops that can help providers in
improving their APIs [46].

This paper aims to show that consumers’ implicit feedback (i.e., web API usage
logs) plays an important role in the way web API endpoints (i.e., URL paths through
which consumers can access the functionalities that web API implements) change
through their lifecycle. This feedback that can be gathered and processed system-
atically captures all the interactions consumers have with endpoints. While explicit
feedback shows consumers’ subjective opinions, implicit feedback represents their
objective behavior, i.e., how and when they actually use the web API [55]. By timely
identifying endpoints more prone to change as per consumers’ behavior, providers
can prioritize these endpoints in the next releases, providing this way a web API
more aligned with consumers’ needs. With this approach, we aim to assist providers

48

2. Background and Related Work

in better planning the evolution of their web APIs and effectively managing their
resources (human, devices, time) during this process.

To implement our objective, we first consider a set of metrics commonly used in
change-proneness prediction studies. These metrics are typically design-related or
derived from the previous history of changes in the artifacts. We adapt these metrics
to the context of web APIs and compute them from the documentation and code of
the web API. Additionally, we define a set of usage-related metrics (e.g., number of
consumers applications per endpoint, number of calls per endpoint) and compute
them by processing usage logs data. Initially, we build two models separately, one
for each approach (design model vs. usage model). Subsequently, we combine the
two sets of metrics, to examine whether the addition of usage metrics improves the
classical prediction models available in the state of the art.

In summary, the main objective of this research work is to show the relevance of
usage in predicting the change-proneness of web APIs. To the best of our knowledge,
the usage of web API has never been used in the change-proneness analysis. We
approach this objective by answering three main research questions:

RQ1: Which metrics can be used for the change-proneness analysis of web
API endpoints?

RQ1.1: Can we adapt existing approaches to fit into the context of web
APIs?

RQ1.2: Which usage metrics can be used to predict web API change-
proneness?

RQ2: To what extent can usage metrics improve the change-proneness pre-
diction of web API endpoints?

RQ3: Which characteristics help to determine the web API endpoints that are
more likely to change?

2 Background and Related Work

2.1 Core Concepts and Relationships

• Objects represent the data accessed through the web API. They define the struc-
ture and properties of the data and refer to the database tables or entities exposed.

49

Chapter 3. Web API Change-Proneness Prediction

• Controllers are software components that handle incoming requests and generate
responses. They interact with the objects to retrieve or manipulate the data. Each
controller can be associated with (depending on) one or more objects.

• Endpoints are URL paths that specify the location of the data to be accessed.
They represent the entry point through which consumers communicate with the
web API. Typically, one endpoint is associated with one controller class. Changes
made to the controllers typically affect the interface of the endpoints [41]. In a
few cases (e.g., improvement of the query to get the data), the change might not
alter the interface, but it affects the behavior or the performance of the endpoint.
In this work we use the concept of root endpoints, meaning the starting point or
base URL (e.g., the root endpoint of api/organisationUnits/ID/trans-

lations and api/organisationUnits/ID/dataSets is api/organ-

isationUnits).

Figure 3.1 exemplifies in a simplified way the main relationships between the
three concepts. However, in practice, there can be additional components, such as
models, services, and middleware.

UserControllerUserSettings

UserInvitationStatus

Users

/api/users

Objects Controller Endpoint

Fig. 3.1: Core Concepts and Relationships

2.2 Related Work

In this section, we discuss works focused on the change-proneness of software arti-
facts, web services, and APIs.

Change-proneness of software artifacts (e.g., classes, interfaces) has been broadly
studied, as these changes can directly impact the behavior of the software using them.

50

2. Background and Related Work

Dealing with these changes usually requires a lot of time and high effort for the con-
sumers. Therefore, identifying the artifacts that are more prone to changes becomes
crucial for providers, not only to provide more robust artifacts in the future but also
to allocate the available resources to implement the changes as soon as possible. In
the following, we first present some concepts and their relationships. Then, we in-
troduce representative works of change-proneness analysis in four different types of
artifacts: classes, class interfaces, web services, and tables.

Malhotra and Khanna [59] performed a systematic review on software change
prediction (SCP) to assess and evaluate the effectiveness of the existing works in pre-
dicting change-prone classes in software products. Typically, SCP models use struc-
tural, network, evolution, word vector, and developer metrics. Remarkably, none
of the mentioned works considered usage-based metrics. In an earlier study [57],
the same authors studied the relationship between object-oriented metrics and class
change-proneness. They applied their approach to three open source projects, and
found the most significant indicators of change-proneness (e.g., Response For a Class
RFC) as the methods implemented within a class and the number of methods acces-
sible due to inheritance).

Arvanitou et al. [9] assessed the change-proneness of classes based on the history
of their changes, and the structure of their source code. They introduced a Change
Proneness Measure (CPM) based on the internal and external probability a class may
change and compared its accuracy with the accuracy of using other metrics (e.g.,
coupling metrics, only history of changes). They noted that both history of changes
and structural metrics are needed for an accurate assessment. Abbas et al. [1] focused
more on the best techniques for change-prone prediction using object-oriented met-
rics (e.g., number of lines of code, weighted methods per class), and concluded that
machine-learning methods are beneficial in change prediction.

Romano and Pinzger [77] investigated the correlation between source code met-
rics and change-proneness of Java interfaces (not the implementation of the classes).
They considered metrics defined by Chidamber and Kemerer [19] (e.g., number of
methods in a class, depth of inheritance tree), and also complexity metrics (e.g., num-
ber of classes that invoke the interface, number of classes that implement the inter-
face). They showed that cohesion metrics, different from Chidamber and Kemerer
metrics, had a strong correlation with Java interface change-proneness, reinforcing
the authors’ claim that classes and interfaces change-proneness should be analyzed
separately as they are influenced by different indicators.

Vassiliadis et al. [94] studied the relation between table properties (e.g., the num-
ber of attributes, the time of birth of a table) and evolution-related properties (e.g., the

51

Chapter 3. Web API Change-Proneness Prediction

possibility of deletion, the number of updates). Different from us, they do not con-
sider how the tables are being used and also consider a few changes (only additions
and deletions of attributes, data type, and key changes).

In summary, our analysis of the related work reveals a notable gap in change-
proneness prediction research: none of the studies explored usage as an indicator for
change-proneness. This highlights the need for future investigations to incorporate
usage metrics in order to enhance the accuracy of change prediction models.

3 Framework

In this section, we respond to RQ1. We start by adopting the web API domain metrics
already used in the change-proneness analysis of software artifacts [9], [8], [94]. As
mentioned, these analyses take into account mostly design characteristics (the size
of the classes, the dependencies with other classes, etc.). Then, we introduce other
metrics that characterize and target specifically the web API usage.

Table 3.1 introduces the set of metrics used as features in the model for change-
proneness prediction. We make use of the change-proneness measure (feature 1,
CPM) introduced by Arvanitou et al. [9]. CPM is calculated at the class level, and
combines information about the class change history (i.e., the changes that have been
implemented to the class before) and class dependencies to other artifacts (i.e., the
part of the interface of a class that is used by other classes), as the changes can be
propagated from other artifacts. As the authors proved, this combined metric was
the most correlated with the class change-proneness, because both aspects it covers
(i.e., history of changes and class dependencies) are needed to accurately predict class
change-proneness.

Arvanitou et al. [9] define the CPM of class C (in our case a controller class that
corresponds to an endpoint) as the joint probability of the probability of the class it-
self to change, P(C), and its external probability to change, PpC : externalDi q, where
i=1 to N is the number of D classes that C depends upon. Instead, we do not in-
clude P(C) in the CPM calculation (3.1), but count it as a feature itself (feature 2), to
have separately the internal and external probability to change. Moreover, unlike [9]
which uses the percentage of commits, we calculate P(C) as the percentage of lines
changed in the previous release, as it offers a more consistent measure of the internal
probability of a class to change, regardless of the development team’s approach, be
it agile or traditional.

CPMpCq “ JointProbabilitytPpC : externalDi qu (3.1)

52

3. Framework

Table 3.1: Design and usage metrics

Nr. Metrics Type
1 change-proneness measure CPM
2 history of changes evolution
3 number of required attributes per endpoint design
4 number of attributes per endpoint design
5 number of required parameters per endpoint design
6 number of parameters per endpoint design
7 average number of calls per day per endpoint usage
8 number of consumers applications per endpoint usage
9 number of cases per endpoint usage
10 number of calls per endpoint usage
11 average number of attributes used in queries usage
12 maximum number of attributes used in queries usage
13 average number of parameters used in queries usage
14 maximum number of parameters used in queries usage
15 average query length usage
16 average object size returned per endpoint usage
17 maximum object size returned per endpoint usage
18 standard deviation of object size returned per endpoint usage
19 coefficient of variation of object size returned per endpoint usage
20 distinct endpoints called directly after the endpoint usage
21 current changes evolution

53

Chapter 3. Web API Change-Proneness Prediction

For each class Di that C depends on, we calculate PpC : externalDi q “ PpC|Diq ˚

PpDiq, where PpC|Diq (called Ripple Effect Measurement) is the propagation factor
between class Di and C, and PpDiq is the probability that class Di changes. We
adopted PpC|Diq calculation from [8].

Besides CPM, we include in the analysis four other design features that describe
the number of attributes and parameters, as web APIs design characteristics (fea-
tures 3-6). We adopted these features from [94], where the authors consider tables’
attributes to assess the possibility of tables to change. Thus, we consider optional and
required attributes (used to filter the attributes of the data instances), and optional
and required parameters (used to filter the data instances returned).

Regarding the usage of web API endpoints, we define metrics that characterize
consumers’ interaction with endpoints in several aspects. Features 7 to 10 describe
the frequency of consumers’ interaction with the web API endpoints (e.g., calls per
day per endpoint, cases per endpoint). Features 11 to 15 describe the details of the
query part in the web API requests (i.e., how consumers use the available param-
eters and attributes in their requests). Features 16 to 19 describe the response re-
turned by the web API (e.g., the size of the object returned). Feature 20 describes
how consumers use one endpoint in relation to the other endpoints. It measures the
frequency of distinct endpoints that are directly called after one endpoint in the us-
age logs. Lastly, feature 21 acts as the class variable and tracks the changes of the
last release.

Figure 3.2 describes the data analysis steps. The upper part (red arrows) depicts
the preparation steps, which mainly consist of metrics quantification (Section 4.2).
The bottom part depicts the prediction model creation. We applied machine learn-
ing methods, as they have been proven to give accurate results in change-proneness
prediction [1]. Moreover, we opted to create a classification model, as we had pre-
defined classes with discrete labels, and we were interested in finding if an endpoint
was prone to change or not, more than predicting the exact probability of an end-
point to change (as a regressionmodel would provide). To obtain highly interpretable
results, we employed a decision tree algorithm.

54

3. Framework

Web API usage
logs

Web API
code

Versioning
system

Evolution CPM Design
metrics

Usage
metrics

Web API
documentation

Build predictive models

Results

Metrics Quantification

Data Analysis

Fig. 3.2: Framework

55

Chapter 3. Web API Change-Proneness Prediction

4 Evaluation

4.1 Use Case

To evaluate our framework and the significance of the introduced metrics in pre-
diction, we analyze the District Health Information Software 2 (DHIS2) web API.1

Usage logs are from February to September 2019, and the logs together contain ap-
proximately 2.5 million requests of version 2.30 of the DHIS2 web API. The reason to
focus on usage logs from earlier versions of the web API is that we can better observe
the impact of the usage on several later releases. DHIS2 releases a new version of the
web API twice per year.2 They have currently released version 2.40.

4.2 Metrics Quantification

To quantify the usage metrics (features 7-20), we refer to the usage logs. We first
extract the root endpoints for which we have requests in the log file. Overall, there
are 117 different root endpoints. For each of them, we calculate all introduced usage
metrics.

To quantify CPM, we first extract the dependencies of controllers, and then the
history of changes. To extract the dependencies of controllers, we use the Depen-
dency Finder tool,3 giving as input the Java bytecode of the web API. For each con-
troller, we obtain the objects classes the controller depends upon, and the methods
and variables the controller uses from them. To extract the history of changes of ob-
jects and controllers, we compare their Java files of previous pairs of versions (until
2.30), and calculate the average percentage of lines each of them has changed.

To quantify the rest of the design metrics (features 3-6) for the DHIS2 web API,
we first refer to the DHIS2 OpenAPI Specification project.4 For the root endpoints
that are not specified there, we consult web API documentation. After quantifying
these four metrics, we observe their values. For the number of parameters (required
and optional), DHIS2 web API has the same value for all the endpoints (the number
of parameters was at the web API level, not the endpoint level). Thus, we exclude
them from the analysis. We want to note that providers might have more systematic
data (e.g., dependencies between controllers’ classes can be part of project documen-
tation, not made public), and might quantify the metrics using other sources. We

1https://docs.dhis2.org/en/develop/using-the-api/dhis-core-version-master/introduction.html
2https://dhis2.org/downloads/archive
3https://sourceforge.net/projects/depfind/files
4https://github.com/dhis2/dhis2-api-specification

56

4. Evaluation

demonstrate how we compute the metrics using the available sources, so we can
validate our approach.

To identify the endpoints that changed (i.e., to quantify the class variable, feature
21), we refer to the controller code of the DHIS2 web API. For each controller, we
detect if it changed from version 2.30 to 2.31.

Of the 117 different root endpoints, the controller of 92 of them had not experi-
enced any changes, while the controller for the remaining 25 endpoints had changed
from version 2.30 to version 2.31. As the dataset was significantly imbalanced (the
minority class was 21.4% of the dataset), we had to balance it to have accurate re-
sults [58]. As we did not have too many endpoints, we opted for oversampling
(adding entries in the minority class), instead of under-sampling (removing exces-
sive entries from the majority class). We performed SMOTE on the dataset (only on
the training set), as one of the most efficient balancing techniques [78], and then built
a classifier, a decision tree, using WEKA libraries implementation in JAVA. To avoid
over-fitting and over-optimistic results, we performed 10-fold cross-validation.

4.3 Data Analysis

In the following of this section, we respond to RQ2 and RQ3. In order to get a clear
view of the role that usage has on change-proneness, and whether providers are
taking it into account or should focus more on it, we performed three different anal-
yses.We built three classifiers, one using only design and history of changes metrics
(i.e., design model), another only with usage-related metrics (i.e., usage model), and
then a third one with all metrics combined (i.e., combined model). The combined
model was the best one, with 82% accuracy (balanced accuracy 82%). The design
model had a 77% accuracy (balanced accuracy 74%), while the usagemodel performed
an accuracy of 63% (balanced accuracy 49%). Even though we applied SMOTE to mit-
igate the class imbalance issue, we give also models’ balanced accuracy, to show that
in our case accuracy is not a biased measure. The first insight we can get from these
results is that the combination of design and usage metrics enables a more accurate
prediction of future changes in an endpoint, emphasizing their complementary role
and highlighting the limitation of relying on a single set of metrics. Furthermore, the
design model performing better than the usage model suggests that the changes im-
plemented by providers are more design-related. Consequently, providers may not
adequately consider the usage of their web APIs, resulting in a discrepancy between
consumer behavior and the types of changes implemented.

To better compare the design and usage model, we use an UpSet graph [52] to
visualize their positive results. In Figure 3.3, we observe that three true positives

57

Chapter 3. Web API Change-Proneness Prediction

58

15 14 13

3 3

0

20

40

60

In
te

rs
ec

tio
n

S
iz

e

●

●

●

●

●

●

●

●

Design.TN

Usage.TN

Design.TP

Usage.TP

0204060
Set Size

Fig. 3.3: True Positives and True Negatives

(fifth bar) and thirteen true negatives (fourth bar) identified by the usage model are
not detected by the design model. This finding suggests that the usage model makes
distinct contributions to the classification process.

In order to get more insights about the false negative predictions (i.e., changed
endpoints that the combined model was not able to predict), we analyzed in detail
the respective endpoints. The five false negative predictions were changes made
for improving the consistency and standardization of the web API. For instance, the
endpoint userSettings (which had changed but was predicted as stable), was
modified so that it would be consistent with some other endpoints in the web API
(“DHIS2-49825 Align userSettingswith systemSettingsAPI: Theapi/systemSet-

tings API supports “key" params so that you can reduce the response payload by
requesting specific settings. The api/userSettings API should support this as
well."). Additionally, the pagination parameter was added to endpoints complete-

DataSetRegistrations and programDataElements. Typically, providers
add pagination parameters to endpoints to help consumers manage large amounts of
data returned by the web API. In our case, providers have added pagination to make
the endpoints more consistent with the other endpoints in the web API.

Driven by our observation that several issues in JIRA were resolved in later ver-
sions after their reporting, and supported by existing literature research [68], we
examined the later versions of the DHIS2 web API, from version 2.32 to 2.34. This al-

5https://dhis2.atlassian.net/browse/DHIS2-4982

58

5. Threats to Validity

lows us to also better understand and interpret the false positive predictions (i.e., end-
points that were predicted changed but remained unchanged). All of the endpoints
that our model predicted as likely to change had indeed undergone changes in the
subsequent three releases. To validate the aforementioned interpretation, we built an
additional classifier with a specific modification. In this modified classifier, we quan-
tified the class variable ‘change’ based on endpoints that had undergone changes in
more than one version. If an endpoint had experienced at least one change from
the release of version 2.31 to version 2.34, the value of the variable was assigned as
‘changed’. Conversely, if an endpoint remained unchanged during this time frame,
the value was designated as ‘stable’. The modified model achieved an accuracy of
89% in predicting endpoint change-proneness. The fact that endpoints that even-
tually changed in the subsequent releases had previously exhibited usage behavior
from consumers demonstrates the promising potential of our approach. The addition
of usage metrics in the model, not only improves its accuracy but enables providers
to plan timely the needed changes.

To address RQ3, we analyzed the tree branches for each model. In the design
model, CPMwas themost important feature. Controllers with a high CPMweremore
prone to change. In fact, controllers dependent on multiple objects (fat controllers)
are considered a bad design practice [6]. Our results reinforce this statement. As for
the usage model, the number of calls per day, object size, and the number of parame-
ters were among the most important features. Endpoints with a high number of calls
per day, large object sizes, and few parameters were the ones more prone to change.
In the combined model, even though the design metrics remained the primary de-
terminants of the decision-making process, usage metrics appeared as contributing
factors within the branches of the decision tree. Interestingly, the presence of usage
metrics increased in the modified model.

5 Threats to Validity

One potential threat to the validity of our study is the set of metrics used. While
we included metrics that cover most of the design and usage characteristics, it is
important to acknowledge that there may be other metrics not considered in our
analysis that could impact the prediction. Specifically, metrics related to business
requirements were not included, as they are highly domain-specific and cannot be
adequately described using generic metrics. Our focus in this paper is primarily on
understanding the impact of usage and design on the change-proneness of web APIs.
To ensure a comprehensive set of metrics, we referred to prior research on change-

59

Chapter 3. Web API Change-Proneness Prediction

proneness prediction and adapted relevant design and usage metrics into the web
API context.

Another threat to the validity concerns the dataset used for training and testing.
We acknowledge that the ideal approach would have involved training the model on
one release and evaluating it on a different one. However, due to the availability of log
data only from version 2.30, wewere constrained to use data from the same release for
training and testing. Nevertheless, to avoid over-fitting and over-optimistic results,
we performed 10-fold cross-validation, making sure to properly separate the testing
set from the training one, so as not to have biased results.

6 Conclusion

Change-proneness has traditionally been tied to the design and structure of artifacts,
where poor design practices and specific characteristics can lead to unstable artifacts
and frequent changes. While this holds true for software artifacts like classes and
methods, which are used within software systems and exhibit interdependencies, it
is important to also consider a crucial factor when analyzing web APIs: consumer
usage. The behavior of API consumers plays a significant role in the evolution of
web APIs, and its impact should not be overlooked when building predictive models.

While models constructed based only on design metrics demonstrated better per-
formance than models using usage metrics, it is noteworthy that changes predicted
by the usage model were not captured by the design model. This indicates that us-
age has its unique contributions to the classification task. Thus, to explore its full
potential in change prediction, we extended the analysis to include changes span-
ning multiple releases.

Our preliminary findings indicate that incorporating usage metrics into the pre-
dictionmodel not only improves accuracy but also enables early prediction of changes
that providers implement at later stages. By considering both design and usage met-
rics, API providers can make proactive decisions, ensuring that their changes align
with user expectations.

60

Chapter 4

Improving Web API Usage
Logging

The paper has been published in the In Proceedings of the International Conference of
Research Challenges in Information Science (2021).
DOI: http://dx.doi.org/10.1007/978-3-030-75018-3_45

Abstract

AWeb API (WAPI) is a type of API whose interaction with its consumers is done through
the Internet. While being accessed through the Internet can be challenging, mostly when
WAPIs evolve, it gives providers the possibility to monitor their usage. Currently, WAPI
usage is mostly logged for traffic monitoring and troubleshooting. Even though they
contain invaluable information regarding consumers’ behavior, they are not sufficiently
used by providers. In this paper, we first consider two phases of the application devel-
opment lifecycle, and based on them we distinguish two different types of usage logs,
namely development logs and production logs. For each of them, we show the potential
analyses (e.g., WAPI usability evaluation) that can be performed, and the main impedi-
ments that may be caused by the unsuitable log format. We conduct a case study using
logs of the sameWAPI from different deployments and different formats, to demonstrate
the occurrence of these impediments and at the same time the importance of a proper
log format. Next, based on the case study results, we present the main quality issues of
WAPI logs and explain their impact on data analyses. For each of them, we give some
practical suggestions on how to deal with them, as well as mitigating their root cause.

61

http://dx.doi.org/10.1007/978-3-030-75018-3_45

Chapter 4. Improving Web API Usage Logging

1 Introduction

An increasing number of organizations and institutions are exposing their data and
services by means of Application Programming Interfaces (APIs). Different from tra-
ditional APIs (i.e., statically linked APIs), which are accessed locally by consumers,
web APIs (WAPIs) are exposed, and thus accessed, through the network, using stan-
dard web protocols [88]. As the interaction between WAPIs and their consumers is
done typically through the Internet, both parts end up loosely connected.

This loosely coupled connection becomes eventually challenging, mostly during
WAPI evolution, when as a boomerang effect, consumers end up strongly tight to
WAPIs [27]. If providers release a new version and decide to discontinue the for-
mer ones, consumers are obliged to upgrade their applications to the new version
and adapt them to the changes. Consequently, WAPIs end up driving the evolution
of their consumers’ application [26], [25]. Knowing the considerable impact WAPIs
have on their consumers, providers would benefit from consumers’ feedback to un-
derstand their needs and problems when using the WAPI [65].

Currently, API providers face a lot of difficulties in collecting and analyzing con-
sumers’ feedback from several sources (often informal ones), e.g., bug reports, issue
tracking systems, online forums, and discussions. [102]. Furthermore, feedback col-
lection and analysis turn out to be expensive in terms of time, thus difficult to scale.
Actually, in the WAPI case, this feedback can be gathered in a more centralized way.

While being accessed through the network poses some challenges for consumers,
it enables providers to monitor the usage of their WAPIs, by logging every request
that consumers make to them (see Fig. 4.1). WAPI usage logs, besides coming from a
trustworthy source of information, can be gathered in a straightforward, inexpensive
way, and completely transparent to WAPI consumers.

Currently,WAPI usage logs aremostly being used to feedmonitoring tools. These
tools typically provide automatic alerts when WAPI endpoints fail, and reporting
dashboards that visualize several performance metrics [23]. Since these logs are not
designed to be further analyzed with regard to consumers’ behavior, they may lack
some critical information, like identifiers for consumers’ applications, etc. More-
over, they are complex (e.g., unstructured, high-volume data) and somewhat noisy.
Applications’ design and the way their end users use them can veil interesting and
important WAPI usage patterns. Therefore, understanding consumers’ behavior and
inferring their needs from WAPI usage logs becomes essential for providing high-
quality WAPIs, tailored to the real needs of their consumers.

This paper is building upon our previous work [42], where we measured the

62

1. Introduction

WAPI

1

developers

applications

(W)APIs

data/services

usage logs

WAPI consumers WAPI providers

Fig. 4.1: The interaction between consumers, providers, and WAPIs

usability of WAPIs by analyzing their usage logs generated during the development
phase of consumers’ applications. Based on the challenges faced while working with
WAPI usage logs, and the surprising lack of attention this topic (i.e., WAPI usage logs
analysis) had gained, we saw it convenient to summarize our experience and research
in the field, into a set of practical suggestions to enhance the logging of WAPI usage
for more specialized analyses.

To this end, the contribution of this work is fourfold. We focus first (i) on show-
ing the potential and then (ii) on the main impediments of proactively using WAPI
usage logs regarding consumers’ behavior. We then conduct a case study using logs
of the same WAPI from different deployments, using different log formats, (iii) to
show the importance of logs’ structure and content in preparing the data for further
analyses. Next, based on the case study findings, the analysis requirements, WAPI
logs structure, and also after reviewing the relevant literature, (iv) we classify and
define the main issues and obstacles that hinder the application of various analyses
on the logs. For each of the issues, we describe the impact their occurrence may have
on the analysis result, and propose mitigation actions.

The remainder of this paper is organized as follows. In Section 2, we report on
the current use of WAPI usage logs and practices to pre-process and deal with their
quality issues. In Section 3, we give the main motivation behind our work. We in-
troduce the WAPI logs structure and content, and based on them we propose some
purpose-specific analyses that can be applied to these logs. In Section 4, we introduce
two pre-processing challenges, whose accuracy may be affected by the format of the
logs. In Section 5, we introduce our case study and the experiments we performed.
In Section 6, we provide the set of WAPI quality issues inferred from the case study

63

Chapter 4. Improving Web API Usage Logging

and discuss their impact and mitigation. In Section 7, we conclude the paper and
present some ideas for future work.

2 Related Work

Few works build their analysis on WAPI usage logs comprised of the URL requests
made to the WAPI [87], [42], [56]. Thus, not only these logs’ potential is still unre-
vealed, but even quality issues related to them or their pre-processing and prepara-
tion have not gained the deserved attention.

For instance, Suter and Wittern [87] used the usage logs to infer the WAPI de-
scription (the endpoint structure and parameters) from them. They reported that the
results of their methods were impeded by the incomplete and noisy nature of these
log data. In our previous paper [42], we proposed an approach to measure the usabil-
ity of WAPIs by analyzing the usage logs generated during the development phase of
consumers’ applications. We described the pre-processing steps of WAPI usage logs
in general, and then demonstrated howwe dealt with specific obstacles in the log data
from the case study (e.g., data structuring, and generalization). Macvean et al. [56]
analyzed WAPI usage logs from Google API Explorer, and generated from them sev-
eral structural factors (e.g., number of parameters, number of methods) to study their
usability. Even though they showed the potential of analyzing these logs, they did
not tackle the quality issues related to them or challenges during their preparation.

On the other hand, web log preparation and pre-processing are widely studied,
as part of web log analysis, and extensively applied regarding usage and usability
of software and web applications [31]. We mention below some of these works, as
some WAPI logs quality issues are similar to the web logs ones.

One of the most discussed issues of log pre-processing is session identification.
A session represents the interaction of a user with a website within a time frame
(usually expires after a certain amount of time of inactivity). There exist several
heuristics for reconstructing sessions, mostly coming from web mining applications
[85], [84], [89], [40], [11], [83]. Spiliopoulou et al. [83] applied different heuristics
(total session duration, page-stay duration, etc.) to reconstruct the sessions from the
server log data. They evaluated the performance of these heuristics to the server
log of a university site by comparing the reconstructed sessions with the real ones.
Their experiments showed that there is no one best heuristic for all cases, and it de-
pends on the site’s structure and traffic. Kapusta et al. [40] analyzed the logs from a
commercial bank portal to identify the users’ sessions. They applied different time
window thresholds and heuristics, and based on the usefulness of the rules extracted

64

3. The potential of WAPI usage logs

in each case, they evaluated the best threshold. Tanasa and Trousse [89] described
in detail all the steps of log pre-processing (i.e. data fusion, data cleaning, data struc-
turing, and data generalization), indicating the most challenging issues and how to
overcome them. They pointed out the importance of pre-processing in data analysis
effectiveness, and among others, agreed on the need for better log systems.

The above-mentioned works focused on general web usage logs, thus the con-
cerns raised were related to the analyses applied to them (e.g., to identify users’ nav-
igation behavior in order to predict their next actions, to evaluate software design
usability, to monitor the traffic for performance reporting). While some of the issues
of working with general web logs are similar to WAPI usage logs, the latter poses
some added challenges, related to the requirements of the specific analyses that can
be applied to them, as well as the WAPI design.

Bose et al. [14] focused their work on the requirements of process mining (an
analyzing technique that can be applied to log data) and log data quality issues that
may affect its results. They presented 4 process characteristic issues and 27 event
log quality issues that hinder the applicability of several process mining techniques
and affect the results’ quality, but did not provide solutions on how to address those
issues. Along similar lines, Suriadi et al. [86] described a set of data quality issues, fre-
quently found in process mining event logs. Based on their experience in performing
process mining analyses, they introduced 11 event log imperfection patterns, which
can be used in several domains. While both of the works are too specific for pro-
cess mining requirements, they refer to event logs in general in terms of the domain.
Thus, some of the issues introduced cannot be applied in the WAPI domain (e.g.,
issues related to manual data entry).

In this paper, driven by the lack of attentionWAPI usage logs analysis has gained,
we show several potential analyses that can be applied to them, mostly based on their
nature and content. We discuss the posed challenges in analyzing these logs and
eliciting the needed information, followed by recommendations on how to better log
the WAPI usage, which until now, remains quite unexplored.

3 The potential of WAPI usage logs

Providers typically log their WAPIs’ usage by recording all requests done against
the WAPIs. Every time a consumer’s application issues a request to a WAPI, a log
entry is generated and stored in the usage log file. The information that is logged
for each request and its format may vary due to different logging system setting
parameters and also providers’ decisions about logs design. For example, using the

65

Chapter 4. Improving Web API Usage Logging

Apache Custom Log Format1 (a flexible and customizable format), when an ap-
plication makes a request like https://maps.googleapis.com/maps/
api/distancematrix/json?origins=MNAC&destinations=
MACBA&mode=driving&key=API_IDENTIFIER (in the form of a URL)
to a WAPI endpoint of the Google Maps Platform, the following information
could be logged by providers (based on the logging system configuration):
the IP address of the application’s user, the time when the consumer made
the request, the request body that contains the request method (GET), path
(maps.googleapis.com/maps/api/distancematrix/json) and
query (origins=MNAC&destinations=MACBA&mode=driving&
key=API_IDENTIFIER), the protocol (HTTP/1.1), the time needed to respond
to the request, the status code (e.g., 200 if the request was successful), the size of the
object returned, the address of the page that initiated the request, information about
the operating system or browser used, and other fields comprising different aspects
of consumers’ applications and their users.

We can think of usage logs as traces that consumers leave when using the WAPI.
If the information in these traces is analyzed in the proper way, it can reveal useful
knowledge. They show which endpoints the consumers have accessed, in which or-
der, with which frequency, andwith which parameters. As applications are the actual
WAPI consumers, we should consider the different ways they consume WAPIs over
their own lifecycles. Basically, applications interact with the WAPIs during design
time and runtime, over both of which manifest different aspects of their behavior.
Following on from this, we distinguish two types of logs: (i) development logs, and
(ii) production logs (Figure 4.2).

Development logs are generated at design time, while developers build and test
their applications. During this phase, theymake the first integration of theWAPI into
their applications or implement newly developed features. Thus, these logs show
their attempts in using the WAPI, the endpoints they struggle more with, specific
mistakes they do while using and learning the WAPI, etc. [42], [56]. By analyzing
these logs, providers may evaluate the usability of their WAPI from the consumers’
perspective. For instance, they may decide to change the name of elements (end-
points, parameters) consumers have difficulty learning or memorizing, improve the
documentation for endpoints that seem not clear to consumers, detail the error mes-
sages when they detect that consumers are repeating continuously the same errors
without understanding how to fix it, etc.

On the other hand, production logs are generated during application runtime,
1http://httpd.apache.org/docs/current/mod/mod_log_config.html

66

https://maps.googleapis.com/maps/api/distancematrix/json?origins=MNAC&destinations=MACBA&mode=driving&key=API_IDENTIFIER
https://maps.googleapis.com/maps/api/distancematrix/json?origins=MNAC&destinations=MACBA&mode=driving&key=API_IDENTIFIER
https://maps.googleapis.com/maps/api/distancematrix/json?origins=MNAC&destinations=MACBA&mode=driving&key=API_IDENTIFIER
maps.googleapis.com/maps/api/distancematrix/json
origins=MNAC&destinations=MACBA&mode=driving&key=API_IDENTIFIER
origins=MNAC&destinations=MACBA&mode=driving&key=API_IDENTIFIER
http://httpd.apache.org/docs/current/mod/mod_log_config.html

3. The potential of WAPI usage logs

1

Feedback

Deployment

Design time Runtime

Development Logs
➣Generated during application design time
➣Contain developers learning trajectory
➣Can be analyzed to evaluate WAPI
usability

Production Logs
➣Generated during applications runtime
➣Contain solid WAPI usage scenarios
➣Can be analyzed to understand
consumers’ behavior (e.g., their needs, new
usage scenarios)

Fig. 4.2: The development lifecycle of consumers’ application

while applications are being used by end users. Since the applications are released
for public use, it is assumed that they are quite steady, without erroneous WAPIs re-
quests. WAPI requests are predetermined by the implemented functionalities of the
applications, different from the development phase, where developers may freely
try different requests, several times, and pose any query. Indeed, production logs
contain real and solid WAPI usage scenarios, the right order in which developers
make the requests to WAPI to achieve specific goals, different workarounds created
to accomplish tasks for which there are no WAPI endpoints developed, or the actual
frequency of certain requests or sequences of requests, that show the real consump-
tion of WAPIs. By analyzing these logs, providers may identify consumers’ needs
for new features, and implement the corresponding endpoints. These logs may re-
veal new usage scenarios providers may have not thought about before, instructing
them in including these scenarios in the documentation. Besides these, providers
may identify ways of improving the WAPI based on how consumers use it, merging
endpoints that are always called together for a specific purpose, or creating new end-
points, derivative from the ones that are always called with specific values for some
parameters.

Even though both types of logs provide useful information aboutWAPI consump-
tion and perception from consumers, preparing and analyzing them is arduous. First,
it is not always trivial to distinguish these logs from each other, as they often are
stored together in the same files. Secondly, consumers’ applications design and the
way users interact with them will be manifested in the production logs, obfuscating
the inference of the real WAPI usage patterns. Providers should identify the pat-
terns that represent real usage scenarios, from the ones deriving from applications
design and user flow. Finally, as providers store these logs typically for traffic moni-
toring, they do not consider the requirements that specific analyses may have. Thus,
unawarely, they may neglect the importance of the log format, and even leave out
crucial information for consumers’ identification, adversely affecting not only the
analysis results but also the logs’ pre-processing.

67

Chapter 4. Improving Web API Usage Logging

Field extraction Session Identification

Raw log file Extracted fields Identified sessions

Fig. 4.3: Field extraction and session identification

4 How does the logs format affect the pre-
processing?

The pre-processing phase is typically counted as the most difficult and time-
consuming part of log analysis [85]. It basically consists of four main steps: (i) data
fusion, consisting in gathering and merging log files from different sources, (ii) data
cleaning, consisting in removing irrelevant data and completing missing values, (iii)
data structuring, consisting in segmenting the log file in users’ sessions, and (iv)
data generalization, consisting in generalizing the dynamic part (i.e., parameter val-
ues) of requests [89], [42]. In this section, we will cover two challenges from WAPI
usage logs pre-processing, namely field extraction from the data cleaning phase, and
session identification from data structuring, as the two challenges of pre-processing
that, are directly affected by the log format and the way the usage is being logged
(Figure 4.3).

Field extraction. Usage logs are stored in text files. Each log entry contains
several fields, each containing specific information. Field extraction consists
exactly of the separation of the log entry in several fields. It is typically performed
right before data cleaning so that log entries can be filtered based on the value
of their specific fields (e.g., the request method, and request body). For exam-
ple, the following log entry should be transformed from a single string into the
set of fields it contains 127.0.0.1 - - [24/Jun/2019:20:22:26
+0000] GET /api/29/system/info HTTP/1.0 200 891
https://.../dhis-web-dashboard/index.html Mozilla/5.0
(Windows NT 6.1; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/75.0.3770.100
Safari/537.36, extracted fields:

Client IP : 127.0.0.1

68

4. How does the logs format affect the pre-processing?

Timestamp : 24/Jun/2019:20:22:26 +0000
Request : GET /api/29/system/info HTTP/1.0
Status code: 200
Object Size: 891
Referer : https://.../dhis-web-dashboard/index.html
User-Agent : Mozilla/5.0 ... Safari/537.36

There are several ways to parse log file information, including regular expres-
sions, predefined parsers, and custom grok parsers (pattern matching syntax used by
ElasticSearch). Providers should decide on a log format that can be easily parsed, in
order to enable simple querying of fields value.

Session identification. This challenge (often called sessioning), refers to group-
ing together into the same session, all the log entries (i.e., requests) coming from each
user during the time frame of a visit, trying not to leave out any log entry, as well as
not assigning wrong ones. It is one of the main issues with WAPI usage logs. Most
of the WAPIs are stateless, meaning that the server does not store the state, thus no
sessions are generated. The lack of session identifiers may seriously impede the ap-
plicability of several analyses. For instance, one of the process mining requirements
is for event logs to have case identifiers, which assign each log entry to a specific
case [92]. Session identifiers must be inferred by combining other available infor-
mation in the logs. Sessioning heuristic is a method for constructing sessions based
on assumptions about users’ behavior or the site/application characteristics. Two
of the most applied methods are time-based heuristics and navigation-based heuris-
tics [11]. As both of them are built under the hypothesis of an already launched and
ready-to-be-used application, these heuristics apply only to the production logs.

• Time-based heuristics construct the sessions based on either: (i) the duration of a
user’s entire visit to the application, which should not surpass a maximum thresh-
old δ, typically taken 30 minutes [11], or (ii) the time a user spend on one page
of the application (i.e., page-stay heuristic), which should not surpass a maximum
threshold θ, defined based on pages average contents and application nature.

• Navigation-based heuristics construct the sessions based on the assumption of how
the applications’ pages are related. The rationale behind this is that users’ navi-
gational flow in the application has been predetermined since its implementation.
For native (or desktop) applications this flow is fixed. For web ones, which are
accessed through a browser, users rarely type themselves the URL of a page but
rather follow the hyperlinks and the navigation bar. In the usage logs, the infor-
mation about the page initiating the actual request is contained under the referer

69

Chapter 4. Improving Web API Usage Logging

field. This field can have a null value ("-") when the users type the request directly
in the browser, or when an application is first opened.

5 Case study

We perform field extraction and session identification in order to demonstrate the
importance of specific fields of the log format, and the impact their lack may cause
to both of these challenges. We conduct a case study using logs of the District Health
Information Software 2 (DHIS2) WAPI. DHIS2 is an open-source, web-based health
management information system platform used worldwide by various institutions
and NGOs for data entry, data quality checks, and reporting. It has an open REST
WAPI, used by more than 60 native applications. External software can make use of
the open API, by connecting directly to it or through an interoperability layer.

DHIS2 is instantiated asWorld Health Organization (WHO) Integrated Data Plat-
form2 (WIDP), and is used by several WHO departments for routine disease surveil-
lance and country reporting. For the analysis, we use the production logs fromWIDP,
and from Médecins Sans Fontières (MSF), another DHIS2 instance used for field data
collection and as a central repository for medical data.

Both of these instances use the sameDHIS2WAPI and the same set of applications
accessing it. But, being deployed and used independently, the logs coming from them
have different formats, providing us with different information that we can use to
structure and prepare the logs for further analyses (Table 4.1).

Table 4.1: Log formats of the two DHIS2’s deployments under study

Deployment
Client IP
address

Timestamp
granularity

Duration Request
Status
Code

Object
Size

Referer
User
Agent

MSF ✗ Second ✓ ✓ ✓ ✓ ✓ ✓

WIDP ✓ Millisecond ✓ ✓ ✓ ✓ ✗ ✓

1. Field extraction. We perform field extraction by using regular expressions in JAVA.
The request body, referer, and user-agent are the parts that generate more errors
while parsing, as they may include spaces and special characters, sometimes used
to separate the fields. We show the example of the user-agents values in WIDP

2http://mss4ntd.essi.upc.edu/wiki/index.php?title=WHO_
Integrated_Data_Platform_(WIDP)

70

http://mss4ntd.essi.upc.edu/wiki/index.php?title=WHO_Integrated_Data_Platform_(WIDP)
http://mss4ntd.essi.upc.edu/wiki/index.php?title=WHO_Integrated_Data_Platform_(WIDP)

5. Case study

log data, which typically have in their body comma, semicolon, and spaces: Mozil-
la/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/80.0.3987.122 Safari/537.36. We have to perform some extra manual work to
handle the errors, like splitting these fields into several parts and then joining them,
without cluttering parts of different fields.

2. Session identification. We apply the page-stay heuristic and the navigation one
combined with time constraints. We perform the experiments on log data from MSF
since the log format contains information about the referer (Table 4.1), required in
the navigation-based method. Since we do not (and cannot) have the data with the
real and correct session identifiers to evaluate the performance of the resulting tech-
niques, we assess the correctness of the constructed sessions based on different statis-
tics. The results of the analysis are shown in Table 4.2.

The WAPI log file from MSF has requests from different applications installed in the
platform and used by different users. Our first concern consists in eliciting the user
and the application that submitted the request. MSF uses a proxy server, thus the
information under the client IP can not be used in user identification. Also, the log
entries do not have information about which application submitted each request. The
only information available is the log entries specifying the opening of an application:
“GET /{nameOfTheApplication}/index.action”.

• Time-based heuristic. We start with the time-based heuristic. Even though the aim
of the experiments is not to find the best threshold value, we perform the experi-
ments for two different thresholds (5 and 15 minutes), to see if their values make
any significant changes in the sessioning of the log entries. If the timestamps of
the requests after an application opening have a difference of less than the defined
threshold, then they are considered part of the same session. Otherwise, they are dis-
carded, as we cannot know the application making the requests. Using the example
in Listing 4.1, the requests after the opening of App2 are considered part of the same
session if t4 ´ t3 ď 5minp15minq and t5 ´ t4 ď 5minp15minq, or discarded other-
wise. On the other hand, these requests may comply with the threshold for App1 as
well (t4 ´ t2 ď 5minp15minq, t5 ´ t2 ď 5minp15minq). As a result, requests that
may come from App1 session, may be assigned to the next session, possibly increas-
ing this way the error rate in two directions: not including the right log entries in
Session1, and including the wrong ones in Session2.

Listing 4.1: Time based heuristic on MSF logs

1. GET App1/index.action t1 Session1
2. request from App1 t2 Session1

71

Chapter 4. Improving Web API Usage Logging

3. GET App2/index.action t3 Session2
4. request from App1 or App2 t4 Session1 or Session2
5. request from App1 or App2 t5 Session1 or Session2

As seen from the situation in the log snippet in Listing 4.1, regardless of the times-
tamps, we cannot be sure about the session of the requests after two applications
open simultaneously. It is worth pointing out that the uncertainty would still per-
sist, even if the information about the client’s IP address was in the log file, as the
same user could open several applications at the same time.
We can see in Table 4.2 (first two rows), the overall number of sessions (for sessions
with more than 3 requests) in the data, the average sessions’ duration, and the av-
erage sessions’ size (number of requests in a session). We are not further analyzing
these metrics, to see which of the thresholds is more performative, as from the inter-
pretation, the time threshold, used in isolation from other fields, is not enough for
identifying sessions. But we will compare them with the metrics derived from the
results of the navigational-based heuristic.

Table 4.2: Statistics for the defined sessions

Heuristic No. of sessions Avg. duration Avg. size
time 5 min 15,804 110 sec 63
time 15 min 15,937 127 sec 63
time 5 min, navigation 8,233 266 sec 122
time 15 min, navigation 6,586 413 sec 152

• Navigational-based heuristic, combined with time constraint. Next, we reconstruct the
sessions using not only the time difference between the requests but also the ref-
erer. We use this heuristic for two different timeout thresholds. Extending the same
example with referer information (see Listing 4.2), we can see that the session identi-
fication accuracy is straightforward when different applications are being consumed
(from the same user or different ones). Log entries 4 and 5 are assigned to the right
session, due to the information provided by the referer. (The value of refA is ignored,
as the request body itself gives the application in use.)

Listing 4.2: Navigation based heuristic on MSF logs, different application

1. GET App1/index.action t1 refA Session1
2. request from App1 t2 App1 Session1
3. GET App2/index.action t3 App1 Session2

72

5. Case study

4. request from App2 t4 App2 Session2
5. request from App1 t5 App1 Session1

We cannot say the same when the same application is being used by different users
(see log snippet in Listing 4.3). Log entries 4 and 5 may belong to Session1 or Ses-
sion2, but they may end up in the wrong session, due to the lack of client IP address
information.

Listing 4.3: Navigation based heuristic on MSF logs, same application

1. GET App1/index.action t1 refA Session1
2. request from App1 t2 App1 Session1
3. GET App1/index.action t3 App1 Session2
4. request from App1 t4 App1 Session1 or Session2
5. request from App1 t5 App1 Session1 or Session2

As seen from Table 4.2 (two last rows), the metrics from the navigation method
are significantly different from the ones when only the time heuristic was used (two
first rows). We can see that after using the referer information, for the same logs,
we have less number of sessions, but larger ones in terms of the number of requests
and session total duration. This means that, when using only the time heuristic, we
are over-splitting the sessions, thus potentially losing sequences of requests. Besides
this, the new sessions created, likely contain mixed requests from different users and
different applications, thus possibly creating fake sequences of requests.

Even though we applied grounded methods in pre-processing the logs, we admit
that challenges like session identification and field extraction may still remain due
to the lack of important information in the logs or the format being used. These
problems are hard to deal with, and the best way to address them is to mitigate the
root cause.

Assessment. The performance of the heuristics could be evaluated by comparing
the constructed sessions with the real ones. In WAPI usage logs we cannot have the
real sessions. Thus, in order to evaluate the accuracy of the reconstructed sessions of
logs from MSF, we compare them and the reconstructed sessions of logs fromWIDP,
in the context of four specific applications. Different from MSF, the logs from the
WIDP has information about the client IP addresses, but not the referer (Table 4.1).
Consequently, we reconstruct the sessions using client IP and timeout (15 minutes).
Then for each application, we extract the distinct requests assigned on both instances
(Table 4.3). We saw that when using only the time heuristic in MSF, even though
the sessions are on average shorter in terms of the number of requests (Table 4.2),

73

Chapter 4. Improving Web API Usage Logging

too many distinct and different requests are assigned to each application. The same
happens with WIDP, whose logs do not have information about the referer. For each
application, we explore in detail the distinct requests assigned to them, for all the
sessions. We saw that there were WAPI requests, that even though not related to the
applications, were assigned to them because of the missing information in the logs.

Table 4.3: WAPI requests assigned to four applications installed in MSF and WIDP

Application MSF (time) MSF (time, navigation) WIPD (time)
dhis-web-event-capture 106 28 177
dhis-web-event-reports 139 25 118
dhis-web-tracker-capture 202 48 124
HMIS-Dictionary 136 31 57

As the examples show and the experiments’ results support, not being able to
identify the users and the applications submitting the WAPI requests, greatly affects
the correctness of sessions’ identification. We can see an improvement when the
referer information is available in the logs, but its exploitation comes with extra pre-
processing efforts.

6 CommonWAPI logs issues

In this section, deriving from the case study, we introduce the main WAPI usage
logs quality issues, that are responsible for the problems that surged during field
extraction and session identification. Some of them are related to the nature of WAPI
usage logs, hence providers should be aware of and consider them before analyzing
the logs. Others originate from the way WAPI usage is logged, and thus can be
eliminated or ameliorated.

1. Field extraction

• Fields’ separators part of the fields’ body.
Description: Even though it is recommended to use more human-readable formats for
logs, keeping them machine processable is also important. Each log entry consists of
several fields, typically separated by specific characters, e.g., comma, semicolon, and
space. With the help of these separators, providers can perform the fields’ extraction.
Problems may arise when the fields themselves contain in their body the characters

74

6. Common WAPI logs issues

used as separators. The most heterogeneous fields are the request, the referer, and
the user agent.
Impact: Not addressing this issue may result in extra added time and effort in log data
pre-processing. If the special separators are part of the field’s body, the automation
of field extraction will generate errors, and providers should perform manual work
to fix the issue.
Mitigation: To facilitate the field extraction, it is recommended to double-quote the
fields that might have special characters like request, referrer, user agent, etc. The
use of machine parseable formats will increase the automation of pre-processing, and
therefore its correctness.

2. Session identification

• Insufficient fields.
Description: WAPI usage logs are usually not logged for the purpose of analyzing
consumers’ behavior and getting indirectly their feedback. Thus, they often suffer
from missing crucial fields for the application of several analyses, or other fields
whose presence may enrich the analyses with new insights. We encountered this
issue with the log data from WIDP, whose format did not include the referer.
Impact: The lack of specific fields may become an impediment to applying several
analyses or may affect the accuracy of the analysis results. The referer header is a
field that contains the address of the page that made the request. Even though this
is an optional field, it contains important and helpful information to reconstruct the
sessions. As demonstrated in the introduced case study, in cases where: (i) the ses-
sion identifiers are not present, (ii) the client IP address is actually a proxy address,
and (iii) session timeout differs between several consumers’ applications, the infor-
mation under referer will help the analysts to better identify the session of a log entry
and reconstruct the requests’ sequence. Even though providers cannot fully rely on
the referer information (it is not in the log when consumers type the request in the
browser), it increases the correctness of assigning every log entry to its own session.
The user agent field, which contains information about the browser and the oper-
ating system used when making the request, may as well play an important role in
distinguishing the requests coming from different users, thus it should be included
in the log format.
Mitigation: In order to strike a balance between not leaving out important fields, and
at the same time not logging too many fields, providers should decide beforehand
on the analyses they will perform on the usage data, and the question they seek to
answer. The specific requirements of the analyses should help them in making the

75

Chapter 4. Improving Web API Usage Logging

right decision. Nevertheless, regardless of the type of analysis, providers should be
able to identify different users and applications and log the needed fields accordingly.

• Missing applications’ identifiers.
Description: Applications’ identifiers are unique identifiers that providers generate
for their consumers, usually to monitor their usage for billing purposes. Consumers
must include their applications’ identifiers in each WAPI request so that providers
can track their WAPI usage. Currently, this practice (of providing application identi-
fiers) is typically followed by providers that have monetized their WAPIs. However,
it can be used for more than just correctly charging consumers. We are not covering
this in the ‘Insufficient fields’ issue, as, more than a field to be included in the log
format, it is related to the providers’ decision to generate this kind of identifier. Con-
sumers may then submit the identifiers as an HTTP header, as a query parameter, or
as a request body field.
Impact: The lack of applications’ identifiers is not likely to impact the accuracy and
correctness of analysis results, but it affects the evaluation and the prioritization of
the found usage patterns. Suppose that providers will find in the logs specific usage
patterns that may indicate the need for some changes in the WAPI. Not knowing
which applications are making the requests, providers cannot be sure whether the
patterns found are coming from several applications, or from a few applications with
a lot of users. In this situation, if they decide to perform the indicated changes, they
will not know how many applications these changes will affect. To make informed
decisions about the implementation of the prescribed changes, they should have in-
formation about these identifiers. Furthermore, under the conditions where sessions’
identifiers are missing, application identifiers will help providers in improving the
sessioning of the usage logs. We faced this issue with logs from both MSF andWIDP,
as the DHIS2 provider was not generating these identifiers.
Mitigation: Providers can address this issue by generating unique identifiers for each
consumer’s application so that consumers include them in all the requests made to
the WAPI. Additionally, in order to differentiate between usage logs created dur-
ing the development/testing phase and production phase, providers should generate
different identifiers for each of the phases. As already explained, these usage logs
manifest different aspects of consumers’ behavior. Thus, providers should be able to
separate them in order to accurately apply purpose-specific analysis.

• Hidden client IP address.
Description: The client IP address gives the IP addresses of the applications’ users.
Combined with other information (session timeout, referer, user agent, etc.) this in-
formation can be used in users’ identifications, as well as sessioning. However, if the

76

6. Common WAPI logs issues

consumers are using proxy servers, as in the case of MSF, the IP address that appears
in the usage logs will not be of the original user doing the request, but that of the
proxy server address. As a result, different users may appear under the same client
(proxy) IP address in the logs, misleading the user identification process. We want to
note that, as we are analyzing the way applications are consuming the WAPIs, our
interest in users’ identifications is limited to their help in sessions’ identifications.
By this means, if the same users appear with different IP addresses each time they
use an application (dynamic IP addresses), this will not affect the analysis results.
Impact: Not being able to distinguish the requests from different users may produce
mixed-up sequences of requests. The impact can be even more severe if other iden-
tifiers (e.g., application identifiers) are also missing in the logs, as in the example in
Table 4.4.

Table 4.4: Log entries from different users with the same IP address (proxy address).

Client IP Request Timestamp Referer
IP1 request1 18/Dec/2020 09:35:27.723 app1 domain
IP1 request2 18/Dec/2020 09:35:28.112 app1 domain
IP1 request3 18/Dec/2020 09:35:33.009 app2 domain
IP1 request4 18/Dec/2020 09:36:07.545 app3 domain
IP1 request5 18/Dec/2020 09:36:36.225 app1 domain

Mitigation: WAPI providers cannot control or fix this issue. Thus, it is important for
them to be aware of this problem and not fully rely on this field for user and session
identification. Instead, they should make sure to include other fields in the logs (e.g.,
referer, user agent), which will help them better structure the logs. This was the case
with usage logs from MSF. While the client IP addresses were not usable, the referer
information helped in logs sessioning.

• Timestamp coarse granularity.
Description: The timestamp field shows the exact time the request was made to the
WAPI. Even though the logging system stores the timestamp when the request was
made, the log entry that represents that request is printed in the log file after the
WAPI sends the response to the consumers. This means that the requests are not
completely chronologically ordered in the WAPI usage file: a log entry printed after
another one, may have been submitted earlier, thus it should have an earlier times-
tamp. As the difference, in this case, may be in milliseconds, if the timestamps are
not logged precisely enough, the log entries may appear with the same timestamp

77

Chapter 4. Improving Web API Usage Logging

Table 4.5: Log entries with wrong order because of coarse timestamp.

Client IP Request
Timestamp

(as appears in the logs)
The real time

IP1 request1 18/Dec/2020 18/Dec/2020 16:05:55.824
IP1 request3 18/Dec/2020 18/Dec/2020 16:05:55.912
IP1 request2 18/Dec/2020 18/Dec/2020 16:05:55.859

(as in the example showed in Table 4.5), making their ordering unreliable [14]. This
was the case with the logs from MSF. The timestamp granularity was in seconds,
thus several requests had the same timestamp. We tried to fix this issue by keeping
at least the order that the requests had in the file, and for every two consecutive
requests with the same timestamp, we added one millisecond to the latter one.
Impact: Having the requests in the wrong order may adversely affect analyses’ re-
sults, by producing erroneous usage patterns, and also hiding important ones.
Mitigation: To be able to order log entries exactly in a chronological way, providers
should log the timestamp with high precision (e.g., milliseconds).

We have summarized in Table 4.6, the mitigation suggestions, based on the main
problem they aim to solve. Actually, the potential errors derived from them can affect
not only the log pre-processing but also the analyses, resulting in erroneous usage
patterns. Thus, to assist providers in enhancing the usage logs of their WAPIs, we
introduce this set of suggestions, that will not just help them to remedy the issues’
effects on the data, but uncover and mitigate their root causes.

Table 4.6: Issues’ mitigation for a better WAPI usage logging

WAPI usage log issue Mitigation
Field extraction Use a machine parse-able format for logs

Session Identification

Provide application identifiers
Provide different application identifiers for development phase

Log the referer, user agent
Log the timestamp in high precision

78

7. Conclusion and future work

7 Conclusion and future work

In this paper, we first show the potential of WAPI usage logs, by describing several
analyses that providers may perform. Since the success of analyses strongly depends
on the quality of their input data, we report the main issues of WAPI usage logs.
We then conduct a case study to show the importance of the right log format. Next,
derived from the case study, we identify a set of issues that may be present in these
logs, explain how these issues impact the analyses, and suggest how tomitigate them.

Our results indicate that WAPI usage logs contain invaluable information about
consumers’ behavior, needs, and difficulties. But this beneficial information comes
at the cost of the logs’ tedious pre-processing. Typically, WAPI usage logs suffer
from several issues, that should be properly addressed or mitigated, in order for
them to be further analyzed. While some of these issues are related to the nature
of the communication between WAPI and its consumers, others may occur because
of improper logging. Furthermore, there are many demanding analyses, whose re-
quirements should drive providers in the way they log the usage of their WAPIs.

In future work, we plan to perform the proposed analyses on the WAPI usage
logs, applying first the suggestions in mitigating the existing quality issues.

79

Chapter 4. Improving Web API Usage Logging

80

Chapter 5

A Data-Driven Approach to
Measure the Usability of Web
APIs

The paper has been published in Proceedings of Euromicro Conference on Software
Engineering and Advanced Applications (2020)
DOI: http://dx.doi.org/10.1109/SEAA51224.2020.00021

Abstract

Application Programming Interfaces (APIs) are means of communication between ap-
plications, hence they can be seen as user interfaces, just with different kinds of users,
i.e., software or computers. However, the very first consumers of the APIs are humans,
namely programmers. Based on the available documentation and the "ease of use" per-
ception (sometimes led by corporate decisions and/or restrictions) they decide whether
to use or not a specific API. In this paper, we propose a data-driven approach to measure
web API usability, expressed through the predicted error rate. Following the reviewed
state of the art in API usability, we identify a set of usability attributes, and for each
of them, we propose indicators that web API providers should refer to when developing
usable web APIs. Our focus in this paper is on those indicators that can be quantified
using the API logs, which indeed reflect the actual behavior of programmers. Next, we

81

http://dx.doi.org/10.1109/SEAA51224.2020.00021

Chapter 5. A Data-Driven Approach to Measure the Usability of Web APIs

define metrics for the aforementioned indicators, and exemplify them in our use case,
applying them to the logs from the web API of the District Health Information System
(DHIS2) used by theWorld Health Organization (WHO). Using these metrics as features,
we build a classifier model to predict the error rate of API endpoints. Besides finding us-
ability issues, we also drill down into the usage logs and investigate the potential causes
of these errors.

1 Introduction

Application programming interfaces (APIs) represent the abstraction layer built upon
sets of low-level methods and functions, in order to make them easily reused by third
parties [70]. They are ameans of communication between applications. Thus, we can
say that APIs are user interfaces, just with different users in mind, meaning software
or computers [12]. But we should not exclude from API users the human dimension.

Actually, the very first consumers of the APIs are humans, namely programmers.
They are the ones who decide to use or not a specific API in their applications (some-
times under some corporate decisions and restrictions, e.g., pricing). If developers
want to build a mobile application, and one of the features that they want to add
to their application is the user location, usually it is up to them which location API
to choose: Google Map API, OpenStreetMap API, Bing Maps API, Foursquare API,
etc. Usually, API consumers decide to use an API by reading its documentation and
by trying to perform different small tasks with it [12]. So, if API providers want to
increase their customer outreach or the number of users of their API, they should
focus on improving the API documentation and its easy-to-use interface.

In this paper, we propose a data-driven approach to measure API usability, based
on how API consumers perceive and use APIs. Throughout our work we focus on
web APIs, which differ from the traditional ones (statically linked APIs) mostly in
the way providers and consumers are connected (via the internet, typically by HTTP
protocol) or how consumers adapt when APIs change (if web API providers decide
to disconnect an older version of web API, its consumers are forced to upgrade to
the newer versions) [99], [27]. We use the API usability taxonomy proposed by
Mosqueira-Rey et al. [64], which is based on the work of Alonso-Rios et al. [5]. We
adopt this taxonomy to describe the usability of web APIs. As we explain in more
detail in Section 3, there are some usability sub-attributes, which can not be investi-
gated from the logs (they are related to the API source code and not to the interface).
Therefore, for (almost) each of the usability sub-attributes, we propose some indica-
tors that API providers should refer to. Based on these indicators, we define some

82

1. Introduction

metrics to measure each of the attributes. Then, we assess the relevance of these
metrics in evaluating the usability of web API (reflected in the error rate of API end-
points), by building a classifier model that predicts the kind of error rate of endpoints
based on the computed metrics.

We aim to not only find usability issues but also to investigate their root causes
by drilling down into the usage logs. Consumers’ behavior is imprinted in these
logs, so their monitoring and analysis are crucial as they can play an important role
in revealing usability issues. Since log data are semi-structured and often noisy, we
explain how to perform the pre-processing step before doing the analysis.

We introduce and further use the following concepts:

• API resources - the data that API provides.

• API endpoints - the location where the resources can be found.

• API elements - resources, parameters, schema attributes.

Here we focus only on the interface level of the APIs. In other words, we eval-
uate API usability abstracting from the implementation code and the functionalities
that API offers. Putting all together, our study is driven by the following research
questions:

RQ1: Which are the usability sub-attributes that mostly influence the API con-
sumers’ experience?

RQ2: Can we find issues impacting these usability sub-attributes by analyzing
the API usage logs?

RQ3: Can the usability issues found in the API usage logs be measured in a
meaningful way from the API consumer point of view?

RQ3.1: How to carry out the pre-processing of API log data before performing
usability analysis?

The main contributions of the paper are as follows:

• We perform an empirical study in measuring the web API usability, by monitoring
and analyzing the API usage data.

• We define and adapt a set of measurable indicators for web API usability attributes,
and quantify in terms of API usage log traceability the indicators of one of the
usability attributes, know-ability.

• We perform an experimental validation of the importance of these metrics, by ap-
plying our approach in a real-world case study.

83

Chapter 5. A Data-Driven Approach to Measure the Usability of Web APIs

The remainder of this paper is organized as follows: in Section 2 we present the
related work on API usability evaluation. In Section 3 we frame our approach. We
describe the API log data pre-processing phase in Section 4 and present our case
study in Section 5. We discuss our findings in section 6, and conclusions and future
work in Section 7.

2 Related Work

The evaluation of API usability has gained a lot of attention in recent years [75], [66].
Based on the methods used, we can see two main categories: works that analyze the
APIs design and their structural metrics, not taking into account how the API is being
used (analytic methods [73], [80], [21]), and works that study how the API users are
using the API (empirical methods [29], [33], [71]). We give a general overview of
these works here, while the relevant usability attributes that we use in our study are
explained in Section 3.

Rama et al. [73] presented a set of structural metrics that can be evaluated on the
API interface, or on the API implementation source code. Scheller and Kühn [80]
also provided several metrics to measure the usability of APIs. They conducted a
literature review to identify factors that affect API usability and investigated in-depth
a few of these factors. De Souza and Bentolila [21] provided a visual representation
of APIs’ complexity based on the complexity metrics of Bandi et al. [10].

Gerken et al. [29] on the other hand, used the concept map method to study and
evaluate API usability. But, their longitudinal approach can only be applied to long-
time segments. McLellan et al. [61] used the think-aloud protocol. They gave API
code examples to four programmers and asked them to analyze and understand the
code. They found usability testing very effective, based on the usability issues iden-
tified by the participants. Thus, they suggested iterative API redesign and testing
phases. Piccioni et al. [71] designed an empirical usability study by interviewing 25
programmers and giving them a concrete task to accomplish using the API under
study, in order to compare the participants’ expectations with their actual perfor-
mance. Grill et al. [33] evaluated API usability by applying a methodology of three
phases: a heuristic evaluation (based on Zibran et al. [105]), a developer workshop
and interviews, following this way both analytic and empirical methods.

Actually, as Rauf et al. [75] stated in their work on systematic mapping of API
usability studies, the most used methods to evaluate API usability were empirical
ones: usability tests, controlled experiments, surveys, etc. In fact, these methods are
the most consolidated in software usability or human-computer interaction (HCI)

84

2. Related Work

studies. As APIs differ from regular traditional software (can be used in scenarios that
even API designers have not thought about before, are prone to frequent changes,
etc.), their usability evaluation requires more automated, scalable, and time-efficient
methods [75].

Few studies focus on mining repositories. Zibran et al. [105] studied five different
bug repositories to identify the most reported API usability issues (by the API con-
sumers). More than one-third (37.14%) of the bug reports in their study were related
to API usability. From these, the most frequent ones were missing features, correct-
ness, and documentation. Macvean et al. [56] analyzed specifically the usability of
web APIs. They took data from Google API Explorer to identify APIs, with which
developers struggle more and spend more time and effort in learning and using. The
metric they used to measure API usability was API request error rate (client-side er-
roneous requests (4XX) per total requests to the API). Nonetheless, they recognized
that other metrics can also be considered to better evaluate the usability, like API
consumers’ satisfaction measured by API surveys or the number of erroneous re-
quests consumers make until they achieve a successful call (known also as the time
to first hello world or ah ha moment [30]). Although their results were still prelim-
inary and, as they stated, early in nature, the methodology used seems promising
and opens a lot of areas for future research. Murphy-Hill et al. [65] developed a tool
that analyzed consecutive snapshots saved by developers to derive problems of the
API. They checked the API methods that developers changed between snapshots, but
more than the ‘worst’ usability problems, these changes reflected the most used API.
They suggested the use of other heuristics, like analyzing consumers’ experience,
comparing the experience of novice API consumers with the more familiar ones, etc.

Mosqueira-Rey et al. [64] used both analytic and empirical methods. They
adopted a general usability framework from Alonso-Rios et al. [5]. They derived
from it a set of heuristics and guidelines for traditional APIs and used these to eval-
uate the usability of a given API. Nevertheless, they pointed out the need to expand
their work toward web API. Indeed, we use and follow their taxonomy that com-
prises six top-level attributes, refined into 21 more specific sub-attributes, to give
and define a set of indicators that web API providers should use to offer usable web
APIs.

As Wittern et al. [99] stated in their work, there is still a lack of research on the
consumption of web API (strongly related to usability). As already annotated, web
APIs differ from traditional ones, hence, new methods need to be used in evaluat-
ing their usability, as well as other assumptions need to be taken into account. To
understand and analyze the web API consumers’ behavior, we do not conduct obser-

85

Chapter 5. A Data-Driven Approach to Measure the Usability of Web APIs

vational or controlled experiments, but instead monitor and analyze the web API log
data, which indeed contains the interaction between API and its consumers.

Table 5.1: API usability

Usability
Attributes

Sub-attributes Indicators
Traceability
in the logs

1.Know-ability

1.a Clarity
API elements’ name clearness, descriptiveness, unambiguity,

similarity [105], [65], [80], [73], [71]
✓

1.b Consistency Uniformity in naming API elements [105] ✓

1.c Memorability The number of API endpoints’ parameters [105], [73], [80], [10] ✓

1.d Helpfulness The use of different status codes for different situations [105], [73] ✓

2. Operability

2.a Completeness Consumers workaround solutions for the missing features [16] ✓

2.b Precision
Proper data types to avoid loss of precision

and unnecessary type-casting [5, 33, 73, 80, 105]
✗

2.c Universality The use of universally recognized names, formats, etc., for API elements [64] ✓

2.d Flexibility Multiple ways to do the same thing [71, 105] ✓

3. Efficiency

3.a In human effort
The balance between the flexibility of having different ways

of doing a task and the complexity of having too many options [71]
✓

3.b In task execution API response time [30] ✓

3.c In tied up resources The excessive use of shared resources made by API [64, 105] ✗

3.d To economic costs The excessive costs required for the API use [64] ✓

4. Robustness

4.a To internal error The proper handling of internal errors [80, 105] ✓

4.b To improper use The proper handling of consumers errors [80, 105] ✓

4.c To third party abuse The handling and mitigation of abusive behaviour of third party ✓

4.d To environment problems The handling of errors coming from environment problems ✓

5. Safety
5.a User safety The use of safe HTTP methods to change resources ✓

5.b Third-party safety The confidentiality protection of the users’ personal information [64] ✓

5.c Environment safety The security of the users’ assets [64] ✗

6. Subjective satisfaction 6.a Interest The trend of API users over time (API new consumers, API churn rate) [30] ✓

6.b Aesthetic
The aesthetic of API elements’ name (no weird names
or special characters used in an inappropriate way) [64]

✓

3 The proposed approach

In this section, we describe the key elements of our approach. We start by explain-
ing the different types of API logs and which usability attributes can be evaluated
using each of them. Then we introduce the usability attributes, sub-attributes, and
indicators inferred and adapted from the literature review. Last, we interpret these
indicators in terms of API usage log traceability, where possible.

3.1 Measuring web API usability in web API logs

Web API usage logs can be collected at the provider side, at the consumer side, or at
proxy servers [45, 84]. The usage data collected in each case reflect different aspects
of the API usage. Data collected from the consumer side have all the requests made
to the API, but only from that consumer. Log data from different consumers should
be gathered to have more generalizable results from the analysis. On the other hand,

86

3. The proposed approach

the data logged on the API provider side contain information about all the consumers
of the API, but if consumers have adopted API response caching, they do not record
the requests for which the responses are cached. Moreover, development logs cannot
be distinguished from production logs [56].

Nevertheless, the information transmitted through development logs differs from
that in production logs. The former logs are created while the developers are creating
and testing their applications. We can see the developers’ learning curve as well
as their difficulties while using the APIs, only on development logs [56]. On the
other hand, production logs are created during the post-development phase of the
applications, after the applications are launched and used by their end users. The
analysis of these logs can give us insights about API new usage scenarios, not evident
even to API providers. Here we can address issues related to all the other usability
aspects.

All in all, we cannot evaluate all the usability attributes in one type of API log:
different API logs are needed to evaluate different attributes. For example, we cannot
measure the completeness of an API, if we have development logs from one API
consumer. We need production logs from different API consumers to conclude if the
API in the study lacks some features, forcing this way its consumers to come up with
different workarounds.

3.2 API usability aspects

API usability represents a qualitative characteristic [75]. As such, there exist differ-
ent interpretations, different terminologies, and different definitions [5, 75]. After
choosing the usability taxonomy to expand for web APIs, we performed a literature
review in order to quantify each of the sub-attributes into indicators.

Initially, we searched for works on API usability assessment, for both traditional
and web APIs. As in our study we measure the usability based on the API inter-
face, we filtered out the works that focused their analysis on the API implementation
code. Next, we consolidated into indicators for each sub-attribute, all the information
gathered. Then, considering that most of the information was for traditional APIs,
we adapted it for web APIs. For example, Rama et al. [73] mentioned in their work
as structural metric the one related to exception classes “Using exception throwing
classes that are too general with respect to the error conditions that result in excep-
tions". We link this with the status codes returned and give as indicator the use of
different status codes in different situations so that web API consumers would know
the exact error that happened. We classify this as an indicator of the helpfulness of
the API. Finally, there were some sub-attributes for which we could not find any per-

87

Chapter 5. A Data-Driven Approach to Measure the Usability of Web APIs

tinent information in the literature review, thus we extend the current state of the
art with additional indicators. Table 5.1 summarizes our findings and reports main
usability attributes with their sub-attributes, and their indicators, and points out if
such indicators can be traced in API logs.

3.3 Usability issues detected in API usage logs

As already stated, we evaluate API usability by analyzing API usage logs. Due to
different server setting parameters, logs may comply with different formats, but typ-
ically each log entry has information about the client’s IP address, the request time,
the request method (GET, POST, etc.), the request body, the protocol, the time needed
to respond to the request, the status code, and the size of the object returned.

We evaluate from the API logs those attributes and sub-attributes that can be
mapped to the information in the log entries (see Table 5.1). Thus, we focus on in-
dicators consisting of the information about the interface of the API (naming of API
elements, number of parameters) and indicators about the interaction consumer -
API (status codes, duration, request sequences).

As a matter of fact, not all the usability sub-attributes of the taxonomy can be
evaluated based on the information in the logs. For example, the precision of the
API, an operability sub-attribute, is mostly related to the precision of the data types
used. Data type selection is seen as too critical. API consumers should not perform
type casting when it is not necessary, as this will not only increase their effort but
also affect the precision [5,33,73,80,105]. However, in the log entry, requests are just
strings, so we cannot analyze the parameters’ data types (part of the implementation
code of the functions and methods under the APIs).

Know-ability implies the ease of understanding, learning, and remembering the
API. Among others, this attribute is mainly related to the naming of the API elements.
To properly evaluate the naming, it is essential to take into account the purpose
and the functions of the API elements, and then perform semantic analysis of their
names. In automated solutions, this is almost infeasible [80]. Hence, the controls that
we perform for clarity, consistency, andmemorability sub-attributes are channeled in
names’ similarity, the style of naming, path/query length, query complexity features,
etc. On the other hand, helpfulness is related mostly to accurate documentation and
detailed error messages. In the logs, this can be manifested in the erroneous repeated
requests.

Operability is mostly associated with the API consumers’ needs fulfillment.
Tracking workarounds built by consumers when API is not offering them a direct
solution is quite difficult. Anyway, consumers’ interaction with the API is imprinted

88

3. The proposed approach

in the API logs, so from there we can infer behaviors that address this issue. Part of
operability is also universality, which implies the use of universal names and sym-
bols. Next, flexibility is a double-edged sword: for experienced programmers, it is
considered beneficial, but for novice ones, it increases the complexity of APIs (as
explained below).

Efficiency can be evaluated in terms of human effort, time, and resources spent
while using the API. Regarding human effort, usually, the more complex the API is,
the more effort is spent from the consumers’ side. Complexity is a very general con-
cept and comprises several usability attributes. As having several ways to do the
same thing sometimes confuses the programmers [71], we consider this as an indi-
cator in evaluating efficiency according to human effort. Efficiency in task execution
is reflected in the time that an API needs to respond to a request, which in the logs
is stored as duration. For the costs of using the API, we look at the API endpoints,
that can be optimized regarding the number of calls. Consumers have to pay for the
number of calls for non-free APIs. So, if there are endpoints that are always called
one after the other, their merging can reduce the consumers’ expenses. We do not
have a log-based indicator for the efficiency in tied-up resources sub-attributes, as
this is not related to the API interface, and is not reflected in any log entry fields.

Robustness, defined as the property of an API to handle errors and adverse situ-
ations, is strongly related to the status codes that APIs send to their consumers. Even
though applications that consume the API should also be robust and treat properly
the error situations, APIs should not fail in front of incorrect or even improper use.
Therefore, APIs have to handle both the errors that come from their side (5xx errors)
and the errors from the consumers’ side (4xx errors).

Safety deals with the challenge of mitigating risks or damage while the con-
sumers are using the API. Consumers typically access web APIs using HTTP re-
quests. APIs should not allow the consumers to change resources using safe HTTP
methods (methods that do not modify resources, e.g. GET). The safety of the APIs
is also associated with third-party safety, as well as API environment safety. For the
last one, we do not have a log-based indicator.

Subjective satisfaction is the capacity of the API to engage its users and pre-
serve their interest. API providers can evaluate this by monitoring the trend of new
API consumers. Additionally, the aesthetic of API is related to the aesthetic of API
elements’ names.

89

Chapter 5. A Data-Driven Approach to Measure the Usability of Web APIs

4 API log data pre-processing

An API log file contains the requests made to the API. This information is raw, so
before applying any analysis technique, the data should undergo a pre-processing
phase (see Figure 5.1), typically counted as themost difficult task in the UsageMining
process [84, 89]. While it usually consists of three steps, namely data fusion, data
cleaning, and data structuring, we include a fourth step, data generalization [89].
See the final steps in Figure 5.1.

Data fusion. We already explained part of the data fusion step discussing differ-
ent types of API log data (see Section 3.1). Based on where we collect the data (con-
sumers’ or providers’ side), we extract the log files and merge them (if they are on
different servers). Before proceeding with the pre-processing steps, the data might be
anonymized, because log files might contain information considered sensitive (iden-
tifiable personal information). One way of handling this concern is by masking the
sensitive data (i.e., IDs, or IP addresses) with surrogate identifiers and then proceed-
ing with the next steps [89].

Data cleaning. This step mainly consists of removing irrelevant and noisy data
from the files and correcting the data by means of adding or completing missing
values. When fusing data from several sources, the logs from different sources can
have different formats. Thus, when merging them, we may need to adapt their for-
mats: adding/removing certain fields, dealing with quoted/unquoted fields, etc. On
the other hand, whether to keep or remove certain log entries depends much on the
purpose of further analysis [89]. For example, if one wants to discover user session
profiles in web log data, he/she should filter out: (i) the log entries that result in er-
rors, (ii) the log entries that have a request method different from GET, and (iii) the
ones that access image files [39]. If the purpose of the analysis is to support caching
or pre-fetching, then log entries for accessing images should not be excluded from
the analysis [89]. Since we aim to measure the usability of the APIs, the status code
is one of the most valuable fields in the log entries. The error rate of each API end-
point can reveal usability issues that can highly affect API consumers. Therefore, for
purpose of measuring the usability of the APIs, we keep the erroneous requests and
filter out from the file, the log entries that are not API requests, and the ones that do
not imply API resource manipulation. These are some typical examples, but we cer-
tainly do not exclude the possibility of having to remove other log entries, depending
on how the information is logged. After this step, the number of log entries will be
highly reduced [84, 87, 89].

Data structuring. This step includes user and session identification. By users

90

4. API log data pre-processing

Extract the API
usage logs

Delete irrelevant
log entries

Identify users Identify sessions

Generalize the
data

➛Extract log files
➛Merge files
➛Anonymize

➛Delete not API log entries
➛Complete missing data
➛Adapt different log
formats

➛Mask all parameters

Data generalizationData fusion Data cleaning

Data structuring

Fig. 5.1: Data pre-processing.

here we mean the applications that are consuming the API, so this step should be
performed when working with API logs from the provider side. Ideally, when an ap-
plication uses an API, the logs generated should have an ID that identifies its pathway
with the API. Usually, the log file contains only the device’s address (i.e., IP) and the
user agent (i.e., software agent like a browser or an email reader). When applica-
tions’ identifiers are not in the API logs, each IP might be counted as a user [89].
On the other hand, log data are usually not completed with the session ID, hence
the sessions’ identification results especially challenging, due to several reasons (i.e.,
caching, proxy servers, the same device used by several users, etc.) [89]. Thus, the
sessionsmust be inferred by combining available user identification and approximate
timeout simulating the time spent by a single user using the API.

Data generalization. This step is considered an advanced pre-processing step,
comprising one of the most complex tasks in API log data analysis [87, 99]. It con-
sists of extracting general API specifications from the requests in the log files. For in-
stance, if we have “https://.../api/country/Spain/regions", the chal-
lengewould be to detect “/country/" and “/regions/" as resources’ name (fixed
part of the path) and “/Spain/" as a parameter value (dynamic part of the path).
Synthesizing general API description from API usage is a hard problem, and exist-
ing solutions are hampered by the API logs nature (noisy, incomplete) and also API
design and implementation problems [87, 99].

91

Chapter 5. A Data-Driven Approach to Measure the Usability of Web APIs

5 Case study design

5.1 DHIS2 Web API

We analyzed the log data of the District Health Information Software 2 (DHIS2) web
API. DHIS2 is an open-source, web-based health management information system
platform used worldwide for data entry, data quality checks, and reporting. It has
an open REST API, used by more than 60 native applications. External software can
make use of the open API, by connecting directly to it or through an interoperability
layer.

DHIS2 is as well instantiated asWHO Integrated Data Platform1 (WIDP) atWorld
Health Organization (WHO), and is used by several departments for routine disease
surveillance and country reporting. For the analysis, we use API log data from the
development instance of WIDP, with more than 50 applications installed, core or
built in-house. The logs date from September 2018 to November 2019.

5.2 Data pre-processing

We instantiate the data pre-processing workflow previously introduced in Section
4and further discuss the challenges encountered in different steps of the process.

Data fusion. As previously mentioned, we had the log data from WIDP, which
is a DHIS2 API consumer. But as several applications are installed on this platform,
it partly behaves as the provider. The logs were recorded using a customized Apache
log format, which contained the following information: client IP, request long date
(date, time, timezone), duration (time needed to send the response), keepalive, re-
quest (method + resources URL + protocol), response code, the size of the object
returned and the user agent.

Data cleaning. We discarded the log entries with request method HEAD or OP-
TIONS, as they do not imply any resource manipulation or resource retrieval [87].
We filtered out also the log entries that were not related to APIs, thus not containing
the “/api/” entry point, predefined to be in the API request. These are usually log
entries for the loading style files, fonts, or graphics. But at the same time, we were
careful not to remove key log entries (i.e., log entries about the login, logout, and
applications’ first access) that, even though did not contain the “/api/” entry point,
played an important role in data structuring. After data cleaning, our log file con-
tained 2,268,291 log entries (i.e., requests), out of the 5,936,203 that it had initially.

1http://mss4ntd.essi.upc.edu/wiki/index.phptitle=WHO_Integrated_
Data_Platform_(WIDP)

92

http://mss4ntd.essi.upc.edu/wiki/index.php title=WHO_Integrated_Data_Platform_(WIDP)
http://mss4ntd.essi.upc.edu/wiki/index.php title=WHO_Integrated_Data_Platform_(WIDP)

5. Case study design

Data structuring. For user identification, we used the information under “client
IP” in the log entry to identify different API consumers (i.e., users). We considered
as a session all the requests made by one user (client IP), with a time difference of
no more than 15 minutes. We assigned incrementally a number to each session as
an identifier, ending up with 40,067 sessions, from 849 users. As we were analyz-
ing the know-ability of the API, our focus was not on the applications that were
using the API (i.e., the real consumers of API), but on the programmers (i.e., the
first consumers of the API). However, if measuring, for example, the completeness
(investigating workarounds) of an API, one should identify which application sub-
mitted each request, in order to be able to build an exact sequence of the requests
for each application. As already mentioned, in our case, the log files contained log
entries from each of the applications installed in the platform. But the log entries
did not have information about which application submitted each request. The only
information we had was the log entry specifying the opening of any application:
“GET /dhis2-dev/{nameOfTheApplication}/index.action”. But the
same user could open several applications at the same time. So, from the moment
the same user (ClientIP1) opened more than one application, we could not be sure
about the origin of the next log entries:
ClientIP1 "GET /{App1}/index.action"
ClientIP1 "requests from App1"
ClientIP1 "GET /{App2}/index.action"
ClientIP1 "requests from App1 or App2"

In these analysis scenarios, we might need to make approximations and combine
IP information, the current app(s) opened, and the timeout. The lack of application
identifiers can impede not only user identification but also hinder data cleaning.

Apart from user and session identification, we performed also “target endpoint”
identification. In order to be able to aggregate statistical information for each end-
point (total number of requests, requests with client-side error, etc.) we assigned
a “target endpoint” to each request that got a client-side error response code. For
example, if we want to compute statistical metrics for the endpoint “/api/orga-

nizationUnitGroupSets”, then we should somehow match it with the end-
points: “/api/organization-unit-group-sets” or “/api/organiza-

tionsUnitsGroupsSets”, which have a wrong syntax, but the programmer in-
tent was the first endpoint. We started by extracting all the requests that got a status
code not related to syntax errors. Using the Levenshtein distance algorithm [51], we
computed the similarity of these endpoints with each real endpoint in the requests
body and grouped together the most similar ones.

93

Chapter 5. A Data-Driven Approach to Measure the Usability of Web APIs

Data generalization. During this step we had to define which parts
of paths were fixed (i.e., resources) and which were dynamic (i.e., parame-
ter values). That is, for several endpoints with path body like “api/user-

Groups/uNJOBaIw/users/H4atNsEr”, or “api/userGroups/BzbYRSp-

k/users/D78WJM8J”, we inferred from them a general one, with generic API
specifications “api/userGroups/ID/users/ID”. We applied some ad hoc pro-
cedures, and masked all the parameter values with the same string “ID”.

5.3 Data Analysis

We assumed that an API that suffers from poor know-ability, will have a high error
rate. For each sub-attribute, based on the defined indicators, we computed the below
metrics and created a model to predict the kind of error rate.

• Clarity: We analyzed the endpoints’ names and the similarity between them, as-
suming that similar names confuse users and increase the chances of making er-
rors. We expect that endpoints with a higher similarity will have more client-side
error response codes. We split each “target endpoint” into its elements. For each
of them, we found the most similar one, by computing their similarity. For exam-
ple, the account resource had the highest similarity of 0.71 with count, con-

stants 0.82 with constraints, and so on. Using this information, we then
computed two metrics for each endpoint: the average similarity and the max-
imum similarity. For example, userDataStore/gridColumns/event-

CaptureGridColumns has three elements, userDataStore with similarity
0.69, gridColumns with similarity 0.48, and eventCaptureGridColumns

with similarity 0.72. So the endpoint average similarity coefficient will be 0.63,
while the maximum similarity will be 0.72, coming from eventCaptureGrid-

Columns.

• Consistency: We focus on the syntactical aspects of naming to evaluate the con-
sistency. Thus, we analyzed the naming style of endpoints (names that contain
only lower case or numbers, upper cases, underscores, hyphens, special characters,
or more than one of these “styles”). Actually, we do not expect a specific naming
style to be the cause of errors from the client side. We will investigate the impact
that the existence of several naming styles, can have on API consumers. Clearly,
the semantic aspects (use of synonyms, homonyms, etc.) are also very important
when we analyze the consistency of an API and can be evaluated using different
tools for natural language processing. We will include this in our future work.

94

5. Case study design

• Memorability: We analyzed the path part as well as the query part of the requests.
First, we computed thepath length as the overall number of characters; and stored
under path elements the information about the number of elements in the path
(e.g., “analytics/events/aggregate/ID” has three elements in the path
body). Then, we examined the query part to quantify its complexity. We measure
the query length as the number of characters; we analyze the query syntax and
impute the transformation metric as the number or transformation functions in
the query; we represent the logical operators as the number of logical operators
used; we defined the query depth as the number of nested objects, giving to each
nested object the same weight, despite the number of fields it contains, as we are
analyzing the complexity of the query part from the programmer point of view
(amount of code to be written) and not the machine point of view (amount of time
to compute the results of the query); we counted the query parameters; and also
the schema attributes used in each request. Both are part of the query length,
commonly used to evaluate query complexity, but as they represent different ways
of reducing the result size, we choose to count them separately. As we realized that
consumers often use the same query parameter or schema attribute several times in
a single request, we decided to reflect this also in different metrics: unique query
parameters and unique schema attributes.

• Helpfulness: To measure this sub-attribute, we analyzed the endpoints that got
repeated client-side error codes from the same user. We assume that the lack of de-
tails in the error messages and the lack of examples in the documentation can lead
consumers to repeat the same mistakes. Therefore, we grouped all the requests
with the same “target endpoint”, from the same client IP, and analyzed those that
had 2 or more client-side errors. We imputed the error repetition rate as the
number of errors per total number of requests for the same endpoint for each pro-
grammer.

Besides themetrics per each request, we computed the error rate as the number of
erroneous requests per all requests. We first selected only those endpoints that were
in requests with an error rate greater than zero and divided them into two classes:
endpoints with an error rate higher than 0.3 were considered with poor usability and
the ones with an error rate lower than 0.3 with no usability issues. There were 1128
endpoints with certain values of the metrics. In order to balance the class distribution
to 40% for poor usability and 60% for no usability issues, we randomly extracted
endpoints with an error rate of zero to obtain the desired proportion.

First, in order to reduce over-fitting and facilitate the interpretability of results,
we performed attribute (i.e., metrics) selection, keeping only those metrics that were

95

Chapter 5. A Data-Driven Approach to Measure the Usability of Web APIs

more relevant for predicting the class. We run the CorrelationAttributeEval with
Rank method on WEKA2, which ranks the attributes by measuring the correlation
between them and the class. From all the aforementioned metrics, maximum and
average similarity, query depth, logical operators, and path length were the more
relevant ones.

Then, to see if we could predict the class based on these metrics, we built a de-
cision tree using WEKA implementation of J48, with the default parameterization
and 10-fold cross-validation. We used a classification model because we were inter-
ested in finding if the API had or not usability issues, more than predicting the exact
error rate (as a regression model would imply). Thus, using the selected attributes
from the information in the logs, we obtained a model able to predict the class of the
endpoints with an accuracy of 72.25%. Considering that in our analysis we do not
take into account other factors in API usability like API functionality, the semantics
of API names, API programmers’ experience, etc., we aimed at high precision, more
than at a high recall. But, even though we were not aiming to find all the endpoints
with usability problems only from the data in the API logs, our model performed
quite well with a recall of 0.722 (Table 5.2, 5.3).

Table 5.2:
Confusion Matrix

a b classified as
272 280 a
103 725 b

a=poor usability
b=no usability issues

Table 5.3:
J48 Results

Correctly Classified 72.25%
Incorrectly Classified 27.75%
Kappa statistic 0.389
Mean absolute error 0.399
Weighted Avg Recall 0.722
Weighted Avg Precision 0.723

6 Discussion

To get finer insights into the gained classification, we analyzed in more detail the
branches of the decision tree. We found that requests that did not have a query part
tend to have a lower error rate, even when the path had an average similarity higher
than 0.61. The error rate was also low for those endpoints with both average and
maximum similarity low, respectively lower than 0.61 and 0.75. On the other hand,

2https://www.cs.waikato.ac.nz/ml/weka

96

https://www.cs.waikato.ac.nz/ml/weka

6. Discussion

the error rate was high for those endpoints that even though had a low average simi-
larity, they had at least one element in their path with very high similarity. Endpoints
with high average similarity and a query part had also a high error rate.

Additionally, we examined closer the endpoints with a higher error rate, to see
which were the most common mistakes done by the programmers. We point out the
following issues:

• Consumers try different name styles until they find the right one. The fact that
in the same API, different resources are named using different styles, confuses
them. For example, before typing userRoles/ID, one of the consumers tried
with userrole/ID and user-roles/ID.

• We encountered another consistency issue in the naming of API, plural and sin-
gular form of resources’ names. As some of the resources’ names were in the plu-
ral form, and others in the singular form, consumers tried their different forms.
For objects with composed names (i.e., multi-word names), the error rate in-
creased. For example, before typing organisationUnitGroups, one con-
sumer tried three different versions: organisationUnitGroup, organisa-

tionUnitsGroups and organisationUnitsGroup. The lack of consis-
tency in naming resources decreases the memorability of the API. Different nam-
ing conventions (pascal or camel case, underscore, etc.) and the semantic nature of
the analysis needed were the main reasons why these two aspects (plural/singular
form and multi-word names), were not reflected in any of the metrics.

• When analyzing the repeated errors for the same endpoints from the same con-
sumers, to measure the helpfulness, we noticed low memorability perception from
consumers. From 1,283 cases of repeated client-side errors, 659 of them had a non-
client-side error response code for the first request. This implies that even after
understanding the API and submitting correct requests, consumers fall into mis-
takes.

Threats to validity. The main threat to construct validity involves the arbitrar-
ily chosen threshold of 0.3 for the error rate class. Tomitigate this, we plan to redefine
the threshold by conducting other use cases (i.e., independent datasets). This way,
we will also minimize the external validity threat, whose main concern is related to
the one API we have as the use case.

97

Chapter 5. A Data-Driven Approach to Measure the Usability of Web APIs

7 Conclusion and Future Work

We reviewed the current state of the art in API usability evaluation in order to iden-
tify those usability attributes that mostly affect the programmers’ experience in using
the APIs. We combined the gathered information and for each usability attribute, we
specified an indicator that web API providers should use to provide usable web APIs.
We embodied the indicators for the know-ability attribute into several metrics, which
we later computed using the web API usage data from our case study. In order to as-
sess the significance of these metrics, we built a classifier to predict the kind of error
rate based on the endpoints’ specifications. Know-ability issues that more influenced
the API consumers’ experience were more related to similar API elements’ names,
multi-word names, and lack of consistency in naming convention.

In future work, we plan to define more metrics for the attributes under study and
expand our analysis to other usability attributes. In order to redefine the threshold
and the generalizability of our model, we will take under study other use cases. On
the other hand, to evaluate the analysis results we plan to conduct a supplementary
empirical analysis, directly asking the API users for their opinion on whether they
encountered usability issues while using the API or not.

98

Chapter 6

Web API Evolution Patterns:
A Usage-Driven Approach

The paper has been published in Journal of Systems and Software (2023)
DOI: http://dx.doi.org/10.1016/j.jss.2023.111609

Abstract

As the use of Application Programming Interfaces (APIs) is increasingly growing, their
evolution becomes more challenging in terms of the service provided according to con-
sumers’ needs. In this paper, we address the role of consumers’ needs in WAPIs evolution
and introduce a process mining pattern-based method to support providers in WAPIs
evolution by analyzing and understanding consumers’ behavior, imprinted in WAPI us-
age logs. We take the position that WAPIs’ evolution should be mainly usage-based,
i.e., the way consumers use them should be one of the main drivers of their changes.
We start by characterizing the structural relationships between endpoints, and next,
we summarize these relationships into a set of behavioral patterns (i.e., usage patterns
whose occurrences indicate specific consumers’ behavior like repetitive or consecutive
calls), that can potentially imply the need for changes (e.g., creating new parameters for
endpoints, merging endpoints). We analyze the logs and extract several metrics for the
endpoints and their relationships, to then detect the patterns. We apply our method in
two real-world WAPIs from different domains, education, and health, respectively the

99

http://dx.doi.org/10.1016/j.jss.2023.111609

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

WAPI of Barcelona School of Informatics at the Polytechnic University of Catalonia (Fac-
ultat d’Informàtica de Barcelona, FIB, UPC), and District Health Information Software
2 (DHIS2) WAPI. The feedback from consumers and providers of these WAPIs proved
the effectiveness of the detected patterns and confirmed the promising potential of our
approach.

1 Introduction

Application programming interfaces (APIs) provide an abstraction layer built upon
sets of low-level methods and functions. API providers build these methods and
functions and offer their interfaces so that API consumers (i.e., software developers)
can easily use them in their applications. While applications locally access the ‘tra-
ditional’ APIs (i.e., statically linked APIs), web APIs (WAPIs) are exposed over the
Internet, hence their endpoints (URLs to WAPI resources) are remotely accessed.

Being provided, and thus accessed remotely, imposes challenges for both parts,
notably during WAPI evolution. Consumers are obliged to update their applications
under WAPI evolution pace [97], [53], [26], [27]. On the other hand, providers have
their own burden: striking a balance between not imposing unexpected, frequent
changes and providing an up-to-date, maintainable, bug-free WAPI, that fulfill con-
sumers’ needs and business (organizations that are exposing the data) requirements.
Knowing the considerable impact WAPIs have on consumers, providers would bene-
fit from their feedback to better understand their needs [65]. Consequently they can
implement changes directly targeting consumers’ concerns.

If consumers encounter any bugs, or they need a new feature implemented in
the WAPI they are using, they commonly report the bug or request the new feature
to WAPI providers by means of issue tracker systems, communities of practice (e.g.,
https://community.dhis2.org) or other communication channels between providers
and consumers (explicit feedback given to providers). However, due to the lack of
these communication channels or because of consumers’ neglect to report, several
WAPI bugs remain unreported, and several desired features or improvements, un-
listed and undiscovered [47].

Actually, as WAPIs are exposed over the network, providers can observe the way
consumers use them, and can indirectly track consumers’ needs. Furthermore, they
can detect flaws related to the usability of the WAPIs, of which consumers may not
be easily aware. For instance, in large companies with separated WAPI development
teams for each domain (i.e., for marketing, sales, product, and customer service), it
may happen that, for the same functionalities, several WAPI endpoints are designed.

100

https://community.dhis2.org

1. Introduction

The way consumers access them, may reveal their redundant, duplicated, or combin-
able functionalities.

We consider consumers’ implicit feedback as the fuel of this process. Assuming
that WAPI evolution is and should be driven by the way WAPI is consumed, we pro-
pose a data-driven approach to anticipate changes based on consumers’ behavior.
Therefore, consumers’ behavior is recorded in these logs, and their analysis can find
room for potential improvements, or obliquely reveal consumers’ needs for new fea-
tures hidden under several workarounds (solutions found by WAPI consumers that
allow them to get data, functionality, or features they need, but that are not yet imple-
mented by providers). There are several WAPI monitoring tools available, but they
are mostly oriented toward providing reporting dashboards or automatic alerting in
case of WAPI failure [23]. Consequently, WAPI providers have all this potentially
insightful, large volume of data that is being generated, but not proactively used for
evolution.

Here is where process mining promises to be useful, providing a set of well-
established analysis techniques to extract process-related insights from event logs
[92]. By making use of the WAPI usage data available on the providers’ side, and the
applicability of process mining in web services context [91], [93], we can analyze the
way consumers use the WAPI, and identify behavioral patterns (usage patterns that
indicate specific behaviors) that can imply the need for change. Additionally, hav-
ing all the usage scenarios from consumers for the endpoints that will be modified,
providers can provide better migration scripts to help them migrate to new WAPI
versions.

This paper is in the same line as our previousworks, wherewe targetWAPI evolu-
tion and leverage the availability ofWAPIs usage logs. Previously, we analyzedWAPI
development usage logs (logs generated when consumers are developing and testing
their applications) [42] and prescribed a set of usability-related changes. Then, we
focused our research on production logs analysis (generated after consumers’ appli-
cations’ release) and presented our preliminary results through a tool that aims to
support providers in planning the changes [44].

Building upon these previous results, in this paper we extend the goal of [44] and
elaborately introduce a method to help providers in the evolution of theirWAPIs. We
keep the position that WAPIs evolution should be mainly usage-based, i.e., the way
consumers use WAPIs should be one of the main drivers of WAPI changes [3]. To
this aim, we first characterize the relationships (e.g., consecutive calls) between two
endpoints (URLs to access API resources). Specific relationships may hint several
behavioral aspects, indicating room for potential improvements (e.g., merging end-

101

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

points), the presence of workarounds, or other reasons for performing changes to
the WAPI. We summarize these relationships into a set of behavioral patterns whose
occurrences suggest the need for specificWAPI changes. Then, we analyze the usage
logs to elicit the actual use of theWAPI and detect the occurrences of the pre-defined
patterns. Employing process mining techniques, we detect from the logs snippets of
the entire process model with WAPI-related semantics, in the form of several met-
rics for the endpoints and their relationships. We use these metrics to later detect
frequent patterns.

The main contributions of the paper are as follows:
• We define and present a set of WAPI behavioral patterns, whose occurrences indi-
cate the need for changes.

• We introduce several useful metrics following process mining techniques in order
to detect the occurrence of patterns in the logs.

• We demonstrate the applicability of our approach by exemplifying it on real-world
usage logs from two different WAPIs: (i) District Health Information Software 2,
and (ii) Barcelona School of Informatics at the Polytechnic University of Catalonia
(Facultat d’Informàtica de Barcelona, FIB, UPC).

• We show the significance of the detected patterns and the feasibility of the pro-
posed changes, by interviewing the WAPI consumers and providers to directly
assess the results.

2 Background

In this section, we introduce the primary concepts used throughout this paper. We
start with describing the main input of our approach, namely the WAPI usage logs,
over which we apply process mining techniques. We explain some of their gen-
eral definitions and then interpret them in the WAPI case. After that, we introduce
graphlets, a concept that helps us in specifying the structural relationships between
endpoints, which we later use to define the set of patterns.

2.1 WAPI usage logs

Providers typically log their WAPIs’ usage by recording all requests done against
the WAPIs. Every time a consumer issues a request to a WAPI, a log entry is gen-
erated and stored in the usage log file. The information that is logged for each re-
quest and its format may vary due to different logging system setting parameters
and also providers’ decisions about logs design. For example, using the Apache

102

2. Background

Custom Log Format1 (a flexible and customizable format), when an application
makes a request like https://api.fib.upc.edu/v2/sales?client_id=ID to an WAPI
endpoint, the following information could be logged by providers (based on the
logging system configuration): the IP address of the application’s user, the times-
tamp when the consumer made the request, the request method (GET), endpoint
(v2{sales?client_id “ IDq, the protocol (HTTP/1.1), the time needed to re-
spond to the request, the status code (e.g., 200 if the request was successful), the
size of the object returned, the address of the page that initiated the request, in-
formation about the operating system or browser used, and other fields comprising
different aspects of consumers’ applications and their users (e.g., 10.28.120.115

[24/Sep/2018:16:00:03 +0200] GET v2/

sales?client_id=ID) HTTP/1.1 116 200 9436 "https://..."

"Mozilla/5.0...").
Based on consumers’ applications lifecycle, we distinguish two different types

of WAPI usage logs: (i) development logs generated at design time, and (ii) produc-
tion logs generated at runtime. We point out this distinction as each of these logs
owns specific characteristics and elements of interest, and can be used to analyze
consumers’ behavior from different aspects.

Development logs are generated while developers build and test their applica-
tions. Thus, these logs show their attempts in using the WAPI, the endpoints they
struggle more with, or specific mistakes they make while using and learning the
WAPI [42], [56]. As developers may freely try different requests, several times, and
pose any query, the analysis of these logs gives insights about the usability of the
WAPI.

Conversely, production logs are generated while applications are being used by
end-users. Since the applications are released for final use, it is assumed that they are
quite stable, thus the WAPI requests predetermined by the implemented functional-
ities of the applications are less error-prone. By analyzing these logs, providers may
identify consumers’ needs for new features, and implement the corresponding end-
points. These logs can reveal new usage scenarios providers may have not thought
about, instructing them in including these scenarios in the documentation. Besides
these, providers may identify ways of improving the WAPI based on how consumers
use it, merging endpoints that are always called together for a specific purpose, re-
moving endpoints that are not being used or that are superseded by other endpoints,
or creating new endpoints derived from the existing ones that are always called with
specific values for some parameters (e.g., the new COVID-19 endpoint that Twit-

1http://httpd.apache.org/docs/current/mod/mod_log_config.html

103

https://api.fib.upc.edu/v2/sales?client_id=ID
http://httpd.apache.org/docs/current/mod/mod_log_config.html

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

ter released based on the high interest researchers had for the conversations on this
topic2).

As the main goal of this work is to identify the need for changes based on the
way consumers use the WAPIs in their applications, we make use of the production
logs.

2.2 Process Mining

Process mining is a process-oriented data mining discipline that uses event logs to
extract process-related insights like building the process model, detecting discrepan-
cies between the model and the monitored behavior, or improving the model based
on the monitored behavior. We give the definition of the fundamental concepts of
process mining, as presented in [92], and adapt them to the WAPI domain:
• Activity - a specific step in the process. For WAPIs, the set of activities is the set
of WAPI endpoints and consumers’ actions (i.e., request methods like GET, POST,
PUT to the endpoint).

• Event - an activity occurrence at a specific time. We refer to WAPI requests as
events and identify them by activity names and timestamps.

• Case - a process instance. We refer as a case to a set of requests that an application
is submitting to the WAPI during a certain time period. In the web domain, a case
is commonly referred to as a session. Each event belongs to a specific case.

• Event log - a set of cases. In the WAPI domain, the event log corresponds to the
WAPI usage log, which contains all the requests (i.e., events) that consumers (i.e.,
applications) make against the WAPI.
In order to apply process mining, the WAPI requests in the usage log should

have at least three attributes: (i) a case identifier that uniquely identifies the case to
which each event belongs (composed of one or more columns), (ii) activity name that
characterizes each event, and (iii) timestamp that indicates the time when an event
occurs. The presence of these three attributes allows us to infer process insights from
the event log. Certainly, other attributes that might store additional information
about the events (e.g., application ID, status code), whenever available, add value to
the analysis.

Typically, the output of process discovery is a process model, which can be a
process map, a graph-based model, or other representations that describe the actual
process based on the generated logs. In the WAPI context, process discovery con-
sists on mining the usage logs to create the process model, where nodes represent

2https://twittercommunity.com/t/new-covid-19-stream-endpoint-available-in-twitter-developer-
labs/135540

104

2. Background

A

AA B

A B

A A

BB B

CC C

CB

A B

C

A

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

B

D

A C

B

D

A C

B

D

A C

B

D

A C

CB

A D

CB

A D

CB

A D

CB

A D

C D

B

A

C D

B

A

C D

B

A

C D

B

A

C D

B

A

C D

B

A

C D

B

A

C D

B

A

B

C

D

A

B

C

D

A

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

AG1

G2

G3

G4

G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21

G22 G23 G24 G25 G26 G27 G28 G29 G35

G36 G37 G39 G40 G41 G42 G43G38

G34G33G32G30 G31

Fig. 6.1: Directed graphlets with up to 4 nodes [79]

the endpoints being called and directed edges the calling sequence of two endpoints.
However, WAPIs are a typical example of less structured processes (they do not de-
fine a strict sequence of execution, but rather offer interactive functionalities like
sharing data or passing messages [34]): consumers access the resources according to
their needs, without following a strictly defined sequence of calls. As a result, the
discovered process models turn out too complex, and consumers’ behavioral patterns
can hardly be identified. Even though there exist several techniques that tackle the
simplification of complex models (i.e., clusterization, prioritization of activities and
paths using several metrics such as fitness and precision, or significance and cor-
relation as in fuzzy miner algorithm [20], [34]), these kinds of simplifications may
affect the accuracy of the identified behavior. As an example, we can mention the
sequences with direct consecutive calls that can be found in the simplified process
models. These sequences heavily rely on the level of simplification applied during
the model creation. Hence, sometimes, the direct consecutive call sequences shown
do not really exist as the less frequently called activity in the middle of two more fre-
quently called activities may be removed. To avoid identifying inaccurate patterns,
we are not opting for any simplification of the complex spaghetti-like process. In
fact, the complexity of the end-to-end process model does not limit, nor strongly af-
fect our approach, because we are interested in the narrow relationships between a
limited number of endpoints (2 to 4 endpoints), likely called together to perform a
specific task. Therefore, we focus on the zoomed-in views of the end-to-end process
model and put particular attention and interest in how specific nodes are related to
each other.

105

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

2.3 Graphlets

To find all the possible ways the endpoints can be connected with each other and to
characterize the structural relationships between them, we make use of the concept
of graphlet. Graphlets represent small, connected, and non-isomorphic sub-graphs
used to characterize and compare the structure of larger networks by detecting their
local structure properties [72]. There exist several graphlet-based methods that ex-
ploit the information encoded in large networks by counting all the graphlets of these
networks. Generally, graphlet-based methods for analyzing directed networks, as in
our case, do not consider graphlets with more than four nodes, due to the composed
nature of their structure (i.e., subsumption of smaller graphlets) and also for compu-
tational reasons [79].

Fig. 6.1 depicts the set of all possible directed graphlets composed of up to four
nodes. Nodes represent WAPI endpoints, while edges represent their calling order:
an edge from node A to node B shows that endpoint B was called after endpoint A.
The general notion of directed graphlet, as defined in [79], includes graphlets from
two to four nodes, and does not contain the ones that connect two nodes with edges
in opposite directions. In order to represent the possible consumers’ behaviors, we
added the graphlets G1 and G2 representing a graphlet with only one node, and G4
as the graphlet with edges in opposite directions.

3 Approach

In this section, we give a general overview of our approach and the main steps we
follow to identify the need for potential changes from the WAPI usage logs. It allows
analyzing the usage logs in an iterative fashion. Thus, after implementing the de-
tected changes, providers can monitor how consumers are adapting to them. Then,
based on consumers’ new behavior (reflected on the newly generated usage logs),
providers may introduce new changes.

As our main objective consists in suggesting WAPI changes based on the ex-
tracted behavioral patterns, we need to specify beforehand which specific behav-
iors may reveal different consumers’ needs or may be an indication for change.
Indeed, instead of blindly searching for any usage patterns, we prune the search
space to the patterns expressing consumers’ needs for change. Therefore, differ-
ent from techniques that mine the process model and extract from it frequent pat-
terns [38], [48], [18], in our approach, we pre-define the set of patterns for which we
look into the logs.

106

3. Approach

Changes
Implementation

Changes
Proposal

Pattern
Detection

Metrics
Generation

Pattern
Definition

Fig. 6.2: Main steps of the approach

Fig. 6.2 depicts the main steps of the approach, which consists of two crucial
stages. The first stage (illustrated in the upper part of the figure), which comprises
the ‘Patterns Definition’ step, can be performed every time providers want to detect
different users’ behavior through specific patterns. If providers are interested in fol-
lowing other types of behavior (not only those that indicate the need for change),
they can include them in this first step, and then proceed with the other steps ac-
cordingly. In our case, we search the graphlets that encode structural relationships
between endpoints representing changes that can happen toWAPIs according to [41],
to define this way the set of patterns. We explain this step in more detail in Section
4.

The second stage (illustrated at the bottom part of the figure) can be performed
multiple times, periodically when more usage logs are generated. During ‘Metrics
Generation’ step, we analyze the WAPI usage logs using process mining, build the
order in which the consumers call the WAPI endpoints, and, for each endpoint, we
calculate several metrics, to obtain a metric-based process model. Having the set
of patterns and the metric-based process model, we detect the occurrences of pat-
terns in the usage log (‘Patterns Detection’). We associate a change to each pattern
and suggest them to the providers (‘Changes Proposal’). Although someWAPI usages
may be interesting but no frequent, we focus on those usages that are frequent, as the
changes they imply would bring more improvements. As one endpoint might appear
in several patterns, domain knowledge should be used to prioritize the patterns and

107

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

evaluate the feasibility of the changes’ implementation. WAPI providers can prop-
erly evaluate the patterns, and decide if the indicated changes can be implemented
(taking into account not only consumers’ usage but also business requirements or
maintainability issues, which cannot be observed from the logs). If providers de-
cide to implement the changes (‘Changes Implementation’ is an external step done by
providers, thus shown in orange in Fig. 6.2), consumers have to use the new WAPI
endpoints. The logs generated after the consumers adapt to the new changes will
show if consumers are using the WAPI endpoints as expected. Even though analyz-
ing the new-generated logs is out of the scope of this paper (shown with the orange
arrow in Fig. 6.2), it poses opportunities to not only review consumers’ adaptation to
the changes but also to measure the improvement brought by the changes. This indi-
cates that our approach seamlessly works whether it is its first iteration or it is being
applied after implementing some of the previously proposed changes. If introduced
in the development lifecycle of WAPI, our approach can eventually converge if the
usage is stable/constant, but it can also react and detect occasional changes in the
behavior (new data requirements, new types of users/applications, etc.) and propose
an adaptation of the WAPI to this new behavior.

In summary, the study presented in this paper answers the following research
questions:
RQ1: In which ways can endpoints be related to each other to indicate the need

for change based on how consumers call them? We extract from the given
graphlets all the possible ways endpoints can be connected and then summa-
rize in a set of behavioral patterns those relationships whose occurrences in
the logs may indicate room for improvements or suggest the need for specific
WAPI changes.

RQ2: What information can we extract from usage logs, that can help in detecting
the defined relationships between endpoints? We introduce the set of metrics
needed to identify the occurrence of the defined patterns. Thesemetrics’ values
will be extracted and calculated from the usage logs.

RQ3: How can we detect the occurrence of the patterns in the usage logs? We ex-
pound the detection of the defined set of patterns, using the introducedmetrics.

RQ4: To what extent can we propose changes based on the patterns found in the
usage logs? After detecting the occurrence of the patterns in the logs, we
evaluate their significance, first from consumers’ point of view (i.e., to see if
the patterns manifest consumers’ need for improvements), and second from
providers’ point of view (i.e., to see if the changes we propose are feasible
and beneficial for providers). Hence, we divide this question into two sub-

108

4. Defining and detecting the WAPI behavioral patterns

questions:

RQ4.1: To what extent can we understand consumers’ needs based on the
behavior manifested in usage logs?

RQ4.2: To what extent can we interpret the identified consumers’ needs into
feasible future changes?

4 Defining and detecting the WAPI behavioral pat-
terns

In this section, we describe in more detail the main steps of our approach. In Section
4.1 we answer RQ1 by defining the set of patterns. In Section 4.2 we answer RQ2 by
introducing and describing the metrics we generate after applying process mining.
Then, in Section 4.3 we answer RQ3 by exhaustively explaining the detection of the
patterns. We answer RQ4 later in Section 5.

4.1 Patterns Definition

Using process mining concepts, we give the following definitions:

Definition 1. A sequence is an ordered occurrence of activities within a case.

Definition 2. A pattern represents a relationship between activities and is inferred
from frequent sequences that these activities are part of. Each pattern reveals a specific
consumer behavior and might be an indication for change.

In order to define all the structural relationships the graphlets represent in terms
of sequences in the logs, we extract all possible sequences that can be generated from
each of the graphlets of Fig. 6.1. In our case, there are no well-defined first or last-
called activities. Thus, nodes that have at least one outgoing edge can be the first
called endpoints of the sequences, while nodes that have at least one incoming edge
can be the last endpoints of the sequences. To get the longest sequences from each
graphlet, we start from nodes with only outgoing edges and finish with nodes with
only incoming edges (if available).

Then, for every two endpoints, we analyze the sequences they are part of. If con-
sumers’ behavior manifested in these sequences (e.g., repetitive calls, consecutive
calls) indicates the need for a change [41] (e.g., creating new parameters, merging
endpoints), we classify the relationship as a pattern along with the change it indi-
cates.

109

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

P1. Reflexive loop

P2. Direct follow

P3. Two-node loop

A

Xi

P4. Fork

A

Xi

B

P5. Inverted fork

P6. Feed-forward*

P7. Choice

A

A B

A B

B
A

B

Xi

A

B

Xi X’
i

B

Edges with different colors belong to different cases. Green nodes represent the endpoints whose relationship the pattern
describes. Blue nodes represent the endpoints that help detect the pattern.
r˚s The name for this pattern is adopted from Milo et al. [63], where the authors introduce several network motifs
(specific sub-graphs) that appear frequently in different complex networks.

Fig. 6.3: The set of patterns

Even though the graphlets are built with unlabelled nodes (the nodes differentiate
from each other by their position in the graphlet, meaning their incoming and out-
going edges), we are labeling the nodes to simplify the explanation of the generated
sequences. It is important to note that even though we are interested in the relation-
ships between at most two endpoints, other endpoints called by consumers close to
these two play an essential role in identifying and detecting these relationships.

To illustrate how we elicit the patterns from the graphlets of Fig. 6.1, we give two
extended examples:
• Let us look at graphlet G9 and list the sequences that it can generate. Node A
has only outgoing edges, so this node will be the first called endpoint of the se-
quences. In the same way, node C has only incoming edges, therefore it will be
the last called endpoint of the sequences. Thus, the sequences that this graphlet
can generate are {(A, B, C), (A, C)}. Analyzing the relationship between endpoint A
and B, the derived relationship from this graphlet is: an endpoint that is optional
or complementary to another (i.e., B is optional between A and C). The same rela-
tionship can be found in G22, G23 (i.e., D is optional between C and B), etc. (more
details in Appendix A).

• Let us look at graphlet G21 and list the sequences that it can generate. Node A
has only outgoing edges, while node C has only incoming edges, meaning that

110

4. Defining and detecting the WAPI behavioral patterns

the generated sequences will start from A, and end in C. Thus, the sequences that
this graphlet can generate are {(A, B, C), (A, D, C)}. The derived relationship is:
endpoints that are possible choices between other endpoints (i.e., B and D called
between A and C). The same relationship can be found in G31, G32, etc. (more
details in Appendix A).
Same relationships can be derived from different graphlets. We summarize the

identified relationships into seven WAPI behavioral patterns, as in Fig. 6.3. It is im-
portant to note that one endpoint may be part of more than one pattern occurrence,
but the prioritization of the changes that the patterns indicate will be made using
experts’ domain knowledge.

The implied changes target WAPI improvement in different aspects: (1) reduce
the number of WAPI calls that consumers have to make to get the needed data (and
consequently reduce consumers’ costs, in case consumers are paying-per-WAPI re-
quest) (P1, P2, P6), (2) decrease the traffic between applications andWAPI server (P1,
P2, P6), (3) reduce the time needed to get the desired result from theWAPI (consider-
ing each request as an opportunity for consumers to make a mistake, and for WAPI
provider to return an error message [62]) (P1, P2, P3, P6), (4) simplify the WAPI by
getting rid of endpoints whose functionalities can be combined (P2, P3, P4, P5, P6,
P7), (5) reorganize endpoints that serve the same purpose and supersede each other
(P3, P4, P5, P7).

4.2 Metrics Generation

In this section, we respond to RQ2. We introduce a set of metrics, that can be quan-
tified by extracting information from the logs.

To detect the occurrence of the patterns in the logs, we use two basic concepts
from the association rules research field, support and confidence [4], and adapt them
to the context of our approach. The support of an association rule of the form X ñ Y
is the fraction of instances where both the antecedent X and consequent Y hold.
In our context, we refer as support to the frequency with which the instances of a
pattern appear in the log file. For instance, given a pattern that describes a causal
relationship between two endpoints (e.g., A being called implies B is called directly
afterward), the support of this pattern will be equal to the frequency of the edge (A,
B). For patterns formed with more than one sequence (e.g., A being called implies
B can be called or C can be called), we take the geometric mean of the frequencies
of the sequences that form it, (A, B) and (A, C) respectively. We do so to properly
summarize the frequencies, and reduce the effect of skewed data (i.e., one of the two
sequences has a considerably higher frequency than the other). We use absolute

111

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

frequency (i.e., the total number of times that a sequence was called, not normalized
by the size of the log file) as endpoints may be completely independent of each other,
and the frequency of some endpoints with very high usage should not undermine
the frequency of the other endpoints. Consequently, support values may not be in
the same range.

The confidence of an association rule shows the fraction of instances containing
the antecedent X, for which the rule X ñ Y is satisfied. In our context, we refer
as confidence to the number of times the pattern really occurs in the log, over all
the possible times it could have occurred. We express it as the relative frequency
of the sequences that form the pattern, regarding the frequency of the nodes whose
relationship the pattern describes. For instance, to continue with the same exam-
ple as in support, the confidence of the pattern describing the relationship between
endpoints A and B (A being called implies B is called directly afterward), will be the
frequency of the edge (A, B) (the number of times B is called directly after A), di-
vided by the frequency of A (the number of times B could have been called after A).
We subtract from the endpoint frequency the frequency of the endpoint self-loop (i.e.,
f req˚

A “ f reqA ´ f reqAA), so this metric can better reflect the relationship endpoint
A has with other endpoints. We use this pruned (from self-loops) frequency for all
the patterns that describe the relationship of one endpoint with another endpoint,
different from itself.

Typically, in process mining, for each node and edge, several frequency metrics
are extracted from the logs (e.g., absolute frequency, case frequency, maximum rep-
etition). As support refers to the frequency of the patterns, we adapt it for different
frequencies, as follows:
• Case Support - the number of different cases in which a sequence (or an endpoint,
i.e., a sequence of length one) appears. The case support of a pattern shows how
the overall absolute frequency of the pattern is distributed in several cases. For in-
stance, a pattern with a high absolute frequency but a low case frequency indicates
that few cases are following the pattern many times.

• Average Case Repetition Support - the average number of repetitions of following
a sequence within a case (the ratio of absolute frequency and case support).

• Maximal Case Repetition Support - the maximum number of repetitions of follow-
ing a sequence within the same case.

• Application Support – the number of different applications that have called a se-
quence. It also reflects the number of applications that will be affected by the
changes that the pattern indicates.
In general, one is interested on those patterns (rules) with interestingness metrics

112

4. Defining and detecting the WAPI behavioral patterns

(e.g., confidence, support) above some minimum thresholds. As the values for these
thresholds may depend on complexity and cleanness of the data, or even business
requirements and objectives, they usually are set by domain knowledge holders. We
choose not to arbitrarily decide on the values of these thresholds (which would al-
low us to present the precision and recall of the mined patterns), as it might affect
the soundness of the results. Instead, we make a more qualitative evaluation of the
patterns.

4.3 Patterns Detection

In the following of this section, we respond to RQ3. We describe each of the patterns,
exemplify them to facilitate their understanding, and explain how we detect them in
the logs.

Reflexive loops (identified in graphlet G2 in Fig. 6.1.) Motivation: The structure
appears in the log as an endpoint called consecutively several times by a consumer,
presumably with different values for the same attribute. It may point out a weakness
in the endpoint design, that forces consumers to make unnecessary repetitive calls.
Thus, it may indicate the need for a new parameter to which multiple values can be
passed.
Example: Let us suppose that GET api/events?date="15-12-2021" returns
all the events happening in15 December 2021. If consumers submit consecutive
calls for different dates, then a useful optimization that reduces the number of WAPI
calls is to change the parameter date (or to create a new one), so that an array or a
range of values can be passed.
Detection: We calculate the metrics for the pattern as follows:

support “ f reqAA, con f idence “
support

f reqA

In addition to these two metrics, for the reflexive loop pattern, we calculate the aver-
age case repetition support, the maximal case repetition support, and also the longest
sequence of reflexive loops. For instance, let us suppose that for the reflexive loop
of the endpoint GET api/events?date="date_value" we have the follow-
ing figures: the reflexive loop appears on average three times per case (the sequence
(A, A) is found on average three times in each case), maximum fifteen times in one
case (the sequence (A, A) is found on average fifteen times in each case), and the
longest sequence of reflexive loops is eight (endpoint A is being called nine times
consecutively in at least one case). If the suggested change will be implemented, it
will improve the WAPI by reducing the number of calls on average three calls per

113

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

case (each of the three sequences of (A, A) will be replaced by one call of A) and
on a maximum of fifteen calls per case (each of the fifteen sequences of (A, A) will
be replaced by one call of A), by replacing two calls of the endpoint with just one.
As the longest sequence of reflexive loops is eight (the endpoint called nine times
sequentially), there will be cases where nine calls will be replaced with one.

Direct-follow nodes (identified in graphlets G3, G5, G10, etc., in Fig. 6.1.) Mo-
tivation: The structure appears in the log as two endpoints called consecutively af-
ter one another. This pattern may imply a causal dependency relationship between
these two endpoints, which forces consumers to call them together in that specific
order to fulfill a specific task. As such, we suggest the possibility of merging the two
endpoints into one that combines the functionality of both of them. Based on the
dependency between the two endpoints, we define two types of the direct-follow re-
lationship: (i) endpoint B called always after endpoint A, meaning that endpoint B is
the dependent one, and (ii) endpoint A called always before endpoint B, meaning that
endpoint A is the dependent one. Both relationships are similar as they represent
an immediate succession between endpoints. They differ only on the position of the
dependent endpoint (the first called endpoint of the sequence, or the second one),
and this is reflected in the way we detect the pattern and calculate its metrics.
Example: Let us suppose that GET api/sales endpoint returns the list of all the
classrooms of the faculty building, and GET api/sales/reserves returns the
list of the all the reservations of the classrooms. If we detect that several consumers
frequently call these two endpoints one after the other (type (ii) of the direct fol-
low the sales endpoint is followed by the reserves endpoint), then we assume that
the information about the reservations complements the classrooms’ information.
Therefore, we propose the creation of a new endpoint, which will embody the func-
tionalities of both endpoints.
Detection: We calculate the metrics for the type (i) of the pattern as follows:

support “ f reqAB, con f idence “
support

f req˚
B

For the type (ii) of the direct-follow pattern, the metrics will be calculated as follows:

support “ f reqAB, con f idence “
support

f req˚
A

As mentioned, the difference consists in the node, whose dependent relationship the
pattern describes. In the first one, the dependent node is node B, thus the confidence
measures how significant is the incoming edge (A, B) for node B. In the same way,
the confidence for the type (ii) measures the significance of the outgoing edge (A, B)

114

4. Defining and detecting the WAPI behavioral patterns

for node A, as A is the dependent node, after which only node B is being called. To
obtain more insights regarding the occurrence of the pattern in the data, we calculate
the other mentioned metrics (naming the average case repetition support and the
maximal case repetition support).

Two-node loop (identified in graphlet G4 in Fig. 6.1.) Motivation: This struc-
ture appears in the logs as two direct follow patterns in opposite order, i.e. (A, B)
and (B, A). It describes the relationship between two endpoints that are called to-
gether, but not necessarily in the same order. Thus, it might indicate that these
two endpoints have combinable functions and the data returned by them might be
reorganized to better fulfill consumers’ needs. Example: Let us suppose that GET

api/program/local?name

=”MIRI” and GET api/program/international?name=”BDMA” end-
points are being called one after the other, in different order. This behavior can be
an indicator that separating the endpoints to get the data about the offered mas-
ter programs (local master MIRI and international master BDMA), does not match
consumers’ needs, who want to know the information of several masters regard-
less of their condition. WAPI providers can decide to offer just one standardized
endpoint for the master programs GET api/masterprogram?name={MIRI,

BDMA} (i.e., merge the two endpoints), and create a new parameter by which con-
sumers can filter the data according to their needs. It is worth noting that we are not
questioning the design decision of having two separate endpoints instead of a uni-
fied one. But, if consumers of the WAPI access those endpoints in that specific way,
we recommend the merge, as the changed WAPI will better fit its own consumers’
needs.
Detection: We calculate the metrics for the pattern as follows:

support “
a

f reqAB ¨ f reqBA, con f idence “
support

a

f reqA
˚

¨ f reqB
˚

Fork (identified in graphlets G6, G13, G15, etc., in Fig. 6.1.) Motivation: This
structure describes the relationship between two endpoints that are called after the
same set of endpoints. It appears in the log as sequences of calls that have as tar-
get one of the two related endpoints, and as source one from the common set of
endpoints. This pattern implies that the two related endpoints might have highly
similar functionalities or purposes. As in Fig. 6.3.4, after calling endpoints Xi, con-
sumers call endpoint A or B. Providers may consider this usage as an indicator to
reorganize endpoints A and B, and merge them into one single endpoint.
Example: Let us suppose that after calling endpoint X1 GET api/analytics,
consumers call endpoint A GET api/charts to get the data for visualizing them

115

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

in a chart form, or endpoint B GET api/reportTables, to get the data for vi-
sualizing them in a tabular format (we are using Fig. 6.3 nodes’ label to simplify
the example). These two endpoints, A GET api/charts and B GET api/re-

portTables are also being called after X2 GET api/dimensions and X3 GET

api/indicators. This way of using the charts and reportTables endpoints (i.e.,
calling them after the same set of endpoints), may indicate to providers that these
two endpoints can indeed be combined into a unified endpoint GET api/visual-

ization with a new parameter by which consumers can filter the data according
to their needs.
Detection: We calculate the metrics for the pattern as follows:
Let X “ tX1, ..., XNu be the set of all endpoints such as pXi, Aq, pXi, Bq P L, for
i “ 1, . . . , N, where L is the log file:

support “

N
ÿ

i“1

b

f reqXi A ¨ f reqXi B, con f idence “
support

a

f reqA
˚

¨ f reqB
˚

As in the two-node loop pattern, we take the geometric mean of the frequencies of
the sequences from each Xi to A or B and sum them to calculate the occurrence of
the pattern.

Inverted fork (identified in graphlets G7, G11, G14, etc., in Fig. 6.1.) Motivation:
This structure describes the relationship between two endpoints that are called al-
ways before the same set of endpoints. It appears in the log as sequences of calls
that have as sources one of the two related endpoints, and as target one from the
common set of endpoints. As in the Fork pattern, this pattern implies that the two
related endpoints might have highly similar functionalities or purposes. As in Fig.
6.3.5, after calling endpoint A or B, consumers call any of endpoints Xi. Providers
may consider this usage as an indicator to reorganize endpoints A and B, and merge
them into one single endpoint.
Example: Let us suppose that after calling the endpoint A GET api/rooms,
WAPI consumers might call the endpoint X1 GET api/reservations to get
the reservation about the room, the endpoint X2 GET api/location to get the
location of the room, or the endpoint X3 GET api/map to get the room’s posi-
tion on the map of the campus (we are using Fig. 6.3 nodes’ label to simplify the
example). The same three endpoints, X1 GET api/reservations, X2 GET

api/location, and X3 GET api/map, are being called after the endpoint B

GET api/laboratories. As the rooms and laboratories endpoints have the
same possible choices, providersmight consider reorganizing the data that these end-
points return, differentiating the type of the space by a parameter.

116

4. Defining and detecting the WAPI behavioral patterns

Detection: We calculate the metrics as above: Let X “ tX1, ..., XNu be the set of all
endpoints such as pA, Xiq, pB, Xiq P L, for i “ 1, . . . , N, where L is the log file:

support “

N
ÿ

i“1

b

f reqAXi ¨ f reqBXi , con f idence “
support

a

f reqA
˚

¨ f reqB
˚

Feed-forward (identified in graphlets G9, G22, G23, etc., in Fig. 6.1.) Motivation:
This structure appears in the log as two different sequences, where one is formed
by three endpoints called in sequence (A, B, X), and the other sequence skips the
second endpoint, hopping from the source node directly to the target node (A, X).
This relationship may imply that the second endpoint’s functionality (i.e., B) might
be optional or supplementary for the first endpoint. Thus, providers might decide
to join the functionality of the second endpoint to the first one, by creating a new
parameter for it. To simplify the illustration of the pattern, we consider one endpoint
X1, but endpoints A and B may be both followed by more endpoints (i.e., Xi).
Example: Let us suppose that endpoint A GET api/competences returns the
list of all the competencies required for any degree, endpoint B GET api/com-

petences

_type returns data about the type of the competences (e.g., technical competence,
transversal competence), and endpoint X1 GET api/subjects returns the data
about the needed subjects for a degree (we are using Fig. 6.3 nodes’ label to simplify
the example). Let us suppose that after calling the endpoint for the required com-
petencies for a degree some consumers call the endpoint for the needed subjects for
the degree. On the other hand, some other consumers call the endpoint about the
competencies type after getting the data about the competencies, and then the end-
point of the subjects. By including the information about the competencies type to
the competencies endpoint, providers will not only enhance the functionality of the
competencies endpoint, but at the same time, they will reduce the number of calls
for the consumers who were calling it always with the competencies type endpoint.
Even though providers’ action might be the same as in other patterns (merging end-
points), the structure of the pattern and the way it appears in the log is different, thus
its detection is different.
Detection: We calculate the metrics as follows: Let X “ tX1, ..., XNu be the set of all
endpoints such as pA, B, Xiq, pA, Xiq P L, for i “ 1, . . . , N, where L is the log file:

support “

N
ÿ

i“1

b

f reqABXi ¨ f reqAXi , con f idence “
support
f reqA

˚

117

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

Choices (identified in graphlets G21, G31, G32, etc., in Fig. 6.1.) Motivation:
This structure describes the relationship between two endpoints that are called al-
ways before and after the same set of endpoints. This structure appears in the log
as sequences of calls of three endpoints, that differ by the second called endpoint:
pXi, A, X

1

i q and pXi, B, X
1

i q. After calling endpoint X, consumers may call endpoint
A or B, and then endpoint Y. This behavior implies that endpoints A and B, as called
together with the same endpoints, might be substitutes, meaning sharing similar
functionality, or alternatives to each other, meaning having different functions, but
potentially cater to a similar purpose. Thus, this usage might be an indicator for
providers to merge these two endpoints into a new one, that consumers can call
with different parameter values depending on their needs.
Example: Let us suppose that after calling the WAPI endpoint X1 GET api/stu-

dent/

ID1 to get data about a specific student, consumers call the endpoint A GET api/

student/ID1/fails to get the subjects where the student has failed, and then
the endpoint X

1

1 GET api/student/ID1/credits to get the data about the
credits the student has (we are using Fig. 6.3 nodes’ label to simplify the example). On
the other hand, other consumers after calling X1 GET api/student/ID1, may
call the endpoint B GET api/student/ID1/passes to get the data about the
subjects the student has already passed, and then the endpoint X

1

1 GET api/s-

tudent/ID1/

credits. In this case, the providers might decide to merge the endpoints about
the failed and the passed subjects into the same endpoint and filter the status of the
subjects for a specific student using a new parameter.
Detection: We calculate the metrics for the pattern as follows:
Let pX, X

1
q be the set of all pairs of endpoints such as pXi, A, X

1

i q, pXi, B, X
1

i q P L,
for i “ 1, . . . , M, where M is the set size, and L is the log file:

support “

N
ÿ

i“1

b

f reqXi AX1

i
¨ f reqXi BX1

i
, con f idence “

support
a

f reqA
˚

¨ f reqB
˚

5 Evaluation

In this section, we present the evaluation of our approach. In Section 5.1, we first
introduce the two use cases in which we apply the approach. We tackle log prepara-
tion and its analysis in Section 5.2. In Section 5.3 we present the evaluation results.

118

5. Evaluation

5.1 Use case

In order to demonstrate and evaluate the defined patterns in real-world examples,
we analyze usage logs from two WAPIs, belonging to two different domains.

The first set of usage logs comes from the District Health Information Software
2 (DHIS2) WAPI. DHIS2 is an open-source, web-based platform to implement health
management, developed and maintained by the software development group within
the Health Information Systems Programme at the University of Oslo (UiO), Depart-
ment of Informatics. It is used worldwide by various institutions and NGOs for data
entry, data quality checks, and reporting. It has an open REST WAPI, used by more
than 60 native applications (consumers). For the analysis, we use logs from two differ-
ent DHIS2 instances: (1) the World Health Organization (WHO), in their Integrated
Data Platform3 (WIDP), which is used by several WHO departments for routine dis-
ease surveillance and country reporting; (2) Médecins Sans Fontières (MSF), used for
field data collection and as a central repository for medical data. Logs from these
instances (gathered from the instances’ server side) are from the period February to
September 2019, and the logs together contain approximately 2.5 million requests.

DHIS2WAPI resources (e.g., data, documents, functionality) are exposed through
WAPI endpoints (e.g., api/dataValueSets). Using these endpoints, consumers
can access and manipulate data stored in the instance of DHIS2, data related to dis-
eases cases (e.g., where a disease or infection spread, number or cases), organiza-
tion units collecting the data (e.g., hospitals), etc. Consumers can interact with the
WAPI using HTTP methods: call a GET request to retrieve a resource, a POST re-
quest to create one, PUT to update a resource, and DELETE to remove it, e.g., GET

api/charts, POST api/dataSets/ID/version.
The second use case belongs to a WAPI offered by the Barcelona School of

Informatics at the Polytechnic University of Catalonia (Facultat d’Informàtica de
Barcelona, FIB, UPC). The FIB WAPI, developed by inLab research laboratory4,
provides a set of endpoints for extracting data about departments, courses, ex-
ams, rooms reservations, etc. It is a read-only WAPI, meaning that consumers can
only retrieve the data using GET requests, e.g., GET v2/assignatures, GET

/v2/lectures. It is built under REST architecture and is mainly being used by
the FIB website, monitoring systems, school news screens, and several applications
created for academic purposes. The log data we are using (gathered from the server
side) dates from October 2019 to January 2020, and the logs contain approximately
1.8 million requests.

3https://www.who.int/tools/who-integrated-data-platform
4https://inlab.fib.upc.edu/en/inlab-fib

119

https://www.who.int/tools/who-integrated-data-platform
https://inlab.fib.upc.edu/en/inlab-fib

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

5.2 Data Analysis

As the data in the WAPI logs are complex (e.g., unstructured, high volume data) and
somewhat noisy, the information needs to be prepared according to the requirements
of process mining analysis that will be applied. Thus, we performed a pre-processing
phase, which consists of four steps: (i) data fusion that involves the merging of log
files generated from different sources, (ii) data cleaning which consists of removing
irrelevant and noisy log entries from the files (e.g., cases containing requests with
client-side errors), (iii) data structuring that includes user and session identification,
and (iv) data generalization that consists of extracting general WAPI specifications
from the requests in the log files [89], [43]. We have addressed extensively the prob-
lem of WAPI usage logs pre-processing in one of our previous works [43].

After the pre-processing phase, each log entry should have a distinct timestamp
(to be able to establish the order of calls), a clear activity name (to identify the relevant
calls made), and should refer to one case (to determine the execution of the process).
Thus, a (normalized) log entry should look like this: “24 5e93393e93c7ea99ea

2019-10-17 10:31:53 GET v2/quadrimestres/ID/assignatures

200 1233”, containing an identifier for the corresponding session (case id), appli-
cation identifier, timestamp, method and endpoint (activity name), status code, and
object size returned, respectively. We used the session identifiers as case ids, the re-
quest time as timestamps, the endpoints and the method as activities, and the other
attributes as resources.

Considering the interaction between consumers and WAPI as a process, we ap-
plied processmining to build ametric-based processmodel. Simply put, for each node
and edge, we calculated several figures (e.g., absolute frequency, case frequency), as
specified in Section 4.

With the calculated figures for the nodes and edges and the set of patterns, we
then detected the occurrence of specific patterns in our data and computed for each
of them the two metrics, confidence and support.

5.3 Feedback from Programmers

In this section, we evaluate our approach by responding RQ4. We do this by provid-
ing the empirical evaluation of RQ1-3, which have been responded in the previous
section.

After detecting several patterns in the usage logs of the two WAPIs in study, the
next step is determining two major things: (i) the extent to which these patterns are
manifesting in consumers’ behavior and their needs for improvement (RQ 4.1), and

120

5. Evaluation

(ii) the extent to which these patterns are a real indication for change, from providers’
point of view (RQ 4.2).

Table 6.1: Interviewed WAPI providers and consumers

WAPI Developers Experience with WAPI

DHIS2
EST, 2 developers Consumers: Use DHIS2 WAPI

to build applications

MSF, 3 developers Consumers: Use DHIS2 WAPI
to maintain already built applications

FIB inLAb, 1 developer Provider: Develop and maintain
FIB WAPI

For these reasons, we evaluate our approach in two directions. First, we inter-
view DHIS2 WAPI consumers, i.e., developers that have used the WAPI and have
incorporated it into their applications. With this evaluation, we aim to assess the
effectiveness of our approach in understanding consumers’ needs and identifying
areas for improvement from the log analysis. Furthermore, we interview FIB WAPI
providers, i.e., those who have designed, developed, and still maintain the WAPI’s
endpoints. We aim to assess from the providers’ perspective whether the suggested
changes are properly addressing the detected behavior. As providers are the ones
equipped with the needed knowledge on the WAPIs’ endpoints, resources, function-
alities, and the structure of the data behind the WAPI, they can better evaluate the
importance of these patterns. On the other hand, besides technical expertise, they
know the environment where theWAPI is being developed andmaintained, the orga-
nizations that are exposing the data/functionalities, their policies, and requirements.
Thus, they can determine the feasibility and applicability of the suggested changes.

Table 6.1 provides an overview of the interviewed developers. We performed
the consumers’ interviews online and the provider’s interviews face-to-face. The
interviews followed a semi-structured format and took approximately thirty minutes
per person. The patterns we detected from analyzing the usage logs were the main
input for designing the interview.

5.3.1 Interviews with WAPIs consumers - DHIS2 use case

As we were able to get usage data from two consumers of DHIS2 WAPI, namely
WIDP and MSF (introduced when presenting the DHIS2 case), interviewing devel-
opers from them was the most reasonable option. The two first developers were

121

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

from EyeSeeTea (EST), a consulting company that maintains WIDP servers, devel-
ops, debugs, maintains, and upgrades DHIS2 official applications, as well as builds
their own applications. We interviewed also three in-house developers from MSF,
who are mainly working on maintaining DHIS2 applications, and not building them
from scratch.

Table 6.2: Consumers’ Interviews’ Results

Nr. Pattern Dev. Endpoint A Endpoint B Sup. Conf. Feedback
1 P2 Dev.1 GET api/programIndicators GET api/programRules 1080 0.70 ‘

2 P5 Dev.2 GET api/userGroups GET api/userRoles 623 0.54 ‘

3 P4 Dev.3 GET api/reportTables/ID GET api/charts/ID 27537 0.59 ‘

4 P1 Dev.3 PUT api/events/ID/ID 125375 0.64 ‘

5 P2 Dev.4 GET api/programRules GET api/programRuleVariables 730 0.44 ‘

6 P1 Dev.4 GET api/programIndicators 6257 0.62 ‘

7 P1 Dev.5 GET api/programIndicators 6257 0.62 ‘

8 P1 Dev.5 PUT api/events/ID 125375 0.64 ‘

9 P4 Dev.1 GET api/analytics GET api/charts/ID 41083 0.57 m

10 P7 Dev.4 GET api/userSettings GET api/attributes 10810 0.42 m

11 P5 Dev.5 GET api/userGroups GET api/userRoles 623 0.54 m

12 P7 Dev.1 GET api/programs GET api/schemas 838 0.07 b

13 P2 Dev.1 GET api/dataElementGroups/ID GET api/categoryCombos/ID 195 0.76 b

14 P2 Dev.1 GET api/constants GET api/programs 148 0.01 b

15 P6 Dev.2 GET api/attributes GET api/userSettings 4057 0.27 b

16 P6 Dev.2 GET api/schemas/organisationUnit GET api/attributes 2419 0.26 b

17 P2 Dev.2 GET api/dataElementGroups/ID GET api/categoryCombos/ID 195 0.76 b

18 P1 Dev.2 POST api/dataValues 139859 0.82 b

19 P6 Dev.3 GET api/enrollments GET api/events 300 0.36 b

20 P2 Dev.3 GET api/dataElementGroups/ID GET api/categoryCombos/ID 195 0.76 b

21 P2 Dev.3 GET api/programIndicators GET api/programs 90 0.01 b

22 P6 Dev.3 GET api/trackedEntities GET api/programs 36 0.35 b

23 P5 Dev.3 GET api/userGroups GET api/userRoles 623 0.54 ⃝
24 P4 Dev.4 GET api/attributes GET api/systemSettings 11768 0.56 ⃝
25 P2 Dev.4 GET api/programIndicators GET api/programRules 1080 0.70 ⃝
26 P7 Dev.5 GET api/dataElementGroups GET api/dataElementOperands 111 0.05 ⃝
27 P5 Dev.5 GET api/organisationUnitLevels GET api/dataApprovalLevels 4628 0.68 ⃝

Before conducting the interviews, we sent to all interviewees a short question-
naire with a few more general questions regarding their background, experience
working with WAPI, and a list of endpoints from the respective WAPIs that appear
in one or more of the detected patterns. The interviewees were asked to select from
the list the endpoints they were more familiar with, so we could customize the inter-
views’ questions to their knowledge about the WAPIs.

We started the interview with some general questions regarding the evolution
of DHIS2 WAPI, to better understand how changes are perceived from consumers’
point of view (the whole set of questions can be found in 2).

In general, consumers asked for more detailed and updated documentation. They

122

5. Evaluation

did not complain about the frequency of changes, nor the compatibility (most of the
newly introduced changes are compatible with previous versions), but when even
a minor change is introduced without being documented, they experience several
issues with their applications. They brought the example of the api/events end-
point that was recently changed from version 2.37.7 to version 2.37.8, without being
documented. The change affected the response: before, this endpoint used to return
ten different properties, and after the change, it was returning half of them. The
other properties were excluded from the WAPI response. In case developers wanted
those properties to be included in the response payload, they had to specify them in
the request query. As this change was not documented, developers had to notice it
themselves and react afterward, so that their applications would not misbehave.

Table 6.3: Consumers’ answers’ categorization

Symbol
Endpoint(s) are used
as in the pattern

The change is relevant (There
is room for improvement)

‘ Y Y
m Y N

m N Y
b N N
⃝˚ - -

[*] Consumers do not use the endpoint(s) as in the pattern
in their use cases.

Regarding the communication with providers, all the interviewed consumers
confirmed that the DHIS2 community of practice is very active and that providers
havemade available several communication channels for consumers (e.g., JIRA, mail-
ing lists, Slack channels). Providers respond tomost of the issues raised by consumers
and fix the reported bugs. This means that, to some extent, providers take into ac-
count explicit consumers’ needs when implementing changes.

Next, we made more specific questions and asked the respondents about the us-
age of specific endpoints, and their opinion on specific possible changes that could be
performed on those endpoints. We showed them endpoints from significant patterns
(i.e., with high confidence and support), as well as endpoints from non-significant
patterns (i.e., with low significance or support), without giving any insights regard-
ing the value of respective metrics. This way, we could assess the importance of the
detected patterns, prove that we did not miss any important issues with endpoints,

123

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

and avoid a possible bias (interviewees thinking that all patterns are significant).
On average, we introduced five patterns to each developer. To evaluate as many

patterns as possible, we aimed to use different examples for each developer. But,
considering the set of endpoints they were more familiar with (selected from the
pre-interview questionnaire), we sometimes had to show different developers the
same example. However, the answers for the same patterns turned out to be neither
conflictual nor contradictory.

Table 6.2 shows the results of the interviews. Table 6.3 shows the different cate-
gories where consumers’ answers could fall.

Case 1: Endpoints used as in the pattern, and the change is relevant ‘.
In seven of the patterns (eight rows in the table as one of the pattern occurrences,
nr. 6 and nr. 7, were shown to two different developers), the interviewed devel-
opers said that they use the endpoints as in the patterns and that the endpoints
could be improved. In some cases, they welcomed the idea of merging the endpoints
used together, and for the cases where the merging was not directly embraced (an
expected behavior from consumers to not directly agree on a change, as it will be
followed by changes in their applications), they admitted having some issues with
those endpoints and pointed out the need for refactoring. For pattern occurrence
nr. 3 (i.e., fork: GET api/reportTables/ID and GET api/charts/ID),
the suggested change to merge these endpoints together was already implemented
in the latest version of the DHIS2 WAPI. The new introduced endpoint api/visu-

alization unifies both api/charts and api/reportTables endpoints. As
explained in DHIS2 documentation 5, the main idea behind this change was to enable
consumers to have a unique and centralized endpoint that provides all types of charts
and report tables as well as specific parameters and configuration for each type of
visualization. As Dev.3 confirmed, this change actually simplified the WAPI, as both
api/charts and api/reportTables endpoints were being used to represent
the same information.

Case 2: Endpoints used as in the pattern but the change is not relevant m.
In pattern occurrences nr. 9, Dev.1 responded that he uses the endpoints as described
in the pattern, but he did not find relevant the change suggested by the pattern. This
pattern had relatively high support and confidence, thus it was frequently found
in the logs. The developer explained that one of the endpoints is used to extract
metadata, and the other to extract data, and that is why merging them is not an
option.

Case 3: Endpoints not used as in the pattern but the change is relevant
5https://docs.dhis2.org/en/home.html

124

https://docs.dhis2.org/en/home.html

5. Evaluation

m. In pattern occurrence nr. 10, Dev.4 said that even though he was not using the
endpoints as in the pattern (choice pattern: GET api/userSettings and GET

api/attributes), one of the endpoints (GET api/userSettings) could be
improved. In pattern occurrence nr. 11, Dev.5 said that, even though he does not
use the endpoints as in the pattern, there is room for improving them. He admitted
that the logic behind endpoint GET api/userGroups is too complex and not
intuitive.

Case 4: Endpoints not used as in the pattern and the change not rele-
vant b. In nine of the pattern occurrences (eleven rows in the table as one of the
pattern occurrences, nr. 13, nr. 17, and nr. 20, were shown to three different develop-
ers), the interviewed developers responded that they do not use the endpoints as in
the patterns, and the suggested change was not relevant. In seven of the cases, the
patterns had low support and low confidence, so their answers were the expected
ones. But two of the patterns that got this answer had high confidence. We showed
the direct follow pattern (GET api/dataElementGroups/ID, GET api/-

categoryCombos/ID) with confidence = 0.76, to three different developers and
got the same answer: they do not use these endpoints one after the other, and their
merging was not seen as beneficial from their point of view.

The other pattern occurrence with high confidence, and at the same time high
support, that got the same answer was the reflexive loop of the endpoint POST

api/

dataValues (row nr. 18). The developer said that the endpoint was working fine,
they did not have any issue with it, thus there was no room for improvement. In-
terestingly, this pattern (reflexive loop) is a case where some consumers may not
experience any inconveniences with the endpoint (if network latency, i.e., ping time
is low), thus no improvement by the change. They may call the endpoint in a loop,
and each iteration may generate aWAPI request. In high latency situations, the delay
coming from too many requests might be significant compared to one large request.
Differently, Dev.4 and 5 showed interest and approved our suggestion to change the
endpoint GET api/programIndicators (reflexive loop, nr. 6 and nr. 7), so
that they could call it one time to get the data they need, instead of making several
consecutive calls.

Case 5: Endpoints not used as in the pattern in their use cases ⃝. In five
of the pattern occurrences, the interviewed developers said that in their use cases,
they do not use the endpoints as in the patterns, but they could not say anything re-
garding the suggested change, as long as their usage of the endpoints was limited in
few use cases. While one of the pattern occurrences had low support and confidence

125

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

(nr. 26), the other four had relatively high support and high confidence. We happen
to introduce two of these patterns (nr. 2, nr. 11, and nr. 23 GET api/userGroups

and GET api/userRoles, and nr. 1 and nr. 25 GET api/programIndica-

tors and GET api/programRules) to three different developers. For the first
pattern occurrence (GET api/userGroups and GET api/userRoles) Dev.2
and 5 said that the logic behind GET api/userGroups could be improved, and
that it needs some refactorings. For the second occurrence (GET api/progra-

mIndicators and GET api/programRules), Dev.1 said that as long as there
are cases where he uses these endpoints together, changes could be applied to im-
prove them. These are the only cases where the same pattern, got different (but not
contradictory) answers from different developers.

5.3.2 Interviews with WAPIs providers - FIB use case

As already introduced in Section 5, FIB WAPI is a private WAPI, built to mainly
serve the creation of the faculty web page and other related applications. Therefore,
providers and consumers happen to be from the same development group. Actu-
ally, this is not an isolated case. Typically in banks, other financial institutions, or
several companies, the development group creates a private (W)API to specifically
serve their needs for the companies/institutions’ applications. Thus, providers’ deci-
sions in applying changes in the WAPI will be directly affected by consumers’ needs,
expressed explicitly.

Table 6.4: Provider’s Interview Results

Nr. Pattern Endpoint A Endpoint B Sup. Conf. Feedback
1 P2 GET v2/assignatures/ID/guia GET v2/competencies 68942 0.74 ‘

2 P1 GET v2/competencies/categories 33668 0.93 ‘

3 P2 GET v2/sales GET v2/sales/reserves 157647 0.71 b

4 P4 GET v2/quadrimestres/actual GET v2/jo/assignatures 6013 0.69 b

5 P6 GET v2/assignatures/requisits GET v2/competencies 149 0.07 b

6 P7 GET v2/jo/avisos GET v2/noticies 497 0.01 b

We interviewed the main developer of FIB WAPI (the whole set of questions can
be found in Appendix A He stated that in most cases, consumers’ needs to create,
change and maintain their applications were the starting point of a change in WAPI.
When they need new data, not supported by the current endpoints of theWAPI, they
create the respective endpoints for that data.

Table 6.4 shows the results of the interview. Table 6.5 shows the different cate-

126

6. Discussion

Table 6.5: Providers’ answers’ categorization

Symbol The change is relevant The change is feasible
‘ Y Y

m Y N
b N -

gories where providers’ answers could fall. The answers’ categories in Table 6.5 are
different from the ones in Table 6.3 because, from the providers’ side instead of talk-
ing about the usage of endpoints (providers design, build, maintain, and change the
endpoints), we talk about the relevance of a suggested change, and its implementa-
tion feasibility.

The change is relevant and feasible ‘. The developer showed interest in
two of the introduced patterns’ occurrences, both of which had high support and
confidence. He explained the reasons behind the decision to design the endpoints in
the current way. Even though he agreed that the endpoints could be improved by
merging them or by adding attributes, he had decided to create the endpoints in that
way because of their specific use in the applications.

The change is relevant, but it is not feasible m. In our case, we did not get
any response for this category. Providers may admit that the suggested change is
relevant, but for other reasons (that cannot be observed in the logs e.g., security,
privacy) the change may not be feasible and they cannot implement it.

The change is not relevant b. The developer did not show interest in four of
the patterns’ occurrences. While two of them had low support and confidence (nr.5
and nr.6), the two others (nr.3 and nr.4) had high values for these metrics. While
endpoints GET v2/quadrimestres/actual and GET v2/jo/assignatures (pattern occur-
rence nr.4) need different authorization level to be accessed (GET v2/jo/assignatures
returns the subjects where a specific logged-in students is enrolled), endpoints GET
v2/sales and GET v2/sales/reserves (pattern occurrence nr.3) should not be merged
as their functions are well defined this way.

6 Discussion

In this section, we discuss interviews’ answers and interpret the main findings. In
the end, we summarize the threats to validity.

We were able to get very useful insight from the answers the consumers gave to

127

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

the general questions of the interviews. While stressing the importance of updated
documentation, developers admitted that they would even prefer the WAPI to offer
several ways of doing the same task, as long as all the endpoints are well explained
in the documentation. While this may give the impression of creating confusion
or increasing the complexity of the WAPI, detailed documentation can mitigate this
adverse effect, and even turn it into an advantage by increasing the flexibility for
consumers. This feedback can be very valuable for providers when they decide on
the changes they will implement on the WAPI. Some changes may cause an adverse
effect on consumers (e.g., breaking their applications, increasing the complexity of
WAPI). Knowing how to mitigate these effects, providers may be more relaxed when
implementing the changes.

Furthermore, developers confirmed the availability of different communication
channels between providers and consumers. Providers usually reacted to issues
raised by consumers, making these channels very conducive. This means that, to
some extent, providers take into account consumers’ needs when implementing
changes. Our approach will help them to apply a more in-depth analysis of con-
sumers’ needs, by gathering their feedback in a more straightforward, inexpensive,
and scalable way.

From all the interviewees’ answers to the specific questions, which are detailed
in previous section, the ones that may be of more interest to be discussed here are
those that do not accept the changes implied by patterns with high confidence and
support and those that accept changes implied by patterns with low confidence and
support. As we cannot arbitrarily decide on thresholds’ values for the confidence and
support (it may depend on how clean the logs are, or how complex the WAPI is) to
later classify the patterns as significant or unsignificant (and categorize them as false
positive/negative or true positive/negative), we make a more qualitative discussion
and generally review the most controversial answers.

Patterns that have high confidence (ě 0.5) and support, whose suggested
changes are not welcomed by consumers or providers. Patterns fall in this cate-
gory due to the presence of applications’ end users’ behavior in the WAPI logs. The
way consumers’ applications are built and the way their users interact with them,
may create some frequent patterns in the WAPI usage logs, that do not indicate the
need for change. For instance, if the users of an application access two features in
a certain order, the WAPI endpoints incorporated in those features will appear in
the logs as called together. This was the case with one of the patterns we showed
to consumer developers. The pattern occurrence appeared with high confidence of
0.76, and relatively low (considering the margin of error due to the noise in the logs,

128

6. Discussion

and the size of the log file) support of 195. The developer confirmed he was not using
together the endpoints (i.e., direct follow: GET api/dataElementGroups/ID

and GET api/categoryCombos/ID). However, when he demonstrated us the
consuming application, the features (i.e., tabs) using these endpoints were next to
each other in the application interface, presumably guiding the end-users to access
them one after the other. Thus, the behavior of the application’s end-user was re-
flected in the logs.

Second, even though patterns may have high metrics’ values, semantically they
cannot be merged. This was the case of the endpoints GET api/analytics and
GET api/charts/ID. The fork pattern appeared with high support (41083) and
relatively high confidence (0.57). However, one of the endpoints was used to get
metadata, and the other to get data. Thus, their merging was off the table. This
example is very interesting, as it implies the need to semantically check the patterns
during pattern detection. Providers may exclude beforehand those patterns whose
respective endpoints are built to extract different kinds of information (e.g., metadata
and data).

The unavoidable presence of this group of patterns in the analysis results makes
it necessary the evaluation of the patterns from the WAPI providers, that possess the
needed domain knowledge to filter out the insignificant patterns. The blind evalua-
tion based only on the value of metrics may result in wrong conclusions.

Patterns that have low confidence and/or support, but indicate the need for
changes in the WAPI. Patterns can fall in this category if the dataset is not large
enough. As one of the main aspects of our approach is the repetition of consumers’
behavior, the lack of data may impede the discovery of interesting patterns. When
showing non-significant patterns, developers did not show interest in any of them.
They gave examples of using the endpoints independently of each other, thus not
agreeing with the changes to merge the endpoints.

Threats to validity: Most of the internal validity threats concerned the pre-
processing of the usage logs. As we mentioned in Section 5.2, the pre-processing of
the usage logs was not trivial. We tackled some challenges when introducing the
main steps of pre-processing. Each challenge can affect the validity of the results
if the related issues are not identified and properly handled. We can mention here
the session identification challenge. Most of the WAPIs are stateless, meaning that
the server does not store the state, thus no sessions are generated. We constructed
the sessions by assigning identifiers based on the 30 minutes timeout approximation
(requests with a time difference of fewer than 30minutes, coming from the same user,
are part of the same session). Thismight add noisy sequences of calls (for applications

129

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

with smaller timeout values) or exclude important ones (for applications with greater
timeout values). To mitigate the risk of the 30-minute approximation affecting the
analysis, we computed several metrics for each pattern and the respective endpoints,
so that the providers can have a more complete view of their usage.

One of the construct validity threats consists of misinterpreting the behavior of
applications’ end-users as applications’ behavior toward the WAPI. The way end-
users interact with the applications should not interfere with the analysis of the way
applications consume the WAPI. To mitigate this threat (and to assess the effective-
ness of our approach), we included in the loop the WAPI providers to properly eval-
uate the significance of the detected patterns.

Regarding internal validity, being aware of the possible researcher biases that
might impact the interviewees’ answers, we tried to be as neutral as possible during
the interviews, paying particular attention to the questions’ creation and the pat-
terns’ occurrences we introduced to the interviewees. Besides randomly selecting
patterns’ occurrences (taking into account the endpoints selected by interviewees in
the questionnaire) with very diverse metrics’ values, we chose not to show these val-
ues to the interviewees. Thus, their answers would not be influenced by the frequen-
cies of the patterns, but only by their knowledge and experience with the respective
WAPIs.

Furthermore, we were aware of the threat to validity concerning the subjec-
tive opinions interviewees may have regarding several endpoints. We mitigated it
by showing to different interviewees same patterns and then observing their feed-
back. In none of the cases, their feedback was conflictual, or contradictory, affirming
that they have assessed each pattern objectively based on their experience using the
WAPIs.

To better understand the needs of WAPI consumers, one may have to include in
the analysis the activities that consumers are performing after accessing the WAPI.
As theWAPI is not used in isolation, its activities and the activities in the consumers’
applications, outside the WAPI, are correlated. For instance, after accessing some
data from the WAPI, an application may parse the data or cast the data type, and
then use them according to its functionality. In order for the WAPI providers to
identify the need for changing the data type, or shaping the data in a more useful
way for their consumers, they should correlate and analyze both the WAPI usage
logs and applications running logs. But, knowing the independent nature of WAPIs,
how loosely coupled they are with their consumers [70] and taking into account that
consumers’ applications code is not always public, analyzing these services together
becomes unrealistic. As we analyze only the WAPI usage logs, our challenge is to

130

7. Related Work

understand consumers’ behavior and identify their needs by making use of their
footprints in the logs.

7 Related Work

In this section, we review those works that are related to the intention behind (W)API
evolution and the most followed practices by providers, as well as the use of process
mining in analyzing WAPI behavioral patterns.

Granli et al. [32] analyzed the driving forces of traditional API evolution using
the existing software evolution theories, more specifically Lehman’s laws. They
showed that the two largest forces driving API evolution were the need for new
functionalities and usability improvements. Their study revealed that business re-
quirements and API consumers stand behind these forces, but they did not further
elaborate on these factors. Sohan et al. [82] investigated changes made when new
WAPI versions were released, and how these changes were documented and com-
municated to consumers, without considering the reasons that lead providers in ap-
plying those changes. Several works are done in classifying the changes that often
happen to WAPIs from older to newer versions [41], [97], [53]. The addition of new
elements [41], [97] and refactorings [53] were the most common ones. Li et al. [53]
analyzed the API consumers’ reaction toward the changes; however, they did not ex-
amine how the need for these changes was manifested in the consumers’ behavior.

Regarding providers’ practices when evolving their WAPIs, Espinha et al. [26] in-
vestigated four well-knownWAPIs (GoogleMaps, Facebook, Twitter, Netflix) and the
evolution policies their providers follow. Their study showed that there is a lack of
industry-standard regarding the evolution of WAPIs, and different providers follow
different practices. However, the authors were more focused on the way providers
introduce the new changes and communicate them to consumers, rather than on the
origin of the changes. Lamothe et al. [46] conducted a systematic review of API evo-
lution literature. Besides the continuing change and growth, the increasing complex-
ity and declining quality, and the conservation of familiarity (all considered worthy-
challenged by the authors), they particularly stressed the need to leverage the feed-
back systems involved in API evolution. Mathijssen et al. [60] performed a system-
atic literature review on different API management practices applied by providers.
Access logging and usage monitoring were commonly followed by API providers,
but with the aim of providing performance statistics or traffic metrics. Medjaoui et
al. [62] accentuate the need for proper and continuous API Management, by propos-
ing guidelines to build, deploy, operationalize, refine, and evolve (W)APIs continually

131

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

at scale.
There are few studies that consider consumers’ behavior as feedback that should

be taken into account when evolving a WAPI. Zibran et al. [105] analyzed the is-
sues raised by API consumers in five different bug repositories to identify the most
reported API usability issues. Their study involved consumers, but not by analyz-
ing the way they used the API, but the issues reported explicitly to the providers.
Macvean et al. [56] analyzed as well the usability of WAPIs. They took data from
Google API Explorer to identify WAPIs, with which developers struggle more and
spend more time and effort in learning and using. They were focused on the way de-
velopers perceive and learn the WAPI, and not how they were using endpoints based
on the functionality. On the same line, is one of our previous works [42], where
we analyzed development logs to measure the usability of WAPIs, to further suggest
changes that would increase the perceived usability from consumers’ point of view.
Suter et al. [87] analyzed WAPIs usage logs using trained classifiers in order to infer
WAPI description. Even though with a goal different from ours, they pointed out the
incomplete and noisy nature of WAPI usage data. They encourage future work not
only on mitigating the quality issues of these data but also on broadening the goals
spectrum of the usage logs analysis.

Related to the use of process mining in analyzing WAPI usage logs, we can find
several works akin to our study in some particular aspects, like input data where the
process mining is applied, not focusing on the end-to-end process but on part of it,
etc.

Aalst [91], [93] showed the potential of applicability of process mining in the
services domain, identifying as well the main challenges like the correlation of the
events. In both works, it was pointed out the need for additional research in improv-
ing the applicability of process mining in loosely coupled systems.

Gunther and Aalst [34] focused on addressing the problem of the less structured
processes (like accessingWAPI), where the discovered models are usually ”spaghetti-
like”, not understandable, and uninformative. They presented a new process mining
approach to overcome this problem by simplifying the model using two metrics: sig-
nificance and correlation. Even though they state that their approach is universally
applicable, we do not opt for any simplifications as we are interested in the direct
order of WAPI calls and simplifications may affect the accuracy of patterns.

Zhong et al. [103] have developed a framework for automatically mining API
usage patterns (MAPO). Different from us, they mine applications’ code snippets (no
usage logs), focus on traditional API (no web API), and recommend usage patterns
for consumers to better use the API (no for providers to evolve the API based on the

132

8. Conclusion and Future Work

implied changes). Wang et al. [96] claim to outperform MAPO by introducing UP-
Miner approach. They introduce two quality metrics, succinctness and coverage, that
help to mine better API patterns (not redundant, more practical, more qualitative), so
that developers (API consumers) would adopt themmore easily. The same goal drove
Nguyen et al. [67]. The authors introduce a graph-based statistical language that
analyzes applications’ source code to suggest accurate API usage patterns. However,
same as [103] and [96], they focus on traditional API and mine applications’ code.

Leemans et al. [48] introduced a technique to discover frequent episodes (i.e.,
partially ordered set of events) in event logs, using the notion of frequent itemsets
and association rules. Their work, like ours, is somehow positioned between process
mining and pattern mining, but unlike us, they do not pre-define any patterns but
look for the most frequent ones. Bose and Aalst [38] focuses on discovering common
patterns in process execution traces. They pre-define a few patterns that capture the
manifestation of commonly used process construct and propose an approach to form
an abstraction of activities using these patterns. Even though the presented patterns
could be applied in several domains, we had to define our own set of patterns, which
are not only specific to the WAPI case but also capture specific consumers’ behavior
and imply WAPI change.

Even though the above-mentioned works differ from ours regarding the input of
the approach, the goal, or the methods followed, they helped us identify the current
gaps in WAPI evolution practices. Reviewing those works helped us gain the right
perspective on WAPI evolution and the application of process mining in our use
cases. We identify a set of usage patterns, by analyzing usage logs, thus avoiding
the analysis of applications’ source code (not always available). We associated each
pattern with potential changes in WAPI and presented their detection in the logs,
opening new opportunities for providers to differently evolve their WAPIs (driven
by consumers’ behavior).

8 Conclusion and Future Work

In this paper, we presented an approach to how the analysis of WAPI usage logs
can help providers to better understand the consumers’ needs for specific improve-
ments. Typically, WAPI providers log all the requests against the WAPI. Consumers’
behavior is recorded on these usage log files. Hence, providers can infer useful infor-
mation from their analysis. We defined seven behavioral patterns, whose occurrence
can indicate the need for potential changes on theWAPI.We observed the occurrence
of these patterns in two real-world examples and suggested potential changes that

133

Chapter 6. Web API Evolution Patterns: A Usage-Driven Approach

could improve the WAPI from the consumers’ perspective. The feedback from con-
sumers and providers of the WAPIs in the study confirmed the promising potential
of our approach. Moreover, recently, DHIS2 WAPI providers had been introducing
a few changes, motivated by the same ideas and goal as in our approach: to enable
consumers in having well-defined and simplified endpoints, that would ease their
experience with the WAPI.

In our future work, we aim to define more patterns, that cover more usage sce-
narios and capture more complex consumer behavior. In order to evaluate the effec-
tiveness of the proposed patterns and changes for the consumers, we plan to analyze
the WAPI usage logs after the implementation of these changes, to see if the con-
sumers are using the WAPI in the way we thought they will. Moreover, we intend
to focus on the creation of useful and relevant migration scripts for the changes we
suggest.

We plan to perform an additional evaluation to assess the providers’ benefits
coming from applying our approach during their WAPI evolution. Besides evaluat-
ing the benefits, a very interesting direction to expand the work would be to analyze
and evaluate the providers’ maintainability burden that specific changes may bring.
Studying the break-even point between consumers’ retention and satisfaction and
the maintenance burden caused by the addition of some functionality would be very
promising, as currently, it represents a research gap. Another way this work can be
expanded is by studying the WAPI evolution from the business point of view: ana-
lyzing the companies’ requirements that drive several changes. This way, the picture
of the intent behind the changes will be more complete, and the prioritization of the
changes coming from both consumers and companies can be somehow automated.

134

Chapter 7

PatternLens: Inferring
Evolutive Patterns fromWeb
API Usage Logs

The paper has been published as a demo paper in the Intelligent Information Systems:
CAiSE Forum 2021.
DOI: http://dx.doi.org/10.1007/978-3-030-79108-7_17

Abstract

The use of web Application Programming Interfaces (WAPIs) has experienced a boost
in recent years. Developers (i.e., WAPI consumers) are continuously relying on third-
party WAPIs to incorporate certain features into their applications. Consequently, WAPI
evolution becomes more challenging in terms of the service provided according to con-
sumers’ needs. When deciding on which changes to perform, besides several dynamic
business requirements (from the organization whose data are exposed), WAPI providers
should take into account the way consumers use the WAPI. While consumers may report
various bugs or may request new endpoints, their feedback may be partial and biased
(based on the specific endpoints they use). Alternatively, WAPI providers could exploit
the interaction between consumers and WAPIs, which is recorded in the WAPI usage
logs, generated while consumers access the WAPI. In this direction, this paper presents

135

http://dx.doi.org/10.1007/978-3-030-79108-7_17

Chapter 7. PatternLens: Inferring Evolutive Patterns from Web API Usage Logs

PatternLens, a tool with the aim of supporting providers in planning the changes by
analyzing WAPI usage logs. With the use of process mining techniques, this tool infers
from the logs a set of usage patterns (e.g., endpoints that are frequently called one after
the other), whose occurrences imply the need for potential changes (e.g., merging the
two endpoints). The WAPI providers can accept or reject the suggested patterns, which
will be displayed together with informative metrics. These metrics will help providers
in the decision-making, by giving them information about the consequences of accept-
ing/rejecting the suggestions.

1 Introduction

As the use of web Application Programming Interfaces (WAPIs) is increasingly grow-
ing, their evolution becomes more challenging in terms of the service provided ac-
cording to consumers’ needs. While a lot of effort is put into analyzing consumers’
struggles when WAPIs change [27, 53, 97], little is known about providers’ burdens:
what, how, and when to evolve [3]. When deciding on which changes to perform, be-
sides several business requirements (from the organization whose data are exposed),
providers should take into account the way consumers use the WAPI. Moreover,
knowing the impact that changes usually cause to the consumers, they have to strike
a balance between not imposing irrelevant, unexpected, frequent changes and pro-
viding an up-to-date, maintainable, bug-free WAPI, that fulfills their needs [41].

While consumers may report various bugs or may request new endpoints (i.e.,
URLs to access WAPIs resources), their feedback may be partial and biased (based
on the specific endpoints they use), as well as difficult to gather and interpret at
scale [102]. Alternatively, WAPI providers could exploit the interaction between con-
sumers and WAPIs, which is recorded in the WAPI usage logs, generated while con-
sumers access the WAPI. Every time a consumer application makes a request, a log
entry is generated and stored in the usage log file. Therefore, consumers’ behavior
is recorded in these logs, and their analysis can obliquely reveal consumers’ needs
for new features hidden under several workarounds (solutions found by WAPI users
that allow them to get data, functionality, or features they need, but that are not yet
implemented by providers), or find room for potential improvements.

As applications are the actual WAPI consumers, we should consider the different
ways they consume WAPIs over their own lifecycles. Basically, applications interact
with the WAPIs during design time and runtime, over both of which manifest differ-
ent aspects of their behavior. Following from this, we distinguish two types of logs: (i)
development logs, generated while developers build and test their applications, and

136

2. Background: Process Mining in the WAPI context

(ii) production logs, generated while applications are being used by end users, mean-
ing that the WAPI requests are predetermined by the implemented functionalities of
the applications. We make this distinction as each of these log types, even though
provide useful information about WAPI consumption, can be analyzed in different
ways. But how much are these logs used and analyzed, beyond the typical traffic
monitoring? Several works [42, 56] suggest analyzing development logs to measure
the usability of WAPIs and thus perform changes that increase the perceived usabil-
ity from consumers’ point of view. In addition, there are various WAPI monitoring
tools available that take as input the WAPI usage logs, but they are mostly oriented
toward providing reporting dashboards or automatic alerting in case of WAPI fail-
ure [23]. Providers have all this potentially insightful, large volume of data that is
being generated, but not enough proactively used for evolution.

To address the problem of understanding consumers’ needs, we present Pattern-
Lens, a tool that aims to support providers in planning the changes by analyzing con-
sumers’ behavior recorded in the WAPI usage logs. We make use of process mining
techniques and compute from the logs a set of metrics regarding the real consump-
tion of WAPI endpoints by consumers, like the calling frequency of the endpoints,
the frequency of a sequence of endpoints, etc. Using these metrics and a pre-defined
set of patterns, we detect from the logs all the patterns, whose occurrences imply the
need for potential changes (e.g., merging two endpoints called always one after the
other). The WAPI providers can accept or reject the suggested patterns, which will
be displayed together with informative metrics, helping providers in the decision-
making.

The remainder of the paper is organized as follows. Section 2 presents the basic
concepts, derived from process mining techniques, used and implemented in the tool.
Section 3 introduces the tool, its main features, and its functionality. Section 4 reports
preliminary experimental results of the tool’s usability and ease of use evaluation,
while Section 5 presents the future plans for extending the tool.

2 Background: Process Mining in theWAPI context

Process mining is a process-oriented data mining discipline that uses event logs to
extract process-related knowledge. We give the definition of some fundamental con-
cepts of process mining, as presented by Van der Aalst [92], adapt them to the WAPI
domain, and use them to give the definition of concepts referred to in the rest of the
paper:

• Activity - a specific step in the process. For WAPIs, activities are calls to the end-

137

Chapter 7. PatternLens: Inferring Evolutive Patterns from Web API Usage Logs

points, i.e., the WAPI resources URL.

• Case - a process instance. We refer as a case to a set of requests that an application is
submitting to theWAPI during a certain time period, commonly referred as session.

• Event - an activity occurrence. An event refers to an activity and belongs to a
specific case. We refer to WAPI requests as events and identify them by activity
names (request methods like GET, POST, and the endpoint).

• Event log - a set of cases. A WAPI usage log contains all the requests (i.e., events)
that consumers (i.e., applications) make against the WAPI.

Using these concepts, we define a sequence as an ordered occurrence of events within
a case, and a pattern as a frequent sequence that when fulfilling some pre-defined
conditions, indicates the need for a specific change.

In order to apply process mining, an event log should have at least three at-
tributes: (i) case identifier that identifies the case to whom each event belongs, (ii)
activity name that identifies each event, and (iii) timestamp that indicates the time
when an event occurs. The presence of these three attributes allows inferring process
insights from the event log. Certainly, other attributes that might store additional
information about the events (e.g., device IP, application ID, status code), whenever
available, add value to the analysis.

In theWAPI context, process discovery consists of creating a graph-based process
model from the event log, where nodes represent the endpoints being called, and
edges the calling sequence of two endpoints. Even though we do not visualize the
process model, we aim to gather statistical information about it (e.g., the frequency
of calling one endpoint after another).

3 PatternLens overview

PatternLens takes as input the usage log file (i.e., event log) containing all the WAPI
calls from several consumers’ applications. We assume that the logs are already
cleaned and prepared, meaning that (i) every event (i.e., request) belongs to one case
(i.e., session), (ii) every event has a distinct timestamp, making able to build the right
sequence of calls, and (iii) the activities’ names are precise enough to identify each
process step, so that no two different process steps to appear with the same activity
name, and at the same time no the same process step to appear with different activity
names.

138

3. PatternLens overview

Data/services Usage Logs

WAPI

Output: Set of
Patterns, Changes

Input: Prepared
Usage Logs

PatternLens

Metrics
Calculator

Patterns
Detector

WAPI Provider

WAPI Consumers

Pre-processing

Fig. 7.1: PatternLens in the full context of WAPI - consumers interaction

Based on process mining concepts, the tool first computes a set of metrics for
each WAPI endpoint and sequence of endpoints as appearing in the file. Then, using
a pre-defined set of patterns and the computed metrics, it detects and displays to the
users all the patterns, of different types. Along each pattern, the users are presented
with the suggested changes that the patterns imply, as well as various metrics that
might help them in selecting the patterns that better fit their interests. The users
are given the possibility to accept the patterns that are interesting to them (i.e., the
implied changes are feasible from the providers’ point of view and would really im-
prove the WAPI with regard to consumers’ needs), reject the ones that do not seem
interesting, or ignore the ones for whom they are neutral or do not have any con-
scious thought. We want to note that PatternLens is designed to be used by WAPI
providers in analyzing consumers’ behavior. As such, we assume that its users (i.e.,
providers) have a strong prior knowledge of the WAPI, needed in order to properly
accept/reject patterns and the recommended changes. In the following, we intro-
duce and explain two main parts of the tool: the metrics calculator and the patterns
detector (see Figure 7.1).

139

Chapter 7. PatternLens: Inferring Evolutive Patterns from Web API Usage Logs

\ Absolute Frequency
\ # of Consumers’ Applications

Edge

Support
\ Confidence
Type
Suggested change

Pattern
Source Node

Outgoing Frequency Incoming Frequency

Target Node

* *
Name
Absolute Frequency
of Consumers’ Applications

Node
Session ID
Request
Timestamp
Application

Log Entry

*

*1 2

Fig. 7.2: PatternLens: Class Diagram

3.1 Metrics calculator

PatternLens considers the interaction between consumers andWAPI as a process. As
such, to build the processmodel, we refer to the process activities (callingmethod and
endpoint) as nodes, and to the order two endpoints are being called by the consumers,
as edges. Before detecting the patterns, PatternLens defines all the nodes and edges,
by extracting for each of them a set of attributes and computing somemetrics (Figure
7.2).

For the nodes we compute and make use of the following metrics:

• Absolute frequency: the total number of times that an endpoint was called.

• Incoming frequency (for target nodes): the total number of times that an end-
point was called after other endpoints.

• Outgoing frequency (for source nodes): the total number of times that an end-
point was called before other endpoints.

• # Consumers’ application: the number of applications that have called the end-
point in the study.

Each edge combines two nodes: a source node (i.e., the first called endpoint in
a two-node sequence), and a target node (the second called endpoint in a two-node
sequence). We define the edges by the following derived metrics:

• Absolute frequency: the total number of times that a sequence of endpoints was
followed.

• # Consumers’ application: the number of applications that have called the se-
quence of endpoints in the study.

140

3. PatternLens overview

Fig. 7.3: PatternLens: Application Interface

3.2 Patterns detector

Instead of visualizing the process map with all the sequences of calls, we filter only
those parts of the process, where we see a specific behavior of the way consumers
use the WAPI. We pre-define the set of patterns, whose occurrence may imply the
need for potential changes, rather than extracting all the frequent patterns from the
model to redundantly display them to WAPI providers without giving any hints on
the behavior these patterns manifest.

To measure the effectiveness of the patterns, we use two basic concepts from as-
sociation rules, namely the support and confidence metrics, and adapt them in the
context of our approach. We refer as support to the number of times a pattern appears
in the log file. We give the users the possibility to enter the desired minimum sup-
port, based on the size of the file they upload and how specific or general they want
the patterns to be. We refer as confidence to the relative frequency of the patterns,
regarding the source and the target node. As such, if a pattern has high support (i.e.,
high absolute frequency: it appears too often in the log file), but this frequency is too
low compared with the absolute frequency of the source and the target nodes, then
the pattern will have low confidence. The tool presents the patterns to the users in a
tabular form as in Figure 7.3.

We add to each pattern the metrics related to the pattern or the source/target
nodes (e.g., confidence, absolute frequency, number of applications where the pattern
appears), to better inform the users about the occurrence of the pattern and help them

141

Chapter 7. PatternLens: Inferring Evolutive Patterns from Web API Usage Logs

Node (GET-v2/assignatures/ID/guia) with one outgoing edge: create a new endpoint that combines endpoint 1 and 2.

GET-v2/assignatures/ID/guia GET-v2/competencies endpoint_1&2

Edges that the illustrated nodes are part of. Their thickness represent the edge absolute frequency.

Fig. 7.4: The pattern and the change it implies

Confidence 1' Type Source Target Affected consumers Accept/lgno re

0.83 Type 2: Merge GET-v2/assignatures/ID/guia GET-v2/competencies 6
II)(

Absolute frequency of the pattern: 173 Outgoing frequency of the source node: 211 Absolute frequency of the source node self-loop: 2

Suggestion: Create an endpoint that combines the source and the target endpoints.

Fig. 7.5: The pattern as displayed in PatternLens

better understand consumers’ behavior. Along with the patterns, we give a short
description of the implied changes (e.g., merging the two endpoints, and creating a
new attribute).

Figure 7.4 gives an example of a pattern that the tool is able to detect. Fig-
ure 7.5 depicts how PatternLens displays the pattern. As seen from Figure 7.4,
the GET-v2/assignatures/ID/guia endpoint, responsible to get data about specific
courses in the university (source node), has one outgoing edge, the one toward GET-
v2/competencies, responsible to get data about the required competencies to take
a course (target node). This means that after getting information about a specific
subject, consumers always call the endpoint for the competencies of the course. For
this reason, we suggest merging these two endpoints in one, which combines the
data from both of them, reducing this way the number of calls consumers have
to submit to get the desired data. PatternLens is able to detect this type of pat-
tern and displays it as in Figure 7.5. Along the pattern, that is defined by the
source and target node, the user is informed about the confidence of the pattern
(con f idence “

edge_abs_ f req
out_ f reqs´sel f _ f reqs

“ 173
211´2 “ 0.83), the pattern absolute frequency,

the outgoing frequency of the source node, the frequency of the source node self-
loop, and the change implied by the pattern. The shown metrics are different for
every type of pattern, as the tool presents the most relevant ones depending on the
way the pattern is being detected.

142

4. Onsite demonstration

4 Onsite demonstration

In the onsite demonstration, we will present the functionality of PatternLens using
log files from two real-world examples of different domains, namely health, and ed-
ucation. The first log file comes from the District Health Information Software 2
(DHIS2) WAPI. DHIS2 is an open-source, web-based health management informa-
tion system platform used worldwide by various institutions and NGOs for data en-
try, data quality checks, and reporting. It has an open RESTWAPI, used bymore than
60 native applications. The second log file belongs to WAPI of the Barcelona School
of Informatics at the Polytechnic University of Catalonia (Facultat d’Informàtica de
Barcelona, FIB, UPC). It is built under REST architecture and is mainly being used by
the FIB website, monitoring systems, school news’ screens, and several applications
created for academic purposes. The API provides a set of endpoints for extracting
data about departments, courses, exams, room reservations, etc. With these two ex-
amples, we aim to show that PatternLens performs the same, despite the domain of
the WAPI.

Currently, PatternLens is able to detect four different pattern types. Aswe assume
that the users of the tool should have prior knowledge of the WAPI to decide on
accepting or rejecting a pattern, and as the demo participants are not expected to
be familiar with our examples, we will encourage the participants to evaluate the
usability of the tool. Nevertheless, all the elements of the tool and the examples will
be well-explained, so that non-WAPI experts can assess the potential of PatternLens
in supporting providers in planning WAPI evolution.

5 Future work

We aim to further extend the PatternLens features in the following directions:

• Provide the users with more types of patterns.

• Quantify the impact that the suggested changes may cause if the providers
decide to implement them. We plan tomeasure the effectiveness of the changes
by predicting the excepted behavior of the consumers.

• Improve the tool according to historic data about users’ selections. Currently,
PatternLens stores information about the metrics of the patterns that users
select or reject. We aim to improve the way the information is presented to
them, based on their feedback.

143

Chapter 7. PatternLens: Inferring Evolutive Patterns from Web API Usage Logs

144

Chapter 8

Conclusions and Future
Directions

1 Conclusions

This work presents our approach for analyzing web API usage logs for evolution
purposes. The main objective of this thesis is to provide a new framework to help
providers better plan and carry out the evolution of their web APIs. We advocate
for the important role of consumers’ behavior and their interaction with web APIs
in web API evolution planning, meaning that the way consumers use the web APIs
should be one of the main factors impacting providers’ decisions. As such, providers
should not only consider consumers’ requirements, but they should also better gather
and analyze their feedback so that the new changes fit consumers’ expectations and
needs. We summarize the most important findings of this work, structuring them
according to Chapters 2 to 7. In the end, we introduce different directions on how
this work can be further extended or improved.

Chapter 2 provided an overview of web API evolution from both the consumers’
and providers’ perspectives. We identified and classified the most common changes
that occur during the evolution process. Furthermore, we delved into the artifacts
used by providers and consumers when evolving or upgrading web APIs, to better
understand how providers carry out this process (e.g., announcement, documenta-
tion, explaining the rationale behind the changes) and how consumers undergo web
API evolution (e.g., adapt to the changes, migrate to the new endpoints). The study
showed that the majority of the changes (more than 75% of them) were non-breaking

145

Chapter 8. Conclusions and Future Directions

changes, and a few of them (less than 50%) were documented in at least one of the
used artifacts. Thus, consumers tend to postpone the upgrade until the providers
disconnect the old versions. The results of this work regarding the classification of
the changes and their handling, inform the subsequent steps of our approach.

Chapter 3 focused on the change-proneness of web API and the role of con-
sumers’ usage (extracted from the usage logs) in properly predicting it. We con-
structed models based on design metrics, usage metrics, and design and usage met-
rics combined. The addition of usage metrics in the prediction not only improved the
accuracy of the results but also enabled early prediction of changes that providers
implement at later stages.

Chapter 4 focused on web API usage logs, highlighting their potential beyond
trafficmonitoring. Based on consumers’ application lifecycle, we identified two types
of usage logs, naming development and production logs, for each of which we intro-
duced a set of analyses that can be applied to them for web API evolution purposes.
However, we also noted the challenges associated with using these logs, such as the
need for tedious pre-processing due to their unstructured and voluminous nature,
and the lack of standardization by providers. We provided recommendations for
mitigating these challenges and suggested ways to improve data logging.

Chapters 5 and 6 introduced the two main branches of our approach. Chapter 5
covered the analysis of development logs with regard to web API usability. Specif-
ically, we adopted a usability taxonomy in our web API case and characterized all
attributes and sub-attributes of the taxonomy in indicators, most of which could be
traced in the web API usage logs. We saw that the classification model built with the
help of the metrics we defined to quantify the indicators, was able to detect endpoints
with poor usability.

Chapter 6 covered the analysis of the production logs. We defined a set of seven
behavioral patterns, whose occurrence could indicate the need for potential changes
on theWAPI. We detected the suggested patterns in two different web API usage logs
and evaluated the significance of the occurrences of the patterns and the changes they
suggest by interviewing their providers and customers. Their feedback confirmed the
promising potential of our approach.

Chapter 7 provided an illustrative example of the approach introduced by Chap-
ter 6. We developed a tool called PatternLens, which takes pre-processed production
logs as input and generates a list of patterns detected in the logs, along with sug-
gested changes. Providers can then accept or reject each pattern, contributing to the
refinement of our approach.

This thesis is the first step toward the automation of web API evolution. We

146

2. Future Directions

demonstrated the applicability of several techniques on web API usage logs, that ef-
fectively and efficiently identify the need for changes based on consumers’ behavior.

2 Future Directions

The approach presented in this thesis may inform future studies and can be extended
in several directions. It is a novel approach that suggests the analysis of web API
usage logs for web API evolution. Thus, it can be considered a starting point that
opens up new research opportunities for further investigation.

One direction for extension is analyzing changes in web API endpoint behavior,
in addition to interface level changes. For instance, changes in response format or
content, such as modifying the order of results, removing blank rows or columns
from the response, or altering the default list of attributes returned. These changes
might not break consumers’ applications, but they can modify behavior and affect
application performance without consumers’ knowledge.

Secondly, the usability analysis performed in Chapter 5 can be expanded to in-
clude other usability attributes and sub-attributes. These attributes have already been
characterized in this work as indicators that can be mainly tracked in usage logs.
However, we only quantified indicators for the know-ability of web APIs.

Furthermore, the work presented in Chapter 6 can be continued by analyzing the
usage logs generated after implementing the suggested changes. This will enable us
to see if consumers are using the web API in the way we anticipated. We can also
create migration scripts for the changes we suggest to assist consumers in upgrad-
ing. Additionally, an additional evaluation could be conducted to assess providers’
benefits from applying our approach to their web API evolution.

Finally, the preliminary tool presented in Chapter 7 has the potential for further
extension with additional functionality. Currently, the tool is designed to detect two
specific types of patterns. However, future work could involve incorporating all of
the patterns that we have defined.

147

Bibliography

Bibliography

[1] R. Abbas, F. A. Albalooshi, and M. Hammad. Software change proneness pre-
diction using machine learning. In 2020 International Conference on Innovation
and Intelligence for Informatics, Computing and Technologies (3ICT), pages 1–7.
IEEE, 2020.

[2] S. L. Abebe, N. Ali, and A. E. Hassan. An empirical study of software release
notes. Empirical Software Engineering, 21:1107–1142, 2016.

[3] A. Abelló Gamazo, C. P. Ayala Martínez, C. Farré Tost, C. Gómez Seoane,
M. Oriol Hilari, and Ó. Romero Moral. A data-driven approach to improve the
process of data-intensive api creation and evolution. In CAiSE-Forum-DC 2017:
CAiSE 2017 Forum and Doctoral Consortium Papers: proceedings of the Forum
and Doctoral Consortium Papers Presented at the 29th International Conference
on Advanced Information Systems Engineering (CAiSE 2017): Essen, Germany,
June 12-16, 2017, pages 1–8. CEUR-WS. org, 2017.

[4] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between
sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD inter-
national conference on Management of data, pages 207–216, 1993.

[5] D. Alonso-Ríos, A. Vázquez-García, E. Mosqueira-Rey, and V. Moret-Bonillo.
Usability: a critical analysis and a taxonomy. International journal of human-
computer interaction, 26(1):53–74, 2009.

[6] M. Aniche, G. Bavota, C. Treude, M. A. Gerosa, and A. Van Deursen. Code
smells for model-view-controller architectures. Empirical Software Engineer-
ing, 23:2121–2157, 2018.

[7] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc. Is it a bug
or an enhancement? a text-based approach to classify change requests. In Pro-
ceedings of the 2008 conference of the center for advanced studies on collaborative
research: meeting of minds, pages 304–318, 2008.

[8] E.-M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou. In-
troducing a ripple effect measure: a theoretical and empirical validation. In
2015 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 1–10. IEEE, 2015.

148

Bibliography

[9] E.-M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou. A
method for assessing class change proneness. In Proceedings of the 21st In-
ternational Conference on Evaluation and Assessment in Software Engineering,
pages 186–195, 2017.

[10] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk. Predicting maintenance perfor-
mance using object-oriented design complexity metrics. IEEE transactions on
Software Engineering, 29(1):77–87, 2003.

[11] B. Berendt, B. Mobasher, M. Spiliopoulou, and J. Wiltshire. Measuring the
accuracy of sessionizers for web usage analysis. In Workshop on Web Mining
at the First SIAM International Conference on DataMining, pages 7–14. Citeseer,
2001.

[12] D. Berlind. What are apis and how do they work?, 2019.

[13] D. Bertram, A. Voida, S. Greenberg, and R. Walker. Communication, collabo-
ration, and bugs: the social nature of issue tracking in small, collocated teams.
In Proceedings of the 2010 ACM conference on Computer supported cooperative
work, pages 291–300, 2010.

[14] R. J. C. Bose, R. S. Mans, and W. M. Van Der Aalst. Wanna improve process
mining results? In 2013 IEEE symposium on computational intelligence and data
mining (CIDM), pages 127–134. IEEE, 2013.

[15] A. Brito, L. Xavier, A. Hora, and M. T. Valente. Why and how java developers
break apis. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 255–265. IEEE, 2018.

[16] T. Bush. How workarounds reveal the true needs of your api consumers, 2019.

[17] E. Carter. New research predicts continued growth in api testing market, 2018.

[18] D. Chapela-Campa, M. Mucientes, and M. Lama. Mining frequent patterns in
process models. Information Sciences, 472:235–257, 2019.

[19] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on software engineering, 20(6):476–493, 1994.

[20] J. De San Pedro, J. Carmona, and J. Cortadella. Log-based simplification of
process models. In Business Process Management: 13th International Confer-
ence, BPM 2015, Innsbruck, Austria, August 31–September 3, 2015, Proceedings
13, pages 457–474. Springer, 2015.

149

Bibliography

[21] C. R. de Souza and D. L. Bentolila. Automatic evaluation of api usability using
complexity metrics and visualizations. In 2009 31st International Conference on
Software Engineering-Companion Volume, pages 299–302. IEEE, 2009.

[22] D. Dig and R. Johnson. How do apis evolve? a story of refactoring. Journal of
software maintenance and evolution: Research and Practice, 18(2):83–107, 2006.

[23] B. Doerrfeld. 10+ api monitoring tools, 2018.

[24] H. Ed-Douibi, J. L. Cánovas Izquierdo, and J. Cabot. Example-driven web api
specification discovery. In Modelling Foundations and Applications: 13th Euro-
pean Conference, ECMFA 2017, Held as Part of STAF 2017, Marburg, Germany,
July 19-20, 2017, Proceedings 13, pages 267–284. Springer, 2017.

[25] A. M. Eilertsen and A. H. Bagge. Exploring api: Client co-evolution. In Pro-
ceedings of the 2nd International Workshop on API Usage and Evolution, pages
10–13, 2018.

[26] T. Espinha, A. Zaidman, and H.-G. Gross. Web api growing pains: Stories
from client developers and their code. In 2014 Software Evolution Week-IEEE
Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), pages 84–93. IEEE, 2014.

[27] T. Espinha, A. Zaidman, and H.-G. Gross. Web api growing pains: Loosely
coupled yet strongly tied. Journal of Systems and Software, 100:27–43, 2015.

[28] R. T. Fielding. Architectural styles and the design of network-based software
architectures. University of California, Irvine, 2000.

[29] J. Gerken, H.-C. Jetter, M. Zöllner, M. Mader, and H. Reiterer. The concept
maps method as a tool to evaluate the usability of apis. In Proceedings of the
SIGCHI conference on human factors in computing systems, pages 3373–3382.
ACM, 2011.

[30] D. Gilling. 13 api metrics that every platform team should be tracking, 2022.

[31] N. Goel and C. Jha. Analyzing users behavior from web access logs using
automated log analyzer tool. International Journal of Computer Applications,
62(2), 2013.

[32] W. Granli, J. Burchell, I. Hammouda, and E. Knauss. The driving forces of api
evolution. In Proceedings of the 14th International Workshop on Principles of
Software Evolution, pages 28–37, 2015.

150

Bibliography

[33] T. Grill, O. Polacek, and M. Tscheligi. Methods towards api usability: A struc-
tural analysis of usability problem categories. In Human-Centered Software
Engineering: 4th International Conference, HCSE 2012, Toulouse, France, October
29-31, 2012. Proceedings 4, pages 164–180. Springer, 2012.

[34] C. W. Günther and W. M. Van Der Aalst. Fuzzy mining–adaptive process sim-
plification based on multi-perspective metrics. In Business Process Manage-
ment: 5th International Conference, BPM 2007, Brisbane, Australia, September
24-28, 2007. Proceedings 5, pages 328–343. Springer, 2007.

[35] L. P. Hattori and M. Lanza. On the nature of commits. In 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering-Workshops, pages
63–71. IEEE, 2008.

[36] A. Ivanchikj, I. Gjorgjiev, and C. Pautasso. Restalk miner: Mining restful con-
versations, pattern discovery and matching. In Service-Oriented Computing–
ICSOC 2018 Workshops: ADMS, ASOCA, ISYyCC, CloTS, DDBS, and NLS4IoT,
Hangzhou, China, November 12–15, 2018, Revised Selected Papers 16, pages 470–
475. Springer, 2019.

[37] A. Ivanchikj, C. Pautasso, and S. Schreier. Visual modeling of restful conver-
sations with restalk. Software & Systems Modeling, 17:1031–1051, 2018.

[38] R. Jagadeesh Chandra Bose and W. M. Van der Aalst. Abstractions in process
mining: A taxonomy of patterns. In Business Process Management: 7th Interna-
tional Conference, BPM 2009, Ulm, Germany, September 8-10, 2009. Proceedings
7, pages 159–175. Springer, 2009.

[39] A. Joshi, K. Joshi, and R. Krishnapuram. On mining web access logs. UMBC
Computer Science and Electrical Engineering Department, 1999.

[40] J. Kapusta, M. Munk, P. Svec, and A. Pilkova. Determining the time window
threshold to identify user sessions of stakeholders of a commercial bank portal.
Procedia Computer Science, 29:1779–1790, 2014.

[41] R. Koçi, X. Franch, P. Jovanovic, and A. Abelló. Classification of changes in api
evolution. In 2019 IEEE 23rd International Enterprise Distributed Object Com-
puting Conference (EDOC), pages 243–249. IEEE, 2019.

[42] R. Koçi, X. Franch, P. Jovanovic, and A. Abelló. A data-driven approach tomea-
sure the usability of web apis. In 2020 46th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 64–71. IEEE, 2020.

151

Bibliography

[43] R. Koçi, X. Franch, P. Jovanovic, and A. Abelló. Improving web api usage log-
ging. In Research Challenges in Information Science: 15th International Confer-
ence, RCIS 2021, Limassol, Cyprus, May 11–14, 2021, Proceedings, pages 623–629.
Springer, 2021.

[44] R. Koçi, X. Franch, P. Jovanovic, and A. Abelló. Patternlens: Inferring evolutive
patterns from web api usage logs. In Intelligent Information Systems: CAiSE
Forum 2021, Melbourne, VIC, Australia, June 28–July 2, 2021, Proceedings, pages
146–153. Springer, 2021.

[45] R. Kosala and H. Blockeel. Web mining research: A survey. ACM Sigkdd
Explorations Newsletter, 2(1):1–15, 2000.

[46] M. Lamothe, Y.-G. Guéhéneuc, and W. Shang. A systematic review of api evo-
lution literature. ACM Computing Surveys (CSUR), 54(8):1–36, 2021.

[47] M. Lamothe and W. Shang. When apis are intentionally bypassed: An ex-
ploratory study of api workarounds. In Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering, pages 912–924, 2020.

[48] M. Leemans and W. M. van der Aalst. Discovery of frequent episodes in event
logs. In Data-Driven Process Discovery and Analysis: 4th International Sympo-
sium, SIMPDA 2014, Milan, Italy, November 19-21, 2014, Revised Selected Papers
4, pages 1–31. Springer, 2015.

[49] M. M. Lehman. Laws of software evolution revisited. In Software Process Tech-
nology: 5th European Workshop, EWSPT’96 Nancy, France, October 9–11, 1996
Proceedings 5, pages 108–124. Springer, 1996.

[50] M. M. Lehman and J. F. Ramil. Software evolution—background, theory, prac-
tice. Information Processing Letters, 88(1-2):33–44, 2003.

[51] V. I. Levenshtein et al. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710. Soviet
Union, 1966.

[52] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister. Upset: visu-
alization of intersecting sets. IEEE transactions on visualization and computer
graphics, 20(12):1983–1992, 2014.

[53] J. Li, Y. Xiong, X. Liu, and L. Zhang. How does web service api evolution affect
clients? In 2013 IEEE 20th International Conference on Web Services, pages 300–
307. IEEE, 2013.

152

Bibliography

[54] D. Lübke, O. Zimmermann, C. Pautasso, U. Zdun, and M. Stocker. Interface
evolution patterns: Balancing compatibility and extensibility across service
life cycles. In Proceedings of the 24th European Conference on Pattern Languages
of Programs, pages 1–24, 2019.

[55] W. Maalej, M. Nayebi, T. Johann, and G. Ruhe. Toward data-driven require-
ments engineering. IEEE software, 33(1):48–54, 2015.

[56] A. Macvean, L. Church, J. Daughtry, and C. Citro. Api usability at scale. In
PPIG, page 26, 2016.

[57] R. Malhotra and M. Khanna. Investigation of relationship between object-
oriented metrics and change proneness. International Journal of Machine
Learning and Cybernetics, 4:273–286, 2013.

[58] R.Malhotra andM. Khanna. An empirical study for software change prediction
using imbalanced data. Empirical Software Engineering, 22:2806–2851, 2017.

[59] R. Malhotra and M. Khanna. Software change prediction: A systematic review
and future guidelines. e-Informatica Software Engineering Journal, 13(1), 2019.

[60] M. Mathijssen, M. Overeem, and S. Jansen. Identification of practices and ca-
pabilities in api management: a systematic literature review. arXiv preprint
arXiv:2006.10481, 2020.

[61] S. G. McLellan, A. W. Roesler, J. T. Tempest, and C. I. Spinuzzi. Building more
usable apis. IEEE software, 15(3):78–86, 1998.

[62] M. Medjaoui, E. Wilde, R. Mitra, and M. Amundsen. Continuous API manage-
ment. " O’Reilly Media, Inc.", 2021.

[63] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: simple building blocks of complex networks. Science,
298(5594):824–827, 2002.

[64] E. Mosqueira-Rey, D. Alonso-Ríos, V. Moret-Bonillo, I. Fernández-Varela, and
D. Álvarez-Estévez. A systematic approach to api usability: Taxonomy-derived
criteria and a case study. Information and Software Technology, 97:46–63, 2018.

[65] E. Murphy-Hill, C. Sadowski, A. Head, J. Daughtry, A. Macvean, C. Jaspan, and
C. Winter. Discovering api usability problems at scale. In Proceedings of the
2nd International Workshop on API Usage and Evolution, pages 14–17. ACM,
2018.

153

Bibliography

[66] B. A. Myers and J. Stylos. Improving api usability. Communications of the ACM,
59(6):62–69, 2016.

[67] A. T. Nguyen and T. N. Nguyen. Graph-based statistical language model for
code. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, volume 1, pages 858–868. IEEE, 2015.

[68] S. Panichella, G. Canfora, and A. Di Sorbo. “won’t we fix this issue?” qualita-
tive characterization and automated identification of wontfix issues on github.
Information and Software Technology, 139:106665, 2021.

[69] C. Pautasso, A. Ivanchikj, and S. Schreier. A pattern language for restful con-
versations. In Proceedings of the 21st European Conference on Pattern Languages
of Programs, pages 1–22, 2016.

[70] C. Pautasso and E. Wilde. Why is the web loosely coupled? a multi-faceted
metric for service design. In Proceedings of the 18th international conference on
World wide web, pages 911–920, 2009.

[71] M. Piccioni, C. A. Furia, and B. Meyer. An empirical study of api usability.
In 2013 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, pages 5–14. IEEE, 2013.

[72] N. Pržulj, D. G. Corneil, and I. Jurisica. Modeling interactome: scale-free or
geometric? Bioinformatics, 20(18):3508–3515, 2004.

[73] G. M. Rama and A. Kak. Some structural measures of api usability. Software:
Practice and Experience, 45(1):75–110, 2015.

[74] RapidAPI. State of apis report 2022, 2023.

[75] I. Rauf, E. Troubitsyna, and I. Porres. A systematic mapping study of api us-
ability evaluation methods. Computer Science Review, 33:49–68, 2019.

[76] R. Robbes, M. Lungu, and D. Röthlisberger. How do developers react to api
deprecation? the case of a smalltalk ecosystem. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engi-
neering, pages 1–11, 2012.

[77] D. Romano andM. Pinzger. Using source code metrics to predict change-prone
java interfaces. In 2011 27th IEEE international conference on software mainte-
nance (ICSM), pages 303–312. IEEE, 2011.

154

Bibliography

[78] M. S. Santos, J. P. Soares, P. H. Abreu, H. Araujo, and J. Santos. Cross-validation
for imbalanced datasets: Avoiding overoptimistic and overfitting approaches
[research frontier]. ieee ComputatioNal iNtelligeNCe magaziNe, 13(4):59–76,
2018.

[79] A. Sarajlić, N. Malod-Dognin, Ö. N. Yaveroğlu, and N. Pržulj. Graphlet-based
characterization of directed networks. Scientific reports, 6(1):1–14, 2016.

[80] T. Scheller and E. Kühn. Automated measurement of api usability: The api
concepts framework. Information and Software Technology, 61:145–162, 2015.

[81] S. Serbout and C. Pautasso. An empirical study of web api versioning practices.
In International Conference on Web Engineering, pages 303–318. Springer, 2023.

[82] S. Sohan, C. Anslow, and F. Maurer. A case study of web api evolution. In 2015
IEEE World Congress on Services, pages 245–252. IEEE, 2015.

[83] M. Spiliopoulou, B. Mobasher, B. Berendt, and M. Nakagawa. A framework
for the evaluation of session reconstruction heuristics in web-usage analysis.
Informs journal on computing, 15(2):171–190, 2003.

[84] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web usage mining:
Discovery and applications of usage patterns from web data. Acm Sigkdd Ex-
plorations Newsletter, 1(2):12–23, 2000.

[85] M. Srivastava, A. K. Srivastava, and R. Garg. Data preprocessing techniques in
web usage mining: A literature review. In Proceedings of International Confer-
ence on Sustainable Computing in Science, Technology and Management (SUS-
COM), Amity University Rajasthan, Jaipur-India, 2019.

[86] S. Suriadi, R. Andrews, A. H. ter Hofstede, andM. T.Wynn. Event log imperfec-
tion patterns for process mining: Towards a systematic approach to cleaning
event logs. Information systems, 64:132–150, 2017.

[87] P. Suter and E.Wittern. Inferring web api descriptions from usage data. In 2015
Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb),
pages 7–12. IEEE, 2015.

[88] W. Tan, Y. Fan, A. Ghoneim, M. A. Hossain, and S. Dustdar. From the service-
oriented architecture to the web api economy. IEEE Internet Computing,
20(4):64–68, 2016.

155

Bibliography

[89] D. Tanasa and B. Trousse. Advanced data preprocessing for intersites web
usage mining. IEEE Intelligent Systems, 19(2):59–65, 2004.

[90] G. Uddin and M. P. Robillard. How api documentation fails. Ieee software,
32(4):68–75, 2015.

[91] W. Van Der Aalst. Service mining: Using process mining to discover, check,
and improve service behavior. IEEE transactions on services Computing,
6(4):525–535, 2012.

[92] W. Van Der Aalst. Process mining: data science in action, volume 2. Springer,
2016.

[93] W. M. Van Der Aalst. Challenges in service mining: record, check, discover. In
Web Engineering: 13th International Conference, ICWE 2013, Aalborg, Denmark,
July 8-12, 2013. Proceedings 13, pages 1–4. Springer, 2013.

[94] P. Vassiliadis, A. V. Zarras, and I. Skoulis. How is life for a table in an evolving
relational schema? birth, death and everything in between. In Conceptual
Modeling: 34th International Conference, ER 2015, Stockholm, Sweden, October
19-22, 2015, Proceedings 34, pages 453–466. Springer, 2015.

[95] K. Vasudevan. What is api documentation, and why it matters?, 2017.

[96] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining succinct
and high-coverage api usage patterns from source code. In 2013 10th Working
Conference on Mining Software Repositories (MSR), pages 319–328. IEEE, 2013.

[97] S. Wang, I. Keivanloo, and Y. Zou. How do developers react to restful api evo-
lution? In Service-Oriented Computing: 12th International Conference, ICSOC
2014, Paris, France, November 3-6, 2014. Proceedings 12, pages 245–259. Springer,
2014.

[98] D.Winer, S. Thatte, D. Box, G. Kakivaya, and A. Layman. SOAP: Simple Object
Access Protocol. Internet-Draft draft-box-http-soap-01, Internet Engineering
Task Force, Dec. 1999. Work in Progress.

[99] E. Wittern, A. T. Ying, Y. Zheng, J. A. Laredo, J. Dolby, C. C. Young, and A. A.
Slominski. Opportunities in software engineering research for web api con-
sumption. In 2017 IEEE/ACM 1st International Workshop on API Usage and
Evolution (WAPI), pages 7–10. IEEE, 2017.

156

Bibliography

[100] W. Wu, F. Khomh, B. Adams, Y.-G. Guéhéneuc, and G. Antoniol. An ex-
ploratory study of api changes and usages based on apache and eclipse ecosys-
tems. Empirical Software Engineering, 21:2366–2412, 2016.

[101] L. Xavier, A. Hora, and M. T. Valente. Why do we break apis? first answers
from developers. In 2017 IEEE 24th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), pages 392–396. IEEE, 2017.

[102] T. Zhang, B. Hartmann, M. Kim, and E. L. Glassman. Enabling data-driven api
design with community usage data: A need-finding study. In Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–13,
2020.

[103] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. Mapo: Mining and recom-
mending api usage patterns. In ECOOP 2009–Object-Oriented Programming:
23rd European Conference, Genoa, Italy, July 6-10, 2009. Proceedings 23, pages
318–343. Springer, 2009.

[104] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall. Analyzing apis
documentation and code to detect directive defects. In 2017 IEEE/ACM 39th In-
ternational Conference on Software Engineering (ICSE), pages 27–37. IEEE, 2017.

[105] M. F. Zibran, F. Z. Eishita, and C. K. Roy. Useful, but usable? factors affecting
the usability of apis. In 2011 18th Working Conference on Reverse Engineering,
pages 151–155. IEEE, 2011.

157

Bibliography

158

Appendices

159

Appendix A

Appendix 1

1 Structural relationships derived from graphlets

Table A.1: Graphlets, the sequences they can generate, the spotted relationships between
two nodes, and the inferred patterns.

Graphlets Sequences Relationships between nodes Patterns

G1 A Not connected node -
G2 A,...,A A node called consecutively k times P1
G3 AB Nodes called consecutively after one another P2
G4 AB, BA, ABA Nodes called in opposite direction P3
G5 ABC Nodes called consecutively after one another P2
G6 BA, BC Nodes that follow the same source node(s) P4
G7 AB, CB Nodes that are followed by the same target node(s) P5

G8 ABCA, ABC, CA Nodes called consecutively after one another
Nodes called in opposite direction

P2, P3

G9 AC, ABC A node being optional to another P6
G10 ABCD Nodes called consecutively after one another P2
G11 ABC, DC Nodes that are followed by the same target node(s) P5

G12 AB, CD, CB Nodes that follow the same source node(s)
Nodes that are followed by the same target node(s)

P4, P5

G13 CD, CBA Nodes that follow the same source node(s) P4
G14 AD, BD, CD Nodes that are followed by the same target node(s) P5
G15 DB, DC, DA Nodes that follow the same source node(s) P4

161

Appendix A. Appendix 1

G16 BDA, BDC Nodes that follow the same source node(s) P4
G17 ADB, CDB Nodes that are followed by the same target node(s) P5

G18 ABCDA, ABCD, DA Nodes called consecutively after one another
Nodes called in opposite direction

P2, P3

G19 ABCD, AD A node being optional to another P6
G20 AB, AD, CB, CD Nodes that follow the same source node(s) P4
G21 ABC, ADC Nodes as possible P7s after another node P7
G22 CBA, CDBA A node being optional to another P6

G23 CB, CDB, AB A node being optional to another
Nodes called consecutively after one another

P6, P2

G24 BA, BCD, BD A node being optional to another
Nodes called consecutively after one another

P6, P2

G25 CBA, CD, CBD A node being optional to another
Nodes called consecutively after one another

P6, P2

G26 ABCD, ABD A node being optional to another P6

G27 ABD, CD, CBD A node being optional to another
Nodes called consecutively after one another

P6, P2

G28 BCDBA, BCD, DB Nodes called consecutively after one another
Nodes called in opposite direction

P2, P3

G29 ABCDB, BCD, DB Nodes called consecutively after one another
Nodes called in opposite direction

P2, P3

G30 ABCDA, AC Nodes called consecutively after one another
A node being optional to another

P2, P6

G31 ABC, ACB, ADC A node being optional to another
Nodes as possible P7s after another node

P6, P7

G32 ABC, ADC, CA Nodes as possible P7s after another node P7

G33 BC, BAC, DC, DAC A node being optional to another
Nodes that follow the same source node(s)

P6, P4

G34 AB, AD, ACB, ACD A node being optional to another P6
G35 ABCD, AD, ACD A node being optional to another P6

G36 ABCD, ABCA, AD
Nodes called consecutively after one another

A node being optional to another
Nodes called in opposite direction

P2, P6,
P3

G37 DABC, DC, ABCA A node being optional to another P6
G38 DC, DAC, DABC A node being optional to another P6

G39 BAD, BCD, BCAD A node being optional to another
Nodes as possible P7s after another node

P7, P6

162

2. Interviews

G40 DBCAB, DCABC, DABCA A node being optional to another
Nodes that follow the same source node(s)

P6, P4

G41 ABCAD, ABD, ABCD Nodes called in opposite direction P3
G42 BC, BDC A node being optional to another P6

G43 DB, DAB, DACB, DCB A node being optional to another
Nodes that follow the same source node(s)

P6, P4

2 Interviews

Interview with DHIS2 WAPIs’ consumers
Q1: Based on your experience using DHIS2 WAPI, share your opinion on its
evolution (frequency, changes relevance, or practices followed by providers).
Q2: Do you communicate with WAPI providers? If yes, how?
Q3: Do providers take into account your requests when changing the WAPI?
Q4: Would you prefer having different ways of doing a task (or get some data), or
just one way?
Q5: Have you ever used the following endpoints together when implementing a spe-
cific feature in your applications? (direct-follow, two-node loop, and feed-forward)
Q6: If it was available a unified endpoint that combines the two mentioned end-
points, would you use it, or would you continue using the individual ones? Why?
Q7: Can you give any examples on how you use the following endpoints? (examples
from fork, inverted fork, and choice)
Q8: How would you react to the implementation of a new endpoint that would
combine the two mentioned endpoints? Would you be open to use it?
Q9: Have you ever felt the need to make several calls of this endpoint in series, with
different values for its attributes or parameters?
Q10: Do you think there may be a more efficient way to get/post the needed data
only by making one call, instead of several ones?

Interview with FIB WAPIs’ providers
Q1: How do you deal with the evolution of FIB WAPI? What is the starting point of
a change?
Q2: How do you communicate with your consumers?
Q3: Do you take into account the feedback from consumers when planning the
changes?

163

Appendix A. Appendix 1

Q4: Are the following endpoints related in any way (e.g. usage, function, purpose)?
(example from direct follow)
Q5: If consumers would call the previous endpoints together most of the time (one
after the other always in the same order), would you consider this usage as an
indication that there is a causal dependency relation between the two endpoints?
Would this kind of relation encourage you to perform some action in order to
improve these endpoints so that consumers can get the data more efficiently? Why
yes/no?
Q6: Are the following endpoints related in any way? (example from the two-node
loop)
Q7: If consumers would call the previous endpoints together most of the time,
without following a specific order, would you consider this usage as an indication
that these endpoints have combinable functions? Would this kind of relation
encourage you to perform some action in order to improve these endpoints so that
consumers can get the data more efficiently and simpler? Why yes/no?
Q8: Are the following endpoints related in any way? (examples from fork, inverted
fork, and choice)
Q9: If most of the time consumers would call the previous endpoints after and/or
the same set of endpoints, would you consider this usage as an indication that these
endpoints might have a similar purpose or joinable functionalities? Would this
kind of relation encourage you to reorganize these endpoints to simplify the data
retrieval for consumers, by providing endpoints without duplicate functionality?
Why yes/no?
Q10: Are the following endpoints related in any way? (example from the feed-
forward)
Q11: If most of the time consumers would call the second endpoint optionally after
the first endpoint, would you consider this usage as an indication that the second
endpoint functionality might be supplementary or optional to the first one? Would
this kind of relation encourage you to improve any of these endpoints so that
consumers can get the data needed data more efficiently? Why yes/no?
Q12: If you see that consumers would call the following endpoint several times
in sequence with different parameter values, would you consider this usage as an
indication that there is a need to improve these endpoints so that consumers can get
the same data with only one call? (example from the reflexive loop)

164

	Front
	Front page
	Abstract
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1 Motivation
	2 Background
	2.1 Web APIs
	2.2 Web APIs usage logs
	2.3 Use Cases

	3 State-of-the-art
	4 Thesis Objectives and Research Questions
	5 Contributions
	6 Structure of the Thesis
	6.1 Classification of changes in API evolution (RQ1)
	6.2 Web API Change-Proneness Prediction (RQ2)
	6.3 Improving Web API Usage Logging (RQ3)
	6.4 A data-driven approach to measure the usability of web APIs (RQ4)
	6.5 Web API evolution patterns: A usage-driven approach (RQ5).
	6.6 PatternLens: Inferring evolutive patterns from web API usage logs (RQ5).

	2 Classification of Changes in API Evolution
	1 Introduction
	2 Related Work
	2.1 API evolution
	2.2 API usage

	3 Classification of changes
	3.1 Which are the changes that happen to APIs?
	3.2 How are the changes that happen to APIs reflected in different API artifacts?
	3.3 Which are the causes of the API changes?
	3.4 How are the API changes reflected in the usage logs?

	4 Use case: DHIS2 API
	4.1 Methodology - Exploring evolved APIs
	4.2 DHIS2 use case.

	5 Discussion
	6 Conclusion and future work

	3 Web API Change-Proneness Prediction
	1 Introduction
	2 Background and Related Work
	2.1 Core Concepts and Relationships
	2.2 Related Work

	3 Framework
	4 Evaluation
	4.1 Use Case
	4.2 Metrics Quantification
	4.3 Data Analysis

	5 Threats to Validity
	6 Conclusion

	4 Improving Web API Usage Logging
	1 Introduction
	2 Related Work
	3 The potential of WAPI usage logs
	4 How does the logs format affect the pre-processing?
	5 Case study
	6 Common WAPI logs issues
	7 Conclusion and future work

	5 A Data-Driven Approach to Measure the Usability of Web APIs
	1 Introduction
	2 Related Work
	3 The proposed approach
	3.1 Measuring web API usability in web API logs
	3.2 API usability aspects
	3.3 Usability issues detected in API usage logs

	4 API log data pre-processing
	5 Case study design
	5.1 DHIS2 Web API
	5.2 Data pre-processing
	5.3 Data Analysis

	6 Discussion
	7 Conclusion and Future Work

	6 Web API Evolution Patterns: A Usage-Driven Approach
	1 Introduction
	2 Background
	2.1 WAPI usage logs
	2.2 Process Mining
	2.3 Graphlets

	3 Approach
	4 Defining and detecting the WAPI behavioral patterns
	4.1 Patterns Definition
	4.2 Metrics Generation
	4.3 Patterns Detection

	5 Evaluation
	5.1 Use case
	5.2 Data Analysis
	5.3 Feedback from Programmers

	6 Discussion
	7 Related Work
	8 Conclusion and Future Work

	7 PatternLens: Inferring Evolutive Patterns from Web API Usage Logs
	1 Introduction
	2 Background: Process Mining in the WAPI context
	3 PatternLens overview
	3.1 Metrics calculator
	3.2 Patterns detector

	4 Onsite demonstration
	5 Future work

	8 Conclusions and Future Directions
	1 Conclusions
	2 Future Directions
	Bibliography
	Bibliography

	Appendices
	A Appendix 1
	1 Structural relationships derived from graphlets
	2 Interviews

